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Preface

I have been teaching Python to first-year engineering students in Singapore
University of Technology and Design. As a powerful and high level programming
language, Python is ideal for the introduction to programming, which is useful for
all engineering disciplines. In my teaching, I constantly find the need for ways to
make my explanations as simple as possible. A concept, no matter how simple it
seems to us computer scientists, may raise profound questions among students. For
example, why is x = x + 1 a valid statement but not equivalent to the contradicting
equation 0 = 1? How can three lines of static code lead to a thousand statements
being executed dynamically?

A student who asks such questions can be a very good student. Once the basic
concepts are explained, she can manage programming effectively. On the other
hand, few books on Python touch on the simple yet fundamental discussions that
have been accumulated into my lecture notes. This has become my motivation for
writing this book, a very gentle introduction to Python and programming.

From teaching experiences in University of Oxford, University of Cambridge,
and Singapore University of Technology and Design, I find three components the
most important for teaching programming. The first is syntax, the basic knowledge
of how to write a correct program. As with most books on the Python language, it is
an important component of this book. The second is the underlying mechanism of
dynamic execution, and the underlying representation of data types. This is an
aspect of programming that can easily be overlooked, which leads to common
mistakes in programming. I make abstractions to the most important parts of the
Python kernel, such as the binding table, object structures, and statement execution,
showing them in figures, so that students can be confident of what happens
underneath when a program is executed.

The third component is problem solving, which is the target of program design.
The goal of learning programming is to solve problems, and it is important to
associate programming concepts to problem solving when they are introduced.
There are often various typical ways to approach common problems, and I try to
introduce them along with the introduction to the programming language itself.
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In addition, I include the most basic concepts in computer science into the
introduction to Python, including information theory, computer architecture, data
structure and algorithms, numerical analysis, and program design thinking such as
functional programming and object-oriented programming. All these concepts are
necessary backgrounds on which Python operates, and through which students can
acquire a basic idea of computer science. I try to merge them into relevant sections,
and make my introduction most simple and gentle.

In terms of Python syntax and libraries, I prioritize the former over the latter,
introducing the full Python syntax and the most important libraries. The goal is to
introduce Python to students with no programming or computer science back-
ground, equipping them with knowledge of the programming language and its
underlying mechanisms, so that they can learn the usage of additional libraries with
little difficulty, by consulting the Python documentation.

It took me over a year to transform my lecture notes into the book, during which
many people gave me valuable help. Special thanks to Qiujing Xu, Likun Qiu,
Chen Lü, Yanan Lu, Chingyun Chang, Yijia Liu, Zhongye Jia, Bo Chen, Jie Yang,
Meishan Zhang, Xiao Ding, Hao Zhou, and Ji Ma for helping me to draw the
figures, and enter handwritten text in some chapters, to Haoliang Qi for inviting me
to give a guest lecture series and encouragement to write up my lecture notes, and to
all the students who gave me valuable feedback.

Yue Zhang
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Chapter 1
An Introduction to Python and Computer
Programming

1.1 Introduction

Computers play a very important role in the digital world, and in our daily lives. They
are central to smart TVs, phones, homes cars, metros, airplanes, robots, factories and
many other digital systems. We use computers through these systems every day.

At work, computers have become an indispensible tool to more and more people.
Fund managers use computers for analytical trading; architects use computers to
make and verify building design; linguists use computers to study and annotate text
corpora; natural scientists use computers to simulate large experiments in physics
and chemistry; supermarkets use computers to plan and schedule the most efficient
home delivery times and routes. As a result, fundamental knowledge on effectively
utilizing computers is useful for all industries and disciplines.

Computers integrate hardware and software. Hardware refers to physical com-
ponents, such as chips, keyboards and monitors, while software refers to operat-
ing systems and application programs, such as Office, Firefox and iTunes. Software
operates on hardware to provide useful functionalities to users, such as text editing,
Internet browsing and gaming. On the other hand, hardware provides fundamental
support to software, by offering a set of basic instructions, which software combines
to achieve complex functionality.

Programming is the design of software using a set of basic instructions.
Programming languages abstract hardware instructions into basic statements,
which are much easier to understand and handle. Using a programming language,
one can write complex software, achieving tailored functionalities by combination
of basic statements. This is the ultimate way of utilizing a computer, and is necessary
when existing software fails to satisfy the requirement, such as the need to compute
novel equations, or simulate specific experiments in an engineering discipline.
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Fig. 1.1 Comparison of
Python, Java and C++

1.1.1 Python and Computer Programming

Python was invented in the 1990s, named after the comedy show Monte Python’s
Flying Circus. Due to its simplicity and elegance, it gained popularity among
programmers quickly, and was adopted by large companies, such as Google Inc.
Compared with other programming languages, such as Java and C++, Python is
particularly useful for learning computer programming.

Figure1.1 shows a comparison between Python, Java and C++, three popular pro-
gramming languages. Among the three, C++ was invented the earliest. Its statements
were the closest to hardware instructions. As a result, C++ programs run very fast,
and can be optimized in many ways. However, mastering C++ requires knowledge
in computer hardware. Java was invented decades after C++. It offers higher levels
of abstraction compared to C++, making it easier to program. As a trade-off, Java
programs run slower than C++. Python takes one step further in abstracting away
hardware details, offering a conceptually very simple system for statement execu-
tion. As a result, Python is the easiest to learn and fully master, but Python programs
are typically the slowest to run.

In terms of functionalities, Python is as powerful as Java and C++. It supports
all the functionalities that typical computer hardware supports. In addition, libraries
provided byPython and open-source contributers enrich the power of Python,making
it the most convenient choice for many applications, such as text processing. Python
libraries such as numpy and scipy are implemented in C++ in the lower level, offering
very fast ways to perform scientific computation using Python.

Problem-solving skills are as important as knowledge of programming languages
to computer programming. It is therefore important to learn common approaches to
typical problems when learning computer programming. Python supports virtually
all the programming paradigms that Java and C++ supports, and even more, making
it convenient to apply flexible problem-solving techniques using the Python pro-
gramming language.

1.2 Preliminaries

As preliminary knowledge to Python programming, it is helpful to know the basic
structure of a computer, the operating system, the file system, and how to install and
configure Python. This section introduces these backgrounds, so that it is easier to
embark on Python programming from the next chapter.
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Fig. 1.2 The structure of a
computer

1.2.1 The Computer

The structure of a computer and the mechanism in which Python code is executed are
illustrated in Fig. 1.2. On the bottom of the figure is the hardware computer, which
is physically tangible. It consists of three main components: the central processing
unit (CPU), the memory and devices. They will be discussed in the next chapter. On
top of the computer runs an operating system, such as Microsoft Windows, Linux
andMac OS. Operating systems connect computer hardware and software, providing
basic interfaces to software programs for controlling the hardware. For example, the
file system is an interface that operating systems provide for organizing data in the
hard drive (hardware). Browsers, text editors, music players, and the vast majority
of other application programs are managed by the operating system.

As shown in Fig. 1.2, Python is an application program running on top of the
operating system, just like a browser or a text editor. Its main function, however,
is to execute generic Python code, rather than performing a specific task, which
browsers and text editors do. IDLE is another application program, which provides
an interactive interface for Python. On the top of the figure is Python code, which
is executed by the Python application. Given a piece of Python code, or a Python
program, Python executes it by interpreting the code into computer instructions,
executed on computer hardware via the operating system. In the following chapters,
how various types of Python statements are interpreted will be discussed in detail.

1.2.2 The File System

Operating systems organize data in a hard drive as files. Each file contains a certain
type of data. For example, a music track can be stored as an mp3 file, a video clip can
be stored as an mpeg file, and a text document can be stored as a txt file. Application
programs are also files. In Windows, for example, application programs such as
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Firefox are stored as executable (exe) files. Python programs are a special type of
text document, stored as py files.

The type of a file, such as as mp3 and txt, is typically reflected by the last part of
the file name, which is called the extension name. The extension name is separated
from the main file name by a dot (.). For example, in the file name “readme.txt”,
the main file name is “readme” and the extension name is “txt”, indicating that the
corresponding file is a text file. In the file name “hello.py”, the main file name is
“hello”, and the extension name is “py”, indicating that the file is a Python source
file.

Files are organized using folders, which are containers of files and other folders.
In a file system, folders are organized in a hierarchy. There is only one folder that is
not contained by another folder, and it is called the root folder. Except for the root
folder, each folder belongs to another folder, which is typically called the parent
folder of the folder. Such a hierarchical structure is called a tree. An example is
shown in Fig. 1.3, where the folders and files form an upside-down tree from the root
folder.

In the tree structure of a file system, each file can be identified by the path from
the root folder to the file. For example, in Fig. 1.3, file1 can be identified by the path
root → folder1 → file1, and file3 can be identified by the path root → folder1 →
folder4 → folder7 → file3. The use of path names to identify files avoids name
clashes between different folders. For example, even if file6 is renamed as file1 in
Fig. 1.3, it is still different from root → folder1 → file1.

InWindows, back slashes (\) are used as the path deliminator symbol. InLinux and
Max OS, slashes (/) are used as the path deliminator. For example, the path for file6 in
Fig. 1.3 is written as \ folder3\ folder6\ file6 in Windows, and /folder3/folder6/file6
in Linux. In all these cases the root folder is written implicitly as the start of the path.

In Windows, a hard drive can be split into several volumes, each having its own
tree structure of folders. Windows volumes are denoted by letters, starting from ‘C’,
followed by a colon (:). For example, ‘C:\folder\file1’ represents a file in the volume
‘C:’, and is different from the file ‘D:\folder1\file1’.

Fig. 1.3 Folder hierarchy



1.2 Preliminaries 5

Fig. 1.4 Example text console Terminal on a Mac OS

1.2.3 Text User Interfaces to Operating Systems

Anoperating system consists ofmany components, and oneway to categorize operat-
ing system components is to put them into two types. The first type ofOS components
operates the computer hardware; it is called the kernel in Linux systems, for per-
forming the “core” functionalities. The second type of OS components provides a
user interface; it is called the shell in Linux systems.

OS user interfaces have evolved from text user interface to graphical user inter-
face (GUI). A text user interface is also called a text console (Fig. 1.4). It works
by repeatedly displaying a prompt message to the user and waits for a line of user
command. After receiving a command, it executes the command, displays results
and feedbacks in text format, and prompts for a next command. On the other hand,
a GUI (Fig. 1.5) displays information in graphical windows and message boxes, and
receives user command via buttons, menu items and dialog boxes.

Fig. 1.5 Example graphical user interface
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Compared with a text console, a GUI is more intuitive to use, not requiring one
to remember the names of text commands. However, a text console is often more
convenient for executing complex commands with many parameters, because such
advanced commands may not have GUI at all, and even if they do, entering a row
of parameters in text can be faster than choosing and entering into text boxes in a
large dialog window. With respect to programming, text input and output can be
much easier to program compared to GUI. As a result, text is the default input and
output mechanism for many programming languages, including Python, and basic
knowledge of the text console is highly useful for learning programming.

In Windows, Linux and Mac OS, the text console is a program. In Windows, the
program is named ‘Command Line’; in Linux, the program is named ‘Terminal’ or
‘Console’; in Mac OS, the program is named ‘Terminal’ (Fig. 1.4). Because the text
console commands of Linux and Mac OS are mostly similar, they are not introduced
separately in this book.

After being launched, Command Line can show the following message:

C:\Users\yue_zhang >

After being launched, Terminal can show the following message:

Zhangs -MacBook -Pro:~ yue_zhang$

In the examples above, ‘C:\Users\yue_zhang>’ and ‘Zhangs-MacBook-Pro:
∼ yue_zhang$’ are the prompt messages, after which a command can be entered.
Each text command finishes with a new line (the Enter key).

In a text console, all commands are entered in a current working folder, which is
a folder in the file system. By default, all the commands that are entered into the text
console operates on the current working folder. Without a full path being specified,
all file names entered into the text console also refer to files in the current working
folder by default. The current working folder is typically reflected by the prompt
message. In Windows, the following command shows its full path:

C:\Users\yue_zhang > cd
C:\Users\yue_zhang

In Linux and Mac OS, the following command shows its full path:

Zhangs -MacBook -Pro:~ yue_zhang$ pwd
/Users/yue_zhang

By default, C:\Users\yue_zhang and /Users/yue_zhang are the home folder of
the user yue_zhang underWindows andMac OS, respectively. Under Linux, the home
folder can be /home/yue_zhang.

One can list out the files and folders contained in the current working folder. In
Windows, the command is dir:

C:\Users\yue_zhang >dir
2015/03/30 15:30 <DIR > .
2015/03/30 15:30 <DIR > ..
2015/03/12 10:15 <DIR > Contacts
2015/03/30 14:49 <DIR > Desktop
2015/03/12 10:15 <DIR > Documents
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2015/03/12 10:15 <DIR > Downloads
2015/03/12 10:15 <DIR > Favorites

In Linux and Mac OS, the command is ls:

Zhangs -MacBook -Pro:~ yue_zhang$ ls
Applications Downloads Movies Public

octave -core
Desktop Dropbox Music Research
Documents Library Pictures Teaching

All the commands are by default executed in the current working folder.
For example, the command ‘mkdir <folder_name>’ creates a new folder named
‘<folder_name>’ in the current folder. An example in Windows is shown below.

C:\Users\yue_zhang >mkdir newfolder

C:\Users\yue_zhang >dir
2015/03/30 15:30 <DIR > .
2015/03/30 15:30 <DIR > ..
2015/03/12 10:15 <DIR > Contacts
2015/03/30 14:49 <DIR > Desktop
2015/03/12 10:15 <DIR > Documents
2015/03/12 10:15 <DIR > Downloads
2015/03/12 10:15 <DIR > Favorites
2015/03/30 15:26 <DIR > newfolder

The command ‘rmdir <folder_name>’ removes the empty folder ‘<folder_
name>’ from the current folder:

C:\Users\yue_zhang >rmdir newfolder

C:\Users\yue_zhang >dir
2015/03/30 15:30 <DIR > .
2015/03/30 15:30 <DIR > ..
2015/03/12 10:15 <DIR > Contacts
2015/03/30 14:49 <DIR > Desktop
2015/03/12 10:15 <DIR > Documents
2015/03/12 10:15 <DIR > Downloads
2015/03/12 10:15 <DIR > Favorites

The commands mkdir and rmdir apply to Linux and Mac OS also.
One can change the current working folder by using the command ‘cd

<folder_name>’, which enters the folder <folder_name>. For example,

C:\Users\yue_zhang >dir
2015/03/30 15:30 <DIR > .
2015/03/30 15:30 <DIR > ..
2015/03/12 10:15 <DIR > Contacts
2015/03/30 14:49 <DIR > Desktop
2015/03/12 10:15 <DIR > Documents
2015/03/12 10:15 <DIR > Downloads
2015/03/12 10:15 <DIR > Favorites
C:\Users\yue_zhang >cd Contacts

C:\Users\yue_zhang\Contacts >
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Two special folder names are ‘.’ and ‘..’, which represent the current working
folder and its parent folder, respectively. ‘cd .’ does nothing, for the working folder
is changed to the same folder. ‘cd ..’ enters the parent folder, the folder one level
up towards the root.
C:\Users\yue_zhang >cd
C:\Users\yue_zhang

C:\Users\yue_zhang >cd ..

C:\Users >

In all the examples above,<folder_name> is a folder name in the current working
folder. This type of path is called a relative path. On the other hand, absolute paths,
which specify a folder from the root, can also be used for <folder_name>. For
example,
C:\Users\yue_zhang >cd
C:\Users\yue_zhang

C:\Users\yue_zhang >cd \Users\yue_zhang\Desktop

C:\Users\yue_zhang\Desktop >

The syntax of the cd <folder> command is the same in Linux and Mac OS as in
Windows. However, if cd is used without specifying <folder>, the functionality is
showing the current working directory on Windows, while entering the home folder
on Linux and Mac OS.

1.2.4 The Python Application Program

Python programs are executed by the Python application program, or Python in
short, which is a software program like TextEdit and Firefox. Python can be down-
loaded from the official Python website www.python.org, and installed into a com-
puter. There are two commonly used dialects of Python: Python 2 and Python 3. This
book uses Python 2, in which most existing Python programs are written. However,
the underlying mechanisms are mostly the same for both Python 2 and Python 3, and
they are only mildly different in syntax for certain functionalities.

The Python installer program allows the specification of a path, in which Python
is installed. By default, the folder is C:\Python2.7 on Windows, where 2.7 is the
version number of Python. After installation, the executable Python application is
the file:
C:\ Python2 .7\ python.exe

On Linux and Mac OS, Python is typically pre-installed, and can be found at
/usr/bin/python2 .7

Python can be executed by setting the current working folder to the folder con-
taining Python:

www.python.org
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c:\Users\yue_zhang >cd \Python2 .7
C:\ Python2.7>python
Python 2.7.1 (r271 :86832 , Jul 31 2011, 19:30:53) [MSC

v.1500 32 bit (Intel)] on win32
Type"help", "copyright", "credits" or "license" for

more information.
>>>

By typing ‘python’, Windows executes the file python.exe in the current working
folder, which leads to the interactive execution mode of Python.

On Linux and Mac OS, Python can be executed by typing ‘./Python2.7’ in the
current working folder.

Zhangs -MacBook -Pro:~ yue_zhang$ cd /usr/bin
Zhangs -MacBook -Pro:~ yue_zhang$ ./ python2 .7
Python 2.7.1 (r271 :86832 , Jul 31 2011, 19:30:53)
[GCC 4.2.1 (Based on Apple Inc. build 5658) (LLVM

build 2335.15.00)] on linux2
Type "help", "copyright", "credits" or "license" for

more information.
>>>

Note that ‘./’ must be used when executing a program in the current working
folder in Linux and Mac OS. To exit the interactive Python application, press and
hold the [Ctrl] key and press the D key (i.e. press Ctrl-D).

(continued from above)
>>> ^D
Zhangs -MacBook -Pro:~ yue_zhang$

1.2.5 Python and Environment Variables

The content of this section is not typically necessary to know, but can be useful when
customizing Python.

Environment variables are a set of settings that an operating system uses to
configure itself. For Windows, the current environment variables can be listed and
modified by clicking Start → Control Panel → System → Advanced system settings.
In the Advanced tab, select Environment Variables, as shown in Fig. 1.6.

For Linux and Mac OS, the current environment variables can be viewed and
modified by editing the file $PATH.

The PATH environment variable stores a list of paths from which the operating
system searches for an executable program automatically. If the specified executable
is not in the current working folder (Windows), or the path (e.g. ‘./’; ‘/Desktop/’) is
not specified (Linux and Mac OS), the operating system will search the paths in the
PATH environment variable for the executable.

Python is typically added to thePATH environment variablewhen installed. There-
fore, it should be possible to execute python at any path. In the rare cases when the
operating system cannot find the python executable program, the path in which
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Fig. 1.6 Viewing and
setting environment
variables for Windows

Python is installed (e.g. C:\Python 2.7) can be added to the list of folders in the
PATH environment variable. A restart of the operating system may be necessary for
the change to take effect.

The PYTHON_PATH environment variable is a second environment variable
relevant to Python. It also stores a list of paths that are useful to Python specifically,
rather than for the operating system. In particular, when Python loads librarymodules
(Chap. 3), it will search the paths in PYTHON_PATH for them.

On Windows, PYTHON_PATH can be set by following Fig. 1.6. On Linux and
Mac OS, it can be set by modifying the file .bash_profile under the home folder,
adding the line

export PYTHON_PATH=$PYTHON_PATH:path1:path2:path3

where path1, path2 and path3 are module paths.

Exercises

1. Which of the following can be achieved using Python programming?

(a) Mathmatical calculations;
(b) A Windows GUI application;
(c) Controlling a robotic arm;
(d) Web crawling;
(e) A machine-leaning system that can fly a helicopter;
(f) Simulation of large-scale experiments in physics;
(g) A game in Android
(h) A operating system from scratch.

2. What are the three main components of a computer?
3. List three programming languages and compare their differences. Why are there

many programming languages?
4. How can text user interfaces be launched on Windows, Linux and Mac OS?

http://dx.doi.org/10.1007/978-981-287-609-6_3
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5. Perform the following in a text user interface.

(a) Show the current working folder;
(b) Enter the home folder;
(c) Enter the Desktop folder;
(d) Create a new folder under the nameNew under theDesktop folder, and verify

that it appears on the graphical desktop;

6. Launch the python program, and then exit it.



Chapter 2
Using Python as a Calculator

One of the most important tasks that a computer performs is mathematical computa-
tion. In fact, the computation of mathematical functions had been the driving moti-
vation for the invention of ‘computing machines’ by pioneer researchers. As other
programming languages do, Python provides a direct interface to this fundamental
functionality of modern computers. Naturally, an introduction of Python could start
by showing how it can be used as a tool for simple mathematical calculations.

2.1 Using Python as a Calculator

The easiest way to perform mathematics calculation using Python is to use IDLE,
the interactive development environment of Python, which can be used as a fancy
calculator. To begin with the simplest mathematical functions, including integral
addition, subtraction, multiplication and division, can be performed in IDLE using
the following mathematical expressions1:
>>> 3+5 # addition
8
>>> 3-2 # subtraction
1
>>> 6*7 # multiplication
42
>>> 8/4 # division
2

As can be seen from the examples above, a simple Python expression is similar to a
mathematical expression. It consists of some numbers, connected by a mathematical
operator. In programming terminology, number constants (e.g. 3, 5, 2) are called
literals. An operator (e.g. +, −, ∗) indicates the mathematical function between

1The content after the # symbols are comments and can be ignored when typing the examples.
Details about comments are given in Chap. 3 or the rest of the book >>> indicates an IDLE
command.

© Springer Science+Business Media Singapore 2015
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its operands, and hence the value of the expression (e.g. 3 + 5). The process of
deriving the value of an expression is called the evaluation of the expression. When
a mathematical expression is entered, IDLE automatically evaluates it and displays
its value in the next line.

Since expressions themselves represent values, they can be used as operands in
longer composite expressions.

>>> 3+2 -5+1
1

In the example above, the expression 3+2 is evaluated first. Its value 5 is combined
with the next literal 5 by the − operator, resulting in the value 0 of the composite
expression 3 + 2 − 5. This value is in turn combined with the last literal 1 by the +
operator, ending up with the value 1 for the whole expression.

In the example, operators are applied from left to right, because+ and− have the
same priority. In an expression that contains more than one operators, not necessarily
all operators have the same priority. For example,

>>> 3+2*5 -4
9

The expression above evaluates to 9, because the multiplication (∗) operator has a
higher priority comparedwith the+ and−operators. Theorder inwhichoperators are
applied is called operator precedence, andmathematical operators in Python follow
the natural precedence by the mathematical function. For example, multiplication
(∗) and division (/) have higher priorities than addition (+) and subtraction (−). An
operator that has higher priority than multiplication is the power operator (∗∗).
>>> 5 ** 2 # power
25

In general, a ∗∗ b denotes the value of a to the power of b.
Similar to mathematical equations, Python allows the use of brackets (i.e.

‘(’ and ‘)’) to manually specify the order of evaluation. For example,

>>> (3+2) *(5-4) # brackets
5

The value of the expression above is 5 because the bracketed expressions 3 + 2
and 5 − 4 are evaluated first, before the ∗ operator is applied.

In the examples above, an operator connects two literal operands, and hence they
are called binary operators. An operator can also be unary, taking only a single
operand. An example unary operator is −, which takes a single operand and negates
the number.

>>> -(5*1) # negation
-5

There is also a ternary operator in Python, which takes three operands. It will be
introduced in a later chapter.

Until this point, all the mathematical expressions have been integral, with the
values of literal operands and expressions being integers. Take the division operator
(/) for example,
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>>> 5/2 # division with integer operands
2

The result of the integral division operation is the quotient 2, with the fractional
part 1 discarded. To find the remainder of integer division, the modulo operator (%)
can be used.

>>> 5%2 # modulo
1

2.1.1 Floating Point Expressions

So for all the expressions in this chapter are integer expressions, of which all the
operands and the value are integers. However, for the expressions 5/2, sometimes
the real number 2.5 is a more appropriate value. In computer science, real number
are typically called floating point number. To perform floating point arithmetics,
at least one floating point number must be put in the expression, which results in a
floating point expression. For example,

>>> 5.0/2 # floating point division
2.5
>>> 5/2.0 # floating point division
2.5
>>> 25 ** 0.5 # floating point power
5.0

The last example above calculates the positive square root of 25. Regardless of
operands, when all the numbers in a Python expression are integers, the expression
is an integer expression, and the value of the expression itself is an integer. However,
when there is at least one floating point number in an expression, the expression is
a floating point expression, and its value is a floating point number. Below are some
more examples, which show that +, − and ∗ operators can all be applied to floating
point numbers, resulting in floating point numbers.

>>> 3.0+5.1 # floating point addition
8.1
>>> 1.0 -2.4 # floating point subtraction
-1.4
>>>5.5*0.3 # floating point multiplication
1.65

The observation above leads to an important fact about Python: things have types.
Literals have types. The literal 3 indicates an integer, and the literal 3.0 indicates a
floating point number. Expressions have types, and their types are the types of their
values. The type of a literal or expression can be examined by using the following
commands:

>>> type (3)
<type ‘int’>
>>> type (3.0)
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<type ‘float’>
>>> type (3+5)
<type ‘int’>
>>> type (3+5.0)
<type ‘float’>

The command type(x) returns the type of x . This command is a function call in
Python, which type is a built-in function of Python. We call a function with specific
arguments in order to obtain a specific return value. In the case above, calling the
function type with the argument 3 results in the ‘integer type’ return value.

Function calls are also expressions, which are written in a form similar to mathe-
matica function, with a function name followed by a comma-separated list of argu-
ments enclosed in a pair of brackets. The value of a function call expression is the
return value of the function. In the above example, type is the name of a function,
which takes a single argument, and returns the type of the input argument. As a result,
the function call type(3.0) evaluates to the ‘float type’ value.

Intuitively the return value of a function call is decided by both the function itself
and the arguments of the call. To illustrate this, consider two more functions. The int
function takes one argument and converts it into an integer, while the float function
takes one argument and converts it into a floating point number.
>>> float (3)
3.0
>>> int (3.0)
3
>>> float (3)/2
1.5
>>> 3* float (3 -2*5+4) **2
27.0

As can be seen from the examples above, when the function is type, the return
values are different when the input argument is 3 and when the input argument is
3.0. On the other hand, when the input argument is 3, the return value of the function
type differs from that of the function float. This shows that both the functions and
the arguments determine the return value.

The last two examples above is a composite expression, in which the function call
float(3) is evaluated first, before the resulting value 3.0 is combined with the literal 2
by the operator /. Function calls have higher priorities than mathematical operators
in operator precedence.

The int function converts a floating point number into an integer by discarding all
the digits after the floating point. For example,
>>> int (3.0)
3
>>> int (3.1)
3
>>> int (3.9)
3

In the last example, the return value of int(3.9) is 3, even though 3.9 is numerically
closer to the integer 4. For floating-point conversion by rounding up an integer, the
round function can be used.
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>>> round (3.3)
3
>>> round (3.9)
4

The round function can round up a number not only to the decimal point, but also to
a specific number of digits after the decimal point. In the latter case, two arguments
must be given to the function all, with the second input argument indicating the
number of digits to keep after the decimal point. The following examples illustrate
this use of the round function with more than one input arguments. Take note of the
comma that separates two input arguments.

>>> round (3.333 , 1)
3.3
>>> round (3.333 , 2)
3.33

A floating point operator that results in an integer value is the integer division
operator (//), which discards any fractional part in the division.

>>> 3.0//2
1
>>> 3.5//2
1

Correspondingly, the modulo operator can also be applied to floating point divi-
sion.

>>> 3.5%2
1.5

Another useful function is abs, which takes one numerical argument and returns
its absolute value.

>>> abs(1)
1
>>> abs (1.0)
1.0
>>> abs(-5)
5

One final note on floating point numbers is that their literals can be expressed by
a scientific notation. For example,

>>> 3e1
30.0
>>> 3e-1
0.3
>>> 3E2
300.0

The notations xey and xEy have the same meaning. They indicate the value of
x × 10y .
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2.1.2 Identifiers, Variables and Assignment

The set of arithmetic expressions introduced above allows simple calculations using
IDLE. For example, suppose that the annual interest rate of a savings account is 4%.
To calculate the amount of money in the account after three years, with an initial
sum of 3, 000 dollars is put into the account, the following expression can be used.

>>> 3000*1.04**3
3374.592

One side note is that brackets can be used to explicitly mark the intended operator
precedence, even if they are redundant. In the case above, 3000 ∗ 1.04 ∗ ∗3 can
be written as 3000 ∗ (1.04 ∗ ∗3) to make the operator precedence more obvious.
In general, being more explicit can often make the code easier to understand and
less likely to contain errors, especially when there are potential ambiguities (e.g.
non-intuitive or infrequently used operator precedence).

For a second example, suppose that the area of a square is 10m2. The length of
each edge can be calculated by:

>>> 10**0.5
3.1622776601683795

The result can be rounded up to the second decimal place.

>>> round (10**0.5 , 2)
3.16

For notational convenience and to make programs easier to maintain, Python
allows names to be given to mathematical values. An equivalent way of calculating
the edge length is:

>>> a=10
>>> w=a**0.5
>>> round(w, 2)
3.16

In the example above, a denotes the area of the square, and w denotes its width.
The use of a and w makes it easier to understand the underlying physical meanings
of the values. a and w are called identifiers in Python. Each Python identifiers is
bound to a specific value. In the example, a is bound to 10 and w is bound to

√
10.

Identifiers can be bound to new value:

>>> x=1
>>> x
1
>>> x=2
>>> x
2

In the example, the value of x is first 1, and then 2. Because identifiers can change
their values, they are also called variables.

The = sign in the above example is not an operator, and hence the commands
a = 10 andw = round(a ∗ ∗0.5) are not expressions. They bare no values. Instead,
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Table 2.1 List of keywords in Python

and as assert break class

continue def del elif else

except exec finally for from

global if import in is

lambda not or pass print

raise return try while with

yield

the = sign denotes an assignment statement, which binds an identifier to a value.
Here a statement is a command to be executed by Python, and statements are the
basic execution units in Python. There are different types of statements, as will be
introduced in this book. In an assignment statement, the identifier to which a value is
assigned must be on the left hand side of =, and the value to assign to the identifier,
which can be any expression, should be on the right hand side of =. Python gives a
name to a value by binding the value to an identifier.

An intuitive difference between identifiers and literals is that the former are names
while the latter are values. Formally, an identifiermust start with a letter or underscore
(_), and contain a sequence of letters, numbers and underscores. For example, area,
a, a0, area_of_square and _a are all valid identifiers, but 0a, area of square or a1!
are not valid identifiers. An additional rule is that identifiers must not be keywords
in Python, which are a list of reserved words. There are 31 keywords in total, which
are listed in Table2.1. Each keyword can be associated with one or more statements,
which will be introduced in the subsequent chapters.

For another example problem, suppose that a ball is tossed up on the edge of a
cliff with an initial velocity v0, and that the initial altitude of the ball is 0m. The
question is to find the vertical position of the ball at a certain number of seconds t
after the toss. If the initial velocity of 5m/s and the time is 0.1 s, the altitude can be
calculated by:

>>> v0=5
>>> g=9.81
>>> t=0.1
>>> h = v0*t-0.5*g*t**2
>>> round(h, 2)
0.45

To further obtain the vertical location of the ball at 1 s, only t and h need to be
modified.

>>> t=1
>>> h=v0*t -0.5*g*t**2
>>> round(h, 2)
0.09

Note that the value of h must be calculated again after the value of t changes.
This is because an assignment statement binds an identifier to a value, rather than
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establishing a mathematical correlation between a set of variables. When h = v0 ∗
t − 0.5 ∗ g ∗ g ∗ t ∗ ∗ 2 is executed, the right hand side of = is first evaluated
according to the current values of v0, g and t , and then the resulting value is bound
to the identifier h. This is different from a mathematical equation, which establishes
factual relations between values. When the value of t changes, the value of h must
be recalculated using h = v0 ∗ t − 0.5 ∗ g ∗ g ∗ t ∗ ∗ 2. For another example,

>>> x=1
>>> x=x+1
>>> x
2

There are three lines of code in this example. The first is an assignment statement,
binding the value 1 to the identifier x . The second is another assignment statement,
which binds the value of x + 1 to the identifier x . When this line is executed, the
right hand side of = is first evaluated, according to the current value of x . The result
is 2. This value is in turn bound to the identifier x , resulting in the new value 2 for
this identifier. The third line is a single expression, of which the value is displayed
by IDLE. Think how absurd it would be if the second line of code is treated as a
mathematical equation rather than an assignment statement!

An equivalent but perhaps less ‘counter-intuitive’ way of doing x = x + 1 is
x+= 1.

>>> x=1
>>> x+=1
>>> x
2

The same applies to x = x − 3, x = x ∗ 6, and other arithmetic operators.

>>> x-=3
>>> x
-1
>>> x*=6
>>> x
-6

In general, x<op>=y is equivalent to x=x<op>y, where <op> can be +, −, ∗,
/, % etc. The special assignment statements +=, −=, ∗=, /= and %= can be used
as a concise alternative to a = assignment statement when it incrementally changes
the value of one variable.

Given the fact above, it is not difficult to understand the outputs, if the following
commands are entered into IDLE to find the position of the ball after 3 s in the
previous problem.

(continued from above)

>>> t=3
>>> round(h, 2)
0.09
>>> h=v0*t -0.5*g*t**2
>>> round(h, 2)
-29.15
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The commands above are executed sequentially and individually.When t is bound
to the new value 3, h is not affected, and remains 0.09. After the new h assignment is
executed, its value changes to−29.15 according to the new t .Cascaded assignments.
Several assignment statements to the same value can be cascaded into a single line.
For example, a = 1 and b = 1 can be cascaded into a = b = 1.

>>>a=b=1
>>>a
1
>>>b
1

2.2 The Underlying Mechanism

Floating point arithmatic can be inaccurate in calculators; the same happens in
Python.

>>> x=1.0/7
>>> x+x+x+x+x+x+x
0.9999999999999998
>>> 3.3%2
1.2999999999999998

In both cases, the expression is evaluated to an imprecise number. The main
reason is limitation of memory space. A floating point number can contain an infinite
amount of information, if there is an infinite number of digits after the decimal point.
However, the amount of information that can be processed or stored by a calculator
or a computer is finite. As a result, floating point numbers cannot be stored to an
arbitrary precision, and floating point operators cannot be infinitely precise. The error
that results from the imprecise operations is called rounding off error.

At this point it is useful to know a little about the underlying mechanism of
Python, so that deeper understanding can be gained on facts such as rounding off
errors, which enablesmore solid programs to be developed. This section discusses the
prepresentation and storage of numbers, the way in which arithmetic operations are
carried out by Python, and the underlying mechanisms of identifiers and assignment
statements.

The basic architecture of a computer is shown in Fig. 2.2 in the previous chapter.
On the bottom of the figure, themain hardware components are shown,which include
the CPU, memory and devices. Among the three main components, the CPU is the
most important; it carries out computer instructions, including arithmetic operations.
The typical way in which arithmetic operations are executed is: the CPU takes the
operands from thememory, evaluates the result by applying the operator on them, and
then stores the result back into the memory. The memory can be regarded as a long
array of information storage units. Each unit is capable of storing a certain amount
of information, and the index of its location in the long array if also referred to as its
memory address. Devices are the channel through which computers are connected
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to the physical world. Keyboards, mouses, displays, speakers, microphones are a
few commonly-used devices. An important device is the hard disk, on which the OS
defines a file system for external storage of information.

2.2.1 Information

Computers are information-processing machines. The rounding-off error examples
show that the basic unit of storage and computation can only accommodate a limited
amount of information. But what is information, and how can one store information?
A short answer to the first question is that, information is represented in computers
as discrete numbers, or integers. It is an abstraction of real physical quantities, such
as the pitch of sound, the colour, and the alphabet. Signals from input devices are
transformed into discrete numbers before being processed by a computer, and output
devices turn discrete values back into physical signals.

For example, letters typed on a keyboard are mapped into discrete numbers (e.g.
‘A’ → 64) before being stored into the memory. Sound waves received by a micro-
phone are sampled at a certain rate (e.g. 256,000 times a second), and then turned into
an array of discrete values. Such type of sound information can be processed (e.g.
denoised) or transformed (e.g. enlarged), and than passed to a sound output device
and transformed back into sound waves. A black and white display transforms a grid
of numbers into a gird of pixels, each number depicting the brightness of a pixel
on the display. A robot can move according to input numbers that indicate desired
velocity and direction. In all these cases, devices act as a channel between computers
and the physical world.

To answer the second question above, the easiest data storage medium that can
be found is probably some material that can have two states (e.g. hight-voltage vs.
low-voltage, solid vs. liquid, hot vs. cold). A basic storage unit made of suchmaterial
can store a binary value, denoted as 0 or 1, each representing a distinct state of the
material. Larger integers can be stored by using a combination of multiple basic
storage units. For example, the combination of two basic storage units can store four
distinct values: 00, 01, 10 and 11. An illustration is shown in Fig. 2.1. In general,
the total number of possible states by combining n basic storage units is 2n . On the
other hand, at any time, the combined units can only have one actual combined state,
which can be represented by a unique array of 0s and 1s.

It is natural to associate an array of 0 s and 1swith a discrete number (integer). One
way to number distinct states of N basic storage units s0, s1, . . . sN , si ∈ {0, 1} is to
interpret each distinct state as a non-negative binary number, treating the value of
sN sN−1 . . . s0 as 2N ∗sN +2N−1∗sN−1+. . .+20∗s0 = ∑N

i=0 si ·2i . For example, the
state 101 corresponds to the integer 1 ∗ 22 + 0 ∗ 21 + 1 ∗ 20 = 1 ∗ 4+ 0 ∗ 2+ 1 ∗ 1 =
5, and 1101 corresponds to the integer 1 ∗ 23 + 1 ∗ 22 + 0 ∗ 21 + 1 ∗ 20 =
1 ∗ 8+1 ∗ 4+0 ∗ +1∗1 = 13. In thisway, a natural connection is established between
the states of data storage materials and integers, which represent information. In
computer science, each binary-valued digit is called a bit, and a combination of
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Fig. 2.1 Distinct states that can be represented by a combination of binary storage units

8 bits is a byte. A byte storage unit can store 28 = 256 distinct numbers, which can
be index by the integers 0–255. Most modern computers treat 8 bytes, or 64 bits, as
a word, which serves as the basic units for storage.

As mentioned earlier, a digital number represents abstract information. Numbers,
alphabets, sounds and all other types of information are abstracted and represented by
binary numbers in computers. In information theory, the amount of information is
measured by bits. A 64-bit word can represent 64 bits of information,which translates
to 264 distinct integers. The abstract information, however, can be interpreted in
different ways. The aforementioned interpretation of information as non-negative
integer values is just one example, which can be used to represent the brightness of
a pixel on a black and white monitor.

Another example is the 2’s complement interpretation of signed integers, which
uses 64 bits to represent an integer that ranges from −263 to 263 − 1. In this repre-
sentation, the first bit always indicates the sign: when it is 0, the number is positive;
when it is 1, the number is negative. When the number is positive, the remaining 63
bits indicate the absolute value of the number. Negative numbers are represented in
a slightly more complicated way. Rather than concatenating the sign bit (i.e. 1) with
a 63-bit representation of the absolute value, a negative number is represented by
first inversing its absolute value bit by bit, and then adding 1 to the result. For the
convenience of illustration, take a byte-sized number for example. To find the repre-
sentation of –13, two steps are necessary. First, the absolute value, 13, or 00001101 in
binary form, is inversed bit by bit into 11110010. Then 1 is added to the back of the
number:

11110010
+) 00000001
-----------

11110011

The resulting number, 1110011, is the binary representation of –13 in 2’s com-
plement form. Note that the first bit is 1, indicating that it is a negative number. For
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another example, to represent –16, its absolute value 00010000 is first inversed bit
by bit into 11101111, and then 1 is added to the number,

11101111
+) 00000001
-----------

11110000

As a result, –13 and –16 are 11110011 and 11110000, respectively, according to
2’s complement representation. The same process of negative number interpretation
applies to 64-bit words. The advantage of 2’s complement representations is that the
addition operation between numbers can be performed in the same way regardless
of whether negative numbers are involved or not. For example, −13 + 13 can be
performed by

11110011
+) 00001101
-----------

100000000

With the first bit being discarded (it runs out of the 8-bit boundary, and hence
cannot be recorded by 8-bit physical media), the result is 0, the correct answer.

A third useful interpretation of information is floating point numbers. When
sound is concerned, floating point numbers give a more convenient model of the
pitches in sound wave samples. As discussed earlier, all floating point numbers
cannot be represented using a finite amount of information, and therefore some have
to be truncated when represented using a computer word. A standard approach of
representing floating point numbers in a finite number of bits is to split the total
number of bits into two parts, one representing a base number (also referred to as
the significant) and the other representing the exponent. For example, from a 64-
bit word, 11 bits can be used to denote the exponent (e) and 53 bit the base (b).
This type of representation naturally corresponds to the scientific notation of float
literals in Python, where bEe = b × 10e. Of course, abstract information can also
be interpreted as letters and other quantities in the physical world, which are out of
the scope of this book.

Words are used not only as the basic units of data storage, but also as the basic
units of computation. In digital circuits, of which all modern computers are made,
electric signals are represented by binary values, with a high voltage in a wire
denoting the value 1, and a low voltage denoting 0. Digital chips, such as CPUs,
takes a fixed number of binary signals as input, and have a fixed number of output.
64-bit CPUs perform arithmetic operations on 64-bit operands, yielding 64-bit results
by hardware computation. As a consequence, floating point numbers can contain
only 64 bits of information, and floating point arithmetics have rounding off errors.
In fact, integers are also represented by words on computer hardware, typically in
2’s complement form. However, Python provides a new type, long, which repre-
sents numbers that exceeds the range of 64 bits. Python converts large integers into
the long type automatically, and performs arithmetic operations between long type
numbers implicitly by using a sequence of 64-bit integer arithmetic operations, so
that programmers can use a large integer in Python without noticing the difference
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between int and long. Long type numbers can be identified by examining their types
explicitly.

>>> type (111)
<type ‘int’>
>>> type (2**64)
<type ‘long’>

A long type number can also be specified explicitly using long literals, which are
integer literals with a ‘l’ or ‘L’ added to the end

>>> type (111L)
<type ‘long’>

In summary, information that a computer stores and processes is ultimately rep-
resented by a finite number of 0s and 1s (i.e. bits), organized in basic unites (e.g.
words). They are interpreted in different ways when turned into specific types.

2.2.2 Python Memory Management

When evaluating an arithmetic expression, Python first constructs an object in the
memory for each literal in the expression, and then applies the operators one by
one to obtain intermediate and final values. All the intermediate and final values
are stored in the memory as objects. Python objects are one of the most important
concepts in understanding the underlying mechanism of Python. Integers, floating
point numbers and instances of many more types to be introduced in this book, are
maintained in the memory as Python objects.

Fig. 2.2 illustrates how the memory changes when some arithmetic expressions
are evaluated. After IDLE starts, the memory contains some default objects, which
are not under concern at this stage, and therefore not shown in the figure. When the
expression 3.0 is evaluated, a new float object is constructed in the memory. Python
always creates a new object when it evaluates a literal. When the expression 3+5∗2
is evaluated, the integer constants 3, 5 and 2 are constructed in the memory, before
the operators ∗ and + are executed in their precedence. When ∗ is executed, Python
passes the values of the objects 5 and 2 to the CPU, together with the ∗ operator,
and stores the result 10 as a new integer object in the memory. When + is executed,
Python invokes the CPU addition operation with the values of the objects 3 and 10,
storing the result 13 as a new object.

Identifiers are names of objects in memory, used by Python to access the cor-
responding objects. Python associates identifiers to their corresponding values, or
objects, by using a binding table, which is a lookup table.

Figure2.3 shows an example of the binding table, and how it changes as Python
executes assignment statements. After IDLE starts, some default entries are put into
the binding table, which are ignored in this figure. When x = 6 is executed, the
expression 6 is first evaluated, resulting in the integer object 6 in the memory. Then
Python adds an entry in the binding table, associating the name x with the object 6.
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Fig. 2.2 Example memory
structure for expressions

When y = x ∗ ∗2 is executed, the value of the expression x ∗ ∗2 is first evaluated by
evaluating x , and 2, and then calculating x ∗ ∗2. When Python evaluates the literal
2, it creates a new object in the memory; then when it evaluates the identifier x , it
looks up the binding table for an entry named x , which is bound to the object 6. The
final value of the expression x ∗ ∗2 is saved to a memory object 36, and bound to the
identifier y.

When the statement x = 3 is executed next, the expression 3 is first evaluated,
resulting in a new object 3 in thememory, which is bound to the name x in the binding
table. The old association between the name x and the object 6 is deleted, since one
name can be bound to only one object. Note that the assignment statement always
binds a name in the binding table with an object in the memory. Like all other Python
statements, the execution is rather mechanic. Given this fact, it is easy to understand
the reason why the value of y does not change to 9 automatically when x = 3 is
executed.

At this stage, the objects 2 and 6 are still in the memory, although they are not
bound to any identifiers. As the number of statements increases, the memory can
be filled with many such objects. They are no longer used, but still occupy memory
space. Python has a garbage collector that periodically removes unused objects from
thememory, so that morememory space can be available. Note also that Fig. 2.2 does
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Fig. 2.3 Example memory
structure for assignments

not show the binding table, although it exists in the memory, containing identifiers
that are irrelevant to the example.

For readers who know C++ and Java variables, it is worth nothing that Python
variables are not exactly the same as their C++ and java counterparts. Specifically,
the assignment statement in Python changes the value of a variable by changing
the binding (i.e. associating the identifier to a different object in the binding table),
while the assignment statement of C++ and Java directly changes the value of the
object that the identifier is associated with, without changing the binding between
identifiers andmemory objects. Although inmany cases, Python variable can be used
in the same way as C++ and Java variables from the programming perspective, an
understanding of this difference could be useful in a voiding subtle errors, especially
when mutability (Chap. 7) is involved.

Python provides a special statement, the del statement, for deleting an identifier
from the binding table.

>>> x=1
>>> y=2
>>> x

http://dx.doi.org/10.1007/978-981-287-609-6_7
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1
>>> y
2
>>> del x
>>> x
Traceback (most recent call last):

File "<pyshell#5>", line 1, in <module >
x

NameError: name ’x’ is not defined
>>> y
2

As can be seen from the example above, the del statement begins with the del
key word, followed by an identifier. It deletes the identifier from the binding table.
As the second last command shows, Python reports a name error when the value of
x is requested after the identifier x has been deleted from the binding table. After
an identifier is deleted, the objected that it is bounded to is not deleted immediately.
Instead, the garbage collector will remove it later when no other identifiers are bound
to it.

Each Python object has a unique identify, which is typically its memory address.
Python provides a function, id, which takes a Python object as its input argument,
and returns the identify of the object. For example,2

>>> x=12345
>>> id(x)
4535245720
>>> y=x
>>> id(y)
4535245720
>>> y=23456
>>> id(x)
4535245720
>>> id(y)
4535245672
>>> id (12345)
4535245984

When x is assigned to the value 12345, it is bound to a new object 12345 in the
memory. When y is assigned to the value of x , it is bound to the same object 12345.
Hence the identifies of x and y are the same.When y is reassigned to the value 23456,
a new object 23456 is constructed in the memory, occupying a newmemory address,
and y is bound to his object. Hence the identify of y changes, while the identify of x
remains the same. The last command shows the identify of a new object, constructed
by the evaluation of the expression 12345. It is different from that of x , because every
time a literal is evaluated, a new object is constructed in the memory. Here is another
example.
>>> x=12345
>>> y=x
>>> id(x)

2The memory addresses in the examples below are unlikely to be reproduced when the examples
are tried again, since the allocation of memory addresses is dynamic and runtime dependent.
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4462893976
>>> id(y)
4462893976
>>> x=12345
>>> id(x)
4462894072
>>> id(y)
4462893976

When x is assigned to the value 12345 the second time, the right hand side of
the assignment statement is evaluated first, which leads to a new object having the
value 12345 in the memory. x is bound to this new object, while y remains the same.
Although the values of x and y are the same, their memory addresses, or identifies
are different, because they are bound to two different objects.

Note that the observations above may not hold for small numbers (e.g. 3 instead
of 12345). This is because to avoid frequent construction of new objects, Python
constructs at initialization a set of frequently used objects, including small integers,
so that they are reused rather than constructed afreshwhen their literals are evaluated.

>>> x=10
>>> y=10
>>> id(x)
140621696282752
>>> id(y)
140621696282752

In the example above, y is assigned the value 10 after x is assigned the value 10.
In each case, no new object is created when the literal 10 is evaluated, because an
object with the value 10 has been created in the memory location 140621696282752
to represent all objects with this value.3

In summary, in addition to a value, a Python object also has an identify and a type.
Once constructed, the identify and type of an object cannot be changed. For number
objects, the value also cannot be changed after the object is constructed.

2.3 More Mathematical Functions Using the math
and cmath Modules

Several mathematical functions have been introduced so far, which include addi-
tion, subtraction, multiplication, division, modulo and power. There are more math-
ematical functions that a typical calculator can do, such as factorial, logarithm and
trigonometric functions. These functions are supported by Python through a special
module called math.

A Python module is a set of Python code that typically includes the definition of
specific variables and functions. The next chapter will show that a Pythonmodule can

3Exactly which small values are represented as frequently accessed objects depends on the Python
distribution.
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be nothing but a normal Python program. In order to use the variables and functions
defined in a Python module, the module must be imported. For example,

>>> import math
>>> math.pi
3.141592653589793
>>> math.e
2.718281828459045

In the example above, the math module is imported by the statement import math.
The import statement is the third type of statement introduced in this chapter, with
the previous two being the assignment statement and the del statement. The import
statement loads the content of a specific module, and adds the name of the module in
the binding table, so that content of the module can be accessed by using the name,
followed by a dot (.).

Twomathematical constants pi and e, are defined in themathmodule, and accessed
by using ‘math.’ in the above example. Both pi (π) and e are defined as floating point
numbers, up to the precision supported by a computer word.

Mathematical functions can be accessed in the same way as constants, by using
‘math.’. For example, the factorial function returns the factorial of the input argument.

>>> import math
>>> math.factorial (3)
6
>>> math.factorial (8)
40320

The math module provides several classes of functions, including power and
logarithmic functions, trigonometric functions and hyperbolic functions. The two
basic power and logarithmic functions aremath.pow(x, y) andmath.log(x, y), which
take two floating point arguments x , and y, and return x y and logy x , respectively.

>>> import math
>>> math.pow(2, 5)
32.0
>>> math.pow (25 ,0.5)
5.0
>>> math.log (1000 ,10)
2.9999999999999996

Note the rounding off error in the last example. The functions math.pow and
math.log always return floating point numbers. The function math.log can also take
one argument only, in which case it returns the natural logarithm of the input argu-
ment.

>>> import math
>>> math.log(1)
0.0
>>> math.log(math.e)
1.0
>>> math.log (10)
2.302585092994046
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There is also a handy function to calculate the base-10 logarithm of an input float-
ing point number: math.log10(x). The function take a single floating point argument.
As two other special power functions, math.exp(x) can be used to calculate the value
of ex , and math.sqrt(x) can be used to calculate the square root of x .

The set of trigonometric functions that the math module provide include math.sin
(x), math.cos(x), math.tan(x), math.asin(x), math.acos(x) and math.atan(x), which
calculate the sine, the cosine, the tangent, the arc sine, the arc cosine, the arc tangent
of x , respectively.
>>> import math
>>> math.sin(3)
0.1411200080598672
>>> math.cos(math.pi)
-1.0
>>> math.tan(3* math.pi)
-3.6739403974420594e-16
>>> math.asin (1)
1.5707963267948966
>>> math.acos (1)
0.0
>>> math.atan (100)
1.5607966601082315

Note the rounding off errors in some of the examples above. All angles in the
functions above are represented by radians. The mathmodule provides two functions
to convert between radians and degrees: the math.degrees function takes a single
argument x , and converts x from radians to degrees; the math.radians function takes
a single argument x , and converts x from degrees to radians.

The set of hyperbolic functions includemath.sinh(x),math.cosh(x),math.tanh(x),
math.asinh(x), math.acosh(x) and math.atanh(x), which calculate the hyperbolic
sine, the hyperbolic cosine, the hyperbolic tangent, the inverse hyperbolic sine, the
inverse hyperbolic cosine, and the inverse hyperbolic tangent of x , respectively.

There are more functions that the math module provides, including math.ceil(x),
which returns the smallest integer that is greater than or equal to x , andmath.floor(x),
which returns the largest integer that is less than or equal to x . It does not make sense
to remember all the functions that Python provides for the purpose of programming,
although remembering a few commonly-used functions would be useful for the effi-
ciency of programming. A good practice is to keep the Python documentation at
hand, which is also easily accessible online. For example, searching for the keywords
‘Python math’ using a search engine can lead to the Python documentation for the
math module.

2.3.1 Complex Numbers and the cmath Module

Complex literals. In some engineering disciplines, complex numbers are commonly
useful. A complex number consists of a real part and an imaginary part. While the
real part of a complex number is an arbitrary real number, represented by a floating
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point number in Python, the imaginary part is based on j , the imaginary square root
of −1. Python represents the imaginary part of a complex literal by a floating point
number, followed by the special character j .

>>> c=1j
>>> type(c)
<type ‘complex ’>
>>> c*c
(-1+0j)

In the example above, c is a complex number that has only the imaginary part,
1 j . The square of c is 1 j × 1 j = −1. In Python, if a complex number co-exists
in an expression with floating point numbers and integers, the type of the whole
expression becomes a complex number. Therefore, the value of the expression c ∗ c
is the complex number (−1 + 0 j).

1 j is a special complex number, with the real part being 0. In general, a complex
number is specified by the sum of its real part and imaginary part, as shown by IDLE
in the example above.

>>> a=1+2j
>>> a
(1+2j)
>>> type(a)
<type ‘complex ’>
>>> b=3+4j
>>> b
(3+4j)
>>> type(b)
<type ‘complex ’>

Type conversion from integers and floating point number into complex num-
bers. Similar to the construction of integer and floating number objects using the
functions int and float introduced earlier, a complex number can be constructed from
integers and floating point numbers by using the function complex.

>>> complex (1,2)
(1+2j)
>>> a=complex(-1, 0.5)
>>> a
( -1+0.5j)

As shown by the example above, the function complex takes two numeric argu-
ments specifying the real and imaginary components, respectively, and returns a
complex object.

Complex operators. Similar to integers and floating point numbers, complex
numbers also support arithmetic operations by using operators. The +, −, ∗, / and
∗∗ operators for integers and floating point numbers also apply to complex numbers.

>>> a=1+2j
>>> b=-1+3j
>>> a+b
5j
>>> a-b
(2-1j)
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>>> a*b
(-7+1j)
>>> a/b
(0.5 -0.49999999999999994j)
>>> a**2
(-3+4j)

Functions for complex numbers. The abs function, when applied to complex
numbers, returns the magnitude of the number.

>>> a=3+4j
>>> abs(a)
5.0

In the example above, the input argument to the function call abs(a) is a complex
number, and the return value is a floating point number. However, no built-in function
or operator takes floating point numbers but results in a complex number. In other
words, the default domain in which Python handles mathematical expressions is real
numbers. For example, trying to obtain the square root of −1 by the ∗∗ operator, or
using the math.sqrt function, will result in an error.

>>> (-1)**0.5
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
ValueError: negative number cannot be raised to a

fractional power
>>> import math
>>> math.sqrt(-1)
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
ValueError: math domain error

This choice of the default mathematical domain for Python is based on the fact
that real numbers are the most widely used, while complex numbers are common
only in specific fields. Some users of Python might not even know the existence of
complex numbers. As a result, the most natural choice is to leave their processing
only to specific modules. Python provides a module, cmath, for complex numbers.

The cmath module. The power and logarithmic functions that the cmath module
provides include cmath.exp, cmath.log, cmath.log10 and cmath.sqrt. They bare the
same names as their counterparts in the math module, with the difference being
that they can be applied to complex numbers, and can return complex numbers. For
example, to get the square root of−1 in the complex domain, the cmath.sqrt function
should be used.

>>> import cmath
>>> cmath.sqrt(-1)
1j

The cmathmodule also provides the trigonometric functions cmath.sin, cmath.cos,
cmath.tan, cmath.asin, cmath.acos and cmath.atan, and the hyperbolic functions
cmath.sinh, cmath.cosh, cmath.tanh, cmath.asinh, cmath.acosh and cmath.atanh,
with exactly the same use as their math counterparts except of the domain.
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While the abs(x) function returns the magnitude of a complex number x , the
function cmath.phase(x) returns the phase of x . The cmath.polar(x) function returns
the representation of a complex number x in polar coordinates, while the function
cmath.rect(r , p) returns the complex number x given it polar coordinates (r , p).

2.3.2 Random Numbers and the random Module

For one last example of modules in this chapter, the random module provides func-
tions for generating randomnumbers. It is useful to a rangeofmathematical problems,
including a branch of numerical simulation methods that will be introduced in this
book.

Two important functions provided by the randommodule include random.random
and random.randint. random.random() takes no input arguments, and returns a ran-
dom floating point number in the range [0.0, 1.0). random.randint(a, b) takes two
integer input arguments a and b, and returns a random number between a and b,
inclusive.

>>> import random
>>> random.random()
0.1265646141812915
>>> random.random()
0.5701294637390362
>>> random.random()
0.8842027581970576
>>> random.randint (10 ,20)
12
>>> random.randint (10 ,20)
17
>>> random.randint (10 ,20)
17
>>> random.randint (10 ,20)
19

In general, many commonly-usedmathematical functions are provided by Python,
and it would always be useful to look for a readily-available implementation via the
Python documentation and other resources. However, there are also cases where a
customized function is needed. The following chapters will introduce step by step
how complex functionalities can be achieved by the powerful Python language.

Exercises

1. What are the values of the following expressions?

(a) 1 + 3 ∗ 2 − 5 + 4
(b) 1 + 3 ∗ (2 − 5) + 4
(c) 5**2**2*3+1
(d) 5**(2**2)*3+1
(e) 1+3/2
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(f) 1+3.0/2
(g) –2–1
(h) –(2–1)
(i) 3.0 + 3/2
(j) 3 + 3/2.0
(k) –1**0.5

2. Use IDLE to calculate the following mathematical values.

(a) 105

(b)
√
10

(c) the roots of x2 − 7x + 10 = 0
(d) lg(2 + √

5)
(e) the area of a circle with a radius of 5.5
(f) sin2.5
(g) the complex roots of x2 − 2x + 10 = 0
(h) 4!
(i)

∑128
k=32 k

(j)
∏17

k=3 k

3. What are the values of the following binary numbers if they are (a) non-negative;
or (b) 2’s Complements?

(a) 01001
(b) 100
(c) 1100
(d) 11111
(e) 11111111

4. Use IDLE to solve the following mathematical problems.

(a) A car runs at a constant speed of 20km/h. When it passes another case, the
latter starts to accelerate in order to catch up. Assuming that the first case
keeps a constant speed, and the second car keeps a constant acceleration of
2m/s2. After how many seconds will the second car catch up with the first
one?

(b) The annual interest rate of a savings account is 4.1%. John has $10,000 in
his account, and aims at saving $50,000 within 5years by depositing a fixed
amount of money to his account in the beginning of each year, including
this year. How much money does John need to save each year in order to
achieve his goal?

(c) In a shooting exercise, a coach stands 5 m away from a trainee, and throws
a target up vertically at 5m/s. If the trainee must fire her gun exactly 0.5 s
after the throwing of the ball, then at which angle should she aim? If she
must fire the gun exactly 1 s after the throwing, then at which angle should
she aim?
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(d) John deposited an initial sum of $3000 in his account. After 3years, the
balance reaches $3335.8 due to composite interest. What is the interest rate
per annual?

(e) The three sides of a triangle are 3, 4 and 6m, respectively. What is its area?

5. What are the three most important properties of a Python object? Which of them
can change after the object is constructed, if the object is a number?

6. State the main differences between identifiers and literals. Given a token in a
program, how does Python know whether it is an identifier or a literal?



Chapter 3
The First Python Program

This chapter shows how to turn the computation power of the previous chapter into
stand-alone Python programs, which can be executed on their own, independent of
IDLE. To achieve such independence, the most important additional functionality
that is required is input and output—or communication with users.

3.1 Text Input and Output Using Strings

Text input and output (I/O) used to be the dominant user interface before graphical
user interface (GUI) was invented in the 1980s. Nowadays, most system adminis-
trators, researchers and hackers still use the text console as the main I/O interface.
Compared with GUI, text UI is relatively much easier to learn as a beginner. Python
allows interaction between a program and a user via text IO, by proving a special type
of objects: strings. A Python string can be treated as a sequence of text characters.

String literals can be written in three different formats, the first being letters
wrapped between a pair of single quotes:

>>> s=’abc’
>>> s
’abc’
>>> type(s)
<type ’str’>

In the example above, there are three text characters in the string s, namely ‘a’,
‘b’ and ‘c’. The type of the string s is str, which is the Python representation of the
string type.

The second way to write a string literal is to replace single quotes with double
quotes; this is convenient if the string itself contains single quotation marks.

>>> s="he said:’hello’"
>>> s
"he said:’hello’"
>>> type(s)
<type ’str’>
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In case both single and double quotes are in a string itself, a third form of string
literals can be used. It is specified by putting three double quotes on the left hand
side and three on the right hand side of the string. This form of string literals also
allows a string to span over multiple lines:
>>> s="""abc
... def
... ghi
..."""
>>> s
’abc\ndef\nghi\n’
>>> type(s)
<type ’str’>

Line breaks are represented by a special character in the string, which can be
written with the escaped form ‘\n’. By default, Python displays the value of a string
object in its escaped format, which is demonstrated by the example above. Escaped
characters can also be used in a string literal directly.
>>> s="abc\ndef\nghi"
>>> s
’abc\ndef\nghi’

In the example above, the two-character sequence ‘\n’, is used in the literal
explicitly to represent a new-line character. Note that explicit (i.e. not escaped) line
breaks are not allowed in string literals with single or double quotes. Another escape
character that has an escape form is the tab character, which can be written as ‘\t’.
>>> s=’abc def ghi’
>>> s
’abc\tdef\tghi’

In the example above, the string s contains two explicit tab characters, which are
shown in escaped forms by Python. Note that the quotation marks around strings
serve only as indicators of a string literal—they are not a part of the string itself.
Hence ‘’ or “” specifies an empty string, a string that does not contain any character.

String operators. Similar to integers and floating point numbers, string objects
also support a set of operators. A commonly used string operator is the concatenation
operator +:
>>> s1=’abc’
>>> s2=’def’
>>> s1+s2
’abcdef’

Figure3.1 illustrates the changes that happen to the memory when the lines of
code above are executed. When the string literals ‘abc’ and ‘de f ’ are evaluated, two
corresponding string objects are constructed in thememory. They are associated with
their respective identifiers via the assignment statements. When the concatenation
operator is applied, a new string object is constructed, taking the concatenated value
of the two operands.

One thing to note is that the same operator + behaves differently when applied to
strings as compared to numbers. This fact is an example of polymorphism, which
will be discussed in Chap.10.

http://dx.doi.org/10.1007/978-981-287-609-6_10
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Fig. 3.1 Example memory
structure for string
operations

The ∗ operator can also be applied to strings. It takes a string operand and an
integer operand, resulting in a string by repeating the string operand a number of
times, as specified by the integer operand.

>>> s="abc"
>>> t=s*3
>>> t
’abcabcabc ’

One important operator of strings is the getitem operator([]), which takes a string
operand and an integer operand, resulting in the character in the string at the index
specified by the integer. The getitem operator does not apply to numbers, such as
integers and floating point numbers, but applies to other sequential objects, which
will be introduced later in Chaps. 5 and 6. It takes the form of a pair of squared
brackets, written immediately after the string operand and enclosing the integer
operand, which specifies for the character index.

>>> s=’abc’
>>> s[0] # the first character
’a’
>>> s[1] # the second character
’b’
>>> s[2]
’c’
>>> x=0
>>> s[x] # index can be any integer expression
’a’

Note that string indices start from 0 rather than 1. Hence s[i] stands for the i +1th
character in s when i ≥ 0. This is also true for other sequential types in Python, and
sequential types in many other programming languages.

Negative numbers can also be used to specify indices in Python. Starting from
−1, negative indices specify character indices from the right of the string.

http://dx.doi.org/10.1007/978-981-287-609-6_5
http://dx.doi.org/10.1007/978-981-287-609-6_6
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>>> s=’abc’
>>> i=-1
>>> s[i]
’c’
>>> i-=1
>>> i
-2
>>> s[i]
’b’
>>> i-=1
>>> i
-3
>>> s[i]
’a’

String indices must be within the valid range—trying to get a character that does
not exist in the string will result in an error.

>>> s=’abc’
>>> s[3]
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
IndexError: string index out of range
>>> s[-4]
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
IndexError: string index out of range

A sub string can be extracted from a string by using the getslice operation ([]),
which similar to the getitem operation by using the [] operator. It is expressed by
replacing the character index in a getitem expression with a slice, which consists of
a start and an end index, separated by a colon (:)

>>> s=’abc’
>>> s[1:2] # indices 1
’b’
>>> s[0:2] # indices 0,1
’ab’
>>> s[2:3] # indices 2
’c’

The way in which getslice is performed is illustrated by Fig. 3.2, where the loca-
tions at which a slice is taken is worth noting. Both the start index and the end index
specify positions before characters. Similar to getitem, character indices start from
0. For example, ‘s[0 : 2]’ takes a slice out of s, by starting from before the first
character (index = 0), and ending before the third character (index = 2), resulting in
consisting of the first and second characters. Unlike getitem, getslice will not result
in an index error; if the ending index is out of range, the slice will end with the last
character in the string.

>>> s=’abc’
>>> s[2:5]
’c’
>>> s[-2:-1]
’b’



3.1 Text Input and Output Using Strings 41

Fig. 3.2 Illustration of
getslice

By making the end index smaller than or equal to the start index, an empty string
results from getslice.

>>> s=’abc’
>>> s[2:2]
’’
>>> s[2:1]
’’

One or both indices in a getslice operation can be unspecified. The default value
for an unspecified start index is 0, while the default value for an unspecified end
index is the end of string. For example,

>>> s=’abc’
>>> s[1:] # default end
’bc’
>>> s[:2] # default start
’ab’
>>> s[:] # both default
’abc’

To enhance the flexibility of slicing, a slice can be further specified by adding
a third parameter, step, which is joined to the start and end indices by using an
additional colon (:), and indicates an interval at which characters are taken from the
string. For example,

>>> s=’abcdef’
>>> s[0:6:2] # 0, 2, 4
’ace’
>>> s[0:6:3]
’ad’
>>> s[1:5:2]
’bd’

When the step is 2, every second character is taken from the string; when the step is
3, every third character is taken. The start and end indices specify the same locations
with or without the step parameter. The default value of the step parameter is 1, which
results in a continuous sub string. When the step is larger than 1, a discontinuous sub
string is extracted.
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The step parameter can also be negative, in which case the slice is taken from right
to left (i.e. right-to-left slicing), and hence the start indexmust be larger than the end
index. Different from the left-to-right slicing, when slicing from right to left, indices
indicate locations after corresponding characters. Similar to the left-to-right slicing,
the absolute value of the step parameter specifies the interval at which characters are
taken. For example,

>>> s=’abcdef’
>>> s[5:2: -1] # 5, 4, 3
’fed’
>>> s[:2: -1]
’fed’
>>> s[::-1]
’fedcba’
>>> s[::-2]
’fdb’

An important function that is associated with strings is len, which takes a single
string argument and returns the number of characters in the string.

>>> s=’abc’
>>> len(s)
3
>>> s=’abcdef’
>>> len(s)
6
>>> s=’’
>>> len(s)
0

As shown in the last example above, the length of an empty string is 0.
Conversion between strings and other types. Similar to the int and float func-

tions for type conversion into integers and floating point numbers, the str function
can be used to convert floating point numbers and integers into strings.

>>> i=123
>>> f=1.23
>>> s1=str(i)
>>> s1
’123’
>>> type(s1)
<type ’str’>
>>> s2=str(f)
>>> s2
’1.23’
>>> type(s2)
<type ’str’>

In the opposite direction, the int and float functions can turn strings that represent
integers and floating point numbers to integer and floating point objects, respectively.

>>> s=’123’
>>> int(s)
123
>>> s=’1.23’
>>> float(s)
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1.23
>>> int(s)
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
ValueError: invalid literal for int() with base 10: ’1.23’
>>> s=’abc ’
>>> float(s)
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
ValueError: could not convert string to float: abc

The conversion from strings to integers and floating point numbers is strict: when
the string does not correspond to the target type, an error occurs. Two special strings
that can be converted to a floating point numbers are ‘inf’ and ‘-inf’, which represent
infinity and negative infinity, respectively. These two special floating point numbers
do not have literals, and must be converted from the strings ‘inf’ and ‘-inf’.

>>> a=float(’inf’)
>>> type(a)
<type ’float’>
>>> a
inf
>>> b=float(’-inf’)
>>> type(b)
<type ’float’>
>>> b
-inf

When a floating point number is converted into a string, Python automatically
rounds it up to a certain number of digits after the decimal point, so that the output
is more readable.

>>> 1.0/7
0.142857142857
>>> s3=str (1.0/7)
>>> s3
’0.142857142857 ’
>>> type(s3)
<type ’str’>

If a specific number of digits after the decimal point is required in the output
string, the round function introduced in the previous chapter can be used to round up
the floating point number before it is converted into a string. Alternatively, a string
formatting expression can be used. String formatting expressions are a powerful
tool for specifying the format of numbers in a string. As a first example, consider the
formatting of integers:

>>> s=’%d’%123 # normal form
>>> s
>>> ’123’
>>> s=’%5d’%123 # padding to the left
>>> s
’ 123’
>>> s=’%-5d’%123 # padding to the first
>>> s
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’123 ’
>>> s=’%1d’%123 # no padding
>>> s
’123’

A string formatting expression consists of two parts, separated by a % symbol
(e.g. ′%5d ′%123). The part on the left is a pattern string that contains a pattern
%xd (e.g. ′%5d ′), where % indicates the start of a pattern, and the letter d indicates
that the formatted pattern is an integer. On the right hand side of the % symbol is the
argument to fill the pattern, and in this case it is an integer to be formatted in the
string (e.g. 123). The x in the pattern is optional; it indicates the length of the string:
if it is positive, spaces are padded on the left when the integer contains less digits
than x , and if it is negative, spaces are padded on the right. If the integer contains
more digits than the size specified by x, no space will be padded but the integer will
not be truncated either.

In addition to patterns, the pattern string can consist of other characters. Characters
that are not a part of a pattern will remain unchanged when patterns are replaced with
arguments during string formatting.

>>> ’%dabc’%123 # pattern = %d
’123abc’
>>> ’%5dabc’%123 # pattern = %5d
’ 123abc’
>>> ’abc%-5dd’%123 # pattern = %-5d
’abc123 d’

To format a floating point number, the pattern in a pattern string is%x .y f , where x
specifies the total size of the string, in the same way as integer formatting, y specifies
the number of digits after the decimal point, and f marks a floating point pattern. x
can be omitted, in which case no padding will be added.

>>> ’%f’%1.23 # no padding
’1.23’
>>> ’%5.2f’%1.23 # padding to the left; two digits

after the decimal point
’ 1.23’
>>> ’abc %5.2f’%1.23
’abc 1.23’
>>> ’abc %5.2f’%(1.0/7)
’abc 0.14’
>>>’abc%.2f’%(1.0/7) # no padding
’abc0 .14’

More than one patterns can be defined in the pattern string, inwhich case a comma-
separated list of arguments must be given on the right within a pair of brackets. The
patterns will be filled by the arguments in their input order.

>>> ’a string with one integer %d followed by one
floating point number %.2f’ % (123, 1.23)

’a string with one integer 123 followed by one
floating point number 1.23’



3.1 Text Input and Output Using Strings 45

If the number of patterns does not match the number of arguments, an error will
be given:

>>> ’%d %d %f’ % (1, 2)
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
TypeError: not enough arguments for format string

String representation in memory. As mentioned in the previous chapter, all
types of information, including the alphabet, are ultimately represented by abstract
information, or binary numbers, in memory. Python provides a built-in function,
ord, which takes a single character as the only argument, and returns the integer that
represents (i.e. encodes) the character:

>>> ord(’a’)
97
>>> ord(’b’)
98
>>> ord(’z’)
122
>>> ord(’A’)
65
>>> ord(’B’)
66
>>> ord(’Z’)
90

As can be seen from the example above, the representations of ’A’—’Z’ are 65–90,
and the representations of ’a’—’z’ are 97–122.

The reverse function to ord is chr, which takes an integer between 0 and 255 as
the only argument, and returns the character interpretation of the integer.

>>> chr (97)
’a’
>>> chr (98)
’b’
>>> chr (106)
’j’

3.1.1 Text IO

The print statement is used for text output; it shows the value of an object as a
string on the text console. In most cases, the text console is the text terminal (i.e.
Terminal in Linux andMac OS, or Command Line inWindows). In the case of IDLE,
the text console is IDLE itself. The syntax of the print statement is print x, where x
is an expression. When print x is executed, the value of x is calculated first, and then
converted into a string, before being displayed.
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>>> print 123
123
>>> print 3.6
3.6
>>> print (1.0/7)
0.142857142857
>>> print ’abc’
abc
>>> print 3+5 -2*6
-4
>>> print ’%.2f’%3.1415
3.14

In the last two examples above, the values of the expressions 3 + 5 − 2 ∗ 6 and
′%.2 f ′%3.1415 are evaluated first, before being displayed on the console, respec-
tively. Here the string type is used as a bridge between the value of an expression
and the output console—an object is converted into a string before being displayed
on the console.

>>> 1.0/7
0.14285714285714285
>>> str (1.0/7)
’0.142857142857 ’
>>> print 1.0/7
0.142857142857

In the example above, the first two lines of code show Python’s internal repre-
sentation of the internal representation of the floating point number and its string
conversion, respectively. The third line of code is a print statement that writes the
value of the floating point number on the console. As can be seen from the example,
the floating point number displayed by the print statement is the same as the string
conversion, but different from the internal representation of the floating point number
itself. This is because the number has gone through a string conversion before being
printed.

The string conversion by the print statement is implicit—the str function is not
called explicitly in the statement. Later inChap.10when custom types are introduced,
a custom string conversion process is discussed, and the implicit string conversion
by the print statement is reflected more directly.

The print statement displays a string on the console. This may appear to be a
redundant functionality, since IDLE will display the value of an expression anyway,
as the first two lines of code in the previous example demonstrate. However, as will
be shown in the next section, the print statement is necessary and important when
Python code is executed as a stand-alone program and independent of IDLE. In that
case, the value of an expression is not displayed when the expression is a single
line of code. In addition, although for integers and floating point numbers, Python’s
internal representation is similar to the string conversion, for many other types, the
two representations can be very different (see more details in Chap.11), and hence
what IDLE displays can be rather different from what the print statement shows.

One final note is that when a string is printed, the escaped characters in the string
are displayed in their original form.

http://dx.doi.org/10.1007/978-981-287-609-6_10
http://dx.doi.org/10.1007/978-981-287-609-6_11
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>>> s=’abc\ndef\nghi\tj’
>>> s # internal representation
’abc\ndef\nghi\tj’
>>> print s # print version

abc
def
ghi j

Because backslach(\) are used for escaped characters, their literal form in a string
is represented by ’\\’.
>>> s = ’backslach is \\’
>>> s
’backslach is \\’
>>> print s

backslach is \

Input from the text console can be achieved by using the raw_input function,
which asks the user to enter a string and returns the content of the string as a Python
object. A command line prompt can be specified as an input argument to this function.

>>> s=raw_input("Enter a string:")
Enter a string: abc
>>> s
’abc’

In this example, when the first line of code is executed, the input argument “Enter
a string:”is displayed, with the program being temporarily stopped to wait for user
input. The user enters the letters ‘a’, ‘b’ and ‘c’, and then presses the Enter key to
complete the input. The function call then returns the string “abc” as its value.

Note that different from the case of the print statement, raw_input(“Enter a
string:”) is a function call. It forms an expression on the right hand side of an
assignment statement in the example above, and is evaluated to a string object. The
specialness of this function call is its evaluation process: IDLE stops to ask the user
for text input, and evaluates the return value of the function call according to the
input, rather than according to the input string argument (e.g. “Enter a string:”),
which is used for console prompt only. This behavior is rather different from the
round, len and int function calls, which are all numerical and do not affect the exe-
cution of IDLE. However, it remains true that all function calls are expressions that
evaluate to a Python object.

Being an expression itself, raw_input calls could be used as a part of a more
complex expression. For example,

>>> i=int(raw_input("Enter a number:"))*2
Enter a number: 56
>>> i
112

When the assignment statement above is executed, the right hand side of = is
first evaluated. It consists of (1) the evaluation of the raw_input function call, (2)
the evaluation of the int function call, with the result of (1) being used as the input
argument, and (3) the evaluation of the * operator, with the result of (2) being used
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as one operand and the integer object 2 as the other. In step (1), IDLE displays the
prompt message and stops to ask the user for an input. The user enters the characters
‘5’, ‘6’, and presses Enter. The function therefore returns the string object ‘56’. In
step (2), the string is converted into the integer object 56. In step (3), the object is
multiplied by 2, resulting in the final value of the whole expression, 112. This object
is in turn bound to the identifier i in the assignment.

raw_input is the basic mechanism in Python for accepting user input from a
text console. The return value of this function is always a string, and therefore type
conversion is necessary when the desired object is an integer, a floating point number
or other types. An alternative function for text console input is input, which performs
type conversion implicitly. The input function is implemented by adding an automatic
type conversion step after a raw_input step. In effect, the function receives a literal
from the user, and converts it to a Python object as the return value.

>>> x=input("x=")
x=123
>>> type(x)
<type ’int’>
>>> x
123
>>> x=input("x=")
x=12.3
>>> type(x)
<type ’float’>
>>> x
12.3
>>> x=input("x=")
x=’abc’
>>> type(x)
<type ’str’>
>>> x
’abc’
>>> x=input("x=")
x=1+2j
>>> type(x)
<type ’complex ’>
>>> x
(1+2j)
>>> x=input("x=")
x=1L
>>> type(x)
<type ’long’>
>>> x
1L
>>> x=input("x=")
x=abc

Traceback (most recent call last):
File "<stdin >", line 1, in <module >
File "<string >", line 1, in <module >

NameError: name ’abc ’ is not defined
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In the example above, the input function is called with the “x=” prompt being
displayed. An integer literal, a floating point number literal, a string literal, a complex
number literal, an explicit long number literal and an arbitrary string are entered,
respectively. While the literals of the corresponding types are converted to individual
objects, the arbitrary string, abc, causes an error, because it does not represent any
literal. In fact, it is treated as an identifier, and hence Python tries to look for the
objects that is associated with the name abc in the binding table, leading to a name
error. The correct way to enter a string literal, as shown by the ‘abc’ example, is to
include the quotations.

Because of the extra layer of functionality, the input function offersmoreflexibility
compared with the raw_input function. However, it can also cause unexpected errors
if the user is not familiar with Python literals. From the programmer’s perspective,
the possibility for the return value of a function to be an arbitrary type can also lead
to difficulty in processing it. As a result, the raw_input function with explicit type
conversion can be preferred when a certain type of object is expected from users.

3.2 The First Python Program

Text IO allows a stand-alone Python program to interact directly with the user. For a
simple Python program that does not rely on IDLE, consider the problem of interest
calculation. Suppose that a user has an initial sum of money in a savings account,
and the interest rate is fixed for a number of years. The problem is to find out the
total sum of savings after a certain number of years. A program can be written as
follows.

[savings.py]
print ‘[Savings Calculator]’
rate = float(raw_input (" Please enter the interest rate

:"))
years = int(raw_input (" Please enter the number of

years :"))
init = float(raw_input (" Please enter the initial sum

of money: $"))
final = init * (1.0+ rate)**years
print "After %d years , the savings will be $%.2f" % (

years , final)

The program above, under the name “savings.py”, consists of 6 lines of code. It
can be typed in using any text editor, and saved into a specific folder in the file system.
For the convenience of illustration, suppose that it is saved under the Desktop folder.

The IDLE editor can also be used to edit the program. To start editing a new
program, go to the menu item [File→New Window], and a new text editor window
will be popped up. Enter the code above into the editor window, and go to the menu
item [File→Save...]. A dialog box will be opp up for entering the destination folder
and file name. Choose Desktop as the destination folder and savings.py as the file
name. A new Python code file savings.py will be created in the Desktop folder. It
also appears on the Desktop of the graphic user interface of the computer.
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In order to open and edit an existing file using IDLE, go to the menu item
[File→Open...]. A dialog box will pop up for the selection of a specific file. In
the case of this example, select the file savings.py from the Desktop folder. A new
text editor windowwill pop up, which contains the current content of the file. Editing
can be performed in the editor window.

In order to execute the current program in the editor, go to the menu item
[Run→Run Module], or press the function key F5. The current window will be
switched to the interactive IDLE window, and the following result can be shown
according to the execution of the program.

>>> ============================== RESTART
==============================

[Savings Calculator]
Please enter the interest rate: 0.036
Please enter the number of years: 5
Please enter the initial sum of money: $10000
After 5\,years , the savings will be $11934 .35
>>>

The program displays the title ‘[Savings Calculator]’, and then asks the user to
input the interest rate, the number of years after which the total savings should be
calculated, and the initial sum of money. In this example, 0.036, 5 and 10000 are
entered as the three values, respectively. The program then displays the result in the
text console.

The Python program can also be executed directly using Python, under a text
console. On a Linux or Mac OS, Terminal is the default text console.

Zhangs -MacBook -Pro:anywhere$ cd
Zhangs -MacBook -Pro:~ yue_zhang$ cd Desktop/
Zhangs -MacBook -Pro:Desktop yue_zhang$ python savings.

py
[Savings Calculator]
Please enter the interest rate: 0.036
Please enter the number of years: 5
Please enter the initial sum of money: $10000
After 5\,years , the savings will be $11934 .35
Zhangs -MacBook -Pro:Desktop yue_zhang$

On a Windows OS, the Command Line tool is the default text console.

C:\anywhere >cd %userprofile%
C:\Users\yuezhang >cd Desktop

C:\Users\yuezhang\Desktop >python saving.py
[Savings Calculator]
Please enter the interest rate: 0.036
Please enter the number of years: 5
Please enter the initial sum of money: $10000
After 5\,years , the savings will be $11934 .35

C:\Users\yuezhang\Desktop >

In both examples above, the cd command introduced in Chap. 1 is used to change
the current directory from an arbitrary location to the user’s home directory, and

http://dx.doi.org/10.1007/978-981-287-609-6_1
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then to the Desktop folder under this directory. Files in the folder are shown on the
desktop of the operating system. Direct execution of a Python program is done by
the command:

python <program file path >

Now back to the program itself. It consists of 6 statements. The first and last
statements are two print statements, while the rest of the statements are assignment
statements. With respect to functionality, the first four statements inquire the user for
relevant inputs. The fifth statement calculates the answer based on user input, and
the last statements shows the result to the user.

ThePythonprogram is executed line by line, from top to bottom. It canbe treated as
a list of statements, executed sequentially in a batch. The order is important, because
the execution of one statement can depend on the result of another. For example,
in the code above, final is calculated based on the user input of init. In subsequent
chapters, more complicated dynamic execution orders will be introduced. But by
default, Python always executes a program sequentially.

3.2.1 The Structure of Python Programs

The structure of a Python program can be summarized as Fig. 3.3, where a program
consists of a set of statements. Each statement can contain one or more mathemat-
ical expressions, and each expression consists of literals, identifiers and operators.
Python runs a program by executing its statements, each of which fulfills a specific
functionality.

As mentioned earlier, all statements are executed in a fixed and mechanical way.
Take the assignment statement introduced in the previous chapter for example. The
right hand side of =must be an expression, and the left hand sidemust be an identifier
(or a tuple, which will be introduced in Chap.5). The statement is executed by
evaluating the expression first, and then binding the resulting object with associating
the left-hand-side identifier. Understanding the execution of each type of statement is
crucial to the understanding and design of Python programs. A list of the statements
that have been introduced up to this chapter is shown in Table3.3.

Fig. 3.3 The structure of a
Python program

http://dx.doi.org/10.1007/978-981-287-609-6_5
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Table 3.1 A summary of
types and literals

Type Literal Comment

int 1, 0, −1 Integer

long 1L Implicit large
integer

float 3.5, 5e−1 Floating point
number

complex 1−3j Complex numbers

str ‘abc’, “1 !” For input output

Table 3.2 A summary of
operators

Operator Comment

+, −, ∗, /, //, %, ∗∗ Arithmetic operators

. Load content from module

[] getitem, getslice

() Function call

Table 3.3 A summary of
statements

Statement Comment

assignment <identifier>=<expression>,
<identifier>+=<expression>,

import Import module

print Text output

Note that in the previous chapter, an expression is sometimes used as a command
by itself. For example, by typing ‘3+5’ in IDLE, one obtains the result ‘8’. However,
as stated earlier, the usage above is possible only because IDLE displays the value
of an expression by default. In a standalone Python program, this is not possible.

Each expression is evaluated into a single object during program execution. An
expression is evaluated by applying operators to operands, which can be literals or
identifiers. Operators are applied according to a fixed precedence, and brackets can
be used to7 explicitly specify the order of evaluation. Table3.2 give a summary of all
the operators that have been introduced, which include arithmetic operators (+, -, *
etc.), the dot (.) operator, the indexing operator ([]) and the function call operator (()).
Their precedence is as follows. The dot, indexing and function call operators have
higher precedence than the arithmetic operators, while ** has higher precedence
than *, /, // and % in arithmetic operators. Operators with the same precedence are
executed from left to right.

Both identifiers and literals represent Python objects in the underlying imple-
mentation. Each Python object is associated with a type. Two categories of types
have been introduced in this book, including numbers (int, float, long, complex) and
strings.While numbers are essential formathematical computation, strings are useful
for text input and output functionalities. A list of the types that have been introduced
and their corresponding literals is shown in Table3.1. More types will be introduced
in subsequent chapters.
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Comments. In addition to statements, a Python program can also consist of com-
ments. Comments are not executed when a Python program is executed, but they
are useful for making Python programs more readable. It is a good habit to write
comments when programming, since proper comments can not only help other pro-
grammers understand the design of a program, but also remind a programmer of her
own thinking when designing the program. Comments are particularly important in
large software projects.

Python comments start with a # symbol. In a line of Python code, all the texts
after the first # symbol are treated as comments, and ignored during execution.

>>> g=9.81 # the gravity constant
>>> y=g #+1
>>> print y #*2#*3
9.81

In the example above, the first line contains some comments that explain the pur-
pose of the identifier g. The comments are useful for the understanding of subsequent
uses of the identifier. The second line in the example above illustrates another use of
comments, which is to temporarily delete a part of Python code. In this example, the
value of y is 9.81, rather than 10.81, since the text ‘+1’ is placed after a # symbol. In
this case, the programmer might have started with the statement y = g + 1, but then
decided to try y = x instead. She, however, does not want to completely remove the
‘+1’ part, since there is a chance that she wants to add it back after some testing.
Therefore, she chooses to keep ‘+1’ in the line but as a comment. In programming
terminology, she commented out the part of code. The last line above contains two
# symbols. It prints 9.81 on the console, but not 19.62 or 29.43, because all the text
after the first # symbol are treated as comments.

Comments can also be written as a single line, with the # symbol at the beginning
of the line. This form of comment is called in-line comment. In contrast, comments
after a statement is called an end-of-line comment. In-line comments are typically
used to explain the design of a set of multiple statements under the comment line.

Combined Statements. Multiple Python statements can be written in a single
line, separated by semi-colons (;)

>>> a=1;b=2; print a #three statements combined
1
>>> b
2

Such combinations offer compactness in code, but can make programs more dif-
ficult to understand.

3.3 The Underlying Mechanism of Module Execution

Among the three types of statements in Table3.3, the underlying mechanism of the
assignment statement has been introduced in much detail. The print statement has
been introduced in this chapter; it converts the value of an expression to string,
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and displays the string on the text console. The import statement, however, has been
introduced only briefly. This section gives more details on the underlyingmechanism
of modules, which are useful for a better understanding of Python programs.

3.3.1 Module Objects

First, it has been introduced in the previous chapter that an imported module can
be accessed by an identifier that bares the same name of the module (i.e. math).
In addition, constants and functions defined in a module can be accessed by using
the module name and the dot (.) operator (i.e. math.e). The former functionality is
achieved by registering the name of the module in the binding table. To achieve
the latter functionality, an imported module is associated with a binding table of its
own, which contains the names of constants and functions defined in the module. For
example, the memory structure after the following three lines of code are executed
is shown in Fig. 3.4.

>>> x = 1
>>> y =’abc’
>>> import math

There are three identifiers in the main binding table: x , y and math. While x and
y are put into the binding table by the corresponding assignment statements, math is
inserted by the import statement. x and y are associated with the objects 1 and ‘abc’,
respectively. math, in contrast, is associated with a binding table, which contains
the constants and functions defined in the math module. In the figure, the name sqrt
is associated with a function object, the structure of which will be introduced in
Chap.6.

The dot (.) operator syntactically connects a module name identifier to a second
identifier (e.g. math.e). The <module>.<identifier> expression is evaluated to the
value of identifier, looked up in the binding table of module. For example, when
the expression math.e is evaluated, Python first looks for the name math in the main
binding table. If it is found, Python follows the corresponding link to find the binding
table of math, in which is searches for the identifier e. In each of the two look-ups,
if the corresponding identifier is not found, an error will occur.

Fig. 3.4 Module name and
binding table

http://dx.doi.org/10.1007/978-981-287-609-6_6
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>>> import math
>>> math.e
2.718281828459045
>>> math.e1
Traceback (most recent call last):

File"<stdin >", line 1, in <module >
AttributeError: ’module ’ object has no attribute ’e1’
>>> math1.e
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
NameError: name ’math1 ’ is not defined

In the example above, the second command (math.e) successfully returns the
value of math.e, since math has been imported to the current binding table and e is
a part of the math binding table. However, the third command (math.e1) raises an
error because the name e1 is not in the math binding table, and the fourth command
(math1.e) raises an error because the name math1 is not in the current binding table.
In Python, the dot (.) operator indicates a binding table, specified by the left operand.
An identifier is looked up in the specified binding table if it is the right operand of
a dot operator (e.g. math.e), but in the current binding table otherwise (e.g. e). The
main binding table of IDLE or a Python program is also called the global binding
table.

3.3.2 Library Modules

The Python modules that have been introduced in this book are used as libraries,
which are assemblies of code that provide specific functionalities for reuse. Most
Python Library modules are nothing but normal Python programs, typically stored
in a specific library path in the file system. The random module, for example, is a
Python program that can be found on a Linux or Mac OS at:

/usr/lib/python2 .7/ random.py

and on a Windows system at:

C:\ Python27\Lib\random.py

Most libraries provided by the Python distribution are located in the folders above.
In addition to the Python distribution itself, libraries can also be downloaded from
a third party. For example, the SciPy toolkit contains libraries for many scientific
computation functionalities.1 After installation, such libraries are typically located
on a Linux or Max OS at:

/Library/Python /2.7/site -packages/

and on a Windows platform at:

C:\ Python27\Lib\site -packages\

1http://www.scipy.org/.

http://www.scipy.org/.
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Python automatically searches for the locations above when a library module is
imported, where the folder names depend on the Python version. Note that the math
module is an exception: it cannot be found under the library folder locations above.
This is becausemath is a very commonly usedmodule, and is built in themain Python
program itself. Other commonly used modules, including cmath, are also built-in.

Making Use of Libraries. Before writing one’s own code for a specific function-
ality, it is wise to check whether there is an existing library module that can be used
directly. Python provides many powerful functionalities through modules distributed
along with the Python program itself, and the descriptions of all the modules can
be found in the Python documentation. To look for third-party modules with given
functionalities, online search engines are a useful resource. For example, searching
for ‘Python scientific computation’ can lead to the website of SciPy.

3.3.3 The Mechanism of Module Importation

The import statement creates an identifier that has the same name as the module.
For example, by using ‘import random’, ‘random.py’ is imported into the memory,
and associated with the name ‘random’ in the global binding table. To avoid name
clashes and for the convenience of reference, a module can also be given a different
name when imported into the binding table. This can be achieved by using a variant
of the import statement, with the syntax ‘import x as y’, where x is the name of the
module in the file system and y is the desired name in the binding table.

>>> import math as m
>>> m.e
2.718281828459045
>>> m.sqrt (25.0)
>>> 5.0
>>> math.e
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
NameError: name ’math ’ is not defined

In the example above, the math module is loaded into the binding table and
associatedwith the identifierm. As a result, by using“m.”, the corresponding binding
table of the math module can be accessed. However, the identifier “math” does not
exist in the global binding table this time.

Since both the assignment statement and the import statement changes the binding
table, they can override the value of an identifier. For example,

>>> x=1
>>> import math as x
>>> x+1 # not a number
Traceback (most recent call last):

File"<stdin >", line 1, in <module >
TypeError: unsupported operand type(s) for +: ’module ’

and ’int ’
>>> x.pi # but a module
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3.141592653589793

In the example above, x is initially bound to a number, but then rebound to
a module. The original binding is overridden. An assignment statement can also
override an import statement. For example,

>>> import math
>>> math=1
>>> math+1 # number
2
>>> math.e # error
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
AttributeError: ’int ’ object has no attribute ’e’

As shown earlier, modules such as random.py are Python programs themselves.
In fact, any Python program can be loaded as a module. To verify this, the program
saving.py can be used as an example. Suppose that another source file, textimport.py,
is created under the Desktop folder. It contains the following two lines of code

[testimport.py]
import savings
x=1
print savings.rate , "is entered as the interest rate"

Executing the program above yields the following result.

Zhangs -MacBook -Pro:~ yue_zhang$ cd Desktop/
Zhangs -MacBook -Pro:Desktop yue_zhang$ python

testimport.py
[Savings Calculator]
Please enter the interest rate: 0.036
Please enter the number of years: 5
Please enter the initial sum of money: $10000
After 5 years , the savings will be $11934 .35
0.036 is entered as the interest rate
Zhangs -MacBook -Pro:Desktop yue_zhang$

One immediate thing to notice is that the program asks the user for the interest
rate, number of years and initial deposit again, just as if the savings.py program were
executed alone. Then it displays the message “0.036 is entered as the interest rate”.
Here, savings.rate is used to access the rate value defined in savings.py, in the same
way as the use of math.e to access the value of e defined in math.

The underlying mechanism of module importation is reflected in this example.
First, the importing module hands control over to the imported module, which is
executed, with its own binding table being the global binding table. Second, the
importing module resumes control, with the global binding table switched back to
the binding table of the importing module. A new entry added to the binding table of
the importing module, associating the name of the imported module with the binding
table of the imported module. This process can be illustrated in Fig. 3.5. The example
also shows a second use of the print statement, where a comma-separated list of
expressions is put after the keyword. In this case, each expression will be printed,
with a space separating the outputs.
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Fig. 3.5 Example memory
structure for module import

3.3.4 Duplicated Imports

If the same module is imported twice, the content of the module will not be exe-
cuted by the second import statement. For example, the following change to the
testimport.py code will not lead to any change in the runtime behavior.

[testimport.py]
x=1
import savings
import savings
print savings.rate ,"is entered as the interest rate"

The first two lines of the program remain the same as before, while the third line
is added for a second import of the same module. When this program is executed,
the user will be asked for input only once, with the same value of savings.rate being
shown when the fourth line of code is executed. Executing testimport.py from IDLE
can yield the following output.

>>> ============================== RESTART
==============================

[Savings Calculator]
Please enter the interest rate: 0.036
Please enter the number of years: 5
Please enter the initial sum of money: $10000
After 5 years , the savings will be $11934 .35
0.036 is entered as the interest rate
>>>

It can be seen in the example above that, no operation is taken when the second
import statement is executed. Note that for the example to run as expected, savings.py
must be in a folder that is accessible by IDLE. For example, if the Desktop folder has
been added to the PYTHON_PATH environment variable as illustrated in Chap.1, all
the files in the folder are accessible. Alternatively, if IDLE is started at the Desktop
folder, all the files in the folder are also accessible. The following example shows
how this can be done on a Linux or Max OS.

http://dx.doi.org/10.1007/978-981-287-609-6_1
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Zhangs -MacBook -Pro:anywhere$ cd
Zhangs -MacBook -Pro:~ yue_zhang$ cd Desktop/
Zhangs -MacBook -Pro:Desktop yue_zhang$ idle

The following example shows the case on a Windows OS.

c:\anywhere > cd %userprofile%
c:\Users\yue_zhang > cd Desktop/
c:\Users\yue_zhang\Desktop > idle

Two imports of the samemodule behave the same as in the previous example even
when they are executed from different modules—execution of the second import
statement does not result in the module being executed again. For example, suppose
that the following two files are in the Desktop folder.

[testimport1.py]
import savings
x=1

[testimport2.py]
import savings
import testimport1
y=1

When testimport2.py is executed as the main program, the dynamic execution
sequence is:

import savings
[execute savings.py]

...
[savings.py finished]
import testimport
[execute testimport.py]

import savings
[execute savings.py]

...
[savings.py finished]
x=1
[testimport.py finished]

y=1

savings.py is executed only once, when the first line of testimport2.py is executed.
When the second line of testimport2.py is executed, testimport1.py is executed. But
when the first line of testimport1.py is executed, savings.py is not executed a second
time. The same module object is simply associated with a new entry in the binding
table of testimport1. After the execution of y = 1, the memory structure is shown
in Fig. 3.6. Note that the same module object is associated with the name savings in
two different binding tables.

Reloading a module. In case the imported module is modified between the exe-
cution of two import statements, the second import will not reflect the modification.
Python has a special function, reload, which reloads the context of an imported
module by executing it once more. For example, suppose that savings.py is changed
between an import statement and a reload function call as follows:
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Fig. 3.6 Example memory
structure for duplicated
import

[savings.py initially]
print ‘[Savings Calculator]’
rate = float(raw_input("Please enter the interest rate:"))
years = int(raw_input("Please enter the number of years:"))
init = float(raw_input("Please enter the inital sum of money: $"))
final = init * (1.0+ rate)**years
print "After %d years , the savings will be $%.2f" % (years , final)

[savings.py after import but before reload]
print ‘The new version ’
init=0

Execution of the import and reload operations yields the following result:

>>> import savings
[Savings Calculator]
Please enter the interest rate: 0.036
Please enter the number of years: 5
Please enter the initial sum of money: $10000
After 5 years , the savings will be $11934 .35
0.036 is entered as the interest rate
>>> import savings # nothing happens
>>> reload (savings)
The new version
>>> print savings.init
0

The reload function changes the context of the binding table of savings, where
the value of init becomes 0. As a result, 0 is printed by the last command in IDLE.

3.3.5 Importing Specific Identifiers

Sometimes only a small number of functions or variables needs to be imported from
a module. In such cases, the use of a module name in reference to the imported
functions or variables may be unnecessary. For example, suppose that only pi and
sin are needed by a program. In this case, importing the two identifiers directly into
the global binding table can be more convenient than importing the math module,
because in this way pi and sin can be referred to directly, instead of using math.pi
and math.sin.
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Python provides a variation of the import statement for such imports. The syntax
is:

from <module name > import <identifiers >

where <identifiers> is a comma-separated list of specific identifiers, or a wildcard
* that represents all the identifiers in the module.

In the following example, the variable pi and the function sin are imported from
the math module directly.

>>> from math import pi , sin
>>> sin(pi)
1.2246467991473532e-16
>>> math.pi

Traceback (most recent call last):
File "<stdin >", line 1, in <module >

NameError: name ’math ’ is not defined

In the example above, the module name math cannot be found in the global
binding table, but the identifiers pi and sin are present. The mechanism for the from
... import ... statement is illustrated in Fig. 3.7. It consists of two steps: (1) execute
the module to be imported; (2) add the specified identifiers to the global binding
tables. The process is the same as the import ... statement in the first step, but differs
in the second step. As shown in Fig. 3.7, the resulting global binding table contains
the identifiers pi and sin, but not the identifier math. The binding table of the math
module is not referred to by any identifier in this case, and will be removed by the
garbage collector, together with the objects in the module other than pi and sin.

Fig. 3.7 Memory structure
of from ... import ...
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The following example shows the importing of all identifiers from the math
module.

>>> from math import *
>>> sin(pi/2)
1.0
>>> log(e)
1.0
>>> factorial (10)
3628800
>>> pow(2, 8)
256.0

dir and the __builtins__ binding table
Python allows the listing of all entries in the global binding table by using the dir

function.

>>>dir()
[’__builtins__ ’, ’__doc__ ’, ’__name__ ’, ’__package__ ’]
>>> x=1
>>> y=2
>>> dir()
[’__builtins__ ’, ’__doc__ ’, ’__name__ ’, ’__package__ ’,

’x’, ’y’]

In the example above, the first dir function call gives four entries, __builtins__,
__doc__, __name__ and __package__, which are the default entries when IDLE
(or a Python program) starts. Details about these entries will be introduced later in
Chap.11.When the two assignment statements x = 1 and y = 2 have been executed,
two more entries, x and y are added to the global binding table, as shown by the
second call to the dir function.

The dir function can also take an input argument, which is an object that has a
binding table, and lists out all the entries in the binding table. As introduced earlier,
module objects are associated with binding tables. As a result, one can list out all the
identifiers defined in a module.

>>>import math
>>>dir(math)
[’__doc__ ’, ’__name__ ’, ’__package__ ’, ’acos’, ’acosh’

, ’asin’, ’asinh’, ’atan’, ’atan2’, ’atanh’, ’ceil’
, ’copysign ’, ’cos’, ’cosh’, ’degrees ’, ’e’, ’erf’,
’erfc’, ’exp’, ’expm1’, ’fabs’, ’factorial ’, ’

floor’, ’fmod’, ’frexp’, ’fsum’, ’gamma’, ’hypot’,
’isinf’, ’isnan’, ’ldexp’, ’lgamma’, ’log’, ’log10’
, ’log1p’, ’modf’, ’pi’, ’pow’, ’radians ’, ’sin’, ’
sinh’, ’sqrt’, ’tan’, ’tanh’, ’trunc’]

In the list above, the first three entries are special and exist for all modules; more
about them will be discussed in Chap.11.

Note that the input argument to the dir function call must be available in the
current global binding table. Otherwise, an error will be given.

>>>dir(random) # random has not been imported

http://dx.doi.org/10.1007/978-981-287-609-6_11
http://dx.doi.org/10.1007/978-981-287-609-6_11
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Traceback (most recent call last):
File "<pyshell#6>", line 1, in <module >

dir(random)
NameError: name ’random ’ is not defined

In addition to modules, other objects can also be associated with binding tables,
and they will be introduced in Chap.10.

It can be noticed that the global binding table does not contain built-in functions
such as id, int, len and dir. The reason that they can be referred to without causing an
error is that Python organizes all built-in functions in a special module, __builtins__,
which is implicit in the system. When an identifier cannot be found in the global
binding table, the __builtins__ binding tablewill be searched. In fact, the __builtins__
in the global binding table by default, as shown earlier.

>>> dir(__builtins__)
[’ArithmeticError ’, ’AssertionError ’, ’AttributeError ’

, ’BaseException ’, ’BufferError ’, ’BytesWarning ’, ’
DeprecationWarning ’, ’EOFError ’, ’Ellipsis ’, ’
EnvironmentError ’, ’Exception ’, ’False’, ’
FloatingPointError ’, ’FutureWarning ’, ’
GeneratorExit ’, ’IOError ’, ’ImportError ’, ’
ImportWarning ’, ’IndentationError ’, ’IndexError ’, ’
KeyError ’, ’KeyboardInterrupt’, ’LookupError’, ’
MemoryError ’, ’NameError ’, ’None’, ’NotImplemented ’
, ’NotImplementedError ’, ’OSError ’, ’OverflowError ’
, ’PendingDeprecationWarning’, ’ReferenceError ’, ’
RuntimeError ’, ’RuntimeWarning ’, ’StandardError ’, ’
StopIteration ’, ’SyntaxError ’, ’SyntaxWarning ’, ’
SystemError ’, ’SystemExit ’, ’TabError ’, ’True’, ’
TypeError ’, ’UnboundLocalError ’, ’
UnicodeDecodeError ’, ’UnicodeEncodeError ’, ’
UnicodeError ’, ’UnicodeTranslateError ’, ’
UnicodeWarning ’, ’UserWarning’, ’ValueError ’, ’
Warning ’, ’WindowsError ’, ’ZeroDivisionError’, ’_’,
’__debug__ ’, ’__doc__ ’, ’__import__ ’, ’__name__ ’,

’__package__ ’, ’abs’, ’all’, ’any’, ’apply’, ’
basestring ’, ’bin’, ’bool’, ’buffer’, ’bytearray ’,
’bytes’, ’callable ’, ’chr’, ’classmethod ’, ’cmp’, ’
coerce ’, ’compile ’, ’complex ’, ’copyright ’, ’
credits ’, ’delattr ’, ’dict’, ’dir’, ’divmod’, ’
enumerate ’, ’eval’, ’execfile ’, ’exit’, ’file’, ’
filter ’, ’float’, ’format’, ’frozenset ’, ’getattr ’,
’globals ’, ’hasattr ’, ’hash’, ’help’, ’hex’, ’id’,
’input’, ’int’, ’intern’, ’isinstance ’, ’

issubclass ’, ’iter’, ’len’, ’license ’, ’list’, ’
locals ’, ’long’, ’map’, ’max’, ’memoryview ’, ’min’,
’next’, ’object’, ’oct’, ’open’, ’ord’, ’pow’, ’

print’, ’property ’, ’quit’, ’range’, ’raw_input ’, ’
reduce ’, ’reload’, ’repr’, ’reversed ’, ’round’, ’
set’, ’setattr ’, ’slice’, ’sorted’, ’staticmethod ’,
’str’, ’sum’, ’super’, ’tuple’, ’type’, ’unichr’,

’unicode ’, ’vars’, ’xrange’, ’zip’]

http://dx.doi.org/10.1007/978-981-287-609-6_10
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There are many built-in functions, such as round and len; many more will be
introduced in this book. By convention, Python names implicit or special objects by
enclosing their name in double underscores (__).

Finally, note that the __builtins__ module is searched only when a reference to
the global binding table is not found. Identifiers in a specified binding table will not
be looked for in the __builtins__ binding table.

>>> import math
>>> math.dir()

Traceback (most recent call last):
File "<pyshell#9>", line 1, in <module >

math.dir()
AttributeError: ’module ’ object has no attribute ’dir ’

In the example above, because of the use of math., Python searches for the identi-
fier dir only in the math module. When it is not found, Python raises an error without
searching the __builtins__ module for the name dir.

Exercises

1. Does the following expression result in the string object ‘abc’? Why?

str(abc)

2. Write a Python program that

(a) asks the user for a floating point number x0, and prints out the value of
f (x) = x3 − 3x + 1 at x0.

(b) asks the user for her name, and then prints “Hello, <name>! ”, when
<name> is the name of the user.

(c) asks the user for an integer, and then displays the number of digits in the
integer, and the logarithm of the integer.

(d) asks the user for an integer, and then displays the number of digits in the
integer to the power of 3.

(e) asks the user for a string s, and displays the following string: ‘<s>***<s>
***<s>’, where <s> is the string given by the user.

(f) asks the user for a string, and displays a string that repeats the input string
n times, where n is the length of the input string.

3. Write a program that asks the user for her name, and a short message below 50
characters, displaying the following output

****************************************
* *
* Hello , <name > *
* *
* Your message is: *
* *
* <The content of the message > *
* <maybe continued message > *
****************************************
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In the output above, each line contains 40 characters.<name> is the name of the
user. The string ‘Hello,<name>’ must be centered in the third line, regardless of
the length of<name>. The content of the message starts from the third character
of the seventh line. If it is more than 36 characters, the text should be wrapped
into the eighth line. Otherwise the eighth line is empty.

4. Write a program that asks for user input and performs

(a) Celsius to Fahrenheit conversion.
(b) Fahrenheit to Celsius conversion.
(c) Meter to foot conversion.
(d) Foot to meter conversion.
(e) Acre to square meter conversion.
(f) Square meter to acre conversion.
(g) Pound to kilogram conversion.
(h) Kilogram to pound conversion.

5. Make the answers to question 4 in the previous chapter full programs, which allow
arbitrary user input, giving the corresponding results.

6. Draw the binding tables after the following code is executed. How many times
are the math module executed?

[lib.py]
import math
x=math.pi/2

[main.py]
import lib
import math
y=math.cos(lib.x)
print y



Chapter 4
Branching and Looping

Many a time, the computer needs to take different actions according to user input. For
example, when the user closes a text editor window, the operating system prompts out
a dialogbox asking the userwhether to saveherworkbefore quitting.According to the
user choice, the program may save the work before exiting, or exit without saving
the work. Unlike the programs in the precious chapter, the dynamic, or runtime
execution sequence of the text editor program can be different from the static lines
of code written in the program. In the example above, the code for saving the user’s
work may or may not be executed at runtime. This is called conditional execution,
or branching.

Another type of dynamic behavior is looping, where the computer repeats the
same process multiple times. For example, a music player can repeatedly play the
same song multiple times. In a dynamic execution, the same piece of static code
(i.e. play music) is executed multiple times. In addition, the number of times the
same code is repeated can also depend on user input. The playing of a playlist is
also typically implemented using loops, by repeating the same music playing code
on different songs.

The execution of a program can be treated as a continuous flow of statement
execution. Branching and looping can be treated as two different ways of control
flow, which refers to how a sequence of static code is put into a dynamic sequence for
execution at runtime. In contrast to branching and looping, the execution sequence
introduced in the previous chapters, where a list of statements are executed one by
one, is also referred to as the sequential control flow. In a sequential control flow,
the order in which a set of statements is executed is exactly the same as the order in
which they are written.

Figure4.1 shows a comparison between sequential, branching and looping ex-
ecution sequences. This type of diagram is called control flow diagram, or flow
charts. Flow charts consist of arrows and nodes. While arrows indicate the execu-
tion sequence, nodes can be either statements or junctions. A junction is a binary
branching node, depending on a condition, it determines while branch to follow in
dynamic execution. It turns out that a combination of the three basic types of control
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(a) (b) (c)

Fig. 4.1 The three basic types of control flow. a Sequential. b Branching. c Looping

flow in Fig. 4.1 is sufficient to solve any computable problem—any problem that can
be solved by a computer.

The understanding of branching and looping is a milestone in learning program-
ming. It is crucial to be able to tell the difference between dynamic execution and
static code when these two types of control flow are involved. For both branching and
looping in Fig. 4.1, there is a control junction that chooses between two branches of
execution according to a binary option. The option can be expressed using a Boolean
type expression in Python.

4.1 The Boolean Type

The Boolean type is designed to represent logical values; it is frequently used for
control flow. Different from integers, floating point numbers and strings, for which
there are an infinite number of possible literals, there are only two Boolean literals:
True and False.

>>> a=True
>>> type(a)
<type ‘bool’>
>>> b=False
>>> type(b)
<type ‘bool’>

Boolean operators. There are three logical operators for Boolean objects, which
include the binary operators and and or, and the unary operator not. The effects of
the three operators are shown in Fig. 4.2. a and b is True only when both a and b
are True, and False otherwise. a or b is False only when both a and b are False, and
True otherwise. not a is True when a is False, and False when a is True.
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(a) (b) (c)

Fig. 4.2 Boolean operators. a and. b or. c not

>>> a=True
>>> b=False
>>> a and b
False
>>> a or b
True
>>> not a
False
>>> not b
True

Similar to arithmetic expressions, Boolean expressions can be composite, con-
sisting of multiple Boolean objects and operators. The priority of the not operator
is higher than that of and, which is in turn higher than that of or. Similar to other
expressions, brackets can be used to explicitly specify the order of evaluation in
Boolean expressions.

>>> a=True
>>> b=True
>>> c=False
>>> a and not b # ‘not b’ first
False
>>> c and b or a # ‘c and b’ first
True
>>> c and (b or a) # explicit
False
>>> a and b or b and c # ‘a and b’→‘b and c’→‘or’

last
True

In the last example above, a and b is evaluated first, before b and c is evaluated.
The resulting values True and False are then combined by the or operator, resulting
in the value True. If and and or had the same precedence, the expression would have
been evaluated from left to right, resulting in the value False. With two literals and
three operators, Boolean algebra is relatively simple and straightforward.

Operators resulting in Boolean values. There is a set of operators that take non-
Boolean operands, yet result in Boolean values. One example of such operators is
numerical comparison.
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>>> 1==2 # equals
False
>>> 1!=2 # not equal
True
>>> 3>5 # greater than
False
>>> 3<5 # less than
True
>>> 3<=5 # less than or equal to
True

The == operator (i.e. =; equal) returns True if the two operands are equal, and
False otherwise; the != operator (i.e. ! =; unequal) returns True if the two operands
are not equal, and False otherwise; the > operator (i.e. greater than) returns True
if the first operand is greater than the second operand, and False otherwise; the
< operator (i.e. less than) returns True if the first operand is less than the second
operator, and False otherwise; the >= operator (i.e. >=; greater than or equal to)
returns True if the first operand is greater than or equal to the second operand, and
False otherwise; the <= operator (i.e. <=; less than or equal to) returns True if
the first operand is less than or equal to the second operand, and False otherwise.
In addition to the operators above, more operators take non-Boolean operands and
result in Boolean values; they will be introduced later in this book. Intuitively, the
two special floating point numbers, float(‘inf’) and float(‘-inf’), which represent ∞
and −∞, respectively, conform to the rules of numerical comparison also.

>>> a=float(‘inf’)
>>> b=float(‘-inf’)
>>> a>10e6
True
>>> a<10
False
>>> b<-10E6
True

Multiple Boolean expressions can be combined by Boolean operators, resulting
in composite Boolean expressions, which are commonly used in Python programs
for control flow.

>>> a=3
>>> b=5
>>> c=2
>>> a>b and b>c
False
>>> a>b or b>c
True
>>> a>b and b>c or b>c and c<a
True

Operators that result in Boolean values (e.g. >, <) have higher precedence com-
pared to Boolean operators (e.g. and, or). As a result, the three expressions in the
example above are reduced to composite Boolean expressions after the > and <

operators are evaluated. In the first two examples above, the expressions a > b and
b > c are evaluated first, before the Boolean operators are evaluated. In the last
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example, the four expressions a > b, b > c, b > c and c > a are evaluated first,
before the two and operators are evaluated. The or operator is evaluated last due to
the fact that and has higher priority than or.

The operators ==, !=, <, >, <= and >= can also be cascaded, with the inter-
pretation of logical conjunction. For example, 1 < 2 < 3 is interpreted as 1 < 2
and 2 < 3, and its value is True. Similarly, the value of 1 <= 2 < 5! = 4 is True.
However, the value of 1 < 3 < 5 == 4 is False because the value of 5 == 4 is
False.

Another set of operators that result in Boolean values include in and not in, which
return whether a string is a sub string of another.

>>> s1 = ‘bc’
>>> s2 = ‘abcde’
>>> s3 = ‘b’
>>> s1 in s2
True
>>> s3 not in s2
False
>>> s3 in s1
True
>>> s1 in s3
False

Yet another set of operators that result in Boolean values includes is and is not,
which return whether the identifier of the object are the same.

>>> a = 123 # small number cached
>>> b = 123
>>> id(a)
19960736
>>> id(b)
19960736
>>> a is b
True
>>> a is not b
False
>>> a = 12345 # not cached
>>> b = 12345
>>> id(a)
20241576
>>> id(b)
20241408
>>> a is b
False

Type conversion from and to the Boolean type can be applied to numbers,
strings and most other types to be introduced in this book.

>>> bool (0) # zero
False
>>> bool (3) # non -zero
True
>>> bool (0.0) # zero
False
>>> bool (0.1) # non -zero
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True
>>> bool (1.0) # non -zero
True
>>> bool (100.0) # non -zero
True
>>> bool(‘’) # empty
False
>>> bool(‘abc ’) # non -empty
True
>>> bool(‘This is a string that contains multiple

characters.’)
True
>>> int(True)
1
>>> int(False)
0
>>> float(True)
1.0
>>> float(False)
0.0
>>> str(True)
‘True ’
>>> str(False)
‘False ’
>>> print False
False
>>> print True
True

While the bool function converts objects of other types into Boolean values,
Boolean values can be converted into other types using respective functions. In
general, a number is converted to False if its value is 0, and True otherwise. A string
is converted to False if it is an empty string, and True otherwise. The numeric value
of False is 0, and that of True is 1. The string value of False and True are ‘False’ and
‘True’, respectively.

The and, or and not operators require Boolean operands. If non-Boolean operands
are found, they are converted to Boolean values implicitly. For example, (1 and ‘a’)
is True because both 1 and ‘a’ are converted to True. However, 0 and 3 is False
because 0 is converted to False.

4.2 Branching Using the if Statement

The if statement supports conditional or branching control flow. The simplest form
of the if statement is shown in Fig. 4.3. It is a compound statement that consists
of multiple lines. The first line contains a Boolean condition, the runtime value of
which decides whether the rest of the compound statement is executed.

In particular, the first line starts with the if keyword, followed by a Boolean
expression, and then a colon (:). Following the if line, a block of indented statements
are written from the second line onwards. Here indentation refers to the insertion
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Fig. 4.3 The simplest form
of the if statement

of whitespace characters, including spaces (‘’) and tabs (‘ ’) before a statement.
Common indentations include 2–8 spaces and 1–2 tabs, while spaces are preferred
because different text editors can interpret a tab character as different numbers of
spaces. A statement block contains one ormultiple statementswith equal identation.

Conditional execution. At runtime, the value of the Boolean expression in the if
line determines whether the statement block is executed. For example,

>>> if True:
... a=1
... b=2
... print a+b
...
3
>>> if False:
... a=1
... b=2
... print a+b
...
>>>

There are two if statements in the example above. In the first if statement, the
Boolean expression is a constant value True. When it is executed, the statement
block under the if line is executed. In the second if statement, the Boolean expression
is a constant False. When this if statement is executed, the statement block under the
if line is not executed, and nothing is printed.

Below are three examples where the Boolean condition expressions are more
complex than constant values.

>>> a=1
>>> b=2
>>> c=3
>>> if a>b:
... print ‘yes’
... print ‘a>b’
...
>>> if b<c:
... print ‘yes’
... print ‘b<c’
...
yes
b<c
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>>> if a>b or b<c:
... print ‘yes’
...
yes
>>>

In the first example above, the Boolean expression consists of a> operator, which
takes two integer operands and returns a Boolean value. According to the values of
a and b, the value of the Boolean expression is False, and hence the two statements
under the if line are not executed. In the second example, the same type of Boolean
expression is used, but the runtime value is True, leading to the execution of the two
indented statements. The third example uses a compound Boolean expression, which
is evaluated to True, leading to the execution of the statement block.

If a non-Boolean expression is put in the place of the Boolean expression in the
if statement, it is automatically and implicitly converted into a Boolean value.

>>> a=1
>>> b=-2.0
>>> c=0
>>> d=‘abc’
>>> e=‘’
>>> if a: #non -zero
... print a
...
1
>>> if b: #non -zero
... print b
...
-2.0
>>> if c: #zero
... print c
...
>>> if d: # non -empty
... print d
...
abc
>>> if e: # empty
... print e
...
>>>

In the lines of code above, five values of three different types are put in the place
of the Boolean expression. They are converted into the Boolean type, respectively.
Again the outputs illustrate the mechanisms of Boolean conversion and conditional
execution.

In a dynamic execution of the if statement, the value of the Boolean expression
can be determined by user input.

[zero.py]
a=int(raw_input(‘Give me a number: ’))
if a==0:

print ‘The number is zero’
print ‘Bye’
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The program asks the user for a number a, and prints a line if it is zero. This
is achieved by using an if statement with the Boolean condition a == 0. After the
compound if statement, there is a third statement in the program, which simply prints
the string ‘Bye’. Python uses indentation to determine whether a statement is inside
a compound statement or outside it. In this example, the last line is not indented, and
therefore is not a part of the compound if statement.

An example of executing the program is shown below.

Zhangs -MacBook -Pro:code yue_zhang$ python zero.py
Give me a number: 0
The number is zero
Bye
Zhangs -MacBook -Pro:code yue_zhang$ python zero.py
Give me a number: 1
Bye

Here when the user inputs a zero, the print statement inside the if statement is
executed, and two lines of text are printed. When the user inputs a non-zero number,
the print statement under the if statement is not executed. Theflowchat of the program
is shown in Fig. 4.4a.

Two-way branching. zero.py gives a text response when the user input is zero,
but no feedback if the user input is non-zero. In order to be more informative and
also show some text response when the user input is not zero, an alternative form of
the if statement can be used.

[zero_else.py]
a=int(raw_input(‘Give me a number: ’))
if a==0:

print ‘The number is zero ’
else:

print ‘The number is not zero ’
print ‘Bye ’

Fig. 4.4 Branching flow charts. a zero.py (if). b zero-else.py (if ... else ...). c zero-elif.py (if ... elif
... else ...)
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zero_else.py is a modified version of zero.py, with the if statement being extended
by adding an else component, which consists of two lines. The first line is not
indented; it starts with the else keyword, followed by a colon (:). The second line is
a print statement, which by itself forms an indented statement block.

The if ... else ... structure is a single compound statement, the execution of which
is controlled by the Boolean expression in the if line. If the value of the Boolean
expression is True, the indented statement block under the if line is executed, but
the indented statement block under the else line is not. If the value of the Boolean
expression is False, the reverse happens, with the indented statement block under
the else line being executed, but that under the if line being not executed. At each
execution of the compound statement, only one of the two indented statement blocks
is executed.

An example of executing zero_else.py is shown below:

Zhangs -MacBook -Pro:code yue_zhang$ python zero_else.py
Give me a number: 0
The number is zero
Bye
Zhangs -MacBook -Pro:code yue_zhang$ python zero_else.py
Give me a number: 1
The number is not zero
Bye
Zhangs -MacBook -Pro:code yue_zhang$ python zero_else.py
Give me a number: 3
The number is not zero
Bye

As can be seen from the example above, the program gives a corresponding
response regardless whether the user input is zero or non-zero. The dynamic control
flow is illustrated in Fig. 4.4b.

Multi-way branching. zero_else.py can be further extended to give different
responses when the user input is positive, zero or negative, respectively. This is a
three-way branching condition. However, one Boolean value can express a choice
between only two options. A common solution to making a choice from more than
two options is to break a multi-way condition into the concatenation of multiple
two-way conditions. In this case, two Boolean conditions can be used, with the first
one determining whether the user input is zero or non-zero, and the second one
determining whether the user input is positive or not, if it is non-zero. The dynamic
process can be illustrated by Fig. 4.4c.

Python offers an alternative form of the if statement that allows such multi-way
branching. Making use of this variation, zero_else.py can be further extended into
zero_elif.py.

a=int(raw_input(‘Give me a number: ’))
if a==0:

print ‘The number is zero ’
elif a>0:

print ‘The number is positive ’
else:

print ‘The number is negative ’
print ‘Bye ’
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zero_elif.py is different from zero_else.py in that the second statement, which is a
compound if ... else ... statement in zero_else.py, is extended into an if ... elif ... else
... compound in zero_elif.py. The additional elif line corresponds to the additional
condition in Fig. 4.4c. It is an unindented line, startingwith the keyword elif, followed
by aBoolean expression, and finishingwith a colon (:). Similar to the if and else cases,
an indented statement block is placed under the elif line. The dynamic execution of
the compound if ... elif ... else ... statement can be illustrated with Fig. 4.4c, where the
three branches from left to right correspond to the statement blocks under the if, elif
and else lines, respectively. At each execution, only one among the three branches is
executed. An example of executing zero_elif.py is shown below.

Zhangs -MacBook -Pro:code yue_zhang$ python zero_elif.py
Give me a number: 1
The number is positive
Bye
Zhangs -MacBook -Pro:code yue_zhang$ python zero_elif.py
Give me a number: 0
The number is zero
Bye
Zhangs -MacBook -Pro:code yue_zhang$ python zero_elif.py
Give me a number: -3
The number is negative
Bye

The following program, scoregrade.py, further demonstrates a five-way branching
example. The program asks the user to enter a final-exam score, and then prints the
grade (A/B/C/D) that corresponds to the score. If the score that the user entered is
less than 0 or greater than 100, the program prints an error message.

score = float(raw_input(‘Enter a score: ’))
if 85 <= score <= 100:

print ‘A’
elif 70 <= score < 85:

print ‘B’
elif 50 <=score < 70:

print ‘C’
elif 0 <= score < 50:

print ‘D’
else:

print ‘Invalid score entered ’

The control flow diagram for this program is shown in Fig. 4.6, where the five
branches from left to right correspond to the score being in the ranges [85, 100],
[70, 85), [50, 70), [0, 50) and otherwise, respectively. At one execution of the pro-
gram, only one branch is executed.

Zhangs -MacBook -Pro:code yue_zhang$ python grade.py
Enter a score: 75
B
Zhangs -MacBook -Pro:code yue_zhang$ python grade.py
Enter a score: 100
A
Zhangs -MacBook -Pro:code yue_zhang$ python grade.py
Enter a score: 33
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Fig. 4.5 Five-way branching example

D
Zhangs -MacBook -Pro:code yue_zhang$ python grade.py
Enter a score: -10
Invalid score entered

Note that the program above consists of only two top-level statements: an assign-
ment statement and a compound if ... elif ... else ... statement. The flow chart of a
compound if ... elif ... else ... statement is always right-branching—additional elif
Boolean expressions always split the right branch from its previous branching point.

Finally, the general form of the if statement, which consists of one if component,
zero or many elif components, and zero or one else component, is shown in Fig. 4.5.

4.2.1 Nested if Statements

Since a compound if statement is also a statement, it can be used in a statement block
inside another if statement. This form of nested if statements is sometimes useful for
organizing branches of control flow with complex conditions.

For example, in a FIFA World Cup, four teams participate in the semi-finals by
paying two semi-final matches separately. The winners of the two semi-final matches
play a final match for theWorld-Cup championship, while the losers of the two semi-
final matches play a match for the third place. In this process, each of the four teams
will play two matches, and the results determine the team’s final rank in the World-
Cup game. The following Python code simulates the game.
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Fig. 4.6 General form of the
if statement

[semi_final.py]
first_game = raw_input(‘Did the team win the first

game? [Y/N] ’)
second_game = raw_input(‘Did the team win the second

game? [Y/N] ’)
if first_game == ‘Y’:

if second_game == ‘Y’:
print ‘First place ’

else:
print ‘Second place ’

else:
if second_game == ‘Y’:

print ‘Third place ’
else:

print ‘Fourth place ’

The program consists of three statements, the first two being assignment state-
ments that inquire the user for the results of the two matches that a team played.
The third statement is a compound if statement that contains two indented state-
ment blocks, each consisting of another if statement. An example of executing
semi_final.py is shown below.

Zhangs -MacBook -Pro:code yue_zhang$ python semi_final.py
Did the team win the first game? [Y/N] Y
Did the team win the second game? [Y/N] N
Second place
Zhangs -MacBook -Pro:code yue_zhang$ python semi_final.py
Did the team win the first game? [Y/N] N
Did the team win the second game? [Y/N] Y
Third place
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(a) (b)

Fig. 4.7 Control flow diagrams. a semi_final.py. b semi_final_unnested.py

Zhangs -MacBook -Pro:code yue_zhang$ python semi_final.py
Did the team win the first game? [Y/N] Y
Did the team win the second game? [Y/N] Y
First place

For analyzing the dynamic behavior of nested branching statements, a hierarchical
approach can be useful—the branching statement of the outer level can be analyzed
first (without considering the behavior of branches in the inner level), before the
branching statements in the inner level are analyzed independently. In each level,
the if statement behaves exactly as introduced earlier depending only on the Boolean
expression in the if line. Nesting does not change the mechanism of each individual
statement. The flow chat of semi_final.py is shown in Fig. 4.7a.

An alternative way of writing the same program, without using nested if state-
ments, is to use an if statement with combined Boolean conditions.

[semi_final_unnested.py]
first_game = raw_input(‘Did the team win the first

game? [Y/N] ’)
second_game = raw_input(‘Did the team win the second

game? [Y/N] ’)
if first_game and second_game:

print ‘First place ’
elif first_game and not second_game:

print ‘Second place ’

elif not first_game and second_game:
print ‘Third place ’

else:
print ‘Fourth place ’

An execution of semi_final_unnested.py yields the same result as semi_final.py.
However, the logic behind semi_final_unnested.py is different from that behind
semi_final.py. The control flow diagram of semi_final_unnested.py is shown in
Fig. 4.7b, where the two matches are combined into one condition, and the four
different outcomes are organized in a right-branching hierarchy.

As can be seen from a comparison between Fig. 4.7a, b by using nested if state-
ments, multiple Boolean conditions can be organized in an arbitrary hierarchy. In
this particular example, nested if offers a more balanced and perhaps more intuitive
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logic hierarchy when compared to the right-branching hierarchy by the compound
if ... elif ... else ... statement without using nested if statements.

In general, all multi-way branching situations that can be addressed by using
if ... elif ... else statements can be addressed by using nested if statements also. A
choice can be made according to the convenience of expressing a logical hierarchy.
Sometimes if statements can be nested in more than two levels. When there are many
branches and complex hierarchical logic structures, it is possible to make a mistake
by writing an incorrect Boolean condition. In such situations, drawing a control flow
diagramcan be useful for spotting andfixing logicalmistakes. In addition,debugging
techniques, introduced later in this chapter, can be used to verify the behavior of a
program dynamically.

4.3 Looping Using the While Statement

The looping control flow of Fig. 4.1c can be implemented using the while statement
in Python. The syntax of the while statement is shown in Fig. 4.8. It is identical to
the syntax of the if statement in Fig. 4.3, except that the keyword is changed from
if to while. For the while statement, the indented statement block is also called the
loop body.

As shown in Fig. 4.1c, the Boolean expression determines the execution of the
indented statement block under the while line. If it is True, the statement block
is executed; if it is False, the statement block is not executed. This is similar to
the if statement. However, the while statement differs from the if statement after the
execution of the indented statement block. In particular, after the execution of the
indented statement block, the execution of the if statement is finished, and any further
statements in the program will be executed. In contrast, after the indented statement
block is executed, the while statement moves back to the Boolean expression in order
to evaluate it again. If it is True this time, the indented statement block is executed
again, before the Boolean expression is evaluated yet again. This process repeats (i.e.
loops) as long as the value of the Boolean expression is True.

For a simple example, consider the following contrast Boolean condition:

>>> while False:
... print ‘a’
...
>>>

Fig. 4.8 Syntax of the while
statement
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In this example, the while statement does not print anything on the console, be-
cause the Boolean expression is the constant False. This is the same as with the if
statement. However, when the Boolean expression is turned into True, the behavior
of the while statement is different from the if statement:

>>> while True:
... print ‘a’
...
a
a
a
a
a
a
a
a
a
a
a
a
a
a
^Ca
a
Traceback (most recent call last):

File "<stdin >", line 2, in <module >
KeyboardInterrupt

In this example, the character ‘a’ is repeatedly printed. The execution does not
stop until an external interrupt happens. In this case, the user stops the execution by
using a keyboard interrupt, which can be done by pressing and holding the Ctrl
key and then pressing the C key (i.e. pressing Ctrl-C). Keyboard interrupts can be
used to stop a Python program that is currently being executed.

The infinitely repeating execution of the loop body (i.e. indented statement block
in the while statement) is called an infinite loop, or a dead loop. It is one of
the most common mistakes that programmers can make by not properly setting
the terminating condition of the loop. In order to avoid dead loops, the value of the
Boolean expression must be changed to False after a finite number of executions of
the loop body. An example is shown below.

>>> i=0
>>> while i<3:
... print i
... i += 1
...
0
1
2

The while statement above prints the sequence of numbers 0, 1, 2 on the console.
The control flow diagram of this statement is shown in Fig. 4.9a. During dynamic
execution, each statement in the loop body is executed three times, as illustrated in
Fig. 4.9b.
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Fig. 4.9 Analysis of the
dynamic behavior of a while
statement. a control flow
diagram. b Dynamic
execution sequence

(a)

(b)

The value of the variable i is set to 0 in the beginning of execution. The while
statement checks the value of i in the beginning of each iteration to decide whether
the loop body is executed. Inside the loop body, the value of i is incremented by 1. As
a result, each time the Boolean expression i < 3 is evaluated, the value of i changes.
When the value of i becomes 3 after the third iteration, the Boolean expression i < 3
becomes False and the loop finishes. It is commen to use the value of a variable (e.g.
i in the example above) to control the execution of a loop, and such a variable is also
called the loop variable.

Another way to control the termination of a loop is via user input. For example,
consider a program that generates random letters to a user. The program works by
repeatedly generating random letters to the user until she asks it to stop. This can be
achieved by using a while loop, with the loop body being a random letter generator,
and the looping condition being whether the user requested to stop the program.

In order to generate a random letter, one can use a random number generater
together with a mapping from numbers to letters. The former is readily available
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in the random module, while the latter can be implemented by using a string that
contains all the candidate letters. An integer can be mapped into a letter in the string
by serving as the index in a getitem operation. Given this random letter generator,
the full program can be written as:

[lettergen.py]
import random
s=‘ABCDEFGHIJKLMNOPQRSTUVWXYZ ’
command = raw_input(‘Generate random letter? [Y/N] ’)
while command == ‘Y’:

i = random.randint(0, len(s) -1)
print s[i]
command = raw_input(’Generate random letter? [Y/N]

’)
print ‘Bye ’

The program above consists of five top-level statements. The first is an import
statement for the randommodule. The second is an assignment statement that defines
the string formapping integers to letters. The string consists of the upper case English
alphabet. The third statement is an assignment statement that requests the user to
enter a command. The fourth statement is a compound while loop, which consists
of a statement block that generates a random number and then asks the user for the
next command. The fifth statement is a print statement that indicates the finishing of
execution to the user.

The loop body consists of three statements, the first being an assignment statement
that obtains a random integer that ranges over all possible indices on the string, the
second being a print statement that shows the value of an expression that maps the
integer to a letter by using the getitem operation, and the third being the assignment
statement that asks the user for the next command.

When executed, lettergen.py repeatedly asks the user to choose from generating a
random letter (‘Y’) and exiting the program (any input other than ‘Y’). Here, the user
input is used in the Boolean condition, so that the value of the expression changes at
each iteration.

Zhangs -MacBook -Pro:code yue_zhang$ python lettergen.py
Generate random letter? [Y/N] Y
K
Generate random letter? [Y/N] Y
J
Generate random letter? [Y/N] Y
Z
Generate random letter? [Y/N] Y
X
Generate random letter? [Y/N] Y
G
Generate random letter? [Y/N] Y
P
Generate random letter? [Y/N] Y
W
Generate random letter? [Y/N] Y
U
Generate random letter? [Y/N] Y
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V
Generate random letter? [Y/N] Y
M
Generate random letter? [Y/N] N
Bye

The while statement can be extended with an else component also, in exactly the
same syntax as the if statement. The interpretation is the same: when the Boolean
expression is evaluated to False, the indented statement block under else is executed,
for once only. For example,

>>> while False:
... print ‘a’
... else:
... print ‘b’
...
b

The statement above would maintain its behavior if the while keyword were
changed into if. The loop body is not executed at all in this case. In case the loop
body is executed a finite number of times, the else statement block is executed when
the iterations finish (i.e. the first time when the Boolean expression becomes False).

>>> i=0
>>> while i<3:
... print i
... i += 1
... else:
... print ‘Done with i =’, i
...
0
1
2
Done with i = 3

When the statement above is executed, the dynamic execution sequence starts
identical to that of Fig. 4.9. When the value of the loop variable i is changed to 3,
the Boolean expression is evaluated to False. As this happens, the statement block
under else is executed, with the current value of i (i.e. 3) being shown.

In case the loop is infinite, the else statement block is never executed.

>>> while True:
... print ‘a’
... else:
... print ‘b’
...
a
a
a
a
a
a
a
a
a
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a
a
a
a
a
^Ca
a

Traceback (most recent call last):
File "<stdin >", line 2, in <module >

KeyboardInterrupt

In the example above, the letter ‘b’ is not printed when the execution of the
program is interrupted by force, since the Boolean expression is never evaluated to
False.

4.3.1 Branching Nested in a Loop

As other statements, an if statement can be put into the loop body of awhile statement.
For a simple example, suppose that a user needs to print all the integers from 1 to
100 that are not multiples of 3. One solution is to set up a loop variable i that counts
from 1 too 100, in the same way as the earlier example that counts from 0 to 2, while
printing out the value of i only when it is not a multiple of 3.

[conditional_print.py]
i=1
while i <100:

if i%3 != 0:
print i

i+=1

In the example above, the print statement is put under the Boolean condition
that i%3 != 0. Hence in a dynamic execution sequence, it will be executed only
when i is not a multiple of 3. The analysis of if statements nested in while loops is
similar to the analysis of nested if statements—the execution of each statement can be
analyzed separately, in an outer-intra hierarchy. Note that the underlying mechanism
of each individual if and while statement, no matter whether nested or not, is the
same and relies on the relevant Boolean expression only. Again, a useful technique
for analyzing a combination of looping and branching statements is to write a control
flow diagram.

For a more complex example, in which the Boolean condition of the loop is
affected by the execution of an if statement in the loop body, take the following num-
ber guessing game. Suppose that the computer generates a random number between
1 and 100, and the user tries to guess it. Every time the user enters a guess, the
computer tells whether the guessed number is greater than, equal to, or smaller than
the answer. In case the guess is correct, the game ends with the user winning the
game. Otherwise the user is allowed to enter another guess. The game repeats until
the user finds the answer. An example implementation of the game is as follows:
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[guess.py]
import random
answer = random.randint(1, 100)
wins = False # looping condition
while not wins:

guess = int(raw_input(‘Your guess is: ’))
if guess == answer:

print ‘You win!’
wins = True

elif guess > answer:
print ‘Too large ’

else:
print ‘Too small ’

guess.py uses the Boolean variable wins to record whether the user has won the
game. The variable is initialized to False. Until wins is changed to True, the program
repeats asking the user for a guess, and giving relevant feedback to the user. wins is
set to True if the answer at the current iteration is correct. An example execution of
guess.py is shown below.

Zhangs -MacBook -Pro:code yue_zhang$ python guess.py
Your guess is: 50
Too large
Your guess is: 25
Too small
Your guess is: 37
Too small
Your guess is: 43
Too large
Your guess is: 40
Too small
Your guess is: 42
Too large
Your guess is: 41
You win!

The program above can bemademore challenging by setting a limit on the number
of guesses allowed.

[guess_limit.py]
import random
limit=7
answer = random.randint(1, 100)
guesses =0
wins = False
while guesses < limit and not wins:

guess = int(raw_input(‘Your guess is: ’))
guesses += 1
if guess == answer:

print ‘You win!’
wins = True

else:
if guess > answer:

print ‘Too large ’
else:

print ‘Too small ’
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else:
if not wins:

print ‘You lose.’

guess_limit.py uses an additional variable, guesses, to count the number of guesses
that the user has already made. An extra condition that guesses is smaller than limit
is added to the Boolean expression for while, which decides whether to allow the
user to guess again. In addition, when the loop finishes, either wins is True or guesses
is equal to limit. In the latter case, the user has lost the game. A corresponding else
statement block is added so that a message is shown to the user the the game finishes
without being won.

Loops can also be put in other loops, resulting a nested loops, more discussions
of which is given in Chap.9.

4.3.2 Break and Continue

break and continue are two statements that are associated with loops; they must
be put in a loop body. When break is executed, Python finishes the loop by directly
jumping out of the looping statement (e.g. while), executing any successing state-
ments. When continue is executed, Python finishes the current loop iteration without
executing the rest of the loop body, jumping back to the Boolean condition again.
For example,

>>> i=1
>>> while i<3:
... print i
... break # jump out directly
... i += 1
... else:
... print ‘done ’
...
1
>>> print i
1

In the example above, the statement print i in the while loop is executed only
once, because the first time the break statement is executed, the loop finishes. The
final value of i is 1, since i+ = 1 is not executed. Because the Boolean expression
i < 3 is not evaluated a second time, it does not have a chance to become False, and
therefore the else statement block is not executed.

An example for continue is shown below.

>>> i=1
>>> while i<3:
... i += 1
... continue # jump to while
... print i
... else:
... print ‘done ’

http://dx.doi.org/10.1007/978-981-287-609-6_9
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...
done
>>> print i
3

In the example above, the statement print i in the while loop is never executed.
This is because every time continue is executed, the rest of the loop body is skipped.
However, the loop continues until the Boolean expression i < 3 is changed to False,
as demonstrated by the ‘done’ message and the final value of i .

The use of break and continue can sometimes make a program more intuitive
to understand. A version of guess_break.py that uses break instead of a complex
Boolean condition is:

[guess_break.py]
import random
answer = random.randint(1, 100)
limit = 7
guesses = 0
while guesses < limit:

guess = int(raw_input(‘Your guess is: ’))
guesses += 1
if guess == answer:

print ‘You win!’
break

else:
if guess > answer:

print ‘Too large ’
else:

print ‘Too small ’
else:

print ‘You lose.’

The main structure of guess_break.py is a loop that repeats for limit iterations,
asking the user for a guess at each iteration. If the guess is correct, it prints the
winning message and terminates the loop. Otherwise it prints out the corresponding
hintmessage and the loop continues. If the loop finisheswhen theBoolean expression
guesses < limit becomes False, the else statement block is executed, printing out the
losing message.

4.4 Debugging

With branching and looping statement, the dynamic execution sequence of a program
can be very different from the static program itself. Programming mistakes can
happen when the Boolean conditions for loops and branches are incorrect, or certain
factors in the dynamic control flow are overloaded. In order to find potential errors
in a program, it is useful to trace the dynamic execution of the program, monitoring
the values of variables in the process, and this task is also debugging. There are two
common debugging techniques: tracing and asserting.
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Tracing refers to themonitoringof variable values in a dynamic executionprocess.
It helps to understand the dynamic execution sequence of a piece of code. For exam-
ple, suppose that guess_break.py intended to allow the user to enter up to 8 guesses.
However, execution of the program only allows 7 guesses. In order to figure out the
dynamic execution of the code, on can trace the values of guesses and limit in each
loop iteration by adding a print statement.

[guess_break.py]
import random
answer = random.randint(1, 100)
limit = 7
guesses = 0
while guesses < limit:

print ‘TRACE:’, guesses , limit
guess = int(raw_input(‘Your guess is: ’))
guesses += 1
if guess == answer:

print ‘You win!’
break

else:
if guess > answer:

print ‘Too large ’
else:

print ‘Too small ’
else:

print ‘You lose.’

An execution of the program can lead to the following output:

TRACE: 0 7
Your guess is: 50
Too large
TRACE: 1 7
Your guess is: 25
Too large
TRACE: 2 7
Your guess is: 13
Too small
TRACE: 3 7
Your guess is: 17
Too small
TRACE: 4 7
Your guess is: 20
Too small
TRACE: 5 7
Your guess is: 23
Too large
TRACE: 6 7
Your guess is: 21
You lose!

The trace information shows that the value of guesses increases from 0 to 6 in
7 dynamic interactions. A further check of the looping condition reveals that the
problem is that the value becomes 7 after the last iteration, dissatisfying guesses <
limit. This can be fixed by setting the Boolean condition to guesses ≤ limit.
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As another example of tracing, conditional_print.py, introduced earlier in this
chapter, can be debugged by printing out the values of i at each iteration, ensuring
the correct range of the loop variable.

[conditional_print.py]
i=1
while i <100:

print ‘TRACE:i=%d’%i
if i%3==0:

print i
i+=1

After debugging, the trace print can be deleted or commented out.
Asserting is a special command to ensure that certain condition is true at a special

point of execution. In Python, asserting is achieve by the assert statement, the syntax
of which is

assert <Boolean expression >

When an assert statement is executed, if the Boolean expression is evaluated to
True, no operations are taken. If the Boolean expression is evaluated to False, an
error will be raised.

>>> assert True
>>> assert False
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
AssertionError

The assert statement can be used to check for design assumptions during debug-
ging. If some condition is assumed to be true during dynamic execution, it can be
put into an assert statement. If it is False in any execution of the assert statement, the
execution halts with an assertion error, through which the programmer cab obtain
certain clue about coding errors. The assert statement can be used in guess_break.py
to ensure that the last else statement block is executed only when guess < answer,
a condition that the program design implies, but is not explicitly written in the else
statement. Asserting this condition can avoid unexpected errors during debugging
executions.

[guess_break.py]
import random
answer = random.randint(1, 100)
limit = 7
guesses = 0
while guesses < limit:

guess = int(raw_input(‘Your guess is: ’))
guesses += 1
if guess == answer:

print ‘You win!’
break

else:
if guess > answer:

print ‘Too large ’
else:
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assert guess < answer
print ‘Too small ’

else:
print ‘You lose.’

After debugging, the assert statement can be deleted or commented out from a
program, because it is not a part of the main functionality.

Using IDLE for debugging. For many programming languages, special software
applications are available for debugging, and such applications are called debugging
tools. The basic idea of a debugging tool is to control the runtime, so that it is possible
to freeze the dynamic execution of a program at any point, and inspect the values of
variables at that point. In other words, debugging tools offer convenience for tracing.
In order to achieve this, the program to debug must be executed from the debugging
tool.

Two typical functionalities of a debugging tool are break points and stepping.
Break points can be placed by a debugging tool in a statement in a program.During an
execution of the program from the debugging tool, whenever a break point is hit, the
execution pauses, and the debugging tool shows the current values of all variables.
Stepping allows the user to execute only the next statement in a program, before the
program is frozen again by the debugging tool.

Figure4.10 shows the IDLE debugging tool for Python, which displays the pro-
gram to be debugged. The debugging tool can be loaded from IDLE by using
Run→Python Shell→Debug→Debugger→Run Module. To set a break point be-
fore a statement, first select the statement, second click the right button, and then
choose ‘Set Breakpoint’, as shown Fig. 4.11. As an example, a breakpoint can be set
before line 6 of guess_break.py, so that the execution is frozen every time the loop
body is executed. When the program is frozen, the values of guesses and limit can
be inspected in Fig. 4.10, in order to ensure that the loop terminates after the given
limit. Stepping can be performed by clicking the step button on the top of Fig. 4.10.

As mentioned earlier in this chapter, the sequential, branching and looping struc-
tures in Fig. 4.1 are the three basic types of control flow.All problems that are solvable
by a computer can be addressed by using a combination of the three basic types of
dynamic structures. Understanding the dynamic behavior is the beginning of becom-
ing a programmer. However, given a problem, how to design a program that gives
the most effective solution is another important question. The next chapter discusses
two typical problems and their basic solutions.

Exercises

1. Write a program that

(a) asks the user for two integers a and b, and prints ‘a’ if a > b, ‘ab’ if a = b,
and ‘b’ if a < b.

(b) prints the string ‘Hello’ 123 times, each in a line.
(c) asks the user for three integers a, b and c, and prints out the largest among

them. If there are more than one largest value (e.g. a=b and a>c), print
‘Tie’.
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Fig. 4.10 Debugging tool for Python

Fig. 4.11 Setting breakpoint
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(d) asks the user to enter a string s and a number i, printing s for i times, each
in a line.

(e) asks the user for the radius of a circle and the diameter of a square, and
prints whether the area of the circle is larger than that of the square.

(f) asks the user for her weight w (kilograms) and height h (meters), and prints
whether she is fit (18.5 ≤ w/h2 ≤ 25), underweight or overweight.

2. Write a program that prints the following sequence of numbers:

(a) 3, 6, 9, 12, . . ., 150.
(b) 1.0, 0.7, 0.4, 0.1, −0.2, . . ., −5.0.
(c) 3, 9, 27, . . ., 310.
(d) 1, −2, 4, −8, . . ., 256.
(e) 1, −1/3, 1/5, . . ., (−1)i+1/(2i − 1), where i is user input.
(f) 1/0!, 1/1!, 1/2!, . . ., 1/ i !, where i is user input.

3. What are the values of s and i when the following program is executed?

s=0
i=0
n=10
while i<n:

if i>n/3:
s+=i

i+=1
#print i,s

4. Which of the following programs are incorrect? Why?

(a) decide whether a number is 10.

i = int(raw_input("i="))
if i = 10:

print ‘yes ’
else:

print ‘no’

(b) decide whether a number is negative.

i = int(raw_input("i="))
if i > 0:

print ‘positive ’
else:

print ‘negative ’

(c) print from 1 to 10.

i=1
while i != 10:

print i

(d) print 1, 3, 5, 7, 9

i=1
while i != 10:

print i
i += 2
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(e) print 1, 3, 5, 7, 9

i=1
while i<10:

print i
if i % 2 == 0:

continue
i += 2

(f) print 1, 2, 3

i=1
while i<10:

print i
if i==4:

continue
i += 1

5. Write a program that translates a data written in the DD-MM-YY format into the
Month Day, Year format. For example, an execution of the program could be:

Specify a date: 050980
The date is: September 5th , 1980

In the example above, the program prompts the message “Specify a date: ” and
asks the user to input a date. The user enters “050980”, and the program output
“September 5th, 1980”. Hint: consider how two slice a split to get MM, DD and
YY, and how to map a number to a month name (January, . . ., December). Use if
to decide whether “st’, “’nd”, “rd” or “th” should be added to the back of a date
(e.g. 21st, 22nd, 23rd), and whether “19” and “20” should be added to the front
of a year (e.g. 1980, 2010).

6. What are two common techniques in debugging? How can they be applied to
Python code? Debug the programs in questions 3 and 4 with and without using
the IDLE debugger.



Chapter 5
Problem Solving Using Branches and Loops

This chapter discusses the solutions to several common types of problems, showing
how typical methods can be developed using branches and loops. It starts with a set
of basic and abstract problems, showing how they are correlated to the basic problem
of summation. Then it discusses a set of numerical analysis problems, which study
approximate answers to mathematical problems that do not have an exact solution.
The basic problem solving techniques are applied to numerical integration, root
finding and differential equations. Finally, this chapter introduces the tuple type in
Python, a container type that represents a sequence of objects, showing how the basic
problems such as summation can be performed on tuples by traversal.

5.1 Basic Problems

As mentioned in the previous chapter, all solvable problems can be approached
by using a combination of branches and loops. Understanding the dynamic control
flow is the first step towards problem solving using programming, but the ultimate
purpose is to combine and use basic control flows for solving problems. This chapter
introduces several typical problems and discusses their solutions.

5.1.1 Summation

One of the most basic problems that can be solved by using loops is the problem of
summation, which can be formulated as s = ∑n

i=m f (i), where m and n are two
integers, and m ≤ n. The simplest form of summation is s = ∑n

i=m i , which can be
solved by the following program.

[sum.py]
m=0 # the start
n=100 # the end
s=0 # the sum
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i=m # the iterator
while i<=n:

s += i
i += 1

print ’The sum of integers from %d to %d is %d’ % (m, n, s)

sum.py calculates the sum by accumulating its value incrementally. It uses two
variables, i and s, to represent the current value to be added to the sum and the sum
up to the current iteration, respectively. While s is initialized to 0, i is initialized
to the beginning value m. The while statement uses i as the loop variable, which
increases from m to n by a step size of 1. At each iteration, the value of i is added to
the sum s, and then increased by 1. The key idea behind this program is the use of
a sum value, which is incrementally updated in an iterative process. This basic way
of thinking applies to many other problems, as will be shown throughout this book.
Executing sum.py yields the following output.

Zhangs -MacBook -Pro:code yue_zhang$ python sum.py
The sum of integers from 0 to 100 is 5050

For a more complex example, consider the summation of all multiples of 3 from
1 to 100. There are many different ways to solve this problem. One solution is to
iterate overall all multiples of 3, adding them to a sum value.

[sum3.py]
m=0 # the start
n=100 # the end
s=0 # the sum
i=0 # the iterator
while i <=100:

s += i
i += 3

print ‘The sum of all multiples of 3 from 0 to 100 is ’, s

In contrast to sum.py, sum3.py takes a different strategy to perform the iteration:
the initial value of i is set to 3 rather than 1, and the step size is also set to 3. In
this way the values of i cover all multiples of 3 from 1 to 100. The other aspects
of sum3.py are the same as sum.py. An execution of sum3.py yields the following
output.

Zhangs -MacBook -Pro:code yue_zhang$ python sum3.py
The sum of all multiples of 3 from 1 to 100 is 1683

An alternative solution to the problem above is to compute
∑100/3

i=1 3i .

[sum3_f.py]
s=0
i=1
while i <=100/3:

s+=3*i
i+=1

print ‘The sum of all multiples of 3 from 1 to 100 is ’, s

sum3_f.py iterates over the integers from 1 to 100/3, which fall between 1 and
100 when multiplied by 3. At each iteration, it accumulates the value of f (i) = 3i
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into the sum. The execution of sum3_f.py gives the same outputs as the execution of
sum3.py

Production. The method of summation can be generalized to solve the problem
of production by changing the addition operation to the multiplication operation.
For example, the factorial function n! can be calculated by the following program.

[factorial.py]
n=10
s=1
i=1
while i<=n:

s *= i
i += 1

print ‘%d! = %d’ % (n, s)

factorial.py follows the same strategy as sum.py, with the product s being initial-
ized to 1 instead of 0, and the incremental operator being changed from += to *=.
Execution of the program yields the following result.

Zhangs -MacBook -Pro:code yue_zhang$ python factorial.py
10! = 3628800

Maximum. The problem of summation can also be generalized into the tasks of
finding the maximum and minimum values of a function f (x), which can be for-
mulated as maxn

i=m f (x) and minn
i=m f (x), respectively. Take finding the maximum

value for example. Again one solution can be based on sum.py, with the initial value
of s being set to the negative infinity instead of 1, and the incremental operator being
max rather than +=.

[max.py]
import math
m=0
n=100
s=float(‘-inf ’)
i=m
while i<=n:

f = math.sin(i*i)
s = max(f, s)
i += 1

print ‘The maximum value of the function is’, s

max.py finds themaximum value of sin(x2), where x is an integer that ranges from
0 to 100. It has a similar structure as sum.py except for the aforementioned changes
to the initial value of s and the incremental operator. Here s is used to represent
the current maximum value of f at each step. When the iterations finish, s will be
the global maximum. The math module is used to calculate the value of sin(x2), and
the expression float(‘-inf’) is used to obtain the negative infinity. The max function
is a built-in function of Python; it can take two or more numerical arguments, and
gives themaximumof its input arguments as the return value. An execution ofmax.py
yields the following result.

Zhangs -MacBook -Pro:code yue_zhang$ python max.py
The maximum value of the function is 0.999765729024
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A common alternative implementation of max.py uses an if condition instead of
the max function in the incremental step.

[max_if.py]
import math
m=0
n=100
s=float(‘-inf ’)
i=m
while i<=n:

f = math.sin(i*i)
if f>s:

s=f
i += 1

print ‘The maximum value of the function is ’, s

The if statement achieves the same purpose as the max function: it updates the
current maximum value if the current value of f is higher than the maximum value
in the previous iterations. max_if.py yields the same result as max.py. One advantage
of this program is that it is easy to obtain the value of i that gives the maximum value
of f , in addition to the maximum value of f itself.

[argmax_if.py]
import math
m=0
n=100
s=float(‘-inf ’)
i=m
argmax=None
while i<=n:

f = math.sin(i*i)
if f>s:

s=f
argmax=i

i += 1
print ‘The maximum value of the function is’, s, ‘achieved

when the input is ’, argmax

argmax_if.py uses an additional variable, argmax, to store the value of i that
corresponds to themaximum value of f . The initial value of argmax is not important.
Whenever the value of s is updated, the value of argmax is also updated. An execution
of the program gives the following output.

Zhangs -MacBook -Pro:code yue_zhang$ python argmax_if.py
The maximum value of the function is 0.999765729024

achieved when the input is 75

Decision. Interestingly, the method of summation can also be generalized to solve
the decision problem over a sequence of numbers. One example of such decision
problems is to decide whether there is an integer root of x4 − 93x − 19620 = 0
between 1 and 20. The problem can be formulated as orn

i=m( f (i) == 0). A solution
can be based on sum.py, with the initial value of s being set to False instead of 1,
and the incremental operation being set to or instead of +=.
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[root.py]
m=1
n=20
s=False
i=m
while i<=n:

s = s or (i*i*i*i-93*i -19620==0)
i += 1

print ‘The fact that there is a root is ’, s

An execution of the program above yields the following output.

Zhangs -MacBook -Pro:code yue_zhang$ python root.py
The fact that there is a root is True

Useful in some situations, the idea behind root.py, which incrementally updates
a Boolean answer, might not be the most intuitive solution to the decision problem.
To change the perspective, deciding whether there is a root of f (x) between m and
n is essentially the same as deciding whether the user finds the correct guess within
l iterations in the number guessing game in the previous chapter. A solution can be
derived from guess_break.py.

[root_break.py]
m=1
n=20
i=m
while i<=n:

if i*i*i*i-93*i -19620==0:
print ‘There is a root of the function ’
break

i += 1
else:

print ‘There is not a root of the function ’

root_break.py iterates from m to n, checking whether i4 − 93i − 19620 = 0 at
each iteration. If the condition is met at any iteration, the loop stops with the positive
answer being displayed. If the loop finishes without the condition being satisfied, the
negative answer is displayed. The solution above is essentially to iterate through a
set of candidates, searching for a candidate that satisfies a condition. This is a basic
example of the search problem.

Counting. Another problem that is related to the problem of summation is count-
ing. The simplest form of counting can be regarded as

∑n
i=m 1, a special case of

summation: accumulating 1 on every iteration. In many situations, counting is con-
ditional, and can be formulated as

∑n
i=m count(i), where count(i) can be 0 or 1, based

on a specific condition. This form of the count function can be implemented using
an if statement. The following program counts the number of integers x between 1
and 100 for which the function sin(x3) is positive.

[count_fun.py]
import math
m=1
n=100
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s=0
i=m
while i<=n:

if math.sin(i*i*i) >0:
s += 1

i += 1
print ‘The number of integers between %d and %d for

which the function is positive is %d’ % (m,n,s)

An execution of the program above yields the following output.

The number of integers between 1 and 100 for which the
function is positive is 60

5.1.2 Iteratively Calculating Number Sequences

Up to this point in the chapter, a set of example problems on summation and its
generalizations has been discussed. Another typical problem that can be solved by
using loops is the problem of calculating number sequences, which is mathemati-
cally different from the summation problem, but can also be solved using an iterative
approach. To some readers, it might be more intuitive to calculate number sequences
by iteration than to perform summation by iteration.

The typical problem is to calculate the value of a number is a sequence, in which
each element depends on a finite number of its predecessors. A simple example is as
follows.

x0 = x
xi+1 = f (xi )

In the equations above, x is an initial value, and xi+1 = f (xi ) is a difference
equation that represents the relation between two consecutive elements in the se-
quence. The different equation is simple because xi+1 is dependent only on xi , but
not xi−1 or other values. For a practical case, consider the problem of bank accounts
again. Suppose that an initial sum of money x0 = x is deposited into a savings
account, and no further transactions are made to that account. If the annual interest
rate is α, the sequence of numbers that represent the balances after n consecutive
years can be written as:

xi+1 = xi · (1 + α) (1 ≤ i ≤ n)

As shown in Chap.3, for the savings problem, each element in the sequence above
has a closed-form representation, xn = x0 · (1 + α)n , and therefore the problem of
finding xn given x0 can be solved by a simple Python expression (c.f. savings.py in
Chap.3). However, for the convenience of illustration, the following program shows
how xn can be calculated using an iterative approach instead.

http://dx.doi.org/10.1007/978-981-287-609-6_3
http://dx.doi.org/10.1007/978-981-287-609-6_3
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[savings_iter.py]
print ‘[Iterative Savings Calculator]’
rate = float(raw_input("Please enter the interest rate:"))
years = int(raw_input("Please enter the number of years:"))
init = float(raw_input("Please enter the inital sum of

money: $"))
i=0
xi=init
while i<years:

xi = xi * (1+ rate)
i += 1

final = xi
print "After %d years , the savings will be $%.2f" % (years ,

final)

An execution of savings_iter.py yields the same result as savings.py in Chap.3.

[Iterative savings Calculator]
Please enter the interest rate: 0.036
Please enter the number of years: 5
Please enter the inital sum of money: $10000
After 5 years , the savings will be $11934 .35

savings_iter.pyuses the variable i as the loop variable,which represents the current
iteration, and the variable xi to represent the value of xi in the sequence. xi is
initialized to the first element x0, and updated iteratively in each iteration according
to the difference equation. In contrast to savings.py, which calculates a single value
xn based on the initial value x0, savings_iter.py calculates the whole sequence of
numbers x0, x1, . . . , xn by taking n iterations. Despite of this, only one variable xi
is used in the whole process, dynamically representing the i th element xi at each
iteration.

The same technique can be used for induction onmore complex series of numbers.
For example, a famous number sequence, the Fibonacci numbers, can be formulated
as follows:

f0 = 1
f1 = 1
fi = fi−1 + fi−2, i > 1

The Fibonacci numbers are defined over two initial values f0 and f1, and a differ-
ence equation. The iterative approach can be used to induce the value of fn from the
values of f0 and f1. This time, however, one variable xi is insufficient for represent-
ing the whole sequence of numbers. This is because the different equation calculates
the value of fi based on its two predecessors fi−1 and fi−2, rather than its immediate
predecessor fi−1 alone. As a result, at least two variables are needed to record the
history at any iteration.

It turns out to be sufficient to use two variables, xi and xii , to dynamically
represent the pair of numbers fi and fi−1 at each iteration, respectively. At each
step, the new value of xi is the sum of the old values of xi and xii , while the new
value of xii is the old value of xi . Formally,

http://dx.doi.org/10.1007/978-981-287-609-6_3
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f (new)
i ← f (old)

i + f (old)
i−1

f (new)
i−1 ← f (old)

i

Note, however, that the two changes must be applied simultaneously, because if
the value of xi is updated first, then the old value f (old)

i is no longer available for
the updating of xii . Vice versa, if the value of xii is updated first, then its old value
is no longer available for the updating of xi .

One typical solution to the problem above is to use a temporary variable, t , to hold
a copy of the old value of xi , so that xi can be updated first, before xii is updated
using the value stored in t :

t ← f (old)
i

f (new)
i ← f (old)

i + f (old)
i−1

f (new)
i−1 ← t

The three changes can now be made sequential, and translated into three Python
statements.

t=xi
xi=xi+xii
xii=t

Given the observation above, the Fibonacci numbers can be calculated iteratively
using the following program.

[fib_iter.py]
n=10
i=1
xi=1 # f1
xii=1 # f0
while i<n:

t=xi
xi=xi+xii
xii=t
i += 1

print "The %dth Fibonacci number is %d" % (n, xi)

fib_iter.py uses the variable i as the loop variable, and iteratively updates the values
of xi and xii . The variables xi and xii are initialized to f1 and f0, respectively, and
updated according to the difference equation. After n − 1 iterations, the value of xi
represents the value of fn . An execution of fib_iter.py yields the following output.

Zhangs -MacBook -Pro:code yue_zhang$ python fib_iter.py
The 10th Fibonacci number is 89
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5.2 Numerical Analysis Problems

Numerical analysis is an important task that can be solved by computer programs.
Although manymathematical problems can be solved by using Python operators and
functions, there is a wide range of arithmetic problems for which there is no closed-
form solution. No direct operators or library function calls are available for such
problems. Examples of this type of problems include root finding, differentiation,
integration and differential equations, for which the solution may not correspond to
any pre-defined mathematical function. There are also problems for which the exact
answer is unknown, but can only be estimated to a certain precision. The value of π
is such an example.

The problems are typically solved by computers using numerical methods, which
can approximate the real answer to a desired degree of precision. In fact, many
functions in the math module, including sin, cos and log, are implemented using nu-
merical methods. This section discusses several typical numerical problems, building
solutions based on the approaches discussed in the previous section.

5.2.1 Numerical Differentiation

To begin with, consider the task of differentiation, which is to find the rate of
change of a function at a particular point. The problem is illustrated in Fig. 5.1. The
definition of f ′(x0) is the value of ( f (x0+d)− f (x0))/d when d tends to 0. For some
functions, such as f (x) = x2, there is a closed-form derivative (i.e. f ′(x) = 2x),
and hence a direct answer to the differentiation problem can be obtained by using
simple operators or pre-defined functions.

For a function f (x) that does not have a known derivative function f ′(x), f ′(x0)
can be approximated to a certain degree of precision by using ( f (x0+d)− f (x0))/d,

Fig. 5.1 Numerical
differentiation
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with a value d that is sufficiently small. For example, to calculate the derivative of
x2 at 3.5, the following code can be used.

>>> d0 =0.001
>>> x0=3.5
>>> ((x0+d0)*(x0+d0)-x0*x0)/d0
7.000999999998925

A smaller value of d can be used to solve the same problem.

>>> d1 =0.000001
>>> x0=3.5
>>> ((x0+d1)*(x0+d1)-x0*x0)/d1
7.000001000179168

In the example above, two values of d are used, including 10−3 and 10−6, which
give different approximations to the true derivative. Since the function f (x) = x2

has a closed-form derivative f ′(x) = 2x , the true derivative can be calculated as
2x0 = 7.0. The numerical answers using d = 10−3 and 10−6 approximates this true
answer by reasonably small errors, while a smaller d gives a result that is closer to
the real answer.

5.2.2 Numerical Integration

As illustrated in Fig. 5.2a, the integral
∫ b

a f (x)dx can be calculated numerically by
dividing the span between a and b into n equal intervals, and summing up the areas
under f (x) for each interval. Denoting the width of each interval with d, it holds
that d = b−a

n . The integral can be calculated as:

b∫

a

f (x)dx ≈
n−1∑

i=0

areai ,

where area(i) represents the area of the i th interval, 0 ≤ i < n. As indicated by the
equation, the problem of integration can be solved numerically using summation.

(a) (b) (c)

Fig. 5.2 Numerical integration. a Numerical integration. b Mid-point rule. c Trapezoidal rule



5.2 Numerical Analysis Problems 107

There are several ways to calculate the size of each area. One way, as illustrated
by Fig. 5.2b, is to treat the area as a rectangle, and use the value of the function at the
mid-point (i.e. (s + e)/2) as the height. The size of the area under this assumption
is M = d · f ((s + e)/2). Because the area is estimated by using the value of the
function at the mid-point of the interval, the method is called the mid-point rule.

Denoting the beginning of the i th interval between a and b as ai = a + id, and
the end of the i th interval between a and b as bi = a + (i + 1)d, the mid-point of
the i th interval between a and b can be written as (ai + bi )/2 = a + (i + 0.5)d.
Therefore, the i th area areai can be calculated by

areai = d · f (
ai + bi

2
) = d · f (a + (i + 1

2
)d)

Therefore, the integral
∫ b

a f (x)dx can be calculated by:

b∫

a

f (x)dx ≈
n−1∑

i=0

d · f (a + (i + 1

2
)d) = d ·

n−1∑

i=0

f (a + (i + 1

2
)d)

An alternative way of calculating the size of each sub area, as illustrated in
Fig. 5.2c, is to treat the area as a trapezoid, with the height on the left being f (s) and
the height on the right being f (e). The size of the trapezoid is T = (e−s)( f (s)+ f (e))

2 .
Because the area is calculated as a trapezoid, the method is called the trapezoidal
rule.

Again, denoting the beginning of the i th interval between a and b as ai = a + id,
and the end of the i th interval between a and b as bi = a + (i + 1)d, the area that
correspond to the i th interval can be calculated as:

areai = d · ( f (a + id) + f (a + (i + 1)d))

2
= d · f (a + id) + f (a + (i + 1)d)

2

And the integral
∫ b

a f (x)dx can be calculated as:

b∫

a
≈ ∑n−1

i=0 d · f (a+id)+ f (a+(i+1)d)
2

= d · ∑n−1
i=0

( f (a+id)
2 + f (a+(i+1)d)

2

)

= d · ( f (a)
2 + ∑n−1

i=1 f (a + id) + f (b)
2

)

= d · ( f (a)+ f (b)
2 + ∑n−1

i=1 f (a + id)
)

It can be shown that as the value of d decreases, the errors of the numerical
approximations using both the mid-point rule and the trapezoidal rule decrease. On
the other hand, their errors complements each other. To take advantage of this fact,
if 2M+T

3 is used to calculate the size of each subarea instead of M or T , the error can
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be significantly smaller. This method is called the Simpson’s rule. Using this rule,
the integral

∫ b
a f (x)dx can be calculated as:

b∫

a
f (x)dx ≈ ∑n−1

i=0
2d f ((a+(i+ 1

2 )d))+d f (a+id)+ f (a+(i+1)d)
2

3

= d
6

(
f (a) + 2

∑n−1
i=1 f (a + id) + 4

∑n−1
i=0 f (a + (i + 1

2 )d) + f (b)
)

A program that calculates the approximation of
∫ b

a f (x)dx using Simpson’s rule

can be based on the technique of summation, calculating the two terms 2
∑n−1

i=1 f (a+
id) and 4

∑n−1
i=0 f (a + (i + 1

2d) separately.

[simpson.py]
a=0
b=10
n=10000
d=float(b-a)/n
#f(a)
fa=a*a
#f(b)
fb=b*b
# sum f(a+id)
s1=0
i=1
while i<=n-1:

s1 += (a+i*d) * (a+i*d)
i += 1

# sum f(a+(i+0.5)d)
s2=0
i=0
while i<=n-1:

s2 += (a+(i+0.5)*d) * (a+(i+0.5)*d)
i += 1

# area
s = (d/6) * (fa+2*s1+4*s2+fb)
print ‘The integral is equal to ’, s

simpson.py calculates the integral
∫ 10
0 f (x)dx for f (x) = x2 according to Simp-

son’s rule. The number of sub areas is set to 104. The program breaks the calculation
of the integral into four terms, f (a), 2

∑n−1
i=1 f (a + id), 4

∑n−1
i=0 f (a + (i + 1

2 )d)
and f (b), calculating each separately. When calculating the two summations, the
sum values are first initialized to 0s, and then updated iteratively, using the variable
i as the loop variable.

The true integral of f (x) = x2 has a closed-form representation, 1
3 x3. Hence the

value
∫ 10
0 f (x)dx is 1

310
3 − 1

30
3 = 1

310
3. An execution of simpson.py approximates

this value to a high precision.

Zhangs -MacBook -Pro:code yue_zhang$ python simpson.py
The integral is equal to 333.333333333
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(a) (b)

Fig. 5.3 Monte-Carlo integration. a The integration. b Monte-Carlo integration

5.2.3 Monte-Carlo Methods

A very different method to perform numerical integration is Monte-Carlo integra-
tion. Monte-Carlo methods are a branch of numerical methods based on random
experiments. They have been widely used for the estimation of numerical values,
and in particular numerical integration. To give a simple example of estimation by
doing experiments, suppose that one wants to estimate whether a coin is fair. She
does the estimation by tossing the coin 100 times, and observing the outcomes. If
each side of the coin faces up about 50 times, she would deem that the coin is fair.

By doing this experiment, the underlying mathematical quantity that is estimated
is the probability of the coin facing up when being tossed. It can be proved that the
empirical frequency in the experiments approximates the underlying probability, and
the more samples are drawn from the experiments, the less influence random noise
can have, and hence the more accurate the estimation is.

Computers can be used to collect a large number of samples automatically, and
henceMonte-Carlo methods are frequently used by programs for numerical analysis.
For numerical integration, the mathematical quantity to estimate is the area under
a function over of span of input. As illustrated by Fig. 5.3, the task of estimating
∫ b

a f (x)dx is the task of estimation the area under f (x) over the interval between a
and b (i.e. the shaded area in Fig. 5.3a). The area can be estimated by drawing a large
number of sample points in a box that contains this area, as shown by Fig. 5.3b. If
a sufficiently large number of sample points is drawn, the ratio between the number
of sample points that fall inside the shaded area and the total number of sample
points approximates the ratio between the area under the function and the area of the
containing box.

Denoting the height of the box as h, the total number of samples as N , and the
number of samples that fall inside the shaded area as M , the observation above can
be formulated as:

M

N
≈

∫ b
a f (x)dx

(b − a) · h
,
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from which an estimation of
∫ b

a f (x)dx can be obtained with:

b∫

a

f (x)dx ≈ h(b − a)
M

N

This equation forms the basis of Monte-Carlo integration. A program can be
written to simulate the drawing of N sample points, counting the number of times
M that a sample point falls inside the area under f (x). The basic task behind this
program is counting

∑N−1
i=0 sample-in-area(i), and the technique of counting has

been discussed in the previous section. However, two detailed questions need to be
answered before a full program can be written. First, how can a sample point be
drawn? Second, how can one decide whether a sample point is inside the shaded
area?

To answer the first question above, one sample point is one random point (x, y),
where both x and y are random numbers, with a ≤ x ≤ b and 0 ≤ y ≤ h. x and y can
be drawn separately using the random module. In particular, the random.random()
function gives a random floating point number between 0 and 1. To scale the number
to a range between a and b, the linear transformation function x ′ = (b − a)x + a
can be used. The drawing of the random number y can be performed by using the
same technique.

To answer the second question above, a point (x, y) is in the shaded area, or under
the function f , if and only if f (x) > y. Based on these observations, a program can
be written to calculate

∫ 10
0 x2dx by using the Monte-Carlo method as follows.

[mcintegrate.py]
import random
N=10000
a=0
b=10
h=150
M=0
i=0
while i<N:

# draw one sample
x=random.random() * (b-a) + a
y = random.random() * (h-0) + 0
# count
if y < x*x:

M += 1
i += 1

print ‘The integral is’, float(h)*(b-a)*M/N

mcintegrate.py is based on a loop that repeats for N iterations. Before the iterations
begin, the total count M is initialized to 0. In each iteration, it draws a random sample
point according to the method described above. If the sample point is under the
function f (x) = x2, 1 is added to the count M . Five executions of the program can
yield the following results.
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Zhangs -MacBook -Pro:code yue_zhang$ python mcintegrate.py
The integral is 321.75
Zhangs -MacBook -Pro:code yue_zhang$ python mcintegrate.py
The integral is 333.3
Zhangs -MacBook -Pro:code yue_zhang$ python mcintegrate.py
The integral is 338.4
Zhangs -MacBook -Pro:code yue_zhang$ python mcintegrate.py
The integral is 336.9
Zhangs -MacBook -Pro:code yue_zhang$ python mcintegrate.py
The integral is 322.95

Because the Monte-Carlo method is based on random experiments, the outcome
of each execution can be different. As shown earlier in this section, the true value of
the integral

∫ 10
0 x2dx is 1000/3, and the estimations approximate this value. When

the number of samples increases from 104 to 106, the estimation becomes more
accurate, and five runs of mcintegrate.py can yield the following results.

Zhangs -MacBook -Pro:code yue_zhang$ python mcintegrate.py
The integral is 334.023
Zhangs -MacBook -Pro:code yue_zhang$ python mcintegrate.py
The integral is 332.8845
Zhangs -MacBook -Pro:code yue_zhang$ python mcintegrate.py
The integral is 333.786
Zhangs -MacBook -Pro:code yue_zhang$ python mcintegrate.py
The integral is 333.7845
Zhangs -MacBook -Pro:code yue_zhang$ python mcintegrate.py
The integral is 332.922

Another example of using Monte-Carlo methods is the estimation of π, a mathe-
matical problem that has been investigated over hundreds of years. Again, a Monte-
Carlo solution estimates the value indirectly by drawing a large number of random
points and calculating the ratio between two shapes.

As shown by Fig. 5.4, the area of the unit square is 1, and the area of the shaded
quarter-circle inside the unit square is 1

4π1
2 = π

4 . Suppose that N random points
are drawn uniformly in the square, of which M fall inside the shaded area. The ratio

Fig. 5.4 Monte-Carlo
estimation of π
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between M and N is also the ratio between the area of the shaded quarter-circle and
the area of the square.

M

N
≈ π

4
/1

As a result, the value of π can be estimated by:

π ≈ 4
M

N

A Python program that estimates the value of π based on the observation above
can be written as:

[mcpi.py]
import random
import math
N=10000
M=0
i=0
while i<N:

x = random.random()
y = random.random()
if x*x + y*y < 1:

M += 1
i += 1

pi = 4 * float(M) / N
print ‘The value of pi is approximately %f, which is %

f different from the precise value ’ % (pi , math.pi
- pi)

mcpi.py is based on a loop that repeats for N iterations. It uses the variable i as
the loop variable, and the variable M to record the number of sample points that fall
inside the shaded area. At each iteration, a random point is drawn by drawing the
x and y coordinates separately. Each coordinate is drawn between 0 and 1, and the
function random.random() can be used directly for this purpose. To decide whether
a random point is inside a unit circle, the Boolean condition x2 + y2 < 1 is used.
mcpi.py reports the estimated value of π, and also the numerical error using math.pi.
Five executions of mcpi.py can yield the following results:

Zhangs -MacBook -Pro:code yue_zhang$ python mcpi.py
The value of pi is approximately 3.147600 , which is

-0.006007 different from the precise value
Zhangs -MacBook -Pro:code yue_zhang$ python mcpi.py
The value of pi is approximately 3.162000 , which is

-0.020407 different from the precise value
Zhangs -MacBook -Pro:code yue_zhang$ python mcpi.py
The value of pi is approximately 3.148400 , which is

-0.006807 different from the precise value
Zhangs -MacBook -Pro:code yue_zhang$ python mcpi.py
The value of pi is approximately 3.147200 , which is

-0.005607 different from the precise value
Zhangs -MacBook -Pro:code yue_zhang$ python mcpi.py
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The value of pi is approximately 3.137600 , which is
0.003993 different from the precise value

Increasing the number of sample points from 104 to 106 gives better approxi-
mations, and five consecutive runs of mcpi.py with N = 1000000 can yield the
following results:

The value of pi is approximately 3.141664 , which is
-0.000071 different from the precise value

Zhangs -MacBook -Pro:code yue_zhang$ python mcpi.py
The value of pi is approximately 3.141672 , which is

-0.000079 different from the precise value
Zhangs -MacBook -Pro:code yue_zhang$ python mcpi.py
The value of pi is approximately 3.142908 , which is

-0.001315 different from the precise value
Zhangs -MacBook -Pro:code yue_zhang$ python mcpi.py
The value of pi is approximately 3.140348 , which is

0.001245 different from the precise value
Zhangs -MacBook -Pro:code yue_zhang$ python mcpi.py
The value of pi is approximately 3.143136 , which is

-0.001543 different from the precise value

5.2.4 Differential Equations and Iterative Root Finding

Differential equations are a common tool in scientific modeling. They address a
wide range of problems, for which the values of a function at specific points, together
with the rate of change of the function, are known, but the function itself is unknown.
The general form of differential equations can be written as:

f ′(x) = g(x)
f (0) = y0

It can be derived from the definition above that f (t) = f (0) + ∫ t
0 g(x)dx . For

some functions g(x), such as g(x) = x2,
∫

g(x)dx is known, and hence f (x) has an
exact solution. However, in practice

∫
g(x)dx often has no closed form. As a result,

numerical integration using the approaches introduced earlier in this section is one
common solution.

For small values of t , an alternative solution to find f (t) is to use an iterative
method to approximate f (t) directly. As shown in Fig. 5.5, the basic idea is to divide
the range [0, t] into n equal intervals, and iteratively approximate the value of f (x)
at the end of each interval. Denote the sequence of corresponding x values between
0 and t as x1, x2, . . . , xn , with x0 = 0 and xn = t , the task is to estimate the value
of f (xn) by iteratively estimating the sequence of values f (x1), f (x2), . . . , f (xn).
The differential equation f ′(x) = g(x) gives a difference equation for estimating
f (xi )(i ∈ [1, n]):
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Fig. 5.5 Euler method for
differential equations

f (xi ) ≈ f (xi−1) + dg(xi−1),

where d = t/n. This approximation is known as Euler’s method. Given the different
equation, the iterative method for calculating number sequences introduced earlier
in this chapter can be applied to solve the estimation problem of f (xi )(i ∈ [1, n]).
Suppose that g(x) = x2 and f (0) = 1, the following program calculates the value
of f (0.5):

[euler.py]
f0=1
t=0.5
n=10000
d=t/n
i=0
xi=0
fi=f0
while i<n:

fi = fi+d*xi*xi
xi+=d
i+=1

print ‘The value of f(%.2f) is %.5f’ % (t, fi)

euler.py runs for 10000 iterations, using the variable xi to represent the value xi

and the variable f i to represent the value f (xi ) at each iteration. The two variables
are updated iteratively, with xi ← xi−1 + d and f (xi ) ← f (xi−1) + dg(xi−1). An
execution of euler.py gives the following result:

Zhangs -MacBook -Pro:code yue_zhang$ python euler.py
The value of f(0.50) is 1.04166

Because
∫

x2dx has a known form 1
3 x3, the value of f (0.5) is 1 + 1

3 × 0.53 =
1.04166666666666667.The estimation using euler.pygives a highly accurate answer.

Another useful application of the same iterative approach is Newton’s method for
finding the root of a function. Suppose that the function is f (x) and its derivative
is known as f ′(x). Given an initial guess of a root x0, the method iteratively finds



5.2 Numerical Analysis Problems 115

better approximations to the real root value:

xi ← xi−1 − f (xi−1)

f ′(xi−1)

If the initial guess x0 is sufficiently close to a root of f (x), Newton’s method is
guaranteed to converge to the real root.

newton.py calculates a root of f (x) = x2−5x+6given the initial guess x0 = 1.23.

x0=1.23
i=0
xi=x0
while True:

fi = xi*xi -5*xi+6 #given by $f(x)$
dfi=2*xi -5 #calculated manually from $f(x)$
print ‘Iteration %d, x=%.5f, f(x)=%.12f’ % (i, xi, fi)
xi = xi - fi/dfi #the difference equation
i += 1
if abs(fi -0) <1E-12:

break

newton.py uses the variable xi to represent the values xi (i ≥ 0) dynamically, the
variable fi to represent the values of f (xi ), and the variable dfi to represent the values
of f ′(xi ). Starting from x0 = 1.23, newton.py iteratively updates the values of xi, fi
and dfi, until fi is sufficiently close to 0 (fi ≤ 10−12). Due to rounding off errors, it
is unlikely to obtain an fi value of 0 exactly. Hence the criteria y ≤ 10z , where z is
a very small number, is commonly used in numerical analysis to decide whether the
number y tends to 0.

newton.py prints the values of xi and fi at each iteration.Note that a break statement
under the loop-terminating condition is used to stop the loop, rather than using a
Boolean condition directly in the while line. This is a convenient way of writing a
loop in Python when the loop-terminating condition should be checked at the end of
every loop instead of at the beginning. An execution of newton.py gives the following
result.

Zhangs -MacBook -Pro:code yue_zhang$ python newton.py
Iteration 0, x=1.23000 , f(x)=1.362900000000
Iteration 1, x=1.76657 , f(x)=0.287912519375
Iteration 2, x=1.96285 , f(x)=0.038525603991
Iteration 3, x=1.99872 , f(x)=0.001286040253
Iteration 4, x=2.00000 , f(x)=0.000001645435
Iteration 5, x=2.00000 , f(x)=0.000000000003
Iteration 6, x=2.00000 , f(x)=0.000000000000
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5.3 Tuples and the for loop

5.3.1 Tuples

Six types of objects have been introduced so far in this book, including the number
types int, float, long, and complex, the string type for text IO and the Boolean type
for control flow. Tuples are another type of objects in Python, which represents an
ordered container of objects. In particular, a tuple object represents a sequence of
objects, which can be heterogeneous. Besides tuples, Python provides a number of
other container types, which will be introduced later in this book.

A tuple literal is written as a comma-separated list of literals or identifiers, en-
closed in a pair of round brackets:

>>> t=(1,2,3)
>>> t
(1, 2, 3)
>>> type(t)
<type ‘tuple’>
>>> x=‘a’
>>> y=True
>>> u = (1.5, x, y, 1+2j)
>>> u
(1.5, ‘a’, True , (1+2j))
>>> type(u)
<type ‘tuple’>
>>> v=()
>>> v
()
>>> type(v)
<type ‘tuple’>
>>> w=(1.3 ,)
>>> w
(1.3,)
>>> type(w)
<type ‘tuple’>
>>> d=(1.3)
>>> d
1.3
>>> type(d)
<type ‘float’>

In the example above, t is a tuple that consists of three items, 1, 2, 3, which are all
integer objects. u is a tuple that consists of four items, 1.5, ‘a’, True and 1+2j, which
belong to different types. The literal of u consists of a floating point number literal
(1.5), an identifier (x) that represents a string (‘a’), an identifier y that represents a
Boolean object (True) and a complex number literal (1 + 2 j). When an identifier
is used in a tuple literal, the object that the identifier is bound to is taken as the
corresponding item in the tuple.

v is en empty tuple—a tuple that contains no items. w is a tuple that consists of
a single item (1.3). When writing a tuple literal with a single item, a comma must
be added after the literal or identifier of the item. This is to differentiate the literal
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Fig. 5.6 Tuple objects in
memory

of a single-item tuple from the use of brackets in an expression, which specifies the
order of evaluation (c.f. Chap. 2). The value of d, for example, is a floating point
number 1.3, because the right hand side of the assignment statement for d consists
of an expression with a single floating point literal, enclosed in a pair of brackets.

The memory structure for the example above is shown in Fig. 5.6. Each tuple
consists of a sequence of object references. When an identifier is used to specify a
tuple item, the real object that the identifier is bound to is added to the tuple. Hence
there is no direct link between the identifiers u and x , for example, except that an
item of t and x are bound to the same object ‘a’.

Tuple operators. Tuples support exactly the same set of operations as strings do.
In fact, since a string object represents a sequence of characters, a tuple object can
be regarded as a ‘special string object’, which contains arbitrary objects rather than
characters. For example, the + and * operators apply to tuples:

>>> t1=(1,2,3)
>>> t2 = (4,5,6)
>>> t3 = t1+t2
>>> t3
(1, 2, 3, 4, 5, 6)
>>> t4 = t1*3
>>> t4
(1, 2, 3, 1, 2, 3, 1, 2, 3)

Similar to the case of strings, the + operator concatenates two tuple objects into a
new tuple object, while the * operator makes copies of a tuple object. The memory
structure of the example above is shown in Fig. 5.7.

The getitem and getslice operations, and the len function introduced in Chap.3,
also apply to tuples.

>>> t = (‘a’, 0, 1+3j)
>>> t[0]
‘a’
>>> t[1:3]
(0, (1+3j))
>>> t[-2:]

http://dx.doi.org/10.1007/978-981-287-609-6_2
http://dx.doi.org/10.1007/978-981-287-609-6_3
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Fig. 5.7 Addition and multiplication for tuple objects

(0, (1+3j))
>>> len(t)
3
>>> len(t+t)
6
>>> len(t*3)
9
>>> len(())
0
>>> len((1,))
1

The in and not in operators introduced in the previous chapter can also be applied
to tuples, indicating whether an object is an item in a tuple or not.

>>> t=(1,‘a’,True)
>>> 1 in t
True
>>> 1.0 not in t
False
>>> ‘a’ in t
True
>>> ‘ab’ in t
False
>>>

Conversion between tuples and other types. A tuple object cannot be converted
to a number. However, it can be converted into a string or a Boolean type object.
When a tuple is converted into a string, its literal form is taken, with each element
in its own literal form. When a tuple is converted into a Boolean object, the result is
False only if the tuple is empty, and True otherwise. Such conversions offer a handy
way of making use of implicit conversions, such as putting tuples in print and while
statements where string and Boolean objects are expected.

>>> x=‘a’
>>> y=True
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>>> str((x,y, -0.3))
"(‘a’, True , -0.3)"
>>> bool ((1,2,3))
True
>>> bool (())
False
>>> print (x,y, -0.3)
(‘a’, True , -0.3)
>>> if (1,2,3):

print True
True

While numbers and Boolean objects cannot be converted to tuples, strings can
be converted to tuples, with each character being mapped into one element in the
resulting tuple object.

>>> tuple (1)
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
TypeError: ‘int ’ object is not iterable
>>> tuple(True)
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
TypeError: ‘bool ’ object is not iterable
>>> tuple(‘abc ’)
(‘a’, ‘b’, ‘c’)

When the assignment statement was discussed in Chap. 3, it was mentioned that
the left hand side of an assignment statement can be an identifier or a tuple. In the
latter case, the left hand side must be a tuple of identifiers, and the right hand side
must be a tuple of the same size as the left hand side. Each object in the right-hand-
side tuple is assigned to the corresponding identifier in the left-hand-side tuple. for
example,

>>> (x, y)=(1, 2)
>>> x
1
>>> y
2
>>> (x, y, z) = (3, ‘a’, x)
>>> x
3
>>> y
‘a’
>>> z
1

When a tuple-to-tuple assignment is executed, Python first tries to find the objects
that are contained in the right-hand-side tuple. In the second example above, it finds
the int object 3, and string object ‘a’ and the int object 1, as referred to by the identifier
x . Then Python assigns the three objects to the corresponding identifiers in the left-
hand-side tuple, resulting in x being 3, y being ‘a’ and z being 1. Note that the value
of x changes in the execution of this assignment statement, in a similar way to the
execution of the statement x = x + 1.

http://dx.doi.org/10.1007/978-981-287-609-6_3
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Tuple assignment provides a convenient way of swapping two variables.

>>> x=1
>>> y=2
>>> (x,y)=(y,x)
>>> x
2
>>> y
1

Using the trick, the induction of Fibonacci numbers introduced earlier in this
chapter can bewrittenwithout a temporary variable. In particular, the three statements

t=xi
xi=xi+xii
xii=t

can now be replaced with one statement:

(xi , xii) = (xi+xii , xi)

In a tuple-to-tuple assignment, the left-hand-side tuple can be written without
brackets. For example, the statement above can also be written as:

xi , xii = (xi+xii , xi)

5.3.2 The for Loop

The for statement is a second looping statement introduced in this book. It can be
used to iterate through a container object. The syntax of the for statement is shown
in Fig. 5.8, which begins with a line that consists of the for keyword, followed by an
identifier, and then the in keyword, and then a container object, and finally a colon.
After the for line is an indented statement block, which is executed repeatedly, once
for each element in the collection object. In each iteration, the current element of the
collection is assigned to the identifier after the for keyword, which serves as the loop
variable. For example, the following code iterates through a tuple, printing out each
element:

>>> t=(1,‘a’,True)
>>> for x in t:
... print x
...
1
a
True

In the example above, the for statement consists of two lines, the first being the for
line with the loop variable being defined as x , and the second line being an indented
statement block that consists of a single statement. When executed, the for statement
iterates through all elements of t , assigning the current element to the identifier x
at each iteration, before executing the indented statement block, or loop body. As a
result, the dynamic execution sequence of the example above is:
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x=1
print x
x=‘a’
print x
x=True
print x

An equivalent loop using the while statement is:

>>> t=(1,2,3)
>>> i=0
>>> while i<len(t):
... x=t[i]
... print x
... i += 1
...
1
2
3

In the example above, the variable i is used as the loop variable. It iterates through
the values 0, 1, . . . , len(t). At each iteration, a corresponding element t[i] is taken
from the container t , and assigned to the variable x . This type of iteration through
a container object is called traversal. Compared with the while loop, the for loop
is more convenient for performing tuple traversal, since using a for statement, the
additional loop variable x is unnecessary. Container objects that can be iterated
through using a for loop are also called iterable objects. Tuples are iterable.

The break and continue statements can also be applied to a for loop, with the same
interpretation as in a while loop: the break statement terminates the loop, and the
continue statement skips the rest of the loop body and starts the next loop iteration.

>>> t=(1,2,3,4,5,7,10)
>>> for i in t:
... if i>5:
... break
... print i
...
1
2
3
4
5
>>> for i in t:
... if i

Fig. 5.8 The for statement
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... continue

... print i

...
2
4
10

The example above contains two for loops over the tuple t . In the first loop, when
the first element in t that is greater than 5 is enumerated, the loop terminates. In
the second loop, whenever the current element is odd, the loop continues without it
being printed.

Similar to the while loop, an else line, followed by an indented statement block,
can also be added to the end of a for loop. If the for loop finishes enumerating all the
elements in the container object (i.e. no break happens during the loop execution),
the indented statement block under the else line is executed.

>>> t=(1,2,3)
>>> for x in t:
... print x
... else:
... print ‘done ’
...
1
2
3
done
>>> for x in t:
... print x
... break
... else:
... print ‘done ’
...
1

The example above consists of two for statements. When the first is executed,
the loop finishes and hence the else statement block is executed. When the second
for loop is executed, an unconditional break statement is executed in the first loop
iteration, and hence the loop finishes immediately, without the else statement block
being executed.

5.3.3 Problem Solving by Traversal of a Tuple

The for loop can be used to solve all the basic problems introduced earlier in this
chapter, including summation, production, maximum finding and search, all by tra-
versal of a container object. The following example illustrates the use of a for loop
for summing up all elements in a tuple.

>>> t=(1.5 ,2.0 ,3.1 ,6.4 , -4.7 ,7.1 , -0.01)
>>> s=0
>>> for x in t:
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... s += x

...
>>> print s
15.39

The for statement above iterates through t , assigning to x the value of the current
element being enumerated at each iteration. Summation is performed by accumu-
lating all x values to the sum s, which is initialized to 0. The thinking behind the
method is the same as the summation using a while loop introduced earlier in this
chapter.

For summation, Python provides a built-in function sum, which takes a single
iterable argument and returns the sum of all elements in the container object. Using
the sum function, the example above can be written as:

>>> t=(1.5 ,2.0 ,3.1 ,6.4 , -4.7 ,7.1 , -0.01)
>>> sum(t)
15.39

In similar spirit, Python provides two built-in functions max and min, which take
a single iterable argument and return the maximum and minimum elements in the
container object, respectively. As introduced earlier in this chapter, the max and min
functions can also takemultiple numerical arguments and return theirmaximum/min-
imum.

The following code illustrates the use of a for loop to find the maximum value of
a tuple. The thinking behind is the same as finding a maximum value using a while
loop.

>>> t=(1.5 ,2.0 ,3.1 ,6.4 , -4.7 ,7.1 , -0.01)
>>> s=float(‘-inf ’)
>>> for x in t:
... if x > s:
... s = x
...
>>> print s
7.1

The problem above can also be solved using the function call max(t).
The following code illustrates the use of a for loop to decide whether there is a

multiple of 7 in a tuple of integers. The thinking behind is the same as searching for
a target using a while loop.

>>> t=(1 ,75 ,31 ,614 ,59 ,63 ,110)
>>> for x in t:
... if x % 7 == 0:
... print ‘Yes ’
... break
... else:
... print ‘No ’
...
Yes

Two built-in functions, all and any, take a single container argument and return
True if and only if all/any element in the container is True. Non-Boolean values
are converted to the Boolean type automatically. The problem above can be solved
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by the use of the any function, and the map function introduced in Chap.9, where
functional programming concepts are introduced.

Exercises

1. Calculate

(a) the sum of all odd numbers between 0 and 100 that make sin(x) > 0;
(b) the product of the list (1, 2.5, -3.3, -4, 5, 6, 10);
(c) d

dx log(x3 − 2x + 5) · sin(x) at x = 0.5;

(d)
∫ 100
1 log(x)dx numerically.

2. Estimate the following values using summation. What is the correlation between
n and the error?

(a) π ≈ 4 · ∑n
i=1

(−1)i+1

2i −1

(b) π ≈ 2
√
3

∑n
i=0

(−1)i

3i (2i+1)

(c) sin(x) ≈ ∑n
i=0((−1)i x (1+2i))/((1 + 2i)!)

(d) sin(x) ≈ ∑n
i=0((−1)i (−pi/2 + x)(2i))/((2i)!)

(e) log(1 + x) ≈ ∑n
i=1(−1)i−1 xi

i

(f) exp(x) ≈ ∑n
i=0

xi

i !
3. What are the values of i after the following programs are executed?

(a) print 1, 3, 5, 7, 9

t = (1,3,5,7,9)
for i in t:

print i
print i

(b) still print 1, 3, 5, 7, 9

t = (1,3,5,7,9)
for i in t:

print i
i += 1

print i

(c) print 2, 4, 6, 8, 10

t = (1, 3, 5, 7, 9)
for i in t:

i += 1
print i

print i

(d) print 1, 3, 5, 7, 9

t = (1, 3, 5, 7, 9)
for i in t:

print i
else:

http://dx.doi.org/10.1007/978-981-287-609-6_9
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i += 1
print i

(e) print 1, 3, 5

t = (1, 3, 5, 7, 9)
for i in t:

if i > 5:
break

print i
print i

(f) still print 1, 3, 5

t = (1, 3, 5, 7, 9)
for i in t:

if i > 5:
continue

print i
print i

4. Write a program that

(a) asks the user for an integer, and then displays the sum of all the digits;
(b) asks the user for two integers, and then displays whether the second integer

is a divisor of the first integer;
(c) asks the user for an integer, and then displays its largest divisor (Hint: con-

sider solution of (b));
(d) asks the user for an integer, and then displays whether the integer is a prime

number (Hint: consider solution of (c));
(e) repeatedly asks the user to enter an integer, until the user enter 0, after which

the maximum of all the numbers is shown;
(f) asks the user for two integers, and then displays the greatest common divisor

of the two integers (Hint: consider the solution of (c)).

5. Write a program that draws the following multiplication table:

1 2 3 4 5 6 7 8 9
*****************************

1* 1 2 3 4 5 6 7 8 9 *
2* 2 4 6 8 10 12 14 16 18 *
3* 3 6 9 12 15 18 21 24 27 *
4* 4 8 12 16 20 24 28 32 36 *
5* 5 10 15 20 25 30 35 40 45 *
6* 6 12 18 24 30 36 42 48 54 *
7* 7 14 21 28 35 42 49 56 63 *
8* 8 16 24 32 40 48 56 64 72 *
9* 9 18 27 36 45 54 63 72 81 *
*****************************

6. Write a program that asks the user for an integer, and then displays its binary value
in 2’s complement form, as introduced in Chap.2, assuming that the integer can
be represented using 32 bits. Hexadecimal numbers are a more succinct notation.
Each digit in a hexadecimal number ranges from 0-15. The value 10, 11, 12, 13, 14

http://dx.doi.org/10.1007/978-981-287-609-6_2
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and 15 are denoted with ‘A’, ‘B’, ‘C’, ‘D’, ‘E’ and ‘F’, respectively. For example,
a hexadecimal value 1B is equal to 1 × 16 + 11 × 1 = 27, and a hexadecimal
value 2A1 is 2 × 162 + 10 × 16 + 1 = 417. Extend the program above so that
it displays the hexadecimal form of the input number. Is it easier to convert a
decimal number into a hexadecimal number, or to convert a binary number into
a hexadecimal number?



Chapter 6
Functions

As introduced in Chap.2, function calls enrich the power of Python expressions by
introducing more functionalities. The mathematical functions provided by the math
module, such as exp, log and sin, allow a Python expression to perform arithmetic
calculation beyond the power of mathematical operators. In addition, built-in func-
tions such as len, id, int and raw_input, provide mechanisms to get information
about Python objects, perform type conversion, and interact with users. This chapter
introduces the ways to define custom functions in Python, allowing customized func-
tionalities to be modularized and reused.

6.1 Function Definition Using lambda expressions

To beginwith, consider the problem of defining f (x, y) = x +2y. The function takes
two number arguments, and returns their weighted sum. The name of the function
is f . Python provides a simple type of expression, the lambda expression, for the
definition of such a function. The syntax of the lambda expression is:

lambda <arguments >: <return value expression >

A lambda expression begins with the keyword lambda, followed by a comma-
separated list of parameters, and then a colon, andfinally an expression that specifies
the return value for calls to the function. The value of a lambda expression is a func-
tion object. For example, to specify the function f above, the following assignment
statement can be used:

f = lambda x, y: x+2*y

In the example above, the right hand side of the assignment statement is a lambda
expression that defines a function object, and the left hand side is an identifier f. The
value of the function object is assigned to the identifier. After the function definition
and the assignment are executed, f can be used in function call expressions.
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>>> f = lambda x, y: x+2*y
>>> f(1, 2)
5
>>> f(3, 4)
11

The mechanism of function calls. In the example above, the function object f is
called twice. Each time a function call is invoked, Python passes the input arguments
to the function object and evaluates the return value. In the first function call expres-
sion f (1, 2), the two arguments 1 and 2 are passed into the function, and assigned
to the parameters x and y, respectively. The mechanism of argument passing is the
same as the assignment statement: the assignment of the argument values 1 and 2 to
the parameters x and y is effectively the same as performing x = 1 and y = 2 inside
the function, respectively.

After argument passing, Python evaluates the expression x +2∗ y to determine the
return value of this function call, obtaining the integer object 5. Thus the function
call finishes with the value of the expression f (1, 2) being 5, which is shown by
IDLE. The same process happens to the second function call f (3, 4), with 3 and 4
being assigned to the parameters x and y inside the function, respectively, leading to
a different return value by the evaluation of x +2∗ y. It can be seen from this example
that each time a function call expression is evaluated, the return value expression is
evaluated afresh, with new argument values being assigned to the parameters.

Note the difference between a function definition and a function call. The former
specifies a function object, while the latter invokes a function in order to obtain a
return value. The return value expression in a lambda expression typically includes
all the parameters, which represents the input arguments, for the intuitive reason that
a function represents certain operations on the arguments. However, the return value
of a function can also be independent of its arguments. For example, the following
function returns the constant value 2.

>>> f = lambda x:2
>>> f(1)
2
>>> f(2)
2

The example above is not practically useful, but illustrates the correlation between
input arguments and the return value expression. Another example where the input
arguments do not affect the return value is the built-in function raw_input, which
displays the input argument as a prompt to the user, but returns user input.

The number of input arguments in a function call must be the same as the number
of parameters specified in the function definition. Otherwise, Python will report an
error in the function call.

>>> g=lambda x,y:x
>>> g(1,2)
1

>>> g(1) # too few arguments
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
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TypeError: <lambda >() takes exactly 2 arguments
(1 given)

>>> g(1,2,3) # too many arguments
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
TypeError: <lambda >() takes exactly 2 arguments

(3 given)

Function objects. Similar to other objects, a function object defined by a lambda
expression can be assigned to different identifiers.

>>> f = lambda x, y: x+y
>>> g = f
>>> f(1,2)
3
>>> g(1,2)
3

In the example above, both f and g refer to the same function object, and calls to
f (1, 2) and g(1, 2) lead to the same result.
The types of objects introduced so far in this book support different operators.

For example, string and tuple objects support the getitem (i.e. []) operator, the +
operator and the * operator. Intuitively, a function objects supports only the function
call operator (i.e. ()), but few other operators.

>>> f=lambda x, y: x+y
>>> g=lambda x, y: x-y
>>> f+g
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
TypeError: unsupported operand type(s) for +:
‘function ’ and ‘function ’

>>> f*2
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
TypeError: unsupported operand type(s) for *:
‘function ’ and ‘int ’

>>> f[2]
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
TypeError: ‘function ’ object is not subscriptable

Using functions to simplify code. By using function definitions, simpson.py in
the previous chapter, which calculates the integral of f (x) = x2 between 0 and 10,
can be simplified. The original program contains the calculation of four terms, f (a),
2

∑n−1
i=1 f (a+id), 4

∑n−1
i=0 f (a+(i + 1

2 )d) and f (b), whereas f (x) is hard coded as
a complex expression in the evaluation of each term. A new version of the program,
simpson_lambda.py, specifies sq(x) = x2, and uses a function call to sq in the place
of hard-coded expressions in the evaluation of all four terms.

[simpson_lambda.py]
a=0
b=10
n=10000
d=float(b-a)/n
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sq=lambda x: x*x
#f(a)
fa=sq(a)
#f(b)
fb=sq(b)
# sum f(a+id)
s1=0
i=1
while i<=n-1:

s1 += sq(a+i*d)
i += 1

# sum f(a+(i+0.5)d)
s2=0
i=0
while i<=n-1:

s2 += sq(a+(i+0.5)*d)
i += 1

# area
s = (d/6) * (fa+2*s1+4*s2+fb)
print ‘The integral is equal to’, s

An execution of simpson_lambda.py yields the same result as simpson.py.

Zhangs -MacBook -Pro:code yue_zhang$ python
simpson_lambda.py

The integral is equal to 333.333333333

simpson_lambda.py allows a much easier modification to the code if the function
to be integrated changes from f (x) = x2 to f (x) = 3x2 + 2x − 1. The only change
needed is the definition of sq.

sq=lambda x: 3*x*x+2*x-1

The rest of the program stays the same. An execution of the new program yields
the following result.

Zhangs -MacBook -Pro:code yue_zhang$ python
simpson_lambda.py

The integral is equal to 1090.0

The result is identical to the real integral, 1090, which can be calculated by
g(10) − g(0), with g(x) = x3 + x2 − x being the integral of f (x). If simpson.py
is to be modified to find the same integral, the four lines that calculate the values of
each term in the calculation of f (x) must be modified significantly.

Default arguments and keyword arguments. As introduced in Chap.2, some
functions allow arguments to be unspecified. For example, the math.log function can
take two arguments x and y, returning the value logy x .

>>> import math
>>> math.log(256, 2)
8.0

On the other hand, the second argument can also be omitted in a call to math.log,
resulting the value logex .

http://dx.doi.org/10.1007/978-981-287-609-6_2
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>>> import math
>>> math.log(math.e)
1.0

To specify an optional parameter in a function definition, a default argument value
can be specified for the parameter, by adding an explicit assignment (i.e. = value) to
the argument in the argument list. For example:

>>> f=lambda x, y=0: x + 2*y
>>> f(1)
1
>>> f(1,2)
5

In the example above, the default value of the input argument y is set to 0. As a
result, where y is not specified in a function call to f (i.e. f (1)), it is assigned to 0
by default.

An argument with a default value is also called a default argument. Parameters
with default arguments must be put after parameters without default arguments (i.e.
without a default value) in a function definition, so that there is no ambiguity when
some input arguments are omitted in a function call.

>>> f=lambda x,y,z=0,w=0: x+2*y+3*z+4*w
>>> f(1,2)
5
>>> f(1,2,3)
14
>>> f=lambda x,y=0,z=0,w:x+2*y+3*z+4*w

File "<stdin >", line 1
SyntaxError: non -default argument follows default

argument

In the example above, when both z andw take default values, a function call with
three input arguments (i.e. f (1, 2, 3)) specifies the value of z (i.e. 3) but not that of
w. However, the definition of f becomes illegal if both y and z take default values,
but w does not.

A function call expression can specify the assignment of input arguments explicity,
using name=value, which is useful when there are more than one arguments with
default values.

>>> f=lambda x,y,z=0,w=0: x+2*y+3*z+4*w
>>> f(1,2,3)
14
>>> f(1,2,w=3)
17

In the example above, the third input argument 3 is by default assigned to z.
However, if it is assigned to w explicity, as in f (1, 2, w = 3), then z will take the
default argument. An argument that is explicitly assigned in a function call is called
a keyword argument.
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6.2 Function Definition Using the def statement

As introduced in the previous chapter, many mathematical functions cannot be com-
puted by using a simple expression. There are cases where the value of a custom
function must be obtained by iterative numerical computation. In such cases, the cal-
culation of a return value requires a procedure that consists of multiple statements,
typically representing a dynamic control flow. The syntax of a lambda expression
does not support the definition of such a procedure.

Instead, Python provides a special statement, the def statement, for the definition
of functions that consist of multiple statements. To begin with, consider the following
function f , which is equivalent to the lambda function lambda x,y: x+2*y:

>>> def f(x,y):
z=2*y
return x+z

>>> f(1,2)
5
>>>f(3,4)
11

The syntax of the def statement is illustrated in Fig. 6.1. The first line of a def
statement starts with the def keyword, followed by a custom function name, and a
comma-separated list of parameters, enclosed in a pair of round brackets, and finally
a colon. After the def line is an indented statement block, which is called the function
body. The function body contains one or many return statements, which begin with
the return keyword, followed by an expression:

return <expression >

The def statement performs two tasks. First, it defines a function object. Second, it
associates the function object with the function name given in the def line. In contrast,
a lambda expression only defines a function object, and an assignment statement is
needed to give a name to the function.

In a function call, the function name is used as the identifier for accessing the
function object. The parameters defined in the def line are assigned the argument
values given in the function call expression, in the same way as the argument assign-
ment process of a lambda function, before the function body is executed. During the
execution of the function body, if one return statement is executed, the execution

Fig. 6.1 The def statement
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of the function body is terminated, with the value of the expression in the return
statement being taken as the return value of the function call.

In the example above, the def statement defines a function object with two para-
meters, and assigns the name f to it. When the call f(1,2) is evaluated, the argument
1 and 2 are assigned to the parameters x and y, respectively, and the function body
is executed when the return statement is executed, the function call returns, with the
value of x + z, which is 5.

The None object and the pass statement. If no return statements are executed
before the whole function body is executed, a special return value, None, is taken as
the return value of the function call. Here None belongs to a new type, the NoneType.
It is the only object that belongs to the type.

>>> type(None)
<type ‘NoneType ’>
>>> a=None
>>> a==1
False
>>> a==0
False
>>> a==‘’
False
>>> a== False
False

The object None is equal to neither 0, nor ‘’, nor False, because NoneType is a
different type as compared to a number, the string or the Boolean type. None can
be converted into a string, ‘None’, or a Boolean object, False, which provides a
convenient way of putting the None object in print and while statements.

>>> str(None)
‘None’
>>> bool(None)
False
>>> a = None
>>> a
>>> type(a)
<type ‘NoneType ’>
>>> print a
None

In the example above, when the value of None is given to IDLE (i.e. by typing
the identifier a directly as an expression in IDLE), nothing is shown on the console.
This is different from other objects, for which IDLE display the value. By default,
IDLE does not display the None value. However, when given to the print statement,
None is first converted into a string, and then shown.

The None object cannot be converted to an integer, a floating point number, or a
tuple.

>>> int(None)
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
TypeError: int() argument must be a string or a number

, not ‘NoneType ’
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>>> float(None)
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
TypeError: float() argument must be a string or a

number
>>> tuple(None)
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
TypeError: ‘NoneType ’ object is not iterable

None serves as a special value in Python, representing the meaning ‘nothing’. It
therefore does not make sense to convert any other types to NoneType.

Correlated to the None object is a statement that does nothing: the pass statement.
The syntax of the pass statement consists of the pass keyword only. It serves as a
placeholder where a statement block is required, but nothing needs to be performed.

A simplest function can be one that takes no argument, and performs nothing:

>>> def f():
... pass
...
>>> f()
>>> a=f()
>>> a
>>> type(a)
<type ‘NoneType ’>

In the example above, the function call f () does not performanything: the function
body is a single pass statement. In this example, the pass statement is necessary,
because an indented statement block is required in the definition of a function. Since
no return statement is executed during the execution of the function body, the return
value of the function call f () is None. Note that when f () is used as a single-line
expression, nothing is shown as the value of the expression. This is because IDLE
shows no output for the value None, as illustrated earlier.

For a more complex example, consider a function that shows the string ‘Hello,
world’ on the console.

>>> def g():
... print ‘Hello , world’
...
>>> a = g()
Hello , world
>>> print a
None

In the example above, when the assignment statement a = g() is executed, the
expression g() is evaluated first. It is a function call expression, which leads to the
invoking of the function body of g. As a result, the string ‘Hello, world’ is printed to
the console. The value of the function call expression g() is assigned to the identifier
a. Since no return statement is executed, the default return value, None, is returned.
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6.2.1 The Dynamic Execution Process of Function Calls

Function calls are not sequential control flow because the control flow leaves the
main program for the execution of the function body, and then returns to the main
programagain after the executionof the functionbeing called. Thedynamic execution
sequence of the code above can be written as:

(1) def g(): # statement 1; function definition
(2) print ‘Hello , world ’ # statement 2; evaluating g(),

executing function body; the return value is None by
default.

(3) a = None # statement 2; return value assignment
(4) print a # statement 3

A function that does not contain any return statements is also called a procedure:
calling of the function performs some tasks, but does not evaluate to a return value.
Correspondingly, a call to a procedure is typically used as a single-line expression
(e.g. g() in a single line), but not as a part of other expressions or statements. The
function g above is a procedure that performs the display of a string message. The
built-in function reload introduced in Chap.3 is an other example procedure.

For another example of the dynamic control flow of function calls, consider an
expression that contains more than one function calls. In such cases, each function
call evaluation invokes the corresponding function body.

>>> def f():
... print ‘called ’
... return 1
...
>>> f() + f() + 1
called
called
3

When the expression f () + f () + 1 in the code above is evaluated, the function
f () is called twice. Each time the function body is executed, the message ‘called’ is
displayed. As a result, the message is displayed twice, as shown by the outputs.

A function body can contain calls to other functions, leading to more complex
dynamic execution sequences. Nevertheless, the mechanism for each function call
evaluation remains the same: the control flow leaves the current statement for an
execution of the function being called, and then returns, with the return value as the
value of the fuction call expression. For example:

>>> def f():
... print ‘Enter f’
... print ‘Leave f’
...
>>> def g():
... print ‘Enter g’
... f()
... print ‘Leave g’
...
>>> g()
Enter g

http://dx.doi.org/10.1007/978-981-287-609-6_3
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Enter f
Leave f
Leave g

The dynamic execution sequence of the code above is illustrated by the messages
printed out. In particular, the function call f () is nested as a part of the function call
g(), because it is invoked in the execution of the function body of g. More discussions
on nested function calls are given in the Sect. 6.3.

6.2.2 Input Arguments

As introduced earlier, the passing of arguments to a function defined by the def state-
ment is the same as the passing of arguments to a lambda function: each parameter
in the function is assigned the corresponding input argument value in the function
call.

>>> def h(x, y):
... print "x =", x, ", y =", y
...
>>> a=2
>>> h(1,a)
x = 1 , y = 2

In the example above, when the function call expression h(1, 2) is evaluated, the
assignments x = 1 and y = a are executed before the function body is executed,
leading to the result values x = 1 and y = 2.

Similar to lambda functions, default arguments can also be defined for def func-
tions.

>>> def sum(a, b, c=0):
... return a+b+c
...
>>> sum(1,2)
3
>>> sum(1,2,3)
6

In the example above, the function sum can take two or three input arguments. In
the former case, the parameter c is assigned the default argument 0, and the return
value a + b + c is equal to the sum of a and b.

Note in the example above that the name of the custom function, sum, is the
same as a built-in function in Python. The built-in sum function, as introduced in the
previous chapter, takes one tuple argument and returns the sum of all the elements
in the tuple. When defined, the custom sum function overrides the built-in function.

>>> def sum(a, b, c=0):
... return a+b+c
...
>>> l=(1,2,3)
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>>> sum(l) # built -in sum overridden
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
TypeError: sum() takes at least 2 arguments (1 given)

As introduced inChap.3, the overridden built-in function sum can still be accessed
to, but explicitly via the __builtins__ module.

(continued from above)
>>> l=(1,2,3,4,5,6,7,8,9,10)
>>> __builtins__.sum(l)
55

6.2.3 Return Statements

Return and conditionals. The custom function sum above uses a single return
statement to specify the return value of function calls; the function is identical to
the lambda expression lambda x, b, c = 0: a + b + c. On the other hand, return
statements in def functions can be used more flexibily in dynamic control flows,
achieving much more powerful functionalities. The following example shows how
return statements can be used in branching control flows.

>>> def posneg(x):
... if x>0:
... return ‘positive ’
... elif x<0:
... return ‘negative ’
... else:
... return ‘zero ’
...
>>> posneg (10)
‘positive ’
>>> posneg (-1)
‘negative ’
>>> posneg (0)
‘zero ’

In the example above, three return statements are written in the function posneg,
all being embedded in an if ... elif ... else statement. There are three branches in this
if statement. However, depending on the input value x , only one branch is executed
at an execution of the statement. As a result, the return statement in the correspond-
ing branch will be executed, giving a dynamic return value for the function call
expression.

Because the return statement terminates the execution of a function immediately,
no more statements in the function body will be executed after the return statement
is executed. The fact can be used to simplify functions. For example, the function
posneg above can also be written as:

>>> def posneg(x):
... if x>0:

http://dx.doi.org/10.1007/978-981-287-609-6_3
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... return ‘positive ’

... if x<0:

... return ‘negative ’

... return ‘zero ’

...
>>> posneg (10)
‘positive ’
>>> posneg (-1)
‘negative ’
>>> posneg (0)
‘zero ’

In the example above, there are three return statements in the function posneg.
The first two return statements are each embedded in an if statement, and the last
return statement is used unconditionally. In a dynamic control flow, if the value of
the input argument x is positive, the return statement in the first if statement will be
executed, which terminates the function call without the second if statement being
reached. Similarly, if the value of x is negative, the return statement in the second if
statement will be executed, which terminates the function call wihtout the last return
statement being reached. Consequently, only when the value of x is neither positive
nor negative will the last return statement be executed.

Note, however, the fact that posneg can be written in the way above is all because
the return statement terminates a function call. If the posneg function is changed to
a procedure, which prints out the messages ‘positive’, ‘negative’ and ‘zero’ rather
than returning the stings, the second way to write the function body above will cause
errors.
>>> def posneg(x): # the first way
... if x>0:
... print ‘positive ’
... elif x<0:
... print ‘negative ’
... else:
... print ‘zero ’
...
>>> posneg (10)
positive
>>> posneg (-1)
negative
>>> posneg (0)
zero
>>>
>>> def posneg(x): # the second way
... if x>0:
... print ‘positive ’
... if x<0:
... print ‘negative ’
... print ‘zero ’
...
>>> posneg (10)
positive
zero
>>> posneg (-1)
negative
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zero
>>> posneg (0)
zero

The second posneg function above will always print the message ‘zero’, because
the last return statement is unconditional. The execution of the print statements does
not terminate the function call.

The difference between return and print statements in a function may seem con-
fusing, especially when the function is called in IDLE: both prints out the value of
an expression. However, a more careful look can reveal that the two statements are
essentially irrelevant to each other. When the posneg functions with return state-
ments are called, IDLE displays the return values as the values of the function call
expression posneg(); but when the posneg functions with the print statements are
called, the messages are printed when the function body is executed, and the return
values of the function calls, which are None, are not displayed by IDLE.

Return in loops. The return statement can also be used in a looping control flow.
For example, consider the problem of finding the first odd number in a tuple of
integers.

>>> def findodd(t):
... for i in t: # for each element
... if i%2==1: # if odd
... return i # return
...
>>> print findodd ((1,2,3))
1
>>> print findodd ((2,4,6))
None

In the example above, findodd takes a single input tuple argument. It iterates
through the elements in the tuple, using the loop variable i . At each iteration, if the
value of the current element is odd, it is returned directly. After the return statement
is executed, no further statements in the function body is executed, and hence the
loop body is interrupted. In case no odd numbers are in the input list, the function
body finishes without a return statement being executed, and hence None is returned.

The function findodd above is an example of search in the context of a tuple.
The usage of the return statement in a loop is suitable only when the first answer
is sufficient. If the requirement changes, and all odd numbers in the input tuple are
needed, the function must be modified. Here the thinking of generalized summation
discussed in the beginning of the previous chapter can be applied: the return value s
is now a tuple rather than a number, initialized to an empty tuple, and the incremental
step to update s is tuple concatenation rather than numerical addition.

>>> def findodd(t):
... s=()
... for i in t: # for each element
... if i%2==1: # if odd
... s+=(i,) # update return value
... return s
...
>>> findodd ((1,2,3))
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(1, 3)
>>> findodd ((2,4,6))
()

In the example above, the function findodd calculates the output tuple by per-
forming generalized summation. The incremental step, s+ = (i, ), extends s by
concatenating its current value with the single-element tuple (i, ). A single return
statement is used at the end of the function.

Tuple Return Values. The example above returns a tuple. When more than one
values are returned by a function, they can be put into a tuple. For example, the
function below swaps two input arguments.

>>> def swap(x,y):
... return(y,x)
>>> a=1
>>> b=2
>>> (a,b)=swap (1,2)
>>> a
2
>>> b
1

6.2.4 Modularity

The freedom of writing a statement block in a def statement allows modularity in
code design: particular functionalities are put into specific procedures and invoked by
function calls, making code easier to understand andmaintain. For example, consider
grade.py in Chap.4, which calculates the grade of a student given an exam score.
Suppose that the program needs to be extended, so that it repeatedly asks the user to
enter a score, returning the corresponding grade, until the user enters ‘q’. A program
can be written as follows:

[grade_while.py]
bExit = False
while not bExit:

command = raw_input(‘Enter a score ("q" to exit):’)
if command == ‘q’:

bExit = True
else:

score = float(command)
if 85 <= score <= 100:

print ‘A’
elif 70 <= score < 85:

print ‘B’
elif 50 <=score < 70:

print ‘C’
elif 0 <= score < 50:

print ‘D’
else:

print ‘Invalid score entered ’

http://dx.doi.org/10.1007/978-981-287-609-6_4
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grade_while.py is an extension of grade.py, using a while loop to repeatedly
perform grade calculation. The loop is controlled by a Boolean variable bExit, which
is initialized to False. At each loop iteration the program asks the user to enter a
score, or enter ‘q’ in order to quit the program. If the user enters ‘q’, bExit is set to
True, so that the next time the while line is executed, the loop terminates; otherwise
the original functionality of grade.py is performed. An execution of grade_while.py
can give the following result:

Zhangs -MacBook -Pro:code yue_zhang$ python
grade_while.py

Enter a score ("q" to exit): 100
A
Enter a score ("q" to exit): 85
A
Enter a score ("q" to exit): 90
A
Enter a score ("q" to exit): 75
B
Enter a score ("q" to exit): 55
C
Enter a score ("q" to exit): q
Zhangs -MacBook -Pro:code yue_zhang$

grade_while.py embeds a nested if structure in the while loop in order to combine
the functionalities of repetition and grade calculation.However, the nested statements
can be difficult to understand. Tomake the programeasier to understand andmaintain,
the grading functionality can be taken out and put into a specific function:

[grade_def.py]
def grade(score):

if 85 <= score <= 100:
return ‘A’

elif 70 <= score < 85:
return ‘B’

elif 50 <=score < 70:
return ‘C’

elif 0 <= score < 50:
return ‘D’

else:
return None

# main
bExit = False
while not bExit:

command = raw_input(‘Enter a score ("q" to exit):’)
if command == ‘q’:

bExit = True
else:

score = float(command)
g = grade(score)
if g == None:

print ‘Invalid score entered ’
else:

print g
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grade_def.py defines a function, grade, which takes an input score and returns the
corresponding grade. If the score is out of the range [0, 100], the special value None
is returned. This is an explicit return statement with the None object as the return
value, which makes use of the ‘nothing’ sense of the None object.

The rest of grade_def.py is a loop that repeatedly asks the user for a score, exiting
if the input is the string ‘q’, or calculating the grade otherwise. In the latter case, the
score that the user enters is passed to a grade function call to obtain the corresponding
grade. If the grade is None, an error message is printed out; otherwise the grade value
is printed. An execution of grade_def.py yields the same result as grade_while.py.

The use of the grade function not only makes the while loop easier to understand,
but also makes the grading functionality easier to maintain. For example, if the grade
boundaries are adjusted, or a new grade ‘F’ is introduced, a change to the grading
function is sufficient, without the programmer having to worry about how the grade
functionality is used.

A final note on the program above is that it consists of only three top-level state-
ments. The first is a def statement, which defines a function object, and binds it with
the identifier grade. Again, it is worth noting that a function definition is different
from a function call—the def statement makes a new function object in memory, and
associates it with a function name identifier, but never invokes the function body.
The second statement in grade_def.py is an assignment statement that initializes
bExit. The third statement is a compound while statement, with a statement block
that contains calls to the grade function.

For another example that shows the benefit of modularity, consider again simp-
son.py. simpson_lambda.py uses a lambda function to represent the function to be
integrated, so that hard-coded square values in simpson.py can be replaced with calls
to the lambda function. The following program, simpson_def.py, takes a step further,
and modularizes the functionality of integration using Simpson’s rule as a function.
The function simpson takes as input arguments the function to be integrated f , the

range (a, b), and the number of sub-areas N , returning the integral
b∫

a
f (x)dx by

Simpson’s rule.

[simpson_def.py]
def simpson(f, a, b, n):

d=float(b-a)/n
#f(a)
fa=f(a)
#f(b)
fb=f(b)
# sum f(a+id)
s1=0
i=1
while i<=n-1:

s1 += f(a+i*d)
i += 1

# sum f(a+(i+0.5)d)
s2=0
i=0
while i<=n-1:
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s2 += f(a+(i+0.5)*d)
i += 1

# area
s = (d/6) * (fa+2*s1+4*s2+fb)
return s

print ‘The integral is equal to ’, simpson(lambda x:
x*x, 0, 10, 10000)

simpson_def.py consists of two top-level statements. The first is a def statement
that defines the function object for Simpson integration, assigning it to the identifier
simpson, and the second is a function call to simpson, with the input arguments f , a,
b and N being given the same values as in simpson.py. Note that the lambda function
expression lamdba x : x ∗ x is passed as the first argument.

The advantage of simpson_def.py is that the functionality of Simpson integration
can be reused by calls to the simpson function, with arbitrary functions and ranges.
In fact, simpson_def.py can be turned into a library by commenting out the function
call below:

# print ’The integral is equal to’, simpson(lambda x:
x*x, 0, 10, 10000)

simpson_test.py imports simpson_def.py, and calculates the integrals
10∫

0
x3dx ,

1∫

0
sin(x)dx and

1.5∫

1
log(x)dx , respectively.

[simpson_test.py]
import simpson_def
import math
print ‘The integral of x^3 between 0 and 10 is ’,

simpson_def.simpson(lambda x:x*x*x, 0, 10, 10000)
print ‘The integral of sin(x) between 0 and 1 is ’,

simpson_def.simpson(math.sin , 0, 1, 10000)
print ‘The integral of log(x) between 1 and 1.5 is ’,

simpson_def.simpson(math.log , 1, 1.5, 10000)

To calculate the integrals for sin(x) and log(x), simpson_test.py passes the func-
tion objects associated with math.sin and math.log to the function simpson, respec-
tively. Take math.sin for example, when passed as one input argument to simpson,
the assignment f=math.sin is executed before the execution of the function body,
leading to the parameter f inside the function being bound to the function object
math.sin. Hence when f is called inside the simpson function, the math.sin function
object is invoked. More details on the mechanism of function calls is introduced in
the next section. An execution of simpson_test.py yields the following result.
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Zhangs -MacBook -Pro:code yue_zhang$ python simpson_test
.py

The integral of x^3 between 0 and 10 is 2500.0
The integral of sin(x) between 0 and 1 is

0.459697694132
The integral of log(x) between 1 and 1.5 is

0.108197662162

6.3 Identifier Scopes

Identifier scope refers to the accessibility of identifiers in different parts of Python
code; it is an important concept related to functions. For a simple example of the
concept of scopes, consider the accessibility of identifiers from a function body.
Statements defined in a function can contain references to identifiers defined outside
the function:

>>> import math
>>> def f(x):
... y = x+1
... return math.factorial(y)
...
>>> f(1)
2

In the example above, the identifiermath is defined by an import statement outside
the function f , but the function body of f contains a direct reference to math. When
the function call f (1) is evaluated, themathmodule object is accessed by the function
body successfully, yielding the return value 2! = 2.

Global scope and local scope. Top-level statements in IDLE or a Python program
being executed form the global scope, while statements inside a function body being
executed form a local scope. Correspondingly, parameters (e.g. x in the example
above) and identifiers defined inside functions (e.g. the variable y in the example
above) are called local identifiers. Python allows global identifiers to be accessed by
local statements, but not vice versa.

>>> x=1
>>> def f(a):
... y=a+x
... return y*y
...
>>> f(1)
4
>>> a
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
NameError: name ‘a’ is not defined
>>> y
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
NameError: name ‘y’ is not defined



6.3 Identifier Scopes 145

In the example above, statements in the function body of f have access to the
global variable x . However, the local variables a and y in the function f are not
accessible by the global scope. This is intuitive, because every time the function f
is executed, its local variables are assigned different values. In fact, local scopes are
temporary. They are only available during the execution of a function body. Each
time a function call is evaluated, a local scope is created, containing the specific
arguments and variable values for the call. After the function body is executed, the
local scope will become obsolete.

Note also that the global identifier x can be defined after the definition of f ; as
long as it is defined in the global scope before the first call to f , it can be accessed
from the local scope when f is called.

>>> def f(a):
... y=a+x
... return y*y
...
>>> x=1
>>> f(1)
4

The code above runs successfully even though x is defined after the def statement,
because the function definition of f does not invoke execution of the function body,
and x is defined before the evaluation of the function call f (1). On the other hand,
if x is defined after the call to f , it will not be available in the global scope when the
function body of f is executed.

>>> def f(a):
... y=a+x
... return y*y
...
>>> f(1) # error

Traceback (most recent call last):
File "<stdin >", line 1, in <module >
File "<stdin >", line 2, in f

NameError: global name ‘x’ is not defined
>>> x=1

Two local scopes. Identifiers defined in two different local scopes do not clash
with each other:

>>> a=1
>>> def f(x):
... y=x+a
... z=g(y)
... return z
...
>>> def g(x):
... y=x*x*a
... return y
...
>>> a=f(1)
>>> print a
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Table 6.1 Example of nested
function calls.

main f g

a=1

def f(x): ...

def g(x): ...

a=f(1)

x=1

y=x+a

z=g(y)

x=2

y=x*x*a

return y

return z

print a

The dynamic execution sequence of the code above is shown in Table6.1. Five
top-level statements are written in IDLE, and executed in the static order. When
the fourth statement, a = f (1), is executed, the right hand side of the = symbol is
evaluated, and the control flow enters the function body of f , resulting a new local
scope, in which the assignment of the input argument x and the three local statements
are executed. When the second local statement, z = g(y), is executed, the right hand
side of = is evaluated, and the control flow further enters the function body of g,
resulting in a new local scope, in which the assignment of the input argument x and
in g the two local statements are executed. During the execution of g’s function body,
the local variable x is assigned the value 2, which is different from the local variable
x in f —they are independent of each other, each living in its own scope.

After the function body of g is executed, the control flow goes back to f , and the
assignment statement z = g(y) finishes with the local identifier z being assigned
the value of g(y), 4. At this point, the local scope for the g call is obsolete. After
the function body of f is executed, the control flow further goes back to IDLE,
and the assignment statement a = f (1) finishes with the global identifier a being
assigned the value of f (1), 4. At this point, the local scope for the f is obsolete.

The uniqueness of a function call control flow is that the dynamic execution leaves
the caller when the function call expression is evaluated, and does not return to the
caller until the callee has finished its own execution sequence. As a result, nested
function call result in layered execution sequence such as the one in Table6.1. This
structure is also called a stack, which will be discussed further in Chaps. 7 and 10.

Statements in two different local scopes cannot access identifiers defined in each
other. For example:

>>> a=1
>>> def f(x):
... y=1
... z=g(x+1)+y

http://dx.doi.org/10.1007/978-981-287-609-6_7
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... return z

...
>>> def g(x):
... return x*(y+a)
...
>>> f(1)

Traceback (most recent call last):
File "<stdin >", line 1, in <module >
File "<stdin >", line 3, in f
File "<stdin >", line 2, in g

NameError: global name ‘y’ is not defined

The function call f (1) above leads to an error because the reference to the identifier
y in g is unresolvable. There is a y defined in f ’s scope, and g is called from f .
However, the local scopes of f and g cannot access each other.

Nested local scope. One way of enabling g to access f ’s scope is making g an
internal function of f , by putting the def statement of g inside f ’s function body:

>>> a=1
>>> def f(x):
... def g(x):
... return x*(y+1)
... y=1
... z=g(x+1)+y
... return z
...
>>> f(1)
5

In the example, the function g is itself a local variable in f , because it is defined
in the function body of f . The identifier g is in the same scope as the identifiers y
and z. When g is internal to f , the scope of g is an inner scope of f . The correlation
between g’s scope and f ’s scope is similar to that between f ’s scope and the global
scope—when Python cannot find an identifier in the current scope, it searches the
outer scope. Note that the up-tracing is transitive: if the identifier a can be found in
neither g’s scope and its immediate outer scope, f ’s scope, Python goes one level
further up to find a in the global scope. As introduced earlier, the outer scope of
the global scope is the __builtins__ module scope, which Python will search if the
global scope does not contain an identifier. In case the identifier is not built-in either,
Python will report a name error.

When scopes are nested, an identifier in an inner scope overrides identifiers with
the same name in an outer scope. For example, when the code above is executed, the
value of the local identifier x in g is 2, although the value of the identifier x in f is
1. g’s references to the identifier x are resolved to its local identifier.

Now suppose that the identifier a is also defined in f :

>>> a=1
>>> def f(x):
... def g(x):
... return x*(y+a)
... y=1
... a=0
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... z=g(x+1)+y

... return z

...
>>> f(1)
3

By default, g’s local reference to the identifier a will be resolved to the identifier a
in the scope of f , because the immediate outer scope of g is f . To explicitly declare
that g’s local reference to a should be resolved to the identifier a in the global scope,
the global statement should be used. The syntax of the statement is:

global <identifier >

The global statement declares that the identifier in the statement is global; it can
be used only inside function definitions. Using the global statement, the function g
above can be modified as follows:

>>> a=1
>>> def f(x):
... def g(x):
... global a
... return x*(y+a)
... y=1
... a=0
... z=g(x+1)+y
... return z
...
>>> f(1)
5

The functions f and g above can be difficult to understand and expensive to
maintain because of duplicated uses of the same identifier names in different nested
scopes. In practice, the advice is to avoid name clashes wherever possible, by using
reasonably long and expressive identifier names. The examples above are never-
theless useful for showing how to avoid common pitfalls and write better Python
programs. For a deeper understanding of the reason behind the observations above,
it is necessary to illustrate the underlying mechanisms of function definition and
execution in Python.

6.4 The Underlying Mechanism of Functions

To begin with, consider the following three examples:

1. Example (1): local variable.

>>> a=0
>>> def f(x):
... a=1
... print ‘a in f:’, a
...
>>> f(1)
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a in f: 1
>>> print ‘a in global:’, a
a in global: 0

2. Example (2): global variable.

>>> a=0
>>> def f(x):
... global a
... a=1
... print ‘a in f:’, a
...
>>> f(1)

a in f: 1
>>> print ‘a in global:’, a
a in global: 1

3. Example (3): incorrect variable.

>>> a=0
>>> def f(x):
... print ‘a in f:’, a
... a=1
...
>>> f(1)
a in f:
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
File "<stdin >", line 2, in f

UnboundLocalError: local variable ‘a’ referenced
before assignment

>>> print ‘a in global:’, a
a in global: 0

The examples (1) and (2) above are straightforward to understand; the example
(3) gives an error because the variable a in f is local (no global declaration), but
referred to before being assigned a value. Python reports an unbounded error rather
than a name error in this case, and the reason can be understood with more details
of the underlaying mechanism of function call execution.

In memory, a function object maintains three main sources of information by
keeping

1. a list of local and global identifiers (including parameters),
2. the code block, which is a list of statements from the function body, and
3. a pointer to the binding table that corresponds to the immediate outer scope of

the function.

When a def statement is executed, Python creates a function object, filling it with
all the information above, and associates it with the given identifier in the current
binding table. Figure6.2 gives the memory structures of the examples (1)–(3) above,
after the function definition statements are executed, but before the function calls are
executed. For both the examples (1) and (3) above, the identifier a is local, but for
the example (2), the identifier a is global. In all the three examples, the current scope
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(a) (b) (c)

Fig. 6.2 Memory structure of function objects

is the global scope when the def statement is executed, and therefore the variable f
is created in the global binding table.

The underlying mechanism of a function call consists of three main steps:

1. Creating a binding table for the local scope. The binding table contains all the
local identifiers (including input parameters), and has a pointer to the immediate
outer scope. It is constructed by initializing an empty binding table, filling it
with the list of local identifiers kept by the function object, and creating a link to
the outer binding table according to the outer-scope pointer kept by the function
object. Figure6.3 gives the memory structures of the examples (1)–(3) above,
when this step of the fucntion call is executed.

2. Binding parameters with the input argument objects specified in the function call.
This step corresponds to the argument assignment step in function execution.

3. Executing the function body, with the newly constructed binding table being the
current local scope. The execution of each statement in the function body follows
Python’s mechanism of the respective statement. In partifular, when an identifier
is evaluated, the current binding table is searched; in case there is not an entry for
the identifier, outer binding tables are searched in order by following the outer-
scope pointers. Figure6.3 illustrates the binding table hierarchy by showing the
__builtins__ scope explicitly.

(a) (b) (c)

Fig. 6.3 Mechanism of function execution. a Example (1), b Example (2), c Example (3)
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The error in the example (3) above can be explained by Fig. 6.3c. Before the
function body is executed, the argument x has been associated with the object 1, but
the local identifier a has not been initialized. The first statement to execute is the
print statement, which contains a reference to a in the string expression, and thus
results in the unbounded erorr above.

For another example of memory structures, consider the execution of simp-
son_test.py in the previous section. Figure6.4 shows the memory structures at dif-
ferent stages of execution. In particular, Fig. 6.4a shows the memory structure after
the two import statements are executed. The mechanism of module import has been
introduced in Chap.3; when each import statement is executed, the corresponding
module is executed, and their binding tables are associated with respective identifiers
in the binding table of the importer.

Figure6.4b shows the memory structure after the third statement has been exe-
cuted. The statement contains a function call expression, which is evaluated by
invoking the function simpson. In this process, the three basic steps of a function
call are carried out, with a new binding table being constructed, all arguments being
assigned to their corresponding parameters, and the function body being executed
using the new binding table as the current binding table. After all the statements in the
function body are executed, the current binding table is switched back to the global
binding table for the completion of the print statement, and the local binding table
of the function that has just been executed is left as shown in the figure. Because it
is no longer referred to directly or indirectly by the current binding table, the local
binding table will be removed by the garbage collector automatically.

Figure6.4c shows the memory structure when the fourth statement is being exe-
cuted, during the evaluation of the function call to simpson, just after the arguments
are assigned, but before the function body is executed. In this incremental process,
a new binding table is constructed and filled with the local variables of simpson.
This binding table is different from the one created by the third statement, because
each function call leads to a new local binding table, independent of other calls to
the same function. The next step will be the execution of the function body, with the
new binding table being taken as the current binding table.

For a final example of memory structures, consider the factory function twice,
which takes an input function f ∈ R → R and returns a function that is equivalent
to f ◦ f .

>>> def twice(f):
... def g(x):
... return f(f(x))
... return g
...
>>> import math
>>> f1=twice(math.sqrt)
>>> f1 (625)
5.0
>>> f2=twice(lambda x : x+1)
>>> f2(1)
3

http://dx.doi.org/10.1007/978-981-287-609-6_3
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(a)

(b)

(c)

Fig. 6.4 Memory structures during the execution of simpson_test.py. aAfter the first two statements
are executed, b After the first three statements are executed, c When the fourth statement is being
executed, just after argument assignment in the simpson call
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(a)

(b)

Fig. 6.5 Memory structures during the execution of twice. a After f1=twice(math.sqrt) is executed,
b During the execution of f1(625)

In the example above, the function twice has an internal function, g, which takes an
input argument x and returns f ( f (x)), where f is the input function to the function
twice. The function f1 applies math.sqrt twice, and the function f2 applies lambda
x :x + 1 twice.

The memory structure after the statement f1=twice(math.sqrt) is executed as
shown in Fig. 6.5a. The function call twice(math.sqrt) is executed in three steps.
First, a new binding table is constructed and filled with the local variables f and
g. Second, the parameter f is bound to the input argument value math.sqrt. Third,
the function body is executed. The first statement in the function body is a function
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definition statement, which creates a new function object, with a single local variable
x , and an outer-scope pointer to the binding table of twice. The new function object
is assigned to the local identifier g in the binding table of twice.

The second statement in the function body of twice is a return statement, with the
return value being g. Execution of this statement results in the function call expression
twice(math.sqrt) being evaluated to the function object of g, which is assigend to the
identifier f1 in the global binding table. After the execution of this statement, the
function object of g will not be erased by the garbage collector, because it is referred
to by the global identifier f1. Neither will the local binding table of twice be erased,
because it is referred to by the outer-scope pointer of the function object of g.

The memory structure when the call f1(625) is executed is shown in Fig. 6.5b.
The execution of f1 consists of three steps. First, a new binding table is constructed,
with one entry x . Second, the local identifier x is bound to the input integer object
625. Third, the function body is executed. There is only one statement in the function
body of f1, return f(f(x)), which refers to the identifiers x and f . In the execution of
this statement, x can be found in the local binding table, but f is missing. Python
follows the outer-scope pointer up to the binding table of twice, where the identifier
f is found, referring to the function object math.sqrt.
When the statement f2=twice(lambda x:x+1) is executed, the function twice is

called again, with a new local binding table being constructed, and a new local
funciton object g being created, whose outer-scope pointer points to the local binding
table of this call to twice. The return value g is then assigned to the identifier f2 in the
global binding table. Because the outer scope of f2 is the binding table of the second
execution of twice, with the input argument f being lambda x: x+1, the call to f2
results in two nested calls to the lambda function, rather than the function math.sqrt.

Exercises

1. Which of the following programs are correct? Why?

(a) returns the first power of 3 in a tuple.

def f(t):
for x in t:

if x%3 == 0:
break

(b) returns all powers of 3 in a tuple.

def f(t):
for x in t:

if x%3 == 0:
return x

(c) a function that takes a number argument and returns ‘+’ when the argument
is positive, and ‘-’ if the argument is negative.

def posneg(x):
if x>0:

return ‘+’
else:

return ‘-’
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(d) a function that takes a number argument and returns ‘+’ if the argument is
positive, ‘-’ if the argument is negative, and ’0’ otherwise.

def posneg(x):
if x>0:

return ‘+’
if x<0:

return ‘-’
return ‘0’

(e) a function that takes a number argument x and returns ‘A’ if x > 10, ‘B’ if
0 ≤ x ≤ 10, and ‘C’ if x < 0.

def f(x):
if x>10:

return ‘A’
if x>=0:

return ‘B’
return ‘C’

(f) a function that takes a number argument x and returns ‘A’ if x > 10, ‘B’ if
0 ≤ x ≤ 10, and ‘C’ if x < 0.

def f(x):
if x<0:

return ‘C’
if x>=0:

return ‘B’
if x>10:

return ‘A’

2. What is the output of the following program?

import math
def f(x):

return x*x*x
t=(math.sin , math.sqrt , lambda x: x+1, f)
for g in t:

print g(1.0)

3. Write a function f, which takes a function g and up to two additional arguments,
returning the return value of a call to g with the other arguments being passed as
its arguments. For example,

>>> f(math.sqrt , 25)
5.0
>>> f(math.pow , 5.0, 2)
25.0

4. write a functionmol, which can take either one, or two, or three arguments, return-
ing their product in float type. For example, mol(1.0) will return 1.0,mol(1.0, 1.5)
will return 1.5, and mol(2.0, −1.0, 3.0) will return 6.0.
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5. Write a function for the following tasks.

(a) turn the Monte-Carlo method for numerical integration, discussed in the
previous chapter, into a function;

(b) Write a function argmax(l), which takes a single tuple argument, and return
a tuple that consists of the maximum item in the type and its index. For
example, argmax((1, 3, 2, −1, 4, 6, −7, −8)) will return (6, 5);

(c) write a function prime(x), which takes an integer argument x and returns a
Boolean value indicating whether x is a prime number;

(d) write a function factors(x), which takes an integer argument x and returns
a tuple that contains all the factors of x ;

(e) write a function gcd(x ,y) that takes two integer arguments x and y, and
returns their greatest common divisor.

6. A leap year is a year that can be divided by 4, but not 100. Write a function
leap-year that does not take any input argument, and asks the user to input a start
year and an end year, outputting a tuple that contains all the leap year between
the start year and the end year, inclusive. For example, one execution of print
leap-year() can result in the following output.

Enter start year: 1998

Enter end year: 2009

(2004, 2008)



Chapter 7
Lists and Mutability

All the types that have been introduced up to this chapter, including the number types
in Chap.2, the string type in Chap. 3, the Boolean type in Chap.4, and tuple type in
Chap.5 and the NoneType in Chap.6, are immutable types. Once created, objects
that belong to immutable types cannot change their values.1

This chapter introduces the first mutable type: lists. Objects that belong to muta-
ble types can be changed after they are created. As the result, the value of a variable
that is bound to a mutable object can be changed without using an assignment state-
ment (i.e. changing the binding). On the other hand, once the value of an object
changes, all the identifiers that are bound to the object are affected, changing their
values accordingly. One can take advantage of this fact and modify a set of vari-
ables simultaneously. However, programming mistakes can also be introduced by
overlooking this fact.

7.1 Lists—A Mutable Sequential Type

The list type is the third sequential type introduced in this book. It is a container
type, and can be regarded as a mutable version of tuples. A list literal consists of a
comma-separated list of objects and identifiers, enclosed in a pair of square brackets.

1The values of variables that are bound to immutable objects can change, because the assignment
statement can change the binding between identifiers and objects. For example, when the statement
x = x + 1 or x+= 1 is executed, the identifier x is unbound from its previous value o1 and bound
to a new object o2, the value of which is o1 + 1. In this process, neither the object o1 nor the object
o2 changes, but the value of the variable x changes. In memory, the assignment statement changes
only the binding table, but not the number objects.
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>>> type ([1,2,3])
<type ‘list’>
>>> l=[1] # one item
>>> type(l)
<type ‘list’>
>>> l
[1]
>>> x=‘a’
>>> l=[x, True , None] # heterogeneous list
>>> type(l)
<type ‘list’>
>>> l
[‘a’, True , None]

List literals are different from tuple literals only in the enclosing brackets (i.e. []
instead of ()). As shown by the example above, unlike tuple literals, no comma is
needed in a list literal that contains only one item, because unlike round brackets,
the use of square brackets is unambiguous.

List Operators. The list type supports all the operations of strings and tuples,
including +, *, in, not in, getitem and getslice. In addition, the len function can also
be applied to lists.

>>> l=[1, ‘a’, False]
>>> l + [1.0, 1+2j]
[1, ‘a’, False , 1.0, (1+2j)]
>>> l * 2
[1, ‘a’, False , 1, ‘a’, False]
>>> ‘a’ in l
True
>>> ‘b’ in l
False
>>> 1 not in l
False
>>> 2 not in l
True
>>> l[0] #getitem
1
>>> l[0:2] #getslice
[1, ‘a’]
>>> l[-1]
False
>>> l[-2:]
[‘a’, False]
>>> len(l)
3
>>> len ([]) # empty list
0

Conversion Between Lists and Other Types. A list object can be converted
to a string, a Boolean object, or a tuple object. However, it cannot be converted to
numbers. Similar to tuples, the string conversion of a list object is its literal form.

>>> x=‘a’
>>> y=1
>>> z=True
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>>> l=[x, y, z]
>>> str(l)
"[‘a’, 1, True]"
>>> int(l) # cannot be converted numbers
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
TypeError: int() argument must be a string or a number

, not ’list’

Similar to the cases of tuples and strings, the Boolean conversion of a list is False
only when the list is empty, and True otherwise.

>>> bool ([])
False
>>> bool ([1,2,3])
True
>>> l=[None]
>>> bool(l)
True

The tuple conversion of a list object is a tuple object that contains exactly the
same elements in the same order.

>>> l=[1+2j, ‘abc’, None]
>>> t=tuple(l)
>>> t
((1+2j), ‘abc’, None)

On the opposite direction, string and tuple objects can be converted into list
objects. However, Boolean or number objects cannot be converted into list objects.
Similar to the tuple conversion, the list conversion of a string is a list that consists of
all the characters in the string, each as a list item, in their original order. Conversion
from tuples to lists is the reverse operation to the conversion from lists to tuples.

>>> l=[1+2j, ‘abc ’, None]
>>> t=tuple(l)
>>> t
((1+2j), ‘abc ’, None)
>>> list("hello!")
[‘h’, ‘e’, ‘l’, ‘l’, ‘o’, ‘!’]
>>> list((1, 7.5, 1+2j, ’abc ’, True , None))
[1, 7.5, (1+2j), ‘abc ’, True , None]
>>> list(True) # cannot be converted from Boolean

objects
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
TypeError: ‘bool ’ object is not iterable
>>> list (1.0) # neither numbers
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
TypeError: ‘float ’ object is not iterable
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7.1.1 List Mutation

There are two ways to make changes to a list object. The first is setitem and setslice,
which directly replace an item or a slice in a list object, respectively, and delitem and
delslice, which delete an item or a slice from a list object, respectively.

The syntax of the setitem operation takes the form of the assignment statement—
the = symbol is used for assigning the value on its right hand side to a ‘variable’ on
its left hand side. The only difference is that for the setslice operation, the ‘variable’
on the left hand side is an item from a list instead of an identifier.

>>> l=[1,2,3]
>>> l[0]=0
>>> l
[0, 2, 3]
>>> l[ -1]=10
>>> l
[0, 2, 10]

As shown by the examples above, the syntax for specifying a list item in the
setitem operation is the same as that in the getitem operation: an integer in a pair
of square brackets is used to indicate the index of the item. The meaning of the =
symbol for the setitem operation is consistent with the assignment statement (i.e.
assigning a value to an identifier). In the setitem operation, the list item plays the role
of an identifier, the value of which changes according to the assigment.

In memory, a list object can be treated as a sequence of binding slots, as shown on
the right hand side of Fig. 7.1. The functionality of = in both variable assignment and
setitem is to change bindings. The only difference is that, for the former, the change
is in a binding table, but for the latter, the change is in a list object.

Suppose that two identifiers are bound to the same list object. Once the list object
is modified, the value of both identifiers changes.

>>> x=[‘a’, ‘b’, ‘c’]
>>> y=x
>>> y[0]=‘A’
>>> y
[‘A’, ‘b’, ‘c’]
>>> x
[‘A’, ‘b’, ‘c’]

Figure7.1 illustrates the changes in memory when the setitem operation is per-
formed. Before y[0] = ‘A’ is executed, the identifiers x and y in the global binding
table point to the same list object. y[0] = ‘A’ modifies the first item of the list object
without affecting the global binding table. As a result, the value of both x and y is
modified.

The setslice operation has the same syntax as the setitem operation, except that
the left hand side of the = symbol specifies a slice from a list object rather than an
item, and the right hand side of the = symbol must be convertable to a list object.

>>> l = [1, 2, 3]
>>> l[0:2] = [-1, -2] # replaces a slice
>>> l
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Fig. 7.1 Memory structure for shared list modification

[-1, -2, 3]
>>> l[1:3] = [2, 3, 4] # replaces a slice with a

longer slice
>>> l
[-1, 2, 3, 4]
>>> l[-2:] = [-3] # replaces a slice with a shorter

slice
>>> l
[-1, 2, -3]
>>> l[1:2] = [] #deletes a slice
>>> l
[-1, -3]
>>> l[1:1] = [-2] # inserts a slice
>>> l
[-1, -2, -3]

In the example above, the slices specified by the left hand side of the = symbols are
replaced with the lists specified by the right hand side. Two cases are worth noting.
The first is l[1 : 2] = [], where the right hand side is an empty list — the effect of
replacing a non-empty slice with an empty list is to delete the corresponding slice.
The second is l[1 : 1] = [−2], where the left hand side is an empty slice— the effect
of replacing an empty slice with a non-empty list is to insert a list into the location
specified by the empty slice. As introduced in Chap. 3, the starting index of a slice
indicates the location before the corresponding item.

The setslice operation does not create any binding relationship between the list on
the left hand side of = and the list on the right hand side. As a result, two independent
lists remain independent after a setslice operation between them:

>>> l = [1, 2, 3]
>>> s = [‘a’, ‘b’]
>>> l[2:] = s
>>> l

http://dx.doi.org/10.1007/978-981-287-609-6_3
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[1, 2, ‘a’, ‘b’]
>>> l[3] = ‘c’
>>> l
[1, 2, ‘a’, ‘c’]
>>> s
[‘a’, ‘b’]

In the example above, the slice l[2 :]was set to the value of s. After this operation,
l is further changed. The change l[3] = ‘c’ modifies the new slice on l, but does not
change the value of s. The reason behind can be explained by Fig. 7.2, which shows
the mechanism of setslice. The new slice in e is a copy of s, rather than s itself. In
fact, the right hand side for setslice can also be immutable sequences, such as tuples
and strings.

>>> l = [1, 2, 3]
>>> t = (1.0, 2.0, 3.0)
>>> s = ‘abc’
>>> l[2:] = t
>>> l
[1, 2, 1.0, 2.0, 3.0]
>>> l[4:] = s
>>> l
[1, 2, 1.0, 2.0, ‘a’, ‘b’, ‘c’]

Fig. 7.2 Memory structure for the setslice operation
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The reverse operation of the assignment statement is the del statement, as intro-
duced in Chap.2. del can also be applied to list items and slices, indicating the delitem
and delsice operations, respectively.

>>> l = [1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> del l[0] # removes the first item
>>> l
[2, 3, 4, 5, 6, 7, 8, 9]
>>> del l[2:5] # removes a slice
>>> l
[2, 3, 7, 8, 9]
>>> del l[-1]
>>> l
[2, 3, 7, 8]

One final note about the setitem, setslice, delitem and delslice operations is that
they are applicable only to lists, which are mutable, but not to strings or tuples, which
are immutable.

>>> s=‘abc ’
>>> t=(1,2,3)
>>> s[0]=‘d’ # no string setitem
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
TypeError: ‘str ’ object does not support item

assignment
>>> t[1:3]=(0 ,) # no tuple setslice
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
TypeError: ‘tuple ’ object does not support item

assignment
>>> del s[1:] # no string delslice
Traceback (most recent call last):

File "<stdin >", line 1, in <module >

TypeError: ‘str ’ object does not support item deletion
>>> del t[-1] # no tuple delitem
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
TypeError: ‘tuple ’ object doesn ’t support item

deletion

Methods and attributes. The second way of modifying a list object is to call
its methods. A method is a special function, which is bound to a specific object,
performing operations on the object. The syntax of a method call is

<object >.<method name >(<arguments >)

A method call starts with an identifier, which represents the object, followed by
a dot (.), and then the name of the method that is bound to the object, and finally a
comma-separated list of arguments, enclosed in a pair of round brackets. The syntax
of a method call can be split into two parts, the first being the object and the dot, and
the second being the method name and the arguments. The second part is identical
to a function call, while the first half indicates that the method belongs to a specific
object.

http://dx.doi.org/10.1007/978-981-287-609-6_2
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Complex numbers have a method, conjugate, which takes no input arguments,
and returns the conjugate of the complex object. For example:

>>> a=1+2j
>>> b=3+4j
>>> a.conjugate ()
(1-2j)
>>> b.conjugate ()
(3-4j)

It can be seen from the example above that methods are object-specific: the con-
jugate methods bound to the complex numbers a and b give different return values.
Here the role of a and b is similar to that of an argument. For example, the built-in
function abs takes one input argument, and returns its absolute value. It gives differ-
ent return values when applied to different input arguments. If the conjugate method
werewritten as a global function, taking one complex argument and returning its con-
jugate, a.conjugate() would have been written as conjugate(a), with the same effect.
This is similar to a call to abs(x), where x is a number. However, since conjugate
applies to complex numbers only, it would be more elegant to define it as a method
that applies to complex objects. The definition of methods, and for underlying con-
nection between method-object correlation and argument-function correction, are
discussed in Chap. 10.

Intuitively, methods are type-dependent. The method conjugate applies to com-
plex numbers, but not to lists, strings or other types.

>>> l=[1,2,3]
>>> l.conjugate () # lists do not have the conjugate

method
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
AttributeError: ‘list ’ object has no attribute ‘

conjugate ’
>>> s=‘abc ’
>>> s.conjugate () # strings do not have the conjugate

method
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
AttributeError: ‘str ’ object has no attribute ‘

conjugate ’

In addition to methods, which are object-specific functions, objects can also have
attributes, which object-specific, but can be any type, including integers and strings.
The general syntax of accessing an attribute of an object is

<object >.<attribute >

Complex numbers have two attributes, real and imag, which specify the real and
imaginary parts of a complex number, respectively.

>>> a = 1 + 2j
>>> b = 3j
>>> a.real
1.0
>>> a.imag

http://dx.doi.org/10.1007/978-981-287-609-6_10
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2.0
>>> b.real
0.0
>>> b.imag
3.0

In the example above, the real attributes of the complex numbers a and b are
different, and specific to the corresponding objects. Similar to methods, attitudes are
type-specific, and the complex attributes real and imag do not apply to lists, tuples
or strings. Attributes and methods are two important concepts that are related to the
thinking of object oriented programming, which is introduced in Chap.10.

List modification methods. There are two commonly-used methods that add an
item to a list: append, which takes a single argument and adds it to the back of
a list, and insert, which takes two arguments specifying an index and a new item,
respectively, inserting the item into the list, so that the index of the new item after
the insertion is the specified index. Both methods are procedures, with a None return
value.

>>> l = [1, 2, 3]
>>> l.append (4)
>>> l
[1, 2, 3, 4]
>>> l.insert(0, 0)
>>> l
[0, 1, 2, 3, 4]
>>> l1 = l
>>> l.insert(3, ‘a’)
>>> l
[0, 1, 2, ‘a’, 3, 4]
>>> l1
[0, 1, 2, ‘a’, 3, 4]
>>> l.insert(-2, ‘b’)
>>> l
[0, 1, 2, ‘a’, ‘b’, 3, 4]
>>> l1
[0, 1, 2, ‘a’, ‘b’, 3, 4]

In the example above, the identifies l and l1 are bound to the same object. The
values of l1 changes after the insert and append methods are applied to l, showing
that the methods modify the list object itself. The effect of append(x) is the same as
that of the setslice operation l[len(l):len(l)]=x, while the effect of l.insert(i, x) is the
same as the setslice operation l[i:i]=[x].

A method that extends a list by concatenating it with another list is extend, which
takes a list argument, and concatenates it with the list object.

>>> l = [1, 2, 3]
>>> x = [4, 5, 6]
>>> l.extend(x)
>>> l
[1, 2, 3, 4, 5, 6]
>>> l[-1] = 0
>>> l
[1, 2, 3, 4, 5, 0]

http://dx.doi.org/10.1007/978-981-287-609-6_10
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>>> x
[4, 5, 6]

As the example above demonstrates, the extend method makes a copy of the
argument x , and updates the object l with the copy of x . A modification to the new
slice in l does not affect the value of x . The effect of l.extend(x) is the same as that
of the setslice operation l[len(l):len(l)] = x.

A method that deletes an item from a list is remove, which takes one argument,
and deletes the first occurrence of the argument from the list. If the input argument
is not in the list, a value error is reported.

>>> l = [1, 2, 3, 4, 5, 1]
>>> l.remove (1)
>>> l
[2, 3, 4, 5, 1]
>>> l.remove (5)
>>> l
[2, 3, 4, 1]
>>> l.remove (6)
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
ValueError: list.remove(x): x not in list

Another method that modifies a list is reverse, which reverses the order of the list.
The reverse method takes no arguments, and returns None.

>>> l = [1, 2, 3]
>>> l.reverse ()
>>> l
[3, 2, 1]

Another method that changes the order of a list is sort, which puts items in the
list in ascending order. Similar to reverse, the sort method takes no arguments and
returns None.

>>> l = [1, 5, 3, 4, 2, 7, 6, 8, 10, 9]
>>> l.sort()
>>> l
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

7.2 Working with Lists

The sequential type is the most commonly used container type in programming, and
mutability offers list versatility in their use. As the result, lists are one of the most
powerful tools in Python programming. This section discusses typical uses of lists,
and common mistakes to avoid when working with lists.
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7.2.1 Copying Lists

There are situations where a copy of a list object is needed. For example, when a
modified version of a list is requested, but the original list must be kept for further
uses, a copy of the original list can be made for the modified version. There are two
ways to obtain a copy of a list object, namely the list slicing operation and the copy
module.

The getslice operation for a list object makes a copy of a slice from the list object,
and returns the copy rather than a reference to the original slice. For example,

>>> l = [1, 3, 5, 7, 9]
>>> x = l[2:4]
>>> x
[5, 7]
>>> x[0] = 0
>>> x
[0, 7]
>>> l
[1, 3, 5, 7, 9]

In the example above, the value of l does not change when the value of x changes,
because x and l do not have direct binding relationships.

The memory structures of x and l is shown in Fig. 7.3. Note that copying a list or
sub list duplicates only the list structure, which is a sequence of binding links, but
does not duplicate the objects that are referred to by these links.

A simple way of copying a list is to slice the whole list. As introduced in Chap.3,
when both the start and the end indices are omitted in a getslice operation, the whole
sequence is taken as the resulting slice. This provides amore succinct way of copying
a list:

>>> l = [1, 3, 5, 7, 9]
>>> l1 = l[0:len(l)] # the whole list sliced and copied
>>> l2 = l[:] # a more succinct way of slicing a list
>>> l[0] = 0
>>> l1[1] = 0
>>> l2[2] = 0
>>> l
[0, 3, 5, 7, 9]

Fig. 7.3 Illustration of getslice for list objects

http://dx.doi.org/10.1007/978-981-287-609-6_3
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>>> l1
[1, 0, 5, 7, 9]
>>> l2
[1, 3, 0, 7, 9]

As shown by the example above, modifications to l, l1 and l2 do not affect each
other, because they are different copies of the same list object.

A second way of making a copy of a list object is using the copy module. The
module contains a function, copy, which takes a single argument, which is typically
a mutable container object, and returns a copy of the argument.

>>> import copy
>>> l = [1, 3, 5, 7, 9]
>>> l1 = copy.copy(l)
>>> l[0] = 0
>>> l
[0, 3, 5, 7, 9]
>>> l1
[1, 3, 5, 7, 9]

For an example where list copying is used, consider the problem of deciding
whether an integer is a palindrome number. A palindrome number is a number that
remains the same when the order of the digits in it is reversed. For example, 12321
and 1111 are palindrome numbers, but 123 is not a palindrome number. The function
palindrome below takes an integer argument and returns a Boolean value indicating
whether the argument is a palindrome number.

>>> def palindrome(n):
... l = list(str(n))
... r = l[:]
... r.reverse ()
... return l==r
...
>>> palindrome (12321)
True
>>> palindrome (1111)
True
>>> palindrome (123)
False

The palindrome function above works by converting the integer argument into a
string, so that each digit is converted into a character. Then it converts the string into
a list of all the digits in the integer. The digits are put into the reverse order bymaking
a copy of the list and reversing it. A comparison between the reversed version and
the original list determines whether the integer is a palindrome number.

Given that the slicing operation l[:: −1] makes a reverse copy of the list, the
palindrome function can be simplified as:

>>> def palindrome(n):
... l = list(str(n))
... r = l[::-1]
... return l==r

Further given that the slicing operation applies to strings also, the function can be
further simplified, without using a list.



7.2 Working with Lists 169

>>> def palindrome(n):
... s = str(n)
... r = s[::-1]
... return s==r

7.2.2 Lists as Items in Tuples and Lists

A list can be an item in a list or tuple, in which case it is called a sub list.

>>> l=[[1,2,3],[4,5,6],[7,8,9]]
>>> l[0] # sub list
[1, 2, 3]
>>> l[0][0] # sub list item
1
>>> l[1][ -1] # sub list item
6

A list of lists is called a nested list. When making a copy of a nested list, the sub
lists are shared by the two copies.

>>> l1=[[1,2,3],[4,5,6],[7,8,9],10]
>>> l2=l1[:] # copy first level
>>> l1 [3]=11 # change first level
>>> l1
[[1, 2, 3], [4, 5, 6], [7, 8, 9], 11]
>>> l2
[[1, 2, 3], [4, 5, 6], [7, 8, 9], 10]
>>> l2[2]=[10 ,11 ,12] # change first level
>>> l2
[[1, 2, 3], [4, 5, 6], [10, 11, 12], 10]
>>> l1
[[1, 2, 3], [4, 5, 6], [7, 8, 9], 11]
>>> l2 [0][0]=13
>>> l2
[[13, 2, 3], [4, 5, 6], [10, 11, 12], 10]
>>> l1
[[13, 2, 3], [4, 5, 6], [7, 8, 9], 11]

As can be seen from the example above, a copy of a nested list can lead to unex-
pected common changes in both copies. To avoid this, the function copy.deepcopy
can be used to copy nested lists recursively. The syntax is the same as copy.copy.

>>> l1=[[1,2,3],[4,5,6],[7,8,9],10]
>>> import copy
>>> l2=copy.deepcopy(l1)
>>> l2 [0][0]=13
>>> l2
[[13, 2, 3], [4, 5, 6], [7, 8, 9], 10]
>>> l1
[[1, 2, 3], [4, 5, 6], [7, 8, 9], 10]

As shown in the example above, l2 and l1 are fully independent after copy.deepcopy.
When copying a nested list, deep copying is preferred.
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The underlying mechanisms of copying and deep copying. The following
example is not practically useful, but can serve to illustrate the memory structures
of lists and copying.

>>> l=[1,2,3]
>>> t1 = (l, ‘a’, True)
>>> t1
([1, 2, 3], ‘a’, True)
>>> l1 = [l, l, 1.0, None]
>>> l1
[[1, 2, 3], [1, 2, 3], 1.0, None]

In the example above, t1 contains three items, including a list, a string and a
Boolean object. l1 contains four items, including two lists, a floating point number
and a None.

Thememory structures of l, t1 and l1 are shown in Fig. 7.4. The list object [1, 2, 3]
is shared by four different references, including a global identifier l, the first item
in the tuple t1, and the first and second items in the list l1. As a result, when it is
modified, l, t1 and l1 are affected simultaneously.

(continued from above)
>>> l[0] = 0
>>> l
[0, 2, 3]
>>> t1
([0, 2, 3], ‘a’, True)
>>> l1
[[0, 2, 3], [0, 2, 3], 1.0, None]
>>> t1 [0][1] = 0
>>> l
[0, 0, 3]
>>> t1
([0, 0, 3], ‘a’, True)

Fig. 7.4 Memory structure for list nested in tuples and lists
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>>> l1
[[0, 0, 3], [0, 0, 3], 1.0, None]
>>> l1 [1][2] = 0
>>> l
[0, 0, 0]
>>> t1
([0, 0, 0], ‘a’, True)
>>> l1
[[0, 0, 0], [0, 0, 0], 1.0, None]

(a)

(b)

Fig. 7.5 Effect of copy.copy and copy.deepcopy
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Note in the example above that although the tuple object t1 is immutable, the list
t1[0] can be modified. This is because a tuple memory object consists only of the
container structure, which is a sequence of binding slots. As shown in Fig. 7.4, the
binding links of t1 cannot be changed, but the objects bound by the links do not
belong to the tuple structure itself. Their mutability is decided by their respective
type.

Copying of t1 and l1 will yield more references to the same list object.

(continued from above)

>>> import copy
>>> t2 = copy.copy(t1)
>>> l2 = l1[:] # same as copy.copy(l1)
>>> t2 [0][1] = 1
>>> l2 [0][2] = 2
>>> l
[0, 1, 2]
>>> t1
([0, 1, 2], ‘a’, True)
>>> t2
([0, 1, 2], ‘a’, True)
>>> l1
[[0, 1, 2], [0, 1, 2], 1.0, None]
>>> l2
[[0, 1, 2], [0, 1, 2], 1.0, None]

In the example above, the five objects l, t1, t2, l1 and l2 share 7 references to the
same list object. The memory structures of l, t1 and t2 are illustrated in Fig. 7.5a. As
can be seen from the figure, t2 contains references to the same objects as t1 does.
The correlation between l2 and l1 is the same as that between t2 and t1.

In order to copy not only the tuple object t1, but also the objects contained
in the tuple object, the function copy.deepcopy can be used instead of copy.copy.
copy.deepcopy makes a deep copy of a container object by recursively following
binding links inside the container. Following the binding links recursively, all reach-
able objects in the container object are copied. For example,

>>> t3 = copy.deepcopy(t1)
>>> t3 [0][0] = 3
>>> l
[0, 1, 2]
>>> t1
([0, 1, 2], ‘a’, True)
>>> t3
([3, 1, 2], ‘a’, True)

When t3 is modified, l and t1 are not affected, because t3 contains its own copies
of all the sub items recursively, as shown in Fig. 7.5b.2 Deep copying of tuples, lists
and other container objects follows the same rules.

2Due to the caching of small numbers introduced in Chap.2, the integers 1, 2, 3, the string ‘a’ and the
object None are not copied. The figure is for illustration of a simple recursive copying mechanism.

http://dx.doi.org/10.1007/978-981-287-609-6_2
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7.2.3 Lists and Loops

Item iteration. Similar to tuples, list objects are iterable, they can be iterated through
by using a for loop.

>>> l1 = [‘a’, lambda x:x+1, None]
>>> for x in l1:
... print x, type(x)
...
a <type ‘str ’>

<function <lambda > at 0x1021d6f50 > <type ‘function ’>

None <type ‘NoneType ’>
>>> l2 = [1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> for x in l2:
... print x
...
1
2
3
4
5
6
7
8
9

The first for loop above prints a list of objects and their types, while the second
for loop above prints the range of integers from 1 to 9, as indicated by the list.
Iteration through a sequence of numbers is frequently needed in programming, and
Python provides a built-in function, range, which returns simple number sequences
as list objects to facilitate number iteration. The range function can take one, two or
three arguments. When a single argument n is given, the range function returns the
list [0, 1, ..., n − 1]. If n ≤ 0, an empty list is returned. When two arguments s and
e are given, the range function returns the list [s, s + 1, s + 2, ..., e − 1]. If s ≥ e,
an empty list is returned. When three arguments, s, e and step are given, the range
function returns the list [s, s + step, s + 2 · step ..., e′]. If step > 0, e′ is the largest
integer in the sequence that is smaller than e. If step < 0, e′ is the smallest integer
in the sequence that is larger than e. If step=0, an error is raised.

>>> range (5)
[0, 1, 2, 3, 4]
>>> range (20) # making a long sequence
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19]
>>> range (-10) # results in an empty sequence
[]
>>> range(1, 6)
[1, 2, 3, 4, 5]
>>> range(2, 30, 7)
[2, 9, 16, 23]
>>> range(1, -9, -2)
[1, -1, -3, -5, -7]
>>> range(1, 5, 0)
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Traceback (most recent call last):
File "<stdin >", line 1, in <module >

ValueError: range() step argument must not be zero

The range function is frequently used with the for loop. A for loop with a range
function can provide a simple and succinct way of repeating the same task multiple
times.

>>> for i in range (3):
... print "hello"
...

The program above prints the message “hello” 3 times, without making use of the
loop variable i .

The range function offers a new way to iterate through all the items in an iterable
object. Different from using a for statement to iterate through an iterable object
directly, the range function allows the use of a for statement to iterate through all the
indices from 0 to the length of a sequence object.

>>> l = [1, 5, 4, 2, 3]
>>> for x in l: # direct iteration
... print x
...
1
5
4
2
3
>>> for i in range(len(l)): # index iteration
... print l[i]
...
1
5
4
2
3

Index iteration allows flexible orders of iteration. For example, the code below
shows two ways to print the items of a list in the reverse order without modifying
the list, both by index iteration.

>>> l = [1, 5, 4, 2, 3]
>>> for i in range(len(l)):
... print l[len(l)-i-1]
...
3
2
4
5
1
>>> for i in range(len(l)-1, -1, -1): # [4, 3, 2, 1, 0]
... print l[i]
...
3
2
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4
5
1

The example below iterates through every second item in a list:

>>> l = [1, 5, 4, 2, 3]
>>> for i in range(0, len(l), 2):
... print l[i]
...
1
4
3

Index iteration also allows iterating through a half of a sequence object. For
example, consider the palindrome number problem again. Index iteration allows the
problem to be solved without converting the number into a list and making of copy
of the list. The solution is based on the observation that if the i th digit on the left is
the same as the i th digit on the right for all i , the corresponding number will be the
same after the digits are reversed. Based on symmetry, as long as the left half of a
list satisfies the condition above, the whole list satisfies the condition. The idea can
be implemented as searching for a digit that is different from its counterpart. If such
a digit is found, then the number is not a palindrome. Otherwise it is a palindrome.

>>> def palindrome(n):
... s = str(n)
... for i in range(len(s)/2):
... if s[i] != s[len(s)-i-1]: # mirror digits
... return False
... return True
...
>>> palindrome (12321)
True
>>> palindrome (1111)
True
>>> palindrome (123)
False

Enumeration. Python provides another built-in function for sequence iteration:
the enumerate function takes a sequence argument and returns the enumeration of
pairs of indices and the corresponding items in the sequence object. The enumerate
function is used with for loops, providing a third way of iterating through an iterable
object, by enumerating indices and items simultaneously.

>>> l = [‘a’, ‘b’, ‘c’]
>>> for (i, x) in enumerate(l):
... print ‘The {}th object in l in {}’. format(i+1,

x)
...
The 1th object in l in a
The 2th object in l in b
The 3th object in l in c

The for loop above makes a tuple assignment at each iteration, assigning the
current item in enumerate(l) to the tuple (i, x). As introduced in Chap.5, the tuple

http://dx.doi.org/10.1007/978-981-287-609-6_5
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assignment results in the variable i taking the value of the current index, and the
variable x taking the value of the current item in l.

For an example of using the enumerate function, consider again the problem of
finding the maximum value from a sequence of numbers, which was discussed in
Chap.5. Suppose that the sequence of numbers is represented by a tuple, and the
index of the maximum value must be returned in addition to the maximum value
itself. The function argmax below solves this problem.

>>> def argmax(t):
... mx = float(‘-inf ’)
... mi = 0
... for i, x in enumerate(t):
... if x > mx:
... mx = x
... mi = i
... return mx , mi
...
>>> argmax ([1,5,3])
5,1

The function argmax above takes a tuple argument and returns a tuple containing
the maximum value and its index. It works by iterating through the input tuple, keep-
ing the maximum value so far by mx , and the corresponding index of the maximum
value by mi at each iteration. mx and mi are updated simultaneously.

Note from the example above that similar to the assigned statement, in a return
statement, the brackets of a tuple can be omitted.

In summary, there are three ways to iterate through a sequence object using a
for loop, including to enumerate the items directly (item iteration), to enumerate the
indices using the range function (index iteration), and to enumerate both the indices
and the items using the enumerate function.

One further note on lists and loops is that, when a list is iterated through by using
a for loop, the content of the list can be modified. This can change the behavior of
the loop, and it is recommended to avoid such modifications. For example,

>>> def avoid():
... l = range (10)
... for x in l:
... print x
... l.pop(-1)
...
>>> avoid()
0
1
2
3
4

The program above prints 5 numbers only, even though the original list object
l contains 10 numbers. This is because in each loop iteration, the last item of l is
removed. The value of l after the execution is [0, 1, 2, 3, 4].

http://dx.doi.org/10.1007/978-981-287-609-6_5
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7.2.4 Lists and Function Arguments

Like other objects, list objects can be passed as arguments to functions, or taken as
return values. In the example below, the function duplicate takes a list argument and
modifies it by duplicating its content.

>>> def duplicate(l):
... l.extend(l)
...
>>> l1 = [1, 2, 3]
>>> duplicate(l1)
>>> l1
[1, 2, 3, 1, 2, 3]

In the example above, the global list l1 is passed as an argument to the function
duplicate. When the function call is evaluated, the local argument l is assigned the
value of l1. As a result, l and l1 are bound to the same list object. When l is modified
by calling the extend method of l, l1 is modified simultaneously.

The program below, however, does not change the global variable l1.

>>> def duplicate(l):
... l = l+l
...
>>> l1 = [1, 2, 3]
>>> duplicate(l1)
>>> l1
[1, 2, 3]

The example above contains a common programmingmistakewhenworkingwith
lists. The reason that the global vairable l1 is not modified is that, the assignment
statement l = l +l does not modify the object l1.When the function call is evaluated,
the local parameter l is first assigned the value of l1, and bound to the same object.
However, when the statement l = l + l is executed, the local identifier l is assigned
to a new object, which is the concatenated list l + l = l1+ l1. After the assignment
statement is executed, the local variable l and the global variable l1 are bound to
two different objects, without l1 being modified. It is worth remembering that the
only ways to modify a list object include the setitem, setslice, delitem and delslice
operations, and calls to listmodificationmethods such as append, extend and remove.
The assignment statement changes the binding table but does not modify objects.

List parameters. Python allows the definition of a function that can take an
arbitrary number of optional arguments. This is convenient when one does not know
how many argument will be specified in a function call, but needs the function to
handle a variable number of arguments. This mechanism is allowed by defining a
special list parameter with a preceding * symbol. For example, consider extending
the function sum in Chap.6, which takes two or three arguments and returns their
sum, into a function that takes two or more arguments and returns their sum.

>>> def sum(x, y, *z):
... s = x+y # first two argument
... for i in z: # third argument on words
... s += i

http://dx.doi.org/10.1007/978-981-287-609-6_6
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... return s

...
>>> sum(1, 2)
3
>>> sum(1, 2, 3)
6
>>> sum(1, 2, 5, 6, 7)
21

The function sum above takes two or more arguments, putting any argument
beyond the second argument into a list, and assigning the list to the parameter z. The
function body performs standard summation, with the sum s being initialized to the
value x + y, and updated incrementally with each element in z.

At most one special list parameter can be put into the definition of a function, and
it must be put after all normal parameters (including those with default valves). In
a function call, all the normal and default arguments are assigned their values first,
with any additional arguments specified in the function call being put into a list in
their order, and then assigned to the special list argument. A special list argument
can be passed on from one function to another. For example:

>>> def f(x,*y):
return x+g(*y)

>>> def g(*x):
print len(x), ‘arguments passed!’
return x[0]

>>> f(1,2,3)
2 arguments passed!
3
>>> f(1,2)
1 arguments passed!
3

In the example above, f calls g with *y, passing all the extra arguments to g. In
g, these arguments are put into the list x , and the first is returned. In fact, any list can
be passed as arguments in function calls. By adding a preceding *, a list is expanded
to fill individual arguments. For example:

>>> def f(x,y):
return x+y

>>> l=[1,2]
>>> f(*l)
3

In the example above, the list l is expanded in the function call f (∗l), with its two
elements being assigned to x and y, respectively.

7.2.5 Lists and Function Return Values

A list object can be constructed in the execution of the function body during a function
call, and taken as the return value. For example, consider a function that takes a list of



7.2 Working with Lists 179

numbers as the only argument, and returns a list containing all the positive numbers
in the list. The function can be written using the idea of generalized summation,
with the output s being initialized as an empty list, and incrementally extended by
iterating over all the items of the argument.

>>> def findpositive(l):
... s = []
... for x in l:
... if x>0:
... s.append(x)
... return s
...
>>> l1 = findpositive ([1, -1, 2, -3, 5, -7])
>>> l2 = findpositive ([1, 2, 3])
>>> l3 = findpositive ([-1])
>>> l1
[1, 2, 5]
>>> l2
[1, 2, 3]
>>> l3
[]

In the program above, the function findpositive iterates through the items of l. At
each iteration, if the current item is positive, it is appended to the output s; otherwise
no action is taken.

As introduced in the previous chapter, in memory, each call to findpositive con-
structs a new local scope, with its own binding table. When the function body is
executed, a new list object is created by the first statement s = [], and bound to
the local identifier s. s is updated through the execution of the for statement in the
function body, and taken as the return value of the function call.

The three calls to findpositive in the code return three different list objects, which
are bound to the global identifiers l1, l2 and l3, respectively. After the function calls,
the local binding tables of the function calls will be removed by the garbage collector.
However, the list objects that are returned by the function calls will not be removed,
because they are still bound to the global identifiers l1, l2 and l3.

As another example of lists and return values, the function negate below takes a
list argument and returns a list object that contains the negations of the items of the
argument. It works by making a copy of the list argument, and then iterating through
the copy and negating each value.

>>> def negate(l):
... s = l[:]
... for i in range(len(s)):
... s[i] = -s[i]
... return s
...
>>> negate ([1, -2, 3, -5, 0])
[-1, 2, -3, 5, 0]

There are two things to note about the negate function above. First, the for loop
must iterate through the indices of s instead of the items of s directly, because a
modification to s requires the use of item indices to specify the items to be changed.
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Second, the method behind findpositive, which initializes an empty return value list,
and then incrementally adds items to the list, can be used for negate also. The negate
function above takes a different approach, which initializes the list return value as a
copy of the list argument, and incrementally modifies it. This is also a common way
of thinking when working with lists.

7.2.6 Initializing a List

There are four common ways to initialize a list. The first is to make an empty list
(i.e. []); the second is to make a list of length N , consisting of the same constant x ,
for which the expression [x] ∗ N can be used; the third is to make a list that contains
a number sequence, for which the range function can be used; the fourth is to make
a copy of a given sequence, for which a copying operation can be used. If the list to
be initialized is more complex then the cases above, it should be initialized using a
specific loop.

On initializing a list of constants, there is one common mistake to avoid. If the
constant item is mutable, then the list should not be initialized using the [x] ∗ N
expression, because in that way all the items in the list are bound to the samemutable
object. For example,

>>> l = [[]]*3
>>> l
[[], [], []]
>>> l[0]. append (1)
>>> l
[[1], [1], [1]]

As shown by the example above, when one item in the list is changed, all the other
items are affected. To avoid such a mistake, one can use the expression [x] ∗ N only
with immutable constants x .

A list of empty lists can be initialized using a simple loop.

>>> l = []
>>> for i in range (3): # repeat 3 times
... l.append ([]) # every time [] makes a new list
...
>>> l
[[], [], []]
>>> l[0]. append (1)
>>> l
[[1], [], []]

When initializing a list bymaking a copy of a sequence object, the given sequence
object can be a list, a tuple or other sequence types. In the case of a list, the list copying
techniques introduced earlier in this chapter can be used. In the case of a tuple, the
list function converts a tuple into a list by making a shallow copy of the tuple.

>>> t = (1, 2, 3)
>>> l = list(t) # initialization from tuple
>>> l
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[1, 2, 3]
>>> s ="123" # initialization from string
>>> l = list(s)
>>> l
[’1’, ’2’, ’3’]

Sometimes, however, the input sequence contains mutable items, and it can be
necessary to use copy.deeepcopy to copy the sequence recursively.

7.2.7 Lists and Sequential Data Structures

Data structure is an important concept in programming; it refers to the organization
of complex data. Tuples and lists by themselves are data structures, representing a
sequential way of organizing data, with items being accessed by their indices. There
are other common types of sequential data structures that can be represented by lists.

The stack is a sequential data structure that allows only two types of operations:

• Push, which adds an item onto the top of a stack;
• Pop, which removes the item on the top of a stack, returning its value.

The stack is a commonly used data structure in computer science. It is special in
is that items must be processed in a last-in-first-out (LIFO) order. The stack can be
used to model a pile of books in a container, and a sequence of nested function calls,
such as the one shown in Table6.1 in Chap.6.

Stacks can be represented by a list in Python. The program stack_fun.py below
contains two functions, push and pop. The push function takes two arguments, repre-
senting a stack and an item, respectively, pushing the item onto the stack. The return
value of the function is None. The pop function takes a stack argument and pops the
top of the stack, returning its value.

[stack_fun.py]
def push(l, s):

l.append(s)

def pop(l):
return l.pop(-1)

The program below demonstrates the LIFO behavior of a stack.

>>> from stack_fun import *
>>> s = [] # BOTTOM=TOP
>>> push(s, 0) # BOTTOM , 0=TOP
>>> push(s, 1) # BOTTOM , 0, 1=TOP
>>> push(s, 2) # BOTTOM , 0, 1, 2=TOP
>>> print pop(s) # BOTTOM , 0, 1=TOP
2
>>> print pop(s) # BOTTOM , 0=TOP
1
>>> push(s, 3) # BOTTOM , 0, 3=TOP
>>> print pop(s) # BOTTOM , 0=TOP

http://dx.doi.org/10.1007/978-981-287-609-6_6
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3
>>> push(s, 4) # BOTTOM , 0, 4=TOP
>>> push(s, 5) # BOTTOM , 0, 4, 5=TOP
>>> print pop(s) # BOTTOM , 0, 4=TOP
5
>>> print pop(s) # BOTTOM , 0=TOP
4
>>> print pop(s) # BOTTOM=TOP
0

A queue is a sequential structure that allows only two types of operations:

• EnQueue, which adds an item to the back of a queue;
• DeQueue, which removes the item in the front of a queue, returning its value.

In contrast to a stack, items of a queue must be processed in a first-in-first-out
(FIFO) order. The queue can be used tomodel a line formovie tickets, and a sequence
of instructions to be executed in a Python program.

Similar to stacks, queues can be represented by a list in Python. The queue_fun.py
below contains two functions, enqueue and dequeue. The enqueue function takes two
arguments representing a queue and an item, respectively, pushing the item into the
queue. The return value of the function is None. The dequeue function takes a queue
argument and pops the front of the queue, returning its value.

def enqueue(l, s):
l.append(s)

def dequeue(l):
return l.pop(0)

The program below demonstrates the FIFO behavior of a queue.

>>> from queue_fun import *
>>> q = [] # FRONT=BACK
>>> enqueue(q, 0) # FRONT=0, BACK
>>> enqueue(q, 1) # FRONT=0, 1, BACK
>>> enqueue(q, 2) # FRONT=0, 1, 2, BACK
>>> print dequeue(q) # FRONT=1, 2, BACK
0
>>> print dequeue(q) # FRONT=2, BACK
1
>>> enqueue(q, 3) # FRONT=2, 3, BACK
>>> print dequeue(q) # FRONT=3, BACK
2
>>> enqueue(q, 4) # FRONT=3, 4, BACK
>>> enqueue(q, 5) # FRONT=3, 4, 5, BACK
>>> print dequeue(q) # FRONT=4, 5, BACK
3
>>> print dequeue(q) # FRONT=5, BACK
4
>>> print dequeue(q) # FRONT=BACK
5

The priority queue is a sequential data structure that allows only two operations,
EnQueue and DeQueue, with the EnQueue operation inserting an item into a
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priority queue, and the DeQueue operation removing the item with the highest
priority from the priority queue, returning its value. Different from both stacks and
queues, for which the removing order is dependent on the inserting order, priority
queues determine the removing order solely based on the priority of items. Items are
processed in the highest-priority-first-out order.

A priority queue can be represented by a list, organized in a heap structure. Here
a heap does not order all items by their priority, but organizes items in such a way
that the item with the highest priority is always in the front, and it is highly efficient
to find the item with the next highest priority when the current front of the priority
queue is removed.

Python provides a module, heapq, which contains two operations that correspond
to the EnQueue and DeQueue operations for a priority queue, respectively:

• heappush(h,x), which takes two arguments representing a heap and an item, respec-
tively, pushing the item onto the heap. The function returns None.

• heappop(h), which takes a heap argument, removes the front item of the heap, and
returns its value.

The heapq module treats a numerically smaller item as having a higher priority.
The code below demonstrates the highest-priority-first-out behavior of a priority
queue.

>>> import heapq
>>> h = []
>>> heapq.heappush(h, 1) # highest priority =1
>>> heapq.heappush(h, 5) # highest priority =1
>>> heapq.heappush(h, 2) # highest priority =1
>>> print heapq.heappop(h) # 1 popped
1
>>> heapq.heappush(h, 3) # highest priority =2
>>> heapq.heappush(h, 4) # highest priority =2
>>> print heapq.heappop(h) # 2 pop
2
>>> print heapq.heappop(h) # 3 pop
3
>>> print heapq.heappop(h) # 4 pop
4
>>> heapq.heappush(h, 0) # highest priority =0
>>> print heapq.heappop(h) # 0 pop
0
>>> print heapq.heappop(h) # 5 pop
5

Exercises

1. What is the value of l after the following programs are executed?

(a) List in tuple

l = [1, 2, 3]
t = [l, ’a’]
t[0] = 0
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(b) List in function

def f(l):
l[0] = 0

l = [1, 2, 3]
f(l)

(c) List and function

def f():
l[0] = 0

l = [1, 2, 3]
f()

(d) List in function

def f(l):
l = [2, 3, 4]

l = [1, 2, 3]
f(l)

(e) What are the values of x and y after the following code is executed?

def myappend(l):
l.append (1)
return l

x = [1, 2]
y = myappend(x)
y.append (3)

2. Which of the following programs are correct?

(a) Sum up an arbitrary number of numbers.

def sum(x, y=0, *z):
s = x+y
for i in z:

s += i
return s

(b) Sum up an arbitrary number of numbers.

def sum(x, *y, *z):
s = x
for i in y+z:

s += i
return s

(c) Sum up an arbitrary number of numbers.

def sum(x, *y, z=0):
s = x+z
for i in y:

s += i
return s

(d) Append the number 1 to the list l.

l = l.append (1)
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(e) Return the list [0, 1, 2, 3, 4].
def f():

for i in range (5):
return i

3. Write a function f, which takes a function g as the first argument, and an arbitrary
number of additional arguments, returning the return value of a function call to g
with the other arguments to f being the arguments. For example,

>>> f(math.sqrt , 49)
7.0
>>> f(lambda x, y, z: x + y + z, 1, 2, 3)
6
>>> f(math.log , math.e)
1.0
>>> f(math.log , 100, 10)
2.0

Compare the function with the answer to question 3 in Chap. 6.
4. Write a function that takes a list of numbers as the only argument and returns a

list of numbers that contains

(a) all the multiples of 3 in the argument;
(b) the second power of each item in the argument;
(c) the items in the arguments, with only one instance from each consecutive

run of the same number. (e.g. [1,2,2,3,3,3,4], [1,2,3,4])

5. Write a function that takes a list as the only argument and returns

(a) the number of odd items in the list;
(b) the average of all the items in the list;
(c) the sum of squared items in the list.

6. The built-in function zip takes two list arguments, and returns a list that contains
zipped pairs of corresponding elements in the input arguments.

>>> zip([1, 2, 3],[‘A’, ‘C’, ‘E’])
[(1, ‘A’), (2, ‘C’), (3, ‘E’)]

Write a function, unzip, that takes a list of pairs and performs the reverse function
to zip.

http://dx.doi.org/10.1007/978-981-287-609-6_6


Chapter 8
Sequences, Mappings and Sets

Several sequential data structures have been introduced in this book, including
strings, tuples, lists, and structures that can be implemented using lists, such as
stacks, queues and priority queues. This chapter further gives a set of commonly
used methods for sequential types, before moving on to two typical container data
structures that are not sequential: dicts and sets. While dicts represent unordered
mappings from keys to values, a set represents an unordered container of immutable
objects. Both dicts and sets are mutable. This chapter finishes by introducing a set
of bitwise operators, which enable the implementation of sets using non-negative
integers.

8.1 Methods of Sequential Types

The previous chapter has introduced a set ofmethods for listmodification. In addition
to these methods, there is another set of methods that return information about a list
object without modifying it. List information methods typically apply to immutable
sequential objects, such as strings and tuples, also. This section introduces common
methods for sequential types, and in particular for strings, by categorizing them
according to the functionality.

One commonly-used method is index, which takes one argument and returns the
index of the first occurrence of the argument in the sequence. If the argument is not
in the sequence, a value error is reported.

>>> l = [1, 2, 3]
>>> l.index (2)
1
>>> l.index (4)
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
ValueError: 4 is not in list
>>> t = (1.0, 2.5, 3.3, 2.5)
>>> t.index (2.5)
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1
>>> t.index (3.0)

Traceback (most recent call last):
File "<stdin >", line 1, in <module >

ValueError: tuple.index(x): x not in tuple
>>> s = "abcdefgfedcba"
>>> s.index(‘c’)
2
>>> s.index(‘cba ’)
10
>>> s.index(‘h’)
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
ValueError: substring not found

As shown in the example above, the index method for strings can also take a string
argument that consists of more than one characters, returning the index of the first
character in the string if the argument is a sub string.

Another useful sequence information method is count, which takes one argu-
ment and returns the number of occurrences of the argument in the sequence. If the
argument does not occur in the sequence, 0 is returned.

>>> t = (‘2’, ‘3’, ‘5’, ‘7’, ‘3’, ‘5’, ‘6’, ‘3’, ‘2’)
>>> t.count(‘3’)
3
>>> t.count (3)
0
>>> t.count(‘1’)
0
>>> s = ‘exciting ’
>>> s.count(‘i’)
2
>>> s.count(‘it’)
1

As shown by the example above, the string method count can also take a string
argument that consists of more than one characters.

As a sequence type for I/O, the string type has a number of useful methods that
the tuple and list types do not have. String methods can be classified into two basic
categories. The first category returns information about a string, and the second
category formats a string. Because string objects are immutable, string formatting
methods return a copy of the string object, rather than modifying the object in place.

A set of commonly-used string information methods include:

• isupper(), which takes no arguments and returns True if there is at least one cased
character in the string and all cased characters in the string are in upper case, and
False otherwise;

• islower(), which takes no arguments and returns True if there is at least one cased
character in the string and all cased characters in the string are in lower case, and
False otherwise;

• isalpha(), which takes no arguments, and returns True if the string is non-empty
and all the characters in the string are alphabetic, and False otherwise;
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• isdigit(), which takes no arguments, and returns True if the string is non-empty
and all the characters in the string are digits, and False otherwise;

• isspace(), which takes non arguments, and returns True if the string is non-empty
and all the characters in the string are whitespaces (e.g. spaces, tabs and new lines),
and False otherwise.

>>> s1 = ‘abcdef’
>>> s2 = ‘A1’
>>> s3 = ‘ABC’
>>> s4 = ‘__name__ ’
>>> s5 = ‘hello!’
>>> s6 = ‘name@institute ’
>>> s7 = ‘12345’
>>> s8 = ‘123 456’
>>> s9 = ‘’
>>> s10 = ‘’
>>> s1.isupper ()
False
>>> s2.isupper ()
True
>>> s3.isupper ()
True
>>> s8.isupper ()
False
>>> s9.isupper ()
False
>>> s10.isupper ()
False
>>> s1.islower ()
True
>>> s4.islower ()
True
>>> s5.islower ()
True
>>> s1.isalpha ()
True
>>> s2.isalpha ()
False
>>> s7.isalpha ()
False
>>> s8.isalpha ()
False
>>> s10.isalpha ()
False
>>> s1.isdigit ()
False
>>> s4.isdigit ()
False
>>> s6.isdigit ()
False
>>> s7.isdigit ()
True
>>> s8.isdigit ()
False
>>> s9.isdigit ()
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False
>>> s8.isspace ()
False
>>> s9.isspace ()
True
>>> s10.isspace ()
False

A set of string information methods that search for a sub string includes:

• rindex(s), which takes a string argument s and returns the last occurrence of the
argument in the string. If the string argument contains more than one characters,
the index of the first character is returned. If the string argument is not a sub string
of the string, a value error is reported. rindex is the counterpart of index for string
objects, returning the first occurrence of the sub string from the right, rather than
from the left.

• find(s), which takes a string argument s and returns the first occurrence of the
argument in the string. If the string argument contains more than one characters,
the index of the first character is returned. If the string argument is not a sub string
of the string, find returns –1. find can be treated as an alternative to index for string
objects, with the difference being the responce when the string argument is not a
sub string: while the former returns –1, the latter raises a value error.

• rfind(s), which takes a string argument s and returns the last occurrence of the
argument in the string. If the string argument contains more than one characters,
the index of the first character is returned. If the string argument is not a sub string
of the string, rfind returns –1. rfind is the counterpart of find, returning the first
occurrence of the string argument from the right, rather than from the left.

>>> s = ‘abcdefdefabc ’
>>> s.index(‘abc ’)
0
>>> s.find(‘def ’)
3
>>> s.rfind(‘de ’)
6
>>> s.rindex(‘a’)
9
>>> s.index(‘abd ’)
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
ValueError: substring not found
>>> s.rfind(‘abd ’)
-1

The index, rindex,find and rfindmethods can takeoptional arguments that specify a
slice of the string inwhich the sub string is looked for. This is achieved by twooptional
arguments, indicating the start index and the end index of the slice, respectively. The
locations of the slicing indices are the same as those by the getslice operations. In
case only the start index is specified, the slice ends at the end of the string.
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>>> s = ‘abcabcabcdefdefabc ’
>>> s.index(‘abc’, 3) # search s[3:]
3
>>> s.find(‘abc’, 5, -2) # search s[5:-2]
6

Aset of convenientmethods for checking the beginning and endof a string include:

• startswith(s), which takes a string argument s and returns True if the string starts
with the argument, and False otherwise;

• endswith(s), which takes a string argument s and returns True if the string ends
with the argument, and False otherwise.

>>> s = ‘abcdefghi ’
>>> s.startswith(‘a’)
True
>>> s.startswith(‘abc’)
True
>>> s.endswith(‘d’)
False
>>> s.endswith(‘hi’)
True

The methods startswith and endswith can also take a tuple of strings as the argu-
ment, in which case the return value is True if the string starts with any string in the
tuple, and False otherwise.

>>> s = ‘abcdefghi ’
>>> s.startswith((‘abc ’, ‘def ’))
True
>>> s.startswith((‘a’, ‘b’, ‘c’))
True
>>> s.endswith((‘def ’, ‘abc ’))
False
>>> s.endswith((‘ghi ’, ‘hi ’, ‘i’))
True

A set of string formatting methods that modify the cases of cased characters
includes:

• upper(), which takes no arguments and returns a copy of the string object with all
cased characters converted to the upper case;

• lower(), which takes no arguments and returns a copy of the string object with all
cased characters converted to the lower case;

• swapcase(), which takes no arguments and returns a copy of the string object with
all upper-case characters converted into the lower case, and vice versa.

>>> s = ‘Abc!’
>>> s.upper()
‘ABC!’
>>> s.lower()
‘abc!’
>>> s.swapcase ()
‘aBC!’
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A set of string formatting methods that adds or removes whitespaces on the ends
of a string includes:

• ljust(x), which takes an input argument s that specifies a length, and returns a copy
of the string left justified in a string of the specified length. Spaces are padded on
the right if the length is longer than the length of the string, while no truncation is
performed if the length is smaller than the length of the string.

• rjust(x), which takes an input argument s that specifies a length, and returns a copy
of the string right justified in a string of the specified length. Spaces are padded
on the left if the length is larger than the length of the string, while no truncation
is performed if the length is smaller than the length of the string.

• lstrip(), which takes no arguments and returns a copy of the stringwithwhitespaces
on the left being stripped.

• rstrip(), which takes no arguments and returns a copy of the stringwithwhitespaces
on the right being stripped.

• strip(), which takes no argument and returns a copy of the string with whitespaces
on both sides being stripped.

>>> s = ‘abc’
>>> s.ljust (5)
‘abc ’
>>> s.rjust (6)
‘ abc’
>>> s.ljust (2)
‘abc’
>>> s = ‘ abc\n\t’
>>> s
‘ abc\n\t’
>>> s.lstrip ()
‘abc\n\t’
>>> s.rstrip ()
‘abc’
>>> s.strip()
‘abc’

The methods above can be generalized to insert or strip arbitrary characters on
the ends of a string. In particular, ljust and rjust can take an additional argument
that specifies a padding character, while lstrip, rstrip and strip can take an additional
argument that specifies a set of characters to be stripped.

>>> s = ‘123’
>>> s.ljust(5, ‘0’) # pad ‘0’
‘12300’
>>> s.rjust(6, ‘-’) # pad ‘-’
‘---123’
>>> s = ‘aabcdceft ’
>>> s.lstrip(‘a’) # strip ‘a’
‘bcdceft ’
>>> s.lstrip(‘bac’) # the set {‘b’, ‘a’, ‘c ’}
‘dceft’
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>>> s.rstrip(‘ag’) # the set {‘a’, ‘g ’}
‘aabcdceft ’
>>> s.strip(‘gabf’) # {‘g’, ‘a’, ‘b’, ‘f ’}
‘cdceft’

A method that splits a string into a list of sub strings is split, which takes a single
argument specifying the deliminator, and returns the list that results from the splitting.

>> s = ‘1 2 3’
>>> s.split(‘’)
[‘1’, ‘2’, ‘3’]
>>> s = ‘1<2<3’
>>> s.split(‘<’)
[‘1’, ‘2’, ‘3’]
>>> s = ‘1==2==3’
>>> s.split(‘=’)
[‘1’, ‘’, ‘2’, ‘’, ‘3’]
>>> s.split(‘==’)
[‘1’, ‘2’, ‘3’]
>>> s = ‘1!=2!=3’
>>> s.split(‘!=’)
[‘1’, ‘2’, ‘3’]

As shown by the example above, an empty string results in the splitting of two
consecutive deliminators, and a deliminator can be an arbitrary string that contains
one or more characters.

The input deliminator is optional; when it is not specified, all consecutive runs of
whitespace characters are taken as deliminators.

>>> s = ‘ 1 2\t\t3\n4’
>>> s
‘ 1 2\t\t3\n4’
>>> s.split()
[‘1’, ‘2’, ‘3’, ‘4’]

The reverse method to split is join, which takes a list argument and joins the list
into a string with the string being the concatenator.

>>> s = ‘’
>>> s.join([‘1’, ‘2’, ‘3’])
‘1 2 3’
>>> l = [‘abc’, ‘d’, ‘ef’]
>>> ‘--’.join(l)
‘abc --d--ef’
>>> ‘-’.join([1, 2, 3])
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
TypeError: sequence item 0: expected string , int found

As shown by the examples above, the split method returns a list of strings, and
a list of strings should be used as the argument to join. Any other list items are not
allowed by the join method, and no implicit conversion is performed.

Using split and join, one can replace all occurrences of a sub string in a string with
another string. For example, the following code replaces all occurrences of ‘abc’ in
a string into ‘—’:
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>>> s1 = ‘abc’
>>> s2 = ‘---’
>>> s = ‘abcdefabcghiabc ’
>>> s2.join(s.split(s1))
‘---def ---ghi ---’

Python provides a method, repalce, for sub string replacement directly. It takes
two string arguments, specifying the substring to be replaced and the replacement
string, respectively, and returns a copy of the string after replacement.

>>> s = ‘abcdefabcghiabc ’
>>> s.replace(‘abc’, ‘---’)
‘---def ---ghi ---’

replace allows an additional argument that specifies a count, so that the first
occurrences of the sub string up to the count are replaced.

>>> s = ‘abcdefabcghiabc ’
>>> s.replace(‘abc ’, ‘---’, 1)
‘---defabcghiabc ’
>>> s.replace(‘abc ’, ‘---’, 2)
‘---def ---ghiabc ’

A final string formatting method is format, which is an alternative to the string
formatting expression introduced in Chap.3. The method is bound to a pattern string,
and takes arguments that fill pattern fields in the string. A pattern field is formed by
a pair of curly brackets, and contains either a number specifying the index of the
corresponding argument, or a keyword to be filled by a keyword argument. For
example,

>>> ‘{0} + {1} = {2}’. format(1, 2, 1+2)
‘1 + 2 = 3’
>>> ‘Hello , {0}’. format(‘Python ’)
‘Hello , Python ’
>>> ‘{2}-{0}-{1}’. format(‘abc ’, ‘def ’, ‘ghi ’)
‘ghi -abc -def ’
>>> ‘{x}-{y}-{0}’. format(‘ghi ’, x=‘abc ’, y=‘def ’)
‘abc -def -ghi ’

In the example above, the last method call contains two keyword arguments, x and
y, which fill the keyword fields {x} and {y}, respectively. Note that similar to other
function calls, keyword arguments must be placed after non-keyword arguments.

If the arguments are sequentially filled, the indics in the pattern fields can be
omitted.

>>> ‘{} + {} = {}’.format(1, 2, 3)
‘1 + 2 = 3’

Formatting specifications can be given to each pattern field by using ‘:<pattern>’,
where <pattern> follows the pattern syntax in string formatting expressions. For
example,

http://dx.doi.org/10.1007/978-981-287-609-6_3
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>>> ‘{0:d} + {1:.2f} = {2}’.format(1, 2.0, 1+2.0)
‘1 + 2.00 = 3.0’
>>> s = ‘{0:d} + {1:.2f} = {x:s}’
>>> s.format(1, 2, x=str (1+2))
‘1 + 2.00 = 3’

In the example above, ‘:d’, ‘:.2f’ and ‘:s’ are used to specify the format of an
integer, a floating point number with 2 digits after the decimal point and a string,
respectively. Formatting specifications can be used for keyword and non-keyword
arguments.

If there are too few arguments, an error will be raised. If there are too many
arguments, the first ones will be used to fill the pattern string.

>>> s=‘{} + {} = {}’
>>> s.format (1)
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
IndexError: tuple index out of range
>>> s.format(1, 2, 3, 4)
‘1 + 2 = 3’

There is a built-in function, format(v,s), which takes a value v and a pattern string
s as its input arguments, and return a string by calling s.format(v).

>>> format (3.1,‘.2f’)
‘3.10’

The methods and functions above are frequently used for sequential types, and
this section categories them according to the functionality and return type. There are
more methods for sequential types. The Python documentation is a useful reference
for looking for a pre-defined function before writing one custom function.

8.2 Dicts—A Mutable Mapping Type

The dict type is a container type. Similar to lists, dict objects are mutable. On
the other hand, unlike lists and tuples, which are sequential containers, dicts are
associative containers, which represent mappings from keys to values. Intuitively,
dict objects resemble dictionaries, which map words to their meanings.When a word
is looked up in a dictionary, it is used as a key for finding the corresponding value,
which is the entry explaining the word. Dicts generalize the definitions of keys and
values, and are useful for mapping student IDs to their GPAs, looking up the price
of a stock given a company name, and other key-value associations where keys are
discontinuous and distinct.

Formally, a dict object consists of a set of (key, value) pairs, which are items. A key
must be an immutable object, while a value can be any object. The most important
operation for a dict object is lookup, which returns the corresponding value given a
key. As a result, keys must be distinct in a dict object, but values do not have to be
distinct.
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A dict literal consists of a comma-separated list of key: value pairs, enclosed in
a pair of curly brackets.

>>> d = {1: ‘a’, 2: ‘b’, 3: ‘c’}
>>> d
{1: ‘a’, 2: ‘b’, 3: ‘c’}
>>> type(d)
<type ‘dict’>
>>> d = {1.0: 1, True: 1+2j, None: ‘abc’, (1,2): False}
>>> d
{(1, 2): False , 1.0: (1+2j), None: ‘abc’}
>>> type(d)
<type ‘dict’>
>>> d = {[1 ,2]: ‘a’}
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
TypeError: unhashable type: ‘list’

In the example above, the first dict represents a mapping from integers to strings.
The second dict represents a mapping between miscellaneous objects, where the
keys include the floating point number 1.0, the Boolean object True, the None object
and the tuple object (1, 2), and the values include the integer 1, the complex number
1+2j, the string ‘abc’ and the Boolean object False. The third dict literal leads to an
error, because the mutable object [1, 2] is used as a key. The literal of an empty dict
is {}.

When two duplicated keys are defined in a dict literal, the latter overrides the
former.

>>> d = {‘a’: 1, ‘b’: 2, ‘a’: 3}
>>> d
{‘a’: 3, ‘b’: 2}

In the example above, d contains two identical keys, which are mapped into the
integers 1 and 3, respectively. Python discards the key value pair (‘a’, 1), keeping
only (‘a’, 3) for the key ‘a’. Python uses the == operator to decide whether two keys
are identical. As a result, two numerical values can be identical even if their types
are different.

>>> d = {1: ‘a’, 2: ‘b’, 1.0: ‘c’}
>>> d
{1: ‘c’, 2: ‘b’}

In the example above, the keys 1 and 1.0 are treated as identical because the
expression 1 == 1.0 is True. As immutable objects, floating point numbers can be
used as keys to dicts. However, due to rounding off errors, Python’s representation
of floating point numbers can be imprecise. These can also be conflit with integer
keys as shown above. As a result, it is recommended to avoid the use of floating point
numbers as keys when possible.

Dict operators similar to tuples and lists, the == and != operators can be used to
find the equality between dict objects. Dicts are unordered collections, the order in
which items are specified or added to a dict object does not affect the value of the
dict object.
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>>> d1 = {1: ‘a’, 2: ‘b’, 3: ‘c’}
>>> d2 = {3: ‘c’, 1: ‘a’, 2: ‘b’}
>>> d3 = {}
>>> d1 == d2
True
>>> d1 != d3
True

The lookup operation is the most commonly used operation for dict objects. The
syntax is formally identical to that of the getitem operation for tuples and lists, which
specify the index of an item by a pair of square brackets. The only difference is that
for a dict object, a key is used in the place of the index for tuples and lists.

>>> d = {1: ‘a’, 2: ‘b’, 3: ‘c’}
>>> d[1]
‘a’
>>> d[3]
‘c’
>>> d[5]
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
KeyError: 5

As shown by the example above, a key error is raised if the key to lookup is not
in the dict object.

The dict method get is commonly used as an alternative to lookup, which allows
default values if the specified key is not in the dict:

>>> d = {1: ‘a’, 2: ‘b’, 3: ‘c’}
>>> d.get(3, ‘z’)
‘c’
>>> d.get(5, ‘z’)
‘z’

As shown in the example above, get takes two arguments, the first being the key,
and the second being the default value. If the key is in the dict, the return value is the
value of the key in the dict. Otherwise the default value is returned by get.

Similar to the case of tuples and lists, the operator in and not in can be applied
to a dict object, returning whether an object is in the dict or not. When applied to a
dict, the operators return whether an object is a key in the dict.

>>> d = {1: ‘a’, 2: ‘b’, 3: ‘c’}
>>> 1 in d
True
>>> 4 in d
False
>>> ‘a’ in d
False

Note that the last expression in the example above is evaluated to False, because
‘a’ is not a key in d, despite that it is the value of the key 1 in d.

The method call d.get(k, v) can be regarded as a succinct version of the following
function:
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def defaultlookup (d, k, v):
if k in d:

return d[k]
else:

return v

The len function can be applied to dict objects, returning the number of items in
the dict.

>>> len ({1: ‘a’, 2: ‘b’, 3: ‘c’})
3
>>> len ({})
0

Conversion between dicts and other types. Dicts can be converted to strings,
Boolean objects, tuples and lists, but not to numbers. The string conversion of a
dict object represents the literal form of the dict object.

>>> a = 1.0
>>> b = True
>>> c = ‘a’
>>> d = {a: 1, 2: b, c: 3}
>>> str(d)
"{‘a’: 3, 1.0: 1, 2: True}"

The Boolean conversion of a dict is False only when the dict is empty, and True
otherwise.

>>> bool ({1: ‘a’, 2: ‘b’, 3: ‘c’})
True
>>> bool ({1: 1})
True
>>> bool ({})
False

The tuple and list conversions of a dict object consist of all the keys in the dict
object.

>>> d = {1: 1.0, 2: 9, 3: 8}
>>> tuple(d)
(1, 2, 3)
>>> list(d)
[1, 2, 3]

Lists and tuples can be converted to dicts using the dict function, but numbers,
strings, or Boolean objects cannot. To be convertable to a dict, a tuple or list must be
a sequence (key, value) pairs.

>>> d1 = dict (((3, ‘a’), (2, ‘b’), (3, ‘c’)))
>>> d2 = dict ([(3, ‘a’), (2, ‘b’), (3, ‘c’)])
>>> d1
{2: ‘b’, 3: ‘c’}
>>> d1 == d2
True
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8.2.1 Dict Modification

There are two ways to change a dict object. The first is the setitem operation, which
sets the value of a key directly via the assignment syntax, and the delitem operator,
which deletes a key-value pair from a dict object. The syntax of the setitem operation
is d[key] = value, where d is a dict identifier, key is an immutable object and value
is an arbitrary object. If key is not an existing key in d, (key, value) is added as a
new item in d. Otherwise, value is used to replace the old value of key in d. For
example

>>> d = {1: ‘a’, 2: ‘b’, 3: ‘c’}
>>> d[0] = ‘’ # adds a new entry to d
>>> d
{0: ‘’, 1: ‘a’, 2: ‘b’, 3: ‘c’}
>>> d[1] = ‘e’ # update an existing entry in d
>>> d
{0: ‘’, 1: ‘e’, 2: ‘b’, 3: ‘c’}

The syntax of the delitem operation is

del d[key]

where d is a dict identifier and key is an immutable object. If key is an existing key in
d, the corresponding item will be removed from d. Otherwise a key error is raised.

A commonly used method to change a dict object is update, which takes a single
dict argument, using it to update the dict. In particular, each (key, value) pair in the
argument is enumerated, and used to update the dict in the same way as setitem. If
key is not already in the dict, the item (key, value) is added to the dict as a new item.
Otherwise, the corresponding value of key is updated by value. The return value of
the update method is None.

>>> d = {1: ‘a’, 2: ‘b’, 3: ‘c’}
>>> d1 = {0: ‘’, 1: ‘e’}
>>> d.update(d1)
>>> d
{0: ‘’, 1: ‘e’, 2: ‘b’, 3: ‘c’}

In the example above, d1 is used to update d. There are two items in d1, namely
(0, ‘ ’) and (1, ‘e’). The key 0 is not in d before the update, and therefore (0, ‘ ’) is
added to d. On the other hand, the key 1 is already in d, and therefore the existing
item (1, ‘a’) in d is updated with the item (1, ‘e’).

A method to remove an item from a dict is pop, which takes a single argument. If
the argument is a key in the dict, the corresponding item is removed, with is value
returned. Otherwise, a key error is raised.

>>> d = {1: ‘a’, 2: ‘b’, 3: ‘c’}
>>> d.pop(1)
‘a’
>>> d
{2: ‘b’, 3: ‘c’}
>>> d.pop(0)
Traceback (most recent call last):
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File "<stdin >", line 1, in <module >
KeyError: 0

pop can take an optional second argument, which specifies the default return value
if the first argument is not a key in the dict. When the second argument is given, no
key error is raised.

>>> d = {1: ‘a’, 2: ‘b’, 3: ‘c’}
>>> d.pop(1, ‘d’)
‘a’
>>> d
{2: ‘b’, 3: ‘c’}
>>> d.pop(0, ‘d’)
‘d’
>>> d
{2: ‘b’, 3: ‘c’}

A method that removes all the items from a dict object is clear, which takes no
argument, and returns None.

>>> d = {1: ‘c’, 2: ‘b’, 3: ‘c’}
>>> d.clear()
>>> d
{}

Similar to the case of lists, modifications to a dict object shared by multiple
identifiers results in a simultaneous change of values of all the identifiers.

>>> d = {1: ‘a’, 2: ‘b’, 3: ‘c’}
>>> d1 = d
>>> t1 = (d1 , 4, ‘d’)
>>> def f(d2):
... d2.update ({0: ‘e’, 1: ‘d’})
... del d2[3]
...
>>> f(t1[0])
>>> d
{0: ‘e’, 1: ‘d’, 2: ‘b’}
>>> d1
{0: ‘e’, 1: ‘d’, 2: ‘b’}
>>> t1
({0: ‘e’, 1: ‘d’, 2: ‘b’}, 4, ‘d’)

In the example above, the identifiers d, d1 and t1[0] are bound to the same dict
object. When f is called, the local identifier d2 is bound to the same object as the
argument. As a result, when f (t1[0]) is called, all the identifiers above are changed.

In addition to dict modification methods, the dict type also supports a set of
methods that return information of a dict object, including keys, values and items,
which take no argument and return a list of copies of the keys, values and items of a
dict object, respectively.

>>> d = {1: ‘a’, 2: ‘b’, 3: ‘c’}
>>> d.keys()
[1, 2, 3]
>>> d.values ()
[‘a’, ‘b’, ‘c’]
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>>> d.items()
[(1, ‘a’), (2, ‘b’), (3, ‘c’)]

Because the return values of the methods are copies of the original keys, values
and items, modifications to the return values do not affect the original dict.

>>> d = {1: ‘a’, 2: ‘b’, 3: ‘c’}
>>> l = d.keys()
>>> l
[1, 2, 3]
>>> l[0] = 0
>>> l
[0, 2, 3]
>>> d
{1: ‘a’, 2: ‘b’, 3: ‘c’}

8.2.2 Dicts and Loops

Dicts are iterable.The for loop can be used to traverse a dict object, iterating through
all the keys in the dict.

>>> d = {1: ‘a’, 2: ‘b’, 3: ‘c’}
>>> for k in d:
... print ‘k={}, d[k]={}’. format(k, d[k])
...
k=1, d[k]=a
k=2, d[k]=b
k=3, d[k]=c

In the example above, the dict d is used as the container object in the for line,
in the same way that tuples and lists are used in for lines. When a dict object is
traversed, its keys are enumerated.

The method iterkeys can be used to achieve the same iteration:

>>> d = {1: ‘a’, 2: ‘b’, 3: ‘c’}
>>> for k in d.iterkeys ():
... print k
...
1
2
3

The method itervalues can be used to iterate through the values that correspond
to each key in a dict.

>>> d = {1: ‘a’, 2: ‘b’, 3: ‘c’}
>>> for v in d.itervalues ():
... print v
...
a
b
c
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As can be seen from the example above, if there are duplicate values in d, each is
enumerated by the for loop.

As a third way of iterating through a dict, the method iteritems can be used to
iterate through all the items in a dict, it is similar to the enumerate method for
sequence objects, which enumerates both indices and values.

>>> d = {1: ‘a’, 2: ‘b’, 3: ‘c’}
>>> for k, v in d.iteritems ():
... print ’d[{}]={} ’.format(k, v)
...
d[1]=a
d[2]=b
d[3]=c

During the iteration over a dict object, the dict object cannot be modified. Such a
modification can lead to a runtime error being raised.

>>> d = {1: ‘a’, 2: ‘b’, 3: ‘c’}
>>>
>>> for k in d:
... d[k+1] = ‘d’
...

Traceback (most recent call last):
File "<stdin >", line 1, in <module >

RuntimeError: dictionary changed size during iteration

Because dict objects are not ordered, the method iterkeys, itervalues and iteritems
can iterate through the dict in arbitrary orders. In order to alow the specification of
the order of traversal, a set of alternative methods, keys, values and items can be used,
which return a copy of the keys, values and items of the dict object, respectively, as
a list object. Because the list object is not a part of the dict object, it can be modified
and reordered, before being used for traversal of the dict.

>>> d = {1: ‘a’, 2: ‘b’, 3: ‘c’}
>>> l = d.keys()
>>> for k in l:
... print k, d[k]
...
1 a
2 b
3 c
>>> l.reverse ()
>>> for k in l:
... print k, d[k]
...
3 c
2 b
1 a
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8.2.3 Dicts and Functions

Similar to lists, dicts are mutable. As a result, dict arguments can be modified by a
function. The function filterdict below takes a simple dict argument, and removes all
the items with 0 values.

>>> def filterdict(d):
... keys = d.keys()
... for k in keys:
... if d[k] == 0:
... del d[k]
...
>>> d1 = {‘a’: 1, ‘b’: 2, ‘c’: 3, ‘d’: 4, ‘e’: 5, ‘f’:

0}
>>> d2 = {True: 0, False: 1}
>>> d3 = {0: 1, 1: 2, 3: 2}
>>> filterdict(d1)
>>> d1
{‘a’: 1, ‘c’: 3, ‘b’: 2, ‘e’: 5, ‘d’: 4}
>>> filterdict(d2)
>>> d2
{False: 1}
>>> filterdict(d3)
>>> d3
{0: 1, 1: 2, 3: 2}

Given an input argument d, the function filterdict works by iterating through a
copy of the keys in d, deleting those items with a value of 0. Because the local
argument d is bound to the same object as d1, d2 and d3 in the calls filterdict(d1),
filterdict(d2) and filterdict(d3), respectively, the global variables d1, d2 and d3 are
modified by the function calls. Similar to lists, it is adviced not to modify a dict while
iterating through it. The example makes a copy of the keys and iterates though the
copy, rather than iterating though the dict directly.

The previous chapter introduced the use of a special list parameter, marked with
*, to support an arbitrary number of optional argument. Python additionally allows
the use of a special dict parameter, marked with **, to support an arbitrary number
of keyword arguments in function calls. When a special argument with ** is given in
the definition of a function, all keyword arguments that cannot be explicitly matched
in a call to the function are packed into a dict and assigned to the special parameter,
with the keys being the string form of the keywords, and the corresponding values
being the values of the input arguments.

For example,

>>> def f(a, b, **d):
... print ‘explicit arguments ’
... print "a =", a
... print "b =", b
... print ‘packed arguments ’
... for k in d:
... print k, ‘=’, d[k]
...
>>> f(1, 2, c=3, d=4, e=5)
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explicit arguments
a = 1
b = 2
packed arguments
c = 3
e = 5
d = 4
>>> f(a=0, b=-1, e=-5)
explicit arguments
a = 0
b = -1
packed arguments
e = -5

In the example above, the function f takes two explicit arguments a and b, and
a special dict argument d, printing out all the explicitly and implicitly matched
arguments and their values. The outputs show that the arguments a and b are always
matched explicitly, while any additional keyword arguments are packed into d.

The special dict argument and the special list argument can be used simulta-
neously, accepting keyword arguments and non-keyword arguments that cannot be
explicitly matched, respectively.

>>> def f(a, b, *l, **d):
... print ‘Explicit arguments ’
... print "a =", a
... print "b =", b
... print ‘List arguments ’
... for i in l:
... print i
... print ‘Dict arguments ’
... for k in d:
... print k, ‘=’, d[k]
...
>>> f(1, 2)
Explicit arguments
a = 1
b = 2
List arguments
Dict arguments
>>> f(1, 2, 3)
Explicit arguments
a = 1
b = 2
List arguments
3
Dict arguments
>>> f(1, b=2, c=3)
Explicit arguments
a = 1
b = 2
List arguments
Dict arguments
c = 3
>>> f(1, 2, 3, d=4, c=5, f=6)
Explicit arguments
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a = 1
b = 2
List arguments
3
Dict arguments
c = 5
d = 4
f = 6

Similar to the case of lists, a dict can be passed as keyword arguments to function
by using the prefix **.

>>> def f(a,b):
return a+b

>>> d={’a’:1,’b’:2}
>>> f(**d)
3

In the example above, a call to f (∗ ∗ d) is effectively the same as a call to
f (a = 1, b = 2).

8.3 Sets and Bitwise Operations

Another commonly-used container type is set, which represents an unordered con-
tainer of immutable objects. Similar to lists and dicts, sets are mutable. Compared
with lists, sets have two main differences. First, sets are unordered but lists are
ordered. Second, sets do not allow duplicated items, but the same item can exit in a
list multiple times. Sets are connected to dicts in that both set items and dict keys are
distinct. A set can be implemented as a special dict, with the keys representing the
items in the set, and the values being dummy values (e.g. 1), which are ignored.

A set literal consists of a comma-separated list of literals or identifiers, enclosed
in a pair of curly brackets.

>>> a = 1
>>> i = 5.6
>>> s = {a, True , i}
>>> s
set([5.6, True])
>>> type(s)
<type ‘set’>

The literal of an empty set is set() rather than {}, which represents an empty dict
object. The set function is similar to the functions int, float, complex, bool, str, tuple,
list and dict in that it constructs a new set object.

Set operators. Sets support the in and not in operators, which return whether an
item is in a set or not. The builtin function len can be used to find the cardinality of
a set.
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>>> s = {1, 2, 3}
>>> 1 in s
True
>>> 3 not in s
False
>>> 4 not in s
True
>>> len(s)
3
>>> len(set()) # empty set
0

The operators>,>=,< and<= are applied to two set objects, returning whether
the first set is a proper superset, a superset, a proper subset and a subset of the second
set, respectively. The methods issubset and issuperset achieve the same functionali-
ties as the operators >= and <=, respectively.

>>> a = {1, 2, 3}
>>> b = {3, 4, 5}
>>> c = {3}
>>> a >= c
True
>>> a > b
False
>>> b.issuperset(c)
True
>>> set().issubset(c)
True
>>> c < b
True

The following operators and methods are applied to two set objects, returning a
new set object.

• The | operator and the union method return the union of the two sets;
• The & operator and the intersection method return the intersection of the two sets;
• The − operator and the difference method return the difference between the two

sets, which contains all the items in the first set that are not in the second set.
• The ∧ operator and the symmetric_difference method return the symmetric differ-
ence between the two sets, which consists of elements in either but not both of the
sets.

>>> s1 = {1, 2, 3}
>>> s2 = {3, 4}
>>> s1&s2
set ([3])
>>> s1.union(s2)
set([1, 2, 3, 4])
>>> s1 -s2
set([1, 2])
>>> s1.symmetric_difference(s2)
set([1, 2, 4])
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Conversion between sets and other types. Set objects can be converted into
strings, Boolean objects, tuples and lists. The string conversion of a set object is a
literal form of the set; the Boolean conversion of a set object is False only if the set
is empty, and True otherwise; the tuple and list conversions of a set object consists
of all the items in the set, in arbitrary (but not random) order.

>>> s = {‘a’, ‘b’, ‘c’, 1, 2, 3}
>>> str(s)
"set([‘a’, 1, 2, 3, ‘c’, ‘b’])"
>>> print s
set([‘a’, 1, 2, 3, ‘c’, ‘b’])
>>> bool(s)
True
>>> if s:
... print ‘non -empty ’
...
non -empty
>>> tuple(s)
(‘a’, 1, 2, 3, ‘c’, ‘b’)
>>> list(s)
[‘a’, 1, 2, 3, ‘c’, ‘b’]

Strings, tuples, lists and dicts can be converted into sets. The set conversion of a
string consists of all the characters in the string, the set conversion of a tuple or a list
consists of all the items in the sequence, while the set conversion of a dict consists
of all the keys.

>>> set("123")
set([‘1’, ‘3’, ‘2’])
>>> set([‘c’, True , 1+3j])
set([True , ‘c’, (1+3j)])
>>> set({1:1, 2:0, 3:-1})
set([1, 2, 3])

8.3.1 Set Modification

The set type supports a set ofmethods thatmodify a set object, which can be classified
into set-element methods and set-set methods. Commonly used set-element methods
include:

• add(x), which takes an immutable argument x and adds the argument into the set;
• remove(x), which takes an immutable argument x and removes the argument from
the set. A key error is raised if the argument is not in the set;

• discard(x), which takes an immutable argument x and removes the argument from
the set. If the argument is not in the set, no action is taken.

• pop(), which takes no argument, and removes an arbitrary item from the set, return-
ing its value.
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>>> s = {1, 2, 3}
>>> s.add(0)
>>> s
set([0, 1, 2, 3])
>>> s.remove (5)
KeyError: 5
>>> s.discard (3)
>>> s
set([0, 1, 2])
>>> s.pop()
0
>>> s
set([1, 2])

Commonly-used set-set methods include:

• update(s), which takes a set argument s, adding all the items in the argument s into
the set. The operator |= achieves the same functionality as this method.

• intersection_update(s), which takes a set argument s, and updates the set, keeping
only those items that are also in the argument s. The operator &= achieves the
same functionality as this method.

• difference_update(s), which takes a set argument s, and updates the set, removing
those items that are also in the argument s. The operator −= achieves the same
functionality as this method.

• symmetric_difference_update(s), which takes a set argument s, and updates the
set, keeping only items that are in either the set or the argument s, but not in both.
The operator ∧= achieves the same functionality as this method.

>>> s1 = {1, 2, 3}
>>> s2 = {3, 4}
>>> import copy
>>> s = copy.copy(s1)
>>> s.update(s2)
>>> s
set([1, 2, 3, 4])
>>> s = copy.copy(s1)
>>> s &= s2
>>> s
set ([3])
>>> s = copy.copy(s1)
>>> s |= s2
>>> s
set([1, 2, 3, 4])
>>> s = copy.copy(s1)
>>> s.difference_update(s2)
>>> s
set([1, 2])
>>> s = copy.copy(s1)
>>> s ^= s2
>>> s
set([1, 2, 4])
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In the example above, the four set-set operations are applied to the sets
{1, 2, 3} and {3, 4}, respectively. Because they are set modification methods, a
copy of the original set is necessary for keeping the original sets. The set type pro-
vides a method, copy, which takes no argument and returns a copy of the set. As a
result, copy.copy(s1) in the examples above can be replaced with s1.copy().

Similar to dicts, sets support the clear method, which takes no arguments and
removes all the items from the set.

Set are iterable. The for loop can be used to iterate through a set object. Because
sets are unordered, their iteration takes an arbitrary (but not random) order.

>>> s = {1, ‘a’, 2, ‘b’, None , True}
>>> for i in s:
... print i
...
a
True
2
b
None

8.3.2 Bitsets and Bitwise Operators

Sets are inherently connected to binary numbers. As mentioned in Chap.2, integers
can be written in binary forms, in which each digit is either 0 or 1. Intuitively, the
values 0 and 1 can be used to represent whether an item is in a set or not. As a result,
if the possible elements in a set is finite, they can be indexed and associated with a
finite number of bits in a binary number. Each possible set element corresponds with
a specific bit in the number. The correlation between a finite set and a binary number
is shown in Fig. 8.1.

As can be seen from the figure, the value (i.e. 0 or 1) of the ith bit in the integer
corresponds to the presence of the ith possible item in the set. On the other hand, the
ith bit in the integer also represents the value of 2i . As a result, the set {e1, e3, e7}
corresponds to the integer 21 + 23 + 27 = 2 + 8 + 128 = 138.

Python supports binary integer literals, which start from the letters ‘0b’, followed
by binary digits. For example, 0b1 represents 20 = 1, 0b10 represents 21 = 2, and
0b100 represents 22 = 4. 0b101 represents 22 + 20 = 5.

Fig. 8.1 The correlation
between finite sets and
binary numbers

http://dx.doi.org/10.1007/978-981-287-609-6_2
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>>> 0b1101 # 2**3+2**2+2**0=13
13
>>> 0b1011 # 2**3+2**1+2**0=11
11

The bulitin function bin takes an integer argument and returns a string that shows
the binary form of the number.

>>> bin (13)
‘0b1101’
>>> bin (125)
‘0b1111101 ’

The connection between binary numbers and sets allows the use of integers to
implement or represent sets, provided that possible items in the set can be indexed. For
example, the set {e1, e3, e7} in Fig. 8.1 can be represented by the integer 0b10001010
= 27+23+21= 138. Given an integer, its corresponding set can be examined by
checking item presence in its binary representation.

The union, intersection and symmetric difference operations between two sets are
connected to digit-wise (or bitwise)Boolean operations between twobinary numbers.
For example, in the union of the sets s1 and s2, an item is present if the item is present
in s1 or in s2, while in the intersection of s1 and s2, an item is present if the item
is present in s1 and in s2. As a result, the binary numbers that correspond to the
union and intersection of s1 and s2 can be calculated from the binary numbers that
correspond to s1 and s2 by the bitwise or and bitwise and operations, respectively.
The binary number that corresponds to the symmetric difference between the two
sets s1 and s2 can be calculated from the binary numbers that correspond to s1 and
s2 by the bitwise xor operation. The three bitwise operations are defined as follows.

In a bitwise or operation between two numbers n1 and n2, the ith bit of the result
is 1 if the ith bit of n1 is 1 or the ith bit of n2 is 1; in a bitwise and operation between
two numbers n1 and n2, the ith bit of the result is 1 if the ith bit of n1 is 1 and the ith
bit of n2 is 1; in a bitwise xor operation between two numbers n1 and n2, the ith bit
of the result is 1 if the ith bit of n1 is different from the ith bit of n2, and 0 otherwise.
Python supports the bitwise operations above by the integer operation |, & and ∧,
respectively.

>>> a = 0b1101
>>> b = 0b1001
>>> a
13
>>> b
9
>>> a|b
13
>>> bin(a|b)
‘0b1101’
>>> a&b
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9
>>> bin(a&b)
‘0b1001’
>>> a^b
4
>>> bin(a^b)
‘0b100’

The correlation between set operations and bitwise integer operations is shown in
Fig. 8.2. Note that the difference (i.e. –) operation between two sets is not correlated
to the – operation between two numbers, which is an arithmetic operator rather than
a bitwise operator.

|, & and∧ are all binary bitwise operations, taking two operands. There is a unary
bitwise Boolean operator, ∼ , which takes one operand and flips every bit in it:

Fig. 8.2 The correlation between set operations and bitwise integer operations
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>>> a=0 b1010101100
>>> bin(~a)
‘-0b1010101101 ’

In addition to bitwise Boolean operations, Python also supports a set of bitwise
shifting operations between two integers. In particular, right-shift operation n � k
shifts the binary form of n to the right by k bits, and the left-shift operation n � k
shifts the binary form of n to the left by k bits. In terms of the value, the operation
n � k is equivalent to n/(2k) and the n � k operation is equivalent to n × 2k . In
both n/(2k) and n × 2k , n is treated as a positive integer.

>>> n = 0b1011
>>> bin(n<<1)
0b10110
>>> bin(n>>1)
0b101
>>> bin(n>>2)
0b10

Exercises

1. Write a function

(a) is_valid(s), which takes a string argument s, representing a password, and
return a Boolean value indicating whether the input password is valid. A
valid password must contain at least 8 characters, with one character being
numerical and one character being punctuation. (i.e. ‘ , ’, ‘ . ’, ‘ ! ’, ‘ > ’, ‘
< ’ or ‘ � ’).

(b) dec(s), which is the reverse of bin(x). It takes a string starting with ‘ob’,
followed by a binary number, and returns the decimal value of the number.

(c) Write a function, lcp(s1,s2), which takes two string arguments s1, s2 and
returns the largest common prefix of s1 and s2 .

(d) Write a function, reverse_dic(d), which takes a dict argument d, and returns
a new dict d1, whose keys are the unique values of d. The value of each key
k in d1 is a list that contains all the keys in d that has the value k, sorted in
ascending order. For example:

d={‘d’:1,‘b’:3,‘c’:1,‘a’:2,‘e’:1,‘f’:2}
d1=reverse_dic(d)
d1
{1:[‘c’,‘d’,‘e’],2:[‘a’,‘f’],3:[‘b’]}

(e) Write a function, unique(t), which takes a tuple argument t, which contains
integers, and returns a new tuple that contains all the unique items in t, sorted
in descending order. (Hint: consider sets).

(f) Write simple string compression functions. compress(s) takes a string argu-
ment and returns its compression, decompress(s) takes a compressed string
argument and return the original string. The compression algorithm is sim-
ple, consecutive runs of the same character c for n times (n>2) are replaced
with the sub string cn. For example, “aa bbb cccc"is compressed into
‘aab3c4’
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2. What are the values of the expressions below?

(a) 3 & 5
(b) 3 | 5
(c) 3 ∧ 5
(d) ∼5
(e) 3 and 5
(f) 3 or 5
(g) 3 � 1
(h) 3 � 1

3. DNA sequences consist of four base types of molecules, which can be represented
by the letters A, C, G and T, respectively.Write a function, countbase, which takes
a string argument representing a DNA sequence, and returns a dict that contains
the count of each base, with the base letter being the key and the count as the
value. For example, countbase(‘ACGTGGGAGTC’) returns {‘A’:2, ‘C’:2, ‘G’:5,
‘T’:2}, and countbase(‘ATBLC’) returns {‘A’:1, ‘C’:1, ‘G’:0, ‘T’:1}.

4. Write a function to encode shapes into integers. In particular, there are four types
of shapes to encode: triangles, rectangles, regular pentagons and regular hexagons.
Each shape is drawn in a 128 × 128 grid, and has a color from red, green, blue,
yellow and white.
Use 2 bits to encode the shape, 0 = triangle, 1 = rectangle, 2 = regular pentagon
and 3 = regular hexagon. Use 3 bits to encode the color, 0 = red, 1 = green, 2 =
blue, 3 = yellow, 4 = white and 5/6/7 = invalid.
Use a total of 42 bits to represent the coordinates. For triangles, the coordinates
specify the three vertices, each taking 2 × 7 bits (0–127). For rectangles, 28 bits
are used to specify the top-left vertex and the bottom-right vertex, each taking
2× 7 bits. The last 2× 7 bits are all zeros. For regular pentagons, the coordinates
specify the top vertex and its two neighbors, each taking 2 × 7 bits. For regular
hexagons, the coordinates specify the left three vertices, each taking 2 × 7 bits.
As a result, each shape can be encoded into 26 bits.Write a function, encodeshape,
which takes the shape, color and coordinates as input arguments, and returns
the integer code. For example, encodeshape(‘triangle’, ‘yellow’, 10, 10, 90, 10,
60, 58) returns 13540610186810, which is 00 011 0001010 0001010 1011010
0001010 0111100 0111010. The first two bits 00 represent triangle, the next three
bits 011 represent yellow, the next 2 × 7 bits, 0001010 and 0001010, represent
the first vertex, (10, 10), and so forth.
Write another function, decodeshape, which takes a number argument and returns
the shape it encodes. For example, decodeshape(13540610186810) returns (‘tri-
angle’, ‘yellow’, 10, 10, 90, 10, 60, 58).

5. collections is a useful module that provides extended collection types. There is
one useful class called defaultdict, which assigns default values to missing keys
automatically when they are accessed. For example,
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>>> import collections
>>> d = collections.defaultdict(lambda :0)
>>> d[‘A’] = 1
>>> d[‘A’]
1
>>> d[‘B’]
0
>>> d[‘C’] += 1
>>> d[‘C’]
1

The function call collections.defaultdict takes a function argument, and returns
a defaultdict object. The default value of missing keys is the return value of the
argument function.
In the example above, one lambda function that takes no arguments and returns
0 is used to construct a defaultdict.
Use defaultdict as the main data structure, and write a program that records the
cities that certain people visit. The program repeatedly asks the user to enter
sentences in the form of ‘X visited Y.’, where X is the name of a person and Y
is a city. When the user enters an invalid sentence, a warning is given. When the
user enters an empty sentence, the program exits and prints the cities that each
person has visited. For example,

c:\user\yue_zhang > python visit.py
Enter sentence: John visited Paris.
Enter sentence: Mary visited Beijing.
Enter sentence: John visited Paris.
Enter sentence: Mary visited Tokyo.
Enter sentence: Hello!
Invalid sentence --- Enter ‘X visited Y.’
Enter sentence: Mary visited London.
Enter sentence: John visited New York.
Enter sentence: Mary visited Beijing.
Enter sentence:

John has visited New York and Paris.
Mary has visited Beijing , London and Tokyo.
c:\user\yue_zhang >

6. Write a function, split(s), which takes a string argument s, representing a piece
of text, and returns a dict object, representing the sentences in the text. The keys
to the dict are sentence indices, starting from 1. For example.

s="I bought a new laptop for $3.5k. The medel
was recommended by my friend , Dr. Smith. I
like its functionalities , but found that the
same medel is sold for only $2.8k at amazon

.com... Lessons learned? It’s worth checking
online prices before shopping!"

d=split(s)
d
{1:"I bought a new laptop for $3.5k.",
2:"The medel was recommended by my friend ,

Dr. Smith."
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3:"I like its functionalities , but found that
the same medel is sold for only $2.8k at
amazon.com..."

4:"Lessons learned?"
5:"It’s worth checking online prices before

shopping!"}

Hint: There are three boundary punctuations, ‘ . ’, ‘ ? ’, ‘ ! ’. However, ambiguities
exist in many cases. For example, ‘ . ’ is typically a sentence boundary marker
when followed by a space, but special terms such as ‘Dr’ also ends with ‘ . ’. As a
result, no program can perfectly handle all cases. Try to make the function work
in most situations.



Chapter 9
Problem Solving Using Lists and Functions

This chapter discusses problem solving using nested loops and functions. Typical
problems with lists of lists are discussed, and common matrix operations are illus-
trated. Recursive functions and functional programming concepts are introduced, by
showing how standard problems introduced in Chap. 5 can be solved using the new
methods. The last section of this chapter introduces I/O with files and URL web
pages, showing how strings and dicts can be used to organize text data, and how the
pickle module can be used to serialized arbitrary Python objects into files.

9.1 Lists of Lists and Nested Loops

Many types of real-world data can be represented by a list of lists. For example, the
final examination results of a class can be represented by a list of lists, where each sub
list consists of the scores of 4 different subjects of a particular student. The trading
records of a stock market can also be represented by a list of lists, where each sub
list consists of the daily closing prices of a particular stock. In mathematics, matrices
can also be represented by lists of lists, where each sub list represents a particular
row.

There are two general ways to solve problems that involve a list of lists. The first
is to treat each sub list as an atomic unit, and thereby process the list of lists in the
same way as processing a list of other objects. The second way is to use a nested loop
to iterate over the items in the list of lists. Using the financial examination results as
an example, this section discusses the two types of solutions in details.

9.1.1 Treating Sublists as Atomic Units

Consider the problem of finding the total scores of the four subjects for each student
in the final examination. The task is to write a function that that takes a list of lists
as the only argument, and returns a list that contains the sum of each sub list.
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The problem can be solved by treating each sub list as an atomic unit, using the
built-in function sum to calculate its total value. As a result, the idea of generalized
summation can be applied to solve the problem: the return value is initialized to an
empty list, and incrementally update by iterating through the input list. When each
sub list is enumerated, its total value is added to the back of the return value. After
the input list is exhausted, the return value contains the sum of each sub list. This
solution can be written as the sumlists function below.

>>> def sumlists(l):
... s = []
... for subl in l:
... s.append(sum(subl))
... return s
...
>>> sumlists ([ [90, 95, 100, 100], [80, 70, 65, 71],

[95, 60, 75, 55] ])
[385, 286, 285]

Now suppose that the problem is to find the average score of each student instead
of the total score. The function sumlists can be modified slightly, calculating the
average of each sub list by dividing the sum the number of items in the sub list. The
function avglists below is an example implementation.

>>> def avglists(l):
... s = []
... for subl in l:
... s.append(float(sum(subl))/len(subl)) #

average
... return s
...
>>> avglists ([ [90, 95, 100, 100], [80, 70, 65, 71],

[95, 60, 75, 55] ])
[96.25 , 71.5, 71.25]

The expression float(sum(subl))/len(subl) may be difficult to understand. Alter-
natively, it can be modularized and implemented as a function. The example below
uses the function avg to calculate the average of a list of numbers. It can make the
avglists function easier to understand compared to the implementation of avglists
above.

>>> def avg(l):
... s = 0
... for i in l:
... s += i
... return float(s) / len(s)
...
>>> def avglists2(l):
... s = []
... for subl in l:
... s.append(avg(subl))
... return s
...
>>> avglists2 ([ [90, 95, 100, 100], [80, 70, 65, 71],

[95, 60, 75, 55] ])
[96.25 , 71.5, 71.25]
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Now suppose that one needs to calculate the averaged score of all the subjects of
all the students. The problem is to find the average of all the items of all the sublists
in a list of lists. It can be solved by calculating the sum of all the items of all the sub
lists, and then dividing the sum by the total number of items of all the sub lists. The
function avglistoflists below is an example implementation.

>>> def avglistoflists(l):
... s = 0
... c = 0
... for subl in l:
... s += sum(subl)
... c += len(subl)
... return float(s) / c
...
>>> avglistoflists ([ [90, 95, 100, 100], [80, 70, 65,

71], [95, 60, 75, 55] ])
79.6666666667

The function avglistsoflists above uses two variables, s and c, to maintain the sum
and count of the items of the sub lists, respectively. The input list is iterated over so
that s and c are updated incrementally. In this process, each sub list is treated as an
atomic unit, processed by a function.

As mentioned in the beginning of the section, an alternative solution to list of
lists problems is to iterate through all the sub list items using nested loops. A nested
loop can consist of two layers. The outer loop iterates through the list, enumerating
each sub list. The inner loop iterates through a sub list, enumerating its items. In one
execution of a nested loop, the outer loop is executed once, while the inner loop is
executed once at each iteration of the outer loop.

For example, consider rewriting the avglists2 function above, replacing the func-
tion call avg in the function body with the function body of avg.

>>> def avglists3(l):
... s = []
... for subl in l:
... subs = 0 # avg
... for i in subl: # avg
... subs += i # avg
... suba = float(subs) / len(subl) # avg
... s.append(suba) # avg
... return s
...
>>> avglists3 ([ [90, 95, 100, 100], [80, 70, 65, 71],

[95, 60, 75, 55] ])
[96.25 , 71.5, 71.25]

The functional avglists3 is different from the function avglists2 only in the loop
body. avglists3 uses an inner loop to calculate the average of each sub list. Given a
sub list subl, it uses the variable subs to keep the sum of subl, and the variable suba
to keep its average. subs is initialized to 0, and updated incrementally by iterating
through subl. suba is calculated by dividing subs by the length of subl. The five
lines of statements commented with avg calculate subs and suba from a given subl,
regardless of the rest of the control flow. The five lines of code are put inside the for
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loop over l, and repeatedly executed with subl being each sub list in l. As a result,
the for loop over subl plays the role of an inner loop.

Nested loops can be used to iterate through all the items in all the sub lists in a list of
lists. In therefore provides an intuitive solution to the problem of finding the averaged
score of the class. The function avglistoflists2 is an alternative implementation of
avglistoflists using nested loops.

>>> def avglistoflists2 (l):
... s = 0
... c = 0
... for subl in l:
... for i in subl: # i enumerates each sub list item
... s += i
... c += 1
... return float(s) / c
...
>>> avglistoflists2 ([ [90, 95, 100, 100], [80, 70, 65, 71],

[95, 60, 75, 55] ])
79.6666666667

In the example above, s and c are used to hold the sum and count of items of all
sub lists, respectively. A call to avglistoflist2 executes the outer loop (i.e. for subl in
l) once. The body of the outer loop is repeated three times, with subl being [90, 95,
100, 100], [80, 70, 65, 71] and [95, 60, 75, 55], respectively. Each time the outer loop
body is executed, the inner loop (for i in subl) is executed once, with the loop body
being repeated four times. As a result, the statement c += 1 in the inner loop body
is executed 12 times in total. Each time i being assigned the value of a different sub
list item.

Nested loops for item combination. In addition to enumerating through sub list
items in a nested list, a second typical use of nested loops is to find all possible
combination of items in different lists. For example, the function combine below
takes two list arguments, and return a list that contains all possible combinations of
their items.

>>> l1=[1,2,3,4,5]
>>> l2=[‘a’,‘b’,‘c’]
>>> def combine(x,y):
... retval =[]
... for i in x:
... for j in y:
... retval.append((i,j))
... return retval
...
>>> combine(l1 ,l2)
[(1, ‘a’), (1, ‘b’), (1, ‘c’), (2, ‘a’), (2, ‘b’),
(2, ‘c’), (3, ‘a’), (3, ‘b’), (3, ‘c’),
(4, ‘a’), (4, ‘b’), (4, ‘c’), (5, ‘a’), (5, ‘b’),
(5, ‘c’)]

In the example above, the outer loop enumerates the items in the first list, when
each item is enumerated, the inner loop is executed once, enumerating the items in
the second list. As a result, each item combination is enumerated once and only once,
by the nested loop.
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Loops can be nested in more than two levels, for the solution of more complex
problems. The analysis and design of three-layer nested loops is similar to those of
two-layer nested loops, and it is important to understand the functionality of the inner
loop, so that it can be used correctly in combination of the outer loop. In case the
program structure is too complex to understand, nested loops can be simplified by
the use of function calls to replace inner loops, as illustrated by the contrast between
avglists2 and avglists3.

9.1.2 Matrices as Lists of Lists

Matrices can be represented by lists of lists, with each sub list representing a row in

the matrix. For example, the matrix M =
∣
∣
∣
∣
∣
∣

1 2 3 4
5 6 7 8
9 10 11 12

∣
∣
∣
∣
∣
∣
can be represented by the list

>>> m = [ [1, 2, 3, 4],
... [5, 6, 7, 8],
... [9, 10, 11, 12] ]

Using this formulation, the ith row of m can be accessed by the expression m[i-1]:

(continued from above)
>>> m[0] # the first first row
[1, 2, 3, 4]
>>> m[2] # the third row
[9, 10, 11, 12]

The item mi, j can be accessed by m[i-1][j-1]:

(continued from above)
>>> m[0][0] # the first row , the first column
1
>>> m[2][1] # the third row , the second column
10

As nested lists, matrices can be processed using loops. The following examples
give a set of functions for matrix manipulation.

The functions get_row and get_column take a matrix argument, and additionally
an integer argument that specifies an index i , and return a copy of the i th row and
column of the matrix as a list, respectively.

(continued from above)

>>> def get_row(m, i):
... return m[i][:]
>>> def get_column(m,i):
... s = []
... for row in m:
... s.append(row[i])
... return s
...
>>> get_row(m,1)
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[5, 6, 7, 8]
>>> get_column(m,2)
[3, 7, 11]

The function get_column above works by initializing the return value to an empty
list, and updating it by iterating through each row in the matrix. At each iteration,
the item in the specified column is added to the back of the result. After all the rows
have been enumerated, the return value contains the specified column.

A simple matrix operation is scaling. Given a matrix M and a scalar a, aM results
in a matrix N , which has the same width and height as M , and satisfies Ni, j = aMi, j

for all i, j . Matrix scaling can be performed by initializing the result as a copy of M ,
and then scaling each element by traversal of the new matrix.

(continued from above)
>>> def scale(a,M):
... import copy
... N=copy.deepcopy(M)
... for i in range(len(N)): # row
... for j in range (len(N[i])): # col
... N[i][j]= N[i][j]*a # setitem
... return N
...
>>> M = [[1,2,3], [4,5,6],[7,8,9]]
>>> scale(2,M)
[[2, 4, 6], [8, 10, 12], [14, 16, 18]]
>>> scale(-0.5,M)
[[-0.5, -1.0, -1.5], [-2.0, -2.5, -3.0], [-3.5, -4.0,

-4.5]]
>>> M # value not changed
[[1,2,3], [4,5,6],[7,8,9]]

There are two things to note on the function scale above. First, copy.deepcopy is
used to make a copy of M . Because M is a list of lists, it needs copied recursively
to avoid sharing of sub lists between the copies. Second, iteration over N is based
on indices rather than values, because modification of sub lists (i.e. rows) requires
setitem, which uses indices.

Another common matrix operation is addition, which adds two matrixes of the
same size by each element.Matrix addition can be performed by initializing the result
as one input matrix, and then updating each element by addition with the correspond-
ing element in the other input matrix.

(continued from above)

>>> def add(M,N):
... import copy
... R = copy.deepcopy(M) # initialize
... for i in range(len(R)): # row
... for j in range(len(R[i])): # col
... R[i][j]+= N[i][j]
... return R
...
>>> M=[[1,0,0], [0,1,0], [0,0,1]]
>>> N=[[1,2,3], [4,5,6], [0,0,0]]
>>> add(M,N)



9.1 Lists of Lists and Nested Loops 223

[[2, 2, 3], [4, 6, 6], [0, 0, 1]]
>>> M
[[1, 0, 0], [0, 1, 0], [0, 0, 1]]
>>> N
[[1, 2, 3], [4, 5, 6], [0, 0, 0]]

Traversal by index can also be used to perform the transposition operation. Given
a matrix M with width w and height h, the transpose MT has width h and height w,
and satisfies MT

i, j = M j,i for all i, j .

(continued from above)

>>> def transpose(M):
#initialize w*h matrix

... N=[]

... for i in range(len(M[0])):

... N.append ([0]* len(M))
# fill items

... for i in range(len(M[0])):

... for j in range(len(M)):

... N[i][j]= M[j][i]
#return new value

... return N

...
>>> M=[[1,2], [3,4], [5,6]]
>>> transpose(M)
[[1, 3, 5], [2, 4, 6]]
>>> M
[[1, 2], [3, 4], [5, 6]]

The function transpose initializes the output N using a loop. N is initialized as
an empty list, and then updated by appending h zero-valued rows, each consisting
of w zeroes. Here w and h are the width and height of the input matrix, respectively.

Note that N cannot be initialized by the expression [[0] ∗ h] ∗ w, by the reason
discussed in Chap. 7— the object [0]∗h is a list, which is mutable. Makingw copies
of [0] ∗ h will result in all the rows in N sharing the same list (i.e. [0] ∗ h), rather
than having w copies of the list.

The function transpose works by generalized summation. The result is initialized
as all zeros, and then iterating updated by iterating through each index i, j , assigning
M[j][i] to N[i][j]. Note that the nested loop can be viewed as an enumeration of all
possible item combinations of [0, 1, · · ·, len(M[0])−1] and [0, 1, · · ·, len(M)−1].

Matrix multiplication is one of the most difficult operations. Multiplying two
matrixes M and N results in a matrix R, in which the item Ri, j is the dot product
of the i th row of M and the j th column of N . Matrix multiplication can be written
by slightly modifying the previous example of matrix transposition, using the dot
product operation Mi · N j instead of Mi, j as the incremental operation.

(continued from above)

>>> def dot_product(v1,v2):
... s=0
... for i in range(len(v1)):
... s+=v1[i]*v2[i]
... return s

http://dx.doi.org/10.1007/978-981-287-609-6_7
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...
>>> def multiply (M,N):
... # initialize result matrix
... R=[]
... for i in range(len(M)):
... R.append ([0]* len(N[0]))
... # change each value
... for i in range (len(M)):
... for j in range (len(N[0])):
... R[i][j]= dot_product(get_row(M,i),

get_column(N,j))
... # return result metric
... return R
...
>>> M=[[1 ,2] ,[3 ,4] ,[5 ,6]]
>>> N=[[1,0,1,-1],[0,1,1,1]]
>>> multiply (M,N)
[[1, 2, 3, 1], [3, 4, 7, 1], [5, 6, 11, 1]]
>>> M
[[1 ,2] ,[3 ,4] ,[5 ,6]]
>>> N
[[1,0,1,-1],[0,1,1,1]]

9.2 Functions and Problem Solving

Several problem solving techniques make use of function calls. For example, a type
of problems can be solved by recursion, which works by recursively reducing it to
smaller problems of the samenature.Recursion is typically implemented by recursive
function calls.

Functions are also the key element in functional programming, a programming
paradigm that is declarative, or description-based, rather than imperative, or action-
based. Compared to imperative programs, functional programs can be easier to under-
stand because of their declarative nature. For example, no complex dynamic control
flow are involved in functional programs.

Python supports functional programming vis a set of special functions and state-
ments. Although functional programming is not central to Python, and there has been
debate on whether its support should be a core part of the language, knowledge of
functional programming can often help in writing simpler and better programs.

Both recursive function calls and functional programming take root in the research
of computingmachines. In the early days of computer science,many theoretical com-
puting machines were proposed, including the Turing machine, recursive functions,
λ-calculus and production systems. It has been commonly believed that all these
computing machines are equally powerful. Modern computers largely evolve from
Turing machines, which are programmable (i.e. it is possible to separate programs
and computers, so that different functionalities can be achieved by running differ-
ent programs on the same computer), while the other computing machines above
influence different programming paradigms for modern computers.
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9.2.1 Recursive Function Calls

Recursive function calls are calls to a function by itself. For example, the following
function contains a recursive call to itself, which leads to a memory error if not
interrupted.

>>> def f(x):
... print x
... f(x+1)
...
>>> f(1)
1
2
3
4
5
6
7
^C
KeyboardInterrupt

A call to the function f above leads to a dead-loop execution sequence, which
terminated by keyboard interruption. The execution sequence is shown in Fig. 9.1.
Initially, IDLE calls f (1), which leads to the execution of the function body. After
printing the value of the argument x , which is 1, the function call f (2) is executed.
The same process repeats, with increasing levels of recursive calls, each having a
local binding table. On the other hand, the function call f (1) will not finish until the
evaluation of the call f (2) finishes, and the call f (2) will not finish until the call
f (3) finishes. As a result, the recursion continues infinitely, with increasing memory
consumption.

In order to avoid such infinite execution, recursive calls must be conditional.
Under certain input, the function call should return directly, without making a further
recursive call. For example, the function f above can be modified so that it returns
directly if x is greater than 3.

>>> def f(x):
... if x>3:
... return
... print x

Fig. 9.1 Illustration of
recursive function call
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... f(x+1)

...
>>> f(1)
1
2
3

The function call f(1) above finishes within finite steps, because no further recur-
sive calls are made when x = 4. After f(4) returns, the execution of f(3) resumes
with the expression f(x+1) being evaluated to the return value of the f(4) call, which
is None. Because there are no more statements in the function body, f(3) return None
by default. Similarly, f(2) and f(1) return in sequence. The condition under which
no further recursion is made is also called the stopping condition. A recursive func-
tion definition must ensure that all possible recursive call sequences can reach the
stopping condition. Otherwise, infinite recursion can happen, leading to overflow of
memory.

Recursive function calls can be used to solve problems that can be reduced to
smaller problems of the same nature. The problem of computing number sequences
from difference equations introduced in Chap.5 belongs to such problems. Given a
base case, which can be solved directly, and a difference equation, which defines the
correlation between two consecutive numbers, recursive function definitions offer a
solution that is intuitive to understand. In such a solution, the base case serves as the
stopping condition, and the difference equation is mapped into recursive calls.

For example, consider again the problem of finding the factorial of an integer.
The base case is 0! = 1, and the difference equation is n! = (n − 1)!n. A recursive
function definition can be used for this task.

>>> def factorial(n):
... if n==0: # basis
... return 1
... return factorial(n-1)*n
...
>>> factorial (5)
120

The dynamic execution sequence of the function call factorial(5) is shown in
Fig. 9.2, where a sequence of nested recursive calls are executed, until the stopping
condition is satisfied. The stack of recursive calls finishes in the last-in-first-out order,
each callee passing its return value back to its caller. Note that Fig. 9.2 is different
from Fig. 9.1 in setting a stopping condition, so that the recursion stops at factorial(0)
instead of continuing endlessly.

For a second example, consider again the problem of finding the nth Fibonacci
number. The base cases are f0 = 1 and f1 = 1, and the difference equation is
fk = fk−1 + fk−2. The calculation of fn can be written as a recursive function:

>>> def fib(n):
... if n==0 or n==1: # base
... return 1
... return fib(n-1)+fib(n-2)
...

http://dx.doi.org/10.1007/978-981-287-609-6_5
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Fig. 9.2 Illustration of recursive function for calculating factorial

>>> fib(3)
3
>>> fib(5)
8

Executions of the f ib function above give the same results as the f ib program
in Chap.5. The sequence of recursive function calls in the evaluation of fib(5) is
shown in Fig. 9.3. A call to fib(5) requires the values of fib(4) and fib(3) to be com-
puted, respectively (step1 in the figure). The evaluation of fib(4) further leads to the
evaluation of fib(3) and fib(2) (step2). The evaluation of fib(3) further leads to the
evaluation of fib(2)and fib(1) (step3). The recursive process continues until the eval-
uation of fib(1) and fib(0), which return directly (steps, 5, 6 and 7). After steps 5 and
6 are completed, step 4 is completed with fib(2) being returned. Similarly, after steps

Fig. 9.3 Illustration of recursive function for Fibonacci numbers

http://dx.doi.org/10.1007/978-981-287-609-6_5
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(a) (b)

Fig. 9.4 The Tower of Hanoi

4 and 7 are completed, step 3 finishes. After fib(4) in the left sub tree is evaluated,
the evaluation of fib(3) in the right sub tree is evaluated in a similar process, before
the return value of fib(5), namely fib(4)+fib(3), can be calculated.

The iterative method in Chap. 5 and the recursive method in this chapter are two
different solutions to the same number sequence problem, with different thinkings
behind. The computation processes are also different. One problem in the execution
of the recursive fib calls is that the same Fibonacci number is evaluated multiple
times. For example, in Fig. 9.3, fib(3) is called twice, fib(2) is called 3 times, and
fib(1) is called 5 times. As a result, this function is less efficient than the iterative
program in Chap.5. Efficiency is a very important issue in the study of algorithms,
or automatic processes to perform a task.

As a final example of problem solving using recursive functions, consider the
game of Tower of Hanoi. As illustrated in Fig. 9.4, the game consists of three rods
and a set of disks of different size, which can be slided onto any of the rods. Denote
the three rods as A, B and C , respectively, and the number of disks as n. n can be
any positive integer. The game starts with all the disks being placed on rod A, and
the goal of the game is to move all the disks onto rod C , under the following rules:

• Each time a disk can be moved from one rod to another;
• At each time, only the top disk on a pile of disks can be moved;
• A disk cannot be placed on top of a smaller disk.

If there is only one disk, a solution is straightforward:

• Move the disk from A to C

If there are two disks, 1 and 2 (from top to bottom), a solution can be:

• Move 1 from A to B
• Move 2 from A to C
• Move 1 from B to C

If there are three disks, 1, 2 and 3 (from top to bottom), a solution can be made
by first trying to move the disk 1 and 2 to B, and then 3 to C, and then 1 and 2 to C.

• Move 1 from A to C
• Move 2 from A to B
• Move 1 from C to B

http://dx.doi.org/10.1007/978-981-287-609-6_5
http://dx.doi.org/10.1007/978-981-287-609-6_5
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• Move 3 from A to C
• Move 1 from B to A
• Move 2 from B to C
• Move 1 from A to C

In general, if there aren disks, a solution can bemade byusing the following induction
steps.

• First move n − 1 disks from A to B
• Then move 1 disk from A to C
• Then move n − 1 disks from B to C

Moving n - 1 disks from A to B is the same as moving n - 1 disks from A to C,
except that the target rods differ. As a result, the solution for n disks can be based on
the solution for n − 1 disks. Based on the thinking above, a recursive function can
be defined as follows:

>>> def hanoi(n, source , destination , other):
... if n==1: # basis
... print ‘Move top disk from’, source , ‘to’,

destination
... else: # induction
... hanoi(n-1, source , other , destination)
... hanoi(1, source , destination , other)
... hanoi(n-1, other , destination , source)
...
>>> hanoi(3, ‘A’, ‘C’, ‘B’)
Move top disk from A to C
Move top disk from A to B
Move top disk from C to B
Move top disk from A to C
Move top disk from B to A
Move top disk from B to C
Move top disk from A to C

The function hanoi above takes four arguments, n, source, destination and
other , which specify the number of disks, the source rod, the target rod, and the
other rod, respectively. It does not use any data structure to model the disks or rods,
but simply prints the moving process. The dynamic execution process of the function
call hanoi(3, ‘A′, ‘C ′, ‘B ′) is shown in Fig. 9.5. As shown by the examples, recursive
functions can be highly declarative, showing the basis and induction steps explicitly.

9.2.2 Functional Programming

As introduced earlier in this chapter, functional programming is a programming
paradigm that treats computation as the evaluation of functions. In contrast to imper-
ative programming, which treats computation as sequences of operations on vari-
ables via dynamic control flow, functional programming is descriptive, specifying
the result without spelling out the steps in which it should be obtained.
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Fig. 9.5 Illustration of recursive function for Tower of Hanoi

Python is an imperative programming language with elements of functional pro-
gramming. Understanding of functional programming can help writing succinct and
more readable programming in Python. Python’s support of functional programming
include lambda expressions, generator functions, a set of build-in functions such as
map, reduce and filter, the ternary operator and list comprehension, some of which
have not been introduced in this book. This section begins by introducing the syntax
of generator functions, the ternary operator and list comprehension, which are useful
not only for functional programming, but also for imperative programming.

Generator functions. A generator function is a function that contains one or
more yield statements. It is special in that the return value is a generator object,
which can be treated as a tuple that allows only iterations, but not geti tem or getslice
operations. The object returned by a generator function consists of the sequence of
objects, which are determined by the execution sequence of yield statements during
the execution of the function body. For example:

>>> def f():
... yield 1
... yield 2
... yield 3
...
>>> for i in f():
... print i
...
1
2
3

In the example above, the function f contains 3 yield statements, which are
executed sequentially when f () is evaluated. As a result, the return value of f () is
effectively (1, 2, 3). However, being a generator object, the return value can only
be iterated over, but not accessed by using the getitem or getslice operations. Note
that the syntax of the yield statement is similar to that of the return statement. A
generator function must return a None value.
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A function can also contain yield statements in dynamic control flow, in which
case the dynamic sequence of yield statements that are executed determines the
returned object.

>>> def f():
... for i in range (1,10):
... if i % 3 == 1:
... yield i
...
>>> for i in f():
... print i
...
1
4
7

Agenerator object records the statements in the corresponding generator function.
When it is iterated over, it executes the function body. When a yield statement
is executed, the current function execution is frozen and the object in the yield
statement is taken as the current item being enumerated. When the iteration loop
asks for the next item, the frozen function execution resumes and runs until an
yield statement is executed again. The enumeration repeats for each dynamic yield
statement, until the function execution returns.

The evaluation of a generator object is lazy — an item is yielded only when
asked for, without the full sequence of items being generated. One advantage of lazy
evaluation is the possibility to define an infinite sequence, which is useful to have
for functional programming, but cannot be held in finite memory. An example will
be given later.

The ternary operator. As introduced in Chap.2, a ternary operator is an oper-
ator that requires three operands. There is only one ternary operator in Python, and
its syntax is:

<expression 1> if <Boolean expression > else <expression 2>

The value of the ternary operator is the value of expression 1 if the Boolean
expression is T rue, and the value of expression 2 otherwise. For example:

>>> print ‘Yes ’ if 3 > 5 else ‘No ’
No
>>> print ‘Yes ’ if 3 <= 5 else ‘No ’
Yes

The ternary operator offers a succinct way of defining a conditional value, which
can be used where a single expression is needed, such as for the return value of
a lambda function. For example, the following function returns the larger of two
numbers:

>>> larger = lambda x,y: x if x>=y else y
>>> larger (3,5)
5
>>> larger (4,1)
4

List comprehension is a succinct way of defining a list. Its syntax is:

http://dx.doi.org/10.1007/978-981-287-609-6_2
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[ <expression > for <variable > in <iterable > if <
Boolean expression > ]

The list comprehension expression above evaluates to a list that is equivalent to
the code below.

l = [] # the equivalent list to be constructed.
for <variable > in <iterable >:

if <Boolean expression >:
l.append(<expression >)

Here i terable is an iterable object, which can be iterated through using a for loop.
For example:

>>> e = [i+1 for i in range (10) if i%3 == 0]
>>> e
[1, 4, 7, 10]

The if condition can be omitted in a list comprehension expression, which results
in all the enumerated items being added to the list.

>>> e = [i+1 for i in range (10)]
>>> e
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Special functions. Python provides a set of built-in functions that are commonly
used for functional programming, which include:

• map(f,x), which takes a single-argument function f and an iterable object x as the
only two arguments, and returns a list that consists of f (i) for each item i in x . For
example, if x = [x1, x2, x3, x4], then map( f, x) returns [ f (x1), f (x2), f (x3),
f (x4)].

• reduce(f,x), which takes a two-argument function f and an iterable object x as the
only two arguments, and returns a single value by applying f cumulatively to the
items in x form left to right. For example, if x = [x1, x2, x3, x4], the reduce( f, x)

returns f ( f ( f (1, 2)3)4).
• filter(f,x), which takes a single-argument function f and an iterable object x as
the only two arguments, and returns a list that consists of all the items i in x that
satisfies bool( f (i)) == True. f typically returns a Boolean value. When x is a
string/tuple, the return value of filter is a string/tuple rather than a list.

map, reduce and filter all describe the usage of a function to manipulate a list, and
are hence useful for functional programming. Both map and filter can be achieved
by using list comprehension. In particular, map(f,x) is equivalent to [f(i) for i in x]
and filter(f,x) is equivalent to [i for i in x if f(i)].

Functional programming. In addition to the functions map, reduce and filter,
the built-in functions sum, min, max , any and all introduced in Chap.5 are also
useful for functional programming. Problem solving by functional programming
typically uses lists or other iterables to represent the data to be processed, and a set
of functions that operate on lists to describe the operation. Compared to imperative
programming using dynamic control flow, functional programming offers succinct
alternative solutions to most basic problems in Chap.5.

http://dx.doi.org/10.1007/978-981-287-609-6_5
http://dx.doi.org/10.1007/978-981-287-609-6_5
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As a first example, consider again the problem of summation. Summing over an
iterable collection can be expressed by the reduce function:

>>> l=[1.1, 2.5, 3.4, -2.6, 0.7]
>>> reduce (lambda x,y:x+y, l)
5.1

In the example above, the reduce function applies the + operation to the list l,
which effectively performs ((((1.1+2.5)+3.4)−2.6)+0.7). As shown in Chap.5,
the summation task can also be performed by the function call sum(l). A slight
change of the code above gives a functional solution to the factorial problem;

>>> def factorial(n):
... return reduce(lambda x,y:x+y, range(1,n+1))
...
>>> factorial (5)
15

As shown in Chap.5, the method for summation can be generalized into finding
the maximum from a container. This problem can also be solved descriptively using
the reduce function.

>>> l=[1.1, 2.5, 3.4, -2.6, 0.7]
>>> reduce(lambda x,y:x if x>=y else y, l)
3.4

In the program above, the lambda function uses the ternary operator to obtain the
larger of x and y. The maximum-finding problem can also be solved by the function
call max(l).

Chapter 5 also discussed the problem of deciding whether there is an integer root
of x4 − 123x − 19260 = 0 between 1 and 20, showing that this search task can also
be formulated as a generalization of summation. A functional solution first maps the
range of integers between 1 and 20 to f (x) = x4 − 123x − 19260, and then decides
whether any of the results is zero.

>>> f=lambda x:x*x*x*x -123*x -19260
>>> reduce(lambda x,y:x or y, map(lambda x:f(x)==0,

range (1 ,21)))
True

In the example above, map(lambdax : f (x) == 0, range(1, 21)) results in a
list of Boolean values, each indicating whether f (x) = 0 for an x between 1 and
20. The reduce function call achieves or20i=1( f (i) == 0), the formulation given in
Chap.5. As discussed in the end of Chap.5, or20i=1( f (i) == 0) can also be achieved
by using the any function:

>>> f=lambda x:x*x*x*x -123*x -19260
>>> any(map(lambda x:f(x)==0, range (1 ,21)))
True

The counting problem can also be solved descriptively. Chapter 5 discusses the
problem of counting the number of integers between 1 and 100 for which the function
sin(x3) is positive. There are two solutions to the problem. The first is to map the
list of integers between 1 and 100 into a list of binary values, where 1 and 0 indicate

http://dx.doi.org/10.1007/978-981-287-609-6_5
http://dx.doi.org/10.1007/978-981-287-609-6_5
http://dx.doi.org/10.1007/978-981-287-609-6_5
http://dx.doi.org/10.1007/978-981-287-609-6_5
http://dx.doi.org/10.1007/978-981-287-609-6_5
http://dx.doi.org/10.1007/978-981-287-609-6_5
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that the corresponding integer x satisfies sin(x3) > 0 and sin(x3) ≤ 0, respectively.
Summing over the binary values then gives the answer. The second solution is to
filter out all the items such that sin(x3) ≤ 0, and the size of the resulting list gives
the answer.
>>> import math
>>> #first solution
>>> sum(map(lambda x: 1 if math.sin(x*x*x) >0 else 0,

range (1 ,101)))
60
>>> #second solution
>>> len(filter(lambda x:math.sin(x*x*x) >0,

range (1 ,101)))
60

For amore complex example, the problemof induction can be solved by functional
programming through the definition of an infinite list. Consider the Fibonacci num-
bers again. The recursive function fib earlier in this chapter is a descriptive solution.
However, its evaluation leads to much duplicated computation, which is undesired.
On the other hand, if the number sequence can be described as an infinite list, then
it can be evaluated from left to right without duplicated computation. In order to
achieve this, one needs to define a function that yields an infinite list.

In functional programming, an infinite list is typically defined by specifying the
head and tail recursively. Given a list l, its head is defined as l[0] and its tail
l[1 :]. A recursive function can be used to define an infinite list l by specifying
l[0] explicitly, and l[1 :] by a call to itself. The key to the definition of such a
function is a set of arguments, which is sufficient to specify l[0], and to induce
a next set of arguments which can be used for the recursive call for l[1 :]. For
example, the infinite list of Fibonacci numbers [ f0, f1, f2 . . .] can be defined as
head0 = f0 and tail0 = [ f1, f2 . . .]. Similarly, the tail [ f1, f2 . . .] can be defined
as head1 = f1 and tail1 = [ f2, f3 . . .]. This definition can repeat to headn and
tailn infinitely. At each step, knowledge of headi and taili [0] is sufficient for yield-
ing the current fi and defining taili+1 = [ fi+1, . . .], because headi+1 is taili+1[0]
(i.e. fi+1), and fi+1 can be derived from headi + headi−1, which is fi−1 + fi . As
a result, a recursively function f (headi , headi+1), which returns fi = headi and
[ fi+1, . . .] = f (headi+1, headi + headi+1), is sufficient to describe the Fibonacci
numbers. A recursive calling sequence will yield fi one by one.

For another example, the sequence of factorials [1!, 2!, 3! . . .] can be described
by a function f that takes two inputs i and n = (i − 1)!, yielding the current head
i ! = i · n and tail [(i + 1)!, (i + 2)! . . . ] = f (i + 1, i · n).

In general, given a difference equation, an infinite list can be defined for a number
sequence by using a recursive function f . The key to the definition of f is the set
of arguments. The arguments to the function should be sufficient to specify the head
of the list, and the tail of the list as a call to f itself. A Python implementation
of f can take an arbitrary number of arguments, and return a tuple (head, tail),
where tail is a list that contains the arguments to the recursive call to f . For example,
the function for the Fibonacci numbers can be:
>>> ffib=lambda xii ,xi:(xi , [xi , xi+xii])
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xii and xi specify fi−1 and fi , respectively. The function for the factorial can be:

(continued from above)

>>> ffac=lambda n,i:(i*n, [i*n, i+1])

n specifies (i − 1)!. Given a recursive function defined in the form above, a
generator function can be defined to yield an infinite list by a lazy evaluation.

(continued from above)

>>> def inflist(f, *init):
... args = init # arguments to f
... while True:
... head , tail = f(*args) # call to get head and tail
... yield head # yield current item
... args = tail # prepare next call

The follow example shows the use of inflist to obtain the first n items from an
infinite list:

(continued from above)

>>> n=0
... for i in inflist(ffib , 0, 1):
... print i
... if n == 10:
... break
... n+=1
1
1
2
3
5
8
13
21
34
55
89

>>> n=0
... for i in inflist(ffac ,1,1):
... print i
... if n==10:
... break
... n+=1
1
2
6
24
120
720
5040
40320
362880
3628800
39916800
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Note that a break statement is necessary to avoid an infinite loop. The code above
can be generalized to two functions getfirstn and getnth, which obtain the first n items
and the nth item form an infinite list, respectively.

(continued from above)

>>> def getfirstn(f,n): #get first n items from infinite list
... k=0
... retval =[]
... for i in inflist(f,0,1):
... if k>=n:
... break
... retval.append(i)
... k+=1
... return retval
...
>>> def getnth(f,n): #get the nth item from infinite list
... k=0
... for i in inflist(f,1,1):
... if k>=n:
... return i
... k+=1
... return None
...
>>> print getfirstn(ffib ,10) #first n Fibonacci
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
>>> print getnth(ffac , 10) # nth factorial number
39916800

As can be seen from the examples, the definition of inflist, getfirstn and getnth
allows lazy generation of infinite lists by recursive functions. This ends the intro-
duction of functional programming concepts. One final note is that Python is mostly
an imperative programming language. For example, Python does not have built-in
support for infinite lists. There are no built-in functions to perform inflist, getfirstn or
getnth. In addition, the functions map, reduce and filter do not yield the output list in
a lazymechanism, whichmakes it possible to use them for infinite lists unless custom
alternatives are defined. As a result, functional programming can be a nice addition
to Python, but in most cases, imperative programming offers the best solution in
using Python.

9.3 Files, Serialization and urllib

9.3.1 Files

As discussed in Chap. 1, operating systems organize information on the hard disk
by files. Each file can be treated a sequence of binary numbers, which represents
abstract information. For each type of files, abstract information has its specific
interpretation. In text files, for example, binary numbers are interpreted as text char-
acters. In music files, binary numbers can be interpreted as sampled pitches. In image
files, binary numbers can be interpreted as the hue and saturation of pixels.

http://dx.doi.org/10.1007/978-981-287-609-6_1


9.3 Files, Serialization and urllib 237

The content of files can be accessed and modified by Python programs. Python
provides a convenient interface for reading and writing text files. In particular, a file
type object in Python represents a particular text file on the hard disk. The content
of a file can be obtained by calling reading methods of a corresponding file object,
and changed by calling writing methods of a corresponding file object.

As file objects correspond to the physical files, the operating system imposes
restriction on their usage, to ensure steady operations of the file system and computer.
For example, a file object must be linked to exactly one physical file on the hard disk,
and must exist in either a reading mode or a writing mode, but not both. Some files
that are critical to the operating system are set as read-only, and cannot be opened in
the writing mode.

To open a physical file and link it to a file object, the built-in function open can
be used. It takes a string argument that specifies the path of the file to be opened,
and an optional string argument that specifies a reading/writing mode, returning a
file object that is associated with the file. If the second argument is not specified, it
is assigned the value ‘r’ by default, and a file in the reading mode is returned by the
open call.

For example. Consider the following text file under Linux or Mac OS:

[~/ Desktop/abc.txt]
abc
def
ghi

A function call to open(’∼/Desktop/abc.txt’) returns a corresponding file object
in the reading mode. If the specified file does not exist, a call to open in the reading
mode results in an IO error.

Two commonly used file readingmethods include read, which takes no arguments
and returns the content of the corresponding file as a string, and readlines, which
takes no arguments and returns the content of the corresponding file as a list of strings,
each containing a line in the file. Line separators are OS-specific. In Linux and Mac
OS, the line separator is the character ‘\n’; in Windows OS, the line separator is the
string ‘\r\n’.
>>> file=open(‘~/Desktop/abc.txt’)
>>> type(file)
<type ‘file’>
>>> s=file.read()
>>> s
‘abc\ndef\nghi\n’
>>> file.close()
>>> file=open(‘abc.txt’)
>>> l=file.readlines ()
>>> l
[‘abc\n’, ‘def\n’, ‘ghi\n’]
>>> file.close()

The example above shows how the content of ’abc.txt’ is retrieved by the read and
readlines methods on a corresponding file object, which is bound to the identifier
file. Note that after the content of the file is read using the read method, the close
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method is called to close the physical file, and the open method is called a second
time to reopen the file before the readlines method is called. This is because a file
object maintains an index on the physical file, which indicates the location that the
next reading operation should start at. The read and readlines operations move the
index to the end of the file, and hence no further reading is possible after a call to
them. It is advised to close a file after use, so that the operating system can safely
allocate the file to other users.

For a very large file, reading the whole content into an object in memory can fill
up the physical memory. Python offers a third reading method, readline, which takes
no arguments and reads a line from the current location. If the location is the end of
the file, an empty string is returned. The following code shows an example use of
the method.

>>> file=open( ‘~/Desktop/abc.txt ’)
>>> s=file.readline ()
>>> n=1 # line number
>>> while s: # if the end of file is not reached ,

there should be at least a ‘\n’ in the line.
... print ‘The ’, n, ‘th line is:’, s[:-1] # use

s[:-1] to strip ‘\n’ in the end
... n+=1
... s=file.readline ()
...
The 1 th line is: abc
The 2 th line is: def
The 3 th line is: ghi
>>> file.close()

The programabove prints out the lines of a file by using awhile loop, incrementally
reading each line. A counter n is used to record the line index, which is increased
by one every time a line is read. Note that the current line s is used as the Boolean
condition of the while loop. When it is empty, the loop terminates. Here s is empty
only when the end of file is reached. This is because all the lines contain the line
separator character ‘\n’ and empty lines in the file yields s=‘\n’. The while loop
with calls to readline is more memory-efficient compared with the readlines call.
This is reading is performed line by line, and hence the precious line can be recorded
from memory by the garbage collector when the next line is processed, thus saving
memory.

File objects are iterable, and a for loop over a file object enumerates the lines in
the corresponding file. It offers a more succinct way of writing the program above.

>>> file=open(‘~/Desktop/abc.txt ’)
>>> n=1
>>> for line in file:
... print ‘The ’, n, ‘th line is:’, line [:-1]
... n+=1
...
The 1 th line is: abc
The 2 th line is: def
The 3 th line is: ghi
>>> file.close()
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There are two writing modes in which a file can be opened. The first is ‘a’, which
opens a file for appending new content to its back, and the second is ‘w’, which opens
a file for overwriting its content. The write method can be used to write a string to a
file in a writing mode. For example,

>>> file=open(‘~/ Desktop/abc.txt’,’a’)
>>> file.write(‘jkl’)
>>> file.write(‘\n’)
>>> file.write(‘mno\npqr’)
>>> file.close()

The program above modifies abc.txt by adding the characters ’jkl\nmno\npqr\n’
to its back, which results in the content below.

[abc.txt]
abc
def
ghi
jkl
mno
pqr

Note that a call to the method write does not make a new line implicitly, and new
line must be specified by writing a line separator character to the file.

The code below overwrites the content of abc.txt entirely.

>>> file=open(‘~/ Desktop/abc.txt’,‘w’)
>>> file.write ( ‘123456’)
>>> file.close()

Execution of the code above results in abc.txt containing the six characters
‘123456’ and no other content. The original content of the file ‘abc.txt’ is erase
immediately when open is called. Care should be taken when performing the write
operation, so that important content are not lost by careless overwriting of files.

A text file can be used to store structured data for scientific computation. For
example, consider the maintenance of examination scores for a class of students.
Each student has a unique student ID, and a list of examination scores. In Python,
a dict can be used to maintain the records, with the keys being student IDs and the
values being lists of scores. On the other hand, the records can be stored in a text
file, so that they can be kept permanently. Such a file can keep each student in a line,
starting with the student ID, followed by a space, and then a space-separated list of
scores. The file score.txt below shows an example.

[scores.txt]
1000101 95 90 70 90 85 65
1000103 99 90 77 85 97 55
1000208 70 35 52 56 60 51

Suppose that the file is put into ‘∼/Desktop’ on a Linux or MacOS. It can be
loaded into a dict object in memory by using the function load_scores below.

>>> def load_scores(path):
... d={}
... file=open(path)
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... for line in file: # one student item

... line=line.split( ) # split into list

... d[line [0]]= line [1:] # key=id and value=scores

... file.close ()

... return d

...

>>> scores=load_scores (‘~/ Desktop/scores.txt’)
>>> scores
{ ‘1000208’: [‘70’, ‘35’, ‘52’, ‘56’, ‘60’, ‘51’],

‘1000103’: [‘99’, ‘90’, ‘77’, ‘85’, ‘97’, ‘55’],
‘1000101’: [‘95’, ‘90’, ‘70’, ‘90’, ‘85’, ‘65’]}

The function load_scores takes a string argument that specifies the path of a score
file, and returns a dict object that contains the content of the record. It works by
initializing the return dict as an empty dict, and then enumerating each line in the
file. Each line is split by whitespaces using the split method introduced in Chap.8,
and the resulting head and tail are used as the key and value of a new entry in the
return dict, respectively.

A Python program can be used to obtain a score record from a file, and then
edit the record, adding the results of new examinations. For example, the function
save_scores below can be used to save a score record back into a file.

>>> def save_scores(d, path):
... file=open(path , ‘w’)
... for k in d:
... file.write(k)
... file.write(‘’)
... file.write(‘’.join(d[k]))
... file.write(‘\n’)
... file.close()
...
>>> d={ ‘1000101 ’: [‘95’, ‘90’, ‘70’, ‘90’, ‘85’, ‘45’,

‘70’],‘1000103’: [‘99’, ‘90’, ‘77’, ‘85’, ‘97’,
‘55’, ‘71’],‘1000208’: [‘70’, ‘35’, ‘52’, ‘56’,
‘60’, ‘51’, ‘40’]}

>>> save_scores(d, ’~/Desktop/scores.txt ’)

Execution of the program overrides the content of ∼/Desktop/scores.txt.

9.3.2 Serialization Using the pickle Module

The programs above map a dict into a string of multiple lines, so that it can be saved
into a file and loaded back into memory. The process of saving a memory object into
the hard disk as a string is also called serialization.

Python provides amodule, pickle, for automatic serialization of objects. The pickle
module contains two functions:

• dump, which takes an arbitrary object and a file object as the only two arguments,
and serializes the object into the file. The method returns None.

http://dx.doi.org/10.1007/978-981-287-609-6_8


9.3 Files, Serialization and urllib 241

• load, which takes a file object as the only argument and returns an object that has
been serialized into the file by pickle.dump.

Using the picklemodule, the loading and saving of score records can be performed
in the following way:

>>> d={ ‘1000101 ’: [‘95’, ‘90’, ‘70’, ‘90’, ‘85’,
‘65’],‘1000103’: [‘99’, ‘90’, ‘77’, ‘85’, ‘97’,
‘55’],‘1000208’: [‘70’, ‘35’, ‘52’, ‘56’, ‘60’,
‘51’]}

>>> import pickle
>>> file=open(‘~/ Desktop/scores.txt ’, ‘w’)
>>> pickle.dump(d,file)
>>> file.close()
>>> file=open(‘~/Desktop/scores.txt ’)
>>> d=pickle.load(file)
>>> d
{ ‘1000103 ’: [‘99’, ‘90’, ‘77’, ‘85’, ‘97’, ‘55’],

‘1000208 ’: [‘70’, ‘35’, ‘52’, ‘56’, ‘60’, ‘51’],
‘1000101 ’: [‘95’, ‘90’, ‘70’, ‘90’, ‘85’, ‘65’]}

>>> file.close()

9.3.3 Reading Web Pages Using the urllib Module

Files on a remote server can be read by using the urllib module. Similar to a path
name, which identifies a file in a local operating system, a URL identifies a file on
the Internet.

Most files on the Internet are written in the text form, and typically in HTML, a
mark-up language that contain text formatting information, references to media files
such as images, and hyperlinks to other files. HTML files can be interpreted by web
browsers.

Reading a file from the Internet is similar to reading a file from a local machines.
The main difference is that a remote file should be opened by the function url-
lib.urlopen, instead of the function open. For example, the example below shows the
content of http://www.scipy.org/index.html.

>>> import urllib
>>> file=urllib.urlopen(’http ://www.scipy.org/index.

html’)
>>> for line in file:
... print line [:-1]
...
<!DOCTYPE html >

<html >
<head >

<meta charset="utf -8">

<title >SciPy.org &mdash; SciPy.org </title >
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<link rel="stylesheet" type="text/css" href=
"_static/css/spc -bootstrap.css">

<link rel="stylesheet" type="text/css" href=
"_static/css/spc -extend.css">

<link rel="stylesheet" href="_static/scipy.css"
type="text/css" >

<link rel="stylesheet" href="_static/pygments.css"
type="text/css" >

<link rel="stylesheet" href="_static/scipy -org.css
" type="text/css" >

<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {

URL_ROOT: ‘./’,
VERSION: ‘’,
COLLAPSE_INDEX: false ,
FILE_SUFFIX: ‘.html’,
HAS_SOURCE: true

};
</script >
<script type="text/javascript" src=" _static/js/

jquery.min.js"></script >
<script type="text/javascript" src=" _static/js/

bootstrap.min.js"></script >
<script type="text/javascript" src=" _static/jquery

.js"></script >
<script type="text/javascript" src=" _static/

underscore.js"></script >
<script type="text/javascript" src=" _static/

doctools.js"></script >
<link rel=" shortcut icon" href=" _static/favicon.

ico">
<link rel=" author" title=" About these documents"

href="about.html" >
<link rel="top" title="SciPy.org" href ="#" >
<link rel="next" title=" Scientific Computing Tools

for Python" href=" about.html" >
</head >
<body >

<style type="text/css">
.top -logo -header {

text -align: left;
background -color: rgb(140, 170, 230);
border -bottom: 8px solid rgb(0, 51, 153);
margin -top: 10px;
padding: 5px;
box -shadow: 0px 0px 3px rgb(136, 136, 136);

}
</style >
<div class=" container">

<div class="top -logo -header">
<a href ="#">

<img style=" border: 0;" alt=" SciPy" src=" _static
/logo.gif"></a>

</div >
</div >
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...
</body >

</html >
>>> file.close()

As show by the example, the file object returned by urllib.urlopen can be read as
local file. In this example, each line of the file is enumerated and printed. The file is
in the HTML format, which is beyond the scope of this book. Interested readers are
referred to the documentation of htmllib, a module provided by Python for handling
HTML files.

Exercises

1. Write a function that takes a list of lists of numbers as the only argument, and
returns

(a) a list containing the maximum element in each sub list;
(b) a list containing the length of each sub list;
(c) a list containing the average of each sub list;
(d) a list containing all the items of all the sub lists.

2. Write a function that takes a matrix argument and returns

(a) the number of rows in the matrix;
(b) the number of columns in the matrix;
(c) the diagnal of the matrix if it is a square matrix, and None otherwise;
(d) the reverse diagnal of the matrix if it is a square matrix, and None otherwise;
(e) a matrix that consists of all the negated elements;
(f) the transpose of the input;
(g) a printable format of the matrix as a string.

3. The built-in zip function takes two list arguments of the same length, and returns
a list of tuples that contain element-wise pairs from the two list argument.

>>> l1 = (1, 2, 3)
>>> l2 = (‘a’, ‘b’, ‘c’)
>>> zip(l1 ,l2)
[(1, ‘a’), (2, ‘b’), (3, ‘c’)]

Question 6 of Chap.7 introduces a function unzip that takes a list of pairs argu-
ment, and performs the reverse of zip.

(a) Implement zip using list comprehension;
(b) Implement unzip using list comprehension;
(c) Implement unzip using recursive function calls;
(d) Implement a function, zip3(l1, l2, l3), which takes 3 lists as the arguments

and returns a list of tuples that consists of element-wise combinations of the
arguments;

(e) Implement a function, zip(*l), which takes an arbitrary number of lists as
the arguments, and returns a list of tuples that consists of element-wise
combinations of the arguments.

http://dx.doi.org/10.1007/978-981-287-609-6_7
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4. Write the following recursive functions

(a) Write a recursive function, palindrome_rec, which takes an integer argument
and returns whether it is a palindrome number.

(b) Write a recursive function, sum_rec, which takes a list argument, and returns
the sum of all the items in the list. Assume that the list items are all numbers.

(c) Write a recursive function, count_num_rec, which takes a string argument,
and returns the number of numerical characters in the string.

(d) Write a recursive function, permutation_rec, which takes a list argument,
and prints all possible permutations of its items. Assume that the list does
not contain duplicate items. For example,

>>> permutation_rec ([1,2 ,3])
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1

5. Solve the following problem descriptively, using either list comprehension or the
functions map, reduce, sum, any and max.

(a) find all the powers of 3 in a list of numbers;
(b) find the number of odd numbers in a list of numbers;
(c) decide whether an integer is a palindrome number;

(hint: turn integer into a list, and use Boolean operators)
(d) decide whether an integer is a prime number;

(hint: use Boolean operators on a list of possible divisors)
(e) find the longest string in a list of strings.

6. Write a function hanoi_file, that takes two string arguments that indicate the path
of an input and an output file, respectively. The input file contains the number
of disks, and the output file should record the moves to solve the puzzle. For
example:

[input.txt]
3
>>> hanoi_file("input.txt","output.txt")
[output.txt]
Move 1 from A to C
Move 2 from A to B
Move 1 from C to B
Move 3 from A to C
Move 1 from B to A
Move 2 from B to C
Move 1 from A to C



Chapter 10
Classes

As introduced in Chap.2, Python objects belong to types. Various built-in types
have been introduced in this book, including int, float, long, complex, str, bool,
tuple, NoneType, list, dict, set, functions and files. Each type supports a specific set
of operators, such as +, −, *, /, getitem (i.e. []), and call (i.e. ()). Some types of
objects represent the aggregation of multiple sources of information, rather than a
single value. Such types support information integration and access via attributes
and methods. For example, the complex type supports the attributes real and imag,
and the method conjugate.

>>> c=1+2j
>>> d=-1j
>>> c.real
1.0
>>> d.real
0.0
>>> c.imag
2.0
>>> d.imag
-1.0
>>> c.conjugate ()
(1-2j)
>>> d.conjugate ()
1j

Attributes and methods belong to individual objects. As a result, the method
calls to c.conjugate() and d.conjugate() in the example above result in different
return values. In addition to methods, operators, such as + and −, also manipulate
information about complex numbers. Operators, attributes and methods provides
interfaces to objects, which are used to access information and perform operations.
Python allows custom data structures to be organized with consistent interfaces by
defining custom types, which follow the same protocols as built-in types, so that
code becomes easier to maintain and less prone to bugs.

This chapter discusses classes, Python’s mechanism for defining custom types,
showing how object construction, attributes, methods and operators can be defined
for a new type. Classes are the core concept in object oriented programming.
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They represent types. In OOP terminology, objects that belong to a type are called
instances of the type. For example, 1 and −2 are instances of integers, while ‘abc’
and ‘greetings’ are instances of strings.

This correlation between built-in types and their objects can be generalized, and
used for modeling custom types, namely classes. For example, John’s bank account
is an instance of the account type, and Mary’s pet dog is an instance of the dog type.
Further, types can have hierarchies. For example, the dog type is a specific sub type
of the canine type, which has the wolf type as another sub type. The abstraction
of types and instances is central to the concept of object oriented programming,
which has fundamental influences on programming languages, making code easier
to understand and maintain.

Python supports the most important object oriented programming concepts. For
example, the type hierarchy is supported by sub classes in Python. This chapter
discusses the basic thinking of object oriented programming, and how it can be
applied to Python programming.

10.1 Classes and Instances

Types represents certain types of information. A type can integrate one or more
sources of information. This section introduces custom types by using bank accounts
as an example. As shown in Table10.1, a bank account integrates three sources of
information, including the account number, the name of the account holder and
the balance. Each account instance represents a specific combination of the three
attributes.

10.1.1 Classes and Attributes

The class statement defines a custom type. Its syntax is shown in Fig. 10.1. A class
statement starts with the keyword class, followed by an identifier, which specifies
the name of the new type, or class, and then a semi-colon. After the class line is
an indented statement block, which typically defines methods, the constructor and
operators of the new type.

Table 10.1 Type and instances

Type (account) Instance 1 Instance 2

Account number 100001 100010

Account holder name John Marina

Balance 1000 0
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Fig. 10.1 The class
statement

To begin with, consider the simplest case, where a pass statement is used as
the indented statement block. Such an empty type does not have any methods or
operators. Nevertheless, it can be instantiated into objects, which can be assigned
attributes. This simplest type of classes shows the basic way in which a custom
object integrates various sources of information. Taking bank accounts for example,
attributes of an account can include the name of the account holder, the account
number and the balance, as shown in Table10.1. A simplest way of defining the
account type is tomake it an empty class, assigning relevant attributes to its instances.

>>> class Account: # empty type
... pass
...
>>> a1=Account () # constructor call
>>> a2=Account ()
>>> a1.name=’John’ # attribute assignment
>>> a1.number =100001
>>> a1.balance =1000
>>> a2.name=’Marina’ # account holder name
>>> a2.number =100010 # account number
>>> a2.balance =0 # balance
>>> a1.balance
1000
>>> a2.name
’Marina’

In the example above, the class statement defines a new type, and binds it to the
identifierAccount in the global binding table. Two objects, a1 and a2, are constructed,
by instantiating the type via the constructor call Account(). By this step, neither a1
nor a2 hold any attributes.

Then a few attribute assignment statements are executed. Attribute assignment
is similar to the assignment statement and setslice operation, except that the left
hand side of the = sign is an attribute, rather than an identifier or slice. The syntax
of specifying an attribute in attribute assignment is:

<object >.<attribute >

This syntax is the same as that for accessing the attribute of an object in an
expression (e.g. c.imag + 2), which is also referred to as the getattr operation. Cor-
respondingly, the attribute assignment statement is also called the setattr operation.
The correlation between getattr and setattr is similar to that between getitem and
setitem for container objects, and that between getslice and setslice for sequential
objects.
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Similar to the case of delitem and delslice, the del keyword can also be used to
perform the delattr operation, removing an attribute from an object.

(continued from above)
>>> a3=Account ()
>>> a3.name=’Tim ’
>>> a3.name
’Tim ’

>>> del a3.name
>>> a3.name

Traceback (most recent call last):
File "<stdin >", line 1, in <module >

AttributeError: Account instance has no attribute ’
name ’

As shown by the example, after the attribute name is deleted from the object a3,
a further reference to this attribute leads to an attribute error.

Attributes can be arbitrary identifiers, and there is no additional restriction on
the name of attributes that can be assigned to objects. The attributes for the account
holder’s name, for example, can be ‘n’ rather than ‘name’. Attribute assignment can
be regarded as attaching variables to objects. Once an attribute is assigned to an
object, it is attached to the object and exists throughout the object’s existence, unless
being explicited deleted by delattr.

The assignment of attributes is object-specific rather than type-specific. For exam-
ple, the attribute ‘name’ might be assigned to the account object a1 but not to a2,
despite that both belong to the Account type. To avoid such inconsistencies, it is a
standard practice to automatically assign all necessary attributes to an object at its
construction, which is achieved by defining a custom constructor. As will be shown
in the next section, a constructor is a special method, which is executed automatically
when new objects are instantiated. As a result, a new object can have an attribute
automatically if the attribute is assigned in the constructor.

10.1.2 Methods and Constructors

Methods are special functions defined in the indented statement block in a class
statement, which apply to all objects that belong to the class. For a simple example,
consider defining a method, deposit, for the Account type. The method takes one
argument that specifies the amount to be deposited, and adds the amount to the
balance. This can be achieved by defining a special function under the class line, as
shown below.

>>> class Account:
... def deposit(self , amount):
... self.balance += amount
...
>>> a=Account ()
>>> a.balance =1000
>>> a.deposit (100) # implicit argument a
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>>> a.balance
1100
>>> Account.deposit(a, 100) # explicit
>>> a.balance
1200
>>> b=Account ()
>>> b.deposit (100) # error

Traceback (most recent call last):
File "<stdin >", line 1, in <module >
File "<stdin >", line 3, in deposit

AttributeError: Account instance has no attribute ’
balance ’

The example above defines a class Account with a single method, deposit, and
makes two instances of the class. The method is called on the two instances, and
different results are observed. One immediate thing to notice from the definition of
deposit above is that it takes two arguments rather than one. The second argument,
amount, is the argument intended for specifying the amount to be deposited. The
first argument, self, is a special argument necessary for all methods. It specifies the
Account object of which the deposit method is called, and is assigned implicitly
in the method call. When the method a.deposit(100) is called, a is assigned to the
argument self and 100 is assigned to the argument amount before the function body
is executed. A call to a.deposit(100) is equivalent to a call to Account.deposit(a,100).

Recall the earlier discussion on methods and functions in Chap. 7, where it was
mentioned that the role of an object in its method call is similar to that of an argument
in a function call. For example, the call to c.conjugate() of a complex number cwould
be similar to a call to a global function conjugate(c) if such a function existed. The
self argument in a method definition explains this analogy: conjugate is a method
defined under a class complex, and as all methods do, it takes a self argument. When
c.conjugate() is called, it is translated into a call to complex.conjugate(c), with the
object c being passed as the self argument implicitly.

>>> c=1+2j
>>> complex.conjugate(c)
(1-2j)

In both Account.deposit(a, 100) and complex.conjugate(c), the syntax <class-
name>.<methodname> is used to refer to a method defined in a class. Recall that
this is the third use of the dot (.) operator in this book (the first is to refer to an
identifier in a module, and the second is to refer to an attribute or method of an
object). The underlying correlation between the three uses of the dot operator is
discussed later in this chapter. Calls to a method using a class name, with the object
being passed explicitly as the first argument (e.g. Account.deposit(a,100)), are rarely
used, but sometimes necessary, as will be shown in the next section.

In a method call, Python performs type checking on the argument assigned to
self. If it does not belong to the correct class, an error is raised. For example:

>>> class A:
... pass
...

http://dx.doi.org/10.1007/978-981-287-609-6_7
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>>> class B:
... def f(self):
... pass
...
>>> a=A()
>>> b=B()
>>> B.f(b) # okay
>>> B.f(a) # error

Traceback (most recent call last):
File "<stdin >", line 1, in <module >

TypeError: unbound method f() must be called with B
instance as first argument (got A instance instead)

The example above leads to an error because the argument a in the method call
B.f(a) does not belong to the type B.

Now back to the Account example. The function body of deposit consists of a
single statement, self.balance+=amount. When the function body is executed, self
is assigned to a specific account object a. As a result, a.balance+=amount is effec-
tively executed. As shown by the example on Account above, calling a.deposit(100)
increases a.balance by 100.

In the example, calling b.deposit(100) results in an error because the object b does
not have an attribute named balance. When self.balance+=amount is executed, self
is bound to b, hence leading to an attribute error. As discussed earlier, if all the
necessary attributes can be assigned automatically during the construction of account
objects, this problem can be solved. A custom constructor serves this goal.

Constructors. As introduced earlier, types integrate information, and the inter-
faces of a type include attributes, methods, constructors and operators. While
attributes, methods and operators have been discussed in this book, constructors
have not been formally defined. They refer to the mechanism to construct a new
object, or to instantiate a type. For most built-in types, objects are constructed via
literals. For example, the integer literal 123 leads to the construction of a new integer
object, and the list literal [1, 2, 3] leads to the construction of a new list object. On
the other hand, the construction of a new set object is done by calling set(). This is a
constructor call, a function call that takes the name of a type as the function name,
and returns a new object of the type. Constructor calls are general and applicable
to custom types, although literals are applicable only to the most commonly used
built-in types. Similar to other functions, constructors can take arguments. In fact,
the type conversion functions, such as float(3) and complex(1, 2), can also regarded
as constructor calls.

Aconstructor is amethod, but is special in twoways. First, it is called automatically
at the evaluation of a constructor call expression, when the class in instantiated.
Second, it must be named __init__. All the arguments in a constructor call are passed
into the corresponding constructor. For example, a constructor of the Account class
can take three arguments, specifying the account holder name, the account number
and the initial balance, respectively, assigning them to corresponding attributes of
the new object.
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>>> class Account:
... def __init__(self , name , number , balance):
... self.name=name
... self.number=number
... self.balance=balance
... def deposit(self , amount):
... self.balance += amount
...
>>> a=Account(’John’, 100001 , 1000)
>>> a.deposit (100)
>>> a.balance
1100

In the example above, the constructor call Account(‘John’, 100001, 1000) leads
to the constructor __init__ of the Account class being executed, with the new object
being assigned to the self argument, ‘John’ being assigned to the name argument,
100001 being assigned to the number argument and 1000 being assigned to the
amount argument.

Execution of the function body assigns the three arguments to three attributes of
the self object, respectively. As a result, the new object a has the balance attribute
once being constructed, and calling the method a.deposit(100) immediately after a’s
construction does not lead to an attribute error. Note that the argument number and
the attribute self.number share the name number, but are different variables.

The number of arguments in a constructor call must match the number of argu-
ments in the constructor of the class. For the Account class, for example, the con-
structor takes 3 arguments in addition to self, and 3 arguments must be specified in
a constructor call. On the other hand, default arguments (Chap.6), special list argu-
ments (Chap.7) and special dict arguments (Chap. 8) can also be used in constructors.
For example, the default value of the argument balance can be made 0, so that it does
not need to be specified in a constructor call.

>>> class Account:
... def __init__(self , name , number , balance =0):
... self.name=name
... self.number=number
... self.balance=balance
... def deposit(self , amount):
... self.balance += amount
...
>>> a=Account(’John’, 100001 , 1000)
>>> b=Account(’Marina’, 100002)
>>> a.balance
1000
>>> b.balance
0

In the example, the constructor call Account(‘Marina’, 100002) is simpler than
the constructor call Account(‘John’, 100001, 1000) by using a default value for
the third argument balance. The constructor can be further simplified by removing
the argument number, and allocating account numbers automatically. In particular, a
solution is to keep anoverall account number record,with the starting account number

http://dx.doi.org/10.1007/978-981-287-609-6_6
http://dx.doi.org/10.1007/978-981-287-609-6_7
http://dx.doi.org/10.1007/978-981-287-609-6_8
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being 100001. Each time a new account is created, the current overall account number
is allocated to the new account, and then the overall record is increased by one. This
solution can be achieved by using a class attribute for the total account number.

10.1.3 Class Attributes and the Execution of a Class Statement

A class attribute can be defined by writing an assignment statement in the indented
statement block in a class statement. For example:

>>> class A:
... a=1
...
>>> A.a
1

In this example, a is an attribute to the class A, and can be accessed by the
expression A.a. The use of the dot (i.e. .) operator in A.a is similar to the use of the
dot operator in the expression Account.deposit(a, 100), which accesses a method of a
class. Recall that the def statement constructs a new function object, and assigns it to
the function name identifier specified in the def line. As a result, it can be regarded as a
special assignment statement, with the object being assigned being a function object.
In this perspective, the definition of class attributes and methods are consistent, both
being assignments within a class statement.

Now back to the Account type. The overall account number can be assigned to
the class Account as a class attribute:
>>> class Account:
... total =100001
... def __init__(self , name , balance =0):
... self.name=name
... self.number=Account.total
... self.balance=balance
... Account.total +=1
... def deposit(self , amount):
... self.balance += amount
...
>>> a=Account(’John’) # Account.__init__(a, ’John ’) called
>>> b=Account(’Marina ’) # Account.__init__(b, ’Marina ’) called
>>> a.number
100001
>>> b.number
100002

As the example above shows, new instances of theAccount class are given account
numbers automatically, starting from 100001. This is achieved by assigning the
current value of Account.total to the new object, and increasing Account.total in the
constructor.

In memory, the class statement defines a new class object, and assigns it to the
class name identifier in the class line. This is similar to the def statement, which
defines a function object in memory and gives it a name. However, unlike the def
statement, the execution of which does not invoke the execution of the indented
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statement block (i.e. function body), the execution of the class statement leads to the
execution of the indented statement block under the class line. During the execution
of the statement block, each time a new identifier is defined, it is taken as a class
attribute or method. Similarly, each time a def statement is executed, the function is
taken as a method.

The example above consists of 5 statements, the first being a class statement, the
second and third being two assignment statements, with the right hand side of = being
constructor call expressions, and the forth and fifth being two getattr expressions.
When the first statement is executed, a class object is constructed and bound to the
identifierAccount in the global binding table. The indented statement block under the
class line is executed, with total being taken as an attribute of Account, and __init__
and deposit as two methods.

When the second statement, a = Account(‘John’) is executed, the constructor
Account.__init__ is called automatically, with the argument self being assigned the
new object, the argument name being assigned the string ‘John’, and the argument
balance being assigned 0 by default. Execution of the method body assigns name
to the attribute self.name, Account.total, which is currently 100001, to the attribute
self.number, and balance to the attribute self.balance. Then the value ofAccount.total
is increased from 100001 to 100002 by the execution of Account.total+=1. The
execution of the third statement, b = Account(‘Marina’), follows the same proce-
dure, except that the argument name is assigned ‘Marina’, and the current value of
Account.total is 100002.

The following example uses a print statement to verify the execution of the class
statement. The print statement itself does not define attributes or methods, but shows
that the indented statement block is executed when a class statement is executed.

>>> class A:
... a=1
... print ’executed ’
... def f():
... pass
...
executed
>>>

10.1.4 Special Methods

The constructor __init__ is a special method, called automatically when a new object
is constructed. In addition to this method, Python provides a number of other special
methods, which are called automatically, and the names of which begin and end with
two consecutive underscore characters (i.e. ‘__’). For example, __str__ is a special
method that is called automaticallywhen string conversion of the object is performed.
It must take no arguments (except for self) and return a string object that represents
the object. For an object x , the built-in function call str(x) invokes the method call
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x.__str__(), and returns its return value. If the method __str__ is not defined in the
class of x , str(x) returns a default string representation of x . For example:

>>> class A:
... pass # no __str__ method
...
>>> a=A()
>>> str(a) # default string returned
’<__main__.A instance at 0x10a331878 >’
>>> print a # invokes str(a) implicitly
<__main__.A instance at 0x10a331878 >
>>> class B:
... def __str__(self):
... return ’I am a B instance ’
...
>>> b=B()
>>> str(b) # custom string returned
’I am a B instance ’
>>> print b
I am a B instance

Like all methods, the __str__method can access the attributes of the object via the
self argument. The example below shows how a __str__method can be defined in the
Account class, so that information of a specific account can be printed conveniently.

>>> class Account:
... total =100001
... def __init__(self , name , balance =0):
... self.name=name
... self.balance=balance
... self.number=Account.total
... Account.total +=1
... def deposit(self , amount):
... self.balance += amount
... def __str__(self):
... return """Account holder name: %s\nAccount

number: %d\nBalance: %.2f""" % (self.name , self.
number , self.balance)

...
>>> a=Account(’John’)
>>> b=Account(’Marina’, 1000)
>>> print a

Account holder name: John
Account number: 100001
Balance: 0.00

>>> print b
Account holder name: Marina
Account number: 100002
Balance: 1000.00

In the example, __str__ accesses attributes through the argument self. Note that
the order in which methods are defined in a class is not important. When the class
statement is executed, the methods of the class are defined by the execution of def
statements, but not executed. The order of method definition in a class statement has
no correlation with the order of method execution. During the life cycle of an object,
the __init__ method is called first, but then methods can be called in arbitrary orders.
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In addition to __init__ and __str__ , Python supports a range of special methods
which correspond to almost all built-in operators, such as addition, getitem and
function call, and some commonly-used built-in functions, such as abs. The special
methods can be roughly classified into type conversionmethods, numerical operation
methods, numerical comparison methods, collection methods, function methods and
attribute methods. Type conversion methods are called automatically when the object
is converted to a specific type. __str__ is a type conversion method, called when the
object is converted into a string. Other type conversion methods include:

• __int__(self), which is called when the object is converted into int, returning an
int value as the result;

• __long__(self), which is called when the object is converted into long, returning a
long value as the result;

• __float__(self), which is called when the object is converted into float, returning a
float value as the result;

• __complex__(self), which is called when the object is converted into complex,
returning a complex value as the result;

• __nonzero__(self), which is calledwhen the object is converted into bool, returning
a Boolean value as the result.

Numerical operation methods are called when numerical operators are applied
to the object. There are unary and binary numerical operations, which take one and
two operands, respectively. Common numerical operation methods include:

• __neg__(self), which is called when the unary ‘−’ operator (negate) is applied to
the object, returning the corresponding result;

• __invert__(self), which is called when the unary ‘∼’ operator (Boolean bitwise
invert) is applied to the object, returning the corresponding result;

• __abs__(self), which is called when the built-in function abs is called with the
object being the argument, returning the corresponding result.

Binary numerical operation methods include:

• __add__(self, other), which is called when self + other is evaluated, returning the
corresponding result;

• __lshift__(self, other), which is called when self � other is evaluated, returning
the corresponding result;

• __and__(self, other), which is called when self & other is evaluated, returning the
corresponding result.

There are many more binary operators, and their corresponding methods take
three general forms, including __<op>__(self, other), __<rop>__(self, other) and
__<iop>__(self, other), where op stands for an operation, such as addition (i.e.
add). The difference between __<op>__ and __<rop>__ is that __<op>__ is
called when the object is the first operand of the binary operator, while __<rop>__
is called when the object is the second operand. When the expression x + y is eval-
uated, x.__ add__(y) is called automatically. If the method __add__ does not exist
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Table 10.2 Binary numerical methods

op (self, other)
operator

rop(self,
other)

operator iop(self, other) operator

__add__ self+other __radd__ other+self __iadd__ self+=other

__sub__ self-other __rsub__ other-self __isub__ self-=other

__mul__ self*other __rmul__ other*self __imul__ self*=other

__div__ self/other __rdiv__ other/self __idiv__ self/=other

__floordiv__ self//other __rfloordiv__ other//self __ifloordiv__ self//=other

__mod__ self%other __rmod__ other%self __imod__ self%=other

__pow__ self**other __rpow__ other**self __ipow__ self**=other

__lshift__ self<<other __rlshift__ other<<self __ilshift__ self<<=other

__rshift__ self>>other __rrshift__ other>>self __irshift__ self>>=other

__and__ self&other __rand__ other&self __iand__ self&=other

__or__ self|other __ror__ other|self __ior__ self|=other

__xor__ self∧other __rxor__ other∧self __ixor__ self∧=other

for x , then y.__radd__(x) is called automatically. If __radd__ does not exist for y
either, an unimplemented error is raised.

The __<iop>__ methods are called for augmented arithmetic assignment opera-
tors, modifying the object in place. For example, x.__iadd__(y) is called when x+=y
is evaluated. A full list of commonly used binary numerical methods are shown in
Table 10.2.

Comparison Methods. The most commonly used numerical comparison method
is __cmp__(self, other), which is called when self>other, self>=other, self<other,
self<=other, self==other, self!=other or the built-in function call cmp(self, other)
is evaluated. The return value of cmp(self, other) and self.__cmp__(other) should be
positive if self>other is true, zero if self==other is true, and negative if self<other
is true.

For more fine-grained comparison, the methods __gt__(self, other), __ge__(self,
other), __lt__(self, other), __le__(self, other), __eq__(self, other) and __ne__
(self, other) are called when self>other, self>=other, self<other, self<=other,
self==other, self!=other are evaluated, respectively.All themethods return aBoolean
value, indicating whether the corresponding comparison is true. The methods have
higher priority compared to the __cmp__(self, other) method. For example, when
the __ge__(self, other) is defined, it is called instead of __cmp__(self, other) when
self>other is evaluated.

Commonly used container methods include:

• __len__(self), which is called when the built-in function len is called, with the
object being the argument, and returns the size of the object. If the Boolean
conversion of the object is requested but __nonzero__(self) is undefined, then
__len__(self) is called, and the Boolean conversion is true if and only if the return
value of __len__(self) is non-zero.
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• __contains__(self, item), which is called when the expressions item in self and
item not in self are evaluated, returning a Boolean value, which is True if and only
if item is a member of self.

• __getitem__(self, key), which is called when the getitem operation is applied,
returning the corresponding item;

• __setitem__(self, key, value), which is called when the setitem operation is applied;
• __delitem__(self, key), which is called when the delitem operation is applied;
• __getslice__(self, b, e), which is called when the getslice operation self[b:e] is
executed, returning an object that has the same type as self;

• __setslice__(self, b, e, slice), which is calledwhen the setslice operation self[b:e]=
slice is executed;

• __delslice__(self, b, e), which is called when the delslice operation del self[b:e]
is executed.

Function Method. The only function method is __call__(self, [,args]), which is
called when the object is called as a function. For example, when the function call
expression x(arg1, arg2, arg3) is evaluated, x.__call__(arg1, arg2, arg3) is called
automatically, with the return value being used for the return value of the x function
call.

Attribute Method. There are three attribute methods, including

• __getattr__(self,name), which is called when self.name is evaluated, but name is
not an attribute of self, returning the custom attribute value;

• __setattr__(self,name,value), which is called when self.name=value is executed,
performing custom attribute setting.

• __delattr__(self,name), which is calledwhendel self.name is executed, performing
custom attribute deletion.

10.1.5 Class Examples

Classes can be used to organize data structures, making them easier to maintain. In
theAccount example, various sources of information about an account are aggregated
to a singleAccount object, andmanaged by attributes andmethods.Without a custom
type definition by the class statement, it would be more difficult to write a program
that manages such information.

For another example use of classes, consider the stack data structure introduced
in Chap.7. A stack is a sequential data structure that manages its items in the last-
in-first-out order. In Chap. 7, a stack is represented by a list, and stack operations are
implementedusingglobal functions.Adisadvantageof this approach is the separation
of data and operations. Given a list, there is not an explicit way of telling whether
it represents a stack or not. This issue can be addressed by defining a class for the
stack data structure, which offers centralized organization of data and operations.

In particular, a Stack instance can use a list attribute to hold its items, and provide
the pushing and popping operations as methods.

http://dx.doi.org/10.1007/978-981-287-609-6_7
http://dx.doi.org/10.1007/978-981-287-609-6_7
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>>> class Stack:
... def __init__(self , l=[]):
... self.l=l[:]
... def push(self , x):
... self.l.append(x)
... def pop(self):
... return self.l.pop(-1)
... def __len__(self):
... return len(self.l)
... def __str__(self):
... return ’Stack:’+’ ’.join([str(e) for e in self.l])
...
>>> s1=Stack() # an empty stack
>>> s2=Stack([1, 2, 3]) #Bottom 1 2 3 Top
>>> s2.pop() # BOTTOM 1 2
3
>>> s2.push (0) # BOTTOM 1 2 0
>>> s1.push (5) # BOTTOM 5
>>> print s1
Stack:5
>>> print s2
Stack:1 2 0
>>> s2.pop() # BOTTOM 1 2
0
>>> s1.pop() # BOTTOM
5
>>> s2.pop() # 1
2
>>> if s1: # __len__ is called
... s1.pop() # not executed
...
>>>

The class Stack above contains three special methods. The first is __init__, the
constructor, which allows a Stack object to be initialized as an empty stack, or from a
list that specifies the initial items. The use of Stack() and Stack([1, 2, 3]) to construct
Stack objects is similar to the use of set() and set([1, 2, 3]) to construct set objects.
In the constructor, the argument l is copied before being assigned to self.l, so that the
attribute self.l is bound to a different object, and further changes to l do not affect
self.l. Since the attribute self.l is assigned in the constructor, all Stack objects have
this attribute.

The second special method is __len__, which is called automatically when the
functions len and bool are called. The size of self.l is returned by this method,
indicating the number of items on the stack. The third special method is __str__,
which is called automatically when the stack is converted into a string.

As shown by the example, the use of a class allows stack objects to hide the
internal list representation from users, with all operations being achieved by method
interfaces. The hiding of implementation details frees the user of stacks from unnec-
essary concerns, and makes reimplementation of the Stack type using other internal
representations easy. This advantage is called encapsulation.

Similar to stacks, matrices introduced in Chap. 9 can also be defined as a custom
type.

>>> class Matrix:

http://dx.doi.org/10.1007/978-981-287-609-6_9
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... def __init__(self , l=[]):

... import copy

... self.l=copy.deepcopy(l)

... def get_row(self , i):

... return self.l[i][:]

... def get_column(self , i):

... s=[]

... for row in self.l:

... s.append(row[i])

... return s

... def __mul__(self , a):

... import copy

... if type(a)==int:

... N=copy.deepcopy(self.l)

... for i in range(len(N)):

... for j in range(len(N[i])):

... N[i][j]*=a

... return Matrix(N)

... def __add__(self , other):

... import copy

... R=copy.deepcopy(self.l)

... S=copy.deepcopy(other.l)

... for i in range(len(R)):

... for j in range(len(R[i])):

... R[i][j]+=S[i][j]

... return Matrix(R)

... def __str__(self):

... s=’’

... for i in range(len(self.l)):

... for j in range(len(self.l[i])):

... s+=str(self.l[i][j])

... s+=’\t’

... s+=’\n’

... return s

...
>>> m1=Matrix ([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> m2=Matrix ([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
>>> print m1
1 2 3
4 5 6
7 8 9

>>> print m2
1 0 0
0 1 0
0 0 1

>>> m3=m2*-1
>>> print m3
-1 0 0
0 -1 0
0 0 -1

>>> m4=m1+m3
>>> print m4
0 2 3
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4 4 6
7 8 8

The class Matrix above implements some matrix operations discussed in Chap. 9,
including get_row, get_column, scaling and addition. It provides a centralized orga-
nization of data, with encapsulation, and is therefore easier to use compared with a
set of global functions that directly handle lists of lists, as given in Chap.9.

The matrix addition and scaling operations are implemented using the special
methods__add__ and__mul__, respectively. In__mul__, type checking is performed
to decide whether the second operand is an integer or not. The identifier int here
represents the int type. Type names and constructors having been introduced, it is easy
to draw the correlation between int and int(3, 5) by considering that between Stack
and Stack([1, 2, 3]), and that between set and set([1, 2, 3]). If the second operand to
__mul__ is an integer, scaling is performed; otherwise the method performs nothing
and returns None. An exercise problem asks to complete the __mul__ method by
also performing matrix multiplication.

10.1.6 The Underlying Mechanism of Classes and Instances

As discussed earlier, the dot (.) operator has three main uses. The first is to access an
identifier from a module, the second is to access an attribute from an object, and the
third is to access a class attribute. This suggests some underlying connection between
modules, objects and classes.Recall that an object can be assigned arbitrary attributes,
and the class statement allows arbitrary attribute and method. Python supports such
freedom by associating class and instance objects with binding tables. The setattr
operation simply adds a new identifier to the binding table of the corresponding
object. Similarly, when a class statement is executed, all the identifiers defined in
the indented statement block (e.g. in assignment statements, and def statements) are
inserted into the binding table of the class object.

A class is a Python object in memory. The uniqueness of class objects is that
they can be instantiated. The binding tables between a class object and objects of
its instances are hierarchical, where the class binding table can be viewed as the a
outer-scope binding table of an instance binding table. When Python looks for an
attribute in an instance but cannot find it, it goes to the class binding table to search
for it. For example,

>>> class A:
... x=1
...
>>> a=A()
>>> b=A()
>>> a.x
1
>>> b.x
1
>>> A.x+=1

http://dx.doi.org/10.1007/978-981-287-609-6_9
http://dx.doi.org/10.1007/978-981-287-609-6_9
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>>> a.x
2
>>> b.x
2

In the example above, a and b are two instances of A, which has an attribute x.
Although neither a nor b has an attribute named x, a.x and b.x can be accessed, which
refer to A.x. When A.x changes, both a.x and b.x change, because they refer to x in
A’s binding table.

Assignment of instance attributes, on the other hand, is always carried out in the
instance binding table, but never in the class binding table. For example:

(continued from above)
>>> a.x=3
>>> A.x
2
>>> a.x
3
>>> b.x
2
>>> b.x-=1
>>> a.x
3
>>> b.x
1
>>> A.x
2

In the example above, when a.x=3 is performed, a new identifier x is added to a’s
binding table. Therefore, a.x becomes different from b.x. When b.x−= 1 is executed,
b.x =b.x−1 is executed, with the right hand of the = sign being evaluated first, and
then assigned to the attribute on the left hand side of =. During the evaluation of
b.x−1, since the identifier x is not found in b’s binding table, Python goes to A’s
binding table to find x, which is 2. The result of 2 − 1 is in turn assigned to a new
identifier x in b’s binding table, which makes b.x different from A.x.

To illustrate the underlying mechanism for the class statement and new object
instantiation, consider again the Account class. Figure10.2 shows the memory struc-
ture when the class definition of Account and the instantiation of a=Account(‘John’)
are executed. As shown by Fig. 10.2a, when the class statement is executed, a new
binding table is constructed for the class object, and the indented statement block is
executed. During the execution, new objects are constructed, and bound to identifiers
in the binding table of the new class object. Note that methods have their outer-scope
links pointing to the global binding table, rather than the class binding table.

The instantiation of a class object consists of two steps: the construction of the
new instance object and the calling of the constructor, as shown in Fig. 10.2b, c,
respectively. When the new instance object is constructed, a corresponding binding
table is constructed. The newbinding table has an outer-scope link to the class binding
table, for hierarchical look-up of identifiers. When the constructor call is executed,
a function binding table is constructed for the local scope of the constructor, as
introduced in Chap.6. As indicated by the outer-scope pointer in the function object,

http://dx.doi.org/10.1007/978-981-287-609-6_6
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(a)

(b)

(c)

(d)

Fig. 10.2 Memory structures of class definition and instantiation. a The class statement. b New
object constructed. c Constructor called. d Assignment done

the outer-scope of this binding table is the globe binding table, rather than the class
binding table. When the statement self.number = Account.number is executed, the
identifier self is found in the local binding table, but the identifier Account is not.
Python follows the outer-scope link to find Account in the global binding table.
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During the execution of the assignment statement a=Account(‘John’), the right
hand side of = is evaluated first, leading to an instantiation of the class Account.
The value of the expression Account(‘John’), which is the new instance object, is
assigned to the identifier a in the global binding table, in which this statement is
executed, as shown in Fig. 10.2d.

10.2 Inheritance and Object Oriented Programming

Types have hierarchies. For example, both dogs and wolfs are sub categories of the
canine category. Since all canines have a head, four legs and a tail, definition of these
attributes would be unnecessary for dogs and wolfs given that they are sub categories
of the canines. The concept of class extension comes from this observation. If a class
describes a specific sub type of a general type, and a slight modification of the general
type is sufficient for specifying the sub type, then inheriting attributes and methods
from the general class and writing only the difference in the new class will reduce
code duplication.

To facilitate description, a final version of the Account class can be saved into a
file.

[account.py]
class Account:

total =100001
def __init__(self , name , balance =0):

self.name=name
self.balance=balance
self.number=Account.total
Account.total +=1

def deposit(self , amount):
if amount <=0:

print ’Error , negative amount.’
return

self.balance += amount
def withdraw(self , amount):

if amount <0:
print ’Error: negative amount’
return

if amount >self.balance:
print ’Error: insufficient fund’
return

self.balance -= amount
def __str__(self):

return ’’’Account holder name: %s
Account number: %d
Balance: %.2f ’’’ %(self.name , self.number , self.

balance)

Two changes aremade to theAccount class in this version, compared to the version
in the previous section. First, the deposit method now checks whether the amount
is negative, in which case an error is reported and the deposit action is cancelled.
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Second, a withdraw method is added to the class, which takes a single argument that
specifies an amount, and deduces it from the balance. The withdraw method checks
both whether the input amount is negative and whether it is larger than the current
balance; in both cases errors are reported and the withdraw action is cancelled.

10.2.1 Sub Classes

In Python, the type hierarchy is achieved by sub classes. A sub class is an extention
to a base class, which represents a specific sub type of the base class in a type
hierarchy. For example, the wolf type can be represented by a sub class of a canine
type, if these types are modeled in Python.

Asmentioned earlier, sub classes canmake Python programs simpler by inheriting
attributes and methods of the base class, so that code duplication is minimized. To
give an example, consider a CreditAccount class, which represents a specific type
of accounts that has a credit limit. Overdraft of funds is allowed within the credit
limit, resulting in a negative balance. In all the other aspects, a credit account behaves
exactly the same as the base Account class.

The CreditAccount class can be developed in two steps. First, an empty extention
of the base class Account can be made, which inherits all the attributes and methods
of the Account class. Second, the credit limit feature can be added by overriding
some existing functionalities.

The syntax for defining a sub class of an existing class is shown in Fig. 10.3. It
is an extension to the class statement, with the only difference being an additional
base class name after the class name, which is enclosed in a pair of round brackets.
Using this statement, the base class attributes andmethods are inherited automatically
in the sub class. The statement block under the class line defines the attributes and
methods that are unique in the sub class.

To make an empty extension to the class Account, a single pass statement can be
used as the statement block of the new class. An example is shown below.

>>> from account import Account
>>> class CreditAccount(Account):
... pass
...
>>> a1=Account(’John’)
>>> a2=CreditAccount(’Marina’)
>>> a3=Account(’Catherine ’)

Fig. 10.3 The class
statement with class
extension



10.2 Inheritance and Object Oriented Programming 265

>>> print a1
Account holder name: John
Account number: 100001
Balance: 0.00
>>> print a2
Account holder name: Marina
Account number: 100002
Balance: 0.00
>>> print a3
Account holder name: Catherine
Account number: 100003
Balance: 0.00
>>> a2.deposit (100)
>>> Account.deposit(a2, 100) # a2 is Account
>>> CreditAccount.deposit(a2 , 100) # a2 is

CreditAccount
>>> CreditAccount.deposit(a1 , 100) # a1 is not

CreditAccount

Traceback (most recent call last):
File "<stdin >", line 1, in <module >

TypeError: unbound method deposit () must be called
with CreditAccount instance as first argument (got
Account instance instead)

In the example above, the class CreditAccount is defined as empty extension to
the class Account. Several instances of Account and CreditAccount are constructed.
It can be seen that the CreditAccount instance a2 has all the attributes and methods
of Account instances, and behaves almost identically compared with the Account
instances a1 and a3. For example, the constructor of a2 is the same as that of a1
and a3, taking a name argument. The methods __str__ and deposit also apply to a2.
Interestingly, a2 also participates in the automatic allocation of account numbers.

The reason behind these observations is that, when a CreditAccount method
instance is called, but the method is not defined in the CreditAccount class, the
corresponding method in Account is called. For example, when a2.deposit(100)
is called, Python tries to call CreditAccount.deposit(a2, 100). However, deposit
is not defined in CreditAccount. As a result, Python calls the base class method
Account.deposit(a2, 100). The same happens for __init__ and __str__. When
a2=CreditAccount(‘Marina’) is executed, Account.__init__(a2, ‘Marina’) is called.

As mentioned earlier, Python performs type checking when the self argument
is assigned. Apparently, the CreditAccount instance a2 passes the type checking
of Account methods, which implies that a2 is also an Account instance. This is
intuitively understandable: a dog instance is also a canine instance, for example. On
the other hand, a canine instance is not necessarily a dog instance, and an Account
instance is not necessarily a CreditAccount instance. Hence, when passing a1 to
CreditAccount.deposit, Python reports an error, despite that CreditAccount.deposit
leads to Account.deposit.
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10.2.2 Overriding Methods

Having inherited all the Account methods, the next step to take for the definition of
CreditAccount is to define the parts that are different from the base Account class.
There should be twomain changes. First, the constructor needs to bemodified, adding
the assignment of another attribute: the credit limit. Second, the withdraw method
needs to be modified, so that overdraft is allowed within the credit limit.

To apply the changes above, the constructor and the withdraw method need to be
redefined in the new class, overriding those in the base class.

>>> from account import Account
>>> class CreditAccount(Account):
... def __init__(self , name , balance=0, limit =0):
... Account.__init__(self , name , balance)
... self.limit=limit
... def withdraw(self , amount):
... if amount <0:
... print ’Error: negative amount.’
... return
... if amount >self.balance+self.limit:
... print ’Error: insufficient fund’
... return
... self.balance -= amount
...
>>> a1=Account(’John’)
>>> a2=CreditAccount(’Marina’, limit =500)
>>> a3=Account(’Catherine ’, 1000)
>>> a1.balance
0
>>> a2.balance
0
>>> a3.balance
1000
>>> a1.withdraw (100)
Error: insufficient fund
>>> a2.withdraw (100)
>>> a3.withdraw (100)
>>> a1.balance
0
>>> a2.balance
-100
>>> a3.balance
900

In the example above, CreditAccount is redefined, with its own constructor and
withdraw method. Several instances of Account and CreditAccount are constructed,
which now behave diffferently. The CreditAccount instance, a2 is constructed by
specifying a credit limit, limit=500. Initially, the balances of both a2 and the Account
instance a1 are 0s. When a1.withdraw(100) is called, an error is reported and the
transaction is cancelled. However, when a2.withdraw(100) is called, the transaction
proceeds even though the balance is smaller than the amount withdrawn, leaving
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a negative balance in a2. The different behavior results in the overriding of the
withdraw methods.

The new CreditAccount instances have a new attributes, limit, which specifies
the credit limit of the account. The constructor of CreditAccount takes an additional
argument that specifies the credit limit, and assigns it to the limit attribute of the
new instance to be constructed. The rest of the construction, including the assign-
ment of name, number and balance, is the same as that for Account. As a result,
the constructor of CreditAccount simply calls the base constructor Account.__init__,
with the new CreditAccount instance self being passed as the self argument, and the
input name and balance arguments being passed as the name and balance argu-
ments for Account.__init__, respectively. Execution of Account.__init__ in turn
assigns the respective attributes to self the newCreditAccount instance, and increases
Account.total by one.

The withdraw method of CreditAccount is different from that of Account in that
the prerequisite isamount<balance+limit now instead ofamount<balance. Because
the new prerequisite is less strict than the prerequisite in the base withdraw method,
the newwithdrawmethod cannot call the basemethod in the sameway as the __init__
method does, but has to rewrite the complete procedure. Nevertheless, by inheriting
from the base class, the CreditAccount class is significantly simplified as compared
to an implementation written from scratch.

10.2.3 The Underlying Mechanism of Class Extention

Python’s mechanism for sub class is rather simple. The binding table of a class that
has a base class has an outer-scope link that points to the binding table of the base
class, and Python follows the link to find identifiers that cannot be found in the class.
For example, the memory structure of the previous example, after the three instances
a1, a2 and a3 are constructed, is shown in Fig. 10.4, where the outer-scope link of
CreditAccount is Account.

As an example that illustrates howPythonuses thememory structures, consider the
following process.When a2=CreditAccount(‘Marina’, limit=500) is called, the con-
structorCreditAccount.__init__ is executed,with a new local binding table being con-
structed for the function. In the local binding table, there are four entries: self, which
points to the new instance, name, which points to the string object ‘Marina’, balance,
which points to the int object 0, and limit, which points to the int object 500. The
outer-scope link of the local binding table for CreditAccount.__init__ is the global
binding table. When the first statement in the function body, Account.__init__(self,
name, balance), is called, Python looks for Account in the local binding table. How-
ever, it does not exist here. Thus Python follows the outer-scope link to find it in the
global binding table, which points to the binding table of Account, where __init__ is
found.

A call to the function Account.__init__ leads to the construction of its own local
binding table, which contains three entries: self, which points to the same new
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Fig. 10.4 Memory structures of sub class

instance, name, which points to the str object ‘Manina’, and balance, which points
to the same int object 0. The binding table has an outer-scope link that points to the
global binding table, as in the case of Fig. 10.4 (c). Execution of the function body
results in the attributes name, number and balance being created in the binding table
of self. After the call to Account.__init__ returns, the second statement in CreditAc-
count.__init__ is executed, and the attribute limit is created in the binding table of
self. At this point, the call to CreditAccount.__init__ finishes, and the self object is
assigned to the identifier a2 in the global binding table.

An exercise problem asks for the memory structures when the process above is
executed. The changes in each step is mechanical, following the execution rules of
each statement. For example, the mechanism of function calls and assignments have
been discussed in Chaps. 6 and 2, respectively. Here in this process, they are applied
to class binding tables, but the mechanisms remain the same.

http://dx.doi.org/10.1007/978-981-287-609-6_6
http://dx.doi.org/10.1007/978-981-287-609-6_2
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10.2.4 Object Oriented Programming

Functions and classes are two of the most influential concepts in programming. Cen-
tral to procedural programming, functions allow code to be modularized into sub
procedures, so that complex functionalities are represented by simple function calls.
Functions are so influential to computer programming that it is typically supported
by hardware also.

Classes, on the other hand, offers modularized organization of both code and data.
The concept of classes is central to object oriented programming, which has had a
significant impact on programming languages over the past few decades, including
C++, Java and Python. The two inventors of object oriented programming both won
the Turing award, the most esteemed honor in the field of computer science.

There are three most important elements in object oriented programming, namely
encapsulation, inheritance and polymorphism.Encapsulation refers to the aggre-
gation of attributes andmethods in a class, which represents a complex data type, and
the hiding of implementation details by using methods as interfaces to operations on
instances. Inheritance refers to the availability of base class attributes and methods
in sub classes, which enables code reuse in a type hierarchy. Polymorphism refers
to different behaviors of the same method between different objects. For example,
when the ‘+’ operator is applied to two numbers, it calculates the sum of the two
operands; but when applied to two sequence objects, such as strings, it calculates the
concatenation of the two operands.

Another typical example of polymorphism is the shape hierarchy in a graphical
user interface. Suppose that the shape type is a general type, and the square, circle
and triangle types are its sub types. Each of the three sub types has a method, draw,
which draws itself on the monitor. The behavior of draw is different when the sub
type is different, drawing a different shape. However, as long as the user knows that
an object is an instance of the shape type, she can call the draw method of the object,
drawing it on the monitor. The drawing behavior is polymorphic.

It is a good habit to put frequently used sub routines into functions, and the most
important data structures into classes. However, there is no simple formula for the
best design of function and class interfaces, and a better design can often lead to
significantly less cost in code maintenance, particularly when the software program
becomes large. How to design the most readable code is an important subject in
software engineering, and it takes practice to build experience on this skill.

10.3 Exception Handling

Many types of errors have been touched upon in this book, including value errors
in Chaps. 2, 3, 7 and 8, index errors in Chaps. 3 and 8, type errors in Chaps. 3, 6,
7, 8 and 10, name errors in Chaps. 3 and 6, attribute errors in Chaps. 3, 6 and 10,
syntax errors in Chap.4, unbounded local errors in Chap.6, key errors in Chap. 8,
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and runtime errors in Chap.8. All the errors are represented by camel case words in
the console output. For example, a value error is repeated with a line that begins with
the word ‘ValueError’, followed by some details about the error. Similarly, a name
error report begins with the word ‘NameError’.

The camel cased words are type names. When an error happens during the exe-
cution of code, Python makes an instance of the corresponding error type, and use it
to store information about the error that has occurred. The error object is also called
an exception. There is a large set of exception types in Python, and they form a
type hierarchy. As shown in Fig. 10.5, all exception types are direct or indirect sub
types of a BaseException type. Most of the exception types in this book are sub types
of the StandardError type. For example, both IndexError and KeyError are direct
sub types of LookupError, which is a sub type of StandardError. StandardError is
a sub type of Exception. Besides Exception, another sub type of BaseException is
KeyboardInterrupt, which has been seen in Chaps. 4 and 9, recording a keyboard
interrupt of program execution.

All the aforementioned error types are available in the __builtins__ scope. The
type hierarchy of exceptions makes it easier to understand the relationship between
different exceptions. In addition, it also makes it easier for an exception handler to
deal with different types of exceptions with deferent procedures. The remainder of
this section introduces the dynamic control flow for exceptions, and the design of
exception handlers for more robust programs.

Fig. 10.5 The type hierarchy of Python exceptions

http://dx.doi.org/10.1007/978-981-287-609-6_8
http://dx.doi.org/10.1007/978-981-287-609-6_4
http://dx.doi.org/10.1007/978-981-287-609-6_9
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10.3.1 Exception Handling

When exceptions occur, the control flow of the current program is interrupted, and
a special control flow sequence is executed. Just to recap, so far in this book, four
types of control flow has been introduced, the first three being the three basic types of
control flow, including sequential, branching and looping structures, and the fourth
being function calls, which can be nested in a stack structure. The control flow of
exception handling is different from the four, and is the last type of control flow for
Python, and most other imperative programming languages.

When an exception occurs, Python stops the current execution sequence and starts
an exception control flow. If the current execution sequence is in the global scope,
Python stops the whole program, and reports the error. This is the case for the excep-
tions seen in this book, such as those in Chap.2. If the current execution sequences
not in the global scope, it must be in the local scope of a function. In this case, Python
returns to the caller immediately. The same can happen to a stack of nested function
calls, leading to a sequence of returning operations, until the global scope is reached,
and the program terminates. For example,

>>> def f():
... z=0
... z+=g(0)
... return z
...
>>> def g(x):
... return 1.0/x
...
>>> f()

Traceback (most recent call last):
File "<stdin >", line 1, in <module >
File "<stdin >", line 3, in f
File "<stdin >", line 2, in g

ZeroDivisionError: float division by zero

In the example above, IDLE calls f(), which in turn calls g(), which causes a
division-by-zero exception. When this happens, the calling stack contains
IDLE→f→g, and the current scope is g’s local scope. Python enters exception con-
trol flow, and unrolls the stack to f and then to IDLE, the global scope. At this point
the program is stopped, and the error message is shown, with a traceback of the
unrolled calling stack.

The function stack unrolling process can be avoided by guarding a block of code
against exceptions, and defining an exception handler. Python allows exception
handling through the try statement, the syntax of which is shown in Fig. 10.6. A try
statement starts with the keyword try, followed by a colon(:), and then an indented
statement block. The statement block under the try line is guarded against certain
exceptions, indicated by the except line, which begins with the keyword except,
followed by an optional exception specification, and then a colon. The exception
specification can be omitted, in which case all exceptions are handled; it can also
be a single type name or a tuple of multiple type names, which specify the types of

http://dx.doi.org/10.1007/978-981-287-609-6_2
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Fig. 10.6 The try statement

exceptions to be handled. The exception handler is given in the indented statement
block under the except line. In the dynamic execution of this statement, the guarded
statement block is executed. If no exception happens, the exception handler is never
executed. Otherwise, the current execution sequence is stopped immediately, and
exception types in the except line are checked. If the current exception matches
an exception type in the specification, the exception handler is executed, and the
exception control flow stops, without the calling stack being unrolled.

To prevent the program from exiting on a zero division error, the function g can
guard the division expression against the error, returning 0 if it happens.

>>> def f():
... z=0
... z+=g(0)
... return z
...
>>> def g(x):
... try:
... return 1.0/x # guarded
... except ZeroDivisionError:
... return 0 # exception handler
...
>>> f()
0

In the example above, expression 1.0/x in g is guarded by a try statement, and the
zero division error is by the caught except line. Execution of the exception handler
leads to leads to g returning 0, but f and IDLE are not affected.

If the exception handler is placed in f rather than g, the dynamic execution can be
different.

>>> def f():
... z=0
... try:
... z+=g(0)
... except:
... pass
... return z
...
>>> def g(x):
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... return 1.0/x

...
>>> f()
0

The code above yields the same results as the previous example. However, the
dynamic execution sequence is different. When the zero division error occurs, g’s
execution is interrupted, and the exception control flowstarts, leading to an immediate
return of g, unrolling the function call stack to f. However, the line z+=g(0), at which
the exception happens in f, is guarded against all exceptions. As a result, the exception
handler is executed, and the control flow goes back from exception mode to normal.

It is possible to define different exception handlers for different exceptions, by
writing multiple except components in a compound try...except statement. For exam-
ple

>>> def f(x):
... try:
... print 1.0/x
... except ZeroDivisionError:
... print ’Division by zero’
... except (TypeError , ValueError):
... print ’Type or value error’
...
>>> f(0)
Division by zero
>>> f(’abc’)

Type or value error

In the example above, the statement print 1.0/x is guarded against three types of
exceptions. Two exception handlers are defined under two different except lines, the
first catching zero division errors, while the second catching type and value errors.
Two different components can be added to a try statement, including an else line,
which leads an indented statement block that is executed if no exception happens,
and a finally line, which leads an indented statement block that is executed regardless
whether exceptions happen or not. For example

>>> def f(x):
... try:
... print 1.0/x
... except ZeroDivisionError:
... print ’Division by zero’
... else:
... print ’okay’
... finally:
... print ’finishing up’
...
>>> f(0.0)
Division by zero
finishing up
>>> f(1.0)
1.0
okay
finishing up
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The finally component is useful for releasing external resources that are used by
program, such as files or network connections, no matter whether exceptions occur.

10.3.2 Exception Objects

It is possible to catch the exception instance in an except clause, by using the exception
specification <exception type> as <identifier>:

>>> try:
... f=open(’does not exit.txt’)
... except IOError as e:
... print ’IO error , no %d, %s’%(e.errno , e.strerror)
...

IO error , no 2, No such file or directory

The example above attempts to open a non-existent file in a guarded statement
block,which causes an IO error. The exception is caught, and assigned to the identifier
e. An IO error instance has two attributes, errno and strerror, which store the error
number and messages, respectively. In general, exception instances are very simple,
baring necessary information about the error. In most cases, a string conversion of
an exception instance shows all the information.

Custom exceptions can be defined by extending an exception type in the type
hierarchy. For example, suppose that a custom function requires an integer type
input, and raises an error when the input type is incorrect. One can define a specific
type error by extending the class TypeError.

>>> class MyTypeError(TypeError):
... def __init__(self , val):
... self.val=val
... def __str__(self):
... return ’Integer expected , but %s received ’%self

.val
...

The new class, MyTypeError, supports a constructor and a __str__ method.
A MyTypeError instance uses an attribute val to keep the incorrect input, and shows
it in a string conversion.

An exception instance can be raised by using the raise statement, which triggers
the exception control flow. For example,

(continued from above)
>>> def f(x):
... if type(x)!=int:
... raise MyTypeError(x)
... return 1.0/x
...
>>> f(’abc’)
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
File "<stdin >", line 3, in f
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__main__.MyTypeError: Integer expected , but abc
received

MyTypeError can also be guarded against in a try statement:

(continued from above)

>>> def g(x):
... try:
... print f(x)
... except ZeroDivisionError as e:
... print ’Zero division error:’, e
... except TypeError as e:
... print e
...
>>> g(0)
Zero division error: float division by zero
>>> g(1.0)
Integer expected , but 1.0 received

In the example above, the expression f (x) is guarded against zero division errors
and type errors. Because MyTypeError is a sub type of TypeError, it is caught by the
clause except TypeError as e. The string conversion of e is polymorphic in that the
sub class method MyTypeError.__str__ is executed dynamically, although the static
code except TypeError as e only tells that e is a TypeError, which is the base class.

Exercises

1. Some matrix operations in Chap.9 has not been included in the Matrix class in
this chapter. Make the class more powerful by saving it into Matrix.py, letting it
inherit the object class, and

(a) allow matrix to matrix multiplication (e.g. m1 * m2);
(b) allow in-place addition (e.g. m1 + = m2), in-place scaling (e.g. m1 *= 3)

and in-place multiplication (e.g. m1 *= m2);
(c) allow matrix transposition (e.g. m.transpose()).

2. Write a class hierarchy for simple polygons.

(a) Write a class, Triangle, which is constructed using six argument, x1, y1,
x2, y2, x3 and y3, specifying its three vertexes. The class has two methods,
__str__ and area. The __str__ returns a string in the format of ‘Polygon: (x1,
y1), (x2, y2), (x3, y3)’, and the area method returns the area of the triangle.
Both methods take no arguments.

(b) Write a class, Quadrilateral, which is a sublass of Triangle. Try to use as
few additional attributes as possible. The constructor of Quadrilateral takes
eight arguments, x1, y1, x2, y2, x3, y3, x4 and y4, specifying its four vertexes.
The class has its own __str__ and area methods, with similar meanings as
those of Triangle.

(c) Write a class, Pentagon, by sub classing Quadrilateral.
(d) Write a class, Hexagon, by sub classing Pentagon.

http://dx.doi.org/10.1007/978-981-287-609-6_9
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(e) Add a method, regular, to the polygon class, which takes no argument and
returns whether the polygon is regular.

(f) [Challenge] Add a method, convex, to the polygon classes, which takes no
argument and returns whether the polygon is convex.

3. (a) Write a class, Student, which has three properties, including a 6-digit stu-
dent ID, a name, and a list of exam scores. The constructor takes the student
name as the first argument, followed by an optional number of additional
arguments representing the examination scores. The Student class provides
two methods, including average, which takes no argument and returns the
average score of the student, and __str__, which formats the student infor-
mation as ‘[ID\t name\t scores]’, where scores is a tab-seperated list of
floating-point numbers, accurate to two digits after the decimal point. For
example,

>>> s=Student(’John Smith’)
>>> print s
100001 John Smith
>>> s=Student(’Mary Harper’, 100, 90.5, 75)
>>> print s
100002 Mary Harper 100.00 90.50 75.00

Note that the student IDs are allocated automatically.
(b) Write a new class, Class, which has a single attribute, recording a list of

students. The class supports three methods, load(path),which loads the list
of students from a text file at path, add(student), which adds a new student
instance to the list, and save(path), which saves the list of student into a text
file. The format of files is one student per row, in the string conversion form.

(c) The questions (a) and (b) define a rudimentary student database. Try tomake
it more useful by adding funtionalities. For example, add a new method,
add_score, to the Student class, which takes a single argument representing
a score, and adds it to the list of scores of the student.

4. Extend the functionalities of the Account class by adding a new class, AccountIO,
which acts as a text interface to accounts.

(a) Make the AccountIO class, which contains an attribute, accounts, main-
taining a list of Account instances. The constructor initializes accounts
to [ ].

(b) Add a formstr method to Account. It takes a string input, in the format of
Account.__str__ output, assigning to theAccount instance the corresponding
attributes.

(c) Add serialization to AccountIO. Modify the constructor so that it takes a
string argument specifying a file path. The file can be either empty, or contain
the information of a list of accounts. The constructor initializes the attribute
accounts according to the file, and saves the path as an attribute. Add another
method, save, which saves the list of accounts into the file path specified in
the constructor call.
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(d) Add a newmethod, add, toAccountIO, which takes a single account instance
and adds it to accounts.

(e) Add a new method, find, to AccountIO, which takes two arguments specify-
ing the account holder name and the account number, respectively, returning
the corresponding instance from accounts, or None if there is not such a
record.

(f) Add a new method, run, to AccountIO. It repeatedly asks the user for com-
mands via text IO. Allowed commands include ‘new account’, the system
asks for the user name and initial balance. For ‘login’, the system asks for
user name and account number. If login is successful, the system can display
balance, perform deposit and withdrawl and perform logout.

(g) Modify the Account class, raising exceptions when invalid deposit or with-
draw is performed. catch the exceptions in AccountIO.

(h) [Challenge] The class AccountIO above does not consider the consistency
of account numbers. This is because there is no guarantee that a new account
does not take the number of accounts in the record file. Modify the Account
and/or AccountIO classes so that no two accounts have the same number.

5. Drawout thememory structureswhen the following statements are executedbased
on the setting of Fig. 10.3, explaining the change in each step of the process.

(a) When a2 = CreditAccount(‘Merina’,limit=500) is executed;
(b) When a3 = Account(‘Catherine’, 1000) is executed;
(c) When a2.deposit(100) is executed;
(d) When a2.withdraw(500) is executed.

6. State the three most important elements of object-oriented programming.



Chapter 11
Summary

11.1 The Structure of a Python Program

A Python program is a source text file with the extension name ‘.py’. It consists
of a sequence of statements (Chap. 2), which are executed one after another when
the Python program is executed. A statement can be compound (Chap. 4), which
contains statement blocks in itself. The dynamic execution sequence of a compound
statement can be different from its static form, involving branches (Chap.4), loops
(Chap. 4), function calls (Chap.6) and exception control flow (Chap.10).

The structure of a Python program is summarized in Fig. 3 of Chap. 3. The basic
building block of Python statements are key words (Chap. 2), identifiers (Chap. 2),
literals (Chap. 2) and operators (Chap. 2). They can be combined to form expressions,
which are value-carrying elements in statements.

11.1.1 Expressions

Expressions represent values, which are ultimately objects in Python. The simplest
expressions can consist of a single literal (e.g. 123 and None) or identifier (e.g.
x, _abc and y0). More complex expressions can consist of recursive combinations
of sub expressions using operators (e.g. +, *, [ ] and call). In the execution of a
program, python evaluates every expressions to reduce it to an object in memory,
which belongs to a type , and has a value. For example, when the expression 3.0 is
evaluated, a float object 3.0 is constructed to represent its value.When the expression
(3+5) is represented, the literals 3 and 5 are first realized into int objects in memory,
and then the ‘+’ operator is applied, resulting in the object 8, which represents the
value of the expression.

Chapter 3 gives a summary of types, literals, operators and statements up to
that point in the book. Many more types, operators and statements have been
introduced after Chap.3. Table11.1 gives a comprehensive summary of Python
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Table 11.1 Python types and literals

Type Literal Common operators Mutable Comment

int 1, 0, −1 +, −, ∗, /, %, ∗∗,
<<, >>, \, ,̂ !

No Integer

long 1L same as above No Implicit large integer

float 3.5, 5e − 1 +, −, ∗, /, %, ∗∗ No Floating point number

complex 1 − 3 j +, −, ∗, /, %,
methods

No Complex numbers

str ‘abc’, “1!” +, ∗, methods No strings

bool True, False and, or, not, >, >=,
<, <=, ==, ! =, is,
is not, in, not in

No Boolean values

tuple (), (1,), (1,2.0,‘a’) +, ∗, [], methods No Sequence collection
object

list [], [1], [1, 3.0, ‘abc′] +, ∗, [], methods Yes Sequence collection
object

dict {}, {1 : ‘a′,
2 : ‘b′, 3 : ‘c′}

[], methods Yes Mapping collections
object

set set(), set([1, 2, 3]) &, |, ,̂ methods Yes Set collection object

None type None No Nothing

types and literals, which include number types (int, float and complex), strings (str),
Boolean values (bool), sequential collection types (tuple and list), mapping collec-
tion types (dict) and sets (set). In addition, there are several special types of objects,
including functions (the def statement), which support the call (i.e. the () operator),
modules (the import statement), which support the dot (i.e.) operator. Finally, custom
types can be defined using the class statement. Each custom type can be treated as a
separate type, more about which will be discussed in the next section.

A list of operators in Python is shown in Table11.2, which is a fully-extended
version of Table2 in Chap.4. Each operator takes a certain number of operands,
which have specific types, and results in a value of a specific type. For example, the
+ operator can take two integers and result in an integer. The > operator can take
two integers, and result in a Boolean value. The ∗ operator can take a string and an
integer, and result in a string (i.e. string repetition). Regardless whether an expression
is simple(e.g. single literal) or complex(e.g. 3+5∗ int (raw_input (′x =′))), Python
treats it as a single object. For example, consider the following case:

>>> x =’a’
>>> e = [x, 123, 3*3 >8.8]
>>> e
[’a’, 123, True]

The literal of e consist of three elements, the first being an identifier, the second
being a literal, and the third consists of operators ad literals. In the evaluation of the
list literal, all of them are reduced to single objects.

http://dx.doi.org/10.1007/978-981-287-609-6_4
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Table 11.2 Python operators

Operator Comment

+, −, ∗, /, %, ∗∗, // Arithmetic operators

<<, >> Bitwise shift operators

&, |, ,̂ !
Bitwise logic operator

Get identifier from module

. Get attributes and methods from instance

Get attributes and methods from classes

[]
Getitem, getslice

() Function call

==, ! =, >, >=, <, <= Arithmetic comparisons

and, or, not Boolean operators

is, is not Identify comparisons

in, not in Membership comparisons

&, |,ˆ
Set operator

lambda Lambda functions

x if y else z Ternary operator

[for ... in ... if...]
List comprehension

Python offers a builtin function, eval, which takes a string that specifies an expres-
sion, and returns an object that represents the result of its evaluation. For example,

>>> eval(’1.0’) # a literal
1.0
>>> eval(’5*5’) # operator result
25
>>> eval(’"abc"+"def"+"ghi"’)
’abcdefghi ’
>>> a=1
>>> eval(’a’) # identifier
1
>>> eval(’"x"’) # string literal
’x’
>>> eval(’b’) # undefined
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
File "<string >", line 1, in <module >

NameError: name ’b’ is not defined
>>> f=eval(’lambda x: x+1’) # lambda function
>>> eval(’f(1)’) # function call
2
>>> x = eval(raw_input(’x=’)) # built -in function call
x=1.1 ,3.5 ,3.9
>>> x
(1.1, 3.5, 3.9)
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>>> eval(’c=1’) # not an expression

Traceback (most recent call last):
File "<stdin >", line 1, in <module >
File "<string >", line 1

c=1
^

SyntaxError: invalid syntax

In the example above, several expressions are written as strings, and passed as the
only argument to the function eval, which calculates the values of the expressions
and returns the corresponding objects. In fact, the IDLE program also calls eval in
order to obtain the result for evaluating the expression. In the last line, ’c=1’ is a
statement rather than an expression, and therefore cannot be evaluated by eval.

In the opposite direction, when IDLE shows the value of an expression to the user,
it calls the built-in function repr, which takes a single object argument and returns a
string that contains the internal representation of the argument. For example,

>>> a=1.0
>>> repr(a)
’1.0’
>>> repr (1.0/7)
’0.14285714285714285 ’
>>> print 1.0/7 # this is str (1.0/7)
0.142857142857
>>> c=’abc\ndef\nghi’
>>> repr(c) # internal representation
"’abc\\ndef\\nghi’"
>>> print c # stv representation

abc
def
ghi

>>> f=lambda x: x+1
>>> repr(f)
’<function <lambda > at 0x1006ef398 >’
>>> class A:
... pass
...
>>> repr(A)
’<class __main__.A at 0x1006c8b48 >’
>>> a=A()
>>> repr(a)
’<__main__.A instance at 0x1006e9f38 >’

Each Python object has its own internal representation. Although both being
str objects, the internal presentation of built-in objects can be different from their
string representation, with the former being more precise and the latter being more
formatted.

Instances of custom types also have a default internal representation. Similar to
the string representation, which can be customized by using the __str__ method, the
internal representation of an instance can be customized using the special method
__repr__.
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>>> class A:
... def __repr__(self):
... return ’I am A.’
... def __str__(self):
... return ’A’
...
>>> a=A()
>>> repr(a)
’I am A.’
>>> str(a)
’A’
>>> a # IDLE shows repr(e) given an expression (e)
I am A.
>>> print a # default string representation
A

11.1.2 Statements

A statement is the basic unit of execution in a Python program. Each statement
achieves a particular functionality, and has a fixed underlying mechanism of execu-
tion. For example, the assignment statement binds an identifier to a value object, the
print statement shows the string representation of a value on the text console, and the
def statement constructs a function object, binding it to an identifier. Statement can be
simple (e.g. assignment and print) or compound (e.g. if and def), containing a block of
sub statements. Compound statements can also be nested (e.g. nested loops), result-
ing in complex dynamic execution sequences. A summary of statements in Python
is shown in Table11.3, which is a full-extended version of Table3 in Chap.2.

Python provides a built-in function, exec, which takes a single string argument,
representing a statement, and executes the statement. The function returns None. For
example,

>>> exec(’c=1’) #assignment
>>> c
1
>>> exec(’print "abc"’) #print
abc
>>> exec(’import math’) #import

>>> print math.pi
3.14159265359
>>> exec(’while c<7:\n\tc+=2\n\tprint c’) #compound ,

tab indentation
3
5
7
>>> exec(’print c; c=0’) #semi -colon
7
>>> exec(’print c\nc+=1’) #two lines
0

http://dx.doi.org/10.1007/978-981-287-609-6_2


284 11 Summary

Table 11.3 Summary of statements in Python

Statement Syntax

assignment (Chaps. 2, 7, 10) <identifier> = <expression>

<identifier> += <expression>, ...

del (Chaps. 2, 7, 10) del <identifier>

import (Chap.3) import <module>

import <module> as <identifier>

from <module> import <identifier>

print (Chap.3) print <string> [ , <string> ... ]

if (Chap.4) if <bool>:

<statement block>

elif <bool>:

<statement block>

else:

<statement block>

while (Chap.4) while <bool>:

<statement block>

else:

<statement block>

for (Chaps. 5, 8, 9) for <identifier> in <iterable>:

<statement block>

else:

<statement block>

break (Chap.4) continue (Chap.4) break

continue

def (Chap.6) def <identifier> (<parameter(s)>):

<statement block>

pass (Chap.6) pass

return (Chap.4) return <expression>

yield (Chap.9) yield <expression>

class (Chap.10) class <identifier> [(<parameter(s)>)]:

<statement block>

try (Chap.10) try:

<statement block>

except <exception specification>:

<statement block>

else:

<statement block>

finally:

<statement block>

raise (Chap.10) raise <Exception>
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Given one or multiple lines of user input, IDLE treats it as a string, and calls exec
to execute it as a simple or compound statement.

11.2 The Data Model of Python

The term syntax is commonly used to describe the structure of Python programs.
The statement structures summarize in the last section describe the correct syntax of
a Python program. A program that violates the correct syntax will lead to a syntax
error during execution. For example, the if statement requires a Boolean expression
(e.g. c==1) in the if line; if a statement (e.g. c=1) is given in the place, a syntactic
error will be raised in the execution. Knowing the correct syntax is the first step in
writing valid programs.

On the other hand, the term semantics refers to the meaning of statements, or
the underlying mechanism of execution. Understanding the semantics of Python
statements is as important as understanding its syntax for programming. The most
important aspect of semantics is the data model, or how information is represented
and processed by Python statements. As summarized in the last section, Python uses
objects to represent all types of information. Objects are central to Python’s data
model, and hence its semantics.

11.2.1 Identity, Type and Value

Each Python object has an identity, a type and a value. The identity of an object is its
memory address, which can be obtained using the id function introduced in Chap.2.
The identity of an object is fixed once the object is constructed in memory, and never
changes throughout the object’s existence. The type of an object can be obtained using
the type function; it determines its range of values, operators and attributes. Common
types can be classified into numbers (e.g. int, long, float, complex), sequence (e.g.
str, type, list), mappings (e.g. dict), sets (e.g. set), callables (e.g. functions, methods),
models, classes, instances and files. In addition to these types, information that is
used internally by Python is also represented by specific types of objects in memory.
For example, Python code is represented by the code type; the statements and list of
arguments in function objects (Chap. 6) are coded in code object. Slices (Chap.3) and
Tracebacks (Chap. 10) are also represented by internal types. Similar to the identity,
type of an object cannot be changed once the object is constructed in the memory.

Among the identity, the type and the value, the only thing that can possibly be
changed for an object is its value, and only objects of mutable types can change
their values. The value of a mutable object can be changed using specific operators
(e.g. setslice) or methods (e.g. append), but not using the assignment statement (e.g.
l=[1,2,3]). Thevalue of an immutable object cannot be changedonce it is constructed.
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Mutability can sometimes be confused with assigment, which changes binding
between identifiers and objects. Identifiers are names to objects in Python; they
are maintained in binding tables. Python looks up identifiers in a scope hierarchy,
which includes the local (function) scope, the global (module) scope and the built-in
scope. Details of binding, scopes and mutability can be found in Chaps. 3, 6 and 7,
respectively.

11.2.2 Attributes and Methods

In addition to an identity, a type and a value, an object can also have a set of attributes
and methods, which can be obtained using the dir function introduced in Chap.3.
For example, complex numbers have the attributes real and imag, and custom type
instance can have arbitrary attributes and methods. Methods can be regarded as a
special type of callable attributes.

Most built-in types do not allow user-defined attributes, which instances of cus-
tom types do. For example, Chap.10 shows how arbitrary attributes, such as balance,
can be defined for an Account instance. In contrast, complex numbers do not allow
such attribute definitions. The attributes of complex numbers are built-in, or hard-
coded, as a par of the special method __getattr__. Attributes ofmost built-in types are
read-only, and cannot be modified using the setattr method. Although not frequently
used, functions also allow user-defined attributes:

>>> f=lambda x,y:x+y
>>> f.a=1
>>> f.a
1

The implementational reason for instances and functions to support user-defined
attributes is that they are associated with their own binding tables. The binding table
of an object is implemented as a special attribute of the object named __dict__.
The content of the binding table can be accessed from the __dict__ attribute which
stores identifiers (i.e. attributes of the object) as keys and their values as values. For
example, the user-defined attributes of the function f above can be accessed by using

>>> f.__dict__
{’a’: 1}

As introduced in Chap.3, models also have binding tables associated with them.
The binding table of amodule object is also implemented as a special attribute named
__dict__, which contains all the identifiers in the module and their values as items.
Because of the __dict__ attribute, it is also possible to define arbitrary identifiers in
a module. For example,

>>> import math
>>> math.a=1
>>> math.a
1
>>> math.__dict__ # or dir(math)
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{’pow’: <built -in function pow >, ’fsum’: <built -in
function fsum >, ’cosh’: <built -in function cosh >, ’
ldexp’: <built -in function ldexp >, ’hypot’: <built -
in function hypot >, ’acosh’: <built -in function
acosh >, ’tan’: <built -in function tan >, ’asin’: <
built -in function asin >, ’isnan’: <built -in
function isnan >, ’log’: <built -in function log >, ’
fabs’: <built -in function fabs >, ’floor’: <built -in
function floor >, ’atanh’: <built -in function atanh

>, ’modf’: <built -in function modf >, ’sqrt’: <built
-in function sqrt >, ’__package__ ’: None , ’frexp’: <
built -in function frexp >, ’degrees ’: <built -in
function degrees >, ’lgamma’: <built -in function
lgamma >, ’log10’: <built -in function log10 >, ’
__doc__ ’: ’This module is always available. It
provides access to the\nmathematical functions
defined by the C standard.’, ’asinh’: <built -in
function asinh >, ’fmod’: <built -in function fmod >,
’atan’: <built -in function atan >, ’factorial ’: <
built -in function factorial >, ’__file__ ’: ’/Library
/Frameworks/Python.framework/Versions /2.7/ lib/
python2 .7/lib -dynload/math.so’, ’copysign ’: <built -
in function copysign >, ’expm1’: <built -in function
expm1 >, ’ceil’: <built -in function ceil >, ’isinf’:
<built -in function isinf >, ’sinh’: <built -in
function sinh >, ’__name__ ’: ’math’, ’trunc’: <built
-in function trunc >, ’a’: 1, ’cos’: <built -in
function cos >, ’pi’: 3.141592653589793 , ’e’:
2.718281828459045 , ’tanh’: <built -in function tanh
>, ’radians ’: <built -in function radians >, ’sin’: <
built -in function sin >, ’atan2’: <built -in function
atan2 >, ’erf’: <built -in function erf >, ’erfc’: <

built -in function erfc >, ’exp’: <built -in function
exp >, ’acos’: <built -in function acos >, ’log1p’: <
built -in function log1p >, ’gamma’: <built -in
function gamma >}

In summary, attributes and methods are implemented in two ways. Custom
attributes and methods are stored in the __dict__ attribute of an object, and can
be defined, changed or deleted arbitrarily. Built-in attributes and methods can be
hardcoded, such as using the special __getattr__ method; and are read-only. The
built-in function call dir(x) also shows all the keys of x.__dict__ if the attribute exist,
and tries to list out all the built-in attributes.

11.2.3 Documenting Objects

Comments are useful in ensuring the readability of Python code. Chapter 3 intro-
duces the use of in-line and end-of-line comments, which can be regarded as two
ways to add documentation to abstract programs. In addition to comments, Python
supports another type of documentation.

http://dx.doi.org/10.1007/978-981-287-609-6_3
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Docstrings. Docstrings are documentation strings for modules, functions, classes
and methods. They must be written as a string constant expression, and placed as the
first statement in the definition of an object. For modules, the docstring should be
written as the first line in a Python file. For classes, the docstring should be written
as the first line of the class body. The same applies to functions and methods.

Different from comments, which are ignored at runtime, docstrings are attached
as a special __doc__ attribute to their objects, ence being able to support online
documentation and interactive help systems. For example,

[doc.py]
"""This is a module. A second line to explain the

usage. One third line of documentation."""
class A:

"This is a class"
def f(self):

"This is a method"
def f():

"This is a function"

The module doc.py consists of a class and a function, with a method defined in the
class. The module, class, function and method are all associated with docstrings.

>>> import doc
>>> doc.__doc__
’ This is a module. A second line to explain the usage

. One third line of documentation.’

>>> doc.A.__doc__
’This is a class’

>>> doc.A.f.__doc__
’This is a method’

>>> doc.f.__doc__
’This is a function ’

Thdocumentation string of the objects can also be accessed using the built-in function
help interactively.

>>> import doc
>>> help (doc)

NAME
doc - This is a module. A second line to explain

the usage. One third line of documentation.

FILE
/Users/yue_zhang/doc.py

CLASSES
A

class A
| This is a class
|
| Methods defined here:
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|
| f(self)
| This is a method

FUNCTIONS
f()

(END)

>>> help (doc.A)
Help on class A in module doc:

class A
| This is a class
|
| Methods defined here:
|
| f(self)
| This is a method

(END)

>>> help (doc.A.f)
Help on method f in module doc:

f(self) unbound doc.A method
This is a method

(END)

>>> help (doc.f)

Help on function f in module doc:

f()
This is a function

(END)

11.3 Modules and Libraries

In practice, a software application typically consists ofmultiple source files.APython
project typically consists of multiple modules. Modules correspond to Python files,
except for built-in modules, which are written as a part of the Python application
program. As shown in Chap.3, there two ways to execute a Python file, one being
execution as the main program, and the other being execution by importation. At
runtime, the two ways of execution result in a main module and a library module,
respectively.

At runtime, each module object has an attribute __name__, which uniquely iden-
tifies the module object. __name__ is an identifier in the binging table of all modules.
The example below illustrates example values of __name__:

>>> import math
>>> math.__name__
’math’

http://dx.doi.org/10.1007/978-981-287-609-6_3
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>>> import random as m
>>> m.__name__
’random’

When executed as the main program, the value of __name__ of a module is set
to ‘__main__’. This special value can be expoited for conditionally executing ome
code only when the module is executed as the main program. For example, the file
mul.py below provides a function, prod, which takes a list arguement and returns the
product of all the items in the list.

[mul.py]
def prod(e):

retual = 1
for i in e:

retval *= i
return retval

if __name__ == ’__main__ ’: # when executed as the main
program
s = raw_input(’Enter a list of numbers ’)
s = ’[’ + s +’]’
print ’The product is: ’, prod(eval(s))

When imported as a module, mul.py does not perform any operations except for
defining the function.

>>> import mul
>>> mul.prod ([1,3 ,6])
18

However, when executed as themain program,mul.py asks th user to enter a sequence
of numbers, and then returns their product.

Zhang’s Macbook Pro ~ Desktop$ python mul.py
Enter a list of numbers: 1, 3, 5, 7, 9
The product is: 945

The condition __name__ == ‘__main__’ is commonly used when some functional-
itie must be conditioned on the running mode.

11.3.1 Packages

In large projects, multiple module can be written for performing the same function-
ality. The module files are typically put into the same folder. Conceptually, a set of
modules under the same big task forms a package. In Python, a package is a special
module that can contain sub modules. For example, there is a module os which is a
package that contains methods that communicate with the operating system. Under
os there is a submodule os.path, which contains methods that are related to the folder
hierarchy. the function os.path.abspath is a function that takes a string argument that
indicates a relative path, and returns a string that indicates the corresponding absolute
path.
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A package can be implemented as a folder that contains a Python file with the
special name __init__.py. When the package is imported, __init__.py is excuted as
the module file that is imported, with every identifier being saved into the binding
table of the package. Sub modules can be put into the folder, and automatically
imported into its binding table via __init__.py. For example, the folder pac below is
a package, having a file __init__.py.
pac /

__init__.py
mod1.py
mod2.py

The content of __init__.py can be:
[__init__.py]
a = 1
def f(x):

return x+1
import mod1
import mod2

The content of mod1.py can be:
[mod1.py]
b = 2
def g(x):

return x+2

The program below illustrates usage of the package:
>>> import pac
>>> pac.f(1)
2
>>> pac.mod1.g(pac.a)
3

Packages can also form hierarchies, with sub packages containing submodules. Thay
are not commonly necessary, and interested readers can refer to Python documenta-
tion for more details.

11.3.2 Library Modules

A number of standard library modules have been inttroduced in this book, including
the math, cmath and random modules introduced in Chap.2, the __builtin__ module
introduced in Chap.3, the heapq module introduced in Chap.6, the copy module
introduced in Chap.7, and the urllib module introduced in Chap.9. Library modules
greatly facilitate Python programs in achieving complex functionalities, ranging from
scientific computing to gamedesign, form local databasemanagement toweb service,
and from text I/O to multimedia user interface. Their availability helps Python in
becoming one of the most popular programming languages.

A detailed introduction of common Python libraty modules is beyond the scope
of this book, the goal of which is to introduce the Python language and basic
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programming thinking to readers that are new to computer science. Library modules
typically require background knowledge of specific area in computer science, such
as algorithms, databases, networks, computer audio, multimedia, operating systems
and computer security, which are difficult to cover in short chapters.

Table11.4 summaries commonly used Python modules and external libraries for
interested readers. The modules are organized according to their functionalites, with
very brief introductions given for each mudule. More information can be obtained
from the standard Python documentation. External modules are marked out, but no
URLs are given. The latest website can be accessed via web search using the name
of the library modules. Finally, because the developer community is highly active,
the most popular library modules can frequently change, and it is therefore useful to
constantly look for the latest tools.

Table 11.4 Python modules and external libraries

Functionality Module Description External

Python system __builtin__ the built-in scope

argparse Command-line option and argument parsing

atexit Register and execute cleanup functions

bdb Debugging framework

disvtils Support for building, Python installation
packages

exceptions Standard exception classes

gc Interface to the garbage collector

getopt Parser for command-line options

hotshot A profiler to measure runtime performance

imp Access the implementation of the import
statement

importlib Customize import functionalities

inspect Extract information and source code from live
objects

io Core stream tools

keyword Test whether a string is a keyword

modulefinder Find modules used by a script

operator Functions corresponding to standard operators

os Operating system interfaces

pdb The Python debugger for interactive interpreters

pkgutil Utilities for the import system

pprint Functions for pretty print

profile Python source profiler

pstats Statistics object for use with the profiler

pydoc Documentation and online help

(continued)
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Table 11.4 (continued)

Functionality Module Description External

runpy Locate and run Python modules without
importing them

sys Access runtime system parameters and functions

sysconfig Python’s configuration information

test Regression tests package

thread Create multiple threads

threading High-level thread interface

timeit Measure the execution time of small code

trace Teace code execution

traceback Print function stack

unittest Unit testing framework

warnings Waring messages

zipimport Importing modules from ZIP archives

nose A testing framework Yes

IPython An enhancement of IDLE Yes

Data types and
algorithms

array space efficient arrays

calendar Calendars

cmath Complex numbers

collection Hign-performance data typies

copy Shallow and deep copy functions

datatime Date and time

diftlib Functions to compute different between objects

encodings String encoding/Unicode

fractions Rational numbers

functools Higher-order functions

gettext Multilingual internationalization service

headq Priority queue

itertools Iterators for looping

locale Internationalization service

marshal Convert Python objects to byte streams

math Mathematical functions

numbers Numerical abstract base classes

random Random numbers

re Regular expressions

string Common string operations

StringIO Read and write string as files

struct Interpret strings as packed binary data

textwrap Text wrapping and filling

time Time acccess and conversions

(continued)
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Table 11.4 (continued)

Functionality Module Description External

types Built-in types

userDict Class wrapper for dict objects

userList Class wrapper for list objects

weakref Weak references and dictionaries

numpy Math functions Yes

scipy Scientific computation Yes

matplotlib A numeric plotting library Yes

nltk Languages Yes

sympy Algebra Yes

Graphical User
interface

Tkinter Interface to Tcl/Tk GUI

Tix Tk extension widgets

ttk Tk widget set

Scrolled Text Tk Text widget with a verticle scroll bar

turtle Tk Turtle graphics

wxPython A GUI system based on wxWidget Yes

PyQT A GUI system based on QT Yes

PIL Python image library Yes

Pygame 2D game tools Yes

Pyglet 3D game and animation Yes

Files and databases bsddb Interface to Berkeley DB

bz2 Bzip2 compression

dbhash DBM-style interface to the BSD database

filecmp Compare files efficiently

fileinput loop over standard input or a list of files

gzip Gzip file compression

mmap Memory mapped files

pickle Convert Python objects to streams

pickletools Configure pickle functions

shutil High-level file operations

sqlite3 Interface to SQLite3.X

tarfile Tar archive files

tempfile Temporary files and directories

zlib Compression and decompression

Web client server BaseHTTPserver Basic HTTP server

cgi Common Gateway Interface

CGIHTTPServer CGI HTTP Server

cgith CGI traceback

email Manipulating email messages

(continued)
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Table 11.4 (continued)

Functionality Module Description External

ftplib FTP protocol client

json JSON format

mailbox Mailbox

poplib POP3 protocol client

SimpleHTTPServer Simple HTTP Server

SimpleXMLRPCServer Simple XML RPC Server

smtpd SMTP server

smtplib SMTP client

socketServer Socket based servers

ssl SSL socket objects

telnetlib Telnet client

urllib Open arbitrary URL

urllib2 Urllib version 2

urlparse Parse URL strings

xml Parse XML

xmlrpclib XML RPC client

requests HTTP library Yes

scrapy Web scraping Yes

scapy A packed sniffer Yes

django Web server framework Yes
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