

Build
Web	Applications

with

Java

Learn	every	aspect	to	build	web	applications	from	scratch

Yousuf	Baig

Build	Web	Applications	with	Java
Copyright	©	2015	Mirza	Yousuf	Ahmed	Baig
	

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher.

	

	

	

	

	

In	loving	memory	of	my	mother	late	Anees	Ayesha

CONTENTS

	
PREFACE

1	INTRODUCTION

What	are	we	building?

Why	are	we	building?

How	are	we	building?

The	Outline

Step	1:	Compose	Requirements	Specifications.

Step	2:	Create	Prototype	of	the	Application.

Step	3:	Blueprint	the	Architecture	and	High	Level	Design.

Step	4:	Design	the	Database.

Step	5:	Build	the	Java	Framework.

Step	6:	Build	the	Shared	Components.

Step	7:	Build	the	Individual	Use	Cases.

Step	8:	Testing.

Step	9:	Deployment.

2	PREPARING	THE	ENVIRONMENT

Hardware	Requirements

Software	Requirements

Installing	Oracle	XE	Database

Installing	Oracle	jdeveloper	11g

Installing	Apache	Tomcat	8

3	SDLC,	OOAD	AND	UML

Software	Development	Life	Cycle	(SDLC)

Object	Oriented	Analysis	and	Design	(OOAD)

Unified	Modeling	Language	(UML)

Use	Case	Diagram

Class	Diagram

Sequence	Diagram

Activity	Diagram

4	REQUIREMENTS

The	Requirements	Phase

Requirements	Specifications

Application	Title

Executive	Summary

Detailed	Requirements	Specification

Authentication	and	Authorization	Module

R1:	The	Authentication.

R2:	The	Authorization.

The	Student	Module

R3:	Load	Student.

R4:	Unique	Student	Identifier.

R5:	Student	Details.

R6:	Student	Academics.

Scholastic	Performance	-	Core	Curriculum	-	Assessment

Co	–	Scholastic	Activities

Scholastic	Performance	-	Co	Curriculum	-	Assessment

Synthesis	and	Recommendations

R7:	Show	Student	Attendance.

R8:	Student	Fees.

The	Administration	Module

R9:	Manage	Student	Attendance.

R10:	Add	Student.

R11:	Report	by	Class.

Report	Criteria

Report	Results

The	Help	and	Miscellaneous	Module

R12:	Help	Pages.

R13:	Header	and	Footer.

R14:	The	Menu.

5	PROTOTYPING

Page	layout	and	template

Prototype	1:	Login	Page.

Prototype	2:	Dashboard/Home	Page.

Prototype	3:	Load	Student.

Prototype	4:	Student	Details	Page.

Prototype	5:	Student	Results	Page	for	Semester	1.

Prototype	5:	Student	Results	Page	for	Semester	2.

Prototype	6:	Student	Attendance	Page	for	Semester	1.

Prototype	6:	Student	Attendance	Page	for	Semester	2.

Prototype	7:	Fees	Status	Page.

Prototype	8:	Manage	Attendance	Page.

Prototype	9:	Add	Student	Page.

Prototype	10:	Report	by	class	page	with	report	criteria	options.

Prototype	10:	Report	by	class	page	with	report	data.

Prototype	11:	Help	pages,	results	legend	page.

6	THE	CLIENT	SIDE

JavaScript

BisScript.js

Cascaded	Style	Sheet

BISStyle.css

7	THE	PATTERNS

Architectural	Patterns

MVC

Design	Patterns

Command	Pattern

Front	Controller	Design	Patten

Value	Object	Design	Pattern

8	THE	ARCHITECTURE

The	BIS-SMS	Application	Architecture

9	DATABASE	DESIGN

BisSecurityRealm	Schema

Users	Table

User	Roles	Table

Bis	Schema

Student	Details	Table

Parent	Details	Table

Employee	Details	Table

Transportation	Details	Table

Class	Teacher	Mapping	Table

Student	Attendance	Table

Student	Fees	Table

Scholastic	Results/Co	Scholastic	Results	Tables

BIS	Constants	Table

10		THE	FRAMEWORK

The	MVC	Based	Java	Framework

View	Layer

Model	Layer

Controller	Layer

BisFramework

The	BisFramework	Architecture

Client	Tier

Database	Tier

Web	Server	Tier

View	Layer

Controller	Layer

Model	Layer

Command	Processor

The	Control	Flow

11	THE	LOGGING

What	is	logging	and	why	it	is	needed?

Logging	Levels

Using	Log4j	in	jdeveloper

The	log4j.properties	file

12	SESSION	MANAGEMENT

Understanding	Session

Leveraging	Http	Session

13	INTERACTING	WITH	THE	DATABASE

The	approaches	for	database	connectivity

Using	Data	Sources

14	THE	BIS-SMS	PROJECT	COMPONENTS

Java	Servlets

ControllerServlet.java

AjaxControllerServlet.java

The	Command	Processors

BisCP.java

BisCommand.java

The	Service	Classes

BisService.java

The	Java	Beans

StudentBean.java

BisBean.java

The	Utility	Classes

Bisutility.java

DatabaseService.java

BisConstants.java

The	Java	Server	Pages

BisHome.jsp

Log4j

15	IMPLEMENTING	USE	CASES

Use	Case:	Authentication.

BisLogin.jsp

Use	Case:	Authorization.

BisDashboard.jsp

BisHome.jsp

Use	Case:	Load	Student.

LoadStudentCP.java

StudentDetailsService.java

BisDashboard.jsp

BisScript.js

Use	Case:	Get	student	details.

GetStudentDetailsCP.java

StudentDetailsService.java

StudentDetailsBean.java

StudentDetails.jsp

Use	Case:	Get	student	attendance.

GetStudentAttendanceCP.java

StudentAttendanceService.java

StudentAttendanceBean.java

StudentAttendance.jsp

Use	Case:	Get	student	fees.

GetStudentFeesCP.java

StudentFeesService.java

StudentFeesBean.java

StudentFees.jsp

Use	Case:	Get	student	results.

GetStudentAcademicsCP.java

StudentAcademicsService.java

StudentResultsBean.java

StudentAcademics.jsp

Use	Case:	Help	pages.

ResultsLegend.html

Use	Case:	Report	by	class.

GetReportByClassCP.java

ReportByClassService.java

ReportByClassBean.java

ReportByClass.jsp

Use	Case:	Add	Student.

AddStudentCP.java

AddStudentService.java

StudentDetailsBean.java

AddStudent.jsp

Use	Case:	Manage	Student	Attendance.

ManageAttendanceCP.java

StudentAttendanceService.java

StudentAttendanceBean.java

ManageAttendance.jsp

16	SECURING	APPLICATION

Configuring	data	source	security	realm	for	Apache	Tomcat	8

Enabling	Security	for	BIS-SMS

BIS-SMS	Users	and	Roles

17	BUILD	AND	DEPLOYMENT

The	Web	Application	Archive

Building	the	Bis.war	file

Deploying	the	.war	file

Deploying	Bis.war	to	Apache	Tomcat

18	TESTING

Unit	Testing

System	Testing

User	Acceptance	Testing	(UAT)

19	DEBUGGING

What	is	a	bug?

Steps	to	resolve	a	bug

Describe	the	bug

Reproduce	the	bug

Diagnosis	and	resolution

Verifying	the	fix

Applying	the	patch

20	OTHER	IMPORTANT	TOPICS

AJAX

Performance	tuning	and	best	practices

Scalability

21	IMPORTANT	FILES

web.xml

Context.xml

22	APPENDIX

Database	scripts

Schema:	BisSecurityRealm

Schema:	bis

PREFACE

	

Software	engineering	is	a	very	vast	and	complex	filed.	There	are	many	programming
languages,	technologies,	platforms,	frameworks	and	methodologies	available	to	build	the
software	solutions.	To	build	software	solutions	a	team	with	various	roles	is	required.	Each
member	of	the	team	is	required	to	have	skills	and	experience	for	a	particular	role	and
responsibilities.	For	technical	roles	like	developer,	technical	lead	and	solutions	architect
the	umbrella	of	technical	skills	requirement	is	vast.	Such	roles	demand	knowledge,	skills
and	understanding	of	programming	language,	frameworks,	patterns	and	other
technologies.

	

The	most	popular	programming	language	for	building	web	based	applications	is	Java.
Java	provides	the	standard	edition	with	provides	the	core	object	oriented	programming
language	capabilities.	It	also	provides	the	enterprise	edition	using	which	enterprise
applications	can	be	built.	There	are	many	open	source	and	paid	frameworks	available	in
the	market	built	using	Java.	These	frameworks	provide	an	option	to	quickly	build	web	and
enterprise	applications.	The	popular	frameworks	for	building	web	application	using	Java
provide	lots	of	reusable	components	and	many	configurable	solutions	that	help
organizations	save	time,	money	and	effort.

	

To	be	successful	on	a	technical	role	in	an	organization	or	to	build	web	applications
using	Java	as	an	independent	freelancer	or	to	start	a	career	in	Java	as	a	web
programmer/developer	it	demands:
	

To	have	expertise	knowledge	on	Java	programming	language.
Hands	on	experience	on	or	more	popular	frameworks	like	Spring,	Struts	and	Oracle
ADF.
At	least	intermediate	skill	level	of	pl/sql	and	popular	databases	like	Oracle	and
DB2.
Knowledge	of	web	tier	technologies	like	Servlet,	JSPs,	HTML,	CSS	and
JavaScript.
Knowledge	of	web	server,	servlet	containers	and	application	servers.
Fundamental	knowledge	of	various	security	threats	and	their	solutions.

	

That’s	the	minimum	list	of	requirement	for	skills,	experience	and	knowledge	besides
the	logical	ability,	intelligence	quotient	and	other	human	intellectual	parameters.

	

There	are	many	good	books	available	in	the	market	which	independently	teach	Java,
Web	Servers,	MVC	based	Frameworks,	JSP,	PL/SQL,	AJAX,	JavaScript,	CSS,	HTML5,
UML,	SDLC	etc.	This	book	covers	all	of	these	things	plus	other	aspects	together	while
building	an	actual	web	application	from	inception	till	completion.	This	books	takes	a
sample	web	application	and	builds	it	from	scratch.	Each	aspect	is	explained	at	micro	level
with	real	time	examples	along	with	the	uml	diagrams	and	code.	The	fundamental	concepts
of	software	engineering	and	programming	web	applications	are	covered	with	high
importance.	To	get	maximum	benefit	out	of	this	book,	it	is	strongly	recommended	to
build	the	sample	web	application	while	going	through	the	book.

	

Objective

														The	objective	of	this	book	is	to	teach	building	modern	day	business	web
applications	using	java	and	other	related	technologies.	This	book	teaches	everything	in
details	and	in	simpler	way	about	building	web	applications	with	medium	to	high	level	of
complexity.	This	book	also	covers	various	software	engineering	concepts	that	are	required
for	building	software	solutions.

														The	book	takes	you	through	each	and	every	step	of	building	a	web	application
from	scratch.	The	objective	is	to	teach	the	reader	every	single	aspect	of	software
engineering	required	for	building	web	applications	from	inception	till	deployment	and
support.	In	order	to	achieve	the	objective,	a	real	life	business	requirement	is	taken	and	the
sample	project	is	built	step	by	step	from	requirements	gathering	till	deployment	and
support.

	

The	book	includes	building	a	light	weight	MVC	based	Java	framework	and	building	the
sample	web	application	using	it.	During	the	course	architecture,	SDLC,	UML,	security,
ajax,	various	patterns,	best	practices	and	other	related	topics	are	explained.
	

Prerequisite

Beginners	level	knowledge	of	Java	programming	language,	database	and	web	related
technologies	is	required.

	

Audience

														Anyone	who	wants	to	learn	building	web	applications	with	Java	programming
language.	This	book	is	primarily	intended	for	beginners	who	wants	to	learn	various

aspects	of	software	engineering	and	building	web	applications	using	Java	programming
language.	This	book	is	not	limited	for	the	said	audience,	it	can	be	used	for	reference	by	the
architects,	project	managers	and	other	stakeholders	who	are	involved	in	a	web	based
application	project.

	

Disclaimer

														The	objective	of	this	book	is	to	only	teach	the	reader	the	various	aspects	of
building	web	applications	using	Java	and	related	technologies.	The	sample	application	that
is	build	as	a	part	of	learning	is	not	meant	for	any	real	business	purpose	in	as	is	condition.
Neither	the	author	nor	the	publisher	holds	any	responsibility	or	legal	liability	in	any	such
case.

Errors

														Though	every	care	is	taken	to	make	sure	that	the	content	of	the	book	is	of	highest
quality.	Yet,	human	errors	and	mistakes	do	happen.	In	any	such	case,	please	notify	the
author	at	yousuf.baig@gmail.com.	This	will	help	the	author	in	fixing	any	slipped	errors	or
mistakes.

Questions	and	Feedback

														The	author	is	available	on	most	of	the	popular	social	networking	sites	including
facebook,	linkedin	and	twitter.	In	case	of	any	questions	or	feedback,	the	author	can	also	be
contacted	at	yousuf.baig@gmail.com.

	

Acknowledgements

														First,	thanks	to	my	parents	for	everything.	Thanks	to	my	wife	for	her	love	and
support	for	my	first	book	project.	Many	thanks	to	my	sister	Nazia	Meraj	and	friend
Shoukat	Ali	for	always	being	there	for	me.	Special	thanks	to	my	colleagues	and	friends	for
encouraging	and	supporting	this	book	project.	Thanks	for	motivating	me	and	helping	me
with	the	suggestions	and	reviews.	Big	thanks	to	my	children	Myiesha,	Zain	and	Zaid	for
their	love	and	for	being	my	inspiration	in	life.

1
INTRODUCTION

What	are	we	building?

														Through	out	the	book	we	will	be	building	a	web	based	student	management
system	(SMS)	for	a	hypothetical	school	called	“Baig	International	School”	(BIS).	The
sample	web	application	is	abbreviated	as	BIS-SMS.

	

Why	are	we	building?

														The	best	way	to	learn	anything	is	to	get	the	hands	dirty.	When	a	developer	starts
building	any	software	solution,	he/she	gets	lots	of	doubts	and	questions	while	actually
doing	it.	We	are	building	the	sample	BIS-SMS	web	application	in	order	to	learn	various
aspects	of	building	web	applications	from	scratch.	When	the	reader	architects,	designs	and
does	the	coding	hands	on,	the	reader	learns	every	aspect	practically.	When	the	reader
builds	the	working	application	step	by	step,	the	confidence	of	the	reader	as	a	developer	is
boosted.

	

How	are	we	building?

														We	are	building	the	BIS-SMS	web	application	following	the	water	fall	software
development	life	cycle	(SDLC)	model.	The	approach	for	building	the	application	using
this	model	is	detailed	in	the	outline	below.

	

The	Outline

														Here	is	the	outline	of	the	sample	web	application	we	will	be	building.	We	will
follow	waterfall	model	for	the	development	of	sample	application.	Hence,	the	below
mentioned	steps	will	strictly	go	in	order.	For.	e.g.	step	3	will	not	be	touched	before
completion	of	step	2	which	in	turn	is	dependent	on	step	1.

	

Step	1:	Compose	Requirements	Specifications.	
	
Here	we	will	pen	down	what	the	application	will	provide	in	detail.	This	will	also	draw

the	scope	of	our	project.	The	requirements	specifications	needs	to	be	clear,	concise	and

specific.

	

Step	2:	Create	Prototype	of	the	Application.
	
Here	we	will	create	plain	HTML	pages	for	each	web	page	of	the	BIS-SMS	application.

We	will	also	add	navigation	links	between	pages.	This	should	clearly	demonstrate	how	the
application	will	look	like	and	how	it	will	behave	upon	user	interaction.	In	short,	this	is
referred	to	as	UI	(user	interface)	and	UX	(user	experience).	This	should	virtually	represent
the	complete	application	with	every	single	page	and	functionality	mocked	up	in	the
prototype.

	

Step	3:	Blueprint	the	Architecture	and	High	Level	Design.

														Here	we	will	create	the	ariel	view	of	the	application.	This	will	show	case	the
bigger	picture	which	provides	the	quick	understanding	of	functionalities,	distribution	and
interaction	of	various	modules,	tiers	and	technologies.	The	best	analogy	is	a	house
building	plan	which	show	cases	the	number	of	rooms,	living	area,	utilities	etc.	The
outcome	of	this	exercise	will	be	the	software	architecture	diagram	with	details	of	each
entity	in	it.

	

Step	4:	Design	the	Database.

														This	is	one	of	the	most	important	activity.	The	database	design	has	to	be	done
very	diligently	living	zero	(ideally)	or	minimum	scope	for	changes	or	modification	in	the
future.	A	change	in	database	entities	like	tables	will	have	ripple	effect	on	the	design	and
code.	For	an	example	adding	or	removing	a	column	in	one	of	the	table	post	coding	will
have	impact	everywhere,	potentially	the	database	queries	may	break.

	

Step	5:	Build	the	Java	Framework.

														We	will	be	building	our	own	light	weight	MVC	based	framework.	Once	the
framework	is	ready,	it	will	help	us	focusing	more	on	implementing	business	logic	for
individual	use	cases.	The	framework	will	provide	us	all	the	basic	services.	Remember,	the
framework	we	will	be	building	is	reusable.	The	same	can	be	used	to	build	other	web
applications.

	

Step	6:	Build	the	Shared	Components.

														We	will	identify	and	build	all	the	shared	components.	Shared	components	are	the
reusable	components	which	will	be	used	throughout	the	application.	Utility	classes	are	the
best	example	for	shared	components.	For	example	a	utility	class	for	getting	and	releasing
database	connection	can	be	built	before	the	actual	use	cases	implementation.	To	get	a
database	connection,	we	will	only	be	importing	this	class	and	making	a	method	call	which
returns	us	a	database	connection.

	

Step	7:	Build	the	Individual	Use	Cases.

														We	will	list	down	all	the	use	cases	and	start	build	one	by	one.	Each	use	case	will
leverage	the	framework	and	the	shared	libraries	to	achieve	the	business	logic	it	requires.
Here	we	will	detail	the	objective,	flow	and	state	of	various	entities	via	various	diagrams.
This	will	serve	as	low	level	design.	This	has	to	be	very	clear	and	complete.	Looking	at	the
low	level	design	the	developer	should	be	able	to	code	the	use	case.

	

Step	8:	Testing.

														We	will	finally	test	the	application	from	end	to	end.	This	is	referred	to	as	system
testing	where	we	will	integrate	and	test	all	the	use	cases.	We	will	also	test	all	the	use	cases
individually	before	integration,	this	is	called	unit	testing.	Post	integration,	the	whole
application	will	behave	as	single	system	for	the	end	user.	This	testing	will	show	us	the	end
users	perspective.	This	is	referred	to	as	User	Acceptance	Testing	(UAT).	We	will	perform
unit	testing,	module	testing,	system	testing	and	UAT	in	the	order	mentioned.

	

Step	9:	Deployment.

														This	is	the	final	step	where	we	will	bundle	the	application	and	deploy	it	to	the
server.	Here	we	will	build	and	deploy	our	application	to	the	server.	Prior	to	deployment	we
need	to	create	dependencies	like	Data	Sources	on	the	server.	We	will	create	such	artifacts
before	deployment.	We	will	also	see	various	options	available	to	build	and	deploy	our
application	to	the	server.

2
PREPARING	THE	ENVIRONMENT

In	this	chapter	we	will	create	the	design	time	and	run	time	environment	which	will	be	used
to	build	and	deploy	the	sample	application.	Below	is	the	list	of	hardware	and	software
requirements.

	

Hardware	Requirements

A	laptop	or	a	desktop	with	the	following	minimum	configuration	is	recommended.

Processor:	i3	or	higher

RAM:		4	Gb	Minimum

Software	Requirements

In	order	to	build	and	deploy	the	sample	application,	we	need	to	install	the	following
software.

														Operation	System:	Any	UNIX	flavor	or	windows	OS.	However,	windows	is
strongly	recommended	as	the	book	explains	building	the	sample	application	on	windows	7
OS	specifically.	Installing	OS	is	outside	the	scope	of	this	book.	If	non	windows	OS	is
used,	the	installation	instructions	for	the	particular	OS	needs	to	be	followed.	Ensure	that
the	setup/installation	is	available	for	the	OS	used.	It	may	be	required	to	download	a
different	version	of	the	setup/installation	files	based	on	the	OS	and	version.

Database:	Oracle	XE	10g.

Web	Server:	Apache	Tomcat	8	is	used	for	deploying	the	application.	This	provides	both
the	web	server	as	well	as	the	servlet	container.

IDE:	Oracle	jdeveloper	11g	is	the	integrated	development	environment	(IDE)	used	for
developing	the	application.

Lets	get	started	with	the	installation	of	Oracle	XE	database,	Oracle	jdeveloper	11g	and
Apache	Tomcat	8	server.	Note	that,	all	the	installation	instructions	below	applies	to
Windows	7	OS.	For	other	operating	systems,	the	installation	instructions	may	differ.

Installing	Oracle	XE	Database

Step	1:	Download	Oracle	XE	10g	setup	file	from:
http://www.oracle.com/technology/products/database/xe	for	windows.

	

Step	2:	Log	on	to	windows	with	a	user	that	has	administrative	privileges.	Right	click
OracleXE.exe	file	and	click	run	as	administrator.	This	will	launch	the	installer	as	shown	in
the	figure	below.

	

	

Step	3:	Click	next	on	the	install	wizard	welcome	window.	

	

	

Step	4:	You	will	be	prompted	with	License	Agreement	details.	Select	“I	Accept”	and	click
next.

Step	5:	Make	sure	that	Oracle	Database	10g	Express	Edition	is	selected.	Specify	a
destination	folder	for	the	database	installation	and	click	next.

Step	6:	Specify	the	password	for	SYS	and	SYSTEM	accounts	and	click	next.	Note	that

this	password	is	required	in	later	stages	for	administering	the	database.

Step	7:	The	installation	summary	page	is	displayed.	Click	install	to	proceed.

Step	8:	The	wizard	displays	the	confirmation	for	the	completion	of	the	installation.	Keep
the	Launch	the	Database	homepage	option	checked	and	click	finish.

Step	9:	This	will	launch	the	browser	with	the	home	page	of	the	database	just	installed.
Enter	sys	or	system	user	with	the	password	to	login.	Upon	successful	login,	the	following
page	is	displayed.

	

This	concludes	the	installation	of	Oracle	XE	10g	database.

	

Installing	Oracle	jdeveloper	11g

Step	1:	Download	the	installer	for	Oracle	jdeveloper	11g	from:

http://www.oracle.com/technetwork/developer-tools/jdev/downloads/index.html

	

Step	2:	Log	on	to	windows	with	a	user	that	has	administrative	privileges.	Right	click
jdevstudio11123install.exe	file	and	click	run	as	administrator.	

	

	

Step	3:	This	will	launch	the	installer.	Click	next	to	proceed.

Step	4:	Select	“Create	a	new	Middleware	Home”	radio	and	specify	a	home	directory	for
the	oracle	middleware.	This	is	the	root	directory	where	all	the	Oracle	Middleware

software	will	be	installed.	Click	next	to	proceed.

Step	5:	Select	Typical.	This	will	install	jdeveloper,	ADF	and	Weblogic	Server.	Click	next
to	proceed.

	

	

Step	6:	The	installer	will	display	the	installation	directories	for	the	server	and	ide.	Accept
the	default.	Just	click	next	on	this	screen	and	proceed	further.

Step	7:	Select	All	Users	and	click	next.

	

	

Step	8:	Verify	that	the	installation	summary	includes	jdeveloper	and	adf,	Weblogic	Server
and	JDK.	Click	next	to	proceed.

Step	9:	This	will	start	the	installation.

Step	10:	Unselect	Run	Quickstart	and	click	done	to	finish	the	installation.

	

Step	11:	Go	to	start	menu	and	click	JDeveloper	Studio.	This	will	launch	Oracle	jdeveloper.

This	concludes	the	installation	of	Oracle	jdeveloper	11g.

	

Installing	Apache	Tomcat	8

Step	1:	Download	the	zip	installer	file	for	Apache	Tomcat	8	from:

https://tomcat.apache.org/download-80.cgi

	

Step	2:	Unzip	the	file	apache-tomcat-8.0.21-windows-x64.zip	file	to	a	local	folder.

	

Step	3:	Apache	Tomcat	8.0	requires	a	Java	Standard	Edition	Runtime	Environment	(JRE)
version	7	or	later.	If	your	system	has	a	JRE	version	below	this	or	if	your	system	does	not
have	JRE	itself,	please	install	JRE	7	or	later	before	proceeding	further.

	

We	need	the	following	environment	variables	for	starting	the	Apache	Tomcat	8.0	server:
JRE_HOME	and	CATALINA_HOME.

	

The	CATALINA_HOME	environment	variable	should	be	set	to	the	location	of	the	root
directory	of	the	“binary”	distribution	of	Tomcat.	If	the	root	directory	is	of	the	installation
is	E:\apache-tomcat-8\apache-tomcat-8.0.21	then	the	CATALINA_HOME	environment
variable	must	be	set	to	E:\apache-tomcat-8\apache-tomcat-8.0.21.

	

To	create	the	CATALINA_HOME	environment	variable	go	to	start	-	right	click	on
Computer	-	Select	properties	-	This	will	open	Control	Panel	-	System	and	Security	-
System	-	Click	Advanced	system	settings	on	the	left	hand	side.	This	will	open	up	the
System	Properties	window.	Click	on	Environment	Variable.	That	will	in	turn	open	the
Environment	Variables	window.	The	following	picture	show	cases	all	these	windows.

Click	new	and	add	variable	name	as	CATALINA_HOME	and	variable	value	must	be	the
home	directory	of	the	Apache	Tomcat	server	as	shown	in	the	figure	below.

	

Click	OK	to	close	all	the	windows.

	

Similarly	create	the	JRE_HOME	environment	variable.	The	variable	name	must	be
JRE_HOME	and	the	variable	value	must	be	the	directory	location	of	the	JRE	(which	has
the	bin	folder	in	it)	as	shown	in	the	figure	below.

	

Click	OK	to	close	all	the	windows.

	

Step	4:	Go	to	the	bin	folder	and	run	the	startup	batch	file.	This	will	start	the	apache	tomcat
8	server.

	

Step	5:	Launch	the	browser	and	go	to	the	following	url:	http://localhost:80.	The
database	is	already	using	port	8080.	Hence,	we	will	change	the	http	port	to	80	for	Apache
Tomcat	8	server.

	

To	change	the	http	port	from	default	8080	to	80:	
	

Go	to	conf	folder	in	the	Apache	Tomcat	installation	directory.	Open	the	server.xml	file
to	edit.	Locate	this	tag	<Connector	port=“8080”	protocol=“HTTP/1.1”

connectionTimeout=“20000”	redirectPort=“8443”	/>	and	change	the	value	for	port	from
8080	to	80.	Save	the	file	and	restart	the	server.	The	Apache	Tomcat	8	server	will	now
listen	for	http	requests	on	port	80.

	

If	the	installation	is	successful,	the	home	page	of	Apache	Tomcat	server	will	be	displayed.

	

This	concludes	the	installation	of	Apache	Tomcat	8	server.	Please	refer	the	section	”
Configuring	data	source	security	realm	for	Apache	Tomcat	”	in	chapter	16	Securing
Application	to	configure	security	realm	for	this	Apache	Tomcat	8	server	installation.

3

SDLC,	OOAD	AND	UML

Software	Development	Life	Cycle	(SDLC)

														From	the	very	first	thought	of	having	a	software	solution	for	a	situation	till	the
actual	deployment	of	the	software,	the	software	development	goes	through	various	phases.
These	phases	form	the	building	blocks	of	SDLC.	Some	of	these	phases	are	interdependent
on	each	other,	while	some	are	prerequisite	for	others.	Some	of	them	can	be	done	in
parallel	while	others	may	demand	a	particular	order.

														Various	approaches	can	be	taken	to	build	a	software	solution	from	its	inception
till	its	completion.	These	approaches	are	referred	to	as	SDLC	methodologies.	We	will	not
go	into	details	of	these	various	methodologies.	We	will	only	focus	on	the	SDLC
methodology	which	we	will	be	following	to	build	our	sample	application.

														The	SDLC	methodology	we	will	be	following	is	called	water	fall	model.	In	this
methodology,	each	phase	of	SDLC	goes	in	a	particular	sequence.	The	major	tangible
phases	of	water	fall	SDLC	are	requirements	analysis,	design,	implementation(coding),
testing	and	maintenance.	In	water	fall	model,	each	phase	has	strict	dependency	on	the
previous	phase(s).	For.	e.g.	the	design	can	not	be	started	before	the	requirements	are
finalized.	In	water	fall	model,	the	following	order	for	SDLC	is	followed.
	

1.	 Requirements	Analysis
2.	 Design
3.	 Implementation
4.	 Testing
5.	 Deployment
6.	 Maintenance

The	outline	section	in	chapter	one	describes	waterfall	model	approach	for	the
sample	application	we	are	building.

	

Object	Oriented	Analysis	and	Design	(OOAD)

We	are	using	Java	to	build	the	sample	web	application.	Java	is	an	object	oriented
programming	language	and	hence	we	will	be	dealing	with	many	objects	in	the	sample
application.

														OOAD	is	primarily	identifying	the	objects	and	their	interaction	to	achieve	our
goal.	As	a	part	of	OOAD	analysis	and	design	we	will	come	up	with	various	classes	and
interfaces	in	the	coming	chapters.	For	each	use	case,	we	will	see	what	objects	are	required
and	what	interactions	are	required.	These	will	be	depicted	with	subjective	UML	diagrams
including	and	not	limited	to	class	diagrams,	sequence	diagrams	and	activity	diagrams.

														The	bottom	line	is,	everything	is	an	object	in	Java.	To	use	these	objects	at
runtime,	we	create	classes	with	fields	and	methods.	Hence,	OOAD	in	our	case	drills	down
to	planning	and	coming	up	with	Java	classes	and	interfaces	and	their	interactions	to
achieve	our	requirements.

	

Unified	Modeling	Language	(UML)

														UML	is	a	popular	modeling	language.	It	enables	the	pictorial	depiction	of	various
entities,	interactions	and	activities	through	out	the	development	life	cycle.	UML	provides
various	types	of	diagrams	which	help	in	understanding,	developing	and	refining	the
system	being	built.	In	the	coming	chapters	we	will	be	using	various	UML	diagrams	for
building	the	sample	web	application.	Here’s	a	quick	intro	of	various	UML	diagrams	used
in	this	book.

	

Use	Case	Diagram

														A	use	case	diagram	is	a	visual	representation	of	a	user’s	interaction	with	a
system.	These	can	be	different	types	of	users	of	a	system	and	also	there	can	be	different
types	of	use	cases	for	a	given	user.	A	use	case	pictorially	depicts	the	interaction	of	a	user
with	a	specific	role	with	the	system.

	

Class	Diagram

														The	class	diagram	is	a	static	diagram	and	it	describes	the	attributes	and

operations	of	a	class.	Class	diagrams	show	case	all	the	classes,	interfaces,	associations,
collaborations	and	constraints	in	the	application.	These	diagrams	give	a	visual
representation	of	the	classes,	interfaces	and	their	relationships	belonging	to	a	particular
system.

Sequence	Diagram

														As	the	name	suggests,	sequence	diagrams	pictorially	depict	the	sequence	of
operations	performed	in	a	particular	order	to	achieve	a	task.	They	depict	the	flow	of
various	activities	in	a	sequence.	Sequence	diagrams	are	basically	interaction	diagrams
which	depict	the	order	and	interactions	between	various	software	entities.

	

Activity	Diagram

														Activity	diagrams	depict	the	bigger	picture	of	a	system.	They	describe	the	flow
from	one	activity	to	another	and	their	conditions.	Activity	diagrams	are	commonly	used	to
depict	the	algorithms.	These	are	behavioral	diagrams	and	have	a	finite	number	of	steps,
conditions	and	flows.

Various	uml	diagrams	are	used	through	out	this	book	serving	the	very	purpose	of	UML	to
understand	things	with	more	clarity.

4
REQUIREMENTS

	

The	Requirements	Phase
	

This	is	the	first	thing	in	any	project.	The	client	who	wants	a	system	to	be	built	comes	up
with	a	document	called	requirements.	This	document	details	what	exactly	the	client	wants.
The	vendor	who	is	building	the	system	analyzes	this	document	and	goes	back	to	the	client
with	questions.	The	client	provides	answers	and	clarification	for	the	vendor’s	queries	and
ambiguities.	This	phase	is	known	as	requirements	analysis	phase	of	the	project.	The
outcome	of	requirements	analysis	phase	is	a	requirements	specification	document.

	

Requirements	Specifications

														To	put	it	simple,	requirements	specification	details	what	needs	to	be	built	very
specifically	and	clearly	without	any	ambiguity.	Requirements	specifications	is	concise,
specific,	straight	forward,	detailed,	clear	and	complete.	Requirements	specifications	have
to	be	clear,	detailed	enough	and	specific	without	any	ambiguity.	It	includes	detailed
specifications	of	the	requirements	for	the	system	to	be	built.	This	is	generally	a	legally
liable	document.

	

For	the	client,	the	requirements	specification	is	what	exactly	they	want.	For	the
implementers,	the	requirements	specification	is	what	they	are	going	to	build.

	

Let	us	take	an	example	here:	A	person	goes	to	a	tailor	for	stitching	a	shirt.	He	provides
the	requirements	by	saying	something	like	this:	I	need	a	shirt	which	needs	to	be	full
sleeved,	white	buttons,	wide	neck	etc.	The	tailor	gets	specific,	he	pulls	up	his
measurement	tape	and	pens	down	the	“requirements	specifications”	like	40.5	inch
shoulder,	18	inch	neck,	32	inch	length,	round	white	buttons	etc.
	

Let	us	now	pen	down	the	requirements	specification	for	the	sample	web	application	we
are	building.
	

Application	Title														
														
Baig	International	School	Online	Student	Management	System	abbreviated	as	BIS-SMS.

	

Executive	Summary

														The	online	student	management	system	provides	a	web	based	solution	for
management	of	student’s	information.	This	solution	is	aimed	for	students	studying	in	a
particular	school	from	1st	grade	to	10th	grade.	The	various	users	of	this	application	are
students,	teachers,	non-teaching	staff	and	school	management.	The	solution	serves	as	a
single	source	of	information	for	all	the	students	of	a	given	school.	The	information	about	a
student	include	student’s	personal	details,	parent’s	details,	attendance,	results,
performance,	health	and	other	attributes	of	a	student.

	

The	solution	also	provides	reports,	contact	information	for	various	non-teaching	staff,
charts	for	student’s	academic	and	non-academic	performances	and	attendance.

Detailed	Requirements	Specification

The	Online	Student	Management	System	application	is	divided	into	following	modules.
	
Authentication	and	Authorization

Student

Admin

Reports

Help

Miscellaneous
	

Authentication	and	Authorization	Module

														The	following	requirements	fall	under	this	module.
	

R1:	The	Authentication.

The	system	shall	provide	a	mechanism	to	authenticate	the	user.	Upon	first	request	to	the
application,	the	application	must	redirect	the	user	to	a	login	page.

	

Once	the	user	submits	the	user	id	and	password,	the	system	shall	perform
authentication.	If	the	user	id	and	the	password	does	not	match	or	the	user	does	not	exist,

the	system	shall	provide	an	appropriate	message	and	take	the	user	back	to	the	login	page.
	

If	the	user	is	valid	and	provides	valid	password,	the	authenticated	user	must	be	taken	to
the	dashboard	page.

	

R2:	The	Authorization.
	

The	system	shall	provide	a	mechanism	to	authorize	the	user	based	on	a	role.	The	menus
and	the	dashboard	should	be	rendered	based	on	the	role	of	the	user.	Only	those	links	shall
be	displayed	which	the	role	has	privilege.	The	user	privileges	and	the	role	shall	be	as	per
the	following	table.

	

The	Student	Module
	
This	module	must	provide	the	following	functional	requirements.

	

R3:	Load	Student.
	

The	system	shall	allow	the	user	to	load	a	student	based	on	his/her	student	Id.	The
system	shall	have	client	side	validations	for	student	id	with	appropriate	error	messages.

	

R4:	Unique	Student	Identifier.
	

On	the	pages	where	ever	applicable,	the	system	shall	display	the	student	name,
semester,	class,	section	and	student	id	as	a	unique	identifier	for	a	given	student	and	that
should	be	referred	to	as	“student	in	context”.	This	shall	be	displayed	in	centered	position
just	below	the	menus.	This	shall	serve	as	an	identification	of	a	student	in	question.	This
student	in	context	strip		must	be	displayed	for	all	the	student	related	pages	once	load
student	activity	is	performed	by	the	user.

	

	

R5:	Student	Details.
	

Prerequisite:	The	student	has	to	be	loaded	into	context	first.

The	system	shall	display	the	following	information	for	a	given	student	in	a	single	page
view.

Student Parents Bus

Student	Id Father Bus	Id

Name Mother Driver

Gender Father’s	mobile Driver’s	mobile

Date	of	birth Mother’s	mobile Helper

Grade Address Helper’s	mobile

Section 	 Bus	number

Class	teacher 	 Transportation	type

Height 	 	

Weight 	 	

Blood	group 	 	

	

R6:	Student	Academics.
	

Prerequisite:	The	student	has	to	be	loaded	into	context	first.

For	a	given	semester	and	student,	the	system	shall	display	the	academic	results
information	as	per	the	tables	below.

	

Scholastic	Performance	-	Core	Curriculum	-	Assessment

														The	system	shall	display	the	grades	for	the	following	subjects:	English,
Mathematics,	Science,	Social	Science,	Computer	Science,	Language	II	and	Language	III.

The	grades	shall	be	A,	B	and	C.

	

Subject	vise	grades	for	a	given	Semester	and	Remarks	option	under	the	table	heading
“Scholastic	Performance	-	Core	Curriculum	–	Assessment”.

	

	

Co	–	Scholastic	Activities

	

For	a	given	semester	and	student,	the	system	shall	display	the	following	academics
information.

	

Subject	vise	grades	for	Critical	Thinking,	Creative	Thinking,	Collaborative	Learning,
Communication	Skill,	Comprehensive	Growth,	Intelligence	Quotient,	Emotional	Quotient,
Social	Quotient,	Health	Quotient	and	Community	Consciousness	under	the	table	heading
“Co	–	Scholastic	Activities”.	The	grades	shall	be	Latent,	Developing,	Emerging	and
Outstanding.

	

Scholastic	Performance	-	Co	Curriculum	-	Assessment

	

For	a	given	semester	and	student,	the	system	shall	display	the	following	academics

information.

	

The	system	shall	display	the	grades	for	the	following	subjects:	Arts,	Music,	Dance,
Physical	Education,	Value	Education	and	School	Project.	The	grades	shall	be	A,	B	and	C.

	

Subject	vise	grades	for	a	given	Semester	and	Remarks	option	under	the	table	heading
“Scholastic	Performance	-	Co	Curriculum	–	Assessment”.

	

	

Synthesis	and	Recommendations

	

For	a	given	semester	and	student,	the	system	shall	display	the	following	academics
information.	Scholastic	Performance	and	Co	–	Scholastic	Performance	under	the	table
heading	“Synthesis	and	Recommendations”.	The	system	shall	display	the	detailed	remarks
as	per	the	table	below.

	

	

R7:	Show	Student	Attendance.
	

Prerequisite:	The	student	has	to	be	loaded	into	context	first.

	

														The	system	shall	display	the	attendance	for	a	given	student	and	for	a	given
semester	in	a	single	page	view.	The	page	shall	display	the	total	number	of	working	days	in
a	semester,	the	number	of	days	the	student	was	present	and	the	number	of	days	the	student
was	absent.	This	should	be	displayed	in	numerical	values,	percentages	and	with	a	bar
graph	as	per	the	figure	below.

	

	

R8:	Student	Fees.
	

Prerequisite:	The	student	has	to	be	loaded	into	context	first.

	

For	a	given	student	the	system	shall	display	the	monthly	fees	status.	This	fees	to	be
displayed	includes	the	tuition	fees	and	the	bus	fees.	This	shall	be	shown	monthly	for	each
quarter	of	the	year.	The	fees	status	for	tuition	and	bus	shall	be	displayed	as	per	the	tables
below.

	

	

The	Administration	Module
	

R9:	Manage	Student	Attendance.
	

Prerequisite:	The	student	has	to	be	loaded	into	context	first.

														For	a	given	student,	the	system	shall	display	the	attendance	of	both	the	semesters
in	a	single	page.	Under	a	separate	heading	for	each	semester,	the	system	shall	display	total
working	days,	total	number	of	days	present	and	total	number	of	days	absent.

	

The	present	field	shall	be	editable	and	shall	be	displaying	the	present	value.	The	user
shall	be	able	to	enter	a	numerical	value	and	update	it	to	the	system.	This	applies	to	both
the	semesters.	The	page	shall	hold	client	side	validations	and	must	pose	appropriate	error
messages	for	wrong	values	entered.

	

Upon	successful	update,	the	system	shall	display	the	updated	values.

Example:

Before	update:
Total	working	days	:	150

Present:	140

Absent:	10

	

After	update:

Total	working	days	:	150

Present:	145

Absent:	5

	

For	a	given	student,	the	update	attendance	functionality	shall	be	as	per	the	figures
below	for	respective	semester.

	

	

R10:	Add	Student.
	

Prerequisite:	The	logged	in	user	must	have	the	role	privileges	to	add	a	student.

														The	system	shall	provide	this	functionality	only	for	the	roles	as	per	role	access
mappings	in	requirements	reference	R2.	The	system	shall	provide	a	form	with	the
following	fields	to	add	a	new	student	to	the	system.	The	system	shall	perform	all	the
required	validations	at	client	side	for	the	values	entered	for	each	form	element.

	

The	system	shall	mandate	few	form	fields	as	shown	in	the	table	below	and	other	fields
shall	be	allowed	to	be	optional	but	recommended.	The	system	shall	auto	generate	a	unique
student	id	based	on	the	student	name,	student	birth	date	and	parents	name	combination.
And	this	student	id	shall	be	unique	identifier	for	all	the	students	belonging	to	the	system.

	

The	form	shall	have	the	fields	as	per	the	tables	below.

	

	

The	mandatory	fields	are	marked	with	the	“*”	symbol.	Following	are	the	mandatory
fields:

Student	first	name

Student	last	name

Mother’s	first	name

Father’s	first	name

Student’s	data	of	birth	in	mm/dd/yyyy	format.														
All	other	fields	shall	be	optional	but	encouraged	to	be	filled.

The	Reporting	Module

	

R11:	Report	by	Class.
	

Prerequisite:	The	logged	in	user	must	have	the	role	privileges	for	reports	by	class
functionality.

														The	system	shall	provide	this	functionality	only	for	the	roles	as	per	role	access
mappings	in	requirements	reference	R2.	For	this	functionality,	the	system	shall	provide	a
page	with	two	regions.	One	for	the	report	criteria	and	other	for	the	report	results.	

														The	report	criteria	shall	comprise	of	a	drop	down	menu	for	class	and	a	drop	down
menu	for	section.	The	user	should	be	able	to	select	a	specific	class	and	a	section	and	upon
clicking	generate	report	button,	the	system	shall	query	the	database	and	provide	the	report
as	per	the	format	given	below.

	

Report	Criteria
	

	

Report	Results
	

														The	report	shall	be	displayed	in	tabular	format	as	shown	in	the	figure.	It	shall
display	the	selected	report	criteria	as	a	heading	followed	by	the	report	results.	The	report
must	contain	first	name,	middle	name	and	last	name	in	first	column	followed	by	student

id,	gender	and	bus	id	in	the	order	mentioned.	By	default	the	report	results	must	be	sorted
by	first	name	of	the	student	in	alphabetical	order.

	

The	Help	and	Miscellaneous	Module
	

R12:	Help	Pages.
	

Prerequisite:	None
														Security:	Public	pages

	

These	pages	shall	be	public	and	the	access	shall	be	granted	to	everyone	i.e.	for	the
logged	in	users	as	well	as	for	the	users	who	do	not	have	an	id.	That	is,	these	static	pages
providing	general	information	shall	be	public	in	nature	without	any	security	constraints.
The	system	shall	provide	the	following	static	html	pages	under	a	separate	menu	heading
titled	“Help”.	The	help	pages	shall	include	results	legend	page,	FAQs	page,	holidays
calendar	page,	escalation	matrix	page	and	fee	structure	page.

	

R13:	Header	and	Footer.
	

Prerequisite:	The	user	must	be	logged	in.

														Upon	successful	log	in,	the	system	shall	display	the	consistent	header	and	footer
on	all	the	pages.	The	header	shall	display	the	school	name	on	the	top	in	bigger	fonts.	The
header	shall	also	display	the	date	and	time,	the	logged	in	user	name,	the	logout	link	and
the	top	navigational	menus	as	per	the	logged	in	user	role(s).

	

The	footer	shall	display,	the	copyright	and	other	static	information	in	the	given	format.

	

R14:	The	Menu.
	

Prerequisite:	The	user	must	be	logged	in.

	

Upon	successful	log	in,	the	system	shall	display	the	consistent	menu	for	all	the	pages	of
the	web	application.	The	following	menus	must	be	displayed	with	the	respective	menu
items	as	per	the	table	below.

	

5
PROTOTYPING

	

The	prototype	models	the	UI	of	the	web	application	to	be	build.	The	objective	of	the
prototype	is	to	ensure	and	verify	what	exactly	the	client	is	looking	for.	The	prototype
presents	the	actual	UI.	With	these	UI	pages,	the	vendor	should	be	able	to	explain	the	client
what	the	UI	looks	like	in	details	and	the	vendor	should	also	be	able	to	explain	the	client
the	behavior	of	the	application	being	built.

	

This	is	a	set	of	html	pages	which	exactly	demonstrates	how	the	application	looks	like.
Typically,	the	graphics	team	understands	the	UI	and	UX	requirements	from	the	client	and
other	stakeholders.	Sometimes,	the	client	shares	the	UI	and	UX	requirements	in	the	form
of	excel	sheets	or	may	be	even	image	files.	The	graphics	team	comes	up	with	the	layout,
headers,	footers,	color	theme,	page	content	area	for	the	application	to	be	built.	This	team
provides	a	visualization	of	the	looks	of	the	actual	application	pages.

	

The	prototype	show	cases	how	the	applications	looks	and	behaves.	It	is	as	near	as	possible
mock	up	of	the	application	interface	and	behavior.

	

In	our	case,	we	will	build	the	mock	up	or	prototype	as	HTML	pages.

	

The	purpose	of	prototype	is	to	enable	various	stakeholders	in	the	development	of	web
application	project	to	understand	the	system	being	built	with	utmost	clarity.	The	prototype
acts	as	supplementary	practical,	graphic	version	of	requirements	specification.	The
developers	who	build	the	UI	generally	don’t	read	the	requirements	specifications	word	by
word	rather	they	build	what	they	see	in	the	prototype.	In	case	of	any	ambiguity	or	doubt
the	requirements	specifications	must	provide	micro	level	clarity	to	the	developers.

	

Page	layout	and	template
	

The	page	layout	in	our	case	is	simple,	we	have	a	header	and	a	footer.	The	area	in
between	the	header	and	footer	is	used	for	the	subjective	page	content.	This	is	the	dynamic
region	which	holds	the	currently	selected	page	by	the	user.

	

The	Header

	

The	header	displays	the	school	name	in	a	banner	mode.	The	header	has	the	drop	down
menu	which	provides	the	universal	navigation	for	the	entire	application.	The	header
displays	current	date	and	time,	the	logged	in	user	and	the	logout	link.

	

The	Footer

	

The	footer	generally	displays	the	copyright	information	and	disclaimers.	In	our	case	it
shall	display	the	copyright	information	and	the	book	title.

	

The	Dynamic	Content	Region

	

The	header	and	footer	are	static	and	are	always	displayed	for	all	the	pages	in	the
application.	The	dynamic	region	as	shown	in	the	figure	displays	the	page	the	user	is
currently	working	on.	Hence,	in	web	applications	we	generally	have	a	parent	page	called
the	home	page	template	which	has	all	the	static	contents	like	the	header	and	footer.	In
some	cases	we	have	side	navigation	but	in	our	case	we	don’t	have	side	navigation	rather
navigation	is	provided	via	top	side	menus.	Based	on	the	user	interaction,	the	dynamic
region	is	loaded	with	relevant	pages.	This	saves	the	reloading	of	the	same	data	and	hence
increases	the	application	performance.	It	also	saves	network	bandwidth	by	reducing	the

amount	of	data	to	be	loaded.	The	developers	focus	on	the	functionalities	of	the	individual
pages	and	reuse	the	page	template	which	is	developed	as	a	shared	component.

	

Lets	now	build	the	prototype	for	all	the	pages	of	our	sample	application.	Below	is	the
list	of	use	cases	and	their	respective	pages.

	

Authenticate	user:	The	login	page.

Authorize	user	and	render	dashboard	based	on	role:	The	dashboard	page.

Load	student:	The	load	student	ajax	region	within	the	dashboard/home	page.

Get	student	details:	The	student	details	page.

Get	student	results:	The	student	results	page.

Get	student	attendance:	The	student	attendance	pages	for	semester	1	and	semester	2.

Get	student	fees	status:	the	student	fees	status	page.

Manage	student	attendance:	The	manage	attendance	page.

Add	student:	The	add	student	page.

Get	report	by	class:	The	report	by	class	page.	This	has	both	report	criteria															as	well
as	result/report	display.

Help	pages:	The	results	legend	page.	The	help	pages	are	a	set	of	static	html	pages.

Prototype	1:	Login	Page.
Specification	Reference:	R1

														

The	BisLogin.jsp	page	is	built	using	this	html	page.	The	source	code	for	this	page	is
available	in	chapter	15	under	the	authentication	use	case	section.

Prototype	2:	Dashboard/Home	Page.
Specification	Reference:	R2

	

	

The	BisDashboard.jsp	page	is	built	using	this	html	page.	The	source	code	for	this	page	is
available	in	chapter	15	under	the	authorization	use	case	section.

	

Prototype	3:	Load	Student.
Specification	Reference:	R3

	

	

This	region	is	within	the	BisDashboard.html	page.

	

Prototype	4:	Student	Details	Page.

Specification	Reference:	R4

	

The	StudentDetails.jsp	page	is	built	using	this	html	page.	The	source	code	for	this	page	is
available	in	chapter	15	under	the	get	student	details	use	case	section.

	

Prototype	5:	Student	Results	Page	for	Semester	1.

Specification	Reference:	R6

	

The	StudentAcademics.jsp	page	is	built	using	this	html	page.	The	source	code	for	this
page	is	available	in	chapter	15	under	the	get	student	results	use	case	section.

	

Prototype	5:	Student	Results	Page	for	Semester	2.

Specification	Reference:	R6

	

	

The	StudentAcademics.jsp	page	is	built	using	this	html	page.	The	source	code	for	this
page	is	available	in	chapter	15	under	the	get	student	results	use	case	section.

	

Prototype	6:	Student	Attendance	Page	for	Semester	1.

Specification	Reference:	R6

	

	

The	StudentAttendance.jsp	page	is	built	using	this	html	page.	The	source	code	for	this

page	is	available	in	chapter	15	under	the	get	student	attendance	use	case	section.

	

Prototype	6:	Student	Attendance	Page	for	Semester	2.

Specification	Reference:	R6

	

	

The	StudentAttendance.jsp	page	is	built	using	this	html	page.	The	source	code	for	this
page	is	available	in	chapter	15	under	the	get	student	attendance	use	case	section.

	

Prototype	7:	Fees	Status	Page.

Specification	Reference:	R8

	

	

The	StudentFees.jsp	page	is	built	using	this	html	page.	The	source	code	for	this	page	is
available	in	chapter	15	under	the	get	student	fees	use	case	section.

	

Prototype	8:	Manage	Attendance	Page.

Specification	Reference:	R8

	

The	ManageAttendance.jsp	page	is	built	using	this	html	page.	The	source	code	for	this
page	is	available	in	chapter	15	under	the	manage	student	attendance	use	case	section.

	

Prototype	9:	Add	Student	Page.

Specification	Reference:	R9

	

	

The	AddStudent.jsp	page	is	built	using	this	html	page.	The	source	code	for	this	page	is
available	in	chapter	15	under	the	add	student	use	case	section.

	

Prototype	10:	Report	by	class	page	with	report	criteria	options.

Specification	Reference:	R10

	

	

The	ReportByClass.jsp	page	is	built	using	this	html	page.	The	source	code	for	this	page	is
available	in	chapter	15	under	the	report	by	class	use	case	section.

	

Prototype	10:	Report	by	class	page	with	report	data.

Specification	Reference:	R10

	

The	ReportByClass.jsp	page	is	built	using	this	html	page.	The	source	code	for	this	page	is
available	in	chapter	15	under	the	report	by	class	use	case	section.

	

Prototype	11:	Help	pages,	results	legend	page.

Specification	Reference:	R11

Type:	Static	html	page.

	

	

The	source	code	for	ResultsLegend.html	page	is	available	in	chapter	15	under	the	help
page	use	case	section.

6
THE	CLIENT	SIDE

	

The	face	of	a	web	application	is	a	browser.	The	browser	is	a	smart	client	and	it	has
computational	capabilities.	The	browser	is	not	just	for	displaying	the	content	it	also
provides	computational	functionalities	and	platform	for	other	web	2.0	features.	The	most
commonly	used	technologies	used	in	almost	all	the	browser	based	applications	are
JavaScript	and	Cascaded	Style	Sheets.	In	our	sample	application	we	are	using	one	.js
(javascript)	file	and	one	.css	(cascaded	style	sheet)	file.	In	this	chapter	we	will	go	through
these	two	files	in	detail.

	

JavaScript
	

This	is	the	most	popular	scripting	language	used	on	the	client	side.	There	are	even
many	frameworks	built	with	JavaScript	and	they	are	pretty	popular	too.	JavaScript	is	a
object	based	programming	language	and	is	used	for	various	computations	at	client	side.
The	most	common	usage	is	form	validation	and	executing	other	client	side	logic.

	

The	javascript	code	can	directly	be	embedded	in	a	jsp	or	a	html	page.	But	the	preferred
way	is	to	have	separate	.js	file	and	include	that	file	in	the	jsp	or	html	page	wherever
required.	In	our	sample	application,	we	are	using	BisScript.js	file	and	this	is	included	in
the	home	page	template.	The	home	page	template	in	turn	includes	all	the	other	jsp	pages.
Thereby,	we	don’t	have	to	include	this	file	in	all	individual	jsp	pages.	It	is	available	to	us
in	all	the	pages	as	we	have	included	this	in	the	home	page	template.

	

BisScript.js
	
function	submitAddStdForm()														{

document.getElementById(“paramAddStdFrmSubmitted”).value	=	“Yes”;			
document.getElementById(“frmAddStudent”).submit();

}

function	generateRptByCls()														{																																document.getElementById(“frmReportByCls”).submit();

}

function	updateAttendance(sem)														{

if	(sem	==	‘1’)														{								document.getElementById(“ParameterUpdateSemAttendance”).value	=	“1”;

}

else	if	(sem	==	‘2’)														{																				document.getElementById(“ParameterUpdateSemAttendance”).value	=	“2”;

}

document.getElementById(“paramUpdateAttFrmSubmitted”).value	=	“Yes”;																	
document.getElementById(“frmManageAttendance”).submit();

}

var	xmlHttpReq=false;

function	getStudentAJAX()														{

var	stdId	=	document.getElementById(“txtStdId”).value;

var	url=“BisAjaxControllerServlet?ParameterActionCommand=LoadStudent&txtStdId=”;

url	=	url	+	stdId;

	

xmlHttpReq	=	new	XMLHttpRequest();

xmlHttpReq.open(“GET”,url,	true);

xmlHttpReq.send();

xmlHttpReq.onreadystatechange=getStudentAjaxCallBack;

}

function	getStudentAjaxCallBack()		{

	

if	(xmlHttpReq.readyState	==	4	&&	xmlHttpReq.status	==	200)																{																																							
document.getElementById(“dvStdSmry”).innerHTML=xmlHttpReq.responseText;																			}

}

	

The	javascript	function	submitAddStdForm	performs	the	following	tasks:

	

							Sets	the	value	Yes	to	paramAddStdFrmSubmitted	flag	and	submits	the	form.	On
the	server	side	this	flag	is	used	to	identify	whether	the	user	has	submitted	the	filled
form	or	is	requesting	the	add	student	form	page	to	be	filled	and	submitted.
	

The	javascript	function	generateRptByCls	performs	the	following	tasks:

	

							Submits	the	form.
	

The	javascript	function	updateAttendance	performs	the	following	tasks:

	

							Sets	the	semester	in	context.

							Marks	the	update	flag	to	Yes.

							Submits	the	form.

	

The	javascript	variable	xmlHttpReq	is	used	by	the	two	Ajax	javascript	functions.

	

The	load	student	use	case	details	the	other	two	Ajax	functions	getStudentAJAX	and
getStudentAjaxCallBack.
	

Cascaded	Style	Sheet
	

The	css	is	the	most	common	way	of	presenting	the	content	to	the	browser.	In	css	we
define	the	styles	for	elements	and	these	can	be	referenced	from	the	html	or	Jsp	documents.
Each	html	style	can	be	defined	inline	or	at	a	document	level	or	in	a	separate	.css	file.	This
file	can	be	included	in	the	jsp	or	html	page	and	the	style	definitions	in	it	can	be	tied	to	the
html	elements	in	the	page.	In	our	sample	application,	we	are	using	only	one	css	file.	The
styles	for	all	the	pages	in	our	application	are	defined	in	this	file.	Also,	the	style	for	the
menus	and	menu	items	are	all	defined	in	this	file.	Lets	have	a	closer	look	at	this	file.

	

BISStyle.css
	

body	{

background-color:	#BBBBBB;

}

#dashboardlink	{

color:	Blue;

font-size:	large;	
																												}

#trbgred	{

color:	white;

background-color:	red;

}

#bigwhtxt	{

color:	White;

font-size:	x-large;

}

#regfont	{

color:	white;

}

#headingfont	{

color:	Red;

size:	7;

style:	bold;

}

#headingtxt	{

color:	Red;

font-size:	large;

}

#redFontWhiteBg	{

color:	red;

background-color:	White;

}

#whiteBg				{

background-color:	White;

font-size:	large;

}

#submitButton				{

color:	red;

background-color:	White;

font-size:	large;

}

#clred	{

color:	red;

}

#cssmenu	{

width:	auto;

border:	1px	solid	#ff0000;

background:	#ff0000;

}

#cssmenu	>	ul	{

padding:	1px	0;

margin:	0px;

list-style:	none;

width:	100%;

height:	27px;

border-top:	1px	solid	#FFFFFF;

border-bottom:	1px	solid	#FFFFFF;

font:	normal	12pt	verdana,	arial,	helvetica;

}

#cssmenu	>	ul	li	{

margin:	0;

padding:	0;

display:	block;

float:	left;

position:	relative;

width:	148px;

}

#cssmenu	>	ul	li	a:link,	#cssmenu	>	ul	li	a:visited	{

padding:	4px	0;

display:	block;

text-align:	center;

text-decoration:	none;

background:	#ff0000;

color:	#ffffff;

width:	148px;

}
#cssmenu	>	ul	li:hover	a,	#cssmenu	>	ul	li	a:hover,	#cssmenu	>	ul	li	a:active	{

padding:	4px	0;

display:	block;

text-align:	center;

text-decoration:	none;

background:	#ff4d4d;

color:	#ffffff;

width:	146px;

border-left:	1px	solid	#ffffff;

border-right:	1px	solid	#ffffff;

}

#cssmenu	>	ul	li	ul	{

margin:	0;

padding:	1px	1px	0;

list-style:	none;

display:	none;

background:	#ffffff;

width:	146px;

position:	absolute;

top:	21px;

left:	-1px;

border:	1px	solid	#ff0000;

border-top:	none;

}

#cssmenu	>	ul	li:hover	ul	{

display:	block;

}

#cssmenu	>	ul	li	ul	li	{

clear:	left;

width:	146px;

}

#cssmenu	>	ul	li	ul	li	a:link,	#cssmenu	>	ul	li	ul	li	a:visited	{

clear:	left;

background:	#ff0000;

padding:	4px	0;

width:	146px;

border:	none;

border-bottom:	1px	solid	#ffffff;

position:	relative;

z-index:	1000;

}
#cssmenu	>	ul	li	ul	li:hover	a,	#cssmenu	>	ul	li	ul	li	a:active,	#cssmenu	>	ul	li	ul	li	a:hover
{

clear:	left;

background:	#ff4d4d;

padding:	4px	0;

width:	146px;

border:	none;

border-bottom:	1px	solid	#ffffff;

position:	relative;

z-index:	1000;

}

#cssmenu	>	ul	li	ul	li	ul.navigation-3	{

display:	none;

margin:	0;

padding:	0;

list-style:	none;

position:	absolute;

left:	145px;

top:	-2px;

padding:	1px	1px	0	1px;

border:	1px	solid	#ff0000;

border-left:	1px	solid	#ff0000;

background:	#ffffff;

z-index:	900;

}

#cssmenu	>	ul	li	ul	li:hover	ul.navigation-3	{

display:	block;

}

#cssmenu	>	ul	li	ul	li	ul.navigation-3	li	a:link,	#cssmenu	>	ul	li	ul	li	ul.navigation-3	li
a:visited	{

background:	#ff0000;
}
	

The	BISStyle.css	and	BISScript.js	files	are	included	in	the	BisHome.jsp	page.	This
page	in	turn	includes	all	other	jsp	pages	based	on	the	use	case.	In	order	to	use	these	files,
the	following	code	is	added	in	BisHome.jsp	page.	Accordingly,	the	BISStyle.css	files	is
placed	under	resources/css	folder	and	the	BISScript.js	file	is	placed	under	resources/js
folder.

	
<head>

<link	rel=“stylesheet”	type=“text/css”															href=“resources/css/BISStyle.css”></link>

<script	src=“resources/js/BISScript.js”></script>

</head>

	

Menus

	

For	the	implementation	of	the	menus,	please	refer	the	BISStyle.css	source	code	in	this
chapter	and	BisHome.jsp	source	code	in	chapter	14.

7
THE	PATTERNS

	

A	pattern	is	a	proven	way	of	approaching	the	solution	for	a	know	type	of	problem.	A
given	problem	can	be	solved	in	many	ways.	The	approach	which	provides	the	best
solution	and	which	is	already	tried	and	tested	by	others	constitute	a	pattern.	Patterns
provide	ready	made	solutions	for	a	known	type	of	problem.	Patterns	basically	reuse
human	efforts	and	intelligence	which	is	already	invested	by	others.

	

Let	us	understand	pattern	with	an	example	from	our	day	today	life.	A	school	bus	driver
picks	and	drops	20	students	from	various	locations	in	a	city.	The	driver	has	a	pattern	for
the	pick	up	based	on	the	no	entries,	traffic	conditions,	weather	etc	during	morning	hours.
The	driver	also	has	a	pattern	for	dropping	the	students	based	on	the	said	conditions	in	the
evening.	The	driver	will	pick	and	drop	students	in	a	particular	order.	This	order	evolves
after	few	weeks	from	the	beginning	of	the	academic	year.	The	driver	may	pick	the	student
nearest	to	the	school	in	the	last	and	the	driver	may	drop	the	same	student	first	in	the
evening.	The	driver	of	this	school	bus	thus	eventually	has	the	best	way	after	few	weeks	to
save	time,	fuel	and	efforts	for	this	task.	The	driver	sticks	to	this	pattern	to	achieve	the	said
goals.

	

Now,	lets	take	a	scenario	where	the	driver	quits	the	job.	In	this	case,	the	new	driver	will
not	reinvent	the	wheel.	The	new	driver	will	learn	the	path	and	the	order	etc	from	the	old
driver	who	is	quitting.	We	can	now	say	that,	the	old	driver	has	put	intelligence,	efforts,
time,	money	etc	to	come	up	with	the	best	pattern	for	picking	up	and	dropping	the	students.
The	new	driver	has	to	just	reuse	this	human	effort	and	intelligence	which	is	tried,	tested
and	proven	.	This	is	nothing	but	establishing	a	pattern	and	reusing	it.

	

Architectural	Patterns

														These	are	patterns	at	architectural	level.	These	patterns	focus	at	a	bigger	picture
at	the	system	level	structure	of	modules,	components	and	even	applications	within	and
outside	an	enterprise.	Service	Oriented	Architecture	(SOA),	Model	View	Controller
(MVC)	and	dependency	injection	are	the	most	commonly	used	architectural	patterns.

MVC

														Please	refer	chapter	10	for	detailed	explanation	and	implementation	of	a	MVC

based	architectural	pattern.	
	

Design	Patterns
	

These	are	the	patterns	at	design	level.	The	design	patterns	provide	solutions	to	the
commonly	encountered	design	problems.	The	most	commonly	used	design	patterns	are
Singleton,	Factory,	Command,	Iterator,	Bridge	and	Adapter	etc.

Lets	have	a	closer	look	at	the	patterns	used	in	our	sample	application.

	

Command	Pattern
	

This	is	basically	a	design	pattern	and	is	further	categorized	under	behavioral	patterns.	In
command	pattern,	the	client	sends	a	command	and	based	on	the	command	the	server
executes	a	functionality	and	returns	the	result	to	the	client.

	

In	our	sample	application	and	MVC	based	framework	we	exploit	command	pattern.
Lets	see	this	with	an	example	of	a	use	case.	If	you	look	at	the	get	student	details	use	case,
The	user	click	get	student	details,	this	sends	the	“getStudentDetails”	command	to	the
server.	The	server	invokes	the	controller	servlet,	within	the	controller	servlet	we	use	a
command	processor	class	for	each	command.	In	this	case,	the	controller	servlet
instantiates	GetStudentDetailsCP	class	and	invokes	the	execute	method.	This	class	holds
the	business	logic	for	get	student	details	command.	This	class	leverages	other	service
classes	and	utility	classes	to	get	the	student	details	from	the	database.	And	finally	returns
the	view	with	the	student	details.

	

Hence,	in	command	pattern	we	see	that	the	client	sends	a	request	or	a	command	to	the
server.	The	server	delegates	this	command	to	the	framework	which	in	turn	invokes	the
specific	command	handler.	The	command	handler	executes	the	business	logic	pertaining
to	the	command	and	navigates	the	user	to	an	appropriate	view.	For	more	details	on
command	pattern	please	go	through	the	Bis	MVC	framework	flow	description	in	chapter
10	and	also	please	go	through	the	individual	use	cases	implementation	to	get	further
understanding	and	clarity.

	

Front	Controller	Design	Patten
	

In	this	design	pattern,	we	have	a	centralized	entry	point	for	particular	type	of	client
requests.	This	pattern	is	commonly	used	in	frameworks	which	are	used	for	building	web

applications.

	

In	our	framework,	we	use	BisControllerServlet	as	an	entry	point	for	all	the	client
requests.	We	have	another	controller	servlet	which	is	the	entry	point	for	all	Ajax	requests
from	the	client.	The	BisAjaxControlerServlet	handles	only	ajax	requests	in	our	framework
and	it	acts	as	front	controller	for	all	the	Ajax	calls	from	the	client.

	

This	pattern	helps	a	lot	in	debugging.	By	setting	a	break	point	at	the	controller	servlet
we	can	trace	all	the	execution	flows.

	

Value	Object	Design	Pattern
	

In	this	pattern	we	use	simple	java	beans	with	private	fields	and	public	getters	and
setters	methods	for	those	fields.	In	our	sample	application	we	use	this	pattern	heavily.	For
example	in	the	get	student	details	use	case,	we	add	all	the	data	related	to	student	to	a
StudentDetailsBean.	This	data	is	fetched	from	one	or	more	tables	from	the	database.	This
gives	us	a	handy	object	to	process	the	student	related	data	at	the	java	tier.	We	add	this
object	to	the	session	and	consume	it	for	the	view	purpose	at	the	jsp	page	level.	This
pattern	helps	in	creating	a	view	based	on	the	use	case	requirements.	This	also	helps	in
putting	relevant	or	related	data	in	a	single	object	which	is	very	handy	for	the	developers.

There	are	other	design	patterns	which	are	used	in	our	sample	applications.	There	are
many	other	design	patterns	which	can	be	used	in	our	sample	application.	Based	on	the
requirements,	architecture,	performance	criteria,	user	base,	support	requirements,	type	of
application	and	many	other	factors	the	design	patterns	have	to	be	chosen	and
implemented.

8
THE	ARCHITECTURE

	

Architecture	is	the	blueprint	of	the	application.	This	gives	the	ariel	view	of	the	system
to	be	built.	The	architecture	provides	the	bigger	picture	in	a	single	view	comprising	of	all
the	significant	building	blocks	of	the	system.

	

The	architecture	is	a	very	broad	and	old	term	used	in	almost	all	branches	of
engineering.	Lets	take	an	example	of	a	civil	engineering	project	to	understand	what	an
architecture	is.	Lets	take	the	example	of	“Baig	Apartments”,	this	apartment	needs	to	have
7	floors	and	each	floor	must	have	3	flats.	The	plot	size	to	build	this	apartment	is	10,000
square	feet.	The	requirement	is	very	basic	and	quantified	at	a	very	high	level	in	this	case.
The	architecture	needs	to	be	built	first,	than	comes	the	structural	design	and	then	the
actual	building	will	be	built	based	on	the	design.

	

The	architecture	in	this	case	provides	the	ariel	view	or	the	bigger	picture	of	the
apartment	to	be	built.	The	architecture	details	the	placement	of	each	flat	on	a	floor	with
the	dimensions	of	each	room,	hall,	kitchen	etc.	The	architecture	details	the	space	for
utilities,	parking	and	other	significant	entities	of	a	building	of	this	size	like	the	lift,
staircase	etc.	The	color	of	the	walls,	the	material	used	for	flooring,	the	interior	of	the
kitchen	etc	are	outside	the	scope	of	the	architectural	details.	A	good	architecture	is
essential	to	build	a	system.	It	provides	us	the	flexibility	to	visualize,	model,	design	and
modify	a	system	before	it	is	built.

	

The	BIS-SMS	Application	Architecture
	

In	software	engineering,	the	architecture	details	all	the	building	block	of	the
application.	It	also	details	the	interaction	and	the	type	between	various	components	of	a
software	system	to	be	built.	Lets	now	draw	the	architecture	of	BIS-SMS	application.	This
architecture	must	show	case	us	from	browser	to	browser	trace	in	a	bigger	picture.	That	is,
it	must	show	us	what	happens	when	a	request	is	sent	from	a	browser	till	we	receive	back
the	response	to	the	browser.	This	must	be	depicted	in	a	diagram	at	a	component	or
modular	level.

	

	

The	browser	sends	a	http	request	to	the	server.	The	server	identifies	the	request	and
invokes	the	controller	servlet.	The	controller	servlet	identifies	the	command	and	invokes
the	appropriate	command	processor.	The	command	processor	based	on	the	use	case
leverages	one	of	more	service	classes.	The	service	classes	hold	the	business	logic	and	may
interact	with	the	database	using	database	service	class.	The	service	classes	provide	the
services	for	specific	use	cases.	Based	on	the	request	type,	the	service	classes	cook	up	the
beans	and	populate	the	data	in	one	or	more	beans	to	provide	it	back	with	the	response.	In
case	of	insert	or	update	operations,	the	service	classes	will	provide	only	a	flag	conveying
success	or	failure.	In	case	of	a	view	request,	the	service	classes,	query	the	database	add
these	values	to	beans	and	return	the	control	to	the	command	processor	for	rendering	a
specific	view.

	

Note	that	in	the	above	architectural	diagram	and	description	we	have	looked	at	the
things	in	a	bigger	picture	and	not	dwelled	into	the	micro	details	of	any	specific	interaction
or	component.

	

We	build	this	architecture	after	having	a	clarity	with	requirements	and	after	technology
selection.	The	next	thing	is	to	list	and	detail	all	the	use	cases	and	then	create	detailed
design	for	each	use	case.	The	detailed	design	must	be	provided	with	various	UML
diagrams.	The	objective	of	the	architecture	is	served	if	it	helps	in	coming	up	with	detailed
design.	Once	the	detailed	design	is	ready,	the	system	can	be	implemented	(Generally	via
coding).	It	is	important	that	the	implemented	system	must	be	in	compliance	with	the
architecture.

9
DATABASE	DESIGN

	

Once	we	have	complete	clarity	with	the	requirements	i.e.	once	we	have	the	frozen	and
signed	requirements	specifications,	we	come	up	with		the	database	design.

	

For	BIS	SMS	web	application,	we	need	following	two	schemas:

	

BisSecurityRealm	Schema
	

This	schema	is	exclusively	used	for	users,	roles	and	permissions.	In	this	schema	we
have	two	tables	one	for	users	and	other	for	the	roles.	The	ER-diagram	below	details	these
tables.

	

	

Users	Table
	

The	users	table	has	two	columns.	The	user	name	column	stores	the	user	name	and	is	a
primary	key	for	this	table.	The	user	password	column	stores	the	password.

	

User	Roles	Table
	

The	user	roles	table	also	has	two	columns.	The	user	name	column	stores	the	user	name
and	is	a	foreign	key	to	the	user	name	column	in	users	table.	The	role	name	column	stores
the	role.

	

Bis	Schema
	

This	is	the	application	schema	and	is	used	for	application	specific	data.	The	ER-
diagram	below	details	the	tables.	For	the	sample	application	we	are	only	using	database
tables	and	not	other	database	entities	like	view,	triggers	etc.	The	database	is	designed	for	a
particular	academic	year	and	hence,	the	data	has	to	be	purged	at	the	end	of		each	academic
year.	However,	this	design	can	be	enhanced	for	multiple	academic	years.

	

Lets	take	a	closer	look	at	each	of	these	tables	and	their	relationships.

	

Student	Details	Table
	

The	student	details	table	holds	one	record	for	each	student	and	is	uniquely	identified	by
student	id.	This	is	the	core	table	for	all	the	information	related	to	students.

	

Parent	Details	Table
	

This	table	holds	the	details	of	the	student’s	parent’s/guardian’s.	The	student	id	here	is	a
foreign	key	to	the	student	details	table.

	

Employee	Details	Table
	

This	table	provides	us	all	the	relevant	information	about	the	employees	of	the	school.
The	employees	include,	the	teaching	staff	and	the	non	teaching	staff.	For	example,	this
table	provides	us	the	information	of	the	class	teacher	as	well	as	the	bus	driver.

	

Transportation	Details	Table
	

The	student’s	commute	information	is	fetched	from	this	table.

	

Class	Teacher	Mapping	Table
	

This	is	a	look	up	table	which	provides	us	identifying	class	teacher	for	a	given	class	and

section.

	

Student	Attendance	Table
	

For	a	given	semester	and	for	a	given	student,	this	table	provides	the	attendance	details.
This	table	is	designed	to	provide	the	attendance	only	for	the	current	academic	year.

	

Student	Fees	Table
	

For	a	given	student,	this	table	provides	all	the	information	about	Tuition	as	well	as
transportation	fees.

	

Scholastic	Results/Co	Scholastic	Results	Tables
	

These	two	table	hold	all	the	details	about	the	student’s	results.	These	are	example	tables
for	learning	purpose	only	and	are	not	designed	for	any	particular	board	or	a	body.	These
tables	have	to	be	designed	accordingly	for	a	specific	board	or	a	body	(based	on	the
country	and	education	system).

	

BIS	Constants	Table
	

This	table	is	used	only	for	stories	properties	with	a	value.	For	e.g.	the	school	telephone
number	can	be	stored	in	this	table.	If	the	telephone	number	changes,	we	have	to	update	it
in	this	table	for	a	given	property.

	

The	applications	consuming	this	table	must	be	designed	accordingly.	Hence,	we	get
smart	applications	where	we	neither	have	to	modify	the	code	nor	have	to	redeploy	the
application.

10	
THE	FRAMEWORK

	

A	framework	provides	the	platform	to	quickly	build	applications	using	it.	The
framework	holds	all	the	common	functionalities.	A	framework	is	a	reusable	entity	and	it
helps	in	quickly	building	applications	by	focusing	only	on	the	application	specifics.
Reusability,	productivity,	best	practices,	proven	patterns,	fine	tuned	performance,
scalability,	compliance	to	standards,	plug	and	play	are	the	main	advantages	of	using
frameworks.

	

There	are	many	open	source	and		paid	frameworks	available	in	the	market	which	are	based
on	many	proven	architectural	and	design	patterns.	

The	MVC	Based	Java	Framework
	
In	this	chapter	we	will	build	our	own	light	weight	MVC	based	Java	Framework	for	web

applications.	This	will	give	us	a	complete	insight	and	know	how	of	a	framework.	This
framework	will	than	be	used	for	building	our	applications	on	top	of	it.	We	will	follow	the
industry	recognized	and	proven	MVC	pattern.	In	this	architectural	pattern,	there	are	three
entities:	the	model,	the	view	and	the	controller.	Each	entity	has	its	own	specific
functionality.

	

View	Layer
	
This	is	the	user	interface	(UI)	layer	which	the	end	user	sees	and	interacts	with	it.	On	a

desktop	browser	view	is	rendered	as	html	document	which	has	content	and	the
presentation.	In	our	framework,	the	html	and	jsp	pages	constitute	the	view.

	

Model	Layer

Model	represents	the	state	of	data	during	runtime	on	the	server	side.	In	Java,	we	use	beans
for	model.	These	beans	hold	the	data	in	a	particular	state.

	

Controller	Layer	

														As	the	name	suggests,	the	controller	layer	takes	charge	of	the	control	and	flow.
The	controller	decides	what	functionality	needs	to	be	invoked	on	a	particular	interaction
from	the	user.	The	controller	also	decides	navigation	flow	and	the	view	to	be	rendered	to
the	user.	Typically,	a	Servlet	is	used	as	a	controller.

	

														All	the	http	requests	from	the	client	and	all	the	http	responses	to	the	client
(typically,	a	web	browser)	goes	via	the	controller.	Based	on	the	client	request,	the
controller	invokes	particular	service.	The	service	in	turn	prepares		model	and	finally	the
view	is	rendered	back	to	the	client.

	

BisFramework

														We	will	now	build	our	own	light	weight	MVC	based	Java	framework.	Lets	call	it
BisFramework.

	

The	BisFramework	Architecture
	

In	the	above	figure,	we	have	3	tiers.	The	client	tier,	the	web	server	tier	and	the	database
tier.

	

Client	Tier

														The	client	tier	typically	consists	of	a	web	browser.	The	figure	shows	Google
chrome	as	the	client.

	

Database	Tier

														The	database	tier	consists	of	a	database.	In	our	case	we	are	using	Oracle	XE
with	two	schemas	one	for	authentication	and	authorization	and	other	for	the	application.

	

Web	Server	Tier

														The	web	server	tier	is	comprised	of	Apache	Tomcat.	This	provides	us	the
capability	of	a	web	server	and	a	Servlet	container.	The	web	server	deals	with	the	http
protocol	requests	and	responses	and	the	Servlet	container	provides	the	runtime
environment	for	the	Servlets	and	JSP	(JSPS	are	compiled	to	Servlets	at	runtime).

	

View	Layer

														The	view	layer	takes	care	of	managing	the	UI.	It	captures	the	user	interactions
and	displays	the	output.	The	constituents	of	view	are	Jsp	and	html	pages.	The	JavaScript
.js	and	the	cascaded	style	sheet	.css	files	belong	to	the	view.	BisHome.jsp	is	an	example
view	shown	in	the	figure.

	

Controller	Layer

														The	controller	typically	consists	of	one	or	more	Servlets	(generally	on	controller
Servlet)	In	our	case	the	controller	Servlet	is	BisControllerServlet.	All	the	requests	and
responses	to	the	client	flow	through	this	Servlet.	This	controller	primarily	takes	charge	of
invocation	of	services	based	on	request	and	navigation	flow.	

	

Model	Layer

														The	model	comprises	of	the	service	classes	and	the	beans	classes.	The	beans
represent	the	state	of	data	in	during	the	runtime.	The	service	classes	implement	the
business	logic.	The	API	that	interacts	with	the	database	are	leveraged	from	the	Model
layer.

	

Command	Processor

														The	command	processor	takes	charge	form	the	controller	Servlet.	For	a	given
request	command,	the	subjective	command	processor	is	dynamically	executed	by	the
controller	Servlet.	Each	command	object	than	orchestrates	the	execution	on	the	Model	for
the	specific	use	case.	To	put	it	simple,	the	controller	reads	the	client	request	and	hand
overs	the	task	to	a	particular	command	object.	The	command	object	in	turn	invokes	the
model	to	achieve	the	specific	task.

	

To	achieve	this,	the	controller	just	calls	the	execute	method	of	the	command.

	

BisCommand	is	an	interface	which	holds	only	one	method	called	execute.	All	the
command	processors	implement	the	interface	BisCommand	to	qualify	as	command
processor.	The	command	processor	classes	are	suffixed	with	“CP”,		e.g.	AddStudentCP.
Each	CP	is	subjective	for	its	action.	The	CPs	call	the	subjective	services	for	a	given	task.
Upon	execution	of	the	complete	flow,	either	a	bean	is	populated	or	a	change	is	made	in	the
database.	If	it	is	a	view,	the	bean	is	populated	and	added	to	session.	The	view	than
consumes	the	bean	and	displays	the	output.

	

The	Control	Flow

														In	order	to	understand	the	control	flow,	lets	trace	the	flow	from	the	browser
request	till	response.	In	the	figure	above	lets	have	a	closer	look	at	each	flow	numbered
from	1	to	15.

	

1.	In	this	flow,	the	browser	sends	a	http	request	to	the	server.

	

2.	The	server	invokes	the	requested	Servlet,	in	this	case	the	BisControllerServlet.

	

3.	All	command	processors	implement	the	BisCommand	interface	in	order	to	qualify	as	a
command	processor.	This	helps	the	controller	servlet	to	leverage	Java’s	polymorphic
feature	to	dynamically	execute	a	specific	command	processor.	Please	refer	the	service
method	of	the	controller	servlet’s	code	to	get	more	clarity	on	this.

	

4.	The	controller	servlet	instantiates	a	specific	command	processor	based	on	the	request
command	passed	by	the	view.	This	command	is	typically	passed	as	a	html	hidden	type
from	the	view.	The	command	is	generally	a	verb	which	conveys	the	user	interaction	with
the	UI.	The	controller	servlet	invokes	the	execute	method	of	the	command	processor.

	

5.	The	command	processor	instantiates	and	invokes	the	required	service	classes.

	

6,7,8.	The	control	flow	takes	this	route	if	the	service	class	needs	an	interaction	with	the
database.	DatabaseService	is	a	java	class	which	provides	all	the	methods	to	interact	with	a
particular	database.

	

9.	The	service	class	populates	one	or	more	java	beans	via	setters	if	the	use	is	a	get	request
for	data.

														In	case	of	insert	or	update	action	to	the	database,	the	control	flow	varies.	The
beans	are	first	populated	from	the	request	and	than	the	values	are	passed	to	the	database.
	

10,	11,	12,	13	Upon	success	or	failure,	the	service	class	returns	back	the	control	to	the
command	processor.	Based	on	the	result,	the	command	processor	assigns	the	next	view
name	and	returns	back	the	control	to	BisControllerServlet.

	

14.	The	controller	servlet	uses	the	returned	view	name	and	based	on	that	redirects	the	http
response	to	a	particular	view	(Jsp	page).

	

15.	The	server	sends	back	the	http	response	of	the	view	(Jsp	page)	to	the	browser.	The	user
sees	the	next	page	which	he/she	had	requested.

11
THE	LOGGING

	

What	is	logging	and	why	it	is	needed?

														Logging	is	a	mechanism	to	record	the	activities	performed	by	a	software	program
during	execution.	When	a	software	program	is	executed	line	by	line	it	accomplishes
certain	intended	task.	During	the	execution,	the	program	logs	the	success,	failures,
important	action	or	any	other	significant	information	into	a	file.	This	file	is	known	as	a	log
file	and	is	used	to	monitor	the	health	as	well	as	the	job	of	the	software.	The	most	common
usage	of	logging	is	to	identify	system	and	business	errors	and	it	helps	in	fixing	them.
Logging	helps	in	smoothly	running	the	software	system	by	providing	the	required
information	to	the	support	team.	In	a	broader	sense,	logging	helps	a	lot	in	software	system
governance.

	

In	our	sample	application	we	are	using	Log4j.	Apache	log4j	is	a	logging	utility	and	it
provides	ready	made	mechanism	to	enable	logging	in	java	applications	with	little
configurations.

	

Logging	Levels

														In	some	applications	or	use	cases	we	need	extensive	logging	whereas	in	some
other	applications	or	use	cases	we	may	need	logging	only	in	case	of	an	error	or	if
something	goes	really	fatal.	Logging	levels	provide	us	an	option	to	configure	what	level	of
logging	is	needed.	For	example,	if	the	support	team	is	analysis	a	bug	they	may	set	the
logging	at	highest	level	as	log	at	ALL	levels	provides	more	information.	With	log4j	the
following	log	levels	are	available.
	

ALL	-	Logs	everything.

DEBUG	-	While	debugging	an	issue.

ERROR	-	Logs	errors	and	exceptions.

FATAL	-	Logs	critical	errors	that	could	potentially	terminate	the	application.

INFO	-	Provides	information	about	the	progress	of	the	application	for	e.g.	a	new	student	is
successfully	added.

OFF	-	For	turning	off	the	logging.

WARN	-	For	warnings.	For	e.g.	a	sql	injection	is	attempted.

TRACE,	TRACE_INT	and	are	the	other	finer	grained	levels	of	logging.

	

Using	Log4j	in	jdeveloper	

														In	order	to	use	Log4j	download	the	latest	version	of	Log4j.jar	file	and	add	it	to
the	library.	In	order	to	add	a	jar	file	to	a	project	library	in	jdeveloper,	please	follow	the
steps	below:

	

Step	1:	Right	click	the	BISViewController	project	and	select	project	properties	as	shown
in	the	figure	below.

	

		

	

Step	2:	The	project	properties	window	opens	up.	In	this	window,	select	libraries	and
classpath	as	shown	in	the	figure.

	

	

	

	

Step	3:	Click	add	JAR/Directory	button	and	then	browse	and	select	the	Log4j.jar	file.
Click	OK	to	close	the	window.

	

The	Log4j.jar	file	is	now	added	to	the	project	library.

	

Using	logger	in	java	classes.

	

In	order	to	use	the	logger	within	the	java	classes,	declare	a	static	class	variable	for	the
logger	as	shown	below.

	
public	class	LoadStudentCP	extends	BisCP	implements	BisCommand	{

														static	Logger	logger	=	Logger.getLogger(LoadStudentCP.class);

	

Note	that	the	specific	class	name	must	be	passed	as	an	argument	to	the	getLogger
method.	In	the	above	code	snippet,	the	class	name	is	passed	as	LoadStudentCP.class	as
this	logger	is	used	within	the	class	LoadStudentCP.

	

The	logger	handle	can	now	be	used	within	the	scope	of	this	java	class	to	perform
various	loggings.	We	can	now	use	various	methods	available	in	the	logger	for	logging

errors	or	information	or	any	other	details	we	want	to	log	at	various	points	in	our	code.	

For	example	we	will	use	the	following	code	in	order	to	log	the	exception	message	at
error	level.

	
catch	(Exception	e)	{

logger.error(e.getMessage());

}

	

Similarly,	to	log	something	as	fatal,	info	and	debug	we	use	the	respective	methods.
Please	refer	the	application	java	code	to	see	how	logging	is	used	at	various	levels.

	

The	log4j.properties	file
	

The	log4j.properties	file	is	used	to	perform	various	configurations	for	the	logger.	This
properties	file	is	most	commonly	modified	for	changing	the	logging	levels.	The	sample
web	application	is	deployed	in	Apache	Tomcat	server	hence	the	log4j.properties	file	must
be	added	to	the	$CATALINA_BASE/webapps/Bis/WEB-INF/classes	folder.		The	logger
configurations	we	used	for	sample	application	is	as	shown	below.

	
log4j.debug=true

log4j.rootLogger=INFO,	CATALINA

log4j.appender.CATALINA=org.apache.log4j.FileAppender

log4j.appender.CATALINA.file=${catalina.base}/logs/bis.log

log4j.appender.CATALINA.encoding=UTF-8

log4j.appender.CATALINA.layout=org.apache.log4j.PatternLayout

log4j.appender.CATALINA.layout.conversionPattern	=	%d	[%t]	%-5p	%c	-	%m%n

log4j.appender.CATALINA.append=true

	

These	configuration	properties	have	self	explanatory	names,	for	example
log4j.appender.CATALINA.file	is	the	name	of	the	log	file	to	be	created	or	used.	The	value
for	this	is		${catalina.base}/logs/bis.log	this	means	that	the	log	file	named	bis.log	within
the	folder	logs	will	be	created	or	used.

	

Below	are	the	sample	error	messages	from	the	bis.log	file.

	
2015-04-23	10:51:07,384	[http-nio-80-exec-4]	ERROR	com.bis.cp.BisDashboardCP	-	Student	id	is	null

2015-04-23	10:51:10,034	[http-nio-80-exec-7]	ERROR	com.bis.session.reports.ReportByClassService	-	Section/Class	is
null

2015-04-23	10:51:18,038	[http-nio-80-exec-2]	ERROR	com.bis.cp.BisDashboardCP	-	Student	id	is	null

2015-04-23	10:51:28,966	[http-nio-80-exec-6]	ERROR	com.bis.session.StudentDetailsService	-	Invalid	column	name

12
SESSION	MANAGEMENT

	

Understanding	Session														

														An	interaction	between	a	user	and	the	application	where	an	objective	of	the	user
is	served	is	called	the	session.	For	this	interaction	to	take	place,	the	user	starts	with	the	log
in	activity	and	then	the	user	performs	one	of	more	other	activities	with	the	application	to
achieve	his/her	objective	of	that	particular	interaction.	Then	the	user	logs	out.	This
interaction	between	the	user	and	the	system	where	in	which	the	user	logs	in,	performs	one
or	more	interactions	and	then	logs	out	is	called	session.	The	period	between	a	user’s	log	in
and	log	out	is	called	the	session	period.	During	the	session	the	logged	in	user	accesses	the
various	functionalities	of	the	web	application.

	

For	example,	we	use	email	services	like	yahoo	mail	and	gmail.	In	order	to	use	these
email	services	we	log	in	first,	then	we	perform	one	or	more	of	the	following	activities:
check	email,	read	one	or	more	emails,	delete	one	or	more	emails,	send	one	or	more	emails
etc.	Once	our	tasks	is	done	we	log	out	of	the	email	service.	This	is	known	as	a	session
between	the	user	and	the	email	service.

	

Once	a	user	log	in	to	our	BIS-SMS	application	we	need	to	track	the	state	of	the	user’s
interaction.	That	is,	we	need	to	remember	attributes	of	the	user’s	interaction	with	the
system.	Like,	the	student	currently	in	context.	There	are	various	ways	to	remember	and
use	such	values.

	

The	other	significant	requirement	for	session	management	is	the	identification	of	users.
Suppose	ten	different	users	have	logged	into	the	system	with	different	user	ids	and	roles.
There	should	be	a	mechanism	to	uniquely	identify	each	user	at	the	server	side.	This	is
achieved	using	session	ids.	Each	logged	in	user	at	the	server	side	is	uniquely	identified
with	a	session	id.

	

Leveraging	Http	Session
														
														In	our	application	we	use	HttpSession	for	session	management.	HttpSession	is	an
interface	in	javax.servlet.http	package.	This	interface	enables	us	to	identify	a	user	across
more	than	one	page	request	to	a	web	application.	This	interface	also	provides	us	an	option
to	store	information	about	that	user.	For	e.g.	The	logged	in	user	padma.kulkarni	might	be

browsing	the	student	Zain	Baig	and	the	other	logged	in	use	shamim.banu	might	be
browsing	the	user	Neetal	Shah.	All	these	information	are	stored	in	user	specific	Http
Session	object	for	each	logged	in	user.	The	servlet	container	uses	HttpSession	interface	to
create	a	session	between	a	http	client	and	a	http	server.	
	

Below	is	the	code	snippet	to	add	student	id	to	the	http	session	within	the	command
processor.

	
HttpSession	session	=	null;

strStudentId	=	request.getParameter(“txtStdId”);

session	=	request.getSession();

session.setAttribute(“StudentId”,	strStudentId);																				
	

This	code	is	from	the	load	student	command	processor.	Here	we	get	the	student	id
entered	by	the	user	via	request.getParameter(“txtStdId”).

	

For	the	logged	in	user	this	student	id	remains	in	the	session.	When	this	user	clicks	get
student	details.	The	student	id	is	fetched	from	the	session.	Below	is	the	code	snippet	for
that.

	

HttpSession	session	=	request.getSession();

strStudentId	=	(String)	session.getAttribute(“StudentId”);

	

The	student	id	is	tied	to	a	http	session	and	this	http	session	belongs	to	a	particular	http
client.	When	the	same	client	(browser	or	the	user)	sends	a	request	for	student	details	page.
The	student	id	is	read	from	the	http	session	belonging	to	this	http	client.

	

The	session	for	a	user	is	either	invalidated	automatically	with	time	out	or	explicitly
invalidated	when	the	user	logs	out.

	

There	are	many	ways	to	manage	session	in	a	web	application.	In	our	sample	application
we	did	not	use	cookies	for	session	management.	Primarily,	we	have	used	HttpSession
from	the	servlet	API	for	the	session	management	in	our	sample	web	application.	Besides
this,	we	have	we	also	used	hidden	variables	for	some	use	cases	implementation.	Please
refer	the	individual	use	cases	in	the	implementing	use	cases	chapter	to	get	more	clarity.

13
INTERACTING	WITH	THE	DATABASE

	

In	our	sample	application	we	have	3	tier	architecture:	the	client	tier,	the	web	server	tier
and	the	database	tier.	The	client	interacts	with	the	web	server	and	for	most	of	the	use	cases
the	server	interacts	with	the	database	tier.	In	our	database	tier	we	have	two	schemas	one
used	by	the	server	for	authentication	and	authorization	and	the	other	used	by	the
application.

	

We	need	lots	of	interaction	between	our	application	and	the	database.	All	our
application	tables	are	in	the	Bis	schema.	In	this	chapter	we	will	take	a	closer	look	at	all	the
type	of	interactions	that	happen	between	our	application/server	and	the	database	server.
	

The	approaches	for	database	connectivity
	
Java	Database	Connectivity	(JDBC)	is	the	technology	used	in	Java	for	interacting	with

the	databases.	We	can	get	a	database	connection	by	directly	using	the	oracle’s	drivers	for
JDBC	connectivity.	The	other	way	is	to	get	the	database	connection	from	the	server	via	a
JNDI	look	up	for	the	data	source.	Using	data	source	is	a	better	approach	as	we	get	lot	of
out	of	the	box	advantages	with	it.	Also	using	data	sources	is	the	right	approach	in	the
distributed	computing	paradigm.	Hence,	in	our	application	we	have	taken	this	approach.
	

Using	Data	Sources

														Working	with	data	sources	has	two	parts.	One,	creating	a	data	source	with
connection	pool	on	the	server.	Two,	looking	up	this	data	source	from	the	application	code.

	

In	the	popular	application	servers,	we	get	GUI	for	creating	connection	pool	and	data
sources.	In	case	of	Apache	Tomcat	server	we	need	to	add	an	entry	to	context.xml	file	to
create	a	data	source.	Chapter	21	details	how	to	create	data	source	in	Apache	Tomcat	8.	In
components	chapter	under	the	DatabaseService.java	section	we	see	how	to	look	up	the
data	source	via	JNDI	and	we	also	see	how	to	get	connection	and	release	database
resources.	The	various	use	cases	in	the	chapter	implementing	use	cases	detail	how	to
perform	create,	update,	delete	and	read	operations.	This	is	explained	in	detail	with	the
source	code	for	each	type	of	operation.

14
THE	BIS-SMS	PROJECT	COMPONENTS

	

The	sample	project	Baig	International	School	-	Student	Management	System	is	built
using	the	following	software	components:

	

Java	Servlets
Command	Processors
Service	Classes
Java	Beans
Utility	Classes
Java	Server	Pages	(jsp)
Log4j

Java	Servlets

														A	java	program	that	runs	on	the	server	side.	A	java	class	gets	qualified	as	a	servlet
by	implementing	the	Servlet	interface.	The	life	cycle	of	a	servlet	is	managed	by	the	servlet
container.	In	BIS-SMS	application	we	use	two	servlets,	the	ControllerServlet	and
AjaxControllerServlet.

	

The	ControllerServlet	is	the	centralized	point	for	all	the	client	http	requests	except	for
the	Ajax	calls.	The	controller	servlet	returns	a	view	as	a	jsp.	The	AjaxControllerServlet	is
a	dedicated	centralized	point	for	all	the	client	Ajax	calls.	The	ajax	controller	servlet
returns	a	response	text.

	

Both	the	controller	servlet	and	the	ajax	controller	servlet	extend	HttpServlet	and
override	the	service	method.	The	HttpServlet	extends	the	GenericServlet	which	in	turn
implements	the	Servlet	and	ServletConfig	interfaces.

	

	

ControllerServlet.java
/*

*	@Author	Mirza	Yousuf	Ahmed	Baig

*	@ControllerServlet.java

*	@Copyright:	Build	web	applications	with	Java.

*/

package	com.bis.servlet;

import	com.bis.cp.BisCommand;

import	java.io.IOException;

import	javax.servlet.RequestDispatcher;

import	javax.servlet.ServletConfig;

import	javax.servlet.ServletException;

import	javax.servlet.http.HttpServlet;

import	javax.servlet.http.HttpServletRequest;

import	javax.servlet.http.HttpServletResponse;

import	org.apache.log4j.Logger;
	

public	class	ControllerServlet	extends	HttpServlet	{
			

private	static	final	String	CONTENT_TYPE	=	“text/html;	charset=windows-1252”;

static	Logger	logger	=	Logger.getLogger(ControllerServlet.class);

	

public	void	init(ServletConfig	config)	throws	ServletException	{

super.init(config);

}

	

public	void	service(HttpServletRequest	request,	HttpServletResponse	response)	throws	ServletException,	IOException	{

	

String	commandCP	=	null;
								String	view	=	null;							

commandCP	=	request.getParameter(“ParameterActionCommand”);							

if	(commandCP	!=	null)			{											

//	Added	security	to	avoid	mal	invocation	of	the	commands.

String	StrCommandClass	=	“com.bis.cp.”+commandCP+“CP”;											

try	{																											

Class	myClass			=	Class.forName(StrCommandClass);											

BisCommand	bisCommand	=	(BisCommand)	myClass.newInstance();															

view	=	bisCommand.execute(request,	response);															

if	(view	==	null	||	view.trim().equalsIgnoreCase(””))	{																			

view	=	“BisError”;						//	Add	error	message	in	session	and	display	that	in	the	jsp.

logger.debug(“A	null	value	returned	for	view”);

}

RequestDispatcher	requestDispatcher	=	request.getRequestDispatcher(“/BisHome.jsp?prmDynInclPage=”+view);

requestDispatcher.forward(request,	response);

}	catch	(ClassNotFoundException	cnfe)	{

logger.error(cnfe.getMessage());

}	catch	(InstantiationException	inse)	{

logger.error(inse.getMessage());

}	catch	(Exception	excep)	{

logger.error(excep.getMessage());

}											

}

else	{

logger.fatal(“Action	command	is	null”);

}																						

}

}

	

The	service	method	performs	the	following	tasks:

	

							Gets	the	request	command	from	the	request	parameter.

							Loads	the	command	processor	class	pertaining	to	the	command.

							Creates	an	instance	of	the	command	processor	and	invokes	the	execute	method.

							Forwards	the	view	returned	to	the	browser.

	

It	is	mandatory	for	the	command	processor	to	implement	BisCommand	interface	to	be
qualified	as	a	command	processor.	The	execute	method	is	invoked	using	the	reference	of
the	interface	(BisCommand)	and	not	specific	command	processor	class.	It	is	the
polymorphic	feature	of	java	which	invokes	the	execute	method	of	the	specific	command
processor	object	in	question.	This	is	the	reason	why	each	command	processor	must	have
to	implement	the	BisCommand	interface.	This	is	one	of	the	best	example	for	late	binding
and	polymorphic	features	in	java	language.

	

If	the	command	is	AddStudent,	AddStudentCP	is	loaded	and	execute	method	is
invoked.	The	AddStudentCP	implements	BisCommand	interface	which	has	the	execute
method.	Since	AddStudentCP	implements	BisCommand	it	has	to	provide	implementation
for	execute	method	pertaining	to	adding	a	student.	The	object	of	AddStudentCP	which
implements	BisCommand	is	referenced	via	the	BisCommand	interface	reference.
Similarly,	if	it	is	other	command,	the	respective	class	is	loaded	and	execute	method	of	the
command	processor	class	is	invoked.	This	is	one	of	the	best	example	of	usage	of	interface
reference	to	exploit	runtime	dynamic	polymorphic	feature	of	the	java	programming
language.

	

AjaxControllerServlet.java
	
package	com.bis.servlet;
import	com.bis.cp.BisCommand;

import	java.io.IOException;

import	java.io.PrintWriter;

import	javax.servlet.ServletConfig;

import	javax.servlet.ServletException;

import	javax.servlet.http.HttpServlet;

import	javax.servlet.http.HttpServletRequest;

import	javax.servlet.http.HttpServletResponse;

import	org.apache.log4j.Logger;
	

public	class	AjaxControllerServlet	extends	HttpServlet	{

private	static	final	String	CONTENT_TYPE	=	“text/html;	charset=windows-1252”;
static	Logger	logger	=	Logger.getLogger(AjaxControllerServlet.class);

	

public	void	init(ServletConfig	config)	throws	ServletException	{
								super.init(config);

}

	

public	void	service(HttpServletRequest	request,	HttpServletResponse	response)	throws	ServletException,	IOException	{

response.setContentType(CONTENT_TYPE);
								PrintWriter	out	=	response.getWriter();									
								String	strAjaxResponseText	=	””;
								String	commandCP	=	null;
								commandCP	=	request.getParameter(“ParameterActionCommand”);
								if	(commandCP	!=	null)			{
								if	(!(commandCP.trim().equalsIgnoreCase(””)))		{
												//	Added	security	to	avoid	mal	invocation	of	the	commands.
												String	StrCommandClass	=	“com.bis.cp.”+commandCP+“CP”;
												try	{												
												Class	myClass			=	Class.forName(StrCommandClass);	
														BisCommand	bisCommand	=	(BisCommand)	myClass.newInstance();
														strAjaxResponseText	=	bisCommand.execute(request,	response);

}	catch	(ClassNotFoundException	cnfe)	{

logger.error(cnfe.getMessage());

}	catch	(InstantiationException	inse)	{

logger.error(inse.getMessage());

}	catch	(Exception	excep)	{

logger.error(excep.getMessage());

}											

}

else	{

logger.fatal(“Action	Command	is	missing.”);
								}							
								}

else				{

logger.fatal(“Action	Command	is	null.”);

}							

out.println(strAjaxResponseText);

out.close();

}

}

	

The	service	method	performs	the	following	tasks:
	

							Gets	the	request	command	from	the	request	parameter.

							Loads	the	command	processor	class	pertaining	to	the	command.

							Creates	an	instance	of	the	command	processor	and	invokes	the	execute	method.

							Returns	the	Ajax	Response	Text	to	the	browser.

	

The	difference	between	the	AjaxControllerServlet	and	the	ControllerServlet	is	that	the
controller	servlet	returns	a	view	via	a	jsp	page	whereas	the	ajax	controller	servlet	returns	a
response	text	only.	Both	of	these	servlets	belong	to	the	BIS	MVC	Framework	one
dedicated	for	the	regular	http	requests	and	the	other	for	ajax	requests.

	

The	Command	Processors
	

For	the	sample	application	and	for	our	framework,	the	command	processors	are	java
classes	that	extend	BisCP	class	and	implement	BisCommand	interface.	The	BisCP	is	a
concrete	class	with	a	set	of	variables.	The	BisCommand	interface	has	only	one	method
and	that	is	the	execute	method.

	

The	following	class	diagram	shows	all	the	command	processor	classes	used	in	our
sample	application.	It	also	shows	the	relationship	between	these	classes	and	the
framework	artifacts	BisCP	and	BisCommand.

BisCP.java
	

package	com.bis.cp;
	

public	class	BisCP	{

public	BisCP()	{

super();

}			

protected	boolean	isProcessSuccessful;
				protected	java.lang.String	strSuccessNavigation;
				protected	java.lang.String	strNextNavigation;
				protected	java.lang.String	strErrorMessage;
				protected	java.lang.String	strAjaxResponseText;

}

	

The	BisCP.java	class	has	only	variables	which	are	used	in	the	command	processor
classes	that	is	the	sub	classes	of	BisCP	class.	The	variable	names	used	are	self	explanatory.

	

BisCommand.java

package	com.bis.cp;
	

public	interface	BisCommand	{				
	

public	abstract	String															execute(javax.servlet.http.HttpServletRequest	request,
javax.servlet.http.HttpServletResponse	response);				

}

													 This	interface	has	only	one	method	and	that	is	execute	method.	The	implementing
command	processor	class	implements	the	business	logic	pertaining	to	the	specific
command	processor	for	the	execute	method.	Note	that,	it	is	mandatory	to	implement	this
interface	in	order	to	qualify	a	class	as	a	command	processor.	This	is	one	such	example	of
compliances	requirements	when	working	with	a	particular	framework.	For	Bis	MVC
Framework,	a	command	processor	must	implement	BisCommand	interface.	Otherwise,
the	execute	method	of	the	specific	command	processor	will	fail	to	be	executed
polymorphically	with	in	the	service	method	of	the	controller	servlet.

	

The	Service	Classes
	

The	job	of	the	service	classes	is	to	implement	the	services	i.e.	the	business	logic.	These
classes	orchestrate	and	implement	the	various	actions	required	for	a	use	case.	For	e.g.	add
student	service	class,	inserts	three	records	to	three	different	tables	in	the	database.	The
command	processor	only	invokes	the	process	add	student	method	in	the	service	class.	This
method	in	turn	invokes	multiple	methods,	takes	care	of	transactional	requirements,
interacts	with	the	database	using	database	utility	classes	and	gets	the	task	done.	The
command	processor	is	basically	a	client	for	these	classes	they	request	for	services	from	the
services	classes.	The	services	classes	provide	the	services	to	their	client.	These	are
reusable	components.

	

The	services	classes	in	our	application	and	framework	implements	BisService	interface.
Note	that,	this	is	not	a	mandatory	requirement.	This	is	just	to	provide	a	scalability	option
in	case	we	want	to	add	common	services	functionality	in	future	versions.	The	BisService
interface	as	of	now	has	only	one	method	which	provides	the	name	of	the	class	for	the
current	service	instance.

	

The	following	class	diagrams	shows	all	the	services	used	in	our	application.

BisService.java

	

package	com.bis.session;

public	interface	BisService	{			

public	String	getServiceName();			

}

The	implementing	class	provides	it’s	name	by	implementing	this	method.

	

The	Java	Beans
	

These	beans	are	plain	java	classes	with	private	fields	and	their	public	getter	and	setter
methods.	All	the	beans	implement	serializable	interface	via	the	framework	class	hierarchy.
All	the	beans	used	in	the	application	eventually	extend	the	class	BisBean	which
implements	Serializable	interface.

StudentBean.java

	

This	bean	holds	all	the	generics	for	the	student	related	information.	All	the	other	beans
that	require	these	fields	extend	this	bean.	The	student	bean	in	turn	extends	BisBean.

package	com.bis.beans;

public	class	StudentBean	extends	BisBean	{

public	StudentBean()	{

super();

}

private	java.lang.String	studentId;
				private	java.lang.String	fullName;
				private	java.lang.String	grade;
				private	java.lang.String	section;
				private	java.lang.String	firstName;
				private	java.lang.String	middleName;
				private	java.lang.String	lastName;

				public	void	setStudentId(String	studentId)	{
								this.studentId	=	studentId;
				}

public	String	getStudentId()	{
								return	studentId;
				}

public	void	setFullName(String	fullName)	{

this.fullName	=	fullName;

}

public	String	getFullName()	{

return	fullName;

}

public	void	setGrade(String	grade)	{

this.grade	=	grade;

}

public	String	getGrade()	{

return	grade;

}

public	void	setSection(String	section)	{

this.section	=	section;

}

public	String	getSection()	{

return	section;

}

public	void	setFirstName(String	firstName)	{

this.firstName	=	firstName;

}

public	String	getFirstName()	{

return	firstName;

}

public	void	setMiddleName(String	middleName)	{

this.middleName	=	middleName;

}

public	String	getMiddleName()	{

return	middleName;

}

public	void	setLastName(String	lastName)	{

this.lastName	=	lastName;

}

public	String	getLastName()	{

return	lastName;

}

}

	

BisBean.java
	

package	com.bis.beans;
	

import	java.io.Serializable;
	

public	class	BisBean	implements	Serializable	{			

public	BisBean()	{

super();

}			

}

	

All	the	beans	in	the	application	extends	this	bean.	It	is	mandatory	to	extends	this	bean
either	directly	or	indirectly	to	be	qualified	as	a	bean.	The	application	currently	doesn’t
exchange	bean	instance	by	value	but	for	the	application	to	be	scalable	in	the	future
versions	this	is	mandated.	Generally	java	beans	are	persistable	and	hence	they	have	to

implement	serializable	interface.

	

The	Utility	Classes
	

We	have	three	utility	classes	used	across	the	application	for	various	common	objectives.
These	classes	are	BisUtility,	DatabaseService	and	BisConstants.	In	this,	BisUtility	and
DatabaseService	are	concrete	java	classes	and	BisConstants	is	a	java	interface.

Bisutility.java
	

package	com.bis.utility;

import	java.util.Properties;
import	java.util.StringTokenizer;
import	javax.mail.Message;
import	javax.mail.MessagingException;
import	javax.mail.Session;
import	javax.mail.Transport;
import	javax.mail.internet.InternetAddress;
import	javax.mail.internet.MimeMessage;
import	org.apache.log4j.Logger;

public	class	BisUtility	{
				static	Logger	logger	=	Logger.getLogger(BisUtility.class);			

public	BisUtility()	{

super();

}
	

public	static	StringBuffer	generateStudentId(String	strStdFirstName,String															strStdLastName,	String

strMotFirstName,String	strFatFirstName,	String															strStdDob)	{

	

StringBuffer	sbStdId	=	new	StringBuffer();

StringBuffer	sbDob	=	null;

	

try	{

	

if	(strStdFirstName	!=	null	&&																																																																																																																															!
(strStdFirstName.trim().equalsIgnoreCase(””)))	{

																sbStdId.append(strStdFirstName.substring(0,	2));

}	else	{

																												logger.error(“Failed	to	generate	student	id:	Invalid	first																																																									name”);

}

	

if	(strStdLastName	!=	null	&&																																																																																																																															!
(strStdLastName.trim().equalsIgnoreCase(””)))	{

sbStdId.append(strStdLastName.substring(0,	2));

}	else	{

																				logger.error(“Failed	to	generate	student	id:	Invalid	last																																																									name”);

}

	

if	(strMotFirstName	!=	null	&&																																																																																																																															!
(strMotFirstName.trim().equalsIgnoreCase(””)))	{

sbStdId.append(strMotFirstName.substring(0,	2));

}	else	{

logger.error(“Failed	to	generate	student	id:	Mother’s	first																																																									name	is	invalid”);

}

	

if	(strFatFirstName	!=	null	&&																																																																																																																															!
(strFatFirstName.trim().equalsIgnoreCase(””)))	{

sbStdId.append(strFatFirstName.substring(0,	2));

}	else	{

logger.error(“Failed	to	generate	student	id:	Father’s	first																																																									name	is	invalid”);

}

if	(strStdDob	!=	null	&&																																																																																																																																													!
(strStdDob.trim().equalsIgnoreCase(””)))	{

StringTokenizer	sTokenizer	=	new	StringTokenizer(strStdDob,																																																									“-“);

String	strYear	=	sTokenizer.nextToken();

String	strMonth	=	sTokenizer.nextToken();

String	strDay	=	sTokenizer.nextToken();

sbDob	=	new	StringBuffer();

sbDob.append(strDay);

sbDob.append(strMonth);

sbDob.append(strYear);

if	(sbDob.length()	==	8)	{

sbStdId.append(sbDob);

}	else	{

logger.error(“Failed	to	generate	student	id:	Invalid	date																																																									of	birth”);

}

}	else	{

logger.error(“Failed	to	generate	student	id:	Invalid	date	of																																																																							birth”);

}

if	(sbStdId.length()	!=	16)	{

logger.error(“Failed	to	generate	student	id:	inappropriate																																																																							size”);

}

}	catch	(Exception	e)	{

logger.error(e.getMessage());

sbStdId	=	null;

}

return	sbStdId;

}

	

public	static	void	sendMail(String	strSub,	String	strText)	{

String	strTo	=	“yousuf.baig@gmail.com”;

String	strFrom	=	“yousuf.baig@yahoo.com”;

String	strHost	=	“localhost”;

int	inPort=25;

Properties	properties	=	System.getProperties();

properties.setProperty(“mail.smtp.host”,	strHost);

properties.put(“mail.smtp.auth”,	“false”);

properties.put(“mail.smtp.starttls.enable”,	“true”);

properties.put(“mail.smtp.port”,	inPort);

Session	session	=	Session.getDefaultInstance(properties);

try	{

MimeMessage	message	=	new	MimeMessage(session);

message.setFrom(new	InternetAddress(strFrom));

message.addRecipient(Message.RecipientType.TO,	new	InternetAddress(strTo));

message.setSubject(strSub);

message.setText(strText);

Transport.send(message);

}	catch	(MessagingException	mex)	{

logger.error(mex.getMessage());

}

}

}

	

The	generateStudentId	method	performs	the	following	tasks:

	

							This	method	generates	a	unique	student	id	for	a	given	student	from	the	student’s
first	name,	student’s	last	name,	student’s	mother’s	first	name,	student’s	father’s	first
name	and	student’s	date	of	birth.
	

Lets	split	up	an	example	student	id:	MyFaAsYo12042004

	

My	-	first	two	digits	of	student’s	first	name	Myiesha.

Fa	-	first	two	digits	of	student’s	last	name	Fatima.

As	-	first	two	digits	of	student’s	mother’s	first	name	Asiya.

Yo	-	first	two	digits	of	student’s	father’s	first	name	Yousuf.

12042004	-	student’s	data	of	birth	in	DDMMYYYY

	

The	generateStudentId	method	takes	all	these	inputs	and	returns	the	generated	student	id
as	per	the	requirements	above.

	

Though,	a	database	sequence	can	be	used	to	assign	a	unique	student	id	for	each	student.
This	approach	is	taken	to	make	sure	that	the	id	can	be	remembered	with	the	known
algorithm.	This	student	id	may	have	a	rare	conflict	and	in	that	case,	the	addition	of	birth
time	or	any	other	such	attribute	will	make	it	more	unique	and	conflict	free.

	

The	sendMail	method	performs	the	following	tasks:

	

							This	method	is	used	for	sending	simple	SMTP	mail.	
	

In	production	ready	applications,	these	email	properties	are	generally	fetched	from	the

application	properties	file.	In	case	the	host	name	changes,	the	support	team	will	only
update	the	host	name	or	IP	address	in	the	properties	file	and	redeploy	the	application	to
fetch	the	updated	host.	In	our	sample	application,	since	we	are	working	very	closely	with
the	code,	this	is	directly	added	to	the	method	itself	for	quick	learning	purpose.	In	serious
applications,	the	recommend	approach	is	to	create	application	properties	file	and	fetch
these	properties	from	that	file.

	

DatabaseService.java
	

package	com.bis.db;

import	com.bis.utility.BisConstants;

import	java.sql.Connection;

import	java.sql.ResultSet;

import	java.sql.SQLException;

import	java.sql.Statement;

import	javax.naming.Context;

import	javax.naming.InitialContext;

import	javax.naming.NamingException;

import	javax.sql.DataSource;

import	org.apache.log4j.Logger;
	

public	class	DatabaseService	{

private	static	DataSource	dataSource	=	null;

private	static	Connection	connection	=	null;

static	Logger	logger	=	Logger.getLogger(DatabaseService.class);

private	static	void	lookUpDataSource()	{
								if	(dataSource	==	null)	{

try	{

Context	initialContext	=	new	InitialContext();

Context	envContext	=	(Context)initialContext.lookup(“java:/comp/env”);

if	(initialContext	!=	null)	{

dataSource	=	(DataSource)envContext.lookup(BisConstants.BisDataSource);

}	else	{	//	initial	context	is	null,	throw	exception.

logger.error(“Initial	context	is	null”);

}

}	catch	(NamingException	ne)	{

logger.error(“Failed	to	look	up	data	source.”	+	ne.getMessage());

}

}

}

public	DatabaseService()	{

}

public	static	void	releaseDBConnection()	{

if	(connection	!=	null)	{

try	{

connection.close();

}	catch	(SQLException	sqle)	{

logger.error(sqle.getMessage());

}

}

}

public	static	void	closeDBResouces(Statement	statement,	ResultSet	resultSet)	{

try	{

if	(resultSet	!=	null)	{

resultSet.close();

}

if	(statement	!=	null)	{

statement.close();

}

}	catch	(SQLException	sqle)	{

logger.error(sqle.getMessage());

}

}

public	static	Connection	getDBConnection()	{

if	(dataSource	==	null)	{

lookUpDataSource();

}

try	{

if	(connection	==	null	||	connection.isClosed())	{

connection	=	dataSource.getConnection();

}

}	catch	(SQLException	sqle)	{

logger.error(sqle.getMessage());

}

return	connection;

}

}

	

The	lookUpDataSource	method	performs	the	following	tasks:

	

							Creates	the	initial	context	and	performs	JNDI	look	up	for	Bis	data	source.	
	

Note	that	that	data	source	name	specified	in	the	BisConstants	interface	must	be	created	on
the	server	prior	to	the	deployment	of	the	application	war	file.	Otherwise	the	look	up	will
fail	and	all	operations	related	to	database	will	not	work.

	

The	releaseDBConnection	method	performs	the	following	tasks:

	

							Closes	the	database	connection.
	

The	closeDBResouces	method	performs	the	following	tasks:

	

							Closes	the	result	set	and	statement.

	

The	getDBConnection	method	performs	the	following	tasks:

	

							Calls	lookUpDataSource	method	if	the	data	source	is	null.

							Gets	the	database	connection	from	the	data	source	and	returns	it.

	

BisConstants.java
	

This	is	a	simple	java	interface	which	is	used	for	holding	constant	values.
package	com.bis.utility;

public	interface	BisConstants	{			

public	static	final	String	BisDataSource	=	“jdbc/bisDataSource”;	

}

	

Any	change	in	value	of	the	variables	in	this	interface	needs	recompilation	of	this	interface.
Depending	on	the	requirements	either	an	interface	can	be	used	or	application	properties
file	can	be	used.	The	other	approach	is	to	fetch	the	constant	values	from	a	database	table.

The	designer	of	the	web	application	has	to	take	multiple	factors	into	account	for	a	specific
requirements	or	type	of	application	to	make	a	subjective	design	decision.	In	our	sample
application	we	are	using	an	interface	as	well	as	a	database	table	with	property	and	values.
This	is	purely	with	an	intension	to	learn	various	pragmatic	approaches	to	access	variables
that	seldom	change.

	

The	Java	Server	Pages
	

JSP	is	a	view	technology	which	adds	dynamism	to	static	html	or	other	mark	up	language.
JSPs	are	generally	used	as	a	view	with	dynamic	jsp	capabilities	along	with	static	standard
html	tags.	The	content	and	presentation	can	be	dynamically	added	to	a	web	page	at	the
server	side	based	on	the	requirements.	This	makes	jsp	technology	very	powerful	and
useful	for	building	web	applications.	The	computational	power	of	java	clubbed	with	the
presentation	capability	of	html	makes	a	jsp	a	perfect	choice	for	the	view	layer	of	web
applications.

	

In	our	sample	BIS-SMS	web	application	we	use	only	jsps	for	the	view	layer.	The	header,
footer	and	the	menus	remain	constant	part	of	the	view	between	log	in	and	log	out	session.
The	design	for	our	view	has	one	page	template	called	BisHome.jsp.	The	user	is	always	on
this	page	during	the	session.	The	jsp	page	has	all	the	common	presentation	part	along	with
a	dynamic	region	where	the	various	pages	are	displayed	as	an	include	based	on	the	user
interaction.	Please	refer	chapter	5	for	more	details	on	the	dynamic	and	static	view	parts	of
the	page.

	

The	views	(jsp	pages)	for	all	the	use	cases	are	dynamically	included	in	the	BisHome.jsp
page.	The	individual	jsp	pages	for	the	use	cases	does	not	hold	any	code	or	tags	for	the
common	part	i.e.	for	the	header,	footer	etc.	The	BisHome.jsp	has	all	the	static	view	part
and	given	an	area	for	the	dynamic	page.	This	area	is	called	the	dynamic	region	and	in	this
region	the	various	jsp	pages	based	on	the	use	case	in	question	are	displayed.

	

The	BisHome.jsp	page	without	any	jsp	included	with	dynamic	region	is	shown	in	the
below	figure.	Here,	all	the	common	view	part	like	the	header,	footer,	menus	etc	are
displayed	for	all	the	pages.	Only	the	dynamic	part	changes.	For	e.g.	for	the	get	student
details	use	case	the	dynamic	part	will	display	StudentDetails.jsp	page	within	the	dynamic
region.

	

	

	

Plus	(+)

	

Is	Equal	To	(=)

	

The	view	only	from	the	StudentDetails.jsp	is	as	shown	in	the	figure	above.	The
BisHome.jsp	page	template	plus	the	StudentDetails.jsp	view	will	provide	the	final	view
for	the	complete	page	display	as	shown	above.

	

Commons	View	+	Dynamic	View	=	Complete	Page	View.

	

BisHome.jsp
	

Here’s	the	source	code	of	the	BisHome.jsp	page.	This	has	the	header	with	the	menus,	the
footer	and	the	jsp:include	tag	for	the	dynamic	jsp	page	to	be	included.

	
<!DOCTYPE	HTML	PUBLIC	“-//W3C//DTD	HTML	4.01	Transitional//EN”	“http://www.w3.org/TR/html4/loose.dtd”>

<%@	page	contentType=“text/html;charset=windows-1252”%>

<%@	page	import=“java.util.Date”%>

<%

String	strDynIncPage	=	“BisError.jsp”;

strDynIncPage	=	request.getParameter(“prmDynInclPage”)	+	“.jsp”;

%>

<html>

<head>

<meta	http-equiv=“Content-Type”	content=“text/html;	charset=windows-1252”/>

<title>Baig	International	School</title>

<link	rel=“stylesheet”	type=“text/css”	href=“resources/css/BISStyle.css”></link>

<script	src=“resources/js/BISScript.js”></script>

</head>
<body>

<table	border=“0”	cellpadding=“0”	cellspacing=“0”	width=“100%”	height=“99%”>

<tr	bgcolor=“White”>

<td>

<table	border=“0”	cellpadding=“0”	cellspacing=“0”	width=“100%”>

<tr	height=“70”>

<td	align=“left”	valign=“bottom”	width=“15%”>

<%=	new	Date()	%>

</td>

<td	align=“center”	valign=“middle”	width=”*”>

Baig	International	School	

</td>

<td	align=“right”	valign=“bottom”	width=“15%”>

<%

out.println(request.getRemoteUser());

%>

 |

	Logout	

</td>

</tr>

</table>

</td>

</tr>

<tr	valign=“top”>

<td>

<table	border=“0”	cellpadding=“0”	cellspacing=“0”	width=“100%”>

<tr>

<td	rowspan=“3”	align=“left”>

<div	id=“cssmenu”>

<li	class=‘has-sub’>

Home

<li	class=‘has-sub’>

Students

																																																											
Details

Sem-I	Results

Sem-II	Results

										
Sem-I	Attendance

																																									
Sem-II	Attendance

																																																											
Fees

<li	class=‘has-sub’>

Admin

Add	Student

<li	class=‘last’>

Edit	Student

<li	class=‘last’>

Manage	Result

<li	class=‘last’>

Manage	Attendance

<li	class=‘last’>

Manage	Fees

																																																																																																		
<li	class=‘has-sub’>

Reports

Class

Bus

Fees

<li	class=‘has-sub’>

Help

Legend

FAQs

Holiday	Calender

Escalation	Matrix

Fee	Structure

</div>

</td>

</tr>

</table>

</td>

</tr>

<tr>

<td>

<jsp:include	page=”<%=	strDynIncPage	%>”	flush=“true”	/>

</td>

</tr>

<tr>

<td	colspan=“2”>

</td>

</tr>

<tr><td> </td></tr>

<tr	id=“trbgred”>

<td	align=“center”	colspan=“2”>©copyright:	2015,	Mirza	Yousuf	Ahmed	Baig,	Build	Web	Applications

with	Java</td>

</tr>

</table>

</body>

</html>

	

All	the	other	jsp	pages	used	in	the	application	are	detailed	in	the	chapter	for	use	cases
implementation.

	

Log4j
	

Logging	is	a	mechanism	to	record	the	activities	performed	by	an	executing	software
program.	When	a	software	program	is	executed	line	by	line	it	accomplishes	certain
intended	tasks.	During	the	execution,	the	program	logs	the	success,	failures,	important
action	or	any	other	significant	information	into	a	file.	This	file	known	as	a	log	file	is	used
to	monitor	the	health	as	well	as	the	job	of	the	software.	The	most	common	usage	of
logging	is	to	identify	system	and	business	errors	and	it	helps	in	fixing	them.	Logging	helps
in	smoothly	running	the	software	system	by	providing	the	required	information	to	the
support	team.	In	a	broader	sense,	logging	helps	a	lot	in	software	system	governance.

	

In	our	sample	application	we	are	using	Log4j.	Apache	log4j	is	a	logging	utility	and	it
provides	ready	made	mechanism	to	enable	logging	in	java	applications	with	little
configurations.

	

For	more	details	on	logging	implementation	in	our	sample	application,	please	refer	the
chapter	on	logging.

15
IMPLEMENTING	USE	CASES

	

A	use	case	is	an	end	to	end	scenario	for	a	particular	actor	interaction	with	the	system	in
order	to	accomplish	a	task.	This	is	a	list	of	one	or	more	steps	between	an	actor	with	a
particular	role(s)	and	the	system	to	achieve	a	specific	task.	The	actor	is	generally	a	human
but	it	could	also	be	an	external	system	or	an	event	triggered	by	time.

	

With	respect	to	our	application,	a	use	case	is	an	interaction	between	the	user	and	BIS-
SMS	web	application	in	order	to	achieve	a	particular	goal.	The	user	in	our	case	could	be	a
teacher,	admin	or	a	clerk.	For	e.g.	the	user	with	admin	role	can	add	a	new	student	to	the
application.	The	goal	in	this	case	is	to	add	a	new	student	to	the	system.	The	actor	is	a
human	user	who	holds	the	admin	role.	This	use	case	has	many	steps:	first	identify	the	role
of	the	authenticated	user	then	authorize	him/her	with	the	privilege	to	add	a	student	to	the
system.	The	next	step	includes	providing	the	user	a	form	to	add	the	new	student	details.
And	finally,	validate	the	form	contents	entered	by	the	user	and	then	insert	the	data	to	the
database.	Hence,	in	the	above	example	use	case	we	have	seen	the	actor,	the	steps,	the	goal.
In	order	to	add	more	clarity	this	use	case	can	be	supported	with	a	use	case	diagram	which
conveys	the	requirement	pictorially	for	easier	understanding	and	clarity	for	the	use	case.

	

A	software	application	consists	of	“n”	number	of	use	cases.	These	use	cases	(with	a
UML	use	case	diagram)	provide	clarity	for	requirements.	Help	in	designing	and	building
the	software.	Help	in	testing	the	software.	Use	cases	help	through	out	the	life	cycle	of
software	development.

	

In	this	chapter,	we	will	define	and	detail	all	the	use	cases	of	our	sample	application.	We
will	then	implement	these	use	cases	and	finally	we	will	unit	test	them.	Lets	begin	with	the
list	of		all	the	use	cases	for	our	application.	
	

1.	 Authenticate	user.
2.	 Authorize	user	and	render	dashboard	based	on	role.
3.	 Load	student.
4.	 Get	student	details.
5.	 Get	student	results.
6.	 Get	student	attendance.
7.	 Get	student	fees	status.

8.	 Manage	student	attendance.
9.	 Add	student.

10.																						Get	report	by	class.

	

Use	Case:	Authentication.
	

Requirements	Specification	Reference:	R1

Prototype	Reference:	P1

Prerequisite:	The	user	must	have	an	account	to	access	the	system.

	

As	per	the	user	requirement	specifications	and	prototype	we	need	to	build	a	login	page	for
this	use	case.	This	falls	under	the	category	called	form	based	authentication.	In	this
category,	a	form	with	user	id	and	password	is	submitted	to	authenticate	a	user.	The	UI	is
very	simple	for	this	use	case	with	just	one	page	having	two	fields	and	a	login	button.
Please	refer	chapter	16	for	more	details	on	securing	applications	with	Apache	Tomcat.	We
have	only	one	jsp	page	for	this	use	case.

	

BisLogin.jsp
	

In	order	to	use	container	managed	security	with	Apache	Tomcat	8	we	need	to	use	the
following	field	names	and	form	action.	Other	than	this,	the	login	page	is	mere	a	html
document	with	the	UI	as	per	the	prototype.

	
<form	id=“frmBisLogin”	method=“POST”	action=“j_security_check”>

The	action	attribute	must	be	“j_security_check”.

	
<input	type=“password”	name=“j_password”	size=“20”>

The	password	tag	must	be	named	“j_	password	“.

	
<input	type=“text”	name=“j_username”	size=“20”>

The	user	text	field	must	be	named	“j_	username”.

	
<!DOCTYPE	HTML	PUBLIC	“-//W3C//DTD	HTML	4.01	Transitional//EN”	“http://www.w3.org/TR/html4/loose.dtd”>

<%@	page	contentType=“text/html;charset=windows-1252”%>

<html>

<head>

<title>BIS	Login</title>

<style>

body	{

background-color:	#BBBBBB;

}

#dashboardlink	{

color:	Blue;

font-size:	large;

}

#trbgred	{

color:	white;

background-color:	red;

}

#bigwhtxt	{

color:	White;

font-size:	x-large;

}

#regfont	{

color:	white;

}

#headingfont	{

color:	Red;

font-size:	xx-large;

font-style:	bold;

}

#headingtxt	{

color:	Red;

font-size:	large;

}

#redFontWhiteBg	{

color:	red;

background-color:	White;

}

#whiteBg				{

background-color:	White;

font-size:	large;

}

#submitButton				{

color:	red;

background-color:	White;

font-size:	large;

}

#clred	{

color:	red;

}

</style>

</head>

<body	bgcolor=”#BBBBBB”>

<form	id=“frmBisLogin”	method=“POST”	action=“j_security_check”>

<table	border=“1”	cellpadding=“0”	cellspacing=“0”	width=“100%”>

<tr	bgcolor=“White”>

<td>

<table	border=“0”	cellpadding=“0”	cellspacing=“0”	width=“100%”	bgcolor=“White”>

<tr	height=“70”>

<td	rowspan=“3”	align=“center”>

Baig	International	School	

</td>

</tr>

</table>

</td>

</tr>

<tr>

<td>

<table	border=“0”	cellpadding=“1”	cellspacing=“1”	width=“100%”>

<tr	height=“60”><td	colspan=“3”> </td></tr>

<tr>

<td	width=“25%”>

</td>

<td	widht=”*”>

<table	border=“0”	cellpadding=“5”	cellspacing=“5”	width=“100%”	bgcolor=“White”>

<tr>

<td	colspan=“2”	id=“trbgred”	align=“left”>

Sign	in

</td>

<tr>

<td	colspan=“2”	align=“left”>

</td>

</tr>

<tr>

<td	align=“right”	width=“50%”>

User	Id

</td>

<td	width=”*”>

<input	type=“text”	name=“j_username”	size=“20”>

</td>

</tr>

<tr>

<td	align=“right”>

Password

</td>

<td>

<input	type=“password”	name=“j_password”	size=“20”>

</td>

</tr>

<tr>

<td	align=“center”	colspan=“2”	height=“50”>

<input	type=“submit”		value=”			Login			”	id=“sbmt”>

</td>

</tr>

<tr>

<td	colspan=“2”	align=“right”>

Forgot	password

</td>

</tr>

<tr>

<td	align=“right”	colspan=“2”	id=“trbgred”> </td>

</tr>

</table>

</td>

<td	width=“25%”>

</td>

</tr>

<tr	height=“30”><td	colspan=“3”> </td></tr>

</table>

</td>

</tr>

<tr	id=“trbgred”>

<td	rowspan=“3”	align=“center”>

©copyright:	2015,	Mirza	Yousuf	Ahmed	Baig,	Build	Web	Applications	with	Java

</td>

</tr>

</table>

</form>

</body>

</html>

	

This	concludes	the	implementation	of	this	use	case.	In	form	based	authentication
mechanism,	the	implementers	have	the	luxury	to	have	whatever	UI	client	wants.	The	only
compulsion	is	having	the	above	described	field	names	and	form	action	point.	Note	that	for
using	container	managed	security	we	need	to	follow	the	documentation	of	the	particular
server	being	used.	Here,	we	have	used	Apache	Tomcat	and	hence	we	have	used
j_username,	j_password	and	j_security_check.

	

Use	Case:	Authorization.
	

Requirements	Specification	Reference:	R2

Prototype	Reference:	P2

Prerequisite:	The	user	must	be	authenticated	and	must	have	at	least	one	assigned	role.

	

Please	refer	chapter	16	for	details	on	the	configuration	part.	In	this	use	case
implementation	our	objective	is	to	render	access	links	in	the	dashboard	page	and	global
navigation	menu	based	on	the	role.	For	this	we	will	have	a	closer	look	at	the	source	code
of	two	jsp	pages	BisHome.jsp	and	BisDashboard.jsp.

	

BisDashboard.jsp
	

This	is	the	landing	page	of	the	sample	web	application	post	successful	authentication.	In
this	dashboard	page	the	links	are	displayed	based	on	the	role(s)	of	the	logged	in	user.

	
<!DOCTYPE	HTML	PUBLIC	“-//W3C//DTD	HTML	4.01	Transitional//EN”	“http://www.w3.org/TR/html4/loose.dtd”>

<%@	page	contentType=“text/html;charset=windows-1252”%>

<%@	page	import=“com.bis.beans.StudentDetailsBean”%>

<%@	page	import=“java.util.Hashtable,	java.util.Enumeration”%>

<%

StudentDetailsBean	studentDetailsBean	=	null;

if	(session	!=	null)	{

studentDetailsBean	=	(StudentDetailsBean)	session.getAttribute(“studentDetailsBean”);

}

%>

<html>

<head>

<meta	http-equiv=“Content-Type”	content=“text/html;	charset=windows-1252”/>

<title>Baig	International	School	-	Dashboard</title>

<link	rel=“stylesheet”	type=“text/css”	href=“resources/css/BISStyle.css”></link>

<script	src=“resources/js/BISScript.js”></script>

</head>

<body>

<form	id=“frmDashboard”	name=“frmDashboard”	action=“BisControllerServlet”	method=“POST”>

<input	type=“hidden”	name=“ParameterActionCommand”	value=“BisDashboard”></input>

<table	border=“0”	cellpadding=“0”	cellspacing=“0”	width=“100%”>

<tr><td> </td></tr>

<tr>

<td>

<table	border=“0”	cellpadding=“0”	cellspacing=“0”	width=“100%”>

<tr>

<td	width=“33%”	align=“center”	valign=“middle”>

<table	border=“0”	cellpadding=“5”	cellspacing=“0”	width=“90%”	bgcolor=“White”>

<tr>

<td	align=“center”	id=“trbgred”>Find	Student</td>

</tr>

<tr><td> </td></tr>

<tr>

<td	align=“center”>

Student	ID

<input	type=“text”	name=“txtStdId”	id=“txtStdId”	size=“20”></input>

<input	type=“button”	value=“Load	Student”	id=“btnStdDtls”	onclick=“getStudentAJAX()”></input>

</td>

</tr>

<tr><td> </td></tr>

<tr><td	id=“trbgred”	align=“center”>Student	in	Context</td></tr>

<tr><td> </td></tr>

<tr>

<td	align=“center”	id=“headingtxt”>

<div	id=“dvStdSmry”>

<%

if	(studentDetailsBean	!=	null)			{

out.print(studentDetailsBean.getFullName());

out.print(“ 	|”);

}

%>

<%

if	(studentDetailsBean	!=	null)			{

out.print(studentDetailsBean.getGrade());

out.print(”	-	“);																																								out.print(studentDetailsBean.getSection());

out.print(“ 	|”);

}

%>

<%

if	(studentDetailsBean	!=	null)			{

out.print(studentDetailsBean.getStudentId());

}

%>

</div>

</td>

</tr>

<tr><td> </td></tr>

</table>

</td>

<td	widht=”*”	align=“center”	valign=“middle”>

<table	border=“0”	cellpadding=“7”	cellspacing=“7”	width=“95%”>

<tr	valign=“top”>

<td	align=“left”	width=“50%”>

<table	border=“0”	cellpadding=“5”	cellspacing=“0”	width=“100%”	bgcolor=“White”>

<tr>

<td	align=“center”	id=“trbgred”>Student	Information</td>

</tr>

<tr>

<td	align=“left”>

Student	details

</td>

</tr>

<tr>

<td	align=“left”>

<%

if	(request.isUserInRole(“BisTeacher”)	||	request.isUserInRole(“BisAdmin”))	{

%>

Semester	-	I	results

<%

}

else	{

%>

Semester	-	I	results

<%

}

%>

</td>

</tr>

<tr>

<td	align=“left”>

<%

if	(request.isUserInRole(“BisTeacher”)		||	request.isUserInRole(“BisAdmin”))	{

%>

Semester	-	II	results

<%

}

else	{

%>

Semester	-	II	results

<%

}

%>

</td>

</tr>

	

<tr>

<td	align=“left”>

Semester-I	Attendance

</td>

</tr>

<tr>

<td	align=“left”>

Semester-II	Attendance

</td>

</tr>

<tr>

<td	align=“left”>

<%

if	(request.isUserInRole(“BisClerk”)		||	request.isUserInRole(“BisAdmin”))	{

%>

Fees

<%

}

else	{

%>

Fees

<%

}

%>

</td>

</tr>

</table>

</td>

<td	align=“left”	width=”*”	colspan=“2”>

<table	border=“0”	cellpadding=“5”	cellspacing=“0”	width=“100%”	bgcolor=“White”>

<tr>

<td	align=“center”	id=“trbgred”>Administration</td>

</tr>

<tr>

<td	align=“left”>

Add	Student

</td>

</tr>

<tr>

<td	align=“left”>

Edit	Student

</td>

</tr>

<tr>

<td	align=“left”>

Manage	Result

</td>

</tr>

<tr>

<td	align=“left”>

Manage	Attendance

</td>

</tr>

<tr>

<td	align=“left”>

Manage	Fees

</td>

</tr>

<tr>

<td	align=“left”>

</td>

</tr>

</table>

</td>

</tr>

<tr	valign=“top”>

<td	align=“left”	width=“50%”>

<table	border=“0”	cellpadding=“5”	cellspacing=“0”	width=“100%”	bgcolor=“White”>

<tr>

<td	align=“center”	id=“trbgred”>Reports</td>

</tr>

<tr>

<td	align=“left”>

Class

</td>

</tr>

<tr>

<td	align=“left”>

Bus

</td>

</tr>

<tr>

<td	align=“left”>

Fees

</td>

</tr>

<tr>

<td	align=“left”>

</td>

</tr>

<tr>

<td	align=“left”>

</td>

</tr>

<tr>

<td	align=“left”	height=“27px”>

</td>

</tr>

</table>

</td>

<td	width=”*”	valign=“top”>

<table	border=“0”	cellpadding=“5”	cellspacing=“0”	width=“100%”	bgcolor=“White”>

<tr>

<td	align=“center”	id=“trbgred”>Help</td>

</tr>

<tr>

<td	align=“left”>

Academics	Legend

</td>

</tr>

<tr>

<td	align=“left”>

FAQs

</td>

</tr>

<tr>

<td	align=“left”>

Holiday	Calender

</td>

</tr>

<tr>

<td	align=“left”>

Escalation	Matrix

</td>

</tr>

<tr>

<td	align=“left”>

Fee	Structure

</td>

</tr>

<tr>

<td	align=“left”>

Events

</td>

</tr>

	

</table>

</td>

</tr>

</table>

</td>

</tr>

<tr><td> </td></tr>

<tr>

<td	colspan=“2”	align=“center”>

<table	border=“0”	cellpadding=“5”	cellspacing=“0”	width=“100%”	bgcolor=“White”>

<tr>

<td	align=“center”	id=“trbgred”>Announcement</td>

</tr>

<tr><td> </td></tr>

<tr>

<td	align=“center”>

The	annual	day	event	is	scheduled	for	Jan	26,	2015.

</td>

</tr>

<tr><td> </td></tr>

<tr><td> </td></tr>

</table>

</td>

</tr>

</table>

</td>

</tr>

<tr><td> </td></tr>

</table>

</form>

		</body>

</html>

	

Lets	have	a	closer	look	at	the	code	snippet	which	renders	links	based	on	the	role.
<tr>		
<td	align=“left”>
<%

if	(request.isUserInRole(“BisTeacher”)	||	request.isUserInRole(“BisAdmin”))	{

%>

Semester	-	I	results

<%

}

else	{

%>

Semester	-	I	results

<%

}

%>

</td>

</tr>
	

In	the	above	code	snippet,	request.isUserInRole(“BisTeacher”)	checks	whether	the
logged	in	user	has	the	role	BisTeacher.	If	yes,	the	code	renders	link	for	the	results.	If	no,
the	user	only	sees	a	label.	We	are	displaying	a	label	here	just	to	demonstrate	for	learning
purpose.	In	real	applications,	the	label	is	generally	not	shown.	That	is,	the	user	only	sees
those	links	whose	access	the	role	has	and	no	labels	are	shown	for	those	functionalities
which	the	role	does	not	have.

	

BisHome.jsp
	

This	page	is	the	placeholder	page	for	all	other	pages.	This	page	has	all	the	commons
that	belong	to	the	view.	The	menu,	the	header	and	the	footer	belong	to	this	page.	In	this
page	the	dynamic	region	displays	various	other	pages	based	on	user	interaction.	Please
refer	chapter	14	for	the	source	code	and	details	about	BisHome.jsp	page.

	

This	concludes	the	implementation	of	this	use	case.	For	applications	that	demand
higher	level	of	security,	the	role	can	be	verified	at	the	server	side	code	implementation	as	a
pre-condition	before	the	execution	of	each	use	case.

	

Use	Case:	Load	Student.
	

Requirements	Specification	Reference:	R3

Prototype	Reference:	P3

Prerequisite:	The	user	has	to	be	logged	in.

	

This	use	case	needs	to	be	implemented	as	per	the	requirements	specification	reference
above.	The	UI	needs	to	be	as	per	the	prototype	reference	above.	Now	that	we	have
complete	clarity	on	use	case	requirements	and	UI	we	will	now	proceed	to	implement	this
use	case.

	

In	order	to	implement	this	use	case,	we	need	to	follow	the	architecture	and	leverage	the
framework.	To	achieve	this	we	will	first	come	up	with	detailed	design	and	then	code	it.

	

The	prerequisite	for	this	use	case	is	that	the	use	has	to	be	signed	in.	The	objective	of	this
use	case	is	to	load	a	student	into	context.	Once	a	student	is	loaded	into	context	it	is
available	in	the	http	session.	All	the	other	use	cases	use	the	student	id	from	the	http
session.	This	is	the	prerequisite	use	case	for	many	use	cases	in	this	application.	On	the
dashboard	page,	the	user	enters	the	student	id	and	clicks	load	student.	This	use	case	needs
to	perform	two	action.	First,	it	must	display	the	student	context	information	on	the	load
student	region	within	the	dashboard	page.	Second,	on	the	server	side	it	must	add	the
student	id	to	the	http	session.

	

In	this	use	case,	we	are	sending	the	student	id	and	getting	back	the	basic	information	about
the	student	(name,	grade,	section	and	id)	for	the	display.	The	other	action	is	adding	the
student	id	to	the	session	on	the	server	side.	On	the	browser,	it	does	not	make	sense	to
submit	the	entire	form	and	reload	the	entire	dashboard	page.	Once	the	user	clicks	load
student	button	by	entering	the	student	id,	we	need	to	only	send	the	student	id	to	the	server.

For	sending	such	selective	values	to	the	server	and	performing	action	on	the	server	side
and	also	receiving	a	subset	of	data	for	the	page	without	submitting	the	entire	page	form	or
without	reloading	the	entire	page	we	use	AJAX.	Please	go	through	chapter	20	now	for
more	details	on	AJAX.	That	is	the	prerequisite	now	to	proceed	further	on	this	use	case
implementation.

The	user	enters	student	id	and	clicks	load	student.

This	invokes	the	javascript	function	getStudentAJAX()	in	the	BisScript.js.

The	BisAjaxControllerServlet	is	invoked	on	the	server.

In	the	service	method	the	action	command	parameter	value	is	read	which	is	LoadStudent

The	execute	method	for	the	command	processor	pertaining	to	LoadStudent	is	invoked.	

The	business	logic	pertaining	to	this	command	processor	is	executed	and	a	response	text	is
returned.

The	server	returns	the	Ajax	response	and	that	results	in	the	invocation	of	the		AJAX	call
back	function	on	the	browser.	Also,	the	student	id	is	added	to	the	http	session.

The	call	back	function	sets	the	response	text	and	the	user	sees	the	updated	region	with
student	context	info.	Note	that	this	is	just	a	region	refresh	and	the	entire	page	is	not

reloaded.

Lets	now	design	this	use	case	with	AJAX.	Please	refer	the	class	diagrams	in	chapter	14	for
more	details	about	the	classes	used.	In	our	BIS	Framework,	we	have	a	separate	controller
to	hand	all	AJAX	requests.	This	is	called	AJAXControllerServlet.	Lets	see	the	sequence
diagram	for	load	student	use	case	implemented	using	AJAX.

	

	

When	the	user	clicks	load	student	after	entering	the	student	id.	The	AjaxControllerServlet
is	invoked,	this	servlet	then	invokes	the	execute	method	of	LoadStudentCP.	Within	the
execute	method,	we	read	the	student	id	entered	by	the	user	as	a	parameter.	The
StudentDetailsService	is	than	leveraged	to	load	the	student.	The	loadStudent	method
within	StudentDetailsService	uses	DatabaseService	class	and	queries	the	database	for	the
given	student	id.	The	returned	value	is	composed	as	a	single	string	with	student	name,
student	id,	class	and	section.	This	forms	the	AjaxResponseText	which	is	returned	back	to
the	browser.	Before	sending	back	the	AjaxResponseText,	the	student	id	is	add	to	the	Http
session.	The	browser	displays	the	student	context	once	it	receives	the	AjaxResponseText.

	

We	now	have	the	student	in	context	on	the	dashboard	page	and	student	id	in	http	session.
The	purpose	of	load	student	use	case	is	now	achieved	using	AJAX.	Lets	now	have	a	closer
look	into	the	source	code	for	the	artifacts	used	in	this	use	case.

	

	

1.	LoadStudentCP.java

2.	StudentDetailsService.java

3.	BisDashboard.jsp

4.	BisScript.js

	

LoadStudentCP.java
	
package	com.bis.cp;
	

import	com.bis.session.StudentDetailsService;

import	javax.servlet.http.HttpServletRequest;

import	javax.servlet.http.HttpServletResponse;

import	javax.servlet.http.HttpSession;

import	org.apache.log4j.Logger;

public	class	LoadStudentCP	extends	BisCP	implements	BisCommand	{

static	Logger	logger	=	Logger.getLogger(LoadStudentCP.class);

public	LoadStudentCP()	{

super();

}

public	String	execute(HttpServletRequest	request,	HttpServletResponse	response)	{

String	strStudentId	=	null;

HttpSession	session	=	null;

strStudentId	=	request.getParameter(“txtStdId”);

session	=	request.getSession();

if	(strStudentId	!=	null)			{

try	{

StudentDetailsService	studentDetailsService	=	new	StudentDetailsService();

strAjaxResponseText	=	studentDetailsService.loadStudent(strStudentId);

session.setAttribute(“StudentId”,	strStudentId);

}	catch	(Exception	e)	{

logger.error(e.getMessage());

}

}

return	strAjaxResponseText;

}

}

	

The	execute	method	performs	the	following	tasks:

	

							Gets	the	student	id	from	the	request	parameter.

							Gets	the	http	session	from	the	request	object.

							Creates	an	instance	of	StudentDetailsService	and	calls	loadStudent	method.

							Adds	the	student	id	to	the	http	session.

							Returns	the	Ajax	response	text.

	

StudentDetailsService.java
	

Lets	focus	only	on	the	loadStudent	method	of	this	java	class.	Rest	of	this	java	class	is
detailed	in	the	get	student	details	use	case.

	
public	String	loadStudent(String	strStudentId)			{

	

String	strStudentSummary=””;

String	strFirstName	=	””;

String	strMiddleName	=	””;

String	strLastName	=	””;

String	strFullName	=	””;

String	strGrade	=	””;

String	strSection	=	””;

Connection	connection	=	null;

Statement	statement	=	null	;

ResultSet	resultSet	=	null;

if	(strStudentId	!=	null)			{

StringBuffer	sbQuery	=	new	StringBuffer(“SELECT	FIRST_NAME,	MIDDLE_NAME,	LAST_NAME,	GRADE,
SECTION	FROM	STUDENT_DETAILS	WHERE	STUDENT_ID=’”);

sbQuery.append(strStudentId+”’”);

DatabaseService	databaseService	=	new	DatabaseService();

connection	=	databaseService.getDBConnection();

try	{

statement	=	connection.createStatement();

resultSet	=	statement.executeQuery(sbQuery.toString());

resultSet.next();	//	Expecting	only	one	record.

strFirstName	=	resultSet.getString(“FIRST_NAME”);

strMiddleName	=	resultSet.getString(“MIDDLE_NAME”);

strLastName	=	resultSet.getString(“LAST_NAME”);

strGrade	=	resultSet.getString(“GRADE”);

strSection	=	resultSet.getString(“SECTION”);

if	(strFirstName	!=	null)	{

strFullName	=	strFirstName;

}

if	(strMiddleName	!=	null)	{

strFullName	=	strFullName	+	”	”	+	strMiddleName;

}

if	(strLastName	!=	null)	{

strFullName	=	strFullName	+	”	”	+	strLastName;

}

strStudentSummary	=	strFullName	+	“ | ”	+	strGrade	+	“-”	+	strSection	+
“ | ”	+	strStudentId;

}	catch	(SQLException	sqle)	{

logger.error(sqle.getMessage());

}	finally	{

databaseService.closeDBResouces(statement,	resultSet);

databaseService.releaseDBConnection();		//	Releasing	database	connection.

}

}

else	{

logger.error(“Student	id	is	null”);

}

return	strStudentSummary;

}

	

The	loadStudent	method	performs	the	following	tasks:

	

							Cooks	up	a	dynamic	query	for	a	given	student	id.

							Queries	the	database	for	basic	student	details.	The	DatabaseService	class	is
leveraged	to	achieve	this.

							Builds	a	string	comprising	of	student	summary.	This	holds	name,	id,	class	and
section.

							Returns	the	student	summary	string	as	Ajax	response	text.

	

BisDashboard.jsp
	

This	jsp	page	is	described	in	detail	under	the	Authorization	use	case.	Here,	we	will	look
into	only	the	snippet	which	deals	with	the	Ajax	refresh	region.

<tr>

<td	align=“center”	id=“headingtxt”>

														<div	id=“dvStdSmry”>

														</div>

</td>

</tr>
	

Once	the	Ajax	based	javascript	call	back	function	is	invoked	the	div	tag	with	id
dvStdSmry	is	assigned	a	value	for	display.	This	value	holding	the	student	summary	sent
from	the	Ajax	response	is	dynamically	displayed	to	the	region.

	

Lets	look	into	the	javascript	part	for	this	use	case.

	

BisScript.js

var	xmlHttpReq=false;

	

function	getStudentAJAX()	{

var	stdId	=	document.getElementById(“txtStdId”).value;

var	url=“BisAjaxControllerServlet?ParameterActionCommand=LoadStudent&txtStdId=”;

url	=	url	+	stdId;

xmlHttpReq	=	new	XMLHttpRequest();

xmlHttpReq.open(“GET”,url,	true);

xmlHttpReq.send();

xmlHttpReq.onreadystatechange=getStudentAjaxCallBack;

}

	

function	getStudentAjaxCallBack()				{

if	(xmlHttpReq.readyState	==	4	&&	xmlHttpReq.status	==	200)	{

document.getElementById(“dvStdSmry”).innerHTML=xmlHttpReq.responseText;

}

}

	

We	have	two	Javascript	functions	and	one	variable	for	the	load	student	via	Ajax	use	case.

	

The	getStudentAJAX	function	performs	the	following	tasks:

							Reads	the	student	id	entered	by	the	user	in	the	text	field.

							Initializes	a	URL	for	Ajax	controller	servlet	along	with	the	parameters	for	load
student	action	command	and	student	id.

							Creates	an	instance	of	XMLHttpRequest	for	making	an	Ajax	call	to	the	server.

							Opens	a	get	request	for	the	given	URL.

							Assigns	a	call	back	function	to	the	XMLHttpRequest	instance	to	be	invoked
upon	a	change	in	ready	state.

							And	finally	sends	the	Ajax	request	to	the	server.

	

The	getStudentAJAXCallBack	function	performs	the	following	tasks:

							Validates	the	ready	state	for	XMLHttpRequest	instance.

							Assigns	the	response	text	to	inner	html	using	the	div	tag.

	

This	concludes	the	use	case	for	load	student.	In	this	use	case	we	saw	how	Ajax	can	be
employed	to	set	a	student	context	into	the	session	on	server	side	and	the	student	in
question	context	on	the	client	side.

	

We	have	seen	that	a	separate	controller	servlet	is	employed	for	this	purpose	and	that
comes	with	the	BIS	framework.	For	Ajax,	XMLHttpRequest	is	used	on	the	client	side.	We
used	two	javascript	functions	to	achieve	this	functionality.	When	the	user	entered	student
id	and	clicked	load	student	button,	we	invoked	the	javascript	function	to	make	an	Ajax
call.	This	javascript	function	leveraged	XMLHttpRequest	object	and	issue	an	Ajax	call	for
a	given	URL	with	given	parameters.	On	the	server	side,	the	Ajax	controller	servlet
invoked	the	execute	method	for	load	student	command	processor.	In	this	method	we
leveraged	student	service	class	which	in	turn	interacted	with	the	database	using	the
database	service	class.	Finally	we	got	the	response	text	as	a	single	string.	This	response
text	is	returned	to	the	client.	Upon	receiving	the	response,	the	browser	invoked	the	Ajax
call	back	function	which	in	turn	refreshed	the	region	using	div	tag.	With	this	we	achieved
setting	a	student	in	context	both	on	the	server	side	as	well	as	the	client	side.

	

Use	Case:	Get	student	details.

	

Requirements	Specification	Reference:	R5

Prototype	Reference:	P4

Prerequisite:	The	student	has	to	be	loaded	into	context	first.

	

This	use	case	needs	to	be	implemented	as	per	the	requirements	specification	reference
above.	The	UI	needs	to	be	as	per	the	prototype	reference	above.	Now	that	we	have
complete	clarity	on	use	case	requirements	and	UI	we	will	now	proceed	to	implement	this
use	case.

	

In	order	to	implement	this	use	case,	we	need	to	follow	the	architecture	and	leverage	the
framework.	To	achieve	this	we	will	first	come	up	with	detailed	design	and	then	code	it.

	

The	prerequisite	for	this	use	case	is	that	a	student	must	already	be	existing	in	the	context,
for	this	the	user	must	have	loaded	the	student	through	the	load	student	use	case.	When	the
student	is	loaded,	the	student	id	of	a	particular	student	is	added	to	the	session.	You	can
refer	the	load	student	use	case	for	details	on	this.	Lets	assume	as	of	now	that	the	student	id
is	existing	in	the	http	session.	When	the	user	clicks	on	get	student	details	link	either	on
dashboard	or	via	the	menu,	the	following	flow	is	triggered.

The	user	clicks	the	get	student	details	link

The	href	for	this	link	is	BisControllerServlet?
ParameterActionCommand=GetStudentDetails

The	ControllerServlet	is	invoked	on	the	server

In	the	service	method	the	action	command	parameter	value	is	read	which	is
GetStudentDetails

The	execute	method	for	the	command	processor	pertaining	to	GetStudentDetails	is
invoked

The	business	logic	pertaining	to	this	command	processor	is	executed	and	a	view	is
returned

The	response	is	returned	to	the	browser	with	this	view

The	user	sees	the	student	details	page

The	command	processor	class	pertaining	to	GetStudentDetails	command	is
GetStudentDetailsCP.	The	view	pertaining	to	student	detail	page	is	StudentDetails.jsp.
Now,	lets	see	the	sequence	of	method	calls	once	the	execute	method	of
GetStudentDetailsCP	is	called.	Below	are	the	sequence	diagrams	from	this	use	case.

	

														As	shown	in	the	above	sequence	diagrams,	the	GetStudentDetailsCP	invokes	the
processGetStudentDetails	method	in	the	StudentDetailsService	class.	This	method
orchestrates	the	business	logic	for	this	use	case.	The	private	methods
populateStudentnParentsInfo	and	populateBusInfo	within	the	StudentDetailsService	class
are	invoked.	These	methods	run	the	appropriate	query	on	the	database	and	fetch	the
student,	parents	and	bus	details	from	the	database	tables.	In	order	to	interact	with	the
database,	the	DatabaseService	class	is	leveraged.	This	data	is	then	populated	to	a	bean
called	StudentDetailsBean	and	this	bean	is	then	added	to	the	session.		The	command
processor	upon	success	returns	the	view	as	a	string.	This	view	identifies	the	jsp	to	be
responded.	The	jsp	reads	this	bean	from	the	session	and	presents	this	data	to	the	user.

	

At	this	stage	we	have	the	requirements,	prototype,	architecture,	framework	and	detailed
design	for	the	get	student	details	use	case	in	the	form	of	sequence	and	class	diagrams.	The
next	and	the	most	interesting	part	is	coding	this	use	case.	In	the	earlier	chapter,	we	have
already	created	the	database	tables	and	added	some	test	data	there.	Lets	identify	all	the
artifacts	first.	For	this	use	case	we	need	the	following	files.

	

BisHome.jsp

StudentDetails.jsp

BISScript.js

BISStyle.css

	

GetStudentDetailsCP.java

StudentDetailsService.java

StudentDetailsBean.java

DatabaseService.java

	

We	will	look	into	BisHome.jsp,	BISScript.js,	BISStyle.css	and	DatabaseService.java
under	commons	section	as	these	artifacts	are	common	for	all	the	use	cases.	Please	refer
chapter	14	for	details	about	these	shared	artifacts.

	

GetStudentDetailsCP.java
	

Please	refer	chapter	14	(The	BIS-SMS	Project	Components)	for	class	diagram	once	before
we	proceed	with	this	class.	This	class	implements	BisCommand	interface	which	has	only

one	method	execute.	This	class	extends	BisCP	which	has	few	variables.	We	have	to
implement	execute	method	in	this	class	for	get	student	details	use	case.	Lets	look	into	the
actual	source	code	for	this	class	now.

	
package	com.bis.cp;
	

import	com.bis.session.StudentDetailsService;

import	javax.servlet.http.HttpServletRequest;

import	javax.servlet.http.HttpServletResponse;

import	javax.servlet.http.HttpSession;

import	org.apache.log4j.Logger;

	

public	class	GetStudentDetailsCP	extends	BisCP	implements	BisCommand	{

static	Logger	logger	=	Logger.getLogger(GetStudentDetailsCP.class);

public	GetStudentDetailsCP()	{

super();

}

public	String	execute(HttpServletRequest	request,	HttpServletResponse	response)	{

HttpSession	session	=	request.getSession();

String	strStudentId;

if	(session	!=	null)														{

strStudentId	=	(String)	session.getAttribute(“StudentId”);

if	(strStudentId	!=	null)														{

StudentDetailsService	studentDetailsService	=	new																																																																																																		
																																																																																																																														StudentDetailsService();																									
														try	{

studentDetailsService.processGetStudentDetails(session);																																																																											
strNextNavigation	=	“StudentDetails”;

//The	next	navigation	page	upon	successful	processing.

}	catch	(Exception	e)	{

logger.error(e.getMessage());

strNextNavigation	=	“Error”;

//The	next	navigation	page	upon	failed	processing.

}

}

else	{

//	strStudentId	is	null,	first	entry	to	the	page.																																																																										strNextNavigation	=
“StudentDetails”;

}

}

else	{

//Session	is	null.	Valid	session	doesn’t	exist.	Redirect	to	Login	page.																																																																			
strNextNavigation	=	“Login”;

}

return	strNextNavigation;

}

}

	

The	execute	method	of	GetStudentDetailsCP	Class.

	

The	execute	method	is	called	from	the	controller	servlet.	This	is	the	job	of	the	framework.
The	framework	gets	the	command	from	UI	and	based	on	the	command	loads	and	executes
a	specific	command	processor	exploiting	the	polymorphic	feature	of	java.	In	this	case,	the
command	from	UI	is	“GetStudentDetails”.	Within	the	service	method	of	controller	servlet,
the	GetStudentDetailsCP	class	is	loaded	and	instantiated	and	the	execute	method	is
invoked.

	

In	the	execute	method,	the	http	session	is	fetched	from	the	HttpServletRequest	object.
From	the	session,	the	student	id	is	fetched.	This	is	the	id	of	the	student	which	is	already
loaded	into	the	context.	The	execute	method	further	instantiates	the	StudentDetailsService
class	and	invokes	the	processGetStudentDetails	method.

	

StudentDetailsService.java
	

Now	lets	see	the	StudentDetailsService	class	source	code.

	
package	com.bis.session;

	

import	com.bis.beans.StudentDetailsBean;

import	com.bis.db.DatabaseService;

import	java.sql.Connection;

import	java.sql.Date;

import	java.sql.ResultSet;

import	java.sql.SQLException;

import	java.sql.Statement;

import	java.text.SimpleDateFormat;

import	java.util.Hashtable;

import	java.util.StringTokenizer;

import	javax.servlet.http.HttpSession;

import	org.apache.log4j.Logger;

public	class	StudentDetailsService	implements	BisService	{

	

static	Logger	logger	=	Logger.getLogger(StudentDetailsService.class);

public	StudentDetailsService()	{

super();

}

public	void	processGetStudentDetails(HttpSession	session)	{

String	strStudentId	=	(String)	session.getAttribute(“StudentId”);

StudentDetailsBean	studentDetailsBean;

studentDetailsBean	=	new	StudentDetailsBean();

if	(strStudentId	!=	null)	{

//	This	is	mandatory	before	calling	the	next	method.																																																					
studentDetailsBean.setStudentId(strStudentId);

populateStudentnParentsInfo(studentDetailsBean);																																																					
populateBusInfo(studentDetailsBean);

if	(studentDetailsBean.getSiblings()	!=	null)	{																																																																																				
populateSiblings(studentDetailsBean);

}

session.setAttribute(“studentDetailsBean”,	studentDetailsBean);

}	else	{

logger.error(“Student	id	is	null”);

}

}

	

private	void	populateBusInfo(StudentDetailsBean	studentDetailsBean)														{

String	strBusId;

strBusId	=	studentDetailsBean.getBusId();

String	strDriverFirstName;

String	strDriverLastName;

String	strDriverFullName;

String	strHelperFirstName;

String	strHelperLastName;

String	strHelperFullName;

String	strDesignation;

Connection	connection	=	null;

Statement	statement	=	null;

ResultSet	resultSet	=	null;

StringBuffer	sbQuery	=	new	StringBuffer();

sbQuery.append(“SELECT	ED.DESIGNATION,	ED.FIRST_NAME,	ED.MIDDLE_NAME,	ED.LAST_NAME,
ED.MOBILE_NUMBER,	TD.TRANSPORTATION_TYPE,	TD.BUS_NUMBER		FROM	EMPLOYEE_DETAILS	ED,
TRANSPORTATION_DETAILS	TD	WHERE	TD.BUS_ID=”);						sbQuery.append(strBusId);

sbQuery.append(”	AND	(ED.EMPLOYEE_ID=TD.DRIVER_EMPLOYEE_ID	OR
ED.EMPLOYEE_ID=TD.HELPER_EMPLOYEE_ID)	“);

if	(strBusId	!=	null)	{

connection	=	DatabaseService.getDBConnection();

try	{

statement	=	connection.createStatement();																																																																								resultSet	=
statement.executeQuery(sbQuery.toString());

while	(resultSet.next())	{	//	Expecting	two	records.																																		strDesignation	=
resultSet.getString(“DESIGNATION”);																				
studentDetailsBean.setTransType(resultSet.getString(“TRANSPORTATION_														TYPE”));																																	
studentDetailsBean.setBusNubmer(resultSet.getString(“BUS_NUMBER”));

if	(strDesignation	!=	null)	{

if	(strDesignation.equalsIgnoreCase(“Driver”))	{																												strDriverFirstName	=
resultSet.getString(“FIRST_NAME”);

strDriverLastName	=	resultSet.getString(“LAST_NAME”);

strDriverFullName	=	strDriverFirstName	+	”	”	+	strDriverLastName;

studentDetailsBean.setDriver(strDriverFullName);

studentDetailsBean.setDriverMobile(resultSet.getString(“MOBILE_NUMBER”));

}

else	if	(strDesignation.equalsIgnoreCase(“Helper”))	{

strHelperFirstName	=	resultSet.getString(“FIRST_NAME”);

strHelperLastName	=	resultSet.getString(“LAST_NAME”);

strHelperFullName	=	strHelperFirstName	+	”	”	+	strHelperLastName;

studentDetailsBean.setHelper(strHelperFullName);		
studentDetailsBean.setHelperMobile(resultSet.getString(“MOBILE_NUMBER”));

}

else	{

logger.debug(“Unknown	designation.”);

}

}	else	{

logger.debug(“Designation	is	null”);

}

}

}	catch	(SQLException	sqle)	{

logger.debug(sqle.getMessage());

}	finally	{

DatabaseService.closeDBResouces(statement,	resultSet);

DatabaseService.releaseDBConnection();//	Releasing	database	connection.

}								}	else	{

logger.debug(“Bus	id	is	null”);

}}

private	void	populateStudentnParentsInfo(StudentDetailsBean	studentDetailsBean)	{

String	strStudentId;

strStudentId	=	studentDetailsBean.getStudentId();

Connection	connection	=	null;

Statement	statement	=	null;

ResultSet	resultSet	=	null;

StringBuffer	sbQuery	=	new	StringBuffer();

String	strFirstName	=	””;

String	strMiddleName	=	””;

String	strLastName	=	””;

String	strFullName	=	””;

String	strTeacherFirstName	=	””;

String	strTeacherMiddleName	=	””;

String	strTeacherLastName	=	””;

String	strTeacherFullName	=	””;

sbQuery.append(“SELECT\n”	+

“								studentDetails.FIRST_NAME	AS	STUDENT_FIRST_NAME,	studentDetails.MIDDLE_NAME	AS
STUDENT_MIDDLE_NAME,	studentDetails.LAST_NAME	AS	STUDENT_LAST_NAME,\n”	+

“								studentDetails.GENDER_CODE,	studentDetails.BIRTH_DATE,	studentDetails.BLOOD_GROUP,
studentDetails.BUS_ID,	studentDetails.GRADE,	studentDetails.SECTION,	\n”	+

“								studentDetails.HEIGHT,studentDetails.WEIGHT,	\n”	+

“								\n”	+

“								parentDetails.FATHER_NAME,	parentDetails.MOTHER_NAME,	parentDetails.FATHER_MOBILE,
parentDetails.MOTHER_MOBILE,		\n”	+

“								parentDetails.ADDRESS,	\n”	+

“								\n”	+

“								employeeDetails.FIRST_NAME	AS	TEACHER_FIRST_NAME,	employeeDetails.MIDDLE_NAME	AS
TEACHER_MIDDLE_NAME,	employeeDetails.LAST_NAME	AS	TEACHER_LAST_NAME\n”	+

“\n”	+

“				FROM	STUDENT_DETAILS	studentDetails,	PARENT_DETAILS	parentDetails,	EMPLOYEE_DETAILS
employeeDetails,	CLASS_TEACHER_MAPPING	CTM														\n”	+

“				\n”	+

“				WHERE	studentDetails.STUDENT_ID=”);

sbQuery.append(”’”	+	strStudentId	+	”’	“);

sbQuery.append(“AND	parentDetails.STUDENT_ID=studentDetails.STUDENT_ID	AND
CTM.GRADE=studentDetails.GRADE	AND	CTM.SECTION=studentDetails.SECTION	AND
employeeDetails.EMPLOYEE_ID=CTM.EMPLOYEE_ID”);

if	(strStudentId	!=	null)	{

connection	=	DatabaseService.getDBConnection();

try	{

statement	=	connection.createStatement();

resultSet	=	statement.executeQuery(sbQuery.toString());

resultSet.next();	//	Expecting	only	one	record.

strFirstName	=	resultSet.getString(“STUDENT_FIRST_NAME”);

strMiddleName	=	resultSet.getString(“STUDENT_MIDDLE_NAME”);

strLastName	=	resultSet.getString(“STUDENT_LAST_NAME”);

if	(strFirstName	!=	null)	{

strFullName	=	strFirstName;

}

if	(strMiddleName	!=	null)	{

strFullName	=	strFullName	+	”	”	+	strMiddleName;

}

if	(strLastName	!=	null)	{

strFullName	=	strFullName	+	”	”	+	strLastName;

}

studentDetailsBean.setFullName(strFullName);

strTeacherFirstName	=	resultSet.getString(“TEACHER_FIRST_NAME”);

strTeacherMiddleName	=	resultSet.getString(“TEACHER_MIDDLE_NAME”);

strTeacherLastName	=	resultSet.getString(“TEACHER_LAST_NAME”);

if	(strTeacherFirstName	!=	null)	{

strTeacherFullName	=	strTeacherFirstName;

}

if	(strTeacherMiddleName	!=	null)	{

strTeacherFullName	=	strTeacherFullName	+	”	”	+	strTeacherMiddleName;

}

if	(strTeacherLastName	!=	null)	{

strTeacherFullName	=	strTeacherFullName	+	”	”	+	strTeacherLastName;

}

studentDetailsBean.setClassTeacher(strTeacherFullName);

String	strGenderCode	=	resultSet.getString(“GENDER_CODE”);

if	(strGenderCode	!=	null	&&	!(strGenderCode.trim()).equalsIgnoreCase(””))	{

if	(strGenderCode.equalsIgnoreCase(“F”))	{

studentDetailsBean.setGender(“Female”);

}	else	{

studentDetailsBean.setGender(“Male”);

}

}

SimpleDateFormat	simpleDateFormat	=	new	SimpleDateFormat(“dd-MMM-yyyy”);

Date	birthDate	=	resultSet.getDate(“BIRTH_DATE”);

if	(birthDate	!=	null)	{																				studentDetailsBean.setDob(simpleDateFormat.format(birthDate));

}	else	{

logger.info(“DOB	is	null”);

studentDetailsBean.setDob(“Please	update	DOB”);

}

String	strBloodGroup	=	resultSet.getString(“BLOOD_GROUP”);

if	(strBloodGroup	!=	null	&&	!(strBloodGroup.trim()).equalsIgnoreCase(””))	{

if	(strBloodGroup.equalsIgnoreCase(“AP”))	{

studentDetailsBean.setBloodGroup(“A	+ve”);

}	else	if	(strBloodGroup.equalsIgnoreCase(“AN”))	{

studentDetailsBean.setBloodGroup(“A	-ve”);

}	else	if	(strBloodGroup.equalsIgnoreCase(“BP”))	{

studentDetailsBean.setBloodGroup(“B	+ve”);

}	else	if	(strBloodGroup.equalsIgnoreCase(“BN”))	{

studentDetailsBean.setBloodGroup(“B	-ve”);

}	else	if	(strBloodGroup.equalsIgnoreCase(“OP”))	{

studentDetailsBean.setBloodGroup(“O	+ve”);

}	else	if	(strBloodGroup.equalsIgnoreCase(“ON”))	{

studentDetailsBean.setBloodGroup(“O	-ve”);

}	else	if	(strBloodGroup.equalsIgnoreCase(“ABP”))	{

studentDetailsBean.setBloodGroup(“AB	+ve”);

}	else	if	(strBloodGroup.equalsIgnoreCase(“ABN”))	{

studentDetailsBean.setBloodGroup(“AB	-ve”);

}

else	{

//	Invalid	Blood	Group

studentDetailsBean.setBloodGroup(“Please	update	Blood	Group”);

logger.info(“Invalid	Blood	Group”);

}

}	else	{

//	Blood	group	is	null

studentDetailsBean.setBloodGroup(“Please	update	Blood	Group”);

logger.info(“Blood	group	is	null”);

}

studentDetailsBean.setFather(resultSet.getString(“FATHER_NAME”));															
studentDetailsBean.setFatherMobile(resultSet.getString(“FATHER_MOBILE”));															
studentDetailsBean.setMother(resultSet.getString(“MOTHER_NAME”));															
studentDetailsBean.setMotherMobile(resultSet.getString(“MOTHER_MOBILE”));															
studentDetailsBean.setAddress(resultSet.getString(“ADDRESS”));															
studentDetailsBean.setBusId(resultSet.getString(“BUS_ID”));															
studentDetailsBean.setGrade(resultSet.getString(“GRADE”));															
studentDetailsBean.setSection(resultSet.getString(“SECTION”));															
studentDetailsBean.setHeight(resultSet.getString(“HEIGHT”));															
studentDetailsBean.setWeight(resultSet.getInt(“WEIGHT”)+””);														
studentDetailsBean.setSiblings(resultSet.getString(“SIBLINGS_STUDENT_IDS”));

}	catch	(SQLException	sqle)	{

logger.error(sqle.getMessage());

}	finally	{

DatabaseService.closeDBResouces(statement,	resultSet);

DatabaseService.releaseDBConnection();		//	Releasing	database	connection.

}

}	else	{

logger.error(“Student	id	is	null”);

}

}

public	String	loadStudent(String	strStudentId)			{

String	strStudentSummary=””;

String	strFirstName	=	””;

String	strMiddleName	=	””;

String	strLastName	=	””;

String	strFullName	=	””;

String	strGrade	=	””;

String	strSection	=	””;

Connection	connection	=	null;

Statement	statement	=	null	;

ResultSet	resultSet	=	null;

if	(strStudentId	!=	null)			{

StringBuffer	sbQuery	=	new	StringBuffer(“SELECT	FIRST_NAME,	MIDDLE_NAME,	LAST_NAME,	GRADE,
SECTION	FROM	STUDENT_DETAILS	WHERE	STUDENT_ID=’”);

sbQuery.append(strStudentId+”’”);

DatabaseService	databaseService	=	new	DatabaseService();

connection	=	databaseService.getDBConnection();

try	{

statement	=	connection.createStatement();

resultSet	=	statement.executeQuery(sbQuery.toString());

resultSet.next();	//	Expecting	only	one	record.

strFirstName	=	resultSet.getString(“FIRST_NAME”);

strMiddleName	=	resultSet.getString(“MIDDLE_NAME”);

strLastName	=	resultSet.getString(“LAST_NAME”);

strGrade	=	resultSet.getString(“GRADE”);

strSection	=	resultSet.getString(“SECTION”);

if	(strFirstName	!=	null)	{

strFullName	=	strFirstName;

}

if	(strMiddleName	!=	null)	{

strFullName	=	strFullName	+	”	”	+	strMiddleName;

}

if	(strLastName	!=	null)	{

strFullName	=	strFullName	+	”	”	+	strLastName;

}

strStudentSummary	=	strFullName	+	“ | ”	+	strGrade	+	“-”	+	strSection	+
“ | ”	+	strStudentId;

}	catch	(SQLException	sqle)	{

logger.error(sqle.getMessage());

}	finally	{

databaseService.closeDBResouces(statement,	resultSet);

databaseService.releaseDBConnection();		//	Releasing	database	connection.

}

}

else	{

logger.error(“Student	id	is	null”);

}

return	strStudentSummary;

}

public	String	getServiceName()	{

return	this.getClass().getName();

}}

	

The	processGetStudentDetails	method	performs	the	following	tasks:

	

							Gets	the	student	id	from	the	session.

							Creates	an	instance	of	StudenDetailBean	and	sets	the	student	id.

							Calls	populateStudentnParentsInfo	and	populateBusInfo	methods	to	populate	the
														data	from	database	into	StudenDetailBean.

							Adds	StudenDetailBean	to	the	session	which	is	consumed	by	the	jsp.

	

The	populateStudentnParentsInfo	method	performs	the	following	tasks:

							Cooks	up	the	dynamic	select	query	for	a	given	student	id.

							Gets	the	database	connection	from	DatabaseService	class.

							Creates	the	statement	and	executes	the	query.

							Populates	the	StudeneDetailsBean	instance	from	the	ResultSet	and	adds	data
related															to	student	and	parents.

	

The	populateBusInfo	method	performs	the	following	tasks:

	

							Cooks	up	the	dynamic	select	query	for	a	given	bus	id.

							Gets	the	database	connection	from	DatabaseService	class.

							Creates	the	statement	and	executes	the	query.

							Populates	the	StudeneDetailsBean	instance	from	the	ResultSet	and	adds	data
related	to	bus	or	transportation.

	

StudentDetailsBean.java
	

The	StudentDetailsBean	class	is	just	a	simple	java	bean	with	private	fields	with	their
getters	and	setters.	Please	refer	the	class	diagram	and	below	source	code	for	understanding
this	class.

	
package	com.bis.beans;
	

import	java.util.Hashtable;

public	class	StudentDetailsBean	extends	StudentBean	{

public	StudentDetailsBean()	{

super();

}

private	java.lang.String	gender;

private	java.lang.String	dob;

private	java.lang.String	classTeacher;

private	java.lang.String	height;

private	java.lang.String	weight;

private	java.lang.String	bloodGroup;

private	java.lang.String	siblings;

private	java.lang.String	birthCity;

private	java.lang.String	birthStateCode;

private	java.lang.String	birthCountryCode;

private	java.lang.String	father;

private	java.lang.String	mother;

private	java.lang.String	fatherMobile;

private	java.lang.String	motherMobile;

private	java.lang.String	address;

private	java.lang.String	busId;

private	java.lang.String	fatherQual;

private	java.lang.String	motherQual;

private	java.lang.String	annualIncome;

private	java.lang.String	driver;

private	java.lang.String	driverMobile;

private	java.lang.String	helper;

private	java.lang.String	helperMobile;

private	java.lang.String	busNubmer;

private	java.lang.String	transType;

private	java.util.Hashtable	siblingsHash;

public	void	setGender(String	gender)	{

this.gender	=	gender;

}

public	String	getGender()	{

return	gender;

}

public	void	setDob(String	dob)	{

this.dob	=	dob;

}

public	String	getDob()	{

return	dob;

}

public	void	setClassTeacher(String	classTeacher)	{

this.classTeacher	=	classTeacher;

}

public	String	getClassTeacher()	{

return	classTeacher;

}

public	void	setHeight(String	height)	{

this.height	=	height;

}

public	String	getHeight()	{

return	height;

}

public	void	setWeight(String	weight)	{

this.weight	=	weight;

}

public	String	getWeight()	{

return	weight;

}

public	void	setBloodGroup(String	bloodGroup)	{

this.bloodGroup	=	bloodGroup;

}

public	String	getBloodGroup()	{

return	bloodGroup;

}

public	void	setSiblings(String	siblings)	{

this.siblings	=	siblings;

}

public	String	getSiblings()	{

return	siblings;

}

public	void	setBirthCity(String	birthCity)	{

this.birthCity	=	birthCity;

}

public	String	getBirthCity()	{

return	birthCity;

}

public	void	setBirthStateCode(String	birthStateCode)	{

this.birthStateCode	=	birthStateCode;

}

public	String	getBirthStateCode()	{

return	birthStateCode;

}

public	void	setBirthCountryCode(String	birthCountryCode)	{

this.birthCountryCode	=	birthCountryCode;

}

public	String	getBirthCountryCode()	{

return	birthCountryCode;

}

public	void	setFather(String	father)	{

this.father	=	father;

}

public	String	getFather()	{

return	father;

}

public	void	setMother(String	mother)	{

this.mother	=	mother;

}

public	String	getMother()	{

return	mother;

}

public	void	setFatherMobile(String	fatherMobile)	{

this.fatherMobile	=	fatherMobile;

}

public	String	getFatherMobile()	{

return	fatherMobile;

}

public	void	setMotherMobile(String	motherMobile)	{

this.motherMobile	=	motherMobile;

}

public	String	getMotherMobile()	{

return	motherMobile;

}

public	void	setAddress(String	address)	{

this.address	=	address;

}

public	String	getAddress()	{

return	address;

}

public	void	setBusId(String	busId)	{

this.busId	=	busId;

}

public	String	getBusId()	{

return	busId;

}

public	void	setFatherQual(String	fatherQual)	{

this.fatherQual	=	fatherQual;

}

public	String	getFatherQual()	{

return	fatherQual;
}

public	void	setMotherQual(String	motherQual)	{

this.motherQual	=	motherQual;

}

public	String	getMotherQual()	{

return	motherQual;

}

public	void	setAnnualIncome(String	annualIncome)	{

this.annualIncome	=	annualIncome;

}

public	String	getAnnualIncome()	{

return	annualIncome;

}

public	void	setDriver(String	driver)	{

this.driver	=	driver;

}

public	String	getDriver()	{

return	driver;

}

public	void	setDriverMobile(String	driverMobile)	{

this.driverMobile	=	driverMobile;

}

public	String	getDriverMobile()	{

return	driverMobile;

}

public	void	setHelper(String	helper)	{

this.helper	=	helper;

}

public	String	getHelper()	{

return	helper;

}

public	void	setHelperMobile(String	helperMobile)	{

this.helperMobile	=	helperMobile;

}

public	String	getHelperMobile()	{

return	helperMobile;

}

public	void	setBusNubmer(String	busNubmer)	{

this.busNubmer	=	busNubmer;

}

public	String	getBusNubmer()	{

return	busNubmer;

}

public	void	setTransType(String	transType)	{

this.transType	=	transType;

}

public	String	getTransType()	{

return	transType;

}

public	void	setSiblingsHash(Hashtable	siblingsHash)	{

this.siblingsHash	=	siblingsHash;

}

public	Hashtable	getSiblingsHash()	{

return	siblingsHash;

}

}

	

StudentDetails.jsp
	

This	jsp	is	dynamically	included	in	BisHome.jsp	as	a	result	for	get	student	details	use	case
invocation	through	user	interaction	with	the	UI..

	

Till	now	we	have	seen	that	the	command	for	student	details	goes	form	UI	as	a	result	of
user	interaction.	Then	the	controller	servlet	calls	get	student	details	command	processor
and	then	the	student	details	service	is	leveraged.	Finally,	we	get	the	results	packaged	as	an
instance	of	StudentDetailsBean.	This	bean	is	now	available	in	the	session.	In	the
StudentDetails.jsp	file	we	fetch	this	bean	from	the	session.	And	from	this	bean	we	fetch	all
the	information	related	to	student	details	using	the	getters.	The	static	part	of	the	jsp
remains	the	same	as	that	of	the	prototype	page.	Only	the	dynamic	part	is	added	using	the
bean	from	the	session.	Hence,	the	end	user	sees	the	view	for	a	given	student	with	all
his/her	details.

	

Here	is	the	source	code	for	the	StudentDetails.jsp	file.

	
<%@	page	import=“com.bis.beans.StudentDetailsBean”%>

<%@	page	import=“java.util.Hashtable,	java.util.Enumeration”%>

<%

StudentDetailsBean	studentDetailsBean	=	null;

if	(session	!=	null)	{

studentDetailsBean	=	(StudentDetailsBean)	session.getAttribute(“studentDetailsBean”);

}

%>

<form	id=“frmStdDtls”	name=“frmStdDtls”	action=“BisControllerServlet”	method=“POST”>

<input	type=“hidden”	name=“ParameterActionCommand”	value=“GetStudentDetails”></input>

<table	border=“0”	cellpadding=“0”	cellspacing=“0”	width=“100%”	height=“99%”>

<tr><td> </td></tr>

<tr><td> </td></tr>

<tr>

<td	bgcolor=“White”	align=“center”	colspan=“3”	height=“30”>

<%

if	(studentDetailsBean	!=	null)			{

out.print(studentDetailsBean.getFullName());

}

%>

 	|	

<%

if	(studentDetailsBean	!=	null)			{

out.print(studentDetailsBean.getGrade());

out.print(”	-	“);

out.print(studentDetailsBean.getSection());

}

%>

 	|	

<%

if	(studentDetailsBean	!=	null)			{

out.print(studentDetailsBean.getStudentId());

}

%>

</td>

</tr>

<tr><td> </td></tr>

<tr><td> </td></tr>

<tr><td> </td></tr>

<tr>

<td	widht=”*”	align=“center”	valign=“top”>

<table	border=“0”	cellpadding=“10”	cellspacing=“0”	width=“100%”>

<tr	valign=“top”>

<td	width=“33%”	align=“center”>

<table	border=“0”	cellpadding=“3”	cellspacing=“0”	width=“90%”	bgcolor=“White”>

<tr>

<td	colspan=“2”	align=“center”	id=“trbgred”>

Student

</td>

</tr>

<tr>

<td	colspan=“2”> </td>

</tr>

<tr>

<td	width=“25%”	align=“right”	id=“clred”>Student	ID	 </td>

<td	width=”*”	align=“left”>

<%

if	(studentDetailsBean	!=	null)			{

out.print(studentDetailsBean.getStudentId());

}

%>

</td>

</tr>

<tr>

<td	width=“25%”	align=“right”	id=“clred”>Name	 </td>

<td	width=”*”	align=“left”>

<%

if	(studentDetailsBean	!=	null)			{

out.print(studentDetailsBean.getFullName());

}

%>

</td>

</tr>

<tr>

<td	colspan=“2”> </td>

</tr>

<tr>

<td	width=”*”	align=“right”	id=“clred”>Gender	 </td>

<td	width=”*”	align=“left”>

<%

if	(studentDetailsBean	!=	null)			{

out.print(studentDetailsBean.getGender());

}

%>

</td>

</tr>

	

<tr>

<td	align=“right”	id=“clred”>Date	of	birth	 </td>

<td	width=”*”	align=“left”>

<%

if	(studentDetailsBean	!=	null)			{

out.print(studentDetailsBean.getDob());

}

%>

</td>

</tr>

<tr>

<td	colspan=“2”> </td>

</tr>

<tr>

<td	align=“right”	id=“clred”>Grade	 </td>

<td	width=”*”	align=“left”>

<%

if	(studentDetailsBean	!=	null)			{

out.print(studentDetailsBean.getGrade());

}

%>

</td>

</tr>

<tr>

<td	align=“right”	id=“clred”>Section	 </td>

<td	width=”*”	align=“left”>

<%

if	(studentDetailsBean	!=	null)			{

out.print(studentDetailsBean.getSection());

}

%>

</td>

</tr>

<tr>

<td	colspan=“2”> </td>

</tr>

<tr>

<td	align=“right”	id=“clred”>Class	Teacher	 </td>

<td	width=”*”	align=“left”>

<%

if	(studentDetailsBean	!=	null)			{

out.print(studentDetailsBean.getClassTeacher());

}

%>

</td>

</tr>

<tr>

<td	colspan=“2”> </td>

</tr>

<tr>

<td	align=“right”	id=“clred”>Height	 </td>

<td	width=”*”	align=“left”>

<%

if	(studentDetailsBean	!=	null)			{

out.print(studentDetailsBean.getHeight());

}

%>

</td>

</tr>

<tr>

<td	align=“right”	id=“clred”>Weight	 </td>

<td	width=”*”	align=“left”>

<%

if	(studentDetailsBean	!=	null)			{

out.print(studentDetailsBean.getWeight());

}

%>

</td>

</tr>

<tr>

<td	colspan=“2”> </td>

</tr>

<tr>

<td	align=“right”	id=“clred”>Blood	Group	 </td>

<td	width=”*”	align=“left”>

<%

if	(studentDetailsBean	!=	null)			{

out.print(studentDetailsBean.getBloodGroup());

}

%>

</td>

</tr>

<tr>

<td	colspan=“2”> </td>

</tr>

</table>

</td>

<td	width=“33%”	align=“center”>

<table	border=“0”	cellpadding=“3”	cellspacing=“0”	width=“90%”	bgcolor=“White”>

<tr>

<td	colspan=“2”	align=“center”	id=“trbgred”>

Parents

</td>

</tr>

<tr>

<td	colspan=“2”> </td>

</tr>

<tr>

<td	width=“25%”	align=“right”	id=“clred”>Father	 </td>

<td	width=”*”	align=“left”>

<%

if	(studentDetailsBean	!=	null)			{

out.print(studentDetailsBean.getFather());

}

%>

</td>

</tr>

<tr>

<td	colspan=“2”> </td>

</tr>

<tr>

<td	width=“25%”	align=“right”	id=“clred”>Mobile	 </td>

<td	width=”*”	align=“left”>

<%

if	(studentDetailsBean	!=	null)			{

out.print(studentDetailsBean.getFatherMobile());

}

%>

</td>

</tr>

<tr>

<td	colspan=“2”> </td>

</tr>

<tr>

<td	width=”*”	align=“right”	id=“clred”>Mother	 </td>

<td	width=”*”	align=“left”>

<%

if	(studentDetailsBean	!=	null)			{

out.print(studentDetailsBean.getMother());

}

%>

</td>

</tr>

<tr>

<td	colspan=“2”> </td>

</tr>

<tr>

<td	align=“right”	id=“clred”>Mobile	 </td>

<td	width=”*”	align=“left”>

<%

if	(studentDetailsBean	!=	null)			{

out.print(studentDetailsBean.getMotherMobile());

}

%>

</td>

</tr>

<tr>

<td	colspan=“2”> </td>

</tr>

<tr	height=“75”>

<td	align=“right”	id=“clred”>Address	 </td>

<td	width=”*”	align=“left”>

<%

if	(studentDetailsBean	!=	null)			{

out.print(studentDetailsBean.getAddress());

}

%>

</td>

</tr>

<tr>

<td	colspan=“2”> </td>

</tr>

<tr>

<td	colspan=“2”> </td>

</tr>

<tr>

<td	colspan=“2”> </td>

</tr>

<tr>

<td	colspan=“2”> </td>

</tr>

<tr>

<td	colspan=“2”> </td>

</tr>

</table>

</td>

<td	width=”*”	align=“center”>

<table	border=“0”	cellpadding=“3”	cellspacing=“0”	width=“90%”	bgcolor=“White”>

<tr>

<td	colspan=“2”	align=“center”	id=“trbgred”>

Bus

</td>

</tr>

<tr>

<td	colspan=“2”> </td>

</tr>

<tr>

<td	width=“25%”	align=“right”	id=“clred”>Bus	Id	 </td>

<td	width=”*”	align=“left”>

<%

if	(studentDetailsBean	!=	null)			{

out.print(studentDetailsBean.getBusId());

}

%>

</td>

</tr>

<tr>

<td	colspan=“2”> </td>

</tr>

<tr>

<td	width=“25%”	align=“right”	id=“clred”>Driver	 </td>

<td	width=”*”	align=“left”>

<%

if	(studentDetailsBean	!=	null)			{

out.print(studentDetailsBean.getDriver());

}

%>

</td>

</tr>

<tr>

<td	colspan=“2”> </td>

</tr>

<tr>

<td	width=”*”	align=“right”	id=“clred”>Mobile	 </td>

<td	width=”*”	align=“left”>

<%

if	(studentDetailsBean	!=	null)			{

out.print(studentDetailsBean.getDriverMobile());

}

%>

</td>

</tr>

<tr>

<td	colspan=“2”> </td>

</tr>

<tr>

<td	align=“right”	id=“clred”>Helper	 </td>

<td	width=”*”	align=“left”>

<%

if	(studentDetailsBean	!=	null)			{

out.print(studentDetailsBean.getHelper());

}

%>

</td>

</tr>

<tr>

<td	colspan=“2”> </td>

</tr>

<tr>

<td	align=“right”	id=“clred”>Mobile	 </td>

<td	width=”*”	align=“left”>

<%

if	(studentDetailsBean	!=	null)			{

out.print(studentDetailsBean.getHelperMobile());

}

%>

</td>

</tr>

<tr>

<td	colspan=“2”> </td>

</tr>

<tr>

<td	align=“right”	id=“clred”>Bus	Number	 </td>

<td	width=”*”	align=“left”>

<%

if	(studentDetailsBean	!=	null)			{

out.print(studentDetailsBean.getBusNubmer());

}

%>

</td>

</tr>

<tr>

<td	colspan=“2”> </td>

</tr>

<tr>

<td	align=“right”	id=“clred”>Transportation	 </td>

<td	width=”*”	align=“left”>

<%

if	(studentDetailsBean	!=	null)			{

out.print(studentDetailsBean.getTransType());

}

%>

</td>

</tr>

<tr>

<td	colspan=“2”> </td>

</tr>

<tr>

<td	colspan=“2”> </td>

</tr>

<tr>

<td	colspan=“2”> </td>

</tr>

</table>

</td>

</tr>

</table>

</td>

</tr>

<tr><td> </td></tr>

</table>

</form>

	

This	concludes	the	get	student	details	use	case	implementation	from	end	to	end.	We
composed	the	requirement	specifications,	we	built	the	prototype,	we	followed	the
architecture	for	the	solution,	we	leveraged	the	framework,	we	developed	the	various	java
classes,	we	used	the	common	components	like	DatabaseService.java,	BISStyle.css	etc	and
we	built	the	view	with	the	jsp	page.

	

Use	Case:	Get	student	attendance.
	

Requirements	Specification	Reference:	R7

Prototype	Reference:	P6

Prerequisite:	The	student	has	to	be	loaded	into	context	first.

	

This	use	case	needs	to	be	implemented	as	per	the	requirements	specification	reference
above.	The	UI	needs	to	be	as	per	the	prototype	reference	above.	Now	that	we	have
complete	clarity	on	use	case	requirements	and	UI	we	will	now	proceed	to	implement	this
use	case.

	

In	order	to	implement	this	use	case,	we	need	to	follow	the	architecture	and	leverage	the
framework.	To	achieve	this	we	will	first	come	up	with	detailed	design	and	then	code	it.

	

The	prerequisite	for	this	use	case	is	that	a	student	must	already	be	existing	in	the	context,
for	this	the	user	must	have	loaded	the	student	through	the	load	student	use	case.	When	the
student	is	loaded,	the	student	id	of	a	particular	student	is	added	to	the	session.	You	can
refer	the	load	student	use	case	for	details	on	this.	Lets	assume	as	of	now	that	the	student	id
is	existing	in	the	http	session.	When	the	user	clicks	on	get	student	attendance	(either	for
semester	I	or	for	semester	II)	link	either	on	dashboard	or	via	the	menu,	the	following	flow
is	triggered.

Get	student	attendance	link	is	clicked

The	href	for	these	links	are

BisControllerServlet?ParameterActionCommand=GetStudentAttendance&sem=1
and

BisControllerServlet?ParameterActionCommand=GetStudentAttendance&sem=2

The	ControllerServlet	is	invoked	on	the	server

In	the	service	method	the	action	command	parameter	value	is	read	which	is
GetStudentAttendance

The	execute	method	for	the	command	processor	pertaining	to	GetStudentAttendance	is
invoked

The	business	logic	pertaining	to	this	command	processor	is	executed	and	a	view	is
returned

The	response	is	returned	to	the	browser	with	this	view

The	user	sees	the	student	attendance	page	for	a	given	semester

The	command	processor	class	pertaining	to	GetStudentAttendance	command	is
GetStudentAttendanceCP.	The	view	pertaining	to	student	detail	page	is
StudentAttendance.jsp.	Refer	the	code	below	to	see	the	sequence	of	method	calls	once	the
execute	method	of	GetStudentAttendanceCP	is	invoked.

	

For	this	use	case	we	need	the	following	files.

	

1.	GetStudentAttendanceCP.java

2.	StudentAttendanceService.java

3.	StudentAttendanceBean.java

4.	StudentAttendance.jsp

	

GetStudentAttendanceCP.java

package	com.bis.cp;

import	com.bis.session.StudentAttendanceService;

import	javax.servlet.http.HttpServletRequest;

import	javax.servlet.http.HttpServletResponse;

import	javax.servlet.http.HttpSession;

import	org.apache.log4j.Logger;

	

public	class	GetStudentAttendanceCP	extends	BisCP	implements	BisCommand	{

	

static	Logger	logger	=	Logger.getLogger(GetStudentAttendanceCP.class);

public	GetStudentAttendanceCP()	{

super();

}

	

public	String	execute(HttpServletRequest	request,	HttpServletResponse	response)	{

	

HttpSession	session	=	request.getSession();

String	strStudentId;

String	strSemester	=	“1”;																																																							//	Defaulting	semester	to	first.

strSemester	=	request.getParameter(“sem”);

if	(session	!=	null)				{

strStudentId	=	(String)	session.getAttribute(“StudentId”);

if	(strStudentId	!=	null	&&	!(strStudentId.trim().equalsIgnoreCase(””)))			{

StudentAttendanceService	studentAttendanceService	=	new	StudentAttendanceService();

try	{

studentAttendanceService.processGetStudentAttendance(session,	strSemester);

strNextNavigation	=	“StudentAttendance”;					//The	next	navigation	page	upon	successful	processing.

}	catch	(Exception	e)	{

logger.error(e.getMessage());

strNextNavigation	=	“Error”;					//The	next	navigation	page	upon	failed	processing.

}

}

else	{

//	strStudentId	is	null,	first	entry	to	the	page.

strNextNavigation	=	“StudentAttendance”;

}

}

else	{

//	session	is	null.	Valid	session	does	not	exists.	Redirect	to	Login	page.

strNextNavigation	=	“Login”;

}

return	strNextNavigation;

}

}

	

The	execute	method	performs	the	following	actions:

	

							Gets	the	Http	session	for	the	logged	in	user.

							Gets	the	semester	the	user	has	selected	as	a	parameter	value.

							Gets	the	student	id	from	the	session.

							Creates	an	instance	of	StudentAttendanceService	and	invokes
processGetStudentAttendance	method.

							Sets	the	next	navigation	to	StudentAttendance.

	

StudentAttendanceService.java

package	com.bis.session;

import	com.bis.beans.StudentAttendanceBean;

import	com.bis.db.DatabaseService;

import	java.sql.Connection;

import	java.sql.PreparedStatement;

import	java.sql.ResultSet;

import	java.sql.SQLException;

import	java.sql.Statement;

import	javax.servlet.http.HttpServletRequest;

import	javax.servlet.http.HttpSession;

import	org.apache.log4j.Logger;

public	class	StudentAttendanceService	implements	BisService	{

static	Logger	logger	=	Logger.getLogger(StudentAttendanceService.class);

public	StudentAttendanceService()	{

super();

}

public	void	processGetStudentAttendance(HttpSession	session,	String	strSemester)	{

String	strStudentId	=	(String)session.getAttribute(“StudentId”);

StudentAttendanceBean	studentAttendanceBean;

studentAttendanceBean	=	new	StudentAttendanceBean();

if	(strStudentId	!=	null)	{

studentAttendanceBean.setStudentId(strStudentId);	//	This	is	mandatory	before	calling	the	next	method.

populateStudentAttendance(studentAttendanceBean,	strSemester);

populateWorkingDaysforSem(studentAttendanceBean,	strSemester);

session.setAttribute(“studentAttendanceBean”,	studentAttendanceBean);

}	else	{

logger.error(“Student	Id	is	null”);

}

}

private	void	populateStudentAttendance(StudentAttendanceBean	studentAttendanceBean,	String	strSemester)	{

String	strStudentId;

strStudentId	=	studentAttendanceBean.getStudentId();

Connection	connection	=	null;

Statement	statement	=	null;

ResultSet	resultSet	=	null;

StringBuffer	sbQuery	=	new	StringBuffer();

sbQuery.append(“SELECT	ATTENDANCE	FROM	STUDENT_ATTENDANCE	WHERE	STUDENT_ID=”);

sbQuery.append(”’”	+	strStudentId	+	”’	“);

sbQuery.append(“AND	SEMESTER	=	’”);

sbQuery.append(strSemester);

sbQuery.append(”’”);

if	(strStudentId	!=	null)	{

connection	=	DatabaseService.getDBConnection();

try	{

statement	=	connection.createStatement();

resultSet	=	statement.executeQuery(sbQuery.toString());

resultSet.next();	//	Expecting	only	one	record.

studentAttendanceBean.setAttendance(resultSet.getInt(“ATTENDANCE”));

}	catch	(SQLException	sqle)	{

logger.error(sqle.getMessage());

}	finally	{

DatabaseService.closeDBResouces(statement,	resultSet);

DatabaseService.releaseDBConnection();	//	Releasing	database	connection.

}

}	else	{

logger.error(“Student	id	is	null”);

}

}

private	void	populateWorkingDaysforSem(StudentAttendanceBean	studentAttendanceBean,	String	strSemester)	{

Connection	connection	=	null;

Statement	statement	=	null;

ResultSet	resultSet	=	null;

StringBuffer	sbQuery	=	new	StringBuffer();

sbQuery.append(“SELECT	VALUE	FROM	BIS_CONSTANTS	WHERE	PROPERTY=’”);

if	(strSemester.equalsIgnoreCase(“1”))	{

sbQuery.append(“SEM_ONE_WORKING_DAYS’”);

}	else	if	(strSemester.equalsIgnoreCase(“2”))	{

sbQuery.append(“SEM_TWO_WORKING_DAYS’”);

}	else	{

logger.debug(“Invalid	semester	returned”);

}

DatabaseService	databaseService	=	new	DatabaseService();

connection	=	databaseService.getDBConnection();

try	{

statement	=	connection.createStatement();

resultSet	=	statement.executeQuery(sbQuery.toString());

resultSet.next();	//	Expecting	only	one	record.

studentAttendanceBean.setTotalWorkingDays(Integer.parseInt(resultSet.getString(“VALUE”)));

}	catch	(SQLException	sqle)	{

logger.error(sqle.getMessage());

}	finally	{

databaseService.closeDBResouces(statement,	resultSet);

databaseService.releaseDBConnection();	//	Releasing	database	connection.

}

}

//	Gets	student	attendance	for	Manage	attendance	page.	This	includes	attendance	for	both	the	semesters.

public	void	processGetStudentAttendance(HttpSession	session)	throws	Exception	{

String	strStudentId	=	(String)session.getAttribute(“StudentId”);

StudentAttendanceBean	studentAttendanceBean;

studentAttendanceBean	=	new	StudentAttendanceBean();

if	(strStudentId	!=	null)	{

studentAttendanceBean.setStudentId(strStudentId);	//	This	is	mandatory	before	calling	the	next	method.

populateStudentAttendance(studentAttendanceBean);

populateWorkingDaysforBothSem(studentAttendanceBean);

session.setAttribute(“studentAttendanceBean”,	studentAttendanceBean);

}	else	{

logger.error(“Student	id	is	null”);

}

}

//	Populates	attendance	for	both	the	semesters	for	a	given	student.

private	void	populateStudentAttendance(StudentAttendanceBean	studentAttendanceBean)	{

String	strStudentId;

String	strSem;

strStudentId	=	studentAttendanceBean.getStudentId();

Connection	connection	=	null;

Statement	statement	=	null;

ResultSet	resultSet	=	null;

StringBuffer	sbQuery	=	new	StringBuffer();

sbQuery.append(“SELECT	ATTENDANCE,	SEMESTER	FROM	STUDENT_ATTENDANCE	WHERE
STUDENT_ID=”);

sbQuery.append(”’”	+	strStudentId	+	”’	“);

if	(strStudentId	!=	null)	{

DatabaseService	databaseService	=	new	DatabaseService();

connection	=	databaseService.getDBConnection();

try	{

statement	=	connection.createStatement();

resultSet	=	statement.executeQuery(sbQuery.toString());

//	Expecting	two	records.	One	for	each	semester.

while	(resultSet.next())	{

strSem	=	resultSet.getString(“SEMESTER”);

if	(strSem	!=	null)	{

if	(strSem.equalsIgnoreCase(“1”))	{

studentAttendanceBean.setSemOneAttendance(resultSet.getInt(“ATTENDANCE”));

}	else	if	(strSem.equalsIgnoreCase(“2”))	{

studentAttendanceBean.setSemTwoAttendance(resultSet.getInt(“ATTENDANCE”));

}

}

}

}	catch	(SQLException	sqle)	{

logger.error(sqle.getMessage());

}	finally	{

databaseService.closeDBResouces(statement,	resultSet);

databaseService.releaseDBConnection();	//	Releasing	database	connection.

}

}	else	{

logger.error(“Student	id	is	null”);

}

}

private	void	populateWorkingDaysforBothSem(StudentAttendanceBean	studentAttendanceBean)	{

String	strSem;

Connection	connection	=	null;

Statement	statement	=	null;

ResultSet	resultSet	=	null;

StringBuffer	sbQuery	=

new	StringBuffer(“SELECT	PROPERTY,	VALUE	FROM	BIS_CONSTANTS	WHERE
PROPERTY=‘SEM_ONE_WORKING_DAYS’	OR	PROPERTY=‘SEM_TWO_WORKING_DAYS’”);

DatabaseService	databaseService	=	new	DatabaseService();

connection	=	databaseService.getDBConnection();

try	{

statement	=	connection.createStatement();

resultSet	=	statement.executeQuery(sbQuery.toString());

//	Expecting	two	records.	One	for	each	semester.

while	(resultSet.next())	{

strSem	=	resultSet.getString(“PROPERTY”);

if	(strSem	!=	null)	{

if	(strSem.equalsIgnoreCase(“SEM_ONE_WORKING_DAYS”))	{

studentAttendanceBean.setSemOneTotalWorkingDays(Integer.parseInt(resultSet.getString(“VALUE”)));

}	else	if	(strSem.equalsIgnoreCase(“SEM_TWO_WORKING_DAYS”))	{

studentAttendanceBean.setSemTwoTotalWorkingDays(Integer.parseInt(resultSet.getString(“VALUE”)));

}

}

}

}	catch	(SQLException	sqle)	{

logger.error(sqle.getMessage());

}	finally	{

databaseService.closeDBResouces(statement,	resultSet);

databaseService.releaseDBConnection();	//	Releasing	database	connection.

}

}

//	Updates	the	student’s	attendance	for	the	given	semester	in	database.

public	void	updateStudentAttendance(HttpServletRequest	request)	{

String	strAttendance=null,	strUpdateQuery=null,	strSem=null,	strStudentId=null;

int	updateCount;

Connection	connection	=	null;

PreparedStatement	preparedStatement	=	null;

DatabaseService	databaseService	=	new	DatabaseService();

connection	=	databaseService.getDBConnection();

strUpdateQuery	=	“UPDATE	STUDENT_ATTENDANCE	SET	ATTENDANCE=?	WHERE	STUDENT_ID=?	AND
SEMESTER=?”;

strStudentId	=	(String)request.getSession().getAttribute(“StudentId”);

strSem	=	request.getParameter(“ParameterUpdateSemAttendance”);

if	(strSem	!=	null)	{

if	(strSem.equalsIgnoreCase(“1”))	{

strAttendance	=	request.getParameter(“txtPresentSemOne”);

}	else	if	(strSem.equalsIgnoreCase(“2”))	{

strAttendance	=	request.getParameter(“txtPresentSemTwo”);

}

}

else	{

logger.debug(“Semester	is	null”);

}

if	(strAttendance	!=	null	&&	strStudentId	!=	null)	{

logger.info(“strAttendance	:	“+strAttendance);

logger.info(“strStudentId	:	“+strStudentId);

try	{

preparedStatement	=	connection.prepareStatement(strUpdateQuery);

preparedStatement.setInt(1,	Integer.parseInt(strAttendance));

preparedStatement.setString(2,	strStudentId);

preparedStatement.setString(3,	strSem);

updateCount	=	preparedStatement.executeUpdate();

logger.info(“The	udate	count	for	attendanc	update	is	:	“+updateCount);

}	catch	(SQLException	sqle)	{

logger.error(sqle.getMessage());

}	catch	(NumberFormatException	nfe)	{

logger.error(nfe.getMessage());

}	finally	{

databaseService.closeDBResouces(preparedStatement,	null);

databaseService.releaseDBConnection();	//	Releasing	database	connection.

}

}	else	{

logger.error(“Attendance	or	student	id	is	null”);

}

}

public	String	getServiceName()	{

return	this.getClass().getName();

}

}

	

The	processGetStudentAttendance	method	performs	the	following	tasks:

	

							Gets	the	student	id	from	the	session.

							Creates	an	instance	of	StudentAttendanceBean.

							Calls	setter	of	StudentAttendanceBean	instance	for	setting	student	id.

							Invokes	the	private	methods	populateStudentAttendance	and
populateWorkingDaysforSem.

							Adds	the	populated	StudentAttendanceBean	instance	to	session	to	be	consumed
by	the	view.

	

The	populateStudentAttendance	method	performs	the	following	tasks:

	

							Cooks	up	a	dynamic	query	for	a	given	student	and	semester	to	fetch	the
attendance	from	the	database.

							Leverages	the	DatabaseService	class	to	get	the	database	connection.

							Calls	setter	of	StudentAttendanceBean	instance	for	setting	the	attendance.

							Uses	the	finally	block	to	close	all	the	resources	related	to	database.

	

The	populateWorkingDaysforSem	method	performs	the	following	tasks:

	

							Queries	BIS_CONSTANTS	table	for	the	property	based	on	semester	requested
by	the	user.	SEM_ONE_WORKING_DAYS	for	semester	one	and
SEM_TWO_WORKING_DAYS	for	semester	two.

							Leverages	the	DatabaseService	class	to	get	the	database	connection.

							Calls	setter	of	StudentAttendanceBean	instance	for	setting	the	total	number	of
														working	days	for	the	given	semester.

							Uses	the	finally	block	to	close	all	the	resources	related	to	database.

	

StudentAttendanceBean.java
	

The	StudentAttendanceBean	class	is	just	a	simple	java	bean	with	private	fields	with	their
getters	and	setters.	Please	refer	the	class	diagram	and	below	source	code	for	understanding
this	class.

package	com.bis.beans;

public	class	StudentAttendanceBean	extends	StudentBean	{

public	StudentAttendanceBean()	{

super();

}

private	int	attendance;

private	int	totalWorkingDays;

private	int	semOneAttendance;

private	int	semTwoAttendance;

private	int	semOneTotalWorkingDays;

private	int	semTwoTotalWorkingDays;

public	void	setAttendance(int	attendance)	{

this.attendance	=	attendance;

}

public	int	getAttendance()	{

return	attendance;

}

public	void	setTotalWorkingDays(int	totalWorkingDays)	{

this.totalWorkingDays	=	totalWorkingDays;

}

public	int	getTotalWorkingDays()	{

return	totalWorkingDays;

}

public	void	setSemOneAttendance(int	semOneAttendance)	{

this.semOneAttendance	=	semOneAttendance;

}

public	int	getSemOneAttendance()	{

return	semOneAttendance;

}

public	void	setSemTwoAttendance(int	semTwoAttendance)	{

this.semTwoAttendance	=	semTwoAttendance;

}

public	int	getSemTwoAttendance()	{

return	semTwoAttendance;

}

public	void	setSemOneTotalWorkingDays(int	semOneTotalWorkingDays)	{

this.semOneTotalWorkingDays	=	semOneTotalWorkingDays;

}

public	int	getSemOneTotalWorkingDays()	{

return	semOneTotalWorkingDays;

}

public	void	setSemTwoTotalWorkingDays(int	semTwoTotalWorkingDays)	{

this.semTwoTotalWorkingDays	=	semTwoTotalWorkingDays;

}

public	int	getSemTwoTotalWorkingDays()	{

return	semTwoTotalWorkingDays;

}

}

	

StudentAttendance.jsp
	

This	jsp	is	dynamically	included	in	BisHome.jsp	as	a	result	for	get	student	attendance	use
case	invocation	through	user	interaction	with	the	UI.

	

Till	now	we	have	seen	that	the	command	for	student	attendance	goes	form	UI	as	a	result
of	user	interaction.	Then	the	controller	servlet	calls	get	student	attendance	command
processor	and	then	the	student	attendance	service	is	leveraged.	Finally,	we	get	the	results
packaged	as	an	instance	of	StudentAttendanceBean.	This	bean	is	now	available	in	the
session.	In	the	StudentAttendance.jsp	file	we	fetch	this	bean	from	the	session.	And	from
this	bean	we	fetch	all	the	information	related	to	student	attendance	using	the	getters.	The
static	part	of	the	jsp	remains	the	same	as	that	of	the	prototype	page.	Only	the	dynamic	part
is	added	using	the	bean	from	the	session.	Hence,	the	end	user	sees	the	view	for	a	given
student	and	semester	with	all	the	attendance	related	details.

	

Here	is	the	source	code	for	the	StudentAttendance.jsp	file.

	
<%@	page	import=“com.bis.beans.StudentResultsBean,	com.bis.beans.StudentAttendanceBean”%>

<%@	page	import=“java.util.Hashtable,	java.util.Enumeration”%>

<%

StudentResultsBean	studentResultsBean	=	null;

int	inPresentPercentage=0;

int	inTotal=0;

int	inPresent=0;

StudentAttendanceBean	studentAttendanceBean	=	null;

if	(session	!=	null)	{

studentResultsBean	=	(StudentResultsBean)	session.getAttribute(“studentResultsBean”);

studentAttendanceBean	=	(StudentAttendanceBean)	session.getAttribute(“studentAttendanceBean”);

}

if	(studentAttendanceBean	!=	null)				{

inTotal	=	studentAttendanceBean.getTotalWorkingDays();

inPresent	=	studentAttendanceBean.getAttendance();

if	(inTotal	>	0	&&	inPresent	>0)	{

inPresentPercentage	=	Math.abs(100	*	inPresent/inTotal);

}

}

%>

<form	id=“frmStudentAttendance”>

<table	border=“0”	cellpadding=“10”	cellspacing=“0”	width=“100%”>

<tr><td> </td></tr>

<tr>

<td	bgcolor=“White”	align=“center”	colspan=“3”>

<%

if	(studentResultsBean	!=	null)			{

out.print(studentResultsBean.getFullName());

}

%>

 	|	

<%

String	strSem=request.getParameter(“sem”);

if	(strSem	!=	null)			{

if	(strSem.equalsIgnoreCase(“1”))			{

strSem	=	“Semester	-	I”;

}

else	{

strSem	=	“Semester	-	II”;

}

}

else	{

strSem	=	“Semester	-	I”;

}

out.print(strSem);

%>

 	|	

<%

if	(studentResultsBean	!=	null)			{

out.print(studentResultsBean.getGrade());

out.print(”	-	“);

out.print(studentResultsBean.getSection());

}

%>

 	|	

<%

if	(studentResultsBean	!=	null)			{

out.print(studentResultsBean.getStudentId());

}

%>

</td>

</tr>

<tr><td> </td></tr>

<tr	align=“center”>

<td	height=“250px”>

<table	border=“1”	cellpadding=“5”	cellspacing=“0”	width=“70%”>

<tr	valign=“middle”	bgcolor=“White”>

<td	bgcolor=“White”	align=“center”	height=“100px”	width=“100%”	colspan=“2”>

Total	-

<%

if	(studentAttendanceBean	!=	null)			{

out.print(studentAttendanceBean.getTotalWorkingDays());

}

%>

Days.

</td>

</tr>

<tr	valign=“middle”	bgcolor=“White”	id=“bigwhtxt”>

<td	bgcolor=“Green”	align=“center”	height=“200px”	width=”<%=inPresentPercentage%>%”>

Present	-	<%=inPresentPercentage%>%

</td>

<td	bgcolor=“Red”	align=“center”	height=“200px”	width=”*”>Absent	-	<%=(100-inPresentPercentage)%>%</td>

</tr>

<tr	valign=“middle”	bgcolor=“White”>

<td	bgcolor=“White”	align=“center”	height=“100px”	width=“100%”	colspan=“2”>

|

Present	-

<%

if	(studentAttendanceBean	!=	null)			{

out.print(studentAttendanceBean.getAttendance());

}

%>

 |

Absent	-

<%

if	(studentAttendanceBean	!=	null)			{

int	intAbsent	=	studentAttendanceBean.getTotalWorkingDays()	-	studentAttendanceBean.getAttendance();

out.print(intAbsent);

}

%>

 |

</td>

</tr>

</table>

</td>

</tr>

<tr><td> </td></tr>

</table>

</form>

	

This	concludes	the	get	attendance	details	use	case	implementation	from	end	to	end.	We
composed	the	requirement	specifications,	we	built	the	prototype,	we	followed	the
architecture	for	the	solution,	we	leveraged	the	framework,	we	developed	the	various	java
classes,	we	used	the	common	components	like	DatabaseService.java,	BISStyle.css	etc	and
we	built	the	view	with	the	jsp	page.

	

Use	Case:	Get	student	fees.
	

Requirements	Specification	Reference:	R8

Prototype	Reference:	P7

Prerequisite:	The	student	has	to	be	loaded	into	context	first.

	

This	use	case	needs	to	be	implemented	as	per	the	requirements	specification	reference
above.	The	UI	needs	to	be	as	per	the	prototype	reference	above.	Now	that	we	have
complete	clarity	on	use	case	requirements	and	UI	we	will	now	proceed	to	implement	this
use	case.

	

In	order	to	implement	this	use	case,	we	need	to	follow	the	architecture	and	leverage	the
framework.	To	achieve	this	we	will	first	come	up	with	detailed	design	and	then	code	it.

	

The	prerequisite	for	this	use	case	is	that	a	student	must	already	be	existing	in	the	context,
for	this	the	user	must	have	loaded	the	student	through	the	load	student	use	case.	When	the
student	is	loaded,	the	student	id	of	a	particular	student	is	added	to	the	session.	You	can
refer	the	load	student	use	case	for	details	on	this.	Lets	assume	as	of	now	that	the	student	id
is	existing	in	the	http	session.	When	the	user	clicks	the	student	fees	link	either	on
dashboard	or	via	the	menu,	the	following	flow	is	triggered.

Get	student	fees	link	is	clicked

The	href	for	the	link	is

BisControllerServlet?ParameterActionCommand=GetStudentFees

The	ControllerServlet	is	invoked	on	the	server

In	the	service	method	the	action	command	parameter	value	is	read	which	is
GetStudentFees

The	execute	method	for	the	command	processor	pertaining	to	GetStudentFees	is	invoked

The	business	logic	pertaining	to	this	command	processor	is	executed	and	a	view	is
returned

The	response	is	returned	to	the	browser	with	this	view

The	user	sees	the	student	fees	page

The	command	processor	class	pertaining	to	GetStudentFees	command	is
GetStudentFeesCP.	The	view	pertaining	to	student	detail	page	is	StudentFees.jsp.	Refer
the	code	below	to	see	the	sequence	of	method	calls	once	the	execute	method	of
GetStudentFeesCP	is	called.

	

For	this	use	case	we	need	the	following	files.

	

1.	GetStudentFeesCP.java

2.	StudentFeesService.java

3.	StudentFeesBean.java

4.	StudentFees.jsp

	

GetStudentFeesCP.java

package	com.bis.cp;

import	com.bis.session.StudentFeesService;

import	javax.servlet.http.HttpServletRequest;

import	javax.servlet.http.HttpServletResponse;

import	javax.servlet.http.HttpSession;

import	org.apache.log4j.Logger;

	

public	class	GetStudentFeesCP	extends	BisCP	implements	BisCommand	{

static	Logger	logger	=	Logger.getLogger(GetStudentFeesCP.class);

public	GetStudentFeesCP()	{

super();

}

public	String	execute(HttpServletRequest	request,	HttpServletResponse	response)	{

HttpSession	session	=	request.getSession();

String	strStudentId;

if	(session	!=	null)				{

strStudentId	=	(String)	session.getAttribute(“StudentId”);

if	(strStudentId	!=	null	&&	!(strStudentId.trim().equalsIgnoreCase(””)))			{

StudentFeesService	studentFeesService	=	new	StudentFeesService();

try	{

studentFeesService.processGetFeesDetails(session);

strNextNavigation	=	“StudentFees”;					//The	next	navigation	page	upon	successful	processing.

}	catch	(Exception	e)	{

logger.error(e.getMessage());

strNextNavigation	=	“Error”;					//The	next	navigation	page	upon	failed	processing.

}

}

else	{

//	strStudentId	is	null,	first	entry	to	the	page.

strNextNavigation	=	“StudentFees”;

}

}

else	{

//	session	is	null.	Valid	session	doesn’t	exsit.	Redirect	to	Login	page.

strNextNavigation	=	“Login”;

}

return	strNextNavigation;

}

}

	

The	execute	method	performs	the	following	actions:

	

							Gets	the	Http	session	for	the	logged	in	user.

							Gets	the	student	id	from	the	session.

							Creates	an	instance	of	StudentFeesService	and	invokes	processGetFeesDetails
method.

							Sets	the	next	navigation	to	StudentFees.

	

StudentFeesService.java

package	com.bis.session;

	

import	com.bis.beans.StudentFeesBean;

import	com.bis.db.DatabaseService;

import	java.sql.Connection;

import	java.sql.ResultSet;

import	java.sql.SQLException;

import	java.sql.Statement;

import	javax.servlet.http.HttpSession;

import	org.apache.log4j.Logger;

	

public	class	StudentFeesService	implements	BisService	{

static	Logger	logger	=	Logger.getLogger(StudentFeesService.class);

public	StudentFeesService()	{

super();

}

public	void	processGetFeesDetails(HttpSession	session)	{

String	strStudentId	=	(String)	session.getAttribute(“StudentId”);

StudentFeesBean	studentFeesBean;

studentFeesBean	=	new	StudentFeesBean();

if	(strStudentId	!=	null)	{

studentFeesBean.setStudentId(strStudentId);	//	This	is	mandatory	before	calling	the	next	method.

populateFeesInfo(studentFeesBean);

session.setAttribute(“studentFeesBean”,	studentFeesBean);

}	else	{

logger.error(“Student	id	is	null”);

}

}

private	void	populateFeesInfo(StudentFeesBean	studentFeesBean)	{

String	strStudentId;

strStudentId	=	studentFeesBean.getStudentId();

Connection	connection	=	null;

Statement	statement	=	null;

ResultSet	resultSet	=	null;

StringBuffer	sbQuery	=	new	StringBuffer();

sbQuery.append(“SELECT	JAN_ACAD,	FEB_ACAD,	MAR_ACAD,	APR_ACAD,	MAY_ACAD,	JUN_ACAD,\n”	+

“												JUL_ACAD,	AUG_ACAD,	SEP_ACAD,	OCT_ACAD,	NOV_ACAD,	DEC_ACAD,\n”	+

“												JAN_BUS,	FEB_BUS,	MAR_BUS,	APR_BUS,	MAY_BUS,	JUN_BUS,\n”	+

“												JUL_BUS,	AUG_BUS,	SEP_BUS,	OCT_BUS,	NOV_BUS,	DEC_BUS\n”	+

“FROM	STUDENT_FEES\n”	+

“WHERE	STUDENT_ID=”);

sbQuery.append(”	’”+strStudentId+”’”);

if	(strStudentId	!=	null)	{

connection	=	DatabaseService.getDBConnection();

try	{

statement	=	connection.createStatement();

resultSet	=	statement.executeQuery(sbQuery.toString());

resultSet.next();	//	Expecting	only	one	record.

studentFeesBean.setJanAcad(resultSet.getString(“JAN_ACAD”));

studentFeesBean.setFebAcad(resultSet.getString(“FEB_ACAD”));

studentFeesBean.setMarAcad(resultSet.getString(“MAR_ACAD”));

studentFeesBean.setAprAcad(resultSet.getString(“APR_ACAD”));

studentFeesBean.setMayAcad(resultSet.getString(“MAY_ACAD”));

studentFeesBean.setJunAcad(resultSet.getString(“JUN_ACAD”));

studentFeesBean.setJulAcad(resultSet.getString(“JUL_ACAD”));

studentFeesBean.setAugAcad(resultSet.getString(“AUG_ACAD”));

studentFeesBean.setSepAcad(resultSet.getString(“SEP_ACAD”));

studentFeesBean.setOctAcad(resultSet.getString(“OCT_ACAD”));

studentFeesBean.setNovAcad(resultSet.getString(“NOV_ACAD”));

studentFeesBean.setDecAcad(resultSet.getString(“DEC_ACAD”));

studentFeesBean.setJanBus(resultSet.getString(“JAN_BUS”));

studentFeesBean.setFebBus(resultSet.getString(“FEB_BUS”));

studentFeesBean.setMarBus(resultSet.getString(“MAR_BUS”));

studentFeesBean.setAprBus(resultSet.getString(“APR_BUS”));

studentFeesBean.setMayBus(resultSet.getString(“MAY_BUS”));

studentFeesBean.setJunBus(resultSet.getString(“JUN_BUS”));

studentFeesBean.setJulBus(resultSet.getString(“JUL_BUS”));

studentFeesBean.setAugBus(resultSet.getString(“AUG_BUS”));

studentFeesBean.setSepBus(resultSet.getString(“SEP_BUS”));

studentFeesBean.setOctBus(resultSet.getString(“OCT_BUS”));

studentFeesBean.setNovBus(resultSet.getString(“NOV_BUS”));

studentFeesBean.setDecBus(resultSet.getString(“DEC_BUS”));

}		catch	(SQLException	sqle)	{

logger.error(sqle.getMessage());

}

finally	{

DatabaseService.closeDBResouces(statement,	resultSet);

DatabaseService.releaseDBConnection();		//	Releasing	database	connection.

}

}	else	{

logger.error(“Student	id	is	null”);

}

}

public	String	getServiceName()	{

return	this.getClass().getName();

}

}

	

The	processGetFeesDetails	method	performs	the	following	tasks:

	

							Gets	the	student	id	from	the	session.

							Creates	an	instance	of	StudenFeesBean	and	sets	the	student	id.

							Calls	populateFeesInfo	method	to	populate	the	data	from	database	into														
StudenFeesBean.

							Adds	StudenFeesBean	to	the	session	which	is	consumed	by	the	jsp.

	

The	populateFeesInfo	method	performs	the	following	tasks:
	

							Cooks	up	the	dynamic	select	query	for	a	given	student	id.

							Gets	the	database	connection	from	DatabaseService	class.

							Creates	the	statement	and	executes	the	query.

							Populates	the	StudeneFeesBean	instance	from	the	ResultSet	and	adds	data
related	to	student	fees.

	

StudentFeesBean.java
	

The	StudentFeessBean	class	is	just	a	simple	java	bean	with	private	fields	with	their	getters
and	setters.	Please	refer	the	class	diagram	and	below	source	code	for	understanding	this
class.

package	com.bis.beans;

public	class	StudentFeesBean	extends	StudentBean	{

public	StudentFeesBean()	{

super();

}

private	java.lang.String	janAcad;

private	java.lang.String	febAcad;

private	java.lang.String	marAcad;

private	java.lang.String	aprAcad;

private	java.lang.String	mayAcad;

private	java.lang.String	junAcad;

private	java.lang.String	julAcad;

private	java.lang.String	augAcad;

private	java.lang.String	sepAcad;

private	java.lang.String	octAcad;

private	java.lang.String	novAcad;

private	java.lang.String	decAcad;

private	java.lang.String	janBus;

private	java.lang.String	febBus;

private	java.lang.String	marBus;

private	java.lang.String	aprBus;

private	java.lang.String	mayBus;

private	java.lang.String	junBus;

private	java.lang.String	julBus;

private	java.lang.String	augBus;

private	java.lang.String	sepBus;

private	java.lang.String	octBus;

private	java.lang.String	novBus;

private	java.lang.String	decBus;

	

public	void	setJanAcad(String	janAcad)	{

this.janAcad	=	janAcad;

}

public	String	getJanAcad()	{

return	janAcad;

}

public	void	setFebAcad(String	febAcad)	{

this.febAcad	=	febAcad;

}

public	String	getFebAcad()	{

return	febAcad;

}

public	void	setMarAcad(String	marAcad)	{

this.marAcad	=	marAcad;

}

public	String	getMarAcad()	{

return	marAcad;

}

public	void	setAprAcad(String	aprAcad)	{

this.aprAcad	=	aprAcad;

}

public	String	getAprAcad()	{

return	aprAcad;

}

public	void	setMayAcad(String	mayAcad)	{

this.mayAcad	=	mayAcad;

}

public	String	getMayAcad()	{

return	mayAcad;

}

public	void	setJunAcad(String	junAcad)	{

this.junAcad	=	junAcad;

}

public	String	getJunAcad()	{

return	junAcad;

}

public	void	setJulAcad(String	julAcad)	{

this.julAcad	=	julAcad;

}

public	String	getJulAcad()	{

return	julAcad;

}

public	void	setAugAcad(String	augAcad)	{

this.augAcad	=	augAcad;

}

public	String	getAugAcad()	{

return	augAcad;

}

public	void	setSepAcad(String	sepAcad)	{

this.sepAcad	=	sepAcad;

}

public	String	getSepAcad()	{

return	sepAcad;

}

public	void	setOctAcad(String	octAcad)	{

this.octAcad	=	octAcad;

}

public	String	getOctAcad()	{

return	octAcad;

}

public	void	setNovAcad(String	novAcad)	{

this.novAcad	=	novAcad;

}

public	String	getNovAcad()	{

return	novAcad;

}

public	void	setDecAcad(String	decAcad)	{

this.decAcad	=	decAcad;

}

public	String	getDecAcad()	{

return	decAcad;

}

public	void	setJanBus(String	janBus)	{

this.janBus	=	janBus;

}

public	String	getJanBus()	{

return	janBus;

}

public	void	setFebBus(String	febBus)	{

this.febBus	=	febBus;

}

public	String	getFebBus()	{

return	febBus;

}

public	void	setMarBus(String	marBus)	{

this.marBus	=	marBus;

}

public	String	getMarBus()	{

return	marBus;

}

public	void	setAprBus(String	aprBus)	{

this.aprBus	=	aprBus;

}

public	String	getAprBus()	{

return	aprBus;

}

public	void	setMayBus(String	mayBus)	{

this.mayBus	=	mayBus;

}

public	String	getMayBus()	{

return	mayBus;

}

public	void	setJunBus(String	junBus)	{

this.junBus	=	junBus;

}

public	String	getJunBus()	{

return	junBus;

}

public	void	setJulBus(String	julBus)	{

this.julBus	=	julBus;

}

public	String	getJulBus()	{

return	julBus;

}

public	void	setAugBus(String	augBus)	{

this.augBus	=	augBus;

}

public	String	getAugBus()	{

return	augBus;

}

public	void	setSepBus(String	sepBus)	{

this.sepBus	=	sepBus;

}

public	String	getSepBus()	{

return	sepBus;

}

public	void	setOctBus(String	octBus)	{

this.octBus	=	octBus;

}

public	String	getOctBus()	{

return	octBus;

}

public	void	setNovBus(String	novBus)	{

this.novBus	=	novBus;

}

public	String	getNovBus()	{

return	novBus;

}

public	void	setDecBus(String	decBus)	{

this.decBus	=	decBus;

}

public	String	getDecBus()	{

return	decBus;

}

}

	

StudentFees.jsp
	

This	jsp	is	dynamically	included	in	BisHome.jsp	as	a	result	for	get	student	fees	use	case
invocation	through	user	interaction	with	the	UI.

	

Till	now	we	have	seen	that	the	command	for	student	fees	goes	form	UI	as	a	result	of	user
interaction.	Then	the	controller	servlet	calls	get	student	fees	command	processor	and	then
the	student	fees	service	is	leveraged.	Finally,	we	get	the	results	packaged	as	an	instance	of
StudentFeesBean.	This	bean	is	now	available	in	the	session.	In	the	StudentFees.jsp	file	we
fetch	this	bean	from	the	session.	And	from	this	bean	we	fetch	all	the	information	related	to
student	fees	using	the	getters.	The	static	part	of	the	jsp	remains	the	same	as	that	of	the
prototype	page.	Only	the	dynamic	part	is	added	using	the	bean	from	the	session.	Hence,
the	end	user	sees	the	view	with	the	fees	details	for	a	given	student.

	

Here	is	the	source	code	for	the	StudentFees.jsp	file.

<%@	page	import=“com.bis.beans.StudentFeesBean,	com.bis.beans.StudentResultsBean”%>

<%@	page	import=“java.util.Hashtable,	java.util.Enumeration”%>

<%

StudentFeesBean	studentFeesBean	=	null;

StudentResultsBean	studentResultsBean	=	null;

if	(session	!=	null)	{

studentFeesBean	=	(StudentFeesBean)	session.getAttribute(“studentFeesBean”);

studentResultsBean	=	(StudentResultsBean)	session.getAttribute(“studentResultsBean”);

}

%>

<form	id=“frmStudentFees”>

<table	border=“0”	cellpadding=“0”	cellspacing=“0”	width=“100%”	height=“99%”>

<tr>

<td	widht=”*”	align=“center”	valign=“top”>

<table	border=“0”	cellpadding=“10”	cellspacing=“0”	width=“100%”>

<tr><td> </td></tr>

<tr>

<td	bgcolor=“White”	align=“center”	colspan=“3”>

<%

if	(studentResultsBean	!=	null)			{

out.print(studentResultsBean.getFullName());

}

%>

 	|	

<%

if	(studentResultsBean	!=	null)			{

out.print(studentResultsBean.getGrade());

out.print(”	-	“);

out.print(studentResultsBean.getSection());

}

%>

 	|	

<%

if	(studentResultsBean	!=	null)			{

out.print(studentFeesBean.getStudentId());

}

%>

</td>

</tr>

<tr><td> </td></tr>

<tr	valign=“middle”>

<td	align=“center”>

<table	border=“1”	cellpadding=“10”	cellspacing=“0”	width=“80%”	bgcolor=“White”>

<tr	id=“trbgred”>

<td	colspan=“12”	align=“left”>

 Academic	Fees

</td>

</tr>

<tr	id=“clred”>

<td	colspan=“3”	align=“center”>

Term	One

</td>

<td	colspan=“3”	align=“center”>

Term	Two

</td>

<td	colspan=“3”	align=“center”>

Term	Three

</td>

<td	colspan=“3”	align=“center”>

Term	Four

</td>

</tr>

<tr	id=“clred”>

<td	align=“center”	width=“8%”>

April

</td>

<td	align=“center”	width=“8%”>

May

</td>

<td	align=“center”	width=“8%”>

June

</td>

<td	align=“center”	width=“8%”>

July

</td>

<td	align=“center”	width=“8%”>

August

</td>

<td	align=“center”	width=“8%”>

September

</td>

<td	align=“center”	width=“8%”>

October

</td>

<td	align=“center”	width=“8%”>

November

</td>

<td	align=“center”	width=“8%”>

December

</td>

<td	align=“center”	width=“8%”>

January

</td>

<td	align=“center”	width=“8%”>

February

</td>

<td	align=“center”	width=“8%”>

March

</td>

</tr>

<tr>

<td	align=“center”>

<%

if	(studentFeesBean	!=	null)			{

out.print(studentFeesBean.getAprAcad());

}

%>

</td>

<td	align=“center”>

<%

if	(studentFeesBean	!=	null)			{

out.print(studentFeesBean.getMayAcad());

}

%>

</td>

<td	align=“center”>

<%

if	(studentFeesBean	!=	null)			{

out.print(studentFeesBean.getJunAcad());

}

%>

</td>

<td	align=“center”>

<%

if	(studentFeesBean	!=	null)			{

out.print(studentFeesBean.getJulAcad());

}

%>

</td>

<td	align=“center”>

<%

if	(studentFeesBean	!=	null)			{

out.print(studentFeesBean.getAugAcad());

}

%>

</td>

<td	align=“center”>

<%

if	(studentFeesBean	!=	null)			{

out.print(studentFeesBean.getSepAcad());

}

%>

</td>

<td	align=“center”>

<%

if	(studentFeesBean	!=	null)			{

out.print(studentFeesBean.getOctAcad());

}

%>

</td>

<td	align=“center”>

<%

if	(studentFeesBean	!=	null)			{

out.print(studentFeesBean.getNovAcad());

}

%>

</td>

<td	align=“center”>

<%

if	(studentFeesBean	!=	null)			{

out.print(studentFeesBean.getDecAcad());

}

%>

</td>

<td	align=“center”>

<%

if	(studentFeesBean	!=	null)			{

out.print(studentFeesBean.getJanAcad());

}

%>

</td>

<td	align=“center”>

<%

if	(studentFeesBean	!=	null)			{

out.print(studentFeesBean.getFebAcad());

}

%>

</td>

<td	align=“center”>

<%

if	(studentFeesBean	!=	null)			{

out.print(studentFeesBean.getMarAcad());

}

%>

</td>

</tr>

</table>

</td>

</tr>

<tr	valign=“middle”>

<td	align=“center”>

<table	border=“1”	cellpadding=“10”	cellspacing=“0”	width=“80%”	bgcolor=“White”>

<tr	id=“trbgred”>

<td	colspan=“12”	align=“left”>

 Bus	Fees

</td>

</tr>

<tr	id=“clred”>

<td	align=“center”	width=“8%”>

April

</td>

<td	align=“center”	width=“8%”>

May

</td>

<td	align=“center”	width=“8%”>

June

</td>

<td	align=“center”	width=“8%”>

July

</td>

<td	align=“center”	width=“8%”>

August

</td>

<td	align=“center”	width=“8%”>

September

</td>

<td	align=“center”	width=“8%”>

October

</td>

<td	align=“center”	width=“8%”>

November

</td>

<td	align=“center”	width=“8%”>

December

</td>

<td	align=“center”	width=“8%”>

January

</td>

<td	align=“center”	width=“8%”>

February

</td>

<td	align=“center”	width=“8%”>

March

</td>

</tr>

<tr>

<td	align=“center”>

<%

if	(studentFeesBean	!=	null)			{

out.print(studentFeesBean.getAprBus());

}

%>

</td>

<td	align=“center”>

<%

if	(studentFeesBean	!=	null)			{

out.print(studentFeesBean.getMayBus());

}

%>

</td>

<td	align=“center”>

<%

if	(studentFeesBean	!=	null)			{

out.print(studentFeesBean.getJunBus());

}

%>

</td>

<td	align=“center”>

<%

if	(studentFeesBean	!=	null)			{

out.print(studentFeesBean.getJulBus());

}

%>

</td>

<td	align=“center”>

<%

if	(studentFeesBean	!=	null)			{

out.print(studentFeesBean.getAugBus());

}

%>

</td>

<td	align=“center”>

<%

if	(studentFeesBean	!=	null)			{

out.print(studentFeesBean.getSepBus());

}

%>

</td>

<td	align=“center”>

<%

if	(studentFeesBean	!=	null)			{

out.print(studentFeesBean.getOctBus());

}

%>

</td>

<td	align=“center”>

<%

if	(studentFeesBean	!=	null)			{

out.print(studentFeesBean.getNovBus());

}

%>

</td>

<td	align=“center”>

<%

if	(studentFeesBean	!=	null)			{

out.print(studentFeesBean.getDecBus());

}

%>

</td>

<td	align=“center”>

<%

if	(studentFeesBean	!=	null)			{

out.print(studentFeesBean.getJanBus());

}

%>

</td>

<td	align=“center”>

<%

if	(studentFeesBean	!=	null)			{

out.print(studentFeesBean.getFebBus());

}

%>

</td>

<td	align=“center”>

<%

if	(studentFeesBean	!=	null)			{

out.print(studentFeesBean.getMarBus());

}

%>

</td>

</tr>

</table>

</td>

</tr>

<tr	valign=“middle”>

<td	align=“center”>

<table	border=“1”	cellpadding=“10”	cellspacing=“0”	width=“80%”	bgcolor=“White”>

<tr	id=“trbgred”>

<td	align=“left”>

 Other	Fees

</td>

</tr>

<tr>

<td	align=“left”>

</td>

</tr>

</table>

</td>

</tr>

<tr><td> </td></tr>

</table>

</td>

</tr>

</table>

</form>

	

This	concludes	the	get	student	fees	use	case	implementation	from	end	to	end.	We
composed	the	requirement	specifications,	we	built	the	prototype,	we	followed	the
architecture	for	the	solution,	we	leveraged	the	framework,	we	developed	the	various	java
classes,	we	used	the	common	components	like	DatabaseService.java,	BISStyle.css	etc	and
we	built	the	view	with	the	jsp	page.

	

Use	Case:	Get	student	results.
	

Requirements	Specification	Reference:	R6

Prototype	Reference:	P5

Prerequisite:	The	student	has	to	be	loaded	into	context	first.

	

This	use	case	needs	to	be	implemented	as	per	the	requirements	specification	reference
above.	The	UI	needs	to	be	as	per	the	prototype	reference	above.	Now	that	we	have
complete	clarity	on	use	case	requirements	and	UI	we	will	now	proceed	to	implement	this
use	case.

	

In	order	to	implement	this	use	case,	we	need	to	follow	the	architecture	and	leverage	the
framework.	To	achieve	this	we	will	first	come	up	with	detailed	design	and	then	code	it.

	

The	prerequisite	for	this	use	case	is	that	a	student	must	already	be	existing	in	the	context,
for	this	the	user	must	have	loaded	the	student	through	the	load	student	use	case.	When	the
student	is	loaded,	the	student	id	of	a	particular	student	is	added	to	the	session.	You	can
refer	the	load	student	use	case	for	details	on	this.	Lets	assume	as	of	now	that	the	student	id
is	existing	in	the	http	session.	When	the	user	clicks	on	get	student	result	(either	for
semester	I	or	for	semester	II)	link	either	on	dashboard	or	via	the	menu,	the	following	flow
is	triggered.

Get	student	result	link	is	clicked.

The	href	for	these	links	are
BisControllerServlet?ParameterActionCommand=GetStudentAcademics&sem=1
and
BisControllerServlet?ParameterActionCommand=GetStudentAcademics&sem=2

The	ControllerServlet	is	invoked	on	the	server

In	the	service	method	the	action	command	parameter	value	is	read	which	is
GetStudentAcademics.

The	execute	method	for	the	command	processor	pertaining	to	GetStudentAcademics	is
invoked.	

The	business	logic	pertaining	to	this	command	processor	is	executed	and	a	view	is
returned.

The	response	is	returned	to	the	browser	with	this	view.

The	user	sees	the	student	results	page	for	a	given	semester.

The	command	processor	class	pertaining	to	GetStudentAcademics	command	is
GetStudentAcademicsCP.	The	view	pertaining	to	student	detail	page	is
StudentAcademics.jsp.	Refer	the	code	below	to	see	the	sequence	of	method	calls	once	the
execute	method	of	GetStudentAcademicsCP	is	called.

	

For	this	use	case	we	need	the	following	files.

	

1.	GetStudentAcademicsCP.java

2.	StudentAcademicsService.java

3.	StudentResultsBean.java

4.	StudentAcademics.jsp

	

GetStudentAcademicsCP.java

package	com.bis.cp;

	

import	com.bis.session.StudentAcademicsService;

import	javax.servlet.http.HttpServletRequest;

import	javax.servlet.http.HttpServletResponse;

import	javax.servlet.http.HttpSession;

import	org.apache.log4j.Logger;

	

public	class	GetStudentAcademicsCP	extends	BisCP	implements	BisCommand	{

static	Logger	logger	=	Logger.getLogger(GetStudentAcademicsCP.class);

public	GetStudentAcademicsCP()	{

super();

}

public	String	execute(HttpServletRequest	request,	HttpServletResponse	response)	{

HttpSession	session	=	request.getSession();

String	strStudentId;

String	strSemester	=	“1”;																																																							//	Defaulting	semester	to	first.

strSemester	=	request.getParameter(“sem”);

if	(session	!=	null)				{

strStudentId	=	(String)	session.getAttribute(“StudentId”);

if	(strStudentId	!=	null	&&	!(strStudentId.trim().equalsIgnoreCase(””)))			{

StudentAcademicsService	studentAcademicsService	=	new	StudentAcademicsService();

try	{

studentAcademicsService.processGetStudentResults(session,	strSemester);

strNextNavigation	=	“StudentAcademics”;					//The	next	navigation	page	upon	successful	processing.

}	catch	(Exception	e)	{

logger.error(e.getMessage());

strNextNavigation	=	“Error”;					//The	next	navigation	page	upon	failed	processing.

}

}

else	{

//	strStudentId	is	null,	first	entry	to	the	page.

strNextNavigation	=	“StudentAcademics”;

}

}

else	{

//	session	is	null.	Valid	session	doesn’t	exsit.	Redirect	to	Login	page.

strNextNavigation	=	“Login”;

}

return	strNextNavigation;

}

}

	

The	execute	method	performs	the	following	actions:

	

							Gets	the	Http	session	for	the	logged	in	user.

							Gets	the	semester	the	user	has	selected	as	a	parameter	value.

							Gets	the	student	id	from	the	session.

							Creates	an	instance	of	StudentAcademicsService	and	invokes
processGetStudentResults	method.

							Sets	the	next	navigation	to	StudentAcademics.

	

StudentAcademicsService.java

package	com.bis.session;

	

import	com.bis.beans.StudentResultsBean;

import	com.bis.db.DatabaseService;

import	java.sql.Connection;

import	java.sql.ResultSet;

import	java.sql.SQLException;

import	java.sql.Statement;

import	javax.servlet.http.HttpSession;

import	org.apache.log4j.Logger;

	

public	class	StudentAcademicsService	implements	BisService	{

static	Logger	logger	=	Logger.getLogger(StudentAcademicsService.class);

public	StudentAcademicsService()	{

super();

}

public	void	processGetStudentResults(HttpSession	session,	String	strSemester)	{

String	strStudentId	=	(String)	session.getAttribute(“StudentId”);

StudentResultsBean	studentResultsBean;

studentResultsBean	=	new	StudentResultsBean();

if	(strStudentId	!=	null)	{

studentResultsBean.setStudentId(strStudentId);	//	This	is	mandatory	before	calling	the	next	method.

populateStudentResults(studentResultsBean,	strSemester);

session.setAttribute(“studentResultsBean”,	studentResultsBean);

}	else	{

logger.error(“Student	Id	is	null”);

}

}

private	void	populateStudentResults(StudentResultsBean	studentResultsBean,	String	strSemester)	{

String	strStudentId;

strStudentId	=	studentResultsBean.getStudentId();

Connection	connection	=	null;

Statement	statement	=	null;

ResultSet	resultSet	=	null;

StringBuffer	sbQuery	=	new	StringBuffer();

String	strFirstName	=	””;

String	strMiddleName	=	””;

String	strLastName	=	””;

String	strFullName	=	””;

sbQuery.append(“SELECT	\n”	+

“												SD.FIRST_NAME,	SD.MIDDLE_NAME,	SD.LAST_NAME,	SD.GRADE,	SD.SECTION,	\n”	+

“												SR.ENGLISH_GRADE,	SR.MATHS_GRADE,	SR.SCIENCE_GRADE,	SR.SOCIAL_GRADE,	\n”	+

“												SR.LANG2_GRADE,	SR.LANG3_GRADE,	SR.COMPSC_GRADE,	SR.ARTS_GRADE,	\n”	+

“												SR.MUSIC_GRADE,	SR.DANCE_GRADE,	SR.PHYSICALEDU_GRADE,	SR.VALUEEDU_GRADE,\n”	+

“												SR.SCHOOLPROJECT_GRADE,\n”	+

“												SR.ENGLISH_REM,	SR.MATHS_REM,	SR.SCIENCE_REM,	SR.SOCIAL_REM,	\n”	+

“												SR.LANG2_REM,	SR.LANG3_REM,	SR.COMPSC_REM,	SR.ARTS_REM,	\n”	+

“												SR.MUSIC_REM,	SR.DANCE_REM,	SR.PHYSICALEDU_REM,	SR.VALUEEDU_REM,\n”	+

“												SR.SCHOOLPROJECT_REM,												\n”	+

“												CSR.COLLAB_LEARNING,	CSR.COMMUNICATION_SKILLS,	CSR.COMMUNITY_CONSC,	\n”	+

“												CSR.COMPREHENSIVE_GROWTH,	CSR.CREATIVE_THINKING,	CSR.CRITICAL_THINKING,\n”	+

“												CSR.EMO_QUO,	CSR.HEALTH_QUO,	CSR.INTELLI_QUO,	CSR.SOCIAL_QUO,	\n”	+

“												CSR.SCHOLASTICPERFORMANCE_REM,	CSR.COSCHOLASTICPERFORMANCE_REM\n”	+

“FROM	\n”	+

“												STUDENT_DETAILS	SD,	SCHOLASTIC_RESULTS	SR,	COSCHOLASTIC_RESULTS	CSR\n”	+

“												\n”	+

“WHERE	\n”	+

“												SD.STUDENT_ID	=	“);

sbQuery.append(”	’”+strStudentId+”’	“);

sbQuery.append(“AND	SR.STUDENT_ID	=	“);

sbQuery.append(”	’”+strStudentId+”’	“);

sbQuery.append(”	AND	SR.SEMESTER	=	“);

sbQuery.append(”	’”+strSemester+”’	“);

sbQuery.append(“AND	CSR.STUDENT_ID	=	“);

sbQuery.append(”	’”+strStudentId+”’	“);

sbQuery.append(”	AND	CSR.SEMESTER	=	“);

sbQuery.append(”	’”+strSemester+”’	“);

if	(strStudentId	!=	null)	{

connection	=	DatabaseService.getDBConnection();

try	{

statement	=	connection.createStatement();

resultSet	=	statement.executeQuery(sbQuery.toString());

resultSet.next();	//	Expecting	only	one	record.

strFirstName	=	resultSet.getString(“FIRST_NAME”);

strMiddleName	=	resultSet.getString(“MIDDLE_NAME”);

strLastName	=	resultSet.getString(“LAST_NAME”);

if	(strFirstName	!=	null)	{

strFullName	=	strFirstName;

}

if	(strMiddleName	!=	null)	{

strFullName	=	strFullName	+	”	”	+	strMiddleName;

}

if	(strLastName	!=	null)	{

strFullName	=	strFullName	+	”	”	+	strLastName;

}

studentResultsBean.setFullName(strFullName);

studentResultsBean.setGrade(resultSet.getString(“GRADE”));

studentResultsBean.setSection(resultSet.getString(“SECTION”));

studentResultsBean.setEnglishGrade(resultSet.getString(“ENGLISH_GRADE”));

studentResultsBean.setMathsGrade(resultSet.getString(“MATHS_GRADE”));

studentResultsBean.setScienceGrade(resultSet.getString(“SCIENCE_GRADE”));

studentResultsBean.setSocialGrade(resultSet.getString(“SOCIAL_GRADE”));

studentResultsBean.setLang2Grade(resultSet.getString(“LANG2_GRADE”));

studentResultsBean.setLang3Grade(resultSet.getString(“LANG3_GRADE”));

studentResultsBean.setCompScGrade(resultSet.getString(“COMPSC_GRADE”));

studentResultsBean.setArtsGrade(resultSet.getString(“ARTS_GRADE”));

studentResultsBean.setMusicGrade(resultSet.getString(“MUSIC_GRADE”));

studentResultsBean.setDanceGrade(resultSet.getString(“DANCE_GRADE”));

studentResultsBean.setPhyEduGrade(resultSet.getString(“PHYSICALEDU_GRADE”));

studentResultsBean.setValEduGrade(resultSet.getString(“VALUEEDU_GRADE”));

studentResultsBean.setSchProjGrade(resultSet.getString(“SCHOOLPROJECT_GRADE”));

studentResultsBean.setEnglishRem(resultSet.getString(“ENGLISH_REM”));

studentResultsBean.setMathsRem(resultSet.getString(“MATHS_REM”));

studentResultsBean.setScienceRem(resultSet.getString(“SCIENCE_REM”));

studentResultsBean.setSocialRem(resultSet.getString(“SOCIAL_REM”));

studentResultsBean.setLang2Rem(resultSet.getString(“LANG2_REM”));

studentResultsBean.setLang3Rem(resultSet.getString(“LANG3_REM”));

studentResultsBean.setCompScRem(resultSet.getString(“COMPSC_REM”));

studentResultsBean.setArtsRem(resultSet.getString(“ARTS_REM”));

studentResultsBean.setMusicRem(resultSet.getString(“MUSIC_REM”));

studentResultsBean.setDanceRem(resultSet.getString(“DANCE_REM”));

studentResultsBean.setPhyEduRem(resultSet.getString(“PHYSICALEDU_REM”));

studentResultsBean.setValEduRem(resultSet.getString(“VALUEEDU_REM”));

studentResultsBean.setSchProjRem(resultSet.getString(“SCHOOLPROJECT_REM”));

studentResultsBean.setCollabLearning(resultSet.getString(“COLLAB_LEARNING”));

studentResultsBean.setCommSkills(resultSet.getString(“COMMUNICATION_SKILLS”));

studentResultsBean.setCommunityConsc(resultSet.getString(“COMMUNITY_CONSC”));

studentResultsBean.setCompGrowth(resultSet.getString(“COMPREHENSIVE_GROWTH”));

studentResultsBean.setCreativeThinking(resultSet.getString(“CREATIVE_THINKING”));

studentResultsBean.setCriticalThinking(resultSet.getString(“CRITICAL_THINKING”));

studentResultsBean.setEmoQuo(resultSet.getString(“EMO_QUO”));

studentResultsBean.setHealthQuo(resultSet.getString(“HEALTH_QUO”));

studentResultsBean.setIntelliQuo(resultSet.getString(“INTELLI_QUO”));

studentResultsBean.setSocialQuo(resultSet.getString(“SOCIAL_QUO”));

studentResultsBean.setScholasticPerformanceRem(resultSet.getString(“SCHOLASTICPERFORMANCE_REM”));

studentResultsBean.setCoScholasticPerformanceRem(resultSet.getString(“COSCHOLASTICPERFORMANCE_REM”));

}	catch	(SQLException	sqle)	{

logger.error(sqle.getMessage());

}	finally	{

DatabaseService.closeDBResouces(statement,	resultSet);

DatabaseService.releaseDBConnection();		//	Releasing	database	connection.

}

}	else	{

logger.error(“Student	Id	is	null”);

}

}

public	String	getServiceName()	{

return	this.getClass().getName();

}

}

	

The	processGetStudentResults	method	performs	the	following	tasks:

	

							Gets	the	student	id	from	the	session.

							Creates	an	instance	of	StudentResultsBean.

							Calls	setter	of	StudentResultsBean	instance	for	setting	student	id.

							Invokes	the	private	method	populateStudentResults.

							Adds	the	populated	StudentResultsBean	instance	to	session	to	be	consumed	by
the	view.

	

The	populateStudentResults	method	performs	the	following	tasks:

	

							Cooks	up	a	dynamic	query	for	a	given	student	and	semester	to	fetch	the	results

from	the	database.

							Leverages	the	DatabaseService	class	to	get	the	database	connection.

							Calls	setter	of	StudentResultsBean	instance	for	setting	the	results	fields.

							Uses	the	finally	block	to	close	all	the	resources	related	to	database.

	

StudentResultsBean.java
	

The	StudentResultsBean	class	is	just	a	simple	java	bean	with	private	fields	with	their
getters	and	setters.	Please	refer	the	class	diagram	and	below	source	code	for	understanding
this	class.

package	com.bis.beans;

	

public	class	StudentResultsBean	extends	StudentBean	{

public	StudentResultsBean()	{

super();

}

private	java.lang.String	englishGrade;

private	java.lang.String	mathsGrade;

private	java.lang.String	scienceGrade;

private	java.lang.String	socialGrade;

private	java.lang.String	lang2Grade;

private	java.lang.String	lang3Grade;

private	java.lang.String	compScGrade;

private	java.lang.String	artsGrade;

private	java.lang.String	musicGrade;

private	java.lang.String	danceGrade;

private	java.lang.String	phyEduGrade;

private	java.lang.String	valEduGrade;

private	java.lang.String	schProjGrade;

private	java.lang.String	englishRem;

private	java.lang.String	mathsRem;

private	java.lang.String	scienceRem;

private	java.lang.String	socialRem;

private	java.lang.String	lang2Rem;

private	java.lang.String	lang3Rem;

private	java.lang.String	compScRem;

private	java.lang.String	artsRem;

private	java.lang.String	musicRem;

private	java.lang.String	danceRem;

private	java.lang.String	phyEduRem;

private	java.lang.String	valEduRem;

private	java.lang.String	schProjRem;

private	java.lang.String	collabLearning;

private	java.lang.String	commSkills;

private	java.lang.String	communityConsc;

private	java.lang.String	compGrowth;

private	java.lang.String	creativeThinking;

private	java.lang.String	criticalThinking;

private	java.lang.String	emoQuo;

private	java.lang.String	healthQuo;

private	java.lang.String	intelliQuo;

private	java.lang.String	socialQuo;

private	java.lang.String	scholasticPerformanceRem;

private	java.lang.String	coScholasticPerformanceRem;

public	void	setEnglishGrade(String	englishGrade)	{

this.englishGrade	=	englishGrade;

}

public	String	getEnglishGrade()	{

return	englishGrade;

}

public	void	setMathsGrade(String	mathsGrade)	{

this.mathsGrade	=	mathsGrade;

}

public	String	getMathsGrade()	{

return	mathsGrade;

}

public	void	setScienceGrade(String	scienceGrade)	{

this.scienceGrade	=	scienceGrade;

}

public	String	getScienceGrade()	{

return	scienceGrade;

}

public	void	setSocialGrade(String	socialGrade)	{

this.socialGrade	=	socialGrade;

}

public	String	getSocialGrade()	{

return	socialGrade;

}

public	void	setLang2Grade(String	lang2Grade)	{

this.lang2Grade	=	lang2Grade;

}

public	String	getLang2Grade()	{

return	lang2Grade;

}

public	void	setLang3Grade(String	lang3Grade)	{

this.lang3Grade	=	lang3Grade;

}

public	String	getLang3Grade()	{

return	lang3Grade;

}

public	void	setCompScGrade(String	compScGrade)	{

this.compScGrade	=	compScGrade;

}

public	String	getCompScGrade()	{

return	compScGrade;

}

public	void	setArtsGrade(String	artsGrade)	{

this.artsGrade	=	artsGrade;

}

public	String	getArtsGrade()	{

return	artsGrade;

}

public	void	setMusicGrade(String	musicGrade)	{

this.musicGrade	=	musicGrade;

}

public	String	getMusicGrade()	{

return	musicGrade;

}

public	void	setDanceGrade(String	danceGrade)	{

this.danceGrade	=	danceGrade;

}

public	String	getDanceGrade()	{

return	danceGrade;

}

public	void	setPhyEduGrade(String	phyEduGrade)	{

this.phyEduGrade	=	phyEduGrade;

}

public	String	getPhyEduGrade()	{

return	phyEduGrade;

}

public	void	setValEduGrade(String	valEduGrade)	{

this.valEduGrade	=	valEduGrade;

}

public	String	getValEduGrade()	{

return	valEduGrade;

}

public	void	setSchProjGrade(String	schProjGrade)	{

this.schProjGrade	=	schProjGrade;

}

public	String	getSchProjGrade()	{

return	schProjGrade;

}

public	void	setEnglishRem(String	englishRem)	{

this.englishRem	=	englishRem;

}

public	String	getEnglishRem()	{

return	englishRem;

}

public	void	setMathsRem(String	mathsRem)	{

this.mathsRem	=	mathsRem;

}

public	String	getMathsRem()	{

return	mathsRem;

}

public	void	setScienceRem(String	scienceRem)	{

this.scienceRem	=	scienceRem;

}

public	String	getScienceRem()	{

return	scienceRem;

}

public	void	setSocialRem(String	socialRem)	{

this.socialRem	=	socialRem;

}

public	String	getSocialRem()	{

return	socialRem;

}

public	void	setLang2Rem(String	lang2Rem)	{

this.lang2Rem	=	lang2Rem;

}

public	String	getLang2Rem()	{

return	lang2Rem;

}

public	void	setLang3Rem(String	lang3Rem)	{

this.lang3Rem	=	lang3Rem;

}

public	String	getLang3Rem()	{

return	lang3Rem;

}

public	void	setCompScRem(String	compScRem)	{

this.compScRem	=	compScRem;

}

public	String	getCompScRem()	{

return	compScRem;

}

public	void	setArtsRem(String	artsRem)	{

this.artsRem	=	artsRem;

}

public	String	getArtsRem()	{

return	artsRem;

}

public	void	setMusicRem(String	musicRem)	{

this.musicRem	=	musicRem;

}

public	String	getMusicRem()	{

return	musicRem;

}

public	void	setDanceRem(String	danceRem)	{

this.danceRem	=	danceRem;

}

public	String	getDanceRem()	{

return	danceRem;

}

public	void	setPhyEduRem(String	phyEduRem)	{

this.phyEduRem	=	phyEduRem;

}

public	String	getPhyEduRem()	{

return	phyEduRem;

}

public	void	setValEduRem(String	valEduRem)	{

this.valEduRem	=	valEduRem;

}

public	String	getValEduRem()	{

return	valEduRem;

}

public	void	setSchProjRem(String	schProjRem)	{

this.schProjRem	=	schProjRem;

}

public	String	getSchProjRem()	{

return	schProjRem;

}

public	void	setCollabLearning(String	collabLearning)	{

this.collabLearning	=	collabLearning;

}

public	String	getCollabLearning()	{

return	collabLearning;

}

public	void	setCommSkills(String	commSkills)	{

this.commSkills	=	commSkills;

}

public	String	getCommSkills()	{

return	commSkills;

}

public	void	setCommunityConsc(String	communityConsc)	{

this.communityConsc	=	communityConsc;

}

public	String	getCommunityConsc()	{

return	communityConsc;

}

public	void	setCompGrowth(String	compGrowth)	{

this.compGrowth	=	compGrowth;

}

public	String	getCompGrowth()	{

return	compGrowth;

}

public	void	setCreativeThinking(String	creativeThinking)	{

this.creativeThinking	=	creativeThinking;

}

public	String	getCreativeThinking()	{

return	creativeThinking;

}

public	void	setCriticalThinking(String	criticalThinking)	{

this.criticalThinking	=	criticalThinking;

}

public	String	getCriticalThinking()	{

return	criticalThinking;

}

public	void	setEmoQuo(String	emoQuo)	{

this.emoQuo	=	emoQuo;

}

public	String	getEmoQuo()	{

return	emoQuo;

}

public	void	setHealthQuo(String	healthQuo)	{

this.healthQuo	=	healthQuo;

}

public	String	getHealthQuo()	{

return	healthQuo;

}

public	void	setIntelliQuo(String	intelliQuo)	{

this.intelliQuo	=	intelliQuo;

}

public	String	getIntelliQuo()	{

return	intelliQuo;

}

public	void	setSocialQuo(String	socialQuo)	{

this.socialQuo	=	socialQuo;

}

public	String	getSocialQuo()	{

return	socialQuo;

}

public	void	setScholasticPerformanceRem(String	scholasticPerformanceRem)	{

this.scholasticPerformanceRem	=	scholasticPerformanceRem;

}

public	String	getScholasticPerformanceRem()	{

return	scholasticPerformanceRem;

}

public	void	setCoScholasticPerformanceRem(String	coScholasticPerformanceRem)	{

this.coScholasticPerformanceRem	=	coScholasticPerformanceRem;

}

public	String	getCoScholasticPerformanceRem()	{

return	coScholasticPerformanceRem;

}

}

	

StudentAcademics.jsp
	

This	jsp	is	dynamically	included	in	BisHome.jsp	as	a	result	for	get	student	results	use	case
invocation	through	user	interaction	with	the	UI.

	

Till	now	we	have	seen	that	the	command	for	student	results	goes	form	UI	as	a	result	of
user	interaction.	Then	the	controller	servlet	calls	get	student	academics	command
processor	and	then	the	student	academics	service	is	leveraged.	Finally,	we	get	the	results
packaged	as	an	instance	of	StudentResultsBean.	This	bean	is	now	available	in	the	session.
In	the	StudentAcademics.jsp	file	we	fetch	this	bean	from	the	session.	And	from	this	bean
we	fetch	all	the	information	related	to	student	results	using	the	getters.	The	static	part	of
the	jsp	remains	the	same	as	that	of	the	prototype	page.	Only	the	dynamic	part	is	added
using	the	bean	from	the	session.	Hence,	the	end	user	sees	the	view	for	a	given	student	and
semester	with	all	the	academic	results	related	details.

	

Here	is	the	source	code	for	the	StudentAcademics.jsp	file.

<%@	page	import=“com.bis.beans.StudentResultsBean”%>

<%@	page	import=“java.util.Hashtable,	java.util.Enumeration”%>

<%

StudentResultsBean	studentResultsBean	=	null;

if	(session	!=	null)	{

studentResultsBean	=	(StudentResultsBean)	session.getAttribute(“studentResultsBean”);

}

%>

<form	id=“frmStudAcads”	name=“frmStudAcads”	action=“BisControllerServlet”	method=“POST”>

<input	type=“hidden”	name=“ParameterActionCommand”	value=“GetStudentAcademics”></input>

<input	type=“hidden”	name=“sem”	value=”<%=	request.getParameter(“sem”)%>”></input>

<table	border=“0”	cellpadding=“0”	cellspacing=“0”	width=“100%”	height=“99%”>

<tr><td> </td></tr>

<tr><td> </td></tr>

<tr>

<td	widht=”*”	align=“center”	valign=“top”>

<table	border=“0”	cellpadding=“4”	cellspacing=“0”	width=“100%”>

<tr>

<td	bgcolor=“White”	align=“center”	colspan=“3”>

<%

if	(studentResultsBean	!=	null)			{

out.print(studentResultsBean.getFullName());

}

%>

 	|	

<%

String	strSem=request.getParameter(“sem”);

if	(strSem	!=	null)			{

if	(strSem.equalsIgnoreCase(“1”))			{

strSem	=	“Semester	-	I”;

}

else	{

strSem	=	“Semester	-	II”;

}

}

else	{

strSem	=	“Semester	-	I”;

}

out.print(strSem);

%>

 	|	

<%

if	(studentResultsBean	!=	null)			{

out.print(studentResultsBean.getGrade());

out.print(”	-	“);

out.print(studentResultsBean.getSection());

}

%>

 	|	

<%

if	(studentResultsBean	!=	null)			{

out.print(studentResultsBean.getStudentId());

}

%>

</td>

</tr>

<tr><td> </td></tr>

<tr><td> </td></tr>

<tr	valign=“top”>

<td	align=“left”	width=“50%”>

<table	border=“1”	cellpadding=“5”	cellspacing=“0”	width=“100%”	bgcolor=“White”>

<tr>

<td	colspan=“3”	align=“center”	id=“trbgred”>

Scholastic	Performance	-	Core	Curriculum	-	Assessment

</td>

</tr>

<tr	id=“clred”>

<td	width=“20%”	align=“center”> Subject</td>

<td	width=“10%”	align=“center”>Grade</td>

<td	width=”*”	align=“center”>Remarks</td>

</tr>

<tr>

<td	align=“left”	id=“clred”> English</td>

<td	align=“center”>

<%

if	(studentResultsBean	!=	null)			{

out.print(studentResultsBean.getEnglishGrade());

}

%>

</td>

<td	align=“left”>

<%

if	(studentResultsBean	!=	null)			{

out.print(studentResultsBean.getEnglishRem());

}

%>

</td>

</tr>

<tr>

<td	align=“left”	id=“clred”> Mathematics</td>

<td	align=“center”>

<%

if	(studentResultsBean	!=	null)			{

out.print(studentResultsBean.getMathsGrade());

}

%>

</td>

<td	align=“left”>

<%

if	(studentResultsBean	!=	null)			{

out.print(studentResultsBean.getMathsRem());

}

%>

</td>

</tr>

<tr>

<td	align=“left”	id=“clred”> Science</td>

<td	align=“center”>

<%

if	(studentResultsBean	!=	null)			{

out.print(studentResultsBean.getScienceGrade());

}

%>

</td>

<td	align=“left”>

<%

if	(studentResultsBean	!=	null)			{

out.print(studentResultsBean.getScienceRem());

}

%>

</td>

</tr>

<tr>

<td	align=“left”	id=“clred”> Social	Science</td>

<td	align=“center”>

<%

if	(studentResultsBean	!=	null)			{

out.print(studentResultsBean.getSocialGrade());

}

%>

</td>

<td	align=“left”>

<%

if	(studentResultsBean	!=	null)			{

out.print(studentResultsBean.getSocialRem());

}

%>

</td>

</tr>

<tr>

<td	align=“left”	id=“clred”> Language	II</td>

<td	align=“center”>

<%

if	(studentResultsBean	!=	null)			{

out.print(studentResultsBean.getLang2Grade());

}

%>

</td>

<td	align=“left”>

<%

if	(studentResultsBean	!=	null)			{

out.print(studentResultsBean.getLang2Rem());

}

%>

</td>

</tr>

<tr>

<td	align=“left”	id=“clred”> Language	III</td>

<td	align=“center”>

<%

if	(studentResultsBean	!=	null)			{

out.print(studentResultsBean.getLang3Grade());

}

%>

</td>

<td	align=“left”>

<%

if	(studentResultsBean	!=	null)			{

out.print(studentResultsBean.getLang3Rem());

}

%>

</td>

</tr>

<tr>

<td	align=“left”	id=“clred”> Computer	Science</td>

<td	align=“center”>

<%

if	(studentResultsBean	!=	null)			{

out.print(studentResultsBean.getCompScGrade());

}

%>

</td>

<td	align=“left”>

<%

if	(studentResultsBean	!=	null)			{

out.print(studentResultsBean.getCompScRem());

}

%>

</td>

</tr>

</table>

</td>

<td	align=“left”	width=”*”	colspan=“2”>

<table	border=“1”	cellpadding=“5”	cellspacing=“0”	width=“100%”	bgcolor=“White”>

<tr>

<td	colspan=“3”	align=“center”	id=“trbgred”>Scholastic	Performance	-	Co	Curriculum	-

Assessment</td>

</tr>

<tr	id=“clred”>

<td	width=“20%”	align=“center”> Subject</td>

<td	width=“10%”	align=“center”>Grade</td>

<td	width=”*”	align=“center”>Remarks</td>

</tr>

<tr>

<td	align=“left”	id=“clred”> Arts</td>

<td	align=“center”>

<%

if	(studentResultsBean	!=	null)			{

out.print(studentResultsBean.getArtsGrade());

}

%>

</td>

<td	align=“left”>

<%

if	(studentResultsBean	!=	null)			{

out.print(studentResultsBean.getArtsRem());

}

%>

</td>

</tr>

<tr>

<td	align=“left”	id=“clred”> Music</td>

<td	align=“center”>

<%

if	(studentResultsBean	!=	null)			{

out.print(studentResultsBean.getMusicGrade());

}

%>

</td>

<td	align=“left”>

<%

if	(studentResultsBean	!=	null)			{

out.print(studentResultsBean.getMusicRem());

}

%>

</td>

</tr>

<tr>

<td	align=“left”	id=“clred”> Dance</td>

<td	align=“center”>

<%

if	(studentResultsBean	!=	null)			{

out.print(studentResultsBean.getDanceGrade());

}

%>

</td>

<td	align=“left”>

<%

if	(studentResultsBean	!=	null)			{

out.print(studentResultsBean.getDanceRem());

}

%>

</td>

</tr>

<tr>

<td	align=“left”	id=“clred”> Physical	Education</td>

<td	align=“center”>

<%

if	(studentResultsBean	!=	null)			{

out.print(studentResultsBean.getPhyEduGrade());

}

%>

</td>

<td	align=“left”>

<%

if	(studentResultsBean	!=	null)			{

out.print(studentResultsBean.getPhyEduRem());

}

%>

</td>

</tr>

<tr>

<td	align=“left”	id=“clred”> Value	Education</td>

<td	align=“center”>

<%

if	(studentResultsBean	!=	null)			{

out.print(studentResultsBean.getValEduGrade());

}

%>

</td>

<td	align=“left”>

<%

if	(studentResultsBean	!=	null)			{

out.print(studentResultsBean.getValEduRem());

}

%>

</td>

</tr>

<tr>

<td	align=“left”	id=“clred”> School	Project</td>

<td	align=“center”>

<%

if	(studentResultsBean	!=	null)			{

out.print(studentResultsBean.getSchProjGrade());

}

%>

</td>

<td	align=“left”>

<%

if	(studentResultsBean	!=	null)			{

out.print(studentResultsBean.getSchProjRem());

}

%>

</td>

</tr>

<tr>

<td	align=“left”	id=“clred”> Other</td>

<td	align=“center”>-</td>

<td	align=“left”>-</td>

</tr>

</table>

</td>

</tr>

<tr	valign=“top”>

<td	align=“left”	width=“50%”>

<table	border=“1”	cellpadding=“5”	cellspacing=“0”	width=“100%”	bgcolor=“White”>

<tr>

<td	colspan=“2”	align=“center”	id=“trbgred”>Co	-	Scholastic	Activities</td>

</tr>

<tr>

<td	align=“left”	id=“clred”	width=“30%”> Critical	Thinking</td>

<td	align=“left”	width=”*”>

<%

if	(studentResultsBean	!=	null)			{

out.print(studentResultsBean.getCreativeThinking());

}

%>

</td>

</tr>

<tr>

<td	align=“left”	id=“clred”> Creative	Thinking</td>

<td	align=“left”>

<%

if	(studentResultsBean	!=	null)			{

out.print(studentResultsBean.getCreativeThinking());

}

%>

</td>

</tr>

<tr>

<td	align=“left”	id=“clred”> Collaborative	Learning</td>

<td	align=“left”>

<%

if	(studentResultsBean	!=	null)			{

out.print(studentResultsBean.getCollabLearning());

}

%>

</td>

</tr>

<tr>

<td	align=“left”	id=“clred”> Communication	Skills</td>

<td	align=“left”>

<%

if	(studentResultsBean	!=	null)			{

out.print(studentResultsBean.getCommSkills());

}

%>

</td>

</tr>

<tr>

<td	align=“left”	id=“clred”> Comprehensive	Growth</td>

<td	align=“left”>

<%

if	(studentResultsBean	!=	null)			{

out.print(studentResultsBean.getCompGrowth());

}

%>

</td>

</tr>

<tr>

<td	align=“left”	id=“clred”> IQ	-	Intelligence	Quotient</td>

<td	align=“left”>

<%

if	(studentResultsBean	!=	null)			{

out.print(studentResultsBean.getIntelliQuo());

}

%>

</td>

</tr>

<tr>

<td	align=“left”	id=“clred”> EQ	-	Emotional	Quotient</td>

<td	align=“left”>

<%

if	(studentResultsBean	!=	null)			{

out.print(studentResultsBean.getEmoQuo());

}

%>

</td>

</tr>

<tr>

<td	align=“left”	id=“clred”> EQ	-	Social	Quotient</td>

<td	align=“left”>

<%

if	(studentResultsBean	!=	null)			{

out.print(studentResultsBean.getSocialQuo());

}

%>

</td>

</tr>

<tr>

<td	align=“left”	id=“clred”> EQ	-	Health	Quotient</td>

<td	align=“left”>

<%

if	(studentResultsBean	!=	null)			{

out.print(studentResultsBean.getHealthQuo());

}

%>

</td>

</tr>

<tr>

<td	align=“left”	id=“clred”> EQ	-	Community	Consciousness</td>

<td	align=“left”>

<%

if	(studentResultsBean	!=	null)			{

out.print(studentResultsBean.getCommunityConsc());

}

%>

</td>

</tr>

</table>

</td>

<td	width=”*”	valign=“top”>

<table	border=“1”	cellpadding=“5”	cellspacing=“0”	width=“100%”	bgcolor=“White”>

<tr>

<td	colspan=“2”	align=“center”	id=“trbgred”>Synthesis	and	Recommendations</td>

</tr>

<tr	height=“152”	valign=“top”>

<td	align=“left”	width=“30%”	id=“clred”> Scholastic	Performance</td>

<td	width=”*”	align=“left”>

<%

if	(studentResultsBean	!=	null)			{

out.print(studentResultsBean.getScholasticPerformanceRem());

}

%>

</td>

</tr>

<tr	height=“152”	valign=“top”>

<td	align=“left”	id=“clred”> Co	-	Scholastic	Performance</td>

<td	align=“left”>

<%

if	(studentResultsBean	!=	null)			{

out.print(studentResultsBean.getCoScholasticPerformanceRem());

}

%>

</td>

</tr>

</table>

</td>

</tr>

</table>

</td>

</tr>

<tr><td> </td></tr>

<tr><td> </td></tr>

</table>

</form>

	

This	concludes	the	get	student	results	use	case	implementation	from	end	to	end.	We
composed	the	requirement	specifications,	we	built	the	prototype,	we	followed	the
architecture	for	the	solution,	we	leveraged	the	framework,	we	developed	the	various	java
classes,	we	used	the	common	components	like	DatabaseService.java,	BISStyle.css	etc	and
we	built	the	view	with	the	jsp	page.

	

Use	Case:	Help	pages.
	

Requirements	Specification	Reference:	R12

Prototype	Reference:	P11

Prerequisite:	The	user	has	to	be	logged	in.

	

This	use	case	needs	to	be	implemented	as	per	the	requirements	specification	reference
above.	The	UI	needs	to	be	as	per	the	prototype	reference	above.	Now	that	we	have
complete	clarity	on	use	case	requirements	and	UI	we	will	now	proceed	to	implement	this
use	case.

	

In	order	to	implement	this	use	case,	we	just	need	to	add	a	link	to	the	dashboard	page	as
well	has	to	the	global	Help	menu.	These	are	just	plain	static	html	pages	and	hence	we	do
not	trigger	any	business	logic	flow	on	the	server	side.	The	html	link	only	loads	the
requested	html	page	from	the	public_html	folder	under	the	exploded	application	folder
when	deployed	in	Apache	Tomcat	server.	In	our	sample	application	we	have	only	one
static	html	page	for	help	module.	And	this	page	will	be	displayed	as	a	pop	up	window.
	

Get	legends	help	page	link	is	clicked.	

The	href	for	the	link	is	\bis\jsp\ResultsLegend.html

The	requested	page	ResultsLegend.html	is	displayed	as	a	pop	up	window.

	

For	this	use	case	we	need	only	one	html	page	and	that	is	ResultsLegend.html

	

BisHome.jsp	code	for	launching	results	legend	html	page	pop	up	window.

	
<a	onclick=“javascript:void
window.open(‘ResultsLegend.html’,‘1247’,‘width=1600,height=800,toolbar=0,menubar=0,location=100,status=0,scrollbars=0,resizable=1,left=180,top=140’);return
false;”>																																																												Legend

	

ResultsLegend.html

<!DOCTYPE	html>

<html>

<head>

<title>BIS	Help	Legend</title>

<link	rel=“stylesheet”	type=“text/css”	href=“resources/css/BISStyle.css”></link>

</head>

<body>

<form	id=“frmHome”>

<table	border=“0”	cellpadding=“0”	cellspacing=“0”	width=“100%”	height=“99%”>																																	<tr>

<td	widht=”*”	align=“center”	valign=“top”>

<table	border=“1”	cellpadding=“10”	cellspacing=“0”	width=“100%”>

<tr>

<td	bgcolor=“White”	align=“center”	id=“clred”	colspan=“3”>

Help	-	Legend

</td>

</tr>

<tr	valign=“middle”>

<td	align=“center”>

<table	border=“1”	cellpadding=“4”	cellspacing=“0”	width=“80%”	bgcolor=“White”>

<tr	id=“trbgred”>

<td	colspan=“12”	align=“left”>

 Scholastic	Performance	-	Core	Curriculum

</td>

</tr>

<tr>

<td	align=“center”>

Marks	Range	

</td>

<td	align=“center”>

Absolute	Grade

</td>

<td	align=“center”>

Grade	Point

</td>

</tr>

<tr>

<td	align=“center”>

81	-	100

</td>

<td	align=“center”>

A

</td>

<td	align=“center”>

10

</td>

</tr>

<tr>

<td	align=“center”>

61	-	80

</td>

<td	align=“center”>

B

</td>

<td	align=“center”>

8

</td>

</tr>

<tr>

<td	align=“center”>

41	-	60

</td>

<td	align=“center”>

C

</td>

<td	align=“center”>

6

</td>

</tr>

<tr>

<td	align=“center”>

21	-	40

</td>

<td	align=“center”>

D

</td>

<td	align=“center”>

4

</td>

</tr>

<tr>

<td	align=“center”>

00	-	20

</td>

<td	align=“center”>

E

</td>

<td	align=“center”>

-

</td>

</tr>

</table>

</td>

</tr>

<tr	valign=“middle”>

<td	align=“center”>

<table	border=“1”	cellpadding=“4”	cellspacing=“0”	width=“80%”	bgcolor=“White”>

<tr	id=“trbgred”>

<td	colspan=“12”	align=“left”>

 Scholastic	Performance	-	Co	Curriculum

</td>

</tr>

<tr>

<td	align=“center”	width=”*”>

Music

</td>

<td	align=“center”	width=“15%”>

A+

</td>

<td	align=“center”	width=“15%”>

A

</td>

<td	align=“center”	width=“15%”>

B+

</td>

<td	align=“center”	width=“15%”>

B

</td>

<td	align=“center”	width=“15%”>

C

</td>

</tr>

<tr>

<td	align=“center”>

Dance

</td>

<td	align=“center”>

A+

</td>

<td	align=“center”>

A

</td>

<td	align=“center”>

B+

</td>

<td	align=“center”>

B

</td>

<td	align=“center”>

C

</td>

</tr>

<tr>

<td	align=“center”>

Arts

</td>

<td	align=“center”>

A+

</td>

<td	align=“center”>

A

</td>

<td	align=“center”>

B+

</td>

<td	align=“center”>

B

</td>

<td	align=“center”>

C

</td>

</tr>

<tr>

<td	align=“center”>

Physical	Education

</td>

<td	align=“center”>

A+

</td>

<td	align=“center”>

A

</td>

<td	align=“center”>

B+

</td>

<td	align=“center”>

B

</td>

<td	align=“center”>

C

</td>

</tr>

<tr>

<td	align=“center”>

Value	Education

</td>

<td	align=“center”>

A+

</td>

<td	align=“center”>

A

</td>

<td	align=“center”>

B+

</td>

<td	align=“center”>

B

</td>

<td	align=“center”>

C

</td>

</tr>

</table>

</td>

</tr>

<tr	valign=“middle”>

<td	align=“center”>

<table	border=“1”	cellpadding=“4”	cellspacing=“0”	width=“80%”	bgcolor=“White”>

<tr	id=“trbgred”>

<td	colspan=“12”	align=“left”>

 Co	-	Curriculum

</td>

</tr>

<tr>

<td	align=“center”>

Code

</td>

<td	align=“center”>

Description

</td>

<td	align=“center”>

Score

</td>

</tr>

<tr>

<td	align=“center”>

LA

</td>

<td	align=“center”>

Latent

</td>

<td	align=“center”>

<	3

</td>

</tr>

<tr>

<td	align=“center”>

EM

</td>

<td	align=“center”>

Emerging

</td>

<td	align=“center”>

4	-	5

</td>

</tr>

<tr>

<td	align=“center”>

DE

</td>

<td	align=“center”>

Developing

</td>

<td	align=“center”>

6	-	8

</td>

</tr>

<tr>

<td	align=“center”>

AP

</td>

<td	align=“center”>

Appreciable

</td>

<td	align=“center”>

9	-	11

</td>

</tr>

<tr>

<td	align=“center”>

AC

</td>

<td	align=“center”>

Accelerating

</td>

<td	align=“center”>

12	-	13

</td>

</tr>

<tr>

<td	align=“center”>

OS

</td>

<td	align=“center”>

Outstanding

</td>

<td	align=“center”>

14	-	15

</td>

</tr>

</table>

</td>

</tr>

<tr>

<td	bgcolor=“White”	colspan=“3”> </td>

</tr>

</table>

</td>

</tr>

</table>

</form>

</body>

</html>

	

Use	Case:	Report	by	class.
	

Requirements	Specification	Reference:	R11

Prototype	Reference:	P10

Prerequisite:	The	user	has	to	be	logged	in	and	must	have	the	role	which	has	the	privilege
to	access	report	by	class	functionality.

	

This	use	case	needs	to	be	implemented	as	per	the	requirements	specification	reference
above.	The	UI	needs	to	be	as	per	the	prototype	reference	above.	Now	that	we	have
complete	clarity	on	use	case	requirements	and	UI	we	will	now	proceed	to	implement	this
use	case.

	

In	order	to	implement	this	use	case,	we	need	to	follow	the	architecture	and	leverage	the
framework.	To	achieve	this	we	will	first	come	up	with	detailed	design	and	then	code	it.

	

The	prerequisite	for	this	use	case	is	that	the	user	must	logged	in	and	belong	to	the	role
which	has	access	to	reports.	When	the	user	clicks	on	reports	by	class	link	either	on
dashboard	or	via	the	menu,	the	following	flow	is	triggered.

The	user	clicks	the	report	by	class	link

The	href	for	this	link	is

BisControllerServlet?ParameterActionCommand=GetReportByClass

The	ControllerServlet	is	invoked	on	the	server

In	the	service	method	the	action	command	parameter	value	is	read	which	is
GetReportByClass

The	execute	method	for	the	command	processor	pertaining	to	GetReportByClass	is
invoked

The	business	logic	pertaining	to	this	command	processor	is	executed	and	a	view	is
returned

The	response	is	returned	to	the	browser	with	this	view

The	user	sees	the	report	by	class	page

The	users	selects	the	report	criteria	and	clicks	generate	report.

The	command	processor	class	pertaining	to	GetReportByClass	command	is
GetReportByClass	CP.	The	view	pertaining	to	student	detail	page	is	ReportByClass.jsp.
Now,	lets	see	the	sequence	of	method	calls	once	the	execute	method	of
GetReportByClassCP	is	called.	Below	is	the	sequence	diagram	from	this	use	case.

	

	

The	execute	method	of	get	report	by	class	command	processor	is	called	from	the
controller	servlet.	The	execute	method	calls	process	get	report	by	class	method	of	the
report	by	class	service	class.	This	process	method	reads	the	report	criteria	i.e.	the	section
and	the	grade	from	the	http	request	parameter	send	from	the	jsp	page.	Then	the	process
method	invokes	the	private	method	populate	report	by	class	data.	In	populate	report	by
class	data	method,	a	select	query	is	executed	at	the	database	for	the	given	criteria	(with	a
where	clause	for	grade	and	section).	This	may	return	one	or	more	records.	These	records
are	captured	in	‘n’	number	of	instances	of	Student	Details	Bean.	All	these	instances	are
then	added	to	an	Array	List.	This	array	list	is	then	added	to	the	session.	The	jsp	consumes
this	array	list,	it	gets	all	the	instances	and	displays	them	as	a	record	each	on	the	reports
results	region	of	the	page.
	

At	this	stage	we	have	the	requirements,	prototype,	architecture,	framework	and	detailed
design	for	the	get	report	by	class	use	case	in	the	form	of	sequence	and	class	diagrams.	The
next	and	the	most	interesting	part	is	coding	this	use	case.	In	the	earlier	chapter,	we	have
already	created	the	database	tables	and	added	some	test	data	there.	Lets	identify	all	the
artifacts	first.	For	this	use	case	we	need	the	following	files.

	

ReportByClass.jsp

GetReportByClass	CP.java

ReportByClass	Service.java

ReportByClass	Bean.java

	

GetReportByClassCP.java
	

Please	refer	chapter	14	(The	BIS-SMS	Project	Components)	for	class	diagram	once	before
we	proceed	with	this	class.	This	class	implements	BisCommand	interface	which	has	only
one	method	execute.	This	class	extends	BisCP	which	has	few	variables.	We	have	to
implement	execute	method	in	this	class	for	get	student	details	use	case.	Lets	look	into	the
actual	source	code	for	this	class	now.

package	com.bis.cp;

import	com.bis.session.reports.ReportByClassService;

import	javax.servlet.http.HttpServletRequest;

import	javax.servlet.http.HttpServletResponse;

import	org.apache.log4j.Logger;

public	class	GetReportByClassCP	extends	BisCP	implements	BisCommand	{

static	Logger	logger	=	Logger.getLogger(GetReportByClassCP.class);

public	GetReportByClassCP()	{

super();

}

public	String	execute(HttpServletRequest	request,	HttpServletResponse	response)	{

ReportByClassService	reportByClassService	=	new	ReportByClassService();

try	{

reportByClassService.processGetReportByClass(request);																																						strNextNavigation	=	“ReportByClass”;

}	catch	(Exception	excep)	{

logger.error(excep.getMessage());

strNextNavigation	=	“Error”;					//The	next	navigation	page	upon	failed	processing.

}

return	strNextNavigation;

}

}

	

The	execute	method	of	GetReportByClassCP	Class.

	

The	execute	method	is	called	from	the	controller	servlet.	This	is	the	job	of	the	framework.
The	framework	gets	the	command	from	UI	and	based	on	the	command	loads	and	executes
a	specific	command	processor	exploiting	the	polymorphic	feature	of	java.	In	this	case,	the
command	from	UI	is	“GetReportByClass”.	Within	the	service	method	of	controller
servlet,	the	GetReportByClassCP	class	is	loaded	and	instantiated	and	the	execute	method
is	invoked.

	

The	execute	method	performs	the	following	actions:

	

							Creates	an	instance	of	ReportByClassService	and	invokes
processGetReportByClass	method.

							Sets	the	next	navigation	to	ReportByClass.

	

ReportByClassService.java
	

Now	lets	see	the	ReportByClassService	class	source	code.

package	com.bis.session.reports;

import	com.bis.beans.reports.ReportByClassBean;

import	com.bis.db.DatabaseService;

import	com.bis.session.BisService;

import	java.sql.Connection;

import	java.sql.ResultSet;

import	java.sql.SQLException;

import	java.sql.Statement;

import	java.util.ArrayList;

import	javax.servlet.http.HttpServletRequest;

import	javax.servlet.http.HttpSession;

import	org.apache.log4j.Logger;

public	class	ReportByClassService	implements	BisService	{

static	Logger	logger	=	Logger.getLogger(ReportByClassService.class);

public	ReportByClassService()	{

super();

}

public	void	processGetReportByClass(HttpServletRequest	request)	{

String	strClass;

String	strSection;

strClass	=	request.getParameter(“selClass”);

strSection	=	request.getParameter(“selSection”);

if	(strClass	!=	null	&&	strSection	!=	null)				{

ArrayList	reportsBeansList	=		pupulateReportsByClassData(strClass,	strSection);

HttpSession	session	=	request.getSession();

session.setAttribute(“reportsBeansList”,	reportsBeansList);

session.setAttribute(“grade”,	strClass);

session.setAttribute(“section”,	strSection);

}

else				{

logger.error(“Section/Class	is	null”);

}

}

private	ArrayList	pupulateReportsByClassData(String	strClass,	String	strSection)					{

Connection	connection	=	null;

Statement	statement	=	null	;

ResultSet	resultSet	=	null;

String	strFirstName	=	””;

String	strMiddleName	=	””;

String	strLastName	=	””;

String	strFullName	=	””;

String	strStudentId	=	””;

String	strGender	=	””;

String	strBusId	=	””;

ReportByClassBean	reportByClassBean;

ArrayList	<ReportByClassBean>	reportsBeansList	=	new	ArrayList<ReportByClassBean>();

StringBuffer	sbQuery	=	new	StringBuffer(“SELECT	FIRST_NAME,	MIDDLE_NAME,	LAST_NAME,
STUDENT_ID,	GENDER_CODE,	BUS_ID	FROM	STUDENT_DETAILS	WHERE	GRADE=’”);

sbQuery.append(strClass);

sbQuery.append(”’	AND	SECTION=’”);

sbQuery.append(strSection);

sbQuery.append(”’”);

DatabaseService	databaseService	=	new	DatabaseService();

connection	=	databaseService.getDBConnection();

try	{

statement	=	connection.createStatement();

resultSet	=	statement.executeQuery(sbQuery.toString());

while	(resultSet.next())	{

//	Prepare	full	name

strFirstName	=	resultSet.getString(“FIRST_NAME”);

strMiddleName	=	resultSet.getString(“MIDDLE_NAME”);

strLastName	=	resultSet.getString(“LAST_NAME”);

if	(strFirstName	!=	null)	{

strFullName	=	strFirstName;

}

if	(strMiddleName	!=	null)	{

strFullName	=	strFullName	+	”	”	+	strMiddleName;

}

if	(strLastName	!=	null)	{

strFullName	=	strFullName	+	”	”	+	strLastName;

}

//	prepare	gender	from	code

strGender	=	resultSet.getString(“GENDER_CODE”);

if	(strGender	!=	null)		{

if	(strGender.equalsIgnoreCase(“F”))				{

strGender	=	“Female”;

}

else	{

strGender	=	“Male”;

}

}

else	{

strGender	=	””;

}

//	student	id	and	bus	id

strStudentId	=	resultSet.getString(“STUDENT_ID”);

strBusId	=	resultSet.getString(“BUS_ID”);

//	Now	we	are	ready	with	one	compelte	record.

reportByClassBean	=	new	ReportByClassBean();

reportByClassBean.setStudentName(strFullName);

reportByClassBean.setStudentId(strStudentId);

reportByClassBean.setGender(strGender);

reportByClassBean.setStudentId(strStudentId);

reportByClassBean.setBusId(strBusId);

reportsBeansList.add(reportByClassBean);

}

}	catch	(SQLException	sqle)	{

logger.error(sqle.getMessage());

}	finally	{

databaseService.closeDBResouces(statement,	resultSet);

databaseService.releaseDBConnection();		//	Releasing	database	connection.

}

return	reportsBeansList;

}

public	String	getServiceName()	{

return	null;

}

}

	

The	processGetReportByClass	method	performs	the	following	tasks:

	

							Gets	the	request	parameter	value	for	selected	class	and	section.

							Calls	the	private	method	populateReportsByClassData	method	to	populate	the
data	from	database	into	an	array	list	of	ReportByClassBean	instances.

							Adds	this	array	list	of	ReportByClassBean	instances	to	the	session	which	is
consumed	by	the	jsp.

							Adds	the	selected	class	and	grade	to	session	which	is	to	be	displayed	as	selected
report	criteria.

	

The	pupulateReportsByClassData	method	performs	the	following	tasks:
	

							Cooks	up	the	dynamic	select	query	for	the	given	class	and	section.

							Gets	the	database	connection	from	DatabaseService	class.

							Creates	the	statement	and	executes	the	query.

							Populates	the	ReportByClassBean	instance	from	the	ResultSet	for	each	record.

Each	ReportByClassBean	instance	which	now	represents	a	record	from	database	query	is
added	to	the	array	list.	This	array	list	now	holds	all	the	records	as	number	of	instances	of
ReportByClassBean.

	

For	e.g.	say	the	user	selected	class	VI	and	section	A.	The	dynamic	query	will	add	these
two	conditions	in	the	where	clause	for	section	and	class.	Suppose	say,	the	query	returned
11	records	for	this	criteria.	An	instance	of	ReportByClassBean	is	created	and	populated
with	setters.	This	single	instance	of	ReportByClassBean	holds	data	for	one	record.
Similarly	11	such	instances	of	ReportByClassBean	are	created	and	in	each	data	pertaining
to	each	record	from	ResultSet	is	added.	This	array	list	now	holds	11	instances	of
ReportByClassBean.	The	array	list	is	than	added	to	the	session.	On	the	jsp	side,	the	array
list	is	fetched	from	the	session.	And	from	the	array	list	each	instance	of
ReportByClassBean	is	fetched	and	the	fields	from	it	are	displayed	as	one	row.	Hence	the
resultant	report	jsp	page	will	display	11	records.

	

ReportByClassBean.java
	

The	ReportByClassBean	class	is	just	a	simple	java	bean	with	private	fields	with	their
getters	and	setters.	Please	refer	the	class	diagram	and	below	source	code	for	understanding
this	class.

	
package	com.bis.beans.reports;

	

import	com.bis.beans.BisBean;

	

public	class	ReportByClassBean	extends	BisBean{

public	ReportByClassBean()	{

super();

}

private	java.lang.String	studentName;

private	java.lang.String	studentId;

private	java.lang.String	gender;

private	java.lang.String	busId;

public	void	setStudentName(String	studentName)	{

this.studentName	=	studentName;

}

public	String	getStudentName()	{

return	studentName;

}

public	void	setStudentId(String	studentId)	{

this.studentId	=	studentId;

}

public	String	getStudentId()	{

return	studentId;

}

public	void	setGender(String	gender)	{

this.gender	=	gender;

}

public	String	getGender()	{

return	gender;

}

public	void	setBusId(String	busId)	{

this.busId	=	busId;

}

public	String	getBusId()	{

return	busId;

}

}

	

ReportByClass.jsp
	

This	jsp	is	dynamically	included	in	BisHome.jsp	as	a	result	for	get	report	by	class	use	case
invocation	through	user	interaction	with	the	UI.	For	the	initial	request	to	this	page	we	only
need	to	display	the	reports	criteria.	This	is	achieved	by	checking	null	for	the	array	list	of
ReportyByClassBean.	Hence,	for	the	first	request	to	this	page	only	the	criteria	is
displayed.	Once	the	user	selects	the	criteria	and	hits	generate	report,	the	resultant	report	is
displayed	with	“n”	number	of	records	as	described	in	the	example	above.

	

Till	now	we	have	seen	that	the	command	for	report	by	class	goes	form	UI	as	a	result	of
user	interaction.	Then	the	controller	servlet	calls	get	report	by	class	command	processor
and	then	the	report	by	class	service	is	leveraged.	Finally,	we	get	the	results	packaged	as	an
array	list	of	instances	of	ReportByClassBean.	This	array	list	with	the	n	number	of	bean
instances	is	now	available	in	the	session.	In	the	ReportByClass.jsp	file	we	fetch	this	array
list	of	bean	instances	from	the	session.	And	from	each	bean	we	fetch	all	the	information
related	to	student	details	using	the	getters.	The	static	part	of	the	jsp	remains	the	same	as
that	of	the	prototype	page.	Only	the	dynamic	part	is	added	using	the	array	list	of	the	beans
from	the	session.	Hence,	the	end	user	sees	the	view	for	a	given	report	criteria	with	all	the
student	records.

	

Here	is	the	source	code	for	the	ReportByClass.jsp	file.

<%@	page	import=“com.bis.beans.reports.ReportByClassBean”%>

<%@	page	import=“java.util.ArrayList”%>

<%@	page	import=“java.util.Iterator”%>

<%

ReportByClassBean	reportByClassBean;

Iterator	recItr	=	null;

if	(session	!=	null)	{

ArrayList	reportsBeansList	=	(ArrayList)	session.getAttribute(“reportsBeansList”);

if	(reportsBeansList	!=	null)						{

recItr	=	reportsBeansList.iterator();

}

}

%>

<form	id=“frmReportByCls”	name=“frmReportByCls”	method=“POST”	action=“BisControllerServlet”>

<input	type=“hidden”	name=“ParameterActionCommand”	value=“GetReportByClass”></input>

<table	border=“0”	cellpadding=“0”	cellspacing=“0”	width=“100%”	height=“99%”>

<tr>

<td	widht=”*”	align=“center”	valign=“top”>

<table	border=“0”	cellpadding=“10”	cellspacing=“0”	width=“100%”>

<tr><td> </td></tr>

<tr>

<td	bgcolor=“White”	align=“center”	id=“clred”	colspan=“3”>

Class	:

<select	name=“selClass”	id=“selClass”>

<option	selected=“true”	value=“I”>

I

</option>

<option	value=“II”>

II

</option>

<option	value=“III”>

III

</option>

<option	value=“IV”>

IV

</option>

<option	value=“V”>

V

</option>

<option	value=“VI”>

VI

</option>

<option	value=“VII”>

VII

</option>

<option	value=“VIII”>

VIII

</option>

<option	value=“IX”>

IX

</option>

<option	value=“X”>

X

</option>

</select>

Section	:

<select	name=“selSection”	id=“selSection”>

<option	selected=“true”	value=“A”>

A

</option>

<option	value=“B”>

B

</option>

<option	value=“C”>

C

</option>

<option	value=“D”>

D

</option>

<option	value=“E”>

E

</option>

<option	value=“F”>

F

</option>

<option	value=“G”>

G

</option>

</select>

<input	type=“button”	value=“Generate	Report”	name=“btnGenRepByCls”	id=“btnGenRepByCls”
onclick=“generateRptByCls()”>

</td>

</tr>

<tr><td> </td></tr>

<tr	valign=“middle”>

<td	align=“center”>

<table	border=“1”	cellpadding=“4”	cellspacing=“0”	width=“80%”	bgcolor=“White”>

<tr	id=“clred”>

<td	colspan=“12”	align=“center”>

 Report:	Class	Wise

 |

Class	:

<%

String	strGrade	=	(String)	session.getAttribute(“grade”);

if	(strGrade	!=	null)	{

out.print(strGrade);

}

else	{

out.print(“None”);

}

%>

 |

Section	:

<%

String	strSection	=	(String)	session.getAttribute(“section”);

if	(strSection	!=	null)	{

out.print(strSection);

}

else	{

out.print(“None”);

}

%>

</td>

</tr>

<tr	id=“trbgred”>

<td	align=“center”	width=”*”>

Name

</td>

<td	align=“center”	width=“20%”>

Student	Id

</td>

<td	align=“center”	width=“20%”>

Gender

</td>

<td	align=“center”	width=“20%”>

Bus	Id

</td>

</tr>

<%

if	(recItr	!=	null)	{

while	(recItr.hasNext())		{

reportByClassBean	=	(ReportByClassBean)	recItr.next();

%>

<tr>

<td	align=“center”>

<%=reportByClassBean.getStudentName()%>

</td>

<td	align=“center”>

<%=reportByClassBean.getStudentId()%>

</td>

<td	align=“center”>

<%=reportByClassBean.getGender()%>

</td>

<td	align=“center”>

<%=reportByClassBean.getBusId()%>

</td>

</tr>

<%	}	}	%>

</table>

</td>

</tr>

</table>

</td>

</tr>

</table>

</form>

	

For	this	use	case	please	study	the	dynamic	part	of	the	jsp	code.	We	fetched	the	array	list
from	the	session.	From	array	list	we	got	the	iterator.	We	used	this	iterator	to	dynamically
display	all	the	records	(with	each	and	every	individual	fields)	in	a	tabular	format.

	

This	concludes	the	get	report	by	class	use	case	implementation	from	end	to	end.	We
composed	the	requirement	specifications,	we	built	the	prototype,	we	followed	the
architecture	for	the	solution,	we	leveraged	the	framework,	we	developed	the	various	java
classes,	we	used	the	common	components	like	DatabaseService.java,	BISStyle.css	etc	and
we	built	the	view	with	the	jsp	page.

	

Use	Case:	Add	Student.
	

Requirements	Specification	Reference:	R10

Prototype	Reference:	P9

Prerequisite:	The	user	has	to	be	logged	in	and	must	have	the	role	which	has	the	privilege
to	add	a	new	student.

	

This	use	case	needs	to	be	implemented	as	per	the	requirements	specification	reference
above.	The	UI	needs	to	be	as	per	the	prototype	reference	above.	Now	that	we	have
complete	clarity	on	use	case	requirements	and	UI	we	will	now	proceed	to	implement	this
use	case.

	

In	order	to	implement	this	use	case,	we	need	to	follow	the	architecture	and	leverage	the
framework.	To	achieve	this	we	will	first	come	up	with	detailed	design	and	then	code	it.

	

The	prerequisite	for	this	use	case	is	that	the	user	has	to	be	logged	in	and	must	have	the	role
which	has	the	privilege	to	add	a	new	student.	When	the	user	clicks	on	add	student	link

either	on	dashboard	or	via	the	menu,	the	following	flow	is	triggered.

The	user	clicks	the	add	student	link

The	href	for	this	link	is

BisControllerServlet?ParameterActionCommand=AddStudent

The	ControllerServlet	is	invoked	on	the	server

In	the	service	method	the	action	command	parameter	value	is	read	which	is	AddStudent

The	execute	method	for	the	command	processor	pertaining	to	AddStudent	is	invoked

The	business	logic	pertaining	to	this	command	processor	is	executed	and	a	confirmation
message	is	returned.

The	command	processor	class	pertaining	to	AddStudent	command	is	AddStudentCP.	The
view	pertaining	to	student	detail	page	is	AddStudent.jsp.	Now,	lets	see	the	sequence	of
method	calls	once	the	execute	method	of	AddStudentCP	is	called.	Below	is	the	sequence
diagram	from	this	use	case.

	

	

The	controller	servlet	invokes	the	execute	method	of	the	Add	Student	command
processor.	The	first	thing	the	execute	method	does	is	that	it	checks	whether	this	is	a
request	for	blank	form	or	is	a	filled	form	submission.	This	is	done	via	a	request	parameter
which	is	send	by	the	add	student	view	as	a	hidden	variable.	If	it	is	a	request	for	blank	form
the	execute	method	returns	the	view.	If	it	is	a	form	submission,	the	execute	method
invokes	process	add	student	method	in	the	Add	Student	Service	class.

	

The	process	add	student	method	calls	the	private	method	prepare	add	student	model.	The
prepare	add	student	model	method	reads	all	the	http	request	parameters	sent	from	the	jsp
form	and	populates	the	Student	Details	Bean.	Now,	we	have	all	the	data	from	the	form	in
the	form	of	a	bean	instance.	The	process	method	gets	the	database	connection	and
explicitly	turns	off	the	auto	commit	mode.	The	process	method	then	invokes	three	private
methods,	each	of	these	methods	insert	one	record	to	respective	tables.	These	three
methods	return	the	status	of	insertion	as	a	Boolean	value.	All	the	three	Boolean	values	are
checked,	if	all	of	them	are	true	than	the	transaction	is	committed	else	the	transaction	is
rolled	back.	Finally,	the	add	student	view	is	returned	to	the	user.

At	this	stage	we	have	the	requirements,	prototype,	architecture,	framework	and	detailed
design	for	the	add	student	use	case	in	the	form	of	sequence	and	class	diagrams.	The	next
and	the	most	interesting	part	is	coding	this	use	case.	In	the	earlier	chapter,	we	have	already
created	the	database	tables	and	added	some	test	data	there.	Lets	identify	all	the	artifacts
first.	For	this	use	case	we	need	the	following	files	along	with	the	commons.

	

AddStudent.jsp

AddStudentCP.java

StudentDetailsBean.java

	

AddStudentCP.java
	

Please	refer	chapter	14	(The	BIS-SMS	Project	Components)	for	class	diagram	once	before
we	proceed	with	this	class.	This	class	implements	BisCommand	interface	which	has	only
one	method	execute.	This	class	extends	BisCP	which	has	few	variables.	We	have	to
implement	execute	method	in	this	class	for	get	student	details	use	case.	Lets	look	into	the
actual	source	code	for	this	class	now.

package	com.bis.cp;

import	com.bis.session.AddStudentService;

import	javax.servlet.http.HttpServletRequest;

import	javax.servlet.http.HttpServletResponse;

import	org.apache.log4j.Logger;

public	class	AddStudentCP	extends	BisCP	implements	BisCommand	{

static	Logger	logger	=	Logger.getLogger(AddStudentCP.class);

public	AddStudentCP()	{

uper();

}

String	strAddStdFrmSubmitted	=	“No”;				//	Defaulting	add	student	form	submitted	hidden	value	to	false.

public	String	execute(HttpServletRequest	request,	HttpServletResponse	response)	{

strAddStdFrmSubmitted	=	request.getParameter(“paramAddStdFrmSubmitted”);

try	{

if	(strAddStdFrmSubmitted	!=	null	&&	strAddStdFrmSubmitted.equalsIgnoreCase(“Yes”))			{

AddStudentService	addStudentService	=	new	AddStudentService();

addStudentService.processAddStudent(request);

}

strNextNavigation	=	“AddStudent”;					//The	next	navigation	page	upon	successful	processing.

}	catch	(Exception	excep)	{

logger.error(excep.getMessage());

strNextNavigation	=	“Error”;					//The	next	navigation	page	upon	failed	processing.

}

return	strNextNavigation;

}

}

	

The	execute	method	of	AdddentCP	Class.

	

The	execute	method	is	called	from	the	controller	servlet.	This	is	the	job	of	the	framework.
The	framework	gets	the	command	from	UI	and	based	on	the	command	loads	and	executes
a	specific	command	processor	exploiting	the	polymorphic	feature	of	java.	In	this	case,	the
command	from	UI	is	“AddStudent”.	Within	the	service	method	of	controller	servlet,	the
AddStudentCP	class	is	loaded	and	instantiated	and	the	execute	method	is	invoked.

	

The	execute	method	performs	the	following	tasks:

	

							Gets	the	new	student	form	submitted	flag	from	the	request	parameter.	This	is	Yes
in	case	the	user	has	submitted	the	add	new	student	form	using	the	AddStudent.jsp.
This	is	No	in	case	the	user	has	requested	the	add	new	student	blank	form.	That	is,
the	initial	load	of	the	add	student	page	in	order	to	fill	it	and	submit	it.

							Checks	the	value	for	paramAddStdFrmSubmitted	parameter.

							If	yes,	creates	an	instance	of	AddStudentService	and	calls	processAddStudent
method.	This	method	orchestrates	the	insertion	of	new	records	in	the	database	for
the	new	student.	And	finally,	sets	the	next	navigation	view.

							If	no,	directly	sets	the	next	navigation	to	AddStudent.	This	loads	the	blank	form
on	the	browser	in	order	to	submit	a	new	student.	The	user	sees	the	add	student	form
page.

	

AddStudentService.java
	

Now,	let	us	see	the	source	code	of	AddStudentService.java	class.

package	com.bis.session;

import	com.bis.beans.StudentDetailsBean;

import	com.bis.db.DatabaseService;

import	com.bis.utility.BisUtility;

import	java.sql.Connection;

import	java.sql.PreparedStatement;

import	java.sql.SQLException;

import	java.text.ParseException;

import	java.text.SimpleDateFormat;

import	javax.servlet.http.HttpServletRequest;

import	org.apache.log4j.Logger;

	

public	class	AddStudentService	implements	BisService	{

static	Logger	logger	=	Logger.getLogger(AddStudentService.class);

public	AddStudentService()	{

super();

}

public	void	processAddStudent(HttpServletRequest	request)			{

boolean	isStudentInfoInsertedToSD	=	false;

boolean	isStudentInfoInsertedToSA	=	false;

boolean	isParentsInfoInserted	=	false;

StudentDetailsBean	studentDetailsBean	=	null;

Connection	connection	=	null;

studentDetailsBean	=	prepareAddStudentModel(request);

connection	=	DatabaseService.getDBConnection();

try	{

connection.setAutoCommit(false);

isStudentInfoInsertedToSD	=	insertNewStudentToSD(studentDetailsBean,	connection);

isStudentInfoInsertedToSA	=	insertNewStudentToSA(studentDetailsBean,	connection);

isParentsInfoInserted	=	insertNewStudentParentsInfoToDb(studentDetailsBean,	connection);

if	(isStudentInfoInsertedToSD	&&	isParentsInfoInserted	&&	isStudentInfoInsertedToSA)			{

connection.commit();

BisUtility.sendMail(“New	student	”	+	studentDetailsBean.getFirstName()	+	”	”	+	studentDetailsBean.getLastName()		+
”	is	added.”,	“The	new	student	with	the	id:	“+studentDetailsBean.getStudentId()	+	”	is	added.”);

}

else	{

connection.rollback();

logger.error(“New	student	insertion	to	database	failed.”);

}

}	catch	(SQLException	sqle)	{

logger.error(sqle.getMessage());

}

finally	{

DatabaseService.releaseDBConnection();		//	Releasing	database	connection.

}

}

private	StudentDetailsBean	prepareAddStudentModel(HttpServletRequest	request)	{

StudentDetailsBean	studentDetailsBean	=	new	StudentDetailsBean();

studentDetailsBean.setFirstName(request.getParameter(“txtFirstName”));															
studentDetailsBean.setMiddleName(request.getParameter(“txtMiddleName”));

studentDetailsBean.setLastName(request.getParameter(“txtLastName”));

studentDetailsBean.setFather(request.getParameter(“txtFatherName”));

studentDetailsBean.setFatherMobile(request.getParameter(“txtFatMob”));

studentDetailsBean.setMother(request.getParameter(“txtMotherName”));

studentDetailsBean.setMotherMobile(request.getParameter(“txtMotMob”));

studentDetailsBean.setAddress(request.getParameter(“taAddress”));

studentDetailsBean.setGender(request.getParameter(“radSex”));

studentDetailsBean.setDob(request.getParameter(“datDob”));

studentDetailsBean.setGrade(request.getParameter(“selGrade”));

studentDetailsBean.setSection(request.getParameter(“selSection”));

studentDetailsBean.setWeight(request.getParameter(“numWeight”));

studentDetailsBean.setHeight(request.getParameter(“txtHeight”));

studentDetailsBean.setSiblings(request.getParameter(“txtSiblings”));

studentDetailsBean.setBloodGroup(request.getParameter(“selBldGrp”));

studentDetailsBean.setBusId(request.getParameter(“selBusId”));

String	strDob	=	studentDetailsBean.getDob();

StringBuffer	sbStudentId	=	BisUtility.generateStudentId(studentDetailsBean.getFirstName(),
studentDetailsBean.getLastName(),	studentDetailsBean.getMother(),	studentDetailsBean.getFather(),	strDob);

studentDetailsBean.setStudentId(sbStudentId.toString());

return	studentDetailsBean;

}

private	boolean	insertNewStudentToSD(StudentDetailsBean	studentDetailsBean,	Connection	connection)				{

boolean	isStudentInfoInserted	=	false;

int	insertCount	=	0;

java.sql.Date	datDob	=	null;

PreparedStatement	preparedStatement	=	null;

DatabaseService	databaseService	=	new	DatabaseService();

SimpleDateFormat	sdFormat	=	new	SimpleDateFormat(“yyyy-MM-dd”);

String	strInsertQuery	=	“INSERT	INTO	STUDENT_DETAILS	(STUDENT_ID,	ACTIVE_FLAG,	FIRST_NAME,
MIDDLE_NAME,	LAST_NAME,	GENDER_CODE,	BIRTH_DATE,	GRADE,	SECTION,	HEIGHT,	WEIGHT,
BLOOD_GROUP,	SIBLINGS_STUDENT_IDS,	BUS_ID)	VALUES	(?,?,?,?,?,?,?,?,?,?,?,?,?,?)”;

try	{

java.util.Date	parsedDate	=	sdFormat.parse(studentDetailsBean.getDob());

datDob	=	new	java.sql.Date(parsedDate.getTime());

preparedStatement	=	connection.prepareStatement(strInsertQuery);

preparedStatement.setString(1,	studentDetailsBean.getStudentId());

preparedStatement.setString(2,	“Y”);

preparedStatement.setString(3,	studentDetailsBean.getFirstName());

preparedStatement.setString(4,	studentDetailsBean.getMiddleName());

preparedStatement.setString(5,	studentDetailsBean.getLastName());

preparedStatement.setString(6,	studentDetailsBean.getGender());

preparedStatement.setDate(7,	datDob);

preparedStatement.setString(8,	studentDetailsBean.getGrade());

preparedStatement.setString(9,	studentDetailsBean.getSection());

preparedStatement.setString(10,	studentDetailsBean.getHeight());

preparedStatement.setString(11,	studentDetailsBean.getWeight());

preparedStatement.setString(12,	studentDetailsBean.getBloodGroup());

preparedStatement.setString(13,	studentDetailsBean.getSiblings());

preparedStatement.setString(14,	studentDetailsBean.getBusId());

insertCount	=	preparedStatement.executeUpdate();

if	(insertCount	==	1)			{

isStudentInfoInserted	=	true;

}

else	{

logger.error(“Failed	to	insert	new	student	record	in	Student_Details	table”);

}

}	catch	(SQLException	sqle)	{

isStudentInfoInserted	=	false;

logger.error(sqle.getMessage());

}	catch	(ParseException	pe)	{

logger.error(pe.getMessage());

}

finally	{

databaseService.closeDBResouces(preparedStatement,null);

}

return	isStudentInfoInserted;

}

//	Inserts	two	rows	to	Student_Attendance	table	with	zero	attendance	for	each	semester.	Provisioning	for	later	update.

private	boolean	insertNewStudentToSA(StudentDetailsBean	studentDetailsBean,	Connection	connection)				{

boolean	isStudentInfoInsertedToSA	=	false;

int	insertCountSem1	=	0;

int	insertCountSem2	=	0;

PreparedStatement	preparedStatement	=	null;

DatabaseService	databaseService	=	new	DatabaseService();

String	strInsertQuery	=	“INSERT	INTO	STUDENT_ATTENDANCE	(STUDENT_ID,	ATTENDANCE,	SEMESTER)
VALUES	(?,?,?)”;

try	{

preparedStatement	=	connection.prepareStatement(strInsertQuery);

preparedStatement.setString(1,	studentDetailsBean.getStudentId());

preparedStatement.setInt(2,	0);

preparedStatement.setString(3,	“1”);

insertCountSem1	=	preparedStatement.executeUpdate();

preparedStatement.setString(3,	“2”);

insertCountSem2	=	preparedStatement.executeUpdate();

if	(insertCountSem1	==	1	&&	insertCountSem2	==	1)			{

isStudentInfoInsertedToSA	=	true;

}

else	{

logger.error(“Failed	to	insert	new	student	record	in	Student_Attendance	table”);

}

}	catch	(SQLException	sqle)	{

isStudentInfoInsertedToSA	=	false;

logger.error(sqle.getMessage());

}

finally	{

databaseService.closeDBResouces(preparedStatement,null);

}

return	isStudentInfoInsertedToSA;

}

private	boolean	insertNewStudentParentsInfoToDb(StudentDetailsBean	studentDetailsBean,	Connection	connection)				{

boolean	isParentsInfoInserted	=	false;

PreparedStatement	preparedStatement	=	null;

DatabaseService	databaseService	=	new	DatabaseService();

int	insertCount=0;

String	strInsertQuery	=	“INSERT	INTO	PARENT_DETAILS	(FATHER_NAME,	MOTHER_NAME,
FATHER_MOBILE,	MOTHER_MOBILE,	ADDRESS,	FATHER_QUALIFICATION,	MOTHER_QUALIFICATION,

ANNUAL_INCOME,	STUDENT_ID)	VALUES	(?,?,?,?,?,?,?,?,?)”;

try	{

preparedStatement	=	connection.prepareStatement(strInsertQuery);

preparedStatement.setString(1,	studentDetailsBean.getFather());

preparedStatement.setString(2,	studentDetailsBean.getMother());

preparedStatement.setString(3,	studentDetailsBean.getFatherMobile());

preparedStatement.setString(4,	studentDetailsBean.getMotherMobile());

preparedStatement.setString(5,	studentDetailsBean.getAddress());

preparedStatement.setString(6,	studentDetailsBean.getFatherQual());

preparedStatement.setString(7,	studentDetailsBean.getMotherQual());

preparedStatement.setString(8,	studentDetailsBean.getAnnualIncome());

preparedStatement.setString(9,	studentDetailsBean.getStudentId());

insertCount	=	preparedStatement.executeUpdate();

if	(insertCount	==1)				{

isParentsInfoInserted	=	true;

}

else	{

logger.error(“Failed	to	insert	new	student	parent’s	record	in	Parents_Details	table”);

}

}	catch	(SQLException	sqle)	{

isParentsInfoInserted	=	false;

logger.error(sqle.getMessage());

}

finally	{

databaseService.closeDBResouces(preparedStatement,null);

}

return	isParentsInfoInserted;

}

public	String	getServiceName()	{

return	this.getClass().getName();

}

}

	

The	processAddStudent	method	performs	the	following	tasks:

	

							Creates	an	instance	of	StudentDetailsBean	and	calls	prepareAddStudentModel
method	to	populate	the	data	sent	via	the	html	form	into	this	bean	instance.	This
instance	now	holds	the	client	side	validated	data	sent	by	the	user	by	submitting	add

student	form.
	

							Leverages	DatabaseService	class	to	get	database	connection.
	

							Sets	auto	commit	for	the	database	connection	to	false.	In	this	case	we	have	to
explicitly	commit	or	roll	back	the	database	insertion	operations.	We	did	this	in
order	to	manually	control	the	database	transaction.	For	this	use	case	we	have	to
insert	a	record	in	three	tables.	This	has	to	be	an	either	all	or	none	operation.	The
records	for	a	new	student	must	go	in	all	these	three	tables,	in	case	of	success,	we
will	commit	it.	If	the	insertion	fails	in	one	or	more	tables,	we	perform	the	roll	back
which	ensures	that	none	of	the	details	about	the	student	are	entered	to	any	of	the
tables.	This	saves	us	from	inconsistencies	of	data	for	a	given	student.

							Initializes	three	boolean	variables	to	capture	status	of	insertion	to	each	table.
	

							For	creating	a	new	student,	we	need	to	insert	one	record	into	each	of	the
following	tables:	Student_details,	Parent_details	and	Student_attendance.	This	is
achieved	via	calls	to	three	private	methods	in	the	same	class.	All	these	methods
return	a	boolean	value	which	is	nothing	but	the	status	of	the	operation.	Each
method	return	true	if	the	insertion	succeeds	and	false	if	the	insertion	fails.
	

							After	calling	all	the	three	methods	the	boolean	returned	status	are	checked,	if	all
the	tree	returned	values	are	true,	the	transaction	is	committed	and	an	email	is	sent
using	sendEmail	method	of	BisUtility	class.
	

							If	one	or	more	returned	values	are	false,	the	transaction	is	rolled	back.	This
guarantees	that	the	records	are	inserted	either	in	all	the	three	tables	or	none.

	

The	prepareAddStudentModel	method	performs	the	following	tasks:
	

							Reads	the	values	of	all	the	form	elements	sent	from	the	jsp	page.	All	these
parameters	are	read	from	the	request	object	and	the	values	are	populated	to	the
Student	Details	Bean	instance	using	setter	methods.

							Calls	the	generateStudentId	method	in	BisUtility	class	in	order	to	generate
student	id	from	the	values	submitted	by	the	user	for	a	given	student.

							Calls	the	setter	method	of	student	details	bean	instance	to	set	this	generated
student	id.

							And	finally,	returns	this	populated	instance	of	student	details	bean.

	

The	insertNewStudentToSD	method	performs	the	following	tasks:

	

							Cooks	up	the	dynamic	insert	query	with	placeholders	for	adding	a	new	record	to
student	details	table.

							Gets	the	database	connection	from	DatabaseService	class.

							Gets	the	prepared	statement	from	the	connection	for	the	given	query.

							Uses	setXXX	methods	of	prepared	statement	to	set	the	values	fetched	from	the
student	details	bean	instance.

							Calls	execute	update	method	to	insert	a	record	to	the	database	table	student
details.

							The	status	is	captured	in	a	boolean	variable	and	is	returned	to	the	calling	method.

							Performs	the	closure	of	database	resources	in	the	finally	block.

	

The	insertNewStudentToSA	method	performs	the	following	tasks:

	

							Cooks	up	the	dynamic	insert	query	with	placeholders	for	adding	a	new	record	to
														student	attendance	table.

							Gets	the	database	connection	from	DatabaseService	class.

							Gets	the	prepared	statement	from	the	connection	for	the	given	query.

							Uses	setXXX	methods	of	prepared	statement	to	set	the	values	fetched	from	the
														student	details	bean	instance.

							Calls	execute	update	method	to	insert	a	record	to	the	database	table	student
														attendance.

							The	status	is	captured	in	a	boolean	variable	and	is	returned	to	the	calling	method.

							In	a	finally	block,	the	database	resources	which	were	used	are	closed.

The	insertNewStudentParentsInfoToDb	method	performs	the	following	tasks:

	

							Cooks	up	the	dynamic	insert	query	with	placeholders	for	adding	a	new	record	to
parent	details	table.

							Gets	the	database	connection	from	DatabaseService	class.

							Gets	the	prepared	statement	from	the	connection	for	the	given	query.

							Uses	setXXX	methods	of	prepared	statement	to	set	the	values	fetched	from	the
student	details	bean	instance.

							Calls	execute	update	method	to	insert	a	record	to	the	database	table	parent
details.

							The	status	is	captured	in	a	boolean	variable	and	is	returned	to	the	calling	method.

							In	a	finally	block,	the	database	resources	which	were	used	are	closed.

	

StudentDetailsBean.java
	

Please	refer	to	the	get	student	details	use	case	for	the	details	about	this	bean.

	

AddStudent.jsp
	

This	jsp	is	dynamically	included	in	BisHome.jsp	as	a	result	for	add	student	use	case
invocation	through	user	interaction	with	the	UI.

	

Till	now	we	have	seen	that	the	command	for	add	student	goes	form	UI	as	a	result	of	user
interaction.	Then	the	controller	servlet	calls	add	student	command	processor.	The
command	processor	checks	whether	it	is	a	request	for	a	blank	form	to	submit	a	new
student	or	it	is	a	new	student	form	submission.	For	the	former	case,	the	command
processor	renders	the	blank	form	via	add	student	jsp	page.	And	for	the	later	case,	the
command	processor	utilizes	add	student	service	class	to	insert	a	new	student	to	the
database.

	

The	add	student	jsp	page	provides	all	the	mandatory	as	well	as	optional	fields	in	order	to
create	a	new	student.	All	the	fields	are	validated	at	the	client	side	using	javascript.

	

Here	is	the	source	code	for	the	AddStudent.jsp	file.

<form	id=“frmAddStudent”	name=“frmAddStudent”	method=“POST”	action=“BisControllerServlet”>

<input	type=“hidden”	name=“ParameterActionCommand”	value=“AddStudent”></input>

<input	type=“hidden”	name=“paramAddStdFrmSubmitted”	id=“paramAddStdFrmSubmitted”	value=“No”></input>

<table	border=“0”	cellpadding=“10”	cellspacing=“0”	width=“100%”>

<tr><td	colspan=“2”> </td></tr>

<tr>

<td	align=“center”	colspan=“2”	id=“whiteBg”>

Add	Student

</td>

</tr>

<tr><td	colspan=“2”> </td></tr>

<tr	valign=“top”>

<td	width=“50%”	align=“center”>

<table	border=“1”	cellpadding=“5”	cellspacing=“0”	width=“90%”	bgcolor=“White”>

<tr>

<td	colspan=“2”> </td>

</tr>

<tr>

<td	width=“25%”	align=“right”	id=“clred”>First	Name	 </td>

<td	width=”*”	align=“left”>

<input	type=“text”	size=“30”	name=“txtFirstName”	maxlength=“30”></input>

</td>

</tr>

<tr>

<td	width=“25%”	align=“right”	id=“clred”>Middle	Name	 </td>

<td	width=”*”	align=“left”>

<input	type=“text”	size=“30”	name=“txtMiddleName”	maxlength=“30”></input>

</td>

</tr>

<tr>

<td	width=“25%”	align=“right”	id=“clred”>Last	Name	 </td>

<td	width=”*”	align=“left”>

<input	type=“text”	size=“30”	name=“txtLastName”	maxlength=“30”></input>

</td>

</tr>

<tr>

<td	colspan=“2”> </td>

</tr>

<tr>

<td	width=”*”	align=“right”	id=“clred”>Gender	 </td>

<td	width=”*”	align=“left”>

<input	type=“radio”	name=“radSex”	value=“M”>Male</input>

<input	type=“radio”	name=“radSex”	value=“F”>Female</input>

</td>

</tr>

<tr>

<td	align=“right”	id=“clred”>Date	of	birth	 </td>

<td	width=”*”	align=“left”>

<input	type=“date”	name=“datDob”></input>		<!—	HTML5	Element	—>

</td>

</tr>

<tr>

<td	colspan=“2”> </td>

</tr>

<tr>

<td	align=“right”	id=“clred”>Grade	 </td>

<td	width=”*”	align=“left”>

<select	name=“selGrade”>

<option	value=“LKG”>L.K.G</option>

<option	value=“UKG”>U.K.G</option>

<option	value=“I”>I	-	First</option>

<option	value=“II”>II	-	Second</option>

<option	value=“III”>III	-	Third</option>

<option	value=“IV”>IV	-	Fourth</option>

<option	value=“V”>V	-	Fifth</option>

<option	value=“VI”>VI	-	Sixth</option>

<option	value=“VII”>VII	-	Seventh</option>

<option	value=“VIII”>VIII	-	Eight</option>

<option	value=“IX”>IX	-	Ninth</option>

<option	value=“X”>X	-	Tenth</option>

</select>

</td>

</tr>

<tr>

<td	align=“right”	id=“clred”>Section	 </td>

<td	width=”*”	align=“left”>

<select	name=“selSection”>

<option	value=“A”>A</option>

<option	value=“B”>B</option>

<option	value=“C”>C</option>

<option	value=“D”>D</option>

<option	value=“E”>E</option>

</select>

</td>

</tr>

<tr>

<td	colspan=“2”> </td>

</tr>

<tr>

<td	align=“right”	id=“clred”>Height	 </td>

<td	width=”*”	align=“left”>

<!—	HTML5	Element	—>

<input	type=“text”	name=“txtHeight”></input>

 	Foot.Inches

</td>

</tr>

<tr>

<td	align=“right”	id=“clred”>Weight	 </td>

<td	width=”*”	align=“left”>

<!—	HTML5	Element	—>

<input	type=“number”	min=“6”	max=“150”	name=“numWeight”></input>

 	KG

</td>

</tr>

<tr>

<td	colspan=“2”> </td>

</tr>

<tr>

<td	align=“right”	id=“clred”>Blood	Group	 </td>

<td	width=”*”	align=“left”>

<select	name=“selBldGrp”>

<option	value=“AP”>A	+ve</option>

<option	value=“BP”>B	+ve</option>

<option	value=“ABP”>AB	+ve</option>

<option	value=“OP”>O	+ve</option>

<option	value=“AN”>A	-ve</option>

<option	value=“BN”>B	-ve</option>

<option	value=“ABN”>AB	-ve</option>

<option	value=“ON”>O	-ve</option>

</select>

</td>

</tr>

<tr>

<td	align=“right”	id=“clred”>Siblings	 </td>

<td	width=”*”	align=“left”>

<input	type=“text”	name=“txtSiblings”	size=“40”	maxlength=“100”></input>

</td>

</tr>

<tr>

<td	colspan=“2”> </td>

</tr>

</table>

</td>

<td	width=”*”	align=“center”>

<table	border=“1”	cellpadding=“5”	cellspacing=“0”	width=“90%”	bgcolor=“White”>

<tr>

<td	colspan=“2”> </td>

</tr>

<tr>

<td	width=“25%”	align=“right”	id=“clred”>Father	 </td>

<td	width=”*”	align=“left”>

<input	type=“text”	size=“30”	name=“txtFatherName”	maxlength=“30”></input>

</td>

</tr>

<tr>

<td	colspan=“2”> </td>

</tr>

<tr>

<td	width=“25%”	align=“right”	id=“clred”>Mobile	 </td>

<td	width=”*”	align=“left”>

<input	type=“text”	name=“txtFatMob”	maxlength=“20”></input>

</td>

</tr>

<tr>

<td	colspan=“2”> </td>

</tr>

<tr>

<td	width=”*”	align=“right”	id=“clred”>Mother	 </td>

<td	width=”*”	align=“left”>

<input	type=“text”	size=“30”	name=“txtMotherName”	maxlength=“30”></input>

</td>

</tr>

<tr>

<td	colspan=“2”> </td>

</tr>

<tr>

<td	align=“right”	id=“clred”>Mobile	 </td>

<td	width=”*”	align=“left”>

<input	type=“text”	name=“txtMotMob”	maxlength=“20”></input>

</td>

</tr>

<tr>

<td	colspan=“2”> </td>

</tr>

<tr	height=“130”>

<td	align=“right”	id=“clred”>Address	 </td>

<td	width=”*”	align=“left”>

<textarea	name=“taAddress”	cols=“45”	rows=“6”></textarea>

</td>

</tr>

<tr>

<td	colspan=“2”> </td>

</tr>

<tr>

<td	width=“25%”	align=“right”	id=“clred”>Bus	Number	 </td>

<td	width=”*”	align=“left”>

<select	name=“selBusId”>

<option	value=“01”>01</option>

<option	value=“02”>02</option>

<option	value=“03”>03</option>

<option	value=“04”>04</option>

<option	value=“05”>05</option>

<option	value=“06”>06</option>

<option	value=“07”>07</option>

<option	value=“08”>08</option>

<option	value=“09”>09</option>

<option	value=“10”>10</option>

<option	value=“11”>11</option>

<option	value=“12”>12</option>

<option	value=“13”>13</option>

<option	value=“14”>14</option>

<option	value=“15”>15</option>

<option	value=“16”>16</option>

<option	value=“17”>17</option>

<option	value=“18”>18</option>

<option	value=“19”>19</option>

<option	value=“20”>20</option>

<option	value=“11”>21</option>

<option	value=“22”>22</option>

<option	value=“23”>23</option>

<option	value=“24”>24</option>

<option	value=“25”>25</option>

<option	value=“26”>26</option>

<option	value=“27”>27</option>

<option	value=“28”>28</option>

<option	value=“29”>29</option>

<option	value=“30”>30</option>

<option	value=”-1”>Private</option>

</select>

</td>

</tr>

<tr>

<td	colspan=“2”> </td>

</tr>

<tr>

<td	colspan=“2”> </td>

</tr>

</table>

</td>

</tr>

<tr>

<td	colspan=“3”> </td>

</tr>

<tr	valign=“middle”	align=“center”>

<td	colspan=“3”>

<input	type=“submit”	name=“subAddStd”	value=”			Submit			”	id=“submitButton”	onclick=“submitAddStdForm()”	>
</input>

</td>

</tr>

<tr>

<td	colspan=“3”> </td>

</tr>

</table>

</form>

	

This	concludes	the	add	new	student	use	case	implementation	from	end	to	end.	We
composed	the	requirement	specifications,	we	built	the	prototype,	we	followed	the
architecture	for	the	solution,	we	leveraged	the	framework,	we	developed	the	various	java
classes,	we	used	the	common	components	like	DatabaseService.java,	BISStyle.css	etc	and
we	built	the	view	with	the	jsp	page.

	

Use	Case:	Manage	Student	Attendance.
	

Requirements	Specification	Reference:	R9

Prototype	Reference:	P8

Prerequisite:

1.	The	user	has	to	be	logged	in	and	must	have	the	role	which	has	the	privilege	to	update
the	attendance	of	the	students.

2.	The	student	whose	attendance	needs	to	be	updated	has	to	be	loaded	into	context	first.

	

This	use	case	needs	to	be	implemented	as	per	the	requirements	specification	reference
above.	The	UI	needs	to	be	as	per	the	prototype	reference	above.	Now	that	we	have
complete	clarity	on	use	case	requirements	and	UI	we	will	now	proceed	to	implement	this
use	case.

	

In	order	to	implement	this	use	case,	we	need	to	follow	the	architecture	and	leverage	the
framework.	To	achieve	this	we	will	first	come	up	with	detailed	design	and	then	code	it.

	

The	prerequisite	for	this	use	case	is	that	the	user	has	to	be	logged	in	and	must	have	the	role
which	has	the	privilege	to	update	the	attendance	of	the	students.	And	the	other	prerequisite
is	that	the	student	whose	attendance	needs	to	be	updated	must	already	be	existing	in	the
context,	for	this	the	user	must	have	loaded	the	student	following	the	load	student	use	case.
When	the	student	is	loaded,	the	student	id	of	a	particular	student	is	added	to	the	session.

You	can	refer	the	load	student	use	case	for	details	on	this.	Lets	assume	as	of	now	that	the
student	id	is	existing	in	the	http	session.	When	the	user	clicks	on	manage	attendance	link
either	on	dashboard	or	via	the	menu,	the	following	flow	is	triggered.

The	user	clicks	the	manage	attendance	link

The	href	for	this	link	is

BisControllerServlet?ParameterActionCommand=ManageAttendance

The	ControllerServlet	is	invoked	on	the	server

In	the	service	method	the	action	command	parameter	value	is	read	which	is
ManageAttendance

The	execute	method	for	the	command	processor	pertaining	to	ManageAttendance	is
invoked

The	business	logic	pertaining	to	this	command	processor	is	executed	resulting	in	an	update
of	the	attendance	in	the	database	for	a	given	student	and	semester.

The	view	pertaining	to	manage	attendance	is	returned	back.

The	user	sees	the	updated	attendance	in	the	manage	attendance	page.

The	command	processor	class	pertaining	to	ManageAttendance	command	is
ManageAttendanceCP.	The	view	pertaining	to	student	detail	page	is
ManageAttendance.jsp.	Now,	lets	see	the	sequence	of	method	calls	once	the	execute
method	of	ManageAttendanceCP	is	called.	Below	is	the	sequence	diagram	from	this	use
case.

	

	

The	controller	servlet	invokes	the	execute	method	of	the	Manage	Attendance	command
processor.	From	the	hidden	variable	via	the	request	parameter,	the	execute	methods	checks
whether	this	is	an	initial	request	for	manage	attendance	page.	If	so,	it	just	returns	the	view.
If	this	request	turns	out	to	be	an	update	request,	the	execute	method	invokes	the	update
student	attendance	method	in	Student	Attendance	Service	class.	The	update	student
attendance	method	reads	the	student	id	from	the	session	and	the	semester	from	the	request
parameter.	This	method	then	leverages	Database	Service	class	and	updates	the	attendance
in	the	required	database	table.	

	

At	this	stage	we	have	the	requirements,	prototype,	architecture,	framework	and	detailed
design	for	the	manage	attendance	use	case	in	the	form	of	sequence	and	class	diagrams.
The	next	and	the	most	interesting	part	is	coding	this	use	case.	In	the	earlier	chapter,	we
have	already	created	the	database	tables	and	added	some	test	data	there.	Lets	identify	all
the	artifacts	first.	For	this	use	case	we	need	the	following	files	along	with	the	commons.

	

ManageAttendanceCP.java

StudentAttendanceService.java

StudentAttendanceBean.java

ManageAttendance.jsp

	

ManageAttendanceCP.java
	

Please	refer	chapter	14	(The	BIS-SMS	Project	Components)	for	class	diagram	once	before
we	proceed	with	this	class.	This	class	implements	BisCommand	interface	which	has	only
one	method	execute.	This	class	extends	BisCP	which	has	few	variables.	We	have	to
implement	execute	method	in	this	class	for	manage	attendance	use	case.	Lets	look	into	the
actual	source	code	for	this	class	now.

package	com.bis.cp;

	

import	com.bis.session.StudentAttendanceService;

import	javax.servlet.http.HttpServletRequest;

import	javax.servlet.http.HttpServletResponse;

import	javax.servlet.http.HttpSession;

import	org.apache.log4j.Logger;

	

public	class	ManageAttendanceCP	extends	BisCP	implements	BisCommand	{

static	Logger	logger	=	Logger.getLogger(ManageAttendanceCP.class);

public	ManageAttendanceCP()	{

super();

}

public	String	execute(HttpServletRequest	request,	HttpServletResponse	response)	{

String	strStudentId;

String	strParamUpdateAttFrmSubmitted	=	“No”;	//	Defaulting	to	No.

strParamUpdateAttFrmSubmitted	=	request.getParameter(“paramUpdateAttFrmSubmitted”);

HttpSession	session	=	request.getSession();

if	(session	!=	null)	{

strStudentId	=	(String)session.getAttribute(“StudentId”);

if	(strStudentId	!=	null)	{

StudentAttendanceService	studentAttendanceService	=	new	StudentAttendanceService();

if	(strParamUpdateAttFrmSubmitted	!=	null	&&	strParamUpdateAttFrmSubmitted.equalsIgnoreCase(“Yes”))	{

studentAttendanceService.updateStudentAttendance(request);

strNextNavigation	=	“ManageAttendance”;

}

try	{

studentAttendanceService.processGetStudentAttendance(session);	//	Gets	student	attendance	for	Manage	attendance
page.	This	includes	attendance	for	both	the	semesters.

strNextNavigation	=	“ManageAttendance”;	//The	next	navigation	page	upon	successful	processing.

}	catch	(Exception	e)	{

logger.error(e.getMessage());

strNextNavigation	=	“Error”;	//The	next	navigation	page	upon	failed	processing.

}

}	else	{

//	strStudentId	is	null,	redirect	to	home	page	to	select	student.

strNextNavigation	=	“BisDashboard”;

}

}	else	{

//	session	is	null.	Valid	session	doesn’t	exsit.	Redirect	to	Login	page.

strNextNavigation	=	“Login”;

}

return	strNextNavigation;

}

}

	

The	execute	method	of	ManageAttendanceCP	Class.

	

The	execute	method	is	called	from	the	controller	servlet.	This	is	the	job	of	the	framework.
The	framework	gets	the	command	from	UI	and	based	on	the	command	loads	and	executes
a	specific	command	processor	exploiting	the	polymorphic	feature	of	java.	In	this	case,	the
command	from	UI	is	“ManageAttendance”.	Within	the	service	method	of	controller
servlet,	the	ManageAttendanceCP	class	is	loaded	and	instantiated	and	the	execute	method
is	invoked.

	

The	execute	method	performs	the	following	tasks:

	

							Gets	the	update	attendance	form	submitted	flag	from	the	request	parameter.	This
is	Yes	in	case	the	user	has	submitted	the	update	attendance	request	using	the
ManageAttendance.jsp.	This	is	No	in	case	the	user	has	requested	the	manage
attendance	page	for	the	first	time.	In	this	case,	the	manage	page	displays	existing
attendance	for	a	given	student	for	both	the	semesters.

	

							Checks	the	value	for	paramUpdateAttFrmSubmitted	parameter.

	

							If	yes,	creates	an	instance	of	StudentAttendanceService	and	calls
updateStudentAttendance	method.	This	method	orchestrates	an	update	of
attendance	in	the	database.	And	finally,	sets	the	next	navigation	view.

	

							The	logic	here	does	not	require	to	check	for	a	“No”	value.	The	execute	method
than	calls	processGetStudentAttendance.	This	methods	takes	the	user	to	manage
attendance	page	view	with	the	existing	attendance	values	in	the	database.	The	job
of	processGetStudentAttendance	is	to	only	fetch	the	attendance	from	database	and
display	it	to	the	user	in	the	ManageAttendance.jsp	page.	This	ensures	that	the	user
sees	the	latest	attendance.

	

							If	its	an	update	request,	the	updateStudentAttendance	method	updates	the
attendance	in	the	database	and	the	user	is	shown	the	updated	attendance	in	the
view.	If	its	not	an	update	request,	that	is,	if	the	user	has	navigated	to	manage
attendance	page	for	the	first	time.	The	user	is	shown	the	existing	attendance	in	the
manage	attendance	jsp	page.

	

StudentAttendanceService.java
	

Please	refer	to	get	student	attendance	use	case	for	the	source	code	of	this	class.	Also	refer
the	same	use	case	for	the	detailed	description	of	processGetStudentAttendance	method.

	

The	updateStudentAttendance	method	performs	the	following	tasks:

	

							Cooks	up	the	dynamic	update	query	with	placeholders	for	updating	the
attendance	to	student	attendance	table.

	

							Gets	the	database	connection	from	DatabaseService	class.

	

							Gets	the	prepared	statement	from	the	connection	for	the	given	query.

	

							The	semester	and	the	new	attendance	values	are	fetched	from	the	request
parameters.	The	setXXX	methods	are	used	to	set	these	values	to	the	prepared
statement.

	

							The	student	id	is	fetched	from	the	session	and	is	set	to	the	prepared	statement	via
a	setter	method.

	

							Calls	execute	update	method	to	update	the	attendance	in	the	student	attendance
table.

	

							The	database	resources	which	were	used	are	closed	in	the	finally	block.

	

StudentAttendanceBean.java
	

Please	refer	to	the	get	student	attendance	use	case	for	the	details	about	this	bean.

	

ManageAttendance.jsp
	

This	jsp	is	dynamically	included	in	BisHome.jsp	as	a	result	for	manage	attendance	use
case	invocation	through	user	interaction	with	the	UI.

	

Till	now	we	have	seen	that	the	command	for	manage	attendance	goes	form	UI	as	a	result
of	user	interaction.	Then	the	controller	servlet	calls	manage	attendance	command
processor.	The	command	processor	checks	whether	it	is	an	initial	request	for	the	manage
attendance	page	or	whether	the	user	has	submitted	an	update	request.	For	the	former	case,
the	command	processor	renders	the	manage	attendance	jsp	page	with	the	existing
attendance.	And	for	the	later	case,	the	command	processor	utilizes	manage	attendance
service	class	to	update	the	attendance	in	the	database.

	

The	manage	attendance	jsp	page	provides	two	editable	text	fields	for	updating	attendance
for	each	semester.	These	text	fields	display	the	existing	attendance	values	and	once
updated	these	fields	display	the	updated	values.	The	values	entered	by	the	user	for	these
text	fields	are	validated	at	the	client	side	using	javascript.

	

Here	is	the	source	code	for	the	ManageAttendance.jsp	file.

<%@	page	import=“com.bis.beans.StudentResultsBean,	com.bis.beans.StudentAttendanceBean”%>

<%@	page	import=“java.util.Hashtable,	java.util.Enumeration”%>

<%

StudentResultsBean	studentResultsBean	=	null;

int	inPresentPercentage=0;

int	inTotal=0;

int	inPresent=0;

StudentAttendanceBean	studentAttendanceBean	=	null;

if	(session	!=	null)	{

studentResultsBean	=	(StudentResultsBean)	session.getAttribute(“studentResultsBean”);

studentAttendanceBean	=	(StudentAttendanceBean)	session.getAttribute(“studentAttendanceBean”);

}

if	(studentAttendanceBean	!=	null)				{

inTotal	=	studentAttendanceBean.getTotalWorkingDays();

inPresent	=	studentAttendanceBean.getAttendance();

	

if	(inTotal	>	0	&&	inPresent	>0)	{

inPresentPercentage	=	Math.abs(100	*	inPresent/inTotal);

}

}

%>

<form	id=“frmManageAttendance”	name=“frmManageAttendance”	method=“POST”	action=“BisControllerServlet”>

<input	type=“hidden”	name=“ParameterActionCommand”	value=“ManageAttendance”></input>

<input	type=“hidden”	name=“ParameterUpdateSemAttendance”	id=“ParameterUpdateSemAttendance”></input>

<input	type=“hidden”	name=“paramUpdateAttFrmSubmitted”	id=“paramUpdateAttFrmSubmitted”	value=“No”>
</input>

<table	border=“0”	cellpadding=“10”	cellspacing=“0”	width=“100%”>

<tr><td> </td></tr>

<tr>

<td	align=“center”	colspan=“3”	id=“whiteBg”>

Manage	Attendance

</td>

</tr>

<tr><td> </td></tr>

<tr	align=“center”>

<td	height=“250px”>

<table	border=“1”	cellpadding=“10”	cellspacing=“0”	width=“80%”>

<tr>

<td	align=“center”	colspan=“3”	id=“trbgred”>

<%

if	(studentResultsBean	!=	null)			{

out.print(studentResultsBean.getFullName());

}

%>

 	|	

<%

if	(studentResultsBean	!=	null)			{

out.print(studentResultsBean.getGrade());

out.print(”	-	“);

out.print(studentResultsBean.getSection());

}

%>

 	|	

<%

if	(studentResultsBean	!=	null)			{

out.print(studentResultsBean.getStudentId());

}

%>

</td>

</tr>

<tr	align=“center”	id=“whiteBg”>

<td	width=“50%”>

<table	border=“0”	cellpadding=“5”	cellspacing=“0”	width=“60%”>

<tr><td	colspan=“3”> </td></tr>

<tr><td	colspan=“3”> </td></tr>

<tr>

<td	align=“center”	colspan=“3”	id=“trbgred”>

Semester	-	I

</td>

</tr>

<tr	valign=“middle”	>

<td	align=“right”	width=“45%”>

Total	working	days

</td>

<td	width=“10%”> </td>

<td	width=”*”	align=“left”>

<%

if	(studentAttendanceBean	!=	null)			{

out.print(studentAttendanceBean.getSemOneTotalWorkingDays());

}

%>

</td>

</tr>

<tr	valign=“middle”	>

<td	align=“right”	>

Present

</td>

<td> </td>

<td>

<input	type=“text”	id=“txtPresentSemOne”	name=“txtPresentSemOne”	size=“12”

value=”<%

if	(studentAttendanceBean	!=	null)			{

out.print(studentAttendanceBean.getSemOneAttendance());

}

%>”/>

</td>

</tr>

<tr	valign=“middle”	>

<td	align=“right”	>

Absent

</td>

<td> </td>

<td>

<%

if	(studentAttendanceBean	!=	null)			{

int	intAbsent	=	studentAttendanceBean.getSemOneTotalWorkingDays()	-
studentAttendanceBean.getSemOneAttendance();

out.print(intAbsent);

}

%>

</td>

</tr>

<tr	valign=“middle”	>

<td	align=“center”		colspan=“3”	id=“trbgred”>

<input	type=“button”	name=“btnUpdAttSem1”	value=”				Update				”	id=“btnUpdAttSem1”
onclick=“updateAttendance(‘1’)”	/>

</td>

</tr>

<tr><td	colspan=“3”> </td></tr>

<tr><td	colspan=“3”> </td></tr>

</table>

</td>

<td	width=”*”>

<table	border=“0”	cellpadding=“5”	cellspacing=“0”	width=“60%”>

<tr><td	colspan=“3”> </td></tr>

<tr><td	colspan=“3”> </td></tr>

<tr>

<td	align=“center”	colspan=“3”	id=“trbgred”>

Semester	-	II

</td>

</tr>

<tr	valign=“middle”	>

<td	align=“right”	width=“45%”>

Total	working	days

</td>

<td	width=“10%”> </td>

<td	width=”*”	align=“left”>

<%

if	(studentAttendanceBean	!=	null)			{

out.print(studentAttendanceBean.getSemTwoTotalWorkingDays());

}

%>

</td>

</tr>

<tr	valign=“middle”	>

<td	align=“right”	>

Present

</td>

<td> </td>

<td>

<input	type=“text”	id=“txtPresentSemTwo”	name=“txtPresentSemTwo”	size=“12”

value=”<%

if	(studentAttendanceBean	!=	null)			{

out.print(studentAttendanceBean.getSemTwoAttendance());

}

%>”/>

</td>

</tr>

<tr	valign=“middle”	>

<td	align=“right”	>

Absent

</td>

<td> </td>

<td>

<%

if	(studentAttendanceBean	!=	null)			{

int	intAbsent	=	studentAttendanceBean.getSemTwoTotalWorkingDays()	-
studentAttendanceBean.getSemTwoAttendance();

out.print(intAbsent);

}

%>

</td>

</tr>

<tr	valign=“middle”	>

<td	align=“center”		colspan=“3”	id=“trbgred”>

<input	type=“button”	name=“btnUpdAttSem2”	value=”				Update				”	id=“btnUpdAttSem2”
onclick=“updateAttendance(‘2’)”/>

</td>

</tr>

<tr><td	colspan=“3”> </td></tr>

<tr><td	colspan=“3”> </td></tr>

</table>

</td>

</tr>

</table>

</td>

</tr>

<tr><td> </td></tr>

</table>

</form>

	

This	concludes	the	manage	attendance	use	case	implementation	from	end	to	end.	We
composed	the	requirement	specifications,	we	built	the	prototype,	we	followed	the
architecture	for	the	solution,	we	leveraged	the	framework,	we	developed	the	various	java
classes,	we	used	the	common	components	like	DatabaseService.java,	BISStyle.css	etc	and
we	built	the	view	with	the	jsp	page.

16
SECURING	APPLICATION

	

Security	is	one	of	the	most	important	aspect	of	any	application.	In	our	sample
application	BIS-SMS	we	need	to	ensure	that	only	authenticated	users	are	allowed	to
access	the	application.

	

Once	authenticated	a	user	can	access	the	application.	The	next	thing	that	needs	to	be
identified	is	authorization.	An	authenticated	user	may	not	have	privileges	to	access
everything	in	the	application.	This	is	governed	by	user	roles.	Roles	define	the	access
privilege	to	a	particular	service	or	data.	For	e.g.	a	user	with	administrator	role	can	add	a
new	student	whereas	a	user	with	teacher	role	can	only	view	a	student.	Authorization
dictates	the	roles	and	roles	in	turn	control	the	access	rights.	In	our	application	we	will
define	roles	as	per	the	requirements	specifications	for	authentication	and	authorization.

	

Configuring	data	source	security	realm	for	Apache	Tomcat	8
	

We	will	use	container	managed	security	for	our	application.	That	is,	in	our	case	the
authentication	and	authorization	is	provided	out	of	the	box	by	Apache	Tomcat	8	server.
We	will	only	configure	the	security	for	our	application.	Following	steps	are	required	to
configure	container	managed	security	for	a	web	application	in	Apache	Tomcat	8	server.

	

Step	1:	Create	Tables
	

We	need	a	storage	for	user	names,	passwords	and	user	roles.	This	is	know	as	a	realm.
For	this	we	will	use	database.	We	are	using	separate	schema	for	database	security	realm
called	BisSecurityRealm.	Please	refer	chapter	9	database	design	for	details	about	the
database	design	for	BisSecurityRealm	schema.	Once	you	create	this	schema	and	all	the
tables	you	may	proceed	to	the	next	step.

[Note:	The	scripts	to	create	the	database	tables	is	provided	in	chapter	22	under	the
appendix	section	for	database	scripts.]

	

Step	2:	Create	data	source

	

This	data	source	must	point	to	the	BisSecurityRealm	schema.	This	data	source	is	used	by

server	to	read	user	name,	password	and	roles.

	

In	order	to	create	the	data	source,	add	the	following	entry	to	server’s	context	descriptor
file	located	at	$CATALINA_BASE/conf/context.xml.

	
<Resource

name=“jdbc/BisSecurityRealmDS”

auth=“Container”

maxActive=“20”

maxIdle=“5”

maxWait=“10000”

factory=“oracle.ucp.jdbc.PoolDataSourceImpl”	driverClassName=“oracle.jdbc.OracleDriver”
url=“jdbc:oracle:thin:BisSecurityRealm/Welcome01@127.1.1.0:1521:XE”	type=“oracle.ucp.jdbc.PoolDataSource”

connectionFactoryClassName=“oracle.jdbc.pool.OracleDataSource”	connectionPoolName=“SecurityUCPPool”

validateConnectionOnBorrow=“true”

sqlForValidateConnection=“select	1	from	DUAL”		/>

	

You	need	to	make	sure	that	the	value	for	url	attribute	points	to	your	database	and	user.
jdbc:oracle:thin:userId/pwd@host:port:sid

e.g.	jdbc:oracle:thin:BisSecurityRealm/Welcome01@127.1.1.0:1521:XE

Restart	the	server	for	the	availability	of	the	data	source.

	

Step	3:	Add	<relam>	element	to	server.xml	file.

	

Goto	$CATALINA_BASE/conf/	folder	and	open	server.xml	file.	Add	the	following	realm
tag	entry	to	this	file.

	
<Realm

className=“org.apache.catalina.realm.DataSourceRealm”																	dataSourceName=“jdbc/BisSecurityRealmDS”

userTable=“users”

userNameCol=“user_name”

userCredCol=“user_pass”																

userRoleTable=“user_roles”

roleNameCol=“role_name”

localDataSource=“true”	/>

Here’s	the	description	of	the	attributes:

	

className:	Identifies	the	type	of	realm.

dataSourceName:	The	name	of	the	data	source	whose	connections	are	configured	for	
BisSecurityRealm	schema.

userTable:	Name	of	the	table	which	is	holding	the	user	names	and	passwords.

userNameCol:	The	column	within	userTable	which	holds	the	user	names.

userCredCol:	The	column	within	userTable	which	holds	the	user	password.

userRoleTable:	The	table	which	holds	the	user	roles.

roleNameCol:	The	column	within	userRoleTable	which	holds	the	role	names.

	

Save	the	server.xml	file	and	restart	the	server.

	

We	made	two	entries	in	conf	folder.	One	in	the	server.xml	file	for	realm	configuration	and
the	other	in	context.xml	for	data	source	configuration.

Step	4:	Verification

	

To	test	insert	the	user	Yousuf.Baig	and	password	Welcome01	to	users	table.	Now,	add	the
role	names	admin-gui,	admin-script	and	manager-gui	to	user_roles	table	for	the	user
Yousuf.Baig.

	

Go	to	the	server	home	page	and	click	manager	app	link	on	the	right	hand	side.	The	server
will	challenge	you	for	a	user	id	and	password.	Enter	Yousuf.Baig	as	user	and	Welcome01
as	password	and	press	enter.	The	server	will	verify	the	user	and	password	in	the	database
and	if	validated	it	will	look	for	the	roles.	And	since	we	have	added	the	roles	for	this	user	it
will	take	you	to	the	manager	app	page.

	

Enabling	Security	for	BIS-SMS
	
Adding	entries	to	application	web.xml	for	security	enablement.

	

To	use	the	container	managed	security	with	the	above	configurations,	we	now	need	to
configure	the	application	to	leverage	the	container	managed	security	of	Apache	Tomcat	8.

In	order	to	do	this	we	need	to	add	few	entries	to	the	web.xml	file	of	the	sample
application.	We	will	now	add	the	following	entries	to	web.xml	located	at	WEB-INF	folder
of	the	sample	web	application	BIS-SMS.

	
<security-constraint>

<web-resource-collection>

														<web-resource-name>

																												Wildcard	means	whole	application	requires	authentication

														</web-resource-name>

														<url-pattern>/*</url-pattern>

														<http-method>GET</http-method>

														<http-method>POST</http-method>

</web-resource-collection>

	

<auth-constraint>

														<role-name>BisAdmin</role-name>

														<role-name>BisTeacher</role-name>

														<role-name>BisClerk</role-name>

</auth-constraint>

<user-data-constraint>

																												<transport-guarantee>NONE</transport-guarantee>																											

</user-data-constraint>

</security-constraint>

<login-config>																											

<auth-method>FORM</auth-method>

<form-login-config>

														<form-login-page>/BisLogin.jsp</form-login-page>

														<form-error-page>/BisLogin.jsp</form-error-page>

</form-login-config>

</login-config>

	

<welcome-file-list>

<welcome-file>BisLandingPage.jsp</welcome-file>

</welcome-file-list>

	

The	<welcome-file-list>	typically	has	one	entry	for	the	landing	page	upon	successful
authentication	of	the	user.	The	server	auto	navigates	the	user	to	this	page	once	authorized.

	

The	<auth-method>	with	in	the	<login-config>	tag	specifies	the	authentication	method.
Here	we	will	specify	FORM	since	we	have	BisLogin.jsp	file	for	form	based
authentication.

	

In	the	<form-login-page>	tag	we	will	specify	our	login	page	which	is	BisLogin.jsp

	

Within	the	<auth-constraint>	tag	under	<security-constraints>	we	need	to	grant	access	of
the	application	to	a	list	of	roles.	Note	that	we	have	to	specify	all	the	roles	that	we	want	to
use	in	this	application’s	authorization.	You	may	have	many	roles	in	the	database.	Some	of
them	might	be	used	by	other	web	applications.	The	database	is	generally	a	centralized
repository	of	all	the	users	and	roles	in	an	enterprise.	Each	application	will	access	its	own
users	and	roles.

	

LDAP	servers	are	typically	used	in	large	enterprises	as	single	source	of	information	for	all
the	users	and	roles.	Oracle	OID	and	Microsoft	AD	are	the	most	popular	examples	of
directory	services	used.	We	are	not	using	any	LDAP	services	for	our	application.
However,	this	can	be	achieved	with	its	specific	configurations.

	

With	this	we	are	done	with	the	enablement	of	container	managed	security	of	our	sample
application.	Redeploy	the	application	with	the	new	modified	web.xml	file.

	

BIS-SMS	Users	and	Roles
	

We	will	now	add	the	following	users	and	roles	to	the	database	for	our	sample	application.
Please	refer	to	the	requirements	specification	table	for	the	roles	details.

	

In	the	authorization	use	case	implementation,	we	will	see	how	the	dashboard	and	links	are
rendered	to	each	of	this	user	based	on	their	roles.

17
BUILD	AND	DEPLOYMENT

	

Once	a	web	application	is	ready,	it	has	to	be	built,	packaged	and	then	deployed	to	the
server.

	

A	ready	web	application	is	nothing	but	a	set	of	refined	files.	These	files	are	typically
java,	Servlets,	jsps,	.css,	xml	and	Javascript.	All	these	files	have	to	be	packaged	as	per
standards	and	then	finally	deployed	to	the	server.

The	Web	Application	Archive
	
As	per	JEE	deployment	specifications,	we	need	to	build	a	“.war”	file	for	our	application

which	can	be	deployed	to	the	servlet	container.	war	stands	for	Web	Achieve.	In	our	case,
we	need	to	build	Bis.war	file.

	

The	.war	file	comprises	of:													

All	the	HTML/JSP	files

All	the	complied	java	classes

All	the	libraries	referenced	(if	any)	in	the	form	of	.jar	files

The	deployment	description	(web.xml	file)

The	context	file

Properties	files

All	the	.css	and	.js	files

Manifest	file

	

A	.war	file	build	based	on	standards	can	be	deployed	to	any	server	which	is	compliant
with	the	standards.	The	Bis.war	file	we	are	building	as	a	part	of	exercise	is	based	on	JEE
standards.	Since	Bis.war	is	compliant	with	JEE	standards,	it	can	be	deployed	to	any	server
which	is	JEE	compliant.	Hence,	we	can	deploy	the	web	achieve	of	our	application	to
Weblogic,	Websphere,	Apache	Tomcat	or	to	any	JEE	complaint	server.

	

Now,	we	have	two	things.	One,	build	the	Bis.war	file	and	two,	deploy	it	to	Apache	Tomcat

server.

	

Building	the	Bis.war	file
	

There	are	various	methods	to	build	the	.war	file.	The	simplest	and	easiest	is	to	use	an	IDE
like	jdeveloper.	In	our	case,	we	will	use	jdeveloper	to	build	the	Bis.war	file.

	

Build	Bis.war	with	jdeveloper

	

Step	1:	Right	click	BisViewController	project	and	select	project	properties	as	shown	in	the
figure	below.

	

	

Step	2:	On	the	left	hand	side,	select	Deployment	and	on	the	right	hand	side	click	new	as
shown	in	the	figure	below.

	

	

Step	3:	Select	war	file	under	the	profile	type	drop	down	menu	and	provide	a	name	(Bis)
for	deployment	profile.	Click	ok.

	

Step	4:	Select	Specify	Java	EE	Web	Context	Root	radio	button	and	specify	the	context
root	as	“Bis”.	Leave	everything	as	it	is	and	click	ok.	You	will	now	see	the	deployment
profile	listed.	Click	ok	to	close	the	project	properties	dialogue/wizard.	Save	all	and
proceed	to	next	steps.

	

Step	5:	Right	click	the	BisViewController	project	and	select	Deploy	than	Bis.	In	the
wizard,	select	“Deploy	to	WAR”	and	click	finish.

	

	

Step	6:	Once	you	click	finish,	jdeveloper	will	prepare	the	Bis.war	file	for	you	and	the	log
will	tell	you	where	the	file	is	located.	Go	to	the	folder	and	verify	the	presence	of	the	war
file.

	

This	completes	the	preparation	of	the	war	file.	Now,	lets	deploy	this	war	file	to	Apache
Tomcat	server.

	

Deploying	the	.war	file
	

The	war	file	can	be	deployed	in	various	ways.	The	most	common	practice	is	to	use	ant
script	for	deployment.	The	other	easy	way	of	doing	it	is	using	the	GUI	based	deployment
manager	application	that	comes	with	most	of	the	servers.	In	our	case,	we	will	use	the
Manager	App	to	deploy	Bis.war	file	to	Apache	Tomcat.

	

Deploying	Bis.war	to	Apache	Tomcat
	

Step	1:	Make	sure	that	the	server	is	running.	Launch	the	browser	and	go	to	the	home	page
of	the	server.	Click	“Manager	App”	as	shown	in	the	figure	below.

	

Step	2:	The	server	will	challenge	you	for	user/password.	Provide	the	admin	user	and
password	to	proceed.	Upon	successful	authentication	and	authorization,	you	will	see	the
application	manager	page.	Click	“Choose	File”	button	below	for	“Select	WAR	file	to
upload”	as	shown	in	the	figure	below.

	

	

Step	3:	Once	you	browse	the	war	file,	click	deploy.	The	server	will	now	deploy	the	war
file	and	upon	successful	deployment	it	will	immediately	refresh.	Now,	you	should	see
deployed	application	under	the	list	with	the	running	status	“true”	as	shown	in	the	figure
below.

		

	

Step	4:	Now,	open	a	browser	and	go	to	the	following	url	http://<host>:<port>/Bis

Example:	http://localhost/Bis.	This	should	load	the	login	page	of	the	application.

	

The	other	important	files	that	needs	to	be	understood	for	build	and	deployment	are
build.xml,	context.xml	and	log4j.properties.	Please	refer	chapter	21	for	description	and
usage	of	these	files.

18
TESTING

	

As	the	name	suggests,	testing	is	verifying	whether	the	system	built	is	as	per	the
requirements	specification.	For	our	application	we	need	two	type	of	testing,	unit	testing
and	system	testing.

Unit	Testing
	
The	unit	testing	needs	to	be	performed	by	the	developer	for	the	individual	use	cases.

For	example,	the	developer	who	builds	the	manage	attendance	use	case	must	verify
whether	this	use	case	is	working	exactly	as	per	the	corresponding	requirements
specifications.	Ideally,	the	implemented	use	case	must	satisfy	all	the	requirements,	it
should	be	error	free	and	must	not	have	any	bugs.	A	good	developer	leaves	no	stone
unturned	to	make	sure	that	the	use	case	implemented	by	him/her	is	100%	bug	free	and
100%	in	compliance	as	per	the	requirement	specifications	for	that	use	case.

System	Testing
	
The	system	testing	to	be	performed	by	the	testing	team.	Once	all	the	use	cases	are

implemented	by	the	developers,	the	solutions	architect	assembles	them	all	and	deploys	the
specific	version	of	complete	software	solution	to	the	testing	environment.	This	solution	is
complete	and	this	is	the	one	which	goes	to	the	UAT	and	than	to	the	production.	The	testing
team	performs	rigorous	testing	on	the	testing	environment	and	logs	the	issues,
observations	and	bugs.	This	goes	back	to	the	development	team.	The	development	team
fixes	these	bugs	and	a	new	version	is	deployed	to	the	testing	environment.	The	testing
team	once	again	performs	all	the	tests	on	this	version	and	reports	back	bug	or	regressions
to	the	development	team.	This	is	a	cyclic	process	and	with	each	cycle	the	quality	of	the
software	improves.	

User	Acceptance	Testing	(UAT)
	

Once	an	acceptable	point	is	achieved	the	solution	is	deployed	to	the	UAT	environment
for	user	acceptance	testing.	In	this	testing,	the	client	primarily	verifies	that	the	software
solution	is	as	per	their	requirements	and	expectations.	Post	approval	of	this	the	software
solution	is	deployed	to	the	production	environment.	Upon	go-live	the	solution	become
usable	for	the	end	users	and	the	end	users	will	start	using	the	software	solution	or	web

application	in	our	case.	Errors	may	happen	even	in	production	if	the	software	lacks
premium	quality.	The	support	team	provides	production	support	and	takes	care	of	the
issues	on	the	production	environment.

19
DEBUGGING

	

What	is	a	bug?

														A	bug	in	software	is	an	error,	a	malfunction,	a	flaw,	a	fault	or	a	failure	either	with
the	business	logic	or	with	the	software	code.	The	bug	results	in	functioning	of	the	software
code	in	an	unexpected	way	or	not	as	per	the	requirements	or	expectations.

Steps	to	resolve	a	bug
	
The	process	of	identifying,	analyzing,	reproducing	and	fixing	a	bug	is	called

debugging.	Lesser	the	number	of	bugs,	higher	the	quality	of	the	software.	Lets	learn	to
resolve	a	bug	with	a	practical	example	from	our	sample	application.

	

Describe	the	bug
	

While	testing	the	use	case	update	attendance,	the	sample	application	is	failing	to	update
the	attendance.

	

Reproduce	the	bug
	

1.	 Log	in	to	the	BIS-SMS	sample	web	application	with	the	user	padma.kulkarni	who
has	BisAdmin	rights.

2.	 Load	the	student	into	context	whose	id	is	MyFaAsYo12042004.
3.	 Goto	manage	attendance	page.
4.	 For	semester	two,	the	current	value	of	attendance	is	0.	Update	it	to	105	and	click

submit	button.
5.	 As	per	the	requirements	specification,	this	page	should	now	display	105	as	updated

attendance	for	the	given	student	and	semester.	The	page	is	rather	displaying	the
same	old	value	i.e.	0	instead	of	105.

	

Reproduce	the	issue	on	your	environment.	Make	sure	that	your	environment	and	the
client’s	environment	has	same	version	of	the	application	and	also	the	same	version	and

same	set	of	patches.	A	patch	comprises	of	one	or	more	modified	java	or	other	files
belonging	to	the	application.

	

Diagnosis	and	resolution
	

After	ensuring	that	there	is	no	discrepancy	in	version	and	patches	reproduce	the	issue.	Lets
assume	that	the	issues	is	reproduced	on	the	technical	support	team’s	environment.	Now,	it
is	time	to	figure	out	why	the	attendance	is	not	getting	updated	in	the	database	table.	This	is
the	bug	analysis	phase.	Open	the	application	log	file	and	look	for	the	messages	or
exceptions	related	to	this	use	case.

	

The	log	file	has	the	following	relevant	message:

“The	update	count	for	attendance	update	is	:	0”

	

This	means	that	the	update	operation	is	failing.	Otherwise	the	update	count	would	have
been	1	instead	of	0.

	

Lets	now	open	the	java	class	where	the	update	query	is	called.	This	is	there	in
StudentAttendanceService.java.	We	identified	this	because	we	know	that	in	our
application	the	database	operations	are	performed	by	the	service	classes.	In	case	of	no	clue
about	the	exact	java	file	we	can	use	a	debugger	in	the	IDE	with	a	break	point	at	a	point	of
suspicion	in	the	code.	If	not	sure	where	to	place	the	breakpoint,	one	can	set	it	at	the
controller	servlet	level.

	

Within	the	updateStudentAttendance	method	we	have	this	query.
UPDATE	STUDENT_ATTENDANCE	SET	ATTENDANCE=?	WHERE	STUDENT_ID=?	AND	SEMESTER=?

	

We	will	now	execute	this	query	with	our	values	at	a	sql	client	for	the	given	database	and
schema.	The	query	to	be	executed	is.

	
UPDATE	STUDENT_ATTENDANCE	SET	ATTENDANCE=105	WHERE	STUDENT_ID=‘MyFaAsYo12042004’
AND	SEMESTER=2

	

The	sql	client	now	says,	0	rows	updated.	The	most	likely	cause	is	that	the	record
pertaining	to	the	where	conditions	might	not	be	existing	in	the	student	attendance	table.	To
verify	this	lets	execute	the	following	query.

	
SELECT	*	FROM	STUDENT_ATTENDANCE	WHERESTUDENT_ID=‘MyFbAsYo12042004’	and	SEMESTER=2;

	

This	query	is	now	returning	zero	rows.	This	confirms	that	the	record	for	the	where
conditions	is	not	there	in	the	student	attendance	database	table.	The	next	question	is	why
the	page	is	displaying	zero	for	the	attendance	when	there	is	no	record	available	in	the
database	table.	Analyzing	the	code	reveals	that	the	page	displays	zero	if	attendance	is	not
found	in	the	database	table.

	

We	now	know	the	reason	for	the	bug.	Lets	fix	this	bug	now.	In	order	to	update	the
attendance	for	a	given	student	and	semester	a	record	must	be	existing	in	the	student
attendance	table.	After	careful	analysis	another	vital	information	is	revealed	that	this	bug
is	only	happening	for	the	newly	added	students	using	add	new	student	use	case.

	

The	add	new	student	as	of	now	is	inserting	records	via	database	transaction	to	two
database	tables	student	details	and	parent	details.	For	every	new	student,	we	need	to	insert
a	record	to	student	attendance	table	with	initial	value	for	attendance	as	zero	for	each
semester.

	

Write	a	separate	method	in	AddStudentService.java	class	called	insertNewStudentToSA
and	include	that	in	the	new	student	creation	database	transaction.

	

Verifying	the	fix
	

Add	a	new	student	using	the	add	new	student	use	case.	This	now	adds	two	records	to	the
student	attendance	table	for	this	new	student.	Now,	go	to	manage	attendance	page	and
update	the	attendance	for	each	semester.	The	update	query	will	not	fail	as	there	are	records
to	be	updated	for	the	given	where	condition.	This	confirms	that	the	issues	is	resolved	and
the	bug	is	fixed.

	

Applying	the	patch
	

Once	the	bug	is	fixed	we	need	to	patch	the	client	environment.	This	is	done	by	replacing
the	modified	java	files	with	the	existing	java	files.	Identify	the	jar	file	to	which	these	files
belong.	Ship	the	updated	jar	file	to	the	client.	Once	the	client	replaces	the	old	jar	file	with
the	new	one.	The	bug	is	fixed	on	that	environment.

20
OTHER	IMPORTANT	TOPICS

	

AJAX	
	

In	many	cases	when	a	user	interacts	with	a	web	page,	it	is	not	at	all	necessary	to	reload
the	entire	page	just	to	change	a	view	or	a	value	in	a	small	region	of	the	page.	In	such	cases
only	refreshing	a	small	region	of	the	page	will	suffice.	Refreshing	a	region	has	lots	of
advantages	compared	to	reloading	the	entire	page.	It	saves	time,	reduces	network	traffic,
saves	internet	data	consumption,	reduces	burden	on	the	server	etc.	The	most	important
advantage	is	that	the	user	feels	as	if	things	are	real	time.

	

This	programming	paradigm	in	which	a	web	page	is	partially	refreshed	based	on	the
user	interaction	is	achieved	through	a	combination	of	various	technologies	and	it	is	called
AJAX.	Ajax	stands	for	Asynchronous	javascript	and	xml.

	

In	AJAX	when	a	user	interacts	with	a	web	page,	a	javascript	function	is	invoked	on	the
browser	side	itself.	This	javascript	function	utilizes	XMLHttpRequest	object	to	interact
with	the	server	via	Ajax	request.	The	server	returns	the	response	text.	This	response	text
for	the	ajax	request	is	consumed	by	the	javascript	call	back	function.	This	function	in	turn
uses	the	response	text	either	for	computation	or	for	direct	display	on	the	region	of	the
page.	The	region	of	the	web	page	is	then	refreshed	enabling	the	user	to	see	the	Ajax
response	for	a	particular	user	interaction.

	

Hence,	Ajax	has	two	parts	one	on	the	client	side	where	XMLHttpRequest	javascript
object	is	leveraged	and	two	on	the	server	side	where	the	http	request	is	responded	with	a
response	text.

	

For	a	detailed	implementation	with	design	and	code	please	refer	the	use	case
implementation	for	load	student	in	chapter	15.

	

Performance	tuning	and	best	practices
	

The	following	measures	help	in	increasing	the	performance	of	the	web	application:

	

1.	 Keep	the	rendered	html/jsp	pages	as	light	as	possible.	The	web	pages	build	using
ide’s	generally	add	lots	of	redundant	and	unnecessary	html	tags.	Make	sure	that	the
pages	have	only	those	tags	and	attributes	which	are	required.

2.	 Use	Ajax	wherever	applicable.
3.	 Apply	all	the	best	practices	for	java	code	development	at	the	server	side.
4.	 Release/Close	resources	immediately	after	the	usage.
5.	 Handle	every	single	exception	in	the	code.
6.	 Use	logging	as	if	you	are	going	to	provide	technical	support	to	the	application

														after	going	live.
7.	 Evolve	the	database	design	as	much	has	possible.
8.	 Clean	up	unused	variables	and	functions	in	the	javascript	(.js)	file.
9.	 Clean	up	all	the	unused	styles	in	the	cascaded	style	sheet	(.css)	file.

10.																						Use	data	sources	for	interaction	with	databases.
11.																						In	a	business	critical	application	perform	validation	both	at	the	client
side	as	well															as	the	server	side.
12.																						Use	page	templates	wherever	possible.
13.																						Leverage	proven	architectural	and	design	patterns.
14.																						Reuse	html	pages	from	the	prototype	for	building	the	actual	jsp	pages.
15.																						Optimize	the	server	for	performance	following	recommended	practices
in	the	specific	server’s	administrative	guide.	One	such	example	is	increasing	the
heap	memory	size	for	the	server.
16.																						Be	complaint	with	the	recommendations	for	the	framework	used.	This
will	be	helpful	for	framework	upgrades.	Otherwise,	there	will	be	issues	and	the
upgrade	will	not	be	seamless.

	

Scalability
	

A	software	solution	that	has	provisions	to	easy	extend	or	enhance	it	for	future
requirements	is	called	a	scalable	system.	Scalability	is	an	important	factor	for	any
software	solution	design.	Rigid	systems	require	lots	of	human	effort,	rework,	cost,
downtime	etc	whereas	scalable	systems	are	flexible	to	enhance.

	

For	the	sample	project	we	built	in	this	book,	in	case	we	want	to	add	couple	of	new	use
cases	we	have	to	just	build	a	jsp	view,	service	class,	command	processor	and	beans	in
compliance	with	the	framework	and	the	new	use	case	becomes	pluggable.	The	sample
application	along	with	our	framework	is	scalable.	Hence,	we	can	extend	or	enhance	it	with
ease.	We	can	easily	add	any	number	of	use	cases	to	our	sample	application	in	future
because	it	is	designed	to	be	highly	scalable.	Scalability	needs	to	be	kept	in	mind	at	the
architecture	and	design	stage.

	

A	practical	example	of	scalability	is	modern	day	desktop	computer’s	mother	board.	These
motherboards	come	up	with	open	slots	for	memory	(RAM).	Once	you	purchase	a	desktop
with	4	Gb	RAM,	it	can	be	later	scaled	up	to	16	or	32	Gb	of	RAM	just	by	inserting
memory	cards	in	the	open	slots	provided.	In	case	of	non	scalable	mother	boards,	the	user
has	to	buy	a	new	mother	board	or	desktop	itself	with	the	new	requirement	for	the	memory.

21
IMPORTANT	FILES

	

Besides	the	java	classes,	jsps,	.css	and	.js	files	a	deployment	ready	web	application	has
few	other	important	files	and	folder.	In	this	chapter	we	will	have	a	closer	look	at	all	these
important	files	and	folders	that	are	must	to	have	a	smooth	and	error	free	deployment	and
execution	of	the	application.

	

web.xml
	

Generally,	many	web	applications	are	deployed	to	a	server.	Each	web	application	has	its
own	set	of	customizations,	properties	and	other	JEE	configurations.	In	order	to	specify
these	things	to	the	server,	each	web	application	is	packaged	with	a	deployment	descriptor
which	is	nothing	but	an	xml	file.	This	xml	file	is	called	web.xml	as	per	Java	Servlet
specification.

	

In	Java	Platform	Enterprise	Edition,	the	web.xml	file	(deployment	description)
describes	how	a	web	application	should	be	deployed	to	the	container.	The	web.xml	resides
in	the	WEB-INF	folder	of	the	web	application	root.

	

Lets	look	into	the	important	tags	and	attributes	of	the	web	application	deployment
descriptor	(web.xml).	For	this	lets	use	the	web.xml	file	of	BIS-SMS	sample	web
application.

	

Describes	the	controller	servlet.

	
<servlet>

		<servlet-name>ControllerServlet</servlet-name>

		<servlet-class>com.bis.servlet.ControllerServlet</servlet-class>

</servlet>

	

Describes	the	Ajax	controller	servlet.

<servlet>

		<servlet-name>AjaxControllerServlet</servlet-name>

		<servlet-class>com.bis.servlet.AjaxControllerServlet</servlet-class>

</servlet>

Describes	the	mapping	for	controller	servlet.

<servlet-mapping>

		<servlet-name>ControllerServlet</servlet-name>

		<url-pattern>/BisControllerServlet</url-pattern>

</servlet-mapping>

	

Describes	the	mapping	for	Ajax	controller	servlet.
	

<servlet-mapping>

		<servlet-name>AjaxControllerServlet</servlet-name>

		<url-pattern>/BisAjaxControllerServlet</url-pattern>

</servlet-mapping>

	

Describes	the	resource	reference	for	application	(BIS)	data	source.

<resource-ref>

<description>BIS	Datasource</description>

<res-ref-name>jdbc/bisDataSource</res-ref-name>

<res-type>javax.sql.DataSource</res-type>

<res-auth>Container</res-auth>

</resource-ref>

	

Context.xml
	

Apache	Tomcat	servlet	container	does	not	provide	any	GUI	to	create	connection	pools	and
data	sources.	This	is	achieved	via	a	resource	tag	entry	in	context.xml	file.

	

The	context.xml	files	are	application	specific	as	well	as	at	server	level.	The	one	at	server
level	is	located	at		$CATALINA_BASE/conf/context.xml.	For	configuring	data	source

security	realm	we	need	to	add	the	data	source	resource	entry	to	this	file.	This	is	detailed	in
the	chapter	titled	securing	application	under	the	configuration	heading.	And	the	one
specific	to	application	is	under	the	META-INF	folder	of	the	subjective	application.

	

We	need	to	add	entries	to	two	context	descriptors	for	our	application.

	

One	in	the	server	context	descriptor	located	at	$CATALINA_BASE/conf/context.xml	and
other	in	the	application	context	descriptor	located	at
$CATALINA_BASE/webapps/Bis/META-INF/context.xml

	

An	entry	is	added	to	server’s	context	descriptor	file	for	a	data	source	which	is	used	by	the
container	managed	security	provider.	This	data	source	is	used	for	authentication	and
authorization	purpose	by	the	server.

	

We	need	to	add	an	entry	to	the	context.xml	file	belonging	to	our	sample	application	which
is	located	within	the	/Bis/META-INF	folder.	This	entry	creates	a	data	source	to	be	used	in
our	sample	application.	The	connections	returned	by	this	data	source	will	provide	us
access	to	our	application	tables.

	
<Resource	name=“jdbc/bisDataSource”	auth=“Container”	maxActive=“20”	maxIdle=“5”	maxWait=“10000”
factory=“oracle.ucp.jdbc.PoolDataSourceImpl”

driverClassName=“oracle.jdbc.OracleDriver”	url=“jdbc:oracle:thin:bis/bis@127.1.1.0:1521:XE”
type=“oracle.ucp.jdbc.PoolDataSource”

connectionFactoryClassName=“oracle.jdbc.pool.OracleDataSource”	connectionPoolName=“BisPool”
validateConnectionOnBorrow=“true”

sqlForValidateConnection=“select	1	from	DUAL”		/>

	

The	above	entry	in	the	context.xml	file	of	our	application	will	create	a	data	source	called
bisDataSource.	We	perform	a	JNDI	look	up	for	this	data	source	in	our	application.	Please
refer	the	DatabaseService.java	class	in	the	components	chapter	for	the	actual	code	to	look
up	this	data	source.

	

The	driver	class	name	is	specified	as	OracleDriver	because	we	are	using	Oracle	database.
The	URL	points	to	localhost	with	the	port	1521	where	the	system	identifier	for	database
instance	(SID)	named	XE	is	running.	And	“bis”	is	the	database	schema	name.

22
APPENDIX

	

Database	scripts
	

Schema:	BisSecurityRealm
	
CREATE	TABLE	USERS

(

		USER_NAME	VARCHAR2(15	BYTE)	NOT	NULL

,	USER_PASS	VARCHAR2(15	BYTE)	NOT	NULL

,	CONSTRAINT	“User_Name_PK”	PRIMARY	KEY

		(

USER_NAME

)

		ENABLE

)	
	

CREATE	TABLE	USER_ROLES

(

		USER_NAME	VARCHAR2(15	BYTE)	NOT	NULL

,	ROLE_NAME	VARCHAR2(15	BYTE)	NOT	NULL

,	CONSTRAINT	“User_Roles_CPK”	PRIMARY	KEY

		(

USER_NAME

		,	ROLE_NAME

)

		ENABLE

)

	

ALTER	TABLE	USER_ROLES

ADD	CONSTRAINT	USER_NAME_FK	FOREIGN	KEY

(

		USER_NAME

)

REFERENCES	USERS

(

		USER_NAME

)

ENABLE;

	

Schema:	bis
	
CREATE	TABLE	BIS_CONSTANTS

(

		PROPERTY	VARCHAR2(30	BYTE)

,	VALUE	VARCHAR2(80	BYTE)

,	REMARKS	VARCHAR2(60	BYTE)

)

	

CREATE	TABLE	CLASS_TEACHER_MAPPING

(

		EMPLOYEE_ID	NUMBER

,	GRADE	VARCHAR2(4	BYTE)	NOT	NULL

,	SECTION	VARCHAR2(1	BYTE)	NOT	NULL

,	CONSTRAINT	CTM_CPK	PRIMARY	KEY

		(

GRADE

		,	SECTION

)	

		ENABLE

)

	

CREATE	TABLE	COSCHOLASTIC_RESULTS

(

		STUDENT_ID	VARCHAR2(16	BYTE)	NOT	NULL

,	SEMESTER	VARCHAR2(1	BYTE)	NOT	NULL

,	CRITICAL_THINKING	VARCHAR2(15	BYTE)

,	CREATIVE_THINKING	VARCHAR2(15	BYTE)

,	COLLAB_LEARNING	VARCHAR2(15	BYTE)

,	COMMUNICATION_SKILLS	VARCHAR2(15	BYTE)

,	COMPREHENSIVE_GROWTH	VARCHAR2(15	BYTE)

,	INTELLI_QUO	VARCHAR2(15	BYTE)

,	EMO_QUO	VARCHAR2(15	BYTE)

,	SOCIAL_QUO	VARCHAR2(15	BYTE)

,	HEALTH_QUO	VARCHAR2(15	BYTE)

,	COMMUNITY_CONSC	VARCHAR2(15	BYTE)
,	SCHOLASTICPERFORMANCE_REM	VARCHAR2(300	BYTE)

,	COSCHOLASTICPERFORMANCE_REM	VARCHAR2(300	BYTE)

,	CONSTRAINT	CSR_CPK	PRIMARY	KEY

		(

STUDENT_ID

		,	SEMESTER

)

		ENABLE

)

	

CREATE	TABLE	EMPLOYEE_DETAILS

(

		EMPLOYEE_ID	NUMBER	NOT	NULL

,	FIRST_NAME	VARCHAR2(20	BYTE)

,	MIDDLE_NAME	VARCHAR2(20	BYTE)

,	LAST_NAME	VARCHAR2(20	BYTE)

,	DATE_OF_BIRTH	DATE

,	MOBILE_NUMBER	VARCHAR2(15	BYTE)

,	DEPARTMENT	VARCHAR2(20	BYTE)

,	DESIGNATION	VARCHAR2(20	BYTE)

,	HIRE_DATE	DATE

,	SEX	VARCHAR2(1	BYTE)

,	ACTIVE_FLAG	VARCHAR2(1	BYTE)

,	ADDRESS	VARCHAR2(100	BYTE)

,	MANAGER_ID	NUMBER

,	CONSTRAINT	EMPLOYEE_ID_PK	PRIMARY	KEY

		(

EMPLOYEE_ID

)

		ENABLE

)

	

CREATE	TABLE	PARENT_DETAILS

(

		FATHER_NAME	VARCHAR2(30	BYTE)

,	MOTHER_NAME	VARCHAR2(30	BYTE)

,	GUARDIAN_NAME	VARCHAR2(30	BYTE)

,	FATHER_MOBILE	VARCHAR2(15	BYTE)

,	MOTHER_MOBILE	VARCHAR2(15	BYTE)

,	GUARDIAN_MOBILE	VARCHAR2(10	BYTE)

,	ADDRESS	VARCHAR2(100	BYTE)

,	FATHER_QUALIFICATION	VARCHAR2(50	BYTE)

,	MOTHER_QUALIFICATION	VARCHAR2(50	BYTE)

,	ANNUAL_INCOME	VARCHAR2(10	BYTE)

,	STUDENT_ID	VARCHAR2(16	BYTE)	NOT	NULL

,	CONSTRAINT	PARENTDETAILSPK	PRIMARY	KEY

		(

STUDENT_ID

)

		ENABLE

)

	

CREATE	TABLE	SCHOLASTIC_RESULTS

(

		STUDENT_ID	VARCHAR2(16	BYTE)	NOT	NULL

,	SEMESTER	VARCHAR2(1	BYTE)	NOT	NULL

,	ENGLISH_GRADE	VARCHAR2(1	BYTE)

,	MATHS_GRADE	VARCHAR2(1	BYTE)

,	SCIENCE_GRADE	VARCHAR2(1	BYTE)

,	SOCIAL_GRADE	VARCHAR2(1	BYTE)

,	LANG2_GRADE	VARCHAR2(1	BYTE)

,	LANG3_GRADE	VARCHAR2(1	BYTE)

,	COMPSC_GRADE	VARCHAR2(1	BYTE)

,	ARTS_GRADE	VARCHAR2(1	BYTE)

,	MUSIC_GRADE	VARCHAR2(1	BYTE)

,	DANCE_GRADE	VARCHAR2(1	BYTE)

,	PHYSICALEDU_GRADE	VARCHAR2(1	BYTE)

,	VALUEEDU_GRADE	VARCHAR2(1	BYTE)

,	SCHOOLPROJECT_GRADE	VARCHAR2(1	BYTE)

,	ENGLISH_REM	VARCHAR2(150	BYTE)

,	MATHS_REM	VARCHAR2(150	BYTE)

,	SCIENCE_REM	VARCHAR2(150	BYTE)

,	SOCIAL_REM	VARCHAR2(150	BYTE)

,	LANG2_REM	VARCHAR2(150	BYTE)

,	LANG3_REM	VARCHAR2(150	BYTE)

,	COMPSC_REM	VARCHAR2(150	BYTE)

,	ARTS_REM	VARCHAR2(150	BYTE)

,	MUSIC_REM	VARCHAR2(150	BYTE)	
,	DANCE_REM	VARCHAR2(150	BYTE)

,	PHYSICALEDU_REM	VARCHAR2(150	BYTE)

,	VALUEEDU_REM	VARCHAR2(150	BYTE)

,	SCHOOLPROJECT_REM	VARCHAR2(150	BYTE)

,	CONSTRAINT	SR_CPK	PRIMARY	KEY

		(

STUDENT_ID

		,	SEMESTER

)

		ENABLE

)

	

	

CREATE	TABLE	STUDENT_ATTENDANCE

(

		STUDENT_ID	VARCHAR2(16	BYTE)	NOT	NULL

,	ATTENDANCE	NUMBER

,	SEMESTER	VARCHAR2(1	BYTE)	NOT	NULL

,	CONSTRAINT	SA_CPK	PRIMARY	KEY

		(

STUDENT_ID

		,	SEMESTER

)

		ENABLE

)	
	

CREATE	TABLE	STUDENT_DETAILS

(

		ACTIVE_FLAG	VARCHAR2(1	BYTE)	NOT	NULL

,	FIRST_NAME	VARCHAR2(20	BYTE)

,	MIDDLE_NAME	VARCHAR2(20	BYTE)

,	LAST_NAME	VARCHAR2(20	BYTE)

,	GENDER_CODE	VARCHAR2(1	BYTE)

,	BIRTH_DATE	DATE

,	BIRTH_CITY_NAME	VARCHAR2(20	BYTE)

,	BIRTH_STATE_CODE	VARCHAR2(2	BYTE)

,	BIRTH_COUNTRY_CODE	VARCHAR2(2	BYTE)

,	BLOOD_GROUP	VARCHAR2(3	BYTE)

,	BUS_ID	NUMBER

,	STUDENT_ID	VARCHAR2(16	BYTE)	NOT	NULL

,	GRADE	VARCHAR2(4	BYTE)

,	SECTION	VARCHAR2(1	BYTE)

,	HEIGHT	VARCHAR2(3	BYTE)

,	WEIGHT	VARCHAR2(3	BYTE)

,	SIBLINGS_STUDENT_IDS	VARCHAR2(100	BYTE)

,	CONSTRAINT	STUDENTIDPK	PRIMARY	KEY

		(

STUDENT_ID

)

		ENABLE

)

	

CREATE	TABLE	STUDENT_FEES

(

		STUDENT_ID	VARCHAR2(16	BYTE)	NOT	NULL

,	JAN_ACAD	VARCHAR2(1	BYTE)

,	FEB_ACAD	VARCHAR2(1	BYTE)

,	MAR_ACAD	VARCHAR2(1	BYTE)

,	APR_ACAD	VARCHAR2(1	BYTE)

,	MAY_ACAD	VARCHAR2(1	BYTE)

,	JUN_ACAD	VARCHAR2(1	BYTE)

,	JUL_ACAD	VARCHAR2(1	BYTE)

,	AUG_ACAD	VARCHAR2(1	BYTE)

,	SEP_ACAD	VARCHAR2(1	BYTE)

,	OCT_ACAD	VARCHAR2(1	BYTE)

,	NOV_ACAD	VARCHAR2(1	BYTE)

,	DEC_ACAD	VARCHAR2(1	BYTE)

,	JAN_BUS	VARCHAR2(1	BYTE)

,	FEB_BUS	VARCHAR2(1	BYTE)

,	MAR_BUS	VARCHAR2(1	BYTE)

,	APR_BUS	VARCHAR2(1	BYTE)

,	MAY_BUS	VARCHAR2(1	BYTE)

,	JUN_BUS	VARCHAR2(1	BYTE)

,	JUL_BUS	VARCHAR2(1	BYTE)

,	AUG_BUS	VARCHAR2(1	BYTE)

,	SEP_BUS	VARCHAR2(1	BYTE)

,	OCT_BUS	VARCHAR2(1	BYTE)

,	NOV_BUS	VARCHAR2(1	BYTE)

,	DEC_BUS	VARCHAR2(1	BYTE)

,	REMARKS	VARCHAR2(200	BYTE)

,	CONSTRAINT	SF_PK	PRIMARY	KEY

		(

STUDENT_ID

)

		ENABLE

)

	

CREATE	TABLE	TRANSPORTATION_DETAILS

(

		BUS_ID	NUMBER	NOT	NULL

,	TRANSPORTATION_TYPE	VARCHAR2(12	BYTE)

,	DRIVER_EMPLOYEE_ID	NUMBER

,	BUS_NUMBER	VARCHAR2(12	BYTE)

,	HELPER_EMPLOYEE_ID	NUMBER

,	CONSTRAINT	TD_PK	PRIMARY	KEY

		(

BUS_ID

)

		ENABLE

)

	

ALTER	TABLE	CLASS_TEACHER_MAPPING

ADD	CONSTRAINT	CTM_FK	FOREIGN	KEY

(

		EMPLOYEE_ID

)

REFERENCES	EMPLOYEE_DETAILS

(

		EMPLOYEE_ID

)

ENABLE;

	

ALTER	TABLE	COSCHOLASTIC_RESULTS

ADD	CONSTRAINT	CSR_FK	FOREIGN	KEY

(

		STUDENT_ID

)

REFERENCES	STUDENT_DETAILS

(

		STUDENT_ID

)

ENABLE;

	

ALTER	TABLE	PARENT_DETAILS

ADD	CONSTRAINT	STUDENTIDFK	FOREIGN	KEY

(

		STUDENT_ID

)

REFERENCES	STUDENT_DETAILS

(

		STUDENT_ID

)

ENABLE;

	

ALTER	TABLE	SCHOLASTIC_RESULTS

ADD	CONSTRAINT	SR_FK	FOREIGN	KEY

(

		STUDENT_ID

)

REFERENCES	STUDENT_DETAILS

(

		STUDENT_ID

)

ENABLE;

	

ALTER	TABLE	STUDENT_ATTENDANCE

ADD	CONSTRAINT	SA_FK	FOREIGN	KEY

(

		STUDENT_ID

)

REFERENCES	STUDENT_DETAILS

(

		STUDENT_ID

)

ENABLE;

	

ALTER	TABLE	STUDENT_DETAILS

ADD	CONSTRAINT	SD_FK	FOREIGN	KEY

(

		BUS_ID

)

REFERENCES	TRANSPORTATION_DETAILS

(

		BUS_ID

)

ENABLE;

	

ALTER	TABLE	STUDENT_FEES

ADD	CONSTRAINT	SF_FK	FOREIGN	KEY

(

		STUDENT_ID

)

REFERENCES	STUDENT_DETAILS

(

		STUDENT_ID

)

ENABLE;

	

ALTER	TABLE	TRANSPORTATION_DETAILS

ADD	CONSTRAINT	TD_DFK	FOREIGN	KEY

(

		DRIVER_EMPLOYEE_ID	
)

REFERENCES	EMPLOYEE_DETAILS

(

		EMPLOYEE_ID

)

ENABLE;

	

ALTER	TABLE	TRANSPORTATION_DETAILS

ADD	CONSTRAINT	TD_HFK	FOREIGN	KEY

(

		HELPER_EMPLOYEE_ID

)

REFERENCES	EMPLOYEE_DETAILS

(

		EMPLOYEE_ID

)

ENABLE;

About	the	Author

	

														The	author	Mirza	Yousuf	Ahmed	Baig	holds	a	Master’s	degree	in	Computer
Science	Engineering	from	Jawaharlal	Nehru	Technological	University,	Hyderabad,	India.
And	a	bachelor’s	degree	in	electronics	and	communication	engineering	from	Gulbarga
University,	India.	He	has	delivered	more	than	20	corporate	trainings	on	core	Java	to	IT
MNCs.

The	author	has	worked	at	various	senior	technical	roles	for	Oracle	India,	Sun
Microsystems	and	BEA	Systems	R&D.	He	has	worked	as	Technical	Consultant	for	Sun
Microsystems	and	Principal	Engineer	for	Oracle	India.	He	has	hands	on	experience	of
more	than	one	and	half	decade	on	Java,	JEE	and	Oracle	Fusion	Middleware	Products
including	Oracle	SOA	Suite,	Oracle	AIA,	Oracle	WebCenter	and	Oracle	ADF.	He	has
been	Architecting,	Designing,	Coding	and	Supporting	software	solutions	of	various
complexity	and	sizes	during	his	entire	career.

The	author	has	been	a	direct	technological	liaison	for	fortune	500	clients	in	USA	and
India.	He	has	worked	in	UAE	at	client	site	as	an	Architect	for	implementing	web	2.0	and
integration	solutions	for	Abu	Dhabi	government	sector	clients.

The	author	is	Sun	Certified	Java	CAPS	integrator	and	Oracle	Partner	Network	(OPN)
Certified	Specialist	for	Oracle	WebCenter	11g.	He	is	also	among	the	top	10	rank	holders
in	India	for	ICFAI’s		GK	national	level	competition.	He	has	been	recognized	by	Computer
Sciences	Corporation	(CSC)	with	an	outstanding	performer	award.	Altria	group,	USA	has
honored	him	as	Field	Combat	Specialist	1st	class	for	his	contributions	as	a	web	developer.

	PREFACE
	1 INTRODUCTION
	What are we building?
	Why are we building?
	How are we building?
	The Outline
	Step 1: Compose Requirements Specifications.
	Step 2: Create Prototype of the Application.
	Step 3: Blueprint the Architecture and High Level Design.
	Step 4: Design the Database.
	Step 5: Build the Java Framework.
	Step 6: Build the Shared Components.
	Step 7: Build the Individual Use Cases.
	Step 8: Testing.
	Step 9: Deployment.

	2 PREPARING THE ENVIRONMENT
	Hardware Requirements
	Software Requirements
	Installing Oracle XE Database
	Installing Oracle jdeveloper 11g
	Installing Apache Tomcat 8

	3 SDLC, OOAD AND UML
	3 SDLC, OOAD AND UML
	Software Development Life Cycle (SDLC)
	Object Oriented Analysis and Design (OOAD)
	Unified Modeling Language (UML)
	Use Case Diagram
	Class Diagram
	Sequence Diagram
	Activity Diagram

	4 REQUIREMENTS
	The Requirements Phase
	Requirements Specifications
	Application Title
	Executive Summary
	Detailed Requirements Specification
	Authentication and Authorization Module
	R1: The Authentication.
	R2: The Authorization.

	The Student Module
	R3: Load Student.
	R4: Unique Student Identifier.
	R5: Student Details.
	R6: Student Academics.
	R7: Show Student Attendance.
	R8: Student Fees.

	The Administration Module
	R9: Manage Student Attendance.
	R10: Add Student.
	R11: Report by Class.

	The Help and Miscellaneous Module
	R12: Help Pages.
	R13: Header and Footer.
	R14: The Menu.

	5 PROTOTYPING
	Page layout and template
	Prototype 1: Login Page.
	Prototype 2: Dashboard/Home Page.
	Prototype 3: Load Student.
	Prototype 4: Student Details Page.
	Prototype 5: Student Results Page for Semester 1.
	Prototype 5: Student Results Page for Semester 2.
	Prototype 6: Student Attendance Page for Semester 1.
	Prototype 6: Student Attendance Page for Semester 2.
	Prototype 7: Fees Status Page.
	Prototype 8: Manage Attendance Page.
	Prototype 9: Add Student Page.
	Prototype 10: Report by class page with report criteria options.
	Prototype 10: Report by class page with report data.
	Prototype 11: Help pages, results legend page.

	6 THE CLIENT SIDE
	JavaScript
	BisScript.js

	Cascaded Style Sheet
	BISStyle.css

	7 THE PATTERNS
	Architectural Patterns
	MVC

	Design Patterns
	Command Pattern
	Front Controller Design Patten
	Value Object Design Pattern

	8 THE ARCHITECTURE
	The BIS-SMS Application Architecture

	9 DATABASE DESIGN
	BisSecurityRealm Schema
	Users Table
	User Roles Table

	Bis Schema
	Student Details Table
	Parent Details Table
	Employee Details Table
	Transportation Details Table
	Class Teacher Mapping Table
	Student Attendance Table
	Student Fees Table
	Scholastic Results/Co Scholastic Results Tables
	BIS Constants Table

	10 THE FRAMEWORK
	The MVC Based Java Framework
	View Layer
	Model Layer
	Controller Layer

	BisFramework
	The BisFramework Architecture
	Client Tier
	Database Tier
	Web Server Tier
	View Layer
	Controller Layer
	Model Layer
	Command Processor
	The Control Flow

	11 THE LOGGING
	What is logging and why it is needed?
	Logging Levels
	Using Log4j in jdeveloper
	The log4j.properties file

	12 SESSION MANAGEMENT
	Understanding Session
	Leveraging Http Session

	13 INTERACTING WITH THE DATABASE
	The approaches for database connectivity
	Using Data Sources

	14 THE BIS-SMS PROJECT COMPONENTS
	Java Servlets
	ControllerServlet.java
	AjaxControllerServlet.java

	The Command Processors
	BisCP.java
	BisCommand.java

	The Service Classes
	BisService.java

	The Java Beans
	StudentBean.java
	BisBean.java

	The Utility Classes
	Bisutility.java
	DatabaseService.java
	BisConstants.java

	The Java Server Pages
	BisHome.jsp

	Log4j

	15 IMPLEMENTING USE CASES
	Use Case: Authentication.
	BisLogin.jsp

	Use Case: Authorization.
	BisDashboard.jsp
	BisHome.jsp

	Use Case: Load Student.
	LoadStudentCP.java
	StudentDetailsService.java
	BisDashboard.jsp
	BisScript.js

	Use Case: Get student details.
	GetStudentDetailsCP.java
	StudentDetailsService.java
	StudentDetailsBean.java
	StudentDetails.jsp

	Use Case: Get student attendance.
	GetStudentAttendanceCP.java
	StudentAttendanceService.java
	StudentAttendanceBean.java
	StudentAttendance.jsp

	Use Case: Get student fees.
	GetStudentFeesCP.java
	StudentFeesService.java
	StudentFeesBean.java
	StudentFees.jsp

	Use Case: Get student results.
	GetStudentAcademicsCP.java
	StudentAcademicsService.java
	StudentResultsBean.java
	StudentAcademics.jsp

	Use Case: Help pages.
	ResultsLegend.html

	Use Case: Report by class.
	GetReportByClassCP.java
	ReportByClassService.java
	ReportByClassBean.java
	ReportByClass.jsp

	Use Case: Add Student.
	AddStudentCP.java
	AddStudentService.java
	StudentDetailsBean.java
	AddStudent.jsp

	Use Case: Manage Student Attendance.
	ManageAttendanceCP.java
	StudentAttendanceService.java
	StudentAttendanceBean.java
	ManageAttendance.jsp

	16 SECURING APPLICATION
	Configuring data source security realm for Apache Tomcat 8
	Enabling Security for BIS-SMS
	BIS-SMS Users and Roles

	17 BUILD AND DEPLOYMENT
	The Web Application Archive
	Building the Bis.war file

	Deploying the .war file
	Deploying Bis.war to Apache Tomcat

	18 TESTING
	Unit Testing
	System Testing
	User Acceptance Testing (UAT)

	19 DEBUGGING
	What is a bug?
	Steps to resolve a bug
	Describe the bug
	Reproduce the bug
	Diagnosis and resolution
	Verifying the fix
	Applying the patch

	20 OTHER IMPORTANT TOPICS
	AJAX
	Performance tuning and best practices
	Scalability

	21 IMPORTANT FILES
	web.xml
	Context.xml

	22 APPENDIX
	Database scripts
	Schema: BisSecurityRealm
	Schema: bis

