




Building Responsive Data Visualization for the Web





Building Responsive  
Data Visualization  
for the Web

Bill Hinderman



Building Responsive Data Visualization for the Web

Published by 
John Wiley & Sons, Inc. 
10475 Crosspoint Boulevard 
Indianapolis, IN 46256 
www.wiley.com

Copyright © 2016 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-119-06714-6
ISBN: 978-1-119-06713-9 (ebk)
ISBN: 978-1-119-06720-7 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any 
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or 
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood 
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should 
be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ  07030, (201) 
748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties 
with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, 
including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended 
by sales or promotional materials. The advice and strategies contained herein may not be suitable for every situ-
ation. This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting, 
or other professional services. If professional assistance is required, the services of a competent professional person 
should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that 
an organization or Web site is referred to in this work as a citation and/or a potential source of further information 
does not mean that the author or the publisher endorses the information the organization or website may provide or 
recommendations it may make. Further, readers should be aware that Internet websites listed in this work may have 
changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the 
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with 
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to 
media such as a CD or DVD that is not included in the version you purchased, you may download this material at 
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2015951125

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/
or its affiliates, in the United States and other countries, and may not be used without written permission. All other 
trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or 
vendor mentioned in this book.



For my grandmother, Mary. 

You showed me that the Internet is for people.





  vii

AAbout  
the Author

Bill Hinderman is a software engineer and 
designer from Chicago. He is the lead site 
optimization UI engineer at Orbitz Worldwide 
(orbitz.com), and a space cadet and designer 
at Starbase Go (starbasego.com). He designs, 
prototypes, develops, and A/B tests experimen-
tal new products for customer-facing brands.

He works alongside artistic and entrepreneurial 
individuals to craft innovative web experiences. 
Bill received his B.S. in computer science with 
a specialization in UI development from the 
University of Illinois in 2012. He’s a speaker at 
conferences on the future of web development, 
data visualization, and cross-platform design.

Bill is an avid runner and cocktail-maker, and he can wear the hell out of a suit. 
When he was four, he penned My Book About Me, in which he stated that he was 
glad he wasn’t a giraffe, and that his least favorite thing to do was sitting. Both of 
those statements hold true to this day.





  ix

AAbout the Technical Editor

Randy Krum is an infographics and data visualization designer, author of the book 
Cool Infographics: Effective Communication with Data Visualization and Design 
(Wiley, 2014), and instructor of Infographics and Data Visualization Design at 
Southern Methodist University’s Continuing and Professional Education program 
(CAPE). Randy also runs the popular website Coolinfographics.com. Started in 
2007, the site has grown into one of the most influential infographic sites online, 
handling up to 50,000 unique visitors per day. He is the founder and president of 
InfoNewt, a design company that creates infographics and visualizations for clients 
used for both online marketing and internal communications. Randy speaks at con-
ferences, universities, corporate events, and government agencies about infographic 
design, data visualization methods, visual content marketing, and the effective use 
of visual information. Learn more at RandyKrum.com.





  xi

CCredits

Acquisitions Editor

Jim Minatel

Project Editor

Adaobi Obi Tulton

Technical Editor

Randy Krum

Production Editor

Rebecca Anderson

Copy Editor

Luann Rouff

Manager of Content  
Development and Assembly

Mary Beth Wakefield 

Marketing Director

David Mayhew

Marketing Manager

Carrie Sherrill

Professional Technology &  
Strategy Director

Barry Pruett

Business Manager

Amy Knies

Project Coordinator, Cover

Brent Savage

Interior Designer and Compositor

Happenstance Type-O-Rama

Proofreader

Nancy Carrasco

Indexer

Johnna VanHoose Dinse

Cover Designer

Bill Hinderman

Cover Image

Bill Hinderman





  xiii

AAcknowledgments

I want to thank Carol Long from John Wiley & Sons. After opening for the morn-
ing coffee break at the Data Visualization Summit in Boston, you walked up to me 
with a coffee in one hand and a business card in the other, and asked if I would like 
to write a book. Without your willingness to approach some ridiculous 24-year-old 
kid, this whole thing never would have happened.

I also have to give my most heartfelt appreciation to my project editor, Adaobi Obi 
Tulton. You were equal parts patient and stern regarding deadlines and deliverables, 
in a way that made this long book-making process enjoyable.

I also owe a massive thanks to Randy Krum for not only acting as technical editor 
on the book, but also giving me advice—as someone who has done this same thing 
before—on pitfalls to avoid, and paths to take.

Finally, I want to offer apologies to any family members, friends, coworkers, and 
strangers I was rude to, short with, or otherwise unpleasant to be around during 
deadline weeks. I promise it wasn’t you.





xv

CContents

00Introduction xxv

PART ONE: Creating the Responsive Web

01The Mobile Web 3
How We Got Here 4

The Web’s History 5
The Rise of Mobile Devices 8
The Mobile Tipping Point 10

The Mobile Web Today 13
Mobile Web Considerations 13
Benefits of the Mobile Web 15
Building for the Most Users 17

Mobile Web Design 17
The Way To Build Today 18
A Taste of Progressive Enhancement 20

Summary 23



xvi Contents

02Responsive Web Design Tenets 25
The Gist 26

Building for the Limited User 27
Building for Every User 28

Adaptive vs. Responsive 29
The Broad Adaptive 29
Limiting Your Adaptive Design Definition 33

Desktop-First vs. Mobile-First 36
Four Principles 38

Be Universal 39
Be Flexible 43
Be Economical 46
Be Specific 47

Seven Points of Focus 49
Measure 50
Flow 51
Nesting 54
Endpoints 57
Breakpoints 59
Typography 63
Images 66

Summary 69

03Working with a Flexible Grid 71
The Gist 72

What Is a Grid System? 72
Flexible Units 75

The Meticulous Client 75
Moving to Relative Units 79



Contents xvii

Using a Grid System 81
Another Project 82
Branching Out 93

Creating a Reusable, Flexible Grid (in Five Easy Steps) 93
Unit 95
Gutter 95
X-Count 95
Columns 96
Rows 96
Putting It All Together 97

Summary 98
Try It 98

04Designing Responsive  
Layouts with CSS 101

The Gist 102
A Brief History of CSS 102
You’ve Come a Long Way, Baby 103

Responsive Layout Design 118
The Media Query 118
Starting from the Bottom 127

The Reusable Responsive Grid 144
Building a Reusable Grid 145
Building a Responsive Grid 147

Summary 148
Try It 149



xviii Contents

05Enhancing with JavaScript 151
Using JavaScript 152

JavaScript Enables Rich Interactivity 153
Remember Progressive Enhancement 155
Sensible Defaults 157

Responsive JavaScript 163
Server-Side Feature Detection 164
Building from CSS 164
JavaScript’s matchMedia Object 166

Limber Up 168
AJAX 168
Perceived Performance 172

Summary 182
Try It 182

PART TWO: Creating Responsive  
Data Visualization

06Data Design:  
An Abridged History 187

Learning From Data 188
Data, Information, and Knowledge 189
Size Matters 191
Data’s Data 192

The Big Pile 193
Extracting Meaning  193
Communicating Meaning 195



Contents xix

What You Get from the Web 210
Interactivity 211
A Taste of Responsive 212

Summary 214

07Responsive Data  
Visualization Tenets 217

Designing Content-First 218
Still Just the Web 219
Distilling Data 220

Revisiting Responsive Design Principles 229
Be Universal 230
Be Flexible 232
Be Economical 235
Be Specific 240

Seven Points of Focus 241
Measure 242
Flow 245
End points 247
Breakpoints 249
Grouping Points 252
Images 253
Layering 256

Responding to Data 258
Know Your Audience 259
Know Your Data 260

Summary 261



xx Contents

08Thinking Small 263
Designing for the Smallest Canvas: No Canvas 264

Building for a Blind User 266
The Good API 269
The API-First Team 278

The Tiny Canvas 279
The Fitness App 279
Layering 283

Enhancing Efficiently 285
Growing Up 286
First, Change Everything 287
They’re Just Numbers 290

Summary 291

09Asset Dependence 293
Dynamic Data 294

Dipping Your Toe In 294
Data versus Screen 298
Reacting to Data Changes 301

Tying Visualization to Screens 308
Grouping Again 309

Summary 312
Try It 313



Contents xxi

10Code-Driven Visualization 315
Unknown Inputs and Outputs 316

To the User 317
To the Data 317
Putting It Together 320

Using D3.js 320
Getting Started with D3.js 321
Data and the DOM 348

Building Responsive Data Visualization for the Web 354
Client Responsiveness 355
Data Responsiveness 361
The Bigger Picture 363
Rational Defaults 363

Driving Design with Data 371
Clear, Not Clever 372

Summary 372
Try It 373

11Building the  
Future-Friendly Web 375

The Future of Data Design 376
Growing Stockpiles of Data 377
Setting a Standard for Data Markup 378



xxii Contents

Embracing Uncertainty 379
Where Complexity Lies Today 380
The Future-Friendly Manifesto 381

Responsible Web Design 385
Building API-first 386
Respecting Progressive Enhancement 386
Innovating 388
Standardizing 388

Summary 389

PART THREE: Additional Resources

AResources 393
Responsive Data Visualization 394
Grids 394
Infographic Design 394
Responsive Design 395
D3.js 395
More Resources Online 396

Index 397





00



Introduction

Before we do anything, I want to tell you about my first  
experience with the web. 

It was 1996, and I was at home, sitting at my mother’s 
Windows 3.1 machine. We had recently heard about this 
“Internet” from my grandmother, who had been using it to 
communicate with a friend living in Hong Kong. 

To us, this was science fiction. I was six years old, however, 
and science fiction wasn’t as sharply differentiated from sci-
ence fact as it (sometimes) is today, so it never occurred to me 
that this shouldn’t be possible. 



xxvi Introduction

This was my first time at the computer in a week, not because I wasn’t using a com-
puter regularly already, but because a week prior I had gotten up very early, logged 
onto my mother’s computer, and, having memorized the keystrokes and icons, 
rather than the actual words, navigated to the Control Panel and turned every single 
background, foreground, and text color white. When I got home from kindergarten 
that day, I was greeted less kindly than with the typical chocolate milk and Happy 
Days reruns.

Someone who can’t differentiate between science fiction and science, fact

Therefore, a week after dismantling my minimalist design, I was about to experi-
ence the Internet. My next-door neighbor at the time was also named Billy; and 
in a grand act of vanity, I decided I would send my first e-mail message to the only 
other person I knew who shared my name.

I opened the e-mail client and slowly chicken-pecked the following:

Isn’t technology great?!

-Billy H.

In little-kid time, it took somewhere between one second and 700 years for this 
e-mail to be sent. Immediately, I called the other Billy on the phone to see if he had 



  xxvii

received it. He had to get off the phone to check. Eventually, he responded with a 
poignant piece of writing that I carry with me to this day:

yes!!

-Billy R.

The e-mail client, sitting in its own white window on a background I had begrudg-
ingly recolored a neon yellow, wasn’t much more than a WYSIWYG editor and a 
list of contacts—the same as it looks today. 

At six, I felt like I had just sent a message to Hong Kong.

Five years later, I was sitting at my grandmother’s house. My great-grandmother, 
who was a rock star and could beat any of you at Scrabble so don’t even try, was in 
a nursing home that housed both a group of eccentric old retirees and a surprisingly 
tech-savvy administrator.

I had decided, after losing at Scrabble, that I would make my first website: a face 
book for all the people on my great-grandmother’s floor of the nursing home, a 
way to let them say hello to their loved ones online. The administrator was over the 
moon about this. At eleven, I had to open an MS-DOS prompt and manually con-
nect to the free web hosting included with my mother’s e-mail address at the time, 
then FTP individual HTML files to the server. That website eventually led to my 
winning a Jefferson Award for Public Service and renting a (small) tuxedo to talk 
about the Internet, surrounded by adults who were making a tangible difference in 
the world.

I was once again living in the world of science fiction.

Five years later, I had my first cellphone. It did not have any Internet-connected 
features. At the time, having Internet connectivity on your phone meant one of two 
things:

 • You were using it for e-mail.

 • You were in a commercial for cellphones.

I had no inclination that the little clamshell in my pocket would morph into the 
primary way that I now access the web every day.



xxviii Introduction

A year later, the iPhone would launch.

Today, we hold our Internet to a higher standard. We (I, because I know who I 
am and what I do for a living, and you, because you have opened this book, which 
means I can make wild assumptions about you) make things for the web. We make 
websites, and web apps, and landing pages, and blogs, and magazines, and dash-
boards, and we do all of this because we have a vested interest in making the Inter-
net something amazing.

My degree is in computer science, with a focus in UI engineering and human- 
computer interaction. I shimmied backward into web design because I missed 
changing all of my mom’s system colors to white, and because nobody else I was 
working with ever wanted to also be the designer when we were up at 4:00 a.m. 
regurgitating data structures.

I cut my teeth on data visualization toward the end of my college career. A friend 
(with whom I would go on to form my studio) and I were working on a comically 
uncreative idea: tracking the level of crowd, drink and food specials, and how many 
friends were at any given venue on a given night. (It was far from the next Face-
book, but we were young and shiny and dumb.) Never before, and often since, I 
felt the intense joy of watching a complex set of numbers turn into something read-
able, approachable, even friendly.

Because I’ve lived in this dual role of developer and designer for the entirety of my 
professional career, I have never been able to separate the visual design of how a 
website, a visualization, a pixel might look from its actual implementation—and I 
think that this is an important way to look at what you create for the web.

Our industry is responsible for some of the most amazing advances in the past 25 
years; but it’s also responsible for the tidal wave of absolute garbage being shoved 
into consumers’ faces on a daily basis. Not only do we create content, we also create 
the vehicles by which other people create and consume content. 

But I don’t want to scare you.

We’re the good guys. We’re designers. We get to decide what is made, how it works, 
and exactly how consumers interact with it; but there’s one thing that has always left 
me speechless: We’ve made it this far without a plan.



Who You Are (Now) xxix

The Internet looks and acts the way it does simply because we’re all rowing in the 
same direction. There is no one place to get this year’s model of the Internet. There 
are no vintage web shows that sweep through the Midwest during the summer; and 
there is no one company, group, team, or person deciding the direction of the Inter-
net. If an Internet thing is made well, defended adequately, and presented broadly, it 
becomes the standard.

It’s the world’s most successful design by consensus.

Who You Are (Now)
So you’re reading this book. Cool. Thanks. I’d love to know what you think of it. 
It’s absolutely not for everyone. You’re here because like me you are a maker of web 
things,

…and some of those web things happen to be data visualizations.

…and all of those web things suddenly have to work on a four-inch-by-six-inch 
screen.

…and you’re now somewhere between “I’m feeling OK about this” and “I 
didn’t know my palms could even get this sweaty.”

We have our work cut out for us.

From my experience working with massive piles of data at Orbitz Worldwide 
(orbitz.com), to visualizing a few simple ingredients in cocktail recipes at The 
Cocktail Gui.de (thecocktailgui.de), I know that the trick to getting good at this 
sort of work is to do a lot of it. In the case of the latter, we always knew what we 
wanted to fix. Critique was easy. It was this work, this process, this heartbreak of 
eating our firstborn that actually led us to fixing it.

Visualization design, just like web design, takes a whole lot of time to get right. 

In my case, it typically takes walking down two or three completely wrong paths 
before I realize the answer I had been looking for. Our job is to take large data 



xxx Introduction

sets and make them simple, digestible, and persuasive through translation into the 
visual space. That’s a tall order, and one that can’t be filled in a fast-food restaurant 
sort of way.

This book will help you on your path to becoming a competent designer of respon-
sive data visualizations. 

If you plan to sit down at a coffee shop and breeze through the next 300 pages, 
glancing occasionally at the examples, you will probably learn a few things. You 
might even learn more than a few things; but to truly get the worth from these 
lessons, you need to take your time, follow along with the practice problems, and 
move around the book as you focus on one problem or another.

What You’ll Learn in Class Today
This book is about one thing: responsive design’s relation to data visualization. 

Over the years, in more and more projects, I was asked by business stakeholders 
or product managers or clients to create “a mobile version” or “a tablet version” of 
something that a designer already thought through very carefully in the context of 
a large desktop screen with a keyboard and mouse. Then the request changed to 
“make this responsive,” while being handed the same desktop-context picture of a 
website. This idea is covered heavily in the first few chapters, but the point is that 
responsive design has moved from revolution to buzzword.

The thing I like about buzzwords is that they can sometimes still be meaningful 
concepts. For example:

 • Independence

 • Buy-one-get-one

 • Social media

 • Responsive design

Obviously that last one is where we’ll be spending the bulk of our time. If you don’t 
know anything about responsive design, that’s totally fine; the following chapters 
will walk you through everything— basic, intermediate, and even some advanced.



Who You Are (Now) xxxi

Once we’re all on an even playing field, we’re going to focus on a concept that was 
somehow overlooked when responsive design was being architected: data visualiza-
tions are just content. Fluid grids, CSS media queries, and progressive enhancement 
are the technical cornerstones of responsive web design. Moreover, as you’ll be able 
to tell everyone you know, these same three techniques can be applied to data visu-
alizations to make them respond to your users.

You’ll learn design techniques; you’ll learn the code to back those techniques; and 
you’ll learn why you should bother even thinking about this to begin with.

This book outlines a way to move toward one ubiquitous, ergonomic web, regard-
less of device. As a designer/developer, you’re solving for 100% parity not only in 
layout, text, and images, but also in rich, interactive content.

How This Book Works
So here’s the plan: You have a book in front of you. Hooray. These days, however, 
we live in a futuristic, science-fiction world, and books aren’t just books anymore, so 
you also have the following:

 • A reference of responsive web design techniques that you can look up on  
a whim

 • A wealth of annotated examples to explore and blatantly rip off

 • A series of guided practice exercises to learn the basics and the not-so-basics of 
responsive web and visualization design

 • An online resource that works alongside this more-than-a-book to help you get 
the most out of your learning experience

Since we’re building for web technologies, and it’s very hard to get the web on 
paper, most of the figures and visualizations in this book are annotated, and can be 
viewed on responsivedatavisualization.com. All the practice material and exam-
ples can be found there as well, along with a list of related articles and news, which I 
will continue to update long after you’ve finished reading this book and added it to 
that shelf of items you keep in case the creative director walks by.



xxxii Introduction

How This Book Is Organized
This book is separated into two different parts, each with its own focus. The parts 
have been written to be entirely self-contained, so you don’t need to read the book 
from cover to cover if you are already familiar with certain subjects.

The sections are separated as follows:

 • Part I, “Creating the Responsive Web,” begins with a brief history of how the 
mobile web came into being. It establishes a definition for the mobile web and 
describes how we, as web designers, have begun to interact with and develop 
for it using responsive web design techniques. It then outlines those techniques 
that serve as the cornerstones of responsive web design.

 • Part II, “Creating Responsive Data Visualization,” begins by walking through 
the science of data visualization on the web. It then takes the lessons from 
responsive web design and combines them with techniques used to create beau-
tiful web visualizations.

Who You Are (300 
Pages from Now)
After you have finished reading this book, you’ll be a conduit for moving the Inter-
net toward a more perfect home for data. If you follow along (or even if you just 
copy and paste), you’ll have the necessary toolset to build rich, interactive data visu-
alizations that fit comfortably on any screen type.

It’s my hope that you’ll use your knowledge to approach each new project with a 
flexibility and adaptability that enables you to solve for emerging screen types and 
interactions without starting from scratch every time.



Why This Matters xxxiii

Future-Friendly Feedback 
Clearly, no book has all the answers. Responsive data visualization is as much about 
a way of thinking as it is about a technical approach to a design problem. There are 
plenty of you reading this who work at the leading edge of this creative wave, and I 
encourage you to add your thoughts to the conversation:

Building Responsive Data Visualization for the Web:  
responsivedatavisualization.com

Twitter: @billHinderman

Facebook: facebook.com/billHinderman

LinkedIn: linkedin.com/in/williamhinderman

Me: bill@billhinderman.com

Starbase Go: starbasego.com

Why This Matters
In the next few hundred pages, you will read about the overwhelming shift toward 
mobile in the Internet landscape. The most important insight I can share about this 
is that every time we have made the assumption that someone won’t do something 
on mobile, we’ve been proven wrong. 

There’s no reason to think that data science is a unique case.

However, that’s only half of the conversation. Responsive web design, and respon-
sive data visualization are not simply a way to make our content accessible on 
smaller screens. We need to build an ergonomic web that feels natural regardless of 
device type. Whether it’s a desktop, a phone, a television, or some type of screen 
that hasn’t been invented yet, you want to design in such a way that your content is 
always accessible and understandable to those looking at it.

Let’s get started.





Building Responsive Data Visualization for the Web





 PART  

ONE
Creating the Responsive Web

CHAPTER 01: The Mobile Web

CHAPTER 02: Responsive Web Design Tenets

CHAPTER 03: Working with a Flexible Grid

CHAPTER 04: Designing with CSS

CHAPTER 05: Enhancing with JavaScript



01



01The Mobile Web

Before discussing responsive data design, it is import-
ant to set the stage with a brief overview of how we got 
here. The evolution of the mobile web does not exist in a 
vacuum; it is built upon the foundation of 25 years of the 
Internet’s growth.

In this chapter, we’ll touch upon the beginning of the con-
sumer Internet, and how it became commercialized. We will 
then move on to the shift from desktop computers to mobile 
devices as the primary way to access the web. 

Finally, you will gain an understanding for what the mobile 
web’s landscape looks like today by exploring how the screens 
currently used came to be, and what will become their logical 
successors.

Plus, you will end up with great conversation starters for the 
world’s nerdiest cocktail party.



4 The Mobile Web

How We Got Here
Think about the device you have in your pocket or in your hand right now.  
You have an absolutely godlike amount of computing power inside a device 
the size, shape, and fragility of a toaster pastry. Not only can it do miraculous 
things like calculate your age from a picture of your belly button, but it can also 
talk to all of the other devices on the planet and shame you for missing your 
morning run.

Back in the 1950s, though, computers were massive room-filling calculators that 
couldn’t say anything to one another. Computer science labs across the United 
States, Great Britain, and France were working on that “couldn’t say anything to 
one another” part, though. Throughout that decade, and into the 1960s, packet 
networking systems (what humans call the Internet) had been contracted by the 
United States Department of Defense. The first ARPANET (what would become 
the first network to use the Internet Protocol) link was established between the 
University of California, Los Angeles (UCLA) and the Stanford Research Institute 
on October 29, 1969. The messages went as follows:

“We set up a telephone connection between us and the guys at SRI ...,” Klein-
rock ... said in an interview: “We typed the L and we asked on the phone, ‘Do 
you see the L?’” 

“Yes, we see the L,” came the response. 

We typed the O, and we asked, “Do you see the O.” 

“Yes, we see the O.” Then we typed the G, and the system crashed.

From Gregory Gromov’s Roads and Crossroads of the  
Internet History (www.netvalley.com/cgi-bin/intval/net_history.pl)

Access to the ARPANET was expanded in 1981 with the creation of the Computer 
Science Network. A year later, the Internet protocol suite (TCP/IP) became the 
standard networking protocol on that network.



How We Got Here 5

The Web’s History
So, the history of the Internet begins in the late 1950s when those big computers 
couldn’t talk, and it takes 19 years for the first conversation. So, naturally, let’s begin 
our lesson in 1980, with the history of the web.

The web is a way of accessing information over the Internet. That is, it’s an informa-
tion-sharing model that is built on top of the Internet, using a standard hypertext 
transfer protocol (HTTP).

Tim Berners-Lee was an English-born contractor working at the European Organi-
zation for Nuclear Research (CERN) in Switzerland. In 1980, he became fascinated 
with the concept of hypertext. In the simplest terms, hypertext is text displayed in 
a digital form that references and provides linked access to other text. Berners-Lee 
built ENQUIRE, a hypertext database system to catalog people and software mod-
els. If you’ve ever used a wiki, like Wikipedia, you can grasp the core of what he was 
building with ENQUIRE. It was a database of hypertext information within which 
other related information was accessible through hyperlinks.

Early Days

By the mid-eighties, Berners-Lee had left and returned to CERN, still working on 
a solution to a seemingly intractable problem: Physicists around the world lacked a 
way to communicate data uniformly. In 1984, TCP/IP protocols were installed on 
a few machines at CERN, making it, at the time, the largest collection of things that 
make the Internet the Internet in all of Europe.

In 1989, Berners-Lee wrote a proposal for a “large hypertext database with typed 
links.” He began creating this database on a NeXT computer workstation, and 
called the project the World Wide Web.

By the end of 1990, the World Wide Web was beginning to take shape as something 
similar to what we know today. Hypertext Transfer Protocol (HTTP) and Hyper-
text Markup Language (HTML) were in a working state, and the first HTTP server 
software and web server went online. Accompanying these were the first web pages, 
which described the World Wide Web project itself. Figure 1-1 shows the earliest 
known website. The first web browser also came online, as a project housed at CERN.



6 The Mobile Web

FIGURE 1-1

The first website, now housed at http://info.cern.ch/hypertext/WWW/TheProject.html

A pivotal moment came on August 6, 1991. Berners-Lee posted a short summary 
of what was then called the “World Wide Web” project on the alt.hypertext news-
group. The summary’s opening was deceptively simple, considering its significance:

The WorldWideWeb (WWW) project aims to allow links to be made to any 
information anywhere.

Tim Berners-Lee

This summary marked the web’s introduction as a publicly available Internet ser-
vice, rather than just a private project at CERN.

The Consumer Internet

The web was first made publically popular by the Mosaic browser, which was 
launched by a team at the National Center for Supercomputing Applications 
(NCSA) at the University of Illinois at Urbana-Champaign (in a building where 



How We Got Here 7

I once spent eleven hours as an undergrad trying to get an MS Paint drawing of a 
mouse to solve a maze programmatically).

The browser was graphical (as opposed to strictly textual as in some previous 
browsers), and became popular due to its rapid feature growth and support of 
multimedia.

After graduating from the University of Illinois, the team’s lead, Mark Andreessen, 
formed Mosaic Communications Corporation to develop the browser in a commer-
cial capacity. In April 1994, the company changed its name to Netscape, and the 
browser was renamed Netscape Navigator.

That same year, PC sales reached a respectable 59 million (M) units shipped.

The Rise (and Fall) of PCs

By 1996, that number had jumped to nearly 70M units sold per year—a trend that 
only escalated, reaching close to 150M PCs sold in 2000. And during this period, 
the web continued to expand and occupy a greater part of the digital landscape.

An entire industry grew out of the seemingly limitless potential of the web. The 
“dot-com bubble” refers to this period, from roughly 1997 through 2000, during 
which startup companies with entirely Internet-based businesses were formed and 
received venture capital, intending to change the world by ushering in a new renais-
sance—one in which we would all have golden toilets and hovercraft and a soda 
fountain in our kitchen…

Oh.

So it wasn’t limitless, but the companies that could survive did; and despite a 
one-year slowdown, PC sales continued to grow. Along with them, new browsers 
entered the market and gained popularity. Microsoft launched Internet Explorer, 
Mac had Safari, along with open-source projects such as Firefox and Opera. More 
recently Google Chrome has taken the lion’s share of the market. Figure 1-2 shows 
the amount of PCs sold annually from 1995 through 2007.



8 The Mobile Web

FIGURE 1-2

PC sales from 1995–2007

The Rise of Mobile Devices
During this time, it turns out we weren’t all in such awe of PCs and the Internet 
that we decided to stop making other technological advances. Cell phones were 
evolving from simple green-screened boxes, to sophisticated full-color screens used 
to play Snake, to machines that began to reach the web.

In the meantime, the web itself continued to grow and evolve. The basic timeline of 
web markup advances can be simplified to the graph shown in Figure 1-3.

You may have noticed that Figure 1-2 ends at 2007. Of course, the Internet didn’t 
end that year. The diagram stops there because something transformational emerged 
that year: the iPhone (see Figure 1-4).

From this point forward, mobile phones began to look and act much smarter, hence 
their new name “smartphone.” With these little pieces of glass, we could now inter-
act with not just a subset of the web, or some web-like features, but the entire web.



How We Got Here 9

FIGURE 1-3

Overview of mobile-related web markup languages

FIGURE 1-4

The iPhone: a game-changer

As shown in Figure 1-5, which illustrates the phenomenal trajectory of sales of these 
devices, we really wanted to do that.



10 The Mobile Web

FIGURE 1-5

PC sales and mobile device sales from 1995–2013

As you can see, mobile device sales beginning in 2007 had a few good years, and 
then several great years. We’re still in that great category. Mobile device sales have 
skyrocketed and, as of yet, show no sign of slowing.

The Mobile Tipping Point
In 2011, mobile device sales actually surpassed PC sales (see Figure 1-6). A market 
already saturated with smartphones received a further sales acceleration with the 
introduction of a third class of devices: tablets.

According to a Pew Internet survey (www.pewinternet.org/2012/06/26/cell- 
internet-use-2012/), 55% of Americans said they had used a mobile device to 
access the Internet in 2012. More shocking than that, 31% of these mobile users 
said that those devices are the primary way in which they access the web.

Mobile-Heavy Usage

An absolutely ludicrous misconception (that I hear nearly daily) about mobile 
devices is that it is totally fine for them to offer only a subset of the desktop version’s 
content. Misinformed product managers make the argument that users only need 
quick, focused tools on their phones. To determine whether this reasoning has any 
merit, we can look at numbers from some of the top-visited websites in the world. 



How We Got Here 11

FIGURE 1-6

In 2011, yearly mobile device sales outpaced PC sales.

In 2009, less than two years after the mobile tipping point, Facebook’s mobile 
users accounted for roughly 13% of its total traffic (20M of 150M). Even in that 
short time frame, that is not a negligible number. However, by mid-2012, mobile 
users accounted for more than 50% of Facebook’s traffic. As of summer 2015, 
a staggering 78% of monthly U.S. Facebook traffic comes from mobile devices 
(newsroom.fb.com/company-info/#statistics). The other social media giant, 
Twitter, asserts that 80% of its entire user base is primarily using mobile devices 
(https://about.twitter.com/company).

Outside of social networking, move than half of all YouTube views now come from 
mobile devices (www.youtube.com/yt/press/statistics.html). In 2015, year over 
year mobile revenue on YouTube is up 100%.

Pew Research has reported that 50% of teenage (13–17) smartphone owners use the 
Internet mostly or exclusively on that device (www.pewinternet.org/2015/04/09/
teens-social-media-technology-2015/). Similarly, 45% of adults between the 
ages of 18–29 mostly use the Internet on their mobile devices.



12 The Mobile Web

Mobile Commerce

“But wait,” you may be thinking, “those are only multi-billion-dollar social net-
works that changed the way we interact on a daily basis. What about e-commerce?” 
Here’s the thing:

In 2011, $4 billion of eBay’s gross sales came from mobile shoppers. In 2012, this 
number grew to $13B. In a rather ballsy fashion, eBay expected this trend to hold, 
and projected that 2013 sales from mobile would reach $20B (techcrunch 
.com/2013/01/16/ebay-and-paypal-expect-to-do-20-billion-each-in-2013- 

mobile-commerce/, techcrunch.com/2011/10/09/ebay-vp-steve-yankovich-en-
route-to-4b-in-gross-mobile-sales-tctv/). They were pleasantly surprised by an 
extra $2B in mobile sales on top of that.

Moreover, not only were sales from mobile browsing astronomical, 36 million of 
eBay’s incremental accounts and users registered on mobile, accounting for 40% 
of new users (www.mobilecommercedaily.com/ebay-downplays-offline- retail-
play-as-mobile-volume-swells). In 2013, I couldn’t name a single person who 
hadn’t either 

 • had an eBay account for at least five years, or

 • decided they were never going to need one.

A property then owned by eBay, PayPal, experienced a similar surprise. They, too, 
projected mobile sales volume to reach the $20B mark in 2013. Actual sales num-
bers, however, were comfortably at $27B (http://bankinnovation.net/2014/01/
paypal-processed-27-billion-in-mobile-payments-in-2013/ ) instead. Pay-
Pal takes 2.9% of each sale, plus 30 cents. If we estimate the average transaction 
amount of these sales at a conservative $25, that means that PayPal made a surprise 
extra $287M off of those $7B in mobile sales that outpaced their own projections. 

In August 2014, the founder and CEO of Shopify, an e-commerce platform that 
powers more than $5B in annual gross merchandise volume, posted this to the 
company’s blog:

Last week represented the first time in history that more people used mobile 
phones and tablets to visit online stores than using computers. Looking at data 
from over 100,000 ecommerce stores that use the Shopify platform, we saw 



The Mobile Web Today 13

50.3% of traffic coming from mobile (40.3% from mobile phones, 10% from 
tablets) and just 49.7% from computers.

Tobi Lütke (Founder, CEO, Shopify)

Clearly, web creators can no longer afford to ignore mobile device users, because in 
doing so they will be ignoring the majority of their users.

The Mobile Web 
Today
In April 2013’s “Communications of the ACM (Association for Computing 
Machinery),” web technologist Nicholas C. Zakas wrote that mobile phones, at 
present, were more powerful that the Apollo Guidance Computer used in the 1969 
lunar landing of Apollo 11. However, despite their power, the mobile devices of 
2013 still suffered from web performance and connection problems similar to those 
of the early (~1996) stages of the consumer Internet.

Zakas continues, explaining that mobile devices have “high-latency connections, 
slower CPUs, and less memory” than their desktop counterparts. These devices have 
slower download request and response times, and need to account for the latency of 
wireless data transmission.

As a result, we, as developers and designers, must rethink web applications, which 
were previously geared toward these desktop experiences with wired connections, 
fast CPUs, and almost endless memory.

Mobile Web Considerations
In terms of building apps for this evolving state of the web, you should keep several 
considerations in mind. The following sections describe not so much rules or lim-
itations, but rather ergonomic “tent poles” that should guide and support how you 
craft the user’s web experience.



14 The Mobile Web

Small Screen Size

Let’s start with the most obvious: Phone screens are considerably smaller than com-
puter monitors. Although it’s impossible to pick a standard mobile screen size, a 
good rule of thumb is to start supporting content around 320px (20em at 16px) 
wide, and grow upward as the content can support it.

Navigation

Coupled with small screen size for any main content is the lack of real estate avail-
able for all the navigational tools we take for granted when using big screens.

Compared to a desktop screen, every scrollbar, notification, or menu that remains 
fixed on the page takes up a much higher percentage of total available space. As 
such, we must find new navigation patterns to smartly hide content while keeping 
it discoverable when necessary.

Speed

Mobile devices, when not connected to Wi-Fi, run on far inferior networks than 
their desktop older siblings. While these devices have improved and will continue to 
improve, we cannot assume parity between mobile and desktop browsing. As such, 
large images, heavy JavaScript libraries, or piles of content being forced onto the 
user will cause painful slowdowns.

People expect their web browsing to be fast. We have gotten used to the speed 
afforded us on broadband networks. In fact, Nielsen Norman Group research 
(www.nngroup.com/articles/response-times-3-important-limits/) has  
shown that:

1.0 second is about the limit for the user's flow of thought to stay uninter-
rupted, even though the user will notice the delay. Normally, no special feed-
back is necessary during delays of more than 0.1 but less than 1.0 second, but 
the user does lose the feeling of operating directly on the data.

Google suggests that people expect websites to load in under two seconds 
(googlewebmastercentral.blogspot.com/2013/08/making-smartphone-sites-
load-fast.html), and that site abandonment rates skyrocket as load times climb 



The Mobile Web Today 15

past this number. Speed is actually ranked as the number one reason for abandon-
ment on e-commerce websites.

As an example: I live in Chicago, which is not a tiny city. Twice a day, during my 
commute, I have no Internet connection while I am underground. Despite this rel-
atively short inconvenience, I regularly notice myself becoming very annoyed that I 
can’t refresh my tweets.

Bandwidth Limitations

When data providers have faster networks, it’s safe to say that they will charge for 
them. Access and bandwidth charges (or overages) can be crippling, and, as with 
speed, every kB you add to your web experience has a tangible cost to the user.

JavaScript and CSS Support

Mobile browsers have gotten much more advanced in the past few years, and a large 
portion now run a version of Webkit—an open-source browser rendering engine. 
However, as with any web development, testing on a real device is the best way to 
determine support.

Mobile User Context

Finally, the physical environment of a mobile user is far less standardized than that 
of a desktop user. In the case of the latter, they are at a desk, or perhaps at a coffee 
shop, pretending to work on their manuscript.

Conversely, the mobile device user could be anywhere—at that same desk as the 
desktop user, trying to give directions to a cab driver, checking a map while moun-
tain climbing, or looking up stock quotes while lying in bed.

To wit: When was the last time you went to the bathroom without your phone?

Benefits of the Mobile Web
As you have seen in the preceding sections, there are a number of unique challenges 
in designing for the web. As more classes of device, more screen sizes, and more 



16 The Mobile Web

capabilities show up and disappear in devices, it’s up to you to decide just how 
much time and money your team is willing to put into optimization.

Take a breath, though. There is a whole slew of benefits unique to the mobile web. 
Just as the rise in devices has complicated our lives as designers and developers, it 
has also unlocked the Internet itself to a massive amount of consumers, and grown 
the medium into something far greater than the hypertext pages of 1990. 

Interaction Support

Let’s start with the obvious again: There are many more intuitive, built-in ways to 
interact with a smartphone than with a computer. Every way that you can touch, 
pinch, swipe, and tap a screen can be mapped to a different interaction, or behavior.

More important, these devices have been enabling more and more of their hardware 
to access browsers in recent years, including the camera, the microphone, acceler-
ometers, and notification systems.

Lower Barrier to Entry

Internet-enabled mobile devices are also leaps and bounds cheaper than the total 
running cost of owning a desktop computer, broadband service, and a place to put 
said computer with said service.

To that point: In early 2012 I was doing research for a medical software company 
in rural India. In my two weeks there, I never saw a computer outside of the hotel 
or one of the hospitals that I visited. However, even in a farming village two hours 
outside of Chennai, I would have been hard-pressed to find anyone without some 
level of smartphone, and other members of the trip remarked that 2G service was 
everywhere.

Mobile User Context Information

Let’s now reconsider the mobile user’s context. We don’t know for certain where 
they are located. However, that’s not relevant to us.



Mobile Web Design 17

We do know that they are using a device with a smaller screen (where real estate 
is scarce), somewhere between an edge cellular network and Wi-Fi, potentially 
dealing with bandwidth premiums. Building their experience, we can start to take 
all of these limitations as inputs to the user’s end goal. We know that they are on a 
specific website to do a specific task, and we have at our disposal a large variety of 
interaction and navigational tools with which to help them do that thing as quickly 
and efficiently as possible.

Who cares if they’re in the bathroom?

Building for the Most Users
Mobile device users now represent the majority of all users. Those of us who work 
with data visualization sometimes assume that a large portion of our content can 
still be tailored to larger, more capable screens, but we do so at our own peril.

The visualizations we create and the web applications in which they live are now 
consumed on devices from 320px of width to massive 5120px-wide retina screens. 
Therefore, we have to ensure that our content is consumable on as many devices as 
possible.

Because it isn’t possible to service all of them, it’s important to identify the ones that 
matter most to your own subject. I encourage you to do some tracking of your own 
website’s most frequent user agent and screen resolution ranges. Focus on optimiz-
ing for 80% of your user base, or even 50%. It may be smaller than you assume.

Mobile Web Design
For years, web teams have designed and built for the desktop. Mobile, if considered, 
was an afterthought, or a port of the desktop version. The truth is, this made perfect 
sense for a long time—users weren’t yet there, browsing the web on mobile phones 
was painful, and carriers controlled access to the web on their devices. What’s more, 



18 The Mobile Web

network speeds were so abysmal at first that it was nearly impossible to load any-
thing more complicated than text.

Over the past few years, however, the web landscape has shifted so dramatically 
that an awareness of mobile as equal to, or even greater than, desktop means greater 
opportunities for growth, and a better user experience.

The Way To Build Today
The web has always been a mix of simultaneous (and often competing) priorities: 
performance, design, marketing, advertising, and SEO. With the mobile web 
overtaking desktop browsing, a new contender has appeared: device diversity. 
Table 1-1 displays the fragmentation of mobile device platforms (www.gartner.com/
newsroom/id/2335616).

TABLE 1-1

The popularity of mobile device platforms by the end of 2012

Platform Market Share End 
of 2012

Shipments in  
Q3 2012

Installed Base End 
of 2012

Android 53% 129 million 710 million

iOS 19% 27 million 260 million

Symbian 14% 4 million 190 million

BlackBerry 8% 8 million 104 million

Bada > 2% 5 million 30 million

Windows Phone < 2% 4 million 20 million

While there is a clear front-runner here, no single group can be reasonably ignored. 
Keep in mind, though, that these are global figures. Regional market share can dif-
fer immensely. China, for example, is the largest smartphone market in the world, 
and Android holds a market share of over 90% there. 

The pie-in-the sky goal is obvious: How do we create an experience that works for 
everyone everywhere? The reality: How do we create an experience that works for 
the most people possible?



Mobile Web Design 19

The Separate Mobile Web

Another frequently used solution for mobile is to create an entirely new mobile 
web experience. Instead of scaling down the desktop website, teams create what is 
known as an m.website.

For some time, this was the standard. It required extra work, but allowed for a 
uniquely mobile version of a website to become reachable by users. This methodol-
ogy became so popular, in fact, that the Internet Corporation for Assigned Names 
and Numbers (ICANN) created the .mobi top-level domain in July of 2005. It 
was sponsored by some huge names in the web, including Google, Microsoft, and 
Samsung. 

One person rather important to the web expressed the opposite opinion:

It is fundamentally useful to be able to quote the URI for some information 
and then look up that URI in an entirely different context. For example, I may 
want to look up a restaurant on my laptop, bookmark it, and then, when I 
only have my phone, check the bookmark to have a look at the evening menu. 
Or, my travel agent may send me a pointer to my itinerary for a business trip. 
I may view the itinerary from my office on a large screen and want to see the 
map, or I may view it at the airport from my phone when all I want is the gate 
number.

Dividing the web into information destined for different devices, or different 
classes of user, or different classes of information, breaks the web in a funda-
mental way.

I urge ICANN not to create the “.mobi” top-level domain.

Tim Berners-Lee

Download the App

Another way to handle the mobile web is to encourage (read: force) an app down-
load when users reach your website on a mobile device.

Apps are a terrific way to utilize all of the rich functionality offered by feature-rich 
smartphones, and they enable you to leverage all of the hardware available.



20 The Mobile Web

However, every mobile operating system requires a separate development team, and 
100% overlap in development work for every new feature.

Responsive  
Web Design

Responsive web design (RWD) is an 
approach to web creation that aims to 
optimize the user experience on any 
device without resizing, cropping, pan-
ning, or being shunted to an app. A 
responsive website adapts the layout to 
the device on which it is viewed using 
CSS media queries, fluid grids, and 
flexible multimedia.

Spoiler: The entire next chapter is 
about this approach.

A Taste of 
Progressive Enhancement
Figure 1-7 shows Tim Berners-Lee’s first website once again, but this time on a 
screen from 2014. As you can see, it looks totally fine—perhaps a bit small, but no 
content is missing, no styles are broken, and everything is there.

In this case, all we really have is content. CSS didn’t exist. JavaScript didn’t exist. 
It’s due to this lack of current technology that the website still works on a device so 
different from what it was designed for. However, we can glean an important lesson 
from this: The basic need of a user is to read and write to a website. Anything more 
than this is nice, but not necessary.

This concept is called progressive enhancement. It is based on this core idea that the 
fundamental purpose of a website is to convey its content; everything else builds 
upon that, enhancing this purpose of meeting a user’s “needs.”

 EYES CLOSED, EARS PLUGGED

The simplest way to handle any 
problem is to not handle it. A 
desktop website with desktop 
conventions and desktop sizing 
will show up on mobile.

If you believe that your web 
application will never (or at 
least rarely) end up being used 
on mobile, this is the path you 
should take.

Also: thank you for accidentally 
buying this book.



Mobile Web Design 21

FIGURE 1-7

The first website (1990), displayed on an iPhone (2014)

The absolute minimum experience is always text. There is no technical or design 
thought given to this level of a website. In addition, HTML is fault-tolerant in var-
ious browsers; and as such, the textual content of a website will always be available 
in this basic form.

The next level of the user experience comes from the page markup itself. HTML 
semantics provide additional meaning, or meta information, to provide context to 
the textual content. For example, even though paragraphs and quotes may be dis-
played in the exact same way, a <p> tag represents a paragraph of text to a browser, 
while a <quote> tag represents a quote.

The third level can simply be called design. This is where CSS styling, images, 
and multimedia come into play. As with HTML, browsers are fault-tolerant with 
respect to CSS, so they can simply ignore rules that are either malformed or that 
the browser does not support. This is where you can differentiate the style of 
headings from paragraphs from quotes from links, and so on, thereby turning an 
 informational experience into a beautiful one.



22 The Mobile Web

At the next level we layer on interaction. This is where JavaScript comes into play, 
and we enhance the aforementioned behavior to clarify, speed up, or delight the 
end user. Distilled, the principles of progressive enhancement look like this (see 
Figure 1-8):

 • Basic content must be accessible to any browser.

 • Semantic markup contains all web content.

 • Layout and design are provided by externally linked CSS.

 • Behavior enhancement is provided by unobtrusive JavaScript.

FIGURE 1-8

Each layer is built upon the preceding one, with the core idea as the foundation.



Summary 23

Summary
The Internet itself is shockingly old—a military invention from the middle of the 
last century, but the web that we know today is just pushing 25. That web has come 
a long way since Tim Berners-Lee’s research in the 1980s and first website in 1990. 
On the back of this technological shift, entire industries have been born, and with 
it, the medium of the web has grown tools that let us create complicated, beautiful, 
and all-inclusive experiences.

All of this history has led to a point at which thousands of different devices can 
get on the web. For many of these, we can create something unique and beautiful 
using HTML, CSS, and JavaScript. However, the layers of a web project need to be 
thought of in exactly that order: 

HTML as markup

CSS for design

JavaScript for rich interaction

Interaction is great, but not necessary. Design done right can enhance a point, but 
is still just fluff. At the core everything still works without any JavaScript, and with-
out any CSS. These are the principles upon which solid mobile web projects are 
built, and data visualizations as well. For all the exciting toys you have at your dis-
posal now to make rich, beautiful experiences, they are worthless if your users can’t 
reach the core content you are trying to convey.



02



02Responsive Web Design 
Tenets

Before breaking out all of our tools, it’s important to 
set some guiding principles about how to build responsively 
responsibly. In this chapter, you will examine the foundations 
of responsive web design, including the guiding principles of 
your design process—being universal, flexible, economical, 
and specific. Also covered are seven focal points to build upon 
as our material becomes more technical.

FYI: This is the content you should casually drop into conver-
sation with someone who can give you a raise.



26 Responsive Web Design Tenets

The Gist
In May of 2010, Ethan Marcotte, a web designer and developer, coined the phrase 
“Responsive web design.” He did so in the still-accurate and still-important article 
here: alistapart.com/article/responsive-web-design. Think about that timing 
for a moment. In the previous chapter, you learned that the iPhone launch drasti-
cally shifted the personal computing market in 2007, three years before. And the 
mobile tipping point, that is, the point at which mobile devices began to outsell tra-
ditional computers, happened in 2011, one year later. 

What device were you using at this point, and how regularly did you access the web 
on it? Largely, the mobile web was still a second-class citizen at this point, but that 
was a paradigm that was rapidly shifting. The timing of Marcotte’s article shows 
that the importance of a multidevice Internet had already begun to take hold, and 
users were no longer willing to settle for subpar web experiences on their mobile 
devices.

The concept, or goal, of responsive web design is simple: to design a website in 
such a way that it provides the optimal experience regardless of a user’s device. A 
website designed responsively adapts to the device’s viewport so that it appears to be 
designed for that device. This is achieved with a reliance on proportion-based grid 
systems, CSS @media queries, and flexible media sizes.

Responsive web design is the practice of building a website that is suitable on every 
device, and every viewport, no matter the size. It is focused on creating intuitive, 
natural experiences for everyone so that both mobile and desktop (and any other) 
users feel like a website was tailored for their device.

There are, in essence, two ways to approach building using responsive web design:

 • Build for the limited user.

 • Build for every user.

Building for the limited user means focusing mainly on building your core experi-
ence and enhancing. Building for every user means leveling the playing field for any 
class of device, and trying to optimize for as many viewports as possible. These two 



The Gist 27

mindsets are not at all mutually exclusive. In fact, the first is encapsulated within 
the second.

That being said, when working on a project, you should consider your audience and 
your budget. As romantic as it sounds to create a perfect experience for every user, 
you will find yourself at one of two points:

 • Optimizing for just one person.

 • Broke.

The important thing is to know the intended users of your product, and optimize, 
as much as possible, for their use cases.

Building for the Limited User
The first way to approach responsive web design is to build for the more limited 
user—that is, the user without a large screen, an ergonomic keyboard, strong WiFi, 
and a desk in a quiet room to contain all these things.

You’re now building for people such as those on their morning commute, using a 
phone that’s run out of 4G bandwidth of the month, and whose train is about to 
enter a tunnel.

While it isn’t necessarily accurate that limited users must be on a phone, it’s a typical 
example that serves to illustrate how building for a small device with a potentially 
poor Internet connection is a good place to start. Think of this method as building 
mobile-first.

Until recently, web designers have approached a project by building out a richly fea-
tured desktop site, while leaving the mobile users as a secondary (or skipped) goal. 
Even as responsive web design has grown in use, often the plan is to begin with a 
“full” site, and work down by hiding features.

Flip that.

In the previous chapter, you have already seen that the future of the web is mobile, 
so your design needs to start where your users are. This means beginning with a 
focus on lightweight, performance-conscious websites built for the mobile user.



28 Responsive Web Design Tenets

Building for Every User
It’s important to keep in mind, however, that your users are not just on their 
phones. Once you are accustomed to thinking about your design from the stand-
point of someone looking at a small screen in a tunnel, you then have to remem-
ber that people will be consuming your content in more locations than desks and 
tunnels, and on more devices than smartphones. The fact is, we have absolutely no 
control over where our websites will be consumed. 

That’s the point of the Internet: It’s universal.

This doesn’t mean the scattershot throwing of features that work best on a mobile 
device alongside those that require five screens in a control room at NORAD. What 
it means is following the same performance-conscious design that you would when 
building for the mobile user, then taking the time to enhance your website for dif-
ferent classes of device.

Some of the things you may want to consider include the following:

@font-face

background-size

border-image

border-radius

box-shadow

Flexible Box Model

hsla()

Multiple 
backgrounds

opacity

rgba()

text-shadow

CSS Animations

CSS Columns

Generated Content

CSS Gradients

CSS Reflections

CSS 2D 
Transforms

CSS 3D 
Transforms

CSS Transitions

Feature

applicationCache

Canvas

Canvas Text

Drag and Drop

hashchange Event

History 
Management

HTML5 Audio

HTML5 Video

IndexedDB

Input Attributes

Input Types

localStorage

Cross-window 
Messaging

sessionStorage

Web Sockets

Web SQL 
Database

Web Workers

Feature

Geolocation API

Inline SVG

SMIL

SVG

SVG Clip paths

Touch Events

WebGL



Adaptive vs. Responsive 29

That list contains everything that can be tested for by Modernizr, a tool for feature 
detection. If it seems daunting, that’s because it is. This is typically far too much to 
consider in any one design (and any one reasonable budget). The important thing 
to remember is that none of these opportunities for enhancement are contingent 
upon another; and if you begin in the most accessible state, by building for the lim-
ited user, you have already jumped the first hurdle of enabling users to reach your 
content.

Adaptive vs. 
Responsive
The term responsive is still in its youth. Adaptive web design (at least as a phrase) 
can be seen as its older brother. Responsive and adaptive web design are very closely 
related, and are often used interchangeably.

The design techniques we use are encapsulated within responsive web design, which 
is a subset of adaptive web design, in order to create designs that dynamically adapt 
to different viewports and device features. Adaptive design can encompass numer-
ous definitions, and it’s important to nail these down so that we can differentiate 
our more limited definition of responsive design.

The Broad Adaptive
“Adaptive Web design,” as I use it, is about creating interfaces that adapt to the 
user’s capabilities (in terms of both form and function).

Aaron Gustafson, Adaptive Web Design

The term adaptive web design is used in many ways that stretch and broaden its 
definition. Most accurately, it can be thought of as a big bucket into which we place 
all of our ways to adapt a website to the user.



30 Responsive Web Design Tenets

Progressive Enhancement

In Chapter one, you were introduced to the concept of progressive enhancement. 
With its close ties to mobile-first web design, it’s easy to see why adaptive web 
design has been used interchangeably with that term. The basic structure of pro-
gressive enhancement is a website with content as its core, with everything else built 
upon that, progressively rising to meet a user’s needs.

At the base level, this is absolutely accurate. You are using a whole slew of client-side 
and server-side tools to build the best experience across any different environment. 
This means that interfaces adapt to the capabilities of the device and its browser.

Responsive Web Design

Unfortunately, the terms adaptive web design and responsive web design are typi-
cally used interchangeably. This is wrong and bad, and anyone I catch doing it will 
be removed from my Christmas card list.

As Ethan Marcotte defined it in his seminal 2010 article (http://alistapart.com/
article/responsive-web-design), responsive web design consists of three things: 
grids, @media queries, and flexible media. That’s it.

Creating responsive layouts that work on any device is a crucial part of adaptive 
design, but it is just one part of a bigger mindset. If adaptive web design is the 
county fair, responsive web design is the pie eating contest—loud and important, 
and you’ll get your picture with the governor if you do it well enough, but it’s not 
the only part.

RESS

RESS stands for responsive design with server-side components. The bulk of what 
we’re doing responsively will be handled on the client. However, as much as possi-
ble, moving solutions to the server can not only make our pages more lightweight, 
it makes them more automatable. RESS techniques involve offloading some of the 
responsive work to the backend.



Adaptive vs. Responsive 31

The RESS experience is created through normal responsive strategies, relying on 
progressive enhancement. The difference is that while under the same URL, the 
interface is changed in certain ways based on device classes.

At a high level, RESS works by recognizing the device’s user agent string (what kind 
of device it is) and sending that information back to the server when first making 
contact with the website. The server has a large library of different user agents. Con-
nected to the data of these user agents are lists of properties that are then referenced 
to determine what type of payload should be given to the client.

We move this logic to the server in order to avoid sending unnecessary (or unused) 
content to a device. Using a tool like Google’s PageSpeed installed on the server, 
you can set variables from the device’s properties, and reuse them to send only the 
content you need.

As a basic example below, the PHP code pulls in a device library to find the width 
of a user’s device.

<?php 

  include 'DeviceAtlasCloud/Client.php'; // our client library

  $results = DeviceAtlasCloudClient::getDeviceData(); 

                                         // fetch properties 

  $properties = $results['properties']; // store result 

  $width = (isset($properties['displayWidth'])) ? 

$properties['displayWidth'] :""; // set width

?>

Using Google’s PageSpeed, you can dynamically replace the image’s source with a 
resized version, as referenced in the code below.

<img src="img.png" width="<?php echo $width; ?>"/>

You’ll notice in Figures 2-1 and 2-2 that the image is exactly the same, but Fig-
ure 2-1 is much larger in both actual size and file size. If you were actually trying 
to show a giant image next to a small one, this would be what you want. How-
ever, when working on a responsive design, your media will most often be some 
fluid size that takes up a percentage of the device’s screen. As such, the two images 
would be displayed at the same size while being downloaded at the two very different 
resolutions.



32 Responsive Web Design Tenets

FIGURE 2-1

Without RESS to handle image size, this image is massive. 

FIGURE 2-2

With RESS, you can cut the image’s payload by sending a smaller size from the server. 



Adaptive vs. Responsive 33

This same technique can be used to send different CSS, JavaScript, or even direct 
users to entirely different versions of the page.

RESS is a powerful technique to eliminate bloat, but there is really no reason for it 
to be confused with adaptive web design. It’s simply another tool in your arsenal.

Limiting Your Adaptive 
Design Definition
Just as “adaptive web design” can be misused in the broadest sense, it can also be 
misused as very specific concepts. Again, all of these concepts are part of a greater 
web optimization scheme which we call adaptive web design.

Think of the limited adaptive design definition as a clunky way of trying to opti-
mize for specific devices. Your goal should be to make something work for not just 
the screens you recognize and regularly use, but for those that you have never seen, 
and even those that haven’t yet been invented. Therefore, I’m presenting the follow-
ing two ideas: device detection and adaptive layouts, only because they will come 
up in Chapters 3, 4, and 5. This is not an endorsement of either technique.

Device Detection

Device detection, typically transmitted through the device’s user agent string, is 
exactly what it sounds like: the process of determining an individual type of device 
and what features it has. While it sounds tempting to start designing by building for 
an individual device, you then have to build separately for every other device as well.

This concept is usefully abstracted with tools like Modernizr, or methods of RESS, 
by grouping devices into classes that fit into either a yes or a no category for indi-
vidual features.

Adaptive Layouts

Adaptive layouts are simply responsive layouts without any fluidity. They adapt 
to different viewports with @media queries (or other tactics), but only to defined 
viewports. There is no leeway or room for growth in between.



34 Responsive Web Design Tenets

For example, let’s say you have a website with breakpoints at 480px, 768px, and 
960px, the code is below, and the output is shown in Figure 2-3. 

.content {

  width: 240px;

}

@media screen and (min-width: 480px) {

  .content {

    width: 320px;

  }

}

@media screen and (min-width: 768px) {

  .content {

    width: 480px;

  }

}

@media screen and (min-width: 960px) {

  .content {

    width: 768px;

  }

}

FIGURE 2-3

An adaptive layout at three screen widths between 320px and 1200px 



Adaptive vs. Responsive 35

On the other hand, if you were creating a responsive layout, the code would look 
like this, and the output would be Figure 2-4.

.content {

  width: 75%;

}

@media screen and (min-width: 480px) {

  .content {

    width: 66.7%;

  }

}

@media screen and (min-width: 768px) {

  .content {

      width: 62.5%;

  }

}

@media screen and (min-width: 960px) {

  .content {

    width: 80%;

  }

}

FIGURE 2-4

A fluid responsive layout at three screen widths between 320px and 1200px 



36 Responsive Web Design Tenets

The difference is that the adaptive layout is only trying to adapt its fixed-width 
content at certain specific sizes. The fluid, responsive layout is instead attempting to 
solve both for those screen sizes that are being called out in the @media queries, but 
also for the spaces in between. If these @media queries and breakpoints don’t make 
sense yet, they will by the end of this chapter.

Desktop-First vs. 
Mobile-First
When you’re reacting to different viewports and device features, you still need to 
start somewhere. Otherwise, you’re not responding, you’re omniscient. Figure 2-5 
shows the conceptual difference in designing desktop-first as opposed to mobile first.

Many of us began our careers in a desktop-only environment. So the natural way to 
move into responsive design might feel like working desktop-first. To the end user, 
this may look the same, but more often than not, it adds a significant amount of 
bloat to your pages—especially noticeable to the mobile user.

tl;dr: This is the wrong way.

The code below shows a desktop-first responsive breakpoint.

body { 

  background: url("background.png");

}

/* Media for smaller viewport */

@media screen and (max-width: 768px) {

  body { 

    background: #fff; 

  } 

}



Desktop-First vs. Mobile-First 37

FIGURE 2-5

On the left is the process flow for designing desktop-first. On the right, you end up with a  
similar product to the end user, but the flow begins mobile-first. 

Here, the default style loads an image as a background, which has a high bandwidth 
cost; but for users on screens smaller than 768px, that image is hidden, overridden 
with a color. Although the background color might look nicer for mobile users, they 
have still incurred a totally unnecessary bandwidth cost by downloading the image.

Essentially, what you’re doing is building a desktop website, and removing 
or reflowing content as the viewport shrinks. This goes against the progressive 



38 Responsive Web Design Tenets

enhancement concept: you are hiding things when you don’t have functionality, 
rather than adding them when you do.

Mobile-first design, on the other hand, operates on the principle that a user on 
a mobile device with a smaller viewport and poorer bandwidth should not be 
required to load the styles and assets for a desktop computer only for them to be 
immediately hidden or overwritten with mobile styles.

The code below shows a mobile-first responsive breakpoint.

body { 

  background: #fff; 

}

/* Media for larger viewport */

@media screen and (min-width: 768px) {

  body { 

    background: url("background.png");

  } 

}

In this example, the default case is to set a background color, which is much more 
lightweight than setting a background image. Only when the user’s viewport is 
768px or larger do you add the image background. Users on small screens see the 
same experience as our desktop-first example, but get the added performance bene-
fit of not downloading the image.

More important than not causing bloat now, though, is the fact that the desktop 
share of a user’s attention is shrinking. As shown in Chapter 1, the amount of 
mobile users is quickly overtaking desktop, and building mobile-first means build-
ing for the majority of Internet users who reach your content from mobile devices.

Four Principles
So how do we guide ourselves through this adaptive world, of which responsive 
web design is the center tent pole? There is so much more to creating multi-device 
web experiences than the tools of responsive design. To create something that truly 



Four Principles 39

adapts to not only your users’ screen, but also to how they naturally want to interact 
with your content, we need a set of principles that we can use to keep ourselves in 
check, to ensure we’re not guilty of the following:

 • Doing something just because it’s cool.

 • Optimizing too heavily for one device.

 • Ignoring or alienating an audience group.

The following sections describe the four guiding principles of adaptive web 
development.

Be Universal
The web, less than a decade ago, was almost universally used on a computer. In addi-
tion, it was accessed in a designated space and using a screen that was at least 15˝.

Now, however, the web is available on a multitude of screens. Therefore, you want 
to ensure that your site includes as many users as possible.

If people can get to your content, you should assume that they want to get to it. It’s 
more important to make your website available than it is to make it pixel perfect for 
a limited number of users.

Content Parity

In an important part of the World Wide Web Consortium’s mobile web documen-
tation, the section on “Thematic Consistency of Resource Identified by a URI” 
officially covers this idea:

This is a realization of the One Web principle, whereby content should be 
accessible on a range of devices irrespective of differences in presentation capa-
bilities and access mechanism. Web sites may paginate their content in various 
ways corresponding to differences in device characteristics; therefore the nav-
igation structure of the site, and possibly its technical realization, may vary 
according to the device class that is being served.

W3C Mobile Web Best Practices 1.0



40 Responsive Web Design Tenets

Which can be shortened to this:

Users want to do everything everywhere. Give them what they’re looking for, and 
don’t penalize or pardon them for the way in which they’re reaching your content.

Which can then be shortened to this:

There is one web. Don’t get in its way.

Forget the Mobile Web

At this point, you can probably guess what all of this means. We’ve gotten to know 
each other pretty well at this point, so it’s only fair to tell you the entire truth. The 
key differences between the web and the mobile web are illustrated in Figures 2-6 
and 2-7. 

FIGURE 2-6

The web 

There is no mobile web. 



Four Principles 41

FIGURE 2-7

The mobile web (Spoiler: It’s the same.) 

It’s a myth that mobile users don’t want to do everything that desktop users can. Be 
mindful of this, and don’t rely on heavy features that require overly complex tech-
nology. Everybody accesses the web in different ways. 

Don’t lock people out because of their device.

Support and Optimization

Support and optimization were a challenge in web development before mobile 
browsing came along and complicated things. It’s a pain to test across different 
browsers, and it’s a pain to then fix things that are specific to individual browsers. 
That’s why people end up dropping “support” for certain browsers. Support has 
meant delivering a usable experience, while optimization is spending incremental 
time to specialize for one platform.



42 Responsive Web Design Tenets

Over the past decade, because a handful of browsers have remained at similar levels 
of usage and popularity in the desktop world, this issue was tackled at an organiza-
tional level. 

Then mobile browsing showed up, and the amounts of devices (and operating sys-
tems and their versions, and browsers and their versions) skyrocketed. When the 
change was still new, the work required turned into “making a website for iPhone.” 
These websites also happened to work on Android, because they’re websites, not 
apps, meaning they work in any browser. 

As the web has matured, though, the mobile web experience has continued to 
become more and more like native app experiences. You have probably come up 
against this problem before, adding features to your mobile site that make it work, 
or at least look like it works, like a particularly well-designed iPhone app.

Then you test it on an Android device, and it looks terrible; and then you try to use 
it on Internet Explorer 8, and your computer catches on fire.

Before web standards existed, sites would often work “best” (read: only) on either 
Internet Explorer or Netscape. Users with the “wrong” browser were asked to switch 
to the browser for which the site had been built.

This is a perfect analogue to the situation today, except there are far more than two 
options; and it’s far more expensive to switch between one and the other.

The “Future Friendly Manifesto” sums this issue up perfectly:

Disruption will only accelerate. The quantity and diversity of connected 
devices—many of which we haven’t imagined yet—will explode, as will the 
quantity and diversity of the people around the world who use them. Our 
existing standards, workflows, and infrastructure won’t hold up.

futurefriend.ly

That’s not to say that you should kill innovation in your design. Just the opposite: 
Innovation breeds standardization.

Stay mindful of different browsers, and let any enhancement you make be exactly 
that: an enhancement. Build your experience to work, and improve it when you can.



Four Principles 43

Be Flexible
As you’re building for a universal set of devices, you need to begin to let go of some 
control around exactly what your layout is going to look like. While it is often 
helpful to build designs that optimize for certain thresholds of screen sizes, you are 
not going to be able to say that your design will 100% match an Illustrator comp at 
every pixel size.

That’s because you need to stop thinking about pixel sizes. Instead, build with flex-
ible sizes, namely: percentages of the screen real estate. You’ll do this by letting the 
content control the size, shape, and flow of the layout, and simply attaching per-
centages that work well with that content. In Chapter 3, you’ll see just how to move 
from pixel values to fluid sizes.

From there, you can begin to respond to changes in screen size, and optimize where 
your features and screens demand it. Notice I said features and screens, not devices.

Forget the Device

Just as there is no “mobile web” there is no “mobile-sized web.” We have an ocean of 
devices to solve for, so let’s stop solving for devices.

Organizations and clients, even talented web designers at the leading edge of the 
field fall into this trap. We create mockups and prototypes and even features that fit 
into theoretical buckets of mobile, tablet, and desktop, and then congratulate our-
selves for solving the Internet.

No, wrong.

Figures 2-8 and 2-9 illustrate the dissonance between how we are wired to think 
about multidevice web design, and how it exists in reality.

While these broad categories can often be a good starting point for your designs, you 
have to consider the entire spectrum of resolutions that are available now (and will 
be tomorrow). 



44 Responsive Web Design Tenets

FIGURE 2-8

How your brain is trained to think about web design 

FIGURE 2-9

Reality 



Four Principles 45

Content in Control

Taking in the massive amount of screens in Figure 2-9, you need to embrace the 
inherent fluidity of the web. You will never know just which screens your content 
will show on, but you can build for them to work on a whole lot of them. Fig-
ure 2-10 shows the first website ever put online. 

FIGURE 2-10

The birthplace of web design

If you access this site on your phone today, it fits perfectly, and it has zero lines of 
custom styling. Of course, it also isn’t particularly pretty, but it’s entirely accessible. 
You’ll want to set breakpoints, change your layout, and use the space you have to 
make something delightful.



46 Responsive Web Design Tenets

Don’t work against the devices your audience might be using. Let your content deter-
mine where you set breakpoints. As much as you can, design with actual content, and 
determine through testing what actually works for whatever you’re putting online.

Create interfaces that are effective whether the user has 320 pixels or 3200. The 
goal is to craft web experiences that make it easy for users to interact with the things 
you’re sharing.

Be Economical
Don’t bloat your pages. As you’ll see once we start exploring our responsive toolset, 
adaptive web designs can get heavy. This runs exactly counter to the fact that people 
on mobile devices expect load times that are just as fast as, and often faster than, 
those available from a desktop. 

More complicated still: Your users aren’t going to be plugged into an Ethernet cable. 
As much as we want to see the web as all-permeating, the reality, as recently as 
2014, is drastically different just outside of major U.S. cities:

Statistics (from the GSMA) show that only 20% of N. America customers have 
LTE enabled handsets. Globally, the LTE penetration rate is ~5%. 3G net-
works are still the norm, not the exception.

Bursting our Bubble: Mobile Performance Outside the First World

Treat Performance as Design

Our websites are a heavy payload to download. Just as important as appearance is 
performance.

There are plenty of tools available to find numbers regarding how your site will 
download, and developer tools to spoof slower networks; but the best way to 
improve your site-speed is to simply assume it’s bad, work on first improving actual 
performance, and then more creatively work in improving perceived performance.

Actual Performance

Don’t bloat your markup, push images after page load as much as possible, and 
defer or async your JavaScript.



Four Principles 47

Look into require.js or another js fetching system, and be sure to minify all your 
files. Prefetch, preconnect, and prerender your CSS.

Look into basic performance-enhancing techniques such as caching and Gzipping. 
Consider the speed of your CDN, or, as a first step, use a CDN. Set cache-control 
and expiry headers in your HTTP. 

If some of the preceding terms are unfamiliar at this point, don’t worry. We will 
cover more of these in detail in Chapter 5, but you eager beavers have already put 
the book down and started searching those terms.

Good, your fingers were sweaty anyway.

Perceived Performance

Just as important as actually having a lightweight, speedy website is having one that 
feels lightweight and speedy. Your website should be like a duck: cool and collected 
above water, but kicking like mad underwater.

Also, be careful using electronics in the water.

Working in the Browser

Instead of spending hours (days?) on beautiful pixel-perfect comps that will imme-
diately be thrown away once they’re actually built, start in the browser. Play around 
in Creative Suite if you absolutely must, but get to code as quickly as you can.

Not only will you be able to see what works across different screen sizes, but you 
can also get a feel for the bloat you’re potentially introducing with each incremental 
change.

Be Specific
Finally, remember that you’re trying to make something that people want to use. 
Once you’ve built something universal and flexible, optimize for the things you 
know can improve the user’s experience. That is to say, once you’ve spent a lot of 
time focusing on making something everyone can use, then focus on who is going 
to use it.



48 Responsive Web Design Tenets

You have the opportunity, whether with your own tools, Google Analytics, or 
another third party, to learn lots of geographical, demographical, and technological 
information about the people using your website. At the base markup level, you are 
sending everyone the same content, and they are all hitting the same URI endpoint. 
But they are doing it in very different ways.

It is up to you to start bucketing your users into those with screen sizes, device fea-
tures, or even geological regions for which you want to focus additional attention.

The Web Is a Continuum

[This] idea of the Web as a platform, I get why from a marketing perspective, 
we’d want to use that phrase, because it puts the Web on equal footing with 
genuine platforms. 

I would say Flash is a platform, and native: iOS and Android and these things. 
They are platforms, in that it’s all one bundle. And the Web isn’t like that. 

What I mean is, if you use the Flash platform, then anyone with the Flash 
plug-in can get your content. It’s on or off. It’s one or zero; it’s binary. Either 
they have the platform or they don’t. Either they get all your content, or none of 
your content. 

And it’s similar with native apps. If you’ve got the right phone, you can get my 
app. All of my app. You don’t get bits of my app, you get all my app. Or you get 
none of it because you don’t have that particular phone that I’m supporting. 
And the Web is not like that. The Web is not binary, one or zero, on or off. It’s 
not a platform where you get one hundred per cent or zero per cent. It’s this 
continuum.

Jeremy Keith, November 2013

The web offers an unprecedented publishing opportunity. Your content can be 
everywhere; and without over-optimizing for specific platforms, you can optimize 
for interaction methods. That is: Don’t work toward something that works on an 
iPhone, build out the functionality for touch-friendly buttons. Don’t force someone 
to use a logged-in Chrome browser in order to get directions on a map; but recog-
nize if this is the case, and layer it on.



Seven Points of Focus 49

Know Your Interface

You can learn vast amounts of information about a machine just by asking. I 
don’t mean “Are you a Nexus 5?” or “Do you have the latest version of Safari?” 
Rather, think of interfaces in terms of giant Venn diagrams of overlapping lack of 
functionality, and begin to ask devices questions that determine their needs, such 
as “Are you not primarily a mouse-driven device?” or “Are you unable to support 
HTML5 video?”

In the middle of this Venn diagram is your base device, a small brick of a screen 
that can’t do much. Build for this device first, then start to expand into the circles 
of needed functionality that you have identified, those that will enhance the experi-
ence most for your users.

The underlying theme of all these principles? Never assume anything about your 
users except this: They are trying to do everything everywhere.

Seven Points 
of Focus
Responsive design, as you’re already seeing, involves a large toolset collected to solve 
the problem of making a design feel right on any given screen. To strengthen our 
footing on this point, we can abstract away the idea of multi-device web design and 
instead look at the broader history of design for a moment.

Starting with the printed page, designing once meant inches, margins, and layout on 
paper. (Crazy, right? You’re actually looking at that right now.) As screens began to 
overtake paper as our primary means of media consumption, designers for a long time 
worked on pixel-perfect mockups that turned into (for the most part) a static website 
that could be printed onto a page and look about the same as its onscreen counterpart.

However, more devices, and more sizes of device, are created by the moment. Lay-
outs can no longer guarantee the size of the paper on which they’re printed. Rather 



50 Responsive Web Design Tenets

than fighting that reality, though, you can embrace it to develop your understand-
ing of the following focuses: measure, flow, nesting, endpoints, breakpoints, typog-
raphy, and images.

Measure
The first point of focus, one that gets you immediately 50 steps into a more device- 
agnostic design, is measure—that is, how you measure the portions of your layout.

In the traditional web design process, you could assume, let’s say, 1024px of width. 
Within this, you could set up a section with 768px width next to one with 256px, 
and that would be the size of the website. Full stop.

But in our new responsive world, the canvas can be a desktop, a mobile screen, or 
anything in between. Pixel density can also vary, so you need units that are flexible.

That’s where relative units come in handy. The most straightforward one to use is the 
percentage. Figure 2-11 shows how a layout can be measured first statically (on the 
left), then flexibly (on the right). At the same 1024px screen, the layouts are identical. 
The difference is that as the screen size changes, the flexible layout changes with it.

FIGURE 2-11

On the left, a static layout as the screen size changes. On the right, a layout with fluid measure 
at changing screen sizes



Seven Points of Focus 51

The HTML and static (left) CSS for Figure 2-11 are shown in the following code.

<body>

  <section class="section-content">

  </section>

  <aside class="section-sidebar">

  </aside>

</body>

 

.section-content,

.section-sidebar {

  float: left;

}

.section-content {

  width: 768px;

}

.section-sidebar {

  width: 256px;

}

Here, instead, the CSS uses fluid percentages, as in the right side of Figure 2-11.

.section-content,

.section-sidebar {

  float: left;

}

.section-content {

  width: 75%;

}

.section-sidebar {

  width: 25%;

}

Therefore, making something 50% wide means it will always take half of the screen 
(or viewport, which is the size of the opened browser window).

Flow
Flow is the way in which content moves within your layout. If you are thinking in 
a pixel-perfect (and static) world, this may be hard to grasp. Say, for example, you 
have the layout shown in Figure 2-12, with the markup below.



52 Responsive Web Design Tenets

FIGURE 2-12

A layout built with absolute sizes, on three different sizes of device 

<body>

  <header class="section-header">

  </header>

  <section class="section-content">

  </section>

  <footer class="footer">

  </footer>

</body>

Absolute positioned and sized elements cannot reflow as the browser viewport 
changes. Following is the CSS.

.section-header {

  height: 200px;

  position: absolute;

  top: 0;

  width: 100%;

}

.section-content {

  height: 600px;

  position: absolute;

  top: 200px;

  width: 100%;

}

.footer {

  height: 100px;



Seven Points of Focus 53

  position: absolute;

  top: 800px;

  width: 100%;

}

As shown in Figure 2-13, as screen size becomes smaller, content starts to take up 
more vertical space and any screen that is smaller than the calculated sizes will over-
lap and break with the current layout. Instead, you can remove some rules in order to 
let the content flow as needed.

FIGURE 2-13

A layout built with fluid sizing, on three different sizes of device

The code change below actually enables you to remove half of the rules we were 
applying. In fact, if you removed this code completely, Figure 2-13 would work 
exactly as expected!

.section-header {

  /* height: 200px; */

  position: relative;

  /* top: 0; */

  width: 100%;

}

.section-content {

  /* height: 600px; */

  position: relative;

(continues)



54 Responsive Web Design Tenets

  /* top: 200px; */

  width: 100%;

}

.footer {

  /* height: 100px; */

  position: relative;

  /* top: 800px; */

  width: 100%;

}

The best part of considering this flow is that it enables you to let your con-
tent determine the shape of your layout. Rather than force a box around what 
your user is trying to access, the information itself drives the website’s overall 
design.

Nesting
The examples presented so far have assumed content that takes up 100% of the 
user’s viewport. Oftentimes, that’s not the case. Margins and padding in your 
designs allow the content to breathe, and make it more parsable for the user. With 
a flat layout (like the one we’re about to construct) this creates a mess of rules that 
are difficult to control.

The design shown in Figure 2-14 illustrates a layout with the markup below that 
takes measure and flow into account, giving it some room to breathe by adding 
margins. 

<body>

  <header class="section-header">

  </header>

  <section class="section-content">

  </section>

  <aside class="section-sidebar">

  </aside>

</body>

(continued)



Seven Points of Focus 55

FIGURE 2-14

A layout with no nesting. On the left, there are no margins; on the right, you use CSS to apply 
margins. 

The styling to center the flat layout, and have the appropriate margins in Fig-
ure 2-14’s right side follows.

.section-content,

.section-sidebar {

  float: left;

}

.section-content {

  margin-left: 2.5%;

  margin-top: 16px;

  width: 75%

}

.section-sidebar {

  margin-top: 16px;

  width: 20%

}

Notice that you are mixing static (pixel) and flexible (percentage) measurements 
here. This is totally fine, and it is useful for those parts of your layout that you want 
to keep static, such as the vertical rhythm between sections. That being said, you’re 
introducing a lot of convoluted rules just to get a nicely centered and margined 
content section. 

Figure 2-15 shows the result of markup to nest the main content in a container.



56 Responsive Web Design Tenets

FIGURE 2-15

A layout with nested containers. The HTML and CSS produce the same look. The nested con-
tainer, although invisible, is highlighted in purple. 

The following code shows the new layout for Figure 2-15. Notice the container ele-
ment wrapping the content and sidebar.

<body>

  <header class="section-header">

  </header>

  <div class="container">

    <section class="section-content">

    </section>

    <aside class="section-sidebar">

    </aside>

  </div>

</body>

Although the revised styling produces the same layout as the flat version, it is sim-
pler and more maintainable code.

.container {

  margin: 16px auto 0;

  width: 95%;

}

.section-content,

.section-sidebar {

  float: left;

}

.section-content {

  width: 75%;

}

.section-sidebar {

  width: 25%;

}



Seven Points of Focus 57

As you can see, the effect is exactly the same, while producing much slimmer and 
more understandable code. Wrapping elements in a container gives you much more 
straightforward CSS.

Endpoints
Consider the original 1024px static design again. One thing that did solve for 
nicely was that, although it didn’t work on screens smaller than 1024px, it main-
tained its design on larger screens.

Oftentimes, you want your content to take up the entire width of a screen (espe-
cially on smaller viewports), but that same effect usually falls apart on larger screens.

As shown in Figure 2-16, the new markup is nested, flows naturally, and uses flexi-
ble measure.

FIGURE 2-16

A nested layout with no endpoints. These sections will scale indefinitely. Notice that the sidebar 
gets tiny on smaller screens and huge on big screens. 



58 Responsive Web Design Tenets

Following is the markup for Figure 2-16:

<body>

  <div class="container">

    <section class="section-content">

    </section>

    <aside class="section-sidebar">

    </aside>

  </div>

</body>

…and the styling for its layout with no endpoints set.

.section-content,

.section-sidebar {

  float: left;

}

.section-content {

  width: 75%;

}

.section-sidebar {

  width: 25%;

}

As you can see, on a larger screen, the content just keeps growing. Figure 2-17 
shows the result of setting some endpoints in the CSS.

The following CSS shows endpoints applied to our markup, as shown in Figure 2-17.

.container {

  margin: 0 auto;

  max-width: 960px;

  min-width: 320px;

}

.section-content,

.section-sidebar {

  float: left;

}

.section-content {

  width: 75%;

}

.section-sidebar {

  width: 25%;

}



Seven Points of Focus 59

FIGURE 2-17

Adding a max-width and min-width to the container. This caps the container’s width at 
960px at the top, and 320px on the bottom, keeping the content and sidebar at a  
maintainable size. 

The max-width rule supersedes the width rule, and the container stops growing 
once 95% of the screen is 960px. Because the layout is nested, the section-content 
and section-sidebar stop growing as well.

By adding only one line to the stylesheet, we have essentially capped the width of 
the container, and now the content simply stays centered once the screen grows 
beyond ~1010px (960/95%).

Breakpoints
Breakpoints are our first flirtation with one of the major tools you’ll be using: the 
@media query. Breakpoints enable the layout to change at points defined in your 
CSS. For example, you may want to place all of your content in stacked 100% 



60 Responsive Web Design Tenets

width containers on a small screen, but put them in side-by-side containers once a 
certain size is available.

Figure 2-18 shows the layout we’ve constructed so far, followed by the markup 
and CSS.

FIGURE 2-18

Our layout without any breakpoints

<body>

  <div class="container">

    <section class="section-content">

    </section>

    <aside class="section-sidebar">

    </aside>

  </div>

</body>

 

.container {

  margin: 0 auto;

  max-width: 960px;

  min-width: 320px;



Seven Points of Focus 61

}

.section-content,

.section-sidebar {

  float: left;

}

.section-content {

  width: 75%;

}

.section-sidebar {

  width: 25%;

}

On a small screen, the layout isn’t stellar right now. That sidebar becomes awfully 
small. 

Now set your breakpoint at a min-width of 768px. This means that any rules within 
your media query will only be applied on a viewport of at least 768px wide, as 
shown in Figure 2-19.

FIGURE 2-19

The layout without a breakpoint at 768px, which is set as the width of your medium-sized 
device



62 Responsive Web Design Tenets

The code to do just this follows. Notice the @media query on line four. All the rules 
contained within your @media query only apply when the viewport is 768px or 
wider.

.container {

  min-width: 320px;

}

@media screen and (min-width: 768px) {

  .container {

    margin: 0 auto;

    max-width: 960px;

    width: 95%;

  }

  .section-content,

  .section-sidebar {

    float: left;

  }

  .section-content {

    width: 75%;

  }

  .section-sidebar {

    width: 25%;

  }

}

Now the layout is a stack of full-width containers that change once the user’s screen 
is wide enough.

Min-Width Versus Max-Width Breakpoints

There are far more options than simply min- and max-width when working with 
breakpoints in CSS; but these are used most frequently simply due to the fact that 
horizontal real estate is a powerful variable when designing layouts. 

 • Working with max-width means you’re applying more rules as the screen gets 
smaller.

 • Working with min-width means you’re applying more rules as the screen gets 
bigger.



Seven Points of Focus 63

There is no right answer regarding which one you should use. That being said, if 
you are working mobile-first, it’s logical to begin with your base rules at a small 
screen size, and only start adding rules as more real estate is available.

Put another way: Consider a bigger screen a feature of a device, and progressively 
enhance your layout as the feature becomes available to you.

Typography
It’s easy to forget that the web evolved from print. Long before images and video 
were so pervasive online, the web was used to share the written word.

There are a slew of books and articles about creating functional and enjoyable web 
typography—aspects such as typographical measure, line breaks, and font choice 
constitute a book’s worth of content on their own. When we talk about typography 
as a focus of responsive web design, we are talking about the capability to recalibrate 
your website’s content based upon the user’s viewport.

Readability Breakpoints

You’re making print content, but you have no idea what size paper will be used, or 
the DPI of the printer. Let’s put some type content into our markup (shown below) 
for the first time.

<body>

  <header class="section-header">

    <h1>My blog post's title</h1>

  </header>

  <div class="section-content">

    <p>Lorem ipsum…</p>

    <p>Lorem ipsum…</p>

    <p>Lorem ipsum…</p>

  </div>

</body>

To solve for the virtually endless number of screens on which this content will be 
viewed, you have two options.



64 Responsive Web Design Tenets

One, you could average out the experience, and create something just okay for 
every user. The CSS below applies an average font size and line height to our layout’s 
typography. Arguably, this is sufficient for all devices but great for none.

.section-header h1 {

  font-size: 48px;

}

.section-content {

  font-size: 14px;

  line-height: 16px;

}

Two, you can ask your user’s device what it can do, and respond appropriately.

Earlier, we used the @media query to change the size and layout of our containers, 
but there’s no reason to limit yourself to that. You can just as easily overwrite the 
rules that apply to your fonts as well. Say instead you use the following CSS. The 
same @media query can be used to specialize the content’s font size and line height, 
not just its container. This enables you to target your content design to a greater 
level of specificity.

.section-header h1 {

  font-size: 36px;

}

.section-content {

  font-size: 12px;

  line-height: 16px;

}

@media screen and (min-width: 768px) {

  .section-header h1 {

    font-size: 72px;

  }

  .section-content {

    font-size: 18px;

    line-height: 20px;

  }

}

In this scenario, as a larger screen becomes available, the fonts also become larger to 
ease readability.



Seven Points of Focus 65

System Fonts and Web Fonts

System fonts, as the name implies, are fonts that are pre-installed on a user’s com-
puter. Oftentimes these are referred to as “web-safe” fonts, meaning because they are 
fonts reasonably installed on every computer, they can be used in web designs with 
minimal fear that they won’t be available to the browser; and because they’re already 
installed, the font loads instantly.

Web fonts are unique fonts available online and served to your website. There are 
free web font services, such as Google Fonts, that offer a wide array of open-source 
font options; and fee-based services such as Adobe’s Typekit, that offer commercially 
licensed fonts.

The benefit of these fonts is that you can almost certainly guarantee that the font 
you have chosen will be the one your user sees, as you are supplying it to their 
browser, rather than relying on the font already being installed.

The downside is that fonts have weight. With every web font you decide to use, you 
are adding another file that your user must then download. This can cause a small 
delay, or flash, of the next available font in your font stack before the web font is 
downloaded.

The font stack is the list of fonts that you have specified in your stylesheet as fall-
backs. The CSS specification allows multiple fonts to be listed as fallbacks, as a 
comma-separated list. It first attempts to load the first font listed, and proceeds 
down the list until a font is successfully found and used. For example, suppose you 
have a web font called “MyFont,” which is a fairly standard looking sans-serif for 
body copy. You would prefer all users to see your content rendered in MyFont, but 
you can set any number of fallback fonts to render in its place.

In CSS, your font stack looks like the following. This specifies rendering content in 
MyFont; but if it can’t, it will be rendered in Helvetica Neue. If that fails, Helvetica 
is specified, and so on.

.section-content {

  font-family: "MyFont", "Helvetica Neue", Helvetica, Arial,  

sans-serif;

}



66 Responsive Web Design Tenets

Web fonts, too, have a clear parallel to progressive enhancement. If your base 
experience is “sans-serif,” as it is in this case, you can enhance the user’s experience 
if users have system fonts such as Helvetica or Arial, and then enhance that expe-
rience even further if they have the capability and bandwidth to download your 
web font, MyFont.

As with other features, assume that the ideal font won’t be available, and make sure 
your content “works” with the default experience. Treat beautiful web fonts as nice-
to-have enhancements but don’t, for instance, make a content section’s size contin-
gent upon the letter width of your downloaded font.

Images
Finally, we get to rich media. The conversation about images is not all that different 
from what we’ve established about layouts. Simply: don’t limit users to static sizes. 
Your images need to be flexible, such as working in areas of 56% instead of 560px.

The <img> tag, as it works today, accepts a height and a width. This is because 
images were supported on the web before CSS was even invented. You need to 
forget this fact. From now on, your images are styled by CSS, and you don’t assign 
them pixel widths.

Rasters and Vectors

You may have noticed two problems with this flexibility:

 • Sending a big image to a small screen

 • Sending a small image to a big screen

To solve this, you can first look at using a totally different kind of image than what 
you’re used to.

Rasters are what you likely typically think of when you consider a computer dis-
playing an image. A raster, or bitmap graphic, is a rectangular grid of pixels (or a 
transparency) stored as an image format such as a .jpg, .png, or .gif. Scaling up a 
bitmap image causes it to look pixelated or blurry, as you are essentially stretching 
the matrix to cover more pixels. 



Seven Points of Focus 67

Vectors, represented on the web as scalable vector graphics (.svg), instead use geo-
metric primitives (points, lines, curves, shapes, and polygons) to display images. 
The biggest difference is that these primitives are based on mathematical expres-
sions, and do not map to an individual pixel in a matrix. As such, they can scale 
indefinitely without looking pixelated or blurry, and (typically) without changing 
file size.

Consider a simple yellow circle of radius r=200px on a transparent background as 
an example. To render this as a raster you need a bitmap format that supports trans-
parency (such as .png) the exact size you’ll want your image to be (400px x 400px), 
which has the corresponding matrix of bits drawn to create what looks like a circle 
at that resolution.

To render it as a vector, you need an indication that what you’re drawing is a circle, 
the radius r, the color, and the location of the circle’s center point.

If you then wanted a yellow circle of radius r=250px, you could either be satisfied 
with a blurry image, using the same bitmap as above, or you’d need to create an 
entirely new raster of 500px x 500px. The vector, however, requires changing only 
the indicated radius. The image on the left of Figure 2-20 shows a scaled raster 
image and a vector on the right.

FIGURE 2-20

On the left is an example of raster scaling; on the right, vector scaling. Notice that as large as 
the vector image gets, no crispness is lost.



68 Responsive Web Design Tenets

Responsive Rasters

It would seem that vectors are the obvious choice for responsive designs, due to 
their infinite scalability and smaller file size. However, vectors are not suited for all 
types of images. To actually remain small in terms of payload, you cannot render 
images at the same level of detail that you can using rasters. The mathematics of the 
image become too complex and take up more space than the matrix of pixels. 

More important, however, not all browsers support .svg images. Blurry images are 
one thing, but not having an image at all means missing content, and that goes 
against our stated focus on progressive enhancement.

Instead of relying on vectors to scale for you, you can instead use breakpoints to 
send different image sizes to different sizes of screen. This works best in your CSS 
when you are using background-images, as below.

#myImg {

  background-image: url('image1_sm.png');

}

@media screen and (min-width: 768px) {

  #myImg {

    background-image: url('image1_lg.png');

  }

}

The downside? At 768px and higher, you are forcing the client to download both 
images. This solves the visual problem, but you take a performance hit. A better 
solution is to use the RESS (server-side responsive) techniques outlined earlier in 
this chapter to send images of different sizes to different classes of screen without 
adding the extra bloat.

The one piece of obvious overhead to this technique is that you must make and 
store all those different sizes of images. Remember that support and optimization 
are two different things. At a certain point, you’re making bandwidth-heavy, gigan-
tic images for only one user.



Summary 69

Summary
You now have a theoretical understanding of how responsive web design works. In 
the coming chapters, you will get your hands dirty going through each of the tools 
that make responsive web design so powerful; but even at this point, you should 
feel more comfortable understanding what drives an adaptive web mindset, and the 
reasoning behind it.

Even though we have established that there really is no such thing as a mobile user, 
you can start to build for the basest experience, which a person on a phone rep-
resents nicely.

Be universal.

Be flexible.

Be economical.

Be specific.

The reality in which you’re building is one of essentially infinite combinations of 
user contexts. Screen size is always the most obvious, but you are responsible for 
making the decision to create something that is both usable in the worst context 
and delightful in the best. You can embrace this opportunity to develop your under-
standing of the important areas of focus covered in this chapter: measure, flow, nest-
ing, endpoints, breakpoints, typography, and flexible images.



03



03Working with a Flexible Grid

The grid is the very base level of responsive design. We 
tailor our grid to both the viewport’s dimensions and the 
 typographic needs of the website in order to create a visual 
hierarchy, while relying on a mathematical system to keep our 
design maintainable.

In this chapter, we’ll walk through the basics of designing grid 
systems, exploring a tangible example of creating a fixed-grid 
system in code, recreating that system with flexible units, and 
then dipping our toes into creating reusable flexible grids.



72 Working with a Flexible Grid

The Gist
Grids have informed graphic design in one form or another for a long time, with 
results ranging from the surprising to the hilarious.

In the mid-twentieth century, graphic designers such as Josef Müller-Brockmann, 
influenced heavily by modernist ideas put forth in Jas Tschichold’s Die neue 
 Typographie (Verlag des Bildungsverbandes der Deutschen Buchdrucker, 1928), 
began to challenge previously held conventions regarding page layout. If you’re strug-
gling to envision “previously held conventions regarding page layout,” think of a 
spinning newsreel from a 1930’s film, or a busy ad for cigarettes as a cure for polio.

Modernists like Müller-Brockmann, Emil Ruder, and Max Bill began to establish 
a system for establishing consistency and coherency on a page. In 1961, Müller- 
Brockmann published Grid Systems in Graphic Design (Braun), still considered the 
seminal book on the topic today (and a darn pretty book). He summarizes the 
concept nicely:

The grid system is an aid, not a guarantee. It permits a number of possible uses 
and each designer can look for a solution appropriate to his personal style. But 
one must learn how to use the grid; it is an art that requires practice.

—Josef Müller-Brockmann

Oddly enough, the advent of the personal computer, which relieved the need for 
hand-set typography, spurred a transition away from this style, resulting in exper-
imentation against the grid’s rules. However, as the web has become richer, it has 
become a second home for these typographic and layout tenets.

What Is a Grid System?
Put simply, the grid is a series of vertical and horizontal slices (rows and columns) 
that serve as a foundation on which a designer organizes modular elements. A grid 
can be used to group or organize elements within a design, presenting them in a 
rational and easily comprehended way.



The Gist 73

The poster shown in Figure 3-1 embraces the underlying grid system as part of  
the overall design.

FIGURE 3-1

A poster that includes the grid system as part of its visual design. Visible or not, it would be present.



74 Working with a Flexible Grid

Why the Grid Is Great

Grids are rad. They enable you to speak a design-development language outside of 
pixels, determine the balance and positioning of a layout, and provide a foundation 
for content presentation. In addition, if they are approached in the right way, they 
can massively speed up design and development efforts.

With a well-thought-out grid, the viewer will naturally distinguish between separate 
modules on a website, and easily identify higher-importance elements simply by 
whether or not they break from the grid.

However, looking at them through less rose-colored glasses, grid systems serve two 
distinct purposes in a design: establishing rhythm and defining proportion.

Rhythm

In print and graphic design, and by extension, web design, a grid defines the guide-
lines by which elements can be positioned in a layout. An effective grid establishes a 
comfortable meter and rhythm that enables a reader to access the content more eas-
ily. This rhythm invisibly guides the reader in a way that fosters an understanding of 
where content can be found within a document.

The grid sets the expectations and rules of the design. Its rhythm is the compass that 
guides users to where they need to go.

Proportion

The second key role of a grid is to define the proportion of the elements. There is 
nothing stopping you from randomly slapping unique sizing, margins, and padding 
to every single element on a page, save for common sense and opposable thumbs.

In print, proportions mainly follow the size of the medium itself—for example, the 
shape and orientation of a newspaper are reflected in the size of the images and text 
in its layout.

On the web, this doesn’t match as neatly. There is no actual end to a web page, ver-
tically or horizontally. Grids still can be anchored back to the viewport, however. 
Screens are fluid—you have to support as many of them as possible; and by exten-
sion, grids can be flexible in order to follow this. You can think of it as making a 



Flexible Units 75

layout for any “piece of paper” (i.e., page) the site might need, ever, although that 
sounds rather daunting.

Grid Systems in Web Design

Built upon the foundations of print, the grid on the web enables designers to set 
standards for how content is put together on a page. One key difference is that 
whereas print is obviously limited to a standard page size, grids on the web can be 
flexible, enabling them to adapt to changing viewports.

Designers like Mark Boulton and Khoi Binh began to explore ways in which this 
grid system could again bring order to the chaos of layouts.

Grid systems can facilitate creativity by providing a framework and already 
answer some designers’ questions such as “where should the folios go,” “how 
wide should the measure be?” etc. A well-designed grid system will go some way 
to answer these questions and more.

Mark Boulton www.markboulton.co.uk/journal/
five-simple-steps-to-designing-grid-systems-part-1

Flexible Units
Before we get into more complicated implementation details about grids on the 
web, this section walks through a simple example in order to demonstrate the bene-
fits of working with flexible measurements.

The Meticulous Client
Let’s say you’re building a simple blog for a client. Let’s also say that client is me, 
and I’m writing a blog about something really interesting: Building Responsive 
Data Visualization for the Web.



76 Working with a Flexible Grid

I want a big header on my website’s homepage with a link to that blog post embed-
ded in it. The markup for that, straightforwardly enough, would look like this:

<h1>Building Responsive Data Visualization for the Web.

  <a href="/dataViz ">Read more</a>

</h1>

The result of this markup would be the unstyled content shown in Figure 3-2.

FIGURE 3-2

Unstyled output of the example code

If you’re wondering why the outputted text styles all look the same, it’s because we 
are using a CSS reset stylesheet. The point of this is reduce browser inconsistencies 
and give us a uniform starting place upon which to build the styles we actually want 
without having to assume different defaults per browser.

In this case, we’re using Eric Meyer’s reset.css (http://meyerweb.com/eric/
tools/css/reset/) to default all of our styles to a uniform 16px normal weight 
Times New Roman with no margin or padding.

Technically, this works.

Nonvisual browsers (such as Google) will read the <h1> as important content on the 
page, and the link would take users to /dataViz on the same server. If you didn’t 
care how this looked, you would already have achieved semantic, readable markup. 
That being said, it’s boring and sad.

I’m a persnickety client, however, and I send the mockup shown in Figure 3-3 to 
you. Note that it’s a Photoshop document.



Flexible Units 77

FIGURE 3-3

Client’s ideal mockup of what the heading and link should look like

When you break out Photoshop and dig through what I actually want these things 
to look like, you find the following:

 • The heading should be 24px bold Helvetica Neue, in an off-black color I 
defined as #231f20.

 • The link, within the heading, should be 13px normal weight italic Baskerville, 
in a yellow defined as #f1c40f.

 • Also, though it’s nearly impossible to tell, the background isn’t perfectly white, 
it’s #fefefb.

If you don’t get these pixel-perfect, you’re fired.

Therefore, you start to write the CSS for the <body> and <h1> tag. It is shown here: 

body {

  background: #fefefb;

}

h1 {

  color: #231f20;

  font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;

  font-size: 24px;

  font-weight: bold;

}

The result is shown in Figure 3-4.



78 Working with a Flexible Grid

FIGURE 3-4

Result after adding styles to the <body> and <h1>

You’re not there yet, in fact we’re far from it, but this is a start. The background is 
slightly less white, and the heading is big. Of course, because you’re a good devel-
oper, instead of simply setting the font-family to Helvetica Neue, you created a font 
stack with backups that look similar in case that font isn’t available.

The problem should be obvious, 
though: The link has inherited all the 
styles of the heading. This makes sense, 
because the <a> tag lives within the 
<h1> tag in the markup. Therefore, you 
get to work adding styles for the link:

h1 a {

  color: #f1c40f;

  font-family: Baskerville, "Baskerville Old Face", Garamond, "Times 

New Roman", serif;

  font-size: 13px;

  font-style: italic;

  font-weight: normal;

}

There’s nothing too complicated here. You’re targeting the <a> tag within the <h1> 
tag by targeting the CSS rule h1 a, then simply following the rules outlined in the 
design you were given.

After adding that code, the rendered website looks like what is shown in Figure 3-5.

You could be done here. The website looks as close to the given design as possible, 
and there is absolutely nothing wrong with using pixels to define your font sizes. 
However, in order for this to have any correlation to flexible units, you need to go a 
step further.

 NOTE

For more on CSS font stacks, 
see the “Typography” section in 
Chapter 2.



Flexible Units 79

FIGURE 3-5

Finished output in the browser, using fixed-pixel values

Moving to Relative Units
The em unit in typography is equal to the inherited point size. On most browsers 
(and especially after adding reset.css), the default em size is 16px. That is,  
1em = 16px.

However, the <h1> is supposed to be 24px, per the comp, and you don’t want to be 
fired just because you’re trying to learn about relative units.

If there is only one thing that you get out of this chapter, it should be the following 
formula:

target ÷ context = result

Here’s what it means: the target font size for the heading is 24px. The context is the 
inherited font size. Because the DOM only includes the <h1>, you know that the 
inherited font size is 16px. Therefore, the following applies:

24 ÷ 16 = 1.5

That means 24px divided by 16px is 1.5em. Therefore, you can change the code for 
the heading to look like the following:

h1 {

  color: #231f20;

  font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;

  font-size: 1.5em; /* 24px/16px = 1.5em */

  font-weight: bold;

}



80 Working with a Flexible Grid

The output still looks 100% correct, but there’s a 13px sitting in the <h1> a rule. Try 
the formula:

13 ÷ 16 = .8125

Add that to the code as follows:

h1 a {

  color: #f1c40f;

  font-family: Baskerville, "Baskerville Old Face", Garamond, "Times 

New Roman", serif;

  font-size: .8125; /* 13px/16px = .8125em */

  font-style: italic;

  font-weight: normal;

}

Figure 3-6 shows the resulting output.

FIGURE 3-6

Output of a first attempt at flexible font-size values. Notice the link size is incorrect.

That’s not right. The link is too big, and you’re up for a performance review.

If you dig into the pixel value of the link’s font-size attribute, you’ll see that it’s now 
19.5px, instead of 13. What happened?

Remember that font size in CSS is inherited from any element higher in the DOM 
tree that happens to change it. The link is a child element of the heading, so it’s cal-
culating .8125 × 24px. What you need to do, in order to get back down to 13px, is 
change the context value from our important equation:

13 ÷ 24 = .541666667



Using a Grid System 81

That’s a gross number. If you’re tempted to lop it off at .542ish ems, don’t. Browsers 
love numbers like that—they turn them into nice pixel values of 13. Here’s what 
the CSS for the link now looks like:

h1 a {

  color: #f1c40f;

  font-family: Baskerville, "Baskerville Old Face", Garamond, "Times 

New Roman", serif;

  font-size: .541666667; /* 13px/24px = . 541666667em */

  font-style: italic;

  font-weight: normal;

}

And your output again looks like the design. Job well done. Even better, the output 
is now in scalable ems. Why does that matter?

Well, if you’re following along with the code, or checking out the demo online, 
change your <body> tag’s CSS to the following:

body {

  background: #fefefb;

  font-size: 20px;

}

You just changed the context for the entire document. Rather than leaving the <h1> 
at 24px and the link at 13px, they shifted dynamically to fit their new contexts. 
Still, though, what’s the big deal?

Using a Grid System
You now have an understanding of the history, benefits, and basic building blocks 
of a grid system. And you’ve learned the formula to move from fixed to fluid units 
of measure. You’re now going to combine them. Don’t worry—this is still going to 
be baby steps.

You’ll first create the measure of your fixed grid, and then move your code from 
fixed to fluid units. If it isn’t yet obvious, the benefit here is that, just as with font 



82 Working with a Flexible Grid

sizes, the fluid units allow your layout to scale to a percentage of available screen 
space, rather than simply breaking when the screen gets too small, or remaining too 
small if the screen gets too big.

Let’s get into another example.

Another Project
As your client, I liked the work that you did. You’ve melted my cold heart and I’ve 
decided to hire you to redesign my blog; and this time, I don’t even have a pixel- 
perfect design to hold you to. What I do have is a general outline for the content 
hierarchy, and a weird fascination with this concept of a grid.

Therefore, here’s the gist: I need you to make something that has a header section, a 
content section, and a sidebar section (see Figure 3-7).

FIGURE 3-7

Layout for the blog project



Using a Grid System 83

You’re good at this kind of stuff, so you say that, basically, the markup for the page 
is going to look something like this:

<div id="container">

  <h1>...</h1>

  <div id="main" class="content">

    <article class="article-content">

      ...

    <article> <!-- end .article-content -->

  <div> <!-- end .content -->

  <aside id="sidebar" class="sidebar">

    ...

  <aside> <!-- end .sidebar -->

</div> <!-- end #container -->

As you look closer at the outline I provided, you realize I was still pretty meticulous, 
aligning the content to a 960px 12-column grid. You break out the highlighter and 
come up with the overlay shown in Figure 3-8.

FIGURE 3-8

A 12-column grid overlaid on the blog layout



84 Working with a Flexible Grid

The grid is 960px total, as marked in the comp; and per the widths of each section, 
you nail down the unit for each column at 69px, with a 12px gutter in between. 
The grid (without the content hierarchy) is shown in Figure 3-9.

FIGURE 3-9

The 12-column grid, without the layout

From here, you take the reins and start to work with some placeholder content in 
the browser. I admit that I love the way my current blog looks, but I’m embarrassed 
that it’s not built in a standards-based way, and all the elements are styled with 
position: absolute.

You decide that you’re going to make my new blog exactly like the current blog, but 
with markup that is semantic, and will work outside of the fixed, static screen size, 
which is shown in Figure 3-10.

In Figure 3-11, you see the same blog with a 12-column grid. As if it was planned 
as an example in a book, the grid fits nicely over this layout.



Using a Grid System 85

FIGURE 3-10

The current blog design. Who knows what the code looks like?

FIGURE 3-11

The current blog design with the same 12-column grid as an overlay



86 Working with a Flexible Grid

As the content hierarchy is exactly 
the same as it was in Figure 3-8, you 
can simply copy over the non-layout 
styling—that is, the CSS that is simply 
making things pretty. By this point, 
the template is starting to take form 
(see Figure 3-12), and you’re ready to 
begin chomping away at the layout of 
the blog.

FIGURE 3-12

The blog’s starting point, without any of the actual layout work done

 NOTE 

We’re skipping some of the basic 
CSS rules here. You’ll learn more 
about a few of them in the next 
chapter.



Using a Grid System 87

A Fixed Grid

The document I gave you, along with my current blog, had some pretty straight-
forward section width calculations. We’re maxing out the main container’s width 
at 960px for readability’s sake. The header spans this full width. The article section 
takes up the bulk of the main content’s width at 717px, with a sidebar on the right 
for additional content coming in at 231px. There’s a 12px gap in the middle of 
those that adds up to the full 960px (717 + 231 + 12).

I’ve given this all to you in pixels; and just to placate me, you decide to start by 
delivering the site back in pixels. Without all of the actual design elements, your 
code looks something like this:

#container {

  margin: auto;

  width: 960px;

}

.content,

.sidebar {

  float: left;

}

.content {

  margin: 12px 12px 0 0;

  width: 717px;

}

.article-content {

  margin: auto;

  width: 555px;

}

.sidebar {

  margin: 12px 0 0 -6px;

  padding-left: 6px;

  width: 231px;

}

Flex That Grid

You’re now once again at a crossroad. The layout matches the comp perfectly, but 
you don’t want to leave your client with an inflexible website. As soon as anyone 
tries to reach the page on a viewport whose width is smaller than 960px (a great 
many screens), I’m going to be furious with you.



88 Working with a Flexible Grid

Therefore, instead of copying the pixel values that I provided in the comp, you 
decide to move to flexible units. Unlike the typography example, though, you won’t 
be using ems. You’ll stick to an even easier to understand measure: percentage.

Building Outside-In

You have to start somewhere, and it might as well be at the biggest element, the 
#container. Previously, it was set at a static 960px. Remember the formula? 

target ÷ context = result

But wait, the context in this case is the entire viewport. How can you define a con-
text if that’s the exact thing you don’t know?

Spoiler: You can’t.

What you can do is change what rules you apply to the element. Let’s say, for all 
intents and purposes, you want the #container to take up all the available screen 
space, provided it’s 960px or smaller. Instead of setting the width to 960px, you 
 recreate that last line of code:

#container {

  margin: auto; /* Same as before */

  max-width: 960px; /* Max out at 960px */

  width: 100%; /* Take up all screen space */

}

The Easy Part

Lame. You now have a big element that totally breaks because its children are bigger 
than it can handle. Moving one layer in, you have the .content and .sidebar mod-
ules to handle. In pixels, they had widths of 717px and 231px, respectively, with 12px 
between them. With these numbers, you already have your ideal context and targets.

For the .content, it’s 717 ÷ 960 = .746875.

For the .sidebar, it’s 231 ÷ 960 = .240625.

Move the decimal places over and you get 74.6875% for the .content module, and 
24.0625% for the .sidebar module. The margin is calculated the same way: 

12 ÷ 960 = .0125, so 1.25%

You can see the corresponding pixel and percentage values in Figure 3-13.



Using a Grid System 89

FIGURE 3-13

A little math

Just to confirm, 74.6875 + 24.0625 + 1.25 = 100. Therefore, your code looks 
like this:

.content {

  margin: 1.25% 1.25% 0 0;

  width: 74.6875%; /* 717px / 960px = .746875 */

}

.sidebar {

  margin: 1.25% 0 0 -6px;

  padding-left: 6px;

  width: 24.0625%; /* 231px / 960px = .240625 */

}

I still see pixels in there, though. Bummer. The margin is easy enough; you’ve done 
that already: 

6 ÷ 960 = .00625

That works for the padding, too, right?

Don’t be silly.

Padding exists within an element, whereas margin exists outside of it, so they must 
be treated separately. When calculating flexible gutters, the following rules apply:

 • Margin: The context for this calculation is the width of the containing element.

 • Padding: The context for this calculation is the width of the element itself.



90 Working with a Flexible Grid

Therefore, in this case, in order to get an accurate padding-left for the .sidebar, the 
context is actually 231px. That means the flexible padding is:

6 ÷ 231 = .025974026

…and the content and sidebar can be written pixel-free as follows:

.content {

  margin: 1.25% 1.25% 0 0;

  width: 74.6875%; /* 717px / 960px = .746875 */

}

.sidebar {

  margin: 1.25% 0 0 -.625%;

  padding-left: 2.5974026%; /* 6px / 231px = .025974026 */

  width: 24.0625%; /* 231px / 960px = .240625 */

}

Changing Context

You’re pushing forward to the .article-content. Recall from your work with  
flexible typography that the context is determined by the closest DOM parent that 
defines a rule (just as the link size was determined by the heading size). Therefore, you 
know that your context isn’t really 960px in this case, but actually the 717px of the 
.content. Look at you! You’re evolving! Figure 3-14 shows the context calculation.

FIGURE 3-14

More math



Using a Grid System 91

Only one section left to handle, the article-content:

.article-content {

  margin: auto;

  width: .774058577%; /* 555px / 717px = .774058577 */

}

Negativity

So now we’ve hit the content section. First, any <blockquote>s in the  
.article-content are supposed to take up its full width (see Figure 3-15). 

FIGURE 3-15

The quote is supposed to take up the content’s full width, but this breaks outside of the article’s 
boundaries.

In the pixel world, that would have looked something like this:

.article-content blockquote {

  margin-left: -81px; /* (717px—555px) / 2 */

  width: 717px; /* width of .content */

}

But we don’t live there anymore. There’s nothing unique here. Growing outside of 
your context works just the same as filling a percentage of it. Your context is the 
.article-content’s width, so 555px. Your target is 717px:

717 ÷ 555 = 1.291891892

Therefore, your width is now 129.1891892%.



92 Working with a Flexible Grid

Remember that margin also relies on the .article-content:

81 ÷ 555 = .145945946

In code, you end up with this:

.article-content blockquote {

  margin-left: 14.5945946%; /* 81px / 555px = .145945946 */

  width: 129.1891892%; /* 717px / 555px = 1.291891892 */

}

Revisiting Padding

One last detail. 

Your header is 100% width, but the content itself starts with the article content (see 
Figure 3-16). At this point, you could solve this in your sleep.

FIGURE 3-16

The header’s internal padding keeps it in a column with the blog’s main content.

Padding’s context is based upon the actual element. In this case, your element is 
100% width. At your ideal, that’s 960px. In the pixel world, you have 81px to the 
left of this element, so that’s your target:

81 ÷ 960 = .084375



Creating a Reusable, Flexible Grid (in Five Easy Steps) 93

h1 {

  padding-left: 8.4375%; /* 81px / 960px = .084375 */

}

That’s it! You’re done. Code shipped, client happy. It took a whole lot of math, but 
you’ve created a 100% flexible grid-based design—one that to someone looking at 
the old design on the exact same screen would look like nothing had changed.

Branching Out
If you’re following along with the code (or have a bit of intuition), you’ll notice that 
this design still totally falls apart on smaller screens. At a certain point, it doesn’t 
make sense to have a module on the page only take up approximately 24 percent of 
the available width. That’s around 79 pixels on an iPhone 5. It’s an important foun-
dational step, though. You’re shifting your mindset to look at the proportions of a 
website, rather than its exact pixel values.

Creating a Reusable, 
Flexible Grid (in Five 
Easy Steps)
Before moving on, I’m going to touch on a key time-saving element of the grid sys-
tem: reusability. In the exercise you just went through, you had to define the entire 
grid based on the math corresponding to each element. That’s time consuming and 
ugly and prone to errors.

Although building this grid in code, as opposed to strictly in whatever tool you’ve 
used for static mockups, takes a bit of faith between designer and developer (or 
better yet, designing in the browser itself ), it enables rapid movement through the 



94 Working with a Flexible Grid

layout portion of web design work, allowing a greater amount of time and focus to 
be spent on unique details.

In order to create a reusable grid, you need to define the five elements that make up 
a grid. Although the elements are presented in a specific order for clarity’s sake, no 
single element can be defined without the other four. 

The five elements are: 

 • Unit

 • Gutter

 • X-count

 • Row

 • Column

All five together are visualized in Figure 3-17, and the implementation will become 
clearer in a moment.

FIGURE 3-17

The five components of a reusable grid



Creating a Reusable, Flexible Grid (in Five Easy Steps) 95

Unit
The unit is the base module for a grid. It’s a rectangle that is repeated again and 
again uniformly to create your grid. Between each unit is a gutter that when com-
bined along the x-axis forms rows, and along the y-axis, columns. In the preceding 
blog design example, the unit was 69px width by 12px height, although we pur-
posefully did not reference the height, in order to keep the example from getting 
overcomplicated.

Think of the unit as the em of your grid system. Just as (by default) 1 em is equal to 
a rendered value of 16px, the unit is an abstraction of some amount of screen space. 
It’s defined by you to represent one measure of space to be allotted to any given part 
of a website.

Gutter
The next element of a grid is the gutter. This is the spacing, or breathing room, 
between each unit. In the blog design exercise, the gutter was set to 12px. Gutters 
occupy a space between units so that they do not butt up against one another.

In a practical sense, this improves readability and allows for a visual separation of 
elements on a website. In terms of development, it enables you to define how much 
“room” you want between things once, then never worry about it again.

X-Count
The X-count is the amount of units (with gutters) you can fit next to one another 
before moving to a new row. In the blog example, the X-count was 12, as evidenced 
by the 12 columns.

There are two basic approaches to defining your x-count: content-out and context-in.

Content-Out

If your site contains certain pieces of content that require a defined minimum 
width, you can determine how many units and gutters you want that minimum 



96 Working with a Flexible Grid

width to take up. By combining unit, gutter, and x-count, you can determine what 
your grid’s full width actually is with the following formula:

(Unitw) × x-count + gutter × (x-count–1) = grid width

Context-In

If you have a specific maximum width and x-count in mind, you can instead derive 
the unit width by rearranging the formula as follows:

(grid width–gutter × (x-count–1)) ÷ x-count = Unitw

Neither approach is uniformly correct, but by tying your work back to the content 
defining layout, working content-out makes more sense in our mobile world.

As you can see, all of these elements rely on one another; so at some point you need 
to make a best guess with at least one in order to define the others.

Columns
The grid’s columns are the horizontal regions of multiple units taken together 
to represent larger parts of the web design. In the blog exercise, the header was a 
12-unit column, the content was a nine-unit column, and the sidebar was a three-
unit column.

Rows
Hopefully it’s obvious, but rows are the vertical regions of units taken together to 
represent modules in the design. In the blog exercise, the header is a three-unit row, 
and you did not define the content or the sidebar, as they were longer than the page 
you were dealing with.



Creating a Reusable, Flexible Grid (in Five Easy Steps) 97

Putting It All Together
You’ll begin designing with this grid mindset in the next chapter. Remember how 
you had to figure out all the flexible element widths for each module in the exercise? 
Not anymore. Figure 3-18 shows the components of a grid overlayed on your blog 
project, just as Figure 3-11 showed only columns.

FIGURE 3-18

The five components of a reusable grid overlayed on your previous blog project

Once you separate this layout work from your specific elements, you can apply 
styles responsively to keep them from breaking at any screen size. More usefully 
than that, you can turn this grid into a dependency-free CSS module that you can 
reuse on other projects. This works because none of the styling is tied to decorative 
design, but instead is purely built for layout.



98 Working with a Flexible Grid

Summary
You’ve now grasped the benefits of a grid system, both in a static layout, and in a 
flexible one on the web. The components of this grid are: units, gutters, x-count, 
rows, and columns.

You also now know how to use the formula target ÷ context = result to move between 
fixed and fluid units, where target is the fixed size of an element, context is the fixed 
size of its container, and result is the fluid size that is equal to target in context.

Combining these two, you’re able to create a reusable grid foundation for any 
responsive web project. What this gives you may not be entirely clear yet, but by 
the end of the next chapter, you’ll realize that having this standardized base layer 
for your layout allows you to make changes that respond to the user’s screen context 
much more easily and efficiently. 

Try It
Your turn. If you think you’ve mastered the information covered in this chapter, try 
to make the following slight modifications to what you did.

 • Easy: Given the following markup, using ems only, make the <p>’s default text 
12px, the <h1>’s text 24px, and both <a>s’ text 16px:

<p>
  <h1>Building Responsive Data Visualization for the Web. <a 
href="/dataViz ">Read more</a></h1>
  Lorem ipsum dolor sit amet, consectetur adipiscing elit. 
Integer nec odio. Praesent libero. Sed cursus ante dapibus 
diam. Sed nisi. Nulla quis sem at nibh elementum imperdiet. 
Duis sagittis ipsum. Praesent mauris. Fusce nec tellus sed 
augue semper porta. Mauris massa. Vestibulum lacinia arcu 
eget nulla. Class aptent taciti sociosqu ad litora torquent 
per conubia nostra, per inceptos himenaeos. Curabitur sodales 



Try It 99

ligula in libero. Sed dignissim lacinia nunc.
  <a href="/somewhereElse">Another link</a>
</p>

 • Intermediate: Starting where you ended in the blog exercise, change the  
#container’s ideal width to 1024px, but keep everything else uniform.

 • Hard: Using the same markup, change the blog exercise to use a 16-column 
grid, rather than 12 columns.



04



04Designing Responsive  
Layouts with CSS

Building CSS responsively is the linchpin, the idea that 
shifts our efforts from building flexible websites to building 
responsive websites. This difference will become clearer 
as some terms are defined, but think of both fluidity and 
responsiveness as tools in your adaptive tool belt. Fluidity 
enables you to grow and shrink your content based upon its 
container. Responsiveness enables you to ask the container 
more about its attributes, and change how you handle your 
content. We’re the first apes to touch the monolith.



102 Designing Responsive Layouts with CSS 

The Gist
We’re officially moving into the how of our progressive enhancement tower’s second 
layer: presentation. It astounds me to this day that there was a time when design 
lived outside of its own bubble, and was a messy, hairy, in-the-way-and-staining- 
everything part of web markup. You’re going to get a brief history lesson into just 
how design on the web came to be.

From there, you’re going to learn the programmatically way in which a browser 
reads CSS, and how you can query properties of the browser to then begin to 
target your styling in order to respond to different features. At the very end of this 
chapter, you’ll learn a few ways you can cut corners while prototyping, which 
takes you a few shuffling steps backward to those dark design ages, but first let’s 
establish some context.

A Brief History of CSS
Cascading Style Sheets (CSS) is a stylesheet language. It describes the look and 
formatting of a document written in a markup language. For the time being, we’ll 
limit the markup we’re talking about to HTML, but later on you will dig into using 
CSS to style scalable vector graphics (SVGs).

CSS is designed to separate the content of a document from the document’s 
 presentation. (Sound familiar?) It is the box in which you contain all of your design; 
and in the progressive enhancement tower, it sits on top of the content.

This wasn’t always the case, though. Looking back at the first website, all that existed 
was plain text with no decoration, large headings, and underlined links in blue.

As the first decade of the web unfolded, HTML evolved to contain a wider variety 
of both semantic and stylistic elements. The issue that arose, however, was that there 
was absolutely nothing stopping web designers from using one to achieve the goals 
of the other. That is, although web design has become more robust, it was achieved 
at the cost of much more complex and inaccessible HTML.



The Gist 103

By 1994, the web community had developed a keen interest in improving the pre-
sentation capabilities of browsers. At that point, nine different implementations 
of stylesheet languages had been proposed on the www-style mailing list. Of those 
nine, two became actually influential to what we call CSS today: Cascading HTML 
Style Sheets (CHSS) and the Stream-based Style Sheet Proposal (SSP).

The CSS Level 1 Recommendation was published by the W3C by the end of 1996. 
Until this point, development of HTML, CSS, and the DOM had been taken on 
entirely by the HTML Editorial Review Board (ERB). In early 1997, the ERB was 
split into three groups tasked with specific projects: the HTML working group, the 
DOM working group, and the CSS working group.

Not wasting any time, the CSS working group began tackling holes in the CSS 
Level 1 Recommendation, resulting in the creatively named CSS Level 2 Recom-
mendation in November 1997. This recommendation was published by the W3C 
on May 12, 1998.

CSS Level 3, which was started in 1998, remains in development to this day. 
Although browsers regularly implement “proposed” CSS3 features, the spec has not 
been ratified to the point where it can serve as a definitive W3C recommendation.

Of the more than 50 modules that are part of CSS Level 3, four have been adopted 
as recommendations: color, selectors level 3, namespaces, and media queries.

That means the current web design landscape is such that most basic rules are imple-
mented uniformly by browsers, while others cannot be counted on.

You’ve Come a Long Way, Baby
While its rocky history might sound like an incredibly depressing way to start a 
discussion about CSS, don’t worry. I just wanted to get the bad news out of the way 
first. CSS does provide us, as web designers and developers, with a powerful way to 
separate content from presentation. What does that mean to an actual human?

You can write markup that is lightweight and semantic, then change the way it 
looks regardless of how it is marked up. Here’s an example: As the web started to 
become more of a canvas for design, and not just content, oftentimes web develop-
ers would find creative (read: bad) ways to use (read: misuse) the default displays of 
elements to create (read: shoehorn) a website’s layout. A prominent example of this 



104 Designing Responsive Layouts with CSS 

is the use of a table. Consider, for example, the default way in which a table is dis-
played in the browser, as shown in Figure 4-1.

FIGURE 4-1

Layout of an unstyled table in a browser. Notice that items line up by row and column.

Compared to the HTML elements available in the late 1990s, tables were unique. 
Other elements were displayed either as a block, taking up 100% of the available 
width and pushing the next element to a new line, or inline, displayed right next to 
the next element.

Tables, conversely, included rows and columns that could be used to separate con-
tent into modular sections. In addition, tables could be nested within other tables, 
providing another level of flexibility. Before long, entire websites were built in 
tables, to get content to display next to, or aligned with, other content. 

This behavior, if you can’t tell, is absolutely crazy. A table has important semantic 
meaning that completely breaks when it is used for layout purposes. Thinking about 
a site that aligns content to rows and columns may seem trivial today, but it’s thanks 
to CSS that this is possible.

With properly formed CSS, with efficient specificity and inheritance, a global 
stylesheet can be used to easily style elements across an entire website, rather than 
having to change a property on each instance of the same element. Moreover, an 
external stylesheet specifies the style once for a range of elements. This is light years 
more performant than repeating style information within HTML.



The Gist 105

External stylesheets are also stored in the browser cache, and can be used across 
multiple pages without being reloaded, reducing bandwidth usage over a network.

How CSS Works

If you’re already familiar with how CSS works, good. It is beyond the scope of this 
book to provide a complete lesson about using CSS in your web development. 
However, a few basic terms are worth revisiting, as you will build upon them as you 
move toward adding responsiveness to your web projects.

First and foremost, you should understand the basics of how CSS is written.

Selectors and Rules

Let’s say you’ve written the following HTML for your website; it’s a simple div with 
some kind of content inside it, maybe a list of insanely wealthy people from 1909: 

<div id="titanic">

  ...

</div>

You want to style this element with CSS. Because you’ve given the element an id of 
“titanic,” your selector will be #titanic. The # sign represents id in CSS.

Within your selector, you can begin to write rules, or declarations, of the format:

property: value;

Here, property is some attribute of the element described by the selector, and 
value is what you want that attribute to take on. In this case, you want the float 
attribute of our div to be none:

#titanic {

  float: none;

}

In case you missed it, that’s the CSS for an incredibly lame joke: The div with an  
id  of “titanic” has the rule, or declaration, of property “float,” which is equal to the 
value “none.” Har har har.



106 Designing Responsive Layouts with CSS 

If you want an element to contain multiple rules, separate them with a semicolon 
and continue to list them, as shown in the following code:

<div class="tower-of-pisa"></div>

.tower-of-pisa{

  font-style: italic;

  text-align: right;

}

You select the div with class of “tower-of-pisa” with the selector .tower-of-pisa. 
The . in this case represents class. Then you add rules in the same format. The rules 
can be listed in any order, but I tend to alphabetize mine for ease of readability and 
to give the CSS some kind of structure.

Priority

Adding rules to a stylesheet isn’t the only way to create CSS, however; and even 
within a stylesheet, rules can be written in different ways. Table 4-1 shows the prior-
ity structure, from highest to lowest, determining how CSS rules are applied to an 
element in your DOM.

TABLE 4-1

Priority Levels of CSS Sources

Priority  
Level

Style Source 
Type Style Type Description Example

0 Importance Any rule, either in a 
stylesheet or inline HTML, 
with the “!important” 
modifier

h1 {

 font-size: 24px 

!important;

}

1 Inline Rules defined in an HTML 
element’s “style” attribute

<h1 style="color: 

red;">...</h1>

2 Media type Rules applied to specific 
media types as defined in 
the CSS

@media screen {

 h1 {

 color: red;

 } 

}



The Gist 107

Priority  
Level

Style Source 
Type Style Type Description Example

3 User defined A function of the browser, 
allowing users to define 
their own CSS overrides

N/A

4 Selector 
specificity

A specific contextual selec-
tor that overwrites the 
generic definition

#header h1 {

 color: blue;

}

5 Rule order Rules defined last in the 
CSS are given higher prior-
ity than those defined first

h1 {

 color: red;

}

h1 {

 color: blue; /* This is 

higher priority */

}

6 DOM parent 
inheritance

A property inherited by 
an element that has been 
defined on the element’s 
parent

#heading {

 font-size: 24px;

}

h1 {

 color: red;

 /* h1 inside #heading 

will also inherit font-

size: 24px; */

}

7 Generic CSS 
property

CSS rule or inline style that 
overwrites a browser default

h1 {

 color: red;

}

8 Browser 
default

The default browser value as 
determined by W3C initial 
value specifications

N/A



108 Designing Responsive Layouts with CSS 

Specificity

Of course, it would be silly to assume that your DOM will only ever be simply one 
<div> within the <body> tag. Elements have parents and children, and your DOM 
can get very complex as you build your pages. CSS has rules for dealing with the 
specificity of tags. 

Consider the following code:

<div class="foo">

  <a href="#">A link</a>

  <a href="#" class="bar">A link with class bar</a>

  <a href="#" class="bar" style="color: red;">A link with class bar 

and inline style</a>

  <h1>This is an h1. <a href="#">Link in the h1</a></h1>

  <h1>This is an h1. <a class="bar" href="#">Link in the h1 with class 

bar</a></h1>

</div>

Notice the following elements in the preceding example:

 • Line two: A link within the div with class foo

 • Line three: A link with class bar within the div with class foo

 • Line four: Identical to line three, but with inline CSS

 • Line five: A link within an h1 within the div with class foo

 • Line six: A link with class bar within an h1 within the div with class foo

Without any external CSS, the only element that would receive any unique styling 
would be line four, because you are applying a style inline.

The following applies these CSS styles to the HTML above:

.foo a {

  color: purple;

}

.foo .bar {

  color: green;

}

.foo h1 a {

  color: blue;

}



The Gist 109

The output is shown in Figure 4-2. 

FIGURE 4-2

Output of the styled list of links. Priority and specificity are in effect here.

You see that the classless a tag is purple, and the a tag on line five is blue. The 
inline-styled link is still red, and the link outside of the h1 with class bar is green. 
Were you expecting the link on line six to be blue as well? Although it would make 
sense that the .foo h1 a seems more specific than the .foo .bar, classes are treated 
with a higher level of specificity than element tags.

There are plenty of other rules like this, but this is enough of a primer to move 
forward.

Inheritance

You saw inheritance in effect in the last chapter. Remember the initial flexible 
typography exercise?

<h1>Building Responsive Data Visualization for the Web.

  <a href="/dataViz ">Read more</a>

</h1>

Given the preceding markup, your output looked like what is shown in Figure 4-3.



110 Designing Responsive Layouts with CSS 

FIGURE 4-3

Unstyled markup of the preceding code

However, after you added the following first set of rules, it changed to what is 
shown in Figure 4-4:

h1 {

  color: #231f20;

  font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;

  font-size: 1.5em; /* 24px/16px = 1.5em */

  font-weight: bold;

}

FIGURE 4-4

The same markup, after the preceding styles are applied. Note that the link inherits some, but 
not all, styles from the heading.

Not only did the font attributes of the h1 change, but so did the a within it. The 
a tag inherited the rules applied to the h1. However, it did not inherit the color 
change. That’s because color is specifically called out to be different for a tags by 
browsers, so a rule must be specifically crafted for a to change that attribute.

Dipping Your Toe In

Now that you have the basics down, you’ll look at a more challenging example 
that combines a few of the concepts. Suppose you have the following markup—a 



The Gist 111

container with a heading, a link, and a paragraph of text, something like this (Fig-
ure 4-5 shows what it looks like in the browser):

<div id="container">

  <h1>Responsive Data Visualization. <a href="#">Read More</a></h1>

  <p>...<p>

</div>

FIGURE 4-5

Unstyled output of the preceding code

Nothing unexpected so far. Moving to larger screens, the mockup (PSD) for what 
the blog should look like on screens near 1200px wide is shown in Figure 4-6.

FIGURE 4-6

Designer’s mockup of what your blog should look like on a large screen

You want to add a CSS reset stylesheet (like meyerweb.com/eric/tools/css/reset/) to 
get rid of the default styling for elements, and then start writing your CSS. Open-
ing the design spec, you see that the container is 1200px, so you can immediately 



112 Designing Responsive Layouts with CSS 

add what you learned about grid flexibility from the last chapter, specifying that 
the container have a width of 100% with a max-width of 1200px:

#container {

  margin: auto;

  max-width: 1200px;

  width: 100%;

}

For the rest of the content, first write it in a wasteful way. The <h1>, <a>, and <p> 
tags all have font sizes and layout elements defined in the PSD that result in the fol-
lowing code and the output is shown in Figure 4-7.

h1 {

  color: #231f20;

  font-family: "Helvetica Neue",Helvetica,Arial,sans-serif;

  font-size: 64px;

}

h1 a {

  color: #f1c40f;

  font-family: "Book Antiqua",Palatino,"Palatino Linotype","Palatino 

LT STD",Georgia,serif;

  font-size: 26px;

  font-style: italic;

}

p {

  color: #231f20;

  font-family: "Helvetica Neue",Helvetica,Arial,sans-serif;

  font-size: 32px

  margin-top: 16px;

  padding-bottom: 32px;

}

FIGURE 4-7

Your code’s output, which now matches the design. Hooray!



The Gist 113

You’ve matched the PSD, so job well done. However, it’s not flexible yet. Time to 
clean up your code. You know that you can determine the flexible sizes with the 
following formula:

Target ÷ context = result

Your base context is 16px for the document, so you can proceed from there.

You also know that you will inherit rules from the parent elements, so your font size 
and color can be added to the container div, and removed from the <h1> and <p> 
tags’ rule declarations:

#container {

  color: #231f20;

  font-family: "Helvetica Neue",Helvetica,Arial,sans-serif;

  margin: auto;

  max-width: 1200px;

  width: 100%;

}

h1 {

  font-size: 4em; /* 64px/16px = 4em */

}

h1 a {

  color: #f1c40f;

  font-family: "Book Antiqua",Palatino,"Palatino Linotype","Palatino 

LT STD",Georgia,serif;

  font-size: .40625em; /* 26px/64px = .40625 */

  font-style: italic;

}

p {

  font-size: 2em; /* 32px/16px = 2em */

  margin-top: .5em; /* 16px/32px = .5em */

  padding-bottom: 1em; /* 32px/32px = 1em */

}

Still not bad, but who says that the base size has to be 16px? That’s just the 
browser default, and per Table 4-1, browser default is at the absolute bottom of 
the priority list.

Looking back at the font sizes, they’re mysteriously all nicely divisible by 16, almost 
as if they were set to show off exactly this point. The document’s base size should 
mean something to your content; and in this case, the default content really is the 



114 Designing Responsive Layouts with CSS 

body copy within your post, which you want to be 32px. Therefore, set your con-
tainer’s font-size to 2 em.

This way, the new context for your page is actually a base of 32 px. Check out the 
following code:

#container {

  color: #231f20;

  font-family: "Helvetica Neue",Helvetica,Arial,sans-serif;

  font-size: 2em;

  margin: auto;

  max-width: 1200px;

  width: 100%;

}

h1 {

  font-size: 2em; /* 64px/32px = 2em */

}

h1 a {

  color: #f1c40f;

  font-family: "Book Antiqua",Palatino,"Palatino Linotype","Palatino 

LT STD",Georgia,serif;

  font-size: .40625em; /* 26px/64px = .40625 */

  font-style: italic;

}

p {

  /* No font size rule needed */

  margin-top: .5em; /* 16px/32px = .5em */

  padding-bottom: 1em; /* 32px/32px = 1em */

}

It might not seem terribly useful when you’re looking at the code. It’s still the 
same number of lines, they’re just shifted around a bit; but let’s change the view-
port through which you’re looking at the output. Figures 4-8 and 4-9 show the 
same page on a tablet-size screen and phone-size screen, respectively. Notice any-
thing wrong?



The Gist 115

FIGURE 4-8

Your page on a tablet-size screen

FIGURE 4-9

Your page on a mobile-size screen



116 Designing Responsive Layouts with CSS 

The visual hierarchy is an absolute mess. The big bold header breaks onto different 
lines and flows off the page, and the body copy is cut into such short lines that it 
looks more like a poem than a blog post.

However, you’ve already written your CSS flexibly, so all the styles rely on their con-
text, right? Therefore, let’s change something:

#container {

  font-size: 1.5em;

}

This changes your highest parent’s font-size from 2em to 1.5 em, meaning  
1.5 × (16px) = 24px. Figure 4-10 shows the result on the tablet-size screen.

FIGURE 4-10

Your page on a tablet-size screen after changing the base font size to 1.5 em

Now take it another step down for the mobile screen. Instead of 2 or 1.5 em, set your 
base size to 1 em. Therefore, 1 × (16px) = 16px. (Extra points if you are thinking “Why 
not just get rid of the rule entirely?” I’m just trying to prove a point!) Figure 4-11 
shows the page on a tablet-sized device after making the change in the code below.

#container {

  font-size: 1em; /* 1em means this rule could be completely removed */

}



The Gist 117

FIGURE 4-11

Your page on a tablet-size screen after changing the base font size to 1em

At this point, you’ve solved for large screens, by setting the base to 2 em; you’ve 
solved for medium screens, by setting it to 1.5 em; and you’ve solved for small 
screens by not setting it at all. However, now you have to choose which one you 
actually want to go with, because you can’t use all three, right?

Wrong. Add the following code:

@media screen and (max-width: 768px) {

  #container {

    font-size: 1.5em;

  }

}

@media screen and (max-width: 540px) {

  #container {

    font-size: 1em;

  }

}

With this bit of magic, you can use all three of these rules exactly when you want. 
Time for the big reveal.



118 Designing Responsive Layouts with CSS 

Responsive Layout 
Design
You know that part in a bad action movie when the hero says the name of the 
movie and you really hope he’s going to wink at the camera? This is that part.

You’ve done all that you can by being fluid and flexible. Your websites are container 
agnostic, and they are abstracted away from pixels, but there is still a point at which 
they don’t work.

That’s fine. You can start to ask browsers about their features, and then appropri-
ately respond to those features.

The Media Query
You saw the CSS media query in action in the last piece of code, but let’s get seri-
ous. Meet your new best friend, the media query. Ignoring everything else you did 
in the previous example, now focus on what you’re actually trying to change:

#container {

  font-size: 2em;

}

@media screen and (max-width: 768px) {

  #container {

    font-size: 1.5em;

  }

}

@media screen and (max-width: 540px) {

  #container {

    font-size: 1em;

  }

}

Hold on, though. Wasn’t the point of using 16px on the mobile screens to not have 
to write a rule at all? Here, you’re overriding 2 em with 1.5 em, then overriding 



Responsive Layout Design 119

1.5 em with 1 em. In a moment, you’ll see how to solve this by writing your media 
queries mobile-first, and specifying a min-width, instead of max-width. 

First, it’s worth seeing just all the media query has to offer, more than just asking for 
screen width.

Media Types

Part of the CSS2 specification, way back in 1998, was a description of the media 
type. Per the W3C:

One of the most important features of style sheets is that they specify how a 
document is to be presented on different media: on the screen, on paper, with a 
speech synthesizer, with a Braille device, etc. Certain CSS properties are only 
designed for certain media (e.g., the “page-break-before” property only applies 
to paged media). On occasion, however, style sheets for different media types 
may share a property, but require different values for that property. For exam-
ple, the “font-size” property is useful both for screen and print media. The two 
media types are different enough to require different values for the common 
property; a document will typically need a larger font on a computer screen 
than on paper. Therefore, it is necessary to express that a style sheet, or a section 
of a style sheet, applies to certain media types.

W3C Media Types Specification

The gist is this: Not all browsing styles lend themselves to the exact same presenta-
tion. Moreover, CSS separates the presentation layer from the content layer, so you 
can point entirely different media-targeted stylesheets to different types of media.

The most basic example, which is poorly described in the W3C spec, is screen ver-
sus printer. Well before the phrase responsive design was coined, web developers 
were writing separate stylesheets targeted toward print media. They were responding 
to the type of media. This could be done in two different ways. One way was in the 
actual markup, pulling in files per media like the following:

<link rel="stylesheet" href="screen.css" media="screen" />

<link rel="stylesheet" href="print.css" media="print" />



120 Designing Responsive Layouts with CSS 

The other option was within the actual CSS, writing media-specific blocks of code:

@media screen {

  #container {

    font-size: 1.5em;

  }

}

@media print {

  #container {

    font-size: 12pt;

  }

}

By default, CSS is applied to all media types (which is a specific media type, aptly 
named “all”); but when these rules are added, the browser assumes the responsibility 
of identifying itself within a class. If it’s a computer, it will be recognized as a screen, 
a printer, print, a screen-reader, speech. The underlying HTML doesn’t change, but 
the way in which is it presented to the user does.

The spec’s entire list of media types, although short, is surprisingly exhaustive:

 • All: Suitable for all devices

 • Braille: Intended for Braille tactile feedback devices

 • Embossed: Intended for paged Braille printers

 • Handheld: Intended for handheld devices (typically small screen, limited 
bandwidth)

 • Print: Intended for paged material and for documents viewed on screen in 
print preview mode

 • Projection: Intended for projected presentations—for example, projectors

 • Screen: Intended primarily for color computer screens

 • Speech: Intended for speech synthesizers

 • TTY: Intended for media using a fixed-pitch character grid

 • TV: Intended for television-type devices (low resolution, color, limited- 
scrollability screens, sound available)



Responsive Layout Design 121

Actually, Frankenstein Is the Doctor’s Name

So what went wrong?

Well, when the spec was created, devices fit nicely into these buckets. Handheld, at 
the time, meant a lousy browser with virtually no presentation support and pitiful 
bandwidth. 

As time passed, however, screens, device capability, and mobile browsers all got a lot 
better; and on the other end, TVs began to look more like computers. The “screen” 
media type began to creep into everything else that was also a screen.

Essentially, the types were not separated by form factor, but only by current capa-
bility gaps, and these gaps were filled in. A screen and a printer are not the same 
thing (at the time of writing), but a screen and a handheld are. Everything with a 
glass screen is a computer, the different names are just relics from a time when they 
weren’t.

Padding in the Dark

Media types got developers part of the way there, but we just weren’t getting 
enough information about users’ browsers to accurately target the presentation we 
were aiming for. Therefore, the W3C set out to improve upon this with CSS3. The 
result was media queries, which take media types to the next level of granularity by 
not only identifying the type of screen, but also the characteristics of that screen.

Here’s a portion of the code you wrote for the preceding exercise:

@media screen and (max-width: 768px) {

  #container {

    font-size: 1.5em;

  }

}

The media query in that code is in bold, and can be separated into two parts:

1. The media type, as per the CSS2.1 specification—in this case, screen

2. The media query, in parentheses—in this case, (max-width: 768px)



122 Designing Responsive Layouts with CSS 

The query looks a lot like a CSS rule declaration, but it can be thought of in the 
exact opposite way. Remember that in a declaration the elements are property and 
value. When declared, you are setting the element’s property to that value.

In a media query, you are testing whether or not the property satisfies that value. In 
plain English, you are approaching the browser and asking, “Are you a screen? And 
if so, are you 768px wide or smaller?”

If the browser responds, “Yes, I am. And yes, I am!” then you enter the block within 
the media query and attempt to apply those CSS rules. In this case, the example 
shows the media query being used within your CSS; but just as media types can be 
used to import entire CSS files, so can media queries, as shown in this example:

<link rel="stylesheet" href="style.css" media="screen" />

<link rel="stylesheet" href="small.css" media="screen and (max-width: 

768px)" />

The Web’s William Faulkner

At this point, you’ve seen a handful of scenarios in which you can definitely check 
for max-width. But it’s not an exhaustive rule set if it isn’t…well…exhaustive. 
Table 4-2 shows the exhaustive set of items that you can check for when querying a 
browser.

TABLE 4-2

CSS Level 3 Media Query Features

Feature Description Min/Max

Width The width of the viewport display area of the output 
device

Y

Device-width The width of the rendering surface of the output device Y

Height The height of the viewport display area of the output 
device

Y

Device-height The height of the rendering surface of the output device Y

Orientation Either “portrait” or “landscape,” based upon the ratio of 
the height media feature to the width media feature

N



Responsive Layout Design 123

Feature Description Min/Max

Aspect-ratio The ratio of the value of the width media feature to the 
value of the height media feature

Y

Device- 

aspect-ratio
The ratio of the value of the device-width media feature 
to the value of the device-height media feature

Y

Color The number of bits per color component of the output 
device

Y

Color-index The number of entries in the color lookup table of the 
output device

Y

Monochrome The number of bits per pixel in a monochrome frame 
buffer

Y

Resolution The density of the pixels in the output device Y

Scan The scanning process of “tv” output devices N

Grid Specifies whether the output device is grid or bitmap N

Clearly, some are more useful than others. For the most part, you will be primarily 
focusing on width, height, and orientation in the examples in this chapter, but the 
logic can be trivially swapped out for other queries.

Browsers Are Liars

Unfortunately, browsers won’t always tell the truth about their features. One partic-
ularly egregious offender: The iPhone lies about its width. The iPhone 5, according 
to 100 percent of accounts, is 320px 980px wide. Hmm…

When the iPhone launched, there wasn’t a concept of responsive design yet. Apple 
figured that users would be fine pinching and zooming, so they added a new meta 
tag, the viewport. It does what you might expect, it lies to the rendering engine to 
create real estate that is “zoomed out” to fit 980px on a 320px screen. This is what 
websites that don’t have any responsive work added look like on a phone. It’s their 
desktop site, but really far away.

After Apple introduced the viewport tag, other mobile browsers adopted it, so 
although it isn’t a standard, it’s pretty much everywhere. Therefore, let’s bend it.



124 Designing Responsive Layouts with CSS 

Rather than take the device’s default (read: lies), you need to add this to your web-
site’s header:

<meta name="viewport" content="initial-scale=1,width=device-width" />

This does two things. The initial-scale=1 says that you’re not zooming out; the 
scale of your website is 1:1 to the scale of the device’s pixels. The width=device-width 
says that your website’s width is not spoofed to 980px, but is in fact the viewport’s 
actual width. The truth shall set you free. You can see this in Figure 4-12.

FIGURE 4-12

Browsers being liars. The left shows a website without the correct viewport meta tag, the right 
with it.



Responsive Layout Design 125

Fluid, Flexible, Responsive

Now that you have a deeper knowledge of what you were actually doing toward the 
beginning of this chapter, take one last look at the example, to ensure that you are 
doing everything you can to adapt your content in a lightweight way.

Fluid
#container {

  margin: auto;

  max-width: 1200px;

  width: 100%;

}

Check. Your entire site is within a fluid container that occupies as much room as it 
can, while still stopping at a reasonable width.

Flexible
#container {

  font-size: 2em;

}

h1 {

  font-size: 2em; /* 64px/32px = 2em */

}

h1 a {

  color: #f1c40f;

  font-family: "Book Antiqua",Palatino,"Palatino Linotype","Palatino 

LT STD",Georgia,serif;

  font-size: .40625em; /* 26px/64px = .40625 */

  font-style: italic;

}

p {

  /* No font size rule needed */

  margin-top: .5em; /* 16px/32px = .5em */

  padding-bottom: 1em; /* 32px/32px = 1em */

}

Check. Not a single pixel in sight (in site). You’ve successfully abstracted all of the 
pixel values the designer originally wanted at the ideal size, while still letting them 
rely on the base container font-size.



126 Designing Responsive Layouts with CSS 

Responsive
#container {

  font-size: 2em;

}

@media screen and (max-width: 768px) {

  #container {

    font-size: 1.5em;

  }

}

@media screen and (max-width: 540px) {

  #container {

    font-size: 1em;

  }

}

Check. As you began to scale your viewport size down, it became apparent that the 
base sizes just weren’t cutting it, so you added media queries to check that you’re on 
a 768px wide screen or smaller (max-width: 768px on line 4), and changed your 
base font size. Then, again at 540px wide, you shrunk the base font size further.

Because the 540px rule applies after 
the 768px rule in the CSS file, you 
know that it takes priority.

That would seem to cover all of our 
bases; but as you can see, there are a lot 
of pages left in this chapter.

Retrofit Responsive

Look again at the last rule. You’re setting the font-size of your #container to 1 
em. Isn’t that the default? The point of all this is to make things look good on all 
devices, but should that really come at the cost of heavier code?

Answer: No.

What you did here was solve for the smaller cases by adding more CSS to your  
desktop-focused design. You were given a PSD of a 1200px #container on a screen 
size even bigger than that, and you increased your payload to fix the sizing as the 
screen size got smaller.

 NOTE

CSS priority rules are shown in 
Table 4-1.



Responsive Layout Design 127

I like to call this a retrofit responsive technique. You didn’t bake responsive practices 
into your initial design process, and as such you’re stuck with a bunch of overrides 
in your CSS.

What if your relevant CSS rules looked like this instead:

#container {

  /* No declaration, so default is 1em == 16px */

}

@media screen and (min-width: 541px) {

  #container {

    font-size: 1.5em;

  }

}

@media screen and (min-width: 769px) {

  #container {

    font-size: 2em;

  }

}

That only manages to reduce a grand 
total of one line of CSS in this simpli-
fied case, but consider what it means 
for your overall design mindset. You 
started at the smallest screen you were 
planning to target, and as you added 
real estate, you added new rules.

Sounds awfully progressive to me…

Starting from the Bottom
You got a respite for a while, but remember that an important theme here is build-
ing mobile-first. As you were retrofitting responsive styles onto your previous 
designs, that full weight was being added to smaller screens, and that’s not good.

All it takes is a mindset change. Design for mobile before designing for desktop, not 
after, and the CSS will follow.

 NOTE

Remember when moving from 
max-width to min-width, 
you’ll need to add one to your 
screen sizes (and subtract when 
moving from min-width to 
max-width).



128 Designing Responsive Layouts with CSS 

Why Do We Start Small?

I’ve harped about it enough: Mobile users are the majority, but they’re on weaker 
devices. Therefore, here’s what you should consider when writing mobile-first 
responsive rules: The CSS is going to get bigger no matter what. That’s a file that 
is downloaded, and you’re stuck that way. What you can improve is the rendering 
 complexity of elements. Consider the following two screenshots of developer tools 
on a screen that is approximately 320px. 

In Figure 4-13, you took your desktop site and added rules to change the font-size 
as the screen got smaller. Notice that the default and 768px rules are applied, then 
immediately overwritten.

In Figure 4-14, you added min-width rules for larger screens. There is nothing to 
override because nothing else has been applied yet.

FIGURE 4-13

Rules applied to an element on a mobile device using max-width overrides



Responsive Layout Design 129

FIGURE 4-14

Rules applied to an element on a mobile device using min-width overrides

In addition, based on my experience, in just about every project this actually leads 
to lighter code than retrofitting. You’re adding fewer rules to change things as the 
screen gets bigger, because you have more bandwidth and real-estate-considerate 
defaults.

How You Can Flip the Rules

When I say flip the rules, I mean move from a desktop-first pile of CSS with max-
width and max-height queries to a mobile-first approach using only min-width 
queries.

Typically, it isn’t all that hard, and it actually involves more deletion of code than 
addition. For example, suppose you have the following HTML for a basic naviga-
tion menu on a blog:

<div id="container">

  <ul id="nav">

    <li><a href="/">Home</a></li>

    <li><a href="/blog">Blog</a></li>

    <li><a href="/contact">Contact</a></li>

    <li><a href="/about">About</a></li>

  </ul>

</div>

The output is as exciting as ever (see Figure 4-15).



130 Designing Responsive Layouts with CSS 

FIGURE 4-15

Your list, with no styles applied

The designer gives you the desktop-first PSD shown in Figure 4-16, and you write 
the following code; but rather than even look at it on the desktop, you test it on 
your mobile browser, and immediately see that it doesn’t work (see Figure 4-17).

FIGURE 4-16

The designer’s desired output for the list of links

#container {

  font-family: "Helvetica Neue",Helvetica,Arial,sans-serif;

  margin: 1em auto 0;

  max-width: 960px;

  width: 100%;

}

#nav li {

  background: #f1c40f;



Responsive Layout Design 131

  display: block;

  float: left;

  font-size: 2em;

  padding: 1.25%;

  text-align: center;

  width: 25%;

}

#nav li a {

  color: #231f20;

  font-weight: bold;

}

FIGURE 4-17

The list of links really doesn’t work on mobile screens.

Let’s first retrofit your responsive rules to make this layout work. If you just eyeball 
it, everything still seems fine if you throw the following rules on top:

@media screen and (max-width: 768px) {

  #nav li {

    width: 50%;

  }  

}

@media screen and (max-width: 540px) {

  #nav li {

    width: 100%;

  }  

}



132 Designing Responsive Layouts with CSS 

But that doesn’t really follow the vision of the designer. This is the problem so often 
with retrofitting responsive rules onto a design: They become a kind of best guess 
before you move on, and they can wreak havoc on an intended design.

Instead, try some math, and working mobile-first.

You know that the style that’s breaking right now is the width of the <li> elements. 
Therefore, rearrange your target / context = result formula to extract your target value:

result × context = target

Your ideal context is 960px, and your result is the width you’ve already attached to 
the <li>: 25%. Therefore, your ideal target is 240px. That means that you need a 
minimum of 240px for every <li> in order to have enough real estate. Change your 
default #nav <li> width to 100%, and assume your base case is a screen width of 
240px (Figure 4-18):

...

#nav li {

  width: 100%;

}

...

FIGURE 4-18

For mobile devices, default the links to take up 100% width.



Responsive Layout Design 133

Right now, the four <li> elements are displayed in a row, and each takes up 240px, 
but what if you put them in a 2×2 grid instead? The minimum amount of width 
you would need is 240px × 2 = 480px, so set a rule there with the following code, 
which produces Figure 4-19:

...

@media screen and (min-width: 480px) {

  #nav li {

    width: 50%; /* 480px / 2 = 240px */

  }

}

...

FIGURE 4-19

Once you have enough space, let the links take up 50%, floating next to one another in a  
2x2 grid.

Now, the next logical cut would be back to four inline elements. 240px × 4 = 
960px. What are the odds? The output is Figure 4-20.

...

@media screen and (min-width: 960px) {

  #nav li {

    width: 25%; /* 960px / 4 = 240px */

  }

}

...



134 Designing Responsive Layouts with CSS 

FIGURE 4-20

Finally, back at 960px, the links occupy 25%, again matching the designer’s wishes.

Taken as a spectrum of screen sizes, the design flows as shown in Table 4-3.

TABLE 4-3

How the List Items Behave at Various Screen Widths

Width Range li Behavior

0px–39px Not considered

240px–479px Full width 240px–479px

480px–959px 2-up 240px–479px

960px+ 4-up 240px

Keep in mind that this follows the logical, progressive, enhancement-led concept 
of adding rules as you add real-estate. With that under your belt, let’s move on to a 
more robust project.

The Cocktail Guide

No more simplified blogs. In this section you’re going to build something useful. A 
few years ago, I had some friends over for a Christmas party and was mixing some 
fancy drinks. I have a few cocktail books in my kitchen—standard ones, ones that 



Responsive Layout Design 135

have cute little made-up stories and dialogues about drinks, and one that’s just plain 
good-looking. I always seem to gravitate toward that one, the good-looking one, 
when I need to double-check ratios or I’m in the mood to make something new.

On this occasion, I was making a Martinez, or an Aviation, or one of those drinks 
that I always make because it meets that important double requirement of tasting 
delicious and allowing me to look really cool making it. 

So I cracked open the book, checked something about a vermouth ratio, and one of 
my friends asked, “Why don’t you just look it up online?” 

To which my immediate, unprocessed, uninformed response was, “There isn’t a sin-
gle mobile-friendly cocktail recipe website on the whole Internet.”

Of course, that’s a pretty hefty claim to level against the entirety of the Internet, so 
you’re going to change that. I’m tasking you with building a mobile-first cocktail 
recipe website. 

Now, full disclosure: This is a project that I personally worked on a few years 
back. It lives at www.thecocktailgui.de. You’ll be moving through it with 
 radically  different code than what is live in production, because you’re much better 
at this sort of thing now. However, it’s a project that you will be working with 
for the rest of this book, because it spans both responsive design and data visualiza-
tion topics, it’s mobile first, and it wholeheartedly embraces the grid upon which 
it’s built.

Building for the Smallest Screen

For this section, you’re going to focus on the website’s search results page, as it will 
have the most responsively moving parts.

This time you’ll start by e-mailing the designer before anything is even started, indi-
cating that you want to shrink that canvas down to something much more mobile. 
In return you get what is shown in Figure 4-21.

Not bad—you’ve successfully started on the most limited device size that you’re 
willing to support.



136 Designing Responsive Layouts with CSS 

FIGURE 4-21

The Cocktail Guide’s list view on a mobile-size screen

You can abstract out the following: navigation, a header, and a results list. For now, 
ignore the code that surrounds an individual result, and code the high-level layout 
of the page as something like this:

<nav>

  ...

</nav>

<div id="container">

  <header>

    ...

  </header>

  <div id="content" class="search">

    <ul class="drink-list">

      ... <!-- Individual results  -->

    </ul>

  </div>

</div>



Responsive Layout Design 137

On this device, everything appears to be in one long column, except for the menu, 
but assume that that hamburger menu is just an overlay toggle for now—you’ll 
worry about it later. In that case, the layout CSS for your default scenario is as 
follows: 

nav {

  display: none;

}

#container {

  /* Nothing */

}

header {

  /* Nothing */

}

#content {

  /* Nothing */

}

#content .drink-list {

}

footer {

  /* Nothing */

}

There are of course plenty of style rules for actual…style, but you’re focusing on 
layout right now.

In terms of your individual result, assume your HTML looks something like this:

<li class="drink">

  <h3 class="drink-name">...</h3>

  <ul class="drink-attributes">

    <li>...</li>

    <li>...</li>

    <li>...</li>

  </ul>

</li>

Again, looking only at layout CSS, you have something very basic:

.drink {

  display: block;

  margin: 1.25%;

  width: 97.5%;

}



138 Designing Responsive Layouts with CSS 

Up and Out

After looking at your design on larger screens, you are amazed that nothing breaks 
but disappointed because the site is now just one big wide column. You remind 
the designer of the subject of the previous chapter (grids), and get what is shown in 
 Figure 4-22 back, for tablet-size screens.

FIGURE 4-22

The Cocktail Guide’s list view on a medium-size screen. The results now stack 3-up.



Responsive Layout Design 139

Other than on individual recipes in the list, it doesn’t look like you need to make 
any changes. Add a media query. Your initial comp was 320px wide, but the 
designer specified that results need a minimum of only 240px to fit their content. 
Therefore, you can back into your media query by switching the target ÷ context 
= result formula. The designer gave you a design at 3-up, but do one better: Add a 
media query to put two results next to each other.

Here, 240px is your target width, and the result is a little complicated. If you 
had no gutters, it would be 50%, but you will have a grand total of three, each at 
1.25%, so our result is as follows:

(100% – ( 3 × 1.25% )) ÷ 2 = 48.125%

That means the formula looks like this:

Context = 240 ÷ 0.48125

The context for the first media query is 498.701298701px…?

Content Sets Size

That’s gross. Although gross numbers were fine when you were setting values in 
your CSS, that doesn’t apply as well here. There isn’t a screen out there that is 
going to respond with “498.701298701px” when you request its width. You need 
to round; and because what you found was the absolute minimum pixel width for 
which your design will work, you need to round up.

Therefore, your first media query is @media screen and (min-width: 499px). You 
might be asking yourself how many weird devices would be exactly 499px wide, 
as that’s what you’re targeting for. The answer is probably none, or maybe 50. It 
doesn’t matter.

You are not solving for devices. The designer sent you a PSD named “cocktail-
Guide_iPad3” and you ignored it because your content sets your sizes. Size-based 
media queries can and should be set at whatever pixel values make sense for the 
content, not for the handful of popular devices you might be targeting. You are 
solving for the entire river of devices flowing towards you.



140 Designing Responsive Layouts with CSS 

Back to the size you just solved for, though, add your code:

.drink {

  display: block;

  margin: 1.25%;

  width: 97.5%; /* 100% - 1.25% - 1.25% */

}

@media screen and (min-width: 506px) {

  .drink {

    float: left; /* Get our results to display next to one another */

    width: 48.125%;

  }

}

In addition, just to ensure that your designer is happy, also figure out the 3-up ratio. 
Again: target = 240px, result = (100% – (4 × 1.25%)) ÷ 3 = 31.666666667%.

Context = 240 ÷ 0.31666666667.

Your context is 757.894736834, so your media query is placed at 758px; and your 
code is even simpler than the previous media query, because all you need to change 
is the width:

.drink {

  display: block;

  margin: 1.25%;

  width: 97.5%; /* 100% - 1.25% - 1.25% */

}

@media screen and (min-width: 506px) {

  float: left; /* Get our results to display next to one another */

  width: 48.125%;

}

@media screen and (min-width: 758px) {

  .drink {

    width: 31.666666667%;

  }

}

At this point, you could just keep applying this formula to determine when you 
need to set breakpoints for 4, 5…n results in a row if the context for your #content 
never changes. Remember that right now all of your top-level parents are a perfect 
100% width column; but then the designer sends along the vision of the site shown 
in Figure 4-23, for a desktop-size screen.



Responsive Layout Design 141

FIGURE 4-23

The Cocktail Guide’s list on a desktop-size screen. Not only do the results now stack, but the 
menu has moved to a left column sidebar.

Your initial assumption about the menu has gone out the window, and now you 
have a section of the page taking up space next to the results list. That means that at 
a certain point, your results list’s result in your formula is no longer 100%.

Classified Information

This poses a problem because of the way that media queries work. When you request 
a device’s width, you are getting the width of the entire viewport, not the parent ele-
ment you actually care about. In the exercise so far, those were identical, because the 
parent element was 100% of the page’s width. Now, however, you’re going to have to 
do some clever math to figure out where your breakpoint needs to be.

If you ask the designer and are told that the menu needs to be a minimum of 
300 px wide, that’s your menu’s target. You don’t yet have context for the menu, 
because you don’t know where the media query is, so we can’t get a result.



142 Designing Responsive Layouts with CSS 

You can see from the PSD that once you open the menu, you also have four results 
in a row, and those must still be at least 240px wide. First figure out your results’ 
relative size. The target is 240px. Context is (100% – (5 × 1.25%) ÷ 4 = 23.4375%. 
Therefore, the formula is as follows:

Context = 240 ÷ .234375

That means the context is 1,024px. You can add a rule to your result’s CSS:

.drink {

  display: block;

  margin: 1.25%;

  width: 97.5%; /* 100% - 1.25% - 1.25% */

}

@media screen and (min-width: 506px) {

  float: left; /* Get our results to display next to one another */

  width: 48.125%;

}

@media screen and (min-width: 758px) {

  .drink {

    width: 31.666666667%;

  }

}

@media screen and (min-width: 1024px) {

  .drink {

    width: 23.4375%;

  }

}

That context, however, is in this case the width of the results list, not the entire 
page. You’re not done yet. The page width is currently made up of nav + #content, 
giving you the following:

300px + 1,024px = 1,324px

The entire page’s context is now 1,324px. From here, it’s trivial to apply your origi-
nal target ÷ context = result formula to the two top-level containers:

nav: 300px ÷ 1,324px = 22.6586103%

#content = 1,024px ÷ 1,324px = 77.3413897%



Responsive Layout Design 143

Therefore, to wrap this media query up, you must also add the following rules to 
the top-level containers’ CSS:

@media screen and (min-width: 1324px) {

  nav,

  #content {

    float: left;

  }

  nav {

    width: 22.6586103%;

  }

  #content {

    width: 77.3413897%;

  }

}

Something was skipped, though. Your media query for the individual result hap-
pens at 1,024px, but your rule for putting the <nav> next to the #content doesn’t 
happen until you’re 1,324px wide. A lot can happen in those 300px.

I’ll skip the math, but you actually should be increasing to 5-up when your context 
hits 1,298px. It’s persnickety, but you need to add two more rules to your results:

.drink {

  display: block;

  margin: 1.25%;

  width: 97.5%; /* 100% - 1.25% - 1.25% */

}

@media screen and (min-width: 506px) {

  float: left; /* Get our results to display next to one another */

  width: 48.125%;

}

@media screen and (min-width: 758px) {

  .drink {

    width: 31.666666667%;

  }

}

@media screen and (min-width: 1024px) {

  .drink {

    width: 23.4375%;

  }

}

@media screen and (min-width: 1298px) { /* Up to five */

  .drink {

(continues)



144 Designing Responsive Layouts with CSS 

    width: 18.5%;

  }

}

@media screen and (min-width: 1324px) { /* Back down to four */

  .drink {

    width: 23.4375%;

  }

}

At 1,298px width, you up your count to five, but when your context changes, you 
reduce it back down to four. We’ll stop this exercise here, before heads explode.

The Reusable 
Responsive Grid
That was a lot of work, but sometimes projects take that sort of long, tedious math 
to figure out perfect increments. Most of the time, however, especially when proto-
typing, you can find some corners to reduce that effort that will get you close enough 
before you ever have to break out the calculator.

In Chapter 3, you walked through the logic of creating a usable grid. Remember 
the five components?

 • Unit: The base module for a grid

 • Gutter: The spacing between each unit

 • X-count: The number of units in a row

 • Column: The vertical slices of units

 • Row: The horizontal slices of units

Now you’re going to actually make one in HTML and CSS.

(continued)



The Reusable Responsive Grid 145

Building a Reusable Grid
As much as I have talked about not ever letting one level of your progressive 
enhancement tower reach down and break another, there are certain points where 
lower levels can assist you by reaching up. In this section, you will add classes to 
your HTML elements that don’t help your semantics in any way but do help you 
conform to a grid.

I want to make this very clear: You are, in one way, breaking the semantic cleanli-
ness of your markup. This is a tradeoff for the ease of implementing a reusable grid. 
All of this work can be done within your semantic markup—it will simply take 
longer.

First look at a grid’s markup:

  <div class="row row-12">

    <div class="col-4"></div>

    <div class="col-4"></div>

    <div class="col-4"></div>

  </div> <!-- end row -->

  <div class="row row-12">

    <div class="col-3"></div>

    <div class="col-3"></div>

    <div class="col-6"></div>

  </div> <!-- end row -->

  <div class="row row-12">

    <div class="col-2"></div>

    <div class="col-2"></div>

    <div class="col-5"></div>

    <div class="col-3"></div>

  </div> <!-- end row -->

It doesn’t mean much yet, but maybe you can see where we’re going. Layer on the 
CSS that makes it do something:

.row {

  display: block;

  position: relative;

  &:before, &:after { 

      content: "";

      display: table;

  }

(continues)



146 Designing Responsive Layouts with CSS 

  &:after {

      clear: both;

  }

}

.row > [class^="col-"],

.row > [class*=" col-"] {

  display: block;

  float: left;

  position: relative;

  width: 100%;

}

You still don’t have actual flexible columns yet, but this code tells you that when 
you’re inside a .row and immediately find a .col-, you need to float each of them 
left, and box their positioning.

Now suppose you’re working with a 12-column grid and have decided (for math’s 
sake) to completely remove your gutter. Instead of manually writing out each row 
and column’s rules, you can use a CSS extension language to do it for you. CSS 
extensions like Sass or Less allow you to add variables, nested rules, mixins, inline 
imports, and more to your CSS.

In the code below, you see Sass (Syntactically Awesome Stylesheets) in use to 
quickly loop through each column in a row: 

.row-12 {

    @for $col from 1 through 12 {

      .col-#{$col} {

        width: percentage($col/12)

      }

    }

  }

This is simply shorthand to say that 
this element’s width is equal to the per-
centage modifier of its column value 
divided by 12. In essence, it’s doing 
exactly what you were doing when you 
computed your Cocktail Guide, just 
on a grid. Without gutters, it means 
that a .col-3 would have the width 
3 ÷ 12 = 25%.

 NOTE

Sass and Less have similar fea-
ture sets. Either one can mas-
sively speed up your development 
time. Learn more about Sass at 
http://sass-lang.com/ and 
Less at http://lesscss.org/.

(continued)



The Reusable Responsive Grid 147

Building a Responsive Grid
The good news is that you’re already almost there. You’ve built a grid that’s totally 
flexible and can be applied agnostically to the project’s design.

The difference now is picking your breakpoints—that is, the points at which you 
reset your sizes. In the Cocktail Guide exercise, you took the long, dumb, stumbling 
way to figure out exact sizes that worked for your content. When building your 
reusable grid, you can pick sizes now and tweak them later.

Adding Abstracted Sizes

Again assume you’re using a 12-column grid; but this time you’ll bucket your sizes. 
For the grid, let’s say you want to make responsive decisions for small at 320px, 
medium at 760px, and large at 920px. The names will make sense in a moment. 
Your markup for one row worth of columns could look like this: 

<div class="row row-12">

  <div class="col-s-12 col-m-6 col-l-7"></div>

  <div class="col-s-12 col-m-4 col-l-3"></div>

  <div class="col-s-12 col-m-2 col-l-2"></div>

</div> <!-- end row -->

See what you’re doing? Now add the CSS:

.row-12 {

  @media screen and (min-width: 320px) and (max-width: 759px) {

    @for $col from 1 through 12 {

      .col-s-#{$col} {

        width: percentage($col/12)

      }

    }

  }

  @media screen and (min-width: 760px) and (max-width: 919px) {

    @for $col from 1 through 12 {

      .col-m-#{$col} {

        width: percentage($col/12)

      }

    }

  }

  @media screen and (min-width: 920px) {

    @for $col from 1 through 12 {

(continues)



148 Designing Responsive Layouts with CSS 

      .col-l-#{$col} {

        width: percentage($col/12)

      }

    }

  }

}

All you’ve done is size-box your grid. You now have uniform breakpoints for small, 
medium, and large at which you can change the targets for every element within 
the grid at the same time.

As with the unresponsive reusable grid, it’s a powerful prototyping tool, but it can 
lead to bloated markup. Use it at your own risk.

Fortunately, many CSS frameworks already have these grids baked in. Twitter 
 Bootstrap and Zurb Foundation have powerful grids that work similarly, and they 
can be used out of the box.

I’ll say it once more, though: Be wary. Your progressive enhancement tower is shift-
ing beneath your feet.

Summary
You now have every tool you need to build a responsive website without JavaScript. 
You’ve learned the rules around how CSS works, and what levels of precedence each 
type of styling takes. You’ve also learned how to use the media query to start target-
ing your CSS to specific sizes of screen.

You have seen how to start retrofitting responsive CSS rules onto a non-responsive 
website. Hopefully you’ve decided that building your CSS media queries using 
min-prefixed screen size rules is a smart way to push a mobile-first mindset through 
your code.

Even more than that, you’ve learned how to use this CSS to build a reusable layout 
grid for your projects.

(continued)



Try It 149

Try It
Go forth and build rectangles. You now have the tools to build fluid, flexible, 
responsive layouts, so put those tools into action.

 • Easy: Go back to Chapter 3’s final product and add some responsive break-
points where content begins to break. There should be (at least) two.

 • Intermediate: Brush up on your CSS by building out the results list  
from the Cocktail Guide. More detailed designs can be found at  
www.responsivedatavisualization.com/cocktail.

 • Hard: Download the sample markup for the Cocktail Guide and convert it to 
use a 12-column grid. Get stuck? Maybe it isn’t actually possible… 



05



05Enhancing with JavaScript

As we reach the last layer of the progressive enhance-
ment tower, it’s important to remember how far you can  
get without reading this chapter. Fluid grids, media queries, 
and flexible images are the core of responsive web design. 
JavaScript is how you will bridge the gap from web design  
to complex responsive data visualization.



152 Enhancing with JavaScript

Using JavaScript
Your website is a building. The markup is the rebar and cement. CSS is the drywall 
and furniture. JavaScript is the electricity. Electricity is amazing and important and 
makes a whole lot work, but if you’re not careful, you can start a big fire with it.

JavaScript is a dynamic programming language. That means it executes its behaviors 
when the code is being executed on the client (runtime), rather than when it is being 
compiled. 

In a static programming language, such as Java or Objective-C, the type of a vari-
able must be declared explicitly in the code, like this:

String myString = "Hello world";

In a dynamic programming language, such as JavaScript, the variable does not need 
a type, as the language will figure it out at runtime. Here is an example:

var myString = 'Hello world';

Moreover, in a static programming language, once a variable is set as a type, it 
remains that type. Trying to do the following will result in a compile type warning:

String myString = "Hello world";  

myString = 1; // Compile type warning

In a dynamic programming language, you are free to change an object’s type for the 
same variable. Names are bound to an object with an assignment operator. There-
fore, the following works totally fine:

var myString = 'Hello world';

myString = 1; // Go for it, superstar.

There are many more differences between these programming languages than just 
how type handling works, but the lesson here is that there’s more freedom, and free-
dom to make mistakes, using a dynamic language.

Although JavaScript is available in plenty of non-web platforms, such as PDFs, 
desktop widgets, and virtual machines, for the purposes of this discussion it’s 



Using JavaScript 153

important to understand that JavaScript is part of the user’s browser. It’s used to 
implement scripts that interact with the user, modify the DOM, communicate 
asynchronously with the server, and control the browser itself.

JavaScript Enables Rich Interactivity
Simply put, the Internet would look a bit more boring without JavaScript.

Take, for example, Google’s instant search introduced a few years back. When you 
access google.com (with JavaScript enabled), you see their classic white home page 
with a search bar. However, the moment you begin typing, your view is radically 
switched to what looks like a results list, as shown in Figure 5-1.

FIGURE 5-1

Google’s instant search results in action

As you can see, after typing less than half a word of the search terms, Google is 
already displaying a ton of information. There hasn’t been any page refresh; but 
as you type, Google polls the partial search query you are inputting and does the 
following:

 • Checks saved searches that you have done before

 • Matches popular searches

 • Returns results for the partial search you are typing

 • Displays sponsored listings and ads for the search you are typing

All of these behaviors are dynamically updated in your browser as you type, and all, 
seemingly, in an instant. If you perform the same search without JavaScript enabled, 
none of the instant search capabilities are available, as shown in Figure 5-2. 



154 Enhancing with JavaScript

FIGURE 5-2

Doing the same search without JavaScript enabled removes all the instant search functionality.

With JavaScript disabled, the flow for executing a search is as follows:

1. Access google.com.

2. Input your full search.

3. Submit the form to execute the search.

4. Wait.

5. Reach a brand new page with your results.

The result is exactly the same, but the interaction just somehow feels worse, right? 
Doesn’t it feel dated?

With JavaScript still disabled, try now to check your Facebook news feed. You’re 
greeted with the message shown in Figure 5-3. Facebook.com does not work at all 
without JavaScript.

We’re spoiled by the amount of rich, interactive web applications that now either 
rely heavily on, or are completely broken without, JavaScript running on the client.

That sounds like it’s breaking a core tenet stressed in this book so far, doesn’t it?



Using JavaScript 155

FIGURE 5-3

Facebook without JavaScript enabled is entirely unusable.

Remember Progressive Enhancement
In the progressive enhancement tower previously described, JavaScript sits at the 
very top. Although it is basically ubiquitous in good modern browsers, you shouldn’t 
assume that your users will be accessing your content through one of those. More-
over, as shown in Table 5-1, it fails much more visibly than CSS or HTML, and it 
is simply quirky from browser to browser.

TABLE 5-1

How HTML, CSS, and JavaScript Handle Failure

Language Failure Type Failure Handling

HTML Unknown tag Treat as block element.

CSS Unknown Ignore rule.

JavaScript Literally anything Show error in browser console; stop parsing any  
JavaScript that comes after it.

Mobile-first building means careful consideration of just how much JavaScript 
you’re planning to use, and how you’re going to use it to alter the rendering and 
behavior of your website on various device types.

There are three high-level ways to think about how you’re going to include  
JavaScript in your website:



156 Enhancing with JavaScript

JS-Adaptive

Straightforwardly, with this method, all devices are served identical HTML, CSS, 
and JavaScript content. Only when the JavaScript is executed on the device does the 
site’s behavior change. 

It’s worth noting that this is the method that Google recommends using. Note also 
that it is, by far, the least amount of work.

Dynamically Served

With this method, all devices get the same HTML, but the JavaScript is served 
from a URL that dynamically sends the browser different JavaScript based upon the 
device’s user agent.

Using this configuration, all devices get the same HTML; and in that HTML, the 
<script> element reaches an external JavaScript file that can contain different con-
tent based upon the requesting user agent.

The problem with this approach, as you may already have gathered, is that this 
forces you to write different JavaScript based upon these different device user 
agents, meaning you are no longer creating abstract solutions for device features, and 
are instead solving for individual devices.

Combined Detection

This method relies both on JavaScript and server-side device capability detection to 
serve different content to different devices.

Combined detection relies on both the server producing dynamic JavaScript files 
and the client-side JavaScript detecting the device’s capacities and altering the con-
tent being served.

Not only is different JavaScript sent back, but also the HTML and CSS can vary 
greatly per client, as the website can detect screen dimensions, user agent, features, 
and so on.



Using JavaScript 157

This is commonly referred to as RESS: responsive web design with server-side 
components; and while this can produce extremely targeted experiences, it is much 
more work than the JS-Adaptive method, and it breaks the core concept of web 
URLs being the universal way to reach uniform content.

Sensible Defaults
Don’t worry. I’m not filling a chapter about JavaScript with excuses not to use 
JavaScript. The point is to get first to a working state without it. Then, get as close 
as you can to the ideal state without it. Then, write your JavaScript to make some-
thing working into something amazing. Consider the cocktail guide website from 
the previous chapter. If you recall, we sort of hand-waved around the way the menu 
toggle in the top-left corner worked (see Figure 5-4).

FIGURE 5-4

The menu toggle on the top left of the Cocktail Guide



158 Enhancing with JavaScript

Assume the menu has a bunch of categories, a search form, and a link to the home 
page. That’s obviously too much navigation to try to fit above the actual content of 
your search results page. First solve it without any JavaScript:

<a class="menu-toggle" title="Menu" href="#menu">

  <i class="icon-menu"></i>

</a>

<div id="container">

  <header>

    <a title="Menu" href="#menu"><i class="icon-menu"></i></a>

  </header>

  <div id="content" class="search"></div>

  <footer></footer>

</div>

<nav id="menu"></nav>

A pattern that’s been in use since the beginning of responsive design (or even simply 
mobile thought in web design) is the footer-anchor menu. That hamburger menu 
link in Figure 5-4 is simply an anchor link to the menu, as shown in the preceding 
code. The menu itself takes up the full screen width, and sits below the page’s footer, 
as shown in the following code. The menu is shown in Figure 5-5.

FIGURE 5-5

The Cocktail Guide’s menu



Using JavaScript 159

If you were to view the website on a very long, narrow screen, it would look a bit 
odd, as the menu would be sitting below all of the page’s content. That being said, 
this solution is essentially bulletproof. It does not rely on JavaScript, or even CSS 
(other than to make it visually attractive). The menu is there, but it’s just out of the 
viewport until someone looks for it.

Now that you have your working case, you can begin to make things better. Instead 
of linking to the bottom, you want to push your menu off of the page’s canvas to 
the left, and have it pull in next to the content when the menu button is clicked 
(see Figure 5-6).

FIGURE 5-6

The menu attached to the left of the browser window

Doing that means you’ll need to be able to toggle some behavior on the client when 
the user clicks the menu button; this sounds like interaction. You’re now at a point 
that you need JavaScript.



160 Enhancing with JavaScript

However, if you were to first add the CSS to position your menu off-screen by 
default and users didn’t have JavaScript working correctly, they would have no way 
to access the menu. That’s no good. Therefore, instead, keep your default, and only 
change the way the page is laid out if you know that the user has JavaScript enabled. 
You can do this by traversing down your progressive enhancement tower, adding a 
CSS class using JavaScript.

Put more simply, if your design layer needs to change to allow for your interac-
tion layer, ensure that the interaction layer is making that change. You’ll use some 
jQuery here to simplify the code that does this:

$(function() {

  $('body').addClass('js-enabled');

});

Now, in your CSS you can change the way #container and #menu are positioned 
when the body tag has proven that JavaScript is running on the client:

/* Default styles above */

.js-enabled #menu {

  left: -320px;

  position: absolute;

  top: 0;

  width: 320px;

}

You’re partway there. You now have a menu that is hidden off-screen when it isn’t in 
use. Notice that it’s moved -320px outside of the screen boundaries, and is 320px 
wide. Although it’s invisible to the user, it is technically only 1px away from show-
ing on the left side of the browser window. Suppose your menu has the same menu 
toggle (link) as the header, with the same class of .menu-toggle. You can now use 
JavaScript to conditionally add a class to your #menu to indicate that it should be 
visible:

$('.menu-toggle').on('click', function(e) {

  e.preventDefault();

  $('#menu').toggleClass('menu-open');

});



Using JavaScript 161

The toggleClass function will add or remove the class 'menu-open' from the  
#menu nav container whenever .menu-toggle is clicked. It’s then trivial to add your 
CSS to position the nav on-screen:

/* Default styles above */

.js-enabled nav {

  left: -320px;

  position: absolute;

  top: 0;

  transition: left .3s; //Add a simple transition

  width: 320px;

}

.menu-open nav.menu-open {

  left: 0;

}

Notice above that there’s a transition on the menu. This is a nice touch to make 
it feel like the menu is moving onto and off of the screen, rather than simply 
disappearing.

You now have a menu that feels more interactive, but keep going. If you recall from 
the same example, once you have enough room to keep both the menu and the 
search results next to one another on the screen, you want them both to always 
show. This is illustrated in Figure 5-7.

FIGURE 5-7

Both the menu and results are shown next to one another when there is enough screen space.



162 Enhancing with JavaScript

It doesn’t seem like you’re adding any more interaction with this change, though. It 
seems strictly like design. In fact, you solved for this in the previous chapter about 
using CSS, before knowing anything about JavaScript.

You can walk through that example again or just review the following snippet, with 
the small addition to hide the navigation toggle buttons at this size:

@media screen and (min-width: 1324px) {

  nav,

  #content {

    float: left;

  }

  nav {

    width: 22.6586103%;

  }

  #content {

    width: 77.3413897%;

  }

  .nav-toggle {

    display: none;

  }

}

It would be great if this just worked but you have added some conflicting specificity 
in the CSS selectors, by referencing the .js-enabled and .menu-open classes. How-
ever, because this is a design-level problem, you should find a design-level solution. 
That solution is using the max-width media query to limit your changes to the 
screen sizes for which they need to work. Here is the full simplified CSS:

@media screen and (max-width: 1323px) {

  .js-enabled nav {

    left: -320px;

    position: absolute;

    top: 0;

    transition: left .3s;

    width: 320px;

  }

  .menu-open nav.menu-open {

    left: 0;

  }

}

@media screen and (min-width: 1324px) {

  nav,

  #content {



Responsive JavaScript 163

    float: left;

  }

  nav {

    width: 22.6586103%;

  }

  #content {

    width: 77.3413897%;

  }

  .nav-toggle {

    display: none;

  }

}

You have now progressively built a navigation module that works perfectly without 
JavaScript, uses JavaScript nicely on screens for which it is suitable, and attains an 
ideal state on large enough screens. You’re done, right?

Well, no. Keep in mind that this JavaScript is always going to be running in the 
background listening for clicks on the .menu-toggle, even when it is no longer 
clickable. What you need is a way to conditionally query the browser for features in 
JavaScript, just as you did in CSS.

Responsive 
JavaScript
That’s exactly what you’re going to do. If the preceding solution was an answer for 
unobtrusive JavaScript, you want to find a way to create lightweight responsive  
JavaScript that is only requested and used when the device’s features allow for it.

Your first thought might be to run 
to polling for user agent strings and 
building for specific devices. Wrong. 
Bad. No. You’re better than this. 
You’ve already seen that building for 

 NOTE

User agent polling is discussed as a 
helpful technique for RESS (and 
not much else) in Chapter 2.



164 Enhancing with JavaScript

one device doesn’t help you in the long-term, as you’ll then need to build sepa-
rately for every device.

Server-Side Feature Detection
This gets you partway to where you want to be. Feature detection is the self-con-
scious, older brother of the media query that turned to creatine and protein shakes 
after he didn’t make varsity.

It was briefly mentioned earlier, in the discussion about RESS and combined device 
detection for JavaScript loading. Essentially, this forces the work a media query 
would be doing onto the server. At its core, server-side feature detection still relies 
on decoding the browser’s user agent string and then abstracting that out to differ-
ent device functionalities. Libraries, expensive ones, must be kept up to date, and 
polled by your server-side code to check whether device X has a certain screen size, 
can be portrait/landscape, has retina resolution, and so on. Suppose you’re querying 
simply for screen width. Your server-side code would need to create different files 
that all resolve to "./script.js" in the following code; and the file would need to 
be served with a "vary:user-agent" HTTP header:

<script type="text/javascript" src="./script.js"></script>

This totally solves the problem, but it forces you to create different assets (HTML, 
CSS and JavaScript) for different device types. The boundary here blurs between 
adapting to devices and simply creating new mobile websites.

Building from CSS
I’ve been poking holes in the other methods—it should be clear that a bridge 
between CSS and JavaScript is what we’re looking for. The media query has 
helped tremendously in making responsive CSS; it needs to have a cousin in the 
JavaScript world.

Without actually relying on anything new, you can create a facsimile of a media 
query to poll your JavaScript. It works by pushing some content into the :after 
pseudo-class of your page, as shown in the following code:



Responsive JavaScript 165

body:after {

  content: 'small';

  display: none; /* Hide content */

}

Here, on the page’s body tag, you have added a piece of hidden content to indicate 
(building mobile-first as your default) which device you consider small, medium, 
and large.

You create your CSS media queries as normal, as shown in the following code:

body:after {

  content: 'small';

  display: none; /* Hide content */

}

@media screen and (min-width: 600px) {

  body:after {

    content: 'medium';

  }

}

@media screen and (min-width: 960px) {

  body:after {

    content: 'large';

  }

}

The assumption here is that 600px and 960px are sizes at which you have decided a 
number of meaningful design changes need to happen; and as such you have been 
able to bucket these as medium and large device classes.

At this point, you have simply created a piece of content that sits in your DOM 
and automatically updates when the viewport width changes. What you need to 
add is a meaningful connection to your JavaScript.

It just so happens that vanilla JavaScript can poll the :after pseudo-class’s content, 
as shown in the following code:

var query = window.getComputedStyle(document.body,':after')

                  .getPropertyValue('content');



166 Enhancing with JavaScript

You now have a JavaScript variable which is populated with your CSS media query’s 
above-set small, medium, or large value. Whenever the above code is run, it will 
look for the :after pseudo-class of the body, and get its content, which is set in 
CSS.

In your JavaScript, you can now conditionally load different JavaScript for small, 
medium, and large screens, as shown here:

var query = window.getComputedStyle(document.body,':after')

                  .getPropertyValue('content');

if (query.indexOf('small') > -1) {

  //load small JS

}

if (query.indexOf('medium') > -1) {

  //load medium JS

}

if (query.indexOf('large') > -1) {

  //load large JS

}

This is a viable solution, and it makes sense that your JavaScript breakpoints should 
build upon, and reflect, your CSS breakpoints. However, it seems like you’re taking 
a step in the wrong direction, cluttering up your CSS (and technically your DOM) 
with that body:after content for your JavaScript.

Additionally, unless you wrap this code in a check for window resize, it will only be 
accurate the first time it runs. If someone, for example, switches from portrait to 
landscape, and crosses the threshold of medium and large, the JavaScript won’t be 
updated accordingly.

You can wrap the code in that resize check, but polling the DOM is an incredibly 
expensive thing to do in JavaScript, and you don’t want to force it unnecessarily.

JavaScript’s matchMedia Object
Enter the JavaScript-only solution to the media query: the matchMedia object.

The matchMedia object is a property of the JavaScript Window object, which rep-
resents the browser’s open window. When queried, the matchMedia returns a 



Responsive JavaScript 167

MediaQueryList object representing the parsed results of the window’s media query 
string. Yes, the same media query string described in Chapter 4.

Here’s what it looks like:

var mql = window.matchMedia(mediaQueryString);

In the preceding example, mediaQueryString would look something like "(min-
width: 600px)". It’s exactly what you would expect.

The method to query whether or not the matchMedia(mediaQueryString) resolves 
to true is .matches. Therefore, the following reproduces what you earlier tried to 
base on CSS:

if (window.matchMedia('(max-width: 599px)') {

  //load small JS

} else if (window.matchMedia('(min-width: 600px) and (max-width: 

959px)').matches) {

  //Load medium JS

} else {

  //load large JS

}

The huge benefit you get from the MediaQueryList is that you can also add listeners 
for changes on it. Suppose, again, you were concerned about a user switching from 
portrait to landscape. You can add the following listener to poll only when the ori-
entation changes:

var mql = window.matchMedia('(orientation: portrait)');

mql.addListener(handleOrientationChange);

handleOrientationChange(mql);

function handleOrientationChange(mql) {

  if (mql.matches) {

    //The device is currently in portrait orientation

  } else {

    //The device is currently in landscape orientation

  }

}

You now have a 100% JavaScript solution that uses the same media queries you are 
already familiar with.



168 Enhancing with JavaScript

A note on browser support: It’s not stellar. The matchMedia object is relatively 
young; and although it’s supported well on mobile devices, that support begins to 
falter on desktop browsers. Internet Explorer, in fact, has only supported it since 
version 10.

As such, although this seems like the most promising future-friendly method, it 
may not be suitable for your current website’s audience. As with any other adaptive 
design method, first understand who you are building for.

Limber Up
At this point you have done all you can to responsively decide what JavaScript you 
are going to use; but how can you now use that JavaScript in a lightweight way that 
enables you to build mobile-first? If you have determined that you have JavaScript 
available on the client, you can begin to push things that would normally block 
page load to afterward. This can happen most easily via AJAX (asynchronous 
 JavaScript and XML), and presents interesting design challenges when you’re no 
longer moving between pages, but rather changing content within a page.

AJAX
If you have a heavy page that takes a long time to load, the simplest option is to just 
make a less heavy page. As pithy and obvious as that sounds, there’s actually some 
unique and challenging work behind the idea.

When you are building mobile-first, you are defining the core experience, and after 
that what is just nice to have content. Why, then, would you bother loading any-
thing more than that core at page load?

Conditional Loading

One of the largest challenges when building for the entire spectrum of devices 
is determining how to deliver the same content to all those devices, and their 



Limber Up 169

connection speeds. While ensuring that the most important content of a page is 
reachable instantly, you can actually push the nice to have content later, and inject it 
via JavaScript.

What you use to do that is AJAX, asynchronous JavaScript and XML. AJAX is not 
one language, or a specific technology, but rather the combination of JavaScript 
with an XMLHTTPRequest object to provide a data exchange between the browser 
and the server without a page reload. Despite the name, it does not actually require 
that the content being accessed is XML. You can pull back JSON data, or even full 
HTML and CSS.

These techniques help a ton when optimizing a page, but you need to be careful not 
to use them in such a way that you introduce more barriers to universal accessibility 
of a website through its URL regardless of device.

A great method to do this is an “AJAX-including” pattern that relies on JavaScript 
to enhance the way links to different content work. To demonstrate how it works, 
suppose you have the following markup:

<div id="content-block">

  <main class="main-content">

    ...

  </main>

  <aside class="complementary-content">

    ...

  </aside>

</div>

By default, and in the most heavy way, you would pull all the content for both 
.main-content and .complementary-content, but if you have determined that 
.complementary-content isn’t the core of what you’re trying to convey, but rather 
just nice to have, instead push it out of the page.

This takes a bit of work on the server side. First, you need a URL to just that con-
tent, let’s say “/aside.” That link would have a full HTML page with your website’s 
header, footer, and whatever other container you would like to display. Once you 
have that wired up, your first step can be rewriting your main page’s HTML, as 
shown here:

<div id="content-block">

  <main class="main-content">

(continues)



170 Enhancing with JavaScript

    ...

  </main>

  <aside class="complementary-content">

    <a href="/aside">Complementary Content</a>

  </aside>

</div>

However, now you have potentially created a worse experience, especially for users 
who have the bandwidth to pull everything in at once. To remedy that, create an 
additional version of your content on the server, a page that simply holds what 
would have been within that original .complementary-content container. You still 
need an end point for that, so call it “/aside-fragment.”

Using HTML5 data- attributes, you can reference that as follows: 

<div id="content-block">

  <main class="main-content">

    ...

  </main>

  <aside class="complementary-content">

    <a href="/aside" data-content="/aside-fragment">Complementary 

Content</a>

  </aside>

</div>

Your JavaScript work is to then reach this element, load the content from the 
data-content attribute, and replace the link with that content. The code to do this 
is as follows:

var $aside = $('.complementary-content');

var $contentLink = $aside.find('[data-content]')

$aside.load($contentLink.attr('data-content'));

The <aside>’s link is removed, and replaced with the actual content, after the load 
succeeds.

A Note on Performance

Note one caveat, however. Every time you do this, you are incurring an additional 
HTTP request. Each AJAX-include can defer the time it takes for the core experi-
ence to be enhanced with this additional content. On mobile devices, this becomes 

(continued)



Limber Up 171

a serious problem, as the number of concurrent HTTP requests allowed by devices 
can be frighteningly low.

This limitation means that while the technique is still useful, pushing your entire 
site after page load just means you’ve redefined page load.

JavaScript Linking

Instead of pushing your content after page load, what if you could change the way 
users interact with links after they decide to learn more. Suppose you have the fol-
lowing markup:

<div id="container">

  <header>...</header>

  <main class="main-content">

    <p>Some content</p>

    <a href="/more">Learn More</a>

  </main>

  <footer>...</footer>

</div>

That Learn More link simply leads to more content on a new page. While brows-
ers are getting better about caching what they can, assume that on that next page 
you repeated the header and footer—that seems wasteful. The following adds a 
data-content attribute again, but this time links to only the content that would 
replace the .main-content:

<div id="container">

  <header>...</header>

  <main class="main-content">

    <p>Some content</p>

    <a href="/more" data-content="/more-fragment">Learn More</a>

  </main>

  <footer>...</footer>

</div>

This way, instead of automatically loading in this element on page load, you can 
capture the link click, prevent its default behavior, and just load in the content. 
Check it out here:

$('a[data-content]').on('click', function(event) {

  event.preventDefault();

(continues)



172 Enhancing with JavaScript

  var $main = $('.main-content');

  $main.load($(this).attr('data-content'));

  history.pushState(null, null, $(this).attr('href'))

});

That second line specifies that the link should not follow its href attribute, as it 
would by default. Then, you’re pulling in the data-content from the link and 
replacing your main content.

In that last line, you’re updating the browser’s URL to reflect the actual link to the 
content. Because you are preventing the link from being followed, you need to 
explicitly tell the browser where the content would be if users wanted to get to a 
page that shows the same thing just pulled in with AJAX.

Think of a normal link click, two major things happen on the client:

1. The page content changes.

2. The URL changes.

If you don’t have either of those happening normally, you need to force them both 
manually so that if a user was to land on the new URL, they would expect and 
receive the new content.

Perceived Performance
Now that you’ve built up your toolset, consider for a moment your actual goal. Is it 
truly to make sites as quick and performant as possible, or is it to make them appear 
that way?

The perceived performance of a website is just what it sounds like: how quickly the 
site appears to perform a task. In many ways, humans are dumb and distracted by 
shiny, moving things, and you can use this lack of attention to your advantage by 
designing in such a way that, regardless of whether you can improve actual perfor-
mance any more, you can use techniques to increase perceived performance.

An effective technique revolves around decreasing the time between a user’s input 
and some form of visual feedback, such as a progress indicator. In fact, sometimes 

(continued)



Limber Up 173

adding the slight delay of a progress indicator can exploit the user’s inability to accu-
rately judge real performance, thereby making a website seem faster.

Therefore, let’s finally put a few of the concepts from this chapter together, keep 
perceived performance as a goal, and see how you can design a highly interactive 
JavaScript-enabled web application.

The Train Tracker

You’re taking on a new project: a subway tracking website. The website is obviously 
most useful on mobile devices, and should be as lightweight as possible. You have 
access to a city’s routes and timing data, and you want the web application to do 
the following: Create a list of routes, each with its given collection of stops. For 
each stop, you query the city’s timing data, and display a real-time ETA of when the 
train will arrive at that stop.

Distilling that project brief, you have three different views:

 • Display the routes.

 • Display the stops on a route.

 • Display the real-time ETA at a stop on a route.

You could certainly cram all these views into a big list—you have all the data—but 
you want to work as lightweighted  as possible and make your home page simply a 
list of color-coded routes as buttons (see Figure 5-8).

Although you know that you’ll need any of the eight different routes, you delay 
loading any of them until the user explicitly chooses one:

<a href="/blue" data-stops="blue.json" alt="Blue Line>

<i class="icon-train></i>

</a>

Assume that you have populated JSON lists of all the route stops on your own 
server. If no JavaScript is enabled, the user is taken to a basic list of stops along that 
route, but because you successfully determined that JavaScript is available on this 
device, you can dynamically poll a simplified JSON end point to retrieve only the 
list of stops and then populate it in your page.



174 Enhancing with JavaScript

FIGURE 5-8

A subway-tracking website. All you populate at page load is the main list of route links.

An implementation of those links is shown in the preceding code snippet. An 
example of the JSON is shown here:

{

  "stops": [

    {

      "LINE":"blue",

      "STATION":40890,

      "STATION_NAME":"O'Hare",

      "LON":-87.90422307,

      "LAT":41.97766526

    },

    ...

    {

      "LINE":"blue",

      "STATION":40390,

      "STATION_NAME":"Forest Park",

      "LON":-87.817318,

      "LAT":41.874257



Limber Up 175

    }

  ]

}

With JavaScript, you ignore the link to /blue, and instead populate a portion of 
your DOM with the blue line’s stops. However, that isn’t an instant process.

Visual Feedback While Waiting

Add some visual feedback while the stops are being loaded: Change the background 
color and insert a simple spinning wheel progress indicator (see Figure 5-9).

FIGURE 5-9

Visual feedback of progress after a user selects the blue line but before its stops have been loaded

After the data has arrived, you hide the progress indicator and feed that data into 
the screen; the result is shown in Figure 5-10.



176 Enhancing with JavaScript

FIGURE 5-10

The line’s stops have been loaded dynamically into the page without a refresh.

This is now a list of stops pulled in from the end point on your server, parsed, and 
spit back out onto the page as a list of links to their station IDs on the city’s server 
that you have to poll. The next bit of markup shows a prototypical stop, followed 
by an example stop:

<a class="stop-link" href="/<%= LINE %>/<%= STATION %>" data-stop=" 

<%= LINE %>/<%= STATION %>"><%= STATION_NAME %></a>

<a class="stop-link" href="/blue/40890" data-

stop="blue/40890">O'Hare</a>

You can assume some server-side implementation of a “/blue/40890” end point is 
available for non-JavaScript situations, but let’s again work toward the perceived 
performance of reaching another domain and pulling back data.



Limber Up 177

In this situation, not only is the content being conditionally loaded, but there’s no 
reason to retrieve stop arrival data for an entire list of stops to begin with. The goal 
is sensible defaults, and a user is going to be looking for one stop, not all of them.

To handle a user clicking on a stop, again use JavaScript to ignore the link’s href 
attribute, and this time reach beyond your server to retrieve ETA data. The chances 
are good that this will take longer than just getting JSON for the route’s stops from 
your own server; so rather than simply add a progress indicator, put this content 
into a small new modal that’s easy to exit or attempt to refresh the browser to feel 
some control when things begin to take too long. This is shown in Figure 5-11.

FIGURE 5-11

Progress indicator while content is being fetched and AJAX-loaded in for an individual stop’s 
ETA information



178 Enhancing with JavaScript

Once the content is retrieved, you again remove the progress indicator and fill the 
list with parsed JSON. However, keep the close and refresh links for this stop at the 
top of the modal. Given that this is time-sensitive information, a user may want to 
refresh just this part of the page. Behind the scenes, this would do exactly the same 
thing that clicking the stop’s link had just done. The populated modal is shown in 
Figure 5-12.

FIGURE 5-12

An individual train stop’s data after successful loading



Limber Up 179

Just-In-Time Feature Detection

Now back up to the list of stops again for a moment. Note at the top of Figure 5-10 
you have that additional link to closest stop. Plenty of devices, phones and comput-
ers alike, have access to the HTML5 geolocation API through the use of (surprise) 
JavaScript on the browser. Following is some simple code to use this API:

function getLocation() {

    if (navigator.geolocation) {

        navigator.geolocation.getCurrentPosition(alertPosition);

    } else {

        alert('Geolocation is not supported or has been disallowed.');

    }

}

function alertPosition(position) {

    var location = 'Latitude: '+ position.coords.latitude+ 

                    'Longitude: '+ position.coords.longitude; 

    alert(location);

}

getLocation();

Open your developer console and try that code. Provided the API is actually avail-
able to you, you should first get a dialog asking if you are willing to share your loca-
tion. Because geocoordinates could pose a safety risk, you have to handle not only 
the API not being available, but also users deciding not to let you use it.

This is a kind of just-in-time feature detection. You need to show the button by 
default, because you don’t want to immediately ask for all kinds of permissions on 
a user’s device as soon as they reach the website—especially if they’re not even plan-
ning to use the feature.

Check out the JSON for your stops 
again. You have each stop’s latitude 
and longitude coordinates. Using some 
math that you can easily find online 
(and that I don’t need to add here to 
show off), you can identify the closest 
stop to a user by first attempting to get 
their location, and then run through 
the list to find the shortest distance.

 NOTE

geolocation is one of many 
HTML5-specific APIs avail-
able in the browser. Examples of 
this and many others can be  
found at https://github 
.com/AurelioDeRosa/

HTML5-API-demos.



180 Enhancing with JavaScript

However, only attempt to match a user’s location to a stop if they actually click that 
link (see Figure 5-13).

FIGURE 5-13

Just-in-time feature detection. The site asks for location services only if the user tries to use 
them. Notice the progress indicator on the Closest Stop button.

What if the user selects Don’t Allow or is on a device without geolocation services? 
Because you opted to show the link by default, you need to indicate that the loca-
tion services failed. However, consider perceived performance: To the user, there is 
no difference between waiting a long time and having a nonworking feature.

Therefore, add a timeout for geolocation of a comfortably long 15 seconds. After 
this amount of time, remove the option and display some kind of nice message that 
assumes the blame for the service not working.



Limber Up 181

Conversely, if it works, select the closest stop and do exactly what would be done 
if a user had clicked that stop to begin with: The modal pops up with the progress 
indicator, data is retrieved from your external data source, and then it is parsed and 
shown on-screen (see Figure 5-14).

FIGURE 5-14

Successful location services used, and data loaded

And you’re done. In the most simple scenario, you have a list of links that accesses 
pages with another list of links, which then accesses pages with lists of times. 
When you add JavaScript, you have a rich web application that dynamically pulls 
data into a page while giving users visual feedback that makes it seem lightweight 
and performant.

Check out the live version of this web application at cta.billhinderman.com.



182 Enhancing with JavaScript

Summary
You now have all the tools you need to make rich, mobile-first responsive websites. 
A sturdy foundation has been laid to begin exploring responsive and interactive data 
visualization built upon the following techniques:

 • Progressive enhancement

 • Sensible defaults

 • Mobile-first CSS

 • Media queries

 • Responsive JavaScript

 • Conditional loading

 • Perceived performance

In the following chapters, you’ll use all these tools to build visualizations that not 
only convey complex information, but also distill it to the most lightweight and 
simple presentation.

Try It
Want to practice some responsive JavaScript techniques?

 • Easy: Check out the code on responsivedatavisualization.com/ 
chapter-five/q1. You have all the assets ready to pull three different JavaScript 
files into your page, but are not yet pulling them in. Build the logic switch to 
pull js_small.js, js_medium.js, and js_large.js in at the correct sizes. A 
sample solution is also given in the repository.



Try It 183

 • Intermediate: Expand on the preceding question by handling resize and ori-
entation events within your logic switch. A sample solution is also given in the 
repository.

 • Hard: Check out the code on responsivedatavisualization.com/ 
chapter-five/q2. It’s a page with one main section, and two optional sections. 
You’ll notice other files containing JSON representations of the optional sec-
tions. Rewrite the index.html page to load only the main section by default, 
and push the loading of the other sections after initial page load. A sample solu-
tion is also given in the repository.

 • Expert: Expand on the preceding question by only pulling the additional sec-
tions in when users request them. Explore different ways to make the perfor-
mance of this operation feel faster to a user. A sample solution is provided in the 
repository.





 PART  

TWO
Creating Responsive Data Visualization

CHAPTER 06: Data Design: An Abridged History

CHAPTER 07: Responsive Data Visualization Tenets

CHAPTER 08: Thinking Small

CHAPTER 09: Asset Dependence

CHAPTER 10: Code

CHAPTER 11: Building the Future-Friendly Web



06



06Data Design:  
An Abridged History

Until this point, you have not been considering how 
your content would affect your design. In this section, 
layout will still be a major contributing factor to how 
you design, but you will also begin to consider how your 
actual content (your data) impacts how you produce a 
product for end users. In this chapter, you’ll take a brief 
look at a set of useful terms for thinking about data 
 visualization on the responsive web.

It’s important to understand the process of data collection 
and analysis to establish a baseline of what work needs to 
be done to find useful data, and what work needs to be 
done to turn big data into useful data visualization.



188 Data Design: An Abridged History 

Learning From Data
Put your finger down on this paragraph and pause for a moment to look around 
you. There are concrete facts everywhere you look. You’ve touched one paragraph 
today. The dishwasher has been running for eight minutes. You have six pairs of 
clean underwear in the drawer.

These concrete facts are data. They lack assumptions or conclusions; they are simply 
things that you can observe and measure. Visualizing data can help you build infor-
mation and draw knowledge from facts that may, on the surface, seem innocuous.

The things around you right now might not seem like they need visualization. 
They’re fairly straightforward.  But put them in context.  Your dishwasher running 
for eight minutes means that there are still 12 minutes left in its rinse cycle, and 
then 10 in its dry cycle.  You have guests arriving in 15 minutes, which means you’ll 
need to spend seven minutes distracting them from the lack of wine glasses avail-
able.  Adding more data creates more room for interpretation and finding meaning.

An even more visualization-friendly example: You’re a gardener.  You need to keep 
track of planting times, soil and water needs, pH levels, fertilization times, etc.  You 
could certainly keep this data in your head, or spill it into a notebook as one long 
list.  But a chart with each plant as the row and each of those points of data listed 
above as a column seems like an obvious solution to get to the meaning of: “What 
do I need to do in the garden today?”

We visualize data because, at a certain point, we lose track of the abstract things to 
which we’re trying to attach it.  Whether in a table, chart, or infographic, visual-
ization of data helps move from “this is the data” to “this is what the data means.” 
Distilling data into understandable representations enables us to glean greater 
knowledge than we ever could by just trying to remember all the information 
listed out. This process is called data science, and it can be broken down into the 
following steps:

1. Live in the world.

2. Observe things about that world.



Learning From Data 189

3. Collect those observations as raw data.

4. Process that data.

5. Clean your data set.

6. Make exploratory analyses.

7. Build models around analyses.

8. Communicate/visualize/report.

9. Make deeper analyses from reports.

10. Make decisions.

This may seem like an overwhelming simplification of how to receive and handle 
data, which it is, but it’s a handy list to look back to if at any point you find yourself 
getting bogged down by technical details.

Data, Information, and Knowledge
Data is collected from the environment in which you live. It is strictly raw findings 
and it is perfectly concrete. Through processing, data is distilled into information, 
which can be shared in a meaningful way. Finally, this information can be analyzed, 
and used to produce some kind of output or findings, which we’ll call knowledge.

Looking back at the gardening example, two pieces of data would be:

The tomatoes were watered three days ago.

The tomatoes need water every three days.

Processing that data, the resulting information is: The tomatoes need water in zero 
days. Using your context, that you are the gardener, you can gain the following 
knowledge: You need to water the tomatoes today.

It’s worth digging into data, information, and knowledge a bit more, as they pro-
vide the basis for how collecting, parsing, and conveying information to a user adds 
value to your data.



190 Data Design: An Abridged History 

Data

So data is our least abstract concept. It’s the stuff that we see and collect. The sky 
is blue. My arm is tingling. I taste oranges. My heart beat 120 times in the past 45 
seconds. Figures 6-1 and 6-2 show images of two common signs that are nearly 
universally understood, with the first one designating a restroom for males and the 
second designating a restroom for females. In other words, they serve as the data 
representing useful (or in this case, necessary!) information.

FIGURE 6-1

Sign for a washroom your author should use

FIGURE 6-2

Sign for a washroom your author shouldn’t use



Learning From Data 191

The data in this scenario is as follows:

 • There are two washrooms.

 • The washrooms are somehow different.

 • The person viewing the signs must select one.

Information

Signs such as these, and many others you see and respond to unconsciously every 
day, are effective because they convey information.

Figure 6-1, of course, is found outside of a men’s room. The fact that there are 
urinals, a worse smell, and offensive graffiti are data. The sign itself is conveying 
information.

In this simple example, the data reflects the existence of two bathrooms. The 
 information being conveyed is that one is a men’s room, and one is a women’s room.

Knowledge

As someone who has certainly used a public restroom before, you can apply your 
prior knowledge to select the correct door after viewing the signs, readily fulfilling 
whatever need prompted you to seek the restroom in the first place (e.g., wash 
hands, empty bladder, apply lipstick, etc.).  Knowledge is what we get out of infor-
mation when we put it in context.  It is how we learn from the massive amount of 
data around us and apply those learnings to make our lives better.

Size Matters
The most simultaneously important and meaningless term in our field today is 
big data. It’s important because it reflects the ever-growing volume of information 
that people want to manage, and it’s meaningless in the sense that what is big 
today might seem small tomorrow. Chapter 11, Building the Future-Friendly Web, 
 elaborates on that point.



192 Data Design: An Abridged History 

Big data is, as simple as it sounds, a lot of data. It’s an exciting term in our field 
because it takes a greater amount of processing power and design forethought to 
distill big data into unambiguous information that can be processed into meaningful 
knowledge. That being said, it is not necessarily more meaningful than small data.

It’s safe to say that the amount of data available is going to keep growing as band-
width gets cheaper, data collection becomes more universal, and the amount of time 
spent on web-connected devices essentially becomes 24/7.  That being said, the 
value comes from gaining knowledge from data, not just having it.

That means that you will need to do even more work to process data into an expres-
sion that is both effective and efficient. As content creators for the web, we need to 
recognize that the amount of input we have is going to reach simply insurmount-
able levels for humans to manually parse.

Data’s Data
Data itself can have its own data. That is, there can be concrete facts about a set of 
concrete facts. This is called metadata.

A pre-web example of metadata would be the card catalog of a library. It was stan-
dardized, which provided patrons with information about each of the library’s 
resources in a standardized manner. A library’s card catalog held a register of the 
materials (books, magazines, newspapers, graphics, maps, etc.) held within the 
library. The catalog would obviously not hold the materials themselves, since…
that’s what the library was doing, but would rather be the pertinent information for 
the library’s patrons to seek out the actual material.  That information would be: the 
author, the title, the subject, and the date of publication for a material.  With this 
metadata, a patron could find the material they were looking for based upon the 
organization of the library itself.

The purpose of metadata is to provide for the discovery of relevant or related infor-
mation. It comes in two different flavors: structural and descriptive.

 • Structural Metadata: Structural metadata (or control metadata) is self- 
explanatory: It is used to describe the structure of some data—that is, the design 



The Big Pile 193

and specification of how the data itself is organized. An example of structural 
metadata would be a book’s table of contents.

 • Descriptive Metadata: Descriptive metadata, which is often more useful to us 
on the web, is used for discovery of related data. It is used to group items by, for 
example, author, subject, or keyword. On a website, descriptive metadata can 
often be found in the tags on a blog post or news story.

The Big Pile
Assume you have a big pile of data, and that data has a big pile of metadata. Walk-
ing through the data science process outlined at the beginning of the chapter, you 
first have to remove data that is not helpful.  This can be referred to as cleaning 
the data, and really just means beginning to parse out the subset that is going to 
help you extract meaningful information. Once it’s parsed, you need to begin to 
categorize exactly what the data is, in order to glean deeper meaning from the raw 
observations.

Your big pile of data is all of the planting and soil information from the garden at 
the beginning of the chapter.  If your goal was to create a working schedule for what 
needs to be done in the garden, a piece of data that could be removed from the set 
during cleaning would be “You did not plant any green peppers this year.”  It may 
be useful in other contexts, but not this one.  Remember that the goal of data sci-
ence is to extract and convey meaning from a set too complicated to parse mentally.

Extracting Meaning 
As you try to extract information from your data, it helps to classify what sort of val-
ues you are looking at.

Data visualization expert Stephen Few has described eight different types of 
 quantitative messages that users can extract from a set of data, and the associated 



194 Data Design: An Abridged History 

graphical representations that most effectively communicate those messages. The 
following list, created by Stephen Few in his 2004 article, “Eenie, Meenie, Minie, 
Moe: Selecting the Right Graph for Your Message” (Perceptual Edge, 2004), 
explores each of these.

 • Time Series: In a time series, the values displayed stand for a single variable, 
demonstrating how something has changed over time. An example would be a 
company’s rate of employee retention over a given period of time.

 • Ranking: A ranking orders values in either ascending or descending order 
during a single period. An example might be the number of clients each 
account executive accidentally beat at golf over the past year.

 • Part-to-Whole: Values in a part-to-whole relationship represent proportional 
divisions of a greater whole—for example, the amount of bourbon each 
member of the creative team drank out of the bottle hidden in the creative 
director’s desk. 

 • Deviation: In a deviation, values correspond to differences between two sets of 
values. An example might be the difference between the agreed-upon budget 
and the actual budget.

 • Distribution: A frequency distribution’s relationship counts the values per some 
interval from lowest to highest—for example, the years in which a company’s 
growth was between 0–5 percent, 5–10 percent, and so on.

 • Correlation: A correlation is the comparison between two different variables to 
determine whether they move in the same, opposite, or unrelated directions—
for example, the number of hours an employee spends working versus that 
employee’s weight. 

 • Geographic: In a geographic relationship, a value is compared across a map or 
geospatial layout—for example, number of bald employees born in each state.

 • Nominal Comparison: In a nominal comparison, values are simply charted by 
some related aspect, in no particular order—for example, commercial sales by 
television channel.



The Big Pile 195

Communicating Meaning
Graphics reveal the meaning behind data. Data visualization, and the architecture 
behind it, should keep the following goals in mind:

 • Identify: Find a set of data that is meaningful enough that conveying it to peo-
ple will help them, and complicated enough that its meaning is not intuitive 
without some level of visualization.

 • Manipulate: Parse and combine the data in such a way that the meaning 
behind it starts to become more clear.

 • Format: Whether or not it needed manipulation, change the way in which you 
are accessing your data so that it is standardized for consumption.

 • Present: Use your standardized formatted data to present some representation 
that helps convey its underlying meaning.

The idea is to approach the data in such a way that understanding its meaning 
becomes obvious and natural for a consumer. Of course, that’s easier said than done.

When you’re communicating data, it’s important to consider its graphical display. 
Whether the data is a sentence explicitly communicating information or an interac-
tive third model, you want to maximize both efficiency and effectiveness.

Efficiency of display means reducing complexity, noise, or unnecessary data in 
a visualization. An effective display should provide data in a way that eliminates 
any questions and avoids unnecessary ornamentation that could lead to incorrect 
assumptions or correlations between the information it represents.

Effectiveness of display means providing information in a way that is understand-
able, clear, and actionable. Effective displays should empower a consumer to make 
decisions and change behavior.

Graphical Displays

In his book The Visual Display of Quantitative Information (Graphics Press, 2001), 
Edward Tufte defines graphical displays as follows: “Excellence in statistical graphics 



196 Data Design: An Abridged History 

consists of complex ideas communicated with clarity, precision and efficiency.” He 
goes on to list nine principles for effective graphical display:

 • Show the data.

 • Induce the viewer to think about the substance rather than about the method-
ology, graphic design, the technology of production, or something else.

 • Avoid distorting what the data has to say.

 • Present many numbers in a small space.

 • Make large data sets coherent.

 • Encourage the eye to compare different pieces of data.

 • Reveal the data at several levels of detail.

 • Serve a reasonable clear purpose.

 • Integrate closely with the data set’s statistical and verbal descriptions of a  
data set.

Base Forms

Data can be communicated in a number of ways familiar to all of us. 
Although these common, well-known forms may not seem particularly com-
plex, even just the number representation or anecdotal sentence surrounding its 
meaning are forms in which data is communicated. Looking back to the garden-
ing example, a number representation of data would be: “Days until tomatoes 
need water: 0.” A sentence conveying this information would be “Tomatoes need 
water today.”

The base forms of data communication are numbers, sentences, tables, graphs and 
charts, and infographics.



The Big Pile 197

Types of Graphs

Let’s first dig into graphs (and slightly into infographics). The following sections 
briefly outline the major players that I’ve recognized as more than a little bit useful, 
and more useful than a lot of others.

Visualization can become complex, and cute, and “designy”; but it still has to com-
municate data effectively—and that’s what these graphs are good at.

Tables

A table is often how raw observed data is first distilled. It is a simple, if unsexy, way 
to begin to draw conclusions about different sets of data along a series of dimen-
sions. Table 6-1 shows an example. As you can see in the example, items along the 
top axis are compared along dimensions labeled on the left axis.

TABLE 6-1

A simple table

Set 1 Set 2 Set 3

Dimension 1 5 2 6

Dimension 2 9 7 4

Dimension 3 1 0 5

Bar Charts

A bar chart (see Figure 6-3) presents grouped discrete data with rectangular bars. 
The lengths of the bars correlate to the values of the data they represent. Bars can be 
plotted vertically or horizontally.

Stacked Bar Charts

A stacked bar chart (see Figure 6-4) is similar to a standard bar chart, except each 
bar is divided into subparts to show both a part-to-whole representation of values 
and the differences between the wholes themselves across the sets.



198 Data Design: An Abridged History 

FIGURE 6-3

A bar chart. Sets are described along the x-axis, while their measure is communicated  
on the y-axis.

FIGURE 6-4

A stacked bar chart. Both the sets themselves and the parts within them are represented.



The Big Pile 199

Histograms

Using a histogram (see Figure 6-5), you can represent the distribution of continu-
ous data. Data in a histogram must be put into consecutive, non-overlapping “bins” 
in order to construct the series of bars in which each value is represented. The bars 
are touching to indicate that the value is continuous. A data set for which a histo-
gram might be useful is the distribution of exam grades for a class.

FIGURE 6-5

A histogram. Like a bar chart, but for continuous data on one set

Pie Charts and Donut Charts

A pie chart (see Figure 6-6) shows the relationships of multiple values as part of a 
greater whole.

A donut chart (see Figure 6-7) functions in exactly the same way as a pie chart, but 
it has a big blank spot in the middle (making it look like a donut). Ancillary data 
can be shown in this center spot, but it is typically used as is, rather than the pie 
chart, simply because the relative ratios of each section are more intensely obvious 
than in a pie chart.



200 Data Design: An Abridged History 

FIGURE 6-6

A pie chart. Each slice makes up a part of the whole.

FIGURE 6-7

A donut chart



The Big Pile 201

Scatter Plots

A scatter plot (see Figure 6-8) displays values for two variables in a data set. While 
it can be used similarly to a line graph (without the line) for a relationship whereby 
one variable is independent and one dependent, the greater strength of a scatter plot 
is the capability to expose nonlinear relationships between variables.

FIGURE 6-8

A scatter plot. Two variables can be plotted against each other to identify otherwise unknown 
patterns and relationships.

Moreover, if a mixture of simple relationships represents the data, these relation-
ships become visually evident as patterns arise in the plot.

Line Charts

A line chart (see Figure 6-9) shows the relationship between a quantitative variable 
and a time series. It is essentially a scatter plot with a more obvious pattern, shown 
by straight line segments joining each point.



202 Data Design: An Abridged History 

FIGURE 6-9

A line chart. The y-axis represents a measurable variable, while the x-axis  
represents a time series.

Area Charts

An area chart is similar to a line chart in that it shows the relationship of one vari-
able to time. However, it differs in that its measuring method is typically more akin 
to that of a stacked bar graph, with the area from the graph’s start to the measured 
point providing the meaningful information.  The cumulative area under the line is 
the major conveying factor of an area chart.  The area chart comes in three flavors: 
basic area, stacked area, and 100% area.  The basic area chart starts all lines from 
the x-axis, like any other graph, and overlays them.  The stacked area places areas 
of greater value on the bottom layer and “stacks” those with smaller values on top.  
The 100% area chart is similar, but data is stacked on top of each other and the data 
values for each item will total 100%.  That is, the chart will always take up all of its 
available rectangular space.

A stacked area chart, which is likely what you have seen before, is shown in 
Figure 6-10.



The Big Pile 203

FIGURE 6-10

A stacked area chart. Cumulated totals over time are shown. 

Dorling Maps (Bubble Charts)

A Dorling Map, or bubble chart, if you want to sound less fancy, is a variation on the 
scatter plot. The bubble chart represents variables in multiple ways: the x,y coordinates 
of a bubble, the bubbles’ relative locations to one another, and each bubble’s size.

Additional information beyond these dimensions can be effectively shown in a 
bubble chart as well, either by shading of colors within one set of data, or coloring 
different sets of data in uniform fashion and comparing their relative distances 
or sizes from one another as in Figure 6-11.  The value gained by a bubble chart 
is the amount of different dimensions that can be shown in a relatively simple 
visualization.

Although called a map, it has nothing to do with geographical information.  The 
Dorling map below could represent the overlap in mutual friends between two users 
on Facebook.  The colors represent who the individuals were friends with first, the 
size being the amount of overlapping friends those three have, and the distance from 
either axis being the frequency of posting on one another’s wall.



204 Data Design: An Abridged History 

FIGURE 6-11

A Dorling map. It can show at least three dimensions of data, based upon size, clustering, and 
the x,y location of a bubble. 

Venn Diagrams

A Venn diagram, or set diagram (see Figure 6-12), shows the relationships between 
two or more sets. Each circle represents a set, and items within the circles belong to 
the sets. The overlapping section in the middle contains items that belong to both sets.

FIGURE 6-12

A Venn diagram. Two sets of data and their overlapping items are represented.



The Big Pile 205

Nested Venn Diagrams

Similar to the Venn diagram, the nested Venn diagram (see Figure 6-13) shows the 
items belonging to increasingly more exclusive sets. If the largest circle is the least 
exclusive, each smaller nested circle represents a meaningful subset of its parent.

FIGURE 6-13

A nested Venn diagram. The largest circle is the least exclusive set, while each  
smaller circle represents a subset.

Networks

A network diagram, or node-link diagram (see Figure 6-14), represents the vertices 
and edges of a graph, showing the relationships between the vertices.



206 Data Design: An Abridged History 

Networks can be either undirected (as in the figure) or directed, which means that 
whatever variable is being measured is valid only in a particular direction.

FIGURE 6-14

A network diagram. Relationships between vertices (the dots) are shown as edges (the lines).

Cartograms (Maps)

A cartogram (see Figure 6-15) is a map. It maps data to geographical locations. A 
standard geographical map is a cartogram; it’s simply mapping the geographical 
data of a location onto its geographical location.  More interesting cartograms 
substitute another category of information instead.  This could be crime rates per 
county, electoral votes in a state, or traffic patterns on a highway.



The Big Pile 207

FIGURE 6-15

A cartogram. It’s a map, but shows a different kind of information.

Radar Charts

A radar chart (see Figure 6-16) shows multivariate data.  Multivariate data is data 
with multiple unrelated variables being compared to one another. The radar chart 
superimposes each of these variables onto the same chart to give greater insight 
into patterns found in places where they overlap. All axes must start from the same 
point (typically 0) at the center and extend outward. The position and angle of 
the axes typically don’t convey any additional information other than the numbers 
themselves.

Radar charts are useful in both identifying trends among multivariate data, and also 
putting a spotlight on obvious outliers in the data, visualized as dramatic spikes or 
valleys on one axis.



208 Data Design: An Abridged History 

FIGURE 6-16

A radar chart. Multiple variables can be charted from the same initial point to determine 
where patterns may exist among multiple data sets, and whether there are any obvious outliers.

Tree Maps

A tree map (see Figure 6-17) displays hierarchical relationships between values. 
Each “branch” of the tree is represented by a rectangle, with smaller rectangles sub-
tiled within other rectangles. 

In addition to showing possible correlations between dimensions, size and color can 
be used in conjunction with the base construction, creating a much more space- 
efficient visualization technique, and showing larger data sets much more legibly 
than other types of graphical displays.

Heat Maps

A heat map (see Figure 6-18) shows the clustering of repeated data. Rows, columns, 
cluster size, and color can all be used to categorize different sets of values.



The Big Pile 209

FIGURE 6-17

A tree map. Data that is more prevalent takes up more space.

FIGURE 6-18

A heat map. Data points that cluster are shown with greater “heat.”



210 Data Design: An Abridged History 

Timelines

In a timeline (see Figure 6-19), events are shown as points along a straight line from 
time A to time B. They can additionally vary in size or shape to signify importance, 
number of people involved, or some other secondary measure, but the primary 
function is to show when events happened chronologically.

FIGURE 6-19

A timeline. Events are shown in chronological order.

Sentences

“It is going to rain tomorrow.”

This last one is important. If you want to share an obvious and critical piece of infor-
mation from your data, then there is no need to complicate the matter with a graph 
of some kind. Simpler is always better.

Of course, you have plenty of other ways to visualize data; but as you get into more 
esoteric visualizations, they begin to pull from one or more of the aforementioned 
types, and begin to work against the fourth principle of effective graphic displays: 
Induce the viewer to focus on the substance, rather than the methodology, the 
graphic design, the technology of production, or something else.

What You Get from 
the Web
So far, nothing put forth in this chapter is specific to the web, or even to digital data 
visualization. Each of the preceding graphs can be used to communicate data on 
a sheet of paper. Web design was born from, and informed by, print design; and, 



What You Get from the Web 211

just the same, web data visualization was born from print data visualization. How-
ever, there are web-specific aspects of the field that are both helpful and headache 
inducing. 

Interactivity
Print visualization is a one-way street. Things are created, and things are consumed. 
There’s no way to provide feedback on a sheet of paper, unless . . . you’re making a 
data visualization flipbook, I suppose. (Give me credit if you happen to pursue that 
horrible idea.)

On the web, you do not need to stop at the first level of presentation. You have 
links, hover states, a keyboard, touchscreens, geolocation, and a wealth of other 
ways in which you can interact with the individual consuming your visualization.

Choosing a Sensible Default

In perhaps the most obvious way, you don’t need to limit yourself to a single 
method of visualization. Sure, in print you can create two different graphs and put 
them near each other, but online you can present your information in unlimited 
ways at once.

For example, suppose you have a set of data that provides interesting insight when 
shown as a scatter plot, but also when visualized on a timeline, and each individual 
mark on the timeline also serves as a communicative pie chart. Recall how you han-
dled the base cases for your responsive design.

You can pick a sensible default to display to your users, say, the timeline, because 
why not? Then, provided you have the page real estate, and bandwidth, show 
options to move to the other visualizations as well.

Meta Information

If you were working with print, you are limited to presenting the data, throwing 
any metadata into an appendix. Online, however, that’s not the case. For example, 



212 Data Design: An Abridged History 

just as a blog post’s tags can be used to relate it to other blog posts, you can attach 
metadata to your visualizations to create meaningful relationships between entirely 
different sets of data.

Remember from earlier in the chapter, the purpose of metadata is to provide for the 
discovery of relevant or related information.  Structural metadata provides non- 
visual data consumers with information about how your data should be consumed, 
while descriptive metadata describes what the data is describing.

A Taste of Responsive
As you’ve now learned the basics of data communication through visualization, it’s 
time to begin connecting this concept back to responsive design.  If the goal is to 
always have an experience that seems natural on the device available, your meth-
ods for visual communication are not going to ever simply be “pick the right chart 
once.”  In Chapter 8, you’ll learn about building an efficient API (application pro-
gramming interface) to your data.  That is, a way to reach your data without any 
screen.

But before getting there, think about what you’re trying to solve for now: You need 
to account for a sea of screen sizes and device features, but you also need to account 
for any level of data complexity.

Providing Natural Experiences

The whole pile of different data visualization types described in this chapter were 
included for a reason (apart from how pretty they look). With so many possible 
ways to present users with information, it can be daunting to determine which is 
the best for your particular scenario. The bottom line is to provide the most natural 
experiences for users on any device.

That means you need to be efficient and effective with your presentation; and you 
can achieve that by adhering to sensible defaults and working responsively, display-
ing options and meta information only when it actually makes sense to do so.



What You Get from the Web 213

Reliably Everywhere

The URI is the core of the web. In Chapter 2 you read about content parity 
between devices when reaching the same website. The “Thematic Consistency of 
Resource Identified by a URI” sums it up nicely:

This is a realization of the One Web principle, whereby content should be 
accessible on a range of devices irrespective of differences in presentation capa-
bilities and access mechanism. Web sites may paginate their content in various 
ways corresponding to differences in device characteristics; therefore the nav-
igation structure of the site, and possibly its technical realization, may vary 
according to the device class that is being served.

W3C Mobile Web Best Practices 1.0

Users want to do everything everywhere. Give them what they’re looking for, and 
don’t penalize or pardon them for the way in which they’re reaching your content.

This is just as important in terms of data visualization. It is understood that you 
cannot show the exact same dashboard on a mobile screen as you can on a high 
definition television. What matters is that you can still make the underlying data 
the same, and reachable.

A New Dimension to Respond To

Responsive data visualization has a dimension that you didn’t need to worry about 
in web design: the size of the data set. Apart from screen size, bandwidth, device 
class, or anything else, you need to first and foremost serve your actual data.

We’ll get into the weeds in subsequent chapters, but the point here is to understand 
that you need to be able to recognize and respond to data sets whether they contain 
seven entries or seven million.

In the next chapter, you’ll approach the task just as you did in Part One of this 
book, and begin to think of data visualization mobile-first.



214 Data Design: An Abridged History 

Summary
What you’ve learned in this chapter is how to begin consuming data, parsing it into 
some useful information, and conveying it in an efficient and effective way to com-
municate meaning.  At the start of the chapter, you learned the basic structure of 
data science:

1. Live in the world.

2. Observe things about that world.

3. Collect those observations as raw data.

4. Process that data.

5. Clean your data set.

6. Make exploratory analyses.

7. Build models around analyses.

8. Communicate/visualize/report.

9. Make deeper analyses from reports.

10. Make decisions.



Summary 215

Understanding how to handle the massive amount of data available to you is a piv-
otal skill in creating visualizations that are meaningful and communicative.

In the following chapter, you are going to revisit many of the tenets of responsive 
design that were introduced in Chapter 2, applying them to data visualization.  
You’ll also learn a few new ones that were brought up at the end of this chapter, sur-
rounding a new concept: responding to data.



07



07Responsive Data  
Visualization Tenets

As you push toward building more complex, data-
driven applications on the web, it’s important to 
understand the many parallels between responsive data 
visualization and responsive design as a whole. In this 
chapter, we’ll revisit some of the core tenets established 
throughout the book so far, adding clarity and specific-
ity to how they relate to data visualization. You’ll also 
learn some new principles for guiding how you build 
visualizations for the web.



218 Responsive Data Visualization Tenets 

Designing  
Content-First
It wasn’t too long ago that creating a chart on the web was essentially impossible. In 
Not So Distant History, the horribly resistant path of least resistance was to use the 
.NET Framework to render a chart on the server, and return a static image via an 
interpreter layer.

You read that right: a static image.

The only way to have interactive charts in Not So Distant History was to force users 
to leave the browser and open Excel. Users were stuck looking at a JPEG of a chart, 
and it was virtually impossible to draw any meaning out of the data other than by 
actually looking at it without interacting with it, because the visualizations were sim-
ply images—there was no semantic markup embedded within them.

While images were a simple way of visualizing data, developers also turned to Java 
Applets and Flash. These were plugins that could render beautiful complex informa-
tion loaded from external sources. Just as with web design as a whole, Flash seemed 
to dominate the market for a long time, as it removed the limitations of working 
strictly with the DOM.

However, that freedom ultimately caused their failure—they were so removed from 
any semantic concepts, and so heavy to implement, that better standards began to 
crop up. Flash is now mainly used to serve streaming media, ads, and interactive 
multimedia content on the web, and even those are moving toward native video 
implementations.

Thankfully, things have gotten better. Microsoft introduced Vector Markup  
Language (VML), originally for their Office Suite, as an XML-based file format 
to represent two-dimensional vector graphics. Although this standard didn’t last, 
it did give birth (more accurately, was a fraternal twin) to Scalable Vector Graph-
ics (SVG).



Designing Content-First  219

SVG is also an XML-based vector graphic format. It supports interactivity and 
animation, and is itself supported by nearly all major browsers. And because it is 
XML-based, writing an SVG is just like writing any other markup on the web. To 
that end, SVG provides an incredibly lightweight way to visualize information. Not 
only that, but it uses tools you are already familiar with, and does not depend upon 
anything outside of what is built into the browser already.

Still Just the Web
Here’s the good news: You’re not starting from scratch. Not even a little bit. This 
book is about building responsive data visualization for the web, so you’re still work-
ing with the web.

What that means in a practical sense is that the tenets put forth in Chapter 2, 
and everything you’ve learned since then, still apply. Responsive data visualization 
within the browser can be thought of as a continuation of the more broad respon-
sive design. You’ll see a lot of the terminology from Chapter 2 repeated in the fol-
lowing sections, but taking on slightly more specific meanings in how they apply to 
data visualization.

Just be sure to keep it top-of-mind that you are not working with any new visualiza-
tion-specific tools, and are speaking the same language you have up until this point.

It’s All Greek to Me

Throughout this chapter, you’ll notice the element <viz></viz> in some of the 
code. This is not a real HTML element, but simply in place to encapsulate your 
visualization within the page’s layout. It serves to show that you are still working 
with elements on a page; and just as you would style a <div> or a <span>, you can 
apply those same principles to a <viz>.

We’ll get there, I promise. For the time being, though, think of the data visual-
ization as a small object model within your DOM. It will have HTML elements 
that can be styled with CSS and modified with JavaScript. All the implementation 
details will make sense once you lay a base of higher-level techniques.



220 Responsive Data Visualization Tenets 

Everything’s a Nail

That said, the techniques described here will seem very familiar. There’s a lot of 
“Hey, remember when…” in this chapter because responsive data visualization is a 
subset of responsive design, not another topic.

You’re going to use the same four principles defined earlier, but now you’ll connect 
them directly to how you build web applications backed by large sets of data, not 
just pictures of kittens and angsty blog posts.

Distilling Data
What is the key difference in your input to a data visualization, as opposed to a 
text-driven website?  Well…the data. Rather than content living on the page, you’re 
consuming, parsing, and displaying complicated sets of numbers in order to convey 
that set’s implicit meaning clearly and efficiently.

Distilling your data into something presentable to the user is built upon the same 
foundation of progressive enhancement that fuels responsive web design. You’ll first 
retrieve raw data. Then, you’ll find some way to standardize that data and parse out 
a meaning. That standardized data becomes the content you build into meaningful, 
semantic markup. On top of that markup, you then apply styling that makes the 
visualization more clear.

Back to step one, though: Where do you get your data?

Handling Data

Data can come from anywhere. For the purposes of this chapter, we’ll focus on two 
typical sources:

 • Your own server

 • An external API

The difference between the two should be apparent from their names, but let’s be 
thorough. The first data source enables you to change the structure of your parsed 
data because you have total control over it. The second is out of your control, pulled 
from a database over which you have no control.



Designing Content-First  221

Both of these situations will be common as you work with data visualization on the 
web, so it’s important to learn techniques that work for either case.

Structured Data as Content

For the bulk of this book, you have been considering the mobile user as your most 
limited and basic case. You consider a small screen with a bad Internet connection 
and limited functionality, and build for that; then you enhance. We’ve been calling 
this progressive enhancement.

It’s been fine to limit your approach in this way when talking about responsive 
design—after all, you’re designing for humans. But if you’re thinking about com-
municating data sets to these same users, then you need to first consider a user with 
no screen at all. You need to consider the browser itself as your base user. Instead of 
working mobile-first, you need to work API-first.

An API, or application programming interface, is a set of protocols specifying how 
software components should interact. Or, in human terms, it defines how two 
pieces of software should speak to one another. An API, in your case, should be the 
expected inputs and standardized outputs of interacting with your data set.

Recall for a moment the subway schedule app from Chapter 5 (see Figure 7-1). In 
your project brief, you had three distinct views:

Display the routes.

Display the stops on a route.

Display the arrival times at a stop on a route.

Remember that you decided to push any of your data loading to after page paint to 
improve the app’s perceived performance. After a user clicked a route from the initial 
route list, you loaded a blank page with a progress indicator while the data was being 
fetched. The link to the blue line was constructed as shown in the following code:

<a href="/blue" data-stops="blue.json" alt="Blue Line">

    <i class="icon-train></i>

</a>



222 Responsive Data Visualization Tenets 

FIGURE 7-1

The train tracker website you constructed in Chapter 5

During this time a call was made to your API. Assume you have the simplified code 
for that call in the following code. This code is part of a larger JavaScript application 
that uses Backbone to construct views; but for your current purposes, you just need 
to know that the first code block populates a collection of stops, while the second 
code block is the model for an individual stop.

define([

  'underscore',

  'backbone',

  '../models/stop.js'

], function(_, Backbone, StopModel){

  var StopsCollection = Backbone.Collection.extend({

    model: StopModel,

    url: function() {



Designing Content-First  223

      return this.apiUrl;

    },

    initialize: function(models, options) {

      this.apiUrl = options.apiUrl;

    },

    parse: function(data) {

      return data.stops;

    },

  });

  return StopsCollection;

});

define([

  'underscore',

  'backbone',

], function(_, Backbone) {

  var StopModel = Backbone.Model.extend({

    defaults : {

      'DISPLAY_URL':'',

      'LINE':'',

      'STATION':0,

      'STATION_NAME':'',

      'LAT':'',

      'LON':'',

    },

    initialize: function() {

      this.set({'DISPLAY_URL': '#/'+(this.get('LINE'))+'/'

          +(this.get('STATION'))});

    },

  });

  return StopModel;

});

You’ll notice that you reference apiUrl in the stops collection. In this case, you were 
simply reaching a URL on your server that had a list of all train stops on that route. 
Therefore, your API input was simply the correct route’s name. For example, the 
blue line’s would have looked like this:

var apiUrl = './lines/blue.json';



224 Responsive Data Visualization Tenets 

Remember from Chapter 5 that your API’s response was JSON formatted, as 
shown here:

{

  "stops": [

    {

      "LINE":"blue",

      "STATION":40890,

      "STATION_NAME":"O'Hare",

      "LON":-87.90422307,

      "LAT":41.97766526

    },

    ...

    {

      "LINE":"blue",

      "STATION":40390,

      "STATION_NAME":"Forest Park",

      "LON":-87.817318,

      "LAT":41.874257

    }

  ]

}

That works very well, but your app’s URI to get to the blue line’s stops (for humans) 
is cta.billhinderman.com/blue. There’s a disconnect between your data URI and 
your human URI. Instead, construct your apiUrl as follows:

var apiUrl = './blue.json';

Because you are simply hitting your own server, you have the power to change this 
without too much effort: All it requires on your server is moving where you keep 
your stops lists to the top-level folder.

Now, apart from the type of file you’re looking for, you have achieved continuity 
between your browser’s computer-facing URI and your human-facing URI.

You’ll learn about communication with other apps later in the chapter.

Build Basic Markup

So what have you just constructed? Your URI to /blue doesn’t exist yet, but /blue 
.json is now all of the data you have parsed and decided is a meaningful representa-
tion of the stops along the blue line.



Designing Content-First  225

You have built your API for stops, and can move onto the actual markup. This 
becomes an exercise in building mobile-first, as you would do normally. The details 
of this design were a major focus of Chapter 5, but let’s revisit the markup you cre-
ated. Remember that your JSON representation has the following attributes, which 
you have decided are useful:

 • Line

 • Station

 • Station name

 • Longitude

 • Latitude

Previously, you ignored the latitude and longitude in the example, as you were just 
walking through an exercise demonstrating how to populate a list with AJAX. Now, 
assume that you included it in your JSON for a reason, and produce the markup 
that is most meaningful to your users. Your more robust code is shown in the fol-
lowing example:

<li itemscope="" itemtype="http://schema.org/SubwayStation">

  <a id="stop-<%= STATION %>" href="#/<%= LINE %>/<%= STATION %>" 

itemprop="name"><%= STATION_NAME %></a>

    <span itemprop="geo" itemscope="" itemtype="http://schema.org/

GeoCoordinates">

    <meta itemprop="latitude" content="<%= LAT %>">

    <meta itemprop="longitude" content="<%= LON %>">

  </span>

</li>

The link in the second line should look familiar. It was the basic markup that you 
needed to display which stop this was to a user, and to create the correct link to 
then get that stop’s ETA information via the station ID. What you’ve added is called 
meta information.

This is the basic information that, rather than a human, and rather than the 
browser, another website can read. In this case, you’re using the schema.org guide-
lines for structured data to let search engines understand that the element enclosed 
in the <li> tag is a subway station.



226 Responsive Data Visualization Tenets 

The additional itemprop on the link sets the station’s name to the content within 
that element; and all of the new information within the span is the geolocation of 
the stop, which you provide as latitude and longitude.

Schema.org structured data can be thought of as a type of semantic markup for 
elements that don’t strictly have an analogue to print media. Whereas headings, 
paragraphs, footers, and asides are all supported tags in HTML, there obviously isn’t 
a <train station>. When you add this additional metadata to the element, you are 
essentially describing it to a user that has no eyes—namely, a search engine crawler.

Throw Pretty at It

At this point, you’ve constructed the following:

 • API: Your JSON file, which can be accessed easily by hitting its URI of  
/blue.json

 • Human-readable markup: The actual tags that now show up on /blue, which 
link to each stop’s ETA list

 • Website-readable markup: The meta tags on your markup, which allow, 
among other things, search engine crawlers to parse out your information in a 
way more meaningful than a big list of text.

At the moment, however, your list of links looks something like what is shown in 
Figure 7-2.

You previously created some mobile-first, responsive styles for this website, and fol-
lowed a good practice of keeping your markup (and classes and IDs) led by content, 
rather than the other way around. However, you did not call that out explicitly. You 
won’t walk through that again, but instead use it to look at a related point.

As you build data visualizations on the web, you should be even more aware than in 
responsive designs of a blog or an online store, that the information you are sending 
across can become incredibly heavy. Later in the chapter you will learn about data 
size, this new property of responsive data visualization, but for now you can think 
about the next step in your train tracker app.



Designing Content-First  227

FIGURE 7-2

The train tracker without any styling

A user has clicked on an individual stop, and is waiting to get ETAs loaded into a 
list. You already know that you have to account for the user’s device capabilities, but 
now you also have to account for (at least) the following cases:

 • No trains

 • No trains in only one direction

 • Construction delays on a track

 • Station closures

In addition, there will likely be times when something in your system actually goes 
wrong and you can’t fetch data. All these scenarios lead to a concept called layering, 



228 Responsive Data Visualization Tenets 

whereby data may be presented to the human user or a digital user (such as a search 
engine crawler), but it can also be incorporated into design techniques to modify 
how you present the data.

Let’s look at that last item in the list: station closures. You likely wouldn’t want to 
wait until a user tried to fetch ETAs for a stop to have that information. For now, 
assume some magic happens in the backend, and you make an external call to pop-
ulate your JSON list with a new attribute: status. A stop would now be represented 
as the following JSON:

{

  "stops": [

    {

      "LINE":"blue",

      "STATION":40890,

      "STATION_NAME":"O'Hare",

      "LON":-87.90422307,

      "LAT":41.97766526,

      "STATUS": "CLOSED"

    },

    ...

    {

      "LINE":"blue",

      "STATION":40390,

      "STATION_NAME":"Forest Park",

      "LON":-87.817318,

      "LAT":41.874257,

      "STATUS": "NORMAL"

    }

  ]

}

You could then modify the link in your markup to take a class based upon this sta-
tus, as shown here:

<li itemscope="" itemtype="http://schema.org/SubwayStation">

  <a id="stop-<%= STATION %>" class="status-<%= STATUS %>" href="#/<%= 

LINE %>/<%= STATION %>" itemprop="name"><%= STATION_NAME %></a>

    ...

</li>

Then, in your CSS, add the following rule to display to the end user that this sta-
tion is currently not in operation:



Revisiting Responsive Design Principles 229

.status-closed:after {

  content: " : Not operating";

}

You may be thinking that this isn’t actually visualization in the sense that it doesn’t 
look like a chart.

As explained in the previous chapter, the point of any data visualization is to reveal 
the meaning behind data. You should always strive for the goals of identifying, 
locating, manipulating, formatting, and presenting data in such a way that it com-
municates its meaning easily and effectively.

You certainly could plot these stations on a map, and then create a timeline showing 
how far each train is from a station on interaction (and, spoiler, you’re eventually 
going to do that just for fun), but the simple text that you have created here is 
ample visualization to communicate the meaning of your data.

Revisiting Responsive 
Design Principles
In this section we’ll start to connect this all together. At the beginning of this 
book, four guiding principles were defined for working responsively on the web: 
be universal, be flexible, be economical, and be specific. To adapt those to data 
visualization, these principles are now: Be universal, be flexible, be economical, 
and be specific.

That’s right.

The big secret is that responsive data visualization is simply responsive design with 
more factors to respond to. Your goals, your guiding principles, remain the same. No 
matter what you’re conveying to a user, you want it to be as accessible and natural 
an experience as possible. Knowing that, we can focus on how the four principles 
defined in Chapter 2 apply to data visualization.



230 Responsive Data Visualization Tenets 

Be Universal
When we first started looking at responsive design, we went back a decade to con-
sider what it meant to be on the Internet. More than likely, users were at a desk, 
looking at a screen that was slightly bigger than their head. The typical user had 
a mouse and a keyboard, a relatively stable Internet connection, and no other 
 Internet-connected devices.

Of course, by now we’ve established that this is no longer the case. Your mantra is 
to include as many humans as possible, but is that enough when the information 
you’re presenting is no longer a blog post or an image?

Achieving Content Parity in Data Visualization

Now that you’re dealing with data, you can’t suddenly assume that users only want 
to see certain things on certain devices. Remember: If someone can get to your con-
tent, you should understand that to mean they want to get to it. It’s more import-
ant to make your data available than it is to ensure that your design is pixel perfect.

However, a visualization demands a certain layout, and you can’t simply use the 
same display with some responsive shift to fit it nicely onto a screen.

More important, you can’t move in the opposite direction and hide data simply 
because certain features or the space are not available. The problem is that text and 
data just don’t work the same way.

Your solution actually sits at a layer below the visual design, or even the human- 
visible content. To achieve content parity in data visualization, you have to ensure 
that when users who don’t even have a screen reach your website, they receive all 
relevant and meaningful information.

What Is the URI to Data?

I’ve referenced the “Thematic Consistency of Resource Identified by a URI” a few 
times by now, but it’s worth bringing up again in this instance:



Revisiting Responsive Design Principles 231

This is a realization of the One Web principle, whereby content should be 
accessible on a range of devices irrespective of differences in presentation capa-
bilities and access mechanism. Web sites may paginate their content in various 
ways corresponding to differences in device characteristics; therefore the nav-
igation structure of the site, and possibly its technical realization, may vary 
according to the device class that is being served.

W3C Mobile Web Best Practices 1.0

Before, this quote was fodder for the argument against a separate mobile web, and 
for responsive design. Basically, mobile users want to do everything that desktop 
users can, and the URI should always point to the same information regardless of a 
user’s device type.

As mentioned in the “Distilling Data” section of this chapter, you can go a long 
way toward the concept of data content parity by building “API-first.” In the 
train tracker example, you laid out your hierarchy of data presentation as API, 
human-readable markup, and website-readable markup, but let’s now explicitly 
define each step:

1. Raw data: This is your input—all the unsorted and yet-to-be meaningful data 
from which you are hoping to draw conclusions.

2. Parsed data: This is the data that you have scrubbed and begun to analyze.

3. API: This is the first layer that you need to expose—your most basic way of 
showing data to a user. This can be, for example, JSON output of a collected 
subset of your parsed data.

4. Visible markup: Fed by the data in your API layer, and achieving parity with 
that data, this is the HTML markup that constructs your visualization.

5. Metadata markup: This is the invisible layer of markup that helps provide 
additional context for the data presented in your visible markup.

Table 7-1 summarizes how exactly you achieve parity between the visible layers of 
data for both machine and human end users.



232 Responsive Data Visualization Tenets 

TABLE 7-1

Layers of Data in a Web Application

Layer Data Set Visible to User URI

Raw data All of your data No -

Parsed data Organized subset of raw data No -

API Meaningful subset of parsed data Yes /data.json

Visible markup Meaningful subset of parsed data Yes /data.html

Metadata markup Meaningful subset of parsed data Yes /data.html

The most important point of this table is that the three layers visible to a user all sit 
at the same URI end point, and convey the same information.

Be Flexible
When you worked toward this principle earlier, it meant learning to steer away 
from pixel-precise designs that work only at pixel-precise sizes.

At this point, it should be clear that layouts need to be flexible to accommodate the 
massive and ever-increasing variety of screen sizes and device capabilities for which 
you are building. However, when it comes to visualization, you have to first reeval-
uate what you can actually be flexible about it terms of layout. Similarly, you must 
also think about flexibility in your data set.

Forget the Device

Figure 7-3 shows a very small sample of the large variety of devices currently avail-
able. In terms of data visualization, although you can optimize for the device fea-
tures that you anticipate will be used (or even know will be used) by your largest 
audience, you clearly can’t count on any one screen as being the only size you have 
to consider (or, say, one phone, one tablet, and one laptop all made by Apple). 

Thinking about the amount of screens on which your visualization can potentially 
be accessed, you must begin to consider the level of granularity, placement of labels, 
and overall beauty vs. clarity of your designs. Your data should always be available, 
but it doesn’t always need to be immediately visible. Because visualizations invite 



Revisiting Responsive Design Principles 233

interaction much more than, say, a paragraph of text, you have the freedom to layer 
more data on top of your initial and most simplified view.

FIGURE 7-3

A small fraction of the screen sizes for which you build

Forget the Data Set

Here’s the flip side, though. Your data isn’t going to be perfectly tailored to the 
screen size you have, or the visualization technique you choose. Outside of hand-
crafting every visualization for every update to every data set, there will be cases 
where things don’t work as well as others.

This is your second glimpse at the new factor you need to respond to: data size. 
All your data is available at the API level, and it should be reachable at the markup 
level, but you can use techniques of grouping and layering (more on that soon) to 
present the clearest version of the data by default.

You’ll hopefully have connected this to the progressive enhancement concept of 
sensible defaults. Whereas on a larger scale a sensible default can refer to the toggled 



234 Responsive Data Visualization Tenets 

state of a menu, or the initial display of addendum content, you can now apply it to 
data visualization.

To do that, you need to massage your displayed data such that based upon its com-
plexity, scale, and importance, the most obvious conclusions can be drawn immedi-
ately; more complicated information can be added upon interaction.

Consider the example of an online travel website selling flights. In this case, when a 
user searches for a round-trip flight, you want to return some useful predictive data 
regarding whether or not you anticipate fares for that route increasing or decreasing 
within the next week.

You have a massive data set of the route’s past prices over the past two weeks, and 
projections as to what that route’s price might do with varying levels of confidence. 
On top of that, your raw data has prices, airline carriers, number of seats remaining, 
and alternate routes.

What does the user want, though?

The user wants to book a flight, so this is all just ancillary information to them. It 
may help you push immediate conversion (if the fares are likely to go up), but oth-
erwise it is not a user’s main goal. Therefore, make your sensible default as displayed 
in Figure 7-4.

FIGURE 7-4

A summary view of flight prediction information



Revisiting Responsive Design Principles 235

Here you have a small module on a page that provides a simple message indicating, 
as a percentage, how confident the user can be that the current fare is the best price 
available. That is the clearest way to display this information. You can also provide 
interaction with more detailed, robust data, which users could access by clicking the 
“details” link to launch a modal displaying the chart shown in Figure 7-5.

FIGURE 7-5

A detailed view of flight prediction information

In this case, users deliberately interact with the module because they want to see 
more information. You now can layer on the next level of detail.

Be Economical
The principle of being economical means that you should serve users the most effi-
cient experience possible. In terms of data visualization, this principle doesn’t trans-
late into specific best practices but rather a general awareness of just how much you 
are serving to a user, as every bit of data increases the page’s weight.



236 Responsive Data Visualization Tenets 

Performance Is Design

Statistics (from the GSMA) show that only 20% of N. America customers have 
LTE enabled handsets. Globally, the LTE penetration rate is ~5%. 3G net-
works are still the norm, not the exception.

Bursting Our Bubble: Mobile Performance Outside the First World

You saw this statistic in Chapter 2, but it’s just as relevant here. Creating efficient 
HTML, CSS, and JavaScript are one thing, but achieving performant web expe-
riences when you are parsing and displaying complicated data requires waging a 
much more important battle.

Actual Performance

There are some things you can do to improve the actual performance of your 
data visualizations. First, and hopefully most obvious, is stick to standard HTML 
elements.

Earlier in the chapter I mentioned some of the old ways of displaying rich interac-
tive visualizations on the web: Flash or other plugins. These can become incredibly 
heavy, however, not to mention their reliance on installing a separate piece of soft-
ware to begin with. This is the easy part.

What’s more of a challenge is scrubbing your data until what you’re asking for is 
the bare minimum of what you need. Any piece of unnecessary information within 
your data set that you’re still requesting will take time and resources to receive, 
parse, and ultimately throw away. Therefore, ensure that you have a reason for 
everything within your set.

The third way to improve actual performance is to front-load your design plans 
around only the information you’ll actually need for initial page load, and after 
interaction. Defining this enables you to group that information into separate, 
lightweight API calls.

Perceived Performance

When you were walking through responsive JavaScript, you spent a lot of time in 
the train tracker example pushing information loading past page load using asyn-
chronous JavaScript and XML (AJAX). In that case, you had a relatively simple set 



Revisiting Responsive Design Principles 237

of data to retrieve your list of stops, and were pushing your request to an external 
API to receive ETAs for an individual stop after load in order to give the user imme-
diate feedback while the bulk of their request was handled in the background. In 
Figure 7-6 you see the loading state displayed to the user immediately.

FIGURE 7-6

Progress indicator showing a loading state in the train tracker

As your data becomes more complex, and your parsing more robust, you will 
encounter situations in which an extended amount of time is required in order to 
pass data back to the user. This duration quickly becomes unacceptable if users are 
staring at a blank page. Perceived performance enables your program to always look 
like it’s doing useful work, even if that work isn’t visible.



238 Responsive Data Visualization Tenets 

AJAX Loading

Let’s look back at the air travel example. Remember that your data set included (at 
least) the following:

 • Route origin

 • Route destination

 • Departure date

 • Return date

 • Two weeks of pricing history

 • One week of pricing projections

 • Confidence level in each prediction

 • Seating information in each prediction

 • Overall buy/wait recommendation

 • Overall pricing prediction

 • Confidence level in overall prediction likelihood

 • Alternate routes 

If all you want to do is display buy/wait, likely price jump, likely price date, and 
overall pricing prediction confidence, then there’s a massive amount of data you 
don’t need. Now, you’re hitting an external API, so you can’t scrub the data or 
change the payload you receive as output, but you can limit what you parse out for 
this initial call.

As it’s not page-critical information, you can let the page load, and then make your 
call to the API. When you receive the entire payload back, you can first look at 
the overall buy/wait recommendation. If it’s wait, you can stop right there and not 
worry about building any markup.

If it’s buy, you’ll then get the following:

 • Price jump



Revisiting Responsive Design Principles 239

 • Likely price jump date

 • Pricing prediction confidence

Once you have this information, you can build your module and populate it on the 
screen; and although you’ve saved the rest of the model you receive from the API 
call, you haven’t yet bothered to do anything with it.

AJAX Interaction

That is, until the user clicks. Referring back to Figure 7-5, you’re showing the bulk 
of the information there. If this were a call on your own server, you could have sep-
arated it out entirely from the first call, and not bothered waiting to get the payload 
back; but for now, you’ve just kept it saved on the client.

Now that the user wants to interact with the information, parse your data for each 
individual day’s price, and build that into a new object list called days:

{

  "days": [

    {

      "DATE":"04/15/2015",

      "PRICE":401,

      "TYPE":"HISTORY"

    },

    ...

    {

      "DATE":"04/21/2015",

      "PRICE":519,

      "TYPE":"PREDICTION"

    }

  ]

}

The preceding JSON shows a simplified version of what data could be stored in 
your days list. From here, you can write the following code to construct the graph. 
Assume inputs of the days list, and a reference to today’s price within that list: 

var $graph = S('<div id="air-graph"></div>');

for (var i = 0; i < days.length; i++) {

  var day = days[i];

  var ratio = (day.price / today.price) * 100;

  var $dayMarkup = $('<div class="graph-column graph-'+day.type+'" 

data-size="'+ratio+'">\

(continues)



240 Responsive Data Visualization Tenets 

                       <div class="graph-popover">'+day.date+': 

$'+day.price+'</div>\

                       <div class="graph-info">$'+day.price+'</div>\

                     </div>');

  $dayMarkup.css('height', ratio+'px');

  $dayMarkup.appendTo($graph);

}

As you can see, you’re doing a lot more here than simply getting the prediction. The 
beauty is that you didn’t bother doing any of it until the user explicitly indicated 
what was wanted.

A quick reminder while talking about AJAX: Working on your design in the 
browser not only lets you easily spot where your design falls apart, it also forces you 
to see just how much of an impact changes to your data set, API, parsing logic, and 
design have on your overall performance.

Be Specific
Finally, remember to be specific with the ways in which you optimize your data visu-
alization. Remember Edward Tufte’s nine principles for effective graphical display:

 • Show the data.

 • Induce the viewer to think about the substance rather than about the method-
ology, graphic design, the technology of production, or something else.

 • Avoid distorting what the data have to say.

 • Present many numbers in a small space.

 • Make large data sets coherent.

 • Encourage the eye to compare different pieces of data.

 • Reveal the data at several levels of detail.

 • Serve a reasonable clear purpose.

 • Integrate closely with the data set’s statistical and verbal descriptions of a data set.

Once you have built a visualization that is universal and flexible, optimize toward 
the preceding principles in order to create concise, beautiful charts. This differs 

(continued)



Seven Points of Focus  241

from the larger responsive design in that rather than just trying to present what you 
want to present, you are now hoping that through your design, users will be able to 
glean further knowledge and dig deeper into data in ways you had not considered.

The Web Is a Continuum

Your content is going to be everywhere. In order to ease the process of revealing 
meaning behind data in your visualizations, recognize opportunities where you can 
detect a user’s browser features and offer a shortcut or an additional layer of interac-
tion to maximize efficiency and effectiveness.

What that means in a practical sense is exactly what it means in terms of the larger 
responsive design: Don’t build for devices; build for features. And don’t force an 
experience, but enhance the existing one when possible.

Know Your Data

Although you shouldn’t limit your users, and therefore won’t ever know the wealth 
of devices they’re using to consume your data, you (hopefully) know your data. You 
know if it’s a big complicated set of things, or only a few facets being compared—or 
even if filtering can allow both of those situations.

Specificity in this sense means beginning to treat the characteristics of your data set 
as its features, just like those on your devices, and then recognizing and responding 
to those features.

Seven Points  
of Focus
Chapter 2 defines seven points of focus that became your guide for building respon-
sive web design skills in the following chapters. Those points were: measure, flow, 
nesting, end points, breakpoints, typography, and images. In this section, you’ll 



242 Responsive Data Visualization Tenets 

recycle a few and add a few others: measure, flow, end points, breakpoints, images, 
grouping, and layering.

Measure
When you looked at responsive design tenets in Chapter 2, the first point of focus, 
measure, mentioned using relative units, rather than pixel values, to describe a lay-
out. If you had a layout described in the markup and CSS as shown in the follow-
ing example, your design would be static, and forever stay at that size, as the layout 
on the left of Figure 7-7 illustrates.

FIGURE 7-7

A layout with static (left) and fluid (right) measure

<body>

  <section class="section-content">

  </section>

  <aside class="section-sidebar"

  </aside>

</body>

.section-content,



Seven Points of Focus  243

.section-sidebar {

  float: left;

}

.section-content {

  width: 768px;

}

.section-sidebar {

  width: 256px;

}

However, if you change to the relative units highlighted in the following code, then 
your layout will always take up 100% of the screen’s width, no matter what it is. 
This is reflected in the layout on the right of Figure 7-7.

.section-content,

.section-sidebar {

  float: left;

}

.section-content {

  width: 75%;

}

.section-sidebar {

  width: 25%;

}

You could apply the above CSS to the following markup and have the same layout 
as if the content wasn’t a visualization:

<body>

  <viz class="section-content">

  </viz>

  <aside class="section-sidebar"

  </aside>

</body>

However, a more meaningful application of flow is using comparative and easy to 
modify ratios to describe your data. Remember from the flight price predictions 
graph that you held a reference to the current price, and constructed a ratio for each 
other day. That snippet is repeated here:

for (var i = 0; i < days.length; i++) {

  var day = days[i];

  var ratio = (day.price / today.price) * 100;

(continues)



244 Responsive Data Visualization Tenets 

  var $dayMarkup = $('<div class="graph-column graph-'+day.type+'" 

data-size="'+ratio+'">...');

  ...

  $dayMarkup.css('height', ratio+'px');

}

It’s much harder to apply relative measure to visualizations backed by actual num-
bers. What this enables you to do is respond to device screen sizes with a modifier 
value that keeps the scale of your visualization the same.

Remember your very important formula in defining relative sizing?

Target ÷ context × (base size) = result

In this case, target was your element, context was its parent element (or the screen), 
and result was the relative size. What you modify this to for your visualization cal-
culations is as follows:

Target ÷ comparator = ratio

The target is the element that you are styling.

The comparator can be one of two things:

 • The total, as in the case of, say, a donut graph

 • The element that you select to represent a 100% base size

In the flight example, you used the second option. Your representation of the cur-
rent day’s price was what you wanted all other prices compared to, so you built your 
ratio off that price, normalized to 100px tall.

The base size is a representational value that you use to determine the size of the ele-
ment displayed. It can simply be 100%, or, in the case of the flight example, it can 
be mapped to a pixel value. This is the only part of the equation that you will be 
able to change responsively and keep an accurate ratio.

(continued)



Seven Points of Focus  245

Flow
In the greater responsive design, flow is the way in which content moves within 
your layout. The following code represents a static layout that doesn’t reflow, as 
shown in Figure 7-8.

FIGURE 7-8

A static website that doesn’t properly reflow

<body>

  <header class="section-header">

  </header>

  <viz class="section-content">

  </viz>

  <footer class="footer">

  </footer>

</body>

.section-header {

  height: 200px;

  position: absolute;

  top: 0;

  width: 100%;

}

.section-content {

  height: 600px;

  position: absolute;

  top: 200px;

  width: 100%;

}

(continues)



246 Responsive Data Visualization Tenets 

.footer {

  height: 100px;

  position: absolute;

  top: 800px;

  width: 100%;

}

Using the following CSS instead allows it to flow, as shown in Figure 7-9:

.section-header {

  position: relative;

  width: 100%;

}

.section-content {

position: relative;

  width: 100%;

}

.footer {

  position: relative;

  width: 100%;

}

FIGURE 7-9

A website with proper flow

The best part of considering this flow is that it enables you to let your content 
determine the shape of your layout. Rather than force a box around what your user 
is trying to access, the information itself drives the website’s overall design.

(continued)



Seven Points of Focus  247

When you’re talking about responsive data visualization, there is no difference on 
the layout side. If you encapsulate your visualizations (for the time being) within a 
<viz> element, you can treat them like any other block element.

Where it differs is within the data. Charts don’t reflow and shift as nicely as text 
does, and eventually there just isn’t enough room for the data to fit on a screen. This 
is where layering, flowing in the z-axis, comes into play. Whereas previously you 
considered the width and height within CSS for layouts, you can now decide how 
elements stack on top of one another too. You let the content hierarchy within the 
visualization determine the importance level of the z-axis.

End points
End points in responsive designs are the maximum and minimum values to which 
you want your layouts to flow. The following code shows the use of a set of end 
points on your .container to prevent it from growing or shrinking indefinitely (see 
Figure 7-10). The corrected result is shown in Figure 7-11.

FIGURE 7-10

A fluid layout with no end points



248 Responsive Data Visualization Tenets 

FIGURE 7-11

A fluid layout with end points

<body>

  <div class="container">

    <viz class="section-content">

    </viz>



Seven Points of Focus  249

    <aside class="section-sidebar">

    </aside>

  </div>

</body>

.container {

  margin: 0 auto;

  max-width: 960px;

  min-width: 320px;

}

.section-content,

.section-sidebar {

  float: left;

}

.section-content {

  width: 75%;

}

.section-sidebar {

  width: 25%;

}

As with flow, there is really nothing unique to data visualization here. There will be 
a point at both the upper and the lower end of screen sizes where your visualization 
breaks down.

The new definition of end points, though, is whatever the upper and lower limits 
are to the data that makes sense within a given type of chart. That is, at what point 
do you either not have enough data, have too much data, or have grouped enough 
of your data that it no longer makes sense to display in a certain way?

Breakpoints
How you solve for those end points, you’ll recall, is by adding media queries within 
your CSS to create breakpoints at which you apply new rules. Figure 7-12 provides 
a quick refresher of what breakpoints look like. The code follows.



250 Responsive Data Visualization Tenets 

FIGURE 7-12

A breakpoint set at mobile changes this layout

<body>

  <div class="container">

    <viz class="section-content">

    </viz>

    <aside class="section-sidebar">

    </aside>

  </div>

</body>

.container {

  min-width: 320px;

}

@media screen and (min-width: 768px) {

  .container {



Seven Points of Focus  251

    margin: 0 auto;

    max-width: 960px;

    width: 95%;

  }

  .section-content,

  .section-sidebar {

    float: left;

  }

  .section-content {

    width: 75%;

  }

  .section-sidebar {

    width: 25%;

  }

}

However, what you learned in the preceding section brings up an interesting prob-
lem. With less complicated content, you can just keep adding breakpoints when 
layout goes a little haywire.

With data visualizations, however, there reaches a point where the entire charting 
technique you are using may not make sense. That can result from both screen 
size constraints and data size constraints. If you’re drawing with code, then you 
can add classes and attributes to elements just as you would any other HTML 
element, and affect them with media queries; however, there’s more to do when 
you’re redrawing the chart. The way you solve for this is to add a listener for the 
viewport resize event:

$document.ready(draw);

$(window).resize(draw); 

function draw() { 

  var w = $(window).width();

  var h = $(window).height();

  

  // Call re-draw functions 

  if(w > 768) { 

    unDraw();

    draw768();

  }

  ...

(continues)



252 Responsive Data Visualization Tenets 

  else {

    unDraw();

    drawDefault();

  }

}

In the code, you listen for the page’s size, then call an individual function that 
undraws the chart you currently have (if any), and then draw the one you want 
based on the screen size.

It’s trivial, then, to come up with a technique to draw based upon data changes as 
well. Check out the code that does that and notice the similarity to your viewport 
listener: 

function draw(data) { 

  // Call re-draw functions 

  if(data.items.length > 300) { 

    unDraw();

    drawLargeSet();

  }

  ...

  else {

    unDraw();

    drawDefault();

  }

}

You are now responding directly to how many items are within your set.

Grouping Points
I’ve mentioned this concept a few times throughout this chapter already. Grouping 
is a technique to get to more meaningful insights from data when it is either of the 
following:

 • Too complicated

 • Too small of a data set

(continued)



Seven Points of Focus  253

It has a close analogue to the idea of a breakpoint, but whereas the breakpoint is 
conceptually the point at which the entire chart should be redrawn, the grouping 
point is one at which certain related items in the data should be shown as one item 
(or split back apart) in a default view.

Images
The bulk of what was outlined in Chapter 2 about images can be summarized as 
responsively pulling in different rasters when screen size and bandwidth allow, and 
switching to using vector images that scale indefinitely.

As you may have assumed, SVGs are the go-to option for responsive data visualiza-
tion. They’re lightweight, built with actual markup that can be semantically tagged, 
and scale however you want.

That being said, there are some other options.

Responsive Rasters

The first option is exactly what you walked through in Chapter 2’s Images section. 
Instead of relying on vectors to scale for you, you can instead use breakpoints to 
send different sizes of an image to different screen sizes. This works best in your 
CSS when you are using background images:

#myViz {

  background-image: url('viz1_sm.png');

}

@media screen and (min-width: 768px) {

  #myImg {

    background-image: url('viz1_lg.png');

  }

Remember the drawback, though. At 768px and greater, you are forcing the client 
to download both images. This solves the visual problem, but you take a perfor-
mance hit.



254 Responsive Data Visualization Tenets 

To better solve this, you can use the RESS (server-side responsive) techniques out-
lined earlier in this book to send different sizes of an image to different classes of 
screen without sending the extra bloat. The one piece of obvious overhead to this 
technique is that you have to make and store all those different sizes of images.

Thankfully, you have scripts for that.

Plugins and Scripts

Ignoring the plugins you have already debunked (Flash, Shockwave, applets), there 
is a wealth of scripts that run on the server that can rapidly produce image represen-
tations of data on the client. These take the grunt work out of building differently 
sized images for each screen size.

The biggest failure of using raster images, though, is that they are inaccessible to 
anything other than a visual user. Remember from Chapter 2 that rasters (like a 
png or jpeg) are just rectangular grids of colored pixels. To the markup, to a screen 
reader, to a search engine crawler, to the browser, all that’s visible is an image.

SVGs on the Web

There’s a better way. Earlier, the bulk of what you did with SVG was draw a yellow 
circle—not really exciting stuff. Now you’ll see just how important it is to your craft.

Remember that SVGs are an XML-based vector graphic format. They support 
interactivity and animation. SVG is supported by nearly all major browsers and 
provides an incredibly lightweight way to visualize information.

SVGs can be built programmatically by a number of both server- and client-side 
languages. Later in the book, you’ll be using a JavaScript library, D3.js, to build 
SVG visualizations. Each shape drawn is stored as an object on a scene graph in the 
DOM, which is then rendered as a bitmap. This means that if attributes of an SVG 
are changed, the browser can automatically re-render the element.



Seven Points of Focus  255

Native Desktop Browser Support

Since 2011, nearly all major desktop browsers have had some level of SVG support. 
Webkit browsers, such as Safari and Chrome, have had support for SVG1.1 since 
2006. Browsers such as Firefox, which uses the Gecko engine for rendering, have at 
least partially supported SVG1.1 since 2005.

For a long time, the only holdout was Internet Explorer. IE8 and earlier do not 
natively support SVG. Internet Explorer 9 (released in 2011) was the first version 
to support the basic SVG feature set, with IE10 adding SVG1.1 filters. Vintage IE 
users have a wealth of plugins available to support SVG rendering, however.

Mobile Support

Smartphones, conversely, have terrific SVG support simply because their browsers 
were built in a time when vector support had already become standard. What’s 
more, mobile browsers automatically update much better than older desktop brows-
ers. When a browser keeps up-to-date whenever a new version is released, it’s called 
“evergreen.”  Most mobile browsers, Chrome, Firefox, Safari, and the latest Win-
dows Edge browser are all evergreen.

That’s all there is to it. SVGs work well on mobile browsers. Hip hip hooray.

Meta Support

Don’t forget about your screenless users, however.

Back in August of 2010, Google announced that it had begun to crawl and index 
SVG content on the web, and that users would begin seeing SVGs within search 
results. By February of 2011, they had announced that not only were SVGs 
crawled, and available in both web search and image search, but also users could 
limit their image searches by file type to strictly search SVGs. This is a massive boon 
for your visualization’s very top layer: meta information.

Canvas

Canvas is an interesting alternative to SVG. It can also be drawn by code, and it can 
be output to the client, but it is actually raster-based, not vector-based. Canvas is 



256 Responsive Data Visualization Tenets 

a lower-level API upon which an engine supporting SVG drawing could be built if 
not already present in the browser.

Whereas SVGs enable event handlers to be associated with objects (like other 
DOM elements), to achieve the same functionality with canvas you would man-
ually have to match the coordinates of a click event with the coordinates of the 
drawn chart to determine whether it was clicked.

The bottom line? SVGs are the best solution.

Layering
Layering, in the context of visualization, is how you build your data so that it makes 
sense all the way from the raw level to the invisible meta information that you share 
along with it. Remember the progressive enhancement principles. Distilled, they are 
as follows:

 • Basic content must be accessible to any browser.

 • Semantic markup contains all web content.

 • Layout and design are provided by externally linked CSS.

 • Behavior enhancement is provided by unobtrusive JavaScript.

We can create an analogue to that, as we have already done implicitly in this chap-
ter, for displaying data.

Raw and Processed Data

Raw data, or primary data, is the big 
set of unparsed data that you have 
at your fingertips. Raw data has not 
yet gone through any processing or 
manipulation. After you have begun to 
scrub (eliminate) unnecessary things, 

 NOTE

In the following chapter, Think-
ing Small, you’ll learn some 
techniques for API-building that 
include how to effectively process 
your data.



Seven Points of Focus  257

you are left with processed data. What remains is just the data you will be present-
ing to your end users.

Processing your data is the first step in making it into something useful. You have 
stripped out what is either duplicate, outlying, or complicating entries, and started 
to focus on what will become useful in communication to end users.

API Response

The API response is your processed data shown as data. The examples you’ve looked 
at so far have been JSON, but more abstractly, they are a way for other machines to 
read the data that you are going to build markup around in the next layer.

API Input: Remember that whether you are planning to return your entire 
data set or only filtered responses, you will need to do so based upon your API’s 
input. So far, you have only looked at the API’s URI as an input technique, but 
this can become much more complicated when detailed requests between two 
different applications are being made.

API Output: Your output should have parity with what you will be displaying 
to users. Extra information should not be wasted on this layer, nor should addi-
tional data be pulled that is only visible to users with a screen.

Parsed Data

This is the layer of interpretation between the scrubbed data available from your 
API and the way you will be displaying it. In the  train tracker example, it includes 
translating an arrival time of 0 to displaying “Arriving.” In the flight predictions 
example, it creates the ratio number for your graph.

Markup

The markup is what will actually render in a browser. After doing whatever parsing 
is done to make the data into what is useful for a browser user (either visual, or 



258 Responsive Data Visualization Tenets 

a web crawler), your markup is created to convey the same meaning as the API’s 
matching end point. There are two layers to the markup:

Visible Markup: This is the actual HTML that creates your data visualization. 
The content that drives this markup is pulled from your API.

Meta Information: This content lives strictly on the markup layer, and it is used 
to provide screenless users with additional context, such as search engine crawlers 
to better understand what your data is describing when it can’t be viewed.

Design

This is the data’s visual styling, provided by your markup and CSS, and additionally 
affected by the implementation of your drawing technique. The analogue to web 
design would be CSS affecting how color, font size, margins, etc. would be displayed.

Interaction

This is the top-most layer. Unlike using JavaScript interactive effects in progressive 
enhancement, it can be thought of as progressive exploration. Interaction with cer-
tain elements of a data visualization can be paired with AJAX to pull in more data 
and draw further conclusions.

Responding to Data
Responding to the features of your data set is by far the most radical and important 
concept introduced in this chapter. For a moment, however, consider the actual 
data to be meaningless, and just some set called “Your Data.”

Just as you have abstracted away from devices, and from screens, let’s abstract away 
from your_data.json. Just as you respond to features and constraints of devices, 
your data set also has more implicit features and constraints. They’re not as obvious 



Responding to Data 259

as “a small screen” but will still impact how you can display information. Suppose 
your project brief has the following constraints:

 • Most users are on mobile devices.

 • There are seven different APIs to call.

 • There is no guarantee of WiFi.

 • Filtered information is missing for some subsets.

Clearly some of those are features of the users, and some are features of the data; 
but you are building to respond to both.

In its most basic sense, responsive web design consists of grids, media queries, and 
flexible media. What you have now added is flexible data.

Know Your Audience
It’s important to keep in mind that your data will be consumed by two sets of users, 
those with eyes and those without eyes. Although we tend to think of building 
visualizations for people, just as important is the user base that consumes your data 
invisibly and shares it with the rest of the world.

Build for Humans

To Consume: This is on the visible markup front. Obviously, you still want to 
make something efficient, concise, and beautiful. That’s why I put it first—it’s 
what you’ve been doing this entire time.

To Share: In your metadata, you’ll see soon that you can include social tags 
that convey just what you’re displaying. Semantic markup gets you a long way 
to begin with, but social networks are a screenless user themselves, as they then 
convey some snippet of your information to other screens, being shared as a 
teaser of your own site on someone’s news feed.



260 Responsive Data Visualization Tenets 

Build for Machines

To Consume: Everything starts with a good data set. Processing and scrubbing 
your data to make a clean, efficient, understandable API that other machine 
users can reach not only makes your life easier when transitioning into visual 
design of the data, but also enables other machine users to reach your API (if 
you choose) to consume your data and draw their own conclusions.

To Share: Semantic markup, meta tags, and schema.org structured markup are 
just a few of the techniques already covered. Every additional piece of useful 
information you can provide that gives someone who can’t actually see your data 
a clearer idea of its content improves your visibility to search engine crawlers, 
and any other websites attempting to reach your data.

Know Your Data
As you reach the end of this chapter, there is one point that I want to hammer 
home: Know exactly what it is you have as data, and exactly what you’re trying to 
convey.

By this point, you have seen numerous examples demonstrating how many 
unknowns you face as you attempt to create a responsive design. Your data, how-
ever, doesn’t have to be an unknown. If you front-load the work to identify the 
exact nature of what raw data you are consuming, you can focus on optimizing for 
greater clarity.

Acquire meaningful data, scrub it, and present it in a way that is lightweight.



Summary 261

Summary
This chapter has focused on an important factor to which you must respond: data. 
It also emphasized a new class of user you must consider, non-human consumers of 
your data. In the next few chapters, you’re going to take a path similar to the one 
you took with responsive design—getting elbow deep in some code examples to 
run through your toolset. Fortunately, at this point you should have a clear concep-
tual understanding of responsive data visualization as a unique subset of responsive 
design.



08



08Thinking Small

Until now, the smallest screen you have considered has 
still been a screen. In this chapter, you’re going to shrink the 
available real estate even further and begin your data visu-
alization development at an even more basic level: the user 
without a screen. You’ll learn to build API-first, rather than 
mobile-first, in order to create the most efficient, communi-
cative representation of your data. From there, you’ll be able 
to work with discrete, efficient data sets which you can group 
and layer to create effective visualizations.



264 Thinking Small

Designing for the 
Smallest Canvas:  
No Canvas
Now that you have spent some time at the 40,000-foot view, in this chapter you 
will focus on some actual implementation details. Just as you have done in previous 
chapters, you should begin by considering the most limited user.

In the discussion about responsive design, that most limited user was someone 
working on a small screen on a bad network. And intuitively, that makes sense. You 
are designing visible layouts to be consumed by humans. The lower limit of that 
would, naturally, be something with which a human could interact.

Throughout this book, I’ve waxed poetic about the importance of developing for 
the smallest screen as your base user—and that’s still a good precept to adhere to.

However, as brought up in the previous chapter, there is an important user who has 
something smaller than the smallest screen: a user with no screen at all. You see, 
below the visible layer presented to 
your human users is an absolutely piv-
otal layer to both your own and other 
systems: the API (application program-
ming interface).

Your data is a big giant mess of num-
bers that probably will mean some-
thing to someone, but really means 
nothing to anyone, because you can’t 
reach it (or can’t reach it cleanly). Cer-
tain data sets are so large, or volatile, 
that attempting to dig through the 

 NOTE

Recall that data is collected from 
an operational environment. 
It is strictly raw findings and 
is perfectly concrete. Through 
processing and exploitation, data 
is distilled into information, 
which can be shared in a mean-
ingful way. This information 
is analyzed, and produces some 
kind of output or findings, called 
knowledge.



Designing for the Smallest Canvas: No Canvas  265

actual data, or even keep it up to date, becomes more of a burden than extracting 
and presenting meaningful information.

An API should describe the expected inputs and standardized outputs of interacting 
with your data set.

The question is what makes a good API?

To answer that, it can be instructive to first come up with attributes that make a bad 
API. Don’t worry if some of the terms in the next few paragraphs are unfamiliar; 
they are explained as the chapter moves along and you see examples of a good API.

Returning to the train tracker example you have been creating throughout this 
book, assume your current input is still a given train stop on a given line, and your 
output shows the next available trains in either direction, as shown in Figure 8-1.

FIGURE 8-1

A train stop in your train tracker application



266 Thinking Small

In previous chapters, you’ve built a nice, clean API that takes in and spits out the 
bare minimum information to build this application. In the real world, however, 
assume there is a level of security around this travel information, and that your first 
step is to get a key to the API.

An API key is a special string that allows you to interact with a private API. In this 
case, let’s say the owners of the API are monolithically “the government,” and their 
key request protocol is as follows: “E-mail info@thegovernment.com explaining 
why you want an API key.”

Therefore, you do that, and you wait. Meanwhile, paint dries.

When you finally get your API key, you have to search for documentation and 
examples of code that other people have written because no docs are provided with 
the API.

After you eventually get started, you notice that on top of requiring a key, the API 
returns only XML, and only allows for server-side requests; therefore, instead of 
just making a JSON request from the client on your server, you have to build out 
a PHP proxy on your server that reforms your request as a request to their server, 
pulls back the data, and then converts it to JSON for you.

Worse than that, it turns out that train station IDs aren’t always numbers, and 
they’re not unique to an individual train line. In addition, when a train station is 
under construction, the only indication is that all trains will resolve to an undeter-
mined amount of wait time.

Even if some of that went over your head for the moment, you hopefully picked up 
on a few things that made the current implementation not-so-perfect. Now you’re 
going to build something much better.

Building for a Blind User
To get to an API, you first need some set of data that you actually want to reach. 
Although you’re working API-first, the API is never the actual starting point of your 
work. Posting open, bulk, structured data with good identifiers (more on this in a 
bit) has to happen before you could build a useful API.



Designing for the Smallest Canvas: No Canvas  267

An API itself is essentially Internet shorthand for program access to a system. There-
fore, simply having a good API doesn’t mean anything has been solved. Otherwise, 
you’ve just built a beautiful set of French doors, hoping that a building might be 
built around them someday.

Before you get to the visually designed and beautiful representation, you should 
take steps to make your data available to the public—whether that public is external 
users, machine users, or your own design team—in order to nail down just what 
your API should actually handle.

Open Data

The first step then is simply to expose your data. If you’re willing to show it off 
when it’s all dolled up on a Saturday, you should be willing to show it off all hung-
over and crusty-eyed on a Sunday. You should be willing to expose your raw,  
un-filtered data to the public in order to see not only its benefits, but also its flaws.

Opening your data to a greater set of eyes exposes you to just how it is going to be 
consumed.

Bulk Data

Your data in bulk. Complicated, right?

This is simply an unfiltered dump of all the data available. What is useful about 
allowing access to bulk data is soliciting feedback regarding how users are attempt-
ing to interact (sort, filter, group, parse) with that data.

Structured Data

To have any meaning, your data should be structured in such a way that it is search-
able, sortable, and machine-processable:

 • Searchable: Can users search through the data and find something they are 
purposefully looking for?



268 Thinking Small

 • Sortable: Can related fields across items be compared and evaluated to a greater 
or lesser extent, allowing uniform items to be ranked by an individual field, or a 
join of multiple fields?

 • Machine-processable: Without human intuition, can the data be scrubbed 
and analyzed? More simply, can a machine achieve the preceding two goals?

Structuring your data in a searchable, sortable, machine-processable way enables 
you to later more efficiently tailor your API to produce the exact output you’re 
going to feed into your visualization, without any bloat or unnecessary bandwidth 
consumption.

If this seems familiar, it’s because you have been building in a structured way from 
the beginning in order to give your designs meaning. Semantic markup is a way of 
structuring your websites.

In Chapter 7, I introduced the concept of schema.org structured tags—semantic 
markup for elements that aren’t strictly analogous to print media. Whereas head-
ings, paragraphs, footers, and asides are all supported tags in HTML, there obvi-
ously isn’t a <your-complicated-piece-of-data> tag.

Good Identifiers

The identifying aspect of any one piece of data (the ID column, if you’re thinking 
in terms of a table), is how that data is recognized as unique from another. To an 
API, this is still true at the database layer, but becomes more useful to a browser 
in the way of reaching a globally unique web address. What this means is that a 
RESTful web end point should universally point to the same data, regardless of 
what is trying to reach that end point.

Think of it this way: You have an email address that is uniquely yours. If someone 
emails you from their computer, their message should only come to you. Now, if 
they instead forward a list of cat gifs from a sharing app on their phone to that same 
email address, you would still expect that email to only reach you.

Intuitively, this is simply a 1:1 mapping of URL to data set.



Designing for the Smallest Canvas: No Canvas  269

 A NOTE ON LINKED OPEN DATA

Combining the best parts of open, bulk, and structured data with global 
identifiers, and acting as a sort of API to combine data sets, linked open data 
(linkeddata.org) provides for a high level of interconnectivity between data 
sets in both the objects described and the concepts that relate said objects.

Linked open data is a concept backed by Tim Berners-Lee (remember when 
he created the web eight chapters ago?), and it is essentially an implementa-
tion of semantic web concepts within data sets. It is succinctly described on 
the linkeddata.org site as follows:

The web enables us to link related documents. Similarly it 
enables us to link related data. The term Linked Data refers to 
a set of best practices for publishing and connecting structured 
data on the web. Key technologies that support Linked Data 
are URIs (a generic means to identify entities or concepts in the 
world), HTTP (a simple yet universal mechanism for retriev-
ing resources, or descriptions of resources), and RDF (a generic 
graph-based data model with which to structure and link data 
that describes things in the world).

Tom Heath (linkeddata.org)

We won’t delve any further into linked open data, but you can win friends 
and influence people by mentioning the preceding quote. 

The Good API
A web-based API cannot exist without a structured URL—a place where a browser 
(or a web-crawling bot) can actually get to the data. Your API isn’t actually creating 
any new data, but is a way to publish all of your bulk data, and create more com-
municative end points for filters applied to that data.



270 Thinking Small

If you’re in a hurry, check out Waldo Janquith’s instant-api PHP class (https://
github.com/waldoj/instant-api), or the Python version (https://github.com/
jbradforddillon/instant-api-py). It can automagically produce a class that spits 
out RESTful URLs for a set of static JSON data. For now, though, assume you’re 
building from scratch, and want to make the API yourself.

The following sections represent the major tent poles of a good API. Many of these 
are discussed at length in other books, and I can’t express enough gratitude for the 
smarts I distilled here from Joshua Tauberer (https://opengovdata.io/), and Ben 
Balter (http://ben.balter.com/2013/12/30/data-user-experience/).

Granular Access

If users want all of the data, they can download it. You’ve already created a bulk 
download, remember? An API isn’t for that purpose—instead, it has to effectively 
provide users with access to the most granular level of your data.

For example, if your data was represented as a table, granularity means the capabil-
ity to read a small slice of that table by filtering and sorting, or by directly hitting 
some unique identifier in your API. In Table 8-1, which shows a deliberately mean-
ingless data set example, you should be able to easily select row A, column 3, and 
cell A3 with ease.

TABLE 8-1

Rows, columns, and cells should all be accessible uniquely.

1 2 3

A A1 A2 A3

B B1 B2 B3

C C1 C2 C3

D D1 D2 D3

Just as important as what is returned is what should not be returned—that is, gran-
ular access to your data via your API means that anything outside of the requested 
outputs should not be returned, in order to reduce noise and bandwidth.



Designing for the Smallest Canvas: No Canvas  271

Deep Filters

If the granular item is the needle you’re looking for in your haystack of data, fil-
ters are the magnets you use to find it. Searching through the full text of any data 
set would be ludicrous, and takes time, so an API should be able to handle either 
pre-populated (a drop down to the end user) or free-form text (a textbox to the end 
user) filters to narrow your searchable set.

Value Typing

Whenever possible, your response data should be typed values. That means that 
whenever a field’s value is a string, an integer, a float, a date, or an object, it should 
be represented as such. In addition to that, types need to be strictly enforced: Your 
fields should uniformly pick a data type and stick to it. Note the following example:

{

  "stops": [

    {

      "LINE":"blue",

      "STATION":A,

      "STATION_ID":123,

    },

    ...

    {

      "LINE":"blue",

      "STATION":B,

      "STATION_ID":"station_321",

    }

  ]

}

In the first block, you see that station A has a station ID of 123. However, station 
B has an ID of "station_321". JSON and XML with XSD are good at enforcing 
typing, as they are built in such a way that types are part of the language. CSVs or 
plain XML, however, are untyped, and data is much harder to parse. The following 
JavaScript shows the difference between == (double equal) and === (triple equal):

return 1 == '1';  //Not checking type

return 1 === '1';  //Checking type



272 Thinking Small

In line 1, the code will resolve to true, even though int 1 and string “1” are of differ-
ent types. However, line 3 compares both value and type, and will resolve to false.

In order to compare any sets of data meaningfully, you must do one of the 
following:

 • Begin with typed data.

 • Cast data to types.

 • Build an interpreter layer above your API.

Normalizing and Denormalizing Data Tables

Normalization of a data set is the process of removing redundancy by separating the 
data into multiple sets. Primary keys that link tables should be used to reduce the 
amount of copied data, and instead provide references between items.

That said, making a query against a denormalized set is much faster than a 
 normalized set. Intuitively, this makes sense: It’s faster to get data if it’s all returned 
in one big response than to make multiple chained API calls across multiple sets.

Re-denormalization (a ridiculous word) is good for querying only after a set has 
been normalized, as strictly denormalized data is bloated and difficult to maintain.

RESTful

The whole time you have been reading about good APIs, you have been looking at 
examples of REST, which stands for Representational State Transfer. REST is a set 
of practices that communicate over HTTP verbs (GET, POST, PUT, DELETE), which 
are used by browsers to retrieve web pages and send data to servers. Simply enough, 
just as every web page has a unique URL, every entry in your data set has its own 
URL as well.

You saw this in the train tracker example, where a URL to the list of stops on the 
blue line was

"/blue" 



Designing for the Smallest Canvas: No Canvas  273

and a stop with ID 40890 in the collection of stops on the blue train line was as 
follows:

"/blue/40890" 

The most awesome part of REST is that you already know how to speak it, because 
it’s just a URL. The API becomes trivially simple to work with because it is both 
understandable and reusable as a hierarchical end point for all of your organized data.

Standardized (Selectable) Format

Recall from the earlier example of a bad API, you were able to retrieve the data only 
as an XML file, and only via a server-side call. You had to create a tiny PHP file on 
your own server that acted as a proxy to your server and which spat this same XML 
back, which you then immediately transformed into the JSON that you wanted.

That sucked.

Your API should provide a default output format, but also enable the user to select 
the output type, as a RESTful parameter in the URL. For example:

 • myapi.com/items/green.json should return the JSON version of this  
end point.

 • myapi.com/items/green.xml should return the identical data, but formatted  
as XML.

The most common outputs are JSON, XML, and CSV. CSV and XML are good 
for researchers, but not stellar for developers (due to lack of typing). JSON and 
XML with XSD are geared more for developers. Personally (along with a majority 
of the industry, it seems), I prefer to use JSON, as the format speaks nicely with the 
bulk of JavaScript that I use for data visualization and communication.

“Nice” Errors

Users will make mistakes. Servers will have latency. Someone will spill coffee on a 
laptop. Errors happen. Error messages, regardless of whether the problem is on the 



274 Thinking Small

client or the server, should provide a clear indication of exactly what is wrong, and 
(hopefully) a structured format explaining exactly what can be done to fix it.

In the following example, a request of "/?station=foo" was sent to the train tracker 
API. The response provides a clear message:

<ctatt>

  <tmst>20150617 23:33:47</tmst>

  <TimeStamp>20150617 23:33:47</TimeStamp>

  <errCd>103</errCd>

  <errNm>Invalid mapid: "foo"</errNm>

</ctatt>

You know exactly what went wrong and why.

The beauty of a RESTful API is that because it speaks through URLs on the web, it 
can also send back HTTP status codes, such as those in Table 8-2.

TABLE 8-2

Some meaningful HTTP status codes

Code Description

200 Everything’s OK. The request has succeeded.

400 The request could not be understood by the server due to malformed syntax. 
The client should not repeat the request without modifications.

403 Forbidden. The server understood the request but is refusing to fulfill it. Autho-
rization will not help and the request should not be repeated.

404 Not found. The server has not found anything matching the Request-URI. No 
indication is given of whether the condition is temporary or permanent.

500 Internal server error. The server encountered an unexpected condition that pre-
vented it from fulfilling the request.

Intents as URLs

Earlier in the chapter, I said that the first step in creating a useful data set, before 
building your API, is to share open bulk data and then see how it is consumed. This 
is where that comes into play.



Designing for the Smallest Canvas: No Canvas  275

As you see just how users sort, filter, and regularly interact with your data, pick the 
most important of these, and make them insanely simple to reach. As important as 
it is to create an API that is good at performing all filtering generically, with a bit of 
manual work (for machines), it is also important to absorb the complexity of these 
most common use cases and expose them specifically.

Looking at the data in Table 8-3, notice that each entry has a created date and an 
edited date.

TABLE 8-3

Data with comparable dates

ID Name Created Date Edited Date

001 Foo 20150411 null
002 Bar 20140617 20150121 

003 Foo bar 20150201 20150702 

004 Foobar 20131128 null
005 Fubar 20150101 20150611

Suppose you want to find the last modified entry, to see whether it was an edit or a 
creation. It’s certainly adequate to build a filter that finds the most recently created 
item by sorting, then build another that finds the most recently edited, and then 
join these and compare once again. However, why not instead create the following 
end point:

myapi.com/items/latest

This hides all of that implementation from a long RESTful end point and just 
returns the result of that work. Not only does this make the API much cleaner to a 
user, but it also grants you the flexibility to make backend changes invisibly later.

Meticulous Documentation

This should be more obvious than it is in the real world. An API without documen-
tation is useless. It’s a beautifully wordsmithed poem written in gibberish.



276 Thinking Small

Documentation should cover why the data is important, what the fields mean, how 
to retrieve information using the API, and, most important, up-to-date examples. 
Whenever possible, make your documentation interactive, and allow more novice 
users to build their queries in real time.

Versioning

Versioning fits nicely with the preceding “nice” errors, as it is a way to prevent 
accidental mistakes when your API may change. Remember, at one point we all 
thought that Flash was going to be the way to create interactive data visualizations 
on the web forever.

Eventually things change, and your API is no different. Rather than force others 
(maybe even yourself ) to update their client-side code to consume whatever change 
you have made to serve data, update your API’s version when a breaking change 
happens, but leave the old version working. This, too, can be built into the restful 
API, as something like the following:

myapi.com/v1.0/items

myapi.com/v1.1/items

In a way, it’s progressive enhancement for your API consumers. Those who are able 
to work with the updated (and likely best) version can; if not, they are already using 
a working earlier version.

High Availability

You don’t have any clue when users will be attempting to reach your API. It could 
be perfectly spaced throughout the day and night (meaning that it needs 100 per-
cent uptime at a relatively low scale), or it could be all at once during one hour of 
the day (meaning it needs 4.2 percent uptime at high scale). To be safe, you have to 
solve for both.

You can take basic precautions such as rate or query limiting to reduce the risk that 
your API comes under severe load. That said, you never want your API in a state in 
which users can’t get a full response within a reasonable amount of time.

Keep maintenance windows as short as possible!



Designing for the Smallest Canvas: No Canvas  277

High Performance

Your API should also be fast. Users will appreciate this because obviously they want 
it to be as fast as possible. There’s not really any concept of perceived performance 
for an API: It is purely actual performance. Using the methods you’ve already 
learned about in this chapter, you should know how to prune your data, and pro-
vide granular access to keep queries efficient.

If an end point becomes too slow, you run the risk of impatient, dumb, or mali-
cious users making resource-intensive queries that could ultimately bring your 
server down entirely. A complete discussion of API performance is beyond the 
scope of this book, but some important one-liners include the following:

 • Don’t allow for accidentally complicated queries by URL.

 • Don’t put resource-heavy authentication in the URL.

 • Cache results on the server.

 • Cache repeated queries on the client.

Open Development

Looking back at the example of a bad API, remember that the first step in using it 
was sending an e-mail to some mysterious government website and waiting some 
undisclosed amount of time.

Lame.

Forced authentication on your API is the easiest way to keep users from ever 
interacting with it. If you do happen to use an API key, make it an optional case 
for tiered users. Allow developers or designers within and outside of your team to 
quickly prototype against a public API. The only incentive for authentication is to 
allow a higher limit on queries.

This enables the greatest number of eyes (digital or human) on your data. These 
eyes will begin to conceptualize, develop, and share how they are consuming it; and 
as that happens, you will benefit from what they’ve shared and have the opportunity 
to react to their evolving needs.



278 Thinking Small

Working this way allows for a more collaborative, developer/designer-centric own-
ership of your work. You’ll learn more about the benefits of this mindset in the final 
chapter: Building the Future-Friendly Web.

The API-First Team
In theory, building API-first is all super-great stuff. It’s bold to decide not to deliver 
anything that users can see as your first major release. The problem is…you’re not 
going to deliver anything that users can see as your first major release.

If you’re struggling to wrap your head around how this can benefit your team (or if 
you’re trying to explain it to someone with dollar signs in their eyes), let’s quickly 
walk through how this saves you time and effort later.

On the team level, your product creation milestones can look something like this:

1. Product vision development, user research:

 • Input: Idea, data

 • Output: User research and product benefits

2. Product discovery:

 • Input: User research and general vision

 • Output: Low fidelity prototypes of base experience. Core functionality 
outlined

3. Product inception:

 • Input: Core functionality outline

 • Output:  API documentation

4. Functional teams break API down into stories:

 • Input: API documentation and necessities for MVP

 • Output: Backend team builds API. Frontend team builds UI with mock 
calls in parallel.



The Tiny Canvas 279

5. API changes discussed with product managers:

 • Input: Working MVP

 • Output: Specialized enhancements to product

As your team continues to build API-first, and you have established a stable base for 
all devices, you can progressively begin to hyperfocus on the features for which you 
want to optimize, in parallel with other teams.

This results in more natural-feeling 
interactions in a multi-platform 
environment simply because there is 
more time for engineering tasks to 
bake while the UI and user testing are 
happening.

The Tiny Canvas
Now that you’ve spent some time working with no screen, you can dig into the case 
of a very small screen. A beautiful example of mobile data visualization is the Apple 
Watch. It’s an impossibly small canvas, but it can present a wealth of information to 
a user by starting with a sensible default, allowing for layered interaction, and dis-
playing granular data only when requested.

The Fitness App
Figure 8-2 shows the Apple Watch fitness app. With three concentric rings and 
some text, it certainly doesn’t look like anything revolutionary. However, this small 
screen manages to convey a lot of information:

 • Three different types of exercise are represented:

 • Stand is one of the types of activity.

 NOTE

For more details on building 
API-first, visit api-first.com.



280 Thinking Small

 • Stand is represented by the word “STAND.”

 • Stand is represented by the color blue.

 • Stand is represented by an arrow pointing up.

 • The user has completed ~25% of his or her standing goal.

 • Exercise is one of the types of activity.

 • Exercise is represented by the word “EXERCISE.”

 • Exercise is represented by the color green.

 • Exercise is represented by two arrows pointing forward.

 • The user has completed ~45% of his or her exercise goal.

 • Move is one of the types of activity.

 • Move is represented by the word “MOVE.”

 • Move is represented by the color red.

 • Move is represented by one arrow pointing forward.

 • The user has completed ~55% of his or her movement goal.

 • It is possible to display one thing at a time.

 • This is view four of six possible views.

That’s an impressive amount of information being shown to the user, all rather 
elegantly. Apple chose this screen as the default because it provides, at a high level, 
both the status of the user’s goals and a language to understand the rest of the 
related views.

When a user interacts with one of the rings, it brings up one of the three possible 
views shown in Figure 8-3.

Now the visualization has changed to be more granular—it has been filtered down 
to an individual element of the greater whole. The language hasn’t changed—each 
activity type is represented by the same text, color, and icon—but now additional 
room is available to display more detailed information.



The Tiny Canvas 281

FIGURE 8-2

The Apple Watch fitness app’s default screen

FIGURE 8-3

After interacting with any ring on the default screen (or swiping), one of these views is shown.

At this point, you can probably see how this is analogous to when you queried 
information about train lines when a user decided to interact with an element in 
the train tracker example. There is no benefit to cramming in exact numbers for all 
of the detailed fitness information because for the bulk of users, the most important 
use case is: “Have I gotten there yet?”

When users purposefully indicate that they want to know more, that not-yet-
loaded, more relevant information can replace what is currently displayed.

Swiping in this view allows for even more detail (see Figure 8-4).



282 Thinking Small

FIGURE 8-4

At an even more granular level, this view provides a timeline showing when activity took place 
throughout the day.

Here, the donut chart of “how much activity” versus “total activity goal” is 
removed. In its place is a timeline view showing points during the given day when 
activity has happened.

The colors are still present; and notice that because the visualizations are still at the 
level of detail considered “one type of activity,” their dots along the bottom remain 
uniform.

Again, the user has made it clear that he or she wants to see this information. It has 
been available all the time, but hidden beneath the more meaningful at-a-glance 
visualizations.

When working on such a small screen, this prioritization of meaningful information 
versus all of the information is a pivotal skill to learn.



The Tiny Canvas 283

Layering
The skill alluded to in the preceding section is one that I term layering. Layering is 
the prioritization of the most crucial and digestible information, while providing 
the means to obtain more granularity with user interaction.

Visual Layers

Remember from the first part of this book when you hid menus off-screen? Layer-
ing is a lot like that, except you hide all but one thing at a time off-screen, and you 
don’t even bother loading it until it’s requested.

Consider all the data available within that incredibly simple display of 1.5"× 1.5". 
On the very top layer, the data includes the following:

 • Exercise metadata

 • Exercise goal 

 • Exercise total

 • Movement metadata

 • Movement goal

 • Movement total

 • Stand metadata

 • Stand goal

 • Stand total

In addition, each type of exercise data includes at least the following:

 • Metadata (name, icon, color)

 • Goal total

 • Current total

 • Units

 • 72 × 20-minute increments



284 Thinking Small

The inclination to show all the granular data is certainly a strong one, but imagine 
the cost of returning (72 + 4) * 3 = 228 pieces of information instead of nine. Then 
imagine the insane challenge of trying to show that level of granularity.

Less Than Visual

Now consider the API driving this app for a moment. Plenty of other apps and web 
services have access to the data behind it through the HealthKit API. It’s not quite 
what is created here, but the following is a simplified version:

End point 1: /at-a-glance

{

  "id":001,

  "name":"username",

  "activities" [

    "exercise": { ...exercise at-a-glance object... },

    "move": { ...movement at-a-glance object... },

    "stand": { ...stand at-a-glance object... }

  ]

}

This would likely call nested end points of 1a: /[type]/at-a-glance:

{

  "id":001,

  "type":"exercise",

  "goal": 30,

  "total": 16

}

End point(s) 2: /[type]/ring

{

  "id":002,

  "type":"move",

  "goal": 780,

  "total": 214,

  "unit": "cal"

}

End point(s) 3: /[type]/timeline

{



Enhancing Efficiently 285

  "id":003,

  "type":"stand",

  "total": 5,

  "unit": "hour",

  "increments": [

    ...

    "inc_1" : {

                "amount": 1

              },

    "inc_2" : {

                "amount": 0

              },

    ...

  ]

}

These of course are driven by the visualization shown. Because all of the data is 
simply available, combinations of the data (and a whole lot more not shown in this 
app) could easily be exposed.

More Than Visual

There’s no reason to stop layering at the screen, though. In the case of the fitness 
app, voice notifications or device vibrations can interrupt you to let you know you 
should stand, or that you’ve met your exercise goal; these can then be augmented by 
quick interruptive layers on the screen displaying a simple message.

Visualization doesn’t strictly have to stay visual.

Enhancing Efficiently
You’ve likely noticed that the chapter hasn’t really said much yet about changing the 
visuals themselves as your user’s device grows more advanced features.

Building out a clean, efficient API is the most pivotal part of responsive data visual-
ization, as it satisfies the base condition of making the data universally available.



286 Thinking Small

With granular access to a RESTful end point for your data, you could technically 
offload all the actual visualization work to whomever decides to consume it. (But 
don’t, because you’ll do it better anyway.)

Taking the preceding section of this chapter into account, now you can set the bar 
higher and create a visualization with the following:

 • A 100%, A+, would-buy-again API

 • A gorgeous, sensible default for the smallest screen

What comes next?

Growing Up
The solution that you would assume from responsive design techniques is to simply 
start showing more things as you have more screen space—and in many cases, this 
will likely work.

On a phone screen, that fitness app could likely fit the information hidden in each 
[type]/ring view on the default screen. On a tablet, at least one of the timelines 
could fit nicely. 

However, you have to ask yourself, “Am I doing this just to do it?” There’s a major 
difference between designing for text and images, and designing data visualization. 
With text and images, content has all of the focus. That is, users will be devoted to 
reading your text, or looking at your picture, or clicking your button.

In data visualization, however, there’s a very dangerous tipping point at which too 
much information becomes Too Much Information. The goal is to communicate 
obvious conclusions from complicated data, so showing every layer of that compli-
cated data can, in many cases, be just as bad as showing none of it. There is still a 
benefit to layering even when you have the real estate to show everything at once.

A simple way to do this, without oddly putting a 1.5" ×1.5" visualization in the 
middle of a 27" screen is to rely on your core responsive design skills. Jumping 
ahead a few chapters and assuming what you’ve built is backed by code, and not a 



Enhancing Efficiently 287

static image, you should be using totally scalable elements, with 100% relative sizes. 
As such, if you have screen space to grow into, grow into it.

Obviously, that has its drawbacks too, and continuing to follow the responsive 
design tenets, you can rely on end points to stop growing when something no lon-
ger makes sense at a comically huge size.

Recall from Chapter 7, though, that end points have a new meaning for you. You’re 
not just solving for the amount of screen space available, but the amount of data. 
At a certain amount of real estate, the amount of discrete bars in the [type]/timeline 
view, for instance, could shift from 72 (every 20 minutes) to 288 (every 5 minutes). 
As long as the data is available, it’s ready to be consumed at a cheap-to-create end 
point because you’ve built API-first.

First, Change Everything
Don’t think of your visualization in a vacuum, though. Remember that it’s still liv-
ing within the context of a web page, dashboard, app, or holo-lens.

Changing the view of your data is one thing, but keeping it in the same amount 
of real estate always makes sense. The content around it is changing and reflowing 
responsively, so just by moving related or ancillary content closer you will have 
improved the visualization’s clarity.

You actually went through an example of that when you built the cocktail guide 
mobile-first. Remember that an individual cocktail’s page had the visualization in 
Figure 8-5 stacked above its content on a small screen.

However, as you had more real estate 
to consume, you pulled the content 
directly related to what the visualiza-
tion represented next to it, making 
only minor adjustments to the size of 
the visualization itself (see Figures 8-6 
and 8-7).

 NOTE

As a double-secret special note, 
layering was actually used in 
that first example, because the 
information shown in the ingre-
dient list was also made available 
when interacting with the corre-
sponding slice of the donut graph.



288 Thinking Small

FIGURE 8-5

The cocktail guide’s drink page, on a small screen

Responsive data visualization is not simply about causing your charts to constantly 
react to new features. Your goal is never just flashiness—it’s clarity. As such, the 
design of your application as a whole can impact just how meaningful your visual-
ization becomes.



Enhancing Efficiently 289

FIGURE 8-6

The cocktail guide on a medium screen. Notice the content shifting next to the visualization.

FIGURE 8-7

The cocktail guide on an even larger screen. There is very little change to the visualization, 
because making it any bigger would ultimately distract from its meaning.



290 Thinking Small

They’re Just Numbers
This chapter began with the concept of building for a headless user, a building 
approach called “API-first.” That’s great for this chapter, but how does that actually 
relate to being “mobile first” for all your users who can see and breathe and drop 
their phones in the toilet (again)?

Well…I just didn’t want to spoil it before: You’re building mobile-second.

That’s because the building mobile-first approach described thus far throughout this 
book has actually been API-first. Look back at what you learned before, and anno-
tate exactly the steps you took: Simplify down to the very base, build semantically 
(structured data), and asynchronously pull in (which requires an API) anything 
that can be. Use additional subpages (which requires an API) in order to enable the 
retrieval of requested additional data (from your API), giving users a clean, bloat-
free experience.

You’re already doing it by accident.

You’ve been building API-first and you didn’t even realize it. As I have emphasized 
many times in the preceding chapters, do your research first. Maybe your audience is 
truly 99% mobile, so you don’t need to worry too much about your API because you 
need to build an iOS app and be done. That’s great, and it should be your first goal.

That being said, designing for the next scale, and the next set of features, will 
become increasingly difficult as you attempt to wedge new features on top of old 
ones where they don’t fit.

I’ll now begin to refer to the mobile-first, responsive version of your data as the 
mobile expression. It is the most basic human-user-facing way in which you can con-
vey your message. Unfortunately, binding your use cases to only this expression will 
inevitably hurt you down the road.

Before you are expressing anything, you are creating it; and as with everything in 
this book, your content must drive your design, and now your expression.



Summary 291

Summary
Building API-first is the key to creating responsive data visualization. You now have 
a grasp on the lowest level of functionality that you need in order to make your data 
accessible. You’ve learned how to create an efficient, effective API to reach your data, 
and how to structure that data. Additionally, you’ve seen how that data can begin to 
back visualizations on the smallest of screens.



09



09Asset Dependence

This chapter is the last piece of radically new infor-
mation presented in this book before you start merging 
everything you’ve learned in the preceding chapters into a 
working whole. In this chapter, you are going to look at how 
JavaScript’s D3 library works, and learn how to react not to 
client feature changes, but rather to changes in the data back-
ing your visualizations.



294 Asset Dependence

Dynamic Data
This is your first big foray into data-driven design. In the previous chapter, you were 
working toward building for the smallest screen (no screen), and then creating a 
basic experience. That experience has already begun to meet the classic definition of 
responsive design—that is, responding to the client’s browser.

However, having read and absorbed all the responsive data visualization tenets, you 
also know that ensuring client responsiveness is only half of your job when it comes 
to building data visualization. The other half is responding to your data set.

You are already closer to mastering this than you might think. After all, you’ve 
learned about building an API that is dynamic enough to spit out exactly the level 
of granularity you want. You know how to react to data changes by redrawing 
your chart (a refresher and much more on that in a few pages). You have a grasp 
of grouping data. And in the previous chapter, you worked through an example of 
data layering.

Pretty good…but now it’s time to get serious.

Dipping Your Toe In
In this section you’ll begin building visually with data. You’ll do that with a JavaS-
cript library called D3.js (data-driven documents). If you have never used it, don’t 
fret—the next chapter starts with the assumption that you are first hearing about it 
in this book.

In this chapter, you’ll examine a few pivotal parts of D3 that make it so attractive 
for working with responsive data visualization.

D3.JS

D3.js, simply put, is a library of JavaScript functions for manipulating HTML doc-
uments based on data. It enables you to pump in big sets of (clean, structured) data, 
and spit out CSS style-able scalable vector graphics (SVGs).



Dynamic Data 295

Because it isn’t a plugin or a third-party system, such as a Flash container or a Java 
applet, D3 enables you to use all the functionalities of modern browsers that you 
learned to harness in the first half of this book.

If you are familiar with jQuery (which, come on, you are), you know that its core 
value is the capability to easily manipulate the DOM with JavaScript. In fact, the 
syntax of D3 reads in a syntactically similar way to jQuery. With D3, you are sim-
ply manipulating the DOM with JavaScript and data.

It allows you to bind data to the DOM and then apply transformations to the 
document based upon that data. Suppose, for example, you have an array of the 
following:

[0,2,8,5,1,9]

You could use D3 to create an HTML table that displays only those numbers in a 
row. That is a totally valid use case.

You could also use D3 to create an interactive bar chart that transitions in from 
zero-height and paints each bar with a hexadecimal color value based upon some 
math done on the length of the bar. That is also a valid use case.

In other words, you’re not bound to a specific type of visualization, or tied to any 
one implementation. The purpose of D3 is to provide an efficient, simple bridge 
between data and the DOM.

JSON to HTML

Since it is simply a JavaScript library, D3 does not create any amazing new way to 
represent data. The elements available to you as a designer are exactly what you’re 
already familiar with: HTML and CSS. Check out the following simple example, 
the syntax of which should be easy enough to parse:

d3.selectAll('div.change-me').style('height', function() {

  return Math.random()*100+'px';

});

The preceding code finds the divs with class .change-me and gives them a random 
height. Although D3 was used for this example, it wasn’t necessary. The following 
demonstrates an example with data:



296 Asset Dependence

d3.selectAll('div.change-me')

    .data([0,2,8,5,1,9])

    .style('margin-bottom', function(d) { return d + 'px'; });

The pivotal point here is that you’re now beginning to use D3 as a bridge between 
your structured data in JSON and the outputted HTML representation of that 
data.  That is, on the input side you will always have JSON, which is itself struc-
tured (and machine-readable) and on the output side, you will have some visualized 
HTML representation of that exact same data.

Data()

Notice in the preceding code the use of what appears to be a function called data. 
In D3, this is called a selection, and it does exactly what you would expect—it takes 
in data.

What exactly it does with this data is more interesting. The preceding example 
passed in an array of numerical values, and then within the function referenced a 
variable d.

That variable actually represents each one of the datum from the set. You can think 
of it as an iterator across all of the selected elements, receiving each d from the data. 
In plain English, the code means the following: For all of the selected divs with class 
.change-me, iterate through the data elements and bind each one with a correspond-
ing div. Then, on that div, add a style of that data’s value as the div’s bottom margin.

Enter() and Exit()

You’ll learn more about the implementation and importance of D3’s data join func-
tions (and also what a data join function is) in the next chapter. For now, know that 
D3 has two selections called enter and exit.

Using these, you can create new DOM nodes for incoming data, and remove nodes 
for data that is no longer part of the set that you want to display.

When you bind data to a selection, each element of data in the inputted object is 
paired with a corresponding DOM node. When you reach a point at which there 



Dynamic Data 297

is more data than nodes, the enter selection instantiates the necessary additional 
nodes. You can see this in the following example:

d3.selectAll('div.change-me')

    .data([0,2,8,5,1,9])

  .enter().append('div.change-me')

    .style('margin-bottom', function(d) { return d + 'px'; });

Exit, as you might expect, does the exact opposite. When a situation arises where 
data has been removed from the set but still has corresponding nodes in the DOM, 
you can call the exit selection to handle those nodes. Check out the following sim-
ple exit:

var changeMe = d3.selectAll('div.change-me')

    .data([0,2,8,5,1,9]);

  

changeMe.enter().append('div.change-me')

    .style('margin-bottom', function(d) { return d + 'px'; });

changeMe.exit().remove();

The key thing to notice is that instead of simply chaining data, enter, and exit, 
I set a variable of changeMe to handle the data. This way, all three selections can be 
handled separately and efficiently. 

That’s all the detail you need at this point, although it’s worth noting that the 
default selection for D3 is simply data, not enter or exit. Therefore, not using 
enter and exit only selects the elements for which there exists both data and 
DOM nodes.

For your own purposes, splitting data, enter, and exit will prove beneficial as it 
enables you to work separately on the following tasks:

 • Updating existing nodes

 • Adding new nodes

 • Removing unwanted nodes

If you abstract the selections out a bit, you can see how they are related to a few 
of the responsive design tenets. Updating existing elements happens within media 
queries, and adding and/or removing elements corresponds to what happens at your 
end points.



298 Asset Dependence

Data versus Screen
With a few tools from D3 under your belt, and the ability to follow some code 
logic in JavaScript, I’m going to throw a trivial graph at you. The interesting thing 
about this example is that it doesn’t reflect a static data set. Assume you have the 
following array of JSON data backing your visualization:

json_data = [

  { 'id': 0, 'created_at': 'May 01 2015 00:00:00', 'val': 100},

  { 'id': 1, 'created_at': 'Jun 15 2015 00:00:00', 'val': 300},

  { 'id': 2, 'created_at': 'Jun 01 2015 00:00:00', 'val': 900},

  { 'id': 3, 'created_at': 'May 15 2015 00:00:00', 'val': 2700},

  { 'id': 4, 'created_at': 'Jul 01 2015 00:00:00', 'val': 8100}

]

You are now in a world where responding to data is the most important respon-
sive design goal (at least for a few pages). The graph of this data will be simpli-
fied enough in order to visualize how enter and exit enable you to manage data 
responsiveness.

Assume the DOM starts out looking like this:

<div id='viz'></div>

The D3-based JavaScript in its entirety is shown here:

(function() {

  var data = json_data.slice()

  var format = d3.time.format('%b %d %Y')

  var computeVal = function(d) { return d.val }

  var computeDate = function(d) { return format.parse(d.created_at) }

  var x = d3.time.scale()

    .range([8, 304])

    .domain(d3.extent(data, computeDate))

  var y = d3.scale.linear()

    .range([144, 8])

    .domain(d3.extent(data, computeVal))

  

  var svg = d3.select('#viz').append('svg:svg')

  .attr('width', 320)

  .attr('height', 160)

  svg.selectAll('circle').data(data).enter()



Dynamic Data 299

   .append('svg:circle')

   .attr('r', 4)

   .attr('cx', function(d) { return x(computeDate(d)) })

   .attr('cy', function(d) { return y(computeVal(d)) }) 

})();

You’ve learned already that just creating the SVG will result in the DOM shown in 
Figure 9-1.

FIGURE 9-1

The outputted DOM from the D3 SVG insertion

Figure 9-2 shows the DOM with the values populated from your JSON data.

FIGURE 9-2

The DOM created by your data-bound D3 code



300 Asset Dependence

Determining Domain

The domain of your data set is the start and end points. It can be any sort of value 
that can be compared in JavaScript. In this example, one domain is a set of num-
bers, while the other is a set of dates. You can do whatever math you would like (or 
hard-code numbers) to set a domain, but D3 provides a nice function to compare 
the data shown in the following code:

d3.extent(data, computeDate)

This acts as a wrapper function around the following:

[d3.min(data, dateFn), d3.max(data, dateFn)]

The domain of your visualization responds to changes in your data set, while it 
remains uniform when the client’s screen capabilities change.

Determining Range

The range of your data set is the pixel size (just pretend you’re not going to change 
that later) in the DOM. Before making your visualization responsive, you’ll likely 
want to cover the entire width and height of your SVG’s canvas.

In the current example, I’m using an arbitrary 8px padding on all sides of my D3 
visualization in order to keep any elements from clipping the edge of my SVG. The 
relevant pieces in the preceding code are called out here:

...

var x = d3.time.scale()

  .range([8, 304])

...

var y = d3.scale.linear()

  .range([144, 8])

...

var svg = d3.select('#viz').append('svg:svg')

  .attr('width', 320)

  .attr('height', 160)

...

At this point, the pixel values don’t mean anything yet.



Dynamic Data 301

More often than not, the range of your visualization will respond to the client’s 
screen size and capabilities, and will remain uniform in response to data changes.

Reacting to Data Changes
Now that you have a basic chart, its time to react to data changes. You’ll start 
with adding data, as it is substantially easier than removing or modifying existing 
elements.

Remember from earlier in the chapter that data, enter, and exit each bind datum 
to DOM nodes. How they bind them is, by default, dependent upon data. Suppose 
you have the following code:

svg.selectAll('circle').data(data).enter()

  .append('svg:circle')

  .attr('r', 4)

  .attr('cx', function(d) { return x(computeDate(d)) })

  .attr('cy', function(d) { return y(computeVal(d)) })

Once your data is bound to the selection in lines 2 and 3, enter will return the val-
ues for which no .data-rect is found. The change that needs to be made is binding 
the new datum to a new node, and attaching it to the DOM.

Adding Data

The good news is that your current code very nearly supports dynamic data addi-
tion. Assume the following function that waits every five seconds to push a new 
random element to the set:

var addInterval = setInterval(function() {

  var start = d3.min(data, computeDate);

  var end = d3.max(data, computeDate);

  var time = start.getTime() + Math.random() * (end.getTime() - start.

getTime());

  var date = new Date(time);

  var newElement = {

   'id': Math.round(Math.random() * 10),

   'val': 100 + (3 * (Math.random() * 2666)),

   'created_at': date.toDateString()

(continues)



302 Asset Dependence

  };

  //data is still json_data from above

  data.push(newElement);

},5000);

Just adding elements to the set won’t actually do anything. The DOM is not 
actively listening to changes to the data set, and your nodes are only those originally 
added in the data selection.

Therefore, first assume there is a function redraw() that updates the visualization. It 
would be placed like this:

var addInterval = setInterval(function() {

  var start = d3.min(data, computeDate);

  var end = d3.max(data, computeDate);

  var time = start.getTime() + Math.random() * (end.getTime() - start.

getTime());

  var date = new Date(time);

  var newElement = {

    'id': Math.round(Math.random() * 10),

    'val': 100 + (3 * (Math.random() * 2666)),

    'created_at': date.toDateString()

  };

  //data is still json_data from above

  data.push(newElement);

  redraw();

},5000);

Notice that with the preceding code, any new element will still fit within your 
domain. No responsive redrawing needs to happen. What happens within redraw is 
now the enter selection:

var redraw = function() {

  svg.selectAll('circle').data(data).enter()

    .append('svg:circle')

    .attr('r', 4)

    .attr('cx', function(d) { return x(computeDate(d)) })

    .attr('cy', function(d) { return y(computeVal(d)) }) 

}

(continued)



Dynamic Data 303

The redraw function simply acts as a wrapper around the enter selector, and han-
dles what you do each time an unbound element is found. The entirety of your 
code now looks like this:

(function() {

  var data = json_data.slice();

  var format = d3.time.format('%a %b %d %Y');

  var computeVal = function(d) { return d.val };

  var computeDate = function(d) { return format.parse(d.created_at) };

  var x = d3.time.scale()

    .range([8, 304])

    .domain(d3.extent(data, computeDate));

  var y = d3.scale.linear()

    .range([144, 8])

    .domain(d3.extent(data, computeVal));

  var svg = d3.select('#viz').append('svg:svg')

    .attr('width', 320)

    .attr('height', 160);

  var redraw = function() {

    svg.selectAll('circle').data(data).enter()

     .append('svg:circle')

     .attr('r', 4)

     .attr('cx', function(d) { return x(computeDate(d)) })

     .attr('cy', function(d) { return y(computeVal(d)) }) 

  };

  var addInterval = setInterval(function() {

    var start = d3.min(data, computeDate);

    var end = d3.max(data, computeDate);

    var time = start.getTime() + Math.random() * (end.getTime() - 

start.getTime());

    var date = new Date(time);

    var newElement = {

     'id': Math.round(Math.random() * 10),

     'val': 100 + (3 * (Math.random() * 2666)),

     'created_at': date.toDateString()

    };

    data.push(newElement);

    redraw();

  },5000);

(continues)



304 Asset Dependence

  redraw();

})();

Outside of Your Domain

Here’s where it starts to get tricky. What happens if your next added element’s val is 
8200, or created_at is July 16?

Remember that in order to build a graph in D3, you have to supply both a domain 
(max and min data values) and range (max and min pixel values), but 8200 is out-
side of the current graph’s range of 100‒8100.

I’ll refer to the domain and range now as the chart’s scale. In order to append this 
new value to the chart, you need to redetermine its scale. The three steps to doing 
this are as follows:

 1. Update the domain with the new data set, so that the new node fits.

 2. Add the new node.

 3. Update existing nodes with the new scale, so that they move to the correct 
position on the rescaled chart.

To do this, the redraw function needs to take into account the following two steps: 
add the new set, and then adjust the full set. Consider this code:

var redraw = function() {

  x.domain(d3.extent(data, computeDate));

  y.domain(d3.extent(data, computeVal));

  var items = svg.selectAll('circle').data(data);

  

  items

   .attr('cx', function(d) { return x(computeDate(d)) })

   .attr('cy', function(d) { return y(computeVal(d)) });

   items.enter()

    .append('svg:circle')

    .attr('r', 4)

    .attr('cx', function(d) { return x(computeDate(d)) })

    .attr('cy', function(d) { return y(computeVal(d)) });

};

(continued)



Dynamic Data 305

As shown in lines 2 and 3, the domain is being reset based upon the updated data 
set. Because the screen size hasn’t changed at all, and you are only reacting to a 
data change, the range can remain. The only thing that needed to change was the 
domain. Item one on your list is done.

What’s going on in the rest of that code, though?

Moving and Shaking

The result of the data selector has been set to a variable: items. This is because 
enter affects only unbound (new) nodes; therefore, it’s simply inefficient to check 
data again. Remember from earlier that you handle adding, removing, and updat-
ing elements uniquely for efficiency and readability’s sake.

The remainder of the code is some D3-powered math to do…something. The gist 
is as follows: When you add a new node, the already rendered nodes do not receive 
an event that this happened. Adding nodes, changing domain or range, the DOM 
doesn’t care, and the nodes will simply fall out of sync with your changes.

Therefore, upon refresh, the cx and cy of each existing element in items must be 
redrawn to the new scale. In this example, they are just moving, but hopefully you 
can already see the analog to changing height, width, or any other style-able attri-
bute when responding to changes in data.

Upon refresh, the chart now looks like Figure 9-3.

FIGURE 9-3

The DOM after many elements have been added



306 Asset Dependence

Removing Data

Naturally, wherever you add things, you’ll also want to remove them. That’s going 
to be a problem at the moment. Suppose there is currently a function that removes 
a random element every six seconds, as shown here:

var removeInterval = setInterval(function() {

  var item = Math.floor(Math.random()*data.length-1);

  

  //data is still json_data from above

  data.splice(item,1);

  redraw();

},6000);

The problem is that the current data selection does not have any function to ref-
erence the data as a key-value pair. It’s simply looking at an array and binding it 
mindlessly to some DOM elements:

var items = svg.selectAll('circle').data(data);

Previously, you handled data for the chart by adding it inline once, which does not 
save any key-value. Thankfully, creating a key for a node-element binding is not 
nearly as difficult as you might think. Consider the following code:

var items = svg.selectAll('circle').data(data,computeDate);

The difference here is that the elements now have an assigned key—the created_at 
that is taken from the computeDate function. Not only does that enable you to 
remove elements, it also solves a problem that perhaps you thought of at the begin-
ning of this example: resolving duplicate nodes.

In addition to the data change, you can now add the exit selector to handle remov-
ing elements. That code is simply as follows:

items.exit()

  .remove();

With this code, you can see what happens to the DOM after some time in 
Figure 9-4.



Dynamic Data 307

FIGURE 9-4

The DOM after many elements have been added and removed

It works this easily, for now, because each node in items is now uniquely identifi-
able. Just for fun, the entirety of your code (without the code to add a node every 
five seconds) is shown here:

(function() {

  var data = json_data.slice();

  var format = d3.time.format('%a %b %d %Y');

  var computeVal = function(d) { return d.val };

  var computeDate = function(d) { return format.parse(d.created_at) };

  var x = d3.time.scale()

    .range([8, 304])

    .domain(d3.extent(data, computeDate));

  var y = d3.scale.linear()

    .range([144, 8])

    .domain(d3.extent(data, computeVal));

  var svg = d3.select('#viz').append('svg:svg')

    .attr('width', 320)

    .attr('height', 160);

  var redraw = function() {

    x.domain(d3.extent(data, computeDate));

    y.domain(d3.extent(data, computeVal));

(continues)



308 Asset Dependence

    var items = svg.selectAll('circle').data(data);

    

    items

     .attr('cx', function(d) { return x(computeDate(d)) })

     .attr('cy', function(d) { return y(computeVal(d)) });

     items.enter()

      .append('svg:circle')

      .attr('r', 4)

      .attr('cx', function(d) { return x(computeDate(d)) })

      .attr('cy', function(d) { return y(computeVal(d)) });

    items.exit()

      .remove();

  };

  redraw();

})();
 
And you’re done! This chart can now 
populate, add, remove, and redraw 
nodes to scale correctly. You have used 
the extent of the data to automatically 
keep up to date with the minimum 
and maximum of your domain, and 
have applied a key function to create 
primary keys and de-duplicate your 
bound nodes.

Tying Visualization  
to Screens
That’s all well and good, but you might have noticed that I didn’t start this chapter 
with a real use case. In fact, it was emphasized that the example uses an arbitrary 

 NOTE

This code is also all available  
in the Chapter 9 section  
of responsivedata 
visualization.com.

(continued)



Tying Visualization to Screens  309

set of data. How, then, does reacting to changes in data actually apply to real-world 
responsive design?

I’m so glad you asked! In previous chapters, you learned that data should be grouped 
and layered. Grouping is used in response to a disconnect between the available 
space for visualization and the complexity of the data set. Layering is an outgrowth 
of using reasonable defaults in responsive web design to provide the most useful 
view immediately, adding levels of granularity when requested.

If you connect these concepts to what you just learned about responding to data 
changes, you can see that you’re creating different expressions of your data. Regard-
less of scenario, you will need to optimize for certain levels of either data granularity 
or feature availability. Combining grouping, layering, and responsive redrawing 
enables you to meet those requirements.

Grouping Again
From the list of responsive data visualization tenets, remember that grouping is a 
technique for getting more meaningful insights about data when it is any of the 
following:

 • Too big

 • Too complicated

 • Too small

It has a close analog to the idea of a breakpoint, but whereas the breakpoint is con-
ceptually the point at which the entire chart should be redrawn, the grouping point 
is one at which certain related items in the data should be shown as one item (or 
split back apart).

Consider the redraw function from the example. You called it whenever an element 
had been added or removed from the data set, and you needed to do the following:

1. Update the domain with the new data set, so that the new node fits.



310 Asset Dependence

2. Add the new node.

3. Update existing nodes with the new scale, so that they move to the correct posi-
tion on the rescaled chart.

However, nothing prevents you from extending it beyond simply adding/removing. 
Sometimes (such as when your screen width doubles), you may have the opportu-
nity to pull back data from a more granular API end point. Remember the follow-
ing code from Chapter 7:

$document.ready(draw);

$(window).resize(draw); 

function draw() { 

  var w = $(window).width();

  var h = $(window).height();

  

  // Call re-draw functions 

  if(w > 768) { 

    unDraw();

    draw768();

  }

  ...

  else {

    unDraw();

    drawDefault();

  }

}

In that code, you listen for the page’s size, then call an individual function that then 
undraws something and redraws it based upon the new size.

Combine that with your basic knowledge of D3’s selector methods now, and you 
can begin to see what it would look like if you were able to do the following, and in 
this order:

 1. Check for a resize.

 2. Change your data set based upon the resize.

 3. Redraw your chart with the new data.



Tying Visualization to Screens  311

Suppose you have the function getData, which takes in a parameter of  granularity, 
and another function getGranularity, which provides the granularity of the cur-
rent data set. Using the same logical viewing modes that were defined in the pre-
ceding code, you can abstract your workflow to the following pseudocode:

function redraw() {

  var width = window.width();

  var currentGranularity = data.getGranularity() || 'large';

  if(width > 960 && currentGranularity !== 'small') {

    data.setGranularity = 'small';

    data.empty();

    data.push(getData('small'));

  } else if(width > 680 && currentGranularity !== 'med') {

    data.setGranularity = 'med';

    data.empty();

    data.push(getData('med'));

  } else if(currentGranularity !== 'large') {

    data.setGranularity = 'large';

    data.empty();

    data.push(getData('large'));

  }

}

redraw();

window.on(resize) { redraw(); }

Here, you can see that the default case is set to a large granularity, as this would 
presumably be the cheapest information to fetch. Within the redraw function, dif-
ferent levels of granularity are requested at different screen widths.

The function itself is run as soon as the page is loaded, and then again on every page 
resize.

This code assumes that you have created enter and exit selectors in order to handle 
each time you empty out of and push into your data set.



312 Asset Dependence

Summary
Whether you realize it or not, you now have every piece you need to start building 
visualizations responsively. You know how to change markup in response to client 
features, you know how to write data as markup, and you know how to change that 
markup when the data changes.

In the next chapter, you’re going to dig deeply into D3, combining everything you 
have learned so far. It’s time to start putting all of these pieces together.



Try It 313

Try It
Head to responsivedatavisualization.com. In the section for this chapter, you’ll 
find both the code for the responsive scatter plot you created in this chapter and a 
few challenges:

 • For the first challenge I’ve created a jQuery function that simply adds a group 
of elements to a page, based upon values in a JSON object. Re-create this func-
tionality using D3 instead of jQuery.

 • For the second challenge I’ve partially completed a bar chart that renders 
correctly using D3. It has some additional functionality to add and remove 
elements from the data set, but it is missing handlers for enter and exit. Your 
task is to implement that functionality.



10



10Code-Driven Visualization

Throughout this book, you have been moving steadily 
toward a code-driven, device-independent way of 
designing and thinking. On the visualization side, you 
have even built for users without screens. Now it’s time to 
bring together your knowledge of building resolution-agnostic 
web experiences with your understanding of clean, granular 
API construction in order to create lightweight, responsive 
data visualizations.



316 Code-Driven Visualization

Unknown Inputs  
and Outputs
Four tenets have driven each step of your responsive design thus far:

 • Be universal

 • Be flexible

 • Be economical

 • Be specific

Those four principles had slightly different meanings when speaking to web design 
(Chapter 2) versus data visualization (Chapter 7). In dealing with both, you have 
had to come up with solutions to respond to (at the very least) the following:

 • Screen size

 • Screen orientation

 • DPI

 • Network speed

 • Bandwidth caps

 • Media type

 • Content flow

 • Browser support

 • Touch and cursor

 • Asset size

 • Data specificity

 • API granularity

 • Data size

 • Data complexity

 • Data cleanliness

If you look closely at that long list of specific items, however, you can see that they 
fall under two distinct categories in terms of responding to a design:

 • The user

 • The data



Unknown Inputs and Outputs  317

In other words, every single thing that you can do to make your visualization more 
clear, more usable, or more communicative is a reaction to either the context in 
which the user is trying to consume it, or a change in the data being displayed.

In every situation, responding has not meant assuming that your design is going 
to be a pixel-perfect match of some Illustrator mockup. Instead, you have seen the 
need to adapt, resize, and reflow your design in order to best fit within a multitude 
of limitations.

That is, you have relied less on static assets, and more on dynamic code-driven solu-
tions. Before moving forward, take a moment to review just how you’ve responded 
to each of these two unknowns.

To the User
Responding to the user’s context is the core of not only responsive data visualiza-
tion, but responsive web design as a whole. That’s why so much of this book isn’t 
strictly centered on data. If you think of your visualization as a simple container, as 
shown in Figure 10-1, then there is no reason to treat it any different from a para-
graph of text, or an image.

In this sense, you can think of designing for the reflow of a visualization in the same 
way that you would for any other content. It needs a certain amount of space, 
and it lives within a certain container. The difference is how you implement your 
responsive techniques.

To the Data
Responding to the data is an unknown totally unique to data visualization, and 
that's what makes it such a more complex topic. There is no concept of a blog post’s 
content changing because a user decided to filter down to only words that begin 
with the letter W. Instead of Figure 10-1, the situation here is related only to the 
things happening within the visualization, as shown in Figure 10-2.



318 Code-Driven Visualization

FIGURE 10-1

A data visualization is just another block of content on a page.



Unknown Inputs and Outputs  319

FIGURE 10-2

Ignoring the rest of the page, responding to data is a function of the elements within the visual-
ization itself.



320 Code-Driven Visualization

This concept of responding to data is what makes your visualization fully responsive.  
If you were to simply scale a visualization at different viewport sizes like an image, 
you would still be more responsive than a fixed-size website, but you would not be 
responding to all of your inputs.  Tailoring the display of your data to the complex-
ity and size of the data itself is perhaps more important than tailoring for the screen, 
as it is a change driven by the content itself. That is: By responding to data, you are 
easing the efficiency and effectiveness of understanding the data. 

Putting It Together
Neither the user nor the data exists in a vacuum. There will always be unknowns 
on both the input (data) and output (client) sides of your design. Hence why you’re 
employed.

If you combine the variables of user and data, then you need to respond to the fol-
lowing scenarios:

 • Changing user display changes data

 • Changing data granularity changes user display

 • Changing user context changes both data granularity and user display

In short, any change in one variable, input or output, affects the other. Despite 
these two classes of unknowns, the good news is that there will always be something 
recognizable happening that you can use to determine how your code-driven visual-
ization should respond.

Whether it’s a window resize, a button click, or an updated API response, because 
you are not dealing with static content, you can update accordingly.

Using D3.js
Recall from the previous chapter that D3.js is a library of JavaScript functions 
for manipulating HTML documents based on data.  D3 stands for data-driven 



Using D3.js 321

documents.  Intuitively from that name, it’s purpose is to allow for efficient DOM 
manipulation based upon data inputs.

D3.js makes use of HTML and CSS standards to allow you to create markup on a 
page that is not contained in any sort of plugin or applet.  Rather, it can be mod-
ified, styled, and interacted with in the same way that any other part of a website 
can be.  This allows you to have much more visual and technical control over the 
final user-displayed result.  As you’ll see through the coming examples, D3’s power 
comes from its ability to create scalable vector graphics (SVGs) in the browser.

Getting Started with D3.js
While you may want to read through the light introductions on the D3 page 
(d3js.org) I find that the best way to get an understanding of the library is to jump 
right into an example.

Importing and Understanding D3.js

Obviously, before you can use D3, you need to have it. The library can be found at 
http://d3js.org/, where you’ll also find a wealth of tutorials and documentation. 
A comprehensive treatment of D3 would be beyond the scope of this book.

You have three ways to access D3:

Download the zip from http://d3js.org/.

Link directly to the cloud-served version of the library, which is shown in the fol-
lowing code, with the bolded version replacing the versioned release (3.5.5 as of 
writing):

<script src="https://cdnjs.cloudflare.com/ajax/libs/d3/version/d3.min.

js" charset="utf-8"></script>

Fork the D3 repo on github at github.com/mbostock/d3. 

The first option enables you to import the latest version of the library file into your 
own JavaScript project as you see fit, but you’ll need to go back to the website and 
download a new zip file whenever you want to update your version.



322 Code-Driven Visualization

The second option, just as with using jQuery from the Google servers or any other 
library’s online server, while the easiest to get going, creates a risky dependency on 
a third party over which you have zero control or oversight. If their end point has 
downtime, is moved, or is simply in a laggy mood, you have no way of fixing it.

The third option, the github repo, gives you not only the source, but also all the 
tests. If you download it as a zip, you’ll be in just about the same situation as you 
would be with option one, but forking the repo using git gives you the benefits of 
easy version control.

It’s a Library

D3.js, as I touched on in the previous chapter, is a library of JavaScript functions 
for manipulating HTML documents based on data. That’s all that it is.

D3 enables you to use all the functionalities of modern browsers that you learned 
to harness in the first half of this book because it isn’t a new technology living in a 
browser—it’s simply JavaScript built on web technologies.

Using D3, you can bind data to the DOM and then apply transformations to 
the document based upon that data. Say, for example, you have an array of the 
following:

[0,2,8,5,1,9]

You could use D3 to create an HTML table that just displays those numbers in a 
row. You could also use it to create an SVG bar graph of those elements. Both work 
using the same platform with which you’ve been building anything else for the web.

You don’t, however, get any exciting predefined ways to represent data right out 
of the box. The elements available to you are just standard DOM elements. You’re 
making HTML and styling it with CSS. Remember this sample code from the pre-
vious chapter:

d3.selectAll('div.change-me').style('height', function() {

  return Math.random()*100+'px';

});

Simply put, the code finds the divs with class .change-me, and gives them a random 
height. I happened to use D3 for this, but had no reason to.



Using D3.js 323

With data:

d3.selectAll('div.change-me')

    .data([0,2,8,5,1,9])

    .style('height', function(d) { return (d * 100) + 'px'; });

For each element in the array, it casts to d in the function, and sets a height of that 
times (*) 100 pixels.

Selections

Because D3 is just a JavaScript library, it’s technically feasible to write everything 
that D3 does in vanilla JavaScript. 

It works, but it’s incredibly tedious, and that’s before you even back the code with 
any dynamic data. For example, suppose you wanted to simply change the height of 
all .change-me to 50px. Here’s the vanilla JavaScript:

var changeUs = document.getElementsByClassName('change-me');

var changeHeight = Array.prototype.filter.call(changeUs, 

function(changeMe){

  if(changeMe.nodeName === 'DIV';)

    changeMe.('style', 'height: 50px;');

  }

});

Here it is using D3:

d3.selectAll('div.change-me').style('height', function() {

  return '50px';

});

You may have noticed that the syntax looks a lot like jQuery’s. In jQuery, you 
would write something like this:

$('div.change-me').css('height','50px');

That completely makes sense. Both are using the W3C Selectors API, which is sup-
ported natively by modern browsers. Backward compatibility has been built into 
the selectors for both, using Sizzle in D3. Although I used a class name in the pre-
ceding example, you can select elements using any of the same selectors you would 
use in jQuery: tag name, containment, id, data attributes, and so on.

D3 allows you to change the nodes you’ve selected, setting attributes and styles. You 
can also add or remove event listeners, and add, remove, or sort nodes.



324 Code-Driven Visualization

Moreover, you can access the DOM underlying the element directly, as a D3 selec-
tion is nothing more than an array of nodes.

Dynamic Properties

What differentiates D3 from other DOM framework libraries (such as jQuery) is 
that node data attributes, styles, and other properties don’t need to be set as static 
values, but can be functions based on data.

Let that sink in.

You can select a bunch of nodes in the DOM, pass in some data, do whatever-the-
hell-kind-of-math-you-want to it, and then change attributes of those nodes based 
on that data, all on the client. D3 provides a wealth of reusable functions for things 
such as lines, area, pie charts, graphics, and even geographic coordinates.

The first example in fact was using this:

d3.selectAll('div.change-me').style('height', function() {

  return Math.random()*100+'px';

});

Going one step further, suppose that for each of the elements, its height will also be 
a function of its place in the D3 node array, as shown in Figure 10-3:

d3.selectAll('div.change-me').style('height', function(d, i) {

  return Math.random() * i * 100+'px';

});

That’s all crazy exciting, but what makes it useful?

Properties that are computed in these functions can be bound to data. Data, to 
D3, means an array of values passed into the function, and referenced by its first 
argument d.

By default, D3 joins nodes in the element array to their respective index in the data 
array. That is, the first element in the data array is passed to the first node in the 
selection, the second element in the data array is passed to the second node in the 
selection, and so on. Therefore, going back to the following data set:

[0,2,8,5,1,9]



Using D3.js 325

FIGURE 10-3

Result of the D3 code using the i parameter

You can see that the code for which it changed heights was actually mapping 
'height: 0px;' to the first div.change-me, 'height: 200px;' to the second, and 
so on:

d3.selectAll('div.change-me')

    .data([0,2,8,5,1,9])

    .style('height', function(d) { return (d * 100) + 'px'; });

Once the data has been bound to these nodes, you can stop using the data selector, 
as D3 will retrieve the previously bound data. This allows recomputing (for exam-
ple, when you’re responding to something) without rebinding the data.



326 Code-Driven Visualization

 D3.js Output as SVGs

Just as you can select and modify any other type of DOM element, you have full 
access to SVGs. Remember that SVGs are an XML-based vector graphic format. 
They also support interactivity and animation. The SVG format is supported by 
nearly all major browsers.

That means that rather than creating and modifying the height and color of  
div.change-me, you can start to deal with things that act a lot more like the 
 graphical elements you would expect in a chart—because they are the graphical 
 elements you would expect in a chart.

Alright, but why does creating an SVG matter?  To the user, the markup is 
 irrelevant—whether it is a div or an SVG rect, they look identical.

SVG Is Great

Scalable vector graphics contain two-dimensional vectors. These can be paths, lines, 
shapes, or…just about any image you can make using math. Compare the images 
in Figure 10-4.

FIGURE 10-4

On the left: An image that works well as a raster. On the right: An image that works well as a 
vector

The image on the right can be represented as an SVG, the one on the left not so 
much. It’s an image format that, in its guts, looks just like an HTML page, rather 
than a jpeg; and because it looks just like an HTML page, it acts just like an 



Using D3.js 327

HTML page, meaning you can interact with its elements using CSS and JavaScript. 
The biggest benefits are as follows:

 • Resolution independence

 • Terrific browser support

 • W3C standard

 • Simple to create and edit

 • Compressible to tiny sizes

 • Dynamically creatable with code

 • Dynamically changeable with code

A plain circle can be created with the markup below, and shown in Figure 10-5:

<svg version="1.1" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 200 

200" >

  <circle fill="#32C0D3" stroke="#000000" stroke-width="5" stroke-

miterlimit="10" cx="100" cy="100" r="75"/>

</svg>

Neat, right?

The Ways to Build an SVG

Because an SVG is just an XML format, you have a wealth of options regarding just 
how you implement it within a web page. There are benefits and drawbacks to each, 
depending upon just what you’re going to be doing with your SVG.

Assume for the following examples you have the SVG circle shown in Figure 10-5, 
represented by the following code, and saved as the file named circle.tif:

<svg version="1.1" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 200 

200" >

  <circle fill="#32C0D3" stroke="#000000" stroke-width="5" stroke-

miterlimit="10" cx="100" cy="100" r="75"/>

</svg>



328 Code-Driven Visualization

FIGURE 10-5

A circle in SVG

Img
<img src="circle.tif" alt="Circle" height="200" width="200" />

The most obvious option is to include an SVG just as you would a PNG, JPEG, or 
any other image format. This method is perhaps the easiest to use, but it’s also the 
least interactive. Apart from styles added inline (in a style attribute) to the SVG, it 
is essentially just a nicely optimized static image.

Background-image
.circle {

  background-image: url("circle.tif");

}

Including an SVG as a background image for an element in your CSS is also an 
obvious option. This has the same performance benefits as using a background 
image in other cases—namely, it doesn’t block loading the rest of the page.

However, you are again limited to only inline and nondynamic styling, so it’s best 
used for static content.

Iframe
<iframe src="circle.tif">

  Your browser does not support iframes.

</iframe>



Using D3.js 329

Just as you can pull in a separate website in an iframe, you can do the same with an 
SVG. That being said…don’t.

Not only would that be using the wrong tool for the job, you’re introducing unnec-
essary complexity in your markup, and forcing an additional (also unnecessary) 
technical dependency upon the browser to both implement iframes in the first 
place, and to do so in the way you assume. 

Object
<object type="image/svg+xml" data="circle.tif">

  Your browser does not support SVGs.

</object>

The HTML object tag defines an embedded object in the DOM. It’s purposely 
generic in order to support embedding multimedia (audio, video, images, applets, 
PDFs, and even Flash). The unique quality of this tag is that you can also use it to 
embed another web page into your DOM.

In addition, because the markup of an SVG is XML, that means you’re not only 
referencing what the outputted image looks like, you’re technically embedding the 
SVG’s markup itself.

Practically, that means you can manipulate the SVG with JavaScript, style it with 
external CSS, and even allow interactivity with elements.

Inline
<svg version="1.1" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 200 

200" >

  <circle fill="#32C0D3" stroke="#000000" stroke-width="5" stroke-

miterlimit="10" cx="100" cy="100" r="75"/>

</svg>

This is the option that you will be using most often, as D3 generates whatever ele-
ments of an SVG that you select. You’ll notice that this example is the markup from 
the beginning of this section that drew the circle.

Rather than reference a separate file by name on your server, you can simply put the 
math that creates said file within your document. This has all the same benefits of 
using an object tag, but additionally doesn’t obfuscate the actual element.



330 Code-Driven Visualization

In a practical sense, that means you don’t need to keep referencing the external file 
to see just what you want to modify when a user interacts with the SVG.

Which One Should You Use?

Here is the gist: For static content (such as a pre-rendered visualization), you have 
the option of using whatever method you are most comfortable with.

However, because you’re drawing with code, your hand is forced toward inline SVG or 
object tags. Table 10-1 summarizes the limitations of each implementation method.

TABLE 10-1

Capabilities of the Four SVG Implementation Methods

Inline Object Img CSS Background-Image

CSS Manipulation Yes Yes Inline Inline

JS Manipulation Yes Yes No No

SVG Animation Yes Yes Yes Yes

Interactivity Yes Yes No No

As detailed in the preceding table, the functionality of referencing an SVG by object 
or by keeping all of the SVG code inline is basically identical. The key difference is 
that inline, you can see just what makes your SVG look the way it does.

How to Style an SVG

One of the biggest benefits of using an SVG is that you can style it using CSS.

In the code you were just looking at, the fill and stroke attributes (along with a few 
others) were simply added inline within the circle tag. Take a look at the following 
SVG. It’s the code for the same circle but without the colors for fill and stroke.

Additionally, I’ve give the circle a class of .foo.

<svg version="1.1" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 200 

200" >

  <circle class="foo" stroke-width="5" stroke-miterlimit="10" cx="100" 

cy="100" r="75"/>

</svg>



Using D3.js 331

Now, in an external CSS file, I’ve added the following lines:

.foo {

  fill: #32C0D3;

  stroke: #000;

}

The output, shown in Figure 10-6, is exactly what you’d expect: the same circle 
shown in Figure 10-5.

FIGURE 10-6

The same SVG circle, styled by CSS

Here’s where it gets cool. Say you have a lot of these circles for some reason, and 
you want them to have some different styling. Rather than having to create a whole 
new asset, you can add a new class to the element. For example, suppose you have 
the following code:

<svg version="1.1" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 200 

200" >

  <circle class="bar" stroke-width="5" stroke-miterlimit="10" cx="100" 

cy="100" r="75"/>

  <circle class="bar" stroke-width="5" stroke-miterlimit="10" cx="100" 

cy="100" r="75"/>

</svg>



332 Code-Driven Visualization

Here is the CSS:

.foo {

  fill: #32C0D3;

  stroke: #000;

}

.bar {

  fill: #00AA55;

  stroke: #999;

}

The output, shown in Figure 10-7, demonstrates that by using identical markup to 
set up the SVG, but adding a class, you can radically change its styling. How this 
works in a practical sense is the same as how CSS applies to any other part of the 
DOM. Remember the priority order of styling, as shown in Table 10-2.

FIGURE 10-7

Two SVGs, both styled by CSS. Although their markup is the same, they have separate classes 
that result in different styling.



Using D3.js 333

TABLE 10-2

CSS Source Type Priority Levels

Priority 
Level

Style  
Source Type Style Type Description Example

0 Importance Any rule either in a 
stylesheet or inline HTML 
with the !important 
modifier

h1 {
  font-size: 24px 
  !important;
}

1 Inline Rules defined in an HTML 
element’s style attribute

<h1 style="color: 
red;">...</h1>

2 Media type Rules applied to specific 
media types as defined in 
the CSS

@media screen {
  h1 {
    color: red;
  } 
}

3 User defined A function of the browser, 
allowing users to define 
their own CSS overrides

N/A

4 Selector 
specificity

A specific contextual selec-
tor that overwrites the 
generic definition

#header h1 {
  color: blue;
}

5 Rule order Rules defined last in the 
CSS are given higher prior-
ity than those defined first.

h1 {
  color: red;
}
h1 {
  color: blue; /* This is 
  higher priority */
}

6 DOM parent 
inheritance

A property inherited by 
an element that has been 
defined on the element’s 
parent

#heading {
  font-size: 24px;
}
h1 {
  color: red;
  /* h1 inside #heading 
  will also inherit 
  font-size: 24px; */
}

7 Generic CSS 
property

CSS rule or inline style that 
overwrites a browser default

h1 {
  color: red;
}

8 Browser 
default

The default browser value as 
determined by W3C initial 
value specifications

N/A



334 Code-Driven Visualization

How does all of this apply to responsive design?

You spent all of Chapter 4 learning how to master the media query to target your 
styles to different device functionalities. That doesn’t change here. Assume the fol-
lowing code again:

<svg version="1.1" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 200 

200" >

  <circle class="bar" stroke-width="5" stroke-miterlimit="10" cx="100" 

cy="100" r="75"/>

</svg>

Now apply some CSS with a media query, as here:

.foo {

  fill: #32C0D3;

  stroke: #000;

}

@media screen and (min-width: 600px) {

  .foo {

    fill: #000;

    stroke: #FFA905;

  }

}

As shown in Figure 10-8, you see that the circle has the normal blue styling; but on 
a screen size > 600px, the additional styling changes its appearance.

Obviously this is a pithy example, but assume you have a big data set being repre-
sented as a bar chart. If on a small screen you’re grouping down to only three wide 
bars with labels shown, and on a massive television you have 300 small bars with 
layered information on interaction, you can skip any reliance on JavaScript and sim-
ply build this into your media-queried CSS.

Creating SVGs with D3.js

At this point you should understand the benefits of SVG, and you’ve seen how 
incredibly simple it is to add, remove, and modify elements on the DOM using 
D3’s built-in functions.

It’s time to put that knowledge to use.



Using D3.js 335

FIGURE 10-8

An SVG circle that changes color when the screen size exceeds 600px

Outputting Four SVG Squares

Suppose your DOM includes an SVG with four squares (rect tags with equal 
width and height), built with the following code (and shown in Figure 10-9):

Code

<svg width="550" height="100">

  <rect x="100" y="25" width="50" height="50" />

  <rect x="200" y="25" width="50" height="50" />

  <rect x="300" y="25" width="50" height="50" />

  <rect x="400" y="25" width="50" height="50" />

</svg>

There’s nothing exciting about this so far—it’s just four squares of equal size in a 
line. For the time being, they’re each 50px by 50px, vertically centered within the 
SVG, and 50px apart from one another.



336 Code-Driven Visualization

FIGURE 10-9

The original four SVG squares

Selections

The d3.selectAll method accepts a selector, which can be a class, tag name, con-
tainment, id, data attributes, and so on. In this case, you can use 'rect' to select all 
four of the squares, as shown here:

var squares = d3.selectAll('rect');

The variable squares now references an array, including all four of the rect nodes. 
With that selection, you can start to change the nodes, just as you did to divs earlier 
in this chapter. For example, you can change the color of all of them:

squares.style('fill','#32C0D3');

Applying that rule sets the same style of a blue fill for all elements within the array. 
The markup is updated as follows, and visually the SVG is changed to what is 
shown in Figure 10-10:

<svg width="550" height="100">

  <rect x="100" y="25" width="50" height="50" style="fill:#32C0D3;" />

  <rect x="200" y="25" width="50" height="50" style="fill:#32C0D3;" />

  <rect x="300" y="25" width="50" height="50" style="fill:#32C0D3;" />

  <rect x="400" y="25" width="50" height="50" style="fill:#32C0D3;" />

</svg>

Suppose that instead you want to traverse through the array and modify each ele-
ment separately. You can do so by using an anonymous function within the selec-
tion. Anonymous functions are used in D3 to compute attribute values for scale 
and shape when related to bound data. More on that in a moment.



Using D3.js 337

FIGURE 10-10

The four squares are now blue.

For this example, just assume you want to change the squares into rectangles of 
varying size with a maximum width of 50px. You can do so with the following 
code:

squares.attr('width', function() { return Math.random()*50; });

Notice the use of the Math.random() function to create a random modifier for the 
50 pixel maximum. Upon running this code, the markup is updated as follows, and 
the SVG looks like Figure 10-11:

<svg width="550" height="100">

  <rect x="100" y="25" width="33.369975339155644" height="50"></rect>

  <rect x="200" y="25" width="13.0528430105187" height="50"></rect>

  <rect x="300" y="25" width="43.3788719587028" height="50"></rect>

  <rect x="400" y="25" width="17.016702063847333" height="50"></rect>

</svg>

FIGURE 10-11

The four squares are now rectangles with random widths, based on the D3 function applied.

Data

Using only random numbers could be handled just as easily in jQuery, or even 
vanilla JavaScript. The key benefit of D3 over another DOM manipulation library 



338 Code-Driven Visualization

is that it enables you to bind data to the DOM and then apply transformations to 
the document based upon that data.

Therefore, still using the same four squares, say you now have the following code:

var squares = d3.selectAll('rect');

squares.data([7,13,19,25]);

Nothing has changed on the DOM yet, but something important has happened 
behind the scenes. In the first line, you have once again selected the DOM ele-
ments. In the second, you have taken in an array of four values that essentially mir-
rors the selection on the data side.

That means the first number (7 in this case) is now bound to the first square in the 
selection.

After data is bound like this, it’s accessible to the selection’s functions. As a best 
practice, the datum bound to each selected element is named d when passed into 
the anonymous function.

Assuming you’ve run the two preceding lines, you can now change the rectangles’ 
widths using d, as shown here:

squares.attr('width', function(d) { return d*2; });

The updated markup is as follows, and the SVG is shown in Figure 10-12:

<svg width="550" height="100">

  <rect x="100" y="25" width="14" height="50"></rect>

  <rect x="200" y="25" width="26" height="50"></rect>

  <rect x="300" y="25" width="38" height="50"></rect>

  <rect x="400" y="25" width="50" height="50"></rect>

</svg>

FIGURE 10-12

The rectangles now have widths backed by their bound data. Although primitive,  
this is a data visualization.



Using D3.js 339

There’s one more argument that is 
typically useful when modifying selec-
tions: the index of an element within 
the array. By convention, it’s named i.

In the same example, say you’d like to 
change the height of the rectangle based upon its position in the array. You can do 
that with the following code:

squares.attr('height', function(d,i) { return (i+1)*10; });

The markup ends up as follows, and the visualization is shown in Figure 10-13:

<svg width="550" height="100">

  <rect x="100" y="25" width="14" height="10"></rect>

  <rect x="200" y="25" width="26" height="20"></rect>

  <rect x="300" y="25" width="38" height="30"></rect>

  <rect x="400" y="25" width="50" height="40"></rect>

</svg>

FIGURE 10-13

The rectangles now change size based upon both their bound data and their index in the selec-
tion array.

Everything else starts to spawn from this basic set of functionality. Given elements, 
an array of data, and the two traversal variables of d and i, you can select any ele-
ment and modify its attributes based upon the data that you’ve bound to it.

At a certain point, however, the data that was initially bound might not be the data 
that you want to show. In the previous chapter you used enter and exit to handle 
cases in which you wanted to add or remove data.

Now you’re going to dig deeper into how these two selections work.

 NOTE

Hey, superstar. You just used D3 
to visualize data as an SVG.



340 Code-Driven Visualization

Enter

Assume your four squares are back to being just squares; but instead of your data 
being a set of [7,13,19,25], it was now [7,13,19,25,11]. The problem is that you 
have one more datum than you have selected elements. You now need to find a way 
to append an additional node to the DOM in order to represent the fifth datum.

You can certainly just manually update the DOM, provided you know that this 
change is coming, and doesn’t happen on the fly. In the real world, however, you 
won’t know this change is coming, and it will happen on the fly. You solve for this 
using enter.

When you join that data to the selected elements, each datum can end up in one of 
two places:

 • update: The joined nodes of a DOM element and its data

 • enter: The overflow data that doesn’t have an element to bind to

Therefore, if you ran the new array of five elements through the previous code, the 
output would look the same, but behind the scenes that eleven would end up in an 
overflow bucket of enterable data. 

This is good news. It means that the additional piece of data hasn’t just floated 
off into the ether—it’s available for use. By appending the enter selection to the 
DOM, you can create a new rectangle from the missing data. 

In terms of creating rational markup, you’ll now need to start with a reference to the 
rects’ parent element, because you’ll want to inject a new element at the same level 
as the others. This is simply the wrapping SVG. The following example shows what 
the beginning of your D3 function needs to look like to handle this new selection:

var svg = d3.select('svg');

var squares = svg.selectAll('rect')

    .data([7,13,19,25,11]);

var enterSquare = squares.enter().append('rect');

When you enter an element, it already is bound to the data, so you don’t need to 
re-data anything to reference d or i. As such, setting the attributes for the new ele-
ment is the same as what you did for squares earlier:

enterSquare.attr('x', function(d, i) { return (i+1)*100; });



Using D3.js 341

enterSquare.attr('y', function(d, i) { return 25; });

enterSquare.attr('width', function(d) { return d*2; });

enterSquare.attr('height', function(d,i) { return (i+1)*10; });

Running all of this, you get the following markup, and the SVG shown in 
Figure 10-14:

<svg width="550" height="100">

  <rect x="100" y="25" width="50" height="50"></rect>

  <rect x="200" y="25" width="50" height="50"></rect>

  <rect x="300" y="25" width="50" height="50"></rect>

  <rect x="400" y="25" width="50" height="50"></rect>

  <rect x="500" y="25" width="22" height="50"></rect>

</svg>

FIGURE 10-14

This isn’t right. The original squares didn’t change.

That’s…not right. The problem is that you started with four rect elements on the 
page, but in the new code you’re modifying only the attributes of the enter selec-
tion, cast to enterSquare. The entire code needs to handle both selections, as  
shown here:

var svg = d3.select('svg');

var squares = svg.selectAll('rect')

    .data([7,13,19,25,11]);

squares.attr('width', function(d) { return d*2; });

squares.attr('height', function(d,i) { return (i+1)*10; });

var enterSquare = squares.enter().append('rect');

enterSquare.attr('x', function(d, i) { return (i+1)*100; });

enterSquare.attr('y', function(d, i) { return 25; });

enterSquare.attr('width', function(d) { return d*2; });

enterSquare.attr('height', function(d,i) { return (i+1)*10; });



342 Code-Driven Visualization

This finally gives you the following markup, and Figure 10-15, exactly what you 
wanted to visualize:

<svg width="550" height="100">

  <rect x="100" y="25" width="14" height="10"></rect>

  <rect x="200" y="25" width="26" height="20"></rect>

  <rect x="300" y="25" width="38" height="30"></rect>

  <rect x="400" y="25" width="50" height="40"></rect>

  <rect x="500" y="25" width="22" height="50"></rect>

</svg>

FIGURE 10-15

That’s more like it. By using both data and enter, the rectangles have been properly drawn.

If you are thinking that this code is 
extremely wasteful, you’re right. There’s 
a ton of overlap in functionality, when 
all you’re really trying to do is make all 
the elements match their data. In the 
case where your entire selection ends 
up in the enter bucket, you can chain 
together all these functions as shown 
in the following example:

var svg = d3.select('svg');

svg.selectAll('rect')

    .data([7,13,19,25,11])

    .enter().append('rect')

    .attr('x', function(d, i) { return (i+1)*100; })

    .attr('y', function(d, i) { return 25; })

    .attr('width', function(d) { return d*2; })

    .attr('height', function(d,i) { return (i+1)*10; });

That said, however, you will have the same issue of four of the five squares still 
being squares if they are in the update bucket, rather than enter.

 WHY BOTHER WITH BOTH?

This was a unique case because 
you were working with previ-
ously created elements. In most 
cases, you’ll be building every 
element within D3, so you 
won’t have this apparent overlap 
between data and enter.



Using D3.js 343

Exit

The opposite problem of having more data than elements is obviously having 
more elements than data to represent. This is the easier situation to handle. Your 
markup is again the four squares, and your data is now [7,13,19]. The fourth ele-
ment should no longer be present in the DOM. Skipping the enter selector for a 
moment, your code to handle this looks like the following:

var svg = d3.select('svg');

var squares = svg.selectAll('rect')

    .data([7,13]);

squares.attr('width', function(d) { return d*2; });

squares.attr('height', function(d,i) { return (i+1)*10; });

squares.exit().remove();

That last line takes care of removing elements to which data is no longer bound. 
The markup is simply three elements now:

<svg width="550" height="100">

  <rect x="100" y="25" width="14" height="10"></rect>

  <rect x="200" y="25" width="26" height="20"></rect>

  <rect x="300" y="25" width="38" height="30"></rect>

</svg>

The SVG is shown in Figure 10-16.

FIGURE 10-16

After exit, only three elements remain.



344 Code-Driven Visualization

Scale

Scales in D3 are functions that map from an input domain to an output range. In 
non-robot language, your scale is what translates your data’s value to its representa-
tive size on the screen. There are two types of D3 scales: quantitative and ordinal.

 • Quantitative scales have a continuous domain, the simplest example being 
numbers. 

 • Ordinal scales have a discrete domain, such as a list of state names.

The actual scale function of D3 is optional; it is essentially a nice wrapper around 
the math you would have to do to create your own mapping of data to visual rep-
resentation. For the purposes of this chapter, you’ll be mapping quantitative scales, 
as they have a much clearer 1:1 relationship between input (numbers) and output 
(numbers).

Domain

Your domain is the set of possible values for your input data. Suppose you start with 
the initial data set shown here:

var dataset = [ 0, 1000, 2000, 3000, 4000 ];

The domain of this set is a minimum of 0 to a maximum of 4000. Up until this 
point, that data has been what you have used as the d in your functions to actually 
display on the screen.

Therefore, for example, looking at the previous squares example, your first element’s 
width would be 2000px, and your last element’s width 4000px. That’s not going to 
work very well on a small screen, or even a large screen, for that matter. Moreover, 
suppose the data set grows, and each additional datum is 1000 more than the previ-
ous. Your set will become completely undisplayable very quickly.

This is the purpose of a scale. Because this data is not meant to represent pixels on a 
screen, you don’t need to force it to do that.

Range

Range is the set of possible output values of your visualization. Using D3 on the 
web, that means the pixel values that map your data to the screen. Unfortunately, 



Using D3.js 345

you can’t just automatically use percentages for a D3-drawn chart. Pixels have to 
stay involved.

As great as it would be to build an entirely fluid chart, it’s just not how the library 
works. Start with a simple stacked bar chart that isn’t responsive for now.

Suppose your container is a fixed 400px wide, with padding on either side of 8px. 
Your range for this set is 8 to 392. Table 10-3 shows the data set’s values mapped to 
their ranges.

TABLE 10-3

Domain Data vs. Computed Pixel Range

Data Pixels

0 0

1000 98

2000 196

3000 294

4000 392

In Chapter 9, you actually used this code already:

...

var x = d3.time.scale()

  .range([8, 304])

...

var y = d3.scale.linear()

  .range([144, 8])

...

var svg = d3.select('#viz').append('svg:svg')

  .attr('width', 320)

  .attr('height', 160)

...

There, your range_x was 8–304px, your range_y was 8–144px, and your domain 
was as follows:

d3.extent(data)

This function simply acts as a D3.js wrapper to output min and max values of a 
data set. 



346 Code-Driven Visualization

What about handling the output responsively, though? When you were first learn-
ing how to create fluid layouts, recall the equation that defined a percentage of the 
screen:

target ÷ context = result

If the result is the fluid percentage-based size of your SVG (or its container), then 
at every pixel value of your context (the screen size), you do still have a pixel-based 
target. That is:

target = result × context

At least at one size, you can determine exactly what your range should be to fix your 
container. Keep this in the back of your mind for a few minutes.

Transition

A transition is simply a way to animate and smooth the shifting of data. On enter, 
exit, and scale shifts, the default behavior is to simply instantaneously redraw. Tran-
sitions delay and animate these changes over fixed (and modifiable) durations.

Directly from the D3.js documentation:

A transition is a special type of selection where the operators apply smoothly over 
time rather than instantaneously. You derive a transition from a selection using 
the transition operator. While transitions generally support the same operators 
as selections (such as attr and style), not all operators are supported; for exam-
ple, you must append elements before a transition starts. A remove operator is 
provided for convenient removal of elements when the transition ends.

Recall from the previous chapter that when you needed to change the scale as ele-
ments were added and removed, pushing the limits of your domain, you used the 
following function:

var redraw = function() {

    x.domain(d3.extent(data, computeDate));

    y.domain(d3.extent(data, computeVal));

    var items = svg.selectAll('circle').data(data);

    

    items

     .attr('cx', function(d) { return x(computeDate(d)) })



Using D3.js 347

     .attr('cy', function(d) { return y(computeVal(d)) });

     items.enter()

      .append('svg:circle')

      .attr('r', 4)

      .attr('cx', function(d) { return x(computeDate(d)) })

      .attr('cy', function(d) { return y(computeVal(d)) });

    items.exit()

      .remove();

  };

To add a transition, only the following change (in bold) needs to be made:

var redraw = function() {

    x.domain(d3.extent(data, computeDate));

    y.domain(d3.extent(data, computeVal));

    var items = svg.selectAll('circle').data(data);

    

    items

     .transition()

     .attr('cx', function(d) { return x(computeDate(d)) })

     .attr('cy', function(d) { return y(computeVal(d)) });

     items.enter()

      .append('svg:circle')

      .attr('r', 4)

      .attr('cx', function(d) { return x(computeDate(d)) })

      .attr('cy', function(d) { return y(computeVal(d)) });

    items.exit()

      .remove();

  };

Beyond what you have learned here, 
D3.js offers a lot more functionality. 
It isn’t covered here because none of it 
relates to making visualizations respon-
sive. However, the Resources section 
at the end of the book has a wealth of 
tutorials and articles that can set you 
on the right path.

 SLIMMING DOWN

Animation can’t be shown  
in a book, so head to this  
chapter’s section on  
responsivedatavisualization.com 
and check out the example.



348 Code-Driven Visualization

Data and the DOM
D3 is the translation layer between your structured data and its representation in 
the DOM. It requires an array of values that can be somehow sorted and individu-
ally parsed, but apart from that it does not force many rules upon you.

In Chapter 8, you learned how to create a clean, powerful API.  Here is where the 
work you have front-loaded there becomes immensely useful.  Your visualizations 
are going to be powered by data coming from your API, and parsed via JavaScript.  
Before combining D3 and your API, we’ll dig into what we mean when we refer to 
data in JavaScript.

Data in JavaScript

You’re still just using a JavaScript library, so you are forced to use JavaScript. And 
that’s good, because it’s a wonderful, powerful, Wild West of a language.

In Chapter 5, you learned that JavaScript is a loosely typed language. Practically, 
that means you can set a variable to be any type of object or literal, and then change 
it to another without a problem:

var myString = 'Hello world';

myString = 1;

myString = [1,2,3];

myString = {

  'name': 'Hello world',

  'val': 1 

};

Everything in the preceding code will work normally. The value of myString at the 
end is now an object with fields 'name' and 'val'.

Your data, if you have built an API based upon the standards detailed in Chapter 8, 
should be reachable as a JSON (JavaScript object notation) file.  This notation is 
essentially a large object (like what myString ended up as above) that can be parsed 
into more digestible and displayable information, like strings or numbers.

Although there isn’t really a concept of strongly-enforced data types, there are still 
reasonable data types that allow for operations on variables. Without data types, 



Using D3.js 349

there would be no way to compare, combine, or parse different pieces of data.  
These data types are detailed in the proceeding sections.

Booleans

True or false. This is conceptually the simplest data type. Booleans are used in con-
ditional testing and can only hold a value of true or false:

var x = true;

var y = false;

Numbers

JavaScript’s numbers can hold either an int (no decimal) or a float (decimals). 
Numbers can also be written in scientific notation:

var x = 1;

var y = 1.000;

var z = 1e11;

Strings

Strings are a series of characters, and are written with either single or double quotes:

var x = 'Hello world';

var y = "Hello world";

Arrays

Arrays are written using square brackets, and items are separated by commas. 
Remember that D3 takes in an array of items for its data selector:

var arr = [1,55, 19];

Apart from simple data types, arrays can hold objects, or even additional arrays:

var obj_arr = [

  {  

    'name': 'Object 1',

    'val': 123,

  },

  {  

    'name': 'Object 2',

    'val': 456,

(continues)



350 Code-Driven Visualization

  },

  {  

    'name': 'Object 3',

    'val': 789,

  },

];

var arr_arr = [[1,2,3],[4,5,6],["Hello world","Goodbye world"]];

Objects

Objects in JavaScript can be thought of as variable wrappers around more variables. 
An object can look something like this:

var obj = {

  'name': 'Object 1',

  'val': 123,

  'id' 55,

  'related': [11,2,40]

}

Objects can also hold other objects (and arrays of other objects). The attributes of 
one object can be referenced either by dot or square bracket notation. In the pre-
ceding object, you could retrieve the value of name using either of the following:

obj.name;

or

obj['name'];

An important type of object that is used often is the date object, which comes with 
a whole pile of useful functions. Date objects have a constructor of new Date();, 
which defaults to the exact date and time when it is called, but it can accept param-
eters to change year, month, day, hour, second, and millisecond.

JSON

Finally, JSON (JavaScript object notation) is actually a file type that is formatted 
as a JavaScript object. As such, the elements within it are simply objects, which 
can be accessed and traversed in the same way. You have already dealt with JSON a 
lot in this book. If you need a refresher, take a look at the train tracker example in 
 Chapter 5.

(continued)



Using D3.js 351

Structuring Your Data

Unless you’re writing examples for a book on responsive data visualization, your 
data is rarely going to be sitting idle and unchanging in a variable within your 
JavaScript. You will be reaching out to an API and retrieving JSON.

In Chapter 8, you learned that a good set of data should be all of the following:

 • Searchable

 • Sortable

 • Machine-processable

That is, your data should always answer the following three questions with a 
resounding “Yes!”:

 • Can someone search through the data and find something for which they are 
purposefully looking?

 • Can related fields across items be compared and evaluated to a greater or lesser 
result, enabling uniform items to be ranked by an individual field, or a join of 
multiple fields?

 • Without human intuition, can the data be scrubbed and analyzed? 

Once your data can satisfy these conditions, you can build your API to produce 
the exact output you’re going to feed into your visualization, without any bloat or 
unnecessary bandwidth consumption.

A Good API

Your API should have the following 
characteristics in order to be best con-
sumed by D3.

Granular Access

You should be able to get to the most 
granular level of useful data within 
your set.

 SLIMMING DOWN

The following sections represent 
a subset of the list outlined in 
Chapter 8 describing the attri-
butes of a good API. It’s not that 
the other elements aren’t impor-
tant, they’re just less important to 
visualizing with D3.



352 Code-Driven Visualization

Just as important as what is returned, granular access to your data via your API 
means that anything outside of the requested outputs should not be returned, in 
order to reduce noise and bandwidth.

Deep Filters

If the granular item is the needle you’re looking for in your haystack of data, filters 
are the magnets you use to find it. Searching through the full text of any data set 
would be ludicrous, and take considerable time, so an API should be able to take in 
pre-populated or free-form text filters to narrow your searchable set.

Value Typing

You don’t want to be stuck doing expensive comparisons on the client to calculate 
and identify data, so your returned array of objects, and their attributes, should be 
of an obvious and useful type.

RESTful

Because you’re doing this in JavaScript, the easiest and most practical way to reach 
your data is at a RESTful end point. This means that the granular access and deep 
filtering built into your API should be constructible as a RESTful string.

You saw this most clearly in Chapter 5’s train tracker API. A URL to the list of 
stops on the blue line was as follows:

"/blue" 

And this was a stop with ID 40890 in the collection of stops on the blue train line:

"/blue/40890"

Remember that, in essence, a RESTful API is just a URL to your data.

Standardized Format

Use JSON. It’s the most easily consumed data source by D3. It’s also dead-simple to 
construct.



Using D3.js 353

High Availability and Performance

This is especially important as your data set becomes more complex, and performance 
on the client begins to waver. You cannot expect users to first wait for your code to 
fetch data from a slow server, and then also be slow at processing and displaying it.

Here are a few tips to ensure high availability and performance:

 • Don’t allow for accidentally complicated queries by URL.

 • Don’t put resource-heavy authentication in the URL.

 • Cache results on the server.

 • Cache repeated queries on the client.

How D3 Reads Data

D3 takes in data as an array. That’s it. That’s the only option you have. However, 
that shouldn’t keep you from throwing big complicated data sets at it anyway. A 
JavaScript array can hold objects with as many attributes as you want. In practice, 
you don’t need to limit yourself to something like this:

var dataset_a = [10,20,55,101];

You can instead do something along the lines of the following:

var dataset_b = [

  {

    'id':341,

    'name':'Aldo',

    'val':25

  },

  {

    'id':102,

    'name':'Amber',

    'val':105

  },

  {

    'id':499,

    'name':'Bertram',

    'val':6

  },

  {

(continues)



354 Code-Driven Visualization

    'id':790,

    'name':'Bill',

    'val':99.123

  }

]

This creates the need for the D3 key function. By default, D3 simply reads ele-
ments by index, meaning that in dataset_a, datum 1 is 10, datum 2 is 20, and so 
on; and in dataset_b, datum 1 is the object with id 341, datum 2 is the object 
with id 102, and so on. That happens when you call data without an additional 
function, like this:

var people = svg.selectAll('rect') 

  .data(dataset_b);

A key function, passed to the data selector, enables you to specify what should actually 
identify a unique piece of data. A suitable key function for dataset_b would be to 
take each object’s id. Within a visualization’s backing code, that would look like this:

var people = svg.selectAll('rect') 

  .data(dataset_b, function(d) { return d['id']; });

The biggest benefit of a key function is that it solves for duplicate entries in your 
data. As a fringe benefit, this data consistency allows for much more meaningful 
transitions and interaction. Adding or removing, sorting, and changing layering 
between data will transition the correct elements because there is a piece of the data 
more meaningful than its index to connect two views.

Building Responsive 
Data Visualization 
for the Web
Get it? Like the book’s name.

(continued)



Building Responsive Data Visualization for the Web 355

Now that you have identified all the unknowns for which you have to solve (or at 
least guard against), and you have learned the tools with which to do so…do so.

At the beginning of the chapter, you learned that the two unknowns you need to 
respond to are “client” and “data” unknowns. The first reflects changes on the out-
put end, the second changes on the input end.

Client Responsiveness
This is what you think of when you think of responsive design—making things 
work on all screen types. And it’s an incredibly important half of the equation. You 
are creating these visualizations for someone, and the whole point of all this effort is 
to enable that someone to look at your visualization on any device.

Using Your CSS

Before getting into the more data-visualization-specific JavaScript, keep in mind 
that you are still using markup and can still apply classes to that markup. Although 
there isn’t much you can do to totally resize your visualization in CSS, you can actu-
ally decrease the amount of work you need to do on the visualization end by more 
methodically using CSS to cause the rest of the surrounding page to respond and 
remain fluid.

Look back to Figures 10-1 and 10-2 at the beginning of this chapter.  The CSS is an 
obvious choice for reflowing and resizing the visualization’s container (Figure 10-1), 
and how it interacts with the page as a whole.  Responsive CSS can also help with 
some of the visualization-internal changes (Figure 10-2) you may want to make, such 
as font size, padding between elements, and hiding or showing layered elements.

Window Resize

CSS, however, is only going to get you so far when you’re building things 
 dynamically with JavaScript. Assume some arbitrary large data set (available at 
responsivedatavisualization.com/chapter-ten) that can be fed into a bit of  
D3 code to create the stacked bar chart shown in Figure 10-17.



356 Code-Driven Visualization

FIGURE 10-17

A nonresponsive bar chart



Building Responsive Data Visualization for the Web 357

Instead of setting the range as some number, I’m going to actually take it from the 
container’s width. Suppose the DOM looks like this:

<header>...</header>

<main>

  <section class="wrapper">

    <div id="viz"></div>

  </section>

  <aside>...</aside>

</main>

<footer>...</footer>

In addition, it has some basic fluid styling:

header,

footer {

  width: 100%;

}

main {

  @include clearfix();

  max-width: 1024px;

  width: 100%;

}

.wrapper {

  float: left;

  width: 60%;

}

aside {

  float: left;

  width: 40%;

}

The code in D3 to figure out the chart’s size could then, rather than simply fill-
ing a 400px by 100px, as in the previous examples, actually query the size of the 
container:

var margin = 8;

var width = d3.select('#viz').style('width');

var width = width - (2*margin);

var barHeight = 24;

var percent = d3.format('%');

var x = d3.scale.linear()

    .range([0, width])

(continues)



358 Code-Driven Visualization

    .domain([0, 1]);

var y = d3.scale.ordinal();

Your visualization, at least at page load, is now resolution-agnostic. Both the chart’s 
size and scale are dependent upon the width of #viz.

Resizing All the Time

The next step should be intuitive. If you can resize on page load, you can do it any-
time the page size changes:

function redraw() {

  width = d3.select('#viz').style('width');

  width = width - (2*margin);

  x.range([0, width]);

  d3.select(chart.node().parentNode)

    .style('height', (y.rangeExtent()[1] + 2*margin) + 'px')

    .style('width', (width + 2*margin) + 'px');

  chart.selectAll('rect.percent')

    .attr('width', function(d) { return x(d.percent); });

}

One major drawback of this technique is that it can become expensive if you are 
redrawing every time the page fires a resize event. The obvious solution is to only 
redraw when you are actually changing page content.

Matching Your Breakpoints

Just as you don’t make radical page reflow changes at every single pixel change, nor 
do you need to handle your visualization this way. In addition, just as you found 
breakpoints at which other content needed to be reflowed, so too can you set this 
for your visualization.

The simple solution is to take your major breakpoints from your CSS, as they are pre-
sumably causing the container for your visualization to change, and only redraw then.

The more complex (but certainly worthwhile) solution is to do the same thing you 
did when designing a responsive page. Let the content show you what’s wrong. 
Build for your smallest supported screen; then, as you find a spot at which it makes 

(continued)



Building Responsive Data Visualization for the Web 359

sense to redraw, create a new breakpoint there. How you handle drawing at these 
breakpoints is a concept called drawing modes, which you’ll now add to your redraw 
function.

It works like this: In CSS your styles apply once a media query is met, and then 
they don’t need to be re-applied because that media query is still met. However, in 
JavaScript, if you want to make a change when the page is, for example, > 600px 
wide, and you change the page from 580px to 601px, and then change 601px to 
625px, the redraw will fire both times.

Therefore, you’ll set a variable that describes the view mode in which your user is 
viewing the content. The following skips the guts of the redraw just outlined:

var mode;

handleResize();

d3.select(window).on('resize', handleResize); 

function handleResize() {

  var windowWidth = window.innerWidth;

  if(windowWidth >= 1024 && mode !== 'lg') {

    mode = 'lg';

    redraw(mode);

  } else if(windowWidth > 960 && mode !== 'm') {

    mode = 'm';

    redraw(mode);

  } else if(windowWidth > 640 && mode !== 'sm') {

    mode = 'sm';

    redraw(mode);

  } else if(mode !== 'default'){

    mode = 'default';

    redraw(mode);

  }

}

The variable mode is exposed outside of the handleResize function so that it isn’t 
squashed every time a resize is called. As the visualization is loaded, and then every time 
a window resize event is captured, the code does not immediately attempt a redraw, 
but instead first checks whether the window’s width (in this case—because it could be 
height, DPI, touch capability, etc.) should change the mode from what it currently is.

If so, it changes it, then redraws. Within redraw, you now can optionally pass this 
mode as a parameter in order to skip parts of the code that would only be relevant 
to other view modes—for example, resizing text that is hidden on a smaller screen.



360 Code-Driven Visualization

Grouping

There is a client-side layer of representation grouping that doesn’t rely on a full 
mode-backed redraw. Yes, you certainly should do everything that was just outlined 
to pull different sets in different viewing modes, but you can also optimize for all of 
the viewing sizes within those modes.

In the following code example, data_visible is some simple math determining 
how many items in your set are attempting to fit into one pixel. 

Then dataset_grouped is a downsampling, per this number, of every data_ 
visible-th element in the greater data set. The new filtered data set is much 
smaller, but it still shows nearly the same chart as the more granular one.

var data_visible = dataset.length / width;

var dataset_grouped = dataset.filter(

  function(d, i) { return i % Math.ceil(data_visible) == 0; }

); 

Figure 10-18 shows stock data without grouping. Notice how thick and jagged the 
line looks. Figure 10-19 shows it after grouping using the method just described. 
Although precision is technically lost, it’s not recognizable precision, and it’s a small 
trade-off for the benefits of reduced rendering complexity, data set size, and perfor-
mance overhead.

FIGURE 10-18

Ungrouped data. Notice the oddly thick and jagged line.



Building Responsive Data Visualization for the Web 361

FIGURE 10-19

Grouped data. Not only does it look slightly better, it is much less taxing on the browser.

Data Responsiveness
At this point, you have a chart that will dynamically resize and redraw to fit its con-
tainer. If your goal was to make something responsive enough to always fit, you’ve 
made it.

But you can make it much better.

With all the effort you’ve expended to creating a robust, lightning-fast API, you 
better use it. If at your default (smallest) screen size, you had room for, say, 320 
data points on a line graph, but you have a total of 32,000, then on a 1,920px-wide 
screen, you should pull in more granular data.

Redrawing at Breakpoints

This is where passing a mode into your redraw function becomes important. In the 
preceding example, all you did was redraw the exact same elements. However, there is 
no mandate that you have to keep things uniform on a different screen size. As long 
as the message being conveyed by the data is the same, and the point you’re trying 
to prove is always present, you should prove it with as much firepower as you have 
available.



362 Code-Driven Visualization

To that end, your display mode should support whichever RESTful end point you 
are hitting to retrieve your data. That way, when you cross over between modes, 
you aren’t just growing and shrinking the same set, you are actually showing more 
meaningful information. The snippet within redraw could look something like this:

var data_uri = 'http://api.yourEndpoint.com/

                retrieve?data=stock&mode='+mode;

Because you are calling this redraw function only when you are passing between 
states, and not every single time the page resizes, you don’t run the risk of unneces-
sarily overloading your API. From there, you populate your data set from the JSON 
retrieved here, and enter all the new mode’s data while exit-ing the old.

One such way to do that incredibly cheaply is to embed the mode within your data, 
and use it in your key function. That way, when the new data is selected, D3 recog-
nizes that there is no overlap in elements, and will swap out the entire sets.

Redrawing at Interaction Points

Mode doesn’t need to deal with viewport size only. Remember the concept of  
layering from your responsive data visualization tenets. Layering is the prioritization 
of the most crucial and digestible information, with an obvious indication that 
more granularity is available with interaction (think of the fitness app on the  
Apple Watch).

The idea behind layering is to present a rational default but enable users to dig into 
more complex or specific layers of data when the device’s capabilities limit the pre-
sentation of both at the same time. Mode can handle this too. Instead of just being 
a string that represents screen size buckets, turn mode into an object instead:

var mode = {

  'screen_size':'default',

  'a_layer':0,

  'b_layer':1,

  ...

}

Mode now becomes the metadata on which you can base what sort of redrawing is 
required. In the preceding case, for example, the user is on a default (mobile-size) 



Building Responsive Data Visualization for the Web 363

screen, and has dug into set B’s layering one level deep. The code to draw that layer’s 
data simply updates mode, as it is global to the visualization:

function layer_b(status) {

  //Do whatever drawing this needs

  if(status === true) { //Dug in

    mode['b'] += 1;

  } else {  //Exited

    mode['b'] -= 1;

  }

}

Redraw can handle this accordingly, as it did with screen size.

The Bigger Picture
The fact remains: Neither unknowns on the data (input) or user (output) will ever 
happen without the other. A user with a particularly small screen size will interact 
with a different level of data granularity than a user on a touch-enabled television.

Creating visualization modes abstracts away from what is actually causing a change, 
and simplifies the problem into a set of inputs (the attributes of the mode object) 
and outputs (the specific ways in which the chart is redrawn in response).

Rational Defaults
Finally, you hopefully noticed that making our visualization rely on JavaScript com-
pletely breaks our ongoing adherence to progressive enhancement.

Remember that per progressive enhancement, JavaScript is at the very top layer, 
and is, as much as possible, relied on to create complex interaction, but not 
presentation.

While D3 is a JavaScript library and you are relying on pulling information via 
AJAX, that is not at all your only option. Throughout this and the previous chapter, 
you have been replacing things like the following:

<div id="viz"></div>



364 Code-Driven Visualization

What this has (falsely) assumed is that there is no server-side representation of the 
data on the page to begin with.

In the most basic case, you can simply spit out the data you will be visualizing. 
After all, you have it. Suppose your replaceable element is still the following:

<div id="viz"></div>

Then there is nothing stopping you from filling it like so:

<div id="viz">

  <table>

    <thead>

      <tr>

        <td class="empty"></td>

        <th>ID</th>

        <th>Val</th>

      </tr>

    </thead>

    <tbody>

      <tr>

        <th>Aldo</th>

        <td>341</td>

        <td>25</td>

      </tr>

      <tr>

        <th>Amber</th>

        <td>102</td>

        <td>105</td>

      </tr>

      <tr>

        <th>Bertram</th>

        <td>499</td>

        <td>6</td>

      </tr>

    </tbody>

  </table>

</div>

Now, users without JavaScript, search engine crawlers, and even users whose connec-
tions are slow enough that the AJAX call fails, are not missing a single bit of data.

What’s more, you’ll often want this to be your most basic case, as a table like this is:

 • Easily scanned on tiny screens



Building Responsive Data Visualization for the Web 365

 • Easily parsed by screen-readers and search engine crawlers

 • Much faster than any other implementation

I can’t stress this point enough: Clear is always better than clever, and when client 
resources are limited, nothing is more clear than actually showing the data.

That being said…

Drawing on the Server

You don’t strictly need D3.js to create SVG visualizations, right? Sure, it’s responsi-
ble for the interaction and responsive handling of data and screen size changes, but 
what about initial page load?

The Long, Slow, Stupid Way

It’s just markup that has been transformed by certain data points; you could craft 
each point by hand if you wanted. Say you had the following data set:

var dataset = [10,2,4,5.5];

You could, on the server, recognize that your largest element is 10, and call that 
100%. Then make the rest 20%, 40%, and 55%. Your code could be as simple  
as this:

.bar {

  background: #000;

  content: "";

  height: 12px;

  margin-bottom: 2px;

}

<div class="bar" style="width:100%;"></div>

<div class="bar" style="width:20%;"></div>

<div class="bar" style="width:40%;"></div>

<div class="bar" style="width:55%;"></div>

As shown in Figure 10-20, it looks just like a D3-backed visualization would look; 
and in fact, you could have even just hand-crafted an SVG. It’s fine for an example 
that simple. Once you start working with more complex data, however, you would 



366 Code-Driven Visualization

quickly exceed the realm in which it’s feasible to craft a markup representation of 
your data.

FIGURE 10-20

A bar graph created manually

D3.js on the Server

Thankfully, you can continue to rely on D3.js on the server. Yes, you read that 
right—you’re going to be running JavaScript to create SVG visualizations on the 
server. If you’re familiar with NodeJS, this shouldn’t be a crazy concept. If not, here’s 
the gist:

NodeJS is an open-source, cross-platform runtime environment for server-side and 
networking applications. Node.js applications are written in JavaScript. It contains a 
built-in library to enable applications to act as a web server without software such as 
Apache HTTP Server or IIS, and uses JavaScript collections of contained JavaScript 
files, called modules, that handle functionality.

Basically, you can run (properly formatted) JavaScript as server-side code. Radical.

The following example omits the interactive parts—this is because all you really care 
about for initial page render is the default rendered SVG. This example requires 
some knowledge of NodeJS and Node Package Manager, or at least a suspension of 
disbelief for my hand-wave-y explanations about how they work.

First, you’ll need to pull in your two requirements: D3 and jsdom (github.com/
tmpvar/jsdom). You certainly know what D3 is, but jsdom is a JavaScript imple-
mentation of the WHATWG (Web Hypertext Application Technology Working 
Group) DOM and HTML standards. That is to say, it’s an implementation of the 
DOM in 100% JavaScript.



Building Responsive Data Visualization for the Web 367

It’s designed specifically for NodeJS, and in addition to the example presented here, 
it is used to simulate a DOM for creating server-side cached versions of pages for 
search engine crawlers.

Sorry, I’m gushing. Back to the code. In the terminal, using NPM, you install your 
two dependencies with the following:

npm install d3 jsdom

Cool, dependencies taken care of. Suppose you have the following data set:

var dataset = [

  { 'id': 1, 'created_at': 'Fri May 01 2015', 'val': 100},

  { 'id': 2, 'created_at': 'Mon Jun 15 2015', 'val': 300},

  { 'id': 3, 'created_at': 'Mon Jun 01 2015', 'val': 900},

  { 'id': 4, 'created_at': 'Fri May 15 2015', 'val': 2700},

  { 'id': 5, 'created_at': 'Wed Jul 01 2015', 'val': 8100}

];

Suppose further that you’re making a simple scatter plot with the following D3.js 
code, which should be straightforward enough to understand by now:

var data = json_data.slice()

var format = d3.time.format('%a %b %d %Y')

var computeVal = function(d) { return d.val }

var computeDate = function(d) { return format.parse(d.created_at) }

var x = d3.time.scale()

  .range([8, 304])

  .domain(d3.extent(data, computeDate))

var y = d3.scale.linear()

  .range([144, 8])

  .domain(d3.extent(data, computeVal))

var svg = d3.select('#viz').append('svg:svg')

.attr('width', 320)

.attr('height', 160)

svg.selectAll('circle').data(data).enter()

 .append('svg:circle')

 .attr('r', 4)

 .attr('cx', function(d) { return x(computeDate(d)) })

 .attr('cy', function(d) { return y(computeVal(d)) })



368 Code-Driven Visualization

Stash that away for a moment, because that’s not actually the starting point. 
Instead, look at the following code:

var d3 = require('d3');

var jsdom = require('jsdom');

var html_stub = '<html><head></head><body><div id="viz"></div><script 

src="js/d3.js"></script></body></html>';

To start, you’re simply requiring D3 and jsdom. On line 3, you’re creating the 
actual DOM that you’ll be manipulating:

jsdom.env({ features : { QuerySelector : true }, html : html_stub

  , done : function(errors, window) {

    // Code to generate and display visualization

  }

});

Next, you’re taking that DOM and passing it to jsdom. Note that on line 3, I’ve 
stubbed out where the D3 action will take place. At this point, the code creates an 
HTML document on the server, keeping it in memory for now. What you have in 
this document is as follows:

 • The HTML base

 • Something to replace with your visualization

 • Script to load D3

To start manipulating the DOM, you’ll use that querySelector function, provided 
by jsdom. It works just like jQuery’s $. That’s shown in the following code:

var el = window.document.querySelector('#viz');

var body = window.document.querySelector('body');

From there, you’ll now write the D3 code you would expect. What’s neat is that this 
is just generating the SVG on the server. The code is shown here:

var data = json_data.slice()

var format = d3.time.format('%a %b %d %Y')

var computeVal = function(d) { return d.val }

var computeDate = function(d) { return format.parse(d.created_at) }

var x = d3.time.scale()

  .range([8, 304])



Building Responsive Data Visualization for the Web 369

  .domain(d3.extent(data, computeDate))

var y = d3.scale.linear()

  .range([144, 8])

  .domain(d3.extent(data, computeVal))

var svg = d3.select('#viz').append('svg:svg')

.attr('width', 320)

.attr('height', 160)

svg.selectAll('circle').data(data).enter()

 .append('svg:circle')

 .attr('r', 4)

 .attr('cx', function(d) { return x(computeDate(d)) })

 .attr('cy', function(d) { return y(computeVal(d)) })

Here’s the problem: That D3 code isn’t going to be present on the HTML page now 
present on your server. All that’s there is the output—a totally accurate but totally 
static SVG representation of your data.

On the client, you would then need to select your visualization and create your 
data, enter, and exit selectors to handle interaction as you have done normally 
up until this point; but the step before this is actually moving the HTML file from 
memory to the server. That is done in the following way:

var fs = require('fs');

var svg_source = window.document.innerHTML

  

fs.writeFile('index.html', svg_source, function(err) {

  if(err) {

    console.log('Error saving document:', err);

  } else {

    console.log('The file was saved.');

  }

});

In the preceding code, fs is simply a NodeJS file system. It allows for the storage 
and modification of files. The beauty of this code is that it enables you to store sim-
ply the markup for the SVG, serve a whole surrounding page, or send the output 
directly from NodeJS if the rest of your app is working within that system.

The outputted file is now displayed as shown in Figure 10-21, and the markup is 
exactly the same as it would have been if you had generated it client side.



370 Code-Driven Visualization

FIGURE 10-21

The server-side generated D3 SVG visualization

<html>

  <head>

  </head>

  <body>

  <div id="viz">

    <svg width="320" height="160">

      <circle r="4" cx="8" cy="144"></circle>

      <circle r="4" cx="226.36065573770495" cy="140.6"></circle>

      <circle r="4" cx="158.42622950819674" cy="130.4"></circle>

      <circle r="4" cx="75.93442622950819" cy="99.8"></circle>

      <circle r="4" cx="304" cy="8"></circle>

    </svg>

  </div>

  <script src="js/d3.js"></script>

  </body>

</html>



Driving Design with Data  371

Caring about Performance

Running D3.js-based visualizations on the client is (as you hopefully now believe 
after I’ve beaten you over the head with it) great for manipulating the DOM. It 
isn’t, however, great at being 100% lightning-fast when your data becomes large and 
complicated.

Intuitively, that makes sense. Just as adding content to an entire page complicates it and 
slows it down, adding data (content) to a layout slows it down. On top of that, DOM 
manipulations, using D3 or otherwise, are performance-expensive to begin with.

For an initial draw, there is absolutely no reason to do all of this work on the client 
if you can avoid it. Your result will be exactly the same, whether you create your ini-
tial view on the server or on the client.

The overhead of computing the layout, adding each DOM node, and correctly siz-
ing and positioning it to represent your bound data can all be done on the server, 
rather than on a user’s device.

Most importantly, creating your initial visualization on the server enables your pro-
gressive enhancement technique to begin in a much more enhanced state. Keeping 
in mind that SVG is extremely well supported, if you have the opportunity to serve 
users an experience that’s nearly your beautiful interactive goal state to begin with, 
you certainly should.

Starting with a table is one (great) thing, but starting with a visualization that is virtu-
ally identical to what you’ll be enhancing and optimizing for your best devices is ideal.

Driving Design  
with Data
When you are designing a landing page, you don’t think: “I want to use a 12- column 
grid, and 36pt headers, and have five banded sections.” You think: “I hav e this con-
tent, how can I make it work?”



372 Code-Driven Visualization

That’s no different here.

For every data set, there are visualization styles that lend themselves to it better or 
worse. You can’t begin a project with the intention of making a donut graph just 
because.

Clear, Not Clever
Regardless of screen size, input type, data complexity, or bandwidth, the most 
important thing your visualization can be is clear. The incredibly powerful toolset 
you have at your disposal can also be a dangerous one: You don’t want to waste it by 
making exciting, flashy, complicated visualizations that resize and layer and group 
unnecessarily.

Hopefully, most of the time the answer 
is yes. The brain is wired to consume 
data in a visual way, and it remembers 
a picture better than a word. Moreover, 
your data is likely complicated enough 
that it won’t just be one number 
anyway.

Nonetheless, it’s a good question to ask when you feel like you’re pushing too far in 
the direction of visualizing for the sake of visualizing.

Summary
Leaving this chapter, you now have the toolset to build code-driven visualizations 
using D3.js.  More importantly, you have the techniques and understanding to 
build them in such a way that responsiveness is inherent in their drawing methods.  
Your visualizations are now built in a way that responds to both data complexity 
and user device features.

 TO THE POINT

The question you should always 
be asking yourself is this: Is this 
visualization clearer or more 
meaningful than a number?



Try It 373

You’ve also learned how to align these visualizations with the overarching mindset 
of progressive enhancement by creating rational defaults on page load, either by dis-
playing the simplified data, or by running D3.js on the server to create SVGs.

Bringing that all together, you connected code-driven responsive visualization with 
the concepts of building API-first, loading only what you need to, and using light-
weight, semantic markup in order to visualize responsibly.

Try It
 • You’re going to do a responsive retrofit on a visualization. It’s a listing of a 

company’s stock price as a series of bar graphs for each day. If you remember 
from the beginning of this book, that means you’re taking an existing desktop 
site and using responsive techniques to make it work at least pretty well on 
smaller screens. The page, JS, and the data set are available as “Exercise 1” at 
responsivedatavisualization.com/chapter-ten.

Try going at it with the following techniques:

1. Only resize the visualization once. Then, instead of focusing on the 
D3-created visualization, make the rest of the page responsive.

2. Now layer in responsive data visualization techniques using the repainting 
methods you learned in this chapter.

 • “Exercise 2” in responsivedatavisualization.com/chapter-ten has a 
 client-responsive solution to exercise one, but with the addition of a button 
that currently swaps out a much less populated data set. Do the work to  
make this solution responsive to both the user and the data set.

 • If you’re feeling particularly ambitious, the “Exercise 3” folder has simply the 
data sets and a boilerplate empty HTML page with D3 and jQuery imported. 
Go nuts, and share your solutions on the github project.



11



11Building the  
Future-Friendly Web

It’s time to move away from implementation details 
and look at the bigger picture. Responsive design is not 
just a solution for the current state of devices, but a way to 
build proactively—anticipating the likely needs of future 
users in order to provide the best experience. This chapter ties 
the knowledge you’ve gained throughout this book to a more 
theoretical discussion about just how you should think about 
building web experiences.



376 Building the Future-Friendly Web 

The Future of Data 
Design
At this point, you should be comfortable designing for the devices currently on the 
market. Recall or revisit Chapter 2 and Chapter 7, describing the tenets that guide 
responsive design and data visualization. Responsive design’s guiding tenets are mea-
sure, flow, nesting, end points, breakpoints, typography, and images. Responsive 
data visualization’s tenets are measure, flow, end points, breakpoints, images, group-
ing, and layering.

The tenets unique to responsive design are nesting and typography. Intuitively, this 
makes sense: Nesting layout design certainly has an effect on visualization, but it is 
more a function of the container than the data itself. The same can be said of typog-
raphy: Responsive type design is not limited to data visualization, but rather will 
affect all aspects of your product.

The tenets unique to responsive data visualization are grouping and layering, which 
are closely tied to the changing amounts of data you both:

 • Receive on the input side

 • Can display in the output context

The big secret is that the two are completely intertwined. There is absolutely no 
way to think about the responsive data visualization of a project without looking at 
the greater whole of responsive design. Your end users never need to know the term 
responsive (or design, or data, or visualization for that matter). All they care about is 
ease of access to your easy to understand content in their own context.

How, then, can these two topics help guide what you’ll be building for the screens 
that haven’t been invented yet? To determine that, it’s important to think first about 
how your inputs are likely to grow.



The Future of Data Design 377

Growing Stockpiles of Data
The GovLab index at NYU (see http://thegovlab.org/govlab-index-the 
-digital-universe/) houses some amazing facts about data consumption:

 • In 2012, the entire digital universe consisted of 2.7 zetabytes of data. 

 • As of April 2011, the U.S. Library of Congress alone housed over 235 terabytes 
of data. (If you don’t know your byte-prefixes, one zetabyte is one billion tera-
bytes, and one terabyte is 1,000 gigabytes.) 

 • In that same year, 2.5 exabytes (one exabyte equals one billion gigabytes) worth 
of data was generated every single day. The giant retailer Walmart collected 
2.5 petabytes of data every hour (one petabyte equals 1,000 terabytes).

It’s safe to assume that these numbers will continue growing as bandwidth becomes 
cheaper, data collection becomes more universal, and the amount of time spent on 
web-connected devices essentially becomes 24/7.

In fact, way back in 2009, Americans survived on an average daily diet of 34 giga-
bytes of data every day (see http://bits.blogs.nytimes.com/2009/12/09/ 
the-american-diet-34-gigabytes-a-day/). To put this in context, 2009 was two 
years after the iPhone was released, and one year before the Ethan Marcotte article 
coining the phrase “responsive web design.”

The rise in mobile connectivity since that time has made Internet access in the first 
world a 24-hour given. Most American adults even sleep with their phones (see 
www.pewinternet.org/files/old-media//Files/Reports/2010/PIP_Adults_ 

Cellphones_Report_2010.pdf). 

The lesson? Every day which passes means that more data is available to us—and 
that means you will need to do even more work to process it into a visualization 
that is both effective and efficient. As a content creator for the web, you need to 
recognize that the amount of available input surpasses a level that humans can man-
ually parse. Unless you create worthwhile, understandable, accessible experiences, 
users will simply see your project as noise.



378 Building the Future-Friendly Web 

Setting a Standard for Data Markup
The bottom line is clear: Although you can’t control the dizzying amounts of data 
out there, you can solve the problem of data complexity at the raw level.

The system for content and data management at National Public Radio (NPR) 
has become a shining beacon for those trying to navigate the murky problem of 
separating content and display. The system, called COPE (Create Once, Publish 
Everywhere), does exactly what it sounds like. Content is stored in the CMS in a 
language- and presentation-agnostic way. It’s simply the clean, markup-free material 
that is eventually displayed to users.

Using Structured Content

NPR’s system is a modular approach to creating portable and entirely dependency- 
free blocks of content that can be simultaneously sent to web browsers, apps, or any 
other means for reaching their content. NPR’s own Daniel Jacobson has described 
the system’s benefits as follows:

Content portability ensures that the content can actually live and thrive in all 
platforms to which it gets distributed (even those that do not yet exist).

Daniel Jacobson

In practice, this means your data should be stored in such a way that anything or 
anyone can reach it without requiring a certain display. More simply, it means creat-
ing a good API to reach your data.

This advice echoes the principles of 
creating a useful API described in 
Chapter 8, but it takes them a step 
further. Your API is useful not only in 
terms of how you are displaying every-
thing today, but in terms of creating a 
more structured, global way to reach 
your data in ways not yet conceived.

 NOTE

Straight from the horse’s mouth: 
Read about NPR’s COPE  
system from a member of  
their team’s post at www 
.programmableweb.com/

news/cope-create-once 

-publish-everywhere/ 

2009/10/13.



Embracing Uncertainty 379

Creating a Fluid Display

Referring back to NPR’s COPE system: They never have to make a change to how 
their data is stored to account for the emergence of a new platform. Everything is 
backed by identical content, and lightweight, platform-specific views are built on 
top of it.

Moving to clean, presentation-agnostic data gives your product the best chance to 
at least be viable to a future platform, and possibly enables it to be completely well-
formed without any additional work.

Embracing 
Uncertainty
Throughout the history of the web, there have been times of disruption and stan-
dardization. In some cases, different browser vendors raced to support different 
subsets of markup, while designers flocked to third-party solutions such as Flash. 
In other cases, technical leaders rallied for a standards-based way to create web 
experiences.

During these periods, curveballs like the growth of the mobile web, the Internet of 
things, and the race for the next new hardware have always, and will always, change 
the web landscape. As designers in this landscape, we need to embrace the fact that 
we are never going to build anything that is future-proof. It would be ludicrous to 
think that we could ever anticipate what’s coming next. We can, however, become 
comfortable with the fact that we are uncertain about what the next great leap is, 
and build in such a way that our products are not stuck in trendy, proprietary solu-
tions of the moment, or reacting to problems that we have already solved.

In essence: You need to build without assumptions—for a world in which your 
content will be delivered to an immersive VR headset and a 2G-connected Android 
smartphone and everything in between.



380 Building the Future-Friendly Web 

Where Complexity Lies Today
Complexity, now, comes from two sources: the variety of devices available in the 
marketplace, and the availability of tools you can use to make things. As the num-
ber of things connected to the web grows, so does the amount of work required to 
create accessible content.

The barrier to creating things on the web is no longer hosting costs, web service 
complexity, technical acumen, or even basic Internet connectivity. Anyone who 
wants something online can find a way to get it there.

We are in a period of rapid growth on both the input (our own code) and output 
(the clients’ devices) fronts. Our existing tools were not created with the device 
landscape of today (or tomorrow) in mind. Unfortunately, that includes web brows-
ers. The work being done on the browser side today to remain standards-compliant 
and perpetually updated has come a long way, but it requires buy-in from both con-
tent producers and end users.

Device Availability

The amount of network-connected devices, with screens of any size, or no screens 
at all, is going to keep increasing. That doesn’t mean, however, that they’re going 
to keep getting better.  The ubiquity of the web platform is a boon to designers, 
because we don’t need to repeat our content, but also a burden, as we need to create 
styles for screens we never imagined.  This is stated succinctly by Marcos Lara:

HTML5 has delivered on the promise of write once, run anywhere. As your 
code begins to find its way into places you never expected it to run, you’re going 
to come face to face with the issues around formatting for the very small, to the 
very large screens.

Marcos Lara 
https://developers.facebook.com/blog/post/599

High-end and technically astounding devices will continue to be invented and per-
meate the marketplace, but so will low-end consumer devices to get large parts of 
the world online for the first time. That is, there will be just as many, if not more, 
cheap and just okay devices as there are expensive and powerful devices.



Embracing Uncertainty 381

The complexity arises from ensuring that your content is standards-compliant and 
at least working on all of these devices.

Availability of Toys

On the flip side of this, you have a ludicrous number of options regarding what to 
use to get your content online. If you wanted to, you could still build a visualization 
in Flash. The ubiquity of open development, although absolutely a good thing in 
pushing innovation, has created a noisy marketplace of solutions that range from 
useless to perfect.

The complexity here arises from judging whether a solution fulfills the following 
requirements:

 • It works for you.

 • It works for your users.

 • It will continue to work for future users.

The Future-Friendly Manifesto
Thinking about these two sources of complexity, and trying to distill a solu-
tion seems daunting. Thinking in a way that will fulfill those requirement above 
becomes the ultimate goal.

Some recognized big-brains in the web realm decided to get together and establish 
a set of guiding principles that explain this way of thinking. Called the “Future-
friendly Manifesto,” it offers the following problem statement:

Disruption will only accelerate. The quantity and diversity of connected 
devices—many of which we haven't imagined yet—will explode, as will the 
quantity and diversity of the people around the world who use them. Our 
existing standards, workflows, and infrastructure won’t hold up. Today’s 
onslaught of devices is already pushing them to the breaking point. They can’t 
withstand what’s ahead. Proprietary solutions will dominate at first. Innova-
tion necessarily precedes standardization. Technologists will scramble to these 
solutions before realizing (yet again) that a standardized platform is needed to 



382 Building the Future-Friendly Web 

maintain sanity. The standards process will be painfully slow. We will struggle 
with (and eventually agree upon) appropriate standards. During this period, 
the web will fall even further behind proprietary solutions.

The Future-Friendly Manifesto
http://futurefriendlyweb.com/

This can be distilled into four unique parts: accelerated disruption, the decay of 
old standards, proprietary innovation, and the creation of new standards from this 
innovation. The following sections look at each one of these.

Accelerated Disruption

Only reacting to what is happening today will put our solutions further and further 
behind, and changes are outpacing our ability to keep up with them. The project 
you are building right now will be interacted with on a screen that doesn’t exist 
right now.

More than just the devices, the diversity of people using those devices will grow, as 
barriers to web access diminish. This means that disruption will not only happen on 
the side of high-end experiences, but also on the low end, where people will begin 
accessing the web for the first time on more cost-efficient devices.

Decaying Standards

Clearly, the web today is not the one that existed 25, or even five, years ago, except 
for all the technical ways in which it is the same. The promise of the web to theo-
retically reach everyone on the planet cannot be realized with the methods currently 
in use for the types of devices and networks that we solve for now. As interaction 
methods change, our standards will become outdated, and will need to be revisited.

Proprietary Innovation

New solutions, more creative ways of tackling problems, and more efficient meth-
ods of web design or data display will never be handed down as an edict from the 
Supreme Ruler of Web Design. Individuals will always create solutions for their 
own problems first. Oftentimes, these solutions will conflict with one another.



Embracing Uncertainty 383

This is alright: Competition like that will breed the standards that are adopted. 
Through individuals pushing boundaries in different ways, ultimately the boundar-
ies will move.

Setting New Standards

Building off of the proprietary innovation, new standards will need to be effected. 
Think about the outset of responsive web design as a whole. Until it was actually a 
problem, nobody was solving for different sizes of device; and when they were, it 
was done in different ways. First mobile-only sites were made, or users were directed 
toward apps. We used RESS and device detection. 

Only when responsive design took hold, and many people began to do similar things 
with it, did it ever become something akin to a standard practice. This will continue 
to happen as new devices spring up with new features that we need to solve for.

The Friendly Web

How can you actually start working toward becoming comfortable with these four 
tent poles? Anticipating the future but not strictly building toward one proprietary 
avenue of innovation is a way to build “friendly” web experiences—that is, those 
that will work not only with today’s popular browsers, but also with those emerging 
on the top and bottom of the market.

This movement, to build a friendly web, has gained enough ground that you may 
have seen it cropping up around the web. The future friendly web’s badge is shown 
in Figure 11-1.

The future-friendly way of thinking centers on five related ways to practically build 
for this ambiguous future:

 • Laser focus

 • Orbiting around data

 • Creating universal content

 • Building for device taxonomy

 • Thinking beyond mobile



384 Building the Future-Friendly Web 

FIGURE 11-1

The future-friendly web badge

Laser Focus

As mentioned previously several times, you will never optimize everything for every 
device. Even if you were to manage every piece of complexity on the client side of 
your product at this very moment, you would once again be out of date tomor-
row. Instead of focusing on devices, focus on what matters most to your end users: 
meaningful, intuitive content. Substance over style.

Orbit around Data

Remember NPR’s “Create Once, Publish Everywhere” system described earlier? 
This is that. A growing ecosystem of screens demands that the underlying data to be 
displayed enables flexible forms of access.

Define your base layer, your data, in a standards-focused way that promotes long-
term integrity, has access points (an API) that allow meaningful and permanent 
references to all content, and supports writing and updating to stay relevant just as 
easily as it supports reading and consuming data.

Universal Content

Building off of the preceding, your data must be well-structured. This is not just for 
access; it builds into your actual visual design. You will never be building for a single 



Responsible Web Design 385

size of container ever again. Your content needs to be universally accessible so that 
you can, without massive expense, create new views that facilitate an efficient and 
understandable transfer of information from the underlying data.

Device Taxonomy

A phone with a screen in the camera will come out tomorrow, a watch with no 
screen will be available the next day, and by the weekend Instagram will be an ocu-
lar implant. You aren’t solving for individual devices.

Building instead a taxonomy of device types enables you to optimize appropri-
ately for a set of standardized features. Tools such as Detector (http://detector 
.dmolsen.com/) enable you to abstract away from any one device, and react to the 
actual features available to that device. Detector is a PHP- and JavaScript-based 
browser and feature-detection library that can adapt to new devices and browsers  
on its own, without the need to pull from a central database of browser informa-
tion. In essence, this is how RESS can help you build for new devices.

Beyond Mobile

Finally, remember that mobile is just the platform that brought us to the point of 
considering the issue of responsive web design. Enabling small, medium, and large 
screens to reach our content is a recent problem that we have just begun to feel 
comfortable solving. This will absolutely not be the last hurdle for web design.

Responsible Web 
Design
Bringing together all the concepts you’ve learned throughout this book, and now 
thinking about building things for an uncertain future, it’s important to consider a 
different “r” word when approaching projects: responsible.

At least for the foreseeable future, everything you’re going to build will be respon-
sive. The whole point is to build something once that works everywhere. The line 



386 Building the Future-Friendly Web 

you will now have to walk, knowing how to build responsive data visualization 
dashboards (or any other web project), is how to not fall into the traps of over-op-
timization, reliance on JavaScript for core functionality, and doing something just 
because it’s cool.

You should always build with the mindset that you’re trying to make a user’s life eas-
ier. With that in mind, there are four tent poles supporting responsible responsive 
design and visualization.

Building API-first
The content of any blog page is simply words. You don’t need to query any data-
base to get access to those. Data visualization requires the extra step of actually 
needing…data…to…visualize. To create this most efficiently, you need to build 
for a machine with no screen as your base user, and ensure that you can get 
machine-parsable access to all of your data via its API.

A great API provides granular access, deep filtering, value-typed results, RESTful 
end points that come from real user intents, standardized formatting, “nice” errors, 
meticulous documentation, high performance, and high availability.

Not only will building API-first provide you with a presentation-agnostic base upon 
which you can build whatever your heart (or project manager) desires, but it also 
fundamentally changes the way in 
which your team works. Designers, 
frontend developers, and backend 
developers can agree to an API as a 
“handshake” and stub out the others’ 
work in order to begin building in 
tandem.

Respecting Progressive Enhancement
Hopefully you’ve picked up on the importance of progressive enhancement by now. 
Way back in Chapter 1, the extent of what we called “progressive enhancement” is 
illustrated in Figure 11-2. However, now you’ve learned what exactly your input(s) 
and output(s) are for data visualization, put into context in Figure 11-3.

 NOTE

See Chapter 8 for details 
about what makes a good 
API, and how this affects a 
development team.



Responsible Web Design 387

FIGURE 11-2

The simple view of progressive enhancement you began with

FIGURE 11-3

Progressive enhancement in the wild, with its additional inputs and outputs



388 Building the Future-Friendly Web 

There’s no optional part of this. You have to build things this way if you plan to 
build things that will last. Device features will come and go, screen sizes will fall 
in and out of style; but the core makeup of the web: structured, semantic HTML, 
styled by CSS, and made interactive with JavaScript, is not going to change (or if it 
does, not nearly at the same pace), and this is the language you must speak.

Innovating
Don’t wait for a library, a framework, or a toolkit to solve a problem for you. It will 
never be the perfect tool for your job. If you are building a presentation-agnostic API, 
then layering markup, design, and interaction on top of that, you should have a rela-
tively open field of display options available to you. All you’re taking in is numbers.

Remember that your visualization is never the only way to get to the meaning behind 
data, but it should be the most intuitive way to reveal that meaning. Data visualiza-
tion, and the architecture behind it, should keep the following goals in mind:

 • Identify

 • Locate

 • Manipulate

 • Format

 • Present

…data in such a way that communicating the meaning of the data becomes obvious 
and natural for a consumer. Keep the graphical display of it in mind. Whether it’s 
a sentence explicitly communicating information, or an interactive 3D model, you 
need to maximize efficiency and effectiveness. That being said: Go nuts.

You’re making someone’s life easier by visualizing data on their screen, so find ways 
to communicate it in the best way possible.

Standardizing
When you do find a new way to do something effectively, see if you can repeat it. 
Then repeat it again. Then turn it into a pattern.

Following the future-friendly manifesto, your project-specific innovation is going to 
be what breeds standardization across the practice. As you find some beautiful way 
to structure your API end points, or generate well-formed and well-meta-tagged 



Summary 389

markup, or connect your CSS to a bar graph, or handle rapid entry and exit of data, 
abstract it from one project into a solution that can be shared.

When you can standardize these solutions within your own projects, make it a 
point to share those standards with the community, whether via github, a blog post, 
or speaking at a conference.

Summary
You’ve learned the foundation of responsive web design, and seen how closely tied it 
is to responsive data visualization. Throughout this book, you have picked up skills 
that apply to building machine-parsable markup, designing universally with CSS, 
and adding interaction with JavaScript.

By this point it should be clear that the techniques used for design and visualization 
are nearly identical. You are given a set of inputs, and you need to create a clear, 
understandable output.

Regardless of the project, building this way has become known as “future-friendly,” 
reflecting an approach to building that pushes the web forward through rapid inno-
vation and then meticulous standards creation. The basics of this way of thinking 
are simple:

 • Acknowledge and embrace unpredictability.

 • Think and behave in a future-friendly way.

 • Help others do the same.

Future-friendliness describes design principles, not techniques. Trends in how 
things are created will grow, gain a spotlight, and then disappear. No single method, 
technology, or workflow is perfect for all projects. 

If you begin to adopt a standard for your own data structure, starting at the API 
level, you can become an integral part of creating future-friendly solutions—first 
with your own projects, and then advancing the future-friendly web’s handling of 
data as new devices, new screens, and new features come onto the market. 

Close this book. Go build things. 





 PART  

THREE
Additional Resources

APPENDIX: Resources

INDEX



A



AResources

You know those clickbait articles promising the “50 
Best Web Design Resources,” which are quickly revealed 
to be selling some design service? The resources described here 
aren’t that. Rather than fill a book with a bunch of links, I’ve 
included the single best resource that I have found on each 
given topic, with a brief explanation of what makes it great.



394 Resources

Responsive Data 
Visualization
The resource: responsivedatavisualization.com

What makes it great: This is the website half of this book, so you’ve probably 
already familiarized yourself with it. Resources from previous chapters, exam-
ple code, and exercises can all be found here, along with links to plenty of other 
resources not listed in this appendix.

Grids
The resource: thegridsystem.org

What makes it great: Not only is the site built on a grid, but it holds years’ worth 
of articles on grid systems in design, on the web, and throughout history. Resources 
available on this site include Adobe program templates, CSS guides, downloadable 
prebuilt grids, and tutorials on how to build your own grid.

Infographic Design
The resource: coolinfographics.com

What makes it great: Randy Krum, the technical editor of this book, is the author 
of the Cool Infographics blog. It’s the source for inspiration on infographic design, 
with a wealth of examples of data visualization and infographics from magazines, 
newspapers and the web.



D3.js 395

Responsive Design
The resource: bradfrost.github.io/this-is-responsive

What makes it great: Brad Frost is one of the big-brains behind the future-friendly 
movement. A few years ago, he began to collect articles and simple abstractions of 
responsive methods on his own blog. Today, that collection lives at the preceding 
link, called “This Is Responsive.” The site features a huge number of responsive 
design patterns and downloadable modules, and links to articles about how to 
work, think, and build responsively.

D3.js
The resource: d3js.org

What makes it great: It just so happens that the place where you can download the 
source for D3.js is also a terrific resource for information about how you can effec-
tively use it. The homepage of d3js.org details perfectly what the library is and how 
to use it. In addition, the site contains tons of example code, tutorials, and excellent 
documentation about how to best use D3.js.



396 Resources

More Resources 
Online
In the interest of not having you copy a bunch of text from a book, the resources 
mentioned in the chapters can be found at responsivedatavisualization.com. 
There you’ll find all the exercises from this book, along with an expanded list of 
helpful resources on grids, data visualization, infographic design, responsive design, 
CSS, JavaScript, D3.js, API design, and the broader web design.



IIndex

A
<a> tag, 78
absolute minimum pixel width, 139
ACM (Association for Computing 

Machinery), 13
adaptive web design, 29

adaptive layouts, 33–36
device detection, 33
responsive web design difference, 30
RESS and, 30–33

adding data, redraw( ), 302–305
:after, 166
AJAX

conditional loading, 168–170
interaction, 239–240
JavaScript linking, 171–172
loading, 238–239
performance, 170–171

anchor links, 158
Andreessen, Mark, 7

API (application programming 
interface), 221–224
availability, 276, 353
content parity and, 231–232
data

filters, 271, 352
granular access, 270, 351–352
RESTful, 272–273, 352
standardized format, 273, 

352–353
tables, normalized/denormalized, 

272
value typing, 271–272, 352

documentation, 275–276
error messages, 273–274
fitness app, 279–282
intents as URLs, 274–275
JSON and, 224
layering, visual layers, 283–284

A (cont.)



398 Index

open development, 277–278
performance, 277
versioning, 276

API key, 266
apiURL, 223–224
area charts, 202–203
ARPANET, 4

B
Backbone, 222
bar charts, 197
base size, 244
Berners-Lee, Tim, 5
big data, 191–192
Bill, Max, 72
Binh, Khoi, 75
blind users, 266–267

bulk data, 267
identifiers, 268–269
open data, 267

linked, 269
structured data, 267–268

<blockquote>, 91
<body> tag, 77
Boulton, Mark, 75
Braille media type, 120
breakpoints, 59–62

data and, 249–252
drawing modes, 359
max-width, 62–63
min-width, 62–63

browsers
Chrome, 7
Firefox, 7
Internet Explorer, 7
Mosaic, 6–7
Netscape Navigator, 7
Opera, 7
Safari, 7

bubble charts, 203–204

C
canvas, 255–256
cartograms, 206–207
charts. See graphs
Chrome, 7
CHSS (Cascading HTML Style Sheets), 

103
Cocktail Guide, 135–144
commerce, mobile devices, 12–13
communicating results

base forms, 196
goals, 195
graphical displays, 195–196
graphs

area charts, 202–203
bar charts, 197
bubble charts, 203–204
cartograms, 206–207
donut charts, 199–200
Dorling Maps, 203–204
heat maps, 208–209

B (cont.)A (cont.)



Index 399

histograms, 199
line charts, 201–202
maps, 206–207
network diagrams, 205–206
pie charts, 199–200
radar charts, 207–208
scatter plots, 201
stacked bar charts, 197–198
tables, 197
tree maps, 208
Venn diagrams, 204–205

sentences, 210
timelines, 210

comparator, 244
conditional loading, AJAX, 168–170
consumer Internet, 6–7
containers, nested, 55–56
content parity, 230

API-first design and, 231
content-first design, 218–219
correlation, 194
CSS (Cascading Style Sheets), 22

CHSS (Cascading HTML Style 
Sheets), 103

content versus presentation, 103
failure and, 155
history, 102–103
inheritance, 109–110, 113
JavaScript and, 164–166
media query, 118–119

containers, 125–126
features, 122–123

media types, 119–121
retrofit responsive technique, 

126–127
screen characteristics, 121–124

priorities, 106–107
reset stylesheet, 111–112
rules, 105–106
selectors, 105–106
source type priorties, 333
specificity, 108–109

D
D3.js, 294–295

data changes, 301–308
data function, 296
data reading, 353–354
domain, 300
enter function, 296–301
exit function, 296–301
importing, 321–322
JSON and, 295–296, 298–301
library, 322–323

dynamic properties, 324–325
selections, 323–234

range, 300
resources, 393
scale, 344–346
selectAll, 336
SVG output, 326
SVGs, creating, 334–347
transitions, 346–347

C (cont.) C (cont.)



400 Index

data, 190–191
adding, 301–302

redraw( ), 302–305
big data, 191–192
blind users, 267–269
definition, 188
dynamic, 294

D3.js, 294–295
data function, 296
enter function, 296–301
exit function, 296–301
JSON, 295–296

economy, performance, 236–240
flexibility

data sets, 233–235
devices, 232–233

in JavaScript, 348–349
arrays, 349–350
JSON, 350
numbers, 349
objects, 350
strings, 349

layering
API response, 257
design, 258
interaction, 258
markup, 257–258
parsed data, 257
processed data, 256–257
raw data, 256–257

machine-processable, 268
metadata, 192–193

quantitative messages, 193–194
removing, 306–308
responding to, 258–259
searchable, 267
sortable, 267
specificity, 240–241
structured, 351

data function, 296
data science, 188–189
data sources, 220–221
data-content attribute, 170, 172
default visualization methods, 211–212
descriptive metadata, 193
design

audience, 259–260
content-first, 218–219
desktop-first, 36–37
mobile-first, 37–38

desktop-first design, 36–37
desktop-focused design, 126–127
deviation, 194
device detection, adaptive web design 

and, 33–36
distribution, 194
<div>, 105
donut charts, 199–200
Dorling Maps, 203–204
dot-com bubble, 7
downloads, 19–20
dynamic data, 294

D3.js, 294–295
data function, 296

D (cont.) D (cont.)



Index 401

enter function, 296–301
exit function, 296–301
JSON, 295–296

dynamic programming languages, 152

E
eBay, 12
economy principle

data and, performance, 236–240
performance as design, 46–47

embossed media type, 120
endpoints, 57–59

data and, 247–249
ENQUIRE, 5
enter function, 296–301
error message, blind users, 273–274
exit function, 296–301

F
failure, handling, 155
features, server-side detection, 164
Few, Stephen, 193–194
Firefox, 7
fitness app, 279–282
flexibility principle

content, 45–46
data and, 232–235

flexibility principles, devices, 43–45
flexible grids, 75–81, 87–88

context, 90–91
negativity, 91–92

padding, 89, 92–93
reusable, 93–94

columns, 96
gutter, 95
rows, 96
units, 95
X-count, 95–96

flow, 51–54
data and, 245–247

fonts
document base size and, 113–114
system, 65–66
target font, 79
web, 65–66

G
geographic data, 194
getData, 311
graphs

area charts, 202–203
bar charts, 197

stacked bar charts, 197–198
bubble charts, 203–204
cartograms, 206–207
donut charts, 199–200
Dorling Maps, 203–204
heat maps, 208–209
histograms, 199
interactive, 218
line charts, 201–202
maps, 206–207

D (cont.) F (cont.)



402 Index

network diagrams, 205–206
pie charts, 199–200
radar charts, 207–208
scatter plots, 201
stacked area charts, 202–203
tables, 197
tree maps, 208
Venn diagrams, 204–205

grids, 72–73, 81–87
fixed, 87
flexible, 75–79, 87–88

reusable, 93–96
gutters, 89
outside-in build, 88
padding, 92–93
proportion, 74–75
relative units, 79–81
resources, 392
responsive, abstracted sizes, 147–148
rhythm, 74
web design and, 75

grouping, 252–253, 309–311
client responsiveness and, 360–361

gutters, 89

H
<h1>, 76, 78
handheld media type, 120
handleResize function, 359
heat maps, 208–209
histograms, 199

history of Internet
Andreessen, Mark, 7
Berners-Lee, Tim, 5
browsers, 6–7

Chrome, 7
Firefox, 7
Internet Explorer, 7
Netscape Navigator, 7
Opera, 7
Safari, 7

consumer, 6–7
dot-com bubble, 7
ENQUIRE, 5
HTML, 5
HTTP, 5
markup languages, mobile-related, 9
mobile devices, 8–10

commerce, 12–13
usage, 10–11

PCs, sales, 7–8
TCP/IP protocols, 5
World Wide web naming, 5

HTML (Hypertext Markup  
Language), 5
CHSS (Cascading HTML Style 

Sheets), 103
failure and, 155
JSON and, 295–296
tables, 103–104

HTTP (hypertext transfer protocol), 5
human-readable markup, 226

G (cont.) H (cont.)



Index 403

I
identifiers, data, 268–269
images

canvas, 255–256
plugins, 254
rasters, 66–67

responsive, 68, 253–254
scripts, 254
SVGs, 254

desktop browser support, 255
meta support, 255
mobile support, 255

vectors, 66–67
infographics resources, 392
information, 191
inheritance, CSS and, 104, 109–110, 113
instant-api, 270
interactive charts, 218
Internet Explorer, 7
iPhone, 8–9
itemprop, 226

J
JavaScript, 22, 152. See also AJAX

CSS and, 164–166
D3.js, 294–295
defaults, 157–163
failure and, 155
interactivity and, 153–155
matchMedia object, 166–168
mobile-first design, 155–157
progressive enhancement and, 155–157

responsive, 163–164
server-side feature detection, 164

jQuery, 295
JSON, 169, 183

API and, 224
HTML and, 295–296
list population, 228

just-in-time feature detection, 179–181

K
knowledge, 191

L
layering, 227–228

data
API response, 257
design, 258
interaction, 258
markup, 257–258
parsed, 257
processed, 256–257
raw, 256–257

visual layers, 283–284
layouts

adaptive, 33–36
responsive, 35–36

<li>, 132–133, 225–226
libraries, D3.js, 324–325
line charts, 201–202
linked open data, 269
links, anchor links, 158

J (cont.)



404 Index

M
machine-processable data, 268
maps, 206–207
Marcotte, Ethan, 26
margins, 89
markup

data and, 257–258
meta information, 258
visible, 258

markup languages
HTML (Hypertext Markup  

Language), 5
HTTP (hypertext transfer protocol), 5
human-readable markup, 226
mobile-related, 9
website-readable markup, 226

matchMedia object, 166–168
max-width breakpoints, 62–63, 127
measure, 50–51

data and, 242–244
media query (CSS), 118–119

containers, 125–126
features, 122–123
media types, 119–121
retrofit responsive technique, 126–127
screen characteristics, 121–124

MediaQueryList object, 167
mediaQueryString, 167
menus, anchor links, 158
meta information, 225–226
metadata, 192

descriptive, 193
markup, content parity and, 231–232
structural, 192–193

min-width breakpoints, 62–63, 127
.mobi, 19
mobile devices, 8–10

commerce, 12–13
markup languages, 9
mobile tipping point, 26
rendering complexity, 128–129
usage, 10–11
users, 15

mobile web
app download, 19–20
bandwidth, 15
benefits, 15–17
CSS support, 15, 22
design, 17–20
JavaScript, 15, 22
.mobi, 19
m.websites, 19
navigation, 14
screen size, 14
speed, 14–15

mobile-first design, 37–38
JavaScript and, 155–157

mobile-first method, 27
Mosaic browser, 6–7
Müller-Brockmann, Josef, 72
m.websites, 19

N
natural experiences, 212
NCSA (National Center for 

Supercomputing Applications), 6–7

M (cont.)



Index 405

nested Venn diagrams, 204–205
nesting, 54–57
Netscape Navigator, 7
network diagrams, 205–206
node-element binding, 306
nominal comparison, 194

O
Opera, 7
outside-in build, 88

P
padding, 89, 92–93
parity in content, 230
parsed data, 257

content parity and, 231–232
part-to-whole data, 194
PayPal, 12
PCs, sales, 7–8
perceived performance

data and, 236–237
just-in-time feature detection,  

179–181
train tracker, 173–175
visual feedback, loading and,  

175–178
performance

actual, 236
AJAX

interaction, 239–240
loading, 238–239

APIs, 277

perceived performance, 172–173, 
236–237
just-in-time feature detection, 

179–181
train tracker, 173–175
visual feedback at loading, 

175–178
pie charts, 199–200
pixels, absolute minimum width, 139
plugins, 254
points of focus

breakpoints, 59–63
data and, 249–252

endpoints, 57–59
data and, 247–249

flow, 51–54
data and, 245–247

grouping, data and, 252–253
images, 66–68

data and, 253–256
layering, data and, 256–258
measure, 50–51

data and, 242–244
nesting, 54–57
typography, 63–66

principles of adaptive development
economy, 46–47
flexibility, 43–46
specificity, 47–49
universality, 39–42

content, 39–40
print media type, 120
priorities, CSS, 106–107

N (cont.) P (cont.)



406 Index

processed data, 256–257
programming languages

dynamic, 152
static, 152

progressive enhancement, 20–22, 37–38
JavaScript and, 155–157
sensible defaults, 233–234

projection media type, 120

Q
quantitative messages, 193–194

R
radar charts, 207–208
ranking data, 194
rasters, 66–67

responsive, 68, 253–254
raw data, 256–257

content parity and, 231–232
redraw( ) function, 302–305
rendering complexity, 128–129
resources

D3.js, 393
grids, 392
infographics, 392
responsive data visualization, 392
responsive design, 393

responding to data, 258–259
responsive design

grouping and, 360–361
layouts, 101

CSS, media query, 118–127

fluidity, 125–126
responsive grid, abstracted sizes, 

147–148
reusable grid, 145–146

resources, 393
responsive rasters, 68, 253–254
responsive web design, 26, 27

clients and
breakpoints, 358–359
CSS and, 355
resizing windows, 355–358

data and
breakpoints, 361–362
interaction points, 362–363

desktop-first design, 36–37
every user, 28–29
limited users, 27
mobile-first design, 38
RESS and, 30–33
server and, 363–370

RESS (responsive design with server-side 
components), 30–33

retrofit responsive technique,  
126–127

reusable flexible grids, 93–94
columns, 96
gutter, 95
rows, 96
units, 95
X-count, 95–96

Ruder, Emil, 72
rules, 105–106
RWD (responsive web design), 20

P (cont.) R (cont.)



Index 407

S
Safari, 7
scale, D3.js, 344–346
scatter plots, 201
schema.org, 226
screen media type, 120
scripts, 255
searchable data, 267
selectAll, 336
selectors, 105–106
semantic elements, 102
server-side feature detection, 164
sortable data, 267
sources of data, 220–221
specificity principle, 47

CSS and, 104, 108–109
data and, 240–241
interface, 49
web as continuum, 48

speech media type, 120
SSP (Stream-based Style Sheet Proposal), 

103
stacked area charts, 202–203
stacked bar charts, 197–198
static programming languages, 152
structural metadata, 192–193
structured data, 351

as content, 221–224
stylistic elements, 102
SVG (Scalable Vector Graphics), 218–

219, 254, 326–328
background-image, 328
circle, 330–331

D3.js and, 294–295
creating SVGs, 334–347
output, 326

desktop browser support, 255
iframe, 328–329
img, 328
inline, 329–330
meta support, 255
mobile support, 255
object, 329
squares, 335–343
static content and, 330
styling, 330–334

system fonts, 65–66

T
tables, 103–104, 197

semantics, 104
target font, 79
time series, 194
toggleClass function, 161
transitions, D3.js, 346–347
tree maps, 208
Tschichold, Jas, 72
TTY media type, 120
TV media type, 120
typography

fonts
system, 65–66
web, 65–66

readability, breakpoints, 63–64

S (cont.)



408 Index

U
universality principle

content, 39–40
mobile web, 40–41
optimization, 41–42
support, 41–42

URI, data and, 230–231
user agent polling, 163–164

V
variables

dynamic programming languages, 152
static programming languages, 152

vectors, 66–67
Venn diagrams, 204–205
visible markup, content parity and, 

231–232

visual feedback, loading and, 175–178
visual hierarchy, 116
visual layers, 283–284
<viz>, 219
VML (Vector Markup Language), 218

W
web fonts, 65–66
website-readable markup, 226
World Wide Web, naming, 5

X
XMLHTTPRequest, 169

Z
Zakas, Nicholas C., 13

V (cont.)











WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Contents
	Introduction
	Part One: Creating the Responsive Web
	Chapter 01: The Mobile Web
	How We Got Here
	The Mobile Web Today
	Mobile Web Design
	Summary

	Chapter 02: Responsive Web Design Tenets
	The Gist
	Adaptive vs. Responsive
	Desktop-First vs. Mobile-First
	Four Principles
	Seven Points of Focus
	Summary

	Chapter 03: Working with a Flexible Grid
	The Gist
	Flexible Units
	Using a Grid System
	Creating a Reusable, Flexible Grid (in Five Easy Steps)
	Summary
	Try It

	Chapter 04: Designing Responsive 
	The Gist
	Responsive Layout Design
	The Reusable Responsive Grid
	Summary
	Try It

	Chapter 05: Enhancing with JavaScript
	Using JavaScript
	Responsive JavaScript
	Limber Up
	Summary
	Try It


	Part Two: Creating Responsive Data Visualization
	Chapter 06: Data Design: 
	Learning From Data
	The Big Pile
	What You Get from the Web
	Summary

	Chapter 07: Responsive Data 
	Designing 
Content-First
	Revisiting Responsive Design Principles
	Seven Points 
of Focus
	Responding to Data
	Summary

	Chapter 08: Thinking Small
	Designing for the Smallest Canvas: 
No Canvas
	The Tiny Canvas
	Enhancing Efficiently
	Summary

	Chapter 09: Asset Dependence
	Dynamic Data
	Tying Visualization 
to Screens
	Summary
	Try It

	Chapter 10: Code-Driven Visualization
	Unknown Inputs 
and Outputs
	Using D3.js
	Building Responsive Data Visualization for the Web
	Driving Design 
with Data
	Summary
	Try It

	Chapter 11: Building the 
	The Future of Data Design
	Embracing Uncertainty
	Responsible Web Design
	Summary


	Part Three: Additional Resources
	Appendix A: Resources
	Responsive Data Visualization
	Grids
	Infographic Design
	Responsive Design
	D3.js
	More Resources Online

	Index

	Wiley End User License Agreement



