

Coding	For	Speed

A	Hacker’s	Guide	to	a	Faster	Web
	

Michael	Cale
	

©	2014	-	2015	Michael	Cale

A	jug	fills	drop	by	drop

–	Bhudda

Table	of	Contents

Important	Information
Your	free	gift

The	aggregation	of	marginal	gains
Building	for	speed
Book	layout

Why	Page	Speed	Matters
Three	speed	limits
Fast	=	a	better	user	experience
Mobile	is	the	internet
How	slow	is	the	web?
If	search	matters,	speed	matters
Slow	equals	less	revenue

How	the	web	communicates
Some	definitions
Under	the	hood	of	the	web	browser
The	journey	of	a	packet	request
Caching	for	fun	and	profit
Font	rendering

Major	Actions	for	Speed
Cache
Use	ETags
Avoid	redirection
Minimize	data	transfer
Replace	Apache	with	Nginx
Avoid	iframes
Hardware	matters
Images

Image	Techniques
Keep	the	image,	lose	the	stuff
File	type	overview
What’s	out	there?
Use	png	for	art	and	jpg	for	photos
Use	compression
Use	cacheable	components
Use	progressive	jpg
Replace	images	with	CSS3	gradients
Use	CSS	sprites

Don’t	store	images	in	a	database
Use	preloading	appropriately
Use	lazyload_images
Avoid	scaling	images
Use	base64	encoding
Don’t	forget	your	SVG

Page	Techniques
DOM	Architecture
CSS	techniques
JavaScript	techniques
DOM	techniques
Server	techniques

Wordpress
Cache
Optimize	images	automatically
Keep	the	database	tidy
LazyLoad	images
Remove	gravatar	images
Eliminate	bandwidth	leaks
Deactivate	unused	plugins
Optimize	the	homepage
Remove	unnecessary	PHP	functions
Wordpress	optimization

A	Wordpress	case	study
Moving	my	personal	blog	(wordpress)
First	look
Step	1	-	image	size
Step	2	-	homepage	streamlining
Second	Look
Step	3	-	General	cleanup
Third	Look
Conclusion
Further	improvement

Simplify	your	CSS
Remember	the	basics
General	layout
User	anchor	elements
Group	similar	CSS
Use	hex	colors
Browser-specific	styles
Validate	your	CSS
Compress	your	CSS

General	PHP	tips
Variables
Output
String	Operations
Avoid	Regex	(in	general)
Files
Logic	and	Iteration

Geeking	out	on	TCP
Characteristics	of	a	TCP	connection
Optimizing	TCP
Further	Reading

Never	stop	learning
Web	Performance	Today
Mobilewebbestpractices.com
Mobilexweb
Zoompf	web	performance	blog

Webmaster	Tools
Speed
File	Compression
CSS
Image	Compression
Base64	Encoding
Validation
Minification
SVG	Optimization
Sprites
Browser	developer	tools
Validation
Server	Tools
Analytics

Free	Gift
Blog

Important	Information

Your	free	gift
As	a	way	of	saying	thank	you	for	your	purchase,	I’m	offering	a	free	checklist	to	the
readers	of	this	book.	To	get	your	Checklist	<for>	Speed,	send	an	email	to
checklist@michaelcale.com.</for>

Disclaimer

While	all	reasonable	attempts	have	been	made	to	verify	the	information	provided	in	this
work,	the	author	does	not	assume	any	responsibility	for	errors,	omissions,	or	contrary
interpretations	of	the	subject	matter.	The	views	expressed	in	this	book	are	those	of	the
author	alone	and	should	not	be	taken	as	expert	instruction.	The	reader	is	responsible	for
their	own	actions.

A	Special	Thanks

Several	tables	and	images	in	Chapter	8	are	courtesy	of	webpagetest.org.

The	aggregation	of	marginal	gains

Dave	Brailsford	was	asked	to	do	what	had	never	been	done.

As	the	new	General	Manager	of	Great	Britain’s	professional	cycling	team	(Team	Sky),	he
was	asked	to	lead	the	team	to	a	victory	in	the	Tour	de	France.

Inspired	by	the	book	Moneyball	by	Michael	Lewis,	Brailsford	took	a	clean	review	of
cycling’s	standard	measurements	and	thought	processes.	He	developed	a	new	and
innovative	approach.

Initially,	there	were	no	grand,	sweeping	changes	to	the	team	training	program.	But	there
were	hundreds	of	tiny,	seemingly	trivial	changes.	His	goal	was	a	1	percent	improvement	in
every	area.	And	he	meant	every	area.

He	analyzed	and	focused	on	areas	that	other	teams	considered	meaningless,	or	had	never
considered.	He	theorized	that	the	combination	of	these	tiny	improvements	would,	in	the
end,	be	larger	than	their	sum.

When	he	was	hired,	he	was	told	the	team	goal	was	to	win	the	Tour	de	France	in	5	years.
The	team	won	it	in	two.

“People	often	associate	marginal	gains	with	pure	technology,	but	it	is	far	more	than
that.	It	is	about	nutrition,	ergonomics,	psychology.	It	is	about	making	sure	the	riders
get	a	good	night’s	sleep	by	transporting	their	own	bed	and	pillow	to	each	hotel.	It	is
about	using	the	most	effective	massage	gel.	Each	improvement	may	seem	trivial,	but
the	cumulative	effect	can	be	huge.”	–	Dave	Brailsford

Yes,	he	said	transporting	their	own	bed	to	each	hotel.	Actually,	it	was	just	the	mattress,
duvet,	sheets,	and	pillows.	And	Team	Sky	staff	cleaned	each	hotel	room	before	arrival	to
make	sure	the	athletes	were	comfortable.

Even	the	team’s	bus	was	designed	with	a	focus	of	making	life	easier	for	the	athletes.	It	has
custom	seats,	a	cinema,	and	showers	to	ease	the	pre	and	post-race	routines.	It	has	a
meeting	room	for	strategy	sessions	whose	glass	becomes	opaque	at	the	touch	of	a	button.
The	large	black	bus	is	nicknamed	the	Death	Star.

Team	Sky	went	on	to	dominate	the	2012	Summer	Olympics.	Great	Britain	won	12	total
medals	in	Cycling	including	8	Gold,	more	than	double	the	medal	count	of	any	other
nation.	Team	Sky	followed	that	up	with	a	back-to-back	win	of	the	Tour	de	France	in	2013
as	well.

Building	for	speed
The	reason	we	digress	into	cycling	is	to	introduce	this	valuable	concept.

http://road.cc/content/news/94528-sir-dave-brailsford-marginal-gains-and-froome-wiggins-rivalry

The	aggregation	of	marginal	gains	is	the	exact	approach	that	will	dramatically	improve
performance	of	web	sites	and	services.

Taken	alone,	many	of	the	approaches	in	this	book	may	not	provide	notable	(or	even
noticeable)	improvements.	But	taken	on	the	whole,	there	is	room	to	significantly	improve
the	speed	of	web	services.

For	more	on	incorporating	this	principle	into	your	personal	life,	please	read	This	Coach
Improved	Every	Tiny	Thing	by	1	Percent	and	Here’s	What	Happened	by	James	Clear
http://jamesclear.com/marginal-gains.

Book	layout
In	general,	the	techniques	discussed	in	the	book	are	presented	with	major	techniques	first.
That	is,	the	techniques	presented	in	the	early	chapters	will,	in	general,	give	you	more
improved	performance	than	the	techniques	listed	in	later	chapters.

Now,	before	we	get	into	the	specific	techniques,	let’s	review	the	importance	of	speed	in
web	design	and	why	it	matters.

http://jamesclear.com/marginal-gains

Why	Page	Speed	Matters

Three	speed	limits
The	research	of	human	perception	has	identified	three	important	speed	limits	for	any	user
interface.

0.1	seconds	-	the	upper	limit	where	the	user	feels	the	application	is	responding
immediately.	For	example,	touch	events	on	a	touchscreen.
1.0	seconds	-	the	upper	limit	where	the	user	feels	that	the	application	is	working,	but
does	not	feel	‘sluggish’.	The	user	notices	the	delay,	but	does	not	lose	their	sense	of
focus.
10	seconds	-	the	upper	limit	for	users	to	retain	interest	in	the	task.	Best	practices	for
delays	in	excess	of	ten	seconds	are	a	progress	indicator	and	a	method	for	the	user	to
abort	the	task.

These	are	thresholds	of	human	perception	that	have	been	repeatedly	verified	by	decades	of
research.	This	is	one	reason	why	Google	recommends	that	web	pages	load	in	less	than	one
second	on	mobile	devices.

Fast	=	a	better	user	experience
Users	love	speed.

74%	of	mobile	users	will	abandon	a	site	after	a	5-second	wait.
69%	of	tablet	users	expect	a	site	to	load	in	2	seconds	or	less.

Mobile	is	the	internet
According	to	Akamai’s	State	of	the	Internet,	mobile	data	volume	is	doubling	year-over-
year.	It	won’t	be	long	before	desktop	web	use	is	going	to	be	dwarfed	by	mobile	use.

All	these	mobile	devices	are	radios.	When	they	connect	over	a	cellular	network,	they	must
establish	a	radio	connection	before	any	data	can	be	sent	or	received.	Establishing	a	radio
connection	can	take	several	seconds.	Once	established,	each	radio	connection	has	a
timeout	period.	After	this	time	period,	the	channel	goes	idle	and	a	new	radio	channel	must
be	established.

The	causes	latency	when	mobile	devices	connect	over	cellular	networks.	In	the	US,
round-trip	transmissions	on	3G	networks	are	normally	100-450	ms.	On	4G	networks,	they
are	usually	60-180	ms.	In	the	UK	3G	network	latency	is	289-2,653	ms	for	3G	and	35-187
ms	for	4G.

This	latency	is	unavoidable,	so	web	developers	must	structure	their	work	to	be	as	fast	as
possible	to	deliver	the	best	user	experience.

http://www.nngroup.com/articles/response-times-3-important-limits/
https://developers.google.com/speed/docs/insights/mobile
http://loadstorm.com/2014/01/importance-mobile-web-performance/
http://www.akamai.com/dl/documents/akamai_soti_q213.pdf?WT.mc_id=soti_Q213

How	slow	is	the	web?
According	to	Google,	the	average	page	load	time	for	mobile	is	just	over	7	seconds.	The
median	page	load	time	is	slightly	more	than	3	seconds,	so	there	are	some	extremely	slow
web	sites	that	are	skewing	the	average.

The	majority	of	web	pages	load	in	between	1	and	7	seconds	on	a	mobile	device.	Less	that
10%	of	web	pages	load	in	1	second	or	less	on	mobile.	That	should	be	your	goal	-	one
second	load	time	or	less	on	a	mobile	device.	That	will	put	you	in	the	top	10%.

According	to	Google,	average	web	page	size	has	increased	56%	since	last	year.

If	search	matters,	speed	matters
In	2010,	Google	announced	they	would	start	using	page	load	times	as	a	factor	in	how	they
rank	web	pages.

So	if	search	engine	results	are	important	to	you,	then	speed	should	be	important	to	you	as
well.

Slow	equals	less	revenue
Amazon	reported	that	every	100ms	decrease	in	page	load	time	increased	revenue	by	1%.

Mozilla	reduced	the	loading	time	for	their	Firefox	download	page	from	an	average	of	7
second	to	4.8	seconds.	In	an	A/B	test	between	the	two	sites,	the	faster	site	had	15%	more
download	conversions.

Google	discovered	that	increasing	latency	by	400ms	reduced	the	number	of	searches	by
0.2%.

Your	users	demand	speed	and	a	rich	online	experience	regardless	of	what	device	they	are
using	and	the	quality	of	their	connection.	It’s	your	job	to	deliver	and	to	deliver	quickly.

http://analytics.blogspot.com/2013/04/is-web-getting-faster.html
http://googlewebmastercentral.blogspot.com/2010/04/using-site-speed-in-web-search-ranking.html
https://sites.google.com/site/glinden/Home/StanfordDataMining.2006-11-28.ppt?attredirects=0
http://blog.mozilla.org/metrics/2010/04/05/firefox-page-load-speed-%E2%80%93-part-ii/
http://googleresearch.blogspot.co.uk/2009/06/speed-matters.html

How	the	web	communicates

Before	we	get	into	the	specific	techniques,	let’s	cover	some	basics	of	the	browsers	and	the
Document	Object	Model	(DOM).

Some	definitions

bandwidth	-	[noun]	-	amount	of	data	transferred	per	unit	of	time.

latency	-	[noun]	-	delay	in	data	transfer	time,	specified	as	the	amount	of	time	from
sending	a	data	request	and	receiving	the	response	(round	trip	time).

render	-	[verb]	-	to	cause	to	become;	to	make.

parse	-	[noun]	-	the	result,	or	act	of	obtaining	by	processing	text.

Under	the	hood	of	the	web	browser
All	web	browsers	have	the	same	basic	purpose.	They	request	a	resource	from	the	server
and	display	it	to	the	user	or	client.	Most	often	this	resource	is	a	web	page	in	the	form	of
HTML,	but	it	could	also	be	an	image,	a	PDF,	or	other	kind	of	content.

The	major	browsers	in	operation	today	are	Chrome,	Firefox,	Safari,	Internet	Explorer	(IE),
and	Opera	on	the	desktop.	On	mobile	devices,	there	are	iPhone,	Android,	Chrome,	Opera
(Mini	and	Mobile),	UC	Browser,	and	Nokia.	All	of	these	browsers	are	now	webkit-based
with	the	exception	of	Chrome	(versions	28+)	and	Opera	(versions	15+)	which	use	the
Blink	rendering	engine.

WebKit	is	the	piece	of	software	that	powers	the	layout	engine.	This	is	the	part	of	the
browser	that	takes	the	content	(HTML,	images,	etc.)	and	the	formatting	information	(CSS)
and	displays	it	properly	on	the	screen.

The	Document	Object	Model	(DOM)	defines	the	logical	structure	of	HTML	and	XML
documents.	The	DOM	identifies	the	objects	in	a	page	and	defines	their	behavior	and
attributes.

In	the	simple	DOM	below,	the	DOM	defines	the	header	and	paragraph	in	the	HTML
document.
1 <html>

2 <head>

3 </head>

4 <body>

5 <h1> </h1>

6 <p> </p>

7 </body>

8 </html>

The	journey	of	a	packet	request

Packet	Data	Flow

Before	we	can	start	building	the	DOM,	there	are	a	few	steps	that	must	be	accomplished.
First,	we	have	to	do	a	DNS	lookup	to	translate	the	URL	to	an	IP	address.	That’s	one
round-trip	to	a	server	and	back.	Second,	we	have	to	accomplish	a	TCP	connect.	We’ll
cover	an	especially	geeky	chapter	on	the	TCP	process	later.	This	TCP	connection	is	a
second	round-trip.	Once	these	to	steps	are	complete,	we	can	finally	request	some	actual
HTML.	So	we	send	a	third	request	and	once	that	round-trip	is	complete,	we	may	actually
receive	our	first	data	packet	that	has	something	we	can	show	to	the	user.

Rendering	steps

Once	the	data	packets	are	flowing	to	the	browser,	it	begins	parsing	the	HTML	and	CSS.
As	the	browser	is	parsing	the	text,	it	begin	constructing	the	Document	Object	Model	and
the	CSS	Object	Model	(CSSOM).

Both	the	DOM	and	CSSOM	must	be	complete	for	the	displayed	elements	before	the
render	tree	can	be	constructed.	The	render	tree	is	the	combination	of	the	content	with	style
information	from	internal	and	external	locations.

Render	tree	construction	can	become	blocked	by	DOM	construction,	CSS	construction,	or
javascript.	Parsing	stops	when	Javascript	is	encountered	and	only	continues	after	the	script
is	completed.	If	the	script	is	external,	the	browser	must	retrieve	the	script	over	the
network.	Exceptions	to	this	occur	if	the	script	is	tagged	defer	or	async	(HTML5).	We’ll
cover	those	in	more	detail	later.

Prerequisites	for	building	the	render	tree	for	above-the-fold	display:

HTML	parsed
CSS	parsed
DOM	complete
CSSOM	complete
Synchronous	javascript	complete

The	render	tree	is	built	in	a	series	of	‘chunks’	with	style	attributes,	like	color	and
dimensions.	These	chunks	are	built	in	the	proper	order	to	layout	on	the	screen.	The	layout
process	assigns	each	piece	of	the	DOM	with	the	exact	screen	coordinates	for	where	it
should	appear.

The	browser’s	rendering	engine	will	attempt	to	display	contents	to	the	screen	as	soon	as
possible.	It	will	start	building	the	the	render	tree	and	layout	before	the	total	page	HTML	is
fully	parsed	if	possible.

Caching	for	fun	and	profit

A	cache	is	a	location	for	storing	data	received	from	a	server.	It	can	be	HTML,	images,
files,	etc.	The	purpose	of	using	a	cache	is:

1.	 Reduce	latency
2.	 Reduce	network	traffic

These	also	increase	speed	and	provide	an	improved	user	experience.

The	cache	may	reside	on	the	users	hard	drive,	or	the	cache	may	be	on	a	proxy	server
between	the	client	and	the	host	web	server.	These	may	be	at	an	Internet	Service	Provider,
or	part	of	a	corporate	network,	or	part	of	a	Content	Delivery	Network	(CDN).

When	a	visitor	comes	to	your	site	for	the	first	time,	everything	has	to	be	loaded	from	the
your	server.	All	images,	content,	scripts,	style	sheets,	etc.	But	much	of	that	can	be	stored
in	the	browser’s	cache,	so	when	the	user	returns,	much	of	the	site	can	be	loaded	from	the
cache,	which	is	much	faster.	There’s	no	reason	for	the	user	to	download	the	images	for
your	navigation	buttons	when	they	are	right	there	on	the	user’s	hard	drive.

You	want	to	make	sure	that	your	site	is	set	up	properly	for	caching	because	you	don’t	want
to	deliver	stale	or	out-of-date	information	to	your	users.

Planning	your	site	to	use	caching	properly	will	provide	a	speedy	experience	for	you	users
while	reducing	the	load	on	your	server.

Every	cache	has	certain	rules	to	determine	whether	information	is	fresh	or	stale.	Fresh
content	is	valid	to	be	sent	to	the	client	while	content	that	is	stale	will	normally	be
refreshed	from	the	host.	Under	some	circumstances,	the	cache	may	serve	stale	items	to	the
user,	such	as	if	the	host	server	cannot	be	reached.

The	two	primary	tools	to	control	how	your	site	is	cached	are	the	HTTP	headers	Expires
and	Cache-Control.

Sample	HTTP	Header
1 HTTP/1.1 200 OK

2 Last-Modified: Sat, 22 Feb 2014 10:44:00 GMT

3 Expires: Sat, 01 Mar 2014 10:44:00 GMT

4 Content-Type: application/ocsp-response

5 content-transfer-encoding: binary

6 Content-Length: 1443

7 Cache-Control: max-age=489464, public, no-t

8 ransform, must-revalidate

9 Date: Sun, 23 Feb 2014 18:46:30 GMT

The	Expires	header	allows	you	to	set	a	specific	date	in	Greenwich	Mean	Time	(GMT)	for
the	item	to	expire.	This	technique	relies	on	the	system	time	of	both	the	server	and	the
cached	system.	If	one	is	significantly	off,	results	can	be	unexpected.	Once	set,	there	is	no
way	to	force	a	cached	object	to	refresh	before	the	expiration.	In	such	a	situation,	one
technique	would	be	to	rename	the	object,	which	would	force	the	cache	to	fetch	the	new
object.

Introduced	in	HTTP	version	1.1,	the	Cache-Control	header	offers	a	more	flexible
approach	for	controlling	how	your	site	is	cached.	There	are	several	settings	that	can	be

specified	using	Cache-Control.

max-age	=	specifies	the	maximum	number	of	seconds	item	is	considered	fresh	(from	the
time	of	request)

must-revalidate	=	forces	the	cache	to	refresh	item	when	the	item	becomes	stale

no-cache	=	may	not	be	cached

no-store	=	instructs	the	cache	not	to	store	the	request	or	any	response	to	it

private	=	allows	user-specific	caches	(such	as	a	user’s	browser)

public	=	may	be	cached

For	a	complete	list	of	Cache-Control	settings,	see	the	HTTP	1.1	protocol.

Setting	a	Cache-Control	header	in	PHP
1 <?php

2 Header("Cache-Control:	must-revalidate");

3 $expiration = 60 * 60 * 24 * 7;

4 $expirationstring =

5 "Expires:	" .

6 gmdate("D,	d	M	Y	H:i:s", time()

7 + $expiration) . "	GMT";

8 Header($expirationstring);

9 ?>

Setting	Cache-Control	header	in	HTML
<meta	http-equiv="Cache-Control"	content="public">

When	both	Expires	and	Cache-Control	headers	are	present,	the	Cache-Control	settings	take	priority

Set	extremely	large	time	ranges	on	items	that	rarely	change,	like	navigation	buttons	or
other	static	images.	According	to	the	specification,	the	maximum	you	should	set	is	one
year,	or	31,536,000	seconds,	although	that	is	probably	extreme.	Setting	cache	parameters
for	specific	file	types	can	be	done	in	the	htaccess	file	(for	Apache	servers).

Avoid	using	the	Pragma:	no-cache	header.	It’s	behavior	is	unspecified	and	implementation	varies	greatly.

Etags
While	not	a	replacement	for	proper	Cache-Control	use,	etags	can	be	a	useful	resource,
especially	if	using	a	CDN	that	supports	them.

Entity-tags,	or	etags	are	are	unique	identifier	for	the	resource	being	requested.	Often,	they
are	set	to	a	hash	of	a	timestamp	that	the	resource	was	last	updated.	These	allow	proxies	(or
CDNs)	know	that	if	the	etag	matches	what	they	have	stored,	then	they	still	have	a	valid
resource.

Make	caching	work	for	you

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

First	and	foremost,	identify	the	largest	resources	on	site	that	are	served	the	most	often.
These	will	likely	be	images	or	other	files.	If	they	are	static,	make	them	cacheable	with	a
large	max-age	value.

If	one	of	these	resources	changes,	make	sure	to	use	a	different	name	for	the	new	version.
This	will	prevent	the	old	cached	version	from	being	served	to	your	users.

For	files	and	images,	create	a	common	storage	location	so	that	the	address	is	consistent
even	if	you	have	several	references	to	the	asset	on	different	pages.

Be	consistent	in	your	URL	addresses.	Ideally,	multiple	users	accessing	the	same	page
should	see	the	same	URL.	This	will	enable	caching	to	consistently	serve	up	the
appropriate	resources	from	the	most	appropriate	location.

Font	rendering
Web	fonts	have	become	extremely	popular.	Google	reports	that	its	fonts	are	serving	up	a
billion	font-views	each	day	across	over	100	million	web	pages.

Could	this	be	a	problem?	What	if	the	font	takes	a	long	time	to	load?	It	depends	on	the
browser.

Firefox	holds	rendering	for	up	to	3	seconds	to	allow	the	font	to	load.	After	3	seconds,	it
uses	a	fallback	font	and	then	re-renders	when	the	download	is	complete.

Safari	and	Chrome	both	hold	rendering	until	the	font	is	loaded.	Chrome	is	being	modified
to	mimic	the	Firefox	behavior	in	the	future.

Internet	Explorer	renders	with	the	fallback	font	and	re-renders	once	the	font	is	loaded.

Both	the	DOM	and	the	CSSOM	must	be	complete	before	any	web	fonts	are	downloaded.
The	font(s)	will	only	be	downloaded	if	they	are	needed	for	the	current	page.

Font	loading	is	easily	found	on	the	waterfall	charts	since	the	URL	will	be	included	in	the
event	name.

http://googlewebfonts.blogspot.com/2012/10/web-fonts-look-under-hood.html
https://www.google.com/fonts

Major	Actions	for	Speed

Cache
The	first	time	a	user	visits	your	site,	everything	must	load.	That	means	the	maximum
amount	of	requests	and	responses.	Theoretically,	that	is	the	slowest	it	will	be.

If	your	slow	site	didn’t	scare	them	away	completely,	they	may	come	back.

When	they	do,	their	browser	will	likely	have	saved	much	of	your	site	in	the	browser’s
cache.	So	it	will	load	more	quickly.

There	are	a	few	things	you	can	do	on	site	to	assist	in	this	process.

Set	a	large	Expires	header	for	static	components.	This	explicitly	makes	these	components
cacheable	and	tells	the	browser	how	long	they	are	valid.	If	you	tell	the	browser	an	image
expires	in	5	or	10	years,	the	browser	will	use	the	cached	version	when	your	user	returns
until	that	time	runs	out.	After	the	expiration	date,	the	browser	will	reload	that	component
from	the	server.

If	you	do	need	to	change	a	component	that	has	a	far-future	expiration,	then	make	sure	the
replacement	has	a	different	name	and	it	will	load	from	the	server.

For	dynamic	components,	add	a	Cache-Control	header.

Make	your	AJAX	cacheable

Remember	that	browsers	cannot	cache	anything	with	a	query	string,	so	if	your	links	contain	a	?,	then	try	to
find	a	dynamic	link	to	that	resource	(one	that	doesn’t	require	the	?).

Use	ETags
An	ETag	is	a	unique	identifier	you	can	assign	to	a	specific	web	address.	When	a	browser
has	a	cached	version	of	that	asset,	it	will	check	the	ETag.	If	the	ETag	is	the	same,	the
server	will	respond	with	a	304	response	(Not	Modified).	The	browser	will	use	the	cache.

If	the	ETag	has	changed,	the	browser	loads	the	latest	version	from	the	server.

When	using	ETags,	make	sure	you	have	the	correct	procedures	in	place	to	make	sure	they
are	updated	as	your	site	assets	are	updated.

Avoid	redirection
Redirection	is	a	very	processor-intensive	activity	that	is	often	unnecessary.

In	addition,	the	header	responses	301	moved	permanently	and	302	moved	temporarily
are	not	cached	unless	additional	headers	require	it.	Expires	and	Cache-Control	would
require	caching.

For	Apache	users,	make	sure	to	use	Alias	or	to	escape	trailing	slashes	in	mod_rewrite	so
your	server	won’t	redirect	www.url.com/title	to	www.url.com/title/.	This	is	an
automatic	301	redirect	that	occurs	frequently.

Also,	make	sure	that	any	redirects	go	directly	to	the	desired	location.	If	pages	A	and	B
both	are	required	to	redirect	to	page	C,	you	never	want	to	redirect	from	page	A	to	page	B
(then	to	page	C).	Just	have	each	page	redirect	straight	to	page	C.

Minimize	data	transfer
Anything	that	requires	the	web	server	to	access	disk	storage	or	anything	across	the
network	(like	accessing	the	database	server)	is	going	to	be	costly.

When	you	need	to	hit	the	database,	do	it.	Just	make	sure	you	aren’t	making	two	trips	to	the
database	when	it’s	possible	to	make	a	single	trip.

The	same	principle	applies	for	file	access.

Replace	Apache	with	Nginx
Nginx	(pronounced	Engine	X)	is	an	open	source	replacement	for	Apache.	Since	it	is	event-
driven	instead	of	process-driven	it	uses	much	less	memory.	This	makes	it	extremely	fast.

Nginx	excels	at	serving	static	pages.

It	doesn’t	have	nearly	the	number	of	features	as	Apache,	but	if	you	want	to	serve	static
pages	with	lightning	speed,	consider	the	switch.

For	more	on	Nginx,	see	wiki.nginx.org

Avoid	iframes
iFrames	are	a	convenient	technique	to	embed	content	from	another	web	site,	but	you
should	avoid	using	them	whenever	possible.

iFrames	are	one	of	the	most	expensive	DOM	elements	to	load.	They	are	far	more
expensive	than	scripts	and	style	sheets.	Most	browsers	will	at	least	download	scripts	in
parallel	with	other	assets	(stylesheets,	other	scripts,	images).	Most	browsers	will	not
download	scripts	in	parallel	with	iFrames.

In	addition,	loading	iFrames	generally	block	the	window’s	onLoad	event,	which	is	when
user	sees	that	page	loading	is	complete.	This	event	doesn’t	fire	until	all	resources,
including	iFrames,	are	fully	loaded.	In	Safari	and	Chrome,	you	can	set	the	SRC	property
using	javascript,	which	will	prevent	this	blocking	behavior.

To	determine	whether	to	use	an	iframe,	consider	the	content.	Which	is	most	important	-
the	content	in	the	iframe	or	the	content	on	the	page?	If	the	iframe	content	is	a	priority,	then
include	it	and	suffer	the	performance	reduction.

Hardware	matters
Suppose	you	sign	up	with	a	new	host.	They	put	you	on	a	decent	server	that	is	say,	two
years	old.	Time	goes	by	and	you	stay	with	the	same	hosting	company.

http://wiki.nginx.org

Now	it	is	five	years	later.	Is	your	site	now	running	on	a	seven-year-old	machine?	You	may
not	know	until	you	ask,	or	until	something	goes	awry.

If	you	aren’t	getting	the	hardware	upgrades	you	think	you	deserve,	then	find	a	new	host.
Having	a	solid	migration	plan	always	ready	makes	this	much	easier	to	accomplish.

Images
Images	are	probably	the	single	most	critical	element	in	your	page	loading	process.	It’s	so
important	that	we’ll	dedicate	an	entire	chapter	to	image	techniques.

Image	Techniques

Overall,	image	compression	is	likely	to	provide	the	most	speed	increase	for	level	of	effort
than	any	other	technique.	If	you	aren’t	optimizing	your	images,	this	is	probably	where	you
want	to	begin.

Keep	the	image,	lose	the	stuff
Image	files	come	with	all	kinds	of	information	that	are	not	the	image	itself.

There	is	often	embedded	thumbnails,	color	palettes,	and	metadata.	These	are	useful	to
graphics	designers,	but	they	bloat	the	file	size.	This	extraneous	information	can	be	easily
removed	through	compression,	which	we’ll	cover	shortly.	First,	a	bit	about	image	file
types.

File	type	overview
GIF	files	use	a	table	of	256	colors	and	several	algorithms	to	find	the	optimum	set	of	256
colors	to	represent	the	colors	in	the	image.	Limiting	the	number	of	colors	is	a	form	of
compression.	Another	method	of	compression	is	that	the	file	format	uses	an	abbreviated
notation	when	there	are	large	areas	of	uniform	color.	GIF	files	retain	the	transparency
from	the	original	image.

Use	GIFs	for	small	uses	like	buttons	and	for	web	animations.

JPG	files	maintain	high	image	quality	in	a	compact	format.	This	file	type	is	optimized	for
photographs.	Use	when	you	are	willing	to	sacrifice	some	image	quality	in	order	to
minimize	file	size.	JPG	files	do	not	retain	transparency.

If	you	have	images	that	contain	text,	simple	shapes,	or	large	areas	of	uniform	color,	do	not
use	JPG.

PNG	files	provide	high	image	quality	and	small	file	size.	PNG	file	compression	is
reversible	so	the	original	image	can	be	recovered.

TIFF	images	are	high	quality	pixel-based	images.	They	often	have	very	large	file	sizes.
Avoid	using	TIFF	images	whenever	possible.

WebP	is	an	image	type	developed	by	Google.	They	are	routinely	smaller	than	PNG	and
JPG	images	and	they	support	transparency.	Google	is	beginning	to	use	these	on	their
properties	(Google	Play	store	and	YouTube).	So	far,	Chrome	is	the	only	browser	that	has
native	support,	so	probably	best	to	avoid	for	now.	You	can	read	more	about	WebP	at
Google’s	developer	site.

For	most	web	images,	use	PNG	wherever	possible.	Exceptions	are	JPG	for	photos	or
images	with	a	lot	of	colors,	and	GIF	for	animation.

What’s	out	there?

https://developers.google.com/speed/webp/

Image	source:	http://httparchive.org

Use	png	for	art	and	jpg	for	photos
PNG	is	the	preferred	image	file	type	for	speed,	unless	you	require	the	use	of	animated
images.

JPG	is	normally	the	best	format	for	photographs.

Compress	your	GIF	files	and	see	if	there	is	any	file	size	improvement	to	using	PNG.

Use	compression
Compression	allows	you	to	transfer	data	in	a	smaller	file	size.	Lets	look	at	a	simple
compression	scheme.

Data	before	compression	-	xxxxxxxyyyyzzzzz

Data	after	compression	-	x7y4z5

Knowing	how	the	data	is	‘compressed’,	we	could	receive	the	after-compression	string	and
be	able	to	reconstruct	the	original	data	perfectly.	This	would	be	an	example	of	lossless
compression	since	we	could	transfer	the	data	with	absolutely	no	loss	of	information.

Always	keep	a	copy	of	your	original	images	before	you	compress	them.

The	second	type	of	compression	is	known	as	lossy.	Lossy	compression	does	allow	some
data	degradation.

For	example:

Data	before	compression	-	{3.129,	4.021,	9.713}

Data	after	compression	-	{3.1,	4.0,	9.7}

http://httparchive.org

Using	lossy	compression	for	image	will	result	in	degradation	of	the	image	quality.	But	do
not	automatically	disregard	lossy	image	compression.	Use	both	types	and	compare
image	quality.	If	there	is	minimal	(or	no)	perceptible	distinction	between	the	two	images,
then	use	the	one	with	the	smallest	file	size.

Use	Smush.it,	PunyPNG,	ImageOptim,	Optimizilla	,	or	a	similar	service	to	reduce	image
size	as	much	as	possible	without	sacrificing	image	quality.

These	tools	can	reduce	image	size	by	near	40%.	Do	that	for	all	the	images	on	your	site	and
you	can	make	a	huge	impact	on	loading	time.

PNG	files	can	be	lossy	compressed	with	http://pngquant.org

Other	image	compression	tools	include	pngcrush	and	http://compresspng.com.

Use	the	utility	jpegtranon	all	your	JPG	images.	It	executes	lossless	compression	and
removes	superfluous	information	like	comments	and	EXIF	data.	It	is	available	at
http://jpegclub.org.

Use	cacheable	components
For	any	images,	scripts,	and	stylesheets	that	are	over	25kb	in	size,	the	iPhone	will	not
cache	them.

Keeping	these	items	under	this	25kb	speed	limit	will	greatly	increase	speed	for	return
users.

Use	progressive	jpg
A	baseline	JPG	image	is	comprised	as	one	top-to-bottom	scan	of	the	image.	A	progressive
JPG	builds	the	image	with	a	series	of	separate	scans	so	the	image	quality	improves	with
each	scan.

The	image	quality	and	file	size	are	roughly	equivalent	in	both	types	of	JPG	(progressives
are	often	slightly	smaller	in	size),	but	the	progressive	scans	provide	a	better	user
experience.	Instead	of	watching	the	complete	image	load	from	top	to	bottom,	the	image
size	is	readily	apparent	and	the	image	quality	improves	quickly.	This	is	particularly
beneficial	for	users	with	slow	network	connections.

Progressive	JPGs	are	just	a	different	way	of	transferring	the	image	data.	Indeed,	with	a
fast	enough	data	connection,	you	may	not	be	able	to	notice	the	difference	between	the	two.

If	you’re	using	an	image	optimization	tool	like	Smushit,	it	will	convert	your	JPGs	to
progressive.

Other	image	tools	such	as	Photoshop	or	ImageMagick	will	give	you	the	option	to	use
progressive	JPG.

Replace	images	with	CSS3	gradients
A	straightforward	method	is	to	remove	the	image	request	entirely	and	replace	the	image
with	CSS3	gradients.	They	can	be	overlaid	over	the	background	color	and	they	handle
transparency	well.

http://developer.yahoo.com/yslow/smushit
http://www.punypng.com
http://www.imageoptim.com/
http://optimizilla.com
http://pngquant.org
http://pmt.sourceforge.net/pngcrush/
http://compresspng.com
http://jpegclub.org
http://www.smushit.com/ysmush.it/
http://www.photoshop.com
http://www.imagemagick.org/

This	will	add	more	overhead	to	your	CSS	load,	but	it	should	be	a	faster	option	than	the
image	request.

Use	CSS	sprites
Another	technique	is	to	combine	all	your	(required)	images	into	a	single	http	request	with
CSS	sprites.

This	actually	combines	several	(or	all)	your	images	into	one	image	with	defined	X	and	Y
coordinates	and	uses	the	CSS	property	background-position	to	put	everything	in	the
proper	place.

This	is	particularly	good	when	there	are	a	large	number	of	small	images,	such	as	for	menu
icons.

There	are	two	approaches	here.	Using	a	modular	sprite	approach	would	use	a	CSS	sprite
for	part	of	the	page,	like	for	a	navigation	menu.	An	uber	sprite	approach	would	combine
all	images	for	a	single	page	into	one	CSS	sprite.

If	your	site	has	a	large	number	of	pages,	using	CSS	sprites	can	become	maintenance-
intensive.	Using	sprites	is	much	more	complex	than	straightforward	image	use.

Google’s	search	results	page	uses	the	uber	sprite	approach.

CSS	Sprite	Generator

http://spritegen.website-performance.org

Tips	for	CSS	sprites

1.	 Optimize	the	images	before	creating	the	sprite.
2.	 Avoid	images	with	a	large	amount	of	whitespace.
3.	 Arrange	images	horizontally	to	make	the	sprite	as	small	as	possible.
4.	 Organize	images	of	similar	color	themes	together.

Don’t	store	images	in	a	database
Some	sites	store	their	images	in	a	database	as	a	[blob]	data	type.	This	is	inefficient.

Instead,	store	the	image	file	name	(or	a	portion	of	it)	in	the	database	if	you	must,	and	build
the	link	dynamically	including	any	required	information	(e.g.	user	id).	Then	let	the	server
load	the	file	directly.	This	is	faster	than	storing	the	image	in	a	database.

Use	preloading	appropriately
Only	pre-load	images	when:

the	image	isn’t	shown	by	default,	but	may	be	needed	later.	Hover	and	click	state
images,	for	example.
the	image	isn’t	used	on	the	current	page,	but	will	be	used	on	the	next	page	(or	there	is
a	high	probability	is	will	be	required).

http://spritegen.website-performance.org

Use	lazyload_images
If	you	are	using	the	mod_pagespeed	module	(more	on	that	later),	you	can	load	the	images
lazily.	lazyload_images	is	a	server	filter	that	defers	the	loading	of	images	that	are	not	yet
viewable	by	the	client.

It	accomplishes	this	by	inserting	javascript	that	uses	a	beacon	to	report	to	the	server	which
images	are	viewable	(and	therefore	need	to	be	loaded).	The	default	behavior	is	to	only
load	images	above-the-fold.	Images	that	are	below-the-fold	are	only	requested	after	they
are	visible	in	the	client’s	viewport.

If	there	is	a	particular	image	that	you	need	to	load	on	a	page,	you	can	force
lazyload_images	to	load	it	with	pagespeed_no_defer.
1

Images	below-the-fold	can	be	set	to	load	after	the	onload	event	is	triggered	or	as	the	user
scrolls	down	the	page.

Avoid	scaling	images
If	your	image	is	not	the	same	size	that	you	want	to	display,	avoid	this	-
1

If	your	image	must	be	500px	by	500px,	then	change	the	image	size	instead	of	using	the
browser	to	scale	it	up	or	down.

Use	base64	encoding
Another	technique	is	to	encode	your	image	into	a	base64	string.
1 <img src:"..\

2 " />

The	disadvantage	of	this	technique	is	that	the	base64	string	may	be	significantly	larger	in
size	than	the	original	image.	Typically,	they	are	about	10%	larger	if	using	gzip	and	30%+
without	compression.	The	advantage	is	that	you	eliminate	the	server	request-response
cycle	for	that	image.

This	technique	normally	works	particularly	well	for	large	gradient	background	images.	Or
if	your	site	has	several	small-size	images,	it	may	be	beneficial	to	encode	them	and
eliminate	all	those	http	requests.

PHP	has	a	convenient	function	where	you	can	do	the	encoding	on	the	fly.
1 base64_encode(file_get_contents("/path/to/i\

2 mage"));

Internet	Explorer	7	and	earlier	do	not	support	this	technique.

Don’t	forget	your	SVG
While	you	will	get	far	more	improvement	out	of	your	efforts	toward	your	image
optimization,	Scalable	Vector	Graphics	(SVG)	share	some	similarities	with	images	and
benefit	from	some	of	the	same	techniques.

SVGs	are	simple	XML	files,	but	many	commercial	SVG-creation	software	packages	load
them	up	with	unnecessary	information	that,	while	useful	to	the	program,	they	are
irrelevant	for	proper	display.	Adobe	Illustrator	and	Inkscape	are	common	offenders.

Similar	to	images,	these	can	be	validated	and	cleaned	of	this	extraneous	data	which	can
reduce	file	size	by	more	than	50%.

SVG	Optimiser	by	Peter	Collingridge	http://petercollingridge.appspot.com/svg-optimiser

T	Just	as	with	images,	save	your	originals	before	making	changes

http://petercollingridge.appspot.com/svg-optimiser

Page	Techniques

In	this	chapter,	we’ll	look	at	techniques	to	structure	your	pages	for	maximum
performance.	We’ll	go	into	deep	detail	on	the	Document	Object	Model	(DOM),
stylesheets,	JavaScript,	and	some	server-side	methods	as	well.

DOM	Architecture
All	stylesheets	and	scripts	must	be	downloaded,	parsed,	and	executed	before	the	browser
can	render	the	web	page.	This	can	dramatically	slow	response	time,	especially	for	mobile
users.

For	many	script-heavy	applications,	like	many	AJAX-type	interfaces,	there	could	be
kilobytes	of	data	to	download	and	process.

The	bulk	of	javascript	operations	are	used	for	events,	like	user	inputs	and	navigation,	that
occur	after	the	page	has	completed	loading.

By	structuring	your	page	properly,	you	can	significantly	speed	up	the	page	load	and	still
load	all	the	necessary	script	for	your	application.

Sequence	matters
Loading	external	javascript	causes	further	page	processing	to	stop	until	the	script	is
loaded.	In	the	example	below,	the	browser	loads	the	external	script,	then	loads	the	external
CSS.

The	external	CSS	files	are	able	to	load	concurrently.	Simply	by	changing	the	sequence	that
these	files	are	loaded,	the	browser	can	load	the	three	external	assets	simultaneously,
dramatically	reducing	page	load	time.

Note:	Most	modern	browsers	will	download	external	scripts	in	parallel,	but	they	will	only
parse	and	execute	the	code	in	sequence.	This	is	necessary	to	retain	any	code	dependencies
between	scripts.

Code	Separation
Make	sure	split	your	pages	into	two	sections:

1.	 Required	for	initial	render
2.	 Everything	else

This	means	you	may	not	be	putting	all	your	javascript	and	css	in	the	page	header.	These
should	be	split	to	increase	page	speed.

Start	by	identifying	which	of	your	script	functions	that	are	used	before	the	onload	event	is
triggered.
	1 <html>

	2 <head>

	3

	4 <style	type="text/css">

	5 .main_nav{...}

	6 .sidebar{...}

	7 .content{...}

	8 /*	Place	any	other	styles	here	if	require\

	9 d	for	initial	render		*/

10 </style>

11

12 <script	type="text/javascript">

13 /*

14 	 	 	 Place	only	the	script	necessary	for	init\

15 ial	render	here

16 	 	 	 Optimally,	no	script	would	be	required	i\

17 n	this	location

18 	 	 */

19 </script>

20

21 </head>

22 <body>

23 <div class="content">

24

25 </div>

26 <div class="sidebar">

27

28 </div>

29

30 <script	type="text/javascript">

31 function run_after_onLoad() {

32 Load('stylesheet', 'remainder.css')

33 Load('javascript', 'remainder.js')

34 }

35 </script>

36

37 </body>

38 </html>

Identify	critical	CSS
If	you’re	building	a	new	site	from	the	ground	up,	you	can	plan	your	CSS	so	it	is	divided
up	in	above-the-fold	(we’ll	call	it	critical	CSS)	and	below-the-fold.	But	if	you	are	working
on	a	completed	site,	there	are	tools	to	help	you	identify	the	critical	CSS.	For	Apache
servers,	there	is	even	a	tool	we	will	cover	later	that	can	do	this	automatically.

Use	the	Chrome	DevTools	Audit	function	to	identify	specific	CSS	elements	that	aren’t
used	on	each	page.	This	can	be	found	in	View	->	Developer	->	Developer	Tools	->	Audits	-
>	Web	Page	Performance.

Another	great	resource	for	identifying	critical	CSS	is	the	article	Detecting	Critical	Above-
the-fold	CSS	by	Paul	Kinlan.	He	has	a	couple	of	excellent	tools	for	solving	this	problem.
This	code	can	be	used	as	a	bookmarklet	or	DevTools	snippet	to	identify	the	critical	CSS
on	your	site.	It	was	developed	as	a	proof	of	concept,	so	be	sure	to	read	the	caveats	in	the
article.

Load	external	CSS	before	external	JS
External	script	files	load	serially	in	most	browsers.	So	loading	an	external	script	file
causes	the	browser	to	block	subsequent	loading	until	the	script	file	is	completely	loaded.

In	contrast,	loading	of	external	CSS	and	images	occurs	in	parallel,	up	to	a	limit.

Therefore,	always	load	external	CSS	files	first,	and	then	any	external	script	files	so	that
the	CSS	file	will	continue	loading	in	parallel	-	any	loads	already	in	progress	will	continue.

The	key	here	is	to	make	sure	that	your	scripts	do	not	depend	on	any	of	the	styles	in	the
external	CSS	to	be	able	to	execute	properly.

A	good	technique	is	to	place	any	script	that	is	not	required	for	page	rendering	at	the
bottom	of	the	page.

CSS	techniques

Keep	CSS	in	the	<head>
It	may	be	tempting	to	put	your	critical	CSS	in	the	head	and	put	your	non-critical	CSS
below	the	above-the-fold	content,	but	this	can	cause	problems.

CSS	is	required	to	be	in	the	head,	according	to	the	HTML	specification.

http://paul.kinlan.me/detecting-critical-above-the-fold-css/
https://gist.github.com/PaulKinlan/6284142
http://www.w3.org/TR/html4/present/styles.html

Furthermore,	a	few	browsers	(like	Internet	Explorer)	will	prohibit	rendering	if	it
encounters	stylesheets	outside	of	the	header	until	the	stylesheets	are	loaded.	This	is	to
prevent	the	browser	from	having	to	redraw	page	elements	if	their	style	changes.	In	this
case,	the	user	will	see	a	blank	white	page	while	loading.

If	you	are	seeing	this	behavior	on	your	pages	then	comply	with	the	specification	and	put
your	stylesheets	in	the	<head>.

Avoid	@import
Using	@import	in	your	stylesheet	allows	you	to	load	additional	CSS	files.	The	problem
with	this	approach	is	that	the	processing	of	the	main	stylesheet	stops	while	the	@import
operation	is	loading.

Instead,	copy	the	necessary	CSS	into	your	main	stylesheet,	or	use	multiple	<link>	tags.

Use	proper	CSS	selectors
IDs	are	the	most	efficient	CSS	selector.

After	ID,	the	most	efficient	are	class,	tag,	and	universal,	in	that	order.
1 content {…} /*	ID		->Fastest		*/

2 .content {…} /*	Class	*/

3 ul {…} /*	Tag		*/

4 * {…} /*	Universal		->Slowest		*/

Also,	avoid	descendant	selectors.	Don’t	do	this	if	you	can	help	it:

html	body	li	a	{…}

Now	it	may	not	be	practical	to	have	every	element	have	its	own	CSS	id.	That	would
maximize	CSS	efficiency,	but	would	probably	create	insanity	in	you	or	your	team.

Just	be	aware	of	how	to	code	CSS	efficiently	and	find	a	balance	of	efficiency	and
practicality.

Inline	or	external	JS	and	CSS
From	a	speed	perspective,	it	is	better	to	use	external	CSS	and	javascript	rather	than	inline,
or	on-page,	CSS	and	javascript.	The	primary	advantage	to	using	external	files	is	that	those
will	normally	be	cached	by	the	browser	and	can	be	used	for	subsequent	page	loads.	The
disadvantage	is	you	increase	HTTP	requests	when	you	use	external	files.

Inline	script	and	CSS	must	be	loaded	each	time	with	the	HTML.	It	will	never	be	cached.
But	if	you	must	using	inline	script	and	styles	to	deliver	a	better	user	experience,	then	use
it.

Validate	and	minify
Minimizing	your	CSS	(and	JS	and	HTML)	files	removes	an	extraneous	characters
including	comments	and	whitespace.	This	reduces	the	file	size,	and	thereby	reduces	load
time.

Many	frameworks,	like	Twitter	Bootstrap,	provide	both	normal	(human-readable)	and
minimized	CSS	and	script	files.

Validate	your	stylesheets	with	W3C	CSS	Validator	http://jigsaw.w3.org/css-validator/.

Tools	for	minimizing	CSS:

1.	 YUI	http://refresh-sf.com/yui/	(also	Javascript)
2.	 Slimmer	https://pypi.python.org/pypi/slimmer/	(also	Javascript)
3.	 CSS	Minifier	http://cssminifier.com
4.	 CSS	Compressor	http://www.csscompressor.com
5.	 Minify	CSS	http://www.minifycss.com

JavaScript	techniques

Javascript	carefully
As	we’ve	mentioned,	scripts	can	block	page	rendering	on	either	the	CSS	object	model
(CSSOM)	or	the	Document	object	model	(DOM).

Avoid	changing	CSS	elements	via	script	like	elem.style.*.

Avoid	script	commands	like	document.write	that	will	block	DOM	construction.

Use	asynchronous	script	whenever	possible	to	allow	simultaneous	loading.

Minimize	Javascript
Ideally,	you	want	to	build	your	page	so	that	no	javascript	is	required	for	the	initial	render.
If	some	is	going	to	be	required,	make	sure	it	is	as	little	as	possible.

Load	script	asynchronously
To	avoid	blocking	the	page	render,	load	scripts	asynchronously.	This	attribute	is	new	in
HTML5.
<script	src="/js/functions.js"	async></script>

async	is	supported	in	Chrome,	Safari,	Internet	Explorer	10+	and	Firefox	4.0+.

Each	async	script	is	executed	after	it	is	downloaded	and	before	the	window’s	load	event.
They	are	not	necessarily	loaded	in	the	order	they	occur.

Google	Analytics	has	been	upgraded	to	run	asynchronously.	If	you	have	sites	older	than	a
year	or	more,	it’s	probably	a	good	idea	to	make	sure	you	are	using	the	async	script.	To
check	your	tracking	code,	make	sure	it	contains	ga.async=true	in	the	code.

Defer	script	loading
To	load	your	javascript	only	when	the	page	has	finished	loading,	use	the	defer	attribute.
<script	src="/js/functions.js"	defer></script>

http://www.getbootstrap.com
http://jigsaw.w3.org/css-validator/%22W3C%20CSS%20Validator%22
http://refresh-sf.com/yui/
https://pypi.python.org/pypi/slimmer/
http://cssminifier.com
http://ww.csscompressor.com
http://www.minifycss.com

Scripts	with	the	defer	attribute	will	be	loaded	in	the	sequence	they	occur	on	the	page.
This	occurs	after	parsing	is	completed	and	before	the	DOMContentLoaded	event.

The	defer	attribute	is	specified	in	HTML4	and	HTML5.

If	a	script	is	deferrable,	it	could	also	be	placed	at	the	bottom	of	the	page.

Avoid	loading	content	with	JS
It’s	not	a	good	idea	to	load	content	using	JS	because	some	search	engines	won’t	see	your
content,	just	your	script.	This	is	more	of	a	good-practice	for	SEO	and	not	so	much	for
increasing	speed.

For	more	on	this	topic	see	this	step-by-step	guide	or	read	Google’s	proposed	specification.

Use	GET	for	AJAX	requests
POST	is	implemented	as	two-step	process.	First,	it	sends	the	headers,	then	it	sends	the
data.	GET,	on	the	other	hand,	is	normally	a	single-step	process.

Different	browsers	have	different	data	limits	for	GET,	so	if	you	are	sending	a	lot	of	data,
you	may	have	to	use	POST	instead.

URL	lengths	of	over	2000	characters	have	been	known	to	cause	problems	for	Internet
Explorer,	so	if	your	data	transfer	is	nearly	2k,	you	probably	shouldn’t	be	using	GET	if	you
are	concerned	about	users	with	this	browser.

Validate	and	minify
Validate	you	Javascript	with	tools	like	JSHint	or	JSLint.

Minimizing	your	Javascript	with:

1.	 Javascript	Compression	Tool	http://jscompress.com
2.	 Minify	Javascript	http://www.minifyjavascript.com
3.	 Ajax	Minifier	http://aspnet.codeplex.com/releases/view/40584
4.	 UglifyJS	https://github.com/mishoo/UglifyJS

DOM	techniques
Besides	streamlining	your	styles	and	scripts,	there	are	several	steps	you	can	take	on	your
pages	themselves	to	maximize	the	user	experience.

Avoid	Flash
Flash	is	a	speed-killer.	Avoid	it	whenever	possible.

https://developers.google.com/webmasters/ajax-crawling/docs/getting-started
https://developers.google.com/webmasters/ajax-crawling/docs/specification
http://support.microsoft.com/kb/q208427
http://www.jshint.com/
http://www.jslint.com/
http://jscompress.com
http://www.minifyjavascript.com
http://aspnet.codeplex.com/releases/view/40584
https://github.com/mishoo/UglifyJS

Image	source:	http://httparchive.org

Page	size
Ideally,	we	want	all	of	our	above-the-fold	content,	including	the	necessary	CSS	to	be	less
that	14	kB	in	size.	This	is	the	maximum	amount	of	data	that	can	be	transferred	in	a	single
HTTP	request	(assuming	there	are	no	redirects).	This	could	be	as	large	as	~40	kB	if	using
compression	like	gzip.	We’ll	cover	gzip	in	more	detail	later.

Pages	over	this	size	require	more	send-receive	cycles	to	and	from	the	server.

Remove	unnecessary	DOM	elements
Each	element	of	the	DOM	has	some	cost	associated	with	loading	it.

versus

http://httparchive.org

Use	preloading
Preload	components	based	on	where	you	believe	the	user	is	headed	next.

For	example,	if	the	user	begins	typing	in	a	form,	you	could	begin	loading	the	script	that
will	be	necessary	on	the	next	page,	assuming	the	user	hit	the	submit	button	on	the	form.

Or	you	can	automatically	pre-load	scripts	or	other	objects	after	the	current	page	has	loaded
to	take	advantage	of	idle	browser	time.
<link	href="//url.com/images/file.png"	rel="prefetch"	/>

Prefetching	with	javascript
1 (function($) {

2 $.ajax({ url:"/js/script_A.js", cache:tru\

3 e, dataType:"text" });

4 $.ajax({ url:"/js/script_B.js", cache:tru\

5 e, dataType:"text" });

6 })(jQuery);

Reduce	DNS	Lookups
The	Domain	Name	System	(DNS)	matches	the	IP	address	of	your	server	to	your	URL.

Assuming	the	client’s	DNS	cache	is	empty,	the	browser	must	make	a	DNS	call	for	all	the
hostnames	for	the	page’s	URL,	script	files,	external	stylesheets,	images,	jQuery	objects,
etc.	Putting	all	of	these	assets	at	the	same	URL	reduces	the	number	of	DNS	lookups.

For	example,	it	would	be	better	to	store	your	product	assets	in
www.example.com/products	than	to	place	them	in	products.example.com.	This	would
reduce	the	number	of	DNS	calls	required.	Similarly,	you	would	want	to	run	CSS,
javascript,	and	other	assets	from	the	same	domain	as	much	as	is	practical.

Share	the	heavy	load
If	your	site	is	hosting	a	lot	of	images,	or	video,	or	other	large	assets,	consider	hosting	these
on	dedicated	servers	designed	for	such	content.	Put	images	on	Flickr,	video	on	YouTube
or	Vimeo,	and	let	their	servers	share	the	load.

By	doing	so,	when	the	user	requests	a	page,	the	load	is	distributed	across	multiple	servers.
Your	server	is	providing	the	content	(HTML,	CSS,	etc.)	while	the	other	servers	are
responding	with	the	image	or	video	or	whatever	you	have	linked.

The	advantage	of	this	approach	is	that	you	get	to	take	advantage	of	the	expertise	and	scale
of	these	other	specialized	services.	The	disadvantage	is	that	in	the	event	of	a	problem,	it	is
out	of	your	hands	and	you	have	to	rely	on	a	third	party	to	correct	the	issue.

Validate	and	minify
Make	sure	your	html	is	current	and	doesn’t	contain	any	deprecated	tags	such	as		or
<center>.	Removing	deprecated	html	is	another	step	in	optimizing	everything.	The	W3C
Markup	Validation	Service	makes	this	easy.

W3C	Markup	Validation	Service	http://validator.w3.org/

http://validator.w3.org/

Using	web	fonts
Web	fonts	can	be	significant	in	size.	One	of	the	web	most	popular	web	fonts,	Google’s
Open	Sans	is	217K	and	supports	over	20	languages.	It	contains	Latin,	Cyrillic,	and
Vietnamese	character	sets.	Limiting	it	to	only	Latin	drops	the	size	down	to	36K,	a	more
than	80%	improvement.	http://www.igvita.com/2012/09/12/web-fonts-performance-
making-pretty-fast/#optimizing

A	few	tips	on	using	web	fonts:
Limit	the	font	to	a	specific	subset	with	subset=latin

1 <link href="http://fonts.google.com/css/?

2 family=Gafata&subset=latin"	rel="stylesheet

3 "	/>

Only	load	the	font	styles	you	actually	use

If	you’re	not	using	Bold	Italic	on	your	page,	don’t	bother	loading	it.
Consider	loading	only	the	specific	characters	you	need

If	you	only	need	certain	letters,	such	as	for	a	headline,	you	can	only	load	the	font	for	those
letters.	At	the	time	of	publication,	this	is	a	beta	feature.
1 <link href="http://fonts.google.com/css/?

2 family=Gafata&subset=latin&text=MyHeadline"\

3 	rel="stylesheet"	/>

Server	techniques

Enable	text	compression
Text	compression	can	significantly	reduce	the	size	of	the	HTTP	response.

For	most	sites,	the	transfer	is	largely	images	and	text	(html,	css,	and	scripts).	The	images
are	already	compressed,	so	let’s	look	at	how	to	compress	the	text	as	well.

Browsers	indicate	their	support	for	compression	in	the	HTTP	request.	Two	common
formats	for	compression	are	gzip	and	deflate.

gzip	is	much	more	prevalent	that	deflate.

gzip	is	supported	by	PHP,	Apache,	and	Google	App	Engine.	In	Apache	2.0+,	the	module
mod_deflate	enables	gzip.	In	earlier	versions	back	to	Apache	1.3,	it	is	in	the	module
mod_gzip.

Accept-Encoding:	gzip,	deflate

On	most	servers,	the	compression	level	of	gzip	is	set	to	level	6.	Level	1	offers	the	fastest
speed	but	the	lowest	compression	ratio.	Level	9	provides	the	slowest	compression	speed
and	the	highest	compression	ratio.	This	is	configured	using	the	DeflateCompressionLevel
directive.

Use	mod_pagespeed	(apache)
The	good	folks	behind	Google’s	PageSpeed	tool	have	developed	a	module	named
mod_pagespeed	to	automate	much	of	the	techniques	we’ve	discussed.

http://www.igvita.com/2012/09/12/web-fonts-performance-making-pretty-fast/#optimizing

https://developers.google.com/speed/pagespeed/module

mod_pagespeed	is	an	open-source	Apache	module	that	automatically	optimizes	web	pages,
including	CSS,	images,	and	Javascript.	It	is	currently	free,	but	Google	notes	that	they	may
charge	for	it	at	some	point	in	the	future.	If,	or	when	the	pricing	changes,	you	will	have	30
days	notice,	according	to	Google.

Dreamhost	was	one	of	the	first	hosting	companies	to	offer	mod_pagespeed.	I	use
Dreamhost	for	some	of	my	sites,	but	I	have	not	used	mod_pagespeed.

See	how	easy	it	is	to	enable	mod_pagespeed	on	Dreamhost.	{Video}

mod_pagespeed	will	take	care	of	several	speed	improvements	automatically.	If	you	have
multiple	CSS	files,	the	module	will	combine	them	into	one	file	and	minimize	them.	It	will
also	minimize	your	script	files	as	well.

These	can	be	customized	through	the	settings	for	mod_pagespeed.

For	more	on	what	mod_pagespeed	can	do,	go	to
https://developers.google.com/speed/pagespeed/module/config_filters.

Use	output	buffering	(PHP)
PHP	has	a	useful	technique.	You	can	turn	on	output	buffering,	which	will	send	all	html	to
memory	instead	of	to	the	browser.

Normally	(without	buffering),	the	html	is	transferred	to	the	browser	piecemeal.	By
enabling	output	buffering,	it	is	sent	to	the	browser	all	at	once,	which	decreases	loading
time.

<html>	<head><!	–	css,	js	—></head>	<body>	<p>This	is	amazing	content!</p>	</body>
</html>

You	can	also	compress	the	buffer	by	using	the	command	ob_start('ob_gzhandler');	to
reduce	HTML	size	even	further.

Using	output	buffering	also	makes	it	simple	to	to	make	dynamic	changes	to	the	web
content,	like	adding	a	user’s	name,	or	changing	a	login/logout	button	depending	upon	the
user’s	status.

Flush	it	out	(PHP)
If	any	of	the	pages	on	your	site	require	a	large	amount	of	back-end	processing,	use
flush()	to	send	at	least	a	portion	of	the	data	to	the	browser.	This	allows	the	browser	to
begin	fetching	page	components	while	the	back-end	continues	processing.

A	good	technique	is	to	do	this	immediately	after	the	</head>.
1 <!	---	css,	js	-->

2 </head>

3 <?php flush(); ?>

4 <body>

Use	a	CDN

https://developers.google.com/speed/pagespeed/module
https://developers.google.com/speed/pagespeed/service/pricing
http://www.youtube.com/watch?v=FXsAhmwmp78
https://developers.google.com/speed/pagespeed/module/config_filters

If	your	site	receives	a	large	amount	of	traffic,	consider	using	a	Content	Delivery	Network
(CDN).

This	is	where	service	providers	have	a	distributed	network	of	servers	around	the	world	so
they	can	push	your	content	to	your	users	from	a	server	near	the	user’s	part	of	the	globe.
CloudFlare	is	one	such	provider	with	a	large	set	of	features.

Amazon	Cloudfront	is	a	similar	service.	http://aws.amazon.com/cloudfront/
Other	CDN	service	providers:

Akamai	http://www.akamai.com

CloudFlare	http://www.cloudflare.com/features-cdn

EdgeCast	http://www.edgecast.com

LiquidWeb	http://www.liquidweb.com/services/cdn.html

MaxCDN	http://www.maxcdn.com	<!–	Get	AFFILIATE	LINKS

http://www.liquidweb.com/cn/c/refer/index.html

http://www.maxcdn.com/company/affiliates/

–>

http://aws.amazon.com/cloudfront/
http://www.akamai.com
http://www.cloudflare.com/features-cdn
http://www.edgecast.com
http://www.liquidweb.com/services/cdn.html
http://www.maxcdn.com

Wordpress

Nothing	in	this	world	is	free.	Using	Wordpress	makes	a	lot	of	things	simple,	but	it	also
makes	a	lot	of	sites	slow.	Here’s	a	few	tips	on	making	your	Wordpress	site	a	bit	faster.

Cache
Just	like	a	normal	site,	cache	your	content	to	speed	loading	for	returning	users.	There	are
several	great	caching	plug-ins	that	will	do	this	for	you.

WP-Cache	http://wordpress.org/extend/plugins/wp-cache/

W3	Total	Cache	https://wordpress.org/plugins/w3-total-cache/

WP	Super	Cache	https://wordpress.org/plugins/wp-super-cache/

Quick	Cache	https://wordpress.org/plugins/quick-cache/

Varnish
Varnish	is	a	server-side	cache	that	stores	a	copy	of	your	pre-built	web	pages	and	rapidly
serves	them	up	to	users.	This	enables	the	pages	to	load	without	calling	on	Wordpress,	PHP,
and	MySQL	to	build	the	page	for	each	user	request.

For	more	go	to	http://www.varnish-cache.org.

If	you’re	using	Amazon	Web	Services,	Jeff	Reifman	offers	an	excellent	installation	guide
at	http://jeffreifman.com/detailed-wordpress-guide-for-aws/install-varnish/.

Optimize	images	automatically
If	you	use	a	lot	of	images,	compressing	them	all	manually	can	be	extremely	time
consuming.	Automate	this	process	with	the	plugin	WP-Smushit.	It	will	automatically
optimize	your	images	as	you	upload	them.

WP-Smushit	http://wordpress.org/extend/plugins/wp-smushit/

WP-Smushit	has	an	upper	limit	of	1	MB.	It	will	not	compress	files	larger	than	1	MB.

Keep	the	database	tidy
There	are	a	few	simple	things	you	can	do	to	keep	the	database	size	to	a	reasonable	level.

Draft	Control	-	Each	time	you	save	a	draft,	Wordpress	stores	a	copy	of	that	revision	in
the	database.	If	you	save	it	twenty	times,	you	probably	don’t	need	all	twenty	revisions	-
normally	the	last	2	or	3	is	enough.	The	plugin	Revision-Control	allows	you	to	control	the
number	of	revisions	that	get	stored	in	your	database.

Revision-Control	-	http://wordpress.org/extend/plugins/revision-control/

http://wordpress.org/extend/plugins/wp-cache/
https://wordpress.org/plugins/w3-total-cache/
https://wordpress.org/plugins/wp-super-cache/
https://wordpress.org/plugins/quick-cache/
http://www.varnish-cache.org
http://jeffreifman.com/detailed-wordpress-guide-for-aws/install-varnish/
http://wordpress.org/extend/plugins/wp-smushit/
http://wordpress.org/extend/plugins/revision-control/

Database	Optimization	-	it’s	good	practice	to	periodically	repair	your	database.	This
allows	it	to	cleanup	any	outdated	data	elements	and	keep	size	to	a	minimum.	You	can	do
this	through	the	plugin	WP-Optimize.	An	additional	plugin,	WP-DB-Manager	allows
you	to	automatically	schedule	when	your	database	will	be	optimized.

WP-Optimize	-	http://wordpress.org/extend/plugins/wp-optimize/installation/

WP-DB-Manager	-	http://wordpress.org/extend/plugins/wp-dbmanager/

LazyLoad	images
Previously,	we	learned	about	lazy-loading	images,	where	the	images	only	load	when	they
are	in-view	or	are	about	to	be	in-view.

The	plugin	jQuery	Image	Lazy	Load	will	do	this	for	you.	It	will	only	load	images	that
are	above-the-fold	and	will	load	other	images	as	the	user	scrolls.

jQuery	Image	Lazy	Load	-	http://wordpress.org/extend/plugins/jquery-image-lazy-
loading/

Remove	gravatar	images
Gravatar	images	appear	next	to	each	comment	that	a	user	makes.	If	the	user	isn’t	logged
in,	a	default	image	is	displayed.

In	Settings	->	Discussion,	set	the	default	Gravatar	image	to	nothing.

Personally,	I	prefer	to	remove	them	everywhere,	even	if	the	user	is	logged	in.

Eliminate	bandwidth	leaks
If	you	have	a	lot	of	images	on	your	site,	it	is	possible	that	others	may	be	hotlinking	to
them.	If	I	want	to	display	your	image	on	my	site	all	I	have	to	do	is	link	to	it.

This	forces	your	server	to	bring	up	your	image	to	display	it	on	my	site.	How	nice	of	you	to
provide	the	bandwidth	for	me.

Keep	any	such	leaching	attempts	by	adding	this	to	your	root	.htaccess	file.
	1 RewriteEngine on

	2 RewriteCond %{HTTP_REFERER} !^$

	3 RewriteCond %{HTTP_REFERER} !^http(s)?://(w\

	4 ww\.)?yourURL.com	[NC]

	5 RewriteCond %{HTTP_REFERER} !^http(s)?://(w\

	6 ww\.)?google.com	[NC]

	7 RewriteCond %{HTTP_REFERER} !^http(s)?://(w\

	8 ww\.)?feeds2.feedburner.com/yourRSSfeed	[NC\

	9]

10 RewriteRule \.(jpg|jpeg|png|gif)$ – [NC,F,L]

This	will	still	allow	your	site,	Google,	and	your	RSS	feed	(assuming	FeedBurner	above),
to	continue	to	serve	images	normally,	but	will	prevent	any	other	bandwidth	links.

Deactivate	unused	plugins

http://wordpress.org/extend/plugins/wp-optimize/installation/
http://wordpress.org/extend/plugins/wp-dbmanager/
http://wordpress.org/extend/plugins/jquery-image-lazy-loading/

Plug-ins	can	be	great,	but	if	you	don’t	absolutely	need	them,	then	deactivate	and	delete
them.	They	are	unnecessary	overhead.

Yes,	I	have	just	mentioned	a	half-dozen	or	so	plugins	and	then	just	told	you	plugins	are
bad.	There	is	no	free	lunch	with	plugins.	If	you	find	them	helpful,	use	them.	Just
remember	that	there	is	at	least	some	usage	cost	for	each	plugin.

Optimize	the	homepage
There	are	a	few	small	simple	steps	you	can	take	to	make	the	home	page	a	bit	faster.

1.	 Reduce	the	number	of	posts	that	display	on	the	home	page.
2.	 Always	show	excerpts	instead	of	the	entire	post.
3.	 Remove	any	unnecessary	widgets.
4.	 Remove	any	sharing	widgets	from	the	home	page.	(only	include	them	at	the	bottom

of	the	post	itself).

Remove	unnecessary	PHP	functions
There	are	many	calls	to	PHP	functions	that	can	be	easily	removed	or	replaced.	Every
server	call	we	can	remove	is	a	small	bit	of	speed	we	can	add	to	our	page	loading.	We’ll	go
through	several	replaceable	tags	here.

These	techniques	probably	offer	the	least	amount	of	improvement	at	moderate	to	high
level	of	effort.	So	these	would	only	be	useful	after	everything	else	is	already	fully
optimized.
Important	Safety	Tips

1.	 Always	backup	your	site	before	making	any	code	changes.
2.	 Before	making	any	changes	to	your	theme’s	source	files,	create	a	copy	of	your	theme

(a	Child	theme).	You	can	use	a	plugin	to	simplify	this	process.
3.	 Make	sure	to	make	a	note	of	where	you	made	changes	and	what	changes	you	made

so	you	can	reverse	them	if	something	goes	awry.

Removing	your	theme	and	adding	it	back	to	Wordpress	will	reload	the	original	theme	files
(and	remove	any	edits	you	made	previously).

header.php

In	the	header.php	file,	these	can	be	removed	and	replaced	by	fast-loading	plain	text:

language_attributes();

header.php	has	this:	This
1 <html class="ie	ie7" <?php language_attribu\

2 tes(); ?>>

But	looking	at	the	source	code	for	my	site	shows	this	-
1 <html class="ie	ie7" lang="en-US" prefix="o\

2 g:	http://ogp.me/ns#">

So	changing	that	line	in	header.php	to	match	the	second	example	removes	that	function

call	with	faster-loading	plain	text.

This	call	is	made	several	times	before	the	<head>	tag.

bloginfo(‘charset’);

Replace	<meta	charset="<?php	bloginfo('charset');	?>"	/>

with	<meta	charset="UTF-8"	/>

bloginfo(‘pingback_url’);

Replace
<link	rel="pingback"	href="<?php	bloginfo('pingback_url');	?>"	/>

with

<link	rel="pingback"	href="http://	your	URL	/xmlrpc.php"	/>

get_template_directory_uri()

<script	src="<?php	echo	get_template_directory_uri();	?>/js/html5.js"

type="text/javascript"></script>

becomes

<script	src="http://	your	URL	/wp-content/themes/	some	variation	of	your	theme
name	/js/html5.js"	type="text/javascript">

body_class(‘’)

<body	<?php	body_class();	?>>

becomes
<body	class="home	blog	custom-background	custom-font-enabled">

(or	something	similar,	depending	you	your	specific	CSS).

sidebar.php

bloginfo(‘rss2_url’);

This	may	also	be	in	footer.php.

bloginfo(‘comments_rss2_url’);

This	may	also	be	in	footer.php.

footer.php

<!–	queries.	seconds.	–>

This	is	an	html	comment	that	is	only	visible	if	you	look	at	the	source	code.	Unless	you
view	this	often,	it	is	superfluous.

widgetized	sidebar

The	widgetized	sidebar	is	only	used	if	widgets	are	not	enabled.	So	if	you	have	widgets
enabled,	you	are	safe	to	delete	these	two	lines	and	everything	in	between:

<?php	/*	Widgetized	sidebar,	if	you	have	the	plugin	installed.	*/	if	(
!function_exists(‘dynamic_sidebar’)	||	!dynamic_sidebar())	:	?>

and

<?php	endif;	?>.

Wordpress	optimization
For	more	on	Wordpress	optimization,	use	the	GTMetrix	tool	to	analyze	your	blog.

http://gtmetrix.com/wordpress-optimization-guide.html

http://gtmetrix.com/wordpress-optimization-guide.html

A	Wordpress	case	study

Moving	my	personal	blog	(wordpress)
I	recently	moved	my	personal	blog	to	a	new	host.	I’ve	added	a	few	new	posts,	but	haven’t
looked	at	it	from	a	speed	perspective,	so	let’s	do	that.

First	look

So	we	see	from	the	first	load,	that	this	is	extremely	slow.	It	took	1.9	seconds	for	the	first
screen	paint	to	occur.	The	document	was	complete	after	7.58	seconds	and	fully	loaded	at
7.645	seconds.

Remember	that	anything	over	one	second	is	a	noticeable	delay.

The	test	also	shows	us	how	many	server	requests	we	are	using	and	how	those	are	broken
down	by	html,	css,	scripts,	and	images.

It	also	shows	us	a	breakdown	of	how	much	data	we	are	serving	to	the	client.	So	right	off,
it	looks	like	we	have	to	work	on	these	images.

Let’s	take	a	look	at	the	waterfall	and	see	what’s	happening.

Those	long	blue	bars	that	stretch	across	the	page	are	all	images	on	the	site	that	are	taking	a
very	long	time	to	load.	Some	of	them	6	to	7	seconds.	We’ll	start	there.

Step	1	-	image	size
The	problem	is	with	the	image	file	in	the	first	post	(row	14	on	the	waterfall).	The	file	is
gigantic.	It	is	a	JPG	that	is	1.2	MB.

But	it’s	not	just	the	file	size,	it’s	the	image	size.	It	is	a	whopping	3k	by	2k	pixels.	Reducing
the	size	to	1500	x	1125	pixels	brings	the	file	size	down	to	395Kb.	Incidentally,	running	the
original	image	through	Smush.it	reduces	the	file	size	by	an	additional	5.2%.

Another	option	I	could’ve	done	was	to	put	the	image	in	the	post	itself,	so	that	it	didn’t
show	on	the	homepage,	but	I	like	having	an	image	above	the	fold.

So	for	all	the	other	images	on	the	home	page,	I	reduced	their	size	and	then	compressed	all
images.

Step	2	-	homepage	streamlining
There	is	still	a	large	image	that	is	hitting	the	home	page	(row	21	in	the	waterfall).	I	don’t
want	to	remove	it,	but	even	compressed,	it	is	over	1MB.	So	I	am	going	to	move	it	to	the
blog	post,	so	users	will	only	see	it	if	they	click	the	headline	and	go	to	the	post.	That	will
keep	it	off	the	home	page.

Now	that	we	have	the	images	cleaned	up,	let’s	keep	reducing	the	size	of	the	homepage.
We	currently	have	Wordpress	configured	to	show	10	blog	posts	on	the	first	page.	Let’s
reduce	that	to	five	(under	Settings	->	Reading).

Cache	is	working
The	test	also	loads	your	site	a	second	time.	I	am	using	the	plugin	W3	Total	Cache	(the	free
version),	so	caching	is	active.

So	on	the	second	load,	with	caching	enabled,	the	fully	loaded	site	only	took	1.276
seconds.	So	repeat	visitors	would	be	spared	that	horrible	load	time	(assuming	they
bothered	to	come	back).

Now	let’s	update	our	performance	again.

Second	Look

http://www.michaelcale.com/2013/12/revolution-in-corporate-affairs
http://wordpress.org/plugins/w3-total-cache/

Our	image	work	has	some	seriously	good	results.	Our	page	load	time	went	from	almost
7.6	seconds	down	to	3.6	seconds.	So	we’ve	cut	load	time	by	more	than	half.

Our	start	render	time	is	much	improved	as	well.	It	dropped	from	1.78	seconds	to	1.38
seconds.	So	getting	closer	to	that	1-second	perception	threshold.

The	number	of	requests	for	images	is	better,	but	the	number	of	bytes	retrieved	is	still
dominated	by	images.	That	will	probably	always	be	the	case	and	that’s	okay.	But	we
should	be	able	to	do	a	bit	more	to	speed	things	up.

Step	3	-	General	cleanup
Now	that	we’ve	done	the	heavy	lifting,	let’s	do	a	bit	more	cleanup	to	get	the	site	as	fast	as
possible.	So	for	this	next	test,	here	are	a	few	more	steps.

Remove	share	buttons	from	homepage.

Delete	unused	plugins	(eight	total).

Update	header.php	to	remove	the	following	and	replace	with	plain	text	-
1 language_attributes()

2 bloginfo(‘charset’)

3 bloginfo(‘pingback_url’)

4 get_template_directory_uri()

Install	and	activate	WP	Smush.it	plugin	(further	image	compression).

Third	Look
One	more	speed	test	shows	further	improvement.	As	far	as	the	user	experience,	the	start
render	now	begins	in	under	0.7	seconds,	compared	with	just	under	1.4,	so	we’ve	cut	that
by	just	about	50%.

The	entire	page	was	visually	complete	in	2.6	seconds	compared	with	2.8	seconds	on	the
second	round.	So	that’s	an	improvement	of	7%.

The	number	of	server	image	requests	are	down	a	bit	more,	from	36%	to	32%	of	the	total.

The	total	number	of	server	requests	are	down	to	29,	from	35	when	we	first	started.

The	images	are	still	the	major	data	component,	up	slightly	from	86%	of	all	data	to	88%.
We’ve	done	about	all	we	can	do,	without	removing	them	completely.	The	site	is	image-
heavy,	but	we	like	images,	so	we’ll	live	with	it.

On	this	run,	we’ve	reduced	the	number	of	server	requests	a	bit	more,	and	cut	out	a	few
more	bytes	to	load.	Total	load	time	dropped	from	3.596	to	3.152	seconds	(another	12%
improvement).

Bug	we	had	a	big	improvement	in	start	render	time.	We	went	from	1.382	to	0.689
seconds.	This	puts	us	comfortably	under	our	one-second	perception	limit.

Conclusion
We	won’t	win	any	web-page-races	with	this	site,	but	it’s	no	longer	horrible.	We	have	the
initial	render	beginning	in	well	below	our	user-perception	target	of	1	second.

The	total	load	time	is	about	3	seconds	for	everything	including	our	heavy	images.

The	image	compression	did	work	quite	well.	In	our	first	test,	the	images	were	taking
around	4-6	seconds	or	more	to	load.	Now	they	are	down	to	all	less	than	3	seconds.	Using
lossy	compression	would	be	another	technique	we	could	employ	to	allow	some	more
speed.

Over	time,	as	more	posts	are	added,	we	can	put	those	images	in	the	posts	themselves	so
they	won’t	hit	the	home	page.

Think	back	to	the	aggregation	of	marginal	gains	approach.

We	didn’t	have	the	ability	to	build	our	page	architecture	with	above-the-fold	rendering
optimized.	We	could	have	to	some	extent,	but	since	it’s	a	Wordpress	site,	there	are	some
limitations.

Yet	even	so,	we	were	able	to	use	several	simple	techniques	to	dramatically	speed	up	our
user	experience.

Further	improvement
Further	steps	we	could	do	on	a	Wordpress	site	to	continue	to	improve	speed	would	be	to
minimize	the	number	of	plugins.

Simplify	your	CSS

Remember	the	basics
Remember	the	basic	rules	of	CSS	-	IDs	are	unique	and	classes	are	not.

Each	element	can	only	have	one	ID	and	it	must	be	unique.	If	you	use	an	ID	on	more	than
one	element,	your	CSS	will	fail	validation.

Any	styling	that	needs	to	be	applied	to	more	than	one	object	on	a	page	should	be	done
with	a	class.

To	keep	it	straight,	think	of	a	physical	product,	your	phone.	Your	phone	has	a	bar	code	(or
it	had	one	on	the	packaging).	Every	phone	of	the	same	type	has	the	exact	same	bar	code.
That’s	your	CSS	class.

Every	phone	also	has	a	serial	number	on	it	somewhere	(probably	inside	the	case).	Every
serial	number	is	different	and	unique	to	your	phone.	That’s	your	CSS	ID.	Take	two
iPhones	of	the	same	model.	Same	bar	code,	different	serial	numbers.	Same	class,
different	IDs.

Remember	that	elements	can	have	both	an	ID	and	a	class.

If	you	don’t	have	unique	IDs	the	JS	function	getElementbyID	will	not	work	properly

IDs	also	have	a	special	navigation	function.	If	a	user	goes	to
http://www.yourwebURL.com#somecssid

then	the	browser	will	take	them	directly	to	that	CSS	element,	similar	to	an	anchor	link.

General	layout
A	valuable	best	practice	for	your	CSS	is	to	use	a	thoughtful	layout.
	1 /*	---	General	Styles	---	*/

	2

	3 html{}

	4 body{}

	5 h1{}

	6 h2{}

	7 h3{}

	8 p{}

	9 a{}

10

11 /*	---	Header	Styles	---	*/

12

13 #header{}

14

15 /*	---	Nav	Styles	---	*/

16

17 #nav{}

18

19 /*	---	Other	Special	Styles	---	*/

20

21 #hero-unit{}

22

23 /*	---	Footer	Styles	---	*/

24

25 #footer{}

User	anchor	elements
Another	best	practice	is	to	use	the	anchor	elements	(<h1>	<p>	<a>,	etc.)	whenever
possible	instead	of	creating	a	new	class.	For	example	if	you	have	a	element	ID	of
#sidebar,	you	could	further	define	#sidebar	h1{}	and	#sidebar	p{}	instead	of	creating
#sidebarheader{}	and	#sidebartext{}.

Group	similar	CSS
Group	similar	CSS

	1 /*	instead	of	this	*/

	2 p {font-family: Verdana, sans-serif;

	3 font-size: 14px;

	4 color: #FFFFFF;}

	5 span {font-family: Verdana, sans-serif;

	6 font-size: 14px;

	7 color: #FFFFFF;}

	8

	9 /*	do	this	*/

10 span, p {font-family: Verdana, sans-serif;

11 font-size: 14px;

12 color: #FFFFFF;}

13

14

15

16 /*	instead	of	this	*/

17 #container{margin-top: 20px;

18 margin-right: 10px;

19 margin-left: 10px;

20 margin-bottom: 20px;}

21

22 /*	do	this	*/

23 #container{margin: 20px 10px 10px 20px;}

Use	hex	colors
Use	hex	color	codes	instead	of	named	colors	to	give	your	CSS	a	slight	speed	boost.

Browser-specific	styles
Beginning	with	CSS3,	each	browser	has	its	own	specification.

Browser CSS	prefix
Chrome,	Safari,	iOS,	Opera -webkit-

Firefox -moz-

Internet	Explorer -msie-

until	version	15.0,	Opera	used	the	prefix	-o-

These	exist	because	the	browsers	use	different	rendering	engines.	If	you	use	CSS	for	some
features	using	-moz-,	the	other	browsers	will	ignore	it	and	you	will	need	to	find	a	way	to
use	similar	styling	in	the	other	browsers.

For	more	on	cross-browser	tips,	check	out	Simple	Yet	Important	Cross-Browser	Styling
Tips	Everyone	Should	Know	by	Sam	Norton.

Validate	your	CSS
Validating	your	CSS	using	a	free	tool	can	tip	you	off	to	improperly	structured	CSS.

Validate	your	CSS

Valid	CSS

http://www.1stwebdesigner.com/css/cross-browser-styling-tips/
http://jigsaw.w3.org/css-validator/

Invalid	CSS

The	example	above	is	invalid	for	having	an	ID	that	begins	with	a	number.

Compress	your	CSS
After	validating,	compress	and	minify	your	CSS	using	the	free	tools	such	as	Minify	CSS
or	CSS	Compressor.	This	will	remove	any	unnecessary	characters	and	extraneous
whitespace.

Make	sure	to	validate	your	CSS	before	you	minify	it

http://www.minifycss.com/css-compressor/
http://www.csscompressor.com

General	PHP	tips

Use	language	constructs	over	functions
Language	constructs	don’t	have	the	overhead	that	functions	contain,	and	therefore,	operate
much	faster.

Functions	require	specific	PHP	extensions	be	compiled.	A	call	to	phpinfo()	or
get_loaded_extensions()	will	show	you	all	the	extensions	that	are	loaded	into	your
version	of	PHP.

You	can	often	tell	the	difference	between	the	two	because	many	language	constructs	don’t
require	parentheses.	echo	and	isset	are	two	examples	of	commonly-used	language
constructs.	Other	examples	include	print,	unset,	empty,	include,	and	require.

Variables

Use	isset	instead	of	strlen
Since	isset	is	not	a	function,	it	performs	much	faster	than	strlen	when	checking	a
variable.
1 if (!isset($c)) {echo 'C is Speediful';}

2 //	is	better	than

3 if (strlen($c)>0) {echo 'C is draggin, but

4 has data';}

Remember	that	isset	evaluates	null	and	false	as	not	set.

Helpful	Tip

If	your	function	is	dependent	on	having	multiple	variables	set,	you	can	check	them	all	in
the	same	isset	statement.
1 $code = $for = $speed = 1;

2 isset ($code, $for, $speed); //	true

Use	===	when	evaluating	variables	that	may	be	false	or	null.	This	is	faster	than	using	is_bool	or	is_null.

Output

printf()	is	for	newbs
Unlike	echo	and	print,	printf	is	a	function	and	therefore	carries	the	normal	function
overhead.	printf	supports	several	formatting	structures	that	are	probably	unnecessary	for
simple	output.
//	Do	not	use	printf	if	you	want	to	code	for	speed

For	more	on	the	formatting	options	for	printf	see	PHP	Manual	sprintf

http://us2.php.net/manual/en/function.sprintf.php

Use	echo	instead	of	print
print()	uses	more	overhead	than	echo().	This	is	because	the	print()	function	returns	a
status	on	whether	it	was	successful	or	not.

echo()	does	not.

It’s	very	important	to	use	echo	when	the	string	contains	a	dollar-sign	symbol.
1 echo 'code for speed' ;

2 //	is	faster	than

3 print 'code for speed' ;

Use	multiple	parameters	with	echo()
Multiple	parameters	can	be	sent	as	output	with	a	single	echo	command.	Using	multiple
parameters	is	faster	than	concatenating	output.
1 echo 'code ', 'for ', 'speed';

2 //	is	faster	than

3 echo 'code' . '	' . 'for' . '	' . 'speed';

Static	Text
When	you	have	a	substantial	amount	of	static	text,	it	is	often	best	to	put	it	outside	of
PHP.`

String	Operations

Use	dot	concatenation	(mostly)
As	long	as	there	are	no	variables	or	dollar-signs	in	the	strings,	dot	concatenation	is	about
200%	faster	than	comma.	If	there	are	variables	or	dollar-signs,	then	using	comma
concatenation	is	slightly	faster	~20%.
1 $c = 'Code ';

2 $f = 'For ';

3 $s = 'Speed';

4

5 echo $c . $f . $s ;

6

7 //	is	better	than

8

9 echo $c , $f , $s ;

Avoid	Regex	(in	general)
For	most	string	operations,	regular	expressions	are	going	to	use	more	overhead	than
operations	that	do	not	contain	RegEx.

For	example,	explode	is	about	20%	faster	than	preg_split	when	preg_split	contains	a
regular	expression.

Files

Always	use	complete	path
Using	the	complete	path	significantly	speeds	up	performance.	This	is	because	the	server
does	not	have	to	resolve	the	path	for	you.
1 include ('/var/public_html/assets/function\

2 s.php');

3 //	is	faster	than

4 include ('../../functions.php')

Logic	and	Iteration

switch	or	nested	if	else	if
switch	is	better	than	multiple	if	else	if	statements.

Also,	your	case	statements	should	be	in	the	order	of	probability	of	occurence.	You	want
your	most	likely	scenario	to	be	at	the	top	and	your	most	remote	possibility	at	the	end.
	1 switch ($boolean)

	2 {

	3 case TRUE

	4 //	code	for	speed

	5 break;

	6 case FALSE

	7 //	Login	Failed

	8 break;

	9 default:

10 //	this	is	a	problem

11 }

Use	&&	and	||	instead	of	AND	and	OR
&&	and	||	can	be	used	interchangeably	with	AND	and	OR	respectively,	but	&&	has
precedence	over	AND	and	||	has	precedence	over	OR,	so	use	the	symbols.

Define	size	of	loop	before	iteration
It	is	always	best	to	calculate	the	maximum	number	of	iterations	outside	the	loop.	Having
to	calculate	the	maximum	in	each	pass	dramatically	increases	processing	time.
1 $c = count($data);

2 for ($i = 0; $i < $c; $c++) {

3 //	this	is	coding	for	speed

4 }

5

6 for ($x = 0; $x < count($data); $x++) {

7 //	this	is	going	to	run	slooooww

8 }

for	is	faster	than	foreach	and	while

Geeking	out	on	TCP

The	modern	web	is	based	on	two	data	transmission	protocols.	The	Internet	Protocol	(IP)
allows	us	to	move	data	through	the	network,	or	a	series	of	networks.	It	contains	the
destination	address	and	and	allows	for	data	to	move	through	almost	any	network	to	reach
the	desired	destination.	IP	is	the	bus	driver.	It’s	going	to	map	the	route	to	the	destination
and	deliver.	It’s	not	necessarily	concerned	with	who	or	what	is	on	the	bus.

Each	IP	packet	contains	the	destination	address	and	a	checksum.	Think	of	it	has	a	rough
headcount	of	the	number	of	passengers.	IP	doesn’t	know	that	Bobby,	Susie,	and	Raquel
are	on	the	bus,	just	the	total	checksum.	If	somewhere	on	the	route	the	checksum	becomes
invalid,	the	packet	is	terminated	and	the	bus	ride	is	over.	Besides	this	header	checksum,
there	is	no	error	control	and	no	acknowledgements	between	parties,	so	IP	is	not	considered
a	robust	communication	facility.	That	is	handled	by	TCP.

Transmission	Control	Protocol	(TCP)	provides	for	reliable	data	transmission	over	an
unreliable	network.	It	is	optimized	for	accuracy	and	reliability,	not	for	speed.	The	protocol
ensures	that	data	will	arrive	in	the	same	order	it	was	sent	and	that	the	data	received	is
identical	to	the	data	originally	transmitted.	It’s	going	to	make	sure	that	Bobby,	Susie,	and
Raquel	arrive	at	the	destination,	not	just	a	headcount	of	three.

Characteristics	of	a	TCP	connection

Packet

Packet	loss
TCP	connections	are	designed	for	data	packet	loss.	It	recognizes	that	data	will	be	lost	in
transmission	and	it	is	designed	to	handle	that	situation.	When	a	packet	is	lost,	the	sender
will	re-transmit	that	packet.	Both	sender	and	receiver	are	equipped	to	put	the	data	packets
in	the	proper	sequence.

In	fact,	packet	loss	is	a	characteristic	that	is	built	in	to	how	TCP	functions.

What’s	your	number?
When	my	son	was	a	toddler,	whenever	he	wanted	to	know	your	age,	he	would	ask	What’s
your	number?.	Adults	found	this	entertaining	after	I	translated	the	question,	but	most
young	children	seemed	to	know	the	meaning	of	the	question	instinctively	a	respond
accordingly.

When	a	TCP	connection	is	established,	there	is	a	brief	introduction	known	as	a	three-way-
handshake.

SYN	packet.

When	a	TCP	connection	is	initialized,	there	is	a	simple	exchange	of	information	about	the
connection.	A	simple	transmission	and	acknowledgement	from	the	receiver.	No
application	data	transfer	occurs	here.	After	this	initial	connection,	the	data	transfer	begins.

Slow	Start
The	Slow	Start	algorithm	is	used	as	a	tactic	to	gauge	the	health	of	the	network	connection
between	the	sender	and	receiver.	Suppose	the	sender	sends	four	packets	of	data	to	the
receiver.	Then	it	will	stop	transmitting	and	wait	for	acknowledgment.	Once	the	receiver
acknowledges	the	first	packet,	then	sender	will	transmit	two	more	(so	there	are	now	5
packets	en	route	instead	of	4).

This	process	continues	until	there	is	packet	loss.	This	allows	for	maximum	data
transmission	over	the	existing	network	because	now	the	sender	knows	the	maximum
capacity	of	the	connection.	Once	that	occurs,	then	the	sender	begins	to	reduce	the	number
of	packets	to	a	more	moderate	level	that	the	network	can	handle.

If	a	connection	becomes	idle	for	a	pre-set	amount	of	time,	some	servers	will	implement
slow-start	restart.	This	means	the	slow	start	process	will	begin	as	if	it	were	a	new
connection	and	ramp	up	from	a	low	level.	This	setting	can	be	disabled	on	the	server	to
increase	performance.

Congestion	avoidance
As	we	saw	with	slow	start,	TCP	uses	packet	loss	as	part	of	its	feedback	process	to
maximize	reliable	data	transfer.	TCP	also	uses	packet	loss	as	part	of	congestion	avoidance.

When	a	data	packet	is	lost,	TCP	uses	that	as	a	sign	of	congestion	on	the	network.	This
normally	occurs	when	there	is	a	congested	router	along	the	network	that	dropped	the	data
packet.	TCP	will	continually	adjust	the	amount	of	data	being	sent	as	packet	losses	occur.

Flow	control
Flow	control	prevents	the	sending	from	overwhelming	the	receiver	with	more	data	than	it
can	process.	This	can	be	dynamic	as	the	server	load	varies.

Each	side	of	the	connection	advertises	the	size	of	their	receive	window,	or	the	amount	of
buffer	space	available	for	incoming	data.	If	the	receiver	becomes	overwhelmed,	it	may
reduce	the	receive	window	to	zero	until	it	recovers.	In	that	case,	the	sender	would	pause
transmission	until	the	receiver	becomes	ready.

Optimizing	TCP
Use	compression

Transfer	less	data

Reduce	above-the-fold	data	to	below	1,460	bytes,	if	possible.

Further	Reading
A	Protocol	for	Packet	Network	Intercommunication	by	Vinton	Cerf	and	Robert	Kahn
(1974).

DARPA	Internet	Protocol	Specification	(1981)

The	TCP	Maximum	Segment	Size	and	Related	Topics	Network	Working	Group	(1983)

W3C	Web	Performance	Working	Group	(2010)

http://www-net.cs.umass.edu/653-04/documents/cerfkahn.pdf
http://www.ietf.org/rfc/rfc791.txt
https://tools.ietf.org/html/rfc879
http://www.w3.org/2010/webperf/

Never	stop	learning

Web	Performance	Today
Keep	up	with	current	practices	and	trends	with	Web	Performance	Today.

Mobilewebbestpractices.com
Mobile	web	best	practices	by	Brad	Frost	has	a	treasure	trove	of	articles	and	other
resources	for	mobile	web	strategy,	development,	design,	and	more.

For	a	wonderfully	powerful	three	free	slides	on	the	future	of	the	web,	make	sure	to	go	to
http://bradfrostweb.com/blog/post/this-is-the-web/.

Mobilexweb
Breaking	the	Mobile	Web	by	Max	Firtman	is	a	great	blog	for	staying	current	on	mobile
development.	Max	offers	fantastic	up-to-date	articles	on	iOS,	Android,	HTML5,	and
Google	Glass.

Zoompf	web	performance	blog
The	blog	at	Zoompf	offers	excellent	articles	on	general	web	performance.

Mark	Isham	wrote	the	excellent	Step-by-Step	Guide	to	Optimizing	your	Apache	site	with
mod_pagespeed	for	an	Amazon	AWS	instance.

The	Zoompf	site	also	offers	generous	Presentations	and	Whitepapers	on	web	performance
topics.

http://www.webperformancetoday.com/
http://mobilewebbestpractices.com/resources/
http://bradfrostweb.com
http://bradfrostweb.com/blog/post/this-is-the-web/
http://www.mobilexweb.com
http://www.twitter.com/firt
http://zoompf.com/blog
http://zoompf.com/blog/2014/01/step-by-step-guide-to-optimizing-your-apache-site-with-mod_pagespeed
http://zoompf.com/resources

Webmaster	Tools

Speed

Google	PageSpeed	Insights
https://developers.google.com/speed/pagespeed/insights

Google’s	PageSpeed	Insights	will	read	your	site’s	URL	and	recommend	specific	steps	you
can	take	to	increase	your	site’s	responsiveness.

It	measures	both	for	mobile	and	for	desktop.

There	are	also	browser	extensions	for	Chrome	and	Firefox	available	at
https://developers.google.com/speed/pagespeed/insights_extensions.

Still	some	work	to	do

https://developers.google.com/speed/pagespeed/insights
https://developers.google.com/speed/pagespeed/insights_extensions

My	personal	blog	at	PageSpeed	Insights

Google	Speed	Tracer
Speed	Tracer	is	an	open	source	Chrome	extension	from	Google	that	shows	the	duration	of
each	event	as	your	application	loads.

https://developers.google.com/web-toolkit/speedtracer/

Google	Webmaster	Tools
http://www.google.com/webmasters/tools/

In	Webmaster	Tools,	select	Labs	->	Site	Performance	for	an	overview	of	your	site’s
performance.

Webmaster	Tools	will	also	point	if	there	are	any	problems	that	their	bot	found	while
crawling	your	site.

Quicksprout
Quicksprout	was	created	by	Neil	Patel,	the	found	of	KISSMetrics.	Quicksprout	offers	a
wealth	of	information	about	your	site	including	page	load	data.	It’s	quite	the	wonderful
tool.

https://developers.google.com/web-toolkit/speedtracer/
http://www.google.com/webmasters/tools/

www.quicksprout.com

YSlow
http://developer.yahoo.com/yslow/

Yahoo’s	speed	measuring	tool	-	similar	to	PageSpeed	Insights	except	requires	browser
extension.

WebPagetest
http://www.webpagetest.org

Similar	to	PageSpeed	Insights,	but	WebPagetest	will	allow	you	to	select	a	location	and	a
browser	type	for	the	test.

Pingdom
Pingdom.com	offers	a	tool	that	will	measure	your	site’s	speed	and	provides:

a	performance	grade	e.g.	82/100
the	number	of	server	requests
page	load	time
page	size

SpeedCurve
SpeedCurve.com	by	Mark	Zeman	allows	you	to	monitor	your	own	web	site	performance
as	well	as	your	competitors.	SpeedCurve	has	an	incredible	user	interface.

Sitespeed.io
Sitespeed.io	by	Peter	Hedenskog	is	an	open	source	tool	to	measure	your	website
performance.

http://www.sitespeed.io

Zoompf
Zoompf	offers	a	free	web	site	scan	in	return	for	your	email	address.	They	also	offer
comprehensive	web	performance	consultation.	They	also	have	an	excellent	Web
Performance	blog.

File	Compression

Zopfli	compression
Google	has	developed	a	compression	algorithm	called	Zopfli	that	is	similar	to	gzip,	but
offers	improved	compression	ratios.

http://googledevelopers.blogspot.com/2013/02/compress-data-more-densely-with-
zopfli.html

http://developer.yahoo.com/yslow/
http://www.webpagetest.org
http://tools.pingdom.com/fpt/
http://speedcurve.com
http://peterhedenskog.com/
http://www.sitespeed.io
http://zoompf.com
http://zoompf.com/blog
http://googledevelopers.blogspot.com/2013/02/compress-data-more-densely-with-zopfli.html

Gzip	Compression	Test
Verify	that	your	gzip	compression	is	working	properly.

http://nontroppo.org/tools/gziptest/

CSS

CSS	Lint
Use	CSS	Lint	to	validate	your	CSS	to	find	errors	and	performance	impediments.

https://github.com/stubbornella/csslint

CSSess
CSSess	by	Dan	DeFelippi	is	a	bookmarklet	that	identifies	unused	CSS	styles.	It	works	by
loading	each	URL	into	a	hidden	iframe	and	then	checks	the	CSS	against	the	DOM	to	find
inactive	styles.	It	checks	both	stylesheets	and	inline	CSS.

Identify	CSS	elements
wtcss	by	Ben	Foxall	allows	you	to	see	how	your	CSS	is	interacting	with	your	page.

It	offers	a	unique	split	screen	for	the	URL	you	specify	with	the	rendered	site	on	the	left
side	and	the	CSS	elements	on	the	right	with	a	line	from	the	CSS	to	the	DOM	element(s).

“wtcss	shows	where	CSS	elements	are	used	on	the	W3.org	site”

Image	Compression
Smush.it	http://developer.yahoo.com/yslow/smushit

PunyPNG	http://www.punypng.com

http://nontroppo.org/tools/gziptest/
https://github.com/stubbornella/csslint
https://github.com/driverdan/cssess
http:www.twitter.com/expertdan
http://css.benjaminbenben.com
https://twitter.com/benjaminbenben
http://developer.yahoo.com/yslow/smushit
http://www.punypng.com

ImageOptim	http://www.imageoptim.com

Optimizilla	http://optimizilla.com

Base64	Encoding
Freeencoder.com	http://www.freeformatter.com/base64-encoder.html

Wutils	http://base64.wutils.com/encoding-online/image-to-base64/

Base64	Image	http://base64image.org

base64-image.de	http://www.base64-image.de

Validation
W3C	Markup	Validation	Service	http://validator.w3.org/

Freeformatter	HTML	http://www.freeformatter.com/html-validator.html

W3C	CSS	Validator	http://jigsaw.w3.org/css-validator/.

Minification
Freeformatter	CSS	http://www.freeformatter.com/css-minifier.html

Freeformatter	JS	http://www.freeformatter.com/javascript-minifier.html

YUI	http://refresh-sf.com/yui/

SVG	Optimization
SVG	Editor	by	Peter	Collingridge	http://petercollingridge.appspot.com/svg-editor

SVG	Optimiser	by	Peter	Collingridge	http://petercollingridge.appspot.com/svg-optimiser

Sprites

SpriteMe
SpriteMe	is	a	bookmarklet	to	combine	background	images	into	a	single	CSS	Sprite	and
computes	the	proper	CSS	background-positions.

Sprite	Box
Sprite	Box	by	Gilbert	Sinnott	is	an	excellent	tool	to	help	you	create	CSS	IDs	from	a	single
sprite	image.	It	also	has	samples	of	sprite	images	from	YouTube,	Apple,	and	Google.

http://www.spritebox.net/

Stitches
Stitches	is	an	HTML5	sprite	sheet	generator.	It	was	developed	by	Matthew	Cobbs.	It
allows	you	to	load	up	several	images	and	it	will	create	the	sprite	image	and	the	appropriate
CSS.

http://www.imageoptim.com/
http://optimizilla.com
http://www.freeformatter.com/base64-encoder.html
http://base64.wutils.com/encoding-online/image-to-base64/
http://base64image.org
http://www.base64-image.de
http://validator.w3.org/
http://www.freeformatter.com/html-validator.html
http://jigsaw.w3.org/css-validator/%22W3C%20CSS%20Validator%22
http://www.freeformatter.com/css-minifier.html
http://www.freeformatter.com/javascript-minifier.html
http://refresh-sf.com/yui/
http://petercollingridge.appspot.com/svg-editor
http://petercollingridge.appspot.com/svg-optimiser
http://spriteme.org
http://www.spritebox.net/
http://draeton.github.io/

http://draeton.github.io/stitches/

Browser	developer	tools
Chrome	and	Firefox	have	built-in	developer	tools	that	provide	great	information.

For	example,	the	Network	tab	in	Chrome	developer	tools	shows	the	load	time	of	each	file.
Use	it	to	identify	your	largest	files.

User-Agent	Switcher	for	Chrome
User-Agent	Switcher	for	Chrome	by	Glen	Wilson	allows	you	to	quickly	switch	between
browser	types	to	see	how	your	site	performs.	This	Chrome	extension	is	rated	at	4	out	of	5
stars	on	543	user	reviews.

DOM	Monster
DOM	Monster	by	Amy	Hoy	and	Thomas	Fuchs	is	a	bookmarklet	that	will	analyze	your
site,	identify	any	problems,	and	offer	suggestions	for	improvement.

Browserscope
Browserscope.org	allows	you	to	test	several	key	functions	of	your	browser.	For	example,
it	will	tell	you	whether	your	browser	is	capable	of	asynchronously	downloading	scripts
with	images,	frames,	etc.

Validation

Validate	HTML
http://validator.w3.org

Validate	CSS
http://jigsaw.w3.org/css-validator/

Server	Tools

Server	Pilot
Serverpilot.io	is	a	great	tool	for	managing	your	cloud	servers.

Apache	Bench
Apache	Bench	is	a	benchmarking	tool	for	your	server.

http://httpd.apache.org/docs/2.4/programs/ab.html

Apache	JMeter
Apache	JMeter	is	a	desktop	application	for	server	performance	measurement	and	load
testing.

http://draeton.github.io/stitches/
https://chrome.google.com/webstore/detail/user-agent-switcher-for-c/djflhoibgkdhkhhcedjiklpkjnoahfmg
http://mir.aculo.us/dom-monster/
http://unicornfree.com/
http://mir.aculo.us/
http://www.browserscope.org
http://validator.w3.org
http://jigsaw.w3.org/css-validator/
http://serverpilot.io
http://httpd.apache.org/docs/2.4/programs/ab.html

http://jmeter.apache.org

Analytics

Google	Analytics
Google	Analytics	provides	some	useful	data	on	page	load	times	under	Content	->	Site
Speed.

Keep	up	with	Google’s	Speed	page	for	new	tools.

https://developers.google.com/speed/

Piwik
If	you’re	not	a	fan	of	sharing	so	much	of	your	data	with	Google,	use	the	free	open	source
alternative	to	Google	Analytics.

The	community	is	very	concerned	about	privacy,	so	you	keep	your	data	on	your	own	host.
Plus,	they	have	mobile	apps	for	iPhone	and	Android	so	you	can	keep	up	with	your	site
while	on	the	go	without	letting	strangers	in	on	your	data	party.

www.piwik.org

http://jmeter.apache.org
https://developers.google.com/speed/

Free	Gift

As	a	special	Thank	You	for	investing	your	time	in	this	book,	I’ve	created	a	Checklist	for
Speed	with	many	of	the	techniques	outlined	in	this	book.

Send	an	email	to	checklist@michaelcale.com	to	receive	the	Checklist	for	Speed	for	free.

Blog
If	you’re	interested	in	keeping	current	with	web	development	techniques,	sign	up	to	my
blog	at

www.michaelcale.com/signup/

	Table of Contents
	Important Information
	The aggregation of marginal gains
	Why Page Speed Matters
	How the web communicates
	Major Actions for Speed
	Image Techniques
	Page Techniques
	Wordpress
	A Wordpress case study
	Simplify your CSS
	General PHP tips
	Geeking out on TCP
	Never stop learning
	Webmaster Tools
	Free Gift

