

Core Data by Tutorials

By the raywenderlich.com Tutorial Team

Aaron Douglas, Saul Mora,

Matthew Morey, and Pietro Rea

Copyright © 2015 Razeware LLC.

All rights reserved. No part of this book or corresponding materials (such as
text, images, or source code) may be reproduced or distributed by any means
without prior written permission of the copyright owner.

This book and all corresponding materials (such as source code) are provided
on an "as is" basis, without warranty of any kind, express or implied, including
but not limited to the warranties of merchantability, fitness for a particular
purpose, and noninfringement. In no event shall the authors or copyright
holders be liable for any claim, damages or other liability, whether in action of
contract, tort or otherwise, arising from, out of or in connection with the
software or the use or other dealings in the software.

All trademarks and registered trademarks appearing in this book are the
property of their respective owners.

Table of Contents: Overview

Introduction .. 9!
Chapter 1: Your First Core Data App ... 16!
Chapter 2: NSManagedObject Subclasses 35!
Chapter 3: The Core Data Stack .. 60!
Chapter 4: Intermediate Fetching .. 81!
Chapter 5: NSFetchedResultsController .. 113!
Chapter 6: Versioning and Migration ... 136!
Chapter 7: Syncing with iCloud .. 173!
Chapter 8: Unit Testing ... 191!
Chapter 9: Measuring and Boosting Performance 208!
Chapter 10: Multiple Managed Object Contexts 240!
Conclusion .. 260!

Table of Contents: Extended
Introduction .. 9!

What you need ... 10!
Who this book is for ... 10!
How to use this book ... 11!
What’s in store ... 11!
Source code and forums .. 12!
Updates ... 12!
License ... 13!
About the authors .. 13!
About the editors ... 14!

Chapter 1: Your First Core Data App ... 16!
Getting started .. 16!
Modeling your data ... 24!
Saving to Core Data .. 27!
Fetching from Core Data ... 32!
Where to go from here? .. 33!

Chapter 2: NSManagedObject Subclasses 35!
Getting started .. 35!
Modeling your data ... 38!
Storing non-standard data types in Core Data 41!
Managed object subclasses .. 42!
Propagating a managed context .. 47!
Data validation in Core Data ... 55!
Tying everything up .. 58!
Where to go from here? .. 59!

Chapter 3: The Core Data Stack .. 60!
Getting started .. 60!
Rolling your own Core Data stack ... 61!
The managed object model .. 62!
The persistent store ... 62!
The persistent store coordinator ... 63!
The managed object context .. 63!
Creating your stack object .. 64!
Modeling your data ... 69!
Adding managed object subclasses .. 72!
A walk down persistence lane .. 73!
Deleting objects from Core Data ... 78!
Where to go from here? .. 80!

Chapter 4: Intermediate Fetching .. 81!
NSFetchRequest: the star of the show ... 81!
Introducing the Bubble Tea app ... 82!
Stored fetch requests .. 84!
Fetching different result types .. 89!
Sorting fetched results .. 105!
Asynchronous fetching .. 108!
Batch updates: no fetching required ... 110!
Where to go from here? .. 112!

Chapter 5: NSFetchedResultsController .. 113!
Introducing the World Cup app ... 113!
It all begins with a fetch request... ... 115!
Grouping results into sections .. 121!
“Cache” the ball .. 125!

Monitoring changes ... 126!
Inserting an underdog .. 131!
Where to go from here? .. 135!

Chapter 6: Versioning and Migration ... 136!
When to migrate ... 136!
The migration process ... 137!
Getting started .. 138!
A lightweight migration .. 139!
A manual migration .. 148!
A complex mapping model ... 155!
Migrating non-sequential versions ... 161!
Where to go from here? .. 171!

Chapter 7: Syncing with iCloud .. 173!
Getting started .. 174!
CloudNotes ... 175!
Enabling iCloud ... 176!
The cloud stack .. 178!
Testing iCloud .. 179!
Responding to iCloud changes .. 185!
Switching iCloud accounts .. 187!
Where to go from here? .. 190!

Chapter 8: Unit Testing ... 191!
Getting started .. 192!
Core Data stack for testing ... 193!
Your first test .. 195!
Asynchronous tests ... 198!
Tests first ... 200!

Validation and refactoring ... 203!
Where to go from here? .. 206!

Chapter 9: Measuring and Boosting Performance 208!
Getting started .. 208!
Measure, change, verify .. 211!
Fetching and performance .. 221!
Where to go from here? .. 239!

Chapter 10: Multiple Managed Object Contexts 240!
Getting started .. 240!
Doing work in the background ... 246!
Editing on a scratchpad ... 253!
Where to go from here? .. 258!

Conclusion .. 260!

Dedications

“To my husband, Mike, and my parents – all whom have inspired me
to do my best and keep plugging away throughout the years.”

–Aaron Douglas

“To my Wife – without your tireless support behind the scenes, all my
work the world enjoys would not be possible.”

–Saul Mora

“To my amazing wife Tricia and my parents - Thanks for always
supporting me.”

–Matthew Morey

“To my Core Data mentors Otto, Ron, Ahmed and Siva.”

–Pietro Rea

 raywenderlich.com Page 9

What is Core Data? You'll hear a variety of answers to this question: It’s a
database! It's SQLite! It's not a database! And so forth.

Here's the technical answer: Core Data is an object graph management and
persistence framework in the OS X and iOS SDKs.

That means Core Data can store and retrieve data, but it is not a relational
database like MySQL or SQLite. Although it can use SQLite as the data store behind
the scenes, you don’t think about Core Data in terms of tables and rows and
primary keys.

Imagine you’re writing an app to keep track of dining habits. You have a varied set
of objects: restaurant objects, each with properties such as name and address;
categories, to organize the restaurants; and visits, to log each visit to a restaurant.
The object graph in memory might look something like this:

Object graph management means Core Data works with objects that you define,
such as the ones in the diagram above. For example, each restaurant (represented
by a red bubble) would have a property pointing back to the category object. It
would also have a property holding the list of visits.

Introduction
By Greg Heo

Core Data by Tutorials Second Edition Introduction

 raywenderlich.com Page 10

Since Cocoa is an object-oriented framework, you’re probably storing data in
objects already. Core Data builds on this to keep track of the objects and their
relationships to each other. You can imagine expanding the graph to include what
the user ordered, ratings and so on.

Persistence means the data is stored somewhere durable such as the device’s
flash memory or “the cloud.” You point to the entire graph and just say “save.”
When your app launches, you just say “load” and the entire object graph pops up in
memory again, ready for use. That’s Core Data at work!

Maybe your users eat out a lot and have thousands of restaurant visits—rest
assured Core Data is smart about lazily loading objects and caching to optimize
both memory usage and speed.

Core Data has many other features aside from simply storing and fetching data:
You can perform custom filtering with predicates, sort the data and synchronize a
data store with iCloud, among other things. You’ll learn all about these features and
more in this book.

What you need
To follow along with the tutorials in this book, you’ll need the following:

• A Mac running OS X Yosemite (10.10.5) or later. You’ll need this to be able
to install the latest version of Xcode.

• Xcode 7.0 or later. Xcode is the main development tool for iOS. You can
download the latest version of Xcode for free from the Mac app store here:
https://itunes.apple.com/app/xcode/id497799835?mt=12

• One or more devices (iPhone, iPad or iPod Touch) running iOS 9 or later.
You’ll only need a physical iOS device for Chapter 7, “Syncing with iCloud.” For
the rest of the book, you can get by with the iOS 9 Simulator that comes with
Xcode.

Once you have these items in place, you’ll be able to follow along with every
chapter in this book.

Who this book is for
This book is for iOS developers who already know the basics of iOS and Swift, and
want to learn Core Data.

If you’re a complete beginner to iOS, we suggest you read through The iOS
Apprentice, 4th Edition first. That will give you a solid foundation in building iOS
apps from the ground-up.

Core Data by Tutorials Second Edition Introduction

 raywenderlich.com Page 11

If you know the basics of iOS development but are new to Swift, we suggest you
read Swift Apprentice first. That book has a similar hands-on approach and takes
you on a comprehensive tour through the Swift language.

You can find both of these prerequisite books at our store:
http://www.raywenderlich.com/store

How to use this book
This book will teach you the fundamentals of Core Data by means of hands-on
tutorials. You’ll jump right into building a Core Data app in Chapter 1, as we think
most people learn best by doing. We encourage you to type along with the
instructions in the book.

If you’re new to Core Data or want to review the basics, we suggest you start with
Chapters 1–3. These chapters cover the fundamentals of Core Data and you’ll need
the knowledge in them to understand the rest of the book.

Otherwise, we suggest a pragmatic approach. Each chapter stands on its own, so
you can pick and choose the chapters that interest you the most.

What’s in store
Here’s a quick summary of what you’ll find in each chapter:

1. Chapter 1, Your First Core Data App: You’ll click File\New Project and write
a Core Data app from scratch! This chapter covers the basics of setting up your
data model and then adding and fetching records.

2. Chapter 2, NSManagedObject Subclasses: NSManagedObject is the base data
storage class of your Core Data object graphs. This chapter will teach you how
you customize your own managed object subclasses to store and validate data.

3. Chapter 3, The Core Data Stack: Under the hood, Core Data is made up of
many parts working together. In this chapter, you’ll learn about how these parts
fit together, and move away from the starter Xcode template to build your own
customizable system.

4. Chapter 4, Intermediate Fetching: Your apps will fetch data all the time, and
Core Data offers many options for getting the data to you efficiently. This chapter
covers more advanced fetch requests, predicates, sorting and asynchronous
fetching.

5. Chapter 5, NSFetchedResultsController: Table views are at the core of many
iOS apps, and Apple wants to make Core Data play nicely with them! In this
chapter, you’ll learn how NSFetchedResultsController can save you time and code
when your table views are backed by data from Core Data.

Core Data by Tutorials Second Edition Introduction

 raywenderlich.com Page 12

6. Chapter 6, Versioning and Migration: As you update and enhance your app,
its data model will almost certainly need to change. In this chapter, you’ll learn
how to create multiple versions of your data model and then migrate your users
forward so they can keep their existing data as they upgrade.

7. Chapter 7, Syncing with iCloud: Move beyond storing data locally on a single
device, to cloud storage and synchronizing across all the user’s devices. This
chapter covers how to extend an existing Core Data app to use iCloud.

8. Chapter 8, Unit Tests: Testing is an important part of the development
process, and you shouldn’t leave Core Data out of those tests! In this chapter,
you’ll learn how to set up a separate test environment for Core Data and see
examples of how to test your models.

9. Chapter 9, Measuring and Boosting Performance: No one ever complained
that an app was too fast, so it’s important to be vigilant about tracking
performance. In this chapter, you’ll learn how to measure your app’s performance
with various Xcode tools and then pick up some tips for dealing with slow spots in
your code.

10. Chapter 10, Multiple Managed Object Contexts: In this final chapter, you’ll
expand the usual Core Data stack to include multiple managed object contexts.
You’ll learn how this can improve perceived performance and help make your app
architecture less monolithic and more compartmentalized.

Source code and forums
This book comes with complete source code for each of the chapters—it’s shipped
with the PDF. Some of the chapters also include starter projects or other required
resources, and you’ll definitely want to have these on hand as you go through the
book.

We’ve set up an official forum for the book at
http://www.raywenderlich.com/forums. This is a great place to ask questions you
have about the book or about developing Core Data apps, or to submit any errors
or suggested updates.

Updates
Since you’ve purchased the PDF version of this book, you get free access to any
updates we make to the book!

The best way to get update notifications is to sign up for our monthly newsletter.
This includes a list of the tutorials that came out on raywenderlich.com that month,
any important news like book updates or new books, and a list of our favorite
development links for that month. You can sign up at this URL:

http://www.raywenderlich.com/newsletter

Core Data by Tutorials Second Edition Introduction

 raywenderlich.com Page 13

License
By purchasing Core Data by Tutorials, you have the following license:

• You are allowed to use and/or modify the source code in Core Data by Tutorials in
as many apps as you want, with no attribution required.

• You are allowed to use and/or modify all art, images and designs that are included
in Core Data by Tutorials in as many apps as you want, but must include this
attribution line somewhere inside your app: “Artwork/images/designs: from Core
Data by Tutorials book, available at http://www.raywenderlich.com.”

• The source code included in Core Data by Tutorials is for your personal use only.
You are NOT allowed to distribute or sell the source code in Core Data by
Tutorials without prior authorization.

• This book is for your personal use only. You are NOT allowed to sell this book
without prior authorization or distribute it to friends, co-workers or students; they
would need to purchase their own copies.

All materials provided with this book are provided on an “as is” basis, without
warranty of any kind, express or implied, including but not limited to the warranties
of merchantability, fitness for a particular purpose and non-infringement. In no
event shall the authors or copyright holders be liable for any claim, damages or
other liability, whether in an action of contract, tort or otherwise, arising from, out
of or in connection with the software or the use or other dealings in the software.

All trademarks and registered trademarks appearing in this book are the property of
their respective owners.

About the authors

Pietro Rea is an iOS developer based in Hoboken, NJ. He
started writing code in high school and currently specializes
in Objective-C, Swift and iOS. These days, he develops
mobile applications for Quidsi, an Amazon company. You
can follow him on Twitter as @pietrorea or on his blog at
www.pietrorea.com

Saul Mora is an engineer at Loungebuddy, in San
Francisco. He enjoys writing apps, riding bicycles and
traveling the world. Saul is a frequent speaker at many iOS
and Mac developer conferences and also produces a
podcast for developers called NSBrief (nsbrief.com).
Occasionally, you can find Saul teaching the wonders of
programming to the next generation of developers.

Core Data by Tutorials Second Edition Introduction

 raywenderlich.com Page 14

Aaron was that kid taking apart the mechanical and
electrical appliances at five years of age to see how they
worked. He never grew out of that core interest – to know
how things work. He took an early interest in computer
programming, figuring out how to get past security to be
able to play games on his dad's computer. He's still that
feisty nerd, but at least now he gets paid to do it.

Aaron works for Automattic (WordPress.com, Akismet,
SimpleNote) as a Mobile Maker primarily on the WordPress
for iOS app. Find Aaron on Twitter as @astralbodies or at
his blog at http://astralbodi.es

Matthew Morey is an engineer, developer, hacker,
creator, and tinkerer. As an active member of the iOS
community and a Lead Developer at ChaiOne he has led
numerous successful mobile projects worldwide.

When not developing apps he enjoys traveling,
snowboarding, and surfing. He blogs about technology and
business at matthewmorey.com.

About the editors

Richard Turton was the technical editor for this book. He
is an iOS developer for a leading mobile agency, a prolific
Stack Overflow participant and the author of a
development blog, commandshift.co.uk.

When he's not in front of a computer, he is underneath one
or both of his daughters as a horse, monkey or cushion.

Bradley C. Phillips was the editor for this book, and was
the first editor to come aboard at raywenderlich.com. He
has worked as a journalist and previously directed the
intelligence department of an investigative firm in New
York City.

Right now, Bradley works freelance and pursues his own
projects. Contact him if you need a skilled and experienced
editor for your blog, books or anything else.

Core Data by Tutorials Second Edition Introduction

 raywenderlich.com Page 15

Greg Heo was a final pass editor for this book, and has
been part of the editorial team at raywenderlich.com since
2012.

He has been nerding out with computers since the
Commodore 64 era in the 80s and continues to this day on
the web and on iOS. He likes caffeine, codes with two-
space tabs and writes with semicolons.

Sam Davies was a final pass editor for this book. By day
you'll find him recording videos for Razeware, writing
tutorials, attending conferences and generally being a good
guy. By night he's likely to be out entertaining people,
armed with his trombone and killer dance moves.

 raywenderlich.com Page 16

Welcome to Core Data! In this chapter, you’ll write your very first Core Data app.
You’ll see how easy it is to get started with all the resources provided in Xcode,
from the starter code templates to the data model editor.

You’re going to hit the ground running right from the first chapter in this book; by
the end of the chapter you’ll know how to:

• model data you want to store in Core Data using Xcode’s model editor;

• add new records to Core Data;

• fetch a set of records from Core Data; and

• display the fetched results to the user in a table view.

You’ll also get a sense of what Core Data is doing behind the scenes, and how you
can interact with the various moving pieces there. This will put you well on your
way to understanding the next two chapters, which continue the introduction to
Core Data with more advanced models and data validation, amongst other things.

We’re getting ahead of ourselves though – it’s time to build an app!

Getting started
Open Xcode and create a new iPhone project based on the Single View
Application template. Call the app HitList and make sure Use Core Data is
checked:

Chapter 1: Your First Core
Data App
By Pietro Rea

Core Data by Tutorials Second Edition Chapter 1: Your First Core Data App

 raywenderlich.com Page 17

Checking the Use Core Data box will cause Xcode to generate boilerplate code for
what’s known as a Core Data stack in AppDelegate.swift.

The Core Data stack consists of a set of objects that facilitate saving and retrieving
information from Core Data. There’s an object to manage the Core Data state as a
whole, an object representing the data model, and so on.

You’ll learn about each of these pieces in these first few chapters. Later, you’ll even
have the chance to write your own Core Data stack! The standard stack works just
fine for many apps but based on your app and its data, you can customize the stack
to be more efficient.

Note: Not all Xcode templates under iOS/Application have the option to start
with Core Data. In Xcode 7, only the Master-Detail Application and the
Single View Application templates have the Use Core Data checkbox.

The idea for this sample app is simple. There will be a table view with a list of
names for your very own “hit list”. You’ll be able to add names to this list and
eventually, you’ll use Core Data to make sure the data is stored between sessions.
We don’t condone violence in this book so you can think of this app as a “favorites
list” to keep track of your friends too, of course! ;]

Click on Main.storyboard to open it in Interface Builder. Next, embed the view
controller in a navigation controller. From Xcode’s Editor menu, select Embed
In…\ Navigation Controller.

Core Data by Tutorials Second Edition Chapter 1: Your First Core Data App

 raywenderlich.com Page 18

Back in Interface Builder, drag a Table View from the object library into the view
controller so that it covers the view controller’s entire view.

If not already open, open Interface Builder’s document outline by selecting the icon
located in the lower left corner of your canvas. Ctrl-drag from the Table View in
the document outline to its parent view and select the Leading Space to
Container Margin constraint:

Do this three more times, selecting the constraints Trailing Space to Container
Margin, Vertical Spacing to Top Layout Guide and finally, Vertical Spacing to
Bottom Layout Guide. If you’re familiar with Auto Layout, you’ll recognize that
selecting those four constraints will constrain the size of the table view to the size
of its parent view.

Next, drag a Bar Button Item and place it on the view controller’s navigation bar.
Finally, double-click the bar button item to change its text to Add. Your canvas
should now look similar to the following screenshot:

Core Data by Tutorials Second Edition Chapter 1: Your First Core Data App

 raywenderlich.com Page 19

Every time you tap Add on the top-right, an alert containing a text field will appear
on the screen. From there you’ll be able to type someone’s name into the text field.
Dismissing the alert will save the name and refresh the table view with all the
names you’ve saved up to that point.

Before you can do that, you need to make the view controller the table view’s data
source. In the canvas, Ctrl-drag from the table view to the yellow view controller
icon above the navigation bar, as shown below, and click on dataSource:

In case you were wondering, you don’t need to set up the table view’s delegate
since tapping on the cells won’t trigger any action. It doesn’t get simpler than this!

Open the Assistant Editor by hitting Command-Option-Enter or by selecting the
middle button on the Editor toolset on the Xcode bar. Ctrl-drag from the table view
onto ViewController.swift, inside the class definition to insert an outlet:

Core Data by Tutorials Second Edition Chapter 1: Your First Core Data App

 raywenderlich.com Page 20

Name the new IBOutlet property tableView, resulting in the following line:

@IBOutlet weak var tableView: UITableView!

Ctrl-drag from the Add bar button item onto ViewController.swift, but this time,
create an action instead of an outlet and name the method addName:

@IBAction func addName(sender: AnyObject) {

}

You can now refer to the table view and the bar button item’s action in code. Next,
set up the model for the table view. Add the following property to
ViewController.swift:

//Insert below the tableView IBOutlet
var names = [String]()

names is a mutable Array to hold the strings for the table view to display.

Replace the implementation of viewDidLoad() with the following:

override func viewDidLoad() {
 super.viewDidLoad()
 title = "\"The List\""
 tableView.registerClass(UITableViewCell.self,
 forCellReuseIdentifier: "Cell")
}

This will set a title and register the UITableViewCell class with the table view. You
do this so that when you dequeue a cell, the table view will return a cell of the
correct type.

Still in ViewController.swift, declare that ViewController will conform to the
UITableViewDataSource protocol by editing the class declaration:

//Add UITableViewDataSource to class declaration
class ViewController: UIViewController, UITableViewDataSource {

Immediately, Xcode will complain about ViewController not conforming to the
protocol. Below viewDidLoad(), implement the following data source methods to fix
the error:

// MARK: UITableViewDataSource
func tableView(tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {

Core Data by Tutorials Second Edition Chapter 1: Your First Core Data App

 raywenderlich.com Page 21

 return names.count
}

func tableView(tableView: UITableView,
 cellForRowAtIndexPath
 indexPath: NSIndexPath) -> UITableViewCell {

 let cell =
 tableView.dequeueReusableCellWithIdentifier("Cell")

 cell!.textLabel!.text = names[indexPath.row]

 return cell!
}

If you’ve ever worked with UITableView, this code should look very familiar. The
first method says that the table view will have as many rows as the names array has
strings.

The second method, tableView(_:cellForRowAtIndexPath:), dequeues table view
cells and populates them with the corresponding string in the names array.

Don’t run the app just yet. First, you need a way to input names so the table view
can display them.

Implement the addName IBAction method you Ctrl-dragged into your code earlier:

//Implement the addName IBAction
@IBAction func addName(sender: AnyObject) {

 let alert = UIAlertController(title: "New Name",
 message: "Add a new name",
 preferredStyle: .Alert)

 let saveAction = UIAlertAction(title: "Save",
 style: .Default,
 handler: { (action:UIAlertAction) -> Void in

 let textField = alert.textFields!.first
 self.names.append(textField!.text!)
 self.tableView.reloadData()
 })

 let cancelAction = UIAlertAction(title: "Cancel",
 style: .Default) { (action: UIAlertAction) -> Void in
 }

Core Data by Tutorials Second Edition Chapter 1: Your First Core Data App

 raywenderlich.com Page 22

 alert.addTextFieldWithConfigurationHandler {
 (textField: UITextField) -> Void in
 }

 alert.addAction(saveAction)
 alert.addAction(cancelAction)

 presentViewController(alert,
 animated: true,
 completion: nil)
}

Every time you tap the Add bar button item, this method presents an
UIAlertController with a text field and two buttons, Save and Cancel.

Save takes whatever text is currently in the text field, inserts it into the name array
and reloads the table view. Since the names array is the model backing the table
view, whatever you typed into the text field will appear in the table view.

Finally it’s time to build and run your app for the first time. Tap the Add bar button
item. The alert controller will look like this:

Add four or five names to the list. You should wind up with something like this:

Core Data by Tutorials Second Edition Chapter 1: Your First Core Data App

 raywenderlich.com Page 23

Your table view will display the data and your array will store the names, but the
big thing missing here is persistence. The array is in memory but if you force quit
the app or reboot your device, your hit list will be wiped out.

Core Data provides persistence, meaning it can store data in a more durable state
so that it can outlive an app re-launch or a device reboot.

You haven’t added any Core Data yet, so nothing should persist after you navigate
away from the app. Let’s test this out. Press the Home button if you’re using a
physical device or the equivalent (Shift+⌘+H) if you’re on the Simulator. This will
take you back to the familiar app grid on the home screen:

From the home screen, tap the HitList icon to bring the app back to the
foreground. The names are still on the screen. What happened?

When you tap the Home button, the app that’s currently in the foreground goes to
the background. When this happens, the operating system flash-freezes everything
currently in memory, including the strings in the names array. Similarly, when it’s

Core Data by Tutorials Second Edition Chapter 1: Your First Core Data App

 raywenderlich.com Page 24

time to wake up and return to the foreground, the operating system restores what
used to be in memory as if you’d never left.

Apple introduced these advances in multitasking back in iOS 4. They create a
seamless experience for iOS users but add a wrinkle to the definition of persistence
for iOS developers. Are the names really persisted?

No, not really. If you had completely killed the app in the fast app switcher or
turned off your phone, those names would be gone. You can verify this, as well.
With the app in the foreground, double tap the Home button to enter the fast app
switcher, like so:

From here, flick the HitList app snapshot upwards to terminate the app. There
should be no trace of HitList in living memory (no pun intended). Verify that the
names are gone by returning to the home screen and tapping on the HitList icon to
trigger a fresh launch.

This difference between flash-freezing and persistence may be obvious if you’ve
been working with iOS for some time and are familiar with the way multitasking
works. In a user’s mind, however, there is no difference. The user doesn’t care if
the names are “still there” because the app went into the background and came
back, or because the app saved and reloaded them.

All that matters is that the names are still there when she comes back!

So the real test of persistence, the one you will use in this book, is whether your
data is still there after a fresh app launch.

Modeling your data
Now that you know how to check for persistence, let’s get started with Core Data.
Your goal for the HitList app is simple: to persist the names you enter so they’re
available for viewing after a fresh app launch.

Core Data by Tutorials Second Edition Chapter 1: Your First Core Data App

 raywenderlich.com Page 25

Up to this point, you’ve been using plain old Swift strings to store the names in
memory. In this section, you’ll replace these strings with Core Data objects.

The first step is to create a managed object model, which spells out the way Core
Data represents data on disk. By default, Core Data uses an SQLite database as the
persistent store (more on this later), so you can think of the data model as the
database schema.

Note: You’ll come across the word “managed” quite a bit in this book. If you
see “managed” in the name of a class, such as in NSManagedObjectContext,
chances are you are dealing with a Core Data class. “Managed” refers to Core
Data’s management of the life cycle of Core Data objects.

However, don’t assume that all Core Data classes contain the word
“managed”—actually, most don’t. For a comprehensive list of Core Data
classes, check out the Objective-C umbrella header <CoreData/CoreData.h>.

Since you elected to use Core Data when you created the HitList project, Xcode
automatically created a data model file for you and named it
HitList.xcdatamodeld.

Click on HitList.xcdatamodeld to open it. As you can see, Xcode has a powerful
data model editor that looks like this:

Core Data by Tutorials Second Edition Chapter 1: Your First Core Data App

 raywenderlich.com Page 26

The data model editor has a lot of features that you’ll explore in later chapters. For
now, let’s focus on creating a single Core Data entity.

Click on Add Entity on the lower-left to create a new entity. Double-click on the
new entity and change its name to Person, like so:

You may be wondering why the model editor uses the term “Entity.” Weren’t you
simply defining a new class? As you’ll see shortly, Core Data comes with its own
vocabulary. Here’s a quick rundown of some of the terms you’ll commonly
encounter:

• An entity is a class definition in Core Data. The classic example is an Employee or
a Company. In a relational database, an entity corresponds to a table.

• An attribute is a piece of information attached to a particular entity. For
example, an Employee entity could have attributes for the employee’s name,
position and salary. In a database, an attribute corresponds to a particular field in
a table.

• A relationship is a link between multiple entities. In Core Data, relationships
between two entities are called to-one relationships, while those between one
and many entities are called to-many relationships. For example, a Manager can

Core Data by Tutorials Second Edition Chapter 1: Your First Core Data App

 raywenderlich.com Page 27

have a to-many relationship with a set of employees, whereas an individual
Employee will have a to-one relationship with his manager.

Note: As you’ve probably noticed, entities sound a lot like a classes. Likewise,
attributes/relationships sound a lot like properties. What’s the difference? You
can think of a Core Data entity as a class “definition” and the managed object
as an instance of that class.

Now that you know what an attribute is, go back to the model editor and add an
attribute to Person. Select Person on the left-hand side and click the plus sign (+)
under Attributes.

Set the new attribute’s name to, well, name and change its type to String:

In Core Data, an attribute can be of one of several data types. You will learn about
these in the next few chapters.

Saving to Core Data
Import the Core Data module at the top of ViewController.swift:

//Add below "import UIKit"
import CoreData

You may have had to link frameworks manually in your project’s Build Phases if
you’ve worked with Objective-C frameworks. In Swift, a simple import statement is
all you need to start using Core Data APIs in your code.

Next, replace the table view’s model with the following:

//Change “names” to “people” and [String] to [NSManagedObject]
var people = [NSManagedObject]()

Core Data by Tutorials Second Edition Chapter 1: Your First Core Data App

 raywenderlich.com Page 28

You’ll be storing Person entities rather than just names, so you rename the Array
that serves as the table view’s data model to people. It now holds instances of
NSManagedObject rather than simple Swift strings.

NSManagedObject represents a single object stored in Core Data—you must use it to
create, edit, save and delete from your Core Data persistent store. As you’ll see
shortly, NSManagedObject is a shape-shifter. It can take the form of any entity in
your data model, appropriating whatever attributes and relationships you defined.

Since you’re changing the table view’s model, you must also replace both data
source methods you implemented earlier with the following to reflect these
changes:

//Replace both UITableViewDataSource methods
func tableView(tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return people.count
}

func tableView(tableView: UITableView,
 cellForRowAtIndexPath
 indexPath: NSIndexPath) -> UITableViewCell {

 let cell =
 tableView.dequeueReusableCellWithIdentifier("Cell")

 let person = people[indexPath.row]

 cell!.textLabel!.text =
 person.valueForKey("name") as? String

 return cell!
}

The most significant change to these methods occurs in cellForRowAtIndexPath.
Instead of matching cells with the corresponding string in the model array, you now
match cells with the corresponding NSManagedObject.

Note how you grab the name attribute from the NSManagedObject. It happens here:

cell!.textLabel!.text = person.valueForKey("name") as? String

Why do you have to do this? As it turns out, NSManagedObject doesn’t know about
the name attribute you defined in your data model, so there’s no way of accessing it
directly with a property. The only way Core Data provides to read the value is key-
value coding, commonly referred to as KVC.

Core Data by Tutorials Second Edition Chapter 1: Your First Core Data App

 raywenderlich.com Page 29

Note: If you’re new to iOS development, you may not be familiar with key-
value coding or KVC.

KVC is a mechanism in Cocoa and Cocoa Touch for accessing an object’s
properties indirectly using strings to identify properties. In this case, KVC
makes NSMangedObject behave more or less like a dictionary.

Key-value coding is available to all classes that descend from NSObject,
including NSManagedObject. You wouldn’t be able to access properties using
KVC on a Swift object that doesn’t descend from NSObject.

Next, replace the save action in the addName @IBAction method with the following:

let saveAction = UIAlertAction(title: "Save",
 style: .Default,
 handler: { (action:UIAlertAction) -> Void in

 let textField = alert.textFields!.first
 self.saveName(textField!.text!)
 self.tableView.reloadData()
})

This takes the text in the text field and passes it over to a new method called
saveName. Add saveName to ViewController.swift, as shown below:

func saveName(name: String) {
 //1
 let appDelegate =
 UIApplication.sharedApplication().delegate as! AppDelegate

 let managedContext = appDelegate.managedObjectContext

 //2
 let entity = NSEntityDescription.entityForName("Person",
 inManagedObjectContext:managedContext)

 let person = NSManagedObject(entity: entity!,
 insertIntoManagedObjectContext: managedContext)

 //3
 person.setValue(name, forKey: "name")

 //4
 do {
 try managedContext.save()

Core Data by Tutorials Second Edition Chapter 1: Your First Core Data App

 raywenderlich.com Page 30

 //5
 people.append(person)
 } catch let error as NSError {
 print("Could not save \(error), \(error.userInfo)")
 }
}

This is where Core Data kicks in! Here’s what the code does:

1. Before you can save or retrieve anything from your Core Data store, you first
need to get your hands on an NSManagedObjectContext. You can think of a
managed object context as an in-memory “scratchpad” for working with managed
objects.

Think of saving a new managed object to Core Data as a two-step process: first,
you insert a new managed object into a managed object context; then, after
you’re happy with your shiny new managed object, you “commit” the changes in
your managed object context to save it to disk.

Xcode has already generated a managed object context as part of the new
project’s template – remember, this only happens if you check the Use Core
Data checkbox at the beginning. This default managed object context lives as a
property of the application delegate. To access it, you first get a reference to the
app delegate.

2. You create a new managed object and insert it into the managed object context.
You can do this in one step with NSManagedObject’s designated initializer:
init(entity:insertIntoManagedObjectContext:).

You may be wondering what an NSEntityDescription is all about. Recall that
earlier, I called NSManagedObject a “shape-shifter” class because it can represent
any entity. An entity description is the piece that links the entity definition from
your data model with an instance of NSManagedObject at runtime.

3. With an NSManagedObject in hand, you set the name attribute using key-value
coding. You have to spell the KVC key (“name” in this case) exactly as it appears
on your data model, otherwise your app will crash at runtime.

4. You commit your changes to person and save to disk by calling save on the
managed object context. Note that save can throw an error, which is why you call
it using the try keyword and within a do block.

5. Congratulations! Your new managed object is now safely ensconced in your Core
Data persistent store. Still within the do block, insert the new managed object
into the people array so that it shows up in the table view when it reloads.

That’s a little more complicated than an array of strings, but not too bad. Some of
the code here—getting the managed object context and entity—could be done just
once in your own init() or viewDidLoad() and then reused later. For simplicity,
you’re doing it all at once in one method.

Core Data by Tutorials Second Edition Chapter 1: Your First Core Data App

 raywenderlich.com Page 31

Build and run the app, and add a few names to the table view:

If the names are actually stored in Core Data, the HitList app should pass the
persistence test. Double-tap the Home button to bring up the fast app switcher.
Terminate the HitList app by flicking it upwards.

From Springboard, tap the HitList app to trigger a fresh launch. Wait, what
happened? The table view is empty:

You saved to Core Data, but after a fresh app launch, the people array is empty!
The data is actually sitting there waiting, but you’re not showing it yet.

Core Data by Tutorials Second Edition Chapter 1: Your First Core Data App

 raywenderlich.com Page 32

Fetching from Core Data
To get data from your persistent store and into the managed object context, you
have to fetch it. Add the following method to ViewController.swift:

override func viewWillAppear(animated: Bool) {
 super.viewWillAppear(animated)

 //1
 let appDelegate =
 UIApplication.sharedApplication().delegate as! AppDelegate

 let managedContext = appDelegate.managedObjectContext

 //2
 let fetchRequest = NSFetchRequest(entityName: "Person")

 //3
 do {
 let results =
 try managedContext.executeFetchRequest(fetchRequest)
 people = results as! [NSManagedObject]
 } catch let error as NSError {
 print("Could not fetch \(error), \(error.userInfo)")
 }
}

Step by step, this is what the code does:

1. As mentioned in the previous section, before you can do anything with Core
Data, you need a managed object context. Fetching is no different! You pull up
the application delegate and grab a reference to its managed object context.

2. As the name suggests, NSFetchRequest is the class responsible for fetching from
Core Data. Fetch requests are both powerful and flexible. You can use requests to
fetch a set of objects that meet particular criteria (e.g., “give me all employees
that live in Wisconsin and have been with the company at least three years”),
individual values (e.g., “give me the longest name in the database”) and more.

Fetch requests have several qualifiers that refine the set of results they return.
You’ll learn more about these qualifiers in Chapter 4, “Intermediate Fetching”; for
now, you should know that NSEntityDescription is one of these qualifiers (one
that is required!).

Setting a fetch request’s entity property, or alternatively initializing it with
init(entityName:), fetches all objects of a particular entity. This is what you do
here to fetch all Person entities.

Core Data by Tutorials Second Edition Chapter 1: Your First Core Data App

 raywenderlich.com Page 33

3. You hand the fetch request over to the managed object context to do the heavy
lifting. executeFetchRequest() returns an array of managed objects that meets
the criteria specified by the fetch request.

Note: Like save(), executeFetchRequest() also throws an error so you have to
use it within a do block. If an error occurred during the fetch, you can inspect
the NSError inside the catch block and respond appropriately.

Build and run the application once again. Immediately, you should see the list of
names you added earlier:

Great! They’re back from the dead. Add a few more names to the list and restart
the app to verify that saving and fetching are working properly. Short of deleting
the app, resetting the Simulator or throwing your phone off a tall building, the
names will appear in the table view no matter what.

Where to go from here?
In just a few pages, you’ve already experienced several fundamental Core Data
concepts: data models, entities, attributes, managed objects, managed object
contexts and fetch requests.

Core Data by Tutorials Second Edition Chapter 1: Your First Core Data App

 raywenderlich.com Page 34

There were a few rough edges in HitList: you had to get the managed object
context from the app delegate each time, and you used KVC to access the
attributes rather than a more natural object-style person.name.

The best way to get familiar with Core Data is to play with it, so that’s exactly what
you’ll do in the next chapter! You’ll file away some of those rough edges and also
work with a more complex data model as you learn more about Core Data.

 raywenderlich.com Page 35

You got your feet wet with a simple Core Data app in chapter 1; now it’s time to
explore more of what Core Data has to offer!

At the core of this chapter is subclassing NSManagedObject to make your own classes
for each entity. This creates a direct one-to-one mapping between entities in the
data model editor and classes in your code. It means in some parts of your code,
you can work with objects and properties without worrying too much about the
Core Data side of things.

Along the way, you’ll learn about all the data types available in Core Data entities,
including a couple that are outside the usual string and number types. And with all
the data type options available, you’ll also learn about validating data to
automatically check values before saving.

Getting started
Head over to the files that accompany this book and open the sample project
named Bow Ties. Like HitList, this project uses Xcode’s Core Data-enabled Single
View Application template. And like before, this means Xcode generated its own
ready-to-use Core Data stack located in AppDelegate.swift.

Go to Main.storyboard. Here you’ll find the sample project’s single-page UI:

Chapter 2: NSManagedObject
Subclasses
By Pietro Rea

Core Data by Tutorials Second Edition Chapter 2: NSManagedObject Subclasses

 raywenderlich.com Page 36

As you can probably guess, Bow Ties is a lightweight bow tie management
application. You can switch between the different colors of bow tie you own—the
app assumes one of each—using the topmost segmented control—tap “R” for red,
“O” for orange and so on.

Tapping on a particular color pulls up an image of the tie and populates several
labels on the screen with specific information about the tie. This includes:

• The name of the bow tie (so you can tell similarly-colored ones apart);

• The number of times you’ve worn the tie;

• The date you last wore the tie;

• Whether the tie is a favorite of yours.

The Wear button on the bottom-left increments the number of times you’ve worn
that particular tie and sets the “last worn” date to today.

Orange is not your color? Not to worry. The Rate button on the bottom-right
changes a bow tie’s rating. This particular rating system uses a scale from 0 to 5,
allowing for decimal values.

That’s what the application is supposed to do in its final state. Open
ViewController.swift to see what it currently does:

import UIKit

class ViewController: UIViewController {

Core Data by Tutorials Second Edition Chapter 2: NSManagedObject Subclasses

 raywenderlich.com Page 37

 @IBOutlet weak var segmentedControl: UISegmentedControl!
 @IBOutlet weak var imageView: UIImageView!
 @IBOutlet weak var nameLabel: UILabel!
 @IBOutlet weak var ratingLabel: UILabel!
 @IBOutlet weak var timesWornLabel: UILabel!
 @IBOutlet weak var lastWornLabel: UILabel!
 @IBOutlet weak var favoriteLabel: UILabel!

 override func viewDidLoad() {
 super.viewDidLoad()

 }

 @IBAction func segmentedControl(control: UISegmentedControl) {

 }

 @IBAction func wear(sender: AnyObject) {

 }

 @IBAction func rate(sender: AnyObject) {

 }
}

The bad news is that in its current state, Bow Ties doesn’t do anything. The good
news is that you don’t need to do any Ctrl-dragging!

The segmented control and all the labels on the user interface are already
connected to @IBOutlets in code. In addition, the segmented control, the Wear
button and the Rate button all have corresponding @IBActions.

It looks like you have everything you need to get started adding some Core Data…
but wait, what are you going to display onscreen? There’s no input method to speak
of, so the app must ship with sample data.

That’s exactly right. Bow Ties includes a property list called SampleData.plist that
contains the information for seven sample ties, one for each color of the rainbow:

Core Data by Tutorials Second Edition Chapter 2: NSManagedObject Subclasses

 raywenderlich.com Page 38

Furthermore, the application’s asset catalog—Assets.xcassets—contains seven
images corresponding to the seven bow ties in SampleData.plist.

What you have to do now is take this sample data, store it in Core Data and use it
to implement the bow tie management functionality.

Modeling your data
In the previous chapter, you learned that one of the first things you have to do
when starting a new Core Data project is create your data model.

Open Bow_Ties.xcdatamodeld and click Add Entity on the lower-left to create a
new entity. Double-click on the new entity and change its name to Bowtie, like so:

In the previous chapter, you created a simple Person entity with a single string
attribute to hold the person’s name. Core Data supports several other primitive
data types, and you’ll use most of them for the new Bowtie entity.

Core Data by Tutorials Second Edition Chapter 2: NSManagedObject Subclasses

 raywenderlich.com Page 39

An attribute’s data type determines what kind of data you can store in it and how
much space it will occupy on disk. In Core Data, an attribute’s data type begins as
Undefined so you’ll have to change it to something else.

If you remember from SampleData.plist, each bow tie has eight associated pieces
of information. This means the Bowtie entity will end up with at least eight
attributes in the model editor.

Select Bowtie on the left-hand side and click the plus sign (+) under Attributes.
Change the new attribute’s name to name and set its type to String:

Repeat this process five more times to add the following attributes:

• A Boolean named isFavorite;

• A Date named lastWorn;

• A Double named rating;

• A String named searchKey;

• An Integer 32 named timesWorn.

When you’re finished, your Attributes section should look like this:

Core Data by Tutorials Second Edition Chapter 2: NSManagedObject Subclasses

 raywenderlich.com Page 40

Don’t worry if the order of the attributes is different – all that matters is that the
attribute names and types are correct.

Note: You may have noticed you have three options for the timesWorn integer
attribute: Integer 16, Integer 32 or Integer 64.

16, 32 and 64 refer to the number of bits that represent the integer. This is
important for two reasons: the number of bits reflects how much space an
integer takes up on disk as well as how many values it can represent, or its
“range.” Here are the ranges for the three types of integers:

Range for 16-bit integer: -32768 to 32767
Range for 32-bit integer: –2147483648 to 2147483647
Range for 64-bit integer: –9223372036854775808 to 9223372036854775807

How do you choose? The source of your data will dictate the best type of
integer. You are assuming your users really like bow ties, so a 32-bit integer
should offer enough storage for a lifetime of bow tie wear. :]

Each bow tie has an associated image. How will you store it in Core Data? Add one
more attribute to the Bowtie entity, naming it photoData and changing its data
type to Binary Data:

Core Data provides the option of storing arbitrary blobs of binary data directly in
your data model. These could be anything from images to PDF files, or anything
else that can be serialized into zeroes and ones.

As you can imagine, this convenience can come at a steep cost. Storing a large
amount of binary data in the same SQLite database as your other attributes will
likely impact your app’s performance. That means a giant binary blob would be
loaded into memory each time you access an entity, even if you only need to
access its name!

Luckily, Core Data anticipates this problem. With the photoData attribute selected,
open the Attributes inspector and check the Allows External Storage option:

Core Data by Tutorials Second Edition Chapter 2: NSManagedObject Subclasses

 raywenderlich.com Page 41

When you enable Allows External Storage, Core Data heuristically decides on a
per-value basis if it should save the data directly in the database or store a URI that
points to a separate file.

Note: The Allows External Storage option is only available for the binary
data attribute type. In addition, if you turn it on, you won’t be able to query
Core Data using this attribute.

In sum, besides strings, integers, doubles, Booleans and dates, Core Data can also
save binary data, and it can do so efficiently and intelligently.

Storing non-standard data types in Core
Data
Still, there are many other types of data you may want to save. For example, what
would you do if you had to store an instance of UIColor?

With the options presented so far, you would have to deconstruct the color into its
individual components and save them as integers (e.g., red: 255, green: 101, blue:
155). Then, after fetching these components, you’d have to reconstitute your color
at runtime.

Alternatively, you could serialize the UIColor instance to NSData and save it as
binary data. Then again, you’d also have to “add water” afterward to convert the
binary data back to the UIColor object you wanted in the first place.

Once again, Core Data has your back. If you took a close look at
SampleData.plist, you probably noticed that each bow tie has an associated color.

Core Data by Tutorials Second Edition Chapter 2: NSManagedObject Subclasses

 raywenderlich.com Page 42

Select the Bowtie entity in the model editor and add a new attribute named
tintColor of data type Transformable:

You can save any data type to Core Data (even ones you define) using the
transformable type as long as your type conforms to the NSCoding protocol.

UIColor conforms to NSSecureCoding, which inherits from NSCoding, so it can use the
transformable type out of the box. If you wanted to save your own custom object,
you would first have to implement the NSCoding protocol.

Note: The NSCoding protocol is a simple way to archive and unarchive objects
into data buffers so they can be saved to disk.

If you want to familiarize yourself with NSCoding, check out Ray’s NSCoding
tutorial for a quick introduction:

http://www.raywenderlich.com/1914/nscoding-tutorial-for-ios-how-to-save-
your-app-data

Your data model is now complete. The Bowtie entity has the eight attributes it
needs to store all the information in SampleData.plist.

Managed object subclasses
In the sample project from the last chapter, you used key-value coding to access
the attributes on the Person entity. It looked something like this:

//Set the name
person.setValue(name1, forKey: "name")

//Get the name
let name = person.valueForKey("name")

Even though you can do everything directly on NSManagedObject using key-value
coding, that doesn’t mean you should!

Core Data by Tutorials Second Edition Chapter 2: NSManagedObject Subclasses

 raywenderlich.com Page 43

The biggest problem with key-value coding is the fact that you’re accessing of data
using strings instead of strongly-typed classes. This is often jokingly referred to as
writing stringly typed code. :]

As you probably know from experience, “stringly typed” code is vulnerable to silly
human errors such as mistyping and misspelling. Key-value coding also doesn’t
take full advantage of Swift’s type-checking and Xcode’s auto-completion.

The best alternative to key-value coding is to create NSManagedObject subclasses for
each entity in your data model. That means there will be a Bowtie class with correct
types for each property.

Xcode can automatically generate the subclass for you. Make sure you still have
Bow_Ties.xcdatamodeld open, and go to Editor\Create NSManagedObject
Subclass…. Select the data model and then the Bowtie entity in the next two
dialog boxes, then select Swift as the language option in the final box. If you’re
asked, say No to creating an Objective-C bridging header. Click Create to save the
file.

Xcode generated two Swift files for you, one called Bowtie.swift and a second
called Bowtie+CoreDataProperties.swift.

Go to Bowtie.swift. It should look like this:

import Foundation
import CoreData

class Bowtie: NSManagedObject {

}

Now go to Bowtie+CoreDataProperties.swift. This second file looks like this:

import Foundation
import CoreData

extension Bowtie {

 @NSManaged var name: String?

Core Data by Tutorials Second Edition Chapter 2: NSManagedObject Subclasses

 raywenderlich.com Page 44

 @NSManaged var isFavorite: NSNumber?
 @NSManaged var lastWorn: NSDate?
 @NSManaged var rating: NSNumber?
 @NSManaged var searchKey: String?
 @NSManaged var timesWorn: NSNumber?
 @NSManaged var photoData: NSData?
 @NSManaged var tintColor: NSObject?

}

In object-oriented parlance, an object is a set of values and a set of operations
defined on those values. In this case, Xcode separates the two into two separate
files. The values (i.e. the properties that correspond to the Bowtie attributes in your
data model) are in BowTie+CoreDataProperties.swift whereas the operations
are in (the currently empty) Bowtie.swift.

Note: If your Bowtie entity changes, you can go to Editor\Create
NSManagedObject Subclass… one more time to re-generate
BowTie+CoreDataProperties.swift.

The second time you do this, you won’t re-generate Bowtie.swift so you
don’t have to worry about overwriting any methods you add in there. In fact,
this is the primary reason why Core Data generates two files instead of one as
it used to do in previous versions of iOS.

The editor has created a class with a property for each attribute in your data model.

Note that there is a corresponding Foundation class or Swift class for every
attribute type. Here’s the full mapping of attribute types to runtime classes:

• String maps to String

• Integer 16/32/64, Float, Double and Boolean map to NSNumber

• Decimal maps to NSDecimalNumber

• Date maps to NSDate

• Binary data maps to NSData

• Transformable maps to AnyObject

Core Data persists an object graph to disk, so by default it works with objects.
This is why you see primitive types like integers, doubles and Booleans boxed inside
NSNumber. You can retrieve the actual attribute value with one of NSNumber’s
convenience methods such as boolValue, doubleValue, and integerValue.

If you want to work directly with primitive data types such as Double and Int32, you
could have checked the box next to Use scalar properties for primitive data
types in the last dialog when you were generating the managed object subclass:

Core Data by Tutorials Second Edition Chapter 2: NSManagedObject Subclasses

 raywenderlich.com Page 45

Since this setting is turned off by default, you’ll work with boxed values in this
chapter, which is why you left that box unchecked. Just be aware that there’s an
option out there if you don’t want to deal with NSNumber anymore!

Note: Similar to @dynamic in Objective-C, the @NSManaged attribute informs the
Swift compiler that the backing store and implementation of a property will be
provided at runtime instead of at compile time.

The normal pattern is for a property to be backed by an instance variable in
memory. A property on a managed object is different: It’s backed by the
managed object context, so the source of the data is not known at compile
time.

Congratulations, you’ve just made your first managed object subclass in Swift!
Compared with key-value coding, this is a much better way of working with Core
Data entities. There are two main benefits:

1. Managed object subclasses unleash the syntactic power of Swift properties. By
accessing attributes using properties instead of key-value coding, you again
befriend Xcode and the compiler.

2. You gain the ability to override existing methods or to add your own convenience
methods. Note that there are some NSManagedObject methods you must never
override. Check Apple’s documentation of NSManagedObject for a complete list.

To make sure everything is hooked up correctly between the data model and your
new managed object subclass, let’s perform a small test.

Open AppDelegate.swift and replace didFinishLaunchingWithOptions with the
following implementation:

func application(application: UIApplication,
 didFinishLaunchingWithOptions
 launchOptions: [NSObject: AnyObject]?) -> Bool {

 // Save test bow tie
 let bowtie = NSEntityDescription

Core Data by Tutorials Second Edition Chapter 2: NSManagedObject Subclasses

 raywenderlich.com Page 46

 .insertNewObjectForEntityForName("Bowtie",
 inManagedObjectContext: managedObjectContext) as! Bowtie

 bowtie.name = "My bow tie"
 bowtie.lastWorn = NSDate()

 do {
 try managedObjectContext.save()
 } catch let error as NSError {
 print("Saving error: \(error.localizedDescription)")
 }

 // Retrieve test bow tie
 do {
 let request = NSFetchRequest(entityName: "Bowtie")
 let ties =
 try managedObjectContext.executeFetchRequest(request)
 as! [Bowtie]

 let sample : Bowtie = ties[0]
 print("Name: \(sample.name), Worn: \(sample.lastWorn)")

 } catch let error as NSError {
 print("Fetching error: \(error.localizedDescription)")
 }

 return true
}

On app launch, this test creates a bow tie and sets its name and lastWorn properties
before saving the managed object context.

Immediately after that, it fetches all Bowtie entities and prints the name and the
last worn date of the first one to the console (there should only be one). Build and
run the application and pay close attention to the console:

If you’ve been following along carefully, the name and last worn date print to the
console as expected. This means you were able to save and fetch a Bowtie
managed object subclass successfully. With this new knowledge under your belt, it’s
time to implement the entire sample app.

Core Data by Tutorials Second Edition Chapter 2: NSManagedObject Subclasses

 raywenderlich.com Page 47

Propagating a managed context
Go to ViewController.swift and import Core Data below where you import UIKit:

import CoreData

Now add the following below the last @IBOutlet property:

var managedContext: NSManagedObjectContext!

To reiterate, before you can do anything in Core Data, you first have to get a
managed context to work on. Knowing how to propagate a managed context to
different parts of your app is an important aspect of Core Data programming.

Switch to AppDelegate.swift and replace didFinishLaunchingWithOptions (which
currently contains the test code) with the following implementation:

func application(application: UIApplication,
 didFinishLaunchingWithOptions
 launchOptions: [NSObject: AnyObject]?) -> Bool {

 let viewController =
 window!.rootViewController as! ViewController

 viewController.managedContext = managedObjectContext

 return true
}

In the previous chapter, you gained access to the app delegate’s managed context
using the delegate more or less as a global variable. In this sample project, you’ll
use another approach: pass the managed context from class to class via a property.

Since the caller is responsible for setting the managed context, ViewController can
use it without needing to know where it came from. The benefit here is cleaner
code since the context moves “down” the chain rather than each object accessing
some global state.

You’ve got seven bowties that are dying to enter your Core Data store. Satisfy them
by switching to ViewController.swift once again and adding the following two
methods:

//Insert sample data
func insertSampleData() {
 let fetchRequest = NSFetchRequest(entityName: "Bowtie")

 fetchRequest.predicate =

Core Data by Tutorials Second Edition Chapter 2: NSManagedObject Subclasses

 raywenderlich.com Page 48

 NSPredicate(format: "searchKey != nil")

 let count = managedContext.countForFetchRequest(fetchRequest,
 error: nil)

 if count > 0 {return }

 let path = NSBundle.mainBundle().pathForResource("SampleData",
 ofType: "plist")
 let dataArray = NSArray(contentsOfFile: path!)!

 for dict : AnyObject in dataArray {

 let entity = NSEntityDescription.entityForName("Bowtie",
 inManagedObjectContext: managedContext)

 let bowtie = Bowtie(entity: entity!,
 insertIntoManagedObjectContext: managedContext)

 let btDict = dict as! NSDictionary

 bowtie.name = btDict["name"] as? String
 bowtie.searchKey = btDict["searchKey"] as? String
 bowtie.rating = btDict["rating"] as? NSNumber
 let tintColorDict = btDict["tintColor"] as? NSDictionary
 bowtie.tintColor = colorFromDict(tintColorDict!)

 let imageName = btDict["imageName"] as? String
 let image = UIImage(named:imageName!)
 let photoData = UIImagePNGRepresentation(image!)
 bowtie.photoData = photoData

 bowtie.lastWorn = btDict["lastWorn"] as? NSDate
 bowtie.timesWorn = btDict["timesWorn"] as? NSNumber
 bowtie.isFavorite = btDict["isFavorite"] as? NSNumber

 }
}

func colorFromDict(dict: NSDictionary) -> UIColor {
 let red = dict["red"] as! NSNumber
 let green = dict["green"] as! NSNumber
 let blue = dict["blue"] as! NSNumber

 let color = UIColor(red: CGFloat(red)/255.0,

Core Data by Tutorials Second Edition Chapter 2: NSManagedObject Subclasses

 raywenderlich.com Page 49

 green: CGFloat(green)/255.0,
 blue: CGFloat(blue)/255.0,
 alpha: 1)

 return color
}

That’s quite a bit of code, but it’s all fairly simple. The first method,
insertSampleData, checks for any bow ties (you’ll learn how this works later) and if
none are present, it grabs the bow tie information in SampleData.plist, iterates
through each bow tie dictionary and inserts a new Bowtie entity into your Core Data
store. At the end of this iteration, it saves the managed context property to commit
these changes to disk.

The second method, colorFromDict, is also simple. SampleData.plist stores colors
in a dictionary that contains three keys: red, green and blue. This method takes in
this dictionary and returns a bona fide UIColor.

Notice two things:

1. The way you store images in Core Data. The property list contains a file
name for each bow tie, not the file image—the actual images are in the project’s
asset catalog. With this file name, you instantiate the UIImage and immediately
convert it into NSData by means of UIImagePNGRepresentation() before storing it in
the imageData property.

2. The way you store the color. Even though the color is stored in a
transformable attribute, it doesn’t require any special treatment before you store
it in tintColor. You simply set the property and you’re good to go.

The previous methods insert all the bow tie data you had in SampleData.plist into
Core Data. Now you need to access the data from somewhere!

Replace viewDidLoad() with the following implementation:

override func viewDidLoad() {
 super.viewDidLoad()

 //1
 insertSampleData()

 //2
 let request = NSFetchRequest(entityName:"Bowtie")
 let firstTitle = segmentedControl.titleForSegmentAtIndex(0)

 request.predicate =
 NSPredicate(format:"searchKey == %@", firstTitle!)

 do {

Core Data by Tutorials Second Edition Chapter 2: NSManagedObject Subclasses

 raywenderlich.com Page 50

 //3
 let results =
 try managedContext.executeFetchRequest(request) as! [Bowtie]
 //4
 populate(results.first!)
 } catch let error as NSError {
 print("Could not fetch \(error), \(error.userInfo)")
 }
}

This is where you fetch the Bowties from Core Data and populate the UI. Step by
step, here’s what you’re doing with this code:

1. You call insertSampleData(), which you implemented earlier. Since
viewDidLoad() can be called every time the app is launched, insertSampleData()
itself performs a fetch to make sure it isn’t inserting the sample data into Core
Data multiple times.

2. You create a fetch request for the purpose of fetching the newly inserted Bowtie
entities. The segmented control has tabs to filter by color, so the predicate adds
the condition to find the bow ties that match the selected color. Predicates are
both very flexible and very powerful—you’ll read more about them in chapter 4.

For now, you should know that this particular predicate is looking for bow ties
that have their searchKey property set to the segmented control’s first button
title, “R” in this case.

3. As always, the managed context does the heavy lifting for you. It executes the
fetch request you crafted moments earlier and returns an array of Bowtie objects.

4. You populate the user interface with the first bow tie in the results array. If there
was an error, print the error to the console.

You haven’t defined the populate method yet, so Xcode throws a warning.
Implement it as follows:

func populate(bowtie: Bowtie) {
 imageView.image = UIImage(data:bowtie.photoData!)
 nameLabel.text = bowtie.name
 ratingLabel.text = "Rating: \(bowtie.rating!.doubleValue)/5"

 timesWornLabel.text =
 "# times worn: \(bowtie.timesWorn!.integerValue)"

 let dateFormatter = NSDateFormatter()
 dateFormatter.dateStyle = .ShortStyle
 dateFormatter.timeStyle = .NoStyle

 lastWornLabel.text = "Last worn: " +

Core Data by Tutorials Second Edition Chapter 2: NSManagedObject Subclasses

 raywenderlich.com Page 51

 dateFormatter.stringFromDate(bowtie.lastWorn!)

 favoriteLabel.hidden = !bowtie.isFavorite!.boolValue

 view.tintColor = bowtie.tintColor as! UIColor
}

There’s a UI element for every one of the attributes defined in a bow tie. Since Core
Data only stores the image as a blob of binary data, it’s your job to reconstitute it
back into an image so the view controller’s image view can use it.

Similarly, you can’t use the lastWorn date attribute directly. You first need to create
a date formatter to be able to turn the date into a string that humans can
understand.

Finally, the tintColor transformable attribute that stores your bow tie’s color
changes the color of not one, but all the elements on the screen. Simply set the tint
color on the view controller’s view and voila! Everything is now tinted the same
color.

Note: Xcode generates all NSManagedObject subclass properties as optional
types. Notice that inside the populate method, you force unwrap all the Core
Data properties on Bowtie using the ! operator.

It’s okay to do this in this sample app since you know every bow tie has every
attribute set. In a real application, it would be normal for some properties to
be nil (e.g. maybe there is no photo available for a particular bowtie) so it
would make more sense to use the if-let pattern.

Build and run the app. The red bow tie appears on the screen, like so:

Core Data by Tutorials Second Edition Chapter 2: NSManagedObject Subclasses

 raywenderlich.com Page 52

The Wear and Rate buttons do nothing at the moment. Tapping on the different
parts of the segmented controls also does nothing. You’ve still got work to do!

First, you need to keep track of the currently selected bow tie so you can reference
it from anywhere in your class. Add a new property to do this below var
managedContext: NSManagedObjectContext!:

var currentBowtie: Bowtie!

Next, replace the do-let statement in viewDidLoad() to use your new property:

do {
 let results =
 try managedContext.executeFetchRequest(request) as! [Bowtie]

 currentBowtie = results.first
 populate(currentBowtie)
} catch let error as NSError {
 print("Could not fetch \(error), \(error.userInfo)")
}

Keeping track of the currently selected bow tie is necessary to implement the Wear
and Rate buttons since these actions only affect the current bow tie.

Every time the user taps on Wear, the button executes the wear action method. But
wear is empty at the moment. Implement it as shown below:

@IBAction func wear(sender: AnyObject) {
 let times = currentBowtie.timesWorn!.integerValue
 currentBowtie.timesWorn = NSNumber(integer: (times + 1))

 currentBowtie.lastWorn = NSDate()

 do {
 try managedContext.save()
 } catch let error as NSError {
 print("Could not save \(error), \(error.userInfo)")
 }

 populate(currentBowtie)
}

This method takes the currently selected bow tie and increments its timesWorn
attribute by one. Since the timesWorn property is an NSNumber, you have to first
unbox the integer, increment it and wrap it up nicely into another NSNumber.

Core Data by Tutorials Second Edition Chapter 2: NSManagedObject Subclasses

 raywenderlich.com Page 53

Then, you change the lastWorn date to today and save the managed context to
commit these changes to disk. Finally, you populate the user interface to visualize
these changes.

Run the application and tap Wear as many times as you’d like. It looks like you
thoroughly enjoy the timeless elegance of a red bow tie!

Similarly, every time the user taps on Rate, it executes the rate action in your
code. This action is currently empty. Implement it as shown below:

@IBAction func rate(sender: AnyObject) {

 let alert = UIAlertController(title: "New Rating",
 message: "Rate this bow tie",
 preferredStyle: UIAlertControllerStyle.Alert)

 let cancelAction = UIAlertAction(title: "Cancel",
 style: .Default,
 handler: { (action: UIAlertAction!) in
 })

 let saveAction = UIAlertAction(title: "Save",
 style: .Default,
 handler: { (action: UIAlertAction!) in

 let textField = alert.textFields![0] as UITextField
 self.updateRating(textField.text!)
 })

Core Data by Tutorials Second Edition Chapter 2: NSManagedObject Subclasses

 raywenderlich.com Page 54

 alert.addTextFieldWithConfigurationHandler {
 (textField: UITextField!) in
 textField.keyboardType = .NumberPad
 }

 alert.addAction(cancelAction)
 alert.addAction(saveAction)

 presentViewController(alert,
 animated: true,
 completion: nil)
}

Tapping on Rate now brings up an alert view with a single text field, a cancel button
and a save button. Tapping the save button calls the method updateRating, which…

Whoops, you haven’t defined it yet. Appease Xcode by implementing it below:

func updateRating(numericString: String) {

 currentBowtie.rating = (numericString as NSString).doubleValue

 do {
 try managedContext.save()
 populate(currentBowtie)
 } catch let error as NSError {
 print("Could not save \(error), \(error.userInfo)")
 }
}

You convert the text from the alert view’s text field into a double and use it to
update the current bow ties rating property.

Finally, you commit your changes as usual by saving the managed context and
refresh the UI to see your changes in real time.

Try it out. Build and run the app and tap Rate:

Core Data by Tutorials Second Edition Chapter 2: NSManagedObject Subclasses

 raywenderlich.com Page 55

Enter any decimal number from 0 to 5 and tap Save. As you would expect, the
rating label updates to the new value you entered.

Now tap Rate one more time. Remember the timeless elegance of a red bow tie?
Let’s say you like it so much that you decide to rate it a 6 out of 5. Tap Save to
refresh the user interface:

While you may absolutely love the color red, this is neither the time nor the place
for hyperbole. Your app let you save a 6 for a value that’s only supposed to go up
to 5. You’ve got invalid data on your hands.

Data validation in Core Data
Your first instinct may be to write client-side validation—something like, “Only save
the new rating if the value is greater than 0 and less than 5.” Fortunately, you
don’t have to write this code yourself. Core Data supports validation for most
attribute types out of the box.

Core Data by Tutorials Second Edition Chapter 2: NSManagedObject Subclasses

 raywenderlich.com Page 56

Open your data model, select the rating attribute and open the data model
inspector:

Next to Validation, type 0 for minimum and 5 for maximum. That’s it! No need to
write any Swift to reject invalid data.

Note: Normally, you have to version your data model if you want to change
it after you’ve shipped your app. You’ll learn more about this in Chapter 6,
“Versioning and Migration.”

Attribute validation is one of the few exceptions. If you add it to your app after
shipping, you don’t have to version your data model. Lucky you!

But what does this do, exactly?

Validation kicks in immediately after you call save() on your managed object
context. The managed object context checks with the model to see if any of the
new values conflict with the validation rules you’ve put in place.

If there’s a validation error, the save fails. Remember that NSError in the do-catch
block wrapping the save method? Up until now, you’ve had no reason to do
anything special if there’s an error other than log it to the console. Validation
changes that.

Build and run the app once more. Give the red bowtie a rating of 6 out of 5 and
save. A rather cryptic error message will spill out onto your console:

The userInfo dictionary that comes with the error contains all kinds of useful
information about why Core Data aborted your save operation. It even has a

Core Data by Tutorials Second Edition Chapter 2: NSManagedObject Subclasses

 raywenderlich.com Page 57

localized error message that you can show your users, under the key
NSLocalizedDescription: “The operation couldn’t be completed.”

What you do with this error, however, is entirely up to you. Re-implement
updateRating to handle the error appropriately:

func updateRating(numericString: String) {

 currentBowtie.rating = (numericString as NSString).doubleValue

 do {
 try managedContext.save()
 populate(currentBowtie)
 } catch let error as NSError {

 print("Could not save \(error), \(error.userInfo)")

 if error.domain == NSCocoaErrorDomain &&
 (error.code == NSValidationNumberTooLargeError ||
 error.code == NSValidationNumberTooSmallError) {
 rate(currentBowtie)
 }
 }
}

If there’s an error and it happened because the new rating was either too large or
too small, then you present the alert view again. Otherwise, you populate the user
interface with the new rating as before.

But wait… Where did NSValidationNumberTooLargeError and
NSValidationNumberTooSmallError come from? Go back to the previous console
reading and look closely at the first line:

Could not save Error Domain=NSCocoaErrorDomain Code=1610 "The operation
couldn’t be completed.

NSValidationNumberTooLargeError is an error code that maps to the integer 1610.
For a full list of Core Data errors and code definitions, you can consult
CoreDataErrors.h in Xcode by Cmd-clicking on NSValidationNumberTooLargeError.

Note: When an NSError is involved, it’s standard practice to check the domain
and code for the error to determine what went wrong. You can read more
about this in Apple’s Error Handling Programming Guide:

https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/Er
rorHandlingCocoa/CreateCustomizeNSError/CreateCustomizeNSError.html

Core Data by Tutorials Second Edition Chapter 2: NSManagedObject Subclasses

 raywenderlich.com Page 58

Build and run the app. Verify that the new validation rules work properly by once
again showing the red tie some love:

If you enter any value above 5 and try to save, the app rejects your rating and asks
you to try again with a new alert view. Voila!

Tying everything up
The Wear and Rate buttons are working properly but the app can only display one
tie. Tapping the different values on the segmented control is supposed to switch
ties. You will finish up this sample project by implementing that feature.

Every time the user taps the segmented control, it executes the segmentedControl
action method in your code. This method is currently blank; implement it as shown
below:

@IBAction func segmentedControl(control: UISegmentedControl) {

 let selectedValue =
 control.titleForSegmentAtIndex(control.selectedSegmentIndex)

 let request = NSFetchRequest(entityName:"Bowtie")

 request.predicate =
 NSPredicate(format:"searchKey == %@", selectedValue!)

 do {
 let results =
 try managedContext.executeFetchRequest(request) as! [Bowtie]
 currentBowtie = results.first

Core Data by Tutorials Second Edition Chapter 2: NSManagedObject Subclasses

 raywenderlich.com Page 59

 populate(currentBowtie)
 } catch let error as NSError {
 print("Could not fetch \(error), \(error.userInfo)")
 }
}

The title of each segment in the segmented control conveniently corresponds to a
particular tie’s searchKey attribute. Grab the title of the currently selected segment
and fetch the appropriate bow tie using a well-crafted NSPredicate.

Then, use the last bow tie in the array of results (there should only be one per
searchKey) to populate the user interface.

Once again, build and run the app. Tap different letters on the segmented control
for a psychedelic treat:

You did it! With this bow tie app under your belt, you’re well on your way to
becoming a Core Data master.

Where to go from here?
In this chapter, on top of practicing what you already knew about fetching and
saving, you learned how to create your own managed object subclasses in Swift,
explored different types of Core Data attributes and learned about validation.

Even though this is just the second chapter, you’ve probably already started to
appreciate the flexibility and power of Core Data as a framework. But you’ve only
scratched the surface. There’s a lot more to learn!

 raywenderlich.com Page 60

Until now, you’ve been relying on Xcode’s Core Data template. There’s nothing
wrong with getting help from Xcode (that’s what it’s there for!), but if you really
want to know how Core Data works, building your own stack is a must.

The stack is made up of four Core Data classes:

• NSManagedObjectModel

• NSPersistentStore

• NSPersistentStoreCoordinator

• NSManagedObjectContext

Of these four classes, you’ve only encountered NSManagedObjectContext so far in
this book. But the other three were there behind the scenes the whole time,
supporting your managed context.

In this chapter, you’ll learn the details of what these four classes do. Rather than
rely on the default starter template, you’ll build your own Core Data stack: a
customizable “wrapper” around these classes that works as a unit.

Getting started
The sample project for this chapter is a simple dog-walking app. This application
lets you save the date and time of your dog walks in a simple table view. Use this
app regularly and your pooch (and his bladder) will love you.

You’ll find the sample project Dog Walk in the resources that accompany this book.
Open Dog Walk.xcodeproj to open the project in Xcode, and build and run the
starter project:

Chapter 3: The Core Data
Stack
By Pietro Rea

Core Data by Tutorials Second Edition Chapter 3: The Core Data Stack

 raywenderlich.com Page 61

As you can see, the sample app is already a fully-working (albeit simple) prototype.
Tapping on the plus (+) button on the top-right adds a new entry to the list of
walks. The image represents the dog you’re currently walking, but otherwise does
nothing.

The app has all the functionality it needs, except for one important feature: The list
of walks doesn’t persist. If you terminate Dog Walk and re-launch, your entire
history is gone. How will you remember if you walked your pooch this morning?

Your task in this chapter is to save the list of walks in Core Data. If that sounds like
something you’ve already done in chapters 1 and 2, here’s the twist: you’ll be
writing your own Core Data stack to really understand what’s really going on under
the hood!

Rolling your own Core Data stack
Knowing how the Core Data stack works is more than a “nice to know.” If you’re
working with a more advanced setup, such as syncing with iCloud or migrating data
from an old persistent store, digging into the stack is essential.

Before you jump into the code, let’s consider what each of the four classes in the
Core Data stack—NSManagedObjectModel, NSPersistentStore,
NSPersistentStoreCoordinator and NSManagedObjectContext—does in detail.

Note: This is one of the few parts of the book where you’ll read about the
theory before using the concepts in practice. It’s almost impossible to separate
one component from the rest of the stack and use it in isolation.

Core Data by Tutorials Second Edition Chapter 3: The Core Data Stack

 raywenderlich.com Page 62

The managed object model
The NSManagedObjectModel represents each object type in your app’s data model,
the properties they can have, and the relationship between them. Other parts of
the Core Data stack use the model to create objects, store properties and save
data.

As mentioned earlier in the book, it can be helpful to think about
NSManagedObjectModel as a database schema. If your Core Data stack uses SQLite
under the hood, that is absolutely what NSManagedObjectModel represents.

However, SQLite is only one of many persistent store types you can use in Core
Data (more on this later), so it’s better to think of the managed object model in
more general terms.

Note: You may be wondering how NSManagedObjectModel relates to the data
model editor you’ve been using all along. Good question!

The visual editor creates and edits an xcdatamodel file. There’s a special
compiler, momc, that compiles the model file into a set of files in a momd folder.

Just as your Swift code is compiled and optimized so it can run on a device,
the compiled model can be accessed efficiently at runtime. Core Data uses the
compiled contents of the momd folder to initialize an NSManagedObjectModel at
runtime.

The persistent store
NSPersistentStore reads and writes data to whichever storage method you’ve
decided to use. Core Data provides four types of NSPersistentStore out of the box:
three atomic and one non-atomic.

An atomic persistent store needs to be completely deserialized and loaded into
memory before you can make any read or write operations. In contrast, a non-
atomic persistent store can load chunks of itself onto memory as needed.

Here’s a brief overview of the four built-in Core Data store types:

1. NSQLiteStoreType is backed by an SQLite database. It is the only non-atomic
store type that Core Data supports out of the box, giving it a lightweight and
efficient memory footprint. This makes it the best choice for most iOS projects.
Xcode’s Core Data template uses this store type by default.

2. NSXMLStoreType is backed by an XML file, making it the most human-readable
of all the store types. This store type is atomic, so it can have a large memory
footprint. NSXMLStoreType is only available on OS X.

Core Data by Tutorials Second Edition Chapter 3: The Core Data Stack

 raywenderlich.com Page 63

3. NSBinaryStoreType is backed by a binary data file. Like NSXMLStoreType, it is
also an atomic store, so the entire binary file must be loaded onto memory before
you can do anything with it. You’ll rarely find this type of persistent store in real
world applications.

4. NSInMemoryStoreType is the in-memory persistent store type. In a way, this
store type is not really “persistent.” Terminate the app or turn off your phone,
and the data stored in an in-memory store type disappears into thin air. Although
this may seem to defeat the purpose of Core Data, in-memory persistent stores
can be helpful for unit testing and some types of caching.

Note: Were you holding your breath for a persistent store type backed by a
JSON file or a CSV file? Bummer. The good news is that you can create your
own type of persistent store by subclassing NSIncrementalStore.

Refer to Apple’s Incremental Store Programming Guide if you’re curious about
this option:

https://developer.apple.com/library/ios/documentation/DataManagement/Con
ceptual/IncrementalStorePG/Introduction/Introduction.html

The persistent store coordinator
NSPersistentStoreCoordinator is the bridge between the managed object model
and the persistent store. It is responsible for using the model and the persistent
stores to do most of the hard work in Core Data. It understands the
NSManagedObjectModel and knows how to send information to, and fetch information
from, the NSPersistentStore.

NSPersistentStoreCoordinator also hides the implementation details of how your
persistent store or stores are configured. This is useful for two reasons:

1. NSManagedObjectContext (coming next!) doesn’t have to know if it’s saving to an
SQLite database, XML file or even iCloud.

2. If you have multiple persistent stores, the persistent store coordinator presents a
unified interface to the managed context. As far as the managed context is
concerned, it always interacts with a single, aggregate persistent store.

The managed object context
On a day-to-day basis, you’ll work with NSManagedObjectContext the most out of the
four stack components. You’ll probably only see the other three components when
you set up your stack or do a migration.

Core Data by Tutorials Second Edition Chapter 3: The Core Data Stack

 raywenderlich.com Page 64

Therefore, understanding how contexts work is very important! Here are some
things you may have already picked up from the book so far:

• A context is an in-memory scratchpad for working with your managed objects.

• You do all of the work with your Core Data objects within a managed object
context.

• Any changes you make won’t affect the underlying data on disk until you call
save() on the context.

Now here are five things about contexts that weren’t mentioned before. A few of
them are very important for later chapters, so pay close attention:

1. The context manages the lifecycle of the objects that it creates or fetches. This
lifecycle management includes powerful features such as faulting, inverse
relationship handling and validation.

2. A managed object cannot exist without an associated context. In fact, a
managed object and its context are so tightly coupled that every managed object
keeps a reference to its context, which can be accessed like so:

let managedContext = employee.managedObjectContext

3. Contexts are very territorial; once a managed object has associated with a
particular context, it will remain associated with the same context for the duration
of its lifecycle.

4. An application can use more than one context—most non-trivial Core Data
applications fall into this category. Since a context is an in-memory scratch pad
for what’s on disk, you can actually load the same Core Data object onto two
different contexts simultaneously.

5. A context is not thread safe. The same goes for a managed object—you can only
interact with contexts and managed objects on the same thread in which they
were created. Apple has provided many ways to work with contexts in
multithreaded applications. You’ll read all about different concurrency models in
Chapter 10, “Multiple Managed Object Contexts.”

Creating your stack object
Now that you know what each component does, it’s time to return to Dog Walk and
implement your own Core Data stack.

As you know from previous chapters, Xcode creates its Core Data stack in the app
delegate. You’re going to do it differently. Instead of mixing app delegate code with
Core Data code, you’ll create a separate class to encapsulate the stack.

Go to File\New\File…, select the iOS\Source\Swift File template and click
Next. Name the file CoreDataStack and click Create to save the file.

Core Data by Tutorials Second Edition Chapter 3: The Core Data Stack

 raywenderlich.com Page 65

Go to the newly created CoreDataStack.swift. You’ll be creating this file piece by
piece. Start by replacing the contents of the file with the following:

import CoreData

class CoreDataStack {

 let modelName = "Dog Walk"

 private lazy var applicationDocumentsDirectory: NSURL = {
 let urls = NSFileManager.defaultManager().URLsForDirectory(
 .DocumentDirectory, inDomains: .UserDomainMask)
 return urls[urls.count-1]
 }()
}

You start by importing the Core Data framework and setting the name of your
future managed object model, “Dog Walk”, on a property.

applicationDocumentsDirectory is a lazy loaded property that returns a URL to your
application’s documents directory. Why do you need this? You’re going to store the
SQLite database (which is simply a file) in the documents directory. This is the
recommended place to store the user’s data, whether or not you’re using Core
Data.

Now add the following three lazily instantiated properties as shown below:

//1
lazy var context: NSManagedObjectContext = {
 var managedObjectContext = NSManagedObjectContext(
 concurrencyType: .MainQueueConcurrencyType)

 managedObjectContext.persistentStoreCoordinator = self.psc
 return managedObjectContext
 }()

//2
private lazy var psc: NSPersistentStoreCoordinator = {

 let coordinator = NSPersistentStoreCoordinator(
 managedObjectModel: self.managedObjectModel)

 let url = self.applicationDocumentsDirectory
 .URLByAppendingPathComponent(self.modelName)

 do {
 let options =

Core Data by Tutorials Second Edition Chapter 3: The Core Data Stack

 raywenderlich.com Page 66

 [NSMigratePersistentStoresAutomaticallyOption : true]

 try coordinator.addPersistentStoreWithType(
 NSSQLiteStoreType, configuration: nil, URL: url,
 options: options)
 } catch {
 print("Error adding persistent store.")
 }

 return coordinator
 }()

//3
private lazy var managedObjectModel: NSManagedObjectModel = {

 let modelURL = NSBundle.mainBundle()
 .URLForResource(self.modelName,
 withExtension: "momd")!
 return NSManagedObjectModel(contentsOfURL: modelURL)!
 }()

Each property corresponds to a major component of the Core Data stack: the
managed object context, the managed object model and the persistent store
coordinator.

Each component depends on another component, and they’re all lazy loaded so the
first time you access the stack, one component instantiates the next until you have
a complete Core Data stack.

Note: The only publicly accessible part of this Core Data stack is the
NSManagedObjectContext. Everything else is marked private. Why is this?

The managed context is the only entry point required to access the rest of the
stack. The persistent store coordinator is a public property on the
NSManagedObjectContext. Similarly, both the managed object model and the
array of persistent stores are public properties on the
NSPersistentStoreCoordinator.

CoreDataStack.swift probably looks very cryptic at the moment, so let’s go over
each section in turn as if you were accessing the managed object context for the
first time:

1. NSManagedObjectContext’s initializer takes a concurrency type enumeration.
Chapter 10 covers the different types of concurrency types in detail. For now you
initialize this managed context using MainQueueConcurrencyType.

Your managed context isn’t very useful until you connect it to an

Core Data by Tutorials Second Edition Chapter 3: The Core Data Stack

 raywenderlich.com Page 67

NSPersistentStoreCoordinator. You do this by setting the managed context’s
persistentStoreCoordinator property to stack’s store coordinator.

2. Doing this lazy-loads the store coordinator. Remember that the store coordinator
mediates between the NSManagedObjectModel and the persistent store(s), so you’ll
need to create a managed model and at least one persistent store.

First, you initialize the store coordinator using CoreDataStack’s
NSManagedObjectModel, which lazy-loads it into existence (covered below). Second you attach a
persistent store to the store coordinator.

The way you create a persistent store is somewhat unintuitive—you don’t initialize
it directly. Instead, the persistent store coordinator hands you an
NSPersistentStore object as a side effect of attaching a persistent store type. You
simply have to specify the store type (NSSQLiteStoreType in this case), the URL
location of the store file and some configuration options.

Initializing the persistent store with a managed model lazy-loads the managed
model. NSManagedObjectModel’s initializer only takes one parameter, the URL to
the momd directory that contains the compiled version of the .xcdatamodeld file.
Note: Chapter 6, “Versioning and Migration,” covers
NSMigratePersistentStoresAutomaticallyOption. For now, know that setting this
option tells Core Data to do its best to automatically merge different versions of
a managed object model when the model’s entities or attributes change.

Finally, add the following public method:

func saveContext () {
 if context.hasChanges {
 do {
 try context.save()
 } catch let error as NSError {
 print("Error: \(error.localizedDescription)")
 abort()
 }
 }
}

This is a convenience method to save the stack’s managed object context and
handle any errors that might result.

Switch to ViewController.swift and make the following changes. First, import the
Core Data framework below import UIKit:

import CoreData

Core Data by Tutorials Second Edition Chapter 3: The Core Data Stack

 raywenderlich.com Page 68

Then, add a property inside the class definition to hold the managed object context:

var managedContext: NSManagedObjectContext!

As in the previous chapter, you’ll follow the pattern of each view controller having a
reference to the managed object context.

Now open AppDelegate.swift and make the following changes. Again, you need to
import the Core Data framework below import UIKit:

import CoreData

Then, below var window: UIWindow?, add a variable to hold the Core Data stack:

lazy var coreDataStack = CoreDataStack()

You initialize the Core Data stack object as a lazy variable on the application
delegate. This means the stack won’t be set up until the first time you access the
property.

Still in AppDelegate.swift, implement
application(_:didFinishLaunchingWithOptions:) as shown below:

func application(application: UIApplication,
 didFinishLaunchingWithOptions
 launchOptions: [NSObject: AnyObject]?) -> Bool {

 let navigationController =
 window!.rootViewController as! UINavigationController

 let viewController =
 navigationController.topViewController as! ViewController

 viewController.managedContext = coreDataStack.context

 return true
}

This code propagates the managed context from your CoreDataStack object
(initializing the whole stack in the process) to ViewController.

Finally, add the following two UIApplicationDelegate methods:

func applicationDidEnterBackground(application: UIApplication) {
 coreDataStack.saveContext()
}

func applicationWillTerminate(application: UIApplication) {

Core Data by Tutorials Second Edition Chapter 3: The Core Data Stack

 raywenderlich.com Page 69

 coreDataStack.saveContext()
}

These methods ensure that Core Data saves any pending changes before the app is
either sent to the background or terminated for whatever reason.

Modeling your data
Now that your shiny new Core Data stack is securely fastened to your application
delegate, it’s time to create your data model.

Head over to your Project Navigator and… Wait a second. There’s no data model
file! That’s right. Since you generated this sample application without enabling the
option to use Core Data, there’s no .xcdatamodel file.

No worries. Go to File\New\File…, select the iOS\Core Data\Data Model
template and click Next. Name the file Dog Walk.xcdatamodeld and click Create
to save the file:

Note: You’ll have problems later on if you don’t name your data model file
precisely Dog Walk.xcdatamodel. This is because CoreDataStack.swift
expects to find the compiled version at Dog Walk.momd.

Open the data model file and create a new entity named Dog. You should be able
to do this on your own by now, but in case you forgot how, click the Add Entity
button on the bottom left.

Add an attribute named name of type String. Your data model should look like
this:

Core Data by Tutorials Second Edition Chapter 3: The Core Data Stack

 raywenderlich.com Page 70

You also want to keep track of the walks for a particular dog. After all, that’s the
whole point of the app!

Define another entity and name it Walk. Then add an attribute named date and
set its type to Date.

Go back to the Dog entity. You might think you need to add a new attribute of type
Array to hold the walks, but there is no Array type in Core Data. Instead, the way
to do this is to model it as a relationship. Add a new relationship and name it
walks:

Set the destination to Walk. You can think of the destination as the receiving end
of a relationship.

Every relationship begins as a to-one relationship by default, which means you can
only track one walk per dog at the moment. Unless you don’t plan on keeping your
dog for very long, you probably want to track more than one walk.

To fix this, with the walks relationship selected, open the Data Model inspector:

Core Data by Tutorials Second Edition Chapter 3: The Core Data Stack

 raywenderlich.com Page 71

Click on the Type dropdown, select To Many and check Ordered. This means one
dog can have many walks and the order of the walks matters, since you’ll be
displaying the walks sorted by date.

Select the Walk entity and create an inverse relationship back to Dog. Set the
destination as dog and the inverse as walks.

It’s OK to leave this relationship as a to-one relationship. A dog can have many
walks, but a walk can only belong to one dog—for the purposes of this app, at least.
:]

The inverse lets the model know how to find its way back, so to speak. Given a
walk record, you can follow the relationship to the dog. Thanks to the inverse, the
model knows to follow the walks relationship to get back to the walk record.

This is a good time to let you know that the data model editor has another view
style. This entire time you’ve been looking at the table editor style. Toggle the
segmented control on the bottom-right to switch to the graph editor style:

Core Data by Tutorials Second Edition Chapter 3: The Core Data Stack

 raywenderlich.com Page 72

The graph editor style is a great tool to visualize the relationships between your
Core Data entities. Here the to-many relationship from Dog to Walk is represented
with a double arrow. Walk points back to Dog with a single arrow (to-one
relationship).

Feel free to switch back and forth between the two editor styles. You might find it
easier to use the table style to add and remove entities and attributes, and the
graph style to see the big picture of your data model.

Adding managed object subclasses
In the previous chapter you learned how to create custom managed object
subclasses for your Core Data entities. It’s more convenient to work this way, so
this is what you’ll do for Dog and Walk as well.

Go to Editor\Create NSManagedObject Subclass… and choose the Dog Walk
model and then both the Dog and Walk entities. Make sure you choose Swift as
the language and click Create.

As you saw in Chapter 2, doing this creates two files per entity: one for the Core
Data properties you defined in the model editor and one for any future functionality
you may add to your managed object subclass.

Dog+CoreDataProperties.swift should look like this:

import Foundation
import CoreData

extension Dog {

Core Data by Tutorials Second Edition Chapter 3: The Core Data Stack

 raywenderlich.com Page 73

 @NSManaged var name: String?
 @NSManaged var walks: NSOrderedSet?

}

Like before, the name attribute is a String optional. But what about the walks
relationship? Core Data represents to-many relationships using sets, not arrays.
Because you made the walks relationship ordered, you’ve got an ordered set.

Note: NSSet seems like an odd choice, doesn’t it? Unlike arrays, sets don’t
allow accessing their members by index. In fact, there’s no ordering at all!
Core Data uses NSSet because a set forces uniqueness in its members. The
same object can’t feature more than once in a to-many relationship.

If you need to access individual objects by index, you can check the Ordered
checkbox in the visual editor, as you’ve done here. Core Data will then
represent the relationship as an NSOrderedSet.

Similarly, Walk+CoreDataProperties.swift should look like this:

import Foundation
import CoreData

extension Walk {

 @NSManaged var date: NSDate?
 @NSManaged var dog: Dog?

}

The inverse relationship back to Dog is simply a property of type Dog. Easy as pie.

Note: Sometimes Xcode will create relationship properties with the generic
NSManagedObject type instead of the specific class, especially if you’re making
lots of subclasses at the same time. If this happens, just correct the type
yourself or generate the specific file again.

A walk down persistence lane
All your setup is complete: your Core Data stack, your data model and your
managed object subclasses. It’s time to convert Dog Walk to use Core Data. You’ve
done this several times before, so this should be an easy section for you.

Core Data by Tutorials Second Edition Chapter 3: The Core Data Stack

 raywenderlich.com Page 74

Pretend for a moment that this application will at some point support tracking
multiple dogs. The first step is to track the currently selected dog. Switch to
ViewController.swift and replace the walks array with the following property:

var currentDog: Dog!

Then, add the following code to the end of viewDidLoad():

let dogEntity = NSEntityDescription.entityForName("Dog",
 inManagedObjectContext: managedContext)

let dogName = "Fido"
let dogFetch = NSFetchRequest(entityName: "Dog")
dogFetch.predicate = NSPredicate(format: "name == %@", dogName)

do {
 let results =
 try managedContext.executeFetchRequest(dogFetch) as! [Dog]

 if results.count > 0 {
 //Fido found, use Fido
 currentDog = results.first
 } else {
 //Fido not found, create Fido
 currentDog = Dog(entity: dogEntity!,
 insertIntoManagedObjectContext: managedContext)
 currentDog.name = dogName
 try managedContext.save()
 }
} catch let error as NSError {
 print("Error: \(error) " +
 "description \(error.localizedDescription)")
}

First, you fetch all Dog entities with names of “Fido” from Core Data. If the fetch
request came back with results, you set the first entity (there should only be one)
as the currently selected dog. If the fetch request comes back with zero results,
this probably means it’s the user’s first time opening the app. If this is the case,
you insert a new dog, name it “Fido”, and set it as the currently selected dog.

Note: You’ve just implemented what’s often referred to as the Find or Create
pattern. The purpose of this pattern is to manipulate an object stored in Core
Data without running the risk of adding a duplicate in the process.

In iOS 9, Apple introduced the ability to specify unique constraints to your

Core Data by Tutorials Second Edition Chapter 3: The Core Data Stack

 raywenderlich.com Page 75

Core Data entities. With unique constraints you can specify in your data model
which attributes must always be unique on an entity to avoid adding
duplicates.

Next, replace the implementation of tableView(_:numberOfRowsInSection:) with the
following:

func tableView(tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return currentDog.walks!.count
}

As you can probably guess, this ties the number of rows in the table view to the
number of walks set in the currently selected dog.

Next, replace tableView(_:cellForRowAtIndexPath:) as follows:

func tableView(tableView: UITableView,
 cellForRowAtIndexPath
 indexPath: NSIndexPath) -> UITableViewCell {

 let cell =
 tableView.dequeueReusableCellWithIdentifier("Cell",
 forIndexPath: indexPath) as UITableViewCell

 //change the last two statements
 let walk = currentDog.walks![indexPath.row] as! Walk

 cell.textLabel!.text =
 dateFormatter.stringFromDate(walk.date!)

 return cell
}

Only two lines of code have changed. Now, you take the date of each walk and
display it in the corresponding table view cell.

The add method still has a reference to the old walks array. Remove it for now—
you’ll re-implement this method in the next step:

@IBAction func add(sender: AnyObject) {
 //remove walks.append(NSDate())
 tableView.reloadData()
}

Build and run to make sure you’ve hooked up everything correctly:

Core Data by Tutorials Second Edition Chapter 3: The Core Data Stack

 raywenderlich.com Page 76

Hooray! If you’ve gotten this far, you’ve just inserted a dog into Core Data and are
currently populating the table view with his list of walks. This list doesn’t have any
walks at the moment, so the table doesn’t look very exciting.

Tap the plus (+) button and it understandably does nothing. You haven’t
implemented it yet! Before transitioning to Core Data, add(_:) simply added an
NSDate object to an array and reloaded the table view. Re-implement it as shown
below:

@IBAction func add(sender: AnyObject) {

 //Insert a new Walk entity into Core Data
 let walkEntity = NSEntityDescription.entityForName("Walk",
 inManagedObjectContext: managedContext)

 let walk = Walk(entity: walkEntity!,
 insertIntoManagedObjectContext: managedContext)

 walk.date = NSDate()

 //Insert the new Walk into the Dog's walks set
 let walks = currentDog.walks!.mutableCopy()
 as! NSMutableOrderedSet

 walks.addObject(walk)

 currentDog.walks = walks.copy() as? NSOrderedSet

 //Save the managed object context
 do {
 try managedContext.save()
 } catch let error as NSError {

Core Data by Tutorials Second Edition Chapter 3: The Core Data Stack

 raywenderlich.com Page 77

 print("Could not save:\(error)")
 }

 //Reload table view
 tableView.reloadData()
}

As you can see, the Core Data version of this method is much more complicated.
First, you have to create a new Walk entity and set its date attribute to now. Then,
you have to insert this walk into the currently selected dog’s list of walks.

However, the walks attribute is of type NSOrderedSet. NSOrderedSet is immutable, so
you first have to create a mutable copy (NSMutableOrderedSet), insert the new walk
and then reset an immutable copy of this mutable ordered set back on the dog.

Note: Is adding a new object into a to-many relationship making your head
spin? Many people can sympathize, which is why many of the Core Data open
source projects have convenience methods to do this.

Core Data can make things easier for you, though. If the relationship weren’t
ordered, you’d just be able to set the “one” side of the relationship (e.g.,
walk.dog = currentDog) rather than the “many” side and Core Data would use
the inverse relationship defined in the model editor to add the walk to the
dog’s set of walks.

Finally, you commit your changes to the persistent store by calling save() on the
managed object context, and you reload the table view.

Build and run the app, and tap the plus (+) button a few times:

Core Data by Tutorials Second Edition Chapter 3: The Core Data Stack

 raywenderlich.com Page 78

Great! The list of walks should now be saved in Core Data. Verify this by
terminating the app in the fast app switcher and re-launching from scratch.

Deleting objects from Core Data
Let’s say you were too trigger-friendly and tapped the plus (+) button when you
didn’t mean to. You didn’t actually walk your dog, so you want to delete the walk
you just added.

You’ve added objects to Core Data, you’ve fetched them, modified them and saved
them again. What you haven’t yet done is delete them—but you’re about to do that
next.

First, add the following method to ViewController.swift:

func tableView(tableView: UITableView,
 canEditRowAtIndexPath indexPath: NSIndexPath) -> Bool {
 return true
}

You’re going to use UITableView’s default behavior for deleting items: swipe left to
reveal the red Delete button, then tap on it to delete. The table view calls this
UITableViewDataSource method to ask if a particular cell is editable, and returning
true means all the cells should be editable.

Next, add the following method:

func tableView(tableView: UITableView,
 commitEditingStyle
 editingStyle: UITableViewCellEditingStyle,
 forRowAtIndexPath indexPath: NSIndexPath) {

 if editingStyle == UITableViewCellEditingStyle.Delete {

 //1
 let walkToRemove =
 currentDog.walks![indexPath.row] as! Walk

 //2
 managedContext.deleteObject(walkToRemove)

 //3
 do {
 try managedContext.save()
 } catch let error as NSError {
 print("Could not save: \(error)")

Core Data by Tutorials Second Edition Chapter 3: The Core Data Stack

 raywenderlich.com Page 79

 }

 //4
 tableView.deleteRowsAtIndexPaths([indexPath],
 withRowAnimation: UITableViewRowAnimation.Automatic)
 }
}

This table view data source method is called when you tap the red Delete button.
Let’s go step by step through the code:

1. First, you get a reference to the walk you want to delete.

2. Remove the walk from Core Data by calling NSManagedObjectContext’s
deleteObject method. Core Data also takes care of removing the deleted walk
from the current dog’s walks relationship.

3. No changes are final until you save your managed object context, not even
deletions!

4. Finally, you animate the table view to tell the user about the deletion.

Build and run the app one more time. You should have several walks from previous
runs. Pick any and swipe to the left:

Tap on the Delete button to remove the walk. Verify that the walk is actually gone
by terminating the app and re-launching from scratch. The walk you just removed
is gone for good. Core Data giveth and Core Data taketh away.

Note: Deletion used to be one of the most “dangerous” Core Data operations.
Why is this? When you remove something from Core Data you have to delete
both the record on disk as well as any outstanding references in code.

Core Data by Tutorials Second Edition Chapter 3: The Core Data Stack

 raywenderlich.com Page 80

Trying to access an NSManagedObject that had no Core Data backing store
resulted in the the much-feared “inaccessible fault” Core Data crash.

Staring in iOS 9, deletion is safer than ever. Apple introduced the property
shouldDeleteInaccessibleFaults on NSManagedObjectContext, which is turned
on by default. This marks bad faults as deleted and treats missing data as
NULL/nil/0.

Where to go from here?
If you followed this chapter all the way through, then you’ve spent a lot of time on
setup and the underlying pieces that make up Core Data. This was intentional! Core
Data has a reputation for its steep learning curve. This is partly because of all the
setup it requires just to get started: the stack, the data model, the managed object
subclasses, et cetera. In addition, you got some firsthand experience with
relationships and deletion.

These last three chapters were not only a tour of Core Data but also a thorough
introduction to the entire framework. Even though you didn’t spend long on any one
particular topic, you’re now familiar with the basics of fetching, saving, editing and
deleting objects from a Core Data store backed by an SQLite database.

In the next chapter, you’ll spend less time on setup and dig much deeper into
fetching data. You got a small taste of the basic operations in this chapter, but
there’s a lot more to learn. Are you ready to continue your journey?

 raywenderlich.com Page 81

In the first three chapters of this book, you began exploring the foundations of Core
Data, including very basic ways of saving and fetching data to and from your Core
Data persistent store.

For example, you performed simple, unrefined fetches such as “fetch all Bowtie
entities.” Sometimes this is all you need to do, but often you’ll want to exert more
control over how you retrieve information from Core Data.

Building on what you’ve learned so far, this chapter dives deep into the topic of
fetching. Fetching is a large topic in Core Data, and you have many tools at your
disposal. By the end of this chapter, you’ll know how to:

• fetch only what you need to;

• refine your fetched results using predicates;

• fetch in the background to avoid blocking the UI; and

• avoid unnecessary fetching by updating objects directly in the persistent store.

This chapter is a toolbox sampler: Its aim is to expose you to many of the things
you can do with fetching so that when the time comes, you can use the right tool.

NSFetchRequest: the star of the show
As you’ve learned in previous chapters, the way to fetch records from Core Data is
to create an instance of NSFetchRequest, configure it as you like it and hand it over
to NSManagedObjectContext to do the heavy lifting for you.

Simple enough, right? There are actually four different ways to get ahold of a fetch
request. Some are more popular than others, but you’ll likely encounter all of them
at some point as a Core Data developer.

Before jumping to the starter project for this chapter, let’s quickly go over the
different ways to set up a fetch request so you’re not caught by surprise. They are
demonstrated below:

Chapter 4: Intermediate
Fetching
By Pietro Rea

Core Data by Tutorials Second Edition Chapter 4: Intermediate Fetching

 raywenderlich.com Page 82

//1
let fetchRequest1 = NSFetchRequest()
let entity = NSEntityDescription.entityForName("Person",
 inManagedObjectContext: managedObjectContext)!
fetchRequest1.entity = entity

//2
let fetchRequest2 = NSFetchRequest(entityName: "Person")

//3
let fetchRequest3 =
managedObjectModel.fetchRequestTemplateForName("peopleFR")

//4
let fetchRequest4 =
managedObjectModel.fetchRequestFromTemplateWithName("peopleFR",
substitutionVariables: ["NAME" :"Ray"])

Let’s go through them in turn:

1. In the first example, you initialize an instance of NSFetchRequest as if it were any
other object. At a minimum, you must specify an NSEntityDescription for the
fetch request. In this case, the entity is Person. You initialize an instance of
NSEntityDescription and use it to set the fetch request’s entity property.

2. Here, you use NSFetchRequest’s convenience initializer. It initializes a new fetch
request and sets its entity property in one step. You simply need to provide a
string for the entity name rather than a full-fledged NSEntityDescription.

3. In the third example, you retrieve your fetch request from your
NSManagedObjectModel. You can configure and store commonly used fetch requests
in Xcode’s data model editor. You’ll learn how to do this later in the chapter.

4. The last case is similar to the third. You get a fetch request from your managed
object model, but this time, you pass in some extra variables. These
“substitution” variables are used in a predicate to refine your fetched results.

The first two examples are the simple cases you’ve already seen. You’ll see even
more of these simple cases in the rest of this chapter, in addition to stored fetch
requests and other tricks of NSFetchRequest!

Introducing the Bubble Tea app
This chapter’s sample project is a bubble tea app. For those of you who don’t know
about bubble tea (also known as “boba tea”), it is a Taiwanese tea-based drink that
contains large tapioca pearls. It’s very yummy!

Core Data by Tutorials Second Edition Chapter 4: Intermediate Fetching

 raywenderlich.com Page 83

You can think of this bubble tea app as an ultra-niche Yelp. Using this app, you can
find the locations near you that sell your favorite Taiwanese drink. For this chapter,
you’ll only be working with static venue data from Foursquare—around 30 locations
in New York City that sell bubble tea. You’ll use this data to build the filter/sort
screen to arrange the list of static venues as you see fit.

Go to this chapter’s files and open Bubble Tea Finder.xcodeproj. Build and run
the starter project, and you’ll see the following:

The sample app consists of a number of table view cells with static information.
Although the sample project isn’t very exciting at the moment, there’s a lot of setup
that’s already been done for you.

Open the project navigator and take a look at the full list of files in the starter
project:

Core Data by Tutorials Second Edition Chapter 4: Intermediate Fetching

 raywenderlich.com Page 84

It turns out that most of the Core Data setup you had to do in the first section of
the book comes ready for you to use. Here’s a quick overview of the components
that you get in the starter project. It’s quite a lot, so I’ve grouped the files into
categories below:

• Seed data: seed.json is a JSON file that contains real-world venue data for
venues in New York City that serve bubble tea. Since this is real data coming
from Foursquare, the structure is more complex than previous seed data used in
this book.

• Data model: Click on Bubble_Tea_Finder.xcdatamodeld to open Xcode’s
model editor. The most important entity is Venue. It contains attributes for a
venue’s name, phone number and the number of specials it’s offering at the
moment.

Since the JSON data is rather complex, the data model breaks down a venue’s
information into other entities. These are Category, Location, PriceInfo and
Stats. For example, Location has attributes for city, state, country, et cetera.

• Managed object subclasses: All the entities in your data model also have
corresponding NSManagedObject subclasses. These are Venue.swift,
Location.swift, PriceInfo.swift, Category.swift and Stats.swift. You can find
these in the NSManagedObject group along with their accompanying
EntityName+CoreDataProperties.swift file.

• App Delegate: On first launch, the app delegate reads from seed.json, creates
corresponding Core Data objects and saves them to the persistent store.

• CoreDataStack: As in previous chapters, this object contains the cadre of Core
Data objects known as the “stack”: the context, the model, the persistent store
and the persistent store coordinator. No need to set this up—it comes ready for
you to use it.

• View Controllers: The initial view controller that shows you the list of venues is
ViewController.swift. Tapping the Filter button on the top-right brings up
FilterViewController.swift. There’s not much going on here at the moment.
You’ll be adding code to these two files throughout the chapter.

When you first launched the sample app, you saw only static information. However,
your app delegate had already read the seed data from seed.json, parsed it into
Core Data objects and saved them into the persistent store.

Your first task will be to fetch this data and display it on a table view. However, this
time you’ll do it with a twist.

Stored fetch requests
As previously mentioned, you can store frequently used fetch requests right in the
data model. Not only does this make them easier to access, but you also get the
benefit of using a GUI tool to set up the fetch request parameters.

Core Data by Tutorials Second Edition Chapter 4: Intermediate Fetching

 raywenderlich.com Page 85

Let’s give it a try. Open Bubble_Tea_Finder.xcdatamodeld and long-click the
Add Entity button:

Select Add Fetch Request from the menu. This will create a new fetch request on
the left-side bar and take you to a special fetch request editor:

You can click on the newly created fetch request on the left-hand sidebar to change
its name. Leave it with the default “FetchRequest” for now.

You can make your fetch request as general or as specific as you want using this
visual tool in Xcode’s data model editor. To start, create a fetch request that
retrieves all Venue objects from the persistent store.

You only need to make one change here: click the dropdown menu next to Fetch
all and select Venue.

Core Data by Tutorials Second Edition Chapter 4: Intermediate Fetching

 raywenderlich.com Page 86

That’s all you need to do. If you wanted to refine your fetch request with an
additional predicate, you could also add conditions from the fetch request editor.

Let’s take your newly created fetch request out for a spin. Switch to
ViewController.swift and import the Core Data framework:

import CoreData

Then, add the following two properties to the top of the file:

//Add below var coreDataStack: CoreDataStack!
var fetchRequest: NSFetchRequest!
var venues: [Venue]!

The first property will hold your fetch request. The second property is the array of
Venue objects that you’ll use to populate the table view.

Next, make the following additions to the currently empty viewDidLoad():

let model =
coreDataStack.context.persistentStoreCoordinator!
 .managedObjectModel

fetchRequest = model.fetchRequestTemplateForName("FetchRequest")

fetchAndReload()

Doing this connects the fetchRequest property you set up moments ago to the one
you created using Xcode’s data model editor. There are three things to remember
here:

1. Unlike other ways of getting a fetch request, this one involves the managed
object model. This is why you must go through the CoreDataStack property to
retrieve your fetch request.

2. As you saw in the previous chapter, you architected CoreDataStack in a way
where only the managed context is public. To retrieve the managed object model,
you have to go through the managed context’s persistent store coordinator.

Core Data by Tutorials Second Edition Chapter 4: Intermediate Fetching

 raywenderlich.com Page 87

3. NSManagedObjectModel’s fetchRequestTemplateForName() takes a string identifier.
This identifier must exactly match whatever name you chose for your fetch
request in the model editor. Otherwise, your app will throw an exception and
crash. Whoops!

The second line calls a method you haven’t defined yet, so Xcode will complain
about it. Declare this method at the bottom of the file to appease Xcode:

//MARK: - Helper methods

func fetchAndReload() {

 do {
 venues =
 try coreDataStack.context
 .executeFetchRequest(fetchRequest) as! [Venue]
 tableView.reloadData()

 } catch let error as NSError {
 print("Could not fetch \(error), \(error.userInfo)")
 }
}

As its name suggests, fetchAndReload() executes the fetch request and reloads the
table view. Other methods in this class will need to see the fetched objects, so you
store the fetched results in the venues property you defined earlier.

There’s one more thing you have to do before you can run the sample project for
the first time: You have to hook up the table view’s data source with the fetched
Venue objects.

In the UITableViewDataSource extension, replace the placeholder implementations
of tableView(_:numberOfRowsInSection:) and tableView(_:cellForRowAtIndexPath:)
with the following:

func tableView(tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return venues.count
}

func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath)
 -> UITableViewCell {

 let cell =
 tableView
 .dequeueReusableCellWithIdentifier(venueCellIdentifier)!

Core Data by Tutorials Second Edition Chapter 4: Intermediate Fetching

 raywenderlich.com Page 88

 let venue = venues[indexPath.row]
 cell.textLabel!.text = venue.name
 cell.detailTextLabel!.text = venue.priceInfo?.priceCategory

 return cell
}

You’ve implemented these methods many times in this book, so you’re probably
familiar with what they do. The first method, tableView(_:numberOfRowsInSection:),
matches the number of cells in the table view with the number of fetched objects in
the venues array.

The second method, tableView(_:cellForRowAtIndexPath:), dequeues a cell for a
given index path and populates it with the information of the corresponding Venue in
the venues array. In this case, the main label gets the venue’s name and the detail
label, in turn, gets a price category that is one of three possible values: $, $$ or
$$$.

Build and run the project, and you’ll see the following:

You can scroll down the list of bubble tea venues. These are all real places in New
York City that sell the delicious drink.

Core Data by Tutorials Second Edition Chapter 4: Intermediate Fetching

 raywenderlich.com Page 89

Note: When should you store fetch requests in your data model?

If you know you’ll be making the same fetch over and over in different parts of
your app, you can use this feature to save you from writing the same code
multiple times. A drawback of stored fetch requests is that there is no way to
specify a sort order for the results.

Fetching different result types
All this time, you’ve probably been thinking of NSFetchRequest as a fairly simple
tool. You give it some instructions and you get some objects in return. What else is
there to it?

If this is the case, you’ve been underestimating this class. NSFetchRequest is the
multi-function Swiss army knife of the Core Data framework! You can use it to fetch
individual values, compute statistics on your data such as the average, minimum
and maximum, and more.

How is this possible, you ask? NSFetchRequest has a property named resultType. So
far, you’ve only used the default value, NSManagedObjectResultType. Here are all the
possible values for a fetch request’s result type:

• NSManagedObjectResultType: Returns managed objects (default value).

• NSCountResultType: Returns the count of the objects that match the fetch
request.

• NSDictionaryResultType: This is a catch-all return type for returning the results
of different calculations.

• NSManagedObjectIDResultType: Returns unique identifiers instead of full-
fledged managed objects.

Let’s go back to the sample project and apply these concepts in practice.

With the sample project running, tap Filter in the top-right corner to bring up the
UI for the filter screen. You won’t implement the actual filters/sorts right now.
Instead, you’ll focus on the following four labels:

Core Data by Tutorials Second Edition Chapter 4: Intermediate Fetching

 raywenderlich.com Page 90

The filter screen is divided into three sections: Price, Most Popular and Sort By.
That last section is not technically made up of “filters,” but sorting usually goes
hand in hand with filters, so we’ll leave it like that. :]

Below each price filter is space for the total number of venues that fall into that
price category. Similarly, there’s a spot for the total number of deals across all
venues. You’ll implement these next.

Returning a count
Open FilterViewController.swift and, as always, import the Core Data framework
at the top of the file:

import CoreData

Then add the following property below the last @IBOutlet property:

var coreDataStack: CoreDataStack!

This will hold the CoreDataStack object you’ve been using in the app delegate and in
ViewController.swift.

Switch to ViewController.swift and make the following modification to the already
implemented prepareForSegue:

override func prepareForSegue(segue: UIStoryboardSegue,
 sender: AnyObject?) {

Core Data by Tutorials Second Edition Chapter 4: Intermediate Fetching

 raywenderlich.com Page 91

 if segue.identifier == filterViewControllerSegueIdentifier {
 let navController =
 segue.destinationViewController as! UINavigationController

 let filterVC =
 navController.topViewController as! FilterViewController

 filterVC.coreDataStack = coreDataStack
 }
}

The new line of code propagates the CoreDataStack object from ViewController to
FilterViewController. The filter screen is now ready to use Core Data.

Go back to FilterViewController.swift and add the following lazy property:

lazy var cheapVenuePredicate: NSPredicate = {
 var predicate =
 NSPredicate(format: "priceInfo.priceCategory == %@", "$")
 return predicate
 }()

You’ll use this lazily instantiated NSPredicate to calculate the number of venues that
fall into the lowest price category.

Note: NSPredicate supports key paths. This is why you can drill down from the
Venue entity into the PriceInfo entity using priceInfo.priceCategory.

Next, implement the following method in FilterViewController:

func populateCheapVenueCountLabel() {

 // $ fetch request
 let fetchRequest = NSFetchRequest(entityName: "Venue")
 fetchRequest.resultType = .CountResultType
 fetchRequest.predicate = cheapVenuePredicate

 do {

 let results =
 try coreDataStack.context
 .executeFetchRequest(fetchRequest) as! [NSNumber]

 let count = results.first!.integerValue

Core Data by Tutorials Second Edition Chapter 4: Intermediate Fetching

 raywenderlich.com Page 92

 firstPriceCategoryLabel.text =
 "\(count) bubble tea places"

 } catch let error as NSError {

 print("Could not fetch \(error), \(error.userInfo)")
 }
}

This method creates a fetch request to fetch Venue entities. You then set the result
type to .CountResultType and set the fetch request’s predicate to the lazy variable
you defined moments ago.

When you set a fetch result’s result type to NSCountResultType, the return value
becomes an optional Swift array containing a single NSNumber. The integer inside the
NSNumber is the total count you’re looking for.

Once again, you execute the fetch request against CoreDataStack’s
NSManagedObjectContext property. Then you extract the integer from the resulting
NSNumber and use it to populate firstPriceCategoryLabel.

Before you run the sample app, implement viewDidLoad() to invoke the method you
just implemented:

override func viewDidLoad() {
 super.viewDidLoad()
 populateCheapVenueCountLabel()
}

Now build and run to test if these changes took effect. Tap Filter to bring up the
filter/sort menu:

The label under the first price filter now says “27 bubble tea places.” Hooray!
You’ve successfully used NSFetchRequest to calculate a count.

Core Data by Tutorials Second Edition Chapter 4: Intermediate Fetching

 raywenderlich.com Page 93

Note: You may be thinking that you could have just as easily fetched the
actual Venue objects and gotten the count from the array’s count property.

That’s true. Fetching counts instead of objects is mainly a performance
optimization. For example, if you had census data for New York City and
wanted to know how many people lived in its metropolitan area, would you
prefer Core Data gave you the number 8,300,000 (an integer) or an array of
8,300,000 records? Obviously, getting the count directly is more memory-
efficient.

There’s a whole chapter devoted to Core Data performance. If you want to
learn more about performance optimization in Core Data, check out Chapter 9,
“Measuring and Boosting Performance.”

Now that you’re acquainted with the count result type, let’s quickly implement the
count for the second price category filter.

Add the following lazy property below the first one you added earlier:

lazy var moderateVenuePredicate: NSPredicate = {
 var predicate =
 NSPredicate(format: "priceInfo.priceCategory == %@", "$$")
 return predicate
 }()

This NSPredicate is almost identical to the cheap venue predicate, except that this
one matches against $$ instead of $.

Similarly, add the following method below populateCheapVenueCountLabel():

func populateModerateVenueCountLabel() {

 // $$ fetch request
 let fetchRequest = NSFetchRequest(entityName: "Venue")
 fetchRequest.resultType = .CountResultType
 fetchRequest.predicate = moderateVenuePredicate

 do {

 let results =
 try coreDataStack.context
 .executeFetchRequest(fetchRequest) as! [NSNumber]

 let count = results.first!.integerValue

 secondPriceCategoryLabel.text =

Core Data by Tutorials Second Edition Chapter 4: Intermediate Fetching

 raywenderlich.com Page 94

 "\(count) bubble tea places"

 } catch let error as NSError {

 print("Could not fetch \(error), \(error.userInfo)")
 }
}

Finally, modify viewDidLoad() to invoke your newly defined method:

override func viewDidLoad() {
 super.viewDidLoad()

 populateCheapVenueCountLabel()

 //add the line below
 populateModerateVenueCountLabel()
}

Build and run the sample project. As before, tap Filter on the top right to reach the
filter/sort screen:

Great news for bubble tea lovers! Only two places are moderately expensive.
Bubble tea as a whole seems to be quite accessible. :]

An alternate way to fetch a count
Now that you’re familiar with NSCountResultType, it’s a good time to mention that
there’s an alternate API for fetching a count directly from Core Data.

Core Data by Tutorials Second Edition Chapter 4: Intermediate Fetching

 raywenderlich.com Page 95

Since there’s one more price category count to implement, let’s use this alternate
API now. Add the follow lazy property below the one you added previously:

lazy var expensiveVenuePredicate: NSPredicate = {
 var predicate =
 NSPredicate(format: "priceInfo.priceCategory == %@", "$$$")
 return predicate
 }()

Now implement the following method below populateModerateVenueCountLabel:

func populateExpensiveVenueCountLabel() {

 // $$$ fetch request
 let fetchRequest = NSFetchRequest(entityName: "Venue")
 fetchRequest.predicate = expensiveVenuePredicate

 var error: NSError?
 let count =
 coreDataStack.context.countForFetchRequest(fetchRequest,
 error: &error)

 if count != NSNotFound {
 thirdPriceCategoryLabel.text = "\(count) bubble tea places"
 } else {
 print("Could not fetch \(error), \(error?.userInfo)")
 }
}

Like in the previous two scenarios, here you create a fetch request for retrieving
Venue objects. Then you set the predicate that you defined as a lazy property
moments earlier, expensiveVenuePredicate.

The difference between this scenario and the last two is that here, you don’t set the
result type to NSCountResultType. Rather than the usual executeFetchRequest(_:),
you use NSManagedObjectContext’s method countForFetchRequest(_:error:) instead.

The return value for countForFetchRequest(_:error:) is an integer that you can use
directly to populate the third price category label.

Finally, modify viewDidLoad() to invoke the method you just defined:

override func viewDidLoad() {
 super.viewDidLoad()

 populateCheapVenueCountLabel()
 populateModerateVenueCountLabel()

Core Data by Tutorials Second Edition Chapter 4: Intermediate Fetching

 raywenderlich.com Page 96

 //add the line below
 populateExpensiveVenueCountLabel()
}

Build and run to see if your latest changes took effect. The filter/sort screen should
look like this:

There’s only one bubble tea venue that falls into the $$$ category. Maybe they use
real pearls instead of tapioca?

Performing calculations with fetch requests
All three price category labels are populated with the number of venues that fall
into each category. The next step is to populate the label under “Offering a deal.” It
currently says “0 total deals.” That can’t be right!

Where exactly does this information come from? Venue has a specialCount attribute
that captures the number of deals the venue is currently offering. Unlike the labels
under the price category, you now need to know the total sum of deals across all
venues since a particularly savvy venue could have many deals at once.

The naïve approach would be to load all venues into memory and sum their deals
using a for-loop. If you’re hoping for a better way, you’re in luck: Core Data has
built-in support for a number of different functions such as average, sum, min and
max.

Still in FilterViewController.swift, implement the following method:

func populateDealsCountLabel() {
 //1
 let fetchRequest = NSFetchRequest(entityName: "Venue")

Core Data by Tutorials Second Edition Chapter 4: Intermediate Fetching

 raywenderlich.com Page 97

 fetchRequest.resultType = .DictionaryResultType

 //2
 let sumExpressionDesc = NSExpressionDescription()
 sumExpressionDesc.name = "sumDeals"

 //3
 sumExpressionDesc.expression =
 NSExpression(forFunction: "sum:",
 arguments:[NSExpression(forKeyPath: "specialCount")])

 sumExpressionDesc.expressionResultType =
 .Integer32AttributeType

 //4
 fetchRequest.propertiesToFetch = [sumExpressionDesc]

 //5
 do {
 let results = try coreDataStack.context
 .executeFetchRequest(fetchRequest) as! [NSDictionary]

 let resultDict = results.first!
 let numDeals = resultDict["sumDeals"]
 numDealsLabel.text = "\(numDeals!) total deals"

 } catch let error as NSError {
 print("Could not fetch \(error), \(error.userInfo)")
 }
}

This method contains a few classes you’ve not encountered in the book before, so
let’s explain each step in turn:

1. You begin by creating your typical fetch request for retrieving Venue objects.
Next, you specify the result type to be DictionaryResultType.

2. You create an NSExpressionDescription to request the sum, and give it the name
“sumDeals” so you can read its result out of the result dictionary that you’ll get
back from the fetch request.

3. You give the expression description an NSExpression to specify that you want the
sum function. Then you give that expression another NSExpression to specify
what property you want to sum over—in this case, specialCount. Lastly, you have
to set the return data type of your expression description, so you set it to
Integer32AttributeType.

Core Data by Tutorials Second Edition Chapter 4: Intermediate Fetching

 raywenderlich.com Page 98

4. You tell your original fetch request that you want to fetch the sum by setting its
propertiesToFetch property to the expression description you just created.

5. Finally, you can execute the fetch request in the usual do-catch statement. You
cast the return value of this fetch request to an array of dictionaries, fish out the
result of your expression using your expression description’s name (sumDeals) and
you’re done!

Note: What other functions does Core Data support? To name a few: count,
min, max, average, median, mode, absolute value and many more. For a
comprehensive list, check out Apple’s documentation for NSExpression.

Fetching a calculated value from Core Data requires you to follow many, often
unintuitive steps, so make sure you have a good reason for using this technique—
like performance considerations.

Next, add the following line to the bottom of viewDidLoad:

populateDealsCountLabel()

Build the sample project and head to the filter/sort screen to verify your changes:

Great! There are 12 total deals across all the venues that you have stored in Core
Data.

You’ve now used three of the four supported NSFetchRequest result types:
.ManagedObjectResultType, .CountResultType and .DictionaryResultType.

Core Data by Tutorials Second Edition Chapter 4: Intermediate Fetching

 raywenderlich.com Page 99

The remaining result type is .ManagedObjectIDResultType. When you fetch with this
type, the result is an array of NSManagedObjectID objects rather the actual managed
objects they represent. An NSManagedObjectID is a compact universal identifier for a
managed object. It works like the primary key in the database!

Prior to iOS 5, fetching by ID was popular because NSManagedObjectID is thread-safe
and using it helped developers implement the thread confinement concurrency
model. Now that thread confinement has been deprecated in favor of more modern
concurrency models, there’s little reason to fetch by object ID anymore.

Note: You can set up multiple managed object contexts to run concurrent
operations and keep long-running operations off the main thread. For more
information, check out Chapter 10, “Multiple Managed Object Contexts.”

You’ve gotten a taste of all the things a fetch request can do for you. But just as
important as the information a fetch request returns is the information it doesn’t
return. For practical reasons, you have cap the incoming data at some point.

Why? Imagine a perfectly connected object graph, one where each Core Data
object is connected to every other object through a series of relationships. If Core
Data didn’t put limits on the information a fetch request returned, you’d be fetching
the entire object graph every single time! That’s not memory efficient.

There are ways you can manually limit the information you get back from a fetch
request. For example, NSFetchRequest supports fetching batches. You can use the
properties fetchBatchSize, fetchLimit and fetchOffset to control the batching
behavior.

Core Data also tries to minimize its memory consumption for you by using a
technique called faulting. A fault is a placeholder object representing a managed
object that hasn’t yet been fully brought into memory.

Yet another way to limit your object graph is to use predicates, as you’ve done to
populate the venue count labels above. Let’s add the filters to the sample app using
predicates.

Still in FilterViewController.swift, add the following protocol declaration outside
of the main class definition:

protocol FilterViewControllerDelegate: class {
 func filterViewController(filter: FilterViewController,
 didSelectPredicate predicate:NSPredicate?,
 sortDescriptor:NSSortDescriptor?)
}

This protocol defines a delegate method that will notify the delegate that the user
selected a new sort/filter combination.

Core Data by Tutorials Second Edition Chapter 4: Intermediate Fetching

 raywenderlich.com Page 100

Next, define the following three properties in FilterViewController:

weak var delegate: FilterViewControllerDelegate?
var selectedSortDescriptor: NSSortDescriptor?
var selectedPredicate: NSPredicate?

This first property will hold a reference to FilterViewController’s delegate. The
second and third properties will hold references to the currently selected
NSSortDescriptor and NSPredicate, respectively.

Next, re-implement the saveButtonTapped(_:) as shown below:

@IBAction func saveButtonTapped(sender: UIBarButtonItem) {

 delegate!.filterViewController(self,
 didSelectPredicate: selectedPredicate,
 sortDescriptor: selectedSortDescriptor)

 dismissViewControllerAnimated(true, completion:nil)
}

This means every time you tap Search in the top-right corner of the filter/sort
screen, you’ll notify the delegate of your selection and dismiss the filter/sort screen
to reveal the list of venues behind it.

You need to make one more change in this file. Scroll down to
tableView(_:didSelectRowAtIndexPath:) and implement it as shown below:

override func tableView(tableView: UITableView,
 didSelectRowAtIndexPath indexPath: NSIndexPath) {

 let cell = tableView.cellForRowAtIndexPath(indexPath)!

 switch cell {
 // Price section
 case cheapVenueCell:
 selectedPredicate = cheapVenuePredicate
 case moderateVenueCell:
 selectedPredicate = moderateVenuePredicate
 case expensiveVenueCell:
 selectedPredicate = expensiveVenuePredicate
 default:
 print("default case")
 }

 cell.accessoryType = .Checkmark
}

Core Data by Tutorials Second Edition Chapter 4: Intermediate Fetching

 raywenderlich.com Page 101

When the user taps on any of the first three price category cells, this method will
map the selected cell to the appropriate predicate. You store a reference to this
predicate in selectedPredicate to have ready when you notify the delegate of the
user’s selection.

Now, switch to ViewController.swift and add the following extension to conform
to the FilterViewControllerDelegate protocol that you just created:

//MARK: FilterViewControllerDelegate methods

extension ViewController: FilterViewControllerDelegate {

}

Adding the FilterViewControllerDelegate Swift extension tells the compiler that
this class will conform to this protocol. You haven’t implemented the protocol’s
single delegate method yet, so Xcode will complain until you do. You’ll fix this in a
second.

Fix the compiler error by adding the following method inside the extension:

//MARK: FilterViewControllerDelegate methods

extension ViewController: FilterViewControllerDelegate {

 func filterViewController(filter: FilterViewController,
 didSelectPredicate predicate:NSPredicate?,
 sortDescriptor:NSSortDescriptor?) {

 fetchRequest.predicate = nil
 fetchRequest.sortDescriptors = nil

 if let fetchPredicate = predicate {
 fetchRequest.predicate = fetchPredicate
 }

 if let sr = sortDescriptor {
 fetchRequest.sortDescriptors = [sr]
 }

 fetchAndReload()
 }
}

This delegate method fires every time the user selects a new filter/sort
combination. Here, you reset your fetch request’s predicate and sortDescriptors,
then unwrap the predicate and sort descriptor passed into the method and reload.

Core Data by Tutorials Second Edition Chapter 4: Intermediate Fetching

 raywenderlich.com Page 102

There’s one more thing you need to do before you can test your price category
filters. Head over to prepareForSegue and add the following line inside the if
statement:

//add line below filterVC.coreDataStack = coreDataStack
filterVC.delegate = self

This formally sets ViewController as FilterViewController’s delegate.

Now build and run the sample project. Go to the Filter screen, tap the first price
category cell ($) and then tap Search in the top-right corner.

What happened? Your app crashes with the following error message in the console:

Remember how earlier in the chapter, you defined your fetch request in the data
model? It turns out that if you use that technique, the fetch request becomes
immutable. You can’t change its predicate at runtime, or else this will happen. If
you want to set a fetch request in advance, you have to do it in the data model
editor.

Still in ViewController.swift, go back to viewDidLoad() and make the following
change:

override func viewDidLoad() {
 super.viewDidLoad()

// let model =
// coreDataStack.context.persistentStoreCoordinator!
// .managedObjectModel
//
// fetchRequest =
// model.fetchRequestTemplateForName("FetchRequest")

 fetchRequest = NSFetchRequest(entityName: "Venue")

 fetchAndReload()
}

Comment out the lines that retrieves the fetch request from the template in the
managed object model. Instead, create an instance of NSFetchRequest directly.

Build and run the sample app one more time. Go to the Filter screen, tap the
second price category cell ($$) and then tap Search in the top-right corner. This is
the result:

Core Data by Tutorials Second Edition Chapter 4: Intermediate Fetching

 raywenderlich.com Page 103

As expected, there are only two venues in this category. Test the first ($) and third
($$$) price category filters as well and make sure the filtered list contains the
correct number of venues for each.

Let’s practice writing a few more predicates for the remaining filters. The process is
similar to what you’ve done already, so this time you’ll do it with less explanation.

Switch to FilterViewController.swift once more and add these three lazy
properties to the top of the class:

lazy var offeringDealPredicate: NSPredicate = {
 var pr = NSPredicate(format: "specialCount > 0")
 return pr
 }()

lazy var walkingDistancePredicate: NSPredicate = {
 var pr = NSPredicate(format: "location.distance < 500")
 return pr
 }()

lazy var hasUserTipsPredicate: NSPredicate = {
 var pr = NSPredicate(format: "stats.tipCount > 0")
 return pr
 }()

The first predicate specifies venues that are currently offering one or more deals,
the second predicate specifies venues that are less than 500 meters away from
your current location and the third predicate specifies venues that have at least one
user tip.

Core Data by Tutorials Second Edition Chapter 4: Intermediate Fetching

 raywenderlich.com Page 104

Note: So far in the book, you’ve written predicates with a single condition.
You can write predicates that check two conditions instead of one by using
compound predicate operators such as AND, OR and NOT.

Alternatively, you can string two simple predicates into one compound
predicate by using the class NSCompoundPredicate.

NSPredicate isn’t technically part of Core Data (it’s part of Foundation) so this
book won’t cover it in depth, but you can seriously improve your Core Data
chops by learning the ins and outs of this nifty class. For more information,
make sure to check out Apple’s Predicate Programming Guide:

https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/Pr
edicates/predicates.html

Next, scroll down to tableView(_:didSelectRowAtIndexPath:). You’re going to add
three more cases to the switch statement you added earlier:

override func tableView(tableView: UITableView,
 didSelectRowAtIndexPath indexPath: NSIndexPath) {

 let cell = tableView.cellForRowAtIndexPath(indexPath)!

 switch cell {
 // Price section
 case cheapVenueCell:
 selectedPredicate = cheapVenuePredicate
 case moderateVenueCell:
 selectedPredicate = moderateVenuePredicate
 case expensiveVenueCell:
 selectedPredicate = expensiveVenuePredicate
 //Most Popular section
 case offeringDealCell:
 selectedPredicate = offeringDealPredicate
 case walkingDistanceCell:
 selectedPredicate = walkingDistancePredicate
 case userTipsCell:
 selectedPredicate = hasUserTipsPredicate
 default:
 println("default case")
 }

 cell.accessoryType = .Checkmark
}

Core Data by Tutorials Second Edition Chapter 4: Intermediate Fetching

 raywenderlich.com Page 105

Above, you added cases for offeringDealCell, walkingDistanceCell and
userTipsCell. These are the three new filters for which you’re now adding support.

That’s all you need to do. Build and run the sample app. Go to the filters page,
select the Offering Deals filter and tap Search:

You’ll see a total of six venues. Note that since you didn’t specify a sort descriptor,
your list of venues may be in a different order than the venues in the screenshot.
You can verify that these venues have specials by looking them up in seed.json.
For example, City Wing Cafe is currently offering four specials. Woo-hoo!

Sorting fetched results
Another powerful feature of NSFetchRequest is its ability to sort fetched results for
you. It does this by using yet another handy Foundation class, NSSortDescriptor.
These sorts happen at the SQLite level, not on memory. This makes sorting in Core
Data fast and efficient.

In this section, you’ll implement four different sorts to complete the filter/sort
screen.

Begin by adding the following three lazy properties to the top of
FilterViewController.swift:

lazy var nameSortDescriptor: NSSortDescriptor = {
 var sd = NSSortDescriptor(key: "name",
 ascending: true,
 selector: "localizedStandardCompare:")
 return sd
 }()

lazy var distanceSortDescriptor: NSSortDescriptor = {

Core Data by Tutorials Second Edition Chapter 4: Intermediate Fetching

 raywenderlich.com Page 106

 var sd = NSSortDescriptor(key: "location.distance",
 ascending: true)
 return sd
 }()

lazy var priceSortDescriptor: NSSortDescriptor = {
 var sd = NSSortDescriptor(key: "priceInfo.priceCategory",
 ascending: true)
 return sd
 }()

The way to add sorts is very similar to the way you added filters. Each sort maps to
one of these three lazy NSSortDescriptor properties.

To initialize an instance of NSSortDescriptor you need three things: a key path to
specify the attribute by which you want to sort, a specification of whether the sort
is ascending or descending and an optional selector.

Note: If you’ve worked with NSSortDescriptor before, then you probably know
there’s a block-based API that takes a comparator instead of a selector.
Unfortunately, Core Data doesn’t support this way of defining a sort
descriptor.

The same thing goes for the block-based way of defining an NSPredicate. Core
Data doesn’t support this either. The reason is related to the fact that
filtering/sorting happens in the SQLite database, so the predicate/sort
descriptor has to match nicely to something that can be written as an SQLite
statement.

The three sort descriptors are going to sort by name, distance and price category,
respectively, and they are all ascending. Before moving on, take a closer look at the
first sort descriptor, nameSortDescriptor. The initializer takes in an optional selector
called localizedStandardCompare. What is that?

Any time you’re sorting user-facing strings, Apple recommends that you pass in
localizedStandardCompare to sort according to the language rules of the current
locale. That means the sort will “just work” and do the right thing for languages
with accented characters, for example. It’s the little things that matter. :]

Next, go down to tableView(_:didSelectRowAtIndexPath:) and add the following
cases to the end of the switch statement:

//Sort By section
case nameAZSortCell:
 selectedSortDescriptor = nameSortDescriptor
case nameZASortCell:

Core Data by Tutorials Second Edition Chapter 4: Intermediate Fetching

 raywenderlich.com Page 107

 selectedSortDescriptor =
 nameSortDescriptor.reversedSortDescriptor
 as? NSSortDescriptor
case distanceSortCell:
 selectedSortDescriptor = distanceSortDescriptor
case priceSortCell:
 selectedSortDescriptor = priceSortDescriptor

Like before, this switch statement matches the cell the user tapped with the
appropriate sort descriptor, so that it’s ready to pass to the delegate when the user
taps Search.

The only wrinkle is the nameZA sort descriptor. Rather than creating a separate sort
descriptor, you can reuse the one for A-Z and simply call the method
reversedSortDescriptor. How handy!

Everything else is hooked up for you to test the sorts you just implemented. Build
and run the sample app and go to the Filter screen. Tap the Z-A name filter and
then tap Search. You’ll see search results ordered like so:

No, you’re not seeing double. There really are six Vivi Bubble Tea venues in the
data set—it’s a popular bubble tea chain in NYC. As you scroll down the table view,
you’ll see that the app has indeed sorted the venues alphabetically from Z to A.

You’ve now completed your Filter screen, setting it up such that the user can
combine any one filter with any one sort. Try different combinations to see what
you get. The venue cell doesn’t show much information, so if you need to verify a
sort, you can go straight to the source and consult seed.json.

Core Data by Tutorials Second Edition Chapter 4: Intermediate Fetching

 raywenderlich.com Page 108

Asynchronous fetching
If you’ve gotten this far, there’s both good news and bad news (and then more
good news). The good news it that you’ve learned a lot about what you can do with
a plain NSFetchRequest. The bad news is that every fetch request you’ve executed
so far has blocked the main thread while you waited for your results to come back.

When you block the main thread, it makes the screen unresponsive to incoming
touches and creates a slew of other problems. You haven’t felt this blocking of the
main thread because you’ve made simple fetch requests that only fetch a few
objects at a time.

Since the beginning of Core Data, the framework has given developers several
techniques to perform fetches in the background. In iOS 8, Core Data now has an
API for performing long-running fetch requests in the background and getting a
completion callback when the fetch is completed.

Let’s see this new API in action. Go back to ViewController.swift and add the
following property:

var asyncFetchRequest: NSAsynchronousFetchRequest!

There you have it. The new class responsible for this asynchronous magic is aptly
called NSAsynchronousFetchRequest. Don’t be fooled by its name, though. It isn’t
directly related to NSFetchRequest; it’s actually a subclass of
NSPersistentStoreRequest.

Go to viewDidLoad() and re-implement it as shown below:

override func viewDidLoad() {
 super.viewDidLoad()

 //1
 fetchRequest = NSFetchRequest(entityName: "Venue")

 //2
 asyncFetchRequest =
 NSAsynchronousFetchRequest(fetchRequest: fetchRequest)
 { [unowned self] (result: NSAsynchronousFetchResult!)
 -> Void in
 self.venues = result.finalResult as! [Venue]
 self.tableView.reloadData()
 }

 //3
 do {
 try coreDataStack.context.executeRequest(asyncFetchRequest)

Core Data by Tutorials Second Edition Chapter 4: Intermediate Fetching

 raywenderlich.com Page 109

 //Returns immediately, cancel here if you want
 } catch let error as NSError {
 print("Could not fetch \(error), \(error.userInfo)")
 }
}

There’s a lot that you haven’t seen before, so let’s cover it step by step:

1. Notice here than an asynchronous fetch request doesn’t replace the regular fetch
request. Rather, you can think of an asynchronous fetch request as a wrapper
around the fetch request you already had.

2. To create an NSAsynchronousFetchRequest you need two things: a regular
NSFetchRequest and a completion handler. Your fetched venues are contained in
NSAsynchronousFetchResult’s finalResult property. Within the completion
handler, you update the venues property and reload the table view.

3. Specifying the completion handler is not enough! You still have to execute the
asynchronous fetch request. Once again, CoreDataStack’s context property
handles the heavy lifting for you. However, notice that the method you use is
different—this time, it’s executeRequest() instead of the usual
executeFetchRequest().

4. executeRequest() returns immediately. You don’t need to do anything with the
return value since you’re going to update the table view from within the
completion block. The return type is NSAsynchronousFetchResult.

Note: As an added bonus to this API, you can cancel the fetch request with
NSAsynchronousFetchResult’s cancel() method.

If you were to build and run the sample app at this point, it would crash on launch.
There is one more change you need to make. Go the venues property in
ViewController.swift and change it to the following:

var venues: [Venue]! = []

Since the original fetch request is asynchronous, it will finish after the table view
does its initial load. The table view will try to unwrap the venues property but since
there are no results yet, your app will crash.

You fix this issue by initializing venues to an empty array. This way, on first load, if
there are no results yet, your table view will simply be empty.

Let’s see if your asynchronous fetch delivers as promised. If everything goes well,
you shouldn’t notice any difference in the user interface. Build and run the sample
app. You should see the usual list of venues as before:

Core Data by Tutorials Second Edition Chapter 4: Intermediate Fetching

 raywenderlich.com Page 110

Hooray! You’ve mastered asynchronous fetching. The filters and sorts will also work
as usual, except they still use a plain NSFetchRequest to reload the table view.

Batch updates: no fetching required
Sometimes, the only reason you fetch objects from Core Data is to mutate an
attribute. Then, after you make your changes, you have to commit the Core Data
objects back to the persistent store and call it a day. This is the normal process
you’ve been following all along.

But what if you want to update a hundred thousand records all at once? It would
take a lot of time and a lot of memory to fetch all of those objects just to update
one attribute. No amount of tweaking your fetch request would save your user from
having to stare at a spinner for a long, long time.

Luckily, in iOS 8 Apple introduced batch updates, a new way to update Core Data
objects without having to fetch anything into memory. This new technique greatly
reduces the amount of time and memory that you need to make those huge kinds
of updates.

The new technique bypasses the NSManagedObjectContext and goes straight to the
persistent store. The classic use case for batch updates is the “Mark all as read”
feature in a messaging application or an e-mail client. For this sample app, you’re
going to do something more fun. Since you love bubble tea so much, you’re going
to mark every Venue in Core Data as your favorite. :]

Let’s see this in practice. Go to viewDidLoad() and add the following after
super.viewDidLoad():

let batchUpdate =
NSBatchUpdateRequest(entityName: "Venue")

batchUpdate.propertiesToUpdate =
 ["favorite" : NSNumber(bool: true)]

Core Data by Tutorials Second Edition Chapter 4: Intermediate Fetching

 raywenderlich.com Page 111

batchUpdate.affectedStores =
 coreDataStack.context
 .persistentStoreCoordinator!.persistentStores

batchUpdate.resultType = .UpdatedObjectsCountResultType

do {
 let batchResult =
 try coreDataStack.context
 .executeRequest(batchUpdate) as! NSBatchUpdateResult

 print("Records updated \(batchResult.result!)")
 } catch let error as NSError {
 print("Could not update \(error), \(error.userInfo)")
}

You create an instance of NSBatchUpdateRequest with the entity that you want to
update—Venue in this case. You set up your batch update request by setting
propertiesToUpdate to a dictionary that contains the key path of the attribute you
want to update, favorite, and its new value.

You also have to set affectedStores to your persistent store coordinator’s
persistentStores array. Finally, you set the result type to return a count and
execute your batch update request.

Build and run your sample app. If everything works properly, you’ll see the
following printed to your console log:

Great! You’ve surreptitiously marked every bubble tea venue in New York City as
your favorite. :]

Now you know how to update your Core Data objects without loading them onto
memory. Is there another use case where you may want to bypass the managed
context and change your Core Data objects directly in the persistent store? Of
course there is, batch deletion!

You shouldn’t have to to load objects onto memory just to delete them, particularly
if you’re handling a large number of them. To this end, in iOS 9 Apple introduced
NSBatchDeleteRequest. As the name suggests, a batch delete request can efficiently
delete a large number Core Data objects in one go.

Core Data by Tutorials Second Edition Chapter 4: Intermediate Fetching

 raywenderlich.com Page 112

Like NSBatchUpdateRequest, NSBatchDeleteRequest is also a subclass of
NSPersistentStoreRequest. Both types of batch request behave similarly since they
both operate directly on the persistent store.

Note: Since you’re sidestepping your NSManagedObjectContext, you won’t get
any validation if you use a batch update request or a batch delete request.
Your changes also won’t be reflected in your managed context. Make sure
you’re sanitizing and validating your data properly before using this new
feature!

Where to go from here?
Whew! If you followed the chapter all the way through, then you’ve spent a lot of
time fetching from your Core Data persistent store. I hope these examples gave
you insight into how powerful and flexible fetching is in Core Data.

Among other things, you learned how to store fetch requests in your data model
and how to refine your fetched results using predicates and sort descriptors. In
addition, you got to experience Apple’s exciting new developments in Core Data in
iOS 8 and iOS 9: asynchronous fetching, batch updates and batch deletions.

There is much more to learn about fetching! In the next chapter, you’ll work with
NSFetchedResultsController, a helpful class that makes using table views a breeze.

If you’re thirsty and need a break before continuing – perhaps you now feel like a
nice refreshing bubble tea?

 raywenderlich.com Page 113

If you followed the previous chapters closely, you probably noticed that most of the
sample projects use table views. That’s because Core Data fits nicely with table
views.

Set up your fetch request, fetch an array of managed objects and plug the result
into the table view’s data source. This is a common, everyday scenario.

If you see a tight relationship between Core Data and UITableView, you’re in good
company. The authors of the Core Data framework at Apple thought the same way!
In fact, they saw so much potential for a close connection between UITableView and
Core Data that they penned a class to formalize this bond:
NSFetchedResultsController.

As the name suggests, NSFetchedResultsController is a controller, but it is not a
view controller. It has no user interface. Its purpose is to make developers’ lives
easier by abstracting away much of the code needed to synchronize a table view
with a data source backed by Core Data.

Set up an NSFetchedResultsController correctly, and your table will “magically”
mimic its data source without you have to write more than a few lines of code. In
this chapter, you’ll learn the ins and outs of this class. You’ll also learn when to use
it and when not to use it. Are you ready?

Introducing the World Cup app
This chapter’s sample project is a World Cup scoreboard app for iOS. A very simple
one! On startup, the one-page application will list all the teams contesting for the
World Cup. Tapping on a country’s cell will increase the country’s wins by one. In
this simplified version of the World Cup, the country with the most taps wins the
tournament. This ranking simplifies the real elimination rules quite a bit, but it’s
good enough for demonstration purposes.

Go to this chapter’s files and find the WorldCup-Starter folder. Open
WorldCup.xcodeproj. Build and run the starter project:

Chapter 5:
NSFetchedResultsController
By Pietro Rea

Core Data by Tutorials Second Edition Chapter 5: NSFetchedResultsController

 raywenderlich.com Page 114

The sample application consists of 20 static cells in a table view. Those bright blue
boxes are where the teams’ flags should be. Instead of real names, you see “Team
Name.” Although the sample project isn’t too exciting, it actually does a lot of the
setup for you.

Open the project navigator and take a look at the full list of files in the starter
project:

Before jumping into the code, let’s briefly go over what each class does for you out
of the box. You’ll find that a lot of the setup that you did manually in previous
chapters comes already implemented for you. Hooray!

• AppDelegate: On first launch, the app delegate reads from seed.json, creates
corresponding Core Data objects and saves them to the persistent store.

• CoreDataStack: As in previous chapters, this object contains the cadre of Core
Data objects known as the “stack”: the context, the model, the persistent store
and the persistent store coordinator. No need to set this up. It comes ready to be
used.

Core Data by Tutorials Second Edition Chapter 5: NSFetchedResultsController

 raywenderlich.com Page 115

• ViewController: The sample project is a one-page application, and this file
represents that one page. If you’re curious about its UI elements, head over to
Main.storyboard. There’s a table, a navigation bar and a single prototype cell.

• Team & Team+CoreDataProperties: These files represent a country’s team. It
is an NSManagedObject subclass with properties for each of its four attributes:
teamName, qualifyingZone, imageName and wins. If you’re curious about its entity
definition, head over to WorldCup.xcdatamodel.

• Images.xcassets: The sample project’s asset catalog contains a flag image for
every country in seed.json.

The first three chapters of this book covered the Core Data concepts mentioned
above. If “managed object subclass” doesn’t ring a bell or if you’re unsure what a
Core Data stack is supposed to do, you may want to go back and reread the
relevant chapters. NSFetchedResultsController will be here when you return. :]

Otherwise, if you’re ready to proceed, let’s begin implementing the World Cup
application. You probably already know who won the World Cup last time, but this
is your chance to rewrite history for the country of your choice, with just a few
taps!

It all begins with a fetch request...
At its core, NSFetchedResultsController is a wrapper around the results of an
NSFetchRequest. Right now, the sample project contains static information. You’re
going to create a fetched results controller to display the list of teams from Core
Data in the table view.

Go to ViewController.swift and import the Core Data framework:

import CoreData

Then, add a property to hold your fetched results controller:

var fetchedResultsController : NSFetchedResultsController!

Add the following code to the end of viewDidLoad() to set up your fetched results
controller property:

//1
let fetchRequest = NSFetchRequest(entityName: "Team")

//2
fetchedResultsController =
 NSFetchedResultsController(fetchRequest: fetchRequest,
 managedObjectContext: coreDataStack.context,
 sectionNameKeyPath: nil,

Core Data by Tutorials Second Edition Chapter 5: NSFetchedResultsController

 raywenderlich.com Page 116

 cacheName: nil)

//3
do {
 try fetchedResultsController.performFetch()
} catch let error as NSError {
 print("Error: \(error.localizedDescription)")
}

Setting up a fetched results controller is a little more complicated than setting up a
simple fetch request. Let’s go step by step through the process:

1. The fetched results controller handles the coordination between Core Data and
your table view, but it still needs you to provide an NSFetchRequest. Remember
that the NSFetchRequest class is highly customizable. It can take sort descriptors,
predicates, etc.

In this example, you simply initialize a fetch request with an entity description,
because you want to fetch all Team objects.

2. The initializer method for a fetched results controller takes four parameters: first
is the fetch request you just created.

The second parameter is an instance of NSManagedObjectContext. Like
NSFetchRequest, the fetched results controller class needs a managed object
context to execute the fetch. It can’t actually fetch anything by itself.

The other two parameters are optional: sectionNameKeyPath and cacheName. Leave
them blank for now; you’ll read more about them later in the chapter.

3. You execute the fetch request. If there’s an error, you log the error to the
console.

Wait a minute... where are your fetched results? While fetching with NSFetchRequest
returns an array of results, fetching with NSFetchedResultsController doesn’t return
anything.

NSFetchedResultsController is both a wrapper around a fetch request and a
container for its fetched results. You can get at them either with the fetchedObjects
property or the objectAtIndexPath method.

Next, you’ll connect the fetched results controller to the usual table view data
source methods. The fetched results determine both the number of sections and the
number of rows per section.

With this in mind, re-implement numberOfSectionsInTableView(_:) and
tableView(_:numberOfRowsInSection:), as shown below:

func numberOfSectionsInTableView
 (tableView: UITableView) -> Int {

Core Data by Tutorials Second Edition Chapter 5: NSFetchedResultsController

 raywenderlich.com Page 117

 return fetchedResultsController.sections!.count
}

func tableView(tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 let sectionInfo =
 fetchedResultsController.sections![section]
 return sectionInfo.numberOfObjects
}

The number of sections in the table view corresponds to the number of sections in
the fetched results controller. You may be wondering how this table view can have
more than one section. Aren’t you simply fetching and displaying all Teams?

That’s correct. You will only have one section this time around, but keep it in the
back of your mind that NSFetchedResultsController can split up your data into
sections. You’ll see an example of this later in the chapter.

Furthermore, the number of rows in each table view section corresponds to the
number of objects in each fetched results controller section. You can query
information about a fetched results controller section through its sections property.

Note: The sections array contains opaque objects that implement the
NSFetchedResultsSectionInfo protocol. This lightweight protocol provides
information about a section, such as its title and number of objects.

Implementing tableView(_:cellForRowAtIndexPath:) would typically be the next
step. A quick look at the method, however, reveals that it is already vending
TeamCell cells as needed. What you need to change is the helper method that
populates the cell.

Below tableView(_:cellForRowAtIndexPath:), go ahead and re-implement
configureCell(_:_:):

func configureCell(cell: TeamCell, indexPath: NSIndexPath) {
 let team =
 fetchedResultsController.objectAtIndexPath(indexPath)
 as! Team

 cell.flagImageView.image = UIImage(named: team.imageName!)
 cell.teamLabel.text = team.teamName
 cell.scoreLabel.text = "Wins: \(team.wins!)"
}

This method takes in a TeamCell object and an index path. You use this index path
to grab the corresponding Team object from the fetched results controller. Then you

Core Data by Tutorials Second Edition Chapter 5: NSFetchedResultsController

 raywenderlich.com Page 118

use this Core Data object to populate the cell’s flag image, team name and score
label.

Notice again that there’s no array variable holding your teams. They’re all stored
inside the fetched results controller and you access them via objectAtIndexPath.

It’s time to test your creation. Build and run the app. Ready, set and... crash?

What happened? NSFetchedResultsController is helping you out here, though it
may not feel like it! If you want to use it to populate a table view and have it know
which managed object should appear at which index path, you can’t just throw it a
basic fetch request. The key part of the crash log is this:

‘An instance of NSFetchedResultsController requires a fetch request with
sort descriptors’

A regular fetch request doesn’t require a sort descriptor. Its minimum requirement
is that you set an entity description, and it will fetch all objects of that type of
entity. NSFetchedResultsController, however, requires at least one sort descriptor.
Otherwise, how would it know the right order for your table view?

Go back to viewDidLoad() and add the following lines after you initialize the fetch
request:

let sortDescriptor =
 NSSortDescriptor(key: "teamName", ascending: true)

fetchRequest.sortDescriptors = [sortDescriptor]

Adding this sort descriptor will show the teams in alphabetical order from A to Z
and fix the earlier crash.

Build and run the application. Your screen will look like this:

Core Data by Tutorials Second Edition Chapter 5: NSFetchedResultsController

 raywenderlich.com Page 119

Success! The full list of World Cup participants is on your device or iOS Simulator.
Notice, however, that every country has zero wins and there’s no way to increment
the score. Some people say that soccer is a low-scoring sport, but this is absurd!

Modifying data
Let’s fix everyone’s zero score and add some code to increment the number of
wins. Replace the currently empty implementation of the table view delegate
method tableView(_:didSelectRowAtIndexPath:) as shown below:

func tableView(tableView: UITableView,
 didSelectRowAtIndexPath indexPath: NSIndexPath) {

 let team =
 fetchedResultsController.objectAtIndexPath(indexPath)
 as! Team

 let wins = team.wins!.integerValue
 team.wins = NSNumber(integer: wins + 1)
 coreDataStack.saveContext()
}

When the user taps on a row, you grab the Team that corresponds to the selected
index path, increment its number of wins and commit the change to Core Data’s
persistent store.

Remember from earlier chapters that Core Data stores integers as NSNumbers, so
you have to unwrap the number of wins before you can modify it, and you have to
rewrap it before you can save it.

You might think a fetched results controller is only good for getting results, but the
Team objects you get back are the same old managed object subclasses. You can
update their values and save just as you’ve always done.

Core Data by Tutorials Second Edition Chapter 5: NSFetchedResultsController

 raywenderlich.com Page 120

Build and run once again, and tap on the first country on the list (Algeria) five
times:

What’s going on here? You’re tapping away but the number of cells is not going up.
You’re updating Algeria’s number of wins in Core Data’s underlying persistent store,
but you aren’t triggering a UI refresh.

Go back to Xcode, stop the app, and build and run again:

Just as you suspected, re-launching the app from scratch forced a UI refresh,
showing Algeria’s real score of 5. NSFetchedResultsController has a nice solution to
this problem, but for now, let’s use the brute force solution.

Add the follow line at the end of your current implementation of
tableView(_:didSelectRowAtIndexPath:):

tableView.reloadData()

Core Data by Tutorials Second Edition Chapter 5: NSFetchedResultsController

 raywenderlich.com Page 121

In addition to incrementing a team’s number of wins, tapping a cell now reloads the
entire table view. This approach is heavy-handed but it does the job for now.

Build and run the app one more time. Tap as many countries as you want as many
times as you want. Verify that the UI is always up to date.

There you go. You’ve got a fetched results controller up and running. Excited?

If this were all NSFetchedResultsController could do, you would probably feel a
little disappointed. After all, you can accomplish the same thing using an
NSFetchRequest and a simple array.

The real magic comes in the remaining sections of this chapter.
NSFetchedResultsController earned its keep in the Cocoa Touch frameworks with
features such as section handling and change monitoring, covered next.

Grouping results into sections
There are six qualifying zones in the World Cup: Africa, Asia, Oceania, Europe,
South America and North/Central America. The Team entity has a string attribute
named qualifyingZone that stores this information.

In this section, you’ll split up the list of countries into their respective qualifying
zones. NSFetchedResultsController makes this very simple.

Let’s see it in action. Go back to viewDidLoad() and make the following change to
the fetched results controller’s initializer:

Core Data by Tutorials Second Edition Chapter 5: NSFetchedResultsController

 raywenderlich.com Page 122

fetchedResultsController =
 NSFetchedResultsController(fetchRequest: fetchRequest,
 managedObjectContext: coreDataStack.context,
 sectionNameKeyPath: "qualifyingZone",
 cacheName: nil)

The difference here is you’re passing in a value for the optional sectionNameKeyPath
parameter. You can use this parameter to specify an attribute that the fetched
results controller should use to group the results and generate sections.

How exactly are these sections generated? Each unique attribute value becomes a
section. NSFetchedResultsController then groups its fetched results into these
sections. In this case, it will generate sections for each unique value of
qualifyingZone such as “Africa”, “Asia”, “Oceania” and so on. This is exactly what
you want!

Note: sectionNameKeyPath takes a keyPath string. It can take the form of an
attribute name such as “qualifyingZone” or “teamName”, or it can drill deep into
a Core Data relationship, such as “employee.address.street”.

The fetched results controller will now report the sections and rows to the table
view, but the current UI won’t look any different. To fix this problem, add the
following method to the UITableViewDataSource extension:

func tableView(tableView: UITableView,
 titleForHeaderInSection section: Int) -> String? {
 let sectionInfo =
 fetchedResultsController.sections![section]
 return sectionInfo.name
}

Implementing this data source method adds section headers to the table view,
making it easy to see where one section ends and another one begins. In this case,
the section gets its title from the qualifying zone. Like before, this information
comes directly from the NSFetchedResultsSectionInfo protocol.

Build and run the application. Your app will look something like the following:

Core Data by Tutorials Second Edition Chapter 5: NSFetchedResultsController

 raywenderlich.com Page 123

Scroll down the page. There’s good news and bad news. The good news is that the
app accounts for all six sections. Hooray! The bad news is that the world is upside
down.

Take a closer look at the sections. You’ll see Argentina in Africa, Cameroon in Asia
and Russia in South America. How did this happen? It’s not a problem with the
data; you can open seed.json and verify that each team lists the correct qualifying
zone.

Have you figured it out? The list of countries is still shown alphabetically and the
fetched results controller is simply splitting up the table into sections as if all teams
of the same qualifying zone were grouped together.

Go back to viewDidLoad() and make the following change to fix the problem.
Replace the existing code that creates and sets the sort descriptor on the fetch
request with the following:

let zoneSort =
 NSSortDescriptor(key: "qualifyingZone", ascending: true)
let scoreSort =
 NSSortDescriptor(key: "wins", ascending: false)
let nameSort =
 NSSortDescriptor(key: "teamName", ascending: true)

fetchRequest.sortDescriptors = [zoneSort, scoreSort, nameSort]

The problem was the sort descriptor. This is another NSFetchedResultsController
“gotcha” to keep in mind. If you want to separate fetched results using a section
keyPath, the first sort descriptor’s attribute must match the key path’s attribute.

Core Data by Tutorials Second Edition Chapter 5: NSFetchedResultsController

 raywenderlich.com Page 124

The documentation for NSFetchedResultsController makes this point emphatically,
and with good reason! You saw what happened when the sort descriptor doesn’t
match the key path—your data ends up making no sense.

Build and run one more time to verify that this change fixed the problem:

Indeed it did. Changing the sort descriptor restored the geopolitical balance in your
sample application. African teams are in Africa, European teams are in Europe and
so on.

Notes: The only team that may still raise eyebrows is Australia, which
appears under Asia’s qualifying zone. This is how FIFA categorizes Australia. If
you don’t like it, you can file a bug report with them! ;]

Notice that within each qualifying zone, teams are sorted by number of wins from
highest to lowest, then by name. This is because in the previous code snippet, you
added three sort descriptors: first sort by qualifying zone, then by number of wins,
then finally by name.

Before moving on, take a moment to think of what you’d have needed to do to
separate the teams by qualifying zone without the fetched results controller. First,
you would’ve had to create a dictionary and iterated over the teams to find unique
qualifying zones. As you traversed the array of teams, you would have had to
associate each team with the correct qualifying zone. Once you have the list of
teams by zone, you’d then need to sort the data.

Of course it’s not impossible to do this yourself, but it is tedious. This is what
NSFetchedResultsController saved you from doing. You can take the rest of the day
off and go to the beach or watch some old World Cup matches. Thank you,
NSFetchedResultsController!

Core Data by Tutorials Second Edition Chapter 5: NSFetchedResultsController

 raywenderlich.com Page 125

“Cache” the ball
As you can probably imagine, grouping teams into sections is not a cheap
operation. There’s no way to avoid iterating over every team.

It’s not a performance problem in this case because there are only 32 teams to
consider but imagine what would happen if your data set were much larger. What if
your task were to iterate over 3 million census records and separate them by
state/province?

“I’d just throw that on a background thread!” might be your first thought. The table
view, however, can’t populate itself until all sections are available. You might save
yourself from blocking the main thread, but you’d still be left looking at a spinner.

There’s no denying that this operation is expensive. At a bare minimum, you should
only pay the cost once: figure out the section grouping a single time, and reuse
your result every time after that.

The authors of NSFetchedResultsController thought about this problem and came
up with a solution: caching. You don’t have to do much to turn it on.

Head back to viewDidLoad() and make the following modification to the fetched
results controller initialization, adding a value to the cacheName parameter:

fetchedResultsController =
 NSFetchedResultsController(fetchRequest: fetchRequest,
 managedObjectContext: coreDataStack.context,
 sectionNameKeyPath: "qualifyingZone",
 cacheName: "worldCup")

You specify a cache name to turn on NSFetchedResultsController’s on-disk section
cache. That’s all you need to do! Keep in mind that this section cache is completely
separate from Core Data’s persistent store, where you persist the teams.

Note: NSFetchedResultsController’s section cache is very sensitive to changes
in its fetch request. As you can imagine, any changes—such as a different
entity description or different sort descriptors—would give you a completely
different set of fetched objects, invalidating the cache completely. If you make
changes like this, you must delete the existing cache using
deleteCacheWithName: or use a different cache name.

Build and run the application a few times. The second launch should be a little bit
faster than the first. This is not the author’s power of suggestion (psst, say “fast”
five times in a row); it is NSFetchedResultsController’s cache system at work!

Core Data by Tutorials Second Edition Chapter 5: NSFetchedResultsController

 raywenderlich.com Page 126

On the second launch, NSFetchedResultsController reads directly from your cache.
This saves a round trip to Core Data’s persistent store, as well as the time needed
to compute those sections. Hooray!

Note: You’ll learn about measuring performance and seeing if your code
changes really did make things faster in Chapter 9, “Measuring and Boosting
Performance”.

In your own apps, consider using NSFetchedResultsController’s cache if you’re
grouping results into sections and either have a very large data set or are targeting
older devices.

Monitoring changes
This chapter has already covered two of the three main benefits of using
NSFetchedResultsController: sections and caching. The third and last benefit is
somewhat of a double-edged sword: it is powerful but also easy to misuse.

Earlier in the chapter, when you implemented the tap to increment the number of
wins, you added a line of code to reload the table view to show the updated score.
This was a brute force solution, but it worked.

Sure, you could have reloaded only the selected cell by being smart about the
UITableView API, but that wouldn’t have solved the root problem.

Not to get too philosophical, but the root problem is change. Something changed in
the underlying data and you had to be explicit about reloading the user interface.

Imagine for a moment what a second version of the World Cup app would look like.
Maybe there’s a detail screen for every team where you can change the score.
Maybe the app calls an API endpoint and gets new score information from the web
service. It would be your job to refresh the table view for every code path that
updates the underlying data.

Doing it explicitly is error-prone, not to mention a little boring. Isn’t there a better
way? Yes, there is. Once again, fetched results controller comes to the rescue.

NSFetchedResultsController can listen for changes in its result set and notify its
delegate, NSFetchedResultsControllerDelegate. You can use this delegate to refresh
the table view as needed any time the underlying data changes.

What does it mean that a fetched results controller can monitor changes in its
“result set”? It means that it can monitor changes in all objects, old and new, that
it would have fetched, in addition to objects it has already fetched. This distinction
will become clearer later in this section.

Let’s see this in practice. Add the following extension to the bottom of the file:

Core Data by Tutorials Second Edition Chapter 5: NSFetchedResultsController

 raywenderlich.com Page 127

extension ViewController: NSFetchedResultsControllerDelegate {

}

This simply tells the compiler that the ViewController class will implement some of
the fetched results controller’s delegate method.

Now go back to viewDidLoad() and set the view controller as the fetched results
controller’s delegate. Add the following line of code after you initialize the fetched
results controller:

fetchedResultsController.delegate = self

That’s all you need to start monitoring changes! Of course, the next step is to do
something when those change reports come in. You’ll do that next.

Note: A fetched results controller can only monitor changes made via the
managed object context specified in its initializer. If you create a separate
NSManagedObjectContext somewhere else in your app and start making
changes there, your delegate method won’t run until those changes have been
saved and merged with the fetched results controller’s context.

Responding to changes
First, remove reloadData() call from tableView(_:didSelectRowAtIndexPath:). As
mentioned before, this was the brute force approach that you’re now going to
replace.

NSFetchedResultsControllerDelegate has four methods that come in varying
degrees of granularity. To start out, implement the broadest delegate method, the
one that says: “Hey, something just changed!”

Add the following method inside the NSFetchedResultsControllerDelegate extension
you added moments earlier:

func controllerDidChangeContent(controller:
 NSFetchedResultsController) {
 tableView.reloadData()
}

The change may seem small, but implementing this method means that any change
whatsoever, no matter the source, will refresh the table view.

Build and run the application. Verify that the table view’s cells still update correctly
by tapping on a few cells:

Core Data by Tutorials Second Edition Chapter 5: NSFetchedResultsController

 raywenderlich.com Page 128

The score labels update as before, but there’s something else happening. When one
country has more points than another country in the same qualifying zone, it will
“jump” on top of it. This is the fetched results controller noticing a change in the
sort order of its fetched results and readjusting the table view’s data source
accordingly.

When the cells do move around, it’s pretty jumpy, almost as if you were completely
reloading the table every time something changed. :]

Next, you’ll go from reloading the entire table to refreshing only what needs to
change. The fetched results controller delegate can tell you if a specific index path
needs to be moved, inserted or deleted due to a change in the fetched results
controller’s result set.

Inside the NSFetchedResultsControllerDelegate extension, replace the
implementation of controllerDidChangeContent(_:) that you added moments ago
with the following three delegate methods to see this in action:

func controllerWillChangeContent(controller:
 NSFetchedResultsController) {
 tableView.beginUpdates()
}

func controller(controller: NSFetchedResultsController,
 didChangeObject anObject: AnyObject,
 atIndexPath indexPath: NSIndexPath?,
 forChangeType type: NSFetchedResultsChangeType,
 newIndexPath: NSIndexPath?) {

 switch type {

Core Data by Tutorials Second Edition Chapter 5: NSFetchedResultsController

 raywenderlich.com Page 129

 case .Insert:
 tableView.insertRowsAtIndexPaths([newIndexPath!],
 withRowAnimation: .Automatic)
 case .Delete:
 tableView.deleteRowsAtIndexPaths([indexPath!],
 withRowAnimation: .Automatic)
 case .Update:
 let cell = tableView.cellForRowAtIndexPath(indexPath!)
 as! TeamCell
 configureCell(cell, indexPath: indexPath!)
 case .Move:
 tableView.deleteRowsAtIndexPaths([indexPath!],
 withRowAnimation: .Automatic)
 tableView.insertRowsAtIndexPaths([newIndexPath!],
 withRowAnimation: .Automatic)
 }
}

func controllerDidChangeContent(controller:
 NSFetchedResultsController) {
 tableView.endUpdates()
}

Whew! That’s a wall of code. Fortunately, it’s mostly boilerplate and easy to
understand. Let’s briefly go over all three methods you just added or modified:

• controllerWillChangeContent(_:): This delegate method notifies you that
changes are about to occur. You ready your table view using beginUpdates().

• controller(_:didChangeObject...): This method is quite a mouthful. And with
good reason—it tells you exactly what objects changed, what the type of change
was (insertion, deletion, update or reordering) and what the affected index paths
are.

This middle method is the proverbial glue that synchronizes your table view with
Core Data. No matter how much the underlying data changes, your table view will
stay true to what’s going on in the persistent store.

• controllerDidChangeContent(_:): The delegate method you had originally
implemented to refresh the UI turned out to be the third of three delegate
methods that notify you of changes. Rather than refreshing the entire table view,
you just need to call endUpdates() to apply the changes.

Note: What you end up doing with the change notifications depends on your
individual app. The implementation you see above is an example Apple
provided in the NSFetchedResultsControllerDelegate documentation.

Core Data by Tutorials Second Edition Chapter 5: NSFetchedResultsController

 raywenderlich.com Page 130

Note that the order and nature of the methods ties in very neatly to the “begin
updates-make changes-end updates” pattern used to update table views. This
is not a coincidence!

Build and run to see your work in action. Right off the bat, each qualifying zone lists
teams by the number of wins. Tap on different countries a few times. You’ll see the
cells animate smoothly to maintain this order.

For example, in the first screenshot, Switzerland leads Europe with 6 wins. Tapping
on Bosnia & Herzegovina brings their score to 6 and moves the cell on top of
Switzerland with a nice animation. This is the fetched results controller delegate in
action!

There is one more delegate method in NSFetchedResultsControllerDelegate. Add it
to the class:

func controller(controller: NSFetchedResultsController,
 didChangeSection sectionInfo: NSFetchedResultsSectionInfo,
 atIndex sectionIndex: Int,
 forChangeType type: NSFetchedResultsChangeType) {

 let indexSet = NSIndexSet(index: sectionIndex)

 switch type {
 case .Insert:
 tableView.insertSections(indexSet,
 withRowAnimation: .Automatic)
 case .Delete:
 tableView.deleteSections(indexSet,

Core Data by Tutorials Second Edition Chapter 5: NSFetchedResultsController

 raywenderlich.com Page 131

 withRowAnimation: .Automatic)
 default :
 break
 }
}

This delegate method is similar to didChangeObject... but notifies you of changes to
sections rather than to individual objects. Here, you handle the cases where
changes in the underlying data trigger the creation or deletion of an entire section.

Take a moment and think about what kind of change would trigger these
notifications. Maybe if a new team entered the World Cup from a completely new
qualifying zone, the fetched results controller would pick up on the uniqueness of
this value and notify its delegate about the new section.

This would never happen in a standard-issue World Cup. Once the 32 qualifying
teams are in the system, there’s no way to add a new team. Or is there?

Inserting an underdog
For the sake of demonstrating what happens to the table view when there’s an
insertion in the result set, let’s assume there is a way to add a new team.

If you were paying close attention, you may have noticed the “+” bar button item
on the top-right. It’s been disabled all this time. Perhaps the World Cup has a
secret backdoor entrance!

Let’s implement this now. Add the following method to the class in
ViewController.swift:

override func motionEnded(motion: UIEventSubtype,
 withEvent event: UIEvent?) {

 if motion == .MotionShake {
 addButton.enabled = true
 }

}

You override motionEnded(_:withEvent:) so that shaking the device enables the “+”
bar button item. This will be your secret way in. The addButton property held a
reference to this bar button item all along!

Next, add the following method below motionEnded:

@IBAction func addTeam(sender: AnyObject) {
 let alert = UIAlertController(title: "Secret Team",

Core Data by Tutorials Second Edition Chapter 5: NSFetchedResultsController

 raywenderlich.com Page 132

 message: "Add a new team",
 preferredStyle: UIAlertControllerStyle.Alert)

 alert.addTextFieldWithConfigurationHandler {
 (textField: UITextField!) in
 textField.placeholder = "Team Name"
 }
 alert.addTextFieldWithConfigurationHandler {
 (textField: UITextField!) in
 textField.placeholder = "Qualifying Zone"
 }

 alert.addAction(UIAlertAction(title: "Save",
 style: .Default, handler: { (action: UIAlertAction!) in
 print("Saved")

 let nameTextField = alert.textFields!.first
 let zoneTextField = alert.textFields![1]

 let team =
 NSEntityDescription.insertNewObjectForEntityForName("Team",
 inManagedObjectContext: self.coreDataStack.context)
 as! Team

 team.teamName = nameTextField!.text
 team.qualifyingZone = zoneTextField.text
 team.imageName = "wenderland-flag"

 self.coreDataStack.saveContext()
 }))

 alert.addAction(UIAlertAction(title: "Cancel",
 style: .Default, handler: { (action: UIAlertAction!) in
 print("Cancel")
 }))

 presentViewController(alert, animated: true,
 completion: nil)
}

This is a fairly long, but simple to understand method. When the user taps the Add
button, it presents an alert view prompting the user to enter a new team.

The alert view has two text fields: one for entering a team name and another for
entering the qualifying zone. Tapping “Save” commits the change and inserts the
new team into Core Data’s persistent store.

Core Data by Tutorials Second Edition Chapter 5: NSFetchedResultsController

 raywenderlich.com Page 133

The action is already connected in the storyboard, so there’s nothing more for you
to do.

Build and run the app one more time. If you’re running on a device, shake it. If
you’re running on the Simulator, press Command+Control+Z to simulate a shake
event.

Open sesame! After much negotiation, both parties decided to “shake on it” and the
Add button is now active! The World Cup is officially accepting one new team.

Scroll down the table to the end of the European qualifying zone and the beginning
of the North, Central America & Caribbean qualifying zone, as shown below. You’ll
see why in a moment.

Before moving on, take a few seconds to take this in. You’re going to change
history by adding another team to the World Cup. Are you ready?

Tap the “+” button on the top right. You’ll be greeted by an alert view asking for
the new team’s details:

Core Data by Tutorials Second Edition Chapter 5: NSFetchedResultsController

 raywenderlich.com Page 134

Enter the fictitious (yet thriving) nation of Wenderland as the new team. Type
Internets for qualifying zone and tap Save. After a quick animation, your user
interface should look like the following:

Since “Internets” is a new value for the fetched results controller’s
sectionNameKeyPath, this operation created both a new section and added a new
team to the fetched results controller result set. That handles the data side of
things.

Additionally, since you implemented the fetched results controller delegate methods
appropriately, the table view responded by inserting a new section with one new
row.

That’s the beauty of NSFetchedResultsControllerDelegate. You can set it once and
forget it. The underlying data source and your table view will always be
synchronized.

Core Data by Tutorials Second Edition Chapter 5: NSFetchedResultsController

 raywenderlich.com Page 135

As for how the Wenderland flag made it into the app: Hey, we’re developers! We
need to plan for all kinds of possibilities. ;]

Where to go from here?
You’ve seen how powerful and useful NSFetchedResultsController can be, and
you’ve learned how well it works together with a table view. Table views are so
common in iOS apps and you’ve seen first hand how the fetched results controller
can save you a lot of time and code!

With some adaptation to the delegate methods, you can also use a fetched results
controller to drive a collection view—the main difference being that collection views
don’t bracket their updates with begin and end calls, so it’s necessary to store up
the changes and apply them all in a batch at the end.

There are a few things you should bear in mind before using fetched results
controllers in other contexts. They’re not designed as general Core Data monitoring
tools—there are other notifications or techniques that probably do the job better.
Be mindful of how you implement the fetched results controller delegate methods.
Even the slightest change in the underlying data will fire those change notifications,
so avoid performing any expensive operations that you’re not comfortable
performing over and over.

It’s not every day that a single class gets an entire chapter in a book; that honor is
reserved for the select few. NSFetchedResultsController is one of them. As you’ve
seen in this chapter, the reason this class exists is to save you time.

NSFetchedResultsController is important for another reason: it fills a gap that iOS
developers have faced compared to their OS X developer counterparts. OS X has
Cocoa bindings, which provide a way to tightly couple a view with its underlying
data model. Sound familiar?

If you ever find yourself writing complex logic to compute sections or breaking a
sweat trying to get your table view to play nicely with Core Data says, think back to
this chapter!

 raywenderlich.com Page 136

You’ve seen how to design your data model and NSManagedObject subclasses in your
Core Data apps. During app development, thorough testing can help iron out the
data model well before shipping. However, changes in app usage, design or
features after an app’s release will inevitably lead to changes in the data model.
What do you do then?

You can’t predict the future, but with Core Data, you can migrate toward the future
with every new release of your app. The migration process will update data created
with a previous version of the data model to match the current data model.

This chapter discusses the many aspects of Core Data migrations by walking you
through the evolution of a note-taking app’s data model. You’ll start with a simple
app with only a single entity in its data model. As you add more features and data
to the app, the migrations you do in this chapter will become progressively more
complex.

Let the journey begin!

When to migrate
When is a migration necessary? The easiest answer to this common question is
“when you need to make changes to the data model.”

However, there are some cases in which you can avoid a migration. If an app is
using Core Data merely as an offline cache, then when you update the app, you can
simply delete and rebuild the data store. This is only possible if the source of truth
for your user’s data isn’t in the data store. In all other cases, you’ll need to
safeguard your user’s data.

That said, any time it’s impossible to implement a design change or feature request
without changing the data model, you’ll need to create a new version of the data
model and provide a migration path.

Chapter 6: Versioning and
Migration
By Saul Mora

Core Data by Tutorials Second Edition Chapter 6: Versioning and Migration

 raywenderlich.com Page 137

The migration process
When you initialize a Core Data stack, one of the steps involved is adding a store to
the persistent store coordinator. When you encounter this step, Core Data does a
few things prior to adding the store to the coordinator.

First, Core Data analyzes the store’s model version. Next, it compares this version
to the coordinator’s configured data model. If the store’s model version and the
coordinator’s model version don’t match, then Core Data will perform a migration,
when enabled.

Note: If migrations aren’t enabled, and the store is incompatible with the
model, Core Data will simply not attach the store to the coordinator and
specify an error with an appropriate reason code.

To start the migration process, Core Data needs the original data model and the
destination model. It uses these two versions to load or create a mapping model for
the migration, which it uses to convert data in the original store to data that it can
store in the new store. Once Core Data determines the mapping model, the
migration process can start in earnest.

Migrations happen in three steps:

1. First, Core Data copies over all the objects from one data store to the next.

2. Next, Core Data connects and relates all the objects according to the relationship
mapping.

3. Enforce any data validations in the destination model. Core Data disables
destination model validations during the data copy.

You might ask, “If something goes wrong, what happens to the original source data
store?” With nearly all types of Core Data migrations, nothing happens to the
original store unless the migration completes without error. Only when a migration
is successful, will Core Data remove the original data store.

Types of migrations
In my own experience using Core Data, I’ve found there are a few more migration
variants than the simple distinction between lightweight and heavyweight. Below,
I’ve provided the more subtle variants of migration names, but these names are not
official categories by any means. I’ll start with the least complex form of migration
and end with the most complex form.

Lightweight migrations
A lightweight migration is Apple’s term for the migration with the least amount of
work involved on your part. Simply enable a couple of flags when setting up a Core
Data stack, and the migration happens automatically. There are some limitations on

Core Data by Tutorials Second Edition Chapter 6: Versioning and Migration

 raywenderlich.com Page 138

how much you can change the data model, but because of the small amount of
work required to enable this option, it is the ideal setting.

Manual migrations
Manual migrations involve a little more work on your part. You need to specify how
to map the old set of data onto the new set, but you get the benefit of a more
explicit mapping model file to configure. Setting up a mapping model in Xcode is
much like setting up a data model, with similar GUI tools and some automation.

Custom manual migrations
This is level 3 of the migration complexity index. You still use a mapping model, but
add to that custom code with the ability to also specify custom transformation logic
on data. In this case, custom entity transformation logic involves creating an
NSEntityMigrationPolicy subclass and performing custom transformations there.

Fully manual migrations
Fully manual migrations are for those times when even specifying custom
transformation logic isn’t enough to fully migrate data from one model version to
another. In this case, custom version detection logic and custom handling of the
migration process are necessary. In this chapter, you’ll use set up a fully manual
migration to update data across non-sequential versions, such as jumping from
version 1 to 4.

Throughout this chapter, you’ll learn about each of these migration types and when
to use them. Let’s get started!

Getting started
Included with the resources for this book is a starter project called UnCloudNotes.
Find the starter project and open it in Xcode.

Note: We’ve called the app UnCloudNotes as a teaser for Chapter 7,
“Syncing with iCloud.” In that chapter, you’ll change UnCloudNotes to
CloudNotes, and modify it so that it syncs its Core Data store to multiple
devices using iCloud.

Build and run the app in the iPhone simulator. You’ll see an empty list of notes:

Core Data by Tutorials Second Edition Chapter 6: Versioning and Migration

 raywenderlich.com Page 139

Tap the plus (+) button in the top-right corner to add a new note. Add a title (there
is default text in the note body to make the process faster) and tap Create to save
the new note to the data store. Repeat this a few times so that you have some
sample data to migrate.

Back in Xcode, open the UnCloudNotesDatamodel.xcdatamodeld file to show
the entity modeling tool in Xcode. The data model is simple—just one entity, a
Note, with a few attributes.

You’re going to add a new feature to the app: the ability to attach a photo to a
note. The data model doesn’t have any place to persist this kind of information, so
you’ll need to add a place in the data model to hold onto the photo. But you already
added a few test notes in the app—how can you change the model without breaking
the existing notes? It’s time for your first migration!

A lightweight migration
With the entity modeler open, open the Editor menu and select Add Model
Version.... Call the new version UnCloudNotesDataModel v2 and select

Core Data by Tutorials Second Edition Chapter 6: Versioning and Migration

 raywenderlich.com Page 140

UnCloudNotesDataModel in the “Based on Model” field. Xcode will now create a
copy of the data model.

Note: You can give this file any name you want. The sequential v2, v3, v4, et
cetera naming helps you tell the versions apart easily.

This step will create a second version of the data model, but you still need to tell
Xcode to use the new version as the current model. In the File Inspector pane on
the right, find the option toward the bottom called Model Version. Change that
selection to match the name of the new data model, UnCloudNotesDataModel
v2:

Once you’ve made that change, notice in the project navigator that the little green
check mark icon has moved from the previous data model to the v2 data model:

Core Data will load the ticked version when setting up the stack. The older version
is there to support migration—it’s hard to migrate to a new model without knowing
the old one!

Make sure you have the v2 data model selected and add an image attribute to the
Note entity. Set the attribute’s name to image and the attribute’s type to
Transformable.

Since this attribute is going to contain the actual binary bits of the image, you’ll use
a custom NSValueTransformer to convert from binary bits to a UIImage and back
again. Just such a transformer has been provided for you as ImageTransformer. In
the Value Transformer Name field in the Data Model Inspector on the right of the
screen, enter UnCloudNotes.ImageTransformer.

Core Data by Tutorials Second Edition Chapter 6: Versioning and Migration

 raywenderlich.com Page 141

The new model is now ready for some code! Open Note.swift and add a property
to match the new attribute:

@NSManaged var image: UIImage?

Build and run, and you’ll see your notes have disappeared! In the Xcode console,
you’ll see some error text related to the CoreDataStack object:

context:(<NSManagedObjectContext:(0x7a96c8f0>(
modelName:(UnCloudNotesDataModelmodel:([Note:(<c393d6c8(d5e65f5a(bb5e4394(
eb6ce54c(a99e724d(bdb64072(ed2e99dd(99e77ba0>](
coordinator:(<NSPersistentStoreCoordinator:(0x7a973310>(
storeURL:(
file:///Users/YOURNAME/Library/Developer/CoreSimulator/Devices/A24A4E68TD616T
4F63T8946T652164EE5E53/data/Containers/Data/Application/9921B2DDTD0FDT4330T
90F9TA2F44CC9899A/Library/Application%20Support/UnCloudNotes.sqlite(
store:'nil

The store file is still around (storeURL in the log above), but since it’s incompatible
with the new v2 model, Core Data couldn’t attach it to the persistent store, so
store is still nil.

Core Data can automatically update your store if all you’ve done is add a new
property like this. These are called lightweight migrations.

Enabling lightweight migrations
To enable lightweight migrations, you need to set two flags on initialization. The
stack in this app lives in an object imaginatively titled CoreDataStack, which you’ll
modify to do this.

Open CoreDataStack.swift and add a property to the class:

var options: NSDictionary?

Right now, you’re setting up the persistent store with no options for default
behavior. You’ll use the options dictionary to set the necessary flags.

Next, update the initializer to match the following:

Core Data by Tutorials Second Edition Chapter 6: Versioning and Migration

 raywenderlich.com Page 142

init(modelName: String, storeName: String,
 options: NSDictionary? = nil) {
 self.modelName = modelName
 self.storeName = storeName
 self.options = options
}

In setting the default value of options to nil, the old method signature remains
valid and you have the additional choice of passing in the options dictionary.

Find the coordinator computed property and change the initialization of the
persistent store as follows:

store = coordinator.addPersistentStoreWithType(
 NSSQLiteStoreType,
 configuration: nil,
 URL: storeURL,
 options: self.options)

There’s just a small change here to pass in the extra options when creating the
stack.

Open NotesListViewController.swift and change the CoreDataStack lazy
initialization statement to use the lightweight migration options:

lazy var stack : CoreDataStack = CoreDataStack(
 modelName:"UnCloudNotesDataModel",
 storeName:"UnCloudNotes",
 options:[NSMigratePersistentStoresAutomaticallyOption: true,
 NSInferMappingModelAutomaticallyOption: true])

The NSMigratePersistentStoresAutomaticallyOption is what tells Core Data (the
NSPersistentStoreCoordinator, actually) to start a migration if the persistent store
model isn’t compatible with the current data model. Core Data will handle all the
details, from finding the source model to creating the destination store file, and all
the steps in between.

The NSInferMappingModelAutomaticallyOption is the other half of what makes a
lightweight migration possible. Every migration requires a mapping model. Here’s
an analogy: If you’re traveling from a known place on Earth to somewhere
unknown, you’ll want a map to tell you where to go. The mapping model is that
guide.

It just so happens that Core Data can infer a mapping model in many cases. That
is, Core Data can automatically look at the differences in two data models and
create a mapping model between them. For entities and attributes that are identical
between model versions, this is a straightforward data pass through mapping. For

Core Data by Tutorials Second Edition Chapter 6: Versioning and Migration

 raywenderlich.com Page 143

other changes, just follow a few simple rules for Core Data to create a mapping
model. In the new model, changes must fit an obvious migration pattern, such as:

1. Deleting entities, attributes or relationships;

2. Renaming entities, attributes or relationships using the renamingIdentifier;

3. Adding a new, optional attribute;

4. Adding a new, required attribute with a default value;

5. Changing an optional attribute to non-optional and specifying a default value;

6. Changing a non-optional attribute to optional;

7. Changing the entity hierarchy;

8. Adding a new parent entity and moving attributes up or down the hierarchy;

9. Changing a relationship from to-one to to-many;

10. Changing a relationship from non-ordered to-many to ordered to-many (and
vice versa).

Note: Check out Apple’s documentation for more information on how Core
Data infers a lightweight migration mapping:
https://developer.apple.com/library/Mac/DOCUMENTATION/Cocoa/Conceptual
/CoreDataVersioning/Articles/vmLightweightMigration.html

As you can see from this list, Core Data can detect, and more importantly,
automatically react to, a wide variety of common changes between data models. As
a rule of thumb, all migrations, if necessary, should start as lightweight migrations
and only move to more complex mappings when the need arises.

As for the migration from UnCloudNotes to UnCloudNotes v2, the image property
has a default value of nil since it’s an optional property. This means Core Data can
easily migrate the old data store to a new one, since this change follows item 3 in
the list of lightweight migration patterns.

Build and run, and your old notes have returned! Core Data has migrated the data
store automatically using an inferred mapping model.

The non-nil value for the store: entry in the logs is a nice confirmation that the
migration actually happened and that there’s now an NSPersistentStore object
representing the store.

Core Data by Tutorials Second Edition Chapter 6: Versioning and Migration

 raywenderlich.com Page 144

Congratulations—you’ve completed your first data migration!

Image attachments
Now that data is migrated, you need to update the UI to allow image attachments
to new notes. Luckily, most of this work has been done for you, so you can quickly
get to the interesting part. :]

Open Main.storyboard and go to the Create Note scene. Just underneath, you’ll
see a Create Note With Images scene that includes the interface to attach an
image.

The Create Note scene is attached to a navigation controller with a root view
controller relationship. Control-drag from the navigation controller to the Create
Note With Images scene and select the root view controller relationship
segue. This will disconnect the old Create Note scene and connect the new, image-
powered one instead:

Core Data by Tutorials Second Edition Chapter 6: Versioning and Migration

 raywenderlich.com Page 145

Open AttachPhotoViewController.swift and add the following method to the
class:

func imagePickerController(picker: UIImagePickerController,
 didFinishPickingMediaWithInfo info: [String: AnyObject]) {
 if let note = note {
 note.image = info[UIImagePickerControllerOriginalImage] as? UIImage
 }
 self.navigationController?.popViewControllerAnimated(true)
}

This will populate the new image property of the note once the user selects
something from the standard image picker.

Open CreateNoteViewController.swift and replace viewDidAppear with the
following:

override func viewDidAppear(animated: Bool) {
 super.viewDidAppear(animated)
 if let image = note?.image {

Core Data by Tutorials Second Edition Chapter 6: Versioning and Migration

 raywenderlich.com Page 146

 attachedPhoto.image = image
 view.endEditing(true)
 } else {
 titleField.becomeFirstResponder()
 }
}

This implementation will display the new image if the user has added one.

Next, open NotesListViewController.swift and update
tableView(_:cellForRowAtIndexPath) with the following:

override func tableView(tableView: UITableView, cellForRowAtIndexPath
indexPath: NSIndexPath) -> UITableViewCell {
 let note = notes.fetchedObjects?[indexPath.row] as? Note
 let identifier = note.image == nil ? "NoteCell” : "NoteCellImage"

 if let cell = tableView.dequeueReusableCellWithIdentifier(identifier,
forIndexPath: indexPath) as NoteTableViewCell {
 cell.note = note
 return cell
 }
 return UITableViewCell()
}

This will set the correct cell identifier based on whether an image is present in the
note. If there is an image, you also need to populate the image view in the cell.
Open NoteTableViewCell.swift and add the following lines after the code that
sets the creation date label’s text in updateNoteInfo():

if let image = note?.image {
 noteImage.image = image
}

Build and run, and choose to add a new note:

Core Data by Tutorials Second Edition Chapter 6: Versioning and Migration

 raywenderlich.com Page 147

Tap the Attach Image button to add an image to the note. Choose an image and
you’ll see it in your new note:

Core Data by Tutorials Second Edition Chapter 6: Versioning and Migration

 raywenderlich.com Page 148

The app uses a standard UIImagePickerController to add photos as attachments to
notes.

Note: To add your own images to the Simulator’s photo album, drag an image
file onto the open Simulator window. Thankfully, the iOS 8 Simulator now
comes with a library of photos ready for your use. :]

If you’re using a device, go to AttachPhotoViewController.swift and set the
sourceType attribute on the image picker controller to .Camera to take photos
with the device camera. The existing code uses the photo album, since there is
no camera in the Simulator.

Add a couple of sample notes with photos, since in the next section you’ll be using
sample data from this state of the project to move forward with a slightly more
complex migration.

Note: At this point, you might want to make a copy of the v2 source code into
a different folder to come back to later. Or if you’re using source control, set a
tag here so you can come back to this point.

A manual migration
The next step in the evolution of this data model is to move from attaching only a
single image to a note to allowing the user to attach multiple images. The note
entity will stay, and you’ll need a new entity for an image. Since a note can have
many images, there will be a to-many relationship.

Splitting one entity into two isn’t exactly on the list of things lightweight migrations
can support. It’s time to level up to a custom manual migration!

The first step in every migration is to create a new model version. As before, select
the UnCloudNotesDataModel.xcdatamodeld file and from the Editor menu
item, select Add Model Version.... Name this model UnCloudNotesDataModel
v3 and base it on the v2 data model. Set the new model version as the default
model and open it in Xcode to start making the necessary changes.

First, you’ll add a new entity to the new data model. In the lower-left corner, click
the Add Entity button. Rename this entity Attachment. Select the entity and in
the Data Model inspector pane, set the Class to UnCloudNotes.Attachment.

Core Data by Tutorials Second Edition Chapter 6: Versioning and Migration

 raywenderlich.com Page 149

Create two attributes in the Attachment entity. Add an attribute named image of
type Transformable, with the value transformer set to
UnCloudNotes.ImageTransformer. This is the same as the image attribute you
added to the Note entity earlier. Add a second attribute called dateCreated and
make it a Date type.

Next, add a relationship to the Attachment entity to relate it to its Note. Set the
relationship name to note and its destination to Note.

Select the Note entity and delete the image attribute. Finally, create a to-many
relationship from the Note entity to the Attachment entity. Name the relationship
attachments, set the destination to Attachment and select the note relationship
you just created as the inverse.

The data model is now ready for migration!

Mapping models
With lightweight migrations, Core Data can automatically determine the steps to
take to move from one model version to another when the changes are simple.
When the changes aren’t as simple, you can manually set up the steps to migrate
from one model version to another with a mapping model.

It’s important that before creating a mapping model, you complete and finalize your
target model. You’ve finished the changes to the v3 data model, and you know that
lightweight migration isn’t going to do the job. To create a mapping model, open
the File menu in Xcode and select New\File. Navigate to the iOS\Core Data
section and select Mapping Model:

Core Data by Tutorials Second Edition Chapter 6: Versioning and Migration

 raywenderlich.com Page 150

Click Next, select the v2 data model as the source model and select the v3 data
model as the target model.

Name the new file UnCloudNotesMappingModel_v2_to_v3. The file naming
convention I typically use is the data model name along with the source version and
destination version. As an application collects more and more mapping models over
time, this file naming convention makes it easier to distinguish between files and
the order in which they have changed over time.

Open UnCloudNotesMappingModel_v2_to_v3.xcmappingmodel. Luckily, the
mapping model doesn’t start completely from scratch—Xcode examines the source
and target models and infers as much as it can, so you're starting out with a
mapping model that consists of the basics.

Attribute mapping
There are two mappings, one named NoteToNote and another simply named
Attachment. NoteToNote describes how to migrate the v2 Note entity to the v3
Note entity.

Select NoteToNote and you’ll see two sections: Attribute Mappings and
Relationship Mappings.

Core Data by Tutorials Second Edition Chapter 6: Versioning and Migration

 raywenderlich.com Page 151

The attributes mappings here are fairly straightforward. Notice the value
expressions with the pattern $source. The $source is a special token for the
mapping model editor, representing a reference to the source instance. Remember,
with Core Data, you’re not dealing with rows and columns in a database. Instead,
you’re dealing with objects, their attributes and classes.

In this case, the values for body, dateCreated, displayIndex and title will be
transferred directly from the source. Those are the easy cases!

The attachments relationship is new, so Xcode couldn’t fill in anything from the
source. You’ll get to that shortly.

Select the Attachment mapping and make sure the Utilities panel on the right is
open. Select the last tab in the Utilities panel to open the Entity Mapping
inspector:

Change the Mapping Name to NoteToAttachment. This mapping name
convention (also used by default Core Data mappings) indicates that data for the
new Attachment entity will come from Note. Select Note as the source entity in the
drop-down list. Once you select the source entity, Xcode will try to resolve the
mappings automatically based on the names of the attributes of the source and
destination entities. In this case, Xcode will fill in the dateCreated and image
mappings for you:

Core Data by Tutorials Second Edition Chapter 6: Versioning and Migration

 raywenderlich.com Page 152

Xcode is being helpful again; it just needs a small nudge from you specifying the
source entity. Since the attribute names match, Xcode will fill in the value
expressions for you. What does it mean to map data from Note entities to
Attachment entities? Think of this as saying, “For each Note, make an Attachment
and copy the image and dateCreated attributes across.”

This mapping will create an Attachment for every Note, but you really only want an
Attachment if there was an image attached to the note. Make sure the
NoteToAttachment entity mapping is selected and in the inspector, set the Filter
Predicate field to image != nil. This will ensure the Attachment mapping will only
happen when there is an image present in the source.

Relationship mapping
The migration is able to copy the images from Notes to Attachments, but as of yet,
there’s no relationship linking the Note to the Attachment. The next step to get that
behavior is to add a relationship mapping.

In the NoteToAttachment mapping, you’ll see a relationship mapping called note.
Like the relationship mapping you saw in NoteToNote, the value expression is
empty since Xcode doesn’t know how to automatically migrate the relationship.

Select the attachment relationship row in the list of relationships so that the
Inspector changes to reflect the properties of the relationship mapping. In the
Source Fetch field, select Auto Generate Value Expression. Enter $source in
the Key Path field and select NoteToNote from the Mapping Name field.

This should generate a value expression that looks like this:

FUNCTION($manager,(
(("destinationInstancesForEntityMappingNamed:sourceInstances:",(
(("NoteToNote",($source)

The FUNCTION statement resembles the objc_msgSend syntax. That is, the first
argument is the object instance, the second argument is the selector and any
further arguments are passed into that method as parameters.

Core Data by Tutorials Second Edition Chapter 6: Versioning and Migration

 raywenderlich.com Page 153

So really, the mapping model is calling a method on the $manager object. The
$manager token is a special reference to the NSMigrationManager object that is
handling the migration process.

Note: Using FUNCTION expressions still relies on some knowledge of Objective-
C syntax. It might be some time until Apple gets around to revamping Core
Data 100% to Swift! :]

Core Data creates the migration manager during the migration. The migration
manager keeps track of which source objects are associated with which destination
objects. The method destinationInstancesForEntityMappingNamed:sourceInstances:
will look up the destination instances for a source object. The expression above is
saying “set the note relationship to whatever the $source object for this mapping
gets migrated to by the NoteToNote mapping,” which in this case will be the Note
entity in the new data store.

You’ve completed your custom mapping! You now have a mapping that is
configured to split a single entity into two and relate the proper data objects
together.

Persistent store and entity classes
Before running this migration, you need to update the Core Data setup code to use
this mapping model and not try to infer one on its own. Open
NotesListViewController.swift and find the CoreDataStack property initializer
near the top of the class. Change the options dictionary to match the following:

options:[NSMigratePersistentStoresAutomaticallyOption:true,
 NSInferMappingModelAutomaticallyOption:false]

By setting NSInferMappingModelAutomaticallyOption to false, you’ve ensured that
the persistent store coordinator will now use the new mapping model to migrate the
store. Yes, that’s all the code you need to change; there is no new code!

What will happen here is that Core Data will look for the mapping model files in the
default or main bundle when it’s told not to infer or generate one. Since the
mapping model knows the source and destination versions of the model, Core Data
will use that information to determine which mapping model to use to perform a
migration. It really is as simple as changing a single option to use the custom
mapping model.

The code in the app also needs updating—you’re not working with the image
property on a note any more, but with multiple attachments.

Create a new Swift file called Attachment and implement the managed object
subclass:

Core Data by Tutorials Second Edition Chapter 6: Versioning and Migration

 raywenderlich.com Page 154

import Foundation
import UIKit
import CoreData

class Attachment: NSManagedObject {
 @NSManaged var dateCreated: NSDate
 @NSManaged var image: UIImage?
 @NSManaged var note: Note
}

Open Note.swift and delete the image property. Replace it with a property for the
attachments relationship:

@NSManaged var attachments: NSSet

The rest of your app is still depending on an image property, so you’ll get a compile
error if you try to build the app. Add the following computed property and helper
method to the Note class:

var image : UIImage? {
 return latestAttachment?.image
}

var latestAttachment: Attachment? {
 let attachmentsToSort = map(attachments.allObjects)
 { $0 as [Attachment] }
 .filter { $0 != nil }
 .map { $0! }
 .sorted {
 let date1 = $0.dateCreated.timeIntervalSinceReferenceDate
 let date2 = $1.dateCreated.timeIntervalSinceReferenceDate
 return date1 > date2
 }

 return attachmentsToSort.first
}

This implementation uses a computed property, which gets the image from the
latest attachment. If there are several attachments, latestAttachment() will, as its
name suggests, grab the latest one and return it.

Next, open AttachPhotoViewController.swift to update it to create a new
Attachment object when the user chooses an image. Add the Core Data import to
the top of the file:

import CoreData

Core Data by Tutorials Second Edition Chapter 6: Versioning and Migration

 raywenderlich.com Page 155

Replace the image picker delegate method with the following:

func imagePickerController(picker: UIImagePickerController,
didFinishPickingMediaWithInfo info: [String: AnyObject]) {
 if let note = note {
 if let attachment =
NSEntityDescription.insertNewObjectForEntityForName("Attachment",
inManagedObjectContext: note.managedObjectContext!) as? Attachment {
 attachment.dateCreated = NSDate()
 attachment.image = info[UIImagePickerControllerOriginalImage]
as? UIImage
 attachment.note = note
 }
 }
 navigationController?.popViewControllerAnimated(true)
}

Build and run the app, and you’ll notice that not a whole lot has changed on the
surface! However, if you still see your notes and images as before, that means the
mapping model worked; under the covers, Core Data has updated the underlying
schema of the SQLite store to reflect the changes in the v3 data model.

Note: Again, you might want to make a copy of the v3 source code into a
different folder to come back to later. Or if you’re using source control, set a
tag here so you can come back to this point.

A complex mapping model
The higher-ups have thought of a new feature for UnCloudNotes, so you know what
that means: It’s time to migrate the data model once again! This time, they’ve
decided that supporting only image attachments isn’t enough. They want future
versions of the app to support videos, audio files or really add any kind of
attachment that makes sense.

You make the decision to have a base entity called Attachment and a subclass
called ImageAttachment. This will enable each attachment type to have its own
useful information. Images could have attributes for a caption, image size,
compression level, file size, et cetera. Later, you can add more subclasses for other
attachment types.

While new images will grab this information prior to saving, you’ll need to extract
that information from current images during the migration. You’ll need to use either
CoreImage or the ImageIO libraries. These are data transformations that Core Data

Core Data by Tutorials Second Edition Chapter 6: Versioning and Migration

 raywenderlich.com Page 156

definitely doesn’t support out of the box, which makes a custom manual migration
the proper tool for the job.

As usual, the first step in any data migration is to select the data model file in
Xcode and select Editor\Add Model Version…. This time, create version 4 of the
data model called UnCloudNotesDataModel v4. Don’t forget to set the current
version of the data model to v4 in the Xcode Inspector.

Open the v4 data model and add a new entity named ImageAttachment. Set the
class to UnCloudNotes.ImageAttachment. Make the following changes to
ImageAttachment:

• Set the Parent Entity to Attachment.

• Add a String attribute named caption.

• Add a Float attribute named width.

• Add a Float attribute name height,Add a Transformable attribute named image.
Set the Value Transformer Name to UnCloudNotes.ImageTransformer.

Having a parent entity is like being a subclass, which means ImageAttachment will
inherit the attributes of Attachment. When you set up the managed object subclass
later, you’ll see this inheritance made explicit in the code.

Now that the image is stored in ImageAttachment, you can remove it from
Attachment. Select the Attachment entity and delete the image property.

That should do it for the new data model. Once you’ve finished, your version 4 data
model should look like this:

Core Data by Tutorials Second Edition Chapter 6: Versioning and Migration

 raywenderlich.com Page 157

Mapping model
In the Xcode menu, choose File\New File and select the iOS\Core
Data\Mapping Model template. Select version 3 as the source model and version
4 as the target, and name the file UnCloudNotesMappingModel_v3_to_v4.

Open the new mapping model in Xcode and you’ll see that Xcode has again
helpfully filled in a few mappings for you.

Starting with the NoteToNote mapping, Xcode has directly copied the source
entities from the source store to the target with no conversion or transformation.
The default Xcode values for this simple data migration are good to go, as-is!

Select the AttachmentToAttachment mapping. Xcode has also detected some
common attributes in the source and target entities and generated mappings.
However, you want to convert Attachment entities to ImageAttachment entities.
What Xcode has created here will map Attachment to Attachment, which isn’t
necessary. Delete this mapping.

Now select the ImageAttachment mapping and rename it to
AttachmentToImageAttachment to describe what it will do more accurately.

This mapping has no source entity since this is a completely new entity. In the
inspector, change the source entity to be Attachment. Now that it knows the
source, Xcode will fill in a few of the value expressions for you.

For the remaining attributes, you’ll need to write some code. This is where you
need image processing and custom code beyond simple FUNCTION expressions!

Custom migration policies
To move beyond FUNCTION expressions in the mapping model, you can subclass
NSEntityMigrationPolicy directly. This lets you write Swift code to handle the
migration, instance by instance, so you can call on any framework or library
available to the rest of your app.

Core Data by Tutorials Second Edition Chapter 6: Versioning and Migration

 raywenderlich.com Page 158

Add a new Swift file to the project called
AttachmentToImageAttachmentMigrationPolicyV3toV4 and replace its
contents with the following starter code:

import CoreData
import UIKit

class AttachmentToImageAttachmentMigrationPolicyV3toV4:
NSEntityMigrationPolicy {

}

This naming convention should look familiar to you, as it’s noting that this is a
custom migration policy and is for transforming data from Attachments in model
version 3 to ImageAttachments in model version 4.

Back in the v3-to-v4 mapping model file, select the
AttachmentToImageAttachment entity mapping. In the Entity Mapping
Inspector, fill in the Custom Policy field with the class name you just created,
UnCloudNotes.AttachmentToImageAttachmentMigrationPolicyV3toV4.

Now, when Core Data runs this migration, it will create an instance of your custom
migration policy when it needs to perform a data migration for that specific set of
data. That’s your chance to run any custom transformation code to do what’s
needed to extract image information during migration! Now, it’s time to add some
custom logic to the custom entity mapping policy.

Open AttachmentToImageAttachmentMigrationPolicyV3toV4.swift and add
the method to perform the migration:

override func createDestinationInstancesForSourceInstance(
 sInstance: NSManagedObject,
 entityMapping mapping: NSEntityMapping,
 manager: NSMigrationManager) throws {
 // 1
 let newAttachment =
NSEntityDescription.insertNewObjectForEntityForName(
 "ImageAttachment",
 inManagedObjectContext: manager.destinationContext)
 as? NSManagedObject

 // 2
 func traversePropertyMappings(block: NSPropertyMapping -> ()) {
 if let attributeMappings = mapping.attributeMappings {
 for propertyMapping in attributeMappings {
 if let destinationName = propertyMapping.name {
 block(propertyMapping)

Core Data by Tutorials Second Edition Chapter 6: Versioning and Migration

 raywenderlich.com Page 159

 } else {
 // 3
 let message = "Attribute destination not configured
properly"
 let userInfo = [NSLocalizedFailureReasonErrorKey: message]
 throw NSError(domain: errorDomain, code: 0, userInfo:
userInfo)
 }
 }
 } else {
 let message = "No Attribute Mappings found!"
 let userInfo = [NSLocalizedFailureReasonErrorKey: message]
 throw NSError(domain: errorDomain, code: 0, userInfo: userInfo)
 }
 }

 // 4
 traversePropertyMappings { propertyMapping in
 if let valueExpression = propertyMapping.valueExpression {
 let context: NSMutableDictionary = ["source": sInstance]
 let destinationValue: AnyObject =
 valueExpression.expressionValueWithObject(sInstance,
 context: context)
 newAttachment.setValue(destinationValue,
 forKey: destinationName)
 }
 }

 // 5
 if let image = sInstance.valueForKey("image") as? UIImage {
 newAttachment.setValue(image.size.width, forKey: "width")
 newAttachment.setValue(image.size.height, forKey: "height")
 }

 // 6
 let body = sInstance.valueForKeyPath("note.body") as! NSString
 newAttachment.setValue(body.substringToIndex(80),
 forKey: "caption")

 // 7
 manager.associateSourceInstance(sInstance,
 withDestinationInstance: newAttachment,
 forEntityMapping: mapping)
}

Core Data by Tutorials Second Edition Chapter 6: Versioning and Migration

 raywenderlich.com Page 160

This method is an override of the default NSEntityMigrationPolicy implementation.
Overriding this method is the way the migration manager creates instances of
destination entities. That is, an instance of the source object is the first parameter,
and, when overridden, it’s up to the developer to create the destination instance
and associate it properly to the migration manager.

Here’s what’s going on, step by step:

1. First, you create an instance of the new destination object. The migration
manager has two Core Data stacks—one to read from the source and one to write
to the destination—so you need to be sure to use the destination context here.

2. Using the functional nature of Swift, create a traversePropertyMappings function
that performs the task of iterating over the property mappings if they are indeed
present in the migration. This function will control the traversal while the next
section will perform the operation required for each property mapping

3. If, for some reason, the attributeMappings property on the entityMapping object
doesn’t return any mappings, this means your mappings file has been specified
incorrectly. When this happens, the method will throw an error with some helpful
information.

4. Even though this is a custom manual migration, most of the attribute migrations
should be performed using the expressions you defined in the mapping model. To
do this, you use the traversal function from the previous step and apply the value
expression to the source instance and set the result to the new destination object.

5. Next, you try to get an instance of the image. If it exists, then you grab its width
and height to populate the data in the new object.

6. For the caption, you simply grab the note’s body text and take the first 80
characters.

7. The migration manager needs to know the connection between the source
object, the newly created destination object and the mapping. Failing to call this
method at the end of a custom migration will result in missing data in the
destination store.

That’s it for the custom migration code! Core Data will pick up the mapping model
when it detects a v3 data store on launch, and apply it to migrate it to the new data
model version. Since you added the custom NSEntityMigrationPolicy subclass and
linked to it in the mapping model, Core Data will call through to your code
automatically.

You just need to wrap up the changes to the new entity subclasses. Open
Attachment.swift and remove the image property.

Next, create a new Swift file called ImageAttachment and replace its contents
with the following:

import UIKit
import CoreData

Core Data by Tutorials Second Edition Chapter 6: Versioning and Migration

 raywenderlich.com Page 161

class ImageAttachment: Attachment {
 @NSManaged var image: UIImage?
 @NSManaged var width: CGFloat
 @NSManaged var height: CGFloat
 @NSManaged var caption: NSString
}

There are several places in the app that reference Attachment that you now need to
change to reference ImageAttachment.

Open Note.swift and change the first two lines of latestAttachment() so that they
reference ImageAttachment instead:

var latestAttachment: ImageAttachment? {
 var attachmentsToSort = map(attachments.allObjects) { $0 as?
ImageAttachment }

Finally, open AttachPhotoViewController.swift and find
imagePickerController(_:didFinishPickingMediaWithInfo:). Change the line that
sets up attachment so that it uses ImageAttachment instead:

let attachment =
 NSEntityDescription.insertNewObjectForEntityForName(
 "ImageAttachment",
 inManagedObjectContext: note.managedObjectContext)
 as? ImageAttachment

Now build and run UnCloudNotes, and the data should migrate properly. Again,
your notes will be there, images and all, but you’re now future-proof and ready to
add video, audio and anything else!

Migrating non-sequential versions
Thus far, you’ve walked through a series of data migrations in order. You’ve
migrated the data from version 1 to 2 to 3 to 4, in sequence. Inevitably, in the real
world of App Store launches, a user might skip an update and need to go from
version 2 to 4, for example. What happens then?

When Core Data performs a migration, its intention is to perform only a single
migration. In this hypothetical scenario, Core Data would look for a mapping model
that goes from version 2 to 4; if one didn’t exist, Core Data would infer one, if you
tell it to. Otherwise the migration will fail, and Core Data will report an error when
attempting to attach the store to the persistent store coordinator.

How can you handle this scenario? You could provide multiple mapping models, but
as your app grows, you’d need to provide an inordinate number of these: from v1

Core Data by Tutorials Second Edition Chapter 6: Versioning and Migration

 raywenderlich.com Page 162

to v4, v1 to v3, v2 to v4, et cetera. You would spend more time on mapping models
than on the app itself!

The solution to this scenario is to implement a fully custom migration sequence.
You already know that the migration from version 2 to 3 works; to go from 2 to 4,
it will work well if you manually migrate the store from 2 to 3 and then from 3 to 4.
This step-by-step migration means you’ll prevent Core Data from looking for a
direct 2 to 4 or even a 1 to 4 migration.

A self-aware stack
To begin implementing this solution, you’ll want to create a separate “migration
manager” class. The responsibility of this class will be to provide a properly
migrated Core Data stack, when asked. That is, this class will have a stack property
and will return an instance of CoreDataStack, as UnCloudNotes uses throughout,
which has run through all the migrations necessary to be useful for the app.

First, create a new Swift file called DataMigrationManager. Open the file and
replace its contents with the following:

import Foundation
import CoreData

class DataMigrationManager {
 let storeName: String
 let modelName: String
 var options: NSDictionary?
 var stack: CoreDataStack

 init(storeNamed: String, modelNamed: String) {
 self.storeName = storeNamed
 self.modelName = modelNamed
 }
}

You’ll keep track of the store name and model name with two properties. There is
also an optional options dictionary property for use when performing the final
adding of the store. As seen from previous migrations, this options dictionary will
become more important when you finally get to the step where you add a
persistent store to a coordinator.

Next, open NotesListViewController.swift and replace the stack lazy initialization
code with the following:

lazy var stack : CoreDataStack = {
 let manager = DataMigrationManager(
 storeNamed:"UnCloudNotes",

Core Data by Tutorials Second Edition Chapter 6: Versioning and Migration

 raywenderlich.com Page 163

 modelNamed:"UnCloudNotesDataModel")
 return manager.stack
}()

First of all, you only want the stack to be “initialized” once, so the lazy attribute
takes care of that. Second, the initialization is actually handled by the
DataMigrationManager, so the stack used will be the one returned from the
migration manager.

Now to the harder part: How do you figure out if the store needs migrations? And if
it does, how do you figure out where to start? To do this, you’re going to need
helper methods. At the bottom of DataMigrationManager.swift, add an
extension on NSManagedObjectModel:

extension NSManagedObjectModel {
 class func modelVersionsForName(name: String)
 -> [NSManagedObjectModel] {
 let urls = NSBundle.mainBundle()
 .URLsForResourcesWithExtension("mom",
 subdirectory:"\(name).momd") ?? []

 return urls.map { NSManagedObjectModel(contentsOfURL:$0) }
 .filter { $0 != nil }
 .map { $0! }
 }

 class func uncloudNotesModelNamed(name:String)
 -> NSManagedObjectModel {
 if let modelURL = NSBundle.mainBundle()
 .URLForResource(name, withExtension:"mom",
 subdirectory:"UnCloudNotesDataModel.momd") {
 return NSManagedObjectModel(contentsOfURL:modelURL) ??
 NSManagedObjectModel()
 }
 return NSManagedObjectModel()
 }
}

The first method will return all model versions for a given name. The second
method will return a specific instance of NSManagedObjectModel. Usually, Core Data
will give you the most recent data model version, but this method will let you dig
inside for a specific version.

Note: When Xcode compiles your app into its app bundle, it will also compile
your data models. The app bundle will have at its root a .momd folder that

Core Data by Tutorials Second Edition Chapter 6: Versioning and Migration

 raywenderlich.com Page 164

contains .mom files. MOM or Managed Object Model files are the compiled
versions of .xcdatamodel files. You’ll have a .mom for each data model
version.

To use this method, add the following method inside the class extension:

class func version1() -> NSManagedObjectModel {
 return uncloudNotesModelNamed("UnCloudNotesDataModel")
}

This method will return the first version of the data model. That takes care of
getting the model, but what about checking the version of a model? Add the
following method to the class extension:

func isVersion1() -> Bool {
 return self == self.dynamicType.version1()
}

You’ll be able to call this method to check whether it is from version 1 when you
have a NSManagedObjectModel instance.

Next, add similar methods for versions 2 to 4 to the class extension:

class func version2() -> NSManagedObjectModel {
 return uncloudNotesModelNamed("UnCloudNotesDataModel v2")
}
func isVersion2() -> Bool {
 return self == self.dynamicType.version2()
}
class func version3() -> NSManagedObjectModel {
 return uncloudNotesModelNamed("UnCloudNotesDataModel v3")
}
func isVersion3() -> Bool {
 return self == self.dynamicType.version3()
}
class func version4() -> NSManagedObjectModel {
 return uncloudNotesModelNamed("UnCloudNotesDataModel v4")
}
func isVersion4() -> Bool {
 return self == self.dynamicType.version4()
}

To get the == comparison to work on two NSManagedObjectModel objects, add an
operator overload to the file. You’ll need to add this outside of the class extension,
right in the global scope:

Core Data by Tutorials Second Edition Chapter 6: Versioning and Migration

 raywenderlich.com Page 165

func ==(firstModel: NSManagedObjectModel, otherModel:
NSManagedObjectModel) -> Bool {
 let myEntities = firstModel.entitiesByName
 let otherEntities = otherModel.entitiesByName

 return NSDictionary(dictionary:
myEntities).isEqualToDictionary(otherEntities)
}

The idea here is simple: two NSManagedObjectModel objects are identical if they have
the same collection of entities, with the same version hashes.

Go back to the DataMigrationManager class declaration part of the file and add these
two helper methods:

func storeIsCompatibleWith(Model model:NSManagedObjectModel)
 -> Bool {
 let storeMetadata = metadataForStoreAtURL(storeURL)

 return model.isConfiguration(nil,
 compatibleWithStoreMetadata:storeMetadata)
}

func metadataForStoreAtURL(storeURL:NSURL) -> [String: AnyObject] {
 let metadata: [String: AnyObject]?
 do {
 metadata = try
NSPersistentStoreCoordinator.metadataForPersistentStoreOfType(
 NSSQLiteStoreType, URL: storeURL)
 } catch let error as NSError {
 metadata = nil
 print("Error retrieving metadata for store at URL: \(storeURL):
\(error)")
 }
 return metadata ?? [:]
}

The first method is a simple convenience wrapper to determine whether the
persistent store is compatible with a given model. The second method helps by
retrieving the metadata for the store.

Next, add the following computed properties to the class:

lazy var storeURL : NSURL = {
 var storePaths = NSSearchPathForDirectoriesInDomains(
 .ApplicationSupportDirectory, .UserDomainMask, true)

Core Data by Tutorials Second Edition Chapter 6: Versioning and Migration

 raywenderlich.com Page 166

 let firstStorePath = String(storePaths.first) as NSString

 let storePath = firstStorePath.stringByAppendingPathComponent(
 self.storeName + ".sqlite") ?? ""

 return NSURL.fileURLWithPath(storePath)
}()
lazy var storeModel : NSManagedObjectModel? = {
 for model in NSManagedObjectModel
 .modelVersionsForName(self.modelName) {
 if self.storeIsCompatibleWith(Model:model) {
 println("Store \(self.storeURL) is compatible with model
\(model.versionIdentifiers)")
 return model
 }
 }

 println("Unable to determine storeModel")
 return nil
}()

These properties will allow you to access the current store URL and model. As it
turns out, there is no method in the CoreData API to ask a store for its model
version. Instead, the easiest solution is brute force. Since you’ve already created
helper methods to check if a store is compatible with a particular model, you’ll
simply need to iterate through all the available models until you find one that works
with the store.

Next, you need your migration manger remember the current model version. Add a
property to the class, as follows:

lazy var currentModel: NSManagedObjectModel = {
 if let modelURL = NSBundle.mainBundle().URLForResource(
 self.modelName, withExtension:"momd") {
 return NSManagedObjectModel(contentsOfURL: modelURL) ??
 NSManagedObjectModel()
 }
 return NSManagedObjectModel()
}()

The currentModel property is lazy, so you load it only once since it should return
the same thing every time. Core Data will, by default, return the “current” data
model when loading the model using the .momd folder URL, and return a properly
initialized NSManagedObjectModel.

Of course, if the model you have isn’t the current model, that’s the time to run the
migration! Add a starter method to the class (which you’ll fill in later), as follows:

Core Data by Tutorials Second Edition Chapter 6: Versioning and Migration

 raywenderlich.com Page 167

func performMigration() {
}

Now, head up to the stack property you added earlier. Change that definition to the
following:

var stack: CoreDataStack {
 if !storeIsCompatibleWith(Model: currentModel) {
 performMigration()
 }

 return CoreDataStack(modelName: modelName,
 storeName: storeName, options: options)
}

In the end, the computed property will return a CoreDataStack instance. Before it
does so, it checks if the store specified in the initialization is compatible with what
Core Data determines to be the current version of the data model. If the store can’t
be loaded with the current model, then it needs to be migrated.

You now have a self-aware Core Data stack that can tell you what version it is!
Build the project to make sure everything compiles. The next step is to add the
custom migration logic.

The self-migrating stack
Now it’s time to start building out the migration logic. Add the big method that does
the heavy lifting:

func migrateStoreAt(URL storeURL:NSURL,
 fromModel from:NSManagedObjectModel,
 toModel to:NSManagedObjectModel,
 mappingModel:NSMappingModel? = nil) {

 // 1
 let migrationManager = NSMigrationManager(sourceModel: from,
 destinationModel:to)

 // 2
 var migrationMappingModel : NSMappingModel
 if let mappingModel = mappingModel {
 migrationMappingModel = mappingModel
 } else {
 migrationMappingModel = try! NSMappingModel
 .inferredMappingModelForSourceModel(
 from, destinationModel: to)

Core Data by Tutorials Second Edition Chapter 6: Versioning and Migration

 raywenderlich.com Page 168

 }

 // 3
 let destinationURL = storeURL.URLByDeletingLastPathComponent
 let destinationName = storeURL.lastPathComponent! + "~" + "1"
 let destination =
destinationURL!.URLByAppendingPathComponent(destinationName)

 println("From Model: \(from.versionIdentifiers)")
 println("To Model: \(to.versionIdentifiers)")
 println("Migrating store \(storeURL) to \(destination)")
 println("Mapping model: \(mappingModel)")

 // 4
 let success: Bool
 do {
 try migrationManager.migrateStoreFromURL(storeURL,
 type:NSSQLiteStoreType,
 options:nil,
 withMappingModel:migrationMappingModel,
 toDestinationURL:destination,
 destinationType:NSSQLiteStoreType,
 destinationOptions:nil)
 success = true
 } catch let error as NSError {
 success = false
 NSLog("Migration failed: \(error)")
 }
 // 5
 if success {
 print("Migration Completed Successfully")

 let fileManager = NSFileManager.defaultManager()
 do {
 try fileManager.removeItemAtURL(storeURL)
 try fileManager.moveItemAtURL(destination, toURL: storeURL)
 } catch let error as NSError {
 NSLog("Error migrating \(error)")
 }
 }
}

This method takes the store URL, a source model, destination model and an
optional mapping model. If you need to do a lightweight migration, you can pass
nil or simply skip the final parameter.

Core Data by Tutorials Second Edition Chapter 6: Versioning and Migration

 raywenderlich.com Page 169

Here’s what’s going on, step by step:

1. First, you create an instance of the migration manager.

2. If a mapping model was passed in to the method, then you use that. Otherwise,
you create an inferred mapping model.

3. Since migrations will create a second data store and migrate data, instance-by-
instance, from the original to the new file, the destination URL must be a different
file. Now, the example code in this section will create a destinationURL that is the
same folder as the original and a file concatenated with “~1”. The destination URL
can be in a temp folder or anywhere your app has access to write files.

4. Here’s where you put the migration manager to work! You’ve already set it up
with the source and destination models, so you simply need to add the mapping
model and the two URLs to the mix.

5. Given the result, you can print a success or error message to the console. In the
success case, you perform a bit of cleanup, too. In this case, it’s enough to
remove the old store and replace it with the new store.

Now it’s simply a matter of calling that method with the right parameters.
Remember your empty implementation of performMigration? It’s time to fill that in.
Add the following lines to that method:

if !currentModel.isVersion4() {
 fatalError("Can only handle migrations to version 4!")
}

You know the most recent version of the model, so this code bails out and kills the
app if the current model is anything other than version 4. This is a little extreme—in
your own apps, you might want to continue the migration anyway—but doing it this
way will definitely remind you to think about migrations if you ever add another
data model version to your app!

Add the next bit of code to the end of performMigration:

if let storeModel = self.storeModel {
 if storeModel.isVersion1() {
 options =
 [NSMigratePersistentStoresAutomaticallyOption: true,
 NSInferMappingModelAutomaticallyOption: true]
 } else {
 options =
 [NSMigratePersistentStoresAutomaticallyOption: true,
 NSInferMappingModelAutomaticallyOption: false]
 }

 if storeModel.isVersion1() {
 let destinationModel = NSManagedObjectModel.version2()

Core Data by Tutorials Second Edition Chapter 6: Versioning and Migration

 raywenderlich.com Page 170

 migrateStoreAt(URL: storeURL,
 fromModel: storeModel,
 toModel: destinationModel)

 performMigration()
 } else if storeModel.isVersion2() {
 let destinationModel = NSManagedObjectModel.version3()
 let mappingModel = NSMappingModel(fromBundles: nil,
 forSourceModel: storeModel,
 destinationModel: destinationModel)

 migrateStoreAt(URL:storeURL,
 fromModel:storeModel,
 toModel:destinationModel,
 mappingModel: mappingModel)

 performMigration()
 } else if storeModel.isVersion3() {
 let destinationModel = NSManagedObjectModel.version4()
 let mappingModel = NSMappingModel(fromBundles: nil,
 forSourceModel: storeModel,
 destinationModel: destinationModel)

 migrateStoreAt(URL:storeURL,
 fromModel:storeModel,
 toModel:destinationModel,
 mappingModel: mappingModel)
 }
}

The steps are similar, no matter which version you start from:

• Set up the options dictionary. Remember, the version 1 model used a simple
lightweight migration, while the others used mapping model files. You need to
have different options dictionaries to account for this.

• Set the destination model to the correct model version. Remember, you’re
only going “up” one version at a time, so from 1 to 2 and from 2 to 3.

• For version 2 and above, also load the mapping model.

• Finally, call migrateStoreAt(URL:fromModel:toModel:mappingModel:),
which you wrote at the start of this section.

Note that if you’re starting from version 1 or 2, there’s a recursive call to
performMigration() at the end. That will trigger another run to continue the
sequence; once you’re at version 3 and run the migration to get to version 4, there

Core Data by Tutorials Second Edition Chapter 6: Versioning and Migration

 raywenderlich.com Page 171

is no more recursive call. You can imagine adding to this method as you add more
data model versions to continue the automatic sequence of migrations.

Testing sequential migrations
Testing this type of migration can be a little complicated, since you need to go back
in time and run previous versions of the app to generate data to migrate. If you
saved copies of the app project along the way, then great! Otherwise, you’ll find
previous versions of the project in the resources bundled with the book.

First, make sure you make a copy of the project as it is right now—that’s the final
project!

Here are the general steps you’ll need to take to test each migration:

1. Delete the app from the Simulator to clear out the data store.

2. Open version 2 of the app (so you can at least see some pictures!), and build
and run.

3. Create some test notes.

4. Quit the app from Xcode and close the project.

5. Open the final version of the app, and build and run.

At that point, you should see some console output with the migration status. Note
that the migration will happen prior to the app presenting onscreen.

You now have an app that will successfully migrate between any combinations of
old data versions to the latest version.

Where to go from here?
That was a whole lot of data migration! Migrations can be extremely tricky, as
you’ve no doubt observed in the more complicated forms in this chapter. Before
you move on to the next chapter, I want to share a few words of advice from my
experience using Core Data migrations.

Core Data by Tutorials Second Edition Chapter 6: Versioning and Migration

 raywenderlich.com Page 172

First, when you decide a data migration is in order, make a reasonable effort to use
the simplest migration possible. Migrations can be tricky to test, so you want them
to be as simple as possible. And, as you’ve seen in this chapter, you can go a long
way without the need for the most custom of migrations involving code.

Second, make sure to save some data store versions for testing future migrations.
You’ll thank yourself later. In some cases, real live data will be the only way to
break a migration. Sometimes, it may be useful to ask a customer’s permission to
use their data store for testing a particular problem. Remember to use extreme
care with customer data and properly secure, anonymize or encrypt the files when
they aren’t being used during a test.

Core Data migrations are one of the more powerful, and in many cases, useful,
aspects of the Core Data framework. Now that you’ve seen the spectrum of Core
Data migrations from lightweight all the way to fully custom manual migrations,
you’ll be able to tackle data even the most difficult model changes in your own
apps.

 raywenderlich.com Page 173

Thus far, the tutorials in this book have walked you through Core Data as a locally
persistent storage mechanism—that is, Core Data with only a single store on a
single device for a single user process. Core Data and its predecessor, EOF
(Enterprise Objects Framework), have worked this way since their inception.

However, the world has changed a bit since then. Users have multiple devices and
want—even expect—their data to be synchronized between all of them. This usually
happens over what is mystically called “The Cloud.”

This chapter covers the steps necessary to sync a Core Data store using Apple’s
iCloud. You’ll update the app from the previous chapter to sync to iCloud and then
see how changes make it back and forth between two running copies of the app.

Note: You’ll need a paid iOS developer account to set up and test iCloud-
enabled apps. Make sure your account is in good standing and that you have
your iTunes Connect login information handy before continuing.

Chapter 7: Syncing with iCloud
By Saul Mora

Core Data by Tutorials Second Edition Chapter 7: Syncing with iCloud

 raywenderlich.com Page 174

No discussion or tutorial on iCloud is complete without the required diagram
showing a cloud. Check that one off the list, and let’s get started!

Getting started
iCloud is Apple’s method of syncing files and content from one device to all the
user’s other registered devices. Users will usually sign into iCloud right when they
first set up their devices.

From then on, iCloud takes care of everything for the user. When it syncs, it “just
works” and the user is happy.

As developers, we simply need to detect if iCloud is enabled on the device and turn
on support for it in our apps. There are no logins or passwords to deal with. And
since Apple is managing the iCloud services as well, there are no servers to worry
about.

Using iCloud means not having to worry (too much) about scheduling syncing or
how it works—which means less code for you to write. With iCloud, you don’t care
how or when data is syncing between devices, just that syncing happens,
eventually.

The downside
While iCloud works well for the key-value store and document sharing, its
relationship with Core Data got off to a shaky start. But fear not! Apple has been

Core Data by Tutorials Second Edition Chapter 7: Syncing with iCloud

 raywenderlich.com Page 175

listening to developer feedback and has improved the API for Core Data’s iCloud
integration, making it more reliable.

iCloud is Apple-only, so you won’t be able to use it if you ever plan to release an
Android or Windows Phone version of your app. However, you could say the same
thing about Core Data itself. If you’re sticking with OS X and iOS devices and you’re
already using Core Data, you’re well on your way to cloud syncing!

CloudNotes
In the previous chapter, you learned the essentials of Core Data migrations by
upgrading an app called UnCloudNotes. Going forward, this app will cloud syncing,
and thus the first step in your journey to using Core Data with iCloud is to rename
the project from UnCloudNotes to CloudNotes.

You’ll find a fully-renamed version of the project in the resources bundled with this
book. Open the CloudNotes starter project, which should be familiar to you from
the previous chapter, and prepare to get your head in the cloud!

Note: Swift apps are namespaced, so renaming a project isn’t trivial—you’ll
also need to change any instances of the module name in the storyboards,
data models, mapping models and so forth. In the starter project, this has
been done for you.

Core Data by Tutorials Second Edition Chapter 7: Syncing with iCloud

 raywenderlich.com Page 176

Enabling iCloud
iCloud syncs your Core Data store using ubiquity containers. The term ubiquity is
appropriate, since it means “found everywhere.” Ubiquity containers are stored in a
special place in your application sandbox that iOS manages for you. You might have
asked NSFileManager for your app’s Documents directory before; for iCloud, you’ll
ask for a ubiquity container URL.

Core Data saves your app’s data to the ubiquity container URL in the same way it
would save a URL pointing to the Documents directory. The difference is that the
iCloud background process will see changes to files in this special URL and begin
uploading the contents to the cloud. You have no control over when or how often
this happens—it’s all managed by the operating system.

Each time you save data to a SQLite store, transaction logs contain the data
changes in these “atomic” commits. The term atomic here means all the changes in
the log are valid, or none of them are. So we can be sure that applying changes
from one log to the next, there is no data inconsistency, at least at the SQLite level.
When using iCloud with Core Data SQLite based stores, it is the syncing of these
transaction logs across the cloud, rather than the data store itself, that actually
transfer data from one device to another. This is a far safer method of merging
database changes than trying to merge the database files since the logs are
replayed in the same order they were created.

When the London Bridge was moved from spanning the river Thames in London to
span a portion of the Colorado River in Lake Havasu City, Arizona, it was
dismantled, brick by brick. Each brick was numbered and the order logged properly
as the bridge was taken apart. It was then rebuilt in the correct order using the
brick numbers as the guide. The transaction logs and their contents are the bricks
that are rebuilt on other users’ devices.

To set up a ubiquity container for CloudNotes, you need to modify the app’s
capabilities. In Xcode, select the CloudNotes project file and then the CloudNotes
target. From there, select the Capabilities tab at the top, and you should see the
screen below:

Core Data by Tutorials Second Edition Chapter 7: Syncing with iCloud

 raywenderlich.com Page 177

To enable iCloud in your app, simply click the switch next to the iCloud details at
the top of the list. You may be asked to log into the Apple Developer Portal through
an Xcode dialog. You may also be asked to select a team.

Xcode will then connect to the Developer Portal and provision the server side of
things for you. After that setup is complete, uncheck the Key-value storage
service (if it’s checked) and instead select CloudKit and iCloud Documents.

Once Xcode has completed all its steps, you’ll see the name of your ubiquity
container in the list of ubiquity containers. In this case, it’s set to
iCloud.com.razeware.CloudNotes.

Core Data by Tutorials Second Edition Chapter 7: Syncing with iCloud

 raywenderlich.com Page 178

Note: Xcode may be telling you that an App ID with identifier
iCloud.com.razeware.CloudNotes is not available. This probably means
you’re not the first person in the universe to attempt this tutorial and the
name is taken!

If that’s the case, switch to the General tab and amend the bundle identifier
to something a little more personal, like
com.razeware.yourname.CloudNotes. Switch back to Capabilities and
click the Fix Issue button, and you should be all good.

You are free to change this name; however, remember that if you change the
container name between versions of your app, previous versions and other
applications referencing this container name will no longer be able to sync with the
new versions.

You’ve completed the application setup! That was easy. :] It’s time to configure the
code to use iCloud to sync data.

The cloud stack
Open NotesListViewController.swift and find the stack property near the top of
the class definition. This is where the app lazily loads the Core Data stack.

Replace the property declaration and initialization code with the following:

lazy var stack : CoreDataStack = {
 let options =
 [NSPersistentStoreUbiquitousContentNameKey: "CloudNotes",
 NSMigratePersistentStoresAutomaticallyOption: true,
 NSInferMappingModelAutomaticallyOption: true]
 return CoreDataStack(modelName: "CloudNotesDataModel",
 storeName: "CloudNotes",
 options: options)
}()

Here, you use the NSPersistentStoreUbiquitousContentNameKey value to uniquely
identify the persistent store in the cloud and across devices. This means you can
have several named “data buckets” in your app’s ubiquity container. This would be
helpful if, for example, you had an iOS app that only accessed a subset of the data
from a Mac app.

Believe it or not, you now have a Core Data app with iCloud syncing enabled! This
is far easier than in previous versions of the API, as Apple has essentially taken
control of all the error-prone setup previously involved with this process. Don’t

Core Data by Tutorials Second Edition Chapter 7: Syncing with iCloud

 raywenderlich.com Page 179

worry—there are plenty of things to add in the user interface and there are sync
operations to test, which will keep you busy for the rest of this chapter!

Core Data is doing a number of things under the hood to enable this capability for
you. One of the items Core Data sets up for you is a fallback store. In some
instances, circumstances will severely compromise access to iCloud (the “driving
through a tunnel” scenario). For Core Data to continue to function for your app
during these times, the fallback store is there to hold onto data while iCloud is
offline. You don’t have to worry about the fallback store at all; Core Data manages
it for you entirely.

However, one of the caveats to letting Core Data manage the iCloud mechanism for
you is that you can only have a single iCloud persistent store file per account. When
it comes to testing your app, it’s helpful to have multiple test accounts.

Testing iCloud
Testing applications with iCloud means you have to have the app installed on at
least two devices. In the olden days of iOS 5 and 6, iCloud syncing wasn’t available
on the iOS Simulator, which meant that to test iCloud, developers had to own
multiple devices and run their app on each device.

Luckily, Apple has heard our calls, and you can now enable iCloud in your iOS
Simulator! This means you only need one device and the Simulator to test iCloud
integration.

Fire up CloudNotes right now on the Simulator. Not much has changed. The app
launches, but nothing is happening otherwise, especially in regard to data syncing.
There are a couple of steps necessary to set up the Simulator for iCloud testing.

If you want to use your regular iCloud account, you can skip ahead to the section
called, “Setting up iCloud on the Simulator,” below. I suggest continuing with
creating and using a test account so as to keep test data separate from your
personal data. You’ll need to enable iCloud drive on the accounts you use for this
tutorial, which you might not want for your personal iCloud account.

Creating a test account
Point Safari or your web browser of choice to https://itunesconnect.apple.com and
log in with your Apple developer ID.

From the main menu of the iTunes Connect portal, select Users and Roles. You
want a test user so select Sandbox Testers at the top of the screen, then click the
plus (+) button to add a new user. From here, you can fill out the form to create a
new test user on the iTunes store.

Core Data by Tutorials Second Edition Chapter 7: Syncing with iCloud

 raywenderlich.com Page 180

This test user only has access to the sandbox iTunes environment. That is, this user
cannot purchase real items from the real iTunes store. Even though this is a test
user, you’ll still need a valid and unique email account to confirm the user. Apple
uses this email account for initial validation, so you won’t be able to use your test
account until you receive the email and click the acknowledgement link.

Note: You don’t have to create a brand new email account, depending on your
mail provider. For example, if you use Gmail and your email address is
ray.wenderlich@gmail.com, you can add a test address called
ray.wenderlich+icloudtest@gmail.com and all emails to that address will still
come to your main account.

Now, open the Settings app on both your device and the Simulator and select
iCloud. Enter your test account credentials to log into iCloud. You’ll need to log into
iCloud on your device first to activate the account, and then log in on the Simulator.

Core Data by Tutorials Second Edition Chapter 7: Syncing with iCloud

 raywenderlich.com Page 181

Once you’ve logged in, make sure iCloud Drive is enabled:

Debugging with the iCloud gauge
Now you can get back to running CloudNotes. First, fire up the CloudNotes app in
the Simulator. You should be able to see any notes that you entered previously.

Now, in the same instance of Xcode, change the launch target from iPhone
(Simulator) to your device.

Core Data by Tutorials Second Edition Chapter 7: Syncing with iCloud

 raywenderlich.com Page 182

After changing the target device, without stopping the instance running in the
Simulator, click the run button, or press Cmd+R for you keyboard shortcut lovers.
You’ll see the CloudNotes app load and launch on your device, too. It turns out
Xcode knows how to run two separate instances of your app against difference
devices.

Now, in the Simulator, add a new note and tap Create to save it. At this point,
iCloud will notice that the user made changes to the ubiquitous container through
Core Data. The iCloud background syncing process will then queue the transaction
logs to be sent to the cloud.

You can speed things along and force a sync by navigating to Debug\Trigger
iCloud Sync in the Simulator or switch back to Xcode and select
Debug\iCloud\Trigger Sync in Simulator. Try these menu options and then
keep an eye on the console log for sync-related messages.

Since you’ve added a new note in the instance running on the Simulator, you’d
expect it to show up on the device. However, you might have noticed that doesn’t
happen. This is a great opportunity to see what iCloud debugging tools are available
and nail down the reason data isn’t showing up as expected.

Xcode 5 introduced debugging gauges, one of which is the iCloud gauge. This gauge
displays and continuously updates several key pieces of information that are useful
in debugging iCloud syncing issues.

While the app is running, select the Debug navigator by pressing Command-6.
Since CloudNotes is already running it has already registered some information.

Core Data by Tutorials Second Edition Chapter 7: Syncing with iCloud

 raywenderlich.com Page 183

The first thing you may notice if you haven’t configured iCloud syncing properly is
that the Status: label has a message reading iCloud Not Configured. It’s likely one
of the containers or entitlements for your Core Data store was not properly
configured. More often, you’ll see a status of Idle when you’re not syncing data.

Also of use is the Transfer Activity in the center, a short history of data
transferred via iCloud into and out of your app.

Looking at the history shown in the screenshot above, the app did download some
data into the device instance of into CloudNotes. So data did come across the wire
and was registered by CloudNotes.

Note: At the time of writing, the iOS Simulator doesn’t support iCloud gauges,
and there is an open bug in Xcode where iCloud Drive-enabled apps don’t
show activity in the gauges with the iCloud status always showing “disabled.”

There’s one thing to try before making any code changes. Quit the device instance
of CloudNotes and relaunch it, again through Xcode. You’ll see an extra note with
the proper timestamp.

Core Data by Tutorials Second Edition Chapter 7: Syncing with iCloud

 raywenderlich.com Page 184

The app did indeed transfer the data and merge it into the data store, yet the data
did not show up in the list of notes in the UI. This means the app is not updating
the UI when the data model is updated through iCloud.

Note: The sync process can be difficult to debug! Once you have notes in the
Simulator, trigger a manual iCloud sync and wait a few moments.

Then, start up the app on your device. You might need to stop and start the
app on your device to see the results—the data syncs the first time, and then
the table view refreshes the second time.

Now you can summarize the three basic steps to get iCloud working:

1. Enable iCloud and set up the ubiquity containers.

2. Enable iCloud-Core Data syncing with a couple of options when setting up the
persistent store.

3. Set up your app to respond to new changes in data that arrive while the app is
running.

You’ve taken care of the first two steps, so it’s time to address the final step.
Otherwise, your users would need to re-launch the app over and over to see their
sync results!

Core Data by Tutorials Second Edition Chapter 7: Syncing with iCloud

 raywenderlich.com Page 185

Responding to iCloud changes
The NotesListViewController is populating the table view using a
NSFetchedResultsController. This is a pattern than should be familiar to you by
now.

The fetched results controller is connected to the main NSManagedObjectContext
from the Core Data stack. When iCloud applies updates, it does so at the persistent
store level. These changes won’t show up in your context unless you merge them
in.

Core Data sends out an
NSPersistentStoreDidImportUbiquitousContentChangesNotification notification
informing the app that updates have been applied to the data, and that it’s time to
refresh any contexts using the modified data.

To allow the stack to observe the notifications, add the following code to
CoreDataStack.swift:

var updateContextWithUbiquitousContentUpdates: Bool = false {
 willSet {
 ubiquitousChangesObserver = newValue ?
 NSNotificationCenter.defaultCenter() : nil
 }
}

private var ubiquitousChangesObserver : NSNotificationCenter? {
 didSet {
 oldValue?.removeObserver(self, name:
 NSPersistentStoreDidImportUbiquitousContentChangesNotification,
 object: coordinator)
 ubiquitousChangesObserver?.addObserver(self,
 selector:
 "persistentStoreDidImportUbiquitousContentChanges:",
 name:
 NSPersistentStoreDidImportUbiquitousContentChangesNotification,
 object:coordinator)
 }
}

updateContextWithUbiquitousContentUpdates is a flag that tells the stack to start or
stop listening for the notification. It has a property observer, which sets an internal
property to either the default notification center or nil. Using a property observer
on that property actually starts or stops observing the notification. This might
sound complicated, but it takes advantage of a number of Swift features to remove
a lot of checking and conditional code.

Core Data by Tutorials Second Edition Chapter 7: Syncing with iCloud

 raywenderlich.com Page 186

Next, since this call to addObserver references a selector, that function needs to
exist on the CoreDataStack object. Add the following straightforward method:

func persistentStoreDidImportUbiquitousContentChanges(
 notification: NSNotification){
 NSLog("Merging ubiquitous content changes")
 context.performBlock {
 self.context.mergeChangesFromContextDidSaveNotification(
 notification)
 }
}

With this change, enabling iCloud updates to refresh the UI context is as simple as
setting the updateContextWithUbiquitousContentUpdates to true. This will come in
handy in the NotesListViewController.

Open NotesListViewController.swift and tell the Core Data stack to start looking
for iCloud changes in viewWillAppear:

override func viewWillAppear(animated: Bool){
 super.viewWillAppear(animated)
 do {
 try notes.performFetch()
 } catch let error as NSError {
 print("Error fetching data \(error)")
 }
 tableView.reloadData()
 stack.updateContextWithUbiquitousContentUpdates = true
}

As before, build and run CloudNotes on the device as well as in the Simulator. Try
adding a note from the Simulator, trigger an iCloud refresh, and the new note
should appear on the device within a few moments!

Core Data by Tutorials Second Edition Chapter 7: Syncing with iCloud

 raywenderlich.com Page 187

Switching iCloud accounts
On occasion, a user may disable iCloud syncing from his account while your app is
running. Or, a user may decide to switch iCloud accounts on her device. What
should happen to your app’s data when this occurs?

When a user logs out of an account, Core Data will manage the deletion of the
underlying fallback data store for you. Since the data always exists in the cloud, the
fallback store can be rebuilt using iCloud once the user logs back into her account.
Core Data sends two useful notifications when handling iCloud account changes:

• NSPersistentStoreCoordinatorStoresWillChangeNotification

• NSPersistentStoreCoordinatorStoresDidChangeNotification.

The “will change” notification signals that a persistent store coordinator is adding or
removing a persistent store. As such, the notification will contain instances of
NSPersistentStore objects being added and removed. Core Data sends this
notification only for coordinators with iCloud stores configured and running.

Core Data fires the “did change” notification after the persistent stores have been
swapped out and the coordinator is ready to supply the new data.

You’re going to modify CloudNotes to respond to these notifications to handle
changes to iCloud accounts.

Core Data by Tutorials Second Edition Chapter 7: Syncing with iCloud

 raywenderlich.com Page 188

When Core Data sends the “will change” notification, the Core Data stack will save
any unchanged data to the current store, so the user who is logging out doesn’t
lose any data. It will then reset the managed object context to clear any of the old
objects from memory.

When Core Data sends the “did change” notification, the notes list controller needs
to reload its view to either use the newly signed-in account or local storage.

You’ll deal with the “will change” notification first. Add the following method to
CoreDataStack.swift that you will call when Core Data fires the notification:

func persistentStoreCoordinatorWillChangeStores(
 notification: NSNotification){
 if context.hasChanges {
 do {
 try context.save()
 } catch let error as NSError {
 print("Error saving \(error)", terminator: "")
 }
 }
 context.reset()
}

This saves the context and then resets it.

You can consider observing this notification as part of observing ubiquitous content
updates in general, so you can simply expand the property observer on
persistentStoreCoordinatorChangesObserver to include the new notification. Add
the following code inside the didSet closure:

oldValue?.removeObserver(self,
 name:NSPersistentStoreCoordinatorStoresWillChangeNotification,
 object: coordinator)

ubiquitousChangesObserver?.addObserver(self,
 selector: "persistentStoreCoordinatorWillChangeStores:",
 name:NSPersistentStoreCoordinatorStoresWillChangeNotification,
 object: coordinator)

Now you need to deal with the “did change” notification. In
NotesListViewController.swift, add the following method, which you’ll call when
you receive the notification:

func persistentStoreCoordinatorDidChangeStores(
 notification:NSNotification){
 do {
 try notes.performFetch()

Core Data by Tutorials Second Edition Chapter 7: Syncing with iCloud

 raywenderlich.com Page 189

 } catch let error as NSError {
 print("Error fetching notes: \(error)")
 }
}

To connect NotesListViewController to the notifications, you’re going to use the
same technique as before: set up an NSNotificationCenter property and add and
remove observers based on the property. Create a new optional property in
NotesListViewController.swift:

var persistentStoreCoordinatorChangesObserver:
 NSNotificationCenter? {
 didSet {
 oldValue?.removeObserver(self,
 name: NSPersistentStoreCoordinatorStoresDidChangeNotification,
 object: stack.coordinator)

persistentStoreCoordinatorChangesObserver?.addObserver(self,
 selector: "persistentStoreCoordinatorDidChangeStores:",
 name: NSPersistentStoreCoordinatorStoresDidChangeNotification,
 object: stack.coordinator)
 }
}

The proper time to connect the NotesListViewController to these notifications is
when you enable the ubiquitous content change updates on the CoreDataStack. Add
the following code to the end of viewWillAppear:

persistentStoreCoordinatorChangesObserver =
 NSNotificationCenter.defaultCenter()

Note: You never remove the observers in this project, because the notes list
view controller is at the root of the whole application and owns the Core Data
stack. If there were a chance either object could be deallocated, you would
have to stop observing the notifications. The setup used in this tutorial makes
it easy to remove all notifications in one go by setting the flag to false or the
observer property to nil.

Now, build and run CloudNotes in the Simulator. In the Simulator, navigate to the
Settings app while CloudNotes is running. In the iCloud setting view, click Logout.
Depending on the logging you have enabled, you may see some activity in the
debug console.

Now, navigate back to CloudNotes and you’ll see that there are no notes in the
Notes List. Core Data has successfully handled an account logout scenario for you.

Core Data by Tutorials Second Edition Chapter 7: Syncing with iCloud

 raywenderlich.com Page 190

Now, log in with another account. CloudNotes will handle this case as well. If this
account previously contained data, you’ll see data as it comes in from iCloud
updates.

It’s a neat effect to show users that you haven’t lost their data and are indeed
populating as it appears in your data store.

Where to go from here?
Core Data’s iCloud functionality has come a long way since its initial introduction
and first year in the hands of developers. These days, iCloud and Core Data are far
easier to use and set up, as well as less prone to unrecoverable errors.

There are many intricacies with cloud syncing, most of which will be specific to your
own app. How do you want to handle merging, or migrating existing stores? Check
out Apple’s iCloud Programming Guide for Core Data and especially their “Best
Practices” page for more information:
https://developer.apple.com/library/mac/documentation/DataManagement/Concept
ual/UsingCoreDataWithiCloudPG/BestPractices/BestPractices.html

iCloud was intended to remove your desktop or laptop computer as the holder of
your merged data, replacing these with “the cloud.” In this, it has generally
succeeded. Cloud syncing is rapidly becoming a necessary feature in most apps,
and for Core Data-based apps, it’s never been easier to integrate data syncing
using iCloud.

 raywenderlich.com Page 191

Unit testing is a testing method where the goal is to test small pieces (or “units”) of
software. Rather than test “the app creates a new record when you tap the button”
you might break this down into testing the button touch-up event, creating the
entity, testing whether the save succeeded, and so on.

Why should you care about unit testing your apps? There are lots of reasons:

• Unit testing helps you work out the architecture and behavior of your app at a
very early stage. You can test much of the app’s functionality without needing to
worry about the UI.

• Unit testing gives you the confidence to add features or refactor, knowing that
you haven’t broken other parts of the app. If you have existing tests that pass,
you can be confident that the tests will fail and give you a warning if you break
something later.

• When working on projects with multiple developers, unit tests can help keep you
all on the same page and ensure that each developer can make changes
independently.

• If you’ve ever found yourself working on a particular feature of an app and each
time you want to check it out, you have to tap through three different screens
and enter some data, unit testing is your new best friend. You can run any part of
your app’s code from a unit test, which is much faster than testing “manually”
through the UI.

In this chapter, you’ll learn how to use the XCTest framework in Xcode to test your
Core Data apps. Unit testing Core Data apps isn’t as straightforward as it could be,
because most of the tests will depend on having a valid Core Data stack. You might
not want a mess of test data from the unit tests to interfere with your own manual
testing done in the simulator or on device, so you’ll learn how to keep the test data
separate.

You’ll get a good introduction to XCTest in this chapter, but you should have a
basic understanding of it already to make the most from this chapter. For more
information, check out Apple’s documentation
(https://developer.apple.com/library/ios/documentation/DeveloperTools/Conceptual

Chapter 8: Unit Testing
By Aaron Douglas

Core Data by Tutorials Second Edition Chapter 8: Unit Testing

 raywenderlich.com Page 192

/testing_with_xcode/Introduction/Introduction.html) or our book iOS 9 by Tutorials,
which includes a chapter on Testing and XCTest.

Getting started
The sample project you’ll work with in this chapter, CampgroundManager, is a
reservation system to keep track of campground sites, the amenities for each site
and the campers themselves.

The app is a work in progress. The concept is a small campground could use this
app to manage their campsites and reservations including the schedule and
payments. The user interface is extremely basic: It functions but doesn’t provide
much value. That’s OK, because in this tutorial, you’re never going to build and run
the app!

I’ve broken down the business logic for the app into small pieces, and you’re going
to write unit tests to help with the design. As you develop the unit tests and flesh
out the business logic, it’ll become clearer what work is left to do on the user
interface.

The business logic is split up into three distinct classes arranged by subject. There’s
one for campsites, one for campers and one for reservations, and all have the suffix
Service. Your tests will focus on these service classes.

Access control
By default, classes in Swift have the internal access level. That means they can only
be accessed from within their module. Since the app and the tests are separate

Core Data by Tutorials Second Edition Chapter 8: Unit Testing

 raywenderlich.com Page 193

targets and separate modules, you normally won’t be able access the classes from
the app in your tests!

There are three ways around this issue:

1. You can mark classes and methods in your app as public to make them visible
from the tests.

2. You can add classes to the test target in the File Inspector so they will be
compiled in and accessible from the tests.

3. You can add the new Swift 2 keyword @testable in front of any import in your
unit test to gain access to everything in the class being imported.

In the CampgroundManager sample project, the necessary classes and methods in
the app target are already marked as public. That means you’ll just need to import
CampgroundManager from the tests and you’ll be able to access whatever you need.

Using @testable would be the easiest approach but its existence in the
language is somewhat debatable. In theory only public methods should be
unit tested – anything not public isn’t testable because there is no public
interface or contract. Using @testable is definitely more acceptable than just
blindly adding public to all of your classes and functions.

Core Data stack for testing
Since you’ll be testing the Core Data parts of the app, the first order of business is
getting the Core Data stack set up for testing.

Good unit tests follow the acronym FIRST:

• Fast: If your tests take too long to run, you won’t bother running them.

• Isolated: Any test should function properly when run on its own or before or after
any other test.

• Repeatable: You should get the same results every time you run the test against
the same codebase.

• Self-verifying: The test itself should report success or failure; you shouldn’t have
to check the contents of a file or a console log.

• Timely: There’s some benefit to writing the tests after you’ve already written the
code, particularly if you’re writing a new test to cover a new bug. Ideally, though,
the tests come first to act as a specification for the functionality you’re
developing.

CampgroundManager uses Core Data to store data in a database file on disk. That
doesn’t sound very Isolated, since the data from one test may be written out to the
database and could affect other tests. It doesn’t sound very Repeatable, either,
since data will be building up in the database file each time. You could manually

Core Data by Tutorials Second Edition Chapter 8: Unit Testing

 raywenderlich.com Page 194

delete and recreate the database file before running each test, but that wouldn’t be
very Fast.

The solution is a modified Core Data stack that uses an in-memory store instead
of an SQLite-backed store. This will be fast and provide a clean slate every time.

The CoreDataStack you’ve been using in most of this book can support multiple
contexts, including a background root/parent context to which the
NSPersistentStoreCoordinator is connected. When you use CoreDataStack for a
test, you don’t want it to access the SQLite database but rather an in-memory
store. Create a new class that subclasses CoreDataStack so you can change the
store:

1. Right-click Services under the CampgroundManagerTests group and click
New File.

2. Select Swift File under iOS/Source. Click Next.

3. Name the file TestCoreDataStack.swift. Make sure only the
CampgroundManagerTests target is selected.

4. Select Don’t Create if prompted to add an Objective-C bridging header.

5. Click Create.

Replace the contents of the file with the following:

import CampgroundManager
import Foundation
import CoreData

class TestCoreDataStack: CoreDataStack {
 override init() {
 super.init()
 self.persistentStoreCoordinator = {
 let psc = NSPersistentStoreCoordinator(
 managedObjectModel: self.managedObjectModel)

 do {
 try psc.addPersistentStoreWithType(
 NSInMemoryStoreType, configuration: nil,
 URL: nil, options: nil)
 } catch {
 fatalError()
 }

 return psc
 }()
 }
}

Core Data by Tutorials Second Edition Chapter 8: Unit Testing

 raywenderlich.com Page 195

Notice that this class subclasses CoreDataStack and only overrides the default value
of a single property: persistentStoreCoordinator. Since you are overriding the
value in init(), the persistent store coordinator from CoreDataStack is not used or
even instantiated. The persistent store coordinator in TestCoreDataStack uses an in-
memory store only.

An in-memory store is never persisted to disk, which means you can instantiate the
stack, write as much data you want in the test, and poof…when the test ends, the
in-memory store gets cleared out automatically.

With the stack in place, it’s time to work on your first test!

Your first test
Unit tests require your app to be designed with little pieces in mind. Instead of
throwing all of your business logic into one huge view controller, you instead create
a class to encapsulate that logic.

In most cases, you’ll probably be adding unit tests to an application you’ve already
partially written. In the case of CampgroundManager, I’ve created the
CamperService, CampSiteService and ReservationService classes, but they aren’t all
feature-complete yet. Let’s test the simplest class, CamperService.

Begin by creating a new test class:

1. Right-click the Services group under the CampgroundManagerTests group
and click New File.

2. Select Test Case Class. Click Next.

3. Name the class CamperServiceTests (subclass of XCTestCase should already
be selected) and pick Swift for the language. Click Next.

4. Make sure the CampgroundManagerTests target checkbox is the only target
selected. Click Create.

In CamperServiceTests.swift, import the app and Core Data frameworks into the
test case, along with the other existing import statements:

import CampgroundManager
import CoreData

Add two properties to the class:

var camperService: CamperService!
var coreDataStack: CoreDataStack!

Core Data by Tutorials Second Edition Chapter 8: Unit Testing

 raywenderlich.com Page 196

These properties will hold references to the CamperService instance to test and to
the Core Data stack. The properties are implicitly unwrapped optionals, since they’ll
be initialized in setUp rather than in init.

Next, replace the implementation of setUp with the following:

override func setUp() {
 super.setUp()

 coreDataStack = TestCoreDataStack()
 camperService = CamperService(
 managedObjectContext: coreDataStack.mainContext,
 coreDataStack: coreDataStack)
}

setUp is called before each test runs, and this is your chance to create any
resources required by all unit tests in the class. In this case, you initialize the
camperService and coreDataStack properties.

It’s wise to reset your data after every test so that results are repeatable. Using the
in-memory store and creating a new context in setUp accomplishes this reset for
you.

Notice the CoreDataStack instance is actually a TestCoreDataStack instance. The
CamperService initialization method takes the context it needs and also an instance
of the CoreDataStack, since the context save methods are part of that class. You
can also use setUp() to insert standard test data into the context for use later.

Next, replace tearDown with the following implementation:

override func tearDown() {
 super.tearDown()

 camperService = nil
 coreDataStack = nil
}

tearDown is the opposite of setUp, and is called after each test executes. Here, the
method will simply make all the properties nil, resetting the CoreDataStack after
every test.

There’s only a single method on CamperService at this point, and that is
addCamper(_:phonenumber:). Still in CamperServiceTests.swift, create a new
method to test addCamper:

func testAddCamper() {
 let camper = camperService.addCamper("Bacon Lover",
 phoneNumber: "910-543-9000")

Core Data by Tutorials Second Edition Chapter 8: Unit Testing

 raywenderlich.com Page 197

 XCTAssertNotNil(camper, "Camper should not be nil")
 XCTAssertTrue(camper?.fullName == "Bacon Lover")
 XCTAssertTrue(camper?.phoneNumber == "910-543-9000")
}

You create a camper with certain properties, then check to confirm that a camper
exists with the properties you expect.

Remove the testExample and testPerformanceExample methods from the class.

It’s a simple test, but it ensures that if any logic inside of addCamper is modified, the
basic operation doesn’t change. For example, if you add some new data validation
logic to prevent bacon-loving people from reserving campgrounds, addCamper might
return nil. This test would then fail, alerting you that either you made a mistake in
the validation or that the test needs to be updated.

Note: To round out this test case in a real development context, you would
want to write unit tests for strange scenarios like nil or empty parameters,
duplicate camper names and so forth.

Run the unit tests by clicking on the Product menu, then selecting Test (or type
Command+U). You should see a green checkmark in Xcode:

There’s your first test! You can imagine this kind of testing is useful for your data
models, checking that the attributes were stored correctly.

Core Data by Tutorials Second Edition Chapter 8: Unit Testing

 raywenderlich.com Page 198

Also notice how it acts like documentation for people using the API; it’s an example
of how to call addCamper and describes the expected behavior, for example that the
method should return a valid object and not nil.

Notice this test creates the object and checks the attributes, but doesn’t save
anything to the store. This project uses a separate queue context, allowing it to
perform saves in the background. However, the test runs straight through so you
can’t check for the save result with an XCTAssert since you can’t be sure when the
background operation has completed. Of course saving is an important part of Core
Data, so how can you test this part of the app?

Asynchronous tests
When using a single managed object context in Core Data, everything runs on the
main UI thread. However, this project has a separate private queue context which
acts as the root context, allowing saving to be performed on a background thread.
The main context exposed by the Core Data stack is a child of this context.

Performing work on the right thread for a context is easy: You simply wrap the
work in performBlockAndWait() or performBlock() to ensure it’s executed on the
proper thread associated with the context. The former will wait to finish execution
of the block before continuing, and the latter will immediately return, queuing the
execution on the context.

Testing performBlock() executions can be tricky since you need some way to signal
to “the outside world” from inside the block about the test status. Luckily, there are
new features in XCTestCase called expectations that help with this.

The example below shows how you might use an expectation to wait for an
asynchronous method to complete before finishing the test:

let expectation = self.expectationWithDescription("Done!");

someService.callMethodWithCompletionHandler() {
 expectation.fulfill()
}

self.waitForExpectationsWithTimeout(2.0, handler: nil)

The key is that something must fulfill or trigger the expectation so the test moves
forward. The wait method at the end takes a time parameter (in seconds), so that
the test isn’t waiting forever and can time out (and fail) in case the expectation is
never fulfilled.

In the example provided, you can see fulfill() is called explicitly in the
completion handler passed in to the tested method. With Core Data saves, it’s

Core Data by Tutorials Second Edition Chapter 8: Unit Testing

 raywenderlich.com Page 199

easier to listen for the NSManagedObjectDidSaveNotification, since it happens in a
place where you can’t call fulfill() explicitly.

Add a new method to CamperServiceTests.swift to test that the root context is
getting saved when a new camper is added:

func testRootContextIsSavedAfterAddingCamper() {
 //1
 expectationForNotification(
 NSManagedObjectContextDidSaveNotification,
 object: coreDataStack.rootContext) {
 notification in
 return true
 }

 //2
 camperService.addCamper("Bacon Lover",
 phoneNumber: "910-543-9000")

 //3
 waitForExpectationsWithTimeout(2.0) {
 error in
 XCTAssertNil(error, "Save did not occur")
 }
}

Here’s a breakdown of the code:

1. You create a text expectation linked to a notification. In this case, the
expectation is linked to NSManagedObjectContextDidSaveNotification from the root
context of the Core Data stack. The handler for the notification is simple—it
returns true since all you care about is that the notification is fired.

2. You add the camper, exactly the same as before.

3. The test waits up to two seconds for the expectation. If there are errors or the
timeout passes, the error parameter for the handler block will contain a value.

It’s important to keep UI-blocking operations such as Core Data saving off the main
thread so your app stays responsive. Test expectations are invaluable to make sure
these asynchronous operations are covered by unit tests.

You’ve added tests for existing features in the app; now it’s time to add some
features yourself.? Along with the tests too, of course. Or for even more fun:
perhaps write the tests first?

Core Data by Tutorials Second Edition Chapter 8: Unit Testing

 raywenderlich.com Page 200

Tests first
An important function of CampgroundManager its ability to reserve sites for
campers. Before it can accept reservations, the system has to know about all of the
campsites at the campground. I created CampSiteService to help with adding,
deleting and finding campsites.

Open CampSiteService, and you’ll notice the only method I’ve implemented is
addCampSite. There are no unit tests for this method, so start by creating a test
case for the service:

1. Right-click Services under the CampgroundManagerTests group and click
New File.

2. Select Test Case Class. Click Next.

3. Name the class CampSiteServiceTests (subclass of XCTestCase should
already be selected) and pick Swift for the language. Click Next.

4. Make sure the CampgroundManagerTests target checkbox is the only target
selected. Click Create.

Replace the contents of the file with the following:

import UIKit
import XCTest
import CampgroundManager
import CoreData

class CampSiteServiceTests: XCTestCase {
 var campSiteService: CampSiteService!
 var coreDataStack: CoreDataStack!

 override func setUp() {
 super.setUp()

 coreDataStack = TestCoreDataStack()
 campSiteService = CampSiteService(managedObjectContext:
 coreDataStack.mainContext, coreDataStack:
 coreDataStack)
 }

 override func tearDown() {
 super.tearDown()

 campSiteService = nil
 coreDataStack = nil
 }
}

Core Data by Tutorials Second Edition Chapter 8: Unit Testing

 raywenderlich.com Page 201

This looks very similar to the previous test class. As your suite of tests expands and
you notice common or repeated code, you can refactor the tests as well as the
application code. You can feel safe doing this because the unit tests will fail if you
mess anything up! :]

Add a new method to test adding a campsite. This looks and works like the method
for testing the creation of a new camper:

func testAddCampSite() {
 let campSite = campSiteService.addCampSite(1,
 electricity: true, water: true)

 XCTAssertTrue(campSite.siteNumber == 1,
 "Site number should be 1")
 XCTAssertTrue(campSite.electricity!.boolValue,
 "Site should have electricity")
 XCTAssertTrue(campSite.water!.boolValue,
 "Site should have water")
}

You also want to check that the context is saved during this method, so add
another method to test for that. This method should also look familiar:

func testRootContextIsSavedAfterAddingCampsite() {
 expectationForNotification(
 NSManagedObjectContextDidSaveNotification, object:
 coreDataStack.rootContext) {
 notification in
 return true
 }

 campSiteService.addCampSite(1,
 electricity: true, water: true)

 waitForExpectationsWithTimeout(2.0) {
 error in
 XCTAssertNil(error, "Save did not occur")
 }
}

Run the unit tests, and everything should pass. At this point, you should be feeling
a bit of paranoia. Maybe these tests are broken and they always pass? It’s time to
do some test-driven development and get the buzz that comes from turning red
tests to green!

Core Data by Tutorials Second Edition Chapter 8: Unit Testing

 raywenderlich.com Page 202

Note: Test-Driven Development (TDD) is a way of developing an application
by writing a test first, then incrementally implementing the feature until the
test passes. The code is then refactored for the next feature or improvement.

TDD methodology goes way beyond the scope of this chapter but may be
something you’ll find useful. The steps you’re covering here will help you use
TDD if you do decide to follow it.

Add the following methods to CampSiteServiceTests.swift to test getCampSite():

func testGetCampSiteWithMatchingSiteNumber() {
 campSiteService.addCampSite(1, electricity: true,
 water: true)

let campSite = campSiteService.getCampSite(1)
 XCTAssertNotNil(campSite, "A campsite should be returned")
}

func testGetCampSiteNoMatchingSiteNumber() {
 campSiteService.addCampSite(1, electricity: true,
 water: true)

 let campSite = campSiteService.getCampSite(2)

 XCTAssertNil(campSite, "No campsite should be returned")
}

Both tests use the addCampSite method to create a new CampSite. You know this
method works from your previous test, so there’s no need to test it again. The
actual tests cover retrieving the CampSite by ID and verifying that it is or isn’t nil.

Think about how this test is much more reliable starting from an empty database
for every test. If you weren’t using the in-memory store, there could easily be a
campsite matching the ID for the second test, which would then fail!

Run the unit tests. The test expecting a CampSite fails because you haven’t
implemented getCampSite yet.

Core Data by Tutorials Second Edition Chapter 8: Unit Testing

 raywenderlich.com Page 203

Notice the other unit test expecting no site passes. This is an example of a false
positive, because the method always returns nil. It’s important that you add tests
for multiple scenarios for each method to exercise as many code paths as possible.

Implement getCampSite in CampSiteService.swift with the following code:

 public func getCampSite(siteNumber: NSNumber) -> CampSite? {
 let fetchRequest = NSFetchRequest(entityName: "CampSite")
 fetchRequest.predicate = NSPredicate(format: "siteNumber == %@",
argumentArray: [siteNumber])
 let results: [AnyObject]?
 do {
 results = try managedObjectContext.executeFetchRequest(
fetchRequest)
 } catch {
 return nil
 }

 return results!.first as! CampSite?
 }

Now re-run the unit tests and you should see green check marks. Ah, the sweet
satisfaction of success.

Note: The final project for this chapter included in the resources bundled with
this book includes unit tests covering multiple scenarios for each method. You
can browse through the code there for even more examples.

Validation and refactoring
ReservationService will have some of the most complex logic to handle figuring out
if a camper is able to reserve a site. The unit tests for ReservationService will
require every service so far created to test its operation.

Create a new test class as you’ve done before:

1. Right-click Services under the CampgroundManagerTests group and click
New File.

2. Select Test Case Class. Click Next.

3. Name the class ReservationServiceTests (subclass of XCTestCase should
already be selected) and pick Swift for the language. Click Next.

4. Make sure the CampgroundManagerTests target checkbox is the only target
selected. Click Create.

Core Data by Tutorials Second Edition Chapter 8: Unit Testing

 raywenderlich.com Page 204

Replace the contents of the file with the following:

import Foundation
import CoreData
import XCTest
import CampgroundManager

class ReservationServiceTests: XCTestCase {
 var campSiteService: CampSiteService!
 var camperService: CamperService!
 var reservationService: ReservationService!
 var coreDataStack: CoreDataStack!

 override func setUp() {
 super.setUp()
 coreDataStack = TestCoreDataStack()
 camperService = CamperService(managedObjectContext:
 coreDataStack.mainContext, coreDataStack:
 coreDataStack)
 campSiteService = CampSiteService(managedObjectContext:
 coreDataStack.mainContext, coreDataStack:
 coreDataStack)
 reservationService = ReservationService(
 managedObjectContext: coreDataStack.mainContext,
 coreDataStack: coreDataStack)
 }

 override func tearDown() {
 super.tearDown()

 camperService = nil
 campSiteService = nil
 reservationService = nil
 coreDataStack = nil
 }
}

This is a slightly longer version of the set up/tear down code you’ve used in the
previous test case classes. Along with setting up the Core Data stack as usual,
you’re creating a fresh instance of each service in setUp for each test.

Add a method to test creating a reservation:

func testReserveCampSitePositiveNumberOfDays() {
 let camper = camperService.addCamper("Johnny Appleseed",
 phoneNumber: "408-555-1234")!

Core Data by Tutorials Second Edition Chapter 8: Unit Testing

 raywenderlich.com Page 205

 let campSite = campSiteService.addCampSite(15,
 electricity: false, water: false)

 let result = reservationService.reserveCampSite(
 campSite, camper: camper, date: NSDate(), numberOfNights: 5)

 XCTAssertNotNil(result.reservation,
 "Reservation should not be nil")
 XCTAssertNil(result.error, "No error should be present")
 XCTAssertTrue(result.reservation?.status == "Reserved",
 "Status should be Reserved")
}

The unit test creates a camper and campsite, both required to reserve a site. The
new part here is using the reservation service to reserve the camp site, linking the
camper and camp site together with a date.

The unit test doesn’t verify much other than that a Reservation object was created
and that an NSError object wasn’t in the returned tuple.

You realize while looking at the reserveCampSite call that the number of nights
should be at least greater than zero. Add the following unit test to look for that
condition:

func testReserveCampSiteNegativeNumberOfDays() {
 let camper = camperService.addCamper("Johnny Appleseed",
 phoneNumber: "408-555-1234")!
 let campSite = campSiteService!.addCampSite(15,
 electricity: false, water: false)

 let result = reservationService!.reserveCampSite(campSite,
 camper: camper, date: NSDate(), numberOfNights: -1)

 XCTAssertNotNil(result.reservation,
 "Reservation should not be nil")
 XCTAssertNotNil(result.error, "An error should be present")
 XCTAssertTrue(result.error?.userInfo["Problem"] as? NSString
 == "Invalid number of days",
 "Error problem should be present")
 XCTAssertTrue(result.reservation?.status == "Invalid",
 "Status should be Invalid")
}

Run the unit test, and you’ll notice the test fails. Apparently whoever wrote
ReservationService didn’t think to check for this! It’s a good thing you caught it
here in the test rather than a real user out in the wild – maybe booking a negative
number of nights would go as far as to issue a refund!

Core Data by Tutorials Second Edition Chapter 8: Unit Testing

 raywenderlich.com Page 206

Tests are a great place for probing your system like this and finding holes in the
behavior. As an added benefit, the test provides something like a specification too –
 the tests is saying you’re still expecting a valid non-nil result, but with the error
condition set.

Open ReservationService.swift and add the check for numberOfNights to
reserveCampSite. Replace the line reservation.status = "Reserved" with the
following:

if numberOfNights <= 0 {
 reservation.status = "Invalid"
 registrationError = NSError(domain: "CampingManager",
 code: 5, userInfo: ["Problem" : "Invalid number of days"])
} else {
 reservation.status = "Reserved"
}

Also change registrationError from a constant to a variable by replacing let with
var.

Now rerun the tests and see that the negative number of days test passes. You can
see how the process continues with refactoring when you want to add additional
functionality or validation rules.

Whether you know the details of the code you’re testing or if you’re treating it like a
black box, you can write these kinds of tests against the API to see if behaves as
you think. If it does, great! – that means the test will ensure it continues to work
like that. If not, you either need to change your test to match what the code does,
or change the code to match the test expectation.

Where to go from here?
You’ve probably heard many times that unit testing your work is key to maintaining
a stable software product. While Core Data can help eliminate a lot of error-prone
persistence code from your project, it can be a source of logic errors if used
incorrectly.

Writing unit tests that can use Core Data will help stabilize your code before it even
reaches your users. XCTestExpectation is a simplistic yet powerful helper in your
quest to test Core Data in an asynchronous manner. Use it wisely.

Challenge: The CampSiteService has a number of methods that are not
implemented yet, marked with TODO comments. Using a TDD approach, write
unit tests and then implement the methods to make the tests pass.

Core Data by Tutorials Second Edition Chapter 8: Unit Testing

 raywenderlich.com Page 207

Check out the final project included in the resources for this chapter for a
sample solution if you get stuck.

 raywenderlich.com Page 208

In many ways, it’s a no-brainer: You should strive to optimize the performance of
any app you’re developing. An app with poor performance will, at best, receive bad
reviews and, at worst, become unresponsive and crash.

This is no less true of apps that use Core Data. Luckily, most implementations of
Core Data are fast and light already, due to Core Data’s built-in optimizations, such
as faulting.

However, the flexibility that makes Core Data a great tool can also allow you to use
it in ways that negatively impact performance. From poor choices in setting up the
data model to inefficient fetching and searching, there are many opportunities for
Core Data to slow down your app.

You’ll begin the chapter with an app that is a slow-working memory hog. By the end
of the chapter, you’ll have an app that is light and fast, and you’ll know exactly
where to look and what to do if you find yourself with you own heavy, sluggish
app—and how to avoid that situation in the first place!

Getting started
As with most things, performance is a balance, a balance between memory and
speed. Your app’s Core Data model objects can exist in two places: in random
access memory (RAM) or on disk. Accessing data in RAM is much quicker than
accessing data on disk, but devices have much less RAM than disk space.

Chapter 9: Measuring and
Boosting Performance
By Matthew Morey

Core Data by Tutorials Second Edition Chapter 9: Measuring and Boosting Performance

 raywenderlich.com Page 209

On iOS devices in particular, there is less available RAM and as a result, you can’t
load as much data. With fewer model objects in RAM, your app’s operations will be
slower due to frequent slow disk access. If you use too much RAM, your app will
receive low memory warnings and the system may even terminate your app!

The more model objects you load into RAM, the faster your app will be, but then
your app will be using more RAM. You can minimize RAM usage, but then your app
will be slower because more of your model objects are on disk.

The starter project
The starter project, Employee Directory, is a tab-bar based app full of employee
information. It’s like the Contacts app, but for a single fictional company.

Open the starter project for this chapter in the EmployeeDirectory-Starter folder
and build and run it in Xcode.

The app will take a long time to launch and once it does launch, it will feel sluggish
and may even crash as you use it. Rest assured, this is by design!

Note: It’s possible the starter project may not even launch on your system. I
made the app to be as sluggish as possible while still able to run on most
systems, so that the performance improvements you’ll make will be easily
noticeable.

If the app refuses to work on your system, continue to follow along. The first
set of changes you make should enable the app to work on even the slowest
devices.

As you can see in the following screenshots, the first tab includes a table view and
a custom cell with basic information, such as name and department, for all
employees. Tapping on a cell reveals more details for the selected employee, such
as start date and remaining vacation days.

Memory

Speed

Less More

Slow Fast

OS XiOS

Core Data by Tutorials Second Edition Chapter 9: Measuring and Boosting Performance

 raywenderlich.com Page 210

Tapping on the profile picture of the employee makes the picture full-screen;
tapping anywhere on the full-screen picture dismisses that view.

The startup time of the app is quite long and the initial employee list’s scrolling
performance could use some work. The app also uses a lot of memory, which you’ll
measure yourself in the next section.

Core Data by Tutorials Second Edition Chapter 9: Measuring and Boosting Performance

 raywenderlich.com Page 211

Measure, change, verify
Instead of guessing where your performance bottlenecks may be, you can save
yourself much time and effort by first measuring your app’s performance in
targeted ways. Xcode provides tools just for this purpose, as you’ll see.

Ideally, you would measure, make targeted changes and measure again to validate
your changes had the intended impact. You should repeat this measure-change-
verify process as many times need to until your app meets all of your performance
requirements.

In this chapter, you’ll do just that:

• You’ll measure performance issues in the provided starter project using Gauges,
Instruments and the XCTest framework.

• Next, you’ll make changes to the code that will improve the performance of the
app.

• Finally, you’ll verify that the changes had the intended results by measuring
again.

You’ll then repeat this cycle until Employee Directory performs like a Core Data
champ!

Measuring the problem
Build, run, and wait for the app to launch. Once it does, use the Memory Report
to view how much RAM the app is using.

To launch the Memory Report, first verify the app is running and then perform the
following steps:

1. Click on the Debug navigator in the left navigator pane.

2. To get more information, expand the running process—in this case,
EmployeeDirectory—by tapping on the arrow.

Measure Change Verify

Core Data by Tutorials Second Edition Chapter 9: Measuring and Boosting Performance

 raywenderlich.com Page 212

Now, click on the Memory row and look at the top half of the memory gauge:

The top half includes a Memory Use gauge showing the amount and percentage of
memory your app is using. For Employee Directory, you’ll see about 135 MB of
memory is in use, or about 25% of the available RAM on an iPhone 4S.

The Usage Comparison pie chart depicts this chunk of memory as a fraction of
the total available memory. It also shows the amount of RAM in use by other
processes, as well as the amount of freely available RAM, which in this case is
392.2 MB.

Now look at the bottom half of the Memory Report:

Core Data by Tutorials Second Edition Chapter 9: Measuring and Boosting Performance

 raywenderlich.com Page 213

The bottom half consist of a chart that shows RAM usage over time. For Employee
Directory, you’ll see two distinct areas.

1. Upon first launch, Employee Directory performs an import operation before
loading the primary employee list. Ignore these spikes in memory for now.

2. The next area takes place after the import operation, when the employee list is
visible. Once the app has fully loaded the list, you can see the memory usage is
fairly stable.

Note: If you use a device besides an iPhone 4S, including the iOS Simulator,
your memory gauge may not look exactly like these screenshots. The
utilization percentages will be based off of the amount of available RAM on
your test device, which may not match the RAM available on an iPhone 4S.

There are only 50 employee records in the app so the RAM usage is quite high. It
could be something in the data model that’s using up so much memory for so few
records, so let’s start there.

Exploring the data source
In Xcode, open the project navigator and click on
EmployeeDirectory.xcdatamodeld to view the data model.

The model for the starter project consists of an Employee entity with 11 attributes
and a Sale entity with two attributes.

On the Employee entity, the about, address, department, email, guid, name and phone
attributes are string types; active is a Boolean; picture is binary data; startDate is
a date and vacationDays is an integer.

Employee has a to-many relationship with Sale, which contains an amount integer
attribute and a date Date attribute.

On first launch, the app will import sample data from the bundled JSON file
seed.json. Here’s an excerpt of the JSON:

{
 "guid": "769adb89-82ad-4b39-be41-d02b89de7b94",
 "active": true,
 "picture": "face10.jpg",
 "name": "Kasey Mcfarland",
 "vacationDays": 2,
 "department": "Marketing",
 "startDate": "1979-09-05",
 "email": "kaseymcfarland@liquicom.com",
 "phone": "+1 (909) 561-2981",
 "address": "201 Lancaster Avenue, West Virginia, 2583",

Core Data by Tutorials Second Edition Chapter 9: Measuring and Boosting Performance

 raywenderlich.com Page 214

 "about": "Dolore reprehenderit ... voluptate consectetur.\r\n"
},

Note: You can vary the amount and type of data the app imports from the
seed.json file by modifying the amountToImport and addSalesRecords
constants located at the top of AppDelegate.swift. For now, leave these
constants set to their default values.

In terms of performance, the text showing the employee names, departments,
email addresses and phone numbers is inconsequential compared to the profile
pictures, which are large enough to potentially be impacting the performance of the
list.

Now that you’ve measured the problem and have a baseline for future comparisons,
you’ll make changes to the data model to reduce the amount of RAM in use.

Making changes to improve performance
The likely culprit to the high memory usage is the employee profile picture. Since
the picture is stored as a binary data attribute, Core Data will allocate memory and
load the entire picture when you access an employee record. This will happen even
if you only need to access the employee’s name or email address!

The solution here is to split out the picture into a separate, related record. In
theory, you’ll be able to access the employee record efficiently, and then take the
hit for loading the picture only when you really need it.

To start, open the visual model editor by clicking on
EmployeeDirectory.xcdatamodeld.

Start by creating an object, or entity, in your model. In the bottom toolbar, click
the Add Entity plus (+) button to add a new entity.

Name the entity EmployeePicture. Then click the entity and make sure the third
tab is selected in the Utilities section. Change the class to EmployeePicture and
the Module to EmployeeDirectory; you need to give the full class name with the
app’s name as the namespace for it to work with Swift.

Core Data by Tutorials Second Edition Chapter 9: Measuring and Boosting Performance

 raywenderlich.com Page 215

Make sure the EmployeePicture entity is selected by clicking on either the entity
name in the left panel or the diagram for the entity in the diagram view.

Next, click and hold on the plus (+) button in the lower-right (next to the Editor
Style segmented control) and then click Add Attribute from the popup. Name the
new attribute picture.

Finally, in the data model inspector, change the Attribute Type to Binary Data
and check the Allows External Storage option.

Your editor should look like this:

As previously mentioned, binary data attributes are usually stored right in the
database. If you check the Allows External Storage option, Core Data

Core Data by Tutorials Second Edition Chapter 9: Measuring and Boosting Performance

 raywenderlich.com Page 216

automatically decides if it’s better to save the data to disk as a separate file or
leave it in the SQLite database.

Select the Employee entity and rename the picture attribute to
pictureThumbnail. To do so, select the picture attribute in the diagram view and
then edit the name in the data model inspector.

You’ve updated the model so that now, it stores the original picture in a separate
entity and stores only a thumbnail version on the main Employee entity. The
smaller thumbnail pictures won’t require as much RAM when the app fetches
Employee entities from Core Data. Once you’ve finished modifying the rest of the
project, you’ll get a chance to test this out and verify that the app is using less RAM
than before.

You can link the two entities together with a relationship. That way, when the app
needs the higher-quality but larger picture, it can still retrieve it, via a relationship.

Select the Employee entity and click and hold the plus (+) button in the lower
right. This time, select Add Relationship. Name the relationship picture, set the
destination as EmployeePicture and finally, set the Delete Rule to Cascade.

Core Data relationships should always go both ways, so now add a corresponding
relationship. Select the EmployeePicture entity and add a new relationship. Name
the new relationship employee, set the Destination to Employee and finally, set
the Inverse to picture.

Your model should now look like this:

Core Data by Tutorials Second Edition Chapter 9: Measuring and Boosting Performance

 raywenderlich.com Page 217

Now that you’ve finished making changes to the model, you need to create an
NSManagedObject subclass for the new EmployeePicture entity. This subclass will let
you access the new entity from code.

Right-click on the EmployeeDirectory group folder and select New File.
Select the Cocoa Touch Class template and click Next. Name the
class EmployeePicture and make it a subclass of NSManagedObject. Make sure
that Swift is selected for the Language, click Next and finally click Create.

Select EmployeePicture.swift from the project navigator and replace the
automatically generated code with the following code:

import Foundation
import CoreData

class EmployeePicture: NSManagedObject {
 @NSManaged var picture: NSData
 @NSManaged var employee: EmployeeDirectory.Employee
}

This is a very simple class with just two properties. The first, picture, matches the
single attribute on the EmployeePicture entity you just created in the visual data
model editor. The second property, employee, matches the relationship you created
on the EmployeePicture entity.

Note: You could also have Xcode create the EmployeePicture class
automatically. To add a new class this way, open
EmployeeDirectory.xcdatamodeld, go to Editor\Create
NSManagedObject Subclass…, select the data model and then the
EmployeePicture entity in the next two dialog boxes. Select Swift as the
language option in the final box. If you’re asked, say No to creating an
Objective-C bridging header. Click Create to save the file.

Next, select the Employee.swift file from the project navigator and update the
code to make use of the new pictureThumbnail attribute and picture relationship.
Rename the picture variable to pictureThumbnail and add a new variable named
picture that is of type EmployeeDirectory.EmployeePicture. Your file will now look
like this:

import Foundation
import CoreData

public class Employee: NSManagedObject {
 @NSManaged var startDate: NSDate
 @NSManaged var about: String
 @NSManaged var active: NSNumber

Core Data by Tutorials Second Edition Chapter 9: Measuring and Boosting Performance

 raywenderlich.com Page 218

 @NSManaged var address: String
 @NSManaged var department: String
 @NSManaged var email: String
 @NSManaged var guid: String
 @NSManaged var name: String
 @NSManaged var phone: String
 @NSManaged var pictureThumbnail: NSData
 @NSManaged var picture: EmployeeDirectory.EmployeePicture
 @NSManaged var vacationDays: NSNumber
 @NSManaged var sales : NSSet
}

Next, you need to update the rest of the app to make use of the new entities and
attributes.

Open EmployeeListViewController.swift and find the following lines of code in
tableView(_:cellForRowAtIndexPath:). It should be easy to find, as it will have an
error marker next to it!

cell.pictureImageView.image = UIImage(data: employee.picture)

This code sets the picture on the cell in the employee list. Now that the full picture
is held in a separate entity, you should use the newly added pictureThumbnail
attribute. Update the file to match the following code:

cell.pictureImageView.image =
 UIImage(data: employee.pictureThumbnail)

Now open EmployeeDetailViewController.swift and find the following code
within configureView(). Again, it should be showing an error:

if let imageView = headShotImageView {
 let image = UIImage(data: employee.picture)
 imageView.image = image
}

Just like you did in EmployeeListViewController.swift, you need to update the
picture being set. Like the cell picture, the employee detail view will only have a
small picture and therefore only needs the thumbnail version. Update the code to
look like the following:

if let imageView = headShotImageView {
 let image = UIImage(data: employee.pictureThumbnail)
 imageView.image = image
}

Core Data by Tutorials Second Edition Chapter 9: Measuring and Boosting Performance

 raywenderlich.com Page 219

Open EmployeePictureViewController.swift and find the following code in
configureView():

if let imageView = employeePictureImageView {
 imageView.image = UIImage(data: employee.picture)
}

This time, you want to use the high-quality version of the picture, since the image
will be shown full-screen. Update the file to use the picture relationship you
created on the Employee entity to access the high-quality version of the picture:

if let imageView = employeePictureImageView {
 imageView.image = UIImage(data: employee.picture.picture)
}

There’s one more thing to do before you build and run. Open AppDelegate.swift
and find the following line of code in importJSONSeedData():

employee.picture = pictureData!

Now that you have a separate entity for storing the high-quality picture, you need
to update this line of code to set the pictureThumbnail attribute and the picture
relationship. Replace the line above with the following:

employee.pictureThumbnail =
 imageDataScaledToHeight(pictureData, height: 120)

let employeePictureEntity =
 NSEntityDescription.entityForName("EmployeePicture",
 inManagedObjectContext: coreDataStack.context)
let pictureObject =
 EmployeePicture(entity: employeePictureEntity!,
 insertIntoManagedObjectContext: coreDataStack.context)
pictureObject.picture = pictureData

employee.picture = pictureObject

First, you use imageDataScaledToHeight to set the pictureThumbnail to a smaller
version of the original picture. Next, you create a new picture entity using the
EmployeePicture entity description.

You set the picture attributed on the new EmployeePicture entity to the
pictureData constant. Finally, you set the picture relationship on the employee
entity to the just-created picture entity.

Core Data by Tutorials Second Edition Chapter 9: Measuring and Boosting Performance

 raywenderlich.com Page 220

Note: imageDataScaledToHeight takes in image data, resizes it to the passed-
in height and sets the quality to 80% before returning the new image data.

If you have an app that needs pictures and retrieves data via a network call,
you should make sure that the API doesn’t already include smaller thumbnail
versions of the pictures. There’s a small performance cost associated with
converting images on the fly like this.

It’s time to build and run! Give it a go. You should see exactly what you saw
before:

The app should work as before, and you might even notice a small performance
difference because of the thumbnails. But the main reason for this change was to
improve memory usage.

Verify the changes
Now that you’ve made all the necessary changes to the project, it’s time to see if
you actually improved the app.

While the app is running, use the Memory Report to view how much RAM the app
is using. This time only about 41 MB of RAM or 8.2% of total RAM is being used.

Core Data by Tutorials Second Edition Chapter 9: Measuring and Boosting Performance

 raywenderlich.com Page 221

Now look at the bottom half of the report. Like last time, the initial spike is from the
import operation and you can ignore it. The flat area is much lower this time.

Congratulations, you’ve reduced this app’s RAM usage by making adjustments to its
data model!

First, you measured the app’s performance using the Memory Report tool. Next,
you made changes to the way Core Data stores and accesses the app’s data.
Finally, you verified that the changes improved the app’s performance.

Fetching and performance
Core Data is the keeper of your app’s data. Anytime you want to access the data,
you have to retrieve it with a fetch request.

For example, when the app loads the employee list, it needs to perform a fetch.

Core Data by Tutorials Second Edition Chapter 9: Measuring and Boosting Performance

 raywenderlich.com Page 222

But each trip to the persistent store incurs overhead. You don’t want to fetch more
data than you need—just enough so that you aren’t constantly going back to the
disk. Remember, disk access is much slower than RAM access.

For maximum performance, you need to strike a balance between the number of
objects you fetch at any given time and the usefulness of having many records
taking up valuable space in RAM.

The startup time of the app is a little slow, suggesting something is going on with
the initial fetch.

Fetch batch size
Core Data fetch requests include the fetchBatchSize property, which makes it easy
to fetch just enough data but not too much.

If you don’t set a batch size, Core Data uses the default value of 0, which disables
batching.

Setting a non-zero positive batch size enables you to limit the amount of data
returned to the batch size. As the app needs more data, Core Data automatically
performs more batch operations.

If you were to search the source code of the Employee Directory app, you wouldn’t
see any calls to fetchBatchSize. That indicates another potential area for
improvement!

Let’s see if there are any places you could use a batch size to improve the app’s
performance. I probably don’t have to tell you there are!

Measuring the problem
You’ll use the Instruments tool to analyze where fetching is occurring in your app.

Core Data by Tutorials Second Edition Chapter 9: Measuring and Boosting Performance

 raywenderlich.com Page 223

First, select one of the iPhone simulator targets and then from Xcode’s menu bar,
select Product and then Profile (or press ⌘I). This will build the app and launch
Instruments.

Note: You can only use the Instruments Core Data template with the
Simulator, as the template requires the DTrace tool which is not available on
real iOS devices.

A selection window like the following will greet you:

Select the Core Data template and click Choose. This will launch the Instruments
window. If this is the first time you’ve launched Instruments, you might be asked
for your password to authorize Instruments to analyze running processes—don’t
worry, it’s safe to enter your password in this dialog.

Once Instruments has launched, click on the Record button in the top-left of the
window:

Core Data by Tutorials Second Edition Chapter 9: Measuring and Boosting Performance

 raywenderlich.com Page 224

Once Employee Directory has launched, scroll up and down the employee list for
about 20 seconds and then click on the Stop button that has appeared in place of
the Record button.

Click on the Core Data Fetches tool. The Instruments window should now look like
this:

The default Core Data template includes the following tools to help you tune and
monitor performance:

• Core Data Fetches Instrument: Captures fetch count and duration of fetch
operations. This will help you balance the number of fetch requests versus the
size of each request.

• Core Data Cache Misses Instrument: Captures information about fault events
that result in cache misses. This can help diagnose performance in low-memory
situations.

• Core Data Saves Instrument: Captures information on managed object context
save events. Writing data out to disk can be a performance and battery hit, so
this instrument can help you determine whether you should batch things into one
big save rather than many small ones.

Since you clicked on the Core Data Fetches tool, the details section at the bottom
of the Instruments window shows more information about each fetch that occurred.

Each of the three rows corresponds to the same line of code in the app. The first
two rows are private Core Data calls that are generated by lines of code in the app,
so you can ignore them.

Pay attention to the last row, though. This row includes the Objective-C versions of
the caller, fetch count and fetch duration in microseconds.

Employee Directory imports 50 employees. Since the fetch count shows 50, the app
is fetching all employees from Core Data at the same time. That’s not very efficient!

The Core Data Fetches tool corroborates your experience that the fetch is slow and
is easily noticeable, as you can see it takes about 2,000 microseconds (2 seconds).

Core Data by Tutorials Second Edition Chapter 9: Measuring and Boosting Performance

 raywenderlich.com Page 225

The app has to complete this fetch before it makes the table view visible and ready
for user interaction.

Note: Depending on your Mac, the numbers onscreen (and the thickness of
the bars) might not match those shown in these screenshots. Faster Macs will
have quicker fetches. Don’t worry—what’s important is the change in time
you’ll see after you modify the project.

Changes to improve performance
Open EmployeeListViewController.swift and find the following line of code in
employeeFetchRequest(department:):

let fetchRequest = NSFetchRequest(entityName: "Employee")

This code creates a fetch request using the Employee entity. You haven’t set a batch
size, so it defaults to 0, which means no batching.

Now set the batch size on the fetch request to 10, like so:

let fetchRequest = NSFetchRequest(entityName: "Employee")
fetchRequest.fetchBatchSize = 10

How do you come up with an optimal batch size? A good rule of thumb is to set the
batch size to about double the number of items that appear onscreen at any given
time. The employee list shows three to five employees onscreen at once, so 10 is a
reasonable batch size.

Verify the changes
Now that you’ve made the necessary change to the project, it’s once again time to
see if you’ve actually improved the app.

To test this fix, first build and run the app and make sure it still works. Next launch
Instruments again (from Xcode, select Product and then Profile, or press ⌘I) and
repeat the steps you followed previously. Remember to scroll up and down the
employee list for about 20 seconds before clicking the Stop button in Instruments.

Note: To use the latest code, make sure you launch the app from Xcode,
which triggers a build, rather than just hitting the red button in Instruments.

This time, the Core Data Instrument should look like this:

Core Data by Tutorials Second Edition Chapter 9: Measuring and Boosting Performance

 raywenderlich.com Page 226

Now there are multiple fetches, and the initial fetch is faster!

Examine the detail section more closely.

Again, instead of a single fetch, you see multiple quicker fetches.

The first fetch looks like the original fetch, as it is fetching all 50 employees. The
difference is that this time, it’s only fetching the count instead of the full objects,
and thus the fetch duration is much quicker. Core Data is doing this automatically
now that you’ve set a batch size on the request.

Originally this fetch took over 2,000 microseconds, and now it only takes 755
microseconds on my system.

After the first fetch, you can see numerous fetches with fetch counts of 10. These
fetches are happening because you set the batch size to 10. As you scroll through
the employee list, new entities are fetched only when they are needed.

Core Data by Tutorials Second Edition Chapter 9: Measuring and Boosting Performance

 raywenderlich.com Page 227

You’ve cut the time of the initial fetch down to almost a third of the original, and
the subsequent fetches are much smaller and faster. Congratulations, you have
increased the speed of your app again!

Advanced fetching
Fetch requests use predicates to limit the amount of data returned. As mentioned
above, for optimal performance, you should limit the amount of data you fetch to
the minimum needed: the more data you fetch, the longer the fetch will take.

Fetch Predicate Performance

When performing fetches, you should limit the amount of data returned to the
minimum needed. You can limit your fetch requests by using predicates.

If your fetch request requires a compound predicate, you can make it more
efficient by putting the more restrictive predicate first. If your predicate
contains string comparisons, this is especially true.

For example, a predicate with a format of "(active == YES) AND (name
CONTAINS[cd] %@)" would likely be more efficient than "(name CONTAINS[cd]
%@) AND (active == YES)".

Please consult Apple’s Predicate Programming Guide for more predicate
performance optimizations.

Build and run Employee Directory, and select the second tab labeled Departments.
This tab shows a listing of departments and the number of employees in each
department. Tapping a department cell takes the user to a list of the employees in
the selected department.

Core Data by Tutorials Second Edition Chapter 9: Measuring and Boosting Performance

 raywenderlich.com Page 228

Tapping on the detail disclosure, also known as the information icon, in each
department cell will show the total employees, active employees and a breakdown
of employees’ available vacations days.

The first screen simply lists the departments and the number of employees per
department. There’s not too much data here, but there could still be performance
issues lurking here. Let’s find out.

Core Data by Tutorials Second Edition Chapter 9: Measuring and Boosting Performance

 raywenderlich.com Page 229

Measure the problem
Instead of Instruments, you’ll use the XCTest framework to measure the
performance of the department list screen. XCTest is usually used for unit tests, but
there are some new performance testing tools available as of Xcode 6.

Note: For more information on unit tests and Core Data, check out Chapter 8,
“Unit Testing”

First, familiarize yourself with how the app creates the department list screen. Open
DepartmentListViewController.swift and find the following code in
totalEmployeesPerDepartment.

//1
let fetchRequest = NSFetchRequest(entityName: "Employee")
var fetchResults: [AnyObject] = []
do {
 fetchResults =
 try coreDataStack.context.executeFetchRequest(fetchRequest)
} catch let error as NSError {
 print("ERROR: \(error.localizedDescription)")
 return [[String:String]]()
}

//2
var uniqueDepartments = [String:Int]()
for object in fetchResults {

 let employee = object as! Employee

 if let employeeDepartmentCount =
 uniqueDepartments[employee.department] {

 uniqueDepartments[employee.department] =
 employeeDepartmentCount + 1

 } else {
 uniqueDepartments[employee.department] = 1
 }
}

//3
var results = [[String:String]]()
for (department, headCount) in uniqueDepartments {

Core Data by Tutorials Second Edition Chapter 9: Measuring and Boosting Performance

 raywenderlich.com Page 230

 let departmentDictionary:[String:String] =
 ["department":department,
 "headCount":String(headCount)]

 results.append(departmentDictionary)
}

return results

This code does the following:

1. It creates a fetch request with the Employee entity and then fetches all
employees.

2. It iterates though the employees and builds a dictionary, where the key is the
department name and the value is the number of employees in that department.

3. It builds an array of dictionaries with the required information for the department
list screen.

How could you measure the performance of this code?

Open DepartmentListViewControllerTests.swift (notice the Tests suffix in the
filename) and add the following code after the tearDown function:

func testTotalEmployeesPerDepartment() {
 measureMetrics([XCTPerformanceMetric_WallClockTime],
 automaticallyStartMeasuring: false) {
 let departmentList = DepartmentListViewController()
 departmentList.coreDataStack = CoreDataStack()
 self.startMeasuring()
 _ = departmentList.totalEmployeesPerDepartment()
 self.stopMeasuring()
 }
}

This function uses measureMetrics to see how long code takes to execute.

You have to set up a new Core Data stack each time so that you aren’t just taking
advantage of Core Data’s excellent caching to make the subsequent test runs really
fast!

Inside the block, you first create a DepartmentListViewController and give it a
CoreDataStack. Then, you call totalEmployeesPerDepartment to retrieve the number
of employees per department.

Now you need to run this test. From Xcode’s menu bar, select Product and then
Test, or press ⌘U. This will build the app and run the tests.

Once the tests have finished running, Xcode will look like this:

Core Data by Tutorials Second Edition Chapter 9: Measuring and Boosting Performance

 raywenderlich.com Page 231

Notice two new things:

1. There’s a green checkmark next to testTotalEmployeesPerDepartment. That
means the test ran and passed.

2. There’s a message on the right side with the amount of time the test took.

On my iPhone 4S test device used for the above screenshot, the test took 0.067
seconds to perform the totalEmployeesPerDepartment operation. These results
might seem good but there is still room for improvement.

Note: These screenshots where generated with an iPhone 4S. You might get
somewhat different test results, depending on your test device. Don’t worry—
what’s important is the change in time you’ll see after you modify the project.

Changes to improve performance
The current implementation of totalEmployeesPerDepartment uses a fetch request to
iterate through all employee records. Remember the very first optimization in this
chapter, where you split out the full-size photo into a separate entity? There’s a
similar issue here: Core Data loads the entire employee record, but all you really
need is a count of employees by department.

It would be more efficient to somehow group the records by department and just
get a count; you don’t need the details like employee names and photo thumbnails!

Open DepartmentListViewController.swift and add the following code to the
class:

func totalEmployeesPerDepartmentFast() -> [[String:String]] {
 //1
 let expressionDescription = NSExpressionDescription()
 expressionDescription.name = "headCount"

Core Data by Tutorials Second Edition Chapter 9: Measuring and Boosting Performance

 raywenderlich.com Page 232

 //2
 expressionDescription.expression =
 NSExpression(forFunction: "count:",
 arguments:[NSExpression(forKeyPath: "department")])

 //3
 let fetchRequest = NSFetchRequest(entityName: "Employee")
 fetchRequest.propertiesToFetch =
 ["department", expressionDescription]
 fetchRequest.propertiesToGroupBy = ["department"]
 fetchRequest.resultType = .DictionaryResultType

 //4
 let fetchResults: [[String:String]] = []
 do {
 try coreDataStack.context.executeFetchRequest(fetchRequest)
 } catch let error as NSError {
 print("ERROR: \(error.localizedDescription)")
 return [[String:String]]()
 }
 return fetchResults
}

This code still uses a fetch request to populate the department list screen, but it
also takes advantage of an NSExpression. Here’s how it works:

1. You create an NSExpressionDescription and name it headCount.

2. You create an NSExpression with the count: function for the department attribute.

3. You create a fetch request with the Employee entity. This time, the fetch request
should only fetch the minimum required properties by using propertiesToFetch.
You only need the department attribute and a calculated property made by the
expression created earlier. The fetch request also groups the results by the
department attribute. You’re not interested in the managed object, so the fetch
request return type is DictionaryResultType. This will return an array of
dictionaries, each containing a department name and an employee count—just
what you need!

4. You execute the fetch request.

Now find the following line of code in viewDidLoad:

items = totalEmployeesPerDepartment()

This line of code uses the old and slow function to populate the department list
screen. Replace it by calling the function you just created:

items = totalEmployeesPerDepartmentFast()

Core Data by Tutorials Second Edition Chapter 9: Measuring and Boosting Performance

 raywenderlich.com Page 233

Now the app is populating the table view data source for the department list screen
with the faster NSExpression-backed fetch request.

Note: NSExpression is a powerful API, yet it is seldom used, at least directly.
When you create predicates with comparison operations, you may not know it,
but you’re actually using expressions.

There are many pre-built statistical and arithmetical expressions available in
NSExpression, including average, sum, count, min, max, median, mode and stddev.
Consult the NSExpression documentation for a comprehensive overview.

Verify the changes
Now that you’ve made all the necessary changes to the project, it’s once again time
to see if you’ve improved the app.

Open DepartmentListViewControllerTests.swift and add a new function to test
the totalEmployeesPerDepartmentFast function you just created.

func testTotalEmployeesPerDepartmentFast() {
 measureMetrics([XCTPerformanceMetric_WallClockTime],
 automaticallyStartMeasuring: false, forBlock:{
 let departmentList = DepartmentListViewController()
 departmentList.coreDataStack = CoreDataStack()
 self.startMeasuring()
 _ = departmentList.totalEmployeesPerDepartmentFast()
 self.stopMeasuring()
 })
}

Like before, this test uses measureMetrics to see how long a particular function is
taking, in this case totalEmployeesPerDepartmentFast.

Now you need to run this test. From Xcode’s menu bar, select Product and then
Test, or press ⌘U. This will build the app and run the tests.

Once the tests have finished running, Xcode will look like this:

Core Data by Tutorials Second Edition Chapter 9: Measuring and Boosting Performance

 raywenderlich.com Page 234

This time, you’ll see two messages with total execution time, one next to each test
function.

Note: If you don’t see the time messages, you can view the details of each
individual test run in the logs generated during the test. From Xcode’s menu
bar, select View, Debug Area, and then Show Debug Area.

As you can see, the new function, totalEmployeesPerDepartmentFast, took
approximately 0.042 seconds to complete. That’s much faster than the 0.070
seconds used by the original function, totalEmployeesPerDepartment. You’ve
increased the speed of this fetch by about 40%!

Fetching counts
As you’ve already seen, it’s often not important what your Core Data objects
contain. Some screens simply need the counts of objects with certain attributes.

For example, the employee detail screen shows the total number of sales an
employee has made since they’ve been with the company.

Core Data by Tutorials Second Edition Chapter 9: Measuring and Boosting Performance

 raywenderlich.com Page 235

For the purposes of this app, you don’t care about the content of each individual
sale—for example, the date of the sale or the name of the purchaser—just how
many there are.

Measure the problem
You’ll use XCTest again to measure the performance of the employee detail screen.

Open EmployeeDetailViewController.swift and find
salesCountForEmployee(employee:).

func salesCountForEmployee(employee:Employee) -> String {
 let fetchRequest = NSFetchRequest(entityName: "Sale")
 let predicate =
 NSPredicate(format: "employee == %@", employee)
 fetchRequest.predicate = predicate
 let context = employee.managedObjectContext!
 do {
 let results =
 try context.executeFetchRequest(fetchRequest)
 return "\(results.count)"
 } catch let error as NSError {
 print("Error: \(error.localizedDescription)")
 return "0"
 }
}

This code fetches all sales for a given employee and then returns the count of the
returned array.

Core Data by Tutorials Second Edition Chapter 9: Measuring and Boosting Performance

 raywenderlich.com Page 236

Fetching the full sale object just to see how many sales exist for a given employee
is probably wasteful. This might be another opportunity to boost performance!

Let’s measure the problem before attempting to fix it.

Open EmployeeDetailViewControllerTests.swift and find testCountSales.

func testCountSales() {
 self.measureMetrics([XCTPerformanceMetric_WallClockTime],
 automaticallyStartMeasuring: false, forBlock: {
 let employee = self.getEmployee()
 let employeeDetails = EmployeeDetailViewController()
 self.startMeasuring()
 _ =
 employeeDetails.salesCountForEmployee(employee)
 self.stopMeasuring()
 })
}

Like the previous example, this function is using measureMetrics to see how long a
single function takes to run. The test gets an employee from a convenience
method, creates an EmployeeDetailViewController, begins measuring and then calls
the method in question.

Run this test. From Xcode’s menu bar, select Product and then Test, or press ⌘U.
This will build the app and run the test.

Once the test has finished running, you’ll see a time next to this test method, as
before.

The performance is not too bad there is room for improvement

Changes to improve performance
In the previous example, you used NSExpression to group the data and provide a
count of employees by department instead of returning the actual records

Core Data by Tutorials Second Edition Chapter 9: Measuring and Boosting Performance

 raywenderlich.com Page 237

themselves. This time you need to do the same thing, retrieve a count without
getting all the actual records.

Open EmployeeDetailViewController.swift and add the following code to the
class.

func salesCountForEmployeeFast(employee:Employee) -> String {
 let fetchRequest = NSFetchRequest(entityName: "Sale")
 let predicate =
 NSPredicate(format: "employee == %@", employee)
 fetchRequest.predicate = predicate
 var error : NSError?
 let context = employee.managedObjectContext!
 let results =
 context.countForFetchRequest(fetchRequest, error: &error)

 return "\(results)"
}

This code is very similar to the function you reviewed in the last section. The
primary difference is that instead of calling executeFetchRequest, you are now
calling countForFetchRequest.

Find the following line of code in configureView():

label.text = salesCountForEmployee(employee)

This line of code uses the old sales count function to populate the label on the
department details screen. Replace it by calling the function you just created:

label.text = salesCountForEmployeeFast(employee)

Verify the changes
Now that you’ve made the necessary changes to the project, it’s once again time to
see if you’ve improved the app.

Open EmployeeDetailViewControllerTests.swift and add a new function to test
the totalEmployeesFast function you just created.

func testCountSalesFast() {
 self.measureMetrics([XCTPerformanceMetric_WallClockTime],
 automaticallyStartMeasuring: false, forBlock: {
 let employee = self.getEmployee()
 let employeeDetails = EmployeeDetailViewController()
 self.startMeasuring()
 _ = employeeDetails.salesCountForEmployeeFast(employee)
 self.stopMeasuring()

Core Data by Tutorials Second Edition Chapter 9: Measuring and Boosting Performance

 raywenderlich.com Page 238

 })
}

This test is identical to the previous one, except it uses the new and, with any luck,
faster function.

Run this test. From Xcode’s menu bar, select Product and then Test, or press ⌘U.
This will build the app and run the test. You’ll see another performance
improvement!

Using relationships
The code above is fast, but the faster method still seems like a lot of work. You
have to create a fetch request, create a predicate, get a reference to the context,
execute the fetch request and get the results out.

The Employee entity has a sales property, which holds an NSSet of the sales. Open
EmployeeDetailViewController.swift and add another new method:

func salesCountForEmployeeSimple(employee:Employee) -> String {
 return "\(employee.sales.count)"
}

Doesn’t that look better? By using the sales relationship on the Employee entity the
code is much simpler and easier to comprehend.

Update the view controller and tests to use this method instead, following the same
pattern as above. How’s the performance now?

Core Data by Tutorials Second Edition Chapter 9: Measuring and Boosting Performance

 raywenderlich.com Page 239

Challenge: Using the techniques you just learned, try to improve the
performance of the DepartmentDetailsViewController. Don’t forget to write
tests to measure the before and after execution times.

Hint: There are many methods that provide counts rather than the full records
– these can probably be optimized somehow to avoid loading the contents of
the records.

Where to go from here?
If you followed this chapter all the way through, you’ve turned a slow, memory hog
of an app into a light and fast app. The final project for this chapter is in the
EmployeeDirectory-Final folder.

When optimizing the sample app’s performance, you followed the measure, change
and verify process to avoid unnecessary work. You learned how to use the Memory
Report, Instruments and XCTest tools to take measurements.

Along the way, you learned how to improve your data model by putting large
BLOBs in separate entities and by letting Core Data decide if data should be stored
externally.

You also learned how to improve fetching performance by setting batch sizes and
taking advantage of the NSExpression API.

As with most things, performance is a balance between memory and speed. When
using Core Data in your apps, always keep this balance in mind. With the
measurement tools and some of the techniques in this book, you’re well on the way
to measuring, improving, and verifying performance in your own apps!

 raywenderlich.com Page 240

A managed object context is an in-memory scratchpad that you use to work with
your managed objects. In Chapter 3, “The Core Data Stack,” you learned how the
managed object context fits in with the other classes in the Core Data stack.

Most apps need but a single managed object context. A single managed object
context with a main queue, the default behavior, is simple to manage and
understand. Apps with multiple managed object contexts are harder to debug. For
that reason, you should avoid them, if possible.

That being said, certain situations do warrant the use of more than one managed
object context. For example, long-running tasks such as exporting data will block
the main thread of apps that use only a single main-queue managed object context,
causing the UI to stutter.

In other situations, such as when temporarily editing user data, it’s helpful to treat
a managed object context as a set of changes that the app can just throw away if it
no longer needs them. Using child contexts makes this possible.

In this chapter, you’ll learn about multiple managed object contexts by taking a
journaling app for surfers and improving it in several ways by adding multiple
contexts.

Note: If common Core Data phrases such as managed object subclass and
persistent store coordinator don’t ring any bells, or if you’re unsure what a
Core Data stack is supposed to do, you may want to read or reread the first
three chapters of this book before proceeding. This chapter covers advanced
topics and assumes you already know the basics.

Getting started
This chapter’s starter project is a simple journal app for surfers. After each surf
session, a surfer can use the app to create a new journal entry that records marine

Chapter 10: Multiple Managed
Object Contexts
By Matthew Morey

Core Data by Tutorials Second Edition Chapter 10: Multiple Managed Object Contexts

 raywenderlich.com Page 241

parameters, such as swell height or period, and rate the session from 1 to 5. Dude,
if you’re not fond of hanging ten and getting barreled, no worries, brah. Just
replace the surfing terminology with your favorite hobby of choice!

Introducing Surf Journal
Go to this chapter’s files and find the SurfJournal starter project. Open the
project, then build and run the app.

On startup, the application lists all previous surf session journal entries. Tapping on
a row in the list brings up the detail view of a surf session with the ability to make
edits.

As you can see, the sample app works and has data. Tapping the Export button on
the top-left exports the data to a comma-separated values (CSV) file. Tapping the
plus (+) button on the top-right adds a new journal entry. Tapping a row in the list
opens the entry in edit mode, letting you make changes or view the details of a surf
session.

Although the sample project appears simple, it actually does a lot and will serve as
a good base to add multi-context support. First, make sure you have a good
understanding of the various classes in the project.

Open the project navigator and take a look at the full list of files in the starter
project:

Core Data by Tutorials Second Edition Chapter 10: Multiple Managed Object Contexts

 raywenderlich.com Page 242

Before jumping into the code, let’s briefly go over what each class does for you out
of the box. If you’ve completed the earlier chapters, you should find most of these
classes familiar.

• AppDelegate: On first launch, the app delegate creates the Core Data stack and
sets the coreDataStack property on the primary view controller
JournalListViewController.

• CoreDataStack: As in previous chapters, this object contains the cadre of Core
Data objects known as the “stack”: the context, the model, the persistent store
and the persistent store coordinator. Unlike in previous chapters, this time the
stack installs a database that already has data in it on first launch. No need to
worry about this just yet; you’ll see how it works shortly.

• JournalListViewController: The sample project is a one-page table-based
application. This file represents that table. If you’re curious about its UI elements,
head over to Main.storyboard. There’s a table embedded in a navigation
controller and a single prototype cell of type SurfEntryTableViewCell.

• JournalEntryViewController: This class handles creating and editing surf
journal entries. You can see its UI in Main.storyboard.

• JournalEntry: This class represents a surf journal entry. It is an NSManagedObject
subclass with six properties for attributes: date, height, location, period, rating
and wind. It also includes the CSV export function csv. If you’re curious about this
class’s entity definition, head over to SurfJournalModel.xcdatamodel.

Core Data by Tutorials Second Edition Chapter 10: Multiple Managed Object Contexts

 raywenderlich.com Page 243

When you first launched the app, it already had a significant amount of data. While
the projects in some of the previous chapters import seed data from a JSON file,
this sample project comes with a seeded Core Data database. Let’s see how it
works.

The Core Data stack
Open CoreDataStack.swift and find the following code:

// 1
let bundle = NSBundle.mainBundle()
let seededDatabaseURL = bundle
 .URLForResource(self.seedName, withExtension: "sqlite")!

// 2
let didCopyDatabase: Bool
do {
 try NSFileManager.defaultManager()
 .copyItemAtURL(seededDatabaseURL, toURL: url)
 didCopyDatabase = true
} catch {
 didCopyDatabase = false
}

// 3
if didCopyDatabase {

As you can see, this chapter’s version of CoreDataStack.swift is a little different.
Let’s go through the differences step by step:

1. The app bundle comes with a pre-populated Core Data database named
SurfJournalDatabase.sqlite. To make use of this database, first you have to
find it and create a URL reference to it using URLForResource(_:withExtension:).

2. copyItemAtURL(_:toURL:error:) attempts to copy the seeded database file to the
app’s documents directory. If the database file already exists in the documents
directory, the copy operation fails. This behavior allows the seeding operation to
happen only once, on first launch.

Core Data by Tutorials Second Edition Chapter 10: Multiple Managed Object Contexts

 raywenderlich.com Page 244

3. On subsequent app launches, the database will already exist and the copy will
fail. When the copy operation fails, the variable didCopyDatabase will be false
and the code in the if-statement will never execute.

Assume that the app is launching for the first time and therefore didCopyDatabase is
true. Let’s see how the rest of the seeding operation works:

// 4
let seededSHMURL = bundle
 .URLForResource(self.seedName, withExtension: "sqlite-shm")!
let shmURL = self.applicationDocumentsDirectory
 .URLByAppendingPathComponent(self.seedName + ".sqlite-shm")
do {
 try NSFileManager.defaultManager()
 .copyItemAtURL(seededSHMURL, toURL: shmURL)
} catch {
 let nserror = error as NSError
 print("Error: \(nserror.localizedDescription)")
 abort()
}

// 5
let seededWALURL = bundle
 .URLForResource(self.seedName, withExtension: "sqlite-wal")!
let walURL = self.applicationDocumentsDirectory
 .URLByAppendingPathComponent(self.seedName + ".sqlite-wal")
do {
 try NSFileManager.defaultManager()
 .copyItemAtURL(seededWALURL, toURL: walURL)
} catch {
 let nserror = error as NSError
 print("Error: \(nserror.localizedDescription)")
 abort()
}

To support concurrent reads and writes, SQLite, the persistent store in use by this
sample app, utilizes SHM (shared memory file) and WAL (write-ahead logging) files.
You don’t need to know how these extra files work, but you do need to be aware
that they exist and that you need to copy them over when seeding the database. If
you fail to copy over these files, the app will work, but it will be missing data.

4. Once SurfJournalDatabase.sqlite has been successfully copied, the support
file SurfJournalDatabase.sqlite-shm is copied over.

5. Finally, the remaining support file SurfJournalDatabase.sqlite-wal, is copied
over.

Core Data by Tutorials Second Edition Chapter 10: Multiple Managed Object Contexts

 raywenderlich.com Page 245

The only reason SurfJournalDatabase.sqlite, SurfJournalDatabase.sqlite-shm
or SurfJournalDatabase.sqlite-wal would fail to copy over on first launch is if
something really bad happened, such as disk corruption from cosmic radiation. In
that case the device, including any apps, would likely also fail. If the app won’t
work, there’s no point in continuing, so the initializer calls abort.

Note: We developers often frown upon using abort, as it confuses users by
causing the app to quit suddenly and without explanation. But this is one
example where abort is acceptable, since the app needs Core Data to work.

If an app requires Core Data to be useful and Core Data isn’t working, there’s
no point in letting the app continue on, only to fail sometime later in a non-
deterministic way. Calling abort at least generates a stack trace, which can be
helpful when trying to fix the problem.

If your app has support for remote logging or crash reporting, you should log
any relevant information that might be helpful for debugging before calling
abort.

Once the pre-populated database and support files are copied over, the final step is
to add the seeded database store to the persistent store coordinator.

// 6
do {
 try coordinator.addPersistentStoreWithType(
 NSSQLiteStoreType, configuration: nil, URL: url, options: nil)
} catch {
 // 7
 let nserror = error as NSError
 print("Error: \(nserror.localizedDescription)")
 abort()
}

6. addPersistentStoreWithType(_:configuration:URL:options:) is called on the
NSPersistentStoreCoordinator to add the store (NSSQLiteStoreType in this case)
at the given URL.

7. Finally, if the store wasn’t successfully created, the app won’t work so abort is
called.

Now that you know something about beginning with a seeded database, let’s start
learning about multiple managed object contexts by adding a second context with a
private queue to the Surf Journal app.

Core Data by Tutorials Second Edition Chapter 10: Multiple Managed Object Contexts

 raywenderlich.com Page 246

Doing work in the background
If you haven’t done so already, tap the Export button at the top-left and then
immediately try to scroll the list of surf session journal entries. Notice anything?
The export operation will take several seconds and it will prevent the UI from
responding to touch events, such as scrolling.

The UI is blocked during the export operation because both the export operation
and UI are using the main queue to perform their work. This is the default
behavior.

How can you fix this? The traditional way would be to use Grand Central Dispatch to
run the export operation on a background queue. However, Core Data managed
object contexts are not thread-safe. That means you can’t just dispatch to a
background queue and use the same Core Data stack.

The solution is easy: just add another context for the export operation that uses a
private queue rather than the main queue, so the export operation can do its work
in the background. This will keep the main queue free for the UI to use.

But before you jump in and fix the problem, you need to understand how the
export operation works.

Exporting data
Start by viewing how the app creates the CSV strings for the Core Data entity.
Open JournalEntry.swift and find csv():

func csv() -> String {
 let coalescedHeight = height ?? ""
 let coalescedPeriod = period ?? ""
 let coalescedWind = wind ?? ""
 let coalescedLocation = location ?? ""
 var coalescedRating:String
 if let rating = rating?.intValue {
 coalescedRating = String(rating)
 } else {
 coalescedRating = ""
 }

 return "\(stringForDate()),\(coalescedHeight)," +
 "\(coalescedPeriod),\(coalescedWind)," +
 "\(coalescedLocation),\(coalescedRating)\n"
}

As you can see, this JournalEntry function returns a comma-separated string of the
entity’s attributes. Because the JournalEntry attributes are allowed to be nil, the

Core Data by Tutorials Second Edition Chapter 10: Multiple Managed Object Contexts

 raywenderlich.com Page 247

function uses the nil coalescing operator (??) so that it exports an empty string
instead of an unhelpful debug message that the attribute is nil.

Note: The nil coalescing operator (??) unwraps an optional if it contains a
value; otherwise it returns a default value. For example, the following:

let coalescedHeight = height != nil ? height! : ""

Can be shortened by using the nil coalescing operator:

let coalescedHeight = height ?? ""

Now that you know how the app creates the CSV strings for an individual journal
entry, take a look at how the app saves the CSV file to disk. Switch to
JournalListViewController.swift and find the following code in exportCSVFile():

// 1
let results: [AnyObject]
do {
 results = try coreDataStack.context.executeFetchRequest(
 self.surfJournalFetchRequest())
} catch {
 let nserror = error as NSError
 print("ERROR: \(nserror)")
 results = []
}

// 2
let exportFilePath =
 NSTemporaryDirectory() + "export.csv"
let exportFileURL = NSURL(fileURLWithPath: exportFilePath)
NSFileManager.defaultManager().createFileAtPath(
 exportFilePath, contents: NSData(), attributes: nil)

Let’s go through the CSV export code step by step:

1. First, the code retrieves all JournalEntry entities by executing a fetch request.
The fetch request is the same one used by the fetched results controller and
therefore the code uses surfJournalFetchRequest to create it, avoiding
duplication.

2. The code creates the URL for the exported CSV file by appending the file name
(“export.csv”) to the output of NSTemporaryDirectory. The path returned by
NSTemporaryDirectory is a unique directory for temporary file storage. This a
good place for files that can easily be generated again and don’t need to be
backed up by iTunes or to iCloud. After creating the export URL, the code calls
createFileAtPath(_:contents:attributes:) to create the empty file to store the

Core Data by Tutorials Second Edition Chapter 10: Multiple Managed Object Contexts

 raywenderlich.com Page 248

exported data. If a file already exists at the specified file path, then the code
removes it first.

Once the app has the empty file, it can write the CSV data to disk:

// 3
let fileHandle: NSFileHandle?
do {
 fileHandle = try NSFileHandle(forWritingToURL: exportFileURL)
} catch {
 let nserror = error as NSError
 print("ERROR: \(nserror)")
 fileHandle = nil
}

if let fileHandle = fileHandle {
 // 4
 for object in results {
 let journalEntry = object as! JournalEntry

 fileHandle.seekToEndOfFile()
 let csvData = journalEntry.csv().dataUsingEncoding(
 NSUTF8StringEncoding, allowLossyConversion: false)
 fileHandle.writeData(csvData!)
 }

 // 5
 fileHandle.closeFile()

3. First, the app needs to create a file handler for writing, which is simply an object
that handles the low-level disk operations necessary for writing data. To create a
file handler for writing, the code calls fileHandleForWritingToURL(_:error:).

4. Using a for-in statement, the code iterates over all JournalEntry entities. During
each iteration, the code creates a UTF8-encoded string using csv and
dataUsingEncoding(_:allowLossyConversion:). It then writes the UTF8 string to
disk using writeData.

5. Finally, the code closes the export file-writing file handler, since it’s no longer
needed.

Once the app has written all the data to disk, it shows an alert dialog with the
exported file path:

Core Data by Tutorials Second Edition Chapter 10: Multiple Managed Object Contexts

 raywenderlich.com Page 249

Note: This alert view with the export path is fine for learning purposes, but for
a real app, you’ll need to provide the user with a way to retrieve the exported
CSV file. Attaching the export file to an email is a popular method.

To open the exported CSV file, use Excel, Numbers or your favorite text editor to
navigate to and open the file specified in the alert dialog. If you open the file in
Numbers you will see the following:

Now that you’ve seen how the app currently exports data, it’s time to make some
improvements.

Core Data by Tutorials Second Edition Chapter 10: Multiple Managed Object Contexts

 raywenderlich.com Page 250

Exporting on a private queue
You want the UI to continue to work while the export is happening. To fix the UI
problem, you’ll perform the export operation on a private background queue
instead of on the main queue.

Open JournalListViewController.swift and find the following code in
exportCSVFile:

// 1
let results: [AnyObject]
do {
 results = try coreDataStack.context.executeFetchRequest(
 self.surfJournalFetchRequest())
} catch {
 let nserror = error as NSError
 print("ERROR: \(nserror)")
 results = []
}

As you saw earlier, this code retrieves all of the journal entries by calling
executeFetchRequest on the managed object context.

Now replace it with the following:

// 1
let privateContext = NSManagedObjectContext(
 concurrencyType: .PrivateQueueConcurrencyType)
privateContext.persistentStoreCoordinator =
 coreDataStack.context.persistentStoreCoordinator

// 2
privateContext.performBlock { () -> Void in
 // 3
 let results: [AnyObject]
 do {
 results = try self.coreDataStack.context
 .executeFetchRequest(self.surfJournalFetchRequest())
 } catch {
 let nserror = error as NSError
 print("ERROR: \(nserror)")
 results = []
 }

Let’s go through the new code, which utilizes a new managed object context, step
by step:

Core Data by Tutorials Second Edition Chapter 10: Multiple Managed Object Contexts

 raywenderlich.com Page 251

1. First, you create a new managed object context called privateContext with a
concurrency type of PrivateQueueConcurrencyType, which specifies that the
context will be associated with a private dispatch queue. Once you’ve created the
new context, you assign it the same persistent store coordinator as the main
managed object context.

2. Next, you call performBlock. This function asynchronously performs the given
block on the context’s queue. In this case, the queue is private.

3. Just as before, you retrieve all JournalEntry entities by executing a fetch
request. But this time, you use the private context to execute the fetch request.

Next, find the following code in the same function:

 print("Export Path: \(exportFilePath)")
 self.navigationItem.leftBarButtonItem =
 self.exportBarButtonItem()
 self.showExportFinishedAlertView(exportFilePath)
} else {
 self.navigationItem.leftBarButtonItem =
 self.exportBarButtonItem()
}

Now replace it with the following:

 // 4
 dispatch_async(dispatch_get_main_queue(), { () -> Void in
 self.navigationItem.leftBarButtonItem =
 self.exportBarButtonItem()
 print("Export Path: \(exportFilePath)")
 self.showExportFinishedAlertView(exportFilePath)
 })
 } else {
 dispatch_async(dispatch_get_main_queue(), { () -> Void in
 self.navigationItem.leftBarButtonItem =
 self.exportBarButtonItem()
 })
 }

} // 5 closing brace for performBlock()

4. You should always perform all operations related to the UI, such as showing an
alert view when the export operation is finished, on the main queue; otherwise
unpredictable things will happen. You use the dispatch_async and
dispatch_get_main_queue to show the final alert view message on the main
queue.

5. Finally, the block you opened earlier in step 2 via the performBlock call now
needs to be closed with a closing curly brace.

Core Data by Tutorials Second Edition Chapter 10: Multiple Managed Object Contexts

 raywenderlich.com Page 252

Note: There are three concurrency types a managed object context can use:

ConfinementConcurrencyType specifies that the context will use the thread
confinement pattern and that the developer will be responsible for managing
all thread access. You should consider this type deprecated and never use it,
as the next two types will cover all use cases.

PrivateQueueConcurrencyType specifies that the context will be associated with
a private dispatch queue instead of the main queue. This is the type of queue
you just used to move the export operation off of the main queue so that it no
longer interferes with the UI.

MainQueueConcurrencyType, the default type, specifies that the context will be
associated with the main queue. This type is what the main context
(coreDataStack.context) uses. Any UI operation, such as creating the fetched
results controller for the table view, must use a context of this type.

Now that you’ve moved the export operation to a new context with a private queue,
it’s time to build and run and see if it works! Give it a go.

You should see exactly what you saw before:

Tap the Export button in the top-left and then immediately try to scroll the list of
surf session journal entries. Notice anything different this time? The export
operation still takes several seconds to complete, but now the table view continues
to scroll during this time. The export operation is no longer blocking the UI.

Cowabunga, dude! Gnarly job making the UI more responsive.

Core Data by Tutorials Second Edition Chapter 10: Multiple Managed Object Contexts

 raywenderlich.com Page 253

You’ve just witnessed how creating a new managed object context with a private
queue can improve a user’s experience with your app. Now let’s expand on the use
of multiple contexts by examining a child context.

Editing on a scratchpad
Right now, Surf Journal uses the main context (coreDataStack.context) when
viewing a journal entry or creating a new journal entry. There is nothing wrong with
this approach; the starter project works as-is.

But for some apps, such as notes or journal entry apps, you can simplify the app
architecture if you think of edits or new entities as a set of changes, like a scratch
pad. As the user edits the journal entry, you update the attributes of the managed
object. Once the changes are complete, you can either save them or throw them
away, depending on the user’s desire.

You can think of child managed object contexts the same way: as temporary
scratch pads that you can either save, sending the changes to the parent context,
or completely throw away.

But what is a child context, technically?

All managed object contexts have a parent store from which you can retrieve and
change data in the form of managed objects, such as the JournalEntry objects in
this project. Typically, the parent store is a persistent store coordinator, which is
the case for the main context provided by the CoreDataStack class. Alternatively,
you can set the parent store for a given context to another managed object
context, making it a child context.

When you save a child context, the changes only go to the parent context. Changes
to the parent context are not sent to the persistent store coordinator until the
parent context is also saved.

Core Data by Tutorials Second Edition Chapter 10: Multiple Managed Object Contexts

 raywenderlich.com Page 254

Before you jump in and add a child context, you need to understand how the
current viewing and editing operation works.

Viewing and editing
The first part of the operation requires segueing from the main list view to the
journal detail view. Open JournalListViewController.swift and find
prepareForSegue:

// 1
if segue.identifier == "SegueListToDetail" {

// 2
let indexPath = tableView.indexPathForSelectedRow()
let surfJournalEntry =
 fetchedResultController.objectAtIndexPath(
 indexPath!) as! JournalEntry

//3
let navigationController = segue.destinationViewController as
 UINavigationController
let detailViewController =
 navigationController.topViewController as
 JournalEntryViewController

//4
detailViewController.journalEntry = surfJournalEntry
detailViewController.context =
 surfJournalEntry.managedObjectContext
detailViewController.delegate = self

Let’s go through this segue code step by step:

1. There are two segues: “SegueListToDetail” and “SegueListToDetailAdd”. The
first, shown in the previous code block, is executed when the user taps on a row
in the table view, which she’ll do when she wants to view or edit a previous
journal entry.

2. To determine which JournalEntry entity the user cares about, the code uses
indexPathForSelectedRow and objectAtIndexPath.

3. Now that the app knows what JournalEntry the user wants, the app needs to
pass it to the JournalEntryViewController. The JournalEntryViewController is
embedded in a navigation controller, so the code uses topViewController to
retrieve a reference to it.

4. The final step is to set all needed variables on the JournalEntryViewController
instance. The surfJournalEntry variable corresponds to the JournalEntry entity
retrieved in step 2. The context variable is the managed object context that is to

Core Data by Tutorials Second Edition Chapter 10: Multiple Managed Object Contexts

 raywenderlich.com Page 255

be used for any operation; for now it just uses the main context. The
JournalListViewController sets itself as the delegate of the
JournalEntryViewController so that it can be informed when the user has
completed the edit operation.

Now let’s look at “SegueListToDetailAdd”. It’s very similar to “SegueListToDetail”,
except that the app creates a new JournalEntry entity instead of retrieving an
existing one. The app executes “SegueListToDetailAdd” when the user taps the plus
(+) button on the top-right to create a new journal entry.

Now that you know how both segues work, let’s look at the
JournalEntryViewController protocol. Switch to
JournalEntryViewController.swift and find the following code at the top of the
file:

protocol JournalEntryDelegate {
 func didFinishViewController(
 viewController:JournalEntryViewController, didSave:Bool)
}

As you can see, the JournalEntryViewController protocol is very short and consists
of only didFinishViewController(_:didSave:). This function, which the protocol
requires the delegate to implement, indicates that the user is done editing or
viewing a journal entry and whether the changes, if there are any, should be saved.

To understand how didFinishViewController(_:didSave:) works, switch back to
JournalListViewController.swift and find that method:

func didFinishViewController(
 viewController:JournalEntryViewController, didSave:Bool) {
 // 1
 if didSave {
 // 2
 let context = viewController.context
 context.performBlock({ () -> Void in
 if context.hasChanges {
 do {
 try context.save()
 } catch {
 let nserror = error as NSError
 print("Error: \(nserror.localizedDescription)")
 abort()
 }
 }
 // 3
 self.coreDataStack.saveContext()
 })

Core Data by Tutorials Second Edition Chapter 10: Multiple Managed Object Contexts

 raywenderlich.com Page 256

 }
 // 4
 dismissViewControllerAnimated(true, completion: {})
}

Let’s go through this delegate method step by step:

1. First, the code checks the didSave parameter. It is true if the user taps the Save
button instead of the Cancel button. If true, the app needs to save the user’s
data.

2. Next, the code saves the JournalEntryViewController context inside of a
performBlock closure. The code sets this context to the main context, which is
redundant since there’s only one context, but doesn’t change the behavior. Once
you add a child context to the workflow, the JournalEntryViewController context
will be different from the main context, making this code necessary. If the save
fails, the code prints an error message and aborts the app.

3. The code saves the main context via saveContext, defined in
CoreDataStack.swift, persisting any edits to disk.

4. Finally, the code dismisses the JournalEntryViewController using animation.

Note: If a managed object context is of type MainQueueConcurrencyType, you
don’t have to wrap code in performBlock, but it doesn’t hurt to use it. If you
don’t know what type the context will be, as is the case in
didFinishViewController(_:didSave:), it’s safest to use performBlock so it will
work with both parent and child contexts.

There’s a problem with the above implementation—have you spotted it?

When the app adds a new journal entry, it creates a new object and adds it to the
managed object context. If the user taps the Cancel button, the app doesn’t save
the context, but the new object is still present. If the user then adds and saves
another entry, the cancelled object is still present! You won’t see it in the UI unless
you’ve got the patience to scroll all the way to the end, but it will show up at the
bottom of the CSV export.

You could solve this problem by deleting the object when the user cancels the view
controller. But what if the changes made were more complex, or involved multiple
objects, or you had to alter properties of an object as part of the editing workflow?
Canceling could soon get very complicated. It’s much easier to use a temporary
child context.

Using child contexts for sets of edits
Now that you know how the app currently edits and creates JournalEntry entities,
you’ll modify the implementation to use a child managed object context as a
temporary scratch pad.

Core Data by Tutorials Second Edition Chapter 10: Multiple Managed Object Contexts

 raywenderlich.com Page 257

It’s easy to do—you simply need to modify the segues. Open
JournalListViewController.swift and find the following code for
“SegueListToDetail” in prepareForSegue:

detailViewController.journalEntry = surfJournalEntry
detailViewController.context =
 surfJournalEntry.managedObjectContext
detailViewController.delegate = self

Now replace that code with the following:

// 1
let childContext = NSManagedObjectContext(
 concurrencyType: .MainQueueConcurrencyType)
childContext.parentContext = coreDataStack.context

// 2
let childEntry = childContext.objectWithID(
 surfJournalEntry.objectID) as! JournalEntry

// 3
detailViewController.journalEntry = childEntry
detailViewController.context = childContext
detailViewController.delegate = self

Let’s go through the modified segue code step by step:

1. First, you create a new managed object context called childContext with a
MainQueueConcurrencyType. Instead of setting a persistent store coordinator as
you normally do when creating a managed object context, you set a parent
context. Here, you set the parentContext to the main context.

2. Using the child context’s objectWithID function, you retrieve the relevant journal
entry. You must use objectWithID to retrieve the journal entry because managed
objects are specific to the context that created them. However, objectID values
are not specific to a single context, so you can use them when you need to
access objects in multiple contexts.

3. Finally, you set all needed variables on the JournalEntryViewController instance.
This time, you use the childEntry and childContext instead of the original
surfJournalEntry and surfJournalEntry.managedObjectContext.

Note: You might be wondering why you need to pass both the managed
object and the managed object context to the detailViewController since
managed objects already have a context variable. You need to pass the
context because managed objects only have a weak reference to the context.

Core Data by Tutorials Second Edition Chapter 10: Multiple Managed Object Contexts

 raywenderlich.com Page 258

If you don’t pass the context, ARC will remove the context from memory
(since nothing else is retaining it) and the app will not behave as expected.

It’s time to build and run! Give it a go.

Just like before, the app should behave exactly the same. In this case, no visible
changes to the app are a good thing. The user can still tap on a row to view and
edit a surf session journal entry.

But behind the scenes, by using a child context as a container for edits to a journal
entry, you’ve reduced the complexity of your app’s architecture. With the edits on a
separate context, cancelling or saving managed object changes is trivial.

Nice work, dude! You’re no longer a kook when it comes to multiple managed
object contexts. Bodacious!

Where to go from here?
If you followed this chapter all the way through, you’ve turned an app with a single
managed object context into an app with multiple contexts. You’ll find the final
project for this chapter in the SurfJournal-Final folder.

First, you improved UI responsiveness by performing the export operation on a
managed object context with a private queue.

Next, you improved the app’s architecture by creating a child context and using it
like a scratch pad.

Core Data by Tutorials Second Edition Chapter 10: Multiple Managed Object Contexts

 raywenderlich.com Page 259

You also learned how to talk like a surfer. That’s a good day’s work!

Challenge
With your newfound knowledge, try to update “SegueListToDetailAdd” so that it
also utilizes a child context when adding a new journal entry.

Just like before, you’ll need to create a child context that has the main context as
its parent. You’ll also need to remember to create the new entry on the correct
context.

If you get stuck, check out the project with the challenge solution in the
SurfJournal-Challenge folder.

 raywenderlich.com Page 260

We hope this book has helped you get up to speed with Core Data and Swift! You’re
well on your way to developing your own high-performance apps with well-designed
models and unit tests.

As you’ve seen, you can use Core Data to model all kinds of data—from names and
addresses to images and the relationships in between. We encourage you to find
where Core Data and its object graph-based persistence can work for you and give
it a try.

If you have any questions or comments as you continue to use Core Data, please
stop by our forums at http://www.raywenderlich.com/forums.

Thank you again for purchasing this book. Your continued support is what makes
the tutorials, books, videos and other things we do at raywenderlich.com possible—
we truly appreciate it!

Wishing you speed, stability and smooth migrations in all your Core Data
adventures,

– Pietro, Saul, Aaron, Matthew, Richard, Bradley, Greg, and Sam

 The Core Data by Tutorials team

Conclusion

	Table of Contents : Overview
	Introduction
	Chapter 1: Your First Core Data App
	Chapter 2: NSManagedObject Subclasses
	Chapter 3: The Core Data Stack
	Chapter 4: Intermediate Fetching
	Chapter 5: NSFetchedResultsController
	Chapter 6: Versioning and Migration
	Chapter 7: Syncing with iCloud
	Chapter 8: Unit Testing
	Chapter 9: Measuring and Boosting Performance
	Chapter 10: Multiple Managed Object Contexts
	Conclusion

