

Beijing • Cambridge • K�ln • Sebastopol • Tokyo

Jay McGavren

Head First
Ruby

Head First Ruby

by Jay McGavren

Copyright © 2015 Jay McGavren. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Meghan Blanchette, Courtney Nash

Cover Designer: Randy Comer

Production Editor:

Indexer:

Proofreader:

Page Viewer:

Printing History:

April 2015: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. The Head First series designations, Head First Ruby, and related trade dress are trademarks of O’Reilly
Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

ISBN: 978-1-449-37265-1
[LSI]

this is a new chapter 1

Come see how awesome Ruby is!
We’ll learn about variables, strings,
conditionals, and loops. Best of all,
you'll have a working game by the
end of the chapter!

more with less1

Code the Way You Want

You’re wondering what this crazy Ruby language is all about,
and if it’s right for you. Let us ask you this: Do you like being productive? Do you feel

like all those extra compilers and libraries and class files and keystrokes in your other

language bring you closer to a finished product, admiring co-workers, and happy

customers? Would you like a language that takes care of the details for you? If you

sometimes wish you could stop maintaining boilerplate code and get to work on your

problem, then Ruby is for you. Ruby lets you get more done with less code.

By the way, welcome to the early
release! If you have ANY questions
or feedback, e-mail us at:
feedback@headfirstruby.com!

2 Chapter #

page goal header

The Ruby Philosophy
Back in the 1990's in Japan, a programmer named Yukihiro Matsumoto
("Matz" for short) was dreaming about his ideal programming language. He
wanted something that:

• Was easy to learn and use

• Was flexible enough to handle any programming task

• Let the programmer concentrate on the problem they were trying to solve

• Gave the programmer less stress

• Was object-oriented

He looked at the languages that were available, but felt that none of them was
exactly what he wanted. So, he set out to make his own. He called it Ruby.

After tinkering around with Ruby for his own work for a while, Matz released
it to the public in 1995. Since then, the Ruby community has done some
amazing things:

• Built out a vast collection of Ruby libraries that can help you do anything
from reading CSV files to controlling objects over a network

• Written alternate interpreters that can run your Ruby code faster or
integrate it with other languages

• Created Ruby on Rails, a hugely popular framework for web applications

This explosion of creativity and productivity was enabled by
the Ruby language itself. Flexibility and ease of use are core
principles of the language, meaning you can use Ruby to
accomplish any programming task, in fewer lines of code than
other languages.

Once you've got the basics down, you'll agree: Ruby is a joy to
use!

Flexibility and ease of use are
core principles of Ruby.

No, really, we mean ANY feedback! If you're
confused, other readers will be, too. We want to work

this stuff out before printing! E-mail us at:
feedback@headfirstruby.com

And thanks!

you are here 4 3

chapter title here

Get Ruby
First things first: you can write Ruby code all day, but it won’t do you
much good if you can’t run it. Let’s make sure you have a working Ruby
interpreter installed. We want version 2.0 or later. Open up a command-
line prompt and type:

ruby -v

$ ruby -v
ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_64-darwin11.4.2]
$ ruby
^Cruby: Interrupt

$

File Edit Window Help

Adding “-v”
makes Ruby
show the
version number.

“ruby” by itself
launches a Ruby
interpreter.

Press Ctrl-C
to exit the
interpreter
and return
to your OS
prompt.

Do this!

If you don’t have
Ruby 2.0 or later, visit
www.ruby-lang.org
and download a copy
for your favorite OS.

When you type ruby -v at a prompt, if you see a response like this, you’re
in business:

ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_64-darwin11.4.2]

We don’t care about the other
stuff in this output, as long as

it says “ruby 2.0” or later.

4 Chapter #

page goal header

Use Ruby
To run a Ruby script, you simply save your Ruby code in a file, and
run that file with the Ruby interpreter. Ruby source files that you can
execute are referred to as scripts, but they're really just plain text files.

MyProgram.java MyProgram.classCompiler Virtual Machine

my_program.rb The Ruby Interpreter

Source code

Source code

Compiled code

The computer executes your program

The computer executes your program

You may be used to other languages (like C++, C#, or Java) where you have to
manually compile your code to a binary format that a CPU or virtual machine can
understand. In these languages, your code can't be executed before you compile it.

With Ruby, you skip that step. Ruby instantly and automatically compiles the source
code in your script. This means less time between writing your code and trying it out!

Other languages:

The Ruby way:

puts "hello world"

Type your source code.

Save as: hello.rb

Run your source code with the
Ruby interpreter.

$ ruby hello.rb
hello world

File Edit Window Help

There's
your
output!

you are here 4 5

chapter title here

Using the irb shell

Open a terminal window, and type irb. This will launch the interactive
Ruby interpreter. (You'll know it's running because the prompt will change,
although it may not match exactly what you see here.)

From there, you can type any expression you want, followed by the Return
key. Ruby will instantly evaluate it and show you the result.

When you're done with irb, type exit at the prompt, and you'll be
returned to your OS's system prompt.

Type "irb" at the system prompt,
and press the Return key.

irb will launch,
and show the
irb prompt.

irb evaluates the
expression, and
shows you the result
(marked with "=>").

Use Ruby - interactively
There's another big benefit to using a language like Ruby. Not only do you
not have to run a compiler each time you want to try out your code, you
don't even have to put it in a script first.

Ruby comes with a separate program, called irb (for Interactive Ruby). The
irb shell lets you type any Ruby expression, which it will then immediately
evaluate and show you the results. It's a great way to learn the language,
because you get immediate feedback. But even Ruby professionals use irb to
try out new ideas.

Throughout the book, we'll be writing lots of scripts to be run via the Ruby
interpreter. But anytime you're testing out a new concept, it's a great idea to
launch irb and experiment a bit.

So what are we waiting for? Let's get into irb now and play around with
some Ruby expressions.

$ irb
irb(main):001:0> 1 + 2
=> 3
irb(main):002:0> "Hello".upcase
=> "HELLO"
irb(main):003:0> exit
$

File Edit Window Help

Now you can type any
Ruby expression you
want, and press the
Return key.

When you're ready to
exit irb, type "exit"
and press Return.

6 Chapter #

page goal header

Your first Ruby expressions
Now that we know how to launch irb, let's try a few
expressions out and see what results we get!

Type the following at the prompt, then press Return: 1 + 2

=> 3You'll be shown the result:

Ruby's basic math operators work just like they
do in most other languages. The + symbol is for
addtion, - for subtraction, * for multiplication, /
for division, and ** for exponentiation.

4 < 6 => true

4 > 6 => false

2 + 2 == 5 => false

Math operations and comparisons

5.4 - 2.2 => 3.2

3 * 4 => 12

7 / 3.5 => 2.0

2 ** 3 => 8

If you type: "irb" displays:

You can use < and > to compare two values and
see if one is less than or greater than another.
You can also use == (that's two equals signs) to
see if two values are equal.

A string is a series of text characters. You can use them to hold names, e-mail addresses, phone
numbers, and a million other things. Ruby's strings are special because even very large strings are
highly efficient to work with (this isn't true in many other languages).

Strings

"Hello" => "Hello"

'world' => "world"

The easiest way to specify a string is to surround
it either with double quotes ("), or single quotes
('). The two types of quotes work a little
differently; we'll explain that later in the chapter.

you are here 4 7

chapter title here

Conventional
Wisdom

Use all lower case letters in variable
names. Avoid numbers; they're rarely
used. Separate words with
underscores.

 my_rank = 1

This style is sometimes called "snake
case", because the underscores make
the name look like it's crawling on the
ground.

Variables

small = 8 => 8

medium = 12 => 12

pie = "Lemon" => "Lemon"

pie = 3.14 => 3.14

number = 3
number += 1
number

=> 3
=> 4
=> 4

string = "ab"
string += "cd"
string

=> "ab"
=> "abcd"
=> "abcd"

small + medium => 20

If you type: "irb" displays:

Ruby lets us create variables - names that refer to values.

You don't have to declare variables in Ruby; assigning to them creates
them. You assign to a variable with the = symbol (that's a single equals sign).

Once you've assigned to variables, you can access their values whenever
you need, in any context where you might use the original value.

Variables don't have types in Ruby; they can hold any value you
want. You can assign a string to a variable, then immediately assign a
floating-point number to the same variable, and it's perfectly legal.

The += operator lets you add on to the existing value of a
variable.

A variable name starts with a lower-case letter, and can contain letters,
numbers, and underscores.

8 Chapter #

page goal header

"Hello".upcase => HELLO

"Hello".reverse => olleH

42.even? => true

-32.abs => 32

If you type: "irb" displays:

When you make a call like this, the object you're
calling the method on is known as the method
receiver. It's whatever is to the left of the dot
operator. You can think of calling a method on an
object like passing it a message. Like a note saying,

"Hey, can you send me back an upper case version of
yourself ?" or "Can I have your absolute value?".

"hello".upcase
 -32.abs
 file.read

Receivers Method names
Dot

operators

Ruby is an object-oriented language. That means your data has useful
methods (fragments of code that you can execute on demand)
attached directly to it.

In modern languages, it's pretty common for something like a string
to be a full-fledged object, so of course strings have methods to call:

Everything is an object!

What's cool about Ruby, though, is that everything is an object. Even
something as simple as a number is an object. That means they have
useful methods, too.

Calling a method on an object

you are here 4 9

chapter title here

42 / 6 5 > 4

name = "Zaphod" number = -32

name.upcase number.abs

"Zaphod".upcase -32.abs

name.reverse number += 10

name.upcase.reverse rand(25)

name.class number.class

name * 3

Open a new terminal or command prompt, type "irb" and hit the Enter/Return key. For each of the
Ruby expressions below, write your guess for what the result will be on the line below it. Then try
typing the expression into irb, and hit Enter. See if your guess matches what irb returns!

10 Chapter #

page goal header

42 / 6

7
5 > 4

true

name = "Zaphod"

"Zaphod"
number = -32

-32

name.upcase

"ZAPHOD"
number.abs

32

"Zaphod".upcase

"ZAPHOD"
-32.abs

32

name.reverse

"dohpaZ"
number += 10

-22

name.upcase.reverse

"DOHPAZ"
rand(25)

A random number

Yes, this IS a method
call, we just don't
specify a receiver.
More about this soon!

name.class

String
number.class

Fixnum

name * 3

"ZaphodZaphodZaphod"

You can "multiply"
strings!

Assigning to a
variable returns
whatever value
is assigned.

You can call
methods on an
object stored in
a variable...

But you don't
even have to
store it in a
variable first!

This adds 10 to
the value in the
variable, then
assigns the result
back to the
variable.You can call a

method on the
value returned
from a method.

An object's
class decides
what kind of
object it is.

A Fixnum is
a kind of
integer.

The answer will
vary (it really is
random)

Open a new terminal or command prompt, type "irb" and hit the Enter/Return key. For each of the
Ruby expressions below, write your guess for what the result will be on the line below it. Then try
typing the expression into irb, and hit Enter. See if your guess matches what irb returns!

you are here 4 11

chapter title here

Let's build a game
In this first chapter, we're going to build a simple game. If that sounds
daunting, don't worry; it's easy when you're using Ruby!

Generate a random number from 1 to 100, and

store it as a target number for the player to guess.

Keep track of how many guesses the player has

made. Before each guess, let them know how

many guesses (out of 10) they have left.

Prompt the player to make a guess as to what the

target number is.

If the player runs out of turns without guessing

correctly, say "Sorry. You didn't get my number.

My number was [target]."

 Prompt the player to enter their name. Use their

name to print a greeting.

Keep allowing the player to guess until they get it

right, or they run out of turns.

If the player's guess is equal to the target number,

tell them "Good job, [name]! You guessed my

number in [number of guesses] guesses!"

 If the player's guess is less than the target

number, say "Oops. Your guess was LOW." If

the player's guess is greater than the target

number, say "Oops. Your guess was HIGH."

I've put together this
list of 8 requirements for
you. Can you handle it?Let's look at what we'll need to do:

Gary Richardott
Game Designer

12 Chapter #

page goal header

input = gets

print "What's your name? "

puts "Welcome to 'Get My Number!'"

Get My Number Game
Written by: you!

Input, storage, and output
Our first requirement is to greet the user by name. To accomplish that,
we'll need to write a script that gets input from the user, stores that input,
and then uses that stored value to create some output.

We can do all this in just a few lines of Ruby code:

Comments

A call to the
"print" method

A call to the "gets" method

A call to the
"puts" method

Strings

Assignment to a
new variable, "input"

puts "Welcome, #{input}"

Interpolating a value
into a string

We'll go into detail on each of the components of this
script over the next few pages. But first, let's give it a try!

you are here 4 13

chapter title here

Step One:

Step Two:

Open a new document in your favorite text editor,
and type in the following code.

Step Three:

Step Four:

Open up a command-line prompt, and change into the
directory where you saved your program.

Run the program by typing "ruby get_number.rb".

Save the file as "get_number.rb".

Step Five:

You'll see a greeting, and a prompt. Type your name and hit
the Enter/Return key. You'll then see a message that welcomes
you by name.

Running scripts
We've written a simple script that fulfills our first requirement: to
greet the player by name. Now, we'll show you how to execute the
script, so you can see what you've created.

Do this!

$ ruby get_number.rb
Welcome to 'Get My Number!'
What's your name? Jay
Welcome, Jay

File Edit Window Help

Get My Number Game
Written by: you!

puts "Welcome to 'Get My Number!'"
print "What's your name? "

input = gets

puts "Welcome, #{input}"

get_number.rb

14 Chapter #

page goal header

CommentsComments
Our source file starts out with a couple comments. Ruby ignores everything
from a hash mark (#) up until the end of the line, so that you can leave
instructions or notes for yourself and your fellow developers.

If you place a pound sign (#) in your code, then everything from that point
until the end of the line will be treated as a comment, and ignored by Ruby.
This works just like the double-slash ("//") marker in Java or JavaScript.

 i_am = "executed" # I'm not.
 # Me neither.

Get My Number Game
Written by: you!

print "What's your name? "

puts "Welcome to 'Get My Number!'"
A call to the
"print" method

A call to the
"puts" method

Strings

"puts" and "print"
The actual code starts with a call to
the puts method ("puts" is short
for "put string"), which displays
text on standard output (usually the
terminal). We pass puts a string
containing the text to display.

We pass another string to the print method on the following line, to ask the user their
name. The print method works just like puts, except that puts adds a newline character
at the end of the string (if it doesn't already have one) to skip to the following line, whereas
print doesn't. For cosmetic reasons, we end the string that we pass to print with a space,
so that our text doesn't run up against the space where the user types their name.

Let's take a few pages to look at each part of this code in more detail.

Wait, you said print and puts
are methods... Don't you have to use
the dot operator to specify which
object you're calling them on?

Sometimes you don't have to specify a receiver
for method calls.

The puts and print methods are so important, and so commonly used, that they're among
a select few methods that have been included in Ruby's top-level execution environment.
Methods defined in the top-level environment are available to call anywhere in your Ruby code,
without specifying a receiver. We'll show how to define methods like this at the start of chapter 2.

you are here 4 15

chapter title here

"gets"
The gets method (short for "get string")
reads a line from standard input (characters
typed in the terminal window). When you
call it, it causes the program to halt until
the user types their name and presses the
Enter key. It returns the user's text to the
program as another string.

input = gets

A call to the "gets" method.

Assignment to a new
variable, "input".

Method arguments
The puts method takes a string and prints it to standard output (your
terminal window).

 puts "first line"

The string passed to the puts method is known as the method
argument.

The puts method can take more than one argument; just separate the
arguments with commas. Each argument gets printed on its own line.

 puts "second line", "third line", "fourth line"

What it looks like in
your terminal.

Parenthesis are optional on method
calls
Method arguments can be surrounded with parenthesis in Ruby:

 puts("one", "two")

But the parenthesis are optional, and in the case of puts, most
Rubyists prefer to leave them off.

 puts "one", "two"

The gets method reads a line from standard input (characters typed
in the terminal window). It doesn't (usually) need any arguments:

 gets

Rubyists are adamant that parenthesis not be used if a method takes no
arguments. So please, don't do this, even though it's valid code:

 gets() No!

Conventional
Wisdom

Leave parenthesis off of a
method call if there are no
arguments. You can leave
them off for method calls
where there are arguments
as well, but this can make
some code more difficult to
read. When in doubt, use
parenthesis!

Like puts and print, the gets method can be called from
anywhere in your code without specifying a receiver.

first line
second line
third line
fourth line

File Edit Window Help

16 Chapter #

page goal header

puts "Welcome, #{input}"

Interpolating a value
into a string

String interpolation
The last thing our script does is to call puts with
one more string. This one is special because we
interpolate (substitute) the value in the name
variable into the string. Whenever you include the
#{...} notation inside a string, Ruby uses the value
in the curly braces to "fill in the blank". The #{...}
markers can occur anywhere in the string: the
beginning, end, or somewhere in the middle.

You're not limited to using variables within the #{} marker - you can
use any Ruby expression.

 puts "The answer is #{6 * 7}."

Note that Ruby only applies interpolation in double-quoted strings. If you
include a #{} marker in a single-quoted string, it will be taken literally.

 puts 'Welcome, #{input}'

Welcome, JayOutput

Output

The answer is 42.Output

Welcome, #{input}

Q: Where are the semicolons?

A: In Ruby, you can use semicolons to separate statements, but
you generally shouldn't. (It's harder to read.)

 puts "Hello"; No!
 puts "World";

Ruby treats separate lines as separate statements, making
semicolons unnecessary.

 puts "Hello"
 puts "World"

Q: My other language would require me to put this script in a
class with a "main" method. Doesn't Ruby?

A: No! That's one of the great things about Ruby - it doesn't
require a bunch of ceremony for simple programs. Just write a few
statements, and you're done!

Ruby doesn't require a bunch of
ceremony for simple programs.

you are here 4 17

chapter title here

What kind of welcome
is that? Let's show our users
a little enthusiasm! At least put
an exclamation point at the

end of that greeting!

puts "Welcome to 'Get My Number!'"
print "What's your name? "

input = gets

puts "Welcome, #{input}!"

Well, that's easy enough to add. Let's throw an exclamation point on
the end of the greeting string, after the interpolated value.

Just this one little
character added!

Uh, oh! Why's
it down here?

But if we try running the program again, we'll see that rather than
appearing immediately after the user's name, the exclamation point
jumps down to the next line!

Why is this happening? Maybe there's something going on within that
input variable...

Printing it via the puts method doesn't reveal anything special about
it, though:

puts input Jay

$ ruby get_number.rb
Welcome to 'Get My Number!'
What's your name? Jay
Welcome, Jay

File Edit Window Help

$ ruby get_number.rb
Welcome to 'Get My Number!'
What's your name? Jay
Welcome, Jay
!

File Edit Window Help

What's in that string?

18 Chapter #

page goal header

puts input.inspect

p input

"Jay\n"

"Jay\n"

Ah-HA!

Inspecting objects with the "inspect" and "p" methods
Now, let's try again, using a method meant especially for
troubleshooting Ruby programs. The inspect method is available
on any Ruby object. It converts the object to a string representation
that's suitable for debugging. That is, it will reveal aspects of the object
that don't normally show up in program output.

Here's the result of calling inspect on our string:

What's that \n at the end of the string? We'll solve that mystery on the
next page...

Printing the result of inspect is done so often that Ruby offers
another shortcut: the p method. It works just like puts, except that it
calls inspect on each argument before printing it.

This call to p is effectively identical to the previous code:

Remember the p method; we'll be using it in later chapters to help
debug Ruby code!

you are here 4 19

chapter title here

Escape sequences in strings

p input "Jay\n"

Our use of the p method has revealed some unexpected data at the
end of the user's input:

puts "First line\nSecond line\nThird line"
puts "\tIndented line"

First line
Second line
Third line
 Indented line

The most commonly-used escape sequences are \n (newline, as we've
seen), and \t (a tab character, for indentation).

Commonly-used
escape sequences

If you include
this in a

double-quoted
string...

...you get

this
character...

\n newline
\t tab
\" double-quotes
\' single-quote
\\ backslash

Normally, when you try to include a double-quotation mark (") in a double-quoted string, it gets
treated as the end of the string, leading to errors:

puts ""It's okay," he said." Error: syntax error, unexpected
tCONSTANT

puts "\"It's okay,\" he said."

If you escape the double-quotation marks by placing a backslash before each, you can place
them in the middle of a double-quoted string.

"It's okay," he said.

puts "One backslash: \\"

Lastly, because \ marks the start of an escape sequence, we also need a way to represent a
backlash character that isn't part of an escape sequence. Using \\ will give us a literal backslash.

One backslash: \

puts '\n\t\"' \n\t\"

Bear in mind that most of these escape sequences apply only in double-quoted strings. In single-
quoted strings, most escape sequences are treated literally.

The backslash character (\) and the n that follows it are an escape
sequence - a portion of a string that represents characters that can't
normally be represented in source code.

These two characters, the backslash character (\) and the n that
follows it, actually represent a single character, a newline character.
(The newline character is named thus because it makes terminal
output jump down to a new line.) There's a newline at the end of the
user input because when the user hits the Return key to indicate their
entry is done, that gets recorded as an extra character. That newline is
then included in the return value of the gets method.

20 Chapter #

page goal header

Okay, so the output is messed up
because the user input string has a
newline character at the end of it.
What can we do about that?

We can use the chomp method to
remove the newline character.

If the last character of a string is a newline, the chomp method will
remove it. It's great for things like cleaning up strings returned from gets.

The chomp method is more specialized than print, puts, and gets,
so it's available only on individual string objects. That means we need to
specify that the string referenced by the input variable is the receiver of
the chomp method. We need to use the dot operator on input.

Get My Number Game
Written by: you!

puts "Welcome to 'Get My Number!'"
print "What's your name? "

input = gets

name = input.chomp

puts "Welcome, #{name}!"

Calling the "chomp" method.

The dot operator.The string in "input"
is the receiver of the
"chomp" method.

We'll store the return
value of "chomp" in a
new variable, "name".

We'll use "name" in the
greeting, instead of "input".

The chomp method returns the same string, but without the newline
character at the end. We store this in a new variable, name, which we
then print as part of our welcome message.

If we try running the program again,
we'll see that our new, emphatic
greeting is working properly now!

$ ruby get_number.rb
Welcome to 'Get My Number!'
What's your name? Jay
Welcome, Jay
!

File Edit Window Help

$ ruby get_number.rb
Welcome to 'Get My Number!'
What's your name? Jay
Welcome, Jay!

File Edit Window Help

Calling "chomp" on the string object

you are here 4 21

chapter title here

 Prompt the player to enter their name. Use their

name to print a greeting.

That's all the code for
our first requirement.
You can check it off
the list!

Why the difference? It has to do with the object's class. A class is a
blueprint for making new objects, and it decides, among other things,
what methods you can call on the object.

There's another method that lets objects tell us what their class is. It's
called, sensibly enough, class. Let's try it out on a few objects.

 puts 42.class
 puts "hello".class
 puts true.class

We'll be talking more about classes in the next chapter, so stay tuned!

What methods are available on an object?

Plus too
many more
to list here!

Plus too many
more to list here!

Fixnum
String
TrueClass

Error
You can't call just any method on just any object. If you try something like this, you'll get an error:

puts 42.upcase undefined method `upcase' for 42:Fixnum (NoMethodError)

But, then, what methods can you call on a number? That
question can be answered with a method called methods:

If you call methods on a string,
you'll get a different list: puts "hello".methods to_i

length
upcase
...

Which, if you think about it, isn't so wrong. After all, it doesn't make a
lot of sense to capitalize a number, does it?

puts 42.methods to_s
abs
odd?
...

22 Chapter #

page goal header

Generate a random number from 1 to 100, and

store it as a target number for the player to guess.

 Prompt the player to enter their name. Use their

name to print a greeting.

Get My Number Game
Written by: you!

puts "Welcome to 'Get My Number!'"

Get the player's name, and greet them.
print "What's your name? "
input = gets
name = input.chomp
puts "Welcome, #{name}!"

Store a random number for the player to guess.
puts "I've got a random number between 1 and 100."
puts "Can you guess it?"
target = rand(100) + 1

Our new
code!

Generating a random number
Our player greeting is done. Let's
look at our next requirement.

The rand method will generate a random number within a given
range. It should be able to create a target number for us.

We need to pass an argument to rand with the number that will be at
the upper end of our range (100). Let's try it out a couple times:

puts rand(100)
puts rand(100)

67
25

Looks good, but there's one problem: rand generates numbers
between zero and just below the maximum value you specify. That
means we'll be getting random numbers in the range 0-99, not 1-100
like we need.

That's easy to fix, though, we'll just
add 1 to whatever value we get
back from rand. That will put us
back in the range of 1-100!

We'll store the result in a new
variable, named target.

rand(100) + 1

you are here 4 23

chapter title here

"Keep track of how many guesses the player has made..." Looks like we'll
need a variable for the number of guesses. Obviously, when the player
first starts, they haven't made any guesses, so we'll create a variable named
num_guesses that's set to 0 initially.

 num_guesses = 0

Now, the first thing you might attempt to do in order to display the number
of guesses remaining is to concatenate (join) the strings together using the +
sign, as many other languages do. Something like this won't work, however:

 remaining_guesses = 10 - num_guesses
 puts remaining_guesses + " guesses left."

The + operator is used to add numbers as well as to concatenate strings, and
since remaining_guesses contains a number, this plus sign looks like
an attempt to add numbers.

What's the solution? You need to convert the number to a string. Almost all
Ruby objects have a to_s method you can call to do this conversion; let's
try that now.

 remaining_guesses = 10 - num_guesses
 puts remaining_guesses.to_s + " guesses left."

That works! Converting the number to a string first makes it clear to Ruby
you're doing concatenation, not addition.

Ruby provides an easier way to handle this, though. Read on...

Gives an error!

Generate a random number from 1 to 100, and

store it as a target number for the player to guess.

Keep track of how many guesses the player has

made. Before each guess, let them know how

many guesses (out of 10) they have left.

Converting to strings

10 guesses left.

That's another requirement down! Let's look at the next one...

24 Chapter #

page goal header

Ruby makes working with strings easy
Instead of calling to_s, we could save ourselves the effort of explicitly
converting a number to a string by using string interpolation. As you saw in
our code to greet the user, when you include #{} in a double-quoted string,
code within the curly brackets is evaluated, converted to a string if necessary,
and interpolated (substituted) into the longer string.

The automatic string conversion means we can get rid of the to_s call.

 remaining_guesses = 10 - num_guesses
 puts "#{remaining_guesses} guesses left."

Ruby lets us do operations directly within the curly brackets, so we can also
get rid of the remaining_guesses variable.

 puts "#{10 - num_guesses} guesses left."

The #{} can occur anywhere within the string, so it's easy to make the
output a little more user-friendly, too.

 puts "You've got #{10 - num_guesses} guesses left."

Get My Number Game
Written by: you!

puts "Welcome to 'Get My Number!'"

Get the player's name, and greet them.
print "What's your name? "
input = gets
name = input.chomp
puts "Welcome, #{name}!"

Store a random number for the player to guess.
puts "I've got a random number between 1 and 100."
puts "Can you guess it?"
target = rand(100) + 1

Track how many guesses the player has made.
num_guesses = 0

puts "You've got #{10 - num_guesses} guesses left."

Our new
code!

10 guesses left.

10 guesses left.

You've got 10 guesses left.

Now the player will know how many guesses they have left. We can
check another requirement off our list!

you are here 4 25

chapter title here

Our next requirement is to prompt the player to guess the target number. So,
we need to print a prompt, then record the user's input as their guess. The
gets method, as you may recall, retrieves input from the user. (We already
used it to get the player's name.) Unfortunately, we can't just use gets
by itself to get a number from the user, because it returns a string. The
problem will arise later, when we try to compare the player's guess with the
target number using the > and < operators.

 print "Make a guess: "
 guess = gets
 guess < target
 guess > target

We need to convert the string returned from the gets method to a number
so that we can compare the guess to our target number. No problem! Strings
have a to_i method to do the conversion for us.

This code will call to_i on the string returned from gets. We don't even
need to put the string in a variable first; we'll just use the dot operator to call
the method directly on the return value.

 guess = gets.to_i

Either of these will
result in an error!

...

Store a random number for the player to guess.
puts "I've got a random number between 1 and 100."
puts "Can you guess it?"
target = rand(100) + 1

Track how many guesses the player has made.
num_guesses = 0

puts "You've got #{10 - num_guesses} guesses left."
print "Make a guess: "
guess = gets.to_i

Common conversions

If you
call this
method
on an

object...

...you get
this kind
of object

back.
to_s string
to_i integer
to_f floating-point

number

Converting strings to numbers

Keep track of how many guesses the player has

made. Before each guess, let them know how

many guesses (out of 10) they have left.

Prompt the player to make a guess as to what the

target number is.

Our new
code!

If we want to test our changes,
we can print out the result of a
comparison.

 puts guess < target

Much better - we have a guess that
we can compare to the target. That's
another requirement done!

true

26 Chapter #

page goal header

Conditionals
Two more requirements for our game down,
four to go! Let's look at the next batch.

Prompt the player to make a guess as to what the

target number is.

If the player runs out of turns without guessing

correctly, say "Sorry. You didn't get my number.

My number was [target]."

If the player's guess is equal to the target number,

tell them "Good job, [name]! You guessed my

number in [number of guesses] guesses!"

 If the player's guess is less than the target

number, say "Oops. Your guess was LOW." If

the player's guess is greater than the target

number, say "Oops. Your guess was HIGH."

if true
 puts "I'll be printed!"
end

if false
 puts "I won't!"
end

if score == 100
 puts "Perfect!"
elsif score >= 70
 puts "You pass!"
else
 puts "Summer school time!"
end

Now, we need to compare the player's guess with the target. If it's too
high, we print a message saying so. Otherwise, if it's too low, we print a
message to that effect, and so on... Looks like we need the ability to
execute portions of our code only under certain conditions.

As with most other languages, Ruby
supports multiple branches in the
condition. These statements take the
form if/elsif/else.

Conditionals rely on a boolean
expression (one with a true or false
value) to decide whether the code they
contain should be executed. Ruby has
constants representing the two boolean
values, true and false.

Note that there's
no "e" in the

middle of "elsif"!

Like most languages, Ruby has conditional statements: statements
that cause code to be executed only if a condition is met. An
expression is evaluated, and if its result is true, the code in the
conditional body is executed. If not, it's skipped.

if 1 < 2
 puts "It's true!"
end

Start of the
conditional

End of the conditional

Boolean
expression

Conditional body

you are here 4 27

chapter title here

if 1 == 1
 puts "I'll be printed!"
end

if 1 >= 2
 puts "I won't!"
end

if 1 > 2
 puts "I won't!"
end

if 2 <= 2
 puts "I'll be printed!"
end

if 1 < 2
 puts "I'll be printed!"
end

if 2 != 2
 puts "I won't!"
end

Said aloud as
"not equal to".

Ruby also has all the comparison
operators you're used to.

if ! true
 puts "I won't be printed!"
end

if not true
 puts "I won't be printed!"
end

if ! false
 puts "I will!"
end

if not false
 puts "I will!"
end

It has the boolean negation
operator, !, which lets you take
a true value and make it false, or
a false value and make it true.
It also has the more-readable
keyword not, which does
basically the same thing.

if true && true
 puts "I'll be printed!"
end

if false || true
 puts "I'll be printed!"
end

if true && false
 puts "I won't!"
end

if false || false
 puts "I won't!"
end

If you need to ensure that two
conditions are both true, you
can use the && operator. If you
need to ensure that either of two
conditions are true, you can use
the || operator.

Conditionals (cont.)

I notice that you're indenting
the code between the if and
the end. Is that required?

Ruby doesn't treat indentation as significant to the meaning of
the program, no. (Unlike some other languages, such as Python.)

But indenting code within if statements, loops, methods, classes,
and the like is just good coding style. It helps make the structure of
your code clear to your fellow developers (and even to yourself).

if true
 puts "I'll be printed!"
end

Indented
2 spaces!

28 Chapter #

page goal header

We need to compare the player's guess to the random target number. Let's use everything
we've learned about conditionals to implement this batch of requirements.

Get My Number Game
Written by: you!

puts "Welcome to 'Get My Number!'"

Get the player's name, and greet them.
print "What's your name? "
input = gets
name = input.chomp
puts "Welcome, #{name}!"

Store a random number for the player to guess.
puts "I've got a random number between 1 and 100."
puts "Can you guess it?"
target = rand(100) + 1

Track how many guesses the player has made.
num_guesses = 0

Track whether the player has guessed correctly.
guessed_it = false

puts "You've got #{10 - num_guesses} guesses left."
print "Make a guess: "
guess = gets.to_i

Compare the guess to the target.
Print the appropriate message.
if guess < target
 puts "Oops. Your guess was LOW."
elsif guess > target
 puts "Oops. Your guess was HIGH."
elsif guess == target
 puts "Good job, #{name}!"
 puts "You guessed my number in #{num_guesses} guesses!"
 guessed_it = true
end

If player ran out of turns, tell them what the number was.
if not guessed_it
 puts "Sorry. You didn't get my number. (It was #{target}.)"
end

get_number.rb

We add this
variable
to track
whether
we should
print the
"you lost"
message.
We'll also
use it later
to halt the
game on
a correct
guess.

Here are
our "if"
statements!

We'll see a
cleaner way
to write
this in a
moment.

you are here 4 29

chapter title here

The opposite of "if" is "unless"
This statement works, but it's a little awkward to read:

if not guessed_it
 puts "Sorry. You didn't get my number. (It was #{target}.)"
end

unless true
 puts "I won't be printed!"
end

unless false
 puts "I will!"
end

The unless keyword is an example of how Ruby works hard to make
your code a little easier to read. You can use unless in situations
where a negation operator would be awkward. So instead of this:

 if ! light == "red"
 puts "Go!"
 end

You can write this:

 unless light == "red"
 puts "Go!"
 end

We can use unless to clean up that last conditional.

In most respects, Ruby's conditional statements are just like most other
languages. Ruby has an additional keyword, though: unless.

Code within an if statement executes only if a condition is true, but
code within an unless statement executes only if the condition is false.

unless guessed_it
 puts "Sorry. You didn't get my number. (It was #{target}.)"
end

Much more legible! And our conditional
statements are working great!

You'll see
something like
this if you run
get_number.rb
now...

$ ruby get_number.rb
Welcome to 'Get My Number!'
What's your name? Jay
Welcome, Jay!
I've got a random number between 1 and 100.
Can you guess it?
You've got 10 guesses left.
Make a guess: 50
Oops. Your guess was HIGH.
Sorry. You didn't get my number. (It was 34.)

File Edit Window Help

Conventional
Wisdom

It's valid to use else
and elsif together with
unless in Ruby:

unless light == "red"
 puts "Go!"
else
 puts "Stop!"
end

But it's very hard to read.
If you need an else clause,
use if for the main clause
instead!

if light == "red"
 puts "Stop!"
else
 puts "Go!"
end

Confusing!

Moved
up here.

As it stands right now, though, the player
only gets one guess - they're supposed to
get 10. We'll fix that next...

30 Chapter #

page goal header

If the player runs out of turns without guessing

correctly, say "Sorry. You didn't get my number.

My number was [target]."

Keep allowing the player to guess until they get it

right, or they run out of turns.

If the player's guess is equal to the target number,

tell them "Good job, [name]! You guessed my

number in [number of guesses] guesses!"

 If the player's guess is less than the target

number, say "Oops. Your guess was LOW." If

the player's guess is greater than the target

number, say "Oops. Your guess was HIGH."

Loops
Great work so far! We
have just one more
requirement to go for
our guessing game!

Currently, the player gets one guess. Since there's 100
possible target numbers, those don't seem like very fair odds.
We need to keep asking them 10 times, or until they get the
right answer, whichever comes first.

The code to prompt for a guess is already in place, we just
need to run it more than once. We can use a loop to execute
a segment of code repeatedly. You've probably encountered
loops in other languages. When you need one or more
statements to be executed over and over, you place them
inside a loop.

Just as unless is the counterpart to if, Ruby offers
an until loop as a counterpart to while. An until
loop repeats until the condition is true (that is, it loops
while it's false).

Here's a similar example, using until.

 number = 1
 until number > 5
 puts number
 number += 1
 end

A while loop consists of the word while, a boolean
expression (just like in if or unless statements), the
code you want to repeat, and the word end. The code
within the loop body repeats while the condition is true.

Here's a simple example that uses a loop for counting.

 number = 1
 while number <= 5
 puts number
 number += 1
 end

1
2
3
4
5

1
2
3
4
5

while number < 5
 puts "still looping"
end

Start of the
loop

End of the loop

Condition

Loop body

you are here 4 31

chapter title here

Here's our conditional code again, updated to run within a while loop:

Track how many guesses the player has made.
num_guesses = 0

Track whether the player has guessed correctly.
guessed_it = false

while num_guesses < 10 && guessed_it == false

 puts "You've got #{10 - num_guesses} guesses left."
 print "Make a guess: "
 guess = gets.to_i

 num_guesses += 1

 # Compare the guess to the target.
 # Print the appropriate message.
 if guess < target
 puts "Oops. Your guess was LOW."
 elsif guess > target
 puts "Oops. Your guess was HIGH."
 elsif guess == target
 puts "Good job, #{name}!"
 puts "You guessed my number in #{num_guesses} guesses!"
 guessed_it = true
 end

end

unless guessed_it
 puts "Sorry. You didn't get my number. (It was #{target}.)"
end

The loop will stop
after the player's
tenth guess, or
when they guess
correctly, whichever
comes first.

This code is
exactly the
same; we've just
nested it inside
the loop.

There's one more readability improvement we can make. As with the if
statement that we replaced with an unless, we can make this while
loop read more clearly by replacing it with an until.

while num_guesses < 10 && guessed_it == false
 ...
end
until num_guesses == 10 || guessed_it
 ...
end

Before:

After:

No changes
here, either.

This marks the
end of the
code that will
loop.

We need to add
1 to the guess
count each loop,
so we don't
loop forever.

32 Chapter #

page goal header

Get My Number Game
Written by: you!

puts "Welcome to 'Get My Number!'"

Get the player's name, and greet them.
print "What's your name? "
input = gets
name = input.chomp
puts "Welcome, #{name}!"

Store a random number for the player to guess.
puts "I've got a random number between 1 and 100."
puts "Can you guess it?"
target = rand(100) + 1

Track how many guesses the player has made.
num_guesses = 0

Track whether the player has guessed correctly.
guessed_it = false

until num_guesses == 10 || guessed_it

 puts "You've got #{10 - num_guesses} guesses left."
 print "Make a guess: "
 guess = gets.to_i

 num_guesses += 1

 # Compare the guess to the target.
 # Print the appropriate message.
 if guess < target
 puts "Oops. Your guess was LOW."
 elsif guess > target
 puts "Oops. Your guess was HIGH."
 elsif guess == target
 puts "Good job, #{name}!"
 puts "You guessed my number in #{num_guesses} guesses!"
 guessed_it = true
 end

end

If the player didn't guess in time, show the target number.
unless guessed_it
 puts "Sorry. You didn't get my number. (It was #{target}.)"
end

Here's our
complete
code listing.

get_number.rb

you are here 4 33

chapter title here

Keep allowing the player to guess until they get it

right, or they run out of turns.

Let's try running our game!

Using variables, strings, method calls, conditionals, and loops, you've
written a complete game in Ruby! Better yet, it took less than 30 lines
of code! Pour yourself a cold drink - you've earned it!

Our loop is in place - that's the last
requirement! Let's open a command
prompt, and try running the program!

$ ruby get_number.rb
Welcome to 'Get My Number!'
What's your name? Gary
Welcome, Gary!
I've got a random number between 1 and 100.
Can you guess it?
You've got 10 guesses left.
Make a guess: 50
Oops. Your guess was LOW.
You've got 9 guesses left.
Make a guess: 75
Oops. Your guess was HIGH.
You've got 8 guesses left.
Make a guess: 62
Oops. Your guess was HIGH.
You've got 7 guesses left.
Make a guess: 56
Oops. Your guess was HIGH.
You've got 6 guesses left.
Make a guess: 53
Good job, Gary!
You guessed my number in 5 guesses!
$

File Edit Window Help Cheats

Our players will love
this! You implemented
everything we needed, and
you did it on time, too!

34 Chapter #

page goal header

Your Ruby Toolbox

You’ve got Chapter 1 under your belt
and now you’ve added method calls,

conditionals, and loops to your tool
box.

 � Ruby is an interpreted language.
You don't have to compile Ruby code
before executing it.

 � You don't need to declare variables
before assigning to them. You also
don't have to specify a type.

 � Ruby treats everything from a # to the
end of the line as a comment - and
ignores it.

 � Text within quotation marks is treated
as a string - a series of characters.

 � If you include #{} in a Ruby string,
the expression in the brackets will be
interpolated into the string.

 � Method calls may need one or more
arguments, separated by commas.

 � Parenthesis are optional around
method arguments. Leave them off if
you're not passing any arguments.

 � Use the inspect and p methods to
view debug output for Ruby objects.

 � You can include special characters
within double-quoted strings by using
escape sequences like \n and \t.

 � You can use the interactive Ruby
interpreter, or irb, to quickly test out
the result of Ruby expressions.

 � Call to_s on almost any object to
convert it to a string. Call to_i on a
string to convert it to an integer.

 � unless is the opposite of if;
its code won't execute unless a
statement is false.

 � until is the opposite of while; it
executes repeatedly until a condition
is true.

Statements
Conditional stat

ements execute t
he

code they encl
ose if a condit

ion is

met.
Loops execute t

he code they

enclose repeate
dly. They exit when

a condition is m
et.

this is a new chapter 35

How am I supposed to find
anything in all this code? I wish
the developers had split it up
into methods and classes...

methods and classes2

Getting Organized

You’ve been missing out. You’ve been calling methods and creating objects

like a pro. But the only methods you could call, and the only kinds of objects you could

create, were the ones that Ruby defined for you. Now, it’s your turn. You're going to learn

to create your own methods. You’ll also create your own classes - templates for new

objects. You’ll decide what objects based on your class will be like. You’ll use instance

variables to define what they know, and instance methods to define what they do. And

most importantly, you’ll discover how defining your own classes can make your code

easier to read and maintain.

36 Chapter #

page goal header

Defining methods
Got-A-Motor, Inc. is working on their "virtual test-drive" app, which lets their
customers try vehicles out on their computers without needing to visit a show room.
For this first version, they need methods to let users step on the virtual gas, sound the
virtual horn, and turn on the virtual headlights in low-beam or high-beam modes.

Method definitions look like this in Ruby:

If you want calls to your method to include arguments, you'll need to add parameters to the method definition.
Parameters appear after the method name, within parenthesis. (You should leave off the parenthesis if there are
no parameters.) Each argument on the method call gets stored in one of the parameters within the method.

The method body consists of one or more Ruby statements that are executed when the method is called.

Let's create our very own methods to represent the actions in the test-drive app.

Here are two methods for
accelerating and sounding
the horn. They're about as
simple as Ruby methods
can be; each method body
has a pair of statements
that print strings.

The use_headlights method is only slightly more complex; it takes
a single parameter, which is interpolated into one of the output strings.

That's all it takes! With these method definitions in place, we're ready to
make calls to them.

def accelerate
 puts "Stepping on the gas"
 puts "Speeding up"
end

def sound_horn
 puts "Pressing the horn button"
 puts "Beep beep!"
end

Method takes no parameters.

Method takes no parameters.

These statements will be run
when the method is called.

These statements will be run
when the method is called.

def use_headlights(brightness)
 puts "Turning on #{brightness} headlights"
 puts "Watch out for deer!"
end

One method parameter.

Parameter is used in the output.

Start of definition Method name Parameters

Method body

End of definition

def print_sum(arg1, arg2)
 print arg1 + arg2
end

you are here 4 37

chapter title here

Calling methods you've defined

I notice you didn't use the dot
operator to specify a receiver
for those method calls, just
like when we call the puts and

print methods. That's right. Like puts and print, these
methods are included in the top-level
execution environment.

Methods that are defined outside of any class (like these examples) are included in
the top-level execution environment. Like we saw back in Chapter 1, you can call
them anywhere in your code, without using the dot operator to specify a receiver.

$ ruby vehicle_methods.rb
Pressing the horn button
Beep beep!
Stepping on the gas
Speeding up
Turning on hi-beam headlights
Watch out for deer!
$

File Edit Window Help

def accelerate
 puts "Stepping on the gas"
 puts "Speeding up"
end

def sound_horn
 puts "Pressing the horn button"
 puts "Beep beep!"
end

def use_headlights(brightness)
 puts "Turning on #{brightness} headlights"
 puts "Watch out for deer!"
end

sound_horn
accelerate
use_headlights("hi-beam")

This is used as the
"brightness" argument.

Calls without
arguments.

vehicle_methods.rb

You can call methods you've defined
just like any other. Let's try out our new
vehicle simulator methods.

Ruby lets you put calls to your methods
anywhere - even within the same source
file where you defined them. Since this
is such a simple program at this point,
we'll do that, just for convenience. We'll
just stick the method calls right after the
method declarations.

When we run the source file from the
command line, we'll see the result of
our method calls!

38 Chapter #

page goal header

Optional parameters
Got-A-Motor's developers are happy with our work on the
virtual test drive system... mostly.

use_headlights("low-beam")
stop_engine
buy_coffee
start_engine
use_headlights("low-beam")
accelerate
create_obstacle("deer")
use_headlights("high-beam")

Method names should be in "snake
case": one or more lower-case words,
separated by underscores, just like
variable names.

def bark
end

def wag_tail
end

As with method calls, you should leave
parenthesis off the method definition
if there are no parameters. Please
don't do this, even though it's legal:

def no_args()
 puts "Bad Rubyist!"
end

But if there are parameters, you
should always include parenthesis.
(Back in Chapter 1, we showed some
tasteful exceptions when making
method calls, but there are no
exceptions when declaring methods.)
Leaving them off is legal, but again,
don't do it:

def with_args first, second
 puts "No! Bad!"
end

Conventional
Wisdom

Method names
The method name can be one or more lower-case words,
separated by underscores. (This is just like the convention for
variable names.) Numbers are legal, but rarely used.

It's also legal for a method name to end in a question mark
(?) or exclamation point (!). These endings have no special
meaning to Ruby, but there are certain conventions around
their use, which we'll cover in later chapters.

Lastly, it's legal for a method name to end in an equals sign
(=). Methods ending in this character are used as attribute
writers, which we'll be looking at in the upcoming section on
classes. Ruby does treat this ending specially, so don't use it for
a regular method, or you may find it acts strangely!

Parameters
If you need to pass data into your method, you can include
one or more parameters after the method name, separated by
commas. In your method body, parameters can be accessed
just like any variable.

 def print_area(length, width)
 puts length * width
 end

Do we have to specify an argument
on this use_headlights
method? We almost always use
"low-beam", and we're copying
that string everywhere in our code!

you are here 4 39

chapter title here

This scenario is pretty common - you use one particular
argument 90% of the time, and you're tired of repeating it
everywhere. You can't just take the parameter out, though,
because 10% of the time you need a different value.

There's an easy solution, though; make the parameter optional. You
can provide a default value in the method declaration.

 def order_soda(flavor, size = "medium", quantity = 1)
 if quantity == 1
 plural = "soda"
 else
 plural = "sodas"
 end
 puts "#{quantity} #{size} #{flavor} #{plural}, coming right up!"
 end

Here's an example of a method that uses default values for
some of its parameters:

Default value
for size.

Default value
for quantity.

Optional parameters (cont.)

Now, if you want to override the default, just provide an argument
with the value you want. And if you're happy with the default, you can
skip the argument altogether.

order_soda("orange")
order_soda("lemon-lime", "small", 2)
order_soda("grape", "large")

Specify flavor, use default
for size and quantity.

Specify everything.

Specify flavor and size,
use default for quantity.

1 medium orange soda, coming right up!
2 small lemon-lime sodas, coming right up!
1 large grape soda, coming right up!

Q: What's the difference between an
argument and a parameter?

A: You define and use parameters within
a method definition. You provide arguments
with method calls.

def say_hello(name)
 puts "Hello, #{name}!"
end

say_hello("Marcy")

Each argument you pass with the method
call gets stored in a method parameter.

The two terms mostly serve to distinguish
whether you're talking about a method
definition, or a method call.

Parameter.

Parameter.

Argument.

There is one caveat to be aware of with optional parameters: they
need to appear after any other parameters you intend to use. If you
make a required parameter following an optional parameter, you
won't be able to leave the optional parameter off:

def order_soda(flavor, size = "medium", quantity)
 ...
end

order_soda("grape")

Don't place an optional parameter
before a required one!

wrong number of
arguments (1 for 2..3)Error

40 Chapter #

page goal header

use_headlights
stop_engine
start_engine
use_headlights
accelerate
use_headlights("high-beam")

Yeah, this will make
scripting our test drives
a lot easier! Thanks!

No argument
needed!

Let's earn some goodwill with the developers using our methods and
make that use_headlights parameter optional.

 def use_headlights(brightness = "low-beam")
 puts "Turning on #{brightness} headlights"
 puts "Watch out for deer!"
 end

Now, they won't have to specify the brightness, unless they want the
high-beams.

 use_headlights
 use_headlights("high-beam") Overrides the

default.

Uses the default, "low-beam"

Turning on low-beam headlights
Watch out for deer!
Turning on high-beam headlights
Watch out for deer!

def accelerate
 puts "Stepping on the gas"
 puts "Speeding up"
end

def sound_horn
 puts "Pressing the horn button"
 puts "Beep beep!"
end

def use_headlights(brightness = "low-beam")
 puts "Turning on #{brightness} headlights"
 puts "Watch out for deer!"
end

vehicle_methods.rb
Step One:

Step Two:

Save our method
definitions to a file, named

"vehicle_methods.rb".

Open a system command
prompt, and navigate into
the directory where you
saved your file.

We've finished up our methods for Got-A-Motor's virtual test drive
app. Let's try loading them up in irb, and take them for a spin.

Optional parameters (cont.)

you are here 4 41

chapter title here

Now, you can type in a
call to any of our methods,
and they'll be run!

Here's a
sample session: $ irb -I .

irb(main):001:0> require "vehicle_methods"
 => true
irb(main):002:0> sound_horn
Pressing the horn button
Beep beep!
 => nil
irb(main):003:0> use_headlights
Turning on low-beam headlights
Watch out for deer!
 => nil
irb(main):004:0> use_headlights("high-beam")
Turning on high-beam headlights
Watch out for deer!
 => nil
irb(main):005:0> exit
$

File Edit Window Help

(Continued)

Step Four: Now, irb should be loaded, and we should be able to load the file with
our methods. Type this line:

 require "vehicle_methods"

Ruby knows to search in .rb files by default, so you can leave the
extension off. If you see the result true, it means your file was loaded
successfully.

Since we're loading code from a file into irb, we want to be able to load
Ruby files from the current directory. So we're going to invoke irb a little
differently this time.

At the command prompt, type this and press Enter:

 irb -I .

The -I is a command line flag, a string that you add on to a command to
change how it operates. In this case, -I alters the set of directories that Ruby
searches for files to load. And the dot (.) represents the current directory.

Step Three:

A flag that means "search the current directory for files to load".

42 Chapter #

page goal header

Return value
Got-A-Motor wants the test-drive app to highlight how fuel-efficient
its cars are. They want to be able to display the mileage a car got on
its most recent trip, as well as lifetime average mileage.

In the first scenario, you're dividing the mileage from the car's trip
odometer by the number of gallons from your last fillup, and in
the second you're dividing the main odometer's value by the car's
lifetime fuel use. But in both cases, you're taking a number of miles,
and dividing it by a number of gallons of fuel. So, do you still have
to write two methods?

Implicit return values

You don't actually need the return keyword in the above
method. The value of the last expression evaluated within a
method automatically becomes that method's return value. So, our
mileage method could be rewritten without an explicit return:

def mileage(miles_driven, gas_used)
 return miles_driven / gas_used
end

You can write a single mileage method, and use its return value in
your output.

trip_mileage = mileage(400, 12)
puts "You got #{trip_mileage} MPG on this trip."

lifetime_mileage = mileage(11432, 366)
puts "This car averages #{lifetime_mileage} MPG."

Then, you can use the same method to calculate both types of mileage.

Nope! Like in most languages, Ruby methods have a return value,
a value that they can send back to the code that called them. A Ruby
method can return a value to its caller using the return keyword.

You got 33 MPG on this trip.
This car averages 31 MPG.

33

def mileage(miles_driven, gas_used)
 miles_driven / gas_used
end

puts mileage(400, 12)

It will still work in exactly the same way.

Rubyists generally prefer
implicit return values over
explicit return values. With a
short method, there's no
reason to write this:

def area(length, width)
 return length * width
end

...When you can just write this:

def area(length, width)
 length * width
end

Conventional
Wisdom

you are here 4 43

chapter title here

The return keyword causes the method to exit, without running the
lines of code that follow it. This is useful in situations where running
that code would be pointless, or even harmful.

For example, consider the case where a car is brand-new, and hasn't
been driven anywhere yet. The miles driven and the gas used would
both be zero. What happens if you call the mileage method for
such a car?

Well, mileage works by dividing miles_driven by gas_used...
And as you may have learned in your other programming language,
dividing anything by zero is an error!

We can fix this by testing whether gas_used is zero, and if so,
returning from the method early.

If we try the same code again, we'll see that it returns 0.0, without
attempting the division operation. Problem solved!

0.0

def mileage(miles_driven, gas_used)
 if gas_used == 0
 return 0.0
 end
 miles_driven / gas_used
end

puts mileage(0, 0)

puts mileage(0, 0)

Returning from a method early

Error in `/': divided by 0
(ZeroDivisionError)

So, why does Ruby
even have a return
keyword, if it's usually
unnecessary?

There are still some circumstances
where the return keyword is useful.

If no gas has been used...
Return zero.

This code won't be run
if "gas_used" is zero.

Methods are a great way to reduce duplication, and keep your code
organized. But sometimes, methods by themselves aren't enough. Let's leave
our friends at Got-A-Motor for now, to look at a somewhat fuzzier problem...

44 Chapter #

page goal header

Some messy methods
Fuzzy Friends Animal Rescue is in the middle of a fundraising drive,
and are doing an interactive storybook application to raise awareness.
They've approached your company for help. They need many different
types of animals, each of which has its own sounds and actions.

They've created some methods that simulate movement and animal
noises. Their methods are called by specifying the animal type as the
first argument, followed by any additional arguments that are needed.

Here's what they have so far:

def talk(animal_type, name)
 if animal_type == "bird"
 puts "#{name} says Chirp! Chirp!"
 elsif animal_type == "dog"
 puts "#{name} says Bark!"
 elsif animal_type == "cat"
 puts "#{name} says Meow!"
 end
end

def move(animal_type, name, destination)
 if animal_type == "bird"
 puts "#{name} flies to the #{destination}."
 elsif animal_type == "dog"
 puts "#{name} runs to the #{destination}."
 elsif animal_type == "cat"
 puts "#{name} runs to the #{destination}."
 end
end

def report_age(name, age)
 puts "#{name} is #{age} years old."
end

The animal type
parameter is used
to select which
string is printed.

This method is the same for
all animal types, so there's
no animal type parameter.

And here are some typical calls to those methods:

Fuzzy Friends just needs you to add 10 additional animal types and 30
more actions, and version 1.0 will be done!

Whistler flies to the tree.
Sadie says Bark!
Whistler says Chirp! Chirp!
Smudge runs to the house.
Smudge is 6 years old.

move("bird", "Whistler", "tree")
talk("dog", "Sadie")
talk("bird", "Whistler")
move("cat", "Smudge", "house")
report_age("Smudge", 6)

you are here 4 45

chapter title here

Part of the problem with the virtual storybook methods is that
we're having to pass around too much data. Look at these calls to
the move method, for example:

The destination argument belongs there, sure. It doesn't make sense to move without
a destination. But do we really have to keep track of values for the animal_type and
name arguments, so that we can include them each time? It's also becoming hard to tell
which argument is which!

Too many arguments

move("bird", "Whistler", "tree")
move("cat", "Smudge", "house")

We need the
destination argument...

...But do we really have
to pass these each time?

The problem isn't just with the method arguments, either – things are messy inside the methods.
Consider what the talk method would look like if we added ten more animal types, for example...

Too many "if" statements

def talk(animal_type, name)
 if animal_type == "bird"
 puts "#{name} says Chirp! Chirp!"
 elsif animal_type == "dog"
 puts "#{name} says Bark!"
 elsif animal_type == "cat"
 puts "#{name} says Meow!"
 elsif animal_type == "lion"
 puts "#{name} says Roar!"
 elsif animal_type == "cow"
 puts "#{name} says Moo."
 elsif animal_type == "bob"
 puts "#{name} says Hello."
 elsif animal_type == "duck"
 puts "#{name} says Quack."
 ...
 end
end

Each time you want to change the sound an animal makes (and
you will be asked to change the sounds, you can count on it), you'll
have to search through all those elsif clauses to find the right
animal type... What happens when the code for talk becomes
more complex, adding things like animations and sound file
playback? What happens when all of the action methods are like
that?

What we need is a better way to represent which animal type
we're working with. We need a better way to break all that code
up by animal type, so that we can maintain it more easily. And
we need a better way to store the attributes for each individual
animal, like their name and their age, so we don't have to pass so
many arguments around.

We need to keep the animals' data, and the code that operates on
that data, in one place. We need: classes and objects.

We don't even have room
to print all this...

That's looking pretty messy with just
three animal types and two actions. Those "if"
and "elsif" statements are long already, and look at
all those method arguments! Isn't there a better
way to organize this code?

46 Chapter #

page goal header

Instance variables are variables that belong to one object. They
comprise everything the object knows about itself. They represent
the object's state (its data), and they can have different values for
each instance of the class.

Instance methods are methods that you can call directly on that
object. They comprise what the object does. They have access to
the object's instance variables, and can use them to change their
behavior based on the values in those variables.

Designing a class
The benefit of using objects is that they keep a set of data, and the methods that
operate on that data, in one place. We want those benefits in the Fuzzy Friends app.

To start creating your own objects, though, you're going to need classes. A class is
a blueprint for making objects. When you use a class to make an object, the class
describes what that object knows about itself, as well as what that object does.

Think of "instance" as another way of saying "object".

An instance of a class is an object that was made using that class.
You only have to write one class, but you can make many instances
of that class.

User

name
password

subscribe
login

knows

does

Things an object knows about itself are called:

 instance variables

Things an object does are called:

 instance methods

Appointment

date
location

remind
cancel

knows

does

Video

encoding
duration

play
pause
rewind

knows

does

Cat

name
age

talk
move
report_age

instance
variables
(state)

instance
methods
(behavior)

knows

does

you are here 4 47

chapter title here

A class is a blueprint for an object. The class tells
Ruby how to make an object of that particular
type. Objects have instance variables and instance
methods, but those variables and methods are
designed as part of the class.

Each instance of a class can have its own values
for the instance variables used within that class's
methods. For example, you'll only define the Dog
class once. Within that Dog class's methods, you'll
only specify once that Dog instances should have
"name" and "age" instance variables. But each
Dog object will have its own name and age, distinct
from all the other Dog instances.

What's the difference between a class and an object?

Objects

Class

If classes are cookie cutters,
objects are the cookies they make.

name: "Lucy"
age: 4

name: "Rex"
age: 2

name: "Daisy"
age: 5

name: "Bella"
age: 7

name: "Killer"
age: 1

Dog class:

Dog instances:

Dog

name
age

talk
move
report_age

instance
variables
(state)

instance
methods
(behavior)

48 Chapter #

page goal header

Your first class
Here's an example of a class we could use in our interactive storybook:
a Dog class.

class Dog

 def talk
 puts "Bark!"
 end

 def move(destination)
 puts "Running to the #{destination}."
 end

end

New class declaration

Class name

Instance method
Another instance

method

End of class
declaration

Dog

talk
move

A diagram of this class might
look like this...

Class name.

Instance variables
(we'll add some soon).

Instance
methods.Creating new instances (objects)

If we call the new method on a class, it will return a new
instance of that class. We can then assign that instance to a
variable, or whatever else we need to do with it.

 fido = Dog.new
 rex = Dog.new

Once we have one or more instances of the class, we can
call their instance methods. We do it in the same way we've
called all other methods on objects so far: we use the dot
operator to specify which instance is the method's reciever.

 fido.talk
 rex.move("food bowl")

We use the class keyword
to start a new class definition,
followed by the name of our
new class.

Within the class definition,
we can include method
definitions. Any method we
define here will be available
as an instance method on
instances of the class.

We mark the end of the
class definition with the end
keyword.

Bark!
Running to the food bowl.

you are here 4 49

chapter title here

The animal rescue's solution uses strings to
track what type of animal they're dealing
with. Also, all knowledge of the different
ways that different animals should respond
is embedded in giant if/else statements.
Their approach is unwieldy, at best.

def talk(animal_type, name)
 if animal_type == "bird"
 puts "#{name} says Chirp! Chirp!"
 elsif animal_type == "dog"
 puts "#{name} says Bark!"
 elsif animal_type == "cat"
 puts "#{name} says Meow!"
 end
end

class Bird
 def talk
 puts "Chirp! Chirp!"
 end
 def move(destination)
 puts "Flying to the #{destination}."
 end
end

class Dog
 def talk
 puts "Bark!"
 end
 def move(destination)
 puts "Running to the #{destination}."
 end
end

class Cat
 def talk
 puts "Meow!"
 end
 def move(destination)
 puts "Running to the #{destination}."
 end
end

Now that you know how to create classes, we can take an
object-oriented approach to the problem. We can create a
class to represent each type of animal. Then, instead of one
big method that contains behavior for all the animal types,
we can put little methods in each class, methods that define
behavior specific to that type of animal.

Breaking our giant methods up into classes

You'll be able to
call "talk" or
"move" on any
Bird instance
you create!

Same
for Dog
instances...

No more if/elsif
statements!

Note: We don't have
support for animal names

just yet. We'll get to that!

Same
for Cat
instances!

The object-oriented approach

Ruby class names must
begin with a capital letter.
Letters after the first
should be lower case.

class Appointment
 ...
end

If there's more than one
word in the name, the first
letter of each word should
also be capitalized.

class AddressBook
 ...
end

class PhoneNumber
 ...
end

Remember how the
convention for variable
names (with underscores
separating words) is
called "snake case"? The
style for class names
is called "camel case",
because the capital letters
look like the humps on a
camel.

Conventional
Wisdom

50 Chapter #

page goal header

Creating instances of our new animal classes

class Bird
 def talk
 puts "Chirp! Chirp!"
 end
 def move(destination)
 puts "Flying to the #{destination}."
 end
end

class Dog
 def talk
 puts "Bark!"
 end
 def move(destination)
 puts "Running to the #{destination}."
 end
end

class Cat
 def talk
 puts "Meow!"
 end
 def move(destination)
 puts "Running to the #{destination}."
 end
end

bird = Bird.new
dog = Dog.new
cat = Cat.new

bird.move("tree")
dog.talk
bird.talk
cat.move("house")

With these classes defined, we can create new instances of them (new objects based on the classes), and
call methods on them.

Just as with methods, Ruby lets us create instances of classes right in the same file where we declared
them. You probably won't want to organize your code this way in larger applications, but since this is such
a simple app right now, we can go ahead and create some new instances right below the class declarations.

$ ruby animals.rb
Flying to the tree.
Bark!
Chirp! Chirp!
Running to the house.
$

File Edit Window Help

animals.rb

If we save all this to a file named animals.rb, then run ruby
animals.rb at a command prompt, we'll see the output of our
instance methods!

Create new instances
of our classes.

Call some methods on
the instances.

you are here 4 51

chapter title here

Bird

talk
move

If we were to draw a
diagram of our new
classes, they'd look
something like this:

Dog

talk
move

Cat

talk
move

Class name. Class name. Class name.

Instance
methods.

Instance
methods.

Instance
methods.

Instance variables (Coming soon!)

At this point, instances of our classes have two instance methods (things they can do): talk and move.
They don't have any instance variables (things they know) yet, however. We'll be looking at that next.

Output

Code Magnets
A working Ruby program is scrambled up on the fridge. Some of the code snippets are
in the correct places, but others have been moved around randomly. Can you rearrange
the code snippets to make a working program that produces the output listed below?

blender

.blend ("high")

blender
.close_lid

end

def blend

(speed)

puts "Spinning on #{spe
ed} setting."

puts "Sealed tight!"

blender = Blender

Blender

.new

class

end

def

end

close_lid

Sealed tight!
Spinning on high setting.

File Edit Window Help

Updating our class diagram with instance methods

52 Chapter #

page goal header

Output

Blender

blender .blend ("high")

blender .close_lid

blender = Blender .new

class

end

end

def blend (speed)

puts "Spinning on #{speed} setting."

puts "Sealed tight!"

def

end

close_lid

Code Magnets Solution
A working Ruby program is scrambled up on the fridge. Some of the code snippets are
in the correct places, but others have been moved around randomly. Can you rearrange
the code snippets to make a working program that produces the output listed below?

Sealed tight!
Spinning on high setting.

File Edit Window Help

Q: Can I call these new move and talk methods by
themselves (without an object)?

A: Not from outside the class, no. Remember, the purpose of
specifying a receiver is to tell Ruby which object a method is being
called on. The move and talk methods are instance methods; it
doesn't make sense to call them without stating which instance of the
class you're calling them on. If you try, you'll get an error, like this:

 move("food bowl")

 undefined method `move' for
 main:Object (NoMethodError)

Q: You say that we have to call the new method on a class to
create an object. You also said back in chapter 1 that numbers
and strings are objects. Why don't we have to call new to get a
new number or string?

A: Creating new numbers and strings is something developers
need to do so frequently that special shorthand notation is built right
into the language: string and number literals.
 new_string = "Hello!"
 new_float = 4.2
Doing the same for other classes would require modifying the Ruby
language itself, so most of them just rely on new to create new
instances. (There are exceptions; we'll get to those in later chapters.)

you are here 4 53

chapter title here

Our objects don't "know" their names or ages!
The animal rescue's lead developer points out a couple details we forgot
to address with our class-based solution:

class Bird
 def talk(name)
 puts "#{name} says Chirp! Chirp!"
 end
 def move(name, destination)
 puts "#{name} flies to the #{destination}."
 end
end

class Dog
 def talk(name)
 puts "#{name} says Bark!"
 end
 def move(name, destination)
 puts "#{name} runs to the #{destination}."
 end
end

class Cat
 def talk(name)
 puts "#{name} says Meow!"
 end
 def move(name, destination)
 puts "#{name} runs to the #{destination}."
 end
end

We're supposed to see the
animal's name when we call these

methods! And where is the
report_age method?

She has a point; we're missing a couple of features from
the original program.

Let's start by re-adding the name parameter to the talk
and move methods:

A name will have to
be provided when we
call these methods,

like before.
And like before, we'll use
the names in the output.

Flying to the tree.
Bark!
Chirp! Chirp!
Running to the house.

54 Chapter #

page goal header

Too many arguments (again)
Now that we've re-added the name parameter to the
talk and move methods, we can once again pass in
the animal's name to be printed.

dog = Dog.new
dog_name = "Lucy"
dog.talk(dog_name)
dog.move(dog_name, "fence")

cat = Cat.new
cat_name = "Fluffy"
cat.talk(cat_name)
cat.move(cat_name, "litter box")

Come on. We already have a variable to
hold the animal object. You really want
us to pass a second variable with the
animal's name everywhere? What a pain!

dog = Dog.new
dog_name = "Lucy"
cat = Cat.new
cat_name = "Fluffy"

Actually, we can do better. We can use instance variables
to store data inside the object.

One of the key benefits of object-oriented programming is that it
keeps data, and the methods that operate on that data, in the same
place. Let's try storing the names in the animal objects so that we
don't have to pass so many arguments to our instance methods.

Lucy says Bark!
Lucy runs to the fence.
Fluffy says Meow!
Fluffy runs to the litter box.

you are here 4 55

chapter title here

class Dog

 def make_up_name
 name = "Sandy"
 end

 def talk
 puts "#{name} says Bark!"
 end

end

Local variables live until the method ends
So far, we've been working with local variables - variables that are local to the current scope
(usually the current method). When the current scope ends, local variables cease to exist, so they
won't work for storing our animals' names, as you'll see below.

Here's a new version of the Dog
class with an additional method,
make_up _name. When we call
make_up_name, it stores a name
for the dog, for later access by the
talk method.

The moment we call the talk
method, however, we get an error,
saying the name variable doesn't exist:

The problem, though, is that we used a local variable. Local
variables live only as long as the method in which they were
created. In this case, The name variable ceases to exist as soon as
make_up_name ends.

Trust us, the short life of local variables is a good thing. If any variable was accessible anywhere
in your program, you'd be accidentally referencing the wrong variables all the time! Like most
languages, Ruby limits the scope of variables in order to prevent this sort of mistake.

dog = Dog.new
dog.make_up_name
dog.talk

Error

Error

class Dog

 def make_up_name
 name = "Sandy"
 end

 def talk
 puts "#{name} says Bark!"
 end

end

"name" drops out of scope
as soon as the method ends.

This variable no
longer exists here!

Store a name.

Attempt to access
the stored name.

Whew! Close one.
def alert_ceo
 message = "Sell your stock."
 email(ceo, message)
end

email(shareholders, message)

Just
imagine if
this local
variable...

...were
accessible

here...

in `talk': undefined local
variable or method `name' for
#<Dog:0x007fa3188ae428>

undefined local variable
or method `message'

What happened? We did define a name variable, back in the make_up_name method!

56 Chapter #

page goal header

Any local variable we create disappears as soon as its scope ends. If that's true, though,
how can we store a Dog's name together with the object? We're going to need a new
kind of variable.

An object can store data in instance variables - variables that are tied to a particular
object instance. Data written to an object's instance variables stays with that object,
getting removed from memory only when the object is removed.

class Dog

 def make_up_name
 @name = "Sandy"
 end

 def talk
 puts "#{@name} says Bark!"
 end

end

Instance variables live as long as the instance does

dog = Dog.new
dog.make_up_name
dog.talk

@my_variablemy_variable

Access the instance
variable.

Store a value in an
instance variable

Instance variableLocal variable

An instance variable looks just like a regular variable,
and follows all the same naming conventions. The
only difference in syntax is that its name begins with
an "at" symbol (@).

Here's that Dog class again. It's identical to the previous one, except
that we added two little "@" symbols to convert the two local variables
to one instance variable.

Now, we can make the exact same call to talk that we did before, and
the code will work! The @name instance variable that we create in the
make_up_name method is still accessible in the talk method.

Sandy says Bark!

you are here 4 57

chapter title here

class Dog

 def make_up_name
 @name = "Sandy"
 end

 def talk
 puts "#{@name} says Bark!"
 end

 def move(destination)
 puts "#{@name} runs to the #{destination}."
 end

 def make_up_age
 @age = 5
 end

 def report_age
 puts "#{@name} is #{@age} years old."
 end

end

dog = Dog.new
dog.make_up_name
dog.move("yard")
dog.make_up_age
dog.report_age

With instance variables at our disposal, it's
easy to add the move and report_age
methods back in, as well...

Sandy runs to the yard.
Sandy is 5 years old.

Instance variables live as long as the instance does (cont.)

Our new
code!

That's an improvement.
But this class only lets

us make 5-year-old
dogs named "Sandy"!

That's true. Up next, we'll show you a way
to set a dog's name and age to other values.

Dog

name
age

talk
move

Instance
variables.

Instance
methods.

And now that we have instance variables, we can
finally fill in that hole in the class diagram for Dog!

58 Chapter #

page goal header

fido = Dog.new
fido.@name = ""
fido.@age = -1
fido.report_age

Encapsulation
Thanks to instance variables, we now have a way to store names
and ages for our animals. But our make_up_name and
make_up_age methods only allow us to use hard-coded values
(we can't change them when the program's running). We need a
way for our program to set any values we want.

Error

Blank names and negative ages are just the start. Imagine someone accidentally replacing
the value in an Appointment object's @date instance variable with a phone number.
Or setting the @sales_tax on all their Invoice objects to zero. All kinds of things
could go wrong!

Ruby never allows us to access instance variables directly from outside our class. This isn't
due to some authoritarian agenda; it's to keep other programs and classes from modifying
your instance variables willy-nilly.

fido = Dog.new
fido.@age = 3

This is invalid code!

Let's suppose that you could update instance variables directly. What's to prevent other
portions of the program from setting the variables to invalid values?

If you COULD do
that, the output
would be...

To help avoid exposing an object's data to malicious (or clumsy) users, most object-
oriented languages encourage the concept of encapsulation: of preventing other parts
of the program from directly accessing or changing an object's instance variables.

Code like this won't work, though:

class Dog

 def make_up_name
 @name = "Sandy"
 end

 def make_up_age
 @age = 5
 end
...
end

Who is how old? This object's data is clearly invalid, and the user can see it in the program
output!

syntax error, unexpected tIVAR

 is -1 years old.

you are here 4 59

chapter title here

To encourage encapsulation and protect your instances from invalid data, Ruby doesn't
allow you to access or change instance variables from outside the class. Instead, you can
create accessor methods, which will write values to the instance variables and read them
back out again for you. Once you're accessing your data through accessor methods, it's easy
to extend those methods to validate your data—to reject any bad values that get passed in.

Attribute accessor methods

If we create a new instance of the above class... my_instance = MyClass.new

...we can set the attribute like this... my_instance.my_attribute = "a value"

...and read the attribute like this. puts my_instance.my_attribute

class MyClass

 def my_attribute=(new_value)
 @my_attribute = new_value
 end

 def my_attribute
 @my_attribute
 end

end

Accessor
methods.

Attribute
writer
method.

Attribute
reader
method.

Ruby has two kinds of accessor methods: attribute writers and attribute readers. (An "attribute"
is another name for a piece of data regarding an object.) Attribute writer methods set an
instance variable, and attribute reader methods get the value of an instance variable back.

Accessor methods are just ordinary instance methods; we only refer to them as "accessor
methods" because their primary purpose is to access an instance variable.

Look at the attribute reader method, for example; it's a perfectly ordinary method that
simply returns the current value of @my_attribute.

Nothing magic about the reader!
Just returns the current value.def my_attribute

 @my_attribute
end

Here's a simple class with writer and reader methods for an attribute named my_attribute:

60 Chapter #

page goal header

We only show this
alternate way of calling
attribute writer methods
so that you can
understand what's going
on behind the scenes. In
your actual Ruby
programs, you should only
use the assignment syntax!

Conventional
Wisdom

It may be a perfectly ordinary method, but calls to it are treated
somewhat specially.

Remember that earlier in the chapter, we said that Ruby method names
could end in "="? Ruby allows that equals-sign ending so that it can be
used in the names of attribute writer methods.

…it gets translated into a call to the my_attribute= instance
method. The value to the right of the "=" is passed as an
argument to the method:

def my_attribute=(new_value)
 ...
end

Part of the
method name!

When Ruby sees something like this in your code:

class MyClass

 def my_attribute=(new_value)
 @my_attribute = new_value
 end

 ...

end

Attribute
writer
method.

Attribute accessor methods (cont.)

my_instance.my_attribute = "a value"

Like attribute reader methods, an attribute writer method
is a perfectly ordinary instance method. We just call it an

"attribute writer" method because the primary thing it
does is to update an instance variable.

my_instance.my_attribute=("a value")

A method
call!

The method
argument.

The above code is valid Ruby, and you can try it yourself, if you like:

class MyClass
 def my_attribute=(new_value)
 @my_attribute = new_value
 end
 def my_attribute
 @my_attribute
 end
end

my_instance = MyClass.new
my_instance.my_attribute = "assigned via method call"
puts my_instance.my_attribute
my_instance.my_attribute=("same here")
puts my_instance.my_attribute

A call to "my_attribute=",
disguised as assignment.

assigned via method call
same here

A call to
"my_attribute="
that actually
looks like one!

you are here 4 61

chapter title here

Now we're ready to use what
we've learned in the Fuzzy Friends
application. As a first step, let's
update the Dog class with methods
that will let us read and write @name
and @age instance variables. We'll
also use @name and @age in the
report_age method. We'll look at
adding data validation later.

Using accessor methods

With accessor methods in place, we can
(indirectly) set and use the @name and @age
instance variables from outside the Dog class!

Writing a reader and writer method by hand
for each attribute can get tedious, though.
Next, we'll look at an easier way...

fido = Dog.new
fido.name = "Fido"
fido.age = 2
rex = Dog.new
rex.name = "Rex"
rex.age = 3
fido.report_age
rex.report_age

class Dog

 def name=(new_value)
 @name = new_value
 end

 def name
 @name
 end

 def age=(new_value)
 @age = new_value
 end

 def age
 @age
 end

 def report_age
 puts "#{@name} is #{@age} years old."
 end

end

Write a new value
to @name

Read the value
from @name

Read the value
from @age

Write a new value
to @age

The name of an attribute reader method
should usually match the name of the
instance variable it reads from (without
the @ symbol, of course).

def tail_length
 @tail_length
end

The same is true for attribute writer
methods, but you should add an = symbol
on to the end of the name.

def tail_length=(value)
 @tail_length = value
end

Conventional
Wisdom

Set @name for Fido.

Set @age for Fido.

Set @age for Rex.
Set @name for Rex.

Fido is 2 years old.
Rex is 3 years old.

62 Chapter #

page goal header

Creating this pair of accessor methods for an attribute is so common that
Ruby offers us shortcuts - methods named: attr_writer, attr_reader,
and attr_accessor. Calling these three methods within your class
definition will automatically define new accessor methods for you:

Attribute writers and readers

attr_writer :name
def name=(new_value)
 @name = new_value
end

attr_reader :name
def name
 @name
end

attr_accessor :name

def name=(new_value)
 @name = new_value
end

def name
 @name
end

Write this within your
class definition...

Just like
our old

definition!

Just like
our old

definition!

Defines two
methods at

once!

...and Ruby will
automatically define

these methods:

Symbols

In case you're wondering, those :name and :age things are
symbols. A Ruby symbol is a series of characters, like a string.
Unlike a string, its value can't be changed later. That makes them
perfect for use inside Ruby programs, to refer to anything whose
name doesn't (usually) change, like a method. For example, if you
call the method named methods on an object in irb,
you'll see that it returns a list of symbols.

A symbol reference in Ruby code always begins with a
colon character (:). A symbol should be in all lower-case,
with words separated by underscores, just like a variable name.

All three of these methods can take multiple
arguments, specifying multiple attributes that you
want to define accessors for.

Defines FOUR
methods at once!

attr_accessor :name, :age

> Object.new.methods
=> [:class, :singleton_class, :clone, ...]

:hello
:over_easy

:east

Ruby symbols.

you are here 4 63

chapter title here

The Dog class currently devotes 12 lines of code to accessor
methods. With the attr_accessor method, we can shrink
that down to 1 line!

It will let us reduce our Dog class's size...

...how's that for efficiency? It's a lot easier to read, too!

Let's not forget why we're writing accessor methods in the first place,
though. We need to protect our instance variables from invalid data. Right
now, these methods don't do that... We'll see how to fix this in a few pages!

Attribute writers and readers in action

class Dog

 attr_accessor :name, :age

 def report_age
 puts "#{@name} is #{@age} years old."
 end

 def talk
 puts "#{@name} says Bark!"
 end

 def move(destination)
 puts "#{@name} runs to the #{destination}."
 end

end

class Dog

 def name=(new_value)
 @name = new_value
 end

 def name
 @name
 end

 def age=(new_value)
 @age = new_value
 end

 def age
 @age
 end

 def report_age
 puts "#{@name} is #{@age} years old."
 end

 def talk
 puts "#{@name} says Bark!"
 end

 def move(destination)
 puts "#{@name} runs to the #{destination}."
 end

end

from this... ...to this!

Equivalent!

Equivalent!

64 Chapter #

page goal header

class Mage

 attr_accessor :name, :spell

 def enchant(target)
 puts "#{@name} casts #{@spell} on #{target.name}!"
 end

end

mage.rb

Step One:

Step Two:

Step Three:

Save this class definition to a file, named "mage.rb".

From a system command prompt, navigate into the directory
where you saved your file.

We want to be able to load Ruby files from the current directory, so
as in the previous exercise, type the following to launch irb:

 irb -I .

Step Four:

As before, we need to load the file with our saved Ruby code. Type this line:

 require "mage"

We haven't really gotten to play around with classes and objects much yet. Let's try another
irb session. We'll load up a simple class so we can create some instances of it interactively.

you are here 4 65

chapter title here

Who am I?
A bunch of Ruby concepts, in full costume, are playing a party game, “Who am
I?” They’ll give you a clue — you try to guess who they are based on what they
say. Assume they always tell the truth about themselves. Fill in the blanks to
the right to identify the attendees. (We've done the first one for you.)

Tonight’s attendees: Any of the terms related to storing data within an
object just might show up!

Name

I stay within an object instance, and store data
about that object.

I store data within a method. As soon as the
method returns, I disappear.

I'm a kind of instance method. My main purpose
is to read or write an instance variable.

I'm used in Ruby programs to refer to things
whose names don't change (like methods).

I'm another name for a piece of data about an
object. I get stored in an instance variable.

instance variable

(Continued)

With our Mage class's code loaded, you can
try creating as many instances as you like,
set their attributes, and have them cast spells
at each other! Try the following for starters:

Here's a
sample session:

$ irb -I .
irb(main):001:0> require 'mage'
 => true
irb(main):002:0> merlin = Mage.new
 => #<Mage:0x007fd432082308>
irb(main):003:0> merlin.name = "Merlin"
 => "Merlin"
irb(main):004:0> morgana = Mage.new
 => #<Mage:0x007fd43206b310>
irb(main):005:0> morgana.name = "Morgana"
 => "Morgana"
irb(main):006:0> morgana.spell = "Shrink"
 => "Shrink"
irb(main):007:0> morgana.enchant(merlin)
Morgana casts Shrink on Merlin!
 => nil
irb(main):008:0>

File Edit Window Help

merlin = Mage.new
merlin.name = "Merlin"
morgana = Mage.new
morgana.name = "Morgana"
morgana.spell = "Shrink"
morgana.enchant(merlin)

66 Chapter #

page goal header

Who am I? Solution

Name

I stay within an object instance, and store data
about that object.

I store data within a method. As soon as the
method returns, I disappear.

I'm a kind of instance method. My main purpose
is to read or write an instance variable.

I'm used in Ruby programs to refer to things
whose names don't change (like methods).

I'm another name for a piece of data about an
object. I get stored in an instance variable.

instance variable

local variable

accessor method

symbol

attribute

Q: What's the difference between
an accessor method and an instance
method?

A: "Accessor method" is just a way of
describing one particular kind of instance
method, one whose primary purpose is to
get or set the value of an instance variable.
In all other respects, accessor methods
are ordinary instance methods.

Q: I set up an instance variable
outside an instance method, but it's not
there when I try to access it. Why?

class Widget
 @size = 'large'
 def show_size
 puts "Size: #{@size}"
 end
end

widget = Widget.new
widget.show_size

A: When you use instance variables
outside of an instance method, you're
actually creating an instance variable
on the class object. (That's right, even
classes are themselves objects in Ruby.)

While there are potential uses for this,
they're beyond the scope of this book. For
now, this is almost certainly not what you
want. Instead, set up the instance variable
within an instance method:

class Widget
 def set_size
 @size = 'large'
 end
 ...
end

Size:

Empty!

you are here 4 67

chapter title here

Pool Puzzle
Your job is to take code snippets from the pool and place them into the blank lines in the code.

Don't use the same snippet more than once, and you won’t need to use all the snippets. Your
goal is to make code that will run and produce the output shown.

Note: each thing from
the pool can only be
used once!

class Robot

 def
 @head
 end

 def (value)
 @arms = value
 end

 :legs, :body

 attr_writer

 :feet

 def assemble
 @legs = "RubyTek Walkers"
 @body = "BurlyBot Frame"
 = "SuperAI 9000"
 end

 def diagnostic
 puts
 puts @eyes
 end

end

robot = Robot.new

robot.assemble

robot.arms = "MagGrip Claws"
robot.eyes = "X-Ray Scopes"
robot.feet = "MagGrip Boots"

puts robot.head
puts robot.legs
puts robot.body
puts robot.feet
robot.diagnostic

Output

attr_accessor

attr_reader

attr_writer

head
:head

@head
@feet:eyes

@arms

arms=

SuperAI 9000
RubyTek Walkers
BurlyBot Frame
MagGrip Boots
MagGrip Claws
X-Ray Scopes

File Edit Window Help

68 Chapter #

page goal header

Pool Puzzle Solution
Your job is to take code snippets from the pool and place them into the blank lines in the code.

Don't use the same snippet more than once, and you won’t need to use all the snippets. Your
goal is to make code that will run and produce the output shown.

class Robot

 def head
 @head
 end

 def arms=(value)
 @arms = value
 end

 attr_reader :legs, :body

 attr_writer :eyes

 attr_accessor :feet

 def assemble
 @legs = "RubyTek Walkers"
 @body = "BurlyBot Frame"
 @head = "SuperAI 9000"
 end

 def diagnostic
 puts @arms
 puts @eyes
 end

end

robot = Robot.new

robot.assemble

robot.arms = "MagGrip Claws"
robot.eyes = "X-Ray Scopes"
robot.feet = "MagGrip Boots"

puts robot.head
puts robot.legs
puts robot.body
puts robot.feet
robot.diagnostic

SuperAI 9000
RubyTek Actuators
BurlyBot Frame
MagGrip Boots
MagGrip Claws
X-Ray Scopes

File Edit Window Help Lasers

Output

SuperAI 9000
RubyTek Walkers
BurlyBot Frame
MagGrip Boots
MagGrip Claws
X-Ray Scopes

File Edit Window Help Lasers

you are here 4 69

chapter title here

Ensuring data is valid with accessors
Remember our scenario from a nightmare world where Ruby let
programs access instance variables directly, and someone gave your
Dog instances blank names and negative ages? Bad news: now that
you've added attribute writer methods to your Dog class, they actually
can!

class Dog

 attr_reader :name, :age

 def name=(value)
 if value == ""
 puts "Name can't be blank!"
 else
 @name = value
 end
 end

 def age=(value)
 if value < 0
 puts "An age of #{value} isn't valid!"
 else
 @age = value
 end
 end

 def report_age
 puts "#{@name} is #{@age} years old."
 end

end

joey = Dog.new
joey.name = ""
joey.age = -1
joey.report_age

We only define the
reader methods
automatically, since
we're defining writer
methods ourselves.Since name= and age= are just

ordinary Ruby methods, adding the
validation is really easy; we'll use
ordinary if statements to look for
an empty string (for name=) or a
negative number (for age=). If we
encounter an invalid value, we'll
print an error message. Only if the
value is valid will we actually set the
@name or @age instance variables.

If the name is blank,
print an error message.

If the age is negative,
print an error message.

Set the instance variable
only if the name is valid.

Set the instance variable
only if the age is valid.

Don't panic! Those same writer methods are going to help us prevent
this from happening in the future. We're going to add some simple
data validation to the methods, which will give an error any time an
invalid value is passed in.

 is -1 years old.

70 Chapter #

page goal header

Instead of just printing a message, we need to deal with invalid
parameters in the name= and age= accessor methods in a more
meaningful way. Let's change the validation code in our name= and
age= methods to Ruby's built-in raise method to report any errors.

 raise "Something bad happened!"

That's raise as in "raise an issue". Your program is bringing a
problem to your attention.

You call raise with a string describing what's wrong. When Ruby
encounters the call, it stops what it's doing, and prints your error
message. Since this program doesn't do anything to handle the error,
it will exit immediately.

Blank!

glitch = Dog.new
glitch.name = ""
glitch.age = -256
glitch.report_age

So now, we get a warning if an invalid name
or age are set. Great. But then the program
goes right on to call report_age anyway,
and the name and age are blank!

Errors - the "emergency stop" button

Name can't be blank!
An age of -256 isn't valid!
 is years old.

you are here 4 71

chapter title here

Error

Error

class Dog

 attr_reader :name, :age

 def name=(value)
 if value == ""
 raise "Name can't be blank!"
 end
 @name = value
 end

 def age=(value)
 if value < 0
 raise "An age of #{value} isn't valid!"
 end
 @age = value
 end

 def report_age
 puts "#{@name} is #{@age} years old."
 end

end

Now, if a blank name is passed in to
name=, Ruby will report an error, and
the entire program will exit.

You'll get another error message
if someone tries to set the age to a
number less than zero.

Since we're using raise in
both of our writer methods,
we don't need to use an else
clause on the if statements. If
the new value is invalid and the
raise statement is executed, the
program will halt. The statement
that assigns to the instance
variable will never be reached. This statement won't be

reached if "raise" is called.

If "value" is invalid...

...execution will halt here.

This statement won't be
reached if "raise" is called.

If "value" is invalid...

...execution will halt here.

anonymous = Dog.new
anonymous.name = ""

joey = Dog.new
joey.age = -1

In a later chapter, we'll see that errors can also be handled by other
parts of your program, so that it can continue running. But for now,
naughty developers that try to give your Dog instance a blank name
or a negative age will know immediately that they have to re-write
their code.

Using "raise" in our attribute writer methods

Awesome! Now, if there's an error in a
developer's code, it'll be brought to their
attention before a user sees it. Nice work!

in `name=': Name
can't be blank!
(RuntimeError)

in `age=': An age
of -1 isn't valid!
(RuntimeError)

72 Chapter #

page goal header

Our complete Dog class
Here's a file with our complete Dog class, plus some code to create a Dog instance.

We have instance methods that act as attribute
accessors, letting us get and set the contents of
our instance variables.

We have instance methods that let our dog
object do things, like move, make noise, and
report its age. The instance methods can make
use of the data in the object's instance variables.

And we've set up our attribute writer methods
to validate the data passed to them, raising an
error if the values are invalid.

Now, we just need to do the same for the Cat and Bird classes!

Not excited by the prospect of duplicating all that code? Don't
worry! The next chapter is all about inheritance, which will make
the task easy!

puts dog.name
dog.age = 3
puts dog.age

dog.report_age
dog.talk
dog.move("bed")

dog.name = ""

Error

Daisy
3

in `name=': Name
can't be blank!
(RuntimeError)

Daisy is 3 years old.
Daisy says Bark!
Daisy runs to the bed.

Dog

name
age

move
talk
report_age

instance
variables
(state)

instance
methods
(behavior)

class Dog

 attr_reader :name, :age

 def name=(value)
 if value == ""
 raise "Name can't be blank!"
 end
 @name = value
 end

 def age=(value)
 if value < 0
 raise "An age of #{value} isn't valid!"
 end
 @age = value
 end

 def move(destination)
 puts "#{@name} runs to the #{destination}."
 end

 def talk
 puts "#{@name} says Bark!"
 end

 def report_age
 puts "#{@name} is #{@age} years old."
 end

end

dog = Dog.new
dog.name = "Daisy"
dog.age = 3
dog.report_age
dog.talk
dog.move("bed")

Create a new Dog instance.

Sets up "name" and
"age" attribute
reader methods

Attribute writer
method for "@name".

Attribute writer
method for "@age".

Instance method.

Instance method.

Instance method.

Using an instance variable.

Using an instance variable.

Using instance variables.

Data validation.

Data validation.

Initialize attributes.

Call instance methods.
dog.rb

Do this!

Type the above code into a file named
"dog.rb". Try adding more Dog instances!
Then run ruby dog.rb from a command line.

you are here 4 73

chapter title here

Your Ruby Toolbox

That's it for Chapter 2! You’ve added
methods and classes to your tool box.

 � A method body consists of one or
more Ruby statements that will be
executed when the method is called.

 � Parenthesis should be left off of a
method definition if (and only if) you're
not defining any parameters.

 � If you don't specify a return value,
methods will return the value of the
last expression evaluated.

 � Method definitions that appear within
a class definition are treated as
instance methods for that class.

 � Outside a class definition, instance
variables can only be accessed via
accessor methods.

 � You can call the attr_writer,
attr_reader, and attr_
accessor methods within your
class definition as a shortcut for
defining accessor methods.

 � Accessor methods can be used to
ensure data is valid before it's stored
in instance variables.

 � The raise method can be called to
report an error in your program.

Statements
Conditional stat

ements execute

the code the e
nclose if a con

dition

is met.

Loops execute t
he code they

enclose repeate
dly. They exit when

a condition is m
et.

Methods
Method parameters can be m

ade

optional by pro
viding default

values.

It's legal for a
 method name to

end in ?, !, or
 =.

Methods return
the value of t

heir

last expression
 to their caller

. You

can also specif
y a method's return

value with a return
statement.

Classes
A class is a template for creat

ing

object instance
s.

An object's class
 defines its

instance methods (what it DOES).

Within instance m
ethods, you ca

n

create instance
 variables (what the

object KNOWS about itself)
.

74 Chapter #

page goal header

this is a new chapter 75

My siblings and I used to
quarrel over our inheritance.
But now that we've learned
how to share everything,
things are working out great!

inheritance3

Relying on Your Parents

So much repetition! Your new classes representing the different types of vehicles

and animals are awesome, it's true. But you're having to copy instance methods from

class to class. And the copies are starting to fall out of sync - some are fine, and others

have bugs. Weren't classes supposed to make code easier to maintain?

In this chapter, we'll learn how to use inheritance to let your classes share methods.

Fewer copies means fewer maintenance headaches!

76 Chapter #

page goal header

Copy, paste... Such a waste...
Back at Got-A-Motor, Inc., the development team wants to try this

"object-oriented programming" thing out for themselves. They've
converted their old virtual test drive app to use classes for each vehicle
type. They have classes representing cars, trucks, and motorcycles.

Here's what their class structure looks like right now:

Thanks to customer demand,
management has asked
that steering be added
to all vehicle types. Mike,
Got-A-Motor's rookie
developer, thinks he has this
requirement covered.

Car

odometer
gas_used

mileage
accelerate
sound_horn

instance
variables

instance
methods

Truck

odometer
gas_used

mileage
accelerate
sound_horn

instance
variables

instance
methods

Motorcycle

odometer
gas_used

mileage
accelerate
sound_horn

instance
variables

instance
methods

Not a problem! I'll just add a
steer method to the Car class. Then
I'll copy and paste it into the other
classes, just like I did with the other
three methods!

you are here 4 77

chapter title here

class Car

 attr_accessor :odometer
 attr_accessor :gas_used

 def mileage
 @odometer / @gas_used
 end

 def accelerate
 puts "Floor it!"
 end

 def sound_horn
 puts "Beep! Beep!"
 end

 def steer
 puts "Turn front 2 wheels."
 end

end

class Truck

 attr_accessor :odometer
 attr_accessor :gas_used

 def mileage
 @odometer / @gas_used
 end

 def accelerate
 puts "Floor it!"
 end

 def sound_horn
 puts "Beep! Beep!"
 end

 def steer
 puts "Turn front 2 wheels."
 end

end

class Motorcycle

 attr_accessor :odometer
 attr_accessor :gas_used

 def mileage
 @odometer / @gas_used
 end

 def accelerate
 puts "Floor it!"
 end

 def sound_horn
 puts "Beep! Beep!"
 end

 def steer
 puts "Turn front 2 wheels."
 end

end

This copy-pasting is a bad
idea. What if we needed
to change a method?
We'd have to change it in
every class! And look at
the Motorcycle class —
motorcycles don't have two
front wheels!

But Marcy, the team's experienced
object-oriented developer, has
some reservations about this
approach.

Copy! Paste!

Paste!

Mike's code for the Virtual Test Drive classes

Marcy is right; this is a maintenance nightmare waiting to happen. First, let's figure out how to
address the duplication. Then we'll fix the steer instance method for Motorcycle objects.

78 Chapter #

page goal header

Inheritance to the rescue!
Fortunately, like most object-oriented languages, Ruby has the
concept of inheritance, which allows classes to inherit methods
from one another. If one class has some functionality, classes that
inherit from it can get that functionality automatically.

Instead of repeating method definitions across many similar classes,
inheritance lets you move the common methods to a single class. You
can then specify that other classes inherit from this class. The class
with the common methods is referred to as the superclass, and the
classes that inherit those methods are known as subclasses.

If a superclass has instance methods, then its subclasses automatically
inherit those methods. You can get access to all the methods you need
from the superclass, without having to duplicate the methods' code in
each subclass.

Here's how we might use inheritance to get rid of the repetition in
the virtual test drive app...

Car

odometer
gas_used

mileage
accelerate
sound_horn
steer

Truck

odometer
gas_used

mileage
accelerate
sound_horn
steer

Motorcycle

odometer
gas_used

mileage
accelerate
sound_horn
steer

Vehicle

odometer
gas_used

mileage
accelerate
sound_horn
steer

 We see that the Car,
Truck, and Motorcycle
classes have several instance
methods and attributes in
common.

1

 Each one of these classes
is a type of vehicle. So
we can create a new class,
which we'll choose to call
Vehicle, and move the
common methods and
attributes there.

2

you are here 4 79

chapter title here

The subclasses inherit all the methods and attributes
of the superclass. In other words, if the superclass has
some functionality, its subclasses automatically get that
functionality. We can remove the duplicated methods
from Car, Truck, and Motorcycle, because they
will automatically inherit them from the Vehicle class.
All of the classes will still have the same methods, but
there's only one copy of each method to maintain!

Note that in Ruby, subclasses technically do not inherit
instance variables; they inherit the attribute accessor methods
that create those variables. We'll talk about this subtle
distinction in a few pages.

The Vehicle class is called the
superclass of the other three classes.
Car, Truck, and Motorcycle are
called subclasses of Vehicle.

 Then, we can specify that each
of the other classes inherits
from the Vehicle class.

3

Vehicle

odometer
gas_used

mileage
accelerate
sound_horn
steer

Truck

odometer
gas_used

mileage
accelerate
sound_horn
steer

Superclass.

Subclass. Subclass. Subclass.
Car

odometer
gas_used

mileage
accelerate
sound_horn
steer

Motorcycle

odometer
gas_used

mileage
accelerate
sound_horn
steer

You can still call all these inherited methods and attribute accessors on instances of the subclasses, just as if the subclasses declared them directly!

Inheritance to the rescue! (cont.)

Vehicle

odometer
gas_used

mileage
accelerate
sound_horn
steer

Truck

Superclass.

Subclass. Subclass. Subclass.
Car

Motorcycle

80 Chapter #

page goal header

To eliminate the repeated methods
and attributes in our Car, Truck,
and Motorcycle classes, Marcy
has created this design. It moves the
shared methods and attributes to a
Vehicle superclass. Car, Truck,
and Motorcycle are all subclasses
of Vehicle, and they inherit all of
Vehicle's methods.

Vehicle

odometer
gas_used

mileage
accelerate
sound_horn
steer

Car Truck

Superclass.

Subclass. Subclass. Subclass.
Motorcycle

Defining a superclass (requires nothing special)

There's actually no special syntax to
define a superclass in Ruby; it's just an
ordinary class. (Most object-oriented
languages are like this.)

class Vehicle

 attr_accessor :odometer
 attr_accessor :gas_used

 def accelerate
 puts "Floor it!"
 end

 def sound_horn
 puts "Beep! Beep!"
 end

 def steer
 puts "Turn front 2 wheels."
 end

 def mileage
 return @odometer / @gas_used
 end

end

All attributes will be
inherited when we
declare a subclass.

So will all
instance
methods.

you are here 4 81

chapter title here

Defining a subclass (is really easy)

class Car < Vehicle
end

class Truck < Vehicle
end

class Motorcycle < Vehicle
end

The syntax for subclasses isn't much more
complicated. A subclass definition looks just
like an ordinary class definition, except that
you specify the superclass it will inherit from.

So here's all we have to write in order to specify that Car, Truck, and
Motorcycle are subclasses of Vehicle:

class Car < Vehicle

end

Class name

A "less-than"
symbol. Read aloud
as "inherits from"
or "specializes".

We can define additional
methods and attributes
here, but for now we'll just
use the inherited ones.

Superclass name

As soon as you define them as subclasses, Car, Truck, and Motorcycle inherit all the attributes
and instance methods of Vehicle. Even though the subclasses don't contain any code of their own,
any instances we create will have access to all of the superclass's functionality!

truck = Truck.new
truck.accelerate
truck.steer

car = Car.new
car.odometer = 11432
car.gas_used = 366

puts "Lifetime MPG:"
puts car.mileage

Our Car, Truck, and Motorcycle classes have all the same functionality they used to, without all
the duplicated code. Using inheritance will save us a lot of maintenance headaches!

Floor it!
Turn front 2 wheels.
Lifetime MPG:
31

Ruby uses a less-than (<) symbol because
the subclass is a subset of the superclass.
(All cars are vehicles, but not all vehicles
are cars.) You can think of the subclass
as being lesser than the superclass.

82 Chapter #

page goal header

Adding methods to subclasses
As it stands, there's no difference between our Truck class and the Car
or Motorcycle classes. But what good is a truck, if not for hauling
cargo? Got-A-Motor wants to add a load_bed method for Truck
instances, as well as a cargo attribute to access the bed contents.

class Truck < Vehicle

 attr_accessor :cargo

 def load_bed(contents)
 puts "Securing #{contents} in the truck bed."
 @cargo = contents
 end

end

truck = Truck.new
truck.load_bed("259 bouncy balls")
puts "The truck is carrying #{truck.cargo}."

With these code changes in place, we
can create a new Truck instance,
then load and access its cargo.

So instead, we can define a cargo
attribute and a load_bed method
directly on the Truck class.

Vehicle

odometer
gas_used

mileage
accelerate
sound_horn
steer

Truck

cargo

load_bed

Motorcycle

Superclass.

Subclass. Subclass. Subclass.
Car

It won't do to add cargo and load_bed to the Vehicle class,
though. The Truck class would inherit them, yes, but so would Car
and Motorcycle. Cars and motorcycles don't have cargo beds!

If we were to draw the diagram of Vehicle and its
subclasses again now, it would look like this:

Securing 259 bouncy balls in the truck bed.
The truck is carrying 259 bouncy balls.

you are here 4 83

chapter title here

Subclasses keep inherited methods alongside new ones

truck.odometer = 11432
truck.gas_used = 366
puts "Average MPG:"
puts truck.mileage

So in addition to the cargo
attribute and load_bed method,
our Truck instance can also access
all the old inherited attributes and
methods it used to.

Surprisingly, the answer is no! Bear with us,
we need to take a 2-page detour to explain...

Vehicle

odometer
gas_used

mileage
accelerate
sound_horn
steer

Car

odometer
gas_used

mileage
accelerate
sound_horn
steer

Truck

odometer
gas_used
cargo

mileage
accelerate
sound_horn
steer
load_bed

Motorcycle

odometer
gas_used

mileage
accelerate
sound_horn
steer

Superclass.A subclass that defines its own methods doesn't lose the
ones it inherits from its superclass, though. Truck will
still have all the attributes and methods it inherits from
Vehicle, but cargo and load_bed will be added
alongside them.

If we re-drew our diagram with the inherited attributes
and methods included, it would look like this:

We need two classes,
Kite and StuntKite.
Both Kite and
StuntKite instances
will need fly and
land methods. Only
StuntKite instances
should have a steer
method, however. Place
the class names and
method definitions at the
appropriate places in this
class diagram.

Kite

StuntKite

fly

land
steer

Average MPG:
31

Subclass. Subclass. Subclass.

So, a subclass inherits instance methods from
its superclass. Does it also inherit instance
variables?

A Ruby Detour

84 Chapter #

page goal header

Instance variables
are NOT inherited!
It's easy to form the (incorrect) impression that instance variables
are inherited from the superclass. Let's take another look at our class
diagram, focusing on the attributes of the Vehicle and Car classes...

All Ruby objects have a method called instance_variables that we
can call to see what instance variables are defined for that object. So if
we create a new Car and assign values to its odometer and gas_used
attributes...

...then call the instance_variables method to see what instance
variables it has...

car = Car.new
car.odometer = 22914
car.gas_used = 728

puts car.instance_variables
@odometer
@gas_used

...it sure looks like the @odometer and @gas_used instance variables got
inherited from the Vehicle superclass.

But what actually gets inherited are the odometer and gas_used
instance methods (the attribute accessor methods). These methods just happen
to assign to instance variables named @odometer and @gas_used
(because that's the Ruby convention). The variables are created on the car
object at the time a value is assigned to them.

A Ruby Detour

Kite

fly
land

StuntKite

steer

Vehicle

odometer
gas_used

Car

odometer
gas_used

Superclass.

Subclass.

Defined here.

Inherited here.

The only thing that
Ruby subclasses
ever inherit are
instance methods.
Instance variables
usually come along
for the ride, though.

you are here 4 85

chapter title here

car = Car.new
car.odometer = 22914
car.gas_used = 728

puts car.instance_variables

Instance variables are NOT inherted! (cont.)
To prove that it's the odometer and
gas_used instance methods that are
inherited from Vehicle, and not the
@odometer and @gas_used instance
variables, let's try breaking the convention.
We'll override the Car subclass's attribute
accessor methods to write to and read from
totally different instance variables.

Now, we can run the very same code to create a Car instance:

...But the odometer= and gas_used= methods will assign
to different instance variables:

So, why worry about the fact that instance variables aren't inherited? As long as you
follow the convention of ensuring your instance variable names match your accessor
method names, you won't have to. But if you deviate from that convention, look
out! You may find that a subclass can interfere with it's superclass's functionality by
overwriting its instance variables.

When we try to actually use the Employee subclass, we'll find
that any time we assign to the salary attribute, we overwrite the
name attribute, because both are using the same instance variable.

What's the lesson here? Ensure you're using sensible variable
names that match your attribute accessor names. That simple
practice should be enough to keep you out of trouble!

class Car < Vehicle
 def odometer=(new_value)
 @banana = new_value
 end
 def odometer
 @banana
 end
 def gas_used=(new_value)
 @apple = new_value
 end
 def gas_used
 @apple
 end
end

@banana
@apple

Note the complete
absence of @odometer
and @gas_used!

class Person
 def name=(new_value)
 @storage = new_value
 end
 def name
 @storage
 end
end

employee = Employee.new
employee.name = "John Smith"
employee.salary = 80000
puts employee.name

class Employee < Person
 def salary=(new_value)
 @storage = new_value
 end
 def salary
 @storage
 end
end

NOT a good
choice of

variable names.

...But we'll use the
same name here.
(Hey, why not?)

80000

What an
unusual
name!

A Ruby Detour

End of Ruby Detour

86 Chapter #

page goal header

Overriding methods

If the superclass's behavior isn't what you need in the
subclass, inheritance gives you another mechanism to
help: method overriding. When you override one or
more methods in a subclass, you replace the inherited
methods from the superclass with methods specific to
the subclass.

Marcy, the team's experienced object-
oriented developer, has re-written our
Car, Truck, and Motorcycle classes as
subclasses of Vehicle. They don't need
any methods or attributes of their own - they
inherit everything from the superclass! But
Mike points out an issue with this design...

Pretty slick, Marcy. But you
forgot one little detail: the
Motorcycle class needs a
specialized steer method!

motorcycle = Motorcycle.new
motorcycle.steer

Vehicle

odometer
gas_used

mileage
accelerate
sound_horn
steer

Motorcycle

steer

Overrides

class Motorcycle < Vehicle
 def steer
 puts "Turn front wheel."
 end
end

motorcycle.steer

Now, if we call steer on a Motorcycle instance, we'll get the
overriding method. That is, we'll get the version of steer defined
within the Motorcycle class, not the version from Vehicle.

Turn front 2 wheels.

Turn front wheel.

One wheel too many,
for a motorcycle!

Not a problem - I
can just override that
method for Motorcycle!

you are here 4 87

chapter title here

Overriding methods (continued)

If Ruby sees that the requested method is
defined on a subclass, it will call that method
and stop there.

But if the method's not found, Ruby will look
for it on the superclass, then the superclass's
superclass, and so on, up the chain.

How does this work?

Motorcycle

steer

Car

Got a "steer" method?

Yes!

Got a "steer"
method?

Nope.

Vehicle

odometer
gas_used

mileage
accelerate
sound_horn
steer Yes!

If we call any other methods on a Motorcycle instance, though,
we'll get the inherited method.

Everything seems to be working again! When changes are needed,
they can be made in the Vehicle class, and they'll propagate to the
subclasses automatically, meaning everyone gets the benefit of updates
sooner. If a subclass needs specialized behavior, it can simply override
the method it inherited from the superclass.

Nice work cleaning up Got-A-Motor's code! Up next, we have a couple
exercises where you can practice working with superclasses and subclasses.

Then, we'll take another look at the Fuzzy Friends code. They still have
a lot of redundant methods in their application's classes. We'll see if
inheritance and method overriding can help them out.

motorcycle.accelerate

Floor it!

88 Chapter #

page goal header

Q: Can you have more than one level
of inheritance? That is, can a subclass
have its own subclasses?

A: Yes! If you need to override methods
on some of your subclass's instances, but
not others, you might consider making a
subclass of the subclass.

class Car < Vehicle
end

class DragRacer < Car
 def accelerate
 puts "Inject nitrous!"
 end
end

Don't overdo it, though! This kind of design
can rapidly become very complex. Ruby
doesn't place a limit on the number of levels
of inheritance, but most Ruby developers
don't go more than one or two levels deep.

Q: You said that if a method is called
on an instance of a class and Ruby
doesn't find the method, it will look on
the superclass, then the superclass's
superclass... What happens if it runs
out of superclasses without finding the
method?

A: After searching the last superclass,
Ruby gives up the search. That's when
you get one of those "undefined
method" errors we've been seeing.

Car.new.fly

undefined method
`fly' for
#<Car:0x007ffec48c>

Q: When designing an inheritance
hierarchy, which should I design first, the
subclass or the superclass?

A: Either! You might not even realize you
need to use inheritance until after you've
started coding your application.

When you discover that two related classes
need similar or identical methods, though,
just make those classes into subclasses of
a new superclass. Then move those shared
methods into the superclass. There: you've
designed the subclasses first.

Likewise, when you discover that only some
instances of a class are using a method,
create a new subclass of the existing class,
and move the method there. You've just
designed the superclass first!

you are here 4 89

chapter title here

Code Magnets
A Ruby program is all scrambled up on the fridge. Can you
reconstruct the code snippets to make a working superclass and
subclass, so the sample code below can execute and produce the
given output?

puts "Triggering shutter."

puts "Winding film."

puts "Inserting memory card."

take_picture

DigitalCamera

load

load

class

def defdef

end end endend

end

<Camera Camera

class camera = Camera.new
camera.load
camera.take_picture

camera2 = DigitalCamera.new
camera2.load
camera2.take_picture

Sample code:

Output:

Replaces a method inherited from a
superclass with new functionality.

Allows a single method or attribute to
be shared by multiple classes.

A class that holds the code for
methods that are shared by one or
more other classes.

A class that inherits one or more
methods or attributes from a
superclass.

Overriding

Inheritance

Superclass

Subclass
Match each of
the concepts
on the left to a
definition on
the right.

Winding film.
Triggering shutter.
Inserting memory card.
Triggering shutter.

File Edit Window Help

90 Chapter #

page goal header

Code Magnets Solution
A Ruby program is all scrambled up on the fridge. Can
you reconstruct the code snippets to make a working
superclass and subclass, so the sample code below
can execute and produce the given output?

camera = Camera.new
camera.load
camera.take_picture

camera2 = DigitalCamera.new
camera2.load
camera2.take_picture

Sample code: Output:

take_picture

load

class

def

def

end

end

end

Camera

puts "Triggering shutter."

puts "Winding film."

DigitalCamera

loaddef

end

< Cameraclass

puts "Inserting memory card."

end

SOLUTION
Replaces a method inherited from a
superclass with new functionality.

Allows a single method or attribute to
be shared by multiple classes.

A class that holds the code for
methods that are shared by one or
more other classes.

A class that inherits one or more
methods or attributes from a
superclass.

Overriding

Inheritance

Superclass

Subclass
Match each of
the concepts
on the left to a
definition on
the right.

Winding film.
Triggering shutter.
Inserting memory card.
Triggering shutter.

File Edit Window Help

you are here 4 91

chapter title here

Bringing our animal classes up to date with inheritance
Remember the Fuzzy Friends virtual storybook application from last chapter? We did a lot of
excellent work on the Dog class. We added name and age attribute accessor methods (with
validation), and updated the talk, move, and report_age methods to use the @name
and @age instance variables.

Here's a recap of the code we have so far:

The Bird and Cat classes have been completely left behind, however, even though they
need almost identical functionality.

Let's use this new concept of inheritance to create a design that will bring all our classes up to
date at once (and keep them updated in the future).

class Dog

 attr_reader :name, :age

 def name=(value)
 if value == ""
 raise "Name can't be blank!"
 end
 @name = value
 end

 def age=(value)
 if value < 0
 raise "An age of #{value} isn't valid!"
 end
 @age = value
 end

 def talk
 puts "#{@name} says Bark!"
 end

 def move(destination)
 puts "#{@name} runs to the #{destination}."
 end

 def report_age
 puts "#{@name} is #{@age} years old."
 end

end

Creates methods to
get current values of
@name and @age.

We create our own
attribute writer
methods, so we can
check that the new
values are valid.

Other instance
methods for our
Dog objects.

92 Chapter #

page goal header

Designing the animal class hierarchy

We want all the classes to have name and
age attributes, as well as talk, move, and
report_age methods. Let's move
all of these attributes and methods up to a new
class, which we'll call Animal.

Animal

name
age

talk
move
report_age

Dog Bird Cat

Animal

name
age

talk
move
report_age

Then, we'll declare that Dog, Bird, and Cat
are subclasses of Animal. All three subclasses
will inherit all the attributes and instance
methods from their superclass. We'll instantly
be caught up!

We've added lots of new functionality to our Dog class, and now
we want it in the Cat and Bird classes as well...

you are here 4 93

chapter title here

class Animal

 attr_reader :name, :age

 def name=(value)
 if value == ""
 raise "Name can't be blank!"
 end
 @name = value
 end

 def age=(value)
 if value < 0
 raise "An age of #{value} isn't valid!"
 end
 @age = value
 end

 def talk
 puts "#{@name} says Bark!"
 end

 def move(destination)
 puts "#{@name} runs to the #{destination}."
 end

 def report_age
 puts "#{@name} is #{@age} years old."
 end

end

And here are the other classes,
rewritten as subclasses of Animal.

class Dog < Animal
end

class Bird < Animal
end

class Cat < Animal
end

Code for the Animal class and its subclasses
Here's code for the Animal
superclass, with all the old methods
from Dog moved into it…

The exact same
code that was
in the Dog class!

We dont' have to write any
methods here; these classes will
inherit all the methods from
the Animal class above!

94 Chapter #

page goal header

With our Dog, Bird, and Cat classes re-written as subclasses of
Animal, they don't need any methods or attributes of their own - they
inherit everything from the superclass!

whiskers = Cat.new("Whiskers")
fido = Dog.new("Fido")
polly = Bird.new("Polly")

polly.age = 2
polly.report_age
fido.move("yard")
whiskers.talk

whiskers = Cat.new("Whiskers")
polly = Bird.new("Polly")

whiskers.talk
polly.talk

Overriding a method in the Animal subclasses

def talk
 puts "#{@name} says Bark!"
end

Looks good, except for one problem... our Cat instance is barking.

The subclasses inherited this method from Animal:

That's appropriate behavior for a Dog, but not so much for a Cat or a Bird.

Now, when you call talk on Cat or Bird instances, you'll get the overridden methods.

whiskers.talk
polly.talk

This code will override the talk method that was inherited from Animal:

class Cat < Animal
 def talk
 puts "#{@name} says Meow!"
 end
end

class Bird < Animal
 def talk
 puts "#{@name} says Chirp! Chirp!"
 end
end

Overrides the inherited method.

Overrides the inherited method.

Polly is 2 years old.
Fido runs to the yard.
Whiskers says Bark!

Whiskers says Meow!
Polly says Chirp! Chirp!

Whiskers says Bark!
Polly says Bark!

Wait... Whiskers
is a Cat...

you are here 4 95

chapter title here

Next up, Fuzzy Friends wants to add armadillos to their interactive
storybook. (Yeah, the little anteater-like critters that can roll into an
armored ball to protect themselves from predators and overly-playful
dogs.) We can simply add Armadillo as a subclass of Animal.

class Armadillo < Animal

 def move(destination)
 puts "#{@name} unrolls!"
 puts "#{@name} runs to the #{destination}."
 end

end

This works, but it's unfortunate that
we have to replicate the code from
the move method of the Animal
class.

class Animal
 ...
 def move(destination)
 puts "#{@name} runs to the #{destination}."
 end
 ...
end

This code is duplicated from the
superclass's method. (OK, it's just
one line, but in a real-world app
there would be many more!)

We need to get at the overridden method!

What if we could override the move method with new code, and still
harness the code from the superclass? Ruby has a mechanism to do just
that…

Our subclass.
Overrides the "move"
method from the
superclass.

There's a catch, though; before they can run anywhere, they have to
unroll.The move method will have to be overridden to reflect this fact.

Override

Animal

name
age

talk
move
report_age

The method
we're overriding.

The new functionality.

Armadillo

move

96 Chapter #

page goal header

When you use the super keyword
within a method, it makes a call to
a method of the same name on the
superclass.

class Person

 def greeting
 puts "Hello!"
 end

end

class Friend < Person

 def greeting
 super
 puts "Glad to see you!"
 end

end

"super" makes
a call here

The "super" keyword

If we make a call to the overriding method on the subclass, we'll see that the
super keyword makes a call to the overridden method on the superclass:

The super keyword works like an ordinary method call in almost every respect.

Friend.new.greeting Hello!
Glad to see you!

class Person

 def greeting
 "Hello!"
 end

end

class Friend < Person

 def greeting
 basic_greeting = super
 "#{basic_greeting} Glad to see you!"
 end

end

puts Friend.new.greeting

The method return value.

Assigns "Hello!" to
basic_greeting.

Hello! Glad to see you!

For example, the superclass method's
return value becomes the value of
the super expression:

you are here 4 97

chapter title here

Another way in which using the super keyword is like a regular method
call: you can pass it arguments, and those arguments will be passed to
the superclass's method.

But here's a way that super differs from a regular method call: if you
leave the arguments off, the superclass method will automatically be
called with the same arguments that were passed to the subclass method.

The "super" keyword (continued)

class Person

 def greet_by_name(name)
 "Hello, #{name}!"
 end

end

class Friend < Person

 def greet_by_name(name)
 basic_greeting = super(name)
 "#{basic_greeting} Glad to see you!"
 end

end

puts Friend.new.greet_by_name("Meghan")

Hello, Meghan! Glad to see you!

class Friend < Person

 def greet_by_name(name)
 basic_greeting = super
 "#{basic_greeting} Glad to see you!"
 end

end

puts Friend.new.greet_by_name("Bert")

Friend's greet_by_name
method has to be called
with a "name" argument...

So the "name"
argument will
be forwarded
on to Person's
greet_by_name
method as well.

Hello, Bert! Glad to see you!

Includes the
argument in
the method
call.

 The calls super
and super() are
not the same.

By itself, super
calls the

overridden method with the
same arguments the overriding
method received. But super()
calls the overridden method
with no arguments, even if the
overriding method did receive
arguments.

98 Chapter #

page goal header

Now, let's use our new understanding of super to eliminate a little
duplicated code from the move method in our Armadillo class.

class Animal
 ...
 def move(destination)
 puts "#{@name} runs to the #{destination}."
 end
 ...
end

And here's the overridden version in the
Armadillo subclass:

class Armadillo < Animal

 def move(destination)
 puts "#{@name} unrolls!"
 puts "#{@name} runs to the #{destination}."
 end

end

Here, we explicitly pass on the destination
parameter for Animal's move method to use:

But we could instead leave off the arguments
to super, and allow the destination
parameter to be forwarded to the superclass's
move method automatically:

Either way, the code still works great!

class Armadillo < Animal

 def move(destination)
 puts "#{@name} unrolls!"
 super(destination)
 end

end

class Armadillo < Animal

 def move(destination)
 puts "#{@name} unrolls!"
 super
 end

end

A super-powered subclass

Here's the method we're inheriting from the
Animal superclass:

We can replace the duplicated code in the subclass's move method with a call to
super, and rely on the superclass's move method to provide that functionality.

Your mastery of class inheritance has wrung the repetition out of your code like water
from a sponge. And your co-workers will thank you - less code means less bugs! Great job!

dillon = Armadillo.new
dillon.name = "Dillon"
dillon.move("burrow") Dillon unrolls!

Dillon runs to the burrow.

OR...

Here's that
duplicated line.

Auto-forward the same argument(s)
"move" was called with.

Explicitly specify the
argument...

you are here 4 99

chapter title here

Below you'll find code for three Ruby classes. The code snippets on the right use those classes,
either directly or through inheritance. Fill in the blanks below each snippet with what you think its
output will be. Don't forget to take method overriding and the "super" keyword into account!

class Robot

 attr_accessor :name

 def activate
 puts "#{@name} is powering up"
 end

 def move(destination)
 puts "#{@name} walks to #{destination}"
 end

end

class TankBot < Robot

 attr_accessor :weapon

 def attack
 puts "#{@name} fires #{@weapon}"
 end

 def move(destination)
 puts "#{@name} rolls to #{destination}"
 end

end

class SolarBot < Robot

 def activate
 puts "#{@name} deploys solar panel"
 super
 end

end

sunny = SolarBot.new
sunny.name = "Sunny"
sunny.activate
sunny.move("tanning bed")

tank = TankBot.new
tank.name = "Hugo"
tank.weapon = "laser"
tank.activate
tank.move("test dummy")
tank.attack

Hugo is powering up

Your answers:

(We've filled in the first one for you.)

100 Chapter #

page goal header

Below you'll find code for three Ruby classes. The code snippets on the right use those classes,
either directly or through inheritance. Fill in the blanks below each snippet with what you think its
output will be. Don't forget to take method overriding and the "super" keyword into account!

class Robot

 attr_accessor :name

 def activate
 puts "#{@name} is powering up"
 end

 def move(destination)
 puts "#{@name} walks to #{destination}"
 end

end

class TankBot < Robot

 attr_accessor :weapon

 def attack
 puts "#{@name} fires #{@weapon}"
 end

 def move(destination)
 puts "#{@name} rolls to #{destination}"
 end

end

class SolarBot < Robot

 def activate
 puts "#{@name} deploys solar panel"
 super
 end

end

sunny = SolarBot.new
sunny.name = "Sunny"
sunny.activate
sunny.move("tanning bed")

Sunny deploys solar panel
Sunny is powering up
Sunny walks to tanning bed

tank = TankBot.new
tank.name = "Hugo"
tank.weapon = "laser"
tank.activate
tank.move("test dummy")
tank.attack

Hugo is powering up
Hugo rolls to test dummy
Hugo fires laser

you are here 4 101

chapter title here

Difficulties displaying Dogs
Let's make one more improvement to our Dog
class, before we declare it finished. Right now, if
we pass a Dog instance to the print or puts
methods, the output isn't too useful:

lucy = Dog.new
lucy.name = "Lucy"
lucy.age = 4

rex = Dog.new
rex.name = "Rex"
rex.age = 2

puts lucy, rex #<Dog:0x007fb2b50c4468>

#<Dog:0x007fb2b3902000>

#<Dog:0x007fb2b50c4468>
#<Dog:0x007fb2b3902000>

We can tell that they're Dog objects, but beyond that it's very hard to tell
one Dog from another. It would be far nicer if we got output like this:

Lucy the dog, age 4
Rex the dog, age 2

The output we
WISH we had...

The output we get:

When you pass an object to the puts method, Ruby calls the to_s
instance method on it to convert it to a string for printing. We can call
to_s explicitly, and get the same result:

puts lucy.to_s, rex.to_s

puts rex.methods

Indeed, where did most of these instance methods on Dog objects come
from? If you call the method named methods on a Dog instance, only
the first few instance methods will look familiar...

Instance methods named clone, hash,
inspect... We didn't define them ourselves;
they're not on the Dog class. They weren't
inherited from the Animal superclass, either.

But - and here's the part you may find surprising -
they were inherited from somewhere.

Now, here's a question: where did that to_s instance method come from?

name
age
name=
age=
talk
move
report_age
eql?
hash
class
clone
to_s
inspect
methods
object_id
...

These are
inherited

from Animal...

But where
did these

come from?

There are more than we have room to print!

102 Chapter #

page goal header

The Object class
Where could our Dog instances have inherited all these instance
methods from? We don't define them in the Animal superclass.
And we didn't specify a superclass for Animal...

class Dog < Animal
end

class Animal
 ...
end No superclass specified!

The superclass for
Dog is Animal.

Ruby classes have a superclass method that you can call to get
their superclass. The result of using it on Dog isn't suprising:

When you define a new class, Ruby implicitly sets a class called
Object as its superclass (unless you specify a superclass yourself).

So writing this:

...But what happens if we call superclass on Animal?

Woah! Where did that come from?

puts Dog.superclass

puts Animal.superclass

Animal

Object

class Animal
 ...
end

class Animal < Object
 ...
end

...is equivalent to writing this:
Animal

name
age

talk
move
report_age

Object

eql?
hash
to_s
...

Dog

Animal

name
age

talk
move
report_age

Dog

The inheritance diagram for Dog
(that we've seen so far):

The actual inheritance
diagram for Dog:

you are here 4 103

chapter title here

If you don't explicitly specify a superclass for a class you define,
Ruby implicitly sets a class named Object as the superclass...

Even if you do specify a superclass for your class, that superclass
probably inherits from Object. That means almost every Ruby
object, directly or indirectly, has Object as a superclass!

Why everything inherits from the Object class
class Animal < Object
 ...
end

class Dog < Animal
end

Ruby does this because the Object class defines dozens of useful
methods that almost all Ruby objects need. This includes a lot of the
methods that we've been calling on objects so far:

...And there are many others. The methods inherited from the Object class
are fundamental to the way Ruby works with objects.

We hope you've found this little tangent informative, but it doesn't help us with
our original problem: our Dog objects are still printing in a gibberish format.

Or does it?

Implicitly
inserted by
Ruby.

Inherits from Animal,
which means it
inherits from Object!

• The to_s method converts an object to a string for printing

• The inspect method converts an object to a debug string

• The class method tells you which class an object is an instance of

• The methods method tells you what instance methods an object has

• The instance_variables method gives you a list of an object's instance variables

104 Chapter #

page goal header

Overriding the inherited method
We specified that the superclass of the Dog class is the Animal
class. And we learned that because we didn't specify a superclass for
Animal, Ruby automatically set the Object class as its superclass.

That means that Animal instances inherit a to_s method from
Object. Dog instances, in turn, inherit to_s from Animal.
When we pass a Dog object to puts or print, its to_s method is
called, to convert it to a string.

Do you see where we're headed? If the to_s method is the source
of the gibberish strings being printed for Dog instances, and to_s
is an inherited method, all we have to do is override to_s on the Dog
class!

It works! No more "#<Dog:0x007fb2b50c4468>". This is
actually readable!

One more tweak: the to_s method is already called when printing
objects, so we can leave that off:

This new output format will make debugging the virtual storybook
much easier. And you've gained a key insight into how Ruby objects
work - inheritance plays a vital role!

Are you ready? Let's try it.

class Dog < Animal

 def to_s
 "#{@name} the dog, age #{age}"
 end

end

lucy = Dog.new
lucy.name = "Lucy"
lucy.age = 4

rex = Dog.new
rex.name = "Rex"
rex.age = 2

puts lucy.to_s, rex.to_s

puts lucy, rex

This return value is the
format we'd like to see.

Lucy the dog, age 4
Rex the dog, age 2

Lucy the dog, age 4
Rex the dog, age 2

Animal

name
age

talk
move
report_age

Object

eql?
hash
to_s
...

Dog

to_s

Override!

Q: I tried this code in irb
instead of using the ruby
command. After I override to_s,
if I type lucy = Dog.new
into irb, I still see something like

"#<Dog:0x007fb2b50c4468>".
Why don't I see the dog's name and
age?

A: The values that irb shows you
are the result of calling inspect on
an object, not to_s. You won't see the
results of to_s until you set the name
and age, and pass the object to puts.

you are here 4 105

chapter title here

Your Ruby Toolbox

That's it for Chapter 3! You’ve added
inheritance to your tool box.

 � Any ordinary Ruby class can be used as a
superclass.

 � To define a subclass, simply specify a
superclass in the class definition.

 � Instance variables are not inherited
from a superclass, but the methods that
create and access instance variables are
inherited.

 � The super keyword can be used within
a subclass method to call the overridden
method of the same name on the
superclass.

 � If you don't specify arguments to the
super keyword, it takes all arguments
that the subclass method was called with,
and passes them on to the superclass
method.

 � The expression value of the super
keyword is the return value of the
superclass method it calls.

 � When defining a class, Ruby implicitly sets
the Object class as the superclass,
unless you specify one.

 � Almost every Ruby object has instance
methods from the Object class,
inherited either directly, or through another
superclass.

 � The to_s, methods,
instance_variables, and
class methods are all inherited from the
Object class.

Statements
Conditional stat

ements execute

the code the e
nclose if a con

dition

is met.

Loops execute t
he code they

enclose repeate
dly. They exit when

a condition is m
et.

Methods
Methods arguments can be made

optional by pro
viding default

values.

It's legal for a
 method name to

end in ?, !, or
 =.

Methods return
a value to thei

r

caller. You can
 specify a method's

return value w
ith a return

statement.

Classes
A class is a template for creat

ing

object instance
s.

An object's class
 defines what it

knows (its attribut
es), and what it

does (its instan
ce methods).

Inheritance
Inheritance let

s a subclass inh
erit

methods from a superclass.

A subclass can d
efine its own

methods in addi
tion to the

methods it inher
its.

A subclass can o
verride inherit

ed

methods, replaci
ng them with its

own version.

106 Chapter #

page goal header

this is a new chapter 107

That guy Jenkins sent out a
new car with a missing timing belt
last week. Whole thing fell apart!
Not me, though. I make sure all

the parts are there!

initializing instances4

Off to a Great Start

Right now, your class is a time bomb. Every instance you create starts out

as a clean slate. If you call certain instance methods before adding data, an error will be

raised that will bring your whole program to a screeching halt.

We’re going to show you a couple ways to create objects that are safe to use right away.

We’ll start with the initialize method, which lets you pass in a bunch of arguments to

set up an object’s data at the time you create it. Then we’ll show you how to write class

methods, which you can use to create and set up an object even more easily.

108 Chapter #

page goal header

Payroll at Chargemore
You've been tasked with creating a payroll system for Chargemore, a new
chain of department stores. They need a system that will print pay stubs for
their employees.

Chargemore employees are paid for two-week pay periods. Some employees
are paid a two-week portion of their annual salary, and some are paid for the
number of hours they work within a two-week period. For starters, though,
we're just going to focus on the salaried employees.

A pay stub needs to include the following information:

• The employee name

• The amount of pay an employee received during a two-week pay period

So… here's what the system will need to know for each employee:

• Employee name

• Employee salary

And here's what it will need to do:

• Calculate and print pay for a two-week period

Pay up!

@name = "Kara Byrd"
@salary = 45000

@name = "Ben Weber"
@salary = 50000

@name = "Amy Blake"
@salary = 50000

We'll set up attribute reader methods
for @name and @salary instance
variables, then add writer methods
(with validation). Then we'll add
a print_pay_stub instance
method that prints the employee's
name, and their pay for the period.

This sounds like the ideal place to
create an Employee class! Let's try
it, using the same techniques that we
covered back in Chapter 2.

Employee

name
salary

print_pay_stub

you are here 4 109

chapter title here

class Employee

 attr_reader :name, :salary

 def name=(name)
 if name == ""
 raise "Name can't be blank!"
 end
 @name = name
 end

 def salary=(salary)
 if salary < 0
 raise "A salary of #{salary} isn't valid!"
 end
 @salary = salary
 end

 def print_pay_stub
 puts "Name: #{@name}"
 pay_for_period = (@salary / 365) * 14
 puts "Pay This Period: $#{pay_for_period}"
 end

end

We need to create attribute
writer methods manually, so
we can validate the data. We
can create reader methods
automatically, though.

Report an error if the
name is blank.

Store the name in an
instance variable.

Report an error if the
salary is negative.

Store the salary in an
instance variable.

Print the employee name.

Print the amount paid.

Calculate a 14-day portion
of the employee's salary.

An Employee class
Here's some code to implement our Employee class...

(Yes, we realize that this doesn't account for leap years and holidays
and a host of other things that real payroll apps must consider. But we
wanted a print_pay_stub method that fits on one page.)

110 Chapter #

page goal header

Now that we've defined an Employee class, we can create new
instances, and assign to their name and salary attributes.

amy = Employee.new
amy.name = "Amy Blake"
amy.salary = 50000

Thanks to validation code in our name= method, we have protection
against the accidental assignment of blank names.

kara = Employee.new
kara.name = "" Error: in name=: Name can't be

blank! (RuntimeError)

Our salary= method has validation to ensure negative numbers
aren't assigned as a salary.

ben = Employee.new
ben.salary = -246 Error: in salary=: A salary

of -246 isn't valid!
(RuntimeError)

And when an Employee instance is properly set up, we can use the
stored name and salary to print a summary of the employee's pay
period.

amy.print_pay_stub Name: Amy Blake
Pay This Period: $1904 Close, but where

are the cents?
Hmmm… It's typical to display two decimal places when showing
currency, though. And did that calculation really come out to an even
dollar amount?

Before we go on to perfect our Employee class, it looks like we have
a bug to fix. And that will require us to go on a couple brief detours.
(But you'll learn some number formatting skills that you'll need later,
promise!)

1. Our employee pay is getting its decimal places chopped off. To fix
this, we'll need to look at the difference between Ruby's Float
and Fixnum numeric classes.

2. We don't want to display too many decimal places, either, so we'll
need to look at the format method to format our numbers
properly.

Creating new Employee instances

A Ruby Detour

Creating our class

Float and
Fixnum

Formatting
numbers

initialize
(Back on track!)

(You are here!)

you are here 4 111

chapter title here

A Ruby Detour

A division problem
We're working to make the perfect Employee class to help us
calculate payroll for the Chargemore department store. But there's a
little detail we have to take care of, first…

Name: Amy Blake
Pay This Period: $1904 Woah, hold up. This

is close, but where
are the cents? In
fact, this is off by
several dollars!

That's true. Doing the math on paper (or launching a calculator app,
if that's your thing) can confirm that Amy should be earning $1917.81,
rounded to the nearest cent. So where did that other $13.81 go?

To find out, let's launch irb and do the math ourselves, step by step.

First, let's calculate a day's pay.

>> 50000 / 365
=> 136

That's nearly a dollar a day missing, compared to doing the math by
hand:

Compare that to the answer we'd get if we multiplied the full daily pay...

>> 136 * 14
=> 1904

Annual salary, divided by
number of days in a year.

50,000 ÷ 365 = 136.9863…

136.9863 x 14 = 1917.8082…

This error is then compounded when we calculate fourteen days' pay:

So, we're nearly $14 off. Multiply that by many paychecks and many
employees, and you've got yourself an angry workforce. We're going to
have to fix this, and soon...

In irb:

112 Chapter #

page goal header

>> 50000 / 365 * 14
=> 1904 50,000 ÷ 365 x 14 = 1917.8082…

The problem here is that when dividing instances of the Fixnum class (a Ruby class that
represents integers), Ruby rounds fractional numbers down to the nearest whole number.

>> 1 / 2
=> 0

How can we know whether we're working with Fixnums? We can call the class instance
method on them. (Remember we talked about the Object class back in Chapter 3? The
class method is one of the instance methods inherited from Object.)

>> salary = 50000
=> 50000
>> salary.class
=> Fixnum

Division with Ruby's Fixnum class
The result of our Ruby expression to calculate 2 weeks of an employee's pay doesn't
match up with doing the math by hand...

It rounds the number because Fixnum instances aren't meant to store numbers with
decimal places. They're intended for use in places where only whole numbers make sense,
like counting employees in a department or the number of items in a shopping cart.
When you create a Fixnum, you're telling Ruby: "I expect to only be working with whole
numbers here. If anyone does math with you that results in a fraction, I want you to throw
those pesky decimal places away."

Or, if you'd rather save yourself the trouble, just remember that any number in your code
that doesn't have a decimal point in it will be treated as a Fixnum by Ruby.

Any number in your code that does have a decimal point in it gets treated as a Float (the
Ruby class that represents floating-point decimal numbers):

>> salary = 50000.0
=> 50000.0
>> salary.class
=> Float

If it's got a decimal point, it's a Float.
If it doesn't, it's a Fixnum.

273 273.4
Fixnum Float

A Ruby Detour

you are here 4 113

chapter title here

Division with Ruby's Float class

When doing division, make sure
at least one operand is a Float.

>> 50000 / 365
=> 136Should be 136.9863...

We loaded up irb, and saw that if we divide one Fixnum (integer) instance by another
Fixnum, Ruby rounds the result down.

The solution, then, is to use Float instances in the operation, which we can get by including
a decimal point in our numbers. If you do, Ruby will give you a Float instance back:

>> 50000.0 / 365.0
=> 136.986301369863
>> (50000.0 / 365.0).class
=> Float

It doesn’t even matter whether both the dividend and divisor are Float instances; Ruby will
give you a Float back as long as either operand is a Float.

>> 50000.0 / 365
=> 136.986301369863

It holds true for addition, subtraction, and multiplication as well: Ruby will give
you a Float if either operand is a Float:

>> 50000 + 1.5
=> 50001.5
>> 50000 - 1.5
=> 49998.5
>> 50000 * 1.5
=> 75000.0

When the first
operand is a...

And the second
operand is a...

The result
is a...

Fixnum Fixnum Fixnum

Fixnum Float Float

Float Fixnum Float

Float Float Float

And of course, with addition, subtraction, and multiplication, it doesn't matter whether both
operands are Fixnum instances, because there's no fractional number to lose in the result.
The only operation where it really matters is division. So, remember this rule:

Let's see if we can use this hard-won knowledge to fix our Employee class.

A Ruby Detour

114 Chapter #

page goal header

Fixing the salary rounding error in Employee

With this rule in mind, we can revise our Employee class to stop
truncating the decimals from employees' pay:

>> 50000 / 365.0
=> 136.986301369863

As long as one of the operands is a Float, Ruby won't truncate the
decimals from our division operation.

class Employee

 ...

 def print_pay_stub
 puts "Name: #{@name}"
 pay_for_period = (@salary / 365.0) * 14
 puts "Pay This Period: $#{pay_for_period}"
 end

end

We're omitting the attribute
reader/writer code for brevity.

Now, whether or not @salary is a
Float, we'll get a Float result.

Print the amount paid.

employee = Employee.new
employee.name = "Jane Doe"
employee.salary = 50000
employee.print_pay_stub

Using a Fixnum here is just fine!

Now we have a new problem, though: look what happens to the
output!

Name: Jane Doe
Pay This Period: $1917.8082191780823

A Ruby Detour

Creating our class

Float and
Fixnum

Formatting
numbers

initialize
(Back on track!)

You are here!

We're showing a little too much precision! Currency is generally
expected to be shown with just two decimal places, after all. So, before
we can go back to building the perfect Employee class, we need to
go on one more detour…

A Ruby Detour

down_arrows
downward_arrow
right_arrow
upward_arrow
left_arrow
up_arrows

you are here 4 115

chapter title here

Formatting Numbers for Printing

Our print_pay_stub method is displaying too many decimal
places. We need to figure out how to round the displayed pay to the
nearest penny (2 decimal places).

Name: Jane Doe
Pay This Period: $1917.8082191780823

To deal with these sort of formatting issues, Ruby provides the
format method.

Here's a sample of what this method can do. It may look a little
confusing, but we'll explain it all on the next few pages!

result = format("Rounded to two decimal places: %0.2f", 3.14159265)
puts result

Rounded to two decimal places: 3.14

So, it looks like format can help us limit our
displayed employee pay to the correct number of
places. The question is, how? To be able to use this
method effectively, we'll need to learn about two
features of format:

1. Format sequences (the little %0.2f above is a
format sequence)

2. Format sequence widths (that's the 0.2 in the
middle of the format sequence)

 We'll explain exactly what
those arguments to format
mean on the next few pages.

We know, those method calls look a little
confusing. We have a ton of examples
that should clear that confusion up. We're

going to focus on formatting decimal numbers,
because it's likely that will be the main thing you use
format for in your Ruby career.

A Ruby Detour

down_arrows
downward_arrow
right_arrow
upward_arrow
left_arrow
up_arrows

116 Chapter #

page goal header

Format sequences
The first argument to format is a string that will be used to format
the output. Most of it is formatted exactly as it appears in the string.
Any percent signs (%), however, will be treated as the start of a format
sequence, a section of the string that will be substituted with a value
in a particular format. The remaining arguments are used as values
for those format sequences.

The gumballs cost 23 cents each.
That will be $1.150000 please.

The letter following the percent sign indicates the type of value that's expected.
The most common types are:

A string: hello
An integer: 15
A float: 3.141500

We'll show how to fix this shortly.

Format
sequence.

Format
sequence.

Format
sequence.

%s string
%i integer
%f floating-point decimal

So %f is for floating-point decimal numbers... We can use that sequence type to
format the currency in our pay stubs.

Format sequence types

Up next, we'll look at a fix for that situation: the format sequence width.

A Ruby Detour

puts format("The %s cost %i cents each.", "gumballs", 23)
puts format("That will be $%f please.", 0.23 * 5)

puts format("A string: %s", "hello")
puts format("An integer: %i", 15)
puts format("A float: %f", 3.1415)

By itself, though, the %f sequence type won't help us. The results still show too
many decimal places.

puts format("$%f", 1917.8082191780823) $1917.808219

you are here 4 117

chapter title here

Here's the useful part of format sequences: they let you specify the width of the
resulting field.

Let's say we want to format some data in a plain-text table. We need to ensure the
formatted value fills a minimum number of spaces, so that the columns align properly.

You can specify the minimum width after the percent sign in a format sequence. If
the argument for that format sequence is shorter than the minimum width, it will be
padded with spaces until the minimum width is reached.

Format sequence width

 Product | Cost in Cents

 Stamps | 50
 Paper Clips | 5
 Tape | 99

No padding; the value already
fills the minimum width.

Padding!

Padding!

A Ruby Detour

And now we come to the part that's important for today's task: you can use format sequence
widths to specify the precision (the number of displayed digits) for floating point numbers.
Here's the format:

%4.3f

Start of the
format sequence.

Format
sequence type.

Minimum width of
entire number.

Width after
decimal point.

The minimum width of the entire number includes decimal places. If it's included, shorter
numbers will be padded with spaces at the start until this width is reached. If it's omitted, no
spaces will ever be added.

The width after the decimal point is the maximum number of digits to show. If a more precise
number is given, it will be rounded (up or down) to fit in the given number of decimal places.

puts format("%12s | %s", "Product", "Cost in Cents")

puts "-" * 30

puts format("%12s | %2i", "Stamps", 50)
puts format("%12s | %2i", "Paper Clips", 5)
puts format("%12s | %2i", "Tape", 99)

Print column headings.

The first field will
have a minimum width

of 12 characters.
No minimum width for
this second field.

Print a heading divider.

Minimum width of 12 again. Minimum width of 2.

118 Chapter #

page goal header

test_format "%7.3f"
test_format "%7.2f"
test_format "%7.1f"
test_format "%.1f"
test_format "%.2f"

Testing '%7.3f': 12.346
Testing '%7.2f': 12.35
Testing '%7.1f': 12.3
Testing '%.1f': 12.3
Testing '%.2f': 12.35

Rounded to 3 places.
Rounded to 2 places.
Rounded to 1 place.
Rounded to 1 place, no padding.
Rounded to 2 places, no padding.

That last format, "%.2f", will let us take floating-point numbers of
any precision and round them to two decimal places. (It also won't do
any unnecessary padding.) This format is ideal for showing currency,
and it's just what we need for our print_pay_stub method!

Format sequence width with floating-point numbers
A Ruby Detour

So when working with floating-point numbers, format sequence widths let us specify the number of
digits displayed before and after the decimal point. Could this be the key to fixing our pay stubs?

Here's a quick demonstration of various width values in action:

Previously, our calculated pay for our Employee class's print_pay_stub
method was displayed with excess decimal places:

salary = 50000
puts "$#{(salary / 365.0) * 14}" $1917.8082191780823

But now, we finally have a format sequence that will round a floating-point
number to two decimal places:

puts format("$%.2f", (salary / 365.0) * 14) $1917.81

Let's try using format in the print_pay_stub method.

class Employee
 ...
 def print_pay_stub
 puts "Name: #{@name}"
 pay_for_period = (@salary / 365.0) * 14
 formatted_pay = format("%.2f", pay_for_period)
 puts "Pay This Period: $#{formatted_pay}"
 end
end

$1917.81
$1150.68
$3068.49

All rounded to 2 places!

Get a string with the pay amount
rounded to 2 decimal places.

Print the formatted
amount string.

def test_format(format_string)
 print "Testing '#{format_string}': "
 puts format(format_string, 12.3456)
end

puts format("$%.2f", 1917.8082191780823)
puts format("$%.2f", 1150.6849315068494)
puts format("$%.2f", 3068.4931506849316)

you are here 4 119

chapter title here

A Ruby Detour

Using "format" to fix our pay stubs

Name: Amy Blake
Pay This Period: $1917.81

We had to make a couple of detours, but we've
finally got our Employee class printing pay
stubs as it should! Let's do a quick exercise to
review what we've learned, and then we can get
back to the business of perfecting our class...

amy = Employee.new
amy.name = "Amy Blake"
amy.salary = 50000
amy.print_pay_stub

We can test our revised print_pay_stub using the same values as before:

End of Ruby Detour

Creating our class

Float and
Fixnum

Formatting
numbers

initialize
(Back on track!)

You are here!

Excellent! No
more extra decimal places!

(And more importantly, no
more missing money!)

Look at each of these Ruby statements, and write down what you think the result will be.
Consider the result of the division operation, as well as the formatting that will be applied to it.
We've done the first one for you.

format "%.2f", 3 / 4.0

0.75
format "%.1f", 3 / 4.0

format "$%.2f", 3 / 4.0 format "%i", 3 / 4.0

format "%.2f", 3 / 4

120 Chapter #

page goal header

When we forget to set an object's attributes…
Now that you have the employee pay printing in the correct format,
you're puttering along, happily using your new Employee class to
process payroll. Until, that is, you create a new Employee instance,
and forget to set the name and salary attributes before calling
print_pay_stub:

Name:
in `print_pay_stub': undefined method
`/' for nil:NilClass

Error!

Woah! What happened? It's only natural that the name is empty; we forgot to set it.
But what's this "undefined method for nil" error? What the heck is this nil thing?

This sort of error is pretty common in Ruby, so let's take a few pages to understand it.

Not an error, but it's blank!
employee = Employee.new
employee.print_pay_stub

Let's alter the print_pay_stub method to print the
values of @name and @salary, so we can figure out
what's going on.

class Employee

 ...

 def print_pay_stub
 puts @name, @salary
 end

end

Print the values.

We'll restore the rest of
the code later.

Look at each of these Ruby statements, and write down what you think the result will be.
Consider the result of the division operation, as well as the formatting that will be applied to it.

format "%.2f", 3 / 4.0

0.75
format "%.1f", 3 / 4.0

0.8

format "$%.2f", 3 / 4.0

$0.75
format "%i", 3 / 4.0

0

format "%.2f", 3 / 4

0.00

The format sequence
specifies to display
two decimal places.

Parts of the string not
part of a format sequence
are output literally.

Value won't fit into specified
number of decimal places, so
it gets rounded.

Both division operands are integers. Result
gets rounded DOWN to an integer (0).

%i format sequence prints
an integer, so the argument
gets rounded down.

you are here 4 121

chapter title here

Two empty
lines!

employee = Employee.new
employee.print_pay_stub

Now, let's create a new Employee instance, and call the revised method:

Back in Chapter 1, we learned that the inspect and p methods can reveal
information that doesn't show up in ordinary output. Let's try again, using p:

class Employee
 ...
 def print_pay_stub
 p @name, @salary
 end
end

Print the values in debug format.

nil
nil Ah-HA!

Well, that wasn't very helpful. Maybe we're missing something, though.

employee = Employee.new
employee.print_pay_stub

We create another new instance, make another call to the instance method, and...

"nil" stands for nothing

Ruby has a special value, nil, that represents nothing. That is, it
represents the absence of a value.

puts nil.class NilClass

But if there's actually something there, how come we didn't see
anything in the output?

puts nil.to_s Empty string!

The puts and print methods automatically call to_s on an object to
convert it to a string for printing. That's why we got two blank lines when
we tried to use puts to print the values of @name and @salary; both
were set to nil, so we wound up printing two empty strings.

puts nil.inspect nil

It's because the to_s instance method from
NilClass always returns an empty string.

Just because nil represents nothing doesn't mean
it's actually nothing, though. Like everything else
in Ruby, it's an object, and it has its own class:

You may recall that the p method calls inspect on each object
before printing it. That's why the nil values in @name and @salary
appeared in the output once we called p on them.

Unlike to_s, the inspect instance method
from NilClass always returns the string "nil".

122 Chapter #

page goal header

"/" is a method
So, when you first create an instance of the Employee class, its @name
and @salary instance variables have a value of nil. The @salary
variable, in particular, causes problems if you call the print_pay_stub
method without setting it first:

Error: in `print_pay_stub': undefined method `/' for nil:NilClass

It's obvious from the error that the problem is related to the nil value. But
it says undefined method '/'… Is division really a method?

In Ruby, the answer is yes; most mathematical operators are implemented
as methods. When Ruby sees something like this in your code:

6 + 2

 …It converts it to a call to a method named + on the Fixnum object
6, with the object on the right of the + (that is, 2) as an argument:

Both forms are perfectly valid Ruby, and you can try running them yourself:

puts 6 + 2
puts 6.+(2)

8
8

"nil" value!

6.+(2)

A method call!
The other operand is
passed as an argument.

The same is true for most of the
other mathematical operators.

Even comparison operators are
implemented as methods.

puts 7 - 3
puts 7.-(3)
puts 3.0 * 2
puts 3.0.*(2)
puts 8.0 / 4.0
puts 8.0./(4.0)

puts 9 < 7
puts 9.<(7)
puts 9 > 7
puts 9.>(7)

4
4
6.0
6.0
2.0
2.0

false
false
true
true

But while the Fixnum and Float classes define these operator
methods, NilClass does not.

puts nil./(365.0) Error: undefined method `/' for nil:NilClass

In fact, nil doesn't define most of the instance methods you see on other Ruby objects.

And why should it? If you're doing mathematical operations with nil, it's almost certainly
because you forgot to assign a value to one of the operands. You want an error to be raised,
to bring your attention to the problem.

It was a mistake when we forgot to set a salary for an Employee, for example. And now
that we understand the source of this error, it's time to prevent it from happening again.

you are here 4 123

chapter title here

The "initialize" method
We tried to call print_pay_stub on an instance of our
Employee class, but we got nil when we tried to access the @name
and @salary instance variables.

Chaos ensued.

Here's the method where the nil values caused so much trouble:

def print_pay_stub
 puts "Name: #{@name}"
 pay_for_period = (@salary / 365.0) * 14
 formatted_pay = format("$%.2f", pay_for_period)
 puts "Pay This Period: #{formatted_pay}"
end

Results in call to "/"
(actually an instance method)
on @salary. Since it's nil,
raises an error.

Results in call to to_s on @name.
Since it's nil, prints an empty string.

employee = Employee.new
employee.print_pay_stub

Name:
in `print_pay_stub': undefined method
`/' for nil:NilClass

Error!

Not an error, but it's blank!

Here's the key problem… At the time we create an Employee instance,
it's in an invalid state; it's not safe to call print_pay_stub until you set
its @name and @salary instance variables.

If we could set @name and @salary at the same time as we create an
Employee instance, it would reduce the potential for errors.

Ruby provides a mechanism to help with this situation: the initialize
method. The initialize method is your chance to step in and make
the object safe to use, before anyone else attempts to call methods on it.

class MyClass
 def initialize
 puts "Setting up new instance!"
 end
end

When you call MyClass.new, Ruby allocates some memory to hold
a new MyClass object, then calls the initialize instance method
on that new object.

MyClass.new Setting up new instance!

Employee

name
salary

print_pay_stub

124 Chapter #

page goal header

Let's add an initialize method that
will set up @name and @salary for
new Employee instances before any
other instance methods are called.

Employee safety with "initialize"
class Employee

 attr_reader :name, :salary

 def name=(name)
 if name == ""
 raise "Name can't be blank!"
 end
 @name = name
 end

 def salary=(salary)
 if salary < 0
 raise "A salary of #{salary} isn't valid!"
 end
 @salary = salary
 end

 def initialize
 @name = "Anonymous"
 @salary = 0.0
 end

 def print_pay_stub
 puts "Name: #{@name}"
 pay_for_period = (@salary / 365.0) * 14
 formatted_pay = format("$%.2f", pay_for_period)
 puts "Pay This Period: #{formatted_pay}"
 end

end

Set the @name instance variable.

Set the @salary instance variable.

Our new method.

Now that we've set up an initialize method, @name and @salary
will already be set for any new Employee instance. It'll be safe to call
print_pay_stub on them immediately!

employee = Employee.new
employee.print_pay_stub Name: Anonymous

Pay This Period: $0.00

you are here 4 125

chapter title here

Arguments to "initialize"

Our initialize method now sets a default @name of "Anonymous" and a default @salary
of 0.0. It would be better if we could supply a value other than these defaults.

It's for situations like this that any arguments to the new method are passed on to initialize.

class MyClass
 def initialize(my_param)
 puts "Got a parameter from 'new': #{my_param}"
 end
end

MyClass.new("hello")

Forwarded to "initialize"!

Got a parameter from 'new': hello

We can use this feature to let the caller of Employee.new specify what the initial name
and salary should be. All we have to do is take name and salary parameters, and use
them to set the @name and @salary instance variables.

class Employee

 ...

 def initialize(name, salary)
 @name = name
 @salary = salary
 end

 ...

end

Use the "name" parameter to set the "@name" instance variable.

Name: Amy Blake
Pay This Period: $1917.81

Of course, once you set it up this way, you'll need to be careful. If you don't pass any
arguments to new, there will be no arguments to forward on to initialize. At that
point, you'll get the same result that happens any time you call a Ruby method with the
wrong number of arguments: an error.

employee = Employee.new Error: in `initialize': wrong number
of arguments (0 for 2)

We'll look at a solution for this in a moment.

Use the "salary" parameter to set the "@salary" instance variable.

And just like that, we can set @name and @salary via arguments to Employee.new!

employee = Employee.new("Amy Blake", 50000)
employee.print_pay_stub

Forwarded to "initialize"!

126 Chapter #

page goal header

Using optional parameters with "initialize"
We started with an initialize
method that set default values for our
instance variables, but didn't let you
specify your own…

Then we added parameters to initialize, which meant that you
had to specify your own name and salary values, and couldn't rely on
the defaults…

class Employee
 ...
 def initialize(name, salary)
 @name = name
 @salary = salary
 end
 ...
end

Use the "name" parameter to set the "@name" instance variable.

Use the "salary" parameter to set the "@salary" instance variable.

class Employee
 ...
 def initialize
 @name = "Anonymous"
 @salary = 0.0
 end
 ...
end

Set the @name instance variable.

Set the @salary instance variable.

Can we have the best of both worlds?

Yes! Since initialize is an ordinary method, it can utilize all the
features of ordinary methods. And that includes optional parameters.
(Remember those from Chapter 2?)

We can specify default values when declaring the parameters. When
we omit an argument, we'll get the default value. Then, we just assign
those parameters to the instance variables normally.

class Employee
 ...
 def initialize(name = "Anonymous", salary = 0.0)
 @name = name
 @salary = salary
 end
 ...
end

With this change in place, we can omit one or both arguments, and get the appropriate defaults!

Employee.new("Jane Doe", 50000).print_pay_stub
Employee.new("Jane Doe").print_pay_stub
Employee.new.print_pay_stub

Name: Jane Doe
Pay This Period: $1917.81
Name: Jane Doe
Pay This Period: $0.00
Name: Anonymous
Pay This Period: $0.00

you are here 4 127

chapter title here

Pool Puzzle
Your job is to take code snippets from the pool and place them into the blank lines in the

code. Don't use the same snippet more than once, and you won’t need to use all the
snippets. Your goal is to make code that will run and produce the output shown.

Note: each thing from
the pool can only be
used once!

class Car

 def ()
 = engine
 end

 def rev_engine
 @engine.make_sound
 end

end

class Engine

 def initialize(=)
 @sound = sound
 end

 def make_sound
 puts @sound
 end

end

engine = Engine.
car = Car.new()
car.rev_engine

Vroom!!
File Edit Window Help

Output:

initialize

create

engine

@engine

@soundsound

"Vroom!!"

new

engine

128 Chapter #

page goal header

Q: What's the difference between
initialize methods in Ruby and
constructors from other object-oriented
languages?

A: They both serve the same basic
purpose - to let the class prepare new
instances for use. Whereas constructors are
a special structure in most other languages,
though, Ruby's initialize is just an
ordinary instance method.

Q: Why do I have to call
MyClass.new? Can't I just call
initialize directly?

A: The new method is needed to actually
create the object; initialize just
sets up the new object's instance variables.
Without new, there would be no object to
initialize! For this reason, Ruby doesn't allow
you to call the initialize method
directly from outside an instance. (So, we
oversimplified a little bit; initialize
does differ from an ordinary instance method
in one respect.)

Q: Does MyClass.new always call
initialize on the new object?

A: Yes, always.

Q: Then how have we been calling new
on the classes we've made so far? They
didn't have initialize methods!

A: Actually, they did have one... All Ruby
classes inherit an initialize method
from the Object superclass.

Q: But if Employee inherited an
initialize method, why did we have
to write our own?

A: The initialize from Object
takes no arguments, and basically does
nothing. It won't set up any instance
variables for you; we had to override it with
our own version in order to do that.

Q: Can I return a value from an
initialize method?

A: You can, but Ruby will ignore it. The
initialize method is intended solely
for setting up new instances of your class,
so if you need a return value, you should do
that elsewhere in your code.

The new method is
needed to actually
create the object;
initialize just
sets up the new
object's instance
variables.

Pool Puzzle
Solution

Vroom!!
File Edit Window Help Output:

class Engine

 def initialize(sound = "Vroom!!")
 @sound = sound
 end

 def make_sound
 puts @sound
 end

end

engine = Engine.new
car = Car.new(engine)
car.rev_engine

class Car

 def initialize(engine)
 @engine = engine
 end

 def rev_engine
 @engine.make_sound
 end

end

you are here 4 129

chapter title here

"initialize" does an end-run around our validation

You remember our name= attribute writer
method, which prevents the assignment of an
empty string as an Employee name:

ben = Employee.new
ben.name = ""

Error: in `name=': Name can't be blank! (RuntimeError)

There's also our salary= attribute writer method, which ensures that
negative numbers aren't assigned as a salary:

kara = Employee.new
kara.salary = -246

Error: in `salary=': A salary of -246 isn't valid! (RuntimeError)

@name = "Steve Wilson (HR Manager)"
@salary = 80000

This new initialize method is great. It
lets us make sure that an employee's name
and salary are always set to something. But
remember the validation in our accessor
methods? The initialize method skips it
entirely, and we're seeing bad data!

We have bad news for you… Since your initialize method
assigns directly to the @name and @salary instance variables, bad
data has a new way to sneak in!

employee = Employee.new("", -246)
employee.print_pay_stub Name:

Pay This Period: $-9.44
Negative
paycheck!

Blank name in
your output!

130 Chapter #

page goal header

We could get our initialize
method to validate its
parameters by adding the
same validation code to the
initialize method...

But duplicating code like that is a problem. What if we changed the
initialize validation code later, but forgot to update the name=
method? Rubyists try to follow the DRY principle, where DRY stands for
Don't Repeat Yourself. It means that you should avoid duplicating code
wherever possible, as it's likely to result in bugs.

What if we called the name= and salary= methods from within the
initialize method? That would let us set the @name and @salary
instance variables. It would also let us run the validation code, without
duplicating it!

class Employee
 ...
 def name=(name)
 if name == ""
 raise "Name can't be blank!"
 end
 @name = name
 end

 def salary=(salary)
 if salary < 0
 raise "A salary of #{salary} isn't valid!"
 end
 @salary = salary
 end

 def initialize(name = "Anonymous", salary = 0.0)
 if name == ""
 raise "Name can't be blank!"
 end
 @name = name
 if salary < 0
 raise "A salary of #{salary} isn't valid!"
 end
 @salary = salary
 end
 ...
end

Duplicated
code!

Duplicated
code!

"initialize" and validation

you are here 4 131

chapter title here

Calls between methods on the same instance with "self"
We need to call the name= and salary= attribute writer methods
from within the initialize method of the same object. That will let
us run the writer methods' validation code before we set the @name
and @salary instance variables.

Unfortunately, code like this won't work…

class Employee
 ...
 def initialize(name = "Anonymous", salary = 0.0)
 name = name
 salary = salary
 end
 ...
end

amy = Employee.new("Amy Blake", 50000)
amy.print_pay_stub

Doesn't work - Ruby thinks
you're assigning to a variable!

Name:
in `print_pay_stub': undefined method
`/' for nil:NilClass (NoMethodError)

@name and @salary are nil again!

The code in the initialize method treats name= and salary= not as calls to the
attribute writer methods, but as re-setting the name and salary local variables to the
same values they already contain! (If that sounds like a useless and nonsensical thing to do,
that's because it is.)

What we need to do is make it clear to Ruby that we intend to call the name= and
salary= instance methods. And to call an instance method, we usually use the dot
operator.

But we're inside the initialize instance method… what would we put to the left of
the dot operator?

We can't use the amy variable; it would be silly to refer to one instance of the class within
the class itself. Besides, amy is out of scope within the initialize method.

class Employee
 ...
 def initialize(name = "Anonymous", salary = 0.0)
 amy.name = name
 amy.salary = salary
 end
 ...
end

amy = Employee.new("Amy Blake", 50000)

Error: in `initialize': undefined local variable or method `amy'

Not in scope
here!

132 Chapter #

page goal header

Calls between methods on the same instance with "self" (cont.)
We need something to put to the left of the dot operator, so that we can call
our Employee class's name= and salary= attribute accessor methods
within our initialize method. The problem is, what do we put there?
How do you refer to the current instance from inside an instance method?

Ruby has an answer: the self keyword. Within instance methods,
self always refers to the current object.

class Employee
 ...
 def initialize(name = "Anonymous", salary = 0.0)
 amy.name = name
 amy.salary = salary
 end
 ...
end

amy = Employee.new("Amy Blake", 50000)

Not in scope
here!

class MyClass
 def first_method
 puts "Current instance within first_method: #{self}"
 end
end

my_object = MyClass.new
puts "my_object refers to this object: #{my_object}"
my_object.first_method

We can demonstrate this with a simple class:

If we create an instance and call first_method on it, we'll see that
inside the instance method, self refers to the object the method is
being called on.

my_object refers to this object: #<MyClass:0x007f91fb0ae508>
Current instance within first_method: #<MyClass:0x007f91fb0ae508>

Same
object!

The string representations of my_object and self include a
unique identifier for the object. (We'll learn more about this much
later, in the chapter on references.) The identifiers are the same, so it's
the same object!

you are here 4 133

chapter title here

Calls between methods on the same instance with "self" (cont.)

class MyClass
 def first_method
 puts "Current instance within first_method: #{self}"
 self.second_method
 end

 def second_method
 puts "Current instance within second_method: #{self}"
 end
end

my_object = MyClass.new
my_object.first_method

We can also use self with the dot operator to call a second instance
method from inside the first one.

Current instance within first_method: #<MyClass:0x007ffd4b077510>
Current instance within second_method: #<MyClass:0x007ffd4b077510>

Same
object!

Calls here!

Now that we have self to use the dot operator on, we can make it
clear to Ruby that we want to call the name= and salary= instance
methods, not to set the name and salary variables…

class Employee
 ...
 def initialize(name = "Anonymous", salary = 0.0)
 self.name = name
 self.salary = salary
 end
 ...
end

DEFINITELY a call to the "name=" method.

Name: Amy Blake
Pay This Period: $1917.81

DEFINITELY a call to
the "salary=" method.

amy = Employee.new("Amy Blake", 50000)
amy.print_pay_stub

Let's try calling our new constructor and see if it worked!

134 Chapter #

page goal header

Success! Thanks to self and the dot operator, it's now clear to Ruby
(and everyone else) that we're making calls to the attribute writer
methods, not assigning to variables.

And since we're going through the accessor methods, that means the
validation works, without any duplicated code!

employee = Employee.new("", 50000)

Error: in `name=': Name can't be blank!

employee = Employee.new("Jane Doe", -99999)

Error: in `salary=': A salary of -99999 isn't valid!

No more blank names
and negative salaries for
our new employees? And
it won't delay the payroll
project? Nice job!

Calls between methods on the same instance with "self" (cont.)

you are here 4 135

chapter title here

When "self" is optional
Right now, our print_pay_stub method accesses the @name and
@salary instance variables directly:

class Employee

 def print_pay_stub
 puts "Name: #{@name}"
 pay_for_period = (@salary / 365.0) * 14
 formatted_pay = format("$%.2f", pay_for_period)
 puts "Pay This Period: #{formatted_pay}"
 end

end

But we defined name and salary attribute reader methods in our
Employee class; we could use those instead of accessing the instance
variables directly. (That way, if you ever change the name method to
display last name first, or change the salary method to calculate
salary according to an algorithm, the print_pay_stub code won't
need to be updated.)

class Employee

 attr_reader :name, :salary

 ...

 def print_pay_stub
 puts "Name: #{self.name}"
 pay_for_period = (self.salary / 365.0) * 14
 formatted_pay = format("$%.2f", pay_for_period)
 puts "Pay This Period: #{formatted_pay}"
 end

end

Employee.new("Amy Blake", 50000).print_pay_stub Name: Amy Blake

Pay This Period: $1917.81

We can use the self keyword and the dot operator when calling
name and salary, and it will work just fine:

136 Chapter #

page goal header

As we saw in the previous section, you have to include the self
keyword when calling attribute writer methods, or Ruby will mistake
the = for a variable assignment. But for any other kind of instance
method call, you can leave self off, if you want.

But Ruby has a rule that can save us a little typing when calling from
one instance method to another... If you don't specify a receiver using
the dot operator, the receiver defaults to the current object, self.

Name: Amy Blake
Pay This Period: $1917.81

Still works!

class Employee
 ...
 def print_pay_stub
 puts "Name: #{name}"
 pay_for_period = (salary / 365.0) * 14
 formatted_pay = format("$%.2f", pay_for_period)
 puts "Pay This Period: #{formatted_pay}"
 end
 ...
end

"self" omitted, still works!

"self" omitted, still works!

Employee.new("Amy Blake", 50000).print_pay_stub

When "self" is optional (cont.)

you are here 4 137

chapter title here

Employee

name

print_name

SalariedEmployee

salary

print_pay_stub

HourlyEmployee

hourly_wage
hours_per_week

print_pay_stub

Implementing hourly employees through inheritance
The Employee class you've created for Chargemore is working great!
It prints accurate pay stubs that are formatted properly, and thanks
to the initialize method you wrote, it's really easy to create new
Employee instances.

But, at this point, it only handles salaried employees. It's time to look
at adding support for employees that are paid by the hour.

The requirements for hourly employees are basically the same as for
salaried ones; we need to be able to print pay stubs that include their
name and the amount paid. The only difference is the way that we
calculate their pay. For hourly employees, we multiply their hourly
wage by the number of hours they work per week, then double that
amount to get two weeks' worth.

hourly_wage * hours_per_week * 2
Hourly employee pay calculation formula

(salary / 365.0) * 14
Salaried employee pay calculation formula

Since salaried and hourly employees are so similar, it makes sense to
put the shared functionality in a superclass. Then, we'll make two
subclasses that hold the different pay calculation logic.

Both subclasses will inherit
the "name" attribute.

Both subclasses will
inherit this method.

Will print the name
using "print_name",
then print 2 weeks'
worth of salary.

Will print the name
using "print_name",
then print 2 weeks'
worth of hourly wages.

138 Chapter #

page goal header

Let's start by ensuring the common logic between
SalariedEmployee and HourlyEmployee stays in the
Employee superclass.

We'll move the logic to calculate
pay for salaried employees to the
SalariedEmployee class, but
we'll call the inherited print_name
method to print the employee name.

class SalariedEmployee < Employee

 attr_reader :salary

 def salary=(salary)
 # Code to validate and set @salary
 end

 def print_pay_stub
 print_name
 pay_for_period = (salary / 365.0) * 14
 formatted_pay = format("$%.2f", pay_for_period)
 puts "Pay This Period: #{formatted_pay}"
 end

end

This code is the same as
we had in the old Employee
print_pay_stub method.

Calls print_name method
inherited from superclass.

With those changes in place, we can create a new
SalariedEmployee instance, set its name and salary, and print a
pay stub as before:

salaried_employee = SalariedEmployee.new
salaried_employee.name = "Jane Doe"
salaried_employee.salary = 50000
salaried_employee.print_pay_stub Name: Jane Doe

Pay This Period: $1917.81

Since pay stubs for both salaried and
hourly employees need to include
their names, we'll leave the name
attribute in the superclass, for the
subclasses to share. We'll move
the code that prints the name into
the print_name method in the
superclass.

class Employee

 attr_reader :name

 def name=(name)
 # Code to validate and set @name
 end

 def print_name
 puts "Name: #{name}"
 end

end

We'll be omitting all
attribute accessor
code for brevity.

Remember, this is the same
as a call to self.name.

Implementing hourly employees through inheritance (cont.)

you are here 4 139

chapter title here

Now, we'll build a new HourlyEmployee class. It's just like
SalariedEmployee, except that it holds an hourly wage and
number of hours worked per week, and uses those to calculate pay
for a two-week period. As with SalariedEmployee, storing and
printing the employee name is left up to the Employee superclass.

class HourlyEmployee < Employee

 attr_reader :hourly_wage, :hours_per_week

 def hourly_wage=(hourly_wage)
 # Code to validate and set @hourly_wage
 end

 def hours_per_week=(hours_per_week)
 # Code to validate and set @hours_per_week
 end

 def print_pay_stub
 print_name
 pay_for_period = hourly_wage * hours_per_week * 2
 formatted_pay = format("$%.2f", pay_for_period)
 puts "Pay This Period: #{formatted_pay}"
 end

end

And now we can create an HourlyEmployee instance. Instead of
setting a salary, we set an hourly wage and number of hours per week.
Those values are then used to calculate the pay stub amount.

hourly_employee = HourlyEmployee.new
hourly_employee.name = "John Smith"
hourly_employee.hourly_wage = 14.97
hourly_employee.hours_per_week = 30
hourly_employee.print_pay_stub Name: John Smith

Pay This Period: $898.20

That wasn't bad at all! Through use of inheritance, we've implemented pay stubs
for hourly employees, kept pay stubs for salaried employees, and minimized code
duplication between the two.

We've lost something in the shuffle, though—our initialize method. We used
to be able to set up an Employee object's data at the time we created it, and these
new classes won't let us do that. We'll have to add initialize methods back in.

Implementing hourly employees through inheritance (cont.)

140 Chapter #

page goal header

Restoring "initialize" methods
To make SalariedEmployee and HourlyEmployee objects
that are safe to work with as soon as they're created, we'll need to add
initialize methods to those two classes.

Employee

name

print_name

SalariedEmployee

salary

initialize
print_pay_stub

HourlyEmployee

hourly_wage
hours_per_week

initialize
print_pay_stub

New! New!

As we did with the Employee class before, our
initialize methods will need to accept a
parameter for each object attribute we want to set. The
initialize method for SalariedEmployee
will look just like it did for the old Employee class
(since the attributes are the same), but initialize
for HourlyEmployee will accept a different set of
parameters (and set different attributes).

class SalariedEmployee < Employee
 ...
 def initialize(name = "Anonymous", salary = 0.0)
 self.name = name
 self.salary = salary
 end
 ...
end

class HourlyEmployee < Employee
 ...
 def initialize(name = "Anonymous", hourly_wage = 0.0, hours_per_week = 0.0)
 self.name = name
 self.hourly_wage = hourly_wage
 self.hours_per_week = hours_per_week
 end
 ...
end

This is just like the
initialize method for
the old Employee class.

This method
needs to
accept 3
parameters,
and set 3
attributes.

Again, we make
parameters optional by
providing defaults.

With our initialize methods
added, we can once again pass
arguments to the new method for
each class. Our objects will be ready
to use as soon as they're created.

salaried_employee = SalariedEmployee.new("Jane Doe", 50000)
salaried_employee.print_pay_stub

hourly_employee = HourlyEmployee.new("John Smith", 14.97, 30)
hourly_employee.print_pay_stub

Name: Jane Doe
Pay This Period: $1917.81
Name: John Smith
Pay This Period: $898.20

you are here 4 141

chapter title here

Inheritance and "initialize"
There's one small weakness in our new initialize methods, though: the
code to set the employee name is duplicated between our two subclasses.

class SalariedEmployee < Employee
 ...
 def initialize(name = "Anonymous", salary = 0.0)
 self.name = name
 self.salary = salary
 end
 ...
end

class HourlyEmployee < Employee
 ...
 def initialize(name = "Anonymous", hourly_wage = 0.0, hours_per_week = 0.0)
 self.name = name
 self.hourly_wage = hourly_wage
 self.hours_per_week = hours_per_week
 end
 ...
end

Duplicated in SalariedEmployee!*

* Okay, we realize it's just one line of duplicated code. But the technique
we're about to show you will work for much larger amounts of duplication.

In all other aspects of our subclasses, we
delegate handling of the name attribute
to the Employee superclass. We define
the reader and writer methods there. We
even print the name via the
print_name method, which the
subclasses call from their respective
print_pay_stub methods.

…But we don't do this for initialize. Could we?

class Employee

 attr_reader :name

 def name=(name)
 # Code to validate and set @name
 end

 def print_name
 puts "Name: #{name}"
 end

end

Superclass holds the
"name" attribute.

Superclass holds shared
code to print the name.

Yes! We've said it before, and we'll say it again, initialize is just
an ordinary instance method. That means that it gets inherited like any
other, that means it can be overridden like any other, and it means
that overriding methods can call it via super like any other. We'll
demonstrate on the next page.

142 Chapter #

page goal header

Employee

name

initialize
print_name

SalariedEmployee

salary

initialize
print_pay_stub

HourlyEmployee

hourly_wage
hours_per_week

initialize
print_pay_stub

To eliminate the repeated name setup code in our Employee
subclasses, we can move the name handling to an initialize
method in the superclass, then have the subclass initialize
methods call it with super. SalariedEmployee will keep the
logic to set up a salary, HourlyEmployee will keep the logic to
set up an hourly wage and hours per week, and the two classes can
delegate the shared logic for name to their shared superclass.

New!

First, let's try moving the name handling from the
initialize method in SalariedEmployee to
the Employee class.

Trying to use this revised initialize method reveals a problem,
though…

salaried_employee = SalariedEmployee.new("Jane Doe", 50000)
salaried_employee.print_pay_stub

Error in initialize: wrong number of arguments (2 for 0..1)

class Employee
 ...
 def initialize(name = "Anonymous")
 self.name = name
 end
 ...
end

class SalariedEmployee < Employee
 ...
 def initialize(name = "Anonymous", salary = 0.0)
 super
 self.salary = salary
 end
 ...
end

New initialize method that
handles only the name!

Attempt to call "initialize" in
Employee to set up the name.

"super" and "initialize"

you are here 4 143

chapter title here

class HourlyEmployee < Employee
 ...
 def initialize(name = "Anonymous", hourly_wage = 0.0, hours_per_week = 0.0)
 super(name)
 self.hourly_wage = hourly_wage
 self.hours_per_week = hours_per_week
 end
 ...
end

Oops! We forgot a key detail about super that we learned earlier—if you don't specify
a set of arguments, it calls the superclass method with the same set of arguments that
the subclass method received. (This is true when using super in other instance methods,
and it's true when using super within initialize.) The initialize method in
SalariedEmployee received two parameters, and super passed them both on to the
initialize method in Employee. (Even though it only accepts one argument.)

The fix, then, is to specify which parameter we want to pass on: the name parameter.

Call "initialize" in Employee,
passing only the name.

class SalariedEmployee < Employee
 ...
 def initialize(name = "Anonymous", salary = 0.0)
 super(name)
 self.salary = salary
 end
 ...
end

Call "initialize" in Employee,
passing only the name.

Let's try to initialize a new SalariedEmployee again…

salaried_employee = SalariedEmployee.new("Jane Doe", 50000)
salaried_employee.print_pay_stub

Name: Jane Doe
Pay This Period: $1917.81

It worked! Let's make the same changes to the HourlyEmployee class…

hourly_employee = HourlyEmployee.new("John Smith", 14.97, 30)
hourly_employee.print_pay_stub

Name: John Smith
Pay This Period: $898.20

Previously, we used super within our print_pay_stub methods in SalariedEmployee
and HourlyEmployee to delegate printing of the employee name to the Employee
superclass. Now, we've just done the same thing with the initialize method, allowing the
superclass to handle setting of the name attribute.

Why does it work? Because initialize is an instance method just like any other. Any feature
of Ruby that you can use with an ordinary instance method, you can use with initialize.

"super" and "initialize" (cont.)

144 Chapter #

page goal header

Q: If I override initialize in a subclass, does the
superclass's initialize method run when the overriding
initialize method runs?

A: Not unless you explicitly call it with the super keyword, no.
Remember, in Ruby, initialize is just an ordinary method,
like any other. If you call the move method on a Dog instance,
does move from the Animal class get run as well? No, not
unless you use super. It's no different with the initialize
method.

Ruby is not the same as many other object-oriented languages,
which automatically call the superclass's constructor before calling
the subclass constructor.

Q: If I use super to call the superclass's initialize
method explicitly, does it have to be the first thing I do in the
subclass's initialize method?

A: If your subclass depends on instance variables that are set up
by the superclass's initialize method, then you may want to
invoke super before doing anything else. But Ruby doesn't require
it. As with other methods, you can invoke super anywhere you
want within initialize.

Q: You say the superclass's initialize method doesn't
get run unless you call super… If that's true, then how does
@last_name get set in this sample?

 class Parent
 attr_accessor :last_name
 def initialize(last_name)
 @last_name = last_name
 end
 end

 class Child < Parent
 end

 child = Child.new("Smith")
 puts child.last_name

A: Because initialize is inherited from the Parent
class. With Ruby instance methods, you only need to call super
to invoke the parent class's method if you want it to run, and
you've overridden it in the subclass. If you haven't overridden it,
then the inherited method is run directly. This works the same for
initialize as it does for any other method.

you are here 4 145

chapter title here

Code Magnets
A Ruby program is all scrambled up on the fridge. Can you
reconstruct the code snippets to make a working superclass and
subclass, so the sample code below can execute and produce the
given output?

boat = PowerBoat.new("Guppy", "outboard")
boat.info

Sample code: Output:

Name: Guppy
Motor Type: outboard

File Edit Window Help

initializeclass

def

end end

Boat

@name = name

(name)

(name, motor_type)

PowerBoat < Boat initialize

info

def def

end

class

super

puts "Name: #{@name}"

(name)

end end

@motor_type = motor_type

puts "Motor Type: #{@motor_type}"

146 Chapter #

page goal header

Code Magnets Solution
A Ruby program is all scrambled up on the fridge. Can you
reconstruct the code snippets to make a working superclass and
subclass, so the sample code below can execute and produce the
given output?

boat = PowerBoat.new("Guppy", "outboard")
boat.info

Sample code: Output:

Name: Guppy
Motor Type: outboard

File Edit Window Help

initialize

class

def

end

end

Boat

@name = name

(name) (name, motor_type)

PowerBoat < Boat

initialize

info

def

def

end

class

super

puts "Name: #{@name}"

(name)

end

end

@motor_type = motor_type

puts "Motor Type: #{@motor_type}"

you are here 4 147

chapter title here

Same class, same attribute values
With your HourlyEmployee class complete, Chargemore is
ready to begin a hiring blitz to staff its new stores. Here's the set of
employees they need created for their first store downtown:

ivan = HourlyEmployee.new("Ivan Stokes", 12.75, 25)
harold = HourlyEmployee.new("Harold Nguyen", 12.75, 25)
tamara = HourlyEmployee.new("Tamara Wells", 12.75, 25)
susie = HourlyEmployee.new("Susie Powell", 12.75, 25)

edwin = HourlyEmployee.new("Edwin Burgess", 10.50, 20)
ethel = HourlyEmployee.new("Ethel Harris", 10.50, 20)

angela = HourlyEmployee.new("Angela Matthews", 19.25, 30)
stewart = HourlyEmployee.new("Stewart Sanchez", 19.25, 30)

If you look at the above code, you'll probably notice there are large
groups of objects where similar arguments are passed to the new
method. There's a good reason for this: the first group are cashiers for
the new store, the second group are janitors, and the third group are
security guards.

Chargemore starts all new cashiers off at the same base pay and
number of hours per week. Janitors get a different rate and number of
hours than cashiers, but it's the same for all janitors. And the same is
true for security guards. (Individuals may get raises later, depending on
performance, but they all start out the same.)

The upshot is that there's a lot of repetition of arguments in those
calls to new, and a lot of chances to make a typo. And this is just the
first wave of hiring, for the first Chargemore store, so things can only
get worse. Seems like we can make this easier.

Ruby lets us use as many
space characters as we
want, so we've aligned this
code for easier reading.

148 Chapter #

page goal header

An inefficient factory method
When we need to make many instances of a class that have similar data, you can often save
some repetition by making a factory method to create objects pre-populated with the needed
attribute values. (Factory methods are a programming pattern that can be used in any
object-oriented language, not just Ruby.)

But using only the tools we have now, any factory method we make will be inefficient at best.

class HourlyEmployee
 ...
 def turn_into_cashier
 self.hourly_wage = 12.75
 self.hours_per_week = 25
 end
 ...
end

ivan = HourlyEmployee.new("Ivan Stokes")
ivan.turn_into_cashier
ivan.print_pay_stub Name: Ivan Stokes

Pay This Period: $637.50

This works, yes. So what's so inefficient about it? Let's look at our initialize
method (which of course has to run when we create a new HourlyEmployee) again…

class HourlyEmployee
 ...
 def initialize(name = "Anonymous", hourly_wage = 0, hours_per_week = 0)
 super(name)
 self.hourly_wage = hourly_wage
 self.hours_per_week = hours_per_week
 end
 ...
end

We're setting the hourly_wage and hours_per_week attributes within
initialize, then immediately turning around and setting them again within
turn_into_cashier!

This is inefficient for Ruby, but there's potential for it to be inefficient for us, too. What
if we didn't have default parameters for hourly_wage and hours_per_week on
initialize? Then, we'd have to specify the arguments we're throwing away!

ivan = HourlyEmployee.new("Ivan Stokes", 0, 0)
ivan.turn_into_cashier

That's the problem with writing factory methods as instance methods: we're trying
to make a new instance of the class, but there has to already be an instance to run the
methods on! There must be a better way…

Fortunately, there is! Up next, we're going to learn about class methods.

To demonstrate what we mean,
let's try making a method to set
up new HourlyEmployee
objects with the default pay and
hours per week for cashiers.

We won't use either
of these values!

Set hourly wage.

Set hourly wage.

Set hours per week.

Set hours per week.

you are here 4 149

chapter title here

Class methods
You don't have an instance of a class, but you need one. And you need a
method to set it up for you. Where do you put that method?

You could stick it off by itself in some little Ruby source file, but it would
be better to keep it together with the class that it makes instances of. You
can't make it an instance method on that class, though. If you had an
instance of the class, you wouldn't need to make one, now would you?

It's for situations like this that Ruby supports class methods—methods
that you can invoke directly on a class, without the need for any instance
of that class. You don't have to use a class method as a factory method, but
they're perfect for the job.

A class method definition is very similar to any other method definition in
Ruby. The difference: you specify that you're defining it on the class itself.

class MyClass

 def MyClass.my_class_method(p1, p2)
 puts "Hello from MyClass!"
 puts "My parameters: #{p1}, #{p2}"
 end

end

Method name.

Parameters.

End of definition.

Specifies that the
method is being
defined on the class.

Also refers
to MyClass!

Method body.

Within a class definition (but outside any instance method definitions),
Ruby sets self to refer to the class that's being defined. So, many
Rubyists prefer to replace the class name with self:

class MyClass

 def self.my_class_method(p1, p2)
 puts "Hello from MyClass!"
 puts "My parameters: #{p1}, #{p2}"
 end

end

In most ways, class method definitions behave just like you're used to:

• You can put as many Ruby statements as you like in the method body.

• You can return a value with the return keyword. If you don't, the value
of the last expression in the method body is used as the return value.

• You can optionally define one or more parameters that the method
accepts, and you can make the parameters optional by defining defaults.

150 Chapter #

page goal header

class MyClass

 def self.my_class_method(p1, p2)
 puts "Hello from MyClass!"
 puts "My parameters: #{p1}, #{p2}"
 end

end

We've defined a new class, MyClass, with a single
class method:

Class methods (cont.)

Once a class method is defined, you can call it directly on the class:

MyClass.my_class_method(1, 2) Hello from MyClass!
My parameters: 1, 2

Perhaps that syntax for calling a class method looks familiar to you…

MyClass.new

That's right, new is a class method! If you think about it, that makes sense; new
can't be an instance method, because you're calling it to get an instance in the first
place! Instead, you have to ask the class for a new instance of itself.

Now that we know how to create class methods, let's see if we can write some
factory methods that will create new HourlyEmployee objects with the pay
rate and hours per week already populated for us. We need methods to set up
predefined pay and hours for three positions: cashier, janitor, and security guard.

class HourlyEmployee < Employee
 ...
 def self.security_guard(name)
 HourlyEmployee.new(name, 19.25, 30)
 end

 def self.cashier(name)
 HourlyEmployee.new(name, 12.75, 25)
 end

 def self.janitor(name)
 HourlyEmployee.new(name, 10.50, 20)
 end
 ...
end

Accept the employee
name as a parameter.

Use the given name to
construct an employee.

Use predefined hourly_wage
and hours_per_week for
each employee type.

We won't know the name of the employee in advance, so we accept that as a parameter to each of
the class methods. We do know the values for hourly_wage and hours_per_week for each
employee position, though. We pass those three arguments to the new method for the class, and get
a new HourlyEmployee object back. That new object is then returned from the class method.

Same for the
cashiers.

Same for the
janitors.

you are here 4 151

chapter title here

Class methods (cont.)
Now, we can call the factory methods directly on the class, providing
only the employee name.

angela = HourlyEmployee.security_guard("Angela Matthews")
edwin = HourlyEmployee.janitor("Edwin Burgess")
ivan = HourlyEmployee.cashier("Ivan Stokes")

The HourlyEmployee instances returned are fully configured with
the name we provided, and the appropriate hourly_wage and
hours_per_week for the position. We can begin printing pay stubs
for them right away!

angela.print_pay_stub
edwin.print_pay_stub
ivan.print_pay_stub Name: Angela Matthews

Pay This Period: $1155.00
Name: Edwin Burgess
Pay This Period: $420.00
Name: Ivan Stokes
Pay This Period: $637.50

In this chapter, you've learned that there are some pitfalls when
creating new objects. But you've also learned techniques to ensure your
objects are safe to use as soon as you make them. With well-designed
initialize methods and factory methods, creating and configuring
new objects is a snap!

152 Chapter #

page goal header

class Employee

 attr_reader :name

 def name=(name)
 if name == ""
 raise "Name can't be blank!"
 end
 @name = name
 end

 def initialize(name = "Anonymous")
 self.name = name
 end

 def print_name
 puts "Name: #{name}"
 end

end

class SalariedEmployee < Employee

 attr_reader :salary

 def salary=(salary)
 if salary < 0
 raise "A salary of #{salary} isn't valid!"
 end
 @salary = salary
 end

 def initialize(name = "Anonymous", salary = 0.0)
 super(name)
 self.salary = salary
 end

 def print_pay_stub
 print_name
 pay_for_period = (salary / 365.0) * 14
 formatted_pay = format("$%.2f", pay_for_period)
 puts "Pay This Period: #{formatted_pay}"
 end

end

The "name" attribute is inherited by both
SalariedEmployee and HourlyEmployee.

The "initialize" methods of both
SalariedEmployee and HourlyEmployee
will call this method via "super".

The "print_pay_stub" methods of both SalariedEmployee
and HourlyEmployee will call this method.

This attribute is specific to salaried employees.

Called when we call "SalariedEmployee.new".

Call the superclass's "initialize" method, passing only the name.
Set the salary ourselves, since it's specific to this class.

Have the superclass print the name. Calculate 2 weeks' pay.

Format the pay with
2 decimal places.

Our complete source code

employees.rb

Continued on next page!

you are here 4 153

chapter title here

$ ruby employees.rb
Name: Jane Doe
Pay This Period: $1917.81
Name: Angela Matthews
Pay This Period: $1155.00
Name: Ivan Stokes
Pay This Period: $637.50

class HourlyEmployee < Employee

 def self.security_guard(name)
 HourlyEmployee.new(name, 19.25, 30)
 end
 def self.cashier(name)
 HourlyEmployee.new(name, 12.75, 25)
 end
 def self.janitor(name)
 HourlyEmployee.new(name, 10.50, 20)
 end

 attr_reader :hourly_wage, :hours_per_week

 def hourly_wage=(hourly_wage)
 if hourly_wage < 0
 raise "An hourly wage of #{hourly_wage} isn't valid!"
 end
 @hourly_wage = hourly_wage
 end

 def hours_per_week=(hours_per_week)
 if hours_per_week < 0
 raise "#{hours_per_week} hours per week isn't valid!"
 end
 @hours_per_week = hours_per_week
 end

 def initialize(name = "Anonymous", hourly_wage = 0.0, hours_per_week = 0.0)
 super(name)
 self.hourly_wage = hourly_wage
 self.hours_per_week = hours_per_week
 end

 def print_pay_stub
 print_name
 pay_for_period = hourly_wage * hours_per_week * 2
 formatted_pay = format("$%.2f", pay_for_period)
 puts "Pay This Period: #{formatted_pay}"
 end

end

jane = SalariedEmployee.new("Jane Doe", 50000)
jane.print_pay_stub

angela = HourlyEmployee.security_guard("Angela Matthews")
ivan = HourlyEmployee.cashier("Ivan Stokes")
angela.print_pay_stub
ivan.print_pay_stub

Define a new class method.

Create a new instance with the
specified name, and a predefined
hourly wage and hours per week.

These attributes are specific to hourly employees.

Called when we call "HourlyEmployee.new".

Call the superclass's "initialize" method, passing only the name.

Have the superclass print the name. Calculate 2 weeks' pay.

Format the pay with
2 decimal places.

Set these ourselves, since
they're specific to this class.

Do the same as above for the
other hourly employee types.

employees.rb
(continued)

154 Chapter #

page goal header

 � Number literals with a decimal point will
be treated as Float instances. Without
a decimal point, they'll be treated as
Fixnum instances.

 � If either operand in a mathematical
operation is a Float, the result will be a
Float.

 � The format method uses format
sequences to insert formatted values into
a string.

 � The format sequence type indicates the
type of value that will be inserted. There
are types for floating-point numbers,
integers, strings, and more.

 � The format sequence width determines the
number characters a formatted value will
take up within the string.

 � The value nil represents nothing - the
absence of a value.

 � Operators such as +, -, *, and / are
implemented as methods in Ruby. When
an operator is encountered in your code,
it's converted into a method call.

 � Within instance methods, the self
keyword refers to the instance that the
method is being called on.

 � If you don't specify a receiver when calling
an instance method, the receiver defaults
to self.

 � Within a class body, you can use either
def ClassName.method_name
or def self.method_name to
define a class method.

Your Ruby Toolbox

That's it for Chapter 4! You’ve added
the initialize method and class

methods to your tool box.

Statements
Conditional stat

ements execute

the code the e
nclose if a con

dition

is met.

Loops execute t
he code they

enclose repeate
dly. They exit when

a condition is m
et.

Methods
Methods arguments can be made

optional by pro
viding default

values.

It's legal for a
 method name to

end in ?, !, or
 =.

Methods return
a value to thei

r

caller. You can
 specify a method's

return value w
ith a return

statement.

Classes
A class is a template for creat

ing

object instance
s.

An object's class
 defines what it

knows (its attribut
es), and what it

does (its instan
ce methods).

Inheritance
Inheritance let

s a subclass inh
erit

methods from a superclass.

A subclass can d
efine its own

methods in addi
tion to the

methods it inher
its.

A subclass can o
verride inherit

ed

methods, replaci
ng them with its

own version.

Creating objects
Ruby calls the "

initialize" method

on new instances of a
 class. You

can use "initial
ize" to set up

a new

object's instan
ce variables.

Class methods can be
invoked

directly on a c
lass, rather th

an

an instance of
that class. They're

great as facto
ry methods.

this is a new chapter 155

"index = 0". "while index <
guests.length". Why do I have
to mess with this "index" stuff?
Can't I just check in each guest?

arrays and blocks5

It's Already Written

A whole lot of programming deals with lists of things. Lists of

addresses. Lists of phone numbers. Lists of products. Matz, the creator of Ruby, knew this.

So he worked really hard to make sure that working with lists in Ruby is really easy.

First, he ensured that arrays, which keep track of lists in Ruby, have lots of powerful

methods to do almost anything you might need with a list.

Second, he realized that writing code to loop over a list to do something with each item,

although tedious, is something developers were doing a lot. So he added blocks to the

language, and removed the need for all that looping code. What is a block, exactly? Read

on to find out...

156 Chapter #

page goal header

Arrays

['a', 'b', 'c']

Hmm, so you have a list of prices (a collection of them, if you will), and
you don't know in advance how many there will be... That means you
can't use variables to store them - there's no way to know how many
variables to create. You're going to need to store the prices in an array.

An array is used to hold a collection of objects. The collection can be
any size you need.

Your new client is working on an invoicing program for an online store.
They need three different methods, each of which works with the prices on
an order. The first method needs to add all the prices together to calculate
a total. The second will process a refund to the customer's account. And
the third will take 1/3 off each price, and display the discount.

Start of the array. End of the array.

Objects the array
contains go here.

Objects are
separated by
commas.

Let's create an array to hold the prices from our first order now.

prices = [2.99, 25.00, 9.99]

$ 7.99
$ 25.00
$ 2.99
$ 9.99

$ 2.99

$ 25.00

$ 9.99

$ 3.99

$ 31.00

$ 8.99

Each order
will have a list
of item prices.

You don't have to know an array's entire contents at the time you
create it, though. You can also manipulate arrays after creating them...

you are here 4 157

chapter title here

So now we've got a place to store all our item prices. To retrieve the prices
we stored in the array, we first have to specify which one we want.

To retrieve an item, you specify the integer index
of the item you want within square brackets:

prices[0] = 0.99
prices[1] = 1.99
prices[2] = 2.99
p prices

3.99
25.0
8.99

[2.99, 25.00, 9.99]

0 1 2 etc...Index:

[0.99, 1.99, 2.99]

(The "p" and "inspect"
methods are useful
for arrays, too!)

prices[0]
prices[1]
prices[2]

First item.

Second item.

Third item.

Accessing arrays

Items in an array are numbered from left to right,
starting with 0. This is called the array index.

So we can print out elements
from our array like this.

You can assign to a given array index
with =, much like assigning to a variable.

prices[3] = 3.99
p prices [0.99, 1.99, 2.99, 3.99]

If you assign to an index that's beyond the end
of an array, the array will grow as necessary. Here's the new element.

If you assign to an element that's way beyond the end of
an array, it will still grow to accommodate your assignment.
There just won't be anything at the intervening indexes. "nil" means "there's

nothing here"!

[0.99, 1.99, 2.99, 3.99, nil, nil, 6.99]
prices[6] = 6.99
p prices

Here's the element
we assigned to.

You'll also get nil back if you access an element that's
beyond the end of an array.

The array only extends
through index 6!

nilp prices[7]

Here, Ruby has placed nil (which, you may recall, represents the
absence of a value) at the array indexes you haven't assigned to yet.

puts prices[0]
puts prices[2]
puts prices[1]

158 Chapter #

page goal header

There are methods to find out an
array's size:

puts prices.length 4

Instead of using array indexes
like prices[0], there are easy-
to-read methods you can use:

puts prices.first

puts prices.last

7.99

9.99

There are methods to let you
search for values within the array:

puts prices.include?(25.00)

puts prices.find_index(9.99)

true

3

Arrays have methods that can
convert them to strings:

And strings have methods that
can convert them to arrays:

puts ["d", "o", "g"].join
puts ["d", "o", "g"].join("-")

p "d-o-g".chars

p "d-o-g".split("-")

dog
d-o-g

["d", "-", "o", "-", "g"]

["d", "o", "g"]

There are methods that will let you
insert or remove elements, causing the
array to grow or shrink:

The << operator (which, like most
operators, is actually a method behind
the scenes) also adds elements:

prices.push(0.99)
p prices

prices << 5.99
prices << 8.99
p prices

prices.pop
p prices

prices.shift
p prices

[7.99, 25.0, 3.99, 9.99, 0.99]

[25.0, 3.99, 9.99, 5.99, 8.99]

[7.99, 25.0, 3.99, 9.99]

[25.0, 3.99, 9.99]

Arrays are objects, too!
Like everything else in Ruby, arrays are objects:

That means they have lots of useful methods attached directly to the
array object. Here are some highlights...

Array
prices = [7.99, 25.00, 3.99, 9.99]
puts prices.class

you are here 4 159

chapter title here

mix = ["one", 2, "three", Time.new]

mix.length

mix[0]

mix[1]

mix[0].capitalize

mix[1].capitalize

letters = ["b", "c", "b", "a"]

letters.shift

letters

letters.join("/")

letters.pop

letters

Open a new terminal or command prompt, type "irb" and hit the Enter/Return key. For each of the
Ruby expressions below, write your guess for what the result will be on the line below it. Then try
typing the expression into irb, and hit Enter. See if your guess matches what irb returns!

160 Chapter #

page goal header

mix = ["one", 2, "three", Time.new]

["one", 2, "three", 2014-01-01 11:11:11]

mix.length

4

mix[0]

"one"

mix[1]

2

mix[0].capitalize

"One"

mix[1].capitalize

undefined method `capitalize' for 2:Fixnum

letters = ["b", "c", "b", "a"]

["b", "c", "b", "a"]

letters.shift

"b"

letters

["c", "b", "a"]

letters.join("/")

"c/b/a"

letters.pop

"a"

letters

["c", "b"]

Open a new terminal or command prompt, type "irb" and hit the Enter/Return key. For each of the
Ruby expressions below, write your guess for what the result will be on the line below it. Then try
typing the expression into irb, and hit Enter. See if your guess matches what irb returns!

You can have instances of different classes in the same array!

You can call methods
directly on the objects
you retrieve.

If you mix classes, watch
what methods you call!

"shift" permanently
modifies the array.

"pop" removes the last element in
the array, and returns it.

"pop" also permanently
modifies the array.

"shift" removes the first element
in the array, and returns it.

you are here 4 161

chapter title here

Looping over the items in an array
Right now, we can only access the particular array
indexes that we specify in our code. Just to print
all the prices in an array, we have to write this:

But we can use a while loop to process all of an array's elements, one
at a time.

3.99
25.0
8.99

 Calling the length instance method on an array gets you the number of
elements it holds, not the index of the last element.

So this code won't get you the last element:

But this code will:

Likewise, a loop like this will go beyond the end
of the array:

Because indexes start with zero, you need to
ensure you're working with index numbers less
than prices.length:

index = 0
while index <= prices.length
 puts prices[index]
 index += 1
end

We don't want an index
equal to the length! index = 0

while index < prices.length
 puts prices[index]
 index += 1
end

We want indexes LESS
than the length.

p prices[prices.length] nil

p prices[prices.length - 1] 8.99

That won't work when the arrays get very large, or when we don't
know their size beforehand.

First item.
Second item.

Third item.

prices = [3.99, 25.00, 8.99]

puts prices[0]
puts prices[1]
puts prices[2]

Start with index 0.

Move to the next
array element.

index = 0
while index < prices.length
 puts prices[index]
 index += 1
end

Loop until we reach the
end of the array.

Access the element at
the current index.

162 Chapter #

page goal header

The repeating loop

37.98

def total(prices)
 amount = 0
 index = 0
 while index < prices.length
 amount += prices[index]
 index += 1
 end
 amount
end

prices = [3.99, 25.00, 8.99]

puts format("%.2f", total(prices))

The total starts at 0.
Start at the first array index.

While we're still within the array…

Add the current price
to the total.

Move to the next price.
Return the total. Create an array holding

prices from our order.

Ensure the correct number
of decimal places are shown.

Pass our array of prices
to the method, and
format the result.

The first requested feature is the ability to take these prices and total
them. We'll create a method that keeps a running total of the amounts
in an array. It will loop over each element in the array, and add it
to a total (which we'll keep in a variable). After all the elements are
processed, the method will return the total.

 Given an array of prices, add them all together

and return the total.

Given an array of prices, subtract each price from

the customer's account balance.

 Given an array of prices, reduce each item's price

by 1/3, and print the savings.

Now that we understand how to store the prices from an order in an
array, and how to use a while loop to process each of those prices,
it's time to work on the three methods your client needs:

you are here 4 163

chapter title here

We need a second method that can process a refund for orders. It needs
to loop through each item in an array, and subtract the amount from the
customer's account balance.

-37.98

def refund(prices)
 amount = 0
 index = 0
 while index < prices.length
 amount -= prices[index]
 index += 1
 end
 amount
end

puts format("%.2f", refund(prices))

The total starts at 0.
Start at the first array index.

While we're still within the array…

Subtract the current
price.

Move to the next price.
Return the total refund.

Pass our array of prices
to the method, and
format the result.

Lastly, we need a third method that will reduce each item's price by 1/3 and print the savings.

Your discount: $1.33
Your discount: $8.33
Your discount: $3.00

def show_discounts(prices)
 index = 0
 while index < prices.length
 amount_off = prices[index] / 3.0
 puts format("Your discount: $%.2f", amount_off)
 index += 1
 end
end

show_discounts(prices)

While we're still within the array…

Determine discount for the current price.

Format the discount..
Move to the next price.

Pass our array of prices
to the method.

Start at the first array index.

The repeating loop (cont.)

That wasn't so bad! Looping over the items in the array let us
implement all 3 of the methods your client needs!

 Given an array of prices, add them all together

and return the total.

Given an array of prices, subtract each price from

the customer's account balance.

 Given an array of prices, reduce each item's price

by 1/3, and print the savings.

164 Chapter #

page goal header

The repeating loop (cont.)

def total(prices)
 amount = 0
 index = 0
 while index < prices.length
 amount += prices[index]
 index += 1
 end
 amount
end

def refund(prices)
 amount = 0
 index = 0
 while index < prices.length
 amount -= prices[index]
 index += 1
 end
 amount
end

def show_discounts(prices)
 index = 0
 while index < prices.length
 amount_off = prices[index] / 3.0
 puts format("Your discount: $%.2f", amount_off)
 index += 1
 end
end

This line in the middle
differs, though...

Differs...

Differs...

Highlighted lines are duplicated
among the 3 methods.

If we look at the three methods together, though, you'll notice there's a
lot of duplicated code. And it all seems to be related to looping through
the array of prices. We've highlighted the duplicated lines below.

This is definitely a violation of the DRY (Don't Repeat Yourself) principle.
We need to go back to the drawing board and refactor these methods.

 Given an array of prices, add them all together

and return the total.

Given an array of prices, subtract each price from

the customer's account balance.

 Given an array of prices, reduce each item's price

by 1/3, and print the savings.

Refactored

you are here 4 165

chapter title here

Eliminating repetition... the WRONG way...
Our total, refund, and show_discounts methods have a fair amount of repeated
code related to looping over array elements. It would be nice if we could extract the repeated
code out into another method, and have total, refund, and show_discounts call it.

But a method that combines all the logic in total, refund, and show_variables
wouldn't look very pretty… Sure, the code for the loop itself is repeated, but the code in the
middle of the loop is all different. Also, the total and refund methods need a variable to
track the total amount, but show_discounts doesn't.

Let's show you exactly how awful such a method would look. (We want you to fully appreciate
it when we show you a better solution.) We'll try writing a method with an extra parameter,
operation. We'll use the value in operation to switch which variables we use, and what
code gets run in the middle of the loop.

We warned you it would be bad. We've got if statements all over the place, each checking
the value of the operation parameter. We've got an amount variable that we use in some
cases, but not others. And we return a value in some cases, but not others. The code is ugly,
and it's way too easy to make a mistake when calling it.

But if you don't write your code this way, how will you set up the variables you need prior to
running the loop? And how will you execute the code you need in the middle of the loop?

Here's the start of the
loop – no more duplication!

Use the correct logic for
the current operation.

"operation" should be set
to "total", "refund", or
"show discounts". Don't
make a typo!

def do_something_with_every_item(array, operation)

 if operation == "total" or operation == "refund"
 amount = 0
 end
 index = 0
 while index < array.length

 if operation == "total"
 amount += array[index]
 elsif operation == "refund"
 amount -= array[index]
 elsif operation == "show discounts"
 amount_off = array[index] / 3.0
 puts format("Your discount: $%.2f", amount_off)
 end

 index += 1
 end

 if operation == "total" or operation == "refund"
 return amount
 end

end

We won't need this variable for
the "show discounts" operation.

We don't return the value of this
variable for "show discounts".

166 Chapter #

page goal header

 amount += prices[index]

 index += 1
end

 index += 1
end

 amount += prices[index] amount += prices[index]

 amount -= prices[index]

 amount_off = prices[index] / 3.0
 puts format("Your discount: $%.2f", amount_off)

 amount_off = prices[index] / 3.0
 puts format("Your discount: $%.2f", amount_off)

index = 0
while index < prices.length

index = 0
while index < prices.length

The problem is that the repeated code at the top and bottom of each method
surrounds the code that needs to change.

It would sure be nice if we could take those other chunks of code that vary...

...And swap them into the middle of the array loop code. That way we
could keep just one copy of the code that's always the same.

Always
the same! This code differs

among the 3 methods.

Instead of this...

...Use this!

Keep this.

Keep this.

Chunks of code?

you are here 4 167

chapter title here

Blocks

A block is a chunk of code that you associate with a method call.
While the method runs, it can invoke (execute) the block one or more
times. Methods and blocks work in tandem to process your data.

Blocks are mind-bending stuff. But stick with it!

We won't mince words. Blocks are going to be the hardest part of this
book. Even if you've programmed in other languages, you've probably
never seen anything like blocks. But stick with it, because the payoff is big.

Imagine if, for all the methods you have to write for the rest of your
career, someone else wrote half of the code for you. For free. They'd write all
the tedious stuff at the beginning and end, and just leave a little blank
space in the middle for you to insert your code, the clever code, the code
that runs your business.

If we told you that blocks can give you that, you'd be willing to do
whatever it takes to learn them, right?

Well, here's what you'll have to do: be patient, and persistent. We're here
to help. We'll look at each concept repeatedly, from different angles. We'll
provide exercises for practice. Make sure to do them, because they'll help
you understand and remember how blocks work.

A few hours of hard work now are going to pay dividends for the rest of
your Ruby career, we promise. Let's get to it!

What if we could pass a chunk of code
into a method, like it was an argument? We
could put the looping code at the top and
bottom of the method, and then in the middle,
we could run the code that was passed in!

It turns out we can do just that, using Ruby's blocks.

168 Chapter #

page goal header

Defining a method that takes blocks

def my_method(&my_block)
 puts "We're in the method, about to invoke your block!"
 my_block.call
 puts "We're back in the method!"
end

This method takes a
block as an parameter!

The "call" method calls the block.

Blocks and methods work in tandem. In fact, you can't have a block
without also having a method to accept it. So to start, let's define a
method that works with blocks.

[On this page, we're going to show you how to use & to accept a block,
and call to call it. This isn't the quickest way to work with blocks,
but it DOES make it more obvious what's going on. We'll show you
yield, which is more commonly used, in a few pages!]

Since we're just starting off, we'll keep it simple. The method will print
a message, invoke the block it received, and print another message.

If you place an ampersand (&) before the last parameter in a method
definition, Ruby will expect a block to be attached to any call to that
method. It will take the block, convert it to an object, and store it in
that parameter.

def my_method(&my_block)
 ...
end When you call this method with a block, it will be stored in "my_block".

Remember, a block is just a chunk of code that you pass into a method.
To execute that code, stored blocks have a call instance method that
you can call on them. The call method invokes the block's code.

def my_method(&my_block)
 ...
 my_block.call
 ...
end

No ampersand; that's
only used when defining
the parameter.

Run the block's code.

OK, we know, you still haven't seen an actual block, and you're going
crazy wondering what they look like. Now that the setup's out of the
way, we can show you...

you are here 4 169

chapter title here

Your first block
Are you ready? Here it comes: your first glimpse of a Ruby block.

my_method do

 puts "We're in the block!"

end

A block must always
follow a method call. Start of the block

Block body

End of the block

There it is! Like we said, a block is just a chunk of code that you pass to a
method. We invoke my_method, which we just defined, and then place
a block immediately following it. The method will receive the block in its
my_block parameter.

• The start of the block is marked with the keyword do, and the end is
marked by the keyword end.

• The block body consists of one or more lines of Ruby code between
do and end. You can place any code you like here.

• When the block is called from the method, the code in the block
body will be executed.

• After the block runs, control returns to the method that invoked it.

We're in the method, about to invoke your block!
We're in the block!
We're back in the method!

So, we can call my_method
and pass it the above block:

...And here's the output we'd see:

def my_method(&my_block)
 puts "We're in the method, about to invoke your block!"
 my_block.call
 puts "We're back in the method!"
end

my_method do
 puts "We're in the block!"
end

The block. It will be stored
in the "my_block" parameter.The call to

my_method.

Q: Can I use a block by itself?

A: No, that will give you a syntax error.
Blocks are meant to be used together with
methods.

do
 puts "Woooo!"
end

This shouldn't ever get in your way; if you're
writing a block that isn't associated with a
method call, then whatever you're trying
to express can probably be done with
standalone Ruby statements.

syntax error,
unexpected
keyword_do_block

170 Chapter #

page goal header

We declared a method named my_method, called it with a block, and got
this output:

my_method do
 puts "We're in the block!"
end

We're in the method, about to invoke your block!
We're in the block!
We're back in the method!

Let's break down what happened in the method and block, step by step.

def my_method(&my_block)
 puts "We're in the method, about to invoke your block!"
 my_block.call
 puts "We're back in the method!"
end

def my_method(&my_block)
 puts "We're in the method, about to invoke your block!"
 my_block.call
 puts "We're back in the method!"
end

do
 puts "We're in the block!"
end

do
 puts "We're in the block!"
end

We're in the block!

We're back in the method!

The my_block.call expression runs, and control is passed to the block.
The puts expression in the block's body runs.

2

When the statements within the block body have all run, control returns to
the method. The second call to puts within my_method's body runs, and
then the method returns.

3

def my_method(&my_block)
 puts "We're in the method, about to invoke your block!"
 my_block.call
 puts "We're back in the method!"
end

do
 puts "We're in the block!"
end

We're in the method, about to invoke your block!

 The first puts statement in my_method's body runs.1

Flow of control between a method and block

The method: The block:

you are here 4 171

chapter title here

You can pass many different blocks to a single method.

We can pass different blocks to the method we just defined, and do
different things:

my_method do
 puts "It's a block party!"
end

We're in the method, about to invoke your block!
It's a block party!
We're back in the method!

my_method do
 puts "Wooooo!"
end

We're in the method, about to invoke your block!
Wooooo!
We're back in the method!

The code in the method is always the same, but you can change the code
you provide in the block.

Calling the same method with different blocks

puts "We're back in the method!"

puts "We're in the block!"

puts "We're in the method, about to invoke your block!"

puts "We're back in the method!"

puts "It's a block party!"

puts "We're in the method, about to invoke your block!"

puts "We're back in the method!"

puts "Wooooo!"

puts "We're in the method, about to invoke your block!"

Code from
the method

stays the same.

Code from
the method

stays the same.

Code from
the method

stays the same.

Block code changes!

Block code changes!

Block code changes!

172 Chapter #

page goal header

A method can invoke a block as many times as it wants.

Calling a block multiple times

Statements in the method body run until the first my_block.call
expression is encountered. The block is then run. When it completes,
control returns to the method.

1

The method body resumes running. When the second my_block.call
expression is encountered, the block is run again. When it completes, control
returns to the method so that any remaining statements there can run..

2

def twice(&my_block)
 puts "In the method, about to call the block!"
 my_block.call
 puts "Back in the method, about to call the block again!"
 my_block.call
 puts "Back in the method, about to return!"
end

def twice(&my_block)
 puts "In the method, about to call the block!"
 my_block.call
 puts "Back in the method, about to call the block again!"
 my_block.call
 puts "Back in the method, about to return!"
end

do
 puts "Woooo!"
end

do
 puts "Woooo!"
end

This method is just like our previous one, except that it has two
my_block.call expressions:

The method name is appropriate: as you
can see from the output, the method does
indeed call our block twice!

In the method, about to call the block!
Woooo!
Back in the method, about to call the block again!
Woooo!
Back in the method, about to return!

def twice(&my_block)
 puts "In the method, about to call the block!"
 my_block.call
 puts "Back in the method, about to call the block again!"
 my_block.call
 puts "Back in the method, about to return!"
end

twice do
 puts "Woooo!"
end

Call the block.

Call the block AGAIN.

Declaring another
method that
takes a block.

Calling the method
and passing it a block.

you are here 4 173

chapter title here

def give(&my_block)
 my_block.call("2 turtle doves", "1 partridge")
end

give do |present1, present2|
 puts "My method gave to me..."
 puts present1, present2
end

Parameter 1. Parameter 2.

Passed to block. Passed to block.

My method gave to me...
2 turtle doves
1 partridge

Block parameters

def give(&my_block)
 my_block.call("2 turtle doves", "1 partridge")
end

do |present1, present2|
 puts "My method gave to me..."
 puts present1, present2
end

In a similar vein, a method can pass one or more arguments to a
block. Block parameters are similar to method parameters; they're
values that are passed in when the block is run, and that can be
accessed within the block body.

A block can accept one or more
parameters from the method by
defining them between vertical bar (|)
characters at the start of the block:

We learned back in Chapter 2 that when defining a Ruby method,
you can specify that it will accept one or more parameters:

def print_parameters(p1, p2)
 puts p1, p2
end

You're probably also aware that you can pass arguments when
calling the method that will determine the value of those parameters.

print_parameters("one", "two") one
two

So, when we call our method and provide a block, the arguments to
call are passed into the block as parameters, which then get printed.
When the block completes, control returns to the method, as normal.

"2 turtle doves" "1 partridge"

If there are multiple
parameters, separate
them with commas.

Arguments to call get forwarded on
to the block:

Q: Can I define a block once, and use it
across many methods?

A: You can do something like this using Ruby
procs (which are beyond the scope of this book).
But it's not something you'll want to do in practice.
A block is intimately tied to a particular method call,
so much that a particular block will usually only
work with a single method.

Q: Can a method take more than one block
at the same time?

A: No. A single block is by far the most common
use case, to the point that it's not worth the
syntactic mess it would create for Ruby to support
multiple blocks. If you ever want to do this, you
could also use Ruby procs (but again, that's
beyond the scope of this book).

174 Chapter #

page goal header

Using the "yield" keyword
So far, we've been treating blocks like an argument to our methods.
We've been declaring an extra method parameter that takes a block as
an object, then using the call method on that object.

def twice(&my_block)
 my_block.call
 my_block.call
end

We mentioned that this wasn't the easiest way to accept blocks, though.
Now, let's learn the less-obvious, but more-concise way: the yield
keyword.

The yield keyword will find and invoke the block a method was
called with—there's no need to declare a parameter to accept the block.

This method is functionally equivalent to the one above:

def twice
 yield
 yield
end

Just like with call, we can also give one or more arguments to
yield, which will be passed to the block as parameters. Again, these
methods are functionally equivalent:

def give(&my_block)
 my_block.call("2 turtle doves", "1 partridge")
end

def give
 yield "2 turtle doves", "1 partridge"
end

Declaring a &block parameter
is useful in a few rare instances
(which are beyond the scope of
this book). But now that you
understand what the yield
keyword does, you should just
use that in most cases. It's
cleaner, and easier to read.

Conventional
Wisdom

you are here 4 175

chapter title here

Block formats
So far, we've been using the do ... end
format for blocks. Ruby has a second block
format, though: "curly-brace" style. You'll
see both formats being used "in the wild", so
you should learn to recognize both.

def run_block
 yield
end

run_block do
 puts "do/end"
end

run_block { puts "brackets" }

The do...end format
we've been using so far.

"Curly-brace" format.
Start of block.

Block body, just like
with "do...end".

End of block.

do/end
brackets

Aside from replacing do and end with curly brackets,
the syntax and functionality are identical.

By the way, you've probably noticed that all our do ... end
blocks span multiple lines, but our curly-brace blocks all appear on a
single line… This follows another convention that much of the Ruby
community has adopted. It's valid syntax to do it the other way:

But not only is that out of line with the convention, it's really ugly.

Ruby blocks that fit on a single
line should be surrounded with
curly brackets. Blocks that
span multiple lines should be
surrounded with do ... end.

This is not the only convention
for block formatting, but it is a
common one.

Conventional
Wisdom

And just as do ... end blocks can accept
parameters, so can curly-brace blocks:

def take_this
 yield "present"
end

take_this do |thing|
 puts "do/end block got #{thing}"
end

take_this { |thing| puts "brackets block got #{thing}" }

do/end block got present
brackets block got present

take_this { |thing|
 puts "brackets: got #{thing}"
}
take_this do |thing| puts "do/end: got #{thing}" end

Breaks convention!

Breaks convention
(and is really ugly)!

brackets: got present
do/end: got present

176 Chapter #

page goal header

Tonight’s talk: A method and a block talk about how they
became associated with each other.

Method:

Hello, Block! I called you here tonight so we could
educate people on how blocks and methods work
together. I've had people ask me exactly what you
contribute to the relationship, and I think we can
clear those questions up for everyone.

So most parts of a method's job are pretty clearly
defined. My task, for example, is to loop through
each item in an array.

Sure! It's a task lots of developers need done;
there's a lot of demand for my services. But then I
encounter a problem: what do I do with each of those
array elements? Every developer needs something
different! And that's where blocks come in...

I know another method that does nothing but open
and close a file. He's very good at that part of the
task. But he has no clue what to do with the contents
of the file...

I handle the general work that's needed on a wide
variety of tasks...

Block:

Sure, Method! I'm here to help whenever you call.

Right. Not a very glamorous job, but an important
one.

Precisely. Every developer can write their own block
that describes exactly what they need done with
each element in the array.

...And so he calls on a block, right? And the
block prints the file contents, or updates them, or
whatever else the developer needs done. It's a great
working relationship!

And I handle the logic that's specific to an individual
task.

you are here 4 177

chapter title here

1
2
3

1
two
3

1
2
2
3

1
two
two
3

1
12
3

1
3
3

call_block do
 puts 2
end

call_block { puts "two" }

call_twice { puts 2 }

Here are three Ruby method definitions, each of which takes a block:

And here are several calls to the above methods.
Match each method call to the output it produces.

def call_block(&block)
 puts 1
 block.call
 puts 3
end

def call_twice
 puts 1
 yield
 yield
 puts 3
end

def pass_parameters_to_block
 puts 1
 yield 9, 3
 puts 3
end

call_twice do
 puts "two"
end

pass_parameters_to_block do |param1, param2|
 puts param1 + param2
end

pass_parameters_to_block do |param1, param2|
 puts param1 / param2
end

178 Chapter #

page goal header

1
2
3

1
two
3

1
2
2
3

1
two
two
3

1
12
3

1
3
3

call_block do
 puts 2
end

call_block { puts "two" }

call_twice { puts 2 }

call_twice do
 puts "two"
end

pass_parameters_to_block do |param1, param2|
 puts param1 + param2
end

pass_parameters_to_block do |param1, param2|
 puts param1 / param2
end

Here are three Ruby method definitions, each of which takes a block:

And here are several calls to the above methods.
Match each method call to the output it produces.

def call_block(&block)
 puts 1
 block.call
 puts 3
end

def call_twice
 puts 1
 yield
 yield
 puts 3
end

def pass_parameters_to_block
 puts 1
 yield 9, 3
 puts 3
end

you are here 4 179

chapter title here

The "each" method
We had a lot to learn in order to get here: how to write a block, how
a method calls a block, how a method can pass parameters to a block.
And now, it's finally time to take a good, long look at the method that
will let us get rid of that repeated loop code in our total, refund,
and show_discounts methods. It's an instance method that
appears on every Array object, and it's called each.

The each method uses this feature of Ruby
to loop through each of the items in an array,
yielding them to a block, one at a time. ["a", "b", "c"].each { |param| puts param } a

b
c

You've seen that a method can yield to a block
more than once, with different values each time: def my_method

 yield 1
 yield 2
 yield 3
end

my_method { |param| puts param } 1

2
3

If we were to write our own method that works like each, it would
look very similar to the code we've been writing all along:

class Array

 def each
 index = 0
 while index < self.length
 yield self[index]
 index += 1
 end
 end

end

Remember, "self" refers to
the current object. In this
case, the current array.

The key difference: we yield the
current element to a block!

Then move to the next
element, just like before.

This is just like the loops in our "total",
"refund", and "show_discounts" methods!

We loop through each element in the array, just like in our total,
refund, and show_discounts methods. The key difference is
that instead of putting code to process the current array element in
the middle of the loop, we use the yield keyword to pass the element to a
block.

180 Chapter #

page goal header

We're using the each method and a block to
process each of the items in an array: ["a", "b", "c"].each { |param| puts param } a

b
c

The "each" method, step-by-step

Let's go step-by-step through each of the calls to the block, and see what it's doing.

"a"

 For the first pass through the while loop, index is set to 0, so the
first element of the array gets yielded to the block as a parameter. In
the block body, the parameter gets printed. Then control returns to
the method, index gets incremented, and the while loop continues.

1

{ |param| puts param }

def each
 index = 0
 while index < self.length
 yield self[index]
 index += 1
 end
end

a

"b"

 Now, on the second pass through the while loop, index is set to
1, so the second element in the array will be yielded to the block as a
parameter. As before, the block body prints the parameter, control
then returns to the method, and the loop continues.

2

{ |param| puts param }

def each
 index = 0
 while index < self.length
 yield self[index]
 index += 1
 end
end

b

"c"

 After the third array element gets yielded to the block for printing and
control returns to the method, the while loop ends, because we've
reached the end of the array. No more loop iterations means no more
calls to the block; we're done!

3

{ |param| puts param }

def each
 index = 0
 while index < self.length
 yield self[index]
 index += 1
 end
end

c

That's it! We've found a method that can handle the repeated looping code, and yet allows
us to run our own code in the middle of the loop (using a block). Let's put it to use!

you are here 4 181

chapter title here

DRYing up our code with "each" and blocks
Our invoicing system requires us to implement these three methods. All three of
them have nearly identical code for looping through the contents of an array.

But now, we've finally mastered the each method, which loops over
the elements in an array, and passes them to a block for processing.

["a", "b", "c"].each { |param| puts param }
a
b
c

 Given an array of prices, add them all together

and return the total.

Given an array of prices, subtract each price from

the customer's account balance.

 Given an array of prices, reduce each item's price

by 1/3, and print the savings.

Refactored

It's been difficult to get
rid of that duplication,
though, because all
three methods have
different code in the
middle of that loop.

Let's see if we can use each to
refactor our three methods and
eliminate the duplication.

def total(prices)
 amount = 0
 index = 0
 while index < prices.length
 amount += prices[index]
 index += 1
 end
 amount
end

def refund(prices)
 amount = 0
 index = 0
 while index < prices.length
 amount -= prices[index]
 index += 1
 end
 amount
end

def show_discounts(prices)
 index = 0
 while index < prices.length
 amount_off = prices[index] / 3.0
 puts format("Your discount: $%.2f", amount_off)
 index += 1
 end
end

This line in the middle
differs, though...

Differs...

Differs...

Highlighted lines are
duplicated among the 3
methods.

182 Chapter #

page goal header

DRYing up our code with "each" and blocks (cont.)

The each method looks like it will be perfect for getting rid of the
repeated looping code! We can just take the code in the middle that
adds to the total, and place in it a block that's passed to each.

index = 0
while index < prices.length
 amount += prices[index]
 index += 1
end

prices.each { |price| amount += price }

Let's re-define our total method to utilize each, then try it out.

def total(prices)
 amount = 0
 prices.each do |price|
 amount += price
 end
 amount
end

prices = [3.99, 25.00, 8.99]

puts format("%.2f", total(prices))

Start the total at 0.

Process each price.
Add the current price
to the total.

Return the final total.

37.98

Perfect! There's our total amount. The each method worked!

From here…

We don't have to pull the item
out of the array any more;
"each" does that for us!

To here!

First up for refactoring is the total method. Just like the others, it
contains code for looping over prices stored in an array. In the middle
of that looping code, total adds the current price to a total amount.

you are here 4 183

chapter title here

For each element in the array, each passes it as a parameter to the
block. The code in the block adds the current array element to the
amount variable, and then control returns back to each.

3.99

1

do |price|
 amount += price
end

def each
 index = 0
 while index < self.length
 yield self[index]
 index += 1
 end
end

25.00

2

do |price|
 amount += price
end

def each
 index = 0
 while index < self.length
 yield self[index]
 index += 1
 end
end

8.99

3

do |price|
 amount += price
end

def each
 index = 0
 while index < self.length
 yield self[index]
 index += 1
 end
end

prices = [3.99, 25.00, 8.99]
puts format("%.2f", total(prices))

37.98

DRYing up our code with "each" and blocks (cont.)

 Given an array of prices, add them all together

and return the total.

Given an array of prices, subtract each price from

the customer's account balance.

 Given an array of prices, reduce each item's price

by 1/3, and print the savings.

RefactoredWe've successfully refactored
the total method!

But before we move on
to the other two methods,
let's take a closer look at
how that amount variable
interacts with the block.

184 Chapter #

page goal header

Blocks and variable scope
We should point something out about our new total
method. Did you notice that we use the amount variable
both inside and outside the block? def total(prices)

 amount = 0
 prices.each do |price|
 amount += price
 end
 amount
end

As you may remember from chapter 2, local variables
defined within a method are out of scope as soon as the
method ends. You can't access variables that are local to
the method from outside the method.

greeting = nil

run_block do
 greeting = "hello"
end

puts greeting

Define the variable
BEFORE the block.

Assign a new value
within the block.

Print the variable.

def run_block
 yield
end

run_block do
 greeting = "hello"
end

puts greeting

Define the variable
within the block.

Try to print the variable.

def my_method
 greeting = "hello"
end

my_method

puts greeting

Define the variable
within the method.

Call the method.

Try to print the variable.

undefined local variable
or method `greeting'

undefined local variable
or method `greeting'

hello

The same is true of blocks, if you define the variable for
the first time inside the block.

But, if you define a variable before a block, you can access
it inside the block body. You can also continue to access it
after the block ends!

you are here 4 185

chapter title here

Blocks and variable scope (cont.)
Since Ruby blocks can access variables declared outside the block body,
our total method is able to use each with a block to update the
amount variable.

We can call total like this:

total([3.99, 25.00, 8.99])

def total(prices)
 amount = 0
 prices.each do |price|
 amount += price
 end
 amount
end

The amount variable is set to 0, and then each is called on the array.
Each of the values in the array are passed to the block. Each time the
block is called, amount is updated:

When the each method completes, amount is still set to that final
value, 37.98. It's that value that gets returned from the method.

3.99

1

do |price|
 amount += price
end

Updated from
0 to 3.99

def each
 index = 0
 while index < self.length
 yield self[index]
 index += 1
 end
end

25.00

2

do |price|
 amount += price
end

Updated from
3.99 to 28.99

def each
 index = 0
 while index < self.length
 yield self[index]
 index += 1
 end
end

8.99

3

do |price|
 amount += price
end

Updated from
28.99 to 37.98

def each
 index = 0
 while index < self.length
 yield self[index]
 index += 1
 end
end

Q: Why can blocks access variables
that were declared outside their bodies,
when methods can't? Isn't that unsafe?

A: A method can be accessed from
other places in your program, far from
where it was declared (maybe even in a
different source file). A block, by contrast,
is normally accessible only during the
method call it's associated with. A block,
and the variables it has access to, are
all kept in the same place in your code.
That means you can easily see all the
variables a block is interacting with,
meaning that accessing them is less
prone to nasty surprises.

186 Chapter #

page goal header

We've revised the total method to get rid of the repeated loop code. We
need to do the same with the refund and show_discounts methods,
and then we'll be done!

Much cleaner, and calls to the method still work just the same as before!.

prices = [3.99, 25.00, 8.99]
puts format("%.2f", refund(prices)) -37.98

Using "each" with the "refund" method

Updated from
0 to -3.99

3.99
1

do |price|
 amount -= price
end

def each
 index = 0
 while index < self.length
 yield self[index]
 index += 1
 end
end

Updated from
-3.99 to -28.99

25.00
2

do |price|
 amount -= price
end

def each
 index = 0
 while index < self.length
 yield self[index]
 index += 1
 end
end

Updated from
-28.99 to -37.98

8.99
3

do |price|
 amount -= price
end

def each
 index = 0
 while index < self.length
 yield self[index]
 index += 1
 end
end

The process of updating the refund method is very similar to the process
we used for total. We simply take the specialized code from the middle
of the generic loop code, and move it to a block that's passed to each.

def refund(prices)
 amount = 0
 index = 0
 while index < prices.length
 amount -= prices[index]
 index += 1
 end
 amount
end

def refund(prices)
 amount = 0
 prices.each do |price|
 amount -= price
 end
 amount
end

Again, we don't have
to pull the item out
of the array; "each"
gets it for us!

From
here...

To
here!

Within the call to each and the block, the flow of control looks very
similar to what we saw in the total method:

you are here 4 187

chapter title here

Again, as far as users of your method are
concerned, no one will notice you've changed a thing!

prices = [3.99, 25.00, 8.99]
show_discounts(prices) Your discount: $1.33

Your discount: $8.33
Your discount: $3.00

Using "each" with our last method

def show_discounts(prices)
 index = 0
 while index < prices.length
 amount_off = prices[index] / 3.0
 puts format("Your discount: $%.2f", amount_off)
 index += 1
 end
end

def show_discounts(prices)
 prices.each do |price|
 amount_off = price / 3.0
 puts format("Your discount: $%.2f", amount_off)
 end
end

One more method, and we're done! Again, with show_discounts,
it's a matter of taking the code out of the middle of the loop, and
moving it into a block that's passed to each.

From
here... To

here!

3.991 def each
 index = 0
 while index < self.length
 yield self[index]
 index += 1
 end
end

prices.each do |price|
 amount_off = price / 3.0
 puts format("Your discount: $%.2f", amount_off)
end

Your discount: $1.33

25.002 def each
 index = 0
 while index < self.length
 yield self[index]
 index += 1
 end
end

prices.each do |price|
 amount_off = price / 3.0
 puts format("Your discount: $%.2f", amount_off)
end

Your discount: $8.33

8.993 def each
 index = 0
 while index < self.length
 yield self[index]
 index += 1
 end
end

prices.each do |price|
 amount_off = price / 3.0
 puts format("Your discount: $%.2f", amount_off)
end

Your discount: $3.00

Here's what the calls to the block look like:

188 Chapter #

page goal header

We've done it! We've refactored
the repetitive loop code out of
our methods! We were able to
move the portion of the code
that differed into blocks, and rely
on a method, each, to replace
the code that remained the same!

We've gotten rid of the repetitive loop code!

 Given an array of prices, add them all together

and return the total.

Given an array of prices, subtract each price from

the customer's account balance.

 Given an array of prices, reduce each item's price

by 1/3, and print the savings.

Refactored

def total(prices)
 amount = 0
 prices.each do |price|
 amount += price
 end
 amount
end

def refund(prices)
 amount = 0
 prices.each do |price|
 amount -= price
 end
 amount
end

def show_discounts(prices)
 prices.each do |price|
 amount_off = price / 3.0
 puts format("Your discount: $%.2f", amount_off)
 end
end

prices = [3.99, 25.00, 8.99]

puts format("%.2f", total(prices))
puts format("%.2f", refund(prices))
show_discounts(prices)

Start the total at 0.

Process each price.
Add the current price
to the total.

Return the final total.
Start the total at 0.

Process each price.
Refund the current price.

Return the final total.

Process each price.
Calculate discount.

Format and print the current discount.

$ ruby prices.rb
37.98
-37.98
Your discount: $1.33
Your discount: $8.33
Your discount: $3.00

prices.rb

Our complete invoicing methods

Do this!

Save this code in a file named
prices.rb. Then try running
it from the command line!

you are here 4 189

chapter title here

Pool Puzzle

Your job is to take code snippets from the pool and place them into the blank lines in
the code. Don't use the same snippet more than once, and you won’t need to use all the
snippets. Your goal is to make code that will run and produce the output shown.

Note: each thing from
the pool can only be
used once!

def pig_latin(words)

 original_length = 0
 = 0

 words. do
 puts "Original word: #{word}"
 += word.length
 letters = word.chars
 first_letter = letters.shift
 new_word = "#{letters.join}#{first_letter}ay"
 puts "Pig Latin word: #{ }"
 += new_word.length
 end

 puts "Total original length: #{ }"
 puts "Total Pig Latin length: #{new_length}"

end

my_words = ["blocks", "totally", "rock"]
pig_latin()

Original word: blocks
Pig Latin word: locksbay
Original word: totally
Pig Latin word: otallytay
Original word: rock
Pig Latin word: ockray
Original total length: 17
Total Pig Latin length: 23

File Edit Window Help

Output:

new_length

each

|word|

original_length
new_word

new_length

original_length

my_words

yield

new
shrink

190 Chapter #

page goal header

Pool Puzzle Solution
def pig_latin(words)

 original_length = 0
 new_length = 0

 words.each do |word|
 puts "Original word: #{word}"
 original_length += word.length
 letters = word.chars
 first_letter = letters.shift
 new_word = "#{letters.join}#{first_letter}ay"
 puts "Pig Latin word: #{new_word}"
 new_length += new_word.length
 end

 puts "Total original length: #{original_length}"
 puts "Total Pig Latin length: #{new_length}"

end

my_words = ["blocks", "totally", "rock"]
pig_latin(my_words)

Original word: blocks
Pig Latin word: locksbay
Original word: totally
Pig Latin word: otallytay
Original word: rock
Pig Latin word: ockray
Original total length: 17
Total Pig Latin length: 23

File Edit Window Help

Output:

you are here 4 191

chapter title here

Utilities and Appliances, Blocks and Methods
Imagine two very different electric appliances: a mixer, and a drill. They have pretty different jobs: one is used for
baking, the other for carpentry. And yet, they have a very similar need: electricity.

Now, imagine a world where, any time you wanted to use an electric mixer or drill, you had to wire your appliance into
the power grid yourself. Sounds tedious (and fairly dangerous), right?

That's why, when your house was built, an electrician came and installed power outlets in every room. They provide the
same utility (electricity) through the same interface (an electric plug) to very different appliances.

The electrician doesn't know the details of how your mixer or drill works, and he doesn't care. He just uses his skills
and training to get the current safely from the electric grid to the outlet.

The designers of your appliance, likewise, have no idea how to wire a home for electricity. They just know how to take
power from an outlet and use it to make their devices operate.

You can think of the author of a method that takes a block as being kind of like an electrician.
They don't know how the block works, and they don't care. They just use their knowledge of a
problem (say, looping through an array's elements) to get the neccessary data to the block.

def wire
 yield "current"
end

You can think of calling a method with
a block as being kind of like plugging an
appliance into an outlet. Like the outlet
supplying power, the block parameters
offer a safe, consistent interface for the
method to supply data to your block.
Your block doesn't have to worry about
how the data got there, it just has to
process the parameters it's been handed.

Not every appliance uses electricity, of course; some require other utilities. There are stoves and furnaces that require
gas. There are automatic sprinklers and spray nozzles that use water.

Just as there are many kinds of utilities to supply many kinds of appliances, there are many methods in Ruby that
supply data to blocks. The each method was just the beginning. We'll be looking at some of the others over the next
chapter.

wire { |power| puts "Using #{power} to turn drill bit" }
wire { |power| puts "Using #{power} to spin mixer" }

Like a power outlet.

Using current to turn drill bit
Using current to spin mixer

192 Chapter #

page goal header

 � The index is a number that can be used
to retrieve a particular item from an
array. An array's index starts with 0.

 � You can also use the index to assign a
new value to a particular array location.

 � The length method can be used to
get the number of items in an array.

 � Ruby blocks are only allowed following
a method call.

 � There are two ways to write a block:
with do ... end or with curly
brackets ({})

 � You can specify that the last method
parameter should be a block by
preceding the parameter name with an
ampersand (&).

 � It's more common to use the yield
keyword, though. You don't have to
specify a method parameter to take the
block - yield will find and invoke it
for you.

 � A block can receive one or more
parameters from the method. Block
parameters are similar to method
parameters.

 � A block can get or update the value of
local variables that appear in the same
scope as the block.

 � Arrays have an each method which
invokes a block once for each item in
an array.

Your Ruby Toolbox

That's it for Chapter 5! You’ve added
arrays and blocks to your tool box.

Statements
Conditional stat

ements execute

the code the e
nclose if a con

dition

is met.

Loops execute t
he code they

enclose repeate
dly. They exit when

a condition is m
et.

Methods
Methods arguments can be made

optional by pro
viding default

values.

It's legal for a
 method name to

end in ?, !, or
 =.

Methods return
a value to thei

r

caller. You can
 specify a method's

return value w
ith a return

statement.

Classes
A class is a template for creat

ing

object instance
s.

An object's class
 defines what it

knows (its attribut
es), and what it

does (its instan
ce methods).

Inheritance
Inheritance let

s a subclass inh
erit

methods from a superclass.

A subclass can d
efine its own

methods in addi
tion to the

methods it inher
its.

A subclass can o
verride inherit

ed

methods, replaci
ng them with its

own version.

Creating objects
Ruby calls the "

initialize" method

on new instances of a
 class. You

can use "initial
ize" to set up

a new

object's instan
ce variables.

Class methods can be
invoked

directly on a c
lass, rather th

an

an instance of
that class. They're

great as facto
ry methods.

Arrays
An array holds a

 collection of

objects.

Arrays can be a
ny size, and ca

n

grow or shrink as n
eeded.

Arrays are ordin
ary Ruby objects,

and have many useful inst
ance

methods.

Blocks
A block is a chu

nk of code tha
t

you associate w
ith a method call.

When a method runs, it
can invoke

the block it was called with one or

more times.

Each time a block finish
es running,

it returns cont
rol to the method

that invoked it
.

this is a new chapter 193

Let me go over the list with
you... Should I keep the steak?
OK, I'll keep it. The chicken?
Keep, OK. The liver? ...Get rid of

it? Consider it done!

block return values6

How Should I Handle This?

You've only seen a fraction of the power of blocks. Up until now,

the methods have just been handing data off to a block., and expecting the block to do all

the work with it. But a block can also return data back to the method. This feature lets the

method get directions from the block, allowing it to do more of the work.

In this chapter, we'll show you some methods that will let you take a big, complicated

collection, and use block return values to cut it down to size.

194 Chapter #

page goal header

A big collection of words to search through
Word got out on the great work you did on the invoicing program, and
your next client has already come in - a movie studio. They release
a lot of films each year, and the task of making commercials for all
of them is enormous. They want you to write a program that will go
through the text of movie reviews, find adjectives that describe a given
movie, and generate a collage of those adjectives:

The critics agree, Hindenburg is:

"Romantic"

"Thrilling"

"Explosive"

They've given you a sample text file to work off of, and they want you
to see if you can make a collage for their new release, Truncated.

The adjectives are
capitalized in the collage,

but not in the text.

Normally producers and directors would stop this kind of
garbage from getting published. Truncated is amazing in that
it got past those hurdles.

 --Joseph Goldstein, "Truncated: Awful", New York Minute

Guppies is destined to be the family film favorite of the
summer.

 --Bill Mosher, "Go see Guppies", Topeka Obscurant

Truncated is funny - it can't be categorized as comedy,
romance, or horror, because none of those genres would want
to be associated with it.

 --Liz Smith, "Truncated Disappoints", Chicago Some-Times

I'm pretty sure this was shot on a mobile phone. Truncated
is astounding in its disregard for filmmaking aesthetics.

 --Bill Mosher, "Don't See Truncated", Topeka Obscurant

These reviewer
bylines need to
be ignored

There are reviews
for other movies
mixed in here.

Line 1

Line 2
Line 3

Line 4
Line 5

Line 6
Line 7

Line 8

Lines are wrapped so they fit here...

Looking at the file, though, you can see your work is cut out for you:

reviews.txt

It's true, this job is a bit complex. But don't worry, arrays and blocks can help!

you are here 4 195

chapter title here

A big collection of words to search through (cont.)

 Get the file contents.

 Find reviews for the current movie.

 Discard reviewer bylines.

 Find an adjective within each review.

 Capitalize each adjective and put it in quotation

marks.

Let's break our tasks down into a checklist:

Five tasks to accomplish. Sounds simple enough. Let's get to it!

196 Chapter #

page goal header

Opening the file
Our first task is to open the text file with the review contents. This
is easier than it sounds - Ruby has a built-in class named File that
represents files on disk. To open a file named "reviews.txt" in the
current directory (folder) so you can read data from it, call the open
method on the File class:

review_file = File.open("reviews.txt")

The open method returns a new File object. (It actually calls File.new
for you, and returns the result of that.)

puts review_file.class File

There are many different methods that you can call on this File
instance, but the most useful one for our current purpose is the
readlines method, which returns all the lines in the file as an array.

lines = review_file.readlines
puts "Line 4: #{lines[3]}"
puts "Line 1: #{lines[0]}" Line 4: --Bill Mosher, "Go see Guppies",

Topeka Obscurant
Line 1: Normally producers and directors would
stop this kind of garbage from getting published.
Truncated is amazing in that it got past those
hurdles.

(Wrapped to fit this page.)

Safely closing the file

We've opened the file, and read its contents. Your next step should be
to close the file. Closing the file tells the operating system, "I'm done
with this file; others can use it now."

review_file.close

Why are we so emphatic about doing this? Because bad things happen
when you forget to close files.

You can get errors if your operating system detects that you have too
many files open at once. If you try to read all the contents of the same
file multiple times without closing it, it will appear to be empty on
subsequent attempts (because you've already read to the end of the
file, and there's nothing after that). If you're writing to a file, no other
program can see the changes you made until you close the file. It is very
important not to forget.

Are we making you nervous? Don't be. As usual, Ruby has a
developer-friendly solution to this problem.

you are here 4 197

chapter title here

file.close

Safely closing the file, with a block
Ruby offers a way to open a file, do whatever you need with it, and
automatically close it again when you're done with it. The secret is to
call File.open... with a block!

review_file = File.open("reviews.txt")
lines = review_file.readlines
review_file.close

File object is returned
and needs to be stored
in a variable.

Need to call "close"
when done.

We just change our
code from this:

...To this!

File.open("reviews.txt") do |review_file|
 lines = review_file.readlines
end

When the block finishes,
the file is automatically
closed for you!

File object is passed
as a parameter to
the block.

Why does File.open use a block for this purpose? Well, the first
and last steps in the process are pretty well-defined:

...But the creators of File.open have no idea what you intend to do
with that file while it's open. Will you read it one line at a time? All at
once? That's why they let you decide what to do, by passing in a block.

?????What will
you do here?

{ |file| lines = file.readlines }

file = File.open

file = File.open

file.close

198 Chapter #

page goal header

Don't forget about variable scope!

Switching to the block form of File.open has introduced a
problem, however. We store the array returned by readlines in a
variable within the block, but we can't access it after the block.

File.open("reviews.txt") do |review_file|
 lines = review_file.readlines
end

puts lines.length

undefined local variable
or method `lines'

The problem is that we're creating the lines variable within the block.
As we learned back in Chapter 5, any variable created within a block
has a scope that's limited to within the block. Those variables can't be

"seen" from outside the block.

OK, we've safely closed the file, and we've got our review contents.
What do we do with them? We'll be tackling that problem next.

When we're not using a block, we can access the array of lines from the
File object just fine.

review_file = File.open("reviews.txt")
lines = review_file.readlines
review_file.close

puts lines.length 8

But, as we also learned in Chapter 5, local variables declared before
a block can be seen within the block body (and are still visible after
the block, of course). So the simplest solution is to create the lines
variable before declaring the block.

lines = []

File.open("reviews.txt") do |review_file|
 lines = review_file.readlines
end

puts lines.length

Still in scope!

Still in scope!

8

Q: How can File.open work both with a
block and without one?

A: Within a Ruby method, you can call the
block_given? method to check whether the
method caller used a block, and change the method
behavior accordingly.

If we were coding our own (simplified) version of
File.open, it might look like this:

def File.open(name, mode)
 file = File.new(name, mode)
 if block_given?
 yield(file)
 else
 return file
 end
end

If a block is given, the file is passed to it for use
within the block. If it's not, the file is returned.

you are here 4 199

chapter title here

Three Ruby scripts are below. Fill in the blank in each script so that it will run successfully and
produce the specified output.

 def yield_number
 yield 4
end

yield_number { |number| array << number }

p array

1

[1, 2, 3, 4]

File.open("sample.txt") do |file|
 contents = file.readlines
end

puts contents

3

This is the first line in the file.
This is the second.
This is the last line.

[1, 2, 3].each { |number| sum += number }

puts sum

2

6

200 Chapter #

page goal header

Three Ruby scripts are below. Fill in the blank in each script so that it will run successfully and
produce the specified output.

 def yield_number
 yield 4
end

array = [1, 2, 3]

yield_number { |number| array << number }

p array

1

[1, 2, 3, 4]

 contents = []

File.open("sample.txt") do |file|
 contents = file.readlines
end

puts contents

3

This is the first line in the file.
This is the second.
This is the last line.

 sum = 0

[1, 2, 3].each { |number| sum += number }

puts sum

2

6

Any value at all will
work here, since we
assign a completely
new value in the block.

you are here 4 201

chapter title here

 Get the file contents.

 Find reviews for the current movie.

 Discard reviewer bylines.

 Find an adjective within each review.

 Capitalize each adjective and put it in quotation

marks.

Finding array elements we want, with a block
We've opened the file, and used the readlines method to get an
array with every line from the file in its own element. The first feature
from our checklist is complete!

Let's see what remains:

Normally producers and directors would stop this kind of
garbage from getting published. Truncated is amazing in that
it got past those hurdles.

 --Joseph Goldstein, "Truncated: Awful", New York Minute

Guppies is destined to be the family film favorite of the
summer.

 --Bill Mosher, "Go see Guppies", Topeka Obscurant

Truncated is funny - it can't be categorized as comedy,
romance, or horror, because none of those genres would want
to be associated with it.

 --Liz Smith, "Truncated Disappoints", Chicago Some-Times

...

A review for
a completely
different movie!

Line 1

Line 2
Line 3

Line 4
Line 5

Line 6
reviews.txt

It seems we can't expect the text file to contain only reviews for the
movie we want. Reviews for other movies are mixed in there, too:

Fortunately, it also looks like every review mentions the name of the
movie at least once. We can use that fact to find only the reviews for
our target movie.

Normally producers and directors would stop this kind of
garbage from getting published. Truncated is amazing in that it
got past those hurdles.

We can look for this
within the string.

202 Chapter #

page goal header

You can call the include? method on any instance of the String
class to determine if it includes a substring (which you pass as an
argument). Remember, by convention, methods that end in ? return a
boolean value. The include? method will return true if the string
contains the specified substring, and false if it doesn't.

my_string = "I like apples, bananas, and oranges"
puts my_string.include?("bananas")
puts my_string.include?("elephants")

true
false

It doesn't matter if the substring you're looking for is at the beginning of
the string, at the end, or somewhere in the middle; include? will find it.

So, here's one way you could select only the relevant reviews, using the
include? method and the other techniques we've learned so far...

lines = []

File.open("reviews.txt") do |review_file|
 lines = review_file.readlines
end

relevant_lines = []

lines.each do |line|
 if line.include?("Truncated")
 relevant_lines << line
 end
end

puts relevant_lines

Our old code to read
the file contents.

Remember to create the
variable outside the block!

Process each line
from the file.

The current line is passed to the block as a parameter.

Add the current line to
the array of reviews.

Normally producers and directors would stop this kind of
garbage from getting published. Truncated is amazing in that
it got past those hurdles.
 --Joseph Goldstein, "Truncated: Awful", New York Minute
Truncated is funny - it can't be categorized as comedy,
romance, or horror, because none of those genres would want
to be associated with it.
 --Liz Smith, "Truncated Disappoints", Chicago Some-Times
I'm pretty sure this was shot on a mobile phone. Truncated
is astounding in its disregard for filmmaking aesthetics.
 --Bill Mosher, "Don't See Truncated", Topeka Obscurant

Review for other
movie removed!

The verbose way to find array elements, using "each"

you are here 4 203

chapter title here

Introducing a faster method...
But actually, Ruby offers a much quicker way to do this. The find_all method
uses a block to run a test against each element in an array. It returns a new array
that contains only the elements for which the test returned a true value.

We can use the find_all method to achieve the same result, by
calling include? in its block:

lines = []

File.open("reviews.txt") do |review_file|
 lines = review_file.readlines
end

relevant_lines = lines.find_all { |line| line.include?("Truncated") }

This shortened code works just as well: only lines that include the
substring "Truncated" are copied to the new array!

Normally producers and directors would stop this kind of
garbage from getting published. Truncated is amazing in that
it got past those hurdles.
 --Joseph Goldstein, "Truncated: Awful", New York Minute
Truncated is funny - it can't be categorized as comedy,
romance, or horror, because none of those genres would want
to be associated with it.
 --Liz Smith, "Truncated Disappoints", Chicago Some-Times
I'm pretty sure this was shot on a mobile phone. Truncated
is astounding in its disregard for filmmaking aesthetics.
 --Bill Mosher, "Don't See Truncated", Topeka Obscurant

puts relevant_lines

Replacing six lines of code with a single
line... Not bad, huh?

Uh, oh. Did we just blow your mind again?
 We'll explain everything that

one line of code is doing behind
the scenes.

Over the next few pages, we'll walk you
through everything you need in order to fully
understand how find_all works. There are

many other Ruby methods that work in a similar way, so
trust us, the effort will be worth it!

204 Chapter #

page goal header

Blocks have a return value
We just saw the find_all method. You pass it a block with selection
logic, and find_all finds only the elements in an array that match
the block's criteria.

lines.find_all { |line| line.include?("Truncated") }

By "elements that match the block's criteria", we mean elements for which
the block returns a true value. The find_all method uses the return value
of the block to determine which elements to keep, and which to discard.

As we've progressed, you've probably noticed a few similarities
between blocks and methods...

• Accept parameters

• Have a body that holds Ruby expressions

• Return a value

• Accept parameters

• Have a body that holds Ruby expressions

• Return a value

Wait, what? Do they?
That's right, just like methods, Ruby blocks return the value of the last
expression they contain! It's returned to the method as the result of
the yield keyword.

Methods: Blocks:

We can create a simple method that shows this in action, and then call
it with different blocks to see their return values:

def print_block_result
 block_result = yield
 puts block_result
end

print_block_result { 1 + 1 }

print_block_result do
 "I'm not the last expression, so I'm not the return value."
 "I'm the result!"
end

print_block_result { "I hated Truncated".include?("Truncated") }

Assigns the result of the
block to a variable.

2
I'm the result!
true

you are here 4 205

chapter title here

Blocks have a return value (cont.)

Up next, we'll take a detailed look at how find_all uses the block's
return value to give you just the array elements you want.

The method isn't limited to printing the block return value, of course. It
can also do math with it:

def triple_block_result
 puts 3 * yield
end

triple_block_result { 2 }
triple_block_result { 5 }

6
15

...Or use it in a conditional:

def alert_if_true
 if yield
 puts "Block returned true!"
 else
 puts "Block returned false."
 end
end

alert_if_true { 2 + 2 == 5 }
alert_if_true { 2 > 1 }

Block returned false.
Block returned true!

...Or use it in a string:

def greet
 puts "Hello, #{yield}!"
end

greet { "Liz" } Hello, Liz!

206 Chapter #

page goal header

 We say that blocks have a "return
value", but that doesn't mean you
should use the return keyword.

Using the return keyword within a
block isn't a syntax error, but we don't

recommend it. Within a block body, the return
keyword returns from the method where the block is
being defined, not the block itself. It's very unlikely that
this is what you want to do.

 def print_block_value
 puts yield
 end

 def other_method
 print_block_value { return 1 + 1 }
 end

 other_method

The above code won't print anything, because
other_method exits as the block is being defined.

If you change the block to simply use its last expression
as a return value, then everything works as expected:

 def other_method
 print_block_value { 1 + 1 }
 end

 other_method 2

Q: Do all blocks return a value?

A: Yes! They return the result of the last
expression in the block body.

Q: If that's true, then why didn't we learn about
this sooner?

A: We haven't needed to. A block may return
a value, but the associated method doesn't have to
use it. The each method, for example, ignores the
values returned from its block.

Q: Can I pass parameters to a block and use its
return value?

A: Yes! You can pass parameters, use the return
value, do both, or do neither; it's up to you.

def one_two
 result = yield(1, 2)
 puts result
end

one_two do |param1, param2|
 param1 + param2
end

you are here 4 207

chapter title here

Code Magnets
A Ruby program is all scrambled up on the fridge. Can you reconstruct
the code snippets so that they produce the given output?

Output:

Preheat oven to 375 degrees
Place noodles, celery, and tuna in dish
Bake for 20 minutes
Preheat oven to 375 degrees
Place rice, broccoli, and chicken in dish
Bake for 20 minutes

File Edit Window Help

make_casserole

enddo

"noodles, celery, and tuna"
make_casserole

enddo

"rice, broccoli, and chicken"

make_casserole

yieldputs "Place #{ingredients} in dish"

def endputs "Preheat oven to 375 degrees"

puts "Bake for 20 minutes"
ingredients

=

208 Chapter #

page goal header

Code Magnets Solution
A Ruby program is all scrambled up on the fridge. Can you reconstruct
the code snippets so that they produce the given output?

Output:

Preheat oven to 375 degrees
Place noodles, celery, and tuna in dish
Bake for 20 minutes
Preheat oven to 375 degrees
Place rice, broccoli, and chicken in dish
Bake for 20 minutes

File Edit Window Help

make_casserole

end

do

"noodles, celery, and tuna"

make_casserole

end

do

"rice, broccoli, and chicken"

make_casserole

yield

puts "Place #{ingredients} in dish"

def

end

puts "Preheat oven to 375 degrees"

puts "Bake for 20 minutes"

ingredients =

you are here 4 209

chapter title here

How the method uses a block return value
We're close to deciphering how this snippet of code works:

lines.find_all { |line| line.include?("Truncated") }

The last step is understanding the find_all method. It passes each
element in an array to a block, and builds a new array including only
the elements for which the block returns a true value.

p [1, 2, 3, 4, 5].find_all { |number| number.even? }
p [1, 2, 3, 4, 5].find_all { |number| number.odd? }

[2, 4]
[1, 3, 5]

All that matters in this selection process is the block's return value. The
block body doesn't even have to use the parameter with the current
array element (although in most practical programs, it will). If the
block returns true for everything, all the array elements will be
included...

p ['a', 'b', 'c'].find_all { |item| true } ["a", "b", "c"]

...If it returns false for everything, none of them will be.

p ['a', 'b', 'c'].find_all { |item| false } []

If we were to write our own version
of find_all, it might look like this:

class Array
 def find_all
 matching_items = []
 self.each do |item|
 if yield(item)
 matching_items << item
 end
 end
 matching_items
 end
end

Create a new array to hold
the elements for which the
block returns "true".

Process each element.

Pass the element to the block. If the
 result is "true"...

Add it to the array of
matching elements.

If this code looks familiar, it should. It's a more
generalized version of our earlier code to find
lines that were relevant to our target movie!

You can think of the values the block returns as a set of instructions
for the method. The find_all method's job is to keep some array
elements and discard others. But it relies on the block's return value to
tell it which elements to keep.

Think of block return
values as instructions from
the block to the method.

relevant_lines = []
lines.each do |line|
 if line.include?("Truncated")
 relevant_lines << line
 end
end
puts relevant_lines

The old code:

210 Chapter #

page goal header

Putting it all together
Now that we know how the find_all method works, we're really
close to understanding this code.

lines = []

File.open("reviews.txt") do |review_file|
 lines = review_file.readlines
end

relevant_lines = lines.find_all { |line| line.include?("Truncated") }

Here's what we've learned (not necessarily in order):

• The last expression in a block becomes its return value.

• The include? method returns true if the string contains the
specified substring, and false if it doesn't.

• The find_all method passes each element in an array to a
block, and builds a new array including only the elements for
which the block returns a true value.

Let's look inside the find_all method and the block as they process
the first few lines of the file, to see what they're doing...

lines.find_all { |line| line.include?("Truncated") }

lines.find_all { |line| line.include?("Truncated") }

Returns true if line
contains "Truncated".

lines.find_all { |line| line.include?("Truncated") }

Result will be an array with all the elements of "lines" that contain string "Truncated".

Result will be used as
block return value.

you are here 4 211

chapter title here

A closer look at the block return values

...And so on, through the rest of the lines
in the file. The find_all method adds
the current element to a new array if the
block returns a true value, and skips it if
the block returns a false value. The result
is an array that contains only the lines
that mention the movie we want!

The find_all method passes the first line from the file to the block, which
receives it in the line parameter. The block tests whether line includes
the string "Truncated". It does, so the return value of the block is true.
Back in the method, the line gets added to the array of matching items.

1 "find_all" passes
the full text
lines; we've just
shortened them
to fit this page!

"...Truncated is amazing..."

true

{ |line| line.include?("Truncated") }

def find_all
 matching_items = []
 self.each do |item|
 if yield(item)
 matching_items << item
 end
 end
end

The block returns
"true", so the current
line gets added to
matching_items!

The find_all method passes the second line from the file to the block.
Again, the line block parameter includes the string "Truncated", so the
return value of the block is again true. Back in the method, this line also
gets added to the array of matching items.

2

"...Truncated: Awful..."

true

{ |line| line.include?("Truncated") }

def find_all
 matching_items = []
 self.each do |item|
 if yield(item)
 matching_items << item
 end
 end
end

Another block
return value of

"true", so this line
gets added as well.

The third line from the file doesn't include the string "Truncated", so the
return value of the block is false. This line is not added to the array.

3

"...Guppies is destined..."

false

{ |line| line.include?("Truncated") }

def find_all
 matching_items = []
 self.each do |item|
 if yield(item)
 matching_items << item
 end
 end
end

The block return
value is "false", so
this line is NOT
added.

["...Truncated is amazing...",
 "...Truncated: Awful...",
 "...Truncated is funny...",
 "...Truncated Disappoints...",
 "...Truncated is astounding...",
 "...Don't See Truncated..."]

Shortened to fit this page!

p relevant_lines

212 Chapter #

page goal header

Eliminating elements we don't want, with a block

 Get the file contents.

 Find reviews for the current movie.

 Discard reviewer bylines.

Using the find_all method, we've successfully found all the reviews
for our target movie, and placed them in the relevant_lines
array. We can check another requirement off our list!

Our next requirement is to discard the reviewer bylines, because we're
only interested in retrieving adjectives from the main text of each review.

Normally producers and directors would stop this kind of
garbage from getting published. Truncated is amazing in that
it got past those hurdles.
 --Joseph Goldstein, "Truncated: Awful", New York Minute
Truncated is funny - it can't be categorized as comedy,
romance, or horror, because none of those genres would want
to be associated with it.
 --Liz Smith, "Truncated Disappoints", Chicago Some-Times
...

We want to get
rid of these:

Fortunately, they're clearly marked. Each one starts with the characters
"--", so it should be easy to use the include? method to determine
if a string contains a byline.

Before, we used the find_all method to keep lines that included a
particular string. The reject method is basically the opposite of
find_all - it passes elements from an array to a block, and rejects an
element if the block returns a true value. If find_all relies on the
block to tell it which items to keep, reject relies on the block to tell it
which items to discard.

If we were to implement our own version
of reject, it would look very similar to
find_all:

class Array
 def reject
 kept_items = []
 self.each do |item|
 unless yield(item)
 kept_items << item
 end
 end
 kept_items
 end
end

Create a new array to hold
the elements for which the
block returns "false".

Process each element.
Pass the element to the block.
If the result is "false"...

Add it to the array of
kept elements.

you are here 4 213

chapter title here

So reject works just like find_all, except that instead of keeping elements that the block
returns a true value for, it rejects them. Using reject, it should be easy to get rid of the bylines!

reviews = relevant_lines.reject { |line| line.include?("--") }

The return values for "reject"

The reject method passes the first line from the file to the block. The line block
parameter does not include the string "--", so the return value of the block is false.
Back in the method, this line gets added to the array of items we're keeping.

1

"...Truncated is amazing..."

false

{ |line| line.include?("--") }

def reject
 kept_items = []
 self.each do |item|
 unless yield(item)
 kept_items << item
 end
 end
 kept_items
end

Block returns
"false", so current
line gets added to

array of kept items.

The reject method passes the second line to the block. The line parameter does
include the string "--", so the return value of the block is true, and the method
discards (rejects) this line.

2

"...--Joseph Goldstein..."

true

{ |line| line.include?("--") }

def reject
 kept_items = []
 self.each do |item|
 unless yield(item)
 kept_items << item
 end
 end
 kept_items
end

Block returns
"true", so line is NOT

added to array.

The third line doesn't include "--", so the return value of the block is false,
and the method keeps this line.

3

"...Truncated is funny..."

false

{ |line| line.include?("--") }

def reject
 kept_items = []
 self.each do |item|
 unless yield(item)
 kept_items << item
 end
 end
 kept_items
end

Block returns
"false", so item

is kept.

...And so on, for the rest of the lines in the file. The
reject method skips adding a line to the new
array if it includes "--". The result is a new array
that omits the bylines and includes only the reviews!

p reviews ["...Truncated is amazing...",
 "...Truncated is funny...",
 "...Truncated is astounding..."]

214 Chapter #

page goal header

 Get the file contents.

 Find reviews for the current movie.

 Discard reviewer bylines.

 Find an adjective within each review.

 Capitalize each adjective and put it in quotation

marks.

For our next requirement, we're going to need a couple new methods.
They don't take blocks at all, but they are super-useful.

We've discarded the reviewer bylines,
leaving us with an array containing
only the text of each review. That's
another requirement down! Two to go...

We need to find an adjective in each review:

p reviews ["...Truncated is amazing...",
 "...Truncated is funny...",
 "...Truncated is astounding..."]

We need to select just
the adjectives...

If you look above, you'll notice a pattern... The adjective we want always seems
to follow the word "is".

So, we need to get one word that follows another word... What we have right
now are strings. How can we convert those to words?

Strings have a split instance method that you can call to split them
into an array of substrings.

p "1-800-555-0199".split("-")
p "his/her".split("/")
p "apple, avocado, anvil".split(", ")

["1", "800", "555", "0199"]
["his", "her"]
["apple", "avocado", "anvil"]

The argument to split is the separator: one or more characters that separate
the string into sections.

What separates words in the English language? A space! If we pass " " (a space
character) to split, we'll get an array back. Let's try it with our first review.

string = reviews.first
words = string.split(" ")
p words ["Normally", "producers", "and", "directors",

"would", "stop", "this", "kind", "of", "garbage",
"from", "getting", "published.", "Truncated", "is",
"amazing", "in", "that", "it", "got", "past",
"those", "hurdles."]

Breaking a string into an array of words

There you have it - an array of words!

you are here 4 215

chapter title here

The split method converted our review string into an array of words.
Now, we need to find the word "is" within that array. Again, Ruby has a
method ready to go for us. If you pass an argument to the find_index
method, it will find us the first index where that element occurs in the array.

p ["1", "800", "555", "0199"].find_index("800")
p ["his", "her"].find_index("his")
p ["apple", "avocado", "anvil"].find_index("anvil")

1
0
2

Using find_index, let's write a method that will split a string into
an array of words, find the index of the word "is", and return the
word that comes after that.

def find_adjective(string)
 words = string.split(" ")
 index = words.find_index("is")
 words[index + 1]
end

Split the sentences
into words.

Find the array index of "is".

Find the word AFTER
"is", and return it.

Finding the index of an array element

We can easily test our method out on one of our reviews...

adjective = find_adjective(reviews.first) amazing

There's our adjective! That only takes care of one review, though.
Next, we need to process all the reviews, and create an array of the
adjectives we find. With the each method, that's easy enough to do.

adjectives = []

reviews.each do |review|
 adjectives << find_adjective(review)
end

puts adjectives

Create a new array to
add adjectives into.

For each review in the array...

Call the method we
made, and add the
adjective to the list.

amazing
funny
astounding

Now we have an array of adjectives, one for each review!

Would you believe there's an even easier way to create an array of
adjectives based on the array of reviews, though?

216 Chapter #

page goal header

We had no problem looping through our array of reviews to build up an
array of adjectives using each and our new find_adjective method.

Making one array that's based on another, the hard way

But creating a new array based on the contents of another array is a really
common operation, that requires similar code each time. Some examples:

In each of these examples, we have to set up a new array to hold the results, loop
through the original array and apply some logic to each of its members, and add the
result to the new array. (Just like in our adjective finder code.) It's a bit repetitive...

["800", "402"]

phone_number.split("-")[1]

["1-800-555-0199", "1-402-555-0123"]

[4, 9, 16]
number ** 2

[2, 3, 4]

[8, 27, 64]
number ** 3

[2, 3, 4]

Wouldn't it be great if there were some sort of magic processor for
arrays? You drop in your array, it runs some (interchangeable) logic on
its elements, and out pops a new array with the elements you need!

phone_numbers = ["1-800-555-0199", "1-402-555-0123"]

area_codes = []

phone_numbers.each do |phone_number|
 area_codes << phone_number.split("-")[1]
end

p area_codes

Make an array
to hold results.

Loop through
source array.

Perform an operation, and
copy result to results array.

numbers = [2, 3, 4]

squares = []

numbers.each do |number|
 squares << number ** 2
end

p squares

Make an array
to hold results.

Loop
through
source
array.

Perform an operation, and
copy result to results array.

numbers = [2, 3, 4]

cubes = []

numbers.each do |number|
 cubes << number ** 3
end

p cubes

Make an array
to hold results. Loop

through
source
array.Perform an operation, and

copy result to results array.
[4, 9, 16] [8, 27, 64]

["800", "402"]

you are here 4 217

chapter title here

The map method can shorten our code to
gather adjectives down to a single line!

adjectives = reviews.map { |review| find_adjective(review) }

An array with all the return
values from find_adjective.

Call our method. Its
return value will be the
return value of the block.

Making one array that's based on another, using "map"
Ruby has just the magic array processor we're looking for: the map
method. The map method takes each element of an array, passes it to a
block, and builds a new array out of the values the block returns.

squares = [2, 3, 4].map { |number| number ** 2 }
cubes = [2, 3, 4].map { |number| number ** 3 }
area_codes = ['1-800-555-0199', '1-402-555-0123'].map do |phone|
 phone.split("-")[1]
end
p squares, cubes, area_codes

No need to create the
result arrays beforehand -
"map" creates them for us!

Make a new array with
the cubes of each number.

Make a new array with
just area codes.

[4, 9, 16]
[8, 27, 64]
["800", "402"]

Make a new array with the
squares of each number.

The map method is similar to find_all and reject, in that it processes
each element in an array. But find_all and reject use the block's return
value to decide whether to copy the original element from the old array to the
new one. The map method adds the block's return value itself to the new array.

If we were to code our own version of map, it might look like this:

class Array
 def map
 results = []
 self.each do |item|
 results << yield(item)
 end
 results
 end
end

Make a new array to hold the
block return values.

Loop through
each element.

Pass the element to the block, and add
the return value to the new array.

Return the array of
block return values.

The return value of map is an array with all the values the block returned:

p adjectives ["amazing", "funny", "astounding"]

218 Chapter #

page goal header

Let's look at how the map method and our block
process the array of reviews, step by step...

Making one array that's based on another, using "map" (cont.)

 The map method passes our first review to the block. The block, in turn,
passes the review to find_adjective, which returns "amazing". The
return value of find_adjective also becomes the return value of the
block. Back in the map method, "amazing" is added to the results array.

1

"amazing"

def map
 results = []
 self.each do |item|
 results << yield(item)
 end
 results
end

{ |review| find_adjective(review) }

"...Truncated is amazing..."

 The second review is passed to the block, and find_adjective returns
"funny". Back in the method, the new adjective is added to the results array.

2

"funny"

def map
 results = []
 self.each do |item|
 results << yield(item)
 end
 results
end

{ |review| find_adjective(review) }

"...Truncated is funny..."

 For the third review, find_adjective returns "astounding", which
gets added to the array with the others.

3

"astounding"

def map
 results = []
 self.each do |item|
 results << yield(item)
 end
 results
end

{ |review| find_adjective(review) }

"...Truncated is astounding..."

["amazing",
 "funny",
 "astounding"]

["...Truncated is amazing...", "...Truncated is funny...", "...Truncated is astounding..."]

find_adjective(review)

adjectives = reviews.map { |review| find_adjective(review) }

We have just one more requirement,
and this one will be easy!

 Find an adjective within each review.

 Capitalize each adjective and put it in quotation
marks.

you are here 4 219

chapter title here

We're already using map to find the adjectives for each review:

adjectives = reviews.map { |review| find_adjective(review) }

We can just add code to capitalize the adjective and enclose it in quotation
marks to the block, right after the call to our find_adjective method.

adjectives = reviews.map do |review|
 adjective = find_adjective(review)
 "'#{adjective.capitalize}'"
end

The block takes up more than one
line now, so we follow convention and
switch to a "do ... end" block.

We need to work with this value
further, so we assign it to a
variable instead of returning it.

Here's our new return value.

Here are the new return values that this updated code produces:

Some additional logic in the "map" block body

"'Amazing'"

def map
 results = []
 self.each do |item|
 results << yield(item)
 end
 results
end

do |review|
 adjective = find_adjective(review)
 "'#{adjective.capitalize}'"
end

"...Truncated is amazing..."
 1

"'Funny'"

def map
 results = []
 self.each do |item|
 results << yield(item)
 end
 results
end

do |review|
 adjective = find_adjective(review)
 "'#{adjective.capitalize}'"
end

"...Truncated is funny..."
 2

"'Astounding'"

def map
 results = []
 self.each do |item|
 results << yield(item)
 end
 results
end

do |review|
 adjective = find_adjective(review)
 "'#{adjective.capitalize}'"
end

"...Truncated is astounding..."
 3

220 Chapter #

page goal header

 Get the file contents.

 Find reviews for the current movie.

 Discard reviewer bylines.

 Find an adjective within each review.

 Capitalize each adjective and put it in quotation

marks.

That's our last requirement. Congratulations, we're done!

You've successfully learned to use block return values to find elements you want within an array,
reject elements you don't want, and even to use an algorithm to create an entirely new array!

Processing a complex text file like this would take dozens of lines of code in other languages,
with lots of repetition. The find_all, reject, and map methods handled all of that
for you! They're not the easiest methods to learn to use, but now that you have, you've got
powerful new tools at your disposal!

Here's our complete code listing:

def find_adjective(string)
 words = string.split(" ")
 index = words.find_index("is")
 words[index + 1]
end

lines = []
File.open("reviews.txt") do |review_file|
 lines = review_file.readlines
end

relevant_lines = lines.find_all { |line| line.include?("Truncated") }
reviews = relevant_lines.reject { |line| line.include?("--") }

adjectives = reviews.map do |review|
 adjective = find_adjective(review)
 "'#{adjective.capitalize}'"
end

puts "The critics agree, Truncated is:"
puts adjectives

We'll call this method below, to
find adjectives within each review.

Break the string into an array of words.
Find the index of the word "is".

Return the word
following "is".

We need to create this variable outside the block.
Open the file, and automatically
close it when we're done.

Read every line in the file into an array. Find lines that include
the movie name.

Exclude reviewer bylines.
Process each review.

Find the adjective.
Return the adjective, capitalized and surrounded
by quotes.

The critics agree, Truncated is:
'Amazing'
'Funny'
'Astounding'

The finished product

you are here 4 221

chapter title here

Open a new terminal or command prompt, type "irb" and hit the Enter/Return key. For each of the
Ruby expressions below, write your guess for what the result will be on the line next to it. Then
try typing the expression into irb, and hit Enter. See if your guess matches what irb returns!

[1, 2, 3, 4].find_all { |number| number.odd? }

[1, 2, 3, 4].find_all { |number| true }

[1, 2, 3, 4].find_all { |number| false }

[1, 2, 3, 4].find { |number| number.even? }

[1, 2, 3, 4].reject { |number| number.odd? }

[1, 2, 3, 4].all? { |number| number.odd? }

[1, 2, 3, 4].any? { |number| number.odd? }

[1, 2, 3, 4].none? { |number| number > 4 }

[1, 2, 3, 4].count { |number| number.odd? }

[1, 2, 3, 4].partition { |number| number.odd? }

['$', '$$', '$$$'].map { |string| string.length }

['$', '$$', '$$$'].max_by { |string| string.length }

['$', '$$', '$$$'].min_by { |string| string.length }

222 Chapter #

page goal header

Open a new terminal or command prompt, type "irb" and hit the Enter/Return key. For each of the
Ruby expressions below, write your guess for what the result will be on the line next to it. Then
try typing the expression into irb, and hit Enter. See if your guess matches what irb returns!

[1, 2, 3, 4].find_all { |number| number.odd? } [1, 3]
An array of all values for which
the block returns "true".

[1, 2, 3, 4].find_all { |number| true } [1, 2, 3, 4]
If it always returns "true",
all values get included.

[1, 2, 3, 4].find_all { |number| false } []
If it NEVER returns true,
NO values are included.

[1, 2, 3, 4].find { |number| number.even? } 2
"find" returns the FIRST value for
which the block returns "true".

[1, 2, 3, 4].reject { |number| number.odd? } [2, 4]
An array of all values for
which the block returns "false".

[1, 2, 3, 4].all? { |number| number.odd? } false
"all?" returns true if the block
returned true for ALL elements.

[1, 2, 3, 4].any? { |number| number.odd? } true
"any?" returns true if the block
returned true for ANY elements.

[1, 2, 3, 4].none? { |number| number > 4 } true
"none?" returns true if the block
returned FALSE for all elements.

[1, 2, 3, 4].count { |number| number.odd? } 2
The number of elements for which
the block returned "true".

[1, 2, 3, 4].partition { |number| number.odd? } [[1, 3], [2, 4]]

['$', '$$', '$$$'].map { |string| string.length } [1, 2, 3]
An array with all the
values the block returns.

['$', '$$', '$$$'].max_by { |string| string.length } "$$$"
The element for which the block
returned the LARGEST value.

['$', '$$', '$$$'].min_by { |string| string.length } "$"
The element for which the block
returned the SMALLEST value.

Two arrays, the first with all the elements
where the block returned TRUE, the second
with all the elements where it returned FALSE.

you are here 4 223

chapter title here

 � If you pass a block to File.open, it
will yield the file to the block so you can do
whatever you need with it. When the block
ends, the file will automatically be closed.

 � Strings have an instance method called
include?, which takes a substring as
an argument. It will return true if the
string includes the substring, false if
not.

 � When you need to find all elements of an
array that meet some criteria, you can use
the find_all method. It passes each
element of the array to a block, and will
return a new array with all the elements for
which the block returned a true value.

 � The reject method works just like
find_all, except that it rejects array
elements for which a block returns a true
value.

 � The split method on strings takes a
separator as an argument. It finds each
instance of the separator within the
string, and returns an array with all of
the substrings that were between each
separator.

 � The find_index method searches for
the first occurrence of an element within
an array, and returns its index.

 � The map method takes each element of
an array, passes it to a block, and builds
a new array out of the values the block
returns.

Your Ruby Toolbox

That's it for Chapter 6! You’ve added
block return values to your tool box.

Statements
Conditional stat

ements execute

the code the e
nclose if a con

dition

is met.

Loops execute t
he code they

enclose repeate
dly. They exit when

a condition is m
et.

Methods
Methods arguments can be made

optional by pro
viding default

values.

It's legal for a
 method name to

end in ?, !, or
 =.

Methods return
a value to thei

r

caller. You can
 specify a method's

return value w
ith a return

statement.

Classes
A class is a template for creat

ing

object instance
s.

An object's class
 defines what it

knows (its attribut
es), and what it

does (its instan
ce methods).

Inheritance
Inheritance let

s a subclass inh
erit

methods from a superclass.

A subclass can d
efine its own

methods in addi
tion to the

methods it inher
its.

A subclass can o
verride inherit

ed

methods, replaci
ng them with its

own version.

Creating objects
Ruby calls the "

initialize" method

on new instances of a
 class. You

can use "initial
ize" to set up

a new

object's instan
ce variables.

Class methods can be
invoked

directly on a c
lass, rather th

an

an instance of
that class. They're

great as facto
ry methods.

Arrays
An array holds a

 collection of

objects.

Arrays can be a
ny size, and ca

n

grow or shrink as n
eeded.

Arrays are ordin
ary Ruby objects,

and have many useful inst
ance

methods.

Blocks
A block is a chu

nk of code tha
t

you associate w
ith a method call.

When a method runs, it
can invoke

the block it was called with one or

more times.

Each time a block finish
es running,

it returns cont
rol to the method

that invoked it
.

Block Return Values

The value of the
 last expression

 in

a block's body
is returned to

the

method, as the
value of the yi

eld

keyword.

Methods can use
 the block

return value to
 find elements in

a collection, de
cide how to sort

elements, and more.

224 Chapter #

page goal header

this is a new chapter 225

Wilson, Wilson... Not here,
either. If only this data had
labels on it... I could find things

more quickly!

hashes7

Labelling Data

Throwing things in piles is fine, until you need to find something
again. You've already seen how to create a collection of objects using an array. You've seen

how to process each item in an array, and how to find items you want. In both cases, you start

at the beginning of the array, and look through Every. Single. Object.

You've also seen methods that take big collections of parameters. You've seen the problems

this causes: method calls require a big, confusing collection of arguments that you have to

remember the exact order for.

What if there was a kind of collection where all the data had labels on it? You could quickly find

the elements you needed! In this chapter, we'll learn about Ruby hashes, which do just that.

226 Chapter #

page goal header

A seat on the Sleepy Creek County School Board is up for grabs this year,
and polls have been showing the election to be really close. Now that it's
election night, the candidates are excitedly watching the votes roll in.

The electronic voting machines in use this year record the votes to text
files, one vote per line. (Budgets are tight, so the city council chose the
cheap voting machine vendor.)

Amber Graham
Brian Martin
Amber Graham
Brian Martin
Brian Martin

Each line represents
one vote.

votes.txt

Here's a file with all the votes for District A:

We need to process each line of the file, and tally
the total number of times each name occurs. The
name with the most votes will be our winner!

The development team's first order of business is to read the contents
of the "votes.txt" file. That part is easy; it's just like the code we
used to read the movie reviews file back in Chapter 6.

lines = []
File.open("votes.txt") do |file|
 lines = file.readlines
end

Create a variable that will still
be accessible after the block.

Open the file, and pass
it to the block.

Store all the file lines in an array.
Now, we need to get the name from each line of the file, and
increment a tally of the number of times that name has occurred.

Counting votes

{"name" => "Amber Graham",
 "occupation" => "Manager"}

{"name" => "Brian Martin",
 "occupation" => "Accountant"}

I'm confident
that the voters will
choose the candidate

who will put our children
first!

It's time to bring
financial responsibility
and accountability back
to our school system!

you are here 4 227

chapter title here

But how do we keep track of all those names and associate a vote total with each of them?
We'll show you two ways. The first approach uses arrays, which we already know about from
Chapter 5. Then we'll show you a second way using a new data structure, hashes.

If all we had to work with were arrays, we might build an array of arrays to hold everything.
That's right, Ruby arrays can hold any object, including other arrays. So we could create an
array with the candidate's name, and the number of votes we've counted for it:

["Brian Martin", 1]

We could put this array inside another array that holds all
the other candidate names and their totals:

[
 ["Amber Graham", 1],
 ["Brian Martin", 1]

]

Outer array. An inner array.

Insert the new array here...

For each name we encountered in the text file... "Mikey Moose"

But if we encountered a name in the text file that did
already exist in the array of arrays...

"Brian Martin"

...We'd need to loop through the outer array and check
whether the first element of the inner array matches it.

[
 ["Amber Graham", 1],
 ["Brian Martin", 1],
 ...

]

If none matched, we'd add a new inner array with the
new name.

[
 ["Amber Graham", 1],
 ["Brian Martin", 1],
 ["Mikey Moose", 1]

]

Insert the new array here...

Then we'd update the existing total for that name.
[
 ["Amber Graham", 1],
 ["Brian Martin", 2],
 ["Mikey Moose", 1]

]

Update this vote count.

...You could do all that. But it would require extra code, and all that looping would
take a long time when processing large lists. As usual, Ruby has a better way.

An array of arrays... is not ideal

"Mikey Moose"? Nope...
"Mikey Moose"? Nope...

"Brian Martin"? Nope.
"Brian Martin"? Yes!

228 Chapter #

page goal header

The problem with storing the vote tally for each candidate
in an array is the inefficiency of looking them up again
later. For each name we want to find, we have to search
through all the others.

"Mikey Moose"? Nope...
"Mikey Moose"? Nope...

"Mikey Moose"?

[
 ["Amber Graham", 4],
 ["Brian Martin", 5],
 ["Mikey Moose", 2]
]

Putting data in an array is like stacking
it in a big pile; you can get particular
items back out, but you'll have to search
through everything to find them.

Ruby has another way of storing collections of data... hashes.
A hash is a collection where each value is accessed via a key.
Keys are an easy way to get data back out of your hash. It's
like having neatly labelled file folders instead of a messy pile.

Key

Key/value
separator

Key/value
separator

Separate key/value
pairs with commas

Value ValueKey

End of hash.Start of hash

Just like with arrays, you can create a new hash and add some data to
it at the same time using a hash literal. The syntax looks like this:

We can assign a new hash to a variable: elements = {"H" => "Hydrogen", "Li" => "Lithium"}

Then, we can access values from that hash using the keys we
set up for them. Whereas hash literals use curly braces, you
use square brackets to access individual values. It looks just like
the syntax to access values from an array, except you place
the hash key within the brackets instead of a numeric index.

puts elements["Li"]
puts elements["H"]

Use a hash key here, and you'll
get the corresponding value.

Lithium
Hydrogen

Hashes

Those => symbols show which key points to which value. They look a
bit like a rocket, so they are sometimes called "hash rockets".

Start at the
top; search
the whole pile.

Array

AMBER GRAHAM

Keys let you
quickly find
data again!

Hash

{"H" => "Hydrogen", "Li" => "Lithium"}

you are here 4 229

chapter title here

• Grow and shrink as needed

• Can hold any object, even hashes or other arrays

• Can hold instances of more than one class at the
same time

• Literals surrounded by square brackets

• Elements accessed by specifying index within
square brackets

• Only integers can be used as indexes

• Index of an element is determined by position
within array

[2.99, 25.00, 9.99]

0 1 2

• Grow and shrink as needed

• Can hold any object, even arrays or other hashes

• Can hold instances of more than one class at the
same time

• Literals surrounded by curly braces

• Values accessed by specifying key within square
brackets

• Any object can be used as a key

• Keys not calculated; key must be specified
whenever a value is added

{"M" => "Monday", "T" => "Tuesday"}

Key KeyValue Value

Arrays: Hashes:

Whereas an array can only use integers as indexes, a hash can use
any object as a key. That includes numbers, strings, and symbols.

mush = {1 => "one", "two" => 2, :three => 3.0}

p mush[:three]
p mush[1]
p mush["two"]

3.0
"one"
2

Although arrays and hashes have major differences, there are enough
similarities that it's worth taking a moment to compare them...

Fill in the blanks in the code below, so that it will produce the output shown.

my_hash = {"one" => , :three => "four", => "six"}
puts my_hash[5]
puts my_hash["one"]
puts my_hash[]
my_hash[] = 8
puts my_hash["seven"]

six
two
four
8

Output:

We can also add new keys and values to an existing hash.
Again, the syntax looks a lot like the syntax to assign to an
array element: elements["Ne"] = "Neon"

puts elements["Ne"]

Hash key we're
assigning a value for. New value.

Neon

Hashes (cont.)

230 Chapter #

page goal header

Fill in the blanks in the code below, so that it will produce the output shown.

my_hash = {"one" => , :three => "four", => "six"}
puts my_hash[5]
puts my_hash["one"]
puts my_hash[]
my_hash[] = 8
puts my_hash["seven"]

six
two
four
8

"two"

:three
"seven"

5 Output:

Hashes are objects
We've been hearing over and over that everything in Ruby is an object. We saw that
arrays are objects, and it probably won't surprise you to learn that hashes are objects, too.

protons = {"H" => 1, "Li" => 3, "Ne" => 10}
puts protons.class Hash

And, like most Ruby objects, hashes have lots of useful instance methods. Here's a sampling...

They have the methods that you expect
every Ruby object to have, like inspect:

puts protons.inspect {"H"=>1, "Li"=>3, "Ne"=>10}

The length method lets you determine
how many key/value pairs the hash holds:

puts protons.length 3

There are methods to quickly test whether
the hash includes particular keys or values:

puts protons.has_key?("Ne")

puts protons.has_value?(3)

true

true

There are methods that will give you an
array with all the keys, or all the values:

p protons.keys

p protons.values

["H", "Li", "Ne"]

[1, 3, 10]

And, as with arrays, there are methods that will let you use a
block to iterate over the hash's contents. The each method,
for example, takes a block with two parameters, one for the
key and one for the value. (More about each in a few pages.)

protons.each do |element, count|
 puts "#{element}: #{count}"
end

H: 1
Li: 3
Ne: 10

you are here 4 231

chapter title here

Open a new terminal or command prompt, type "irb" and hit the Enter/Return key. For each of the
Ruby expressions below, write your guess for what the result will be on the line next to it. Then
try typing the expression into irb, and hit Enter. See if your guess matches what irb returns!

protons.merge({ "C" => 0, "Uh" => 147.2 })

protons.values

protons.keys

protons.has_value?(119)

protons.has_key?("C")

protons["C"]

protons["C"] = 6

protons["He"]

protons = { "He" => 2 }

Q: Why do they call it a "hash"?

A: Frankly, it's not the best possible name. Other languages refer to this kind of
structure as "maps", "dictionaries", or "associative arrays" (because keys are associated
with values). In Ruby, it's called a "hash" because an algorithm called a hash table is
used to quickly look up keys within the hash. The details of that algorithm are beyond
the scope of this book, but you can visit your favorite search engine to learn more.

232 Chapter #

page goal header

Open a new terminal or command prompt, type "irb" and hit the Enter/Return key. For each of the
Ruby expressions below, write your guess for what the result will be on the line next to it. Then
try typing the expression into irb, and hit Enter. See if your guess matches what irb returns!

protons.merge({ "C" => 0, "Uh" => 147.2 }) {"He"=>2, "C"=>0, "Uh"=>147.2}

If a key in the new hash already exists in the old hash, the old value is overridden.

If a key didn't
already exist,
it just gets
added.

protons.values [2, 6]
An array containing
every value in the hash.

protons.keys ["He", "C"]
An array containing
every key in the hash.

protons.has_value?(119) false
"false" because no key in the
hash has the given value.

protons.has_key?("C") true
"true" because the hash
includes the given key.

protons["C"] 6
Retrieving the value we just
assigned from the hash.

protons["C"] = 6 6
The value that was
assigned.

protons["He"] 2
Provide the key, get the
corresponding value.

protons = { "He" => 2 } {"He"=>2}

Result of an assignment
statement, as always, is the
value that was assigned.

you are here 4 233

chapter title here

Let's take a look at the array of lines we read from the sample file of votes.
We need to tally the number of times each name occurs within this array.

p lines

["Amber Graham\n", "Brian Martin\n", "Amber Graham\n",
 "Brian Martin\n", "Brian Martin\n"]

These newline characters
were read from the file.

That's the plan, anyway. But
our first version of the code
to do this fails with an error...

votes = {}

lines.each do |line|
 name = line.chomp
 votes[name] += 1
end

p votes

Set up an empty hash.

Remove the newline
character.

Increment the total
for the current name. undefined

method `+' for
nil:NilClass

Error:

So what happened? As we saw in the arrays
chapter, if you try to access an array element that
hasn't been assigned to yet, you'll get nil back.
If you try to access a hash key that has never been
assigned to, the default value is also nil.

array = []
p array[999]
hash = {}
p hash["I don't exist"]

Doesn't exist.

Doesn't exist. nil
nil

When we try to access the votes for a candidate name that has never been
assigned to, we get nil back. And trying to add to nil produces an error.

Hashes return "nil" by default Amber Graham
Brian Martin
Amber Graham
Brian Martin
Brian Martin

votes.txt

In the place of the array of arrays we discussed earlier, let's use a hash to store the vote counts. When
we encounter a name within the lines array, if that name doesn't exist, we'll add it to the hash.

"Amber Graham"If we read this line...
{
 "Amber Graham" => 1,
}

We'll add this key and
value to the hash.

Each new name we encounter will get its own key and value added to the hash.

"Brian Martin"If we read this line...
{
 "Amber Graham" => 1,
 "Brian Martin" => 1,
}

We'll add this key and
value to the hash.

If we encounter a name that we've already added, we'll update its count, instead.

"Amber Graham"If we read the same
name again...

{
 "Amber Graham" => 2,
 "Brian Martin" => 1,
}

We'll update the
corresponding value.

...And so on, until we've counted all the votes.

234 Chapter #

page goal header

nil (and only nil) is "falsy"

We can clean that up by taking advantage of the fact that any Ruby expression
can be used in a conditional statement. Most of them will be treated as if they
were a "true" value. (Rubyists often say these values are "truthy".)

if "any string"
 puts "I'll be printed!"
end

Truthy. if 42
 puts "I'll be printed!"
end

Truthy. if ["any array"]
 puts "I'll be printed!"
end

Truthy.

In fact, aside from the false boolean value, there is only one value that Ruby
treats as if it was false: nil. (Rubyists often say that nil is "falsy".)

if false
 puts "I won't be printed!"
end

Actually false. if nil
 puts "I won't, either!"
end

Falsy.

To fix this, we can test whether the value for
the current hash key is nil. If it's not, then
we can safely increment whatever number is
there. But if it is nil, then we'll need to set
up an initial value (a tally of 1) for that key.

lines = []
File.open("votes.txt") do |file|
 lines = file.readlines
end

votes = {}

lines.each do |line|
 name = line.chomp
 if votes[name] != nil
 votes[name] += 1
 else
 votes[name] = 1
 end
end

p votes

If we've seen this name before...
Increment its total.

If this is our first sight of this name...
Add it to the hash with value of 1.

{"Amber Graham"=>2, "Brian Martin"=>3}

The first time we encounter a candidate's name, instead
of getting a vote tally back from the hash, we get nil.
This results in an error when we try to add to it.

lines.each do |line|
 name = line.chomp
 votes[name] += 1
end

undefined method `+'
for nil:NilClass

There's a small improvement to be made,
though... That conditional is a little ugly. if votes[name] != nil

And in the output, we see the populated
hash. Our code is working!

Hashes return "nil" by default (cont.)

you are here 4 235

chapter title here

nil (and only nil) is "falsy" (cont.)

 We mean it
when we say
that only nil
is falsy.

Most values that
are treated as falsy in some
other languages, such as
empty strings, empty arrays,
and the number 0, are truthy
in Ruby.

Ruby treats nil like it's false to make it easier to test whether
values have been assigned or not. For example, if you access a
hash value within an if statement, the code within will be run if
the value exists. If the value doesn't exist, the code won't be run. votes = {}

if votes["Kremit the Toad"]
 puts "I won't be printed!"
end
votes ["Kremit the Toad"] = 1
if votes["Kremit the Toad"]
 puts "I'll be printed!"
end

Value is nil,
which is falsy.

Value is 1,
which is truthy.

We can make our conditional read a little
better by changing it from

"if votes[name] != nil" to just
"if votes[name]".

lines.each do |line|
 name = line.chomp
 if votes[name]
 votes[name] += 1
 else
 votes[name] = 1
 end
end

p votes

We don't need that ugly
"if votes[name] != nil"
any more!

{"Amber Graham"=>2, "Brian Martin"=>3}

Our code still works the same as before; it's
just a bit cleaner looking. This may be a
small victory now, but the average program
has to test for the existence of objects a lot.
Over time, this technique will save you many
keystrokes!

school = {
 "Simone" => "here",
 "Jeanie" => "here"
}

names = ["Simone", "Ferriss", "Jeanie", "Cameron"]

names.each do |name|
 if school[name]
 puts "#{name} is present"
 else
 puts "#{name} is absent"
 end
end

Guess the output for the code below,
and write it in the blanks provided.

Simone is present

(We've filled in the first line for you.)

236 Chapter #

page goal header

A disproportionate amount of our code for
tallying the votes lies in the if/else statement
that checks whether a key exists within the hash...

votes = {}

lines.each do |line|
 name = line.chomp
 if votes[name]
 votes[name] += 1
 else
 votes[name] = 1
 end
end

If votes[name] is not nil...
Increment the existing total.

If votes[name] IS nil...
Add the name to the
hash with value of 1.

And we need that if statement. Normally, when
you try to access a hash key that hasn't had a value
assigned yet, you get nil back. We'd get an error the
first time we tried to add to the tally for a key that
didn't yet exist (because you can't add to nil).

lines.each do |line|
 name = line.chomp
 votes[name] += 1
end

On the first name,
gets "nil" and tries
to add 1 to it...

Error undefined method `+'
for nil:NilClass

But... what if, when we tried to access a hash key that hasn't been assigned
to yet, we got a different value instead of nil? One that we can increment?
Let's find out how to make that happen...

A hash that returns something other than "nil" by default

school = {
 "Simone" => "here",
 "Jeanie" => "here"
}

names = ["Simone", "Ferriss", "Jeanie", "Cameron"]

names.each do |name|
 if school[name]
 puts "#{name} is present"
 else
 puts "#{name} is absent"
 end
end

Guess the output for the code below,
and write it in the blanks provided.

Simone is present
Ferriss is absent
Jeanie is present
Cameron is absent

you are here 4 237

chapter title here

But when you call Hash.new and pass an object
as an argument, that argument becomes that
hash's default object. Anytime you access a key in
that hash that hasn't been assigned to yet, instead
of nil, you'll get the default object you specified..

votes = Hash.new(0)
votes["Amber Graham"] = 1
p votes["Amber Graham"]
p votes["Brian Martin"]

Create a new hash with
a default object of "0".

When we access a value
that's been assigned to,
we get that value back.

When we access a value
that HASN'T been
assigned to, we get the
default object.

1
0

Instead of using a hash literal ({}), you can
also call Hash.new to create new hashes.
Without any arguments, Hash.new works just
like {}, giving you a hash that returns nil for
unassigned keys.

votes = Hash.new
votes["Amber Graham"] = 1
p votes["Amber Graham"]
p votes["Brian Martin"]

Create a new hash.
When we access a value
that's been assigned to,
we get that value back.

When we access a value
that HASN'T been
assigned to, we get "nil".1

nil

Let's use a hash default object to shorten up our
vote counting code...

A hash that returns something other than "nil" by default (cont.)

If we create our hash with Hash.new(0), it will
return the default object (0) when we try to access the
vote tally for any key that hasn't been assigned to yet.
That 0 value gets incremented to 1, then 2, and so
on as the same name is encountered again and again.

lines = []
File.open("votes.txt") do |file|
 lines = file.readlines
end

votes = Hash.new(0)

lines.each do |line|
 name = line.chomp
 votes[name] += 1
end

p votes

Create a new hash with
a default object of "0".

Increment whatever value is returned:
"0" if the key has never been updated,
or the current tally otherwise.

{"Amber Graham"=>2, "Brian Martin"=>3}

We can get rid of the if
statement entirely!

And as you can see from the
output, the code still works.

 Using anything other than a
number as a hash default
object may cause bugs!

We'll cover ways to safely use other
objects in Chapter 8. Until then, don't

use anything other than a number as a default!

238 Chapter #

page goal header

Amber Graham
Brian Martin
Amber Graham
Brian Martin
Brian Martin
amber graham
brian martin
amber graham
amber graham

votes.txt

Here's what we get if we run this new file through our existing code:

Well, this won't do... It looks like the last few votes were
added with the candidates' names in lower case, and
they were treated as entirely separate candidates!

This highlights a problem when working with hashes:
if you want to access or modify a value, whatever you
provide as a key needs to match the existing key exactly.
Otherwise, it will be treated as an entirely new key.

votes = Hash.new(0)
votes["Amber Graham"] = 1
p votes["Amber Graham"]
p votes["amber graham"]

Accesses the
existing value.

This key/value
has never been
assigned to!1

0

So, how will we ensure that the new lower-case entries in our
text file get matched with the capitalized entries? We need to
normalize the input: we need one standard way of representing
candidates' names, and we need to use that for our hash keys.

{"Amber Graham"=>2, "Brian Martin"=>3, "amber graham"=>3, "brian martin"=>1}

These two shouldn't
be separate items!

Normalizing hash keys

OK, so you've got counts for each
candidate. But that won't help if the
counts are wrong. We just got the final
votes in, and look what happened!

{"name" => "Kevin Wagner",
 "occupation" => "Election Volunteer"}

you are here 4 239

chapter title here

Fortunately, in this case, normalizing the
candidate names is really easy. We'll add
one line of code to ensure the case on each
name matches prior to storing it in the hash.

lines = []
File.open("votes.txt") do |file|
 lines = file.readlines
end

votes = {}

lines.each do |line|
 name = line.chomp
 name.upcase!
 if votes[name]
 votes[name] += 1
 else
 votes[name] = 1
 end
end

p votes

Change the name to ALL CAPS
before adding it to the hash (or
searching for it in the hash).

{"AMBER GRAHAM"=>5, "BRIAN MARTIN"=>4}

We have our winner!

And in the output we see the updated
contents of our hash: votes from the lower-
case entries have been added to the totals for
the capitalized entries. Our counts are fixed!

Normalizing hash keys (cont.)

 You also need to normalize the keys when
accessing values.

If you normalize the keys when you're adding values to
the hash, you have to normalize the keys when you're
accessing the values as well. Otherwise, it might appear

that your value is missing, when it's really just under a different key!

p votes["Amber Graham"]
p votes["AMBER GRAHAM"]

This key doesn't exist!

....But this one does!

nil
5

240 Chapter #

page goal header

We've processed the lines in the sample file, and built a hash with the
total number of votes:

p votes {"AMBER GRAHAM"=>5, "BRIAN MARTIN"=>4}

Hashes and "each"

It would be far better, though, if we could print one line for each
candidate name, together with their vote count.

As we saw back in Chapter 5, arrays have an each method that
takes a block with a single parameter. The each method passes each
element of the array to the block for processing, one at a time. Hashes
also have an each method, that works in about the same way. The
only difference is that on hashes, each expects a block with two
parameters, one for the key, and one for the corresponding value.

hash = { "one" => 1, "two" => 2 }
hash.each do |key, value|
 puts "#{key}: #{value}"
end one: 1

two: 2

Q: What happens if I call each on
a hash, but pass it a block with one
parameter?

A: The each method for hashes allows
that; it will pass the block a 2-element array
with the key and value from each key/value
pair in the hash. It's much more common to
use blocks with two parameters, though.

We can use each to print the name of each
candidate in the votes hash, along with the
corresponding vote count: lines = []

File.open("votes.txt") do |file|
 lines = file.readlines
end

votes = Hash.new(0)

lines.each do |line|
 name = line.chomp
 name.upcase!
 votes[name] += 1
end

votes.each do |name, count|
 puts "#{name}: #{count}"
end

Process each
key/value pair.

Key
goes
here.

Value
goes
here.

AMBER GRAHAM: 5
BRIAN MARTIN: 4There are our totals, neatly formatted!

Now you've seen one of the classic uses of hashes - a program where
we need to look up values for a given key repeatedly. Up next, we'll
look at another common way to use hashes: as method arguments.

Yes! I won! I'd like
to congratulate my
opponent on a hard-
fought campaign...

you are here 4 241

chapter title here

Tonight’s talk: An array and a hash
work out their differences.

Hash:

Nice to see you again, Array.

There's no need to be like that.

Well, I do have a certain glamor about me... But even I
know there are still times when developers should use an
array instead of a hash.

It's true; it's a lot of work keeping all of my elements
where I can retrieve them quickly! It pays off if
someone wants to retrieve a particular item from the
middle of the collection, though. If they give me the
correct key, I always know right where to find a value.

Yes, but the developer has to know the exact index
where the data is stored, right? All those numbers are a
pain to keep track of ! But it's either that, or wait for the
array to search through all its elements, one by one...

Agreed. Developers should know about both arrays and
hashes, and pick the right one for their current task.

Array:

I didn't really want to be here, but whatever, Hash.

Isn't there? I was doing a perfectly fine job storing
everyone's collections, and then you come along,
and developers everywhere are like, "Ooh! Why use
an array when I can use a hash? Hashes are so cool!"

Darn right! Arrays are way more efficient than
hashes! If you're happy retrieving elements in the
same order you added them (say, with each), then
you want an array, because you won't have to wait
while a hash organizes your data for you.

Hey, we arrays can get data back too, you know.

But the point is, we can do it. And if you're just
building a simple queue, we're still the better choice.

Fair enough.

242 Chapter #

page goal header

def print_summary(candidate)
 puts "Candidate: #{candidate.name}"
 puts "Age: #{candidate.age}"
 puts "Occupation: #{candidate.occupation}"
 puts "Hobby: #{candidate.hobby}"
 puts "Birthplace: #{candidate.birthplace}"
end

candidate = Candidate.new("Carl Barnes", 49, "Attorney", nil, "Miami")
print_summary(candidate)

We have to provide an
argument even if we're
not using it.

Suppose we're making an app to track basic information regarding candidates so voters
can learn about them. We've created a Candidate class to keep all of a candidate's
info in one convenient place. For convenience, we've set up an initialize method so
that we can set all of an instance's attributes directly from a call to Candidate.new.

class Candidate
 attr_accessor :name, :age, :occupation, :hobby, :birthplace
 def initialize(name, age, occupation, hobby, birthplace)
 self.name = name
 self.age = age
 self.occupation = occupation
 self.hobby = hobby
 self.birthplace = birthplace
 end
end

Set up attribute
accessors.

Set up Candidate.new to
take arguments.

Let's add some code following the class definition to create a Candidate instance, and print out its data.

Candidate: Carl Barnes
Age: 49
Occupation: Attorney
Hobby:
Birthplace: Miami

Our very first attempt at calling Candidate.new shows that its
usage could be a lot smoother. We have to provide all the arguments
whether we're going to use them or not.

We could just make the hobby parameter optional, if it didn't have
the birthplace parameter following it...

class Candidate
 attr_accessor :name, :age, :occupation, :hobby, :birthplace
 def initialize(name, age, occupation, hobby = nil, birthplace)
 ...
 end
end

Provide a default value to make
the parameter optional...

Since birthplace is present, though, we get an error if we try to omit hobby...

Candidate.new("Carl Barnes", 49, "Attorney", , "Miami")

Error syntax error, unexpected ',', expecting ')'

A mess of method arguments

Use the
parameters
to set the

object
attributes.

you are here 4 243

chapter title here

Whoops! We
got these two

backwards!

Candidate: Amy Nguyen
Age: 37
Occupation: Lacrosse
Hobby: Engineer
Birthplace: Seattle

We encounter another problem if we forget the order that method
arguments should appear in...

Wait, what order do these go in?
candidate = Candidate.new("Amy Nguyen", 37, "Lacrosse", "Engineer", "Seattle")
print_summary(candidate)

It's becoming clear that there are some issues with using a
long list of parameters for a method. The order is confusing,
and it's hard to leave unwanted arguments off.

Using hashes as method parameters

Historically, Rubyists have dealt with these issues by using hashes as method parameters. Here's a
simple area method that, instead of separate length and width parameters, accepts a single hash.
[We realize this is a bit ugly. Over the next few pages, we'll show you some shortcuts to make hash
parameters much more readable!]

def area(options)
 options[:length] * options[:width]
end

puts area({:length => 2, :width => 4})

Take one hash instead of multiple parameters. Ruby convention is to
use symbols as keys.

8

Access values from the hash
instead of individual parameters.

Instead of passing multiple arguments, pass a
single hash with appropriate keys and values.

• Arguments must appear in exactly the right order

• Arguments can be hard to tell apart

• Required parameters have to appear before
optional parameters

• Keys can appear in any order

• Keys act as "labels" for each value

• Can skip providing a value for any key you want

With regular parameters: With hash parameters:

Using hash parameters offers several benefits over regular method parameters...

The convention in Ruby is to use symbols instead of strings for hash parameter keys,
because looking up symbol keys is more efficient than looking up strings.

A mess of method arguments (cont.)

244 Chapter #

page goal header

Here's a revision of our Candidate class's initialize method
using a hash parameter.

class Candidate
 attr_accessor :name, :age, :occupation, :hobby, :birthplace
 def initialize(name, options)
 self.name = name
 self.age = options[:age]
 self.occupation = options[:occupation]
 self.hobby = options[:hobby]
 self.birthplace = options[:birthplace]
 end
end

The hash parameter.We'll keep the name as a
separate string.

Assign the name as normal. Get values from
the hash instead
of directly from

parameters.

We can now call Candidate.new by passing the name as a string,
followed by a hash with the values for all the other Candidate attributes:

candidate = Candidate.new("Amy Nguyen",
 {:age => 37, :occupation => "Engineer", :hobby => "Lacrosse", :birthplace => "Seattle"})

p candidate

#<Candidate:0x007fbd7a02e858 @name="Amy Nguyen", @age=37,
 @occupation="Engineer", @hobby="Lacrosse", @birthplace="Seattle">

Now it's clear which attribute is which!

We can leave one or more of the hash keys off, if we want. The
attribute will just get assigned the hash default object, nil.

candidate = Candidate.new("Carl Barnes",
 {:age => 49, :occupation => "Attorney", :birthplace => "Miami"})

p candidate

We can leave the hobby off.

#<Candidate:0x007f8aaa042a68 @name="Carl Barnes", @age=49,
 @occupation="Attorney", @hobby=nil, @birthplace="Miami">

Omitted attributes default to nil.

No more switched attributes!

We can put the hash keys in any order we want:

candidate = Candidate.new("Amy Nguyen",
 {:birthplace => "Seattle", :hobby => "Lacrosse", :occupation => "Engineer", :age => 37})

p candidate

#<Candidate:0x007f81a890e8c8 @name="Amy Nguyen", @age=37,
 @occupation="Engineer", @hobby="Lacrosse", @birthplace="Seattle">

Hash parameters in our Candidate class

you are here 4 245

chapter title here

Q: Is there anything special about
a hash parameter? It looks like just
another method parameter!

A: It is just another method
parameter; there's nothing stopping you
from passing an integer, a string, etc.
when you should be passing a hash.
But you're likely to get errors when your
method code tries to access keys and
values on an integer or string!

When you're defining a
method that takes a hash
parameter, ensure the
hash parameter comes
last, so that callers to your
method can leave the curly
braces off their hash.
When calling a method
with a hash argument, you
should leave the curly
braces off if possible - it's
easier to read. And lastly,
you should use symbols as
keys whenever you're
working with a hash
parameter; it's more
efficient.

Conventional
Wisdom

We'll admit that the method calls we've been showing so far are a little
uglier than method calls with regular arguments, what with all those
curly braces:.

candidate = Candidate.new("Carl Barnes",
 {:age => 49, :occupation => "Attorney"})

...Which is why Ruby lets you leave the curly braces off, as long as the
hash argument is the final argument:

candidate = Candidate.new("Carl Barnes",
 :age => 49, :occupation => "Attorney")
p candidate

#<Candidate:0x007fb412802c30
 @name="Carl Barnes", @age=49,
 @occupation="Attorney",
 @hobby=nil, @birthplace=nil>

For this reason, you'll find that most methods that define a hash
parameter define it as the last parameter.

Leave off the braces!

Ruby offers one more shortcut we can make use of... If a hash uses
symbols as keys, hash literals let you leave the colon (:) off the symbol
and replace the hash rocket (=>) with a colon.

candidate = Candidate.new("Amy Nguyen", age: 37,
 occupation: "Engineer", hobby: "Lacrosse")
p candidate

#<Candidate:0x007f9dc412aa98
 @name="Amy Nguyen", @age=37,
 @occupation="Engineer",
 @hobby="Lacrosse",
 @birthplace=nil>

No braces!

The same symbols, but more readable!

Those hash arguments started out pretty ugly, we admit. But now that
we know all the tricks to make them more readable, they're looking
rather nice, don't you think? Almost like regular method arguments,
but with handy labels next to them!

Candidate.new("Carl Barnes", age: 49, occupation: "Attorney")
Candidate.new("Amy Nguyen", age: 37, occupation: "Engineer")

Leave out the arrows!

246 Chapter #

page goal header

Making the entire hash optional
There's one last improvement we can make to our Candidate class's
initialize method. Currently we can include all of our hash keys:

Candidate.new("Amy Nguyen", age: 37, occupation: "Engineer",
 hobby: "Lacrosse", birthplace: "Seattle")

Or we can leave most of them off:

Candidate.new("Amy Nguyen", age: 37)

But if we try to leave them all off, we get an error:

p Candidate.new("Amy Nguyen") Error in `initialize': wrong number
of arguments (1 for 2)

This happens because if we leave all the keys off, then as far as Ruby is
concerned, we didn't pass a hash argument at all.

We can avoid this inconsistency by setting an empty hash as a default
for the options argument:

class Candidate
 attr_accessor :name, :age, :occupation, :hobby, :birthplace
 def initialize(name, options = {})
 self.name = name
 self.age = options[:age]
 self.occupation = options[:occupation]
 self.hobby = options[:hobby]
 self.birthplace = options[:birthplace]
 end
end

If no hash is passed, use an empty one.

Now, if no hash argument is passed, the empty hash will be used by
default. All the Candidate attributes will be set to the nil default
value from the empty hash.

p Candidate.new("Carl Barnes")

#<Candidate:0x007fbe0981ec18 @name="Carl Barnes", @age=nil,
 @occupation=nil, @hobby=nil, @birthplace=nil>

If we specify at least one key/value pair, though, the hash argument
will be treated as before:

p Candidate.new("Carl Barnes", occupation: "Attorney")

#<Candidate:0x007fbe0981e970 @name="Carl Barnes", @age=nil,
 @occupation="Attorney", @hobby=nil, @birthplace=nil>

you are here 4 247

chapter title here

Code Magnets
A Ruby program is all scrambled up on the fridge. Can you reconstruct the code
snippets to make a working Ruby program that will produce the given output?

Output:

Volume is 125.0
File Edit Window Help

options[:height]

width: 10,

def options[:width] depth: 2.5

volume

*

(

)

*

end

volume result = options[:depth]

height: 5,

(options)

puts "Volume is #{result}"

248 Chapter #

page goal header

Typos in hash arguments are dangerous
There's a downside to hash arguments that we haven't discussed yet, and it's
just waiting to cause trouble for us... For example, you might expect this code
to set the occupation attribute of the new Candidate instance, and you
might be surprised when it doesn't:

p Candidate.new("Amy Nguyen", occupaiton: "Engineer")

Why is this still nil?

#<Candidate:0x007f862a022cb0 @name="Amy Nguyen", @age=nil,
 @occupation=nil, @hobby=nil, @birthplace=nil>

Why didn't it work? Because we misspelled the symbol name in the hash key!

p Candidate.new("Amy Nguyen", occupaiton: "Engineer")

Whoops!
The code doesn't even raise an error. Our initialize
method just uses the value of the correctly-spelled
options[:occupation] key, which is of course
nil, because it's never been assigned to.

Silent failures now mean
hard-to-diagnose bugs later.
This doesn't make me want
to use hash arguments...

Don't worry. In version 2.0, Ruby added keyword
arguments, which can prevent this sort of issue.

end

Code
Magnets
Solution

width: 10,

def

depth: 2.5volume ()

volume

result = height: 5,

(options)

puts "Volume is #{result}"

options[:height]options[:width] * * options[:depth]

Volume is 125.0
File Edit Window HelpOutput:

you are here 4 249

chapter title here

Keyword arguments

def welcome(greeting: "Welcome", name: nil)

 puts "#{greeting}, #{name}!"

end

Keyword
Default value Keyword

Using a parameter Using a parameter

Default value

Rather than require a single hash parameter in method definitions, we can
specify the individual hash keys we want callers to provide, using this syntax:

When we define the method this way, we don't have to worry about
providing keys to a hash to access values in the method body. Ruby
stores each value in a separate parameter, which can be accessed
directly by name, just like a regular method parameter.

With the method defined, we can call it by providing keys and values,
just like we have been:

welcome(greeting: "Hello", name: "Amy") Hello, Amy!

In fact, callers are actually just passing a hash, like before:

my_arguments = {greeting: "Hello", name: "Amy"}
welcome(my_arguments)

Hello, Amy!

The hash gets some special treatment within the method, though. Any
keywords omitted from the call get set to the specified default values:

welcome(name: "Amy") Welcome, Amy!

And if any unknown keywords are provided (or you make a typo in a
key), an error will be raised:

welcome(greting: "Hello", nme: "Amy") Error ArgumentError: unknown
keywords: greting, nme

250 Chapter #

page goal header

Let's revise our Candidate class's initialize method to take
keyword arguments.

We use "Sleepy Creek" as a default value for the birthplace keyword, and nil
as a default for the others. We also replace all those references to the options hash in
the method body with parameter names. The method is a lot easier to read now!

Currently, our Candidate class is using a hash parameter in its
initialize method. The code is a bit ugly, and it won't warn a
caller if they make a typo in a hash key.

class Candidate
 attr_accessor :name, :age, :occupation, :hobby, :birthplace
 def initialize(name, options = {})
 self.name = name
 self.age = options[:age]
 self.occupation = options[:occupation]
 self.hobby = options[:hobby]
 self.birthplace = options[:birthplace]
 end
end

Hash parameter.

It can still be called the same way as before...

p Candidate.new("Amy Nguyen", age: 37, occupation: "Engineer")

#<Candidate:0x007fbf5b14e520 @name="Amy Nguyen",
 @age=37, @occupation="Engineer", @hobby=nil, @birthplace="Sleepy Creek">

Specified values! Defaults!
...And it will warn callers if they make a typo in a keyword!

p Candidate.new("Amy Nguyen", occupaiton: "Engineer")

Error ArgumentError: unknown keyword: occupaiton

We replace the hash parameter
with keywords and default values.

class Candidate
 attr_accessor :name, :age, :occupation, :hobby, :birthplace
 def initialize(name, age: nil, occupation: nil, hobby: nil, birthplace: "Sleepy Creek")
 self.name = name
 self.age = age
 self.occupation = occupation
 self.hobby = hobby
 self.birthplace = birthplace
 end
end

We use parameter names
instead of hash keys.

Accessing values
from the hash.

Using keyword arguments with our Candidate class

you are here 4 251

chapter title here

Right now, we can still call Candidate.new even if we fail to provide
the most basic information about a candidate..:

p Candidate.new("Carl Barnes")

#<Candidate:0x007fe743885d38 @name="Carl Barnes",
 @age=nil, @occupation=nil, @hobby=nil, @birthplace="Sleepy Creek">

Required keyword arguments

All attributes are set to the defaults!

This isn't ideal. We want to require callers to provide at least an age
and an occupation for a candidate.

Back when the initialize method was using ordinary method
parameters, this wasn't a problem; all the arguments were required.

class Candidate
 attr_accessor :name, :age, :occupation, :hobby, :birthplace
 def initialize(name, age, occupation, hobby, birthplace)
 ...
 end
end

The only way to make a method parameter optional is to provide a
default value for it.
class Candidate
 attr_accessor :name, :age, :occupation, :hobby, :birthplace
 def initialize(name, age = nil, occupation = nil, hobby = nil, birthplace = nil)
 ...
 end
end

But wait, we provide default values for all our keywords now...

class Candidate
 attr_accessor :name, :age, :occupation, :hobby, :birthplace
 def initialize(name, age: nil, occupation: nil, hobby: nil, birthplace: "Sleepy Creek")

 ...
 end
end

If you take away the default value for an ordinary method parameter,
that parameter is required; you can't call the method without
providing a value. What happens if we take away the default values for
our keyword arguments?

252 Chapter #

page goal header

 Required keyword
arguments were only
added in Ruby 2.1.

If you're running Ruby
2.0, you'll get a syntax

error if you try to use required keyword
arguments. You'll need to either upgrade
to 2.1, or provide default values.

Required keyword arguments (cont.)

We can't just remove the colon after the keyword,
though. If we did, Ruby wouldn't be able to tell age and
occupation apart from ordinary method parameters.

Ordinary parameters,
not keywords!

class Candidate
 attr_accessor :name, :age, :occupation, :hobby, :birthplace
 def initialize(name, age, occupation, hobby: nil, birthplace: "Sleepy Creek")
 ...
 end
end

What if we removed the default value, but left the colon after the keyword?

class Candidate
 attr_accessor :name, :age, :occupation, :hobby, :birthplace
 def initialize(name, age:, occupation:, hobby: nil, birthplace: "Sleepy Creek")
 self.name = name
 self.age = age
 self.occupation = occupation
 self.hobby = hobby
 self.birthplace = birthplace
 end
end

Keywords, but
with no defaults!

We can still call Candidate.new, as long as we provide the required keywords:

p Candidate.new("Carl Barnes", age: 49, occupation: "Attorney")

#<Candidate:0x007fcec281e5a0 @name="Carl Barnes",
@age=49, @occupation="Attorney", @hobby=nil, @birthplace="Sleepy Creek">

...And if we leave the required keywords off, Ruby will warn us!

p Candidate.new("Carl Barnes")

Error ArgumentError: missing
keywords: age, occupation

Let's try removing the default values for the
age and occupation keywords, and see if
they'll be required when calling initialize.

You used to have to provide a long list of unlabelled arguments to Candidate.new, and you
had to get the order exactly right. Now that you've learned to use hashes as arguments, whether
explicitly or behind the scenes with keyword arguments, your code will be a lot cleaner!

you are here 4 253

chapter title here

Here are definitions for two Ruby methods. Match each of the six method calls below to
the output it would produce.

def create(options = {})
 puts "Creating #{options[:database]} for owner #{options[:user]}..."
end

def connect(database:, host: "localhost", port: 3306, user: "root")
 puts "Connecting to #{database} on #{host} port #{port} as #{user}..."
end

create(database: "catalog", user: "carl")A

create(user: "carl")B

createC

connect(database: "catalog")D

connect(database: "catalog", password: "1234")E

connect(user: "carl")F

Creating catalog for owner carl...

Creating for owner carl...

Creating for owner ...

Connecting to catalog on localhost port 3306 as root...

unknown keyword: password

missing keyword: database

A

(We've filled in the first one for you.)

254 Chapter #

page goal header

Here are definitions for two Ruby methods. Match each of the six method calls below to
the output it would produce.

def create(options = {})
 puts "Creating #{options[:database]} for owner #{options[:user]}..."
end

def connect(database:, host: "localhost", port: 3306, user: "root")
 puts "Connecting to #{database} on #{host} port #{port} as #{user}..."
end

create(database: "catalog", user: "carl")A

create(user: "carl")B

createC

connect(database: "catalog")D

connect(database: "catalog", password: "1234")E

connect(user: "carl")F

Creating catalog for owner carl...

Creating for owner carl...

Creating for owner ...

Connecting to catalog on localhost port 3306 as root...

unknown keyword: password

missing keyword: database

E

B

D

A

C

F

you are here 4 255

chapter title here

 � A hash literal is surrounded by curly braces. It
needs to include a key for each value, like this:
{"one" => 1, "two" => 2}

 � When a hash key is accessed that a value has
never been assigned to, nil is returned by default.

 � Any Ruby expression can be used in conditional
statements. Aside from the false boolean
value, the only other value Ruby will treat as
false is nil.

 � You can use Hash.new instead of a hash
literal to create a new hash. If you pass an object
as an argument to Hash.new, that object will
be returned by default when any key that hasn't
been assigned to is accessed (instead of nil).

 � If the key you access isn't exactly equal to the
key in the hash, it will be treated as an entirely
new key.

 � Hashes have an each method that works a lot
like the each method on arrays. The difference
is that the block you provide should (normally)
accept two parameters (instead of one): one for
each key, and one for the corresponding value.

 � If you pass a hash as the last argument to a
method, Ruby lets you leave the braces off.

 � If a hash uses symbols as keys, you can leave
the colon off the symbol, and replace => with a
colon, like this:
{name: "Kim", age: 28}

 � When defining a function, you can specify that
callers should provide keyword arguments. The
keywords and values are actually just a hash
behind the scenes, but the values are placed into
named parameters within the function.

 � Keyword arguments can be required, or they can
be made optional by defining a default value.

Your Ruby Toolbox

That's it for Chapter 7! You’ve
added hashes to your tool box.

Statements
Conditional stat

ements execute

the code the e
nclose if a con

dition

is met.

Loops execute t
he code they

enclose repeate
dly. They exit when

a condition is m
et.

Methods
Methods arguments can be made

optional by pro
viding default

values.

It's legal for a
 method name to

end in ?, !, or
 =.

Methods return
a value to thei

r

caller. You can
 specify a method's

return value w
ith a return

statement.

Classes
A class is a template for creat

ing

object instance
s.

An object's class
 defines what it

knows (its attribut
es), and what it

does (its instan
ce methods).

Inheritance
Inheritance let

s a subclass inh
erit

methods from a superclass.

A subclass can d
efine its own

methods in addi
tion to the

methods it inher
its.

A subclass can o
verride inherit

ed

methods, replaci
ng them with its

own version.

Creating objects
Ruby calls the "

initialize" method

on new instances of a
 class. You

can use "initial
ize" to set up

a new

object's instan
ce variables.

Class methods can be
invoked

directly on a c
lass, rather th

an

an instance of
that class. They're

great as facto
ry methods.

Arrays
An array holds a collection of objects.

Arrays can be any size, and can grow or shrink as needed.Arrays are ordinary Ruby objects,
and have many useful instance methods.

Blocks
A block is a chu

nk of code tha
t

you associate w
ith a method call.

When a method runs, it
can invoke

the block it was called with one or

more times.

Each time a block finish
es running,

it returns cont
rol to the method

that invoked it
.

Block Return Values

The value of the
 last expression

 in

a block's body
is returned to

the

method, as the
value of the yi

eld

keyword.

Methods can use
 the block

return value to
 find elements in

a collection, de
cide how to sort

elements, and more.

Hashes
A hash holds a c

ollection of ob
jects,

each "labelled"
 with a key.

You can use an
y object as a h

ash

key. This is different
 than arrays,

which can only u
se integers as

indexes.

Hashes are also
Ruby objects, an

d

have many useful inst
ance methods.

Here are our notes on
arrays from Chapter 5,
just for comparison.

...And here are
our notes for
this chapter!

this is a new chapter 257

Mama, the nice man asked if
we were ready for a delivery,
and I said OK. Um, what's an
orangutan?

references8

Crossed Signals

Ever sent an e-mail to the wrong contact? You probably had a hard

time sorting out the confusion that ensued. Well, Ruby objects are just like those contacts

in your address book, and calling methods on them is like sending messages to them. If

your address book gets mixed up, it's possible to send the wrong message to the wrong

object. And you'll have a hard time sorting out the confusion that ensues.

This chapter will help you recognize the signs that messages are going to the wrong

objects, and help you get your programs running smoothly again.

258 Chapter #

page goal header

Some confusing bugs
The word continues to spread - if someone has a Ruby
problem, your company can solve it. And so people are
showing up at your door with some unusual problems...

class CelestialBody
 attr_accessor :type, :name
end

altair = CelestialBody.new
altair.name = 'Altair'
altair.type = 'star'
polaris = altair
polaris.name = 'Polaris'
vega = polaris
vega.name = 'Vega'

puts altair.name, polaris.name, vega.name

To save time, he wants to
copy the previous star...

...And just change
the name.

Same
here.

But it looks like the
names on all 3 stars
are now identical!

Vega
Vega
Vega

This astronomer thinks he has a clever way
to save some coding... Instead of typing
my_star = CelestialBody.new and
my_star.type = 'star' for every star
he wants to create, he wants to just copy the
original star, and set a new name for it.

But the plan seems to be backfiring. All three of his CelestialBody
instances are reporting that they have the same name!

you are here 4 259

chapter title here

The heap

Rubyists often talk about "placing objects in variables", "storing objects
in arrays", "storing an object in a hash value", and so forth. But that's just
a simplification of what actually happens. Because you can't actually put
an object in a variable, array, or hash.

The bug in the star catalog program stems from an underlying problem:
the developer thinks he's working with multiple objects, when actually he's
operating on the same object over and over.

To understand how that can be, we're going to need to learn about where
objects really live, and how your programs communicate with them.

Instead, all Ruby objects live on the heap, an area of
your computer's memory allocated for object storage.

When a new object is created, Ruby allocates space on
the heap where it can live.

Generally, you don't need to concern yourself with the heap - Ruby
manages it for you. The heap grows in size if more space is needed.
Objects that are no longer used get cleared off the heap. It's not
something you usually have to worry about.

But we do need to be able to retrieve items that are stored on the heap. And
we do that with references. Read on to learn more about them.

ObjectObject

New object goes here.

Object The Heap

260 Chapter #

page goal header

References
When you want to send a letter to a
particular person, how do you get it
to them? Each residence in a city has
an address that mail can be sent to. You
simply write the address on an envelope.
A postal worker then uses that address to
find the residence and deliver the letter.

We want to stress this: variables, arrays, hashes, etc. never hold
objects. They hold references to objects. Objects live on the heap,
and they are only accessed through the references held in variables.

Similar to addresses for houses, Ruby uses references to locate
objects on the heap. When a new object is created, it returns a
reference to itself. You store that reference in a variable, array, or other
convenient place. Kind of like a house address, the reference tells
Ruby where the object "lives" on the heap.

car = Car.newReference stored here. Returns a reference to the new Car.

Later, you can use that reference to call methods on the object
(which, you might recall, is similar to sending them a message).

car.sound_horn

Find the car object
and send it the
"sound_horn" message.

When a friend of yours moves into
a new residence, they give you their
address, which you then write down in
an address book or other convenient
place. This allows you to communicate
with them in the future.

2112 W Oak St
Heap, RB 90210

2104 W Oak St
Heap, RB 90210 2108 W Oak St

Heap, RB 90210
2100 W Oak St
Heap, RB 90210

New Car instance.

2112 W Oak St
Heap, RB 90210

Reference,
telling where to

find the Car.
Variable.

2112 W Oak St
Heap, RB 90210

car

2112 W Oak St
Heap, RB 90210

car

...And use it
to send a
method call...

...To the
Car object.

Get the reference
from the variable...

you are here 4 261

chapter title here

When references go wrong
Andy met not one, but two gorgeous women last week:
Betty and Candace. Better yet, they both live on his street.

Andy intended to write both their addresses down in his
address book. Unfortunately for him, he accidentally
wrote the same address (Betty's) down for both women.

Later that week, Betty received
two letters from Andy:

Dear Betty,

It was great to meet you

on Tuesday! I really enjoyed

chatting about that thing

you like.

Say, I was wondering, would

you go to the big dance with

me next week? I think we'd

have a good time. Let me

know!

 Yours,

 Andy

Dear Candace,
It was great to meet you on Monday! I really enjoyed chatting about that thing you like.

Say, I was wondering, would you go to the movies with me next week? I think we'd have a good time. Let me know!

 Yours,
 Andy

Now, Betty is angry at Andy, and Candace (who never received a letter)
thinks Andy is ignoring her.

What does any of this have to do with fixing our Ruby programs?
You're about to find out...

Candace Camden
2106 W Oak St
Heap, RB 90210

Betty Bell
2106 W Oak St
Heap, RB 90210

Oak Street according to Andy's address book

Andy Adams
2100 W Oak St
Heap, RB 90210

Betty Bell
2106 W Oak St
Heap, RB 90210

Candace Camden
2110 W Oak St
Heap, RB 90210

Oak Street in reality

262 Chapter #

page goal header

Aliasing

Two different objects.

We can confirm that we're working with two different
objects by using the object_id instance method,
which almost all Ruby objects have. It returns a unique
identifier for each object.

p betty.object_id
p candace.object_id

70115845133840
70115845133820

When we use the two separate references to call
request_date on the two separate objects, we get two
affirmative answers, as we expect. betty.request_date

candace.request_date
Sure, let's go!
Sure, let's go!

Andy's dilemma can be simulated in Ruby with this simple class, called LoveInterest. A
LoveInterest has an instance method, request_date, which will print an affirmative response
just once. If the method is called again after that, the LoveInterest will report that it's busy.

class LoveInterest

 def request_date
 if @busy
 puts "Sorry, I'm busy."
 else
 puts "Sure, let's go!"
 @busy = true
 end
 end

end

@busy is nil (and treated
as false) until it gets set

to something else.

If this is not the first request...
Give a negative response.

Give an affirmative
response.

Mark this object as unable to
accept any future requests.

Normally, when using this class, we would create two separate objects,
and store references to them in two separate variables:

betty = LoveInterest.new
candace = LoveInterest.new

2106 W Oak St
Heap, RB 90210

betty

2110 W Oak St
Heap, RB 90210

candace

Object 1.

Object 2.

you are here 4 263

chapter title here

Aliasing (cont.)

In this case, the calls to request_date
both go to the same object. The first time,
it responds that it's available, but the
second request is rejected. betty.request_date

candace.request_dateA second request to
the SAME object!

Sure, let's go!
Sorry, I'm busy.

But if we copy the reference instead, we
wind up with two references to the same
object, under two different names (the
variables betty and candace).

2106 W Oak St
Heap, RB 90210

betty

2106 W Oak St
Heap, RB 90210

candace

Two
references... One object!

class Counter

 def initialize
 @count = 0
 end

 def increment
 @count += 1
 puts @count
 end

end

a = Counter.new
b = Counter.new
c = b
d = c

a.increment
b.increment
c.increment
d.increment

Here is a
Ruby class:

And here is some
code that uses that
class:

Guess what the code will output, and
write your answer in the blanks.

1

This aliasing behavior seems awfully familiar... Remember the malfunctioning
star catalog program? Let's go back and take another look at that next.

(We've filled in the first one for you.)

Same object!70115845133560
70115845133560

betty = LoveInterest.new
candace = betty

p betty.object_id
p candace.object_id

This sort of thing is known as aliasing,
because you have multiple names for a
single thing. This can be dangerous if
you're not expecting it!

264 Chapter #

page goal header

Fixing the astronomer's program

class Counter

 def initialize
 @count = 0
 end

 def increment
 @count += 1
 puts @count
 end

end

a = Counter.new
b = Counter.new
c = b
d = c

a.increment
b.increment
c.increment
d.increment

Here is a
Ruby class:

And here is some
Ruby code that uses
that class:

Guess what the code will output, and
write your answer in the blanks.

1
1
2
3

class CelestialBody
 attr_accessor :type, :name
end

altair = CelestialBody.new
altair.name = 'Altair'
altair.type = 'star'
polaris = altair
polaris.name = 'Polaris'
vega = polaris
vega.name = 'Vega'

puts altair.name, polaris.name, vega.name

To save time, he wants to
copy the previous star...

...And just change
the name.

Same
here.

But it looks like the
names on all 3 stars
are now identical!

Vega
Vega
Vega

Now that we've learned about aliasing, let's take another look at the astronomer's
malfunctioning star catalog, and see if we can figure out the problem this time...

If we try calling object_id on the objects in the three variables, we'll see that
all three variables refer to the same object. The same object under three different
names... sounds like another case of aliasing!

Same object!
70189936850940
70189936850940
70189936850940

puts altair.object_id
puts polaris.object_id
puts vega.object_id

you are here 4 265

chapter title here

Fixing the astronomer's program (cont.)

Vega
Vega
Vega

240 N Ivy St
Heap, RB 90210

altair

240 N Ivy St
Heap, RB 90210

polaris

240 N Ivy St
Heap, RB 90210

vega

Three
references...

One object!

By copying the contents of the variables, the astronomer
did not get three CelestialBody instances as he
thought. Instead, he's a victim of unintentional aliasing -
he got one CelestialBody with three references to it! altair = CelestialBody.new

altair.name = 'Altair'
altair.type = 'star'
polaris = altair
polaris.name = 'Polaris'
vega = polaris
vega.name = 'Vega'

puts altair.name, polaris.name, vega.name

Stores a reference to a
new CelestialBody.

Copies the SAME reference
to a new variable!

Copies the same reference
to a THIRD variable!

To this poor, bewildered object, the
sequence of instructions looked like this:

...The CelestialBody dutifully complied, and told
us three times that its name was now 'Vega'.

Fortunately, a fix will be easy. We just need
to skip the shortcuts, and actually create
three CelestialBody instances. altair = CelestialBody.new

altair.name = 'Altair'
altair.type = 'star'
polaris = CelestialBody.new
polaris.name = 'Polaris'
polaris.type = 'star'
vega = CelestialBody.new
vega.name = 'Vega'
vega.type = 'star'

puts altair.name, polaris.name, vega.name

Create the first
CelestialBody.

Instead of copying
the reference, get a
reference to a second
CelestialBody.

We need to set the type on
each object separately.

Get a reference to a
third object.

Altair
Polaris
Vega

And as we can see from the output, the problem is fixed!

• "Set your name attribute to 'Altair', and
your type attribute is now 'star'.

• Now set your name to 'Polaris'.

• Now your name is 'Vega'.

• Give us your name attribute 3 times.

266 Chapter #

page goal header

So, all we have to do is
avoid copying references

from one variable to another,
and we'll never have problems
with aliasing, right?

It's definitely good policy to avoid copying references
from variable to variable. But there are other
circumstances where you need to be aware of how
aliasing works, as we'll see shortly.

Quickly identifying objects with "inspect"

Before we move on, we should mention a shortcut for identifying objects... We've
already shown you how to use the object_id instance method. If it outputs the
same value for the object in two variables, you know they both point to the same object.

altair = CelestialBody.new
altair.name = 'Altair'
altair.type = 'star'
polaris = altair
polaris.name = 'Polaris'

puts altair.object_id, polaris.object_id

Copies the SAME reference
to a new variable!

70350315190400
70350315190400 The SAME object!

The string returned by the inspect instance method also includes
a representation of the object ID, in hexadecimal (consisting of the
numbers "0" through "9" and the letters "a" through "f"). You don't
need to know the details of how hexadecimal works; just know that if
you see the same value for the object referenced by two variables, you
have two aliases for the same object. A different value means a different object.

puts altair.inspect, polaris.inspect

vega = CelestialObject.new
puts vega.inspect

#<CelestialBody:0x007ff76b17f100 @name="Polaris", @type="star">
#<CelestialBody:0x007ff76b17f100 @name="Polaris", @type="star">
#<CelestialBody:0x007ff76b17edb8>

A hexadecimal representation
of the object ID.

The SAME object!
A different object.

you are here 4 267

chapter title here

Problems with a hash default object

He needs his hash to be a mix of planets and moons. Since most
of his objects will be planets, he set the hash default object to a
CelestialBody with a type attribute of "planet". (We saw
hash default objects last chapter; they let you set an object the hash
will return any time you access a key that hasn't been assigned to.)

The astronomer is back, with more problematic code...

I'm trying to put
stars and planets in a
hash, but everything's
mixed up again!

He believes that will let him add planets to the hash simply by
assigning names to them. And it seems to work:

bodies['Mars'].name = 'Mars'
p bodies['Mars']

#<CelestialBody:0x007fc60d13e6f8 @type="planet", @name="Mars">

A CelestialBody with
the correct type
attribute...

#<CelestialBody:0x007fc60d13e6f8 @type="moon", @name="Europa">

A CelestialBody with a
type of "moon"...

When the astronomer needs to add a moon to the hash, he can do that,
too. He just has to set the type attribute in addition to the name.

bodies['Europa'].name = 'Europa'
bodies['Europa'].type = 'moon'

p bodies['Europa']

But then, as he continues adding new CelestialBody objects to
the hash, it starts behaving strangely...

class CelestialBody
 attr_accessor :type, :name
end

default_body = CelestialBody.new
default_body.type = 'planet'
bodies = Hash.new(default_body)

Set up a planet. Make the planet the
default value for all
unassigned hash keys.

268 Chapter #

page goal header

Problems with a hash default object (cont.)

#<CelestialBody:0x007fc60d13e6f8 @type="moon", @name="Venus">

This is supposed to be a planet.
Why is this set to "moon"?!

The problems with using a CelestialBody as a hash default object become apparent
as more objects as the astronomer tries to add more objects to the hash... When he adds
another planet after adding a moon, the planet's type attribute is set to "moon" as well!

bodies['Venus'].name = 'Venus'

p bodies['Venus']

...If he goes back and gets the value for the keys he added previously,
those objects appear to have been modified as well!

p bodies['Mars']
p bodies['Europa']

#<CelestialBody:0x007fc60d13e6f8 @type="moon", @name="Venus">
#<CelestialBody:0x007fc60d13e6f8 @type="moon", @name="Venus">

What happened to
the names "Mars"

and "Europa"?
Isn't one of these supposed to be a "moon"?

But we're not altering multiple
objects... Look at the object
IDs. All these different hash
keys are giving us references
to the same object!

Good observation! Remember we said that the inspect method
string includes a representation of the object ID? And as you know,
the p method calls inspect on each object before printing it. Using
the p method shows us that all the hash keys refer to the same object!

p bodies['Venus']
p bodies['Mars']
p bodies['Europa']

#<CelestialBody:0x007fc60d13e6f8 @type="moon", @name="Venus">
#<CelestialBody:0x007fc60d13e6f8 @type="moon", @name="Venus">
#<CelestialBody:0x007fc60d13e6f8 @type="moon", @name="Venus">

These are all the
SAME object!

Looks like we've got a problem with aliasing again! On the next few
pages, we'll see how to fix it.

you are here 4 269

chapter title here

We're actually modifying the hash default object!

Let's inspect the default object
both before and after we attempt
to add a planet to the hash.

class CelestialBody
 attr_accessor :type, :name
end

default_body = CelestialBody.new
default_body.type = 'planet'
bodies = Hash.new(default_body)

p bodies.default

bodies['Mars'].name = 'Mars'

p bodies.default

Inspect the default object.

Try to add a value to the hash.

Inspect the default object again.

#<CelestialBody:0x007f868a8274c8 @type="planet">
#<CelestialBody:0x007f868a8274c8 @type="planet", @name="Mars">The hash default

object AFTER
attempting to add
a hash value..

The hash default object
BEFORE attempting to
add a hash value.

The name got added to the
default object instead!

The central problem with this code is that we're not actually modifying hash
values. Instead, we're modifying the hash default object.

We can confirm this using the default instance method, which is available
on all hashes. It lets us look at the default object after we create the hash.

If we look at the object IDs for
both bodies['Mars'] and
the hash default object, we'll
have our answer:

p bodies['Mars']
p bodies.default

So why is a name being added to the default object? Shouldn't it be
getting added to the hash value for bodies['Mars']?

#<CelestialBody:0x007f868a8274c8 @type="planet", @name="Mars">
#<CelestialBody:0x007f868a8274c8 @type="planet", @name="Mars">The SAME object!

Same object ID!

When we access bodies['Mars'], we're still getting a reference to the hash default object! But why?

270 Chapter #

page goal header

A more detailed look at hash default objects
When we introduced the hash default object in the last chapter, we said that you get the default
object anytime you access a key that hasn't been assigned to yet. Let's take a closer look at that last detail.

Let's suppose we've created a hash that will hold student names as the keys, and
their grades as the corresponding values. We want the default to be a grade of 'A'. grades = Hash.new('A')

At first, the hash is completely empty. Any student name that we
request a grade for will come back with the hash default object, 'A'.

p grades['Regina']

'A'

{} "A"grades['Regina']

Got a value for "Regina"? Nope. Yes!

Hash Default Object

Only when a value is assigned to the hash (not just retrieved from it) will
anything other than the default object be returned.

grades['Carl'] = 'C'
p grades['Carl']

"C"

When we assign a value to a hash key, we'll get that value back instead
of the hash default the next time we try to access it.

grades['Regina'] = 'B'
p grades['Regina']

"B"

Even when some keys have had values assigned, we'll still get the
default object for any key that hasn't been assigned previously.

p grades['Carl']

"A"

But accessing a hash value is not the same as assigning to it. If you
access a hash value once and then access it again without making an
assignment, you'll still be getting the default object.

p grades['Carl']

"A"

{"Regina" => "B"} "A"grades['Regina']

Got a value for "Regina"? Yes!

Hash Default Object

{"Regina" => "B"} "A"grades['Carl']

Got a value for "Carl"? Yes!Nope.

Hash Default Object

{"Regina" => "B"} "A"grades['Carl']

Got a value for "Carl"? Yes!Nope.

Hash Default Object

{"Regina" => "B", "Carl" => "C"} "A"grades['Carl']
Got a value for "Carl"? Yes!

Hash Default Object

you are here 4 271

chapter title here

{}
#<CelestialBody
 @type="planet",
 @name="Mars">

Hash Default Object

Back to the hash of planets and moons
And that is why, when we try to set the type and name attributes of
objects in the hash of planets and moons, we wind up altering the
default object instead. We're not actually assigning any values to the
hash. In fact, if we inspect the hash itself, we'll see that it's totally empty!

{} Empty!

class CelestialBody
 attr_accessor :type, :name
end

default_body = CelestialBody.new
default_body.type = 'planet'
bodies = Hash.new(default_body)

bodies['Mars'].name = 'Mars'
bodies['Europa'].name = 'Europa'
bodies['Europa'].type = 'moon'
bodies['Venus'].name = 'Venus'

p bodies

I thought we were assigning
values to the hash. Aren't those
assignment statements right
there?

bodies['Mars'].name = 'Mars'
bodies['Europa'].name = 'Europa'
bodies['Europa'].type = 'moon'
bodies['Venus'].name = 'Venus'

Isn't this assigining
to the hash?

Actually, those are calls to the name= and type= attribute writer methods
on the hash default object. Don't mistake them for assignment to the hash.

When we access a key for which no value has been assigned, we get
the default object back.

default_body = CelestialBody.new
default_body.type = 'planet'
bodies = Hash.new(default_body)

p bodies['Mars'] #<CelestialBody:

 0x007fe0b98a76f8
 @type="planet">

The statement below is not an assignment to the hash. It attempts to
access a value for the key 'Mars' from the hash (which is still empty).
Since there is no value for 'Mars', it gets a reference to the default
object, which it then modifies.

Attribute added to default object!

And since there's still nothing assigned to the hash, the next
access gets a reference to the default object as well, and so on.

Fortunately, we have a solution for you...

{}
#<CelestialBody
 @type="planet">

Hash Default Object

bodies['Mars']
Got a value for "Mars"? Nope. Yes!

bodies['Mars'].name = 'Mars'

Accesses the
default object.

Modifies the
default object.

272 Chapter #

page goal header

Our wish list for hash defaults
We've determined that this code doesn't assign a value to the
hash, it just accesses a value. It gets a reference to the default
object, which it then (unintentionally) modifies.

default_body = CelestialBody.new
default_body.type = 'planet'
bodies = Hash.new(default_body)

bodies['Mars'].name = 'Mars'

Gets a reference to
the default object.

Modifies the
default object!

Right now, when we access a hash key for which no
value has been assigned, we just get a reference to
the hash default object.

{}
#<CelestialBody
 @type="planet">

Hash Default Object

bodies['Mars']
Got a value for "Mars"? Nope. Yes!

{}

{}

{"Mars" => #<CelestialBody>}

CelestialBody.new

CelestialBody.new

CelestialBody.new

Hash

Hash

Hash

bodies['Mars']

bodies['Mars']

bodies['Mars']

Got a value for "Mars"?

Got a value for "Mars"?

Got a value for "Mars"?

Nope.

Still
don't!.

Yes!

Yes!

Um, sure, here's
ANOTHER new object!

What we really want is to get an entirely new object
for each unassigned hash key.

So it would also be nice if the new object was
assigned to the hash for us, so that later accesses
would get the same object again (instead of
generating new objects over and over).

Default Object
Value

Default Object
Value

Default Object
Value

Of course, if we did that without assigning to the
hash, then later accesses would just keep generating
new objects over and over...

Hashes have a feature that can do all this for us!

We want to assign the new
CelestialBody instance to the key.

you are here 4 273

chapter title here

Hash default blocks
Instead of passing an argument to Hash.new to be used as a hash default
object, you can pass a block to Hash.new to be used as the hash default block.
When a key is accessed for which no value has been assigned:

• The block is called.

• The block receives references to the hash and the current key as block
parameters. These can be used to assign a value to the hash.

• The block return value is returned as the current value of the hash key.

Those rules are a bit complex, so we'll
go over them in more detail in the
next few pages. But for now, let's take
a look at your first hash default block:

bodies = Hash.new do |hash, key|
 body = CelestialBody.new
 body.type = "planet"
 hash[key] = body
 body
end

Creates the hash.
When the block is called
later, it will receive a
reference to the hash and
the key being accessed.

Here we set up the object which
will become the value for this key.

Assign the object to the current hash key.
Return the object.

If we access keys on this hash, we get separate
objects for each key, just like we always intended.

Better yet, the first time we access any key, a value is automatically
assigned to the hash for us!

bodies['Mars'].name = 'Mars'
bodies['Europa'].name = 'Europa'
bodies['Europa'].type = 'moon'
bodies['Venus'].name = 'Venus'

p bodies['Mars']
p bodies['Europa']
p bodies['Venus']

This code is
identical to what
we used a couple

pages ago!

#<CelestialBody:0x007fe701896580 @type="planet", @name="Mars">
#<CelestialBody:0x007fe7018964b8 @type="moon", @name="Europa">
#<CelestialBody:0x007fe7018963a0 @type="planet", @name="Venus">

bodies['Mars']
bodies['Europa']

bodies['Venus']

Three separate objects.

p bodies {"Mars"=>#<CelestialBody:0x007fe701896580 @type="planet", @name="Mars">,
 "Europa"=>#<CelestialBody:0x007fe7018964b8 @type="moon", @name="Europa">,
 "Venus"=>#<CelestialBody:0x007fe7018963a0 @type="planet", @name="Venus">}

Values have been assigned to the hash!

Now that we know it will work, let's take a closer look at the components of that block...

274 Chapter #

page goal header

 Don't forget to assign a value to the hash!

If you forget, the generated value will just be thrown away. The hash key still won't have a
value, and the hash will just keep calling the block over and over to generate new defaults.

Hash default blocks: Assigning to the hash

bodies = Hash.new do |hash, key|
 body = CelestialBody.new
 body.type = "planet"
 hash[key] = body
 body
end

When the block is called
later, it will receive a
reference to the hash and
the key being accessed.

Assign the object to the current hash key.

In most cases, you'll want the value created by your hash default block
to be assigned to the hash. A reference to the hash and the current key
are passed to the block, in order to allow you to do so.

When we assign values to the hash in the block body, things work like we've been expecting
all along. A new object is generated for each new key you access. On subsequent accesses,
we get the same object back again, with any changes we've made intact.

Type attribute is intact.
#<CelestialBody:0x007fb6389eed00 @type="planet">
#<CelestialBody:0x007fb6389eed00 @type="planet">
#<CelestialBody:0x007fb6389eed00 @type="moon">

All the same object.

#<CelestialBody:0x007ff95507ee90 @type="planet">
#<CelestialBody:0x007ff95507ecd8 @type="planet">
#<CelestialBody:0x007ff95507eaf8 @type="planet">

All different objects!

Type is still at the default!

bodies = Hash.new do |hash, key|
 body = CelestialBody.new
 body.type = "planet"
 body
end

p bodies['Europa']
p bodies['Europa']
bodies['Europa'].type = 'moon'
p bodies['Europa']

We SHOULD assign
to the hash here.

If we don't....
We'll get a different
object each time we

access this key!
Changes we make
will be discarded!

p bodies['Europa']
p bodies['Europa']
bodies['Europa'].type = 'moon'
p bodies['Europa']

Generates a new object.
Gives us the same

object as the line above.
Changes we make

will be saved.

you are here 4 275

chapter title here

Hash default blocks: Block return value

 Make sure the block return value matches
what you're assigning to the hash!

Otherwise, you'll get one value when you first access the key, and a completely different
value on subsequent accesses.

bodies = Hash.new do |hash, key|
 body = CelestialBody.new
 body.type = "planet"
 hash[key] = body
 "I'm a little teapot"
end

p bodies['Mars']
p bodies['Mars']

The value assigned
to the hash!

The value returned
from the block!

"I'm a little teapot"
#<CelestialBody:0x007fcf830ff000 @type="planet">

When you access an unassigned hash key for the first time, the hash
default block's return value is returned as the value for the key.

bodies = Hash.new do |hash, key|
 body = CelestialBody.new
 body.type = "planet"
 hash[key] = body
 body
end

p bodies['Mars']

This return value...

Is what we get here!

#<CelestialBody:0x007fef7a9132c0 @type="planet">

As long as you assign a value to the key within the block body, the hash
default block won't be invoked for subsequent accesses of that key;
instead, you'll get whatever value was assigned.

Generally speaking, you won't need to work very hard to remember
this rule. As we'll see on the next page, setting up an appropriate
return value for your hash default block happens quite naturally...

276 Chapter #

page goal header

Hash default blocks: A shortcut
Thus far, we've been returning a value from the
hash default block on a separate line:

bodies = Hash.new do |hash, key|
 body = CelestialBody.new
 body.type = "planet"
 hash[key] = body
 body
end

p bodies['Mars']

Separate block return value.

#<CelestialBody:0x007fef7a9132c0 @type="planet">

So in the astronomer's hash, instead of adding a separate line with a
return value, we can just let the value of the assignment expression
provide the return value for the block.

bodies = Hash.new do |hash, key|
 body = CelestialBody.new
 body.type = "planet"
 hash[key] = body
end

p bodies['Mars']

Let this be the block
return value.

#<CelestialBody:0x007fa769a3f2d8 @type="planet">

You've already learned that the value of
the last expression in a block is treated
as the block's return value... What we
haven't mentioned is that in Ruby, the
value of an assignment expression is
the same as the value being assigned.

Values of expressions
same as values assigned.

{}
[]
20
["Apple"]
245

p my_hash = {}
p my_array = []
p my_integer = 20
p my_hash['A'] = ['Apple']
p my_array[0] = 245

So, we can use just an assignment statement in a hash default block,
and it will return the assigned value.

greetings = Hash.new do |hash, key|
 hash[key] = "Hi, #{key}"
end

p greetings["Kayla"] "Hi, Kayla"

And, of course, it will add the value to the hash as well.

p greetings {"Kayla"=>"Hi, Kayla"}

But Ruby offers a shortcut that can reduce the amount of code in your
default block a bit...

you are here 4 277

chapter title here

The three code snippets below are all supposed to make a hash of arrays
with foods grouped by the first letter of their name, but only one actually
works. Match each snippet with the output it would produce.

foods = Hash.new([])
foods['A'] << "Apple"
foods['A'] << "Avocado"
foods['B'] << "Bacon"
foods['B'] << "Bread"
p foods['A']
p foods['B']
p foods

A

foods = Hash.new { |hash, key| [] }
foods['A'] << "Apple"
foods['A'] << "Avocado"
foods['B'] << "Bacon"
foods['B'] << "Bread"
p foods['A']
p foods['B']
p foods

B

foods = Hash.new { |hash, key| hash[key] = [] }
foods['A'] << "Apple"
foods['A'] << "Avocado"
foods['B'] << "Bacon"
foods['B'] << "Bread"
p foods['A']
p foods['B']
p foods

C

["Apple", "Avocado", "Bacon", "Bread"]
["Apple", "Avocado", "Bacon", "Bread"]
{}

A

["Apple", "Avocado"]
["Bacon", "Bread"]
{"A"=>["Apple", "Avocado"], "B"=>["Bacon", "Bread"]}

[]
[]
{}

(We've filled in the first one for you.)

278 Chapter #

page goal header

The three code snippets below are all supposed to make a hash of arrays
with foods grouped by the first letter of their name, but only one actually
works. Match each snippet with the output it would produce.

foods = Hash.new([])
foods['A'] << "Apple"
foods['A'] << "Avocado"
foods['B'] << "Bacon"
foods['B'] << "Bread"
p foods['A']
p foods['B']
p foods

A

This ONE array will be used as the
default value for all hash keys!

All of these will
get added to the

SAME array!

foods = Hash.new { |hash, key| [] }
foods['A'] << "Apple"
foods['A'] << "Avocado"
foods['B'] << "Bacon"
foods['B'] << "Bread"
p foods['A']
p foods['B']
p foods

B

Returns a new, empty array
each time the block is called,
but doesn't add it to the hash!

Each string is
added to a new

array. The array
is then discarded!

foods = Hash.new { |hash, key| hash[key] = [] }
foods['A'] << "Apple"
foods['A'] << "Avocado"
foods['B'] << "Bacon"
foods['B'] << "Bread"
p foods['A']
p foods['B']
p foods

C

Assigns a new array to the hash,
under the current key.

Added to a new array.
Added to same array as "Apple".

Added to a new array.

Added to same array as "Bacon".

["Apple", "Avocado", "Bacon", "Bread"]
["Apple", "Avocado", "Bacon", "Bread"]
{}

A

["Apple", "Avocado"]
["Bacon", "Bread"]
{"A"=>["Apple", "Avocado"], "B"=>["Bacon", "Bread"]}

C

[]
[]
{}

B

you are here 4 279

chapter title here

Here's our final code for the hash default block:

Names are
all intact.

(Output aligned for easier reading.)
{"Mars" =>#<CelestialBody:0x007fcde388aaa0 @type="planet", @name="Mars" >,
 "Europa"=>#<CelestialBody:0x007fcde388a9d8 @type="moon", @name="Europa">,
 "Venus" =>#<CelestialBody:0x007fcde388a8c0 @type="planet", @name="Venus" >}

Each hash value is a
separate object.

Type defaults to
"planet", but can be

overridden.

The hash is working perfectly.
Hash default blocks are just
what I needed!

The astronomer's hash: our final code

These lines all
work as expected,

now!

class CelestialBody
 attr_accessor :type, :name
end

bodies = Hash.new do |hash, key|
 body = CelestialBody.new
 body.type = "planet"
 hash[key] = body
end

bodies['Mars'].name = 'Mars'
bodies['Europa'].name = 'Europa'
bodies['Europa'].type = 'moon'
bodies['Venus'].name = 'Venus'

p bodies

Receives a reference
to the hash and the
current key.

Create a new object
just for the current key.

Assigns to the hash AND returns the new value.

Here's what we did to get this program working:

• We use a hash default block to create a unique object for each hash key. (This is unlike a
hash default object, which gives references to one object as the default for all keys.)

• Within the block, we assign the new object to the current hash key.

• The new object becomes the value of the assignment expression, which also becomes
the block's return value. So the first time a given hash key is accessed, they get the new
object as the corresponding value.

280 Chapter #

page goal header

I have one more question.
Why would anyone use a hash
default object when you can use
a hash default block instead?

Okay, it's a little more complicated than that. Hash
default objects work very well if you don't change the
default, and if you assign values back to the hash. It's
just that numbers make it easy to follow these rules.

Hash default objects work very well
if you use a number as the default.

Take this example, which counts the number of times letters occur in
an array. (It works just like the vote counting code from last chapter.)

letters = ['a', 'c', 'a', 'b', 'c', 'a']

counts = Hash.new(0)

letters.each do |letter|
 counts[letter] += 1
end

p counts

If this value is unassigned,
gets the hash default but
does NOT modify it.

Assigns the incremented
value back to the hash.

{"a"=>3, "c"=>2, "b"=>1}

Using a hash default object here works because we follow the above
two rules...

I should only use
numbers? Then why did Ruby
let us use a CelestialBody as
a default object earlier, without

even a warning?

Using hash default objects safely

you are here 4 281

chapter title here

Hash default object rule #1: Don't modify the default object
If you're going to use a hash default object, it's important
not to modify that object. Otherwise, you'll get unexpected
results the next time you access the default. We saw this
happen when we used a default object (instead of a default
block) for the astronomer's hash, and it caused havoc:

Okay, but then why does it work with a
number as the default object? We modify
the default when we add to it, don't we?

letters = ['a', 'c', 'a', 'b', 'c', 'a']

counts = Hash.new(0)

letters.each do |letter|
 counts[letter] += 1
end

Isn't this modifying
the default object?

In Ruby, doing math operations on a numeric object doesn't modify
that object; it returns an entirely new object. We can see this if we look
at object IDs before and after an operation.

number = 0
puts number.object_id
number = number + 1
puts number.object_id

In fact, numeric objects are immutable: they don't have any
methods that modify the object's state. Any operation that
might change the number gives you back an entirely new object.

That's what makes numbers safe to use as hash default objects;
you can be certain that the default number won't be changed
accidentally.

Two different objects! (Object IDs for integers are much lower than for
other objects, but that's an implementation detail, so don't worry about
it. The key point is, they're different.)

Numbers make good hash
default objects because
they are immutable.

1
3

default_body = CelestialBody.new
default_body.type = 'planet'
bodies = Hash.new(default_body)

bodies['Mars'].name = 'Mars'

Sets the
hash's
default
object.Gets a reference to

the default object.
Modifies the
default object!

282 Chapter #

page goal header

Hash default object rule #2: Assign values to the hash

When we use a number as a default object, though, it's much more
natural to actually assign values to the hash. (Because numbers are
immutable, we can't store the incremented values unless we assign them
to the hash!)

hash = Hash.new(0)

hash['a'] += 1
hash['c'] += 1

p hash.default
p hash

0
{"a"=>1, "c"=>1}We assigned the

values to the hash!

The hash default object
is unchanged.

If you're going to use a hash default object, it's also important
to ensure you're actually assigning values to the hash. As we
saw with the astronomer's hash, sometimes it can look like
you're assigning to the hash when you're not...

{} The hash is still
empty, actually!

default_body = CelestialBody.new
default_body.type = 'planet'
bodies = Hash.new(default_body)

bodies['Mars'].name = 'Mars'

p bodies

A call to an attribute
writer method. This does
NOT assign to the hash!

you are here 4 283

chapter title here

The rule of thumb for hash defaults

All of this seems like a lot to
remember, just to be able to
use hash defaults.

That's true. So we have a rule of thumb that will keep
you out of trouble...

If your default is a number, you can use a
hash default object.
If your default is anything else, you should use a
hash default block.

As you gain more experience with references, all of this will become
second nature, and you can break this rule of thumb when the time is
right. Until then, this should prevent most problems you'll encounter.

Understanding Ruby references and the issue of aliasing won't help
you write more powerful Ruby programs. It will help you quickly find
and fix problems when they arise, however. Hopefully this chapter has
helped you form a basic understanding of how references work, and
will let you avoid trouble in the first place.

284 Chapter #

page goal header

 � If you need to store more objects, Ruby will
increase the size of the heap for you. If you're no
longer using objects, Ruby will delete them from
the heap for you.

 � Aliasing is the copying of a reference to an
object, and it can cause bugs if you do it
unintentionally.

 � Most Ruby objects have an object_id instance
method, which returns a unique identifier for the
object. It can be used to determine whether you
have multiple references to a single object.

 � The string returned by the inspect method also
includes a representation of the object ID.

 � If you set a default object for a hash, all
unassigned hash keys will return references to
that single default object.

 � For this reason, it's best to only use immutable
objects (objects that can't be modified), such as
numbers, as hash default objects.

 � If you need any other kind of object as a hash
default, it's better to use a hash default block, so
that a unique object is created for each key.

 � Hash default blocks receive a reference to the
hash and the current key as block parameters. In
most cases, you'll want to use these parameters
to assign a new object as a value for the given
hash key.

 � The hash default block's return value is treated
as the initial default value for the given key.

 � The value of a Ruby assignment expression is
the same as the value being assigned. So if an
assignment expression is the last expression in
a block, the value assigned becomes the block's
return value.

Your Ruby Toolbox

That's it for Chapter 8!
You’ve added references

to your tool box.

Statements
Conditional stat

ements execute

the code the e
nclose if a con

dition

is met.

Loops execute t
he code they

enclose repeate
dly. They exit when

a condition is m
et.

Methods
Methods arguments can be made

optional by pro
viding default

values.

It's legal for a
 method name to

end in ?, !, or
 =.

Methods return
a value to thei

r

caller. You can
 specify a method's

return value w
ith a return

statement.

Classes
A class is a template for creat

ing

object instance
s.

An object's class
 defines what it

knows (its attribut
es), and what it

does (its instan
ce methods).

Inheritance
Inheritance let

s a subclass inh
erit

methods from a superclass.

A subclass can d
efine its own

methods in addi
tion to the

methods it inher
its.

A subclass can o
verride inherit

ed

methods, replaci
ng them with its

own version.

Creating objects
Ruby calls the "

initialize" method

on new instances of a
 class. You

can use "initial
ize" to set up

a new

object's instan
ce variables.

Class methods can be
invoked

directly on a c
lass, rather th

an

an instance of
that class. They're

great as facto
ry methods.

Arrays
An array holds a

 collection of

objects.

Arrays can be a
ny size, and ca

n

grow or shrink as n
eeded.

Arrays are ordin
ary Ruby objects,

and have many useful inst
ance

methods.

Blocks
A block is a chu

nk of code tha
t

you associate w
ith a method call.

When a method runs, it
can invoke

the block it was called with one or

more times.

Each time a block finish
es running,

it returns cont
rol to the method

that invoked it
.

Block Return Values

The value of the
 last expression

 in

a block's body
is returned to

the

method, as the
value of the yi

eld

keyword.

Methods can use
 the block

return value to
 find elements in

a collection, de
cide how to sort

elements, and more.

Hashes
A hash holds a c

ollection of ob
jects,

each "labelled"
 with a key.

You can use an
y object as a h

ash

key. This is different
 than arrays,

which can only u
se integers as

indexes.

Hashes are also
Ruby objects, an

d

have many useful inst
ance methods.

References
The "heap" is an

 area of your

computer's memory reserved f
or

storing Ruby objects.

Ruby uses refere
nces to find

objects on the
 heap.

Variables, arra
ys, hashes, and

 other

data structure
s don't contain

objects, just re
ferences to th

em.

	Cover
	Copyright
	1 more with less
	2 methods and classes
	3 inheritance
	4 initializing instances
	5 arrays and blocks
	6 block return values
	7 hashes
	8 references

