
[image: image]

Head First
Ruby

Jay McGavren

O•REILLY®

Beijing • Cambridge • Köln • Sebastopol • Tokyo

Head First Ruby

by Jay McGavren

Copyright © 2015 Jay McGavren. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

	Editors:

	Meghan Blanchette, Courtney Nash

	Cover Designer:

	Randy Comer

	Production Editor:

	

	Indexer:

	

	Proofreader:

	

	Page Viewer:

	

Printing History:

April 2015: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly Media, Inc. The Head First series designations, Head First Ruby, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the authors assume no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

ISBN: 978-1-449-37265-1

[LSI]

1 more with less

Code the Way You Want

[image: image]

You’re wondering what this crazy Ruby language is all about, and if it’s right for you. Let us ask you this: Do you like being productive? Do you feel like all those extra compilers and libraries and class files and keystrokes in your other language bring you closer to a finished product, admiring co-workers, and happy customers? Would you like a language that takes care of the details for you? If you sometimes wish you could stop maintaining boilerplate code and get to work on your problem, then Ruby is for you. Ruby lets you get more done with less code.

[image: image]

The Ruby Philosophy

Back in the 1990’s in Japan, a programmer named Yukihiro Matsumoto (“Matz” for short) was dreaming about his ideal programming language. He wanted something that:

• Was easy to learn and use

• Was flexible enough to handle any programming task

• Let the programmer concentrate on the problem they were trying to solve

• Gave the programmer less stress

• Was object-oriented

He looked at the languages that were available, but felt that none of them was exactly what he wanted. So, he set out to make his own. He called it Ruby.

After tinkering around with Ruby for his own work for a while, Matz released it to the public in 1995. Since then, the Ruby community has done some amazing things:

• Built out a vast collection of Ruby libraries that can help you do anything from reading CSV files to controlling objects over a network

• Written alternate interpreters that can run your Ruby code faster or integrate it with other languages

• Created Ruby on Rails, a hugely popular framework for web applications

This explosion of creativity and productivity was enabled by the Ruby language itself. Flexibility and ease of use are core principles of the language, meaning you can use Ruby to accomplish any programming task, in fewer lines of code than other languages.

Once you’ve got the basics down, you’ll agree: Ruby is a joy to use!

Flexibility and ease of use are core principles of Ruby.

Get Ruby

First things first: you can write Ruby code all day, but it won’t do you much good if you can’t run it. Let’s make sure you have a working Ruby interpreter installed. We want version 2.0 or later. Open up a command-line prompt and type:

ruby -v

[image: image]

When you type ruby -v at a prompt, if you see a response like this, you’re in business:

[image: image]

Do this!

If you don’t have Ruby 2.0 or later, visit www.ruby-lang.org and download a copy for your favorite OS.

Use Ruby

To run a Ruby script, you simply save your Ruby code in a file, and run that file with the Ruby interpreter. Ruby source files that you can execute are referred to as scripts, but they’re really just plain text files.

You may be used to other languages (like C++, C#, or Java) where you have to manually compile your code to a binary format that a CPU or virtual machine can understand. In these languages, your code can’t be executed before you compile it.

Other languages:

[image: image]

With Ruby, you skip that step. Ruby instantly and automatically compiles the source code in your script. This means less time between writing your code and trying it out!

The Ruby way:

[image: image]

Use Ruby - interactively

There’s another big benefit to using a language like Ruby. Not only do you not have to run a compiler each time you want to try out your code, you don’t even have to put it in a script first.

Ruby comes with a separate program, called irb (for Interactive Ruby). The irb shell lets you type any Ruby expression, which it will then immediately evaluate and show you the results. It’s a great way to learn the language, because you get immediate feedback. But even Ruby professionals use irb to try out new ideas.

Throughout the book, we’ll be writing lots of scripts to be run via the Ruby interpreter. But anytime you’re testing out a new concept, it’s a great idea to launch irb and experiment a bit.

So what are we waiting for? Let’s get into irb now and play around with some Ruby expressions.

Using the irb shell

Open a terminal window, and type irb. This will launch the interactive Ruby interpreter. (You’ll know it’s running because the prompt will change, although it may not match exactly what you see here.)

From there, you can type any expression you want, followed by the Return key. Ruby will instantly evaluate it and show you the result.

When you’re done with irb, type exit at the prompt, and you’ll be returned to your OS’s system prompt.

[image: image]

Your first Ruby expressions

Now that we know how to launch irb, let’s try a few expressions out and see what results we get!

	Type the following at the prompt, then press Return:

	1 + 2

	You’ll be shown the result:

	[image: image]

Math operations and comparisons

Ruby’s basic math operators work just like they do in most other languages. The + symbol is for addtion, - for subtraction, * for multiplication, / for division, and ** for exponentiation.

[image: image]

You can use < and > to compare two values and see if one is less than or greater than another. You can also use == (that’s two equals signs) to see if two values are equal.

[image: image]

Strings

A string is a series of text characters. You can use them to hold names, e-mail addresses, phone numbers, and a million other things. Ruby’s strings are special because even very large strings are highly efficient to work with (this isn’t true in many other languages).

The easiest way to specify a string is to surround it either with double quotes ("), or single quotes ('). The two types of quotes work a little differently; we’ll explain that later in the chapter.

[image: image]

Variables

Ruby lets us create variables - names that refer to values.

You don’t have to declare variables in Ruby; assigning to them creates them. You assign to a variable with the = symbol (that’s a single equals sign).

[image: image]

A variable name starts with a lower-case letter, and can contain letters, numbers, and underscores.

Once you’ve assigned to variables, you can access their values whenever you need, in any context where you might use the original value.

[image: image]

Variables don’t have types in Ruby; they can hold any value you want. You can assign a string to a variable, then immediately assign a floating-point number to the same variable, and it’s perfectly legal.

[image: image]

The += operator lets you add on to the existing value of a variable.

[image: image]

Conventional Wisdom

Use all lower case letters in variable names. Avoid numbers; they’re rarely used. Separate words with underscores.

my_rank = 1

This style is sometimes called “snake case”, because the underscores make the name look like it’s crawling on the ground.

Everything is an object!

Ruby is an object-oriented language. That means your data has useful methods (fragments of code that you can execute on demand) attached directly to it.

In modern languages, it’s pretty common for something like a string to be a full-fledged object, so of course strings have methods to call:

[image: image]

What’s cool about Ruby, though, is that everything is an object. Even something as simple as a number is an object. That means they have useful methods, too.

[image: image]

Calling a method on an object

When you make a call like this, the object you’re calling the method on is known as the method receiver. It’s whatever is to the left of the dot operator. You can think of calling a method on an object like passing it a message. Like a note saying, “Hey, can you send me back an upper case version of yourself?” or “Can I have your absolute value?”.

[image: image]

Exercise

[image: image]

Open a new terminal or command prompt, type “irb” and hit the Enter/Return key. For each of the Ruby expressions below, write your guess for what the result will be on the line below it. Then try typing the expression into irb, and hit Enter. See if your guess matches what irb returns!

	42 / 6

	5 > 4

	

	

	name = "Zaphod"

	number = -32

	

	

	name.upcase

	number.abs

	

	

	"Zaphod".upcase

	-32.abs

	

	

	name.reverse

	number += 10

	

	

	name.upcase.reverse

	rand(25)

	

	

	name.class

	number.class

	

	

	name * 3

	

	

	

Exercise Solution

[image: image]

Open a new terminal or command prompt, type “irb” and hit the Enter/Return key. For each of the Ruby expressions below, write your guess for what the result will be on the line below it. Then try typing the expression into irb, and hit Enter. See if your guess matches what irb returns!

[image: image]

Let’s build a game

In this first chapter, we’re going to build a simple game. If that sounds daunting, don’t worry; it’s easy when you’re using Ruby!

Let’s look at what we’ll need to do:

	[image: image]

	Prompt the player to enter their name. Use their name to print a greeting.

	[image: image]

	Generate a random number from 1 to 100, and store it as a target number for the player to guess.

	[image: image]

	Keep track of how many guesses the player has made. Before each guess, let them know how many guesses (out of 10) they have left.

	[image: image]

	Prompt the player to make a guess as to what the target number is.

	[image: image]

	If the player’s guess is less than the target number, say "Oops. Your guess was LOW." If the player’s guess is greater than the target number, say "Oops. Your guess was HIGH."

	[image: image]

	If the player’s guess is equal to the target number, tell them "Good job, [name]! You guessed my number in [number of guesses] guesses!"

	[image: image]

	If the player runs out of turns without guessing correctly, say "Sorry. You didn’t get my number. My number was [target]."

	[image: image]

	Keep allowing the player to guess until they get it right, or they run out of turns.

[image: image]

Input, storage, and output

Our first requirement is to greet the user by name. To accomplish that, we’ll need to write a script that gets input from the user, stores that input, and then uses that stored value to create some output.

We can do all this in just a few lines of Ruby code:

[image: image]

We’ll go into detail on each of the components of this script over the next few pages. But first, let’s give it a try!

Running scripts

We’ve written a simple script that fulfills our first requirement: to greet the player by name. Now, we’ll show you how to execute the script, so you can see what you’ve created.

Do this!

Step One:

Open a new document in your favorite text editor, and type in the following code.

[image: image]

Step Two:

Save the file as “get_number.rb”.

Step Three:

Open up a command-line prompt, and change into the directory where you saved your program.

Step Four:

Run the program by typing “ruby get_number.rb”.

Step Five:

You’ll see a greeting, and a prompt. Type your name and hit the Enter/Return key. You’ll then see a message that welcomes you by name.

[image: image]

Let’s take a few pages to look at each part of this code in more detail.

Comments

Our source file starts out with a couple comments. Ruby ignores everything from a hash mark (#) up until the end of the line, so that you can leave instructions or notes for yourself and your fellow developers.

[image: image]

If you place a pound sign (#) in your code, then everything from that point until the end of the line will be treated as a comment, and ignored by Ruby. This works just like the double-slash (“//”) marker in Java or JavaScript.

i_am = "executed" # I'm not.
Me neither.

“puts” and “print”

The actual code starts with a call to the puts method (“puts” is short for “put string”), which displays text on standard output (usually the terminal). We pass puts a string containing the text to display.

[image: image]

We pass another string to the print method on the following line, to ask the user their name. The print method works just like puts, except that puts adds a newline character at the end of the string (if it doesn’t already have one) to skip to the following line, whereas print doesn’t. For cosmetic reasons, we end the string that we pass to print with a space, so that our text doesn’t run up against the space where the user types their name.

[image: image]

Sometimes you don’t have to specify a receiver for method calls.

The puts and print methods are so important, and so commonly used, that they’re among a select few methods that have been included in Ruby’s top-level execution environment. Methods defined in the top-level environment are available to call anywhere in your Ruby code, without specifying a receiver. We’ll show how to define methods like this at the start of chapter 2.

Method arguments

The puts method takes a string and prints it to standard output (your terminal window).

puts "first line"

The string passed to the puts method is known as the method argument.

The puts method can take more than one argument; just separate the arguments with commas. Each argument gets printed on its own line.

puts "second line", "third line", "fourth line"

[image: image]

“gets”

The gets method (short for “get string”) reads a line from standard input (characters typed in the terminal window). When you call it, it causes the program to halt until the user types their name and presses the Enter key. It returns the user’s text to the program as another string.

[image: image]

Like puts and print, the gets method can be called from anywhere in your code without specifying a receiver.

Parenthesis are optional on method calls

Method arguments can be surrounded with parenthesis in Ruby:

puts("one", "two")

But the parenthesis are optional, and in the case of puts, most Rubyists prefer to leave them off.

puts "one", "two"

The gets method reads a line from standard input (characters typed in the terminal window). It doesn’t (usually) need any arguments:

gets

Rubyists are adamant that parenthesis not be used if a method takes no arguments. So please, don’t do this, even though it’s valid code:

[image: image]

Conventional Wisdom

Leave parenthesis off of a method call if there are no arguments. You can leave them off for method calls where there are arguments as well, but this can make some code more difficult to read. When in doubt, use parenthesis!

String interpolation

The last thing our script does is to call puts with one more string. This one is special because we interpolate (substitute) the value in the name variable into the string. Whenever you include the #{...} notation inside a string, Ruby uses the value in the curly braces to “fill in the blank”. The #{...} markers can occur anywhere in the string: the beginning, end, or somewhere in the middle.

[image: image]

You’re not limited to using variables within the #{} marker - you can use any Ruby expression.

[image: image]

Note that Ruby only applies interpolation in double-quoted strings. If you include a #{} marker in a single-quoted string, it will be taken literally.

[image: image]

there are no Dumb Questions

Q: Where are the semicolons?

A: In Ruby, you can use semicolons to separate statements, but you generally shouldn’t. (It’s harder to read.)

[image: image]

Ruby treats separate lines as separate statements, making semicolons unnecessary.

puts "Hello"
puts "World"

Q: My other language would require me to put this script in a class with a “main” method. Doesn’t Ruby?

A: No! That’s one of the great things about Ruby - it doesn’t require a bunch of ceremony for simple programs. Just write a few statements, and you’re done!

Ruby doesn’t require a bunch of ceremony for simple programs.

What’s in that string?

[image: image]

[image: image]

Well, that’s easy enough to add. Let’s throw an exclamation point on the end of the greeting string, after the interpolated value.

[image: image]

But if we try running the program again, we’ll see that rather than appearing immediately after the user’s name, the exclamation point jumps down to the next line!

[image: image]

Why is this happening? Maybe there’s something going on within that input variable...

Printing it via the puts method doesn’t reveal anything special about it, though:

[image: image]

Inspecting objects with the “inspect” and “p” methods

Now, let’s try again, using a method meant especially for troubleshooting Ruby programs. The inspect method is available on any Ruby object. It converts the object to a string representation that’s suitable for debugging. That is, it will reveal aspects of the object that don’t normally show up in program output.

Here’s the result of calling inspect on our string:

[image: image]

What’s that \n at the end of the string? We’ll solve that mystery on the next page...

Printing the result of inspect is done so often that Ruby offers another shortcut: the p method. It works just like puts, except that it calls inspect on each argument before printing it.

This call to p is effectively identical to the previous code:

[image: image]

Remember the p method; we’ll be using it in later chapters to help debug Ruby code!

Escape sequences in strings

Our use of the p method has revealed some unexpected data at the end of the user’s input:

[image: image]

These two characters, the backslash character (\) and the n that follows it, actually represent a single character, a newline character. (The newline character is named thus because it makes terminal output jump down to a new line.) There’s a newline at the end of the user input because when the user hits the Return key to indicate their entry is done, that gets recorded as an extra character. That newline is then included in the return value of the gets method.

	Commonly-used escape sequences

	If you include this in a double-quoted string...

	...you get this character...

	\n

	newline

	\t

	tab

	\"

	double-quotes

	\'

	single-quote

	\\

	backslash

The backslash character (\) and the n that follows it are an escape sequence - a portion of a string that represents characters that can’t normally be represented in source code.

The most commonly-used escape sequences are \n (newline, as we’ve seen), and \t (a tab character, for indentation).

[image: image]

Normally, when you try to include a double-quotation mark (") in a double-quoted string, it gets treated as the end of the string, leading to errors:

[image: image]

If you escape the double-quotation marks by placing a backslash before each, you can place them in the middle of a double-quoted string.

[image: image]

Lastly, because \ marks the start of an escape sequence, we also need a way to represent a backlash character that isn’t part of an escape sequence. Using \\ will give us a literal backslash.

[image: image]

Bear in mind that most of these escape sequences apply only in double-quoted strings. In single-quoted strings, most escape sequences are treated literally.

[image: image]

Calling “chomp” on the string object

[image: image]

[image: image]

We can use the chomp method to remove the newline character.

If the last character of a string is a newline, the chomp method will remove it. It’s great for things like cleaning up strings returned from gets.

The chomp method is more specialized than print, puts, and gets, so it’s available only on individual string objects. That means we need to specify that the string referenced by the input variable is the receiver of the chomp method. We need to use the dot operator on input.

[image: image]

The chomp method returns the same string, but without the newline character at the end. We store this in a new variable, name, which we then print as part of our welcome message.

If we try running the program again, we’ll see that our new, emphatic greeting is working properly now!

[image: image]

What methods are available on an object?

You can’t call just any method on just any object. If you try something like this, you’ll get an error:

[image: image]

Which, if you think about it, isn’t so wrong. After all, it doesn’t make a lot of sense to capitalize a number, does it?

But, then, what methods can you call on a number? That question can be answered with a method called methods:

[image: image]

If you call methods on a string, you’ll get a different list:

[image: image]

Why the difference? It has to do with the object’s class. A class is a blueprint for making new objects, and it decides, among other things, what methods you can call on the object.

There’s another method that lets objects tell us what their class is. It’s called, sensibly enough, class. Let’s try it out on a few objects.

[image: image]

We’ll be talking more about classes in the next chapter, so stay tuned!

	[image: image]

	Prompt the player to enter their name. Use their name to print a greeting.

That’s all the code for our first requirement. You can check it off the list!

Generating a random number

Our player greeting is done. Let’s look at our next requirement.

	[image: image]

	Prompt the player to enter their name. Use their name to print a greeting.

	[image: image]

	Generate a random number from 1 to 100, and store it as a target number for the player to guess.

The rand method will generate a random number within a given range. It should be able to create a target number for us.

We need to pass an argument to rand with the number that will be at the upper end of our range (100). Let’s try it out a couple times:

[image: image]

Looks good, but there’s one problem: rand generates numbers between zero and just below the maximum value you specify. That means we’ll be getting random numbers in the range 0-99, not 1-100 like we need.

That’s easy to fix, though, we’ll just add 1 to whatever value we get back from rand. That will put us back in the range of 1-100!

rand(100) + 1

We’ll store the result in a new variable, named target.

[image: image]

Converting to strings

That’s another requirement down! Let’s look at the next one...

	[image: image]

	Generate a random number from 1 to 100, and store it as a target number for the player to guess.

	[image: image]

	Keep track of how many guesses the player has made. Before each guess, let them know how many guesses (out of 10) they have left.

“Keep track of how many guesses the player has made...” Looks like we’ll need a variable for the number of guesses. Obviously, when the player first starts, they haven’t made any guesses, so we’ll create a variable named num_guesses that’s set to 0 initially.

num_guesses = 0

Now, the first thing you might attempt to do in order to display the number of guesses remaining is to concatenate (join) the strings together using the + sign, as many other languages do. Something like this won’t work, however:

[image: image]

The + operator is used to add numbers as well as to concatenate strings, and since remaining_guesses contains a number, this plus sign looks like an attempt to add numbers.

What’s the solution? You need to convert the number to a string. Almost all Ruby objects have a to_s method you can call to do this conversion; let’s try that now.

[image: image]

That works! Converting the number to a string first makes it clear to Ruby you’re doing concatenation, not addition.

Ruby provides an easier way to handle this, though. Read on...

Ruby makes working with strings easy

Instead of calling to_s, we could save ourselves the effort of explicitly converting a number to a string by using string interpolation. As you saw in our code to greet the user, when you include #{} in a double-quoted string, code within the curly brackets is evaluated, converted to a string if necessary, and interpolated (substituted) into the longer string.

The automatic string conversion means we can get rid of the to_s call.

[image: image]

Ruby lets us do operations directly within the curly brackets, so we can also get rid of the remaining_guesses variable.

[image: image]

The #{} can occur anywhere within the string, so it’s easy to make the output a little more user-friendly, too.

[image: image]

Now the player will know how many guesses they have left. We can check another requirement off our list!

[image: image]

Converting strings to numbers

	[image: image]

	Keep track of how many guesses the player has made. Before each guess, let them know how many guesses (out of 10) they have left.

	[image: image]

	Prompt the player to make a guess as to what the target number is.

Our next requirement is to prompt the player to guess the target number. So, we need to print a prompt, then record the user’s input as their guess. The gets method, as you may recall, retrieves input from the user. (We already used it to get the player’s name.) Unfortunately, we can’t just use gets by itself to get a number from the user, because it returns a string. The problem will arise later, when we try to compare the player’s guess with the target number using the > and < operators.

[image: image]

We need to convert the string returned from the gets method to a number so that we can compare the guess to our target number. No problem! Strings have a to_i method to do the conversion for us.

This code will call to_i on the string returned from gets. We dont even need to put the string in a variable first; we'll just use the dot operator to call the method directly on the return value.

guess = gets.to_i

If we want to test our changes, we can print out the result of a comparison.

[image: image]

	Common conversions

	If you call this method on an object...

	...you get this kind of object back.

	to_s

	string

	to_i

	integer

	to_f

	floating-point number

Much better - we have a guess that we can compare to the target. That’s another requirement done!

[image: image]

Conditionals

Two more requirements for our game down, four to go! Let’s look at the next batch.

	[image: image]

	Prompt the player to make a guess as to what the target number is.

	[image: image]

	If the player’s guess is less than the target number, say "Oops. Your guess was LOW." If the player’s guess is greater than the target number, say "Oops. Your guess was HIGH."

	[image: image]

	If the player’s guess is equal to the target number, tell them "Good job, [name]! You guessed my number in [number of guesses] guesses!"

	[image: image]

	If the player runs out of turns without guessing correctly, say "Sorry. You didn’t get my number. My number was [target]."

Now, we need to compare the player’s guess with the target. If it’s too high, we print a message saying so. Otherwise, if it’s too low, we print a message to that effect, and so on... Looks like we need the ability to execute portions of our code only under certain conditions.

Like most languages, Ruby has conditional statements: statements that cause code to be executed only if a condition is met. An expression is evaluated, and if its result is true, the code in the conditional body is executed. If not, it’s skipped.

As with most other languages, Ruby supports multiple branches in the condition. These statements take the form if/elsif/else.

[image: image]

Conditionals rely on a boolean expression (one with a true or false value) to decide whether the code they contain should be executed. Ruby has constants representing the two boolean values, true and false.

	if true
 puts "I'll be printed!"
end

	if false
 puts "I won't!"
end

Ruby also has all the comparison operators you’re used to.

[image: image]

It has the boolean negation operator, !, which lets you take a true value and make it false, or a false value and make it true. It also has the more-readable keyword not, which does basically the same thing.

	if ! true
 puts "I won't be printed!"
end

	if not true
 puts "I won't be printed!"
end

	if ! false
 puts "I will!"
end

	if not false
 puts "I will!"
end

If you need to ensure that two conditions are both true, you can use the && operator. If you need to ensure that either of two conditions are true, you can use the || operator.

	if true && true
 puts "I'll be printed!"
end

	if false || true
 puts "I'll be printed!"
end

	if true && false
 puts "I won't!"
end

	if false || false
 puts "I won't!"
end

[image: image]

[image: image]

Ruby doesn’t treat indentation as significant to the meaning of the program, no. (Unlike some other languages, such as Python.)

But indenting code within if statements, loops, methods, classes, and the like is just good coding style. It helps make the structure of your code clear to your fellow developers (and even to yourself).

We need to compare the player’s guess to the random target number. Let’s use everything we’ve learned about conditionals to implement this batch of requirements.

[image: image]

The opposite of “if” is “unless”

This statement works, but it’s a little awkward to read:

if not guessed_it
 puts "Sorry. You didn't get my number. (It was #{target}.)"
end

In most respects, Ruby’s conditional statements are just like most other languages. Ruby has an additional keyword, though: unless.

Code within an if statement executes only if a condition is true, but code within an unless statement executes only if the condition is false.

	unless true
 puts "I won't be printed!"
end

	unless false
 puts "I will!"
end

The unless keyword is an example of how Ruby works hard to make your code a little easier to read. You can use unless in situations where a negation operator would be awkward. So instead of this:

if ! light == "red"
 puts "Go!"
end

You can write this:

unless light == "red"
 puts "Go!"
end

We can use unless to clean up that last conditional.

unless guessed_it
 puts "Sorry. You didn't get my number. (It was #{target}.)"
end

Much more legible! And our conditional statements are working great!

[image: image]

As it stands right now, though, the player only gets one guess - they’re supposed to get 10. We’ll fix that next...

Conventional Wisdom

It’s valid to use else and elsif together with unless in Ruby:

[image: image]

But it’s very hard to read. If you need an else clause, use if for the main clause instead!

[image: image]

Loops

Great work so far! We have just one more requirement to go for our guessing game!

	[image: image]

	If the player’s guess is less than the target number, say “Oops. Your guess was LOW.” If the player’s guess is greater than the target number, say “Oops. Your guess was HIGH.”

	[image: image]

	If the player’s guess is equal to the target number, tell them “Good job, [name]! You guessed my number in [number of guesses] guesses!”

	[image: image]

	If the player runs out of turns without guessing correctly, say “Sorry. You didn’t get my number. My number was [target].”

	[image: image]

	Keep allowing the player to guess until they get it right, or they run out of turns.

Currently, the player gets one guess. Since there’s 100 possible target numbers, those don’t seem like very fair odds. We need to keep asking them 10 times, or until they get the right answer, whichever comes first.

The code to prompt for a guess is already in place, we just need to run it more than once. We can use a loop to execute a segment of code repeatedly. You’ve probably encountered loops in other languages. When you need one or more statements to be executed over and over, you place them inside a loop.

[image: image]

A while loop consists of the word while, a boolean expression (just like in if or unless statements), the code you want to repeat, and the word end. The code within the loop body repeats while the condition is true.

Here’s a simple example that uses a loop for counting.

[image: image]

Just as unless is the counterpart to if, Ruby offers an until loop as a counterpart to while. An until loop repeats until the condition is true (that is, it loops while it’s false).

Here’s a similar example, using until.

[image: image]

Here’s our conditional code again, updated to run within a while loop:

[image: image]

There’s one more readability improvement we can make. As with the if statement that we replaced with an unless, we can make this while loop read more clearly by replacing it with an until.

	Before:

	while num_guesses < 10 && guessed_it == false
 ...
end

	After:

	until num_guesses == 10 || guessed_it
 ...
end

Here’s our complete code listing.

[image: image]

Get My Number Game
Written by: you!

puts "Welcome to 'Get My Number!'"

Get the player's name, and greet them.
print "What's your name? "
input = gets
name = input.chomp
puts "Welcome, #{name}!"

Store a random number for the player to guess.
puts "I've got a random number between 1 and 100."
puts "Can you guess it?"
target = rand(100) + 1

Track how many guesses the player has made.
num_guesses = 0

Track whether the player has guessed correctly.
guessed_it = false

until num_guesses == 10 || guessed_it

 puts "You've got #{10 - num_guesses} guesses left."
 print "Make a guess: "
 guess = gets.to_i

 num_guesses += 1

 # Compare the guess to the target.
 # Print the appropriate message.
 if guess < target
 puts "Oops. Your guess was LOW."
 elsif guess > target
 puts "Oops. Your guess was HIGH."
 elsif guess == target
 puts "Good job, #{name}!"
 puts "You guessed my number in #{num_guesses} guesses!"
 guessed_it = true
 end

end

If the player didn't guess in time, show the target number.
unless guessed_it
 puts "Sorry. You didn't get my number. (It was #{target}.)"
end

Let’s try running our game!

Our loop is in place - that’s the last requirement! Let’s open a command prompt, and try running the program!

	[image: image]

	Keep allowing the player to guess until they get it right, or they run out of turns.

[image: image]

[image: image]

Using variables, strings, method calls, conditionals, and loops, you’ve written a complete game in Ruby! Better yet, it took less than 30 lines of code! Pour yourself a cold drink - you’ve earned it!

Your Ruby Toolbox

[image: image]

You’ve got Chapter 1 under your belt and now you’ve added method calls, conditionals, and loops to your tool box.

Statements

Conditional statements execute the code they enclose if a condition is met.

Loops execute the code they enclose repeatedly. They exit when a condition is met.

BULLET POINTS

[image: image]

	Ruby is an interpreted language. You don’t have to compile Ruby code before executing it.

	You don’t need to declare variables before assigning to them. You also don’t have to specify a type.

	Ruby treats everything from a # to the end of the line as a comment - and ignores it.

	Text within quotation marks is treated as a string - a series of characters.

	If you include #{} in a Ruby string, the expression in the brackets will be interpolated into the string.

	Method calls may need one or more arguments, separated by commas.

	Parenthesis are optional around method arguments. Leave them off if you’re not passing any arguments.

	Use the inspect and p methods to view debug output for Ruby objects.

	You can include special characters within double-quoted strings by using escape sequences like \n and \t.

	You can use the interactive Ruby interpreter, or irb, to quickly test out the result of Ruby expressions.

	Call to_s on almost any object to convert it to a string. Call to_i on a string to convert it to an integer.

	unless is the opposite of if; its code won’t execute unless a statement is false.

	until is the opposite of while; it executes repeatedly until a condition is true.

2 methods and classes

Getting Organized

[image: image]

You’ve been missing out. You’ve been calling methods and creating objects like a pro. But the only methods you could call, and the only kinds of objects you could create, were the ones that Ruby defined for you. Now, it’s your turn. You’re going to learn to create your own methods. You’ll also create your own classes - templates for new objects. You’ll decide what objects based on your class will be like. You’ll use instance variables to define what they know, and instance methods to define what they do. And most importantly, you’ll discover how defining your own classes can make your code easier to read and maintain.

Defining methods

Got-A-Motor, Inc. is working on their “virtual test-drive” app, which lets their customers try vehicles out on their computers without needing to visit a show room. For this first version, they need methods to let users step on the virtual gas, sound the virtual horn, and turn on the virtual headlights in low-beam or high-beam modes.

Method definitions look like this in Ruby:

[image: image]

If you want calls to your method to include arguments, you’ll need to add parameters to the method definition. Parameters appear after the method name, within parenthesis. (You should leave off the parenthesis if there are no parameters.) Each argument on the method call gets stored in one of the parameters within the method.

The method body consists of one or more Ruby statements that are executed when the method is called.

Let’s create our very own methods to represent the actions in the test-drive app.

Here are two methods for accelerating and sounding the horn. They’re about as simple as Ruby methods can be; each method body has a pair of statements that print strings.

[image: image]

The use_headlights method is only slightly more complex; it takes a single parameter, which is interpolated into one of the output strings.

[image: image]

That’s all it takes! With these method definitions in place, we’re ready to make calls to them.

Calling methods you’ve defined

You can call methods you’ve defined just like any other. Let’s try out our new vehicle simulator methods.

Ruby lets you put calls to your methods anywhere - even within the same source file where you defined them. Since this is such a simple program at this point, we’ll do that, just for convenience. We’ll just stick the method calls right after the method declarations.

[image: image]

When we run the source file from the command line, we’ll see the result of our method calls!

[image: image]

[image: image]

That’s right. Like puts and print, these methods are included in the top-level execution environment.

Methods that are defined outside of any class (like these examples) are included in the top-level execution environment. Like we saw back in Chapter 1, you can call them anywhere in your code, without using the dot operator to specify a receiver.

Method names

The method name can be one or more lower-case words, separated by underscores. (This is just like the convention for variable names.) Numbers are legal, but rarely used.

It’s also legal for a method name to end in a question mark (?) or exclamation point (!). These endings have no special meaning to Ruby, but there are certain conventions around their use, which we’ll cover in later chapters.

Lastly, it’s legal for a method name to end in an equals sign (=). Methods ending in this character are used as attribute writers, which we’ll be looking at in the upcoming section on classes. Ruby does treat this ending specially, so don’t use it for a regular method, or you may find it acts strangely!

Conventional Wisdom

Method names should be in “snake case”: one or more lower-case words, separated by underscores, just like variable names.

def bark
end

def wag_tail
end

As with method calls, you should leave parenthesis off the method definition if there are no parameters. Please don’t do this, even though it’s legal:

def no_args()
 puts "Bad Rubyist!"
end

But if there are parameters, you should always include parenthesis. (Back in Chapter 1, we showed some tasteful exceptions when making method calls, but there are no exceptions when declaring methods.) Leaving them off is legal, but again, don’t do it:

def with_args first, second
 puts "No! Bad!"
end

Parameters

If you need to pass data into your method, you can include one or more parameters after the method name, separated by commas. In your method body, parameters can be accessed just like any variable.

def print_area(length, width)
 puts length * width
end

Optional parameters

Got-A-Motor’s developers are happy with our work on the virtual test drive system... mostly.

[image: image]

use_headlights("low-beam")
stop_engine
buy_coffee
start_engine
use_headlights("low-beam")
accelerate
create_obstacle("deer")
use_headlights("high-beam")

This scenario is pretty common - you use one particular argument 90% of the time, and you’re tired of repeating it everywhere. You can’t just take the parameter out, though, because 10% of the time you need a different value.

There’s an easy solution, though; make the parameter optional. You can provide a default value in the method declaration.

Here’s an example of a method that uses default values for some of its parameters:

[image: image]

Now, if you want to override the default, just provide an argument with the value you want. And if you’re happy with the default, you can skip the argument altogether.

[image: image]

There is one caveat to be aware of with optional parameters: they need to appear after any other parameters you intend to use. If you make a required parameter following an optional parameter, you won’t be able to leave the optional parameter off:

[image: image]

there are no Dumb Questions

Q: What’s the difference between an argument and a parameter?

A: You define and use parameters within a method definition. You provide arguments with method calls.

[image: image]

Each argument you pass with the method call gets stored in a method parameter.

The two terms mostly serve to distinguish whether you’re talking about a method definition, or a method call.

Let’s earn some goodwill with the developers using our methods and make that use_headlights parameter optional.

def use_headlights(brightness = "low-beam")
 puts "Turning on #{brightness} headlights"
 puts "Watch out for deer!"
end

[image: image]

Now, they won’t have to specify the brightness, unless they want the high-beams.

[image: image]

We’ve finished up our methods for Got-A-Motor’s virtual test drive app. Let’s try loading them up in irb, and take them for a spin.

Exercise

[image: image]

	Step One:

	Save our method definitions to a file, named “vehicle_methods.rb”.

	Step Two:

	Open a system command prompt, and navigate into the directory where you saved your file.

[image: image]

def accelerate
 puts "Stepping on the gas"
 puts "Speeding up"
end

def sound_horn
 puts "Pressing the horn button"
 puts "Beep beep!"
end

def use_headlights(brightness = "low-beam")
 puts "Turning on #{brightness} headlights"
 puts "Watch out for deer!"
end

	Step Three:

	Since we’re loading code from a file into irb, we want to be able to load Ruby files from the current directory. So we’re going to invoke irb a little differently this time.

At the command prompt, type this and press Enter:

[image: image]

The -I is a command line flag, a string that you add on to a command to change how it operates. In this case, -I alters the set of directories that Ruby searches for files to load. And the dot (.) represents the current directory.

	Step Four:

	Now, irb should be loaded, and we should be able to load the file with our methods. Type this line:

require "vehicle_methods"

Ruby knows to search in .rb files by default, so you can leave the extension off. If you see the result true, it means your file was loaded successfully.

Now, you can type in a call to any of our methods, and they’ll be run!

[image: image]

Return value

Got-A-Motor wants the test-drive app to highlight how fuel-efficient its cars are. They want to be able to display the mileage a car got on its most recent trip, as well as lifetime average mileage.

In the first scenario, you’re dividing the mileage from the car’s trip odometer by the number of gallons from your last fillup, and in the second you’re dividing the main odometer’s value by the car’s lifetime fuel use. But in both cases, you’re taking a number of miles, and dividing it by a number of gallons of fuel. So, do you still have to write two methods?

Nope! Like in most languages, Ruby methods have a return value, a value that they can send back to the code that called them. A Ruby method can return a value to its caller using the return keyword.

You can write a single mileage method, and use its return value in your output.

def mileage(miles_driven, gas_used)
 return miles_driven / gas_used
end

Then, you can use the same method to calculate both types of mileage.

[image: image]

Implicit return values

You don’t actually need the return keyword in the above method. The value of the last expression evaluated within a method automatically becomes that method’s return value. So, our mileage method could be rewritten without an explicit return:

def mileage(miles_driven, gas_used)
 miles_driven / gas_used
end

It will still work in exactly the same way.

[image: image]

Conventional Wisdom

Rubyists generally prefer implicit return values over explicit return values. With a short method, there’s no reason to write this:

def area(length, width)
 return length * width
end

...When you can just write this:

def area(length, width)
 length * width
end

Returning from a method early

[image: image]

There are still some circumstances where the return keyword is useful.

The return keyword causes the method to exit, without running the lines of code that follow it. This is useful in situations where running that code would be pointless, or even harmful.

For example, consider the case where a car is brand-new, and hasn’t been driven anywhere yet. The miles driven and the gas used would both be zero. What happens if you call the mileage method for such a car?

Well, mileage works by dividing miles_driven by gas_used... And as you may have learned in your other programming language, dividing anything by zero is an error!

[image: image]

We can fix this by testing whether gas_used is zero, and if so, returning from the method early.

[image: image]

If we try the same code again, we’ll see that it returns 0.0, without attempting the division operation. Problem solved!

[image: image]

Methods are a great way to reduce duplication, and keep your code organized. But sometimes, methods by themselves aren’t enough. Let’s leave our friends at Got-A-Motor for now, to look at a somewhat fuzzier problem...

Some messy methods

Fuzzy Friends Animal Rescue is in the middle of a fundraising drive, and are doing an interactive storybook application to raise awareness. They’ve approached your company for help. They need many different types of animals, each of which has its own sounds and actions.

They’ve created some methods that simulate movement and animal noises. Their methods are called by specifying the animal type as the first argument, followed by any additional arguments that are needed.

Here’s what they have so far:

[image: image]

And here are some typical calls to those methods:

[image: image]

Fuzzy Friends just needs you to add 10 additional animal types and 30 more actions, and version 1.0 will be done!

Too many arguments

[image: image]

Part of the problem with the virtual storybook methods is that we’re having to pass around too much data. Look at these calls to the move method, for example:

[image: image]

The destination argument belongs there, sure. It doesn’t make sense to move without a destination. But do we really have to keep track of values for the animal_type and name arguments, so that we can include them each time? It’s also becoming hard to tell which argument is which!

Too many “if” statements

The problem isn’t just with the method arguments, either – things are messy inside the methods. Consider what the talk method would look like if we added ten more animal types, for example...

Each time you want to change the sound an animal makes (and you will be asked to change the sounds, you can count on it), you’ll have to search through all those elsif clauses to find the right animal type... What happens when the code for talk becomes more complex, adding things like animations and sound file playback? What happens when all of the action methods are like that?

What we need is a better way to represent which animal type we’re working with. We need a better way to break all that code up by animal type, so that we can maintain it more easily. And we need a better way to store the attributes for each individual animal, like their name and their age, so we don’t have to pass so many arguments around.

We need to keep the animals’ data, and the code that operates on that data, in one place. We need: classes and objects.

[image: image]

Designing a class

The benefit of using objects is that they keep a set of data, and the methods that operate on that data, in one place. We want those benefits in the Fuzzy Friends app.

To start creating your own objects, though, you’re going to need classes. A class is a blueprint for making objects. When you use a class to make an object, the class describes what that object knows about itself, as well as what that object does.

[image: image]

An instance of a class is an object that was made using that class. You only have to write one class, but you can make many instances of that class.

Think of “instance” as another way of saying “object”.

Instance variables are variables that belong to one object. They comprise everything the object knows about itself. They represent the object’s state (its data), and they can have different values for each instance of the class.

Instance methods are methods that you can call directly on that object. They comprise what the object does. They have access to the object’s instance variables, and can use them to change their behavior based on the values in those variables.

What’s the difference between a class and an object?

A class is a blueprint for an object. The class tells Ruby how to make an object of that particular type. Objects have instance variables and instance methods, but those variables and methods are designed as part of the class.

[image: image]

If classes are cookie cutters, objects are the cookies they make.

Each instance of a class can have its own values for the instance variables used within that class’s methods. For example, you’ll only define the Dog class once. Within that Dog class’s methods, you’ll only specify once that Dog instances should have “name” and “age” instance variables. But each Dog object will have its own name and age, distinct from all the other Dog instances.

[image: image]

[image: image]

Your first class

Here’s an example of a class we could use in our interactive storybook: a Dog class.

We use the class keyword to start a new class definition, followed by the name of our new class.

Within the class definition, we can include method definitions. Any method we define here will be available as an instance method on instances of the class.

We mark the end of the class definition with the end keyword.

[image: image]

A diagram of this class might look like this...

[image: image]

Creating new instances (objects)

If we call the new method on a class, it will return a new instance of that class. We can then assign that instance to a variable, or whatever else we need to do with it.

fido = Dog.new
rex = Dog.new

Once we have one or more instances of the class, we can call their instance methods. We do it in the same way we’ve called all other methods on objects so far: we use the dot operator to specify which instance is the method’s reciever.

[image: image]

Breaking our giant methods up into classes

The animal rescue’s solution uses strings to track what type of animal they’re dealing with. Also, all knowledge of the different ways that different animals should respond is embedded in giant if/else statements. Their approach is unwieldy, at best.

def talk(animal_type, name)
 if animal_type == "bird"
 puts "#{name} says Chirp! Chirp!"
 elsif animal_type == "dog"
 puts "#{name} says Bark!"
 elsif animal_type == "cat"
 puts "#{name} says Meow!"
 end
end

The object-oriented approach

Now that you know how to create classes, we can take an object-oriented approach to the problem. We can create a class to represent each type of animal. Then, instead of one big method that contains behavior for all the animal types, we can put little methods in each class, methods that define behavior specific to that type of animal.

[image: image]

Conventional Wisdom

Ruby class names must begin with a capital letter. Letters after the first should be lower case.

class Appointment
 ...
end

If there’s more than one word in the name, the first letter of each word should also be capitalized.

class AddressBook
 ...
end
class PhoneNumber
 ...
end

Remember how the convention for variable names (with underscores separating words) is called “snake case”? The style for class names is called “camel case”, because the capital letters look like the humps on a camel.

Creating instances of our new animal classes

With these classes defined, we can create new instances of them (new objects based on the classes), and call methods on them.

Just as with methods, Ruby lets us create instances of classes right in the same file where we declared them. You probably won’t want to organize your code this way in larger applications, but since this is such a simple app right now, we can go ahead and create some new instances right below the class declarations.

[image: image]

If we save all this to a file named animals.rb, then run ruby animals.rb at a command prompt, we’ll see the output of our instance methods!

[image: image]

Updating our class diagram with instance methods

If we were to draw a diagram of our new classes, they’d look something like this:

[image: image]

At this point, instances of our classes have two instance methods (things they can do): talk and move. They don’t have any instance variables (things they know) yet, however. We’ll be looking at that next.

Code Magnets

[image: image]

A working Ruby program is scrambled up on the fridge. Some of the code snippets are in the correct places, but others have been moved around randomly. Can you rearrange the code snippets to make a working program that produces the output listed below?

[image: image]

Code Magnets Solution

[image: image]

A working Ruby program is scrambled up on the fridge. Some of the code snippets are in the correct places, but others have been moved around randomly. Can you rearrange the code snippets to make a working program that produces the output listed below?

[image: image]

there are no Dumb Questions

Q: Can I call these new move and talk methods by themselves (without an object)?

A: Not from outside the class, no. Remember, the purpose of specifying a receiver is to tell Ruby which object a method is being called on. The move and talk methods are instance methods; it doesn’t make sense to call them without stating which instance of the class you’re calling them on. If you try, you’ll get an error, like this:

move("food bowl")

undefined method 'move' for
main:Object (NoMethodError)

Q: You say that we have to call the new method on a class to create an object. You also said back in chapter 1 that numbers and strings are objects. Why don’t we have to call new to get a new number or string?

A: Creating new numbers and strings is something developers need to do so frequently that special shorthand notation is built right into the language: string and number literals.

new_string = "Hello!"
new_float = 4.2

Doing the same for other classes would require modifying the Ruby language itself, so most of them just rely on new to create new instances. (There are exceptions; we’ll get to those in later chapters.)

Our objects don’t “know” their names or ages!

The animal rescue’s lead developer points out a couple details we forgot to address with our class-based solution:

[image: image]

[image: image]

She has a point; we’re missing a couple of features from the original program.

Let’s start by re-adding the name parameter to the talk and move methods:

[image: image]

Too many arguments (again)

Now that we’ve re-added the name parameter to the talk and move methods, we can once again pass in the animal’s name to be printed.

[image: image]

[image: image]

dog = Dog.new
dog_name = "Lucy"
cat = Cat.new
cat_name = "Fluffy"

Actually, we can do better. We can use instance variables to store data inside the object.

One of the key benefits of object-oriented programming is that it keeps data, and the methods that operate on that data, in the same place. Let’s try storing the names in the animal objects so that we don’t have to pass so many arguments to our instance methods.

Local variables live until the method ends

So far, we’ve been working with local variables - variables that are local to the current scope (usually the current method). When the current scope ends, local variables cease to exist, so they won’t work for storing our animals’ names, as you’ll see below.

Here’s a new version of the Dog class with an additional method, make_up_name. When we call make_up_name, it stores a name for the dog, for later access by the talk method.

The moment we call the talk method, however, we get an error, saying the name variable doesn’t exist:

[image: image]

What happened? We did define a name variable, back in the make_up_name method!

The problem, though, is that we used a local variable. Local variables live only as long as the method in which they were created. In this case, The name variable ceases to exist as soon as make_up_name ends.

[image: image]

Trust us, the short life of local variables is a good thing. If any variable was accessible anywhere in your program, you’d be accidentally referencing the wrong variables all the time! Like most languages, Ruby limits the scope of variables in order to prevent this sort of mistake.

[image: image]

Instance variables live as long as the instance does

Any local variable we create disappears as soon as its scope ends. If that’s true, though, how can we store a Dog’s name together with the object? We’re going to need a new kind of variable.

An object can store data in instance variables - variables that are tied to a particular object instance. Data written to an object’s instance variables stays with that object, getting removed from memory only when the object is removed.

An instance variable looks just like a regular variable, and follows all the same naming conventions. The only difference in syntax is that its name begins with an “at” symbol (@).

	my_variable

	@my_variable

	Local variable

	Instance variable

Here’s that Dog class again. It’s identical to the previous one, except that we added two little “@” symbols to convert the two local variables to one instance variable.

[image: image]

Now, we can make the exact same call to talk that we did before, and the code will work! The @name instance variable that we create in the make_up_name method is still accessible in the talk method.

[image: image]

With instance variables at our disposal, it’s easy to add the move and report_age methods back in, as well...

[image: image]

And now that we have instance variables, we can finally fill in that hole in the class diagram for Dog!

[image: image]

That’s true. Up next, we’ll show you a way to set a dog’s name and age to other values.

[image: image]

Encapsulation

Thanks to instance variables, we now have a way to store names and ages for our animals. But our make_up_name and make_up_age methods only allow us to use hard-coded values (we can’t change them when the program’s running). We need a way for our program to set any values we want.

class Dog

 def make_up_name
 @name = "Sandy"
 end

 def make_up_age
 @age = 5
 end
...
end

Code like this won’t work, though:

[image: image]

Ruby never allows us to access instance variables directly from outside our class. This isn’t due to some authoritarian agenda; it’s to keep other programs and classes from modifying your instance variables willy-nilly.

Let’s suppose that you could update instance variables directly. What’s to prevent other portions of the program from setting the variables to invalid values?

[image: image]

Who is how old? This object’s data is clearly invalid, and the user can see it in the program output!

Blank names and negative ages are just the start. Imagine someone accidentally replacing the value in an Appointment object’s @date instance variable with a phone number. Or setting the @sales_tax on all their Invoice objects to zero. All kinds of things could go wrong!

To help avoid exposing an object’s data to malicious (or clumsy) users, most object-oriented languages encourage the concept of encapsulation: of preventing other parts of the program from directly accessing or changing an object’s instance variables.

Attribute accessor methods

To encourage encapsulation and protect your instances from invalid data, Ruby doesn’t allow you to access or change instance variables from outside the class. Instead, you can create accessor methods, which will write values to the instance variables and read them back out again for you. Once you’re accessing your data through accessor methods, it’s easy to extend those methods to validate your data—to reject any bad values that get passed in.

Ruby has two kinds of accessor methods: attribute writers and attribute readers. (An “attribute” is another name for a piece of data regarding an object.) Attribute writer methods set an instance variable, and attribute reader methods get the value of an instance variable back.

Here’s a simple class with writer and reader methods for an attribute named my_attribute:

[image: image]

	If we create a new instance of the above class...

	my_instance = MyClass.new

	...we can set the attribute like this...

	my_instance.my_attribute = "a value"

	...and read the attribute like this.

	puts my_instance.my_attribute

Accessor methods are just ordinary instance methods; we only refer to them as “accessor methods” because their primary purpose is to access an instance variable.

Look at the attribute reader method, for example; it’s a perfectly ordinary method that simply returns the current value of @my_attribute.

[image: image]

Like attribute reader methods, an attribute writer method is a perfectly ordinary instance method. We just call it an “attribute writer” method because the primary thing it does is to update an instance variable.

[image: image]

It may be a perfectly ordinary method, but calls to it are treated somewhat specially.

Remember that earlier in the chapter, we said that Ruby method names could end in “=”? Ruby allows that equals-sign ending so that it can be used in the names of attribute writer methods.

[image: image]

When Ruby sees something like this in your code:

my_instance.my_attribute = "a value"

...it gets translated into a call to the my_attribute= instance method. The value to the right of the “=” is passed as an argument to the method:

[image: image]

The above code is valid Ruby, and you can try it yourself, if you like:

[image: image]

Conventional Wisdom

We only show this alternate way of calling attribute writer methods so that you can understand what’s going on behind the scenes. In your actual Ruby programs, you should only use the assignment syntax!

[image: image]

Using accessor methods

Now we’re ready to use what we’ve learned in the Fuzzy Friends application. As a first step, let’s update the Dog class with methods that will let us read and write @name and @age instance variables. We’ll also use @name and @age in the report_age method. We’ll look at adding data validation later.

[image: image]

With accessor methods in place, we can (indirectly) set and use the @name and @age instance variables from outside the Dog class!

[image: image]

Conventional Wisdom

The name of an attribute reader method should usually match the name of the instance variable it reads from (without the @ symbol, of course).

def tail_length
 @tail_length
end

The same is true for attribute writer methods, but you should add an = symbol on to the end of the name.

def tail_length=(value)
 @tail_length = value
end

Writing a reader and writer method by hand for each attribute can get tedious, though. Next, we’ll look at an easier way...

Attribute writers and readers

Creating this pair of accessor methods for an attribute is so common that Ruby offers us shortcuts - methods named: attr_writer, attr_reader, and attr_accessor. Calling these three methods within your class definition will automatically define new accessor methods for you:

[image: image]

All three of these methods can take multiple arguments, specifying multiple attributes that you want to define accessors for.

[image: image]

Symbols

In case you’re wondering, those :name and :age things are symbols. A Ruby symbol is a series of characters, like a string. Unlike a string, its value can’t be changed later. That makes them perfect for use inside Ruby programs, to refer to anything whose name doesn’t (usually) change, like a method. For example, if you call the method named methods on an object in irb, you’ll see that it returns a list of symbols.

A symbol reference in Ruby code always begins with a colon character (:). A symbol should be in all lower-case, with words separated by underscores, just like a variable name.

[image: image]

Attribute writers and readers in action

The Dog class currently devotes 12 lines of code to accessor methods. With the attr_accessor method, we can shrink that down to 1 line!

It will let us reduce our Dog class’s size...

[image: image]

...how’s that for efficiency? It’s a lot easier to read, too!

Let’s not forget why we’re writing accessor methods in the first place, though. We need to protect our instance variables from invalid data. Right now, these methods don’t do that... We’ll see how to fix this in a few pages!

Exercise

[image: image]

We haven’t really gotten to play around with classes and objects much yet. Let’s try another irb session. We’ll load up a simple class so we can create some instances of it interactively.

Step One:

Save this class definition to a file, named “mage.rb”.

class Mage

 attr_accessor :name, :spell

 def enchant(target)
 puts "#{@name} casts #{@spell} on #{target.name}!"
 end

end

[image: image]

Step Two:

From a system command prompt, navigate into the directory where you saved your file.

Step Three:

We want to be able to load Ruby files from the current directory, so as in the previous exercise, type the following to launch irb:

irb -I .

Step Four:

As before, we need to load the file with our saved Ruby code. Type this line:

require "mage"

With our Mage class’s code loaded, you can try creating as many instances as you like, set their attributes, and have them cast spells at each other! Try the following for starters:

merlin = Mage.new
merlin.name = "Merlin"
morgana = Mage.new
morgana.name = "Morgana"
morgana.spell = "Shrink"
morgana.enchant(merlin)

[image: image]

Who am I?

[image: image]

A bunch of Ruby concepts, in full costume, are playing a party game, “Who am I?” They’ll give you a clue — you try to guess who they are based on what they say. Assume they always tell the truth about themselves. Fill in the blanks to the right to identify the attendees. (We’ve done the first one for you.)

Tonight’s attendees: Any of the terms related to storing data within an object just might show up!

	

	Name

	I stay within an object instance, and store data about that object.

	instance variable

	I’m another name for a piece of data about an object. I get stored in an instance variable.

	I store data within a method. As soon as the method returns, I disappear.

	I’m a kind of instance method. My main purpose is to read or write an instance variable.

	I’m used in Ruby programs to refer to things whose names don’t change (like methods).

Who am I? Solution

[image: image]

	

	Name

	I stay within an object instance, and store data about that object.

	instance variable__

	I’m another name for a piece of data about an object. I get stored in an instance variable.

	attribute__________

	I store data within a method. As soon as the method returns, I disappear.

	local variable_____

	I’m a kind of instance method. My main purpose is to read or write an instance variable.

	accessor method____

	I’m used in Ruby programs to refer to things whose names don’t change (like methods).

	symbol_____________

there are no Dumb Questions

Q: What’s the difference between an accessor method and an instance method?

A: “Accessor method” is just a way of describing one particular kind of instance method, one whose primary purpose is to get or set the value of an instance variable. In all other respects, accessor methods are ordinary instance methods.

Q: I set up an instance variable outside an instance method, but it’s not there when I try to access it. Why?

[image: image]

A: When you use instance variables outside of an instance method, you’re actually creating an instance variable on the class object. (That’s right, even classes are themselves objects in Ruby.)

While there are potential uses for this, they’re beyond the scope of this book. For now, this is almost certainly not what you want. Instead, set up the instance variable within an instance method:

class Widget
 def set_size
 @size = 'large'
 end
 ...
end

Pool Puzzle

[image: image]

Your job is to take code snippets from the pool and place them into the blank lines in the code. Don’t use the same snippet more than once, and you won’t need to use all the snippets. Your goal is to make code that will run and produce the output shown.

[image: image]

Note: each thing from the pool can only be used once!

[image: image]

Pool Puzzle Solution

[image: image]

Your job is to take code snippets from the pool and place them into the blank lines in the code. Don’t use the same snippet more than once, and you won’t need to use all the snippets. Your goal is to make code that will run and produce the output shown.

[image: image]

Ensuring data is valid with accessors

Remember our scenario from a nightmare world where Ruby let programs access instance variables directly, and someone gave your Dog instances blank names and negative ages? Bad news: now that you’ve added attribute writer methods to your Dog class, they actually can!

[image: image]

Don’t panic! Those same writer methods are going to help us prevent this from happening in the future. We’re going to add some simple data validation to the methods, which will give an error any time an invalid value is passed in.

Since name= and age= are just ordinary Ruby methods, adding the validation is really easy; we’ll use ordinary if statements to look for an empty string (for name=) or a negative number (for age=). If we encounter an invalid value, we’ll print an error message. Only if the value is valid will we actually set the @name or @age instance variables.

[image: image]

Errors - the “emergency stop” button

[image: image]

[image: image]

Instead of just printing a message, we need to deal with invalid parameters in the name= and age= accessor methods in a more meaningful way. Let’s change the validation code in our name= and age= methods to Ruby’s built-in raise method to report any errors.

raise "Something bad happened!"

That’s raise as in “raise an issue”. Your program is bringing a problem to your attention.

You call raise with a string describing what’s wrong. When Ruby encounters the call, it stops what it’s doing, and prints your error message. Since this program doesn’t do anything to handle the error, it will exit immediately.

Using “raise” in our attribute writer methods

Since we’re using raise in both of our writer methods, we don’t need to use an else clause on the if statements. If the new value is invalid and the raise statement is executed, the program will halt. The statement that assigns to the instance variable will never be reached.

[image: image]

Now, if a blank name is passed in to name=, Ruby will report an error, and the entire program will exit.

[image: image]

You’ll get another error message if someone tries to set the age to a number less than zero.

[image: image]

In a later chapter, we’ll see that errors can also be handled by other parts of your program, so that it can continue running. But for now, naughty developers that try to give your Dog instance a blank name or a negative age will know immediately that they have to re-write their code.

[image: image]

Our complete Dog class

Here’s a file with our complete Dog class, plus some code to create a Dog instance.

[image: image]

[image: image]

We have instance methods that act as attribute accessors, letting us get and set the contents of our instance variables.

[image: image]

We have instance methods that let our dog object do things, like move, make noise, and report its age. The instance methods can make use of the data in the object’s instance variables.

[image: image]

And we’ve set up our attribute writer methods to validate the data passed to them, raising an error if the values are invalid.

[image: image]

Now, we just need to do the same for the Cat and Bird classes!

Not excited by the prospect of duplicating all that code? Don’t worry! The next chapter is all about inheritance, which will make the task easy!

Do this!

Type the above code into a file named "dog.rb". Try adding more Dog instances! Then run ruby dog.rb from a command line.

Your Ruby Toolbox

[image: image]

That’s it for Chapter 2! You’ve added methods and classes to your tool box.

[image: image]

Classes

A class is a template for creating object instances.

An object’s class defines its instance methods (what it DOES).

Within instance methods, you can create instance variables (what the object KNOWS about itself).

BULLET POINTS

[image: image]

	A method body consists of one or more Ruby statements that will be executed when the method is called.

	Parenthesis should be left off of a method definition if (and only if) you’re not defining any parameters.

	If you don’t specify a return value, methods will return the value of the last expression evaluated.

	Method definitions that appear within a class definition are treated as instance methods for that class.

	Outside a class definition, instance variables can only be accessed via accessor methods.

	You can call the attr_writer, attr_reader, and attr_accessor methods within your class definition as a shortcut for defining accessor methods.

	Accessor methods can be used to ensure data is valid before it’s stored in instance variables.

	The raise method can be called to report an error in your program.

3 inheritance

Relying on Your Parents

[image: image]

So much repetition! Your new classes representing the different types of vehicles and animals are awesome, it’s true. But you’re having to copy instance methods from class to class. And the copies are starting to fall out of sync - some are fine, and others have bugs. Weren’t classes supposed to make code easier to maintain?

In this chapter, we’ll learn how to use inheritance to let your classes share methods. Fewer copies means fewer maintenance headaches!

Copy, paste... Such a waste...

Back at Got-A-Motor, Inc., the development team wants to try this “object-oriented programming” thing out for themselves. They’ve converted their old virtual test drive app to use classes for each vehicle type. They have classes representing cars, trucks, and motorcycles.

Here’s what their class structure looks like right now:

[image: image]

Thanks to customer demand, management has asked that steering be added to all vehicle types. Mike, Got-A-Motor’s rookie developer, thinks he has this requirement covered.

[image: image]

Mike’s code for the Virtual Test Drive classes

[image: image]

But Marcy, the team’s experienced object-oriented developer, has some reservations about this approach.

[image: image]

Marcy is right; this is a maintenance nightmare waiting to happen. First, let’s figure out how to address the duplication. Then we’ll fix the steer instance method for Motorcycle objects.

Inheritance to the rescue!

Fortunately, like most object-oriented languages, Ruby has the concept of inheritance, which allows classes to inherit methods from one another. If one class has some functionality, classes that inherit from it can get that functionality automatically.

Instead of repeating method definitions across many similar classes, inheritance lets you move the common methods to a single class. You can then specify that other classes inherit from this class. The class with the common methods is referred to as the superclass, and the classes that inherit those methods are known as subclasses.

If a superclass has instance methods, then its subclasses automatically inherit those methods. You can get access to all the methods you need from the superclass, without having to duplicate the methods’ code in each subclass.

Here’s how we might use inheritance to get rid of the repetition in the virtual test drive app...

➊ We see that the Car, Truck, and Motorcycle classes have several instance methods and attributes in common.

	Car

	odometer
gas_used

	mileage
accelerate
sound_horn
steer

	Truck

	odometer
gas_used

	mileage
accelerate
sound_horn
steer

	Motorcycle

	odometer
gas_used

	mileage
accelerate
sound_horn
steer

➋ Each one of these classes is a type of vehicle. So we can create a new class, which we’ll choose to call Vehicle, and move the common methods and attributes there.

	Vehicle

	odometer
gas_used

	mileage
accelerate
sound_horn
steer

➌ Then, we can specify that each of the other classes inherits from the Vehicle class.

[image: image]

The Vehicle class is called the superclass of the other three classes. Car, Truck, and Motorcycle are called subclasses of Vehicle.

The subclasses inherit all the methods and attributes of the superclass. In other words, if the superclass has some functionality, its subclasses automatically get that functionality. We can remove the duplicated methods from Car, Truck, and Motorcycle, because they will automatically inherit them from the Vehicle class. All of the classes will still have the same methods, but there’s only one copy of each method to maintain!

Note that in Ruby, subclasses technically do not inherit instance variables; they inherit the attribute accessor methods that create those variables. We’ll talk about this subtle distinction in a few pages.

[image: image]

Defining a superclass (requires nothing special)

To eliminate the repeated methods and attributes in our Car, Truck, and Motorcycle classes, Marcy has created this design. It moves the shared methods and attributes to a Vehicle superclass. Car, Truck, and Motorcycle are all subclasses of Vehicle, and they inherit all of Vehicle’s methods.

[image: image]

There’s actually no special syntax to define a superclass in Ruby; it’s just an ordinary class. (Most object-oriented languages are like this.)

[image: image]

Defining a subclass (is really easy)

The syntax for subclasses isn’t much more complicated. A subclass definition looks just like an ordinary class definition, except that you specify the superclass it will inherit from.

[image: image]

Ruby uses a less-than (<) symbol because the subclass is a subset of the superclass. (All cars are vehicles, but not all vehicles are cars.) You can think of the subclass as being lesser than the superclass.

So here’s all we have to write in order to specify that Car, Truck, and Motorcycle are subclasses of Vehicle:

class Car < Vehicle
end

class Truck < Vehicle
end

class Motorcycle < Vehicle
end

As soon as you define them as subclasses, Car, Truck, and Motorcycle inherit all the attributes and instance methods of Vehicle. Even though the subclasses don’t contain any code of their own, any instances we create will have access to all of the superclass’s functionality!

[image: image]

Our Car, Truck, and Motorcycle classes have all the same functionality they used to, without all the duplicated code. Using inheritance will save us a lot of maintenance headaches!

Adding methods to subclasses

As it stands, there’s no difference between our Truck class and the Car or Motorcycle classes. But what good is a truck, if not for hauling cargo? Got-A-Motor wants to add a load_bed method for Truck instances, as well as a cargo attribute to access the bed contents.

It won’t do to add cargo and load_bed to the Vehicle class, though. The Truck class would inherit them, yes, but so would Car and Motorcycle. Cars and motorcycles don’t have cargo beds!

So instead, we can define a cargo attribute and a load_bed method directly on the Truck class.

class Truck < Vehicle

 attr_accessor :cargo

 def load_bed(contents)
 puts "Securing #{contents} in the truck bed."
 @cargo = contents
 end

end

If we were to draw the diagram of Vehicle and its subclasses again now, it would look like this:

[image: image]

With these code changes in place, we can create a new Truck instance, then load and access its cargo.

[image: image]

Subclasses keep inherited methods alongside new ones

A subclass that defines its own methods doesn’t lose the ones it inherits from its superclass, though. Truck will still have all the attributes and methods it inherits from Vehicle, but cargo and load_bed will be added alongside them.

If we re-drew our diagram with the inherited attributes and methods included, it would look like this:

[image: image]

So in addition to the cargo attribute and load_bed method, our Truck instance can also access all the old inherited attributes and methods it used to.

[image: image]

So, a subclass inherits instance methods from its superclass. Does it also inherit instance variables?

[image: image]

A Ruby Detour

Surprisingly, the answer is no! Bear with us, we need to take a 2-page detour to explain...

Sharpen your pencil

[image: image]

[image: image]

We need two classes, Kite and StuntKite. Both Kite and StuntKite instances will need fly and land methods. Only StuntKite instances should have a steer method, however. Place the class names and method definitions at the appropriate places in this class diagram.

[image: image]

Sharpen your pencil Solution

[image: image]

[image: image]

Instance variables are NOT inherited!

[image: image]

A Ruby Detour

It’s easy to form the (incorrect) impression that instance variables are inherited from the superclass. Let’s take another look at our class diagram, focusing on the attributes of the Vehicle and Car classes...

[image: image]

All Ruby objects have a method called instance_variables that we can call to see what instance variables are defined for that object. So if we create a new Car and assign values to its odometer and gas_used attributes...

car = Car.new
car.odometer = 22914
car.gas_used = 728

...then call the instance_variables method to see what instance variables it has...

[image: image]

...it sure looks like the @odometer and @gas_used instance variables got inherited from the Vehicle superclass.

But what actually gets inherited are the odometer and gas_used instance methods (the attribute accessor methods). These methods just happen to assign to instance variables named @odometer and @gas_used (because that’s the Ruby convention). The variables are created on the car object at the time a value is assigned to them.

The only thing that Ruby subclasses ever inherit are instance methods. Instance variables usually come along for the ride, though.

[image: image]

A Ruby Detour

To prove that it’s the odometer and gas_used instance methods that are inherited from Vehicle, and not the @odometer and @gas_used instance variables, let’s try breaking the convention. We’ll override the Car subclass’s attribute accessor methods to write to and read from totally different instance variables.

class Car < Vehicle
 def odometer=(new_value)
 @banana = new_value
 end
 def odometer
 @banana
 end
 def gas_used=(new_value)
 @apple = new_value
 end
 def gas_used
 @apple
 end
end

Now, we can run the very same code to create a Car instance:

car = Car.new
car.odometer = 22914
car.gas_used = 728

...But the odometer= and gas_used= methods will assign to different instance variables:

[image: image]

So, why worry about the fact that instance variables aren’t inherited? As long as you follow the convention of ensuring your instance variable names match your accessor method names, you won’t have to. But if you deviate from that convention, look out! You may find that a subclass can interfere with it’s superclass’s functionality by overwriting its instance variables.

[image: image]

When we try to actually use the Employee subclass, we’ll find that any time we assign to the salary attribute, we overwrite the name attribute, because both are using the same instance variable.

[image: image]

What’s the lesson here? Ensure you’re using sensible variable names that match your attribute accessor names. That simple practice should be enough to keep you out of trouble!

[image: image]

A Ruby Detour

Overriding methods

Marcy, the team’s experienced object-oriented developer, has re-written our Car, Truck, and Motorcycle classes as subclasses of Vehicle. They don’t need any methods or attributes of their own - they inherit everything from the superclass! But Mike points out an issue with this design...

[image: image]

[image: image]

[image: image]

If the superclass’s behavior isn’t what you need in the subclass, inheritance gives you another mechanism to help: method overriding. When you override one or more methods in a subclass, you replace the inherited methods from the superclass with methods specific to the subclass.

class Motorcycle < Vehicle
 def steer
 puts "Turn front wheel."
 end
end

[image: image]

Now, if we call steer on a Motorcycle instance, we’ll get the overriding method. That is, we’ll get the version of steer defined within the Motorcycle class, not the version from Vehicle.

[image: image]

If we call any other methods on a Motorcycle instance, though, we’ll get the inherited method.

[image: image]

How does this work?

If Ruby sees that the requested method is defined on a subclass, it will call that method and stop there.

But if the method’s not found, Ruby will look for it on the superclass, then the superclass’s superclass, and so on, up the chain.

[image: image]

Everything seems to be working again! When changes are needed, they can be made in the Vehicle class, and they’ll propagate to the subclasses automatically, meaning everyone gets the benefit of updates sooner. If a subclass needs specialized behavior, it can simply override the method it inherited from the superclass.

Nice work cleaning up Got-A-Motor’s code! Up next, we have a couple exercises where you can practice working with superclasses and subclasses.

Then, we’ll take another look at the Fuzzy Friends code. They still have a lot of redundant methods in their application’s classes. We’ll see if inheritance and method overriding can help them out.

there are no Dumb Question

Q: Can you have more than one level of inheritance? That is, can a subclass have its own subclasses?

A: Yes! If you need to override methods on some of your subclass’s instances, but not others, you might consider making a subclass of the subclass.

class Car < Vehicle
end

class DragRacer < Car
 def accelerate
 puts "Inject nitrous!"
 end
end

Don’t overdo it, though! This kind of design can rapidly become very complex. Ruby doesn’t place a limit on the number of levels of inheritance, but most Ruby developers don’t go more than one or two levels deep.

Q: You said that if a method is called on an instance of a class and Ruby doesn’t find the method, it will look on the superclass, then the superclass’s superclass... What happens if it runs out of superclasses without finding the method?

A: After searching the last superclass, Ruby gives up the search. That’s when you get one of those “undefined method” errors we’ve been seeing.

[image: image]

Q: When designing an inheritance hierarchy, which should I design first, the subclass or the superclass?

A: Either! You might not even realize you need to use inheritance until after you’ve started coding your application.

When you discover that two related classes need similar or identical methods, though, just make those classes into subclasses of a new superclass. Then move those shared methods into the superclass. There: you’ve designed the subclasses first.

Likewise, when you discover that only some instances of a class are using a method, create a new subclass of the existing class, and move the method there. You’ve just designed the superclass first!

Code Magnets

[image: image]

A Ruby program is all scrambled up on the fridge. Can you reconstruct the code snippets to make a working superclass and subclass, so the sample code below can execute and produce the given output?

[image: image]

WHAT’ MY PURPOSE?

Match each of the concepts on the left to a definition on the right.

[image: image]

Code Magnets Solution

[image: image]

A Ruby program is all scrambled up on the fridge. Can you reconstruct the code snippets to make a working superclass and subclass, so the sample code below can execute and produce the given output?

[image: image]

WHAT’ MY PURPOSE? SOLUTION

Match each of the concepts on the left to a definition on the right.

[image: image]

Bringing our animal classes up to date with inheritance

Remember the Fuzzy Friends virtual storybook application from last chapter? We did a lot of excellent work on the Dog class. We added name and age attribute accessor methods (with validation), and updated the talk, move, and report_age methods to use the @name and @age instance variables.

Here’s a recap of the code we have so far:

[image: image]

The Bird and Cat classes have been completely left behind, however, even though they need almost identical functionality.

Let’s use this new concept of inheritance to create a design that will bring all our classes up to date at once (and keep them updated in the future).

Designing the animal class hierarchy

We’ve added lots of new functionality to our Dog class, and now we want it in the Cat and Bird classes as well...

We want all the classes to have name and age attributes, as well as talk, move, and report_age methods. Let’s move all of these attributes and methods up to a new class, which we’ll call Animal.

[image: image]

Then, we’ll declare that Dog, Bird, and Cat are subclasses of Animal. All three subclasses will inherit all the attributes and instance methods from their superclass. We’ll instantly be caught up!

[image: image]

Code for the Animal class and its subclasses

Here’s code for the Animal superclass, with all the old methods from Dog moved into it...

[image: image]

And here are the other classes, rewritten as subclasses of Animal.

[image: image]

Overriding a method in the Animal subclasses

With our Dog, Bird, and Cat classes re-written as subclasses of Animal, they don’t need any methods or attributes of their own - they inherit everything from the superclass!

[image: image]

Looks good, except for one problem... our Cat instance is barking.

The subclasses inherited this method from Animal:

def talk
 puts "#{@name} says Bark!"
end

That’s appropriate behavior for a Dog, but not so much for a Cat or a Bird.

[image: image]

This code will override the talk method that was inherited from Animal:

[image: image]

Now, when you call talk on Cat or Bird instances, you’ll get the overridden methods.

[image: image]

We need to get at the overridden method!

Next up, Fuzzy Friends wants to add armadillos to their interactive storybook. (Yeah, the little anteater-like critters that can roll into an armored ball to protect themselves from predators and overly-playful dogs.) We can simply add Armadillo as a subclass of Animal.

There’s a catch, though; before they can run anywhere, they have to unroll. The move method will have to be overridden to reflect this fact.

[image: image]

[image: image]

This works, but it’s unfortunate that we have to replicate the code from the move method of the Animal class.

What if we could override the move method with new code, and still harness the code from the superclass? Ruby has a mechanism to do just that...

The “super” keyword

When you use the super keyword within a method, it makes a call to a method of the same name on the superclass.

[image: image]

If we make a call to the overriding method on the subclass, we’ll see that the super keyword makes a call to the overridden method on the superclass:

[image: image]

The super keyword works like an ordinary method call in almost every respect.

For example, the superclass method’s return value becomes the value of the super expression:

[image: image]

Another way in which using the super keyword is like a regular method call: you can pass it arguments, and those arguments will be passed to the superclass’s method.

[image: image]

But here’s a way that super differs from a regular method call: if you leave the arguments off, the superclass method will automatically be called with the same arguments that were passed to the subclass method.

[image: image]

Watch It!

[image: image]

The calls super and super() are not the same.

By itself, super calls the overridden method with the same arguments the overriding method received. But super() calls the overridden method with no arguments, even if the overriding method did receive arguments.

A super-powered subclass

Now, let’s use our new understanding of super to eliminate a little duplicated code from the move method in our Armadillo class.

Here’s the method we’re inheriting from the Animal superclass:

And here’s the overridden version in the Armadillo subclass:

[image: image]

We can replace the duplicated code in the subclass’s move method with a call to super, and rely on the superclass’s move method to provide that functionality.

Here, we explicitly pass on the destination parameter for Animal’s move method to use:

[image: image]

But we could instead leave off the arguments to super, and allow the destination parameter to be forwarded to the superclass’s move method automatically:

Either way, the code still works great!

[image: image]

Your mastery of class inheritance has wrung the repetition out of your code like water from a sponge. And your co-workers will thank you - less code means less bugs! Great job!

Exercise

[image: image]

Below you’ll find code for three Ruby classes. The code snippets on the right use those classes, either directly or through inheritance. Fill in the blanks below each snippet with what you think its output will be. Don’t forget to take method overriding and the "super" keyword into account!

(We’ve filled in the first one for you.)

class Robot

 attr_accessor :name

 def activate
 puts "#{@name} is powering up"
 end

 def move(destination)
 puts "#{@name} walks to #{destination}"
 end

end

class TankBot < Robot

 attr_accessor :weapon

 def attack
 puts "#{@name} fires #{@weapon}"
 end

 def move(destination)
 puts "#{@name} rolls to #{destination}"
 end

end

class SolarBot < Robot

 def activate
 puts "#{@name} deploys solar panel"
 super
 end

end

Your answers:

tank = TankBot.new
tank.name = "Hugo"
tank.weapon = "laser"
tank.activate
tank.move("test dummy")
tank.attack

Hugo is powering up

..................................

..................................

sunny = SolarBot.new
sunny.name = "Sunny"
sunny.activate
sunny.move("tanning bed")

..................................

..................................

..................................

Exercise Solution

[image: image]

Below you’ll find code for three Ruby classes. The code snippets on the right use those classes, either directly or through inheritance. Fill in the blanks below each snippet with what you think its output will be. Don’t forget to take method overriding and the "super" keyword into account!

class Robot

 attr_accessor :name

 def activate
 puts "#{@name} is powering up"
 end

 def move(destination)
 puts "#{@name} walks to #{destination}"
 end

end

class TankBot < Robot

 attr_accessor :weapon

 def attack
 puts "#{@name} fires #{@weapon}"
 end

 def move(destination)
 puts "#{@name} rolls to #{destination}"
 end

end

class SolarBot < Robot

 def activate
 puts "#{@name} deploys solar panel"
 super
 end

end

tank = TankBot.new
tank.name = "Hugo"
tank.weapon = "laser"
tank.activate
tank.move("test dummy")
tank.attack

Hugo is powering up

Hugo rolls to test dummy

Hugo fires laser

sunny = SolarBot.new
sunny.name = "Sunny"
sunny.activate
sunny.move("tanning bed")

Sunny deploys solar panel

Sunny is powering up

Sunny walks to tanning bed

Difficulties displaying Dogs

Let’s make one more improvement to our Dog class, before we declare it finished. Right now, if we pass a Dog instance to the print or puts methods, the output isn’t too useful:

[image: image]

We can tell that they’re Dog objects, but beyond that it’s very hard to tell one Dog from another. It would be far nicer if we got output like this:

[image: image]

When you pass an object to the puts method, Ruby calls the to_s instance method on it to convert it to a string for printing. We can call to_s explicitly, and get the same result:

[image: image]

Now, here’s a question: where did that to_s instance method come from?

Indeed, where did most of these instance methods on Dog objects come from? If you call the method named methods on a Dog instance, only the first few instance methods will look familiar...

[image: image]

Instance methods named clone, hash, inspect... We didn’t define them ourselves; they’re not on the Dog class. They weren’t inherited from the Animal superclass, either.

But - and here’s the part you may find surprising -they were inherited from somewhere.

The Object class

Where could our Dog instances have inherited all these instance methods from? We don’t define them in the Animal superclass. And we didn’t specify a superclass for Animal...

[image: image]

Ruby classes have a superclass method that you can call to get their superclass. The result of using it on Dog isn’t suprising:

[image: image]

...But what happens if we call superclass on Animal?

[image: image]

Woah! Where did that come from?

When you define a new class, Ruby implicitly sets a class called Object as its superclass (unless you specify a superclass yourself). So writing this:

class Animal
 ...
end

...is equivalent to writing this:

class Animal < Object
 ...
end

[image: image]

Why everything inherits from the Object class

If you don’t explicitly specify a superclass for a class you define, Ruby implicitly sets a class named Object as the superclass...

[image: image]

Even if you do specify a superclass for your class, that superclass probably inherits from Object. That means almost every Ruby object, directly or indirectly, has Object as a superclass!

Ruby does this because the Object class defines dozens of useful methods that almost all Ruby objects need. This includes a lot of the methods that we’ve been calling on objects so far:

• The to_s method converts an object to a string for printing

• The inspect method converts an object to a debug string

• The class method tells you which class an object is an instance of

• The methods method tells you what instance methods an object has

• The instance_variables method gives you a list of an object’s instance variables

...And there are many others. The methods inherited from the Object class are fundamental to the way Ruby works with objects.

We hope you’ve found this little tangent informative, but it doesn’t help us with our original problem: our Dog objects are still printing in a gibberish format.

Or does it?

Overriding the inherited method

We specified that the superclass of the Dog class is the Animal class. And we learned that because we didn’t specify a superclass for Animal, Ruby automatically set the Object class as its superclass.

[image: image]

That means that Animal instances inherit a to_s method from Object. Dog instances, in turn, inherit to_s from Animal. When we pass a Dog object to puts or print, its to_s method is called, to convert it to a string.

Do you see where we’re headed? If the to_s method is the source of the gibberish strings being printed for Dog instances, and to_s is an inherited method, all we have to do is override to_s on the Dog class!

[image: image]

Are you ready? Let’s try it.

[image: image]

It works! No more “#<Dog:0x007fb2b50c4468>”. This is actually readable!

One more tweak: the to_s method is already called when printing objects, so we can leave that off:

[image: image]

This new output format will make debugging the virtual storybook much easier. And you’ve gained a key insight into how Ruby objects work - inheritance plays a vital role!

there are no Dumb Questions

Q: I tried this code in irb instead of using the ruby command. After I override to_s, if I type lucy = Dog.new into irb, I still see something like "#<Dog:0x007fb2b50c4468>". Why don’t I see the dog’s name and age?

A: The values that irb shows you are the result of calling inspect on an object, not to_s. You won’t see the results of to_s until you set the name and age, and pass the object to puts.

Your Ruby Toolbox

[image: image]

That’s it for Chapter 3! You’ve added inheritance to your tool box.

[image: image]

BULLET POINTS

[image: image]

	Any ordinary Ruby class can be used as a superclass.

	To define a subclass, simply specify a superclass in the class definition.

	Instance variables are not inherited from a superclass, but the methods that create and access instance variables are inherited.

	The super keyword can be used within a subclass method to call the overridden method of the same name on the superclass.

	If you don’t specify arguments to the super keyword, it takes all arguments that the subclass method was called with, and passes them on to the superclass method.

	The expression value of the super keyword is the return value of the superclass method it calls.

	When defining a class, Ruby implicitly sets the Object class as the superclass, unless you specify one.

	Almost every Ruby object has instance methods from the Object class, inherited either directly, or through another superclass.

	The to_s, methods, instance_variables, and class methods are all inherited from the Object class.

4 initializing instances

Off to a Great Start

[image: image]

Right now, your class is a time bomb. Every instance you create starts out as a clean slate. If you call certain instance methods before adding data, an error will be raised that will bring your whole program to a screeching halt.

We’re going to show you a couple ways to create objects that are safe to use right away. We’ll start with the initialize method, which lets you pass in a bunch of arguments to set up an object’s data at the time you create it. Then we’ll show you how to write class methods, which you can use to create and set up an object even more easily.

Payroll at Chargemore

You’ve been tasked with creating a payroll system for Chargemore, a new chain of department stores. They need a system that will print pay stubs for their employees.

Chargemore employees are paid for two-week pay periods. Some employees are paid a two-week portion of their annual salary, and some are paid for the number of hours they work within a two-week period. For starters, though, we’re just going to focus on the salaried employees.

A pay stub needs to include the following information:

• The employee name

• The amount of pay an employee received during a two-week pay period

So... here’s what the system will need to know for each employee:

• Employee name

• Employee salary

And here’s what it will need to do:

• Calculate and print pay for a two-week period

This sounds like the ideal place to create an Employee class! Let’s try it, using the same techniques that we covered back in Chapter 2.

We’ll set up attribute reader methods for @name and @salary instance variables, then add writer methods (with validation). Then we’ll add a print_pay_stub instance method that prints the employee’s name, and their pay for the period.

	Employee

	name

	salary

	print_pay_stub

[image: image]

An Employee class

Here’s some code to implement our Employee class...

[image: image]

(Yes, we realize that this doesn’t account for leap years and holidays and a host of other things that real payroll apps must consider. But we wanted a print_pay_stub method that fits on one page.)

Creating new Employee instances

Now that we’ve defined an Employee class, we can create new instances, and assign to their name and salary attributes.

amy = Employee.new
amy.name = "Amy Blake"
amy.salary = 50000

Thanks to validation code in our name= method, we have protection against the accidental assignment of blank names.

[image: image]

Our salary= method has validation to ensure negative numbers aren’t assigned as a salary.

[image: image]

And when an Employee instance is properly set up, we can use the stored name and salary to print a summary of the employee’s pay period.

[image: image]

Hmmm... It’s typical to display two decimal places when showing currency, though. And did that calculation really come out to an even dollar amount?

Before we go on to perfect our Employee class, it looks like we have a bug to fix. And that will require us to go on a couple brief detours. (But you’ll learn some number formatting skills that you’ll need later, promise!)

[image: image]

A Ruby Detour

1. Our employee pay is getting its decimal places chopped off. To fix this, we’ll need to look at the difference between Ruby’s Float and Fixnum numeric classes.

2. We don’t want to display too many decimal places, either, so we’ll need to look at the format method to format our numbers properly.

[image: image]

A division problem

[image: image]

A Ruby Detour

We’re working to make the perfect Employee class to help us calculate payroll for the Chargemore department store. But there’s a little detail we have to take care of, first...

[image: image]

That’s true. Doing the math on paper (or launching a calculator app, if that’s your thing) can confirm that Amy should be earning $1917.81, rounded to the nearest cent. So where did that other $13.81 go?

To find out, let’s launch irb and do the math ourselves, step by step.

First, let’s calculate a day’s pay.

[image: image]

That’s nearly a dollar a day missing, compared to doing the math by hand:

50,000 ÷ 365 = 136.9863...

This error is then compounded when we calculate fourteen days’ pay:

[image: image]

Compare that to the answer we’d get if we multiplied the full daily pay...

136.9863 x 14 = 1917.8082...

So, we’re nearly $14 off. Multiply that by many paychecks and many employees, and you’ve got yourself an angry workforce. We’re going to have to fix this, and soon...

[image: image]

Division with Ruby’s Fixnum class

[image: image]

A Ruby Detour

The result of our Ruby expression to calculate 2 weeks of an employee’s pay doesn’t match up with doing the math by hand...

[image: image]

The problem here is that when dividing instances of the Fixnum class (a Ruby class that represents integers), Ruby rounds fractional numbers down to the nearest whole number.

[image: image]

It rounds the number because Fixnum instances aren’t meant to store numbers with decimal places. They’re intended for use in places where only whole numbers make sense, like counting employees in a department or the number of items in a shopping cart. When you create a Fixnum, you’re telling Ruby: "I expect to only be working with whole numbers here. If anyone does math with you that results in a fraction, I want you to throw those pesky decimal places away."

How can we know whether we’re working with Fixnums? We can call the class instance method on them. (Remember we talked about the Object class back in Chapter 3? The class method is one of the instance methods inherited from Object.)

[image: image]

Or, if you’d rather save yourself the trouble, just remember that any number in your code that doesn’t have a decimal point in it will be treated as a Fixnum by Ruby.

Any number in your code that does have a decimal point in it gets treated as a Float (the Ruby class that represents floating-point decimal numbers):

[image: image]

If it’s got a decimal point, it’s a Float.

If it doesn’t, it’s a Fixnum.

	273

	273.4

	Fixnum

	Float

Division with Ruby’s Float class

[image: image]

A Ruby Detour

We loaded up irb, and saw that if we divide one Fixnum (integer) instance by another Fixnum, Ruby rounds the result down.

[image: image]

The solution, then, is to use Float instances in the operation, which we can get by including a decimal point in our numbers. If you do, Ruby will give you a Float instance back:

[image: image]

It doesn’t even matter whether both the dividend and divisor are Float instances; Ruby will give you a Float back as long as either operand is a Float.

[image: image]

It holds true for addition, subtraction, and multiplication as well: Ruby will give you a Float if either operand is a Float:

[image: image]

	When the first operand is a...

	And the second operand is a...

	The result is a...

	Fixnum

	Fixnum

	Fixnum

	Fixnum

	Float

	Float

	Float

	Fixnum

	Float

	Float

	Float

	Float

And of course, with addition, subtraction, and multiplication, it doesn’t matter whether both operands are Fixnum instances, because there’s no fractional number to lose in the result. The only operation where it really matters is division. So, remember this rule:

When doing division, make sure

at least one operand is a Float.

Let’s see if we can use this hard-won knowledge to fix our Employee class.

Fixing the salary rounding error in Employee

[image: image]

A Ruby Detour

As long as one of the operands is a Float, Ruby won’t truncate the decimals from our division operation.

[image: image]

With this rule in mind, we can revise our Employee class to stop truncating the decimals from employees’ pay:

[image: image]

Now we have a new problem, though: look what happens to the output!

[image: image]

We’re showing a little too much precision! Currency is generally expected to be shown with just two decimal places, after all. So, before we can go back to building the perfect Employee class, we need to go on one more detour...

[image: image]

A Ruby Detour

[image: image]

Formatting Numbers for Printing

[image: image]

A Ruby Detour

Our print_pay_stub method is displaying too many decimal places. We need to figure out how to round the displayed pay to the nearest penny (2 decimal places).

[image: image]

To deal with these sort of formatting issues, Ruby provides the format method.

Here’s a sample of what this method can do. It may look a little confusing, but we’ll explain it all on the next few pages!

[image: image]

So, it looks like format can help us limit our displayed employee pay to the correct number of places. The question is, how? To be able to use this method effectively, we’ll need to learn about two features of format:

1. Format sequences (the little %0.2f above is a format sequence)

2. Format sequence widths (that’s the 0.2 in the middle of the format sequence)

Relax

[image: image]

We’ll explain exactly what those arguments to format mean on the next few pages.

We know, those method calls look a little confusing. We have a ton of examples that should clear that confusion up. We’re going to focus on formatting decimal numbers, because it’s likely that will be the main thing you use format for in your Ruby career.

[image: image]

Format sequences

[image: image]

A Ruby Detour

The first argument to format is a string that will be used to format the output. Most of it is formatted exactly as it appears in the string. Any percent signs (%), however, will be treated as the start of a format sequence, a section of the string that will be substituted with a value in a particular format. The remaining arguments are used as values for those format sequences.

[image: image]

Format sequence types

The letter following the percent sign indicates the type of value that’s expected. The most common types are:

[image: image]

So %f is for floating-point decimal numbers... We can use that sequence type to format the currency in our pay stubs.

By itself, though, the %f sequence type won’t help us. The results still show too many decimal places.

[image: image]

Up next, we’ll look at a fix for that situation: the format sequence width.

Format sequence width

[image: image]

A Ruby Detour

Here’s the useful part of format sequences: they let you specify the width of the resulting field.

Let’s say we want to format some data in a plain-text table. We need to ensure the formatted value fills a minimum number of spaces, so that the columns align properly.

You can specify the minimum width after the percent sign in a format sequence. If the argument for that format sequence is shorter than the minimum width, it will be padded with spaces until the minimum width is reached.

[image: image]

And now we come to the part that’s important for today’s task: you can use format sequence widths to specify the precision (the number of displayed digits) for floating point numbers. Here’s the format:

[image: image]

The minimum width of the entire number includes decimal places. If it’s included, shorter numbers will be padded with spaces at the start until this width is reached. If it’s omitted, no spaces will ever be added.

The width after the decimal point is the maximum number of digits to show. If a more precise number is given, it will be rounded (up or down) to fit in the given number of decimal places.

Format sequence width with floating-point numbers

[image: image]

A Ruby Detour

So when working with floating-point numbers, format sequence widths let us specify the number of digits displayed before and after the decimal point. Could this be the key to fixing our pay stubs?

Here’s a quick demonstration of various width values in action:

[image: image]

That last format, "%.2f", will let us take floating-point numbers of any precision and round them to two decimal places. (It also won’t do any unnecessary padding.) This format is ideal for showing currency, and it’s just what we need for our print_pay_stub method!

[image: image]

Previously, our calculated pay for our Employee class’s print_pay_stub method was displayed with excess decimal places:

[image: image]

But now, we finally have a format sequence that will round a floating-point number to two decimal places:

[image: image]

Let’s try using format in the print_pay_stub method.

[image: image]

Using “format” to fix our pay stubs

[image: image]

A Ruby Detour

We can test our revised print_pay_stub using the same values as before:

[image: image]

[image: image]

We had to make a couple of detours, but we’ve finally got our Employee class printing pay stubs as it should! Let’s do a quick exercise to review what we’ve learned, and then we can get back to the business of perfecting our class...

[image: image]

End of Ruby Detour

[image: image]

Exercise

[image: image]

Look at each of these Ruby statements, and write down what you think the result will be. Consider the result of the division operation, as well as the formatting that will be applied to it. We’ve done the first one for you.

	format "%.2f", 3 / 4.0

0.75

format "$%.2f", 3 / 4.0

..........

format "%.2f", 3 / 4

..........

	format "%.1f", 3 / 4.0

..........

format "%.i", 3 / 4.0

..........

Exercise Solution

[image: image]

Look at each of these Ruby statements, and write down what you think the result will be. Consider the result of the division operation, as well as the formatting that will be applied to it.

[image: image]

When we forget to set an object’s attributes

Now that you have the employee pay printing in the correct format, you’re puttering along, happily using your new Employee class to process payroll. Until, that is, you create a new Employee instance, and forget to set the name and salary attributes before calling print_pay_stub:

[image: image]

Woah! What happened? It’s only natural that the name is empty; we forgot to set it. But what’s this “undefined method for nil” error? What the heck is this nil thing?

This sort of error is pretty common in Ruby, so let’s take a few pages to understand it.

Let’s alter the print_pay_stub method to print the values of @name and @salary, so we can figure out what’s going on.

[image: image]

“nil” stands for nothing

Now, let’s create a new Employee instance, and call the revised method:

[image: image]

Well, that wasn’t very helpful. Maybe we’re missing something, though.

Back in Chapter 1, we learned that the inspect and p methods can reveal information that doesn’t show up in ordinary output. Let’s try again, using p:

[image: image]

We create another new instance, make another call to the instance method, and...

[image: image]

Ruby has a special value, nil, that represents nothing. That is, it represents the absence of a value.

Just because nil represents nothing doesn’t mean it’s actually nothing, though. Like everything else in Ruby, it’s an object, and it has its own class:

[image: image]

But if there’s actually something there, how come we didn’t see anything in the output?

It’s because the to_s instance method from NilClass always returns an empty string.

[image: image]

The puts and print methods automatically call to_s on an object to convert it to a string for printing. That’s why we got two blank lines when we tried to use puts to print the values of @name and @salary; both were set to nil, so we wound up printing two empty strings.

Unlike to_s, the inspect instance method from NilClass always returns the string "nil".

[image: image]

You may recall that the p method calls inspect on each object before printing it. That’s why the nil values in @name and @salary appeared in the output once we called p on them.

“/” is a method

So, when you first create an instance of the Employee class, its @name and @salary instance variables have a value of nil. The @salary variable, in particular, causes problems if you call the print_pay_stub method without setting it first:

[image: image]

It’s obvious from the error that the problem is related to the nil value. But it says undefined method '/'... Is division really a method?

In Ruby, the answer is yes; most mathematical operators are implemented as methods. When Ruby sees something like this in your code:

6 + 2

...It converts it to a call to a method named + on the Fixnum object 6, with the object on the right of the + (that is, 2) as an argument:

[image: image]

Both forms are perfectly valid Ruby, and you can try running them yourself:

[image: image]

The same is true for most of the other mathematical operators.

[image: image]

Even comparison operators are implemented as methods.

[image: image]

But while the Fixnum and Float classes define these operator methods, NilClass does not.

[image: image]

In fact, nil doesn’t define most of the instance methods you see on other Ruby objects.

And why should it? If you’re doing mathematical operations with nil, it’s almost certainly because you forgot to assign a value to one of the operands. You want an error to be raised, to bring your attention to the problem.

It was a mistake when we forgot to set a salary for an Employee, for example. And now that we understand the source of this error, it’s time to prevent it from happening again.

The “initialize” method

We tried to call print_pay_stub on an instance of our Employee class, but we got nil when we tried to access the @name and @salary instance variables.

employee = Employee.new
employee.print_pay_stub

	Employee

	name

	salary

	print_pay_stub

Chaos ensued.

[image: image]

Here’s the method where the nil values caused so much trouble:

[image: image]

Here’s the key problem... At the time we create an Employee instance, it’s in an invalid state; it’s not safe to call print_pay_stub until you set its @name and @salary instance variables.

If we could set @name and @salary at the same time as we create an Employee instance, it would reduce the potential for errors.

Ruby provides a mechanism to help with this situation: the initialize method. The initialize method is your chance to step in and make the object safe to use, before anyone else attempts to call methods on it.

class MyClass
 def initialize
 puts "Setting up new instance!"
 end
end

When you call MyClass.new, Ruby allocates some memory to hold a new MyClass object, then calls the initialize instance method on that new object.

[image: image]

Employee safety with “initialize”

Let’s add an initialize method that will set up @name and @salary for new Employee instances before any other instance methods are called.

[image: image]

Now that we’ve set up an initialize method, @name and @salary will already be set for any new Employee instance. It’ll be safe to call print_pay_stub on them immediately!

[image: image]

Arguments to “initialize”

Our initialize method now sets a default @name of "Anonymous" and a default @salary of 0.0. It would be better if we could supply a value other than these defaults.

It’s for situations like this that any arguments to the new method are passed on to initialize.

[image: image]

We can use this feature to let the caller of Employee.new specify what the initial name and salary should be. All we have to do is take name and salary parameters, and use them to set the @name and @salary instance variables.

[image: image]

And just like that, we can set @name and @salary via arguments to Employee.new!

[image: image]

Of course, once you set it up this way, you’ll need to be careful. If you don’t pass any arguments to new, there will be no arguments to forward on to initialize. At that point, you’ll get the same result that happens any time you call a Ruby method with the wrong number of arguments: an error.

[image: image]

We’ll look at a solution for this in a moment.

Using optional parameters with “initialize”

We started with an initialize method that set default values for our instance variables, but didn’t let you specify your own...

[image: image]

Then we added parameters to initialize, which meant that you had to specify your own name and salary values, and couldn’t rely on the defaults...

[image: image]

Can we have the best of both worlds?

Yes! Since initialize is an ordinary method, it can utilize all the features of ordinary methods. And that includes optional parameters. (Remember those from Chapter 2?)

We can specify default values when declaring the parameters. When we omit an argument, we’ll get the default value. Then, we just assign those parameters to the instance variables normally.

class Employee
 ...
 def initialize(name = "Anonymous", salary = 0.0)
 @name = name
 @salary = salary
 end
 ...
end

With this change in place, we can omit one or both arguments, and get the appropriate defaults!

[image: image]

Pool Puzzle

[image: image]

Your job is to take code snippets from the pool and place them into the blank lines in the code. Don’t use the same snippet more than once, and you won’t need to use all the snippets. Your goal is to make code that will run and produce the output shown.

[image: image]

Note: each thing from the pool can only be used once!

[image: image]

Pool Puzzle Solution

[image: image]

there are no Dumb Questions

Q: What’s the difference between initialize methods in Ruby and constructors from other object-oriented languages?

A: They both serve the same basic purpose - to let the class prepare new instances for use. Whereas constructors are a special structure in most other languages, though, Ruby’s initialize is just an ordinary instance method.

Q: Why do I have to call MyClass.new? Can’t I just call initialize directly?

A: The new method is needed to actually create the object; initialize just sets up the new object’s instance variables. Without new, there would be no object to initialize! For this reason, Ruby doesn’t allow you to call the initialize method directly from outside an instance. (So, we oversimplified a little bit; initialize does differ from an ordinary instance method in one respect.)

Q: Does MyClass.new always call initialize on the new object?

A: Yes, always.

Q: Then how have we been calling new on the classes we’ve made so far? They didn’t have initialize methods!

A: Actually, they did have one... All Ruby classes inherit an initialize method from the Object superclass.

Q: But if Employee inherited an initialize method, why did we have to write our own?

A: The initialize from Object takes no arguments, and basically does nothing. It won’t set up any instance variables for you; we had to override it with our own version in order to do that.

Q: Can I return a value from an initialize method?

A: You can, but Ruby will ignore it. The initialize method is intended solely for setting up new instances of your class, so if you need a return value, you should do that elsewhere in your code.

The new method is needed to actually create the object; initialize just sets up the new object’s instance variables.

“initialize” does an end-run around our validation

[image: image]

You remember our name= attribute writer method, which prevents the assignment of an empty string as an Employee name:

[image: image]

There’s also our salary= attribute writer method, which ensures that negative numbers aren’t assigned as a salary:

[image: image]

We have bad news for you... Since your initialize method assigns directly to the @name and @salary instance variables, bad data has a new way to sneak in!

[image: image]

“initialize” and validation

We could get our initialize method to validate its parameters by adding the same validation code to the initialize method...

[image: image]

But duplicating code like that is a problem. What if we changed the initialize validation code later, but forgot to update the name= method? Rubyists try to follow the DRY principle, where DRY stands for Don’t Repeat Yourself. It means that you should avoid duplicating code wherever possible, as it’s likely to result in bugs.

What if we called the name= and salary= methods from within the initialize method? That would let us set the @name and @salary instance variables. It would also let us run the validation code, without duplicating it!

Calls between methods on the same instance with “self”

We need to call the name= and salary= attribute writer methods from within the initialize method of the same object. That will let us run the writer methods’ validation code before we set the @name and @salary instance variables.

Unfortunately, code like this won’t work...

[image: image]

The code in the initialize method treats name= and salary= not as calls to the attribute writer methods, but as re-setting the name and salary local variables to the same values they already contain! (If that sounds like a useless and nonsensical thing to do, that’s because it is.)

What we need to do is make it clear to Ruby that we intend to call the name= and salary= instance methods. And to call an instance method, we usually use the dot operator.

But we’re inside the initialize instance method... what would we put to the left of the dot operator?

We can’t use the amy variable; it would be silly to refer to one instance of the class within the class itself. Besides, amy is out of scope within the initialize method.

[image: image]

We need something to put to the left of the dot operator, so that we can call our Employee class’s name= and salary= attribute accessor methods within our initialize method. The problem is, what do we put there? How do you refer to the current instance from inside an instance method?

[image: image]

Ruby has an answer: the self keyword. Within instance methods, self always refers to the current object.

We can demonstrate this with a simple class:

class MyClass
 def first_method
 puts "Current instance within first_method: #{self}"
 end
end

If we create an instance and call first_method on it, we’ll see that inside the instance method, self refers to the object the method is being called on.

[image: image]

The string representations of my_object and self include a unique identifier for the object. (We’ll learn more about this much later, in the chapter on references.) The identifiers are the same, so it’s the same object!

We can also use self with the dot operator to call a second instance method from inside the first one.

[image: image]

Now that we have self to use the dot operator on, we can make it clear to Ruby that we want to call the name= and salary= instance methods, not to set the name and salary variables...

[image: image]

Let’s try calling our new constructor and see if it worked!

[image: image]

Success! Thanks to self and the dot operator, it’s now clear to Ruby (and everyone else) that we’re making calls to the attribute writer methods, not assigning to variables.

And since we’re going through the accessor methods, that means the validation works, without any duplicated code!

[image: image]

[image: image]

When “self” is optional

Right now, our print_pay_stub method accesses the @name and @salary instance variables directly:

class Employee

 def print_pay_stub
 puts "Name: #{@name}"
 pay_for_period = (@salary / 365.0) * 14
 formatted_pay = format("$%.2f", pay_for_period)
 puts "Pay This Period: #{formatted_pay}"
 end

end

But we defined name and salary attribute reader methods in our Employee class; we could use those instead of accessing the instance variables directly. (That way, if you ever change the name method to display last name first, or change the salary method to calculate salary according to an algorithm, the print_pay_stub code won’t need to be updated.)

We can use the self keyword and the dot operator when calling name and salary, and it will work just fine:

[image: image]

But Ruby has a rule that can save us a little typing when calling from one instance method to another... If you don’t specify a receiver using the dot operator, the receiver defaults to the current object, self.

[image: image]

As we saw in the previous section, you have to include the self keyword when calling attribute writer methods, or Ruby will mistake the = for a variable assignment. But for any other kind of instance method call, you can leave self off, if you want.

Implementing hourly employees through inheritance

The Employee class you’ve created for Chargemore is working great! It prints accurate pay stubs that are formatted properly, and thanks to the initialize method you wrote, it’s really easy to create new Employee instances.

But, at this point, it only handles salaried employees. It’s time to look at adding support for employees that are paid by the hour.

The requirements for hourly employees are basically the same as for salaried ones; we need to be able to print pay stubs that include their name and the amount paid. The only difference is the way that we calculate their pay. For hourly employees, we multiply their hourly wage by the number of hours they work per week, then double that amount to get two weeks’ worth.

(salary / 365.0) * 14

Salaried employee pay calculation formula

hourly_wage * hours_per_week * 2

Hourly employee pay calculation formula

Since salaried and hourly employees are so similar, it makes sense to put the shared functionality in a superclass. Then, we’ll make two subclasses that hold the different pay calculation logic.

[image: image]

Let’s start by ensuring the common logic between SalariedEmployee and HourlyEmployee stays in the Employee superclass.

Since pay stubs for both salaried and hourly employees need to include their names, we’ll leave the name attribute in the superclass, for the subclasses to share. We’ll move the code that prints the name into the print_name method in the superclass.

[image: image]

We’ll move the logic to calculate pay for salaried employees to the SalariedEmployee class, but we’ll call the inherited print_name method to print the employee name.

[image: image]

With those changes in place, we can create a new SalariedEmployee instance, set its name and salary, and print a pay stub as before:

[image: image]

Now, we’ll build a new HourlyEmployee class. It’s just like SalariedEmployee, except that it holds an hourly wage and number of hours worked per week, and uses those to calculate pay for a two-week period. As with SalariedEmployee, storing and printing the employee name is left up to the Employee superclass.

class HourlyEmployee < Employee

 attr_reader :hourly_wage, :hours_per_week

 def hourly_wage=(hourly_wage)
 # Code to validate and set @hourly_wage
 end

 def hours_per_week=(hours_per_week)
 # Code to validate and set @hours_per_week
 end

 def print_pay_stub
 print_name
 pay_for_period = hourly_wage * hours_per_week * 2
 formatted_pay = format("$%.2f", pay_for_period)
 puts "Pay This Period: #{formatted_pay}"
 end

end

And now we can create an HourlyEmployee instance. Instead of setting a salary, we set an hourly wage and number of hours per week. Those values are then used to calculate the pay stub amount.

[image: image]

That wasn’t bad at all! Through use of inheritance, we’ve implemented pay stubs for hourly employees, kept pay stubs for salaried employees, and minimized code duplication between the two.

We’ve lost something in the shuffle, though—our initialize method. We used to be able to set up an Employee object’s data at the time we created it, and these new classes won’t let us do that. We’ll have to add initialize methods back in.

Restoring “initialize” methods

To make SalariedEmployee and HourlyEmployee objects that are safe to work with as soon as they’re created, we’ll need to add initialize methods to those two classes.

[image: image]

As we did with the Employee class before, our initialize methods will need to accept a parameter for each object attribute we want to set. The initialize method for SalariedEmployee will look just like it did for the old Employee class (since the attributes are the same), but initialize for HourlyEmployee will accept a different set of parameters (and set different attributes).

[image: image]

With our initialize methods added, we can once again pass arguments to the new method for each class. Our objects will be ready to use as soon as they’re created.

[image: image]

Inheritance and “initialize”

There’s one small weakness in our new initialize methods, though: the code to set the employee name is duplicated between our two subclasses.

[image: image]

In all other aspects of our subclasses, we delegate handling of the name attribute to the Employee superclass. We define the reader and writer methods there. We even print the name via the print_name method, which the subclasses call from their respective print_pay_stub methods.

[image: image]

...But we don’t do this for initialize. Could we?

Yes! We’ve said it before, and we’ll say it again, initialize is just an ordinary instance method. That means that it gets inherited like any other, that means it can be overridden like any other, and it means that overriding methods can call it via super like any other. We’ll demonstrate on the next page.

* Okay, we realize it’s just one line of duplicated code. But the technique we’re about to show you will work for much larger amounts of duplication.

“super” and “initialize”

To eliminate the repeated name setup code in our Employee subclasses, we can move the name handling to an initialize method in the superclass, then have the subclass initialize methods call it with super. SalariedEmployee will keep the logic to set up a salary, HourlyEmployee will keep the logic to set up an hourly wage and hours per week, and the two classes can delegate the shared logic for name to their shared superclass.

[image: image]

First, let’s try moving the name handling from the initialize method in SalariedEmployee to the Employee class.

[image: image]

Trying to use this revised initialize method reveals a problem, though...

[image: image]

Oops! We forgot a key detail about super that we learned earlier—if you don’t specify a set of arguments, it calls the superclass method with the same set of arguments that the subclass method received. (This is true when using super in other instance methods, and it’s true when using super within initialize.) The initialize method in SalariedEmployee received two parameters, and super passed them both on to the initialize method in Employee. (Even though it only accepts one argument.)

The fix, then, is to specify which parameter we want to pass on: the name parameter.

[image: image]

Let’s try to initialize a new SalariedEmployee again...

[image: image]

It worked! Let’s make the same changes to the HourlyEmployee class...

[image: image]

Previously, we used super within our print_pay_stub methods in SalariedEmployee and HourlyEmployee to delegate printing of the employee name to the Employee superclass. Now, we’ve just done the same thing with the initialize method, allowing the superclass to handle setting of the name attribute.

Why does it work? Because initialize is an instance method just like any other. Any feature of Ruby that you can use with an ordinary instance method, you can use with initialize.

there are no Dumb Questions

Q: If I override initialize in a subclass, does the superclass’s initialize method run when the overriding initialize method runs?

A: Not unless you explicitly call it with the super keyword, no. Remember, in Ruby, initialize is just an ordinary method, like any other. If you call the move method on a Dog instance, does move from the Animal class get run as well? No, not unless you use super. It’s no different with the initialize method.

Ruby is not the same as many other object-oriented languages, which automatically call the superclass’s constructor before calling the subclass constructor.

Q: If I use super to call the superclass’s initialize method explicitly, does it have to be the first thing I do in the subclass’s initialize method?

A: If your subclass depends on instance variables that are set up by the superclass’s initialize method, then you may want to invoke super before doing anything else. But Ruby doesn’t require it. As with other methods, you can invoke super anywhere you want within initialize.

Q: You say the superclass’s initialize method doesn’t get run unless you call super... If that’s true, then how does @last_name get set in this sample?

class Parent
 attr_accessor :last_name
 def initialize(last_name)
 @last_name = last_name
 end
end

class Child < Parent
end

child = Child.new("Smith")
puts child.last_name

A: Because initialize is inherited from the Parent class. With Ruby instance methods, you only need to call super to invoke the parent class’s method if you want it to run, and you’ve overridden it in the subclass. If you haven’t overridden it, then the inherited method is run directly. This works the same for initialize as it does for any other method.

Code Magnets

[image: image]

A Ruby program is all scrambled up on the fridge. Can you reconstruct the code snippets to make a working superclass and subclass, so the sample code below can execute and produce the given output?

[image: image]

Code Magnets Solution

[image: image]

A Ruby program is all scrambled up on the fridge. Can you reconstruct the code snippets to make a working superclass and subclass, so the sample code below can execute and produce the given output?

[image: image]

Same class, same attribute values

With your HourlyEmployee class complete, Chargemore is ready to begin a hiring blitz to staff its new stores. Here’s the set of employees they need created for their first store downtown:

[image: image]

If you look at the above code, you’ll probably notice there are large groups of objects where similar arguments are passed to the new method. There’s a good reason for this: the first group are cashiers for the new store, the second group are janitors, and the third group are security guards.

Chargemore starts all new cashiers off at the same base pay and number of hours per week. Janitors get a different rate and number of hours than cashiers, but it’s the same for all janitors. And the same is true for security guards. (Individuals may get raises later, depending on performance, but they all start out the same.)

The upshot is that there’s a lot of repetition of arguments in those calls to new, and a lot of chances to make a typo. And this is just the first wave of hiring, for the first Chargemore store, so things can only get worse. Seems like we can make this easier.

An inefficient factory method

When we need to make many instances of a class that have similar data, you can often save some repetition by making a factory method to create objects pre-populated with the needed attribute values. (Factory methods are a programming pattern that can be used in any object-oriented language, not just Ruby.)

But using only the tools we have now, any factory method we make will be inefficient at best.

To demonstrate what we mean, let’s try making a method to set up new HourlyEmployee objects with the default pay and hours per week for cashiers.

[image: image]

This works, yes. So what’s so inefficient about it? Let’s look at our initialize method (which of course has to run when we create a new HourlyEmployee) again...

[image: image]

We’re setting the hourly_wage and hours_per_week attributes within initialize, then immediately turning around and setting them again within turn_into_cashier!

This is inefficient for Ruby, but there’s potential for it to be inefficient for us, too. What if we didn’t have default parameters for hourly_wage and hours_per_week on initialize? Then, we’d have to specify the arguments we’re throwing away!

[image: image]

That’s the problem with writing factory methods as instance methods: we’re trying to make a new instance of the class, but there has to already be an instance to run the methods on! There must be a better way...

Fortunately, there is! Up next, we’re going to learn about class methods.

Class methods

You don’t have an instance of a class, but you need one. And you need a method to set it up for you. Where do you put that method?

You could stick it off by itself in some little Ruby source file, but it would be better to keep it together with the class that it makes instances of. You can’t make it an instance method on that class, though. If you had an instance of the class, you wouldn’t need to make one, now would you?

It’s for situations like this that Ruby supports class methods—methods that you can invoke directly on a class, without the need for any instance of that class. You don’t have to use a class method as a factory method, but they’re perfect for the job.

A class method definition is very similar to any other method definition in Ruby. The difference: you specify that you’re defining it on the class itself.

[image: image]

Within a class definition (but outside any instance method definitions), Ruby sets self to refer to the class that’s being defined. So, many Rubyists prefer to replace the class name with self:

[image: image]

In most ways, class method definitions behave just like you’re used to:

• You can put as many Ruby statements as you like in the method body.

• You can return a value with the return keyword. If you don’t, the value of the last expression in the method body is used as the return value.

• You can optionally define one or more parameters that the method accepts, and you can make the parameters optional by defining defaults.

We’ve defined a new class, MyClass, with a single class method:

class MyClass

 def self.my_class_method(p1, p2)
 puts "Hello from MyClass!"
 puts "My arguments: #{p1}, #{p2}"
 end
end

Once a class method is defined, you can call it directly on the class:

[image: image]

Perhaps that syntax for calling a class method looks familiar to you...

MyClass.new

That’s right, new is a class method! If you think about it, that makes sense; new can’t be an instance method, because you’re calling it to get an instance in the first place! Instead, you have to ask the class for a new instance of itself.

Now that we know how to create class methods, let’s see if we can write some factory methods that will create new HourlyEmployee objects with the pay rate and hours per week already populated for us. We need methods to set up predefined pay and hours for three positions: cashier, janitor, and security guard.

[image: image]

We won’t know the name of the employee in advance, so we accept that as a parameter to each of the class methods. We do know the values for hourly_wage and hours_per_week for each employee position, though. We pass those three arguments to the new method for the class, and get a new HourlyEmployee object back. That new object is then returned from the class method.

Now, we can call the factory methods directly on the class, providing only the employee name.

angela = HourlyEmployee.security_guard("Angela Matthews")
edwin = HourlyEmployee.janitor("Edwin Burgess")
ivan = HourlyEmployee.cashier("Ivan Stokes")

The HourlyEmployee instances returned are fully configured with the name we provided, and the appropriate hourly_wage and hours_per_week for the position. We can begin printing pay stubs for them right away!

[image: image]

In this chapter, you’ve learned that there are some pitfalls when creating new objects. But you’ve also learned techniques to ensure your objects are safe to use as soon as you make them. With well-designed initialize methods and factory methods, creating and configuring new objects is a snap!

Our complete source code

[image: image]

[image: image]

Your Ruby Toolbox

[image: image]

That’s it for Chapter 4! You’ve added the initialize method and class methods to your tool box.

[image: image]

BULLET POINTS

[image: image]

	Number literals with a decimal point will be treated as Float instances. Without a decimal point, they’ll be treated as Fixnum instances.

	If either operand in a mathematical operation is a Float, the result will be a Float.

	The format method uses format sequences to insert formatted values into a string.

	The format sequence type indicates the type of value that will be inserted. There are types for floating-point numbers, integers, strings, and more.

	The format sequence width determines the number characters a formatted value will take up within the string.

	The value nil represents nothing - the absence of a value.

	Operators such as +, -, *, and / are implemented as methods in Ruby. When an operator is encountered in your code, it’s converted into a method call.

	Within instance methods, the self keyword refers to the instance that the method is being called on.

	If you don’t specify a receiver when calling an instance method, the receiver defaults to self.

	Within a class body, you can use either def ClassName.method_name or def self.method_name to define a class method.

5 arrays and blocks

It’s Already Written

[image: image]

A whole lot of programming deals with lists of things. Lists of addresses. Lists of phone numbers. Lists of products. Matz, the creator of Ruby, knew this. So he worked really hard to make sure that working with lists in Ruby is really easy. First, he ensured that arrays, which keep track of lists in Ruby, have lots of powerful methods to do almost anything you might need with a list.

Second, he realized that writing code to loop over a list to do something with each item, although tedious, is something developers were doing a lot. So he added blocks to the language, and removed the need for all that looping code. What is a block, exactly? Read on to find out...

Arrays

Your new client is working on an invoicing program for an online store. They need three different methods, each of which works with the prices on an order. The first method needs to add all the prices together to calculate a total. The second will process a refund to the customer’s account. And the third will take 1/3 off each price, and display the discount.

[image: image]

Hmm, so you have a list of prices (a collection of them, if you will), and you don’t know in advance how many there will be... That means you can’t use variables to store them - there’s no way to know how many variables to create. You’re going to need to store the prices in an array.

An array is used to hold a collection of objects. The collection can be any size you need.

[image: image]

Let’s create an array to hold the prices from our first order now.

prices = [2.99, 25.00, 9.99]

You don’t have to know an array’s entire contents at the time you create it, though. You can also manipulate arrays after creating them...

Accessing arrays

So now we’ve got a place to store all our item prices. To retrieve the prices we stored in the array, we first have to specify which one we want.

Items in an array are numbered from left to right, starting with 0. This is called the array index.

To retrieve an item, you specify the integer index of the item you want within square brackets:

[image: image]

So we can print out elements from our array like this.

[image: image]

You can assign to a given array index with =, much like assigning to a variable.

[image: image]

If you assign to an index that’s beyond the end of an array, the array will grow as necessary.

[image: image]

If you assign to an element that’s way beyond the end of an array, it will still grow to accommodate your assignment. There just won’t be anything at the intervening indexes.

[image: image]

Here, Ruby has placed nil (which, you may recall, represents the absence of a value) at the array indexes you haven’t assigned to yet.

You’ll also get nil back if you access an element that’s beyond the end of an array.

[image: image]

Arrays are objects, too!

Like everything else in Ruby, arrays are objects:

[image: image]

That means they have lots of useful methods attached directly to the array object. Here are some highlights...

Instead of using array indexes like prices[0], there are easy-to-read methods you can use:

[image: image]

There are methods to find out an array’s size:

[image: image]

There are methods to let you search for values within the array:

[image: image]

There are methods that will let you insert or remove elements, causing the array to grow or shrink:

[image: image]

The << operator (which, like most operators, is actually a method behind the scenes) also adds elements:

[image: image]

Arrays have methods that can convert them to strings:

[image: image]

And strings have methods that can convert them to arrays:

[image: image]

Exercise

[image: image]

Open a new terminal or command prompt, type “irb” and hit the Enter/Return key. For each of the Ruby expressions below, write your guess for what the result will be on the line below it. Then try typing the expression into irb, and hit Enter. See if your guess matches what irb returns!

	mix = ["one", 2, "three", Time.new]

	letters = ["b", "c", "b", "a"]

	

	

	mix.length

	letters.shift

	

	

	mix[0]

	letters

	

	

	mix[1]

	letters.join("/")

	

	

	mix[0].capitalize

	letters.pop

	

	

	mix[1].capitalize

	letters

	

	

Exercise Solution

[image: image]

Open a new terminal or command prompt, type “irb” and hit the Enter/Return key. For each of the Ruby expressions below, write your guess for what the result will be on the line below it. Then try typing the expression into irb, and hit Enter. See if your guess matches what irb returns!

[image: image]

Looping over the items in an array

Right now, we can only access the particular array indexes that we specify in our code. Just to print all the prices in an array, we have to write this:

[image: image]

That won’t work when the arrays get very large, or when we don’t know their size beforehand.

But we can use a while loop to process all of an array’s elements, one at a time.

[image: image]

Watch It!

[image: image]

Calling the length instance method on an array gets you the number of elements it holds, not the index of the last element.

So this code won’t get you the last element:

[image: image]

But this code will:

[image: image]

	Likewise, a loop like this will go beyond the end of the array:

	Because indexes start with zero, you need to ensure you’re working with index numbers less than prices.length:

	[image: image]

	[image: image]

The repeating loop

Now that we understand how to store the prices from an order in an array, and how to use a while loop to process each of those prices, it’s time to work on the three methods your client needs:

	[image: image]

	Given an array of prices, add them all together and return the total.

	[image: image]

	Given an array of prices, subtract each price from the customer’s account balance.

	[image: image]

	Given an array of prices, reduce each item’s price by 1/3, and print the savings.

The first requested feature is the ability to take these prices and total them. We’ll create a method that keeps a running total of the amounts in an array. It will loop over each element in the array, and add it to a total (which we’ll keep in a variable). After all the elements are processed, the method will return the total.

[image: image]

We need a second method that can process a refund for orders. It needs to loop through each item in an array, and subtract the amount from the customer’s account balance.

[image: image]

Lastly, we need a third method that will reduce each item’s price by 1/3 and print the savings.

[image: image]

That wasn’t so bad! Looping over the items in the array let us implement all 3 of the methods your client needs!

	[image: image]

	Given an array of prices, add them all together and return the total.

	[image: image]

	Given an array of prices, subtract each price from the customer’s account balance.

	[image: image]

	Given an array of prices, reduce each item’s price by 1/3, and print the savings.

If we look at the three methods together, though, you’ll notice there’s a lot of duplicated code. And it all seems to be related to looping through the array of prices. We’ve highlighted the duplicated lines below.

[image: image]

This is definitely a violation of the DRY (Don’t Repeat Yourself) principle. We need to go back to the drawing board and refactor these methods.

	Refactored

	

	[image: image]

	Given an array of prices, add them all together and return the total.

	[image: image]

	Given an array of prices, subtract each price from the customer’s account balance.

	[image: image]

	Given an array of prices, reduce each item’s price by 1/3, and print the savings.

Eliminating repetition... the WRONG way...

Our total, refund, and show_discounts methods have a fair amount of repeated code related to looping over array elements. It would be nice if we could extract the repeated code out into another method, and have total, refund, and show_discounts call it.

But a method that combines all the logic in total, refund, and show_variables wouldn’t look very pretty... Sure, the code for the loop itself is repeated, but the code in the middle of the loop is all different. Also, the total and refund methods need a variable to track the total amount, but show_discounts doesn’t.

Let’s show you exactly how awful such a method would look. (We want you to fully appreciate it when we show you a better solution.) We’ll try writing a method with an extra parameter, operation. We’ll use the value in operation to switch which variables we use, and what code gets run in the middle of the loop.

[image: image]

We warned you it would be bad. We’ve got if statements all over the place, each checking the value of the operation parameter. We’ve got an amount variable that we use in some cases, but not others. And we return a value in some cases, but not others. The code is ugly, and it’s way too easy to make a mistake when calling it.

But if you don’t write your code this way, how will you set up the variables you need prior to running the loop? And how will you execute the code you need in the middle of the loop?

Chunks of code?

The problem is that the repeated code at the top and bottom of each method surrounds the code that needs to change.

[image: image]

It would sure be nice if we could take those other chunks of code that vary...

[image: image]

...And swap them into the middle of the array loop code. That way we could keep just one copy of the code that’s always the same.

[image: image]

Blocks

[image: image]

It turns out we can do just that, using Ruby’s blocks.

A block is a chunk of code that you associate with a method call. While the method runs, it can invoke (execute) the block one or more times. Methods and blocks work in tandem to process your data.

Blocks are mind-bending stuff. But stick with it!

We won’t mince words. Blocks are going to be the hardest part of this book. Even if you’ve programmed in other languages, you’ve probably never seen anything like blocks. But stick with it, because the payoff is big.

Imagine if, for all the methods you have to write for the rest of your career, someone else wrote half of the code for you. For free. They’d write all the tedious stuff at the beginning and end, and just leave a little blank space in the middle for you to insert your code, the clever code, the code that runs your business.

If we told you that blocks can give you that, you’d be willing to do whatever it takes to learn them, right?

Well, here’s what you’ll have to do: be patient, and persistent. We’re here to help. We’ll look at each concept repeatedly, from different angles. We’ll provide exercises for practice. Make sure to do them, because they’ll help you understand and remember how blocks work.

A few hours of hard work now are going to pay dividends for the rest of your Ruby career, we promise. Let’s get to it!

Defining a method that takes blocks

Blocks and methods work in tandem. In fact, you can’t have a block without also having a method to accept it. So to start, let’s define a method that works with blocks.

[On this page, we’re going to show you how to use & to accept a block, and call to call it. This isn’t the quickest way to work with blocks, but it DOES make it more obvious what’s going on. We’ll show you yield, which is more commonly used, in a few pages!]

Since we’re just starting off, we’ll keep it simple. The method will print a message, invoke the block it received, and print another message.

[image: image]

If you place an ampersand (&) before the last parameter in a method definition, Ruby will expect a block to be attached to any call to that method. It will take the block, convert it to an object, and store it in that parameter.

[image: image]

Remember, a block is just a chunk of code that you pass into a method. To execute that code, stored blocks have a call instance method that you can call on them. The call method invokes the block’s code.

[image: image]

OK, we know, you still haven’t seen an actual block, and you’re going crazy wondering what they look like. Now that the setup’s out of the way, we can show you...

Your first block

Are you ready? Here it comes: your first glimpse of a Ruby block.

[image: image]

There it is! Like we said, a block is just a chunk of code that you pass to a method. We invoke my_method, which we just defined, and then place a block immediately following it. The method will receive the block in its my_block parameter.

• The start of the block is marked with the keyword do, and the end is marked by the keyword end.

• The block body consists of one or more lines of Ruby code between do and end. You can place any code you like here.

• When the block is called from the method, the code in the block body will be executed.

• After the block runs, control returns to the method that invoked it.

So, we can call my_method and pass it the above block:

[image: image]

...And here’s the output we’d see:

[image: image]

there are no Dumb Questions

Q: Can I use a block by itself?

A: No, that will give you a syntax error. Blocks are meant to be used together with methods.

[image: image]

This shouldn’t ever get in your way; if you’re writing a block that isn’t associated with a method call, then whatever you’re trying to express can probably be done with standalone Ruby statements.

Flow of control between a method and block

We declared a method named my_method, called it with a block, and got this output:

[image: image]

Let’s break down what happened in the method and block, step by step.

➊ The first puts statement in my_method’s body runs.

[image: image]

➋ The my_block.call expression runs, and control is passed to the block. The puts expression in the block’s body runs.

[image: image]

➌ When the statements within the block body have all run, control returns to the method. The second call to puts within my_method’s body runs, and then the method returns.

[image: image]

Calling the same method with different blocks

You can pass many different blocks to a single method.

We can pass different blocks to the method we just defined, and do different things:

[image: image]

The code in the method is always the same, but you can change the code you provide in the block.

[image: image]

Calling a block multiple times

A method can invoke a block as many times as it wants.

This method is just like our previous one, except that it has two my_block.call expressions:

[image: image]

The method name is appropriate: as you can see from the output, the method does indeed call our block twice!

[image: image]

➊ Statements in the method body run until run until the first my_block.call expression is encountered. The block is then run. When it completes, control returns to the method.

[image: image]

➋ The method body resumes running. When the second my_block.call expression is encountered, the block is run again. When it completes, control returns to the method so that any remaining statements there can run..

[image: image]

Block parameters

We learned back in Chapter 2 that when defining a Ruby method, you can specify that it will accept one or more parameters:

def print_parameters(p1, p2)
 puts p1, p2
end

You’re probably also aware that you can pass arguments when calling the method that will determine the value of those parameters.

[image: image]

In a similar vein, a method can pass one or more arguments to a block. Block parameters are similar to method parameters; they’re values that are passed in when the block is run, and that can be accessed within the block body.

Arguments to call get forwarded on to the block:

A block can accept one or more parameters from the method by defining them between vertical bar (|) characters at the start of the block:

[image: image]

So, when we call our method and provide a block, the arguments to call are passed into the block as parameters, which then get printed. When the block completes, control returns to the method, as normal.

[image: image]

there are no Dumb Questions

Q: Can I define a block once, and use it across many methods?

A: You can do something like this using Ruby procs (which are beyond the scope of this book). But it’s not something you’ll want to do in practice. A block is intimately tied to a particular method call, so much that a particular block will usually only work with a single method.

Q: Can a method take more than one block at the same time?

A: No. A single block is by far the most common use case, to the point that it’s not worth the syntactic mess it would create for Ruby to support multiple blocks. If you ever want to do this, you could also use Ruby procs (but again, that’s beyond the scope of this book).

Using the “yield” keyword

So far, we’ve been treating blocks like an argument to our methods. We’ve been declaring an extra method parameter that takes a block as an object, then using the call method on that object.

def twice(&my_block)
 my_block.call
 my_block.call
end

We mentioned that this wasn’t the easiest way to accept blocks, though. Now, let’s learn the less-obvious, but more-concise way: the yield keyword.

The yield keyword will find and invoke the block a method was called with—there’s no need to declare a parameter to accept the block.

This method is functionally equivalent to the one above:

def twice
 yield
 yield
end

Just like with call, we can also give one or more arguments to yield, which will be passed to the block as parameters. Again, these methods are functionally equivalent:

def give(&my_block)
 my_block.call("2 turtle doves", "1 partridge")
end

def give
 yield "2 turtle doves", "1 partridge"
end

Conventional Wisdom

Declaring a &block parameter is useful in a few rare instances (which are beyond the scope of this book). But now that you understand what the yield keyword does, you should just use that in most cases. It’s cleaner, and easier to read.

Block formats

So far, we’ve been using the do ... end format for blocks. Ruby has a second block format, though: “curly-brace” style. You’ll see both formats being used “in the wild”, so you should learn to recognize both.

[image: image]

Aside from replacing do and end with curly brackets, the syntax and functionality are identical.

And just as do ... end blocks can accept parameters, so can curly-brace blocks:

[image: image]

By the way, you’ve probably noticed that all our do ... end blocks span multiple lines, but our curly-brace blocks all appear on a single line... This follows another convention that much of the Ruby community has adopted. It’s valid syntax to do it the other way:

[image: image]

But not only is that out of line with the convention, it’s really ugly.

Conventional Wisdom

Ruby blocks that fit on a single line should be surrounded with curly brackets. Blocks that span multiple lines should be surrounded with do ... end.

This is not the only convention for block formatting, but it is a common one.

Fireside Chats

[image: image]

Tonight’s talk: A method and a block talk about how they became associated with each other.

	Method:

	Block:

	Hello, Block! I called you here tonight so we could educate people on how blocks and methods work together. I’ve had people ask me exactly what you contribute to the relationship, and I think we can clear those questions up for everyone.

	

	

	Sure, Method! I’m here to help whenever you call.

	So most parts of a method’s job are pretty clearly defined. My task, for example, is to loop through each item in an array.

	

	

	Right. Not a very glamorous job, but an important one.

	Sure! It’s a task lots of developers need done; there’s a lot of demand for my services. But then I encounter a problem: what do I do with each of those array elements? Every developer needs something different! And that’s where blocks come in...

	

	

	Precisely. Every developer can write their own block that describes exactly what they need done with each element in the array.

	I know another method that does nothing but open and close a file. He’s very good at that part of the task. But he has no clue what to do with the contents of the file...

	

	

	...And so he calls on a block, right? And the block prints the file contents, or updates them, or whatever else the developer needs done. It’s a great working relationship!

	I handle the general work that’s needed on a wide variety of tasks...

	

	

	And I handle the logic that’s specific to an individual task.

Exercise

[image: image]

Here are three Ruby method definitions, each of which takes a block:

def call_block(&block) def call_twice def pass_parameters_to_block
 puts 1 puts 1 puts 1
 block.call yield yield 9, 3
 puts 3 yield puts 3
end puts 3 end
 end

And here are several calls to the above methods. Match each method call to the output it produces.

[image: image]

Exercise Solution

[image: image]

Here are three Ruby method definitions, each of which takes a block:

def call_block(&block) def call_twice def pass_parameters_to_block
 puts 1 puts 1 puts 1
 block.call yield yield 9, 3
 puts 3 yield puts 3
end puts 3 end
 end

And here are several calls to the above methods. Match each method call to the output it produces.

[image: image]

The “each” method

We had a lot to learn in order to get here: how to write a block, how a method calls a block, how a method can pass parameters to a block. And now, it’s finally time to take a good, long look at the method that will let us get rid of that repeated loop code in our total, refund, and show_discounts methods. It’s an instance method that appears on every Array object, and it’s called each.

You’ve seen that a method can yield to a block more than once, with different values each time:

[image: image]

The each method uses this feature of Ruby to loop through each of the items in an array, yielding them to a block, one at a time.

[image: image]

If we were to write our own method that works like each, it would look very similar to the code we’ve been writing all along:

[image: image]

We loop through each element in the array, just like in our total, refund, and show_discounts methods. The key difference is that instead of putting code to process the current array element in the middle of the loop, we use the yield keyword to pass the element to a block.

The “each” method, step-by-step

We’re using the each method and a block to process each of the items in an array:

[image: image]

Let’s go step-by-step through each of the calls to the block, and see what it’s doing.

➊ For the first pass through the while loop, index is set to 0, so the first element of the array gets yielded to the block as a parameter. In the block body, the parameter gets printed. Then control returns to the method, index gets incremented, and the while loop continues.

[image: image]

➋ Now, on the second pass through the while loop, index is set to 1, so the second element in the array will be yielded to the block as a parameter. As before, the block body prints the parameter, control then returns to the method, and the loop continues.

[image: image]

➌ After the third array element gets yielded to the block for printing and control returns to the method, the while loop ends, because we’ve reached the end of the array. No more loop iterations means no more calls to the block; we’re done!

[image: image]

That’s it! We’ve found a method that can handle the repeated looping code, and yet allows us to run our own code in the middle of the loop (using a block). Let’s put it to use!

DRYing up our code with “each” and blocks

Our invoicing system requires us to implement these three methods. All three of them have nearly identical code for looping through the contents of an array.

It’s been difficult to get rid of that duplication, though, because all three methods have different code in the middle of that loop.

[image: image]

But now, we’ve finally mastered the each method, which loops over the elements in an array, and passes them to a block for processing.

[image: image]

Let’s see if we can use each to refactor our three methods and eliminate the duplication.

	Refactored

	

	[image: image]

	Given an array of prices, add them all together and return the total.

	[image: image]

	Given an array of prices, subtract each price from the customer’s account balance.

	[image: image]

	Given an array of prices, reduce each item’s price by 1/3, and print the savings.

First up for refactoring is the total method. Just like the others, it contains code for looping over prices stored in an array. In the middle of that looping code, total adds the current price to a total amount.

The each method looks like it will be perfect for getting rid of the repeated looping code! We can just take the code in the middle that adds to the total, and place in it a block that’s passed to each.

[image: image]

Let’s re-define our total method to utilize each, then try it out.

[image: image]

Perfect! There’s our total amount. The each method worked!

For each element in the array, each passes it as a parameter to the block. The code in the block adds the current array element to the amount variable, and then control returns back to each.

[image: image]

➊

[image: image]

➋

[image: image]

➌

[image: image]

We’ve successfully refactored the total method!

But before we move on to the other two methods, let’s take a closer look at how that amount variable interacts with the block.

	Refactored

	

	[image: image]

	Given an array of prices, add them all together and return the total.

	[image: image]

	Given an array of prices, subtract each price from the customer’s account balance.

	[image: image]

	Given an array of prices, reduce each item’s price by 1/3, and print the savings.

Blocks and variable scope

We should point something out about our new total method. Did you notice that we use the amount variable both inside and outside the block?

def total(prices)
 amount = 0
 prices.each do |price|
 amount += price
 end
 amount
end

As you may remember from chapter 2, local variables defined within a method are out of scope as soon as the method ends. You can’t access variables that are local to the method from outside the method.

[image: image]

The same is true of blocks, if you define the variable for the first time inside the block.

[image: image]

But, if you define a variable before a block, you can access it inside the block body. You can also continue to access it after the block ends!

[image: image]

Since Ruby blocks can access variables declared outside the block body, our total method is able to use each with a block to update the amount variable.

def total(prices)
 amount = 0
 prices.each do |price|
 amount += price
 end
 amount
end

We can call total like this:

total([3.99, 25.00, 8.99])

The amount variable is set to 0, and then each is called on the array. Each of the values in the array are passed to the block. Each time the block is called, amount is updated:

➊

[image: image]

➋

[image: image]

➌

[image: image]

When the each method completes, amount is still set to that final value, 37.98. It’s that value that gets returned from the method.

there are no Dumb Questions

Q: Why can blocks access variables that were declared outside their bodies, when methods can’t? Isn’t that unsafe?

A: A method can be accessed from other places in your program, far from where it was declared (maybe even in a different source file). A block, by contrast, is normally accessible only during the method call it’s associated with. A block, and the variables it has access to, are all kept in the same place in your code. That means you can easily see all the variables a block is interacting with, meaning that accessing them is less prone to nasty surprises.

Using “each” with the “refund” method

We’ve revised the total method to get rid of the repeated loop code. We need to do the same with the refund and show_discounts methods, and then we’ll be done!

The process of updating the refund method is very similar to the process we used for total. We simply take the specialized code from the middle of the generic loop code, and move it to a block that’s passed to each.

[image: image]

Much cleaner, and calls to the method still work just the same as before!.

[image: image]

Within the call to each and the block, the flow of control looks very similar to what we saw in the total method:

➊ [image: image]

➋ [image: image]

➌ [image: image]

Using “each” with our last method

One more method, and we’re done! Again, with show_discounts, it’s a matter of taking the code out of the middle of the loop, and moving it into a block that’s passed to each.

[image: image]

Again, as far as users of your method are concerned, no one will notice you’ve changed a thing!

[image: image]

Here’s what the calls to the block look like:

➊ [image: image]

➋ [image: image]

➌ [image: image]

Our complete invoicing methods

[image: image]

Do this!

Save this code in a file named prices.rb. Then try running it from the command line!

[image: image]

We’ve gotten rid of the repetitive loop code!

We’ve done it! We’ve refactored the repetitive loop code out of our methods! We were able to move the portion of the code that differed into blocks, and rely on a method, each, to replace the code that remained the same!

	Refactored

	

	[image: image]

	Given an array of prices, add them all together and return the total.

	[image: image]

	Given an array of prices, subtract each price from the customer’s account balance.

	[image: image]

	Given an array of prices, reduce each item’s price by 1/3, and print the savings.

Pool Puzzle

[image: image]

Your job is to take code snippets from the pool and place them into the blank lines in the code. Don’t use the same snippet more than once, and you won’t need to use all the snippets. Your goal is to make code that will run and produce the output shown.

[image: image]

Note: each thing from the pool can only be used once!

[image: image]

Pool Puzzle Solution

[image: image]

Utilities and Appliances, Blocks and Methods

Imagine two very different electric appliances: a mixer, and a drill. They have pretty different jobs: one is used for baking, the other for carpentry. And yet, they have a very similar need: electricity.

Now, imagine a world where, any time you wanted to use an electric mixer or drill, you had to wire your appliance into the power grid yourself. Sounds tedious (and fairly dangerous), right?

That’s why, when your house was built, an electrician came and installed power outlets in every room. They provide the same utility (electricity) through the same interface (an electric plug) to very different appliances.

The electrician doesn’t know the details of how your mixer or drill works, and he doesn’t care. He just uses his skills and training to get the current safely from the electric grid to the outlet.

The designers of your appliance, likewise, have no idea how to wire a home for electricity. They just know how to take power from an outlet and use it to make their devices operate.

You can think of the author of a method that takes a block as being kind of like an electrician. They don’t know how the block works, and they don’t care. They just use their knowledge of a problem (say, looping through an array’s elements) to get the neccessary data to the block.

def wire
 yield "current"
end

You can think of calling a method with a block as being kind of like plugging an appliance into an outlet. Like the outlet supplying power, the block parameters offer a safe, consistent interface for the method to supply data to your block. Your block doesn’t have to worry about how the data got there, it just has to process the parameters it’s been handed.

[image: image]

Not every appliance uses electricity, of course; some require other utilities. There are stoves and furnaces that require gas. There are automatic sprinklers and spray nozzles that use water.

Just as there are many kinds of utilities to supply many kinds of appliances, there are many methods in Ruby that supply data to blocks. The each method was just the beginning. We’ll be looking at some of the others over the next chapter.

Your Ruby Toolbox

[image: image]

That’s it for Chapter 5! You’ve added arrays and blocks to your tool box.

[image: image]

BULLET POINTS

[image: image]

	The index is a number that can be used to retrieve a particular item from an array. An array’s index starts with 0.

	You can also use the index to assign a new value to a particular array location.

	The length method can be used to get the number of items in an array.

	Ruby blocks are only allowed following a method call.

	There are two ways to write a block: with do ... end or with curly brackets ({})

	You can specify that the last method parameter should be a block by preceding the parameter name with an ampersand (&).

	It’s more common to use the yield keyword, though. You don’t have to specify a method parameter to take the block - yield will find and invoke it for you.

	A block can receive one or more parameters from the method. Block parameters are similar to method parameters.

	A block can get or update the value of local variables that appear in the same scope as the block.

	Arrays have an each method which invokes a block once for each item in an array.

6 block return values

How Should I Handle This?

[image: image]

You’ve only seen a fraction of the power of blocks. Up until now, the methods have just been handing data off to a block., and expecting the block to do all the work with it. But a block can also return data back to the method. This feature lets the method get directions from the block, allowing it to do more of the work.
In this chapter, we’ll show you some methods that will let you take a big, complicated collection, and use block return values to cut it down to size.

A big collection of words to search through

Word got out on the great work you did on the invoicing program, and your next client has already come in - a movie studio. They release a lot of films each year, and the task of making commercials for all of them is enormous. They want you to write a program that will go through the text of movie reviews, find adjectives that describe a given movie, and generate a collage of those adjectives:

	The critics agree, Hindenburg is:

	“Romantic”

	“Thrilling”

	“Explosive”

[image: image]

They’ve given you a sample text file to work off of, and they want you to see if you can make a collage for their new release, Truncated.

Looking at the file, though, you can see your work is cut out for you:

[image: image]

It’s true, this job is a bit complex. But don’t worry, arrays and blocks can help!

Let’s break our tasks down into a checklist:

	[image: image]

	Get the file contents.

	[image: image]

	Find reviews for the current movie.

	[image: image]

	Discard reviewer bylines.

	[image: image]

	Find an adjective within each review.

	[image: image]

	Capitalize each adjective and put it in quotation marks.

Five tasks to accomplish. Sounds simple enough. Let’s get to it!

Opening the file

Our first task is to open the text file with the review contents. This is easier than it sounds - Ruby has a built-in class named File that represents files on disk. To open a file named “reviews.txt” in the current directory (folder) so you can read data from it, call the open method on the File class:

review_file = File.open("reviews.txt")

The open method returns a new File object. (It actually calls File.new for you, and returns the result of that.)

[image: image]

There are many different methods that you can call on this File instance, but the most useful one for our current purpose is the readlines method, which returns all the lines in the file as an array.

[image: image]

Safely closing the file

We’ve opened the file, and read its contents. Your next step should be to close the file. Closing the file tells the operating system, “I’m done with this file; others can use it now.”

review_file.close

Why are we so emphatic about doing this? Because bad things happen when you forget to close files.

You can get errors if your operating system detects that you have too many files open at once. If you try to read all the contents of the same file multiple times without closing it, it will appear to be empty on subsequent attempts (because you’ve already read to the end of the file, and there’s nothing after that). If you’re writing to a file, no other program can see the changes you made until you close the file. It is very important not to forget.

Are we making you nervous? Don’t be. As usual, Ruby has a developer-friendly solution to this problem.

Safely closing the file, with a block

Ruby offers a way to open a file, do whatever you need with it, and automatically close it again when you’re done with it. The secret is to call File.open... with a block!

We just change our code from this:

[image: image]

...To this!

[image: image]

Why does File.open use a block for this purpose? Well, the first and last steps in the process are pretty well-defined:

[image: image]

...But the creators of File.open have no idea what you intend to do with that file while it’s open. Will you read it one line at a time? All at once? That’s why they let you decide what to do, by passing in a block.

[image: image]

Don’t forget about variable scope!

When we’re not using a block, we can access the array of lines from the File object just fine.

[image: image]

Switching to the block form of File.open has introduced a problem, however. We store the array returned by readlines in a variable within the block, but we can’t access it after the block.

[image: image]

The problem is that we’re creating the lines variable within the block. As we learned back in Chapter 5, any variable created within a block has a scope that’s limited to within the block. Those variables can’t be “seen” from outside the block.

But, as we also learned in Chapter 5, local variables declared before a block can be seen within the block body (and are still visible after the block, of course). So the simplest solution is to create the lines variable before declaring the block.

[image: image]

OK, we’ve safely closed the file, and we’ve got our review contents. What do we do with them? We’ll be tackling that problem next.

there are no Dumb Questions

Q: How can File.open work both with a block and without one?

A: Within a Ruby method, you can call the block_given? method to check whether the method caller used a block, and change the method behavior accordingly.

If we were coding our own (simplified) version of File.open, it might look like this:

def File.open(name, mode)
 file = File.new(name, mode)
 if block_given?
 yield(file)
 else
 return file
 end
end

If a block is given, the file is passed to it for use within the block. If it’s not, the file is returned.

Exercise

[image: image]

Three Ruby scripts are below. Fill in the blank in each script so that it will run successfully and produce the specified output.

➊ [image: image]

➋ [image: image]

➌ [image: image]

Exercise Solution

[image: image]

Three Ruby scripts are below. Fill in the blank in each script so that it will run successfully and produce the specified output.

➊ [image: image]

➋ [image: image]

➌ [image: image]

Finding array elements we want, with a block

We’ve opened the file, and used the readlines method to get an array with every line from the file in its own element. The first feature from our checklist is complete!

Let’s see what remains:

	[image: image]

	Get the file contents.

	[image: image]

	Find reviews for the current movie.

	[image: image]

	Discard reviewer bylines.

	[image: image]

	Find an adjective within each review.

	[image: image]

	Capitalize each adjective and put it in quotation marks.

It seems we can’t expect the text file to contain only reviews for the movie we want. Reviews for other movies are mixed in there, too:

[image: image]

Fortunately, it also looks like every review mentions the name of the movie at least once. We can use that fact to find only the reviews for our target movie.

[image: image]

The verbose way to find array elements, using “each”

You can call the include? method on any instance of the String class to determine if it includes a substring (which you pass as an argument). Remember, by convention, methods that end in ? return a boolean value. The include? method will return true if the string contains the specified substring, and false if it doesn’t.

[image: image]

It doesn’t matter if the substring you’re looking for is at the beginning of the string, at the end, or somewhere in the middle; include? will find it.

So, here’s one way you could select only the relevant reviews, using the include? method and the other techniques we’ve learned so far...

[image: image]

Introducing a faster method...

But actually, Ruby offers a much quicker way to do this. The find_all method uses a block to run a test against each element in an array. It returns a new array that contains only the elements for which the test returned a true value.

We can use the find_all method to achieve the same result, by calling include? in its block:

lines = []

File.open("reviews.txt") do |review_file|
 lines = review_file.readlines
end

relevant_lines = lines.find_all { |line| line.include?("Truncated") }

This shortened code works just as well: only lines that include the substring "Truncated" are copied to the new array!

[image: image]

Replacing six lines of code with a single line... Not bad, huh?

Uh, oh. Did we just blow your mind again?

Relax

[image: image]

We’ll explain everything that one line of code is doing behind the scenes.

Over the next few pages, we’ll walk you through everything you need in order to fully understand how find_all works. There are many other Ruby methods that work in a similar way, so trust us, the effort will be worth it!

Blocks have a return value

We just saw the find_all method. You pass it a block with selection logic, and find_all finds only the elements in an array that match the block’s criteria.

lines.find_all { |line| line.include?("Truncated") }

By “elements that match the block’s criteria”, we mean elements for which the block returns a true value. The find_all method uses the return value of the block to determine which elements to keep, and which to discard.

As we’ve progressed, you’ve probably noticed a few similarities between blocks and methods...

	Methods:

	Blocks:

	• Accept parameters

	• Accept parameters

	• Have a body that holds Ruby expressions

	• Have a body that holds Ruby expressions

	• Return a value

	• Return a value

Wait, what? Do they?

That’s right, just like methods, Ruby blocks return the value of the last expression they contain! It’s returned to the method as the result of the yield keyword.

We can create a simple method that shows this in action, and then call it with different blocks to see their return values:

[image: image]

The method isn’t limited to printing the block return value, of course. It can also do math with it:

[image: image]

...Or use it in a string:

[image: image]

...Or use it in a conditional:

[image: image]

Up next, we’ll take a detailed look at how find_all uses the block’s return value to give you just the array elements you want.

Watch It!

[image: image]

We say that blocks have a “return value”, but that doesn’t mean you should use the return keyword.

Using the return keyword within a block isn’t a syntax error, but we don’t recommend it. Within a block body, the return keyword returns from the method where the block is being defined, not the block itself. It’s very unlikely that this is what you want to do.

def print_block_value
 puts yield
end

def other_method
 print_block_value { return 1 + 1 }
end

other_method

The above code won’t print anything, because other_method exits as the block is being defined.

If you change the block to simply use its last expression as a return value, then everything works as expected:

[image: image]

there are no Dumb Questions

Q: Do all blocks return a value?

A: Yes! They return the result of the last expression in the block body.

Q: If that’s true, then why didn’t we learn about this sooner?

A: We haven’t needed to. A block may return a value, but the associated method doesn’t have to use it. The each method, for example, ignores the values returned from its block.

Q: Can I pass parameters to a block and use its return value?

A: Yes! You can pass parameters, use the return value, do both, or do neither; it’s up to you.

def one_two
 result = yield(1, 2)
 puts result
end

one_two do |param1, param2|
 param1 + param2
end

Code Magnets

[image: image]

A Ruby program is all scrambled up on the fridge. Can you reconstruct the code snippets so that they produce the given output?

[image: image]

Code Magnets Solution

[image: image]

A Ruby program is all scrambled up on the fridge. Can you reconstruct the code snippets so that they produce the given output?

[image: image]

How the method uses a block return value

We’re close to deciphering how this snippet of code works:

lines.find_all { |line| line.include?("Truncated") }

The last step is understanding the find_all method. It passes each element in an array to a block, and builds a new array including only the elements for which the block returns a true value.

[image: image]

You can think of the values the block returns as a set of instructions for the method. The find_all method’s job is to keep some array elements and discard others. But it relies on the block’s return value to tell it which elements to keep.

Think of block return values as instructions from the block to the method.

All that matters in this selection process is the block’s return value. The block body doesn’t even have to use the parameter with the current array element (although in most practical programs, it will). If the block returns true for everything, all the array elements will be included...

[image: image]

...If it returns false for everything, none of them will be.

[image: image]

If we were to write our own version of find_all, it might look like this:

[image: image]

If this code looks familiar, it should. It’s a more generalized version of our earlier code to find lines that were relevant to our target movie!

The old code:

relevant_lines = []
lines.each do |line|
 if line.include?("Truncated")
 relevant_lines << line
 end
end
puts relevant_lines

Putting it all together

Now that we know how the find_all method works, we’re really close to understanding this code.

lines = []

File.open("reviews.txt") do |review_file|
 lines = review_file.readlines
end

relevant_lines = lines.find_all { |line| line.include?("Truncated") }

Here’s what we’ve learned (not necessarily in order):

• The last expression in a block becomes its return value.

[image: image]

• The include? method returns true if the string contains the specified substring, and false if it doesn’t.

[image: image]

• The find_all method passes each element in an array to a block, and builds a new array including only the elements for which the block returns a true value.

[image: image]

Let’s look inside the find_all method and the block as they process the first few lines of the file, to see what they’re doing...

A closer look at the block return values

➊ The find_all method passes the first line from the file to the block, which receives it in the line parameter. The block tests whether line includes the string "Truncated". It does, so the return value of the block is true. Back in the method, the line gets added to the array of matching items.

[image: image]

➋ The find_all method passes the second line from the file to the block. Again, the line block parameter includes the string "Truncated", so the return value of the block is again true. Back in the method, this line also gets added to the array of matching items.

[image: image]

➌ The third line from the file doesn’t include the string "Truncated", so the return value of the block is false. This line is not added to the array.

[image: image]

...And so on, through the rest of the lines in the file. The find_all method adds the current element to a new array if the block returns a true value, and skips it if the block returns a false value. The result is an array that contains only the lines that mention the movie we want!

[image: image]

Eliminating elements we don’t want, with a block

Using the find_all method, we’ve successfully found all the reviews for our target movie, and placed them in the relevant_lines array. We can check another requirement off our list!

	[image: image]

	Get the file contents.

	[image: image]

	Find reviews for the current movie.

	[image: image]

	Discard reviewer bylines.

Our next requirement is to discard the reviewer bylines, because we’re only interested in retrieving adjectives from the main text of each review.

[image: image]

Fortunately, they’re clearly marked. Each one starts with the characters "--", so it should be easy to use the include? method to determine if a string contains a byline.

Before, we used the find_all method to keep lines that included a particular string. The reject method is basically the opposite of find_all - it passes elements from an array to a block, and rejects an element if the block returns a true value. If find_all relies on the block to tell it which items to keep, reject relies on the block to tell it which items to discard.

If we were to implement our own version of reject, it would look very similar to find_all:

[image: image]

The return values for “reject”

So reject works just like find_all, except that instead of keeping elements that the block returns a true value for, it rejects them. Using reject, it should be easy to get rid of the bylines!

reviews = relevant_lines.reject { |line| line.include?("--") }

➊ The reject method passes the first line from the file to the block. The line block parameter does not include the string "--", so the return value of the block is false. Back in the method, this line gets added to the array of items we’re keeping.

[image: image]

➋ The reject method passes the second line to the block. The line parameter does include the string "--", so the return value of the block is true, and the method discards (rejects) this line.

[image: image]

➌ The third line doesn’t include "--", so the return value of the block is false, and the method keeps this line.

[image: image]

...And so on, for the rest of the lines in the file. The reject method skips adding a line to the new array if it includes "--". The result is a new array that omits the bylines and includes only the reviews!

[image: image]

Breaking a string into an array of words

We’ve discarded the reviewer bylines, leaving us with an array containing only the text of each review. That’s another requirement down! Two to go...

	[image: image]

	Get the file contents.

	[image: image]

	Find reviews for the current movie.

	[image: image]

	Discard reviewer bylines.

	[image: image]

	Find an adjective within each review.

	[image: image]

	Capitalize each adjective and put it in quotation marks.

For our next requirement, we’re going to need a couple new methods. They don’t take blocks at all, but they are super-useful.

We need to find an adjective in each review:

[image: image]

If you look above, you’ll notice a pattern... The adjective we want always seems to follow the word “is”.

So, we need to get one word that follows another word... What we have right now are strings. How can we convert those to words?

Strings have a split instance method that you can call to split them into an array of substrings.

[image: image]

The argument to split is the separator: one or more characters that separate the string into sections.

What separates words in the English language? A space! If we pass " " (a space character) to split, we’ll get an array back. Let’s try it with our first review.

[image: image]

There you have it - an array of words!

Finding the index of an array element

The split method converted our review string into an array of words. Now, we need to find the word “is” within that array. Again, Ruby has a method ready to go for us. If you pass an argument to the find_index method, it will find us the first index where that element occurs in the array.

[image: image]

Using find_index, let’s write a method that will split a string into an array of words, find the index of the word “is”, and return the word that comes after that.

[image: image]

We can easily test our method out on one of our reviews...

[image: image]

There’s our adjective! That only takes care of one review, though. Next, we need to process all the reviews, and create an array of the adjectives we find. With the each method, that’s easy enough to do.

[image: image]

Now we have an array of adjectives, one for each review!

Would you believe there’s an even easier way to create an array of adjectives based on the array of reviews, though?

Making one array that’s based on another, the hard way

We had no problem looping through our array of reviews to build up an array of adjectives using each and our new find_adjective method.

But creating a new array based on the contents of another array is a really common operation, that requires similar code each time. Some examples:

[image: image]

In each of these examples, we have to set up a new array to hold the results, loop through the original array and apply some logic to each of its members, and add the result to the new array. (Just like in our adjective finder code.) It’s a bit repetitive...

Wouldn’t it be great if there were some sort of magic processor for arrays? You drop in your array, it runs some (interchangeable) logic on its elements, and out pops a new array with the elements you need!

[image: image]

Making one array that’s based on another, using “map”

Ruby has just the magic array processor we’re looking for: the map method. The map method takes each element of an array, passes it to a block, and builds a new array out of the values the block returns.

[image: image]

The map method is similar to find_all and reject, in that it processes each element in an array. But find_all and reject use the block’s return value to decide whether to copy the original element from the old array to the new one. The map method adds the block’s return value itself to the new array.

If we were to code our own version of map, it might look like this:

[image: image]

The map method can shorten our code to gather adjectives down to a single line!

[image: image]

The return value of map is an array with all the values the block returned:

[image: image]

Let’s look at how the map method and our block process the array of reviews, step by step...

[image: image]

➊ The map method passes our first review to the block. The block, in turn, passes the review to find_adjective, which returns "amazing". The return value of find_adjective also becomes the return value of the block. Back in the map method, "amazing" is added to the results array.

[image: image]

➋ The second review is passed to the block, and find_adjective returns "funny". Back in the method, the new adjective is added to the results array.

[image: image]

➌ For the third review, find_adjective returns "astounding", which gets added to the array with the others.

[image: image]

We have just one more requirement, and this one will be easy!

	[image: image]

	Find an adjective within each review.

	[image: image]

	Capitalize each adjective and put it in quotation marks.

Some additional logic in the “map” block body

We’re already using map to find the adjectives for each review:

adjectives = reviews.map { |review| find_adjective(review) }

We can just add code to capitalize the adjective and enclose it in quotation marks to the block, right after the call to our find_adjective method.

[image: image]

Here are the new return values that this updated code produces:

➊ [image: image]

➋ [image: image]

➌ [image: image]

The finished product

That’s our last requirement. Congratulations, we’re done!

	[image: image]

	Get the file contents.

	[image: image]

	Find reviews for the current movie.

	[image: image]

	Discard reviewer bylines.

	[image: image]

	Find an adjective within each review.

	[image: image]

	Capitalize each adjective and put it in quotation marks.

You’ve successfully learned to use block return values to find elements you want within an array, reject elements you don’t want, and even to use an algorithm to create an entirely new array!

Processing a complex text file like this would take dozens of lines of code in other languages, with lots of repetition. The find_all, reject, and map methods handled all of that for you! They’re not the easiest methods to learn to use, but now that you have, you’ve got powerful new tools at your disposal!

Here’s our complete code listing:

[image: image]

Exercise

[image: image]

Open a new terminal or command prompt, type “irb” and hit the Enter/Return key. For each of the Ruby expressions below, write your guess for what the result will be on the line next to it. Then try typing the expression into irb, and hit Enter. See if your guess matches what irb returns!

	[1, 2, 3, 4].find_all { |number| number.odd? }

	

	[1, 2, 3, 4].find_all { |number| true }

	

	[1, 2, 3, 4].find_all { |number| false }

	

	[1, 2, 3, 4].find { |number| number.even? }

	

	[1, 2, 3, 4].reject { |number| number.odd? }

	

	[1, 2, 3, 4].all? { |number| number.odd? }

	

	[1, 2, 3, 4].any? { |number| number.odd? }

	

	[1, 2, 3, 4].none? { |number| number > 4 }

	

	[1, 2, 3, 4].count { |number| number.odd? }

	

	[1, 2, 3, 4].partition { |number| number.odd? }

	

	

	

	

	

	['$', '$$', '$$$'].map { |string| string.length }

	

	['$', '$$', '$$$'].max_by { |string| string.length }

	

	['$', '$$', '$$$'].min_by { |string| string.length }

	

Exercise Solution

[image: image]

Open a new terminal or command prompt, type “irb” and hit the Enter/Return key. For each of the Ruby expressions below, write your guess for what the result will be on the line next to it. Then try typing the expression into irb, and hit Enter. See if your guess matches what irb returns!

[image: image]

Your Ruby Toolbox

[image: image]

That’s it for Chapter 6! You’ve added block return values to your tool box.

[image: image]

BULLET POINTS

[image: image]

	If you pass a block to File.open, it will yield the file to the block so you can do whatever you need with it. When the block ends, the file will automatically be closed.

	Strings have an instance method called include?, which takes a substring as an argument. It will return true if the string includes the substring, false if not.

	When you need to find all elements of an array that meet some criteria, you can use the find_all method. It passes each element of the array to a block, and will return a new array with all the elements for which the block returned a true value.

	The reject method works just like find_all, except that it rejects array elements for which a block returns a true value.

	The split method on strings takes a separator as an argument. It finds each instance of the separator within the string, and returns an array with all of the substrings that were between each separator.

	The find_index method searches for the first occurrence of an element within an array, and returns its index.

	The map method takes each element of an array, passes it to a block, and builds a new array out of the values the block returns.

7 hashes

Labelling Data

[image: image]

Throwing things in piles is fine, until you need to find something again. You’ve already seen how to create a collection of objects using an array. You’ve seen how to process each item in an array, and how to find items you want. In both cases, you start at the beginning of the array, and look through Every. Single. Object.

You’ve also seen methods that take big collections of parameters. You’ve seen the problems this causes: method calls require a big, confusing collection of arguments that you have to remember the exact order for.

What if there was a kind of collection where all the data had labels on it? You could quickly find the elements you needed! In this chapter, we’ll learn about Ruby hashes, which do just that.

Counting votes

A seat on the Sleepy Creek County School Board is up for grabs this year, and polls have been showing the election to be really close. Now that it’s election night, the candidates are excitedly watching the votes roll in.

[image: image]

[image: image]

The electronic voting machines in use this year record the votes to text files, one vote per line. (Budgets are tight, so the city council chose the cheap voting machine vendor.)

Here’s a file with all the votes for District A:

[image: image]

We need to process each line of the file, and tally the total number of times each name occurs. The name with the most votes will be our winner!

The development team’s first order of business is to read the contents of the “votes.txt” file. That part is easy; it’s just like the code we used to read the movie reviews file back in Chapter 6.

[image: image]

Now, we need to get the name from each line of the file, and increment a tally of the number of times that name has occurred.

An array of arrays... is not ideal

But how do we keep track of all those names and associate a vote total with each of them? We’ll show you two ways. The first approach uses arrays, which we already know about from Chapter 5. Then we’ll show you a second way using a new data structure, hashes.

If all we had to work with were arrays, we might build an array of arrays to hold everything. That’s right, Ruby arrays can hold any object, including other arrays. So we could create an array with the candidate’s name, and the number of votes we’ve counted for it:

["Brian Martin", 1]

We could put this array inside another array that holds all the other candidate names and their totals:

[image: image]

For each name we encountered in the text file...

"Mikey Moose"

...We’d need to loop through the outer array and check whether the first element of the inner array matches it.

[image: image]

If none matched, we’d add a new inner array with the new name.

[image: image]

But if we encountered a name in the text file that did already exist in the array of arrays...

"Brian Martin"

Then we’d update the existing total for that name.

[image: image]

...You could do all that. But it would require extra code, and all that looping would take a long time when processing large lists. As usual, Ruby has a better way.

Hashes

The problem with storing the vote tally for each candidate in an array is the inefficiency of looking them up again later. For each name we want to find, we have to search through all the others.

[image: image]

Putting data in an array is like stacking it in a big pile; you can get particular items back out, but you’ll have to search through everything to find them.

[image: image]

Ruby has another way of storing collections of data... hashes. A hash is a collection where each value is accessed via a key. Keys are an easy way to get data back out of your hash. It’s like having neatly labelled file folders instead of a messy pile.

[image: image]

Just like with arrays, you can create a new hash and add some data to it at the same time using a hash literal. The syntax looks like this:

[image: image]

Those => symbols show which key points to which value. They look a bit like a rocket, so they are sometimes called “hash rockets”.

We can assign a new hash to a variable:

elements = {"H" => "Hydrogen", "Li" => "Lithium"}

Then, we can access values from that hash using the keys we set up for them. Whereas hash literals use curly braces, you use square brackets to access individual values. It looks just like the syntax to access values from an array, except you place the hash key within the brackets instead of a numeric index.

[image: image]

We can also add new keys and values to an existing hash. Again, the syntax looks a lot like the syntax to assign to an array element:

[image: image]

Whereas an array can only use integers as indexes, a hash can use any object as a key. That includes numbers, strings, and symbols.

[image: image]

Although arrays and hashes have major differences, there are enough similarities that it’s worth taking a moment to compare them...

	Arrays:

	Hashes:

	• Grow and shrink as needed

• Can hold any object, even hashes or other arrays

• Can hold instances of more than one class at the same time

• Literals surrounded by square brackets

• Elements accessed by specifying index within square brackets

• Only integers can be used as indexes

• Index of an element is determined by position within array

[image: image]

	• Grow and shrink as needed

• Can hold any object, even arrays or other hashes

• Can hold instances of more than one class at the same time

• Literals surrounded by curly braces

• Values accessed by specifying key within square brackets

• Any object can be used as a key

• Keys not calculated; key must be specified whenever a value is added

[image: image]

Exercise

[image: image]

Fill in the blanks in the code below, so that it will produce the output shown.

[image: image]

Exercise Solution

[image: image]

Fill in the blanks in the code below, so that it will produce the output shown.

[image: image]

Hashes are objects

We’ve been hearing over and over that everything in Ruby is an object. We saw that arrays are objects, and it probably won’t surprise you to learn that hashes are objects, too.

[image: image]

And, like most Ruby objects, hashes have lots of useful instance methods. Here’s a sampling...

They have the methods that you expect every Ruby object to have, like inspect:

[image: image]

The length method lets you determine how many key/value pairs the hash holds:

[image: image]

There are methods to quickly test whether the hash includes particular keys or values:

[image: image]

There are methods that will give you an array with all the keys, or all the values:

[image: image]

And, as with arrays, there are methods that will let you use a block to iterate over the hash’s contents. The each method, for example, takes a block with two parameters, one for the key and one for the value. (More about each in a few pages.)

[image: image]

Exercise

[image: image]

Open a new terminal or command prompt, type “irb” and hit the Enter/Return key. For each of the Ruby expressions below, write your guess for what the result will be on the line next to it. Then try typing the expression into irb, and hit Enter. See if your guess matches what irb returns!

protons = { "He" => 2 }

protons["He"]

protons["C"] = 6

protons["C"]

protons.has_key?("C")

protons.has_value?(119)

protons.keys

protons.values

protons.merge({ "C" => 0, "Uh" => 147.2 })

there are no Dumb Questions

Q: Why do they call it a “hash”?

A: Frankly, it’s not the best possible name. Other languages refer to this kind of structure as “maps”, “dictionaries”, or “associative arrays” (because keys are associated with values). In Ruby, it’s called a “hash” because an algorithm called a hash table is used to quickly look up keys within the hash. The details of that algorithm are beyond the scope of this book, but you can visit your favorite search engine to learn more.

Exercise Solution

[image: image]

Open a new terminal or command prompt, type “irb“ and hit the Enter/Return key. For each of the Ruby expressions below, write your guess for what the result will be on the line next to it. Then try typing the expression into irb, and hit Enter. See if your guess matches what irb returns!

[image: image]

Hashes return “nil” by default

[image: image]

Let’s take a look at the array of lines we read from the sample file of votes. We need to tally the number of times each name occurs within this array.

[image: image]

In the place of the array of arrays we discussed earlier, let’s use a hash to store the vote counts. When we encounter a name within the lines array, if that name doesn’t exist, we’ll add it to the hash.

[image: image]

Each new name we encounter will get its own key and value added to the hash.

[image: image]

If we encounter a name that we’ve already added, we’ll update its count, instead.

[image: image]

...And so on, until we’ve counted all the votes.

That’s the plan, anyway. But our first version of the code to do this fails with an error...

[image: image]

So what happened? As we saw in the arrays chapter, if you try to access an array element that hasn’t been assigned to yet, you’ll get nil back. If you try to access a hash key that has never been assigned to, the default value is also nil.

[image: image]

When we try to access the votes for a candidate name that has never been assigned to, we get nil back. And trying to add to nil produces an error.

The first time we encounter a candidate’s name, instead of getting a vote tally back from the hash, we get nil. This results in an error when we try to add to it.

[image: image]

To fix this, we can test whether the value for the current hash key is nil. If it’s not, then we can safely increment whatever number is there. But if it is nil, then we’ll need to set up an initial value (a tally of 1) for that key.

[image: image]

And in the output, we see the populated hash. Our code is working!

nil (and only nil) is “falsy”

There’s a small improvement to be made, though... That conditional is a little ugly.

if votes[name] != nil

We can clean that up by taking advantage of the fact that any Ruby expression can be used in a conditional statement. Most of them will be treated as if they were a “true” value. (Rubyists often say these values are “truthy”.)

[image: image]

In fact, aside from the false boolean value, there is only one value that Ruby treats as if it was false: nil. (Rubyists often say that nil is “falsy”.)

[image: image]

Ruby treats nil like it’s false to make it easier to test whether values have been assigned or not. For example, if you access a hash value within an if statement, the code within will be run if the value exists. If the value doesn’t exist, the code won’t be run.

[image: image]

We can make our conditional read a little better by changing it from “if votes[name] != nil” to just “if votes[name]”.

[image: image]

Our code still works the same as before; it’s just a bit cleaner looking. This may be a small victory now, but the average program has to test for the existence of objects a lot. Over time, this technique will save you many keystrokes!

[image: image]

Watch It!

[image: image]

We mean it when we say that only nil is falsy.

Most values that are treated as falsy in some other languages, such as empty strings, empty arrays, and the number 0, are truthy in Ruby.

Exercise

[image: image]

Guess the output for the code below, and write it in the blanks provided.

(We’ve filled in the first line for you.)

[image: image]

Exercise Solution

[image: image]

Guess the output for the code below, and write it in the blanks provided.

[image: image]

A hash that returns something other than “nil” by default

A disproportionate amount of our code for tallying the votes lies in the if/else statement that checks whether a key exists within the hash...

[image: image]

And we need that if statement. Normally, when you try to access a hash key that hasn’t had a value assigned yet, you get nil back. We’d get an error the first time we tried to add to the tally for a key that didn’t yet exist (because you can’t add to nil).

[image: image]

But... what if, when we tried to access a hash key that hasn’t been assigned to yet, we got a different value instead of nil? One that we can increment? Let’s find out how to make that happen...

Instead of using a hash literal ({}), you can also call Hash.new to create new hashes. Without any arguments, Hash.new works just like {}, giving you a hash that returns nil for unassigned keys.

[image: image]

But when you call Hash.new and pass an object as an argument, that argument becomes that hash’s default object. Anytime you access a key in that hash that hasn’t been assigned to yet, instead of nil, you’ll get the default object you specified..

[image: image]

Let’s use a hash default object to shorten up our vote counting code...

If we create our hash with Hash.new(0), it will return the default object (0) when we try to access the vote tally for any key that hasn’t been assigned to yet. That 0 value gets incremented to 1, then 2, and so on as the same name is encountered again and again.

Watch It!

[image: image]

Using anything other than a number as a hash default object may cause bugs!

We’ll cover ways to safely use other objects in Chapter 8. Until then, don’t use anything other than a number as a default!

We can get rid of the if statement entirely!

And as you can see from the output, the code still works.

[image: image]

Normalizing hash keys

[image: image]

Here’s what we get if we run this new file through our existing code:

[image: image]

Well, this won’t do... It looks like the last few votes were added with the candidates’ names in lower case, and they were treated as entirely separate candidates!

This highlights a problem when working with hashes: if you want to access or modify a value, whatever you provide as a key needs to match the existing key exactly. Otherwise, it will be treated as an entirely new key.

[image: image]

So, how will we ensure that the new lower-case entries in our text file get matched with the capitalized entries? We need to normalize the input: we need one standard way of representing candidates’ names, and we need to use that for our hash keys.

Fortunately, in this case, normalizing the candidate names is really easy. We’ll add one line of code to ensure the case on each name matches prior to storing it in the hash.

[image: image]

And in the output we see the updated contents of our hash: votes from the lower-case entries have been added to the totals for the capitalized entries. Our counts are fixed!

[image: image]

Watch It!

[image: image]

You also need to normalize the keys when accessing values.

If you normalize the keys when you’re adding values to the hash, you have to normalize the keys when you’re accessing the values as well. Otherwise, it might appear that your value is missing, when it’s really just under a different key!

[image: image]

Hashes and “each”

We’ve processed the lines in the sample file, and built a hash with the total number of votes:

[image: image]

It would be far better, though, if we could print one line for each candidate name, together with their vote count.

As we saw back in Chapter 5, arrays have an each method that takes a block with a single parameter. The each method passes each element of the array to the block for processing, one at a time. Hashes also have an each method, that works in about the same way. The only difference is that on hashes, each expects a block with two parameters, one for the key, and one for the corresponding value.

[image: image]

there are no Dumb Questions

Q: What happens if I call each on a hash, but pass it a block with one parameter?

A: The each method for hashes allows that; it will pass the block a 2-element array with the key and value from each key/value pair in the hash. It’s much more common to use blocks with two parameters, though.

We can use each to print the name of each candidate in the votes hash, along with the corresponding vote count:

[image: image]

There are our totals, neatly formatted!

Now you’ve seen one of the classic uses of hashes - a program where we need to look up values for a given key repeatedly. Up next, we’ll look at another common way to use hashes: as method arguments.

[image: image]

Fireside Chats

[image: image]

Tonight’s talk: An array and a hash work out their differences.

	Hash:

	Array:

	Nice to see you again, Array.

	

	

	I didn’t really want to be here, but whatever, Hash.

	There’s no need to be like that.

	

	

	Isn’t there? I was doing a perfectly fine job storing everyone’s collections, and then you come along, and developers everywhere are like, “Ooh! Why use an array when I can use a hash? Hashes are so cool!”

	Well, I do have a certain glamor about me... But even I know there are still times when developers should use an array instead of a hash.

	

	

	Darn right! Arrays are way more efficient than hashes! If you’re happy retrieving elements in the same order you added them (say, with each), then you want an array, because you won’t have to wait while a hash organizes your data for you.

	It’s true; it’s a lot of work keeping all of my elements where I can retrieve them quickly! It pays off if someone wants to retrieve a particular item from the middle of the collection, though. If they give me the correct key, I always know right where to find a value.

	

	

	Hey, we arrays can get data back too, you know.

	Yes, but the developer has to know the exact index where the data is stored, right? All those numbers are a pain to keep track of ! But it’s either that, or wait for the array to search through all its elements, one by one...

	

	

	But the point is, we can do it. And if you’re just building a simple queue, we’re still the better choice.

	Agreed. Developers should know about both arrays and hashes, and pick the right one for their current task.

	

	

	Fair enough.

A mess of method arguments

Suppose we’re making an app to track basic information regarding candidates so voters can learn about them. We’ve created a Candidate class to keep all of a candidate’s info in one convenient place. For convenience, we’ve set up an initialize method so that we can set all of an instance’s attributes directly from a call to Candidate.new.

[image: image]

Let’s add some code following the class definition to create a Candidate instance, and print out its data.

[image: image]

[image: image]

Our very first attempt at calling Candidate.new shows that its usage could be a lot smoother. We have to provide all the arguments whether we’re going to use them or not.

We could just make the hobby parameter optional, if it didn’t have the birthplace parameter following it...

[image: image]

Since birthplace is present, though, we get an error if we try to omit hobby...

[image: image]

We encounter another problem if we forget the order that method arguments should appear in...

[image: image]

It’s becoming clear that there are some issues with using a long list of parameters for a method. The order is confusing, and it’s hard to leave unwanted arguments off.

[image: image]

Using hashes as method parameters

Historically, Rubyists have dealt with these issues by using hashes as method parameters. Here’s a simple area method that, instead of separate length and width parameters, accepts a single hash. [We realize this is a bit ugly. Over the next few pages, we’ll show you some shortcuts to make hash parameters much more readable!]

[image: image]

The convention in Ruby is to use symbols instead of strings for hash parameter keys, because looking up symbol keys is more efficient than looking up strings.

Using hash parameters offers several benefits over regular method parameters...

	With regular parameters:

	With hash parameters:

	• Arguments must appear in exactly the right order

• Arguments can be hard to tell apart

• Required parameters have to appear before optional parameters

	• Keys can appear in any order

• Keys act as “labels” for each value

• Can skip providing a value for any key you want

Hash parameters in our Candidate class

Here’s a revision of our Candidate class’s initialize method using a hash parameter.

[image: image]

We can now call Candidate.new by passing the name as a string, followed by a hash with the values for all the other Candidate attributes:

[image: image]

We can leave one or more of the hash keys off, if we want. The attribute will just get assigned the hash default object, nil.

[image: image]

We can put the hash keys in any order we want:

[image: image]

Leave off the braces!

We’ll admit that the method calls we’ve been showing so far are a little uglier than method calls with regular arguments, what with all those curly braces:.

candidate = Candidate.new("Carl Barnes",
 {:age => 49, :occupation => "Attorney"})

...Which is why Ruby lets you leave the curly braces off, as long as the hash argument is the final argument:

[image: image]

For this reason, you’ll find that most methods that define a hash parameter define it as the last parameter.

there are no Dumb Questions

Q: Is there anything special about a hash parameter? It looks like just another method parameter!

A: It is just another method parameter; there’s nothing stopping you from passing an integer, a string, etc. when you should be passing a hash. But you’re likely to get errors when your method code tries to access keys and values on an integer or string!

Leave out the arrows!

Ruby offers one more shortcut we can make use of... If a hash uses symbols as keys, hash literals let you leave the colon (:) off the symbol and replace the hash rocket (=>) with a colon.

[image: image]

Those hash arguments started out pretty ugly, we admit. But now that we know all the tricks to make them more readable, they’re looking rather nice, don’t you think? Almost like regular method arguments, but with handy labels next to them!

Candidate.new("Carl Barnes", age: 49, occupation: "Attorney")
Candidate.new("Amy Nguyen", age: 37, occupation: "Engineer")

Conventional Wisdom

When you’re defining a method that takes a hash parameter, ensure the hash parameter comes last, so that callers to your method can leave the curly braces off their hash. When calling a method with a hash argument, you should leave the curly braces off if possible - it’s easier to read. And lastly, you should use symbols as keys whenever you’re working with a hash parameter; it’s more efficient.

Making the entire hash optional

There’s one last improvement we can make to our Candidate class’s initialize method. Currently we can include all of our hash keys:

Candidate.new("Amy Nguyen", age: 37, occupation: "Engineer",
 hobby: "Lacrosse", birthplace: "Seattle")

Or we can leave most of them off:

Candidate.new("Amy Nguyen", age: 37)

But if we try to leave them all off, we get an error:

[image: image]

This happens because if we leave all the keys off, then as far as Ruby is concerned, we didn’t pass a hash argument at all.

We can avoid this inconsistency by setting an empty hash as a default for the options argument:

[image: image]

Now, if no hash argument is passed, the empty hash will be used by default. All the Candidate attributes will be set to the nil default value from the empty hash.

[image: image]

If we specify at least one key/value pair, though, the hash argument will be treated as before:

[image: image]

Code Magnets

[image: image]

A Ruby program is all scrambled up on the fridge. Can you reconstruct the code snippets to make a working Ruby program that will produce the given output?

[image: image]

Code Magnets Solution

[image: image]

[image: image]

Typos in hash arguments are dangerous

There’s a downside to hash arguments that we haven’t discussed yet, and it’s just waiting to cause trouble for us... For example, you might expect this code to set the occupation attribute of the new Candidate instance, and you might be surprised when it doesn’t:

[image: image]

Why didn’t it work? Because we misspelled the symbol name in the hash key!

[image: image]

The code doesn’t even raise an error. Our initialize method just uses the value of the correctly-spelled options[:occupation] key, which is of course nil, because it’s never been assigned to.

[image: image]

Don’t worry. In version 2.0, Ruby added keyword arguments, which can prevent this sort of issue.

Keyword arguments

Rather than require a single hash parameter in method definitions, we can specify the individual hash keys we want callers to provide, using this syntax:

[image: image]

When we define the method this way, we don’t have to worry about providing keys to a hash to access values in the method body. Ruby stores each value in a separate parameter, which can be accessed directly by name, just like a regular method parameter.

With the method defined, we can call it by providing keys and values, just like we have been:

[image: image]

In fact, callers are actually just passing a hash, like before:

[image: image]

The hash gets some special treatment within the method, though. Any keywords omitted from the call get set to the specified default values:

[image: image]

And if any unknown keywords are provided (or you make a typo in a key), an error will be raised:

[image: image]

Using keyword arguments with our Candidate class

Currently, our Candidate class is using a hash parameter in its initialize method. The code is a bit ugly, and it won’t warn a caller if they make a typo in a hash key.

[image: image]

Let’s revise our Candidate class’s initialize method to take keyword arguments.

[image: image]

We use "Sleepy Creek" as a default value for the birthplace keyword, and nil as a default for the others. We also replace all those references to the options hash in the method body with parameter names. The method is a lot easier to read now!

It can still be called the same way as before...

[image: image]

...And it will warn callers if they make a typo in a keyword!

[image: image]

Required keyword arguments

Right now, we can still call Candidate.new even if we fail to provide the most basic information about a candidate..:

[image: image]

This isn’t ideal. We want to require callers to provide at least an age and an occupation for a candidate.

Back when the initialize method was using ordinary method parameters, this wasn’t a problem; all the arguments were required.

class Candidate
 attr_accessor :name, :age, :occupation, :hobby, :birthplace
 def initialize(name, age, occupation, hobby, birthplace)
 ...
 end
end

The only way to make a method parameter optional is to provide a default value for it.

class Candidate
 attr_accessor :name, :age, :occupation, :hobby, :birthplace
 def initialize(name, age = nil, occupation = nil, hobby = nil, birthplace = nil)
 ...
 end
end

But wait, we provide default values for all our keywords now...

class Candidate
 attr_accessor :name, :age, :occupation, :hobby, :birthplace
 def initialize(name, age: nil, occupation: nil, hobby: nil, birthplace: "Sleepy Creek")
 ...
 end
end

If you take away the default value for an ordinary method parameter, that parameter is required; you can’t call the method without providing a value. What happens if we take away the default values for our keyword arguments?

Let’s try removing the default values for the age and occupation keywords, and see if they’ll be required when calling initialize.

Watch It!

[image: image]

Required keyword arguments were only added in Ruby 2.1.

If you’re running Ruby 2.0, you’ll get a syntax error if you try to use required keyword arguments. You’ll need to either upgrade to 2.1, or provide default values.

We can’t just remove the colon after the keyword, though. If we did, Ruby wouldn’t be able to tell age and occupation apart from ordinary method parameters.

[image: image]

What if we removed the default value, but left the colon after the keyword?

[image: image]

We can still call Candidate.new, as long as we provide the required keywords:

[image: image]

...And if we leave the required keywords off, Ruby will warn us!

[image: image]

You used to have to provide a long list of unlabelled arguments to Candidate.new, and you had to get the order exactly right. Now that you’ve learned to use hashes as arguments, whether explicitly or behind the scenes with keyword arguments, your code will be a lot cleaner!

Exercise

[image: image]

Here are definitions for two Ruby methods. Match each of the six method calls below to the output it would produce.

(We’ve filled in the first one for you.)

[image: image]

Exercise Solution

[image: image]

Here are definitions for two Ruby methods. Match each of the six method calls below to the output it would produce.

[image: image]

Your Ruby Toolbox

That’s it for Chapter 7! You’ve added hashes to your tool box.

[image: image]

BULLET POINTS

[image: image]

	A hash literal is surrounded by curly braces. It needs to include a key for each value, like this:

{"one" => 1, "two" => 2}

	When a hash key is accessed that a value has never been assigned to, nil is returned by default.

	Any Ruby expression can be used in conditional statements. Aside from the false boolean value, the only other value Ruby will treat as false is nil.

	You can use Hash.new instead of a hash literal to create a new hash. If you pass an object as an argument to Hash.new, that object will be returned by default when any key that hasn’t been assigned to is accessed (instead of nil).

	If the key you access isn’t exactly equal to the key in the hash, it will be treated as an entirely new key.

	Hashes have an each method that works a lot like the each method on arrays. The difference is that the block you provide should (normally) accept two parameters (instead of one): one for each key, and one for the corresponding value.

	If you pass a hash as the last argument to a method, Ruby lets you leave the braces off.

	If a hash uses symbols as keys, you can leave the colon off the symbol, and replace => with a colon, like this:

{name: "Kim", age: 28}

	When defining a function, you can specify that callers should provide keyword arguments. The keywords and values are actually just a hash behind the scenes, but the values are placed into named parameters within the function.

	Keyword arguments can be required, or they can be made optional by defining a default value.

8 references

Crossed Signals

[image: image]

Ever sent an e-mail to the wrong contact? You probably had a hard time sorting out the confusion that ensued. Well, Ruby objects are just like those contacts in your address book, and calling methods on them is like sending messages to them. If your address book gets mixed up, it’s possible to send the wrong message to the wrong object. And you’ll have a hard time sorting out the confusion that ensues. This chapter will help you recognize the signs that messages are going to the wrong objects, and help you get your programs running smoothly again.

Some confusing bugs

The word continues to spread - if someone has a Ruby problem, your company can solve it. And so people are showing up at your door with some unusual problems...

[image: image]

This astronomer thinks he has a clever way to save some coding... Instead of typing my_star = CelestialBody.new and my_star.type = 'star' for every star he wants to create, he wants to just copy the original star, and set a new name for it.

[image: image]

But the plan seems to be backfiring. All three of his CelestialBody instances are reporting that they have the same name!

The heap

The bug in the star catalog program stems from an underlying problem: the developer thinks he’s working with multiple objects, when actually he’s operating on the same object over and over.

To understand how that can be, we’re going to need to learn about where objects really live, and how your programs communicate with them.

Rubyists often talk about “placing objects in variables”, “storing objects in arrays”, “storing an object in a hash value”, and so forth. But that’s just a simplification of what actually happens. Because you can’t actually put an object in a variable, array, or hash.

Instead, all Ruby objects live on the heap, an area of your computer’s memory allocated for object storage.

[image: image]

When a new object is created, Ruby allocates space on the heap where it can live.

[image: image]

Generally, you don’t need to concern yourself with the heap - Ruby manages it for you. The heap grows in size if more space is needed. Objects that are no longer used get cleared off the heap. It’s not something you usually have to worry about.

But we do need to be able to retrieve items that are stored on the heap. And we do that with references. Read on to learn more about them.

References

When you want to send a letter to a particular person, how do you get it to them? Each residence in a city has an address that mail can be sent to. You simply write the address on an envelope. A postal worker then uses that address to find the residence and deliver the letter.

[image: image]

When a friend of yours moves into a new residence, they give you their address, which you then write down in an address book or other convenient place. This allows you to communicate with them in the future.

[image: image]

Similar to addresses for houses, Ruby uses references to locate objects on the heap. When a new object is created, it returns a reference to itself. You store that reference in a variable, array, or other convenient place. Kind of like a house address, the reference tells Ruby where the object “lives” on the heap.

[image: image]

Later, you can use that reference to call methods on the object (which, you might recall, is similar to sending them a message).

[image: image]

We want to stress this: variables, arrays, hashes, etc. never hold objects. They hold references to objects. Objects live on the heap, and they are only accessed through the references held in variables.

When references go wrong

Andy met not one, but two gorgeous women last week: Betty and Candace. Better yet, they both live on his street.

[image: image]

Andy intended to write both their addresses down in his address book. Unfortunately for him, he accidentally wrote the same address (Betty’s) down for both women.

[image: image]

Later that week, Betty received two letters from Andy:

[image: image]

Now, Betty is angry at Andy, and Candace (who never received a letter) thinks Andy is ignoring her.

What does any of this have to do with fixing our Ruby programs? You’re about to find out...

Aliasing

Andy’s dilemma can be simulated in Ruby with this simple class, called LoveInterest. A LoveInterest has an instance method, request_date, which will print an affirmative response just once. If the method is called again after that, the LoveInterest will report that it’s busy.

[image: image]

Normally, when using this class, we would create two separate objects, and store references to them in two separate variables:

betty = LoveInterest.new
candace = LoveInterest.new

[image: image]

When we use the two separate references to call request_date on the two separate objects, we get two affirmative answers, as we expect.

[image: image]

We can confirm that we’re working with two different objects by using the object_id instance method, which almost all Ruby objects have. It returns a unique identifier for each object.

[image: image]

But if we copy the reference instead, we wind up with two references to the same object, under two different names (the variables betty and candace).

This sort of thing is known as aliasing, because you have multiple names for a single thing. This can be dangerous if you’re not expecting it!

[image: image]

In this case, the calls to request_date both go to the same object. The first time, it responds that it’s available, but the second request is rejected.

[image: image]

This aliasing behavior seems awfully familiar... Remember the malfunctioning star catalog program? Let’s go back and take another look at that next.

Exercise

[image: image]

Here is a Ruby class:

class Counter

 def initialize
 @count = 0
 end

 def increment
 @count += 1
 puts @count
 end

end

And here is some code that uses that class:

a = Counter.new
b = Counter.new
c = b
d = c

a.increment
b.increment
c.increment
d.increment

Guess what the code will output, and write your answer in the blanks.

(We’ve filled in the first one for you.)

[image: image]

Exercise Solution

[image: image]

Here is a Ruby class:

class Counter

 def initialize
 @count = 0
 end

 def increment
 @count += 1
 puts @count
 end

end

And here is some Ruby code that uses that class:

a = Counter.new
b = Counter.new
c = b
d = c

a.increment
b.increment
c.increment
d.increment

Guess what the code will output, and write your answer in the blanks.

[image: image]

Fixing the astronomer’s program

Now that we’ve learned about aliasing, let’s take another look at the astronomer’s malfunctioning star catalog, and see if we can figure out the problem this time...

[image: image]

If we try calling object_id on the objects in the three variables, we’ll see that all three variables refer to the same object. The same object under three different names... sounds like another case of aliasing!

[image: image]

By copying the contents of the variables, the astronomer did not get three CelestialBody instances as he thought. Instead, he’s a victim of unintentional aliasing -he got one CelestialBody with three references to it!

[image: image]

To this poor, bewildered object, the sequence of instructions looked like this:

• “Set your name attribute to 'Altair', and your type attribute is now 'star'.

• Now set your name to 'Polaris'.

• Now your name is 'Vega'.

• Give us your name attribute 3 times.

[image: image]

...The CelestialBody dutifully complied, and told us three times that its name was now 'Vega'.

Fortunately, a fix will be easy. We just need to skip the shortcuts, and actually create three CelestialBody instances.

[image: image]

And as we can see from the output, the problem is fixed!

[image: image]

It’s definitely good policy to avoid copying references from variable to variable. But there are other circumstances where you need to be aware of how aliasing works, as we’ll see shortly.

Quickly identifying objects with “inspect”

Before we move on, we should mention a shortcut for identifying objects... We’ve already shown you how to use the object_id instance method. If it outputs the same value for the object in two variables, you know they both point to the same object.

[image: image]

The string returned by the inspect instance method also includes a representation of the object ID, in hexadecimal (consisting of the numbers “0” through “9” and the letters “a” through “f”). You don’t need to know the details of how hexadecimal works; just know that if you see the same value for the object referenced by two variables, you have two aliases for the same object. A different value means a different object.

[image: image]

Problems with a hash default object

The astronomer is back, with more problematic code...

[image: image]

He needs his hash to be a mix of planets and moons. Since most of his objects will be planets, he set the hash default object to a CelestialBody with a type attribute of "planet". (We saw hash default objects last chapter; they let you set an object the hash will return any time you access a key that hasn’t been assigned to.)

[image: image]

He believes that will let him add planets to the hash simply by assigning names to them. And it seems to work:

[image: image]

When the astronomer needs to add a moon to the hash, he can do that, too. He just has to set the type attribute in addition to the name.

[image: image]

But then, as he continues adding new CelestialBody objects to the hash, it starts behaving strangely...

The problems with using a CelestialBody as a hash default object become apparent as more objects as the astronomer tries to add more objects to the hash... When he adds another planet after adding a moon, the planet’s type attribute is set to "moon" as well!

[image: image]

...If he goes back and gets the value for the keys he added previously, those objects appear to have been modified as well!

[image: image]

[image: image]

Good observation! Remember we said that the inspect method string includes a representation of the object ID? And as you know, the p method calls inspect on each object before printing it. Using the p method shows us that all the hash keys refer to the same object!

[image: image]

Looks like we’ve got a problem with aliasing again! On the next few pages, we’ll see how to fix it.

We’re actually modifying the hash default object!

The central problem with this code is that we’re not actually modifying hash values. Instead, we’re modifying the hash default object.

We can confirm this using the default instance method, which is available on all hashes. It lets us look at the default object after we create the hash.

Let’s inspect the default object both before and after we attempt to add a planet to the hash.

[image: image]

So why is a name being added to the default object? Shouldn’t it be getting added to the hash value for bodies['Mars']?

If we look at the object IDs for both bodies['Mars'] and the hash default object, we’ll have our answer:

[image: image]

When we access bodies['Mars'], we’re still getting a reference to the hash default object! But why?

A more detailed look at hash default objects

When we introduced the hash default object in the last chapter, we said that you get the default object anytime you access a key that hasn’t been assigned to yet. Let’s take a closer look at that last detail.

Let’s suppose we’ve created a hash that will hold student names as the keys, and their grades as the corresponding values. We want the default to be a grade of 'A'.

grades = Hash.new('A')

At first, the hash is completely empty. Any student name that we request a grade for will come back with the hash default object, 'A'.

[image: image]

When we assign a value to a hash key, we’ll get that value back instead of the hash default the next time we try to access it.

[image: image]

Even when some keys have had values assigned, we’ll still get the default object for any key that hasn’t been assigned previously.

[image: image]

But accessing a hash value is not the same as assigning to it. If you access a hash value once and then access it again without making an assignment, you’ll still be getting the default object.

[image: image]

Only when a value is assigned to the hash (not just retrieved from it) will anything other than the default object be returned.

[image: image]

Back to the hash of planets and moons

And that is why, when we try to set the type and name attributes of objects in the hash of planets and moons, we wind up altering the default object instead. We’re not actually assigning any values to the hash. In fact, if we inspect the hash itself, we’ll see that it’s totally empty!

[image: image]

[image: image]

Actually, those are calls to the name= and type= attribute writer methods on the hash default object. Don’t mistake them for assignment to the hash.

When we access a key for which no value has been assigned, we get the default object back.

[image: image]

The statement below is not an assignment to the hash. It attempts to access a value for the key 'Mars' from the hash (which is still empty). Since there is no value for 'Mars', it gets a reference to the default object, which it then modifies.

[image: image]

And since there’s still nothing assigned to the hash, the next access gets a reference to the default object as well, and so on.

Fortunately, we have a solution for you...

[image: image]

Our wish list for hash defaults

We’ve determined that this code doesn’t assign a value to the hash, it just accesses a value. It gets a reference to the default object, which it then (unintentionally) modifies.

[image: image]

Right now, when we access a hash key for which no value has been assigned, we just get a reference to the hash default object.

[image: image]

What we really want is to get an entirely new object for each unassigned hash key.

[image: image]

Of course, if we did that without assigning to the hash, then later accesses would just keep generating new objects over and over...

[image: image]

So it would also be nice if the new object was assigned to the hash for us, so that later accesses would get the same object again (instead of generating new objects over and over).

[image: image]

Hashes have a feature that can do all this for us!

Hash default blocks

Instead of passing an argument to Hash.new to be used as a hash default object, you can pass a block to Hash.new to be used as the hash default block. When a key is accessed for which no value has been assigned:

• The block is called.

• The block receives references to the hash and the current key as block parameters. These can be used to assign a value to the hash.

• The block return value is returned as the current value of the hash key.

Those rules are a bit complex, so we’ll go over them in more detail in the next few pages. But for now, let’s take a look at your first hash default block:

[image: image]

If we access keys on this hash, we get separate objects for each key, just like we always intended.

[image: image]

Better yet, the first time we access any key, a value is automatically assigned to the hash for us!

[image: image]

Now that we know it will work, let’s take a closer look at the components of that block...

Hash default blocks: Assigning to the hash

In most cases, you’ll want the value created by your hash default block to be assigned to the hash. A reference to the hash and the current key are passed to the block, in order to allow you to do so.

[image: image]

When we assign values to the hash in the block body, things work like we’ve been expecting all along. A new object is generated for each new key you access. On subsequent accesses, we get the same object back again, with any changes we’ve made intact.

[image: image]

Watch It!

[image: image]

Don’t forget to assign a value to the hash!

If you forget, the generated value will just be thrown away. The hash key still won’t have a value, and the hash will just keep calling the block over and over to generate new defaults.

[image: image]

Hash default blocks: Block return value

When you access an unassigned hash key for the first time, the hash default block’s return value is returned as the value for the key.

[image: image]

As long as you assign a value to the key within the block body, the hash default block won’t be invoked for subsequent accesses of that key; instead, you’ll get whatever value was assigned.

Watch It!

[image: image]

Make sure the block return value matches what you’re assigning to the hash!

Otherwise, you’ll get one value when you first access the key, and a completely different value on subsequent accesses.

[image: image]

Generally speaking, you won’t need to work very hard to remember this rule. As we’ll see on the next page, setting up an appropriate return value for your hash default block happens quite naturally...

Hash default blocks: A shortcut

Thus far, we’ve been returning a value from the hash default block on a separate line:

[image: image]

But Ruby offers a shortcut that can reduce the amount of code in your default block a bit...

You’ve already learned that the value of the last expression in a block is treated as the block’s return value... What we haven’t mentioned is that in Ruby, the value of an assignment expression is the same as the value being assigned.

[image: image]

So, we can use just an assignment statement in a hash default block, and it will return the assigned value.

[image: image]

And, of course, it will add the value to the hash as well.

[image: image]

So in the astronomer’s hash, instead of adding a separate line with a return value, we can just let the value of the assignment expression provide the return value for the block.

[image: image]

Exercise

[image: image]

The three code snippets below are all supposed to make a hash of arrays with foods grouped by the first letter of their name, but only one actually works. Match each snippet with the output it would produce.

(We’ve filled in the first one for you.)

[image: image]

Exercise Solution

[image: image]

The three code snippets below are all supposed to make a hash of arrays with foods grouped by the first letter of their name, but only one actually works. Match each snippet with the output it would produce.

[image: image]

The astronomer’s hash: our final code

[image: image]

Here’s our final code for the hash default block:

[image: image]

Here’s what we did to get this program working:

• We use a hash default block to create a unique object for each hash key. (This is unlike a hash default object, which gives references to one object as the default for all keys.)

• Within the block, we assign the new object to the current hash key.

• The new object becomes the value of the assignment expression, which also becomes the block’s return value. So the first time a given hash key is accessed, they get the new object as the corresponding value.

Using hash default objects safely

[image: image]

Hash default objects work very well if you use a number as the default.

[image: image]

Okay, it’s a little more complicated than that. Hash default objects work very well if you don’t change the default, and if you assign values back to the hash. It’s just that numbers make it easy to follow these rules.

Take this example, which counts the number of times letters occur in an array. (It works just like the vote counting code from last chapter.)

[image: image]

Using a hash default object here works because we follow the above two rules...

Hash default object rule #1: Don’t modify the default object

If you’re going to use a hash default object, it’s important not to modify that object. Otherwise, you’ll get unexpected results the next time you access the default. We saw this happen when we used a default object (instead of a default block) for the astronomer’s hash, and it caused havoc:

[image: image]

In Ruby, doing math operations on a numeric object doesn’t modify that object; it returns an entirely new object. We can see this if we look at object IDs before and after an operation.

[image: image]

In fact, numeric objects are immutable: they don’t have any methods that modify the object’s state. Any operation that might change the number gives you back an entirely new object.

That’s what makes numbers safe to use as hash default objects; you can be certain that the default number won’t be changed accidentally.

Numbers make good hash default objects because they are immutable.

Hash default object rule #2: Assign values to the hash

If you’re going to use a hash default object, it’s also important to ensure you’re actually assigning values to the hash. As we saw with the astronomer’s hash, sometimes it can look like you’re assigning to the hash when you’re not...

[image: image]

When we use a number as a default object, though, it’s much more natural to actually assign values to the hash. (Because numbers are immutable, we can’t store the incremented values unless we assign them to the hash!)

[image: image]

The rule of thumb for hash defaults

[image: image]

That’s true. So we have a rule of thumb that will keep you out of trouble...

If your default is a number, you can use a hash default object.

If your default is anything else, you should use a hash default block.

As you gain more experience with references, all of this will become second nature, and you can break this rule of thumb when the time is right. Until then, this should prevent most problems you’ll encounter.

Understanding Ruby references and the issue of aliasing won’t help you write more powerful Ruby programs. It will help you quickly find and fix problems when they arise, however. Hopefully this chapter has helped you form a basic understanding of how references work, and will let you avoid trouble in the first place.

Your Ruby Toolbox

[image: image]

That’s it for Chapter 8! You’ve added references to your tool box.

[image: image]

BULLET POINTS

[image: image]

	If you need to store more objects, Ruby will increase the size of the heap for you. If you’re no longer using objects, Ruby will delete them from the heap for you.

	Aliasing is the copying of a reference to an object, and it can cause bugs if you do it unintentionally.

	Most Ruby objects have an object_id instance method, which returns a unique identifier for the object. It can be used to determine whether you have multiple references to a single object.

	The string returned by the inspect method also includes a representation of the object ID.

	If you set a default object for a hash, all unassigned hash keys will return references to that single default object.

	For this reason, it’s best to only use immutable objects (objects that can’t be modified), such as numbers, as hash default objects.

	If you need any other kind of object as a hash default, it’s better to use a hash default block, so that a unique object is created for each key.

	Hash default blocks receive a reference to the hash and the current key as block parameters. In most cases, you’ll want to use these parameters to assign a new object as a value for the given hash key.

	The hash default block’s return value is treated as the initial default value for the given key.

	The value of a Ruby assignment expression is the same as the value being assigned. So if an assignment expression is the last expression in a block, the value assigned becomes the block’s return value.

OEBPS/html/graphics/f0092-01.jpg
Animal
name
age

talk
move
report_age

OEBPS/html/graphics/f0205-02.jpg
def greet
puts "Hello, #{yield}!"
end

greet { "Liz" } [ECSBEMIEEE]

OEBPS/html/graphics/f0228-01.jpg
"Amber Graham", 4],
"Brian Martin", 5],
"Mikey Moose", 2]

"Mikey Moose™? Nope
"Mikey Moose? Now E
" Mikey Hows'?

OEBPS/html/graphics/f0205-03.jpg
def alert 1f true

if yield
puts "Block returned true!"
else
puts "Block returned false."
end
end

alert_if_true {
alert_if true {

5} Block returned false
Block returned true!

OEBPS/html/graphics/f0228-02.jpg
— —

Star at the
bop; seareh
the vhle pie

OEBPS/html/graphics/f0148-03.jpg
ivan = HourlyEmployee.new("Ivan Stokes", 0, 0) €——We wont use either
ivan.turn into cashier of Lhese values!

OEBPS/html/graphics/f0228-03.jpg
—
mnmuué\
Keys let you
quickly £ind
data again/

Hash

OEBPS/html/graphics/f0148-02.jpg
class HourlyEmployee

def initialize(name = "Anonymous", hourly wage = 0, hours_per_week = 0)
super (name)
self.hourly wage = hourly_wage &——Set hourly wage
self.hours_per_week = hours_per_ weeks
L 6\
Set hours per week

end

OEBPS/html/graphics/f0205-01.jpg
def triple block result
puts 3 * yield
end

triple block result { 2 } 6
triple_block_result { 5 }

OEBPS/html/graphics/f0228-04.jpg
K Value Key Value

/ \ /

Start of hash {57 3 [FHydrogen™] FLi"| E¥ FLithium[H—— End of hash

Keylualue Sepavate key/value Keylvalue
sepavator Daivs with commas sepavator

OEBPS/html/graphics/f0102-04.jpg
The inheritance diagram for Dog
(that we've seen so far):

The attual inheritance
diagram For Doy

Animal
name
age

talk
move
report_age

OEBPS/html/graphics/f0148-01.jpg
class HourlyEmployee
def turn_into_cashier
self.hourly wage = 12.75&——Set hourly wage

self.hours_per week 256\

. Set howrs per week

end

ivan = HourlyEmployee.new("Ivan Stokes")

ivan.turn_into_cashier

ivan.print_pay_stub Name: Ivan Stokes
- Pay This Perio

$637

OEBPS/html/graphics/f0228-05.jpg
Use a hash key heve, and you'll
a¢t the corvesponding value.

puts elements["Li"] [BERGIEEY
puts elements["H"] Hydrogen

OEBPS/html/graphics/f0092-02.jpg
talk
move
report_age

Dog

Bird

Cat

OEBPS/html/graphics/f0068-01.jpg
class Robot

def head
@head
end

def arms=(value)
@arms = value
end

attr reader :legs, :body

attr writer

ves

attr accessor :feet

def assemble

Glegs = "RubyTek Walkers"
@body = "BurlyBot Frame"
@head = "SuperAI 9000"

end

def diagnostic
puts @arms
puts @eyes
end

ond

robot = Robot.new
robot.assemble
robot.arms

robot.eyes
robot . feet

"MagGrip Claws"
X-Ray Scopes”
"MagGrip Boots"

puts robot.head
puts robot.legs
puts robot.body
puts robot.feet
robot.diagnostic

Output

il Ea Window Fep Tasers
SuperAI 9000
RubyTek Walkers
BurlyBot Frame
MagGrip Boots
MagGrip Claws

X-Ray Scopes

OEBPS/html/graphics/f0102-01.jpg
class Dog < Animal €——The superclass for
end Dog is Avimal

class animal &—
No superelass specified!

B

OEBPS/html/graphics/f0102-02.jpg
puts Dog.superclass

OEBPS/html/graphics/f0102-03.jpg

OEBPS/html/graphics/f0125-02.jpg
Class kmployee

def initialize(name, salary)
Gnane = name €—— Use the "name” parameter 4o set the “Bnane” inskante varizble
@salary = salary:
end

Use the "slary” pavameter o set the "@salary” instance variable

end

OEBPS/html/graphics/f0125-01.jpg
class MyClass
def initialize(my param)
puts "Got a parameter from 'new': #{my_param)"

end ». |
end Forwarded to "itialize’

MyClass.new ("hello") Got a parameter from 'new': hello

OEBPS/html/graphics/f0125-04.jpg
employee = Employee.new Ervor: — > [ERLNREREREEUELTURRRVIS T IRttt S
of arguments (0 for 2)

OEBPS/html/graphics/f0125-03.jpg
employee = Employee.new(Amy Blake™, o0U0L)
SRR \ /‘
». | Pay This Period 1917.81
Forwarded +o "initialize”! o4 $

OEBPS/html/graphics/f0183-02.jpg
def each 3.99

index = 0

while index < self.mce\
yield self([index amount += price
index += 1]\id)

end

end

OEBPS/html/graphics/f0217-02.jpg
Make a new array to hold the

class Array blotk vedurn values.
def map C Loop through
Fivaas., cach clement.

self.each do |item| €

results << yield(item) €—— Pass the element to the blok, and add
o the veburn value to the new areay.
results
o Reburn the arvay of
block veturn valune

OEBPS/html/graphics/f0183-01.jpg
PELERR = Loi-%3p £5.00, 0.3
puts format ("$.2£", total (prices))

37.98

OEBPS/html/graphics/f0217-01.jpg
No need to ereate the
vesult avvays beforehand

("may” ereates them for Make a new arvay vith the

squares of cath number:

squares = [2, 3, 4].map { |number| number ** 2 ,/ Make 3 new avvay vith
cubes = (2, 3, 4].map { |number| number ** 3 }&——— the tubes of cach number
area_codes = ['1-800-555-0199', '1-402-555-0123'].map do |phone|

phone. split ("=") [1] €&———Make 3 new array with
end Just avea codes
o squares, cubes, area_codes

[4, 9, 161

8, 27, 64]
["800" . n402n]

OEBPS/html/graphics/f0183-04.jpg
def each
index = 0
while index < self.length do Iprice|

yield self[index] amount += price
index += 1 M
end

ond

8.99

OEBPS/html/graphics/f0217-04.jpg
["amazing", "funny", "astounding"]

OEBPS/html/graphics/f0240-01.jpg
{"AMBER GRAHAM"=>5, "BRIAN MARTIN"=>4}

OEBPS/html/graphics/f0183-03.jpg
def each
index = 0
while index < self.length do Iprice|

yield self[index amount += price
index += 1 end:
end

end

25.00

OEBPS/html/graphics/f0217-03.jpg
An arvay with all the retuen
¢ values from Find_adiective

adjectives = reviews.map { |review| find_adjective(review))

Call our method. [ts
veturn value will be the
veturn value of the block

OEBPS/html/graphics/f0240-02.jpg
nash

1 ‘one”

> 1, "two™

hash.each do |key, value|

puts "#{key}:
end

#{value}"

one
two

N

OEBPS/html/graphics/f0240-03.jpg
nes =

File.op file

nes = file.readli

w(0)

1 Ky Vahe
goes - gpes
here. heve.

Protess eath ——S votes.each do Iname, count|

cey/value pair.

puts "#{name}: #{count}"
end

AMBER GRAHAM: 5
BRIAN MARTIN: 4

OEBPS/html/graphics/f0240-04.jpg
Yes! T won! I'd like
to congratulate my

opponent on a hard-
fought campaign...

OEBPS/html/graphics/f0080-02.jpg
class Vehicle

All atbributes il be (0 accessor :odometer
';":L't:"z‘;t‘;:];: attr accessor :gas used
e

def accelerate
puts "Floor it!™
end

def sound_horn
puts "Beep! Beep!"
Sowill all) end
instante

methods: [gof steer

puts "Turn front 2 wheels."
end

def mileage
return @odometer / Ggas_used
end

end

OEBPS/html/graphics/f0080-01.jpg
Superclass.

odometer
gas_used

mileage
accelerate
sound_horn
steer

Subelass. Subtlass. Subelass.

Car Truck Motorcycle

OEBPS/html/graphics/f0022-03.jpg
Get My Number Game
Written by: you!

puts "Welcome to 'Get My Number!'"

Get the player's name, and greet them.
print "What's your name? "

input = gets

name = input.chomp

puts "Welcome, #{name}!"

Store a random number for the player to guess.
puts "I've got a random number between 1 and 100."
Ow mew 4 puts "Can you guess it?"
tode! target = rand(100) + 1

OEBPS/html/graphics/f0022-02.jpg
puts rand(100) 67
puts rand(100) 25

OEBPS/html/graphics/f0022-01.jpg

OEBPS/html/graphics/f0114-04.jpg
Cresting our class

Float and\/

You are hevel ——> Frivio

Formatting

numbers

initialize

(Back on track)

OEBPS/html/graphics/f0114-03.jpg
Name: Jane Doe
Pay This Period: $1917.8082191780823

OEBPS/html/graphics/f0114-02.jpg
class Employee
We've omitting the atribute
e veato e code for by,
Now, whether or not @salary is

def print pay stub Float, we'll get a Float vesult

puts "Name: #{@name}" f

pay_for_period = (@salary / 365.0) * 14

puts "Pay This Period: $#{pay_: fonerlod)"<——Prunt the amount paid.
end

end

employee = Employee.new
employee.name = "Jane Doe™ ot fiel
employee.salary = 50000 €—— Using a Fixnum here is just fine!

employee.print pay stub

OEBPS/html/graphics/f0114-01.jpg
>> 50000 / 365.0
136.986301369863

OEBPS/html/graphics/f0172-03.jpg
def twice (&my_block)

puts "In the method, about to call the block!" do
my_block.call puts "Woooo!"
puts "Back in the method, about to call the block again!™\ end
my_block.call

puts "Back in the method, about to return!"
)

OEBPS/html/graphics/f0172-04.jpg
et Twice (&Y B oock)
puts "In the method, about to call the block!"

my_block.call
puts "Back in the method, about to call the block again! do
puts "Woooo!"

my_block.call
endy

puts "Back in the method, about to return
ond

OEBPS/html/graphics/f0172-01.jpg
Declaring another f>def twice (smy_block)
method that puts "In the method, about to call the block!™
takes a block. my_block.call &——Call the blotk-
puts "Back in the method, about to call the block again!"
my_block.call €—— Call the block AGAIN.
puts "Back in the method, about to return!"
end

Calling the method ——> twice do
and passing it a block. puts "Woooo!"
end

OEBPS/html/graphics/f0172-02.jpg
In the method, about to call the block!

Woooo!
Back in the method, about to call the block again!

Woooo!
Back in the method, about to return!

OEBPS/html/graphics/f0057-01.jpg
class Dog

Gef move (destination)
puts "#{@name} runs to the #{destination}.
end

def make_up_age

Jur P9 eage =5
¢ode end
def report_age
puts "#{Gname} is #{Gage} years old."
end
end

dog = Dog.new
dog.make_up_name
dog.move ("yard")
dog.make_up_age

dog.report_age
Sandy runs to the yar
Sandy is 5 years old

OEBPS/html/graphics/f0057-02.jpg
Instance ——>
variables.

nstance ——>
methods.

name
age

talk
move

Dog

OEBPS/html/graphics/f0057-03.jpg
That's an improvement.
But this class only lets
us make 5-year-old

dogs named "Sandy"!

OEBPS/html/graphics/f0275-02.jpg
bodies = Hash.new do |hash, key|
body = CelestialBody.new
body.type = "planet”
hash[key] = body
"I'ma little teapot”

end
The value veturned
from the block!.
b bodies['Mars'] — a little teapot
p bodies['Mars'] #<CelestialBody:0x007£CEB30££000 @typ

The value assigned
4o the hash!

OEBPS/html/graphics/f0011-01.jpg
T've put together this
list of 8 requirements for
you. Can you handle it>

Gary Richardott
Game Designer

OEBPS/html/graphics/f0183-05.jpg

OEBPS/html/graphics/f0275-01.jpg
bodies = Hash.new do |hash, keyl
body = CelestialBody.new
body.type = "planet"
hashlkey] = body
body €——This veturn value.

end

p bodies ['Mars'] €——Is what we get here!

#<Celes:

1Body : 0x007fe£7a9132c0

planet”>

OEBPS/html/graphics/f0161-05.jpg
We don't want an index
nder =0 cql bo e gt
while index <= prices.length

puts prices[index]

index += 1
et

OEBPS/html/graphics/f0184-03.jpg
Define the variable

bl
sresting = nite— BEFORE the block
eun block.d Assign a new value
_block do
DBL0Sk 00 etzone—— "t the bleck
end

puts greeting €&——Print the variable

OEBPS/html/graphics/f0161-06.jpg
We want indexes LESS
index = 0 than the length.
while index < prices.length

puts prices[index]
index 1
end

OEBPS/html/graphics/f0184-02.jpg
AL TUR DRCK.

yield
end
Define the variable
run_block do within the blotk.
greeting - "hellov€—
end

puts greeting €——Tey 4o print the variable.

undefined local variable
or method 'greeting

OEBPS/html/graphics/f0113-04.jpg

OEBPS/html/graphics/f0023-01.jpg

OEBPS/html/graphics/f0184-01.jpg
Define the variable
i within the method

greeting = "hello"€—
end
my_method €—— Call he method

puts greeting €——Tey 4o print the vaviable

undefined local variable
or method 'greeting

OEBPS/html/graphics/f0056-02.jpg
dog = Dog.new
dog.make_up_name

dog.talk Sandy says Bark!

OEBPS/html/graphics/f0056-01.jpg
class Dog

def make_up_name
Store a value in an — @name = "Sandy"

»etance vavidble end

def talk
puts "#{@name) says Bark!"

end
k Aecess the instante

end
vaviable.

OEBPS/html/graphics/f0079-02.jpg
You can sill all all hese
inherited methods and
attribute accessors on

mstances of the subelasses,

Just a5 i the subelasees

detlared them divecty!

Subelass.

Superelass.

odometer
gas_used

mileage
accelerate
sound_horn
steer

Subelass.

Subelass.

Motorcycle

odometer odometer odometer
gas_used gas_used gas_used
mileage mileage mileage
accelerate accelerate accelerate
sound_horn sound_horn sound_horn
steer steer steer

OEBPS/html/graphics/f0079-01.jpg
Superclass.

Vehicle

odometer
gas_used

mileage
accelerate
sound_horn
steer

Subelass. Subelass. Subelass.

Car Truck Motorcycle

OEBPS/html/graphics/f0023-02.jpg
remaining_guesses = 10 - num guesses
i o i v
suts remaining Guesses + " guesses left.™ e Giesan e

OEBPS/html/graphics/f0113-02.jpg
>> 50000.0 / 365.0

=> 136.986301369863

>> (50000.0 / 365.0).class
=> Float

OEBPS/html/graphics/f0136-01.jpg
class Employee "self” omitted, still works!

def print_pay_stub / Pself” omitked, still works!
puts "Name: #{nan}"
pay_for_period = (salary / 365.0) * 14
formatted_pay = format("$%.2£", pay_for_period)
puts "Pay This Period: #{formatted pay)"

end

end Stil works]

Employee.new ("Amy Blake", 50000).print_pay stub [NENE -

Pay This Period: $1917.81

OEBPS/html/graphics/f0023-03.jpg
remaining_guesses = 10 - num guesses

puts remaining_guesses.to_s + " guesses left." 10 guesses left

OEBPS/html/graphics/f0113-03.jpg
>> 5000 / 365
136.986301369863

OEBPS/html/graphics/f0113-01.jpg
>> 50000 / 365
Should be 136.9863... > 136

OEBPS/html/graphics/f0229-01.jpg
Hash key we've

assigning 3 value \fov-l (New value.

elements["Ne"] ‘Neon!

OEBPS/html/graphics/f0161-01.jpg
prices = [3.33, 25.00, 8.39]

Fiest item.
puts prices(0le—"
puts prices[1]€——Setond item

puts prices (21€—

Third itewm.

OEBPS/html/graphics/f0161-02.jpg
Start with index O o5p until we veath the

index =0 € end of the arvay.

while index < prices.length€

puts prices[index]€—— pecess the element at
index += 1 (\ +the eurvent index.

Sad Move 4o the next
arvay element.

OEBPS/html/graphics/f0274-01.jpg
When the blotk is ¢alled
later, it will veceive a
vefevente to the hash and
the key being aceessed

bodies = Hash.new do |hash, key\<//
body = CelestialBody.new
body.type = "planet"
hashlkey] = body
body

. Assign the object to the current hash key.

OEBPS/html/graphics/f0161-03.jpg

OEBPS/html/graphics/f0274-02.jpg
Generates a new object.
VS | bodies['Buropa’]

b Lf’"‘zh“‘]ﬁ‘ ‘:’”“ﬁp bodies ['Europa']
oRject as the line above. bodies['Europa'].type = 'moon’
p bodies('Eurcpa']

Al the same object.

Changes we make

will be saved
#<CelestialBody: 0x007£b6389eed00 @type="planet">

#<CelestialBody: 0x007£b6389eed00 @type="planet">

IR R RIRRRPREEY #<CelestialBody:0x007£b6389%eed00 @type="moon'">

OEBPS/html/graphics/f0161-04.jpg

OEBPS/html/graphics/f0274-03.jpg
Hash.new do |hash, key|

We SHOULD assign bodies

o the hash heve. body = CelestialBody.new
£ we don't...—»body.type = "planet”
body
We'll get a diffevent end
object each time we
attess this key/ p bodies['Europa’'])

. B p bodies['Europa’]
anges we make ——> bodies 'Europa’].type = 'moon’ .
vill be distarded! p bodies['Europa’] Al diffferent objects!

#<CelestialBody:0x007££95507ee90 @type="planet">
#<CelestialBody:0x007££95507ecd8 @type="planet">
LRI RTERCNIEEY ji<CelestialBody: 0x007££95507eaf8 @type="planet">

OEBPS/html/graphics/f0045-01.jpg
That's looking pretty messy with just
three animal types and two actions. Those "if"
and "elsif" statements are long already, and look at
all those method arguments! Isn't there a better
way to organize this code?

OEBPS/html/graphics/f0045-03.jpg
def talk(animal type, name)
if animal_type "bird"
puts "#{name} says Chirp!
elsif animal_type "dog"
puts "#{name} says Bark!"
elsif animal_type "cat”
puts "#{name} says Meow!"
elsif animal_type "lion"
puts "#{name} says Roar!"
elsif animal_type "cow"
puts "#{name} says Moo."
elsif animal_type "bob"
puts "#{name} says Hello."
elsif animal_type "duck"
puts "#{name} says Quack."
-+« &——We don't even have voom
and o print all this.

end

Chirp!"

OEBPS/html/graphics/f0093-01.jpg
The exatt same
tode that was

in the Dog class!

class Animal
rattrireader :name, :age

def name=(value)

if value
raise "Name can't be blank!"
end
@name = value
end

def age=(value)
if value < 0
raise "An age of #{value} isn't valid!"
end
@age = value
end

def talk
puts "#(@name} says Bark!"
end

def move (destination)
puts "#{Gname} runs to the f#{destination}."
end

def report_age
puts "#{Gname} is #{@age} years old."
end

s

OEBPS/html/graphics/f0045-02.jpg
We need the
destination avoument..
b

move
move

"bird", "Whistle
"cat", "Smudge",

“But do we veally have
o pass these eath time?

OEBPS/html/graphics/f0093-02.jpg
class Dog < Animal
end

class Bird < Animal
end

class Cat < Animal
end

We dont’ have to write any
methods heve; these elasses wil
inherit all the methods from
the Avimal class above!

OEBPS/html/graphics/f0150-02.jpg
Accept the employee

class HourlyEmployee < Employee . s j pavameter

def self.security_guard (ndme)
HourlyEmployee.new (nalle, 19.25, 30)e———— Use predefined hourly _vane
end Use the given name to ahdb.hwnl_w-{;;:k or
eath employee
def self.cashier (name) Construct an employee ploy

HourlyEmployee.new (name, 12.75, 25) €—— Same for the
end tashiers.

def self.janitor (name)
HourlyEmployee.new (name, 10.50, 20) €——Same for the
end janitors.

end

OEBPS/html/graphics/f0263-02.jpg
betty.request_date Sure, let's g
A second vequest to ——> candace.request_date Sorry, I'm busy
the SAME object!

OEBPS/html/graphics/f0150-01.jpg
MyClass.my_class_method (1, 2) Hello from MyClass!
My parameters 2

OEBPS/html/graphics/f0263-03.jpg

OEBPS/html/graphics/f0263-01.jpg
betty = Lovelnterest.new
candace = betty

p betty.object_id
p candace.object_id

70115845133560
70115845133560

Same object!

Two

references

candace

1106 W Oak st
Heap, R 90210

OEBPS/html/graphics/f0204-01.jpg
def print block result
block_result = yield &——Assigns the vesult of the
puts block_result block 4o a variable.

end

print_block_result { 1 + 1 }

print_block result do
"I'm not the last expression, so I'm not the return value."
"I'm the result!"

end

print_block_result { "I hated Truncated".include?("Truncated")

2

I'm the result!
true

OEBPS/html/graphics/f0229-02.jpg
sl = 11 S One Sy hent Se Sy tturea Sea-ul

o mush(:three] [IIY
o mush(1] "one"
p mush["two"] 2

OEBPS/html/graphics/f0229-03.jpg
(2.93, 25.00, 3.99]

) 1 2

OEBPS/html/graphics/f0147-01.jpg
ivan
harold
tamara
susie

edwin
ethel

angela
stewart

HourlyEmployee.new ("Ivan Stokes",

HourlyEmployee.new ("Harold Nguyen"
HourlyEmployee.new
HourlyEmployee.new

Tamara Wells
Susie Powell

= HourlyEmployee.new ("Edwin Burgess"
= HourlyEmployee.new ("Ethel Harris

HourlyEmployee.new

Ruby lets us use as many

spate tharatters as we

want, so we've aligned this
(tode for easier veading,

12.75, 25)
12.75, 25)
: 12.75, 25)
' 12.75, 25)

10.50, 20)
. 10.50, 20)

HourlyEmployee.new("Angela Matthews", 19.25, 30)
Stewart Sanchez", 19.25, 30)

OEBPS/html/graphics/f0229-04.jpg
Tuesday ™

T

Value

OEBPS/html/graphics/f0229-05.jpg
my_hash = {"one" "six"} Output:

puts my_hash[5]

i » ithree =>

four™,

puts my_hash["one"] e
puts my_hashl) four

my_hash(T8 A
puts my hash["seven"]

OEBPS/html/graphics/f0252-04.jpg
p Candidate.new("Carl Barnes")

|] ArgumentError ssing
keywords: age, occupation

OEBPS/html/graphics/f0252-03.jpg
#<Candidate:0x007fcec28le5a0 @name="Carl Barnes",
@age=49, @occupation="Attorney", @hobby=nil, @birthplace="Sleepy Creek'>

OEBPS/html/graphics/f0252-02.jpg
class Candidate
attr_accessor :name, :age, :occupation, :hobby, :birthplace
def initialize(name, age:, occupation:, hobby: nil, birthplace: "Sleepy Creek")

self.name = name '_’S
Keywords, but

self.age = age
self.occupation = occupation with no defaults!
self.hobby = hobby
self.birthplace = birthplace
end
and

OEBPS/html/graphics/f0218-01.jpg
U Truncateq i

Truncateq ;.
.. Truncateq j

“Eunnyn,
ive (review))

map { |review| find adject
= reviews.
adjectives

"astoundingn)

OEBPS/html/graphics/f0252-01.jpg
class Candidate
attr_accessor :name, :age, :occupation, :hobby, :birthplace
def initialize(name, age, occupation, hobby: nil, birthplace: "Sleepy Creek")

Ovdinary pavameters,
not keywords!

end
end

OEBPS/html/graphics/f0182-01.jpg
index = U
while index < prices.length

amount += prices[index] From here
index +
end To here!

prices.each { |price| amount += price }
T We don't have £o pull the item

out of the arvay any more;
"eath” does that for us!

OEBPS/html/graphics/f0218-03.jpg
def map
results = []
self.each do |item|
results << yield(item)
end
results
end

.Truncated is funny...

{

|review|

find_adjective (review))
naadjach veirevient

OEBPS/html/graphics/f0218-02.jpg
def map
results = [] "...Truncated is amazing.

self.each do |item| _—
(

results << yield(item) |review| find adjective(review)]
end —reAe e e

results
end

amazing

OEBPS/html/graphics/f0218-05.jpg

OEBPS/html/graphics/f0182-02.jpg
def total(prices) _ Gtart the total at O

amount = 0€—

prices.each do |price| €——Protess eath price
amount += price €——Add the urvent prite

end to the total
amount &~
end Return the final total

prices = [3.99, 25.00, 8.99]

puts format ("$.2£", total (prices)) 37.98

OEBPS/html/graphics/f0218-04.jpg
del map
results = [] "...Truncated is astounding..."

self.each do |item| _—

;es“lts << yleld(item) |review| find adjective (review))
en JLind_adjective (review)

results
end

stounding

OEBPS/html/graphics/f0021-03.jpg
puts "hello".methods to i
length

upcase Plus 400 many
oo “———more 1o list heve!

OEBPS/html/graphics/f0044-01.jpg
def talk{animal type, name)
if animal type == "bird"
puts "Flname} says Chirp! Chirp!"
elsif animal type == "dog"
puts "Flname] says Bark!"

elsif animal type "cat" The 3“""3'» tY\"d
puts "§(name] says Meow!" parameter is use

end 4o select whith
end string is printed

def move (animal_type, name, destination)
if animal type == "bird"
puts "#iname} flies to the #{destination}."
elsif animal type "dog"
puts "Finame} runs to the #{destination}."
elsif animal type "cat™
puts "#{name} runs to the #{destination}."
e This method is the same for
end all animal ypes, so there's

arameter.
def report_age(name, agel——"° animal type p:
puts "#{name} is #{age} years old."
end

OEBPS/html/graphics/f0115-01.jpg
Name: Jane Doe
Pay This Period: $1917.8082191780823

OEBPS/html/graphics/f0021-02.jpg
puts 42.methods

Plus to0
many more
<10 list. heve!/

OEBPS/html/graphics/f0044-02.jpg
move ("bird", "Whistler", "tree") Whistler flies to the tree.
talk("dog", "sadie") Sadie says Bark!
talk("bird", "Whistler") Whistler says Chirp! Chirp!
move ("cat", "Smudge", "house") Smudge runs to the house.
report_age ("Smudge", 6) Smudge is 6 years old.

OEBPS/html/graphics/f0021-01.jpg
undefined method ‘upcase' for 42:Fixnum (NoMethodError)

OEBPS/html/graphics/f0138-02.jpg
class SalariedEmployee < Employee
attr_reader :salary

def salary=(salary)
Code to validate and set @salary
end

det print_pay stub Calls print,_name method
print_name @ inherited from supertlass.
This tode is the same as pay_for_period = (salary / 365.0) * 14
we had in the old Employee d formatted pay = format ("$%.2£", pay_for_period)
peint_pay_stub method (puts "Pay This Period: #{formatted pay}"
end

ani

OEBPS/html/graphics/f0138-01.jpg
ELA8E EIDLOYoS
attr_reader :name

def name=(name)
4 Code to validate and set @name €—— Well be omitting all
end attribute aceessor
¢ode for brevity.
def print_name
puts "Name: #{name}"
end
Remember, this is the same
end as a eall 4o self name.

OEBPS/html/graphics/f0138-03.jpg
salaried employee = SalariedEmployee.new
salaried_employee.name = "Jane Doe"

salaried_employee.salary = 50000
salaried_employee.print_pay_stub Name: Jane Doe
Pay This Period: $1917.81

OEBPS/html/graphics/f0021-05.jpg

OEBPS/html/graphics/f0115-03.jpg
down_arrowus
downward_arrow€

right_arrow

upward_arrow (—\

—> left_arrow
up_arrows

OEBPS/html/graphics/f0021-04.jpg
puts 42.class Fixnum
puts "hello".class [NATSEE]
puts true.class TrueClass

OEBPS/html/graphics/f0115-02.jpg
result = format("Rounded to two decimal places: %0.2f%, 3.14153263)
puts result

Rounded to two decimal place:

OEBPS/html/graphics/f0230-02.jpg
protons = {"H
puts protons.class

OEBPS/html/graphics/f0253-01.jpg
Q000006

def create(options = {})
puts "Creating #(options[:database]} for owner #{options[:user]}..."
end

def connect (database:, host: "localhost", port: 3306, user: "root")
puts "Connecting to #{database} on #{host} port #{port) as #{user}..."
end

create (database: "catalog", user: "carl")
create (user: "carl")

create

connect (database: "catalog")

connect (database: "catalog", password: "1234")

connect (user: "carl")

Creating for owner carl...

unknown keyword: password

Connecting to catalog on localhost port 3306 as root...
Creating catalog for owner carl...

Creating for owner ...

missing keyword: database

OEBPS/html/graphics/f0230-03.jpg
10}

OEBPS/html/graphics/f0276-01.jpg
bodies = Hash.new do |hash, key|
body = CelestialBody.new
body.type = "planet”
hash[key] = body
body €—— Separate block veturn value

end

p bodies['Mars']

#<CelestialBody:0x007fef7a9132c0 @type="planet">

OEBPS/html/graphics/f0230-01.jpg
my_hash = {"one" Output:
puts my_hash[5]

puts my_hash(["one"] i”‘
puts my_hash [:three | f::r
my_hash["seven” 1 = 8 8

puts my hash["seven"]

OEBPS/html/graphics/f0230-06.jpg
o protons.keys [

p protons.values

OEBPS/html/graphics/f0230-07.jpg
protons.each do |element, count]
puts "#{element}: #{count)"
end

OEBPS/html/graphics/f0230-04.jpg

OEBPS/html/graphics/f0230-05.jpg
puts protons.has_key? ("Ne") true

puts protons.has_value? (3) true

OEBPS/html/graphics/f0276-03.jpg
greetings = Hash.new do |hash, key|
hash(key] = "Hi, #{key}"
end

p greetings["Kayla"]

OEBPS/html/graphics/f0276-02.jpg
B

my_hash {}
my_array = (]
ny_integer = 20
my_hash['A']

['Apple']

my_array[0] = 245

["Apple"]
245

Values of expressions
same 25 values assigned.

OEBPS/html/graphics/f0276-05.jpg
Hash.new do |hash, key|

bodies =
body = CelestialBody.new
body.type = "planet"
hash[key] = body €&——Let this be the block

end veturn value.

p bodies['Mars']

8 @type

1X007£a769a3:

#<CelestialBod;

OEBPS/html/graphics/f0276-04.jpg

OEBPS/html/graphics/f0265-01.jpg
Stoves a vekerente to @
o CelestialBody.

altair = CelestialBody.new
altair.name = 'Altair"'
altair.type = 'star'

Copies the SAME veferente ——> polaris = altair

to a new vaviable! polaris.name = 'Polaris'
vega = polaris
vega.name = 'Vega'

Copies the same veference
4o a THIRD vaviable!

puts altair.name, polaris.name, vega.name

OEBPS/html/graphics/f0265-03.jpg
Vega

Vega
Ve
— Create the first
CeleskialBody
(Instead of copying

altair = CelestialBody.new the vefevence, get 3
altair.name = 'Altair' vefevente 4o a setond
altair.type = 'star' CelestialBody-
polaris = CelestialBody.new&—
polaris.name = 'Polaris' We need to set the type on

polaris.type = 'star' € cath object separately.
vega = CelestialBody.new

vega.name = 'Vega'
vega.type = 'star’ g ;:@iﬁf”‘ toa

puts altair.name, polaris.name, vega.name [BNRZEES

Polaris
Vega

OEBPS/html/graphics/f0265-02.jpg
Three
veferences.

) One object!
Z40N vy St !
Heap, R8 90210 :

Heap, %8 90210

LT
<
3
Q
Gl

OEBPS/html/graphics/f0149-02.jpg
Also vefers class MyClass
to MyClacs!
def self.my_class_method (pl, p2)
puts "Hello from MyClass!"
puts "My parameters: #(pl}, #(p2}"
end

end

OEBPS/html/graphics/f0149-01.jpg
Specities that the
method is being class MyClass Method name
Gekined on the ¢ glass.
def MyClass.my_class_method(pl, p2) &€—— Parameters
puts "Hello from MyClass!"
Method body. {puts "My parameters: #(pl}, #(p2}"
end

End of definition.

end

OEBPS/html/graphics/f0067-02.jpg
attr_accessor

attr_writer

reyes

attr_reader

@feet

@head

:head

OEBPS/html/graphics/f0193-01.jpg
Let me go over the list with

you... Should T keep the steak?

OK, T'll keep it. The chicken?

Keep, OK. The liver? ..Get rid of
it? Consider it done!

OEBPS/html/graphics/f0032-01.jpg
get_number.rb

OEBPS/html/graphics/f0103-01.jpg
class Animal < Opject

Implicitly
Pas inserted by
class Dog < Animal Ruby.

end

N fnberiks from Arimal,
whith means it
inherits from Objeet]

OEBPS/html/graphics/f0067-01.jpg
class Robot

def
@head
end

def (value)
@arms = value
end

:legs, :body

attr writer

:feet

def assemble
Glegs = "RubyTek Walkers"
@body = "BurlyBot Frame"
= "SuperAI 9000"

end

def diagnostic
puts
puts @eyes
end

Rinel

robot

Robot.new
robot.assemble
robot.arms lagGrip Claws"

robot.eyes = "X-Ray Scopes"
robot.feet = "MagGrip Boots"

puts robot.head
puts robot.legs
puts robot.body
puts robot.feet
robot.diagnostic

Output

il Edi Window Fel
SuperAI 9000
RubyTek Walkers
BurlyBot Frame
MagGrip Boots
MagGrip Claws

X-Ray Scopes

OEBPS/html/graphics/f0094-03.jpg
class Cat < Animal
et talke———— Overrides the inherited method
puts "#{@name] says Meow!"
end
end

class Bird < Animal .
Get talke————— Ouervides the inherited method
puts "#{@name} says Chirp! Chirp!"
end
end

OEBPS/html/graphics/f0094-02.jpg
whiskers = Cat.new("Whiskers™)
polly = Bird.new("Polly")

whiskers.talk Whiskers says Bark
polly.talk Polly says Bar!

OEBPS/html/graphics/f0094-01.jpg
wniskers = Cat.new("Wniskers"™)
fido = Dog.new("Fido")
polly = Bird.new("Polly")

polly.age = 2
polly.report_age
fido.move ("yard")
whiskers.talk

Polly is 2 years old.

Fido runs to the yard.
Whiskers says Bark!

Wait... Whiskers
Sy

OEBPS/html/graphics/f0264-03.jpg
puts altair.object_id 70189936850940
puts polaris.object_id [WNSECTEECTELIVIN ¢ Same object!
puts vega.object_id 70189936850940

OEBPS/html/graphics/f0264-01.jpg

OEBPS/html/graphics/f0264-02.jpg
class CelestialBody
attr_accessor :type, :name
end

altair = CelestialBody.new
altair.name = 'Altair' To save ime, he wants to
altair.type = 'star' __ copy the previous star..

polaris = altair€—

polaris.name = 'Polaris' €—-find just thange

vega = polaris the name.
vega.name = 'Vega' € Same
heve
puts altair.name, polaris.name, vega.name Vega
RCEEN < But it looks like the
Vega names on all 3 stars

are now identical!

OEBPS/html/graphics/f0171-02.jpg
Code from puts "We're in the method, about to invoke your block!"

uts "We're in the blocl

the method P
stays the ane| puts "We're back in the method!" Block code hanges!

Code from e in the method, about to invoke your bloc!
the me{had\ puts "It's a block party! 6\
stays the same I Tote "we're back in the method!" Block code ehanges!
Code from puts "We're in the method, about to invoke your block!"

the method puts "Wooooo!"
:\) <—\

stays the sam e o e T 0 e Block code ehanges!

OEBPS/html/graphics/f0194-01.jpg

OEBPS/html/graphics/f0194-02.jpg
Lines ave wrapped so they fit here.

Line |

Line 2
Line 3

Line &
Line 5

Line b
Line 7

Line 8

Normally producers and directors would stop this kind of These veviewer
garbage from getting published. Truncated is amazing in that bylines need to
it got past those hurdles.

be ignoved

Joseph Goldstein, "Iruncated: Awful", New York Minute€—
Guppies is destined to be the family film favorite of the €&——There are veviews
summer. for other movies
--Bill Mosher, "Go see Guppies", Topeka Obscurant mixed in here.
Truncated is funnf - it can't be categorized as comedy, The adjectives are
romance, or horror, because none those genres would want ¢apitalized in the collage,
to be associated with it. but not in the text.
--Liz Smith, "Truncated Disappoints", Chicago Some-Times -
I'm pretty sure this was shot on a mobile phone. Truncated =
is astounding in its disregard for filmmaking aesthetics. =
o, reviews.txt

Bill Mosher, "Don't See Truncated",

speka Obscurant

OEBPS/html/graphics/f0203-01.jpg
Normally producers and directors would stop this kind of
garbage from getting published. Truncated is amazing in that
it got past those hurdles.

--Joseph Goldstein, "Truncated: Awful", New York Minute
Truncated is funny - it can't be categorized as comedy,
Tomance, or horror, because none of those genres would want
to be associated with it.

--Liz Smith, "Truncated Disappoints", Chicago Some-Times
I'm pretty sure this was shot on a mobile phone. Truncated
is astounding in its disregard for filmmaking aesthetics.

--Bill Mosher, "Don't See Truncated", Topeka Obscurant

OEBPS/html/graphics/f0089-02.jpg
Subelass

Overriding

Inheritance

Superclass

Replaces a method inherited from a
superclass with new functionality.

Allows a single method or attribute to
be shared by multiple classes

A class that holds the code for
methods that are shared by one or
more other classes.

A class that inherits one or more
methods or attributes from a
superclass.

OEBPS/html/graphics/f0171-01.jpg
Y Aeenod o
puts "It's a block party!"
end

We're in the method, about to invoke your block!

It's a block party!
We're back in the method!

my_method do
puts "Wooooo!"
end

We're in the method, about to invoke your block!

Wooooo!
We're back in the method!

OEBPS/html/graphics/f0066-01.jpg
class Widget
@size = 'large’
def show size
puts "Size: #{@size}"
end

end Enpy

widget = Widget.new
widget.show_size

OEBPS/html/graphics/f0094-04.jpg
Whiskers says Meow!
Polly says Chirp! Chirp!

OEBPS/html/graphics/f0033-03.jpg
Our players will love
this! You implemented
everything we needed, and
you did it on time, tool

OEBPS/html/graphics/f0104-03.jpg
lucy = Dog.new
lucy.name = "Lucy"
lucy.age = 4

rex = Dog.new
rex.name = "Rex"

rex.age = 2

puts lucy.to s, rex.to_s Lucy the dog, age 4
Rex the dog, age 2

OEBPS/html/graphics/f0104-02.jpg
Override!

name
age

talk
move

report_age

Animal

to_s

Dog

OEBPS/html/graphics/f0033-01.jpg

OEBPS/html/graphics/f0033-02.jpg
File Edit_Window Help Cheats
$ ruby get number.rb

Welcome to 'Get My Number!'

What's your name? Gary

Welcome, Gary!

I've got a random number between 1 and 100.
Can you guess it?

You've got 10 guesses left.

Make a guess: 50

Ocps. Your guess was LOW.

You've got 9 guesses left.

Make a guess: 75

Oops. Your guess was HIGH.

You've got 8 guesses left.

Make a guess: 62

Oops. Your guess was HIGH.

You've got 7 guesses left.

Make a guess: 56

Ocps. Your guess was HIGH.

You've got 6 guesses left.

Make a guess: 53

Good job, Gary!

You guessed my number in 5 guesses!

$

OEBPS/html/graphics/f0104-04.jpg
puts lucy, rex Lucy the dog, age 4
Rex the dog, age

OEBPS/html/graphics/f0089-01.jpg
class' c;me:a' DigitalCamera '

def

8

<
load '

1

2’
E

take_picture

puts "Triggering shutter." .

puts "Winding £ilm." '

def
en end .

puts "Inserting memory ca:d.".

load '

Camera

Sample cod
camera = Camera.new
camera.load

camera.take_picture

camera2 = DigitalCamera.new
camera2.load

camera2.take_picture

Outpu

IR
Winding film.
Triggering shutter.

Inserting memory card.
Triggering shutter.

OEBPS/html/graphics/f0219-01.jpg
The blotk takes up more than one
line mow, so we follow convention and
L— switth 4o @ "do ... end” block-
. K wi
djoctives = revions.nap 5 Irevieul ot
sd3ective = Eina sddsctive revion) € e neteod of vebarin

"'#{adjective.capitalize) " €~

end
Heve's our new veturn value.

OEBPS/html/graphics/f0010-01.jpg
42 / &
a2 4

7
sy 3
vaviable vetuens e
ratever vale "zaphod"
is ass\gnzd\/ "Zafh ?’d” number = -32

name . upcase e\\/w ean call

mekhods on an
»ZAPHOD” e 7
..........)
..................... 3 vaviable. 27
g, L
aphod” . upcase&—___But you dﬂy{,—)
» -
"ZAPHOD” even have to 32.abs
APHOD” ... eeitin? 3 This adds 10 to
aviable first! 3L e e e
You tan call 3 name.reverse “aviable, then
method on the number 4= assigns the vesul
value veturned = 4= 107 pack to the
Lrom a method- vaviable:
e seensessoerse
"DOHPAZ” Th rand(25) ?call, we Ju,t don't
2 gt M st
i va)
> name.class vandom) “n""“"‘""ma‘"’“t Ehis soon
An object’s)
nes detides String mumber.class MR
hat kind of < SO A ?kihdo(:
You can "multiply” o b

object it is
name * 3

"Zaj

(strings!

OEBPS/html/graphics/f0219-02.jpg
"...Truncated 1is amazing..."
def map g

results 8}
do |reé¥iew]
self.each do |item|
adjective = find adjective (review)
results << yield(item —ls
#{adjective.capitalize}'"
end "
results
end

"Amazing"

OEBPS/html/graphics/f0104-01.jpg
class Dog < Animal

def to_s
"#{@name} the dog, age #{age}" €——This veturn value is the
end format we'd like to see

end

OEBPS/html/graphics/f0242-02.jpg
def print_summary(candidate)

puts "Candidate: #{candidate.name}"

puts "Age: #{candidate.age}"

puts "Occupation: #{candidate.occupation}"
puts "Hobby: #{candidate.hobby}"

puts "Birthplace: #{candidate.birthplace}"
end

candidate = Candidate.new("Carl Barnes", 49,
print summary (candidate)

"Attorney",

c

nil,

We have 4o provide an
avgument. cven if we'e

ok wing it

"Miami")

OEBPS/html/graphics/f0242-01.jpg
class Candidate
attr_accessor :name,
def initialize (name,
Use the !

self.
parametevs (2075

name = name
age = age

Set up attribute

attessors.

:age, :occupation, :hobby, :birthplace€—

age, occupation, hobby, birthplace) €——Set up Candidatenew to
take arguments.

to set the Jself occupation = occupation

objett)self.hobby = hobby

athributes. (self.birthplace = birthplace

end
and

OEBPS/html/graphics/f0160-01.jpg
mix = (“one”, ¢, "three”, Time.new)] letters =

Cone”, 2, "three”, 2014-01-01 I111:13 OO

T\ You tan have instantes of different

elasses in the same arvay!
mix.length letters.shift

i the fivst ele
in Ehe avvay; and veburnd it

letters shift” peemanently
modifies the arvay.

"Eu N, e

letters.join("/")

e/o/s

You tan call methods
divettly on the abjects

jou vetrieve.
mix[0].capitalize@—" letters.pop

npy

‘pop” also permanently
modifies the avvay-

mix[1].capitalize letters

undefined method “capitalize’ for 2:Fiknum i s il

1€ you mix classes, wateh
what methods you ¢alll

OEBPS/html/graphics/f0219-03.jpg
“...Truncated 1s funny..

def map
results = i
selhf‘ each ér]) litem| =
: adjective = find_adjective(review)

lts << yield(it ‘
results << yield(item '#{adjective.capitalize}'"
end
results

end

end ey

OEBPS/html/graphics/f0242-04.jpg
class Candidate
attr_accessor :name, :age, :occupation, :hobby, :birthplace
def initialize(name, age, occupation, hobby = nil, birthplace)

end Provide a default value to make
end the parameter optional...

OEBPS/html/graphics/f0219-04.jpg
def map «..Truncated
results 0

self.each do |item|

results << yield(item
end

results
end

1s astounding...”

do |review|

adjective = find adjective (review

"'#{adjective.capitalize}'"
P b N S ittt)
end

Astounding' "

OEBPS/html/graphics/f0242-03.jpg
Candidate: Carl Barnes
Age: 49

Occupation: Attorney
Hobby:

Birthplace: Miami

OEBPS/html/graphics/f0055-03.jpg
Just def alert_ceo
magine if —>message = "sell your stock."

Ehis local email(ceo, message) weve
variable.. end ateessible
heve.

il shAreRel AR, MR TR

Whew! Close one

Ervor undefined local variable
or method 'message

OEBPS/html/graphics/f0242-05.jpg
Candidate.new("Carl Barnes”, 49, "Attorney", , "Miami")

2T] syntax error, un cted expecting '
yn g

OEBPS/html/graphics/f0055-02.jpg
class Dog

def make_up_name
name = "Sandy!
end &—————"name” drops out of seope
3 soon as the method ends

def talk
puts "#{name} says Bark!"
end
This variable no

end lonaer exists heve!

OEBPS/html/graphics/f0055-01.jpg
class Dog

def make_up_name

name Sandy" €—— Store a name.
end
def talk
puts "#(name} says Bark!"
end
Attempt to aceess
end +the stored name.
Brvor
dog = Dog.new 1
dog.make_up_name
dog. talk in “talk': undefined local

variable or method 'name' for
#<Dog:0x007£a3188ae428>

OEBPS/html/graphics/f0137-01.jpg
Employee

Both subelasses will inhevit
the "name” attribute.
Both subtlasses will

print_name
inhevit this method

SalariedEmployee HourlyEmployee

hourly_wage

salary
hours_per_week

Will print the name
using "print_name’,
then print weeks’
worth of hourly wages.

Wil print. the name ——bprint_pay_stub print_pay_stub

wsing "prin,_name”,
then print Z weeks’
worth of salary.

OEBPS/html/graphics/f0126-01.jpg
class Employee

def initialize Set the @name instante variable
@name nonymous" €
@salary = 0.0 €~

end Set the Bsalavy instante variable.

ond

OEBPS/html/graphics/f0126-02.jpg
class Employee

def initialize(name, salary)

€name = name €— Use the "name” parameter 4o set the "@name” instance vaviable.

@salary = salary€—~

d P
e Use the "salary” pavameter to set the "@salary” instance variable

ond

OEBPS/html/graphics/f0126-03.jpg
Baployes.new cann UO8 . AUGHU] BEIRE pay RLub
smployee.new ("Jane Doe").print_pay_stub
Employee.new.print_pay_stub

Name: Jane Doe
Pay This Period:
Name: Jane Doe
Pay This Period:
Name: Anonymous
Pay This Period:

$1917.81

$0.00

$0.00

OEBPS/html/graphics/f0111-03.jpg
>> 136 * 14
1904

OEBPS/html/graphics/f0134-02.jpg
No more blark names
and negative salaries for
our new employees? And
it won't delay the payroll
project? Nice jobl

OEBPS/html/graphics/f0157-01.jpg
[2,99, ZSfOO, 9.291]

. T9
ndex: o I 2 ete.

Fiest item
prices[0]e— "

prices[1] e——Setond item

prices([2] <~

Thivd item.

OEBPS/html/graphics/f0111-02.jpg
L UUIVAET I < Annual salavy, divided by
number of days in a year.

In b

OEBPS/html/graphics/f0134-01.jpg
employee = Employee.new{"", -50000)

2 e in ‘name=': Name can't be blank!

employee = Employee.new("Jane Doe", -99999)

el in “salary=': A salary of -99999 isn't valid!

OEBPS/html/graphics/f0157-03.jpg
noy g » prices[0] = 0.99
(The "p" and "inspect’ prices(l] = 1.99

methods ave useul prices[2] = 2.99
for areays, too) ——>p prices [0.99, 1.99

99]

OEBPS/html/graphics/f0111-04.jpg
Woah, hold up. This
is close, but where
are the cents? In

fact, this is off by
several dollars!

OEBPS/html/graphics/f0157-02.jpg
puts prices(0]
puts prices (2]
puts prices[1]

OEBPS/html/graphics/f0214-01.jpg

OEBPS/html/graphics/f0054-02.jpg
Come on, We already have a variable to
hold the animal object. You really want
us to pass a second variable with the

animal's name everywhere? What pain!

OEBPS/html/graphics/f0077-01.jpg
class Car

attr_accessor :odometer
attr_accessor :gas_used

def mileage
Godometer / Egas_used
end

def accelerate

puts "Floor it!"
end

def sound_horn
puts "Beep! Beep!"
end

Copy!
der steer” gl

puts "Turn front 2 wheels."
end

end

class Motorcycle

attr_accessor :odometer
attr_accessor :gas_used

def mileage
@odometer / @gas_used
end

def accelerate
puts "Floor it!"
end

def sound_horn
puts "Beep! Beep!"
end

Paste!
46 Stesr e

puts "Turn front 2 wheels."
end

ani

class Truck

attr_accessor :odometer
attr_accessor :gas_used

def mileage
@odometer / @gas_used
end

def accelerate

puts "Floor it!"
end

def sound_horn
puts "Beep! Beep!"
end

Paste!
et steers

puts "Turn front 2 wheels.
end

end

OEBPS/html/graphics/f0214-02.jpg

OEBPS/html/graphics/f0077-02.jpg
This copy-pasting is a bad
idea. What if we needed
+o change a method?
We'd have to change it in
every class! And look at
the Motorcycle class—
motorcycles don't have two
front wheels!

OEBPS/html/graphics/f0214-03.jpg

OEBPS/html/graphics/f0214-04.jpg
Prene Truncated is amazing. . We need o select just
Truncated is funny...", .
Truncated is astounding..."] the adjectives

OEBPS/html/graphics/f0054-01.jpg
fog = Dog. now
dog_name = "Lucy"
dog. talk (dog_name)
dog.move (dog_name, "fence")

cat = Cat.new
cat_name = "Fluffy"
cat.talk(cat_name)

cat.move (cat_name, "litter box")

Lucy says Bark!
Lucy runs to the fence.

Fluffy says Meow!
Fluffy runs to the litter box.

OEBPS/html/graphics/f0214-05.jpg
1-800-555-0199".split ("-") [ri, "8oo", "555", "0199"]
p "his/her".split ("/") ["his", "her"]
p "apple, avocado, anvil".split(", ") ["apple", "avocado", "anvil"]

OEBPS/html/graphics/f0214-06.jpg
string = reviews.first

words = string.split(" ")
b words ["Normally", "producers", "and", "directors",

"would", "stop", "this", "kind", "of", "garbage",

"from", "getting", "published.", "Truncated", "is",
vamazing", "in", "that", "it", "got", "past",
"those", "hurdles."]

OEBPS/html/graphics/f0157-05.jpg
wil” means "there’s Here's the element
nothing here’! we assigned to

prices(6] = 6.99
p prices [0.99, 1.99, 2.99, 3.99, nil, nil, 6.99]

OEBPS/html/graphics/f0157-04.jpg
(Heve's the new element.

prices(3] = 3.99

p prices [0.99, 1.99 3.99]

OEBPS/html/graphics/f0208-01.jpg
puts "Preheat oven to 375 degrees”
ingredients ' E
puts "Place #{ingredients} in dish"

make_casserole do '

"noodles, cel

and tuna"

ery,

end

make_casserole

"rice, broccoli, and chicken"
end '
Output:

Fie EaT Vindow o
Preheat oven to 375 degrees

Place noodles, celery, and tuna in dish
Bake for 20 minutes

Preheat oven to 375 degrees
Place rice, broccoli, and chicken in dish
Bake for 20 minutes

OEBPS/html/graphics/f0111-01.jpg
Name: Amy Blake
Pay This Perio

$1904

OEBPS/html/graphics/f0157-06.jpg
p prices[7]€—The array only extends
Lhrough index. bl 2l

OEBPS/html/graphics/f0192-01.jpg

OEBPS/html/graphics/f0272-01.jpg
default _body = CelestialBody.new
default_body.type = 'planet’
bodies = Hash.new (default_body)

r
Gets a veference to Modifies the
the default .,\,Jatj default object]

OEBPS/html/graphics/f0031-01.jpg
The loop will stop
after the player's
Lenth guess, or
when they quess
eorvettly, whichever

Track how many guesses the player has made.
num_guesses = 0

Track whether the player has guessed correctly.
guessed_it = false

comes first.
\while num_guesses < 10 && guessed it — false

This tode is
exactly the
same; we've Just
nested it inside
the loop-

puts "You've got #{10 - num guesses} guesses left."
print "Make a guess: "

guess = gets.to_i

We need 4o add num_guesses += 1
le nee —

| o the guess
count eath loop,

so we don't

loop forever.

No ehanges
heve, either-

This marks the

Compare the guess to the target.
Print the appropriate message.
if guess < target
puts "Oops. Your guess was LOW."
elsif guess > target
puts "Oops. Your guess was HIGH."
elsif guess target
puts "Good job, #{name}!"
puts "You guessed my number in #{num_guesses} guesses!"
guessed_it = true
end

end of the end
i

loop-

unless guessed_it

puts "Sorry. You didn't get my number. (It was #{target}.)"

end

OEBPS/html/graphics/f0272-05.jpg
We want to assign the new
CelestialBody instance o the key: Value

bodies['Mars'] Hash \f Default Object’

{"Mars"
Yes!

CelestialBody.new

Got a value for "Mavs"2

OEBPS/html/graphics/f0272-04.jpg
Value

Hash Default Object’
bodies['Mars'] {} CelestialBody.new
Got a value for ”M;n”?\—ﬂ Shll 7 Um, sure, heves

don't! ANOTHER new object!

OEBPS/html/graphics/f0272-03.jpg
Value

Hash Default Object

bodies['Mars'] {} CelestialBody.new
6ot a value for "M‘;H'MNOW S~ TVl

OEBPS/html/graphics/f0272-02.jpg
Hash Detault Object

<Cel 1B
bodies|['Mars'] #<CelestialBody

@type="planet">
Got vl for "Mavs"? T

Nope. Vesl

OEBPS/html/graphics/common09.jpg

OEBPS/html/graphics/f0248-03.jpg
P Candidate.new("Amy Nguyen”, occupaltol

¢ "Engineer”™)

Whoops!

OEBPS/html/graphics/f0261-03.jpg

OEBPS/html/graphics/f0043-01.jpg
So, why does Ruby
even have a return

Keyword, if it's usually
unnecessary?

OEBPS/html/graphics/f0248-04.jpg
Silent failures now mean
hard-to-diagnose bugs later.
This doesn't make me wart
to use hash arguments...

OEBPS/html/graphics/f0261-02.jpg
Detty Bell
Ziok) W Oak St Candate Camden
Heap, RB ‘7ozm 2106 W 0ak St

dffa s

Oak Street according to Andy's address book

OEBPS/html/graphics/f0043-02.jpg

OEBPS/html/graphics/f0095-02.jpg
CLARS AiMAL The method

.. 've overriding:
def move (destination)€— e %

puts "#{Ename} runs to the #{destination}."
end

end

Overvides the "move”
Our subtlass. method from the
superclass.

class Armadillo < Animal

def move (destination) The new functionality.
puts "f{@name} unrolls!"€—

puts "#{@name} runs to the #{destination}."”
end

end This ¢ode is duplicated from the
superclase’s method. (K, ¥’ juct
one line, but in a veal-world app
there would be many morel)

OEBPS/html/graphics/f0043-03.jpg
def mileage(miles_driven, gas_used)
if gas_used == 0&——|f no gas has been used...
return 0.0 &——Return zevo.

end
miles_driven / gas_used&——This tode won't be run
end i "5as_vs¢d" is zevo.

OEBPS/html/graphics/f0095-01.jpg
talk
move
report_age

Pueeide Armadillo

OEBPS/html/graphics/common05.jpg

OEBPS/html/graphics/f0043-04.jpg
puts mileage (0, 0) m

OEBPS/html/graphics/common06.jpg

OEBPS/html/graphics/common07.jpg

OEBPS/html/graphics/f0248-01.jpg
result ' anuma' ('

puts "Volume is #{result}"

height: 5,' depth: z.siu

Output:

G Vindow el
Volume is 125.0

OEBPS/html/graphics/f0261-01.jpg
Betty bell
2106 W 03k St Candace Camden
treap, RB 90210 2)10 W 0ak St
C Heap, RB 90210

Andy Adams
2100 W Oak St ——>
tteap, RB 90210

Oak Street in reality

OEBPS/html/graphics/common08.jpg

OEBPS/html/graphics/f0248-02.jpg
p Candidate.new("Amy Nguyen", occupaiton: "Engineer™)

T Why is this still wil?

OEBPS/html/graphics/f0145-01.jpg
@motor_type = motoz_type' puts "Name: u(@name}”.
@name = name ' puts "Motor Type: #{@motor_type}"

Sample code:

boat = PowerBoat.new("Guppy", "outboard")
boat.info Name: Guppy

Motor Type: outboard

OEBPS/html/graphics/common02.jpg

OEBPS/html/graphics/common03.jpg

OEBPS/html/graphics/f0088-01.jpg
Car.new.rly

undefined method

£ly' for
#<Car:0x007£fecd8c>

OEBPS/html/graphics/common04.jpg

OEBPS/html/graphics/f0042-02.jpg
puts mileage (400, 12)

OEBPS/html/graphics/f0042-01.jpg
trip mileage = mileage (4200, 1z)
puts "You got #{trip mileage} MPG on this trip."

lifetime mileage = mileage (11432, 366)
puts "This car averages #{lifetime mileage} MpG."

You got 33 MPG on this tri
This car averages 31 MP

OEBPS/html/graphics/f0019-01.jpg

OEBPS/html/graphics/f0019-02.jpg
puts "First line\nSecond line\nThird line"
puts "\tIndented line"

First line
Second line

Third line
Indented line

OEBPS/html/graphics/f0237-03.jpg
n("votes.txt") do |file|
lines = file.readlines
end Create a new hash vith,
2 dekault object of "0
votes = Hash.new(0) €
lines.each do |line| Inerement whatever value is veburned

name = line
votes [name]
end

oD 707 i the key has nevev been updated
1€ o dhe curvent tally othervise

OEBPS/html/graphics/f0019-03.jpg
It's okay," he said." |2 e syntax error, unexpected
tCONSTANT

OEBPS/html/graphics/f0019-04.jpg
puts "\"It's okay,\" he said." 3

OEBPS/html/graphics/f0019-05.jpg
puts "One backslash: \\" One backslash

OEBPS/html/graphics/f0019-06.jpg

OEBPS/html/graphics/f0237-02.jpg
Create a new hash with

a default object of "0,
When we ateess a value

votes = Hash.new(0) that's been assigned to,
votes er Graham' 1 we aet that value back

p votes["Amber Graham'] €

p votes["Brian Martin"] €——When we actess a value
+that HASN'T been
assioned o, we get the
M debault object

OEBPS/html/graphics/f0237-01.jpg
‘C— Create a new hash.

When we attess a value
votes = Hash.new that's been assignez fi,
votes ["Amber Graham"] = 1 hat value back.
b votes ("Amber Graham'] € et that
p votes["Brian Martin"] &——When we attess a value
that HASN'T been
EOO ccigned to, we get nil”

nil

OEBPS/html/graphics/f0008-03.jpg
Reteivers Dot

\ operators

Method name;

"hello"|/|upcase
-32|abs
file|lread

OEBPS/html/graphics/f0249-04.jpg

OEBPS/html/graphics/f0260-01.jpg
2104 W 0ak St

teap, RB 90210 908 w 03k St
{0 ¢ Heap, RB 90210

ot a

2100 W 0ak St
Heap, RB ‘)ozlo)

OEBPS/html/graphics/f0249-05.jpg
welcome (greting: "Hello", nme: "Amy") |2y ArgumentError: unknown
keywords: greting, nme

OEBPS/html/graphics/f0260-02.jpg
2112 W Oak St
Heap, RB 90210

\l/

dfRa g o

OEBPS/html/graphics/f0283-01.jpg
All of this seems like a lot to
remember, just to be able to
use hash defaults.

OEBPS/html/graphics/f0008-01.jpg
1€ you type: "ieb” displays

"Hello" .upcase > HELLO
"Hello".reverse > olleH

OEBPS/html/graphics/f0226-04.jpg
Create a variable that will still
be accessible after the block

lines = (1€
File.open("votes.txt") do |file| €——Open the file, and pass
lines = file.readlines é\ it to the block.

end Store all the file lines in an arvay.

OEBPS/html/graphics/f0260-03.jpg
Referente stored heve ——> car = car.new €&——Returns a veferente £o the new Car.

car

)
212 W Oak st :
|

4
D Z

00° 000 — = — =
2 Y R:‘ergnu.j

kellng where b0
New Car instance. find the Car. 2
Vaviable.-

OEBPS/html/graphics/f0008-02.jpg
42.even?

-32.abs

OEBPS/html/graphics/f0226-03.jpg
Graham
Martin
Graham

Martin
Martin

Each line vepresents
one vote

OEBPS/html/graphics/f0260-04.jpg
Find the ear object
and send it the Get the veferente ——>
"sound_horn” message _l Srom b vaiale.

—E==2—90
~And use &J .'E,u\:j

tosend 3 i
e Car object

car.sound_horn

OEBPS/html/graphics/f0226-02.jpg
It's time o bring
financial responsibility
and accountability back
to our school system!

{mname
cupation” => "Accountant™)

OEBPS/html/graphics/f0226-01.jpg
T'm confident
that the voters will
choose the candidate

who will put our children

first!

{mname

mber Graham",
pation” => "Manager'

OEBPS/html/graphics/f0249-01.jpg
Default value Keyword
Keyword Default value

def welcome ([greeting:| ["Welcome"|, [name:| [nil])

puts "#{lgreeting|}, #{namel}!"

end \

Using a parameter Using a pavameter

OEBPS/html/graphics/f0249-02.jpg
welcome (greeting: "Hello", name: "Amy") Hello, Amy!

OEBPS/html/graphics/f0249-03.jpg
my_arguments = {greeting: "Hello", name: "Amy"}
welcome (my_arguments)
Hello, Amy!

OEBPS/html/graphics/common12.jpg

OEBPS/html/graphics/f0169-01.jpg
A block must always
follow a method u\\ Start of the block

Block body

my method| [do]

puts "We're in the block!"

end|

End of the block

OEBPS/html/graphics/f0169-02.jpg
do

puts "Woooo!"

end
syntax error,

unexpected
keyword_do_block

OEBPS/html/graphics/f0169-03.jpg
The call to —— The block. [t vill be stored

my_method.

def my_method (smy_block)
puts "We're in the method, about to invoke your block!"
my_block.call
puts "We're back in the method!"

in the "my_blotk” parameter.

OEBPS/html/graphics/f0169-04.jpg
We're in the method, about to invoke your block!
We're in the block!
We're back in the method!

OEBPS/html/graphics/common10.jpg

OEBPS/html/graphics/common11.jpg

OEBPS/html/graphics/f0133-01.jpg
clans ‘MyClans
def first method
puts "Current instance within first method: #{self}"
self.second_method— (. }evel
end

def second_method:
puts "Current instance within second method: #{self}"
end
end

my_object = MyClass.new
my_object. first_method

Current instance within first
Current instance within seco:

thod: #<MyClass:0x007££d4b07 Same
method: #<MyClass:0x007££d4b077510> NEERPNIRY

OEBPS/html/graphics/f0158-02.jpg

OEBPS/html/graphics/f0076-02.jpg
Not a problem! I'll just add a
steer method to the Car class. Then
T'll copy and paste it into the other
classes, just like I did with the other
three methods!

OEBPS/html/graphics/f0158-01.jpg
prices = [7.93, 25.00, 3.39, 9.93]

OEBPS/html/graphics/f0076-01.jpg
instance
variables

instance
wethods

Car 3 Truck
odometer instance odometer
gas_used variables | gas used
mileage B mileage
accelerate instance accelerate
sound_hom wethods | sound_hom

instance
variables

instance
methods

Motorcycle

odometer
gas_used
mileage
accelerate
sound_horn

OEBPS/html/graphics/f0158-04.jpg
puts prices.include? (25.00)

puts prices.find_index(9.99)

OEBPS/html/graphics/f0181-01.jpg
Highlighted lines ave ~gof total (prices)
du?hatcd among the 3 amount. = 0
methods. — > index = 0

while index < prices.length
This line in the middle ——Samount += prices[index]

differs, though.. index += 1
end
amount
end

def refund (prices)

amount = 0

index = 0

while index < prices.length
Differs.. ——Samount -= prices [index]

index += 1
end
amount
end

def show_discounts (prices)
index = 0
while index < prices.length
amount_off = prices[index]
Differs. {Puts format ("Your discount:
index 4= 1
end
end

/3.0

$%.2£",

amount_of]

OEBPS/html/graphics/f0215-01.jpg
b

"1v, "8O0", "555", "0199"].find_index ("800")

his", "her"].find_index("his")

apple”,

"avocado”, "anvil"].find_index("anvil")

poR

OEBPS/html/graphics/f0158-03.jpg
puts prices.length n

OEBPS/html/graphics/f0181-02.jpg
b", "c"].each { |param| puts param }

OEBPS/html/graphics/f0215-02.jpg
Split the sententes
def find_adjective(string) into words.

words = string.split(" ") €

index = words.find_index ("is") &——Find the arvay index of "is

words [index + 1] 6\

fbd Find the vord AFTER

OEBPS/html/graphics/f0215-03.jpg

OEBPS/html/graphics/f0215-04.jpg
Create a new arvay to

add adjectives into-
adjectives = (1€ S

reviews.each do |review| &——For eath review in the arvay..
adjectives << find_adjective (review) €—_

end Call the method we

R made, and add the
puts adjectives amazing
R e adjective to the list

astounding

OEBPS/html/graphics/f0020-01.jpg
$ ruby get number.rb
Welcome to 'Get My Number!'
What's your name? Jay
Welcome, Jay

'

OEBPS/html/graphics/f0020-02.jpg
Okay, so the output is messed up
because the user input string has a
newline character at the end of it

What can we do about that?

OEBPS/html/graphics/f0158-06.jpg
prices << 5.93
prices << 8.99

p prices [25.0, 3.99, 9.99, 5.99, 8.99]

OEBPS/html/graphics/f0207-01.jpg
puts "Preheat oven to 375 degrees"

== 0

puts "Bake for 20 minutes"

"noodles, celery, and tuna"

"rice, broccoli, and ::hicken"'

|

end .
puts "Place #{ingredients} in dish" endb
end '

Output:

File EGT Vindow o

Preheat oven to 375 degrees

Place noodles, celery, and tuna in dish
Bake for 20 minutes

Preheat oven to 375 degrees

Place rice, broccoli, and chicken in dish
Bake for 20 minutes

OEBPS/html/graphics/f0158-05.jpg
prices.push(0.33)

p prices [7.99, 25.0, 3.99, 9.99, 0.99]
prices.pop
p prices [7.99, 25.0, 3.99, 9.99]

prices.shift

p prices [25.0, 3.99, 9.99]

OEBPS/html/graphics/f0020-03.jpg
Get My Number Game
Written by: you!

puts "Welcome to 'Get My Number!'"
print "What's your name? "

We'll store the vetun

value of "thomp” in a input = gets
N » » " » " method.
new variable, “name”. Calling the "ehomp” me

S name = input.chomp €
The string in "input” _A ~———The dot operator.

is the vetriver of the PUTS "Welcome, #{name)!"
"thomp” method. t We'll use "name” in the
greeting, instead of “input”.

OEBPS/html/graphics/f0133-03.jpg
Sl = Fasloyes.new | ANy SLlake ", 9vUON]
amy .print_pay_stub

Name: Amy Blake
Pay This Period: $1917.81

OEBPS/html/graphics/f0158-08.jpg
p "d-o-g".chars

p "d-o-g".split("-")

, "o, ugn]

OEBPS/html/graphics/f0170-03.jpg
def my method (émy_block)

puts "We're in the method, about to invoke your block! do
my block.call puts "We're in the block!"
puts "We're back in the method!" end

end

We're in the block!

OEBPS/html/graphics/f0020-04.jpg
$ ruby get number.rb
Welcome to 'Get My Number!'
What's your name? Jay
Welcome, Jay!

OEBPS/html/graphics/f0133-02.jpg
class Employee

def initialize(name = "Anonymous", salary = 0.0)

self.name = name &——DEFINITELY a call to the "name=" method.

self.salary = salary

cad DEFINITELY a eall 4o
A the "salary=" method.

OEBPS/html/graphics/f0158-07.jpg
puts ["d",
puts [

OEBPS/html/graphics/f0170-04.jpg
def my method(&my_ block)
puts "We're in the method, about to invoke your block!" do

my_block.call puts "We're in the block!"
puts "We're back in the metho — endj
end

OEBPS/html/graphics/f0122-02.jpg
The other operand is
A method call! ')/ (passed as an avgument

6.+(2)

OEBPS/html/graphics/f0170-01.jpg
my_method do We're in the method, about to invoke your block!
puts "We're in the bl We're in the block!
nd We're back in the method!

OEBPS/html/graphics/f0122-03.jpg
puts 6 + 2 8
puts 6.+(2) 8

OEBPS/html/graphics/f0170-02.jpg
The method: The block:
def my method (&my_block)

puts "We're in the method, about to invoke your block! do
my block.call puts "We're in the block!"
puts "We're back in the method!" end

end

We're in the method, about to invoke your block!

OEBPS/html/graphics/f0122-04.jpg
puts
puts
puts
puts
puts
puts

owwaa

l0.7(4.0)

OEBPS/html/graphics/f0122-05.jpg
puts
puts
puts
puts

9<7
9.<(7)
9>7

9.>(7)

OEBPS/html/graphics/f0065-01.jpg
$ irb
SRS 1) (main) :001:0> require 'mage’

=> true

irb (main! 02:0> merlin = Mage.new

=> #<Mage:0x007£d432082308>

irb(main [} > merlin.name = "Merlin"
=> "Merlin!

irb(main) :004:0> morgana = Mage.new

=> #<Mage:0x007£d43206b310>

irb(main) :005:0> morgana.name = "Morgana"
=> "Morgana

irb(main) : 00 > morgana.spell = "Shrink"
=> "Shrink"

irb (main 0 > morgana.enchant (merlin)
Morgana casts Shrink on Merlin!

=> nil

irb(main) :008:0>

Here’s a

OEBPS/html/graphics/f0122-06.jpg
undefined method °/' for nil:NilClass

OEBPS/html/graphics/f0122-01.jpg

OEBPS/html/graphics/f0096-01.jpg
class Person

def greeting
puts "Hello!"
end

Puper” makes
a call heve

end

class Friend < Person

def greeting
super
puts "Glad to see you!"
end

end

OEBPS/html/graphics/f0029-02.jpg
1L light Sred’

puts "Stop!"&—_

else
puts "Go!" Moved
up here.

and

OEBPS/html/graphics/f0096-02.jpg
Friend.new.greeting Hello!
Glad to see you

OEBPS/html/graphics/f0029-03.jpg
File Edit_Window Help
$ ruby get number.rb
Welcome to 'Get My Number!'
i What's your name? Jay
You'll see Welcome, Jay!
P NCLL T ve got a random number between 1 and 100.
[UUAILNN Can you guess it?
get, RUPSll You've got 10 guesses left.

. Make a guess: 50
e Oops. Your guess was HIGH.
Sorry. You didn't get my number. (It was 34.)

OEBPS/html/graphics/f0096-03.jpg
class Person

def greeting The method veturn value.
"hellot" €
end
end

class Friend < Person

ot ore Asians "Hellol” +o
ef greeting
basic. grecting = super € base_dreeting

"#{basic_greeting} Glad to see you!"
end

end

puts Friend.new.greeting Hello! Glad to see you!

OEBPS/html/graphics/f0029-01.jpg
unless light Sread”
puts "Go!"

else &—— Confusing/
puts "Stop!"

end

OEBPS/html/graphics/f0262-03.jpg
p betty.object_id 70115845133840
p candace.object_id EESERIPTERRIaRg - T differvent objects

OEBPS/html/graphics/f0006-02.jpg
1+ you type: "irb” displays
7/ 3.5

2% 3

OEBPS/html/graphics/f0006-01.jpg

OEBPS/html/graphics/f0006-04.jpg
"Hello™ => "Hello"

OEBPS/html/graphics/f0262-00.jpg
class Lovelnterest

def request_date

Bbusy is nil (and treated ——> i @busy &—— IF this is not the first request
as false) until it gets set puts "Sorry, I'm busy." €——Give a negative resporse

to something else. else
puts "Sure, let's go!" €&——Give an affirmative

@ousy = true $—~ vesponse.
enznd Mark this object as unable +o
aceept any future vequests

end

OEBPS/html/graphics/f0006-03.jpg

OEBPS/html/graphics/f0262-02.jpg
betty.request_date Sure, let's go!
candace.request_date Sure, let's go!

OEBPS/html/graphics/f0262-01.jpg
£ perey | Object |

mewomst | _—
Heap, K8 90210 :

w

candace : Object 2

Zowoskst | _
Heap, 18 90210 :

OEBPS/html/graphics/f0087-02.jpg
odometer
gas_used

mileage
accelerate
sound_horn
steer Ves!

Motorcycle

method? mebhod?

OEBPS/html/graphics/f0041-02.jpg
Fio Eai_Window o
$ irb -I

irb(main) :001:0> require "vehicle methods"
=> true

irb(main) :002:0> sound horn

Pressing the horn button

Beep beep!

=> nil

irb(main) :003:0> use headlights

Turning on low-beam headlights

Watch out for deer!

=> nil

irb(main) :004:0> use headlights ("high-beam")
Turning on high-beam headlights

Watch out for deer!

=> nil

irb(main) :005:0> exit

$

OEBPS/html/graphics/f0087-01.jpg
motorcycle.accelerate

OEBPS/html/graphics/f0041-01.jpg
AES Ce

A flag (:\na{ means "seavth the curvent divectory for files to load”

OEBPS/html/graphics/f0167-01.jpg
What if we could pass a chunk of code
info a method, like it was an argument? We
could put the looping code at the top and

bottom of the method, and then in the middle,
we could run the code that was passed inl

OEBPS/html/graphics/f0064-01.jpg

OEBPS/html/graphics/f0238-02.jpg
{"Amber Graham"=>2, "Brian Martin"=>3, "amber graham"=>3, "brian martin"=>1}

/LThese two shouldn't
be sepavate items!

OEBPS/html/graphics/f0238-03.jpg
votes = Hash.new(0) Accesses the
votes ["Amber Graham"] = 1 existing value.
p votes ["Amber Graham"]

p votes ["amber graham"] €——This key/value

o never been
assigned 4

OEBPS/html/graphics/f0238-01.jpg
OK, 50 you've got counts for each
candidate. Buf that won't help if the

counts are wrong. We just got the final
votes in, and look what happened!

Graham
Martin
Graham
Martin
Martin

graham

martin =

graham =
= ("name" => "Kevin Wagner",
graham

"occupation" => "Election Volunteer")

votes.txt

OEBPS/html/graphics/f0053-03.jpg
A name will have to

be provided when we

¢all these methods,
like before.

class Bird
def talk(pame)
puts "#{name} says Chirp! Chirp!"
end
def move(pame, destination)
puts "#{name} flies to the #{destination}."

end \
end And like bekore, well use
Ehe names in the output.

class Dog
def talk(name)
puts "#{name} says Bark!"
end
def move (name, destination)
puts "#{name} runs to the #{destination}."
end
end

class Cat
def talk(name)
puts "#{name} says Meow!"
end
def move (name, destination)
puts "#{name} runs to the #{destination}."
end
end

OEBPS/html/graphics/f0135-01.jpg
CLABS BND.LOYEO

attr_reader :name, :salary

def print_pay_stub
puts "Name: #{self.name}"
pay_for_period = (self.salary / 365.0) * 14
formatted_pay = format("$%.2f", pay_for_period)
puts "Pay This Period: #{formatted pay}"

end

end

Employee.new ("Amy Blake", 50000).print_pay stub (RN TEESRIRUN
Pay This Period: $191'

OEBPS/html/graphics/f0156-01.jpg
Eath order
Il have a list
of ibem prices.

OEBPS/html/graphics/f0156-02.jpg
Start of the arvay——>['a', 'b', 'c']&——End of the arvay

)

Objects the arvay Objecks are
contains 0 here. separated by

Lommas.

OEBPS/html/graphics/f0053-01.jpg
We're supposed to see the
animal's name when we call these
methods! And where is the
report_age method?

OEBPS/html/graphics/f0053-02.jpg
Flying to the tree.
Bark!

Chirp! Chirp!
Running to the house.

OEBPS/html/graphics/f0227-04.jpg
t
"Beian Martin"? Nope. {"Anber Graham", 1],
"Brian Martin"? yﬂl ["Brian Martin", 2], €——Update this vote count

["Mikey Moose", 1]

OEBPS/html/graphics/f0227-03.jpg
["Amber Grahem", 1],
["Brian Martin", 1],
["Mikey Moose", 1] €——[nsert the new array here..

OEBPS/html/graphics/f0227-02.jpg
[
Mnkey Moose”? Nope. ["auber Graham", 1],
Wikey Mosse’? Noge.. E "Brian Mastin', 1,

OEBPS/html/graphics/f0227-01.jpg
Outer arvay. ——> [P
nev avvay.
["Anber Graham", 1], € e)

["Brian Martin", 1] €——|nsert the new arvay heve

OEBPS/html/graphics/f0206-01.jpg
del other method
print_block value { 1 + 1
end

other_method

OEBPS/html/graphics/f0250-04.jpg
P Candidate.new("Amy Nguyen”, occupaitol

|2] ArgumentError: unknown keyword: occupaiton

“Engineer™)

OEBPS/html/graphics/f0250-02.jpg
class Candidate We veplace the hash parameter
attr_accessor :name, :age, :occupation, :hobby, :birthplace with keywords and de Fault values.
def initialize(name, age: nil, occupation: nil, hobby: nil, birthplace: "Sleepy Creek")

self.name name
self.age = age
self.occupation = occupation
self.hobby = hobby
self.birthplace = birthplace
end
and

We use parameter names
instead of hash keys

OEBPS/html/graphics/f0250-03.jpg
p Candidate.new("Amy Nguyen", age: 37, occupation: "Engineer")

#<Candidate:0x007fb£5b14e520 @name="Amy Nguyen",

@age=37, @occupation="Engineer", @hobby=nil, @birthplace="Sleepy Creek">

Srecified values!— 7 N Defatd "

OEBPS/html/graphics/f0124-01.jpg
class Employee
attr_reader :name, :salary

def name= (name)

if name =
raise "Name can't be blank!"
end
@name = name
end

def salary=(salary)
if salary < 0
raise "A salary of #(salary) isn't valid!"

end
@salary = salary
end
def initialize Sek the @rame instante variable
Our new method.d €T = Bnonymous "€
) esalary = 0.0
end Set the @salary instance variable.

def print_pay_stub
puts "Name: #{@name}"
pay_for_period = (Esalary / 365.0) * 14
formatted pay = format("$%.2£", pay_for_period)
puts "Pay This Period: #{formatted pay}"

end

s

OEBPS/html/graphics/f0250-01.jpg
class Candidate
attr_accessor :name, :age, :occupation, :hobby, :birthplace
def initialize(name, options = {}) €&——Hash parameter.
self.name = name
self.age = options[:age
self.occupation = options[:occupation] Aecessing values

self.hobby = options[:hobby] £rom the hash
self.birthplace = options(:birthplace]
end

and

OEBPS/html/graphics/f0124-02.jpg
employee = Employee.new
employee.print_pay_stub [RUCLSHESUEEIINE)

OEBPS/html/graphics/f0216-01.jpg
numbers 2, 3, 41 numbers = [2, 3, 4]

squares = [] €——Make an arvdy Loop cubes = [] €——Make an arvay
4o hold vesubts. gheoush 4o hold vesults._ Loop
numbers.each do |number| sourte numbers.each do |number & through
squares << number ** 2 areay. cubes << number ** 3 sourte
end end arvay.

Perform an opevation, and
p cubes copy vesult to vesults arvay.

64]

Pevform an operation, and
b sqares copy renlt o reslts avay.

4 16]

phone_numbers = ["1-800-555-0199", "1-402-555-0123"]

area_codes = [] €——Make an array Loop through
o hold vesults. sourte array.
phone_numbers.each do \phcneinumber\f/
area_codes << phone_number.split ("-") [1]
end

Perform an operation, and
b area codes copy veslt 4 vesdts rnay

["800

OEBPS/html/graphics/f0075-01.jpg
My siblings and T used to
quarrel over our inheritance.
But now that we've learned
how to share everything,
things are working out great!

OEBPS/html/graphics/f0180-01.jpg
("a", "b", "c"].each { |param| puts param }

OEBPS/html/graphics/f0216-02.jpg
number ** 3

6]
["1-800-555-019u_ .,

number ** 2 phone_number.split [83]
‘ s) (
-

T T
T, 9, 167

OEBPS/html/graphics/f0052-01.jpg
def | close_lid

puts "Sealed tight!"
end
def | blend

ts "Spinning on #{speed} setting."

i S & Output

el Fiie EQT_ Window Felp
Sealed tight!
E Spinning on high

:;de =]

iencer

OEBPS/html/graphics/box.jpg

OEBPS/html/graphics/f0123-03.jpg
Results in ¢all to to_s on Oname.
e e (on Since ¥s ni, prinks an enply string
e e Results i call £0"/"

pay_for_period = (Gsalary / 365.0) * 14 €———(it ") nckance method)

formatted pay = format ("$%.2£", pay_for_period) @ug Sinee i wil

puts "Pay This Period: #{formatted pay}" on vy Sin J
ond vaises an error-

OEBPS/html/graphics/f0123-04.jpg
w Setting up new instance!

OEBPS/html/graphics/f0146-01.jpg
def ' initialize ' (name, motor_type) l

@motor_type = motor_type

puts "Name: #{@name}”

Sample code: Output:

boat = PowerBoat.new ("Guppy", "outboard")
boat.info Name: Guppy
Motor Type: outboard

OEBPS/html/graphics/f0018-01.jpg
puts input.inspect

OEBPS/html/graphics/f0018-02.jpg
p input
Jay\:

OEBPS/html/graphics/f0180-02.jpg
der each
index = 0 g

while index < self.leﬁti/_’l
yield self[index], { Iparam| puts param }
index += 1 w

end

[&]

OEBPS/html/graphics/f0180-03.jpg
(et each
index = 0 pn

while index < self.length

yield self[index] { Iparan| puts param }
index += 1 w
end H
and

OEBPS/html/graphics/f0251-01.jpg
p Candidate.new("Carl Barnes") Al attributes are set to the defaults!

1x007£e743885d38 "Carl Barnes',

@occupation: @birthplace: Creek">

OEBPS/html/graphics/f0180-04.jpg
der each
index = 0

while index < self.M
yield self[index], { Iparam| puts param }
index += 1 <—\—2

end

B

OEBPS/html/graphics/f0123-02.jpg
Not an ervor, but it's blank!

Name:

in ‘print_pay stub': undefined method Ervor!
/' for nil:NilClass

OEBPS/html/graphics/f0030-06.jpg
number = 1
until number > 5
puts number
number += 1

antl

[EEARNTS

OEBPS/html/graphics/f0097-01.jpg
class Person

def greet by name (name)
"Hello, #{name}!"

end
[ntludes the
end argument in
the method
class Friend < Person call.

def greet_by_name (name)
basic_greeting = super (name)
"#{basic_greeting} Glad to see you!"
end

end

puts Friend.new.greet_by name ("Meghan")

Hello, Meghan! Glad to see you!

OEBPS/html/graphics/f0112-03.jpg
>> salary = 50000
=> 50000

>> salary.class
=> Fixnum

OEBPS/html/graphics/f0097-02.jpg
Friend's greet_by_name
class Friend < Person method has to be called
with 3 "name” avgument.

def greet_by_name (name)€—

basic_greeting = super €————— So the "name”

"#{basic_greeting) Glad to see you!" argument wil
end be forwarded
on to Person’s
areet,_by_name
method as well

end

puts Friend.new.greet_by name ("Bert")

Hello, Bert! Glad to see you

OEBPS/html/graphics/f0112-04.jpg
>> salary = 50000.0
=> 50000.0

>> salary.class
Float

OEBPS/html/graphics/f0179-02.jpg
("a", "b", "c"].each { |param| puts param }

OEBPS/html/graphics/f0179-03.jpg
class Array "
Remember, "selé” vefers to

def each the curvent object. In this

This is just like the loops in our “fotal”, index = 0 tase, the turvent arvay.
"vefund”) and "show d:fmntx” mebhods] While index < self. length€
- yield self[index] &——The key difference: we yield the

index += 1 &— curvent element 4o a block!

Lo Then move o the next
element, st like before.

end

OEBPS/html/graphics/f0179-01.jpg
def my method

yield 1
yield 2
yield 3

end

my_method {

|paran|

puts param }

W e

OEBPS/html/graphics/f0007-01.jpg
1§ you type: "ieb” displays:

small = 8

1
=
Sy

medium

OEBPS/html/graphics/f0284-01.jpg

OEBPS/html/graphics/f0007-03.jpg

OEBPS/html/graphics/f0007-02.jpg
small + medium

OEBPS/html/graphics/f0112-01.jpg
50,000 % 345 » 14 = 1911.6081..

OEBPS/html/graphics/f0007-04.jpg
number 3

number += 1
number
string = "ab"

string += "cd"
string

OEBPS/html/graphics/f0112-02.jpg

OEBPS/html/graphics/f0086-02.jpg
motorcycle = Motorcycle.new
motorcycle.steer

Turn front 2 wheels

One vheel too many,
for a motoreyele!

OEBPS/html/graphics/f0101-04.jpg
puts rex.methods

These are
inherited
From Arimal

But wheve
did these
eome from?

There ave move than we have voom 4o print! —S)

report_age
eql?

hash
class
clone
to_s
inspect
methods
object_id

OEBPS/html/graphics/f0086-01.jpg
Pretty slick, Marcy. But you
forgot one little detail: the
Motorcycle class needs a
specialized steer method!

OEBPS/html/graphics/f0101-03.jpg
puts lucy.to_s, rex.to_s #<Dog: 0x007£b2b50c4468>
#<Dog: 0x007£b2b39

OEBPS/html/graphics/f0086-04.jpg
odometer
gas_used

mileage
accelerate
sound_horn
steer

Duerides

Motorcycle

OEBPS/html/graphics/f0168-03.jpg
defl my method(&my_block)

No ampersand; that's ——>my block.call €——Run the blotk's code.
only used when defining .
the parameter. end

OEBPS/html/graphics/f0086-03.jpg
Not a problem - T
can just override that
method for Motorcycle!

OEBPS/html/graphics/f0168-02.jpg
Gol My Motiod(&ny SLock;

end T\ When you call this method with a
block, it ill be stored in “my_block”

OEBPS/html/graphics/f0191-01.jpg
Like a power outlet.

wire { |power| puts "Using #{power} to turn drill bit" }
wire { |power| puts "Using #{power} to spin mixer" }

Using current to turn drill bit
Using current to spin mixer

OEBPS/html/graphics/f0168-01.jpg
This method takes a
(block as an parameter!

def my method (&my_block)
puts "We're in the method, about to invoke your block!
my_block.call &——The "eall” method calls the block.
puts "We're back in the method!

ond

OEBPS/html/graphics/f0086-05.jpg
motorcycle.steer
Turn front wheel

OEBPS/html/graphics/f0273-03.jpg
Values have been assigned to the hash!

JRLLIEEE ("Mars"=>#<CelestialBody:0x007£e701896580 @type="planet", @name="Mars">,

"Europa"=>#<CelestialBody:0x007£e7018964b8 @type="moon", @name="Europa">,
"Venus"=>#<CelestialBody:0x007£e7018963a0 @type="planet", @name="Venus">}

OEBPS/html/graphics/f0030-01.jpg

OEBPS/html/graphics/f0030-02.jpg

OEBPS/html/graphics/f0101-02.jpg
The output we

Lucy the dog, age 4 WISH we had...
Rex the dog, age S

OEBPS/html/graphics/f0239-03.jpg
This key doesn't exist!.

"> votes["Amber Graham"]
5

p votes["AMBER GRAHAM"]
Buk this one does!

OEBPS/html/graphics/f0030-03.jpg

OEBPS/html/graphics/f0101-01.jpg
lucy = Dog.new
lucy.name = "Lucy"
lucy.age = 4

rex = Dog.new
rex.name = "Rex"

rex.age = 2

puts lucy, rex

The output we get:

X007£b2b50c4468>
X007£b2b3902000>

OEBPS/html/graphics/f0030-04.jpg
Start of the
logp Condition

while| pumber < 5

puts "still looping"

end| \
Loop body

End of the loop

OEBPS/html/graphics/f0239-01.jpg
lines =

File.open("votes.txt") do |file|
lines = file.readlines

end

votes = {}

lines.each do |line|
name = line.chor
Pt upcase} €m— Change the name to ALL CAPS
if votes[name] before adding it to the hash (or
votes[name] += 1 searching for it in the hash)
else
votes [name] = 1
end
end

b votes

OEBPS/html/graphics/f0273-01.jpg
When the block is ¢alled
aker, it will veceive a
Creates the hash vefevente o the hash and

‘the key being accessed.
bodies = Hash.new do |nash, key|€ 1 Sems

body = CelestialBody.new €—— Here we set up the object which
body.type = "planet” will become the value for this key.
hash[key] = body

bod

e Assign the object to the curvent hash key.

{ Return the object.

OEBPS/html/graphics/f0030-05.jpg
number = 1
while number <=
puts number
number += 1

—

5

G wN e

OEBPS/html/graphics/f0239-02.jpg
{"AMBER GRAHAM"=>5, "

We have our wmn:ﬂj

OEBPS/html/graphics/f0273-02.jpg
[This tode is * podies ['Mars'].name = 'Mars'

identical to what } podies['Europa’].name = 'Europa’
we used a towple § bodies['Europa'].type = 'moon’
pages agol bodies['Venus'].name = 'Venus'

p bodies['Mars']
p bodies['Europa']

Three separate objects. b bodies['Venus']
[RLNIER R #<CelestialBody:0x007£e701896580 @type="planet", @name="Mars">
N | #<CelestialBody:0x007£e7018964b8 @type="moon", @name="Europa">
[ZYUIRVIS PR i <CelestialBody:0x007£e7018963a0 @type="planet", @name="Venus">

OEBPS/html/graphics/f0119-03.jpg
Creating our tlass

Float and

Fixnum

v’
Formatting
You ave herel ——> numbers

initialize
(Back on rackl)

OEBPS/html/graphics/f0281-01.jpg
default body = CelestialBody.new
default_body.type = 'planet'
bodies = Hash.new (default_body) €——Sets the

hash's
default
eks a vekererce to] T Madibies the — object

the default objeet default object!

Okay, but then why does it work with a
number as the default object? We modify

the default when we add to it, don't we? °

letters = ['a', 'c', 'a', 'b', 'c', 'a']
counts = Hash.new(0)

Jsw't this modifying
letters.each do |letter| the default ob‘)ett?

counts[letter] += 1€

end

OEBPS/html/graphics/f0119-02.jpg
Excellent! No
more extra decimal places!
(And more importantly, no
more missing money!)

OEBPS/html/graphics/f0281-02.jpg
numoer = U

puts number.object_id

number = number + 1 1 Two diffevent objects! (Object [Ds for integers are much lower than for

puts number.object_id other dbjects, ook that's on implementation dedal, so don't worry about
it The key point is, they've dn&gme)

OEBPS/html/graphics/f0039-03.jpg
Parameter.

def say_hello(name)
puts "Hello, #(name}!"
end

Parameter-

say_hello("Marcy")

Avaument.

OEBPS/html/graphics/f0016-04.jpg
puts "Hello";€—No!
puts "World

OEBPS/html/graphics/f0039-04.jpg
def order_ soda(flavor, size = "medium”, quantity)

Don't plate an optional Pavanchrj
before a vequived one!

order_soda ("grape") wrong number of
RO orguments (1 for 2..3)

end

OEBPS/html/graphics/f0016-03.jpg
puts 'Welcome, #{input}’ [e Welcome, #{input}

OEBPS/html/graphics/f0016-02.jpg
puts "The answer is #{6 * 7}." [] The answer is 42

OEBPS/html/graphics/f0016-01.jpg
Interpolating a value
into a string

puts "Welcome, [#{input}|"

it > |E—

OEBPS/html/graphics/f0234-04.jpg
if false € Actually false if ni1 €&—Falsy
puts "I won't be printed!" buts "I won't, either!
end and

OEBPS/html/graphics/f0039-01.jpg
def order_ soda(flavor, size = "medlum”, quantity = 1)
if guantity ==

| praral = meodar Default value Dekault value
plural = "sodas" for size. for quantity.
end

puts "#{quantity) #{size} #{flavor) #{plural}, coming right up!"
and

OEBPS/html/graphics/f0211-03.jpg
def find all
matching_items = [] "

Lt eacki do ‘lte—m‘/_ﬁ——\..,gupplps is destined...
The block veturn ——> if yield(item)

(1Yine| line.include? ("Truncated”) |
e iine.includes (TTruncated
value is "false”, so matching_items << item taloe
this line iz NOT end

added. end
-

OEBPS/html/graphics/f0039-02.jpg
Speeifly Flavor, use detault
Sor size and quantity.
order_soda ("orange” &
order_soda("lemon-lime", "small", 2)€— Gpetify everything
order_soda ("grape”, "large")

N Specify Flavor and size,
use default for quantity.

1 medium orange soda, coming right up!

2 small lemon-lime sodas, coming right up!
1 large grape soda, coming right up!

OEBPS/html/graphics/f0211-04.jpg
Shortened to it this page!

p relevant_lines ..Truncated is amazing
. .Truncated: Awful.
.Truncated is funny.

. .Truncated Disappoints...",
..Truncated is astounding...
.Don't See Truncated..."]

OEBPS/html/graphics/f0211-01.jpg
"Find_all" passes

the full text

lines; we've just
shortened hzm'

e

def find_all C o Fit this page!

matching_items = (] B . "

el e o Iltm..,Truncated is amazing...

The block vetums ——> i ¢ yield(iten)

runcated"))

"true”, so the eurrent

line ets added bo end
matehing items/ end

P,

OEBPS/html/graphics/f0211-02.jpg
def find all
matching_items = [J

o1t act o utm...’]‘runcated: Awful..

Another block—— if yield (item) { Iline| line.include?("Truncated") }
Line.include? ("Truncated")
veturn value of matching items << item e
"true”, so this line end

aets added as well end

end

OEBPS/html/graphics/f0234-01.jpg
lines.each do |line]

name = line.chomp
votes [name] 4= 1 undefined method '+

end for n: 1Class

OEBPS/html/graphics/f0234-02.jpg
lines = |
File.open("votes.txt"
lines = file.readl

|filel

e ne. chomg
if votes(name] 1= nil €——If we've seen this name before..
votes [name] 1 €——Intrement its total
else & £ this is our first sight of this name.
votes[name] = 1 €&——Add it to the hash with value of |
end
end

vote

OEBPS/html/graphics/f0234-03.jpg
if "any string" € Tvuthy. i 42 & Truthy. if ["any array"] € Truthy.
puts "I'll be printed!" puts "I'll be printed!" puts "I'll be printed!"
end end ond

OEBPS/html/graphics/f0257-01.jpg
Marna, the nice man asked if
we were ready for a delivery,
and T said OK. Um, what's an
orangutan?

OEBPS/html/graphics/f0177-01.jpg
call block do
puts 2
end

call_block { puts "two" }

call_twice { puts 2 }

call_twice do
puts "two"
end

pass_parameters_to_block do |paraml, param2|
puts paraml + param2
end

pass_parameters_to_block do |paraml, param2|
puts paraml / param2
end

OEBPS/html/graphics/f0223-01.jpg

OEBPS/html/graphics/f0005-01.jpg
Type "irb” at the system prompt,
and press the Return key.

irb will \aunth, Flle Edi_Window Help
and show the $ irb
L A] 17D (main) :001:0> 1 + 2 Now you tan type any
/) SR T Ruby expression you
irb (main) : 3 "Hello".upcase
irb evaluates the: => "HELLO" N dud press e

irb(main) :003:0> exit Retuen key.
$

expression, and
shows You the vesult

(marked with "=>"). When you've veady to

exit ivb, dype "exit”
and press Keburn

OEBPS/html/graphics/f0269-01.jpg
lies = Ha
P bodies.default €——|nspect the default object

bodies['Mars'].name = 'Mars' €——Tvy to add a value to the hash

The hash default object b bodies.default €—— [nspect the default object again.
BEFORE sttempting to
add a hash value
\ #<CelestialBody:0x007£868a8274c8 @type="planet">
The hash dcﬁau\{ #<CelestialBody:0x007£868a8274c8 @type="planet", @name="Mars">
object AFTER

attenpting bo add The rame gt added o the
3 hash value ettt sbiect ictead!

OEBPS/html/graphics/f0131-02.jpg
class Employee

def initialize(name = "Anonymous", salary = 0.0)
Not in stope ——>amy.name = name
heve! amy.salary = salary
end
end

amy = Employee.new("Amy Blake", 50000)

e in initialize': undefined local variable or method 'amy

OEBPS/html/graphics/f0269-02.jpg
p bodies['Mars'] Same object (D!
p bodies.default

‘planet", @name="Mars">
‘planet", @name="Mars">

#<CelestialBody:0x007£86828274c8 @typ:
The SAME object! #<CelestialBody:0x007£868a8274c8 @typs

OEBPS/html/graphics/f0131-01.jpg
Class kmployee
def initialize(name = "Anonymous", salary = 0.0)
name = name €—— Doesn't work — Rub thinks

salary = salary you've assigning to a vawablc’
end

end
@rame and Bsalary are nil again!

amy = Employee.new ("Amy Blake", 50000)
amy.print_pay_stub
Name:

in ‘print _pay stub': undefined method
*/' for nil:NilClass (NoMethodError)

OEBPS/html/graphics/f0166-01.jpg
Nways/

the same,

index

end

0

while index < prices.length
_— —

amount += prices [index]
r———————————————————— |
index +=

1

| €——This code differs
among the 3 methods

OEBPS/html/graphics/f0063-01.jpg
from this.

wto this!

class Dog class Dog

Equivalent!

def name=(new_value
@name = new_value
end

attr_accessor :name,

ef report_age
puts "#{Gname} is #{€age} years old."

def name end
@name
end def talk
puts "#{Gname) says Bark!"
def age=(new_value) end

@age = new_value
end def move (destination
puts "#{Gname) runs to the #{destination)."
def age end
eage
end end

def report_age
puts "#{Gname} is #{@age} years old."
end

def talk
puts "#{@name} says Bark!"
end

def move (destination)
puts "#{@name} runs to the #{destination}."

end

end

OEBPS/html/graphics/f0166-02.jpg
amount -= prices [index]

amount_off = prices[index] / 3.0
puts format ("Your discount: $%.2£", amount off)

OEBPS/html/graphics/f0166-03.jpg
Keep this.

(s Instead of this.
e ——
index = 0
while index < prices.length

Use his!

3| amount_off = prices[index] / 3.0
puts format ("Your discount: $%.2f", amount off)

index += 1
end

T Keep this

OEBPS/html/graphics/f0120-03.jpg
class Employee

def print_pay stub Print the values.

ths{name, esalary€e—

end

Well vestore the vest of
end +the tode later.

OEBPS/html/graphics/f0120-02.jpg
Not an ervor, but it's blank!
employee = Employee.new
employee.print_pay_stub

Name:

in ‘print _pay stub': undefined method Evvor!
*/' for nil:NilClass

OEBPS/html/graphics/f0107-01.jpg
That guy Jenkins sent out a

new car with a missing timing belt

lost week. Whole thing fell apart!

Not me, though. T make sure all
the parts are therel

OEBPS/html/graphics/f0120-01.jpg
format "%.2f", 3 / 4.0 format "%.1£%, 3/ 4.0
The format sequente Volue wor't it inko specified
015 € specifies to duv'ﬂv 18 < umber of detimal places, so
4wo detimal places. it gets vounded.
format "3%.2£", bao/(:z S format "%i", 3 / 4.0
Par he string %i format sequente prints
f079 S partofa fomat sequence 0, integer, so the avgument

are output lierally. et don

format "%.2f", 3 / 4
. Both dusion perands are inkeger Result
€ ets vounded DOWN 4o an integer (0).

OEBPS/html/graphics/f0098-01.jpg
class Animal
def move (destination)
puts "#{@name} runs to the #{(destination}."

end T
end)
Here's that
class Armadillo < Animal duplicated line

def move (destination)

puts "#{@name} unrolls!"

puts "#{Ename} runs to the #(destination}."
end

and

OEBPS/html/graphics/f0098-02.jpg
class Armadillo < Animal

def move (destination)
puts "#{@name} unrolls!"
super (destination)
end

Explicitly specify the
i argument.
Virtammtoe OR ... s

class Armadillo < Animal

def move (destination)
puts "#{@name} unrolls!"
super

end

Pvto-forard the same avgument(s)
. "move” was ealled with.

OEBPS/html/graphics/f0098-03.jpg
dillon = Armadillo.new
dillon.name = "Dillon"

dillon.move ("burrow") Dillon unrolls!
Dillon runs to the burrow

OEBPS/html/graphics/f0155-01.jpg
"index = 0", "while index < '
guests.length". Why do T have

To mess with this index" stuff?
Can't T just check in each guest?

OEBPS/html/graphics/f0178-01.jpg
call block { puts "two" }

call block do L
puts 2 2
end -
1

2

3

call_twice { puts 2 }

)
3
3
call_twice do i
puts "two" 12
end 3
i

pass_parameters_to_block do |paraml, param?|

puts paraml + param2 two
end 3
pass_parameters_to_block do |paraml, param2| @

e two

puts paraml / param2 22

end

OEBPS/html/graphics/f0190-01.jpg
def pig_latin(words)

original_length = 0
new length = 0

words. each do |word|
puts "Original word: #{word}"
original length += word.length
Tetters = word.chars
first_letter = letters.shift
new_word = "{letters.join}#{first_letterjay"
puts "Pig Latin word: #{new word}"
new_length += new_word.length

end
Original word: blocks
puts "Total original length: #{original length}" locksbay
puts "Total Pig Latin length: #(new length}" Original word: totally
Pig Latin word: otallytay
end Original word: rock
Pig Latin word: ockray
my_words = ["blocks", "totally", "rock"] Original total length: 17

pig latin(my words) Total Pig Latin length: 23

OEBPS/html/graphics/f0268-01.jpg
bodies['Venus'].name = 'Venus' This is supposed to be a fylant{
Why s this set to " moon”?!

p bodies['Venus']

#<CelestialBody:0x007£c60d13e6£8 @type="moon", @name="Venus">

OEBPS/html/graphics/f0268-02.jpg
What happened to
Isw’t one of these the names "Mavs”

p bodies|'Mars'] aupposed bo be 3 "moos e ond “Europar

o bodies['Europa']

#<CelestialBody:0x007£c60d13e6£8 @type="moon", @name="Venus">

#<CelestialBody:0x007£c60d13e6£8 @type="moon", @name="Venus">

OEBPS/html/graphics/f0268-03.jpg
But we're not altering multiple
objects... Look at the object

1IDs. All these different hash
keys are giving us references
to the same object!

OEBPS/html/graphics/f0268-04.jpg
p bodies['Venus'] These are all the

o bodies['Mars'] SAME object!
o bodies['Europa'] ’

#<CelestialBody:0x007£c60d13e6£8 €typ: , @ "Venus'">

#<CelestialBody:0x007£c60d13e6£8 @typ: , @ "Venus'">
#<CelestialBody:0x007£c60d13e6£8 @typ:

OEBPS/html/graphics/f0085-01.jpg
Note the complete
€ absence of Bodometer
and Baas_used!

puts car.instance_variables

OEBPS/html/graphics/f0085-03.jpg
What an

employee = Employee.new
wnusual

employee.name "John Smith" |
employee.salary = 80000 name!
puts employee.name

80000

OEBPS/html/graphics/f0062-03.jpg
thello
Ruby symbols —>: Over_easy

teast

methods

singleton_class,

OEBPS/html/graphics/f0085-02.jpg
class Person
def name= (new_value)

NOT 2 g0od @storage = new_value
! end
choite of et nane
variable names. @storage
end

end

-But well use the

class Employee < Person
def salary=(new_value)
@storage = new_value
end
def salary
estorage
end
and

same name heve.
(Hey, why not?)

OEBPS/html/graphics/f0062-02.jpg
attr_accessor :name, :age
'\.&chinzx FOUR

 ethods at ontel

OEBPS/html/graphics/f0062-01.jpg
Write this within your
elass definition..

~.and Ruby will
automaticall dech
these methods:

attr_writer :name

def name=(new_value)
@nane = new_value
end

Just like
our old

definition!

attr_reader :name

def name
@name
end

Just like

J—our old
definition!

attr accessor :name

def name= (new_value)
@name = new_value
end

def name
@name
end

Defines two
[methods at

oncel

OEBPS/html/graphics/f0142-01.jpg
Employee

name

initialize ¢— New|

print_name

SalariedEmployee HourlyEmployee
salary hourly_wage
hours_per_week

initialize initialize

print_pay_stub print_pay_stub

OEBPS/html/graphics/f0108-02.jpg
Q Q Q
o o o

@name ="Ben Weber" @name = "Amy Blake
@salary = 50000 @salary = 50000

OEBPS/html/graphics/f0142-02.jpg
class Employee

def initialize(name = "Anonymous") €——New initialize method that
self.name = name handles only the name!
end
end

class SalariedEmployee < Employee

def initialize(name = "Anonymous", salary =”0.0)
Super €————————— Attempt 4o call “imitialize” in

self.salary = salary Employee 4o set up the name.
end

o)

OEBPS/html/graphics/f0142-03.jpg
salaried employee = SalariedEmployee.new("Jane Doe", 50000)
salaried_employee.print_pay stub

wrong number of arguments (2 for 0

OEBPS/html/graphics/f0051-02.jpg
(speed) ‘ .blend '

end Puts "Sealed tight!”i

pinning on #{speed} setting

puts

Output [Fie gt Window Felp

Sealed tight!
Spinning on high setting.
o o]

OEBPS/html/graphics/f0051-01.jpg
Class namc»—)’ Class name. 1 Class V\amc.-—)’

Bird Doy Cat
Instance variables =

(Coming soonl)

talk talk talk

g move g move g) move
[nstance Instante Instance

methods. methods. methods.

OEBPS/html/graphics/f0028-01.jpg
Get My Number Game
Written by: you!

puts "Welcome to 'Get My Number!'"

We add this | 4 Get the player's name, and greet them.

variable print "What's your name? "

to track input = gets

whether name = input.chomp

we should puts "Welcome, #{name}!"

print the

Youlost” | 4 store a random number for the player to guess.
message. puts "I've got a random number between 1 and 100."
We'll also puts "Can you guess it?"

weitlater | target = rand(100) + 1

o halt the

game on # Track how many guesses the player has made.
atoreett | num quesses = 0

5“555,

Track whether the player has guessed correctly.
N guessed it = false

puts "You've got #{10 - num guesses} guesses left."

Heve are print "Make a guess: "
our "if” guess = gets.to_i
statements!

Compare the guess to the target.

4 Print the appropriate message.
if guess < target

puts "Oops. Your guess was LOW."
elsif guess > target
puts "Oops. Your guess was HIGH."

elsif guess == target
We'll see a puts "Good job, #{name}!"

tleaner way puts "You guessed my number in #{num_guesses} guesses!"
to write guessed_it = true

this in a end

moment.
(__L # If player ran out of turns, tell them what the number was.

D it not guessed_it
puts "Sorry. You didn't get my number. (It was #{target}.)"
end

OEBPS/html/graphics/f0246-04.jpg
#<Candidate:0x007£be0981e970 @name="Carl Barnes", @age=nil,
@occupation="Attorney", €hobby=nil, @birthplace=nil>

OEBPS/html/graphics/f0246-03.jpg
p Candldate.new("Carl Barnes™)

#<Candidate:0x007fbe0981ecl8 @name="Carl Barne:

@occupatio: 1, @hobb: @birthplace=nil>

OEBPS/html/graphics/f0246-02.jpg
class Candidate
attr_accessor :name, :age, :occupation, :hobby, :birthplace
def initialize(name, options = {}) €——| no hash is passed, use an empty one.
self.name = name
self.age = options([:age]
self.occupation = options[:occupation]
self.hobby = options|(:hobby)
self.birthplace = options[:birthplace]
end
and

OEBPS/html/graphics/f0280-01.jpg
T have one more question.
Why would anyone use a hash
default object when you can use
a hash default block instead?

OEBPS/html/graphics/f0246-01.jpg
Candidate.new{ Amy Nguyen™
° (A Houyent) j2 T mmd in "initialize': wrong number
of arguments (1 for 2)

OEBPS/html/graphics/f0280-02.jpg
T should only use
numbers? Then why did Ruby
let us use a CelestialBody as
adefault object earlier, without
even a warning?

OEBPS/html/graphics/f0040-03.jpg
vehicle_methods.rb

OEBPS/html/graphics/f0280-03.jpg
I£ this value is unassianed,
gets the hash default but
does NOT modify it

letters =

counts = Hash.new(0)

letters.each do |letter|
—— counts [letter] += 1 &——Assigns the intremented
end value batk to the hash.

p counts

OEBPS/html/graphics/f0017-05.jpg
puts input

Jay

OEBPS/html/graphics/f0017-04.jpg
$ ruby get number.rb

Welcome to 'Get My Number!'
What's your name? Jay

Welcome, Jay
'

OEBPS/html/graphics/f0040-01.jpg
Uses the default, "low-beam™
use_headlights

use_headlights ("high-beam") &——— Overvides the
default.

Turning on low-beam headlights
Watch out for deer!

Turning on high-beam headlights
Watch out for deer!

use_headlights

stop_engine No avgument
start_engine needed!
use_headlights<
accelerate

use headlights ("high-beam")

OEBPS/html/graphics/f0119-01.jpg
gy = SRLO¥Ne Lo
amy.name = "Amy Blak
amy.salary = 50000
amy.print_pay_stub Name: Amy Blake
Pay This Perio

$1917.81

OEBPS/html/graphics/f0017-03.jpg
puts "Welcome to "Get My Number
print "What's your name? "

input = gets

puts "Welcome, #{input}!"

L st this one Ikl
chavacter added!

OEBPS/html/graphics/f0040-02.jpg
Yeah, this will make
scripting our test drives
alot easier! Thanks!

Q

OEBPS/html/graphics/f0017-02.jpg
What kind of welcome
is that? Let's show our users

alittle enthusiasm! At least put
an exclamation point at the
end of that greeting!

OEBPS/html/graphics/f0017-01.jpg
$ ruby get number.rb
Welcome to 'Get My Number!'
What's your name? Jay
Welcome, Jay

OEBPS/html/graphics/f0189-01.jpg
def pig_latin(words)

original_length = 0
0

words. do
puts "Original word: #{word}"
+= word.length

Tetters = word.chars
first_letter = letters.shift
new_word = "#{letters.join}#{first_letterjay"
puts "Pig Latin word: #{ .

+= new_word.length

end
Original word: blocks
puts "Total original length: #{ 3 Pig Latin word: locksbay
puts "Total Pig Latin length: #{new_length}" original word: totally
Pig Latin word: otallytay
end Original word: rock
Pig Latin word: ockray
my_words = ["blocks", "totally", "rock"] Original total length: 17

pig latin() Total Pig Latin length: 23

OEBPS/html/graphics/f0210-02.jpg
lines.find_all { |line| line.include?("Truncated”) }

Returns true if line
tontains "Truneated”.

OEBPS/html/graphics/f0189-02.jpg
|word| e

1_length
LAt new_length
- new_word

shrink

new_length my_words

original length

OEBPS/html/graphics/f0210-03.jpg
lines.Iiind all { |line| line.include?("Truncated™) }

Result will be an arvay with all £he el "lines”
that ontain string "%:nuw. < dencrts of “Toet

OEBPS/html/graphics/f0235-01.jpg
votes = {}
Value is nil, ——S if votes["Kremit the Toad"
which is £alsy. puts "I won't be printed!
end
votes ["Kremit the Toad"]
Value is |,——> if votes["Kremit the Toad
which is truthy. puts "I'll be printed!
end

OEBPS/html/graphics/f0210-01.jpg
Result will be used as
blotk veduen value.

lines.find all { |line| line.include?("Truncated") }

OEBPS/html/graphics/f0235-02.jpg
lines.each do |line|
name = line.chomp
if votes [name] &——We don't need that ualy
votes[name]l += 1 "if vobeslname] I= il
else any morel
votes [name] = 1
end
end

OEBPS/html/graphics/f0235-03.jpg

OEBPS/html/graphics/f0235-04.jpg
school = {
"Simone" => "here",
"Jeanie" => "here"

names = ["Simone", "Ferriss", "Jeanie", "Cameron"]

names.each do |name|

if school(name] Simone is present
puts "#{name} is present”
else -

puts "#{name} is absent" 5
end
—

OEBPS/html/graphics/f0050-01.jpg
class Bird
def talk
puts "Chirp! Chirp!"
end
def move (destination)
puts "Flying to the #{destination}."
end
end

animals.rb

class Dog
def talk
puts "Bark!"
end
def move (destination)
puts "Running to the #{destination}."
end
end

class Cat
def talk
puts "Meow!"
end
def move (destination)
puts "Running to the f{destination}."

end
end
bird = Bird.new
dog = Dog.new Create new instances
cat = Cat.new of our tlasses.
bird.move ("tree")
e Call some methads on
ird.ta. :
the instances.

cat.move ("house")

OEBPS/html/graphics/f0109-01.jpg
We need to ereate attribute
witer mekhods mansaly, so
we tan validate the data. We

class Employee ¢an treate veader methods
automatically, though.
attr_reader :name, :salary€—
def name=(name) Report an ervor if the
if name name is blank.
raise "Name can't be blank!"€
end

@name = name &—— Store the name in an
end instante variable.

def salary=(salary)
if salary < 0

raise "A salary of #{salary} isn't valid!" &——Report an evror if the

end alavy is negative
@salary = salary €——Store the salavy in an

end instante variable.

det print pay stub Prink. the enployee rame _
puts "Name: #{(Gname}"€— Caleulate a 14-day portion

pay_for period = (@salary / 365) * 1ae— of the employee’s salary.
puts "Pay This Period: $#{pay_for_period}" (—\

nd Peint. the amount paid.

end

OEBPS/html/graphics/f0050-02.jpg
File_Edit_Window
$ ruby animals.rb
Flying to the tree.
Bark!

Chirp! Chirp!
Running to the house.

$

OEBPS/html/graphics/f0073-01.jpg

OEBPS/html/graphics/f0247-01.jpg
options|[:depth] .
options|[:height] D D
—]
options|[:width] ' (' *' depth: 2.5
puts "Volume is #{result} '

Output:

File EdT Vindow
Volume is 125.0

OEBPS/html/graphics/f0153-01.jpg
class HourlyEmployee < Employee
Define a new tlass method.

def self.security guard(name) € =
HourlyEmployee.new (name, 19.25, 30) &——Create a new instante w&hé}-c =
i e ined
end specified name, and a predefine employeesb

def self.cashier (name)&— ——— hourly wage and hours per week. A
(continued;
HourlyEmployee.new (name, 12.75, 25) Y (ued)
d

Do the same as above for the

en
det self.janitor (name) & "4 ol enployee es.

HourlyEmployee.new (name, 10.50, 20)
end

These atbeibutes ave specific bo hourly employees
attr_reader :hourly wage, :hours_per_week€—

def hourly wage=(hourly wage)
if hourly wage < 0

raise "An hourly wage of #{hourly wage} isn't valid!"
end
€hourly wage = hourly wage

end

def hours_per_week=(hours_per_week)
if hours_per_week < 0
raise "#{hours per week) hours per week isn't valid!"
end
@hours_per_week = hours_per_week

end (Called when we ¢all "HourlyEmployee new”

def initialize(name = "Anonymous", hourly wage = 0.0, hours_per_week = 0.0)
super (name) €—— Call the superclass’s "iitialize” method, passing only the name.

self.hourly wage = hourly Wage——— et thece oursehes, sine

en(sjelf.hcursiperiweek = hcursiperiweek(—/u‘e\/vc etifi to this class.

def print_pay_stub
print_name &——Have the supertlass print the name. Caleulate 2 weeks pay-
pay_for_period = hourly wage * hours_per week * 2€&—
formatted_pay = format ("$%.2£", pay_for_period) €—— Format the pay with
puts "Pay This Period: #{formatted pay}" 2 detimal places.

end

end

jane = SalariedEmployee.new("Jane Doe", 50000)
jane.print_pay_stub

angela = HourlyEmployee.security guard("Angela Matthews")
ivan = HourlyEmployee.cashier("Ivan Stokes")
angela.print_pay_stub

ivan.print_pay_stub

OEBPS/html/graphics/f0209-04.jpg
Create a new arvay to hold

the elements for which the
class Array block vetuens "true
def find_all (
matching_items = [] Protess eath element.

self.each do |item| €

it yield(item) €——Pass the clement o the block. [the

matching_items << item &~ vesult is "brue’

end .
end An:t :c to I{he arvay of
matching_items matehing elements.

end

—y

OEBPS/html/graphics/f0121-06.jpg
puts nil.inspect [EERN

OEBPS/html/graphics/f0121-05.jpg
puts nil.to_s -<——Emy€y string

OEBPS/html/graphics/f0121-04.jpg
puts nil.class NilClass

OEBPS/html/graphics/f0121-03.jpg
employee = Employee.new

employee.print_pay_stub nil
-t

OEBPS/html/graphics/f0121-02.jpg
class Employee

def print_pay_stub
p name, @salary €—— Print the values in debug format
end
end

OEBPS/html/graphics/f0121-01.jpg
employee = Employee.new
employee.print_pay_stub

OEBPS/html/graphics/f0026-02.jpg
Start of the Boolean

conditional expression
Lf[[T <
puts "It's true!"
end| \

Conditional body
End of the conditional

if score == 100
5 puts "Perfect!"
Note #jf{ there's 1ot score >= 70
no "¢’ in the

Puts "You pass!"

middle of "elsif”— 2156

puts "Summer school time!"
aend

OEBPS/html/graphics/f0110-02.jpg
ben = Employee.new
ben.salary = -246

ary=: A salary

of -246 isn't valid!
(RuntimeError)

OEBPS/html/graphics/f0026-01.jpg

OEBPS/html/graphics/f0110-01.jpg
kara = Employee.new Error: — [ETRS Name can't be
kara.name = "" blank! (RuntimeError)

OEBPS/html/graphics/f0110-04.jpg
Cresting o class
/(‘/o« ave herel)

Float and

Fixnum
Formatting
numbers

initialize

(Back on track!)

OEBPS/html/graphics/f0110-03.jpg
amy.print_pay_stub Name: Amy Blake

Pay This Period: $1904 [NePsyugwies
ave the tents?

OEBPS/html/graphics/f0187-05.jpg
def each
index = 0

Prices.each do Iprice|
while index < self.length amount_off = price / 3.0
yield self[index], o

puts format ("Your discount: $%.2£", amount off)
index += 1 end N
end

Your discount: $3.00
ond

OEBPS/html/graphics/f0271-05.jpg
Hash Default Object

#<CelestialBody

@type="planet",
@name="Mars">

ibute added 4o default object!

OEBPS/html/graphics/f0187-04.jpg
def each
index 0
while index < self.length

Prices.each do Iprice|
amount_off = price / 3.0

yield self[index] puts format ("Your discount: $%.2f", amount_off)
index += 1 N
end

Your discount: $8.33
ond

OEBPS/html/graphics/f0187-03.jpg
def each
index = 0

Prices.each do Iprice|
while index < self.length amount_off = price / 3.0
yield self [index], 01

puts format ("Your discount: $%.2f", amount_off)
index += 1 Nd)
end

Your discount: $1.33

-

OEBPS/html/graphics/f0187-02.jpg
prices = [3.93, 25.00, 8.93]
show_discounts (prices) Your discount: $1.33

Your discount: $8.33
Your discount: $3.00

OEBPS/html/graphics/f0187-01.jpg
def show_discounts (prices)
index = 0
while index < prices.length
amount off = prices(index] / 3.0
puts format ("Your discount: $%.2f", amount off)
index += 1 From
end
end

def show_discounts (prices)
prices.each do |price|
amount off = price / 3.0
puts format ("Your discount: $%.2£", amount_off)
end
Py

here o
here!

OEBPS/html/graphics/f0209-01.jpg
p (1, 2,
p [1, 2,

3,
3,

4,
4,

5].find_all {
5].find_all {

| number |
| number |

number.even? }
number.odd? }

OEBPS/html/graphics/f0209-02.jpg
p ['a’, 'b', 'c'l.find all (|item| true } e,

OEBPS/html/graphics/f0209-03.jpg
, 'c'].find all { |item| false } n

p ['a',

OEBPS/html/graphics/f0282-02.jpg
hash = Hash.new(0)

The hash default object

hash['a'] += 1
1 is unchanged.

hash('c'] +

p hash.default
o hash We assigned the
values +o the hash/

OEBPS/html/graphics/f0282-01.jpg
default body = CelestialBody.new
default_body.type = 'planet’ A call to an attribute
bodies = Hash.new(default_body) writer method. This does

NOT assign +o the hash!
bodies['Mars'].name = 'Mars'€ v

b bodies BE— et

emphy, ackually!

OEBPS/html/graphics/f0015-03.jpg
gets () & No/

OEBPS/html/graphics/f0015-01.jpg
at it looks like in
your berminal

Gt Tindow
first line
second line
third line
fourth line

OEBPS/html/graphics/f0015-02.jpg
A eall to the "gets” method

input = |gets

Assignment, £ 3 new
aviable, “input”.

OEBPS/html/graphics/f0084-02.jpg
Supertlass.

odometer

Defined here. ——>|
gas_used

Subelass.

Car

odometer

[nherited here. ——)
gas_used

OEBPS/html/graphics/f0084-01.jpg
Kite

StuntKite

steer

OEBPS/html/graphics/f0084-03.jpg
N g @odometer

OEBPS/html/graphics/f0258-01.jpg

OEBPS/html/graphics/f0271-04.jpg
(bodies['Mars T)(name = "Mars'™>

Aecesses the L Modifies the
default object. default object

OEBPS/html/graphics/f0271-03.jpg
default body = CelestialBody.new
default_body.type = 'planet'
bodies = Hash.new (default_body)

o bodies['Mars'] #<CelestialBody:
0x007£e0b98a76£8 Hash Default Object

bodies['Mars']
6ot value for "Maa’?\—”m‘x v Ve
es!

@type="planet'">

#<CelestialBody
@type="planet">

OEBPS/html/graphics/f0258-02.jpg
CLAsE Lalestininecy
attr_accessor :type, :name
end

altair = CelestialBody.new
altair.name = 'Altair’ To save time, he wants to
altair.type = 'star' ¢opy the previous star...
polaris = altair

polaris.name = 'Polaris' €——.And just change

vega = polaris the name.
vega.name = 'Vega' €——Same
here
puts altair.name, polaris.name, vega.name Vega
Aol But it looks like the
Vega names on all 3 stars

ave now identicall

OEBPS/html/graphics/f0271-02.jpg
T thought we were assigning
values to the hash. Aren't those
assignment statements right
there?

bodies['Mars'].name = 'Mars'

bodies['Europa'].name
bodies['Europa'].type
bodies['Venus'].name

Isn't his assigning
£ the hah?

'Europa’
moon’
"Venus'

OEBPS/html/graphics/f0271-01.jpg
class CelestialBody
attr_accessor :type, :name
end

default_body = CelestialBody.neu
default_body.type = 'planet'
bodies = Hash.new(default body)

bodies['Mars'].name = 'Mars'
bodies['Europa'].name = 'Europa’
bodies['Europa'].type = 'moon’
bodies['Venus'].name = 'Venus'

o bodies n(—Emvty.’

OEBPS/html/graphics/f0027-03.jpg
1f true
Indented ——> puts "I'1l be printed!"
2 spates! end

OEBPS/html/graphics/f0027-02.jpg
I notice that you're indenting
the code between the i f and
the end. Is that required?

OEBPS/html/graphics/f0270-04.jpg
Hash Default Object

o grades['Carl'] grades['Carl’'] {"Regina" => "B"}

Ea 6ot a value for "Carl”?

OEBPS/html/graphics/f0270-05.jpg
grades| 'Carl’] = "C7
p grades('Carl']

ne Hash Default Object

grades['Carl'] {"Regina

Got a value for "Carl’? w v

OEBPS/html/graphics/f0188-05.jpg

OEBPS/html/graphics/f0188-04.jpg

OEBPS/html/graphics/f0027-01.jpg
1f 1 1

puts "I'll be printed!"
end
if 1 >2
puts "I won't!"
end
if 1 <2

puts "I'll be printed!"
end

it 1 2
puts "I won't!"
end
if 2 <=2
puts "I'll be printed!"
end Said aloud as
, »
"ot equal to”
if 2 26—

puts
end

I won't!"

OEBPS/html/graphics/f0188-03.jpg

OEBPS/html/graphics/f0188-02.jpg
$ ruby prices.
37.98
-37.98

Your discount:
Your discount
Your discount

OEBPS/html/graphics/f0188-01.jpg
def total(prices) _ Gfart the total at O.
amount = 0€— =
prices.each do |price| €——Protess eath price | —!
amount += price €&——Add the ewrrent price =
end 4o the +otal. prices.rb

amount.

end Return the Final total.
def refund (prices) _ Gfart the total at O.
<

amount = 0.

prices.each do |price| €——Protess eath price.
amount -= price €——Refund the turvent price.

end

amount

snd Return the Final total.

def show_discounts (prices)
prices.each do |price| €——Protess eath price
amount_off = price / 3.0 €——Calelate discount.
puts format ("Your discount: $%.2f", amount off)
end

end Format and print the eurvent. distount.
prices = [3.99, 25.00, 8.99]
puts format ("$.2f", total (prices))

puts format ("$.2£", refund(prices))
show_discounts (prices)

OEBPS/html/graphics/f0004-01.jpg
Sourte tode

MyProgram.java

g@»%

Compiler

Compiled ¢ode
D)
— L -

MyProgram.class

The Compute,
exetutes Your

Program

Virtual Machine

OEBPS/html/graphics/f0004-02.jpg
he Compute
- : enetutes you
L, =| —> —_— Program

my_program.rb The Ruby Interpreter

Fie 4T Window Fels

$ ruby hello.rb
hello world

Theve's
Your

output]

Type your source code. Run your source code with the

Save ac hello.vh Ruby interpreter.

OEBPS/html/graphics/f0132-01.jpg
class Employee

def initialize(name = "Anonymous", salary = 0.0)
Not in scope ——>amy.name = name
heve! amy.salary = salary
end
end

amy = Employee.new ("2Amy Blake", 50000)

OEBPS/html/graphics/f0132-02.jpg
my_object = MyClass.new
puts "my_object refers to this object: #{my object)"
my_object. first_method

0x007£91£b0ae508> Same
CuTrent instance within first method: #<MyClass:0x007£91fb0ae508> object!

OEBPS/html/graphics/f0236-03.jpg
On the First name,

lines.each do |line| gets "nil” and tries
name = line.chomp h:add I toit
votes[name] += 1€

end

|5 unde
for nil

OEBPS/html/graphics/f0259-01.jpg
objut Object

|
e]®

b Jgd The Heap

OEBPS/html/graphics/f0236-02.jpg
votes = {}

lines.each do |line|
name = line.chomp
if votes [name] &—— £ voteslname] is not nil
votes [name] += 1 €——[ntrement the existing total
else «— (£ voteslnamel IS nil
votes[name] = 1 €——Add the name to the
end hash with value of |

and

OEBPS/html/graphics/f0259-02.jpg
New objeet goes here.

0.0 L
Q0" 000
EEp—

OEBPS/html/graphics/f0165-01.jpg
def do_something with every item(array, operation)
" operation” should be set
"refund” ¥ nil Pebund’, or

if operation == "total” or operation

amount = 0 &——— We won't need this vaviable for B » g
, ” » show disounts”. Don't
fere's the start of the oS the "show distounts” operation make 3 typel

loop — no more duplication! {

while index < array.length

if operation "total™
amount += array[index]
elsif operation "refund"
amount -= array[index]
elsif operation "show discounts™

Use the corvect: logie for

the eurvent operation. amount_off = array[index] / 3.0
puts format ("Your discount: $%.2f", amount_off)
end

index += 1
end

if operation == "total" or operation == "refund"

return amount <—\

end We don't veturn the value of this
variable for "show distounts”.

end

OEBPS/html/graphics/f0270-02.jpg
s Sl] Hash Default Object
p grades(['Regina’

m grades['Regina']
ot a value for "Regina”?

OEBPS/html/graphics/f0270-03.jpg
Hash Detault Object

o grades['Carl'] grades['Carl']

m ot a value for "Carl’2

OEBPS/html/graphics/f0236-01.jpg
school

i

"Simone" => "here",
"Jeanie "here"
}
names = ["Simone", "Ferris: "Jeanie", "Cameron"]

names.each do |name|
if school [name] Simone is present
puts "#{name) is present"
else :
puts "#{name} is absent" Jeanie is present
end g 5
end

Feeviss is absent,

Cameron is absent

OEBPS/html/graphics/f0270-01.jpg
Rash Detault Object

o grades['Regina'] grades['Regina’] m

n Got a value for "ngma”?v Nope. Yes!

OEBPS/html/graphics/f0049-01.jpg
class Bird

You'll be able b det talk

call "4alk” o]
move” on any
Bird instance

You ereate!

Same
for Doy

instantes... [N,

Same
for Cat
instantes!

puts "Chirp! Chirp!" No more if/elsif
end statements!
[~ def move (destination)
puts "Flying to the #{destination}."
d)
nd Noke: We dor’t have
support for animal e
class Dog ook yeb. Well get bo that
def talk
7 puts "Bark!"
end

def move (destination)

puts "Running to the #{destination}
end
end

class Cat
def talk
-7 puts "Meow!"
end

[™>def move (destination)

puts "Running to the #{destination}."
end
end

OEBPS/html/graphics/f0072-02.jpg
— instance

age variables
(state)

move instance

s methods

repon,age

(behavior)

OEBPS/html/graphics/f0072-03.jpg
puts dog.name
dog.age = 3
puts dog.age

Daisy
3

OEBPS/html/graphics/f0072-01.jpg
class Dog Seks up "name” and
"ane” abribute
attr_reader :name, :age&—— veader methods

def name=(value)é——Attribute writer
if value method for "@name”.
raise "Name can't be blank!"
end S~ Data vlidation
ename = value
end

Abbribute witer
def age=(value) e nethod for "Gage’-

if value < 0
raise "An age of #{value} isn't valid!"

end ™~ Data validation
Gage = value
end

def move (destination)€—— [nstante method

puts "#{@name} runs to the #(destination}."

end "\ Using an instance variable.
def talk &——Instante method

puts "#(@name} says Bark!"
end "\ Using an instanee variable.

def report_age &—— [nstante method.
puts "#(@name) is #(Gage) years old."

e N Using instance varizbles

end
Create a new Doy instance

dog = Dog.new€—

dog.name = "Daisy"e— [ntialize attributes

dog.age = 3e—

dog. report_agee—_

dog. talké————— Call instance methods.

dog.move ("bed")€~ dog.rb

OEBPS/html/graphics/f0154-01.jpg

OEBPS/html/graphics/f0225-01.jpg
Wilson, Wilson... Not here,

either. If only this data had

labels on ... I could find things
more quickly!

OEBPS/html/graphics/f0061-02.jpg
fido = Dog.new Set @name for Fido.
£ido.name = "Fido"

fido.age = 2 €—— Set @age for Fido

rex = Dog.new

rex.name = "Rex"e—— St @name for Rex
rex.age = 3 €—— et @age for Rex
fido.report_age

rex.report_age

2 years old
Rex is 3 years o

OEBPS/html/graphics/f0061-01.jpg
class Dog
Write a new value

def name= (new_value) b Grame
@name = new_value
end
def name
@name < Read the value
end £rom @name
new_value))
new valuee— Write a new value
- o Bage
def age
@age €~ Read the value
end feom Bage

def report_age
puts "#{Gname} is #{@age} years old
end

end

OEBPS/html/graphics/f0199-02.jpg
(1, 2, 3].each { |number| sum += number }

s s [

OEBPS/html/graphics/f0038-01.jpg
Do we have to specify an argument
on this use_headlights
method? We almost always use
"low-beam", and we're copying
that string everywhere in our code!

OEBPS/html/graphics/f0199-03.jpg
File.open("sample.txt") do |file|
contents = file.readlines
end

puts contents This is the first line in the file.

This is the second.
This is the last line.

OEBPS/html/graphics/f0199-01.jpg
def yield number
yield 4
end

yield number { |number| array << number)

p array 3, 4]

OEBPS/html/graphics/f0072-04.jpg
dog.report_age
dog.talk
dog.move ("bed")

Daisy is 3 years old.

Daisy says Bark!
Daisy runs to the bed.

OEBPS/html/graphics/f0072-05.jpg
dog.name = "7

can't be blank!
(RuntimeError)

OEBPS/html/graphics/f0143-02.jpg
salaried employee = SalariedEmployee.new("Jane Doe", 50000)

salaried_employee.print_pay stub
Name: Jane Doe
Pay This Period: $1917.81

OEBPS/html/graphics/f0143-01.jpg
class SalariedEmployee < Employee
def initialize(name = "Anonymous", salary = 0.0)
super (name) e————————— Call "initialize” in Employee

selsiasiany = palaey passing only the name
en

e

OEBPS/html/graphics/f0143-03.jpg
class Hourlykmployee < hmployee

def initialize(name = "Anonymous", hourly wage = 0.0, hours_per_week = 0.0)

super (name) @——————————— Call "iitialize” in Employee,
self.hourly wage = hourly wage passing only the name.
self.hours_per_week = hours_per_week

end

end

hourly_employee = HourlyEmployee.new ("John Smith", 14.97, 30)
hourly_employee.print_pay_stub
Name: John Smith
Pay This Period: $89

OEBPS/html/graphics/f0220-05.jpg

OEBPS/html/graphics/f0243-03.jpg
lake one hash instead of multiple pavameters Ruby eonvention is &
) = Lymble 3 ey

def area(options)
options[:length] * options[:width]
end
Access values from the hash
instead of individual parameters.

puts area((:length => 2, :width => 4)) n

Instead of passing multiple arguments, pass a
single hash with appropriate keys and values.

OEBPS/html/graphics/f0266-02.jpg
altair = CelestialBody.new
altair.name = 'Altair' Copies the SAME vefevente

altair.type = 'star' o a new vaviable!
polaris = altair
polaris.name = 'Polaris’

puts altair.object_id, polaris.object_id 70350315190400 |
70350315190400)SAMIZEAILES

OEBPS/html/graphics/f0002-01.jpg
No, really, we mean ANY feedback! If you're
confused, other readers will be, too. We wart to work
this stuff out before printing! E-mail us at:
feedback@headfirstruby.com
And tharks!

OEBPS/html/graphics/f0025-01.jpg

OEBPS/html/graphics/f0220-06.jpg
We'll ¢all this method below, to
find adjettives within each veview

def find_adjective(string) €

words = string.split (" ") €—— Break the string into an avay of w“m:ix
index = words.find index ("is") &——Find the index of the word "is
words [index + 1] €——Return the word

end Lollowing "i".

lines = [] €——We need to treate this variable outside the block.
File.open ("reviews.txt") do |review file| €——Open the file, and automatically

Lines = review_file.readlines €— close it when we've done.
end
Read every line in the file into an areay. Find lines that include
relevant_lines = lines.find all { |line| line.include?("Truncated") }¢&— the movie name

reviews = relevant_lines.reject { |line| line.include?("--") }&—— Extlude reviewer bylines

Protess cath veview.

adjectives = reviews.map do |review| €
adjective = find_adjective (review) &——Find the adjective
"'#{adjective.capitalize) ' "€——Return the adjective, capitalized and survounded

end by quotes.

The critics agree, Truncated is:
puts "The critics agree, Truncated is:" "Amazing'
puts adjectives "Funny'

'Astounding’

OEBPS/html/graphics/f0243-02.jpg
Candidate: Amy Nguyen

P 2ce: 37
:V:}“’“f‘ Q M| Occupation: Lacrosse
got these “° Hobby: Engineer

EESEEER nirthplace: Seattle

OEBPS/html/graphics/f0266-01.jpg

OEBPS/html/graphics/f0025-02.jpg
print "Make a guess
guess = gets

guess < target:jﬁi{her of these il
quess > target vesult in an evvor!

OEBPS/html/graphics/f0186-04.jpg
def each
= 25.00

index = 0
while index < self.length do Iprice|

yield self[index]

amount -= price
index += 1 end-
2 N Updated from

end 399 4, -28.99

OEBPS/html/graphics/f0025-03.jpg

OEBPS/html/graphics/f0186-05.jpg
def each 8.99

index = 0

while index < self.mce\
yield self[index amount -= price
index += 1]\id)

end Updated rom

ond 2899 4o —37.90

OEBPS/html/graphics/f0048-03.jpg
Bark!
Running to the food bowl.

OEBPS/html/graphics/f0186-02.jpg
prices = [3.93, 25.00, 8.93]
puts format ("%.2£", refund (prices))

OEBPS/html/graphics/f0220-01.jpg

OEBPS/html/graphics/f0186-03.jpg
def each
3.99

index = 0
while index < self.length do Iprice|

yield self[index]

amount -= price
index += 1 -end-
. — e Updsted fron

end 040 -399

OEBPS/html/graphics/f0220-02.jpg

OEBPS/html/graphics/f0048-01.jpg
New class declaration

class] Doq'/

def talk
Another instance

1 " '
puts "Bark! / method
end

def move (destination)
puts "Running to the #{destination}."
end

Class name

Instance method

end]

End of class
detlaration

OEBPS/html/graphics/f0220-03.jpg

OEBPS/html/graphics/f0048-02.jpg
Class name.

Instane variables ——)|
(we'll add some soon).

Instante
methods:

OEBPS/html/graphics/f0186-01.jpg
def refund(prices)
amount = 0 def refund(prices)
index = 0 From T amount = 0
while index < prices.lengthy . hevel Prices.each do lpricel

amount _-= prices [index]————————————Samount —= price
P 2 P <

e ena Again, we don't have
amount end o pull the item out
end of the arvay; "each’

aeks it for usl

OEBPS/html/graphics/f0220-04.jpg

OEBPS/html/graphics/f0083-04.jpg
land

steer

OEBPS/html/graphics/f0060-05.jpg
assigned via method call
same here

OEBPS/html/graphics/f0060-04.jpg
class MyClass
def my attribut,
Gmy_attribute
end
def my_attribute
@my_attribute
end

end A call to "my_atbribute=",
(disauised as assignment.

new_value)
new_value

my_instance = MyClass.new.
my_instance.my attribute = "assigned via method call"
puts my_instance.my_attribute Aeall to
my_instance.my_attribute=("same here") ".,y_au;ributci'
puts my_instance.my_attribute that 3,_(»,,3]]7

looks like onel

OEBPS/html/graphics/f0060-03.jpg
A method The method
ealll f argument.

my instance.my attribute=("a value")

OEBPS/html/graphics/f0025-04.jpg
4 Store a random number for the player to guess.
puts "I've got a random number between 1 and 100."
puts "Can you guess it?"

target = rand(100) + 1

Track how many guesses the player has made.
num_guesses = 0

Our new
todel puts "You've got #{10 - num_guesses} guesses left."

s print "Make a guess: "
guess = gets.to i

OEBPS/html/graphics/f0243-01.jpg
candidate = Candidate.new("Amy Nguyen®, 3/, "Lacrosse”, "Engineer”, "Seattle")
print_summary (candidate)
Wait, what order do these a0 in?

OEBPS/html/graphics/f0266-03.jpg
puts altair.inspect, polaris.inspect
A hexadetimal vepresentation
of the object ID

vega = CelestialObject.new
puts vega.inspect

#<CelestialBody:0x007££76b17£100 @name="Polaris", @type="star">
#<CelestialBody:0x007££76b17£100 @name="Polaris", @type="star">
#<CelestialBody:0x007££76b17edb8>

The SAME object!
A diffevent object

OEBPS/html/graphics/f0060-02.jpg
def my_ attribute=(new_value)

s R Part of the
end method name!

OEBPS/html/graphics/f0060-01.jpg
Attribute
writer
def my_attribute= (newgalue)/’ﬂd‘“’d-

@my_attribute = new_value
end

class MyClass

end

OEBPS/html/graphics/f0083-01.jpg
mileage
accelerate

sound_homn
steer

Supertlass.

Subelass Subelass. Sublass
Motorcycle

odometer odometer odometer
gas_used gas_used gas_used

cargo
mileage mileage mileage
accelerate accelerate accelerate
sound_horn sound_horn sound_horn
steer steer steer

load_bed

OEBPS/html/graphics/f0083-02.jpg
truck.odometer
truck.gas_used = 366
puts "Average MP
puts truck.mileage

Average MPG
3L

OEBPS/html/graphics/f0197-01a.jpg
File object is passed
as a parameter to
the blotk.

File.open("reviews.txt") do |review_file
lines = review_file.readlines

end
When the block finishes,

the Flle i atomatically
tlosed for you!

OEBPS/html/graphics/f0083-03.jpg
Kite

StuntKite

OEBPS/html/graphics/f0140-01.jpg
Employee

name
print_name
SalariedEmployee HourlyEmployee
salary hourly_wage
hours_per_week
initialize ¢— New! initialize ¢— New!/

print_pay_stub print_pay_stub

OEBPS/html/graphics/f0163-02.jpg
Start at the tivst avray index.

def show_discounts (prices)
index = oe—J While we've still within the array.
while index < prices.length€—
amount_off = prices(index] / 3.0 €——Determine discount for the curvent price.
puts format ("Your discount: $%.2f", amount off)

e 4= 1 &~ Format. the distount
Move bo the next. price

end

show_discounts (prices) €——Pass our areay of prices [N TIRUNENEPEP
4o the method. Your discount: $8.33
Your discount: $3.00

OEBPS/html/graphics/f0163-01.jpg
def refund(prices) _ The total starts at O.
amount = 0€— Gtart ak the first arvay index.
index = 0€&— While we've still within the areay.

while index < prices.length€

amount -= prices[index] €—— Subtract the curvent

index 1 ite.
e < P
Move o the next price.
amount
sad Retuen the total vefund.

puts format ("$.2f", refund(prices))é\
Pass our arvay of prices
1o the method, and
Forwit ke suil

OEBPS/html/graphics/f0163-04.jpg

OEBPS/html/graphics/f0163-03.jpg

OEBPS/html/graphics/f0140-03.jpg
salaried_employee = SalariedEmployee.new("Jane Doe", 50000)
salaried_employee.print_pay_stub

hourly employee = HourlyEmployee.new("John Smith", 14.97, 30)
hourly_employee.print_pay_stub

Name: Jane Doe
Pay This Period: $1917.81

Name: John Smith
Pay This Period: $898.20

OEBPS/html/graphics/f0140-02.jpg
This method — def initialize(name = "Anonymous", hourly wage = 0.0, hours_per_week

parameters,
and set 3
attributes.

This is just like the
class SalariedEmployee < Employee inttialize method for

e the old Employee elass.
def initialize(name = “"Anonymous®, salary = 0.0) €
self.name = name

self.salary = salary

end

a’ Aoain, we make
e paramekers optional by
class HourlyEmployee < Employee Cyrowd'lmj defaults.

0.0)
self.name = name

self.nourly wage = hourly wage
self.hours_per_week = hours_per_week
end

oy

OEBPS/html/graphics/f0163-05.jpg

OEBPS/html/graphics/f0139-01.jpg
nourly employee = HourlyEmployee.new
hourly_employee.name = "John Smith"
hourly_employee.hourly wage = 14.97
hourly_employee.hours_per_week = 30
hourly_employee.print_pay_stub Name: John Smith
Pay This Period: $89i

OEBPS/html/graphics/f0152-01.jpg
class Employee The "name” atbribute is inhevited by both

edEmployee and HourlyEmployee- ==
attr reader inamee— SaViedEnploy : =
def name=(name) employees.rb
if name == ""
raise "Name can't be blank!"

end

@name = name The "nikialize” methods of both
end SalariedEmployee and Ha:r"jgrzyloye:
Al call this mebhod via "super’
def initialize(name = "Anony.mus..7</—/“'

Seltnane S sne The "print,_pay_stub” methods of both SalaviedEmployee

- Il eall 4his method.

and HourlyEmployee will call this method:

L L W

puts "Name: #{name}"
end

end

class SalariedEmployee < Employee
This attribute is speei
attr reader :salary€—

def salary=(salary)
if salary < 0
raise "A salary of #(salary} isn't valid!"
end
@salary = salar:

end (Called

def initialize(name = "Anonymous", salary = 0.0)
super (name) €——Call the superelass’s “iitialize” method, passing only the name.
self.salary = salary €——Set the salary ourselves, since it's specific 4o Lhis elass.
end

ie 4o salavied employees.

Yhen we call "SalariedEmployee e’

def print_pay_stub
print_name & Have the supertlass print the name. _ Caleulate 2 weeks pay-
pay_for_period = (salary / 365.0) * 14
formatted_pay = format("$$.2£", pay_for_period) €—— Format the pay with
puts "Pay This Period: #{formatted pay)}" 2 decimal places.
end

end

Continued on next pase!

OEBPS/html/graphics/9781491921388.jpg
Head First

Ruby

iendly Guide

R

Do heavy lifting
easily with blooks

i

Get more
done with
 less code

Avotd [
embarrassing

00 misakcem® be Ruby
C Library

e Serve your
2 web app
Bend 3 tothe world S

XX FPOReICIses. 4

OEBPS/html/graphics/f0036-03.jpg
def use_headlights (brightness)€——One method parameter-
puts "Turning on #{(brightness} headlights"

puts "Watch out for deer!"
. Parameter is used in the output

OEBPS/html/graphics/f0197-01.jpg
File object is veturned
and necds +o be stoved

(in a variable

review_file = File.open("reviews.txt")
lines = review_file.readlines
review_file.close

Need to call "¢lose”

when done.

OEBPS/html/graphics/f0202-02.jpg
=10

Our old code bo vead$ File.open "z “7) do

the file contents. nes = review_file.readl
Remember to treate the

relevant_lines = [] €——variable outside the block!
Protess eath line —— Lines.cach do |Line| €——The curvent line is passed to the block as a pavameter.
from the file. if line.include?("Truncated”)

relevant_lines << line
end - <A\ 4
end dd the turvent line 4o

the avray of veviews
puts relevant_lines

Normally producers and directors would stop this kind of
garbage from getting published. Truncated is amazing in that
it got past those hurdles.

Review for other --Joseph Goldstein, "Truncated: Awful", New York Minute

veovie: vesioved! Truncated is funny - it can't be categorized as comedy,

romance, or horror, because none of those genres would want
to be associated with it.

--Liz Smith, "Truncated Disappoints", Chicago Some-Times
I'm pretty sure this was shot on a mobile phone. Truncated
is astounding in its disregard for filmmaking aesthetics.

--Bill Mosher, "Don't See Truncated", Topeka Obscurant

OEBPS/html/graphics/f0036-02.jpg
lethod take ard S.
def accelerace«/M thod dakes no parameter
These statements will be vun (puts "Stepping on the gas"
when the method is ealled. (Puts "Speeding up”
end

def sound horn </_/Me+.hod takes no parameters.

These statements will be vun éputs "Pressing the horn button”

when the method is ealled. (puts "Beep beep!"
el

OEBPS/html/graphics/f0202-01.jpg
my _string = "I like apples, bananas, and oranges

puts my_string.include? ("bananas") true
puts my_string.include? ("elephants") false

OEBPS/html/graphics/f0036-01.jpg
Starck of definition

Method name

Parameters

def]

print sum

(

argl,

arg2

P

rint argl + arg2

\

end]

End of definiti.

ion

)

Method body

OEBPS/html/graphics/f0197-03.jpg
file = Fil

file| lines

file.close

OEBPS/html/graphics/f0197-02.jpg
You do here?

(———————————————————————] |
file = File.open

file.close

OEBPS/html/graphics/f0128-01.jpg
class Car

def initialize(engine)
@engine - engine
end

def rev_engine
@engine.make_sound
end

end

engine = Engine.new
car = Car.new(engine)
car.rev_engine

class Engine

def initialize(sound
@sound = sound
end

def make_sound
puts @sound

end

end

Output: [Fis Esi Timaow s
Vroom! !

Vroom! !

)

OEBPS/html/graphics/f0254-01.jpg
o
=]
c]
o
=]
7}

def create{options = {})

puts "Creating #{options[:database]} for owner #{options[:user]}..."

end

def connect (database:, host: "localhost", port: 3306, user:
puts "Connecting to #{database} on #{host} port #(port} as #{user}..

end

create (databas

: "catalog", user: "carl")
create (user: "carl")

create

connect (database: "catalog")

connect (database: "catalog", password: "1234")

connect (user: "carl")

Creating for owner carl...

unknown keyword: password

Connecting to catalog on localhost port 3306 as root...

Creating catalog for owner carl...

Creating for owner ...

missing keyword: database

OEBPS/html/graphics/f0071-02.jpg
anonymous = Dog.new
anonymous .name = "

Evvor. : Name

can't be blank!
(RuntimeError)

OEBPS/html/graphics/f0071-01.jpg
class Dog
attr_reader :name, :age

1€ "value” is invalid def name=(value)

ST~sif value

exctution vill halt here. ——>raise "Name can't be blank!"
B end

fname = valuee——— This statement w?n'k be
end veathed if "vaise” is called
1€ "value” is invalid.. def age=(value)

it value < 0

exetubion il halk heve. ———>Taise "An age of #{value) isn't valid!"

N 7,
fage = value ¢ This statement wor't be
end veathed if "vaise” is called

def report_age

puts "#{@name) is #{Rage} years old."
end

end

OEBPS/html/graphics/f0014-02.jpg
A call to the
"puts” method

A eall to the
"print” method

puts

"Welcome to 'Get My Number!'"

orint

"What's your name? '1/S£H"55

OEBPS/html/graphics/f0014-03.jpg
Wiait, you said print and puts
are methods... Don't you have to use
the dot operator to specify which

object you're calling them on?

OEBPS/html/graphics/f0014-01.jpg
Comments

Get My Number Game|
i Written by: vyou!

OEBPS/html/graphics/f0090-01.jpg
Sample code:
camera = Camera.new
camera.load

camera.take_picture

camera2 = DigitalCamera.new
camera2.load
camera2.take picture

Output:

Winding f£ilm.
Triggering shutter.

Inserting memory card.
Triggering shutter.

OEBPS/html/graphics/f0198-02.jpg
File.open("reviews.txt") do |review_file|
lines = review_file.readlines
puts lines.length

end
undefined local variable
or method ‘line

OEBPS/html/graphics/f0037-03.jpg
T notice you didn't use the dot
operator fo specify a receiver
for those method calls, just

like when we call the puts and
print methods.

OEBPS/html/graphics/f0198-01.jpg
review_file = File.open("reviews.txt
lines = review_file.readlines
review_file.close

puts lines.length n

OEBPS/html/graphics/f0037-02.jpg
Window Help
$ ruby vehicle methods.rb
Pressing the horn button
Beep beep!

Stepping on the gas

Speeding up

Turning on hi-beam headlights
Watch out for deer!

$

OEBPS/html/graphics/f0037-01.jpg
def accelerate
puts "Stepping on the gas"
puts "Speeding up"

end

def sound_horn
puts "Pressing the horn button"
puts "Beep beep!"

end

def use_headlights (brightness)
puts "Turning on #{brightness} headlights"
puts "Watch out for deer!"

end Calls without

sound_horn argumerts.
accelerate. This is used as the
use_headlights ("hi-beam")&———"brightness’ arqument.

OEBPS/html/graphics/f0090-02.jpg
Replaces a method inherited from a
superclass with new functionality.

Subelass

i Allows a single method or attribute to
Overriding be shared by multiple classes.
A class that holds the code for
methods that arc shared by onc or
more other classes.

Inheritance

A class that inherits one or more
methods or attributes from a
superclass

Superclass

OEBPS/html/graphics/f0198-03.jpg
lines =

o

File.open("revieus.txt") do |review file|
lines = review_file.readlines €——Skill in seopel
end

puts mEsJength n

SHill in seopel

OEBPS/html/graphics/f0071-04.jpg
Awesome! Now, if there's an error ina
developer's code, it'll be brought to their
attention before a user sees it. Nice work!

OEBPS/html/graphics/f0127-01.jpg
class Car

def (
engine

end
def rev_engine
@engine.make_sound
end
end

class Engine

def initialize()
@sound = sound

end
def make_sound Output:
puts @sound
end
Vroom!!
end

engine = Engine.
car = Car.new()
car.rev engine

OEBPS/html/graphics/f0213-04.jpg
Truncated is amazing
Truncated is funny.
Truncated is astounding.

OEBPS/html/graphics/f0071-03.jpg
joey
joey.age

Dog.new
-1

Error— I age=': An age
of -1 isn't valid!

(RuntimeError)

OEBPS/html/graphics/f0127-02.jpg
new

initialize
@engine

@sound

sound

engine
& engine "yroom! !

create

OEBPS/html/graphics/f0213-03.jpg
def reject
kept_items = [] "

aeit aachdo |itenl m...Txuncdted is funny...

, Block veturns ——> unless yield (item) (Iline| line.include?("-=") |

false”, so item kept_items << item false
is kept. end

end

kept_items
end

OEBPS/html/graphics/f0213-02.jpg
def reject
kept_items = [] "

serfiescn do litem " .--Joseph CGoldstein.

Block veturns ——> unless yield (item) { Iline| line.include?(")
"true’, 5o line is NOT kept_items << item e
added to avvay. end
end

kept_items
and

OEBPS/html/graphics/f0213-01.jpg
def reject
kept_items = [] . .

self each do |item| _/—\...Txuncdte((is amazing.

Blotk returns ——S unless yield (item) { ITine| line.include? ("
"false”, so turvent kept_items << item S
line gebs added £ end

srvay of kept items. end
kept_items

end

}

OEBPS/html/graphics/f0232-01.jpg
Result of an assignment
datement, as abiays, i the

protons = { "He" => 2 } value that was assigned.

B
Provide the key) et the

protons["He"] 1e— torvesponding value-

protons["C"] = 6 re—" assigned.

" Retrieving the value we just
o e brom the s

protons["C"]

“rue” because the hash
intludes the gjven key-

protons.has_key? ("C")

"Rlse” because no key in the
protons.has_value? (119) falee— hash has the given value:
An array containing
every key in the hash.

protons. keys

An avray containing
every value in the hash.

protons.values [2, bl
,
1€ a key didn't
B (!akl the new hash a\vead\ly““{‘
ready exists in the old hash, it just gets

the old value is ove‘v‘r‘ldden.‘) \C added
{"He'= i
X Un'=>147.2}

o,

protons.merge({ "C" => 0, "Uh" => 147.2 })

OEBPS/html/graphics/f0255-01.jpg
our notes on
Heve from Crapter 5,
areays

just For comparison

Arrays

An arva 3 holds 5 Collection op
objects,
Arvays ez Y Size, 3ng an
9row or g, ik 3s. e, eded. \
Arrays are org inary Ry, uby ob objects,
nd haye many u.m"ul instanee
methods,

And here ave
or notes for
this chapter!

OEBPS/html/graphics/f0003-02.jpg
ruby 2.0.0p0 (2013-02-24 revision 339474) [x86_64-darwinll.4.2]

We don't cave about the other
stubf in £his ouput, a5 lorg 25
it says “ruby 2.0" or later

OEBPS/html/graphics/f0003-01.jpg
makes Ruby
show the

version rumber.

“wby” by itselt

launthes 3 Rby IR SN .
FELY 20l (SR e ST [(e el)

interpreter e
“Cruby: Interrupt

Press Ctrl-C

1o exit the $
interpreter

and vetuen

4o your 0S

prompt

OEBPS/html/graphics/f0116-03.jpg
puts format ("$%£", 1917.8082191780823) $1917.808219

OEBPS/html/graphics/f0175-01.jpg
del run_block
yield
end The do..end format

we've been wsing so far-
run_block do€—

puts "do/end"
end

(Start of block. (End of blotk

Curly-brace” format——> run block { puts "brackets" |

Block body, just like
with "do...end”.

do/end
brackets

OEBPS/html/graphics/f0175-02.jpg
def take_this
yield "present”
end

take_this do |thing|
puts "do/end block got #{thing}"
end

take_this { |thing| puts "brackets block got #{thing}" }

do/end block got present
brackets block got present

OEBPS/html/graphics/f0175-03.jpg
Breaks eonvention!

take_this { |thing|
puts "brackets: got #{thing}"

]
take_this do Ithing| puts "do/end: got #{thing}" end

Breaks convention brackets: got present
(and is veally “5’7)’ do/end: got present

OEBPS/html/graphics/f0116-01.jpg
Format Format
sequente. sequente.

!

puts format("The $s cost 3i cents each.”, "gumballs", 23)
puts format("That will be $3f please.", 0.23 * 5)

Format

sequente.

The gumballs cost 23 cents eacl
That will be $1.150000 please

T

We'll show how to £ix this shortly

OEBPS/html/graphics/f0116-02.jpg
51
13

string
integer

floating-point decimal

puts format("A string:
puts format
puts format ("A float:

An integer:

¥s",

sEv,

"hello")

#i", 15)

3.1415)

A string: hello

An integer: 15
A float: 3.141500

OEBPS/html/graphics/f0277-01.jpg
5]

foods = Hash.new([])
foods['A'] << "Apple"
foods['A'] << "Avocado"
foods['B'] << "Bacon"
foods['B'] << "Bread"

p foods['a']
p foods['B']
p foods

foods = Hash.new { |hash, key| [] }
foods['A'] << “Apple"

foods['A'] << "Avocado"

foods['B'] << “Bacon"

foods['B'] << "Bread"

p foods['a']
p foods['B']
p foods

foods = Hash.new { |hash, key| hash[key]l = []
foods['A') << "Apple"

foods['A'] << "Avocado"

foods['B']) << “Bacon"

foods['B'] << "Bread"

p foods['a']

p foods['B']

p foods

["Apple", "Avocado", "Bacon", "Bread"]
["Apple", "Avocado", "Bacon", "Bread"]

{1

["Apple", "Avocado"]
["Bacon", "Bread"]
{"A"=>["Apple", "Avocado"], "B"=>["Bacon",

"Bread"]}

OEBPS/html/graphics/f0059-02.jpg
Nothing magie about the veader!
def 9 may) eade
of my_attribute _Juck veburns the corvent vae

@my_attribute
end

OEBPS/html/graphics/f0059-01.jpg
Attribute
writer

det myﬁattzibute:(newﬁvalue)/’”dj“’d'
@my_attribute = new_value

class MyClass

end
Aceessor ot eribut
ef my_attribute
methods. my_attribute \A%\rllwh
end veader
method.

e

OEBPS/html/graphics/f0082-01.jpg
Subelass.

Supertlass.

odometer
gas_used
mileage

accelerate

sound_horn
steer

Subelass.

Subelass.

Car

Motorcycle

OEBPS/html/graphics/f0082-02.jpg
truck = Truck.new
truck.load bed("259 bouncy balls")
puts "The truck is carrying #{truck.cargo}."

Securing 259 bouncy balls in the truck bed
The truck is carrying 259 bouncy balls

OEBPS/html/graphics/f0164-01.jpg
Highlighted lines ave

duplicated det totallprices)

amount = 0

among the 3 methods —__ s 5ra0 g

This line in the middle —Samount

differs, though

Differs.. ——Samount

while index < prices.length
prices [index]

index += 1
end
amount.
end

def refund(prices)

amount 0

index = 0

while index < prices.length
prices [index]

index
end
amount.
end

=1

def show_discounts (prices)
index = 0
while index < prices.length
amount_off = prices[index] / 3.0
Differs.. puts format ("Your discount: $%.2f", amount_off)
index += 1
end
end

OEBPS/html/graphics/f0105-01.jpg

OEBPS/html/graphics/f0130-01.jpg
class Employee

def name= (name)
if name "

raise "Name can't be blank!"

end
@name = name
end

def salary=(salary)
if salary < 0

Duplicated raise "A salary of #{salary} isn't valid!™
code! end
@salary = salary
end
def initialize(name = "Anonymous", salary = 0.0)

if name

raise "Name can't be blank!"

end
@name = name
if salary < 0

raise "A salary of #{salary} isn't valid!™

end
@salary = salary
end

Duplicated
tode!

OEBPS/html/graphics/f0012-01.jpg
A call to the
"puts” method

A call to the
print” method

Asigpment o2 |

new variable, “input”

Comments

f Wri

f Get My Number Game|

tten b

you!

put s|

"Welcome to 'Get My Number!'"

print|

"What'

s your name? W Sbrings

linput|

= |gets

A call to the "gets” method

puts "Welcome, [#{input}

Interplating a value
into a string

OEBPS/html/graphics/f0173-03.jpg
< turtle doves” w

partridge"

T Ipreséntl, pres¥nt2|
def amy_block
ef give(smy block) puts "My method gave to me..."

Enr;\yﬁblock,call(2 turtle dovés", "1 partridge 1(‘\35 presentl, present2
end:

My method gave to me...
2 turtle doves

1 partridge

OEBPS/html/graphics/f0173-02.jpg
Passed to block~ Passed to blotk-

def give(smy_block)
my_block.call("2 turtle doves", "1 partridge")
end

Pavameter | Parameter 2.

give do |presentl, present2|)
puts "My method gave To me.. £ there ave multiple
puts presentl, present2 parameters, separate
end them with tommas.

OEBPS/html/graphics/f0173-01.jpg
print_parameters ("one", "two") one
two

OEBPS/html/graphics/f0035-01.jpg
How am T supposed to find

anything in all this code? I wish

the developers had split it up
into methods and classes...

OEBPS/html/graphics/f0058-01.jpg
EBrvor
fido = Dog.new

fido.@age = 3 (; syntax error, unexpected tIVAR

OEBPS/html/graphics/f0201-01.jpg

OEBPS/html/graphics/f0058-02.jpg
fido = Dog.new
___—3fido.@name = "" 1 You COULD do
——>fido.Rage = -1 Lhat, the output

fido.report_age would bt ~——s

This is invalid code!

years old

OEBPS/html/graphics/f0196-01.jpg

OEBPS/html/graphics/f0201-02.jpg
Line |

Line 2
Line 3

Line 4
Line 5

Line b

Normally producers and directors would stop this kind of

garbage from getting published. Truncated is amazing in that
it got past those hurdles.

--Joseph Goldstein, "Truncated: Awful", New York Minute

Guppies is destined to be the family film favorite of the €——A review for

summer . a tompletely
--Bill Mosher, "Go see Guppies", Topeka Obscurant different movie!

Truncated is funny - it can't be categorized as comedy,

romance, or horror, because none of those genres would want =

to be associated with it. o
--Liz Smith, "Truncated Disappoints", Chicago Some-Times —

o reviews.txt

OEBPS/html/graphics/f0196-02.jpg
lines = review file.readlines
puts "Line 4: #{lines(3]}"
puts "Line 1: #{lines[0]}"

C (Wrapped to fit this page.)

Line 4: --Bill Mosher, "Go see Guppies",
Topeka Obscurant
Line 1: Normally producers and directors would

stop this kind of garbage from getting published.
Truncated is amazing in that it got past those
hurdles.

OEBPS/html/graphics/f0201-03.jpg
ROFHALLY Frouucors ang CIactors Welllc St Thly kingd Of

garbage from getting published. Trun is amazing in that it
got past those hurdles.

We ¢an look for this
within the string.

OEBPS/html/graphics/f0129-04.jpg
Blank name in
your output!

employee = Employee.new -246)

employee.print_pay stub

Name: Ncga{wzl
Pay This Period: $-9.44 [SemtENAR

OEBPS/html/graphics/f0129-03.jpg
Kara = Employee.new
xara.salary = -246

sn't valid! (RuntimeError)

n ‘salary=': A salary of -246

Ervor: —>

OEBPS/html/graphics/f0129-02.jpg
€name = "Steve Wilson (HR Manager)™
@salary = 80000
ben = Employee.new

ben.name = ""
[alemmed in " name: Name can't be blank! (RuntimeError)

OEBPS/html/graphics/f0129-01.jpg
This new initialize method is great. It
lets us make sure that an employee's name
and salary are always set to something. But
remember the validation in our accessor

methods? The initialize method skips it
entirely, and we're seeing bad datal

@name = "Steve Wilson (HR Manager)"

OEBPS/html/graphics/f0001-01.jpg
Come see how awesome Ruby is!
We'll learn about variables, strings,
conditionals, and loops. Best of all,
you'll have a working game by the
end of the chapter!

By the way, welcome to the early
release! Tf you have ANY questions
or feedback, e-mail us at:
feedback@headfirstruby.com!

OEBPS/html/graphics/21388.jpg

OEBPS/html/graphics/f0244-03.jpg
candidate = Candidate.new ("
{:age => 49, :occupation

arl Barnes",
"attorney", :birthplace => "Miami"})

(We ¢an leave the hobby of

didat
P candidate #<Candidate:0x007£8aaa042a68 @name="Carl Barnes"

@occupation="Attorney", €hobby=nil, birthplac

Omitted attributes default 4o mil.

OEBPS/html/graphics/f0244-04.jpg
candidate = Candidate.new("Amy Nguyen®,
{:birthplace => "Seattle", :hobby

acrosse", :occupation

ngineer", :age => 37})

date
p candidate #<Candidate:0x007£81a890e8c8 @name="Amy Nguye:

@occupation="Engineer", @hobby="Lacrosse", @birthplace:

OEBPS/html/graphics/f0047-02.jpg
Dog
name
age
talk
move
report_age

instance

variables
(state)

instance

wethods
(behavior)

OEBPS/html/graphics/f0047-03.jpg
name: "Killer"
age: 1

OEBPS/html/graphics/f0070-01.jpg
So now, we get a warning if an invalid name
or age are set. Great. But then the program
goes right on to call report _age anyway,
and the name and age are blank!

OEBPS/html/graphics/f0047-01.jpg
Class

OEBPS/html/graphics/f0118-05.jpg
class Employee

def print_pay stub
puts "Name: #{@name}"
pay_for period = (@salary / 365.0) * 14

formatted_pay = format ("2.2£", pay_for_period) €——Get a string with the pay amount
puts "Pay This Period: s#(formatcedipay)"é\ vounded 4o 2 decimal places.
o Print the formatted

amount. string,

OEBPS/html/graphics/f0118-02.jpg
puts format ("$%.2f", 1917.8082191780823) $1917.81 Al vounded 4o 2 places!
puts format ("$%.2£", 1150.6849315068494) $1150.68
puts format ("$%.2f", 3068.4931506849316) $3068.49

OEBPS/html/graphics/f0244-01.jpg
class Candidate

., /_f‘tw_ﬂg‘:z, :age, :occupation, :hobby, :birthplace
We'll keep the name as 3 Jef initialize(nkme, options) €——The hash parameter

separate string, self.
/ self.

Assign the name as normal e

self.
self.
end
ond

name = name
age = options[:age]ﬁ Get values From
occupation = options[:occupationle——x the hash instead
hobby = options[:hobby]ﬁ of divectly from

birthplace = options([:birthplace pavamelers.

OEBPS/html/graphics/f0118-01.jpg
def test format(format_ string)
print "Testing '#{format_string)': "
puts format (format_string, 12.3456)

end

test_format
test_format
test_format
test_format
test format

ng7.3gm
"$7.2£"
"e7.1£"
"g.1£"

ny ogn

Testing
Testing
Testing
Testing
Testing

PPIEY N < Rounded to 3 plates.
FERELR < Rounded 1o 2 places

PPN < Rounded to | place.
Rl (onied 1o 1 Tace vo vadding
S Rounded 4o 2 places, no padding

OEBPS/html/graphics/f0244-02.jpg
candidate = Candidate.new("Amy Nguyen", Now it's elear which attribute is which!
(:age => 37, :occupation => "Engineer", :hobby => "Lacrosse", :birthplace => "Seattle"})

p candidate

#<Candidate:0x007£bd7a02e858 @name="Amy Nguyen", Gage=37

ccupation="Engineer", @hobby="Lacrosse", @birthplace="Seattle">

No more swibehed abbributesl =

OEBPS/html/graphics/f0118-04.jpg
puts format ("$%.2£"

(salary / 365.0)

* 14)

$191

81

OEBPS/html/graphics/f0118-03.jpg
salary = 50000
puts "$#{ (salary / 365.0) * 14}" $191°

91780823

OEBPS/html/graphics/f0233-06.jpg
(Set up an empty hash

votes = {}
Remove the newline

HRS e oo el charatter. (Ewm’.

name = line.chomp€—
votes [name] += 1 €—— |ntvement the total
end for the turvent name undefined

method “+' for
nil:NilClass

p votes

OEBPS/html/graphics/f0233-05.jpg
1
£ we vead the same ——> "Amber Graham" "Amber Graham" => 2, €——We'll update the

name again... "Brian Martin" => 1, torvesponding value

OEBPS/html/graphics/f0233-04.jpg
£ we vead this line.. ——> "Brian Martin” Amber Graham" => 1,
"Brian Martin" 1, €——Well add this key and
} value $o the hash.

OEBPS/html/graphics/f0279-01.jpg
class CelestialBody
attr_accessor :type, :name Receives a veferente

end £ the hash and the
eurvent key.
Eash.new do |hash, key|€—

bodies
body = CelestialBody.new €—— Create a new object
body.type = "planet" just for the curvent key.
hash([key] = body (—\
a
- Assgns to the hash AND veturns the new value,
bodies['Mars'].name = 'Mars'
These lines aﬂzd bodies ['Europa’].name = 'Europa’
work as X4 podies ['Europa’] . type = 'moon’
row. bodies['Venus'].name = 'Venus'
p bodies
Type defaults to
E "planet”, but can be
ath hash value is 3 wwervidden. Names are
separate object all inkact
(Ovtput aligned for easier veading)) {

{"Mars" =>#<CelestialBody:0x007fcde388aaal @type="planet", @ =
"Europa"=>#<CelestialBody:0x007fcde388a9d8 @type="moon", "Europa">,

"Venus" =>#<CelestialBody:0x007fcde388a8c0 @type="planet",

OEBPS/html/graphics/f0233-03.jpg
. {
£ we vead this line.. ——> "Amber Graham" "Amber Graham" => 1, €——We'll add this key and

} value $o the hash.

OEBPS/html/graphics/f0279-02.jpg
The hash is working perfectly.
Hash default blocks are just
what I needed!

OEBPS/html/graphics/f0091-01.jpg
Creates methods to
£ turvent values

pame and Bage. ———) attr_reader :name, :age

class Dog

def name=(value)

if value "
raise "Name can't be blank!"
We ereate our own ond
atteibute writer @name = value
methods, so we tan end
ehetk that the new
values ave valid- def age=(value)
if value < 0
raise "An age of #{value} isn't valid!"™
end
eage = value
end
def talk
puts "f(Gname) says Bark!"
end
Other instante \ gor nove (destination)
methods for our

puts "#(@name} runs to the #(destination)."

Doy o\z):LB- end

def report_age

puts "#{@€name) is #{age} years old."
end

P

OEBPS/html/graphics/f0212-04.jpg
Create a new array to hold
the elements for which the
class Array block vetuens "false”.
def reject (
kept_items = [

1
self.cach do |item| €
unless yield(item) € Pass the element to the blotk

kept_items << item <\IP the vesult is “false”..

Protess eath element.

a
ena £dd i 4o bhe arvay of
Fope_stens kept clements

end
ond

OEBPS/html/graphics/f0233-07.jpg
array = [] Doesn't exist.

o array[999] €
hash = {} Doesn't exist. [REd
o hash["I don't exist"] € nil

OEBPS/html/graphics/f0212-03.jpg
Normally producers and directors would stop this kind of

garbage from getting published. Truncated is amazing in that

IRENEELN it got past those hurdles.

vid of these: --Joseph i n i ", New York Minute
Truncated is funny - it can't be categorized as comedy,

romance, or horror, because none of those genres would want

to be associated with it.

—-Liz Smith, "Truncated Disappoints", Chicago Some-Times

OEBPS/html/graphics/f0070-02.jpg
glitch = Dog.new
glitch.name "
glitch.age = -256 An age of -256 isn't valid!
glitch.report_age is years old.

Name can't be blank!

Blank!

OEBPS/html/graphics/f0212-02.jpg

OEBPS/html/graphics/f0212-01.jpg

OEBPS/html/graphics/f0162-01.jpg
def total(prices) _ The total starts at O.
amount = 0€— Shavt ot the fivst arvay index.
index = 0€— While we've still wikhin the avvay..

while index < prices.length€

amount += prices[index] €&——Add the turrent price

indexim LSS £o the total
:rr:\:unt “— Move to the next price
end Reburn the total. Create an aveay holding

prices from our order.

prices = [3.99, 25.00, 8.99] €

puts format ("$.2£", total(prices)) 37.98
Pass our array of prie
Ensure the corvect rumber bo the mebh e

of detimal places are shown. Sormat the vesult.

OEBPS/html/graphics/f0233-02.jpg
p lines

["Amber Graham\n", "Brian Martin\n", "Amber Graham\n",

"Brian Martin\n", "Brian Martin\n"]

These newline characters
weve vead Lrom the file.

OEBPS/html/graphics/f0233-01.jpg

OEBPS/html/graphics/f0141-01.jpg
class SalariedEmployee < Employee
def initialize(name
self.name = name
self.salary = salary
end

‘Anonymous”, salary = 0.0)

end

class HourlyEmployee < Employee
def initialize(name ‘Anonymous", hourly wage = 0.0, hours_per_week
self.name = name € Duplicated in SalariedEmployeel*
self.hourly_wage = hourly wage
self.hours_per_week = hours per_week
end

vt

OEBPS/html/graphics/f0141-02.jpg
Class kmployee

attr_reader :name s., rtliss holds the

"name” attribute
def name=(name) €

Code to validate and set @name
end

def print_name
puts "Name: #{name}" €——Superclass holds shared
end tode 4o print the name

anil

OEBPS/html/graphics/f0046-01.jpg
knows

does

User

name
password

subscribe
login

knows

does

Appointment

date
location

remind
cancel

Things an object knows about itself are called:

instance variables

Things an object does are called:

instance methods

knows

does

Video

knows | encoding
duration

play
does | pause

rewind

Cat .
e msf.ance
age variables
(state)
talk instance
move
report age wethods

(behavior)

OEBPS/html/graphics/f0081-02.jpg
truck = Truck.new
truck.accelerate
truck.steer

car = Car.new
car.odometer = 11432
car.gas_used = 366

puts "Lifetime MPG:"
puts car.mileage

Floor it!
Turn front 2 wheels.

Lifetime MPG:
£

OEBPS/html/graphics/f0151-01.jpg
angela.print_pay_ stub
edwin.print_pay_stub
ivan.print_pay_stub Name: Angela Matthews

Pay This Period: $1155.00
Name: Edwin Burgess

Pay This Period: $420.00
Name: Ivan Stokes
Pay This Period: $637.50

OEBPS/html/graphics/f0222-01.jpg
(1,

(1,

1,

1,

(1,

(1,

("5,

s,

'S,

2, 3,

2, 3,

2, 3,

2, 3,

2, 3,

2, 3,

rssr,

TSt

'$8,

4].find_all { |number| number.odd? }
4].find all { |number| true }
4].find all { |number| false }
4].find { |number| number.even? }
4].reject { |number| number.odd? }
4].al1? { |number| number.odd? }
4].any? { |number| number.odd? }
4].none? { |number| number > 4 }

4).count { |number| number.odd? }

4].partition { |number| number.odd? }

'$$$'].max_by (

'$$5').min by (

'$$5'].map (Istring| string.length |

|string| string.length }

Istring| string.length }

An avray of all values for which
01,37 e the bk vebuens " bruc”

I£ it ahways vedurns “brue’,
0,2,3, A3 all vlues et neluded

IF it NEVER veturns true,
L3 € NO valves are included

"find” veburns the FIRST vale for
2 € which he blotk veburns “bre”

#n aveay of all values for
[2, & € which the block veturns "false”

P31 veburns brue i bhe block
false e— veturned true for ALL clements

"any?" veburns drue if the block
ed true for ANY elements.

Pnone?” vebuens brue if the block
true €— returned FALSE for al elements

The rumber of elements for which
26— the block veturmed "true’.

Two arvays, the first with all the elements
wheve the blok veburned TRUE, the second
widh all the elements wheve it veturned FALSE.

An arvay with all the
00,2, 3] & values thc block veturns.

The element for which the block
"Hf? € reburned the LARGEST vahe

The clement: for which the block
turned the SMALLEST value.

OEBPS/html/graphics/f0245-02.jpg
candidate = Candidate.new("Amy Nguyen", age: 37,
occupation: "Engineer", hobby: "Lacrosse")

p Sandidate The same symbols, bu more veadable!

#<Candidate:0x007£9dc412aa98
@name="Amy Nguyen", @age=37,

@occupation="Engineer",
@hobby="Lacrosse"
@birthplace=nil>

OEBPS/html/graphics/f0117-01.jpg
The first field will
have 3 minimum width No minimum width for

of I2 thavac{crs')/ (this second field

Print column headings. ——> puts format ("s12s | $s", "Product”, "Cost in Cents")

Print 3 heading dhider
ts now x 30e—
Minimum b of 12 e e wdthof

puts format("s12s | $2i", "Stamps", 50)
puts format("$12s | $2i", "Paper Clips", 5)
puts format("s12s | $2i", "Tape", 99)

¢ Padding!

Product | Cost in Cents

- No padding; the value alveady

Seanps Lills the miimum width
Paper Clips

Tape Padding!

OEBPS/html/graphics/f0117-02.jpg
Minimum width ot Width after
entive number. detimal point.

Start of the Format
format s:-\uenu [ﬂ/ sequente type

OEBPS/html/graphics/f0245-01.jpg
candidate = Candidate.new("Carl Barnes",
:age => 49, :occupation => "Attorney") No brates!
p candidate

#<Candidate:0x007£b412802¢30
@name="Carl Barnes", @age=49,

@occupation="Attorney",
@hobby=nil, @birthplace=nil>

OEBPS/html/graphics/f0278-01.jpg
o

All of these will
get added to the
SAME avvay!

(=]

Eath string is
added to a new
areay. The array
s then distarded!

foods =
foods['A'] <<
foods['A'] <<
foods['B'] <<
foods['B'] <<
p foods['A']
p foods['B']

This ONE aveay will be used as the
default value For all hash keys!

Hash.new([]) €

"apple"
"Avocado”
"Bacon"
"Bread"

p foods
foods = Hash.new { |hash, keyl
foods['A'] << "Apple"
foods['A'] << "Avocado"
foods['B'] << "Bacon"
foods['B'] << "Bread"

p foods['a']
p foods['B']
p foods

foods = Hash.new {

Rekurns 3 new, emply arvay

cach time the block is called, ,

but doesn't add it to the hash!
ne—

Assigns 3 new areay to the hash
under the turvent key.

|nash, key| hash[key] = [] }

foods['A') << “Apple" &——Added to a mew arvay.
foods ['A'] << "Avocado" €——fdded to same arvay as "Apple
foods['B'] << "Bacon" €——Added to a new array.

foods['B'] << "Bread" 6\

g Egzgz { .2.} Added o same avray as "Baon’”

p foods

["Apple",
["Apple",
{1

"Avocado",
"Avocado",

"Bacon",
"Bacon",

"Bread"]
"Bread"]

"Avocado"]
"Bread"]
>["Apple", "Avocado"],

["apple",
["Bacon",

{2 "BU=>["Bacon", "Bread"]}

OEBPS/html/graphics/f0081-01.jpg
A "less—than’
symbal. Read alowd
as "inhevits From”
or "spetializes”-

Class pame .
uperclass name

class [Car] K] [Vehicld]

end \

We ¢an define additional
methods and attributes
bere, buk for now well st
<o Lhe inhevited ones

OEBPS/html/graphics/f0267-03.jpg
A CelestialBody with
the corvect type
e attribute.

bodies['Mars'].name
o bodies['Mars']

#<CelestialBody:0x007£c60d13e6£8 @type="planet", @name="Mars'">

OEBPS/html/graphics/f0267-02.jpg
class CelestialBody
attr accessor :type, :name

end
h

Set up a plane {defaultibody CelestialBody.new Make the r!anﬁe{ tue
default_body.type = 'planet' default value for al

bodies

Hash.new (default body) unassigned hash keys.-

OEBPS/html/graphics/f0024-01.jpg
remaining_guesses = 10 - num_guesses

puts "#{remaining_guesses} guesses left." 10 guesses left

OEBPS/html/graphics/f0185-03.jpg
def each 8.99

index = 0
while index < self.mce\
yield self(index amount += price

index += 1 L\ﬁ) 'L
end Updated from

end 28.99 t0 37.98

OEBPS/html/graphics/f0267-01.jpg
I'm trying fo put
stars and planets ina

hash, but everything's
mixed up again!

OEBPS/html/graphics/f0024-02.jpg
puts "#{10 - num guesses} guesses left." 10 guesses left

OEBPS/html/graphics/f0185-01.jpg
def each 3.99

index = 0
yield self(index amount += price
index += 1]\T) 'L

end Updated from

end 04399

OEBPS/html/graphics/f0185-02.jpg
def each 25.00

index = 0
yield self[index amount += price
index += 1 N) 'L

end Updated from

end 399 4 2899

OEBPS/html/graphics/f0024-03.jpg
puts "You've got #{10 - num guesses} guesses left." [RENERINNSSHETEINIRNEPY

OEBPS/html/graphics/f0024-04.jpg
Get My Number Game
Written by: you!

puts "Welcome to 'Get My Number!'"

Get the player's name, and greet them.
print "What's your name? "

input = gets

name = input.chomp

puts "Welcome, #{name}!"

Store a random number for the player to guess.
puts "I've got a random number between 1 and 100."
puts "Can you guess it?"

target = rand(100) + 1

Track how many guesses the player has made.

num_guesses = 0
Our new 9

code!

puts ou've got #{10 - num guesses} guesses left.

OEBPS/html/graphics/f0267-04.jpg
bodies|['Europa’].name = 'Europa’
bodies ['Europa'].type = 'moon’ A CelestiBoy it 3
p bodies['Europa'] 4ype of "moon’-

#<CelestialBody:0x007£c60d13e6£8 @type="moon", @name="Europa">

OEBPS/html/graphics/f0013-02.jpg
$ ruby get number.rb
Welcome to 'Get My Number!'
What's your name? Jay
Welcome, Jay

OEBPS/html/graphics/f0013-01.jpg
Get My Number Game
Written by: you!

puts "Welcome to 'Get My Number!'"
print "What's your name? "

input = gets

puts "Welcome, #(input}"

[y

get_number.rb

OEBPS/html/graphics/f0200-01.jpg
def yield number
yield 4
end

array = [1, 2, 3]

yield number { |number| array << number)

p array 3, 4]

OEBPS/html/graphics/f0200-02.jpg
sum

(1, 2, 3].each { |number| sum += number }

S |

OEBPS/html/graphics/f0200-03.jpg
Any value at all will
work heve, since we
contents = []&—— assign a tompletely
new value in the block.
File.open("sample.txt") do |filel
contents = file.readlines
end

puts contents This is the first line in the file.

This is the second.
This is the last line.

OEBPS/html/graphics/f0069-02.jpg
We only dekine the
veader methods
avbmeically, sinte
we've defining writer
class Dog methods ourselves.

attr_reader :name, :age

I£ the name is blank,
o Pk an evvor message

def name=(value)

if value
puts "Name can't be blank!"
else
Gname = VaLue €N Got dhe instance varidble
end aly i the name is vald

def age=(value) 1§ the age is negative,
if value < 0&——— print an ervor message.

puts "An age of #{value} isn't valid!"

else
Gage = value & Gt the instance variable
o oy if the age is valid
en

def report_age
puts "#{@name} is #{€age} years old."
end

Al

OEBPS/html/graphics/f0069-01.jpg
joey = Dog.new
joey.name = ""
joey.age = -1

