


  

  

 

 

iOS 9 by Tutorials 
 

By the raywenderlich.com Tutorial Team 

 

Jawwad Ahmad, Soheil Azarpour, Caroline Begbie, 

Evan Dekhayser, Aaron Douglas, James Frost, Vincent Ngo, 

Pietro Rea, Derek Selander, & Chris Wagner 

 

Copyright © 2015 Razeware LLC. 

 

All rights reserved. No part of this book or corresponding materials (such as 
text, images, or source code) may be reproduced or distributed by any means 
without prior written permission of the copyright owner. 

This book and all corresponding materials (such as source code) are provided 
on an "as is" basis, without warranty of any kind, express or implied, including 
but not limited to the warranties of merchantability, fitness for a particular 
purpose, and noninfringement. In no event shall the authors or copyright 
holders be liable for any claim, damages or other liability, whether in action of 
contract, tort or otherwise, arising from, out of or in connection with the 
software or the use or other dealings in the software. 

All trademarks and registered trademarks appearing in this book are the 
property of their respective owners. 

  
 

  



  

 

Dedications  
 

"To my parents, my wife, and two daughters,  
for their support and encouragement."  

— Jawwad Ahmad 

"To my lovely, always supportive wife Elnaz, our son Kian and my parents."  

— Soheil Azarpour 

"To Ken who always encouraged me not to get a real job. Also to my weird  
and wonderful children Robin and Kayla - love you both!"  

— Caroline Begbie 

"To my parents, for funding and supporting my expensive hobby."  

— Evan Dekhayser 

"To my husband, Mike, and my parents - all whom have inspired me  
to do my best and keep plugging away throughout the years."  

— Aaron Douglas 

"To my wonderful, ever-patient wife Hannah, and our son Rupert,  
who amazes me every day."  

— James Frost 

"To my parents and sister for always encouraging, and helping me  
along my journey. I ♥ you guys so much!"  

— Vincent Ngo 

"To my wife Emily and my father Aldo."  

— Pietro Rea 

"Thanks to Brittany & our doggie, Squid, for all the love and support...  
as well as constantly licking me when I sleep."  

— Derek Selander 

"To my beautiful wife Sam, our ever curious son Hayden,  
and most recent addition to the family Ryland."  

— Chris Wagner 



  

About the authors 

 

Jawwad Ahmad is a freelance iOS Developer that dove into 
Swift head first and has not looked back. He enjoys mentoring 
and teaching and was the original founder of the of the NYC 
iOS Study Group. He's worked for companies as large as The 
New York Times, and as small as GateGuru, a 6 person 
startup.  

 

 

Soheil Azarpour is an engineer, developer, author, creator, 
husband and father. He enjoys bicycling, boating and playing 
piano. He lives in Manchester, NH. Soheil creates iOS apps 
professionally and independently.  

 

 

Caroline Begbie is an indie iOS developer and likes to relax 
with animation software, Arduino and electronics. In her 
previous life she taught the elderly how to use their 
computers, performed marionette shows in schools, and ran a 
software company in Silicon Valley.  

 

 

Evan Dekhayser is a high school student, as well as an iOS 
developer. He first learned Python in 2012, and has since built 
up his knowledge of Objective C and Swift. He enjoys playing 
and watching baseball, and is always looking for intriguing 
topics to learn and potentially write about.  

 

 

Aaron Douglas was that kid taking apart the mechanical and 
electrical appliances at five years of age to see how they 
worked. He took an early interest in computer programming, 
figuring out how to get past security to play games on his 
dad's computer. He's still that feisty nerd, but at least now he 
gets paid to do it. Aaron works for Automattic 
(WordPress.com, Akismet, SimpleNote) as a Mobile Maker. 
Twitter: @astralbodies Blog: http://astralbodi.es 



  

 

James Frost is a senior iOS developer at Mubaloo Ltd, and 
lives in Bristol, UK. He taught himself to code in the early 90s 
on his family's BBC B, and was instantly hooked. He loves 
learning new things and teaching others, and enjoys spending 
time with his wife and son, reading, playing games, and 
cooking. You can find him on his blog at: 
http://www.jamesfrost.co.uk or as @frosty on Twitter.  

 

 

Vincent Ngo is a full time iOS software engineer at IBM. He 
graduated from Virginia Tech with a Computer Science degree. 
He has passion for developing, sharing, and learning about 
what's new with the iOS SDK. On the side he loves playing 
video games, strumming his guitar, hitting golf balls, and 
chilling with friends.  

 

 

 

Pietro Rea is a software engineer at Quidsi, where he builds 
e-commerce iOS applications for Diapers.com, Wag.com, 
Soap.com and 7 other brands. Previously, he's worked on the 
Huffington Post's mobile team. You can find Pietro on Twitter 
as @pietrorea.  

 

 

 

Derek Selander is an iOS developer who enjoys learning 
through debugging & disassembly to see how others have 
solved similar problems. In his free time, he enjoys surfing, 
playing classical guitar, and consuming bacon.  

 

 

Chris Wagner leads iOS development at Infusionsoft and has 
been developing for iOS since the release of the SDK in 2009. 
His background consists of gaming, customer support, 
systems administration and web development. When he's not 
working he enjoys spending time with his wife and son. By the 
time this is published our second son will have arrived!  

 



  

About the editors 

 

James Frost was a technical editor for this book. He is a 
senior iOS developer at Mubaloo Ltd, and lives in Bristol, UK. 
He taught himself to code in the early 90s on his family's BBC 
B, and was instantly hooked. He loves learning new things and 
teaching others, and enjoys spending time with his wife and 
son, reading, playing games, and cooking. You can find him on 
his blog at: jamesfrost.co.uk or as @frosty on Twitter.  

 

 

Jeff Rames was a technical editor for this book. He is a 
developer currently working at AirStrip where he builds 
enterprise iOS products in the healthcare space. He discovered 
his passion for mobile software shortly after the iPhone SDK 
was released, and made it his full time gig in 2011 after a 
decade in the industry. He spends his free time with his wife 
and daughters, except when he abandons them for trips to 
Cape Canaveral to watch rockets being launched into space.  

 

 

Richard Turton was a technical editor for this book. He is an 
iOS developer for MartianCraft, prolific Stack Overflow 
participant and author of a development blog, Command Shift. 
When he's not in front of a computer he is usually building 
Lego horse powered spaceships (don't ask!) with his daughter.  

 

 

Chris Belanger was an editor for this book. He spends his 
days developing real-time industrial control applications; he 
fills the rest of his time with writing, editing, travelling, 
composing music, enjoying the great outdoors and 
appreciating the finer things in life. He's excited to have 
worked on yet another book with the raywenderlich.com team 
and can't imagine life without this crazy, wonderful bunch.  

 



  

 

Wendy Lincoln was an editor for this book. By day, she 
manages complex content development projects and by night 
she escapes into the world of iOS. Before all this, she 
produced a cooking show named Hot Kitchen, wrote a 
cookbook and taught cooking classes. A few years ago she 
realized her love for writing, editing and playing with 
computers; she's never looked back. Once in a while, her 
husband manages to tear her away from the computer for 
trips to the beach and random home improvement projects. 

 

Sam Davies was the final pass editor for this book. Sam is a 
strange mashup of developer, writer and trainer. By day you'll 
find him recording videos for Razeware, writing tutorials, 
attending conferences and generally being a good guy. By 
night he's likely to be out entertaining people, armed with his 
trombone and killer dance moves.  

He'd like it very much if you were to say "hi" to him on twitter 
at @iwantmyrealname.  

 

About the artist 

 

Julien Martin was the artist for the book. After years 
working in print, Julien discovered an unquenchable passion 
for icon and interface design while working with startups in 
New York City. Back home in France, he has since designed 
multiple successful and award-winning mobile apps for 
established businesses, entrepreneurs and passionate 
individuals who value the importance of great design. You can 
get in touch via http://julien.design. 

 



Table of Contents: Overview
Introduction 13................................................................................
Chapter 1: Swift 2.0 21...............................................................
Chapter 2: Introducing App Search 41.....................................
Chapter 3: Your App on the Web 60........................................
Chapter 4: App Thinning 79........................................................
Chapter 5: Multitasking 96..........................................................
Chapter 6: 3D Touch 109.............................................................
Chapter 7: UIStackView & Auto Layout changes 126...........
Chapter 8: Intermediate UIStackView 145..............................
Chapter 9: What's New in Storyboards? 166.........................
Chapter 10: Custom Segues 185...............................................
Chapter 11: UIKit Dynamics 205................................................
Chapter 12: Contacts 222...........................................................
Chapter 13: Testing 239..............................................................
Chapter 14: Location and Mapping 258.................................
Chapter 15: What's New in Xcode? 276..................................
Conclusion 297...............................................................................

iOS 9 by Tutorials

raywenderlich.com 8



Table of Contents: Extended
Introduction 13................................................................................

What you need 14..................................................................................................................
Who this book is for 14..........................................................................................................
How to use this book 15.........................................................................................................
Book overview 15....................................................................................................................
Book source code and forums 19.........................................................................................
Book Updates 19.....................................................................................................................
License 19..................................................................................................................................
Acknowledgments 20..............................................................................................................

Chapter 1: Swift 2.0 21...............................................................
Whither Swift? 21....................................................................................................................
The Real "One more thing" 21..............................................................................................
What Makes Swift, "2.0"? 22...............................................................................................
The Logistics 22........................................................................................................................
Control Flow 23........................................................................................................................
Error handling 25.....................................................................................................................
The Project 27...........................................................................................................................
Additional Things 35...............................................................................................................
Where to go from here? 40..................................................................................................

Chapter 2: Introducing App Search 41.....................................
App search APIs 41.................................................................................................................
Getting started 43..................................................................................................................
Searching previously viewed records 44............................................................................
Indexing with Core Spotlight 51...........................................................................................
Private vs. public indexing 56...............................................................................................
Advanced features 57............................................................................................................
Where to go from here? 58..................................................................................................

Chapter 3: Your App on the Web 60........................................
Getting started 60..................................................................................................................
Linking to your app 62...........................................................................................................
Working with web markup 71..............................................................................................
Where to go from here? 77..................................................................................................

iOS 9 by Tutorials

raywenderlich.com 9



Chapter 4: App Thinning 79........................................................
Getting started 80..................................................................................................................
Slicing up app slicing 83........................................................................................................
Being smart with resources 84...............................................................................................
Lazily (down)loading content 86...........................................................................................
Make it download faster 89..................................................................................................
The many flavors of tagging 91...........................................................................................
Purging content 93...................................................................................................................
Where to go from here? 94..................................................................................................

Chapter 5: Multitasking 96..........................................................
Getting started 96..................................................................................................................
Preparing your app for multitasking 98.............................................................................
Orientation and size changes 98..........................................................................................
Adaptive presentation 103...................................................................................................
Other considerations 107.......................................................................................................
Where to go from here? 108................................................................................................

Chapter 6: 3D Touch 109.............................................................
Getting started 110................................................................................................................
UITouch force 111....................................................................................................................
Peeking and popping 113.....................................................................................................
Home screen quick actions 119.............................................................................................
Where to go from here? 125................................................................................................

Chapter 7: UIStackView & Auto Layout changes 126...........
Getting started 127................................................................................................................
Your first stack view 130........................................................................................................
Layout anchors 136.................................................................................................................
Layout guides 140...................................................................................................................
Fixing the alignment bug 140...............................................................................................
Where to go from here? 144................................................................................................

Chapter 8: Intermediate UIStackView 145..............................
Getting started 145................................................................................................................
Converting the sections 146...................................................................................................
Alignment 151..........................................................................................................................
Convert the weather section 152..........................................................................................
Animation 162..........................................................................................................................

iOS 9 by Tutorials

raywenderlich.com 10



Where to go from here? 165................................................................................................

Chapter 9: What's New in Storyboards? 166.........................
Getting started 166................................................................................................................
Storyboard references 167...................................................................................................
Creating your first storyboard reference 168...................................................................
Storyboards within a team 171............................................................................................
Focusing on a storyboard 173..............................................................................................
Views in the scene dock 174.................................................................................................
Conditional views using the scene dock 176......................................................................
Using multiple bar buttons 180.............................................................................................
Where to go from here? 183................................................................................................

Chapter 10: Custom Segues 185...............................................
Getting started 185................................................................................................................
What are segues? 186...........................................................................................................
A simple segue 187.................................................................................................................
Your custom segue library 191.............................................................................................
Creating a custom segue 191...............................................................................................
Passing data to animators 196.............................................................................................
Working with the view hierarchy 198.................................................................................
Handling embedded view controllers 200.........................................................................
Where to go from here? 203................................................................................................

Chapter 11: UIKit Dynamics 205................................................
Getting started 205................................................................................................................
Applying dynamics to a real app 212................................................................................
Where to go from here 220..................................................................................................
Challenges 220........................................................................................................................

Chapter 12: Contacts 222...........................................................
Getting started 222................................................................................................................
Displaying a contact 223.......................................................................................................
Picking your friends 226........................................................................................................
Saving friends to the user's contacts 231............................................................................
Where to go from here? 238................................................................................................

Chapter 13: Testing 239..............................................................
Getting started 240................................................................................................................
Code coverage 241................................................................................................................

iOS 9 by Tutorials

raywenderlich.com 11



@testable imports and access control 245........................................................................
UI testing 248...........................................................................................................................
Where to go from here? 256................................................................................................

Chapter 14: Location and Mapping 258.................................
Getting started 259................................................................................................................
Customizing maps 259............................................................................................................
Customizing annotation callouts 262....................................................................................
Supporting time zones 265....................................................................................................
Simulating your location 267.................................................................................................
Making a single location request 268.................................................................................
Requesting transit directions 271..........................................................................................
Querying transit times 273....................................................................................................
Where to go to from here? 275...........................................................................................

Chapter 15: What's New in Xcode? 276..................................
Getting started 276................................................................................................................
Energy impact gauge 278.....................................................................................................
Code browsing features 280................................................................................................
Decreasing energy impact 284............................................................................................
Playground improvements 290.............................................................................................
Other improvements 294........................................................................................................
Where to go from here? 296................................................................................................

Conclusion 297...............................................................................

iOS 9 by Tutorials

raywenderlich.com 12



IIntroduction

iOS 9 introduces a whole host of new features, many of them focused on improving 
the user experience. For example improvements to Siri, the News app and a re-
engineered Notes app.

From a more developer-centric point of view, you'll see that there are loads of new 
APIs and technologies available for use in 3rd-party apps, many of which you get 
for free. For example, a huge new feature on iPad is Multitasking. If you've been 
using Adaptive Layout (as recommended in iOS 8 by Tutorials) you'll find that you 
have remarkably little work to do to become a multitasking-compliant app!

As part of the improvements to Siri, iOS 9 allows the indexing of the content inside 
your app through Core Spotlight. This not only allows your app to have influence 
even when it's not running, but through public indexing, you can have results from 
your app displayed on devices that don't even have the app installed! This is a 
great opportunity to extend the reach of your app, potentially gaining happy users 
and downloads.

As the iPhone lineup continues to advance, new hardware technologies are 
introduced, and this year is no different. iPhone 6s and iPhone 6s Plus represent the 
biggest shift in user interaction paradigm since the original iPhone, through 3D 
Touch. This measures the pressure with which the user is pressing the screen, and 
in turn, allows them to peek into view controllers. Users will expect this 
functionality within all apps, so it's really important to get up to speed fast.

The appearance of your app is of great importance to users, and over the past few 
iOS releases Apple has steadily been making improvements to Auto Layout. iOS 9 is 
no different, with stack views representing a huge simplification in layout 
implementation. With full support in Interface Builder, they allow you to achieve the 
complex designs you desire, without the explicit Auto Layout constraints that have 
caused the headaches of the past.

iOS is growing up fast — gone are the days when every 3rd-party developer knew 
everything there is to know about the OS. The sheer size of iOS can make new

raywenderlich.com 13



releases seem daunting. That's why the Tutorial Team has been working really hard 
to extract the important parts of the new APIs, and to present this information in an 
easy-to-understand tutorial format. This means you can focus on what you want to 
be doing — building amazing apps!

Get ready for your own private tour through the amazing new features of iOS 9. By 
the time you're done, your iOS knowledge will be completely up-to-date and you'll 
be able to benefit from the amazing new opportunities in iOS 9.

Sit back, relax and prepare for some high quality tutorials!

What you need
To follow along with the tutorials in this book, you'll need the following:

• A Mac running OS X Yosemite or later. You'll need this to be able to install 
the latest version of Xcode.

• Xcode 7.0 or later. Xcode is the main development tool for iOS. You'll need 
Xcode 7.0 or later for all tasks in this book as Xcode 7.0 is the first version of 
Xcode to supports iOS 9 and Swift 2.0. You can download the latest version of 
Xcode for free on the Mac app store here: apple.co/1FLn51R

• One or more devices (iPhone, iPad, or iPod Touch) running iOS 9 or later. 
Most of the chapters in the book let you run your code on the iOS 9 Simulator 
that comes with Xcode. However, a few chapters later in the book require one or 
more physical iOS devices for testing.

Once you have these items in place, you'll be able to follow along with every 
chapter in this book.

Who this book is for
This book is for intermediate or advanced iOS developers who already know the 
basics of iOS and Swift development but want to upgrade their iOS 9 skills.

• If you are a complete beginner to iOS development, we recommend you 
read through The iOS Apprentice, 4th Edition first. Otherwise this book may be a 
bit too advanced for you.

• If you are a beginner to Swift, we recommend you read through either The 
iOS Apprentice, 4th Edition (if you are a complete beginner to programming), or 
The Swift Apprentice (if you already have some programming experience) first.

iOS 9 by Tutorials Introduction

raywenderlich.com 14



If you need one of these prerequisite books, you can find them on our store here:

• www.raywenderlich.com/store

As with raywenderlich.com, all the tutorials in this book are in Swift.

How to use this book
This book can be read from cover to cover, but we don't recommend using it this 
way unless you have a lot of time and are the type of person who just "needs to 
know everything". (It's okay; a lot of our tutorial team is like that, too!)

Instead, we suggest a pragmatic approach — pick and choose the chapters that 
interest you the most, or the chapters you need immediately for your current 
projects. Most chapters are self-contained, so you can go through the book in a 
non-sequential order.

Looking for some recommendations of important chapters to start with? Here's our 
suggested Core Reading List:

• Chapter 1, "Swift 2.0"

• Chapter 2, "Introducing App Search"

• Chapter 4, "App Thinning"

• Chapter 6, "3D Touch"

• Chapter 7, "UIStackView & Auto Layout changes"

That covers the "Big 5" topics of iOS 9; from there you can dig into other topics of 
particular interest to you.

Book overview
iOS 9 has a selection of new technologies and APIs that cover the entire OS. Here's 
what you'll learn about in this book:

1. Chapter 1, Swift 2.0: Swift is only a year old, but a lot has changed since it 
was born. Discover the new error handling model, protocol extensions, new 
control flow features and much more! You'll be ready to tackle the rest of the 
book, and to upgrade your existing code to Swift 2.0!

2. Chapter 2, Introducing App Search: With iOS 9, users can search inside your 
apps using the system Spotlight utility. Learn how to adopt this new 
functionality, and make the content inside your apps more discoverable.

iOS 9 by Tutorials Introduction

raywenderlich.com 15



3. Chapter 3, Your App on the Web: Deep linking will allow you to direct users 
browsing your website directly to the correct point inside your iOS app. Find out 
how to integrate this functionality in your own site and app as you follow along 
with updating the RWDevCon website and app!

4. Chapter 4, App Thinning: App Thinning describes a collection of new App 
Store technologies that ensure that users downloading your app only download 
exactly what their specific device requires. Discover what you need to do to 
adopt App Thinning, together with how you can split your app's resources up 
into chunks that are only downloaded from the App Store when they are 
required.

5. Chapter 5, Multitasking: Completely new to iOS 9 is the ability to run two 
apps side-by-side on iPads. Get up to speed on what you need to do to ensure 
your apps are ready for multitasking.

6. Chapter 6, 3D Touch: The iPhone 6s and iPhone 6s Plus introduced a new 
technology called 3D Touch. Discover how to detect the force of a touch in iOS

iOS 9 by Tutorials Introduction

raywenderlich.com 16



9, and the new interaction paradigms—such as pop and peek—that come along 
with it.

7. Chapter 7, UIStackView & Auto Layout changes: Stack views will change 
the way you build your interfaces. They remove a lot of the boilerplate Auto 
Layout and make it really easy to construct simple layouts. Learn the basics of 
stack views and many of the other new Auto Layout features.

8. Chapter 8, Intermediate UIStackView: Dive deeper into stack views — 
covering nesting, animation and working with them in code.

9. Chapter 9, What's New in Storyboards?: Ever faced the problem of 
unmanageably large storyboards? Discover how to refactor your huge 
storyboard into smaller segments with new storyboard references.

10. Chapter 10, Custom Segues: Creating custom view controller transitions has 
never been an easy task, but iOS 9 chips away at some of the complexity. Learn 
how to create your own custom segues to make custom transitions between 
view controllers far easier to understand.

iOS 9 by Tutorials Introduction

raywenderlich.com 17



11. Chapter 11, UIKit Dynamics: iOS 9 includes loads of great improvements to 
UIKit Dynamics — making it really easy to model complex physics animations 
within your apps. Learn all about the new behaviors and debugging 
improvements as you build a real-world example.

12. Chapter 12, Contacts: Accessing the on-device contacts has been challenging 
in the past — with a C-level API. iOS 9 introduces two new frameworks to ease 
interaction with the contacts. Discover how to integrate with the device address 
book in a much simpler manner.

13. Chapter 13, Testing: Xcode 7 now includes a fully-featured solution for 
creating UI tests for your application. Discover how to add UI tests to your own 
apps, and review some of the other improvements to testing.

14. Chapter 14, Location & Mapping: It's finally possible to choose your favorite 
color for a map pin! Learn about this, transit directions, Core Location 
enhancements and more!

15. Chapter 15, What's New in Xcode?: There's loads of cool new stuff in iOS 9, 
but don't forget about your friendly IDE! Learn how the improved gauges make 
optimizing your app really easy, along with many other new features.

iOS 9 by Tutorials Introduction

raywenderlich.com 18



Book source code and forums
This book comes with the Swift source code for each chapter – it's shipped with the 
PDF. Some of the chapters have starter projects or other required resources, so 
you'll definitely want them close at hand as you go through the book.

We've also set up an official forum for the book at raywenderlich.com/forums. This 
is a great place to ask questions about the book, discuss making apps with iOS 9 in 
general, share challenge solutions, or to submit any errors you may find.

Book Updates
Great news: since you purchased the PDF version of this book, you'll receive free 
updates of the content in this book!

The best way to receive update notifications is to sign up for our monthly 
newsletter. This includes a list of the tutorials published on raywenderlich.com that 
month, important news items such as book updates or new books, and a list of our 
favorite developer links for that month. You can sign up here:

• www.raywenderlich.com/newsletter

License
By purchasing iOS 9 by Tutorials, you have the following license:

• You are allowed to use and/or modify the source code in iOS 9 by Tutorials in as 
many apps as you want, with no attribution required.

• You are allowed to use and/or modify all art, images, or designs that are included 
in iOS 9 by Tutorials in as many apps as you want, but must include this 
attribution line somewhere inside your app: "Artwork/images/designs: from the 
iOS 9 by Tutorials book, available at www.raywenderlich.com".

• The source code included in iOS 9 by Tutorials is for your own personal use only. 
You are NOT allowed to distribute or sell the source code in iOS 9 by Tutorials 
without prior authorization.

• This book is for your own personal use only. You are NOT allowed to sell this book 
without prior authorization, or distribute it to friends, co-workers, or students; 
they must to purchase their own copy instead.

All materials provided with this book are provided on an "as is" basis, without 
warranty of any kind, express or implied, including but not limited to the warranties 
of merchantability, fitness for a particular purpose and non-infringement. In no 
event shall the authors or copyright holders be liable for any claim, damages or

iOS 9 by Tutorials Introduction

raywenderlich.com 19



other liability, whether in an action of contract, tort or otherwise, arising from, out 
of or in connection with the software or the use or other dealings in the software.

All trademarks and registered trademarks appearing in this guide are the property 
of their respective owners.

Acknowledgments
We would like to thank many people for their assistance in making this possible:

• Our families: For bearing with us in this crazy time as we worked all hours of 
the night to get this book ready for publication!

• Everyone at Apple: For developing an amazing operating system and set of 
APIs, for constantly inspiring us to improve our apps and skills, and for making it 
possible for many developers to have their dream jobs!

• And most importantly, the readers of raywenderlich.com — especially 
you! Thank you so much for reading our site and purchasing this book. Your 
continued readership and support is what makes all of this possible!

iOS 9 by Tutorials Introduction

raywenderlich.com 20



1Chapter 1: Swift 2.0
By Chris Wagner

The 2014 WWDC keynote was nearly over, and Craig Federighi appeared to be 
wrapping things up. But instead he shocked nearly everyone watching by 
announcing the Swift programming language, which he promised, perhaps 
optimistically, as "Objective-C without the baggage of C". Swift would have the 
benefits of terseness and safety, while still being extremely expressive.

Once the implications of a new programming language had sunk in, many 
developers set out to explore the ins and outs of Swift. The year following WWDC 
2014 was an exciting time for developers on the Apple platform; each developer 
had a chance to reimagine and redefine they way they wrote software for iOS and 
OS X.

Whither Swift?
Why would Apple introduce a new language, since Objective-C has served them so 
well? It's likely because Swift gave Apple a fresh start; Swift takes the best features 
from many different languages and combines them into one. Apple has created a 
language that is modern, expressive, safe, and a lot of fun to develop in. Swift also 
interoperates seamlessly with existing Cocoa and Cocoa Touch frameworks as well 
as all of your existing Objective-C code. This is likely one of the primary reasons 
Swift has seen such success and widespread adoption in the developer community.

The Real "One more thing"
WWDC 2015's big announcement is the open-sourcing of Swift by the end of 2015! 
But what does this really mean?

• Swift source code will be released under an OSI-approved permissive license.

• Contributions from the community will be accepted — and encouraged.

raywenderlich.com 21



• At launch, Apple intends to contribute ports of Swift for OS X, iOS, and Linux.

• Source code will include the Swift compiler and the standard library.

You might be thinking "This is amazing! I can write Android apps using Swift! Write 
once, debug everywhere!!" :] Well, back that excitement train up a bit. While open-
sourcing Swift is great news, it's highly unlikely Apple has any intention of open-
sourcing the Cocoa or Cocoa Touch frameworks you love so much. These 
frameworks make it "easy" to write Mac and iOS apps; consider how you'd write an 
Objective-C program without NSAnything or UIAnything. While Swift does offer a lot 
out of the box, you unfortunately won't have access to those frameworks on other 
platforms.

But don't let that get you down! The open source community does amazing things 
every day. Open-source Swift will attract smart, creative people who will make the 
language even better with Swift-only libraries and frameworks that work across 
platforms. Someday you could find yourself using Swift in embedded environments 
such as Arduino, or perhaps someday you'll write server-side web services in Swift. 
It's an exiting time for Swift developers!

What Makes Swift, "2.0"?
It's great to dream about the future of Swift, but this chapter highlights what Swift 
2.0 offers you in the present day:

• New control flow using guard, repeat, do, and defer

• An entirely new error handling model

• Protocol extensions

• Pattern matching enhancements

• API availability checking

• Additional minor enhancements

This chapter is packed with information; you can read it end to end or use it as as a 
reference as you work with Swift 2.0.

The Logistics
Unlike most chapters in this book, you won't write or extend an app in this chapter. 
Instead, you'll work in a multipage Xcode Playground with the Swift language 
features as the focus. The first part of the chapter will introduce you to some new 
features using somewhat contrived examples; the second half walks you thorough 
the solution of a specific String validation problem using Swift 2.0 features in a

iOS 9 by Tutorials Chapter 1: Swift 2.0

raywenderlich.com 22



tutorial-led playground.

Open the provided Chapter1_Swift2.playground file in Xcode 7 and you'll be 
ready to dive right into the chapter!

Note: When running Playgrounds in Xcode 7 GM you may often see error 
messages like the following in the Debug Area.

CGContextSaveGState: invalid context 0x0. If you want to see the 
backtrace, please set CG_CONTEXT_SHOW_BACKTRACE environmental variable.

According to Apple engineers in the developer forums (apple.co/1FbVE0l) it is 
safe to ignore these messages.

Control Flow
Control flow is a fundamental concept in any programming language. Not sure what 
"control flow" means? A basic example is if/else; any construct or keyword that 
causes the execution of your program to follow a different path can be considered 
"control flow". Swift 2.0 adds new control flow features and makes some minor 
changes to existing ones. The two new control flow featues covered in this section 
are found on your playground's Control Flow page.

repeat
The do/while control flow feature has been renamed to repeat/while. It operates 
the same way as before; the name has simply changed to reduce confusion with a 
new usage of do described later on in this chapter. This flow simply means "repeat 
this block of code while some condition remains true". Consider the following 
example:

var jamJarBeer = Beer() 
 

repeat { 
  jamJarBeer.sip() 
} while (!jamJarBeer.isEmpty) // always finish your beer!

The above snippet repeats the line jamJarBeer.sip() until jamJarBeer.isEmpty is 
true — a common occurrence after-hours at RWDevCon 2015! :]

guard
Pre-condition checks are frequently required for proper state management, or to 
ensure that valid arguments were passed. The new guard control flow is the perfect 
tool for doing these checks. Consider the Beer().sip() method above. What 
happens when you sip an empty beer? What does that even mean? (It probably 
means you've had too many or need a refill. :]) Perhaps it makes sense to verify

iOS 9 by Tutorials Chapter 1: Swift 2.0

raywenderlich.com 23



that there is beer available for sipping, like so:

struct Beer { 
  var percentRemaining = 100 
  var isEmpty: Bool { return percentRemaining <= 0 } 
  var owner: Patron? 

 
  mutating func sip() { 
    guard percentRemaining > 0 else {             // 1 
      print("Your beer is empty, order another!") 
      return 
    } 

 
    percentRemaining -= 10 
    print("Mmmm \(percentRemaining)% left") 
  } 
}

The //1 comment indicates the guard that verifies the amount of beer left is greater 
than 0 and if not, executes the code in the trailing else block, which instructs you 
to order another brew! You then return immediately so you don't end up in some 
weird state with a negative amount of beer. Beer debt is not a good thing.

The guard control is defined as guard (condition) else { // code to execute if 
condition is false }. You could use an if statement instead, but the logic is not 
quite as straightforward:

if beer.isEmpty { 
  print("Your beer is empty, order another!") 
  return 
}

The snippet above flips the logic and checks that the beer is empty, instead of 
checking that the beer isn't empty. But isn't this just personal coding preference?

Not exactly; it comes down to expressiveness, which is a primary goal of Swift. 
Functionally, they're equivalent, but guard clearly states to anyone reading your 
code that you're performing a pre-condition check. Using a plain old if statement 
does not deliberately convey that information.

Now, before you write-off guard as just an enhancement in expressiveness, take a 
look at its true power: working with Optionals.

Consider the world of bartending: success is measured in the number of beers you 
sell. As a beer nears empty, the bartender tries to locate the owner so they can 
offer another. A harsh reality though, is that beer owners may abandon a half-drunk 
beer (known as a wounded soldier), hence the reason the owner property is 
Optional on Beer.

Here's a good model for a successful bartender:

struct Bartender {

iOS 9 by Tutorials Chapter 1: Swift 2.0

raywenderlich.com 24



  func offerAnotherToOwnerOfBeer(beer: Beer) { 
    guard let owner = beer.owner else { 
      print("Egads, another wounded soldier to attend to.") 
      return 
    } 

 
    print("\(owner.name), would you care for another?") // 1 
  } 
}

Note that you access owner as a non-optional value in the last line above. Since you 
used guard in guard let owner = beer.owner, the unwrapped optional value 
becomes available in the same scope that guard was called. If the value of 
beer.owner were nil then the else block would execute.

This feature lets you perform your optional binding upfront in a very explicit 
manner. After writing the guard conditions, you can continue your implementation 
as you would in an if let block, but without the extra indention.

Error handling
The early days of Swift led to many questions on Stack Overflow about error 
handling, and in particular, exceptions as found in other popular languages. Apple 
instead opted to stick to the NSError approach Cocoa has always used and release 
Swift with the promise of advanced error handling in the next version.

Swift 2.0 has a first-class error handling model; you can declare that a method or 
function throws an error. This lets the caller/consumer know an error may occur. 
The compiler also requires that you either write the code to handle the error, or to 
explicitly ignore it.

All of the code for this section is included on the Errors page of the chapter's Xcode 
Playground.

Consider the following protocol:

protocol JSONParsable { 
  static func parse(json: [String: AnyObject]) throws -> Self 
}

This protocol defines a single static method that takes a JSON dictionary and 
returns an instance of Self, where Self is the type that conforms to this protocol. 
The method also declares that it can throw an error.

So, what exactly is a Swift error? Is it an NSError? No...and yes. :] A pure Swift 
error is represented as an enum that conforms to the protocol ErrorType. However, 
Apple Engineers conveniently made NSError conform to the ErrorType protocol, 
which means this pattern works quite well between Swift and Objective-C. If you're 
interested to learn more about interoperability, the Swift and Objective-C

iOS 9 by Tutorials Chapter 1: Swift 2.0

raywenderlich.com 25



Interoperability (apple.co/1He5uhh) session is a must-see!

You can create your own error type as below:

enum ParseError: ErrorType { 
  case MissingAttribute(message: String) 
}

Pretty easy, right? This error has a single case and includes an associative value of 
the type String as a message. When you throw this error type you can include 
extra information describing the issue. Since enums are used when creating 
ErrorTypes you can include any kind of associative values that you deem necessary 
for your use case.

Take a look at the following struct that implements JSONParsable and throws some 
errors:

struct Person: JSONParsable { 
  let firstName: String 
  let lastName: String 

 
  static func parse(json: [String : AnyObject]) throws 
    -> Person { 
     
    guard let firstName = json["first_name"] as? String else { 
      let message = "Expected first_name String" 
      throw ParseError.MissingAttribute(message: message) // 1 
    } 

 
    guard let lastName = json["last_name"] as? String else { 
      let message = "Expected last_name String" 
      throw ParseError.MissingAttribute(message: message) // 2 
    } 

 
    return Person(firstName: firstName, lastName: lastName) 
  } 
}

The errors are thrown in the commented lines //1 and //2. If either guard 
statement fails to validate, the method throws an error and returns immediately. 
The expressiveness of the guard statement makes it very clear what you're 
asserting at each stage.

When calling a method that throws, the compiler requires that you preface the call 
to that method with try. In order to capture any thrown errors, you must wrap your 
"trying" call in a do {} block followed by catch {} blocks. You can choose to catch 
specific types of errors and respond appropriately to each error type, or simply 
provide a "catch-all" if you don't know what errors you might receive.

Note: At the time of this writing, Apple hasn't provided a way to infer the 
exact types of errors that can be thrown from a method or function. There is

iOS 9 by Tutorials Chapter 1: Swift 2.0

raywenderlich.com 26



also no way for an API writer to declare what types of errors will be thrown. 
Therefore, it's good practice to include this information in your method's 
documentation.

Here's the do/try/catch block that checks for the error type you added above:

do { 
  let person = try Person.parse(["foo": "bar"]) 
} catch ParseError.MissingAttribute(let message) { 
  print(message) 
} catch { 
  print("Unexpected ErrorType") 
}

When you can guarantee a throwing call will never fail, or that catching a thrown 
error doesn't provide any benefit, such as a critical failure point where the app can't 
continue to operate, it is possible to bypass the do/catch requirement: simply type 
an ! after try.

Find and uncomment the following line in the playground:

let p1 = try! Person.parse(["foo": "bar"])

You'll notice a runtime error appears. Note, however, that the following works just 
fine without producing an error:

let p2 = try! Person.parse(["first_name": "Ray", 
  "last_name": "Wenderlich"])

Now that you understand the basics of handling Swift 2.0 errors, you can focus on a 
specific problem to solve, rather than work with contrived examples.

The Project
In this section, you'll work at solving a String validation problem using some of the 
features discussed above along with some additional Swift 2.0 features. You're 
trying to write string validators that validate whether the input string conforms to 
any number of rules. You'll use this validator to create a password complexity 
checker.

String Validation Error
Switch to the next page in the chapter's playground, String Validation. Now that 
you're familiar with defining custom ErrorTypes, it's time to make use of robust 
error types for potential validation errors.

Take a look at the ErrorType defined at the top of the playground's "String

iOS 9 by Tutorials Chapter 1: Swift 2.0

raywenderlich.com 27



Validation" page, right below import UIKit. This ErrorType has a number of cases 
with varying associative values that help describe the error.

After the spot where you define the cases, you'll see a computed variable 
description. This provides conformance to the CustomStringConvertible protocol 
and lets you display the error in a human-readable format.

Now that the error type is defined, it's time to start throwing them around! :] You'll 
first start with a protocol that defines a rule. You are going to be using protocol 
oriented programming patterns to make this solution robust and extendable.

Add the following protocol definition to the playground:

protocol StringValidationRule { 
  func validate(string: String) throws -> Bool 
  var errorType: StringValidationError { get } 
}

This protocol requires two things. The first being a method that returns a Bool 
denoting the validity of a given string and also throws an error. The second is a 
property which describes the type of error that may be thrown by the 
validate(string:) method.

Note: The errorType property is not a Swift requirement. It's here so that you 
can be clear about the types of error that might be returned.

To use multiple rules together, define a StringValidator protocol like so:

protocol StringValidator { 
  var validationRules: [StringValidationRule] { get } 
  func validate(string: String) -> (valid: Bool, 
    errors: [StringValidationError]) 
}

This protocol requires an array of StringValidationRules as well as a function that 
validates a given string and returns a tuple. The first value of the tuple is a Bool 
that designates whether the string is valid; the second is an array of 
StringValidationErrors. In this case you're not using throws; instead, you're 
returning an array of error types since each rule can throw its own error. When it 
comes to string validation, it's best to let the user know of every rule they've 
broken so that they can resolve all of them in a single pass.

Think how you might implement a StringValidator's validate(string:) method. 
You'd likely iterate over each item in validationRules, collect any errors, and 
determine the status based on whether any errors occurred. This logic will likely be 
the same for any StringValidator you need.

Surely you don't want to copy and paste that implementation into ALL of your 
StringValidators! The good news is that Swift 2.0 introduces Protocol Extensions

iOS 9 by Tutorials Chapter 1: Swift 2.0

raywenderlich.com 28



that let you define default implementations for all types that specify conformance to 
a protocol.

Next, you'll extend the StringValidator protocol to define a default implementation 
for validate(string:). Add the following code to the playground:

extension StringValidator {                            // 1 
  func validate(string: String) -> (valid: Bool, 
    errors: [StringValidationError]) {                 // 2 
     
    var errors = [StringValidationError]()             // 3 
    for rule in validationRules {                      // 4 
      do {                                             // 5 
        try rule.validate(string)                      // 6 
      } catch let error as StringValidationError {     // 7 
        errors.append(error)                           // 8 
      } catch let error {                              // 9 
        fatalError("Unexpected error type: \(error)") 
      } 
    } 

 
    return (valid: errors.isEmpty, errors: errors)     // 10 
  } 
}

Here's what you do in each commented section above:

1. Create an extension for StringValidator.

2. Define the default implementation for func validate(string: String) -> 
(valid: Bool, errors: [StringValidationError]).

3. Create a mutable array to hold any errors that might be thrown.

4. Iterate over each of the the validator's rules.

5. Specify a do block since you'll catch any thrown errors.

6. Execute validate(string:) for each rule; note that you must precede the call 
with try as this method is throwable.

7. Catch any errors of the type StringValidationError.

8. Capture the error in your errors array.

9. If any error other than StringValidationError is thrown, crash with a message 
including which error occurred. Just as in a switch statement, your error 
handling must be exhaustive, or you'll get a compiler error.

10. Return the resultant tuple. If there are no errors validation passed, return the 
array of errors even if it's empty.

Now each and every StringValidator you implement will have this method by 
default so you can avoid "copy and paste" coding. :]

iOS 9 by Tutorials Chapter 1: Swift 2.0

raywenderlich.com 29



Time to implement your very first StringValidationRule, starting with the first error 
type .MustStartWith. Add the following code to your playground:

struct StartsWithCharacterStringValidationRule 
  : StringValidationRule { 
   
  let characterSet: NSCharacterSet            // 1 
  let description: String                     // 2 
  var errorType: StringValidationError {      // 3 
    return .MustStartWith(set: characterSet, 
      description: description) 
  } 

 
  func validate(string: String) throws -> Bool { 
    if string.startsWithCharacterFromSet(characterSet) { 
      return true 
    } else { 
      throw errorType                         // 4 
    } 
  } 
}

Breaking this method down, here's what you find:

1. This defines the allowed character set for the start of the string.

2. This is a description of the character set; if you used a set of numbers you 
might define this as "number".

3. This is the type of error  this rule can throw.

4. Finally, if the validation fails you throw an error.

Time to take this new rule for a spin! Add the following code to the playground:

let letterSet = NSCharacterSet.letterCharacterSet() 
let startsWithRule = StartsWithCharacterStringValidationRule( 
  characterSet: letterSet, 
  description: "letter") 

 
do { 
  try startsWithRule.validate("foo") 
  try startsWithRule.validate("123") 
} catch let error { 
  print(error) 
}

You should see the following output in your playground.

iOS 9 by Tutorials Chapter 1: Swift 2.0

raywenderlich.com 30



Note: You can display the result inline with your code by pressing the Show 
Result circle button to the right of the output in the playground's timeline.

Great work! You've written your first validation rule; now you can create one for 
"Must End With". Add the following to the playground:

struct EndsWithCharacterStringValidationRule 
  : StringValidationRule { 

 
  let characterSet: NSCharacterSet 
  let description: String 
  var errorType: StringValidationError { 
    return .MustEndWith(set: characterSet, 
      description: description) 
  } 

 
  func validate(string: String) throws -> Bool { 
    if string.endsWithCharacterFromSet(characterSet) { 
      return true 
    } else { 
      throw errorType 
    } 
  } 
}

The above logic is quite similar to the first validator; it simply checks the ending 
character against your supplied character set.

Now that you have two different rules, you can create your first StringValidator. 
Create a validator that verifies a string both starts and ends with characters 
belonging to specific character sets by adding the following code:

struct StartsAndEndsWithStringValidator: StringValidator { 
  let startsWithSet: NSCharacterSet             // 1 
  let startsWithDescription: String 
  let endsWithSet: NSCharacterSet               // 2 
  let endsWithDescription: String 

 
  var validationRules: [StringValidationRule] { // 3 
    return [ 
      StartsWithCharacterStringValidationRule( 
        characterSet: startsWithSet, 
        description: startsWithDescription),

iOS 9 by Tutorials Chapter 1: Swift 2.0

raywenderlich.com 31



      EndsWithCharacterStringValidationRule( 
        characterSet: endsWithSet , 
        description: endsWithDescription) 
    ] 
  } 
}

Since you wrote a protocol extension for StringValidator that provides a default 
implementation of func validate(string: String) -> (valid: Bool, errors: 
[StringValidationError]) this implementation becomes quite straightforward:

1. This is the character set for the "starts with" rule.

2. This is the character set for the "ends with" rule.

3. Create an array with both rules for validationRules required by the 
StringValidator protocol.

Now give your new validator a try! Add the following to the playground:

let numberSet = NSCharacterSet.decimalDigitCharacterSet() 
 

let startsAndEndsWithValidator = 
  StartsAndEndsWithStringValidator( 
    startsWithSet: letterSet, 
    startsWithDescription: "letter", 
    endsWithSet: numberSet, 
    endsWithDescription: "number") 

 
startsAndEndsWithValidator.validate("1foo").errors.description 
startsAndEndsWithValidator.validate("foo").errors.description 
startsAndEndsWithValidator.validate("foo1").valid

You should see the following result:

iOS 9 by Tutorials Chapter 1: Swift 2.0

raywenderlich.com 32



Password Requirement Validation
It's time to put your StringValidator pattern to work. You're the software engineer 
tasked with creating the sign-up form for your company's app. The design specifies 
that passwords must meet the following requirements:

• Must be at least 8 characters long

• Must contain at least 1 uppercase letter

• Must contain at least 1 lowercase letter

• Must contain at least 1 number

• Must contain at least 1 of the following "!@#$%^&*()_-+<>?/\[]{}"

If you hadn't worked through the protocol-oriented solution above, you might have 
looked at this list of requirements and groaned a little. But instead you can take the 
pattern you've built and quickly create a StringValidator that contains the rules for 
this password requirement.

Start by switching to the Password Validation page in the chapter's playground. 
For brevity, this playground page tucks away all of the previous work as a source 
file, which also contains two new rules you'll use. Click Password Validation > 
Sources > StringValidation.swift in the jump bar to view the code in that file.

LengthStringValidationRule
The first new rule is LengthStringValidationRule that has the following features:

• Validates that a string is a specified length, with the following two types:

• Min(length: Int): must be at least length long

• Max(length: Int): cannot exceed length

Both types can be combined in a StringValidator to ensure the String is between a 
specific range in length. Here's the rule implementation:

public struct LengthStringValidationRule 
  : StringValidationRule { 

 
  public enum Type { 
    case Min(length: Int) 
    case Max(length: Int) 
  } 
  public let type: Type 
  public var errorType: StringValidationError { get } 
  public init(type: Type) 
  public func validate(string: String) throws -> Bool 
}

iOS 9 by Tutorials Chapter 1: Swift 2.0

raywenderlich.com 33



ContainsCharacterStringValidationRule
The second rule is ContainsCharacterStringValidationRule, with the following 
requirements:

• Validates that a string contains specific character(s) with the following types:

• MustContain: the string must contain a character in the provided set.

• CannotContain: the string cannot contain a character in the provided set.

• OnlyContain: the string can only contain characters in the provided set.

• ContainAtLeast(count: Int): the string must contain at least count characters in 
the provided set.

Here's the implementation:

public struct ContainsCharacterStringValidationRule 
  : StringValidationRule { 

 
  public enum Type { 
    case MustContain 
    case CannotContain 
    case OnlyContain 
    case ContainAtLeast(Int) 
  } 
  public let characterSet: NSCharacterSet 
  public let description: String 
  public let type: Type 
  public var errorType: StringValidationError { get } 
  public init(characterSet: NSCharacterSet, 
    description: String, 
    type: Type) 
  public func validate(string: String) throws -> Bool 
}

With these two new rules in your back pocket you can quickly implement the 
password requirement validator. Add the following to the Password Validation 
page in the playground:

struct PasswordRequirementStringValidator: StringValidator { 
 

  var validationRules: [StringValidationRule] { 
    let upper = NSCharacterSet.uppercaseLetterCharacterSet() 
    let lower = NSCharacterSet.lowercaseLetterCharacterSet() 
    let number = NSCharacterSet.decimalDigitCharacterSet() 
    let special = NSCharacterSet( 
      charactersInString: "!@#$%^&*()_-+<>?/\\[]}{") 

 
    return [ 
      LengthStringValidationRule(type: .Min(length: 8)), 
      ContainsCharacterStringValidationRule( 
        characterSet:upper , 
        description: "upper case letter",

iOS 9 by Tutorials Chapter 1: Swift 2.0

raywenderlich.com 34



        type: .ContainAtLeast(1)), 
      ContainsCharacterStringValidationRule( 
        characterSet: lower, 
        description: "lower case letter", 
        type: .ContainAtLeast(1)), 
      ContainsCharacterStringValidationRule( 
        characterSet:number , 
        description: "number", 
        type: .ContainAtLeast(1)), 
      ContainsCharacterStringValidationRule( 
        characterSet:special, 
        description: "special character", 
        type: .ContainAtLeast(1)) 
    ] 
  } 
}

You'll recognize this code as being very similar to the concrete string validator you 
created. It simply provides an implementation for the validationRules computed 
property, which returns an array of the four rules you need to satisfy your 
requirements, in a remarkably readable configuration.

Now, try it out! Add the following to the playground:

let passwordValidator = PasswordRequirementStringValidator() 
passwordValidator.validate("abc1").errors 
passwordValidator.validate("abc1!Fjk").errors

You should see the following result:

Great work - you've used protocol oriented programming with Swift 2.0 features to 
implement a solution to a real-world non-trivial problem.

Additional Things
The previous sections covered a number of new features in Swift 2.0, but wait - 
there's more! (Is it just me, or is this starting to sound like an infomercial? :])

The remainder of this chapter has you experimenting with some of the previously 
mentioned features and introduces you to some new features. The examples won't 
be as concrete as the string validation problem, but hopefully still interesting 
nonetheless!

Going further with Extensions

iOS 9 by Tutorials Chapter 1: Swift 2.0

raywenderlich.com 35



One other amazing thing about Extensions is that you can provide functionality with 
generic type parameters; this means that you can provide a method on arrays that 
contain a specific type. You can even do this with protocol extensions.

For example, say that you wanted to create a method that shuffles an array of 
names to determine the order of players in a game. Seems easy enough, right? You 
simply take an array of names, mix it up and return it. Done and done. But what if 
you later discover a need to shuffle an array of cards for the same game? Now you 
have to either reproduce that shuffle logic for an array of cards, or create some 
kind of generic method that can shuffle both cards and names. There's got to be a 
better way, right?

How about creating an extension on the MutableCollectionType protocol? 
Conformers of the protocol must have an Index since you need to use ordered 
collections to retain the sort order.

Add the following into the Additional Things page in the chapter's playground:

extension MutableCollectionType where Index == Int { 
  mutating func shuffleInPlace() { 
    let c = self.count 
    for i in 0..<(c-1) { 
      let j = Int(arc4random_uniform(UInt32(c - i))) + i 
      guard i != j else { continue } 
      swap(&self[i], &self[j]) 
    } 
  } 
}

Next, you need to create an array of people and invoke your new method. Add the 
following code:

var people = ["Chris", "Ray", "Sam", "Jake", "Charlie"] 
people.shuffleInPlace()

You should see that the people array has been shuffled like so:

If your results aren't shuffled, verify that you typed the algorithm correctly or go 
buy a lottery ticket because it shuffled them into the same order that was received! 
You can reshuffle to see different results by pointing to Editor/Execute 
Playground.

iOS 9 by Tutorials Chapter 1: Swift 2.0

raywenderlich.com 36



Note: Extending functionality to generic type parameters is only available to 
classes and protocols. You will need to create an intermediate protocol to 
achieve the same with structs.

Using defer
With the introduction of guard and throws, exiting scope early is now a "first-class" 
scenario in Swift 2.0. This means that you have to be careful to execute any 
necessary routines prior to an early exit from occurring. Thankfully Apple has 
provided defer { ... } to ensure that a block of code will always execute before 
the current scope is exited.

Review the following and notice the defer block defined at the beginning of the 
dispenseFunds(amount:account:) method.

struct ATM { 
  var log = "" 

 
  mutating func dispenseFunds(amount: Float, 
    inout account: Account) throws { 

 
    defer { 
      log += "Card for \(account.name) has been returned " + 
        "to customer.\n" 
      ejectCard() 
    } 

 
    log += "====================\n" 
    log += "Attempted to dispense \(amount) from " + 
      "\(account.name)\n" 

 
    guard account.locked == false else { 
      log += "Account Locked\n" 
      throw ATMError.AccountLocked 
    } 

 
    guard account.balance >= amount else { 
      log += "Insufficient Funds\n" 
      throw ATMError.InsufficientFunds 
    } 

 
    account.balance -= amount 
    log += "Dispensed \(amount) from \(account.name)." 
    log += " Remaining balance: \(account.balance)\n" 
  } 

 
  func ejectCard() { 
    // physically eject card 
  } 
}

In this example there are a multiple places that the method can exit early. One 
thing is for certain though, an ATM should always return the card to the user,

iOS 9 by Tutorials Chapter 1: Swift 2.0

raywenderlich.com 37



regardless of what happens. The use of the defer block guarantees that no matter 
when the method exits, the user's card will be returned.

Find the line where billsAccount is declared and after it type the following to try 
dispensing funds:

do { 
  try atm.dispenseFunds(200.00, account: &billsAccount) 
} catch let error { 
  print(error) 
}

Attempting to dispense funds from a locked account throws an 
ATMError.AccountLocked, but add atm.log and read the output:

Bill's card was returned even though the method exited early.

Pattern Matching
Swift has had amazing pattern matching capabilities since the beginning, especially 
with cases in switch statements. Swift 2.0 continues to add to the language's ability 
in this area. Here are a few brief examples.

"for ... in" filtering combines a for-in loop and a where statement so that only 
iterations whose where statement is true will be executed. Use for ... in filtering to 
create an array of names that start with "C". Find the Pattern Matching section of 
the page and enter the following:

var namesThatStartWithC = [String]() 
 

for cName in names where cName.hasPrefix("C") { 
  namesThatStartWithC.append(cName) 
}

You can also iterate over a collection of enums of the same type and filter out for a 
specific case. Given the array authorStatuses in the playground, write a for loop 
that matches on the Late(Int) case and calculates the total number of days that 
authors are behind.

var totalDaysLate = 0 
 

for case let .Late(daysLate) in authorStatuses { 
  totalDaysLate += daysLate

iOS 9 by Tutorials Chapter 1: Swift 2.0

raywenderlich.com 38



}

"if case" matching allows you to write more terse conditions rather than using 
switch statements that require a default case. The following iterates over the 
authors array and slaps each other who is late!

var slapLog = "" 
for author in authors { 
  if case .Late(let daysLate) = 
    author.status where daysLate > 2 { 

 
    slapLog += "Ray slaps \(author.name) around a bit " + 
      "with a large trout.\n" 
  } 
}

Option Sets
Prior to Swift 2.0 in both Swift and Objective-C bitmasks were often used to 
describe a set of options flags. This should be familiar if you've ever done 
animations with UIKit.

You can now type a set of option flags like you would any other Set<T>, which was 
introduced in Swift 1.2.

animationOptions = [.Repeat, .CurveEaseIn]

Also, the fact that this is a Swift Set, you get all of the functionality that Sets have 
to offer. Creating your own option set is as simple as defining a structure that 
conforms to the OptionSetType protocol.

struct RectangleBorderOptions: OptionSetType { 
  let rawValue: Int 

 
  init(rawValue: Int) { self.rawValue = rawValue } 

 
  static let Top = RectangleBorderOptions(rawValue: 0) 
  static let Right = RectangleBorderOptions(rawValue: 1) 
  static let Bottom = RectangleBorderOptions(rawValue: 2) 
  static let Left = RectangleBorderOptions(rawValue: 3) 
  static let All: RectangleBorderOptions = 
    [Top, Right, Bottom, Left] 
}

This section concludes the use of the chapter's playground, so you can put that 
aside.

OS Availability
As Apple continually introduces new versions of iOS (and OS X) they give 
developers new frameworks and APIs to utilize. The problem with this is that unless 
you drop support for previous versions of the OS you cannot safely use the new

iOS 9 by Tutorials Chapter 1: Swift 2.0

raywenderlich.com 39



APIs without a lot of messy runtime checks which always leads to missed cases and 
basic human error, resulting in a crashing app.

In Swift 2.0 you can now let the compiler help you. There is not enough time to 
cover all of the use cases here but as a quick introduction consider the following 
example.

guard #available(iOS 9.0, *) else { return } 
// do some iOS 9 or higher only thing

The code above "guards" on the iOS version running the application. If the iOS 
version is less than 9.0 the routine will exit immediately. This allows you to freely 
write against iOS 9 specific APIs beyond the guard statement without constantly 
checking for API availability using methods like respondsToSelector(:).

The compiler will also you know if you've used a new API when your deployment 
target is set to some OS version where the API is not available.

Where to go from here?
While this chapter covered a lot of ground, you mostly just dipped your toes into 
each feature. There is a ton of power in the new features of Swift 2.0. And there 
are even more that were not covered here. It is highly recommended that you 
continue down the path of learning about Swift 2.0 features so that you can write 
better code and make better apps even faster. Never hesitate to crack open an  
Xcode Playground and start hacking away, prototyping ideas has never been easier. 
One pro-tip is to keep a playground in your Mac's Dock so that you can jump right 
in at a moment's notice.

You also should not miss the following WWDC 2015 sessions:

• What's New In Swift apple.co/1IBTu8q

• Protocol-Oriented Programming in Swift apple.co/1B8r2LE

• Building Better Apps with Value Types in Swift apple.co/1KMQesY

• Improving Your Existing Apps with Swift apple.co/1LiO462

• Swift and Objective-C Interoperability apple.co/1He5uhh

• Swift in Practice apple.co/1LPx2cq

All of these and more can be found at developer.apple.com/videos/wwdc/2015/.

And of course keep the official Swift Programming Language Book (apple.co/
1n5tB6q) handy!

iOS 9 by Tutorials Chapter 1: Swift 2.0

raywenderlich.com 40



2Chapter 2: Introducing App 
Search
By Chris Wagner

There's been a big hole in Spotlight on iOS for a long time. Although users can use 
it to find you app, they can't see inside it — to all the content that they really care 
about. Currently, when users want to get to content in an app, they have to flip 
through pages on their home screen to find it, open it and then search for what 
they're looking for — assuming you actually implemented a search feature in the 
first place!

An especially savvy user could launch your app by using Siri or searching for it in 
Spotlight, but neither of these tools help the user find what they want inside a non-
Apple app. Meanwhile, Apple makes things like contacts, notes, messages, email 
and apps directly searchable within Spotlight. The user simply taps on the search 
result and goes straight to the content. No fair!

Sometimes it seems like Apple keeps all the fun features to itself, like using 
Spotlight. The good news is that after Apple developers finish playing around with a 
feature and feel it's ready for showtime, it often lets the masses play too, like it did 
with app extensions in iOS 8.

With iOS 9, Apple is passing a very exciting feature off to the rest of us; third party 
developers now have the ability to make their content searchable through Spotlight!

App search APIs
App search in iOS 9 comprises three main aspects. Each is broken into separate 
APIs that achieve distinct results, but they also work in concert with one another:

• NSUserActivity

• Core Spotlight

• Web markup

raywenderlich.com 41



NSUserActivity
Being a clever little feature, this aspect of app search makes use of the same 
NSUserActivity API that enables Handoff in iOS 8.

Just in case you aren't aware, Handoff allows a user to start an activity on one 
device and continue it on another. For example, imagine you're reading an email on 
your iPhone as you sit down at your Mac. A special Mail icon will appear in your 
Mac's Dock, allowing you to launch Mail and resume reading the same email on 
your Mac. This is powered by NSUserActivity, which provides the OS with the 
information necessary to resume a task on another device. It’s not voodoo — but is 
facilitated by a dance involving iCloud, Bluetooth and Wi-Fi.

In iOS 9, NSUserActivity has been augmented with some new properties to enable 
search. Theoretically speaking, if a task can be represented as an NSUserActivity to 
be handed off to a different device, it can be stored in a search index and later 
continued on the same device. This enables you to index activities, states and 
navigation points within your app, allowing the user to find them later via Spotlight.

For example, a travel app might index hotels the user has viewed, or a news app 
might index the topics the user browsed.

Note: This chapter will not specifically cover Handoff, but you’ll learn how to 
make content searchable once it’s viewed.

Core Spotlight
The second, and perhaps most "conventional" aspect of app search is Core 
Spotlight, which is what the stock iOS apps like Mail and Notes use to index 
content. While it's nice to allow users to search for previously accessed content, you 
might take it a step further by making a large set of content searchable in one go.

You can think of Core Spotlight as a database for search information. It provides 
you with fine-grained control of what, when and how content is added to the search 
index. You can index all kinds of content, from files to videos to messages and 
beyond, as well as updating and removing search index entries.

Core Spotlight is the best way to provide full search capabilities of your app's 
private content. You'll learn how to use the new Core Spotlight APIs to index all of 
the content of an app.

Web markup
The third aspect of app search is web markup, which is tailored towards apps that 
mirror their public content from a web site. A good example is Amazon, where you 
can search the millions of products it sells, or even raywenderlich.com. Using open 
standards for marking up web content, you can show it in Spotlight and Safari

iOS 9 by Tutorials Chapter 2: Introducing App Search

raywenderlich.com 42



search results and even create deep links within your app.

This chapter will not cover web markup, but you can learn all about it in Chapter 3, 
"Your App On The Web".

Getting started
You'll work with a sample app named Colleagues that simulates a company address 
book. It provides an alternative to adding every coworker to your contacts, instead 
providing you with a directory of your colleagues. To keep things simple, it uses a 
local dataset, comprising of a folder of avatar images and a JSON file that contains 
employee information. In the real world, you would have a networking component 
that fetches contact data from a web-service. This is a tutorial, so JSON it is. Open 
the starter project, and before you do anything, build and run the app.

You'll immediately see a list of employees. It's a small startup, so there's only 25 
staff. Select Brent Reid from the list to see all of his details. You'll also see a list of 
employees who are in the same department. And that is the extent of the app's 
features — it's very simple!

Search would make this app infinitely better. As it stands, you can't even search 
while you're in the app. You won't add in-app search, but instead add the ability to 
search from outside the app with Spotlight!

Sample project
Take a moment to familiarize yourself with the project's codebase. There are two 
targets: Colleagues which is the app itself, and EmployeeKit which is a 
framework to facilitate interactions with the employee database.

iOS 9 by Tutorials Chapter 2: Introducing App Search

raywenderlich.com 43



From the EmployeeKit group in Xcode, open Employee.swift. This is the model 
for an employee that has all the properties you might expect. Employee instances 
are initialized using a JSON model, which are stored under the Database group in 
a file named employees.json.

Moving on, open EmployeeService.swift. At the top of the file is an extension 
declaration, and there are two methods marked with TODO. You'll fill out these two 
method's implementation later. This service provides two documented public APIs:

• indexAllEmployees(): indexes all employee records via Core Spotlight

• destroyEmployeeIndexing(): destroys all indexing

There's more to the EmployeeKit target, but it's not related to app searches, so 
there's no need to go into it now. By all means though, feel free to poke around!

Open AppDelegate.swift in the Colleagues group. Notice there is only one 
method in here: application(_:didFinishLaunchingWithOptions:). This 
implementation switches on Setting.searchIndexingPreference, which allows the 
user to change the behavior of search indexing.

Notice that the setting's value changes which method is called. If you recall, these 
are the service methods that had TODO comments to mark things you'll do later. You 
don't need to do anything other than just be aware of this setting. You can change 
the setting in the iOS system Settings app under "Colleagues".

That concludes your tour. The rest of the code is view controller logic that you'll 
modify, but you don't need to know all of it to work with app search.

Searching previously viewed records
When implementing app search, NSUserActivity is the first thing to work with 
because:

1. It's dead simple. Creating an NSUserActivity instance is as easy as setting a few 
properties.

2. When you use NSUserActivity to flag user activities, iOS will rank that content 
so that search results prioritize frequently accessed content.

3. You're one step closer to providing Handoff support.

Time to prove how simple NSUserActivity can be to implement!

Implement NSUserActivity
With the EmployeeKit group selected, go to File \ New \ File.... Choose the iOS 
\ Source \ Swift File template and click Next. Name your new file 
EmployeeSearch.swift and verify that the target is set to EmployeeKit.

iOS 9 by Tutorials Chapter 2: Introducing App Search

raywenderlich.com 44



Within the new file, first import CoreSpotlight:

import CoreSpotlight

Next, still in EmployeeSearch.swift, add the following extension to the Employee 
struct:

extension Employee { 
  public static let domainIdentifier = 
    "com.raywenderlich.colleagues.employee" 
}

This reverse-DNS formatted string identifies the type of NSUserActivity created for 
employees. Next, add the following computed property below the domainIdentifier 
declaration:

public var userActivityUserInfo: [NSObject: AnyObject] { 
  return ["id": objectId] 
}

This dictionary will serve as an attribute for your NSUserActivity to identify the 
activity. Now add another computed property named userActivity:

public var userActivity: NSUserActivity { 
  let activity = 
    NSUserActivity(activityType: Employee.domainIdentifier) 
  activity.title = name 
  activity.userInfo = userActivityUserInfo 
  activity.keywords = [email, department] 
  return activity 
}

This property will come into play later to conveniently obtain an NSUserActivity 
instance for an employee. It creates new NSUserActivity and sets a few properties:

• activityType: The type of activity that this represents. You'll use this later to 
identify NSUserActivity instances that iOS provides to you. Apple suggests using 
reverse DNS formatted strings.

• title: The name of the activity — this will also appear as the primary name in a 
search result.

• userInfo: A dictionary of values for you to use however you wish. When the 
activity is passed to your app, such as when the user taps a search result in 
Spotlight, you'll receive this dictionary. You'll use it to store the unique employee 
ID, allowing you to display the correct record when the app starts.

• keywords: A set of localized keywords that help the user find the record when 
searching.

Next up, you are going to use this new userActivity property to make employee 
records searchable when the user views them. Since you added these definitions in

iOS 9 by Tutorials Chapter 2: Introducing App Search

raywenderlich.com 45



the EmployeeKit framework, you'll need to build the framework so that Xcode is 
aware they can be used from the Colleagues app.

Press Command-B to build the project.

Open EmployeeViewController.swift and add the following to the bottom of 
viewDidLoad():

let activity = employee.userActivity 
 

switch Setting.searchIndexingPreference { 
case .Disabled: 
  activity.eligibleForSearch = false 
case .ViewedRecords: 
  activity.eligibleForSearch = true 
  activity.contentAttributeSet?.relatedUniqueIdentifier = nil 
case .AllRecords: 
  activity.eligibleForSearch = true 
} 

 
userActivity = activity

This retrieves userActivity — the property you just created in the Employee 
extension. Then it checks the app's search setting.

• If search is disabled, you mark the activity as ineligible for search.

• If the search setting is set to ViewedRecords, then you mark the activity as 
eligible for search, but also set relatedUniqueIdentifier to nil; if you don't have 
a corresponding Core Spotlight index item, then this must be nil. You'll give it a 
value when you perform a full index of the app's contents.

• If the search setting is AllRecords, you mark the activity as eligible for search.

• Finally, you set the view controller's userActivity property to your employee's 
activity.

Note: The userActivity property on the view controller is inherited from 
UIResponder. It's one of those things Apple added with iOS 8 to enable 
Handoff.

The last step is to override updateUserActivityState(). This ensures that when a 
search result is selected you'll have the information necessary.

Add the following method after viewDidLoad():

override func updateUserActivityState(activity: NSUserActivity){ 
  activity.addUserInfoEntriesFromDictionary( 
    employee.userActivityUserInfo) 
}

During the lifecycle of UIResponder, the system calls this method at various times

iOS 9 by Tutorials Chapter 2: Introducing App Search

raywenderlich.com 46



and you're responsible for keeping the activity up to date. In this case, you simply 
provide the employee.userActivityUserInfo dictionary that contains the employee's 
objectId.

Great! Now when you pull up an employee, that bit of history will be tracked and 
become searchable, provided the setting is turned on.

In the simulator or on your device, open the Settings app and scroll down to 
Colleagues. Change the Indexing setting to Viewed Records.

Now, build and run the app and select Brent Reid.

Okay, so it doesn't look like anything spectacular happened, but behind the scenes, 
Brent's activity is being added to the search index. Exit to the home screen (⇧⌘H) 
and bring up Spotlight by either swiping down from the middle of the screen or 
swiping all the way to the left of your home screen pages. Type brent reid into the 
search.

And there's Brent Reid! If you don't see him, you may need to scroll past other 
results. And if you tap on it, it should move up the list next time you perform the 
same search.

iOS 9 by Tutorials Chapter 2: Introducing App Search

raywenderlich.com 47



Now, of course this is awesome, but the result is a little...bland.

Surely you can do more than give a name? Time to crack open the Core Spotlight 
framework and discover how.

Adding more information to search results
NSUserActivity has a property named contentAttributeSet. It is of the type 
CSSearchableItemAttributeSet, which allows you to describe your content with as 
many attributes as necessary. Review the CSSearchableItemAttributeSet class 
reference to see the many ways to describe your content with these attributes.

Below is the desired result, complete with each component's property name called 
out:

You've already set title on NSUserActivity, and at the moment it's all you see. The 
other three, thumbnailData, supportsPhoneCall and contentDescription are all 
properties of CSSearchableItemAttributeSet.

Open EmployeeSearch.swift. At the top, import MobileCoreServices`:

import MobileCoreServices

MobileCoreServices is required for a special identifier that you'll use to create the 
CSSearchableItemAttributeSet instance. You've already imported CoreSpotlight, 
which is required for all of the APIs prefixed with CS.

Still in EmployeeSearch.swift, add a new computed property named attributeSet 
to the Employee extension:

iOS 9 by Tutorials Chapter 2: Introducing App Search

raywenderlich.com 48



public var attributeSet: CSSearchableItemAttributeSet { 
  let attributeSet = CSSearchableItemAttributeSet( 
    itemContentType: kUTTypeContact as String) 
  attributeSet.title = name 
  attributeSet.contentDescription = 
    "\(department), \(title)\n\(phone)" 
  attributeSet.thumbnailData = UIImageJPEGRepresentation( 
    loadPicture(), 0.9) 
  attributeSet.supportsPhoneCall = true 

 
  attributeSet.phoneNumbers = [phone] 
  attributeSet.emailAddresses = [email] 
  attributeSet.keywords = skills 

 
  return attributeSet 
}

When initializing CSSearchableItemAttributeSet, an itemContentType parameter is 
required. You then pass in kUTTypeContact from the MobileCoreServices framework. 
(Read about these types on Apple's UTType Reference page (apple.co/1NilqiZ).

The attribute set contains the relevant search metadata for the current employee: 
title is the same as the title from NSUserActivity, contentDescription contains the 
employee's department, title and phone number, and thumbnailData is the result of 
loadPicture() converted to NSData.

To get the call button to appear, you must set supportsPhoneCall to true and 
provide a set of phoneNumbers. Finally, you add the employee's email addresses and 
set their various skills as keywords.

Now that these details are included, Core Spotlight will index each and pull the 
results during a search. This means that your users can now search for coworkers 
by name, department, title, phone number email and even skills!

Still in EmployeeSearch.swift, add the following line above the return in 
userActivity:

activity.contentAttributeSet = attributeSet

Here you tell the contentAttributeSet from NSUserActivity to use this information.

Build and run. Open Brent Reid's record so the index can do its thing. Now go to 
the home screen pull up Spotlight and search for "brent reid". If your previous 
search is still there, you'll need to clear it and search again.

iOS 9 by Tutorials Chapter 2: Introducing App Search

raywenderlich.com 49



Voila! Aren't you amazed with how little code it took to pull this off?

Great work! Now Spotlight can search for colleagues the user previously viewed. 
Unfortunately, there is one glaring omission...try opening the app from the search 
result. Nothing.

Opening search results
The ideal user experience is to launch the app directly to the relevant content 
without any fanfare. In fact — it's a requirement — Apple uses the speed at which 
your app launches and displays useful information as one of the metrics to rank 
search results.

In the previous section, you laid the groundwork for this by providing both an 
activityType and a userInfo object for your NSUserActivity instances.

Open AppDelegate.swift and add this empty implementation of  
application(_:continueUserActivity:restorationHandler:) below 
application(_:didFinishLaunchingWithOptions:):

func application(application: UIApplication, 
  continueUserActivity userActivity: NSUserActivity, 
  restorationHandler: ([AnyObject]?) -> Void) -> Bool { 

 
  return true 
}

When a user selects a search result, this method is called — it's the same method 
that's called by Handoff to continue an activity from another device.

Add the following logic above return true in 
application(_:continueUserActivity:restorationHandler:):

guard userActivity.activityType == Employee.domainIdentifier, 
  let objectId = userActivity.userInfo?["id"] as? String else { 
  return false 
}

This guard statement verifies the activityType is what you defined as an activity for 
Employees, and then it attempts to extract the id from userInfo. If either of these 
fail, then the method returns false, letting the system know that the activity was

iOS 9 by Tutorials Chapter 2: Introducing App Search

raywenderlich.com 50



not handled.

Next, below the guard statement, replace return true with the following:

if let nav = window?.rootViewController 
    as? UINavigationController, 
  listVC = nav.viewControllers.first 
    as? EmployeeListViewController, 
  employee = EmployeeService().employeeWithObjectId(objectId) { 

 
  nav.popToRootViewControllerAnimated(false) 

 
  let employeeViewController = listVC 
    .storyboard? 
    .instantiateViewControllerWithIdentifier("EmployeeView") 
      as! EmployeeViewController 

 
  employeeViewController.employee = employee 
  nav.pushViewController(employeeViewController, 
    animated: false) 
  return true 
} 

 
return false

If the id is obtained, your objective is to display the EmployeeViewController for the 
matching Employee.

The code above may appear a bit confusing, but think about the app's design. 
There are two view controllers, one is the list of employees and the other shows 
employee details. The above code pops the application's navigation stack back to 
the list and then pushes to the specific employee's details view.

If for some reason the view cannot be presented, the method returns false.

Okay, time to build and run! Select Cary Iowa from the employees list, and then 
go to the home screen. Activate Spotlight and search for Brent Reid. When the 
search result appears, tap it. The app will open and you'll see it fade delightfully 
from Cary to Brent. Excellent work!

Indexing with Core Spotlight
Now that previously viewed records are indexed, you're close to indexing the entire 
database.

Why didn't you do this first? Well, NSUserActivity is generally an easy first step to 
make content searchable. Many apps don't have sets of content that can be indexed 
with Core Spotlight, but all apps have activities. Also, user activity affects what 
shows up in the list, so it's an easy way to put your app in the "spotlight".

Say that an employee shares a name with a famous actress. The user will likely see

iOS 9 by Tutorials Chapter 2: Introducing App Search

raywenderlich.com 51



the actress's IMDB page as the first result the first time she searches. However, if 
she frequently visits that employee's record in Colleagues, it's likely that iOS will 
rank that result higher than IMDB for her.

It's not a hard-set rule to implement NSUserActivity first; it's simply an easy point 
of entry. There's no reason why you couldn't implement Core Spotlight indexing 
first.

Start by opening EmployeeSearch.swift and add the following line to 
attributeSet, right above the return statement:

attributeSet.relatedUniqueIdentifier = objectId

This assignment creates a relationship between the NSUserActivity and what will 
soon be the Core Spotlight indexed object. If you don't relate the two records, there 
will be duplicate search results. You may remember you set this property to nil on 
your NSUserActivity when the app is in Viewed Records mode.

Next, you need to create the CSSearchableItem, which represents the object that 
Core Spotlight will index. Add the following computed property definition to 
EmployeeSearch.swift, below attributeSet:

var searchableItem: CSSearchableItem { 
  let item = CSSearchableItem(uniqueIdentifier: objectId, 
    domainIdentifier: Employee.domainIdentifier, 
    attributeSet: attributeSet) 
  return item 
}

This is brief because you've already created the CSSearchableItemAttributeSet to 
hold most of the metadata. Notice that uniqueIdentifier is set to objectId to build 
the inverse relationship with your NSUserActivity.

Open EmployeeService.swift and import CoreSpotlight at the top of the file:

import CoreSpotlight

Now, within indexAllEmployees() replace the TODO comment with the following:

// 1 
let employees = fetchEmployees() 
// 2                 
let searchableItems = employees.map { $0.searchableItem } 
CSSearchableIndex 
  .defaultSearchableIndex() 
// 3 
  .indexSearchableItems(searchableItems) { error in        
// 4 
  if let error = error {                                   
    print("Error indexing employees: \(error)") 
  } else { 
    print("Employees indexed.") 
  }

iOS 9 by Tutorials Chapter 2: Introducing App Search

raywenderlich.com 52



}

Stepping through the logic...

1. All employees are fetched from the database as an array of Employee.

2. The employee array is mapped to [CSSearchableItem].

3. Using Core Spotlight's default index, the array of CSSearchableItems is indexed.

4. Finally, log a message on success or failure.

And...that's it! Now when you launch the app with the option All Records set for 
the app's Indexing setting, all employee records become searchable.

Head over to the Settings app, and change the Indexing setting for Colleagues to 
All Records. Then build and run. In Spotlight, search for people in the list that you 
haven't looked at or search for an entire department, like engineering. You may 
need to scroll to see the results from Colleagues in the list.

iOS 9 by Tutorials Chapter 2: Introducing App Search

raywenderlich.com 53



Note: You could see duplicate results because you were previously indexing 
NSUserActivity items without the relatedUniqueIdentifier set. You can delete 
the app to clear the index or continue to the next section to learn about 
removing indexed items.

Make the results do something
But what happens when you tap on a result? Not much! You need to handle results 
indexed with Core Spotlight a bit differently than you did for NSUserActivity results.

Open AppDelegate.swift and import CoreSpotlight at the top of the file:

import CoreSpotlight

Then replace guard statement in 
application(_:continueUserActivity:restorationHandler:) with the following:

let objectId: String 
if userActivity.activityType == Employee.domainIdentifier, 
  let activityObjectId = userActivity.userInfo?["id"] 
  as? String { 
   
  // 1 
  objectId = activityObjectId 
} else if userActivity.activityType == 
  CSSearchableItemActionType, 
  let activityObjectId = userActivity 
  .userInfo?[CSSearchableItemActivityIdentifier] as? String { 
   
  // 2 
  objectId = activityObjectId 
} else { 
  return false 
}

The user activity supplied to this delegate method will now have one of two types, 
handled with the if statement above:

1. If the result was indexed by NSUserActivity then the activityType will be the 
one you defined in reverse-DNS notation. In this instance, the employee ID is 
obtained from the userInfo dictionary, as before.

2. A result that Core Spotlight indexed directly, will arrive as an NSUserActivity 
with an activityType of CSSearchableItemActionType. Furthermore, the unique 
identifier is stored in the userInfo dictionary under the key 
CSSearchableItemActivityIdentifier. This logic handles both cases, regardless 
of how the employees are indexed.

Build and run, then try to select an employee. The app should open to the chosen 
result, as you'd expect.

iOS 9 by Tutorials Chapter 2: Introducing App Search

raywenderlich.com 54



Deleting items from the search index
Back to the premise of your app. Imagine that an employee was fired for duct 
taping the boss to the wall after a particularly rough day. Obviously, you won't 
contact that person anymore, so you need to remove him and anybody else that 
leaves the company from the Colleagues search index.

For this sample app, you'll simply delete the entire index when the app's indexing 
setting is disabled.

Open EmployeeService.swift and find destroyEmployeeIndexing(). Replace the 
TODO with the following logic:

CSSearchableIndex 
  .defaultSearchableIndex() 
  .deleteAllSearchableItemsWithCompletionHandler { error in 
   
  if let error = error { 
    print("Error deleting searching employee items: \(error)") 
  } else { 
    print("Employees indexing deleted.") 
  } 
}

This single parameterless call destroys the entire indexed database for your app. 
Well played!

Now to test out the logic; perform the following test to see if index deletion works 
as intended:

1. Build and run to install the app.

2. Stop the process in Xcode.

3. In the simulator or on your device, go to Settings \ Colleagues and set 
Indexing to All Records.

4. Open the app again. This will start the indexing process.

5. Go back to the home screen and activate Spotlight.

6. Search for a known employee and verify the entry appears.

7. Go to Settings \ Colleagues and set Indexing to Disabled.

8. Quit the app.

9. Reopen the app. This will purge the search index.

10. Go to the home screen and activate Spotlight.

11. Search for a known employee and verify that no results appear.

So deleting the entire search index was pretty easy, huh? But what if you want to

iOS 9 by Tutorials Chapter 2: Introducing App Search

raywenderlich.com 55



single out a specific item? Good news — these two APIs give you more fine-tuned 
control over what is deleted:

• deleteSearchableItemsWithDomainIdentifiers(_:completionHandler:) lets you 
delete entire "groups" of indexes based on their domain identifiers.

• deleteSearchableItemsWithIdentifiers(_:completionHandler:) allows you work 
with individual records using their unique identifiers.

This means that globally unique identifiers (within an app group) are required if 
you're indexing multiple types of records.

Note: If you can't guarantee uniqueness across types, like when replicating a 
database that uses auto-incrementing IDs, then a simple solution could be to 
prefix the record's ID with its type. For example, if you had a contact object 
with an ID of 123 and an order object with an ID of 123, you could set their 
unique identifiers to contact.123 and order.123 respectively.

It is also very important to keep indexes up-to-date with changes. In the case of 
Colleagues you need to handle promotions, department changes, new phone 
numbers or even name changes. To update indexed items, use the same method 
that you indexed them with in the first place: 
indexSearchableItems(_:completionHandler:).

Great work! Once you have all of the above working, you can set the sample 
project aside. The next sections will discuss some advanced features of app search.

Private vs. public indexing

Note: This section is inaccurate for iOS 9.0; Apple has not yet implemented 
the feature according to Technical Note TN2416 (bit.ly/1NC7u72)). "Activities 
marked as eligibleForPublicIndexing are kept on the private on-device index 
in iOS 9.0, however, they may be eligible for crowd-sourcing to Apple’s server-
side index in a future release." Keep an eye on this technical note if the 
feature is of interest to you. The information described below is what Apple 
had outlined during the WWDC session and documentation.

Imagine if a user could search for something in Spotlight, and see a result from 
inside an app that they don't even have installed! How cool would that be? Well, 
with public indexing, this is possible. Content from your app would appear in front 
of more users — helping them out with contextually relevant information, and 
hopefully getting you some extra downloads.

By default, all indexed content is considered private. In fact, all content you index

iOS 9 by Tutorials Chapter 2: Introducing App Search

raywenderlich.com 56



using Core Spotlight will always be private. You can, however, mark an 
NSUserActivity as being publicly indexable by setting the 
eligibleForPublicIndexing property to true.

There's actually a little more to it than that. In order for content to become public 
in Apple's cloud index, it must first be reported by an undefined number of unique 
users. This protects users' privacy as well as maintaining the quality of the public 
index.

As you might expect Apple has not quantified this threshold.

The other approach for making content publicly indexed is using web markup, 
which is covered in the next chapter.

Advanced features
The Core Spotlight framework provides a couple of more advanced features you'll 
want to know about.

Core Spotlight App Extensions
A Core Spotlight app extension provides your app the opportunity to run 
maintenance operations on its index when the app is not running. In the event your 
app's index is lost or did not properly save the system may call your extension to 
perform its duty.

To add this extension, simply add a new Spotlight Index Extension target to your 
project.

Spotlight index extensions contain a subclass of CSIndexExtensionRequestHandler. 
This declares conformance to the CSSearchableIndexDelegate protocol, which has 
only two required methods:

• searchableIndex(_: reindexAllSearchableItemsWithAcknowledgementHandler:)

• searchableIndex(_: reindexSearchableItemsWithIdentifiers: 
acknowledgementHandler:(

These both request you to re-index some of the items of content in your app — the

iOS 9 by Tutorials Chapter 2: Introducing App Search

raywenderlich.com 57



former specifying that all items should be reindexed, while the latter provides an 
array of IDs for the items that need updating.

Batch indexing
If you have a large amount of data to index with Core Spotlight, then rather than 
indexing each item individually, it's a lot more efficient to submit  items in batches.

Core Spotlight provides APIs for this too — including providing the ability to 
continue indexing where you left off, should the process get interrupted.

You can't use the defaultSearchableIndex for batch indexing; you need to create 
your own CSSearchableIndex instance.

The conceptual approach to using the batch API is as follows:

1. Create a new CSSearchableIndex.

2. Designate that you'll begin batch indexing by calling beginIndexBatch() on the 
index.

3. Request the details of the last batch with 
fetchLastClientStateWithCompletionHandler().

4. Prepare the next batch of CSSearchableItem objects to index.

5. Index the items using indexSearchableItems(_:completionHandler:) as before.

6. Use endIndexBatchWithClientState() to specify that this batch is finished. The 
client state you provide is what you'll be provided when you next reach step 3.

7. Repeat!

For further information on batching, check out the Apple documentation for 
CSSearchableIndex.

Where to go from here?
This chapter has covered iOS 9's simple yet powerful approach to indexing the 
content inside your app, either through Core Spotlight or user activities. The latter 
of these isn't limited to content though — you can also use it to index navigation 
points within an app.

Consider a CRM app that has multiple sections such as Contacts, Orders and Tasks. 
By creating user activities whenever a user lands on one of these screens, you'd 
make it possible for them to search for Orders and be directly to that section of 
your app. How powerful would this be if your app has many levels of navigation?

There are many unique ways to bubble up content to your users. Think outside the 
box and remember to educate your users about this powerful function.

iOS 9 by Tutorials Chapter 2: Introducing App Search

raywenderlich.com 58



To find out more about app search, be sure to watch Session 709 - Introducing 
Search APIs from WWDC 2015 (apple.co/1gvlfGi). The App Search Programming 
Guide (apple.co/1J0WBs1) is also an excellent reference for implementing search in 
your own apps.

Finally, if your app has a web counterpart, then jump straight in to the next chapter 
of this book, "Your App On The Web". You'll learn more about indexing the content 
that is available publicly, both on the web and within your app.

iOS 9 by Tutorials Chapter 2: Introducing App Search

raywenderlich.com 59



3Chapter 3: Your App on the 
Web
By Pietro Rea

Native and web technologies have historically lived in two distinct camps within 
iOS: native apps are part of a closed ecosystem tightly controlled by Apple, 
whereas web technologies are based on open standards and frameworks. These two 
worlds don't cross paths often, and what happens on a mobile website often doesn't 
directly affect what happens in a native app.

In the last few years, Apple has worked to bring the camps of web and native apps 
closer together. iOS 7 introduced JavaScriptCore, a framework to bridge native code 
with JavaScript. iOS 8 saw the release of features such as Continuity and shared 
web credentials.

iOS 9 pulls the web and native worlds just a little closer with universal links and 
web markup, which let you provide deep links directly into your app and surface 
web content in Spotlight and Safari search.

You probably have a bunch of ideas on how to use those features from that basic 
introduction alone, so jump straight into the next section to see how to blur the 
lines between web and native apps.

Getting started
Unlike the rest of this book, the "sample app" for this chapter is a real-world app 
available on the App Store. You'll be working with the app for RWDevCon, the 
conference organized by the folks behind raywenderlich.com. You'll also be making 
some tweaks to its accompanying website: rwdevcon.com.

raywenderlich.com 60



In the starter files for this chapter, you'll find both the code for the iOS app and the 
code for the website. There's quite a lot there, but don't be put off – you'll only be 
editing one or two files and adding some extra functionality to the videos section. 
Feel free to take a look through the project to familiarize yourself with its contents; 
you can also browse the real RWDevCon website, rwdevcon.com and download the 
iOS app from the App Store (apple.co/1YoKMTi).

Note: Due to the infrastructure and security requirements for web markup and 
universal links, this chapter is unfortunately the only place in this book where 
you won't be able to verify your work as you follow along. There's no easy 
way to try out these features without having a real website accessible via 
HTTPS and an associated app in the App Store under an account where you're 
either the team agent or the team admin.

The rest of this chapter includes a number of tutorial sections to give you 
some experience with universal links and web markup. You won't be able to 
run the sample app on a device, since you won't have the required 
provisioning profiles, but you can still get an understanding of how everything 
fits together.

iOS 9 by Tutorials Chapter 3: Your App on the Web

raywenderlich.com 61



Linking to your app
If you've ever linked into a native app, either from a website or from another app, 
then you're probably familiar with the predecessor to universal links: deep links. 
Before diving into universal links, read through the following refresher on deep links 
so you'll know exactly how they differ from the new technology you'll explore in this 
chapter.

Deep links
Before iOS 9, the primary way apps communicated with each other was to register 
a custom URL scheme using the CFBundleURLTypes key in Info.plist. For example, if 
you were developing a social network app for clowns you might have registered 
something like clownapp:// or clown://. You might have seen some of Apple's own 
URL schemes in use, such as tel://, sms://, or facetime://.

Once you've registered your custom scheme, you can link into your app from other 
places in iOS by constructing a URL such as clownapp://home/feed. When the link is 
opened, iOS launches your app and passes in the entire URL via the app delegate 
method application(_:handleOpenURL:). Your app then can interpret the URL in any 
manner and respond appropriately.

This system worked fairly well for a long time (since iOS 3.0, in fact!) but it has 
some major drawbacks:

• Privacy: In addition to openURL(_:), UIApplication also has the method 
canOpenURL(_:). The intended purpose of this innocent-looking method is to 
check if there's an app installed on the device that can handle a specific URL. 
Unfortunately, this method was exploited to gather a list of installed apps; if you 
know that a particular device can open a clownapp:// URL then you also know 
that the device has the social clown app installed.

• Collisions: Facebook's custom URL scheme is fb://. There's nothing stopping 
another app from registering fb:// as their URL scheme and capturing 
Facebook's deep links. When two apps register for the same custom URL scheme, 
it's indeterminate which app will win out and launch.

• No fallback: If iOS tries to open a link of a custom URL scheme that's not 
registered to any app, the action fails silently.

iOS 9 solves many of these problems and more with universal links; instead of 
registering for custom URL schemes, universal links use standard HTTP and HTTPS 
links. You can register to handle specific links for any web domains that you own.

Universal links
If you owned the domain clownapp.com, you could register http://clownapp.com/
clowns/* as a universal app link. If the user installs your social clown app and taps

iOS 9 by Tutorials Chapter 3: Your App on the Web

raywenderlich.com 62



the link http://clownapp.com/clowns/fizbo within Safari or a web view, iOS takes 
them straight to Fizbo's profile within your app.

If they don't have the app installed, they are taken to the clown's information on 
your website, just as if they'd followed a standard HTTP link. You'll see the same 
behavior if you open the link with openURL(_:).

Universal links have other advantages over deep links:

• Unique: There's no way other apps can register a handler for your domain.

• Secure: To tie your domain and app together, you have to upload a securely-
signed file to your web server. There's also no way for other apps to tell whether 
your app is installed.

• Simple: A universal link is just a normal HTTP link which works for both your 
website and your app. So even if a user doesn't have your app installed, or isn't 
running iOS 9, the link will still bring them to Safari.

Enough theory for now — time to find out how to add universal links to your own 
apps.

Registering your app to handle universal links
To tie your website to your native app and prove that it's your website, there are 
two 'bonds' you have to create: you have to tell your native app about your 
domain, and you have to tell your domain about your native app. After that, you 
simply need to add some code to your app to handle incoming links.

First up: letting the RWDevCon app know about the rwdevcon.com domain.

Go to the starter files included with this chapter and open RWDevCon.xcodeproj 
from the rwdevcon-app directory. In the project navigator, select the RWDevCon 
project, then the main RWDevCon target. Switch to the Capabilities tab and 
add the following domains to the Associated Domains section:

• applinks:rwdevcon.com

• applinks:www.rwdevcon.com

Your Associated Domains section should look like the following when done:

This tells iOS which domains your app should respond to. Make sure to prefix your

iOS 9 by Tutorials Chapter 3: Your App on the Web

raywenderlich.com 63



domain names with applinks:.

Xcode may prompt you to select a development team when you attempt to change 
these settings. For the purposes of this tutorial, simply cancel out of this dialog 
when it appears. Unfortunately, you won't be able to run the demo app on a device 
since you're not a member of the Ray Wenderlich development team.

When you add the associated domains for your own app, make sure you first sign 
into Xcode with the appropriate Apple ID. Do this by going to Xcode\Preferences
\Accounts and tapping on the + button. You'll then need to turn on the Associated 
Domains setting and add any domains you want to listen for.

Note: Only a team agent or a team administrator of an Apple developer 
account can turn on the Associated Domains capability. If you're not assigned 
one of those roles, reach out to the right person on your team to make this 
change.

Registering your server to handle universal links
Next, you have to create the link from your website to your native app. To do this, 
you need to place a JSON file on your webserver that contains some information 
about your app. You won't be able to follow along for this section since you don't 
have access to the rwdevcon.com web server to upload a file, but here's what the 
contents of that file should look like:

{ 
  "applinks": { 
    "apps": [], 
    "details": [ 
      { 
        "appID": "KFCNEC27GU.com.razeware.RWDevCon", 
        "paths": [ 
          "/videos/*" 
        ] 
      } 
    ] 
  } 
}

The file must be named apple-app-site-association and it must not have an 
extension — not even .json.

The file name might look familiar to you, and for good reason! Apple introduced the 
apple-app-site-association file in iOS 8 to implement shared web credentials 
between your website and your app as well as for Handoff tasks between web and 
native apps.

The applinks section of this file determines which of your apps can handle 
particular URL paths on your website. Somewhat confusingly, the "apps" property 
should always be an empty array.

iOS 9 by Tutorials Chapter 3: Your App on the Web

raywenderlich.com 64



The details section contains an array of dictionaries pairing an appID with a list of 
paths.

Your appID string consists of your team ID (KFCNEC27GU in this example) followed by 
your app's bundle ID (com.razeware.RWDevCon in this case).

The team ID is supplied by Apple and is unique to a specific development team. 
KFCNEC27GU is specific to the Ray Wenderlich development team; you'll have a 
different identifier for your own account.

If you don't know your team ID, the easiest way to find it is by logging into Apple's 
developer member center developer.apple.com/membercenter. Log in, click on 
Your Account, and then look for your team ID within the account summary:

If you don't know your app's bundle ID, go to Xcode and click on your project in the 
project navigator. Select the main target for your app and switch to the General 
tab. The identifier you're looking for is listed as Bundle Identifier:

A bundle ID typically uses reverse-DNS notation in the form 
com.exampledomain.exampleappname.

As the name of apple-app-site-association suggests, the paths array contains a 
list of "white-listed" URLs that your app should handle. If you're a little rusty on 
your URL components, the path in the following URL is /videos/2015/

iOS 9 by Tutorials Chapter 3: Your App on the Web

raywenderlich.com 65



inspiration/; it's the bit that follows the domain name:

https://www.rwdevcon.com/videos/2015/inspiration/?name=Inspiration

The paths array can support some basic pattern matching, such as the * wildcard, 
which matches any number of characters. It also supports ?, which matches any 
single character. You can combine both wildcards in a single path, such as /videos/
*/year/201?/videoName, or you can simply use a single * to specify your entire 
website.

That's all there is to path management; you can add as many paths as you like for 
your app to handle, or even add multiple apps to handle different paths.

Once you have apple-app-site-association ready, you have to upload it to the 
root of your web server. In the case of RWDevCon, since you specified both 
rwdevcon.com and www.rwdevcon.com in your associated domains, the file must be 
accessible at the following locations:

https://rwdevcon.com/apple-app-site-association 
https://www.rwdevcon.com/apple-app-site-association

It must be hosted without any redirects, and be accessible over HTTPS.

Since you don't have access to the web servers that host www.rwdevcon.com, you 
can't do this step yourself. Luckily, Ray has already uploaded the file to the root of 
the web server for you – thanks Ray! You can verify it's there by requesting the file 
through your favorite web browser.

Before moving on to the next section, there are two caveats to consider when 
managing your site association file:

1. If your app must target iOS 8 because it contains Continuity features such as 
Handoff or shared web credentials, you'll have to sign apple-app-site-
association using openssl. You can read more about this process in Apple's 
Handoff Programming Guide apple.co/1yG4jR9.

2. Before you upload apple-app-site-association to your web server, run your 
JSON through an online validator such as JSONLint jsonlint.com. Universal links 
won't work if there's even the slightest syntax error in your JSON file!

Handling universal links in your app
When your app receives an incoming universal link, you should respond by taking 
the user straight to the targeted content. The final steps in implementing universal 
links are to parse the incoming URLs, determine what content to show, and 
navigate the user to the content.

Head back to the RWDevCon project in Xcode and add the following class method 
to Session.swift at the bottom of the class:

iOS 9 by Tutorials Chapter 3: Your App on the Web

raywenderlich.com 66



class func sessionByWebPath(path: String, 
  context: NSManagedObjectContext) -> Session? { 

 
  let fetch = NSFetchRequest(entityName: "Session") 
  fetch.predicate = 
    NSPredicate(format: "webPath = %@", path) 

 
  do { 
    let results = try context.executeFetchRequest(fetch) 
    return results.first as? Session 
  } catch let fetchError as NSError { 
    print("fetch error: \(fetchError.localizedDescription)") 
  } 

 
  return nil 
}

In the RWDevCon app, the Core Data class Session represents a particular 
presentation and contains a webPath property that holds the path of the 
corresponding video page on rwdevcon.com. The method above takes a URL's path, 
such as /videos/talk-ray-wenderlich-teamwork.html, and returns either the 
corresponding session object or nil if it can't find one.

Next, open AppDelegate.swift and add the following helper method to 
AppDelegate:

func presentVideoViewController(URL: NSURL) {   
  let storyboard = UIStoryboard(name: "Main", bundle: nil) 
  let navID = "NavPlayerViewController" 

 
  let navVideoPlayerVC = 
    storyboard.instantiateViewControllerWithIdentifier(navID) 
    as! UINavigationController 

 
  navVideoPlayerVC.modalPresentationStyle = .FormSheet 

 
  if let videoPlayerVC = navVideoPlayerVC.topViewController 
    as? AVPlayerViewController { 

 
    videoPlayerVC.player = AVPlayer(URL: URL) 

 
    let rootViewController = window?.rootViewController 
    rootViewController?.presentViewController( 
      navVideoPlayerVC, animated: true, completion: nil) 
  } 
}

This method takes in a video URL and presents an AVPlayerViewController 
embedded in a UINavigationController. The video player and container navigation 
controller have already been set up and are loaded from the main storyboard. If 
you want to see how they're configured you can open Main.storyboard to have a 
look.

Finally, still in AppDelegate.swift, implement the following UIApplicationDelegate

iOS 9 by Tutorials Chapter 3: Your App on the Web

raywenderlich.com 67



method below the method you just added:

func application(application: UIApplication, 
  continueUserActivity 
  userActivity: NSUserActivity, 
  restorationHandler: ([AnyObject]?) -> Void) -> Bool { 

 
  //1 
  if userActivity.activityType == 
    NSUserActivityTypeBrowsingWeb { 

 
    let universalURL = userActivity.webpageURL! 

 
    //2 
    if let components = NSURLComponents(URL: universalURL, 
      resolvingAgainstBaseURL: true), 
      let path = components.path { 

 
      if let session = Session.sessionByWebPath(path, 
        context: coreDataStack.context) { 
        //3 
        let videoURL = NSURL(string: session.videoUrl)! 
        presentVideoViewController(videoURL) 
        return true 
      } else { 
        //4 
        let app = UIApplication.sharedApplication() 
        let url = 
          NSURL(string: "http://www.rwdevcon.com")! 
        app.openURL(url) 
      } 
    } 
  } 
  return false 
}

The system calls this delegate method when there's an incoming universal HTTP 
link. Here's a breakdown of what each section does:

1. The system invokes this method for several types of NSUserActivity; 
NSUserActivityTypeBrowsingWeb is the type that corresponds to universal HTTP 
links. When you see a user activity of this type, you're guaranteed that the 
NSUserActivity instance will have its webPageURL property of type NSURL? set to 
something you can inspect. Therefore you can unwrap the optional.

2. You use an instance of NSURLComponents to extract the URL's path; you can then 
use sessionByWebPath(_:context:) along with the URL to map to the correct 
Session object.

3. sessionByWebPath(_:context:) returns an optional Session. If there's a value 
behind the optional, you use the session's videoURL property to present the 
video player using presentVideoViewController(_:).

4. If there's no value behind the optional, which can happen if you're handed a 
universal link the app can't understand, you simply launch the RWDevCon home

iOS 9 by Tutorials Chapter 3: Your App on the Web

raywenderlich.com 68



page in Safari and return false to tell the system you couldn't handle the 
activity.

Note: application(_:continueUserActivity:restorationHandler:) may look 
familiar to you; Apple introduced this UIApplicationDelegate method in iOS 8 
to allow developers to implement Handoff. It also makes an appearance in 
Chapter 2, "Introducing App Search", which deals with the new search APIs in 
iOS 9. This method is a jack of all trades!

Although you won't be able to validate the code you just wrote, it's still useful to 
see how to handle an incoming link. To see what the final result should look like, 
download the RWDevCon app from the App Store (apple.co/1YoKMTi).

On your device, open your favorite mail client and send yourself an e-mail that 
contains the following two links:

Once you receive the email, tap the first link. This should open the app and start 
streaming Tammy Coron's 2015 inspiration talk titled "Possibility":

iOS 9 by Tutorials Chapter 3: Your App on the Web

raywenderlich.com 69



Looks great! Now return to your mail client and tap the second link. The app opens, 
but then you're bounced back to Safari, as shown below:

The RWDevCon app neatly handles the universal links it recognizes, but gracefully 
falls back to Safari for any that it doesn't.

Besides tapping a link, you can also load the URL directly in Safari, a WKWebView, a

iOS 9 by Tutorials Chapter 3: Your App on the Web

raywenderlich.com 70



UIWebView, or use openURL(_:) on an instance of UIApplication to trigger your app 
to handle a universal link.

Did you notice the banner at the top of the previous screenshot? That's a Smart 
App Banner; you'll learn more about those in the second half of the chapter.

Working with web markup
Now that you know how to implement and handle universal links in iOS 9, it's time 
to move to the second topic of this chapter: web markup. As it turns out, web 
markup is part of a much bigger topic that's covered about in Chapter 2, 
"Introducing App Search".

Search includes three different APIs: NSUserActivity, CoreSpotlight and web 
markup. Chapter 2 covered NSUserActivity and CoreSpotlight; it's well worth a 
read through that chapter if you haven't done so already.

Search results that appear in Spotlight and in Safari can now include content from 
native apps in iOS 9, and you can use web markup to get your app's content to 
surface in those search results. If you have a website that mirrors your app's 
content, you can mark up its web pages with standards-based markup, Smart App 
Banners, and universal links your native app understands.

Apple's web crawler, lovingly named "Applebot", will then crawl your website and 
index your mobile links. When iOS users search for relevant keywords, Apple can 
surface your content even if users don't have your app installed. In other words, 
optimizing your markup on your site helps you get new downloads organically.

Making your website discoverable
Applebot crawls the web far and wide, but there's no guarantee when, or even if, it 
will land on your website. Fortunately, there are a few things you can do to make 
your site more discoverable and easier to crawl.

1. In iTunes Connect, point your app's Support URL as well as its Marketing URL 
to the domain that contains your web markup. These support URLs are 
Applebot's entry points to crawl your content:

iOS 9 by Tutorials Chapter 3: Your App on the Web

raywenderlich.com 71



2. Make sure the pages that contain your web markup are accessible from your 
support marketing URLs. If there aren't any direct paths from these URLs to 
your web markup, you should create them so Applebot can find the web 
markup.

3. Check that your site's robots.txt file is set up so that Applebot can do its job. 
Robots.txt, also known as the robots exclusion protocol, is a web standard for  
communicating with web crawlers and other web robots; it specifies which parts 
of the site the web crawler should not scan or process.

Note: Not all web crawlers follow these directives, but Applebot does! You can 
learn more about the robots exclusion standard on Wikipedia bit.ly/1MNna6A.

Embedding universal links using Smart App Banners
Once Applebot can find and crawl your website, the next step is to add something 
worth crawling! Apple recommends the use of Smart App Banners to add mobile 
links to your site.

Smart App Banners have been around since iOS 6; they've typically been seen as 
advertising banners that promote apps on a website. Visitors who didn't have your 
app installed would get a link to the app in the App Store; for those who did have 
the app installed, the banner could provide an easy way to link to a page deep 
within your app.

Here's the Smart App Banner from the last section up close:

This particular Smart App Banner promotes the RWDevCon iOS app on the 
RWDevCon website. Since Safari's detected that the visitor has the app installed, 
the banner says OPEN; otherwise, the Smart App Banner would say VIEW and 
take you to the App Store page for the RWDevCon app. That's why they call them 
"smart" banners! :]

iOS 9 brings new uses to Smart App Banners by making them an integral part of 
search. In addition to their day job as marketing tools, Smart App Banners can also 
help surface universal links for Applebot to crawl and index.

iOS 9 by Tutorials Chapter 3: Your App on the Web

raywenderlich.com 72



Note: The remainder of this chapter is all about editing the HTML of your 
website to improve its discoverability and presence in search results in iOS 9. 
It should be easy enough to follow, even if you're not familiar with HTML. If 
somebody else takes care of your website for you, be sure to show them this 
chapter so they can make the required changes! :]

Go to the starter files that came with this chapter and locate the source code for 
www.rwdevcon.com in the rwdevcon-site folder. Open talk-ray-wenderlich-
teamwork.html in the videos folder and add the following meta tag inside the 
head tag, above the page title:

<meta name="apple-itunes-app" content="app-id=958625272, app-
argument=http://www.rwdevcon.com/videos/talk-ray-wenderlich-
teamwork.html">

The name attribute of this meta tag is very important, and must always be apple-
itunes-app. This identifies the type of the meta tag as a Smart App Banner meta 
tag, which in turn tells Safari to display your Smart App Banner.

The content attribute contains two important parameters:

• app-id: This parameter corresponds to your app's Apple ID. Yes, apps have 
Apple IDs too! But this is different from the sort of Apple ID you use to log into 
iCloud. Your app's Apple ID is simply a unique number; all apps on the App Store 
have them. The easiest way to find your app's ID is to log into iTunes Connect, 
click My Apps and then navigate to the app in question. The Apple ID for 
RWDevCon is 958625272; the ID would be different for your own app.

• app-argument: This contains the URL Safari will pass back to the app if it's 
installed. Prior to iOS 9, the value of this parameter was a custom URL scheme 
deep link, but Apple now strongly recommends you switch to HTTP/HTTPS 
universal links.

Note: This was a quick overview of Smart App Banners. To learn more about 
their full capabilities, read Ray's Smart App Banners tutorial bit.ly/1iYlyea as 
well as the Safari Web Content Guide apple.co/1KYeI4I.

Adding Smart App Banners to your website is helpful for many reasons, including 
better odds of being indexed by Applebot. However, it's worth noting that Smart 
App Banners only work in Safari; if a visitor comes to your website through another 
browser such as Chrome, they won't see the banner.

Apple understands that not everyone wants to use Smart App Banners, which is 
why Applebot also supports two other methods of surfacing mobile links: Twitter 
Cards and App Links.

iOS 9 by Tutorials Chapter 3: Your App on the Web

raywenderlich.com 73



This is what the RWDevCon example would look like using Twitter Cards:

<meta name="twitter:app:name:iphone" content="RWDevCon"> 
<meta name="twitter:app:id:iphone" content="958625272"> 
<meta name="twitter:app:url:iphone" content="http://www.rwdevcon.com/
videos/talk-ray-wenderlich-teamwork.html">

And with Facebook's App Links:

<meta property="al:ios:app_name" content="RWDevCon"> 
<meta property="al:ios:app_store_id" content="958625272"> 
<meta property="al:ios:url" content="http://www.rwdevcon.com/videos/talk-
ray-wenderlich-teamwork.html">

Note: To learn more, read through Twitter's documentation page on Twitter 
Cards dev.twitter.com/cards/mobile as well as Facebook's App Links 
documentation applinks.org.

Since you don't have the privileges to deploy code to rwdevcon.com (sorry, Ray's 
kind of picky about things like that), you won't be able to see your changes in 
action. However, you can see how it's supposed to work using the RWDevCon app 
from the App Store.

Use mobile Safari to load http://www.rwdevcon.com/videos/talk-jake-gundersen-
opportunity.html. That's the video for Jake Gundersen's 2015 talk titled 
"Opportunity". The top of the web page should look like this:

If you don't see the Smart App Banner, swipe down on the page until it comes into 
view. Notice anything different from the Smart App Banner you saw earlier? This 
one is thinner, and has changed to say Open in the RWDevCon app. This special 
banner only shows up for URLs that match at least one of the paths specified in 
apple-app-site-association.

iOS 9 by Tutorials Chapter 3: Your App on the Web

raywenderlich.com 74



You can verify this behavior by navigating to the site root rwdevcon.com. You'll see 
the regular-sized banner, not the thin banner you saw on the video page. Even 
though the homepage also has the appropriate meta tag, the URL in its app-
argument parameter doesn't match the /videos/ path you specified in apple-app-
site-association.

Note: Smart App Banners don't work on the iOS simulator, so you must use a 
device to view and interact with the banners.

Tap the thin banner; Safari opens the RWDevCon app and plays the correct video 
via your implementation of 
application(_:continueUserActivity:restorationHandler:) in the previous section.

Semantic markup using Open Graph
You've learned how to add Smart App Banners to a web page to make it easier for 
Applebot to index universal links. However, just because Applebot can find and 
crawl a website doesn't mean its content will show up in Spotlight! The content also 
has to be relevant and engaging if it has any chance of competing with other search 
results.

Apple doesn't reveal much about the relevance algorithm that determines the 
ranking for Spotlight search results, but it has said that engagement with content 
will be taken into consideration. If users tap or otherwise significantly engage with 
your search results, your site result will rank relatively higher than other site.

To this end, Apple recommends adding markup for structured data to allow 
Spotlight to provide richer search results.

Open /videos/talk-ray-wenderlich-teamwork.html and add the following code 
below the meta tag you added earlier:

<meta property="og:image" content="http://www.rwdevcon.com/assets/images/
videos/talk-ray-wenderlich-teamwork.jpg" /> 
<meta property="og:image:secure_url" content="https://www.rwdevcon.com/
assets/images/videos/talk-ray-wenderlich-teamwork.jpg" /> 

 
<meta property="og:image:type" content="image/jpeg" /> 
<meta property="og:image:width" content="640" /> 
<meta property="og:image:height" content="340" /> 

 
<meta property="og:video" content="http://www.rwdevcon.com/videos/Ray-
Wenderlich-Teamwork.mp4" /> 
<meta property="og:video:secure_url" content="https://www.rwdevcon.com/
videos/Ray-Wenderlich-Teamwork.mp4" /> 

 
<meta property="og:video:type" content="video/mp4" /> 
<meta property="og:video:width" content="1280" /> 
<meta property="og:video:height" content="720" /> 

iOS 9 by Tutorials Chapter 3: Your App on the Web

raywenderlich.com 75



<meta property="og:description" content="Learn how teamwork lets you 
dream bigger, through the story of an indie iPhone developer who almost 
missed out on the greatest opportunity of his life." />

This adds rich web markup to the web page via the video, image and description 
meta tags, which explicitly points to information contained on the page, helping 
Applebot find the information it's looking for.

In the property fields above, "og" stands for Open Graph. To learn more about 
Open Graph, check out the Open Graph documentation at ogp.me; it's one of 
several standards Apple supports for structured markup. Other standards include 
schema.org, RDFA rdfa.info and JSON LD json-ld.org.

The goal of adding rich markup to your web pages is to adorn Spotlight's search 
results with more information. For example, as this book goes to press, a quick 
search for "ray wenderlich" comes up with these results:

Notice the "CatNap for tvOS" video that Ray recently uploaded to YouTube, marked 
in red. In addition to the title of the web page, the search result also contains a 
video thumbnail as well as a description. YouTube was able to achieve this through 
rich semantic markup.

Validating your markup
Since there's no "compiler" for the web, how are you supposed to know if your web 
markup is correct? Apple's created a web-based App Search API Validation Tool 
apple.co/1F8tTGt for just that purpose.

iOS 9 by Tutorials Chapter 3: Your App on the Web

raywenderlich.com 76



To see the validation tool in action, try it out with the URL of the video page for 
Ray's 2015 inspiration talk. Simply visit the Validation Tool's web page, enter the 
video page URL, and click Test URL. The tool will provide you with a "report card" 
of the good parts of your markup, along with things that are missing or need to be 
improved.

For example, as of this writing, the validation tool returns this set of suggestions for 
http://rwdevcon.com/videos/talk-ray-wenderlich-teamwork.html:

Apple's validation tool checks for the meta tags you added earlier, as well as for the 
page's title tag, Smart App Banner and universal link.

Where to go from here?
iOS 9 brings the web and app ecosystems closer than ever before. Apple strongly 
suggests that you start using universal links as soon as you can to make linking 
from the web a seamless experience. Furthermore, if you have a website that 
mirrors your app's content, web markup can help you provide rich search results in 
Spotlight and Safari.

This chapter covered a lot of ground, but believe it or not you've only dipped your 
toes into each topic. There are other ways to add rich semantic markup to your 
sites that you haven't seen yet, such as supported schemas including 
InteractionCount, Organization and SearchAction. As time goes on, Apple will 
support more schemas and more ways to markup your web pages to make search 
results come alive.

Although you weren't able to test your changes as you worked through this chapter, 
I still hope you found it useful to walk through the steps required to add web 
markup and universal links to your own apps.

You should definitely check out the following WWDC sessions if you want to find out

iOS 9 by Tutorials Chapter 3: Your App on the Web

raywenderlich.com 77



more about your app and the web:

• Seamless Linking To Your App apple.co/1Way2xz

• Introducing Search APIs apple.co/1LFjZZD

• Your App, Your Website, and Safari apple.co/1OGLhE3

Apple also provides the following excellent programming guides for universal linking 
and web markup:

• App Search Programming Guide apple.co/1ip7lGE

• iOS Search API Best Practices and FAQs apple.co/1Mj4yJe

iOS 9 by Tutorials Chapter 3: Your App on the Web

raywenderlich.com 78



4Chapter 4: App Thinning
By Derek Selander

Kicking yourself that you didn't drop the extra dinero to multiply your iOS device's 
disk storage size by a factor of two? Feeling constrained by how massively huge 
your brilliant app concepts would be? Well, don't! Apple now takes a more frugal 
approach to how apps are stored on a device.

With the introduction of iOS 8 and the demanding displays of the iPhone 6 and 6 
Plus, Apple began pushing developers to adopt a more universal approach to 
building across devices. Adaptive Layout, Trait Collections, Universal split view 
controllers and (a more respectable) Auto Layout led to a seamless experience for 
the iOS developer to build universal applications for both iPhone & iPad.

However, it also meant that a so-called universal app requires a substantial chunk 
of device-specific content, and it sure has a huge impact to an app's bundle size. 
For an example, look at the chart below to see all the 1s and 0s that are stored 
locally on the device, but are never used unless the app runs on an iPhone 6+.

Fortunately, with the introduction of iOS 9, Apple introduced several solutions to 
address this problem:

• App Slicing: When you submit your iOS 9 binary to the App Store, Apple

raywenderlich.com 79



compiles resources and executable architecture into variants that are specific to 
each device. In turn, devices only download the variant specific to their traits — 
meaning they only get content they will use. Traits include graphics capabilities, 
memory level, architecture, size classes, screen scaling and more.

• On Demand Resources: Application resources are downloaded as needed and 
can be removed if the device needs room for other resources.

• Bitcode: An intermediate representation of your compiled app can be sent when 
submitting to the App Store. This allows Apple to optimize your executables by 
compiling with the latest optimizations for a given target, including types that 
didn't exist when you submitted your app.

Packaged together, these techniques are known as App Thinning.

Getting started
Open the Old CA Maps starter project. This application displays historical aerial 
overlays of different parts of California on a map.

What you have here is a close-to-final project that's about to be fired off to the App 
Store. But don't do it just yet, because the resources for this seemingly simple app 
make it a storage hog. It takes up over 200 megabytes!

Before sending it off, you'll use App Thinning techniques to hack-and-slash the end 
product to a more manageable size. But before you do that, take a tour around the 
app. It's pretty sweet.

With the Xcode project open, select the iPad Air 2 Simulator as the scheme 
destination, and then build and run the application.

Play around with the app for a bit. Tap on Santa Cruz and other overlays and see 
how the historical maps overlay with present-day maps.

iOS 9 by Tutorials Chapter 4: App Thinning

raywenderlich.com 80



Note: These overlays are created from image tiles that are found in 
NSBundle(s) and passed into a MKTileOverlayRenderer for drawing. Curious 
about what's going on under the hood? Unfortunately, if this chapter explored 
all of it, it would be impossibly long. Think of this stuff as a black box – all you 
care about is how to make this app as small as possible for the end user. :]

The anatomy of an app
When compiling your code into any iOS application, it's good to understand what 
Xcode does behind the scenes. So before you start thinning it out, take a few 
minutes to understand what happens.

This project contains a run script that launches a finder window with the location of 
the build directory where you'll see an app file — otherwise known as the 
application bundle. Build and run, and in Finder, right-click Old CA Maps and select 
Show Package Contents to view the compiled bundle.

Understanding the content that goes in to your completed application will be useful 
when working with App-Thinning. Below is a side-by-side comparison of the Old CA 
Maps Xcode project's directory (on the left) and a release build of Old CA Map's 
application bundle's contents (on the right). Your output might vary slightly 
depending on your device type, build configuration and Xcode version.

iOS 9 by Tutorials Chapter 4: App Thinning

raywenderlich.com 81



There are a few important items to note:

• The assets catalog in Xcode named Assets.xcassets will become a binary 
version named Assets.car in the application bundle. This file's job is to hold 
resources specific to different scales, size classes and devices.

• Check out the sizes of each of the bundles. Notice the SD_Map.bundle is nearly 
120 MB!

• The item called Old CA Maps with the terminal icon is the executable for your 
application. This is the actual program that runs on an iOS device.

• Notice there are three Santa Cruz PNGs in the project – but not in a bundle or 
asset catalog – that did not copy into the Assets.car file. Instead, they copied to 
a top-level directory that won't get sliced! Guess what? You're going to fix that 
soon...

Measuring your work
It's always helpful to quantitatively measure your progress when making changes, 
and working with App Thinning is no exception. Specifically, you'll want to know 
how big the application bundle is before and after.

Fortunately, there's already a build script in the app package that produces the size 
of the bundle in kilobytes.

To view the size of a build using this script, first build the project, then:

1. Navigate to the Report Navigator.

2. Select the Build you wish to inspect.

iOS 9 by Tutorials Chapter 4: App Thinning

raywenderlich.com 82



3. Make sure the All and All Messages are selected

4. Find the Run custom shell script output.

You'll occasionally come back to this output to see your progress as you whittle the 
app down to size.

Although it won't show the exact size of the IPA you'll submit to the App Store, it'll 
give you a good idea of your success.

Slicing up app slicing
App slicing can be broken out into two parts: executable slicing and resource 
slicing.

Executable slicing simply means Apple delivers a single executable of the 
appropriate architecture for a given device. You don't need to do much to help the 
App Store make this happen.

By default, release builds include all architectures configured in your build settings. 
When you submit such a build to the App Store, it automatically creates the 
variants needed on your behalf. All you have to do is compile for iOS 9.

iOS 9 by Tutorials Chapter 4: App Thinning

raywenderlich.com 83



Being smart with resources
Resource slicing takes a tiny bit more work than doing absolutely nothing...but 
not by much. :]

All you have to do is make sure your resources are compiled into Asset Catalogs 
and organized according to traits. You probably already organize your image assets 
according to scale factors. With Xcode 7, you can also tag assets by Memory and 
Graphics requirements in the Attributes Inspector.

• The Memory setting lets you target different assets to devices with different 
amounts of RAM.

• The Graphics setting allows you to target either first or second generation 
Metal-capable GPUs.

When you make use of these new settings, along with scale factors and device 
types, the App Store can slice your app into targeted bundles for specific devices.

As you noticed earlier, the Santa Cruz assets are not correctly compiled into the 
Assets.xcassets catalog within Xcode, resulting in the images being copied over to 
the main bundle. This means they won't be sliced, so they'll land on devices where 
they won't be used and tragically, consume storage for no real reason.

Your first fix
The fix for this is quite simple: Just stick the Santa Cruz PNGs into the asset 
catalog.

iOS 9 by Tutorials Chapter 4: App Thinning

raywenderlich.com 84



Click Assets.xcassets, then click the + and select New Image Set. Drag the 
Santa Cruz images from the project navigator into their respective @1x, @2x and 
@3x slots, and make sure the Image Set name is Santa Cruz.

Once the images copy to the assets catalog, delete the Santa Cruz PNGs from the 
resources folder.

After that, make sure the Santa Cruz assets in the catalog looks like:

Build and run the application, again selecting the iPad Air 2 Simulator. Take a 
look at the size of Assets.car by looking at the package contents in the build 
directory as you did earlier.

This is using the @2x image for Santa Cruz, and it ends up at 107 KB. You may see 
a slight difference based on the compiler version you use.

iOS 9 by Tutorials Chapter 4: App Thinning

raywenderlich.com 85



Note: Reviewing a debug build is a great way to see how App Thinning works, 
and even before App Thinning existed, Xcode was tailoring debug builds to the 
targeted device. So, App Thinning essentially builds on what Xcode already 
did, but now, the end user enjoys the benefits.

Now build and run with the iPhone 6 Plus simulator and take a look at the size of 
Assets.car:

As you can see, it's up to 144 KB. It makes sense that this build is larger given the 
higher resolution of @3x images used by the iPhone 6 Plus. While it may not 
directly reflect the size of the bundle on the store, this gives you a relative idea of 
how thinning works to size your bundle according to the needs of the target device.

Note: Although PNGs are a good way to provide resources, you should also 
consider using vector-based PDFs. Xcode breaks down the PDF and resizes the 
image as needed, essentially future-proofing your app for whatever screen 
scales Apple comes up with. All the other thumbnail images in Old CA Maps 
use vector-based PDFs.

Lazily (down)loading content
Now that you've migrated all the images into asset catalogs, essentially removing 
unused images, it's time to take a more aggressive approach at limiting content by 
using On-Demand Resources, or simply, ODR.

ODR allows you to store resources on Apple's servers, and then your app can pull 
them down as needed.

NSBundleResourceRequest is responsible for dealing with ODR. By using this primary 
class, you can control the content that downloads with the use of Tags, which are 
string names you attach to resources that properly identify a group of content to 
download.

Through tags, Apple abstracts the remote resource storage location and retrieval 
URL for your ODR content.

So, what can you include when using ODR? They can be images, data, OpenGL 
shaders, SpriteKit Particles, Watchkit Complications and more. The main thing to 
understand is that ODR can't be executable code.

Fortunately for this particular application, NSBundles fall into the data file category. 
This means you can apply ODR to the bundles without changing any of the file

iOS 9 by Tutorials Chapter 4: App Thinning

raywenderlich.com 86



infrastructure within Old CA Maps.

Wire things up to use tags
Time to finally whip out your coding skills.

Navigate to MapChromeViewController.swift and hunt down the 
downloadAndDisplayMapOverlay() function. It's here that you'll replace the 
synchronous loading of a local bundle with an asynchronous load for a remote 
bundle obtained through a NSBundleResourceRequest.

Replace the contents of downloadAndDisplayMapOverlay() with the following:

// 1 
guard let bundleTitle = 
  mapOverlayData?.bundleTitle else {  
    return 
} 

 
// 2 
let bundleResource = 
NSBundleResourceRequest(tags: [bundleTitle])  

 
// 3 
bundleResource.beginAccessingResourcesWithCompletionHandler { 
  [weak self] error in  

 
  // 4 
  NSOperationQueue.mainQueue().addOperationWithBlock({ 

 
    // 5 
    if error == nil { 
      self?.displayOverlayFromBundle(bundleResource.bundle)  
    } 
  }) 
}

What's going on in there?

1. Here you're grabbing the bundleTitle associated with your mapOverlayData, 
which was already set with an appropriate title in the included 
HistoricMapOverlayData.swift. You're using the guard statement, a new 
feature in Swift 2.0, that lets you maintain the "Golden Path" of code by 
returning immediately if the unwrap fails.

2. You're instantiating an NSBundleResourceRequest with the bundleTitle tag 
associated with your bundle. You'll add tags to all the content bundles shortly.

3. beginAccessingResourcesWithCompletionHandler(_:) calls the completion block 
when your app finishes downloading on-demand content or upon error.

4. The completion handler is not called on the main thread, so you'll need to 
supply a block running on the main queue to handle any updates to the UI.

iOS 9 by Tutorials Chapter 4: App Thinning

raywenderlich.com 87



5. NSBundleResourceRequest has a read-only variable named bundle. Replacing 
NSBundle.mainBundle() with this variable makes the code more extensible if you 
decided to move the file structure of your resources around.

How about those tags?
Build, run, and click on one of the cities.

Whoops! Xcode should fail to load an overlay, and it'll spit out an error in the 
console. This is because you've told the NSBundleResourceRequest to look for tags 
that don't exist. Time to fix that.

Navigate to the Project Navigator tab and expand the Map Bundles group. Select 
LA_Map.bundle, and open Xcode's File Inspector tab on the right. Find the On 
Demand Resource Tags section.

Give LA_Map.bundle the tag name LA_Map. Now go through the four remaining 
bundles and give each a tag name identical to the bundle name without the file 
extension. These will match the names used for the bundleTitle that were set in 
HistoricMapOverlayData.swift.

Note: Make sure you spell the tag name with exactly the same spelling and 
case as the bundle file name. If you mistype it, you'll encounter issues.

Build your application for iPad Air 2, but don't run it yet, using Command-B. Take 
note of the application bundle size in the report navigator.

Originally, the app was over 200 MB. Now, Old CA Maps is around 10MB. Xcode has 
achieved this by removing the bundle resources from the main application bundle, 
which can be confirmed by reviewing its contents:

iOS 9 by Tutorials Chapter 4: App Thinning

raywenderlich.com 88



Now run your application. Select Los Angeles as the overlay and observe what 
happens. The app now downloads content on demand, then displays the overlay 
and adjusts the map when completed.

Note: When your app is live in the App Store, it'll download these resources 
from there. However, to achieve the same effect while developing, Xcode 
makes a local network request from your device (or simulator) to your 
computer to download the ODR. This means that if you're testing your 
application and you turn your computer off, ODR will fail to work. It also 
means transfer time is significantly less when compared to what a user would 
see for assets housed on the store.

Make it download faster
You tested loading Los Angeles, but as you may recall, the Los Angeles bundle asset 
is small in comparison to the San Diego bundle.

Try clicking on the San Diego overlay and see how long it takes to display the 
content.

Note: If you choose a city that you've already viewed after building and 
running, you're likely going to notice it loads immediately, because ODR 
caches the assets until purge conditions are met. You'll learn more about this 
later.

iOS 9 by Tutorials Chapter 4: App Thinning

raywenderlich.com 89



That took a little bit too long to display, right? Can you imagine how long it'll take 
for users that pull assets that are hosted on the store?

To avoid a deluge of rotten tomatoes and bad reviews, you'll need to show the user 
that something is happening while the app downloads content.

Fortunately, MapChromeViewController already has an IBOutlet property called 
loadingProgressView which is a UIProgressView. You'll feed that view progress data 
to present the user while also displaying the network activity indicator.

Navigate back to downloadAndDisplayMapOverlay() and replace the content 
with the following:

guard let bundleTitle = 
  mapOverlayData?.bundleTitle else { 
    return 
} 

 
let bundleResource 
  = NSBundleResourceRequest(tags: [bundleTitle])

iOS 9 by Tutorials Chapter 4: App Thinning

raywenderlich.com 90



// 1 
bundleResource.loadingPriority 
  = NSBundleResourceRequestLoadingPriorityUrgent  

 
// 2 
loadingProgressView.observedProgress 
  = bundleResource.progress  

 
// 3 
loadingProgressView.hidden = false  
UIApplication.sharedApplication() 
  .networkActivityIndicatorVisible = true 

 
 

bundleResource.beginAccessingResourcesWithCompletionHandler { 
  [weak self] error in 
  NSOperationQueue.mainQueue().addOperationWithBlock({ 
    // 4 
    self?.loadingProgressView.hidden = true  
    UIApplication.sharedApplication() 
      .networkActivityIndicatorVisible = false 
     
    if error == nil { 
      self?.displayOverlayFromBundle(bundleResource.bundle) 
    } 
  }) 
}

1. This tells the system that the user is "patiently" waiting for this download and 
the system should be diverting all resources to complete it ASAP.

2. The loadingProgressView hooks into the NSProgress of the 
NSBundleResourceRquest. It will begin updating automatically once 
beginAccessingResourcesWithCompletionHandler(_:) is kicked off.

3. Display the loadingProgressView and also the network activity indicator to 
inform the user that a network request is in progress.

4. Once the download completes, hide the loadingProgressView and network 
activity indicator. This code could result in unexpected results due to a potential 
race condition if there are concurrent downloads. However, for this simple 
implementation, this approach is sufficient.

Build and run the application. Try all the bundles again and you'll notice a progress 
indicator just below the navbar while a download is in progress.

It's better because at least there's a visual queue that something is happening, but 
the 120MB San Diego download still takes an eternity. Time to try something a bit 
more drastic.

The many flavors of tagging

iOS 9 by Tutorials Chapter 4: App Thinning

raywenderlich.com 91



Displaying the progress makes for a better experience, but nobody wants to wait 
for a download. Keep in mind that you're testing on a controlled device with 
Simulator and locally hosted resources. Imagine a real-world user moving in and 
out Wi-Fi or cellular coverage.

The San Diego asset is big and also likely to be the first thing the user selects since 
it's the first item in the table. It makes sense to include the San Diego asset along 
with the application itself so it feels snappy on initial use.

At the same time, you need the flexibility to remove this huge overlay asset if the 
user runs low on disk space.

Initial install tags
The answer to this is Initial Install Tags. They work the same as the tags you've 
used so far, but they download with the app and count towards the size of the IPA.

Open up the Old CA Maps Project, click on the Old CA Maps in the Target section 
and then select the Resource Tags tab.

Before you make any changes, note that tags come in three type categories that 
define how ODR handles them.

• Initial Install Tags: These install with your application. So why bother to 
manage them with ODR? Because you can remove it when it's no longer needed. 
These tags are perfect for resources you'll only need to use at first.

• Prefetched Tag Order: These tags download once the application finishes 
downloading and in the order in which they are arranged.

• Download Only On Demand: These resources are the ones you've worked with 
so far, and they download when you code them to do so.

Next, move the San Diego bundle with the SD_Map tag from the Download Only 
on Demand section to the Initial Install Tags section.

To do this, select the tag and drag it into the Initial Install Tag section.

iOS 9 by Tutorials Chapter 4: App Thinning

raywenderlich.com 92



In addition to having San Diego load with the application, it would make sense to 
kick off San Francisco sooner than later since it is about 40MB.

Drag SF_Map over to the Prefetched Tag Order section to trigger downloading 
as soon as the app is installed.

Once you're done, your tag setup should look like this:

Unfortunately, testing these changes is a bit trickier. You will have to submit your 
app to TestFlight Beta Testing in order to see these changes propegated in your 
app.

Purging content
Since the OS can purge ODR content, provided that it's not in active use, it's 
important to be a good disk storage citizen. You can help guide the system to 
resources that you don't need anymore, which can decrease your app's footprint.

Change your build scheme to iPhone 6 Plus, then build and run the application. 
Tap on a city, then press the back arrow to jump back to the previous city 
selection screen.

For these particular bundles, it's likely that you no longer need them as soon as you 
exit the view of a MapChromeViewController. But how do you know what the system 
does with your ODR content behind the scenes?

Fortunately, Apple has anticipated this problem and Xcode 7 ships with a super 
useful debugging view to aid in understanding the status of your ODR content.

With the app running, open the Debug navigator tab (1), then click on the Disk 
cell (2). Xcode will reveal a disk report that includes valuable information regarding 
the current status of each tagged ODR.

iOS 9 by Tutorials Chapter 4: App Thinning

raywenderlich.com 93



As you can see, after clicking an image then clicking back, this view indicates that 
the ODR resource is still In Use while other resources are either Not Downloaded 
or Downloaded.

Although UIKit and Foundation provide their own logic about when the device can 
reclaim these bundles, it's ideal to tell the system when your app is done with 
them.

Set a resource to be purged
You'll indicate that the NSBundleResourceRequest is available for the system to 
reclaim as soon as you leave the MapChromeViewController.

Open up MapChromeViewController.swift and add the following property to the 
beginning of the class:

var overlayBundleResource: NSBundleResourceRequest?

Now, in the downloadAndDisplayMapOverlay() function, add the following line 
underneath the NSBundleResourceRequest instantiation:

overlayBundleResource = bundleResource

Finally, add a new method override to MapChromeViewController to tell the system 
that you're done with the resource request when the view disappears:

override func viewDidDisappear(animated: Bool) { 
  super.viewDidDisappear(animated) 
  overlayBundleResource?.endAccessingResources() 
}

Rebuild and run the system and keep an eye on the Disk Report screen while 
exploring different cities. The report should now indicate that your ODR content is 
no longer in active use as soon as you leave the map view screen. Sweet.

Where to go from here?
Congratulations, you've learned the in and outs of App Thinning! Remember that 
the same cellular limits apply for ODR resources, so there are limits on the resource 
size you can download.

Make sure to thoroughly test your ODR tags in a real-life setting using TestFlight 
before shipping your app off to the App Store.

Also be sure to check out these WWDC videos:

• Introducing On Demand Resources apple.co/1HMTaju

• App Thinning in Xcode apple.co/1Kn8HIA

iOS 9 by Tutorials Chapter 4: App Thinning

raywenderlich.com 94



Now that you've tapped into App Thinning, you should be able to make those big, 
beautiful apps while being mindful of the user's storage space.

While you might see amazing benefits, like a gajillion more downloads or parades to 
celebrate your brilliance, you're more likely to see reasonable benefits like fewer 
uninstalls, more usage and more positive reviews. That should be enough incentive 
to get you excited about App Thinning.

iOS 9 by Tutorials Chapter 4: App Thinning

raywenderlich.com 95



5Chapter 5: Multitasking
By Soheil Azarpour

iOS 9 introduces a phenomenal feature for the iPad — multitasking. For the first 
time, iPad users can run two apps on the screen at the same time. Maybe you want 
to read a proposal in your email app while you research the topic in Safari. Or you'd 
like to keep an eye on Twitter while you enjoy your favorite sports show. For a 
device that you can hold in one hand, this is a crazy amount of productivity power. 
It's undoubtedly going to change the way users interact with their iPads.

In this chapter, you'll learn how to update an existing app so that it plays nicely in a 
multi-tasking iPad environment.

Getting started
The starter project you’ll use for this chapter is named Travelog. Open the project 
file in Xcode and build and run the application on the iPad Air 2 simulator. You’ll 
see the following:

raywenderlich.com 96



Travelog is a journaling app. The app uses UISplitViewController to display entries 
on the left side. Tap any entry to display it in the right-hand view; rotate the device 
and you'll find both master and detail views of the Split View Controller are visible 
in both orientations.

It's time to see how the app behaves in a multitasking environment. Swipe from the 
right edge of the screen to expose the list of multitasking-ready apps on your iPad. 
This can be tricky in the simulator; try starting with your mouse pointer just inside 
the simulator window to simulate a swipe in from the edge.

Note:  If the locale of the iPad is set to a region with right-to-left language, 
swipe from the left edge of the screen to activate multitasking.

Tap on any app to launch it. A small version of the app opens in the previous 
position of the list. At this point you're in Slide Over multitasking mode. Note that 
Travelog is dimmed out but otherwise unaffected. The app running in Slide Over 
mode sits on top of Travelog, and a short handle bar sits at top of the Slide Over. 
Swipe down on the handle to expose the list of multitasking apps and launch a 
different app in the Slide Over.

You'll notice a handle at the edge of the Slide Over view. Tap it, and you'll see the 
following:

W00t! The screen just divided in two! Isn't that neat?! This is Split View 
multitasking mode. Travelog is now available for use and resized itself to fit the 
new, narrower portion of the window.

Note: If an app isn't multitasking ready, it won't appear in the list. Even more 
reason to get your app ready for multitasking as soon as possible! :]

The primary app is the original running app, while the secondary app is the 
newly opened app. If you drag the divider further out, the screen will split 50:50 
between the apps. Drag it all the way to the other side and you're back to single

iOS 9 by Tutorials Chapter 5: Multitasking

raywenderlich.com 97



app mode. The primary app is backgrounded at this point.

The final type of multitasking, Picture in Picture, or PIP, works much like the 
picture-in-picture function on televisions. You can shrink the PIP window of a 
FaceTime call to one corner of the iPad and continue using other apps while you 
chat. PIP is only really applicable to apps that play video; therefore it won't be 
covered in this chapter.

Note: At the time of writing, Split View is only available on the iPad Air 2. 
Picture in Picture and Slide Over is available on iPad Air, iPad Air 2, iPad Mini 2, 
and iPad Mini 3.

Preparing your app for multitasking
Here's the good news: if you paid attention at WWDC 2014 and built a universal 
app with size classes, adaptive layout and a launch storyboard or XIB, you're done! 
Rebuild your app with the iOS 9 SDK, go grab yourself a beverage and I'll see you 
in the next chapter!

What's that? You live in the real world and don't quite have all the above 
implemented in your app? Okay then; this chapter is here to walk you through what 
it takes to make your app multitasking-ready.

Any new project created in Xcode 7 is automatically multitasking-ready. An existing 
app you convert to Xcode 7 automatically becomes multitasking-ready if your app:

• Is a universal app

• Is compiled with SDK 9.x

• Supports all orientations

• Uses a launch storyboard

Since all the required criteria are in place, Travelog automatically becomes 
multitasking ready. That's great news, but just because it's multitasking ready 
doesn't mean that everything will work as expected. The remainder of this chapter 
will help you work through common pitfalls encountered when converting existing 
apps to multitasking apps.

Orientation and size changes
Run Travelog in Split View mode and rotate the iPad to portrait orientation; you'll 
see the app layout as shown below:

iOS 9 by Tutorials Chapter 5: Multitasking

raywenderlich.com 98



While this layout is functional, it can certainly stand to be improved. There's 
whitespace wasted on the left hand side and all the labels are squashed over to the 
right hand side.

Rotate the device to landscape orientation; you'll see the following:

iOS 9 by Tutorials Chapter 5: Multitasking

raywenderlich.com 99



Again, it's functional, but the master view column is too narrow and the text inside 
the table view cells doesn't really provide any value.

The app already performs some layout updates on orientation change; that seems 
like the best place to start.

Open SplitViewController.swift; this is a subclass of UISplitViewController and 
overrides viewDidLayoutSubviews() so it can update the maximum width of primary 
column via helper method updateMaximumPrimaryColumnWidth(). The implementation 
of updateMaximumPrimaryColumnWidth() checks the status bar orientation to 
determine what the maximum width should be. This approach won't work any 
longer, since the app can still have a narrow window in split view mode when it's in 
landscape orientation.

UIKit provides a number of anchor points where you can hook in and update your 
layout:

1. willTransitionToTraitCollection(_:, withTransitionCoordinator:)

2. viewWillTransitionToSize(_:, withTransitionCoordinator:)

3. traitCollectionDidChange(_:):

The diagram below shows how the horizontal size classes of your app change during 
multitasking events (R means Regular and C means Compact):

Not all multitasking or orientation changes trigger a size class change, so you can't 
simply rely on size class changes to provide the best user experience.

It looks like viewWillTransitionToSize(_:, withTransitionCoordinator:) is a good 
candidate for an update. Remove viewDidLayoutSubviews() and 
updateMaximumPrimaryColumnWidth() from SplitViewController.swift and add the 
following:

iOS 9 by Tutorials Chapter 5: Multitasking

raywenderlich.com 100



func updateMaximumPrimaryColumnWidthBasedOnSize(size: CGSize) { 
  if size.width < UIScreen.mainScreen().bounds.width 
    || size.width < size.height { 
     
    maximumPrimaryColumnWidth = 170.0 
  } else { 
    maximumPrimaryColumnWidth = 
      UISplitViewControllerAutomaticDimension 
  } 
}

This helper method updates the split view's maximum primary column width; it 
returns the smaller version when the split view is narrower than the screen, such as 
in a multitasking situation, or when the split view itself has a portrait orientation.

You'll need to call this helper method when the view is first loaded, so add the 
following:

override func viewDidLoad() { 
  super.viewDidLoad() 
  updateMaximumPrimaryColumnWidthBasedOnSize(view.bounds.size) 
}

This ensures that the split view starts in the right configuration.

Add one final method:

override func viewWillTransitionToSize(size: CGSize, 
  withTransitionCoordinator coordinator: 
  UIViewControllerTransitionCoordinator) { 

 
  super.viewWillTransitionToSize(size, 
    withTransitionCoordinator: coordinator) 
  updateMaximumPrimaryColumnWidthBasedOnSize(size) 
}

This method updates the primary column when the size changes.

Build and run your app; first verify for all orientations that the app still looks and 
behaves as it did before multitasking. Then bring in another app in Split View and 
try some different orientations:

iOS 9 by Tutorials Chapter 5: Multitasking

raywenderlich.com 101



Hmm — it's certainly not fixed. It even looks more broken now: with multitasking 
enabled in landscape orientation, the master column view has been jacked up! It 
looks like the table view cell doesn't adapt to size changes appropriately.

Open LogCell.swift and find the implementation of layoutSubviews(); you'll see 
the code checks for UIScreen.mainScreen().bounds.width to determine whether it 
should use the compact view or regular view.

UIScreen always represents the entire screen, regardless of the multitasking state. 
However, you can't rely on screen sizes alone anymore. Update the implementation 
of layoutSubviews() as follows:

override func layoutSubviews() { 
  super.layoutSubviews() 
  let isTooNarrow = bounds.width <= LogCell.widthThreshold 
  // some code ... 
}

Also update widthThreshold, declared at the beginning of LogCell, as follows:

static let widthThreshold: CGFloat = 180.0

The updated code checks the width of the cell itself instead of the width of the 
screen. This decouples the view's behavior from that of its superview. Adaptivity is 
now self-contained! :]

Build and run; again, verify the app still looks and behaves as it did before 
multitasking. This time around, Split View mode should play nicely in all 
orientations:

iOS 9 by Tutorials Chapter 5: Multitasking

raywenderlich.com 102



Note: Unlike UIScreen, UIWindow.bounds always corresponds to the actual size 
of your app and its origin is always (0, 0). In iOS 9 you can create a new 
instance of UIWindow without passing a frame via let window = UIWindow(). 
The system will automatically give it a frame that matches your application's 
frame.

Adaptive presentation
Continue your evaluation of the app: this time with the device in landscape 
orientation and the Split View at 33%, tap the Photo Library bar button. You'll see 
the following popover:

iOS 9 by Tutorials Chapter 5: Multitasking

raywenderlich.com 103



With the popover still visible, drag the divider further to the left so the screen is 
evenly divided between the two apps:

iOS 9 by Tutorials Chapter 5: Multitasking

raywenderlich.com 104



The popover automatically turned into a modal view without any action on your 
part; dragging the divider to 50% changes the horizontal size class of the app from 
regular to compact. That's neat, but it's not quite the functionality you're looking 
for.

Instead, you only want to present the Photo Library in a modal fashion when the 
app is in Slide Over mode, or when it's the secondary (smaller) app in the 33% 
Split View mode. When your app is full screen or has 50% width, you'd prefer to 
present the Photo Library in a popover.

iOS 8 introduced UIPopoverPresentationController to manage the display of the 
content in a popover; you use it along with the UIModalPresentationPopover 
presentation style to present popovers. However, you can intercept the presentation 
and customize it with UIPopoverPresentationControllerDelegate callbacks.

Open LogsViewController.swift and add the following class extension to the end 
of the file:

extension LogsViewController: 
  UIPopoverPresentationControllerDelegate { 

 
  func adaptivePresentationStyleForPresentationController( 
    controller: UIPresentationController,

iOS 9 by Tutorials Chapter 5: Multitasking

raywenderlich.com 105



    traitCollection: UITraitCollection) 
    -> UIModalPresentationStyle { 

 
    //1 
    guard traitCollection.userInterfaceIdiom == .Pad else { 
      return .FullScreen 
    } 

 
    if splitViewController?.view.bounds.width > 320 { 
      return .None 
    } else { 
      return .FullScreen 
    } 
  } 
}

Here's a breakdown of the code:

1. Check that the app is running on an iPad; the photo picker should always be 
presented modally on the iPhone.

2. Check that the split view controller is larger than 320 points — the size of the 
Slide Over / 33% view. If so, return .None to retain the popover, otherwise 
return .FullScreen for a modal presentation instead.

Now you can make LogsViewController a delegate of the popover presentation 
controller.

Find the implementation of presentImagePickerControllerWithSourceType(_:). Read 
through the implementation and you'll see that when the source type 
is .PhotoLibrary, UIImagePickerController presents as a popover. Update the 
implementation by adding presenter?.delegate = self as shown below:

func presentImagePickerControllerWithSourceType(sourceType: 
  UIImagePickerControllerSourceType) { 
  // some code... 
  if sourceType == 
    UIImagePickerControllerSourceType.PhotoLibrary { 
    // some code... 
    presenter?.delegate = self 
  } 
  // some code... 
}

Build and run your app; verify that the popover transitions to a modal fullscreen 
view only when your app is in the Slide Over mode or when the Split View pane is 
sufficiently narrow.

iOS 9 by Tutorials Chapter 5: Multitasking

raywenderlich.com 106



The path to adaptivity
If you're not already using Auto Layout, Size Classes or other excellent responsive 
layout tools in UIKit, you should definitely consider upgrading your code to do so. 
UIKit has some new functionality to further assist you with multitasking, including 
UIStackView,  UIView.readableContentGuide and 
UITableView.cellLayoutMarginsFollowReadableWidth. Want more information on this 
functionality? Chapter 7, "UIStackView & Auto Layout Changes" has you covered.

Other considerations
Beyond what's been covered in this chapter, there are a few other things to look out 
for when multitasking. You should already have incorporated most of these 
suggestions into your existing apps, but the sections below highlight a few extra 
considerations to be made in the new paradigm of multitasking apps.

Keyboard
Dealing with keyboard presentation has always been an "interesting" topic in iOS. :] 
You've probably had to adjust the layout of your view so critical elements weren't 
covered when the keyboard appeared, or perhaps you had to shuffle things around 
to give the keyboard enough room. In the multitasking world, you need to 
anticipate that the keyboard can appear at any time — and over any view controller.

Apps running next to yours may present the keyboard, which means you'll have to 
adjust the layout of your app in a way that a user can still effectively work with it — 
or you'll risk getting one-star reviews in the App Store! Judicious use of scroll views 
and/or table view controllers that automatically adjust for the keyboard will help 
you out here.

Designs
Above and beyond coding considerations, you'll need to change your approach to

iOS 9 by Tutorials Chapter 5: Multitasking

raywenderlich.com 107



app visual design a little differently:

• Be flexible: Step away from a pixel-perfect design for various platforms and 
orientations. You need to think about different sizes and how you can have a 
flexible app that responds appropriately to size changes.

• Use Auto Layout: Remove hardcoded sizes or custom code that resizes 
elements. It's time to consider Auto Layout and make your code more flexible 
and future-proof.

• Use size classes: One single layout won't always fit all displays. Use size classes 
to build a base layout and then customize each specific size class based on 
individual needs. But don’t treat each size class as a completely separate design; 
as you saw in this chapter, your app should easily transition from one size class 
to another, and you don't want to surprise your user with a dramatic change as 
they drag the divider.

Resources
You've worked hard to be a good memory citizen over the years, and that won't 
change with multitasking. You can potentially have up to three apps running at full 
speed, all at the same time: the primary app, the secondary app and Picture in 
Picture. Instruments is an invaluable tool for monitoring memory usage in your app 
and can help you whittle your memory usage back to the bare minimum.

Where to go from here?
This chapter only touched on the basics of multitasking — it's up to developers like 
you to help chart the course for accepted multitasking design patterns of the future. 
To help you along the journey to multitasking, here are some resources you can 
bookmark for future reference:

• Adopting Multitasking Enhancements on iPad– apple.co/1MdssbK

• Getting Started with Multitasking on iPad in iOS 9 (Session 205) – apple.co/
1ItxCtH

• Multitasking Essentials for Media-Based Apps on iPad in iOS 9 (session 211) – 
apple.co/1hm8v5s

• Optimizing Your App for Multitasking on iPad in iOS 9 (Session 212) – apple.co/
1T8CCcp

iOS 9 by Tutorials Chapter 5: Multitasking

raywenderlich.com 108



6Chapter 6: 3D Touch
By James Frost

With the release of the iPhone 6s and 6s Plus, Apple surprised everybody with the 
addition of a feature that could very well redefine the way users interact with their 
devices: 3D Touch.

An extension of the Force Touch technology, 3D Touch builds on the same theme as 
Apple Watch and the sleek new MacBook trackpads. It's such an elegant, simple 
interface that you almost have to wonder what took so long.

How it works: When you're using an iPhone 6s or 6s Plus, you simply press 
"deeper" into the display to trigger a range of extra functionality. It's more than 
clever coding though. At the hardware level, advanced sensors detect the 
microscopic changes in distance between the iPhone's cover glass and its backlight.

3D Touch enables new ways to quickly preview content, smooth access to 
multitasking, and it can even be used to turn your iPhone's keyboard into a 
trackpad!

You're probably used to Apple dangling sweet new features in front of you without 
letting you play, almost as if to tease you. 3D Touch is different though—third-party 
developers get to utilize it at launch-time through a set of three APIs:

• UITouch now has a force property that tells you how hard the user is pressing.

• UIViewController has been extended with a set of APIs that allow you to present 
a preview of a new view controller — a peek — when the user presses on a 
specified view, and then pop it open to display the full monty after a deeper 
press.

• UIApplicationShortcutItem is a new class you can use to add quick actions to 
your application's home screen icon.

You'll implement each of these APIs in turn to add an extra dimension to a sample 
app. Strap in, it's going to be a multi-dimensional ride!

raywenderlich.com 109



Note: Although Apple released this set of APIs, it hasn't yet provided any way 
of testing them in the simulator. Unfortunately, unless you're lucky enough to 
own or have access to an iPhone 6s or 6s Plus, you won't be able to 
experience the functionality for yourself. But who can resist the temptation of 
a new device? You now have the perfect excuse to go get a shiny new iPhone! 
Don't worry, we'll wait right here. :]

Getting started
In this chapter, you'll add 3D Touch to a cool little sketching app called Doodles that 
lets you draw, save and share simple sketches.

Find the starter files for this chapter and open up Doodles.xcodeproj. Build and 
run to see it in action.

The first screen shows a list of saved doodles. The app comes with a few sample 
doodles, showcasing some incredible artistic skills – yeah, yeah, don't give up my 
day job, I know.

Tap on any row to see the full sketch in all its glory. When you're viewing a doodle, 
you can tap the share button to bring up the share sheet.

Head back to the list view, and tap the + button in the top right to create 
masterpieces of your own. Simply sketch in the blank area and tap Save when 
you're done.

Because this app is just a demo and not intended to be your new sketchpad, the

iOS 9 by Tutorials Chapter 6: 3D Touch

raywenderlich.com 110



sample app won't save your doodles between launches. So go ahead, draw 
anything you want.

The code behind the app is pretty straightforward. Take a look at the project in 
Xcode to familiarize yourself.

Here are the highlights:

• Doodle.swift contains the model for a doodle, including the sample content.

• Canvas.swift contains the custom UIView that allows you to draw your doodle 
on the screen.

• DoodlesViewController.swift contains the view controller that displays a list of 
all of your doodles.

• DoodleDetailViewController.swift  contains the view controller that displays a 
single doodle.

• NewDoodleViewController.swift contains the view controller in which you 
create a new doodle.

UITouch force
It'd be great if you could add some more artistic flair to your drawings, and 3D 
Touch opens up a range of possibilities to satisfy your inner Van Gogh.

UITouch has a new force property. It's a CGFloat ranging from 0 to the value of 
UITouch's other new property maximumPossibleForce. A value of 1.0 represents the 
force of an average touch, and maximumPossibleForce has a value that ensures that 
the force property has a wide dynamic range.

You'll use the force — of the user's touch, that is — to make your sketches pressure

iOS 9 by Tutorials Chapter 6: 3D Touch

raywenderlich.com 111



sensitive. The harder you press, the thicker the line will be!

In Xcode, open up Canvas.swift. Find addLineFromPoint(_:toPoint:). This method 
adds a line to the drawing based on the points passed into it.

Change the method definition to:

private func addLineFromPoint(from: CGPoint,  
  toPoint: CGPoint, withForce force: CGFloat = 1) {

Here you're adding a force parameter with a default value of 1. In the body of this 
method, find the following line:

CGContextSetLineWidth(cxt, strokeWidth)

And replace it with:

CGContextSetLineWidth(cxt, force * strokeWidth)

Now the force parameter is multiplied by strokeWidth to make the line thicker or 
thinner depending on the force. At the moment a default of 1 is all that's being 
passed, so you need to change that.

Find touchesMoved(_:withEvent:), and replace the call to 
addLineFromPoint(_:toPoint:) with the following code:

if traitCollection.forceTouchCapability == .Available { 
  addLineFromPoint(touch.previousLocationInView(self), 
    toPoint: touch.locationInView(self), withForce: touch.force) 
} else { 
  addLineFromPoint(touch.previousLocationInView(self), 
    toPoint: touch.locationInView(self)) 
}

Here you're checking to see if force touch is available, and if so, passing the touch's 
force into the method you just modified. If force touch is unavailable, the value of 
the force property is 0, rather than the 1 you might expect.

Build and run the app on a device that supports 3D Touch. Tap the + button in the 
top right, and start sketching! You should see the width of the line change as you 
vary the pressure you apply to the screen.

iOS 9 by Tutorials Chapter 6: 3D Touch

raywenderlich.com 112



Peeking and popping
Next up, it's time to take a peek at the new UIViewController preview APIs.

On a 3D Touch enabled device, your view controllers can now respond to different 
touch pressures. From the users' perspective, a couple of things happen as they 
press more deeply:

1. First, if the view they're pressing has a preview available, it'll stay in focus while 
the rest of the view controller's views begin to blur.

2. Then, as the user presses deeper, a preview of the selected content pops up in 
the center of the screen. This is called a 'peek'. If the user lifts their finger now, 
the peek will be dismissed. Alternatively, if the user swipes upwards, the 
preview can present a number of preview actions – typically actions like delete 
or share. Finally, if the user presses even more deeply, then...

3. Pop! The preview will open and the user will be navigated to the full content.

Here's an example of each of these stages in the built-in Mail app:

iOS 9 by Tutorials Chapter 6: 3D Touch

raywenderlich.com 113



You'll use the peek and pop APIs to let users preview doodles from the list. By the 
time you're finished, the user will be able to lightly press a drawing in the doodles 
list to see a preview, and then press deeper to pop it open.

Open up DoodlesViewController.swift and add the following to the end of 
viewDidLoad():

if traitCollection.forceTouchCapability == .Available { 
  registerForPreviewingWithDelegate(self, sourceView: view) 
}

Just as you did when using force from  UITouch, you first check whether 3D Touch 
is actually available for use on this device. Then you call the new 
registerForPreviewingWithDelegate(_:sourceView:) method on the 
UIViewController subclass. sourceView is the view that will respond to 3D Touch 
events, so you set it to the view controller's entire view.

But there's one problem — this view controller doesn't implement 
UIViewControllerPreviewingDelegate. So, you need to add an extension to the end 
of DoodlesViewController.swift to make DoodlesViewController conform with the 
protocol:

extension DoodlesViewController: 
  UIViewControllerPreviewingDelegate { 
   
  func previewingContext( 
    previewingContext: UIViewControllerPreviewing,  
    viewControllerForLocation location: CGPoint) 
    -> UIViewController? { 
     
    // peek! 
    return nil 
  } 
   
  func previewingContext( 
    previewingContext: UIViewControllerPreviewing,  
    commitViewController viewControllerToCommit:

iOS 9 by Tutorials Chapter 6: 3D Touch

raywenderlich.com 114



    UIViewController) { 
     
    // pop! 
  } 
}

A UIViewControllerPreviewingDelegate must implement both of these methods.

The first, previewingContext(_:viewControllerForLocation:) is called when the user 
initiates a peek action, and it gives the delegate an opportunity to return a view 
controller that contains a preview of relevant content.

This method has two parameters:

• location is the location within the view where the 3D Touch is occurring. You 
might want to use this to determine which part of a view is being touched.

• previewingContext is an instance of UIViewControllerPreviewing, which has 
properties for sourceView and sourceRect. The sourceView is the same one you 
passed into registerForPreviewingWithDelegate(_:sourceView:) earlier, while 
sourceRect defines the area within the source view that stays focus during the 
initial phase of the peek.

The second method, previewingContext(_:commitViewController:), is called when 
the user presses even deeper and initiates a pop action. Here the delegate should 
present the full content of the popped item.

The viewControllerToCommit parameter that's passed in is the preview view 
controller that was previously returned from previewingContext(_: 
viewControllerForLocation:). Usually, you'd simply present this same view 
controller modally or by pushing it onto a navigation controller.

To add peek functionality to Doodles, replace the stub implementation for 
previewingContext(_: viewControllerForLocation:) with the following:

func previewingContext( 
  previewingContext: UIViewControllerPreviewing,  
  viewControllerForLocation location: CGPoint) 
  -> UIViewController? { 
   
  // 1 
  guard let indexPath = 
    tableView.indexPathForRowAtPoint(location), 
    cell = tableView 
      .cellForRowAtIndexPath(indexPath) as? DoodleCell  
    else { return nil } 

 
  // 2     
  let identifier = "DoodleDetailViewController" 
  guard let detailVC = storyboard? 
    .instantiateViewControllerWithIdentifier(identifier)  
    as? DoodleDetailViewController else { return nil } 

iOS 9 by Tutorials Chapter 6: 3D Touch

raywenderlich.com 115



  detailVC.doodle = cell.doodle 
 

  // 3 
  previewingContext.sourceRect = cell.frame 

 
  // 4 
  return detailVC 
}

Let's take this line by line:

1. You want to show a preview for a specific table row when the user presses on it. 
So, first you use location to check whether there's a row at that position. If 
there is, then you get the associated cell from the table view.

2. You then instantiate a DoodleDetailViewController and set it to display the 
doodle for the selected cell.

3. You set sourceRect to the frame of the selected cell, so that the cell will stay in 
focus and the rest of the table view will blur.

4. Finally, you return the DoodleDetailViewController that represents the peeked 
content.

Note: The preview view controller will display at a default size, but if you want 
to display it at a different size in your own app, simply override 
preferredContentSize for the preview view controller.

That's all it takes to implement a peek! When the user lightly presses on a row in 
DoodlesViewController, the content except for the pressed row will blur out, 
indicating that a peek is available. If the user presses a little deeper, an instance of 
DoodleDetailViewController will present as a preview and show the selected 
doodle.

When the user presses even deeper, you'll want that preview to pop into the full 
display. So, still in DoodlesViewController.swift, replace the stub implementation 
of previewingContext(_:commitViewController:) with the following:

func previewingContext( 
  previewingContext: UIViewControllerPreviewing,  
  commitViewController  
  viewControllerToCommit: UIViewController) { 
   
  showViewController(viewControllerToCommit, sender: self) 
}

Wow, simple huh? This method is called when the system wants to pop open, or 
commit, a preview. It hands you the previewingContext that you had access to in 
previewingContext(_: viewControllerForLocation:), as well as the view controller 
that you returned from it.

iOS 9 by Tutorials Chapter 6: 3D Touch

raywenderlich.com 116



In this situation, you simply want to push the DoodleDetailViewController onto 
the navigation stack, so you can just call showViewController(_:sender:) to display 
it.

Build and run the app on your device. Press lightly on a row in the list of doodles, 
and then slowly press more deeply.

Peek.... pop!

Note: In addition to being able to implement peek and pop in your own view 
controllers, UIWebView and WKWebView have some automatic peek and pop 
behaviour built in that you can take advantage of in your own apps. All you 
need to do is set their new allowsLinkPreview property to true, and you'll be 
able to peek into links.

Even better: iOS 9's new SFSafariViewController supports peek and pop by 
default. No configuration required!

Preview actions
You've just implemented some awesome functionality with barely any coding, but 
the fun doesn't stop here! A view controller can also present some useful quick 
actions while in the peek state.

Open up DoodleDetailViewController.swift and add a property at the top of the 
class to store a reference to DoodlesViewController:

weak var doodlesViewController: DoodlesViewController?

iOS 9 by Tutorials Chapter 6: 3D Touch

raywenderlich.com 117



Then add the following method to the bottom of the class, below 
presentActivityViewController():

override func previewActionItems() -> [UIPreviewActionItem] { 
  // 1 
  let shareAction = UIPreviewAction(title: "Share",  
    style: .Default) {  
    (previewAction, viewController) in 
    if let doodlesVC = self.doodlesViewController, 
      activityViewController = self.activityViewController { 
         
      doodlesVC.presentViewController(activityViewController,  
        animated: true, completion: nil) 
    } 
  } 

 
  // 2 
  let deleteAction = UIPreviewAction(title: "Delete",  
    style: .Destructive) {  
    (previewAction, viewController) in 
    guard let doodle = self.doodle else { return } 
    Doodle.deleteDoodle(doodle) 
   
    if let doodlesViewController = self.doodlesViewController { 
      doodlesViewController.tableView.reloadData() 
    } 
  } 

 
  return [shareAction, deleteAction] 
}

This method is called when a view controller is peeked, and it gives the controller 
an opportunity to present some quick actions. Here, you're creating two types of 
UIPreviewAction:

1. A share action, which will present a UIActivityViewController that allows the 
user to share a doodle using the standard iOS share sheet. There's no way to 
present another view controller directly from the peeked view controller itself, 
because it's dismissed as soon as you select an action. Instead, you use the 
doodlesViewController property you created earlier and tell it to present the 
share sheet instead.

2. A delete action, which simply deletes the peeked doodle and tells 
doodlesViewController to reload its data.

UIPreviewAction is very much like the UIAlertActions you use with 
UIAlertController; it's initialized with a title, a style (like .Default, .Destructive 
or .Selected), and a handler closure. You can also group UIPreviewActions together 
using UIPreviewActionGroup.

A group is displayed the same way as a regular action, but it can contain multiple 
actions. When the user taps on a group, a submenu is opened revealing its child 
actions.

iOS 9 by Tutorials Chapter 6: 3D Touch

raywenderlich.com 118



Finally, open DoodlesViewController.swift and find the 
previewingContext(_:viewControllerForLocation:)  you defined earlier. Locate this 
line:

detailVC.doodle = cell.doodle

And add the following line below it:

detailVC.doodlesViewController = self

This hooks up the doodlesViewController property you just created.

Build and run the app. Initiate a peek on one of the doodles, and then slide it 
upwards to reveal your quick actions. Tap on Share to display the share sheet, then 
cancel out of it. Peek at a doodle once more, slide it upward, and tap Delete. 
Whoosh, the doodle is gone!

Home screen quick actions
The final API that 3D Touch introduces is for adding home screen quick actions. 
These allow you to add some shortcuts to your app's home screen icon.

When the user presses deeply on your app's icon, a menu will pop up showing any 
shortcuts that you've defined. Here's an example of Safari and Mail's shortcut 
menus in iOS 9:

iOS 9 by Tutorials Chapter 6: 3D Touch

raywenderlich.com 119



Home screen quick actions provide a great way for users to jump straight into a 
specific activity within your app, and they're super-easy to implement. Each app 
can display up to four shortcut items, and there are two types of shortcuts you can 
add:

• Static shortcuts: Static shortcuts are declared in your app's Info.plist file, and 
are available for use as soon as your app has been installed.

• Dynamic shortcuts: Dynamic shortcuts are configured at runtime, and can be 
added, removed and changed whenever you like. Because they're updated at 
runtime, users won't see your dynamic shortcuts until your app has run for the 
first time.

iOS will display your static shortcuts first, followed by your dynamic shortcuts, 
provided you have fewer than four static ones.

Adding a static shortcut
First, you'll add a static shortcut to take users straight to creating a new doodle. In 
Xcode, click the Doodles Project in the project navigator, then select the 
Doodles target and click the Info tab:

Add a new Array entry to the table, with a key of UIApplicationShortcutItems. 
Add a Dictionary to the array, and then add three Strings to the dictionary with 
the following keys and values:

iOS 9 by Tutorials Chapter 6: 3D Touch

raywenderlich.com 120



• UIApplicationShortcutItemTitle: New Doodle

• UIApplicationShortcutItemType: com.razeware.Doodles.new

• UIApplicationShortcutItemIconType: UIApplicationShortcutIconTypeAdd

When you've finished, the entry should look like this:

Each dictionary within the UIApplicationShortcutItems array contains the definition 
for a shortcut item. The one you've just defined has three properties. 
UIApplicationShortcutItemTitle, as you'd expect, declares the title of the item. 
This one will say "New Doodle". UIApplicationShortcutItemType is a unique 
identifier (typically in reverse-DNS notation) that you'll use to identity the shortcut 
item in code. Finally, UIApplicationShortcutItemIconType declares the built-in icon 
to use for this entry. You're using the UIApplicationShortcutIconTypeAdd icon, 
which displays a + image.

There are a couple of other keys available that you haven't used here:

• UIApplicationShortcutItemSubtitle defines a subtitle to display below the 
main title.

• UIApplicationShortcutItemIconFile is used to provide a custom icon image.

• UIApplicationShortcutItemUserInfo allows you to provide a custom 
dictionary containing whatever data you may need.

See the UIApplicationShortcutItems documentation (apple.co/1KX35t4) for full 
details, including a list of built-in icon types.

Now that you've declared your shortcut item, what happens when somebody taps 
it? iOS 9 introduces a new UIApplicationDelegate method to do just this.

Open AppDelegate.swift, and add the following method below 
application(_:didFinishLaunchingWithOptions:):

func application(application: UIApplication,  
  performActionForShortcutItem 
  shortcutItem: UIApplicationShortcutItem,  
  completionHandler: (Bool) -> Void) { 

 
  handleShortcutItem(shortcutItem) 
  completionHandler(true) 
}

This method gets called when a user selects one of your application shortcuts. Here

iOS 9 by Tutorials Chapter 6: 3D Touch

raywenderlich.com 121



you're calling handleShortcutItem(_:) (which you'll implement in a moment) and 
then calling completionHandler, passing it true because you've handled the shortcut 
item. If for some reason you don't or can't handle a particular shortcut item, you 
should pass false to completionHandler.

Now, add this method below the previous one:

func handleShortcutItem( 
  shortcutItem: UIApplicationShortcutItem) { 

 
  switch shortcutItem.type { 
  case "com.razeware.Doodles.new": 
    presentNewDoodleViewController() 
  default: break 
  } 
}

This code switches on the type property of shortcutItem that you defined earlier in 
Info.plist. If the type matches the New Doodle shortcut type, then you call 
presentNewDoodleViewController(). Add this method now below 
handleShortcutItem(_:):

func presentNewDoodleViewController() { 
  let identifier = "NewDoodleNavigationController" 
  let doodleViewController = UIStoryboard.mainStoryboard 
    .instantiateViewControllerWithIdentifier(identifier) 

 
  window?.rootViewController? 
    .presentViewController(doodleViewController, animated: true,  
    completion: nil) 
}

First you instantiate a view controller from the main storyboard with the identifier 
NewDoodleNavigationController — it's a navigation controller that has a 
NewDoodleViewController as its root view controller. Then you present it from the 
rootViewController on the window. This will let the user create a new doodle.

Time to test it out! Build and run, and then press firmly on the Doodles app icon on 
your device's home screen. You'll see your "New Doodle" application shortcut 
appear. Tap it, and you should land right in a new doodle screen.

Note: When an app launches after the user taps a shortcut, as opposed to

iOS 9 by Tutorials Chapter 6: 3D Touch

raywenderlich.com 122



being opened from the background, the launchOptions dictionary of 
application(_:didFinishLaunchingWithOptions:) will contain the 
UIApplicationShortcutItem in question as the value for the key 
UIApplicationLaunchOptionsShortcutItemKey. There are a few caveats to bear 
in mind when handling your shortcut items in this method, so be sure to check 
out the full documentation for more information: (apple.co/1P04D7q).

Adding a dynamic shortcut
You've just seen how to add a static shortcut to your Info.plist. Now you'll add a 
dynamic shortcut at runtime, which will allow the user to share their latest doodle 
right from the home screen.

Open Doodle.swift and add this static method to the end of the struct:

static func configureDynamicShortcuts() { 
  if let mostRecentDoodle = Doodle.sortedDoodles.first { 
    let shortcutType = "com.razeware.Doodles.share" 
    let shortcutItem = UIApplicationShortcutItem( 
      type: shortcutType, 
      localizedTitle: "Share Latest Doodle", 
      localizedSubtitle: mostRecentDoodle.name, 
      icon: UIApplicationShortcutIcon(type: .Share), 
      userInfo: nil) 
    UIApplication.sharedApplication().shortcutItems = 
      [ shortcutItem ] 
  } else { 
    UIApplication.sharedApplication().shortcutItems = [] 
  } 
}

Just like you created a UIApplicationShortcutItem definition in Info.plist, here 
you're creating a UIApplicationShortcutItem in code.

The above properties and settings should look quite familiar: you set a type to a 
unique reverse-DNS string, a title and a subtitle, and a built-in icon. You've set the 
subtitle to the most recent doodle's name, so it'll display right in the shortcut menu.

To use programmatically-created shortcut items, you simply add them to the 
UIApplication's shortcutItems property. You can update this collection at any time 
to ensure that your app presents useful shortcut items, depending on its current 
state.

Still in Doodle.swift, add the following line to the end of addDoodle(_:) and 
deleteDoodle(_:):

Doodle.configureDynamicShortcuts()

Whenever a doodle is added or removed, this will update your dynamic shortcut 
item, so that the subtitle always reflects the most recent doodle.

iOS 9 by Tutorials Chapter 6: 3D Touch

raywenderlich.com 123



Open AppDelegate.swift, and add the same line to 
application(_:didFinishLaunchingWithOptions:), just above return true:

Doodle.configureDynamicShortcuts() 

Next, replace handleShortcutItem(_:) with the following implementation:

func handleShortcutItem( 
  shortcutItem: UIApplicationShortcutItem) { 

 
  switch shortcutItem.type { 
  case "com.razeware.Doodles.new": 
    presentNewDoodleViewController() 
  case "com.razeware.Doodles.share": 
    shareMostRecentDoodle() 
  default: break 
  } 
}

This adds an extra case to handle the new shortcut item type, and calls 
shareMostRecentDoodle(). Add an implementation for that method now, below 
presentNewDoodleViewController():

func shareMostRecentDoodle() { 
  guard let mostRecentDoodle = Doodle.sortedDoodles.first, 
    navigationController = window?.rootViewController as? 
    UINavigationController 
    else { return } 
  let identifier = "DoodleDetailViewController" 
  let doodleViewController = UIStoryboard.mainStoryboard 
    .instantiateViewControllerWithIdentifier(identifier) as! 
    DoodleDetailViewController 
                 
  doodleViewController.doodle = mostRecentDoodle 
  doodleViewController.shareDoodle = true 
  navigationController 
    .pushViewController(doodleViewController, animated: true) 
}

This method instantiates a new DoodleDetailViewController to display the most 
recent doodle, sets its doodle property and tells it to display a share sheet. Finally, 
it pushes it onto the navigation stack.

Build and run the app, and then return to the home screen. Press deeply on the 
app's icon to bring up the quick actions menu again.

This time, you should see two items: New Doodle, and Share Latest Doodle. Tap 
Share Latest Doodle, and you should be taken into the app. The most recent 
doodle, in this case House, will display and then the system share sheet will appear.

Cancel out of the share sheet, tap Doodles in the top left to return to the list of 
doodles, and then tap + in the top right to create a new doodle. Draw a picture of a 
tree and tap Save. Name your new drawing Tree.

iOS 9 by Tutorials Chapter 6: 3D Touch

raywenderlich.com 124



Press the home button to return to the home screen, and once again press deeply 
on the app icon to show the quick actions menu. You should see that the Share 
Latest Doodle now has the subtitle Tree, because it's the most recent doodle. Tap 
it, and you'll be able to share your latest masterpiece with the world.

Where to go from here?
Congratulations! You've reached the end of this chapter, and you've added some 
really cool features to the Doodles app. 3D Touch is an incredible new interaction 
method. With the powerful new force property in UITouch, UI candy in the form of 
peeks and pops, and home screen quick actions, you have a multitude of ways to 
put it to use in your own apps.

May the Force (Touch) be with you!

One of the most important things to note is that 3D touch isn't available to all 
users, and it isn't as discoverable as icons and labels.

Hence, you can't have parts of your app that are only accessible via 3D touch, and 
shortcuts from the app icon aren't a substitute for sensible in-app navigation!

If you want to read more about 3D Touch, you should definitely check out Apple's 
"Adopting 3D Touch on iPhone" (apple.co/1JxalGK) documentation. It's a great 
resource for the API and it contains a top-level overview, links to detailed 
documentation, and sample code.

iOS 9 by Tutorials Chapter 6: 3D Touch

raywenderlich.com 125



7Chapter 7: UIStackView & Auto 
Layout changes
By Jawwad Ahmad

We've all been there. That annoying moment when you needed to add or remove a 
view at runtime and wished that other views knew how to reposition themselves 
automatically.

Perhaps you took the route of adding outlets to constraints in your storyboard so 
you could activate or deactivate certain ones. Maybe you used a third party library, 
or maybe you decided it's easiest to DIY it with code.

Perhaps you're one of the lucky ones, and your view hierarchy didn't have to 
change at runtime. But there were new requirements, and now you had to squeeze 
this one obnoxious view into your storyboard.

I bet you've found yourself clearing all constraints and re-adding them from scratch 
because it was easier than breaking out your virtual scalpel and performing 
painstaking constraints-surgery.

With the introduction of UIStackView, the above tasks become trivial. No more will 
you find yourself lying awake at night wondering how to wrangle your views!

Stack views provide a way to horizontally or vertically position a series of views. By

raywenderlich.com 126



configuring a few simple properties such as alignment, distribution, and spacing, 
you can define how the contained views adjust themselves to the available space.

In this chapter, you'll learn about stack views and about some of the other Auto 
Layout upgrades introduced this year, such as layout anchors and layout guides.

Note: This chapter assumes basic familiarity with Auto Layout. If you're in 
new territory, you can do a primer on the subject by working through an Auto 
Layout tutorial or two on raywenderlich.com. For an in-depth look, see the 
"Auto Layout" chapters in the 3rd edition of iOS 6 by Tutorials.

Getting started
In this chapter, you'll start working on an app called Vacation Spots, which will 
also be your guinea pig for chapter 8. It's a simple app that shows you a list of 
places to get away from it all. Hey, I bet you're ready for a vacation after working 
with constraints, right?

Don't pack the bags just yet, because there are a few issues you'll fix by using 
stack views, and in a much simpler way than if you were using Auto Layout alone.

Towards the end of this chapter, you'll also fix another issue with the use of layout 
guides and layout anchors.

Open VacationSpots-Starter, and run it on the iPhone 6 Simulator. The first 
thing you'll notice is the name and location label in a few cells are off center.

iOS 9 by Tutorials Chapter 7: UIStackView & Auto Layout changes

raywenderlich.com 127



Both labels should be centered vertically (as a group) so there is an equal amount 
of space above the name label, and below the location label – you'll fix this towards 
the end of the chapter with a layout guide. For now, go to the info view for London 
by tapping on the London cell.

At first glance, the view may seem okay, but first impressions can be misleading.

1. Focus on the row of buttons at the bottom of the view. They are currently 
positioned with a fixed amount of space between themselves, so they don't 
adapt to the screen width. To see the problem in full glory, temporarily rotate 
the simulator to landscape orientation by pressing Command-left.

2. Tap on the Hide button next to WEATHER. It successfully hides the text, but it 
doesn't reposition the section below it, leaving a block of blank space.

3. The ordering of the sections can be improved. It would be more logical if the 
WHAT TO SEE section was positioned right after WHY VISIT, instead of

iOS 9 by Tutorials Chapter 7: UIStackView & Auto Layout changes

raywenderlich.com 128



having WEATHER in between them.

4. The bottom row of buttons is a bit too close to the bottom edge of the view in 
landscape mode. It would be better if you could decrease the spacing between 
the different sections – but only in landscape mode, i.e. when the vertical size 
class is compact.

You now know the what the problems are, and why they exist, so it's time to start 
planning your next vacation, as you enter the wonderful world of UIStackView.

Open Main.storyboard and take a look at the Spot Info View Controller scene. 
And boom! Have some color with your stack view.

These labels and buttons have various background colors set on them; they're 
simply visual aids to help show how changing various properties of a stack view will 
affect the frames of its embedded views.

Don't get too attached to the pretty colors. They're set only for the purpose of 
working with the storyboard and will vanish at runtime.

You don't need to do this now, but if at any point you'd actually like to see the 
background colors while running the app, you can temporarily comment out the 
following lines in viewDidLoad() inside SpotInfoViewController.

// Clear background colors from labels and buttons 
for view in backgroundColoredViews { 
  view.backgroundColor = UIColor.clearColor() 
}

Also, any outlet-connected labels have placeholder text that's set to the name of 
the outlet variable to which they are connected. This makes it a bit easier to tell

iOS 9 by Tutorials Chapter 7: UIStackView & Auto Layout changes

raywenderlich.com 129



which labels will have their text updated at runtime. For example, the label with 
text <whyVisitLabel> is connected to:

@IBOutlet weak var whyVisitLabel: UILabel!

Another thing to note is that the scenes in the storyboard are not the default 600 x 
600 squares that you get when using size classes.

Size classes are still enabled, but the size of the initial Navigation Controller has 
been set to iPhone 4-inch under the Simulated Metrics section in the 
Attributes inspector. This just makes it a bit easier to work with the storyboard; 
the simulated metrics property has no effect at runtime — the canvas will resize for 
different devices.

Your first stack view
First on your list of fixes is using a stack view to maintain equal spacing between 
the buttons on the bottom row. A stack view can distribute its views along its axis 
in various ways, one of which is with an equal amount of spacing between each 
view.

Fortunately, embedding existing views into a new stack view is not rocket science. 
First, select all of the buttons at the bottom of the Spot Info View Controller 
scene by clicking on one, then Command-click on the other two:

If the outline view isn't already open, go ahead and open it by using the Show 
Document Outline button at the bottom left of the storyboard canvas:

Verify that all 3 buttons are selected by checking them in the outline view:

iOS 9 by Tutorials Chapter 7: UIStackView & Auto Layout changes

raywenderlich.com 130



In case they aren't all selected, you can also Command-click on each button in 
the outline view to select them.

Once selected, click on the new Stack button in the Auto Layout toolbar at the 
bottom right of the storyboard canvas:

The buttons will become embedded in a new stack view:

The buttons are now flush with each other – you'll that fix shortly.

While the stack view takes care of positioning the buttons, you still need to add 
Auto Layout constraints to position the stack view itself.

When you embed a view in a stack view, any constraints to other views are 
removed. For example, prior to embedding the buttons in a stack view, the top of 
the Submit Rating button had a vertical spacing constraint connecting it to the 
bottom of the Rating: label:

Click on the Submit Rating button to see that it no longer has any constraints 
attached to it:

Another way to verify that the constraints are gone is by looking at the Size 
inspector (⌥⌘5):

iOS 9 by Tutorials Chapter 7: UIStackView & Auto Layout changes

raywenderlich.com 131



In order to add constraints to position the stack view itself, you'll first need to select 
it. Selecting a stack view in the storyboard can get tricky if its views completely fill 
the stack view.

One simple way is to select the stack view in the outline view:

Another trick is to hold Shift and Right-click on any of the views in the stack view, 
or Control-Shift-click if you're using a trackpad. You'll get a context menu that 
shows the view hierarchy at the location you clicked, and you simply select the 
stack view by clicking on it in the menu.

For now, select the stack view using the Shift-Right-click method:

Now, click the Pin button on the Auto Layout toolbar to add constraints to it:

First add a check to Constrain to margins. Then add the following constraints to 
the edges of your stack view:

Top: 20, Leading: 0, Trailing: 0, Bottom: 0

Double-check the numbers for the top, leading, trailing, and bottom constraints and 
make sure that the I-beams are selected. Then click on Add 4 Constraints:

iOS 9 by Tutorials Chapter 7: UIStackView & Auto Layout changes

raywenderlich.com 132



Now the stack view is the correct size, but it has stretched the first button to fill in 
any extra space:

The property that determines how a stack view lays out its views along its axis is its 
distribution property. Currently, it's set to Fill, which means the contained views 
will completely fill the stack view along its axis. To accomplish this, the stack view 
will only expand one of its views to fill that extra space; specifically, it expands the 
view with the lowest horizontal content hugging priority, or if all of the priorities are 
equal, it expands the first view.

However, you're not looking for the buttons to fill the stack view completely – you 
want them to be equally spaced.

Make sure the stack view is still selected, and go to the Attributes inspector. 
Change the Distribution from Fill to Equal Spacing:

Now build and run, tap on any cell, and rotate the simulator (⌘→). You'll see that 
the bottom buttons now space themselves equally!

iOS 9 by Tutorials Chapter 7: UIStackView & Auto Layout changes

raywenderlich.com 133



Consider the alternatives
Now that you've had your first taste of the ease of working with stack views, think 
about how you'd solve this problem without using them:

• You would have added dummy spacer views, one between each button pair of 
buttons.

• You'd select all of the spacer views and give them equal width constraints.

• Then you'd pin each spacer view to the buttons on either side of it.

• You'd also need to add constraints for the heights and vertical positions of the 
spacer views in the superview, or alternatively, you could pin the top and bottom 
edges to the adjacent buttons.

It would have looked something like the following. For visibility in the screenshot, 
the spacer views have been given a light gray background:

But I'm an Auto Layout master
Perhaps you're a seasoned Auto Layout veteran, and adding constraints like these is 
a piece of cake. And you might not feel like you've gained much by using a stack 
view.

You'd still have optimized your layout by not having to include unnecessary spacer 
views, but even if you ignore this benefit, think about the long term.

What happens when you need to add a new button? Oh, right, you could just add a 
new button because it's not too difficult for an expert like you to re-do all the 
constraints. But doesn't dragging and dropping the additional button into place, and 
having the stack view take care of the positioning sound better?

iOS 9 by Tutorials Chapter 7: UIStackView & Auto Layout changes

raywenderlich.com 134



There's more. What if you needed to conditionally hide and show one of the buttons 
and reposition all of the remaining ones at runtime? If you stuck to the old ways, 
you'd have to manually remove and re-add constraints in code as well as remove 
and add back the adjacent spacer view.

And what if the requirement specified that more than one button could be removed 
and re-added at any time? At this point, you might as well do everything in code.

Stack views are just better
In order to hide a view within a stack view, all you have to do is set the contained 
view's hidden property to true and the stack view handles the rest. This is how 
you'll fix the spacing under the WEATHER label when the user hides the text below 
it.

iOS 9 by Tutorials Chapter 7: UIStackView & Auto Layout changes

raywenderlich.com 135



But that's something for the next chapter, where you'll dive deeper into stack views. 
For now, you'll take a quick detour to learn about some of the other new Auto 
Layout updates in iOS 9.

Stack views are by far the biggest feature introduced to Auto Layout with iOS 9, but 
there are also other features that improve how you do things. Two of the most 
interesting are layout anchors and layout guides, represented by the new 
NSLayoutAnchor and UILayoutGuide classes.

Layout anchors
Layout anchors provide a simplified way to create constraints.

Imagine you have two labels, bottomLabel and topLabel. You'd like to position 
bottomLabel right below topLabel with 8 points of spacing between them. Prior to 
iOS 9, you'd use the following code to create the constraint:

let constraint = NSLayoutConstraint( 
  item: topLabel, 
  attribute: .Bottom, 
  relatedBy: .Equal, 
  toItem: bottomLabel, 
  attribute: .Top, 
  multiplier: 1, 
  constant: 8 
)

This creates a constraint in which the topLabel's .Bottom is .Equal to the 
bottomLabel's .Top, plus 8.

Even the explanation contained far fewer characters than the code itself, and you're 
not even using Objective-C! Surely there's a more concise way to express this?

Layout anchors allow you to do exactly that:

let constraint = topLabel.bottomAnchor.constraintEqualToAnchor(

iOS 9 by Tutorials Chapter 7: UIStackView & Auto Layout changes

raywenderlich.com 136



  bottomLabel.topAnchor, constant: 8)

This achieves the same result. The view now has a layout anchor object 
representing the .Bottom attribute, and that anchor object can create constraints 
relating to other layout anchors.

That's all there is to it! UIView now has a bottomAnchor property, as well as other 
anchors that correspond to other NSLayoutAttributes. For example, for .Width it 
has widthAnchor, for .CenterX it has centerXAnchor etc.

They're all subclasses of NSLayoutAnchor, which has a number of methods for 
creating constraints relating to other anchors. In addition to the above method, 
there is also a convenience version for when the constant is 0:

let constraint = topLabel.bottomAnchor.constraintEqualToAnchor( 
  bottomLabel.topAnchor)

That's a much more expressive and concise way to create a constraint!

Note: A view doesn't have an anchor property for every possible layout 
attribute. Any of the attributes relating to the margins, such as .TopMargin, 
or .LeadingMargin aren't available directly. UIView has a new property called 
layoutMarginsGuide, which is a UILayoutGuide (you'll learn about these in the 
next section). The layout guide has all the same anchor properties as the view, 
but now they relate to the view's margins, for example .TopMargin would be 
represented by layoutMarginsGuide.topAnchor.

Non-equal constraints
The method above creates an EqualTo constraint, but what if you wanted to create 
a LessThanOrEqualTo or a GreaterThanOrEqualTo constraint?

Using the old method, you'd just pass in .GreaterThanOrEqual or .LessThanOrEqual 
for the relatedBy: parameter, which takes an enum of type NSLayoutRelation:

let constraint = NSLayoutConstraint( 
  ... 
  relatedBy: .LessThanOrEqual, // or .GreaterThanOrEqual 
  ... 
)

NSLayoutAnchor also contains methods to express those relations:

func constraintLessThanOrEqualToAnchor(_:constant:) 
func constraintGreaterThanOrEqualToAnchor(_:constant:)

As well as the more concise variants in which you can leave off the constant: 
param when the value is 0:

iOS 9 by Tutorials Chapter 7: UIStackView & Auto Layout changes

raywenderlich.com 137



func constraintLessThanOrEqualToAnchor(_:) 
func constraintGreaterThanOrEqualToAnchor(_:)

Including a multiplier
In the old method, there is also a multiplier parameter:

let constraint = NSLayoutConstraint( 
  ... 
  multiplier: 1, 
  ... 
)

So, how do you include a multiplier if you need to? If you look at the documentation 
for NSLayoutAnchor, you won't find any methods that contain a multiplier 
parameter.

But NSLayoutAnchor does have a subclass called NSLayoutDimension that has the 
following methods:

func constraintEqualToConstant(_:) 
func constraintEqualToAnchor(_:multiplier:) 
func constraintEqualToAnchor(_:multiplier:constant:)

It also has the LessThanOrEqual and GreaterThanOrEqual variants:

func constraint[Less|Greater]ThanOrEqualToConstant(_:) 
func constraint[Less|Greater]ThanOrEqualToAnchor(_:multiplier:) 
func constraint[Less|Greater]ThanOrEqualToAnchor( 
  _:multiplier:constant:)

When would you actually use a multiplier other than 1? Here's an idea: When you 
want to add a proportional constraint between the width or height of one view to 
the width or height of another view, like if you wanted the width of user's profile 
photo to be one-quarter that of its superview.

Effectively, the only anchors that are of type NSLayoutDimension are heightAnchor 
and widthAnchor.

iOS 9 by Tutorials Chapter 7: UIStackView & Auto Layout changes

raywenderlich.com 138



This means that you can't accidentally use a multiplier where it doesn't make 
sense, and since the multiplier-based methods don't exist with anything other than 
widthAnchor and heightAnchor, Xcode won't even suggest them to you.

It gets better. NSLayoutAnchor has two additional subclasses — NSLayoutXAxisAnchor 
and NSLayoutYAxisAnchor — which represent anchors in the horizontal and vertical 
directions. For example, bottomAnchor is of type NSLayoutYAxisAnchor and 
leadingAnchor is of type NSLayoutXAxisAnchor. So all anchors are actually one of 
these three specific subclasses of NSLayoutAnchor.

The constraint[Equal|LessThanOrEqual|GreaterThanOrEqual]ToAnchor family of 
methods are actually generic methods that, when called from an object of type, 
NSLayoutXAxisAnchor, will only take a parameter of type NSLayoutXAxisAnchor and 
when called from an object of type, NSLayoutYAxisAnchor will only take in a 
parameter of type NSLayoutYAxisAnchor. This can prevent you attempting to pin the 
top of one view to the leading edge of another, for example.

Though this type checking hasn't yet made its way into Swift, it currently works 
with Objective-C:

At the time of writing, Swift will still crash at runtime with the message "Invalid 
pairing of layout attributes", so you'll know pretty quickly if you've made a mistake.

You'll also still get an error in Swift if you try to constrain an NSLayoutDimension 
anchor with a different type of anchor, for example, a widthAnchor with a topAnchor:

To summarize:

• Layout anchors are a quick way of making constraints between different 
attributes of a view

• There are three different subclasses of NSLayoutAnchor

• The compiler will prevent you from creating constraints between the different 
subclasses of NSLayoutAnchor

The specific subclasses of NSLayoutAnchor are:

• NSLayoutXAxisAnchor for leading, trailing, left, right or center X anchors

• NSLayoutYAxisAnchor for top, bottom and center Y anchors

iOS 9 by Tutorials Chapter 7: UIStackView & Auto Layout changes

raywenderlich.com 139



• NSLayoutDimension for width and height

Whew, that was a lot to cover. You're probably wondering if you'll ever fix that 
alignment bug. Of course you will! But first, read through the next section on layout 
guides — I promise it's much shorter. :]

After that, you'll be fully prepared to dive back into the code and fix that 
bothersome alignment bug.

Layout guides
A layout guide gives you a new way to position views when you'd previously need 
to use a dummy view. For example, you might have used spacer views between 
buttons to space them equally, or a container view to collectively align two labels. 
But creating and adding a view has a cost, even if it's never drawn.

Think of a layout guide as defining a rectangular region or a frame in your view 
hierarchy, the edges of which you can use for alignment.

Layout guides don't enable any new functionality, but they do allow you to address 
these problems with a lightweight solution.

You add constraints to a UILayoutGuide in the same way that you add them to a 
UIView, because a layout guide has almost the same layout anchors as a view  — 
dropping just the inapplicable firstBaselineAnchor and lastBaselineAnchor.

Okay, now it's time to dive back into the project and fix that alignment bug.

Fixing the alignment bug
You'll remember that the whole reason for the dive into layout guides and anchors 
was so that you could vertically center some of these misaligned labels in the cell 
by using the new tools available in iOS 9:

iOS 9 by Tutorials Chapter 7: UIStackView & Auto Layout changes

raywenderlich.com 140



They're misaligned because the current constraint specifies that the top of the 
name label should be a fixed distance from the top margin of the cell's contentView:

If the name label was always on a single line, the current constraint would have 
been fine. But this app has labels that span two lines.

Prior to iOS 9, you'd have centered everything by putting both labels into a 
container view, and then you would have added a constraint to center the container 
view vertically within the cell. The only purpose of creating this dummy container 
view was for the collective alignment of the two labels.

But now you know that you can use a layout guide instead.

Currently, it's only possible to add a layout guide in code. So open 
VacationSpotCell.swift and add the following code to awakeFromNib():

iOS 9 by Tutorials Chapter 7: UIStackView & Auto Layout changes

raywenderlich.com 141



// 1 
let layoutGuide = UILayoutGuide() 
contentView.addLayoutGuide(layoutGuide) 

 
// 2 
let topConstraint = layoutGuide.topAnchor 
  .constraintEqualToAnchor(nameLabel.topAnchor) 

 
// 3 
let bottomConstraint = layoutGuide.bottomAnchor 
  .constraintEqualToAnchor(locationNameLabel.bottomAnchor) 

 
// 4 
let centeringConstraint = layoutGuide.centerYAnchor 
  .constraintEqualToAnchor(contentView.centerYAnchor) 

 
// 5 
NSLayoutConstraint.activateConstraints( 
  [topConstraint, bottomConstraint, centeringConstraint])

Here's the breakdown of the code you just added:

1. Create the layoutGuide and use addLayoutGuide(_:) to add it to the cell's 
contentView.

2. Pin the top of the layout guide to the top of the nameLabel.

3. Pin the bottom of the layout guide to the bottom of the locationNameLabel.

4. Add a constraint to center the layout guide vertically within the contentView.

5. Activate the constraints.

Note: Using the activateConstraints(_:) method on UIView is the 
recommended way of adding constraints in iOS 8 onwards, as opposed to the 
old way of using addConstraints(_:).

Build and run, you should see the following:

iOS 9 by Tutorials Chapter 7: UIStackView & Auto Layout changes

raywenderlich.com 142



Handling the truncation
The labels are centered, but when the upper name label has content that causes it 
to overflow onto two lines, the bottom label has become compressed to the point of 
almost disappearing. This is because of the constraint that's still in the storyboard.

In order to satisfy that constraint as well as the newly added centering constraint, 
the bottom label had to compress itself. You can't remove the constraint from the 
storyboard since you would get the following missing constraint error:

Instead, simply set it as a placeholder constraint. This is a trick to tell Xcode that 
you'll leave this constraint here for the storyboard, but you want it removed at 
runtime since you've got it covered in code.

Open Main.storyboard, and in the Vacation Spots scene click on 
<nameLabel> to select it, and then click on the constraint connecting the top of 
the label to the top margin of the cell. Place a checkmark next to Remove at build 
time:

iOS 9 by Tutorials Chapter 7: UIStackView & Auto Layout changes

raywenderlich.com 143



Build and run, and you'll see the labels centered correctly!

Where to go from here?
In this chapter, you started learning about stack views and also learned about some 
of the new features in Auto Layout, such as layout anchors and layout guides.

At this point, you've only scratched the surface. Keep up the momentum and 
proceed to the next chapter, where you'll continue to learn about stack views in 
depth. At the end of the next chapter, there will be some additional resources you 
can use to further your learning, but for now, all you have to do is turn the page!

iOS 9 by Tutorials Chapter 7: UIStackView & Auto Layout changes

raywenderlich.com 144



8Chapter 8: Intermediate 
UIStackView
By Jawwad Ahmad

Welcome back! In the previous chapter, you spent some quality time with stack 
views and masterfully spaced a row of buttons with a horizontal stack view. 
Moreover, you also learned about layout guides and layout anchors, and discovered 
how to use them to vertically center two labels in a table view cell, without the use 
of dummy container views.

In this chapter, you'll make further improvements to the Vacation Spots app by 
using — you guessed it — stack views.

Getting started
Open your project from the previous chapter to continue from where you left off, or 
open the starter project for this chapter.

A recap of your to-do's
Here's a quick recap of the four tasks needed to improve SpotInfoViewController; 
these were laid out for you in the previous chapter.

1. Equally space the bottom row of buttons. Done!

2. After pressing the Hide button, the section below it should reposition to occupy 
the empty space. Not Done.

3. Swap the positions of the what to see and weather sections. Not Done.

4. Increase the spacing between sections in landscape mode so that the bottom 
row of buttons is a comfortable distance from the bottom edge of the view. Not 
Done.

In addition, you'll add some animations to spruce things up a bit.

raywenderlich.com 145



Converting the sections
Before you can check off the rest of your to-do's, you need to convert all of the 
sections in SpotInfoViewController to use stack views.

And as you work through this section, you'll learn about the various properties you 
can use to configure a stack view, such as alignment, distribution and spacing.

Rating section
The rating section is the low-hanging fruit here, because it's the simplest one to 
embed in a stack view.

Open Main.storyboard and in the Spot Info View Controller scene, select the 
RATING label and the stars label next to it:

Then click on the Stack button to embed them in a stack view. Remember, this 
button is at the bottom of the storyboard window:

You can also use the menu bar and select Editor \ Embed in \ Stack View. 
Whichever way you go about it, this is the result:

Now click on the Pin button — remember that's the square TIE fighter-looking icon 
that's sitting to the right of the stack button. Place a checkmark in Constrain to 
margins and add the following three constraints:

Top: 20, Leading: 0, Bottom: 20

Now go to the Attributes inspector and set the spacing to 8:

iOS 9 by Tutorials Chapter 8: Intermediate UIStackView

raywenderlich.com 146



It's possible you may see a Misplaced Views warning and see something like this in 
which the stars label has stretched beyond the bounds of the view:

Sometimes Xcode may temporarily show a warning or position the stack view 
incorrectly, but the warning will disappear as you make other updates. You can 
usually safely ignore these.

However, to fix it immediately, you can persuade the stack view to re-layout either 
by moving its frame by one point and back or temporarily changing one of its layout 
properties.

To demonstrate this, change the Alignment from Fill to Top and then back to Fill. 
You'll now see the stars label positioned correctly:

Build and run to verify that everything looks exactly the same as before.

Unembedding a stack view
Before you go too far, it's good to have some basic "first aid" training. Sometimes 
you may find yourself with an extra stack view that you no longer need, perhaps 
because of experimentation, refactoring or just by accident.

Fortunately, there is an easy way to unembed views from a stack view.

First, you'd select the stack view you want to remove. Then from the menu you'd 
choose Editor \ Unembed. Or another way is to hold down the Option key and 
click on the Stack button. The click Unembed on the context menu that appears:

iOS 9 by Tutorials Chapter 8: Intermediate UIStackView

raywenderlich.com 147



Your first vertical stack view
Now, you'll create your first vertical stack view. Select the WHY VISIT label and 
the <whyVisitLabel> below it:

Xcode will correctly infer that this should be a vertical stack view based on the 
position of the labels. Click the Stack button to embed both of these in a stack 
view:

The lower label previously had a constraint pinning it to the right margin of the 
view, but that constraint was removed when it was embedded in the stack view. 
Currently, the stack view has no constraints, so it adopts the intrinsic width of its 
largest view.

With the stack view selected, click on the Pin button. Checkmark Constrain to 
margins, and set the Top, Leading and Trailing constraints to 0.

Then, click on the dropdown to the right of the bottom constraint and select 
WEATHER (current distance = 20):

By default, constraints are shown to the nearest neighbor, which for the bottom 
constraint is the Hide button at a distance of 15. You actually needed the constraint 
to be to the WEATHER label below it.

iOS 9 by Tutorials Chapter 8: Intermediate UIStackView

raywenderlich.com 148



Finally, click Add 4 Constraints. You should now see the following:

You now have an expanded stack view with its right edges pinned to the right 
margin of the view. However, the bottom label is still the same width. You'll fix this 
by updating the stack view's alignment — keep reading to discover how!.

Alignment property
Remember how you previously learned that the distribution property specifies 
how a stack view lays out its views along its axis? You had set the bottom stack 
view's distribution to Equal Spacing to space the buttons within it equally.

Well, meet alignment. It's the property that determines how a stack view lays out 
its views perpendicular to its axis. For a vertical stack view, the possible values are 
Fill, Leading, Center and Trailing.

Select each value to see how it affects the placement of the labels in the stack 
view:

Fill:

Leading:

iOS 9 by Tutorials Chapter 8: Intermediate UIStackView

raywenderlich.com 149



Center:

Trailing:

When you're done testing each value, set the Alignment to Fill:

Then build and run to verify that everything looks good, and that there are no 
regressions.

Specifying Fill means you want all the views to completely fill the stack view 
perpendicular to its axis. This causes the WHY VISIT label to expand itself to the 
right edge as well.

But what if you only wanted the bottom label to expand itself to the edge?

For now, it doesn't matter since both labels will have a clear background at runtime, 
but it'll matter when you're converting the weather section.

You'll learn how to accomplish that with the use of an additional stack view.

Convert the "what to see" section
This section is very similar to the previous one, so the instructions here are brief.

1. First, select the WHAT TO SEE label and the <whatToSeeLabel> below it.

2. Click on the Stack button.

3. Click on the Pin button.

4. Checkmark Constrain to margins, and add the following four constraints:

Top: 20, Leading: 0, Trailing: 0, Bottom: 20

iOS 9 by Tutorials Chapter 8: Intermediate UIStackView

raywenderlich.com 150



5. Set the stack view's Alignment to Fill.

Your storyboard should now look like this:

Build and run to verify that everything still looks the same.

That leaves you with just the weather section left. But first, indulge in a quick 
detour to learn a little more about alignment.

Alignment
The alignment property is an enum of type UIStackViewAlignment. Its possible 
values in the vertical direction are .Fill, .Leading, .Center, and .Trailing which 
you saw in the previous section.

The possible alignment values for a horizontal stack view differ slightly:

It has .Top instead of .Leading and has .Bottom instead of .Trailing. There are also 
two more properties that are valid only in the horizontal direction, .FirstBaseline 
and .LastBaseline.

Here's are some visuals to illustrate how each value works:

Horizontal axis:
Here labels of different widths are aligned according to each value:

iOS 9 by Tutorials Chapter 8: Intermediate UIStackView

raywenderlich.com 151



Now if the labels were the same width and the stack view was not stretched beyond 
its intrinsic width with a constraint, it wouldn't matter what value was chosen since 
they would all just fill the stack view.

Vertical axis:
Here the labels are configured with different font sizes to give them different 
intrinsic heights, in order to demonstrate the different values:

FirstBaseline and LastBaseline:
These values are valid only in a horizontal stack view. FirstBaseline uses the 
baseline of the first line in multi-line text, and LastBaseline uses the baseline of the 
last line in multi-line text.

Convert the weather section
The next task is to add the weather section to a stack view. You'll start by adding 
it to a stack view.

iOS 9 by Tutorials Chapter 8: Intermediate UIStackView

raywenderlich.com 152



Remember that little Hide button? Get ready, because this stack view is a bit more 
complex due to the inclusion of the Hide button.

One possible approach

Note: This section explores one possible approach, but don't follow along in 
Xcode just yet. Consider this first section theoretical.

You could create a nested stack view by embedding the WEATHER label and the 
Hide button into a horizontal stack view, and then embed that horizontal stack view 
and the <weatherInfoLabel> into a vertical stack view.

It would look something like this:

Notice that the WEATHER label has expanded to be equal to the height of the Hide 
button. This isn't ideal since this will cause there to be extra space between the 
baseline of the WEATHER label and the text below it.

Remember that alignment specifies positioning perpendicular to the stack view. So,

iOS 9 by Tutorials Chapter 8: Intermediate UIStackView

raywenderlich.com 153



you could set the alignment to Bottom:

But you really don't want the height of the Hide button to dictate the height of the 
stack view.

When the alignment of a stack view is set to fill and the views are of different 
sizes in the alignment direction, the stack view determines which views to compress 
or expand based on the relative content hugging priorities or the content 
compression resistance priorities of its views.

In your case, the stack view decides to expand the WEATHER label because its 
vertical content hugging priority of 251 is less than the Hide button's compression 
resistance priority of 750.

You could decrease the Hide button's vertical compression resistance priority to 
200 which would cause the stack view to compress the Hide button instead:

However, this isn't ideal since it would reduce the size of the tap target of the 
button.

Actual approach
The actual approach you'll take is to have the Hide button not be in the stack view 
for the weather section, or any other stack view for that matter.

It will remain a subview of the top-level view, and you'll add a constraint from it to 
the WEATHER label — which will be in a stack view. That's right, you'll add a 
constraint from a button outside of a stack view to a label within a stack view!

iOS 9 by Tutorials Chapter 8: Intermediate UIStackView

raywenderlich.com 154



Change the weather section – for real
You can once again start following along in Xcode. Select the WEATHER label and 
the <weatherInfoLabel> below it:

Click on the Stack button:

Click on the Pin button, checkmark Constrain to margins and add the following 
four constraints:

Top: 20, Leading: 0, Trailing: 0, Bottom: 20

Set the stack view's Alignment to Fill:

You need a constraint between the Hide button's left edge and the WEATHER 
label's right edge, so having the WEATHER label fill the stack view won't work.

However, you do want the bottom <weatherInfoLabel> to fill the stack view.

You can accomplish this by embedding just the WEATHER label into a vertical stack 
view. Remember that the alignment of a vertical stack view can be set to .Leading, 
and if the stack view is stretched beyond its intrinsic width, its contained views will 
remain aligned to its leading side.

Select the WEATHER label using the document outline, or by using the Control-
Shift-click trick you learned in the previous chapter:

iOS 9 by Tutorials Chapter 8: Intermediate UIStackView

raywenderlich.com 155



Then click on the Stack button:

Set Alignment to Leading, and make sure Axis is set to Vertical:

Perfect! You've got the outer stack view stretching the inner stack view to fill the 
width, but the inner stack view allows the label to keep its original width!

Build and run. Why on earth is the Hide button hanging out in the middle of the 
text?

It's because when you embedded the WEATHER label in a stack view, any 
constraints between it and the Hide button were removed. So you'll just add them 
back.

Control-drag from the Hide button to the WEATHER label:

Hold down Shift to select multiple options, and select Horizontal Spacing and 
Baseline. Then click on Add Constraints:

iOS 9 by Tutorials Chapter 8: Intermediate UIStackView

raywenderlich.com 156



Build and run. The Hide button should now be positioned correctly, and since the 
label that is being set to hidden is embedded in a stack view, pressing Hide hides 
the label, and adjusts the views below it – all without having to manually adjust any 
constraints.

Now that all the sections are in unique stack views, you're set to embed them all 
into an outer stack view, which will make the final two tasks incredibly simple.

Top-level stack view
Command-click to select all five top-level stack views in the outline view:

Then click on the Stack button:

iOS 9 by Tutorials Chapter 8: Intermediate UIStackView

raywenderlich.com 157



Click the Pin button, checkmark Constrain to margins add constraints of 0 to all 
edges. Then set Spacing to 20 and Alignment to Fill. Your storyboard scene 
should now look like this:

Build and run:

Whoops! Looks like the hide button lost its constraints again when the WEATHER 
stack view was embedded in the outer stack view. No biggie, just add constraints to 
it again in the same way you did before.

Control-drag from the Hide button to the WEATHER label, hold down Shift, 
select both Horizontal Spacing and Baseline. Then click on Add Constraints:

iOS 9 by Tutorials Chapter 8: Intermediate UIStackView

raywenderlich.com 158



Build and run. The Hide button is now behaving itself.

Repositioning views
Now that all of the sections are in a top-level stack view, you'll modify the position 
of the what to see section so that it's positioned above the weather section.

Select the middle stack view from the outline view and drag it between the first 
and second view.

Note: Keep the pointer slightly to the left of the stack views that you're 
dragging it between, so that it remains a subview of the outer stack view. The 
little blue circle should be positioned at the left edge between the two stack 
views and not at the right edge:

And now the weather section is third from the top, but since the Hide button isn't 
part of the stack view, it won't be moved, so its frame will now be misplaced and 
the Hide button will look like it's lost its mind again.

Click on the Hide button to select it:

iOS 9 by Tutorials Chapter 8: Intermediate UIStackView

raywenderlich.com 159



Then click on the Resolve Auto Layout Issues triangle shaped button in the Auto 
Layout toolbar and under the Selected Views section, click on Update Frames:

The Hide button will now be back in the correct position:

Granted, repositioning the view with Auto Layout and re-adding constraints would 
not have been the most difficult thing you've ever done, but didn't this feel oh-so-
much nicer?

Arranged subviews
Okay, back away from Xcode — it's time for some theory!

UIStackView has a property named arrangedSubviews, and it also has a subviews 
property since it's a subclass of UIView — which begs the question about how these 
two properties differ.

The arrangedSubviews array contains the subviews that the stack view lays out as 
part of its stack. The order in the array represents the ordering within the stack 
view, whereas the ordering in the subviews array represents the front-to-back 
placement of the subviews, i.e. the z-axis order.

Also, arrangedSubviews is always a subset of the subviews array. (You can't be an 
arranged subview if you're not even a subview!) Anytime a view is added to

iOS 9 by Tutorials Chapter 8: Intermediate UIStackView

raywenderlich.com 160



arrangedSubviews it's automatically added to subviews, but not vice versa.

The outline view in a storyboard for a stack view actually represents its 
arrangedSubviews. So, it's not possible to add a view only to the stack view's 
subviews using the storyboard; you'd have to do that in code.

When might you want to add a subview to a stack view, but not to its 
arrangedSubviews? One possible case could be to add a background view.

Views can programmatically be added to the stack view, i.e. to arrangedSubviews, 
by using addArrangedSubview(_:) or insertArrangedSubview(_:atIndex:).

To remove an arranged subview, you can use removeArrangedSubview(_:), however, 
using this method doesn't remove the view from subviews, so it doesn't actually get 
removed from the view hierarchy until you call removeFromSuperview() on the view.

And since it's not possible to have a view in arrangedSubviews that's not in 
subviews, you can take the shortcut of just calling removeFromSuperview() on the 
subview, since this will remove it from arrangedSubviews as well as from subviews.

Size class based configuration
Finally you can turn your attention to the one remaining task on your list. In 
landscape mode, vertical space is at a premium, so you want to bring the sections 
of the stack view closer together. To do this, you'll use size classes to set the 
spacing of the top-level stack view to 10 instead of 20 when the vertical size class 
is compact.

Select the top-level stack view and click on the little + button next to Spacing:

Choose Any Width > Compact Height:

And set the Spacing to 10 in the new wAny hC field:

iOS 9 by Tutorials Chapter 8: Intermediate UIStackView

raywenderlich.com 161



Build and run. Portrait mode should be unchanged, so rotate the simulator (⌘←) to 
see your handiwork. Note that spacing between the sections has decreased and the 
buttons now have ample space from the bottom of the view:

If you didn't add a top-level stack view, you still could have used size classes to set 
the vertical spacing to 10 on each of the four constraints that separate the five 
sections, but isn't it so much better to set it in just a single place?

You have better things to do with your time, like animation!

Animation
Currently, it's a bit jarring when hiding and showing the weather details. It's the 
perfect place to add some animation to smooth the transition.

Animating hidden
Stack views are fully compatible with the UIView animation engine. This means that 
animating the appearance/disappearance of an arranged subview, is as simple as 
toggling its hidden property inside an animation block.

It's finally time to write some code again! Open SpotInfoViewController.swift 
and take a look at updateWeatherInfoViews(hideWeatherInfo:animated:). When the 
user taps Hide, the current state gets saved. In viewDidLoad() this method gets 
called with animated: false and when the button is pressed it gets called with 
animated: true, so the method already receives the animate parameter correctly.

iOS 9 by Tutorials Chapter 8: Intermediate UIStackView

raywenderlich.com 162



You'll see this line at the end of the method:

weatherInfoLabel.hidden = shouldHideWeatherInfo

Replace it with the following:

if animated { 
  UIView.animateWithDuration(0.3) { 
    self.weatherInfoLabel.hidden = shouldHideWeatherInfo 
  } 
} else { 
  weatherInfoLabel.hidden = shouldHideWeatherInfo 
}

Build and run, and tap the Hide or Show button. This looks much nicer, but why 
not take it a step further by adding some bounce?

Replace the following three lines:

UIView.animateWithDuration(0.3) { 
  self.weatherInfoLabel.hidden = shouldHideWeatherInfo 
}

With the following:

UIView.animateWithDuration(0.3, 
  delay: 0.0, 
  usingSpringWithDamping: 0.6, 
  initialSpringVelocity: 10, 
  options: [], 
  animations: { 
    self.weatherInfoLabel.hidden = shouldHideWeatherInfo 
  }, completion: nil 
)

Build and run. You should now see a nice, subtle bounce when you tap the button.

In addition to animating the hidden property on views contained within the stack 
view, you can also animate properties on the stack view itself, such as alignment, 
distribution and spacing.

You can even animate the axis, and in fact, that's what you'll do next.

Animating the axis
Open Main.storyboard and locate the stack view for the rating section in the 
outline view. Open the assistant editor and Control-drag to 
SpotInfoViewController to create an outlet:

iOS 9 by Tutorials Chapter 8: Intermediate UIStackView

raywenderlich.com 163



Name the outlet ratingStackView and click on Connect:

Close the assistant editor and now open SpotInfoViewController.swift in the 
main editor. In updateWeatherInfoViews(hideWeatherInfo:animated:) replace the 
following nil completion block:

}, completion: nil

With the following code:

}, completion: { finished in 
  UIView.animateWithDuration(0.3) { 
    self.ratingStackView.axis = 
      shouldHideWeatherInfo ? .Vertical : .Horizontal 
  } 
}

Once the initial hide or show animation completes, if the weather info was just 
hidden, then the axis of ratingStackView animates to horizontal. When the weather 
is shown again, the axis will be set back to vertical.

Add the following lines immediately below the existing line in the else clause:

iOS 9 by Tutorials Chapter 8: Intermediate UIStackView

raywenderlich.com 164



} else { 
  weatherInfoLabel.hidden = shouldHideWeatherInfo 
  ratingStackView.axis = 
    shouldHideWeatherInfo ? .Vertical : .Horizontal 
}

This sets the axis of the ratingStackView correctly when the view first appears.

Where to go from here?
In this chapter, you continued your dive into stack views and learned about the 
various properties that a stack view uses to position its subviews. Stack views are 
highly configurable, and there may be more than one way achieve the same result.

The best way to build on what you've learned is to experiment with various 
properties yourself. Instead of setting a property and moving on, see how playing 
with the other properties affects the layout of views within the stack view.

One way to speed up your learning is to test yourself, so before you change a 
property on a stack view, quiz yourself mentally to see if you can predict the 
change that will occur, and then see if your expectations match reality.

Stack views are now your new view hierarchy building blocks. Get to know them — 
and know them well. Really, just make them your new best friend.

Here are some related videos from WWDC 2015 that may be of interest:

• Mysteries of Auto Layout, Part 1 apple.co/1D47aKk

• Mysteries of Auto Layout, Part 2 apple.co/1HTcVJy

• Implementing UI Designs in Interface Builder apple.co/1H5vS84

iOS 9 by Tutorials Chapter 8: Intermediate UIStackView

raywenderlich.com 165



9Chapter 9: What's New in 
Storyboards?
By Caroline Begbie

Storyboards have been around since iOS 5 and have received lots of upgrades and 
new features since then, including unwind segues for reverse navigation, universal 
storyboards for both iPhone and iPad, and live rendering of views designed in code.

Xcode 7 brings new features for storyboards that let you do the following:

• Refactor a single storyboard into multiple storyboards and link them visually via 
storyboard references.

• Add supplementary views to a view controller using the scene dock.

• Add multiple buttons to a navigation bar, right from the storyboard itself!

You'll learn how to use the above features as you update an app designed to help 
you with all those listable moments in life, whether it's grocery shopping, packing 
your luggage for vacation, or a survival checklist for the impending zombie 
apocalypse! :]

To get the most out of this chapter you should have some basic storyboard and 
table view knowledge. Need a quick brush-up? Check out our Storyboards Tutorial 
in Swift at raywenderlich.com/113388.

Getting started
Open the starter project for this chapter and run it in the simulator; tap one of the 
displayed checklists to view the items contained within, then tap any entry to check 
it off. Done and done!

raywenderlich.com 166



Take a quick look at the code to get your bearings.

ChecklistsViewController.swift displays the initial list of checklists, and 
ChecklistDetailViewController.swift displays the items within each list. 
Main.storyboard contains the user interface items.

There are two unused scenes in the storyboard; you'll use those later in the 
tutorial.

The app is not quite complete; your task in this chapter is to improve it so you can 
add items to a list, add notes to an item, delete an item and add diary entries to 
record your zombie survival efforts.

Storyboard references
If you've used storyboards on a large project or as part of a team with other 
developers, you'll know they can quickly become unwieldy. Merge conflicts, 
spaghetti-like segue arrows and navigating your way around a wall of scenes is 
enough to make anybody question whether storyboards are worth the effort.

Although you've always been able to use multiple storyboards in your apps, you've 
never been able to segue between them using Interface Builder. To present a view 
controller from a different storyboard, you'd have to instantiate it first and present 
it in code. But no longer!

With Xcode 7, you can add references between storyboards right in Interface 
Builder using storyboard references, which can either point to specific view

iOS 9 by Tutorials Chapter 9: What's New in Storyboards?

raywenderlich.com 167



controllers or to the initial view controller within another storyboard. This makes it 
much easier to divide up storyboards into smaller storyboards, and alleviates many 
of the issues mentioned above without needing to add any extra code.

Multiple smaller storyboards also make it possible for other team members to work 
independently on their own storyboards without stepping on each other's toes.

Enough theory — time to put it into practice!

Note: Storyboard references are actually backwards-compatible to iOS 8. 
However, in iOS 8 you can't use a storyboard reference with a relationship 
segue, or use it to point to storyboards in external bundles.

Creating your first storyboard reference
In its current state, Prepped is a small app in the early stages of development, but 
there's enough structure there to discern where to divide up the main storyboard. 
Container view controllers are a good place to consider splitting out functionality 
into new storyboards.

Prepped uses a tab bar controller, and in this case it makes sense to separate each 
tab's children into their own storyboards.

Open Main.storyboard and zoom out so you can see all six scenes. Hold 
Command and press + to zoom in and - to zoom out, or right-click on a blank 
area in the storyboard and choose your zoom level.

Click and drag to highlight all scenes in the storyboard except for the tab bar 
controller on the left-hand side:

Select Editor\Refactor to Storyboard and enter Checklists.storyboard as the 
name of the new storyboard. Set the Group to Checklists, then click Save.

iOS 9 by Tutorials Chapter 9: What's New in Storyboards?

raywenderlich.com 168



As if by magic, Xcode does the following:

1. Splits out the selected scenes into a new storyboard.

2. Changes the target of the tab bar controller's "view controllers" segue to a 
storyboard reference that points to the relevant scene in the new storyboard.

3. Takes you to the new storyboard.

You may have to zoom out and reposition the new storyboard to see all of its 
scenes. The arrangement of the scenes and their segues is exactly like it was in the 
original storyboard. Here's what the new storyboard should look like:

But what happened to the original storyboard? Open Main.storyboard and take a 
look:

The tab bar controller's "view controllers" segue now points to the storyboard 
reference for the navigation controller in Checklists.storyboard. The storyboard 
reference uses the navigation controller's storyboard ID to determine which scene 
to segue to in the new storyboard.

There are a few 'dangling' storyboard references to view controllers that had

iOS 9 by Tutorials Chapter 9: What's New in Storyboards?

raywenderlich.com 169



storyboard IDs set; you won't need these any longer. Select 
ChecklistDetailViewController, AddChecklistItemNavigationController and 
AddChecklistItemViewController and delete them.

Note: If a scene has an empty storyboard ID, the Refactor to Storyboard 
command automatically generates an ugly one, such as UIViewController-gtY-
c7-gYu. You can change this later, but it's much easier to keep track of things 
when you explicitly set the storyboard IDs yourself.

Instead of referencing specific view controllers, storyboard references can simply 
refer to the initial scene in a storyboard.

Still in Main.storyboard, select the new storyboard reference named 
ChecklistsNavigationController and use the Attributes Inspector to remove 
the Referenced ID, like so:

The reference now points to the initial view controller in Checklists.storyboard, 
and updates as shown:

Open Checklists.storyboard and select the Checklists Navigation Controller 
scene. Use the Attributes Inspector to check Is Initial View Controller; this 
indicates this scene should be the entry point for the storyboard.

Note: The initial view controller of a storyboard has an arrow pointing to it 
from the left-hand side.

iOS 9 by Tutorials Chapter 9: What's New in Storyboards?

raywenderlich.com 170



Build and run your project; the app performs just as it did when you started. The 
only difference is that things are a little more organized behind the scenes!

Storyboards within a team
Distributed development of storyboards has always been a challenge; in fact, many 
developers still avoid storyboards out of fear of the dreaded merge conflict. But 
storyboard references can help you avoid the complications of team storyboard 
development.

Consider the following scenario: you're writing Prepped with a fellow apocalypse 
survivor, whose task it is to create the functionality to handle the diary entries. 
She's built it using a separate storyboard, and now you need to add it to your own 
storyboard hierarchy...before the zombies descend upon your little enclave.

In the project navigator, select the top level Prepped group, located just below 
the project itself. Click File\Add Files to "Prepped". Navigate to the Prepped 
folder, and select the Diary folder. Ensure that Copy items if needed is checked in 
the dialog box, and that Added folders is set to Create groups. Ensure that Add 
to targets is ticked for Prepped. Click Add to add the folder and its contents to 
the project.

In Main.storyboard, drag a storyboard reference from the Object Library into 
an empty space on the storyboard:

Ctrl-drag from the existing tab bar controller scene to the storyboard reference:

iOS 9 by Tutorials Chapter 9: What's New in Storyboards?

raywenderlich.com 171



In the pop-up that appears, choose view controllers from the Relationship 
Segue section.

Select the storyboard reference you just added. In the Attributes Inspector set 
the Storyboard to Diary:

Build and run your app; you'll see one tab to handle Checklists, and another tab for 
the Diary entries – the functionality your teammate worked on. You can now add 
Diary entries using the storyboard scenes and code created by your sister-in-arms:

iOS 9 by Tutorials Chapter 9: What's New in Storyboards?

raywenderlich.com 172



Note: Currently both tabs in the tab bar controller in the storyboard display 
the title Item. The proper title will be loaded at runtime from the Checklists 
and Diary storyboards. You can change the titles in Main.storyboard for your 
own reference, but it won't make any difference at runtime.

Focusing on a storyboard
Isn't it annoying when you have to tap through a bunch of scenes in your app, 
when you're just trying to test one single scene buried deep in the stack? With 
storyboard references you can isolate the scenes you're interested in into their own 
storyboard and instruct the app to launch straight into that. You'll do that now for 
the checklist item section.

In Checklists.storyboard highlight the Checklist Detail View Controller, Add 
Item Navigation Controller and Add Item View Controller scenes:

Select Editor\Refactor to Storyboard and name the new storyboard 
ChecklistDetail.storyboard. Ensure that the Group is still set to Checklists.

Just as you did for the Checklists storyboard, select the Checklist Detail View 
Controller scene in ChecklistDetail.storyboard, and use the Attributes 
Inspector to check Is Initial View Controller. The Checklist Detail View 
Controller should now have an arrow on its left to indicate it's the first scene in the 
storyboard.

Click on the Prepped project at the top of the project navigator, then click on 
Prepped target and choose the General tab. Change Main Interface to 
ChecklistDetail.storyboard:

iOS 9 by Tutorials Chapter 9: What's New in Storyboards?

raywenderlich.com 173



Build and run your app; you'll see the checklist detail scene loads first:

Where are the navigation and tab bar? Since the view controller is no longer 
embedded in a navigation or tab bar controller, you won't see those two elements 
while you're working on the items storyboard.

Note: This approach will fail if the initial view controller in the chosen 
storyboard requires data provided via a segue. In this project,  
ChecklistDetailViewController has already been set up to load initial sample 
data.

Views in the scene dock

iOS 9 by Tutorials Chapter 9: What's New in Storyboards?

raywenderlich.com 174



A lesser-known feature of storyboard scenes is the scene dock. Most people don't 
even notice it's there - did you? You'll find it at the top of the currently selected 
scene in a storyboard:

Out of the box, the scene dock contains references to the current view controller, 
the first responder, and any available unwind segues. But did you know you can add 
your own views to the scene dock? You've always been able to do so, but Xcode 7 
lets you design these attached views within Interface Builder.

Any views you add in the scene dock won't be added to your view controller's initial 
subviews array; instead, you can add IBOutlets to them and make use of them at 
runtime.

Selecting a checklist item in Prepped highlights its table row with a boring gray 
color. You will now perform the amazing feat of changing the color of the selected 
row with no code at all — thanks to the scene dock!

In ChecklistDetail.storyboard, select Checklist Detail View Controller and 
drag a view from the Object Library onto the scene dock:

The new view will appear just above the scene dock. You can add subviews and 
controls to these docked views, just as you would any other view.

Select the view you added and use the Attributes Inspector to change the 
background color of the view to #FFFAE8.

iOS 9 by Tutorials Chapter 9: What's New in Storyboards?

raywenderlich.com 175



The size of the view in the storyboard doesn't really matter, since it will be 
stretched automatically when it's used in the cell. However, if you want it to take up 
less room you can resize it by dragging its top, left and right edges.

In the document outline, Ctrl-drag from ChecklistItemCell to the new view. 
Choose selectedBackgroundView from the connections pop-up:

Build and run your app; tap any row, and it's highlighted with by your new view. 
Pretty neat — and without a stitch of code!

Note: This coloring method will only work for table views that don't have 
multiple selection enabled. Only one instance of the colored view is created, 
and it's shared between each cell in the table view. As such, it can only be 
applied to one cell at a time.

Conditional views using the scene dock
Often, you'll have a view that you only want to show under certain conditions. 
Designing a view like this amongst all the other views in a view controller was 
always rather difficult in storyboards. The advantage of having a view in the scene 
dock is that you can create it visually without interfering with the rest of your view 
controller's subviews. You can then add it to the view hierarchy in code when it's 
needed.

The checklist items in Prepped's sample data have notes accompanying them; 
you're now going to create a view to display an item's note. When you tap the table 
view row for an item, the row will expand to display the associated note. Tapping 
the row again or tapping a different row collapses the row and removes the note 
view from that row.

iOS 9 by Tutorials Chapter 9: What's New in Storyboards?

raywenderlich.com 176



Still in ChecklistDetail.storyboard, drag a new view onto the scene dock, next to 
the selected background view you created in the last section. Select the view, and 
use the Size Inspector to set its width to 320 and its height to 128.

Drag a label from the Object Library onto the new view and use the Attributes 
Inspector to change the label text to "Notes:". You may have to resize the label 
so that the text fits. Change the label's text color to #BB991E:

Next, drag a text view from the Object Library onto the new view. Remove its 
default Lorem ipsum text using the Attributes Inspector. Uncheck Behavior 
Editable and Selectable. Resize and rearrange the label and text views so they 
touch the edges of their container so that it looks like this:

You'll now connect this notes view to an IBOutlet in the view controller. Even though 
there are multiple cell instances on the screen at one time, there will be only one 
notes view instance at any time, so it won't be an issue to connect this view to an 
outlet.

With ChecklistDetail.storyboard open in the main editor, open 
ChecklistDetailViewController.swift in the assistant editor. You may have to 
close the document outline using the icon beneath the storyboard to get enough 
space:

Ctrl-drag from the new view to ChecklistDetailViewController to create an outlet 
for the view just below the existing checklist property. Ensure that you are 
dragging from the view's background, not from the text view or label. You can also 
drag from the view's icon in the scene dock.

iOS 9 by Tutorials Chapter 9: What's New in Storyboards?

raywenderlich.com 177



Name the outlet notesView and click Connect. The outlet will appear as a property 
in ChecklistDetailViewController.

Now Ctrl-drag from the text view to ChecklistDetailViewController to create 
another outlet just below the one you just made. Name the outlet notesTextView 
and click Connect.

Finally, it's time to write some code! :] You'll use another new feature of iOS 9, 
UIStackView, to add and remove the notes view from a cell with an animation.

Note: To learn more about UIStackView, be sure to check out chapter 7, 
"UIStackView & Auto Layout Changes", and chapter 8, "Intermediate 
UIStackView".

In ChecklistDetailViewController.swift, add the following method to the bottom 
of the main class implementation:

func addNotesViewToCell(cell: ChecklistItemTableViewCell) { 
  notesView.heightAnchor 
    .constraintEqualToConstant(notesViewHeight) 
    .active = true 
  notesView.clipsToBounds = true 

 
  cell.stackView.addArrangedSubview(notesView) 
}

This method ensures Auto Layout defines the the notes view's height, then adds it 
to the cell's stack view's arrangedSubviews collection. It also sets clipsToBounds to 
true to prevent the text view from spilling outside of the cell when you perform a 
swipe-to-delete.

The height needs to be set using Auto Layout since the stack view derives its own 
height from the heights of its arrangedSubviews. If you don't set the height here, 
the cell won't grow when you add the notes view.

Next, add the following method below addNotesViewToCell(_:):

func removeNotesView() { 
  if let stackView = notesView.superview as? UIStackView { 
    stackView.removeArrangedSubview(notesView) 
    notesView.removeFromSuperview()

iOS 9 by Tutorials Chapter 9: What's New in Storyboards?

raywenderlich.com 178



  } 
}

This removes the notes view from the stack view's arrangedSubviews as well from 
its set of visible subviews.

Next, you need to put these methods to use. Still in 
ChecklistDetailViewController.swift, find the table view delegate extension for 
ChecklistDetailViewController and add the following code:

override func tableView(tableView: UITableView, 
  didSelectRowAtIndexPath indexPath: NSIndexPath) { 

 
  // 1 
  guard let cell = tableView.cellForRowAtIndexPath(indexPath) 
    as? ChecklistItemTableViewCell else { return } 

 
  // 2 
  tableView.beginUpdates() 
  // 3 
  if cell.stackView.arrangedSubviews.contains(notesView) { 
    removeNotesView() 
  } else { 
    addNotesViewToCell(cell) 

 
    // 4 
    notesTextView.text = checklist.items[indexPath.row].notes 
  } 

 
  // 5 
  tableView.endUpdates() 
}

This method does the following:

1. Uses a Swift 2.0 guard statement to ensure that there is a valid cell of the right 
type at the selected index path before continuing.

2. Calls tableView.beginUpdates() to animate the changes to the cell's height.

3. Removes the notes view if the cell's stack view already contains it; otherwise, 
add the notes view.

4. Updates the notes text view to contain the notes for the selected checklist item.

5. Finally, calls tableView.endUpdates() to commit the changes.

Finally — don't forget that you changed the project's main interface earlier on. To 
change the project's main interface back to the main storyboard: click on the 
Prepped project in the project navigator, click on the Prepped target and then 
click on the General tab. Change Main Interface to Main.storyboard:

iOS 9 by Tutorials Chapter 9: What's New in Storyboards?

raywenderlich.com 179



Build and run your app; tap any cell and you should see the notes view appear. 
Using a stack view means you didn't need to set any frames manually or add any 
constraints to the cell other than the one that defines the height of the notes view. 
In previous versions of iOS, this would've been rather more tricky to implement.

Note: Being able to create a view in the scene dock is useful, but only if it is 
used solely from one view controller. If the supplementary view is reused 
throughout the app, you'd be better off using a XIB file that you instantiate in 
code.

Using multiple bar buttons
The final feature you'll add to your app is the ability to add and delete checklist 
items. The scene and code for adding a checklist item is already in the starter app, 
but it's not hooked up to anything yet. That's where you come in.

You need two new buttons on the checklist detail view controller's navigation bar: 
one for Add and one for Edit. Apps often achieve this by having an "Edit" button on 
the left side of the bar and and an "Add" button on the right of the bar. However, in

iOS 9 by Tutorials Chapter 9: What's New in Storyboards?

raywenderlich.com 180



Prepped the left side of the navigation bar is already being used for the standard 
navigation back button:

Prior to Xcode 7, you would've had to create a view with multiple buttons and add 
that view to the navigation bar. Xcode 7 brings another useful new feature to 
storyboards which makes this extra step unnecessary: the ability to add multiple 
buttons directly to a navigation bar.

In ChecklistDetail.storyboard select Checklist Detail View Controller in the 
document outline. Drag a bar button item from the Object Library onto the right 
hand side of the navigation bar.

The document outline will now show a group for left bar button items and a group 
for right bar button items:

Drag a second bar button item onto the right side of the navigation bar. Use the 
Attributes Inspector to change the System Item of the left of the two buttons to 
Edit. Change the other button's Image to AddButtonIcon:

Ctrl-drag from the Add button to the Add Item Navigation Controller scene 
and choose present modally from the pop-up menu. When the user taps the Add 
button the Add Item scene will appear.

You'll now need to connect a couple of unwind segues to return from the Add Item 
scene; these unwind methods have already been created for you in

iOS 9 by Tutorials Chapter 9: What's New in Storyboards?

raywenderlich.com 181



ChecklistDetailViewController.swift.

Still in ChecklistDetail.storyboard, select the Add Item View Controller scene 
in the Document Outline. Ctrl-drag from the Cancel button on the left side of the 
navigation bar to Exit on the scene dock. Choose 
cancelToChecklistDetailViewController: from the pop-up menu.

Ctrl-drag from the Save button on the right side of the navigation bar to Exit on 
the scene dock and choose saveToChecklistDetailViewController: from the pop-up 
menu.

Build and run your app; choose a checklist and try adding items with notes to the 
list. These won't be saved permanently, because the sample data is currently only 
held in-memory:

Now you just need to implement the code for the Edit button. First, add the 
following line to the bottom of viewDidLoad() in 
ChecklistDetailViewController.swift:

navigationItem.rightBarButtonItems![1] = editButtonItem()

This line replaces the Edit button with the view controller's built-in edit button item. 
It takes care of animating to and from an 'editing' state and changes the button's 
text from "Edit" to "Done" and back again as required.

Still in ChecklistDetailViewController.swift, find the table view data source 
extension. Add the following implementation inside the extension, below the 
existing methods:

override func tableView(tableView: UITableView, 
  commitEditingStyle editingStyle: UITableViewCellEditingStyle, 
  forRowAtIndexPath indexPath: NSIndexPath) { 

 
  if editingStyle == .Delete { 
    removeNotesView()

iOS 9 by Tutorials Chapter 9: What's New in Storyboards?

raywenderlich.com 182



    checklist.items.removeAtIndex(indexPath.row) 
 

    tableView.deleteRowsAtIndexPaths([indexPath], 
      withRowAnimation: .Fade) 
  } 
}

This method removes the notes view if it's present, removes the checklist from the 
view controller's checklist array and then tells the table view to delete the row.

Build and run your app; choose a check list, tap the Edit button and delete an item 
from the list. Tap the Done button to complete editing.

Where to go from here?
Your app to help you survive the apocalypse is done! All the new features you've 
covered in this chapter, including storyboard references and an enhanced scene 
dock should show you there are very few reasons not to use storyboards in your 
own projects.

Storyboards in Xcode 7 also have greater support for custom segues. We've got 
that covered in chapter 10 of this book: Custom Segues. If you decide to make 
Prepped a universal app, you can read more about supporting multitasking on the 
iPad in Chapter 5: Multitasking.

There are some useful sessions from WWDC 2015 that will help you as well:

• Session 215, What's New In Storyboards: apple.co/1Do4xn7

iOS 9 by Tutorials Chapter 9: What's New in Storyboards?

raywenderlich.com 183



• Session 407, Implementing UI Designs in Interface Builder: apple.co/1g60D7c

iOS 9 by Tutorials Chapter 9: What's New in Storyboards?

raywenderlich.com 184



10Chapter 10: Custom Segues
By Caroline Begbie

Segues have long been a familiar way to transition between scenes — all the way 
back to iOS 5. iOS 7 introduced custom view controller transitions to support 
custom, interactive transitions between views. iOS 9 takes custom transitions even 
further with custom segues that let you make a complete separation between your 
transition animation and view controller code.

A small but important change is that segues are now retained during modal or 
popover presentations of scenes; segues instantiate when presenting a new scene 
and are held in memory until you dismiss the scene view controller. This means you 
can move all your transition's animation and adaptivity code into a segue class and 
reuse that segue in any storyboard. When you dismiss the modal scene, the unwind 
transition will use the presenting segue's transition.

This chapter will show you how to do the following:

• Create a custom segue

• Animate a custom transition within the segue

• Make your segue reusable within navigation and tab controllers

You'll need some basic knowledge of storyboards and segues, but if you understood 
the previous chapter "What's New In Storyboards?", consider yourself well 
prepared.

Getting started
The sample app for this chapter is PamperedPets, a simple pet-minding app that, 
when complete, will display a list of pets to mind and their details:

raywenderlich.com 185



Explore your starter project for a bit to see how it works. Run the app; you'll see a 
single scene showing the photo, address and feeding instructions for the star of 
your show: Bubbles the goldfish.

Note: The project will throw a few warnings related to the Storyboard. Don't 
panic — you'll hook up the disconnected storyboards later in the chapter.

Have a look at Main.storyboard; it has a number of pre-created scenes, but you'll 
start working with the Animal Detail and Animal Photo scenes:

There aren't any transitions yet - it's your job to add some awesome transitions and 
make this app shine. And to get you hooked, there may be some fish jokes before 
you fin-ish :].

What are segues?
Segues describe transitions between scenes; they show up as the arrows between

iOS 9 by Tutorials Chapter 10: Custom Segues

raywenderlich.com 186



view controller scenes. There are several types of segues:

• Show: Pushes a scene from a navigation controller.

• Show Detail: Replaces a scene detail when in a UISplitViewController.

• Present Modally: Presents a scene on top of the current scene.

• Popover: Presents a scene as a popover on the iPad or full screen on the iPhone.

Note: Relationships between child view controllers embedded in a container 
view are also shown as arrows on the storyboard, but these types of segues 
can't be customized.

Segues have always been either modal and popover or custom. But in iOS 9, you 
can use the underlying segue type with your custom segue instead of having to 
define the segue from scratch:

This chapter has you customizing modal segues alone.

A simple segue
Even though you might have used them before, to fully appreciate how segues 
work you'll first create a basic modal segue, which you will customize later in this 
chapter.

You'll invoke the segue when the user taps the photo in the 
AnimalDetailViewController scene. The segue will then present the 
AnimalPhotoViewController scene as a modal controller showing a larger photo.

There are two main parts to this task:

1. Setting up the segue. prepareForSegue(_:sender:) triggers when you activate 
the segue; you'll set up the destination view controller with the necessary data 
in this method.

2. Performing the destination controller's transition animation. You'll use the 
default transition initially, but you'll customize it in just a bit.

iOS 9 by Tutorials Chapter 10: Custom Segues

raywenderlich.com 187



In Main.storyboard, select the Animal Detail View Controller scene. Drag a 
Tap Gesture Recognizer from the Object Library onto the Pet Photo Thumbnail 
of Bubbles the fish. This hooks up the tap gesture to the image view.

Next, Ctrl-drag from the Tap Gesture Recognizer in the document outline to 
Animal Photo View Controller. Choose present modally from the popup menu.

That's all it takes to define a segue; now you've just to name the segue and set up 
AnimalPhotoViewController so it shows the correct photo.

Select the segue arrow between the Animal Detail View Controller and Animal 
Photo View Controller scenes; use the Attributes Inspector to assign it the 
identifier PhotoDetail:

Override prepareForSegue(_:sender:) in AnimalDetailViewController.swift to set 
up the destination controller data as shown below:

override func prepareForSegue(segue: UIStoryboardSegue, 
  sender: AnyObject?) { 
  if segue.identifier == "PhotoDetail" { 
    let controller = segue.destinationViewController 
      as! AnimalPhotoViewController 
    controller.image = imageView.image 
  } 
}

Here you give the destination controller — in this case, AnimalPhotoViewController 
— the image to display.

Run the app and tap the photo; you should see a larger photo slide up the screen:

iOS 9 by Tutorials Chapter 10: Custom Segues

raywenderlich.com 188



Right now, you have no way to close this screen. You'll need to create a tap gesture 
to perform an unwind segue.

Add the following method to AnimalDetailViewController in 
AnimalDetailViewController.swift:

@IBAction func unwindToAnimalDetailViewController( 
  segue:UIStoryboardSegue) { 
  // placeholder for unwind segue 
}

For a simple unwind segue, this method doesn't require any code. Any method with 
a signature of @IBAction func methodName(segue:UIStoryboardSegue) is considered 
a marker to which a Storyboard segue can unwind.

In Main.storyboard, select the Animal Photo View Controller scene. Drag a 
Tap Gesture Recognizer from the Object Library onto Pet Photo View. Next, 
Ctrl-drag from your new Tap Gesture Recognizer in the document outline to 
Exit, then select unwindToAnimalDetailViewController: from the popup:

Run the app again and tap the photo; the larger photo appears and a simple tap

iOS 9 by Tutorials Chapter 10: Custom Segues

raywenderlich.com 189



unwinds it back to the first scene:

Time to dissect what's happened here. When you tap the thumbnail on the detail 
view, the tap gesture recognizer initiates a modal segue from 
AnimalDetailViewController to AnimalPhotoViewController. 
AnimalDetailViewController is the source view controller, while 
AnimalPhotoViewController is the destination view controller. The segue holds a 
reference to both the source and destination view controllers:

The segue sets the transitioning delegate of the destination view controller behind 
the scenes and also sets up its presentation according to the current size class.

The source view controller method prepareForSegue(_:sender:) sets up the data for

iOS 9 by Tutorials Chapter 10: Custom Segues

raywenderlich.com 190



the destination view controller.

The system then turns control over to the destination view controller. The 
destination view controller then invokes its transition delegate which sets off the 
default Cover Vertical animation.

That covers the basic actions behind a segue. Now you can take the working segue 
and customize it with a segue subclass.

Your custom segue library
A segue exists for the entire duration of a modal or popover presentation, so it's 
really easy to swap in segues from your library without touching your 
UIViewController code. The segue can be responsible for both presentation and 
dismissal transition animations. The starter app contains a pre-made custom segue 
called DropSegue to give you an idea of how easy changing segues can be.

In Main.storyboard, select the PhotoDetail segue between the Animal Detail and 
the Animal Photo view controllers. Change Segue Class to DropSegue as shown 
below:

Run the app and tap the photo; you can see the segue and unwind transition 
animations have changed completely — and you didn't change a single line of code. 
In fish terms, that was reely easy! :]

Want to try another segue modification? Try changing the segue class to FadeSegue, 
which is included in the starter project.

Once you've built up a library of custom segues, you only need to select the desired 
segue from your library on your storyboard and you're done — no code required.

Creating a custom segue
You'll now create your own custom segue to replace DropSegue. As is befitting a fish, 
you'll create a Scale transition animation. :] The image below shows the transition 
you'll be creating:

iOS 9 by Tutorials Chapter 10: Custom Segues

raywenderlich.com 191



The hardest part of creating a custom segue is the terminology. The protocols you'll 
be working with have rather long names:

• UIViewControllerTransitioningDelegate:  The custom segue adopts this 
protocol to vend the animator objects upon presentation and dismissal.

• UIViewControllerAnimatedTransitioning: The animator objects adopt this 
protocol to describe the animations.

• UIViewControllerContextTransitioning: This context holds details about the 
presenting and presented controllers and views; you pass this to the animator 
objects to provide them the context within which to perform the animation.

If you haven't used custom transition animations before, you might be floundering 
a bit at these long method names. :] Once you've used these methods a few times 
they'll become quite familiar.

Before you start, take a moment to review the steps required to create an animated 
segue:

1. Subclass UIStoryboardSegue and set the segue as the destination controller's 
transitioning delegate.

2. Create the presenting and dismissing animator classes.

3. Define the animation and its duration to be used in the animators.

4. Instruct the segue which animator classes to use for presentation and dismissal.

5. Finally, use the segue in the storyboard.

The sections below walk you neatly through each step.

Subclass UIStoryboardSegue
You'll first create a new UIStoryboardSegue subclass. This segue will adopt the 
transitioning delegate protocol, allowing it to specify a custom transition animation.

Create a new Cocoa Touch class named ScaleSegue.swift that subclasses

iOS 9 by Tutorials Chapter 10: Custom Segues

raywenderlich.com 192



UIStoryboardSegue. Add the following extension just below the ScaleSegue class:

extension ScaleSegue: UIViewControllerTransitioningDelegate { 
 

}

The UIViewControllerTransitioningDelegate protocol lets the segue vend 
presentation and dismissal animators for use in its transitions. Later, you'll 
implement a protocol method in this extension that returns the custom animator 
you're going to build in the next section.

For now, in the ScaleSegue class, override perform() as follows:

override func perform() { 
  destinationViewController.transitioningDelegate = self 
  super.perform() 
}

Here you set the destination view controller's transitioning delegate so that 
ScaleSegue will be in charge of vending animator objects. When creating a modal or 
popover segue as you do here, you must call perform() on super so that UIKit can 
take care of the presentation.

In previous iOS versions, you might have put the transition animation in perform(), 
but now you can use this transitioning delegate to decouple the animation from the 
segue.

Create the animator
Add the following new animator class at the end of ScaleSegue.swift:

class ScalePresentAnimator : NSObject, 
  UIViewControllerAnimatedTransitioning { 

 
}

You'll use ScalePresentAnimator to present the modal view controller. You'll create a 
dismissal animator in a bit, but for now your segue will use the default vertical 
cover transition for the dismissal. Note that Xcode will complain this doesn't yet 
conform to the UIViewControllerAnimatedTransitioning protocol; you're just about 
to fix that.

Note: It's often easier to keep the animators in the same file as their 
respective segue as they're usually closely related. If you want to separate the 
segues from the animators simply move the animators into their own file.

Define the animation
ScalePresentAnimator conforms to UIViewControllerAnimatedTransitioning. This

iOS 9 by Tutorials Chapter 10: Custom Segues

raywenderlich.com 193



protocol requires that you specify both the duration and the animation to be used 
for the transition.

First, you have to specify the duration of the animation. Add the following method 
to ScalePresentAnimator:

func transitionDuration( 
  transitionContext: UIViewControllerContextTransitioning?) 
  -> NSTimeInterval { 
  return 2.0 
}

Most transitions will have a duration of about 0.3 to 0.5 seconds, but this uses a 
duration of two seconds so that you can see the effect clearly.

Now for the actual animation: add the following method to ScalePresentAnimator:

func animateTransition(transitionContext: 
  UIViewControllerContextTransitioning) { 

 
  // 1. Get the transition context to- controller and view 
  let toViewController = transitionContext 
    .viewControllerForKey( 
      UITransitionContextToViewControllerKey)! 
  let toView = transitionContext 
    .viewForKey(UITransitionContextToViewKey) 

 
  // 2. Add the to- view to the transition context 
  if let toView = toView { 
    transitionContext.containerView()?.addSubview(toView) 
  } 

 
  // 3. Set up the initial state for the animation 
  toView?.frame = .zero 
  toView?.layoutIfNeeded() 

 
  // 4. Perform the animation 
  let duration = transitionDuration(transitionContext) 
  let finalFrame = transitionContext 
    .finalFrameForViewController(toViewController) 

 
  UIView.animateWithDuration(duration, animations: { 
    toView?.frame = finalFrame 
    toView?.layoutIfNeeded() 
  }, completion: { 
    finished in 
    // 5. Clean up the transition context 
    transitionContext.completeTransition(true) 
  }) 
}

Taking each numbered comment in turn:

1. You extract the "to" controller and view from the given transition context. Note 
that the controller is implicitly unwrapped; there will always be a "to" controller, 
but there may not always be a "to" view. You'll see why later.

iOS 9 by Tutorials Chapter 10: Custom Segues

raywenderlich.com 194



2. Add the "to" view to the transition context containerView where the animation 
takes place. Left to its own devices, the framework doesn't add the "to" view to 
the view hierarchy until the end of the transition. In order to see the new view 
appear, you need to add it to the hierarchy in your code.

3. The initial state for the "to" view frame is a rectangle of zero size in the top left-
hand corner of the screen. When you change the frame of a view, you should 
always call layoutIfNeeded() to update the view's constraints.

4. The animation block is a simple animation from the zero rectangle to the final 
frame calculated by the transition context.

5. The transition context must always clean up at the end of the animation; calling 
completeTransition(_:) finalizes the view hierarchy and the layout of all views.

Set the animator in the segue
Add the following delegate method to ScaleSegue's 
UIViewControllerTransitioningDelegate extension:

func animationControllerForPresentedController( 
  presented: UIViewController, 
  presentingController presenting: UIViewController, 
  sourceController source: UIViewController) 
  -> UIViewControllerAnimatedTransitioning? { 
  return ScalePresentAnimator() 
}

This simply tells the segue to use your ScalePresentAnimator during presentation.

Use the segue in the storyboard
That takes care of all the actual code; all that's left is to set your custom segue in 
the storyboard. In Main.storyboard, locate the PhotoDetail segue and change 
Segue Class to ScaleSegue. Also, change Presentation to Form Sheet to improve 
the appearance of the segue on the iPad:

Run your application and tap the fish; the image will scale from the top left of the 
screen to take up the full screen on the iPhone, while on the iPad the image scales

iOS 9 by Tutorials Chapter 10: Custom Segues

raywenderlich.com 195



up to a form sheet:

Tap the large photo to dismiss it via the standard dismiss animation.

Hey – you've completed your first custom segue! There's a bit of tweaking to do, 
for sure, but the current state of ScaleSegue.swift will serve as a blueprint for all 
animated segue transitions from here on out. You're going to need a dismissal 
animator and some more animation code, and your implementation of 
animateTransition(_:) can become quite complicated sometimes, but the basic 
process will be the same.

Take a moment to browse through example custom segue code in 
DropSegue.swift and FadeSegue.swift. Even though the animations are 
different, the basic structure of both segues is exactly the same as ScaleSegue.

Passing data to animators
Most users would expect the small photo to scale directly to a large one when they 
tap it. But how do you indicate to the animator object which view to scale? You 
don't have a direct reference to the source image view as everything is decoupled.

Protocols are the perfect tool for this problem. The Animal Detail view controller can 
adopt a protocol to set which view to scale; the animator object can then use that 
protocol's scaling view without knowing anything else about the source view 
controller.

Create the following protocol in ScaleSegue.swift:

protocol ViewScaleable { 
  var scaleView: UIView { get } 
}

Any view controller can use this segue by adopting ViewScaleable and creating a 
scaleView property containing the view to scale.

Add the following extension to the very end of 
AnimalDetailViewController.swift:

iOS 9 by Tutorials Chapter 10: Custom Segues

raywenderlich.com 196



extension AnimalDetailViewController: ViewScaleable { 
  var scaleView: UIView { return imageView } 
}

AnimalDetailViewController now conforms to ViewScaleable; this sets the 
protocol's property to imageView, which in this instance is your fish image.

Find the following code in animateTransition(_:) of ScaleSegue.swift:

let toViewController = transitionContext 
  .viewControllerForKey(UITransitionContextToViewControllerKey)!

Add the following code directly after the above line:

let fromViewController = transitionContext 
  .viewControllerForKey( 
    UITransitionContextFromViewControllerKey)! 
let fromView = transitionContext 
  .viewForKey(UITransitionContextFromViewKey)

This gets references for the "from" view controller and for the "from" view. Again, 
the view controller is implicitly unwrapped while the "from" view is optional.

Note: Make absolutely sure you use the correct key variables. It's frustratingly 
easy to use UITransitionContextToViewControllerKey instead of 
UITransitionContextToViewKey. Code completion makes it all too easy to pick 
the wrong variable or to mix up the "from" and "to".

Still in animateTransition(_:), replace:

toView?.frame = .zero

with the following:

var startFrame = CGRect.zero 
if let fromViewController = fromViewController 
  as? ViewScaleable { 
    startFrame = fromViewController.scaleView.frame 
} else { 
  print("Warning: Controller \(fromViewController) does not " + 
    "conform to ViewScaleable") 
} 
toView?.frame = startFrame

Instead of starting the "to" view frame animation at the top left, you start the 
animation at the "from" view controller's scaleView frame property.

Notice again that the animator knows nothing about the source view controller, 
other than that it conforms to the ViewScaleable protocol, and therefore has a 
scaleView property. This is a great, decoupled software design!

iOS 9 by Tutorials Chapter 10: Custom Segues

raywenderlich.com 197



You'll see a compile warning noting you're not using fromView; you'll take care of 
this in a moment.

Run your app; the segue now scales the original view as expected:

Things are going swimmingly! :] There are only a few more tweaks left; the 
following sections show you how all the views work together.

Working with the view hierarchy
You've been using transitionContext.viewForKey(_:) in animateTransition(_:) to 
grab the "to" view. But why didn't you just use the destination controller's view 
property?

The transition context handles presentations differently based on the size class. The 
modal form sheet for a horizontal, regular-sized display is wrapped in a 
presentation layer that provides the dimming view and rounds the corners of the 
form sheet. In contrast, a modal controller on a compact display takes up the full 
screen.

Therefore, on all iPhones, with the exception of the iPhone 6 Plus in landscape, 
viewForKey(UITransitionContextToViewKey) returns the same view as the 
destination controller's view because no presentation layer exists. However, the 
destination controller is wrapped in the presentation layer for iPads and the iPhone 
6 Plus in landscape; if you referred to the destination controller's view in this case, 
you'd scale the destination view — not the presentation layer.

You can try this yourself. Find the following in animateTranstion(_:) of 
ScaleSegue.swift:

let toView = transitionContext 
  .viewForKey(UITransitionContextToViewKey)

And modify it as follows:

let toView = toViewController.view

iOS 9 by Tutorials Chapter 10: Custom Segues

raywenderlich.com 198



Run your app on the iPhone 6 in portrait mode, and then run it on an iPad. You 
won't see any change on the iPhone, but on the iPad the form sheet scales in from 
the top left and looks very weird — fishy, even! :]

Revert the code to its original state:

let toView = transitionContext 
  .viewForKey(UITransitionContextToViewKey)

Similarly, the transition context's "from" view could be different to the source view 
controller's view. In a compact sized view, the transition context's "from" view will 
be the same as the source view controller's view, but in a normal-sized view the 
"from" view would be nil.

You can take advantage of this behavior in your transition. The transition on 
compact-sized screens with full-screen modal views would look better if the "from" 
view faded out during the scale animation. The transition can remain the same on 
normal-sized screens since the modal scene is a form sheet and therefore leaves 
the source view controller in situ in the background.

Find the following in animateTransition(_:), inside the animation block at the end 
of the method:

toView?.frame = finalFrame 
toView?.layoutIfNeeded()

Add the following code immediately after the code above:

fromView?.alpha = 0.0

This fades out the "from" view.

Next, find the following in the completion block:

transitionContext.completeTransition(true)

Add the following code just before the code above:

fromView?.alpha = 1.0

This resets the alpha of the "from" view. If you don't do this, the alpha of the 
"from" view will remain at 0 and you'll just see a black screen when you when you 
dismiss the modal scene.

Run the app on both the iPhone 6 and any iPad; the "from" view on the iPad will 
fade out, but the same view on the iPad won't be affected because fromView is nil:

iOS 9 by Tutorials Chapter 10: Custom Segues

raywenderlich.com 199



You've created a great-looking custom segue with an animated transition! But don't 
forget what was promised at the beginning of this chapter — the ability to add 
multiple pets.

Handling embedded view controllers
That seems like an easy task; you just need to set the table view of all pets as the 
initial view controller of the application.

In Main.storyboard, select the Navigation Controller on the very left of the 
storyboard. Use the Attributes Inspector to tick Is Initial View Controller:

iOS 9 by Tutorials Chapter 10: Custom Segues

raywenderlich.com 200



Run your application; you'll see a list of all pets to be minded. Select any pet in the 
list and tap its photo:

Oh no! The animation scales up from the wrong spot! Look in the debug console 
and you'll see the debug statement you added earlier indicating the presenting view 
controller doesn't conform to ViewScalable.

That's because the view controller is now embedded within a navigation controller, 
making that the presenting view controller — not AnimalDetailViewController.

Fortunately, this is easy to fix. Simply check whether the presenting view controller 
is a navigation controller; if so, use the navigation controller's top view controller as 
the presenting view controller.

Find the following code in the ScalePresentAnimator class of  ScaleSegue.swift, at 
the top of animateTransition(_:):

let fromViewController = transitionContext 
  .viewControllerForKey( 
    UITransitionContextFromViewControllerKey)!

Replace the above code with the following:

var fromViewController = transitionContext 
  .viewControllerForKey( 
    UITransitionContextFromViewControllerKey)! 
if let fromNC = fromViewController as? UINavigationController { 
  if let controller = fromNC.topViewController { 
    fromViewController = controller

iOS 9 by Tutorials Chapter 10: Custom Segues

raywenderlich.com 201



  } 
}

Here you replace the transition context's "from" controller only if the presenting 
view controller is a navigation controller.

Run the application again, and the scale transition will work as expected:

When building your reusable segues, expect that they could be used by container 
controllers. For example, the presenting controller in this case could be a 
UITabBarController, so you could add similar code to handle that case as well.

Now that you're an expert on custom segues, why don't you try these few extra 
challenges to stretch yourself?

Completing the scale segue dismissal
Your first challenge is to complete the scale segue. You'll create the dismiss 
animator and set the segue to use it.

The code will look very similar to the presenting animator from this chapter, except 
that the "from" view controller is now the modal view controller, and the "to" view 
will be the view from which it was presented. The animator object will need to add

iOS 9 by Tutorials Chapter 10: Custom Segues

raywenderlich.com 202



the "to" view back to the hierarchy during the transition, so you'll need the code 
below in order to insert the "to" view at the correct place in the hierarchy:

if let fromView = fromView, 
  toView = toView { 
  transitionContext.containerView()? 
    .insertSubview(toView, belowSubview: fromView) 
}

You can find the full solution to this challenge in the sample code included with this 
chapter.

Adding a swipe segue
Your next challenge is to create a completely new reusable segue called SwipeSegue 
that uses the default transition to present an up or down swipe to dismiss. The 
modal scene should slide away in the direction of the swipe.

Here are some tips:

• The SwipeSegue class will be almost the same as the ScaleSegue class.

• Add a new animator object similar to the Scale dismissal animator that moves 
the presented frame either off the top of the screen or off the bottom of the 
screen, depending on which way you swipe.

• Add a new protocol ViewSwipeable that stores the swipe direction.

• Add two swipe gestures, one up and one down, to the AnimalPhotoViewController 
image view. Attach an @IBAction handler method to the gestures to store the 
swipe direction in the view controller.

• Add an extension to the view controller for the ViewSwipeable protocol that 
returns the swipe direction.

• Change the existing PhotoDetail segue to use your new Swipe segue.

Once again, the solution is in the accompanying sample code.

Where to go from here?
Retaining segues during a modal and popover presentation is a small change that 
has huge consequences. Previously, view controllers had to know about the 
transitions to use along with the style to use when presenting. Now the segue can 
take full responsibility for both elements. You can create any segue with its own 
transition animation and reuse that segue in any app you wish. You can also easily 
swap out segues to see which ones look best in your particular app — without 
changing any code!

You can read more on custom segues in Chapter 3, "Custom View Controller

iOS 9 by Tutorials Chapter 10: Custom Segues

raywenderlich.com 203



Transitions" of iOS 7 by Tutorials. For an excellent reference book on all types of 
animations in iOS, check out iOS Animations by Tutorials.

Congratulations on completing this chapter; with your newly learned transition 
skills, your apps will be truly fin-tastic! :]

iOS 9 by Tutorials Chapter 10: Custom Segues

raywenderlich.com 204



11Chapter 11: UIKit Dynamics
By Aaron Douglas

iOS applications live in the hands of the people using them. Until somebody taps, 
swipes and enjoys your work, it sits in suspended animation on a device. Users 
have come to expect our mobile apps to react to touch and to provide some 
semblance of "realness". Your app's success depends in part on how much the user 
enjoys its responsiveness.

iOS 7 introduced the idea of flatness in user interfaces rather than the heavily 
skeuomorphic concepts we previously experienced. Instead of heavy interfaces, 
users bond with apps through animations and reactions to touch that mirror real-
world physics.

UIKit Dynamics is a 2D physics-inspired animation system designed with a high-
level API, allowing you to simulate the physical experiences in your animations and 
view interactions. Originally introduced in iOS 7, UIKit Dynamics saw very few 
changes in iOS 8.

iOS 9 is a different matter. With this update we get a bunch of exciting new things 
like gravity and magnetic fields, non-rectangular collision bounds and additional 
attachment behaviors.

Note: This chapter will primarily focus on the new features in UIKit Dynamics 
for iOS 9. Check out chapter 2, "UIKit Dynamics and Motion Effects" of iOS 7 
by Tutorials for a full introduction to the original APIs.

Getting started
UIKit Dynamics is definitely a technology you have to learn through playing. Make 
sure you're using an Xcode Playground to follow along and watch the changes live!

raywenderlich.com 205



Create the playground
Open Xcode, select File\New\Playground...  and enter UIKit Dynamics for the 
name and set Platform to iOS. Click Next. Choose a location for your playground 
and click Create.

Once the playground opens, replace the contents with:

import UIKit 
import XCPlayground 

 
let view = UIView(frame: CGRect(x: 0, y: 0, 
  width: 600, height: 600)) 
view.backgroundColor = UIColor.lightTextColor() 
XCPShowView("Main View", view: view) 

 
let whiteSquare = UIView(frame: CGRect(x: 100, y: 100, 
  width: 100, height: 100)) 
whiteSquare.backgroundColor = UIColor.whiteColor() 
view.addSubview(whiteSquare) 

 
let orangeSquare = UIView(frame: CGRect(x: 400, y: 100, 
  width: 100, height: 100)) 
orangeSquare.backgroundColor = UIColor.orangeColor() 
view.addSubview(orangeSquare)

You just created a view and added two subviews while giving each a different color, 
but you don't see anything!

Find it by switching to the assistant editor; simply press Option + Command + 
Enter to bring it up quickly. You should see something like this now:

iOS 9 by Tutorials Chapter 11: UIKit Dynamics

raywenderlich.com 206



Note: XCPShowView(_:) is responsible for the magic of rendering your view in 
the assistant editor. Sometimes Xcode 7 doesn't re-run your Playground after 
making a change. You can force Xcode to re-run by selecting the menu item 
Editor\Execute Playground.

Add the following line after the second subview:

let animator = UIDynamicAnimator(referenceView: view)

UIDynamicAnimator is where all the physics voodoo happens. The dynamic animator 
is an intermediary between your dynamic items — UIView subviews in this case — 
the dynamic behaviors you create, and the iOS physics engine. It provides a 
context for calculating the animations before rendering.

Dynamic behaviors encapsulate the physics for a particular desired effect like 
gravity, attraction or bounce. Dynamic animators keep track of where all of your 
items are during the animation process. The referenceView you passed in is the 
canvas where all the animation takes place. All of the views you animate must be 
subviews of the reference view.

iOS 9 by Tutorials Chapter 11: UIKit Dynamics

raywenderlich.com 207



Your first behavior
UIDynamicBehavior is the base class that describes an effect for one or more 
dynamic items, like your subviews, and how they take part in the animation. Apple 
provides a bunch of behaviors, but the easiest one to start with is 
UIGravityBehavior. It's perfect since developers are like cats — we can't help it that 
we like to see things fall.

Add the following line:

animator.addBehavior(UIGravityBehavior(items: [orangeSquare]))

This adds a basic gravity behavior to the orange square. See it fall off the screen in 
the assistant editor?

That took two lines of code. You should be feeling amazed and empowered right 
now.

Now you'll make the box stop at the bottom of the screen.

let boundaryCollision = UICollisionBehavior(items: 
  [whiteSquare, orangeSquare]) 
boundaryCollision.translatesReferenceBoundsIntoBoundary = true 
animator.addBehavior(boundaryCollision)

Adding a collision behavior and setting translatesReferenceBoundsIntoBoundary to 
true makes the border of the reference view turn into a boundary. Now when the 
orange square falls, it stops and bounces at the bottom of the view.

By default, all dynamic items get a set of behaviors that describe how heavy they 
are, how much they slow down due to movement, how they respond to collisions 
and several other physical traits. UIDynamicItemBehavior describes these traits.

Change the way the orange square responds to the collision:

let bounce = UIDynamicItemBehavior(items: [orangeSquare])

iOS 9 by Tutorials Chapter 11: UIKit Dynamics

raywenderlich.com 208



bounce.elasticity = 0.6 
bounce.density = 200 
bounce.resistance = 2 
animator.addBehavior(bounce)

A dynamic item’s density, along with its size, determines its "mass" when it 
participates with other behaviors.  Elasticity changes how much an item bounces in 
a collision – the default is 0.0. Resistance represents a frictional force — reducing 
linear velocity until the item comes to rest.

Take a moment to play around with these values and observe how the animation 
changes.

Add this line to the end of the playground:

animator.setValue(true, forKey: "debugEnabled")

This is a new undocumented feature in iOS 9 that turns on a visual debugging 
mode. It was mentioned in the 2015 WWDC session What's New in UIKit Dynamics 
and Visual Effects (apple.co/1IO1nF3). Although this was described as only being 
available through the LLDB console, it transpires that you can also enable it via key-
value coding using method shown. Debug mode shows cool things like attachments, 
collision locations and visualizations of field effects.

You'll notice the orange box, when animating, shows a blue border, which visually 
describes the collision borders for the item.

Leave this debug mode turned on for the remainder of this tutorial.

Behaviors
There are a number of types of behaviors to play around with:

• UIAttachmentBehavior – This specifies a connection between two dynamic items 
or a single item and an anchor point. New to iOS 9 are variants for a sliding 
attachment, a limit attachment that acts like a piece of rope, a fixed attachment 
that fuses two items, and a pin attachment that creates the effect of two items 
connected by a piece of rope hanging over a pin.

• UICollisionBehavior – As you've seen already, this behavior declares that an 
item has a physical interaction with other items. It can also make the reference 
view turn its border into a collision border with 
translatesReferenceBoundsIntoBoundary.

• UIDynamicItemBehavior – This is a collection of physical properties for a dynamic 
item that are common to multiple behavior types. You've seen friction, density 
and resistance already. In iOS 9, you can anchor an item to a spot and also 
change the charge for an item when it's participating in a magnetic or electric 
field behavior.

iOS 9 by Tutorials Chapter 11: UIKit Dynamics

raywenderlich.com 209



• UIFieldBehavior – Totally new in iOS 9, this adds a number of physical field 
behaviors, including electric, magnetic, dragging, vortex, radial and linear 
gravity, velocity, noise, turbulence and spring fields.

• UIGravityBehavior – Adds a gravity field to your views so they react by falling in 
a particular direction, with constant acceleration.

• UIPushBehavior – Applies a force to dynamic items, pushing them around.

• UISnapBehavior – Moves a dynamic item to a specific point with a springy 
bounce-like effect.

• Composite behaviors – You can combine behaviors together for easy packaging 
and reuse.

MOAR playground
You're probably eager to get lost in the playground with all these new "toys", and 
now you'll get your chance. Add this code to your playground:

let parentBehavior = UIDynamicBehavior() 
 

let viewBehavior = UIDynamicItemBehavior(items: [whiteSquare]) 
viewBehavior.density = 0.01 
viewBehavior.resistance = 10 
viewBehavior.friction = 0.0 
viewBehavior.allowsRotation = false 
parentBehavior.addChildBehavior(viewBehavior)

Here you've defined a parent behavior, which doesn't do anything, then you added 
some physical properties to the white square. Carry on by adding this code:

let fieldBehavior = UIFieldBehavior.springField() 
fieldBehavior.addItem(whiteSquare) 
fieldBehavior.position = CGPoint(x: 150, y: 350) 
fieldBehavior.region = UIRegion(size: CGSizeMake(500, 500)) 
parentBehavior.addChildBehavior(fieldBehavior)

This is one of the new field behaviors. A spring field will drag items caught inside its 
region to the center. The further out they are, the harder it is to pull them in, so 
they'll bounce around the center for a while before settling. Note that you've added 
this spring behavior to the parent behavior.

Now add the composite behavior to the dynamic animator:

animator.addBehavior(parentBehavior)

Did you see the bouncy snag of the white square? Re-execute the Playground if you 
didn't. Also, check out the little red lines; this is debug mode showing you the 
direction and strength of the spring field:

iOS 9 by Tutorials Chapter 11: UIKit Dynamics

raywenderlich.com 210



UIFieldBehavior is one of the new behaviors in iOS 9 and arguably the coolest one. 
Spring fields are great for positioning an element because the region's center draws 
it in while it bounces into place. Give the white square a little time-delayed push to 
understand the effect:

let delayTime = dispatch_time(DISPATCH_TIME_NOW, 
  Int64(2 * Double(NSEC_PER_SEC))) 

 
dispatch_after(delayTime, dispatch_get_main_queue()) { 
  let pushBehavior = UIPushBehavior(items: [whiteSquare], 
    mode: .Instantaneous) 
  pushBehavior.pushDirection = CGVector(dx: 0, dy: -1) 
  pushBehavior.magnitude = 0.3 
  animator.addBehavior(pushBehavior) 
}

Now you can really see the power of the spring field! The UIPushBehavior gave the 
white square a nudge upwards and it sprung right back to the center of the field. 
Push direction is a vector and setting y to -1 means up.

The magnitude of the push behavior is set to a small number because the density is 
set to a small value — the normal push magnitude would kick that box out of the 
field.

Try removing the magnitude, and you'll notice it does exit the field; however, the 
collision boundary bounces it back into play.

iOS 9 by Tutorials Chapter 11: UIKit Dynamics

raywenderlich.com 211



CHALLENGE: Try attaching the orange box to a point with a 
UIAttachmentBehavior behavior. Use the init(_:attachedToAnchor:) method to 
anchor it to the point. Check out the end of the accompanying playground for 
the solution. You might like to play around with the playground (that's kind of 
the point!) to see what other effects you can create.

Applying dynamics to a real app
Playing around with UIKit Dynamics in a Playground is fun — but it's not real until 
it's in an app. UIKit Dynamics is really designed for non-game applications. In 
reality, your application may only need dynamics in a few key places to give it that 
extra "pop" you're after. A little goes a long way!

Meet DynamicPhotoDisplay
For this part, you'll work with simple photo viewing application. The user sees a 
scrolling list of photo thumbnails and taps them to see a full screen version.

You'll find the starter project as well as the final solution in the resources folder for 
this chapter.  Open it in Xcode and build and run it. You should see the following:

iOS 9 by Tutorials Chapter 11: UIKit Dynamics

raywenderlich.com 212



You'll notice the full screen view of a photo shows a bit of metadata. The user might 
encounter a photo where that metadata box obscures a part of the photo.

Your job is to make that box movable, but it should snap into place at the middle-
bottom or middle-top of the image and give a cushy feel when it does.

The project's structure is simple. The photos are displayed with a 
UICollectionViewController using a custom UICollectionViewCell. When the user 
taps a cell, standard UIView animations make the corresponding full photo view fall 
in from the top of the view.

Sticky behavior
You're going to create a new composite behavior to encapsulate the springy-
cushiony feel for the metadata box.

Create a new class by clicking on File\New\File..., select Swift File and name it 
StickyEdgesBehavior.swift. Replace the contents of that file with the following:

import UIKit 
 

class StickyEdgesBehavior: UIDynamicBehavior { 
  private var edgeInset: CGFloat 
  private let itemBehavior: UIDynamicItemBehavior 
  private let collisionBehavior: UICollisionBehavior 
  private let item: UIDynamicItem 
  private let fieldBehaviors = [ 
    UIFieldBehavior.springField(), 
    UIFieldBehavior.springField() 
  ] 
   
  init(item: UIDynamicItem, edgeInset: CGFloat) { 
    self.item = item 
    self.edgeInset = edgeInset 
     
    collisionBehavior = UICollisionBehavior(items: [item]) 
    collisionBehavior.translatesReferenceBoundsIntoBoundary = 
      true 
     
    itemBehavior = UIDynamicItemBehavior(items: [item]) 
    itemBehavior.density = 0.01 
    itemBehavior.resistance = 20 
    itemBehavior.friction = 0.0 
    itemBehavior.allowsRotation = false 
     
    super.init() 
     
    addChildBehavior(collisionBehavior) 
    addChildBehavior(itemBehavior) 

 
    for fieldBehavior in fieldBehaviors { 
      fieldBehavior.addItem(item) 
      addChildBehavior(fieldBehavior) 
    } 
  }

iOS 9 by Tutorials Chapter 11: UIKit Dynamics

raywenderlich.com 213



}

The composite behavior starts as a subclass of UIDynamicBehavior, which really has 
no behaviors on its own (make sure you've entered this and not 
UIDynamicItemBehavior).

init takes the item you're adding the behavior to, as well as an edge inset to make 
it customizable in the future. Then you create a UIDynamicItemBehavior to make the 
item lighter and more resistant, and also a UICollisionBehavior so it can collide 
with the reference view. Lastly, you add two UIFieldBehavior instances, one for the 
top-middle and one for the bottom-middle.

Add this helper enum just above the class declaration:

enum StickyEdge: Int { 
  case Top = 0 
  case Bottom 
}

This helps identify the edge in the array of spring fields.

Add the following to the class:

func updateFieldsInBounds(bounds: CGRect) { 
   
  //1 
  guard bounds != CGRect.zero else { return } 
  let h = bounds.height 
  let w = bounds.width 
  let itemHeight = item.bounds.height 

 
  //2 
  func updateRegionForField(field: UIFieldBehavior, 
    _ point: CGPoint) { 

 
    let size = CGSize(width: w - 2 * edgeInset, 
      height: h - 2 * edgeInset - itemHeight) 
    field.position = point 
    field.region = UIRegion(size: size) 
  } 
   
  //3 
  let top = CGPoint(x: w / 2, y: edgeInset + itemHeight / 2) 
  let bottom = CGPoint(x: w / 2, 
    y: h - edgeInset - itemHeight / 2) 

 
  //4 
  updateRegionForField(fieldBehaviors[StickyEdge.Top.rawValue], 
    top) 
  updateRegionForField( 
    fieldBehaviors[StickyEdge.Bottom.rawValue], bottom) 
  } 
}

This function will be called upon initial display of the view or if the view is ever

iOS 9 by Tutorials Chapter 11: UIKit Dynamics

raywenderlich.com 214



resized. Its job is to set up the size and position of each of the sticky spring fields. 
Here's a deeper breakdown:

1. Makes sure the bounds are non-zero or that layout has occurred, and extracts 
some important values into constants.

2. Defines an inner function to update a particular field, given a location. It centers 
the field on the location and sizes it so it's inset from the left and right edges 
and takes up enough vertical space to reach the middle of the screen.

3. Defines the points that will be the center of each field.

4. Updates the top and bottom fields based on the new values.

Next, add the following property to the class:

var isEnabled = true { 
  didSet { 
    if isEnabled { 
      for fieldBehavior in fieldBehaviors { 
        fieldBehavior.addItem(item) 
      } 
      collisionBehavior.addItem(item) 
      itemBehavior.addItem(item) 
    } else { 
      for fieldBehavior in fieldBehaviors { 
        fieldBehavior.removeItem(item) 
      } 
      collisionBehavior.removeItem(item) 
      itemBehavior.removeItem(item) 
    } 
  } 
}

This helper property turns off the behavior in the animator during certain lifecycle 
events that happen while moving the item.

Finally, add this method:

func addLinearVelocity(velocity: CGPoint) { 
  itemBehavior.addLinearVelocity(velocity, forItem: item) 
}

Build your application to make sure it compiles correctly. Disappointingly the app 
won't look any different yet :[

The method you just added will help snap the metadata box into place with a 
velocity. Now you need some velocity. To get that, you'll need to add the pan 
gesture recognizer, which is next.

Open FullPhotoViewController.swift and add the following below the existing 
@IBOutlet properties:

private var animator: UIDynamicAnimator!

iOS 9 by Tutorials Chapter 11: UIKit Dynamics

raywenderlich.com 215



var stickyBehavior: StickyEdgesBehavior! 
 

private var offset = CGPoint.zero

Inside of viewDidLoad() add the following:

let gestureRecognizer = UIPanGestureRecognizer(target: self, 
  action: "pan:") 
tagView.addGestureRecognizer(gestureRecognizer) 

 
animator = UIDynamicAnimator(referenceView: containerView) 
stickyBehavior = StickyEdgesBehavior(item: tagView, 
  edgeInset: 8) 
animator.addBehavior(stickyBehavior)

This adds the pan gesture recognizer, the dynamic animator to the container view 
and your new sticky behavior to the animator. It also sets the debug flag so you can 
see what's happening.

Now add the following method to the view controller:

override func viewDidLayoutSubviews() { 
  super.viewDidLayoutSubviews() 

 
  stickyBehavior.isEnabled = false 
  stickyBehavior.updateFieldsInBounds(containerView.bounds) 
}

Whenever the main view's layout changes, the sticky behavior adjusts its bounds.

Finally, add the following method to the view controller:

func pan(pan:UIPanGestureRecognizer) { 
  var location = pan.locationInView(containerView) 
   
  switch pan.state { 
  case .Began: 
    let center = tagView.center 
    offset.x = location.x - center.x 
    offset.y = location.y - center.y 
     
    stickyBehavior.isEnabled = false 
     
  case .Changed: 
    let referenceBounds = containerView.bounds 
    let referenceWidth = referenceBounds.width 
    let referenceHeight = referenceBounds.height 

 
    let itemBounds = tagView.bounds 
    let itemHalfWidth = itemBounds.width / 2.0 
    let itemHalfHeight = itemBounds.height / 2.0 

 
    location.x -= offset.x 
    location.y -= offset.y 

iOS 9 by Tutorials Chapter 11: UIKit Dynamics

raywenderlich.com 216



    location.x = max(itemHalfWidth, location.x) 
    location.x = min(referenceWidth - itemHalfWidth, location.x) 
    location.y = max(itemHalfHeight, location.y) 
    location.y = min(referenceHeight - itemHalfHeight, 
      location.y) 

 
    tagView.center = location 
           
  default: () 
  } 
}

When the pan gesture begins, the sticky behavior is shut off so the animations 
won't interfere with the movement. It records the offset of where the user tapped 
and uses it during the gesture when the location changes. The metadata view's 
location is updated in the .Changed case. The calculations done on the location x 
and y limit the movement of metadata view to inside of the container view.

Build and run the application. The metadata box is now draggable, thanks to the 
pan gesture recognizer, but it just stays where you put it. Seems the sticky 
behavior is not enabled.

Go back into the pan method and add the following case, before the default: case:

case .Cancelled, .Ended: 
  let velocity = pan.velocityInView(containerView) 
  stickyBehavior.isEnabled = true 
  stickyBehavior.addLinearVelocity(velocity)

Build and run. Now the velocity of your finger as it lifts from the screen will transfer 
into the sticky behavior, so the view will continue for a moment before being 
dragged back to the closest field.

For a better understanding of how the behaviors work, turn on debug mode by 
adding the following to viewDidLoad():

animator.setValue(true, forKey: "debugEnabled")

iOS 9 by Tutorials Chapter 11: UIKit Dynamics

raywenderlich.com 217



Notice how the lines shorten and nearly disappear in the two zones where the 
metadata box can live. Seeing is believing!

Full photo with a thud
For your next trick, you're going to update the way the full photo view animates 
while appearing. Right now, the app uses a UIView animation to animate the 
bounds change when re-centering the image, you're going to update it to make it 
feel more dynamic.

You'll effectively do the same action with UIKit Dynamics — animate the change of 
the center of the view, but this time you'll use gravity and a collision.

Open PhotosCollectionViewController.swift, and add the following to the top of 
the class:

var animator: UIDynamicAnimator!

Add this line inside of viewDidLoad():

animator = UIDynamicAnimator(referenceView: self.view)

Now that you've created the animator, swap out the contents of showFullImageView 
with the following:

func showFullImageView(index: Int) { 
  //1 
  let delayTime = dispatch_time(DISPATCH_TIME_NOW, 
    Int64(0.75 * Double(NSEC_PER_SEC)))

iOS 9 by Tutorials Chapter 11: UIKit Dynamics

raywenderlich.com 218



  dispatch_after(delayTime, dispatch_get_main_queue()) { 
    let doneButton = UIBarButtonItem(barButtonSystemItem: .Done, 
      target: self, action: "dismissFullPhoto:") 
    self.navigationItem.rightBarButtonItem = doneButton 
  } 
   
  //2 
  fullPhotoViewController.photoPair = photoData[index] 
  fullPhotoView.center = CGPoint(x: fullPhotoView.center.x, 
    y: fullPhotoView.frame.height / -2) 
  fullPhotoView.hidden = false 
   
  //3 
  animator.removeAllBehaviors() 
   
  let dynamicItemBehavior = UIDynamicItemBehavior(items: 
    [fullPhotoView]) 
  dynamicItemBehavior.elasticity = 0.2 
  dynamicItemBehavior.density = 400 
  animator.addBehavior(dynamicItemBehavior) 
   
  let gravityBehavior = UIGravityBehavior(items: 
    [fullPhotoView]) 
  gravityBehavior.magnitude = 5.0 
  animator.addBehavior(gravityBehavior) 
   
  let collisionBehavior = UICollisionBehavior(items: 
    [fullPhotoView]) 
  let left = CGPoint(x: 0, y: fullPhotoView.frame.height + 1.5) 
  let right = CGPoint(x: fullPhotoView.frame.width, 
    y: fullPhotoView.frame.height + 1.5) 
  collisionBehavior.addBoundaryWithIdentifier("bottom", 
    fromPoint: left, toPoint: right) 
  animator.addBehavior(collisionBehavior) 
}

Here's a breakdown of that block:

1. Adds the Done button to the nav bar after a short delay. This lets the dynamic 
animator do most of its animations first before updating the nav bar.

2. Sets the image and repositions the full photo view above the thumbnails view, 
just off-screen.

3. Removes any existing behaviors from the animator, and then adds the gravity, 
item and collision behaviors.

Build and run the app. Tap a photo and notice the bounce when the view hits the 
bottom of the screen. The collision behavior demonstrated here is a bit different 
from previous examples; instead of using the reference view's boundary, this 
creates a single line of collision at the bottom. It's positioned just off the screen so 
the bounce doesn't leave a visible gap.

There are a lot of knobs and levers to change when dealing with behaviors. Play 
around with the UIDynamicItemBehavior and UIGravityBehavior properties to see if

iOS 9 by Tutorials Chapter 11: UIKit Dynamics

raywenderlich.com 219



you can find a bounce behavior you like!

Where to go from here
You've now played with most of the behaviors available to you in UIKit Dynamics, 
but there's more properties and options to be explored.

At the time of writing this chapter, Apple hasn't created a guide for UIKit Dynamics, 
so you'll want to spend some quality time with the documentation on each of the 
classes to learn more about the finer controls available to you.

Also, check out these videos from the past WWDCs:

• 2013 - #206 - Getting Started with UIKit Dynamics - apple.co/1J1IoNB

• 2013 - #217 - Exploring Scroll Views in iOS 7 - apple.co/1gQGtPM

• 2013 - #221 - Advanced Techniques with UIKit Dynamics - apple.co/1T1N2Qf

• 2014 - #216 - Building Adaptive Apps with UIKit - apple.co/1hoAQbr

• 2015 - #229 - What's New in UIKit Dynamics and Visual Effects - apple.co/
1IO1nF3

Challenges
Now it's time for you to take a whack at adding some dynamic goodness to the app. 
You'll find the solutions in the final version of this app — but give yourself a chance 
before you go reverse engineering!

iOS 9 by Tutorials Chapter 11: UIKit Dynamics

raywenderlich.com 220



Challenge #1
Instead of using UIView animations to dismiss the view after tapping the done 
button, use UIKit Dynamics. You'll want the view to be pushed off-screen upwards 
at a slow enough rate for the user to experience it. Replace the contents of 
dismissFullPhoto with the behaviors.

Hints:

• A UIPushBehavior behavior will give the view the kick it needs.

• A UIDynamicItemBehavior can adjust the photo view's properties so it moves the 
way you want.

• A UIAttachmentBehavior sliding behavior can stop the view once it gets off 
screen.

• You can use the UIDynamicAnimator delegate method dynamicAnimatorDidPause to 
hide the view after it has animated off-screen.

Challenge #2
Add an interaction to the app that allows you to swipe up on the full photo view to 
dismiss it — it's very similar to the lock screen photo behavior in iOS. You should be 
able to lift the full photo view up, but it should drop back down if you didn't lift it 
high enough. A good swipe upwards should fling it off the screen.

Hints:

• You'll need to create a new composite behavior like you did with the 
StickyEdgesBehavior earlier. This should have a dynamic item behavior to give 
density and elasticity, a collision behavior to stop it from falling off the bottom of 
the screen, and a gravity behavior to make it drop. You should also allow it to 
take a linear velocity like the sticky edges behavior did.

• The swipe and drag up behavior will exist in PhotosCollectionViewController 
along with a UIPanGestureRecognizer. The setup will look similar to the pan 
gesture recognizer used to move the metadata view around.

• If the view is moved up less than half way, it should bounce back down. Take the 
velocity into account as well to determine if there is enough movement to dismiss 
the view. Try playing around with the camera on the lock screen for an example.

• If you do dismiss the view, you may as well reuse the code you wrote earlier for 
pushing the view off the screen. Refactor that into a separate method so you can 
use it in both cases.

iOS 9 by Tutorials Chapter 11: UIKit Dynamics

raywenderlich.com 221



12Chapter 12: Contacts
By Evan Dekhayser

A long time ago, in an operating system far, far away, developers accessed a user's 
contacts on their iOS device with a C API and had to deal with the pain of using 
ancient structs and Core Foundation types in an object-oriented world.

Actually, this wasn't so long ago and far away — this antiquated Address Book 
framework was still in use as of iOS 8!

Apple deprecated the Address Book framework in iOS 9 — hoorah! In its stead, they 
introduced two powerful object-oriented frameworks to manage user contacts: 
Contacts and ContactsUI. This chapter will show you how to use these 
frameworks to do the following:

1. Use the ContactsUI framework to display and select contacts.

2. Add contacts to the user's contact store.

3. Search the user’s contacts and filter using NSPredicate.

Along the way, you'll learn about best practices for dealing with the user’s contacts 
and how to get the most out of the Contacts framework.

Getting started
In this chapter, you'll create the RWConnect app, which is a social network for iOS 
developers. The app has a friends list to help you keep in touch with all the great 
developers you know via email.

Note: You should use the simulator instead of a real device to test your app in 
this chapter; you'll have to reset your device in order to test the app 
permissions, and you don't want to reset your personal iPhone, do you?

raywenderlich.com 222



Open the starter project RWConnect-Starter and run it on the iPhone 6 
Simulator; you'll see a table view with four friends listed, each with a name, 
picture, and email:

You'll add more features to your app as you progress through the chapter to make 
your friends list more...friendly! :]

Time to look at the code behind the app. Open Friend.swift; it contains a struct 
Friend, which represents each friend in your app. Take note of defaultContacts(), 
which returns the contacts you see in the table.

Now open FriendsViewController.swift; you can see that you create the 
friendsList property with the results of defaultContacts() to retrieve the sample 
friends at launch.

The UITableViewDataSource methods in the view controller are straightforward; the 
table has one section with a cell for each friend in friendsList. Each cell displays 
the email address and photo of the respective friend.

Your first task is to use the ContactsUI framework to display your friends' contact 
information.

Displaying a contact
Open Main.storyboard and select the table view cell in FriendsViewController.

In the Attributes Inspector, open the dropdown menu next to Accessory and

iOS 9 by Tutorials Chapter 12: Contacts

raywenderlich.com 223



select Disclosure Indicator as shown below:

The table view cell now displays an arrow to indicate there's more information 
available about this user:

Before you can display the friend to the user, you'll need to convert the Friend 
instance into a CNContact.

Convert friends to CNContacts
The Contacts framework represents contacts as instances of CNContact, which 
contain the contact's properties such as givenName, familyName, emailAddresses, and 
imageData.

Open Friend.swift and add the following import statement:

import Contacts

Now, add this extension with the computed property contactValue:

extension Friend { 
  var contactValue: CNContact { 
    // 1 
    let contact = CNMutableContact() 
    // 2 
    contact.givenName = firstName 
    contact.familyName = lastName 
    // 3 
    contact.emailAddresses = [ 
      CNLabeledValue(label: CNLabelWork, value: workEmail) 
    ] 
    // 4 
    if let profilePicture = profilePicture { 
      let imageData = 
        UIImageJPEGRepresentation(profilePicture, 1) 
      contact.imageData = imageData 
    } 
    // 5 
    return contact.copy() as! CNContact 
  }

iOS 9 by Tutorials Chapter 12: Contacts

raywenderlich.com 224



}

Here's a line-by-line explanation of the code above:

1. You create an instance of CNMutableContact with no arguments.

2. Next, you update the contact's properties from the equivalent properties of the 
Friend instance.

3. emailAddresses is an array of CNLabeledValue objects. This means each email 
address has a corresponding label. There are many types of labels available for 
contacts, but in this case you're sticking with CNLabelWork.

4. If the Friend has a profile picture, set the contact's image data to the profile 
picture's JPEG representation.

5. Finally, return an immutable copy of the contact.

Note: CNMutableContact is the mutable counterpart of CNContact. While the 
properties of CNContact are read-only, the properties of CNMutableContact can 
be changed. For this reason, you create a mutable contact, set its properties, 
then return an immutable copy when done. Note that CNContact, like most 
immutable objects, is thread-safe, while CNMutableContact is not.

With this method implemented, you can convert any Friend to a CNContact. Now 
that you can convert from one type to another, you can move on to displaying the 
contact.

Showing the contact's information
Switch to FriendsViewController.swift and add the following import statements:

import Contacts 
import ContactsUI

Also, add the following extension to the bottom of the file:

//MARK: UITableViewDelegate 
extension FriendsViewController { 
  override func tableView(tableView: UITableView, 
    didSelectRowAtIndexPath indexPath: NSIndexPath) { 
      tableView.deselectRowAtIndexPath(indexPath, 
        animated: true) 
      // 1 
      let friend = friendsList[indexPath.row] 
      let contact = friend.contactValue 
      // 2 
      let contactViewController = 
        CNContactViewController(forUnknownContact: contact) 
      contactViewController.navigationItem.title = "Profile" 
      contactViewController.hidesBottomBarWhenPushed = true

iOS 9 by Tutorials Chapter 12: Contacts

raywenderlich.com 225



      // 3 
      contactViewController.allowsEditing = false 
      contactViewController.allowsActions = false 
      // 4 
      navigationController?.pushViewController 
        (contactViewController, animated: true) 
  } 
}

Here's what you're doing in the code above:

1. Use the index path of the selected cell to get the selected friend and convert it 
to an instance of CNContact.

2. Instantiate CNContactViewController; this is from the ContactsUI framework and 
displays a contact onscreen. You instantiate the view controller using its 
forUnknownContact initializer because the contact isn't part of the user's contact 
store. Also, you customize the behaviors of the navigation bar and tab bar to 
make the app look just right.

3. You set allowsEditing and allowsActions to false so the user can only view the 
contact's information.

4. Finally, push this view controller onto the navigation stack.

Build and run your app; tap on one of the table view cells and the ContactsUI 
framework will display the friend's information as shown below:

What good is a friends list if you can't add more friends? You can use the 
ContactsUI class CNContactPickerViewController to let your user select contacts to 
use in the app.

Picking your friends
Open Main.storyboard and go to FriendsViewController. In the Object library, 
drag a Bar Button Item to the right side of the navigation bar, as shown below:

iOS 9 by Tutorials Chapter 12: Contacts

raywenderlich.com 226



In the Attributes inspector, click in the text field next to Image and type 
AddButton:

Switch to the Assistant Editor and change it to Automatic, as shown below:

In the storyboard, select the bar button item you just dragged in, then Control-
Drag into the FriendsViewController implementation in the Assistant Editor. 
Create a new action named addFriends that accepts a UIBarButtonItem as a 
parameter:

When the user presses the Add button, you'll present the 
CNContactPickerViewController so the user can import their friends from their 
contacts list.

To do this, add the following code to addFriends(_:):

let contactPicker = CNContactPickerViewController() 
presentViewController(contactPicker, animated: true, 
  completion: nil)

Build and run your app; press the Add button in the navigation bar and you'll see 
your CNContactPickerViewController appear:

iOS 9 by Tutorials Chapter 12: Contacts

raywenderlich.com 227



Currently, the user cannot import contacts. When the user selects a contact, the 
picker view controller just shows more information about the contact.

In order to fix this problem, you need to take advantage of the methods of 
CNContactPickerDelegate.

Conforming to CNContactPickerDelegate
The CNContactPickerDelegate protocol has five optional methods, but you'll be 
interested in contactPicker(_:didSelectContacts:); when you implement this 
method, CNContactPickerViewController knows you want to support multiple 
selection.

Create the following extension of FriendsViewController in 
FriendsViewController.swift:

extension FriendsViewController: CNContactPickerDelegate { 
  func contactPicker(picker: CNContactPickerViewController, 
    didSelectContacts contacts: [CNContact]) { 

 
  } 
}

FriendsViewController now conforms to CNContactPickerDelegate. You have an 
empty implementation of contactPicker(_:didSelectContacts:), which you'll fill 
with code that does the following things:

1. Creates new Friend instances from CNContacts

iOS 9 by Tutorials Chapter 12: Contacts

raywenderlich.com 228



2. Adds the new Friend instances to your friends list

To create a Friend from a CNContact, you'll need a new initializer for Friend that 
takes a CNContact instance as a parameter.

Creating a friend from a CNContact
Open Friend.swift and add the following initializer in its extension:

init(contact: CNContact){ 
  firstName = contact.givenName 
  lastName = contact.familyName 
  workEmail = contact.emailAddresses.first!.value as! String 
  if let imageData = contact.imageData{ 
    profilePicture = UIImage(data: imageData) 
  } else { 
    profilePicture = nil 
  } 
}

When you set workEmail you force unwrap the first email address found. Because 
RWConnect uses email to keep in touch with your friends, all of your contacts must 
have email addresses. If force unwrapping like this makes you twitchy, don't worry 
— you'll fix it later! :]

Adding new friends to the friends List
Return to FriendsViewController.swift and add the following lines to 
contactPicker(_:didSelectContacts:):

let newFriends = contacts.map { Friend(contact: $0) } 
for friend in newFriends { 
  if !friendsList.contains(friend){ 
    friendsList.append(friend) 
  } 
} 
tableView.reloadData()

This code transforms each contact the picker returns into a Friend and adds it to 
the friends list. To show these changes, you simply tell the table view to reload.

Go back to addFriends(_:), and add the following line just before the call to 
presentViewController(_:animated:completion:):

contactPicker.delegate = self

This oft-forgotten line assigns the friends view controller as at the contact picker's 
delegate.

Build and run your project; you can now select multiple contacts:

iOS 9 by Tutorials Chapter 12: Contacts

raywenderlich.com 229



Press the Done button, and you'll have a few more friends than you did before!

However, if you select contacts that don't have an associated email address, the 
app will crash. :[

iOS 9 by Tutorials Chapter 12: Contacts

raywenderlich.com 230



Recall that you force-unwrapped the first email from the contact's email addresses 
in the init(contact:) initializer of Friend; a missing email address means the app 
will crash. Is there a way to make sure that the user can only select contacts with 
emails? You betcha!

Add the following line before presentViewController(_:animated:completion:):

contactPicker.predicateForEnablingContact = 
  NSPredicate(format: "emailAddresses.@count > 0")

The contact picker's predicateForEnablingContacts let you decide which contacts 
can be selected. In this case, you want to restrict the list of contacts to those with 
email addresses.

Build and run your app again; press the Add button and you'll see that any contacts 
without email addresses are grayed out:

Now that you can create friends from your contacts, it's only natural to want to 
create contacts from your friends! Jump right on to the next section to discover 
how!

Saving friends to the user's contacts
When the user slides left on a table view cell, you'll show a "Create Contact" action 
to add a friend to the user's contact store.

iOS 9 by Tutorials Chapter 12: Contacts

raywenderlich.com 231



Add the following code inside the table view delegate extension you added to 
FriendsViewController.swift:

override func tableView(tableView: UITableView, 
  editActionsForRowAtIndexPath indexPath: NSIndexPath) 
  -> [UITableViewRowAction]? { 
  let createContact = UITableViewRowAction(style: .Normal, 
    title: "Create Contact") { rowAction, indexPath in 
    tableView.setEditing(false, animated: true) 
    // TODO: Add the contact 
  } 
  createContact.backgroundColor = BlueColor 
  return [createContact] 
}

The above code creates a single row action for the table view cells named "Create 
Contact" with a blue background color.

Build and run your app; slide left on a table view cell and you'll see the row action 
appear like so:

Before you access or modify a user's contacts, it's imperative that you request their 
permission first; your apps should always respect the user's privacy settings. For 
this reason, permission functionality is built into the Contacts framework. You can't 
access the user's contacts without their permission.

Note: When you used CNContactPickerViewController, you didn't have to ask 
for the user's permission. Why? CNContactPickerViewController is out-of-
process, meaning that your app has no access to the contacts shown in the 
picker, and the user doesn't have to grant permission for this action. If the 
user selects contacts and presses Done, they've given you implicit permission 
to use their contacts.

Asking for permission
To ask the user for permission, replace the TODO comment in the row action you

iOS 9 by Tutorials Chapter 12: Contacts

raywenderlich.com 232



created earlier with the following code:

let contactStore = CNContactStore() 
contactStore.requestAccessForEntityType(CNEntityType.Contacts) { 
  userGrantedAccess, _ in 

 
}

Here you create a CNContactStore instance; this represents the user's address book 
which contains all their contacts. Once you initialize the contact store, you call the 
instance method requestAccessForEntityType(:completion:).

The completion handler takes a boolean value that indicates whether the user 
granted permission to access their contacts.

The system presents an alert asking the user for permission the first time you call 
this method. Each time after that, you call the completion with the user's stored 
preference. The only way the user can revoke their permission is through the 
Settings app.

You'll first handle the condition when the user does not grant permission. The best 
practice in this case is to explain the issue to the user and give them the option to 
open the Settings app.

Add the following method to FriendsViewController:

func presentPermissionErrorAlert() { 
  dispatch_async(dispatch_get_main_queue()) { 
    let alert = 
      UIAlertController(title: "Could Not Save Contact", 
        message: "How am I supposed to add the contact if " + 
        "you didn't give me permission?", 
        preferredStyle: .Alert) 

 
    let openSettingsAction = UIAlertAction(title: "Settings", 
      style: .Default, handler: { alert in 
        UIApplication.sharedApplication() 
          .openURL( 
            NSURL(string: UIApplicationOpenSettingsURLString)!) 
    }) 
    let dismissAction = UIAlertAction(title: "OK", 
      style: .Cancel, handler: nil) 
    alert.addAction(openSettingsAction) 
    alert.addAction(dismissAction) 
    self.presentViewController(alert, animated: true, 
      completion: nil) 
  } 
}

The above method presents an alert to the user indicating the app can't save the 
contact. The first UIAlertAction opens the Settings app using the 
UIApplicationOpenSettingsURLString key.

iOS 9 by Tutorials Chapter 12: Contacts

raywenderlich.com 233



Note: The request access completion block executes on "an arbitrary queue", 
so you wrap this method in a dispatch_async block to ensure the UI code 
executes on the main thread. The documentation recommends that you work 
with the contacts store on the handler thread and dispatch to the main thread 
for UI changes.

Return to the requestAccessForEntityType(:completion:) completion handler and 
add the following code:

guard userGrantedAccess else { 
  self.presentPermissionErrorAlert() 
  return 
}

The guard statement checks that the user granted permission; if not, you display an 
alert using presentPermissionErrorAlert().

Build and run the app in the simulator; select the Create Contact row action for a 
contact and you'll be prompted for permission to access your contacts:

Select Don't Allow; you'll see your custom alert presented like so:

Press Settings on your alert and you'll be taken to the Settings app where you can 
modify your permission if you so desire:

The guard statement neatly handles the case where the user does not grant 
permission. The next logical step is to handle the case where the user grants 
permission and save the friend to the user's contact store.

iOS 9 by Tutorials Chapter 12: Contacts

raywenderlich.com 234



Saving friends to contacts
Add the following method to FriendsViewController:

func saveFriendToContacts(friend: Friend) { 
  // 1 
  let contact = friend.contactValue.mutableCopy() 
    as! CNMutableContact 
  // 2 
  let saveRequest = CNSaveRequest() 
  // 3 
  saveRequest.addContact(contact, 
    toContainerWithIdentifier: nil) 
  do { 
    // 4 
    let contactStore = CNContactStore() 
    try contactStore.executeSaveRequest(saveRequest) 
    // Show Success Alert 
  } catch { 
    // Show Failure Alert 
  } 
}

Taking each numbered comment in turn:

1. First, addContact of the Contacts framework expects a mutable contact so you 
have to convert the Friend parameter into a CNMutableContact.

2. Next, create a new CNSaveRequest; you use this object to communicate new, 
updated, or deleted contacts to the CNContactStore.

3. Then tell CNSaveRequest you want to add the friend to the user's contacts.

4. Finally, try to execute the save request. If the method succeeds, then execution 
continues and you can assume the save request succeeded; otherwise, you 
throw an error.

Note: The catch block doesn't create a custom alert for every possible thrown 
error; instead, you use a generic error message. To handle specific error 
cases, you catch a CNErrorCode. These aren't documented, but their 
declarations exist for your perusal in CNError.h.

Now you need to notify the user of the state of their request.

Add the following code to display the alert at // Show Success Alert:

dispatch_async(dispatch_get_main_queue()) { 
  let successAlert = UIAlertController(title: "Contacts Saved", 
    message: nil, preferredStyle: .Alert) 
  successAlert.addAction(UIAlertAction(title: "OK", 
    style: .Cancel, handler: nil)) 
  self.presentViewController(successAlert, animated: true,

iOS 9 by Tutorials Chapter 12: Contacts

raywenderlich.com 235



    completion: nil) 
}

Next, add the following code at // Show Failure Alert:

dispatch_async(dispatch_get_main_queue()) { 
  let failureAlert = UIAlertController( 
    title: "Could Not Save Contact", 
    message: "An unknown error occurred.", 
    preferredStyle: .Alert) 
  failureAlert.addAction(UIAlertAction(title: "OK", 
    style: .Cancel, handler: nil)) 
  self.presentViewController(failureAlert, animated: true, 
    completion: nil) 
}

Return to tableView(_:editActionsForRowAtIndexPath:) and add the following code 
after the guard block:

let friend = self.friendsList[indexPath.row] 
self.saveFriendToContacts(friend)

Here you pass the friend to add into your save method.

Since you've already granted permission for this app, you'll need to reset the 
simulator to force the app to prompt for permissions again. This way, you can test 
all possible permission situations in your app. Select iOS Simulator/Reset 
Content and Settings... as shown below:

Build and run your app; slide left on any contact and tap OK when prompted for 
permission. The app should show the following confirmation:

Now press Command-Shift-H in the simulator and open the Contacts app. You'll 
see your friend appear in your contact list:

iOS 9 by Tutorials Chapter 12: Contacts

raywenderlich.com 236



Sharp-eyed readers will note you can add the same contact multiple times. You'll 
add some code to prevent against that.

Checking for existing contacts
Add the following to the top of saveFriendToContacts(_:):

//1 
let contactFormatter = CNContactFormatter() 
//2 
let contactName = contactFormatter 
  .stringFromContact(friend.contactValue)! 
//3 
let predicateForMatchingName = CNContact 
  .predicateForContactsMatchingName(contactName) 
//4 
let matchingContacts = try! CNContactStore() 
  .unifiedContactsMatchingPredicate(predicateForMatchingName, 
    keysToFetch: []) 
//4 
guard matchingContacts.isEmpty else { 
  dispatch_async(dispatch_get_main_queue()) { 
    let alert = UIAlertController( 
      title: "Contact Already Exists", message: nil, 
      preferredStyle: .Alert) 
    alert.addAction(UIAlertAction(title: "OK", style: .Cancel, 
      handler: nil)) 
    self.presentViewController(alert, animated: true, 
      completion: nil) 
  } 
  return 
}

iOS 9 by Tutorials Chapter 12: Contacts

raywenderlich.com 237



It looks like a lot of detailed code, but it breaks down quite simply:

1. The CNContactFormatter class generates locale-aware display names from stored 
contacts, much as NSDateFormatter does with dates.

2. Next, you use the formatter to create the name string based on the contact's 
given and family name, as well as any titles and suffixes.

3. You then create a predicate for searching the contacts store based on the name 
string generated in the previous step.

4. CNContactStore lets you query the user's contacts for those matching the 
predicate. In this case, you used CNContact's 
predicateForContactsMatchingName(_:) method to create an NSPredicate that 
finds contacts having a name similar to the provided string.

5. You only save the contact if there aren't any matches; the guard statement 
stops the process in the event of name matches.

Note: unifiedContactsMatchingPredicate(_:keysToFetch:) has a keysToFetch 
parameter that you ultimately ignore by passing in an empty array. However, if 
you were to try to access or modify the fetched contacts, you'd see an error 
thrown as the keys weren't fetched. For example, if you wanted to access the 
fetched contacts' first names you'd have to add CNContactGivenNameKey to 
keysToFetch.

Build and run your app; try to add a contact that already exists and the app 
prevents you from doing so.

You're done! You've dramatically improved RWConnect — and learned a ton about 
the new Contacts framework in the process!

Where to go from here?
At this point you've learned just about everything you need to use the Contacts and 
ContactsUI frameworks in your own apps. However, there is more to learn about 
the two frameworks if you want to dig even deeper.

To learn more, be sure to visit the Contact framework guide at apple.co/1LuCodW.

You can also check out the WWDC 2015 Session 223: Introducing the Contacts 
Framework for iOS and OS X apple.co/1MQVNZV.

iOS 9 by Tutorials Chapter 12: Contacts

raywenderlich.com 238



13Chapter 13: Testing
By Pietro Rea

"How did this feature break again?" If you've been writing code for any length of 
time, you've probably asked yourself that question at least once. As any 
experienced programmer will tell you, writing code "right" the first time is difficult. 
And even if you get it right the first time, as you add code to your project, you can 
inadvertently introduce bugs to parts of your app that previously worked flawlessly.

Wouldn't it be great if you could add little "scaffolds" as you code? In theory, these 
would prevent your code from failing after you've moved on to something else. At 
the very least, they would give you easy access to important bits of logic and tell 
you if something broke.

The good news is you can do this. You can write tests!

Testing is a proven software engineering practice that helps make software robust 
and maintainable, and it should be a part of every developer's toolkit. Today it's 
easy to add unit tests to an iOS project, but it wasn't always that way.

Over the past few years, Apple has made it easier to test iOS apps. Here's a short 
recap of what's happened in the world of iOS testing since iOS 7:

• With Xcode 5, Apple introduced the first version of the XCTest framework, a 
more modern implementation of the previous SenTestingKit framework. It laid 
the groundwork for future features and better Xcode integration, including the 
test navigator.

• When Xcode 6 came out, Apple beefed up XCTest by adding asynchronous and 
performance testing.

• This year, Xcode 7 introduced code coverage reports and UI testing.

Before Xcode 7, you couldn't use XCTest to test your user interface or write 
functional tests, you had to turn to third-party libraries such as KIF, Frank or 
Calabash to fill this gap. Unfortunately, none of these libraries are integrated with 
Xcode, so you can sometimes find yourself fighting an uphill battle.

raywenderlich.com 239



This chapter focuses on the latest additions to XCTest. If you're interested in UI 
testing but don't know much about XCTest, you should first read Chapter 11, "Unit 
Testing in Xcode 5" in iOS 7 by Tutorials and Chapter 29, "What's New with 
Testing?" in iOS 8 by Tutorials.

Swift 2.0 also has an important feature related to testing that you'll read about in 
this chapter: the addition of @testable imports. This solves issues related to tests 
and access control that many developers faced with earlier versions of Swift. But 
enough preamble...are you ready to write some tests?

Getting started
This chapter's sample project is a fitness app for iOS aptly named Workouts. Go to 
this chapter's files and find the Workouts-Starter project. Open 
Workouts.xcodeproj, and then build and run the starter project.

The app has two tabs: Exercises and Workouts. In the exercises tab, you can 
browse the list of built-in exercises, which includes all-time favorites like push-ups 
and crunches, or you can make your own. In the Workouts tab, you can also browse 
built-in workouts or create your own workout. For the purpose of this app, know 
that a "workout" is simply a sequential list of exercises.

Take a minute to browse through the app. To try it out, tap the Workouts tab and 
select a workout, for example, Ray's Full Body Workout. Next, in the workout 
detail screen scroll to the bottom and tap Select & Workout.

iOS 9 by Tutorials Chapter 13: Testing

raywenderlich.com 240



Though it's always a good idea to get your heart rate up, you can take a pass on 
actually performing the exercises! You don't need to huff and puff to learn how to 
test. But you can still revel in some positive reinforcement from the congratulatory 
alert.

Try creating your own exercises and workouts by tapping Add New Workout or 
Add New Exercises in their respective sections of the app.

Now that you've learned your way around the app, head back to Xcode and take a 
look at the project's files in the project navigator. The starter project is organized 
into a number of groups. Here's a quick summary of the most important ones:

• Model: The project relies on two model objects, Exercise and Workout. Each 
holds the data it needs to display on the screen, such as a name, image file 
name or its duration. Sets of exercises and workouts are stored within an 
instance of DataModel.

• View Controllers: WorkoutViewController shows you a list of all workouts, both 
built-in and user-created. When you tap on a specific workout, 
WorkoutDetailViewController displays the workout's information and allows you 
to perform the workout. AddWorkoutViewController lets you add a new workout to 
the list of workouts.

Similarly, ExerciseViewController displays a list of all exercises in the app. From 
here, you can add a new exercise or tap into an existing exercise, taking you to 
ExerciseDetailViewController.

• WorkoutsTests: The sample app already includes some unit tests in its testing 
target. ExerciseTests.swift and WorkoutTests.swift contain unit tests for 
their corresponding model objects.

Even though the view controller source files are much longer than the model object 
source files, notice how they don't have any tests. Talk about a problem! You'll learn 
how to measure and test this code later in the chapter.

Code coverage
As now know, the starter project already comes with some tests. However, how do

iOS 9 by Tutorials Chapter 13: Testing

raywenderlich.com 241



you know if you have enough tests and whether you're testing the right parts of 
your project?

That's where code coverage comes in. With Xcode 7 came the ability to get 
coverage reports that show how much code in any given file is "exercised" by your 
tests. No pun intended :]

By default, code coverage isn't turned on. Change that now in the starter project by 
selecting Product\Scheme\Edit Scheme..., and then select the Test action and 
click on the Code Coverage — Gather coverage data checkbox.

That's all you need to do to turn on code coverage reports. Easy, huh? To check 
your current levels of code coverage you need to run your test target.

You'll run unit tests constantly in this chapter, so how about a quick refresher? 
Remember there are three ways to run them in your testing target:

1. Long click Xcode's Run button and click on Test from the dropdown menu.

2. Select Product\Test from Xcode’s menu.

3. Use the shortcut Command+U.

Use whichever method you like best to run your unit tests. Each tells Xcode to build 
and launch your app, and then run your tests. In the test navigator, you should 
see a total of six tests:

Now turn your focus towards the code coverage report. Switch to the report

iOS 9 by Tutorials Chapter 13: Testing

raywenderlich.com 242



navigator and click on the latest test action.

You're currently seeing the tests view of the test report. This shows you a list of 
your unit tests along with their pass / failure status. From here, click on the 
Coverage tab to switch to the code coverage report:

This report shows you the code coverage for your entire app as well as the code 
coverage on a per-file basis. For example, the code coverage for the entire app is 
37 percent – yikes! – whereas code coverage for DataModel.swift is 90 percent.

Note: You'll notice the report doesn't show you the specific coverage 
percentage right away; you have to hover over the progress indicator until it 
shows up.

You also have access to code coverage numbers for individual classes and methods. 
To see them, click on the disclosure indicator to the left of the file name. Xcode can 
even tell you the coverage of each line in a file. To see this in action, hover over 
Workout.swift and click on the small right-facing arrow that appears to the right 
of its name:

Doing this takes you to the file you clicked on in Xcode’s main editor. Notice that 
there's a gutter on the right edge of the editor with small numbers on it:

iOS 9 by Tutorials Chapter 13: Testing

raywenderlich.com 243



If granularity is what you want, prepare to be delighted. Xcode's code coverage 
reports goes beyond the method level. The numbers on the right gutter represents 
the number of times those lines of code are executed by tests. For example, the 
getter for workoutCount has a 0 next to it because it isn't tested at all.

As you can see, it tells you which lines inside a method are covered and which are 
not. Now you can identify those edge cases you haven't tested yet without losing 
your sanity! For instance, if you only test the if block in an if-else statement, 
Xcode will pick this up and let you know.

Note: A single code coverage report is simply a snapshot. If you want to know 
whether your coverage is improving or getting worse, you'll need to see how 
these numbers change over time. One way to do this is with continuous 
integration, by using the Xcode server. This chapter won't cover this, but you 
can learn more about it by catching up on session 410 from WWDC 2015: 
Continuous Integration and Code Coverage in Xcode (apple.co/1J1n1Kd.

iOS 9 by Tutorials Chapter 13: Testing

raywenderlich.com 244



@testable imports and access control
As far as test coverage goes, 37 percent is hardly something to brag out. Make it 
brag worthy by adding more tests. Both Exercise.swift and Workout.swift have 
corresponding test files but DataModel.swift does not – sounds like a good place 
to start.

In the project navigator, click the WorkoutsTests group. Choose File\New\File... 
and select the iOS\Source\Unit Test Case Class template.

Name the class DataModelTests, and ensure it's a subclass of XCTestCase and 
that Swift is selected. Click Next and then Create.

As first order of business, add the following import at the top of 
DataModelTests.swift:

import Workouts

Your app and test bundle are separate, so you have to import the app's module 
before writing any tests against DataModel.

Next, delete the entire implementation for the DataModelTests class and replace it 
with the following:

class DataModelTests: XCTestCase { 
  var dataModel: DataModel! 

 
  override func setUp() { 
    super.setUp() 

 
    dataModel = DataModel() 
  } 

 
  func testSampleDataAdded() { 
    XCTAssert(dataModel.allWorkouts.count > 0) 
    XCTAssert(dataModel.allExercises.count > 0) 
  } 

 
  func testAllWorkoutsEqualsWorkoutsArray() { 
    XCTAssertEqual(dataModel.workouts, 
      dataModel.allWorkouts) 
  } 

 
  func testAllExercisesEqualsExercisesArray() { 
    XCTAssertEqual(dataModel.exercises, 
      dataModel.allExercises) 
  } 

 
  func testContainsUserCreatedWorkout() { 
    XCTAssertFalse(dataModel.containsUserCreatedWorkout) 

 
    let workout1 = Workout() 
    dataModel.addWorkout(workout1)

iOS 9 by Tutorials Chapter 13: Testing

raywenderlich.com 245



    XCTAssertFalse(dataModel.containsUserCreatedWorkout) 
 

    let workout2 = Workout() 
    workout2.userCreated = true 
    dataModel.addWorkout(workout2) 

 
    XCTAssert(dataModel.containsUserCreatedWorkout) 

 
    dataModel 
      .removeWorkoutAtIndex(dataModel.allWorkouts.count - 1) 
    XCTAssertFalse(dataModel.containsUserCreatedWorkout) 
  } 

 
  func testContainsUserCreatedExercise() { 
    XCTAssertFalse(dataModel.containsUserCreatedExercise) 

 
    let exercise1 = Exercise() 
    dataModel.addExercise(exercise1) 

 
    XCTAssertFalse(dataModel.containsUserCreatedExercise) 

 
    let exercise2 = Exercise() 
    exercise2.userCreated = true 
    dataModel.addExercise(exercise2) 

 
    XCTAssert(dataModel.containsUserCreatedExercise) 

 
    dataModel 
      .removeExerciseAtIndex(dataModel.allExercises.count - 1) 
    XCTAssertFalse(dataModel.containsUserCreatedExercise) 
  } 
}

Uh oh... you don't even need to compile to see that errors are popping up 
everywhere. What's going on?

After adding the new unit tests, Xcode complains every time you reference 
DataModel. The problem is related to Swift access control, which you'll learn about 
next.

A quick refresher on Swift access control
The concept of access control exists in virtually every programming language, 
although it bears many names. Whatever it's called, access control allows you to 
restrict access to sections of code from within other sections of code. In Swift, the 
access control model is based on the concept of modules and source files.

A module is a single unit of code distribution. This could be an application or a 
framework. In this example, all the source code in the Workouts app is one module, 
and all the code in your testing bundle is a separate module. A source file is a single 
Swift source code file within a module (for example Workout.swift).

Swift provides three different levels of access:

iOS 9 by Tutorials Chapter 13: Testing

raywenderlich.com 246



1. Public access enables access to entities in any source file from within their 
own module, as well as any source file in any other module that imports that 
module.

2. Internal access enables access for entities in any source file from within their 
own module. Files from outside modules never get access, even if they import 
the module in question.

3. Private access restricts access to entities from anywhere other than the source 
file where they're defined. This is the most restrictive of all access control levels.

Note: This was a broad overview of Swift's access control model. There's more 
to it, and if you’re interested in learning more, read Apple's documentation on 
the subject at apple.co/1DH0v9y.

The default access control is internal. Now do you see why your unit tests were 
riddled with errors? All the entities in DataModel.swift are internal to the 
Workouts module. You cannot reference them from the testing module, even if 
you import the Workouts module!

@testable imports
Before Xcode 7, you could get around this problem one of two ways:

1. Add every source file you want to test to your testing target. If you were 
wondering, this is how WorkoutTests and ExercisesTests currently compile 
without errors.

2. Make every entity you want to test public. Doing this makes your entities 
visible from your testing module as long as you import your app's main module.

Both options have downsides. With the first option, you know that adding files to 
both targets is a manual step that's easily forgotten. It also doesn't make much 
sense conceptually. The testing module should only contain tests!

The second option, marking everything public, is even worse. If you have a large 
project that consists of several modules, there are probably parts of your code that 
shouldn't be exposed externally. Marking everything public for the sake of 
testability is asking for trouble.

Lucky for you, Swift 2.0 introduces a third option: @testable imports.

When you import a module, you can mark it as @testable, which changes the way 
that the default internal access control works. Normally you don't have visibility of 
internal entities from outside modules. With @testable you do!

Here's how to implement it in Workouts. First, you'll need to remove Workout and 
Exercise from the tests target.

iOS 9 by Tutorials Chapter 13: Testing

raywenderlich.com 247



In Xcode, select Workout.swift in the project navigator. In the File Inspector, 
uncheck WorkoutsTests in the Target Membership section.

Do the same for Exercise.swift: click the file in the project navigator, and then 
uncheck WorkoutsTests in the Target Membership section of the File 
Inspector.

Now to use @testable. Open DataModelTests.swift, replace the import Workouts 
line at the top of the file with the following:

@testable import Workouts

Do the same with the import statement at the top of WorkoutTests.swift and 
ExerciseTests.swift.

Magic! All your compiler errors disappear. Run your tests again to check that they 
all pass.

Note: @testable has no effect on the private access control. As they say in 
Vegas, what you declare private stays private :]

Once the tests have finished, head back to the code coverage report in the report 
navigator, select the most recent test run, and then click Coverage in the main 
panel. Check out the coverage percentage for DataModel.swift — it's now 100 
percent! Nice work.

UI testing
So far, you've explored code coverage reports and @testable imports. These are 
great new features — they give you more information and definitely make it easier 
to test your apps.

iOS 9 by Tutorials Chapter 13: Testing

raywenderlich.com 248



The third and final addition to Xcode’s testing capabilities lets you test your app in 
ways you didn't think possible: through UI testing.

Before you can write your first UI test, you have to make sure your project has a UI 
testing target. The sample project doesn't, so you'll add one right now.

In Xcode’s menu, click on File\New\Target..., choose the iOS\Test\iOS UI 
Testing Bundle template and click Next.

All the default values on the next screen should be correct for this simple sample 
project. However, if you're working on a project that consists of multiple modules, 
make sure that the Target to be Tested is set to your app's module. Finally, click 
on Finish to create the target.

Voila! Doing this creates a new WorkoutsUITests group in Xcode along with a 
sample UI testing file called WorkoutsUITests.swift.

Note: You'll only have to add a UI testing target if you upgrade an existing 
project from Xcode 6 or earlier. New projects created with Xcode 7 already 
come with a UI testing target by default.

iOS 9 by Tutorials Chapter 13: Testing

raywenderlich.com 249



Run your first UI test
You're going to validate one important flow in the application: drilling down from 
the list of workouts into a particular workout's detail page. For this test, the subject 
will be Ray's Full Body Workout.

As a first step, open WorkoutViewController.swift and replace viewDidLoad() 
with the following:

override func viewDidLoad() { 
  super.viewDidLoad() 
  tableView.accessibilityIdentifier = "Workouts Table" 
}

Similarly, open WorkoutDetailViewController.swift add the following line to 
viewDidLoad():

tableView.accessibilityIdentifier = "Workout Detail Table"

One of the ways the UI testing framework references individual UI components in 
your app is via accessibility information. Setting this table view's accessibility 
identifier to "Workouts Table" will let you reference this table view later on by its 
identifier.

Note: If you want to add or improve your existing accessibility information, 
you can either do it via Interface Builder or the accessibility API. Apple's 
recommended way is via Interface Builder. However, UITableView doesn't have 
an accessibility panel in Interface Builder, so that's why you did it in code.

Head over to WorkoutsUITests.swift. Remove the tearDown() and testExample() 
methods and add the following method:

func testRaysFullBodyWorkout() { 
  let app = XCUIApplication() 
  // 1 
  let tableQuery = app.descendantsMatchingType(.Table) 

 
  // 2 
  let workoutTable = tableQuery["Workouts Table"] 
  let cellQuery = workoutTable.childrenMatchingType(.Cell) 

 
  let identifier = "Ray's Full Body Workout" 
  let workoutQuery = cellQuery 
    .containingType(.StaticText, identifier: identifier) 
  let workoutCell = workoutQuery.element 
  workoutCell.tap() 

 
  // 3 
  let navBarQuery = app.descendantsMatchingType(.NavigationBar) 
  let navBar = navBarQuery[identifier] 

iOS 9 by Tutorials Chapter 13: Testing

raywenderlich.com 250



  let buttonQuery = navBar.descendantsMatchingType(.Button) 
  let backButton = buttonQuery["Workouts"] 
  backButton.tap() 
}

This test method is fairly small, but it contains classes and concepts you haven't 
encountered before – you'll read about them shortly. In the meantime, here's what 
the code does, in broad terms:

1. Get references to all of the tables in the app.

2. Find the Workouts table using the "Workouts Table" accessibility identifier you 
added earlier. After that, you simulate a tap on the cell that contains the static 
text "Ray's Full Body Workout".

3. Simulate a tap on the back button to go back to the list of workouts. The back 
button is in the navigation bar and currently says "Workouts".

Note: This test is rather verbose, and as it turns out, can be more concise. 
You'll get the chance to refactor it shortly.

Go ahead and run this test. To run it in isolation, tap the diamond-shaped icon next 
to the method declaration:

Once the app has built and launched, the simulator does something you've probably 
never seen before. It becomes possessed! Specifically, it simulates tapping into 
Ray's Full Body Workout and then tapping the back button.

If you've written regular XCTest tests before, you know that they usually rely on 
one or more assertions, such as XCTAssertTrue, XCTAssertFalse or XCTAssertEquals. 
You may be thinking that this is not a real test since it has no assertions.

Although you can add assertions, you don't have to explicitly assert anything in a UI 
test. If the test expects to find a specific UI element on the screen, like a button 
that says Workouts, but doesn’t find it, the test will fail. In other words, tapping 
through your app implicitly asserts that UI looks and behaves a certain way.

UI test classes
There are three main classes involved in UI testing: XCUIApplication, XCUIElement

iOS 9 by Tutorials Chapter 13: Testing

raywenderlich.com 251



and XCUIElementQuery. They're difficult to distinguish in testRaysFullBodyWorkout() 
because of Swift's type inference, but they're there! Here's a short description of 
what they do:

• XCUIApplication is a proxy for your application. You use it to launch and 
terminate the application as you start and end UI tests. Notice that setup() in 
WorkoutsUITests.swift launches the app. This means you're launching your 
XCUIApplication before every UI test in the file. XCUIApplication is also the root 
in the element hierarchy visible to your test.

• XCUIElement is a proxy for UI elements in the application. Every UIKit class 
you can think of can be represented by an XCUIElement in the context of a UI 
test. How? XCUIElement has a type (e.g. .Cell, .Table, .WebView, etc.) as well as 
an identifier. The identifier usually comes from the element's accessibility 
information, such as its accessibility identifier, label or value.

So what can you do with an XCUIElement? You can tap, double-tap and swipe on 
it in every direction. You can also type text into elements like text fields.

• XCUIElementQuery queries an XCUIElement for sub-elements matching some 
criteria. The three most common ways to query elements is with 
descendantsMatchingType(_:), childrenMatchingType(:_) and 
containingType(_:).

Note: Remember that XCUIApplication and XCUIElement are only proxies, not the 
actual objects. For example, the type XCUIElementType.Button can either mean a 
UIButton or a UIBarButtonItem or it can be any other button-like UI element!

UI testing convenience methods
Now to add another step to the current test. When the test steps into the workout 
detail page, it's also going to scroll down and tap the Select & Workout button. 
This brings up an alert controller, so your test will dismiss once you tap OK. Finally, 
it'll return to the workout list screen like before. You'll also refactor the test to make 
it more concise.

In WorkoutsUITests.swift, go to testRaysFullBodyWorkout() and replace the 
entire method with the following:

func testRaysFullBodyWorkout() { 
  let app = XCUIApplication() 
   
  //1 
  let identifier = "Ray's Full Body Workout" 
   
  let workoutQuery = app.tables.cells 
    .containingType(.StaticText, identifier: identifier) 
  workoutQuery.element.tap() 
   
  //2 
  app.tables["Workout Detail Table"].swipeUp()

iOS 9 by Tutorials Chapter 13: Testing

raywenderlich.com 252



  app.tables.buttons["Select & Workout"].tap() 
  app.alerts.buttons["OK"].tap() 
   
  //3 
  app.buttons["Workouts"].tap() 
}

That's a lot shorter than it was before! Here's what changed in the code:

1. You didn't need to use the accessibility identifier "Workout Table" after all. 
Instead, you get all tables in the app and then get all of their cells. Notice that 
you replaced descendantsMatchingType(.Table) with convenience method tables 
and childrenMatchingType(.Cell) with convenience method cells.

The element query descendantsMatchingType(_:) is so common that Apple 
provided convenience methods for all the common types. 
childrenMatchingType(_:)doesn't have convenience methods, but using 
descendantsMatchingType(_:) has the same effect in this case.

2. Here's your extra step. Once in the workout detail screen, you find the 
appropriate table view by its accessibility identifier, scroll downwards by swiping 
up and tap on Select & Workout. Again, notice you don't need to specify which 
table you're talking about. You can drill down from the app to its tables to the 
tables' buttons, then disambiguate using the button's title. You do the same 
with the alert's OK button, except this time you go through all of the app's 
alerts instead of through all of the app's tables.

3. In the previous implementation of this test, you first referenced the navigation 
bar to get to its back button. Now you directly query the app's buttons and tap 
on the one identified by the title "Workouts".

Run testRaysFullBodyWorkout() one more time. The same sequence of events plays 
out, except this time, the test taps on Select & Workout and dismisses the alert 
controller.

However, when it tries to return to the list of workouts...splat! The test fails.

Why did it fail? Xcode  gives you the error message "UI Testing Failure — 
Multiple matches found". You get this error when you're expecting one

iOS 9 by Tutorials Chapter 13: Testing

raywenderlich.com 253



XCUIElement, but instead you get multiple.

How do you fix this? You have three options when you want to drill down from a set 
of query results to single XCUIElement:

1. You can use subscripting if the element you want has a unique identifier. For 
example, buttonsQuery["OK"].

2. You can use indexing if the element you want is located at a particular index. 
For example, you can use tables.cells.elementAtIndex(0) to get the first cell in 
a table view.

3. If you're sure a query resolves down to one element, you can use the element 
property for XCUIElementQuery.

If you use any of the three techniques shown above and end up with more than one 
XCUIElement, the test fails. This is because the UI testing framework has no way of 
knowing which element you actually want to interact with. In this case, 
testRaysFullBodyWorkout() failed because the query in the final line of the test 
resulted in two buttons with the same identifier:

app.buttons["Workouts"]

Can you find the duplicates? One is in the top-left, next to the back button – this is 
the one you meant for the test to tap. The second is inside the Workouts tab at 
the bottom left of the screen:

Whoops! Fix the test by replacing the final line of testRaysFullBodyWorkout() with 
the following:

app.navigationBars.buttons["Workouts"].tap()

Adding navigationBars, which is short for is short for 
descendantsMatchingType(.NavigationBar), between app and buttons makes it clear 
to the UI testing framework that you want the Workouts button located in a 
navigation bar. Re-run your UI test to verify that it passes now.

UI recording
It's great to know how to write UI tests from scratch, but there is an easier way to 
get the job done: UI recording. With UI recording, you can simply "act out" the 
steps of your test in the simulator and Xcode will auto-magically translate your 
actions into UI testing code.

iOS 9 by Tutorials Chapter 13: Testing

raywenderlich.com 254



To check it out in action, delete the current contents of testRaysFullBodyWorkout(). 
Place your cursor inside the empty method, then click on the red Record UI Test 
button at the bottom of the editor:

The UI recording button builds and launches your app. Once that's done, "act out" 
the steps of your tests.

• Tap on Ray's Full Body Workout, then scroll down and tap Select & Workout.

• Dismiss the alert controller by tapping OK and finally tap the back button.

• Tap the record button again, or Xcode’s main stop button to stop recording.

Your generated test method should look something like this:

func testRaysFullBodyWorkout() { 
   
  let app = XCUIApplication() 
  app.tables["Workouts Table"] 
    .staticTexts["Ray's Full Body Workout"].tap() 
   
  let workoutDetailTableTable = 
    app.tables["Workout Detail Table"] 
  workoutDetailTableTable.otherElements["EXERCISES"].swipeUp() 
  workoutDetailTableTable.buttons["Select & Workout"].tap() 
  app.alerts["Woo hoo! You worked out!"].collectionViews 
    .buttons["OK"].tap() 
  app.navigationBars["Ray's Full Body Workout"] 
    .buttons["Workouts"].tap() 
}

iOS 9 by Tutorials Chapter 13: Testing

raywenderlich.com 255



Magic! Depending on exactly where you swiped and which version of Xcode you're 
running, the generated code may be different from what you see above. Run the 
generated test to verify that it simulates your steps one by one.

You'll notice that some of the generated lines of code have tokens that contain 
several options. Click one to see the available options:

There are many ways of querying the same UI elements, and in some cases, Xcode  
can only make guesses about the steps you want your test to take. With these 
tokens, Xcode gives you options to help you disambiguate elements.

Once you're happy with a particular path, double-click on the blue token to make it 
final.

Note: Even if you're hardcore and opt to write your tests manually, you can 
still use UI recording to find out what the testing framework "sees" as you tap 
around the simulator. It's a good alternative to using the system-provided 
Accessibility Inspectors.

Run the test again to check it's doing everything you expect. Do a victory dance 
when you get the desired results.

There are a couple of things to keep in mind as you start writing UI tests: Although 
they can be easier to write, when they fail they can also be harder to debug than 
regular unit tests. They can also be quite brittle; if you make changes to your UI, 
you may need to dedicate some time to updating your tests.

Where to go from here?
You've seen how powerful and useful testing can be in Xcode 7. You've explored 
code coverage reports, taken a look at Swift 2.0's new @testable modifier, and 
you've written and recorded UI tests.

As always, exploring the final project for this chapter is a great way to see how 
everything came together.

iOS 9 by Tutorials Chapter 13: Testing

raywenderlich.com 256



If you ever find yourself fixing the same bug over and over, think back to this 
chapter! Check the code coverage for the files that contain the bug. If the code 
coverage is low or incomplete, consider writing more unit tests or even some UI 
tests that validate the feature.

There are a couple of WWDC sessions from 2015 that are worth looking at to find 
out more about the topics covered in this chapter:

• Session 406 — UI Testing in XCode: apple.co/1N1Eg0I

• Session 410 — Continuous Integration and Code Coverage in Xcode: apple.co/
1J1n1Kd

You can also read Chapter 29, "What’s New with Testing", in our iOS 8 by Tutorials 
book and the "Unit Testing in Xcode 5" chapter in iOS 7 by Tutorials.

iOS 9 by Tutorials Chapter 13: Testing

raywenderlich.com 257



14Chapter 14: Location and 
Mapping
By Vincent Ngo

Despite a slightly shaky start to its mapping effort in iOS 6, Apple has continued to 
enhance its mapping and location frameworks every year. iOS 9 is no exception, 
with a number of great updates to both MapKit and Core Location.

One of the most useful improvements is the addition of transit directions to Apple 
Maps, with assistance for navigating subways, trains, buses and more. Transit will 
launch in a small number of cities to start, but will likely roll out on a wider scale as 
time passes.

This chapter will show you how to take advantage of the following new features:

• New methods to customize the appearance of Maps in your app

• Transit directions in Apple Maps

• Estimated travel times for transit directions

• Single location updates using Core Location

The sample app for this chapter, Café Transit, is for all the coffee aficionados out 
there. It can help you in your eternal search for good coffee. Currently, it only 
shows a handful of nearby coffee shops (well, nearby if you're in San Francisco!) 
and marks them on the map using standard map pins.

By the time you've finished this chapter, your app will show lots of useful 
information for each coffee shop, including a rating, pricing information and opening 
hours. Your app will also provide transit directions to a particular coffee shop, and 
even let you know what time you'll need to leave and when you're likely to arrive.

Note: This chapter will be easier to follow if you have some basic MapKit 
knowledge. If you need to brush up, take a look at our Getting Started With 
MapKit tutorial bit.ly/1PrurqE.

raywenderlich.com 258



Getting started
Open the starter project for this chapter. Run it up and you'll see it's built with a 
standard MapKit MKMapView; tap on a pin to reveal the coffee shop's name and a 
brief description:

Open ViewController.swift; setupMap() and addMapData() center the map on San 
Francisco and add an annotation to each coffee shop. The model code for coffee 
shops is in CoffeeShop.swift, which also takes care of loading all of the sample 
coffee shop data from sanfrancisco_coffeeshops.plist.

Finally, take a quick look at CoffeeShopPinDetailView.swift and 
CoffeeShopPinDetailView.xib; these define the custom annotations you'll add 
later to spice up the map view. These annotations will show a rating, price 
information, and opening hours — everything you need to make your app shine!

Customizing maps
Prior to iOS 9, the only items you could programatically toggle on and off in an 
MKMapView were buildings and places of interest. MapKit in iOS 9 introduces three 
new boolean properties that let you toggle the map's compass, scale bar (the 
small ruler that shows distances on the map) and traffic display. You can choose to 
remove these to clean up your map display, or leave them on the screen to give 
your users extra information as they navigate:

iOS 9 by Tutorials Chapter 14: Location and Mapping

raywenderlich.com 259



Café Transit would benefit from showing the map's scale — giving the users an idea 
how far they have to go to get their caffeine fix.

Open ViewController.swift and add the following code at the very beginning of 
setupMap():

mapView.showsScale = true

Build and run your app; you should see the scale appear in the top left of the map:

As you pan and zoom around the map, the scale updates itself to match the map's 
current zoom level.

iOS 9 by Tutorials Chapter 14: Location and Mapping

raywenderlich.com 260



Customizing map pins
Since iOS 3, MapKit pins have had a pinColor property that let you select any color 
you wanted...as long as it was red, green or purple. But what if you wanted a 
yellow pin? Or an orange pin? Or a chartreuse pin? You were out of luck.

iOS 9 deprecates the pincolor property on MKPinAnnotationView in favor of the 
shiny new pinTintColor. And get this — you can set it to any color you like!

Café Transit currently uses plain old red map pins, which don't really fit in with the 
coffee aesthetic. They'd look better with the same brown shade used throughout 
the app. And you could even use a different color to highlight cafés with a 5-star 
rating.

Add the following code to  mapView(_:viewForAnnotation:) in 
ViewController.swift, just before the return statement at the end:

if annotation.coffeeshop.rating.value == 5 { 
  annotationView!.pinTintColor = 
    UIColor(red:1, green:0.79, blue:0, alpha:1) 
} else { 
  annotationView!.pinTintColor = 
    UIColor(red:0.419, green:0.266, blue:0.215, alpha:1) 
}

This chooses a pinTintColor that depends on the star rating of the coffee shop; 
gold for a 5-star rating and brown otherwise.

Build and run your app, and check out your fancy new pins:

iOS 9 by Tutorials Chapter 14: Location and Mapping

raywenderlich.com 261



Customizing annotation callouts
Each map pin (or annotation view) can show a callout when you tap it. This is 
simply a popover that appears above your annotation view on the map, and can 
provide extra information about a particular location, like so:

Until now, you've been limited in your customization of annotation callouts; you 
could set a title, subtitle and left and right accessory views. For any other kind of 
customization, you had to try to add a custom view to the annotation view, which 
wasn't an easy task.

iOS 9 makes the whole process much simpler, with the new 
detailCalloutAccessoryView property on MKAnnotationView, You can set this to any 
view you like, which gives you almost unlimited customization options for your 
callouts. You could even use the new UIStackView, or some kind of crazy collection 
view if you so choose!

iOS 9 by Tutorials Chapter 14: Location and Mapping

raywenderlich.com 262



Managing callout size
Callouts will use the intrinsic content size of your custom view to size themselves 
appropriately. Your custom callouts can take advantage of this in two ways:

1. Use Auto Layout to lay out your custom view, and let intrinsic content size do its 
thing.

2. You can override intrinsicContentSize within your custom view size and return 
a size of your choice.

Note: For more information on intrinsic content size and Auto Layout, take a 
look at Apple's "Implementing a Custom View to Work with Auto Layout" 
documentation: apple.co/1PHbKA5.

The XIB for CoffeeShopPinDetailView uses UIStackView and Auto Layout, so you 
don't have to manually specify intrinsicContentSize. Feel free to explore how the 
XIB makes use of UIStackView and constraints.

Custom callouts can't fill the entire area of the callout popover, since iOS adds the 
annotation title and a certain amount of padding. The screenshot below shows the 
area filled by detailCalloutAccessoryView in green:

Keep this in mind when designing your custom callout views, as there's currently no 
way to modify the padding or title area.

iOS 9 by Tutorials Chapter 14: Location and Mapping

raywenderlich.com 263



Adding a custom callout accessory view
With that theory out of the way, it's time to add a custom callout of your own. 
CoffeeShopPinDetailView.xib defines the UI for the callout accessory view as 
shown below:

The callout shows the opening hours, star and cost rating and a description of the 
coffee shop, along with a set of action buttons for such things as phoning the coffee 
shop or viewing their Yelp page.

Open ViewController.swift and add the following code to 
mapView(_:viewForAnnotation:), just before the return statement:

let detailView = UIView.loadFromNibNamed(identifier) as! 
  CoffeeShopPinDetailView 
detailView.coffeeShop = annotation.coffeeshop 
annotationView!.detailCalloutAccessoryView = detailView

First, you load the CoffeeShopPinDetailView from its XIB file. Then you assign a 
coffee shop to the detail view in order to populate the view's labels and subviews. 
Finally, you assign the view to the annotation view's detailCalloutAccessoryView 
property.

That's all the code it takes! Build and run your app, tap on one of the pins and you 
should see your custom annotation at work:

iOS 9 by Tutorials Chapter 14: Location and Mapping

raywenderlich.com 264



Note: Tapping the phone button in the callout will only work on an actual 
device.

Tap the Yelp button to open up Safari and load the coffee shop's Yelp review page. 
Tapping the clock button won't show you any useful information; you'll implement 
actions for the transit and clock functions later in this chapter.

Supporting time zones
The custom callout view you added in the previous section contains a small image 
to indicate whether a particular coffee shop is currently open for business:

Open up CoffeeShop.swift and find isOpenNow; this is a computed property that 
determines the opened or closed state of the shop:

iOS 9 by Tutorials Chapter 14: Location and Mapping

raywenderlich.com 265



This property uses NSDate() to get the current time and then converts it to the time 
zone of the coffee shop; the shop's opening hours are stored in its local time zone 
so you have to convert the result of NSDate() to the time zone of the shop. You then 
use this to calculate whether the current local time falls within the range of opening 
hours.

Easy enough, but take a look at the time zone definition above isOpenNow:

static var timeZone = NSTimeZone(abbreviation: "PST")!

The timezone is hardcoded to PST! Although Café Transit currently only contains 
some sample coffee shops in San Francisco, it would be nice if the time zone could 
be inferred from the location of the coffee shop in case you add more in the future.

iOS 9 adds a handy timeZone property to both MKMapItem and CLPlacemark; you can 
use this to ensure you use the correct time zone no matter where the shop is.

Still in CoffeeShop.swift, find allCoffeeShops, and replace the return statement 
with the following code:

// 1 
let shops = array.flatMap { CoffeeShop(dictionary: $0) } 
  .sort { $0.name < $1.name } 

 
// 2 
let first = shops.first! 
let location = CLLocation(latitude: first.location.latitude, 
  longitude: first.location.longitude) 

 
// 3 
let geocoder = CLGeocoder() 
geocoder.reverseGeocodeLocation(location) { (placemarks, _) in 
  if let placemark = placemarks?.first, timeZone = 
    placemark.timeZone { 
   
    self.timeZone = timeZone 
  } 
} 

 
return shops

This code performs a couple of functions:

1. This is simply the value of the previous return statement, but stored in a 
variable instead.

2. You then create a CLLocation that represents the first coffee shop in the list for

iOS 9 by Tutorials Chapter 14: Location and Mapping

raywenderlich.com 266



use with CLGeocoder.

3. Finally, you reverse geocode the coffee shop's location using an instance of 
CLGeocoder. This takes the latitude and longitude of the coffee shop and 
produces a CLPlacemark with extra information about the location. This extra 
information includes the new timeZone property, which you then assign to the 
timeZone property of the CoffeeShop struct.

Build and run your app now; check that the opening hours labels are still showing 
the correct value. Remember, they're based on the current time in San Francisco, 
not the current time of your location!

Note: For the purposes of this chapter, you've simply fetched the time zone 
for a single coffee shop. In a real project, you'd have to check the time zone 
for each coffee shop, as they may be spread across different time zones.

Simulating your location
All of Café Transit's sample coffee shops are based in San Francisco. Statistically, 
it's quite likely that you aren't based in San Francisco. :] The rest of this chapter 
will make use of the user's location, so it would be pretty useful to at least pretend 
to be there. Xcode lets you simulate your location, which will make testing Café 
Transit much easier!

With the starter project open, click on the CafeTransit scheme and choose Edit 
Scheme...:

Select Run in the left pane, and Options from the tab bar at the top of the right 
pane. Enable Core Location > Allow Location Simulation, and set your Default 
Location to San Francisco, CA, USA as shown below:

iOS 9 by Tutorials Chapter 14: Location and Mapping

raywenderlich.com 267



Click Close to save your location settings; your app now thinks you're in San 
Francisco. You'll use the simulated location in the next section as you plot the user's 
location on the map. You'll also request the user's location in order to provide 
transit directions from the user's current location to a selected coffee shop.

Making a single location request
Before iOS 9, accessing the user's current location was a byzantine process. You 
had to create a CLLocationManager, implement some delegate methods, and then 
call startUpdatingLocation(). This would call the location manager delegate 
methods repeatedly with updates to the user's location. Once the location reached 
an acceptable level of accuracy, you then called stopUpdatingLocation() to stop the 
location manager. If you didn't stop it, you could quickly drain the user's battery!

Core Location in iOS 9 collapses this process into a single method call: 
requestLocation(). This still makes use of the existing delegate callback methods, 
but there's no longer a need to manually start and stop the location manager. You 
just specify the accuracy you desire, and Core Location will provide the location to 
you once it's narrowed down the user's position. It only calls your delegate once, 
and only returns a single location.

Enough theory — you know how your users get when they're deprived of their daily 
cuppa! Time to add some locating logic.

Adding a location manager
First, open ViewController.swift and add the following line just below the class 
declaration:

lazy var locationManager = CLLocationManager() 
var currentUserLocation: CLLocationCoordinate2D?

The code lazily creates a CLLocationManager object the first time it's called. You also 
create a CLLocationCoordinate2D property to store the user's current location.

Next, add the following lines to the end of viewDidLoad():

locationManager.delegate = self 
locationManager.desiredAccuracy = 
  kCLLocationAccuracyHundredMeters

iOS 9 by Tutorials Chapter 14: Location and Mapping

raywenderlich.com 268



Here you set the delegate for location manager, and you determine how accurate 
you want the coordinates to be. Setting desiredAccuracy tells the system to only 
provide you with the user's location once it's accurate enough for your purposes. In 
some cases, the system might not reach the level of accuracy you want, and will 
therefore provide you with a location of a lower accuracy than you requested.

Next, add the following extension to the bottom of ViewController.swift to add 
conformance to the CLLocationManagerDelegate protocol:

// MARK:- CLLocationManagerDelegate 
extension ViewController: CLLocationManagerDelegate { 

 
  func locationManager(manager: CLLocationManager, 
didChangeAuthorizationStatus status: CLAuthorizationStatus) { 
    if (status == CLAuthorizationStatus.AuthorizedAlways || 
        status == CLAuthorizationStatus.AuthorizedWhenInUse) { 
      locationManager.requestLocation() 
    } 
  } 

 
  func locationManager(manager: CLLocationManager, 
    didUpdateLocations locations: [CLLocation]) { 
     
    currentUserLocation = locations.first?.coordinate 
  } 

 
  func locationManager(manager: CLLocationManager, 
    didFailWithError error: NSError) { 
     
    print("Error finding location: " + 
      \(error.localizedDescription)") 
  } 
}

This extension implements three methods of CLLocationManagerDelegate: in 
locationManager(_:didFailWithError:), you simply log errors if they occur; in 
locationManager(_:didUpdateLocations:), you store the coordinates of the first 
location returned in currentUserLocation; in 
locationManager(_:didChangeAuthorizationStatus), you check to see if the user has 
enable you to use their location and if so you request for their location. When you 
use your new requestLocation(), you'll receive the location one time only.

Now you need to call requestLocation() from somewhere else.

Still in ViewController.swift, add the following method to ViewController, below 
centerMap(_:atPosition:):

private func requestUserLocation() { 
  mapView.showsUserLocation = true    // 1 
  if CLLocationManager.authorizationStatus() == 
    .AuthorizedWhenInUse { // 2 
     
    locationManager.requestLocation()   // 3 
  } else {

iOS 9 by Tutorials Chapter 14: Location and Mapping

raywenderlich.com 269



    locationManager.requestWhenInUseAuthorization()   // 4 
  } 
}

Taking each numbered comment in turn:

1. Show the user's location on the map.

2. Before you can request the user's location, you must first ask for permission to 
do so. This line checks whether you already have permission.

3. Next, call requestLocation() to request the user's current position. When 
done, this invokes a call to locationManager(_:didUpdateLocations:), which you 
just implemented.

4. If you don't have permission to use the user's location, prompt for it.

Note: When calling requestWhenInUseAuthorization(), you must have your 
Info.plist file configured with a value for the key 
NSLocationWhenInUseUsageDescription stating why you would like access to the 
user's location. This message will be displayed to the user in the usual 
permission alert that pops up. To save you time, this setting has already been 
added to Café Transit's Info.plist as shown below:

Next, add the following implementation underneath viewDidLoad():

override func viewDidAppear(animated: Bool) { 
  super.viewDidAppear(animated) 

 
  requestUserLocation() 
}

This calls the requestUserLocation() method you just wrote at first launch when the 
map view appears.

Finally, find the MKMapViewDelegate extension near the bottom of 
ViewController.swift and add the following method to it:

func mapView(mapView: MKMapView, 
  didSelectAnnotationView view: MKAnnotationView) { 
  if let detailView = view.detailCalloutAccessoryView

iOS 9 by Tutorials Chapter 14: Location and Mapping

raywenderlich.com 270



    as? CoffeeShopPinDetailView { 
     
    detailView.currentUserLocation = currentUserLocation 
  } 
}

This passes the user's current location into an annotation whenever the annotation 
appears. You'll need access to this location in the next section to request transit 
directions.

That was quite a bit of code to get through — you've done well! Build and run your 
app; you should see a blue dot appear on the map showing your simulated location:

Sure, that doesn't seem like a lot when you consider all the code you wrote, but 
you're building up to some really cool features in the next section.

Requesting transit directions
Now that you have the user's current location, you're nearly ready to provide transit 
directions to coffee shops!

Open CoffeeShopPinDetailView.swift and add the following method below //
MARK:- Transit Helpers near the bottom of the file:

func openTransitDirectionsForCoordinates( 
  coord:CLLocationCoordinate2D) { 

 
  let placemark = MKPlacemark(coordinate: coord,

iOS 9 by Tutorials Chapter 14: Location and Mapping

raywenderlich.com 271



    addressDictionary: coffeeShop.addressDictionary) // 1 
  let mapItem = MKMapItem(placemark: placemark)  // 2 
  let launchOptions = [MKLaunchOptionsDirectionsModeKey: 
    MKLaunchOptionsDirectionsModeTransit]  // 3 
  mapItem.openInMapsWithLaunchOptions(launchOptions)  // 4 
}

This is a helper method that gives you transit directions to the coordinates you pass 
in. Here's what the code does:

1. Creates an MKPlacemark to store your coordinates. Placemarks usually have an 
associated address, and the coffee shop model provides a basic one which 
simply includes the coffee shop's name.

2. Initializes an MKMapItem with the placemark.

3. Specifies that you want to launch Maps in transit mode.

4. Launches Maps to show transit directions to the requested location.

All you need to do now is replace the TODO in transitTapped() with a call to your 
method above and pass in the coffee shop's location:

openTransitDirectionsForCoordinates(coffeeShop.location)

Build and run your app; tap a coffee shop and click the train icon in the callout. 
You'll be launched straight into transit directions to the coffee shop:

iOS 9 by Tutorials Chapter 14: Location and Mapping

raywenderlich.com 272



Querying transit times
The final new feature of MapKit to add to Café Transit is querying public transit 
journey information. The MKETAResponse class includes the following useful 
properties:

public var expectedTravelTime: NSTimeInterval { get } 
@available(iOS 9.0, *) 
public var distance: CLLocationDistance { get } 
@available(iOS 9.0, *) 
public var expectedArrivalDate: NSDate { get } 
@available(iOS 9.0, *) 
public var expectedDepartureDate: NSDate { get } 
@available(iOS 9.0, *) 
public var transportType: MKDirectionsTransportType { get }

These properties tell you the distance of a trip, the expected duration of travel and 
the arrival and departure times. This lets you provide some high-level trip 
information, without pushing the user out to a separate app.

Tap a coffee shop in Café Transit and then tap on the clock icon; the view animates 
upwards to show you estimated departure and arrival times, but there aren't any 
yet. That's where you and MapKit will join forces to save your user's coffee crisis! :]

Open CoffeeShopPinDetailView.swift and add the following method just after 
openTransitDirectionsForCoordinates(_:):

func requestTransitTimes() { 
  guard let currentUserLocation = currentUserLocation else { 
    return 
  } 

 
  // 1 
  let request = MKDirectionsRequest() 

 
  // 2 
  let source = MKMapItem(placemark: 
    MKPlacemark(coordinate: currentUserLocation, 
    addressDictionary: nil)) 
  let destination = MKMapItem(placemark: 
    MKPlacemark(coordinate: coffeeShop.location, 
    addressDictionary: nil)) 

 
  // 3 
  request.source = source 
  request.destination = destination 
  request.transportType = MKDirectionsTransportType.Transit 

 
  // 4 
  let directions = MKDirections(request: request) 
  directions.calculateETAWithCompletionHandler { 
    response, error in 
    if let error = error { 
      print(error.localizedDescription)

iOS 9 by Tutorials Chapter 14: Location and Mapping

raywenderlich.com 273



    } else { 
      // 5 
      self.updateEstimatedTimeLabels(response) 
    } 
  } 
}

Here's how you request the transit times:

1. Once you ensure a user location's been set, initialize an instance of 
MKDirectionsRequest.

2. Create two instances of MKMapItem to represent the user's current location and 
the coffee shop's location. There's no address dictionary populated here because 
you only need the latitude and longitude.

3. Configure the MKDirectionsRequest object with the source, destination, and type 
of transport.

4. Create an MKDirections object, initialize it with the MKDirectionsRequest and 
instruct it to perform the ETA calculation.

5. If you receive a successful response, update the departure and arrival labels 
accordingly.

Finally, still in CoffeeShopPinDetailView.swift, replace timeTapped() with the 
following:

@IBAction func timeTapped() { 
  if timeStackView.hidden { 
    animateView(timeStackView, toHidden: false) 
    requestTransitTimes() 
  } else { 
    animateView(timeStackView, toHidden: true) 
  } 
}

When you tap the clock icon, the time view animates upwards and you send off a 
request to Apple's servers for the journey's ETA and duration. The time labels on 
the callout update automagically.

Build and run your app; tap one of the coffee shop pins then tap the clock icon and 
you'll see an update on when you'll depart and what time you'll arrive! Can't you 
just smell the beans roasting already? :]

iOS 9 by Tutorials Chapter 14: Location and Mapping

raywenderlich.com 274



Where to go to from here?
In this chapter you've customized a map view, added a custom callout, requested 
the user's location, and made use of transit directions and estimated journey times. 
Awesome stuff!

There are a couple of other MapKit and Core Location updates this chapter didn't 
cover, including 3D flyovers and a couple of changes to background location 
updates. For more information about these, check out these related WWDC talks:

• What's New In MapKit: apple.co/1h4r4e7

• What's New in Core Location: apple.co/1EcdPD7

iOS 9 by Tutorials Chapter 14: Location and Mapping

raywenderlich.com 275



15Chapter 15: What's New in 
Xcode?
By Jawwad Ahmad

The most important tool you use as an iOS developer is Xcode, and each new 
release brings a variety of features and improvements. In prior chapters, you 
learned about many of Xcode's new features, such as storyboard references, 
support for app thinning, improvements to testing and code coverage.

This chapter will introduce you more new features in Xcode, like the new energy 
gauge and improvements to playgrounds. Along the way, you'll also learn about 
other features and improvements that will make your time spent in Xcode more 
productive.

Getting started
In this chapter, you'll work on Local Weather, an app that uses your GPS location 
to show the weather near you.

You won't make too many changes to the app, rather you'll use it to explore various 
new features of Xcode, especially the new energy gauge. Find an iPhone or iPad 
before you dig in; you'll need to run the app on an actual device since the energy 
gauge doesn't show  on the simulator.

Open the starter project for this chapter and select your device from the destination 
menu:

Note: If you can't run the app on your device, it may not be provisioned. See 
the next section on free provisioning to get set up.

raywenderlich.com 276



After selecting your device, build and run. Then tap Allow on the location access 
request. The location and weather should update fairly quickly:

Although the energy gauge won't show up unless you run the app on a device, you 
can still run it in the simulator. If you do, make sure to select a location using the 
Simulate Location button in the Debug Area. You can also use this feature to 
simulate a different location while running on your device. Perhaps you'd like to find 
out how cold it is in Moscow or how balmy it is in Maui. No problem, just choose it 
from the menu.

Free provisioning
One of the major changes this year is free provisioning, which means that anyone 
with an Apple ID can build and run iOS apps on a physical device without having to 
join the $99/yr Apple Developer Program. Now you only need to join the paid 
program if you want to distribute apps on the App Store.

This chapter won't cover the provisioning process, but if your device isn't already 
provisioned, you can take a look at Apple's documentation to set things up: Launch 
Your App on Devices Using Free Provisioning (apple.co/1KJ12tJ).

iOS 9 by Tutorials Chapter 15: What's New in Xcode?

raywenderlich.com 277



OpenWeatherMap API key (optional)
Local Weather uses the current weather data API from openweathermap.org. You 
may not need to use the API key, but OpenWeatherMap notes that it reserves the 
right to not process requests made without an API key. So it could get interesting 
without that API.

To sign up for a key, go to openweathermap.org/register.

If you do sign up, open WeatherViewController.swift and near the top of the file 
replace "YOUR_API_KEY_HERE" with your new API key.

let openWeatherMapApiKey = "YOUR_API_KEY_HERE"

Energy impact gauge
Exploring the new energy gauge will be a major part of this chapter. With the app 
running on a device, switch to the Debug navigator and click on Energy Impact:

Note: If you can't see Energy Impact, try clicking on the disclosure arrow on 
the LocalWeather process:

You'll see the new iOS energy gauge, and it shows the app is a bit power hungry!

iOS 9 by Tutorials Chapter 15: What's New in Xcode?

raywenderlich.com 278



The Utilization section on the top left shows you the energy impact at the current 
moment in time. In the top right section, you see the average energy impact, as 
well as the overhead. This includes the energy consumed by system resources to 
perform work like bringing up radios, as well as the energy used when the 
resources remain active but idle.

At the bottom, you see four rows of blocks corresponding to CPU, network, location 
and background. Each block represents a second. If there is any kind of activity 
during a single second, the box will fill in with a gray block.

Note that the CPU and Location graphs show continuous activity. The Network 
graph shows an interesting pattern of 10 or 11 seconds of activity, then three to 
five seconds of inactivity. The Background graph is completely clear since the app 
hasn't been put into the background...yet.

Press the Home button to background the app. You'll eventually end up with the 
following graph that shows the location and network activity have ceased, but you'll 
have continuous activity for Background and CPU:

Take a look at the console. The log indicates that all of the background tasks

iOS 9 by Tutorials Chapter 15: What's New in Xcode?

raywenderlich.com 279



completed in 10.79 seconds, but the background energy graph didn't stop.

It would appear that Local Weather is a little energy vampire.

Code browsing features
Many of Xcode's new features not only help with development, but also help you 
get up to speed with a new codebase even faster. In this chapter, you'll use them to 
get a basic understanding of the app's architecture, and then you'll fix each of the 
energy issues you just saw.

Interface of Swift classes
If you came to iOS programming in the olden days then you'll remember Objective-
C headers. They showed just the public properties and method signatures, and 
were a great way of getting a quick summary of a class and its capabilities. You'd 
open up the header file and instantly be able to see what it could do, without 
having to comb through the implementation code.

Wouldn't it be dreamy if you could have a header file for Swift classes but didn't 
have to maintain it? Crazy talk you say?

Open WeatherViewController.swift and then open the assistant editor. Click 
on the assistant editor menu and choose Counterparts (1) ▶ 
WeatherViewController.swift (Interface):

Note: You can also select Generated Interface instead of Counterparts ▶ 
RWHTTPManager.h (Interface) to view the same result.

Like magic, you'll see the public interface of your class in the assistant editor:

iOS 9 by Tutorials Chapter 15: What's New in Xcode?

raywenderlich.com 280



However, private variables or methods won't show up in the interface. Take a look 
at the following part of WeatherViewController.swift:

Look at the interface again and note that locationManager isn't visible since it's 
declared private, nor are any of the outlets visible since they are all private.

Note: Since the class is self-contained, every variable and method could 
actually have been made private. But then there wouldn't have been an 
interface to demo!

In WeatherViewController.swift, delete the private access modifier from the 
following:

private let locationManager = CLLocationManager()

Press Command-S to save the file, and the interface should refresh itself. You'll 
now see locationManager join its friends in the interface:

Did you notice that the comment for countdownUpdateTimer shows up in the

iOS 9 by Tutorials Chapter 15: What's New in Xcode?

raywenderlich.com 281



interface, but the comments for weatherNeedsFetchUpdate and networkFetchTimer 
don't? This is because the required documentation comment is nowhere in sight. 
You need either /// or /**.

Add an extra / to the comment for weatherNeedsFetchUpdate and an extra * to the 
comment for networkFetchTimer. Save the file, and you'll see both comments show 
up when the interface refreshes itself:

Wouldn't it also be cool if you could take an Objective-C header file and see what 
how it would look in Swift? No problem – coming right up!

Generated Swift interface for Objective-C headers
In the project navigator, expand the Helpers group and you'll see 
RWHTTPManager.h and RWHTTPManager.m. The RWHTTPManager class is a 
convenience wrapper around NSURLSession and is written in Objective-C.

Click on RWNetworkHelper.h to open it in the primary editor:

Now take a look at the assistant editor:

Isn't that just magical? There's an issue though, and it's a bit harder to catch in the 
RWHTTPManager.h file. Take a look at the Swift interface. In init(baseURL:), the 
type of baseURL is a non-optional NSURL, whereas the actual baseURL property on the 
line above it is an optional. The init method is correct; baseURL should be of type 
NSURL instead of NSURL?.

Look at RWHTTPManager.h and note that NSURL is annotated with _Nullable:

@property (nonatomic, strong) NSURL * _Nullable baseURL;

iOS 9 by Tutorials Chapter 15: What's New in Xcode?

raywenderlich.com 282



Change _Nullable to _Nonnull:

@property (nonatomic, strong) NSURL * _Nonnull baseURL;

Press Command-S to save the file. Once the interface refreshes, you should see 
that baseURL is no longer an optional:

var baseURL: NSURL

There is actually another small issue. Note that the relativePath: parameter takes 
an optional, String?, whereas the comment says relativePath is a required 
parameter. Can you fix this yourself? Go ahead and try it.

Okay, here's the answer. It's upside down so you can't cheat quite so easily:

New documentation features
Open WeatherViewController.swift and look at updateCountdownLabel(). 
Note the call to FormatHelper.formatNumber(_:withFractionDigitCount) right under 
the Step 8 comment. Option-click on formatNumber, and you'll see the 
documentation appear in rich formatting.

Now Command-click on formatNumber to jump to the implementation of the 
method. It's just using basic markdown syntax!

iOS 9 by Tutorials Chapter 15: What's New in Xcode?

raywenderlich.com 283



If you want to find out more, NSHipster has a great guide to Swift Documentation, 
which covers all of the possibilities: bit.ly/1Ltcz0B

Think of all the beautiful documentation you'll now be able to produce!

Find call hierarchy
Seeing documentation is great, but think about how often you want to see all of the 
places that use a particular method. Right-click or Control-click on formatNumber, 
and then click on Find Call Hierarchy.

Boom! You'll see all the places that call formatNumber. How cool is that? And you can 
also drill down to view the complete call hierarchy:

From here you can quickly jump to any level in the call hierarchy with a click of 
your trackpad.

Decreasing energy impact
It's time to get back to fixing those draining energy issues! Before you do, here's a 
brief summary of the app flow:

• First, it requests the user's current location.

• Once it receives the location, it makes an HTTP request to fetch the weather for 
that location.

• Once weather data is received, it updates views and schedules and another 
request for 15 seconds later.

iOS 9 by Tutorials Chapter 15: What's New in Xcode?

raywenderlich.com 284



• Every 0.1 seconds, countdownLabel refreshes to show the time remaining until 
the next network request.

That was a quick, high-level overview. To review the app flow in a bit more detail, 
press Command-Shift-F and search for // Step:

Do you recall the interesting behavior you saw when there was 10–11 seconds of 
network activity followed by three to five seconds of non-activity? It happens 
because any time a network request is made, the network radios stay on for about 
10 seconds, even after the network request completes.

It's a recipe for very high overhead with every single network request. While you 
may have thought you were just using the network radio for about one second 
every 15 seconds — that's seven percent — you were actually using it for 11 
seconds out of 15 seconds, or a whopping 73 percent.

This is the first thing you'll fix.

Reducing network energy impact
Weather changes quickly, but not 15 seconds quickly – unless you're out at sea. 
Hence, there's not a strong use case for a weather app that updates every 15 
seconds. A better plan is to make it update whenever the user launches the app.

In the Find results for  // Step click on Step 6, which is in 
WeatherViewController.swift. Comment out the line directly below Step 6, 
which initializes the networkFetchTimer:

// Step 6: Set a timer to fetch the weather again in 15 seconds 
// networkFetchTimer = NSTimer 
//  .scheduledTimerWithTimeInterval(15, ...

Build and run, switch to the Debug navigator and click on the Energy Impact 
row to see the updated energy gauge:

iOS 9 by Tutorials Chapter 15: What's New in Xcode?

raywenderlich.com 285



Much better! Now the app will only make a single network request when it starts, 
saving the user's battery for more important things, like watching videos of pug 
puppies.

Reducing CPU energy impact
In the previous graph, you see that the CPU is still working even though the app is 
essentially twiddling its thumbs.

countdownUpdateTimer, which updates the countdownLabel, is the culprit. It 
continually sets the remaining time to 0 since there is no longer an active 
networkFetchTimer.

Switch back to the Find navigator, and click on Step 7 to take you to the relevant 
line in WeatherViewController.swift. Comment out the line directly below Step 
7 which initializes countdownUpdateTimer:

// Step 7: Update the countdown label every 0.1 seconds using a timer 
// countdownUpdateTimer = NSTimer.scheduledTimerWithTimeInterval(0.1 ...

For good measure, also comment out the line that unhides the 
countdownLabelStackView just above the UIView animation block, since you no 
longer need to see the countdown label:

// countdownLabelStackView.hidden = false

Build and run, and go back to the energy gauge. You may have to wait up to 30 
seconds for things to settle down, but this looks much better!

iOS 9 by Tutorials Chapter 15: What's New in Xcode?

raywenderlich.com 286



Reducing location energy impact
The next thing to do is reduce the location energy impact by turning off GPS when 
it's not needed. Once the initial location is received, you no longer require location 
updates, so you should add a call to locationManager.stopUpdatingLocation().

However, in iOS 9 if you only need a single location update, you can just call 
requestLocation() instead of startUpdatingLocation(). This new method 
automatically stops location updates once it's reported the user's location.

In WeatherViewController.swift, find requestLocationAndFetchWeather() 
and replace .startUpdatingLocation() with .requestLocation():

// Step 2: Request the location 
locationManager.requestLocation()

Build and run, and check the energy gauge again. You'll see that after the initial 
burst of activity, there's little to no activity at all. Nice work!

Reducing background energy impact
Recall that when you pressed the home button, the background graph started 
registering activity, but didn't stop even though the console log indicated that all 
background work was complete in about 11 seconds.

Open AppDelegate.swift and take a look at performBackgroundWork().

Note: Technically, the method isn't doing any "real" background work, it's just 
simulating 10 seconds of activity for the purposes of helping you learn how 
this all works!

The one rule of calling beginBackgroundTaskWithExpirationHandler(_:) is that once 
you're done with any work, you should call endBackgroundTask(_:) to let the system 
know that you no longer need further background execution time.

Add a call to endBackgroundTask(_:) at the very end of performBackgroundWork() 
right after the print call:

iOS 9 by Tutorials Chapter 15: What's New in Xcode?

raywenderlich.com 287



print("Background work completed in: \(formattedElapsedTime) " + 
  "sec") 
UIApplication.sharedApplication().endBackgroundTask( 
  backgroundTaskIdentifier)

Build and run, go to the energy gauge and press the Home button to place the 
app in the background. You'll see that background activity now stops after 10 
seconds:

Fantastic! You've fixed all of the energy impact issues using the new energy gauge. 
Now to take it one step further with the new Core Location instrument in Xcode.

Core Location instrument
If you want to dig deeper into how the user's location is being accessed, then iOS 
9's new Core Location instrument is for you. To use it, build and run the app, go to 
the energy gauge and click on the Location button below the gauge:

Click Restart on the Transfer current debug session prompt that appears:

Instruments will open up and run the Core Location instrument, profiling 
LocalWeather. The graph will show whenever the app uses Core Location, and the 
table, shown below, shows extra information about each usage.

iOS 9 by Tutorials Chapter 15: What's New in Xcode?

raywenderlich.com 288



Notice the second row that says "CLLocationManager changed accuracy to 
kCLLocationAccuracyBest". The Energy Impact column shows High and the duration 
shows 892.03 ms.

The app currently uses the default accuracy of kCLLocationAccuracyBest. As you can 
see, it has a high energy impact. A weather app doesn't need to be so precise, so 
dialing it back is an easy way to improve the app's energy usage.

Click the stop button in Instruments, and head back over to Xcode. In 
WeatherViewController.swift, find viewDidLoad() and add the following line 
just before the locationManager's delegate is set:

locationManager.desiredAccuracy = kCLLocationAccuracyKilometer

Build and run, go to the energy gauge and click on the Location button again. 
Click Restart on the prompt to get back to the Core Location instrument:

The table now says that CLLocationManager changed accuracy to 
kCLLocationAccuracyKilometer, which has a low energy impact. It's also much 
faster, at only 5.74 ms!

You now have the tools you need to be a good battery citizen on iOS and avoid 
ending up in the battery hog hall-of-shame. In the iOS 8 settings app, Battery 
Usage was buried 3 levels deep. You had to get to it via Settings \ General \ Usage 
\ Battery Usage. In iOS 9, it's now on the top-level Settings screen right above 
Privacy.

iOS 9 by Tutorials Chapter 15: What's New in Xcode?

raywenderlich.com 289



It's now easier than ever for a user to keep an eye on the relative battery usage of 
their apps. And with the new energy impact gauge and Core Location instrument, 
Apple has made it easier than ever for developers to diagnose and fix energy issues 
as well.

You're now finished with LocalWeather, so feel free to close the project in Xcode.

Playground improvements
Playgrounds has seen many new features since its debut in Xcode 6 last year. 
Support for rich authoring, auxiliary source files and inline results were introduced 
in Xcode 6.3, just 2 months before WWDC 2015. These features are significant, and 
even though they were initially released in Xcode 6.3, Apple has also chosen to 
make a note of them in its New Features in Xcode 7 (apple.co/1JSDRMa) document.

Xcode 7 improves upon these features and adds others, such as support for 
multiple pages and the ability to pause code execution. Playgrounds were already 
an amazing education tool, and these new features take them to the next level.

Rich playground authoring
In Xcode, choose File\New\Playground..., and name it Xcode7.playground. 
Click Next, choose a location, and then click Create. In the playground, replace the 
existing "Hello, playground" line with the following:

//: # Level 1 Heading 
 

//: ## Level 2 Heading 
 

//: ### Level 3 Heading

Reveal the File inspector by pressing Command-Option-1, or by clicking on the 
Utilities button followed by the File Inspector button:

Under Playground Settings, place a checkmark in Render Documentation:

iOS 9 by Tutorials Chapter 15: What's New in Xcode?

raywenderlich.com 290



You'll now see the rendered markup:

Unlike Xcode's documentation syntax, which uses an extra comment character, 
like /// or /**, for playgrounds you use a colon instead. So for single-line 
comments, the syntax is //:, and for multiline comments the syntax is /*: and */.

Consecutive lines using //: are rendered in the same block. Uncheck Render 
Documentation and add the following:

// This is a regular comment and will be shown but not rendered 
//: 1. The first item 
//: 2. The second item 
//: 3. And the third

Check Render Documentation again to see the output:

For multiple lines, you can also use the block delimiter /*: and */ and it will render 
as a block even, if you have a blank line between any of the lines. Furthermore, 
anything that you add directly after /*: won't render at all.

Uncheck Render Documentation and add the following:

// An example using block comment syntax 
/*: This is a comment and will not be shown at all 
1. The first item 
2. The second item 

 
3. And the third 
*/

iOS 9 by Tutorials Chapter 15: What's New in Xcode?

raywenderlich.com 291



Check Render Documentation once more:

Note that the text after /*: does not show at all.

This was just a brief introduction to get you started. For a full reference on syntax, 
see: Playground Markup Format (apple.co/1IG2eZ9).

Playground pages
You'll now add a second page to the playground. Reveal the project navigator by 
pressing Command-1, click the + button in the very bottom left, then click on 
New Page:

Name the newly added page Page Two, and then rename the original page by 
clicking it once to select it and then again to edit its title. Change its name from 
Untitled Page to Home.

Click on Page Two and you'll see it already has Previous and Next links. In the 
File inspector, uncheck Render Documentation to see the plain text format of 
the links:

//: [Previous](@previous) 
 

import Foundation 
 

var str = "Hello, playground" 
 

//: [Next](@next)

@next and @previous are special tokens to get you to the next and previous 
pages. To add a link to a specific page, you can just use the page name. If the 
name has a space, replace it with %20, as you would in a URL.

iOS 9 by Tutorials Chapter 15: What's New in Xcode?

raywenderlich.com 292



Add the following line anywhere in Page Two:

//: [Jump to Home](Home)

And the following line anywhere in Home:

//: [Jump to Page Two](Page%20Two)

Now check Render Documentation and try clicking on the links. You should be 
able to jump between both pages.

Inline results
Inline results let you see a result directly in the playground itself.

Uncheck Render Documentation again, and add the following code to the end of 
Page Two:

import UIKit 
let frame = CGRect(x: 0, y: 0, width: 100, height: 100) 
let view = UIView(frame: frame) 
view.backgroundColor = UIColor.redColor() 
view.layer.borderColor = UIColor.blueColor().CGColor 
view.layer.borderWidth = 10 
view

Hover over the UIView entry for the last line in the playground sidebar, and click on 
the Show Result button that appears:

You'll see the view appear inline right under the view variable!

Change the view's layer's borderWidth to 40 to see the view update:

iOS 9 by Tutorials Chapter 15: What's New in Xcode?

raywenderlich.com 293



Sources and resources
You can now add auxiliary source files and resources to the Sources and 
Resources folders in a playground. Moving supporting code to the sources folder 
allows you to keep the focus on relevant content in the playground page and also 
speeds up things since the auxiliary files don't need to be recompiled if they don't 
change.

Also, note that each playground page has its own sources and resources folders. If 
there is an image of the same name in a page's resources folder and also in the 
top-level resources folder, the image in the page's resources folder will take 
precedence.

Manually run playgrounds
You can also now choose to manually run code in a playground instead of it running 
automatically as you type; press and hold down the play button until a menu 
appears that lets you select Manually Run:

Other improvements
There are many other features and improvements in Xcode 7 – unfortunately, too 
many to cover in detail in this chapter!

There are many improvements to storyboards and Interface Builder:

• After Control-dragging from one view to another to add a constraint, if you press

iOS 9 by Tutorials Chapter 15: What's New in Xcode?

raywenderlich.com 294



Option you'll now also see the constants for the constraints that will be added.

• You can now set the layout margins of a view, or the identifier of a constraint in a 
storyboard.The constraints in the document outline in a storyboard now appear 
in a much more readable way.

There are also probably some changes that you might not even notice until 
somebody points them out to you. Like how if you've already implemented a 
delegate method, Xcode will no longer suggest it to you in the autocomplete menu. 
And how the Snapshots feature has been removed entirely.

Before this chapter comes to an end, there are two other features worth mentioning 
briefly...

Address sanitizer
Xcode includes a new tool that will help catch memory corruption errors that may 
occur when using Objective-C or C. When enabled, Xcode will build your app with 
additional instrumentation to catch memory errors in the act.

You can enable address sanitizer by going to Product \ Scheme \ Edit Scheme 
and placing a checkmark next to Enable Address Sanitizer under Diagnostics:

Right-to-left support
iOS 9 contains significant updates for the support of right-to-left languages such as 
Arabic and Hebrew. For these, the complete view hierarchy will be flipped, and 
navigation will occur in the opposite direction. If you've been using Auto Layout 
(and you really should be!), this should mostly "just work".

There is also a new option to test your view hierarchy in this flipped state without 
having to change your primary language. Edit your scheme and in the Options 
view, under Application Language, there is a new Right to Left 
Pseudolanguage option that you can select:

iOS 9 by Tutorials Chapter 15: What's New in Xcode?

raywenderlich.com 295



Where to go from here?
Wow. You've learned a lot about Xcode in this chapter — from its new 
documentation and code browsing features to the new energy impact gauge and 
Core Location instrument that will help make your apps more energy efficient.

You also learned about the various improvements to playgrounds as well as a few 
other miscellaneous things along the way.

Here are a few links to relevant resources that you might want to check out:

• Playground Markup Format for Comments apple.co/1IG2eZ9

• Energy Efficiency Guide for iOS Apps apple.co/1OEIHMf

And here are a few related WWDC 2015 videos to keep you busy:

• What's New in Xcode apple.co/1M0Fx8e

• Authoring Rich Playgrounds apple.co/1TieQQE

• Debugging Energy Issues apple.co/1gYPZAo

• Achieving All-day Battery Life apple.co/1P2jXxC

iOS 9 by Tutorials Chapter 15: What's New in Xcode?

raywenderlich.com 296



CConclusion

We all hope that you've reached the end of this book having had a great deal of fun 
along the way. If you dipped in and out of the chapters, to cover the topics most 
relevant to your current projects, then you'll now b e equipped to improve your 
users' experience with all the new technologies. If you read the book cover-to-
cover, well done — you're a coding ninja, and are ready to take on anything that 
iOS 9 can throw at you!

You now have a lot of real-world hands-on experience with the new iOS 9 
technologies and APIs. You've discovered how to support multitasking, 3DTouch and 
how you can refactor your layouts using stack views to make Auto Layout far more 
approachable. Your path to creating great iOS apps should now be easier and offer 
more possibilities — we're looking forward to the innovative ways you use iOS 9.

If you have any questions or comments, please stop by our forums at 
raywenderlich.com/forums.

Thanks once again for purchasing this book. Your continued support is what makes 
the tutorials, books, videos and other things we do at raywenderlich.com possible 
— we all truly appreciate it!

Go forth and use your newfound iOS knowledge for good,

– Jawwad, Soheil, Caroline, Evan, Aaron, James, Vincent, Pietro, Derek, Chris W., 
Julien, Richard, Wendy, Chris B. and Sam

raywenderlich.com 297


	Table of Contents : Overview
	Introduction
	Chapter 1: Swift 2.0
	Chapter 2: Introducing App Search
	Chapter 3: Your App on the Web
	Chapter 4: App Thinning
	Chapter 5: Multitasking
	Chapter 6: 3D Touch
	Chapter 7: UIStackView & Auto Layout changes
	Chapter 8: Intermediate UIStackView
	Chapter 9: What's New in Storyboards?
	Chapter 10: Custom Segues
	Chapter 11: UIKit Dynamics
	Chapter 12: Contacts
	Chapter 13: Testing
	Chapter 14: Location and Mapping
	Chapter 15: What's New in Xcode?
	Conclusion

