

iOS	9	Programming	Fundamentals	with
Swift

Swift,	Xcode,	and	Cocoa	Basics

Matt	Neuburg

Preface
On	June	2,	2014,	Apple’s	WWDC	keynote	address	ended	with	a	shocking	announcement:
“We	have	a	new	programming	language.”	This	came	as	a	huge	surprise	to	the	developer
community,	which	was	accustomed	to	Objective-C,	warts	and	all,	and	doubted	that	Apple
could	ever	possibly	relieve	them	from	the	weight	of	its	venerable	legacy.	The	developer
community,	it	appeared,	had	been	wrong.

Having	picked	themselves	up	off	the	floor,	developers	immediately	began	to	examine	this
new	language	—	Swift	—	studying	it,	critiquing	it,	and	deciding	whether	to	use	it.	My
own	first	move	was	to	translate	all	my	existing	iOS	apps	into	Swift;	this	was	enough	to
convince	me	that,	for	all	its	faults,	Swift	deserved	to	be	adopted	by	new	students	of	iOS
programming,	and	that	my	books,	therefore,	should	henceforth	assume	that	readers	are
using	Swift.

The	Swift	language	is	designed	from	the	ground	up	with	these	salient	features:

Object-orientation

Swift	is	a	modern,	object-oriented	language.	It	is	purely	object-oriented:	“Everything	is
an	object.”

Clarity

Swift	is	easy	to	read	and	easy	to	write,	with	minimal	syntactic	sugar	and	few	hidden
shortcuts.	Its	syntax	is	clear,	consistent,	and	explicit.

Safety

Swift	enforces	strong	typing	to	ensure	that	it	knows,	and	that	you	know,	what	the	type
of	every	object	reference	is	at	every	moment.

Economy

Swift	is	a	fairly	small	language,	providing	some	basic	types	and	functionalities	and	no
more.	The	rest	must	be	provided	by	your	code,	or	by	libraries	of	code	that	you	use	—
such	as	Cocoa.

Memory	management

Swift	manages	memory	automatically.	You	will	rarely	have	to	concern	yourself	with
memory	management.

Cocoa	compatibility

The	Cocoa	APIs	are	written	in	C	and	Objective-C.	Swift	is	explicitly	designed	to
interface	with	most	of	the	Cocoa	APIs.

These	features	make	Swift	an	excellent	language	for	learning	to	program	iOS.

The	alternative,	Objective-C,	still	exists,	and	you	can	use	it	if	you	like.	Indeed,	it	is	easy	to
write	an	app	that	includes	both	Swift	code	and	Objective-C	code;	and	you	may	have
reason	to	do	so.	Objective-C,	however,	lacks	the	very	advantages	that	Swift	offers.
Objective-C	agglomerates	object-oriented	features	onto	C.	It	is	therefore	only	partially

object-oriented;	it	has	both	objects	and	scalar	data	types,	and	its	objects	have	to	be	slotted
into	one	particular	C	data	type	(pointers).	Its	syntax	can	be	difficult	and	tricky;	reading
and	writing	nested	method	calls	can	make	one’s	eyes	glaze	over,	and	it	invites	hacky
habits	such	as	implicit	nil-testing.	Its	type	checking	can	be	and	frequently	is	turned	off,
resulting	in	programmer	errors	where	a	message	is	sent	to	the	wrong	type	of	object	and	the
program	crashes.	It	uses	manual	memory	management;	the	recent	introduction	of	ARC
(automatic	reference	counting)	has	alleviated	some	of	the	programmer	tedium	and	has
greatly	reduced	the	likelihood	of	programmer	error,	but	errors	are	still	possible,	and
memory	management	ultimately	remains	manual.

Recent	revisions	and	additions	to	Objective-C	—	ARC,	synthesis	and	autosynthesis,
improved	literal	array	and	dictionary	syntax,	blocks	—	have	made	it	easier	and	more
convenient,	but	such	patches	have	also	made	the	language	even	larger	and	possibly	even
more	confusing.	Because	Objective-C	must	encompass	C,	there	are	limits	to	how	far	it	can
be	extended	and	revised.	Swift,	on	the	other	hand,	is	a	clean	start.	If	you	were	to	dream	of
completely	revising	Objective-C	to	create	a	better	Objective-C,	Swift	might	be	what	you
would	dream	of.	It	puts	a	modern,	rational	front	end	between	you	and	the	Cocoa
Objective-C	APIs.

Therefore,	Swift	is	the	programming	language	used	throughout	this	book.	Nevertheless,
the	reader	will	also	need	some	awareness	of	Objective-C	(including	C).	The	Foundation
and	Cocoa	APIs,	the	built-in	commands	with	which	your	code	must	interact	in	order	to
make	anything	happen	on	an	iOS	device,	are	still	written	in	C	and	Objective-C.	In	order	to
interact	with	them,	you	have	to	know	what	those	languages	would	expect.	For	example,	in
order	to	pass	a	Swift	array	where	an	NSArray	is	expected,	you	need	to	know	what
consitutes	an	object	acceptable	as	an	element	of	an	Objective-C	NSArray.

Therefore,	in	this	edition,	although	I	do	not	attempt	to	teach	Objective-C,	I	do	describe	it
in	enough	detail	to	allow	you	to	read	it	when	you	encounter	it	in	the	documentation	and	on
the	Internet,	and	I	occasionally	show	some	Objective-C	code.	Part	III,	on	Cocoa,	is	really
all	about	learning	to	think	the	way	Objective-C	thinks	—	because	the	structure	and
behavior	of	the	Cocoa	APIs	are	fundamentally	based	on	Objective-C.	And	the	book	ends
with	an	appendix	that	details	how	Swift	and	Objective-C	communicate	with	one	another,
as	well	as	detailing	how	your	app	can	be	written	partly	in	Swift	and	partly	in	Objective-C.

The	Scope	of	This	Book
This	book	is	actually	one	of	a	pair	with	my	Programming	iOS	9,	which	picks	up	exactly
where	this	book	leaves	off.	They	complement	and	supplement	one	another.	The	two-book
architecture	should,	I	believe,	render	the	size	and	scope	of	each	book	tractable	for	readers.
Together,	they	provide	a	complete	grounding	in	the	knowledge	needed	to	begin	writing
iOS	apps;	thus,	when	you	do	start	writing	iOS	apps,	you’ll	have	a	solid	and	rigorous
understanding	of	what	you	are	doing	and	where	you	are	heading.	If	writing	an	iOS
program	is	like	building	a	house	of	bricks,	this	book	teaches	you	what	a	brick	is	and	how
to	handle	it,	while	Programming	iOS	9	hands	you	some	actual	bricks	and	tells	you	how	to
assemble	them.

When	you	have	read	this	book,	you’ll	know	about	Swift,	Xcode,	and	the	underpinnings	of
the	Cocoa	framework,	and	you	will	be	ready	to	proceed	directly	to	Programming	iOS	9.
Conversely,	Programming	iOS	9	assumes	a	knowledge	of	this	book;	it	begins,	like
Homer’s	Iliad,	in	the	middle	of	the	story,	with	the	reader	jumping	with	all	four	feet	into
views	and	view	controllers,	and	with	a	knowledge	of	the	language	and	the	Xcode	IDE
already	presupposed.	If	you	started	reading	Programming	iOS	9	and	wondered	about	such
unexplained	matters	as	Swift	language	basics,	the	UIApplicationMain	function,	the	nib-
loading	mechanism,	Cocoa	patterns	of	delegation	and	notification,	and	retain	cycles,
wonder	no	longer	—	I	didn’t	explain	them	there	because	I	do	explain	them	here.

The	three	parts	of	this	book	teach	the	underlying	basis	of	all	iOS	programming:

Part	I	introduces	the	Swift	language,	from	the	ground	up	—	I	do	not	assume	that	you
know	any	other	programming	languages.	My	way	of	teaching	Swift	is	different	from
other	treatments,	such	as	Apple’s;	it	is	systematic	and	Euclidean,	with	pedagogical
building	blocks	piled	on	one	another	in	what	I	regard	as	the	most	helpful	order.	At	the
same	time,	I	have	tried	to	confine	myself	to	the	essentials.	Swift	is	not	a	big	language,
but	it	has	some	subtle	and	unusual	corners.	You	don’t	need	to	dive	deep	into	all	of
these,	and	my	discussion	will	leave	many	of	them	unexplored.	You	will	probably	never
encounter	them,	and	if	you	do,	you	will	have	entered	an	advanced	Swift	world	outside
the	scope	of	this	discussion.	To	give	an	obvious	example,	readers	may	be	surprised	to
find	that	I	never	mention	Swift	playgrounds	or	the	REPL.	My	focus	here	is	real-life
iOS	programming,	and	my	explanation	of	Swift	therefore	concentrates	on	those
common,	practical	aspects	of	the	language	that,	in	my	experience,	actually	come	into
play	in	the	course	of	programming	iOS.
Part	II	turns	to	Xcode,	the	world	in	which	all	iOS	programming	ultimately	takes	place.
It	explains	what	an	Xcode	project	is	and	how	it	is	transformed	into	an	app,	and	how	to
work	comfortably	and	nimbly	with	Xcode	to	consult	the	documentation	and	to	write,
navigate,	and	debug	code,	as	well	as	how	to	bring	your	app	through	the	subsequent
stages	of	running	on	a	device	and	submission	to	the	App	Store.	There	is	also	a	very
important	chapter	on	nibs	and	the	nib	editor	(Interface	Builder),	including	outlets	and
actions	as	well	as	the	mechanics	of	nib	loading;	however,	such	specialized	topics	as
autolayout	constraints	in	the	nib	are	postponed	to	the	other	book.
Part	III	introduces	the	Cocoa	Touch	framework.	When	you	program	for	iOS,	you	take
advantage	of	a	suite	of	frameworks	provided	by	Apple.	These	frameworks,	taken
together,	constitute	Cocoa;	the	brand	of	Cocoa	that	provides	the	API	for	programming

http://shop.oreilly.com/product/0636920044352.do

iOS	is	Cocoa	Touch.	Your	code	will	ultimately	be	almost	entirely	about	communicating
with	Cocoa.	The	Cocoa	Touch	frameworks	provide	the	underlying	functionality	that
any	iOS	app	needs	to	have.	But	to	use	a	framework,	you	have	to	think	the	way	the
framework	thinks,	put	your	code	where	the	framework	expects	it,	and	fulfill	many
obligations	imposed	on	you	by	the	framework.	To	make	things	even	more	interesting,
Cocoa	uses	Objective-C,	while	you’ll	be	using	Swift:	you	need	to	know	how	your
Swift	code	will	interface	with	Cocoa’s	features	and	behaviors.	Cocoa	provides
important	foundational	classes	and	adds	linguistic	and	architectural	devices	such	as
categories,	protocols,	delegation,	and	notifications,	as	well	as	the	pervasive
responsibilities	of	memory	management.	Key–value	coding	and	key–value	observing
are	also	discussed	here.

The	reader	of	this	book	will	thus	get	a	thorough	grounding	in	the	fundamental	knowledge
and	techniques	that	any	good	iOS	programmer	needs.	The	book	itself	doesn’t	show	how	to
write	any	particularly	interesting	iOS	apps,	but	it	does	constantly	use	my	own	real	apps
and	real	programming	situations	to	illustrate	and	motivate	its	explanations.	And	then
you’ll	be	ready	for	Programming	iOS	9,	of	course!

Versions
This	book	is	geared	to	Swift	2.0,	iOS	9,	and	Xcode	7.

In	general,	only	very	minimal	attention	is	given	to	earlier	versions	of	iOS	and	Xcode.	It	is
not	my	intention	to	embrace	in	this	book	any	detailed	knowledge	about	earlier	versions	of
the	software,	which	is,	after	all,	readily	and	compendiously	available	in	my	earlier	books.
The	book	does	contain,	nevertheless,	a	few	words	of	advice	about	backward	compatibility
(especially	in	Chapter	9).

The	Swift	language	included	with	Xcode	7,	Swift	2.0,	has	changed	very	significantly	from
its	immediate	predecessor,	Swift	1.2.	If	you	were	using	Swift	1.2	previously,	you’ll	almost
certainly	find	that	your	code	won’t	compile	with	Swift	2.0	without	some	thorough
revision.	Similarly,	the	code	in	this	book,	being	written	in	Swift	2.0,	is	totally
incompatible	with	Swift	1.2.	On	the	assumption	that	you	might	have	some	prior
knowledge	of	Swift	1.2,	I	call	out,	in	the	course	of	my	discussion,	most	of	the	important
language	features	that	are	new	or	changed	in	Swift	2.0.	But	I	do	not	describe	or	explain
Swift	1.2	at	all;	if	you	need	to	know	about	it	—	though	I	can’t	imagine	why	you	would	—
consult	the	previous	edition	of	this	book.

Acknowledgments
My	thanks	go	first	and	foremost	to	the	people	at	O’Reilly	Media	who	have	made	writing	a
book	so	delightfully	easy:	Rachel	Roumeliotis,	Sarah	Schneider,	Kristen	Brown,	Dan
Fauxsmith,	and	Adam	Witwer	come	particularly	to	mind.	And	let’s	not	forget	my	first	and
long-standing	editor,	Brian	Jepson,	who	had	nothing	whatever	to	do	with	this	edition,	but
whose	influence	is	present	throughout.

As	in	the	past,	I	have	been	greatly	aided	by	some	fantastic	software,	whose	excellences	I
have	appreciated	at	every	moment	of	the	process	of	writing	this	book.	I	should	like	to
mention,	in	particular:

git	(http://git-scm.com)
SourceTree	(http://www.sourcetreeapp.com)
TextMate	(http://macromates.com)
AsciiDoc	(http://www.methods.co.nz/asciidoc)
BBEdit	(http://barebones.com/products/bbedit/)
Snapz	Pro	X	(http://www.ambrosiasw.com)
GraphicConverter	(http://www.lemkesoft.com)
OmniGraffle	(http://www.omnigroup.com)

The	book	was	typed	and	edited	entirely	on	my	faithful	Unicomp	Model	M	keyboard
(http://pckeyboard.com),	without	which	I	could	never	have	done	so	much	writing	over	so
long	a	period	so	painlessly.	For	more	about	my	physical	work	environment,	see
http://matt.neuburg.usesthis.com.

http://git-scm.com
http://www.sourcetreeapp.com
http://macromates.com
http://www.methods.co.nz/asciidoc
http://barebones.com/products/bbedit/
http://www.ambrosiasw.com
http://www.lemkesoft.com
http://www.omnigroup.com
http://pckeyboard.com
http://matt.neuburg.usesthis.com

From	the	Programming	iOS	4	Preface
A	programming	framework	has	a	kind	of	personality,	an	overall	flavor	that	provides	an
insight	into	the	goals	and	mindset	of	those	who	created	it.	When	I	first	encountered	Cocoa
Touch,	my	assessment	of	its	personality	was:	“Wow,	the	people	who	wrote	this	are	really
clever!”	On	the	one	hand,	the	number	of	built-in	interface	objects	was	severely	and
deliberately	limited;	on	the	other	hand,	the	power	and	flexibility	of	some	of	those	objects,
especially	such	things	as	UITableView,	was	greatly	enhanced	over	their	OS	X
counterparts.	Even	more	important,	Apple	created	a	particularly	brilliant	way
(UIViewController)	to	help	the	programmer	make	entire	blocks	of	interface	come	and	go
and	supplant	one	another	in	a	controlled,	hierarchical	manner,	thus	allowing	that	tiny
iPhone	display	to	unfold	virtually	into	multiple	interface	worlds	within	a	single	app
without	the	user	becoming	lost	or	confused.

The	popularity	of	the	iPhone,	with	its	largely	free	or	very	inexpensive	apps,	and	the
subsequent	popularity	of	the	iPad,	have	brought	and	will	continue	to	bring	into	the	fold
many	new	programmers	who	see	programming	for	these	devices	as	worthwhile	and
doable,	even	though	they	may	not	have	felt	the	same	way	about	OS	X.	Apple’s	own
annual	WWDC	developer	conventions	have	reflected	this	trend,	with	their	emphasis
shifted	from	OS	X	to	iOS	instruction.

The	widespread	eagerness	to	program	iOS,	however,	though	delightful	on	the	one	hand,
has	also	fostered	a	certain	tendency	to	try	to	run	without	first	learning	to	walk.	iOS	gives
the	programmer	mighty	powers	that	can	seem	as	limitless	as	imagination	itself,	but	it	also
has	fundamentals.	I	often	see	questions	online	from	programmers	who	are	evidently	deep
into	the	creation	of	some	interesting	app,	but	who	are	stymied	in	a	way	that	reveals	quite
clearly	that	they	are	unfamiliar	with	the	basics	of	the	very	world	in	which	they	are	so
happily	cavorting.

It	is	this	state	of	affairs	that	has	motivated	me	to	write	this	book,	which	is	intended	to
ground	the	reader	in	the	fundamentals	of	iOS.	I	love	Cocoa	and	have	long	wished	to	write
about	it,	but	it	is	iOS	and	its	popularity	that	has	given	me	a	proximate	excuse	to	do	so.
Here	I	have	attempted	to	marshal	and	expound,	in	what	I	hope	is	a	pedagogically	helpful
and	instructive	yet	ruthlessly	Euclidean	and	logical	order,	the	principles	and	elements	on
which	sound	iOS	programming	rests.	My	hope,	as	with	my	previous	books,	is	that	you
will	both	read	this	book	cover	to	cover	(learning	something	new	often	enough	to	keep	you
turning	the	pages)	and	keep	it	by	you	as	a	handy	reference.

This	book	is	not	intended	to	disparage	Apple’s	own	documentation	and	example	projects.
They	are	wonderful	resources	and	have	become	more	wonderful	as	time	goes	on.	I	have
depended	heavily	on	them	in	the	preparation	of	this	book.	But	I	also	find	that	they	don’t
fulfill	the	same	function	as	a	reasoned,	ordered	presentation	of	the	facts.	The	online
documentation	must	make	assumptions	as	to	how	much	you	already	know;	it	can’t
guarantee	that	you’ll	approach	it	in	a	given	order.	And	online	documentation	is	more
suitable	to	reference	than	to	instruction.	A	fully	written	example,	no	matter	how	well
commented,	is	difficult	to	follow;	it	demonstrates,	but	it	does	not	teach.

A	book,	on	the	other	hand,	has	numbered	chapters	and	sequential	pages;	I	can	assume	you
know	views	before	you	know	view	controllers	for	the	simple	reason	that	Part	I	precedes

Part	II.	And	along	with	facts,	I	also	bring	to	the	table	a	degree	of	experience,	which	I	try	to
communicate	to	you.	Throughout	this	book	you’ll	find	me	referring	to	“common	beginner
mistakes”;	in	most	cases,	these	are	mistakes	that	I	have	made	myself,	in	addition	to	seeing
others	make	them.	I	try	to	tell	you	what	the	pitfalls	are	because	I	assume	that,	in	the	course
of	things,	you	will	otherwise	fall	into	them	just	as	naturally	as	I	did	as	I	was	learning.
You’ll	also	see	me	construct	many	examples	piece	by	piece	or	extract	and	explain	just	one
tiny	portion	of	a	larger	app.	It	is	not	a	massive	finished	program	that	teaches
programming,	but	an	exposition	of	the	thought	process	that	developed	that	program.	It	is
this	thought	process,	more	than	anything	else,	that	I	hope	you	will	gain	from	reading	this
book.

Conventions	Used	in	This	Book
The	following	typographical	conventions	are	used	in	this	book:

Italic

Indicates	new	terms,	URLs,	email	addresses,	filenames,	and	file	extensions.
Constant	width

Used	for	program	listings,	as	well	as	within	paragraphs	to	refer	to	program	elements
such	as	variable	or	function	names,	databases,	data	types,	environment	variables,
statements,	and	keywords.

Constant	width	bold

Shows	commands	or	other	text	that	should	be	typed	literally	by	the	user.
Constant	width	italic

Shows	text	that	should	be	replaced	with	user-supplied	values	or	by	values	determined
by	context.

TIP

This	element	signifies	a	tip	or	suggestion.

NOTE

This	element	signifies	a	general	note.

WARNING

This	element	indicates	a	warning	or	caution.

Using	Code	Examples
Supplemental	material	(code	examples,	exercises,	etc.)	is	available	for	download	at
http://github.com/mattneub/Programming-iOS-Book-Examples.

This	book	is	here	to	help	you	get	your	job	done.	In	general,	if	example	code	is	offered
with	this	book,	you	may	use	it	in	your	programs	and	documentation.	You	do	not	need	to
contact	us	for	permission	unless	you’re	reproducing	a	significant	portion	of	the	code.	For
example,	writing	a	program	that	uses	several	chunks	of	code	from	this	book	does	not
require	permission.	Selling	or	distributing	a	CD-ROM	of	examples	from	O’Reilly	books
does	require	permission.	Answering	a	question	by	citing	this	book	and	quoting	example
code	does	not	require	permission.	Incorporating	a	significant	amount	of	example	code
from	this	book	into	your	product’s	documentation	does	require	permission.

We	appreciate,	but	do	not	require,	attribution.	An	attribution	usually	includes	the	title,
author,	publisher,	and	ISBN.	For	example:	“iOS	9	Programming	Fundamentals	with	Swift
by	Matt	Neuburg	(O’Reilly).	Copyright	2016	Matt	Neuburg,	978-1-491-93677-1.”

If	you	feel	your	use	of	code	examples	falls	outside	fair	use	or	the	permission	given	above,
feel	free	to	contact	us	at	permissions@oreilly.com.

http://github.com/mattneub/Programming-iOS-Book-Examples
mailto:permissions@oreilly.com

Safari®	Books	Online
NOTE

Safari	Books	Online	is	an	on-demand	digital	library	that	delivers	expert	content	in	both	book	and	video	form	from	the
world’s	leading	authors	in	technology	and	business.

Technology	professionals,	software	developers,	web	designers,	and	business	and	creative
professionals	use	Safari	Books	Online	as	their	primary	resource	for	research,	problem
solving,	learning,	and	certification	training.

Safari	Books	Online	offers	a	range	of	plans	and	pricing	for	enterprise,	government,
education,	and	individuals.

Members	have	access	to	thousands	of	books,	training	videos,	and	prepublication
manuscripts	in	one	fully	searchable	database	from	publishers	like	O’Reilly	Media,
Prentice	Hall	Professional,	Addison-Wesley	Professional,	Microsoft	Press,	Sams,	Que,
Peachpit	Press,	Focal	Press,	Cisco	Press,	John	Wiley	&	Sons,	Syngress,	Morgan
Kaufmann,	IBM	Redbooks,	Packt,	Adobe	Press,	FT	Press,	Apress,	Manning,	New	Riders,
McGraw-Hill,	Jones	&	Bartlett,	Course	Technology,	and	hundreds	more.	For	more
information	about	Safari	Books	Online,	please	visit	us	online.

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/

How	to	Contact	Us
Please	address	comments	and	questions	concerning	this	book	to	the	publisher:

O’Reilly	Media,	Inc.

1005	Gravenstein	Highway	North

Sebastopol,	CA	95472

800-998-9938	(in	the	United	States	or	Canada)

707-829-0515	(international	or	local)

707-829-0104	(fax)

We	have	a	web	page	for	this	book,	where	we	list	errata,	examples,	and	any	additional
information.	You	can	access	this	page	at	http://bit.ly/ios9-prog-fundamentals.

To	comment	or	ask	technical	questions	about	this	book,	send	email	to
bookquestions@oreilly.com.

For	more	information	about	our	books,	courses,	conferences,	and	news,	see	our	website	at
http://www.oreilly.com.

Find	us	on	Facebook:	http://facebook.com/oreilly

Follow	us	on	Twitter:	http://twitter.com/oreillymedia

Watch	us	on	YouTube:	http://www.youtube.com/oreillymedia

http://bit.ly/ios9-prog-fundamentals
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Part	I.	Language
This	part	of	the	book	teaches	the	Swift	language,	from	the	ground	up.	The	description	is
rigorous	and	orderly.	Here	you’ll	become	sufficiently	conversant	with	Swift	to	be
comfortable	with	it,	so	that	you	can	proceed	to	the	practical	business	of	actual
programming.

Chapter	1	surveys	the	structure	of	a	Swift	program,	both	physically	and	conceptually.
You’ll	learn	how	Swift	code	files	are	organized,	and	you’ll	be	introduced	to	the	most
important	underlying	concepts	of	the	object-oriented	Swift	language:	variables	and
functions,	scopes	and	namespaces,	object	types	and	their	instances.
Chapter	2	explores	Swift	functions.	We	start	with	the	basics	of	how	functions	are
declared	and	called;	then	we	discuss	parameters	—	external	parameter	names,	default
parameters,	and	variadic	parameters.	Then	we	dive	deep	into	the	power	of	Swift
functions,	with	an	explanation	of	functions	inside	functions,	functions	as	first-class
values,	anonymous	functions,	functions	as	closures,	and	curried	functions.
Chapter	3	starts	with	Swift	variables	—	their	scope	and	lifetime,	and	how	they	are
declared	and	initialized,	along	with	important	Swift	features	such	as	computed
variables	and	setter	observers.	Then	some	important	built-in	Swift	types	are	introduced,
including	Booleans,	numbers,	strings,	ranges,	tuples,	and	Optionals.
Chapter	4	is	all	about	Swift	object	types	—	classes,	structs,	and	enums.	It	explains	how
these	three	object	types	work,	and	how	you	declare,	instantiate,	and	use	them.	Then	it
proceeds	to	polymorphism	and	casting,	protocols,	generics,	and	extensions.	The
chapter	concludes	with	a	discussion	of	Swift’s	umbrella	types,	such	as	AnyObject,	and
collection	types	—	Array,	Dictionary,	and	Set	(including	option	sets,	the	new	Swift	2.0
way	of	expressing	bitmasks).
Chapter	5	is	a	miscellany.	We	start	with	Swift’s	flow	control	structures	for	branching,
looping,	and	jumping,	including	a	major	new	Swift	2.0	feature,	error	handling.	Then
I’ll	explain	how	to	create	your	own	Swift	operators.	The	chapter	concludes	by
describing	Swift	access	control	(privacy),	introspection	(reflection),	and	memory
management.

Chapter	1.	The	Architecture	of	Swift
It	will	be	useful	at	the	outset	for	you	to	have	a	general	sense	of	how	the	Swift	language	is
constructed	and	what	a	Swift-based	iOS	program	looks	like.	This	chapter	will	survey	the
overall	architecture	and	nature	of	the	Swift	language.	Subsequent	chapters	will	fill	in	the
details.

Ground	of	Being
A	complete	Swift	command	is	a	statement.	A	Swift	text	file	consists	of	multiple	lines	of
text.	Line	breaks	are	meaningful.	The	typical	layout	of	a	program	is	one	statement,	one
line:

print("hello")

print("world")

(The	print	command	provides	instant	feedback	in	the	Xcode	console.)

You	can	combine	more	than	one	statement	on	a	line,	but	then	you	need	to	put	a	semicolon
between	them:

print("hello");	print("world")

You	are	free	to	put	a	semicolon	at	the	end	of	a	statement	that	is	last	or	alone	on	its	line,	but
no	one	ever	does	(except	out	of	habit,	because	C	and	Objective-C	require	the	semicolon):

print("hello");

print("world");

Conversely,	a	single	statement	can	be	broken	into	multiple	lines,	in	order	to	prevent	long
statements	from	becoming	long	lines.	But	you	should	try	to	do	this	at	sensible	places	so	as
not	to	confuse	Swift.	For	example,	after	an	opening	parenthesis	is	a	good	place:

print(

				"world")

Comments	are	everything	after	two	slashes	in	a	line	(so-called	C++-style	comments):
print("world")	//	this	is	a	comment,	so	Swift	ignores	it

You	can	also	enclose	comments	in	/*...*/,	as	in	C.	Unlike	C,	C-style	comments	can	be
nested.

Many	constructs	in	Swift	use	curly	braces	as	delimiters:
class	Dog	{

				func	bark()	{

								print("woof")

				}

}

By	convention,	the	contents	of	curly	braces	are	preceded	and	followed	by	line	breaks	and
are	indented	for	clarity,	as	shown	in	the	preceding	code.	Xcode	will	help	impose	this
convention,	but	the	truth	is	that	Swift	doesn’t	care,	and	layouts	like	this	are	legal	(and	are
sometimes	more	convenient):

class	Dog	{	func	bark()	{	print("woof")	}}

Swift	is	a	compiled	language.	This	means	that	your	code	must	build	—	passing	through
the	compiler	and	being	turned	from	text	into	some	lower-level	form	that	a	computer	can
understand	—	before	it	can	run	and	actually	do	the	things	it	says	to	do.	The	Swift
compiler	is	very	strict;	in	the	course	of	writing	a	program,	you	will	often	try	to	build	and
run,	only	to	discover	that	you	can’t	even	build	in	the	first	place,	because	the	compiler	will
flag	some	error,	which	you	will	have	to	fix	if	you	want	the	code	to	run.	Less	often,	the
compiler	will	let	you	off	with	a	warning;	the	code	can	run,	but	in	general	you	should	take
warnings	seriously	and	fix	whatever	they	are	telling	you	about.	The	strictness	of	the
compiler	is	one	of	Swift’s	greatest	strengths,	and	provides	your	code	with	a	large	measure
of	audited	correctness	even	before	it	ever	starts	running.

WARNING

The	Swift	compiler’s	error	and	warning	messages	range	from	the	insightful	to	the	obtuse	to	the	downright	misleading.
You	will	often	know	that	something	is	wrong	with	a	line	of	code,	but	the	Swift	compiler	will	not	be	telling	you	clearly
exactly	what	is	wrong	or	even	where	in	the	line	to	focus	your	attention.	My	advice	in	these	situations	is	to	pull	the
line	apart	into	several	lines	of	simpler	code	until	you	reach	a	point	where	you	can	guess	what	the	issue	is.	Try	to	love
the	compiler	despite	the	occasional	unhelpful	nature	of	its	messages.	Remember,	it	knows	more	than	you	do,	even	if	it
is	sometimes	rather	inarticulate	about	its	knowledge.

Everything	Is	an	Object?
In	Swift,	“everything	is	an	object.”	That’s	a	boast	common	to	various	modern	object-
oriented	languages,	but	what	does	it	mean?	Well,	that	depends	on	what	you	mean	by
“object”	—	and	what	you	mean	by	“everything.”

Let’s	start	by	stipulating	that	an	object,	roughly	speaking,	is	something	you	can	send	a
message	to.	A	message,	roughly	speaking,	is	an	imperative	instruction.	For	example,	you
can	give	commands	to	a	dog:	“Bark!”	“Sit!”	In	this	analogy,	those	phrases	are	messages,
and	the	dog	is	the	object	to	which	you	are	sending	those	messages.

In	Swift,	the	syntax	of	message-sending	is	dot-notation.	We	start	with	the	object;	then
there’s	a	dot	(a	period);	then	there’s	the	message.	(Some	messages	are	also	followed	by
parentheses,	but	ignore	them	for	now;	the	full	syntax	of	message-sending	is	one	of	those
details	we’ll	be	filling	in	later.)	This	is	valid	Swift	syntax:

fido.bark()

rover.sit()

The	idea	of	everything	being	an	object	is	a	way	of	suggesting	that	even	“primitive”
linguistic	entities	can	be	sent	messages.	Take,	for	example,	1.	It	appears	to	be	a	literal	digit
and	no	more.	It	will	not	surprise	you,	if	you’ve	ever	used	any	programming	language,	that
you	can	say	things	like	this	in	Swift:

let	sum	=	1	+	2

But	it	is	surprising	to	find	that	1	can	be	followed	by	a	dot	and	a	message.	This	is	legal	and
meaningful	in	Swift	(don’t	worry	about	what	it	actually	means):

let	x	=	1.successor()

But	we	can	go	further.	Return	to	that	innocent-looking	1	+	2	from	our	earlier	code.	It
turns	out	that	this	is	actually	a	kind	of	syntactic	trickery,	a	convenient	way	of	expressing
and	hiding	what’s	really	going	on.	Just	as	1	is	actually	an	object,	+	is	actually	a	message;
but	it’s	a	message	with	special	syntax	(operator	syntax).	In	Swift,	every	noun	is	an	object,
and	every	verb	is	a	message.

Perhaps	the	ultimate	acid	test	for	whether	something	is	an	object	in	Swift	is	whether	you
can	modify	it.	An	object	type	can	be	extended	in	Swift,	meaning	that	you	can	define	your
own	messages	on	that	type.	For	example,	you	can’t	normally	send	the	sayHello	message
to	a	number.	But	you	can	change	a	number	type	so	that	you	can:

extension	Int	{

				func	sayHello()	{

								print("Hello,	I'm	\(self)")

				}

}

1.sayHello()	//	outputs:	"Hello,	I'm	1"

I	rest	my	case.

In	Swift,	then,	1	is	an	object.	In	some	languages,	such	as	Objective-C,	it	clearly	is	not;	it	is
a	“primitive”	or	scalar	built-in	data	type.	The	distinction	being	drawn	here,	then,	when	we
say	that	“everything	is	an	object,”	is	between	object	types	on	the	one	hand	and	scalars	on
the	other.	In	Swift,	there	are	no	scalars;	all	types	are	ultimately	object	types.	That’s	what
“everything	is	an	object”	really	means.

Three	Flavors	of	Object	Type
If	you	know	Objective-C	or	some	other	object-oriented	language,	you	may	be	surprised	by
Swift’s	notion	of	what	kind	of	object	1	is.	In	many	languages,	such	as	Objective-C,	an
object	is	a	class	or	an	instance	of	a	class.	Swift	has	classes	and	instances,	and	you	can
send	messages	to	them;	but	1	in	Swift	is	neither	of	those:	it’s	a	struct.	And	Swift	has	yet
another	kind	of	thing	you	can	send	messages	to,	called	an	enum.

So	Swift	has	three	kinds	of	object	type:	classes,	structs,	and	enums.	I	like	to	refer	to	these
as	the	three	flavors	of	object	type.	Exactly	how	they	differ	from	one	another	will	emerge
in	due	course.	But	they	are	all	very	definitely	object	types,	and	their	similarities	to	one
another	are	far	stronger	than	their	differences.	For	now,	just	bear	in	mind	that	these	three
flavors	exist.

(The	fact	that	a	struct	or	enum	is	an	object	type	in	Swift	will	surprise	you	particularly	if
you	know	Objective-C.	Objective-C	has	structs	and	enums,	but	they	are	not	objects.	Swift
structs,	in	particular,	are	much	more	important	and	pervasive	than	Objective-C	structs.
This	difference	between	how	Swift	views	structs	and	enums	and	how	Objective-C	views
them	can	matter	when	you	are	talking	to	Cocoa.)

Variables
A	variable	is	a	name	for	an	object.	Technically,	it	refers	to	an	object;	it	is	an	object
reference.	Nontechnically,	you	can	think	of	it	as	a	shoebox	into	which	an	object	is	placed.
The	object	may	undergo	changes,	or	it	may	be	replaced	inside	the	shoebox	by	another
object,	but	the	name	has	an	integrity	all	its	own.

In	Swift,	no	variable	comes	implicitly	into	existence;	all	variables	must	be	declared.	If	you
need	a	name	for	something,	you	must	say	“I’m	creating	a	name.”	You	do	this	with	one	of
two	keywords:	let	or	var.	In	Swift,	declaration	is	usually	accompanied	by	initialization
—	you	use	an	equal	sign	to	give	the	variable	a	value,	right	there	as	part	of	the	declaration.
These	are	both	variable	declarations	(and	initializations):

let	one	=	1

var	two	=	2

Once	the	name	exists,	you	are	free	to	use	it.	For	example,	we	can	change	the	value	of
what’s	in	two	to	be	the	same	as	the	value	of	what’s	in	one:

let	one	=	1

var	two	=	2

two	=	one

The	last	line	of	that	code	uses	both	the	name	one	and	the	name	two	declared	in	the	first
two	lines:	the	name	one,	on	the	right	side	of	the	equal	sign,	is	used	merely	to	refer	to	the
value	inside	the	shoebox	(namely	1);	but	the	name	two,	on	the	left	side	of	the	equal	sign,	is
used	to	replace	the	value	inside	the	shoebox.	A	statement	like	that,	with	a	variable	name
on	the	left	side	of	an	equal	sign,	is	called	an	assignment,	and	the	equal	sign	is	the
assignment	operator.	The	equal	sign	is	not	an	assertion	of	equality,	as	it	might	be	in	an
algebraic	formula;	it	is	a	command.	It	means:	“Get	the	value	of	what’s	on	the	right	side	of
me,	and	use	it	to	replace	the	value	inside	what’s	on	the	left	side	of	me.”

The	two	kinds	of	variable	declaration	differ	in	that	a	name	declared	with	let	cannot	have
its	object	replaced.	A	variable	declared	with	let	is	a	constant;	its	value	is	assigned	once
and	stays.	This	won’t	even	compile:

let	one	=	1

var	two	=	2

one	=	two	//	compile	error

It	is	always	possible	to	declare	a	name	with	var	to	give	yourself	the	most	flexibility,	but	if
you	know	you’re	never	going	to	replace	the	initial	value	of	a	variable,	it’s	better	to	use
let,	as	this	permits	Swift	to	behave	more	efficiently	—	so	much	more	efficiently,	in	fact,
that	the	Swift	compiler	will	actually	call	your	attention	to	any	case	of	your	using	var
where	you	could	have	used	let,	offering	to	change	it	for	you.

Variables	also	have	a	type.	This	type	is	established	when	the	variable	is	declared	and	can
never	change.	For	example,	this	won’t	compile:

var	two	=	2

two	=	"hello"	//	compile	error

Once	two	is	declared	and	initialized	as	2,	it	is	a	number	(properly	speaking,	an	Int)	and	it
must	always	be	so.	You	can	replace	its	value	with	1	because	that’s	also	an	Int,	but	you
can’t	replace	its	value	with	"hello"	because	that’s	a	string	(properly	speaking,	a	String)
—	and	a	String	is	not	an	Int.

Variables	literally	have	a	life	of	their	own	—	more	accurately,	a	lifetime	of	their	own.	As
long	as	a	variable	exists,	it	keeps	its	value	alive.	Thus,	a	variable	can	be	not	only	a	way	of
conveniently	naming	something,	but	also	a	way	of	preserving	it.	I’ll	have	more	to	say
about	that	later.

WARNING

By	convention,	type	names	such	as	String	or	Int	(or	Dog	or	Cat)	start	with	a	capital	letter;	variable	names	start	with	a
small	letter.	Do	not	violate	this	convention.	If	you	do,	your	code	might	still	compile	and	run	just	fine,	but	I	will
personally	send	agents	to	your	house	to	remove	your	kneecaps	in	the	dead	of	night.

Functions
Executable	code,	like	fido.bark()	or	one	=	two,	cannot	go	just	anywhere.	In	general,	it
must	live	inside	the	body	of	a	function.	A	function	is	a	batch	of	code	that	can	be	told,	as	a
batch,	to	run.	Typically,	a	function	has	a	name,	and	it	gets	that	name	through	a	function
declaration.	Function	declaration	syntax	is	another	of	those	details	that	will	be	filled	in
later,	but	here’s	an	example:

func	go()	{

				let	one	=	1

				var	two	=	2

				two	=	one

}

That	describes	a	sequence	of	things	to	do	—	declare	one,	declare	two,	change	the	value	of
two	to	match	the	value	of	one	—	and	it	gives	that	sequence	a	name,	go;	but	it	doesn’t
perform	the	sequence.	The	sequence	is	performed	when	someone	calls	the	function.	Thus,
we	might	say,	elsewhere:

go()

That	is	a	command	to	the	go	function	that	it	should	actually	run.	But	again,	that	command
is	itself	executable	code,	so	it	cannot	live	on	its	own	either.	It	might	live	in	the	body	of	a
different	function:

func	doGo()	{

				go()

}

But	wait!	This	is	getting	a	little	nutty.	That,	too,	is	just	a	function	declaration;	to	run	it,
someone	must	call	doGo,	and	that’s	executable	code	too.	This	seems	like	some	kind	of
infinite	regression;	it	looks	like	none	of	our	code	will	ever	run.	If	all	executable	code	has
to	live	in	a	function,	who	will	tell	any	function	to	run?	The	initial	impetus	must	come	from
somewhere.

In	real	life,	fortunately,	this	regression	problem	doesn’t	arise.	Remember	that	your	goal	is
ultimately	to	write	an	iOS	app.	Thus,	your	app	will	be	run	on	an	iOS	device	(or	the
Simulator)	by	a	runtime	that	already	wants	to	call	certain	functions.	So	you	start	by
writing	special	functions	that	you	know	the	runtime	itself	will	call.	That	gives	your	app	a
way	to	get	started	and	gives	you	places	to	put	functions	that	will	be	called	by	the	runtime
at	key	moments	—	such	as	when	the	app	launches,	or	when	the	user	taps	a	button	in	your
app’s	interface.

TIP

Swift	also	has	a	special	rule	that	a	file	called	main.swift,	exceptionally,	can	have	executable	code	at	its	top	level,
outside	any	function	body,	and	this	is	the	code	that	actually	runs	when	the	program	runs.	You	can	construct	your	app
with	a	main.swift	file,	but	in	general	you	won’t	need	to.

The	Structure	of	a	Swift	File
A	Swift	program	can	consist	of	one	file	or	many	files.	In	Swift,	a	file	is	a	meaningful	unit,
and	there	are	definite	rules	about	the	structure	of	the	Swift	code	that	can	go	inside	it.	(I’m
assuming	that	we	are	not	in	a	main.swift	file.)	Only	certain	things	can	go	at	the	top	level	of
a	Swift	file	—	chiefly	the	following:

Module	import	statements

A	module	is	an	even	higher-level	unit	than	a	file.	A	module	can	consist	of	multiple	files,
and	in	Swift,	the	files	within	a	module	can	all	see	each	other	automatically;	but	a
module	can’t	see	another	module	without	an	import	statement.	For	example,	that	is
how	you	are	able	to	talk	to	Cocoa	in	an	iOS	program:	the	first	line	of	your	file	says
import	UIKit.

Variable	declarations

A	variable	declared	at	the	top	level	of	a	file	is	a	global	variable:	it	lives	as	long	as	the
program	runs.

Function	declarations

A	function	declared	at	the	top	level	of	a	file	is	a	global	function:	all	code	will	be	able	to
see	and	call	it,	without	sending	a	message	to	any	object.

Object	type	declarations

The	declaration	for	a	class,	a	struct,	or	an	enum.

For	example,	this	is	a	legal	Swift	file	containing	(just	to	demonstrate	that	it	can	be	done)
an	import	statement,	a	variable	declaration,	a	function	declaration,	a	class	declaration,	a
struct	declaration,	and	an	enum	declaration:

import	UIKit

var	one	=	1

func	changeOne()	{

}

class	Manny	{

}

struct	Moe	{

}

enum	Jack	{

}

That’s	a	very	silly	and	mostly	empty	example,	but	remember,	our	goal	is	to	survey	the
parts	of	the	language	and	the	structure	of	a	file,	and	the	example	shows	them.

Furthermore,	the	curly	braces	for	each	of	the	things	in	that	example	can	all	have	variable
declarations,	function	declarations,	and	object	type	declarations	within	them!	Indeed,	any
structural	curly	braces	can	contain	such	declarations.	So,	for	example,	the	keyword	if
(which	is	part	of	Swift’s	flow	control,	discussed	in	Chapter	5)	is	followed	by	structural
curly	braces,	and	they	can	contain	variable	declarations,	function	declarations,	and	object
type	declarations.	This	code,	while	silly,	is	legal:

func	silly()	{

				if	true	{

								class	Cat	{}

								var	one	=	1

								one	=	one	+	1

				}

}

You’ll	notice	that	I	did	not	say	that	executable	code	can	go	at	the	top	level	of	a	file.	That’s
because	it	can’t!	Only	a	function	body	can	contain	executable	code.	It	can	contain
executable	code	at	any	depth	within	itself;	in	the	preceding	code,	the	line	one	=	one	+	1,
which	is	executable	code,	is	legal	because	it	is	inside	the	if	construct,	which	is	inside	a
function	body.	But	the	line	one	=	one	+	1	cannot	go	at	the	top	level	of	the	file;	and	it
cannot	go	directly	inside	the	Cat	declaration’s	curly	braces.

Example	1-1	is	a	legal	Swift	file,	schematically	illustrating	the	structural	possibilities.
(Ignore	the	hanky-panky	with	the	name	variable	declaration	inside	the	enum	declaration
for	Jack;	enum	top-level	variables	have	some	special	rules	that	I’ll	explain	later.)

Example	1-1.	Schematic	structure	of	a	legal	Swift	file
import	UIKit

var	one	=	1

func	changeOne()	{

				let	two	=	2

				func	sayTwo()	{

								print(two)

				}

				class	Klass	{}

				struct	Struct	{}

				enum	Enum	{}

				one	=	two

}

class	Manny	{

				let	name	=	"manny"

				func	sayName()	{

								print(name)

				}

				class	Klass	{}

				struct	Struct	{}

				enum	Enum	{}

}

struct	Moe	{

				let	name	=	"moe"

				func	sayName()	{

								print(name)

				}

				class	Klass	{}

				struct	Struct	{}

				enum	Enum	{}

}

enum	Jack	{

				var	name	:	String	{

								return	"jack"

				}

				func	sayName()	{

								print(name)

				}

				class	Klass	{}

				struct	Struct	{}

				enum	Enum	{}

}

Obviously,	we	can	recurse	down	as	far	we	like:	we	could	have	a	class	declaration
containing	a	class	declaration	containing	a	class	declaration…and	so	on.	But	there’s	no
point	illustrating	that.

Scope	and	Lifetime
In	a	Swift	program,	things	have	a	scope.	This	refers	to	their	ability	to	be	seen	by	other
things.	Things	are	nested	inside	of	other	things,	making	a	nested	hierarchy	of	things.	The
rule	is	that	things	can	see	things	at	their	own	level	and	higher.	The	levels	are:

A	module	is	a	scope.
A	file	is	a	scope.
An	object	declaration	is	a	scope.
Curly	braces	are	a	scope.

When	something	is	declared,	it	is	declared	at	some	level	within	that	hierarchy.	Its	place	in
the	hierarchy	—	its	scope	—	determines	whether	it	can	be	seen	by	other	things.

Look	again	at	Example	1-1.	Inside	the	declaration	of	Manny	is	a	name	variable	declaration
and	a	sayName	function	declaration;	the	code	inside	sayName’s	curly	braces	can	see	things
outside	those	curly	braces	at	a	higher	level,	and	can	therefore	see	the	name	variable.
Similarly,	the	code	inside	the	body	of	the	changeOne	function	can	see	the	one	variable
declared	at	the	top	level	of	the	file;	indeed,	everything	throughout	this	file	can	see	the	one
variable	declared	at	the	top	level	of	the	file.

Scope	is	thus	a	very	important	way	of	sharing	information.	Two	different	functions
declared	inside	Manny	would	both	be	able	to	see	the	name	declared	at	Manny’s	top	level.
Code	inside	Jack	and	code	inside	Moe	can	both	see	the	one	declared	at	the	file’s	top	level.

Things	also	have	a	lifetime,	which	is	effectively	equivalent	to	their	scope.	A	thing	lives	as
long	as	its	surrounding	scope	lives.	Thus,	in	Example	1-1,	the	variable	one	lives	as	long	as
the	file	lives	—	namely,	as	long	the	program	runs.	It	is	global	and	persistent.	But	the
variable	name	declared	at	the	top	level	of	Manny	exists	only	so	long	as	Manny	exists	(I’ll
talk	in	a	moment	about	what	that	means).	Things	declared	at	a	deeper	level	live	even
shorter	lifetimes;	for	example,	let’s	return	to	this	code:

func	silly()	{

				if	true	{

								class	Cat	{}

								var	one	=	1

								one	=	one	+	1

				}

}

In	that	code,	the	class	Cat	and	the	variable	one	exist	only	during	the	brief	instant	that	the
path	of	code	execution	passes	through	the	if	construct.	When	the	function	silly	is	called,
the	path	of	execution	enters	the	if	construct.	Here,	Cat	is	declared	and	comes	into
existence;	then	one	is	declared	and	comes	into	existence;	then	the	executable	line	one	=
one	+	1	is	executed;	and	then	the	scope	ends	and	both	Cat	and	one	vanish	in	a	puff	of
smoke.

Object	Members
Inside	the	three	object	types	(class,	struct,	and	enum),	things	declared	at	the	top	level	have
special	names,	mostly	for	historical	reasons.	Let’s	use	the	Manny	class	as	an	example:

class	Manny	{

				let	name	=	"manny"

				func	sayName()	{

								print(name)

				}

}

In	that	code:

name	is	a	variable	declared	at	the	top	level	of	an	object	declaration,	so	it	is	called	a
property	of	that	object.
sayName	is	a	function	declared	at	the	top	level	of	an	object	declaration,	so	it	is	called	a
method	of	that	object.

Things	declared	at	the	top	level	of	an	object	declaration	—	properties,	methods,	and	any
objects	declared	at	that	level	—	are	collectively	the	members	of	that	object.	Members	have
a	special	significance,	because	they	define	the	messages	you	are	allowed	to	send	to	that
object!

Namespaces
A	namespace	is	a	named	region	of	a	program.	A	namespace	has	the	property	that	the
names	of	things	inside	it	cannot	be	reached	by	things	outside	it	without	somehow	first
passing	through	the	barrier	of	saying	that	region’s	name.	This	is	a	good	thing	because	it
allows	the	same	name	to	be	used	in	different	places	without	a	conflict.	Clearly,
namespaces	and	scopes	are	closely	related	notions.

Namespaces	help	to	explain	the	significance	of	declaring	an	object	at	the	top	level	of	an
object,	like	this:

class	Manny	{

				class	Klass	{}

}

This	way	of	declaring	Klass	makes	Klass	a	nested	type.	It	effectively	“hides”	Klass	inside
Manny.	Manny	is	a	namespace!	Code	inside	Manny	can	see	(and	say)	Klass	directly.	But
code	outside	Manny	can’t	do	that.	It	has	to	specify	the	namespace	explicitly	in	order	to
pass	through	the	barrier	that	the	namespace	represents.	To	do	so,	it	must	say	Manny’s
name	first,	followed	by	a	dot,	followed	by	the	term	Klass.	In	short,	it	has	to	say
Manny.Klass.

The	namespace	does	not,	of	itself,	provide	secrecy	or	privacy;	it’s	a	convenience.	Thus,	in
Example	1-1,	I	gave	Manny	a	Klass	class,	and	I	also	gave	Moe	a	Klass	class.	But	they
don’t	conflict,	because	they	are	in	different	namespaces,	and	I	can	differentiate	them,	if
necessary,	as	Manny.Klass	and	Moe.Klass.

It	will	not	have	escaped	your	attention	that	the	syntax	for	diving	explicitly	into	a
namespace	is	the	message-sending	dot-notation	syntax.	They	are,	in	fact,	the	same	thing.

In	effect,	message-sending	allows	you	to	see	into	scopes	you	can’t	see	into	otherwise.
Code	inside	Moe	can’t	automatically	see	the	Klass	declared	inside	Manny,	but	it	can	see	it
by	taking	one	easy	extra	step,	namely	by	speaking	of	Manny.Klass.	It	can	do	that	because
it	can	see	Manny	(because	Manny	is	declared	at	a	level	that	code	inside	Moe	can	see).

Modules
The	top-level	namespaces	are	modules.	By	default,	your	app	is	a	module	and	hence	a
namespace;	that	namespace’s	name	is,	roughly	speaking,	the	name	of	the	app.	For
example,	if	my	app	is	called	MyApp,	then	if	I	declare	a	class	Manny	at	the	top	level	of	a
file,	that	class’s	real	name	is	MyApp.Manny.	But	I	don’t	usually	need	to	use	that	real	name,
because	my	code	is	already	inside	the	same	namespace,	and	can	see	the	name	Manny
directly.

Frameworks	are	also	modules,	and	hence	they	are	also	namespaces.	For	example,	Cocoa’s
Foundation	framework,	where	NSString	lives,	is	a	module.	When	you	program	iOS,	you
will	say	import	Foundation	(or,	more	likely,	you’ll	say	import	UIKit,	which	itself
imports	Foundation),	thus	allowing	you	to	speak	of	NSString	without	saying
Foundation.NSString.	But	you	could	say	Foundation.NSString,	and	if	you	were	so	silly
as	to	declare	a	different	NSString	in	your	own	module,	you	would	have	to	say
Foundation.NSString,	in	order	to	differentiate	them.	You	can	also	create	your	own
frameworks,	and	these,	too,	will	be	modules.

Thus,	above	and	beyond	the	level	of	the	file,	as	shown	in	Example	1-1,	are	any	libraries
(modules)	that	the	file	imports.	Your	code	always	implicitly	imports	Swift	itself.	You	could
make	this	explicit	by	starting	a	file	with	the	line	import	Swift;	there	is	no	need	to	do	this,
but	it	does	no	harm	either.

That	fact	is	important,	because	it	solves	a	major	mystery:	where	do	things	like	print	come
from,	and	why	is	it	possible	to	use	them	outside	of	any	message	to	any	object?	print	is	in
fact	a	function	declared	at	the	top	level	of	the	Swift.h	header	file	—	which	your	file	can
see	exactly	because	it	imports	Swift.	It	is	thus	an	ordinary	top-level	function	like	any
other.	You	could	say	things	like	Swift.print("hello"),	but	you	probably	never	will,
because	there’s	no	name	conflict	to	resolve.

TIP

You	can	actually	see	the	Swift.h	file	and	read	it	and	study	it,	and	this	can	be	a	useful	thing	to	do.	To	do	so,	Command-
click	the	term	print	in	your	code.	Alternatively,	explicitly	import	Swift	and	Command-click	the	term	Swift.
Behold,	there’s	the	Swift	header	file!	You	won’t	see	any	executable	Swift	code	here,	but	you	will	see	the	declarations
for	all	the	available	Swift	terms,	including	top-level	functions	like	print,	operators	like	+,	and	declarations	of	built-in
types	such	as	Int	and	String	(look	for	struct	Int,	struct	String,	and	so	on).

Instances
Object	types	—	class,	struct,	and	enum	—	have	an	important	feature	in	common:	they	can
be	instantiated.	In	effect,	when	you	declare	an	object	type,	you	are	only	defining	a	type.
To	instantiate	a	type	is	to	make	a	thing	—	an	instance	—	of	that	type.

So,	for	example,	I	can	declare	a	Dog	class,	and	I	can	give	my	class	a	method:
class	Dog	{

				func	bark()	{

								print("woof")

				}

}

But	I	don’t	actually	have	any	Dog	objects	in	my	program	yet.	I	have	merely	described	the
type	of	thing	a	Dog	would	be	if	I	had	one.	To	get	an	actual	Dog,	I	have	to	make	one.	The
process	of	making	an	actual	Dog	object	whose	type	is	the	Dog	class	is	the	process	of
instantiating	Dog.	The	result	is	a	new	object	—	a	Dog	instance.

In	Swift,	instances	can	be	created	by	using	the	object	type’s	name	as	a	function	name	and
calling	the	function.	This	involves	using	parentheses.	When	you	append	parentheses	to	the
name	of	an	object	type,	you	are	sending	a	very	special	kind	of	message	to	that	object	type:
Instantiate	yourself!

So	now	I’m	going	to	make	a	Dog	instance:
let	fido	=	Dog()

There’s	a	lot	going	on	in	that	code!	I	did	two	things.	I	instantiated	Dog,	thus	causing	me	to
end	up	with	a	Dog	instance.	I	also	put	that	Dog	instance	into	a	shoebox	called	fido	—	I
declared	a	variable	and	initialized	the	variable	by	assigning	my	new	Dog	instance	to	it.
Now	fido	is	a	Dog	instance.	(Moreover,	because	I	used	let,	fido	will	always	be	this
same	Dog	instance.	I	could	have	used	var	instead,	but	even	then,	initializing	fido	as	a
Dog	instance	would	have	meant	fido	could	only	be	some	Dog	instance	after	that.)

Now	that	I	have	a	Dog	instance,	I	can	send	instance	messages	to	it.	And	what	do	you
suppose	they	are?	They	are	Dog’s	properties	and	methods!	For	example:

let	fido	=	Dog()

fido.bark()

That	code	is	legal.	Not	only	that,	it	is	effective:	it	actually	does	cause	"woof"	to	appear	in
the	console.	I	made	a	Dog	and	I	made	it	bark!	(See	Figure	1-1.)

Figure	1-1.	Making	an	instance	and	calling	an	instance	method

There’s	an	important	lesson	here,	so	let	me	pause	to	emphasize	it.	By	default,	properties
and	methods	are	instance	properties	and	methods.	You	can’t	use	them	as	messages	to	the
object	type	itself;	you	have	to	have	an	instance	to	send	those	messages	to.	As	things	stand,
this	is	illegal	and	won’t	compile:

Dog.bark()	//	compile	error

It	is	possible	to	declare	a	function	bark	in	such	a	way	that	saying	Dog.bark()	is	legal,	but
that	would	be	a	different	kind	of	function	—	a	class	function	or	a	static	function	—	and
you	would	need	to	say	so	when	you	declare	it.

The	same	thing	is	true	of	properties.	To	illustrate,	let’s	give	Dog	a	name	property.	The	only
respect	in	which	any	Dog	has	had	a	name	up	to	now	has	been	the	name	of	the	variable	to
which	it	is	assigned.	But	that	name	is	not	intrinsic	to	the	Dog	object	itself.	The	name
property	will	be:

class	Dog	{

				var	name	=	""

}

That	allows	me	to	set	a	Dog’s	name,	but	it	needs	to	be	an	instance	of	Dog:
let	fido	=	Dog()

fido.name	=	"Fido"

It	is	possible	to	declare	a	property	name	in	such	a	way	that	saying	Dog.name	is	legal,	but
that	would	be	a	different	kind	of	property	—	a	class	property	or	a	static	property	—	and
you	would	need	to	say	so	when	you	declare	it.

Why	Instances?
Even	if	there	were	no	such	thing	as	an	instance,	an	object	type	is	itself	an	object.	We	know
this	because	it	is	possible	to	send	a	message	to	an	object	type:	it	is	possible	to	treat	an
object	type	as	a	namespace	and	to	dive	explicitly	into	that	namespace	(the	phrase
Manny.Klass	is	a	case	in	point).	Moreover,	since	class	and	static	members	exist,	it	is
possible	to	call	a	method	directly	on	a	class,	a	struct,	or	an	enum	type,	and	to	refer	to	a
property	of	a	class,	a	struct,	or	an	enum	type.	Why,	then,	do	instances	exist	at	all?

The	answer	has	mostly	to	do	with	the	nature	of	instance	properties.	The	value	of	an
instance	property	is	defined	with	respect	to	a	particular	instance.	This	is	where	instances
get	their	real	usefulness	and	power.

Consider	again	our	Dog	class.	I’ll	give	it	a	name	property	and	a	bark	method;	remember,
these	are	an	instance	property	and	an	instance	method:

class	Dog	{

				var	name	=	""

				func	bark()	{

								print("woof")

				}

}

A	Dog	instance	comes	into	existence	with	a	blank	name	(an	empty	string).	But	its	name
property	is	a	var,	so	once	we	have	any	Dog	instance,	we	can	assign	to	its	name	a	new
String	value:

let	dog1	=	Dog()

dog1.name	=	"Fido"

We	can	also	ask	for	a	Dog	instance’s	name:
let	dog1	=	Dog()

dog1.name	=	"Fido"

print(dog1.name)	//	"Fido"

The	important	thing	is	that	we	can	make	more	than	one	Dog	instance,	and	that	two
different	Dog	instances	can	have	two	different	name	property	values	(Figure	1-2):

let	dog1	=	Dog()

dog1.name	=	"Fido"

let	dog2	=	Dog()

dog2.name	=	"Rover"

print(dog1.name)	//	"Fido"

print(dog2.name)	//	"Rover"

Figure	1-2.	Two	dogs	with	different	property	values

Note	that	a	Dog	instance’s	name	property	has	nothing	to	do	with	the	name	of	the	variable
to	which	a	Dog	instance	is	assigned.	The	variable	is	just	a	shoebox.	You	can	pass	an
instance	from	one	shoebox	to	another.	But	the	instance	itself	maintains	its	own	internal
integrity:

let	dog1	=	Dog()

dog1.name	=	"Fido"

var	dog2	=	Dog()

dog2.name	=	"Rover"

print(dog1.name)	//	"Fido"

print(dog2.name)	//	"Rover"

dog2	=	dog1

print(dog2.name)	//	"Fido"

That	code	didn’t	change	Rover’s	name;	it	changed	which	dog	was	inside	the	dog2	shoebox,
replacing	Rover	with	Fido.

The	full	power	of	object-based	programming	has	now	emerged.	There	is	a	Dog	object	type
which	defines	what	it	is	to	be	a	Dog.	Our	declaration	of	Dog	says	that	a	Dog	instance	—
any	Dog	instance,	every	Dog	instance	—	has	a	name	property	and	a	bark	method.	But	each
Dog	instance	can	have	its	own	name	property	value.	They	are	different	instances	and
maintain	their	own	internal	state.	So	multiple	instances	of	the	same	object	type	behave
alike	—	both	Fido	and	Rover	can	bark,	and	will	do	so	when	they	are	sent	the	bark
message	—	but	they	are	different	instances	and	can	have	different	property	values:	Fido’s
name	is	"Fido"	while	Rover’s	name	is	"Rover".

(The	same	thing	is	true	of	1	and	2,	though	this	fact	is	somewhat	more	opaque.	An	Int	has	a
value	property.	1	is	an	Int	whose	value	is	1,	and	2	is	an	Int	whose	value	is	2.	However,
this	fact	is	of	less	interest	in	real	life,	because	obviously	you’re	not	going	to	change	the
value	of	1!)

So	an	instance	is	a	reflection	of	the	instance	methods	of	its	type,	but	that	isn’t	all	it	is;	it’s
also	a	collection	of	instance	properties.	The	object	type	is	responsible	for	what	properties
the	instance	has,	but	not	necessarily	for	the	values	of	those	properties.	The	values	can
change	as	the	program	runs,	and	apply	only	to	a	particular	instance.	An	instance	is	a
cluster	of	particular	property	values.

An	instance	is	responsible	not	only	for	the	values	but	also	for	the	lifetimes	of	its
properties.	Suppose	we	bring	a	Dog	instance	into	existence	and	assign	to	its	name	property
the	value	"Fido".	Then	this	Dog	instance	is	keeping	the	string	"Fido"	alive	just	so	long	as
we	do	not	replace	the	value	of	its	name	with	some	other	value	and	just	so	long	as	this
instance	lives.

In	short,	an	instance	is	both	code	and	data.	The	code	it	gets	from	its	type	and	in	a	sense	is
shared	with	all	other	instances	of	that	type,	but	the	data	belong	to	it	alone.	The	data	can
persist	as	long	as	the	instance	persists.	The	instance	has,	at	every	moment,	a	state	—	the
complete	collection	of	its	own	personal	property	values.	An	instance	is	a	device	for
maintaining	state.	It’s	a	box	for	storage	of	data.

self
An	instance	is	an	object,	and	an	object	is	the	recipient	of	messages.	Thus,	an	instance
needs	a	way	of	sending	a	message	to	itself.	This	is	made	possible	by	the	magic	word	self.
This	word	can	be	used	wherever	an	instance	of	the	appropriate	type	is	expected.

For	example,	let’s	say	I	want	to	keep	the	thing	that	a	Dog	says	when	it	barks	—	namely
"woof”	—	in	a	property.	Then	in	my	implementation	of	bark	I	need	to	refer	to	that
property.	I	can	do	it	like	this:

class	Dog	{

				var	name	=	""

				var	whatADogSays	=	"woof"

				func	bark()	{

								print(self.whatADogSays)

				}

}

Similarly,	let’s	say	I	want	to	write	an	instance	method	speak	which	is	merely	a	synonym
for	bark.	My	speak	implementation	can	consist	of	simply	calling	my	own	bark	method.	I
can	do	it	like	this:

class	Dog	{

				var	name	=	""

				var	whatADogSays	=	"woof"

				func	bark()	{

								print(self.whatADogSays)

				}

				func	speak()	{

								self.bark()

				}

}

Observe	that	the	term	self	in	that	example	appears	only	in	instance	methods.	When	an
instance’s	code	says	self,	it	is	referring	to	this	instance.	If	the	expression	self.name
appears	in	a	Dog	instance	method’s	code,	it	means	the	name	of	this	Dog	instance,	the	one
whose	code	is	running	at	that	moment.

It	turns	out	that	every	use	of	the	word	self	I’ve	just	illustrated	is	completely	optional.	You
can	omit	it	and	all	the	same	things	will	happen:

class	Dog	{

				var	name	=	""

				var	whatADogSays	=	"woof"

				func	bark()	{

								print(whatADogSays)

				}

				func	speak()	{

								bark()

				}

}

The	reason	is	that	if	you	omit	the	message	recipient	and	the	message	you’re	sending	can
be	sent	to	self,	the	compiler	supplies	self	as	the	message’s	recipient	under	the	hood.
However,	I	never	do	that	(except	by	mistake).	As	a	matter	of	style,	I	like	to	be	explicit	in
my	use	of	self.	I	find	code	that	omits	self	harder	to	read	and	understand.	And	there	are
situations	where	you	must	say	self,	so	I	prefer	to	use	it	whenever	I’m	allowed	to.

Privacy
Earlier,	I	said	that	a	namespace	is	not,	of	itself,	an	insuperable	barrier	to	accessing	the
names	inside	it.	But	it	can	act	as	a	barrier	if	you	want	it	to.	For	example,	not	all	data	stored
by	an	instance	is	intended	for	alteration	by,	or	even	visibility	to,	another	instance.	And	not
every	instance	method	is	intended	to	be	called	by	other	instances.	Any	decent	object-based
programming	language	needs	a	way	to	endow	its	object	members	with	privacy	—	a	way
of	making	it	harder	for	other	objects	to	see	those	members	if	they	are	not	supposed	to	be
seen.

Consider,	for	example:
class	Dog	{

				var	name	=	""

				var	whatADogSays	=	"woof"

				func	bark()	{

								print(self.whatADogSays)

				}

				func	speak()	{

								print(self.whatADogSays)

				}

}

Here,	other	objects	can	come	along	and	change	my	property	whatADogSays.	Since	that
property	is	used	by	both	bark	and	speak,	we	could	easily	end	up	with	a	Dog	that,	when
told	to	bark,	says	"meow".	This	seems	somehow	undesirable:

let	dog1	=	Dog()

dog1.whatADogSays	=	"meow"

dog1.bark()	//	meow

You	might	reply:	Well,	silly,	why	did	you	declare	whatADogSays	with	var?	Declare	it	with
let	instead.	Make	it	a	constant!	Now	no	one	can	change	it:

class	Dog	{

				var	name	=	""

				let	whatADogSays	=	"woof"

				func	bark()	{

								print(self.whatADogSays)

				}

				func	speak()	{

								print(self.whatADogSays)

				}

}

That	is	a	good	answer,	but	it	is	not	quite	good	enough.	There	are	two	problems.	Suppose	I
want	a	Dog	instance	itself	to	be	able	to	change	self.whatADogSays.	Then	whatADogSays
has	to	be	a	var;	otherwise,	even	the	instance	itself	can’t	change	it.	Also,	suppose	I	don’t
want	any	other	object	to	know	what	this	Dog	says,	except	by	calling	bark	or	speak.	Even
when	declared	with	let,	other	objects	can	still	read	the	value	of	whatADogSays.	Maybe	I
don’t	like	that.

To	solve	this	problem,	Swift	provides	the	private	keyword.	I’ll	talk	later	about	all	the
ramifications	of	this	keyword,	but	for	now	it’s	enough	to	know	that	it	solves	the	problem:

class	Dog	{

				var	name	=	""

				private	var	whatADogSays	=	"woof"

				func	bark()	{

								print(self.whatADogSays)

				}

				func	speak()	{

								print(self.whatADogSays)

				}

}

Now	name	is	a	public	property,	but	whatADogSays	is	a	private	property:	it	can’t	be	seen	by
other	objects.	A	Dog	instance	can	speak	of	self.whatADogSays,	but	a	different	object	with
a	reference	to	a	Dog	instance	as,	say,	dog1	cannot	say	dog1.whatADogSays.

The	important	lesson	here	is	that	object	members	are	public	by	default,	and	if	you	want
privacy,	you	have	to	ask	for	it.	The	class	declaration	defines	a	namespace;	this	namespace
requires	that	other	objects	use	an	extra	level	of	dot-notation	to	refer	to	what’s	inside	the
namespace,	but	other	objects	can	still	refer	to	what’s	inside	the	namespace;	the	namespace
does	not,	in	and	of	itself,	close	any	doors	of	visibility.	The	private	keyword	lets	you	close
those	doors.

Design
You	now	know	what	an	object	is,	and	what	an	instance	is.	But	what	object	types	will	your
program	need,	what	methods	and	properties	should	they	have,	when	and	how	will	they	be
instantiated,	and	what	should	you	do	with	those	instances	when	you	have	them?
Unfortunately	I	can’t	tell	you	that;	it’s	an	art	—	the	art	of	object-based	programming.
What	I	can	tell	you	is	what	your	chief	considerations	are	going	to	be	as	you	design	and
implement	an	object-based	program	—	the	process	that	I	call	growing	a	program.

Object-based	program	design	must	be	founded	upon	a	secure	understanding	of	the	nature
of	objects.	You	want	to	design	object	types	that	encapsulate	the	right	sort	of	functionality
(methods)	accompanied	by	the	right	set	of	data	(properties).	Then,	when	you	instantiate
those	object	types,	you	want	to	make	sure	that	your	instances	have	the	right	lifetimes,
sufficient	exposure	to	one	another,	and	an	appropriate	ability	to	communicate	with	one
another.

Object	Types	and	APIs
Your	program	files	will	have	very	few,	if	any,	top-level	functions	and	variables.	Methods
and	properties	of	object	types	—	in	particular,	instance	methods	and	instance	properties	—
will	be	where	most	of	the	action	is.	Object	types	give	each	actual	instance	its	specialized
abilities.	They	also	help	to	organize	your	program’s	code	meaningfully	and	maintainably.

We	may	summarize	the	nature	of	objects	in	two	phrases:	encapsulation	of	functionality,
and	maintenance	of	state.	(I	first	used	this	summary	many	years	ago	in	my	book
REALbasic:	The	Definitive	Guide.)

Encapsulation	of	functionality

Each	object	does	its	own	job,	and	presents	to	the	rest	of	the	world	—	to	other	objects,
and	indeed	in	a	sense	to	the	programmer	—	an	opaque	wall	whose	only	entrances	are
the	methods	to	which	it	promises	to	respond	and	the	actions	it	promises	to	perform
when	the	corresponding	messages	are	sent	to	it.	The	details	of	how,	behind	the	scenes,	it
actually	implements	those	actions	are	secreted	within	itself;	no	other	object	needs	to
know	them.

Maintenance	of	state

Each	individual	instance	is	a	bundle	of	data	that	it	maintains.	Often	that	data	is	private,
so	it’s	encapsulated	as	well;	no	other	object	knows	what	that	data	is	or	in	what	form	it	is
kept.	The	only	way	to	discover	from	outside	what	private	data	an	object	is	maintaining
is	if	there’s	a	public	method	or	property	that	reveals	it.

As	an	example,	imagine	an	object	whose	job	is	to	implement	a	stack	—	it	might	be	an
instance	of	a	Stack	class.	A	stack	is	a	data	structure	that	maintains	a	set	of	data	in	LIFO
order	(last	in,	first	out).	It	responds	to	just	two	messages:	push	and	pop.	Push	means	to	add
a	given	piece	of	data	to	the	set.	Pop	means	to	remove	from	the	set	the	piece	of	data	that
was	most	recently	pushed	and	hand	it	out.	It’s	like	a	stack	of	plates:	plates	are	placed	onto
the	top	of	the	stack	or	removed	from	the	top	of	the	stack	one	by	one,	so	the	first	plate	to	go
onto	the	stack	can’t	be	retrieved	until	all	other	subsequently	added	plates	have	been
removed	(Figure	1-3).

http://oreilly.com/catalog/9780596001773/

Figure	1-3.	A	stack

The	stack	object	illustrates	encapsulation	of	functionality	because	the	outside	world	knows
nothing	of	how	the	stack	is	actually	implemented.	It	might	be	an	array,	it	might	be	a	linked
list,	it	might	be	any	of	a	number	of	other	implementations.	But	a	client	object	—	an	object
that	actually	sends	a	push	or	pop	message	to	the	stack	object	—	knows	nothing	of	this	and
cares	less,	provided	the	stack	object	adheres	to	its	contract	of	behaving	like	a	stack.	This	is
also	good	for	the	programmer,	who	can,	as	the	program	develops,	safely	substitute	one
implementation	for	another	without	harming	the	vast	machinery	of	the	program	as	a
whole.	And	just	the	other	way	round,	the	stack	object	knows	nothing	and	cares	less	about
who	is	telling	it	to	push	or	to	pop,	and	why.	It	just	hums	along	and	does	its	job	in	its
reliable	little	way.

The	stack	object	illustrates	maintenance	of	state	because	it	isn’t	just	the	gateway	to	the
stack	data	—	it	is	the	stack	data.	Other	objects	can	get	access	to	that	data,	but	only	by
virtue	of	having	access	to	the	stack	object	itself,	and	only	in	the	manner	that	the	stack
object	permits.	The	stack	data	is	effectively	inside	the	stack	object;	no	one	else	can	see	it.
All	that	another	object	can	do	is	push	or	pop.	If	a	certain	object	is	at	the	top	of	our	stack
object’s	stack	right	now,	then	whatever	object	sends	the	pop	message	to	this	stack	object
will	receive	that	object	in	return.	If	no	object	sends	the	pop	message	to	this	stack	object,

then	the	object	at	the	top	of	the	stack	will	just	sit	there,	waiting.

The	sum	total	of	messages	that	each	object	type	is	eligible	to	be	sent	by	other	objects	—
its	API	(application	programming	interface)	—	is	like	a	list	or	menu	of	things	you	can	ask
this	type	of	object	to	do.	Your	object	types	divide	up	your	code;	their	APIs	form	the	basis
of	communication	between	those	divisions.

In	real	life,	when	you’re	programming	iOS,	the	vast	majority	of	object	types	you’ll	be
working	with	will	not	be	yours	but	Apple’s.	Swift	itself	comes	with	a	few	useful	object
types,	such	as	String	and	Int;	you’ll	also	import	UIKit,	which	includes	a	huge	number	of
object	types,	all	of	which	spring	to	life	in	your	program.	You	didn’t	create	any	of	those
object	types,	so	to	learn	to	use	them,	you	consult	the	published	APIs,	also	known	as	the
documentation.	Apple’s	own	Cocoa	documentation	consists	largely	of	pages	where	each
page	lists	and	describes	the	properties	and	methods	supplied	by	one	object	type.	For
example,	to	know	what	messages	you	can	send	to	an	NSString	instance,	you’d	start	by
studying	the	NSString	class	documentation.	That	page	is	really	just	a	big	list	of	properties
and	methods,	so	it	tells	you	what	an	NSString	object	can	do.	That	isn’t	everything	in	the
world	there	is	to	know	about	an	NSString,	but	it’s	a	big	percentage	of	it.

Apple	has	thus	done	a	great	deal	of	thinking	and	planning	on	your	behalf,	before	you	ever
write	a	single	line	of	code!	As	a	result,	you	will	mostly	use	the	object	types	that	Apple	has
already	given	you.	You	can	also	create	completely	new	object	types,	but	proportionately
you	will	do	so	far	less	than	you	will	use	the	object	types	that	exist	already.

Instance	Creation,	Scope,	and	Lifetime
The	important	moment-to-moment	entities	in	a	Swift	program	are	mostly	instances.
Object	types	define	what	kinds	of	instances	there	can	be	and	how	each	kind	of	instance
behaves.	But	the	actual	instances	of	those	types	are	the	state-carrying	individual	“things”
that	the	program	is	all	about,	and	instance	methods	and	properties	are	messages	that	can
be	sent	to	instances.	So	there	need	to	be	instances	in	order	for	the	program	to	do	anything.

By	default,	however,	there	are	no	instances!	Looking	back	at	Example	1-1,	we	defined
some	object	types,	but	we	made	no	instances	of	them.	If	we	were	to	run	this	program,	our
object	types	would	exist	from	the	get-go,	but	that’s	all	that	would	exist.	We’ve	created	a
world	of	pure	potentiality	—	some	types	of	object	that	might	exist.	In	that	world,	nothing
would	actually	happen.

Instances	do	not	come	into	being	by	magic.	You	have	to	instantiate	a	type	in	order	to
obtain	an	instance.	Much	of	the	action	of	your	program,	therefore,	will	consist	of
instantiating	types.	And	of	course	you	will	want	those	instances	to	persist,	so	you	will	also
assign	each	newly	created	instance	to	a	variable	as	a	shoebox	to	hold	it,	name	it,	and	give
it	a	lifetime.	The	instance	will	persist	according	to	the	lifetime	of	the	variable	that	refers	to
it.	And	the	instance	will	be	visible	to	other	instances	according	to	the	scope	of	the	variable
that	refers	to	it.

Much	of	the	art	of	object-based	programming	turns	out	to	be	exactly	here,	in	giving
instances	a	sufficient	lifetime	and	making	them	visible	to	one	another.	You	will	often	put
an	instance	into	a	particular	shoebox	—	assigning	it	to	a	particular	variable,	declared	at	a
certain	scope	—	exactly	so	that,	thanks	to	the	rules	of	variable	lifetime	and	scope,	this

instance	will	persist	long	enough	to	keep	being	useful	to	your	program	while	it	will	still	be
needed,	and	so	that	other	code	can	get	a	reference	to	this	instance	and	talk	to	it	later.

Planning	how	you’re	going	to	create	instances,	and	working	out	the	lifetimes	and
communication	between	those	instances,	may	sound	daunting.	Fortunately,	in	real	life,
when	you’re	programming	iOS,	the	Cocoa	framework	itself	will	once	again	provide	an
initial	scaffolding	for	you.

For	example,	you’ll	know	from	the	start	that,	for	an	iOS	app,	you	need	an	app	delegate
type	and	a	view	controller	type,	and	in	fact	when	you	create	an	iOS	app	project,	Xcode
will	give	them	to	you.	Moreover,	as	your	app	launches,	the	runtime	will	instantiate	those
object	types	for	you,	and	will	place	those	instances	into	a	fixed	and	useful	relationship.
The	runtime	will	make	an	app	delegate	instance	and	assign	it	in	such	a	way	that	it	lives	for
the	lifetime	of	the	app;	it	will	create	a	window	instance	and	assign	it	to	a	property	of	the
app	delegate;	and	it	will	create	a	view	controller	instance	and	assign	it	to	a	property	of	the
window.	Finally,	the	view	controller	instance	has	a	view,	which	automatically	appears	in
the	window.

Thus,	without	your	doing	any	work	at	all,	you	already	have	some	objects	that	will	persist
for	the	lifetime	of	the	app,	including	one	that	is	the	basis	of	your	visible	interface.	Just	as
important,	you	have	well-defined	globally	available	ways	of	referring	to	all	these	objects.
This	means	that,	without	writing	any	code,	you	already	have	access	to	some	important
objects,	and	you	have	an	initial	place	to	put	any	other	objects	with	long	lifetimes	and	any
other	visible	bits	of	interface	that	your	app	may	need.

Summary	and	Conclusion
As	we	imagine	constructing	an	object-based	program	for	performing	a	particular	task,	we
bear	in	mind	the	nature	of	objects.	There	are	types	and	instances.	A	type	is	a	set	of
methods	describing	what	all	instances	of	that	type	can	do	(encapsulation	of	functionality).
Instances	of	the	same	type	differ	only	in	the	value	of	their	properties	(maintenance	of
state).	We	plan	accordingly.	Objects	are	an	organizational	tool,	a	set	of	boxes	for
encapsulating	the	code	that	accomplishes	a	particular	task.	They	are	also	a	conceptual	tool.
The	programmer,	being	forced	to	think	in	terms	of	discrete	objects,	must	divide	the	goals
and	behaviors	of	the	program	into	discrete	tasks,	each	task	being	assigned	to	an
appropriate	object.

At	the	same	time,	no	object	is	an	island.	Objects	can	cooperate	with	one	another,	namely
by	communicating	with	one	another	—	that	is,	by	sending	messages	to	one	another.	The
ways	in	which	appropriate	lines	of	communication	can	be	arranged	are	innumerable.
Coming	up	with	an	appropriate	arrangement	—	an	architecture	—	for	the	cooperative	and
orderly	relationship	between	objects	is	one	of	the	most	challenging	aspects	of	object-based
programming.	In	iOS	programming,	you	get	a	boost	from	the	Cocoa	framework,	which
provides	an	initial	set	of	object	types	and	a	practical	basic	architectural	scaffolding.

Using	object-based	programming	effectively	to	make	a	program	do	what	you	want	it	to	do
while	keeping	it	clear	and	maintainable	is	itself	an	art;	your	abilities	will	improve	with
experience.	Eventually,	you	may	want	to	do	some	further	reading	on	effective	planning
and	construction	of	the	architecture	of	an	object-based	program.	I	recommend	in	particular
two	classic,	favorite	books.	Refactoring,	by	Martin	Fowler	(Addison-Wesley,	1999),

describes	why	you	might	need	to	rearrange	what	methods	belong	to	what	classes	(and	how
to	conquer	your	fear	of	doing	so).	Design	Patterns,	by	Erich	Gamma,	Richard	Helm,
Ralph	Johnson,	and	John	Vlissides	(also	known	as	“the	Gang	of	Four”),	is	the	bible	on
architecting	object-based	programs,	listing	all	the	ways	you	can	arrange	objects	with	the
right	powers	and	the	right	knowledge	of	one	another	(Addison-Wesley,	1994).

Chapter	2.	Functions
Nothing	is	so	characteristic	of	Swift	syntax	as	the	way	you	declare	and	call	functions.
Probably	nothing	is	so	important,	either!	As	I	said	in	Chapter	1,	all	your	code	is	going	to
be	in	functions;	they	are	where	the	action	is.

Function	Parameters	and	Return	Value
A	function	is	like	one	of	those	pseudoscientific	machines	for	processing	miscellaneous
stuff	that	you	probably	drew	in	your	math	textbook	in	elementary	school.	You	know	the
ones	I	mean:	with	a	funnel-like	“hopper”	at	the	top,	and	then	a	bunch	of	gears	and	cranks,
and	then	a	tube	at	the	bottom	where	something	is	produced.	A	function	is	a	machine	like
that:	you	feed	some	stuff	in,	the	stuff	is	processed	in	accordance	with	what	this	particular
machine	does,	and	something	is	produced.

The	stuff	that	goes	in	is	the	input;	what	comes	out	is	the	output.	More	technically,	a
function	that	expects	input	has	parameters;	a	function	that	produces	output	has	a	result.
For	example,	here’s	a	very	silly	but	perfectly	valid	function	that	expects	two	Int	values,
adds	them	together,	and	produces	that	sum:

func	sum	(x:Int,	_	y:Int)	->	Int	{

				let	result	=	x	+	y

				return	result

}

The	syntax	here	is	very	strict	and	well-defined,	and	you	can’t	use	Swift	unless	you
understand	it	perfectly.	Let’s	pause	to	appreciate	it	in	full	detail;	I’ll	break	the	first	line
into	pieces	so	that	I	can	call	them	out	individually:

func	sum	

				(x:Int,	_	y:Int)	

				->	Int	{	

								let	result	=	x	+	y	

								return	result	

}

The	declaration	starts	with	the	keyword	func,	followed	by	the	name	of	this	function;
here,	it’s	sum.	This	is	the	name	that	must	be	used	in	order	to	call	the	function	—	that	is,
in	order	to	run	the	code	that	the	function	contains.

The	name	of	the	function	is	followed	by	its	parameter	list.	It	consists,	minimally,	of
parentheses.	If	this	function	takes	parameters	(input),	they	are	listed	inside	the
parentheses,	separated	by	comma.	Each	parameter	has	a	strict	format:	the	name	of	the
parameter,	a	colon,	and	the	type	of	the	parameter.	Here,	our	sum	function	expects	two
parameters	—	an	Int,	to	which	it	gives	the	name	x,	and	another	Int,	to	which	it	gives	the
name	y.

Observe	that	these	names,	x	and	y,	are	arbitrary	and	purely	local	(internal)	to	this
function.	They	are	different	from	any	other	x	and	y	that	may	be	used	in	other	functions
or	at	a	higher	level	of	scope.	These	names	are	defined	so	that	the	parameter	values	will
have	names	by	which	they	can	be	referred	to	in	the	code	within	the	function	body.	The
parameter	declaration	is,	indeed,	a	kind	of	variable	declaration:	we	are	declaring
variables	x	and	y	for	use	inside	this	function.

This	particular	function	declaration	also	has	an	underscore	(_)	and	a	space	before	the
name	of	the	second	parameter	in	the	parameter	list.	I’m	not	going	to	explain	that
underscore	yet.	I	need	it	for	the	example,	so	just	trust	me	for	now.

After	the	parentheses	is	an	arrow	operator	->,	followed	by	the	type	of	value	that	this
function	will	return.	Then	we	have	curly	braces	enclosing	the	body	of	the	function	—	its
actual	code.

Within	the	curly	braces,	in	the	function	body,	the	variables	defined	as	the	parameter
names	have	sprung	to	life,	with	the	types	specified	in	the	parameter	list.	We	know	that
this	code	won’t	run	unless	this	function	is	called	and	is	actually	passed	values	in	its
parameters.

Here,	the	parameters	are	called	x	and	y,	so	we	can	confidently	use	those	values,
referring	to	them	by	those	names,	secure	in	the	knowledge	that	such	values	will	exist
and	that	they	will	be	Int	values,	as	specified	by	our	parameter	list.	Not	only	the
programmer,	but	also	the	compiler	can	be	sure	about	this.

If	the	function	is	to	return	a	value,	it	must	do	so	with	the	keyword	return	followed	by
that	value.	And,	not	surprisingly,	the	type	of	that	value	must	match	the	type	declared
earlier	for	the	return	value	(after	the	arrow	operator).

Here,	I	return	a	variable	called	result;	it	was	created	by	adding	two	Int	values	together,
so	it	is	an	Int,	which	is	what	this	function	is	supposed	to	produce.	If	I	tried	to	return	a
String	(return	"howdy"),	or	if	I	were	to	omit	the	return	statement	altogether,	the
compiler	would	stop	me	with	an	error.

Note	that	the	keyword	return	actually	does	two	things.	It	returns	the	accompanying
value,	and	it	also	halts	execution	of	the	function.	It	is	permitted	for	more	lines	of	code
to	follow	a	return	statement,	but	the	compiler	will	warn	if	this	means	that	those	lines	of
code	can	never	be	executed.

The	function	declaration,	then,	before	the	curly	braces,	is	a	contract	about	what	kinds	of
values	will	be	used	as	input	and	about	what	kind	of	output	will	be	produced.	According	to
this	contract,	the	function	expects	a	certain	number	of	parameters,	each	of	a	certain	type,
and	yields	a	certain	type	of	result.	Everything	must	correspond	to	this	contract.	The
function	body,	inside	the	curly	braces,	can	use	the	parameters	as	local	variables.	The
returned	value	must	match	the	declared	return	type.

The	same	contract	applies	to	code	elsewhere	that	calls	this	function.	Here’s	some	code	that
calls	our	sum	function:

let	z	=	sum(4,5)

Focus	your	attention	on	the	right	side	of	the	equal	sign	—	sum(4,5).	That’s	the	function
call.	How	is	it	constructed?	It	uses	the	name	of	the	function;	that	name	is	followed	by
parentheses;	and	inside	those	parentheses,	separated	by	comma,	are	the	values	to	be
passed	to	each	of	the	function’s	parameters.	Technically,	these	values	are	called
arguments.	Here,	I’m	using	literal	Int	values,	but	I’m	perfectly	free	to	use	Int	variables
instead;	the	only	requirement	is	that	I	use	things	that	have	the	correct	type:

let	x	=	4

let	y	=	5

let	z	=	sum(y,x)

In	that	code,	I	purposely	used	the	names	x	and	y	for	the	variables	whose	values	are	passed
as	arguments,	and	I	purposely	reversed	them	in	the	call,	to	emphasize	that	these	names
have	nothing	to	do	with	the	names	x	and	y	inside	the	function	parameter	list	and	the
function	body.	These	names	do	not	magically	make	their	way	to	the	function.	Their	values
are	all	that	matter;	their	values	are	the	arguments.

What	about	the	value	returned	by	the	function?	That	value	is	magically	substituted	for	the
function	call,	at	the	point	where	the	function	call	is	made.	It	happens	that	in	the	preceding
code,	the	result	is	9.	So	the	last	line	is	exactly	as	if	I	had	said:

let	z	=	9

The	programmer	and	the	compiler	both	know	exactly	what	type	of	thing	this	function
returns,	so	they	also	know	where	it	is	and	isn’t	legal	to	call	this	function.	It’s	fine	to	call
this	function	as	the	initialization	part	of	the	declaration	of	the	variable	z,	just	as	it	would
be	to	use	9	as	the	initialization	part	of	that	declaration:	in	both	cases,	we	have	an	Int,	and
so	z	ends	up	being	declared	as	an	Int.	But	it	would	not	be	legal	to	write	this:

let	z	=	sum(4,5)	+	"howdy"	//	compile	error

Because	sum	returns	an	Int,	that’s	the	same	as	trying	to	add	an	Int	to	a	String	—	and	by
default,	you	can’t	do	that	in	Swift.

Observe	that	it	is	legal	to	ignore	the	value	returned	from	a	function	call:
sum(4,5)

That	code	is	legal;	it	causes	neither	a	compile	error	nor	a	runtime	error.	It	is	also	sort	of
silly	in	this	particular	situation,	because	we	have	made	our	sum	function	go	to	all	the
trouble	of	adding	4	and	5	for	us	and	we	have	then	thrown	away	the	answer	without
capturing	or	using	it.	However,	there	are	lots	of	situations	where	it	is	perfectly	reasonable
to	ignore	the	value	returned	from	a	function	call;	in	particular,	the	function	may	do	other
things	(technically	called	side	effects)	in	addition	to	returning	a	value,	and	the	purpose	of
your	call	to	that	function	may	be	those	other	things.

If	you	can	call	sum	wherever	you	can	use	an	Int,	and	if	the	parameters	of	sum	have	to	be	Int
values,	doesn’t	that	mean	you	can	call	sum	inside	a	call	to	sum?	Of	course	it	does!	This	is
perfectly	legal	(and	reasonable):

let	z	=	sum(4,sum(5,6))

The	only	argument	against	writing	code	like	that	is	that	you	might	confuse	yourself	and
that	it	might	make	things	harder	to	debug	later.	But,	technically,	it’s	quite	normal.

Void	Return	Type	and	Parameters
Let’s	return	to	our	function	declaration.	With	regard	to	a	function’s	parameters	and	return
type,	there	are	two	degenerate	cases	that	allow	us	to	express	a	function	declaration	more
briefly:

A	function	without	a	return	type

No	law	says	that	a	function	must	return	a	value.	A	function	may	be	declared	to	return	no
value.	In	that	case,	there	are	three	ways	to	write	the	declaration:	you	can	write	it	as
returning	Void;	you	can	write	it	as	returning	(),	an	empty	pair	of	parentheses;	or	you
can	omit	the	arrow	operator	and	the	return	type	entirely.	These	are	all	legal:

func	say1(s:String)	->	Void	{	print(s)	}

func	say2(s:String)	->	()	{	print(s)	}

func	say3(s:String)	{	print(s)	}

If	a	function	returns	no	value,	then	its	body	need	not	contain	a	return	statement.	If	it
does	contain	a	return	statement,	its	purpose	will	be	purely	to	end	execution	of	the
function	at	that	point.

This	return	statement	will	usually	consist	of	return	and	nothing	else.	However,	Void
(the	type	returned	by	a	function	that	returns	no	value)	is	an	actual	type	in	Swift,	and	a
function	that	returns	no	value	technically	does	in	fact	return	a	value	of	this	type,	which
may	be	expressed	as	the	literal	().	(I’ll	explain	in	Chapter	3	what	the	literal	()	really
represents.)	Thus,	it	is	legal	for	such	a	function	to	say	return	();	whether	it	says	that
or	not,	()	is	what	it	returns.	Writing	return	()	—	or	return;,	with	a	semicolon	—	can
be	useful	to	disambiguate	in	case	Swift	thinks	I’m	trying	to	return	whatever	is	on	the
next	line.

A	call	to	a	function	that	returns	no	value	is	made	purely	for	the	function’s	side	effects;	it
has	no	useful	return	value	that	can	be	made	part	of	a	larger	expression,	so	it	will	usually
be	the	only	thing	in	its	line	of	code,	with	the	()	value	that	it	returns	being	ignored.
Nevertheless,	it	is	legally	possible	to	capture	that	value	in	a	variable	typed	as	Void;	for
example:

let	pointless	:	Void	=	say1("howdy")

A	function	without	any	parameters

No	law	says	that	a	function	must	take	any	parameters.	If	it	doesn’t,	the	parameter	list	in
the	function	declaration	can	be	completely	empty.	But	you	can’t	omit	the	parameter	list
parentheses	themselves!	They	will	be	present	in	the	function	declaration,	after	the
function’s	name:

func	greet1()	->	String	{	return	"howdy"	}

Obviously	a	function	can	lack	both	a	return	value	and	parameters;	these	are	all	ways	of
expressing	the	same	thing:

func	greet1()	->	Void	{	print("howdy")	}

func	greet2()	->	()	{	print("howdy")	}

func	greet3()	{	print("howdy")	}

Just	as	you	cannot	omit	the	parentheses	(the	parameter	list)	from	a	function	declaration,
you	cannot	omit	the	parentheses	from	a	function	call.	Those	parentheses	will	be	empty	if
the	function	takes	no	parameters,	but	they	must	be	present.	For	example:

greet1()

Notice	the	parentheses!

Function	Signature
If	we	ignore	for	a	moment	the	parameter	names	in	the	function	declaration,	we	can
completely	characterize	a	function	by	the	types	of	its	inputs	and	its	output,	using	an

expression	like	this:
(Int,	Int)	->	Int

That	in	fact	is	a	legal	expression	in	Swift.	It	is	the	signature	of	a	function.	In	this	case,	it’s
the	signature	of	our	sum	function.	Of	course,	there	can	be	other	functions	that	take	two	Int
parameters	and	return	an	Int	—	and	that’s	just	the	point.	This	signature	characterizes	all
functions	that	have	this	number	of	parameters,	of	these	types,	and	that	return	a	result	of
this	type.	A	function’s	signature	is,	in	effect,	its	type	—	the	type	of	the	function.	The	fact
that	functions	have	types	will	be	of	great	importance	later	on.

The	signature	of	a	function	must	include	both	the	parameter	list	(without	parameter
names)	and	the	return	type,	even	if	one	or	both	of	those	is	empty;	so,	the	signature	of	a
function	that	takes	no	parameters	and	returns	no	value	may	be	written	in	any	of	four
equivalent	ways,	including	Void	->	Void	and	()	->	().

External	Parameter	Names
A	function	can	externalize	the	names	of	its	parameters.	The	external	names	must	then
appear	in	a	call	to	the	function	as	labels	to	the	arguments.	There	are	several	reasons	why
this	is	a	good	thing:

It	clarifies	the	purpose	of	each	argument;	each	argument	label	can	give	a	clue	as	to	how
that	argument	contributes	to	the	behavior	of	the	function.
It	distinguishes	one	function	from	another;	two	functions	can	have	the	same	name	and
signature	but	different	externalized	parameter	names.
It	helps	Swift	to	interface	with	Objective-C	and	Cocoa,	where	method	parameters
nearly	always	have	externalized	names.

To	externalize	a	parameter	name,	put	the	external	name	before	the	internal	parameter
name,	separated	by	a	space,	in	the	function	declaration.	The	external	name	can	be	the
same	as	the	internal	name,	or	different.	Externalized	parameter	names	are	so	standard	in
Swift,	however,	that	there’s	a	rule:	all	parameter	names	except	for	the	first	parameter	are
externalized	automatically	by	default.	Thus,	if	you	want	a	parameter	name	to	be
externalized,	and	if	this	is	not	the	first	parameter,	and	if	you	want	the	externalized	name	to
be	the	same	as	the	internal	name,	do	nothing	—	that	will	happen	all	by	itself.

Here’s	the	declaration	for	a	function	that	concatenates	a	string	with	itself	a	given	number
of	times:

func	repeatString(s:String,	times:Int)	->	String	{

				var	result	=	""

				for	_	in	1…times	{	result	+=	s	}

				return	result

}

That	function’s	first	parameter	has	an	internal	name	only,	but	its	second	parameter	has	an
external	name,	which	will	be	the	same	as	its	internal	name,	namely	times.	And	here’s	how
to	call	it:

let	s	=	repeatString("hi",	times:3)

In	the	call,	as	you	can	see,	the	external	name	precedes	the	argument	as	a	label,	separated
by	a	colon.

As	I’ve	already	said,	a	parameter’s	external	name	can	be	different	from	its	internal	name.
Let’s	say	that	in	our	repeatString	function	we	prefer	to	use	times	purely	as	an	external
name,	with	a	different	name	—	say,	n	—	as	the	internal	name.	Then	the	declaration	would
look	like	this:

func	repeatString(s:String,	times	n:Int)	->	String	{

				var	result	=	""

				for	_	in	1…n	{	result	+=	s}

				return	result

}

In	the	body	of	that	function,	there	is	now	no	times	variable	available;	times	is	purely	an
external	name,	for	use	in	the	call.	The	internal	name	is	n,	and	that’s	the	name	the	code
refers	to.

TIP

The	existence	of	external	names	doesn’t	mean	that	the	call	can	use	a	different	parameter	order	from	the	declaration.
For	example,	our	repeatString	expects	a	String	parameter	and	an	Int	parameter,	in	that	order.	The	order	can’t	be
different	in	the	call,	even	though	the	label	might	appear	to	disambiguate	which	argument	goes	with	which	parameter.
(Later,	though,	I’ll	give	an	apparent	exception	to	this	rule.)

Our	repeatString	function	demonstrates	the	default	rule	that	the	first	parameter	has	no
external	name,	while	the	others	do.	Why	is	this	the	default?	One	reason	is	that	the	first
parameter	often	doesn’t	need	an	external	name,	because	the	function	name	usually
clarifies	sufficiently	what	the	first	parameter	is	for	—	as	it	does	in	the	case	of
repeatString	(it	repeats	a	string,	which	the	first	parameter	should	provide).	Another
reason	—	much	more	important	in	real	life	—	is	that	this	convention	allows	Swift
functions	to	interface	with	Objective-C	methods,	which	typically	work	this	way.

For	example,	here’s	the	Objective-C	declaration	for	a	Cocoa	NSString	method:
-	(NSString	*)stringByReplacingOccurrencesOfString:(NSString	*)target

																																								withString:(NSString	*)replacement

This	method	takes	two	NSString	parameters	and	returns	an	NSString.	The	external	name
of	the	second	parameter	is	obvious	—	it’s	withString.	But	it’s	a	bit	less	obvious	what	the
name	of	the	first	parameter	is.	On	the	one	hand,	you	could	argue	that	it’s
stringByReplacingOccurrencesOfString.	On	the	other	hand,	that’s	not	really	the	name
of	the	parameter;	it’s	more	the	name	of	the	method.	Actually,	the	formal	name	of	the
method	is	the	whole	thing:	stringByReplacingOccurrencesOfString:withString:.	But
Swift	function	call	syntax	has	parentheses	distinguishing	the	function	name	from	the
external	parameter	names.	So	when	Swift	wants	to	call	this	Objective-C	method,	the	first
thing-before-a-colon	becomes	the	name	of	the	function,	before	the	parentheses,	and	the
second	thing-before-a-colon	becomes	the	label	of	the	second	argument,	inside	the
parentheses.	A	Swift	String	and	a	Cocoa	NSString	are	automatically	bridged	to	one
another,	so	you	can	actually	call	this	Cocoa	method	on	a	Swift	String,	like	this:

let	s	=	"hello"

let	s2	=	s.stringByReplacingOccurrencesOfString("ell",	withString:"ipp")

//	s2	is	now	"hippo"

If	a	function	is	your	own	function	—	that	is,	if	you	declare	it	—	and	if	it	is	not	a	method
that	Objective-C	will	ever	call	(so	that	there	is	no	need	to	conform	to	Objective-C’s
expectations),	then	you	are	free	to	depart	from	the	default	behavior.	You	can	do	any	of	the
following	in	your	function	declaration:

Externalize	the	name	of	the	first	parameter

If	you	want	to	externalize	the	name	of	the	first	parameter,	put	the	external	name	before
the	internal	name.	The	two	names	can	be	the	same.

Change	the	name	of	a	nonfirst	parameter

If	you	want	to	change	the	external	name	of	a	parameter	other	than	the	first	parameter,
put	the	desired	external	name	before	the	internal	name.

Suppress	the	externalization	of	a	nonfirst	parameter

To	suppress	a	nonfirst	parameter’s	external	name,	precede	it	with	an	underscore	and	a
space:

func	say(s:String,	_	times:Int)	{

Now	this	method	would	have	to	be	called	without	labeling	the	second	parameter:
let	d	=	Dog()

d.say("woof",	3)

(That	explains	my	declaration	func	sum	(x:Int,	_	y:Int)	->	Int	at	the	start	of	this
chapter:	I	was	suppressing	the	externalization	of	the	second	parameter	name,	so	as	not
to	have	to	explain	argument	labels	at	the	outset.)

WHAT	IS	THE	NAME	OF	THIS	FUNCTION?

Technically,	the	name	of	a	Swift	function	is	the	name	that	precedes	the	parentheses	plus	the	external	names	of	its
parameters.	If	the	external	name	of	a	parameter	is	suppressed,	we	can	represent	its	external	name	as	an	underscore.
The	result	is	a	notation	in	which	the	external	parameter	names	are	shown	in	parentheses	followed	by	a	colon.	For
example,	a	function	declared	func	say(s:String,	times:Int)	would	be	technically	named	say(_:times:),	and	a
function	declared	func	say(s:String,	_	times:Int)	would	be	technically	named	say(_:_:).	This	notation	is	a	bit
cumbersome,	and	I	don’t	adhere	to	it	in	this	book,	but	it	has	the	advantage	of	being	accurate	and	unambiguous.

Overloading
In	Swift,	function	overloading	is	legal	(and	common).	This	means	that	two	functions	with
exactly	the	same	name	(including	their	external	parameter	names)	can	coexist	as	long	as
they	have	different	signatures.

Thus,	for	example,	these	two	functions	can	coexist:
func	say	(what:String)	{

}

func	say	(what:Int)	{

}

The	reason	overloading	works	is	that	Swift	has	strict	typing.	A	String	is	not	an	Int.	Swift
can	tell	them	apart	in	the	declaration,	and	Swift	can	tell	them	apart	in	a	function	call.
Thus,	Swift	knows	unambiguously	that	say("what")	is	different	from	say(1).

Overloading	works	for	the	return	type	as	well.	Two	functions	with	the	same	name	and
parameter	types	can	have	different	return	types.	But	the	context	of	the	call	must
disambiguate;	that	is,	it	must	be	clear	what	return	type	the	caller	is	expecting.

For	example,	these	two	functions	can	coexist:
func	say()	->	String	{

				return	"one"

}

func	say()	->	Int	{

				return	1

}

But	now	you	can’t	call	say	like	this:
let	result	=	say()	//	compile	error

The	call	is	ambiguous,	and	the	compiler	tells	you	so.	The	call	must	be	used	in	a	context
where	the	expected	return	type	is	clear.	For	example,	suppose	we	have	another	function
that	is	not	overloaded,	and	that	expects	a	String	parameter:

func	giveMeAString(s:String)	{

				print("thanks!")

}

Then	giveMeAString(say())	is	legal,	because	only	a	String	can	go	in	this	spot,	so	we
must	be	calling	the	say	that	returns	a	String.	Similarly:

let	result	=	say()	+	"two"

Only	a	String	can	be	“added”	to	a	String,	so	this	say()	must	be	a	String.

The	legality	of	overloading	in	Swift	is	particularly	striking	if	you’re	coming	from
Objective-C,	where	overloading	is	not	legal.	If	you	tried	to	declare	two	overloaded
versions	of	the	same	method	in	Objective-C,	you’d	get	a	“Duplicate	declaration”	compile
error.	And	indeed,	if	you	try	to	declare	two	overloaded	methods	in	Swift,	but	in	a	place
where	Objective-C	can	see	them	(see	Appendix	A	for	what	that	means),	you’ll	get	a	Swift
compile	error,	because	such	overloading	is	incompatible	with	Objective-C.

TIP

Two	functions	with	the	same	signature	but	different	external	parameter	names	do	not	constitute	a	case	of	overloading;
the	functions	have	different	external	parameter	names,	so	they	are	simply	two	different	functions	with	two	different
names.

Default	Parameter	Values
A	parameter	can	have	a	default	value.	This	means	that	the	caller	can	omit	the	parameter
entirely,	supplying	no	argument	for	it;	the	value	will	then	be	the	default.

To	provide	a	default	value,	append	=	and	the	default	value	after	the	parameter	type	in	the
declaration:

class	Dog	{

				func	say(s:String,	times:Int	=	1)	{

								for	_	in	1…times	{

												print(s)

								}

				}

}

In	effect,	there	are	now	two	functions	—	say	plain	and	simple,	and	say(times:).	If	you
just	want	to	say	something	once,	you	can	call	say	plain	and	simple,	and	a	times:
parameter	value	of	1	will	be	supplied	for	you:

let	d	=	Dog()

d.say("woof")	//	same	as	saying	d.say("woof",	times:1)

If	you	want	repetition,	call	say(times:):
let	d	=	Dog()

d.say("woof",	times:3)

If	parameters	with	external	names	have	default	values,	the	requirement	that	they	be	called
in	order	is	lifted.	For	example,	if	a	function	is	declared	like	this:

func	doThing	(a	a:Int	=	0,	b:Int	=	3)	{}

then	it	is	legal	to	call	it	like	this:
doThing(b:5,	a:10)

However,	this	might	be	an	oversight	—	with	Swift,	it’s	always	hard	to	know,	and	certainly
it	would	be	illegal	to	call	it	like	that	if	either	parameter	lacked	a	default	value	—	so	I
would	recommend	that	you	not	do	that	sort	of	thing:	keep	your	call’s	arguments	ordered
like	the	parameters	in	the	declaration.

Variadic	Parameters
A	parameter	can	be	variadic.	This	means	that	the	caller	can	supply	as	many	values	of	this
parameter’s	type	as	desired,	separated	by	comma;	the	function	body	will	receive	these
values	as	an	array.

To	indicate	that	a	parameter	is	variadic,	follow	it	by	three	dots,	like	this:
func	sayStrings(arrayOfStrings:String…)	{

				for	s	in	arrayOfStrings	{	print(s)	}

}

And	here’s	how	to	call	it:
sayStrings("hey",	"ho",	"nonny	nonny	no")

In	earlier	versions	of	Swift,	a	variadic	parameter	had	to	be	the	last	parameter;	but	that
limitation	has	been	lifted	in	Swift	2.0.	The	limitation	is	now	only	that	a	function	can
declare	a	maximum	of	one	variadic	parameter	(because	otherwise	it	might	be	impossible
to	determine	where	the	list	of	values	ends).	For	example:

func	sayStrings(arrayOfStrings:String…,	times:Int)	{

				for	_	in	1…times	{

								for	s	in	arrayOfStrings	{	print(s)	}

				}

}

And	here’s	how	to	call	it:
sayStrings("Mannie",	"Moe",	"Jack",	times:3)

The	global	print	function	takes	a	variadic	first	parameter,	so	you	can	output	multiple
values	with	a	single	command:

print("Mannie",	3,	true)	//	Mannie	3	true

Default	parameters	dictate	further	details	of	the	output.	The	default	separator:	is	a	space
(when	you	provide	multiple	values),	and	the	default	terminator:	is	a	newline;	you	can
change	either	or	both:

print("Mannie",	"Moe",	separator:",	",	terminator:	",	")

print("Jack")

//	output	is	"Mannie,	Moe,	Jack"	on	one	line

WARNING

Unfortunately,	there’s	a	hole	in	the	Swift	language:	there’s	no	way	to	convert	an	array	into	a	comma-separated	list	of
arguments	(comparable	to	splatting	in	Ruby).	If	what	you’re	starting	with	is	an	array	of	some	type,	you	can’t	use	it
where	a	variadic	of	that	type	is	expected.

Ignored	Parameters
A	parameter	whose	local	name	is	an	underscore	is	ignored.	The	caller	must	supply	an
argument,	but	it	has	no	name	within	the	function	body	and	cannot	be	referred	to	there.	For
example:

func	say(s:String,	times:Int,	loudly	_:Bool)	{

No	loudly	parameter	makes	its	way	into	the	function	body,	but	the	caller	must	still
provide	the	third	parameter:

say("hi",	times:3,	loudly:true)

The	declaration	needn’t	have	an	externalized	name	for	the	ignored	parameter:
func	say(s:String,	times:Int,	_:Bool)	{

But	the	caller	must	still	supply	it:
say("hi",	times:3,	true)

What’s	the	purpose	of	this	feature?	It	isn’t	to	satisfy	the	compiler,	because	the	compiler
doesn’t	complain	if	a	parameter	is	never	referred	to	in	the	function	body.	I	use	it	primarily
as	a	kind	of	note	to	myself,	a	way	of	saying,	“Yes,	I	know	there	is	a	parameter	here,	and	I
am	deliberately	not	using	it	for	anything.”

Modifiable	Parameters
In	the	body	of	a	function,	a	parameter	is	essentially	a	local	variable.	By	default,	it’s	a
variable	implicitly	declared	with	let.	You	can’t	assign	to	it:

func	say(s:String,	times:Int,	loudly:Bool)	{

				loudly	=	true	//	compile	error

}

If	your	code	needs	to	assign	to	a	parameter	name	within	the	body	of	a	function,	declare	the
parameter	name	explicitly	with	var:

func	say(s:String,	times:Int,	var	loudly:Bool)	{

				loudly	=	true	//	no	problem

}

In	that	code,	the	parameter	loudly	is	still	just	a	local	variable.	Assigning	to	it	doesn’t
change	the	value	of	any	variable	outside	the	function	body.	However,	it	is	also	possible	to
configure	a	parameter	in	such	a	way	that	it	does	modify	the	value	of	a	variable	outside	the
function	body!	One	typical	use	case	is	that	you	want	your	function	to	return	more	than	one
result.	For	example,	here	I’ll	write	a	rather	advanced	function	that	removes	all	occurrences
of	a	given	character	from	a	given	string	and	returns	the	number	of	occurrences	that	were
removed:

func	removeFromString(var	s:String,	character	c:Character)	->	Int	{

				var	howMany	=	0

				while	let	ix	=	s.characters.indexOf(c)	{

								s.removeRange(ix…ix)

								howMany	+=	1

				}

				return	howMany

}

And	you	call	it	like	this:
let	s	=	"hello"

let	result	=	removeFromString(s,	character:Character("l"))	//	2

That’s	nice,	but	we	forgot	one	little	thing:	the	original	string,	s,	is	still	"hello"!	In	the
function	body,	we	removed	all	occurrences	of	the	character	from	the	local	copy	of	the
String	parameter,	but	this	change	didn’t	affect	the	original	string.

If	we	want	our	function	to	alter	the	original	value	of	an	argument	passed	to	it,	we	must
make	three	changes:

The	parameter	we	intend	to	modify	must	be	declared	inout.
At	the	point	of	the	call,	the	variable	holding	the	value	we	intend	to	tell	the	function	to
modify	must	be	declared	with	var,	not	let.
Instead	of	passing	the	variable	as	an	argument,	we	pass	its	address.	This	is	done	by
preceding	its	name	with	an	ampersand	(&).

Let’s	make	those	changes.	The	declaration	of	removeFromString	now	looks	like	this:
func	removeFromString(inout	s:String,	character	c:Character)	->	Int	{

Our	call	to	removeFromString	now	looks	like	this:
var	s	=	"hello"

let	result	=	removeFromString(&s,	character:Character("l"))

After	the	call,	result	is	2	and	s	is	"heo".	Notice	the	ampersand	before	name	of	s	as	the
first	argument	in	our	function	call!	I	like	this	requirement,	because	it	forces	us	to

acknowledge	explicitly	to	the	compiler,	and	to	ourselves,	that	we’re	about	to	do	something
potentially	dangerous:	we’re	letting	this	function,	as	a	side	effect,	modify	a	value	outside
of	itself.

TIP

When	a	function	with	an	inout	parameter	is	called,	the	variable	whose	address	was	passed	as	argument	to	that
parameter	is	always	set,	even	if	the	function	makes	no	changes	to	that	parameter.

You	will	often	encounter	variations	on	this	pattern	when	you’re	using	Cocoa.	The	Cocoa
APIs	are	written	in	C	and	Objective-C,	so	you	probably	won’t	see	the	Swift	term	inout.
You’ll	probably	see	some	mysterious	type	such	as	UnsafeMutablePointer.	From	your	point
of	view	as	the	caller,	however,	it’s	the	same	thing.	You’ll	prepare	a	var	variable	and	pass
its	address.

For	instance,	consider	the	Core	Graphics	function	CGRectDivide.	A	CGRect	is	a	struct
representing	a	rectangle.	You	call	CGRectDivide	when	you	want	to	slice	a	rectangle	into
two	rectangles.	CGRectDivide	needs	to	tell	you	what	both	resulting	rectangles	are.	So	it
needs	to	return	two	CGRects.	Its	strategy	for	doing	this	is	to	return	no	value	as	a	result	of
the	function;	instead,	it	says,	“You	hand	me	two	CGRects	as	arguments,	and	I	will	modify
them	for	you	so	that	they	are	the	results	of	this	operation.”

Here’s	how	the	declaration	for	CGRectDivide	appears	in	Swift:
func	CGRectDivide(rect:	CGRect,

				_	slice:	UnsafeMutablePointer<CGRect>,

				_	remainder:	UnsafeMutablePointer<CGRect>,

				_	amount:	CGFloat,

				_	edge:	CGRectEdge)

The	second	and	third	parameters	are	each	an	UnsafeMutablePointer	to	a	CGRect.	Here’s
actual	code	from	one	of	my	apps	where	I	call	this	function;	look	at	how	I	treat	the	second
and	third	arguments:

var	arrow	=	CGRectZero

var	body	=	CGRectZero

CGRectDivide(rect,	&arrow,	&body,	Arrow.ARHEIGHT,	.MinYEdge)

I	have	to	create	two	var	CGRect	variables	beforehand,	and	they	have	to	have	some	value
even	though	that	value	will	immediately	be	replaced	by	the	call	to	CGRectDivide,	so	I
assign	them	CGRectZero	as	a	placeholder.

TIP

Swift	extends	CGRect	to	provide	a	divide	method.	This	method,	being	a	Swift	method,	does	something	that	a	Cocoa
C	function	cannot	do	—	it	returns	two	values	(as	a	tuple,	see	Chapter	3)!	Thus,	you	could	avoid	calling	CGRectDivide
in	the	first	place.	Still,	you	can	call	CGRectDivide,	so	it’s	worth	knowing	how.

Sometimes,	Cocoa	will	call	your	function	with	an	UnsafeMutablePointer	parameter,	and
you	will	want	to	change	its	value.	To	do	this,	you	cannot	assign	directly	to	it,	as	we	did
with	the	inout	variable	s	in	our	implementation	of	removeFromString.	You’re	talking	to
Objective-C,	not	to	Swift,	and	this	is	an	UnsafeMutablePointer,	not	an	inout	parameter.
The	technique	here	is	to	assign	to	the	UnsafeMutablePointer’s	memory	property.	Here
(without	further	explanation)	is	an	example	from	my	own	code:

func	popoverPresentationController(

				popoverPresentationController:	UIPopoverPresentationController,

				willRepositionPopoverToRect	rect:	UnsafeMutablePointer<CGRect>,

				inView	view:	AutoreleasingUnsafeMutablePointer<UIView?>)	{

								view.memory	=	self.button2

								rect.memory	=	self.button2.bounds

}

There	is	one	very	common	situation	where	your	function	can	modify	a	parameter	without
declaring	it	as	inout	—	namely,	when	the	parameter	is	an	instance	of	a	class.	This	is	a
special	feature	of	classes,	as	opposed	to	the	other	two	object	type	flavors,	enum	and	struct.
String	isn’t	a	class;	it’s	a	struct.	That’s	why	we	had	to	use	inout	in	order	to	modify	a
String	parameter.	So	I’ll	illustrate	by	declaring	a	Dog	class	with	a	name	property:

class	Dog	{

				var	name	=	""

}

Here’s	a	function	that	takes	a	Dog	instance	parameter	and	a	String,	and	sets	that	Dog
instance’s	name	to	that	String.	Notice	that	no	inout	is	involved:

func	changeNameOfDog(d:Dog,	to	tostring:String)	{

				d.name	=	tostring

}

Here’s	how	to	call	it.	There’s	no	inout,	so	we	pass	a	Dog	instance	directly:
let	d	=	Dog()

d.name	=	"Fido"

print(d.name)	//	"Fido"

changeNameOfDog(d,	to:"Rover")

print(d.name)	//	"Rover"

Observe	that	we	were	able	to	change	a	property	of	our	Dog	instance	d,	even	though	it
wasn’t	passed	as	an	inout	parameter,	and	even	though	it	was	declared	originally	with	let,
not	var.	This	appears	to	be	an	exception	to	the	rules	about	modifying	parameters	—	but	it
isn’t.	It’s	a	feature	of	class	instances,	namely	that	they	are	themselves	mutable.	In
changeNameOfDog,	we	didn’t	actually	attempt	to	modify	the	parameter	itself.	To	do	that,
we	would	have	had	to	substitute	a	different	Dog	instance.	That	is	not	what	we	tried	to	do,
and	if	we	did	want	to	do	it,	the	Dog	parameter	would	need	to	be	declared	inout	(and	d
would	have	to	be	declared	with	var	and	we	would	have	to	pass	its	address	as	argument).

NOTE

Technically,	we	say	that	classes	are	reference	types,	whereas	the	other	object	type	flavors	are	value	types.	When	you
pass	an	instance	of	a	struct	as	an	argument	to	a	function,	you	effectively	wind	up	with	a	separate	copy	of	the	struct
instance.	But	when	you	pass	an	instance	of	a	class	as	an	argument	to	a	function,	you	pass	a	reference	to	the	class
instance	itself.	I’ll	discuss	this	topic	in	more	detail	in	Chapter	4.

Function	In	Function
A	function	can	be	declared	anywhere,	including	inside	the	body	of	a	function.	A	function
declared	in	the	body	of	a	function	(also	called	a	local	function)	is	available	to	be	called	by
later	code	within	the	same	scope,	but	is	completely	invisible	outside	its	scope.

This	feature	is	an	elegant	architecture	for	functions	whose	sole	purpose	is	to	assist	another
function.	If	only	function	A	ever	needs	to	call	function	B,	function	B	might	as	well	be
packaged	inside	function	A.

Here’s	a	typical	example	from	one	of	my	apps	(I’ve	omitted	everything	except	the
structure):

func	checkPair(p1:Piece,	and	p2:Piece)	->	Path?	{

				//	...

				func	addPathIfValid(midpt1:Point,	_	midpt2:Point)	{

								//	...

				}

				for	y	in	-1…_yct	{

								addPathIfValid((pt1.x,y),(pt2.x,y))

				}

				for	x	in	-1…_xct	{

								addPathIfValid((x,pt1.y),(x,pt2.y))

				}

				//	...

}

What	I’m	doing	in	the	first	for	loop	(for	y)	and	what	I’m	doing	in	the	second	for	loop
(for	x)	are	the	same	—	but	with	a	different	set	of	starting	values.	We	could	write	out	the
functionality	in	full	inside	each	for	loop,	but	that	would	be	an	unnecessary	and	confusing
repetition.	(Such	a	repetition	would	violate	the	principle	often	referred	to	as	DRY,	for
“Don’t	Repeat	Yourself.”)	To	prevent	that	repetition,	we	could	refactor	the	repeated	code
into	an	instance	method	to	be	called	by	both	for	loops,	but	that	exposes	this	functionality
more	broadly	than	we	need,	as	it	is	called	only	by	these	two	for	loops	inside	checkPair.	A
local	function	is	the	perfect	compromise.

Sometimes,	it’s	worth	using	a	local	function	even	when	that	function	will	be	called	in	only
one	place.	Here’s	another	example	from	my	code	(it’s	actually	another	part	of	the	same
function):

func	checkPair(p1:Piece,	and	p2:Piece)	->	Path?	{

				//	...

				if	arr.count	>	0	{

								func	distance(pt1:Point,	_	pt2:Point)	->	Double	{

												//	utility	to	learn	physical	distance	between	two	points

												let	deltax	=	pt1.0	-	pt2.0

												let	deltay	=	pt1.1	-	pt2.1

												return	sqrt(Double(deltax	*	deltax	+	deltay	*	deltay))

								}

								for	thisPath	in	arr	{

												var	thisLength	=	0.0

												for	ix	in	0..<(thisPath.count-1)	{

																thisLength	+=	distance(thisPath[ix],thisPath[ix+1])

												}

												//	...

								}

				}

				//	...

}

Again,	the	structure	is	clear	(even	though	the	code	uses	some	Swift	features	I	haven’t
discussed	yet).	Deep	inside	the	function	checkPair,	a	moment	comes	when	I	have	an
array	(arr)	of	paths,	and	I	need	to	know	the	length	of	every	path.	Each	path	is	itself	an

array	of	points,	so	to	learn	its	length,	I	need	to	sum	the	distances	between	each	pair	of
points.	To	get	the	distance	between	a	pair	of	points,	I	use	the	Pythagorean	theorem.	I	could
apply	the	Pythagorean	theorem	and	express	the	calculation	right	there	inside	the	for	loop
(for	ix).	Instead,	I’ve	expressed	it	as	a	separate	function,	distance,	and	inside	the	for
loop	I	call	that	function.

There	is	no	savings	whatever	in	the	number	of	lines	of	code;	in	fact,	declaring	distance
makes	my	code	longer!	Nor,	strictly	speaking,	am	I	in	danger	of	repeating	myself;	the
application	of	the	Pythagorean	theorem	is	repeated	many	times,	but	it	occurs	at	only	one
spot	in	my	code,	namely	inside	this	one	for	loop.	Nevertheless,	abstracting	the	code	into	a
more	general	distance-calculation	utility	makes	my	code	much	clearer:	in	effect,	I
announce	in	general	form	what	I’m	about	to	do	(“Look!	I’m	going	to	calculate	distances
between	points	now!”),	and	then	I	do	it.	The	function	name,	distance,	gives	my	code
meaning;	it	is	more	understandable	and	maintainable	than	if	I	had	directly	written	out	the
steps	of	the	distance	calculation	inline.

WARNING

Local	functions	are	really	local	variables	with	function	values	(a	notion	that	I’ll	explain	later	in	this	chapter).
Therefore,	a	local	function	can’t	have	the	same	name	as	a	local	variable	in	the	same	scope,	and	two	local	functions
can’t	have	the	same	name	as	one	another	in	the	same	scope.

Recursion
A	function	can	call	itself.	This	is	called	recursion.	Recursion	seems	a	little	scary,	rather
like	jumping	off	a	cliff,	because	of	the	danger	of	creating	an	infinite	loop;	but	if	you	write
the	function	correctly,	you	will	always	have	a	“stopper”	condition	that	handles	the
degenerate	case	and	prevents	the	loop	from	being	infinite:

func	countDownFrom(ix:Int)	{

				print(ix)

				if	ix	>	0	{	//	stopper

								countDownFrom(ix-1)	//	recurse!

				}

}

TIP

Before	Swift	2.0,	Swift	imposed	a	restriction	on	recursion:	a	function-in-function	(a	local	function)	could	not	call
itself.	In	Swift	2.0,	this	restriction	is	gone.

Function	As	Value
If	you’ve	never	used	a	programming	language	where	functions	are	first-class	citizens,
perhaps	you’d	better	sit	down	now,	because	what	I’m	about	to	tell	you	might	make	you
feel	a	little	faint:	In	Swift,	a	function	is	a	first-class	citizen.	This	means	that	a	function	can
be	used	wherever	a	value	can	be	used.	For	example,	a	function	can	be	assigned	to	a
variable;	a	function	can	be	passed	as	an	argument	in	a	function	call;	a	function	can	be
returned	as	the	result	of	a	function.

Swift	has	strict	typing.	You	can	only	assign	a	value	to	a	variable	or	pass	a	value	into	or	out
of	a	function	if	it	is	the	right	type	of	value.	In	order	for	a	function	to	be	used	as	a	value,	it
needs	to	have	a	type.	And	indeed	it	does!	Have	you	guessed	what	it	is?	A	function’s
signature	is	its	type.

The	chief	purpose	of	using	a	function	as	a	value	is	so	that	this	function	can	later	be	called
without	a	definite	knowledge	of	what	function	it	is.

Here’s	the	world’s	simplest	(and	silliest)	example,	just	to	show	the	syntax	and	structure:
func	doThis(f:()->())	{

				f()

}

That	is	a	function	doThis	that	takes	one	parameter	(and	returns	no	value).	The	parameter,
f,	is	itself	a	function;	we	know	this	because	the	type	of	the	parameter	is	not	given	as	Int
or	String	or	Dog,	but	is	a	function	signature,	()->(),	meaning	(as	you	know)	a	function
that	takes	no	parameters	and	returns	no	value.	The	function	doThis	then	calls	the	function
f	that	it	received	as	its	parameter	—	that	(as	you	know)	is	the	meaning	of	the	parentheses
after	the	name	of	the	parameter	in	the	function	body.

How	would	you	call	the	function	doThis?	To	do	so,	you’d	need	to	pass	it	a	function	as
argument.	One	way	to	do	that	is	to	use	the	name	of	a	function	as	the	argument,	like	this:

func	whatToDo()	{

				print("I	did	it")

}

doThis(whatToDo)

First,	we	declare	a	function	of	the	proper	type	—	a	function	that	takes	no	parameters	and
returns	no	value.	Then,	we	call	doThis,	passing	as	argument	the	name	of	the	function.
Notice	that	we	are	not	calling	whatToDo	here;	we	are	passing	it.	You	know	this	because
there	are	no	parentheses	after	its	name.	Sure	enough,	this	works:	we	pass	whatToDo	as
argument	to	doThis;	doThis	calls	the	function	that	it	receives	as	its	parameter;	and	the
string	"I	did	it"	appears	in	the	console.

But	what’s	the	point	of	being	able	to	do	that?	If	our	goal	is	to	call	whatToDo,	why	don’t	we
just	call	it?	What’s	useful	about	being	able	to	tell	some	other	function	to	call	it?	In	the
example	I	just	gave,	there	is	nothing	useful	about	it;	I	was	just	showing	you	the	syntax	and
structure.	But	in	real	life,	this	is	a	very	valuable	thing	to	do,	because	the	other	function
may	call	the	parameter	function	in	some	special	way.	For	example,	it	might	call	it	after
doing	other	things,	or	at	some	later	time.

For	example,	one	reason	for	encapsulating	function-calling	in	a	function	is	that	it	can
reduce	repetition	and	opportunity	for	error.	Here’s	a	case	from	my	own	code.	A	common
thing	to	do	in	Cocoa	is	to	draw	an	image,	directly,	in	code.	This	involves	four	steps:

let	size	=	CGSizeMake(45,20)

UIGraphicsBeginImageContextWithOptions(size,	false,	0)	

let	p	=	UIBezierPath(

				roundedRect:	CGRectMake(0,0,45,20),	cornerRadius:	8)

p.stroke()	

let	result	=	UIGraphicsGetImageFromCurrentImageContext()	

UIGraphicsEndImageContext()	

Open	an	image	context.

Draw	into	the	context.

Extract	the	image.

Close	the	image	context.

That’s	terribly	ugly.	The	sole	purpose	of	all	that	code	is	to	obtain	result,	the	image;	but
that	purpose	is	buried	in	all	the	other	code.	At	the	same	time,	the	entire	structure	is
boilerplate;	every	time	I	do	this	in	any	app,	step	1,	step	3,	and	step	4	are	exactly	the	same.
Moreover,	I	live	in	mortal	fear	of	forgetting	a	step;	for	example,	if	I	were	to	omit	step	4	by
mistake,	the	universe	would	explode.

The	only	thing	that’s	different	every	time	I	draw	is	step	2.	Thus,	step	2	is	the	only	part	I
should	have	to	write	out!	The	entire	problem	is	solved	by	writing	a	utility	function
expressing	the	boilerplate:

func	imageOfSize(size:CGSize,	_	whatToDraw:()	->	())	->	UIImage	{

				UIGraphicsBeginImageContextWithOptions(size,	false,	0)

				whatToDraw()

				let	result	=	UIGraphicsGetImageFromCurrentImageContext()

				UIGraphicsEndImageContext()

				return	result

}

My	imageOfSize	utility	is	so	useful	that	I	declare	it	at	the	top	level	of	a	file,	where	all	my
files	can	see	it.	To	make	an	image,	I	perform	step	2	(the	actual	drawing)	in	a	function	and
pass	that	function	as	argument	to	the	imageOfSize	utility:

func	drawing()	{

				let	p	=	UIBezierPath(

								roundedRect:	CGRectMake(0,0,45,20),	cornerRadius:	8)

				p.stroke()

}

let	image	=	imageOfSize(CGSizeMake(45,20),	drawing)

Now	that	is	a	beautifully	expressive	and	clear	way	to	turn	drawing	instructions	into	an
image.

The	Cocoa	API	is	full	of	situations	where	you’ll	pass	a	function	to	be	called	by	the
runtime	in	some	special	way	or	at	some	later	time.	For	example,	when	one	view	controller
presents	another,	the	method	you’ll	call	takes	three	parameters	—	the	view	controller	to	be
presented;	a	Bool	stating	whether	you	want	the	presentation	to	be	animated;	and	a	function
that	is	to	be	called	after	the	presentation	has	finished:

let	vc	=	UIViewController()

func	whatToDoLater()	{

				print("I	finished!")

}

self.presentViewController(vc,	animated:true,	completion:whatToDoLater)

The	Cocoa	documentation	will	often	describe	such	a	function	as	a	handler,	and	will	refer
it	as	a	block,	because	that’s	the	Objective-C	syntactic	construct	needed	here;	in	Swift,	it’s	a
function,	so	just	think	of	it	as	a	function	and	pass	a	function.

Some	common	Cocoa	situations	even	involve	passing	two	functions	to	a	function.	For
instance,	when	you	perform	view	animation,	you’ll	often	pass	one	function	prescribing	the
action	to	be	animated	and	another	function	saying	what	to	do	afterwards:

func	whatToAnimate()	{	//	self.myButton	is	a	button	in	the	interface

				self.myButton.frame.origin.y	+=	20

}

func	whatToDoLater(finished:Bool)	{

				print("finished:	\(finished)")

}

UIView.animateWithDuration(

				0.4,	animations:	whatToAnimate,	completion:	whatToDoLater)

That	means:	Change	the	frame	origin	(that	is,	the	position)	of	this	button	in	the	interface,
but	do	it	over	time	(four-tenths	of	a	second);	and	then,	when	that’s	finished,	print	a	log
message	in	the	console	saying	whether	the	animation	was	performed	or	not.

TIP

To	make	function	type	specifiers	clearer,	take	advantage	of	Swift’s	typealias	feature	to	create	a	type	alias	giving	a
function	type	a	name.	The	name	can	be	descriptive,	and	the	possibly	confusing	arrow	operator	notation	is	avoided.
For	example,	if	you	say	typealias	VoidVoidFunction	=	()	->	(),	you	can	then	say	VoidVoidFunction	wherever
you	need	to	specify	a	function	type	with	that	signature.

Anonymous	Functions
Consider	again	the	preceding	example:

func	whatToAnimate()	{	//	self.myButton	is	a	button	in	the	interface

				self.myButton.frame.origin.y	+=	20

}

func	whatToDoLater(finished:Bool)	{

				print("finished:	\(finished)")

}

UIView.animateWithDuration(

				0.4,	animations:	whatToAnimate,	completion:	whatToDoLater)

There’s	a	slight	bit	of	ugliness	in	that	code.	I’m	declaring	functions	whatToAnimate	and
whatToDoLater,	just	because	I	want	to	pass	those	functions	in	the	last	line.	I	don’t	really
need	the	names	whatToAnimate	and	whatToDoLater	for	anything,	except	to	refer	to	them
in	the	last	line;	neither	the	names	nor	the	functions	will	ever	be	used	again.	Therefore,	it
would	be	nice	to	be	able	to	pass	just	the	body	of	those	functions	without	a	declared	name.

That’s	called	an	anonymous	function,	and	it’s	legal	and	common	in	Swift.	To	form	an
anonymous	function,	you	do	two	things:

1.	 Create	the	function	body	itself,	including	the	surrounding	curly	braces,	but	with	no
function	declaration.

2.	 If	necessary,	express	the	function’s	parameter	list	and	return	type	as	the	first	line
inside	the	curly	braces,	followed	by	the	keyword	in.

Let’s	practice	by	transforming	our	named	function	declarations	into	anonymous	functions.
Here’s	the	named	function	declaration	for	whatToAnimate:

func	whatToAnimate()	{

				self.myButton.frame.origin.y	+=	20

}

Here’s	an	anonymous	function	that	does	the	same	thing.	Notice	how	I’ve	moved	the
parameter	list	and	return	type	inside	the	curly	braces:

{

				()	->	()	in

				self.myButton.frame.origin.y	+=	20

}

Here’s	the	named	function	declaration	for	whatToDoLater:
func	whatToDoLater(finished:Bool)	{

				print("finished:	\(finished)")

}

Here’s	an	anonymous	function	that	does	the	same	thing:
{

				(finished:Bool)	->	()	in

				print("finished:	\(finished)")

}

Now	that	we	know	how	to	make	anonymous	functions,	let’s	use	them.	The	point	where	we
need	the	functions	is	the	point	where	we’re	passing	arguments	to	animateWithDuration.
We	can	create	and	pass	anonymous	functions	right	at	that	point,	like	this:

UIView.animateWithDuration(0.4,	animations:	{

				()	->	()	in

				self.myButton.frame.origin.y	+=	20

				},	completion:	{

								(finished:Bool)	->	()	in

								print("finished:	\(finished)")

})

We	can	make	the	same	improvement	in	the	way	we	call	the	imageOfSize	function	from
the	preceding	section.	Earlier,	we	called	that	function	like	this:

func	drawing()	{

				let	p	=	UIBezierPath(

								roundedRect:	CGRectMake(0,0,45,20),	cornerRadius:	8)

				p.stroke()

}

let	image	=	imageOfSize(CGSizeMake(45,20),	drawing)

We	now	know,	however,	that	we	don’t	need	to	declare	the	drawing	function	separately.	We
can	call	imageOfSize	with	an	anonymous	function:

let	image	=	imageOfSize(CGSizeMake(45,20),	{

				let	p	=	UIBezierPath(

								roundedRect:	CGRectMake(0,0,45,20),	cornerRadius:	8)

				p.stroke()

})

Anonymous	functions	are	very	commonly	used	in	Swift,	so	make	sure	you	can	read	and
write	that	code!	Anonymous	functions,	in	fact,	are	so	common	and	so	important,	that	some
shortcuts	for	writing	them	are	provided:

Omission	of	the	return	type

If	the	anonymous	function’s	return	type	is	known	to	the	compiler,	you	can	omit	the
arrow	operator	and	the	specification	of	the	return	type:

UIView.animateWithDuration(0.4,	animations:	{

				()	in

				self.myButton.frame.origin.y	+=	20

				},	completion:	{

								(finished:Bool)	in

								print("finished:	\(finished)")

})

Omission	of	the	in	line	when	there	are	no	parameters

If	the	anonymous	function	takes	no	parameters,	and	if	the	return	type	can	be	omitted,
the	in	line	itself	can	be	omitted	entirely:

UIView.animateWithDuration(0.4,	animations:	{

				self.myButton.frame.origin.y	+=	20

				},	completion:	{

								(finished:Bool)	in

								print("finished:	\(finished)")

})

Omission	of	the	parameter	types

If	the	anonymous	function	takes	parameters	and	their	types	are	known	to	the	compiler,
the	types	can	be	omitted:

UIView.animateWithDuration(0.4,	animations:	{

				self.myButton.frame.origin.y	+=	20

				},	completion:	{

								(finished)	in

								print("finished:	\(finished)")

})

Omission	of	the	parentheses

If	the	parameter	types	are	omitted,	the	parentheses	around	the	parameter	list	can	be
omitted:

UIView.animateWithDuration(0.4,	animations:	{

				self.myButton.frame.origin.y	+=	20

				},	completion:	{

								finished	in

								print("finished:	\(finished)")

})

Omission	of	the	in	line	even	when	there	are	parameters

If	the	return	type	can	be	omitted,	and	if	the	parameter	types	are	known	to	the	compiler,
you	can	omit	the	in	line	and	refer	to	the	parameters	directly	within	the	body	of	the
anonymous	function	by	using	the	magic	names	$0,	$1,	and	so	on,	in	order:

UIView.animateWithDuration(0.4,	animations:	{

				self.myButton.frame.origin.y	+=	20

				},	completion:	{

								print("finished:	\($0)")

})

Omission	of	the	parameter	names

If	the	anonymous	function	body	doesn’t	need	to	refer	to	a	parameter,	you	can	substitute
an	underscore	for	its	name	in	the	parameter	list	in	the	in	line;	in	fact,	if	the	anonymous
function	body	doesn’t	need	to	refer	to	any	of	the	parameters,	you	can	substitute	one
underscore	for	the	entire	parameter	list:

UIView.animateWithDuration(0.4,	animations:	{

				self.myButton.frame.origin.y	+=	20

				},	completion:	{

								_	in

								print("finished!")

})

TIP

But	note	that	if	the	anonymous	function	takes	parameters,	you	must	acknowledge	them	somehow.	You	can	omit	the
in	line	and	use	the	parameters	by	the	magic	names	$0	and	so	on,	or	you	can	keep	the	in	line	and	ignore	the
parameters	with	an	underscore,	but	you	can’t	omit	the	in	line	altogether	and	not	use	the	parameters	by	their	magic
names!	If	you	do,	your	code	won’t	compile.

Omission	of	the	function	argument	label

If,	as	will	just	about	always	be	the	case,	your	anonymous	function	is	the	last	argument
being	passed	in	this	function	call,	you	can	close	the	function	call	with	a	right
parenthesis	before	this	last	argument,	and	then	put	just	the	anonymous	function	body
without	a	label	(this	is	called	a	trailing	function):

UIView.animateWithDuration(0.4,	animations:	{

				self.myButton.frame.origin.y	+=	20

				})	{

								_	in

								print("finished!")

}

Omission	of	the	calling	function	parentheses

If	you	use	the	trailing	function	syntax,	and	if	the	function	you	are	calling	takes	no
parameters	other	than	the	function	you	are	passing	to	it,	you	can	omit	the	empty
parentheses	from	the	call.	This	is	the	only	situation	in	which	you	can	omit	the
parentheses	from	a	function	call!	To	illustrate,	I’ll	declare	and	call	a	different	function:

func	doThis(f:()->())	{

				f()

}

doThis	{	//	no	parentheses!

				print("Howdy")

}

Omission	of	the	keyword	return

If	the	anonymous	function	body	consists	of	exactly	one	statement	and	that	statement
consists	of	returning	a	value	with	the	keyword	return,	the	keyword	return	can	be
omitted.	To	put	it	another	way,	in	a	context	that	expects	a	function	that	returns	a	value,
if	an	anonymous	function	body	consists	of	exactly	one	statement,	Swift	assumes	that
this	statement	is	an	expression	whose	value	is	to	be	returned	from	the	anonymous
function:

func	sayHowdy()	->	String	{

				return	"Howdy"

}

func	performAndPrint(f:()->String)	{

				let	s	=	f()

				print(s)

}

performAndPrint	{

				sayHowdy()	//	meaning:	return	sayHowdy()

}

When	writing	anonymous	functions,	you	will	frequently	find	yourself	taking	advantage	of
all	the	omissions	you	are	permitted.	In	addition,	you’ll	often	shorten	the	layout	of	the	code
(though	not	the	code	itself)	by	putting	the	whole	anonymous	function	together	with	the
function	call	on	one	line.	Thus,	Swift	code	involving	anonymous	functions	can	be
extremely	compact.

Here’s	a	typical	example.	We	start	with	an	array	of	Int	values	and	generate	a	new	array
consisting	of	all	those	values	multiplied	by	2,	by	calling	the	map	instance	method.	The	map
method	of	an	array	takes	a	function	that	takes	one	parameter,	and	returns	a	value,	of	the
same	type	as	the	array’s	elements;	here,	our	array	is	made	of	Int	values,	so	we	need	to	pass
to	the	map	method	a	function	that	takes	one	Int	parameter	and	returns	an	Int.	We	could
write	out	the	whole	function,	like	this:

let	arr	=	[2,	4,	6,	8]

func	doubleMe(i:Int)	->	Int	{

				return	i*2

}

let	arr2	=	arr.map(doubleMe)	//	[4,	8,	12,	16]

That,	however,	is	not	very	Swifty.	We	don’t	need	the	name	doubleMe	for	anything	else,	so
this	may	as	well	be	an	anonymous	function.	Its	return	type	is	known,	so	we	don’t	need	to
specify	that.	Its	parameter	type	is	known,	so	we	don’t	need	to	specify	that.	There’s	just	one
parameter	and	we	are	going	to	use	it,	so	we	don’t	need	the	in	line	as	long	we	refer	to	the
parameter	as	$0.	Our	function	body	consists	of	just	one	statement,	and	it	is	a	return
statement,	so	we	can	omit	return.	And	map	doesn’t	take	any	other	parameters,	so	we	can
omit	the	parentheses	and	follow	the	name	directly	with	a	trailing	function:

let	arr	=	[2,	4,	6,	8]

let	arr2	=	arr.map	{$0*2}

Define-and-Call
A	pattern	that’s	surprisingly	common	in	Swift	is	to	define	an	anonymous	function	and	call
it,	all	in	one	move:

{

				//	...	code	goes	here

}()

Notice	the	parentheses	after	the	curly	braces.	The	curly	braces	define	an	anonymous
function	body;	the	parentheses	call	that	anonymous	function.

Why	would	anyone	do	such	a	thing?	If	you	want	to	run	some	code,	you	can	just	run	it;
why	would	you	embed	it	in	a	deeper	level	as	a	function	body,	only	to	turn	around	and	run
that	function	body	immediately?

For	one	thing,	an	anonymous	function	can	be	a	good	way	to	make	your	code	less
imperative	and	more,	well,	functional:	an	action	can	be	taken	at	the	point	where	it	is
needed,	rather	than	in	a	series	of	preparatory	steps.	Here’s	a	common	Cocoa	example:	we
create	and	configure	an	NSMutableParagraphStyle	and	then	use	it	as	an	argument	in	a	call
to	addAttribute:value:range:	(content	is	an	NSMutableAttributedString):

let	para	=	NSMutableParagraphStyle()

para.headIndent	=	10

para.firstLineHeadIndent	=	10

//	...	more	configuration	of	para…

content.addAttribute(

				NSParagraphStyleAttributeName,

				value:para,	range:NSMakeRange(0,1))

I	find	that	code	ugly.	We	don’t	need	para	except	to	pass	it	as	the	value:	argument	within
the	call	to	addAttribute:value:range,	so	it	would	be	much	nicer	to	create	and	configure
it	right	there	within	the	call,	as	the	value:	argument.	Swift	lets	us	do	just	that.	I	much
prefer	this	way	of	writing	the	same	code:

content.addAttribute(

				NSParagraphStyleAttributeName,

				value:	{

								let	para	=	NSMutableParagraphStyle()

								para.headIndent	=	10

								para.firstLineHeadIndent	=	10

								//	...	more	configuration	of	para…

								return	para

				}(),

				range:NSMakeRange(0,1))

I’ll	demonstrate	some	further	uses	of	define-and-call	in	Chapter	3.

Closures
Swift	functions	are	closures.	This	means	they	can	capture	references	to	external	variables
in	scope	within	the	body	of	the	function.	What	do	I	mean	by	that?	Well,	recall	from
Chapter	1	that	code	in	curly	braces	constitutes	a	scope,	and	this	code	can	“see”	variables
and	functions	declared	in	a	surrounding	scope:

class	Dog	{

				var	whatThisDogSays	=	"woof"

				func	bark()	{

								print(self.whatThisDogSays)

				}

}

In	that	code,	the	body	of	the	function	bark	refers	to	a	variable	whatThisDogSays.	That
variable	is	external	to	the	body	of	the	function,	because	it	is	declared	outside	the	body	of
the	function.	It	is	in	scope	for	the	body	of	the	function,	because	the	code	inside	the	body
of	the	function	can	see	it.	And	the	code	inside	the	body	of	the	function	refers	to	it	—	it
says,	explicitly,	whatThisDogSays.

So	far,	so	good;	but	we	now	know	that	the	function	bark	can	be	passed	as	a	value.	In
effect,	it	can	travel	from	one	environment	to	another!	When	it	does,	what	happens	to	that
reference	to	whatThisDogSays?	Let’s	find	out:

func	doThis(f	:	Void	->	Void)	{

				f()

}

let	d	=	Dog()

d.whatThisDogSays	=	"arf"

let	f	=	d.bark

doThis(f)	//	arf

We	run	that	code,	and	"arf"	appears	in	the	console.

Perhaps	that	result	doesn’t	seem	very	surprising	to	you.	But	think	about	it.	We	do	not
directly	call	bark.	We	make	a	Dog	instance	and	pass	its	bark	function	as	a	value	into	the
function	doThis.	There,	it	is	called.	Now,	whatThisDogSays	is	an	instance	property	of	a
particular	Dog.	Inside	the	function	doThis	there	is	no	whatThisDogSays.	Indeed,	inside
the	function	doThis	there	is	no	Dog	instance!	Nevertheless	the	call	f()	still	works.	The
function	d.bark,	as	it	is	passed	around,	can	still	see	that	variable	whatThisDogSays,
declared	outside	itself,	even	though	it	is	called	in	an	environment	where	there	is	no	longer
any	Dog	instance	and	no	longer	any	instance	property	whatThisDogSays.

The	bark	function,	it	appears,	as	it	is	passed	around,	is	carrying	its	environment	with	it	—
even	when	it	isn’t	called	until	it	has	been	passed	into	some	other	environment	entirely.	So,
by	“capture”	I	mean	that	when	a	function	is	passed	around	as	a	value,	it	carries	along	its
internal	references	to	external	variables.	That	is	what	makes	a	function	a	closure.

You’ll	probably	take	advantage	of	the	fact	that	functions	are	closures	without	even	being
conscious	of	it.	Recall	this	earlier	example,	where	we	animate	the	repositioning	of	a
button	in	our	interface:

UIView.animateWithDuration(0.4,	animations:	{

				self.myButton.frame.origin.y	+=	20

				})	{

								_	in

								print("finished!")

}

That	code	seems	innocent	enough;	but	concentrate	on	the	second	line,	the	anonymous
function	passed	as	argument	to	the	animations:	parameter.	You	should	be	saying:	Really?
Way	off	in	the	land	of	Cocoa,	when	this	anonymous	function	is	executed	at	some	future
time	to	start	the	animation,	Cocoa	is	going	to	be	able	to	find	myButton,	an	object	referred
to	as	a	property	of	self,	way	back	over	here	in	my	code?	Yes,	Cocoa	will	be	able	to	do
that,	because	a	function	is	a	closure.	The	reference	to	this	property	is	captured	and
maintained	by	the	anonymous	function;	thus,	when	the	anonymous	function	is	actually
called,	it	works	and	the	button	moves.

How	Closures	Improve	Code
Once	you	understand	that	functions	are	closures,	you	can	take	advantage	of	this	fact	to
improve	your	code’s	syntax.	Closures	can	help	make	your	code	more	general,	and	hence
more	useful.	Here,	once	again,	is	my	earlier	example	of	a	function	that	accepts	drawing
instructions	and	performs	them	to	generate	an	image:

func	imageOfSize(size:CGSize,	_	whatToDraw:()	->	())	->	UIImage	{

				UIGraphicsBeginImageContextWithOptions(size,	false,	0)

				whatToDraw()

				let	result	=	UIGraphicsGetImageFromCurrentImageContext()

				UIGraphicsEndImageContext()

				return	result

}

We	can	call	imageOfSize	with	a	trailing	anonymous	function:
let	image	=	imageOfSize(CGSizeMake(45,20))	{

				let	p	=	UIBezierPath(

								roundedRect:	CGRectMake(0,0,45,20),	cornerRadius:	8)

				p.stroke()

}

That	code,	however,	contains	an	annoying	repetition.	This	is	a	call	to	create	an	image	of	a
given	size	consisting	of	a	rounded	rectangle	of	that	size.	We	are	repeating	the	size;	the	pair
of	numbers	45,20	appears	twice.	That’s	silly.	Let’s	prevent	the	repetition	by	putting	the
size	into	a	variable	at	the	outset:

let	sz	=	CGSizeMake(45,20)

let	image	=	imageOfSize(sz)	{

				let	p	=	UIBezierPath(

								roundedRect:	CGRect(origin:CGPointZero,	size:sz),	cornerRadius:	8)

				p.stroke()

}

The	variable	sz,	declared	outside	our	anonymous	function	at	a	higher	level,	is	visible
inside	it.	Thus	we	can	refer	to	it	inside	the	anonymous	function	—	and	we	do	so.	The
anonymous	function	is	a	function.	Therefore	it	is	a	closure.	Therefore	the	anonymous
function	captures	that	reference,	and	carries	it	on	into	the	call	to	imageOfSize.	When
imageOfSize	calls	whatToDraw	and	whatToDraw	refers	to	a	variable	sz,	there’s	no	problem,
even	though	there	is	no	sz	anywhere	in	the	neighborhood	of	imageOfSize.

Now	let’s	go	further.	So	far,	we’ve	been	hard-coding	the	size	of	the	desired	rounded
rectangle.	Imagine,	though,	that	creating	images	of	rounded	rectangles	of	various	sizes	is
something	we	do	often.	It	would	make	sense	to	package	this	code	up	as	a	function,	where
sz	is	not	a	fixed	value	but	a	parameter;	the	function	will	then	return	the	image:

func	makeRoundedRectangle(sz:CGSize)	->	UIImage	{

				let	image	=	imageOfSize(sz)	{

								let	p	=	UIBezierPath(

												roundedRect:	CGRect(origin:CGPointZero,	size:sz),

												cornerRadius:	8)

								p.stroke()

				}

				return	image

}

Observe	that	our	code	still	works.	Here,	sz	in	the	anonymous	function	refers	to	the	sz
parameter	that	arrives	into	the	surrounding	function	makeRoundedRectangle.	A	parameter
of	the	surrounding	function	is	a	variable	external	to	and	in	scope	within	the	anonymous
function.	The	anonymous	function	is	a	closure,	so	it	captures	the	reference	to	that
parameter	as	it	is	passed	to	imageOfSize.

Our	code	is	becoming	beautifully	compact.	To	call	makeRoundedRectangle,	supply	a	size;
an	image	is	returned.	Thus,	I	can	perform	the	call,	obtain	the	image,	and	put	that	image
into	my	interface,	all	in	one	move,	like	this:

self.myImageView.image	=	makeRoundedRectangle(CGSizeMake(45,20))

Function	Returning	Function
But	now	let’s	go	even	further!	Instead	of	returning	an	image,	our	function	can	return	a
function	that	makes	rounded	rectangles	of	the	specified	size.	If	you’ve	never	seen	a
function	returned	as	a	value	from	a	function,	you	may	now	be	gasping	for	breath.	But	a
function,	after	all,	can	be	used	as	a	value.	We	have	already	passed	a	function	into	a
function	as	an	argument	in	the	function	call;	now	we	are	going	to	receive	a	function	from	a
function	call	as	its	result:

func	makeRoundedRectangleMaker(sz:CGSize)	->	()	->	UIImage	{	

				func	f	()	->	UIImage	{	

								let	im	=	imageOfSize(sz)	{

												let	p	=	UIBezierPath(

																roundedRect:	CGRect(origin:CGPointZero,	size:sz),

																cornerRadius:	8)

												p.stroke()

								}

								return	im

				}

				return	f	

}

Let’s	analyze	that	code	slowly:

The	declaration	is	the	hardest	part.	What	on	earth	is	the	type	(signature)	of	this	function
makeRoundedRectangleMaker?	It	is	(CGSize)	->	()	->	UIImage.	That	expression	has
two	arrow	operators.	To	understand	it,	keep	in	mind	that	everything	after	each	arrow
operator	is	the	type	of	a	returned	value.	So	makeRoundedRectangleMaker	is	a	function
that	takes	a	CGSize	parameter	and	returns	a	()	->	UIImage.	Okay,	and	what’s	a	()	->
UIImage?	We	already	know	that:	it’s	a	function	that	takes	no	parameters	and	returns	a
UIImage.	So	makeRoundedRectangleMaker	is	a	function	that	takes	a	CGSize	parameter
and	returns	a	function	—	a	function	that	itself,	when	called	with	no	parameters,	will
return	a	UIImage.

Now	here	we	are	in	the	body	of	the	function	makeRoundedRectangleMaker,	and	our	first
step	is	to	declare	a	function	(a	function-in-function,	or	local	function)	of	precisely	the
type	we	intend	to	return,	namely,	one	that	takes	no	parameters	and	returns	a	UIImage.
Here,	we’re	naming	this	function	f.	The	way	this	function	works	is	simple	and	familiar:
it	calls	imageOfSize,	passing	it	an	anonymous	function	that	makes	an	image	of	a
rounded	rectangle	(im)	—	and	then	it	returns	the	image.

Finally,	we	return	the	function	we	just	made	(f).	We	have	thus	fulfilled	our	contract:	we
said	we	would	return	a	function	that	takes	no	parameters	and	returns	a	UIImage,	and	we
do	so.

But	perhaps	you	are	still	gazing	open-mouthed	at	makeRoundedRectangleMaker,
wondering	how	you	would	ever	call	it	and	what	you	would	get	if	you	did.	Let’s	try	it:

let	maker	=	makeRoundedRectangleMaker(CGSizeMake(45,20))

What	is	the	variable	maker	after	that	code	runs?	It’s	a	function	—	a	function	that	takes	no
parameters	and	that,	when	called,	produces	the	image	of	a	rounded	rectangle	of	size
45,20.	You	don’t	believe	me?	I’ll	prove	it	—	by	calling	the	function	that	is	now	the	value
of	maker:

let	maker	=	makeRoundedRectangleMaker(CGSizeMake(45,20))

self.myImageView.image	=	maker()

Now	that	you’ve	gotten	over	your	stunned	surprise	at	the	notion	of	a	function	that
produces	a	function	as	its	result,	turn	your	attention	once	again	to	the	implementation	of
makeRoundedRectangleMaker	and	let’s	analyze	it	again,	a	different	way.	Remember,	I
didn’t	write	that	function	to	show	you	that	a	function	can	produce	a	function.	I	wrote	it	to
illustrate	closures!	Let’s	think	about	how	the	environment	gets	captured:

func	makeRoundedRectangleMaker(sz:CGSize)	->	()	->	UIImage	{

				func	f	()	->	UIImage	{

								let	im	=	imageOfSize(sz)	{	//	*

												let	p	=	UIBezierPath(

																roundedRect:	CGRect(origin:CGPointZero,	size:sz),	//	*

																cornerRadius:	8)

												p.stroke()

								}

								return	im

				}

				return	f

}

The	function	f	takes	no	parameters.	Yet,	twice	within	the	function	body	of	f	(I’ve	marked
the	places	with	asterisk	comments),	there	are	references	to	a	size	value	sz.	The	body	of	the
function	f	can	see	sz,	the	incoming	parameter	to	the	surrounding	function
makeRoundedRectangleMaker,	because	it	is	in	a	surrounding	scope.	The	function	f
captures	the	reference	to	sz	at	the	time	makeRoundedRectangleMaker	is	called,	and	keeps
that	reference	when	f	is	returned	and	assigned	to	maker:

let	maker	=	makeRoundedRectangleMaker(CGSizeMake(45,20))

That	is	why	maker	is	now	a	function	that,	when	it	is	called,	creates	and	returns	an	image	of
the	particular	size	45,20	even	though	it	itself	will	be	called	with	no	parameters.	We	have
baked	the	knowledge	of	what	size	of	image	to	produce	into	maker.

Looking	at	it	another	way,	makeRoundedRectangleMaker	is	a	factory	for	creating	a	whole
family	of	functions	similar	to	maker,	each	of	which	produces	an	image	of	one	particular

size.	That’s	a	dramatic	illustration	of	the	power	of	closures.

Before	I	leave	makeRoundedRectangleMaker,	I’d	like	to	rewrite	it	in	a	Swiftier	fashion.
Within	f,	there	is	no	need	to	create	im	and	then	return	it;	we	can	return	the	result	of	calling
imageOfSize	directly:

func	makeRoundedRectangleMaker(sz:CGSize)	->	()	->	UIImage	{

				func	f	()	->	UIImage	{

								return	imageOfSize(sz)	{

												let	p	=	UIBezierPath(

																roundedRect:	CGRect(origin:CGPointZero,	size:sz),

																cornerRadius:	8)

												p.stroke()

								}

				}

				return	f

}

But	there	is	no	need	to	declare	f	and	then	return	it	either;	it	can	be	an	anonymous	function
and	we	can	return	it	directly:

func	makeRoundedRectangleMaker(sz:CGSize)	->	()	->	UIImage	{

				return	{

								return	imageOfSize(sz)	{

												let	p	=	UIBezierPath(

																roundedRect:	CGRect(origin:CGPointZero,	size:sz),

																cornerRadius:	8)

												p.stroke()

								}

				}

}

But	our	anonymous	function	consists	of	just	one	statement,	returning	the	result	of	the	call
to	imageOfSize.	(The	anonymous	function	parameter	to	imageOfSize	is	written	over
multiple	lines,	but	the	imageOfSize	call	itself	is	still	just	one	Swift	statement.)	Thus	there
is	no	need	to	say	return:

func	makeRoundedRectangleMaker(sz:CGSize)	->	()	->	UIImage	{

				return	{

								imageOfSize(sz)	{

												let	p	=	UIBezierPath(

																roundedRect:	CGRect(origin:CGPointZero,	size:sz),

																cornerRadius:	8)

												p.stroke()

								}

				}

}

Closure	Setting	a	Captured	Variable
The	power	that	a	closure	gets	through	its	ability	to	capture	its	environment	is	even	greater
than	I’ve	shown	so	far.	If	a	closure	captures	a	reference	to	a	variable	outside	itself,	and	if
that	variable	is	settable,	the	closure	can	set	the	variable.

For	example,	let’s	say	I’ve	declared	this	simple	function.	All	it	does	is	to	accept	a	function
that	takes	an	Int	parameter,	and	to	call	that	function	with	an	argument	of	100:

func	pass100	(f:(Int)->())	{

				f(100)

}

Now,	look	closely	at	this	code	and	try	to	guess	what	will	happen	when	we	run	it:
var	x	=	0

print(x)

func	setX(newX:Int)	{

				x	=	newX

}

pass100(setX)

print(x)

The	first	print(x)	call	obviously	produces	0.	The	second	print(x)	call	produces	100!
The	pass100	function	has	reached	into	my	code	and	changed	the	value	of	my	variable	x!
That’s	because	the	function	that	I	passed	to	pass100	contains	a	reference	to	x;	not	only
does	it	contain	it,	but	it	captures	it;	not	only	does	it	capture	it,	but	it	sets	its	value.	That	x	is
my	x.	Thus,	pass100	was	able	to	set	my	x	just	as	readily	as	I	would	have	set	it	by	calling
setX	directly.

Closure	Preserving	Its	Captured	Environment
When	a	closure	captures	its	environment,	it	preserves	that	environment	even	if	nothing
else	does.	Here’s	an	example	calculated	to	blow	your	mind	—	a	function	that	modifies	a
function:

func	countAdder(f:()->())	->	()	->	()	{

				var	ct	=	0

				return	{

								ct	=	ct	+	1

								print("count	is	\(ct)")

								f()

				}

}

The	function	countAdder	accepts	a	function	as	its	parameter	and	returns	a	function	as	its
result.	The	function	that	it	returns	calls	the	function	that	it	accepts,	with	a	little	bit	added:
it	increments	a	variable	and	reports	the	result.	So	now	try	to	guess	what	will	happen	when
we	run	this	code:

func	greet	()	{

				print("howdy")

}

let	countedGreet	=	countAdder(greet)

countedGreet()

countedGreet()

countedGreet()

What	we’ve	done	here	is	to	take	a	function	greet,	which	prints	"howdy",	and	pass	it
through	countAdder.	What	comes	out	the	other	side	of	countAdder	is	a	new	function,
which	we’ve	named	countedGreet.	We	then	call	countedGreet	three	times.	Here’s	what
appears	in	the	console:

count	is	1

howdy

count	is	2

howdy

count	is	3

howdy

Clearly,	countAdder	has	added	to	the	functionality	of	the	function	that	was	passed	into	it
the	ability	to	report	how	many	times	it	is	called.	Now	ask	yourself:	Where	on	earth	is	the
variable	that	maintains	this	count?	Inside	countAdder,	it	was	a	local	variable	ct.	But	it
isn’t	declared	inside	the	anonymous	function	that	countAdder	returns.	That’s	deliberate!	If
it	were	declared	inside	the	anonymous	function,	we	would	be	setting	ct	to	0	every	time
countedGreet	is	called	—	we	wouldn’t	be	counting.	Instead,	ct	is	initialized	to	0	once
and	then	captured	by	the	anonymous	function.	Thus,	this	variable	is	preserved	as	part	of
the	environment	of	countedGreet	—	it	is	outside	countedGreet	in	some	mysterious
environment-preserving	world,	so	that	it	can	be	incremented	every	time	countedGreet	is
called.	That’s	the	power	of	closures.

That	example,	with	its	maintenance	of	environmental	state,	can	also	help	us	to
demonstrate	that	functions	are	reference	types.	To	show	what	I	mean,	I’ll	start	with	a
contrasting	situation.	Two	separate	calls	to	a	function	factory	method	produce	two
different	functions,	as	you	would	expect:

let	countedGreet	=	countAdder(greet)

let	countedGreet2	=	countAdder(greet)

countedGreet()	//	count	is	1

countedGreet2()	//	count	is	1

The	two	functions	countedGreet	and	countedGreet2,	in	that	code,	are	maintaining	their
counts	separately.	But	mere	assignment	or	parameter	passing	results	in	a	new	reference	to
the	same	function,	as	I	shall	now	prove:

let	countedGreet	=	countAdder(greet)

let	countedGreet2	=	countedGreet

countedGreet()	//	count	is	1

countedGreet2()	//	count	is	2

Curried	Functions
Return	once	more	to	makeRoundedRectangleMaker:

func	makeRoundedRectangleMaker(sz:CGSize)	->	()	->	UIImage	{

				return	{

								imageOfSize(sz)	{

												let	p	=	UIBezierPath(

																roundedRect:	CGRect(origin:CGPointZero,	size:sz),

																cornerRadius:	8)

												p.stroke()

								}

				}

}

There’s	something	I	don’t	like	about	this	method:	the	size	of	the	rounded	rectangle	that	it
creates	is	a	parameter	(sz),	but	the	cornerRadius	of	the	rounded	rectangle	is	hard-coded
as	8.	I’d	like	the	ability	to	specify	a	value	for	the	corner	radius	as	well.	I	can	think	of	two
ways	to	do	it.	One	is	to	give	makeRoundedRectangleMaker	itself	another	parameter:

func	makeRoundedRectangleMaker(sz:CGSize,	_	r:CGFloat)	->	()	->	UIImage	{

				return	{

								imageOfSize(sz)	{

												let	p	=	UIBezierPath(

																roundedRect:	CGRect(origin:CGPointZero,	size:sz),

																cornerRadius:	r)

												p.stroke()

								}

				}

}

And	we	would	then	call	it	like	this:
let	maker	=	makeRoundedRectangleMaker(CGSizeMake(45,20),	8)

But	there’s	another	way.	The	function	that	we	are	returning	from
makeRoundedRectangleMaker	takes	no	parameters.	Instead,	it	could	take	the	extra
parameter:

func	makeRoundedRectangleMaker(sz:CGSize)	->	(CGFloat)	->	UIImage	{

				return	{

								r	in

								imageOfSize(sz)	{

												let	p	=	UIBezierPath(

																roundedRect:	CGRect(origin:CGPointZero,	size:sz),

																cornerRadius:	r)

												p.stroke()

								}

				}

}

Now	makeRoundedRectangleMaker	returns	a	function	that,	itself,	takes	one	parameter,	so
we	must	remember	to	supply	that	when	we	call	it:

let	maker	=	makeRoundedRectangleMaker(CGSizeMake(45,20))

self.myImageView.image	=	maker(8)

If	we	don’t	need	to	conserve	maker	for	anything,	we	can	of	course	do	all	that	in	one	line
—	a	function	call	that	yields	a	function	which	we	immediately	call	to	obtain	our	image:

self.myImageView.image	=	makeRoundedRectangleMaker(CGSizeMake(45,20))(8)

When	a	function	returns	a	function	that	takes	a	parameter	in	this	way,	it	is	called	a	curried
function	(after	the	computer	scientist	Haskell	Curry).	It	turns	out	that	there’s	a	Swift
shorthand	for	writing	the	declaration	of	a	curried	function.	You	can	omit	the	first	arrow
operator	and	the	top-level	anonymous	function,	like	this:

func	makeRoundedRectangleMaker(sz:CGSize)(_	r:CGFloat)	->	UIImage	{

				return	imageOfSize(sz)	{

								let	p	=	UIBezierPath(

												roundedRect:	CGRect(origin:CGPointZero,	size:sz),

												cornerRadius:	r)

								p.stroke()

				}

}

The	expression	(sz:CGSize)(_	r:CGFloat)	—	two	parameter	lists	in	a	row,	with	no
arrow	operator	between	them	—	means	“Swift,	please	curry	this	function	for	me.”	Swift
here	does	all	the	work	of	dividing	our	function	into	two	functions,	one
(makeRoundedRectangleMaker)	taking	a	CGSize	parameter	and	another	(the	anonymous
result)	taking	a	CGFloat.	Our	code	looks	as	if	makeRoundedRectangleMaker	returns	a
UIImage,	but	it	actually	returns	a	function	that	returns	a	UIImage	just	as	before.	And	we
can	call	it	in	exactly	the	same	two	ways	as	before.

Chapter	3.	Variables	and	Simple	Types
This	chapter	goes	into	detail	about	declaration	and	initialization	of	variables.	It	then
discusses	all	the	primary	built-in	Swift	simple	types.	(I	mean	“simple”	as	opposed	to
collections;	the	primary	built-in	collection	types	are	discussed	at	the	end	of	Chapter	4.)

Variable	Scope	and	Lifetime
Recall,	from	Chapter	1,	that	a	variable	is	a	named	shoebox	of	a	single	well-defined	type.
Every	variable	must	be	explicitly	and	formally	declared.	To	put	an	object	into	the	shoebox,
thus	causing	the	variable	name	to	refer	to	that	object,	you	assign	the	object	to	the	variable.
(As	we	now	know	from	Chapter	2,	a	function,	too,	has	a	type,	and	can	be	assigned	to	a
variable.)

Aside	from	the	convenience	of	giving	a	reference	a	name,	a	variable,	by	virtue	of	the	place
where	it	is	declared,	endows	its	referent	with	a	particular	scope	(visibility)	and	lifetime;
assigning	something	to	a	variable	is	a	way	of	ensuring	that	it	can	be	seen	by	code	that
needs	to	see	it	and	that	it	persists	long	enough	to	serve	its	purpose.

In	the	structure	of	a	Swift	file	(see	Example	1-1),	a	variable	can	be	declared	virtually
anywhere.	It	will	be	useful	to	distinguish	several	levels	of	variable	scope	and	lifetime:

Global	variables

A	global	variable,	or	simply	a	global,	is	a	variable	declared	at	the	top	level	of	a	Swift
file.	(In	Example	1-1,	the	variable	one	is	a	global.)

A	global	variable	lives	as	long	as	the	file	lives.	That	means	it	lives	forever.	Well,	not
strictly	forever,	but	as	long	as	the	program	runs.

A	global	variable	is	visible	everywhere	—	that’s	what	“global”	means.	It	is	visible	to	all
code	within	the	same	file,	because	it	is	at	top	level,	so	any	other	code	in	the	same	file
must	be	at	the	same	level	or	at	a	lower	contained	level	of	scope.	Moreover,	it	is	visible
(by	default)	to	all	code	within	any	other	file	in	the	same	module,	because	Swift	files	in
the	same	module	can	automatically	see	one	another,	and	hence	can	see	one	another’s
top	levels.

Properties

A	property	is	a	variable	declared	at	the	top	level	of	an	object	type	declaration	(an	enum,
struct,	or	class;	in	Example	1-1,	the	three	name	variables	are	properties).	There	are	two
kinds	of	properties:	instance	properties	and	static/class	properties.

Instance	properties

By	default,	a	property	is	an	instance	property.	Its	value	can	differ	for	each	instance	of
this	object	type.	Its	lifetime	is	the	same	as	the	lifetime	of	the	instance.	Recall	from
Chapter	1	that	an	instance	comes	into	existence	when	it	is	created	(by	instantiation);
the	subsequent	lifetime	of	the	instance	depends	on	the	lifetime	of	the	variable	to
which	the	instance	itself	is	assigned.

Static/class	properties

A	property	is	a	static/class	property	if	its	declaration	is	preceded	by	the	keyword
static	or	class.	(I’ll	go	into	detail	about	those	terms	in	Chapter	4.)	Its	lifetime	is	the
same	as	the	lifetime	of	the	object	type.	If	the	object	type	is	declared	at	the	top	level	of
a	file,	or	at	the	top	level	of	another	object	type	that	is	declared	at	top	level,	that	means
it	lives	forever	(as	long	as	the	program	runs).

A	property	is	visible	to	all	code	inside	the	object	declaration.	For	example,	an	object’s
methods	can	see	that	object’s	properties.	Such	code	can	refer	to	the	property	using	dot-
notation	with	self,	and	I	always	do	this	as	a	matter	of	style,	but	self	can	usually	be
omitted	except	for	purposes	of	disambiguation.

An	instance	property	is	also	visible	(by	default)	to	other	code,	provided	the	other	code
has	a	reference	to	this	instance;	in	that	case,	the	property	can	be	referred	to	through	dot-
notation	with	the	instance	reference.	A	static/class	property	is	visible	(by	default)	to
other	code	that	can	see	the	name	of	this	object	type;	in	that	case,	it	can	be	referred	to
through	dot-notation	with	the	object	type.

Local	variables

A	local	variable	is	a	variable	declared	inside	a	function	body.	(In	Example	1-1,	the
variable	two	is	a	local	variable.)	A	local	variable	lives	only	as	long	as	its	surrounding
curly-brace	scope	lives:	it	comes	into	existence	when	the	path	of	execution	passes	into
the	scope	and	reaches	the	variable	declaration,	and	it	goes	out	of	existence	when	the
path	of	execution	exits	the	scope.	Local	variables	are	sometimes	called	automatic,	to
signify	that	they	come	into	and	go	out	of	existence	automatically.

A	local	variable	can	be	seen	only	by	subsequent	code	within	the	same	scope	(including
a	subsequent	deeper	scope	within	the	same	scope).

Variable	Declaration
As	I	explained	in	Chapter	1,	a	variable	is	declared	with	let	or	var:

With	let,	the	variable	becomes	a	constant	—	its	value	can	never	be	changed	after	the
first	assignment	of	a	value	(initialization).
With	var,	the	variable	is	a	true	variable,	and	its	value	can	be	changed	by	subsequent
assignment.

A	variable’s	type,	however,	can	never	be	changed.	A	variable	declared	with	var	can	be
given	a	different	value,	but	that	value	must	conform	to	the	variable’s	type.	Thus,	when	a
variable	is	declared,	it	must	be	given	a	type,	which	it	will	have	forever	after.	You	can	give
a	variable	a	type	explicitly	or	implicitly:

Explicit	variable	type	declaration

After	the	variable’s	name	in	the	declaration,	add	a	colon	and	the	name	of	the	type:
var	x	:	Int

Implicit	variable	type	by	initialization

If	you	initialize	the	variable	as	part	of	the	declaration,	and	if	you	provide	no	explicit
type,	Swift	will	infer	its	type,	based	on	the	value	with	which	it	is	initialized:

var	x	=	1	//	and	now	x	is	an	Int

It	is	perfectly	possible	to	declare	a	variable’s	type	explicitly	and	assign	it	an	initial	value,
all	in	one	move:

var	x	:	Int	=	1

In	that	example,	the	explicit	type	declaration	is	superfluous,	because	the	type	(Int)	would
have	been	inferred	from	the	initial	value.	Sometimes,	however,	providing	an	explicit	type,
even	while	also	assigning	an	initial	value,	is	not	superfluous.	Here	are	the	main	situations
where	that’s	the	case:

Swift’s	inference	would	be	wrong

A	very	common	case	in	my	own	code	is	when	I	want	to	provide	the	initial	value	as	a
numeric	literal.	Swift	will	infer	either	Int	or	Double,	depending	on	whether	the	literal
contains	a	decimal	point.	But	there	are	a	lot	of	other	numeric	types!	When	I	mean	one
of	those,	I	will	provide	the	type	explicitly,	like	this:

let	separator	:	CGFloat	=	2.0

Swift	can’t	infer	the	type

In	this	situation,	the	explicit	variable	type	is	what	allows	Swift	to	infer	the	type	of	the
initial	value.	A	very	common	case	involves	option	sets	(discussed	in	Chapter	4).	This
won’t	compile:

var	opts	=	[.Autoreverse,	.Repeat]	//	compile	error

The	problem	is	that	the	names	.Autoreverse	and	.Repeat	are	shortcuts	for
UIViewAnimationOptions.Autoreverse	and	UIViewAnimationOptions.Repeat,	but
Swift	doesn’t	know	that	unless	we	tell	it:

let	opts	:	UIViewAnimationOptions	=	[.Autoreverse,	.Repeat]

The	programmer	can’t	infer	the	type

I	frequently	include	a	superfluous	explicit	type	declaration	as	a	kind	of	note	to	myself.
Here’s	an	example	from	my	own	code:

let	duration	:	CMTime	=	track.timeRange.duration

In	that	code,	track	is	an	AVAssetTrack.	Swift	knows	perfectly	well	that	the	duration
property	of	an	AVAssetTrack’s	timeRange	property	is	a	CMTime.	But	I	don’t!	In	order
to	remind	myself	of	that	fact,	I’ve	shown	the	type	explicitly.

Because	explicit	variable	typing	is	possible,	a	variable	doesn’t	have	to	be	initialized	when
it	is	declared.	It	is	legal	to	write	this:

let	x	:	Int

Now	x	is	an	empty	shoebox	—	an	Int	variable	without	an	initial	value.	I	strongly	urge	you,
however,	not	to	do	that	with	a	local	variable	if	you	can	possibly	avoid	it.	It	isn’t	a	disaster
—	the	Swift	compiler	will	stop	you	from	trying	to	use	a	variable	that	has	never	been
assigned	a	value	—	but	it’s	not	a	good	habit.

The	exception	that	proves	the	rule	is	what	we	might	call	conditional	initialization.
Sometimes,	we	don’t	know	a	variable’s	initial	value	until	we’ve	performed	some	sort	of
conditional	test.	The	variable	itself,	however,	can	be	declared	only	once;	so	it	must	be
declared	in	advance	and	conditionally	initialized	afterwards.	This	sort	of	thing	is	not
unreasonable	(though	there	are	other,	possibly	better	ways	to	write	it):

let	timed	:	Bool

if	val	==	1	{

				timed	=	true

}	else	{

				timed	=	false

}

When	a	variable’s	address	is	to	be	passed	as	argument	to	a	function,	the	variable	must	be
declared	and	initialized	beforehand,	even	if	the	initial	value	is	fake.	Recall	this	real-life
example	from	Chapter	2:

var	arrow	=	CGRectZero

var	body	=	CGRectZero

CGRectDivide(rect,	&arrow,	&body,	Arrow.ARHEIGHT,	.MinYEdge)

After	that	code	runs,	our	two	CGRectZero	values	will	have	been	replaced;	they	were	just
momentary	placeholders,	to	satisfy	the	compiler.

On	rare	occasions,	you’ll	want	to	call	a	Cocoa	method	that	returns	a	value	immediately
and	later	uses	that	value	in	a	function	passed	to	that	same	method.	For	example,	Cocoa	has
a	UIApplication	instance	method	declared	like	this:

func	beginBackgroundTaskWithExpirationHandler(handler:	(()	->	Void)?)

				->	UIBackgroundTaskIdentifier

That	function	returns	a	number	(a	UIBackgroundTaskIdentifier	is	just	an	Int),	and	will
later	call	the	function	passed	to	it	(handler)	—	a	function	in	which	you	will	want	to	use
the	number	that	was	returned	at	the	outset.	Swift’s	safety	rules	won’t	let	you	declare	the
variable	that	holds	this	number	and	use	it	in	an	anonymous	function	all	in	the	same	line:

let	bti	=	UIApplication.sharedApplication()

				.beginBackgroundTaskWithExpirationHandler({

								UIApplication.sharedApplication().endBackgroundTask(bti)

				})	//	error:	variable	used	within	its	own	initial	value

Therefore,	you	need	to	declare	the	variable	beforehand;	but	then	Swift	has	another
complaint:

var	bti	:	UIBackgroundTaskIdentifier

bti	=	UIApplication.sharedApplication()

				.beginBackgroundTaskWithExpirationHandler({

								UIApplication.sharedApplication().endBackgroundTask(bti)

				})	//	error:	variable	captured	by	a	closure	before	being	initialized

The	solution	is	to	declare	the	variable	beforehand	and	give	it	a	fake	initial	value	as	a
placeholder:

var	bti	:	UIBackgroundTaskIdentifier	=	0

bti	=	UIApplication.sharedApplication()

				.beginBackgroundTaskWithExpirationHandler({

								UIApplication.sharedApplication().endBackgroundTask(bti)

				})

NOTE

Instance	properties	of	an	object	(at	the	top	level	of	an	enum,	struct,	or	class	declaration)	can	be	initialized	in	the
object’s	initializer	function	rather	than	by	assignment	in	their	declaration.	It	is	legal	and	common	for	both	constant
instance	properties	(let)	and	variable	instance	properties	(var)	to	have	an	explicit	type	and	no	directly	assigned	initial
value.	I’ll	have	more	to	say	about	that	in	Chapter	4.

Computed	Initializer
Sometimes,	you’d	like	to	run	several	lines	of	code	in	order	to	compute	a	variable’s	initial
value.	A	simple	and	compact	way	to	express	this	is	with	an	anonymous	function	that	you
call	immediately	(see	Define-and-Call).	I’ll	illustrate	by	rewriting	an	earlier	example:

let	timed	:	Bool	=	{

				if	val	==	1	{

								return	true

				}	else	{

								return	false

				}

}()

You	can	do	the	same	thing	when	you’re	initializing	an	instance	property.	In	this	class,
there’s	an	image	(a	UIImage)	that	I’m	going	to	need	many	times	later	on.	It	makes	sense
to	create	this	image	in	advance	as	a	constant	instance	property	of	the	class.	To	create	it
means	to	draw	it.	That	takes	several	lines	of	code.	So	I	declare	and	initialize	the	property
by	defining	and	calling	an	anonymous	function,	like	this	(for	my	imageOfSize	utility,	see
Chapter	2):

class	RootViewController	:	UITableViewController	{

				let	cellBackgroundImage	:	UIImage	=	{

								return	imageOfSize(CGSizeMake(320,44))	{

												//	...	drawing	goes	here…

								}

				}()

}

Indeed,	a	define-and-call	anonymous	function	is	often	the	only	legal	way	to	compute	an
instance	property’s	initial	value	with	multiple	lines	of	code.	The	reason	is	that,	when
you’re	initializing	an	instance	property,	you	can’t	call	an	instance	method,	because	there	is
no	instance	yet	—	the	instance,	after	all,	is	what	you	are	in	the	process	of	creating.

Computed	Variables
The	variables	I’ve	been	describing	so	far	in	this	chapter	have	all	been	stored	variables.
The	shoebox	analogy	applies.	The	variable	is	a	name,	like	a	shoebox;	a	value	can	be	put
into	the	shoebox,	by	assigning	to	the	variable,	and	it	then	sits	there	and	can	be	retrieved
later,	by	referring	to	the	variable,	for	as	long	the	variable	lives.

Alternatively,	a	variable	can	be	computed.	This	means	that	the	variable,	instead	of	having
a	value,	has	functions.	One	function,	the	setter,	is	called	when	the	variable	is	assigned	to.
The	other	function,	the	getter,	is	called	when	the	variable	is	referred	to.	Here’s	some	code
illustrating	schematically	the	syntax	for	declaring	a	computed	variable:

var	now	:	String	{	

				get	{	

								return	NSDate().description	

				}

				set	{	

								print(newValue)	

				}

}

The	variable	must	be	a	var	(not	a	let).	Its	type	must	be	declared	explicitly.	The	type	is
followed	immediately	by	curly	braces.

The	getter	function	is	called	get.	Note	that	there	is	no	formal	function	declaration;	the
word	get	is	simply	followed	immediately	by	a	function	body	in	curly	braces.

The	getter	function	must	return	a	value	of	the	same	type	as	the	variable.

The	setter	function	is	called	set.	There	is	no	formal	function	declaration;	the	word	set
is	simply	followed	immediately	by	a	function	body	in	curly	braces.

The	setter	behaves	like	a	function	taking	one	parameter.	By	default,	this	parameter
arrives	into	the	setter	function	body	with	the	local	name	newValue.

Here’s	some	code	that	illustrates	the	use	of	our	computed	variable.	You	don’t	treat	it	any
differently	than	any	other	variable!	To	assign	to	the	variable,	assign	to	it;	to	use	the
variable,	use	it.	Behind	the	scenes,	though,	the	setter	and	getter	functions	are	called:

now	=	"Howdy"	//	Howdy	

print(now)	//	2015-06-26	17:03:30	+0000	

Assigning	to	now	calls	its	setter.	The	argument	passed	into	this	call	is	the	assigned	value;
here,	that’s	"Howdy".	That	value	arrives	in	the	set	function	as	newValue.	Our	set
function	prints	newValue	to	the	console.

Fetching	now	calls	its	getter.	Our	get	function	obtains	the	current	date-time	and
translates	it	into	a	string,	and	returns	the	string.	Our	code	then	prints	that	string	to	the
console.

Observe	that	when	we	set	now	to	"Howdy"	in	the	first	line,	the	string	"Howdy"	wasn’t	stored
anywhere.	It	had	no	effect,	for	example,	on	the	value	of	now	in	the	second	line.	A	set
function	can	store	a	value,	but	it	can’t	store	it	in	this	computed	variable;	a	computed
variable	isn’t	storage!	It’s	a	shorthand	for	calling	its	getter	and	setter	functions.

There	are	a	couple	of	variants	on	the	basic	syntax	I’ve	just	illustrated:

The	name	of	the	set	function	parameter	doesn’t	have	to	be	newValue.	To	specify	a
different	name,	put	it	in	parentheses	after	the	word	set,	like	this:

set	(val)	{	//	now	you	can	use	"val"	inside	the	setter	function	body

There	doesn’t	have	to	be	a	setter.	If	the	setter	is	omitted,	this	becomes	a	read-only
variable.	Attempting	to	assign	to	it	is	a	compile	error.	A	computed	variable	with	no
setter	is	the	primary	way	to	create	a	read-only	variable	in	Swift.
There	must	always	be	a	getter!	However,	if	there	is	no	setter,	the	word	get	and	the
curly	braces	that	follow	it	can	be	omitted.	Thus,	this	is	a	legal	declaration	of	a	read-
only	variable:

var	now	:	String	{

				return	NSDate().description

}

A	computed	variable	can	be	useful	in	many	ways.	Here	are	the	ones	that	occur	most
frequently	in	my	real	programming	life:

Read-only	variable

A	computed	variable	is	the	simplest	way	to	make	a	read-only	variable.	Just	omit	the
setter	from	the	declaration.	Typically,	the	variable	will	be	a	global	variable	or	a
property;	there	probably	wouldn’t	be	much	point	in	a	local	read-only	variable.

Façade	for	a	function

When	a	value	can	be	readily	calculated	by	a	function	each	time	it	is	needed,	it	often
makes	for	simpler	syntax	to	express	it	as	a	read-only	calculated	variable.	Here’s	an
example	from	my	own	code:

var	mp	:	MPMusicPlayerController	{

				return	MPMusicPlayerController.systemMusicPlayer()

}

It’s	no	bother	to	call	MPMusicPlayerController.systemMusicPlayer()	every	time	I
want	to	refer	to	this	object,	but	it’s	more	compact	to	refer	to	it	by	a	simple	name,	mp.
And	since	mp	represents	a	thing,	rather	than	the	performance	of	an	action,	it’s	nicer	for
mp	to	appear	as	a	variable,	so	that	to	all	appearances	it	is	the	thing,	rather	than	as	a
function,	which	returns	the	thing.

Façade	for	other	variables

A	computed	variable	can	sit	in	front	of	one	or	more	stored	variables,	acting	as	a
gatekeeper	on	how	those	stored	variables	are	set	and	fetched.	This	is	comparable	to	an
accessor	method	in	Objective-C.	In	the	extreme	case,	a	public	computed	variable	is
backed	by	a	private	stored	variable:

private	var	_p	:	String	=	""

var	p	:	String	{

				get	{

								return	self._p

				}

				set	{

								self._p	=	newValue

				}

}

That’s	a	silly	example,	because	we’re	not	doing	anything	interesting	with	our	accessors:
we	are	just	setting	and	getting	the	private	stored	variable	directly,	so	there’s	no	effective
difference	between	p	and	_p.	But	based	on	that	template,	you	could	now	add
functionality	so	that	something	useful	happens	during	setting	and	getting.

TIP

As	the	preceding	example	demonstrates,	a	computed	instance	property	function	can	refer	to	other	instance	properties;
it	can	also	call	instance	methods.	This	is	important,	because	in	general	the	initializer	for	a	stored	property	can	do
neither	of	those	things.	The	reason	this	is	legal	for	a	computed	property	is	that	its	functions	won’t	be	called	until	the
instance	actually	exists.

Here’s	a	practical	example	of	a	computed	variable	used	as	a	façade	for	storage.	My	class
has	an	instance	property	holding	a	very	large	stored	piece	of	data,	which	can	alternatively
be	nil	(it’s	an	Optional,	as	I’ll	explain	later):

var	myBigDataReal	:	NSData!	=	nil

When	my	app	goes	into	the	background,	I	want	to	reduce	memory	usage	(because	iOS
kills	backgrounded	apps	that	use	too	much	memory).	So	I	plan	to	save	the	data	of
myBigDataReal	as	a	file	to	disk,	and	then	set	the	variable	itself	to	nil,	thus	releasing	its
data	from	memory.	Now	consider	what	should	happen	when	my	app	comes	back	to	the
front	and	my	code	tries	to	fetch	myBigDataReal.	If	it	isn’t	nil,	we	just	fetch	its	value.	But
if	it	is	nil,	this	might	be	because	we	saved	its	value	to	disk.	So	now	I	want	to	restore	its
value	by	reading	it	from	disk,	and	then	fetch	its	value.	This	is	a	perfect	use	of	a	computed
variable	façade:

var	myBigData	:	NSData!	{

				set	(newdata)	{

								self.myBigDataReal	=	newdata

				}

				get	{

								if	myBigDataReal	==	nil	{

												//	...	get	a	reference	to	file	on	disk,	f…

												self.myBigDataReal	=	NSData(contentsOfFile:	f)

												//	...	erase	the	file…

								}

								return	self.myBigDataReal

				}

}

Setter	Observers
Computed	variables	are	not	needed	as	a	stored	variable	façade	as	often	as	you	might
suppose.	That’s	because	Swift	has	another	brilliant	feature,	which	lets	you	inject
functionality	into	the	setter	of	a	stored	variable	—	setter	observers.	These	are	functions
that	are	called	just	before	and	just	after	other	code	sets	a	stored	variable.

The	syntax	for	declaring	a	variable	with	a	setter	observer	is	very	similar	to	the	syntax	for
declaring	a	computed	variable;	you	can	write	a	willSet	function,	a	didSet	function,	or
both:

var	s	=	"whatever"	{	

				willSet	{	

								print(newValue)	

				}

				didSet	{	

								print(oldValue)	

								//	self.s	=	"something	else"

				}

}

The	variable	must	be	a	var	(not	a	let).	It	can	be	assigned	an	initial	value.	It	is	then
followed	immediately	by	curly	braces.

The	willSet	function,	if	there	is	one,	is	the	word	willSet	followed	immediately	by	a
function	body	in	curly	braces.	It	is	called	when	other	code	sets	this	variable,	just	before
the	variable	actually	receives	its	new	value.

By	default,	the	willSet	function	receives	the	incoming	new	value	as	newValue.	You
can	change	this	name	by	writing	a	different	name	in	parentheses	after	the	word
willSet.	The	old	value	is	still	sitting	in	the	stored	variable,	and	the	willSet	function
can	access	it	there.

The	didSet	function,	if	there	is	one,	is	the	word	didSet	followed	immediately	by	a
function	body	in	curly	braces.	It	is	called	when	other	code	sets	this	variable,	just	after
the	variable	actually	receives	its	new	value.

By	default,	the	didSet	function	receives	the	old	value,	which	has	already	been	replaced
as	the	value	of	the	variable,	as	oldValue.	You	can	change	this	name	by	writing	a
different	name	in	parentheses	after	the	word	didSet.	The	new	value	is	already	sitting	in
the	stored	variable,	and	the	didSet	function	can	access	it	there.	Moreover,	it	is	legal	for
the	didSet	function	to	set	the	stored	variable	to	a	different	value.

NOTE

Setter	observer	functions	are	not	called	when	the	stored	variable	is	initialized	or	when	the	didSet	function	changes
the	stored	variable’s	value.	That	would	be	circular!

In	practice,	I	find	myself	using	setter	observers,	rather	than	a	computed	variable,	in	the
vast	majority	of	situations	where	I	would	have	used	a	setter	override	in	Objective-C.

Here’s	an	example	from	Apple’s	own	code	(the	Master–Detail	Application	template)
illustrating	a	typical	use	case	—	changing	the	interface	as	a	consequence	of	a	property
being	set:

var	detailItem:	AnyObject?	{

				didSet	{

								//	Update	the	view.

								self.configureView()

				}

}

This	is	an	instance	property	of	a	view	controller	class.	Every	time	this	property	changes,
we	need	to	change	the	interface,	because	the	job	of	the	interface	is,	in	part,	to	display	the
value	of	this	property.	So	we	simply	call	an	instance	method	every	time	the	property	is	set.
The	instance	method	reads	the	property’s	value	and	sets	the	interface	accordingly.

In	this	example	from	my	own	code,	not	only	do	we	change	the	interface,	but	also	we
“clamp”	the	incoming	value	within	a	fixed	limit:

var	angle	:	CGFloat	=	0	{

				didSet	{

								//	angle	must	not	be	smaller	than	0	or	larger	than	5

								if	self.angle	<	0	{

												self.angle	=	0

								}

								if	self.angle	>	5	{

												self.angle	=	5

								}

								//	modify	interface	to	match

								self.transform	=	CGAffineTransformMakeRotation(self.angle)

				}

}

TIP

A	computed	variable	can’t	have	setter	observers.	But	it	doesn’t	need	them!	There’s	a	setter	function,	so	anything
additional	that	needs	to	happen	during	setting	can	be	programmed	directly	into	that	setter	function.

Lazy	Initialization
The	term	lazy	is	not	a	pejorative	ethical	judgment;	it’s	a	formal	description	of	an	important
behavior.	If	a	stored	variable	is	assigned	an	initial	value	as	part	of	its	declaration,	and	if	it
uses	lazy	initialization,	then	the	initial	value	is	not	actually	evaluated	and	assigned	until
running	code	accesses	the	variable’s	value.

There	are	three	types	of	variable	that	can	be	initialized	lazily	in	Swift:

Global	variables

Global	variables	are	automatically	lazy.	This	makes	sense	if	you	ask	yourself	when	they
should	be	initialized.	As	the	app	launches,	files	and	their	top-level	code	are
encountered.	It	would	make	no	sense	to	initialize	globals	now,	because	the	app	isn’t
even	running	yet.	Thus	global	initialization	must	be	postponed	to	some	moment	that
does	make	sense.	Therefore,	a	global	variable’s	initialization	doesn’t	happen	until	other
code	first	refers	to	that	global.	Under	the	hood,	this	behavior	is	protected	with
dispatch_once;	this	makes	initialization	both	singular	(it	can	happen	only	once)	and
thread-safe.

Static	properties

Static	properties	behave	exactly	like	global	variables,	and	for	basically	the	same	reason.
(There	are	no	stored	class	properties	in	Swift,	so	class	properties	can’t	be	initialized	and
thus	can’t	have	lazy	initialization.)

Instance	properties

An	instance	property	is	not	lazy	by	default,	but	it	may	be	made	lazy	by	marking	its
declaration	with	the	keyword	lazy.	This	property	must	be	declared	with	var,	not	let.
The	initializer	for	such	a	property	might	never	be	evaluated,	namely	if	code	assigns	the
property	a	value	before	any	code	fetches	the	property’s	value.

Lazy	initialization	is	often	used	to	implement	singleton.	Singleton	is	a	pattern	where	all
code	is	able	to	get	access	to	a	single	shared	instance	of	a	certain	class:

class	MyClass	{

				static	let	sharedMyClassSingleton	=	MyClass()

}

Now	other	code	can	obtain	a	reference	to	MyClass’s	singleton	by	saying
MyClass.sharedMyClassSingleton.	The	singleton	instance	is	not	created	until	the	first
time	other	code	says	this;	subsequently,	no	matter	how	many	times	other	code	may	say
this,	the	instance	returned	is	always	that	same	instance.	(Observe	that	that	is	not	what
would	happen	if	this	were	a	computed	read-only	property	whose	getter	calls	MyClass()
and	returns	that	instance;	do	you	see	why?)

Now	let’s	talk	about	lazy	initialization	of	instance	properties.	Why	might	you	want	this?
One	reason	is	obvious:	the	initial	value	might	be	expensive	to	generate,	so	you’d	like	to
avoid	generating	it	until	and	unless	it	is	actually	needed.	But	there’s	another	reason	that
might	not	occur	to	you	at	first,	but	that	turns	out	to	be	even	more	important:	a	lazy
initializer	can	do	things	that	a	normal	initializer	can’t.	In	particular,	it	can	refer	to	the
instance.	A	normal	initializer	can’t	do	that,	because	the	instance	doesn’t	yet	exist	at	the
time	that	a	normal	initializer	would	need	to	run	(ex	hypothesi,	we’re	in	the	middle	of

creating	the	instance,	so	it	isn’t	ready	yet).	A	lazy	initializer,	by	contrast,	won’t	run	until
some	time	after	the	instance	has	fully	come	into	existence,	so	referring	to	the	instance	is
fine.	For	example,	this	code	would	be	illegal	if	the	arrow	property	weren’t	declared	lazy:

class	MyView	:	UIView	{

				lazy	var	arrow	:	UIImage	=	self.arrowImage()

				func	arrowImage	()	->	UIImage	{

								//	...	big	image-generating	code	goes	here…

				}

}

A	very	common	idiom	is	to	initialize	a	lazy	instance	property	with	a	define-and-call
anonymous	function:

lazy	var	prog	:	UIProgressView	=	{

				let	p	=	UIProgressView(progressViewStyle:	.Default)

				p.alpha	=	0.7

				p.trackTintColor	=	UIColor.clearColor()

				p.progressTintColor	=	UIColor.blackColor()

				p.frame	=	CGRectMake(0,	0,	self.view.bounds.size.width,	20)

				p.progress	=	1.0

				return	p

}()

There	are	some	minor	holes	in	the	language:	lazy	instance	properties	can’t	have	setter
observers,	and	there’s	no	lazy	let	(so	you	can’t	readily	make	a	lazy	instance	property
read-only).	But	these	restrictions	are	not	terribly	serious,	because	lazy	arguably	isn’t
doing	very	much	that	you	couldn’t	do	with	a	calculated	property	backed	by	a	stored
property,	as	Example	3-1	shows.

Example	3-1.	Implementing	a	lazy	property	by	hand
private	var	lazyOncer	:	dispatch_once_t	=	0

private	var	lazyBacker	:	Int	=	0

var	lazyFront	:	Int	{

				get	{

								dispatch_once(&self.lazyOncer)	{

												self.lazyBacker	=	42	//	expensive	initial	value

								}

								return	self.lazyBacker

				}

				set	{

								dispatch_once(&self.lazyOncer)	{}

								//	will	set

								self.lazyBacker	=	newValue

								//	did	set

				}

}

In	Example	3-1,	the	idea	is	that	only	lazyFront	is	accessed	publicly;	lazyBacker	is	its
underlying	storage,	and	lazyOncer	makes	everything	happen	the	right	number	of	times.
Since	lazyFront	is	now	an	ordinary	computed	property,	we	can	observe	it	during	setting
(put	additional	code	into	its	setter	function,	at	the	points	I’ve	marked	by	“will	set”	and
“did	set”),	or	we	can	make	it	read-only	(delete	the	setter	entirely).

Built-In	Simple	Types
Every	variable,	and	every	value,	must	have	a	type.	But	what	types	are	there?	Up	to	this
point,	I’ve	assumed	the	existence	of	some	types,	such	as	Int	and	String,	without	formally
telling	you	about	them.	Here’s	a	survey	of	the	primary	simple	types	provided	by	Swift,
along	with	some	instance	methods,	global	functions,	and	operators	that	apply	to	them.
(Collection	types	will	be	discussed	at	the	end	of	Chapter	4.)

Bool
The	Bool	object	type	(a	struct)	has	only	two	values,	commonly	regarded	as	true	and	false
(or	yes	and	no).	You	can	represent	these	values	using	the	literal	keywords	true	and	false,
and	it	is	natural	to	think	of	a	Bool	value	as	being	either	true	or	false:

var	selected	:	Bool	=	false

In	that	code,	selected	is	a	Bool	variable	initialized	to	false;	it	can	subsequently	be	set	to
false	or	true,	and	to	no	other	values.	Because	of	its	simple	yes-or-no	state,	a	Bool
variable	of	this	kind	is	often	referred	to	as	a	flag.

Cocoa	methods	very	often	expect	a	Bool	parameter	or	return	a	Bool	value.	For	example,
when	your	app	launches,	Cocoa	calls	a	method	in	your	code	declared	like	this:

func	application(application:	UIApplication,

				didFinishLaunchingWithOptions	launchOptions:	[NSObject:	AnyObject]?)

				->	Bool

You	can	do	anything	you	like	in	that	method;	often,	you	will	do	nothing.	But	you	must
return	a	Bool!	And	in	real	life,	that	Bool	will	always	be	true.	A	minimal	implementation
thus	looks	like	this:

func	application(application:	UIApplication,

				didFinishLaunchingWithOptions	launchOptions:	[NSObject:	AnyObject]?)

				->	Bool	{

								return	true

}

A	Bool	is	useful	in	conditions;	as	I’ll	explain	in	Chapter	5,	when	you	say	if	something,
the	something	is	the	condition,	and	is	a	Bool	—	or	an	expression	that	evaluates	to	a	Bool.
For	example,	when	you	compare	two	values	with	the	equality	comparison	operator	==,	the
result	is	a	Bool	—	true	if	they	are	equal	to	each	other,	false	if	they	are	not:

if	meaningOfLife	==	42	{	//	...

(I’ll	talk	more	about	equality	comparison	in	a	moment,	when	we	come	to	discuss	types
that	can	be	compared,	such	as	Int	and	String.)

When	preparing	a	condition,	you	will	sometimes	find	that	it	enhances	clarity	to	store	the
Bool	value	in	a	variable	beforehand:

let	comp	=	self.traitCollection.horizontalSizeClass	==	.Compact

if	comp	{	//	...

Observe	that,	when	employing	that	idiom,	we	use	the	Bool	variable	directly	as	the
condition.	It	is	silly	—	and	arguably	wrong	—	to	say	if	comp	==	true,	because	if	comp
already	means	“if	comp	is	true.”	There	is	no	need	to	test	explicitly	whether	a	Bool	equals
true	or	false;	the	conditional	expression	itself	is	already	testing	that.

Since	a	Bool	can	be	used	as	a	condition,	a	call	to	a	function	that	returns	a	Bool	can	be	used

as	a	condition.	Here’s	an	example	from	my	own	code.	I’ve	declared	a	function	that	returns
a	Bool	to	say	whether	the	cards	the	user	has	selected	constitute	a	correct	answer	to	the
puzzle:

func	evaluate(cells:[CardCell])	->	Bool	{	//	...

Thus,	elsewhere	I	can	say	this:
if	self.evaluate(cellsToTest)	{	//	...

Unlike	many	computer	languages,	nothing	else	in	Swift	is	implicitly	coerced	to	or	treated
as	a	Bool.	For	example,	in	C,	a	boolean	is	actually	a	number,	and	0	is	false.	But	in	Swift,
nothing	is	false	but	false,	and	nothing	is	true	but	true.

The	type	name,	Bool,	comes	from	the	English	mathematician	George	Boole;	Boolean
algebra	provides	operations	on	logical	values.	Bool	values	are	subject	to	these	same
operations:
!

Not.	The	!	unary	operator	reverses	the	truth	value	of	the	Bool	to	which	it	is	applied	as	a
prefix.	If	ok	is	true,	!ok	is	false	—	and	vice	versa.

&&

Logical-and.	Returns	true	only	if	both	operands	are	true;	otherwise,	returns	false.	If
the	first	operand	is	false,	the	second	operand	is	not	even	evaluated	(thus	avoiding
possible	side	effects).

||

Logical-or.	Returns	true	if	either	operand	is	true;	otherwise,	returns	false.	If	the	first
operand	is	true,	the	second	operand	is	not	even	evaluated	(thus	avoiding	possible	side
effects).

If	a	logical	operation	is	complicated	or	elaborate,	parentheses	around	subexpressions	can
help	clarify	both	the	logic	and	the	order	of	operations.

Numbers
The	main	numeric	types	are	Int	and	Double,	meaning	that,	left	to	your	own	devices,	these
are	the	types	you’ll	use.	Other	numeric	types	exist	mostly	for	compatibility	with	the	C	and
Objective-C	APIs	that	Swift	needs	to	be	able	to	talk	to	when	you’re	programming	iOS.

Int

The	Int	object	type	(a	struct)	represents	an	integer	between	Int.max	and	Int.min
inclusive.	The	actual	values	of	those	limits	might	depend	on	the	platform	and	architecture
under	which	the	app	runs,	so	don’t	count	on	them	to	be	absolute;	in	my	testing	at	this
moment,	they	are	263-1	and	-263	respectively	(64-bit	words).

The	easiest	way	to	represent	an	Int	value	is	as	a	numeric	literal.	A	simple	numeric	literal
without	a	decimal	point	is	taken	as	an	Int	by	default.	Internal	underscores	are	legal;	this	is
useful	for	making	long	numbers	readable.	Leading	zeroes	are	legal;	this	is	useful	for
padding	and	aligning	values	in	your	code.

You	can	write	an	Int	literal	using	binary,	octal,	or	hexadecimal	digits.	To	do	so,	start	the

literal	with	0b,	0o,	or	0x	respectively.	Thus,	for	example,	0x10	is	decimal	16.

Double

The	Double	object	type	(a	struct)	represents	a	floating-point	number	to	a	precision	of
about	15	decimal	places	(64-bit	storage).

The	easiest	way	to	represent	a	Double	value	is	as	a	numeric	literal.	Any	numeric	literal
containing	a	decimal	point	is	taken	as	a	Double	by	default.	Internal	underscores	and
leading	zeroes	are	legal.

A	Double	literal	may	not	begin	with	a	decimal	point!	If	the	value	to	be	represented	is
between	0	and	1,	start	the	literal	with	a	leading	0.	(I	stress	this	because	it	is	significantly
different	from	C	and	Objective-C.)

You	can	write	a	Double	literal	using	scientific	notation.	Everything	after	the	letter	e	is	the
exponent	of	10.	You	can	omit	the	decimal	point	if	the	fractional	digits	would	be	zero.	For
example,	3e2	is	3	times	102	(300).

You	can	write	a	Double	literal	using	hexadecimal	digits.	To	do	so,	start	the	literal	with	0x.
You	can	use	exponentiation	here	too	(and	again,	you	can	omit	the	decimal	point);
everything	after	the	letter	p	is	the	exponent	of	2.	For	example,	0x10p2	is	decimal	64,
because	you	are	multiplying	16	by	22.

There’s	a	static	property	Double.infinity	and	an	instance	property	isZero,	among
others.

Coercion

Coercion	is	the	conversion	of	a	value	from	one	numeric	type	to	another.	Swift	doesn’t
really	have	explicit	coercion,	but	it	has	something	that	serves	the	same	purpose	—
instantiation.	To	convert	an	Int	explicitly	into	a	Double,	instantiate	Double	with	an	Int	in
the	parentheses.	To	convert	a	Double	explicitly	into	an	Int,	instantiate	Int	with	a	Double	in
the	parentheses;	this	will	truncate	the	original	value	(everything	after	the	decimal	point
will	be	thrown	away):

let	i	=	10

let	x	=	Double(i)

print(x)	//	10.0,	a	Double

let	y	=	3.8

let	j	=	Int(y)

print(j)	//	3,	an	Int

When	numeric	values	are	assigned	to	variables	or	passed	as	arguments	to	a	function,	Swift
will	perform	implicit	coercion	of	literals	only.	This	code	is	legal:

let	d	:	Double	=	10

But	this	code	is	not	legal,	because	what	you’re	assigning	is	a	variable	(not	a	literal)	of	a
different	type;	the	compiler	will	stop	you:

let	i	=	10

let	d	:	Double	=	i	//	compile	error

The	solution	is	to	coerce	explicitly	as	you	assign	or	pass	the	variable:
let	i	=	10

let	d	:	Double	=	Double(i)

The	same	rule	holds	when	numeric	values	are	combined	by	an	arithmetic	operation.	Swift

will	perform	implicit	coercion	of	literals	only.	The	usual	situation	is	an	Int	combined	with
a	Double;	the	Int	is	treated	as	a	Double:

let	x	=	10/3.0

print(x)	//	3.33333333333333

But	variables	of	different	numeric	types	must	be	coerced	explicitly	so	that	they	are	the
same	type	if	you	want	to	combine	them	in	an	arithmetic	operation.	Thus,	for	example:

let	i	=	10

let	n	=	3.0

let	x	=	i	/	n	//	compile	error;	you	need	to	say	Double(i)

These	rules	are	evidently	a	consequence	of	Swift’s	strict	typing;	but	(as	far	as	I	am	aware)
they	constitute	very	unusual	treatment	of	numeric	values	for	a	modern	computer	language,
and	will	probably	drive	you	mad	in	short	order.	The	examples	I’ve	given	so	far	were	easily
solved,	but	things	can	become	more	complicated	if	an	arithmetic	expression	is	longer,	and
the	problem	is	compounded	by	the	existence	of	other	numeric	types	that	are	needed	for
compatibility	with	Cocoa,	as	I	shall	now	proceed	to	explain.

Other	numeric	types

If	you	weren’t	programming	iOS	—	if	you	were	using	Swift	in	some	isolated,	abstract
world	—	you	could	probably	do	all	necessary	arithmetic	with	Int	and	Double	alone.
Unfortunately,	to	program	iOS	you	need	Cocoa,	which	is	full	of	other	numeric	types;	and
Swift	has	types	that	match	every	one	of	them.	Thus,	in	addition	to	Int,	there	are	signed
integers	of	various	sizes	—	Int8,	Int16,	Int32,	Int64	—	plus	the	unsigned	integer	UInt
along	with	UInt8,	UInt16,	UInt32,	and	UInt64.	In	addition	to	Double,	there	is	the	lower-
precision	Float	(32-bit	storage,	about	6	or	7	decimal	places	of	precision)	and	the	extended-
precision	Float80;	plus,	in	the	Core	Graphics	framework,	CGFloat	(whose	size	can	be	that
of	Float	or	Double,	depending	on	the	bitness	of	the	architecture).

You	may	also	encounter	a	C	numeric	type	when	trying	to	interface	with	a	C	API.	These
types,	as	far	as	Swift	is	concerned,	are	just	type	aliases,	meaning	that	they	are	alternate
names	for	another	type;	for	example,	a	CDouble	(corresponding	to	C’s	double)	is	just	a
Double	by	another	name,	a	CLong	(C’s	long)	is	an	Int,	and	so	on.	Many	other	numeric
type	aliases	will	arise	in	various	Cocoa	frameworks;	for	example,	an	NSTimeInterval	is
merely	a	type	alias	for	Double.

Here’s	the	problem.	I	have	just	finished	telling	you	that	you	can’t	assign,	pass,	or	combine
values	of	different	numeric	types	using	variables;	you	have	to	coerce	those	values
explicitly	to	the	correct	type.	But	now	it	turns	out	that	you’re	being	flooded	by	Cocoa	with
numeric	values	of	many	types!	Cocoa	will	often	hand	you	a	numeric	value	that	is	neither
an	Int	nor	a	Double	—	and	you	won’t	necessarily	realize	this,	until	the	compiler	stops	you
dead	in	your	tracks	for	some	sort	of	type	mismatch.	You	must	then	figure	out	what	you’ve
done	wrong	and	coerce	everything	to	the	same	type.

Here’s	a	typical	example	from	one	of	my	apps.	We	have	a	UIImage,	we	extract	its
CGImage,	and	now	we	want	to	express	the	size	of	that	CGImage	as	a	CGSize:

let	mars	=	UIImage(named:"Mars")!

let	marsCG	=	mars.CGImage

let	szCG	=	CGSizeMake(//	compile	error

				CGImageGetWidth(marsCG),

				CGImageGetHeight(marsCG)

)

The	trouble	is	that	CGImageGetWidth	and	CGImageGetHeight	return	Ints,	but	CGSizeMake
expects	CGFloats.	This	is	not	an	issue	in	C	or	Objective-C,	where	there	is	implicit
coercion	from	the	former	to	the	latter.	But	in	Swift,	you	have	to	coerce	explicitly:

var	szCG	=	CGSizeMake(

				CGFloat(CGImageGetWidth(marsCG)),

				CGFloat(CGImageGetHeight(marsCG))

)

Here’s	another	real-life	example.	A	slider,	in	the	interface,	is	a	UISlider,	whose
minimumValue	and	maximumValue	are	Floats.	In	this	code,	s	is	a	UISlider,	g	is	a
UIGestureRecognizer,	and	we’re	trying	to	use	the	gesture	recognizer	to	move	the	slider’s
“thumb”	to	wherever	the	user	tapped	within	the	slider:

let	pt	=	g.locationInView(s)

let	percentage	=	pt.x	/	s.bounds.size.width

let	delta	=	percentage	*	(s.maximumValue	-	s.minimumValue)	//	compile	error

That	won’t	compile.	pt	is	a	CGPoint,	and	therefore	pt.x	is	a	CGFloat.	Luckily,
s.bounds.size.width	is	also	a	CGFloat,	so	the	second	line	compiles;	percentage	is	now
inferred	to	be	a	CGFloat.	In	the	third	line,	however,	we	try	to	combine	percentage	with
s.maximumValue	and	s.minimumValue	—	and	they	are	Floats,	not	CGFloats.	We	must
coerce	explicitly:

let	delta	=	Float(percentage)	*	(s.maximumValue	-	s.minimumValue)

The	good	news	here	—	perhaps	the	only	good	news	—	is	that	if	you	can	get	enough	of
your	code	to	compile,	Xcode’s	Quick	Help	feature	will	tell	you	what	type	Swift	has
inferred	for	a	variable	(Figure	3-1).	This	can	assist	you	in	tracking	down	your	issues	with
numeric	types.

Figure	3-1.	Quick	Help	displays	a	variable’s	type

TIP

In	the	rare	circumstance	where	you	need	to	assign	or	pass	an	integer	type	where	another	integer	type	is	expected	and
you	don’t	actually	know	what	that	other	integer	type	is,	you	can	get	Swift	to	coerce	dynamically	by	calling
numericCast.	For	example,	if	i	and	j	are	previously	declared	variables	of	different	integer	types,	i	=
numericCast(j)	coerces	j	to	the	integer	type	of	i.

Arithmetic	operations

Swift’s	arithmetic	operators	are	as	you	would	expect;	they	are	familiar	from	other
computer	languages	as	well	as	from	real	arithmetic:
+

Addition	operator.	Add	the	second	operand	to	the	first	and	return	the	result.
-

Subtraction	operator.	Subtract	the	second	operand	from	the	first	and	return	the	result.	A
different	operator	(unary	minus),	used	as	a	prefix,	looks	the	same;	it	returns	the	additive
inverse	of	its	single	operand.	(There	is,	in	fact,	also	a	unary	plus	operator,	which	returns
its	operand	unchanged.)

*

Multiplication	operator.	Multiply	the	first	operand	by	the	second	and	return	the	result.
/

Division	operator.	Divide	the	first	operand	by	the	second	and	return	the	result.

WARNING

As	in	C,	division	of	one	Int	by	another	Int	yields	an	Int;	any	remaining	fraction	is	stripped	away.	10/3	is	3,	not	3-and-
one-third.

%

Remainder	operator.	Divide	the	first	operand	by	the	second	and	return	the	remainder.
The	result	can	be	negative,	if	the	first	operand	is	negative;	if	the	second	operand	is
negative,	it	is	treated	as	positive.	Floating-point	operands	are	legal.

Integer	types	can	be	treated	as	binary	bitfields	and	subjected	to	binary	bitwise	operations:
&

Bitwise-and.	A	bit	in	the	result	is	1	if	and	only	if	that	bit	is	1	in	both	operands.
|

Bitwise-or.	A	bit	in	the	result	is	0	if	and	only	if	that	bit	is	0	in	both	operands.
^

Bitwise-or,	exclusive.	A	bit	in	the	result	is	1	if	and	only	if	that	bit	is	not	identical	in	both
operands.

~

Bitwise-not.	Precedes	its	single	operand;	inverts	the	value	of	each	bit	and	returns	the
result.

<<

Shift	left.	Shift	the	bits	of	the	first	operand	leftward	the	number	of	times	indicated	by
the	second	operand.

>>

Shift	right.	Shift	the	bits	of	the	first	operand	rightward	the	number	of	times	indicated	by
the	second	operand.

NOTE

Technically,	the	shift	operators	perform	a	logical	shift	if	the	integer	is	unsigned,	and	an	arithmetic	shift	if	the	integer
is	signed.

Integer	overflow	or	underflow	—	for	example,	adding	two	Int	values	so	as	to	exceed
Int.max	—	is	a	runtime	error	(your	app	will	crash).	In	simple	cases	the	compiler	will	stop
you,	but	you	can	get	away	with	it	easily	enough:

let	i	=	Int.max	-	2

let	j	=	i	+	12/2	//	crash

Under	certain	circumstances	you	might	want	to	force	such	an	operation	to	succeed,	so
special	overflow/underflow	methods	are	supplied.	These	methods	return	a	tuple;	I’ll	show

you	an	example	even	though	I	haven’t	discussed	tuples	yet:
let	i	=	Int.max	-	2

let	(j,	over)	=	Int.addWithOverflow(i,12/2)

Now	j	is	Int.min	+	3	(because	the	value	has	wrapped	around	from	Int.max	to	Int.min)
and	over	is	true	(to	report	the	overflow).

If	you	don’t	care	to	hear	about	whether	or	not	there	was	an	overflow/underflow,	special
arithmetic	operators	let	you	suppress	the	error:	&+,	&-,	&*.

You	will	frequently	want	to	combine	the	value	of	an	existing	variable	arithmetically	with
another	value	and	store	the	result	in	the	same	variable.	Remember	that	to	do	so,	you	will
need	to	have	declared	the	variable	as	a	var:

var	i	=	1

i	=	i	+	7

As	a	shorthand,	operators	are	provided	that	perform	the	arithmetic	operation	and	the
assignment	all	in	one	move:

var	i	=	1

i	+=	7

The	shorthand	(compound)	assignment	arithmetic	operators	are	+=,	-=,	*=,	/=,	%=,	&=,	|=,
^=,	~=,	<<=,	>>=.

It	is	often	desirable	to	increase	or	decrease	a	numeric	value	by	1,	so	there	are	unary
increment	and	decrement	operators	++	and	--.	These	differ	depending	on	whether	they	are
prefixed	or	postfixed.	If	prefixed	(++i,	--i)	the	value	is	incremented	(or	decremented),
stored	back	in	the	same	variable,	and	then	used	within	the	surrounding	expression;	if
postfixed	(i++,	i--),	the	current	value	of	the	variable	is	used	within	the	surrounding
expression,	and	then	the	value	is	incremented	(or	decremented)	and	stored	back	in	the
same	variable.	Obviously,	the	variable	must	be	declared	with	var.

Operation	precedence	is	largely	intuitive:	for	example,	*	has	a	higher	precedence	than	+,
so	x+y*z	multiplies	y	by	z	first,	and	then	adds	the	result	to	x.	Use	parentheses	to
disambiguate	when	in	doubt;	for	example,	(x+y)*z	performs	the	addition	first.

Global	functions	include	abs	(absolute	value),	max,	and	min:
let	i	=	-7

let	j	=	6

print(abs(i))	//	7

print(max(i,j))	//	6

Other	mathematical	functions,	such	as	square	roots,	rounding,	pseudorandom	numbers,
trigonometry,	and	so	forth,	come	from	the	C	standard	libraries	that	are	visible	because
you’ve	imported	UIKit.	You	still	have	to	be	careful	about	numeric	types,	and	there	is	no
implicit	coercion,	even	for	literals.

For	example,	sqrt	expects	a	C	double,	which	is	a	CDouble,	which	is	a	Double.	So	you
can’t	say	sqrt(2);	you	have	to	say	sqrt(2.0).	Similarly,	arc4random	returns	a	UInt32.	So
if	n	is	an	Int	and	you	want	to	get	a	random	number	between	between	0	and	n-1,	you	can’t
say	arc4random()%n;	you	have	to	coerce	the	result	of	calling	arc4random	to	an	Int.

Comparison

Numbers	are	compared	using	the	comparison	operators,	which	return	a	Bool.	For	example,

the	expression	i==j	tests	whether	i	and	j	are	equal;	when	i	and	j	are	numbers,	“equal”
means	numerically	equal.	So	i==j	is	true	only	if	i	and	j	are	“the	same	number,”	in
exactly	the	sense	you	would	expect.

The	comparison	operators	are:
==

Equality	operator.	Returns	true	if	its	operands	are	equal.
!=

Inequality	operator.	Returns	false	if	its	operands	are	equal.
<

Less-than	operator.	Returns	true	if	the	first	operand	is	less	than	the	second	operand.
<=

Less-than-or-equal	operator.	Returns	true	if	the	first	operand	is	less	than	or	equal	to	the
second	operand.

>

Greater-than	operator.	Returns	true	if	the	first	operand	is	greater	than	the	second
operand.

>=

Greater-than-or-equal	operator.	Returns	true	if	the	first	operand	is	greater	than	or	equal
to	the	second	operand.

Keep	in	mind	that,	because	of	the	way	computers	store	numbers,	equality	comparison	of
Double	values	may	not	succeed	where	you	would	expect.	To	test	whether	two	Doubles	are
effectively	equal,	it	can	be	more	reliable	to	compare	the	difference	between	them	to	a	very
small	value	(usually	called	an	epsilon):

let	isEqual	=	abs(x	-	y)	<	0.000001

String
The	String	object	type	(a	struct)	represents	text.	The	easiest	way	to	represent	a	String
value	is	with	a	literal,	which	is	delimited	by	double	quotes:

let	greeting	=	"hello"

A	Swift	string	is	thoroughly	modern;	under	the	hood,	it’s	Unicode,	and	you	can	include
any	character	directly	in	a	string	literal.	If	you	don’t	want	to	bother	typing	a	Unicode
character	whose	codepoint	you	know,	use	the	notation	\u{...},	where	what’s	between	the
curly	braces	is	up	to	eight	hex	digits:

let	leftTripleArrow	=	"\u{21DA}"

The	backslash	in	that	string	representation	is	the	escape	character;	it	means,	“I’m	not
really	a	backslash;	I	indicate	that	the	next	character	gets	special	treatment.”	Various
nonprintable	and	ambiguous	characters	are	entered	as	escaped	characters;	the	most
important	are:
\n

A	Unix	newline	character
\t

A	tab	character
\"

A	quotation	mark	(escaped	to	show	that	this	is	not	the	end	of	the	string	literal)
\\

A	backslash	(escaped	because	a	lone	backslash	is	the	escape	character)

One	of	Swift’s	coolest	features	is	string	interpolation.	This	permits	you	to	embed	any
value	that	can	be	output	with	print	inside	a	literal	string	as	a	string,	even	if	it	is	not	itself
a	string.	The	notation	is	escaped	parentheses:	\(...).	For	example:

let	n	=	5

let	s	=	"You	have	\(n)	widgets."

Now	s	is	the	string	"You	have	5	widgets."	The	example	is	not	very	compelling,	because
we	know	what	n	is	and	could	have	typed	5	directly	into	our	string;	but	imagine	that	we
don’t	know	what	n	is!	Moreover,	the	stuff	in	escaped	parentheses	doesn’t	have	to	be	the
name	of	a	variable;	it	can	be	almost	any	expression	that	evaluates	as	legal	Swift.	If	you
don’t	know	how	to	add,	this	example	is	more	compelling:

let	m	=	4

let	n	=	5

let	s	=	"You	have	\(m	+	n)	widgets."

One	thing	that	can’t	go	inside	escaped	parentheses	is	double	quotes.	This	is	disappointing,
but	it’s	not	much	of	a	hurdle;	just	assign	to	a	variable	and	use	the	variable	instead.	For
example,	you	can’t	say	this:

let	ud	=	NSUserDefaults.standardUserDefaults()

let	s	=	"You	have	\(ud.integerForKey("widgets"))	widgets."	//	compile	error

Escaping	the	double	quotes	doesn’t	help.	You	have	to	write	it	as	multiple	lines,	like	this:
let	ud	=	NSUserDefaults.standardUserDefaults()

let	n	=	ud.integerForKey("widgets")

let	s	=	"You	have	\(n)	widgets."

To	combine	(concatenate)	two	strings,	the	simplest	approach	is	to	use	the	+	operator	(and
its	+=	assignment	shortcut):

let	s	=	"hello"

let	s2	=	"	world"

let	greeting	=	s	+	s2

This	convenient	notation	is	possible	because	the	+	operator	is	overloaded:	it	does	one
thing	when	the	operands	are	numbers	(numeric	addition)	and	another	when	the	operands
are	strings	(concatenation).	As	I’ll	explain	in	Chapter	5,	all	operators	can	be	overloaded,
and	you	can	overload	them	to	operate	in	some	appropriate	way	on	your	own	types.

As	an	alternative	to	+=,	you	can	call	the	appendContentsOf	instance	method:
var	s	=	"hello"

let	s2	=	"	world"

s.appendContentsOf(s2)	//	or:	s	+=	s2

Another	way	of	concatenating	strings	is	with	the	joinWithSeparator	method.	You	start
with	an	array	(yes,	I	know	we	haven’t	gotten	to	arrays	yet)	of	strings	to	be	concatenated,

and	hand	it	the	string	that	is	to	be	inserted	between	all	of	them:
let	s	=	"hello"

let	s2	=	"world"

let	space	=	"	"

let	greeting	=	[s,s2].joinWithSeparator(space)

The	comparison	operators	are	also	overloaded	so	that	they	all	work	with	String	operands.
Two	String	values	are	equal	(==)	if	they	are,	in	the	natural	sense	of	the	words,	“the	same
text.”	A	String	is	less	than	another	if	it	is	alphabetically	prior.

A	few	additional	convenient	instance	methods	and	properties	are	provided.	isEmpty
returns	a	Bool	reporting	whether	this	string	is	the	empty	string	("").	hasPrefix	and
hasSuffix	report	whether	this	string	starts	or	ends	with	another	string;	for	example,
"hello".hasPrefix("he")	is	true.	The	uppercaseString	and	lowercaseString
properties	provide	uppercase	and	lowercase	versions	of	the	original	string.

Coercion	between	a	String	and	an	Int	is	possible.	To	make	a	string	that	represents	an	Int,	it
is	sufficient	to	use	string	interpolation;	alternatively,	use	the	Int	as	a	String	initializer,	just
as	if	you	were	coercing	between	numeric	types:

let	i	=	7

let	s	=	String(i)	//	"7"

Your	string	can	also	represent	an	Int	in	some	other	base;	supply	a	radix:	argument
expressing	the	base:

let	i	=	31

let	s	=	String(i,	radix:16)	//	"1f"

A	String	that	might	represent	a	number	can	be	coerced	to	a	numeric	type;	an	integer	type
will	accept	a	radix:	argument	expressing	the	base.	The	coercion	might	fail,	though,
because	the	String	might	not	represent	a	number	of	the	specified	type;	so	the	result	is	not	a
number	but	an	Optional	wrapping	a	number	(I	haven’t	talked	about	Optionals	yet,	so
you’ll	have	to	trust	me	for	now;	failable	initializers	are	discussed	in	Chapter	4):

let	s	=	"31"

let	i	=	Int(s)	//	Optional(31)

let	s2	=	"1f"

let	i2	=	Int(s2,	radix:16)	//	Optional(31)

TIP

Coercion	to	String	is	in	fact	the	basis	of	string	interpolation,	and	of	representation	in	the	console	with	print.	You	can
make	any	object	coercible	to	String,	by	making	it	conform	to	any	of	three	protocols:	Streamable,
CustomStringConvertible,	and	CustomDebugStringConvertible.	I’ll	give	an	example	when	I	explain	what	a	protocol
is,	in	Chapter	4.

The	length	of	a	String,	in	characters,	is	given	by	the	count	method	of	its	characters
property:

let	s	=	"hello"

let	length	=	s.characters.count	//	5

Why	isn’t	there	simply	a	length	property	of	a	String?	It’s	because	a	String	doesn’t	really
have	a	simple	length.	The	String	is	stored	as	a	sequence	of	Unicode	codepoints,	but
multiple	Unicode	codepoints	can	combine	to	form	a	character;	so,	in	order	to	know	how
many	characters	are	represented	by	such	a	sequence,	we	actually	have	to	walk	through	the
sequence	and	resolve	it	into	the	characters	that	it	represents.

You,	too,	can	walk	through	a	String’s	characters.	The	simplest	way	is	with	the	for…in

construct	(see	Chapter	5).	What	you	get	when	you	do	this	are	Character	objects;	I’ll	talk
more	about	Character	objects	later:

let	s	=	"hello"

for	c	in	s.characters	{

				print(c)	//	print	each	Character	on	its	own	line

}

At	an	even	deeper	level,	you	can	decompose	a	String	into	its	UTF-8	codepoints	or	its
UTF-16	codepoints,	using	the	utf8	and	utf16	properties:

let	s	=	"\u{BF}Qui\u{E9}n?"

for	i	in	s.utf8	{

				print(i)	//	194,	191,	81,	117,	105,	195,	169,	110,	63

}

for	i	in	s.utf16	{

				print(i)	//	191,	81,	117,	105,	233,	110,	63

}

There	is	also	a	unicodeScalars	property	representing	a	collection	of	the	String’s	UTF-32
codepoints	expressed	as	UnicodeScalar	structs.	To	compose	a	string	from	numeric
codepoints,	instantiate	a	UnicodeScalar	from	a	number	and	append	it	to	a	String.	To
illustrate,	here’s	a	utility	function	that	turns	a	two-letter	country	abbreviation	into	an	emoji
representation	of	its	flag:

func	flag(country:String)	->	String	{

				let	base	:	UInt32	=	127397

				var	s	=	""

				for	v	in	country.unicodeScalars	{

								s.append(UnicodeScalar(base	+	v.value))

				}

				return	s

}

//	and	here's	how	to	use	it:

let	s	=	flag("DE")

The	curious	thing	is	that	there	aren’t	more	methods	for	standard	string	manipulation.	How,
for	example,	do	you	capitalize	a	string,	or	find	out	whether	a	string	contains	a	given
substring?	Most	modern	programming	languages	have	a	compact,	convenient	way	of
doing	things	like	that;	Swift	doesn’t.	The	reason	appears	to	be	that	missing	features	are
provided	by	the	Foundation	framework,	to	which	you’ll	always	be	linked	in	real	life
(importing	UIKit	imports	Foundation).	A	Swift	String	is	bridged	to	a	Foundation
NSString.	This	means	that,	to	a	large	extent,	Foundation	NSString	methods	magically
spring	to	life	whenever	you	are	using	a	Swift	String.	For	example:

let	s	=	"hello	world"

let	s2	=	s.capitalizedString	//	"Hello	World"

The	capitalizedString	property	comes	from	the	Foundation	framework;	it’s	provided	by
Cocoa,	not	by	Swift.	It’s	an	NSString	property;	it	appears	tacked	on	to	String	“for	free.”
Similarly,	here’s	how	to	locate	a	substring	of	a	string:

let	s	=	"hello"

let	range	=	s.rangeOfString("ell")	//	Optional(Range(1..<4))

I	haven’t	explained	yet	what	an	Optional	is	or	what	a	Range	is	(I’ll	talk	about	them	later	in
this	chapter),	but	that	innocent-looking	code	has	made	a	remarkable	round-trip	from	Swift
to	Cocoa	and	back	again:	the	Swift	String	s	becomes	an	NSString,	the	NSString
rangeOfString	method	is	called,	a	Foundation	NSRange	struct	is	returned,	and	the
NSRange	is	converted	to	a	Swift	Range	and	wrapped	up	in	an	Optional.

It	will	often	happen,	however,	that	you	don’t	want	this	round-trip	conversion.	For	various

reasons,	you	might	want	to	stay	in	the	Foundation	world	and	receive	the	answer	as	a
Foundation	NSRange.	To	accomplish	that,	you	have	to	cast	your	string	explicitly	to	an
NSString,	using	the	as	operator	(I’ll	discuss	casting	formally	in	Chapter	4):

let	s	=	"hello"

let	range	=	(s	as	NSString).rangeOfString("ell")	//	(1,3),	an	NSRange

Here’s	another	example,	also	involving	NSRange.	Suppose	you	want	to	derive	the	string
"ell"	from	"hello"	by	its	range	—	the	second,	third,	and	fourth	characters.	Foundation’s
NSString	method	substringWithRange:	requires	that	you	supply	a	range	—	meaning	an
NSRange.	You	can	readily	form	the	NSRange	directly,	using	a	Foundation	function;	but
when	you	do,	your	code	doesn’t	compile:

let	s	=	"hello"

let	ss	=	s.substringWithRange(NSMakeRange(1,3))	//	compile	error

The	reason	for	the	compile	error	is	that	Swift	has	absorbed	NSString’s
substringWithRange:,	and	expects	you	to	supply	a	Swift	Range	here.	I’ll	explain	in	a
moment	how	to	do	that,	but	you	may	find	it	simpler	to	tell	Swift	to	stay	in	the	Foundation
world,	by	casting:

let	s	=	"hello"

let	ss	=	(s	as	NSString).substringWithRange(NSMakeRange(1,3))	//	"ell"

THE	STRING–NSSTRING	ELEMENT	MISMATCH

Swift	and	Cocoa	have	different	ideas	of	what	the	elements	of	a	string	are.	The	Swift	conception	involves	characters.
The	NSString	conception	involves	UTF-16	codepoints.	Each	approach	has	its	advantages.	The	NSString	way	makes
for	great	speed	and	efficiency	in	comparison	to	Swift,	which	must	walk	the	string	to	investigate	how	the	characters
are	constructed;	but	the	Swift	way	gives	what	you	would	intuitively	think	of	as	the	right	answer.	To	emphasize	this
difference,	a	nonliteral	Swift	string	has	no	length	property;	its	analog	to	an	NSString’s	length	is	the	count	of	its
utf16	property.

Fortunately,	the	element	mismatch	doesn’t	arise	very	often	in	practice;	but	it	can	arise.	Here’s	a	good	test	case:
let	s	=	"Ha\u{030A}kon"

print(s.characters.count)	//	5

let	length	=	(s	as	NSString).length	//	or:	s.utf16.count

print(length)	//	6

We’ve	created	our	string	(the	Norwegian	name	Håkon)	using	a	Unicode	codepoint	that	combines	with	the	previous
codepoint	to	form	a	character	with	a	ring	over	it.	Swift	walks	the	whole	string,	so	it	normalizes	the	combination	and
reports	five	characters.	Cocoa	just	sees	at	a	glance	that	this	string	contains	six	16-bit	codepoints.

Character
The	Character	object	type	(a	struct)	represents	a	single	Unicode	grapheme	cluster	—	what
you	would	naturally	think	of	as	one	character	of	a	string.	A	String	object	can	be
decomposed	into	a	sequence	of	Character	objects	by	taking	its	characters	property.
Formally,	this	is	a	String.CharacterView	struct;	but	I’ll	call	it	simply	a	character
sequence.	As	I	mentioned	earlier,	you	can	walk	through	a	character	sequence	with	for…in
to	obtain	the	String’s	Characters,	one	by	one:

let	s	=	"hello"

for	c	in	s.characters	{

				print(c)	//	print	each	Character	on	its	own	line

}

It	isn’t	common	to	encounter	Character	objects	outside	of	some	character	sequence	of
which	they	are	a	part.	There	isn’t	even	a	way	to	write	a	literal	Character.	To	make	a
Character	from	scratch,	initialize	it	from	a	single-character	String:

let	c	=	Character("h")

By	the	same	token,	you	can	initialize	a	String	from	a	Character:
let	c	=	Character("h")

let	s	=	(String(c)).uppercaseString

Characters	can	be	compared	for	equality;	“less	than”	means	what	you	would	expect	it	to
mean.

A	character	sequence	has	many	properties	and	methods	that	can	come	in	handy.	By	virtue
of	being	a	collection	(a	CollectionType),	it	has	a	first	and	last	property;	these	are
Optionals,	because	the	string	might	be	empty:

let	s	=	"hello"

let	c1	=	s.characters.first	//	Optional("h")

let	c2	=	s.characters.last	//	Optional("o")

The	indexOf	method	locates	the	first	occurrence	of	a	given	character	within	the	sequence
and	returns	its	index.	Again,	this	is	an	Optional,	because	the	character	might	be	absent:

let	s	=	"hello"

let	firstL	=	s.characters.indexOf("l")	//	Optional(2)

All	Swift	indexes	are	numbered	starting	with	0,	so	2	means	the	third	character.	The	index
value	here,	however,	is	not	an	Int;	I’ll	explain	in	a	moment	what	it	is	and	what	it’s	good
for.

By	virtue	of	being	a	sequence	(a	SequenceType),	a	character	sequence	has	a	contains
method	that	returns	a	Bool,	reporting	whether	a	certain	character	is	present:

let	s	=	"hello"

let	ok	=	s.characters.contains("o")	//	true

Alternatively,	contains	can	take	a	function	that	takes	a	Character	and	returns	a	Bool.	(The
indexOf	method	can	do	this	too.)	This	code	reports	whether	the	target	string	contains	a
vowel:

let	s	=	"hello"

let	ok	=	s.characters.contains	{"aeiou".characters.contains($0)}	//	true

The	filter	method	takes	a	function	that	takes	a	Character	and	returns	a	Bool,	effectively
eliminating	those	characters	for	which	false	is	returned.	The	result	is	a	character
sequence,	but	you	can	coerce	that	to	a	String.	Thus,	here’s	how	to	delete	all	consonants
from	a	String:

let	s	=	"hello"

let	s2	=	String(s.characters.filter	{"aeiou".characters.contains($0)})	//	"eo"

The	dropFirst	and	dropLast	methods	return	(in	effect)	a	new	character	sequence	without
the	first	or	last	character,	respectively:

let	s	=	"hello"

let	s2	=	String(s.characters.dropFirst())	//	"ello"

prefix	and	suffix	extract	the	character	sequence	of	a	given	length	from	the	start	or	end
of	the	original	character	sequence:

let	s	=	"hello"

let	s2	=	String(s.characters.prefix(4))	//	"hell"

split	breaks	a	character	sequence	up	into	an	array,	according	to	a	function	that	takes	a
Character	and	returns	a	Bool.	In	this	example,	I	obtain	the	words	of	a	String,	where	a
“word”	is	simplemindedly	defined	as	a	run	of	Characters	other	than	a	space:

let	s	=	"hello	world"

let	arr	=	s.characters.split{$0	==	"	"}

The	result,	however,	is	an	array	of	rather	curious	SubSlice	objects;	to	get	String	objects,
we	need	to	apply	the	map	function	and	coerce	them	all	to	Strings.	I’ll	talk	about	map	in
Chapter	4,	so	you’ll	have	to	trust	me	for	now:

let	s	=	"hello	world"

let	arr	=	split(s.characters){$0	==	"	"}.map{String($0)}	//	["hello",	"world"]

A	String	—	in	reality,	its	underlying	character	sequence	—	can	also	be	manipulated
similarly	to	an	array.	For	example,	you	can	use	subscripting	to	obtain	the	character	at	a
certain	position.	Unfortunately,	this	isn’t	as	easy	as	it	might	be.	For	example,	what’s	the
second	character	of	"hello"?	This	doesn’t	compile:

let	s	=	"hello"

let	c	=	s[1]	//	compile	error

The	reason	is	that	the	indexes	on	a	String	(which	are	actually	indexes	on	its	character
sequence)	are	a	special	nested	type,	a	String.Index	(which	is	actually	a	type	alias	for
String.CharacterView.Index).	To	make	an	object	of	this	type	is	rather	tricky.	Start	with
a	String’s	(or	a	character	sequence’s)	startIndex	or	endIndex,	or	with	the	return	value
from	the	indexOf	method;	you	can	then	call	the	advancedBy	method	to	derive	the	index
you	want:

let	s	=	"hello"

let	ix	=	s.startIndex

let	c	=	s[ix.advancedBy(1)]	//	"e"

The	reason	for	this	clumsy	circumlocution	is	that	Swift	doesn’t	know	where	the	characters
of	a	character	sequence	actually	are	until	it	walks	the	sequence;	calling	advancedBy	is	how
you	make	Swift	do	that.

In	addition	to	the	advancedBy	method,	you	can	increment	or	decrement	an	index	value
with	++	and	--,	and	you	can	obtain	the	next	or	preceding	index	value	with	the	successor
and	predecessor	methods.	Thus,	I	could	have	written	the	preceding	example	like	this:

let	s	=	"hello"

var	ix	=	s.startIndex

let	c	=	s[++ix]	//	"e"

Or	like	this:
let	s	=	"hello"

let	ix	=	s.startIndex

let	c	=	s[ix.successor()]	//	"e"

Once	you’ve	obtained	a	desired	character	index	value,	you	can	use	it	to	modify	the	String.
For	example,	the	insertContentsOf(at:)	method	inserts	a	character	sequence	—	not	a
String!	—	into	a	String:

var	s	=	"hello"

let	ix	=	s.characters.startIndex.advancedBy(1)

s.insertContentsOf("ey,	h".characters,	at:	ix)	//	s	is	now	"hey,	hello"

Similarly,	removeAtIndex	deletes	a	single	character	(and	returns	that	character).

(Manipulations	involving	longer	character	stretches	require	use	of	a	Range,	which	is	the
subject	of	the	next	section.)

Note	that	a	character	sequence	can	be	coerced	directly	to	an	Array	of	Character	objects	—
for	example,	Array("hello".characters).	It	could	be	worth	your	while	to	do	that,

because	array	indexes	are	Ints,	and	are	thus	easy	to	work	with.	Once	you’ve	manipulated
the	array	of	Characters,	you	can	coerce	it	directly	to	a	String.	I’ll	give	an	example	in	the
next	section	(and	I’ll	discuss	arrays,	and	say	more	about	collections	and	sequences,	in
Chapter	4).

Range
The	Range	object	type	(a	struct)	represents	a	pair	of	endpoints.	There	are	two	operators	for
forming	a	Range	literal;	you	supply	a	start	value	and	an	end	value,	with	one	of	the	Range
operators	between	them:
...

Closed	interval	operator.	The	notation	a…b	means	“everything	from	a	up	to	b,	including
b.”

..<

Half-open	interval	operator.	The	notation	a..<b	means	“everything	from	a	up	to	but	not
including	b.”

Spaces	around	a	Range	operator	are	legal.

WARNING

There	are	no	reverse	Ranges:	the	start	value	of	a	Range	can’t	be	greater	than	the	end	value	(the	compiler	won’t	stop
you,	but	you’ll	crash	at	runtime).

The	types	of	a	Range’s	endpoints	will	typically	be	some	kind	of	number	—	most	often,
Ints:

let	r	=	1…3

If	the	end	value	is	a	negative	literal,	it	has	to	be	enclosed	in	parentheses:
let	r	=	-1000…(-1)

A	very	common	use	of	a	Range	is	to	loop	through	numbers	with	for…in:
for	ix	in	1…	3	{

				print(ix)	//	1,	then	2,	then	3

}

You	can	also	use	a	Range’s	contains	instance	method	to	test	whether	a	value	falls	within
given	limits;	a	range	used	in	this	way	is	actually	an	interval	(strictly,	an	IntervalType):

let	ix	=	//	...	an	Int…

if	(1…3).contains(ix)	{	//	...

For	purposes	of	testing	containment,	a	Range’s	endpoints	can	be	Doubles:
let	d	=	//	...	a	Double…

if	(0.1…0.9).contains(d)	{	//	...

Another	common	use	of	a	Range	is	to	index	into	a	sequence.	For	example,	here’s	one	way
to	get	the	second,	third,	and	fourth	characters	of	a	String.	As	I	suggested	at	the	end	of	the
preceding	section,	we	coerce	the	String’s	characters	to	an	Array;	we	can	then	use	an	Int
Range	as	an	index	into	that	array,	and	coerce	back	to	a	String:

let	s	=	"hello"

let	arr	=	Array(s.characters)

let	result	=	arr[1…3]

let	s2	=	String(result)	//	"ell"

Alternatively,	you	can	use	a	Range	to	index	directly	into	a	String	(or	its	underlying
character	sequence),	but	then	it	has	to	be	a	Range	of	String.Index,	which,	as	I’ve	already
pointed	out,	is	rather	clumsy	to	obtain.	One	way	to	get	one	is	to	let	Swift	convert	the
NSRange	that	you	get	back	from	a	Cocoa	method	call	into	a	Swift	Range	for	you:

let	s	=	"hello"

let	r	=	s.rangeOfString("ell")	//	a	Swift	Range	(wrapped	in	an	Optional)

You	can	also	generate	your	Range	endpoints	as	index	values	—	for	example,	by	using
advancedBy	from	the	String’s	startIndex,	as	I	showed	earlier.	Once	you	have	a	Range	of
the	proper	type,	you	can	extract	a	substring	by	subscripting:

let	s	=	"hello"

let	ix1	=	s.startIndex.advancedBy(1)

let	ix2	=	ix1.advancedBy(2)

let	s2	=	s[ix1…ix2]	//	"ell"

An	elegant	shortcut	is	to	start	with	a	sequence’s	indices	property,	which	returns	a	half-
open	Range	between	the	sequence’s	startIndex	and	its	endIndex;	you	can	then	modify
the	Range	and	use	it:

let	s	=	"hello"

var	r	=	s.characters.indices

r.startIndex++

r.endIndex--

let	s2	=	s[r]	//	"ell"

The	replaceRange	method	splices	into	a	range,	thus	modifying	the	string:
var	s	=	"hello"

let	ix	=	s.startIndex

let	r	=	ix.advancedBy(1)...ix.advancedBy(3)

s.replaceRange(r,	with:	"ipp")	//	s	is	now	"hippo"

Similarly,	you	can	delete	a	stretch	of	characters	with	the	removeRange	method:
var	s	=	"hello"

let	ix	=	s.startIndex

let	r	=	ix.advancedBy(1)...ix.advancedBy(3)

s.removeRange(r)	//	s	is	now	"ho"

A	Swift	Range	and	a	Cocoa	NSRange	are	constructed	very	differently	from	one	another.	A
Swift	Range	is	defined	by	two	endpoints.	A	Cocoa	NSRange	is	defined	by	a	starting	point
and	a	length.	But	you	can	coerce	a	Swift	Range	whose	endpoints	are	Ints	to	an	NSRange,
and	you	can	convert	from	an	NSRange	to	a	Swift	Range	with	the	toRange	method	(which
returns	an	Optional	wrapping	a	Range).

Sometimes,	Swift	goes	even	further.	For	example,	when	we	say
"hello".rangeOfString("ell"),	Swift	bridges	between	Range	and	NSRange	for	us,
correctly	taking	account	of	the	fact	that	Swift	and	Cocoa	interpret	characters	and	string
length	differently,	as	well	as	the	fact	that	an	NSRange’s	values	are	Ints,	while	the
endpoints	of	a	Range	describing	a	Swift	substring	are	String.Index.

Tuple
A	tuple	is	a	lightweight	custom	ordered	collection	of	multiple	values.	As	a	type,	it	is
expressed	by	surrounding	the	types	of	the	contained	values	with	parentheses	and
separating	them	by	commas.	For	example,	here’s	a	declaration	for	a	variable	whose	type	is
a	tuple	of	an	Int	and	a	String:

var	pair	:	(Int,	String)

The	literal	value	of	a	tuple	is	expressed	in	the	same	way	—	the	contained	values,
surrounded	with	parentheses	and	separated	by	commas:

var	pair	:	(Int,	String)	=	(1,	"One")

Those	types	can	be	inferred,	so	there’s	no	need	for	the	explicit	type	in	the	declaration:
var	pair	=	(1,	"One")

Tuples	are	a	pure	Swift	language	feature;	they	are	not	compatible	with	Cocoa	and
Objective-C,	so	you’ll	use	them	only	for	values	that	Cocoa	never	sees.	Within	Swift,
however,	they	have	many	uses.	For	example,	a	tuple	is	an	obvious	solution	to	the	problem
that	a	function	can	return	only	one	value;	a	tuple	is	one	value,	but	it	contains	multiple
values,	so	using	a	tuple	as	the	return	type	of	a	function	permits	that	function	to	return
multiple	values.

Tuples	come	with	numerous	linguistic	conveniences.	You	can	assign	to	a	tuple	of	variable
names	as	a	way	of	assigning	to	multiple	variables	simultaneously:

var	ix:	Int

var	s:	String

(ix,	s)	=	(1,	"One")

That’s	such	a	convenient	thing	to	do	that	Swift	lets	you	do	it	in	one	line,	declaring	and
initializing	multiple	variables	simultaneously:

var	(ix,	s)	=	(1,	"One")	//	can	use	let	or	var	here

Assigning	variable	values	to	one	another	through	a	tuple	swaps	them	safely:
var	s1	=	"hello"

var	s2	=	"world"

(s1,	s2)	=	(s2,	s1)	//	now	s1	is	"world"	and	s2	is	"hello"

TIP

There’s	also	a	global	function	swap	that	swaps	values	in	a	more	general	way.

To	ignore	one	of	the	assigned	values,	use	an	underscore	to	represent	it	in	the	receiving
tuple:

let	pair	=	(1,	"One")

let	(_,	s)	=	pair	//	now	s	is	"One"

The	enumerate	method	lets	you	walk	a	sequence	with	for…in	and	receive,	on	each
iteration,	each	successive	element’s	index	number	along	with	the	element	itself;	this
double	result	comes	to	you	as	—	you	guessed	it	—	a	tuple:

let	s	=	"hello"

for	(ix,c)	in	s.characters.enumerate()	{

				print("character	\(ix)	is	\(c)")

}

I	also	pointed	out	earlier	that	numeric	instance	methods	such	as	addWithOverflow	return	a
tuple.

You	can	refer	to	the	individual	elements	of	a	tuple	directly,	in	two	ways.	The	first	way	is
by	index	number,	using	a	literal	number	(not	a	variable	value)	as	the	name	of	a	message
sent	to	the	tuple	with	dot-notation:

let	pair	=	(1,	"One")

let	ix	=	pair.0	//	now	ix	is	1

If	your	reference	to	a	tuple	isn’t	a	constant,	you	can	assign	into	it	by	the	same	means:

var	pair	=	(1,	"One")

pair.0	=	2	//	now	pair	is	(2,	"One")

The	second	way	to	access	tuple	elements	is	to	give	them	names.	The	notation	is	like	that
of	function	parameters,	and	must	appear	as	part	of	the	explicit	or	implicit	type	declaration.
Thus,	here’s	one	way	to	establish	tuple	element	names:

let	pair	:	(first:Int,	second:String)	=	(1,	"One")

And	here’s	another	way:
let	pair	=	(first:1,	second:"One")

The	names	are	now	part	of	the	type	of	this	value,	and	travel	with	it	through	subsequent
assignments.	You	can	then	use	them	as	literal	message	names,	just	like	(and	together	with)
the	numeric	literals:

var	pair	=	(first:1,	second:"One")

let	x	=	pair.first	//	1

pair.first	=	2

let	y	=	pair.0	//	2

You	can	assign	from	a	tuple	without	names	into	a	corresponding	tuple	with	names	(and
vice	versa):

let	pair	=	(1,	"One")

let	pairWithNames	:	(first:Int,	second:String)	=	pair

let	ix	=	pairWithNames.first	//	1

You	can	also	pass,	or	return	from	a	function,	a	tuple	without	names	where	a	corresponding
tuple	with	names	is	expected:

func	tupleMaker()	->	(first:Int,	second:String)	{

				return	(1,	"One")	//	no	names	here

}

let	ix	=	tupleMaker().first	//	1

If	you’re	going	to	be	using	a	certain	type	of	tuple	consistently	throughout	your	program,	it
might	be	useful	to	give	it	a	type	name.	To	do	so,	use	Swift’s	typealias	keyword.	For
example,	in	my	LinkSame	app	I	have	a	Board	class	describing	and	manipulating	the	game
layout.	The	board	is	a	grid	of	Piece	objects.	I	needed	a	way	to	describe	positions	of	the
grid.	That’s	a	pair	of	integers,	so	I	define	my	own	type	as	a	tuple:

class	Board	{

				typealias	Point	=	(Int,Int)

				//	...

}

The	advantage	of	that	notation	is	that	it	now	becomes	easy	to	use	Points	throughout	my
code.	For	example,	given	a	Point,	I	can	fetch	the	corresponding	Piece:

func	pieceAt(p:Point)	->	Piece?	{

				let	(i,j)	=	p

				//	...	error-checking	goes	here…

				return	self.grid[i][j]

}

The	obvious	similarity	between	a	tuple	with	element	names	and	a	function	parameter	list
is	not	a	coincidence.	A	parameter	list	is	a	tuple!	The	truth	is	that	every	function	takes	one
tuple	parameter	and	returns	one	tuple.	Thus,	you	can	pass	a	single	tuple	to	a	function	that
takes	multiple	parameters.	For	example,	suppose	you	have	a	function	like	this:

func	f	(i1:Int,	_	i2:Int)	->	()	{}

The	parameter	list	of	f	is	a	tuple.	Thus,	we	can	call	f	with	a	single	tuple	as	argument:

let	tuple	=	(1,2)

f(tuple)

In	that	example,	f	has	no	external	parameter	names.	If	a	function	does	have	external
parameter	names,	you	can	pass	it	a	tuple	with	named	elements.	Here	is	such	a	function:

func	f2	(i1	i1:Int,	i2:Int)	->	()	{}

You	can	call	it	like	this:
let	tuple	=	(i1:1,	i2:2)

f2(tuple)

However,	for	reasons	that	are	not	entirely	clear	to	me,	tuples	passed	as	function
parameters	in	this	way	must	be	constants.	This	code	won’t	compile:

var	tuple	=	(i1:1,	i2:2)

f2(tuple)	//	compile	error

Similarly,	Void,	the	type	of	value	returned	by	a	function	that	doesn’t	return	a	value,	is
actually	a	type	alias	for	an	empty	tuple.	That’s	why	it	is	also	notated	as	().

Optional
The	Optional	object	type	(an	enum)	wraps	another	object	of	any	type.	A	single	Optional
object	can	wrap	only	one	object.	Alternatively,	an	Optional	object	might	wrap	no	other
object.	This	is	what	makes	an	Optional	optional:	it	might	wrap	another	object,	but	then
again	it	might	not.	Think	of	an	Optional	as	being	itself	a	kind	of	shoebox	—	a	shoebox
which	can	quite	legally	be	empty.

Let’s	start	by	creating	an	Optional	that	does	wrap	an	object.	Suppose	we	want	an	Optional
wrapping	the	String	"howdy".	One	way	to	create	it	is	with	the	Optional	initializer:

var	stringMaybe	=	Optional("howdy")

If	we	log	stringMaybe	to	the	console	with	print,	we’ll	see	an	expression	identical	to	the
corresponding	initializer:	Optional("howdy").

After	that	declaration	and	initialization,	stringMaybe	is	typed,	not	as	a	String,	nor	as	an
Optional	plain	and	simple,	but	as	an	Optional	wrapping	a	String.	This	means	that	any
other	Optional	wrapping	a	String	can	be	assigned	to	it	—	but	not	an	Optional	wrapping
some	other	type.	This	code	is	legal:

var	stringMaybe	=	Optional("howdy")

stringMaybe	=	Optional("farewell")

This	code,	however,	is	not	legal:
var	stringMaybe	=	Optional("howdy")

stringMaybe	=	Optional(123)	//	compile	error

Optional(123)	is	an	Optional	wrapping	an	Int,	and	you	can’t	assign	an	Optional	wrapping
an	Int	where	an	Optional	wrapping	a	String	is	expected.

Optionals	are	so	important	to	Swift	that	special	syntax	for	working	with	them	is	baked	into
the	language.	The	usual	way	to	make	an	Optional	is	not	to	use	the	Optional	initializer
(though	you	can	certainly	do	that),	but	to	assign	or	pass	a	value	of	some	type	to	a
reference	that	is	already	typed	as	an	Optional	wrapping	that	type.	For	example,	once
stringMaybe	is	typed	as	an	Optional	wrapping	a	String,	it	is	legal	to	assign	a	String
directly	to	it.	This	seems	as	if	it	should	not	be	legal	—	but	it	is.	The	outcome	is	that	the
assigned	String	is	wrapped	in	an	Optional	for	us,	automatically:

var	stringMaybe	=	Optional("howdy")

stringMaybe	=	"farewell"	//	now	stringMaybe	is	Optional("farewell")

We	also	need	a	way	of	typing	something	explicitly	as	an	Optional	wrapping	a	String.
Otherwise,	we	cannot	declare	a	variable	with	an	Optional	type,	and	we	cannot	declare	a
parameter	with	an	Optional	type.	Formally,	an	Optional	is	a	generic,	so	an	Optional
wrapping	a	String	is	an	Optional<String>	(I’ll	explain	that	syntax	in	Chapter	4).
However,	you	don’t	have	to	write	that.	The	Swift	language	supports	syntactic	sugar	for
expressing	an	Optional	type:	use	the	name	of	the	wrapped	type	followed	by	a	question
mark.	For	example:

var	stringMaybe	:	String?

Thus	I	don’t	need	to	use	the	Optional	initializer	at	all.	I	can	type	the	variable	as	an
Optional	wrapping	a	String	and	assign	a	String	into	it	for	wrapping,	all	in	one	move:

var	stringMaybe	:	String?	=	"howdy"

That,	in	fact,	is	the	normal	way	to	make	an	Optional	in	Swift.

Once	you’ve	got	an	Optional	wrapping	a	particular	type,	you	can	use	it	wherever	an
Optional	wrapping	that	type	is	expected	—	just	like	any	other	value.	If	a	function	expects
an	Optional	wrapping	a	String	as	its	parameter,	you	can	pass	stringMaybe	as	argument	to
that	parameter:

func	optionalExpecter(s:String?)	{}

let	stringMaybe	:	String?	=	"howdy"

optionalExpecter(stringMaybe)

Moreover,	where	an	Optional	wrapping	a	certain	type	of	value	is	expected,	you	can	pass	a
value	of	that	wrapped	type	instead.	That’s	because	parameter	passing	is	just	like
assignment:	an	unwrapped	value	will	be	wrapped	implicitly	for	you.	For	example,	if	a
function	expects	an	Optional	wrapping	a	String,	you	can	pass	a	String	argument,	which
will	be	wrapped	into	an	Optional	in	the	received	parameter:

func	optionalExpecter(s:String?)	{

				//	...	here,	s	will	be	an	Optional	wrapping	a	String…

				print(s)

}

optionalExpecter("howdy")	//	console	prints:	Optional("howdy")

But	you	cannot	do	the	opposite	—	you	cannot	use	an	Optional	wrapping	a	type	where	the
wrapped	type	is	expected.	This	won’t	compile:

func	realStringExpecter(s:String)	{}

let	stringMaybe	:	String?	=	"howdy"

realStringExpecter(stringMaybe)	//	compile	error

The	error	message	reads:	“Value	of	optional	type	Optional<String>	not	unwrapped;	did
you	mean	to	use	!	or	??”	You’re	going	to	be	seeing	that	sort	of	message	a	lot	in	Swift,	so
get	used	to	it!	As	that	message	suggests,	if	you	want	to	use	an	Optional	where	the	type	of
thing	it	wraps	is	expected,	you	must	unwrap	the	Optional	—	that	is,	you	must	reach	inside
it	and	retrieve	the	actual	thing	that	it	wraps.	Now	I’m	going	to	talk	about	how	to	do	that.

Unwrapping	an	Optional

We	have	seen	more	than	one	way	to	wrap	an	object	in	an	Optional.	But	what	about	the
opposite	procedure?	How	do	we	unwrap	an	Optional	to	get	at	the	object	wrapped	inside	it?
One	way	is	to	use	the	unwrap	operator	(or	forced	unwrap	operator),	which	is	a	postfixed
exclamation	mark.	For	example:

func	realStringExpecter(s:String)	{}

let	stringMaybe	:	String?	=	"howdy"

realStringExpecter(stringMaybe!)

In	that	code,	the	stringMaybe!	syntax	expresses	the	operation	of	reaching	inside	the
Optional	stringMaybe,	grabbing	the	wrapped	value,	and	substituting	it	at	that	point.	Since
stringMaybe	is	an	Optional	wrapping	a	String,	the	thing	inside	it	is	a	String.	That	is
exactly	what	the	realStringExpecter	function	wants	as	its	parameter!	Thus,	we	are	able
to	pass	the	unwrapped	Optional	as	argument	to	realStringExpecter.	stringMaybe	is	an
Optional	wrapping	the	String	"howdy",	but	stringMaybe!	is	the	String	"howdy".

If	an	Optional	wraps	a	certain	type,	you	cannot	send	it	a	message	expected	by	that	type.
You	must	unwrap	it	first.	For	example,	let’s	try	to	get	an	uppercase	version	of
stringMaybe:

let	stringMaybe	:	String?	=	"howdy"

let	upper	=	stringMaybe.uppercaseString	//	compile	error

The	solution	is	to	unwrap	stringMaybe	to	get	at	the	String	inside	it.	We	can	do	this
directly,	in	place,	using	the	unwrap	operator:

let	stringMaybe	:	String?	=	"howdy"

let	upper	=	stringMaybe!.uppercaseString

If	an	Optional	is	to	be	used	several	times	where	the	unwrapped	type	is	expected,	and	if
you’re	going	to	be	unwrapping	it	with	the	unwrap	operator	each	time,	your	code	can
quickly	start	to	look	like	the	dialog	from	a	1960s	Batman	comic.	For	example,	in	iOS
programming,	an	app’s	window	is	an	Optional	UIWindow	property	of	the	app	delegate
(self.window):

//	self.window	is	an	Optional	wrapping	a	UIWindow

self.window	=	UIWindow()

self.window!.rootViewController	=	RootViewController()

self.window!.backgroundColor	=	UIColor.whiteColor()

self.window!.makeKeyAndVisible()

That	sort	of	thing	soon	gets	old	(or	silly).	One	obvious	alternative	is	to	assign	the
unwrapped	value	once	to	a	variable	of	the	wrapped	type	and	then	use	that	variable:

//	self.window	is	an	Optional	wrapping	a	UIWindow

self.window	=	UIWindow()

let	window	=	self.window!

//	now	window	(not	self.window)	is	a	UIWindow,	not	an	Optional

window.rootViewController	=	RootViewController()

window.backgroundColor	=	UIColor.whiteColor()

window.makeKeyAndVisible()

However,	there’s	another	way,	as	I	shall	now	explain.

Implicitly	unwrapped	Optional

Swift	provides	another	way	of	using	an	Optional	where	the	wrapped	type	is	expected:	you
can	declare	the	Optional	type	as	being	implicitly	unwrapped.	This	is	actually	a	separate
type	—	ImplicitlyUnwrappedOptional.	An	ImplicitlyUnwrappedOptional	is	an	Optional,
but	the	compiler	permits	some	special	magic	associated	with	it:	its	value	can	be	used
directly	where	the	wrapped	type	is	expected.	You	can	unwrap	an
ImplicitlyUnwrappedOptional	explicitly,	but	you	don’t	have	to,	because	it	is	already
implicitly	unwrapped	(hence	the	name).	For	example:

func	realStringExpecter(s:String)	{}

var	stringMaybe	:	ImplicitlyUnwrappedOptional<String>	=	"howdy"

realStringExpecter(stringMaybe)	//	no	problem

As	with	Optional,	Swift	provides	syntactic	sugar	for	expressing	an	implicitly	unwrapped
Optional	type.	Just	as	an	Optional	wrapping	a	String	can	be	expressed	as	String?,	an
implicitly	unwrapped	Optional	wrapping	a	String	can	be	expressed	as	String!.	Thus,	we
can	rewrite	the	preceding	code	like	this	(and	this	is	how	you	would	in	fact	write	it):

func	realStringExpecter(s:String)	{}

var	stringMaybe	:	String!	=	"howdy"

realStringExpecter(stringMaybe)

Bear	in	mind	that	an	implicitly	unwrapped	Optional	is	still	an	Optional.	It’s	just	a
convenience.	By	declaring	something	as	an	implicitly	unwrapped	Optional,	you	are	asking
the	compiler,	if	you	happen	to	use	this	value	where	the	wrapped	type	is	expected,	to
forgive	you	and	to	unwrap	the	value	for	you.

As	far	as	their	types	are	concerned,	a	normal	Optional	wrapping	a	certain	type	(such	as	a
String?)	and	an	implicitly	unwrapped	Optional	wrapping	that	same	type	(such	as	a
String!)	are	considered	interchangeable:	you	can	pass	either	one	where	either	one	is
expected.

The	magic	word	nil

I	have	talked	so	far	about	Optionals	that	contain	a	wrapped	value.	But	what	about	an
Optional	that	doesn’t	contain	any	wrapped	value?	Such	an	Optional	is,	as	I’ve	already
said,	a	perfectly	legal	entity;	that,	indeed,	is	the	whole	point	of	Optionals.

You	are	going	to	need	a	way	to	ask	whether	an	Optional	contains	a	wrapped	value,	and	a
way	to	specify	an	Optional	without	a	wrapped	value.	Swift	makes	both	of	those	things
easy,	through	the	use	of	a	special	keyword,	nil:

To	learn	whether	an	Optional	contains	a	wrapped	value

Test	the	Optional	for	equality	against	nil.	If	the	test	succeeds,	the	Optional	is	empty.
An	empty	Optional	is	also	reported	in	the	console	as	nil.

To	specify	an	Optional	with	no	wrapped	value

Assign	or	pass	nil	where	the	Optional	type	is	expected.	The	result	is	an	Optional	of	the
expected	type,	containing	no	wrapped	value.

For	example:
var	stringMaybe	:	String?	=	"Howdy"

print(stringMaybe)	//	Optional("Howdy")

if	stringMaybe	==	nil	{

				print("it	is	empty")	//	does	not	print

}

stringMaybe	=	nil

print(stringMaybe)	//	nil

if	stringMaybe	==	nil	{

				print("it	is	empty")	//	prints

}

The	magic	word	nil	lets	you	express	the	concept	“An	Optional	wrapping	the	appropriate
type,	but	not	actually	containing	any	object	of	that	type.”	Clearly,	that’s	very	convenient
magic;	you’ll	want	to	take	advantage	of	it.	It	is	very	important	to	understand,	however,
that	it	is	magic:	nil	in	Swift	is	not	a	thing	and	is	not	a	value.	It	is	a	shorthand.	It	is	natural
to	think	and	speak	as	if	this	shorthand	were	real.	For	example,	I	will	say	that	something	“is
nil.”	But	in	reality,	nothing	“is	nil”;	nil	isn’t	a	thing.	What	I	really	mean	is	that	this
thing	is	equatable	with	nil	(because	it	is	an	Optional	not	wrapping	anything).

TIP

The	real	value	of	an	Optional	that	contains	no	wrapped	object	is	Optional.None,	and	the	real	value	of	an	Optional
wrapping	a	String	that	contains	no	wrapped	String	is	Optional<String>.None.	But	you’ll	probably	never	actually
need	to	say	those	things	in	your	code,	because	it’s	so	much	easier	to	say	nil.	I’ll	explain	in	Chapter	4	what	those
expressions	signify.

Because	a	variable	typed	as	an	Optional	can	be	nil,	Swift	follows	a	special	initialization
rule:	a	variable	(var)	typed	as	an	Optional	is	nil,	automatically.	This	is	legal:

func	optionalExpecter(s:String?)	{}

var	stringMaybe	:	String?

optionalExpecter(stringMaybe)

That	code	is	interesting	because	it	looks	as	if	it	should	be	illegal.	We	declared	a	variable
stringMaybe,	but	we	never	assigned	it	a	value.	Nevertheless	we	are	now	passing	it	around
as	if	it	were	an	actual	thing.	That’s	because	it	is	an	actual	thing.	This	variable	has	been
implicitly	initialized	—	to	nil.	A	variable	(var)	typed	as	an	Optional	is	the	only	sort	of
variable	that	gets	implicit	initialization	in	Swift.

We	come	now	to	perhaps	the	most	important	rule	in	all	of	Swift:	You	cannot	unwrap	an
Optional	containing	nothing	(an	Optional	equatable	with	nil).	Such	an	Optional	contains
nothing;	there’s	nothing	to	unwrap.	Like	Oakland,	there’s	no	there	there.	In	fact,	explicitly
unwrapping	an	Optional	containing	nothing	will	crash	your	program	at	runtime:

var	stringMaybe	:	String?

let	s	=	stringMaybe!	//	crash

The	crash	message	reads:	“Fatal	error:	unexpectedly	found	nil	while	unwrapping	an
Optional	value.”	Get	used	to	it,	because	you’re	going	to	be	seeing	it	a	lot.	This	is	an	easy
mistake	to	make.	Unwrapping	an	Optional	that	contains	no	value	is,	in	fact,	probably	the
most	common	way	to	crash	a	Swift	program.	You	should	look	upon	this	kind	of	crash	as	a
blessing.	Very	often,	in	fact,	you	will	want	to	crash	if	your	Optional	contains	no	value,
because	it	should	contain	a	value,	and	the	fact	that	it	doesn’t	indicates	that	you’ve	made	a
mistake	elsewhere.

To	eliminate	such	a	crash,	you	need	to	ensure	that	your	Optional	contains	a	value,	and
don’t	unwrap	it	if	it	doesn’t.	One	obvious	way	to	do	that	is	to	test	against	nil	first:

var	stringMaybe	:	String?

//	...	stringMaybe	might	be	assigned	a	real	value	here…

if	stringMaybe	!=	nil	{

				let	s	=	stringMaybe!

				//	...

}

Optional	chains

A	common	situation	is	that	you	want	to	send	a	message	to	the	value	wrapped	inside	an
Optional.	To	do	so,	you	can	unwrap	the	Optional	in	place.	I	gave	an	example	earlier:

let	stringMaybe	:	String?	=	"howdy"

let	upper	=	stringMaybe!.uppercaseString

That	form	of	code	is	called	an	Optional	chain.	In	the	middle	of	a	chain	of	dot-notation,
you	have	unwrapped	an	Optional.

You	cannot	send	a	message	to	an	Optional	without	unwrapping	it.	Optionals	themselves
don’t	respond	to	any	messages.	(Well,	they	do	respond	to	some	messages,	but	very	few,

and	you	are	unlikely	to	use	them	—	and	in	any	case	they	are	not	the	messages	to	which	the
thing	inside	them	responds.)	If	you	try	to	send	to	an	Optional	a	message	intended	for	the
thing	inside	it,	you	will	get	an	error	message	from	the	compiler:

let	stringMaybe	:	String?	=	"howdy"

let	upper	=	stringMaybe.uppercaseString	//	compile	error

We	have	already	seen,	however,	that	if	you	unwrap	an	Optional	that	contains	no	wrapped
object,	you’ll	crash.	So	what	if	you’re	not	sure	whether	this	Optional	contains	a	wrapped
object?	How	can	you	send	a	message	to	an	Optional	in	that	situation?	Swift	provides	a
special	shorthand	for	exactly	this	purpose.	To	send	a	message	safely	to	an	Optional	that
might	be	empty,	you	can	unwrap	the	Optional	optionally.	To	do	so,	unwrap	the	Optional
with	the	question	mark	postfix	operator	instead	of	the	exclamation	mark:

var	stringMaybe	:	String?

//	...	stringMaybe	might	be	assigned	a	real	value	here…

let	upper	=	stringMaybe?.uppercaseString

That’s	an	Optional	chain	in	which	you	used	a	question	mark	to	unwrap	the	Optional.	By
using	that	notation,	you	have	unwrapped	the	Optional	optionally	—	meaning
conditionally.	The	condition	in	question	is	one	of	safety;	a	test	for	nil	is	performed	for	us.
Our	code	means:	“If	stringMaybe	contains	a	String,	unwrap	it	and	send	it	the
uppercaseString	message.	If	it	doesn’t	(that	is,	if	it	equates	to	nil),	do	not	unwrap	it	and
do	not	send	it	any	messages!”

Such	code	is	a	double-edged	sword.	On	the	one	hand,	if	stringMaybe	is	nil,	you	won’t
crash	at	runtime.	On	the	other	hand,	if	stringMaybe	is	nil,	that	line	of	code	won’t	do
anything	useful	—	you	won’t	get	any	uppercase	string.

But	now	there’s	a	new	question.	In	that	code,	we	initialized	a	variable	upper	to	an
expression	that	involves	sending	the	uppercaseString	message.	Now	it	turns	out	that	the
uppercaseString	message	might	or	not	even	be	sent.	So	what,	exactly,	is	upper	initialized
to?

To	handle	this	situation,	Swift	has	a	special	rule.	If	an	Optional	chain	contains	an
optionally	unwrapped	Optional,	and	if	this	Optional	chain	produces	a	value,	that	value	is
itself	wrapped	in	an	Optional.	Thus,	upper	is	typed	as	an	Optional	wrapping	a	String.	This
works	brilliantly,	because	it	covers	both	possible	cases.	Let’s	say,	first,	that	stringMaybe
contains	a	String:

var	stringMaybe	:	String?

stringMaybe	=	"howdy"

let	upper	=	stringMaybe?.uppercaseString	//	upper	is	a	String?

After	that	code,	upper	is	not	a	String;	it	is	not	"HOWDY".	It	is	an	Optional	wrapping
"HOWDY"!	On	the	other	hand,	if	the	attempt	to	unwrap	the	Optional	fails,	the	Optional	chain
can	return	nil	instead:

var	stringMaybe	:	String?

let	upper	=	stringMaybe?.uppercaseString	//	upper	is	a	nil	String?

Unwrapping	an	Optional	optionally	in	this	way	is	elegant	and	safe;	but	consider	the
consequences.	On	the	one	hand,	even	if	stringMaybe	is	nil,	we	won’t	crash	at	runtime.
On	the	other	hand,	we’re	no	better	off	than	we	were	before:	we’ve	ended	up	with	yet
another	Optional	on	our	hands!	Whether	stringMaybe	is	nil	or	not,	upper	is	typed	as	an
Optional	wrapping	a	String,	and	in	order	to	use	that	String,	we’re	going	to	have	to	unwrap

upper.	And	we	don’t	know	whether	upper	is	nil,	so	we	have	exactly	the	same	problem
we	had	before	—	we	need	to	make	sure	that	we	unwrap	upper	safely,	and	that	we	don’t
accidentally	unwrap	an	empty	Optional.

Longer	Optional	chains	are	legal.	They	work	just	as	you	would	expect:	no	matter	how
many	Optionals	are	unwrapped	in	the	course	of	the	chain,	if	any	of	them	is	unwrapped
optionally,	the	entire	expression	produces	an	Optional	wrapping	the	type	it	would	have
produced	if	the	Optionals	were	unwrapped	normally,	and	is	free	to	fail	safely	at	any	point
along	the	way.	For	example:

//	self.window	is	a	UIWindow?

let	f	=	self.window?.rootViewController?.view.frame

The	frame	property	of	a	view	is	a	CGRect.	But	after	that	code,	f	is	not	a	CGRect.	It’s	an
Optional	wrapping	a	CGRect.	If	any	of	the	optional	unwrapping	along	the	chain	fails
(because	the	Optional	we	propose	to	unwrap	is	nil),	the	entire	chain	can	return	nil	to
indicate	failure.

TIP

Observe	that	the	preceding	code	does	not	end	up	nesting	Optionals;	it	doesn’t	produce	a	CGRect	wrapped	in	an
Optional	wrapped	in	an	Optional,	merely	because	there	are	two	Optionals	being	optionally	unwrapped	in	the	chain.
However,	it	is	possible,	for	other	reasons,	to	end	up	with	an	Optional	wrapped	in	an	Optional.	I’ll	give	an	example	in
Chapter	4.

If	an	Optional	chain	involving	optional	unwrapping	produces	a	result,	you	can	learn
whether	all	the	Optionals	in	the	chain	were	safely	unwrapped	by	examining	that	result:	if
it	isn’t	nil,	everything	was	unwrapped	successfully.	But	what	if	an	Optional	chain
containing	optional	unwrapping	produces	no	result?	For	example:

self.window?.rootViewController	=	UIViewController()

Now	we’re	in	a	quandary.	It’s	true	that	we	won’t	crash;	if	self.window	is	nil,	it	won’t	be
unwrapped,	so	we’re	safe.	But	if	self.window	is	nil,	we	didn’t	succeed	in	giving	our
window	a	root	view	controller	either!	It	would	be	nice	to	know	whether	the	unwrapping	in
this	Optional	chain	succeeded.	Fortunately,	there’s	a	trick	for	finding	out.	Every	statement
in	Swift	that	doesn’t	otherwise	return	a	value	returns	Void.	Therefore,	an	assignment	into
an	Optional	chain	with	optional	unwrapping	returns	an	Optional	wrapping	Void	—	and
you	can	capture	that	Optional.	That	means	you	can	test	the	Optional	against	nil;	if	it	isn’t
nil,	the	assignment	worked.	For	example:

let	ok	:	Void?	=	self.window?.rootViewController	=	UIViewController()

if	ok	!=	nil	{

				//	it	worked

}

Naturally,	you	don’t	need	to	capture	the	Optional	wrapping	Void	explicitly	in	a	variable;
you	can	capture	and	test	it	against	nil	in	a	single	move:

if	(self.window?.rootViewController	=	UIViewController())	!=	nil	{

				//	it	worked

}

If	a	function	call	returns	an	Optional,	you	can	unwrap	the	result	and	use	it.	You	don’t
necessarily	have	to	capture	the	result	in	order	to	do	that;	you	can	unwrap	it	in	place,	by
putting	an	exclamation	mark	or	a	question	mark	after	the	function	call	(that	is,	after	the
closing	parenthesis).	That’s	really	no	different	from	what	we’ve	been	doing	all	along,

except	that	instead	of	an	Optional	property	or	variable,	this	is	a	function	call	that	returns
an	Optional.	For	example:

class	Dog	{

				var	noise	:	String?

				func	speak()	->	String?	{

								return	self.noise

				}

}

let	d	=	Dog()

let	bigname	=	d.speak()?.uppercaseString

After	that,	don’t	forget,	bigname	is	not	a	String	—	it’s	an	Optional	wrapping	a	String.

NOTE

I’ll	discuss	some	additional	Swift	syntax	for	checking	whether	an	Optional	is	nil	when	I	come	to	flow	control	in
Chapter	5.

TIP

The	!	and	?	postfix	operators,	which	respectively	unconditionally	and	conditionally	unwrap	an	Optional,	have
basically	nothing	to	do	with	the	!	and	?	used	with	type	names	as	syntactic	sugar	for	expressing	Optional	types	(such
as	String?	to	mean	an	Optional	wrapping	a	String,	and	String!	to	mean	an	implicitly	unwrapped	Optional	wrapping
a	String).	The	outward	similarity	has	confused	many	a	beginner.

Comparison	with	Optional

In	a	comparison	with	something	other	than	nil,	an	Optional	gets	special	treatment:	the
wrapped	value,	not	the	Optional	itself,	is	compared.	So,	for	example,	this	works:

let	s	:	String?	=	"Howdy"

if	s	==	"Howdy"	{	//	...	they	_are_	equal!

That	shouldn’t	work,	but	it	does	—	mercifully	so,	since	it	would	be	maddening	to	have	to
unwrap	an	Optional	just	to	compare	its	wrapped	value	with	something	(especially	as	you’d
have	to	check	first	whether	the	Optional	is	nil).	Instead	of	comparing	the	Optional	itself
with	"Howdy",	Swift	automagically	(and	safely)	compares	its	wrapped	value	(if	there	is
one)	with	"Howdy",	and	the	comparison	succeeds.	If	the	wrapped	value	is	not	"Howdy",	the
comparison	fails.	If	there	is	no	wrapped	value	(s	is	nil),	the	comparison	fails	too	—
safely!	Thus,	you	can	compare	s	to	nil	or	to	a	String,	and	the	comparison	works	correctly
in	all	cases.

In	the	same	way,	if	an	Optional	wraps	a	type	of	value	that	can	be	compared	using	the
greater-than	and	less-than	operators,	those	operators	can	be	applied	directly	to	the
Optional:

let	i	:	Int?	=	2

if	i	<	3	{	//	...	it	_is_	less!

Why	Optionals?

Now	that	you	know	how	to	use	an	Optional,	you	are	probably	wondering	why	to	use	an
Optional.	Why	does	Swift	have	Optionals	at	all?	What	are	they	good	for?

One	very	important	purpose	of	Optionals	is	to	provide	interchange	of	object	values	with
Objective-C.	In	Objective-C,	any	object	reference	can	be	nil.	You	thus	need	a	way	to	send
nil	to	Objective-C	and	to	receive	nil	from	Objective-C.	Swift	Optionals	provide	your
only	way	to	do	that.

Swift	will	typically	assist	you	by	a	judicious	use	of	appropriate	types	in	the	Cocoa	APIs.

For	example,	consider	a	UIView’s	backgroundColor	property.	It’s	a	UIColor,	but	it	can	be
nil,	and	you	are	allowed	to	set	it	to	nil.	Thus,	it	is	typed	as	a	UIColor?.	You	don’t	need
to	work	directly	with	Optionals	in	order	to	set	such	a	value!	Remember,	assigning	the
wrapped	type	to	an	Optional	is	legal,	as	the	assigned	value	will	be	wrapped	for	you.	Thus,
you	can	set	myView.backgroundColor	to	a	UIColor	—	or	to	nil!	But	if	you	get	a
UIView’s	backgroundColor,	you	now	have	an	Optional	wrapping	a	UIColor,	and	you
must	be	conscious	of	this	fact,	for	all	the	reasons	I’ve	already	discussed:	if	you’re	not,
surprising	things	can	happen:

let	v	=	UIView()

let	c	=	v.backgroundColor

let	c2	=	c.colorWithAlphaComponent(0.5)	//	compile	error

You’re	trying	to	send	the	colorWithAlphaComponent	message	to	c,	as	if	it	were	a	UIColor.
It	isn’t	a	UIColor.	It’s	an	Optional	wrapping	a	UIColor.	Xcode	will	brilliantly	and
desperately	try	to	help	you	in	this	situation;	if	you	use	code	completion	to	enter	the	name
of	the	colorWithAlphaComponent	method,	Xcode	will	insert	a	question	mark	after	c,	thus
(optionally)	unwrapping	the	Optional	and	giving	you	legal	code:

let	v	=	UIView()

let	c	=	v.backgroundColor

let	c2	=	c?.colorWithAlphaComponent(0.5)

In	the	vast	majority	of	situations,	however,	a	Cocoa	object	type	will	not	be	marked	as	an
Optional.	That’s	because,	although	in	theory	it	could	be	nil	(because	any	Objective-C
object	reference	can	be	nil),	in	practice	it	won’t	be.	Swift	thus	saves	you	a	step	by
treating	the	value	as	the	object	type	itself.	This	magic	is	performed	by	hand-tweaking	the
Cocoa	APIs	(also	called	auditing).	In	the	very	first	public	version	of	Swift	(in	June	of
2014),	all	object	values	received	from	Cocoa	were	in	fact	typed	as	Optionals	(usually
implicitly	unwrapped	Optionals).	But	then	Apple	embarked	on	the	massive	project	of
hand-tweaking	the	APIs	to	eliminate	Optionals	that	didn’t	need	to	be	Optionals.

In	a	few	cases,	you	may	still	encounter	implicitly	unwrapped	Optionals	in	a	Cocoa	API.
For	example,	as	of	this	writing,	the	API	for	the	NSBundle	method
loadNibNamed:owner:options:	looks	like	this:

func	loadNibNamed(name:	String!,

				owner:	AnyObject!,

				options:	[NSObject	:	AnyObject]!)

				->	[AnyObject]!

Those	implicitly	unwrapped	Optionals	show	that	this	header	hasn’t	yet	been	hand-
tweaked.	They	don’t	represent	the	situation	accurately	—	you’ll	never	pass	nil	as	the	first
parameter,	for	example	—	but	they	do	no	serious	harm.

Another	important	use	of	Optionals	is	to	defer	initialization	of	an	instance	property.	If	a
variable	(declared	with	var)	is	typed	as	an	Optional,	it	has	a	value	even	if	you	don’t
initialize	it	—	namely	nil.	That	comes	in	very	handy	in	situations	where	you	know
something	will	have	a	value,	but	not	right	away.	A	typical	example	in	real-life	iOS
programming	is	an	outlet,	which	is	a	reference	to	something	in	your	interface	such	as	a
button:

class	ViewController:	UIViewController	{

				@IBOutlet	var	myButton:	UIButton!

				//	...

}

Ignore,	for	now,	the	@IBOutlet	designation,	which	is	an	internal	hint	to	Xcode	(as	I’ll
explain	in	Chapter	7).	The	important	thing	is	that	this	property,	myButton,	won’t	have	a
value	when	our	ViewController	instance	first	comes	into	existence,	but	shortly	thereafter
the	view	controller’s	view	will	be	loaded	and	myButton	will	be	set	so	that	it	points	to	an
actual	UIButton	object	in	the	interface.	Therefore,	the	variable	is	typed	as	an	implicitly
unwrapped	Optional.	It’s	an	Optional	because	we	need	a	placeholder	value	for	myButton
when	the	ViewController	instance	first	comes	into	existence.	It’s	implicitly	unwrapped	so
that	in	our	code	we	can	just	treat	self.myButton	as	a	reference	to	an	actual	UIButton,
passing	through	the	Optional	without	noticing	that	it	is	an	Optional.

A	closely	related	situation	is	when	a	variable,	again	typically	an	instance	property,
represents	data	that	will	take	time	to	acquire.	For	example,	in	my	Albumen	app,	as	we
launch,	I	create	an	instance	of	my	root	view	controller.	I	also	want	to	gather	a	bunch	of
data	about	the	user’s	music	library	and	store	that	data	in	instance	properties	of	the	root
view	controller	instance.	But	gathering	that	data	will	take	time.	Therefore	I	must
instantiate	the	root	view	controller	first	and	gather	the	data	later,	because	if	we	pause	to
gather	the	data	before	instantiating	the	root	view	controller,	the	app	will	take	too	long	to
launch	—	the	delay	will	be	perceptible,	and	we	might	even	crash	(because	iOS	forbids
long	launch	times).	Therefore	the	data	properties	are	all	typed	as	Optionals;	they	are	nil
until	the	data	are	gathered,	at	which	time	they	are	assigned	their	“real”	values:

class	RootViewController	:	UITableViewController	{

				var	albums	:	[MPMediaItemCollection]!	//	initialized	to	nil

				//	...

Finally,	one	of	the	most	important	uses	of	Optionals	is	to	permit	a	value	to	be	marked	as
empty	or	erroneous.	The	preceding	code	is	a	good	illustration.	When	my	Albumen	app
launches,	it	displays	a	table	listing	all	the	user’s	music	albums.	At	launch	time,	however,
that	data	has	not	yet	been	gathered.	My	table-display	code	tests	albums	to	see	whether	it’s
nil	and,	if	it	is,	displays	an	empty	table.	After	gathering	the	data,	I	tell	my	table	to	display
its	data	again.	This	time,	the	table-display	code	finds	that	albums	is	not	nil,	but	rather
consists	of	actual	data	—	and	it	now	displays	that	data.	The	use	of	an	Optional	allows	one
and	the	same	value,	albums,	to	store	the	data	or	to	state	that	there	is	no	data.

Many	built-in	Swift	functions	use	an	Optional	in	a	similar	way.	I	mentioned	earlier	that
you	can	coerce	a	String	to	an	Int:

let	s	=	"31"

let	i	=	Int(s)	//	Optional(31)

Initializing	an	Int	from	a	String	returns	an	Optional	because	the	conversion	can	fail.	If	s	is
"howdy",	it	isn’t	a	number.	Thus	the	type	returned	cannot	be	an	Int,	because	there	is	no	Int
that	can	be	taken	to	mean,	“I	didn’t	find	any	Int.”	Returning	an	Optional	solves	the
problem	neatly:	nil	means	“I	didn’t	find	any	Int,”	and	otherwise	the	actual	Int	result	is
sitting	there	wrapped	up	in	the	Optional.

Swift	is	cleverer	than	Objective-C	in	this	regard.	If	a	reference	is	an	object,	Objective-C
can	return	nil	to	report	failure;	but	not	everything	in	Objective-C	is	an	object.	Thus,	many
important	Cocoa	methods	return	a	special	value	to	indicate	failure,	and	you	have	to	know
this	and	remember	to	test	for	it.	For	example,	NSString’s	rangeOfString:	might	not	find
the	given	substring	in	the	target	string;	in	that	case,	it	returns	an	NSRange	whose	length	is
zero	and	whose	location	(index)	is	a	special	value,	NSNotFound,	which	is	actually	just	a

very	large	negative	number.	Fortunately,	a	knowledge	of	this	special	value	is	built	into	the
Swift	bridge	to	the	Cocoa	API:	Swift	types	the	returned	value	as	an	Optional	wrapping	a
Range,	and	if	rangeOfString:	does	return	an	NSRange	whose	location	is	NSNotFound,
Swift	expresses	it	as	nil!

Not	every	part	of	the	Swift–Cocoa	bridge	is	so	helpful,	however.	If	you	call	NSArray’s
indexOfObject:,	the	result	is	an	Int,	not	an	Optional	wrapping	an	Int;	that	result	can	be
NSNotFound,	and	you	have	to	remember	to	test	for	this:

let	arr	=	[1,2,3]

let	ix	=	(arr	as	NSArray).indexOfObject(4)

if	ix	==	NSNotFound	{	//	...

An	alternative	in	this	case	might	be	to	stay	in	Swift	and	call	the	indexOf	method,	which
returns	an	Optional:

let	arr	=	[1,2,3]

let	ix	=	arr.indexOf(4)

if	ix	==	nil	{	//	...

Chapter	4.	Object	Types
In	the	preceding	chapter,	I	discussed	some	built-in	object	types.	But	I	have	not	yet
explained	object	types	themselves.	As	I	mentioned	in	Chapter	1,	Swift	object	types	come
in	three	flavors:	enum,	struct,	and	class.	What	are	the	differences	between	them?	And	how
would	you	create	your	own	object	type?	That’s	what	this	chapter	is	about.

I’ll	describe	object	types	in	general,	and	then	each	of	the	three	flavors.	Then	I’ll	explain
three	Swift	ways	of	giving	an	object	type	greater	flexibility:	protocols,	generics,	and
extensions.	Finally,	the	survey	of	Swift’s	built-in	types	will	conclude	with	three	umbrella
types	and	three	collection	types.

Object	Type	Declarations	and	Features
Object	types	are	declared	with	the	flavor	of	the	object	type	(enum,	struct,	or	class),	the
name	of	the	object	type	(which	should	start	with	a	capital	letter),	and	curly	braces:

class	Manny	{

}

struct	Moe	{

}

enum	Jack	{

}

An	object	type	declaration	can	appear	anywhere:	at	the	top	level	of	a	file,	at	the	top	level
of	another	object	type	declaration,	or	in	the	body	of	a	function.	The	visibility	(scope),	and
hence	the	usability,	of	this	object	type	by	other	code	depends	upon	where	it	appears	(see
Chapter	1):

Object	types	declared	at	the	top	level	of	a	file	will,	by	default,	be	visible	to	all	files	in
your	project	(module).	This	is	the	usual	place	for	object	type	declarations.
Sometimes	it’s	useful	to	declare	a	type	inside	the	declaration	of	another	type,	thus
giving	it	a	namespace.	This	is	called	a	nested	type.
An	object	type	declared	within	the	body	of	a	function	will	exist	only	inside	the	scope	of
the	curly	braces	that	surround	it;	such	declarations	are	legal	but	rare.

Declarations	for	any	object	type	may	contain	within	their	curly	braces	the	following
things:

Initializers

An	object	type	is	merely	the	type	of	an	object.	The	purpose	of	declaring	an	object	type
will	usually	(though	not	always)	be	so	that	you	can	make	an	actual	object	—	an
instance	—	that	has	this	type.	An	initializer	is	a	special	function,	declared	and	called	in
a	special	way,	allowing	you	to	do	that.

Properties

A	variable	declared	at	the	top	level	of	an	object	type	declaration	is	a	property.	By
default,	it	is	an	instance	property.	An	instance	property	is	scoped	to	an	instance:	it	is
accessed	through	a	particular	instance	of	this	type,	and	its	value	can	be	different	for
every	instance	of	this	type.

Alternatively,	a	property	can	be	a	static/class	property.	For	an	enum	or	struct,	it	is
declared	with	the	keyword	static;	for	a	class,	it	may	instead	be	declared	with	the
keyword	class.	Such	a	property	belongs	to	the	object	type	itself:	it	is	accessed	through
the	type,	and	it	has	just	one	value,	associated	with	the	type.

Methods

A	function	declared	at	the	top	level	of	an	object	type	declaration	is	a	method.	By
default,	it	is	an	instance	method:	it	is	called	by	sending	a	message	to	a	particular
instance	of	this	type.	Inside	an	instance	method,	self	is	the	instance.

Alternatively,	a	function	can	be	a	static/class	method.	For	an	enum	or	struct,	it	is
declared	with	the	keyword	static;	for	a	class,	it	may	be	declared	instead	with	the
keyword	class.	It	is	called	by	sending	a	message	to	the	type.	Inside	a	static/class
method,	self	is	the	type.

Subscripts

A	subscript	is	a	special	kind	of	instance	method.	It	is	called	by	appending	square
brackets	to	an	instance	reference.

Object	type	declarations

An	object	type	declaration	can	contain	an	object	type	declaration	—	a	nested	type.	From
inside	the	containing	object	type,	the	nested	type	is	in	scope;	from	outside	the
containing	object	type,	the	nested	type	must	be	referred	to	through	the	containing	object
type.	Thus,	the	containing	object	type	is	a	namespace	for	the	nested	type.

Initializers
An	initializer	is	a	function	called	in	order	to	bring	an	instance	of	an	object	type	into
existence.	Strictly	speaking,	it	is	a	static/class	method,	because	it	is	called	by	talking	to	the
object	type.	It	is	usually	called	using	special	syntax:	the	name	of	the	type	is	followed
directly	by	parentheses,	as	if	the	type	itself	were	a	function.	When	an	initializer	is	called,	a
new	instance	is	created	and	returned	as	a	result.	You	will	usually	do	something	with	the
returned	instance,	such	as	assigning	it	to	a	variable,	in	order	to	preserve	it	and	work	with	it
in	subsequent	code.

For	example,	suppose	we	have	a	Dog	class:
class	Dog	{

}

Then	we	can	make	a	Dog	instance	like	this:
Dog()

That	code,	however,	though	legal,	is	silly	—	so	silly	that	it	warrants	a	warning	from	the
compiler.	We	have	created	a	Dog	instance,	but	there	is	no	reference	to	that	instance.
Without	such	a	reference,	the	Dog	instance	comes	into	existence	and	then	immediately
vanishes	in	a	puff	of	smoke.	The	usual	sort	of	thing	is	more	like	this:

let	fido	=	Dog()

Now	our	Dog	instance	will	persist	as	long	as	the	variable	fido	persists	(see	Chapter	3)	—
and	the	variable	fido	gives	us	a	reference	to	our	Dog	instance,	so	that	we	can	use	it.

Observe	that	Dog()	calls	an	initializer	even	though	our	Dog	class	doesn’t	declare	any
initializers!	The	reason	is	that	object	types	may	have	implicit	initializers.	These	are	a
convenience	that	save	you	from	the	trouble	of	writing	your	own	initializers.	But	you	can
write	your	own	initializers,	and	you	will	often	do	so.

An	initializer	is	kind	of	function,	and	its	declaration	syntax	is	rather	like	that	of	a	function.
To	declare	an	initializer,	you	use	the	keyword	init	followed	by	a	parameter	list,	followed

by	curly	braces	containing	the	code.	An	object	type	can	have	multiple	initializers,
distinguished	by	their	parameters.	The	parameter	names,	including	the	first	parameter,	are
externalized	by	default	(though	of	course	you	can	prevent	this	by	putting	an	underscore
before	a	parameter	name).	A	frequent	use	of	the	parameters	is	to	set	the	values	of	instance
properties.

For	example,	here’s	a	Dog	class	with	two	instance	properties,	name	(a	String)	and	license
(an	Int).	We	give	these	instance	properties	default	values	that	are	effectively	placeholders
—	an	empty	string	and	the	number	zero.	Then	we	declare	three	initializers,	so	that	the
caller	can	create	a	Dog	instance	in	three	different	ways:	by	supplying	a	name,	by
supplying	a	license	number,	or	by	supplying	both.	In	each	initializer,	the	parameters
supplied	are	used	to	set	the	values	of	the	corresponding	properties:

class	Dog	{

				var	name	=	""

				var	license	=	0

				init(name:String)	{

								self.name	=	name

				}

				init(license:Int)	{

								self.license	=	license

				}

				init(name:String,	license:Int)	{

								self.name	=	name

								self.license	=	license

				}

}

Observe	that	in	that	code,	in	each	initializer,	I’ve	given	each	parameter	the	same	name	as
the	property	to	which	it	corresponds.	There’s	no	reason	to	do	that	apart	from	stylistic
clarity.	In	the	code	for	each	initializer,	I	can	distinguish	the	parameter	from	the	property	by
using	self	to	access	the	property.

The	result	of	that	declaration	is	that	I	can	create	a	Dog	in	three	different	ways:
let	fido	=	Dog(name:"Fido")

let	rover	=	Dog(license:1234)

let	spot	=	Dog(name:"Spot",	license:1357)

What	I	can’t	do	is	to	create	a	Dog	with	no	initializer	parameters.	I	wrote	initializers,	so	my
implicit	initializer	went	away.	This	code	is	no	longer	legal:

let	puff	=	Dog()	//	compile	error

Of	course,	I	could	make	that	code	legal	by	explicitly	declaring	an	initializer	with	no
parameters:

class	Dog	{

				var	name	=	""

				var	license	=	0

				init()	{

				}

				init(name:String)	{

								self.name	=	name

				}

				init(license:Int)	{

								self.license	=	license

				}

				init(name:String,	license:Int)	{

								self.name	=	name

								self.license	=	license

				}

}

Now,	the	truth	is	that	we	don’t	need	those	four	initializers,	because	an	initializer	is	a

function,	and	a	function’s	parameters	can	have	default	values.	Thus,	I	can	condense	all
that	code	into	a	single	initializer,	like	this:

class	Dog	{

				var	name	=	""

				var	license	=	0

				init(name:String	=	"",	license:Int	=	0)	{

								self.name	=	name

								self.license	=	license

				}

}

I	can	still	make	an	actual	Dog	instance	in	four	different	ways:
let	fido	=	Dog(name:"Fido")

let	rover	=	Dog(license:1234)

let	spot	=	Dog(name:"Spot",	license:1357)

let	puff	=	Dog()

Now	comes	the	really	interesting	part.	In	my	property	declarations,	I	can	eliminate	the
assignment	of	default	initial	values	(as	long	as	I	declare	explicitly	the	type	of	each
property):

class	Dog	{

				var	name	:	String	//	no	default	value!

				var	license	:	Int	//	no	default	value!

				init(name:String	=	"",	license:Int	=	0)	{

								self.name	=	name

								self.license	=	license

				}

}

That	code	is	legal	(and	common)	—	because	an	initializer	initializes!	In	other	words,	I
don’t	have	to	give	my	properties	initial	values	in	their	declarations,	provided	I	give	them
initial	values	in	all	initializers.	That	way,	I	am	guaranteed	that	all	my	instance	properties
have	values	when	the	instance	comes	into	existence,	which	is	what	matters.	Conversely,
an	instance	property	without	an	initial	value	when	the	instance	comes	into	existence	is
illegal.	A	property	must	be	initialized	either	as	part	of	its	declaration	or	by	every
initializer,	and	the	compiler	will	stop	you	otherwise.

The	Swift	compiler’s	insistence	that	all	instance	properties	be	properly	initialized	is	a
valuable	feature	of	Swift.	(Contrast	Objective-C,	where	instance	properties	can	go
uninitialized	—	and	often	do,	leading	to	mysterious	errors	later.)	Don’t	fight	the	compiler;
work	with	it.	The	compiler	will	help	you	by	giving	you	an	error	message	(“Return	from
initializer	without	initializing	all	stored	properties”)	until	all	your	initializers	initialize	all
your	instance	properties:

class	Dog	{

				var	name	:	String

				var	license	:	Int

				init(name:String	=	"")	{

								self.name	=	name	//	compile	error

				}

}

Because	setting	an	instance	property	in	an	initializer	counts	as	initialization,	it	is	legal
even	if	the	instance	property	is	a	constant	declared	with	let:

class	Dog	{

				let	name	:	String

				let	license	:	Int

				init(name:String	=	"",	license:Int	=	0)	{

								self.name	=	name

								self.license	=	license

				}

}

In	our	artificial	examples,	we	have	been	very	generous	with	our	initializer:	we	are	letting
the	caller	instantiate	a	Dog	without	supplying	a	name	argument	or	a	license	argument.
Usually,	however,	the	purpose	of	an	initializer	is	just	the	opposite:	we	want	to	force	the
caller	to	supply	all	needed	information	at	instantiation	time.	Thus,	in	real	life,	it	is	much
more	likely	that	our	Dog	class	would	look	like	this:

class	Dog	{

				let	name	:	String

				let	license	:	Int

				init(name:String,	license:Int)	{

								self.name	=	name

								self.license	=	license

				}

}

In	that	code,	our	Dog	has	a	name	and	a	license,	and	values	for	these	must	be	supplied	at
instantiation	time	(there	are	no	default	values),	and	those	values	can	never	be	changed
thereafter	(these	properties	are	constants).	In	this	way,	we	enforce	a	rule	that	every	Dog
must	have	a	meaningful	name	and	license.	There	is	now	only	one	way	to	make	a	Dog:

let	spot	=	Dog(name:"Spot",	license:1357)

Optional	properties

Sometimes,	there	is	no	meaningful	default	value	that	can	be	assigned	to	an	instance
property	during	initialization.	For	example,	perhaps	the	initial	value	of	this	property	will
not	be	obtained	until	some	time	has	elapsed	after	this	instance	has	come	into	existence.
This	situation	conflicts	with	the	requirement	that	all	instance	properties	be	initialized
either	in	their	declaration	or	through	an	initializer.	You	could,	of	course,	just	circumvent
the	problem	by	assigning	a	default	initial	value	anyway;	but	this	fails	to	communicate	to
your	own	code	the	fact	that	this	isn’t	a	“real”	value.

A	sensible	and	common	solution,	as	I	explained	in	Chapter	3,	is	to	declare	your	instance
property	as	a	var	having	an	Optional	type.	An	Optional	has	a	value,	namely	nil,
signifying	that	no	“real”	value	has	been	supplied;	and	an	Optional	var	is	initialized	to	nil
automatically.	Thus,	your	code	can	test	this	instance	property	against	nil	and,	if	it	is	nil,
it	won’t	use	the	property.	Later,	the	property	will	be	given	its	“real”	value.	Of	course,	that
value	is	now	wrapped	in	an	Optional;	but	if	you	declare	this	property	as	an	implicitly
unwrapped	Optional,	you	have	the	additional	advantage	of	being	able	to	use	the	wrapped
value	directly,	without	explicitly	unwrapping	it	—	as	if	this	weren’t	an	Optional	at	all	—
once	you’re	sure	it	is	safe	to	do	so:

//	this	property	will	be	set	automatically	when	the	nib	loads

@IBOutlet	var	myButton:	UIButton!

//	this	property	will	be	set	after	time-consuming	gathering	of	data

var	albums	:	[MPMediaItemCollection]!

Referring	to	self

Except	in	order	to	set	an	instance	property,	an	initializer	may	not	refer	to	self,	explicitly
or	implicitly,	until	all	instance	properties	have	been	initialized.	This	rule	guarantees	that
the	instance	is	fully	formed	before	it	is	used.	This	code,	for	example,	is	illegal:

struct	Cat	{

				var	name	:	String

				var	license	:	Int

				init(name:String,	license:Int)	{

								self.name	=	name

								meow()	//	too	soon	-	compile	error

								self.license	=	license

				}

				func	meow()	{

								print("meow")

				}

}

The	call	to	the	instance	method	meow	is	implicitly	a	reference	to	self	—	it	means
self.meow().	The	initializer	can	say	that,	but	not	until	it	has	fulfilled	its	primary	contract
of	initializing	all	uninitialized	properties.	The	call	to	the	instance	method	meow	simply
needs	to	be	moved	down	one	line,	so	that	it	comes	after	both	name	and	license	have	been
initialized.

Delegating	initializers

Initializers	within	an	object	type	can	call	one	another	by	using	the	syntax
self.init(...).	An	initializer	that	calls	another	initializer	is	called	a	delegating
initializer.	When	an	initializer	delegates,	the	other	initializer	—	the	one	that	it	delegates	to
—	must	completely	initialize	the	instance	first,	and	then	the	delegating	initializer	can	work
with	the	fully	initialized	instance,	possibly	setting	again	a	var	property	that	was	already
set	by	the	initializer	that	it	delegated	to.

A	delegating	initializer	appears	to	be	an	exception	to	the	rule	against	saying	self	too
early.	But	it	isn’t,	because	it	is	saying	self	in	order	to	delegate	—	and	delegating	will
cause	all	instance	properties	to	be	initialized.	In	fact,	the	rules	about	a	delegating
initializer	saying	self	are	even	more	stringent:	a	delegating	initializer	cannot	refer	to
self,	not	even	to	set	a	property,	until	after	the	call	to	the	other	initializer.	For	example:

struct	Digit	{

				var	number	:	Int

				var	meaningOfLife	:	Bool

				init(number:Int)	{

								self.number	=	number

								self.meaningOfLife	=	false

				}

				init()	{	//	this	is	a	delegating	initializer

								self.init(number:42)

								self.meaningOfLife	=	true

				}

}

Moreover,	a	delegating	initializer	cannot	set	an	immutable	property	(a	let	variable)	at	all.
That	is	because	it	cannot	refer	to	the	property	until	after	it	has	called	the	other	initializer,
and	at	that	point	the	instance	is	fully	formed	—	initialization	proper	is	over,	and	the	door
for	initialization	of	immutable	properties	has	closed.	Thus,	the	preceding	code	would	be
illegal	if	meaningOfLife	were	declared	with	let,	because	the	second	initializer	is	a
delegating	initializer	and	cannot	set	an	immutable	property.

Be	careful	not	to	delegate	recursively!	If	you	tell	an	initializer	to	delegate	to	itself,	or	if
you	create	a	vicious	circle	of	delegating	initializers,	the	compiler	won’t	stop	you	(I	regard
that	as	a	bug),	but	your	running	app	will	hang.	For	example,	don’t	say	this:

struct	Digit	{	//	do	not	do	this!

				var	number	:	Int	=	100

				init(value:Int)	{

								self.init(number:value)

				}

				init(number:Int)	{

								self.init(value:number)

				}

}

Failable	initializers

An	initializer	can	return	an	Optional	wrapping	the	new	instance.	In	this	way,	nil	can	be
returned	to	signal	failure.	An	initializer	that	behaves	this	way	is	a	failable	initializer.	To
mark	an	initializer	as	failable	when	declaring	it,	put	a	question	mark	(or,	for	an	implicitly
unwrapped	Optional,	an	exclamation	mark)	after	the	keyword	init.	If	your	failable
initializer	needs	to	return	nil,	explicitly	write	return	nil.	It	is	up	to	the	caller	to	test	the
resulting	Optional	for	equivalence	with	nil,	unwrap	it,	and	so	forth,	as	with	any	Optional.

Here’s	a	version	of	Dog	with	an	initializer	that	returns	an	implicitly	unwrapped	Optional,
returning	nil	if	the	name:	or	license:	arguments	are	invalid:

class	Dog	{

				let	name	:	String

				let	license	:	Int

				init!(name:String,	license:Int)	{

								self.name	=	name

								self.license	=	license

								if	name.isEmpty	{

												return	nil

								}

								if	license	<=	0	{

												return	nil

								}

				}

}

The	resulting	value	is	typed	as	Dog!	—	the	Optional	is	implicitly	unwrapped	—	so	the
caller	who	instantiates	a	Dog	in	this	way	can	use	the	result	directly	as	if	it	were	simply	a
Dog	instance.	But	if	nil	was	returned,	any	attempt	on	the	caller’s	part	to	access	members
of	the	Dog	instance	will	result	in	a	crash	at	runtime:

let	fido	=	Dog(name:"",	license:0)

let	name	=	fido.name	//	crash

Cocoa	and	Objective-C	conventionally	return	nil	from	initializers	to	signal	failure;	the
API	for	such	initializers	has	been	hand-tweaked	as	a	Swift	failable	initializer	if
initialization	really	might	fail.	For	example,	the	UIImage	initializer	init?(named:)	is	a
failable	initializer,	because	there	might	be	no	image	with	the	given	name.	It	is	not
implicitly	unwrapped,	so	the	resulting	value	is	a	UIImage?	and	must	be	unwrapped	before
you	can	use	it.	(Most	Objective-C	initializers,	however,	are	not	bridged	as	failable
initializers,	even	though	in	theory	any	Objective-C	initializer	might	return	nil.)

Properties
A	property	is	a	variable	—	one	that	happens	to	be	declared	at	the	top	level	of	an	object
type	declaration.	This	means	that	everything	said	about	variables	in	Chapter	3	applies.	A
property	has	a	fixed	type;	it	can	be	declared	with	var	or	let;	it	can	be	stored	or	computed;
it	can	have	setter	observers.	An	instance	property	can	also	be	declared	lazy.

A	stored	instance	property	must	be	given	an	initial	value.	But,	as	I	explained	a	moment
ago,	this	doesn’t	have	to	be	through	assignment	in	the	declaration;	it	can	be	through	an
initializer	instead.	Setter	observers	are	not	called	during	initialization	of	properties.

Code	that	initializes	a	property	cannot	fetch	an	instance	property	or	call	an	instance
method.	Such	behavior	would	require	a	reference,	explicit	or	implicit,	to	self;	and	during
initialization,	there	is	no	self	yet	—	self	is	exactly	what	we	are	in	the	process	of
initializing.	Making	this	mistake	can	result	in	some	of	Swift’s	most	perplexing	compile

error	messages.	For	example,	this	is	illegal	(and	removing	the	explicit	references	to	self
doesn’t	make	it	legal):

class	Moi	{

				let	first	=	"Matt"

				let	last	=	"Neuburg"

				let	whole	=	self.first	+	"	"	+	self.last	//	compile	error

}

One	solution	in	that	situation	would	be	to	make	whole	a	computed	property:
class	Moi	{

				let	first	=	"Matt"

				let	last	=	"Neuburg"

				var	whole	:	String	{

								return	self.first	+	"	"	+	self.last

				}

}

That’s	legal	because	the	computation	won’t	actually	be	performed	until	after	self	exists.
Another	solution	is	to	declare	whole	as	lazy:

class	Moi	{

				let	first	=	"Matt"

				let	last	=	"Neuburg"

				lazy	var	whole	:	String	=	self.first	+	"	"	+	self.last

}

Again,	that’s	legal	because	the	reference	to	self	won’t	be	performed	until	after	self
exists.	Similarly,	a	property	initializer	can’t	call	an	instance	method,	but	a	computed
property	can,	and	so	can	a	lazy	property.

As	I	demonstrated	in	Chapter	3,	a	variable’s	initializer	can	consist	of	multiple	lines	of
code	if	you	write	it	as	a	define-and-call	anonymous	function.	If	this	variable	is	an	instance
property,	and	if	that	code	is	to	refer	to	other	instance	properties	or	instance	methods,	the
variable	must	be	declared	lazy:

class	Moi	{

				let	first	=	"Matt"

				let	last	=	"Neuburg"

				lazy	var	whole	:	String	=	{

								var	s	=	self.first

								s.appendContentsOf("	")

								s.appendContentsOf(self.last)

								return	s

				}()

}

If	a	property	is	an	instance	property	(the	default),	it	can	be	accessed	only	through	an
instance,	and	its	value	is	separate	for	each	instance.	For	example,	let’s	start	once	again
with	a	Dog	class:

class	Dog	{

				let	name	:	String

				let	license	:	Int

				init(name:String,	license:Int)	{

								self.name	=	name

								self.license	=	license

				}

}

Our	Dog	class	has	a	name	instance	property.	Then	we	can	make	two	different	Dog
instances	with	two	different	name	values,	and	we	can	access	each	Dog	instance’s	name
through	the	instance:

let	fido	=	Dog(name:"Fido",	license:1234)

let	spot	=	Dog(name:"Spot",	license:1357)

let	aName	=	fido.name	//	"Fido"

let	anotherName	=	spot.name	//	"Spot"

A	static/class	property,	on	the	other	hand,	is	accessed	through	the	type,	and	is	scoped	to
the	type,	which	usually	means	that	it	is	global	and	unique.	I’ll	use	a	struct	as	an	example:

struct	Greeting	{

				static	let	friendly	=	"hello	there"

				static	let	hostile	=	"go	away"

}

Now	code	elsewhere	can	fetch	the	values	of	Greeting.friendly	and	Greeting.hostile.
That	example	is	neither	artificial	nor	trivial;	immutable	static/class	properties	are	a
convenient	and	effective	way	to	supply	your	code	with	nicely	namespaced	constants.

Unlike	instance	properties,	static	properties	can	be	initialized	with	reference	to	one
another;	the	reason	is	that	static	property	initializers	are	lazy	(see	Chapter	3):

struct	Greeting	{

				static	let	friendly	=	"hello	there"

				static	let	hostile	=	"go	away"

				static	let	ambivalent	=	friendly	+	"	but	"	+	hostile

}

Notice	the	lack	of	self	in	that	code.	In	static/class	code,	self	means	the	type	itself.	I	like
to	use	self	explicitly	wherever	it	would	be	implicit,	but	here	I	can’t	use	it	without
arousing	the	ire	of	the	compiler	(I	regard	this	as	a	bug).	To	clarify	the	status	of	the	terms
friendly	and	hostile,	I	can	use	the	name	of	the	type,	just	as	any	other	code	would	do:

struct	Greeting	{

				static	let	friendly	=	"hello	there"

				static	let	hostile	=	"go	away"

				static	let	ambivalent	=	Greeting.friendly	+	"	but	"	+	Greeting.hostile

}

On	the	other	hand,	if	I	write	ambivalent	as	a	computed	property,	I	can	use	self:
struct	Greeting	{

				static	let	friendly	=	"hello	there"

				static	let	hostile	=	"go	away"

				static	var	ambivalent	:	String	{

								return	self.friendly	+	"	but	"	+	self.hostile

				}

}

On	the	other	other	hand,	I’m	not	allowed	to	use	self	when	the	initial	value	is	set	by	a
define-and-call	anonymous	function	(again,	I	regard	this	as	a	bug):

struct	Greeting	{

				static	let	friendly	=	"hello	there"

				static	let	hostile	=	"go	away"

				static	var	ambivalent	:	String	=	{

								return	self.friendly	+	"	but	"	+	self.hostile	//	compile	error

				}()

}

Methods
A	method	is	a	function	—	one	that	happens	to	be	declared	at	the	top	level	of	an	object	type
declaration.	This	means	that	everything	said	about	functions	in	Chapter	2	applies.

By	default,	a	method	is	an	instance	method.	This	means	that	it	can	be	accessed	only
through	an	instance.	Within	the	body	of	an	instance	method,	self	is	the	instance.	To
illustrate,	let’s	continue	to	develop	our	Dog	class:

class	Dog	{

				let	name	:	String

				let	license	:	Int

				let	whatDogsSay	=	"Woof"

				init(name:String,	license:Int)	{

								self.name	=	name

								self.license	=	license

				}

				func	bark()	{

								print(self.whatDogsSay)

				}

				func	speak()	{

								self.bark()

								print("I'm	\(self.name)")

				}

}

Now	I	can	make	a	Dog	instance	and	tell	it	to	speak:
let	fido	=	Dog(name:"Fido",	license:1234)

fido.speak()	//	Woof	I'm	Fido

In	my	Dog	class,	the	speak	method	calls	the	instance	method	bark	by	way	of	self,	and
obtains	the	value	of	the	instance	property	name	by	way	of	self;	and	the	bark	instance
method	obtains	the	value	of	the	instance	property	whatDogsSay	by	way	of	self.	This	is
because	instance	code	can	use	self	to	refer	to	this	instance.	Such	code	can	omit	self	if
the	reference	is	unambiguous;	thus,	for	example,	I	could	have	written	this:

func	speak()	{

				bark()

				print("I'm	\(name)")

}

But	I	never	write	code	like	that	(except	by	accident).	Omitting	self,	in	my	view,	makes
the	code	harder	to	read	and	maintain;	the	loose	terms	bark	and	name	seem	mysterious	and
confusing.	Moreover,	sometimes	self	cannot	be	omitted.	For	example,	in	my
implementation	of	init(name:license:),	I	must	use	self	to	disambiguate	between	the
parameter	name	and	the	property	self.name.

A	static/class	method	is	accessed	through	the	type,	and	self	means	the	type.	I’ll	use	our
Greeting	struct	as	an	example:

struct	Greeting	{

				static	let	friendly	=	"hello	there"

				static	let	hostile	=	"go	away"

				static	var	ambivalent	:	String	{

								return	self.friendly	+	"	but	"	+	self.hostile

				}

				static	func	beFriendly()	{

								print(self.friendly)

				}

}

And	here’s	how	to	call	the	static	beFriendly	method:
Greeting.beFriendly()	//	hello	there

There	is	a	kind	of	conceptual	wall	between	static/class	members,	on	the	one	hand,	and
instance	members	on	the	other;	even	though	they	may	be	declared	within	the	same	object
type	declaration,	they	inhabit	different	worlds.	A	static/class	method	can’t	refer	to	“the
instance”	because	there	is	no	instance;	thus,	a	static/class	method	cannot	directly	refer	to
any	instance	properties	or	call	any	instance	methods.	An	instance	method,	on	the	other
hand,	can	refer	to	the	type	by	name,	and	can	thus	access	static/class	properties	and	can	call
static/class	methods.	(I’ll	talk	later	in	this	chapter	about	another	way	in	which	an	instance
method	can	refer	to	the	type.)

For	example,	let’s	return	to	our	Dog	class	and	grapple	with	the	question	of	what	dogs	say.

Presume	that	all	dogs	say	the	same	thing.	We’d	prefer,	therefore,	to	express	whatDogsSay
not	at	instance	level	but	at	class	level.	This	would	be	a	good	use	of	a	static	property.
Here’s	a	simplified	Dog	class	that	illustrates:

class	Dog	{

				static	var	whatDogsSay	=	"Woof"

				func	bark()	{

								print(Dog.whatDogsSay)

				}

}

Now	we	can	make	a	Dog	instance	and	tell	it	to	bark:
let	fido	=	Dog()

fido.bark()	//	Woof

THE	SECRET	LIFE	OF	INSTANCE	METHODS

Here’s	a	secret:	instance	methods	are	actually	static/class	methods.	For	example,	this	is	legal	(but	strange):
class	MyClass	{

				var	s	=	""

				func	store(s:String)	{

								self.s	=	s

				}

}

let	m	=	MyClass()

let	f	=	MyClass.store(m)	//	what	just	happened!?

Even	though	store	is	an	instance	method,	we	are	able	to	call	it	as	a	class	method	—	with	a	parameter	that	is	an
instance	of	this	class!	The	reason	is	that	an	instance	method	is	actually	a	curried	static/class	method	composed	of	two
functions	—	one	function	that	takes	an	instance,	and	another	function	that	takes	the	parameters	of	the	instance
method.	Thus,	after	that	code,	f	is	the	second	of	those	functions,	and	can	be	called	as	a	way	of	passing	a	parameter	to
the	store	method	of	the	instance	m:

f("howdy")

print(m.s)	//	howdy

Subscripts
A	subscript	is	an	instance	method	that	is	called	in	a	special	way	—	by	appending	square
brackets	to	an	instance	reference.	The	square	brackets	can	contain	arguments	to	be	passed
to	the	subscript	method.	You	can	use	this	feature	for	whatever	you	like,	but	it	is	suitable
particularly	for	situations	where	this	is	an	object	type	with	elements	that	can	be
appropriately	accessed	by	key	or	by	index	number.	I	have	already	described	(in	Chapter	3)
the	use	of	this	syntax	with	strings,	and	it	is	familiar	also	from	dictionaries	and	arrays;	you
can	use	square	brackets	with	strings	and	dictionaries	and	arrays	exactly	because	Swift’s
String	and	Dictionary	and	Array	types	declare	subscript	methods.

The	syntax	for	declaring	a	subscript	method	is	somewhat	like	a	function	declaration	and
somewhat	like	a	computed	property	declaration.	That’s	no	coincidence!	A	subscript	is	like
a	function	in	that	it	can	take	parameters:	arguments	can	appear	in	the	square	brackets
when	a	subscript	method	is	called.	A	subscript	is	like	a	computed	property	in	that	the	call
is	used	like	a	reference	to	a	property:	you	can	fetch	its	value	or	you	can	assign	into	it.

To	illustrate,	I’ll	write	a	struct	that	treats	an	integer	as	if	it	were	a	string,	returning	a	digit
that	can	be	specified	by	an	index	number	in	square	brackets;	for	simplicity,	I’m
deliberately	omitting	any	sort	of	error-checking:

struct	Digit	{

				var	number	:	Int

				init(_	n:Int)	{

								self.number	=	n

				}

				subscript(ix:Int)	->	Int	{	 	

								get	{	

												let	s	=	String(self.number)

												return	Int(String(s[s.startIndex.advancedBy(ix)]))!

								}

				}

}

After	the	keyword	subscript	we	have	a	parameter	list	stating	what	parameters	are	to
appear	inside	the	square	brackets;	by	default,	their	names	are	not	externalized.

Then,	after	the	arrow	operator,	we	have	the	type	of	value	that	is	passed	out	(when	the
getter	is	called)	or	in	(when	the	setter	is	called);	this	is	parallel	to	the	type	declared	for	a
computed	property,	even	though	the	syntax	with	the	arrow	operator	is	like	the	syntax	for
the	returned	value	in	a	function	declaration.

Finally,	we	have	curly	braces	whose	contents	are	exactly	like	those	of	a	computed
property.	You	can	have	get	and	curly	braces	for	the	getter,	and	set	and	curly	braces	for
the	setter.	If	there’s	a	getter	and	no	setter,	the	word	get	and	its	curly	braces	can	be
omitted.	The	setter	receives	the	new	value	as	newValue,	but	you	can	change	that	name
by	supplying	a	different	name	in	parentheses	after	the	word	set.

Here’s	an	example	of	calling	the	getter;	the	instance	with	appended	square	brackets
containing	the	arguments	is	used	just	as	if	you	were	getting	a	property	value:

var	d	=	Digit(1234)

let	aDigit	=	d[1]	//	2

Now	I’ll	expand	my	Digit	struct	so	that	its	subscript	method	includes	a	setter	(and	again
I’ll	omit	error-checking):

struct	Digit	{

				var	number	:	Int

				init(_	n:Int)	{

								self.number	=	n

				}

				subscript(ix:Int)	->	Int	{

								get	{

												let	s	=	String(self.number)

												return	Int(String(s[s.startIndex.advancedBy(ix)]))!

								}

								set	{

												var	s	=	String(self.number)

												let	i	=	s.startIndex.advancedBy(ix)

												s.replaceRange(i…i,	with:	String(newValue))

												self.number	=	Int(s)!

								}

				}

}

And	here’s	an	example	of	calling	the	setter;	the	instance	with	appended	square	brackets
containing	the	arguments	is	used	just	as	if	you	were	setting	a	property	value:

var	d	=	Digit(1234)

d[0]	=	2	//	now	d.number	is	2234

An	object	type	can	declare	multiple	subscript	methods,	provided	their	signatures
distinguish	them	as	different	functions.

Nested	Object	Types

An	object	type	may	be	declared	inside	an	object	type	declaration,	forming	a	nested	type:
class	Dog	{

				struct	Noise	{

								static	var	noise	=	"Woof"

				}

				func	bark()	{

								print(Dog.Noise.noise)

				}

}

A	nested	object	type	is	no	different	from	any	other	object	type,	but	the	rules	for	referring
to	it	from	the	outside	are	changed;	the	surrounding	object	type	acts	as	a	namespace,	and
must	be	referred	to	explicitly	in	order	to	access	the	nested	object	type:

Dog.Noise.noise	=	"Arf"

The	Noise	struct	is	thus	namespaced	inside	the	Dog	class.	This	namespacing	provides
clarity:	the	name	Noise	does	not	float	free,	but	is	explicitly	associated	with	the	Dog	class
to	which	it	belongs.	Namespacing	also	allows	more	than	one	Noise	struct	to	exist,	without
any	clash	of	names.	Swift	built-in	object	types	often	take	advantage	of	namespacing;	for
example,	the	String	struct	is	one	of	several	structs	that	contain	an	Index	struct,	with	no
clash	of	names.

(It	is	also	possible,	through	Swift’s	privacy	rules,	to	hide	a	nested	object	type,	in	such	a
way	that	it	cannot	be	referenced	from	the	outside	at	all.	This	is	useful	for	organization	and
encapsulation	when	one	object	type	needs	a	second	object	type	as	a	helper,	but	no	other
object	type	needs	to	know	about	the	second	object	type.	Privacy	is	discussed	in
Chapter	5.)

Instance	References
On	the	whole,	the	names	of	object	types	will	be	global,	and	you	will	be	able	to	refer	to
them	simply	by	using	their	names.	Instances,	however,	are	another	story.	Instances	must
be	deliberately	created,	one	by	one.	That	is	what	instantiation	is	for.	Once	you	have
created	an	instance,	you	can	cause	that	instance	to	persist,	by	storing	the	instance	in	a
variable	with	sufficient	lifetime;	using	that	variable	as	a	reference,	you	can	send	instance
messages	to	that	instance,	accessing	instance	properties	and	calling	instance	methods.

Direct	instantiation	of	an	object	type	is	the	act	of	creating	a	brand	new	instance	of	that
type,	directly,	yourself.	It	involves	you	calling	an	initializer.	In	many	cases,	though,	some
other	object	will	create	or	provide	the	instance	for	you.

A	simple	example	is	what	happens	when	you	manipulate	a	String,	like	this:
let	s	=	"Hello,	world"

let	s2	=	s.uppercaseString

In	that	code,	we	end	up	with	two	String	instances.	The	first	one,	s,	we	created	using	a
string	literal.	The	second	one,	s2,	was	created	for	us	when	we	accessed	the	first	string’s
uppercaseString	property.	Thus	we	have	two	instances,	and	they	will	persist
independently	as	long	as	our	references	to	them	persist;	but	we	didn’t	get	either	of	them	by
calling	an	initializer.

In	other	cases,	the	instance	you	are	interested	in	will	already	exist	in	some	persistent
fashion;	the	problem	will	then	be	to	find	a	way	of	getting	a	reference	to	that	instance.

Let’s	say,	for	example,	that	this	is	a	real-life	iOS	app.	You	will	certainly	have	a	root	view

controller,	which	will	be	an	instance	of	some	type	of	UIViewController.	Let’s	say	it’s	an
instance	of	the	ViewController	class.	Once	your	app	is	up	and	running,	this	instance
already	exists.	It	would	then	be	utterly	counterproductive	to	attempt	to	speak	to	the	root
view	controller	by	instantiating	the	ViewController	class:

let	theVC	=	ViewController()

All	that	code	does	is	to	make	a	second,	different	instance	of	the	ViewController	class,	and
your	messages	to	that	instance	will	be	wasted,	as	it	is	not	the	particular	already	existing
instance	that	you	wanted	to	talk	to.	That	is	a	very	common	beginner	mistake;	don’t	make
it.

Getting	a	reference	to	an	already	existing	instance	can	be,	of	itself,	an	interesting	problem.
Instantiation	is	definitely	not	how	to	do	it.	But	how	do	you	do	it?	Well,	it	depends.	In	this
particular	situation,	the	goal	is	to	obtain,	from	any	code,	a	reference	to	your	app’s	root
view	controller	instance.	I’ll	describe,	just	for	the	sake	of	the	example,	how	you	would	do
it.

Getting	a	reference	always	starts	with	something	you	already	have	a	reference	to.	Often,
this	will	be	a	class.	In	iOS	programming,	the	app	itself	is	an	instance,	and	there	is	a	class
that	holds	a	reference	to	that	instance	and	will	hand	it	to	you	whenever	you	ask	for	it.	That
class	is	the	UIApplication	class,	and	the	way	to	get	a	reference	to	the	app	instance	is	to
call	its	sharedApplication	class	method:

let	app	=	UIApplication.sharedApplication()

Now	we	have	a	reference	to	the	application	instance.	The	application	instance	has	a
keyWindow	property:

let	window	=	app.keyWindow

Now	we	have	a	reference	to	our	app’s	key	window.	That	window	owns	the	root	view
controller,	and	will	hand	us	a	reference	to	it,	as	its	own	rootViewController	property;	the
app’s	keyWindow	is	an	Optional,	so	to	get	at	its	rootViewController	we	must	unwrap	the
Optional:

let	vc	=	window?.rootViewController

And	voilà,	we	have	a	reference	to	our	app’s	root	view	controller.	To	obtain	the	reference	to
this	persistent	instance,	we	created,	in	effect,	a	chain	of	method	calls	and	properties
leading	from	the	known	to	the	unknown,	from	a	globally	available	class	to	the	particular
desired	instance:

let	app	=	UIApplication.sharedApplication()

let	window	=	app.keyWindow

let	vc	=	window?.rootViewController

Clearly,	we	can	write	that	chain	as	an	actual	chain,	using	repeated	dot-notation:
let	vc	=	UIApplication.sharedApplication().keyWindow?.rootViewController

You	don’t	have	to	chain	your	instance	messages	into	a	single	line	—	chaining	through
multiple	let	assignments	is	completely	efficient,	possibly	more	legible,	and	certainly
easier	to	debug	—	but	it’s	a	handy	formulaic	convenience	and	is	particularly	characteristic
of	dot-notated	object-oriented	languages	like	Swift.

The	general	problem	of	getting	a	reference	to	a	particular	already	existing	instance	is	so
interesting	and	pervasive	that	I	will	devote	much	of	Chapter	13	to	it.

Enums
An	enum	is	an	object	type	whose	instances	represent	distinct	predefined	alternative
values.	Think	of	it	as	a	list	of	known	possibilities.	An	enum	is	the	Swift	way	to	express	a
set	of	constants	that	are	alternatives	to	one	another.	An	enum	declaration	includes	case
statements.	Each	case	is	the	name	of	one	of	the	alternatives.	An	instance	of	an	enum	will
represent	exactly	one	alternative	—	one	case.

For	example,	in	my	Albumen	app,	different	instances	of	the	same	view	controller	can	list
any	of	four	different	sorts	of	music	library	contents:	albums,	playlists,	podcasts,	or
audiobooks.	The	view	controller’s	behavior	is	slightly	different	in	each	case.	So	I	need	a
sort	of	four-way	switch	that	I	can	set	once	when	the	view	controller	is	instantiated,	saying
which	sort	of	contents	this	view	controller	is	to	display.	That	sounds	like	an	enum!

Here’s	the	basic	declaration	for	that	enum;	I	call	it	Filter,	because	each	case	represents	a
different	way	of	filtering	the	contents	of	the	music	library:

enum	Filter	{

				case	Albums

				case	Playlists

				case	Podcasts

				case	Books

}

That	enum	doesn’t	have	an	initializer.	You	can	write	an	initializer	for	an	enum,	as	I’ll
demonstrate	in	a	moment;	but	there	is	a	default	mode	of	initialization	that	you’ll	probably
use	most	of	the	time	—	the	name	of	the	enum	followed	by	dot-notation	and	one	of	the
cases.	For	example,	here’s	how	to	make	an	instance	of	Filter	representing	the	Albums
case:

let	type	=	Filter.Albums

As	a	shortcut,	if	the	type	is	known	in	advance,	you	can	omit	the	name	of	the	enum;	the
bare	case	must	still	be	preceded	by	a	dot.	For	example:

let	type	:	Filter	=	.Albums

You	can’t	say	.Albums	just	anywhere	out	of	the	blue,	because	Swift	doesn’t	know	what
enum	it	belongs	to.	But	in	that	code,	the	variable	is	explicitly	declared	as	a	Filter,	so	Swift
knows	what	.Albums	means.	A	similar	thing	happens	when	passing	an	enum	instance	as
an	argument	in	a	function	call:

func	filterExpecter(type:Filter)	{}

filterExpecter(.Albums)

In	the	second	line,	I	create	an	instance	of	Filter	and	pass	it,	all	in	one	move,	without
having	to	include	the	name	of	the	enum.	That’s	because	Swift	knows	from	the	function
declaration	that	a	Filter	is	expected	here.

In	real	life,	the	space	savings	when	omitting	the	enum	name	can	be	considerable	—
especially	because,	when	talking	to	Cocoa,	the	enum	type	names	are	often	long.	For
example:

let	v	=	UIView()

v.contentMode	=	.Center

A	UIView’s	contentMode	property	is	typed	as	a	UIViewContentMode	enum.	Our	code	is
neater	and	simpler	because	we	don’t	have	to	include	the	name	UIViewContentMode

explicitly	here;	.Center	is	nicer	than	UIViewContentMode.Center.	But	either	is	legal.

Code	inside	an	enum	declaration	can	use	a	case	name	without	dot-notation.	The	enum	is	a
namespace;	code	inside	the	declaration	is	inside	the	namespace,	so	it	can	see	the	case
names	directly.

Instances	of	an	enum	with	the	same	case	are	regarded	as	equal.	Thus,	you	can	compare	an
enum	instance	for	equality	against	a	case.	Again,	the	type	of	enum	is	known	from	the	first
term	in	the	comparison,	so	the	second	term	can	omit	the	enum	name:

func	filterExpecter(type:Filter)	{

				if	type	==	.Albums	{

								print("it's	albums")

				}

}

filterExpecter(.Albums)	//	"it's	albums"

Case	With	Fixed	Value
Optionally,	when	you	declare	an	enum,	you	can	add	a	type	declaration.	The	cases	then	all
carry	with	them	a	fixed	(constant)	value	of	that	type.	If	the	type	is	an	integer	numeric	type,
the	values	can	be	implicitly	assigned,	and	will	start	at	zero	by	default.	In	this	code,
.Mannie	carries	a	value	of	0,	.Moe	carries	of	a	value	of	1,	and	so	on:

enum	PepBoy	:	Int	{

				case	Mannie

				case	Moe

				case	Jack

}

If	the	type	is	String,	the	implicitly	assigned	values	are	the	string	equivalents	of	the	case
names.	In	this	code,	.Albums	carries	a	value	of	"Albums",	and	so	on:

enum	Filter	:	String	{

				case	Albums

				case	Playlists

				case	Podcasts

				case	Books

}

Regardless	of	the	type,	you	can	assign	values	explicitly	as	part	of	the	case	declarations:
enum	Filter	:	String	{

				case	Albums	=	"Albums"

				case	Playlists	=	"Playlists"

				case	Podcasts	=	"Podcasts"

				case	Books	=	"Audiobooks"

}

The	types	attached	to	an	enum	in	this	way	are	limited	to	numbers	and	strings,	and	the
values	assigned	must	be	literals.	The	values	carried	by	the	cases	are	called	their	raw
values.	An	instance	of	this	enum	has	just	one	case,	so	it	has	just	one	fixed	raw	value,
which	can	be	retrieved	with	its	rawValue	property:

let	type	=	Filter.Albums

print(type.rawValue)	//	Albums

Having	each	case	carry	a	fixed	raw	value	can	be	quite	useful.	In	my	Albumen	app,	the
Filter	cases	really	do	have	those	String	values,	and	so	when	the	view	controller	wants	to
know	what	title	string	to	put	at	the	top	of	the	screen,	it	simply	retrieves	the	current	type’s
rawValue.

The	raw	value	associated	with	each	case	must	be	unique	within	this	enum;	the	compiler
will	enforce	this	rule.	Therefore,	the	mapping	works	the	other	way:	given	a	raw	value,	you

can	derive	the	case.	For	example,	you	can	instantiate	an	enum	that	has	raw	values	by	using
its	rawValue:	initializer:

let	type	=	Filter(rawValue:"Albums")

However,	the	attempt	to	instantiate	the	enum	in	this	way	might	fail,	because	you	might
supply	a	raw	value	corresponding	to	no	case;	therefore,	this	is	a	failable	initializer,	and	the
value	returned	is	an	Optional.	In	that	code,	type	is	not	a	Filter;	it’s	an	Optional	wrapping	a
Filter.	This	might	not	be	terribly	important,	however,	because	the	thing	you	are	most	likely
to	want	to	do	with	an	enum	is	to	compare	it	for	equality	with	a	case	of	the	enum;	you	can
do	that	with	an	Optional	without	unwrapping	it.	This	code	is	legal	and	works	correctly:

let	type	=	Filter(rawValue:"Albums")

if	type	==	.Albums	{	//	...

Case	With	Typed	Value
The	raw	values	discussed	in	the	preceding	section	are	fixed	in	advance:	a	given	case
carries	with	it	a	certain	raw	value,	and	that’s	that.	Alternatively,	you	can	construct	a	case
whose	constant	value	can	be	set	when	the	instance	is	created.	To	do	so,	do	not	declare	any
type	for	the	enum	as	a	whole;	instead,	append	a	tuple	type	to	the	name	of	the	case.	There
will	usually	be	just	one	type	in	this	tuple,	so	what	you’ll	write	will	look	like	a	type	name
in	parentheses.	Any	type	may	be	declared.	Here’s	an	example:

enum	Error	{

				case	Number(Int)

				case	Message(String)

				case	Fatal

}

That	code	means	that,	at	instantiation	time,	an	Error	instance	with	the	.Number	case	must
be	assigned	an	Int	value,	an	Error	instance	with	the	.Message	case	must	be	assigned	a
String	value,	and	an	Error	instance	with	the	.Fatal	case	can’t	be	assigned	any	value.
Instantiation	with	assignment	of	a	value	is	really	a	way	of	calling	an	initialization
function,	so	to	supply	the	value,	you	pass	it	as	an	argument	in	parentheses:

let	err	:	Error	=	.Number(4)

The	attached	value	here	is	called	an	associated	value.	What	you	are	supplying	here	is
actually	a	tuple,	so	it	can	contain	literal	values	or	value	references;	this	is	legal:

let	num	=	4

let	err	:	Error	=	.Number(num)

The	tuple	can	contain	more	than	one	value,	with	or	without	names;	if	the	values	have
names,	they	must	be	used	at	initialization	time:

enum	Error	{

				case	Number(Int)

				case	Message(String)

				case	Fatal(n:Int,	s:String)

}

let	err	:	Error	=	.Fatal(n:-12,	s:"Oh	the	horror")

An	enum	case	that	declares	an	associated	value	is	actually	an	initialization	function,	so
you	can	capture	a	reference	to	that	function	and	call	the	function	later:

let	fatalMaker	=	Error.Fatal

let	err	=	fatalMaker(n:-1000,	s:"Unbelievably	bad	error")

I’ll	explain	how	to	extract	the	associated	value	from	an	actual	instance	of	such	an	enum	in
Chapter	5.

At	the	risk	of	sounding	like	a	magician	explaining	his	best	trick,	I	will	now	reveal	how	an
Optional	works.	An	Optional	is	simply	an	enum	with	two	cases:	.None	and	.Some.	If	it	is
.None,	it	carries	no	associated	value,	and	it	equates	to	nil.	If	it	is	.Some,	it	carries	the
wrapped	value	as	its	associated	value.

Enum	Initializers
An	explicit	enum	initializer	must	do	what	default	initialization	does:	it	must	return	a
particular	case	of	this	enum.	To	do	so,	set	self	to	the	case.	In	this	example,	I’ll	expand	my
Filter	enum	so	that	it	can	be	initialized	with	a	numeric	argument:

enum	Filter	:	String	{

				case	Albums	=	"Albums"

				case	Playlists	=	"Playlists"

				case	Podcasts	=	"Podcasts"

				case	Books	=	"Audiobooks"

				static	var	cases	:	[Filter]	=	[Albums,	Playlists,	Podcasts,	Books]

				init(_	ix:Int)	{

								self	=	Filter.cases[ix]

				}

}

Now	there	are	three	ways	to	make	a	Filter	instance:
let	type1	=	Filter.Albums

let	type2	=	Filter(rawValue:"Playlists")!

let	type3	=	Filter(2)	//	.Podcasts

In	that	example,	we’ll	crash	in	the	third	line	if	the	caller	passes	a	number	that’s	out	of
range	(less	than	0	or	greater	than	3).	If	we	want	to	avoid	that,	we	can	make	this	a	failable
initializer	and	return	nil	if	the	number	is	out	of	range:

enum	Filter	:	String	{

				case	Albums	=	"Albums"

				case	Playlists	=	"Playlists"

				case	Podcasts	=	"Podcasts"

				case	Books	=	"Audiobooks"

				static	var	cases	:	[Filter]	=	[Albums,	Playlists,	Podcasts,	Books]

				init!(_	ix:Int)	{

								if	!(0…3).contains(ix)	{

												return	nil

								}

								self	=	Filter.cases[ix]

				}

}

An	enum	can	have	multiple	initializers.	Enum	initializers	can	delegate	to	one	another	by
saying	self.init(...).	The	only	requirement	is	that,	at	some	point	in	the	calling	chain,
self	must	be	set	to	a	case;	if	that	doesn’t	happen,	your	enum	won’t	compile.

In	this	example,	I	improve	my	Filter	enum	so	that	it	can	be	initialized	with	a	String	raw
value	without	having	to	say	rawValue:	in	the	call.	To	do	so,	I	declare	a	failable	initializer
with	a	string	parameter	that	delegates	to	the	built-in	failable	rawValue:	initializer:

enum	Filter	:	String	{

				case	Albums	=	"Albums"

				case	Playlists	=	"Playlists"

				case	Podcasts	=	"Podcasts"

				case	Books	=	"Audiobooks"

				static	var	cases	:	[Filter]	=	[Albums,	Playlists,	Podcasts,	Books]

				init!(_	ix:Int)	{

								if	!(0…3).contains(ix)	{

												return	nil

								}

								self	=	Filter.cases[ix]

				}

				init!(_	rawValue:String)	{

								self.init(rawValue:rawValue)

				}

}

Now	there	are	four	ways	to	make	a	Filter	instance:
let	type1	=	Filter.Albums

let	type2	=	Filter(rawValue:"Playlists")

let	type3	=	Filter(2)	//	.Podcasts

let	type4	=	Filter("Playlists")

Enum	Properties
An	enum	can	have	instance	properties	and	static	properties,	but	there’s	a	limitation:	an
enum	instance	property	can’t	be	a	stored	property.	This	makes	sense,	because	if	two
instances	of	the	same	case	could	have	different	stored	instance	property	values,	they
would	no	longer	be	equal	to	one	another	—	which	would	undermine	the	nature	and
purpose	of	enums.

Computed	instance	properties	are	fine,	however,	and	the	value	of	the	property	can	vary	by
rule	in	accordance	with	the	case	of	self.	In	this	example	from	my	real	code,	I’ve
associated	a	search	function	with	each	case	of	my	Filter	enum,	suitable	for	fetching	the
songs	of	that	type	from	the	music	library:

enum	Filter	:	String	{

				case	Albums	=	"Albums"

				case	Playlists	=	"Playlists"

				case	Podcasts	=	"Podcasts"

				case	Books	=	"Audiobooks"

				var	query	:	MPMediaQuery	{

								switch	self	{

								case	.Albums:

												return	MPMediaQuery.albumsQuery()

								case	.Playlists:

												return	MPMediaQuery.playlistsQuery()

								case	.Podcasts:

												return	MPMediaQuery.podcastsQuery()

								case	.Books:

												return	MPMediaQuery.audiobooksQuery()

								}

				}

If	an	enum	instance	property	is	a	computed	variable	with	a	setter,	other	code	can	assign	to
this	property.	However,	that	code’s	reference	to	the	enum	instance	must	be	a	variable
(var),	not	a	constant	(let).	If	you	try	to	assign	to	an	enum	instance	property	through	a	let
reference,	you’ll	get	a	compile	error.

Enum	Methods
An	enum	can	have	instance	methods	(including	subscripts)	and	static	methods.	Writing	an
enum	method	is	straightforward.	Here’s	an	example	from	my	own	code.	In	a	card	game,
the	cards	draw	themselves	as	rectangles,	ellipses,	or	diamonds.	I’ve	abstracted	the	drawing
code	into	an	enum	that	draws	itself	as	a	rectangle,	an	ellipse,	or	a	diamond,	depending	on
its	case:

enum	ShapeMaker	{

				case	Rectangle

				case	Ellipse

				case	Diamond

				func	drawShape	(p:	CGMutablePath,	inRect	r	:	CGRect)	->	()	{

								switch	self	{

								case	Rectangle:

												CGPathAddRect(p,	nil,	r)

								case	Ellipse:

												CGPathAddEllipseInRect(p,	nil,	r)

								case	Diamond:

												CGPathMoveToPoint(p,	nil,	r.minX,	r.midY)

												CGPathAddLineToPoint(p,	nil,	r.midX,	r.minY)

												CGPathAddLineToPoint(p,	nil,	r.maxX,	r.midY)

												CGPathAddLineToPoint(p,	nil,	r.midX,	r.maxY)

												CGPathCloseSubpath(p)

								}

				}

}

An	enum	instance	method	that	modifies	the	enum	itself	must	be	marked	as	mutating.	For
example,	an	enum	instance	method	might	assign	to	an	instance	property	of	self;	even
though	this	is	a	computed	property,	such	assignment	is	illegal	unless	the	method	is	marked
as	mutating.	An	enum	instance	method	can	even	change	the	case	of	self,	by	assigning	to
self;	but	again,	the	method	must	be	marked	as	mutating.	The	caller	of	a	mutating
instance	method	must	have	a	variable	reference	to	the	instance	(var),	not	a	constant
reference	(let).

In	this	example,	I	add	an	advance	method	to	my	Filter	enum.	The	idea	is	that	the	cases
constitute	a	sequence,	and	the	sequence	can	cycle.	By	calling	advance,	I	transform	a	Filter
instance	into	an	instance	of	the	next	case	in	the	sequence:

enum	Filter	:	String	{

				case	Albums	=	"Albums"

				case	Playlists	=	"Playlists"

				case	Podcasts	=	"Podcasts"

				case	Books	=	"Audiobooks"

				static	var	cases	:	[Filter]	=	[Albums,	Playlists,	Podcasts,	Books]

				mutating	func	advance()	{

								var	ix	=	Filter.cases.indexOf(self)!

								ix	=	(ix	+	1)	%	4

								self	=	Filter.cases[ix]

				}

}

And	here’s	how	to	call	it:
var	type	=	Filter.Books

type.advance()	//	type	is	now	Filter.Albums

(A	subscript	setter	is	always	considered	mutating	and	does	not	have	to	be	specially
marked.)

Why	Enums?
An	enum	is	a	switch	whose	states	have	names.	There	are	many	situations	where	that’s	a
desirable	thing.	You	could	implement	a	multistate	value	yourself;	for	example,	if	there	are
five	possible	states,	you	could	use	an	Int	whose	values	can	be	0	through	4.	But	then	you
would	have	to	provide	a	lot	of	additional	overhead	—	making	sure	that	no	other	values	are
used,	and	interpreting	those	numeric	values	correctly.	A	list	of	five	named	cases	is	much
better!	Even	when	there	are	only	two	states,	an	enum	is	often	better	than,	say,	a	mere	Bool,
because	the	enum’s	states	have	names.	With	a	Bool,	you	have	to	know	what	true	and
false	signify	in	a	particular	usage;	with	an	enum,	the	name	of	the	enum	and	the	names	of
its	cases	tell	you	its	significance.	Moreover,	you	can	store	extra	information	in	an	enum’s
associated	value	or	raw	value;	you	can’t	do	that	with	a	mere	Bool.

For	example,	in	my	LinkSame	app,	the	user	can	play	a	real	game	with	a	timer	or	a	practice
game	without	a	timer.	At	various	places	in	the	code,	I	need	to	know	which	type	of	game
this	is.	The	game	types	are	the	cases	of	an	enum:

enum	InterfaceMode	:	Int	{

				case	Timed	=	0

				case	Practice	=	1

}

The	current	game	type	is	stored	in	an	instance	property	interfaceMode,	whose	value	is	an
InterfaceMode.	Thus,	it’s	easy	to	set	the	game	type	by	case	name:

//	...	initialize	new	game…

self.interfaceMode	=	.Timed

And	it’s	easy	to	examine	the	game	type	by	case	name:
//	notify	of	high	score	only	if	user	is	not	just	practicing

if	self.interfaceMode	==	.Timed	{	//	...

So	what	are	the	raw	value	integers	for?	That’s	the	really	clever	part.	They	correspond	to
the	segment	indexes	of	a	UISegmentedControl	in	the	interface!	Whenever	I	change	the
interfaceMode	property,	a	setter	observer	also	selects	the	corresponding	segment	of	the
UISegmentedControl	(self.timedPractice),	simply	by	fetching	the	rawValue	of	the
current	enum	case:

var	interfaceMode	:	InterfaceMode	=	.Timed	{

				willSet	(mode)	{

								self.timedPractice?.selectedSegmentIndex	=	mode.rawValue

				}

}

Structs
A	struct	is	the	Swift	object	type	par	excellence.	An	enum,	with	its	fixed	set	of	cases,	is	a
reduced,	specialized	kind	of	object.	A	class,	at	the	other	extreme,	will	often	turn	out	to	be
overkill;	it	has	some	features	that	a	struct	lacks,	but	if	you	don’t	need	those	features,	a
struct	may	be	preferable.

Of	the	numerous	object	types	declared	in	the	Swift	header,	only	four	are	classes	(and	you
are	unlikely	to	encounter	any	of	them	consciously).	On	the	contrary,	nearly	all	the	built-in
object	types	provided	by	Swift	itself	are	structs.	A	String	is	a	struct.	An	Int	is	a	struct.	A
Range	is	a	struct.	An	Array	is	a	struct.	And	so	on.	That	shows	how	powerful	a	struct	can
be.

Struct	Initializers,	Properties,	and	Methods
A	struct	that	doesn’t	have	an	explicit	initializer	and	that	doesn’t	need	an	explicit	initializer
—	because	it	has	no	stored	properties,	or	because	all	its	stored	properties	are	assigned
default	values	as	part	of	their	declaration	—	automatically	gets	an	implicit	initializer	with
no	parameters,	init().	For	example:

struct	Digit	{

				var	number	=	42

}

That	struct	can	be	initialized	by	saying	Digit().	But	if	you	add	any	explicit	initializers	of
your	own,	you	lose	that	implicit	initializer:

struct	Digit	{

				var	number	=	42

				init(number:Int)	{

								self.number	=	number

				}

}

Now	you	can	say	Digit(number:42),	but	you	can’t	say	Digit()	any	longer.	Of	course,
you	can	add	an	explicit	initializer	that	does	the	same	thing:

struct	Digit	{

				var	number	=	42

				init()	{}

				init(number:Int)	{

								self.number	=	number

				}

}

Now	you	can	say	Digit()	once	again,	as	well	as	Digit(number:42).

A	struct	that	has	stored	properties	and	that	doesn’t	have	an	explicit	initializer
automatically	gets	an	implicit	initializer	derived	from	its	instance	properties.	This	is	called
the	memberwise	initializer.	For	example:

struct	Digit	{

				var	number	:	Int	//	can	use	"let"	here

}

That	struct	is	legal	—	indeed,	it	is	legal	even	if	the	number	property	is	declared	with	let
instead	of	var	—	even	though	it	seems	we	have	not	fulfilled	the	contract	requiring	us	to
initialize	all	stored	properties	in	their	declaration	or	in	an	initializer.	The	reason	is	that	this
struct	automatically	has	a	memberwise	initializer	which	does	initialize	all	its	properties.	In
this	case,	the	memberwise	initializer	is	called	init(number:).

The	memberwise	initializer	exists	even	for	var	stored	properties	that	are	assigned	a	default
value	in	their	declaration;	thus,	this	struct	has	a	memberwise	initializer	init(number:),	in
addition	to	its	implicit	init()	initializer:

struct	Digit	{

				var	number	=	42

}

But	if	you	add	any	explicit	initializers	of	your	own,	you	lose	the	memberwise	initializer
(though	of	course	you	can	write	an	explicit	initializer	that	does	the	same	thing).

If	a	struct	has	any	explicit	initializers,	then	they	must	fulfill	the	contract	that	all	stored
properties	must	be	initialized	either	by	direct	initialization	in	the	declaration	or	by	all
initializers.	If	a	struct	has	multiple	explicit	initializers,	they	can	delegate	to	one	another	by
saying	self.init(...).

A	struct	can	have	instance	properties	and	static	properties,	and	they	can	be	stored	or
computed	variables.	If	other	code	wants	to	set	a	property	of	a	struct	instance,	its	reference
to	that	instance	must	be	a	variable	(var),	not	a	constant	(let).

A	struct	can	have	instance	methods	(including	subscripts)	and	static	methods.	If	an
instance	method	sets	a	property,	it	must	be	marked	as	mutating,	and	the	caller’s	reference
to	the	struct	instance	must	be	a	variable	(var),	not	a	constant	(let).	A	mutating	instance
method	can	even	replace	this	instance	with	another	instance,	by	setting	self	to	a	different
instance	of	the	same	struct.	(A	subscript	setter	is	always	considered	mutating	and	does	not
have	to	be	specially	marked.)

Struct	As	Namespace
I	very	often	use	a	degenerate	struct	as	a	handy	namespace	for	constants.	I	call	such	a	struct
“degenerate”	because	it	consists	entirely	of	static	members;	I	don’t	intend	to	use	this
object	type	to	make	any	instances.	Nevertheless,	there	is	absolutely	nothing	wrong	with
this	use	of	a	struct.

For	example,	let’s	say	I’m	going	to	be	storing	user	preference	information	in	Cocoa’s
NSUserDefaults.	NSUserDefaults	is	a	kind	of	dictionary:	each	item	is	accessed	through	a
key.	The	keys	are	typically	strings.	A	common	programmer	mistake	is	to	write	out	these
string	keys	literally	every	time	a	key	is	used;	if	you	then	misspell	a	key	name,	there’s	no
penalty	at	compile	time,	but	your	code	will	mysteriously	fail	to	work	correctly.	The	proper
approach	is	to	embody	these	keys	as	constant	strings	and	use	the	names	of	the	strings;	that
way,	if	you	make	a	mistake	typing	the	name	of	a	string,	the	compiler	can	catch	you.	A
struct	with	static	members	is	a	great	way	to	define	those	constant	strings	and	clump	their
names	into	a	namespace:

struct	Default	{

				static	let	Rows	=	"CardMatrixRows"

				static	let	Columns	=	"CardMatrixColumns"

				static	let	HazyStripy	=	"HazyStripy"

}

That	code	means	that	I	can	now	refer	to	an	NSUserDefaults	key	with	a	name,	such	as
Default.HazyStripy.

If	a	struct	declares	static	members	whose	values	are	instances	of	the	same	struct	type,	you
can	omit	the	struct	name	when	supplying	a	static	member	where	an	instance	of	this	struct

type	is	expected	—	as	if	the	struct	were	an	enum:
struct	Thing	{

				var	rawValue	:	Int	=	0

				static	var	One	:	Thing	=	Thing(rawValue:1)

				static	var	Two	:	Thing	=	Thing(rawValue:2)

}

let	thing	:	Thing	=	.One	//	no	need	to	say	Thing.One	here

The	example	is	artificial,	but	the	situation	is	not;	many	Objective-C	enums	are	bridged	to
Swift	as	this	kind	of	struct	(and	I’ll	talk	about	them	later	in	this	chapter).

Classes
A	class	is	similar	to	a	struct,	with	the	following	key	differences:

Reference	type

Classes	are	reference	types.	This	means,	among	other	things,	that	a	class	instance	has
two	remarkable	features	that	are	not	true	of	struct	instances	or	enum	instances:

Mutability

A	class	instance	is	mutable	in	place.	Even	if	your	reference	to	an	instance	of	a	class	is
a	constant	(let),	you	can	change	the	value	of	an	instance	property	through	that
reference.	An	instance	method	of	a	class	never	has	to	be	marked	mutating	(and
cannot	be).

Multiple	references

When	a	given	instance	of	a	class	is	assigned	to	multiple	variables	or	passed	as
argument	to	a	function,	you	get	multiple	references	to	one	and	the	same	object.

Inheritance

A	class	can	have	a	superclass.	A	class	that	has	a	superclass	is	a	subclass	of	that
superclass.	Class	types	can	thus	form	a	hierarchical	tree.

In	Objective-C,	classes	are	the	only	object	type.	Some	built-in	Swift	struct	types	are
magically	bridged	to	Objective-C	class	types,	but	your	custom	struct	types	don’t	have	that
magic.	Thus,	when	programming	iOS	with	Swift,	a	primary	reason	for	declaring	a	class,
rather	than	a	struct,	is	as	a	form	of	interchange	with	Objective-C	and	Cocoa.

Value	Types	and	Reference	Types
A	major	difference	between	enums	and	structs,	on	the	one	hand,	and	classes,	on	the	other
hand,	is	that	enums	and	structs	are	value	types,	whereas	classes	are	reference	types.

A	value	type	is	not	mutable	in	place.	In	practice,	this	means	that	you	can’t	change	the
value	of	an	instance	property	of	a	value	type.	It	looks	like	you	can	do	it,	but	in	reality,	you
can’t.	For	example,	consider	a	struct.	A	struct	is	a	value	type:

struct	Digit	{

				var	number	:	Int

				init(_	n:Int)	{

								self.number	=	n

				}

}

Now,	it	looks	as	if	you	can	change	a	Digit’s	number	property.	That,	after	all,	is	the	whole
purpose	of	declaring	that	property	as	a	var;	and	Swift’s	syntax	of	assignment	would
certainly	lead	us	to	believe	that	changing	a	Digit’s	number	is	possible:

var	d	=	Digit(123)

d.number	=	42

But	in	reality,	in	that	code,	we	are	not	changing	the	number	property	of	this	Digit	instance;
we	are,	in	fact,	making	a	different	Digit	instance	and	replacing	the	first	one.	To	see	that
this	is	true,	add	a	setter	observer:

var	d	:	Digit	=	Digit(123)	{

				didSet	{

								print("d	was	set")

				}

}

d.number	=	42	//	"d	was	set"

In	general,	then,	when	you	change	an	instance	value	type,	you	are	actually	replacing	that
instance	with	another	instance.	That	explains	why	it	is	impossible	to	mutate	a	value	type
instance	if	the	reference	to	that	instance	is	declared	with	let.	As	you	know,	an	initialized
variable	declared	with	let	cannot	be	assigned	to.	If	that	variable	refers	to	a	value	type
instance,	and	that	value	type	instance	has	a	property,	and	we	try	to	assign	to	that	property,
even	if	the	property	is	declared	with	var,	the	compiler	will	stop	us:

struct	Digit	{

				var	number	:	Int

				init(_	n:Int)	{

								self.number	=	n

				}

}

let	d	=	Digit(123)

d.number	=	42	//	compile	error

The	reason	is	that	this	change	would	require	us	to	replace	the	Digit	instance	inside	the	d
shoebox.	But	we	can’t	replace	the	Digit	instance	pointed	to	by	d	with	another	Digit
instance,	because	that	would	mean	assigning	into	d	—	which	the	let	declaration	forbids.

That,	in	turn,	is	why	an	instance	method	of	a	struct	or	enum	that	sets	a	property	of	the
instance	must	be	marked	explicitly	with	the	mutating	keyword.	For	example:

struct	Digit	{

				var	number	:	Int

				init(_	n:Int)	{

								self.number	=	n

				}

				mutating	func	changeNumberTo(n:Int)	{

								self.number	=	n

				}

}

Without	the	mutating	keyword,	that	code	won’t	compile.	The	mutating	keyword	assures
the	compiler	that	you	understand	what’s	really	happening	here:	if	that	method	is	called,	it
replaces	the	instance.	The	result	is	that	this	method	can	be	called	only	on	a	reference
declared	with	var,	not	let:

let	d	=	Digit(123)

d.changeNumberTo(42)	//	compile	error

None	of	what	I’ve	just	said,	however,	applies	to	class	instances!	Class	instances	are
reference	types,	not	value	types.	An	instance	property	of	a	class,	to	be	settable,	must	be
declared	with	var,	obviously;	but	the	reference	to	a	class	instance	does	not	have	to	be
declared	with	var	in	order	to	set	that	property	through	that	reference:

class	Dog	{

				var	name	:	String	=	"Fido"

}

let	rover	=	Dog()

rover.name	=	"Rover"	//	fine

In	the	last	line	of	that	code,	the	class	instance	pointed	to	by	rover	is	being	mutated	in
place.	No	implicit	assignment	to	rover	is	involved,	and	so	the	let	declaration	is
powerless	to	prevent	the	mutation.	A	setter	observer	on	a	Dog	variable	is	not	called	when
a	property	is	set:

var	rover	:	Dog	=	Dog()	{

				didSet	{

								print("did	set	rover")

				}

}

rover.name	=	"Rover"	//	nothing	in	console

The	setter	observer	would	be	called	if	we	were	to	set	rover	explicitly	(to	another	Dog
instance),	but	it	is	not	called	merely	because	we	change	a	property	of	the	Dog	instance
already	pointed	to	by	rover.

Those	examples	involve	a	declared	variable	reference.	Exactly	the	same	difference
between	a	value	type	and	a	reference	type	may	be	seen	with	a	parameter	of	a	function	call.
The	compiler	will	stop	us	in	our	tracks	if	we	try	to	assign	into	an	enum	parameter’s
instance	property	or	a	struct	parameter’s	instance	property.	This	doesn’t	compile:

func	digitChanger(d:Digit)	{

				d.number	=	42	//	compile	error

}

To	make	that	code	compile,	we	must	declare	the	parameter	with	var:
func	digitChanger(var	d:Digit)	{

				d.number	=	42

}

But	this	compiles	even	without	the	var	declaration:
func	dogChanger(d:Dog)	{

				d.name	=	"Rover"

}

The	underlying	reason	for	these	differences	between	value	types	and	reference	types	is
that,	with	a	reference	type,	there	is	in	effect	a	concealed	level	of	indirection	between	your
reference	to	the	instance	and	the	instance	itself;	the	reference	actually	refers	to	a	pointer	to
the	instance.	This,	in	turn,	has	another	important	implication:	it	means	that	when	a	class
instance	is	assigned	to	a	variable	or	passed	as	an	argument	to	a	function,	you	can	wind	up
with	multiple	references	to	the	same	object.	That	is	not	true	of	structs	and	enums.	When	an
enum	instance	or	a	struct	instance	is	assigned	to	a	variable,	or	passed	to	or	from	a
function,	what	is	assigned	or	passed	is	essentially	a	new	copy	of	that	instance.	But	when	a
class	instance	is	assigned	to	a	variable,	or	passed	to	or	from	a	function,	what	is	assigned	or
passed	is	a	reference	to	the	same	instance.

To	prove	it,	I’ll	assign	one	reference	to	another	and	then	mutate	the	second	reference	—
and	then	I’ll	examine	what	happened	to	the	first	reference.	Let’s	start	with	the	struct:

var	d	=	Digit(123)

print(d.number)	//	123

var	d2	=	d	//	assignment!

d2.number	=	42

print(d.number)	//	123

In	that	code,	we	changed	the	number	property	of	d2,	a	struct	instance;	but	nothing
happened	to	the	number	property	of	d.	Now	let’s	try	the	class:

var	fido	=	Dog()

print(fido.name)	//	Fido

var	rover	=	fido	//	assignment!

rover.name	=	"Rover"

print(fido.name)	//	Rover

In	that	code,	we	changed	the	name	property	of	rover,	a	class	instance	—	and	the	name
property	of	fido	was	changed	as	well!	That’s	because,	after	the	assignment	in	the	third
line,	fido	and	rover	refer	to	one	and	the	same	instance.	When	an	enum	or	struct	instance

is	assigned,	it	is	effectively	copied;	a	fresh,	separate	instance	is	created.	But	when	a	class
instance	is	assigned,	you	get	a	new	reference	to	the	same	instance.

The	same	thing	is	true	of	parameter	passing.	Let’s	start	with	the	struct:
func	digitChanger(var	d:Digit)	{

				d.number	=	42

}

var	d	=	Digit(123)

print(d.number)	//	123

digitChanger(d)

print(d.number)	//	123

We	passed	our	Digit	struct	instance	d	to	the	function	digitChanger,	which	set	the	number
property	of	its	local	parameter	d	to	42.	Nevertheless,	the	number	property	of	our	Digit	d
remains	123.	That’s	because	the	Digit	that	arrives	inside	digitChanger	is	quite	literally	a
different	Digit.	The	act	of	passing	a	Digit	as	a	function	argument	creates	a	separate	copy.
But	with	a	class	instance,	what	is	passed	is	a	reference	to	the	same	instance:

func	dogChanger(d:Dog)	{	//	no	"var"	needed

				d.name	=	"Rover"

}

var	fido	=	Dog()

print(fido.name)	//	"Fido"

dogChanger(fido)

print(fido.name)	//	"Rover"

The	change	made	to	d	inside	the	function	dogChanger	affected	our	Dog	instance	fido!
Handing	a	class	instance	to	a	function	does	not	copy	that	instance;	it	is	more	like	lending
that	instance	to	the	function.

The	ability	to	generate	multiple	references	to	the	same	instance	is	significant	particularly
in	a	world	of	object-based	programming,	where	objects	persist	and	can	have	properties
that	persist	along	with	them.	If	object	A	and	object	B	are	both	long-lived	objects,	and	if
they	both	have	a	Dog	property	(where	Dog	is	a	class),	and	if	they	have	each	been	handed	a
reference	to	one	and	the	same	Dog	instance,	then	either	object	A	or	object	B	can	mutate	its
Dog,	and	this	mutation	will	affect	the	other’s	Dog.	You	can	thus	be	holding	on	to	an
object,	only	to	discover	that	it	has	been	mutated	by	someone	else	behind	your	back.	The
problem	is	even	more	acute	in	a	multithreaded	app,	where	one	and	the	same	object	can	be
mutated	differently,	in	place,	by	two	different	threads.	None	of	these	issues	arise	with	a
value	type;	this	difference	can,	indeed,	be	an	important	reason	for	preferring	a	struct	to	a
class	when	you’re	designing	an	object	type.

The	fact	that	class	instances	are	reference	types	can	thus	be	bad.	But	it	is	also	good!	It’s
good	because	it	means	that	passing	a	class	instance	is	simple:	all	you’re	doing	is	passing	a
pointer.	No	matter	how	big	and	complicated	a	class	instance	may	be,	no	matter	how	many
properties	it	may	have	containing	vast	amounts	of	data,	passing	the	instance	is	incredibly
fast	and	efficient,	because	no	new	data	is	generated.	Moreover,	the	extended	lifetime	of	a
class	instance,	as	it	passed	around,	can	be	crucial	to	its	functionality	and	its	integrity;	a
UIViewController	needs	to	be	a	class,	not	a	struct,	because	an	individual
UIViewController	instance,	no	matter	how	it	gets	passed	around,	must	continue	to
represent	the	same	single	real	and	persistent	view	controller	in	your	running	app’s	view
controller	hierarchy.

RECURSIVE	REFERENCES

Another	consequence	of	the	difference	between	value	types	and	reference	types	is	that	a	value	type	cannot	be
structurally	recursive:	an	instance	property	of	a	value	type	cannot	be	an	instance	of	the	same	type.	This	code	won’t
compile:

struct	Dog	{	//	compile	error

				var	puppy	:	Dog?

}

More	complex	circular	chains,	such	as	a	Dog	with	a	Puppy	property	and	a	Puppy	with	a	Dog	property,	are	similarly
illegal.	But	if	Dog	is	a	class	instead	of	a	struct,	there’s	no	error.	This	is	a	consequence	of	the	nature	of	memory
management	of	value	types	as	opposed	to	reference	types.	(I’ll	talk	more	about	reference	type	memory	management
in	Chapter	5,	and	Chapter	12	will	be	entirely	devoted	to	it.)

In	Swift	2.0	an	enum	case’s	associated	value	can	be	an	instance	of	that	enum,	provided	the	case	(or	the	entire	enum)
is	marked	indirect:

enum	Node	{

				case	None(Int)

				indirect	case	Left(Int,	Node)

				indirect	case	Right(Int,	Node)

				indirect	case	Both(Int,	Node,	Node)

}

Subclass	and	Superclass
Two	classes	can	be	subclass	and	superclass	of	one	another.	For	example,	we	might	have	a
class	Quadruped	and	a	class	Dog	and	make	Quadruped	the	superclass	of	Dog.	A	class	may
have	many	subclasses,	but	a	class	can	have	only	one	immediate	superclass.	I	say
“immediate”	because	that	superclass	might	itself	have	a	superclass,	and	so	on	in	a	rising
chain,	until	we	get	to	the	ultimate	superclass,	called	the	base	class,	or	root	class.	Because
a	class	can	have	many	subclasses	but	only	one	superclass,	there	is	a	hierarchical	tree	of
subclasses,	each	branching	from	its	superclass,	and	so	on,	with	a	single	class,	the	base
class,	at	the	top.

As	far	as	the	Swift	language	itself	is	concerned,	there	is	no	requirement	that	a	class	should
have	any	superclass,	or,	if	it	does	have	a	superclass,	that	it	should	ultimately	be	descended
from	any	particular	base	class.	Thus,	a	Swift	program	can	have	many	classes	that	have	no
superclass,	and	it	can	have	many	independent	hierarchical	subclass	trees,	each	descended
from	a	different	base	class.

Cocoa,	however,	doesn’t	work	that	way.	In	Cocoa,	there	is	effectively	just	one	base	class
—	NSObject,	which	embodies	all	the	functionality	necessary	for	a	class	to	be	a	class	in	the
first	place	—	and	all	other	classes	are	subclasses,	at	some	level,	of	that	one	base	class.
Cocoa	thus	consists	of	one	huge	tree	of	hierarchically	arranged	classes,	even	before	you
write	a	single	line	of	code	or	create	any	classes	of	your	own.	We	can	imagine
diagramming	this	tree	as	an	outline.	And	in	fact	Xcode	will	show	you	this	outline
(Figure	4-1):	in	an	iOS	project	window,	choose	View	→	Navigators	→	Show	Symbol
Navigator	and	click	Hierarchical,	with	the	first	and	third	icons	in	the	filter	bar	selected
(blue).	The	Cocoa	classes	are	the	part	of	the	tree	descending	from	NSObject.

Figure	4-1.	Part	of	the	Cocoa	class	hierarchy	as	shown	in	Xcode

The	reason	for	having	a	superclass–subclass	relationship	in	the	first	place	is	to	allow
related	classes	to	share	functionality.	Suppose,	for	example,	we	have	a	Dog	class	and	a
Cat	class,	and	we	are	considering	declaring	a	walk	method	for	both	of	them.	We	might
reason	that	both	a	dog	and	a	cat	walk	in	pretty	much	the	same	way,	by	virtue	of	both	being
quadrupeds.	So	it	might	make	sense	to	declare	walk	as	a	method	of	the	Quadruped	class,
and	make	both	Dog	and	Cat	subclasses	of	Quadruped.	The	result	is	that	both	Dog	and	Cat
can	be	sent	the	walk	message,	even	if	neither	of	them	has	a	walk	method,	because	each	of
them	has	a	superclass	that	does	have	a	walk	method.	We	say	that	a	subclass	inherits	the
methods	of	its	superclass.

To	declare	that	a	certain	class	is	a	subclass	of	a	certain	superclass,	add	a	colon	and	the
superclass	name	after	the	class’s	name	in	its	declaration.	So,	for	example:

class	Quadruped	{

				func	walk	()	{

								print("walk	walk	walk")

				}

}

class	Dog	:	Quadruped	{}

class	Cat	:	Quadruped	{}

Now	let’s	prove	that	Dog	has	indeed	inherited	walk	from	Quadruped:
let	fido	=	Dog()

fido.walk()	//	walk	walk	walk

Observe	that,	in	that	code,	the	walk	message	can	be	sent	to	a	Dog	instance	just	as	if	the
walk	instance	method	were	declared	in	the	Dog	class,	even	though	the	walk	instance
method	is	in	fact	declared	in	a	superclass	of	Dog.	That’s	inheritance	at	work.

The	purpose	of	subclassing	is	not	merely	so	that	a	class	can	inherit	another	class’s

methods;	it’s	so	that	it	can	also	declare	methods	of	its	own.	Typically,	a	subclass	consists
of	the	methods	inherited	from	its	superclass	and	then	some.	If	Dog	has	no	methods	of	its
own,	after	all,	it’s	hard	to	see	why	it	should	exist	separately	from	Quadruped.	But	if	a	Dog
knows	how	to	do	something	that	not	every	Quadruped	knows	how	to	do	—	let’s	say,	bark
—	then	it	makes	sense	as	a	separate	class.	If	we	declare	bark	in	the	Dog	class,	and	walk	in
the	Quadruped	class,	and	make	Dog	a	subclass	of	Quadruped,	then	Dog	inherits	the	ability
to	walk	from	the	Quadruped	class	and	also	knows	how	to	bark:

class	Quadruped	{

				func	walk	()	{

								print("walk	walk	walk")

				}

}

class	Dog	:	Quadruped	{

				func	bark	()	{

								print("woof")

				}

}

Again,	let’s	prove	that	it	works:
let	fido	=	Dog()

fido.walk()	//	walk	walk	walk

fido.bark()	//	woof

Within	a	class,	it	is	a	matter	of	indifference	whether	that	class	has	an	instance	method
because	that	method	is	declared	in	that	class	or	because	the	method	is	declared	in	a
superclass	and	inherited.	A	message	to	self	works	equally	well	either	way.	In	this	code,
we	have	declared	a	barkAndWalk	instance	method	that	sends	two	messages	to	self,
without	regard	to	where	the	corresponding	methods	are	declared	(one	is	native	to	the
subclass,	one	is	inherited	from	the	superclass):

class	Quadruped	{

				func	walk	()	{

								print("walk	walk	walk")

				}

}

class	Dog	:	Quadruped	{

				func	bark	()	{

								print("woof")

				}

				func	barkAndWalk()	{

								self.bark()

								self.walk()

				}

}

And	here’s	proof	that	it	works:
let	fido	=	Dog()

fido.barkAndWalk()	//	woof	walk	walk	walk

It	is	also	permitted	for	a	subclass	to	redefine	a	method	inherited	from	its	superclass.	For
example,	perhaps	some	dogs	bark	differently	from	other	dogs.	We	might	have	a	class
NoisyDog,	for	instance,	that	is	a	subclass	of	Dog.	Dog	declares	bark,	but	NoisyDog	also
declares	bark,	and	defines	it	differently	from	how	Dog	defines	it.	This	is	called
overriding.	The	very	natural	rule	is	that	if	a	subclass	overrides	a	method	inherited	from	its
superclass,	then	when	the	corresponding	message	is	sent	to	an	instance	of	that	subclass,	it
is	the	subclass’s	version	of	that	method	that	is	called.

In	Swift,	when	you	override	something	inherited	from	a	superclass,	you	must	explicitly
acknowledge	this	fact	by	preceding	its	declaration	with	the	keyword	override.	So,	for
example:

class	Quadruped	{

				func	walk	()	{

								print("walk	walk	walk")

				}

}

class	Dog	:	Quadruped	{

				func	bark	()	{

								print("woof")

				}

}

class	NoisyDog	:	Dog	{

				override	func	bark	()	{

								print("woof	woof	woof")

				}

}

And	let’s	try	it:
let	fido	=	Dog()

fido.bark()	//	woof

let	rover	=	NoisyDog()

rover.bark()	//	woof	woof	woof

Observe	that	a	subclass	function	by	the	same	name	as	a	superclass’s	function	is	not
necessarily,	of	itself,	an	override.	Recall	that	Swift	can	distinguish	two	functions	with	the
same	name,	provided	they	have	different	signatures.	Those	are	different	functions,	and	so
an	implementation	of	one	in	a	subclass	is	not	an	override	of	the	other	in	a	superclass.	An
override	situation	exists	only	when	the	subclass	redefines	the	same	function	that	it	inherits
from	a	superclass	—	using	the	same	name,	including	the	external	parameter	names,	and
the	same	signature.

It	often	happens	that	we	want	to	override	something	in	a	subclass	and	yet	access	the	thing
overridden	in	the	superclass.	This	is	done	by	sending	a	message	to	the	keyword	super.
Our	bark	implementation	in	NoisyDog	is	a	case	in	point.	What	NoisyDog	really	does
when	it	barks	is	the	same	thing	Dog	does	when	it	barks,	but	more	times.	We’d	like	to
express	that	relationship	in	our	implementation	of	NoisyDog’s	bark.	To	do	so,	we	have
NoisyDog’s	bark	implementation	send	the	bark	message,	not	to	self	(which	would	be
circular),	but	to	super;	this	causes	the	search	for	a	bark	instance	method	implementation
to	start	in	the	superclass	rather	than	in	our	own	class:

class	Dog	:	Quadruped	{

				func	bark	()	{

								print("woof")

				}

}

class	NoisyDog	:	Dog	{

				override	func	bark	()	{

								for	_	in	1…3	{

												super.bark()

								}

				}

}

And	it	works:
let	fido	=	Dog()

fido.bark()	//	woof

let	rover	=	NoisyDog()

rover.bark()	//	woof	woof	woof

A	subscript	function	is	a	method.	If	a	superclass	declares	a	subscript,	the	subclass	can
declare	a	subscript	with	the	same	signature,	provided	it	designates	it	with	the	override
keyword.	To	call	the	superclass	subscript	implementation,	the	subclass	can	use	square
brackets	after	the	keyword	super	(e.g.	super[3]).

Along	with	methods,	a	subclass	also	inherits	its	superclass’s	properties.	Naturally,	the
subclass	may	also	declare	additional	properties	of	its	own.	It	is	possible	to	override	an
inherited	property	(with	some	restrictions	that	I’ll	talk	about	later).

A	class	declaration	can	prevent	the	class	from	being	subclassed	by	preceding	the	class
declaration	with	the	final	keyword.	A	class	declaration	can	prevent	a	class	member	from
being	overridden	by	a	subclass	by	preceding	the	member’s	declaration	with	the	final
keyword.

Class	Initializers
Initialization	of	a	class	instance	is	considerably	more	complicated	than	initialization	of	a
struct	or	enum	instance,	because	of	the	existence	of	class	inheritance.	The	chief	task	of	an
initializer	is	to	ensure	that	all	properties	have	an	initial	value,	thus	making	the	instance
well-formed	as	it	comes	into	existence;	and	an	initializer	may	have	other	tasks	to	perform
that	are	essential	to	the	initial	state	and	integrity	of	this	instance.	A	class,	however,	may
have	a	superclass,	which	may	have	properties	and	initializers	of	its	own.	Thus	we	must
somehow	ensure	that	when	a	subclass	is	initialized,	its	superclass’s	properties	are
initialized	and	the	tasks	of	its	initializers	are	performed	in	good	order,	in	addition	to
initializing	the	properties	and	performing	the	initializer	tasks	of	the	subclass	itself.

Swift	solves	this	problem	coherently	and	reliably	—	and	ingeniously	—	by	enforcing
some	clear	and	well-defined	rules	about	what	a	class	initializer	must	do.

Kinds	of	class	initializer

The	rules	begin	with	a	distinction	between	the	kinds	of	initializer	that	a	class	can	have:

Implicit	initializer

A	class	with	no	stored	properties,	or	with	stored	properties	all	of	which	are	initialized	as
part	of	their	declaration,	and	that	has	no	explicit	initializers,	has	an	implicit	initializer
init().

Designated	initializer

A	class	initializer,	by	default,	is	a	designated	initializer.	A	class	with	any	stored
properties	that	are	not	initialized	as	part	of	their	declaration	must	have	at	least	one
designated	initializer,	and	when	the	class	is	instantiated,	exactly	one	of	its	designated
initializers	must	be	called,	and	must	see	to	it	that	all	stored	properties	are	initialized.	A
designated	initializer	may	not	delegate	to	another	initializer	in	the	same	class;	it	is
illegal	for	a	designated	initializer	to	use	the	phrase	self.init(...).

Convenience	initializer

A	convenience	initializer	is	marked	with	the	keyword	convenience.	It	is	a	delegating
initializer;	it	must	contain	the	phrase	self.init(...).	Moreover,	a	convenience
initializer	must	delegate	to	a	designated	initializer:	when	it	says	self.init(...),	it
must	call	a	designated	initializer	in	the	same	class	—	or	else	it	must	call	another
convenience	initializer	in	the	same	class,	thus	forming	a	chain	of	convenience
initializers	which	ends	by	calling	a	designated	initializer	in	the	same	class.

Here	are	some	examples.	This	class	has	no	stored	properties,	so	it	has	an	implicit	init()

initializer:
class	Dog	{

}

let	d	=	Dog()

This	class’s	stored	properties	have	default	values,	so	it	has	an	implicit	init()	initializer
too:

class	Dog	{

				var	name	=	"Fido"

}

let	d	=	Dog()

This	class	has	stored	properties	without	default	values;	it	has	a	designated	initializer,	and
all	of	those	properties	are	initialized	in	that	designated	initializer:

class	Dog	{

				var	name	:	String

				var	license	:	Int

				init(name:String,	license:Int)	{

								self.name	=	name

								self.license	=	license

				}

}

let	d	=	Dog(name:"Rover",	license:42)

This	class	is	similar	to	the	previous	example,	but	it	also	has	two	convenience	initializers.
The	caller	doesn’t	have	to	supply	any	parameters,	because	a	convenience	initializer	with
no	parameters	calls	through	a	chain	of	convenience	initializers	ending	with	a	designated
initializer:

class	Dog	{

				var	name	:	String

				var	license	:	Int

				init(name:String,	license:Int)	{

								self.name	=	name

								self.license	=	license

				}

				convenience	init(license:Int)	{

								self.init(name:"Fido",	license:license)

				}

				convenience	init()	{

								self.init(license:1)

				}

}

let	d	=	Dog()

Note	that	the	rules	about	what	else	an	initializer	can	say	and	when	it	can	say	it,	as	I
described	them	earlier	in	this	chapter,	are	still	in	force.	A	designated	initializer	cannot,
except	in	order	to	initialize	a	property,	say	self	until	all	of	this	class’s	properties	have
been	initialized.	A	convenience	initializer	is	a	delegating	initializer,	so	it	cannot	say	self
until	after	it	has	called,	directly	or	indirectly,	a	designated	initializer	(and	cannot	set	an
immutable	property	at	all).

Subclass	initializers

Having	defined	and	distinguished	between	designated	initializers	and	convenience
initializers,	we	are	ready	for	the	rules	about	what	happens	with	regard	to	initializers	when
a	class	is	itself	a	subclass	of	some	other	class:

No	declared	initializers

If	a	subclass	doesn’t	have	to	have	any	initializers	of	its	own,	and	if	it	declares	no
initializers	of	its	own,	then	its	initializers	consist	of	the	initializers	inherited	from	its
superclass.

Convenience	initializers	only

If	a	subclass	doesn’t	have	to	have	any	initializers	of	its	own,	it	is	eligible	to	declare
convenience	initializers,	and	these	work	exactly	as	convenience	initializers	always	do,
because	inheritance	supplies	self	with	the	designated	initializers	that	the	convenience
initializers	must	call.

Designated	initializers

If	a	subclass	declares	any	designated	initializers	of	its	own,	the	entire	game	changes
drastically.	Now,	no	initializers	are	inherited!	The	existence	of	an	explicit	designated
initializer	blocks	initializer	inheritance.	The	only	initializers	the	subclass	now	has	are
the	initializers	that	you	explicitly	write.	(However,	there’s	an	exception,	which	I’ll	come
to	in	a	moment.)

Every	designated	initializer	in	the	subclass	now	has	an	extra	requirement:	it	must	call
one	of	the	superclass’s	designated	initializers,	by	saying	super.init(...).	Moreover,
the	rules	about	saying	self	continue	to	apply.	A	subclass	designated	initializer	must	do
things	in	this	order:

1.	 It	must	ensure	that	all	properties	of	this	class	(the	subclass)	are	initialized.
2.	 It	must	call	super.init(...),	and	the	initializer	that	it	calls	must	be	a	designated

initializer.
3.	 Only	then	may	this	initializer	say	self	for	any	other	reason	—	to	call	an	instance

method,	say,	or	to	access	an	inherited	property.

Convenience	initializers	in	the	subclass	are	still	subject	to	the	rules	I’ve	already
outlined.	They	must	call	self.init(...),	calling	a	designated	initializer	directly	or
(through	a	chain	of	convenience	initializers)	indirectly.	In	the	absence	of	inherited
initializers,	the	initializer	that	a	convenience	initializer	calls	must	be	explicitly	present
in	the	subclass.

WARNING

If	a	designated	initializer	doesn’t	call	super.init(...),	then	super.init()	is	called	implicitly	if	possible.	This	code
is	legal:

class	Cat	{

}

class	NamedCat	:	Cat	{

				let	name	:	String

				init(name:String)	{

								self.name	=	name

				}

}

In	my	view,	this	feature	of	Swift	is	a	mistake:	Swift	should	not	indulge	in	secret	behavior,	even	if	that	behavior	might
be	considered	“helpful.”	I	believe	that	that	code	should	not	compile;	a	designated	initializer	should	always	have	to
call	super.init(...)	explicitly.

Override	initializers

Superclass	initializers	can	be	overridden	in	the	subclass,	in	accordance	with	these
restrictions:

An	initializer	whose	signature	matches	a	convenience	initializer	of	the	superclass
must	be	a	convenience	initializer	and	is	not	marked	override.
An	initializer	whose	signature	matches	a	designated	initializer	of	the	superclass	can
be	a	designated	initializer	or	a	convenience	initializer,	and	must	be	marked
override.	The	superclass	designated	initializer	that	an	override	designated	initializer
calls	with	super.init(...)	can	be	the	one	that	it	overrides.

Generally,	if	a	subclass	has	any	designated	initializers,	no	initializers	are	inherited.	But
if	a	subclass	overrides	all	of	its	superclass’s	designated	initializers,	then	the	subclass
does	inherit	the	superclass’s	convenience	initializers.

Failable	initializers

A	failable	designated	initializer	cannot	say	return	nil	until	after	it	has	completed	all
of	its	own	initialization	duties.	Thus,	for	example,	a	failable	subclass	designated
initializer	must	see	to	it	that	all	the	subclass’s	properties	are	initialized	and	must	call
super.init(...)	before	it	can	say	return	nil.	(There	is	a	certain	delicious	irony	here:
before	it	can	tear	the	instance	down,	the	initializer	must	finish	building	the	instance	up.
But	this	is	necessary	in	order	to	ensure	that	the	superclass	is	given	a	coherent
opportunity	to	do	its	own	initialization.)

If	an	initializer	called	by	a	failable	initializer	is	failable,	the	calling	syntax	does	not
change,	and	no	additional	test	is	needed	—	if	a	called	failable	initializer	fails,	the	whole
initialization	process	will	fail	(and	will	be	aborted)	immediately.

A	failable	initializer	that	returns	an	implicitly	unwrapped	Optional	(init!)	is	treated
just	like	a	normal	initializer	(init)	for	purposes	of	overriding	and	delegation.	For	a
failable	initializer	that	returns	an	ordinary	Optional	(init?),	there	are	some	additional
restrictions:

init	can	override	init?,	but	not	vice	versa.
init?	can	call	init.
init	can	call	init?	by	saying	init	and	unwrapping	the	result	(with	an	exclamation
mark,	because	if	the	init?	fails,	you’ll	crash).

Here’s	a	meaningless	example,	just	to	show	the	legal	syntax:
class	A:NSObject	{

				init?(ok:Bool)	{

								super.init()									//	init?	can	call	init

				}

}

class	B:A	{

				override	init(ok:Bool)	{	//	init	can	override	init?

								super.init(ok:ok)!			//	init	can	call	init?	using	"!"

				}

}

TIP

At	no	time	can	a	subclass	initializer	set	a	constant	(let)	property	of	a	superclass.	This	is	because,	by	the	time	the
subclass	is	allowed	to	do	anything	other	than	initialize	its	own	properties	and	call	another	initializer,	the	superclass
has	finished	its	own	initialization	and	the	door	for	initializing	its	constants	has	closed.

Here	are	some	basic	examples.	We	start	with	a	class	whose	subclass	has	no	explicit
initializers	of	its	own:

class	Dog	{

				var	name	:	String

				var	license	:	Int

				init(name:String,	license:Int)	{

								self.name	=	name

								self.license	=	license

				}

				convenience	init(license:Int)	{

								self.init(name:"Fido",	license:license)

				}

}

class	NoisyDog	:	Dog	{

}

Given	that	code,	you	can	make	a	NoisyDog	like	this:
let	nd1	=	NoisyDog(name:"Fido",	license:1)

let	nd2	=	NoisyDog(license:2)

That	code	is	legal,	because	NoisyDog	inherits	its	superclass’s	initializers.	However,	you
can’t	make	a	NoisyDog	like	this:

let	nd3	=	NoisyDog()	//	compile	error

That	code	is	illegal.	Even	though	a	NoisyDog	has	no	properties	of	its	own,	it	has	no
implicit	init()	initializer;	its	initializers	are	its	inherited	initializers,	and	its	superclass,
Dog,	has	no	implicit	init()	initializer	to	inherit.

Now	here	is	a	class	whose	subclass’s	only	explicit	initializer	is	a	convenience	initializer:
class	Dog	{

				var	name	:	String

				var	license	:	Int

				init(name:String,	license:Int)	{

								self.name	=	name

								self.license	=	license

				}

				convenience	init(license:Int)	{

								self.init(name:"Fido",	license:license)

				}

}

class	NoisyDog	:	Dog	{

				convenience	init(name:String)	{

								self.init(name:name,	license:1)

				}

}

Observe	how	NoisyDog’s	convenience	initializer	fulfills	its	contract	by	calling
self.init(...)	to	call	a	designated	initializer	—	which	it	happens	to	have	inherited.
Given	that	code,	there	are	three	ways	to	make	a	NoisyDog,	just	as	you	would	expect:

let	nd1	=	NoisyDog(name:"Fido",	license:1)

let	nd2	=	NoisyDog(license:2)

let	nd3	=	NoisyDog(name:"Rover")

Next,	here	is	a	class	whose	subclass	declares	a	designated	initializer:
class	Dog	{

				var	name	:	String

				var	license	:	Int

				init(name:String,	license:Int)	{

								self.name	=	name

								self.license	=	license

				}

				convenience	init(license:Int)	{

								self.init(name:"Fido",	license:license)

				}

}

class	NoisyDog	:	Dog	{

				init(name:String)	{

								super.init(name:name,	license:1)

				}

}

NoisyDog’s	explicit	initializer	is	now	a	designated	initializer.	It	fulfills	its	contract	by
calling	a	designated	initializer	in	super.	NoisyDog	has	now	cut	off	inheritance	of	all
initializers;	the	only	way	to	make	a	NoisyDog	is	like	this:

let	nd1	=	NoisyDog(name:"Rover")

Finally,	here	is	a	class	whose	subclass	overrides	its	designated	initializers:
class	Dog	{

				var	name	:	String

				var	license	:	Int

				init(name:String,	license:Int)	{

								self.name	=	name

								self.license	=	license

				}

				convenience	init(license:Int)	{

								self.init(name:"Fido",	license:license)

				}

}

class	NoisyDog	:	Dog	{

				override	init(name:String,	license:Int)	{

								super.init(name:name,	license:license)

				}

}

NoisyDog	has	overridden	all	of	its	superclass’s	designated	initializers,	so	it	inherits	its
superclass’s	convenience	initializers.	There	are	thus	two	ways	to	make	a	NoisyDog:

let	nd1	=	NoisyDog(name:"Rover",	license:1)

let	nd2	=	NoisyDog(license:2)

Those	examples	illustrate	the	main	rules	that	you	should	keep	in	your	head.	You	probably
don’t	need	to	memorize	the	remaining	rules,	because	the	compiler	will	enforce	them,	and
will	keep	slapping	you	down	until	you	get	them	right.

Required	initializers

There’s	one	more	thing	to	know	about	class	initializers:	a	class	initializer	may	be	preceded
by	the	keyword	required.	This	means	that	a	subclass	may	not	lack	it.	This,	in	turn,	means
that	if	a	subclass	implements	designated	initializers,	thus	blocking	inheritance,	it	must
override	this	initializer.	Here’s	a	(rather	pointless)	example:

class	Dog	{

				var	name	:	String

				required	init(name:String)	{

								self.name	=	name

				}

}

class	NoisyDog	:	Dog	{

				var	obedient	=	false

				init(obedient:Bool)	{

								self.obedient	=	obedient

								super.init(name:"Fido")

				}

}	//	compile	error

That	code	won’t	compile.	init(name:)	is	marked	required;	thus,	our	code	won’t	compile
unless	we	inherit	or	override	init(name:)	in	NoisyDog.	But	we	cannot	inherit	it,	because,
by	implementing	the	NoisyDog	designated	initializer	init(obedient:),	we	have	blocked
inheritance.	Therefore	we	must	override	it:

class	Dog	{

				var	name	:	String

				required	init(name:String)	{

								self.name	=	name

				}

}

class	NoisyDog	:	Dog	{

					var	obedient	=	false

				init(obedient:Bool)	{

								self.obedient	=	obedient

								super.init(name:"Fido")

				}

				required	init(name:String)	{

								super.init(name:name)

				}

}

Observe	that	our	overridden	required	intializer	is	not	marked	with	override,	but	is
marked	with	required,	thus	guaranteeing	that	the	requirement	continues	drilling	down	to
any	further	subclasses.

I	have	explained	what	declaring	an	initializer	as	required	does,	but	I	have	not	explained
why	you’d	need	to	do	it.	I’ll	give	examples	later	in	this	chapter.

Surprises	from	Cocoa

The	initializer	inheritance	rules	can	cause	some	rude	surprises	to	pop	up	when	you’re
subclassing	one	of	Cocoa’s	classes.	For	example,	when	programming	iOS,	you	will	surely
declare	a	UIViewController	subclass.	Let’s	say	you	give	your	subclass	a	designated
initializer.	A	designated	initializer	in	the	superclass,	UIViewController,	is
init(nibName:bundle:),	so,	in	obedience	to	the	rules,	you	call	that	from	your	designated
initializer:

class	ViewController:	UIViewController	{

				init()	{

								super.init(nibName:"MyNib",	bundle:nil)

				}

}

So	far,	so	good;	but	you	are	then	surprised	to	find	that	code	elsewhere	that	makes	a
ViewController	instance	no	longer	compiles:

let	vc	=	ViewController(nibName:"MyNib",	bundle:nil)	//	compile	error

That	code	was	legal	until	you	wrote	your	designated	initializer;	now	it	isn’t.	The	reason	is
that	by	implementing	a	designated	initializer	in	your	subclass,	you	have	blocked	initializer
inheritance!	Your	ViewController	class	used	to	inherit	the	init(nibName:bundle:)
initializer	from	UIViewController;	now	it	doesn’t.	You	need	to	override	that	initializer	as
well,	even	if	all	your	implementation	does	is	to	call	the	overridden	initializer:

class	ViewController:	UIViewController	{

				init()	{

								super.init(nibName:"MyNib",	bundle:nil)

				}

				override	init(nibName:	String?,	bundle:	NSBundle?)	{

								super.init(nibName:nibName,	bundle:bundle)

				}

}

The	code	that	instantiates	ViewController	now	does	indeed	compile:
let	vc	=	ViewController(nibName:"MyNib",	bundle:nil)	//	fine

But	now	there’s	a	further	surprise:	ViewController	itself	doesn’t	compile!	The	reason	is
that	there	is	also	a	required	initializer	being	imposed	upon	ViewController,	and	you	must
implement	that	as	well.	You	didn’t	know	about	this	before,	because,	when	ViewController

had	no	explicit	initializers,	you	were	inheriting	the	required	initializer;	now	you’ve
blocked	inheritance.	Fortunately,	Xcode’s	Fix-It	feature	offers	to	supply	a	stub
implementation;	it	doesn’t	do	anything	(in	fact,	it	crashes	if	called),	but	it	satisfies	the
compiler:

required	init?(coder	aDecoder:	NSCoder)	{

				fatalError("init(coder:)	has	not	been	implemented")

}

I’ll	explain	later	in	this	chapter	how	this	required	initializer	is	imposed.

Class	Deinitializer
A	class,	and	only	a	class	(not	the	other	flavors	of	object	type),	can	have	a	deinitializer.
This	is	a	function	declared	with	the	keyword	deinit	followed	by	curly	braces	containing
the	function	body.	You	never	call	this	function	yourself;	it	is	called	by	the	runtime	when
an	instance	of	this	class	goes	out	of	existence.	If	a	class	has	a	superclass,	the	subclass’s
deinitializer	(if	any)	is	called	before	superclass’s	deinitializer	(if	any).

The	idea	of	a	deinitializer	is	that	you	might	want	to	perform	some	cleanup,	or	just	log	to
the	console	to	prove	to	yourself	that	your	instance	is	going	out	of	existence	in	good	order.
I’ll	take	advantage	of	deinitializers	when	I	discuss	memory	management	issues	in
Chapter	5.

Class	Properties	and	Methods
A	subclass	can	override	its	inherited	properties.	The	override	must	have	the	same	name
and	type	as	the	inherited	property,	and	must	be	marked	with	override.	(A	property	cannot
have	the	same	name	as	an	inherited	property	but	a	different	type,	as	there	is	no	way	to
distinguish	them.)	The	following	additional	rules	apply:

If	the	superclass	property	is	writable	(a	stored	property	or	a	computed	property	with	a
setter),	the	subclass’s	override	may	consist	of	adding	setter	observers	to	this	property.
Alternatively,	the	subclass’s	override	may	be	a	computed	variable.	In	that	case:

If	the	superclass	property	is	stored,	the	subclass’s	computed	variable	override	must
have	both	a	getter	and	a	setter.
If	the	superclass	property	is	computed,	the	subclass’s	computed	variable	override	must
reimplement	all	the	accessors	that	the	superclass	implements.	If	the	superclass	property
is	read-only	(it	has	just	a	getter),	the	override	can	add	a	setter.

The	overriding	property’s	functions	may	refer	to	—	and	may	read	from	and	write	to	—	the
inherited	property,	through	the	super	keyword.

A	class	can	have	static	members,	marked	static,	just	like	a	struct	or	an	enum.	It	can	also
have	class	members,	marked	class.	Both	static	and	class	members	are	inherited	by
subclasses	(as	static	and	class	members).

The	chief	difference	between	static	and	class	methods	from	the	programmer’s	point	of
view	is	that	a	static	method	cannot	be	overridden;	it	is	as	if	static	were	a	synonym	for
class	final.

Here,	for	example,	I’ll	use	a	static	method	to	express	what	dogs	say:
class	Dog	{

				static	func	whatDogsSay()	->	String	{

								return	"woof"

				}

				func	bark()	{

								print(Dog.whatDogsSay())

				}

}

A	subclass	now	inherits	whatDogsSay,	but	can’t	override	it.	No	subclass	of	Dog	may
contain	any	implementation	of	a	class	method	or	a	static	method	whatDogsSay	with	this
same	signature.

Now	I’ll	use	a	class	method	to	express	what	dogs	say:
class	Dog	{

				class	func	whatDogsSay()	->	String	{

								return	"woof"

				}

				func	bark()	{

								print(Dog.whatDogsSay())

				}

}

A	subclass	inherits	whatDogsSay,	and	can	override	it,	either	as	a	class	function	or	as	a
static	function:

class	NoisyDog	:	Dog	{

				override	class	func	whatDogsSay()	->	String	{

								return	"WOOF"

				}

}

The	difference	between	static	properties	and	class	properties	is	similar,	but	with	an
additional,	rather	dramatic	qualification:	static	properties	can	be	stored,	but	class
properties	can	only	be	computed.

Here,	I’ll	use	a	static	class	property	to	express	what	dogs	say:
class	Dog	{

				static	var	whatDogsSay	=	"woof"

				func	bark()	{

								print(Dog.whatDogsSay)

				}

}

A	subclass	inherits	whatDogsSay,	but	can’t	override	it;	no	subclass	of	Dog	can	declare	a
class	or	static	property	whatDogsSay.

Now	I’ll	use	a	class	property	to	express	what	dogs	say.	It	cannot	be	a	stored	property,	so
I’ll	have	to	use	a	computed	property	instead:

class	Dog	{

				class	var	whatDogsSay	:	String	{

								return	"woof"

				}

				func	bark()	{

								print(Dog.whatDogsSay)

				}

}

A	subclass	inherits	whatDogsSay	and	can	override	it	either	as	a	class	property	or	as	a	static
property.	But	even	as	a	static	property	the	subclass’s	override	cannot	be	a	stored	property,
in	keeping	with	the	rules	of	property	overriding	that	I	outlined	earlier:

class	NoisyDog	:	Dog	{

				override	static	var	whatDogsSay	:	String	{

								return	"WOOF"

				}

}

Polymorphism
When	a	computer	language	has	a	hierarchy	of	types	and	subtypes,	it	must	resolve	the
question	of	what	such	a	hierarchy	means	for	the	relationship	between	the	type	of	an	object
and	the	declared	type	of	a	reference	to	that	object.	Swift	obeys	the	principles	of
polymorphism.	In	my	view,	it	is	polymorphism	that	turns	an	object-based	language	into	a
full-fledged	object-oriented	language.	We	may	summarize	Swift’s	polymorphism
principles	as	follows:

Substitution

Wherever	a	certain	type	is	expected,	a	subtype	of	that	type	may	be	used	instead.

Internal	identity

An	object’s	type	is	a	matter	of	its	internal	nature,	regardless	of	how	the	object	is
referred	to.

To	see	what	these	principles	mean	in	practice,	imagine	we	have	a	Dog	class,	along	with	its
subclass,	NoisyDog:

class	Dog	{

}

class	NoisyDog	:	Dog	{

}

let	d	:	Dog	=	NoisyDog()

The	substitution	rule	says	that	the	last	line	is	legal:	we	can	assign	a	NoisyDog	instance	to	a
reference,	d,	that	is	typed	as	a	Dog.	The	internal	identity	rule	says	that,	under	the	hood,	d
now	is	a	NoisyDog.

You	may	be	asking:	How	is	the	internal	identity	rule	manifested?	If	a	reference	to	a
NoisyDog	is	typed	as	a	Dog,	in	what	sense	is	this	“really”	a	NoisyDog?	To	illustrate,	let’s
examine	what	happens	when	a	subclass	overrides	an	inherited	method.	Let	me	redefine
Dog	and	NoisyDog	to	demonstrate:

class	Dog	{

				func	bark()	{

								print("woof")

				}

}

class	NoisyDog	:	Dog	{

				override	func	bark()	{

								super.bark();	super.bark()

				}

}

Now	look	at	this	code	and	tell	me	whether	it	compiles	and,	if	so,	what	happens	when	it
runs:

func	tellToBark(d:Dog)	{

				d.bark()

}

var	d	=	NoisyDog()

tellToBark(d)

That	code	does	compile.	We	create	a	NoisyDog	instance	and	pass	it	to	a	function	that
expects	a	Dog	parameter.	This	is	permitted,	because	NoisyDog	is	a	Dog	subclass
(substitution).	A	NoisyDog	can	be	used	wherever	a	Dog	is	expected.	Typologically,	a
NoisyDog	is	a	kind	of	Dog.

But	when	the	code	actually	runs,	how	does	the	object	referred	to	by	the	local	variable	d
inside	the	tellToBark	function	react	to	being	told	to	bark?	On	the	one	hand,	d	is	typed	as
Dog,	and	a	Dog	barks	by	saying	"woof"	once.	On	the	other	hand,	in	our	code,	when
tellToBark	is	called,	what	is	really	passed	is	a	NoisyDog	instance,	and	a	NoisyDog	barks
by	saying	"woof"	twice.	What	will	happen?	Let’s	find	out:

func	tellToBark(d:Dog)	{

				d.bark()

}

var	d	=	NoisyDog()

tellToBark(d)	//	woof	woof

The	result	is	"woof	woof".	The	internal	identity	rule	says	that	what	matters	when	a
message	is	sent	is	not	how	the	recipient	of	that	message	is	typed	through	this	or	that
reference,	but	what	that	recipient	actually	is.	What	arrives	inside	tellToBark	is	a
NoisyDog,	regardless	of	the	type	of	variable	that	holds	it;	thus,	the	bark	message	causes
this	object	to	say	"woof"	twice.	It	is	a	NoisyDog!

Here’s	another	important	consequence	of	polymorphism	—	the	meaning	of	the	keyword
self.	It	means	the	actual	instance,	and	thus	its	meaning	depends	upon	the	type	of	the
actual	instance	—	even	if	the	word	self	appears	in	a	superclass’s	code.	For	example:

class	Dog	{

				func	bark()	{

								print("woof")

				}

				func	speak()	{

								self.bark()

				}

}

class	NoisyDog	:	Dog	{

				override	func	bark()	{

								super.bark();	super.bark()

				}

}

What	happens	when	we	tell	a	NoisyDog	to	speak?	Let’s	try	it:
let	d	=	NoisyDog()

d.speak()	//	woof	woof

The	speak	method	is	declared	in	Dog,	the	superclass	—	not	in	NoisyDog.	The	speak
method	calls	the	bark	method.	It	does	this	by	way	of	the	keyword	self.	(I	could	have
omitted	the	explicit	reference	to	self	here,	but	self	would	still	be	involved	implicitly,	so
I’m	not	cheating	by	making	self	explicit.)	There’s	a	bark	method	in	Dog,	and	an	override
of	the	bark	method	in	NoisyDog.	Which	bark	method	will	be	called?

The	word	self	is	encountered	within	the	Dog	class’s	implementation	of	speak.	But	what
matters	is	not	where	the	word	self	appears	but	what	it	means.	It	means	this	instance.	And
the	internal	identity	principle	tells	us	that	this	instance	is	a	NoisyDog!	Thus,	it	is
NoisyDog’s	override	of	bark	that	is	called.

Thanks	to	polymorphism,	you	can	take	advantage	of	subclasses	to	add	power	and
customization	to	existing	classes.	This	is	important	particularly	in	the	world	of	iOS
programming,	where	most	of	the	classes	are	defined	by	Cocoa	and	don’t	belong	to	you.
The	UIViewController	class,	for	example,	is	defined	by	Cocoa;	it	has	lots	of	built-in
methods	that	Cocoa	will	call,	and	these	methods	perform	various	important	tasks	—	but	in
a	generic	way.	In	real	life,	you’ll	make	a	UIViewController	subclass	and	override	those
methods	to	do	the	tasks	appropriate	to	your	particular	app.	This	won’t	bother	Cocoa	in	the

slightest,	because	(substitution	principle)	wherever	Cocoa	expects	to	receive	or	to	be
talking	to	a	UIViewController,	it	will	accept	without	question	an	instance	of	your
UIViewController	subclass.	And	this	substitution	will	also	work	as	expected,	because
(internal	identity	principle)	whenever	Cocoa	calls	one	of	those	UIViewController	methods
on	your	subclass,	it	is	your	subclass’s	override	that	will	be	called.

TIP

Polymorphism	is	cool,	but	it	is	also	slow.	It	requires	dynamic	dispatch,	meaning	that	the	runtime	has	to	think	about
what	a	message	to	a	class	instance	means.	This	is	another	reason	for	preferring	a	struct	over	a	class	where	possible:
structs	don’t	need	dynamic	dispatch.	Alternatively,	you	can	reduce	the	need	for	dynamic	dispatch	by	declaring	a	class
or	a	class	member	final	or	private,	or	by	turning	on	Whole	Module	Optimization	(see	Chapter	6).

Casting
The	Swift	compiler,	with	its	strict	typing,	imposes	severe	restrictions	on	what	messages
can	be	sent	to	an	object	reference.	The	messages	that	the	compiler	will	permit	to	be	sent	to
an	object	reference	are	those	permitted	by	the	reference’s	declared	type,	including	its
inheritance.

This	means	that,	thanks	to	the	internal	identity	principle	of	polymorphism,	an	object	may
be	capable	of	receiving	messages	that	the	compiler	won’t	permit	us	to	send.	This	puts	us
in	a	serious	bind.	For	example,	let’s	give	NoisyDog	a	method	that	Dog	doesn’t	have:

class	Dog	{

				func	bark()	{

								print("woof")

				}

}

class	NoisyDog	:	Dog	{

				override	func	bark()	{

								super.bark();	super.bark()

				}

				func	beQuiet()	{

								self.bark()

				}

}

In	that	code,	we	configure	a	NoisyDog	so	that	we	can	tell	it	to	beQuiet.	Now	look	at	what
happens	when	we	try	to	tell	an	object	typed	as	a	Dog	to	be	quiet:

func	tellToHush(d:Dog)	{

				d.beQuiet()	//	compile	error

}

let	d	=	NoisyDog()

tellToHush(d)

Our	code	doesn’t	compile.	We	can’t	send	the	beQuiet	message	to	this	object,	even	though
it	is	in	fact	a	NoisyDog	and	has	a	beQuiet	method.	That’s	because	the	reference	d	inside
the	function	body	is	typed	as	a	Dog	—	and	a	Dog	has	no	beQuiet	method.	There	is	a
certain	irony	here:	for	once,	we	know	more	than	the	compiler	does!	We	know	that	our
code	would	run	correctly	—	because	d	really	is	a	NoisyDog	—	if	only	we	could	get	our
code	to	compile	in	the	first	place.	We	need	a	way	to	say	to	the	compiler,	“Look,	compiler,
just	trust	me:	this	thing	is	going	to	turn	out	to	be	a	NoisyDog	when	the	program	actually
runs,	so	let	me	send	it	this	message.”

There	is	in	fact	a	way	to	do	this	—	casting.	To	cast,	you	use	a	form	of	the	keyword	as
followed	by	the	name	of	the	type	you	claim	something	really	is.	Swift	will	not	let	you	cast
just	any	old	type	to	any	old	other	type	—	for	example,	you	can’t	cast	a	String	to	an	Int	—
but	it	will	let	you	cast	a	superclass	to	a	subclass.	This	is	called	casting	down.	When	you
cast	down,	the	form	of	the	keyword	as	that	you	must	use	is	as!	with	an	exclamation	mark.
The	exclamation	mark	reminds	you	that	you	are	forcing	the	compiler	to	do	something	it
would	rather	not	do:

func	tellToHush(d:Dog)	{

				(d	as!	NoisyDog).beQuiet()

}

let	d	=	NoisyDog()

tellToHush(d)

That	code	compiles,	and	works.	A	useful	way	to	rewrite	the	example	is	like	this:
func	tellToHush(d:Dog)	{

				let	d2	=	d	as!	NoisyDog

				d2.beQuiet()

				d2.beQuiet()

}

let	d	=	NoisyDog()

tellToHush(d)

The	reason	that	way	of	rewriting	the	code	is	useful	is	in	case	we	have	other	NoisyDog
messages	to	send	to	this	object.	Instead	of	casting	every	time	we	want	to	send	a	message	to
it,	we	cast	the	object	once	to	its	internal	identity	type,	and	assign	it	to	a	variable.	Now	that
variable’s	type	—	inferred,	in	this	case,	from	the	cast	—	is	that	internal	identity	type,	and
we	can	send	multiple	messages	to	the	variable.

A	moment	ago,	I	said	that	the	as!	operator’s	exclamation	mark	reminds	you	that	you	are
forcing	the	compiler’s	hand.	It	also	serves	as	a	warning:	your	code	can	now	crash!	The
reason	is	that	you	might	be	lying	to	the	compiler.	Casting	down	is	a	way	of	telling	the
compiler	to	relax	its	strict	type	checking	and	to	let	you	call	the	shots.	If	you	use	casting	to
make	a	false	claim,	the	compiler	may	permit	it,	but	you	will	crash	when	the	app	runs:

func	tellToHush(d:Dog)	{

				(d	as!	NoisyDog).beQuiet()	//	compiles,	but	prepare	to	crash…!

}

let	d	=	Dog()

tellToHush(d)

In	that	code,	we	told	the	compiler	that	this	object	would	turn	out	to	be	a	NoisyDog,	and
the	compiler	obediently	took	its	hands	off	and	allowed	us	to	send	the	beQuiet	message	to
it.	But	in	fact,	this	object	was	a	Dog	when	our	code	ran,	and	so	we	ultimately	crashed
when	the	cast	failed	because	this	object	was	not	a	NoisyDog.

To	prevent	yourself	from	lying	accidentally,	you	can	test	the	type	of	an	instance	at
runtime.	One	way	to	do	this	is	with	the	keyword	is.	You	can	use	is	in	a	condition;	if	the
condition	passes,	then	cast,	in	the	knowledge	that	your	cast	is	safe:

func	tellToHush(d:Dog)	{

				if	d	is	NoisyDog	{

								let	d2	=	d	as!	NoisyDog

								d2.beQuiet()

				}

}

The	result	is	that	we	won’t	cast	d	to	a	NoisyDog	unless	it	really	is	a	NoisyDog.

An	alternative	way	to	solve	the	same	problem	is	to	use	Swift’s	as?	operator.	This	casts
down,	but	with	the	option	of	failure;	therefore	what	it	casts	to	is	(you	guessed	it)	an
Optional	—	and	now	we	are	on	familiar	ground,	because	we	know	how	to	deal	safely	with
an	Optional:

func	tellToHush(d:Dog)	{

				let	noisyMaybe	=	d	as?	NoisyDog	//	an	Optional	wrapping	a	NoisyDog

				if	noisyMaybe	!=	nil	{

								noisyMaybe!.beQuiet()

				}

}

That	doesn’t	look	much	cleaner	or	shorter	than	our	previous	approach.	But	remember	that
we	can	safely	send	a	message	to	an	Optional	by	optionally	unwrapping	the	Optional!	Thus
we	can	skip	the	assignment	and	condense	to	a	single	line:

func	tellToHush(d:Dog)	{

				(d	as?	NoisyDog)?.beQuiet()

}

First	we	use	the	as?	operator	to	obtain	an	Optional	wrapping	a	NoisyDog	(or	nil).	Then

we	optionally	unwrap	that	Optional	and	send	a	message	to	it.	If	d	isn’t	a	NoisyDog,	the
Optional	will	be	nil	and	the	message	won’t	be	sent.	If	d	is	a	NoisyDog,	the	Optional	will
be	unwrapped	and	the	message	will	be	sent.	Thus,	that	code	is	safe.

Recall	from	Chapter	3	that	comparison	operators	applied	to	an	Optional	are	automatically
applied	to	the	object	wrapped	by	the	Optional.	The	as!,	as?,	and	is	operators	work	the
same	way.	Consider	an	Optional	d	wrapping	a	Dog	(that	is,	d	is	a	Dog?	object).	This	might,
in	actual	fact,	be	wrapping	either	a	Dog	or	a	NoisyDog;	the	substitution	principle	applies
to	Optional	types,	because	it	applies	to	the	type	of	thing	wrapped	by	the	Optional.	To	find
out	which	it	is,	you	might	be	tempted	to	use	is.	But	can	you?	After	all,	an	Optional	is
neither	a	Dog	nor	a	NoisyDog	—	it’s	an	Optional!	Well,	the	good	news	is	that	Swift
knows	what	you	mean;	when	the	thing	on	the	left	side	of	is	is	an	Optional,	Swift	pretends
that	it’s	the	value	wrapped	in	the	Optional.	Thus,	this	works	just	as	you	would	hope:

let	d	:	Dog?	=	NoisyDog()

if	d	is	NoisyDog	{	//	it	is!

When	using	is	with	an	Optional,	the	test	fails	in	good	order	if	the	Optional	is	nil.	Thus
our	is	test	really	does	two	things:	it	checks	whether	the	Optional	is	nil,	and	if	it	is	not,	it
then	checks	whether	the	wrapped	value	is	the	type	we	specify.

What	about	casting?	You	can’t	really	cast	an	Optional	to	anything.	But	you	can	use	the
as!	operator	with	an	Optional,	because	Swift	knows	what	you	mean;	when	the	thing	on
the	left	side	of	as!	is	an	Optional,	Swift	treats	it	as	the	wrapped	type.	Moreover,	the
consequence	of	applying	the	as!	operator	is	that	two	things	happen:	Swift	unwraps	first,
and	then	casts.	This	code	works,	because	d	is	unwrapped	to	give	us	d2,	which	is	a
NoisyDog:

let	d	:	Dog?	=	NoisyDog()

let	d2	=	d	as!	NoisyDog

d2.beQuiet()

That	code,	however,	is	not	safe.	You	shouldn’t	cast	like	that,	without	testing	first,	unless
you	are	very	sure	of	your	ground.	If	d	were	nil,	you’d	crash	in	the	second	line	because
you’re	trying	to	unwrap	a	nil	Optional.	And	if	d	were	a	Dog,	not	a	NoisyDog,	you’d	still
crash	in	the	second	line	when	the	cast	fails.	That’s	why	there’s	also	an	as?	operator,	which
is	safe	—	but	yields	an	Optional:

let	d	:	Dog?	=	NoisyDog()

let	d2	=	d	as?	NoisyDog

d2?.beQuiet()

Another	way	you’ll	use	casting	is	during	a	value	interchange	between	Swift	and
Objective-C	when	two	types	are	equivalent.	For	example,	you	can	cast	a	Swift	String	to	a
Cocoa	NSString,	and	vice	versa.	That’s	not	because	one	is	a	subclass	of	the	other,	but
because	they	are	bridged	to	one	another;	in	a	very	real	sense,	they	are	the	same	type.
When	you	cast	from	String	to	NSString,	you’re	not	casting	down,	and	what	you’re	doing
is	not	dangerous,	so	you	use	the	as	operator,	with	no	exclamation	mark.	I	gave	an
example,	in	Chapter	3,	of	a	situation	where	you	might	need	to	do	that:

let	s	=	"hello"

let	range	=	(s	as	NSString).rangeOfString("ell")	//	(1,3),	an	NSRange

The	cast	from	String	to	NSString	tells	Swift	to	stay	in	the	Cocoa	world	as	it	calls
rangeOfString,	and	thus	causes	the	result	to	be	the	Cocoa	result,	an	NSRange,	rather	than
a	Swift	Range.

A	number	of	common	classes	are	bridged	in	this	way	between	Swift	and	Objective-C.
Often,	you	won’t	need	to	cast	as	you	cross	the	bridge	from	Swift	to	Objective-C,	because
Swift	will	automatically	cast	for	you.	For	example,	a	Swift	Int	and	a	Cocoa	NSNumber	are
two	very	different	things;	nevertheless,	you	can	often	use	an	Int	where	an	NSNumber	is
expected,	without	casting,	like	this:

let	ud	=	NSUserDefaults.standardUserDefaults()

ud.setObject(1,	forKey:	"Test")

In	that	code,	we	used	an	Int,	namely	1,	where	Objective-C	expects	an	NSObject	instance.
An	Int	is	not	an	NSObject	instance;	it	isn’t	even	a	class	instance	(it’s	a	struct	instance).	But
Swift	sees	that	an	NSObject	is	expected,	decides	that	an	NSNumber	would	best	represent
an	Int,	and	crosses	the	bridge	for	you.	Thus,	what	winds	up	being	stored	in
NSUserDefaults	is	an	NSNumber.

Coming	back	the	other	way,	however,	when	you	call	objectForKey:,	Swift	has	no
information	about	what	this	value	really	is,	so	you	have	to	cast	explicitly	if	you	want	an
Int	—	and	now	you	are	casting	down	(as	I’ll	explain	in	more	detail	later):

let	i	=	ud.objectForKey("Test")	as!	Int

That	cast	works	because	ud.objectForKey("Test")	yields	an	NSNumber	wrapping	an
integer,	and	casting	that	to	a	Swift	Int	is	permitted	—	the	types	are	bridged.	But	if
ud.objectForKey("Test")	were	not	an	NSNumber	(or	if	it	were	nil),	you’d	crash.	If
you’re	not	sure	of	your	ground,	use	is	or	as?	to	be	safe.

Type	Reference
It	can	be	useful	for	an	instance	to	refer	to	its	own	type	—	for	example,	to	send	a	message
to	that	type.	In	an	earlier	example,	a	Dog	instance	method	fetched	a	Dog	class	property	by
sending	a	message	to	the	Dog	type	explicitly	—	by	using	the	word	Dog:

class	Dog	{

				class	var	whatDogsSay	:	String	{

								return	"Woof"

				}

				func	bark()	{

								print(Dog.whatDogsSay)

				}

}

The	expression	Dog.whatDogsSay	seems	clumsy	and	inflexible.	Why	should	we	have	to
hard-code	into	Dog	a	knowledge	of	what	class	it	is?	It	has	a	class;	it	should	just	know
what	it	is.

In	Objective-C,	you	may	be	accustomed	to	using	the	class	instance	method	to	deal	with
this	situation.	In	Swift,	an	instance	might	not	have	a	class	(it	might	be	a	struct	instance	or
an	enum	instance);	what	a	Swift	instance	has	is	a	type.	The	instance	method	that	Swift
provides	for	this	purpose	is	the	dynamicType	method.	An	instance	can	access	its	type
through	this	method.	Thus,	if	you	don’t	like	the	notion	of	a	Dog	instance	calling	a	Dog
class	method	by	saying	Dog	explicitly,	there’s	another	way:

class	Dog	{

				class	var	whatDogsSay	:	String	{

								return	"Woof"

				}

				func	bark()	{

								print(self.dynamicType.whatDogsSay)

				}

}

An	important	thing	about	using	dynamicType	instead	of	hard-coding	a	class	name	is	that	it
obeys	polymorphism:

class	Dog	{

				class	var	whatDogsSay	:	String	{

								return	"Woof"

				}

				func	bark()	{

								print(self.dynamicType.whatDogsSay)

				}

}

class	NoisyDog	:	Dog	{

				override	class	var	whatDogsSay	:	String	{

								return	"Woof	woof	woof"

				}

}

Now	watch	what	happens:
let	nd	=	NoisyDog()

nd.bark()	//	Woof	woof	woof

If	we	tell	a	NoisyDog	instance	to	bark,	it	says	"Woof	woof	woof".	The	reason	is	that
dynamicType	means,	“The	type	that	this	instance	actually	is,	right	now.”	That’s	what
makes	this	type	dynamic.	We	send	the	bark	message	to	a	NoisyDog	instance.	The	bark
implementation	refers	to	self.dynamicType;	self	means	this	instance,	which	is	a
NoisyDog,	and	so	self.dynamicType	is	the	NoisyDog	class,	and	it	is	NoisyDog’s	version
of	whatDogsSay	that	is	fetched.

TIP

You	can	also	use	dynamicType	for	learning	the	name	of	an	object’s	type,	as	a	string	—	typically	for	debugging
purposes.	When	you	say	print(myObject.dynamicType),	you’ll	see	the	type	name	in	the	console.

In	some	situations,	you	may	want	to	pass	an	object	type	as	a	value.	That	is	legal;	an	object
type	is	itself	an	object.	Here’s	what	you	need	to	know:

To	declare	that	an	object	type	is	acceptable	—	for	example,	as	the	type	of	a	variable	or
parameter	—	use	dot-notation	with	the	name	of	the	type	and	the	keyword	Type.
To	use	an	object	type	as	a	value	—	for	example,	to	assign	a	type	to	a	variable	or	pass	it
to	a	function	—	use	a	reference	to	the	type	(the	type’s	name,	or	some	instance’s
dynamicType),	possibly	followed	by	the	keyword	self	using	dot-notation.

For	example,	here’s	a	function	that	accepts	a	Dog	type	as	its	parameter:
func	typeExpecter(whattype:Dog.Type)	{

}

And	here’s	an	example	of	calling	that	function:
typeExpecter(Dog)	//	or:	typeExpecter(Dog.self)

Or	you	could	call	it	like	this:
let	d	=	Dog()	//	or:	let	d	=	NoisyDog()

typeExpecter(d.dynamicType)	//	or:	typeExpecter(d.dynamicType.self)

Why	might	you	want	to	do	something	like	that?	A	typical	situation	is	that	your	function	is
a	factory	for	instances:	given	a	type,	it	creates	an	instance	of	that	type,	possibly	prepares	it
in	some	way,	and	returns	it.	You	can	use	a	variable	reference	to	a	type	to	make	an	instance
of	that	type,	by	explicitly	sending	it	an	init(...)	message.

For	example,	here’s	a	Dog	class	with	an	init(name:)	initializer,	and	its	NoisyDog
subclass:

class	Dog	{

				var	name	:	String

				init(name:String)	{

								self.name	=	name

				}

}

class	NoisyDog	:	Dog	{

}

And	here’s	a	factory	method	that	creates	a	Dog	or	a	NoisyDog,	as	specified	by	its
parameter,	gives	it	a	name,	and	returns	it:

func	dogMakerAndNamer(whattype:Dog.Type)	->	Dog	{

				let	d	=	whattype.init(name:"Fido")	//	compile	error

				return	d

}

As	you	can	see,	since	whattype	refers	to	a	type,	we	can	call	its	initializer	to	make	an
instance	of	that	type.	However,	there’s	a	problem.	The	code	doesn’t	compile.	The	reason	is
that	the	compiler	is	in	doubt	as	to	whether	the	init(name:)	initializer	is	implemented	by
every	possible	subtype	of	Dog.	To	reassure	it,	we	must	declare	that	initializer	with	the
required	keyword:

class	Dog	{

				var	name	:	String

				required	init(name:String)	{

								self.name	=	name

				}

}

class	NoisyDog	:	Dog	{

}

I	promised	I’d	tell	you	why	you	might	need	to	declare	an	initializer	as	required;	now	I’m
fulfilling	that	promise!	The	required	designation	reassures	the	compiler;	every	subclass
of	Dog	must	inherit	or	reimplement	init(name:),	so	it’s	legal	to	send	the	init(name:)
message	to	a	type	reference	that	might	refer	to	Dog	or	some	subclass	of	Dog.	Now	our
code	compiles,	and	we	can	call	our	function:

let	d	=	dogMakerAndNamer(Dog)	//	d	is	a	Dog	named	Fido

let	d2	=	dogMakerAndNamer(NoisyDog)	//	d2	is	a	NoisyDog	named	Fido

In	a	class	method,	self	stands	for	the	class	—	polymorphically.	This	means	that,	in	a	class
method,	you	can	send	a	message	to	self	to	call	an	initializer	polymorphically.	Here’s	an
example.	Let’s	say	we	want	to	move	our	instance	factory	method	into	Dog	itself,	as	a	class
method.	Let’s	call	this	class	method	makeAndName.	We	want	this	class	method	to	create	and
return	a	named	Dog	of	whatever	class	we	send	the	makeAndName	message	to.	If	we	say
Dog.makeAndName(),	we	should	get	a	Dog.	If	we	say	NoisyDog.makeAndName(),	we
should	get	a	NoisyDog.	That	type	is	the	polymorphic	self	class,	so	our	makeAndName	class
method	initializes	self:

class	Dog	{

				var	name	:	String

				required	init(name:String)	{

								self.name	=	name

				}

				class	func	makeAndName()	->	Dog	{

								let	d	=	self.init(name:"Fido")

								return	d

				}

}

class	NoisyDog	:	Dog	{

}

It	works	as	expected:
let	d	=	Dog.makeAndName()	//	d	is	a	Dog	named	Fido

let	d2	=	NoisyDog.makeAndName()	//	d2	is	a	NoisyDog	named	Fido

But	there’s	a	problem.	Although	d2	is	in	fact	a	NoisyDog,	it	is	typed	as	a	Dog.	This	is
because	our	makeAndName	class	method	is	declared	as	returning	a	Dog.	That	isn’t	what	we
meant	to	say.	What	we	want	to	say	is	that	this	method	returns	an	instance	of	the	same	type
as	the	class	to	which	the	makeAndName	message	was	originally	sent.	In	other	words,	we
need	a	polymorphic	type	declaration!	That	type	is	Self	(notice	the	capitalization).	It	is
used	as	a	return	type	in	a	method	declaration	to	mean	“an	instance	of	whatever	type	this	is
at	runtime.”	Thus:

class	Dog	{

				var	name	:	String

				required	init(name:String)	{

								self.name	=	name

				}

				class	func	makeAndName()	->	Self	{

								let	d	=	self.init(name:"Fido")

								return	d

				}

}

class	NoisyDog	:	Dog	{

}

Now	when	we	call	NoisyDog.makeAndName()	we	get	a	NoisyDog	typed	as	a	NoisyDog.

Self	also	works	for	instance	method	declarations.	Therefore,	we	can	write	an	instance

method	version	of	our	factory	method.	Here,	we	start	with	a	Dog	or	a	NoisyDog	and	tell	it
to	have	a	puppy	of	the	same	type	as	itself:

class	Dog	{

				var	name	:	String

				required	init(name:String)	{

								self.name	=	name

				}

				func	havePuppy(name	name:String)	->	Self	{

								return	self.dynamicType.init(name:name)

				}

}

class	NoisyDog	:	Dog	{

}

And	here’s	some	code	to	test	it:
let	d	=	Dog(name:"Fido")

let	d2	=	d.havePuppy(name:"Fido	Junior")

let	nd	=	NoisyDog(name:"Rover")

let	nd2	=	nd.havePuppy(name:"Rover	Junior")

As	expected,	d2	is	a	Dog,	but	nd2	is	a	NoisyDog	typed	as	a	NoisyDog.

All	this	terminology	can	get	a	bit	confusing,	so	here’s	a	quick	summary:
.dynamicType

In	code,	sent	to	an	instance:	the	polymorphic	(internal)	type	of	this	instance,	regardless
of	how	the	instance	reference	is	typed.	Static/class	members	are	accessible	through	an
instance’s	dynamicType.

.Type

In	declarations,	sent	to	a	type:	the	polymorphic	type	(as	opposed	to	an	instance	of	the
type).	For	example,	in	a	function	declaration,	Dog	means	a	Dog	instance	is	expected	(or
an	instance	of	one	its	subclasses),	but	Dog.Type	means	that	the	Dog	type	itself	is
expected	(or	the	type	of	one	of	its	subclasses).

.self

In	code,	sent	to	a	type:	the	type.	For	example,	to	pass	the	Dog	type	where	Dog.Type	is
expected,	you	can	pass	Dog.self.	(It	is	not	illegal	to	send	.self	to	an	instance,	but	it	is
pointless.)

self

In	instance	code,	this	instance,	polymorphically.

In	static/class	code,	this	type,	polymorphically;	self.init(...)	instantiates	the	type.
Self

In	a	method	declaration,	when	specifying	the	return	type,	this	class	or	this	instance’s
class,	polymorphically.

Protocols
A	protocol	is	a	way	of	expressing	commonalities	between	otherwise	unrelated	types.	For
example,	a	Bee	object	and	a	Bird	object	might	need	to	have	certain	features	in	common	by
virtue	of	the	fact	that	both	a	bee	and	a	bird	can	fly.	Thus,	it	might	be	useful	to	define	a
Flier	type.	The	question	is:	In	what	sense	can	both	Bee	and	Bird	be	Fliers?

One	possibility,	of	course,	is	class	inheritance.	If	Bee	and	Bird	are	both	classes,	there’s	a
class	hierarchy	of	superclasses	and	subclasses.	So	Flier	could	be	the	superclass	of	both
Bee	and	Bird.	The	problem	is	that	there	may	be	other	reasons	why	Flier	can’t	be	the
superclass	of	both	Bee	and	Bird.	A	Bee	is	an	Insect;	a	Bird	isn’t.	Yet	they	both	have	the
power	of	flight	—	independently.	We	need	a	type	that	cuts	across	the	class	hierarchy
somehow,	tying	remote	classes	together.

Moreover,	what	if	Bee	and	Bird	are	not	both	classes?	In	Swift,	that’s	a	very	real
possibility.	Important	and	powerful	objects	can	be	structs	instead	of	classes.	But	there	is
no	struct	hierarchy	of	superstructs	and	substructs!	That,	after	all,	is	one	of	the	major
differences	between	structs	and	classes.	Yet	structs	need	the	ability	to	possess	and	express
formal	commonalities	every	bit	as	much	as	classes	do.	How	can	a	Bee	struct	and	a	Bird
struct	both	be	Fliers?

Swift	solves	this	problem	through	the	use	of	protocols.	Protocols	are	tremendously
important	in	Swift;	the	Swift	header	defines	over	70	of	them!	Moreover,	Objective-C	has
protocols	as	well;	Swift	protocols	correspond	roughly	to	these,	and	can	interchange	with
them.	Cocoa	makes	heavy	use	of	protocols.

A	protocol	is	an	object	type,	but	there	are	no	protocol	objects	—	you	can’t	instantiate	a
protocol.	A	protocol	is	much	more	lightweight	than	that.	A	protocol	declaration	is	just	a
list	of	properties	and	methods.	The	properties	have	no	values,	and	the	methods	have	no
code!	The	idea	is	that	a	“real”	object	type	can	formally	declare	that	it	belongs	to	a	protocol
type;	this	is	called	adopting	or	conforming	to	the	protocol.	An	object	type	that	adopts	a
protocol	is	signing	a	contract	stating	that	it	actually	implements	the	properties	and
methods	listed	by	the	protocol.

For	example,	let’s	say	that	being	a	Flier	consists	of	no	more	than	implementing	a	fly
method.	Then	a	Flier	protocol	could	specify	that	there	must	be	a	fly	method;	to	do	so,	it
lists	the	fly	method	with	no	function	body,	like	this:

protocol	Flier	{

				func	fly()

}

Any	type	—	an	enum,	a	struct,	a	class,	or	even	another	protocol	—	can	then	adopt	this
protocol.	To	do	so,	it	lists	the	protocol	after	a	colon	after	its	name	in	its	declaration.	(If	the
adopter	is	a	class	with	a	superclass,	the	protocol	comes	after	a	comma	after	the	superclass
specification.)

Let’s	say	Bird	is	a	struct.	Then	it	can	adopt	Flier	like	this:
struct	Bird	:	Flier	{

}	//	compile	error

So	far,	so	good.	But	that	code	won’t	compile.	The	Bird	struct	has	made	a	promise	to
implement	the	features	listed	in	the	Flier	protocol.	Now	it	must	keep	that	promise!	The

fly	method	is	the	only	requirement	of	the	Flier	protocol.	To	satisfy	that	requirement,	I’ll
just	give	Bird	an	empty	fly	method:

protocol	Flier	{

				func	fly()

}

struct	Bird	:	Flier	{

				func	fly()	{

				}

}

That’s	all	there	is	to	it!	We’ve	defined	a	protocol,	and	we’ve	made	a	struct	adopt	that
protocol.	Of	course,	in	real	life	you’ll	probably	want	to	make	the	adopter’s
implementation	of	the	protocol’s	methods	do	something;	but	the	protocol	says	nothing
about	that.

TIP

New	in	Swift	2.0,	a	protocol	can	declare	a	method	and	provide	its	implementation,	thanks	to	protocol	extensions,
which	I’ll	discuss	later	in	this	chapter.

Why	Protocols?
Perhaps	at	this	point	you’re	scratching	your	head	over	why	this	is	a	useful	thing	to	do.	We
made	a	Bird	a	Flier,	but	so	what?	If	we	wanted	a	Bird	to	know	how	to	fly,	why	didn’t	we
just	give	Bird	a	fly	method	without	adopting	any	protocol?	The	answer	has	to	do	with
types.	Don’t	forget,	a	protocol	is	a	type.	Our	protocol,	Flier,	is	a	type.	Therefore,	I	can	use
Flier	wherever	I	would	use	a	type	—	to	declare	the	type	of	a	variable,	for	example,	or	the
type	of	a	function	parameter:

func	tellToFly(f:Flier)	{

				f.fly()

}

Think	about	that	code	for	a	moment,	because	it	embodies	the	entire	point	of	protocols.	A
protocol	is	a	type	—	so	polymorphism	applies.	Protocols	give	us	another	way	of
expressing	the	notion	of	type	and	subtype.	This	means	that,	by	the	substitution	principle,	a
Flier	here	could	be	an	instance	of	any	object	type	—	an	enum,	a	struct,	or	a	class.	It
doesn’t	matter	what	object	type	it	is,	as	long	as	it	adopts	the	Flier	protocol.	If	it	adopts	the
Flier	protocol,	then	it	must	have	a	fly	method,	because	that’s	exactly	what	it	means	to
adopt	the	Flier	protocol!	Therefore	the	compiler	is	willing	to	let	us	send	the	fly	message
to	this	object.	A	Flier	is,	by	definition,	an	object	that	can	be	told	to	fly.

The	converse,	however,	is	not	true:	an	object	with	a	fly	method	is	not	automatically	a
Flier.	It	isn’t	enough	to	obey	the	requirements	of	a	protocol;	the	object	type	must	adopt	the
protocol.	This	code	won’t	compile:

struct	Bee	{

				func	fly()	{

				}

}

let	b	=	Bee()

tellToFly(b)	//	compile	error

A	Bee	can	be	sent	the	fly	message,	qua	Bee.	But	tellToFly	doesn’t	take	a	Bee
parameter;	it	takes	a	Flier	parameter.	Formally,	a	Bee	is	not	a	Flier.	To	make	a	Bee	a	Flier,
simply	declare	formally	that	Bee	adopts	the	Flier	protocol.	This	code	does	compile:

struct	Bee	:	Flier	{

				func	fly()	{

				}

}

let	b	=	Bee()

tellToFly(b)

Enough	of	birds	and	bees;	we’re	ready	for	a	real-life	example!	As	I’ve	already	said,	Swift
is	chock	full	of	protocols	already.	Let’s	make	one	of	our	own	object	types	adopt	one.	One
of	the	most	useful	Swift	protocols	is	CustomStringConvertible.	The
CustomStringConvertible	protocol	requires	that	we	implement	a	description	String
property.	If	we	do	that,	a	wonderful	thing	happens:	when	an	instance	of	this	type	is	used	in
string	interpolation	or	print	(or	the	po	command	in	the	console),	the	description
property	value	is	used	automatically	to	represent	it.

Recall,	for	example,	the	Filter	enum,	from	earlier	in	this	chapter.	I’ll	add	a	description
property	to	it:

enum	Filter	:	String	{

				case	Albums	=	"Albums"

				case	Playlists	=	"Playlists"

				case	Podcasts	=	"Podcasts"

				case	Books	=	"Audiobooks"

				var	description	:	String	{	return	self.rawValue	}

}

But	that	isn’t	enough,	in	and	of	itself,	to	give	Filter	the	power	of	the
CustomStringConvertible	protocol;	to	do	that,	we	also	need	to	adopt	the
CustomStringConvertible	protocol	formally.	There	is	already	a	colon	and	a	type	in	the
Filter	declaration,	so	an	adopted	protocol	comes	after	a	comma:

enum	Filter	:	String,	CustomStringConvertible	{

				case	Albums	=	"Albums"

				case	Playlists	=	"Playlists"

				case	Podcasts	=	"Podcasts"

				case	Books	=	"Audiobooks"

				var	description	:	String	{	return	self.rawValue	}

}

We	have	now	made	Filter	formally	adopt	the	CustomStringConvertible	protocol.	The
CustomStringConvertible	protocol	requires	that	we	implement	a	description	String
property;	we	do	implement	a	description	String	property,	so	our	code	compiles.	Now	we
can	hand	a	Filter	to	print,	or	interpolate	it	into	a	string,	and	its	description	will	appear
automatically:

let	type	=	Filter.Albums

print(type)	//	Albums

print("It	is	\(type)")	//	It	is	Albums

Behold	the	power	of	protocols.	You	can	give	any	object	type	the	power	of	string
conversion	in	exactly	the	same	way.

Note	that	a	type	can	adopt	more	than	one	protocol!	For	example,	the	built-in	Double	type
adopts	CustomStringConvertible,	Hashable,	Comparable,	and	other	built-in	protocols.	To
declare	adoption	of	multiple	protocols,	list	each	one	after	the	first	protocol	in	the
declaration,	separated	by	comma.	For	example:

struct	MyType	:	CustomStringConvertible,	Hashable,	Comparable	{

				//	...

}

(Of	course,	that	code	won’t	compile	unless	I	also	declare	the	required	methods	in	MyType,
so	that	MyType	really	does	adopt	those	protocols.)

Protocol	Type	Testing	and	Casting
A	protocol	is	a	type,	and	an	adopter	of	a	protocol	is	its	subtype.	Polymorphism	applies.
Therefore,	the	operators	for	mediating	between	an	object’s	declared	type	and	its	real	type
work	when	the	object	is	declared	as	a	protocol	type.	For	example,	given	a	protocol	Flier
that	is	adopted	by	both	Bird	and	Bee,	we	can	use	the	is	operator	to	test	whether	a
particular	Flier	is	in	fact	a	Bird:

func	isBird(f:Flier)	->	Bool	{

				return	f	is	Bird

}

Similarly,	as!	and	as?	can	be	used	to	cast	an	object	declared	as	a	protocol	type	down	to	its
actual	type.	This	is	important	to	be	able	to	do,	because	the	adopting	object	will	typically
be	able	to	receive	messages	that	the	protocol	can’t	receive.	For	example,	let’s	say	that	a
Bird	can	get	a	worm:

struct	Bird	:	Flier	{

				func	fly()	{

				}

				func	getWorm()	{

				}

}

A	Bird	can	fly	qua	Flier,	but	it	can	getWorm	only	qua	Bird.	Thus,	you	can’t	tell	just	any
old	Flier	to	get	a	worm:

func	tellGetWorm(f:Flier)	{

				f.getWorm()	//	compile	error

}

But	if	this	Flier	is	a	Bird,	clearly	it	can	get	a	worm.	That	is	exactly	what	casting	is	all
about:

func	tellGetWorm(f:Flier)	{

				(f	as?	Bird)?.getWorm()

}

Declaring	a	Protocol
Protocol	declaration	can	take	place	only	at	the	top	level	of	a	file.	To	declare	a	protocol,	use
the	keyword	protocol	followed	by	the	name	of	the	protocol,	which,	being	an	object	type,
should	start	with	a	capital	letter.	Then	come	curly	braces	which	may	contain	the	following:

Properties

A	property	declaration	in	a	protocol	consists	of	var	(not	let),	the	property	name,	a
colon,	its	type,	and	curly	braces	containing	the	word	get	or	the	words	get	set.	In	the
former	case,	the	adopter’s	implementation	of	this	property	can	be	writable,	while	in	the
latter	case,	it	must	be:	the	adopter	may	not	implement	a	get	set	property	as	a	read-only
computed	property	or	as	a	constant	(let)	stored	property.

To	declare	a	static/class	property,	precede	it	with	the	keyword	static.	A	class	adopter	is
free	to	implement	this	as	a	class	property.

Methods

A	method	declaration	in	a	protocol	is	a	function	declaration	without	a	function	body	—
that	is,	it	has	no	curly	braces	and	thus	it	has	no	code.	Any	object	function	type	is	legal,
including	init	and	subscript.	(The	syntax	for	declaring	a	subscript	in	a	protocol	is	the
same	as	the	syntax	for	declaring	a	subscript	in	an	object	type,	except	that	there	will	be
no	function	bodies,	so	the	curly	braces,	like	those	of	a	property	declaration	in	a
protocol,	will	contain	get	or	get	set.)

To	declare	a	static/class	method,	precede	it	with	the	keyword	static.	A	class	adopter	is
free	to	implement	this	as	a	class	method.

If	a	method,	as	implemented	by	an	enum	or	struct,	might	need	to	be	declared	mutating,
the	protocol	must	specify	the	mutating	designation;	the	adopter	cannot	add	mutating	if
the	protocol	lacks	it.	However,	the	adopter	may	omit	mutating	if	the	protocol	has	it.

Type	alias

A	protocol	can	introduce	a	local	synonym	for	a	type	that	it	mentions	in	its	declarations
by	declaring	a	type	alias.	For	example,	typealias	Time	=	Double	allows	the	Time
type	to	be	referred	to	inside	the	protocol’s	curly	braces;	elsewhere	(such	as	in	an
adopting	object	type),	the	Time	type	doesn’t	exist,	but	the	Double	type	is	a	match	for	it.

There	are	other	ways	to	use	a	type	alias	in	a	protocol,	which	I’ll	discuss	later.

Protocol	adoption

A	protocol	can	itself	adopt	one	or	more	protocols;	the	syntax	is	just	as	you	would	expect
—	a	colon	after	the	protocol’s	name	in	the	declaration,	followed	by	a	comma-separated
list	of	the	protocols	it	adopts.	In	effect,	this	gives	you	a	way	to	create	an	entire
secondary	hierarchy	of	types!	The	Swift	headers	make	heavy	use	of	this.

A	protocol	that	adopts	another	protocol	may	repeat	the	contents	of	the	adopted
protocol’s	curly	braces,	for	clarity;	but	it	doesn’t	have	to,	as	this	repetition	is	implicit.
An	object	type	that	adopts	such	a	protocol	must	satisfy	the	requirements	of	this	protocol
and	all	protocols	that	the	protocol	adopts.

TIP

If	the	only	purpose	of	a	protocol	would	be	to	combine	other	protocols	by	adopting	all	of	them,	without	adding	any
new	requirements,	and	if	this	combination	is	used	in	just	one	place	in	your	code,	you	can	avoid	formally	declaring	the
protocol	in	the	first	place	by	creating	the	combining	protocol	on	the	fly.	To	do	so,	use	a	type	name
protocol<...,...>,	where	the	contents	of	the	angle	brackets	is	a	comma-separated	list	of	protocols.

Optional	Protocol	Members
In	Objective-C,	a	protocol	member	can	be	declared	optional,	meaning	that	this	member
doesn’t	have	to	be	implemented	by	the	adopter,	but	it	may	be.	For	compatibility	with
Objective-C,	Swift	allows	optional	protocol	members,	but	only	in	a	protocol	explicitly
bridged	to	Objective-C	by	preceding	its	declaration	with	the	@objc	attribute.	In	such	a
protocol,	an	optional	member	—	meaning	a	method	or	property	—	is	declared	by
preceding	its	declaration	with	the	keyword	optional:

@objc	protocol	Flier	{

				optional	var	song	:	String	{get}

				optional	func	sing()

}

Only	a	class	can	adopt	such	a	protocol,	and	this	feature	will	work	only	if	the	class	is	an
NSObject	subclass,	or	the	optional	member	is	marked	with	the	@objc	attribute:

class	Bird	:	Flier	{

				@objc	func	sing()	{

								print("tweet")

				}

}

An	optional	member	is	not	guaranteed	to	be	implemented	by	the	adopter,	so	Swift	doesn’t
know	whether	it’s	safe	to	send	a	Flier	either	the	song	message	or	the	sing	message.

In	the	case	of	an	optional	property	like	song,	Swift	solves	the	problem	by	wrapping	its
value	in	an	Optional.	If	the	Flier	adopter	doesn’t	implement	the	property,	the	result	is	nil
and	no	harm	done:

let	f	:	Flier	=	Bird()

let	s	=	f.song	//	s	is	an	Optional	wrapping	a	String

TIP

This	is	one	of	those	rare	situations	where	you	can	wind	up	with	a	double-wrapped	Optional.	For	example,	if	the	value
of	the	optional	property	song	were	a	String?,	then	fetching	its	value	from	a	Flier	would	yield	a	String??.

WARNING

An	optional	property	can	be	declared	{get	set}	by	its	protocol,	but	there	is	no	legal	syntax	for	setting	such	a
property	in	an	object	of	that	protocol	type.	For	example,	if	f	is	a	Flier	and	song	is	declared	{get	set},	you	can’t	set
f.song.	I	regard	this	as	a	bug	in	the	language.

In	the	case	of	an	optional	method	like	sing,	things	are	more	elaborate.	If	the	method	is	not
implemented,	we	must	not	be	permitted	to	call	it	in	the	first	place.	To	handle	this	situation,
the	method	itself	is	automatically	typed	as	an	Optional	version	of	its	declared	type.	To
send	the	sing	message	to	a	Flier,	therefore,	you	must	unwrap	it.	The	safe	approach	is	to
unwrap	it	optionally,	with	a	question	mark:

let	f	:	Flier	=	Bird()

f.sing?()

That	code	compiles	—	and	it	also	runs	safely.	The	effect	is	to	send	the	sing	message	to	f
only	if	this	Flier	adopter	implements	sing.	If	this	Flier	adopter	doesn’t	implement	sing,
nothing	happens.	You	could	have	force-unwrapped	the	call	—	f.sing!()	—	but	then	your
app	would	crash	if	the	adopter	doesn’t	implement	sing.

If	an	optional	method	returns	a	value,	that	value	is	wrapped	in	an	Optional	as	well.	For
example:

@objc	protocol	Flier	{

				optional	var	song	:	String	{get}

				optional	func	sing()	->	String

}

If	we	now	call	sing?()	on	a	Flier,	the	result	is	an	Optional	wrapping	a	String:
let	f	:	Flier	=	Bird()

let	s	=	f.sing?()	//	s	is	an	Optional	wrapping	a	String

If	we	force-unwrap	the	call	—	sing!()	—	the	result	is	either	a	String	(if	the	adopter
implements	sing)	or	a	crash	(if	it	doesn’t).

Many	Cocoa	protocols	have	optional	members.	For	example,	your	iOS	app	will	have	an
app	delegate	class	that	adopts	the	UIApplicationDelegate	protocol;	this	protocol	has	many

methods,	all	of	them	optional.	That	fact,	however,	will	have	no	effect	on	how	you
implement	those	methods;	you	don’t	need	to	mark	them	in	any	special	way.	Your	app
delegate	class	is	already	a	subclass	of	NSObject,	so	this	feature	just	works.	Either	you
implement	a	method	or	you	don’t.	Similarly,	you	will	often	make	your	UIViewController
subclass	adopt	a	Cocoa	delegate	protocol	with	optional	members;	again,	this	is	an
NSObject	subclass,	so	you’ll	just	implement	the	methods	you	want	to	implement,	with	no
special	marking.	(I’ll	talk	more	about	Cocoa	protocols	in	Chapter	10,	and	about	delegate
protocols	in	Chapter	11.)

Class	Protocol
A	protocol	declared	with	the	keyword	class	after	the	colon	after	its	name	is	a	class
protocol,	meaning	that	it	can	be	adopted	only	by	class	object	types:

protocol	SecondViewControllerDelegate	:	class	{

				func	acceptData(data:AnyObject!)

}

(There	is	no	need	to	say	class	if	this	protocol	is	already	marked	@objc;	the	@objc	attribute
implies	that	this	is	also	a	class	protocol.)

A	typical	reason	for	declaring	a	class	protocol	is	to	take	advantage	of	special	memory
management	features	that	apply	only	to	classes.	I	haven’t	discussed	memory	management
yet,	but	I’ll	continue	the	example	anyway	(and	I’ll	repeat	it	when	I	do	talk	about	memory
management,	in	Chapter	5):

class	SecondViewController	:	UIViewController	{

				weak	var	delegate	:	SecondViewControllerDelegate?

				//	...

}

The	keyword	weak	marks	the	delegate	property	as	having	special	memory	management.
Only	a	class	instance	can	participate	in	this	kind	of	special	memory	management.	The
delegate	property	is	typed	as	a	protocol,	and	a	protocol	might	be	adopted	by	a	struct	or	an
enum	type.	So	to	satisfy	the	compiler	that	this	object	will	in	fact	be	a	class	instance,	and
not	a	struct	or	enum	instance,	the	protocol	is	declared	as	a	class	protocol.

Implicitly	Required	Initializers
Suppose	that	a	protocol	declares	an	initializer.	And	suppose	that	a	class	adopts	this
protocol.	By	the	terms	of	this	protocol,	this	class	and	any	subclass	it	may	ever	have	must
implement	this	initializer.	Therefore,	the	class	must	not	only	implement	the	initializer,	but
it	must	also	mark	it	as	required.	An	initializer	declared	in	a	protocol	is	thus	implicitly
required,	and	the	class	is	forced	to	make	that	requirement	explicit.

Consider	this	simple	example,	which	won’t	compile:
protocol	Flier	{

				init()

}

class	Bird	:	Flier	{

				init()	{}	//	compile	error

}

That	code	generates	an	elaborate	but	perfectly	informative	compile	error	message:
“Initializer	requirement	init()	can	only	be	satisfied	by	a	required	initializer	in	non-final
class	Bird.”	To	compile	our	code,	we	must	designate	our	initializer	as	required:

protocol	Flier	{

				init()

}

class	Bird	:	Flier	{

				required	init()	{}

}

The	alternative,	as	the	compile	error	message	informs	us,	would	be	to	mark	the	Bird	class
as	final.	This	would	mean	that	it	cannot	have	any	subclasses	—	thus	guaranteeing	that
the	problem	will	never	arise	in	the	first	place.	If	Bird	were	marked	final,	there	would	be
no	need	to	mark	its	init	as	required.

In	the	above	code,	Bird	is	not	marked	as	final,	and	its	init	is	marked	as	required.	This,
as	I’ve	already	explained,	means	in	turn	that	any	subclass	of	Bird	that	implements	any
designated	initializers	—	and	thus	loses	initializer	inheritance	—	must	implement	the
required	initializer	and	mark	it	required	as	well.

That	fact	is	responsible	for	a	strange	and	annoying	feature	of	real-life	iOS	programming
with	Swift	that	I	mentioned	earlier	in	this	chapter.	Let’s	say	you	subclass	the	built-in
Cocoa	class	UIViewController	—	something	that	you	are	extremely	likely	to	do.	And	let’s
say	you	give	your	subclass	an	initializer	—	something	that	you	are	also	extremely	likely	to
do:

class	ViewController:	UIViewController	{

				init()	{

								super.init(nibName:	"ViewController",	bundle:	nil)

				}

}

That	code	won’t	compile.	The	compile	error	says:	“required	initializer	init(coder:)
must	be	provided	by	subclass	of	UIViewController.”

We	are	now	in	a	position	to	understand	what’s	going	on.	It	turns	out	that
UIViewController	adopts	a	protocol,	NSCoding.	And	this	protocol	requires	an	initializer
init(coder:).	None	of	that	is	your	doing;	UIViewController	and	NSCoding	are	declared
by	Cocoa,	not	by	you.	But	that	doesn’t	matter!	This	is	the	same	situation	I	was	just
describing.	Your	UIViewController	subclass	must	either	inherit	init(coder:)	or	must
explicitly	implement	it	and	mark	it	required.	Well,	your	subclass	has	implemented	a
designated	initializer	of	its	own	—	thus	cutting	off	initializer	inheritance.	Therefore	it
must	implement	init(coder:)	and	mark	it	required.

But	that	makes	no	sense	if	you	are	not	expecting	init(coder:)	ever	to	be	called	on	your
UIViewController	subclass.	You	are	being	forced	to	write	an	initializer	for	which	you	can
provide	no	meaningful	functionality!	Fortunately,	Xcode’s	Fix-It	feature	will	offer	to	write
the	initializer	for	you,	like	this:

required	init?(coder	aDecoder:	NSCoder)	{

				fatalError("init(coder:)	has	not	been	implemented")

}

That	code	satisfies	the	compiler.	(I’ll	explain	in	Chapter	5	why	it’s	a	legal	initializer	even
though	it	doesn’t	fulfill	an	initializer’s	contract.)	It	also	deliberately	crashes	if	it	is	ever
called.

If	you	do	have	functionality	for	this	initializer,	you	will	delete	the	fatalError	line	and
insert	your	own	functionality	in	its	place.	A	minimum	meaningful	implementation	would
be	super.init(coder:aDecoder),	but	of	course	if	your	class	has	properties	that	need
initialization,	you	will	need	to	initialize	them	first.

Not	only	UIViewController	but	lots	of	built-in	Cocoa	classes	adopt	NSCoding.	You	will
encounter	this	problem	if	you	subclass	any	of	those	classes	and	implement	your	own
initializer.	It’s	just	something	you’ll	have	to	get	used	to.

Literal	Convertibles
One	of	the	wonderful	things	about	Swift	is	that	so	many	of	its	features,	rather	than	being
built-in	and	accomplished	by	magic,	are	implemented	in	Swift	and	are	exposed	to	view	in
the	Swift	header.	Literals	are	a	case	in	point.	The	reason	you	can	say	5	to	make	an	Int
whose	value	is	5,	instead	of	formally	initializing	Int	by	saying	Int(5),	is	not	because	of
magic	(or	at	least,	not	entirely	because	of	magic).	It’s	because	Int	adopts	a	protocol,
IntegerLiteralConvertible.	Not	only	Int	literals,	but	all	literals	work	this	way.	The
following	literal	convertible	protocols	are	declared	in	the	Swift	header:

NilLiteralConvertible
BooleanLiteralConvertible
IntegerLiteralConvertible
FloatLiteralConvertible
StringLiteralConvertible
ExtendedGraphemeClusterLiteralConvertible
UnicodeScalarLiteralConvertible
ArrayLiteralConvertible
DictionaryLiteralConvertible

Your	own	object	type	can	adopt	a	literal	convertible	protocol	as	well.	This	means	that	a
literal	can	appear	where	an	instance	of	your	object	type	is	expected!	For	example,	here	we
declare	a	Nest	type	that	contains	some	number	of	eggs	(its	eggCount):

struct	Nest	:	IntegerLiteralConvertible	{

				var	eggCount	:	Int	=	0

				init()	{}

				init(integerLiteral	val:	Int)	{

								self.eggCount	=	val

				}

}

Because	Nest	adopts	IntegerLiteralConvertible,	we	can	pass	an	Int	where	a	Nest	is
expected,	and	our	init(integerLiteral:)	will	be	called	automatically,	causing	a	new
Nest	object	with	the	specified	eggCount	to	come	into	existence	at	that	moment:

func	reportEggs(nest:Nest)	{

				print("this	nest	contains	\(nest.eggCount)	eggs")

}

reportEggs(4)	//	this	nest	contains	4	eggs

Generics
A	generic	is	a	sort	of	placeholder	for	a	type,	into	which	an	actual	type	will	be	slotted	later.
This	is	useful	because	of	Swift’s	strict	typing.	Without	sacrificing	that	strict	typing,	there
are	situations	where	you	can’t	or	don’t	want	to	specify	too	precisely	in	a	certain	region	of
your	code	what	the	exact	type	of	something	is	going	to	be.

It	is	important	to	understand	that	generics	do	not	in	any	way	relax	Swift’s	strict	typing.	In
particular,	they	do	not	postpone	resolution	of	a	type	until	runtime.	When	you	use	a
generic,	your	code	will	still	specify	its	real	type;	that	real	type	is	known	with	complete
specificity	at	compile	time!	The	particular	region	of	your	code	where	the	type	is	expected
uses	a	generic	so	that	it	doesn’t	have	to	specify	the	type	fully,	but	at	the	point	where	that
code	is	used	by	other	code,	the	type	is	specified.	The	placeholder	is	generic,	but	it	is
resolved	to	an	actual	specific	type	whenever	the	generic	is	used.

An	Optional	is	a	good	example.	Any	type	of	value	can	be	wrapped	up	in	an	Optional.	Yet
you	are	never	in	any	doubt	as	to	what	type	is	wrapped	up	in	a	particular	Optional.	How
can	this	be?	It’s	because	Optional	is	a	generic	type.	Here’s	how	an	Optional	works.

I	have	already	said	that	an	Optional	is	an	enum,	with	two	cases:	.None	and	.Some.	If	an
Optional’s	case	is	.Some,	it	has	an	associated	value	—	the	value	that	is	wrapped	by	this
Optional.	But	what	is	the	type	of	that	associated	value?	On	the	one	hand,	one	wants	to	say
that	it	can	be	any	type;	that,	after	all,	is	why	anything	can	be	wrapped	up	in	an	Optional.
On	the	other	hand,	any	given	Optional	that	wraps	a	value	wraps	a	value	of	some	specific
type.	When	you	unwrap	an	Optional,	that	unwrapped	value	needs	to	be	typed	as	what	it	is,
so	that	it	can	be	sent	messages	appropriate	for	that	type.

The	solution	to	this	sort	of	problem	is	a	Swift	generic.	The	declaration	for	the	Optional
enum	in	the	Swift	header	starts	like	this:

enum	Optional<Wrapped>	{

				//	...

}

That	syntax	means:	“In	the	course	of	this	declaration,	I’m	going	to	be	using	a	made-up
type	—	a	type	placeholder	—	that	I	call	Wrapped.	It’s	a	real	and	individual	type,	but	I’m
not	going	to	say	more	about	it	right	now.	All	you	need	to	know	is	that	whenever	I	say
Wrapped,	I	mean	this	one	particular	type.	When	an	actual	Optional	is	created,	it	will	be
perfectly	clear	what	type	Wrapped	stands	for,	and	then,	wherever	I	say	Wrapped,	you
should	substitute	the	type	that	it	stands	for.”

Let’s	look	at	more	of	the	Optional	declaration:
enum	Optional<Wrapped>	{

				case	None

				case	Some(Wrapped)

				init(_	some:	Wrapped)

				//	...

}

Having	declared	that	Wrapped	is	a	placeholder,	we	proceed	to	use	it.	There’s	a	case	.None.
There’s	also	a	case	.Some,	which	has	an	associated	value	—	of	type	Wrapped.	We	also
have	an	initializer,	which	takes	a	parameter	—	of	type	Wrapped.	Thus,	the	type	with
which	we	are	initialized	—	whatever	type	that	may	be	—	is	type	Wrapped,	and	thus	is	the
type	of	value	that	is	associated	with	the	.Some	case.

It	is	this	identity	between	the	type	of	the	initializer	parameter	and	the	type	of	the	.Some
associated	value	that	allows	the	latter	to	be	resolved.	In	the	declaration	of	the	Optional
enum,	Wrapped	is	a	placeholder.	But	in	real	life,	when	an	actual	Optional	is	created,	it	will
be	initialized	with	an	actual	value	of	some	definite	type.	Usually,	we’ll	use	the	question-
mark	syntactic	sugar	(type	String?)	and	the	initializer	will	be	called	for	us	behind	the
scenes,	but	let’s	call	the	initializer	explicitly	for	the	sake	of	clarity:

let	s	=	Optional("howdy")

That	code	resolves	the	type	of	Wrapped	for	this	particular	Optional	instance!	Obviously,
"howdy"	is	a	String.	As	a	result,	the	compiler	knows	that	for	this	particular
Optional<Wrapped>,	Wrapped	is	String.	Under	the	hood,	wherever	Wrapped	appears	in
the	declaration	of	the	Optional	enum,	the	compiler	substitutes	String.	Thus,	the	declaration
for	the	particular	Optional	referred	to	by	the	variable	s	looks,	in	the	compiler’s	mind,	like
this:

enum	Optional<String>	{

				case	None

				case	Some(String)

				init(_	some:	String)

				//	...

}

That	is	the	pseudocode	declaration	of	an	Optional	whose	Wrapped	placeholder	has	been
replaced	everywhere	with	the	String	type.	We	can	summarize	this	by	saying	that	s	is	an
Optional<String>.	In	fact,	that	is	legal	syntax!	We	can	create	the	same	Optional	like	this:

let	s	:	Optional<String>	=	"howdy"

A	great	many	of	the	built-in	Swift	types	involve	generics.	In	fact,	this	feature	of	the
language	seems	to	be	designed	with	the	Swift	types	in	mind;	generics	exist	exactly	so	that
the	Swift	types	can	do	what	they	need	to	do.

Generic	Declarations
Here’s	a	list	of	the	places	where	generics,	in	one	form	or	another,	can	be	declared	in	Swift:

Generic	protocol	with	Self

In	a	protocol,	use	of	the	keyword	Self	(note	the	capitalization)	turns	the	protocol	into	a
generic.	Self	is	a	placeholder	meaning	the	type	of	the	adopter.	For	example,	here’s	a
Flier	protocol	that	declares	a	method	that	takes	a	Self	parameter:

protocol	Flier	{

				func	flockTogetherWith(f:Self)

}

That	means	that	if	the	Bird	object	type	were	to	adopt	the	Flier	protocol,	its
implementation	of	flockTogetherWith	would	need	to	declare	its	f	parameter	as	a	Bird.

Generic	protocol	with	empty	type	alias

A	protocol	can	declare	a	type	alias	without	defining	what	the	type	alias	stands	for	—
that	is,	the	typealias	statement	doesn’t	include	an	equal	sign.	This	turns	the	protocol
into	a	generic;	the	alias	name,	called	an	associated	type,	is	a	placeholder.	For	example:

protocol	Flier	{

				typealias	Other

				func	flockTogetherWith(f:Other)

				func	mateWith(f:Other)

}

An	adopter	will	declare	some	particular	type	where	the	generic	uses	the	type	alias	name,
thus	resolving	the	placeholder.	If	the	Bird	struct	adopts	the	Flier	protocol	and	declares
the	f	parameter	of	flockTogetherWith	as	a	Bird,	that	declaration	resolves	Other	to	Bird
for	this	particular	adopter	—	and	now	Bird	must	declare	the	f	parameter	for	mateWith
as	a	Bird	as	well:

struct	Bird	:	Flier	{

				func	flockTogetherWith(f:Bird)	{}

				func	mateWith(f:Bird)	{}

}

TIP

This	form	of	generic	protocol	is	ultimately	the	same	as	the	previous	form;	where	I’ve	written	f:Other,	Swift
understands	this	to	mean	f:Self.Other,	and	in	fact	it	is	legal	(and	possibly	clearer)	to	write	that.

Generic	functions

A	function	declaration	can	use	a	generic	placeholder	type	for	any	of	its	parameters,	for
its	return	type,	and	within	its	body.	Declare	the	placeholder	name	in	angle	brackets	after
the	function	name:

func	takeAndReturnSameThing<T>	(t:T)	->	T	{

				return	t

}

The	caller	will	use	some	particular	type	where	the	placeholder	appears	in	the	function
declaration,	thus	resolving	the	placeholder:

let	thing	=	takeAndReturnSameThing("howdy")

Here,	the	type	of	the	argument	"howdy"	used	in	the	call	resolves	T	to	String;	therefore
this	call	to	takeAndReturnSameThing	will	also	return	a	String,	and	the	variable
capturing	the	result,	thing,	is	inferred	to	String	as	well.

Generic	object	types

An	object	type	declaration	can	use	a	generic	placeholder	type	anywhere	within	its	curly
braces.	Declare	the	placeholder	name	in	angle	brackets	after	the	object	type	name:

struct	HolderOfTwoSameThings<T>	{

				var	firstThing	:	T

				var	secondThing	:	T

				init(thingOne:T,	thingTwo:T)	{

								self.firstThing	=	thingOne

								self.secondThing	=	thingTwo

				}

}

A	user	of	this	object	type	will	use	some	particular	type	where	the	placeholder	appears	in
the	object	type	declaration,	thus	resolving	the	placeholder:

let	holder	=	HolderOfTwoSameThings(thingOne:"howdy",	thingTwo:"getLost")

Here,	the	type	of	the	thingOne	argument,	"howdy",	used	in	the	initializer	call,	resolves
T	to	String;	therefore	thingTwo	must	also	be	a	String,	and	the	properties	firstThing
and	secondThing	are	Strings	as	well.

For	generic	functions	and	object	types,	which	use	the	angle	bracket	syntax,	the	angle
brackets	may	contain	multiple	placeholder	names,	separated	by	comma.	For	example:

func	flockTwoTogether<T,	U>(f1:T,	_	f2:U)	{}

The	two	parameters	of	flockTwoTogether	can	now	be	resolved	to	two	different	types
(though	they	do	not	have	to	be	different).

Type	Constraints
All	our	examples	so	far	have	permitted	any	type	to	be	substituted	for	the	placeholder.
Alternatively,	you	can	limit	the	types	that	are	eligible	to	be	used	for	resolving	a	particular
placeholder.	This	is	called	a	type	constraint.	The	simplest	form	of	type	constraint	is	to	put
a	colon	and	a	type	name	after	the	placeholder’s	name	when	it	first	appears.	The	type	name
after	the	colon	can	be	a	class	name	or	a	protocol	name.

For	example,	let’s	return	to	our	Flier	and	its	flockTogetherWith	function.	Suppose	we
want	to	say	that	the	parameter	of	flockTogetherWith	should	be	declared	by	the	adopter	as
a	type	that	adopts	Flier.	You	would	not	do	that	by	declaring	the	type	of	that	parameter	as
Flier	in	the	protocol:

protocol	Flier	{

				func	flockTogetherWith(f:Flier)

}

That	code	says:	You	can’t	adopt	this	protocol	unless	you	declare	a	function
flockTogetherWith	whose	f	parameter	is	declared	as	Flier:

struct	Bird	:	Flier	{

				func	flockTogetherWith(f:Flier)	{}

}

That	isn’t	what	we	want	to	say!	We	want	to	say	that	Bird	should	be	able	to	adopt	Flier
while	declaring	f	as	being	of	some	Flier	adopter	type,	such	as	Bird.	The	way	to	say	that	is
to	use	a	placeholder	constrained	as	a	Flier.	For	example,	we	could	do	it	like	this:

protocol	Flier	{

				typealias	Other	:	Flier

				func	flockTogetherWith(f:Other)

}

Unfortunately,	that’s	illegal:	a	protocol	can’t	use	itself	as	a	type	constraint.	The

workaround	is	to	declare	an	extra	protocol	that	Flier	itself	will	adopt,	and	constrain	Other
to	that	protocol:

protocol	Superflier	{}

protocol	Flier	:	Superflier	{

				typealias	Other	:	Superflier

				func	flockTogetherWith(f:Other)

}

Now	Bird	can	be	a	legal	adopter	like	this:
struct	Bird	:	Flier	{

				func	flockTogetherWith(f:Bird)	{}

}

In	a	generic	function	or	a	generic	object	type,	the	type	constraint	appears	in	the	angle
brackets.	For	example:

func	flockTwoTogether<T:Flier>(f1:T,	_	f2:T)	{}

Now	you	can’t	call	flockTwoTogether	with	two	String	parameters,	because	a	String	is	not
a	Flier.	Moreover,	if	Bird	and	Insect	both	adopt	Flier,	flockTwoTogether	can	be	called
with	two	Bird	parameters	or	with	two	Insect	parameters	—	but	not	with	a	Bird	and	an
Insect,	because	T	is	just	one	placeholder,	signifying	one	Flier	adopter	type.

A	type	constraint	on	a	placeholder	is	often	useful	as	a	way	of	assuring	the	compiler	that
some	message	can	be	sent	to	an	instance	of	the	placeholder	type.	For	example,	let’s	say	we
want	to	implement	a	function	myMin	that	returns	the	smallest	from	a	list	of	the	same	type.
Here’s	a	promising	implementation	as	a	generic	function,	but	there’s	one	problem	—	it
doesn’t	compile:

func	myMin<T>(things:T…)	->	T	{

				var	minimum	=	things[0]

				for	ix	in	1..<things.count	{

								if	things[ix]	<	minimum	{	//	compile	error

												minimum	=	things[ix]

								}

				}

				return	minimum

}

The	problem	is	the	comparison	things[ix]	<	minimum.	How	does	the	compiler	know	that
the	type	T,	the	type	of	things[ix]	and	minimum,	will	be	resolved	to	a	type	that	can	in	fact
be	compared	using	the	less-than	operator	in	this	way?	It	doesn’t,	and	that’s	exactly	why	it
rejects	that	code.	The	solution	is	to	promise	the	compiler	that	the	resolved	type	of	T	will	in
fact	work	with	the	less-than	operator.	The	way	to	do	that,	it	turns	out,	is	to	constrain	T	to
Swift’s	built-in	Comparable	protocol;	adoption	of	the	Comparable	protocol	exactly
guarantees	that	the	adopter	does	work	with	the	less-than	operator:

func	myMin<T:Comparable>(things:T…)	->	T	{

Now	myMin	compiles,	because	it	cannot	be	called	except	by	resolving	T	to	an	object	type
that	adopts	Comparable	and	hence	can	be	compared	with	the	less-than	operator.	Naturally,
built-in	object	types	that	you	think	should	be	comparable,	such	as	Int,	Double,	String,	and
Character,	do	in	fact	adopt	the	Comparable	protocol!	If	you	look	in	the	Swift	headers,
you’ll	find	that	the	built-in	min	global	function	is	declared	in	just	this	way,	and	for	just	this
reason.

A	generic	protocol	(a	protocol	whose	declaration	mentions	Self	or	has	an	associated	type)
can	be	used	as	a	type	only	in	a	generic,	as	a	type	constraint.	This	won’t	compile:

protocol	Flier	{

				typealias	Other

				func	fly()

}

func	flockTwoTogether(f1:Flier,	_	f2:Flier)	{	//	compile	error

				f1.fly()

				f2.fly()

}

To	use	a	generic	Flier	protocol	as	a	type,	we	must	write	a	generic	and	use	Flier	as	a	type
constraint.	For	example:

protocol	Flier	{

				typealias	Other

				func	fly()

}

func	flockTwoTogether<T1:Flier,	T2:Flier>(f1:T1,	_	f2:T2)	{

				f1.fly()

				f2.fly()

}

Explicit	Specialization
In	the	examples	so	far,	the	user	of	a	generic	resolves	the	placeholder’s	type	through
inference.	But	there’s	another	way	to	perform	resolution:	the	user	can	resolve	the	type
manually.	This	is	called	explicit	specialization.	In	some	situations,	explicit	specialization
is	mandatory	—	namely,	if	the	placeholder	type	cannot	be	resolved	through	inference.
There	are	two	forms	of	explicit	specialization:

Generic	protocol	with	associated	type

The	adopter	of	a	protocol	can	resolve	the	protocol’s	associated	type	manually	through	a
typealias	declaration	using	the	protocol’s	alias	name	with	an	explicit	type	assignment.
For	example:

protocol	Flier	{

				typealias	Other

}

struct	Bird	:	Flier	{

				typealias	Other	=	String

}

Generic	object	type

The	user	of	a	generic	object	type	can	resolve	the	object’s	placeholder	type(s)	manually
using	the	same	angle	bracket	syntax	used	to	declare	the	generic	in	the	first	place,	with
actual	type	names	in	the	angle	brackets.	For	example:

class	Dog<T>	{

				var	name	:	T?

}

let	d	=	Dog<String>()

(That	explains	the	Optional<String>	type	used	earlier	in	this	chapter	and	in	Chapter	3.)

You	cannot	explicitly	specialize	a	generic	function.	You	can,	however,	declare	a	generic
type	with	a	nongeneric	function	that	uses	the	generic	type’s	placeholder;	explicit
specialization	of	the	generic	type	resolves	the	placeholder,	and	thus	resolves	the	function:

protocol	Flier	{

				init()

}

struct	Bird	:	Flier	{

				init()	{}

}

struct	FlierMaker<T:Flier>	{

				static	func	makeFlier()	->	T	{

								return	T()

				}

}

let	f	=	FlierMaker<Bird>.makeFlier()	//	returns	a	Bird

When	a	class	is	generic,	you	can	subclass	it,	provided	you	resolve	the	generic.	(This	is
new	in	Swift	2.0.)	You	can	do	this	either	through	a	matching	generic	subclass	or	by
resolving	the	superclass	generic	explicitly.	For	example,	here’s	a	generic	Dog:

class	Dog<T>	{

				var	name	:	T?

}

You	can	subclass	it	as	a	generic	whose	placeholder	matches	that	of	the	superclass:
class	NoisyDog<T>	:	Dog<T>	{}

That’s	legal	because	the	resolution	of	the	NoisyDog	placeholder	T	will	resolve	the	Dog
placeholder	T.	The	alternative	is	to	subclass	an	explicitly	specialized	Dog:

class	NoisyDog	:	Dog<String>	{}

Associated	Type	Chains
When	a	generic	placeholder	is	constrained	to	a	generic	protocol	with	an	associated	type,
the	associated	type	name	can	be	chained	with	dot-notation	to	the	placeholder	name	to
specify	that	type.

Here’s	an	example.	Imagine	that	in	a	game	program,	soldiers	and	archers	are	enemies	of
one	another.	I’ll	express	this	by	subsuming	a	Soldier	struct	and	an	Archer	struct	under	a
Fighter	protocol	that	has	an	Enemy	associated	type,	which	is	itself	constrained	to	be	a
Fighter	(again,	I’ll	need	an	extra	protocol	that	Fighter	adopts):

protocol	Superfighter	{}

protocol	Fighter	:	Superfighter	{

				typealias	Enemy	:	Superfighter

}

I’ll	resolve	that	associated	type	manually	for	both	structs:
struct	Soldier	:	Fighter	{

				typealias	Enemy	=	Archer

}

struct	Archer	:	Fighter	{

				typealias	Enemy	=	Soldier

}

Now	I’ll	create	a	generic	struct	to	express	the	opposing	camps	of	these	fighters:
struct	Camp<T:Fighter>	{

}

Now	suppose	that	a	camp	may	contain	a	spy	from	the	opposing	camp.	What	is	the	type	of
that	spy?	Well,	if	this	is	a	Soldier	camp,	it’s	an	Archer;	and	if	it’s	an	Archer	camp,	it’s	a
Soldier.	More	generally,	since	T	is	a	Fighter,	it’s	the	type	of	the	Enemy	of	this	adopter	of
Fighter.	I	can	express	that	neatly	by	chaining	the	associated	type	name	to	the	placeholder
name:

struct	Camp<T:Fighter>	{

				var	spy	:	T.Enemy?

}

The	result	is	that	if,	for	a	particular	Camp,	T	is	resolved	to	Soldier,	T.Enemy	means	Fighter
—	and	vice	versa.	We	have	created	a	correct	and	inviolable	rule	for	the	type	that	a	Camp’s
spy	must	be.	This	won’t	compile:

var	c	=	Camp<Soldier>()

c.spy	=	Soldier()	//	compile	error

We’ve	tried	to	assign	an	object	of	the	wrong	type	to	this	Camp’s	spy	property.	But	this
does	compile:

var	c	=	Camp<Soldier>()

c.spy	=	Archer()

Longer	chains	of	associated	type	names	are	possible	—	in	particular,	when	a	generic
protocol	has	an	associated	type	which	is	itself	constrained	to	a	generic	protocol	with	an
associated	type.

For	example,	let’s	give	each	type	of	Fighter	a	characteristic	weapon:	a	soldier	has	a	sword,
while	an	archer	has	a	bow.	I’ll	make	a	Sword	struct	and	a	Bow	struct,	and	I’ll	unite	them
under	a	Wieldable	protocol:

protocol	Wieldable	{

}

struct	Sword	:	Wieldable	{

}

struct	Bow	:	Wieldable	{

}

I’ll	add	a	Weapon	associated	type	to	Fighter,	which	is	constrained	to	be	a	Wieldable,	and
once	again	I’ll	resolve	it	manually	for	each	type	of	Fighter:

protocol	Superfighter	{

				typealias	Weapon	:	Wieldable

}

protocol	Fighter	:	Superfighter	{

				typealias	Enemy	:	Superfighter

}

struct	Soldier	:	Fighter	{

				typealias	Weapon	=	Sword

				typealias	Enemy	=	Archer

}

struct	Archer	:	Fighter	{

				typealias	Weapon	=	Bow

				typealias	Enemy	=	Soldier

}

Now	let’s	say	that	every	Fighter	has	the	ability	to	steal	his	enemy’s	weapon.	I’ll	give	the
Fighter	generic	protocol	a	steal(weapon:from:)	method.	How	can	the	Fighter	generic
protocol	express	the	parameter	types	in	a	way	that	causes	its	adopter	to	declare	this
method	with	the	proper	types?

The	from:	parameter	type	is	this	Fighter’s	Enemy.	We	already	know	how	to	express	that:
it’s	the	placeholder	plus	dot-notation	with	the	associated	type	name.	Here,	the	placeholder
is	the	adopter	of	this	protocol	—	namely,	Self.	So	the	from:	parameter	type	is
Self.Enemy.	And	what	about	the	weapon:	parameter	type?	That’s	the	Weapon	of	that
Enemy!	So	the	weapon:	parameter	type	is	Self.Enemy.Weapon:

protocol	Fighter	:	Superfighter	{

				typealias	Enemy	:	Superfighter

				func	steal(weapon:Self.Enemy.Weapon,	from:Self.Enemy)

}

(That	code	will	compile,	and	will	mean	the	same	thing,	if	we	omit	Self.	But	Self	would
still	be	the	implicit	start	of	the	chain,	and	I	think	it	makes	the	meaning	of	the	code	clearer.)

The	result	is	that	the	following	declarations	for	Soldier	and	Archer	correctly	adopt	the
Fighter	protocol,	and	the	compiler	approves:

struct	Soldier	:	Fighter	{

				typealias	Weapon	=	Sword

				typealias	Enemy	=	Archer

				func	steal(weapon:Bow,	from:Archer)	{

				}

}

struct	Archer	:	Fighter	{

				typealias	Weapon	=	Bow

				typealias	Enemy	=	Soldier

				func	steal	(weapon:Sword,	from:Soldier)	{

				}

}

The	example	is	artificial	(though,	I	hope,	sufficiently	vivid);	but	the	concept	is	not.	The
Swift	headers	make	heavy	use	of	associated	type	chains;	the	associated	type	chain
Generator.Element	is	particularly	common,	because	it	expresses	the	type	of	the	element
of	a	sequence.	The	SequenceType	generic	protocol	has	an	associated	type	Generator,
which	is	constrained	to	be	an	adopter	of	the	generic	GeneratorType	protocol,	which	in	turn
has	an	associated	type	Element.

Additional	Constraints
A	simple	type	constraint	limits	the	types	eligible	for	resolving	a	placeholder	to	a	single
type.	Sometimes,	you	want	to	limit	the	eligible	resolving	types	still	further:	you	want
additional	constraints.

In	a	generic	protocol,	the	colon	in	a	type	alias	constraint	is	effectively	the	same	as	the
colon	that	appears	in	a	type	declaration.	Thus,	it	can	be	followed	by	multiple	protocols,	or
by	a	superclass	and	multiple	protocols:

class	Dog	{

}

class	FlyingDog	:	Dog,	Flier	{

}

protocol	Flier	{

}

protocol	Walker	{

}

protocol	Generic	{

				typealias	T	:	Flier,	Walker

				typealias	U	:	Dog,	Flier

}

In	the	Generic	protocol,	the	associated	type	T	can	be	resolved	only	as	a	type	that	adopts
the	Flier	protocol	and	the	Walker	protocol,	and	the	associated	type	U	can	be	resolved	only
as	a	type	that	is	a	Dog	(or	a	subclass	of	Dog)	and	that	adopts	the	Flier	protocol.

In	the	angle	brackets	of	a	generic	function	or	object	type,	that	syntax	is	illegal;	instead,
you	can	append	a	where	clause,	consisting	of	one	or	more	comma-separated	additional
constraints	on	a	declared	placeholder:

func	flyAndWalk<T	where	T:Flier,	T:Walker>	(f:T)	{}

func	flyAndWalk2<T	where	T:Flier,	T:Dog>	(f:T)	{}

A	where	clause	can	also	impose	additional	constraints	on	the	associated	type	of	a	generic
protocol	that	already	constrains	a	placeholder,	using	an	associated	type	chain	(described	in
the	preceding	section).	This	pseudocode	shows	what	I	mean;	I’ve	omitted	the	content	of
the	where	clause,	to	focus	on	what	the	where	clause	will	be	constraining:

protocol	Flier	{

				typealias	Other

}

func	flockTogether<T:Flier	where	T.Other	/*???*/	>	(f:T)	{}

As	you	can	see,	the	placeholder	T	is	already	constrained	to	be	a	Flier.	Flier	is	itself	a
generic	protocol,	with	an	associated	type	Other.	Thus,	whatever	type	resolves	T	will
resolve	Other.	The	where	clause	constrains	further	the	types	eligible	to	resolve	T,	by
restricting	the	types	eligible	to	resolve	Other.

So	what	sort	of	restriction	are	we	allowed	to	impose	on	our	associated	type	chain?	One
possibility	is	the	same	sort	of	restriction	as	in	the	preceding	example	—	a	colon	followed
by	a	protocol	that	it	must	adopt,	or	by	a	class	that	it	must	descend	from.	Here’s	an	example
with	a	protocol:

protocol	Flier	{

				typealias	Other

}

struct	Bird	:	Flier	{

				typealias	Other	=	String

}

struct	Insect	:	Flier	{

				typealias	Other	=	Bird

}

func	flockTogether<T:Flier	where	T.Other:Equatable>	(f:T)	{}

Both	Bird	and	Insect	adopt	Flier,	but	they	are	not	both	eligible	as	the	argument	in	a	call	to
the	flockTogether	function.	The	flockTogether	function	can	be	called	with	a	Bird
argument,	because	a	Bird’s	Other	associated	type	is	resolved	to	String,	which	adopts	the
built-in	Equatable	protocol.	But	flockTogether	can’t	be	called	with	an	Insect	argument,
because	an	Insect’s	Other	associated	type	is	resolved	to	Bird,	which	doesn’t	adopt	the
Equatable	protocol:

flockTogether(Bird())	//	okay

flockTogether(Insect())	//	compile	error

Here’s	an	example	with	a	class:
protocol	Flier	{

				typealias	Other

}

class	Dog	{

}

class	NoisyDog	:	Dog	{

}

struct	Pig	:	Flier	{

				typealias	Other	=	NoisyDog	//	or	Dog

}

func	flockTogether<T:Flier	where	T.Other:Dog>	(f:T)	{}

The	flockTogether	function	can	be	called	with	a	Pig	argument,	because	Pig	adopts	Flier
and	resolves	Other	to	a	Dog	or	a	subclass	of	Dog:

flockTogether(Pig())	//	okay

Instead	of	a	colon,	we	can	use	an	equality	operator	==	followed	by	a	type.	The	type	at	the
end	of	the	associated	type	chain	must	then	be	this	exact	type	—	not	merely	an	adopter	or
subclass.	For	example:

protocol	Flier	{

				typealias	Other

}

protocol	Walker	{

}

struct	Kiwi	:	Walker	{

}

struct	Bird	:	Flier	{

				typealias	Other	=	Kiwi

}

struct	Insect	:	Flier	{

				typealias	Other	=	Walker

}

func	flockTogether<T:Flier	where	T.Other	==	Walker>	(f:T)	{}

The	flockTogether	function	can	be	called	with	an	Insect	argument,	because	Insect	adopts
Flier	and	resolves	Other	to	Walker.	But	it	can’t	be	called	with	a	Bird	argument.	Bird
adopts	Flier,	and	it	resolves	Other	to	an	adopter	of	Walker,	namely	Kiwi	—	but	that	isn’t
good	enough	to	satisfy	the	==	restriction.

The	same	sort	of	thing	would	be	true	if	we	had	said	==	Dog	in	the	previous	example.	A	Pig
argument	would	no	longer	be	acceptable	if	Pig	resolves	Other	to	NoisyDog;	Pig	must
resolve	Other	to	Dog	itself	in	order	to	be	acceptable	as	an	argument.

The	type	on	the	right	side	of	the	==	operator	can	itself	be	an	associated	type	chain.	The
resolved	types	at	the	ends	of	the	two	chains	must	then	be	identical.	For	example:

protocol	Flier	{

				typealias	Other

}

struct	Bird	:	Flier	{

				typealias	Other	=	String

}

struct	Insect	:	Flier	{

				typealias	Other	=	Int

}

func	flockTwoTogether<T:Flier,	U:Flier	where	T.Other	==	U.Other>

				(f1:T,	_	f2:U)	{}

The	flockTwoTogether	function	can	be	called	with	a	Bird	and	a	Bird,	and	it	can	be	called
with	an	Insect	and	an	Insect,	but	it	can’t	be	called	with	an	Insect	and	a	Bird,	because	they
don’t	resolve	the	Other	associated	type	to	the	same	type.

The	Swift	header	makes	extensive	use	of	where	clauses	with	an	==	operator,	especially	as
a	way	of	restricting	a	sequence	type.	For	example,	the	String	appendContentsOf	method
is	declared	twice,	like	this:

mutating	func	appendContentsOf(other:	String)

mutating	func	appendContentsOf<S	:	SequenceType

				where	S.Generator.Element	==	Character>(newElements:	S)

I	mentioned	in	Chapter	3	that	appendContentsOf	can	concatenate	a	String	to	a	String.	But
that’s	not	the	only	kind	of	thing	that	appendContentsOf	can	concatenate	to	a	String!	A
character	sequence	is	legal	too:

var	s	=	"hello"

s.appendContentsOf("	world".characters)	//	"hello	world"

And	so	is	an	array	of	Character:
s.appendContentsOf(["!"	as	Character])

Those	are	both	sequences	of	characters	—	and	the	generic	in	the	second
appendContentsOf	method	declaration	is	how	you	specify	that.	It’s	a	sequence,	because
it’s	a	type	that	adopts	the	SequenceType	protocol.	But	it’s	not	just	any	old	sequence;	its
Generator.Element	associated	type	chain	must	be	resolved	to	Character.	The
Generator.Element	chain,	as	I	mentioned	earlier,	is	Swift’s	way	of	expressing	the	notion
of	a	sequence’s	element	type.

The	Array	struct	has	an	appendContentsOf	method	too,	but	it’s	declared	a	little
differently:

mutating	func	appendContentsOf<S	:	SequenceType

				where	S.Generator.Element	==	Element>(newElements:	S)

A	sequence	must	be	of	just	one	type.	If	a	sequence	consists	of	String	elements,	you	can
add	more	elements	to	it,	but	only	String	elements;	you	can’t	add	a	sequence	of	Int
elements	to	a	sequence	of	String	elements.	An	array	is	a	sequence;	it	is	a	generic	whose
Element	placeholder	is	the	type	of	its	elements.	So	the	Array	struct	uses	the	==	operator	in
its	appendContentsOf	method	declaration	to	enforce	this	rule:	the	element	type	of	the
argument	sequence	must	be	the	same	as	the	element	type	of	the	existing	array.

Extensions
An	extension	is	a	way	of	injecting	your	own	code	into	an	object	type	that	has	already	been
declared	elsewhere;	you	are	extending	an	existing	object	type.	You	can	extend	your	own
object	types;	you	can	also	extend	one	of	Swift’s	object	types	or	one	of	Cocoa’s	object
types,	in	which	case	you	are	adding	functionality	to	a	type	that	doesn’t	belong	to	you!

Extension	declaration	can	take	place	only	at	the	top	level	of	a	file.	To	declare	an	extension,
put	the	keyword	extension	followed	by	the	name	of	an	existing	object	type,	then
optionally	a	colon	plus	the	names	of	any	protocols	you	want	to	add	to	the	list	of	those
adopted	by	this	type,	and	finally	curly	braces	containing	the	usual	things	that	go	inside	an
object	type	declaration	—	with	the	following	restrictions:

An	extension	can’t	override	an	existing	member	(but	it	can	overload	an	existing
method).
An	extension	can’t	declare	a	stored	property	(but	it	can	declare	a	computed	property).
An	extension	of	a	class	can’t	declare	a	designated	initializer	or	a	deinitializer	(but	it	can
declare	a	convenience	initializer).

Extending	Object	Types
In	my	real	programming	life,	I	sometimes	extend	a	built-in	Swift	or	Cocoa	type	just	to
encapsulate	some	missing	functionality	by	expressing	it	as	a	property	or	method.	Here	are
some	examples	from	actual	apps.

In	a	card	game,	I	need	to	shuffle	the	deck,	which	is	stored	in	an	array.	I	extend	Swift’s
built-in	Array	type	to	give	it	a	shuffle	method:

extension	Array	{

				mutating	func	shuffle	()	{

								for	i	in	(0..<self.count).reverse()	{

												let	ix1	=	i

												let	ix2	=	Int(arc4random_uniform(UInt32(i+1)))

												(self[ix1],	self[ix2])	=	(self[ix2],	self[ix1])

								}

				}

}

Cocoa’s	Core	Graphics	framework	has	many	useful	functions	associated	with	the	CGRect
struct,	and	Swift	already	extends	CGRect	to	add	some	helpful	properties	and	methods;	but
there’s	no	shortcut	for	getting	the	center	point	(a	CGPoint)	of	a	CGRect,	something	that	in
practice	one	very	often	needs.	I	extend	CGRect	to	give	it	a	center	property:

extension	CGRect	{

				var	center	:	CGPoint	{

								return	CGPointMake(self.midX,	self.midY)

				}

}

An	extension	can	declare	a	static	or	class	method;	since	an	object	type	is	usually	globally
available,	this	can	often	be	an	excellent	way	to	slot	a	global	function	into	an	appropriate
namespace.	For	example,	in	one	of	my	apps,	I	find	myself	frequently	using	a	certain	color
(a	UIColor).	Instead	of	creating	that	color	repeatedly,	it	makes	sense	to	encapsulate	the
instructions	for	generating	it	in	a	global	function.	But	instead	of	making	that	function
completely	global,	I	make	it	—	appropriately	enough	—	a	class	method	of	UIColor:

extension	UIColor	{

				class	func	myGoldenColor()	->	UIColor	{

								return	self.init(red:1.000,	green:0.894,	blue:0.541,	alpha:0.900)

				}

}

Now	I	can	use	that	color	throughout	my	code	simply	by	saying
UIColor.myGoldenColor(),	completely	parallel	to	built-in	class	methods	such	as
UIColor.redColor().

Another	good	use	of	an	extension	is	to	make	built-in	Cocoa	classes	work	with	your	private
data	types.	For	example,	in	my	Zotz	app,	I’ve	defined	an	enum	whose	raw	values	are	the
key	strings	to	be	used	when	archiving	or	unarchiving	a	property	of	a	Card:

enum	Archive	:	String	{

				case	Color	=	"itsColor"

				case	Number	=	"itsNumber"

				case	Shape	=	"itsShape"

				case	Fill	=	"itsFill"

}

The	only	problem	is	that	in	order	to	use	this	enum	when	archiving,	I	have	to	take	its
rawValue	each	time:

coder.encodeObject(s1,	forKey:Archive.Color.rawValue)

coder.encodeObject(s2,	forKey:Archive.Number.rawValue)

coder.encodeObject(s3,	forKey:Archive.Shape.rawValue)

coder.encodeObject(s4,	forKey:Archive.Fill.rawValue)

That’s	just	ugly.	An	elegant	fix	(suggested	in	a	WWDC	2015	video)	is	to	teach	NSCoder,
the	class	of	coder,	what	to	do	when	the	forKey:	argument	is	an	Archive	instead	of	a
String.	In	an	extension,	I	overload	the	encodeObject:forKey:	method:

extension	NSCoder	{

				func	encodeObject(objv:	AnyObject?,	forKey	key:	Archive)	{

								self.encodeObject(objv,	forKey:key.rawValue)

				}

}

In	effect,	I’ve	moved	the	rawValue	call	out	of	my	code	and	into	NSCoder’s	code.	Now	I
can	archive	a	Card	without	saying	rawValue:

coder.encodeObject(s1,	forKey:Archive.Color)

coder.encodeObject(s2,	forKey:Archive.Number)

coder.encodeObject(s3,	forKey:Archive.Shape)

coder.encodeObject(s4,	forKey:Archive.Fill)

Extensions	on	one’s	own	object	types	can	help	to	organize	one’s	code.	A	frequently	used
convention	is	to	add	an	extension	for	each	protocol	one’s	object	type	needs	to	adopt,	like
this:

class	ViewController:	UIViewController	{

				//	...	UIViewController	method	overrides	go	here…

}

extension	ViewController	:	UIPopoverPresentationControllerDelegate	{

				//	...	UIPopoverPresentationControllerDelegate	methods	go	here…

}

extension	ViewController	:	UIToolbarDelegate	{

				//	...	UIToolbarDelegate	methods	go	here…

}

An	extension	on	your	own	object	type	is	also	a	way	to	spread	your	definition	of	that	object
type	over	multiple	files,	if	you	feel	that	several	shorter	files	are	better	than	one	long	file.

When	you	extend	a	Swift	struct,	a	curious	thing	happens	with	initializers:	it	becomes
possible	to	declare	an	initializer	and	keep	the	implicit	initializers:

struct	Digit	{

				var	number	:	Int

}

extension	Digit	{

				init()	{

								self.init(number:42)

				}

}

That	code	means	that	you	can	instantiate	a	Digit	by	calling	the	explicitly	declared
initializer	—	Digit()	—	or	by	calling	the	implicit	memberwise	initializer	—
Digit(number:7).	Thus,	the	explicit	declaration	of	an	initializer	through	an	extension	did
not	cause	us	to	lose	the	implicit	memberwise	initializer,	as	would	have	happened	if	we	had
declared	the	same	initializer	inside	the	original	struct	declaration.

Extending	Protocols
New	in	Swift	2.0,	you	can	extend	a	protocol.	When	you	do,	you	can	add	methods	and
properties	to	the	protocol,	just	as	for	any	object	type.	Unlike	a	protocol	declaration,	these
methods	and	properties	are	not	mere	requirements,	to	be	fulfilled	by	the	adopter	of	the
protocol;	they	are	actual	methods	and	properties,	to	be	inherited	by	the	adopter	of	the
protocol!	For	example:

protocol	Flier	{

}

extension	Flier	{

				func	fly()	{

								print("flap	flap	flap")

				}

}

struct	Bird	:	Flier	{

}

Observe	that	Bird	can	now	adopt	Flier	without	implementing	the	fly	method.	Even	if	we
were	to	add	func	fly()	as	a	requirement	in	the	Flier	protocol	declaration,	Bird	could	still
adopt	Flier	without	implementing	the	fly	method.	That’s	because	the	Flier	protocol
extension	supplies	the	fly	method!	Bird	thus	inherits	an	implementation	of	fly:

let	b	=	Bird()

b.fly()	//	flap	flap	flap

An	adopter	can	implement	a	method	inherited	from	a	protocol	extension,	thus	overriding
that	method:

struct	Insect	:	Flier	{

				func	fly()	{

								print("whirr")

				}

}

let	i	=	Insect()

i.fly()	//	whirr

But	be	warned:	this	kind	of	inheritance	is	not	polymorphic.	The	adopter’s	implementation
is	not	an	override;	it	is	merely	another	implementation.	The	internal	identity	rule	does	not
apply;	it	matters	how	a	reference	is	typed:

let	f	:	Flier	=	Insect()

f.fly()	//	flap	flap	flap

Even	though	f	is	internally	an	Insect	(as	we	can	discover	with	the	is	operator),	the	fly
message	is	being	sent	to	an	object	reference	typed	as	a	Flier,	so	it	is	Flier’s	implementation
of	the	fly	method	that	is	called,	not	Insect’s	implementation.

To	get	something	that	looks	like	polymorphic	inheritance,	we	must	declare	fly	as	a
requirement	in	the	original	protocol:

protocol	Flier	{

				func	fly()	//	*

}

extension	Flier	{

				func	fly()	{

								print("flap	flap	flap")

				}

}

struct	Insect	:	Flier	{

				func	fly()	{

								print("whirr")

				}

}

Now	an	Insect	maintains	its	internal	integrity:
let	f	:	Flier	=	Insect()

f.fly()	//	whirr

This	difference	makes	sense,	because	adoption	of	a	protocol	does	not	(and	must	not)
introduce	the	overhead	of	dynamic	dispatch.	Therefore	the	compiler	must	make	a	static
decision.	If	the	method	is	declared	as	a	requirement	in	the	original	protocol,	we	are
guaranteed	that	the	adopter	implements	it,	and	so	we	can	(and	do)	call	the	adopter’s
implementation.	But	if	the	method	exists	only	in	the	protocol	extension,	then	deciding
whether	the	adopter	reimplements	it	would	require	dynamic	dispatch	at	runtime,	and	that
would	defeat	the	nature	of	protocols	—	so	the	compiler	messages	the	protocol	extension.

The	chief	benefit	of	protocol	extensions	is	that	they	allow	code	to	be	moved	to	an
appropriate	scope.	Here’s	an	example	from	my	Zotz	app.	I	have	four	enums,	each
representing	an	attribute	of	a	Card:	Fill,	Color,	Shape,	and	Number.	They	all	have	an	Int
raw	value.	I	was	tired	of	having	to	say	rawValue:	every	time	I	initialized	one	of	these
enums	from	its	raw	value,	so	I	gave	each	enum	a	delegating	initializer	with	no
externalized	parameter	name,	that	calls	the	built-in	init(rawValue:)	initializer:

enum	Fill	:	Int	{

				case	Empty	=	1

				case	Solid

				case	Hazy

				init?(_	what:Int)	{

								self.init(rawValue:what)

				}

}

enum	Color	:	Int	{

				case	Color1	=	1

				case	Color2

				case	Color3

				init?(_	what:Int)	{

								self.init(rawValue:what)

				}

}

//	...	and	so	on…

I	didn’t	like	the	repetition	of	my	initializer	declaration,	but	in	Swift	1.2	and	before,	there
was	nothing	I	could	do	about	that.	In	Swift	2.0,	I	can	move	that	declaration	into	a	protocol
extension.	It	turns	out	that	an	enum	with	a	raw	value	automatically	adopts	the	built-in
generic	RawRepresentable	protocol,	where	the	raw	value	type	is	a	type	alias	called
RawValue.	So	I	can	shoehorn	my	initializer	into	the	RawRepresentable	protocol:

extension	RawRepresentable	{

				init?(_	what:RawValue)	{

								self.init(rawValue:what)

				}

}

enum	Fill	:	Int	{

				case	Empty	=	1

				case	Solid

				case	Hazy

}

enum	Color	:	Int	{

				case	Color1	=	1

				case	Color2

				case	Color3

}

//	...	and	so	on…

In	the	Swift	standard	library,	protocol	extensions	have	meant	that	many	global	functions
can	be	recast	as	methods.	For	example,	in	Swift	1.2	and	earlier,	enumerate	(see	Chapter	3)
was	a	global	function:

func	enumerate<Seq:SequenceType>(base:Seq)	->	EnumerateSequence<Seq>

It	was	a	global	function	because	it	had	to	be.	This	is	a	function	that	is	to	apply	only	to
sequences	—	adopters	of	the	SequenceType	protocol.	Prior	to	Swift	2.0,	how	could	that	be
expressed?	An	enumerate	method	might	have	been	declared	as	a	requirement	of	the
SequenceType	protocol,	but	this	would	mean	merely	that	every	adopter	of	SequenceType
must	implement	it;	it	wouldn’t	provide	an	implementation.	The	only	way	to	do	that	was	as
a	global	function,	with	the	sequence	as	parameter,	using	a	generic	constraint	to	guard	the
door,	so	to	speak,	so	that	only	a	sequence	could	be	passed	as	argument.

In	Swift	2.0,	however,	enumerate	is	a	method,	declared	in	an	extension	to	the
SequenceType	protocol:

extension	SequenceType	{

				func	enumerate()	->	EnumerateSequence<Self>

}

Now	there’s	no	need	for	a	generic	constraint.	There’s	no	need	for	a	generic.	There’s	no
need	for	a	parameter!	This	is	a	method	of	SequenceType;	the	sequence	to	be	enumerated	is
the	sequence	to	which	the	enumerate	message	is	sent.

That	example	could	be	greatly	multiplied;	a	lot	of	Swift	standard	library	global	functions
were	turned	into	methods	in	Swift	2.0.	This	change	effectively	transforms	the	feel	of	the
language.

Extending	Generics
When	you	extend	a	generic	type,	the	placeholder	type	names	are	visible	to	your	extension
declaration.	That’s	good,	because	you	might	need	to	use	them;	but	it	can	make	your	code	a
little	mystifying,	because	you	seem	to	be	using	an	undefined	type	name	out	of	the	blue.	It
might	be	a	good	idea	to	add	a	comment,	to	remind	yourself	what	you’re	up	to:

class	Dog<T>	{

				var	name	:	T?

}

extension	Dog	{

				func	sayYourName()	->	T?	{	//	T	is	the	type	of	self.name

								return	self.name

				}

}

New	in	Swift	2.0,	a	generic	type	extension	can	include	a	where	clause.	This	has	the	same
effect	as	any	generic	constraint:	it	limits	which	resolvers	of	the	generic	can	call	the	code
injected	by	this	extension,	and	assures	the	compiler	that	your	code	is	legal	for	those
resolvers.

As	with	protocol	extensions,	this	means	that	a	global	function	can	be	turned	into	a	method.
Recall	this	example	from	earlier	in	this	chapter:

func	myMin<T:Comparable>(things:T…)	->	T	{

				var	minimum	=	things[0]

				for	ix	in	1..<things.count	{

								if	things[ix]	<	minimum	{

												minimum	=	things[ix]

								}

				}

				return	minimum

}

Why	did	I	make	that	a	global	function?	Because	before	Swift	2.0,	I	had	to.	Let’s	say	I
wanted	to	make	this	a	method	of	Array.	In	Swift	1.2	and	before,	you	could	extend	Array,
and	your	extension	could	refer	to	Array’s	generic	placeholder;	but	it	couldn’t	constrain
that	placeholder	further.	Thus,	there	was	no	way	to	inject	a	method	into	Array	while
guaranteeing	that	the	placeholder	would	be	a	Comparable	—	and	so	the	compiler	wouldn’t
permit	the	use	of	the	<	operator	on	an	element	of	the	array.	In	Swift	2.0,	I	can	constrain	the
generic	placeholder	further,	and	so	I	can	make	this	a	method	of	Array:

extension	Array	where	Element:Comparable	{	//	Element	is	the	element	type

				func	min()	->	Element	{

								var	minimum	=	self[0]

								for	ix	in	1..<self.count	{

												if	self[ix]	<	minimum	{

																minimum	=	self[ix]

												}

								}

								return	minimum

				}

}

That	method	can	be	called	only	on	an	array	of	Comparable	elements;	it	isn’t	injected	into
other	kinds	of	arrays,	so	the	compiler	won’t	permit	it	to	be	called:

let	m	=	[4,1,5,7,2].min()	//	1

let	d	=	[Digit(12),	Digit(42)].min()	//	compile	error

The	second	line	doesn’t	compile,	because	I	haven’t	made	my	Digit	struct	adopt	the
Comparable	protocol.

Once	again,	this	change	in	the	Swift	language	has	resulted	in	a	major	wholesale
reorganization	of	the	Swift	standard	library,	allowing	global	functions	to	be	moved	into
struct	extensions	and	protocol	extensions	as	methods.	For	example,	the	global	find
function	from	Swift	1.2	and	before	has	become,	in	Swift	2.0,	the	CollectionType	indexOf
method;	it	is	constrained	so	that	the	collection’s	elements	are	Equatables,	because	you
can’t	find	a	needle	in	a	haystack	unless	you	have	a	way	of	identifying	the	needle	when	you
see	it:

extension	CollectionType	where	Generator.Element	:	Equatable	{

				func	indexOf(element:	Self.Generator.Element)	->	Self.Index?

}

That’s	a	protocol	extension,	and	it	is	also	a	generic	extension	constrained	with	a	where
clause	—	neither	of	which	was	possible	before	Swift	2.0.

Umbrella	Types
Swift	provides	a	few	built-in	types	as	general	umbrella	types,	capable	of	embracing
multiple	real	types	under	a	single	heading.

AnyObject
The	umbrella	type	most	commonly	encountered	in	real-life	iOS	programming	is
AnyObject.	It	is	actually	a	protocol;	as	a	protocol,	it	is	completely	empty,	requiring	no
properties	or	methods.	It	has	the	special	feature	that	all	class	types	conform	to	it
automatically.	Thus,	it	is	possible	to	assign	or	pass	any	class	instance	where	an	AnyObject
is	expected,	and	to	cast	in	either	direction:

class	Dog	{

}

let	d	=	Dog()

let	any	:	AnyObject	=	d

let	d2	=	any	as!	Dog

Certain	Swift	types,	which	are	not	class	types	—	such	as	String	and	the	basic	numeric
types	—	are	bridged	to	Objective-C	types,	which	are	class	types,	defined	by	the
Foundation	framework.	This	means	that,	in	the	presence	of	the	Foundation	framework,	a
Swift	bridged	type	can	be	assigned,	passed,	or	cast	to	an	AnyObject,	even	if	it	is	not	a
class	type	—	because	it	will	be	cast	first	to	its	Objective-C	bridged	class	type
automatically,	behind	the	scenes	—	and	an	AnyObject	can	be	cast	down	to	a	Swift	bridged
type.	For	example:

let	s	=	"howdy"

let	any	:	AnyObject	=	s	//	implicitly	casts	to	NSString

let	s2	=	any	as!	String

let	i	=	1

let	any2	:	AnyObject	=	i	//	implicitly	casts	to	NSNumber

let	i2	=	any2	as!	Int

The	common	way	to	encounter	an	AnyObject	is	in	the	course	of	interchange	with
Objective-C.	Swift’s	ability	to	cast	any	class	type	to	and	from	an	AnyObject	parallels
Objective-C’s	ability	to	cast	any	class	type	to	and	from	an	id.	In	effect,	AnyObject	is	the
Swift	version	of	id.

NSUserDefaults,	NSCoding,	and	key–value	coding	(Chapter	10),	for	example,	all	allow
you	to	retrieve	an	object	of	indeterminate	class	by	a	string	key	name;	such	an	object	will
arrive	into	Swift	as	an	AnyObject	—	in	particular,	as	an	Optional	wrapping	an	AnyObject,
because	there	might	be	no	such	key,	in	which	case	Cocoa	needs	to	be	able	to	return	nil.	In
general,	however,	an	AnyObject	will	be	of	little	use	to	you;	you’ll	want	to	let	Swift	know
what	sort	of	object	this	really	is.	Unwrapping	the	Optional	and	casting	down	from
AnyObject	is	up	to	you.	If	you’re	perfectly	sure	of	your	ground,	you	can	force-unwrap	and
force-cast	with	the	as!	operator:

required	init	(coder	decoder:	NSCoder)	{

				let	s	=	decoder.decodeObjectForKey(Archive.Color)	as!	String

				//	...

}

Of	course,	you’d	better	be	telling	the	truth	when	you	cast	down	an	AnyObject	with	as!,	or
you	will	crash	when	the	code	runs	and	the	cast	turns	out	to	be	impossible.	You	can	use	the
is	and	as?	operators,	if	you’re	in	doubt,	to	make	sure	your	cast	is	safe.

Suppressing	type	checking

A	surprising	feature	of	AnyObject	is	that	it	can	be	used	to	suspend	the	compiler’s
judgment	as	to	whether	a	certain	message	can	be	sent	to	an	object	—	similar	to	Objective-
C,	where	typing	something	as	an	id	causes	the	compiler	to	suspend	judgment	about	what
messages	can	be	sent	to	it.	Thus,	you	can	send	a	message	to	an	AnyObject	without
bothering	to	cast	to	its	real	type.	(Nevertheless,	if	you	know	the	object’s	real	type,	you
probably	will	cast	to	that	type.)

You	can’t	send	just	any	old	message	to	an	AnyObject;	the	message	must	correspond	to	a
class	member	that	meets	one	of	the	following	criteria:

It	is	a	member	of	an	Objective-C	class.
It	is	a	member	of	your	own	Swift	subclass	(or	extension)	of	an	Objective-C	class.
It	is	a	member	of	a	Swift	class,	and	is	marked	@objc	(or	dynamic).

This	feature	is	fundamentally	parallel	to	optional	protocol	members,	which	I	discussed
earlier	in	this	chapter	—	with	some	slight	differences.	Let’s	start	with	two	classes:

class	Dog	{

				@objc	var	noise	:	String	=	"woof"

				@objc	func	bark()	->	String	{

								return	"woof"

				}

}

class	Cat	{}

The	Dog	property	noise	and	the	Dog	method	bark	are	marked	@objc,	so	they	are	visible
as	potential	messages	to	be	sent	to	an	AnyObject.	To	prove	it,	I’ll	type	a	Cat	as	an
AnyObject	and	send	it	one	of	these	messages.	Let’s	start	with	the	noise	property:

let	c	:	AnyObject	=	Cat()

let	s	=	c.noise

That	code,	amazingly,	compiles.	Moreover,	it	doesn’t	crash	when	the	code	runs!	The
noise	property	has	been	typed	as	an	Optional	wrapping	its	original	type.	Here,	that’s	an
Optional	wrapping	a	String.	If	the	object	typed	as	AnyObject	doesn’t	implement	noise,
the	result	is	nil	and	no	harm	done.	Moreover,	unlike	an	optional	protocol	property,	the
Optional	in	question	is	implicitly	unwrapped.	Therefore,	if	the	AnyObject	turns	out	to
have	a	noise	property	(for	example,	if	it	had	been	a	Dog),	the	resulting	implicitly
unwrapped	String	can	be	treated	directly	as	a	String.

Now	let’s	try	it	with	a	method	call:
let	c	:	AnyObject	=	Cat()

let	s	=	c.bark?()

Again,	that	code	compiles	and	is	safe.	If	the	Object	typed	as	AnyObject	doesn’t	implement
bark,	no	bark()	call	is	performed;	the	method	result	type	has	been	wrapped	in	an
Optional,	so	s	is	typed	as	String?	and	has	been	set	to	nil.	If	the	AnyObject	turns	out	to
have	a	bark	method	(for	example,	if	it	had	been	a	Dog),	the	result	is	an	Optional	wrapping
the	returned	String.	If	you	call	bark!()	on	the	AnyObject	instead,	the	result	will	be	a
String,	but	you’ll	crash	if	the	AnyObject	doesn’t	implement	bark.	Unlike	an	optional
protocol	member,	you	can	even	send	the	message	with	no	unwrapping.	This	is	legal:

let	c	:	AnyObject	=	Cat()

let	s	=	c.bark()

That’s	just	like	force-unwrapping	the	call:	the	result	is	a	String,	but	it’s	possible	to	crash.

Object	identity	and	type	identity

Sometimes,	what	you	want	to	know	is	not	what	type	an	object	is,	but	whether	an	object
itself	is	the	particular	object	you	think	it	is.	This	problem	can’t	arise	with	a	value	type,	but
it	can	arise	with	a	reference	type,	where	there	can	be	more	than	one	distinct	reference	to
one	and	the	same	object.	A	class	is	a	reference	type,	so	the	problem	can	arise	with	class
instances.

Swift’s	solution	is	the	identity	operator	(===).	This	operator	is	available	for	instances	of
object	types	that	adopt	the	AnyObject	protocol	—	like	classes!	It	compares	one	object
reference	with	another.	It	is	not	a	comparison	of	values	for	equality,	like	the	equality
operator	(==);	you’re	asking	whether	two	object	references	refer	to	one	and	the	same
object.	There	is	also	a	negative	version	of	the	identity	operator	(!==).

A	typical	use	case	is	that	a	class	instance	arrives	from	Cocoa,	and	you	need	to	know
whether	it	is	in	fact	a	particular	object	to	which	you	already	have	a	reference.	For
example,	an	NSNotification	has	an	object	property	that	helps	identify	the	notification
(usually,	it	is	the	original	sender	of	the	notification);	Cocoa	is	agnostic	about	its
underlying	type,	so	this	is	another	of	those	situations	where	you’ll	receive	an	AnyObject
wrapped	in	an	Optional.	Like	==,	the	===	operator	works	seamlessly	on	an	Optional,	so
you	can	use	it	to	make	sure	that	a	notification’s	object	property	is	the	object	you	expect:

func	changed(n:NSNotification)	{

				let	player	=	MPMusicPlayerController.applicationMusicPlayer()

				if	n.object	===	player	{

								//	...

				}

}

AnyClass
AnyClass	is	the	class	of	AnyObject.	It	corresponds	to	the	Objective-C	Class	type.	It	arises
typically	in	declarations	where	a	Cocoa	API	wants	to	say	that	a	class	is	expected.

For	example,	the	UIView	layerClass	class	method	is	declared,	in	its	Swift	translation,
like	this:

class	func	layerClass()	->	AnyClass

That	means:	if	you	override	this	method,	implement	it	to	return	a	class.	This	will
presumably	be	a	CALayer	subclass.	To	return	an	actual	class	in	your	implementation,	send
the	self	message	to	the	name	of	the	class:

override	class	func	layerClass()	->	AnyClass	{

				return	CATiledLayer.self

}

A	reference	to	an	AnyClass	object	behaves	much	like	a	reference	to	an	AnyObject	object.
You	can	send	it	any	Objective-C	message	that	Swift	knows	about	—	any	Objective-C
class	message.	To	illustrate,	once	again	I’ll	start	with	two	classes:

class	Dog	{

				@objc	static	var	whatADogSays	:	String	=	"woof"

}

class	Cat	{}

Objective-C	can	see	whatADogSays,	and	it	sees	it	as	a	class	property.	Therefore	you	can
send	whatADogSays	to	an	AnyClass	reference:

let	c	:	AnyClass	=	Cat.self

let	s	=	c.whatADogSays

A	reference	to	a	class,	such	as	you	can	obtain	by	sending	dynamicType	to	an	instance
reference,	or	by	sending	self	to	the	type	name,	is	of	a	type	that	adopts	AnyClass,	and	you
can	compare	references	to	such	types	with	the	===	operator.	In	effect,	this	is	a	way	of
finding	out	whether	two	references	to	classes	refer	to	the	same	class.	For	example:

func	typeTester(d:Dog,	_	whattype:Dog.Type)	{

				if	d.dynamicType	===	whattype	{

								//	...

				}

}

The	condition	is	true	only	if	d	and	whattype	are	the	same	type	(without	regard	to
polymorphism);	for	example,	if	Dog	has	a	subclass	NoisyDog,	then	the	condition	is	true
if	the	parameters	are	Dog()	and	Dog.self	or	NoisyDog	and	NoisyDog.self,	but	not	if	they
are	NoisyDog()	and	Dog.self.	This	is	valuable,	despite	the	lack	of	polymorphism,
because	you	can’t	use	the	is	operator	when	the	thing	on	the	right	side	is	a	type	reference
—	it	has	to	be	a	literal	type	name.

Any
The	Any	type	is	a	type	alias	for	an	empty	protocol	that	is	automatically	adopted	by	all
types.	Thus,	where	an	Any	object	is	expected,	absolutely	any	object	can	be	passed:

func	anyExpecter(a:Any)	{}

anyExpecter("howdy")					//	a	struct	instance

anyExpecter(String)						//	a	struct

anyExpecter(Dog())							//	a	class	instance

anyExpecter(Dog)									//	a	class

anyExpecter(anyExpecter)	//	a	function

An	object	typed	as	Any	can	be	tested	against,	or	cast	down	to,	any	object	or	function	type.
To	illustrate,	here’s	a	protocol	with	an	associated	type,	and	two	adopters	who	explicitly
resolve	it:

protocol	Flier	{

				typealias	Other

}

struct	Bird	:	Flier	{

				typealias	Other	=	Insect

}

struct	Insect	:	Flier	{

				typealias	Other	=	Bird

}

Now	here’s	a	function	that	takes	a	Flier	along	with	a	second	parameter	typed	as	Any,	and
tests	whether	that	second	parameter’s	type	is	the	same	as	the	Flier’s	resolved	Other	type;
the	test	is	legal	because	Any	can	be	tested	against	any	type:

func	flockTwoTogether<T:Flier>(flier:T,	_	other:Any)	{

				if	other	is	T.Other	{

								print("they	can	flock	together")

				}

}

If	we	call	flockTwoTogether	with	a	Bird	and	an	Insect,	the	console	says	“they	can	flock
together.”	If	we	call	it	with	a	Bird	and	an	object	of	any	other	type,	it	doesn’t.

Collection	Types
Swift,	in	common	with	most	modern	computer	languages,	has	built-in	collection	types
Array	and	Dictionary,	along	with	a	third	type,	Set.	Array	and	Dictionary	are	sufficiently
important	that	the	language	accommodates	them	with	some	special	syntax.	At	the	same
time,	like	most	Swift	types,	they	are	quite	thinly	provided	with	related	functions;	some
missing	functionality	is	provided	by	Cocoa’s	NSArray	and	NSDictionary,	to	which	they
are	respectively	bridged.	The	Set	collection	type	is	bridged	to	Cocoa’s	NSSet.

Array
An	array	(Array,	a	struct)	is	an	ordered	collection	of	object	instances	(the	elements	of	the
array)	accessible	by	index	number,	where	an	index	number	is	an	Int	numbered	from	0.
Thus,	if	an	array	contains	four	elements,	the	first	has	index	0	and	the	last	has	index	3.	A
Swift	array	cannot	be	sparse:	if	there	is	an	element	with	index	3,	there	is	also	an	element
with	index	2	and	so	on.

The	most	salient	feature	of	Swift	arrays	is	their	strict	typing.	Unlike	some	other	computer
languages,	a	Swift	array’s	elements	must	be	uniform	—	that	is,	the	array	must	consist
solely	of	elements	of	the	same	definite	type.	Even	an	empty	array	must	have	a	definite
element	type,	despite	the	fact	that	it	happens	to	lack	elements	at	this	moment.	An	array	is
itself	typed	in	accordance	with	its	element	type.	Arrays	whose	elements	are	of	different
types	are	considered,	themselves,	to	be	of	two	different	types:	an	array	of	Int	elements	is
of	a	different	type	from	an	array	of	String	elements.	Array	types	are	polymorphic	in
accordance	with	their	element	types:	if	NoisyDog	is	a	subclass	of	Dog,	then	an	array	of
NoisyDog	can	be	used	where	an	array	of	Dog	is	expected.	If	all	this	reminds	you	of
Optionals,	it	should.	Like	an	Optional,	a	Swift	array	is	a	generic.	It	is	declared	as
Array<Element>,	where	the	placeholder	Element	is	the	type	of	a	particular	array’s
elements.

The	uniformity	restriction	is	not	as	severe	as	it	might	seem	at	first	glance.	An	array	must
have	elements	of	just	one	type,	but	types	are	very	flexible.	By	a	clever	choice	of	type,	you
can	have	an	array	whose	elements	are	of	different	types	internally.	For	example:

If	there’s	a	Dog	class	with	a	NoisyDog	subclass,	an	array	of	Dog	can	contain	both	Dog
objects	and	NoisyDog	objects.
If	both	Bird	and	Insect	adopt	the	Flier	protocol,	an	array	of	Flier	can	contain	both	Bird
objects	and	Insect	objects.
An	array	of	AnyObject	can	contain	instances	of	any	class	and	of	any	Swift	bridged
type	—	such	as	an	Int,	a	String,	and	a	Dog.
A	type	might	itself	be	a	carrier	of	different	possible	types.	My	Error	enum,	earlier	in
this	chapter,	is	an	example;	its	associated	value	might	be	an	Int	or	it	might	be	a	String,
so	an	array	of	Error	elements	can	carry	both	Int	values	and	String	values	within	itself.

To	declare	or	state	the	type	of	a	given	array’s	elements,	you	could	explicitly	resolve	the
generic	placeholder;	an	array	of	Int	elements	would	thus	be	an	Array<Int>.	However,
Swift	offers	syntactic	sugar	for	stating	an	array’s	element	type,	using	square	brackets
around	the	name	of	the	element	type,	like	this:	[Int].	That’s	the	syntax	you’ll	use	most	of
the	time.

A	literal	array	is	represented	as	square	brackets	containing	a	list	of	its	elements	separated
by	comma	(and	optional	spaces):	for	example,	[1,2,3].	The	literal	for	an	empty	array	is
empty	square	brackets:	[].

An	array’s	default	initializer	init(),	called	by	appending	empty	parentheses	to	the	array’s
type,	yields	an	empty	array	of	that	type.	Thus,	you	can	create	an	empty	array	of	Int	like
this:

var	arr	=	[Int]()

Alternatively,	if	a	reference’s	type	is	known	in	advance,	the	empty	array	[]	can	be	inferred
to	that	type.	Thus,	you	can	also	create	an	empty	array	of	Int	like	this:

var	arr	:	[Int]	=	[]

If	you’re	starting	with	a	literal	array	containing	elements,	you	won’t	usually	need	to
declare	the	array’s	type,	because	Swift	will	infer	it	by	looking	at	the	elements.	For
example,	Swift	will	infer	that	[1,2,3]	is	an	array	of	Int.	If	the	array	element	types	consist
of	a	class	and	its	subclasses,	like	Dog	and	NoisyDog,	Swift	will	infer	the	common
superclass	as	the	array’s	type.	Even	[1,	"howdy"]	is	a	legal	array	literal;	it	is	inferred	to
be	an	array	of	NSObject.	However,	in	some	cases	you	will	need	to	declare	an	array
reference’s	type	explicitly	even	while	assigning	a	literal	to	that	array:

let	arr	:	[Flier]	=	[Insect(),	Bird()]

An	array	also	has	an	initializer	whose	parameter	is	a	sequence.	This	means	that	if	a	type	is
a	sequence,	you	can	split	an	instance	of	it	into	the	elements	of	an	array.	For	example:

Array(1…3)	generates	the	array	of	Int	[1,2,3].
Array("hey".characters)	generates	the	array	of	Character	["h","e","y"].
Array(d),	where	d	is	a	Dictionary,	generates	an	array	of	tuples	of	the	key–value	pairs
of	d.

Another	array	initializer,	init(count:repeatedValue:),	lets	you	populate	an	array	with
the	same	value.	In	this	example,	I	create	an	array	of	100	Optional	strings	initialized	to	nil:

let	strings	:	[String?]	=	Array(count:100,	repeatedValue:nil)

That’s	the	closest	you	can	get	in	Swift	to	a	sparse	array;	we	have	100	slots,	each	of	which
might	or	might	not	contain	a	string	(and	to	start	with,	none	of	them	do).

Array	casting	and	type	testing

When	you	assign,	pass,	or	cast	one	array	type	to	another	array	type,	you	are	operating	on
the	individual	elements	of	the	array.	Thus,	for	example:

let	arr	:	[Int?]	=	[1,2,3]

That	code	is	actually	a	shorthand:	to	treat	an	array	of	Int	as	an	array	of	Optionals	wrapping
Int	means	that	each	individual	Int	in	the	original	array	must	be	wrapped	in	an	Optional.
And	that	is	exactly	what	happens:

let	arr	:	[Int?]	=	[1,2,3]

print(arr)	//	[Optional(1),	Optional(2),	Optional(3)]

Similarly,	suppose	we	have	a	Dog	class	and	its	NoisyDog	subclass;	then	this	code	is	legal:
let	dog1	:	Dog	=	NoisyDog()

let	dog2	:	Dog	=	NoisyDog()

let	arr	=	[dog1,	dog2]

let	arr2	=	arr	as!	[NoisyDog]

In	third	line,	we	have	an	array	of	Dog.	In	the	fourth	line,	we	cast	this	array	down	to	an
array	of	NoisyDog,	meaning	that	we	cast	each	individual	Dog	in	the	first	array	to	a
NoisyDog	(and	we	won’t	crash	when	we	do	that,	because	each	element	of	the	first	array
really	is	a	NoisyDog).

You	can	test	all	the	elements	of	an	array	with	the	is	operator	by	testing	the	array	itself.
For	example,	given	the	array	of	Dog	from	the	previous	code,	you	can	say:

if	arr	is	[NoisyDog]	{	//	...

That	will	be	true	if	each	element	of	the	array	is	in	fact	a	NoisyDog.

Similarly,	the	as?	operator	will	cast	an	array	to	an	Optional	wrapping	an	array,	which	will
be	nil	if	the	underlying	cast	cannot	be	performed:

let	dog1	:	Dog	=	NoisyDog()

let	dog2	:	Dog	=	NoisyDog()

let	dog3	:	Dog	=	Dog()

let	arr	=	[dog1,	dog2]

let	arr2	=	arr	as?	[NoisyDog]	//	Optional	wrapping	an	array	of	NoisyDog

let	arr3	=	[dog2,	dog3]

let	arr4	=	arr3	as?	[NoisyDog]	//	nil

The	reason	for	casting	down	an	array	is	exactly	the	same	as	the	reason	for	casting	down
any	value	—	it’s	so	that	you	can	send	appropriate	messages	to	the	elements	of	that	array.	If
NoisyDog	declares	a	method	that	Dog	doesn’t	have,	you	can’t	send	that	message	to	an
element	of	an	array	of	Dog.	Somehow,	you	need	to	cast	that	element	down	to	a	NoisyDog
so	that	the	compiler	will	let	you	send	it	that	message.	You	can	cast	down	an	individual
element,	or	you	can	cast	down	the	entire	array;	you’ll	do	whichever	is	safe	and	makes
sense	in	a	particular	context.

Array	comparison

Array	equality	works	just	as	you	would	expect:	two	arrays	are	equal	if	they	contain	the
same	number	of	elements	and	all	the	elements	are	pairwise	equal	in	order:

let	i1	=	1

let	i2	=	2

let	i3	=	3

if	[1,2,3]	==	[i1,i2,i3]	{	//	they	are	equal!

Two	arrays	don’t	have	to	be	of	the	same	type	to	be	compared	against	one	another	for
equality,	but	the	test	won’t	succeed	unless	they	do	in	fact	contain	objects	that	are	equal	to
one	another.	Here,	I	compare	a	Dog	array	against	a	NoisyDog	array;	they	are	in	fact	equal
because	the	dogs	they	contain	are	the	same	dogs	in	the	same	order:

let	nd1	=	NoisyDog()

let	d1	=	nd1	as	Dog

let	nd2	=	NoisyDog()

let	d2	=	nd2	as	Dog

if	[d1,d2]	==	[nd1,nd2]	{	//	they	are	equal!

Arrays	are	value	types

Because	an	array	is	a	struct,	it	is	a	value	type,	not	a	reference	type.	This	means	that	every
time	an	array	is	assigned	to	a	variable	or	passed	as	argument	to	a	function,	it	is	effectively
copied.	I	do	not	mean	to	imply,	however,	that	merely	assigning	or	passing	an	array	is
expensive,	or	that	a	lot	of	actual	copying	takes	place	every	time.	If	the	reference	to	an
array	is	a	constant,	clearly	no	copying	is	actually	necessary;	and	even	operations	that	yield
a	new	array	derived	from	another	array,	or	that	mutate	an	array,	may	be	quite	efficient.

You	just	have	to	trust	that	the	designers	of	Swift	have	thought	about	these	problems	and
have	implemented	arrays	efficiently	behind	the	scenes.

Although	an	array	itself	is	a	value	type,	its	elements	are	treated	however	those	elements
would	normally	be	treated.	In	particular,	an	array	of	class	instances,	assigned	to	multiple
variables,	results	in	multiple	references	to	the	same	instances.

Array	subscripting

The	Array	struct	implements	subscript	methods	to	allow	access	to	elements	using	square
brackets	after	a	reference	to	an	array.	You	can	use	an	Int	inside	the	square	brackets.	For
example,	in	an	array	consisting	of	three	elements,	if	the	array	is	referred	to	by	a	variable
arr,	then	arr[1]	accesses	the	second	element.

You	can	also	use	a	Range	of	Int	inside	the	square	brackets.	For	example,	if	arr	is	an	array
with	three	elements,	then	arr[1…2]	signifies	the	second	and	third	elements.	Technically,
an	expression	like	arr[1…2]	yields	something	called	an	ArraySlice.	However,	an
ArraySlice	is	very	similar	to	an	array;	for	example,	you	can	subscript	an	ArraySlice	in	just
the	same	ways	you	would	subscript	an	array,	and	an	ArraySlice	can	be	passed	where	an
array	is	expected.	In	general,	therefore,	you	will	probably	pretend	that	an	ArraySlice	is	an
array.

If	the	reference	to	an	array	is	mutable	(var,	not	let),	then	a	subscript	expression	can	be
assigned	to.	This	alters	what’s	in	that	slot.	Of	course,	what	is	assigned	must	accord	with
the	type	of	the	array’s	elements:

var	arr	=	[1,2,3]

arr[1]	=	4	//	arr	is	now	[1,4,3]

If	the	subscript	is	a	range,	what	is	assigned	must	be	an	array.	This	can	change	the	length	of
the	array	being	assigned	to:

var	arr	=	[1,2,3]

arr[1..<2]	=	[7,8]	//	arr	is	now	[1,7,8,3]

arr[1..<2]	=	[]	//	arr	is	now	[1,8,3]

arr[1..<1]	=	[10]	//	arr	is	now	[1,10,8,3]	(no	element	was	removed!)

It	is	a	runtime	error	to	access	an	element	by	a	number	larger	than	the	largest	element
number	or	smaller	than	the	smallest	element	number.	If	arr	has	three	elements,	speaking
of	arr[-1]	or	arr[3]	is	not	illegal	linguistically,	but	your	program	will	crash.

Nested	arrays

It	is	legal	for	the	elements	of	an	array	to	be	arrays.	For	example:
let	arr	=	[[1,2,3],	[4,5,6],	[7,8,9]]

That’s	an	array	of	arrays	of	Int.	Its	type	declaration,	therefore,	is	[[Int]].	(No	law	says
that	the	contained	arrays	have	to	be	the	same	length;	that’s	just	something	I	did	for	clarity.)

To	access	an	individual	Int	inside	those	nested	arrays,	you	can	chain	subscript	operations:
let	arr	=	[[1,2,3],	[4,5,6],	[7,8,9]]

let	i	=	arr[1][1]	//	5

If	the	outer	array	reference	is	mutable,	you	can	also	write	into	a	nested	array:
var	arr	=	[[1,2,3],	[4,5,6],	[7,8,9]]

arr[1][1]	=	100

You	can	modify	the	inner	arrays	in	other	ways	as	well;	for	example,	you	can	insert

additional	elements	into	them.

Basic	array	properties	and	methods

An	array	is	a	collection	(CollectionType	protocol),	which	is	itself	a	sequence
(SequenceType	protocol).	If	those	terms	have	a	familiar	ring,	they	should:	the	same	is	true
of	a	String’s	characters,	which	I	called	a	character	sequence	in	Chapter	3.	For	this
reason,	an	array	has	a	striking	similarity	to	a	character	sequence.

As	a	collection,	an	array’s	count	read-only	property	reports	the	number	of	elements	it
contains.	If	an	array’s	count	is	0,	its	isEmpty	property	is	true.

An	array’s	first	and	last	read-only	properties	return	its	first	and	last	elements,	but	they
are	wrapped	in	an	Optional	because	the	array	might	be	empty	and	so	these	properties
would	need	to	be	nil.	This	is	one	of	those	rare	situations	in	Swift	where	you	can	wind	up
with	an	Optional	wrapping	an	Optional.	For	example,	consider	an	array	of	Optionals
wrapping	Ints,	and	what	happens	when	you	get	the	last	property	of	such	an	array.

An	array’s	largest	accessible	index	is	one	less	than	its	count.	You	may	find	yourself
calculating	index	values	with	reference	to	the	count;	for	example,	to	refer	to	the	last	two
elements	of	arr,	you	can	say:

let	arr	=	[1,2,3]

let	arr2	=	arr[arr.count-2…arr.count-1]	//	[2,3]

Swift	doesn’t	adopt	the	modern	convention	of	letting	you	use	negative	numbers	as	a
shorthand	for	that	calculation.	On	the	other	hand,	for	the	common	case	where	you	want
the	last	n	elements	of	an	array,	you	can	use	the	suffix	method:

let	arr	=	[1,2,3]

let	arr2	=	arr.suffix(2)	//	[2,3]

Both	suffix	and	its	companion	prefix	have	the	remarkable	feature	that	there	is	no
penalty	for	going	out	of	range:

let	arr	=	[1,2,3]

let	arr2	=	arr.suffix(10)	//	[1,2,3]	(and	no	crash)

Instead	of	describing	the	size	of	the	suffix	or	prefix	by	its	count,	you	can	express	the	limit
of	the	suffix	or	prefix	by	its	index:

let	arr	=	[1,2,3]

let	arr2	=	arr.suffixFrom(1)				//	[2,3]

let	arr3	=	arr.prefixUpTo(1)				//	[1]

let	arr4	=	arr.prefixThrough(1)	//	[1,2]

An	array’s	startIndex	property	is	0,	and	its	endIndex	property	is	its	count.	Moreover,	an
array’s	indices	property	is	a	half-open	range	whose	endpoints	are	its	startIndex	and
endIndex	—	that	is,	a	range	accessing	the	entire	array.	If	you	start	with	a	mutable
reference	to	this	range,	you	can	modify	its	startIndex	and	endIndex	to	derive	a	new
range.	We	did	the	same	thing	with	a	character	sequence	in	Chapter	3;	but	an	array’s	index
values	are	Ints,	so	you	can	use	ordinary	arithmetic	operations:

let	arr	=	[1,2,3]

var	r	=	arr.indices

r.startIndex	=	r.endIndex-2

arr2	=	arr[r]	//	[2,3]

The	indexOf	method	reports	the	index	of	the	first	occurrence	of	an	element	in	an	array,
but	it	is	wrapped	in	an	Optional	so	that	nil	can	be	returned	if	the	element	doesn’t	appear

in	the	array.	If	the	array	consists	of	Equatables,	the	comparison	uses	==	to	identify	the
element	being	sought:

let	arr	=	[1,2,3]

let	ix	=	arr.indexOf(2)	//	Optional	wrapping	1

Even	if	the	array	doesn’t	consist	of	Equatables,	you	can	supply	your	own	function	that
takes	an	element	type	and	returns	a	Bool,	and	you’ll	get	back	the	first	element	for	which
that	Bool	is	true.	In	this	example,	my	Bird	struct	has	a	name	String	property:

let	aviary	=	[Bird(name:"Tweety"),	Bird(name:"Flappy"),	Bird(name:"Lady")]

let	ix	=	aviary.indexOf	{$0.name.characters.count	<	5}	//	Optional(2)

As	a	sequence,	an	array’s	contains	method	reports	whether	it	contains	an	element.	Again,
you	can	rely	on	the	==	operator	if	the	elements	are	Equatables,	or	you	can	supply	your
own	function	that	takes	an	element	type	and	returns	a	Bool:

let	arr	=	[1,2,3]

let	ok	=	arr.contains(2)	//	true

let	ok2	=	arr.contains	{$0	>	3}	//	false

The	startsWith	method	reports	whether	an	array’s	starting	elements	match	the	elements
of	a	given	sequence	of	the	same	type.	Once	more,	you	can	rely	on	the	==	operator	for
Equatables,	or	you	can	supply	a	function	that	takes	two	values	of	the	element	type	and
returns	a	Bool	stating	whether	they	match:

let	arr	=	[1,2,3]

let	ok	=	startsWith(arr,	[1,2])	//	true

let	ok2	=	arr.startsWith([1,-2])	{abs($0)	==	abs($1)}	//	true

The	elementsEqual	method	is	the	sequence	generalization	of	array	comparison:	the	two
sequences	must	be	of	the	same	length,	and	either	their	elements	must	be	Equatables	or	you
can	supply	a	matching	function.

The	minElement	and	maxElement	methods	return	the	smallest	or	largest	element	in	an
array,	wrapped	in	an	Optional	in	case	the	array	is	empty.	If	the	array	consists	of
Comparables,	you	can	let	the	<	operator	do	its	work;	alternatively,	you	can	supply	a
function	that	returns	a	Bool	stating	whether	the	smaller	of	two	given	elements	is	the	first:

let	arr	=	[3,1,-2]

let	min	=	arr.minElement()	//	Optional(-2)

let	min2	=	arr.minElement	{abs($0)<abs($1)}	//	Optional(1)

If	the	reference	to	an	array	is	mutable,	the	append	and	appendContentsOf	instance
methods	add	elements	to	the	end	of	it.	The	difference	between	them	is	that	append	takes	a
single	value	of	the	element	type,	while	appendContentsOf	takes	a	sequence	of	the	element
type.	For	example:

var	arr	=	[1,2,3]

arr.append(4)

arr.appendContentsOf([5,6])

arr.appendContentsOf(7…8)	//	arr	is	now	[1,2,3,4,5,6,7,8]

The	+	operator	is	overloaded	to	behave	like	appendContentsOf	(not	append!)	when	the
left-hand	operand	is	an	array,	except	that	it	generates	a	new	array,	so	it	works	even	if	the
reference	to	the	array	is	a	constant.	If	the	reference	to	the	array	is	mutable,	you	can	extend
it	in	place	with	the	+=	operator.	Thus:

let	arr	=	[1,2,3]

let	arr2	=	arr	+	[4]	//	arr2	is	now	[1,2,3,4]

var	arr3	=	[1,2,3]

arr3	+=	[4]	//	arr3	is	now	[1,2,3,4]

If	the	reference	to	an	array	is	mutable,	the	instance	method	insert(atIndex:)	inserts	a
single	element	at	the	given	index.	To	insert	multiple	elements	at	once,	use	assignment	into
a	range-subscripted	array,	as	I	described	earlier	(and	there	is	also	an
insertContentsOf(at:)	method).

If	the	reference	to	an	array	is	mutable,	the	instance	method	removeAtIndex	removes	the
element	at	that	index;	the	instance	method	removeLast	removes	the	last	element,	and
removeFirst	removes	the	first	element.	These	methods	also	return	the	value	that	was
removed	from	the	array;	you	can	ignore	the	returned	value	if	you	don’t	need	it.	These
methods	do	not	wrap	the	returned	value	in	an	Optional,	and	accessing	an	out-of-range
index	will	crash	your	program.	Another	form	of	removeFirst	lets	you	specify	how	many
elements	to	remove,	but	returns	no	value;	it,	too,	can	crash	if	there	aren’t	that	many
elements.

On	the	other	hand,	popFirst	and	popLast	do	wrap	the	returned	value	in	an	Optional,	and
are	thus	safe	even	if	the	array	is	empty.	If	the	reference	is	not	mutable,	you	can	use	the
dropFirst	and	dropLast	methods	to	return	an	array	(actually,	a	slice)	with	the	end
element	removed.

The	joinWithSeparator	instance	method	starts	with	an	array	of	arrays.	It	extracts	their
individual	elements,	and	interposes	between	each	sequence	of	extracted	elements	the
elements	of	its	parameter	array.	The	result	is	an	intermediate	sequence	called	a
JoinSequence,	and	might	have	to	be	coerced	further	to	an	Array	if	that’s	what	you	were
after.	For	example:

let	arr	=	[[1,2],	[3,4],	[5,6]]

let	arr2	=	Array(arr.joinWithSeparator([10,11]))

//	[1,	2,	10,	11,	3,	4,	10,	11,	5,	6]

Calling	joinWithSeparator	with	an	empty	array	as	parameter	is	thus	a	way	to	flatten	an
array	of	arrays:

let	arr	=	[[1,2],	[3,4],	[5,6]]

let	arr2	=	Array(arr.joinWithSeparator([]))

//	[1,	2,	3,	4,	5,	6]

There’s	also	a	flatten	instance	method	that	does	the	same	thing.	Again,	it	returns	an
intermediate	sequence	(or	collection),	so	you	might	want	to	coerce	to	an	Array:

let	arr	=	[[1,2],	[3,4],	[5,6]]

let	arr2	=	Array(arr.flatten())

//	[1,	2,	3,	4,	5,	6]

The	reverse	instance	method	yields	a	new	array	whose	elements	are	in	the	opposite	order
from	the	original.

The	sortInPlace	and	sort	instance	methods	respectively	sort	the	original	array	(if	the
reference	to	it	is	mutable)	and	yield	a	new	sorted	array	based	on	the	original.	Once	again,
you	get	two	choices:	if	this	is	an	array	of	Comparables,	you	can	let	the	<	operator	dictate
the	new	order;	alternatively,	you	can	supply	a	function	that	takes	two	parameters	of	the
element	type	and	returns	a	Bool	stating	whether	the	first	parameter	should	be	ordered
before	the	second	(just	like	minElement	and	maxElement).	For	example:

var	arr	=	[4,3,5,2,6,1]

arr.sortInPlace()	//	[1,	2,	3,	4,	5,	6]

arr.sortInPlace	{$0	>	$1}	//	[6,	5,	4,	3,	2,	1]

In	that	last	line,	I	provided	an	anonymous	function.	Alternatively,	of	course,	you	can	pass

as	argument	the	name	of	a	declared	function.	In	Swift,	comparison	operators	are	the
names	of	functions!	Therefore,	I	can	do	the	same	thing	more	briefly,	like	this:

var	arr	=	[4,3,5,2,6,1]

arr.sortInPlace(>)	//	[6,	5,	4,	3,	2,	1]

The	split	instance	method	breaks	an	array	into	an	array	of	arrays	at	the	elements	that
pass	a	specified	test,	which	is	a	function	that	takes	a	value	of	the	element	type	and	returns
a	Bool;	the	elements	passing	the	test	are	eliminated:

let	arr	=	[1,2,3,4,5,6]

let	arr2	=	arr.split	{$0	%	2	==	0}	//	split	at	evens:	[[1],	[3],	[5]]

Array	enumeration	and	transformation

An	array	is	a	sequence,	and	so	you	can	enumerate	it,	inspecting	or	operating	with	each
element	in	turn.	The	simplest	way	is	by	means	of	a	for…in	loop;	I’ll	have	more	to	say
about	this	construct	in	Chapter	5:

let	pepboys	=	["Manny",	"Moe",	"Jack"]

for	pepboy	in	pepboys	{

				print(pepboy)	//	prints	Manny,	then	Moe,	then	Jack

}

Alternatively,	you	can	use	the	forEach	instance	method.	Its	parameter	is	a	function	that
takes	an	element	of	the	array	(or	other	sequence)	and	returns	no	value.	Think	of	it	as	the
functional	equivalent	of	the	imperative	for…in	loop:

let	pepboys	=	["Manny",	"Moe",	"Jack"]

pepboys.forEach	{print($0)}	//	prints	Manny,	then	Moe,	then	Jack

If	you	need	the	index	numbers	as	well	as	the	elements,	call	the	enumerate	instance
method	and	loop	on	the	result;	what	you	get	on	each	iteration	is	a	tuple:

let	pepboys	=	["Manny",	"Moe",	"Jack"]

for	(ix,pepboy)	in	pepboys.enumerate()	{

				print("Pep	boy	\(ix)	is	\(pepboy)")	//	Pep	boy	0	is	Manny,	etc.

}

//	or:

pepboys.enumerate().forEach	{print("Pep	boy	\($0.0)	is	\($0.1)")}

Swift	also	provides	three	powerful	array	transformation	instance	methods.	Like	forEach,
these	methods	all	enumerate	the	array	for	you,	so	that	the	loop	is	buried	implicitly	inside
the	method	call,	making	your	code	tighter	and	cleaner.

Let’s	start	with	the	map	instance	method.	It	yields	a	new	array,	each	element	of	which	is
the	result	of	passing	the	corresponding	element	of	the	old	array	through	a	function	that
you	supply.	This	function	accepts	a	parameter	of	the	element	type	and	returns	a	result
which	may	be	of	some	other	type;	Swift	can	usually	infer	the	type	of	the	resulting	array
elements	by	looking	at	the	type	returned	by	the	function.

For	example,	here’s	how	to	multiply	every	element	of	an	array	by	2:
let	arr	=	[1,2,3]

let	arr2	=	arr.map	{$0	*	2}	//	[2,4,6]

Here’s	another	example,	to	illustrate	the	fact	that	map	can	yield	an	array	with	a	different
element	type:

let	arr	=	[1,2,3]

let	arr2	=	arr.map	{Double($0)}	//	[1.0,	2.0,	3.0]

Here’s	a	real-life	example	showing	how	neat	and	compact	your	code	can	be	when	you	use
map.	In	order	to	remove	all	the	table	cells	in	a	section	of	a	UITableView,	I	have	to	specify

the	cells	as	an	array	of	NSIndexPath	objects.	If	sec	is	the	section	number,	I	can	form	those
NSIndexPath	objects	individually	like	this:

let	path0	=	NSIndexPath(forRow:0,	inSection:sec)

let	path1	=	NSIndexPath(forRow:1,	inSection:sec)

//	...

Hmmm,	I	think	I	see	a	pattern	here!	I	could	generate	my	array	of	NSIndexPath	objects	by
looping	through	the	row	values	using	for…in.	But	with	map,	there’s	a	much	tighter	way	to
express	the	same	loop	(ct	is	the	number	of	rows	in	the	section):

let	paths	=	Array(0..<ct).map	{NSIndexPath(forRow:$0,	inSection:sec)}

Actually,	map	is	a	CollectionType	instance	method	—	and	a	Range	is	itself	a
CollectionType.	Therefore,	I	don’t	need	the	cast	to	an	array:

let	paths	=	(0..<ct).map	{NSIndexPath(forRow:$0,	inSection:sec)}

The	filter	instance	method	also	yields	a	new	array.	Each	element	of	the	new	array	is	an
element	of	the	old	array,	in	the	same	order;	but	some	of	the	elements	of	the	old	array	may
be	omitted	—	they	were	filtered	out.	What	filters	them	out	is	a	function	that	you	supply;	it
accepts	a	parameter	of	the	element	type	and	returns	a	Bool	stating	whether	this	element
should	go	into	the	new	array.

For	example:
let	pepboys	=	["Manny",	"Moe",	"Jack"]

let	pepboys2	=	pepboys.filter{$0.hasPrefix("M")}	//	[Manny,	Moe]

Finally,	we	come	to	the	reduce	instance	method.	If	you’ve	learned	LISP	or	Scheme,
you’re	probably	accustomed	to	reduce;	otherwise,	it	can	be	a	bit	mystifying	at	first.	It’s	a
way	of	combining	all	the	elements	of	an	array	(actually,	a	sequence)	into	a	single	value.
This	value’s	type	—	the	result	type	—	doesn’t	have	to	be	the	same	as	the	array’s	element
type.	You	supply	a	function	that	takes	two	parameters;	the	first	is	of	the	result	type,	the
second	is	of	the	element	type,	and	the	result	is	the	combination	of	those	two	parameters,	as
the	result	type.	The	result	of	each	iteration	becomes	the	first	parameter	in	the	next
iteration,	along	with	the	next	element	of	the	array	as	the	second	parameter.	Thus,	the
output	of	combining	pairs	accumulates,	and	the	final	accumulated	value	is	the	final	output
of	the	reduce	function.	However,	that	doesn’t	explain	where	the	first	parameter	for	the
first	iteration	comes	from.	The	answer	is	that	you	have	to	supply	it	as	the	first	argument	of
the	reduce	call.

That	will	all	be	easier	to	understand	with	a	simple	example.	Let’s	assume	we’ve	got	an
array	of	Int.	Then	we	can	use	reduce	to	sum	all	the	elements	of	the	array.	Here’s	some
pseudocode	where	I’ve	left	out	the	first	argument	of	the	reduce	call,	so	that	you	can	think
about	what	it	needs	to	be:

let	sum	=	arr.reduce(/*???*/)	{$0	+	$1}

Each	pair	of	parameters	will	be	added	together	to	get	the	first	parameter	on	the	next
iteration.	The	second	parameter	on	every	iteration	is	an	element	of	the	array.	So	the
question	is,	what	should	the	first	element	of	the	array	be	added	to?	We	want	the	actual	sum
of	all	the	elements,	no	more	and	no	less;	so	clearly	the	first	element	of	the	array	should	be
added	to	0!	So	here’s	actual	working	code:

let	arr	=	[1,	4,	9,	13,	112]

let	sum	=	arr.reduce(0)	{$0	+	$1}	//	139

Once	again,	we	can	write	that	code	more	briefly,	because	the	+	operator	is	the	name	of	a
function	of	the	required	type:

let	sum	=	arr.reduce(0,	combine:+)

In	my	real	iOS	programming	life,	I	depend	heavily	on	these	methods,	often	using	two	or
even	all	three	of	them	together,	nested	or	chained	or	both.	Here’s	an	example;	it’s	rather
elaborate,	but	it’s	very	typical	of	how	neatly	you	can	do	things	with	arrays	using	Swift,	so
bear	with	me.	I	have	a	table	view	that	displays	data	divided	into	sections.	Under	the	hood,
the	data	is	an	array	of	arrays	of	String	—	a	[[String]]	—	where	each	subarray	represents
the	rows	of	a	section.	Now	I	want	to	filter	that	data	to	eliminate	all	strings	that	don’t
contain	a	certain	substring.	I	want	to	keep	the	sections	intact,	but	if	removing	strings
removes	all	of	a	section’s	strings,	I	want	to	eliminate	that	section	array	entirely.

The	heart	of	the	action	is	the	test	for	whether	a	string	contains	a	substring.	I’m	going	to
use	Cocoa	methods	for	that,	in	part	because	they	allow	me	to	do	a	case-insensitive	search.
If	s	is	a	string	from	my	array,	and	target	is	the	substring	we’re	looking	for,	then	the	code
for	looking	to	see	whether	s	contains	target	case-insensitively	is	as	follows:

let	options	=	NSStringCompareOptions.CaseInsensitiveSearch

let	found	=	s.rangeOfString(target,	options:	options)

Recall	the	discussion	of	rangeOfString	in	Chapter	3.	If	found	is	not	nil,	the	substring
was	found.	Here,	then,	is	the	actual	code,	preceded	by	some	sample	data	for	exercising	it:

let	arr	=	[["Manny",	"Moe",	"Jack"],	["Harpo",	"Chico",	"Groucho"]]

let	target	=	"m"

let	arr2	=	arr.map	{

				$0.filter	{

								let	options	=	NSStringCompareOptions.CaseInsensitiveSearch

								let	found	=	$0.rangeOfString(target,	options:	options)

								return	(found	!=	nil)

				}

}.filter	{$0.count	>	0}

After	the	first	two	lines,	setting	up	the	sample	data,	what	remains	is	a	single	command	—
a	map	call,	whose	function	consists	of	a	filter	call,	with	a	filter	call	chained	to	it.	If
that	code	doesn’t	prove	to	you	that	Swift	is	cool,	nothing	will.

Swift	Array	and	Objective-C	NSArray

When	you’re	programming	iOS,	you	import	the	Foundation	framework	(or	UIKit,	which
imports	Foundation)	and	thus	the	Objective-C	NSArray	type.	Swift’s	Array	type	is	bridged
to	Objective-C’s	NSArray	type.	However,	such	bridging	is	possible	only	if	the	types	of	the
elements	in	the	array	can	be	bridged.	Objective-C’s	rules	for	what	can	be	an	element	of	an
NSArray	are	both	looser	and	tighter	than	Swift’s.	On	the	one	hand,	the	elements	of	an
NSArray	do	not	all	have	to	be	of	the	same	type.	On	the	other	hand,	an	element	of	an
NSArray	must	be	an	object,	as	Objective-C	understands	that	term.	In	general,	a	type	is
bridged	to	Objective-C	if	it	can	be	cast	up	to	AnyObject	—	meaning	that	it	is	a	class	type,
or	else	a	specially	bridged	struct	such	as	Int,	Double,	or	String.

Passing	a	Swift	array	to	Objective-C	is	thus	usually	easy.	If	your	Swift	array	consists	of
things	that	can	be	cast	up	to	AnyObject,	you’ll	just	pass	the	array,	either	by	assignment	or
as	an	argument	in	a	function	call:

let	arr	=	[UIBarButtonItem(),	UIBarButtonItem()]

self.navigationItem.leftBarButtonItems	=	arr

self.navigationItem.setLeftBarButtonItems(arr,	animated:	true)

To	call	an	NSArray	method	on	a	Swift	array,	you	may	have	to	cast	to	NSArray:
let	arr	=	["Manny",	"Moe",	"Jack"]

let	s	=	(arr	as	NSArray).componentsJoinedByString(",	")

//	s	is	"Manny,	Moe,	Jack"

A	Swift	Array	seen	through	a	var	reference	is	mutable,	but	an	NSArray	isn’t	mutable	no
matter	how	you	see	it.	For	mutability	in	Objective-C,	you	need	an	NSMutableArray,	a
subclass	of	NSArray.	You	can’t	cast,	assign,	or	pass	a	Swift	array	to	an	NSMutableArray;
you	have	to	coerce.	The	best	way	is	to	call	the	NSMutableArray	initializer	init(array:),
to	which	you	can	pass	a	Swift	array	directly:

let	arr	=	["Manny",	"Moe",	"Jack"]

let	arr2	=	NSMutableArray(array:arr)

arr2.removeObject("Moe")

To	convert	back	from	an	NSMutableArray	to	a	Swift	array,	you	can	cast;	if	you	want	an
array	of	the	original	Swift	type,	you’ll	need	to	cast	twice	in	order	to	quiet	the	compiler:

var	arr	=	["Manny",	"Moe",	"Jack"]

let	arr2	=	NSMutableArray(array:arr)

arr2.removeObject("Moe")

arr	=	arr2	as	NSArray	as!	[String]

If	a	Swift	object	type	can’t	be	cast	up	to	AnyObject,	it	isn’t	bridged	to	Objective-C,	and
the	compiler	will	stop	you	if	you	try	to	pass	an	Array	containing	an	instance	of	that	type
where	an	NSArray	is	expected.	In	such	a	situation,	you’ll	need	to	“bridge”	the	array
elements	yourself.

Here,	for	example,	I	have	a	Swift	array	of	CGPoint.	That’s	perfectly	fine	in	Swift,	but
CGPoint	is	a	struct,	which	Objective-C	doesn’t	see	as	an	object,	so	you	can’t	put	one	in	an
NSArray.	If	I	try	to	pass	this	array	where	an	NSArray	is	expected,	I’ll	get	a	compiler	error:
“[CGPoint]	is	not	convertible	to	NSArray.”	The	solution	is	to	wrap	each	CGPoint	in	an
NSValue,	an	Objective-C	object	type	specifically	designed	to	act	as	a	carrier	for	nonobject
types;	now	we	have	a	Swift	array	of	NSValue,	which	can	subsequently	be	handed	to
Objective-C:

let	arrNSValues	=	arrCGPoints.map	{	NSValue(CGPoint:$0)	}

Another	case	in	point	is	a	Swift	array	of	Optionals.	An	Objective-C	collection	can’t
contain	nil	(because,	in	Objective-C,	nil	isn’t	an	object).	Therefore	you	can’t	put	an
Optional	in	an	NSArray.	You’ll	have	to	do	something	with	those	Optionals	before	passing
the	array	where	an	NSArray	is	expected.	If	an	Optional	wraps	a	value,	you	can	unwrap	it.
But	if	an	Optional	wraps	no	value	(it	is	nil),	you	can’t	unwrap	it.	One	solution	is	to	do
what	you	would	do	in	Objective-C.	An	Objective-C	NSArray	can’t	contain	nil,	so	Cocoa
provides	a	special	class,	NSNull,	whose	singleton	instance,	NSNull(),	can	stand	in	for	nil
where	an	object	is	needed.	Thus,	if	I	have	an	array	of	Optionals	wrapping	Strings,	I	can
unwrap	those	that	aren’t	nil	and	substitute	NSNull()	for	those	that	are:

let	arr2	:	[AnyObject]	=

				arr.map{if	$0	==	nil	{return	NSNull()}	else	{return	$0!}}

(In	Chapter	5,	I’ll	write	that	code	much	more	compactly.)

Now	let’s	talk	about	what	happens	when	an	NSArray	arrives	from	Objective-C	into	Swift.
There	won’t	be	any	problem	crossing	the	bridge:	the	NSArray	will	arrive	safely	as	a	Swift
Array.	But	a	Swift	Array	of	what?	Of	itself,	an	NSArray	carries	no	information	about	what
type	of	element	it	contains.	The	default,	therefore,	is	that	an	Objective-C	NSArray	will

arrive	as	a	Swift	array	of	AnyObject.

Fortunately,	you	won’t	encounter	this	default	anywhere	near	as	often	as	in	the	past.
Starting	in	Xcode	7,	the	Objective-C	language	has	been	modified	so	that	the	declaration	of
an	NSArray,	NSDictionary,	or	NSSet	—	the	three	collection	types	that	are	bridged	to	Swift
—	can	include	element	type	information.	(Objective-C	calls	this	a	lightweight	generic.)	In
iOS	9,	the	Cocoa	APIs	have	been	revised	so	that	they	do	include	this	information.	Thus,
for	the	most	part,	the	arrays	you	receive	from	Cocoa	will	be	correctly	typed.

For	example,	this	elegant	code	was	previously	impossible:
let	arr	=	UIFont.familyNames().map	{

				UIFont.fontNamesForFamilyName($0)

}

The	result	is	an	array	of	arrays	of	String,	listing	all	available	fonts	grouped	by	family.	That
code	is	possible	because	both	of	those	UIFont	class	methods	are	now	seen	by	Swift	as
returning	an	array	of	String.	Previously,	those	arrays	were	untyped	—	they	were	arrays	of
AnyObject	—	and	casting	down	to	an	array	of	String	was	up	to	you.

It	is	still	perfectly	possible,	though	far	less	likely,	that	you	will	receive	an	array	of
AnyObject	from	Objective-C.	If	that	happens,	then	usually	you	will	want	to	cast	it	down
or	otherwise	transform	it	into	an	array	of	some	specific	Swift	type.	Here’s	an	Objective-C
class	containing	a	method	whose	return	type	of	NSArray	hasn’t	been	marked	up	with	an
element	type:

@implementation	Pep

-	(NSArray*)	boys	{

				return	@[@"Mannie",	@"Moe",	@"Jack"];

}

@end

To	call	that	method	and	do	anything	useful	with	the	result,	it	will	be	necessary	to	cast	that
result	down	to	an	array	of	String.	If	I’m	sure	of	my	ground,	I	can	force	the	cast:

let	p	=	Pep()

let	boys	=	p.boys()	as!	[String]

As	with	any	cast,	though,	be	sure	you	don’t	lie!	An	Objective-C	array	can	contain	more
than	one	type	of	object.	Don’t	force	such	an	array	to	be	cast	down	to	a	type	to	which	not
all	the	elements	can	be	cast,	or	you’ll	crash	when	the	cast	fails;	you’ll	need	a	more
deliberate	strategy	for	eliminating	or	otherwise	transforming	the	problematic	elements.

Dictionary
A	dictionary	(Dictionary,	a	struct)	is	an	unordered	collection	of	object	pairs.	In	each	pair,
the	first	object	is	the	key;	the	second	object	is	the	value.	The	idea	is	that	you	use	a	key	to
access	a	value.	Keys	are	usually	strings,	but	they	don’t	have	to	be;	the	formal	requirement
is	that	they	be	types	that	adopt	the	Hashable	protocol,	meaning	that	they	adopt	Equatable
and	also	have	a	hashValue	property	(an	Int)	such	that	two	equal	keys	have	equal	hash
values	and	two	unequal	keys	do	not.	Thus,	the	hash	values	can	be	used	behind	the	scenes
for	rapid	key	access.	Swift	numeric	types,	strings,	and	enums	are	Hashables.

As	with	arrays,	a	given	dictionary’s	types	must	be	uniform.	The	key	type	and	the	value
type	don’t	have	to	be	the	same	type,	and	they	often	will	not	be.	But	within	any	dictionary,
all	keys	must	be	of	the	same	type,	and	all	values	must	be	of	the	same	type.	Formally,	a
dictionary	is	a	generic,	and	its	placeholder	types	are	ordered	key	type,	then	value	type:

Dictionary<Key,Value>.	As	with	arrays,	however,	Swift	provides	syntactic	sugar	for
expressing	a	dictionary’s	type,	which	is	what	you’ll	usually	use:	[Key:	Value].	That’s
square	brackets	containing	a	colon	(and	optional	spaces)	separating	the	key	type	from	the
value	type.	This	code	creates	an	empty	dictionary	whose	keys	(when	they	exist)	will	be
Strings	and	whose	values	(when	they	exist)	will	be	Strings:

var	d	=	[String:String]()

The	colon	is	used	also	between	each	key	and	value	in	the	literal	syntax	for	expressing	a
dictionary.	The	key–value	pairs	appear	between	square	brackets,	separated	by	comma,	just
like	an	array.	This	code	creates	a	dictionary	by	describing	it	literally	(and	the	dictionary’s
type	of	[String:String]	is	inferred):

var	d	=	["CA":	"California",	"NY":	"New	York"]

The	literal	for	an	empty	dictionary	is	square	brackets	containing	just	a	colon:	[:].	This
notation	can	be	used	provided	the	dictionary’s	type	is	known	in	some	other	way.	Thus,	this
is	another	way	to	create	an	empty	[String:String]	dictionary:

var	d	:	[String:String]	=	[:]

If	you	try	to	fetch	a	value	through	a	nonexistent	key,	there	is	no	error,	but	Swift	needs	a
way	to	report	failure;	therefore,	it	returns	nil.	This,	in	turn,	implies	that	the	value	returned
when	you	successfully	access	a	value	through	a	key	must	be	an	Optional	wrapping	the	real
value!

Access	to	a	dictionary’s	contents	is	usually	by	subscripting.	To	fetch	a	value	by	key,
subscript	the	key	to	the	dictionary	reference:

let	d	=	["CA":	"California",	"NY":	"New	York"]

let	state	=	d["CA"]

Bear	in	mind,	however,	that	after	that	code,	state	is	not	a	String	—	it’s	an	Optional
wrapping	a	String!	Forgetting	this	is	a	common	beginner	mistake.

If	the	reference	to	a	dictionary	is	mutable,	you	can	also	assign	into	a	key	subscript
expression.	If	the	key	already	exists,	its	value	is	replaced.	If	the	key	doesn’t	already	exist,
it	is	created	and	the	value	is	attached	to	it:

var	d	=	["CA":	"California",	"NY":	"New	York"]

d["CA"]	=	"Casablanca"

d["MD"]	=	"Maryland"

//	d	is	now	["MD":	"Maryland",	"NY":	"New	York",	"CA":	"Casablanca"]

Alternatively,	call	updateValue(forKey:);	it	has	the	advantage	that	it	returns	the	old
value	wrapped	in	an	Optional,	or	nil	if	the	key	wasn’t	already	present.

By	a	kind	of	shorthand,	assigning	nil	into	a	key	subscript	expression	removes	that	key–
value	pair	if	it	exists:

var	d	=	["CA":	"California",	"NY":	"New	York"]

d["NY"]	=	nil	//	d	is	now	["CA":	"California"]

Alternatively,	call	removeValueForKey;	it	has	the	advantage	that	it	returns	the	removed
value	before	it	removes	the	key–value	pair.	The	removed	value	is	returned	wrapped	in	an
Optional,	so	a	nil	result	tells	you	that	this	key	was	never	in	the	dictionary	to	begin	with.

As	with	arrays,	a	dictionary	type	is	legal	for	casting	down,	meaning	that	the	individual
elements	will	be	cast	down.	Typically,	only	the	value	types	will	differ:

let	dog1	:	Dog	=	NoisyDog()

let	dog2	:	Dog	=	NoisyDog()

let	d	=	["fido":	dog1,	"rover":	dog2]

let	d2	=	d	as!	[String	:	NoisyDog]

As	with	arrays,	is	can	be	used	to	test	the	actual	types	in	the	dictionary,	and	as?	can	be
used	to	test	and	cast	safely.	Dictionary	equality,	like	array	equality,	works	as	you	would
expect.

Basic	dictionary	properties	and	enumeration

A	dictionary	has	a	count	property	reporting	the	number	of	key–value	pairs	it	contains,	and
an	isEmpty	property	reporting	whether	that	number	is	0.

A	dictionary	has	a	keys	property	reporting	all	its	keys,	and	a	values	property	reporting	all
its	values.	They	are	effectively	opaque	structs	(a	LazyForwardCollection,	if	you	must
know),	but	when	you	enumerate	them	with	for…in,	you	get	the	expected	type:

var	d	=	["CA":	"California",	"NY":	"New	York"]

for	s	in	d.keys	{

				print(s)	//	s	is	a	String

}

WARNING

A	dictionary	is	unordered!	You	can	enumerate	it	(or	its	keys,	or	its	values),	but	do	not	expect	the	elements	to	arrive	in
any	particular	order.

You	can	extract	all	a	dictionary’s	keys	or	values	at	once,	by	coercing	the	keys	or	values
property	to	an	array:

var	d	=	["CA":	"California",	"NY":	"New	York"]

var	keys	=	Array(d.keys)

You	can	also	enumerate	a	dictionary	itself.	As	you	might	expect	from	what	I’ve	already
said,	each	iteration	provides	a	key–value	tuple:

var	d	=	["CA":	"California",	"NY":	"New	York"]

for	(abbrev,	state)	in	d	{

				print("\(abbrev)	stands	for	\(state)")

}

You	can	extract	a	dictionary’s	entire	contents	at	once	as	an	array	(of	key–value	tuples)	by
coercing	the	dictionary	to	an	array:

var	d	=	["CA":	"California",	"NY":	"New	York"]

let	arr	=	Array(d)	//	[("NY",	"New	York"),	("CA",	"California")]

Like	an	array,	a	dictionary	and	its	keys	property	and	its	values	property	are	collections
(CollectionType)	and	sequences	(SequenceType).	Therefore,	everything	I	said	about
arrays	as	collections	and	sequences	in	the	previous	section	is	applicable!	For	example,	if	a
dictionary	d	has	Int	values,	you	can	sum	them	with	the	reduce	instance	method:

let	sum	=	d.values.reduce(0,	combine:+)

You	can	obtain	its	smallest	value	(wrapped	in	an	Optional):
let	min	=	d.values.minElement()

You	can	list	the	values	that	match	some	criterion:
let	arr	=	Array(d.values.filter{$0	<	2})

(The	coercion	to	Array	is	needed	because	the	sequence	resulting	from	filter	is	lazy:
there	isn’t	really	anything	in	it	until	we	enumerate	it	or	collect	it	into	an	array.)

Swift	Dictionary	and	Objective-C	NSDictionary

The	Foundation	framework	dictionary	type	is	NSDictionary,	and	Swift’s	Dictionary	type
is	bridged	to	it.	Considerations	for	passing	a	dictionary	across	the	bridge	are	parallel	to
those	I’ve	already	discussed	for	arrays.	The	untyped	bridged	API	characterization	of	an
NSDictionary	will	be	[NSObject:AnyObject],	using	the	Objective-C	Foundation	object
base	class	for	the	keys;	there	are	various	reasons	for	this	choice,	but	from	Swift’s	point	of
view	the	main	one	is	that	AnyObject	is	not	a	Hashable.	NSObject,	on	the	other	hand,	is
extended	by	the	Swift	APIs	to	adopt	Hashable;	and	since	NSObject	is	the	base	class	for
Cocoa	classes,	any	Cocoa	class	type	will	be	Hashable.	Thus,	any	NSDictionary	can	cross
the	bridge.

Like	NSArray,	NSDictionary	key	and	value	types	can	now	be	marked	in	Objective-C.	The
most	common	key	type	in	a	real-life	Cocoa	NSDictionary	is	NSString,	so	you	might	well
receive	an	NSDictionary	as	a	[String:AnyObject].	Specific	typing	of	an	NSDictionary’s
values,	however,	is	much	rarer;	dictionaries	that	you	pass	to	and	receive	from	Cocoa	will
very	often	have	values	of	different	types.	It	is	not	at	all	surprising	to	have	a	dictionary
whose	keys	are	strings	but	whose	values	include	a	string,	a	number,	a	color,	and	an	array.
For	this	reason,	you	will	usually	not	cast	down	the	entire	dictionary’s	type;	instead,	you’ll
work	with	the	dictionary	as	having	AnyObject	values,	and	cast	when	fetching	an
individual	value	from	the	dictionary.	Since	the	value	returned	from	subscripting	a	key	is
itself	an	Optional,	you	will	typically	unwrap	and	cast	the	value	as	a	standard	single	move.

Here’s	an	example.	A	Cocoa	NSNotification	object	comes	with	a	userInfo	property.	It	is
an	NSDictionary	that	might	itself	be	nil,	so	the	Swift	API	characterizes	it	like	this:

var	userInfo:	[NSObject	:	AnyObject]?	{	get	}

Let’s	say	I’m	expecting	this	dictionary	to	be	present	and	to	contain	a	"progress"	key
whose	value	is	an	NSNumber	containing	a	Double.	My	goal	is	to	extract	that	NSNumber
and	assign	the	Double	that	it	contains	to	a	property,	self.progress.	Here’s	one	way	to	do
that	safely,	using	optional	unwrapping	and	optional	casting	(n	is	the	NSNotification
object):

let	prog	=	(n.userInfo?["progress"]	as?	NSNumber)?.doubleValue

if	prog	!=	nil	{

				self.progress	=	prog!

}

That’s	an	optional	chain	that	ends	by	fetching	an	NSNumber’s	doubleValue	property,	so
prog	is	implicitly	typed	as	an	Optional	wrapping	a	Double.	The	code	is	safe,	because	if
there	is	no	userInfo	dictionary,	or	if	it	doesn’t	contain	a	"progress"	key,	or	if	that	key’s
value	isn’t	an	NSNumber,	nothing	happens,	and	prog	will	be	nil.	I	then	test	prog	to	see
whether	it	is	nil;	if	it	isn’t,	I	know	that	it’s	safe	to	force-unwrap	it,	and	that	the	unwrapped
value	is	the	Double	I’m	after.

(In	Chapter	5	I’ll	describe	another	syntax	for	accomplishing	the	same	goal,	using
conditional	binding.)

Conversely,	here’s	a	typical	example	of	creating	a	dictionary	and	handing	it	off	to	Cocoa.
This	dictionary	is	a	mixed	bag:	its	values	are	a	UIFont,	a	UIColor,	and	an	NSShadow.	Its
keys	are	all	strings,	which	I	obtain	as	constants	from	Cocoa.	I	form	the	dictionary	as	a
literal	and	pass	it,	all	in	one	move,	with	no	need	to	cast	anything:

UINavigationBar.appearance().titleTextAttributes	=	[

				NSFontAttributeName	:	UIFont(name:	"ChalkboardSE-Bold",	size:	20)!,

				NSForegroundColorAttributeName	:	UIColor.darkTextColor(),

				NSShadowAttributeName	:	{

								let	shad	=	NSShadow()

								shad.shadowOffset	=	CGSizeMake(1.5,1.5)

								return	shad

				}()

]

As	with	NSArray	and	NSMutableArray,	if	you	want	Cocoa	to	mutate	a	dictionary,	you
must	coerce	to	NSMutableDictionary.	In	this	example,	I	want	to	do	a	join	between	two
dictionaries,	so	I	harness	the	power	of	NSMutableDictionary,	which	has	an
addEntriesFromDictionary:	method:

var	d1	=	["NY":"New	York",	"CA":"California"]

let	d2	=	["MD":"Maryland"]

let	mutd1	=	NSMutableDictionary(dictionary:d1)

mutd1.addEntriesFromDictionary(d2)

d1	=	mutd1	as	NSDictionary	as!	[String:String]

//	d1	is	now	["MD":	"Maryland",	"NY":	"New	York",	"CA":	"California"]

That	sort	of	thing	is	needed	quite	often,	because	there’s	no	native	method	for	adding	the
elements	of	one	dictionary	to	another	dictionary.	Indeed,	native	utility	methods	involving
dictionaries	in	Swift	are	disappointingly	thin	on	the	ground:	there	really	aren’t	any.	Still,
Cocoa	and	the	Foundation	framework	are	right	there,	so	perhaps	Apple	feels	there’s	no
point	duplicating	in	the	Swift	standard	library	the	functionality	that	already	exists	in
Foundation.	If	having	to	drop	into	Cocoa	bothers	you,	you	can	write	your	own	library;	for
example,	addEntriesFromDictionary:	is	easily	reimplemented	as	a	Swift	Dictionary
instance	method	through	an	extension:

extension	Dictionary	{

				mutating	func	addEntriesFromDictionary(d:[Key:Value])	{	//	generic	types

								for	(k,v)	in	d	{

												self[k]	=	v

								}

				}

}

Set
A	set	(Set,	a	struct)	is	an	unordered	collection	of	unique	objects.	It	is	thus	rather	like	the
keys	of	a	dictionary!	Its	elements	must	be	all	of	one	type;	it	has	a	count	and	an	isEmpty
property;	it	can	be	initialized	from	any	sequence;	you	can	cycle	through	its	elements	with
for…in.	But	the	order	of	elements	is	not	guaranteed,	and	you	should	make	no	assumptions
about	it.

The	uniqueness	of	set	elements	is	implemented	by	constraining	their	type	to	adopt	the
Hashable	protocol,	just	like	the	keys	of	a	Dictionary.	Thus,	the	hash	values	can	be	used
behind	the	scenes	for	rapid	access.	Checking	whether	a	set	contains	a	given	element,
which	you	can	do	with	the	contains	instance	method,	is	very	efficient	—	far	more
efficient	than	doing	the	same	thing	with	an	array.	Therefore,	if	element	uniqueness	is
acceptable	(or	desirable)	and	you	don’t	need	indexing	or	a	guaranteed	order,	a	set	can	be	a
much	better	choice	of	collection	than	an	array.

The	fact	that	a	set’s	elements	are	Hashables	means	that	they	must	also	be	Equatables.	This
makes	sense,	because	the	notion	of	uniqueness	depends	upon	being	able	to	answer	the
question	of	whether	a	given	object	is	already	in	the	set.

There	are	no	set	literals	in	Swift,	but	you	won’t	need	them	because	you	can	pass	an	array

literal	where	a	set	is	expected.	There	is	no	syntactic	sugar	for	expressing	a	set	type,	but	the
Set	struct	is	a	generic,	so	you	can	express	the	type	by	explicitly	specializing	the	generic:

let	set	:	Set<Int>	=	[1,	2,	3,	4,	5]

In	that	particular	example,	however,	there	was	no	need	to	specialize	the	generic,	as	the	Int
type	can	be	inferred	from	the	array.

It	sometimes	happens	(more	often	than	you	might	suppose)	that	you	want	to	examine	one
element	of	a	set	as	a	kind	of	sample.	Order	is	meaningless,	so	it’s	sufficient	to	obtain	any
element,	such	as	the	first	element.	For	this	purpose,	use	the	first	instance	property;	it
returns	an	Optional,	just	in	case	the	set	is	empty	and	has	no	first	element.

The	distinctive	feature	of	a	set	is	the	uniqueness	of	its	objects.	If	an	object	is	added	to	a	set
and	that	object	is	already	present,	it	isn’t	added	a	second	time.	Conversion	from	an	array
to	a	set	and	back	to	an	array	is	thus	a	quick	and	reliable	way	of	uniquing	the	array	—
though	of	course	order	is	not	preserved:

let	arr	=	[1,2,1,3,2,4,3,5]

let	set	=	Set(arr)

let	arr2	=	Array(set)	//	[5,2,3,1,4],	perhaps

A	set	is	a	collection	(CollectionType)	and	a	sequence	(SequenceType),	so	it	is	analogous
to	an	array	or	a	dictionary,	and	what	I	have	already	said	about	those	types	generally
applies	to	a	set	as	well.	For	example,	Set	has	a	map	instance	method;	it	returns	an	array,	but
of	course	you	can	turn	that	right	back	into	a	set	if	you	need	to:

let	set	:	Set	=	[1,2,3,4,5]

let	set2	=	Set(set.map	{$0+1})	//	{6,	5,	2,	3,	4},	perhaps

If	the	reference	to	a	set	is	mutable,	a	number	of	instance	methods	spring	to	life.	You	can
add	an	object	with	insert;	if	the	object	is	already	in	the	set,	nothing	happens,	but	there	is
no	penalty.	You	can	remove	an	object	and	return	it	by	specifying	the	object	itself	(or
something	equatable	to	it),	with	the	remove	method;	it	returns	the	object	wrapped	in	an
Optional,	or	nil	if	the	object	was	not	present.	You	can	remove	and	return	the	first	object
(whatever	“first”	may	mean)	with	removeFirst;	it	crashes	if	the	set	is	empty,	so	take
precautions	(or	use	popFirst,	which	is	safe).

Equality	comparison	(==)	is	defined	for	sets	as	you	would	expect;	two	sets	are	equal	if
every	element	of	each	is	also	an	element	of	the	other.

If	the	notion	of	a	set	brings	to	your	mind	visions	of	Venn	diagrams	from	elementary
school,	that’s	good,	because	sets	have	instance	methods	giving	you	all	those	set	operations
you	remember	so	fondly.	The	parameter	can	be	a	set,	or	it	can	be	any	sequence,	which	will
be	converted	to	a	set;	for	example,	it	might	be	an	array,	a	range,	or	even	a	character
sequence:

intersect,	intersectInPlace

Yields	the	elements	of	this	set	that	also	appear	in	the	parameter.

union,	unionInPlace

Yields	the	elements	of	this	set	along	with	the	(unique)	elements	of	the	parameter.

exclusiveOr,	exclusiveOrInPlace

Yields	the	elements	of	this	set	that	don’t	appear	in	the	parameter,	plus	the	(unique)
elements	of	the	parameter	that	don’t	appear	in	this	set.

subtract,	subtractInPlace

Yields	the	elements	of	this	set	except	for	those	that	appear	in	the	parameter.

isSubsetOf,	isStrictSubsetOf	
isSupersetOf,	isStrictSupersetOf

Returns	a	Bool	reporting	whether	the	elements	of	this	set	are	respectively	embraced	by
or	embrace	the	elements	of	the	parameter.	The	“strict”	variant	yields	false	if	the	two
sets	consist	of	the	same	elements.

isDisjointWith

Returns	a	Bool	reporting	whether	this	set	and	the	parameter	have	no	elements	in
common.

Here’s	a	real-life	example	of	elegant	Set	usage	from	one	of	my	apps.	I	have	a	lot	of
numbered	pictures,	of	which	we	are	to	choose	one	randomly.	But	I	don’t	want	to	choose	a
picture	that	has	recently	been	chosen.	Therefore,	I	keep	a	list	of	the	numbers	of	all
recently	chosen	pictures.	When	it’s	time	to	choose	a	new	picture,	I	convert	the	list	of	all
possible	numbers	to	a	Set,	convert	the	list	of	recently	chosen	picture	numbers	to	a	Set,	and
subtract	to	get	a	list	of	unused	picture	numbers!	Now	I	choose	a	picture	number	at
random	and	add	it	to	the	list	of	recently	chosen	picture	numbers:

let	ud	=	NSUserDefaults.standardUserDefaults()

var	recents	=	ud.objectForKey(RECENTS)	as?	[Int]

if	recents	==	nil	{

				recents	=	[]

}

var	forbiddenNumbers	=	Set(recents!)

let	legalNumbers	=	Set(1…PIXCOUNT).subtract(forbiddenNumbers)

let	newNumber	=	Array(legalNumbers)[

				Int(arc4random_uniform(UInt32(legalNumbers.count)))

]

forbiddenNumbers.insert(newNumber)

ud.setObject(Array(forbiddenNumbers),	forKey:RECENTS)

Option	sets

An	option	set	(technically,	an	OptionSetType)	is	Swift’s	way	of	treating	as	a	struct	a
certain	type	of	enumeration	commonly	used	in	Cocoa.	It	is	not,	strictly	speaking,	a	Set;
but	it	is	deliberately	set-like,	sharing	common	features	with	Set	through	the
SetAlgebraType	protocol.	Thus,	an	option	set	has	contains,	insert,	and	remove	methods,
along	with	all	the	various	set	operation	methods.

The	purpose	of	option	sets	is	to	help	you	grapple	with	Objective-C	bitmasks.	A	bitmask	is
an	integer	whose	bits	are	used	as	switches	when	multiple	options	are	to	be	specified
simultaneously.	Such	bitmasks	are	very	common	in	Cocoa.	In	Objective-C,	and	in	Swift
prior	to	Swift	2.0,	bitmasks	are	manipulated	through	the	arithmetic	bitwise-or	and	bitwise-
and	operators.	Such	manipulation	can	be	mysterious	and	error-prone.	Thanks	to	option
sets,	Swift	2.0	allows	bitmasks	to	be	manipulated	through	set	operations	instead.

For	example,	when	specifying	how	a	UIView	is	to	be	animated,	you	are	allowed	to	pass	an
options:	argument	whose	value	comes	from	the	UIViewAnimationOptions	enumeration,
whose	definition	(in	Objective-C)	begins	as	follows:

typedef	NS_OPTIONS(NSUInteger,	UIViewAnimationOptions)	{

				UIViewAnimationOptionLayoutSubviews												=	1	<<	0,

				UIViewAnimationOptionAllowUserInteraction						=	1	<<	1,

				UIViewAnimationOptionBeginFromCurrentState					=	1	<<	2,

				UIViewAnimationOptionRepeat																				=	1	<<	3,

				UIViewAnimationOptionAutoreverse															=	1	<<	4,

				//	...

};

Pretend	that	an	NSUInteger	is	8	bits	(it	isn’t,	but	let’s	keep	things	simple	and	short).	Then
this	enumeration	means	that	(in	Swift)	the	following	name–value	pairs	are	defined:

UIViewAnimationOptions.LayoutSubviews										0b00000001

UIViewAnimationOptions.AllowUserInteraction				0b00000010

UIViewAnimationOptions.BeginFromCurrentState			0b00000100

UIViewAnimationOptions.Repeat																		0b00001000

UIViewAnimationOptions.Autoreverse													0b00010000

These	values	can	be	combined	into	a	single	value	—	a	bitmask	—	that	you	pass	as	the
options:	argument	for	your	animation.	All	Cocoa	has	to	do	to	understand	your	intentions
is	to	look	to	see	which	bits	in	the	value	that	you	pass	are	set	to	1.	So,	for	example,
0b00011000	would	mean	that	UIViewAnimationOptions.Repeat	and
UIViewAnimationOptions.Autoreverse	are	both	true	(and	that	the	others,	by	implication,
are	all	false).

The	question	is	how	to	form	the	value	0b00011000	in	order	to	pass	it.	You	could	form	it
directly	as	a	literal	and	set	the	options:	argument	to
UIViewAnimationOptions(rawValue:0b00011000);	but	that’s	not	a	very	good	idea,
because	it’s	error-prone	and	makes	your	code	incomprehensible.	In	Objective-C,	you’d
use	the	arithmetic	bitwise-or	operator,	analogous	to	this	Swift	code:

let	val	=

				UIViewAnimationOptions.Autoreverse.rawValue	|

				UIViewAnimationOptions.Repeat.rawValue

let	opts	=	UIViewAnimationOptions(rawValue:	val)

In	Swift	2.0,	however,	the	UIViewAnimationOptions	type	is	an	option	set	struct	(because
it	is	marked	as	NS_OPTIONS	in	Objective-C),	and	therefore	can	be	treated	much	like	a	Set.
For	example,	given	a	UIViewAnimationOptions	value,	you	can	add	an	option	to	it	using
insert:

var	opts	=	UIViewAnimationOptions.Autoreverse

opts.insert(.Repeat)

Alternatively,	you	can	start	with	an	array	literal,	just	as	if	you	were	initializing	a	Set:
let	opts	:	UIViewAnimationOptions	=	[.Autoreverse,	.Repeat]

TIP

To	indicate	that	no	options	are	to	be	set,	pass	an	empty	option	set	([]).	This	is	a	major	change	from	Swift	1.2	and
earlier,	where	the	convention	was	to	pass	nil	—	illogically,	since	this	value	was	never	an	Optional.

The	inverse	situation	is	that	Cocoa	hands	you	a	bitmask,	and	you	want	to	know	whether	a
certain	bit	is	set.	In	this	example	from	a	UITableViewCell	subclass,	the	cell’s	state	comes
to	us	as	a	bitmask;	we	want	to	know	about	the	bit	indicating	that	the	cell	is	showing	its
edit	control.	In	the	past,	it	was	necessary	to	extract	the	raw	values	and	use	the	bitwise-and
operator:

override	func	didTransitionToState(state:	UITableViewCellStateMask)	{

				let	editing	=	UITableViewCellStateMask.ShowingEditControlMask.rawValue

				if	state.rawValue	&	editing	!=	0	{

								//	...	the	ShowingEditControlMask	bit	is	set…

				}

}

That’s	a	tricky	formula,	all	too	easy	to	get	wrong.	In	Swift	2.0,	this	is	an	option	set,	so	the
contains	method	tells	you	the	answer:

override	func	didTransitionToState(state:	UITableViewCellStateMask)	{

				if	state.contains(.ShowingEditControlMask)	{

								//	...	the	ShowingEditControlMask	bit	is	set…

				}

}

Swift	Set	and	Objective-C	NSSet

Swift’s	Set	type	is	bridged	to	Objective-C	NSSet.	The	untyped	medium	of	interchange	is
Set<NSObject>,	because	NSObject	is	seen	as	Hashable.	Of	course,	the	same	rules	apply	as
for	arrays.	An	Objective-C	NSSet	expects	its	elements	to	be	class	instances,	and	Swift	will
help	by	bridging	where	it	can.	In	real	life,	you’ll	probably	start	with	an	array	and	coerce	it
to	a	set	or	pass	it	where	a	set	is	expected,	as	in	this	example	from	my	own	code:

let	types	:	UIUserNotificationType	=	[.Alert,	.Sound]	//	a	bitmask

let	category	=	UIMutableUserNotificationCategory()

category.identifier	=	"coffee"

let	settings	=	UIUserNotificationSettings(//	second	parameter	is	an	NSSet

				forTypes:	types,	categories:	[category])

Coming	back	from	Objective-C,	you’ll	get	a	Set	of	NSObject	if	Objective-C	doesn’t	know
what	this	is	a	set	of,	and	in	that	case	you	would	probably	cast	down	as	needed.	As	with
NSArray,	however,	NSSet	can	now	be	marked	up	to	indicate	its	element	type;	many
Cocoa	APIs	have	been	marked	up,	and	no	casting	will	be	necessary:

override	func	touchesBegan(touches:	Set<UITouch>,	withEvent	event:	UIEvent?)	{

				let	t	=	touches.first	//	an	Optional	wrapping	a	UITouch

				//	...

}

Chapter	5.	Flow	Control	and	More
This	chapter	presents	the	miscellaneous	remaining	aspects	of	the	Swift	language.	I’ll	start
by	describing	the	syntax	of	Swift’s	flow	control	constructs	for	branching,	looping,	and
jumping.	Then	I’ll	talk	about	how	to	override	operators	and	how	to	create	your	own
operators.	The	chapter	ends	with	a	survey	of	Swift’s	privacy	and	introspection	features
and	some	specialized	modes	of	reference	type	memory	management.

Flow	Control
A	computer	program	has	a	path	of	execution	through	its	code	statements.	Normally,	this
path	follows	a	simple	rule:	execute	each	statement	in	succession.	But	there	is	another
possibility.	Flow	control	can	be	used	to	make	the	path	of	execution	skip	some	code
statements,	or	repeat	some	code	statements.	Flow	control	is	what	makes	a	computer
program	“intelligent,”	and	not	merely	a	simple	fixed	sequence	of	steps.	By	testing	the
truth	value	of	a	condition	—	an	expression	that	evaluates	to	a	Bool	and	is	thus	true	or
false	—	the	program	decides	at	that	moment	how	to	proceed.	Flow	control	based	on
testing	a	condition	may	be	divided	into	two	general	types:

Branching

The	code	is	divided	into	alternative	chunks,	like	roads	that	diverge	in	a	wood,	and	the
program	is	presented	with	a	choice	of	possible	ways	to	go:	the	truth	of	a	condition	is
used	to	determine	which	chunk	will	actually	be	executed.

Looping

A	chunk	of	code	is	marked	off	for	possible	repetition:	the	truth	of	a	condition	is	used	to
determine	whether	the	chunk	should	be	executed,	and	then	whether	it	should	be
executed	again.	Each	repetition	is	called	an	iteration.	Typically,	some	feature	of	the
environment	(such	as	the	value	of	a	variable)	is	changed	on	each	iteration,	so	that	the
repetitions	are	not	identical,	but	are	successive	stages	in	progressing	through	an	overall
task.

The	chunks	of	code	in	flow	control,	which	I	refer	to	as	blocks,	are	demarcated	by	curly
braces.	These	curly	braces	constitute	a	scope.	New	local	variables	can	be	declared	here,
and	go	out	of	existence	automatically	when	the	path	of	execution	exits	the	curly	braces.
For	a	loop,	this	means	that	local	variables	come	into	existence	and	go	out	of	existence	on
each	iteration.	As	with	any	scope,	code	inside	the	curly	braces	can	see	the	surrounding
higher	scope.

Swift	flow	control	is	fairly	simple,	and	by	and	large	is	similar	to	flow	control	in	C	and
related	languages.	There	are	two	fundamental	syntactic	differences	between	Swift	and	C,
both	of	which	make	Swift	simpler	and	clearer:	in	Swift,	a	condition	does	not	have	to	be
wrapped	in	parentheses,	and	the	curly	braces	can	never	be	omitted.	Moreover,	Swift	adds
some	specialized	flow	control	features	to	help	you	grapple	more	conveniently	with
Optionals,	and	boasts	a	particularly	powerful	form	of	switch	statement.

Branching
Swift	has	two	forms	of	branching:	the	if	construct,	and	the	switch	statement.	I’ll	also
discuss	conditional	evaluation,	a	compact	form	of	if	construct.

If	construct

The	Swift	branching	construct	with	if	is	similar	to	C.	Many	examples	of	if	constructs
have	appeared	already	in	this	book.	The	construct	may	be	formally	summarized	as	shown
in	Example	5-1.

Example	5-1.	The	Swift	if	construct

if	condition	{

				statements

}

if	condition	{

				statements

}	else	{

				statements

}

if	condition	{

				statements

}	else	if	condition	{

				statements

}	else	{

				statements

}

The	third	form,	containing	else	if,	can	have	as	many	else	if	blocks	as	needed,	and	the
final	else	block	may	be	omitted.

Here’s	a	real-life	if	construct	that	lies	at	the	heart	of	one	of	my	apps:
//	okay,	we've	tapped	a	tile;	there	are	three	cases

if	self.selectedTile	==	nil	{	//	no	selected	tile:	select	and	play	this	tile

				self.selectTile(tile)

				self.playTile(tile)

}	else	if	self.selectedTile	==	tile	{	//	selected	tile	tapped:	deselect	it

				self.deselectAll()

				self.player?.pause()

}	else	{	//	there	was	a	selected	tile,	another	tile	tapped:	swap	them

				self.swap(self.selectedTile,	with:tile,	check:true,	fence:true)

}

CUSTOM	NESTED	SCOPES

Sometimes,	when	you	know	that	a	local	variable	needs	to	exist	only	for	a	few	lines	of	code,	you	might	like	to	define
an	artificial	scope	—	a	custom	nested	scope,	at	the	start	of	which	you	can	introduce	your	local	variable,	and	at	the	end
of	which	that	variable	will	be	permitted	to	go	out	of	scope,	destroying	its	value	automatically.

Swift,	however,	does	not	permit	you	to	use	bare	curly	braces	to	do	this.	In	Swift	1.2	and	earlier,	the	usual	solution	was
to	cheat	—	for	example,	by	misusing	some	form	of	flow	control	that	introduces	a	nested	scope	legally,	such	as	if
true.	New	in	Swift	2.0,	a	do	construct	is	provided	for	this	purpose:

do	{

				var	myVar	=	"howdy"

				//	...	use	myVar	here…

}

//	now	myVar	is	out	of	scope	and	its	value	is	destroyed

Conditional	binding

In	Swift,	if	can	be	followed	immediately	by	a	variable	declaration	and	assignment	—	that
is,	by	let	or	var	and	a	new	local	variable	name,	possibly	followed	by	a	colon	and	a	type
declaration,	then	an	equal	sign	and	a	value.	This	syntax,	called	a	conditional	binding,	is
actually	a	shorthand	for	conditionally	unwrapping	an	Optional.	The	assigned	value	is
expected	to	be	an	Optional	—	the	compiler	will	stop	you	if	it	isn’t	—	and	this	is	what
happens:

If	the	Optional	is	nil,	the	condition	fails	and	the	block	is	not	executed.
If	the	Optional	is	not	nil,	then:

1.	 The	Optional	is	unwrapped.
2.	 The	unwrapped	value	is	assigned	to	the	declared	local	variable.
3.	 The	block	is	executed	with	the	local	variable	in	scope.

Thus,	a	conditional	binding	is	a	convenient	shorthand	for	safely	passing	an	unwrapped
Optional	into	a	block.	The	Optional	is	unwrapped,	and	the	block	is	executed,	only	if	the
Optional	can	be	unwrapped.

It	is	perfectly	reasonable	for	the	local	variable	in	a	conditional	binding	to	have	the	same
name	as	an	existing	variable	in	the	surrounding	scope.	It	can	even	have	the	same	name	as
the	Optional	being	unwrapped!	There	is	then	no	need	to	make	up	a	new	name,	and	inside
the	block	the	unwrapped	value	of	the	Optional	overshadows	the	original	Optional,	which
thus	cannot	be	accessed	accidentally.

Here’s	an	example	of	a	conditional	binding.	Recall	this	code	from	Chapter	4,	where	I
optionally	unwrap	an	NSNotification’s	userInfo	dictionary,	attempt	to	fetch	a	value	from
the	dictionary	using	the	"progress"	key,	and	proceed	only	if	that	value	turns	out	to	be	an
NSNumber:

let	prog	=	(n.userInfo?["progress"]	as?	NSNumber)?.doubleValue

if	prog	!=	nil	{

				self.progress	=	prog!

}

We	can	rewrite	that	code	as	a	conditional	binding:
if	let	prog	=	(n.userInfo?["progress"]	as?	NSNumber)?.doubleValue	{

				self.progress	=	prog

}

It	is	also	possible	to	nest	conditional	bindings.	To	illustrate,	I’ll	rewrite	the	previous
example	to	use	a	separate	conditional	binding	for	every	Optional	in	the	chain:

if	let	ui	=	n.userInfo	{

				if	let	prog	:	AnyObject	=	ui["progress"]	{

								if	let	prog	=	prog	as?	NSNumber	{

												self.progress	=	prog.doubleValue

								}

				}

}

The	result	is	somewhat	more	verbose	and	the	nest	is	rather	deeply	indented	—	Swift
programmers	like	to	call	this	the	“pyramid	of	doom”	—	but	in	my	view	it	is	also
considerably	more	legible,	because	the	structure	reflects	perfectly	the	successive	stages	of
testing.	To	help	avoid	the	indentation,	successive	conditional	bindings	can	be	combined
into	a	list,	separated	by	comma:

if	let	ui	=	n.userInfo,	prog	=	ui["progress"]	as?	NSNumber	{

				self.progress	=	prog.doubleValue

}

A	binding	in	the	list	can	even	be	followed	by	a	where	clause	folding	yet	another	condition
into	the	line.	And	the	entire	list	can	start	with	a	condition,	before	the	word	let	or	var	is
encountered.	Here’s	a	real-life	example	from	my	own	code	(which	I’ll	explain	further	in
Chapter	11).	The	“pyramid	of	doom”	consists	of	four	nested	conditions:

override	func	observeValueForKeyPath(keyPath:	String?,

				ofObject	object:	AnyObject?,	change:	[String	:	AnyObject]?,

				context:	UnsafeMutablePointer<()>)	{

								if	keyPath	==	"readyForDisplay"	{

												if	let	obj	=	object	as?	AVPlayerViewController	{

																if	let	ok	=	change?[NSKeyValueChangeNewKey]	as?	Bool	{

																				if	ok	{

																								//	...

																				}

																}

												}

								}

}

Alternatively,	those	four	conditions	can	be	combined	into	a	single	list:
override	func	observeValueForKeyPath(keyPath:	String?,

				ofObject	object:	AnyObject?,	change:	[String	:	AnyObject]?,

				context:	UnsafeMutablePointer<()>)	{

								if	keyPath	==	"readyForDisplay",

								let	obj	=	object	as?	AVPlayerViewController,

								let	ok	=	change?[NSKeyValueChangeNewKey]	as?	Bool	where	ok	{

												//	...

								}

}

But	whether	the	second	version	is	more	legible	is	an	open	question.

New	in	Swift	2.0,	you	can	express	the	chain	of	conditions	as	a	series	of	guard	statements
(see	Guard);	I	think	I	like	this	idiom	best:

override	func	observeValueForKeyPath(keyPath:	String?,

				ofObject	object:	AnyObject?,	change:	[String	:	AnyObject]?,

				context:	UnsafeMutablePointer<()>)	{

								guard	keyPath	==	"readyForDisplay"	else	{return}

								guard	let	obj	=	object	as?	AVPlayerViewController	else	{return}

								guard	let	ok	=	change?[NSKeyValueChangeNewKey]	as?	Bool	else	{return}

								guard	ok	else	{return}

								//	...

}

Switch	statement

A	switch	statement	is	a	neater	way	of	writing	an	extended	if…else	if…else	construct.	In
C	(and	Objective-C),	a	switch	statement	contains	hidden	traps;	Swift	eliminates	those
traps,	and	adds	power	and	flexibility.	As	a	result,	switch	statements	are	commonly	used	in
Swift	(whereas	they	are	relatively	rare	in	my	Objective-C	code).

In	a	switch	statement,	the	condition	consists	in	the	comparison	of	different	possible
values,	called	cases,	against	a	single	value,	called	the	tag.	The	case	comparisons	are
performed	successively	in	order.	As	soon	as	a	case	comparison	succeeds,	that	case’s	code
is	executed	and	the	entire	switch	statement	is	exited.	The	schema	is	shown	in	Example	5-
2;	there	can	be	as	many	cases	as	needed,	and	the	default	case	can	be	omitted	(subject	to
restrictions	that	I’ll	explain	in	a	moment).

Example	5-2.	The	Swift	switch	statement
switch	tag	{

case	pattern1:

				statements

case	pattern2:

				statements

default:

				statements

}

Here’s	an	actual	example:
switch	i	{

case	1:

				print("You	have	1	thingy!")

case	2:

				print("You	have	2	thingies!")

default:

				print("You	have	\(i)	thingies!")

}

In	that	code,	a	variable	i	functions	as	the	tag.	The	value	of	i	is	first	compared	to	the	value
1.	If	it	is	1,	that	case’s	code	is	executed	and	that’s	all.	If	it	is	not	1,	it	is	compared	to	the

value	2.	If	it	is	2,	that	case’s	code	is	executed	and	that’s	all.	If	the	value	of	i	matches
neither	of	those,	the	default	case’s	code	is	executed.

In	Swift,	a	switch	statement	must	be	exhaustive.	This	means	that	every	possible	value	of
the	tag	must	be	covered	by	a	case.	The	compiler	will	stop	you	if	you	try	to	violate	this
rule.	The	rule	makes	intuitive	sense	when	a	value’s	type	allows	only	a	limited	number	of
possibilities;	the	usual	example	is	an	enum,	which	itself	has	a	small,	fixed	set	of	cases	as
its	possible	values.	But	when,	as	in	the	preceding	example,	the	tag	is	an	Int,	there	is	an
infinite	number	of	possible	individual	cases.	Thus,	a	“mop-up”	case	must	appear,	to	mop
up	all	the	cases	that	you	didn’t	write	explicitly.	A	common	way	to	write	a	“mop-up”	case
is	to	use	a	default	case.

Each	case’s	code	can	consist	of	multiple	lines;	it	doesn’t	have	to	be	a	single	line,	as	the
cases	in	the	preceding	example	happen	to	be.	However,	it	must	consist	of	at	least	a	single
line;	it	is	illegal	for	a	Swift	switch	case	to	be	completely	empty.	It	is	legal	for	the	first	(or
only)	line	of	a	case’s	code	to	appear	on	the	same	line	as	the	case,	after	the	colon;	thus,	I
could	have	written	the	preceding	example	like	this:

switch	i	{

case	1:	print("You	have	1	thingy!")

case	2:	print("You	have	2	thingies!")

default:	print("You	have	\(i)	thingies!")

}

The	minimum	single	line	of	case	code	is	the	keyword	break;	used	in	this	way,	break	acts
as	a	placeholder	meaning,	“Do	nothing.”	It	is	very	common	for	a	switch	statement	to
include	a	default	(or	other	“mop-up”	case)	consisting	of	nothing	but	the	keyword	break;
in	this	way,	you	exhaust	all	possible	values	of	the	tag,	but	if	the	value	is	one	that	no	case
explicitly	covers,	you	do	nothing.

Now	let’s	focus	on	the	comparison	between	the	tag	value	and	the	case	value.	In	the
preceding	example,	it	works	like	an	equality	comparison	(==);	but	that	isn’t	the	only
possibility.	In	Swift,	a	case	value	is	actually	a	special	expression	called	a	pattern,	and	the
pattern	is	compared	to	the	tag	value	using	a	“secret”	pattern-matching	operator,	~=.	The
more	you	know	about	the	syntax	for	constructing	a	pattern,	the	more	powerful	your	case
values	and	your	switch	statements	will	be.

A	pattern	can	include	an	underscore	(_)	to	absorb	all	values	without	using	them.	An
underscore	case	is	thus	an	alternative	form	of	“mop-up”	case:

switch	i	{

case	1:

				print("You	have	1	thingy!")

case	_:

				print("You	have	many	thingies!")

}

A	pattern	can	include	a	declaration	of	a	local	variable	name	(an	unconditional	binding)	to
absorb	all	values	and	use	the	actual	value.	This	is	another	alternative	form	of	“mop-up”
case:

switch	i	{

case	1:

				print("You	have	1	thingy!")

case	let	n:

				print("You	have	\(n)	thingies!")

}

When	the	tag	is	a	Comparable,	a	case	can	include	a	Range;	the	test	involves	sending	the
Range	the	contains	message:

switch	i	{

case	1:

				print("You	have	1	thingy!")

case	2…10:

				print("You	have	\(i)	thingies!")

default:

				print("You	have	more	thingies	than	I	can	count!")

}

When	the	tag	is	an	Optional,	a	case	can	test	it	against	nil.	Thus,	a	possible	way	to	unwrap
an	Optional	safely	is	to	test	against	nil	first	and	then	unwrap	in	a	subsequent	case,	since
we’ll	never	reach	the	unwrapping	if	the	nil	test	succeeds.	In	this	example,	i	is	an
Optional	wrapping	an	Int:

switch	i	{

case	nil:	break

default:

				switch	i!	{

				case	1:

								print("You	have	1	thingy!")

				case	let	n:

								print("You	have	\(n)	thingies!")

				}

}

That	seems	a	bit	clumsy,	however,	so	Swift	2.0	introduces	a	new	syntax:	appending	?	to	a
case	pattern	safely	unwraps	an	Optional	tag.	Thus,	we	can	rewrite	that	example	like	this:

switch	i	{

case	1?:

				print("You	have	1	thingy!")

case	let	n?:

				print("You	have	\(n)	thingies!")

case	nil:	break

}

When	the	tag	is	a	Bool,	a	case	can	test	it	against	a	condition.	Thus,	by	a	clever	perversion,
you	can	use	the	cases	to	test	any	conditions	you	like	—	by	using	true	as	the	tag!	A	switch
statement	thus	becomes	a	genuine	substitute	for	an	extended	if…else	if	construct.	In	this
example	from	my	own	code,	I	could	have	used	if…else	if,	but	each	case	is	just	one	line,
so	a	switch	statement	seems	clearer:

func	positionForBar(bar:	UIBarPositioning)	->	UIBarPosition	{

				switch	true	{

				case	bar	===	self.navbar:		return	.TopAttached

				case	bar	===	self.toolbar:	return	.Bottom

				default:																			return	.Any

				}

}

A	pattern	can	include	a	where	clause	adding	a	condition	to	limit	the	truth	value	of	the	case.
This	is	often,	though	not	necessarily,	used	in	combination	with	a	binding;	the	condition
can	refer	to	the	variable	declared	in	the	binding:

switch	i	{

case	let	j	where	j	<	0:

				print("i	is	negative")

case	let	j	where	j	>	0:

				print("i	is	positive")

case	0:

				print("i	is	0")

default:break

}

A	pattern	can	include	the	is	operator	to	test	the	tag’s	type.	In	this	example,	assume	that	we

have	a	Dog	class	and	its	NoisyDog	subclass,	and	that	d	is	typed	as	Dog:
switch	d	{

case	is	NoisyDog:

				print("You	have	a	noisy	dog!")

case	_:

				print("You	have	a	dog.")

}

A	pattern	can	include	a	cast	with	the	as	(not	as?)	operator.	Typically,	you’ll	combine	this
with	a	binding	that	declares	a	local	variable;	despite	the	use	of	unconditional	as,	the	value
is	conditionally	cast	and,	if	the	cast	succeeds,	the	local	variable	carries	the	cast	value	into
the	case	code.	Assume	that	Dog	implements	bark	and	that	NoisyDog	implements
beQuiet:

switch	d	{

case	let	nd	as	NoisyDog:

				nd.beQuiet()

case	let	d:

				d.bark()

}

You	can	also	use	as	(not	as!)	to	cast	down	the	tag	(and	possibly	unwrap	it)	conditionally
as	part	of	a	test	against	a	specific	match;	in	this	example,	i	might	be	an	AnyObject	or	an
Optional	wrapping	an	AnyObject:

switch	i	{

case	0	as	Int:

				print("It	is	0")

default:break

}

You	can	perform	multiple	tests	at	once	by	expressing	the	tag	as	a	tuple	and	wrapping	the
corresponding	tests	in	a	tuple.	The	case	passes	only	if	every	test	in	the	test	tuple	succeeds
against	the	corresponding	member	of	the	tag	tuple.	In	this	example,	we	start	with	a
dictionary	d	typed	as	[String:AnyObject].	Using	a	tuple,	we	can	safely	attempt	to	extract
and	cast	two	values	at	once:

switch	(d["size"],	d["desc"])	{

case	let	(size	as	Int,	desc	as	String):

				print("You	have	size	\(size)	and	it	is	\(desc)")

default:break

}

When	a	tag	is	an	enum,	the	cases	can	be	cases	of	the	enum.	A	switch	statement	is	thus	an
excellent	way	to	handle	an	enum.	Here’s	an	enum:

enum	Filter	{

				case	Albums

				case	Playlists

				case	Podcasts

				case	Books

}

And	here’s	a	switch	statement,	where	the	tag,	type,	is	a	Filter:
switch	type	{

case	.Albums:

				print("Albums")

case	.Playlists:

				print("Playlists")

case	.Podcasts:

				print("Podcasts")

case	.Books:

				print("Books")

}

No	“mop-up”	is	needed,	because	I	exhausted	the	cases.	(In	that	example,	the	dot	before

the	case	names	is	needed.	But	if	the	code	is	inside	the	enum’s	declaration,	the	dot	can	be
omitted.)

A	switch	statement	provides	a	way	to	extract	an	associated	value	from	an	enum	case.
Recall	this	enum	from	Chapter	4:

enum	Error	{

				case	Number(Int)

				case	Message(String)

				case	Fatal

}

To	extract	the	error	number	from	an	Error	whose	case	is	.Number,	or	the	message	string
from	an	Error	whose	case	is	.Message,	I	can	use	a	switch	statement.	Recall	that	the
associated	value	is	actually	a	tuple.	A	tuple	of	patterns	after	the	matched	case	name	is
applied	to	the	associated	value.	If	a	pattern	is	a	binding	variable,	it	captures	the	associated
value.	The	let	(or	var)	can	appear	inside	the	parentheses	or	after	the	case	keyword;	this
code	illustrates	both	alternatives:

switch	err	{

case	.Number(let	theNumber):

				print("It	is	a	.Number:	\(theNumber)")

case	let	.Message(theMessage):

				print("It	is	a	.Message:	\(theMessage)")

case	.Fatal:

				print("It	is	a	.Fatal")

}

If	the	let	(or	var)	appears	after	the	case	keyword,	I	can	add	a	where	clause:
switch	err	{

case	let	.Number(n)	where	n	>	0:

				print("It's	a	positive	error	number	\(n)")

case	let	.Number(n)	where	n	<	0:

				print("It's	a	negative	error	number	\(n)")

case	.Number(0):

				print("It's	a	zero	error	number")

default:break

}

If	I	don’t	want	to	extract	the	error	number	but	just	want	to	match	against	it,	I	can	use	some
other	pattern	inside	the	parentheses:

switch	err	{

case	.Number(1..<Int.max):

				print("It's	a	positive	error	number")

case	.Number(Int.min…(-1)):

				print("It's	a	negative	error	number")

case	.Number(0):

				print("It's	a	zero	error	number")

default:break

}

This	same	pattern	also	gives	us	yet	another	way	to	deal	with	an	Optional	tag.	An	Optional,
as	I	explained	in	Chapter	4,	is	in	fact	an	enum.	It	has	two	cases,	.None	and	.Some,	where
the	wrapped	value	is	the	.Some	case’s	associated	value.	But	now	we	know	how	to	extract
the	associated	value!	Thus	we	can	rewrite	yet	again	the	earlier	example	where	i	is	an
Optional	wrapping	an	Int:

switch	i	{

case	.None:	break

case	.Some(1):

				print("You	have	1	thingy!")

case	.Some(let	n):

				print("You	have	\(n)	thingies!")

}

New	in	Swift	2.0,	the	lightweight	if	case	construct	lets	you	use	in	a	condition	the	same
sort	of	pattern	syntax	you’d	use	in	a	case	of	a	switch	statement.	Where	a	switch	case
pattern	is	compared	against	a	previously	stated	tag,	an	if	case	pattern	is	followed	by	an
equal	sign	and	the	tag.	In	practice,	this	is	useful	primarily	for	performing	a	single
conditional	binding	to	extract	an	associated	value	from	an	enum	(err	is	our	Error	enum
once	again):

if	case	let	.Number(n)	=	err	{

				print("The	error	number	is	\(n)")

}

You	can	even	append	a	where	clause,	just	as	in	a	switch	case:
if	case	let	.Number(n)	=	err	where	n	<	0	{

				print("The	negative	error	number	is	\(n)")

}

To	combine	case	tests	(with	an	implicit	logical-or),	separate	them	with	a	comma:
switch	i	{

case	1,3,5,7,9:

				print("You	have	a	small	odd	number	of	thingies.")

case	2,4,6,8,10:

				print("You	have	a	small	even	number	of	thingies.")

default:

				print("You	have	too	many	thingies	for	me	to	count.")

}

In	this	example,	i	is	declared	as	an	AnyObject:
switch	i	{

case	is	Int,	is	Double:

				print("It's	some	kind	of	number.")

default:

				print("I	don't	know	what	it	is.")

}

But	you	can’t	use	a	comma	to	combine	patterns	that	declare	binding	variables,	presumably
because	it	isn’t	clear	what	variable	should	be	set	to	what	value.

Another	way	of	combining	cases	is	to	fall	through	from	one	case	to	the	next	by	using	a
fallthrough	statement.	It	is	not	uncommon	for	a	case	to	consist	entirely	of	a
fallthrough	statement,	though	it	is	perfectly	legal	for	a	case	to	execute	some	code	and
then	fall	through:

switch	pep	{

case	"Manny":	fallthrough

case	"Moe":	fallthrough

case	"Jack":

				print("\(pep)	is	a	Pep	boy")

default:

				print("I	don't	know	who	\(pep)	is")

}

Note	that	fallthrough	evades	the	test	of	the	next	case;	it	simply	starts	executing	the	next
case’s	code,	directly.	Therefore,	the	next	case	can’t	declare	any	binding	variables,	because
they	would	never	be	set.

Conditional	evaluation

An	interesting	problem	arises	when	you’d	like	to	decide	what	value	to	use	—	for	example,
what	value	to	assign	to	a	variable.	This	seems	like	a	good	use	of	a	branching	construct.
You	can,	of	course,	declare	the	variable	first	without	initializing	it,	and	then	set	it	from
within	a	subsequent	branching	construct.	It	would	be	nice,	however,	to	use	a	branching

construct	as	the	variable’s	value.	Here,	for	example,	I	try	(and	fail)	to	write	a	variable
assignment	where	the	equal	sign	is	followed	directly	by	a	branching	construct:

let	title	=	switch	type	{	//	compile	error

case	.Albums:

				"Albums"

case	.Playlists:

				"Playlists"

case	.Podcasts:

				"Podcasts"

case	.Books:

				"Books"

}

There	are	languages	that	let	you	talk	that	way,	but	Swift	is	not	one	of	them.	However,	an
easy	workaround	does	exist	—	use	a	define-and-call	anonymous	function:

let	title	:	String	=	{

				switch	type	{

				case	.Albums:

								return	"Albums"

				case	.Playlists:

								return	"Playlists"

				case	.Podcasts:

								return	"Podcasts"

				case	.Books:

								return	"Books"

				}

}()

In	the	special	case	where	a	value	can	be	decided	by	a	two-pronged	condition,	Swift
provides	the	C	ternary	operator	(:?).	Its	scheme	is	as	follows:

condition	?	exp1	:	exp2

If	the	condition	is	true,	the	expression	exp1	is	evaluated	and	the	result	is	used;	otherwise,
the	expression	exp2	is	evaluated	and	the	result	is	used.	Thus,	you	can	use	the	ternary
operator	while	performing	an	assignment,	using	this	schema:

let	myVariable	=	condition	?	exp1	:	exp2

What	myVariable	gets	initialized	to	depends	on	the	truth	value	of	the	condition.	I	use	the
ternary	operator	heavily	in	my	own	code.	Here’s	an	example:

cell.accessoryType	=

				ix.row	==	self.currow	?	.Checkmark	:	.DisclosureIndicator

The	context	needn’t	be	an	assignment;	here,	we’re	deciding	what	value	to	pass	as	a
function	argument:

CGContextSetFillColorWithColor(

				context,	self.hilite	?	purple.CGColor	:	beige.CGColor)

In	the	version	of	C	used	by	modern	Objective-C,	there’s	a	collapsed	form	of	the	ternary
operator	that	allows	you	to	test	a	value	against	nil.	If	it	is	nil,	you	get	to	supply	a
substitute	value.	If	it	isn’t	nil,	the	tested	value	itself	is	used.	In	Swift,	the	analogous
operation	would	involve	testing	an	Optional:	if	the	tested	Optional	is	nil,	use	the
substitute	value;	if	it	isn’t	nil,	unwrap	the	Optional	and	use	the	unwrapped	value.	Swift	has
such	an	operator	—	the	??	operator	(called	the	nil-coalescing	operator).

Recall	this	example	from	Chapter	4,	where	arr	is	a	Swift	array	of	Optional	strings	and	I’m
converting	it	to	a	form	that	can	be	handed	over	to	Objective-C	as	an	NSArray:

let	arr2	:	[AnyObject]	=

				arr.map	{if	$0	==	nil	{return	NSNull()}	else	{return	$0!}}

We	can	write	the	same	thing	much	more	neatly	using	the	ternary	operator:
let	arr2	=	arr.map	{	$0	!=	nil	?	$0!	:	NSNull()	}

And	the	nil-coalescing	operator	is	even	neater:
let	arr2	=	arr.map	{	$0	??	NSNull()	}

Expressions	using	??	can	be	chained:
let	someNumber	=	i1	as?	Int	??	i2	as?	Int	??	0

That	code	tries	to	cast	i1	to	an	Int	and	use	that	Int.	If	that	fails,	it	tries	to	cast	i2	to	an	Int
and	use	that	Int.	If	that	fails,	it	gives	up	and	uses	0.

Loops
The	usual	purpose	of	a	loop	is	to	repeat	a	block	of	code	with	some	simple	difference	on
each	iteration.	This	difference	will	typically	serve	also	as	a	signal	for	when	to	stop	the
loop.	Swift	provides	two	basic	loop	structures:	while	loops	and	for	loops.

While	loops

A	while	loop	comes	in	two	forms,	schematized	in	Example	5-3.

Example	5-3.	The	Swift	while	loop
while	condition	{

				statements

}

repeat	{

				statements

}	while	condition

The	chief	difference	between	the	two	forms	is	the	timing	of	the	test.	In	the	second	form,
the	condition	is	tested	after	the	block	has	executed	—	meaning	that	the	block	will	be
executed	at	least	once.

Usually,	the	code	inside	the	block	will	change	something	that	alters	both	the	environment
and	the	condition,	thus	eventually	bringing	the	loop	to	an	end.	Here’s	a	typical	example
from	my	own	code	(movenda	is	an	array):

while	self.movenda.count	>	0	{

				let	p	=	self.movenda.removeLast()

				//	...

}

Each	iteration	removes	an	element	from	movenda,	so	eventually	its	count	falls	to	0	and	the
loop	is	no	longer	executed;	execution	then	proceeds	to	the	next	line	after	the	closing	curly
braces.

The	condition	in	the	first	form	of	while	loop	can	be	a	conditional	binding	of	an	Optional.
This	provides	a	compact	way	of	safely	unwrapping	an	Optional	and	looping	until	the
Optional	is	nil;	the	local	variable	containing	the	unwrapped	Optional	is	in	scope	inside
the	curly	braces.	Thus,	my	code	can	be	rewritten	more	compactly:

while	let	p	=	self.movenda.popLast()	{

				//	...

}

Another	common	use	of	while	loops	in	my	code	is	to	walk	my	way	up	or	down	a
hierarchy.	In	this	example,	I	start	with	a	subview	(textField)	of	some	table	view	cell,	and

I	want	to	know	which	table	view	cell	it	is	a	subview	of.	So	I	keep	walking	up	the	view
hierarchy,	investigating	each	superview	in	turn,	until	I	reach	a	table	view	cell:

var	v	:	UIView	=	textField

repeat	{	v	=	v.superview!	}	while	!(v	is	UITableViewCell)

After	that	code,	v	is	the	desired	table	view	cell.	Nevertheless,	that	code	is	dangerous:	we’ll
crash	if	we	don’t	encounter	a	UITableViewCell	before	reaching	the	top	of	the	view
hierarchy	—	a	view	whose	superview	is	nil.	Here	is	a	safe	way	to	write	the	same	code:

var	v	:	UIView	=	textField

while	let	vv	=	v.superview	where	!(vv	is	UITableViewCell)	{v	=	vv}

if	let	c	=	v.superview	as?	UITableViewCell	{	//	...

Similar	to	the	if	case	construct,	while	case	lets	you	use	a	switch	case	pattern.	In	this
rather	artificial	example,	we	have	an	array	of	various	Error	enums:

let	arr	:	[Error]	=	[

				.Message("ouch"),	.Message("yipes"),	.Number(10),	.Number(-1),	.Fatal

]

We	can	extract	the	.Message	associated	string	values	from	the	start	of	the	array,	like	this:
var	i	=	0

while	case	let	.Message(message)	=	arr[i++]		{

				print(message)	//	"ouch",	then	"yipes";	then	the	loop	stops

}

For	loops

A	Swift	for	loop	comes	in	two	forms,	as	schematized	in	Example	5-4.

Example	5-4.	The	Swift	for	loop
for	variable	in	sequence	{

				statements

}

for	before-all;	condition;	after-each	{

				statements

}

The	first	form	—	the	for…in	construct	—	is	similar	to	Objective-C’s	for…in	construct.	In
Objective-C,	this	syntax	is	available	whenever	a	class	conforms	to	the
NSFastEnumeration	protocol.	In	Swift,	it	is	available	whenever	a	type	adopts	the
SequenceType	protocol.

In	the	for…in	construct,	the	variable	is	implicitly	declared	with	let	on	each	iteration;	it	is
thus	immutable	by	default.	(If	you	need	to	assign	to	the	variable	within	the	block,	write
for	var.)	The	variable	is	also	local	to	the	block.	On	each	iteration,	a	successive	element
of	the	sequence	is	used	to	initialize	the	variable,	which	is	then	in	scope	inside	block.	This
is	the	form	of	for	loop	you’ll	use	most	often,	especially	because	it	is	so	easy	in	Swift	to
create	a	sequence	on	the	fly	if	you	don’t	have	one	already.	In	C,	for	example,	the	way	to
iterate	through	the	numbers	1	to	5	is	to	use	the	second	form,	and	you	can	certainly	do	the
same	in	Swift:

for	var	i	=	1;	i	<	6;	i++	{

				print(i)

}

But	in	Swift,	you	can	create	a	sequence	of	the	numbers	1	through	5	on	the	fly	—	a	Range
—	and	that’s	what	you’ll	usually	do:

for	i	in	1…5	{

				print(i)

}

A	SequenceType	has	a	generate	method	which	yields	a	“generator”	object	which,	itself,
has	a	mutating	next	method	that	returns	the	next	object	in	the	sequence	wrapped	in	an
Optional,	or	nil	if	there	is	no	next	object.	Under	the	hood,	therefore,	for…in	is	actually	a
kind	of	while	loop:

var	g	=	(1…5).generate()

while	let	i	=	g.next()	{

				print(i)

}

Sometimes	you	may	find	that	writing	out	the	while	loop	explicitly	in	that	way	makes	the
loop	easier	to	control	and	to	customize.

The	sequence	will	often	be	an	existing	value.	It	might	be	a	character	sequence,	in	which
case	the	variable	values	are	the	successive	Characters.	It	might	be	an	array,	in	which	case
the	variable	values	are	the	successive	elements	of	the	array.	It	might	be	a	dictionary,	in
which	case	the	variable	values	are	a	key–value	tuple,	and	you	will	probably	express	the
variable	as	a	tuple	of	two	names	in	order	to	capture	them.	Many	examples	have	already
appeared	in	earlier	chapters.

As	I	explained	in	Chapter	4,	you	may	encounter	an	array	coming	from	Objective-C	whose
elements	will	need	to	be	cast	down	from	AnyObject.	It	is	quite	typical	to	do	this	as	part	of
the	sequence	specification:

let	p	=	Pep()

for	boy	in	p.boys()	as!	[String]	{

				//	...

}

The	sequence	enumerate	method	yields	a	sequence	of	tuples	preceding	each	element	of
the	original	sequence	with	its	index	number:

for	(i,v)	in	self.tiles.enumerate()	{

				v.center	=	self.centers[i]

}

If	you	need	to	skip	some	values	of	the	sequence,	Swift	2.0	allows	you	to	append	a	where
clause:

for	i	in	0…10	where	i	%	2	==	0	{

				print(i)	//	0,	2,	4,	6,	8,	10

}

Like	if	case	and	while	case,	there’s	also	for	case.	Return	to	our	example	of	an	array
of	Error	enums:

let	arr	:	[Error]	=	[

				.Message("ouch"),	.Message("yipes"),	.Number(10),	.Number(-1),	.Fatal

]

Here	we	cycle	through	the	whole	array,	extracting	just	the	.Number	associated	values:
for	case	let	.Number(i)	in	arr	{

				print(i)	//	10,	then	-1

}

A	sequence	also	has	instance	methods,	such	as	map,	filter,	and	reverse;	in	this	example,
I	count	backward	by	even	numbers:

let	range	=	(0…10).reverse().filter{$0	%	2	==	0}

for	i	in	range	{

				print(i)	//	10,	8,	6,	4,	2,	0

}

Yet	another	approach	is	to	generate	the	sequence	by	calling	the	stride	method.	It’s	an
instance	method	of	the	Strideable	protocol,	which	is	adopted	by	numeric	types	and
anything	else	that	can	be	incremented	and	decremented.	It	has	two	forms:

stride(through:by:)

stride(to:by:)

Which	form	you	use	depends	on	whether	you	want	the	sequence	to	include	the	final	value
or	not.	The	by:	argument	can	be	negative:

for	10.stride(through:	0,	by:	-2)	{

				print(i)	//	10,	8,	6,	4,	2,	0

}

You	can	cycle	through	two	sequences	simultaneously	using	the	global	zip	function,	which
takes	two	sequences	and	yields	a	Zip2	struct,	which	is	itself	a	sequence.	The	value	on	each
iteration	through	a	Zip2	is	a	tuple	of	the	corresponding	elements	from	both	original
sequences;	if	one	of	the	original	sequences	is	longer	than	the	other,	the	extra	elements	are
ignored:

let	arr1	=	["CA",	"MD",	"NY",	"AZ"]

let	arr2	=	["California",	"Maryland",	"New	York"]

var	d	=	[String:String]()

for	(s1,s2)	in	zip(arr1,arr2)	{

				d[s1]	=	s2

}	//	now	d	is	["MD":	"Maryland",	"NY":	"New	York",	"CA":	"California"]

The	second	form	of	for	loop	is	a	clone	of	the	C	for	loop	(refer	to	Example	5-4).	The	idea
here	is	usually	to	increment	or	decrement	a	counter.	The	before-all	statement	is	executed
once	as	the	for	loop	is	first	encountered	and	is	usually	used	for	initialization	of	the	counter.
The	condition	is	then	tested,	and	if	true,	the	block	is	executed;	the	condition	will	usually
test	whether	the	counter	has	reached	some	limit.	The	after-each	statement	is	then
executed,	and	will	usually	increment	or	decrement	the	counter;	the	condition	is	then
immediately	tested	again.	Thus,	to	execute	a	block	using	integer	values	1,	2,	3,	4,	and	5	for
i,	the	standard	formula	(if	you’re	going	to	use	this	kind	of	for	loop)	is:

var	i	:	Int

for	i	=	1;	i	<	6;	i++	{

				print(i)

}

To	limit	the	scope	of	the	counter	to	the	inside	of	the	curly	braces,	declare	it	as	part	of	the
before-all	statement:

for	var	i	=	1;	i	<	6;	i++	{

				print(i)

}

No	law	says,	however,	that	this	kind	of	for	loop	must	be	about	counting	or	incrementing.
Recall	this	earlier	example	of	a	while	loop,	where	we	cycle	up	the	view	hierarchy	looking
for	a	table	view	cell:

var	v	:	UIView	=	textField

repeat	{	v	=	v.superview!	}	while	!(v	is	UITableViewCell)

Here’s	another	way	to	express	that,	using	a	for	loop	whose	block	is	empty:
var	v	:	UIView

for	v	=	textField;	!(v	is	UITableViewCell);	v	=	v.superview!	{}

As	in	C,	each	statement	in	the	declaration	(separated	by	semicolon)	may	consist,	itself,	of
more	than	one	code	statement	(separated	by	comma).	This	can	be	a	handy,	elegant	way	to

clarify	your	intentions.	In	this	example	from	my	own	code,	I	declare	two	variables	in	the
before-all	statement,	and	change	both	of	them	in	the	after-each	statement;	there	are
other	ways	to	accomplish	this	same	end,	certainly,	but	this	seems	cleanest	and	clearest:

var	values	=	[0.0]

for	(var	i	=	20,	direction	=	1.0;	i	<	60;	i	+=	5,	direction	*=	-1)	{

				values.append(direction	*	M_PI	/	Double(i))

}

Jumping
Although	branching	and	looping	constitute	the	bulk	of	the	decision-making	flow	of	code
execution,	sometimes	even	they	are	insufficient	to	express	the	logic	of	what	needs	to
happen	next.	On	rare	occasions,	it	is	useful	to	be	able	to	interrupt	your	code’s	progress
completely	and	jump	to	a	different	place	within	it.

The	most	general	way	to	jump	from	anywhere	to	anywhere	is	the	goto	command,
common	in	early	programming	languages,	but	now	notoriously	“considered	harmful.”
Swift	doesn’t	have	a	goto	command,	but	it	does	provide	a	repertory	of	controlled	ways	of
jumping,	which	will,	in	practice,	cover	any	real-life	situation.	Swift’s	modes	of	jumping
are	all	forms	of	early	exit	from	the	current	flow	of	code.

You	are	familiar	already	with	one	of	the	most	important	forms	of	early	exit:	return,	which
brings	the	current	function	to	an	immediate	end	and	resumes	at	the	point	where	the
function	was	called.	Thus,	return	may	be	considered	a	form	of	jumping.

Shortcircuiting	and	labels

Swift	has	several	ways	of	shortcircuiting	the	flow	of	branch	and	loop	constructs:
fallthrough

A	fallthrough	statement	in	a	switch	case	aborts	execution	of	the	current	case	code	and
immediately	begins	executing	the	code	of	the	next	case.	There	must	be	a	next	case	or
the	compiler	will	stop	you.

continue

A	continue	statement	in	a	loop	construct	aborts	execution	of	the	current	iteration	and
proceeds	to	the	next	iteration:

In	a	while	loop,	continue	means	to	perform	immediately	the	conditional	test.
In	a	for	loop	of	the	first	type	(for…in),	continue	means	to	proceed	immediately	to
the	next	iteration	if	there	is	one.
In	a	for	loop	of	the	second	type	(C	for	loop),	continue	means	to	perform
immediately	the	after-each	statement	and	then	the	conditional	test.

break

A	break	statement	aborts	the	current	construct:

In	a	loop,	break	aborts	the	loop	completely.
In	the	code	of	a	switch	case,	break	aborts	the	entire	switch	construct.

When	constructs	are	nested,	you	may	need	to	specify	which	construct	you	want	to
continue	or	break.	Therefore,	Swift	permits	you	to	put	a	label	before	the	start	of	a	do
block,	an	if	construct,	a	switch	statement,	a	while	loop,	or	a	for	loop.	The	label	is	an

arbitrary	name	followed	by	a	colon.	You	can	then	use	that	label	name	as	a	second	term	in	a
continue	or	break	statement	within	the	labeled	construct	at	any	depth,	to	specify	that	this
is	the	construct	you	are	referring	to.

Here’s	an	artifical	example	to	illustrate	the	syntax.	First,	I’ll	nest	two	for	loops	with	no
label:

for	i	in	1…5	{

				for	j	in	1…5	{

								print("\(i),	\(j);")

								break

				}

}

//	1,	1;	2,	1;	3,	1;	4,	1;	5,	1;

As	you	can	see	from	the	output,	that	code	keeps	aborting	the	inner	loop	after	one	iteration,
while	the	outer	loop	proceeds	normally	through	all	five	iterations.	But	what	if	you	wanted
to	abort	the	entire	nested	construct?	The	solution	is	a	label:

outer:	for	i	in	1…5	{

				for	j	in	1…5	{

								print("\(i),	\(j);")

								break	outer

				}

}

//	1,	1;

New	in	Swift	2.0,	you	can	put	a	label	before	the	word	if,	and	you	can	also	break	with	a
label	name	within	the	code	of	an	if	or	else	block;	similarly,	you	can	put	a	label	before	the
word	do	and	you	can	break	with	a	label	name	in	a	do	block.	With	these	additions,	Swift’s
shortcircuiting	capabilities	may	be	considered	feature-complete.

Throwing	and	catching	errors

Sometimes	a	situation	arises	where	further	coherent	progress	is	impossible:	the	entire
operation	in	which	we	are	engaged	has	failed.	It	can	then	be	desirable	to	abort	the	current
scope,	and	possibly	the	current	function,	and	possibly	even	the	function	that	called	it,	and
so	on,	exiting	to	a	point	where	we	can	acknowledge	this	failure	and	proceed	in	good	order
in	some	other	way.

For	this	purpose,	Swift	2.0	provides	a	mechanism	for	throwing	and	catching	errors.	In
keeping	with	its	usual	insistence	on	safety	and	clarity,	Swift	imposes	certain	strict
conditions	on	the	use	of	this	mechanism,	and	the	compiler	will	ensure	that	you	adhere	to
them.

An	error,	in	this	sense,	is	a	kind	of	message,	presumably	specifying	what	went	wrong.
This	message	is	passed	up	the	nest	of	scopes	and	function	calls	as	part	of	the	error-
handling	process,	and	the	code	that	recovers	from	the	failure	can,	if	desired,	read	the
message	and	determine	how	to	proceed.	In	Swift,	an	error	must	be	an	object	of	a	type	that
adopts	the	ErrorType	protocol,	which	has	just	two	requirements:	a	String	_domain	property
and	an	Int	_code	property.	In	practice,	that’s	likely	to	mean	one	of	the	following:

NSError

NSError	is	Cocoa’s	class	for	communicating	the	nature	of	a	problem.	If	your	call	to	a
Cocoa	method	generates	a	failure,	Cocoa	will	send	you	an	NSError	instance.	You	can
also	create	your	own	NSError	instance	by	calling	its	designated	initializer,
init(domain:code:userInfo:).

A	Swift	type	that	adopts	ErrorType

As	soon	as	a	type	adopts	the	ErrorType	protocol,	it	is	ready	to	be	used	as	an	error
object;	the	protocol	requirements	are	magically	fulfilled	for	you,	behind	the	scenes.
Typically,	this	type	will	be	an	enum,	which	will	communicate	its	message	by	means	of
its	cases:	different	cases	will	distinguish	different	kinds	of	possible	failure,	perhaps	with
raw	values	or	associated	types	to	carry	further	information.

There	are	two	stages	of	the	error	mechanism	to	consider:	throwing	an	error,	and	catching
an	error.	Throwing	an	error	aborts	the	current	path	of	execution	and	hands	an	error	object
to	the	error-handling	mechanism.	Catching	an	error	receives	that	error	object	and	responds
in	good	order,	with	the	path	of	execution	resuming	after	the	point	of	catching.	In	effect,	we
have	jumped	from	the	throwing	point	to	the	catching	point.

To	throw	an	error,	use	the	keyword	throw	followed	by	an	error	object.	This	causes	the
current	block	of	code	to	be	aborted	and	the	error-handling	mechanism	to	kick	in.	To
ensure	that	the	throw	command	is	used	coherently,	Swift	imposes	a	rule	that	you	can	say
throw	only	in	one	of	the	following	two	places:

In	the	do	block	of	a	do…catch	construct

A	do…catch	construct	consists	of	(at	least)	two	blocks,	the	do	block	and	the	catch	block.
The	point	of	the	construct	is	that	a	catch	block	can	be	fed	any	errors	thrown	from	within
the	do	block.	Thus,	such	an	error	can	be	handled	coherently	—	it	can	be	caught.	I’ll
describe	the	do…catch	construct	in	more	detail	in	a	moment.

In	a	function	marked	throws

If	an	error	is	thrown	not	inside	the	do	block	of	a	do…catch	construct,	or	if	an	error	is
thrown	inside	the	do	block	but	the	catch	block	fails	to	catch	it,	the	error	message	travels
right	up	and	out	of	the	current	function.	You	are	thus	relying	on	some	other	function	—
the	function	that	called	this	function,	or	the	function	that	called	that	function,	and	so	on
up	the	call	stack	—	to	catch	the	error.	To	signal	to	any	callers	(and	to	the	compiler)	that
this	can	happen,	your	function	must	include	the	keyword	throws	in	its	declaration.

To	catch	an	error,	use	a	do…catch	construct.	An	error	thrown	from	within	the	do	block
can	be	caught	by	a	catch	block	that	accompanies	it.	The	do…catch	construct’s	schema
looks	like	Example	5-5.

Example	5-5.	The	Swift	do…catch	construct
do	{

				statements	//	a	throw	can	happen	here

}	catch	errortype	{

				statements

}	catch	{

				statements

}

A	single	do	block	can	be	accompanied	by	multiple	catch	blocks.	Catch	blocks	are	like	the
cases	of	a	switch	statement,	and	will	usually	have	the	same	logic:	first,	you	might	have
specialized	catch	blocks,	each	of	which	is	designed	to	handle	some	limited	set	of	possible
errors;	finally,	you	might	have	a	general	catch	block	that	acts	as	the	default,	mopping	up
any	errors	that	were	not	caught	by	any	of	the	specialized	catch	blocks.

In	fact,	the	syntax	used	by	a	catch	block	to	specify	what	sorts	of	error	it	catches	is	the

pattern	syntax	used	by	a	case	in	a	switch	statement!	Imagine	that	this	is	a	switch
statement,	and	that	the	tag	is	the	error	object.	Then	the	matching	of	that	error	object	to	a
particular	catch	block	is	performed	just	as	if	you	had	written	case	instead	of	catch.
Typically,	when	the	ErrorType	is	an	enum,	a	specialized	catch	block	will	state	at	least	the
enum	that	it	catches,	and	possibly	also	the	case	of	that	enum;	it	can	have	a	binding,	to
capture	the	enum	or	its	associated	type;	and	it	can	have	a	where	clause	to	limit	the
possibilities	still	further.

To	illustrate,	I’ll	start	by	defining	a	couple	of	errors:
enum	MyFirstError	:	ErrorType	{

				case	FirstMinorMistake

				case	FirstMajorMistake

				case	FirstFatalMistake

}

enum	MySecondError	:	ErrorType	{

				case	SecondMinorMistake(i:Int)

				case	SecondMajorMistake(s:String)

				case	SecondFatalMistake

}

Now	here’s	a	do…catch	construct	designed	to	demonstrate	some	of	the	different	ways	we
can	catch	different	errors	in	different	catch	blocks:

do	{

				//	throw	can	happen	here

}	catch	MyFirstError.FirstMinorMistake	{

				//	catches	MyFirstError.FirstMinorMistake

}	catch	let	err	as	MyFirstError	{

				//	catches	all	other	cases	of	MyFirstError

}	catch	MySecondError.SecondMinorMistake(let	i)	where	i	<	0	{

				//	catches	e.g.	MySecondError.SecondMinorMistake(i:-3)

}	catch	{

				//	catches	everything	else

}

In	a	catch	block	with	an	accompanying	pattern,	it	is	up	to	you	to	capture	in	the	pattern	any
desired	information	about	the	error.	For	example,	if	you	want	the	error	itself	to	travel	as	a
variable	into	the	catch	block,	you’ll	need	a	binding	in	the	pattern.	In	a	catch	block	with	no
accompanying	pattern,	the	error	object	arrives	into	the	block	as	a	variable	called	error.

If	a	line	of	code	in	a	function	says	throw,	and	this	is	not	in	a	do	block	that	has	a	“mop-up”
catch	block,	then	the	function	itself	must	be	marked	with	throws	—	because	if	not	every
possible	error	is	caught,	and	an	error	is	thrown,	that	error	can	travel	right	out	of	the
enclosing	function.	The	syntax	is	that	the	keyword	throws	will	appear	immediately	after
the	parameter	list	(and	before	the	arrow	operator,	if	there	is	one).	For	example:

enum	NotLongEnough	:	ErrorType	{

				case	ISaidLongIMeantLong

}

func	giveMeALongString(s:String)	throws	{

				if	s.characters.count	<	5	{

								throw	NotLongEnough.ISaidLongIMeantLong

				}

				print("thanks	for	the	string")

}

The	addition	of	throws	to	a	function	declaration	creates	a	new	function	type.	The	type	of
giveMeALongString	is	not	(String)	->	(),	but	rather	(String)	throws	->	().	If	a
function	receives	as	parameter	a	function	that	can	throw,	that	parameter’s	type	needs	to	be
specified	accordingly:

func	receiveThrower(f:(String)	throws	->	())	{

				//	...

}

That	function	can	now	be	called	with	giveMeALongString	as	argument:
func	callReceiveThrower()	{

				receiveThrower(giveMeALongString)

}

An	anonymous	function,	if	necessary,	can	include	the	keyword	throws	in	its	in	line,	in	the
same	place	where	it	would	appear	in	a	normal	function	declaration.	But	this	is	not
necessary	if,	as	is	usually	the	case,	the	anonymous	function’s	type	is	known	by	inference:

func	callReceiveThrower()	{

				receiveThrower	{

								s	in

								if	s.characters.count	<	5	{

												throw	NotLongEnough.ISaidLongIMeantLong

								}

								print("thanks	for	the	string")

				}

}

Swift	also	imposes	a	requirement	on	the	caller	of	a	throws	function:	the	caller	must
precede	the	call	with	the	keyword	try.	This	keyword	acknowledges,	to	the	programmer
and	to	the	compiler,	that	we	understand	that	this	function	can	throw.	It	also	imposes	a
further	requirement:	this	call	must	take	place	where	throwing	is	legal!	A	function	called
with	try	can	throw,	so	saying	try	is	just	like	saying	throw:	you	must	say	it	either	in	the	do
block	of	a	do…catch	construct	or	in	a	function	marked	throws.

So,	for	example:
func	stringTest()	{

				do	{

								try	giveMeALongString("is	this	long	enough	for	you?")

				}	catch	{

								print("I	guess	it	wasn't	long	enough:	\(error)")

				}

}

If,	however,	you	are	very	sure	that	a	function	that	can	throw	will	in	fact	not	throw,	then
you	can	call	it	with	the	keyword	try!	instead	of	try.	This	relieves	you	of	all	further
responsibility:	you	can	say	try!	anywhere,	without	catching	the	possible	throw.	But	be
warned:	if	you’re	wrong,	and	this	function	does	throw	when	your	program	runs,	your
program	can	crash	at	that	moment,	because	you	have	allowed	an	error	to	proceed,
uncaught,	all	the	way	up	to	the	top	of	the	calling	chain.

Thus,	this	is	legal	but	dangerous:
func	stringTest()	{

				try!	giveMeALongString("okay")

}

In	between	try	and	try!	is	try?.	This	has	the	advantage	that,	like	try!,	you	can	use	it
anywhere,	without	catching	the	possible	throw.	In	addition,	it	won’t	crash	if	there	is	a
throw;	instead,	it	returns	nil.	Thus,	try?	is	useful	particularly	in	situations	where	its
expression	returns	a	value.	If	there’s	no	throw,	it	wraps	that	value	in	an	Optional.
Commonly,	you’ll	unwrap	that	Optional	safely	in	the	same	line	with	a	conditional	binding.
I’ll	give	an	example	in	a	moment.

A	function	that	receives	a	throws	function	parameter,	and	that	calls	that	function	(with
try),	and	that	doesn’t	throw	for	any	other	reason,	may	itself	be	marked	as	rethrows
instead	of	throws.	The	difference	is	that	when	a	rethrows	function	is	called,	the	caller	can

pass	as	argument	a	function	that	does	not	throw,	and	in	that	case	the	call	doesn’t	have	to	be
marked	with	try	(and	the	calling	function	doesn’t	have	to	be	marked	with	throws):

func	receiveThrower(f:(String)	throws	->	())	rethrows	{

				try	f("ok?")

}

func	callReceiveThrower()	{	//	no	throws	needed

				receiveThrower	{	//	no	try	needed

								s	in

								print("thanks	for	the	string!")

				}

}

Now	let’s	talk	about	how	Swift’s	error-handling	mechanism	relates	to	Cocoa	and
Objective-C.	A	common	Cocoa	pattern	is	that	a	method	will	return	nil	to	indicate	failure,
and	will	take	an	NSError**	parameter	as	a	way	of	communicating	an	error	to	the	caller
outside	of	the	method	result.	Swift	types	such	a	parameter	as	an	NSErrorPointer,	meaning
a	pointer	to	an	Optional	wrapping	an	NSError.	For	example,	NSString	has	an	initializer
declared	in	Objective-C	like	this:

-	(instancetype)initWithContentsOfFile:(NSString	*)path

				encoding:(NSStringEncoding)enc

				error:(NSError	**)error;

Prior	to	Swift	2.0,	the	Swift	translation	of	that	declaration	looked	like	this:
convenience	init?(contentsOfFile	path:	String,

				encoding	enc:	UInt,

				error:	NSErrorPointer)

And	you	would	call	it	by	passing,	as	the	last	argument,	the	address	of	an	Optional
wrapping	an	NSError:

var	err	:	NSError?

let	s	=	String(contentsOfFile:	f,	encoding:	NSUTF8StringEncoding,	error:	&err)

The	idea	is	that	after	that	call,	s	is	either	a	String	(wrapped	in	an	Optional)	or	nil.	If	it’s
nil,	the	call	has	failed,	and	you	can	examine	err,	which	has	been	set	by	indirection,	to
find	out	why.

In	Swift	2.0,	however,	that	Objective-C	method	is	automatically	recast	to	take	advantage
of	the	error-handling	mechanism.	The	error:	parameter	is	removed	from	the	Swift
translation	of	the	declaration,	and	is	replaced	by	a	throws	marker:

init(contentsOfFile	path:	String,	encoding	enc:	NSStringEncoding)	throws

Thus	there	is	no	need	to	declare	an	NSError	variable	beforehand,	and	no	need	to	receive
the	NSError	by	indirection.	Instead,	you	just	call	the	method,	within	the	controlled
conditions	dictated	by	Swift:	you	have	to	say	try,	in	a	place	where	throwing	is	legal.	The
result	can	never	be	nil,	and	so	it	is	no	longer	a	String	wrapped	in	an	Optional;	it’s	a
String,	plain	and	simple,	because	if	the	initialization	fails,	the	call	will	throw	and	no	result
will	arrive	at	all:

do	{

				let	f	=	//	path	to	some	file,	maybe

				let	s	=	try	String(contentsOfFile:	f,	encoding:	NSUTF8StringEncoding)

				//	...	if	successful,	do	something	with	s…

}	catch	{

				print((error	as	NSError).localizedDescription)

}

If	you’re	very	sure	the	initialization	won’t	fail,	you	can	skip	the	do…catch	construct	and
use	try!	instead:

let	f	=	//	path	to	some	file,	maybe

let	s	=	try!	String(contentsOfFile:	f,	encoding:	NSUTF8StringEncoding)

But	even	if	you’re	in	doubt,	you	can	skip	the	do…catch	construct	and	still	proceed	safely
by	using	try?,	in	which	case	the	value	returned	is	an	Optional	—	which	you’ll	probably
unwrap	safely	at	the	same	time,	like	this:

let	f	=	//	path	to	some	file,	maybe

if	let	s	=	try?	String(contentsOfFile:	f,	encoding:	NSUTF8StringEncoding)	{

				//	...

}

Objective-C	NSError	and	Swift	ErrorType	are	bridged	to	one	another.	Thus,	in	a	catch
block	a	moment	ago,	I	cast	the	error	variable	to	NSError	and	examined	it	using	an
NSError	property.	However,	you	don’t	have	to	do	that;	instead	of	treating	the	caught	error
as	an	NSError,	you	can	treat	it	as	a	Swift	enum.

For	common	Cocoa	error	types,	the	name	of	the	bridged	enum	is	the	name	of	the	NSError
domain,	with	"Domain"	deleted	from	its	name.	Let’s	say	there	is	no	such	file,	the	call
throws,	and	we	catch	the	error.	This	NSError’s	domain	is	"NSCocoaErrorDomain",	so
Swift	can	see	it	as	an	NSCocoaError	enum.	Moreover,	its	code	is	260,	which	is	expressed
in	Objective-C	as	NSFileReadNoSuchFileError	and	in	Swift	as	the
FileReadNoSuchFileError	enum	case.	Thus	we	can	catch	the	same	error	like	this:

do	{

				let	f	=	//	path	to	some	file,	maybe

				let	s	=	try	String(contentsOfFile:	f,	encoding:	NSUTF8StringEncoding)

				//	...	if	successful,	do	something	with	s…

}	catch	NSCocoaError.FileReadNoSuchFileError	{

				print("no	such	file")

}	catch	{

				print(error)

}

TIP

See	the	FoundationError.h	header	file	in	Objective-C	to	learn	about	Cocoa’s	built-in	standard	error	domains.

The	same	sort	of	thing	is	true	in	reverse.	As	I	said	earlier,	a	Swift	type	that	adopts
ErrorType	automatically	implements	its	requirements	behind	the	scenes:	in	particular,	its
_domain	is	the	name	of	the	type,	and,	if	this	is	an	enum,	its	_code	is	the	index	number	of
its	case	(otherwise,	the	_code	is	1).	If	an	ErrorType	is	used	where	an	NSError	is	expected
(or	is	simply	cast	to	an	NSError),	those	become	the	NSError’s	domain	and	code	values.

Defer

The	purpose	of	the	defer	statement,	new	in	Swift	2.0,	is	to	ensure	that	a	certain	block	of
code	will	be	executed	at	the	time	the	path	of	execution	flows	out	of	the	current	scope,	no
matter	how.

A	defer	statement	applies	to	the	scope	in	which	it	appears,	such	as	a	function	body,	a	while
block,	an	if	construct,	and	so	on.	Wherever	you	say	defer,	curly	braces	surround	it;	the
defer	block	will	be	executed	when	the	path	of	execution	leaves	those	curly	braces.
Leaving	the	curly	braces	can	involve	reaching	the	last	line	of	code	within	the	curly	braces,
or	any	of	the	forms	of	early	exit	described	earlier	in	this	section.

To	see	why	this	is	useful,	consider	the	following	pair	of	commands:
UIApplication.sharedApplication().beginIgnoringInteractionEvents()

Stops	all	user	touches	from	reaching	any	view	of	the	application.
UIApplication.sharedApplication().endIgnoringInteractionEvents()

Restores	the	ability	of	user	touches	to	reach	views	of	the	application.

It	can	be	valuable	to	turn	off	user	interactions	at	the	start	of	some	slightly	time-consuming
operation	and	then	turn	them	back	on	after	that	operation,	especially	when,	during	the
operation,	the	interface	or	the	app’s	logic	will	be	in	some	state	where	the	user’s	tapping	a
button,	say,	could	cause	things	to	go	awry.	Thus,	it	is	not	uncommon	for	a	method	to	be
constructed	like	this:

func	doSomethingTimeConsuming()	{

				UIApplication.sharedApplication().beginIgnoringInteractionEvents()

				//	...	do	stuff…

				UIApplication.sharedApplication().endIgnoringInteractionEvents()

}

All	well	and	good	—	if	we	can	guarantee	that	the	only	path	of	execution	out	of	this
function	will	be	by	way	of	that	last	line.	But	what	if	we	need	to	return	early	from	this
function?	Our	code	now	looks	like	this:

func	doSomethingTimeConsuming()	{

				UIApplication.sharedApplication().beginIgnoringInteractionEvents()

				//	...	do	stuff…

				if	somethingHappened	{

								return

				}

				//	...	do	more	stuff…

				UIApplication.sharedApplication().endIgnoringInteractionEvents()

}

Ooops!	We’ve	just	made	a	terrible	mistake.	By	providing	an	additional	path	out	of	our
doSomethingTimeConsuming	function,	we’ve	created	the	possibility	that	our	code	might
never	encounter	the	call	to	endIgnoringInteractionEvents().	We	might	leave	our
function	by	way	of	the	return	statement	—	and	the	user	will	then	be	left	unable	to	interact
with	the	interface.	Obviously,	we	need	to	add	another	endIgnoring…	call	inside	the	if
construct,	just	before	the	return	statement.	But	as	we	continue	to	develop	our	code,	we
must	remember,	if	we	add	further	ways	out	of	this	function,	to	add	yet	another
endIgnoring…	call	for	each	of	them.	This	is	madness!

The	defer	statement	solves	the	problem.	It	lets	us	specify	once	what	should	happen	when
we	leave	this	scope,	no	matter	how.	Our	code	now	looks	like	this:

func	doSomethingTimeConsuming()	{

				UIApplication.sharedApplication().beginIgnoringInteractionEvents()

				defer	{

								UIApplication.sharedApplication().endIgnoringInteractionEvents()

				}

				//	...	do	stuff…

				if	somethingHappened	{

								return

				}

				//	...	do	more	stuff…

}

The	endIgnoring…	call	in	the	defer	block	will	be	executed,	not	where	it	appears,	but
before	the	return	statement,	or	before	the	last	line	of	the	method	—	whichever	path	of
execution	ends	up	leaving	the	function.	The	defer	statement	says:	“Eventually,	and	as	late
as	possible,	be	sure	to	execute	this	code.”	We	have	thus	ensured	the	necessary	balance
between	turning	off	user	interactions	and	turning	them	back	on	again.	Most	uses	of	the
defer	statement	will	probably	come	under	this	same	rubric:	you’ll	use	it	to	balance	a

command	or	restore	a	disturbed	state.

TIP

If	the	current	scope	has	multiple	defer	blocks	pending,	they	will	be	called	in	the	reverse	of	the	order	in	which	they
originally	appeared.	In	effect,	there	is	a	defer	stack;	each	successive	defer	statement	pushes	its	code	onto	the	top	of
the	stack,	and	exiting	the	scope	in	which	a	defer	statement	appeared	pops	that	code	and	executes	it.

Aborting

Aborting	is	an	extreme	form	of	flow	control;	the	program	stops	dead	in	its	tracks.	In
effect,	you	have	deliberately	crashed	your	own	program.	This	is	an	unusual	thing	to	do,
but	it	can	be	useful	as	a	way	of	raising	a	very	red	flag:	you	don’t	really	want	to	abort,	so	if
you	do	abort,	things	must	be	so	bad	that	you’ve	no	choice.

One	way	to	abort	is	by	calling	the	global	function	fatalError.	It	takes	a	String	parameter
permitting	you	to	provide	a	message	to	appear	in	the	console.	I’ve	already	given	this
example:

required	init?(coder	aDecoder:	NSCoder)	{

				fatalError("init(coder:)	has	not	been	implemented")

}

That	code	says,	in	effect,	that	execution	should	never	reach	this	point.	We	have	no	real
implementation	of	init(coder:),	and	we	do	not	expect	to	be	initialized	this	way.	If	we
are	initialized	this	way,	something	has	gone	very	wrong,	and	we	want	to	crash,	because
our	program	has	a	serious	bug.

An	initializer	containing	a	fatalError	call	does	not	have	to	initialize	any	properties.	This
is	because	fatalError	is	declared	with	the	@noreturn	attribute,	which	causes	the
compiler	to	abandon	any	contextual	requirements.	Similarly,	a	function	that	returns	a
value	does	not	have	to	return	any	value	if	a	fatalError	call	is	encountered.

You	can	also	abort	conditionally	by	calling	the	assert	function.	Its	first	parameter	is	a
condition	—	something	that	evaluates	as	a	Bool.	If	the	condition	is	false,	we	will	abort;
the	second	parameter	is	a	String	message	to	appear	in	the	console	if	we	do	abort.	The	idea
here	is	that	you	are	making	a	bet	(an	assertion)	that	the	condition	is	true	—	a	bet	that	you
feel	so	strongly	about	that	if	the	condition	is	false,	there’s	a	serious	bug	in	your	program
and	you	want	to	crash	so	you	can	learn	of	this	bug	and	fix	it.

By	default,	assert	works	only	when	you’re	developing	your	program.	When	your
program	is	to	be	finalized	and	made	public,	you	throw	a	different	build	switch,	telling	the
compiler	that	assert	should	be	ignored.	In	effect,	the	conditions	in	your	assert	calls	are
then	disregarded;	they	are	all	seen	as	true.	This	means	that	you	can	safely	leave	assert
calls	in	your	code.	By	the	time	your	program	ships,	of	course,	none	of	your	assertions
should	be	failing;	any	bugs	that	caused	them	to	fail	should	already	have	been	ironed	out.

The	disabling	of	assertions	in	shipping	code	is	performed	in	an	interesting	way.	The
condition	parameter	is	given	an	extra	layer	of	indirection	by	declaring	it	as	an
@autoclosure	function.	This	means	that,	even	though	the	parameter	is	not	in	fact	a
function,	the	compiler	will	wrap	it	in	a	function;	thus,	the	runtime	needn’t	call	that
function	unless	it	has	to.	In	shipping	code,	the	runtime	will	not	call	that	function.	This
mechanism	averts	expensive	and	unnecessary	evaluation:	an	assert	condition	test	may
involve	side	effects,	but	the	test	won’t	even	be	performed	when	assertions	are	turned	off	in

your	shipping	program.

TIP

Alternatively,	Swift	provides	the	precondition	function.	It	is	similar	to	assert,	except	that	it	remains	operative	even
in	a	shipping	program.

Guard

If	the	need	for	jumping	might	arise,	you	will	probably	want	to	test	a	condition	that	decides
whether	to	jump.	Swift	2.0	provides	a	special	syntax	for	this	situation	—	the	guard
statement.	In	effect,	a	guard	statement	is	an	if	statement	where	you	must	exit	early	in
response	to	failure	of	the	condition.	Its	form	is	shown	in	Example	5-6.

Example	5-6.	The	Swift	guard	statement
guard	condition	else	{

				statements

				exit

}

A	guard	statement,	as	you	can	see,	consists	solely	of	a	condition	and	an	else	block.	The
else	block	must	jump	out	of	the	current	scope,	by	any	of	the	means	that	Swift	provides,
such	as	return,	break,	continue,	throw,	or	fatalError	—	anything	that	guarantees	to	the
compiler	that,	in	case	of	failure	of	the	condition,	execution	absolutely	will	not	proceed
within	the	block	that	contains	the	guard	statement.

An	elegant	consequence	of	this	architecture	is	that,	because	the	guard	statement
guarantees	an	exit	on	failure	of	the	condition,	the	compiler	knows	that	the	condition	has
succeeded	after	the	guard	statement	if	we	do	not	exit.	Thus,	a	conditional	binding	in	the
condition	is	in	scope	after	the	guard	statement,	without	introducing	a	further	nested	scope.
For	example:

guard	let	s	=	optionalString	else	{return}

//	s	is	now	a	String	(not	an	Optional)

That	construct,	as	I	demonstrated	earlier,	can	be	a	nice	alternative	to	the	“pyramid	of
doom.”	It	will	also	come	in	handy	in	conjunction	with	try?.	Let’s	presume	we	can’t
proceed	unless	String(contentsOfFile:encoding:)	succeeds.	Then	we	can	rewrite	our
earlier	example	like	this:

let	f	=	//	path	to	some	file,	maybe

guard	let	s	=	try?	String(contentsOfFile:	f,	encoding:	NSUTF8StringEncoding)

				else	{return}

//	s	is	now	a	String	(not	an	Optional)

There	is	also	a	guard	case	construct,	forming	the	logical	inverse	of	if	case.	To	illustrate,
we’ll	use	our	Error	enum	once	again:

guard	case	let	.Number(n)	=	err	else	{return}

//	n	is	now	the	extracted	number

Note	that	a	guard	statement’s	conditional	binding	can’t	use	a	name	already	declared	in	the
same	scope	on	the	left	side	of	the	equal	sign.	This	is	illegal:

let	s	=	//	...	some	Optional

guard	let	s	=	s	else	{return}	//	compile	error

The	reason	is	that	guard	let,	unlike	if	let	and	while	let,	doesn’t	declare	the	bound
variable	for	a	nested	scope;	it	declares	it	for	this	scope.	Thus,	we	can’t	declare	s	here
because	s	has	already	been	declared	in	the	same	scope.

Operators
Swift	operators	such	as	+	and	>	are	not	magically	baked	into	the	language.	They	are,	in
fact,	functions;	they	are	explicitly	declared	and	implemented	just	like	any	other	function.
That	is	why,	as	I	pointed	out	in	Chapter	4,	the	term	+	can	be	passed	as	the	last	parameter	in
a	reduce	call;	reduce	expects	a	function	taking	two	parameters	and	returning	a	value
whose	type	matches	that	of	the	first	parameter,	and	+	is	in	fact	the	name	of	such	a
function.	It	also	explains	how	Swift	operators	can	be	overloaded	for	different	value	types.
You	can	use	+	with	numbers,	strings,	or	arrays	—	with	a	different	meaning	in	each	case	—
because	two	functions	with	the	same	name	but	different	parameter	types	(different
signatures)	are	two	different	functions;	from	the	parameter	types,	Swift	is	able	to
determine	which	+	function	you	are	calling.

These	facts	are	not	merely	an	intriguing	behind-the-scenes	implementation	detail.	They
have	practical	implications	for	you	and	your	code.	You	are	free	to	overload	existing
operators	to	apply	to	your	object	types.	You	can	even	invent	new	operators!	In	this	section,
we’ll	do	both.

First,	we	must	talk	about	how	operators	are	declared.	Clearly	there	is	some	sort	of
syntactical	hanky-panky	(a	technical	computer	science	term),	because	you	don’t	call	an
operator	function	in	the	same	way	as	a	normal	function.	You	don’t	say	+(1,2);	you	say
1+2.	Even	so,	1	and	2	in	that	second	expression	are	the	parameters	to	a	+	function	call.
How	does	Swift	know	that	the	+	function	uses	this	special	syntax?

To	see	the	answer,	look	in	the	Swift	header:
infix	operator	+	{

				associativity	left

				precedence	140

}

That	is	an	operator	declaration.	An	operator	declaration	announces	that	this	symbol	is	an
operator,	and	tells	how	many	parameters	it	has	and	what	the	usage	syntax	will	be	in
relation	to	those	parameters.	The	really	important	part	is	the	stuff	before	the	curly	braces:
the	keyword	operator,	preceded	by	an	operator	type	—	here,	infix	—	and	followed	by
the	name	of	the	operator.	The	types	are:
infix

This	operator	takes	two	parameters	and	appears	between	them.
prefix

This	operator	takes	one	parameter	and	appears	before	it.
postfix

This	operator	takes	one	parameter	and	appears	after	it.

An	operator	is	also	a	function,	so	you	also	need	a	function	declaration	stating	the	type	of
the	parameters	and	the	result	type	of	the	function.	Again,	the	Swift	header	shows	us	an
example:

func	+(lhs:	Int,	rhs:	Int)	->	Int

That	is	one	of	many	declarations	for	the	+	function	in	the	Swift	header.	In	particular,	it	is
the	declaration	for	when	the	parameters	are	both	Int.	In	that	situation,	the	result	is	itself	an

Int.	(The	local	parameter	names	lhs	and	rhs,	which	don’t	affect	the	special	calling	syntax,
presumably	stand	for	“left-hand	side”	and	“right-hand	side.”)

Both	an	operator	declaration	and	its	corresponding	function	declaration(s)	must	appear	at
the	top	level	of	a	file.	If	the	operator	is	a	prefix	or	postfix	operator,	the	function
declaration	must	start	with	the	word	prefix	or	postfix;	the	default	is	infix	and	can
therefore	be	omitted.

We	now	know	enough	to	override	an	operator	to	work	with	an	object	type	of	our	own!	As
a	simple	example,	imagine	a	Vial	full	of	bacteria:

struct	Vial	{

				var	numberOfBacteria	:	Int

				init(_	n:Int)	{

								self.numberOfBacteria	=	n

				}

}

When	two	Vials	are	combined,	you	get	a	Vial	with	all	the	bacteria	from	both	of	them.	So
the	way	to	add	two	Vials	is	to	add	their	bacteria:

func	+(lhs:Vial,	rhs:Vial)	->	Vial	{

				let	total	=	lhs.numberOfBacteria	+	rhs.numberOfBacteria

				return	Vial(total)

}

And	here’s	code	to	test	our	new	+	operator	override:
let	v1	=	Vial(500_000)

let	v2	=	Vial(400_000)

let	v3	=	v1	+	v2

print(v3.numberOfBacteria)	//	900000

In	the	case	of	a	compound	assignment	operator,	the	first	parameter	is	the	thing	being
assigned	to.	Therefore,	to	implement	such	an	operator,	the	first	parameter	must	be
declared	inout.	Let’s	do	that	for	our	Vial	class:

func	+=(inout	lhs:Vial,	rhs:Vial)	{

				let	total	=	lhs.numberOfBacteria	+	rhs.numberOfBacteria

				lhs.numberOfBacteria	=	total

}

Here’s	code	to	test	our	+=	override:
var	v1	=	Vial(500_000)

let	v2	=	Vial(400_000)

v1	+=	v2

print(v1.numberOfBacteria)	//	900000

It	might	be	useful	also	to	override	the	equality	comparison	operator	==	for	our	Vial	class.
This	satisfies	the	requirement	for	Vial	to	adopt	the	Equatable	protocol,	but	of	course	it
won’t	actually	adopt	it	unless	we	tell	it	to:

func	==(lhs:Vial,	rhs:Vial)	->	Bool	{

				return	lhs.numberOfBacteria	==	rhs.numberOfBacteria

}

extension	Vial:Equatable{}

Now	that	Vial	is	an	Equatable,	it	becomes	a	candidate	for	use	with	methods	such	as
indexOf:

let	v1	=	Vial(500_000)

let	v2	=	Vial(400_000)

let	arr	=	[v1,v2]

let	ix	=	arr.indexOf(v1)	//	Optional	wrapping	0

What’s	more,	the	complementary	inequality	operator	!=	has	sprung	to	life	for	Vials

automatically!	That’s	because	it’s	already	defined	for	any	Equatable	in	terms	of	the	==
operator.	By	the	same	token,	if	we	now	override	<	for	Vial	and	tell	it	to	adopt	Comparable,
the	other	three	comparison	operators	spring	to	life	automatically.

Next,	let’s	invent	a	completely	new	operator.	As	an	example,	I’ll	inject	an	operator	into	Int
that	raises	one	number	to	the	power	of	another.	As	my	operator	symbol,	I’ll	use	^^	(I’d
like	to	use	^	but	it’s	already	in	use	for	something	else).	For	simplicity,	I’ll	omit	error-
checking	for	edge	cases	(such	as	exponents	less	than	1):

infix	operator	^^	{

}

func	^^(lhs:Int,	rhs:Int)	->	Int	{

				var	result	=	lhs

				for	_	in	1..<rhs	{result	*=	lhs}

				return	result

}

That’s	all	it	takes!	Here’s	some	code	to	test	it:
print(2^^2)	//	4

print(2^^3)	//	8

print(3^^3)	//	27

When	defining	an	operator,	you’ll	add	precedence	and	associativity	specifications	if
you’re	concerned	about	how	this	operator	interacts	in	expressions	containing	other
operators.	I’m	not	going	to	go	into	the	details;	see	the	Swift	manual	if	you	need	to.	The
manual	also	lists	the	special	characters	that	can	be	used	as	part	of	a	custom	operator	name:

/	=	-	+	!	*	%	<	>	&	|	^	?	~

An	operator	name	can	also	contain	many	other	symbol	characters	(that	is,	characters	that
can’t	be	mistaken	for	some	sort	of	alphanumeric)	that	are	harder	to	type;	see	the	manual
for	a	formal	list.

Privacy
Privacy	(also	known	as	access	control)	refers	to	the	explicit	modification	of	the	normal
scope	rules.	I	gave	an	example	in	Chapter	1:

class	Dog	{

				var	name	=	""

				private	var	whatADogSays	=	"woof"

				func	bark()	{

								print(self.whatADogSays)

				}

}

The	intention	here	is	to	limit	how	other	objects	can	see	the	Dog	property	whatADogSays.	It
is	a	private	property,	intended	primarily	for	the	Dog	class’s	own	internal	use:	a	Dog	can
speak	of	self.whatADogSays,	but	other	objects	should	not	be	aware	that	it	even	exists.

Swift	has	three	levels	of	privacy:
internal

The	default	rule	is	that	declarations	are	internal,	meaning	that	they	are	globally	visible
to	all	code	in	all	files	within	the	containing	module.	That	is	why	Swift	files	within	the
same	module	can	see	one	another’s	top-level	contents	automatically,	with	no	effort	on
your	part.	(That’s	different	from	C	and	Objective-C,	where	files	can’t	see	each	other	at
all	unless	you	explicitly	show	them	to	one	another	through	include	or	import
statements.)

private	(narrower	than	internal)

A	thing	declared	private	is	visible	only	within	its	containing	file.	The	formulation	of
this	rule	may	not	be	quite	what	you	were	expecting	from	the	notion	of	privacy.	In	some
languages,	private	means	private	to	an	object	declaration.	In	Swift,	private	is	not	as
private	as	that;	two	classes	in	the	same	file	can	see	one	another	even	if	both	are	declared
private.	This	could	be	a	good	reason	for	breaking	your	code	into	multiple	files,
following	the	usual	convention	of	one	class	per	file.

public	(wider	than	internal)

A	thing	declared	public	is	visible	even	outside	its	containing	module.	Another	module
must	first	import	this	module	before	it	can	see	anything	at	all.	But	once	another	module
has	imported	this	module,	it	still	won’t	be	able	to	see	anything	in	this	module	that
hasn’t	been	explicitly	declared	public.	If	you	don’t	write	any	modules,	you	might	never
need	to	declare	anything	public.	If	you	do	write	a	module,	you	must	declare	something
public,	or	your	module	is	useless.

Private	Declaration
By	declaring	object	members	private,	you	specify	by	inversion	what	the	public	API	of	this
object	is.	Here’s	an	example	from	my	own	code:

class	CancelableTimer:	NSObject	{

				private	var	q	=	dispatch_queue_create("timer",nil)

				private	var	timer	:	dispatch_source_t!

				private	var	firsttime	=	true

				private	var	once	:	Bool

				private	var	handler	:	()	->	()

				init(once:Bool,	handler:()->())	{

								//	...

				}

				func	startWithInterval(interval:Double)	{

								//	...

				}

				func	cancel()	{

								//	...

				}

}

The	initializer	init(once:handler:)	and	the	startWithInterval:	and	cancel	methods,
which	are	not	marked	private,	are	this	class’s	public	API.	They	say,	“Please	feel	free	to
call	me!”	The	properties,	however,	are	all	private;	no	other	code	(that	is,	no	code	outside
this	file)	can	see	them,	either	to	get	them	or	to	set	them.	They	are	purely	for	the	internal
use	of	the	methods	of	this	class.	They	maintain	state,	but	it	is	not	a	state	that	any	other
code	needs	to	know	about.

It’s	worth	emphasizing	that	privacy	can	be	restricted	only	to	the	level	of	the	current	file.
For	example:

class	Cat	{

				private	var	secretName	:	String?

}

class	Dog	{

				func	nameCat(cat:Cat)	{

								cat.secretName	=	"Lazybones"

				}

}

Why	is	that	code	legal?	I	said	that	a	Cat’s	secretName	was	private,	so	why	is	a	Dog
allowed	to	come	along	and	change	it?	It’s	because	privacy	is	not	at	the	level	of	the
individual	object	type;	it’s	at	the	level	of	the	file.	I’ve	defined	Cat	and	Dog	in	the	same
file,	so	they	(if	you’ll	pardon	the	expression)	can	see	one	another’s	private	members.

It	happens	that	a	convenient	real-life	convention	is	to	define	each	class	in	its	own	file.	In
fact,	the	file	is	very	often	named	after	the	class	that’s	defined	within	it;	a	file	containing
the	declaration	for	the	ViewController	class	will	typically	be	named	ViewController.swift.
But	there	is	no	rule	governing	any	of	that.	File	names	are	not	meaningful	in	Swift,	and
Swift	files	within	the	same	module	can	all	see	inside	one	another	automatically,	without
being	told	one	another’s	names.	File	names	are	mostly	a	convenience	for	the	programmer:
in	Xcode,	I	see	a	list	of	my	program’s	files,	so	it’s	helpful,	when	I	want	to	find	the
declaration	for	the	ViewController	class,	to	see	the	name	ViewController.swift	giving	me	a
hint	as	to	which	file	to	look	in.

The	formal	reason	for	dividing	your	code	into	files	is	to	make	privacy	work.	Let’s	say	I
have	two	files,	Cat.swift	and	Dog.swift:

//	Cat.swift:

class	Cat	{

				private	var	secretName	:	String?

}

//	Dog.swift:

class	Dog	{

				func	nameCat(cat:Cat)	{

								cat.secretName	=	"Lazybones"	//	compile	error

				}

}

Now	that	code	won’t	compile:	the	compiler	says,	“Cat	does	not	have	a	member	named
secretName.”	Cat	does	have	a	member	named	secretName,	but	not	as	far	as	code	in	a
different	file	is	concerned.	And	Dog	now	is	in	a	different	file,	so	privacy	works.

It	may	be	that	on	some	occasions	you	will	want	to	draw	a	distinction	between	the	privacy
of	a	variable	regarding	setting	and	its	privacy	regarding	getting.	To	draw	this	distinction,
place	the	word	set	in	parentheses	after	its	own	privacy	declaration.	Thus,	private(set)
var	myVar	means	that	the	setting	of	this	variable	is	restricted	to	code	within	this	same	file.
It	says	nothing	about	restricting	the	getting	of	this	variable,	which	is	left	at	the	default.
Similarly,	you	can	say	public	private(set)	var	myVar	to	make	getting	this	variable
public,	while	setting	this	variable	is	kept	private.	(You	can	use	this	same	syntax	with	a
subscript	function.)

Public	Declaration
If	you	write	a	module,	you’ll	need	to	specify	at	least	some	object	declarations	as	public,	or
code	that	imports	your	module	won’t	be	able	to	see	it.	Other	declarations	that	are	not
declared	public	are	internal,	meaning	that	they	are	private	to	the	module.	Thus,	judicious
use	of	public	declarations	configures	the	public	API	of	your	module.

For	example,	in	my	Zotz	app,	which	is	a	card	game,	the	object	types	for	creating	and
portraying	cards	and	for	combining	them	into	a	deck	are	bundled	into	a	framework	called
ZotzDeck.	Many	of	these	types,	such	as	Card	and	Deck,	are	declared	public.	Many	utility
object	types,	however,	are	not;	the	classes	within	the	ZotzDeck	module	can	see	and	use
them,	but	code	outside	the	module	doesn’t	need	to	be	aware	of	them	at	all.

The	members	of	a	public	object	type	are	not,	themselves,	automatically	public.	If	you
want	a	method	to	be	public,	you	have	to	declare	it	public.	This	is	an	excellent	default
behavior,	because	it	means	that	these	members	are	not	shared	outside	the	module	unless
you	want	them	to	be.	(As	Apple	puts	it,	you	must	“opt	in	to	publishing”	object	members.)

For	example,	in	my	ZotzDeck	module,	the	Card	class	is	declared	public	but	its	initializer
is	not.	Why?	Because	it	doesn’t	need	to	be.	The	way	you	(meaning	the	importer	of	the
ZotzDeck	module)	get	cards	is	by	initializing	a	Deck;	the	initializer	for	Deck	is	declared
public,	so	you	can	do	that.	There	is	never	any	reason	to	make	a	card	independently	of	a
Deck,	and	thanks	to	the	privacy	rules,	you	can’t.

Privacy	Rules
It	took	time	for	Apple	to	add	access	control	to	Swift	in	the	early	months	of	the	language’s
release,	mostly	because	the	compiler	had	to	be	taught	an	extensive	set	of	rules	for	ensuring
that	the	privacy	level	of	related	things	is	coherent.	For	example:

A	variable	can’t	be	public	if	its	type	is	private,	because	other	code	wouldn’t	be	able	to
use	such	a	variable.
A	subclass	can’t	be	public	unless	the	superclass	is	public.
A	subclass	can	change	an	overridden	member’s	access	level,	but	it	cannot	even	see	its
superclass’s	private	members	unless	they	are	declared	in	the	same	file	together.

And	so	on.	I	could	proceed	to	list	all	the	rules,	but	I	won’t.	There	is	no	need	for	me	to
enunciate	them	formally.	They	are	spelled	out	in	great	detail	in	the	Swift	manual,	which
you	can	consult	if	you	need	to.	In	general,	you	probably	won’t	need	to;	they	make
intuitive	sense,	and	you	can	rely	on	the	compiler	to	help	you	with	useful	error	messages	if
you	violate	one.

Introspection
Swift	provides	limited	ability	to	introspect	an	object,	letting	an	object	display	the	names
and	values	of	its	properties.	This	feature	is	intended	for	debugging,	not	for	use	in	your
program’s	logic.	For	example,	you	can	use	it	to	modify	the	way	your	object	is	displayed	in
the	Xcode	Debug	pane.

To	introspect	an	object,	use	it	as	the	reflecting	parameter	when	you	instantiate	a	Mirror.
The	Mirror’s	children	will	then	be	name–value	tuples	describing	the	original	object’s
properties.	Here,	for	example,	is	a	Dog	class	with	a	description	property	that	takes
advantage	of	introspection.	Instead	of	hard-coding	a	list	of	the	class’s	instance	properties,
we	introspect	the	instance	to	obtain	the	names	and	values	of	the	properties.	This	means
that	we	can	later	add	more	properties	without	having	to	modify	our	description
implementation:

struct	Dog	:	CustomStringConvertible	{

				var	name	=	"Fido"

				var	license	=	1

				var	description	:	String	{

								var	desc	=	"Dog	("

								let	mirror	=	Mirror(reflecting:self)

								for	(k,v)	in	mirror.children	{

												desc.appendContentsOf("\(k!):	\(v),	")

								}

								let	c	=	desc.characters.count

								return	String(desc.characters.prefix(c-2))	+	")"

				}

}

If	we	now	instantiate	Dog	and	pass	that	instance	to	print,	this	is	what	we	see	in	the
console:

Dog	(name:	Fido,	license:	1)

TIP

If	your	object	type	adopts	both	the	CustomStringConvertible	protocol	(description	property)	and	the
CustomDebugStringConvertible	protocol	(debugDescription	property),	the	description	will	be	preferred,	but	you
can	output	the	debugDescription	with	the	debugPrint	function.

By	adopting	the	CustomReflectable	protocol,	we	can	take	charge	of	what	a	Mirror’s
children	are.	To	do	so,	we	implement	the	customMirror	method	to	return	our	own
custom	Mirror	object	whose	children	property	we	have	configured	as	a	collection	of
name–value	tuples.

In	this	(silly)	example,	we	implement	customMirror	to	supply	altered	names	for	our
properties:

struct	Dog	:	CustomReflectable	{

				var	name	=	"Fido"

				var	license	=	1

				func	customMirror()	->	Mirror	{

								let	children	:	[Mirror.Child]	=	[

												("ineffable	name",	self.name),

												("license	to	kill",	self.license)

]

								let	m	=	Mirror(self,	children:children)

								return	m

				}

}

The	outcome	is	that	when	we	po	a	Dog	instance	in	the	Xcode	Debug	pane	console,	our

custom	property	names	are	displayed:
-	ineffable	name	:	"Fido"

-	license	to	kill	:	1

Memory	Management
Swift	memory	management	is	handled	automatically,	and	you	will	usually	be	unaware	of
it.	Objects	come	into	existence	when	they	are	instantiated	and	go	out	of	existence	as	soon
as	they	are	no	longer	needed.	Memory	management	of	reference	type	objects,	however,	is
quite	tricky	under	the	hood;	I’ll	devote	Chapter	12	to	a	discussion	of	the	underlying
mechanism.	Even	for	the	Swift	user,	things	can	occasionally	go	wrong	in	this	regard.
(Value	types	do	not	require	the	sort	of	complex	memory	management	that	reference	types
do,	so	no	memory	management	issues	can	arise	for	them.)

Trouble	typically	arises	when	two	class	instances	have	references	to	one	another.	When
that’s	the	case,	you	can	have	a	retain	cycle	which	will	result	in	a	memory	leak,	meaning
that	the	two	instances	never	go	out	of	existence.	Some	computer	languages	solve	this	sort
of	problem	with	a	periodic	“garbage	collection”	phase	that	detects	retain	cycles	and	cleans
them	up,	but	Swift	doesn’t	do	that;	you	have	to	fend	off	retain	cycles	manually.

The	way	to	test	for	and	observe	a	memory	leak	is	to	implement	a	class’s	deinit.	This
method	is	called	when	the	instance	goes	out	of	existence.	If	the	instance	never	goes	out	of
existence,	deinit	is	never	called.	That’s	a	bad	sign,	if	you	were	expecting	that	the
instance	should	go	out	of	existence.

Here’s	an	example.	First,	I’ll	make	two	class	instances	and	watch	them	go	out	of
existence:

func	testRetainCycle()	{

				class	Dog	{

								deinit	{

												print("farewell	from	Dog")

								}

				}

				class	Cat	{

								deinit	{

												print("farewell	from	Cat")

								}

				}

				let	d	=	Dog()

				let	c	=	Cat()

}

testRetainCycle()	//	farewell	from	Cat,	farewell	from	Dog

When	we	run	that	code,	both	“farewell”	messages	appear	in	the	console.	We	created	a	Dog
instance	and	a	Cat	instance,	but	the	only	references	to	them	are	automatic	(local)	variables
inside	the	testRetainCycle	function.	When	execution	of	that	function’s	body	comes	to	an
end,	all	automatic	variables	are	destroyed;	that	is	what	it	means	to	be	an	automatic
variable.	There	are	no	other	references	to	our	Dog	and	Cat	instances	that	might	make	them
persist,	and	so	they	are	destroyed	in	good	order.

Now	I’ll	change	that	code	by	giving	the	Dog	and	Cat	objects	references	to	each	other:
func	testRetainCycle()	{

				class	Dog	{

								var	cat	:	Cat?

								deinit	{

												print("farewell	from	Dog")

								}

				}

				class	Cat	{

								var	dog	:	Dog?

								deinit	{

												print("farewell	from	Cat")

								}

				}

				let	d	=	Dog()

				let	c	=	Cat()

				d.cat	=	c	//	create	a…

				c.dog	=	d	//	...retain	cycle

}

testRetainCycle()	//	nothing	in	console

When	we	run	that	code,	neither	“farewell”	message	appears	in	the	console.	The	Dog	and
Cat	objects	have	references	to	one	another.	Those	are	persisting	references	(also	called
strong	references).	A	persisting	reference	sees	to	it	that,	for	example,	as	long	as	our	Dog
has	a	reference	to	a	particular	Cat,	that	Cat	will	not	be	destroyed.	That’s	a	good	thing,	and
is	a	fundamental	principle	of	sensible	memory	management.	The	bad	thing	is	that	the	Dog
and	the	Cat	have	persisting	references	to	one	another.	That’s	a	retain	cycle!	Neither	the
Dog	instance	nor	the	Cat	instance	can	be	destroyed,	because	neither	of	them	can	“go	first”
—	it’s	like	Alphonse	and	Gaston	who	can	never	get	through	the	door	because	each
requires	the	other	to	precede	him.	The	Dog	can’t	be	destroyed	first	because	the	Cat	has	a
persisting	reference	to	him,	and	the	Cat	can’t	be	destroyed	first	because	the	Dog	has	a
persisting	reference	to	him.

These	objects	are	therefore	now	leaking.	Our	code	is	over;	both	d	and	c	are	gone.	There
are	no	further	references	to	either	of	these	objects;	neither	object	can	ever	be	referred	to
again.	No	code	can	mention	them;	no	code	can	reach	them.	But	they	live	on,	floating,
useless,	and	taking	up	memory.

Weak	References
One	solution	to	a	retain	cycle	is	to	mark	the	problematic	reference	as	weak.	This	means
that	the	reference	is	not	a	persisting	reference.	It	is	a	weak	reference.	The	object	referred	to
can	now	go	out	of	existence	even	while	the	referrer	continues	to	exist.	Of	course,	this
presents	a	terrible	danger,	because	now	the	object	referred	to	may	be	destroyed	behind	the
referrer’s	back.	But	Swift	has	a	solution	for	that,	too:	only	an	Optional	reference	can	be
marked	as	weak.	That	way,	if	the	object	referred	to	is	destroyed	behind	the	referrer’s	back,
the	referrer	will	see	something	coherent,	namely	nil.	Also,	the	reference	must	be	a	var
reference,	precisely	because	it	can	change	spontaneously	to	nil.

Thus,	this	code	breaks	the	retain	cycle	and	prevents	the	memory	leak:
func	testRetainCycle()	{

				class	Dog	{

								weak	var	cat	:	Cat?

								deinit	{

												print("farewell	from	Dog")

								}

				}

				class	Cat	{

								weak	var	dog	:	Dog?

								deinit	{

												print("farewell	from	Cat")

								}

				}

				let	d	=	Dog()

				let	c	=	Cat()

				d.cat	=	c

				c.dog	=	d

}

testRetainCycle()	//	farewell	from	Cat,	farewell	from	Dog

I’ve	gone	overboard	in	that	code.	To	break	the	retain	cycle,	there’s	no	need	to	make	both
Dog’s	cat	and	Cat’s	dog	weak	references;	making	just	one	of	the	two	a	weak	reference	is

sufficient	to	break	the	cycle.	That,	in	fact,	is	the	usual	solution	when	a	retain	cycle
threatens.	One	of	the	pair	will	be	more	of	an	“owner”	than	the	other;	the	one	that	is	not	the
“owner”	will	have	a	weak	reference	to	its	“owner.”

Although,	as	I	mentioned	earlier,	value	types	are	not	subject	to	the	same	memory
management	issues	as	reference	types,	a	value	type	can	still	be	involved	in	a	retain	cycle
with	a	class	instance.	In	my	retain	cycle	example,	if	Dog	is	a	class	and	Cat	is	a	struct,	we
still	get	a	retain	cycle.	The	solution	is	the	same:	make	Cat’s	dog	a	weak	reference.	(You
can’t	make	Dog’s	cat	a	weak	reference	if	Cat	is	a	struct;	only	a	reference	to	a	class	type
can	be	declared	weak.)

Do	not	use	weak	references	unless	you	have	to!	Memory	management	is	not	to	be	toyed
with	lightly.	Nevertheless,	there	are	real-life	situations	in	which	weak	references	are	the
right	thing	to	do,	even	when	no	retain	cycle	appears	to	threaten.	For	example,	a	view
controller’s	references	to	subviews	of	its	own	view	are	usually	weak,	because	the	view
itself	already	has	persisting	references	to	those	subviews,	and	we	would	not	typically	want
those	subviews	to	persist	in	the	absence	of	the	view	itself:

class	HelpViewController:	UIViewController	{

				weak	var	wv	:	UIWebView?

				override	func	viewWillAppear(animated:	Bool)	{

								super.viewWillAppear(animated)

								let	wv	=	UIWebView(frame:self.view.bounds)

								//	...	further	configuration	of	wv	here…

								self.view.addSubview(wv)

								self.wv	=	wv

				}

				//	...

}

In	that	code,	self.view.addSubview(wv)	causes	the	UIWebView	wv	to	persist;	our	own
reference	to	it,	self.wv,	can	thus	be	weak.

Unowned	References
There’s	another	Swift	solution	for	retain	cycles.	Instead	of	marking	a	reference	as	weak,
you	can	mark	it	as	unowned.	This	approach	is	useful	in	special	cases	where	one	object
absolutely	cannot	exist	without	a	reference	to	another,	but	where	this	reference	need	not	be
a	persisting	reference.

For	example,	let’s	pretend	that	a	Boy	may	or	may	not	have	a	Dog,	but	every	Dog	must
have	a	Boy	—	and	so	I’ll	give	Dog	an	init(boy:)	initializer.	The	Dog	needs	a	reference
to	its	Boy,	and	the	Boy	needs	a	reference	to	his	Dog	if	he	has	one;	that’s	potentially	a
retain	cycle:

func	testUnowned()	{

				class	Boy	{

								var	dog	:	Dog?

								deinit	{

												print("farewell	from	Boy")

								}

				}

				class	Dog	{

								let	boy	:	Boy

								init(boy:Boy)	{	self.boy	=	boy	}

								deinit	{

												print("farewell	from	Dog")

								}

				}

				let	b	=	Boy()

				let	d	=	Dog(boy:	b)

				b.dog	=	d

}

testUnowned()	//	nothing	in	console

We	can	solve	this	by	declaring	Dog’s	boy	property	unowned:
func	testUnowned()	{

				class	Boy	{

								var	dog	:	Dog?

								deinit	{

												print("farewell	from	Boy")

								}

				}

				class	Dog	{

								unowned	let	boy	:	Boy	//	*

								init(boy:Boy)	{	self.boy	=	boy	}

								deinit	{

												print("farewell	from	Dog")

								}

				}

				let	b	=	Boy()

				let	d	=	Dog(boy:	b)

				b.dog	=	d

}

testUnowned()	//	farewell	from	Boy,	farewell	from	Dog

An	advantage	of	an	unowned	reference	is	that	it	doesn’t	have	to	be	an	Optional	—	in	fact,
it	cannot	be	an	Optional	—	and	it	can	be	a	constant	(let).	But	an	unowned	reference	is
also	dangerous,	because	the	object	referred	to	can	go	out	of	existence	behind	the	referrer’s
back,	and	an	attempt	to	use	that	reference	will	cause	a	crash,	as	I	can	demonstrate	by	this
rather	forced	code:

var	b	=	Optional(Boy())

let	d	=	Dog(boy:	b!)

b	=	nil	//	destroy	the	Boy	behind	the	Dog's	back

print(d.boy)	//	crash

Thus,	you	should	use	unowned	only	if	you	are	absolutely	certain	that	the	object	referred	to
will	outlive	the	referrer.

Weak	and	Unowned	References	in	Anonymous	Functions
A	subtle	variant	of	a	retain	cycle	arises	when	an	instance	property’s	value	is	a	function
referring	to	the	instance:

class	FunctionHolder	{

				var	function	:	(Void	->	Void)?

				deinit	{

								print("farewell	from	FunctionHolder")

				}

}

func	testFunctionHolder()	{

				let	f	=	FunctionHolder()

				f.function	=	{

								print(f)

				}

}

testFunctionHolder()	//	nothing	in	console

Oooops!	I’ve	created	a	retain	cycle,	by	referring,	inside	the	anonymous	function,	to	the
object	that	is	holding	a	reference	to	it.	Because	functions	are	closures,	the	FunctionHolder
f,	declared	outside	the	anonymous	function,	is	captured	by	the	anonymous	function	as	a
persisting	reference.	But	the	function	property	of	this	FunctionHolder	contains	this
anonymous	function,	and	that’s	a	persisting	reference	too.	So	that’s	a	retain	cycle:	the
FunctionHolder	persistently	refers	to	the	function,	which	persistently	refers	to	the
FunctionHolder.

In	this	situation,	I	cannot	break	the	retain	cycle	by	declaring	the	function	property	as
weak	or	unowned.	Only	a	reference	to	a	class	type	can	be	declared	weak	or	unowned,	and	a
function	is	not	a	class.	Thus,	I	must	declare	the	captured	value	f	inside	the	anonymous
function	as	weak	or	unowned	instead.

Swift	provides	an	ingenious	syntax	for	doing	that.	At	the	very	start	of	the	anonymous
function	body,	where	the	in	line	would	go	(and	before	the	in	line	if	there	is	one),	you	put
square	brackets	containing	a	comma-separated	list	of	any	problematic	class	type
references	that	will	be	captured	from	the	surrounding	environment,	each	reference
preceded	by	weak	or	unowned.	This	list	is	called	a	capture	list.	If	you	have	a	capture	list,
you	must	follow	it	by	the	keyword	in	if	you	are	not	already	including	the	keyword	in	for
other	reasons:

class	FunctionHolder	{

				var	function	:	(Void	->	Void)?

				deinit	{

								print("farewell	from	FunctionHolder")

				}

}

func	testFunctionHolder()	{

				let	f	=	FunctionHolder()

				f.function	=	{

								[weak	f]	in	//	*

								print(f)

				}

}

testFunctionHolder()	//	farewell	from	FunctionHolder

This	syntax	solves	the	problem.	But	marking	a	reference	as	weak	in	a	capture	list	has	a
mild	side	effect	that	you	will	need	to	be	aware	of:	such	a	reference	passes	into	the
anonymous	function	as	an	Optional.	This	is	good,	because	it	means	that	if	the	object
referred	to	goes	out	of	existence	behind	our	back,	the	value	of	the	Optional	is	nil.	But	of
course	you	must	also	adjust	your	code	accordingly,	unwrapping	the	Optional	as	needed	in
order	to	use	it.	The	usual	technique	is	to	perform	the	weak–strong	dance:	you	unwrap	the
Optional	once,	right	at	the	start	of	the	function,	in	a	conditional	binding:

class	FunctionHolder	{

				var	function	:	(Void	->	Void)?

				deinit	{

								print("farewell	from	FunctionHolder")

				}

}

func	testFunctionHolder()	{

				let	f	=	FunctionHolder()

				f.function	=	{	//	here	comes	the	weak–strong	dance

								[weak	f]	in	//	weak

								guard	let	f	=	f	else	{	return	}

								print(f)	//	strong

				}

}

testFunctionHolder()	//	farewell	from	FunctionHolder

The	conditional	binding	let	f	=	f	accomplishes	two	goals.	First,	it	unwraps	the	Optional
version	of	f	that	arrived	into	the	anonymous	function.	Second,	it	declares	another	f	that	is
a	normal	(strong)	reference.	So	if	the	unwrapping	succeeds,	this	new	f	will	persist	for	the
rest	of	this	scope.

In	that	particular	example,	there	is	no	way	on	earth	that	this	FunctionHolder	instance,	f,
can	go	out	of	existence	while	the	anonymous	function	lives	on.	There	are	no	other
references	to	the	anonymous	function;	it	persists	only	as	a	property	of	f.	Therefore	I	can
avoid	some	behind-the-scenes	bookkeeping	overhead,	as	well	as	the	weak–strong	dance,

by	declaring	f	as	unowned	in	my	capture	list	instead.

In	real	life,	my	own	most	frequent	use	of	unowned	is	precisely	in	this	context.	Very	often,
the	reference	marked	as	unowned	in	the	capture	list	will	be	self.	Here’s	an	example	from
my	own	code:

class	MyDropBounceAndRollBehavior	:	UIDynamicBehavior	{

				let	v	:	UIView

				init(view	v:UIView)	{

								self.v	=	v

								super.init()

				}

				override	func	willMoveToAnimator(anim:	UIDynamicAnimator!)	{

								if	anim	==	nil	{	return	}

								let	sup	=	self.v.superview!

								let	grav	=	UIGravityBehavior()

								grav.action	=	{

												[unowned	self]	in

												let	items	=	anim.itemsInRect(sup.bounds)	as!	[UIView]

												if	items.indexOf(self.v)	==	nil	{

																anim.removeBehavior(self)

																self.v.removeFromSuperview()

												}

								}

								self.addChildBehavior(grav)

								grav.addItem(self.v)

								//	...

				}

				//	...

}

There’s	a	potential	(and	rather	elaborate)	retain	cycle	here:
self.addChildBehavior(grav)	causes	a	persistent	reference	to	grav,	grav	has	a
persistent	reference	to	grav.action,	and	the	anonymous	function	assigned	to
grav.action	refers	to	self.	To	break	the	retain	cycle,	I	declare	the	reference	to	self	as
unowned	in	the	anonymous	function’s	capture	list.

WARNING

Don’t	panic!	Beginners	have	a	tendency	to	backstop	all	their	anonymous	functions	with	[weak	self].	That’s
unnecessary	and	wrong.	Only	a	retained	function	can	raise	even	the	possibility	of	a	retain	cycle.	Merely	passing	a
function	does	not	introduce	such	a	possibility,	especially	if	the	function	being	passed	will	be	called	immediately.
Always	confirm	that	you	actually	have	a	retain	cycle	before	concerning	yourself	with	how	to	prevent	a	retain	cycle.

Memory	Management	of	Protocol-Typed	References
Only	a	reference	to	an	instance	of	a	class	type	can	be	declared	weak	or	unowned.	A
reference	to	an	instance	of	a	struct	or	enum	type	cannot	be	so	declared,	because	its
memory	management	doesn’t	work	the	same	way	(and	is	not	subject	to	retain	cycles).

A	reference	that	is	declared	as	a	protocol	type,	therefore,	has	a	problem.	A	protocol	might
be	adopted	by	a	struct	or	an	enum.	Therefore	you	cannot	wantonly	declare	such	a
reference	weak	or	unowned.	You	can	only	declare	a	protocol-typed	reference	weak	or
unowned	if	it	is	a	class	protocol	—	that	is,	if	it	is	marked	with	@objc	or	class.

In	this	code,	SecondViewControllerDelegate	is	a	protocol	that	I’ve	declared.	This	code
won’t	compile	unless	SecondViewControllerDelegate	is	declared	as	a	class	protocol:

class	SecondViewController	:	UIViewController	{

				weak	var	delegate	:	SecondViewControllerDelegate?

				//	...

}

Here’s	the	actual	declaration	of	SecondViewControllerDelegate;	it	is	declared	as	a	class

protocol,	and	that’s	why	the	preceding	code	is	legal:
protocol	SecondViewControllerDelegate	:	class	{

				func	acceptData(data:AnyObject!)

}

A	protocol	declared	in	Objective-C	is	implicitly	marked	as	@objc	and	is	a	class	protocol.
Thus,	this	declaration	from	my	real-life	code	is	legal:

weak	var	delegate	:	WKScriptMessageHandler?

WKScriptMessageHandler	is	a	protocol	declared	by	Cocoa	(in	particular,	by	the	Web	Kit
framework).	Thus,	it	is	implicitly	marked	@objc;	only	a	class	can	adopt
WKScriptMessageHandler,	and	so	the	compiler	is	satisfied	that	the	delegate	variable	will
be	an	instance	of	a	class,	and	thus	the	reference	can	be	treated	as	weak.

Part	II.	IDE
By	now,	you’re	doubtless	anxious	to	jump	in	and	start	writing	an	app.	To	do	that,	you	need
a	solid	grounding	in	the	tools	you’ll	be	using.	The	heart	and	soul	of	those	tools	can	be
summed	up	in	one	word:	Xcode.	In	this	part	of	the	book	we	explore	Xcode,	the	IDE
(integrated	development	environment)	in	which	you’ll	be	programming	iOS.	Xcode	is	a
big	program,	and	writing	an	app	involves	coordinating	a	lot	of	pieces;	this	part	of	the	book
will	help	you	become	comfortable	with	Xcode.	Along	the	way,	we’ll	generate	a	simple
working	app	through	some	hands-on	tutorials.

Chapter	6	tours	Xcode	and	explains	the	architecture	of	the	project,	the	collection	of
files	from	which	an	app	is	generated.
Chapter	7	is	about	nibs.	A	nib	is	a	file	containing	a	drawing	of	your	interface.
Understanding	nibs	—	knowing	how	they	work	and	how	they	relate	to	your	code	—	is
crucial	to	your	use	of	Xcode	and	to	proper	development	of	just	about	any	app.
Chapter	8	pauses	to	discuss	the	Xcode	documentation	and	other	sources	of	information
on	the	API.
Chapter	9	explains	editing	your	code,	testing	and	debugging	your	code,	and	the	various
steps	you’ll	take	on	the	way	to	submitting	your	app	to	the	App	Store.	You’ll	probably
want	to	skim	this	chapter	quickly	at	first,	returning	to	it	as	a	detailed	reference	later
while	developing	and	submitting	an	actual	app.

Chapter	6.	Anatomy	of	an	Xcode	Project
Xcode	is	the	application	used	to	develop	an	iOS	app.	An	Xcode	project	is	the	source	for
an	app;	it’s	the	entire	collection	of	files	and	settings	used	to	construct	the	app.	To	create,
develop,	and	maintain	an	app,	you	must	know	how	to	manipulate	and	navigate	an	Xcode
project.	So	you	must	know	something	about	Xcode,	and	you	must	know	something	about
the	nature	and	structure	of	Xcode	projects	and	how	Xcode	shows	them	to	you.	That’s	the
subject	of	this	chapter.

NOTE

The	term	“Xcode”	is	used	in	two	ways.	It’s	the	name	of	the	application	in	which	you	edit	and	build	your	app,	and	it’s
the	name	of	an	entire	suite	of	utilities	that	accompanies	it	—	in	the	latter	sense,	Instruments	and	the	Simulator	are	part
of	Xcode.	This	ambiguity	should	generally	present	little	difficulty.

Xcode	is	a	powerful,	complex,	and	extremely	large	program.	My	approach	in	introducing
Xcode	is	to	suggest	that	you	adopt	a	kind	of	deliberate	tunnel	vision:	if	you	don’t
understand	something,	don’t	worry	about	it	—	don’t	even	look	at	it,	and	don’t	touch	it,
because	you	might	change	something	important.	Our	survey	of	Xcode	will	chart	a	safe,
restricted,	and	essential	path,	focusing	on	aspects	of	Xcode	that	you	most	need	to
understand	immediately,	and	resolutely	ignoring	everything	else.

For	full	information,	study	Apple’s	own	documentation	(choose	Help	→	Xcode
Overview);	it	may	seem	overwhelming	at	first,	but	what	you	need	to	know	is	probably	in
there	somewhere.	There	are	also	entire	books	devoted	to	describing	and	explaining	Xcode.

New	Project
Even	before	you’ve	written	any	code,	an	Xcode	project	is	quite	elaborate.	To	see	this,	let’s
make	a	new,	essentially	“empty”	project;	you’ll	find	that	it	isn’t	empty	at	all.

1.	 Start	up	Xcode	and	choose	File	→	New	→	Project.
2.	 The	“Choose	a	template”	dialog	appears.	The	template	is	your	project’s	initial	set	of

files	and	settings.	When	you	pick	a	template,	you’re	really	picking	an	existing	folder
full	of	files;	basically,	it	will	be	one	of	the	folders	inside
Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform/Developer/Library/Xcode/Templates/Project
Templates/iOS/Application.	This	template	folder	will	essentially	be	copied,	and	a
few	values	will	be	filled	in,	in	order	to	create	your	project.	
So,	in	this	case,	on	the	left,	under	iOS,	choose	Application.	On	the	right,	select
Single	View	Application.	Click	Next.

3.	 You	are	now	asked	to	provide	a	name	for	your	project	(Product	Name).	Let’s	call	our
new	project	Empty	Window.	
In	a	real	project,	you	should	give	some	thought	to	the	project’s	name,	as	you’re
going	to	be	living	in	close	quarters	with	it.	As	Xcode	copies	the	template	folder,	it’s
going	to	use	the	project’s	name	to	“fill	in	the	blank”	in	several	places,	including	the
name	of	the	app.	Thus,	whatever	you	type	at	this	moment	is	something	you’ll	be
seeing	throughout	your	project.	You	are	not	locked	into	the	name	of	your	project
forever,	though,	and	there’s	a	separate	setting	allowing	you	to	change	at	any	time	the
name	of	the	app	that	it	produces.	I’ll	talk	later	about	name	changes	(Renaming	Parts
of	a	Project).
It’s	fine	to	use	spaces	in	a	project	name.	Spaces	are	legal	in	the	project	name,	the	app
name,	and	the	various	names	of	files	and	folders	that	Xcode	will	generate
automatically;	and	in	the	few	places	where	spaces	are	problematic	(such	as	the
bundle	identifier,	discussed	in	the	next	paragraph),	the	name	you	type	as	the	Product
Name	will	have	its	spaces	converted	to	hyphens.	But	do	not	use	any	other
punctuation	in	your	project	name!	Such	punctuation	can	cause	Xcode	features	to
break	in	subtle	ways.

4.	 Note	the	Organization	Identifier	field.	The	first	time	you	create	a	project,	this	field
will	be	blank,	and	you	should	fill	it	in.	The	goal	here	is	to	create	a	unique	string
identifying	you	or	your	organization.	The	convention	is	to	start	the	organization
identifier	with	com.	and	to	follow	it	with	a	string	(possibly	with	multiple	dot-
components)	that	no	one	else	is	likely	to	use.	For	example,	I	use	com.neuburg.matt.
Every	app	on	a	device	or	submitted	to	the	App	Store	needs	a	unique	bundle
identifier.	Your	app’s	bundle	identifier,	which	is	shown	in	gray	below	the
organization	identifier,	will	consist	of	the	organization	identifier	plus	a	version	of	the
project’s	name;	if	you	give	every	project	a	unique	name	within	your	personal	world,
the	bundle	identifier	will	uniquely	identify	this	project	and	the	app	that	it	produces
(or	you	can	change	the	bundle	identifier	manually	later	if	necessary).

5.	 The	Language	pop-up	menu	lets	you	choose	between	Swift	and	Objective-C.	This
choice	is	not	positively	binding;	it	dictates	the	initial	structure	and	code	of	the
project	template,	but	you	are	free	to	add	Swift	files	to	an	Objective-C	project,	or
Objective-C	files	to	a	Swift	project.	You	can	even	start	with	an	Objective-C	project
and	decide	later	to	convert	it	completely	to	Swift.	(See	Bilingual	Targets.)	For	now,

choose	Swift.
6.	 Make	sure	the	Devices	pop-up	menu	is	set	to	iPhone.	Again,	this	choice	is	not

positively	binding;	but	for	now,	let’s	assume	that	our	app	is	to	run	on	iPhone	only.
7.	 Make	sure	Use	Core	Data,	Include	Unit	Tests,	and	Include	UI	Tests	are	not	checked.

Click	Next.
8.	 You’ve	now	told	Xcode	how	to	construct	your	project.	Basically,	it’s	going	to	copy

the	Single	View	Application.xctemplate	folder	from	within	the	Project	Templates
folder	I	mentioned	earlier.	But	you	need	to	tell	it	where	to	copy	this	template	folder
to.	That’s	why	Xcode	is	now	presenting	a	Save	dialog.	You	are	to	specify	the
location	of	a	folder	that	is	about	to	be	created	—	the	project	folder	for	this	project.
The	project	folder	can	go	just	about	anywhere,	and	you	can	move	it	after	creating	it.
I	usually	create	new	projects	on	the	Desktop.

9.	 Xcode	also	offers	to	create	a	git	repository	for	your	project.	In	real	life,	this	can	be	a
great	convenience	(see	Chapter	9),	but	for	now,	uncheck	that	checkbox.	Click
Create.

10.	 The	Empty	Window	project	folder	is	created	on	disk	(on	the	Desktop,	if	that’s	the
location	you	just	specified),	and	the	project	window	for	the	Empty	Window	project
opens	in	Xcode.

The	project	we’ve	just	created	is	a	working	project;	it	really	does	build	an	iOS	app	called
Empty	Window.	To	see	this,	make	sure	that	the	scheme	and	destination	in	the	project
window’s	toolbar	are	listed	as	Empty	Window	→	iPhone	6.	(The	scheme	and	destination
are	actually	pop-up	menus,	so	you	can	click	on	them	to	change	their	values	if	needed.)
Choose	Product	→	Run.	After	some	delay,	the	iOS	Simulator	application	eventually	opens
and	displays	your	app	running	—	an	empty	white	screen.

NOTE

To	build	a	project	is	to	compile	its	code	and	assemble	the	compiled	code,	together	with	various	resources,	into	the
actual	app.	Typically,	if	you	want	to	know	whether	your	code	compiles	and	your	project	is	consistently	and	correctly
constructed,	you’ll	build	the	project	(Product	→	Build).	Alternatively,	you	can	compile	an	individual	file	(choose
Product	→	Perform	Action	→	Compile	[Filename]).	To	run	a	project	is	to	launch	the	built	app,	in	the	Simulator	or	on
a	connected	device;	if	you	want	to	know	whether	your	code	works	as	expected,	you’ll	run	the	project	(Product	→
Run),	which	automatically	builds	first	if	necessary.

The	Project	Window
An	Xcode	project	embodies	a	lot	of	information	about	what	files	constitute	the	project	and
how	they	are	to	be	used	when	building	the	app,	such	as:

The	source	files	(your	code)	that	are	to	be	compiled
Any	.storyboard	or	.xib	files,	graphically	expressing	interface	objects	to	be	instantiated
as	your	app	runs
Any	resources,	such	as	icons,	images,	or	sound	files,	that	are	to	be	part	of	the	app
All	settings	(instructions	to	the	compiler,	to	the	linker,	and	so	on)	that	are	to	be	obeyed
as	the	app	is	built
Any	frameworks	that	the	code	will	need	when	it	runs

A	single	Xcode	project	window	presents	all	of	this	information,	as	well	as	letting	you
access,	edit,	and	navigate	your	code,	plus	reporting	the	progress	and	results	of	such
procedures	as	building	or	debugging	an	app	and	more.	This	window	displays	a	lot	of
information	and	embodies	a	lot	of	functionality!	A	project	window	is	powerful	and
elaborate;	learning	to	navigate	and	understand	it	takes	time.	Let’s	pause	to	explore	this
window	and	see	how	it	is	constructed.

A	project	window	has	four	main	parts	(Figure	6-1):

Figure	6-1.	The	project	window

1.	 On	the	left	is	the	Navigator	pane.	Show	and	hide	it	with	View	→	Navigators	→
Show/Hide	Navigator	(Command-0)	or	with	the	first	View	button	at	the	right	end	of
the	toolbar.

2.	 In	the	middle	is	the	Editor	pane	(or	simply	“editor”).	This	is	the	main	area	of	a
project	window.	A	project	window	nearly	always	displays	an	Editor	pane,	and	can
display	multiple	Editor	panes	simultaneously.

3.	 On	the	right	is	the	Utilities	pane.	Show	and	hide	it	with	View	→	Utilities	→
Show/Hide	Utilities	(Command-Option-0)	or	with	the	third	View	button	at	the	right
end	of	the	toolbar.

4.	 At	the	bottom	is	the	Debug	pane.	Show	and	hide	it	with	View	→	Debug	Area	→
Show/Hide	Debug	Area	(Command-Shift-Y)	or	with	the	second	View	button	at	the

right	end	of	the	toolbar.

NOTE

All	Xcode	keyboard	shortcuts	can	be	customized;	see	the	Key	Bindings	pane	of	the	Preferences	window.	Keyboard
shortcuts	that	I	cite	are	the	defaults.

The	Navigator	Pane
The	Navigator	pane	is	the	column	of	information	at	the	left	of	the	project	window.	Among
other	things,	it’s	your	primary	mechanism	for	controlling	what	you	see	in	the	main	area	of
the	project	window	(the	editor).	An	important	use	pattern	for	Xcode	is:	you	select
something	in	the	Navigator	pane,	and	that	thing	is	displayed	in	the	editor.

It	is	possible	to	toggle	the	visibility	of	the	Navigator	pane	(View	→	Navigators	→
Hide/Show	Navigator,	or	Command-0);	for	example,	once	you’ve	used	the	Navigator	pane
to	reach	the	item	you	want	to	see	or	work	on	in	the	editor,	you	might	hide	the	Navigator
pane	temporarily	to	maximize	your	screen	real	estate	(especially	on	a	smaller	monitor).
You	can	change	the	Navigator	pane’s	width	by	dragging	the	vertical	line	at	its	right	edge.

The	Navigator	pane	itself	can	display	eight	different	sets	of	information;	thus,	there	are
actually	eight	navigators.	These	are	represented	by	the	eight	icons	across	its	top;	to	switch
among	them,	use	these	icons	or	their	keyboard	shortcuts	(Command-1,	Command-2,	and
so	on).	If	the	Navigator	pane	is	hidden,	pressing	a	navigator’s	keyboard	shortcut	both
shows	the	Navigator	pane	and	switches	to	that	navigator.

Depending	on	your	settings	in	the	Behaviors	pane	of	Xcode’s	preferences,	a	navigator
might	show	itself	automatically	when	you	perform	a	certain	action.	For	example,	by
default,	when	you	build	your	project,	if	warning	messages	or	error	messages	are
generated,	the	Issue	navigator	will	appear.	This	automatic	behavior	will	not	prove
troublesome,	because	it	is	generally	precisely	the	behavior	you	want,	and	if	it	isn’t,	you
can	change	it;	plus	you	can	easily	switch	to	a	different	navigator	at	any	time.

Let’s	begin	experimenting	immediately	with	the	various	navigators:

Project	navigator	(Command-1)

Click	here	for	basic	navigation	through	the	files	that	constitute	your	project.	For
example,	in	the	Empty	Window	folder	(these	folder-like	things	in	the	Project	navigator
are	actually	called	groups),	click	AppDelegate.swift	to	view	its	code	in	the	editor
(Figure	6-2).

At	the	top	level	of	the	Project	navigator,	with	a	blue	Xcode	icon,	is	the	Empty	Window
project	itself;	click	it	to	view	the	settings	associated	with	your	project	and	its	targets.
Don’t	change	anything	here	without	knowing	what	you’re	doing!	I’ll	talk	later	in	this
chapter	about	what	these	settings	are	for.

The	filter	bar	at	the	bottom	of	the	Project	navigator	lets	you	limit	what	files	are	shown;
when	there	are	many	files,	this	is	great	for	quickly	reaching	a	file	with	a	known	name.
For	example,	try	typing	“delegate”	in	the	filter	bar	search	field.	Don’t	forget	to	remove
your	filter	when	you’re	done	experimenting.

WARNING

Once	you’ve	filtered	a	navigator,	it	stays	filtered	until	you	remove	the	filter	—	even	if	you	close	the	project!	A
common	mistake	is	to	filter	a	navigator,	forget	that	you’ve	done	so,	fail	to	notice	the	filter	(because	you’re	looking	at
the	navigator	itself,	not	down	at	the	bottom	where	the	filter	bar	is),	and	wonder,	“Hey,	where	did	all	my	files	go?”

Figure	6-2.	The	Project	navigator

Symbol	navigator	(Command-2)

A	symbol	is	a	name,	typically	the	name	of	a	class	or	method.	Among	other	things,	this
can	be	useful	for	navigating	your	code.	For	example,	highlight	the	first	two	icons	in	the
filter	bar	(the	first	two	are	blue,	the	third	is	dark),	and	see	how	quickly	you	can	reach
the	definition	of	AppDelegate’s	applicationDidBecomeActive:	method.

Try	highlighting	the	filter	bar	icons	in	various	ways	to	see	how	the	contents	of	the
Symbol	navigator	change.	Type	in	the	search	field	in	the	filter	bar	to	limit	what	appears
in	the	Symbol	navigator;	for	example,	try	typing	“active”	in	the	search	field,	and	see
what	happens.

TIP

When	the	second	filter	icon	is	not	highlighted,	you	are	shown	all	symbols,	including	those	defined	by	Swift	and	those
defined	by	Cocoa	(Figure	4-1).	This	is	a	great	way	to	learn	what	object	types	exist,	and	to	reach	the	headers	where
those	types	are	declared	(an	important	form	of	documentation:	see	Chapter	8).

Find	navigator	(Command-3)

This	is	a	powerful	search	facility	for	finding	text	globally	in	your	project.	You	can	also
summon	the	Find	navigator	with	Find	→	Find	in	Project	(Command-Shift-F).	The
words	above	the	search	field	show	what	options	are	currently	in	force;	they	are	pop-up
menus,	so	click	one	to	change	the	options.	Try	searching	for	“delegate”	(Figure	6-3).
Click	a	search	result	to	jump	to	it	in	your	code.

Below	the	search	field,	at	the	left,	is	the	current	search	scope.	This	limits	what	files	will
be	searched.	Click	it	to	see	the	Search	Scopes	panel.	You	can	limit	the	search	to	a	group
(folder)	within	your	project.	You	can	also	define	a	new	scope:	click	New	Scope	to
summon	the	scope	configuration	popover,	where	you	can	examine	your	options.	Scopes
are	defined	per	user,	not	per	project;	scopes	that	you	create	here	will	appear	in	other
projects.

You	can	type	in	the	other	search	field,	the	one	in	the	filter	bar	at	the	bottom,	to	limit
further	which	search	results	are	displayed.	(I’m	going	to	stop	calling	your	attention	to
the	filter	bar	now,	but	every	navigator	has	it	in	some	form.)

Figure	6-3.	The	Find	navigator

Issue	navigator	(Command-4)

You’ll	need	this	navigator	primarily	when	your	code	has	issues.	This	doesn’t	refer	to
emotional	instability;	it’s	Xcode’s	term	for	warning	and	error	messages	emitted	when
you	build	your	project.

To	see	the	Issue	navigator	in	action,	you’ll	need	to	give	your	code	an	issue.	Navigate	(as
you	already	know	how	to	do,	in	at	least	three	different	ways)	to	the	file
AppDelegate.swift,	and	in	the	blank	line	after	the	last	comment	at	the	top	of	the	file’s
contents,	above	the	import	line,	type	howdy.	Build	the	project	(Command-B).	The	Issue
navigator	will	display	some	error	messages,	showing	that	the	compiler	is	unable	to	cope
with	this	illegal	word	appearing	in	an	illegal	place.	Click	an	issue	to	see	it	within	its	file.
In	your	code,	issue	“balloons”	may	appear	to	the	right	of	lines	containing	issues;	if
you’re	distracted	or	hampered	by	these,	toggle	their	visibility	with	Editor	→	Issues	→
Hide/Show	All	Issues	(Command-Control-M).

Now	that	you’ve	made	Xcode	miserable,	select	“howdy”	and	delete	it;	save	and	build
again,	and	your	issues	will	be	gone.	If	only	real	life	were	this	easy!

Test	navigator	(Command-5)

This	navigator	lists	test	files	and	individual	test	methods	and	permits	you	to	run	your
tests	and	see	whether	they	succeeded	or	failed.	A	test	is	code	that	isn’t	part	of	your	app;
rather,	it	calls	a	bit	of	your	app’s	code	to	see	whether	it	behaves	as	expected.	I’ll	talk
more	about	tests	in	Chapter	9.

Debug	navigator	(Command-6)

By	default,	this	navigator	will	appear	when	your	code	is	paused	while	you’re	debugging
it.	There	is	not	a	strong	distinction	in	Xcode	between	running	and	debugging;	the	milieu
is	the	same.	The	difference	is	mostly	a	matter	of	whether	breakpoints	are	obeyed	(more
about	that,	and	about	debugging	in	general,	in	Chapter	9).

To	see	the	Debug	navigator	in	action,	you’ll	need	to	give	your	code	a	breakpoint.
Navigate	once	more	to	the	file	AppDelegate.swift,	select	in	the	line	that	says	return
true,	and	choose	Debug	→	Breakpoints	→	Add	Breakpoint	at	Current	Line	to	make	a
blue	breakpoint	arrow	appear	on	that	line.	Run	the	project.	By	default,	as	the	breakpoint
is	encountered,	the	Navigator	pane	switches	to	the	Debug	navigator,	and	the	Debug
pane	appears	at	the	bottom	of	the	window.	This	overall	layout	(Figure	6-4)	will	rapidly
become	familiar	as	you	debug	your	projects.

The	Debug	navigator	starts	with	several	numeric	and	graphical	displays	of	profiling
information	(at	a	minimum,	you’ll	see	CPU,	Memory,	Disk,	and	Network);	click	one	to
see	extensive	graphical	information	in	the	editor.	This	information	allows	you	to	track
possible	misbehavior	of	your	app	as	you	run	it,	without	the	added	complexity	of
running	the	Instruments	utility	(discussed	in	Chapter	9).	To	toggle	the	visibility	of	the
profiling	information	at	the	top	of	the	Debug	navigator,	click	the	“gauge”	icon	(to	the
right	of	the	process’s	name).

The	Debug	navigator	also	displays	the	call	stack,	with	the	names	of	the	nested	methods
in	which	a	pause	occurs;	as	you	would	expect,	you	can	click	on	a	method	name	to
navigate	to	it.	You	can	shorten	or	lengthen	the	list	with	the	first	button	in	the	filter	bar	at
the	bottom	of	the	navigator.	The	second	icon	to	the	right	of	the	process’s	name	lets	you
toggle	between	display	by	thread	and	display	by	queue.

The	Debug	pane,	which	can	be	shown	or	hidden	at	will	(View	→	Debug	Area	→
Hide/Show	Debug	Area,	or	Command-Shift-Y),	consists	of	two	subpanes:

The	variables	list	(on	the	left)

It	is	populated	with	the	variables	in	scope	for	the	selected	method	in	the	call	stack.

The	console	(on	the	right)

Here	the	debugger	displays	text	messages;	that’s	how	you	learn	of	exceptions	thrown
by	your	running	app,	plus	you	can	have	your	code	deliberately	send	you	log
messages	describing	your	app’s	progress	and	behavior.	Such	messages	are	important,
so	keep	an	eye	on	the	console	as	your	app	runs.	You	can	also	use	the	console	to	enter
commands	to	the	debugger.	This	can	often	be	a	better	way	to	explore	values	during	a
pause	than	the	variables	list.

Either	the	variables	list	or	the	console	can	be	hidden	using	the	two	buttons	at	the	bottom
right	of	the	pane.	The	console	can	also	be	summoned	by	choosing	View	→	Debug	Area
→	Activate	Console.

Figure	6-4.	The	Debug	layout

TIP

View	debugging	displays,	and	allows	you	to	explore,	your	app’s	view	hierarchy.	To	switch	to	view	debugging,	choose
Debug	→	View	Debugging	→	Capture	View	Hierarchy	(or	click	the	Debug	View	Hierarchy	button	in	the	bar	at	the
top	of	the	Debug	pane).

Breakpoint	navigator	(Command-7)

This	navigator	lists	all	your	breakpoints.	At	the	moment	you’ve	only	one,	but	when
you’re	actively	debugging	a	large	project	with	many	breakpoints,	you’ll	be	glad	of	this
navigator.	Also,	this	is	where	you	create	special	breakpoints	(such	as	symbolic
breakpoints),	and	in	general	it’s	your	center	for	managing	existing	breakpoints.	We’ll
return	to	this	topic	in	Chapter	9.

Report	navigator	(Command-8)

This	navigator	lists	your	recent	major	actions,	such	as	building	or	running	(debugging)
your	project.	Click	a	listing	to	see	(in	the	editor)	the	report	generated	when	you
performed	that	action.	The	report	might	contain	information	that	isn’t	displayed	in	any
other	way,	and	also	it	lets	you	dredge	up	console	messages	from	the	recent	past	(“What
was	that	exception	I	got	while	debugging	a	moment	ago?”).

For	example,	by	clicking	on	the	listing	for	a	successful	build,	and	by	choosing	to
display	All	and	All	Messages	using	the	filter	switches	at	the	top	of	the	report,	we	can
see	the	steps	by	which	a	build	takes	place	(Figure	6-5).	To	reveal	the	full	text	of	a	step,
click	on	that	step	and	then	click	the	Expand	Transcript	button	that	appears	at	the	far
right	(and	see	also	the	menu	items	in	the	Editor	menu).

Figure	6-5.	Viewing	a	report

When	navigating	by	clicking	in	the	Navigator	pane,	modifications	to	your	click	can
determine	where	navigation	takes	place.	By	default,	Option-click	navigates	in	an	assistant
pane	(discussed	later	in	this	chapter),	double-click	navigates	by	opening	a	new	window,
and	Option-Shift-click	summons	a	little	heads-up	pane	where	you	can	specify	where	to
navigate	(a	new	window,	a	new	tab,	or	a	new	assistant	pane).	For	the	settings	that	govern
these	click	modifications,	see	the	Navigation	pane	of	Xcode’s	preferences.

The	Utilities	Pane
The	Utilities	pane	is	the	column	at	the	right	of	the	project	window.	It	contains	inspectors
that	provide	information	about	the	current	selection	or	its	settings;	if	those	settings	can	be
changed,	this	is	where	you	change	them.	It	also	contains	libraries	that	function	as	a	source
of	objects	you	may	need	while	editing	your	project.	The	Utilities	pane’s	importance
emerges	mostly	when	you’re	editing	a	.storyboard	or	.xib	file	(Chapter	7).	But	it	can	be
useful	also	while	editing	code,	because	Quick	Help,	a	form	of	documentation	(Chapter	8),
is	displayed	here	as	well,	plus	the	Utilities	pane	is	the	source	of	code	snippets	(Chapter	9).
To	toggle	the	visibility	of	the	Utilities	pane,	choose	View	→	Utilities	→	Hide/Show
Utilities	(Command-Option-0).	You	can	change	the	Utilities	pane’s	width	by	dragging	the
vertical	line	at	its	left	edge.

The	Utilities	pane	consists	of	numerous	palettes,	which	are	clumped	into	multiple	sets,
which	are	themselves	divided	into	two	major	groups:	the	top	half	of	the	pane	and	the
bottom	half	of	the	pane.	You	can	change	the	relative	heights	of	these	two	halves	by
dragging	the	horizontal	line	that	separates	them.

The	top	half

What	appears	in	the	top	half	of	the	Utilities	pane	depends	on	what’s	selected	in	the
current	editor.	There	are	four	main	cases:

A	code	file	is	being	edited

The	top	half	of	the	Utilities	pane	shows	either	the	File	inspector	or	Quick	Help.
Toggle	between	them	with	the	icons	at	the	top	of	this	half	of	the	Utilities	pane,	or
with	their	keyboard	shortcuts	(Command-Option-1,	Command-Option-2).	The	File
inspector	is	rarely	needed,	but	Quick	Help	can	be	useful	because	it	displays
documentation	(Chapter	8).	The	File	inspector	consists	of	multiple	sections,	each	of
which	can	be	expanded	or	collapsed	by	clicking	its	header.

A	.storyboard	or	.xib	file	is	being	edited

The	top	half	of	the	Utilities	pane	shows,	in	addition	to	the	File	inspector	and	Quick
Help,	the	Identity	inspector	(Command-Option-3),	the	Attributes	inspector
(Command-Option-4),	the	Size	inspector	(Command-Option-5),	and	the	Connections
inspector	(Command-Option-6).	These	can	consist	of	multiple	sections,	each	of
which	can	be	expanded	or	collapsed	by	clicking	its	header.

An	asset	catalog	is	being	edited

In	addition	to	the	File	inspector	and	Quick	Help,	the	Attributes	inspector	displays
more	information	about	the	selected	resource	set	or	resource.	It	lets	you	determine
which	variants	of	the	selected	resource	set	are	listed	and	set	its	on-demand	resource
tags;	if	the	selected	resource	is	an	image,	you	can	see	and	configure	additional
information	about	it.

The	view	hierarchy	is	being	debugged

In	addition	to	the	File	inspector	and	Quick	Help,	the	Object	inspector	describes	the
currently	selected	view,	and	the	Size	inspector	displays	the	currently	selected	view’s
size,	position,	and	constraints.

The	bottom	half

The	bottom	half	of	the	Utilities	pane	shows	one	of	four	libraries.	Toggle	between	them
with	the	icons	at	the	top	of	this	half	of	the	Utilities	pane,	or	with	their	keyboard
shortcuts.	They	are	the	File	Template	library	(Command-Option-Control-1),	the	Code
Snippet	library	(Command-Option-Control-2),	the	Object	library	(Command-Option-
Control-3),	and	the	Media	library	(Command-Option-Control-4).	The	Object	library	is
the	most	important;	you’ll	use	it	heavily	when	editing	a	.storyboard	or	.xib	file.

To	see	a	help	pop-up	describing	the	currently	selected	item	in	a	library,	press	Spacebar.

The	Editor
In	the	middle	of	the	project	window	is	the	editor.	This	is	where	you	get	actual	work	done,
reading	and	writing	your	code	(Chapter	9),	or	designing	your	interface	in	a	.storyboard	or
.xib	file	(Chapter	7).	The	editor	is	the	core	of	the	project	window.	You	can	hide	the
Navigator	pane,	the	Utilities	pane,	and	the	Debug	pane,	but	there	is	no	such	thing	as	a
project	window	without	an	editor	(though	you	can	cover	the	editor	completely	with	the
Debug	pane).

The	editor	provides	its	own	form	of	navigation,	the	jump	bar	across	the	top.	Not	only	does
the	jump	bar	show	you	hierarchically	what	file	is	currently	being	edited,	but	also	it	allows
you	to	switch	to	a	different	file.	In	particular,	each	path	component	in	the	jump	bar	is	also
a	pop-up	menu.	These	pop-up	menus	can	be	summoned	by	clicking	on	a	path	component,
or	by	using	keyboard	shortcuts	(shown	in	the	second	section	of	the	View	→	Standard
Editor	submenu).	For	example,	Control-4	summons	a	hierarchical	pop-up	menu,	which
can	be	navigated	entirely	with	the	keyboard,	allowing	you	to	choose	a	different	file	in	your
project	to	edit.	Moreover,	each	pop-up	menu	in	the	jump	bar	also	has	a	filter	field;	to	see
it,	summon	a	pop-up	menu	from	the	jump	bar	and	start	typing.	Thus	you	can	navigate	your
project	even	if	the	Project	navigator	isn’t	showing.

The	symbol	at	the	left	end	of	the	jump	bar	(Control-1)	summons	a	hierarchical	menu	(the
Related	Items	menu)	allowing	navigation	to	files	related	to	the	current	one.	What	appears
here	depends	not	only	on	what	file	is	currently	being	edited	but	on	the	current	selection
within	that	file.	This	is	an	extremely	powerful	and	convenient	menu,	and	you	should	take
time	to	explore	it.	You	can	navigate	to	related	class	files	and	header	files	(Superclasses,
Subclasses,	and	Siblings;	siblings	are	classes	with	the	same	superclass);	you	can	view
methods	called	by	the	currently	selected	method,	and	that	call	the	currently	selected
method.	New	in	Xcode	7,	choose	Generated	Interface	to	view	the	public	API	of	a	Swift
file	or	Objective-C	header	file	as	seen	by	Swift.

The	editor	remembers	the	history	of	things	it	has	displayed,	and	you	can	return	to
previously	viewed	content	with	the	Back	button	in	the	jump	bar,	which	is	also	a	pop-up
menu	from	which	you	can	choose.	Alternatively,	choose	Navigate	→	Go	Back
(Command-Control-Left).

It	is	likely,	as	you	develop	a	project,	that	you’ll	want	to	edit	more	than	one	file
simultaneously,	or	obtain	multiple	views	of	a	single	file	so	that	you	can	edit	two	areas	of	it
simultaneously.	This	can	be	achieved	in	three	ways:	assistants,	tabs,	and	secondary
windows.

Assistants

You	can	split	the	editor	into	multiple	editors	by	summoning	an	assistant	pane.	To	do	so,
click	the	second	Editor	button	in	the	toolbar	(“Show	the	Assistant	editor”),	or	choose
View	→	Assistant	Editor	→	Show	Assistant	Editor	(Command-Option-Return).	Also,
by	default,	adding	the	Option	key	to	navigation	opens	an	assistant	pane;	for	example,
Option-click	in	the	Navigator	pane,	or	Option-choose	in	the	jump	bar,	to	navigate	by
opening	an	assistant	pane	(or	to	navigate	in	an	existing	assistant	pane	if	there	is	one).	To
remove	the	assistant	pane,	click	the	first	Editor	button	in	the	toolbar,	or	choose	View	→
Standard	Editor	→	Show	Standard	Editor	(Command-Return),	or	click	the	X	button	at
the	assistant	pane’s	top	right.

You	can	determine	how	assistant	panes	are	to	be	arranged.	To	do	so,	choose	from	the
View	→	Assistant	Editor	submenu.	I	usually	prefer	All	Editors	Stacked	Vertically,	but
it’s	purely	a	matter	of	taste.	Once	you’ve	summoned	an	assistant	pane,	you	can	split	it
further	into	additional	assistant	panes.	To	do	so,	click	the	Plus	button	at	the	top	right	of
an	assistant	pane.	To	dismiss	an	assistant	pane,	click	the	X	button	at	its	top	right.

What	makes	an	assistant	pane	an	assistant,	and	not	just	a	form	of	split-pane	editing,	is
that	it	can	bear	a	special	relationship	to	the	primary	editor	pane.	The	primary	editor
pane	is	the	one	whose	contents,	by	default,	are	determined	by	what	you	click	on	in	the
Navigator	pane;	an	assistant	pane,	meanwhile,	can	respond	to	what	file	is	being	edited
in	the	primary	editor	pane	by	changing	intelligently	what	file	it	(the	assistant	pane)	is
editing.	This	is	called	tracking.	To	configure	the	tracking	behavior	of	an	assistant	pane,
use	the	first	component	in	its	jump	bar	(Control-4).	This	is	the	Tracking	menu;	it’s	like
the	Related	Items	menu	that	I	discussed	a	moment	ago,	but	selecting	a	category
determines	automatic	tracking	behavior.	If	a	category	has	multiple	files,	a	pair	of	arrow
buttons	appears	at	the	right	end	of	the	assistant’s	jump	bar,	with	which	you	can	navigate
between	them	(or	use	the	second	jump	bar	component,	Control-5).	You	can	turn	off
tracking	by	setting	the	assistant’s	first	jump	bar	component	to	Manual.

TIP

If	you	want	to	close	the	assistant	pane	but	continue	to	edit	its	contents	without	any	assistant	pane	present,	move	the
assistant	pane’s	contents	to	the	main	editor	pane	first	(Navigate	→	Open	In	Primary	Editor).

Tabs

You	can	embody	the	entire	project	window	interface	as	a	tab.	To	do	so,	choose	File	→
New	→	Tab	(Command-T),	revealing	the	tab	bar	(just	below	the	toolbar)	if	it	wasn’t
showing	already.	Use	of	a	tabbed	interface	will	likely	be	familiar	from	applications	such
as	Safari.	You	can	switch	between	tabs	by	clicking	on	a	tab,	or	with	Command-Shift-}.
At	first,	your	new	tab	will	look	largely	identical	to	the	original	window	from	which	it
was	spawned.	But	then	you	can	make	changes	in	a	tab	—	change	what	panes	are
showing	or	what	file	is	being	edited,	for	example	—	without	affecting	any	other	tabs.
Thus	you	can	get	multiple	views	of	your	project.	You	can	assign	a	descriptive	name	to	a
tab:	double-click	on	a	tab	name	to	make	it	editable.

Secondary	windows

A	secondary	project	window	is	similar	to	a	tab,	but	it	appears	as	a	separate	window
instead	of	a	tab	in	the	same	window.	To	create	one,	choose	File	→	New	→	Window
(Command-Shift-T).	Alternatively,	you	can	promote	a	tab	to	be	a	window	by	dragging
it	right	out	of	its	current	window.

There	isn’t	a	strong	difference	between	a	tab	and	a	secondary	window;	which	you	use,
and	for	what,	will	be	a	matter	of	taste	and	convenience.	I	find	that	the	advantage	of	a
secondary	window	is	that	you	can	see	it	at	the	same	time	as	the	main	window,	and	that
it	can	be	small.	Thus,	when	I	have	a	file	I	frequently	want	to	refer	to,	I	often	spawn	off	a
secondary	window	displaying	that	file,	sized	fairly	small	and	without	any	panes	other
than	the	editor.

Tabs	and	windows	come	in	handy	in	connection	with	custom	behaviors.	For	example,	as	I
mentioned	before,	it’s	important	to	be	able	to	view	the	console	while	debugging;	I	like	to
see	it	at	the	full	size	of	the	project	window,	but	I	also	want	to	be	able	to	switch	back	to
viewing	my	code.	So	I’ve	created	a	custom	behavior	(click	the	Plus	button	at	the	bottom
of	the	Behaviors	pane	of	the	Preferences	window)	that	performs	two	actions:	Show	tab
named	Console	in	active	window,	and	Show	debugger	with	Console	View.	Moreover,	I’ve
given	that	behavior	a	keyboard	shortcut.	Thus	at	any	time	I	can	press	my	keyboard
shortcut,	and	we	switch	to	the	Console	tab	(creating	it	if	it	doesn’t	exist),	displaying
nothing	but	the	console.	This	is	just	a	tab,	so	I	can	switch	between	it	and	my	code	with
Command-Shift-}.

TIP

There	are	many	ways	to	change	what	appears	in	an	editor,	and	the	navigators	don’t	automatically	stay	in	sync	with
those	changes.	To	select	in	the	Project	navigator	the	file	displayed	in	the	current	editor,	choose	Navigate	→	Reveal	in
Project	Navigator.

The	Project	File	and	Its	Dependents
The	first	item	in	the	Project	navigator	(Command-1)	represents	the	project	itself.	(In	the
Empty	Window	project	that	we	created	earlier	in	this	chapter,	it	is	called	Empty	Window.)
Hierarchically	dependent	upon	it	are	items	that	contribute	to	the	building	of	the	project.
Many	of	these	items,	as	well	as	the	project	itself,	correspond	to	items	on	disk	in	the	project
folder.

To	survey	this	correspondence,	let’s	examine	the	project	folder	in	the	Finder
simultaneously	with	the	Xcode	project	window.	Select	the	project	listing	in	the	Project
navigator	and	choose	File	→	Show	in	Finder.	The	Finder	displays	the	contents	of	your
project	folder	(Figure	6-6).

Figure	6-6.	The	Project	navigator	and	the	project	folder

WARNING

Never,	never,	never	touch	anything	in	a	project	folder	by	way	of	the	Finder,	except	for	double-clicking	the	project	file
to	open	the	project.	Don’t	put	anything	directly	into	a	project	folder.	Don’t	remove	anything	from	a	project	folder.
Don’t	rename	anything	in	a	project	folder.	Don’t	touch	anything	in	a	project	folder!	Do	all	your	interaction	with	the
project	through	the	project	window	in	Xcode.	(When	you’re	an	Xcode	power	user,	you’ll	know	when	you	can	disobey
this	rule.	Until	then,	just	obey	it	blindly.)

The	reason	is	that	the	project	expects	things	in	the	project	folder	to	be	a	certain	way.	If	you	make	any	alterations	to
the	project	folder	directly	in	the	Finder,	behind	the	project’s	back,	you	can	upset	those	expectations	and	break	the
project.	When	you	work	in	the	project	window,	it	is	Xcode	itself	that	makes	any	necessary	changes	in	the	project
folder,	and	all	will	be	well.

The	most	important	thing	in	the	project	folder	is	Empty	Window.xcodeproj.	This	is	the
project	file,	corresponding	to	the	project	listed	in	the	Project	navigator.	All	Xcode’s
knowledge	about	your	project	—	what	files	it	consists	of	and	how	to	build	the	project	—	is
stored	in	this	file.	To	open	a	project	from	the	Finder,	double-click	the	project	file.
Alternatively,	you	can	drag	the	project	folder	onto	Xcode’s	icon	(in	the	Finder,	in	the
Dock,	or	in	the	application	switcher)	and	Xcode	will	locate	the	project	file	and	open	it	for
you;	thus,	you	might	never	need	to	open	the	project	folder	at	all!

Let’s	consider	how	the	groups	and	files	displayed	hierarchically	down	from	the	project	in
the	Project	navigator	correspond	to	reality	on	disk	as	portrayed	in	the	Finder	(Figure	6-6).
Recall	that	group	is	the	technical	term	for	the	folder-like	objects	shown	in	the	Project
navigator:

The	Empty	Window	group	corresponds	directly	to	the	Empty	Window	folder	on	disk.

Groups	in	the	Project	navigator	don’t	necessarily	correspond	to	folders	on	disk	in	the
Finder,	and	folders	on	disk	in	the	Finder	don’t	necessarily	correspond	to	groups	in	the
Project	navigator.	But	in	this	case,	there	is	such	a	correspondence!
Files	within	the	Empty	Window	group,	such	as	AppDelegate.swift,	correspond	to	real
files	on	disk	that	are	inside	the	Empty	Window	folder.	If	you	were	to	create	additional
code	files	(which,	in	real	life,	you	would	almost	certainly	do	in	the	course	of
developing	your	project),	you	would	likely	put	them	in	the	Empty	Window	group	in	the
Project	navigator,	and	they,	too,	would	then	be	in	the	Empty	Window	folder	on	disk.
(That,	however,	is	not	a	requirement;	your	files	can	live	anywhere	and	your	project	will
still	work	fine.)
Two	files	in	the	Empty	Window	group,	Main.storyboard	and	LaunchScreen.storyboard,
appear	in	the	Finder	inside	a	folder	that	doesn’t	visibly	correspond	to	anything	in	the
Project	navigator,	called	Base.lproj.	This	arrangement	has	to	do	with	localization,
which	I’ll	discuss	in	Chapter	9.
The	item	Assets.xcassets	in	the	Project	navigator	corresponds	to	a	specially	structured
folder	Assets.xcassets	on	disk.	This	is	an	asset	catalog;	you	add	resources	to	the	asset
catalog	in	Xcode,	which	maintains	that	folder	on	disk	for	you.	I’ll	talk	more	about	the
asset	catalog	later	in	this	chapter,	and	in	Chapter	9.

You	may	be	tempted	to	find	all	this	confusing.	Don’t!	Remember	what	I	said	about	not
involving	yourself	with	the	project	folder	on	disk	in	the	Finder.	You’ve	seen	it;	you	know
that	it	has	contents;	you	know	that	they	bear	some	relation	to	the	Project	navigator;	now
forget	about	them.	Keep	your	attention	on	the	Project	navigator,	make	your	modifications
to	the	project	there,	and	all	will	be	well.

Feel	free,	as	you	develop	your	project	and	add	files	to	it,	to	add	further	groups	to	the
Project	navigator.	The	purpose	of	groups	is	to	make	the	Project	navigator	work	well	for
you!	They	don’t	affect	how	the	app	is	built,	and	by	default	they	don’t	correspond	to	any
folder	on	disk;	they	are	just	an	organizational	convenience	within	the	Project	navigator.	To
make	a	new	group,	choose	File	→	New	→	Group.	To	rename	a	group,	select	it	in	the
Project	navigator	and	press	Return	to	make	the	name	editable.	For	example,	if	some	of
your	code	files	have	to	do	with	a	login	screen	that	your	app	sometimes	presents,	you	might
clump	them	together	in	a	Login	group.	If	your	app	is	to	contain	some	sound	files,	you
might	put	them	into	a	Sounds	group.	And	so	on.

The	Products	group	and	its	contents	don’t	correspond	to	anything	in	the	project	folder.
Xcode	generates	a	reference	to	the	executable	bundle	generated	by	building	each	target	in
your	project,	and	by	convention	these	references	appear	in	the	Products	group.

Another	conventional	group	is	the	Frameworks	group,	listing	frameworks	on	which	your
code	depends.	Your	code	does	depend	on	some	frameworks,	but	by	default	they	are	not
listed	in	the	Project	navigator,	and	the	Project	navigator	has	no	Frameworks	group,
because	these	frameworks	are	not	explicitly	linked	into	your	build;	instead,	your	code	uses
modules,	which	means	that	the	import	statements	at	the	top	of	your	files	are	sufficient	to
cause	linkage	to	take	place	implicitly.	However,	if	you	were	to	link	explicitly	to	a
framework,	it	would	be	listed	in	the	Project	navigator,	and	you	might	then	create	a
Frameworks	group,	just	to	give	that	listing	a	nice	place	to	live.	I’ll	discuss	frameworks
later	in	this	chapter.

The	Target
A	target	is	a	collection	of	parts	along	with	rules	and	settings	for	how	to	build	a	product
from	them.	Whenever	you	build,	what	you’re	really	building	is	a	target	(possibly	more
than	one	target).

Select	the	Empty	Window	project	at	the	top	of	the	Project	navigator,	and	you’ll	see	two
things	on	the	left	side	of	the	editor	(Figure	6-7):	the	project	itself,	and	a	list	of	your	targets.
Our	Empty	Window	project	comes	with	one	target	—	the	app	target,	called	Empty
Window	(just	like	the	project	itself).	The	app	target	is	the	target	that	you	use	to	build	and
run	your	app.	Its	settings	are	the	settings	that	tell	Xcode	how	your	app	is	to	be	built;	its
product	is	the	app	itself.

Under	certain	circumstances,	you	might	add	further	targets	to	a	project:

You	might	want	to	perform	unit	tests	or	interface	tests;	to	do	so,	you’d	add	a	target.	(I’ll
talk	more	about	testing	in	Chapter	9.)
You	might	write	a	framework	as	part	of	your	iOS	app;	with	a	custom	framework,	you
can	factor	common	code	into	a	single	locus,	and	you	can	configure	its	privacy	details
as	a	namespace.	A	custom	framework	needs	to	be	built,	so	it,	too,	is	a	target.	(I’ll	talk
more	about	frameworks	later	in	this	chapter.)
You	might	write	an	application	extension,	such	as	a	today	extension	(content	to	appear
in	the	notification	center)	or	a	photo	editing	extension	(custom	photo	editing	interface
to	appear	in	the	Photos	app).	Those,	too,	are	targets.

The	project	name	and	the	list	of	targets	can	appear	in	two	ways	(Figure	6-7):	either	as	a
column	on	the	left	side	of	the	editor,	or,	if	that	column	is	collapsed	to	save	space,	as	a	pop-
up	menu	at	the	top	left	of	the	editor.	If,	in	the	column	or	pop-up	menu,	you	select	the
project,	you	edit	the	project;	if	you	select	a	target,	you	edit	the	target.	I’ll	use	those
expressions	a	lot	in	later	instructions.

Figure	6-7.	Two	ways	of	showing	the	project	and	targets

Build	Phases
Edit	the	app	target	and	click	Build	Phases	at	the	top	of	the	editor	(Figure	6-8).	These	are
the	stages	by	which	your	app	is	built.	The	build	phases	are	both	a	report	to	you	on	how	the
target	will	be	built	and	a	set	of	instructions	to	Xcode	on	how	to	build	the	target;	if	you
change	the	build	phases,	you	change	the	build	process.	Click	each	build	phase	to	see	a	list
of	the	files	in	your	target	to	which	that	build	phase	will	apply.

Figure	6-8.	The	app	target’s	build	phases

Two	of	the	build	phases	have	contents.	The	meanings	of	these	build	phases	are	pretty
straightforward:

Compile	Sources

Certain	files	(your	code)	are	compiled,	and	the	resulting	compiled	code	is	copied	into
the	app.

This	build	phase	typically	applies	to	all	of	the	target’s	.swift	files;	those	are	the	code
files	that	constitute	the	target.	Sure	enough,	it	currently	contains	ViewController.swift
and	AppDelegate.swift.	If	you	add	a	new	Swift	file	to	your	project	(typically	in	order	to
declare	another	class),	you’ll	specify	that	it	should	be	part	of	the	app	target,	and	it	will
automatically	be	added	to	the	Compile	Sources	build	phase.

Copy	Bundle	Resources

Certain	files	are	copied	into	the	app,	so	that	your	code	or	the	system	can	find	them	there
when	the	app	runs.

This	build	phase	currently	applies	to	the	asset	catalog;	any	resources	you	add	to	the
asset	catalog	will	be	copied	into	your	app	as	part	of	the	catalog.	It	also	currently	lists
your	launch	storyboard	file,	LaunchScreen.storyboard,	and	your	app’s	interface
storyboard	file,	Main.storyboard.

Copying	doesn’t	necessarily	mean	making	an	identical	copy.	Certain	types	of	file	are
automatically	treated	in	special	ways	as	they	are	copied	into	the	app	bundle.	For
example,	copying	the	asset	catalog	means	that	icons	in	the	catalog	are	written	out	to	the
top	level	of	the	app	bundle,	and	the	asset	catalog	itself	is	transformed	into	a	.car	file;
copying	a	.storyboard	file	means	that	it	is	transformed	into	a	.storyboardc	file,	which	is
itself	a	bundle	containing	nib	files.

You	can	alter	these	lists	manually,	and	sometimes	you	may	need	to	do	so.	For	instance,	if
something	in	your	project,	such	as	a	sound	file,	was	not	in	Copy	Bundle	Resources	and

you	wanted	it	copied	into	the	app	during	the	build	process,	you	would	drag	it	from	the
Project	navigator	into	the	Copy	Bundle	Resources	list,	or	(easier)	click	the	Plus	button
beneath	the	Copy	Bundle	Resources	list	to	get	a	helpful	dialog	listing	everything	in	your
project.	Conversely,	if	something	in	your	project	was	in	Copy	Bundle	Resources	and	you
didn’t	want	it	copied	into	the	app,	you	would	delete	it	from	the	list;	this	would	not	delete	it
from	your	project,	from	the	Project	navigator,	or	from	the	Finder,	but	only	from	the	list	of
things	to	be	copied	into	your	app.

It	is	possible	that	you	might	need	to	alter	the	Link	Binary	With	Libraries	build	phase.
Certain	libraries,	usually	frameworks,	are	linked	to	the	compiled	code	(now	referred	to,
following	compilation,	as	the	binary),	thus	telling	your	code	to	expect	those	libraries	to	be
present	on	the	device	when	the	app	runs.	Our	Empty	Window	project	does	link	to	some
frameworks,	but	it	doesn’t	use	this	build	phase	to	do	it;	instead,	it	imports	the	frameworks
as	modules	and	the	frameworks	are	linked	automatically.	However,	in	some	cases	you
would	need	to	link	the	binary	with	additional	frameworks	explicitly;	I’ll	talk	about	that
later	in	this	chapter.

A	useful	trick	is	to	add	a	Run	Script	build	phase,	which	runs	a	custom	shell	script	late	in
the	build	process.	To	do	so,	choose	Editor	→	Add	Build	Phase	→	Add	Run	Script	Build
Phase.	Open	the	newly	added	Run	Script	build	phase	to	edit	the	custom	shell	script.	A
minimal	shell	script	might	read:

echo	"Running	the	Run	Script	build	phase"

The	“Show	environment	variables	in	build	log”	checkbox	causes	the	build	process’s
environment	variables	and	their	values	to	be	listed	in	the	build	report	during	the	Run
Script	build	phase.	This	alone	can	be	a	reason	to	add	a	Run	Script	build	phase;	you	can
learn	a	lot	about	how	the	build	process	works	by	examining	the	environment	variables.

Build	Settings
Build	phases	are	only	one	aspect	of	how	a	target	knows	how	to	build	the	app.	The	other
aspect	is	build	settings.	To	see	them,	edit	the	target	and	click	Build	Settings	at	the	top	of
the	editor	(Figure	6-9).	Here	you’ll	find	a	long	list	of	settings,	most	of	which	you’ll	never
touch.	Xcode	examines	this	list	in	order	to	know	what	to	do	at	various	stages	of	the	build
process.	Build	settings	are	the	reason	your	project	compiles	and	builds	the	way	it	does.

Figure	6-9.	Target	build	settings

You	can	determine	what	build	settings	are	displayed	by	clicking	Basic	or	All.	The	settings
are	combined	into	categories,	and	you	can	close	or	open	each	category	heading	to	save
room.	If	you	know	something	about	a	setting	you	want	to	see,	such	as	its	name,	you	can
use	the	search	field	at	the	top	right	to	filter	what	settings	are	shown.

You	can	determine	how	build	settings	are	displayed	by	clicking	Combined	or	Levels;	in
Figure	6-9,	I’ve	clicked	Levels,	in	order	to	discuss	what	levels	are.	It	turns	out	that	not
only	does	a	target	contain	values	for	the	build	settings,	but	the	project	also	contains	values
for	the	same	build	settings;	furthermore,	Xcode	has	certain	built-in	default	build	setting
values.	The	Levels	display	shows	all	of	these	levels	at	once,	so	you	can	understand	the
derivation	of	the	actual	values	used	for	every	build	setting.

To	understand	the	chart,	read	from	right	to	left.	For	example,	the	iOS	default	for	the	Build
Active	Architecture	Only	setting’s	Debug	configuration	(far	right)	is	No.	But	then	the
project	comes	along	(second	column	from	the	right)	and	sets	it	to	Yes.	The	target	(third
column	from	the	right)	doesn’t	change	that	setting,	so	the	result	(fourth	column	from	the
right)	is	that	the	setting	resolves	to	Yes.

You	will	rarely	have	occasion	to	manipulate	build	settings	directly,	as	the	defaults	are
usually	acceptable.	Nevertheless,	you	can	change	build	setting	values,	and	this	is	where
you	would	do	so.	You	can	change	a	value	at	the	project	level	or	at	the	target	level.	You	can
select	a	build	setting	and	show	Quick	Help	in	the	Utilities	pane	to	learn	more	about	it.	For
further	details	on	what	the	various	build	settings	are,	consult	Apple’s	documentation,
especially	the	Xcode	Build	Setting	Reference.

Configurations
There	are	actually	multiple	lists	of	build	setting	values	—	though	only	one	such	list
applies	when	a	particular	build	is	performed.	Each	such	list	is	called	a	configuration.
Multiple	configurations	are	needed	because	you	build	in	different	ways	at	different	times
for	different	purposes,	and	thus	you’ll	want	certain	build	settings	to	take	on	different
values	under	different	circumstances.

By	default,	there	are	two	configurations:

Debug

This	configuration	is	used	throughout	the	development	process,	as	you	write	and	run
your	app.

Release

This	configuration	is	used	for	late-stage	testing,	when	you	want	to	check	performance
on	a	device,	and	for	archiving	the	app	to	be	submitted	to	the	App	Store.

Configurations	exist	at	all	because	the	project	says	so.	To	see	where	the	project	says	so,
edit	the	project	and	click	Info	at	the	top	of	the	editor	(Figure	6-10).	Note	that	these
configurations	are	just	names.	You	can	make	additional	configurations,	and	when	you	do,
you’re	just	adding	to	the	list	of	names.	The	importance	of	configurations	emerges	only
when	those	names	are	coupled	with	build	setting	values.	Configurations	can	affect	build
setting	values	both	at	the	project	level	and	at	the	target	level.

Figure	6-10.	Configurations

For	example,	return	to	the	target	build	settings	(Figure	6-9)	and	type	“Optim”	into	the
search	field.	Now	you	can	look	at	the	Optimization	Level	build	setting	(Figure	6-11).	The
Debug	configuration	value	for	Optimization	Level	is	None:	while	you’re	developing	your
app,	you	build	with	the	Debug	configuration,	so	your	code	is	just	compiled	line	by	line	in
a	straightforward	way.	The	Release	configuration	value	for	Optimization	Level	is	Fast;
when	your	app	is	ready	to	ship,	you	build	it	with	the	Release	configuration,	so	the
resulting	binary	is	optimized	for	speed,	which	is	great	for	your	users	running	the	app	on	a
device,	but	would	be	no	good	while	you’re	developing	the	app	because	breakpoints	and
stepping	in	the	debugger	wouldn’t	work	properly.

An	even	better	choice	as	the	Release	configuration	Optimization	Level	setting	might	be
Fast,	Whole	Module	Optimization.	This	allows	the	Swift	compiler	to	survey	all	your	code
files	at	once.	Compilation	may	take	considerably	longer,	but	the	resulting	optimization	can
be	better;	for	example,	the	compiler	may	be	able	to	deduce	that	certain	class	members
don’t	need	dynamic	dispatch,	thus	making	your	code	even	faster.

Figure	6-11.	How	configurations	affect	build	settings

Schemes	and	Destinations
So	far,	I	have	not	said	how	Xcode	knows	which	configuration	to	use	during	a	particular
build.	This	is	determined	by	a	scheme.

A	scheme	unites	a	target	(or	multiple	targets)	with	a	build	configuration,	with	respect	to
the	purpose	for	which	you’re	building.	A	new	project	comes	by	default	with	a	single
scheme,	named	after	the	project.	Thus	the	Empty	Window	project’s	single	scheme	is
currently	called	Empty	Window.	To	see	it,	choose	Product	→	Scheme	→	Edit	Scheme.

The	scheme	editor	dialog	opens	(Figure	6-12).

Figure	6-12.	The	scheme	editor

On	the	left	side	of	the	scheme	editor	are	listed	various	actions	you	might	perform	from	the
Product	menu.	Click	an	action	to	see	its	corresponding	settings	in	this	scheme.

The	first	action,	the	Build	action,	is	different	from	the	other	actions,	because	it	is	common
to	all	of	them	—	the	other	actions	all	implicitly	involve	building.	The	Build	action	merely
determines	what	target(s)	will	be	built	when	each	of	the	other	actions	is	performed.	For
our	project	this	means	that	the	app	target	is	always	to	be	built,	regardless	of	the	action	you
perform.

The	second	action,	the	Run	action,	determines	the	settings	that	will	be	used	when	you
build	and	run.	The	Build	Configuration	pop-up	menu	(in	the	Info	pane)	is	set	to	Debug.
That	explains	where	the	current	build	configuration	comes	from:	at	the	moment,	whenever
you	build	and	run	(Product	→	Run,	or	click	the	Run	button	in	the	toolbar),	you’re	using
the	Debug	build	configuration	and	the	build	setting	values	that	correspond	to	it,	because
you’re	using	this	scheme,	and	that’s	what	this	scheme	says	to	do	when	you	build	and	run.

You	can	edit	an	existing	scheme,	though	it	is	not	likely	that	you	would	need	to	do	so.
Another	possibility	is	that	you	might	create	an	additional	scheme.	One	way	to	do	this	is	by
choosing	Manage	Schemes	from	the	Scheme	pop-up	menu	in	the	project	window	toolbar
(Figure	6-13).

Figure	6-13.	The	Scheme	pop-up	menu

The	Scheme	pop-up	menu	is	something	you’re	going	to	be	using	a	lot.	Your	schemes	are
all	listed	here,	and	thus	you	can	easily	switch	between	them	before	you	build	and	run.
Hierarchically	appended	to	each	scheme	are	the	destinations.	A	destination	is	effectively	a
machine	that	can	run	your	app.	On	any	given	occasion,	you	might	want	to	run	the	app	on	a
physical	device	or	in	the	Simulator	—	and,	if	in	the	Simulator,	you	might	want	to	specify
that	a	particular	type	of	device	should	be	simulated.	To	make	that	choice,	pick	a
destination	in	the	Scheme	pop-up	menu.

Destinations	and	schemes	have	nothing	to	do	with	one	another.	The	presence	of
destinations	in	the	Scheme	pop-up	menu	is	intended	as	a	convenience,	allowing	you	to	use
this	one	pop-up	menu	to	choose	either	a	scheme	or	a	destination,	or	both,	in	a	single	move.
To	switch	easily	among	destinations	without	changing	schemes,	click	the	destination	name
in	the	Scheme	pop-up	menu.	To	switch	among	schemes,	possibly	also	determining	the
destination	(as	shown	in	Figure	6-13),	click	the	scheme	name	in	the	Scheme	pop-up	menu.

Each	simulated	device	has	a	system	version	that	is	installed	on	that	device.	At	the
moment,	all	our	simulated	devices	are	running	iOS	9.0;	thus,	there	is	no	distinction	to	be
drawn,	and	the	system	version	is	not	shown.	However,	you	can	download	additional	SDKs
(systems)	in	Xcode’s	Downloads	preference	pane.	If	you	do,	and	if	your	app	can	run	under
more	than	one	system	version,	you	might	also	see	a	system	version	listed	in	the	Scheme
pop-up	menu	as	part	of	a	Simulator	destination	name.	For	example,	if	you’ve	installed	the
iOS	8.4	SDK,	and	if	your	project’s	deployment	target	(see	Chapter	9)	is	8.0,	the	Scheme
pop-up	menu	in	the	project	window	toolbar	might	say	“iOS	9.0”	or	“iOS	8.4”	after	the
destination	name.

TIP

If	you	have	downloaded	additional	SDKs,	and	if	your	app	is	configured	to	run	on	multiple	systems,	and	you	still
don’t	see,	among	the	destinations,	any	simulated	devices	with	those	systems,	choose	Window	→	Device	to	summon
the	Devices	window.	This	is	where	you	manage	what	simulated	devices	exist.	Here	you	can	create,	delete,	and
rename	simulated	devices,	and	specify	whether	a	simulated	device	actually	appears	as	a	destination	in	the	Scheme
pop-up	menu.

From	Project	to	Running	App
An	app	file	is	really	a	special	kind	of	folder	called	a	package	(and	a	special	kind	of
package	called	a	bundle).	The	Finder	normally	disguises	a	package	as	a	file	and	does	not
dive	into	it	to	reveal	its	contents	to	the	user,	but	you	can	bypass	this	protection	and
investigate	an	app	bundle	with	the	Show	Package	Contents	command.	By	doing	so,	you
can	study	the	internal	structure	of	your	built	app	bundle.

We’ll	use	the	Empty	Window	app	that	we	built	earlier	as	a	sample	minimal	app	to
investigate.	You’ll	have	to	locate	it	in	the	Finder;	by	default,	it	should	be	somewhere	in
your	user	Library/Developer/Xcode/DerivedData	folder,	as	shown	in	Figure	6-14.

Figure	6-14.	The	built	app,	in	the	Finder

In	the	Finder,	Control-click	the	Empty	Window	app,	and	choose	Show	Package	Contents
from	the	contextual	menu.	Here	you	can	see	the	results	of	the	build	process	(Figure	6-15).

Figure	6-15.	Contents	of	the	app	package

Think	of	the	app	bundle	as	a	transformation	of	the	project	folder:

Empty	Window

Our	app’s	compiled	code.	The	build	process	has	compiled	ViewController.swift	and
AppDelegate.swift	into	this	single	file,	our	app’s	binary.	This	is	the	heart	of	the	app,	its
actual	executable	material.	When	the	app	is	launched,	the	binary	is	linked	to	the	various
frameworks,	and	the	code	begins	to	run.	(Later	in	this	chapter,	I’ll	explain	in	detail	what
“begins	to	run”	involves.)

Main.storyboardc

Our	app’s	interface	storyboard	file.	The	project’s	Main.storyboard	is	where	our	app’s
interface	comes	from	—	in	this	case,	an	empty	white	view	occupying	the	entire
window.	The	build	process	has	compiled	Main.storyboard	(using	the	ibtool	command-
line	tool)	into	a	tighter	format,	resulting	in	a	.storyboardc	file,	which	is	actually	a
bundle	of	nib	files	to	be	loaded	as	required	while	the	app	runs.	One	of	these	nib	files,
loaded	as	our	app	launches,	will	be	the	source	of	the	white	view	displayed	in	the
interface.	Main.storyboardc	occupies	the	same	subfolder	location	(inside	Base.lproj)	as
Main.storyboard	does	in	the	project	folder;	as	I	said	earlier,	this	folder	structure	has	to
do	with	localization	(to	be	discussed	in	Chapter	9).

LaunchScreen.storyboardc

Our	app’s	launch	screen	file.	This	file,	the	compiled	version	of
LaunchScreen.storyboard,	contains	the	interface	that	will	be	displayed	briefly	during
the	time	it	takes	for	our	app	to	launch.

Assets.car,	AppIcon60x60@2x.png,	AppIcon60x60@3x.png

An	asset	catalog	and	a	pair	of	icon	files.	In	preparation	for	this	build,	I	added	some	icon
images	and	some	other	image	resources	to	the	original	asset	catalog,	Assets.xcassets.
This	file	has	been	processed	(using	the	actool	command-line	tool),	resulting	in	a
compiled	asset	catalog	file	(.car)	containing	any	resources	that	have	been	added	to	the
catalog.	At	the	same	time,	the	icon	files	have	been	written	out	to	the	top	level	of	the	app
bundle,	where	the	system	can	find	them.

Info.plist

A	configuration	file	in	a	strict	text	format	(a	property	list	file).	It	is	derived	from,	but	is
not	identical	to,	the	project’s	Info.plist.	It	contains	instructions	to	the	system	about	how
to	treat	and	launch	the	app.	For	example,	the	project’s	Info.plist	has	a	calculated	bundle
name	derived	from	the	product	name,	$(PRODUCT_NAME);	in	the	built	app’s	Info.plist,
this	calculation	has	been	performed,	and	the	value	reads	Empty	Window.	Also,	in
conjunction	with	the	asset	catalog	writing	out	our	icon	files	to	the	app	bundle’s	top
level,	a	setting	has	been	added	to	the	built	app’s	Info.plist	telling	the	system	the	name	of
those	icon	files.

Frameworks

A	number	of	frameworks	have	been	added	to	the	built	app.	Our	app	uses	Swift;	these
frameworks	contain	the	entirety	of	the	Swift	language!	Other	frameworks	used	by	our
app	are	built	into	the	system,	but	not	Swift.	This	packaging	of	the	Swift	frameworks
into	the	app	bundle	permits	Apple	to	evolve	the	Swift	language	rapidly	and
independently	of	any	system	version,	and	allows	Swift	to	be	backward	compatible	to
older	systems.	The	downside	is	that	these	frameworks	increase	the	size	of	our	app;	but
this	is	a	small	price	to	pay	for	the	power	and	flexibility	of	Swift.	(Perhaps	in	the	future,
when	the	Swift	language	has	settled	down,	it	will	be	built	into	the	system	instead	of	the
individual	app,	and	Swift-based	apps	will	become	smaller.)

PkgInfo

A	tiny	text	file	reading	APPL????,	signifying	the	type	and	creator	codes	for	this	app.	The
PkgInfo	file	is	something	of	a	dinosaur;	it	isn’t	really	necessary	for	the	functioning	of	an
iOS	app	and	is	generated	automatically.	You’ll	never	need	to	touch	it.

In	real	life,	an	app	bundle	may	contain	more	files,	but	the	difference	will	be	mostly	one	of
degree,	not	kind.	For	example,	our	project	might	have	additional	.storyboard	or	.xib	files,
additional	frameworks,	or	additional	resources	such	as	sound	files.	All	of	these	would
make	their	way	into	the	app	bundle.	In	addition,	an	app	bundle	built	to	run	on	a	device
will	contain	some	security-related	files.

You	are	now	in	a	position	to	appreciate,	in	a	general	sense,	how	the	components	of	a
project	are	treated	and	assembled	into	an	app,	and	what	responsibilities	accrue	to	you,	the
programmer,	in	order	to	ensure	that	the	app	is	built	correctly.	The	rest	of	this	section
outlines	what	goes	into	the	building	of	an	app	from	a	project,	as	well	as	how	the
constituents	of	that	app	are	used	at	launch	time	to	get	the	app	up	and	running.

Build	Settings
We	have	already	talked	about	how	build	settings	are	determined.	Xcode	itself,	the	project,
and	the	target	all	contribute	to	the	resolved	build	setting	values,	some	of	which	may	differ
depending	on	the	build	configuration.	Before	building,	you,	the	programmer,	will	have
specified	a	scheme;	the	scheme	determines	the	build	configuration,	meaning	the	specific
set	of	build	setting	values	that	will	apply	as	this	build	proceeds.

Property	List	Settings
Your	project	contains	a	property	list	file	that	will	be	used	to	generate	the	built	app’s
Info.plist	file.	The	file	in	the	project	does	not	have	to	be	named	Info.plist!	The	app	target
knows	what	file	it	is	because	it	is	specified	in	the	Info.plist	File	build	setting.	For	example,
in	our	project,	the	value	of	the	app	target’s	Info.plist	File	build	setting	has	been	set	to
Empty	Window/Info.plist.	(Take	a	look	at	the	build	settings	and	see!)

The	property	list	file	is	a	collection	of	key–value	pairs.	You	can	edit	it,	and	you	may	need
to	do	so.	There	are	three	main	ways	to	edit	your	project’s	Info.plist:

Select	the	Info.plist	file	in	the	Project	navigator	and	edit	in	the	editor.	By	default,	the
key	names	(and	some	of	the	values)	are	displayed	descriptively,	in	terms	of	their
functionality;	for	example,	it	says	“Bundle	name”	instead	of	the	actual	key,	which	is
CFBundleName.	But	you	can	view	the	actual	keys:	click	in	the	editor	and	then	choose

Editor	→	Show	Raw	Keys	&	Values,	or	use	the	contextual	menu.	
In	addition,	you	can	see	and	edit	the	Info.plist	file	in	its	true	XML	form:	Control-click
the	Info.plist	file	in	the	Project	navigator	and	choose	Open	As	→	Source	Code	from	the
contextual	menu.	(But	editing	an	Info.plist	as	raw	XML	is	risky,	because	if	you	make	a
mistake	you	can	invalidate	the	XML,	causing	things	to	break	with	no	warning.)
Edit	the	target,	and	switch	to	the	Info	pane.	The	Custom	iOS	Target	Properties	section
shows	effectively	the	same	information	as	editing	the	Info.plist	in	the	editor.
Edit	the	target,	and	switch	to	the	General	pane.	Some	of	the	settings	here	are	effectively
ways	of	editing	the	Info.plist.	For	example,	when	you	click	a	Device	Orientation
checkbox	here,	you	are	changing	the	value	of	the	“Supported	interface	orientations”
key	in	the	Info.plist.	(Other	settings	here	are	effectively	ways	of	editing	build	settings.
For	example,	when	you	change	the	Deployment	Target	here,	you	are	changing	the
value	of	the	iOS	Deployment	Target	build	setting.)

Some	values	in	the	project’s	Info.plist	are	processed	to	transform	them	into	their	final
values	in	the	built	app’s	Info.plist.	This	step	is	performed	late	in	the	build	process.	For
example,	the	“Executable	file”	key’s	value	in	the	project’s	Info.plist	is
$(EXECUTABLE_NAME);	for	this	will	be	substituted	the	value	of	the	EXECUTABLE_NAME	build
environment	variable	(which,	as	I	mentioned	earlier,	you	can	discover	by	means	of	a	Run
Script	build	phase).	Also,	some	additional	key–value	pairs	are	injected	into	the	Info.plist
during	processing.

For	a	complete	list	of	the	possible	keys	and	their	meanings,	consult	Apple’s	document
Information	Property	List	Key	Reference.	I’ll	talk	more	in	Chapter	9	about	Info.plist
settings	that	you’re	particularly	likely	to	edit.

Nib	Files
A	nib	file	is	a	description	of	a	piece	of	user	interface	in	a	compiled	format	contained	in	a
file	with	the	extension	.nib.	Every	app	that	you	write	is	likely	to	contain	at	least	one	nib
file.	You	prepare	these	nib	files	by	editing	a	.storyboard	or	.xib	file	graphically	in	Xcode;
in	effect,	you	are	designing	some	objects	that	you	want	instantiated	when	the	app	runs	and
the	nib	file	loads.

A	nib	file	is	generated	during	the	build	process	by	compilation	(using	the	ibtool
command-line	tool)	either	from	a	.xib	file,	which	results	in	a	single	nib	file,	or	from	a
.storyboard	file,	which	results	in	a	.storyboardc	bundle	containing	multiple	nib	files.	This
compilation	takes	place	by	virtue	of	the	.storyboard	or	.xib	file	being	listed	in	the	app
target’s	Copy	Bundle	Resources	build	phase.

Our	Empty	Window	project	generated	from	the	Single	View	Application	template	contains
an	interface	.storyboard	file	called	Main.storyboard.	This	one	file	is	subject	to	special
treatment	as	the	app’s	main	storyboard,	not	because	of	its	name,	but	because	it	is	pointed
to	in	the	Info.plist	file	by	the	key	“Main	storyboard	file	base	name”
(UIMainStoryboardFile),	using	its	name	(“Main”)	without	the	.storyboard	extension	—
edit	the	Info.plist	file	and	see!	The	result	is	that	as	the	app	launches,	the	first	nib	generated
from	this	.storyboard	file	is	loaded	automatically	to	help	create	the	app’s	initial	interface.

I’ll	talk	more	about	the	app	launch	process	and	the	main	storyboard	later	in	this	chapter.
See	Chapter	7	for	more	about	editing	.storyboard	and	.xib	files	and	how	they	create

instances	when	your	code	runs.

Additional	Resources
Resources	are	ancillary	files	embedded	in	your	app	bundle,	to	be	fetched	as	needed	when
the	app	runs,	such	as	images	you	want	to	display	or	sounds	you	want	to	play.	A	real-life
app	is	likely	to	involve	many	such	additional	resources.	Making	such	resources	available
when	your	app	runs	will	usually	be	up	to	your	code	(or	to	the	code	implied	by	the	loading
of	a	nib	file):	basically,	the	runtime	simply	reaches	into	your	app	bundle	and	pulls	out	the
desired	resource.	In	effect,	your	app	bundle	is	being	treated	as	a	folder	full	of	extra	stuff.

There	are	two	places	to	add	resources	to	your	project,	corresponding	to	two	different
places	where	they	will	end	up	in	your	app	bundle:

The	Project	navigator

If	you	add	a	resource	to	the	Project	navigator,	also	ensuring	that	it	appears	in	the	Copy
Bundle	Resources	build	phase,	it	is	copied	by	the	build	process	to	the	top	level	of	your
app	bundle.	In	Figure	6-15,	that’s	the	same	level	as	the	icon	image	files,	such	as
AppIcon60x60@2x.png.

An	asset	catalog

If	you	add	a	resource	to	an	asset	catalog,	then	when	the	asset	catalog	is	copied	and
compiled	by	the	build	process	to	the	top	level	of	your	app	bundle	(like	Assets.car	in
Figure	6-15),	the	resource	will	be	inside	it.

I’ll	describe	both	ways	of	adding	resources	to	your	project.

Resources	in	the	Project	navigator

To	add	a	resource	to	your	project	through	the	Project	navigator,	choose	File	→	Add	Files
to	[Project],	or	drag	the	resource	from	the	Finder	into	the	Project	navigator.	A	dialog
appears	(Figure	6-16)	in	which	you	make	the	following	settings:

Figure	6-16.	Options	when	adding	a	resource	to	a	project

Destination

You	should	almost	certainly	check	this	checkbox	(“Copy	items	if	needed”).	Doing	so
causes	the	resource	to	be	copied	into	the	project	folder.	If	you	leave	this	checkbox
unchecked,	your	project	will	be	relying	on	a	file	that’s	outside	the	project	folder,	where
you	might	delete	or	change	it	unintentionally.	Keeping	everything	your	project	needs
inside	the	project	folder	is	far	safer.

Added	folders

This	choice	matters	only	if	what	you’re	adding	to	the	project	is	a	folder;	the	difference
is	in	how	the	project	references	the	folder	contents:

Create	groups

The	folder	name	becomes	the	name	of	an	ordinary	group	within	the	Project
navigator;	the	folder	contents	appear	in	this	group,	but	they	are	listed	individually	in
the	Copy	Bundle	Resources	build	phase,	so	by	default	they	will	all	be	copied
individually	into	the	top	level	of	the	app	bundle.

Create	folder	references

The	folder	is	shown	in	blue	in	the	Project	navigator	(a	folder	reference);	moreover,	it
is	listed	as	a	folder	in	the	Copy	Bundle	Resources	build	phase,	meaning	that	the	build
process	will	copy	the	entire	folder	and	its	contents	into	the	app	bundle.	This	means
that	the	resources	inside	the	folder	won’t	be	at	the	top	level	of	the	app	bundle,	but	in
a	subfolder	within	it.	Such	an	arrangement	can	be	valuable	if	you	have	many
resources	and	you	want	to	separate	them	into	categories	(rather	than	clumping	them
all	at	the	top	level	of	the	app	bundle)	or	if	the	folder	hierarchy	among	resources	is
meaningful	to	your	app.	The	downside	of	this	arrangement	is	that	the	code	you	write
for	accessing	a	resource	will	have	to	be	specific	about	what	subfolder	of	the	app
bundle	contains	that	resource.

Add	to	targets

Checking	the	checkbox	for	a	target	causes	the	resource	to	be	added	to	that	target’s	Copy
Bundle	Resources	build	phase.	Thus	you	will	almost	certainly	want	to	check	it	for	the
app	target;	why	else	would	you	be	adding	this	resource	to	the	project?	If	this	checkbox
accidentally	goes	unchecked	and	you	realize	later	that	a	resource	listed	in	the	Project
navigator	needs	to	be	added	to	the	Copy	Bundle	Resources	build	phase	for	a	particular
target,	you	can	add	it	manually,	as	I	described	earlier.

Resources	in	an	asset	catalog

Prior	to	Xcode	7,	asset	catalogs	were	intended	only	for	image	files.	Other	resources,	such
as	sound	files,	could	be	added	only	in	the	Project	navigator.	New	in	Xcode	7,	asset
catalogs	can	accommodate	any	kind	of	data	file.	Asset	catalogs	also	allow	you	to	specify
different	versions	of	a	resource	to	be	supplied	for	different	hardware	configurations	—	the
device’s	screen	resolution,	for	example	(in	the	case	of	an	image),	or	iPhone	vs.	iPad	(for
any	type	of	resource).

In	the	case	of	image	files,	asset	catalogs	allow	you	to	draw	easily	a	distinction	that
otherwise	would	depend	upon	special	conventions	involving	the	name	of	the	image	file.
For	example,	because	iOS	9	can	run	on	single-resolution,	double-resolution,	and	triple-
resolution	devices,	you	need	up	to	three	sizes	of	every	image.	In	order	to	work	properly
with	the	framework’s	image-loading	methods,	such	resources	employ	a	special	naming
convention	—	for	example,	listen.png,	listen@2x.png,	and	listen@3x.png.	The	resulting
proliferation	of	image	files	in	the	Project	navigator	can	be	overwhelming	and	error-prone.
Asset	catalogs	alleviate	the	problem.

Instead	of	tediously	naming	the	multiple	versions	of	listen.png	manually	as	I	add	them	to
my	project,	I	can	let	an	asset	catalog	help	me.	I	edit	the	asset	catalog,	click	the	Plus	button

at	the	bottom	of	the	first	column,	and	choose	New	Image	Set.	The	result	is	an	image	set
called	Image	with	slots	for	three	images	at	three	different	sizes.	I	drag	the	images	from	the
Finder	into	their	proper	slots.	The	names	of	the	original	image	files	don’t	matter!	The
images	are	automatically	copied	into	the	project	folder	(inside	the	asset	catalog	folder),
and	there	is	no	need	for	me	to	specify	the	target	membership	of	these	image	files,	because
they	are	part	of	an	asset	catalog	which	already	has	correct	target	membership.	I	can
rename	the	image	set	to	something	more	descriptive	than	Image	—	let’s	call	it	listen.	The
result	is	that	my	code	can	now	load	the	correct	image	for	the	current	screen	resolution	by
referring	to	it	as	"listen",	without	regard	to	the	original	name	(or	extension)	of	the
images.

TIP

The	image	entries	in	an	asset	catalog	can	be	inspected	by	selecting	an	image	and	using	the	Attributes	inspector
(Command-Option-4).	This	shows	the	original	name	and	(more	important)	the	pixel	size	of	the	image.

New	in	Xcode	7,	a	parallel	procedure	applies	to	resources	of	other	kinds.	Let’s	say	I	want
to	add	to	my	app	bundle	a	sound	file	called	Theme.mp3.	I	edit	the	asset	catalog,	click	the
Plus	button,	and	choose	New	Data	Set.	A	data	set	called	Data	appears,	with	a	single
Universal	slot	into	which	I	can	now	drag	my	sound	file.	I	rename	the	data	set	—	let’s	call
it	theme	—	and	now	my	code	can	access	this	resource	by	the	name	"theme"	(by	means	of
the	NSDataAsset	class,	new	in	iOS	9).

Moreover,	folders	in	the	asset	catalog	can	be	used	to	provide	namespaces:	for	example,	if
my	theme	data	set	is	inside	an	asset	catalog	folder	called	music,	and	if	I’ve	checked
Provides	Namespace	in	the	Attributes	inspector	for	that	folder,	then	the	data	set	can	be
accessed	by	the	name	"music/theme".

Thus,	the	sheer	organizational	convenience	of	asset	catalogs	is,	all	by	itself,	an	incentive
to	use	them,	rather	than	cluttering	the	Project	navigator	and	the	app	bundle’s	top	level	with
resource	files.

TIP

New	in	Xcode	7,	resources	in	your	app	can	be	stored	on	Apple’s	servers	instead	of	being	included	in	the	app	bundle
that	the	user	downloads	initially	from	the	App	Store.	Your	code	subsequently	downloads,	in	the	background,	any
stored	resources	that	the	user	is	likely	to	need,	and	can	purge	them	when	they	are	no	longer	needed.	For	more
information,	see	Apple’s	On-Demand	Resources	Guide.

Code	Files	and	the	App	Launch	Process
The	build	process	knows	what	code	files	to	compile	to	form	the	app’s	binary	because	they
are	listed	in	the	app	target’s	Compile	Sources	build	phase.	In	the	case	of	our	Empty
Window	project,	these	are	ViewController.swift	and	AppDelegate.swift.	As	development	of
your	app	proceeds,	you	will	probably	add	further	code	files	to	the	project,	and	you	will
ensure	that	they	are	part	of	the	target	and	thus	that	they,	too,	are	listed	in	its	Compile
Sources	build	phase.	What	typically	happens	is	that	you	want	to	add	a	new	object	type
declaration	to	your	code;	you	will	often	do	so	by	adding	a	new	file	to	the	project,	because
this	makes	your	object	type	declaration	easier	to	find,	and	because	Swift	privacy	depends
upon	code	being	isolated	in	individual	files	(Chapter	5).

When	you	choose	File	→	New	→	File	to	create	a	new	file,	you	can	specify	either	the

Cocoa	Touch	Class	template	or	the	Swift	File	template.	The	Swift	File	template	is	little
more	than	a	blank	file:	it	imports	the	Foundation	framework	and	that’s	all.	If	your	goal	is
to	subclass	a	Cocoa	class,	the	Cocoa	Touch	Class	template	will	usually	be	more	suitable;	it
imports	the	UIKit	framework,	plus	Xcode	will	write	the	initial	class	declaration	for	you,
and	in	the	case	of	some	commonly	subclassed	superclasses,	such	as	UIViewController	and
UITableViewController,	it	even	provides	stub	declarations	of	some	of	that	class’s	methods.

When	the	app	launches,	the	system	knows	where	to	find	the	binary	inside	the	app’s	bundle
because	the	app	bundle’s	Info.plist	file	has	an	“Executable	file”	key
(CFBundleExecutable)	whose	value	is	the	name	of	the	binary;	by	default,	the	binary’s
name	comes	from	the	EXECUTABLE_NAME	environment	variable	(such	as	“Empty
Window”).

The	entry	point

The	trickiest	part	of	the	app	launch	process	is	getting	started.	Having	located	and	loaded
the	binary,	the	system	must	call	into	it.	But	where?	If	this	app	were	an	Objective-C
program,	the	answer	would	be	clear.	Objective-C	is	C,	so	the	entry	point	is	the	main
function.	Our	project	would	have	a	main.m	file	containing	the	main	function,	like	this:

int	main(int	argc,	char	*argv[])	{

				@autoreleasepool	{

								return	UIApplicationMain(argc,	argv,	nil,

												NSStringFromClass([AppDelegate	class]));

				}

}

The	main	function	does	just	two	things:

It	sets	up	a	memory	management	environment	—	the	@autoreleasepool	and	the	curly
braces	that	follow	it.
It	calls	the	UIApplicationMain	function,	which	does	the	heavy	lifting	of	helping	your
app	pull	itself	up	by	its	bootstraps	and	get	running.

Our	app,	however,	is	a	Swift	program.	It	has	no	main	function!	Instead,	Swift	has	a	special
attribute:	@UIApplicationMain.	If	you	look	in	the	AppDelegate.swift	file,	you	can	see	it,
attached	to	the	declaration	of	the	AppDelegate	class:

@UIApplicationMain

class	AppDelegate:	UIResponder,	UIApplicationDelegate	{

This	attribute	essentially	does	everything	that	the	Objective-C	main.m	file	was	doing:	it
creates	an	entry	point	that	calls	UIApplicationMain	to	get	the	app	started.

Under	certain	circumstances,	you	might	like	to	remove	the	@UIApplicationMain	attribute
and	substitute	a	main	file.	You	are	free	to	do	this.	Your	file	can	be	an	Objective-C	file	or	a
Swift	file.	Let’s	say	it’s	to	be	a	Swift	file.	You	would	create	a	main.swift	file	and	make
sure	it	is	added	to	the	app	target.	The	name	is	crucial,	because	a	file	called	main.swift	gets
a	special	dispensation:	it	is	allowed	to	put	executable	code	at	the	top	level	of	the	file.	The
file	should	contain	essentially	the	Swift	equivalent	of	the	Objective-C	call	to
UIApplicationMain,	like	this:

import	UIKit

UIApplicationMain(

				Process.argc,	Process.unsafeArgv,	nil,	NSStringFromClass(AppDelegate))

Why	might	you	do	that	sort	of	thing?	Presumably,	it	would	be	because	you	want	to	do

other	things	in	the	main.swift	file,	or	because	you	want	to	customize	the	call	to
UIApplicationMain.

UIApplicationMain

Regardless	of	whether	you	write	your	own	main.swift	file	or	you	rely	on	the	Swift
@UIApplicationMain	attribute,	you	are	calling	UIApplicationMain.	This	one	function	call
is	the	primary	thing	your	app	does.	Your	entire	app	is	really	nothing	but	a	single	gigantic
call	to	UIApplicationMain!	Moreover,	UIApplicationMain	is	responsible	for	solving
some	tricky	problems	as	your	app	gets	going.	Where	will	your	app	get	its	initial	instances?
What	instance	methods	will	initially	be	called	on	those	instances?	Where	will	your	app’s
initial	interface	come	from?	Let’s	pause	to	understand	what	UIApplicationMain	does:

1.	 UIApplicationMain	creates	your	app’s	first	instance	—	the	shared	application
instance,	which	subsequently	is	to	be	accessible	in	code	by	calling
UIApplication.sharedApplication().	The	third	argument	in	the	call	to
UIApplicationMain	specifies,	as	a	string,	what	class	the	shared	application	instance
should	be	an	instance	of.	If	this	argument	is	nil,	which	will	usually	be	the	case,	the
default	class	is	UIApplication.	If,	however,	you	needed	to	subclass	UIApplication,
you	would	specify	that	subclass	here,	by	substituting	an	explicit	value,	such	as
NSStringFromClass(MyApplicationSubclass)	(depending	on	what	the	subclass	is
called)	as	the	third	argument	in	the	call	to	UIApplicationMain.

2.	 UIApplicationMain	also	creates	your	app’s	second	instance	—	the	application
instance’s	delegate.	Delegation	is	an	important	and	pervasive	Cocoa	pattern,
described	in	detail	in	Chapter	11.	It	is	crucial	that	every	app	you	write	have	an	app
delegate	instance.	The	fourth	argument	in	the	call	to	UIApplicationMain	specifies,
as	a	string,	what	class	the	app	delegate	instance	should	be.	In	our	manual	version	of
main.swift,	that	specification	is	NSStringFromClass(AppDelegate).	If	we	use	the
@UIApplicationMain	attribute,	that	attribute	is	attached,	by	default,	to	the
AppDelegate	class	declaration	in	AppDelegate.swift;	the	attribute	means:	“This	is	the
application	delegate	class!”

3.	 If	the	Info.plist	file	specifies	a	main	storyboard	file,	UIApplicationMain	loads	it	and
looks	inside	it	to	find	the	view	controller	that	is	designated	as	this	storyboard’s	initial
view	controller	(or	storyboard	entry	point);	it	instantiates	this	view	controller,	thus
creating	your	app’s	third	instance.	In	the	case	of	our	Empty	Window	project,	as
constructed	for	us	from	the	Single	View	Application	template,	that	view	controller
will	be	an	instance	of	the	class	called	ViewController;	the	code	file	defining	this
class,	ViewController.swift,	was	also	created	by	the	template.

4.	 If	there	was	a	main	storyboard	file,	UIApplicationMain	now	creates	your	app’s
window	—	this	is	your	app’s	fourth	instance,	an	instance	of	UIWindow	(or	your	app
delegate	can	substitute	an	instance	of	a	UIWindow	subclass).	It	assigns	this	window
instance	as	the	app	delegate’s	window	property;	it	also	assigns	the	initial	view
controller	instance	as	the	window	instance’s	rootViewController	property.	This
view	is	now	the	app’s	root	view	controller.

5.	 UIApplicationMain	now	turns	to	the	app	delegate	instance	and	starts	calling	some
of	its	code,	such	as	application:didFinishLaunchingWithOptions:.	This	is	an
opportunity	for	your	own	code	to	run!
application:didFinishLaunchingWithOptions:	is	a	good	place	to	put	your	code

that	initializes	values	and	performs	startup	tasks;	but	you	don’t	want	anything	time-
consuming	to	happen	here,	because	your	app’s	interface	still	hasn’t	appeared.

6.	 If	there	was	a	main	storyboard,	UIApplicationMain	now	causes	your	app’s	interface
to	appear.	It	does	this	by	calling	the	UIWindow	instance	method
makeKeyAndVisible.

7.	 The	window	is	now	about	to	appear.	This,	in	turn,	causes	the	window	to	turn	to	the
root	view	controller	and	tell	it	to	obtain	its	main	view,	which	will	occupy	and	appear
in	the	window.	If	this	view	controller	gets	its	view	from	a	.storyboard	or	.xib	file,
that	view	nib	file	is	now	loaded;	its	objects	are	instantiated	and	initialized,	and	they
become	the	objects	of	the	initial	interface:	the	view	is	placed	into	the	window,	where
it	and	its	subviews	are	visible	to	the	user.	Your	view	controller’s	viewDidLoad	is	also
called	at	this	time	—	another	early	opportunity	for	your	code	to	run.

The	app	is	now	launched	and	running!	It	has	an	initial	set	of	instances	—	at	a	minimum,
the	shared	application	instance,	the	window,	the	initial	view	controller,	and	the	initial	view
controller’s	view	and	whatever	interface	objects	it	contains.	Some	of	your	code	has	run,
and	we	are	now	off	to	the	races:	UIApplicationMain	is	still	running	(like	Charlie	on	the
M.T.A.,	UIApplicationMain	never	returns),	and	is	just	sitting	there,	watching	for	the	user
to	do	something,	maintaining	the	event	loop,	which	will	respond	to	user	actions	as	they
occur.

App	without	a	storyboard

In	my	description	of	the	app	launch	process,	I	used	several	times	the	phrase	“if	there	is	a
main	storyboard.”	In	the	Xcode	7	app	templates,	such	as	the	Single	View	Application
template	that	we	used	to	generate	the	Empty	Window	project,	there	is	a	main	storyboard.
It	is	possible,	though,	not	to	have	a	main	storyboard.	In	that	case,	things	like	creating	a
window	instance,	giving	it	a	root	view	controller,	assigning	it	to	the	app	delegate’s	window
property,	and	calling	makeKeyAndVisible	on	the	window	to	show	the	interface,	must	be
done	by	your	code.

To	see	what	I	mean,	make	a	new	iPhone	project	starting	with	the	Single	View	Application
template;	let’s	call	it	Truly	Empty.	Now	follow	these	steps:

1.	 Edit	the	target.	In	the	General	pane,	select	“Main”	in	the	Main	Interface	field	and
delete	it	(and	press	Tab	to	set	this	change).

2.	 Delete	Main.storyboard	and	ViewController.swift	from	the	project.
3.	 Select	and	delete	the	entire	code	content	of	AppDelegate.swift.

You	now	have	a	project	with	an	app	target	but	no	storyboard	and	no	code!	To	make	a
minimal	working	app,	you	need	to	edit	AppDelegate.swift	in	such	a	way	as	to	recreate	the
AppDelegate	class	with	just	enough	code	to	create	and	show	the	window,	as	shown	in
Example	6-1.

Example	6-1.	An	App	Delegate	class	with	no	storyboard
import	UIKit

@UIApplicationMain

class	AppDelegate	:	UIResponder,	UIApplicationDelegate	{

				var	window	:	UIWindow?

				func	application(application:	UIApplication,

								didFinishLaunchingWithOptions	launchOptions:	[NSObject:	AnyObject]?)

								->	Bool	{

												self.window	=	UIWindow()

												self.window!.rootViewController	=	UIViewController()

												self.window!.backgroundColor	=	UIColor.whiteColor()

												self.window!.makeKeyAndVisible()

												return	true

				}

}

The	result	is	a	minimal	working	app	with	an	empty	white	window;	you	can	prove	to
yourself	that	your	code	is	creating	the	window	by	changing	the	value	assigned	to	the
window’s	backgroundColor	to	something	else	(such	as	UIColor.redColor())	and	running
the	app	again.

This	is	a	working	app,	but	it’s	kind	of	useless.	It	doesn’t	do	anything,	and	it	can’t	really	do
much	of	anything,	because	its	root	view	controller	is	a	generic	UIViewController.	What
we	need	here	is	an	instance	of	our	own	view	controller	—	one	that	can	contain	our	own
code,	with	a	view	that	we	can	configure	in	a	nib.	So	let’s	now	make	a	UIViewController
subclass	along	with	a	.xib	file	containing	its	view:

1.	 Choose	File	→	New	→	File.	In	the	“Choose	a	template”	dialog,	under	iOS,	click
Source	on	the	left	and	select	Cocoa	Touch	Class.	Click	Next.

2.	 Name	the	class	MyViewController	and	specify	that	it	is	a	subclass	of
UIViewController.	Check	the	“Also	create	XIB	file”	checkbox!	Specify	Swift	as	the
language.	Click	Next.

3.	 The	Save	dialog	appears.	Make	sure	you	are	saving	into	the	Truly	Empty	folder,	that
the	Group	pop-up	menu	is	set	to	Truly	Empty	as	well,	and	that	the	Truly	Empty
target	is	checked	—	we	want	these	files	to	be	part	of	the	app	target.	Click	Create.	
Xcode	has	created	two	files	for	us:	MyViewController.swift,	defining
MyViewController	as	a	subclass	of	UIViewController,	and	MyViewController.xib,
the	source	of	the	nib	from	which	a	MyViewController	instance	will	obtain	its	view.

4.	 Now	go	back	to	the	app	delegate’s
application:didFinishLaunchingWithOptions:,	in	AppDelegate.swift,	and	change
the	root	view	controller’s	class	to	MyViewController,	associating	it	with	its	nib,	like
this:

self.window!.rootViewController	=

				MyViewController(nibName:"MyViewController",	bundle:nil)

We	have	now	created	a	perfectly	usable	minimal	app	project	without	a	storyboard.	Our
code	does	some	of	the	work	that	is	done	automatically	by	UIApplicationMain	when	there
is	a	main	storyboard:	we	instantiate	UIWindow,	we	set	the	window	instance	as	the	app
delegate’s	window	property,	we	instantiate	an	initial	view	controller,	we	set	that	view
controller	instance	as	the	window’s	rootViewController	property,	and	we	cause	the
window	to	appear.	Moreover,	the	appearance	of	the	window	automatically	causes	the
MyViewController	instance	to	fetch	its	view	from	the	nib	that	has	been	compiled	from
MyViewController.xib;	thus,	we	can	use	MyViewController.xib	to	customize	the	app’s
initial	interface.	Besides	illustrating	explicitly	what	it	is	that	UIApplicationMain	does	for
you	implicitly,	this	is	also	a	perfectly	reasonable	way	to	construct	an	app.

Frameworks	and	SDKs
A	framework	is	a	library	of	compiled	code	used	by	your	code.	Most	of	the	frameworks
you	are	likely	to	use	when	programming	iOS	will	be	Apple’s	built-in	frameworks.	These
frameworks	are	already	part	of	the	system	on	the	device	where	your	app	will	run;	they	live

in	/System/Library/Frameworks	on	the	device,	though	you	can’t	tell	that	on	an	iPhone	or
iPad	because	there’s	no	way	(normally)	to	inspect	the	file	hierarchy	directly.

Your	compiled	code	also	needs	to	be	connected	to	those	frameworks	when	the	project	is
being	built	and	run	on	your	computer.	To	make	this	possible,	the	iOS	device’s
System/Library/Frameworks	is	duplicated	on	your	computer,	inside	Xcode	itself.	This
duplicated	subset	of	the	device’s	system	is	called	an	SDK	(for	“software	development
kit”).	Which	SDK	is	used	depends	upon	what	destination	you’re	building	for.

Linking	is	the	process	of	hooking	up	your	compiled	code	with	the	frameworks	that	it
needs,	even	though	those	frameworks	are	in	one	place	at	build	time	and	in	another	place	at
runtime.	Thus,	for	example:

When	you	build	your	code	to	run	on	a	device

A	copy	of	any	needed	frameworks	is	used.	This	copy	lives	in
System/Library/Frameworks	inside	the	iPhone	SDK,	which	is	located	at
Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform/Developer/SDKs/iPhoneOS.sdk

When	your	code	runs	on	a	device

The	code,	as	it	starts	running,	looks	in	the	device’s	top-level
/System/Library/Frameworks	folder	for	the	frameworks	that	it	needs.

Used	in	this	way,	the	frameworks	are	part	of	an	ingenious	mechanism	whereby	Apple’s
code	is	effectively	incorporated	dynamically	into	your	app	when	the	app	runs.	The
frameworks	are	the	locus	of	all	the	stuff	that	every	app	might	need	to	do;	they	are	Cocoa.
That’s	a	lot	of	stuff,	and	a	lot	of	compiled	code.	Your	app	gets	to	share	in	the	goodness	and
power	of	the	frameworks	because	it	is	linked	to	them.	Your	code	works	as	if	the
framework	code	were	incorporated	into	it.	Yet	your	app	is	relatively	tiny;	it’s	the
frameworks	that	are	huge.

Linking	takes	care	of	connecting	your	compiled	code	to	any	needed	frameworks,	but	it
isn’t	sufficient	to	allow	your	code	to	compile	in	the	first	place.	The	frameworks	are	full	of
classes	(such	as	NSString)	and	methods	(such	as	rangeOfString:)	that	your	code	will
call.	To	satisfy	the	compiler,	the	frameworks	publish	their	API	in	header	files,	which	your
code	can	import.	Thus,	for	example,	your	code	can	speak	of	NSString	and	can	call
rangeOfString:	because	it	imports	the	NSString	header.	Actually,	what	your	code	imports
is	the	UIKit	header,	which	in	turn	imports	the	Foundation	header,	which	in	turn	imports
the	NSString	header.	And	you	can	see	this	happening	at	the	top	of	any	of	your	own	code’s
header	files:

import	UIKit

If	you	Command-click	UIKit,	you	are	taken	to	Swift’s	rendering	of	the	UIKit	header.
There	at	the	top	is	import	Foundation.	If	you	look	at	the	Foundation	header	and	scroll
down,	you’ll	see	import	Foundation.NSString.	And	if	you	look	in	the	NSString	header,
you’ll	see	the	declaration	of	the	rangeOfString:	method.

Thus,	using	a	framework	is	a	two-part	process:

Import	the	framework’s	header

Your	code	needs	this	information	in	order	to	compile	successfully.	Your	code	imports	a
framework’s	header	by	using	the	import	keyword,	specifying	either	that	framework	or	a
framework	that	itself	imports	the	desired	framework.	In	Swift,	you	specify	a	framework
by	using	its	module	name.

Link	to	the	framework

The	compiled	executable	binary	needs	to	be	connected	to	the	frameworks	it	will	use
while	running,	effectively	incorporating	the	compiled	code	from	those	frameworks.	As
your	code	is	built,	it	is	linked	to	any	needed	frameworks,	in	accordance	with	the	list	of
frameworks	in	the	target’s	Link	Binary	With	Libraries	build	phase.

Our	project,	however,	does	not	do	any	explicit	linking.	If	you	look	in	the	app	target’s	Link
Binary	With	Libraries	build	phase,	it	is	empty.	This	is	because	Swift	uses	modules,	and
modules	can	perform	autolinking.	In	Objective-C,	both	those	features	are	optional,	and	are
governed	by	build	settings.	But	in	Swift,	use	of	modules	and	autolinking	is	automatic.

Modules	are	cached	information	stored	on	your	computer	at
Library/Developer/Xcode/DerivedData/ModuleCache.	Merely	opening	a	Swift	project
causes	any	imported	modules	to	be	cached	here.	If	you	drill	down	into	the	ModuleCache
folder,	you’ll	see	the	modules	for	over	a	dozen	frameworks	and	headers	(.pcm	files).
Swift’s	use	of	modules	simplifies	the	importing	and	linking	process,	and	improves
compilation	times.

Modules	are	ingenious	and	convenient,	but	it	is	sometimes	necessary	to	link	to	a
framework	manually.	For	example,	let’s	say	you	want	to	use	an	MKMapView	(Map	Kit
View)	in	your	interface.	You	can	configure	this	in	a	.storyboard	or	.xib	file,	but	when	you
build	and	run	your	app,	it	crashes,	complaining:	“Could	not	instantiate	class	named
MKMapView.”	The	reason	is	that	the	nib,	as	it	loads,	finds	that	it	contains	an
MKMapView	but	doesn’t	know	what	an	MKMapView	is.	MKMapView	is	defined	in	the
MapKit	framework,	but	the	nib	doesn’t	know	that.

Adding	import	MapKit	at	the	top	of	your	code	doesn’t	solve	the	problem;	you	need	to	do
that	if	your	code	wants	to	talk	to	the	MKMapView,	but	it	doesn’t	help	the	nib	understand
what	an	MKMapView	is	when	it	loads.	The	solution	is	to	link	to	the	MapKit	framework
manually:

1.	 Edit	the	target	and	look	at	the	Build	Phases	pane.
2.	 Under	Link	Binary	With	Libraries,	click	the	Plus	button.
3.	 A	list	of	available	frameworks	appears	(along	with	dynamic	libraries).	Scroll	down

to	MapKit.framework,	select	it,	and	click	Add.

This	solves	the	problem;	your	app	now	builds	and	runs.

You	can	also	create	your	own	framework	as	part	of	your	project.	A	framework	is	a
module,	so	this	can	be	a	useful	way	to	structure	your	code,	as	I	described	in	Chapter	5
when	discussing	Swift	privacy.	To	make	a	new	framework:

1.	 Edit	the	target	and	choose	Editor	→	Add	Target.
2.	 On	the	left	of	the	dialog,	under	iOS,	select	Framework	&	Library;	on	the	right,	select

Cocoa	Touch	Framework.	Click	Next.
3.	 Give	your	framework	a	name;	let’s	call	it	Coolness.	You	can	pick	a	language,	but

I’m	not	sure	this	makes	any	difference,	as	no	code	files	will	be	created.	The	Project
and	Embed	in	Application	pop-up	menus	should	be	correctly	set	by	default.	Click
Finish.

A	new	Coolness	framework	target	is	created	in	your	project.	If	you	now	add	a	.swift	file	to
the	Coolness	target,	and	inside	it	define	an	object	type	and	declare	it	public,	then,	back	in
one	of	your	main	app	target’s	files,	such	as	AppDelegate.swift,	your	code	can	import
Coolness	and	will	then	be	able	to	see	that	object	type	and	its	public	members.

Renaming	Parts	of	a	Project
The	name	assigned	to	your	project	at	creation	time	is	used	in	many	places	throughout	the
project,	leading	beginners	to	worry	that	they	can	never	rename	a	project	without	breaking
something.	But	fear	not!

First	of	all,	you	don’t	usually	need	to	rename	the	project.	Typically,	what	you	want	to
change	is	the	name	of	the	app	—	the	name	that	the	user	sees	on	the	device,	associated	with
this	app’s	icon.	The	project	name	is	not	that	name!	Indeed,	the	project	name	is	not	a	name
that	users	will	ever	see.	If	all	you	want	to	do	is	change	the	name	that	appears	visibly
associated	with	the	app	on	the	device,	change	(or	create)	the	“Bundle	Display	Name”	in
the	Info.plist.

Still,	you	can	rename	a	project,	and	it’s	easy	to	do:	select	the	project	listing	at	the	top	of
the	Project	navigator,	press	Return	to	make	its	name	editable,	type	the	new	name,	and
press	Return	again.	Xcode	presents	a	dialog	proposing	to	change	some	other	names	to
match,	including	the	app	target	and	the	built	app	—	and,	by	implication,	various	relevant
build	settings.	You	should	feel	free	to	accept.

Changing	the	project	name	(or	target	name)	does	not	automatically	change	the	scheme
name	to	match.	There	is	no	particular	need	to	do	so,	but	you	can	change	a	scheme	name
freely;	choose	Product	→	Manage	Schemes	and	click	on	the	scheme	name	to	make	it
editable.

Changing	the	project	name	(or	target	name)	does	not	automatically	change	the	main	group
name	to	match.	There	is	no	particular	need	to	do	so,	but	you	can	freely	change	the	name	of
a	group	in	the	Project	navigator,	because	these	names	are	arbitrary;	they	have	no	effect	on
the	build	settings	or	the	build	process.	However,	the	main	group	is	special,	because	(as
I’ve	already	said)	it	corresponds	to	a	real	folder	on	disk,	the	folder	that	sits	beside	your
project	file	at	the	top	level	of	the	project	folder.	It’s	fine	to	change	the	group	name,	but
beginners	should	not	change	the	name	of	that	folder	on	disk,	as	it	is	hard-coded	into
several	build	settings.

You	can	change	the	name	of	the	project	folder	in	the	Finder	at	any	time,	and	you	can	move
the	project	folder	in	the	Finder	at	will,	because	all	build	setting	references	to	file	and
folder	items	in	the	project	folder	are	relative.

Chapter	7.	Nib	Management
In	Chapter	4,	I	talked	about	ways	of	obtaining	an	instance.	You	can	directly	instantiate	an
object	type:

let	v	=	UIView()

Or	you	can	obtain	a	reference	to	an	already	existing	instance:
let	v	=	self.view.subviews[0]

But	there	is	a	third	way:	you	can	load	a	nib.	A	nib	is	a	file,	in	a	special	format,	filled	with
instructions	for	creating	and	configuring	instances.	To	load	a	nib	means,	in	effect,	to	tell
that	nib	to	follow	those	instructions:	it	does	create	and	configure	those	instances.

My	example	of	a	UIView	instance	is	apt,	because	a	UIView	is	just	the	kind	of	instance	a
nib	is	likely	to	create.	Nibs	are	edited	in	Xcode	using	a	graphical	interface,	much	like	a
drawing	program.	The	idea	is	that	you	are	designing	some	interface	objects	—	mostly
instances	of	UIView	and	UIView	subclasses	—	that	you	want	to	use	in	your	app	when	it
runs.	When	your	app	does	run,	and	when	the	moment	comes	where	you	actually	need
those	interface	objects	(typically	because	you’re	about	to	display	them	in	your	visible
interface),	you	load	the	nib,	the	nib-loading	process	creates	and	configures	the	instances,
and	you	receive	the	instances	and	insert	them	into	your	app’s	actual	interface.

You	do	not	have	to	use	nibs	to	create	your	interface	objects.	The	loading	of	a	nib	does
nothing	that	you	could	not	have	done	directly,	in	code.	You	can	instantiate	a	UIView	or
UIView	subclass,	you	can	configure	it,	you	can	construct	a	hierarchy	of	views,	you	can
place	that	view	hierarchy	into	your	interface	—	manually,	step	by	step,	entirely	in	code.	A
nib	is	just	a	device	for	making	that	process	simpler	and	more	convenient.	You	design	the
nib	beforehand,	graphically;	when	the	app	runs,	your	code	doesn’t	have	to	instantiate	or
configure	any	views.	It	has	merely	to	load	the	nib	and	retrieve	the	resulting	instances	and
put	them	into	your	interface.	And	in	fact,	because	you’ll	mostly	be	using	view	controllers
(UIViewController),	which	are	themselves	designed	with	nibs	in	mind,	you	won’t	even
have	to	do	that!	The	view	controller	will	load	the	nib	and	retrieve	the	resulting	instances
and	put	them	into	your	interface	for	you,	automatically.

Nibs	are	a	simple	and	ingenious	device	for	making	the	process	of	designing	and
configuring	your	app’s	interface	simpler	and	more	convenient	than	it	would	be	if	you	had
to	do	the	same	thing	in	code.	But	they	are	also	probably	the	least	understood	aspect	of	iOS
programming.	Many	beginners	discover	nibs	the	first	day	they	start	programming	iOS,
and	proceed	to	use	nibs	for	years,	without	knowing	what	they	really	are	or	how	they	really
work.	This	is	a	huge	mistake.	Nibs	are	not	magic.	They	are	not	hard	to	understand.	It	is
crucial	that	you	know	what	nibs	are,	how	they	work,	and	how	to	manipulate	them	in	your
code.	Failure	to	understand	nibs	opens	you	up	to	all	kinds	of	elementary,	confusing
mistakes	that	can	be	avoided	or	corrected	merely	by	grasping	a	few	basic	facts.	Those
facts	are	the	subject	of	this	chapter.

NOTE

The	name	nib,	or	nib	file,	has	nothing	to	do	with	fountain	pens	or	bits	of	chocolate.	The	graphical	nib-design	aspect	of
Xcode,	which	I	call	the	nib	editor,	used	to	be	(up	through	Xcode	3.2.x)	a	separate	application	called	Interface	Builder.
(The	nib	editor	environment	within	Xcode	is	still	often	referred	to	as	Interface	Builder.)	The	files	created	by	Interface
Builder	were	given	the	.nib	file	extension,	which	was	an	acronym	for	“NeXTStep	Interface	Builder.”	Nowadays,	the
file	you	edit	directly	in	the	nib	editor	will	be	either	a	.storyboard	file	or	a	.xib	file;	when	the	app	is	built,	they	are
compiled	into	nib	files	(see	Chapter	6).

ARE	NIBS	NECESSARY?

Since	nibs	are	ultimately	just	sources	of	instances,	you	might	wonder	whether	it	is	possible	to	do	without	them.	Those
same	instances	could	be	generated	in	code,	so	wouldn’t	it	be	possible	to	dispense	with	nibs	altogether?	The	simple
answer	is:	Yes,	it	would.	It’s	quite	possible	to	write	a	complex	app	that	lacks	a	single	.storyboard	or	.xib	file	(I’ve
done	it).	The	practical	question,	however,	is	one	of	balance.	Most	apps	use	nib	files	as	a	source	of	at	least	some
interface	objects;	but	there	are	some	aspects	of	interface	objects	that	can	be	customized	only	in	code,	and	sometimes
it’s	easier	to	generate	those	interface	objects	entirely	in	code	at	the	outset.	In	real	life	your	projects	will	probably
involve	some	code-generated	interface	objects	and	some	nib-generated	interface	objects	(which	may	themselves	be
further	modified	or	configured	in	code).

The	Nib	Editor	Interface
Let’s	explore	Xcode’s	nib	editor	interface.	In	Chapter	6,	we	created	a	simple	iPhone
project,	Empty	Window,	directly	from	the	Single	View	Application	template;	it	contains	a
storyboard	file,	so	we’ll	use	that.	In	Xcode,	open	the	Empty	Window	project,	locate
Main.storyboard	in	the	Project	navigator,	and	click	to	edit	it.

Figure	7-1.	Editing	a	nib	file

Figure	7-1	shows	the	project	window	after	selecting	Main.storyboard.	(I’ve	made	some
additional	adjustments	to	make	the	screenshot	fit	on	the	page.)	The	interface	may	be
considered	in	four	pieces:

1.	 The	bulk	of	the	editor	is	devoted	to	the	canvas,	where	you	physically	design	your
app’s	interface.	The	canvas	portrays	views	in	your	app’s	interface	and	things	that	can
contain	views.	A	view	is	an	interface	object,	which	draws	itself	into	a	rectangular
area.	The	phrase	“things	that	can	contain	views”	is	my	way	of	including	view
controllers,	which	are	represented	in	the	canvas	even	though	they	are	not	drawn	in
your	app’s	interface;	a	view	controller	isn’t	a	view,	but	it	has	a	view	(and	controls	it).

2.	 At	the	left	of	the	editor	is	the	document	outline,	listing	the	storyboard’s	contents
hierarchically	by	name.	It	can	be	hidden	by	dragging	its	right	edge	or	by	clicking	the
button	at	the	bottom	left	corner	of	the	canvas.

3.	 The	inspectors	in	the	Utilities	pane	let	you	edit	details	of	the	currently	selected
object.

4.	 The	libraries	in	the	Utilities	pane,	especially	the	Object	library,	are	your	source	of
interface	objects	to	be	added	to	the	nib.

Document	Outline

The	document	outline	portrays	hierarchically	the	relationships	between	the	objects	in	the
nib.	This	structure	differs	slightly	depending	on	whether	you’re	editing	a	.storyboard	file
or	a	.xib	file.

In	a	storyboard	file,	the	primary	constituents	are	scenes.	A	scene	is,	roughly	speaking,	a
single	view	controller,	along	with	some	ancillary	material;	every	scene	has	a	single	view
controller	at	its	top	level.

A	view	controller	isn’t	an	interface	object,	but	it	manages	an	interface	object,	namely	its
view	(or	main	view).	A	view	controller	in	a	nib	doesn’t	have	to	have	its	main	view	in	the
same	nib,	but	it	usually	does,	and	in	that	case,	in	the	nib	editor,	the	view	usually	appears
inside	the	view	controller	in	the	canvas.	Thus,	in	Figure	7-1,	the	large	highlighted
rectangle	in	the	canvas	is	a	view	controller’s	main	view,	and	is	actually	inside	a	view
controller.

The	view	controller	itself	can	be	readily	seen	and	selected	in	the	document	outline.	It	is
also	represented	as	an	icon	in	the	scene	dock,	which	appears	above	the	view	controller	in
the	canvas	when	anything	in	this	scene	is	selected	(Figure	7-2).	Each	view	controller	in	a
storyboard	file	constitutes	one	scene.	In	the	document	outline,	this	scene	is	portrayed	as	a
hierarchical	collection	of	names.	At	the	top	level	of	the	document	outline	are	the	scenes
themselves.	At	the	top	level	of	each	scene	are	(more	or	less)	the	same	objects	that	appear
in	the	view	controller’s	scene	dock:	the	view	controller	itself,	along	with	two	proxy
objects,	the	First	Responder	token	and	the	Exit	token.	These	objects	—	the	ones	displayed
as	icons	in	the	scene	dock,	and	shown	at	the	top	level	of	the	scene	in	the	document	outline
—	are	the	scene’s	top-level	objects.

Figure	7-2.	A	view	controller	selected	in	a	storyboard

Objects	listed	in	the	document	outline	are	of	two	kinds:

Nib	objects

The	view	controller,	along	with	its	main	view	and	any	subviews	that	we	care	to	place	in
that	view,	are	real	objects	—	potential	objects	that	will	be	turned	into	actual	instances
when	the	nib	is	loaded	by	the	running	app.	Such	real	objects	to	be	instantiated	from	the
nib	are	also	called	nib	objects.

Proxy	objects

The	proxy	objects	(here,	the	First	Responder	and	Exit	tokens)	do	not	represent	instances
that	will	come	from	the	nib	when	it	is	loaded.	Rather,	they	represent	other	objects,	and
are	present	to	facilitate	communication	between	nib	objects	and	other	objects	(I’ll	give
examples	later	in	this	chapter).	You	can’t	create	or	delete	a	proxy	object;	the	nib	editor
shows	them	automatically.

(Also	present	in	the	document	outline	is	the	Storyboard	Entry	Point.	This	isn’t	an	object	of
any	kind;	it’s	just	an	indication	that	this	view	controller	is	the	storyboard’s	initial	view
controller	—	in	its	Attributes	inspector,	Is	Initial	View	Controller	is	checked	—	and
corresponds	to	the	right-pointing	arrow	at	the	left	of	this	view	controller	in	the	canvas.)

Most	nib	objects	listed	in	a	storyboard’s	document	outline	will	depend	hierarchically	upon
a	scene’s	view	controller.	For	example,	in	Figure	7-2,	the	view	controller	has	a	main	view;
that	view	is	listed	as	hierarchically	dependent	on	the	view	controller.	That	makes	sense,
because	this	view	belongs	to	this	view	controller.	Moreover,	any	further	interface	objects
that	we	drag	into	the	main	view	in	the	canvas	will	be	listed	in	the	document	outline	as
hierarchically	dependent	on	the	view.	That	makes	sense,	too.	A	view	can	contain	other
views	(its	subviews)	and	can	be	contained	by	another	view	(its	superview).	One	view	can
contain	many	subviews,	which	might	themselves	contain	subviews.	But	each	view	can
have	only	one	immediate	superview.	Thus	there	is	a	hierarchical	tree	of	subviews
contained	by	their	superviews	with	a	single	object	at	the	top.	The	document	outline
portrays	that	tree	as	an	outline	—	hence	the	name.

In	a	.xib	file,	there	are	no	scenes.	What	would	be,	in	a	.storyboard	file,	the	top-level
objects	of	a	scene	become,	in	a	.xib	file,	the	top-level	objects	of	the	nib	itself.	Nor	is	there
any	requirement	that	one	of	these	top-level	objects	be	a	view	controller;	it	can	be,	but
more	often	the	top-level	interface	object	of	a	.xib	file	is	a	view.	It	might	well	be	a	view
that	is	to	serve	as	a	view	controller’s	main	view,	but	that’s	not	a	requirement	either.
Figure	7-3	shows	a	.xib	with	a	structure	parallel	to	the	single	scene	of	Figure	7-2.

Figure	7-3.	A	.xib	file	containing	a	view

The	document	outline	in	Figure	7-3	lists	three	top-level	objects.	Two	of	them	are	proxy
objects,	termed	Placeholders	in	the	document	outline:	the	File’s	Owner,	and	the	First
Responder.	The	third	is	a	real	object,	a	view;	it	will	be	instantiated	when	the	nib	is	loaded

as	the	app	runs.	The	document	outline	in	a	.xib	file	can’t	be	completely	hidden;	instead,	it
is	collapsed	into	a	set	of	icons	representing	the	nib’s	top-level	objects,	similar	to	a	scene
dock	in	a	storyboard	file,	and	often	referred	to	simply	as	the	dock	(Figure	7-4).

Figure	7-4.	The	dock	in	a	.xib	file

At	present,	the	document	outline	may	seem	unnecessary,	because	there	is	very	little
hierarchy;	all	objects	in	Figures	7-2	and	7-3	are	readily	accessible	in	the	canvas.	But	when
a	storyboard	contains	many	scenes,	and	when	a	view	contains	many	levels	of
hierarchically	arranged	objects	(along	with	their	autolayout	constraints),	you’re	going	to
be	very	glad	of	the	document	outline,	which	lets	you	survey	the	contents	of	the	nib	in	a
nice	hierarchical	structure,	and	where	you	can	locate	and	select	the	object	you’re	after.
You	can	also	rearrange	the	hierarchy	here;	for	example,	if	you’ve	made	an	object	a
subview	of	the	wrong	view,	you	can	reposition	it	within	this	outline	by	dragging	its	name.

If	the	names	of	nib	objects	in	the	document	outline	seem	generic	and	uninformative,	you
can	change	them.	The	name	is	technically	a	label,	and	has	no	special	meaning,	so	feel	free
to	assign	nib	objects	labels	that	are	useful	to	you.	Select	a	nib	object’s	label	in	the
document	outline	and	press	Return	to	make	it	editable,	or	select	the	object	and	edit	the
Label	field	in	the	Document	section	of	the	Identity	inspector.

Canvas
The	canvas	provides	a	graphical	representation	of	a	top-level	interface	nib	object	along
with	its	subviews,	similar	to	what	you’re	probably	accustomed	to	in	any	drawing	program.
The	canvas	is	scrollable	and	automatically	accommodates	however	many	graphical
representations	it	contains;	a	storyboard	canvas	can	also	be	zoomed	(choose	Editor	→
Canvas	→	Zoom,	or	use	the	contextual	menu).

(In	a	.xib	file,	you	can	remove	the	canvas	representation	of	a	top-level	nib	object,	without
deleting	the	object,	by	clicking	the	X	at	its	top	left	—	see	Figure	7-3	—	and	you	can
restore	the	graphical	representation	to	the	canvas	by	clicking	that	nib	object	in	the
document	outline.)

Our	simple	Empty	Window	project’s	Main.storyboard	contains	just	one	scene,	so	it
represents	graphically	in	the	canvas	just	one	top-level	nib	object	—	the	scene’s	view
controller.	Inside	this	view	controller,	and	generally	indistinguishable	from	it	in	the
canvas,	is	its	main	view.	It	happens	that	this	view	controller	will	become	our	app’s
window’s	root	view	controller	when	the	app	runs;	therefore	its	view	will	occupy	the	entire
window,	and	will	effectively	be	our	app’s	initial	interface	(see	Chapter	6).	That	gives	us	an
excellent	opportunity	to	experiment:	any	visible	changes	we	make	within	this	view	should
be	visible	when	we	subsequently	build	and	run	the	app.	To	prove	this,	let’s	add	a	subview:

1.	 Start	with	the	nib	editor	looking	more	or	less	like	Figure	7-1.

2.	 Look	at	the	Object	library	(Command-Option-Control-3).	If	it’s	in	icon	view	(a	grid
of	icons	without	text),	click	the	button	at	the	left	of	the	filter	bar	to	put	it	into	list
view.	Click	in	the	filter	bar	(or	choose	Edit	→	Filter	→	Filter	in	Library,	Command-
Option-L)	and	type	“button”	so	that	only	button	objects	are	shown	in	the	list.	The
Button	object	is	listed	first.

3.	 Drag	the	Button	object	from	the	Object	library	into	the	view	controller’s	main	view
in	the	canvas	(Figure	7-5),	and	let	go	of	the	mouse.

Figure	7-5.	Dragging	a	button	into	a	view

A	button	is	now	present	in	the	view	in	the	canvas.	The	move	we’ve	just	performed	—
dragging	from	the	Object	library	into	the	canvas	—	is	extremely	characteristic;	you’ll	do	it
often	as	you	design	your	interface.

Much	as	in	a	drawing	program,	the	nib	editor	provides	features	to	aid	you	in	designing
your	interface.	Here	are	some	things	to	try:

Select	the	button:	resizing	handles	appear.	(If	you	accidentally	select	it	twice	and	the
resizing	handles	disappear,	select	the	view	and	then	the	button	again.)
Using	the	resizing	handles,	resize	the	button	to	make	it	wider:	dimension	information
appears.
Drag	the	button	near	an	edge	of	the	view:	a	guideline	appears,	showing	standard
spacing.	Similarly,	drag	the	button	near	the	center	of	the	view:	a	guideline	shows	you
when	the	button	is	centered.
With	the	button	selected,	hold	down	the	Option	key	and	hover	the	mouse	outside	the
button:	arrows	and	numbers	appear	showing	the	distance	between	the	button	and	the
edges	of	the	view.	(If	you	accidentally	clicked	and	dragged	while	you	were	holding
Option,	you’ll	now	have	two	buttons.	That’s	because	Option-dragging	an	object
duplicates	it.	Select	the	unwanted	button	and	press	Delete	to	remove	it.)
Control-Shift-click	on	the	button:	a	menu	appears,	letting	you	select	the	button	or
whatever’s	behind	it	(in	this	case,	the	view,	as	well	as	the	view	controller	because	the
view	controller	acts	as	a	sort	of	top-level	background	to	everything	we’re	doing	here).
Double-click	the	button’s	title.	The	title	becomes	editable.	Give	it	a	new	title,	such	as
“Howdy!”	Hit	Return	to	set	the	new	title.

To	prove	that	we	really	are	designing	our	app’s	interface,	we’ll	run	the	app:

1.	 Drag	the	button	to	a	position	near	the	top	left	corner	of	the	canvas.	(If	you	don’t	do
this,	the	button	could	be	off	the	screen	when	the	app	runs.)

2.	 Examine	the	Debug	→	Activate	/	Deactivate	Breakpoints	menu	item.	If	it	says
Deactivate	Breakpoints,	choose	it;	we	don’t	want	to	pause	at	any	breakpoints	you
may	have	created	while	reading	the	previous	chapter.

3.	 Make	sure	the	destination	in	the	Scheme	pop-up	menu	is	iPhone	6.
4.	 Choose	Product	→	Run	(or	click	the	Run	button	in	the	toolbar).

After	a	heart-stopping	pause,	the	iOS	Simulator	opens,	and	presto,	our	empty	window	is
empty	no	longer	(Figure	7-6);	it	contains	a	button!	You	can	tap	this	button	with	the	mouse,
emulating	what	the	user	would	do	with	a	finger;	the	button	highlights	as	you	tap	it.

Figure	7-6.	The	Empty	Window	app’s	window	is	empty	no	longer

Inspectors	and	Libraries
Four	inspectors	appear	in	conjunction	with	the	nib	editor,	and	apply	to	whatever	object	is
selected	in	the	document	outline,	dock,	or	canvas:

Identity	inspector	(Command-Option-3)

The	first	section	of	this	inspector,	Custom	Class,	is	the	most	important.	Here	you	learn,
and	can	change,	the	selected	object’s	class.	Some	situations	in	which	you’ll	need	to
change	the	class	of	an	object	in	the	nib	appear	later	in	this	chapter.

Attributes	inspector	(Command-Option-4)

Settings	here	correspond	to	properties	and	methods	that	you	might	use	to	configure	the
object	in	code.	For	example,	selecting	our	view	and	choosing	from	the	Background
pop-up	menu	in	the	Attributes	inspector	corresponds	to	setting	the	view’s
backgroundColor	property	in	code.	Similarly,	selecting	our	button	and	typing	in	the
Title	field	is	like	calling	the	button’s	setTitle:forState:	method.

The	Attributes	inspector	has	sections	corresponding	to	the	selected	object’s	class
inheritance.	For	example,	the	UIButton	Attributes	inspector	has	three	sections:	in
addition	to	a	Button	section,	there’s	a	Control	section	(because	a	UIButton	is	also	a
UIControl)	and	a	View	section	(because	a	UIControl	is	also	a	UIView).

Size	inspector	(Command-Option-5)

The	X,	Y,	Width,	and	Height	fields	determine	the	object’s	position	and	size	within	its
superview,	corresponding	to	its	frame	property	in	code;	you	can	equally	do	this	in	the
canvas	by	dragging	and	resizing,	but	numeric	precision	can	be	desirable.

If	autolayout	is	turned	on	(the	default	for	new	.storyboard	and	.xib	files),	the	rest	of	the
Size	inspector	has	to	do	with	the	selected	object’s	autolayout	constraints,	plus	the
buttons	at	the	lower	right	of	the	canvas	help	you	manage	alignment,	positioning,	and
constraints.

Connections	inspector	(Command-Option-6)

I’ll	discuss	and	demonstrate	use	of	the	Connections	inspector	later	in	this	chapter.

Two	libraries	are	of	particular	importance	when	you’re	editing	a	nib:

Object	library	(Command-Option-Control-3)

This	library	is	your	source	for	objects	that	you	want	to	add	to	the	nib.

Media	library	(Command-Option-Control-4)

This	library	lists	media	in	your	project,	such	as	images	that	you	might	want	to	drag	into
a	UIImageView	—	or	directly	into	your	interface,	in	which	case	a	UIImageView	is
created	for	you.

TIP

I’ve	now	mentioned	autolayout	and	constraints	a	couple	of	times,	but	I’m	not	going	to	explain	here	what	they	are.
Nor	am	I	going	to	discuss	size	classes	and	conditional	constraints	(the	“Any”	buttons	at	the	bottom	of	the	canvas).
These	are	large	topics	having	to	do	with	views	and	view	controllers,	and	are	outside	the	scope	of	this	book.	I	deal
with	these	matters	in	full	detail,	including	how	to	work	with	constraints	and	size	classes	in	the	nib	editor,	in
Programming	iOS	9.

Nib	Loading
A	nib	file	is	a	collection	of	potential	instances	—	its	nib	objects.	Those	instances	become
real	only	if,	while	your	app	is	running,	the	nib	is	loaded.	At	that	moment,	the	nib	objects
contained	in	the	nib	are	transformed	into	instances	that	are	available	to	your	app.

This	architecture	is	a	source	of	great	efficiency.	A	nib	usually	contains	interface;	interface
is	relatively	heavyweight	stuff.	A	nib	isn’t	loaded	until	it	is	needed;	indeed,	it	might	never
be	loaded.	Thus	this	heavyweight	stuff	won’t	come	into	existence	until	and	unless	it	is
needed.	In	this	way,	memory	usage	is	kept	to	a	minimum,	which	is	important	because
memory	is	at	a	premium	in	a	mobile	device.	Also,	loading	a	nib	takes	time,	so	loading
fewer	nibs	at	launch	time	—	enough	to	generate	just	the	app’s	initial	interface	—	makes
launching	faster.

There’s	no	such	thing	as	“unloading”	a	nib.	The	job	of	the	nib-loading	process	is	to	deliver
some	instances;	when	those	instances	are	delivered,	the	nib’s	work,	for	that	moment,	is
done.	Henceforward	it’s	up	to	the	running	app	to	decide	what	to	do	with	the	instances	that
just	sprang	to	life.	It	must	hang	on	to	them	for	as	long	as	it	needs	them,	and	will	let	them
go	out	of	existence	when	they	are	no	longer	needed.

Think	of	the	nib	file	as	a	set	of	instructions	for	generating	instances;	whenever	the	nib	is
loaded,	those	instructions	are	followed.	The	same	nib	file	can	thus	be	loaded	multiple
times,	generating	a	new	set	of	instances	each	time.	For	example,	a	nib	file	might	contain	a
piece	of	interface	that	you	intend	to	use	in	several	different	places	in	your	app.	A	nib	file
representing	a	single	row	of	a	table	might	be	loaded	a	dozen	times	in	order	to	generate	a
dozen	visible	rows	of	that	table.

When	Nibs	Are	Loaded
Here	are	some	of	the	chief	circumstances	under	which	a	nib	file	is	commonly	loaded	while
an	app	is	running:

A	view	controller	is	instantiated	from	a	storyboard

A	storyboard	is	a	collection	of	scenes.	Each	scene	starts	with	a	view	controller.	When
that	view	controller	is	needed,	it	is	instantiated	from	the	storyboard.	This	means	that	a
nib	containing	the	view	controller	is	loaded.

A	view	controller	may	be	instantiated	from	a	storyboard	automatically.	For	example,	as
your	app	launches,	if	it	has	a	main	storyboard,	the	runtime	looks	for	that	storyboard’s
initial	view	controller	(entry	point)	and	instantiates	it	(see	Chapter	6).	Similarly,	a
storyboard	typically	contains	several	scenes	connected	by	segues;	when	a	segue	is
performed,	the	destination	scene’s	view	controller	is	instantiated.

It	is	also	possible	for	your	code	to	instantiate	a	view	controller	from	a	storyboard
manually.	To	do	so,	you	start	with	a	UIStoryboard	instance,	and	then:

You	can	instantiate	the	storyboard’s	initial	view	controller	by	calling
instantiateInitialViewController.
You	can	instantiate	any	view	controller	whose	scene	is	named	within	the	storyboard
by	an	identifier	string	by	calling	instantiateViewControllerWithIdentifier:.

A	view	controller	loads	its	main	view	from	a	nib

A	view	controller	has	a	main	view.	But	a	view	controller	is	a	lightweight	object	(it’s	just
some	code),	whereas	its	main	view	is	a	relatively	heavyweight	object.	Therefore,	a	view
controller,	when	it	is	instantiated,	lacks	its	main	view.	It	generates	its	main	view	later,
when	that	view	is	needed	because	it	is	to	be	placed	into	the	interface.	A	view	controller
can	obtain	its	main	view	in	several	ways;	one	way	is	to	load	its	main	view	from	a	nib.

If	a	view	controller	belongs	to	a	scene	in	a	storyboard,	and	if,	as	will	usually	be	the
case,	it	contains	its	view	in	that	storyboard’s	canvas	(as	in	our	Empty	Window	example
project),	then	there	are	two	nibs	involved:	the	nib	containing	the	view	controller,	and	the
nib	containing	its	main	view.	The	nib	containing	the	view	controller	was	loaded	in	order
to	instantiate	the	view	controller,	as	I	just	described;	now,	when	that	view	controller
instance	needs	its	main	view,	the	main	view	nib	is	loaded	automatically,	and	the	whole
interface	connected	with	that	view	controller	springs	to	life.

In	the	case	of	a	view	controller	instantiated	in	some	other	way,	there	may	be	a	.xib-
generated	nib	file	associated	with	it,	containing	its	main	view.	Once	again,	the	view
controller	will	automatically	load	this	nib	and	extract	the	main	view	when	it’s	needed.
This	association	between	a	view	controller	and	its	main	view	nib	file	is	made	through
the	nib	file’s	name.	In	Chapter	6,	we	configured	this	association	in	code	using	the
UIViewController	initializer	init(nibName:bundle:),	when	we	said	this:

self.window!.rootViewController	=

				MyViewController(nibName:"MyViewController",	bundle:nil)

That	code	caused	the	view	controller	to	set	its	own	nibName	property	to
"MyViewController".	This,	in	turn,	means	that	when	the	view	controller	needs	its	view,
it	gets	it	by	loading	the	nib	that	comes	from	MyViewController.xib.

Your	code	explicitly	loads	a	nib	file

If	a	nib	file	comes	from	a	.xib	file,	your	code	can	load	it	manually,	by	calling	one	of
these	methods:
loadNibNamed:owner:options:

An	NSBundle	instance	method.	Usually,	you’ll	direct	it	to	NSBundle.mainBundle().
instantiateWithOwner:options:

A	UINib	instance	method.	The	nib	in	question	was	specified	when	UINib	was
instantiated	and	initialized	with	init(nibName:bundle:).

NOTE

To	specify	a	nib	file	while	the	app	is	running	actually	requires	two	pieces	of	information	—	its	name	and	the	bundle
containing	it.	A	view	controller	has	not	only	a	nibName	property	but	also	a	nibBundle	property,	and	the	methods	for
specifying	a	nib,	such	as	init(nibName:bundle:),	have	a	bundle:	parameter.	In	real	life,	however,	the	bundle	will	be
the	app	bundle	(or	NSBundle.mainBundle(),	which	is	the	same	thing);	this	is	the	default,	so	there	will	be	no	need	to
specify	a	bundle;	you’ll	pass	nil	instead	of	supplying	an	explicit	bundle.

Manual	Nib	Loading
In	real	life,	you’ll	probably	configure	your	app	so	that	most	nib	loading	takes	place
automatically,	in	accordance	with	the	various	mechanisms	and	situations	I’ve	just

outlined.	But	in	order	to	understand	the	nib-loading	process,	it	will	be	useful	for	you	to
practice	loading	a	nib	manually.	Let’s	do	that.

First	we’ll	create	and	configure	a	.xib	file	in	our	Empty	Window	project:

1.	 In	the	Empty	Window	project,	choose	File	→	New	→	File	and	specify	iOS	→	User
Interface	→	View.	This	will	be	a	.xib	file	containing	a	UIView	instance.	Click	Next.

2.	 In	the	Save	dialog,	accept	the	default	name,	View,	for	the	new	.xib	file.	Click	Create.
3.	 We	are	now	back	in	the	Project	navigator;	our	View.xib	file	has	been	created	and

selected,	and	we’re	looking	at	its	contents	in	the	editor.	Those	contents	consist	of	a
single	UIView.	It’s	too	large,	so	select	it	and,	in	the	Attributes	inspector,	change	the
Size	pop-up	menu,	under	Simulated	Metrics,	to	Freeform.	Handles	appear	around	the
view	in	the	canvas;	drag	them	to	make	the	view	smaller.

4.	 Populate	the	view	with	some	arbitrary	subviews,	dragging	them	into	it	from	the
Object	library.	You	can	also	configure	the	view	itself;	for	example,	in	the	Attributes
inspector,	change	its	background	color	(Figure	7-7).

Figure	7-7.	Designing	a	view	in	a	.xib	file

Our	goal	now	is	to	load	this	nib	file,	manually,	in	code,	when	the	app	runs.	Edit
ViewController.swift	and,	in	the	viewDidLoad	method	body,	insert	this	line	of	code:

NSBundle.mainBundle().loadNibNamed("View",	owner:	nil,	options:	nil)

Build	and	run	the	app.	Hey,	what	happened?	Where’s	the	designed	view	from	View.xib?
Did	our	nib	fail	to	load?

No.	Our	nib	did	not	fail	to	load.	We	loaded	it!	But	we’ve	omitted	two	further	steps.
Remember,	there	are	three	tasks	you	have	to	perform	when	you	load	a	nib:

1.	 Load	the	nib.
2.	 Obtain	the	instances	that	it	creates	as	it	loads.
3.	 Do	something	with	those	instances.

We	performed	the	first	task	—	we	loaded	the	nib	—	but	we	didn’t	obtain	any	instances
from	it.	Thus,	those	instances	were	created	and	then	vanished	in	a	puff	of	smoke!	In	order
to	prevent	that,	we	need	to	capture	those	instances	somehow.	The	call	to
loadNibNamed:owner:options:	returns	an	array	of	the	top-level	nib	objects	instantiated
from	the	loading	of	the	nib.	Those	are	the	instances	we	need	to	capture!	We	have	only	one
top-level	nib	object	—	the	UIView	—	so	it	is	sufficient	to	capture	the	first	(and	only)
element	of	this	array.	Rewrite	our	code	to	look	like	this:

let	arr	=	NSBundle.mainBundle().loadNibNamed("View",	owner:	nil,	options:	nil)

let	v	=	arr[0]	as!	UIView

We	have	now	performed	the	second	task:	we’ve	captured	the	instances	that	we	created	by
loading	the	nib.	The	variable	v	now	refers	to	a	brand-new	UIView	instance.

But	still	nothing	seems	to	happen	when	we	build	and	run	the	app,	because	we	aren’t	doing
anything	with	that	UIView.	That’s	the	third	task.	Let’s	fix	that	by	doing	something	clear
and	dramatic	with	the	UIView:	we’ll	put	it	into	our	interface!	Rewrite	our	code	once
again:

let	arr	=	NSBundle.mainBundle().loadNibNamed("View",	owner:	nil,	options:	nil)

let	v	=	arr[0]	as!	UIView

self.view.addSubview(v)

Build	and	run	the	app.	There’s	our	view!	This	proves	that	our	loading	of	the	nib	worked:
we	can	see,	in	our	running	app’s	interface,	the	view	that	we	designed	in	the	nib	(Figure	7-
8).

Figure	7-8.	A	nib-loaded	view	appears	in	our	interface

Connections
A	connection	is	something	in	a	nib	file.	It	unites	two	nib	objects,	running	from	one	to	the
other.	The	connection	has	a	direction:	that’s	why	I	use	the	words	“from”	and	“to”	to
describe	it.	I’ll	call	the	two	objects	the	source	and	the	destination	of	the	connection.

There	are	two	kinds	of	connection:	outlet	connections	and	action	connections.	The	rest	of
this	section	describes	them,	explains	how	to	create	and	configure	them,	and	discusses	the
nature	of	the	problems	that	they	are	intended	to	solve.

Outlets
When	a	nib	loads	and	its	instances	come	into	existence,	there’s	a	problem:	those	instances
are	useless	unless	you	can	get	a	reference	to	them.	In	the	preceding	section,	we	solved	that
problem	by	capturing	the	array	of	top-level	objects	instantiated	by	the	loading	of	the	nib.
But	there’s	another	way:	use	an	outlet.	This	approach	is	more	complicated	—	it	requires
some	advance	configuration,	which	can	easily	go	wrong.	But	it	is	also	more	common,
especially	when	nibs	are	loaded	automatically.

An	outlet	is	a	connection	that	has	a	name,	which	is	effectively	just	a	string.	When	the	nib
loads,	something	unbelievably	clever	happens.	The	source	object	and	the	destination
object	are	no	longer	just	potential	objects	in	a	nib;	they	are	now	real,	full-fledged
instances.	The	outlet’s	name	is	now	immediately	used	to	locate	an	instance	property	with
that	same	name	in	the	outlet’s	source	object,	and	the	destination	object	is	assigned	to	that
property.	The	source	object	now	has	a	reference	to	the	destination	object!

For	example,	suppose	there’s	a	Dog	object	and	a	Person	object	in	a	nib,	and	suppose	a
Dog	has	a	master	instance	property.	Then	if	we	make	an	outlet	from	the	Dog	object	to	the
Person	object	in	the	nib,	and	if	that	outlet	is	named	"master",	then	when	the	nib	loads	and
the	Dog	instance	and	the	Person	instance	are	created,	that	Person	instance	will	be	assigned
as	the	value	of	that	Dog	instance’s	master	property	(Figure	7-9).

Figure	7-9.	How	an	outlet	provides	a	reference	to	a	nib-instantiated	object

The	nib-loading	mechanism	can’t	magically	create	an	instance	property	—	that	is,	it
doesn’t	cause	the	source	object,	once	instantiated,	to	have	an	instance	property	of	the
correct	name	if	it	didn’t	have	one	before.	The	class	of	the	source	object	has	to	have	been
defined	with	this	instance	property	already.	Thus,	for	an	outlet	to	work,	preparation	must
be	performed	in	two	different	places:	in	the	class	of	the	source	object,	and	in	the	nib.	This
is	a	bit	tricky;	Xcode	does	try	to	help	you	get	it	right,	but	it	is	still	possible	to	mess	it	up.	(I
will	discuss	ways	of	messing	it	up,	in	detail,	later	in	this	chapter.)

The	Nib	Owner
To	use	an	outlet	to	capture	a	reference	to	an	instance	created	from	a	nib,	we	need	an	outlet
that	runs	from	an	object	outside	the	nib	to	an	object	inside	the	nib.	This	seems
metaphysically	impossible	—	but	it	isn’t.	The	nib	editor	permits	such	an	outlet	to	be
created,	using	the	nib	owner	object.	First,	I’ll	tell	you	where	to	find	the	nib	owner	object
in	the	nib	editor;	then	I’ll	explain	what	it	is:

In	a	storyboard	scene,	the	nib	owner	is	the	top-level	view	controller.	It	is	the	first	object
listed	for	that	scene	in	the	document	outline,	and	the	first	object	shown	in	the	scene
dock.
In	a	.xib	file,	the	nib	owner	is	a	proxy	object.	It	is	the	first	object	shown	in	the
document	outline	or	dock,	and	is	listed	under	Placeholders	as	the	File’s	Owner.

The	nib	owner	object	in	the	nib	editor	represents	an	instance	that	already	exists	outside	the
nib	at	the	time	that	the	nib	is	loaded.	When	the	nib	is	loaded,	the	nib-loading	mechanism
doesn’t	instantiate	this	object;	it	is	already	an	instance.	Instead,	the	nib-loading	mechanism
substitutes	the	real,	already	existing	instance	for	the	nib	owner	object,	using	it	to	fulfill
any	connections	that	involve	the	nib	owner.

But	wait!	How	does	the	nib-loading	mechanism	know	which	real,	already	existing
instance	to	substitute	for	the	nib	owner	object	in	the	nib?	It	knows	because	it	is	told,	in	one
of	two	ways,	at	nib-loading	time:

If	your	code	loads	the	nib	either	by	calling	loadNibNamed:owner:options:	or	by
calling	instantiateWithOwner:options:,	you	specify	an	owner	object	as	the	owner:
argument.
If	a	view	controller	instance	loads	a	nib	automatically	in	order	to	obtain	its	main	view,
the	view	controller	instance	specifies	itself	as	the	owner	object.

For	example,	return	to	our	Dog	object	and	Person	object.	Suppose	there	is	a	Person	nib
object	in	our	nib,	but	no	Dog	nib	object.	Instead,	the	nib	owner	object	is	a	Dog.	A	Dog	has
a	master	instance	property.	We	configure	an	outlet	in	the	nib	from	the	Dog	nib	owner
object	to	the	Person	object	—	an	outlet	called	"master".	We	then	load	the	nib	with	an
existing	Dog	instance	as	owner.	The	nib-loading	mechanism	will	match	the	Dog	nib
owner	object	with	this	already	existing	actual	Dog	instance,	and	will	set	the	newly
instantiated	Person	instance	as	that	Dog	instance’s	master	(Figure	7-10).

Figure	7-10.	An	outlet	from	the	nib	owner	object

Return	now	to	Empty	View,	and	let’s	reconfigure	things	to	demonstrate	this	mechanism.
We’re	already	loading	the	View	nib	in	code	in	ViewController.swift.	This	code	is	running
inside	a	ViewController	instance.	So	we’ll	use	that	instance	as	the	nib	owner.	This	will	be
a	little	tedious	to	configure,	but	bear	with	me,	because	understanding	how	to	use	this
mechanism	is	crucial.	Here	we	go:

1.	 First,	we	need	an	instance	property	in	ViewController.	At	the	start	of	the	body	of	the
ViewController	class	declaration,	insert	the	property	declaration,	like	this:

class	ViewController:	UIViewController	{

				@IBOutlet	var	coolview	:	UIView!

The	var	declaration	you	already	understand;	we’re	making	an	instance	property
called	coolview.	It	is	declared	as	an	Optional	because	it	won’t	have	a	“real”	value

when	the	ViewController	instance	is	created;	it’s	going	to	get	that	value	through	the
loading	of	the	nib,	later.	The	@IBOutlet	attribute	is	a	hint	to	Xcode	to	allow	us	to
create	the	outlet	in	the	nib	editor.

2.	 Edit	View.xib.	Our	first	step	must	be	to	ensure	that	the	nib	owner	object	is	designated
as	a	ViewController	instance.	Select	the	File’s	Owner	proxy	object	and	switch	to	the
Identity	inspector.	In	the	first	text	field,	under	Custom	Class,	set	the	Name	value	as
ViewController.	Tab	out	of	the	text	field	and	save.

3.	 Now	we’re	ready	to	make	the	outlet!	In	the	document	outline,	hold	down	the	Control
key	and	drag	from	the	File’s	Owner	object	to	the	View;	a	little	line	follows	the
mouse	as	you	drag.	Release	the	mouse.	A	little	HUD	(heads-up	display)	appears,
listing	possible	outlets	we	are	allowed	to	create	(Figure	7-11).	There	are	two	of
them:	coolview	and	view.	Click	coolview	(not	view!).

4.	 Finally,	we	need	to	modify	our	nib-loading	code.	We	no	longer	need	to	capture	the
top-level	array	of	instantiated	objects.	That’s	the	whole	point	of	this	exercise!
Instead,	we’re	going	to	load	the	nib	with	ourself	as	owner.	This	will	cause	our
coolview	instance	property	to	be	set	automatically,	so	we	can	proceed	to	use	it
immediately:

NSBundle.mainBundle().loadNibNamed("View",	owner:	self,	options:	nil)

self.view.addSubview(self.coolview)

Figure	7-11.	Creating	an	outlet

Build	and	run.	It	works!	The	first	line	loaded	the	nib	and	set	our	coolview	instance
property	to	the	view	instantiated	from	the	nib.	Thus,	the	second	line	can	display
self.coolview	in	the	interface,	because	self.coolview	now	is	that	view.

Let’s	sum	up	what	we	just	did.	Our	preparatory	configuration	was	a	little	tricky,	because	it
was	performed	in	two	places	—	in	code,	and	in	the	nib:

In	code,	there	must	be	an	instance	property	in	the	class	whose	instance	will	act	as
owner	when	the	nib	loads.	(Not	only	did	we	create	the	property,	but	we	also	marked	it
as	@IBOutlet.)
In	the	nib	editor,	the	class	of	the	nib	owner	object	must	be	set	to	the	class	whose
instance	will	act	as	owner	when	the	nib	loads.
In	the	nib	editor,	an	outlet	must	be	created,	with	the	same	name	as	the	property,	from
the	nib	owner	to	some	nib	object.	(This	will	be	possible	only	if	the	other	two
configurations	were	correctly	performed.)

If	all	those	things	are	true,	then,	when	the	nib	loads,	if	it	is	loaded	with	an	owner	of	the
correct	class,	that	owner’s	instance	property	will	be	set	to	the	outlet	destination.

TIP

New	in	Xcode	7,	when	you	configure	an	outlet	to	an	object	in	the	nib,	that	object’s	name	as	listed	in	the	document
outline	ceases	to	be	generic	(e.g.	“View”)	and	takes	on	the	name	of	the	outlet	(e.g.	“coolview”).	This	name	is	still	just
a	label	—	it	has	no	effect	on	the	operation	of	the	outlet	—	and	you	can	change	it	in	the	Identity	inspector.

Automatically	Configured	Nibs
In	some	situations,	the	configuration	of	the	owner	class	and	the	nib	is	performed	for	us.
Now	that	we’ve	gone	through	the	work	of	configuring	the	owner	and	the	nib	manually,	we
can	understand	and	appreciate	those	automatic	configurations.

An	important	example	is	how	a	view	controller	gets	its	main	view.	A	view	controller	has	a
view	property.	The	actual	view	will	typically	come	from	a	nib.	So	the	view	controller
instance	needs	to	act	as	owner	when	that	nib	loads,	and	there	needs	to	be	a	view	outlet
from	the	nib	owner	object	to	that	view.	If	you	examine	an	actual	nib	that	holds	a	view
controller’s	main	view,	you’ll	see	that	this	is,	in	fact,	the	case.

Look	at	our	Empty	Window	project.	Edit	Main.storyboard.	It	has	one	scene,	whose	nib
owner	object	is	the	View	Controller	object.	Select	the	View	Controller	in	the	document
outline.	Switch	to	the	Identity	inspector.	It	tells	us	that	the	nib	owner	object’s	class	is
indeed	ViewController!

Now,	still	with	the	View	Controller	in	the	document	outline	selected,	switch	to	the
Connections	inspector.	It	tells	us	that	there	is	indeed	an	outlet	connection	from	the	View
Controller	to	the	View	object,	and	that	this	outlet	is	indeed	named	"view"!	If	you	hover
the	mouse	over	that	outlet	connection,	the	View	object	in	the	canvas	is	highlighted,	to	help
you	identify	it.

That	explains	completely	how	this	view	controller	gets	its	main	view!	When	the	view
controller	needs	its	main	view	(because	that	view	is	about	to	be	displayed	in	the	interface),
the	view	nib	loads	—	with	the	view	controller	as	owner.	Thus,	the	view	controller’s	view
property	is	set	to	the	view	that	we	design	here.	The	view	is	then	displayed	in	the	interface:
it,	and	its	contents	as	you	have	designed	them,	appear	in	the	running	app.

The	same	sort	of	thing	is	true	in	our	Truly	Empty	project	from	Chapter	6.	Edit
MyViewController.xib.	The	nib	owner	object	is	the	File’s	Owner	proxy	object.	Select	the
File’s	Owner	object.	Switch	to	the	Identity	inspector.	It	tells	us	that	the	nib	owner	object’s
class	is	indeed	MyViewController!	Switch	to	the	Connections	inspector.	It	tells	us	that
there	is	indeed	an	outlet	connection	to	the	View	object,	called	"view"!

That	explains	how	this	view	controller	gets	its	main	view.	We	told	this	view	controller
where	to	find	its	nib	when	we	instantiated	it	by	saying
MyViewController(nibName:"MyViewController",	bundle:nil).	But	the	nib	itself	was
already	correctly	configured,	because	Xcode	set	it	up	that	way	when	we	created	the
MyViewController	class	and	checked	the	“Also	create	XIB	file”	checkbox.	The	view
controller	loads	the	nib	with	itself	as	owner,	and	the	outlet	works:	the	view	from	the	nib
file	becomes	the	view	controller’s	view,	and	appears	in	the	interface.

Misconfigured	Outlets
Setting	up	an	outlet	to	work	correctly	involves	several	things	being	true	at	the	same	time.	I

guarantee	that	at	some	point	in	the	future	you	will	fail	to	get	this	right,	and	your	outlet
won’t	work	properly.	Don’t	be	offended,	and	don’t	be	afraid;	be	prepared!	This	happens	to
everyone.	The	important	thing	is	to	recognize	the	symptoms	so	that	you	know	what’s	gone
wrong.	We’re	deliberately	going	to	make	things	go	wrong,	so	that	we	can	explore	the	main
ways	that	an	outlet	can	be	incorrectly	configured:

Outlet	name	doesn’t	match	a	property	name	in	the	source	class

Start	with	our	working	Empty	Window	example.	Run	the	project	to	prove	that	all	is
well.	Now,	in	ViewController.swift,	change	the	property	name	to	badview:

@IBOutlet	var	badview	:	UIView!

In	order	to	get	the	code	to	compile,	you’ll	also	have	to	change	the	reference	to	this
property	in	viewDidLoad:

self.view.addSubview(self.badview)

The	code	compiles	just	fine.	But	when	you	run	it,	the	app	crashes	with	this	message	in
the	console:	“This	class	is	not	key	value	coding-compliant	for	the	key	coolview.”

That	message	is	just	a	technical	way	of	saying	that	the	name	of	the	outlet	in	the	nib
(which	is	still	coolview)	doesn’t	match	the	name	of	a	property	of	the	nib’s	owner	when
the	nib	loads	—	because	we	changed	the	name	of	that	property	to	badview	and	thus
wrecked	the	configuration.	In	effect,	we	had	everything	set	up	correctly,	but	then	we
went	behind	the	nib	editor’s	back	and	removed	the	corresponding	instance	property
from	the	outlet	source’s	class.	When	the	nib	loads,	the	runtime	can’t	match	the	outlet’s
name	with	any	property	in	the	outlet’s	source	—	the	ViewController	instance	—	and	we
crash.

There	are	other	ways	to	bring	about	this	same	misconfiguration.	For	example,	you	could
change	things	so	that	the	nib	owner	is	an	instance	of	the	wrong	class:

NSBundle.mainBundle().loadNibNamed("View",	owner:	NSObject(),	options:	nil)

We	made	the	owner	a	generic	NSObject	instance.	The	effect	is	the	same:	the	NSObject
class	has	no	property	with	the	same	name	as	the	outlet,	so	the	app	crashes	when	the	nib
loads,	complaining	about	the	owner	not	being	“key	value	coding-compliant.”	Another
common	way	to	make	that	same	mistake	is	to	make	the	nib	owner	class	in	the	nib	the
wrong	class.

No	outlet	in	the	nib

Fix	the	problem	from	the	previous	example	by	changing	both	references	to	the	property
name	from	badview	back	to	coolview	in	ViewController.swift.	Run	the	project	to	prove
that	all	is	well.	Now	we’re	going	to	mess	things	up	at	the	other	end!	Edit	View.xib.
Select	the	File’s	Owner	and	switch	to	the	Connections	inspector,	and	disconnect	the
coolview	outlet	by	clicking	the	X	at	the	left	end	of	the	second	cartouche.	Run	the
project.	We	crash	with	this	error	message	in	the	console:	“Fatal	error:	unexpectedly
found	nil	while	unwrapping	an	Optional	value.”

We	removed	the	outlet	from	the	nib.	So	when	the	nib	loaded,	our	ViewController
instance	property	coolview,	which	is	typed	as	an	implicitly	unwrapped	Optional
wrapping	a	UIView	(UIView!),	was	never	set	to	anything.	Thus,	it	kept	its	initial	value,
which	is	nil.	We	then	tried	to	use	the	implicitly	unwrapped	Optional	by	putting	it	into
the	interface:

self.view.addSubview(self.coolview)

Swift	tries	to	obey	by	unwrapping	the	Optional	for	real,	but	you	can’t	unwrap	nil,	so
we	crash.

No	view	outlet

For	this	one,	you’ll	have	to	use	the	Truly	Empty	example	from	Chapter	6,	where	we
load	a	view	controller’s	main	view	from	a	.xib	file;	I	can’t	demonstrate	the	problem
using	a	.storyboard	file,	because	the	storyboard	editor	guards	against	it.	In	the	Truly
Empty	project,	edit	the	MyViewController.xib	file.	Select	the	File’s	Owner	object,
switch	to	the	Connections	inspector,	and	disconnect	the	view	outlet.	Run	the	project.	We
crash	at	launch	time:	“Loaded	the	‘MyViewController’	nib	but	the	view	outlet	was	not
set.”

The	console	message	says	it	all.	A	nib	that	is	to	serve	as	the	source	of	a	view
controller’s	main	view	must	have	a	connected	view	outlet	from	the	view	controller	(the
nib	owner	object)	to	the	view.

Deleting	an	Outlet
Deleting	an	outlet	coherently	—	that	is,	without	causing	one	of	the	problems	described	in
the	previous	section	—	involves	working	in	several	places	at	once,	just	as	creating	an
outlet	does.	I	recommend	proceeding	in	this	order:

1.	 Disconnect	the	outlet	in	the	nib.
2.	 Remove	the	outlet	declaration	from	the	code.
3.	 Attempt	compilation	and	let	the	compiler	catch	any	remaining	issues	for	you.

Let’s	suppose,	for	example,	that	you	decide	to	delete	the	coolview	outlet	from	the	Empty
Window	project.	You	would	follow	the	same	three-step	procedure	that	I	just	outlined:

1.	 Disconnect	the	outlet	in	the	nib.	To	do	so,	edit	View.xib,	select	the	source	object	(the
File’s	Owner	proxy	object),	and	disconnect	the	coolview	outlet	in	the	Connections
inspector	by	clicking	the	X.

2.	 Remove	the	outlet	declaration	from	the	code.	To	do	so,	edit	ViewController.swift	and
delete	or	comment	out	the	@IBOutlet	declaration	line.

3.	 Remove	other	references	to	the	property.	The	easiest	way	is	to	attempt	to	build	the
project;	the	compiler	issues	an	error	on	the	line	referring	to	self.coolview	in

ViewController.swift,	because	there	is	now	no	such	property.	Delete	or	comment	out
that	line,	and	build	again	to	prove	that	all	is	well.

More	Ways	to	Create	Outlets
Earlier,	we	created	an	outlet	by	first	declaring	an	instance	property	in	a	class	file,	and	then,
in	the	nib	editor,	by	control-dragging	from	the	source	(an	instance	of	that	class)	to	the
destination	in	the	document	outline	and	choosing	the	desired	outlet	property	from	the
HUD	(heads-up	display).	Xcode	provides	many	other	ways	to	create	outlets	—	too	many
to	list	here.	I’ll	survey	some	of	the	most	interesting.

We’ll	continue	to	use	the	Empty	Window	project	and	the	View.xib	file.	Keep	in	mind	that
all	of	this	works	exactly	the	same	way	for	a	.storyboard	file.

To	prepare,	delete	the	outlet	in	View.xib	using	the	Connections	inspector	(if	you	haven’t
already	done	so).	In	ViewController.swift,	create	(or	uncomment)	the	property	declaration,
and	save:

@IBOutlet	var	coolview	:	UIView!

Now	we’re	ready	to	experiment!

Drag	from	source	Connections	inspector

You	can	drag	from	a	circle	in	the	Connections	inspector	in	the	nib	editor	to	connect	the
outlet.	In	View.xib,	select	the	File’s	Owner	and	switch	to	the	Connections	inspector.	The
coolview	outlet	is	listed	here,	but	it	isn’t	connected:	the	circle	at	its	right	is	open.	Drag
from	the	circle	next	to	coolview	to	the	UIView	object	in	the	nib.	You	can	drag	to	the
view	in	the	canvas	or	in	the	document	outline.	You	don’t	need	to	hold	the	Control	key
as	you	drag	from	the	circle,	and	there’s	no	HUD	because	you’re	dragging	from	a
specific	outlet,	so	Xcode	knows	which	one	you	mean.

Drag	from	destination	Connections	inspector

Now	let’s	make	that	same	move	the	other	way	round.	Delete	the	outlet	in	the	nib.	Select
the	View	and	look	at	the	Connections	inspector.	We	want	an	outlet	that	has	this	view	as
its	destination:	that’s	a	“referencing	outlet.”	Drag	from	the	circle	next	to	New
Referencing	Outlet	to	the	File’s	Owner	object.	The	HUD	appears:	click	coolview	to
make	the	outlet	connection.

Drag	from	source	HUD

You	can	summon	a	HUD	that	effectively	is	the	same	as	the	Connections	inspector.	Let’s
start	with	that	HUD.	Again	delete	the	outlet	in	the	Connections	inspector.	Control-click
the	File’s	Owner.	A	HUD	appears,	looking	a	lot	like	the	Connections	inspector!	Drag
from	the	circle	at	the	right	of	coolview	to	the	UIView.

Drag	from	destination	HUD

Again,	let’s	make	that	same	move	the	other	way	round.	Delete	the	outlet	in	the
Connections	inspector.	Either	in	the	canvas	or	in	the	document	outline,	Control-click
the	view.	There’s	the	HUD	showing	its	Connections	inspector.	Drag	from	the	New
Referencing	Outlet	circle	to	the	File’s	Owner.	A	second	HUD	appears,	listing	possible
outlets;	click	coolview.

Again,	delete	the	outlet.	Now	we’re	going	to	create	the	outlet	by	dragging	between	the
code	and	the	nib	editor.	This	will	require	that	you	work	in	two	places	at	once:	you’re
going	to	need	an	assistant	pane.	In	the	main	editor	pane,	show	ViewController.swift.	In	the
assistant	pane,	show	View.xib,	in	such	a	way	that	the	view	is	visible.

Drag	from	property	declaration	to	nib

Next	to	the	property	declaration	in	the	code,	in	the	gutter,	is	an	empty	circle.	What	do
you	think	it’s	for?	Drag	from	it	right	across	the	barrier	to	the	View	in	the	nib	editor
(Figure	7-12).	The	outlet	connection	is	formed	in	the	nib;	you	can	see	this	by	looking	at
the	Connections	inspector,	and	also	because,	back	in	the	code,	the	circle	in	the	gutter	is
now	filled	in.	Hover	over	the	filled	circle,	or	click	it,	to	learn	what	the	outlet	in	the	nib
is	connected	to.	You	can	click	the	little	menu	that	appears	when	you	click	in	the	filled
circle	to	navigate	to	the	destination	object.

Figure	7-12.	Connecting	an	outlet	by	dragging	from	code	to	nib	editor

Here’s	one	more	way	—	the	most	amazing	of	all.	Keep	the	two-pane	arrangement	from
the	preceding	example.	Again,	delete	the	outlet	(you	will	probably	need	to	use	the
Connections	inspector	or	HUD	in	the	nib	editor	pane	to	do	this).	Also	delete	the
@IBOutlet	line	from	the	code!	We’re	going	to	create	the	property	declaration	and	connect
the	outlet,	all	in	a	single	move!

Drag	from	nib	to	code

Control-drag	from	the	view	in	the	nib	editor	across	the	pane	boundary	to	just	inside	the
body	of	the	class	ViewController	declaration.	A	HUD	offers	to	Insert	Outlet	or
Outlet	Collection	(Figure	7-13).	Release	the	mouse.	A	popover	appears,	where	you	can
configure	the	declaration	to	be	inserted	into	your	code.	Configure	it	as	shown	in
Figure	7-14:	you	want	an	outlet,	and	this	property	should	be	named	coolview.	Click
Connect.	The	property	declaration	is	inserted	into	your	code,	and	the	outlet	is	connected
in	the	nib,	in	a	single	move.

Figure	7-13.	Creating	an	outlet	by	dragging	from	nib	editor	to	code

Figure	7-14.	Configuring	a	property	declaration

WARNING

Making	an	outlet	by	connecting	directly	between	code	and	the	nib	editor	is	extremely	cool	and	convenient,	but	don’t
be	fooled:	there’s	no	such	direct	connection.	There	are	always,	if	an	outlet	is	to	work	properly,	two	distinct	and
separate	things	—	an	instance	property	in	a	class,	and	an	outlet	in	the	nib,	with	the	same	name	and	coming	from	an
instance	of	that	class.	It	is	the	identity	of	the	names	and	classes	that	allows	the	two	to	be	matched	at	runtime	when	the
nib	loads.	Xcode	tries	to	help	you	get	everything	set	up	correctly,	but	it	is	not	in	fact	magically	connecting	the	code	to
the	nib.

Outlet	Collections
An	outlet	collection	is	an	array	instance	property	(in	code)	matched	(in	a	nib)	by	multiple
connections	to	objects	of	the	same	type.

For	example,	suppose	a	class	contains	this	property	declaration:
@IBOutlet	var	coolviews:	[UIView]!

The	outcome	is	that,	in	the	nib	editor,	with	an	instance	of	this	class	selected,	the
Connections	inspector	lists	coolviews	—	not	under	Outlets,	but	under	Outlet	Collections.
This	means	that	you	can	form	multiple	coolviews	outlets,	each	one	connected	to	a
different	UIView	object	in	the	nib.	When	the	nib	loads,	those	UIView	instances	become
the	elements	of	the	array	coolviews;	the	order	in	which	the	outlets	are	formed	is	the	order
of	the	elements	in	the	array.

The	advantage	of	this	arrangement	is	that	your	code	can	refer	to	multiple	interface	objects
instantiated	from	the	nib	by	number	(the	index	into	the	array)	instead	of	your	having	to

devise	and	manipulate	a	separate	name	for	each	one.	This	turns	out	to	be	particularly
useful	when	forming	outlets	to	such	things	as	autolayout	constraints	and	gesture
recognizers.

Action	Connections
An	action	connection,	like	an	outlet	connection,	is	a	way	of	giving	one	object	in	a	nib	a
reference	to	another.	It’s	not	a	property	reference;	it’s	a	message-sending	reference.

An	action	is	a	message	emitted	automatically	by	a	Cocoa	UIControl	interface	object	(a
control),	and	sent	to	another	object,	when	the	user	does	something	to	it,	such	as	tapping
the	control.	The	various	user	behaviors	that	will	cause	a	control	to	emit	an	action	message
are	called	events.	To	see	a	list	of	possible	events,	look	at	the	UIControl	class
documentation,	under	“Control	Events.”	For	example,	in	the	case	of	a	UIButton,	the	user
tapping	the	button	corresponds	to	the	UIControlEvents.TouchUpInside	event.

For	this	architecture	to	work,	the	control	object	must	know	three	things:

What	control	event	to	respond	to
What	message	to	send	(method	to	call)	when	that	control	event	occurs	(the	action)
What	object	to	send	that	message	to	(the	target)

An	action	connection	in	a	nib	builds	the	knowledge	of	those	three	things	into	itself.	It	has
the	control	object	as	its	source;	its	destination	is	the	target;	and	you	tell	the	action
connection,	as	you	form	it,	what	the	control	event	and	action	message	should	be.	To	form
the	action	connection,	you	need	first	to	configure	the	class	of	the	destination	object	so	that
it	has	a	method	suitable	as	an	action	message.

To	experiment	with	action	connections,	we’ll	need	a	UIControl	object	in	a	nib,	such	as	a
button.	You	may	already	have	such	a	button	in	the	Empty	Window	project’s
Main.storyboard	file.	However,	it’s	probable	that,	when	the	app	runs,	we’ve	been	covering
the	button	with	the	view	that	we’re	loading	from	View.xib.	So	first	clear	out	the
ViewController	class	declaration	body	in	ViewController.swift,	so	that	there	is	no	outlet
property	and	no	manual	nib-loading	code;	this	should	be	all	that’s	left:

class	ViewController:	UIViewController	{

}

Now	let’s	arrange	to	use	the	view	controller	in	our	Empty	Window	project	as	a	target	for
an	action	message	emitted	by	the	button’s	UIControlEvents.TouchUpInside	event
(meaning	that	the	button	was	tapped).	We’ll	need	a	method	in	the	view	controller	that	will
be	called	by	the	button	when	the	button	is	tapped.	To	make	this	method	dramatic	and
obvious,	we’ll	have	the	view	controller	put	up	an	alert	window.	Insert	this	method	into	the
ViewController.swift	declaration	body:

class	ViewController:	UIViewController	{

				@IBAction	func	buttonPressed(sender:AnyObject)	{

								let	alert	=	UIAlertController(

												title:	"Howdy!",	message:	"You	tapped	me!",	preferredStyle:	.Alert)

								alert.addAction(

												UIAlertAction(title:	"OK",	style:	.Cancel,	handler:	nil))

								self.presentViewController(alert,	animated:	true,	completion:	nil)

				}

}

The	@IBAction	attribute	is	like	@IBOutlet:	it’s	a	hint	to	Xcode	itself,	asking	Xcode	to

make	this	method	available	in	the	nib	editor.	And	indeed,	if	we	look	in	the	nib	editor,	we
find	that	it	is	now	available:	edit	Main.storyboard,	select	the	View	Controller	object	and
switch	to	the	Connections	inspector,	and	you’ll	find	that	buttonPressed:	is	now	listed
under	Received	Actions.

In	Main.storyboard,	in	the	single	scene	that	it	contains,	the	top-level	View	Controller’s
View	should	contain	a	button.	(We	created	it	earlier	in	this	chapter:	see	Figure	7-5.)	If	it
doesn’t,	add	one,	and	position	it	in	the	upper	left	corner	of	the	view.	Our	goal	now	is	to
connect	that	button’s	Touch	Up	Inside	event,	as	an	action,	to	the	buttonPressed:	method
in	ViewController.

As	with	an	outlet	connection,	there	is	a	source	and	a	destination.	The	source	here	is	the
button;	the	destination	is	View	Controller,	the	ViewController	instance	acting	as	owner	of
the	nib	containing	the	button.	There	are	many	ways	to	form	this	outlet	connection,	all	of
them	completely	parallel	to	the	formation	of	an	action	connection.	The	difference	is	that
we	must	configure	both	ends	of	the	connection.	At	the	button	(source)	end,	we	must
specify	that	the	control	event	we	want	to	use	is	Touch	Up	Inside;	fortunately,	this	is	the
default	for	a	UIButton,	so	we	might	be	able	to	skip	this	step.	At	the	view	controller
(destination)	end,	we	must	specify	that	the	action	method	to	be	called	is	buttonPressed:.

Let’s	form	the	action	connection	by	simply	Control-dragging	from	the	button	to	the	view
controller	in	the	nib	editor:

1.	 Control-drag	from	the	button	(in	the	canvas	or	in	the	document	outline)	to	the	View
Controller	listing	in	the	document	outline	(or	to	the	view	controller	icon	in	the	scene
dock	above	the	view	in	the	canvas).

2.	 A	HUD	listing	possible	connections	appears	(Figure	7-15);	it	lists	mostly	segues,	but
it	also	lists	Sent	Events,	and	buttonPressed:	in	particular.

3.	 Click	the	buttonPressed:	listing	in	the	HUD.

Figure	7-15.	A	HUD	showing	an	action	method

The	action	connection	has	now	been	formed.	This	means	that	when	the	app	runs,	any	time
the	button	gets	a	Touch	Up	Inside	event	—	meaning	that	it	was	tapped	—	it	will	send	the
action	message	buttonPressed:	to	the	target,	which	is	the	view	controller	instance.	We
know	what	that	method	should	do:	it	should	put	up	an	alert.	Try	it!	Build	and	run	the	app,
and	when	the	app	appears	in	the	Simulator,	tap	the	button.	It	works!

More	Ways	to	Create	Actions
Other	ways	in	which	you	can	form	the	action	connection	in	the	nib,	having	created	the
action	method	in	ViewController.swift,	include	the	following:

Control-click	the	view	controller.	A	HUD	appears,	similar	to	the	Connections	inspector.
Drag	from	buttonPressed:	(under	Received	Actions)	to	the	button.	Another	HUD
appears,	listing	possible	control	events.	Click	Touch	Up	Inside.
Select	the	button	and	use	the	Connections	inspector.	Drag	from	the	Touch	Up	Inside
circle	to	the	view	controller.	A	HUD	appears,	listing	the	known	action	methods	in	the
view	controller;	click	buttonPressed:.
Control-click	the	button.	A	HUD	appears,	similar	to	the	Connections	inspector.	Proceed
as	in	the	previous	case.
Arrange	to	see	ViewController.swift	in	one	pane	and	the	storyboard	in	the	other.	The
buttonPressed:	method	in	ViewController.swift	has	a	circle	to	its	left,	in	the	gutter.
Drag	from	that	circle	across	the	pane	boundary	to	the	button	in	the	nib.

As	with	an	outlet	connection,	the	most	impressive	way	to	make	an	action	connection	is	to
drag	from	the	nib	editor	to	your	code,	inserting	the	action	method	and	forming	the	action
connection	in	the	nib	in	a	single	move.	To	try	this,	first	delete	the	buttonPressed:	method
in	your	code	and	delete	the	action	connection	in	the	nib.	Arrange	to	see
ViewController.swift	in	one	pane	and	the	storyboard	in	the	other.	Now:

1.	 Control-drag	from	the	button	in	the	nib	editor	to	an	empty	area	in	the	ViewController
class	declaration’s	body.	A	HUD	offering	to	create	an	outlet	or	an	action	appears	in
the	code.	Release	the	mouse.

2.	 The	popover	view	appears.	This	is	the	tricky	part.	By	default,	the	popover	view	is
offering	to	create	an	outlet	connection.	That	isn’t	what	you	want;	you	want	an	action
connection!	Change	the	Connection	pop-up	menu	to	Action.	Now	you	can	enter	the
name	of	the	action	method	(buttonPressed)	and	configure	the	rest	of	the	declaration
(the	defaults	are	probably	good	enough:	see	Figure	7-16).

Figure	7-16.	Configuring	an	action	method	declaration

Xcode	forms	the	action	connection	in	the	nib,	and	inserts	a	stub	method	into	your	code:
@IBAction	func	buttonPressed(sender:	AnyObject)	{

}

The	method	is	just	a	stub	(Xcode	can’t	read	your	mind	and	guess	what	you	want	the
method	to	do),	so	in	real	life,	at	this	point,	you’d	insert	some	functionality	between	those
curly	braces.	As	with	an	outlet	connection,	the	filled	circle	next	to	the	code	in	an	action
method	tells	you	that	Xcode	believes	that	this	connection	is	correctly	configured,	and	you
can	click	the	filled	circle	to	learn,	and	navigate	to,	the	object	at	the	source	of	the
connection.

Misconfigured	Actions

As	with	an	outlet	connection,	configuring	an	action	connection	involves	setting	things	up
correctly	at	both	ends	(the	nib	and	the	code)	so	that	they	match.	Thus,	you	can	wreck	an
action	connection’s	configuration	and	crash	your	app.	The	typical	misconfiguration	is	that
the	name	of	the	action	method	as	embedded	in	the	action	connection	in	the	nib	no	longer
matches	the	name	of	the	action	method	in	the	code.

To	see	this,	change	the	name	of	the	function	in	the	code	from	buttonPressed	to
something	else,	like	buttonPushed.	Now	run	the	app	and	tap	the	button.	Your	app	crashes,
displaying	in	the	console	the	dreaded	error	message,	“Unrecognized	selector	sent	to
instance.”	A	selector	is	a	message	—	the	name	of	a	method.	The	runtime	tried	to	send	a
message	to	an	object,	but	that	object	turned	out	to	have	no	corresponding	method	(because
we	renamed	it).	If	you	look	a	little	earlier	in	the	error	message,	it	even	tells	you	the	name
of	this	method:

-[Empty_Window.ViewController	buttonPressed:]

The	runtime	is	telling	you	that	it	tried	to	call	the	buttonPressed:	method	in	your	Empty
Window	module’s	ViewController	class,	but	the	ViewController	class	has	no
buttonPressed:	method.

Connections	Between	Nibs	—	Not!
You	cannot	draw	an	outlet	connection	or	an	action	connection	between	an	object	in	one
nib	and	an	object	in	another	nib.	For	example:

You	can’t	open	nib	editors	on	two	different	.xib	files	and	Control-drag	a	connection
from	one	to	the	other.
In	a	.storyboard	file,	you	cannot	Control-drag	a	connection	between	an	object	in	one
scene	and	an	object	in	another	scene.

If	you	expect	to	be	able	to	do	this,	you	haven’t	understood	what	a	nib	is	(or	what	a	scene
is,	or	what	a	connection	is).

The	reason	is	simple:	objects	in	a	nib	together	will	become	instances	together,	at	the
moment	when	the	nib	loads,	so	it	makes	sense	to	connect	them	in	the	nib,	because	we
know	what	instances	we’ll	be	talking	about	when	the	nib	loads.	The	two	objects	may	both
be	instantiated	from	the	nib,	or	one	of	them	may	be	a	proxy	object	(the	nib	owner),	but
they	must	both	be	represented	in	the	same	nib,	so	that	the	actual	instances	can	be
configured	in	relation	to	one	another	on	a	particular	occasion	when	this	nib	loads.

If	an	outlet	connection	or	an	action	connection	were	drawn	from	an	object	in	one	nib	to	an
object	in	another	nib,	there	would	be	no	way	to	understand	what	actual	future	instances
the	connection	is	supposed	to	connect,	because	they	are	different	nibs	and	will	be	loaded
at	different	times	(if	ever).	The	problem	of	communicating	between	an	instance	generated
from	one	nib	and	an	instance	generated	from	another	nib	is	a	special	case	of	the	more
general	problem	of	how	to	communicate	between	instances	in	a	program,	discussed	in
Chapter	13.

Additional	Configuration	of	Nib-Based	Instances
By	the	time	a	nib	finishes	loading,	its	instances	are	fully	fledged;	they	have	been
initialized	and	configured	with	all	the	attributes	dictated	through	the	Attributes	and	Size
inspectors,	and	their	outlets	have	been	used	to	set	the	values	of	the	corresponding	instance
properties.	Nevertheless,	you	might	want	to	append	your	own	code	to	the	initialization
process	as	an	object	is	instantiated	from	a	loading	nib.	This	section	describes	some	ways
you	can	do	that.

A	common	situation	is	that	a	view	controller,	functioning	as	the	owner	when	a	nib
containing	its	main	view	loads	(and	therefore	represented	in	the	nib	by	the	nib	owner
object),	has	an	outlet	to	an	interface	object	instantiated	from	the	nib.	In	this	architecture,
the	view	controller	can	perform	further	configuration	on	that	interface	object,	because	it
has	a	reference	to	it	after	the	nib	loads	—	the	corresponding	instance	property.	The	earliest
place	where	it	can	perform	such	configuration	is	its	viewDidLoad	method.	At	the	time
viewDidLoad	is	called,	the	view	controller’s	view	has	loaded	—	that	is,	the	view
controller’s	view	property	has	been	set	to	its	actual	main	view,	instantiated	from	the	nib	—
and	all	outlets	have	been	connected;	but	the	view	is	not	yet	in	the	visible	interface.

Another	possibility	is	that	you’d	like	the	nib	object	to	configure	itself,	over	and	above
whatever	configuration	has	been	performed	in	the	nib.	Often,	this	will	be	because	you’ve
got	a	custom	subclass	of	a	built-in	interface	object	class	—	in	fact,	you	might	want	to
create	a	custom	class,	just	so	you	have	a	place	to	put	this	self-configuring	code.	The
problem	you’re	trying	to	solve	might	be	that	the	nib	editor	doesn’t	let	you	perform	the
configuration	you’re	after,	or	that	you	have	many	objects	that	need	to	be	configured	in
some	identical,	elaborate	way,	so	that	it	makes	more	sense	for	them	to	configure
themselves	by	virtue	of	sharing	a	common	class	than	to	configure	each	one	individually	in
the	nib	editor.

One	approach	is	to	implement	awakeFromNib	in	your	custom	class.	The	awakeFromNib
message	is	sent	to	all	nib-instantiated	objects	just	after	they	are	instantiated	by	the	loading
of	the	nib:	the	object	has	been	initialized	and	configured	and	its	connections	are
operational.

For	example,	let’s	make	a	button	whose	background	color	is	always	red,	regardless	of	how
it’s	configured	in	the	nib.	(This	is	a	nutty	example,	but	it’s	dramatically	effective.)	In	the
Empty	Window	project,	we’ll	create	a	button	subclass,	RedButton:

1.	 In	the	Project	navigator,	choose	File	→	New	→	File.	Specify	iOS	→	Source	→
Cocoa	Touch	Class.	Click	Next.

2.	 Call	the	new	class	RedButton.	Make	it	a	subclass	of	UIButton.	Click	Next.
3.	 Make	sure	you’re	saving	into	the	project	folder,	with	the	Empty	Window	group,	and

make	sure	the	Empty	Window	app	target	is	checked.	Click	Create.	Xcode	creates
RedButton.swift.

4.	 In	RedButton.swift,	inside	the	body	of	the	RedButton	class	declaration,	implement
awakeFromNib:

override	func	awakeFromNib()	{

				super.awakeFromNib()

				self.backgroundColor	=	UIColor.redColor()

}

We	now	have	a	UIButton	subclass	that	turns	itself	red	when	it’s	instantiated	from	a	nib.
But	we	have	no	instance	of	this	subclass	in	any	nib.	Let’s	fix	that.	Edit	the	storyboard,
select	the	button	that’s	already	in	the	main	view,	and	use	the	Identity	inspector	to	change
this	button’s	class	to	RedButton.

Now	build	and	run	the	project.	Sure	enough,	the	button	is	red!

A	further	possibility	is	to	take	advantage	of	the	User	Defined	Runtime	Attributes	in	the	nib
object’s	Identity	inspector.	This	can	allow	you	to	configure,	in	the	nib	editor,	aspects	of	a
nib	object	for	which	the	nib	editor	itself	provides	no	built-in	interface.	What	you’re
actually	doing	here	is	sending	the	nib	object,	at	nib-loading	time,	a
setValue:forKeyPath:	message;	key	paths	are	discussed	in	Chapter	10.	Naturally,	the
object	needs	to	be	prepared	to	respond	to	the	given	key	path,	or	your	app	will	crash	when
the	nib	loads.

For	example,	one	of	the	disadvantages	of	the	nib	editor	is	that	it	provides	no	way	to
configure	layer	attributes.	Let’s	say	we’d	like	to	use	the	nib	editor	to	round	the	corners	of
our	red	button.	In	code,	we	would	do	that	by	setting	the	button’s	layer.cornerRadius
property.	The	nib	editor	gives	no	access	to	this	property.	Instead,	we	can	select	the	button
in	the	nib	editor	and	use	the	User	Defined	Runtime	Attributes	in	the	Identity	inspector.	We
set	the	Key	Path	to	layer.cornerRadius,	the	Type	to	Number,	and	the	Value	to	whatever
value	we	want	—	let’s	say	10	(Figure	7-17).	Now	build	and	run;	sure	enough,	the	button’s
corners	are	now	rounded.

Figure	7-17.	Rounding	a	button’s	corners	with	a	runtime	attribute

You	can	also	configure	a	custom	property	of	a	nib	object	by	making	that	property
inspectable.	To	do	so,	add	the	@IBInspectable	attribute	to	the	property’s	declaration	in
your	code.	This	causes	the	property	to	be	listed	in	the	nib	object’s	Attributes	inspector.

For	example,	let’s	make	it	possible	to	configure	our	button’s	border	in	the	nib	editor.	At
the	start	of	the	RedButton	class	declaration	body,	add	this	code:

@IBInspectable	var	borderWidth	:	CGFloat	{

				get	{

								return	self.layer.borderWidth

				}

				set	{

								self.layer.borderWidth	=	newValue

				}

}

That	code	declares	a	RedButton	property,	borderWidth,	and	makes	it	a	façade	in	front	of

the	layer’s	borderWidth	property.	It	also	causes	the	nib	editor	to	display	that	property	in
the	Attributes	inspector	for	any	button	that	is	an	instance	of	the	RedButton	class	(Figure	7-
18).	The	result	is	that	when	we	give	this	property	a	value	in	the	nib	editor,	that	value	is
sent	to	the	setter	for	this	property	at	nib-loading	time,	and	the	button	border	appears	with
that	width.

Figure	7-18.	An	inspectable	property	in	the	nib	editor

To	intervene	with	a	nib	object’s	initialization	even	earlier,	if	the	object	is	a	UIView	(or	a
UIView	subclass),	you	can	implement	init(coder):.	Note	that,	for	a	UIView,
init(frame:)	is	not	called	during	instantiation	by	the	loading	of	a	nib	—	init(coder:)
is	called	instead.	(Implementing	init(frame:),	and	then	wondering	why	your	code	isn’t
called	when	the	view	is	instantiated	from	a	nib,	is	a	common	beginner	mistake.)	A
minimal	implementation	would	look	like	this:

required	init?(coder	aDecoder:	NSCoder)	{

				super.init(coder:aDecoder)

				//	your	code	here

}

Chapter	8.	Documentation
Knowledge	is	of	two	kinds.	We	know	a	subject	ourselves,	or	we	know	where	we	can	find	information	upon	it.

—	Samuel	Johnson,	Boswell’s	Life	of	Johnson

No	aspect	of	iOS	programming	is	more	important	than	a	fluid	and	nimble	relationship
with	the	documentation.	There	is	a	huge	number	of	built-in	Cocoa	classes,	with	many
methods	and	properties	and	other	details.	Apple’s	documentation,	whatever	its	flaws,	is
the	definitive	official	word	on	how	you	can	expect	Cocoa	to	behave,	and	on	the
contractual	rules	incumbent	upon	you	in	working	with	this	massive	framework	whose
inner	workings	you	cannot	see	directly.

The	Xcode	documentation	installed	on	your	machine	comes	in	large	chunks	called
documentation	sets	(or	doc	sets,	also	called	libraries).	You	do	not	merely	install	a	doc	set;
you	subscribe	to	it,	so	that	when	Apple	releases	a	documentation	update,	you	can	obtain
the	updated	version.

When	you	first	install	Xcode,	the	bulk	of	the	documentation	is	not	installed	on	your
machine;	viewing	the	documentation	in	the	documentation	window	(discussed	in	the	next
section)	may	require	an	Internet	connection,	so	that	you	can	see	the	online	docs	at	Apple’s
site.	This	situation	is	untenable;	you’re	going	to	want	a	copy	of	the	documentation	locally,
on	your	own	machine.

Therefore,	you	should	start	up	Xcode	immediately	after	installation	to	let	it	download	and
install	your	initial	doc	sets.	The	process	can	be	controlled	and	monitored,	to	some	extent,
in	the	Downloads	pane	of	the	Preferences	window	(under	Documentation);	you	can	also
specify	here	whether	you	want	updates	installed	automatically	or	whether	you	prefer	to
click	Check	and	Install	Now	manually	from	time	to	time.	This	is	also	where	you	specify
which	doc	sets	you	want;	I	believe	that	the	iOS	9	doc	set	and	the	Xcode	7	doc	set	are	all
you	need	for	iOS	development,	but	it	can’t	hurt	to	install	the	OS	X	10.11	doc	set	as	well.
You	may	have	to	provide	your	machine’s	admin	password	when	a	doc	set	is	first	installed.
Doc	sets	are	installed	in	your	home	Library/Developer/Shared/Documentation/DocSets
directory.

The	Documentation	Window
Your	primary	access	to	the	documentation	is	in	Xcode,	through	the	documentation
window	(Window	→	Documentation	and	API	Reference,	or	Help	→	Documentation	and
API	Reference,	Command-Shift-0).	Within	the	documentation	window,	the	primary	way
into	the	documentation	is	to	do	a	search;	for	example,	press	Command-Shift-0	(or
Command-L	if	you’re	already	in	the	documentation	window),	type	NSString,	and	press
Return	to	select	the	top	hit,	which	is	the	NSString	Class	Reference.	Click	the	magnifying
glass	icon	to	limit	the	results	to	the	iOS-related	doc	sets	if	desired.

There	are	two	ways	to	see	the	results	of	a	search	in	the	documentation	window:

Pop-up	results	window

If	you’re	actively	typing	in	the	search	field,	a	dozen	or	so	primary	results	are	listed	in	a
pop-up	window.	Click	with	the	mouse,	or	navigate	with	arrow	keys	and	press	Return,	to
specify	which	result	you	want	to	view.	You	can	also	summon	and	hide	this	pop-up
window	by	pressing	Esc	whenever	the	search	field	has	focus.

Full	results	page

When	the	search	field	has	focus	and	the	pop-up	results	window	is	not	showing,	press
Return	to	see	a	page	listing	all	results	of	the	search;	these	results	are	listed	on	four
separate	pages,	by	category:	API	Reference,	SDK	Guides,	Tools	Guides,	and	Sample
Code.

You	can	also	perform	a	documentation	window	search	starting	from	within	your	code.
You’ll	very	often	want	to	do	this:	you’re	looking	directly	at	a	symbol	(a	class	name,	a
method	name,	a	property	name,	and	so	on)	at	its	point	of	use	in	your	code,	and	you	want
to	know	more	about	it.	Hold	Option	and	hover	the	mouse	over	a	term	in	your	code	until	a
blue	dotted	underline	appears;	then	(still	holding	Option)	double-click	the	term.	The
documentation	window	opens,	and	you	are	taken	directly	to	the	explanation	of	that	term
within	its	class	documentation	page,	or	to	the	full	results	page	for	a	search	on	that	term.

(Similarly,	during	code	completion	—	discussed	in	Chapter	9	—	you	can	click	the	More
link	to	make	this	same	move,	jumping	directly	to	the	documentation	on	the	current
symbol.)

Alternatively,	you	can	select	text	in	your	code	(or	anywhere	else)	and	choose	Help	→
Search	Documentation	for	Selected	Text	(Command-Option-Control-/).	This	is	the
equivalent	of	typing	that	text	into	the	search	field	in	the	documentation	window	and
asking	to	see	the	full	results	page.

The	documentation	window	behaves	basically	as	a	glorified	web	browser,	because	the
documentation	consists	essentially	of	web	pages.	Multiple	pages	can	appear
simultaneously	as	tabs	in	the	documentation	window.	To	navigate	to	a	new	tab,	hold
Command	as	you	navigate	—	for	example,	Command-click	a	link,	or	Command-click
your	choice	in	the	pop-up	results	window	—	or	choose	Open	Link	in	New	Tab	from	the
contextual	menu.	You	can	navigate	between	tabs	(Window	→	Show	Next	Tab),	and	each
tab	remembers	its	navigation	history	(Navigate	→	Go	Back,	or	use	the	Back	button	in	the
window	toolbar,	which	is	also	a	pop-up	menu).

TIP

You	can	open	in	your	web	browser	the	local	page	you’re	currently	viewing	in	the	documentation	window:	choose
Editor	→	Share	→	Open	in	Browser.

A	documentation	page	may	be	accompanied	by	a	list	of	related	items.	The	start	of	the	list
is	shown	in	a	pane	above	the	page;	the	full	list	appears	in	a	popover	when	you	click	the
“More	related	items”	link	(Figure	8-1).	For	example,	the	related	items	pane	for	the
NSString	Class	Reference	page	includes	links	to	NSString’s	class	inheritance	and	its
adopted	protocols,	with	further	information	and	links	in	the	popover.	I’ll	talk	more	about	a
class’s	related	items	later	in	this	chapter.

A	documentation	page	may	be	accompanied	by	a	table	of	contents,	displayed	in	a	pane	to
the	left	of	the	documentation	page	(Figure	8-1);	to	see	it	if	it	isn’t	showing,	choose	Editor
→	Show	Table	of	Contents,	or	click	the	Table	of	Contents	icon	in	the	window	toolbar.	For
example,	the	NSString	Class	Reference	page	has	a	table	of	contents	pane	linking	to	all	the
topics	and	methods	listed	within	the	page.	Some	documentation	pages	may	use	the	table	of
contents	to	show	the	page’s	place	within	a	larger	group	of	pages;	for	example,	the	String
Programming	Guide	consists	of	multiple	pages,	and	when	you’re	viewing	one,	the	Table
of	Contents	pane	lists	all	the	pages	of	the	String	Programming	Guide	along	with	each
page’s	main	topics.

A	full	hierarchical	table	of	contents	for	all	doc	sets	(the	library)	appears	at	the	far	left	of
the	documentation	window;	to	see	it	if	it	isn’t	showing,	choose	Editor	→	Show	Library,	or
click	the	Navigator	button	in	the	window	toolbar.	The	hierarchy	shows	all	reference
documents,	along	with	guides	and	sample	code,	clumped	together	by	subject.	When
viewing	a	documentation	page,	to	show	it	in	its	place	within	the	full	hierarchical	table	of
contents,	choose	Editor	→	Reveal	in	Library	(or	choose	Reveal	in	Library	from	the
contextual	menu).

When	you	encounter	a	documentation	page	to	which	you’re	likely	to	want	to	return,	make
it	a	bookmark:	choose	Editor	→	Share	→	Add	Bookmark,	or	click	the	Share	button	in	the
toolbar	and	choose	Add	Bookmark,	or	choose	Add	Bookmark	from	the	contextual	menu,
or	(easiest	of	all)	click	the	bookmark	icon	in	the	left	margin	of	the	documentation	page.
Bookmarks	are	displayed	at	the	left	of	the	documentation	window,	sharing	space	in	the
navigator	with	the	full	hierarchical	table	of	contents;	to	see	the	bookmarks	pane	if	it	isn’t
showing,	choose	Editor	→	Show	Bookmarks.	Icons	at	the	top	of	the	navigator	let	you
switch	between	the	library	pane	and	the	bookmarks	pane.	Click	a	bookmark	in	the
bookmarks	pane	to	jump	to	it	in	the	documentation	window.	Bookmark	management	is
simple	but	effective:	you	can	rearrange	bookmarks	or	delete	a	bookmark,	and	that’s	all.

To	search	for	text	within	the	current	documentation	page,	use	the	Find	menu	commands.
Find	→	Find	(Command-F)	summons	a	find	bar,	as	in	Safari.

TIP

A	third-party	documentation	viewer	application,	such	as	Dash	(http://kapeli.com/dash),	may	provide	better
searchability	and	a	better	view	of	your	local	doc	sets	than	the	documentation	window	does.	Also,	most	of	the
documentation	can	be	accessed	using	a	real	web	browser	at	http://developer.apple.com,	Apple’s	developer	site;	this
web	browser	display	allows	sections	to	be	shown	and	hidden,	it	includes	an	alphabetic	searchable	index	of	methods
and	properties,	and	it	may	even	show	information	that	the	documentation	window	omits.

http://kapeli.com/dash
http://developer.apple.com

Class	Documentation	Pages
In	the	vast	majority	of	cases,	your	target	documentation	page	will	be	the	documentation
for	a	class.	It’s	important	to	be	comfortable	and	conversant	with	the	typical	features	and
information	provided	by	a	class	documentation	page,	so	let’s	pause	to	notice	them
(Figure	8-1).

Figure	8-1.	The	start	of	the	UIButton	class	documentation	page

You’ll	want	to	keep	an	eye	on	the	related	items	information	when	you’re	studying	a	class
(click	the	“More	related	items”	link	to	see	it):

Inherits	from

Lists,	and	links	to,	the	chain	of	superclasses.	One	of	the	biggest	beginner	mistakes	is
failing	to	consult	the	documentation	up	the	superclass	chain.	A	class	inherits	from	its
superclasses,	so	the	functionality	or	information	you’re	looking	for	may	be	in	a
superclass.	You	won’t	find	out	about	addTarget:action:forControlEvents:	from	the
UIButton	class	page;	that	information	is	in	the	UIControl	class	page.	You	won’t	find	out
that	a	UIButton	has	a	frame	property	from	the	UIButton	class	page;	that	information	is
in	the	UIView	class	page.

Conforms	to

Lists,	and	links	to,	the	protocols	adopted	by	this	class.	Failing	to	consult	the
documentation	for	adopted	protocols	is	a	serious	beginner	mistake.	For	example,	you
won’t	find	out	that	UIViewController	gets	a
viewWillTransitionToSize:withTransitionCoordinator:	event	by	looking	at	the
UIViewController	class	documentation	page:	you	have	to	look	in	the	documentation	for
the	UIContentContainer	protocol,	which	UIViewController	adopts.

Framework

Tells	what	framework	this	class	is	part	of.	Your	code	must	link	to	this	framework,	and
import	this	framework’s	header,	in	order	to	use	this	class;	in	Swift,	it	will	typically	be
sufficient	to	import	the	framework	by	its	module	name	(see	Chapter	6).

Availability

States	the	earliest	version	of	the	operating	system	where	this	class	is	implemented.	For
example,	the	UIView	layoutGuides	property	is	an	array	of	UILayoutGuide	objects.	But
the	UILayoutGuide	class	wasn’t	invented	until	iOS	9.	So	if	you	want	to	use	this	feature
in	your	app,	you	must	make	sure	either	that	your	app	targets	only	iOS	9	or	later,	or	that
your	code	never	uses	this	class	when	your	app	is	running	on	an	earlier	system.

Declared	in

The	header	file(s)	where	this	class	is	declared.	Unfortunately	this	is	not	a	link;	I	have
not	found	any	quick	way	to	view	a	header	file	starting	from	the	documentation.	That’s	a
pity,	as	it	can	often	be	worth	looking	at	the	header	file,	which	may	contain	helpful
comments	or	other	details.	You	can	open	the	header	file	from	the	project	window,	as
explained	later	in	this	chapter.

Related	documents

If	a	class	documentation	page	lists	a	related	guide,	you	might	want	to	click	that	link	and
read	that	guide.	For	example,	the	UIView	class	documentation	page	lists	(and	links	to)
the	View	Programming	Guide	for	iOS.	Guides	are	broad	surveys	of	a	topic;	they	provide
important	information	(including,	often,	useful	code	examples),	and	they	can	serve	to
orient	your	thinking	and	make	you	aware	of	your	options.

The	body	of	the	class	documentation	page	is	divided	into	sections,	which	are	listed	in	the
table	of	contents	pane:

Overview

Some	class	pages	provide	extremely	important	introductory	information	in	the
Overview	section,	including	links	to	related	guides	and	further	information.	(See	the
UIView	class	documentation	page	for	an	example.)

Tasks

This	section	lists,	clumped	into	categories,	the	properties	and	methods	of	this	class.

Constants

Many	classes	define	constants	that	accompany	particular	methods.	For	example,	in	the
UIButton	class	documentation	page,	you’ll	find	that,	to	create	a	UIButton	instance	in
code,	you	can	call	the	init(type:)	initializer;	the	argument	value	will	be	listed	under
UIButtonType	in	the	Constants	section.

Finally,	let’s	talk	about	how	a	class	documentation	page	lists	and	explains	individual
properties	and	methods.	In	recent	years,	this	part	of	the	documentation	has	become	quite
splendid,	with	good	hyperlinks.	Note	the	following	subsections,	after	the	property	or
method	name:

Description

A	short	summary	of	what	the	property	or	method	does.

Declaration

Read	this	to	learn	things	like	the	method’s	parameters	and	return	type.

Parameters	and	Return	Value

Precise	information	on	the	meaning	and	purpose	of	these.

Discussion

Often	contains	extremely	important	further	details	about	how	this	method	behaves.
Always	pay	attention	to	this	section!

Availability

An	old	class	can	acquire	new	methods	as	the	operating	system	advances;	if	a	newer
method	is	crucial	to	your	app,	you	might	want	to	exclude	your	app	from	running	on
older	operating	systems	that	don’t	implement	the	method.

See	Also

Links	to	related	methods	and	properties.	Very	helpful	for	giving	you	a	larger	perspective
on	how	this	method	fits	into	the	overall	behavior	of	this	class.

WARNING

Methods	injected	into	a	class	by	a	category	(Chapter	10)	are	often	not	listed	on	that	class’s	documentation	page	and
can	be	very	difficult	to	discover.	For	example,	awakeFromNib	(discussed	in	Chapter	7)	isn’t	mentioned	in	the
documentation	for	UIButton	or	for	any	of	its	superclasses	or	protocols.	This	is	a	major	weakness	in	Apple’s
organization	and	display	of	the	documentation.

Sample	Code
Apple	provides	plenty	of	sample	code	projects,	listed	in	the	full	table	of	contents	in	the
documentation	window	(Editor	→	Show	Library).	You	can	view	the	code	directly	in	the
documentation	window;	sometimes	this	will	be	sufficient,	but	you	can	see	only	one	file	at
a	time,	so	it’s	difficult	to	get	an	overview.	The	alternative	is	to	open	the	sample	code
project	in	Xcode;	click	the	Open	Project	link	at	the	top	of	a	sample	code	page	in	the
documentation	window.	If	you’re	looking	at	the	sample	code	in	your	browser	at
http://developer.apple.com,	there’s	a	Download	Sample	Code	button.	With	the	sample
code	project	open	as	a	project	window,	you	can	read	the	code,	navigate	it,	edit	it,	and	of
course	run	the	project.

As	a	form	of	documentation,	sample	code	is	both	good	and	bad.	It	can	be	a	superb	source
of	working	code	that	you	can	often	copy	and	paste	and	use	with	very	little	alteration	in
your	own	projects.	It	is	usually	heavily	commented,	because	the	Apple	folks	are	aware,	as
they	write	the	code,	that	it	is	intended	for	instructional	purposes.	Sample	code	also
illustrates	concepts	that	users	have	difficulty	extracting	from	the	documentation.	(Users
who	have	not	grasped	UITouch	handling,	for	instance,	often	find	that	the	lightbulb	goes	on
when	they	discover	the	MoveMe	example.)	But	the	logic	of	a	project	is	often	spread	over
multiple	files,	and	nothing	is	more	difficult	to	understand	than	someone	else’s	code
(except,	perhaps,	your	own	code).	Moreover,	what	learners	most	need	is	not	the	fait
accompli	of	a	fully	written	project	but	the	reasoning	process	that	constructed	the	project,
which	no	amount	of	commentary	can	provide.

My	own	assessment	is	that	Apple’s	sample	code	is	uneven.	Some	of	it	is	a	bit	careless	or
even	faulty,	while	some	of	it	is	astoundingly	well-written.	It	is	generally	thoughtful	and
instructive,	though,	and	is	definitely	a	major	component	of	the	documentation;	it	deserves
more	appreciation	and	usage	than	it	seems	to	get.	But	it	is	most	useful,	I	think,	after
you’ve	reached	a	certain	level	of	competence	and	comfort.

http://developer.apple.com

Quick	Help
Quick	Help	is	a	condensed	rendering	of	the	documentation	on	some	single	topic,	usually	a
symbol	name.	It	appears	with	regard	to	the	current	selection	or	insertion	point
automatically	in	the	Quick	Help	inspector	(Command-Option-2)	if	the	inspector	is
showing.	Thus,	for	example,	if	you’re	editing	code	and	the	insertion	point	or	selection	is
within	the	term	CGPointMake,	documentation	for	CGPointMake	appears	in	the	Quick	Help
inspector	if	it	is	visible.

Quick	Help	is	also	available	in	the	Quick	Help	inspector	for	interface	objects	selected	in
the	nib	editor,	for	build	settings	while	editing	a	project	or	target,	and	so	forth.

Quick	Help	documentation	can	also	be	displayed	as	a	popover	window,	without	the	Quick
Help	inspector.	Select	a	term	and	choose	Help	→	Quick	Help	for	Selected	Item
(Command-Control-Shift-?).	Alternatively,	hold	down	Option	and	hover	the	mouse	over	a
term	until	the	cursor	becomes	a	question	mark	(and	the	term	turns	blue	with	a	dashed
underline);	then	Option-click	the	term.

TIP

When	you’re	developing	Swift	code,	Quick	Help	is	of	increased	importance.	If	you	click	in	the	name	of	a	Swift
variable	whose	type	is	inferred,	Quick	Help	shows	the	inferred	type	(see	Figure	3-1).	This	can	help	you	understand
compile	errors	and	other	surprises.

The	Quick	Help	documentation	contains	links.	For	example,	click	the	Reference	link	to
open	the	full	documentation	in	the	documentation	window.

You	can	inject	documentation	for	your	own	code	into	Quick	Help.	To	do	so,	precede	a
declaration	with	a	comment	enclosed	in	/**...*/.	(Alternatively,	use	a	sequence	of
single-line	comments	starting	with	///.)	Within	the	comment,	Markdown	formatting	can
be	used	(see	http://daringfireball.net/projects/markdown/syntax);	this	use	of	Markdown	is
new	in	Xcode	7.	The	comment	becomes	the	Description	field	for	Quick	Help;	certain	list
items	(paragraphs	beginning	with	*	or	-	followed	by	space)	are	treated	in	a	special	way:

Paragraphs	beginning	with	“Parameter	[paramname]:”	are	incorporated	into	the
Parameters	field.
A	paragraph	beginning	with	“Throws:”	becomes	the	Throws	field.
A	paragraph	beginning	with	“Returns:”	becomes	the	Returns	field.

For	example,	here’s	a	function	declaration	with	a	preceding	comment:
/**

Many	people	would	like	to	dog	their	cats.	So	it	is	*perfectly*

reasonable	to	supply	a	convenience	method	to	do	so:

*	Because	it's	cool.

*	Because	it's	there.

*	Parameter	cats:	A	string	containing	cats

*	Returns:	A	string	containing	dogs

*/

func	dogMyCats(cats:String)	->	String	{

				return	"Dogs"

}

The	double	asterisk	in	the	opening	comment	delimiter	denotes	that	this	is	documentation,

http://daringfireball.net/projects/markdown/syntax

and	the	comment’s	location	automatically	associates	it	with	the	dogMyCats	method	whose
definition	follows.	The	word	surrounded	by	asterisks	is	formatted	as	italics;	the	asterisked
paragraphs	become	bulleted	paragraphs;	and	the	last	two	paragraphs	become	special
fields.	The	outcome	is	that	when	dogMyCats	is	selected	anywhere	in	my	code,	its
documentation	is	displayed	in	Quick	Help	(Figure	8-2).	The	first	paragraph	of	the
description	is	also	displayed	as	part	of	code	completion	(see	Chapter	9).

Figure	8-2.	Custom	documentation	injected	into	Quick	Help

Symbols
A	symbol	is	a	declared	term,	such	as	the	name	of	a	function,	variable,	or	object	type.	If
you	can	see	the	name	of	a	symbol	in	your	code	in	an	editor	in	Xcode,	you	can	jump
quickly	to	the	declaration	of	the	symbol.	Select	text	and	choose	Navigate	→	Jump	to
Definition	(Command-Control-J).	Alternatively,	hold	down	Command	and	hover	the
mouse	over	a	prospective	term,	until	the	cursor	becomes	a	pointing	finger	(and	the	term
becomes	blue	with	a	solid	underline);	Command-click	the	term	to	jump	to	the	declaration
for	that	symbol.	When	you	do:

If	the	symbol	is	declared	in	your	code,	you	jump	to	that	declaration	in	your	code;	this
can	be	helpful	not	only	for	understanding	your	code	but	also	for	navigating	it.
If	the	symbol	is	declared	in	a	framework,	you	jump	to	the	declaration	in	the	header	file.
If	you	started	in	a	.swift	file,	the	header	file	that	you	jump	to	is	translated	into	Swift.
(I’ll	talk	more	about	header	files	in	the	next	section.)

The	precise	meaning	of	the	notion	“jump”	depends	upon	the	modifier	keys	you	use	in
addition	to	the	Command	key,	and	on	your	settings	in	the	Navigation	pane	of	Xcode’s
preferences.	By	default,	Command-click	jumps	in	the	same	editor,	Command-Option-click
jumps	in	an	assistant	pane,	and	Command-double-click	jumps	in	a	new	window.	Similarly,
Command-Option-Control-J	jumps	in	an	assistant	pane	to	the	declaration	of	the	selected
term.

Another	way	to	see	a	list	of	your	project’s	symbols,	and	to	navigate	to	a	symbol
declaration,	is	through	the	Symbol	navigator	(Chapter	6).	If	the	second	icon	in	the	filter
bar	is	highlighted,	these	are	symbols	declared	in	your	project;	if	not,	symbols	from
imported	frameworks	are	listed	as	well.

To	jump	to	the	declaration	of	a	symbol	whose	name	you	know,	even	if	you	don’t	see	the
name	in	the	code	before	you,	choose	File	→	Open	Quickly	(Command-Shift-O).	In	the
search	field,	type	key	letters	from	the	name,	which	will	be	interpreted	intelligently;	for
example,	to	search	for	application:didFinishLaunchingWithOptions:,	you	might	type
appdidf.	Possible	matches	are	shown	in	a	scrolling	list	below	the	search	field;	you	can
navigate	this	list	with	the	mouse	or	by	keyboard	alone.	Besides	declarations	from	the
framework	headers,	declarations	in	your	own	code	are	listed	as	well,	so	this,	too,	can	be	a
rapid	way	of	navigating	your	code.

Header	Files
Often,	a	header	file	can	be	a	useful	form	of	documentation	—	possibly	the	most	useful
form	of	documentation.	The	header	is	necessarily	accurate,	up-to-date,	and	complete;	the
class	documentation	is	not.	A	header	consists	chiefly	of	declarations,	but	it	may	also
contain	comments	with	helpful	information;	this,	too,	can	tell	you	things	that	the	class
documentation	might	not.	Also,	a	single	header	file	can	contain	declarations	for	multiple
classes	and	protocols.	So	it	can	be	an	excellent	quick	reference.

The	simplest	way	to	reach	a	header	file	is	to	jump	to	the	declaration	of	a	symbol	there.	For
example,	to	reach	NSString.h	—	the	Foundation.NSString	header	file	—	Command-click
on	the	term	NSString	wherever	it	may	appear	in	your	code.	See	the	previous	section	for
the	various	ways	of	jumping	to	a	symbol	declaration;	since	most	symbols	are	declared	in
header	files,	these	are	ways	of	reaching	header	files.

When	you	jump	to	a	header	file	from	your	code,	if	the	code	that	you	started	from	was	a
Swift	file,	the	header	file,	if	it	is	written	in	Objective-C,	is	spontaneously	translated	into
Swift.	That’s	good	because	it	tells	you	what	you	can	say	in	Swift.	But	it’s	bad	if	you	were
hoping	to	get	a	look	at	the	actual	Objective-C	header!	New	in	Xcode	7,	you	can	switch
from	a	Swift	translated	(generated)	header	to	the	Objective-C	original	by	choosing
Navigate	>	Jump	to	Original	Source	(or	choose	Original	Source	from	the	Related	Items
menu	at	the	left	end	of	the	jump	bar).

You	can	learn	a	lot	about	the	Swift	language	and	the	built-in	library	functions	by
examining	the	Swift	header	file.	There	are	also	special	Swift	header	files	for	Core
Graphics	and	Foundation.

TIP

A	useful	trick	is	to	write	an	import	statement	just	so	that	you	can	Command-click	it	to	reach	a	header.	For	example,	if
you	import	Swift	at	the	top	of	a	.swift	file,	the	word	Swift	itself	is	a	symbol	that	you	can	Command-click	to	jump	to
the	Swift	header.

Internet	Resources
Programming	has	become	a	lot	easier	since	the	Internet	came	along	and	Google	started
indexing	it.	It’s	amazing	what	you	can	find	out	with	a	Google	search.	Your	problem	is
very	likely	one	that	someone	else	has	faced,	solved,	and	written	about	on	the	Internet.
Often	you’ll	find	sample	code	that	you	can	paste	into	your	project	and	adapt.

Apple’s	documentation	resources	are	available	at	http://developer.apple.com/library/.
These	resources	are	updated	before	the	changes	are	rolled	into	your	doc	sets	for	download.
There	are	also	some	materials	here	that	aren’t	part	of	the	Xcode	documentation	on	your
computer.	For	example,	you	can	download	the	videos	for	all	WWDC	2015	sessions	(as
well	as	for	some	earlier	years).

Apple	also	hosts	some	developer	forums	at	https://forums.developer.apple.com.	Some
interesting	discussions	take	place	here,	and	they	are	patrolled	by	some	very	helpful	Apple
employees;	but	the	interface	remains	extraordinarily	clunky.

Other	online	resources	have	sprung	up	spontaneously	as	iOS	programming	has	become
more	popular,	and	lots	of	iOS	and	Cocoa	programmers	blog	about	their	experiences.	I	am
particularly	fond	of	Stack	Overflow	(http://www.stackoverflow.com);	it	isn’t	devoted
exclusively	to	iOS	programming,	of	course,	but	lots	of	iOS	programmers	hang	out	there,
questions	are	answered	succinctly	and	correctly,	and	the	interface	lets	you	focus	on	the
right	answer	quickly	and	easily.

http://developer.apple.com/library/
https://forums.developer.apple.com
http://www.stackoverflow.com

Chapter	9.	Life	Cycle	of	a	Project
This	chapter	surveys	some	of	the	main	stages	in	the	life	cycle	of	an	Xcode	project,	from
inception	to	submission	at	the	App	Store.	This	survey	will	provide	an	opportunity	to
discuss	some	additional	features	of	the	Xcode	development	environment:	configuring	your
build	settings	and	your	Info.plist;	editing,	debugging,	and	testing	your	code;	running	your
app	on	a	device;	profiling;	localization;	and	final	preparations	for	the	App	Store.

Device	Architecture	and	Conditional	Code
As	you	create	a	project	(File	→	New	→	Project),	after	you	pick	a	project	template,	in	the
screen	where	you	name	your	project,	the	Devices	pop-up	menu	offers	a	choice	of	iPad,
iPhone,	or	Universal.	You	can	change	this	setting	later,	using	the	Devices	pop-up	menu	in
the	General	tab	when	you	edit	the	app	target;	but	your	life	will	be	simpler	if	you	decide
correctly	here,	at	the	outset,	because	your	decision	can	affect	the	details	of	the	template	on
which	your	new	project	will	be	based.	Your	choice	in	the	Devices	pop-up	menu	also
affects	your	project’s	Targeted	Device	Family	build	setting:

1	(iPhone)

The	app	will	run	on	an	iPhone	or	iPod	touch.	It	can	also	run	on	an	iPad,	but	not	as	a
native	iPad	app;	it	runs	in	a	reduced	enlargeable	window,	which	I	call	the	iPhone
Emulator	(Apple	sometimes	refers	to	this	as	“compatibility	mode”).

2	(iPad)

The	app	will	run	only	on	an	iPad.

1,2	(Universal)

The	app	will	run	natively	on	both	kinds	of	device.

Two	additional	project-level	build	settings	determine	what	systems	your	device	will	run
on:

Base	SDK

The	latest	system	your	app	can	run	on.	As	of	this	writing,	in	Xcode	7.0,	you	have	just
two	choices,	iOS	9.0	and	Latest	iOS	(iOS	9.0).	They	sound	the	same,	but	the	latter	is
better	(and	is	the	default	for	a	new	project).	If	you	update	Xcode	to	develop	for	a
subsequent	system,	any	existing	projects	that	are	already	set	to	Latest	iOS	will
automatically	use	that	newer	system’s	most	recent	SDK	as	their	Base	SDK,	without	you
having	to	update	their	Base	SDK	setting	manually.

iOS	Deployment	Target

The	earliest	system	your	app	can	run	on:	in	Xcode	7,	this	can	be	any	major	iOS	system
all	the	way	back	to	iOS	6.0.	To	change	the	project’s	iOS	Deployment	Target	setting
easily,	edit	the	project	and	switch	to	the	Info	tab,	and	choose	from	the	iOS	Deployment
Target	pop-up	menu.

Backward	Compatibility
Writing	an	app	whose	Deployment	Target	differs	from	its	Base	SDK	—	that	is,	an	app	that
is	backward	compatible	to	an	earlier	system	—	is	something	of	a	challenge.	There	are	two
chief	problems:

Changed	behavior

With	each	new	system,	Apple	permits	itself	to	change	the	way	some	features	work.	The
result	is	that	certain	features	that	exist	on	different	systems	may	work	differently
depending	what	system	it	is.	An	entire	area	of	functionality	may	be	handled	differently
on	different	systems,	requiring	you	to	implement	or	call	a	whole	different	set	of
methods	or	use	a	completely	different	set	of	classes.	It	is	even	possible	that	the	very
same	method	may	do	two	quite	different	things,	depending	on	what	system	the	app	runs
on.

Unsupported	features

With	each	new	system,	Apple	adds	new	features.	Your	app	will	crash	if	execution
encounters	features	not	supported	by	the	system	on	which	it	is	actually	running.

Changed	behavior	is	terribly	troublesome,	and	I	have	little	advice	to	give	you.	Often	the
issue	is	one	of	sheer	breakage,	or	breakage	and	repair.	For	example,	code	using
UIProgressView’s	progressImage	property	works	in	iOS	7,	doesn’t	work	at	all	from	iOS
7.1	through	iOS	8.4,	and	works	in	iOS	9.	You	have	no	way	of	knowing	this	aside	from
trial	and	error,	and	working	your	way	around	it	coherently	is	extremely	tricky.

Less	unpredictable	but	just	as	drastic,	alert	views	are	presented	using	UIAlertView	in	iOS
7	and	before,	but	with	UIAlertController	in	iOS	8	and	later.	Your	simplest	solution	would
be	to	keep	using	UIAlertView	even	in	iOS	8	and	later,	but	you	cannot	guarantee	that	this
will	always	work,	as	UIAlertView	is	deprecated	in	iOS	9	and	may	eventually	be	dropped
altogether	—	plus,	you’re	robbing	yourself	of	the	chance	to	use	UIAlertController,	which
is	a	significantly	better	API.	The	situation	with	popovers	is	similar	(UIPopoverController
vs.	UIPopoverPresentationController).	In	this	way,	improvements	from	one	system	to	the
next	present	the	developer	with	a	nasty	paradox:	they	are	desirable,	but	they	make
backward	compatibility	harder.

New	in	Xcode	7,	however,	the	compiler	will	at	least	help	you	in	one	way	that	it	never	did
before	—	by	deliberately	making	it	difficult	for	your	code	to	use	features	not	supported	on
the	target	system.	Prior	to	Xcode	7,	if	you	were	to	set	the	project’s	Deployment	Target	to
an	earlier	system,	your	code	would	compile	and	your	app	would	run	on	that	earlier	system,
even	if	it	contained	features	that	didn’t	exist	on	that	earlier	system	—	and	then	your	app
would	crash	on	that	earlier	system	if	any	of	those	features	were	actually	encountered.	In
Xcode	7,	the	compiler	will	prevent	that	situation	from	arising	in	the	first	place.

Thus,	for	example:
let	arr	=	self.view.layoutGuides

The	UIView	layoutGuides	property	exists	only	on	iOS	9.0	and	later.	Formerly,	the
compiler	would	permit	that	code	to	compile	even	if	your	deployment	target	was,	say,	iOS
8.0;	realizing	that	that	code	must	never	actually	run	on	iOS	8	was	up	to	you.	Now,
however,	the	compiler	will	stop	you	with	an	error:	“layoutGuides	is	only	available	on
iOS	9.0	or	newer.”	You	cannot	proceed	until	you	acknowledge	to	the	compiler	that	this
code	is	to	run	only	on	iOS	9	or	later.	And	Xcode’s	Fix-It	feature	will	show	you	how	to	do
that:

if	#available(iOS	9.0,	*)	{

				let	arr	=	self.view.layoutGuides

}	else	{

				//	Fallback	on	earlier	versions

}

The	#available	condition	—	an	availability	check	—	tests	the	current	system	against	a
set	of	requirements	matching	the	actual	availability	of	a	feature	as	specified	in	its
declaration.	The	layoutGuides	property	declaration	is	preceded	(in	Swift)	with	this
annotation:

@available(iOS	9.0,	*)

For	the	detailed	meaning	of	that	annotation,	consult	the	documentation.	But	you	don’t
really	need	to	understand	it!	Your	#available	condition	should	match	that	annotation,	and
Xcode’s	Fix-It	will	make	sure	that	it	does.	You	can	use	#available	either	in	an	if
condition	or	in	a	guard	condition.

You	can	annotate	your	own	type	and	member	declarations	with	an	@available	attribute,
and	your	code	will	then	have	to	use	an	availability	check.	For	example,	if	a	method	is
declared	@available(iOS	9.0,	*),	then	you	can’t	call	that	method,	when	the	deployment
target	is	earlier	than	iOS	9,	without	an	availability	check.	Within	such	a	method,	you	don’t
need	any	#available(iOS	9.0,	*)	availability	checks,	because	you’ve	already
guaranteed	that	this	method	won’t	run	on	a	system	earlier	than	iOS	9.

WARNING

To	test	your	app	on	an	earlier	system,	you’ll	need	a	device,	real	or	simulated,	running	that	earlier	system.	You	can
download	an	iOS	8	SDK	through	Xcode’s	Downloads	preference	pane	(see	Chapter	6),	but	to	test	on	a	system	earlier
than	that,	you’ll	need	an	older	version	of	Xcode,	or	preferably	an	older	device.	Do	not	submit	to	the	App	Store	an	app
that	runs	on	a	system	for	which	you	have	not	tested!

Device	Type
It	can	be	useful,	in	the	case	of	a	universal	app,	to	react	to	whether	your	code	is	running	on
an	iPad,	on	the	one	hand,	or	an	iPhone	or	iPod,	on	the	other.	The	current	UIDevice,	or	the
traitCollection	of	any	UIViewController	or	UIView	in	the	hierarchy,	will	tell	you	the
current	device’s	type	as	its	userInterfaceIdiom,	which	will	be	a	UIUserInterfaceIdiom,
either	.Phone	or	.Pad.

You	can	load	resources	conditionally	depending	on	the	device	type	or	screen	resolution.	In
the	case	of	images	loaded	from	the	top	level	of	the	app	bundle,	name	suffixes	can	be	used,
such	as	@2x	and	@3x	to	indicate	screen	resolution,	or	~iphone	and	~ipad	to	indicate	device
type;	but	it	is	simpler	wherever	possible	to	use	an	asset	catalog,	and	with	Xcode	7	and	iOS
9	you	can	do	this	for	any	kind	of	data	resource	(see	Resources	in	an	asset	catalog).

Similarly,	certain	Info.plist	settings	come	with	name	suffixes,	so	you	can	adopt	one	setting
on	one	device	type	and	another	setting	on	another.	It	is	quite	common,	for	example,	for	a
universal	app	to	adopt	one	set	of	possible	orientations	on	iPhone	and	another	set	on	iPad:
typically,	the	iPhone	version	permits	a	limited	set	of	orientations	and	the	iPad	version
permits	all	orientations.	You	can	configure	this	in	the	General	pane	when	you	edit	the
target:

1.	 Switch	the	Devices	pop-up	menu	to	iPhone	and	check	the	desired	Device	Orientation
checkboxes	for	the	iPhone.

2.	 Switch	the	Devices	pop-up	menu	to	iPad	and	check	the	desired	Device	Orientation
checkboxes	for	the	iPad.

3.	 Switch	the	Devices	pop-up	menu	to	Universal.

Even	though	you’re	now	seeing	just	one	set	of	orientations,	both	sets	are	remembered.
What	you’ve	really	done	is	to	configure	two	groups	of	“Supported	interface	orientations”
settings	in	the	Info.plist,	a	general	set	(UISupportedInterfaceOrientations)	and	an
iPad-only	set	that	overrides	the	general	case	when	the	app	runs	on	an	iPad
(UISupportedInterfaceOrientations~ipad).	Examine	the	Info.plist	file	to	see	that	this	is
so.

In	the	same	way,	your	app	can	load	different	nib	files,	and	thus	can	display	different
interfaces,	depending	on	the	device	type.	For	example,	you	can	have	two	main
storyboards,	loading	one	of	them	at	launch	if	this	is	an	iPhone	and	the	other	if	this	is	an
iPad.	Again,	you	can	configure	this	in	the	General	pane	when	you	edit	the	target,	and
again,	what	you’re	really	doing	is	telling	the	Info.plist	setting	“Main	storyboard	file	base
name”	to	appear	twice,	once	for	the	general	case	(UIMainStoryboardFile)	and	once	for
iPad	only	(UIMainStoryboardFile~ipad).	If	your	app	loads	a	nib	file	by	name,	the
naming	of	that	nib	file	works	like	that	of	an	image	file:	if	there	is	an	alternative	nib	file	by
the	same	name	with	~ipad	appended,	it	will	load	automatically	if	we	are	running	on	an
iPad.

However,	you	are	less	likely	than	in	the	past	to	need	to	distinguish	one	device	type	from
another.	In	iOS	7	and	before,	entire	interface	object	classes	(such	as	popovers)	were
available	only	on	the	iPad;	in	iOS	8	and	later,	there	are	no	iPad-only	classes,	and	the
interface	classes	themselves	adapt	if	your	code	is	running	on	an	iPhone.	Similarly,	in	iOS
7	and	before,	a	universal	app	might	need	a	completely	different	interface,	and	hence	a
different	set	of	nib	files,	depending	on	the	device	type;	in	iOS	8	and	later,	size	classes
allow	a	single	nib	file	to	be	configured	conditionally	depending	on	the	device	type.	And	in
general	the	physical	distinction	between	an	iPad	and	an	iPhone	is	not	so	sharp	as	in	the
past:	thanks	to	the	intermediate	iPhone	6	and	(especially)	the	iPhone	6	Plus,	it’s	more	of	a
continuum.

Version	Control
Sooner	rather	than	later	in	the	life	of	any	real	app,	you	should	consider	putting	your
project	under	version	control.	Version	control	is	a	way	of	taking	periodic	snapshots
(technically	called	commits)	of	your	project.	Its	purpose	might	be:

Security

Version	control	can	help	you	store	your	commits	in	a	repository	offsite,	so	that	your
code	isn’t	lost	in	case	of	a	local	computer	glitch	or	some	equivalent	“hit	by	a	bus”
scenario.

Collaboration

Version	control	affords	multiple	developers	ready,	rational	access	to	the	same	code.

Freedom	from	fear

A	project	is	a	complicated	thing;	often,	changes	must	be	made	experimentally,
sometimes	in	many	files,	possibly	over	a	period	of	many	days,	before	a	new	feature	can
be	tested.	Version	control	means	that	I	can	easily	retrace	my	steps	(to	some	previous
commit)	if	things	go	badly;	this	gives	me	confidence	to	start	down	some	tentative
programmatic	road	whose	outcome	may	not	be	apparent	until	much	later.	Also,	if	I’m
confused	about	what	programmatic	road	I	seem	to	be	taking,	I	can	ask	a	version	control
system	to	list	the	changes	I’ve	made	recently.	If	an	ancillary	bug	is	introduced,	I	can	use
version	control	to	pinpoint	when	it	happened	and	help	discover	the	cause.

Xcode	provides	various	version	control	facilities,	which	are	geared	chiefly	to	git
(http://git-scm.com)	and	Subversion	(http://subversion.apache.org,	also	called	svn).	This
doesn’t	mean	you	can’t	use	any	other	version	control	system	with	your	projects;	it	means
only	that	you	can’t	use	any	other	version	control	system	in	an	integrated	fashion	from
inside	Xcode.	That’s	no	disaster;	there	are	many	other	ways	to	use	version	control,	and
even	with	git	and	Subversion,	it	is	perfectly	possible	to	ignore	Xcode’s	integrated	version
control	and	rely	on	the	Terminal	command	line,	or	use	a	specialized	third-party	GUI	front
end	such	as	svnX	for	Subversion	(http://www.lachoseinteractive.net/en/products)	or
SourceTree	for	git	(http://www.sourcetreeapp.com).

If	you	don’t	want	to	use	Xcode’s	integrated	version	control,	you	can	turn	it	off	more	or	less
completely.	If	you	uncheck	Enable	Source	Control	in	the	Source	Control	preference	pane,
the	only	thing	you’ll	be	able	to	do	is	choose	Check	Out	from	the	Source	Control	menu,	to
fetch	code	from	a	remote	server.	If	you	check	Enable	Source	Control,	three	additional
checkboxes	let	you	select	which	automatic	behaviors	you	want.	Personally,	I	like	to	check
Enable	Source	Control	along	with	“Refresh	local	status	automatically,”	so	that	Xcode
displays	a	file’s	status	in	the	Project	navigator;	I	leave	the	other	two	checkboxes
unchecked,	because	I’m	a	manual	control	kind	of	person.

When	you	create	a	new	project,	the	Save	dialog	includes	a	checkbox	that	offers	to	place	a
git	repository	into	your	project	folder	from	the	outset.	This	can	be	purely	local	to	your
computer,	or	you	can	choose	a	remote	server.	If	you	have	no	reason	to	decide	otherwise,	I
suggest	that	you	check	that	checkbox!

When	you	open	an	existing	project,	if	that	project	is	already	managed	with	Subversion	or

http://git-scm.com
http://subversion.apache.org
http://www.lachoseinteractive.net/en/products
http://www.sourcetreeapp.com

git,	Xcode	detects	this	and	is	ready	instantly	to	display	version	control	information	in	its
interface.	If	a	remote	repository	is	involved,	Xcode	automatically	enters	information	for	it
in	the	Accounts	preference	pane,	which	is	the	unified	interface	for	repository
management.	To	use	a	remote	server	without	having	a	working	copy	checked	out	from	it,
enter	its	information	manually	in	the	Accounts	preference	pane.

Source	control	actions	are	available	in	two	places:	the	Source	Control	menu	and	the
contextual	menu	in	the	Project	navigator.	To	check	out	and	open	a	project	stored	on	a
remote	server,	choose	Source	Control	→	Check	Out.	Other	items	in	the	Source	Control
menu	are	obvious,	such	as	Commit,	Push,	Pull	(or	Update),	Refresh	Status,	and	Discard
Changes.	Note	particularly	the	first	item	in	the	Source	Control	menu,	which	lists	all	open
working	copies	by	name	and	branch;	its	hierarchical	menu	items	let	you	perform
rudimentary	branch	management.

Files	in	the	Project	navigator	are	marked	with	their	status.	For	example,	if	you’re	using
git,	you	can	distinguish	modified	files	(M),	new	untracked	files	(?),	and	new	files	added	to
the	index	(A).	(If	you’ve	unchecked	“Refresh	local	status	automatically,”	those	markings
may	not	appear	until	you	choose	Source	Control	→	Refresh	Status.)

When	you	choose	Source	Control	→	Commit,	you’re	shown	a	comparison	view	of	all
changes	in	all	changed	files.	Each	change	can	be	excluded	from	this	commit	(or	reverted
entirely),	so	it’s	possible	to	group	related	file	hunks	into	meaningful	commits.	A	similar
comparison	view	is	available	for	any	commit	by	choosing	Source	Control	→	History.	(But
Xcode	has	nothing	like	the	visual	branch	representation	of	git’s	own	gitk	tool.)	Merge
conflicts	are	also	presented	in	a	useful	graphical	comparison	interface.

You	can	also	see	a	comparison	view	for	the	file	being	currently	edited,	at	any	time,
through	the	Version	editor;	choose	View	→	Version	Editor	→	Show	Version	Editor,	or
click	the	third	Editor	button	in	the	project	window	toolbar.	The	Version	editor	actually	has
three	modes:	Comparison	view,	Blame	view,	and	Log	view	(choose	from	View	→	Version
Editor,	or	use	the	pop-up	menu	from	the	third	Editor	button	in	the	toolbar).

For	example,	in	Figure	9-1,	I	can	see	that	in	the	more	recent	version	of	this	file	(on	the
left)	I’ve	changed	my	supportedInterfaceOrientations	implementation	(because	the
Swift	language	changed).	If	I	choose	Editor	→	Copy	Source	Changes,	the	corresponding
diff	text	(a	patch	file)	is	placed	on	the	clipboard.	If	I	switch	to	Blame	view	I	can	see	my
own	commit	message.	The	jump	bar	at	the	bottom	of	the	Version	editor	permits	me	to
view	any	commit’s	version	of	the	current	file	in	the	editor.

Figure	9-1.	Version	comparison

Another	way	to	learn	how	a	line	was	changed	is	to	select	within	that	line	(in	the	normal
editor)	and	choose	Editor	→	Show	Blame	For	Line.	A	popover	appears,	describing	the
commit	where	this	line	changed	to	its	current	form;	using	buttons	in	that	popover,	you	can
switch	to	Blame	view	or	Comparison	view.

Editing	and	Navigating	Your	Code
Many	aspects	of	Xcode’s	editing	environment	can	be	modified	to	suit	your	tastes.	Your
first	step	should	be	to	pick	a	Source	Editor	font	face	and	size	you	like	in	Xcode’s	Fonts	&
Colors	preference	pane.	Nothing	is	so	important	as	being	able	to	read	and	write	code
comfortably!	I	like	a	largish	size	(13,	14	or	even	16)	and	a	pleasant	monospaced	font	such
as	Menlo	or	Consolas,	or	the	freeware	Inconsolata	(http://levien.com/type/myfonts/)	or
Source	Code	Pro	(https://github.com/adobe-fonts/source-code-pro).

Xcode	has	some	automatic	formatting,	autotyping,	and	text	selection	features.	Their	exact
behavior	depends	upon	your	settings	in	the	Editing	and	Indentation	tabs	of	Xcode’s	Text
Editing	preference	pane.	I’m	not	going	to	describe	these	settings	in	detail,	but	I	urge	you
to	take	advantage	of	them.	Under	Editing,	I	like	to	check	just	about	everything,	including
Line	Numbers;	visible	line	numbers	are	useful	when	debugging.	Under	Indentation,	I	like
to	have	just	about	everything	checked	too;	I	find	the	way	Xcode	lays	out	code	to	be
excellent	with	these	settings.

TIP

If	you	like	Xcode’s	smart	syntax-aware	indenting,	but	you	find	that	once	in	a	while	a	line	of	code	isn’t	indenting	itself
correctly,	choose	Editor	→	Structure	→	Re-Indent	(Control-I),	which	autoindents	the	current	line	or	selection.

With	“Enable	type-over	completions”	checked,	Xcode	helps	balance	delimiters.	For
example,	suppose	I	intend	to	make	a	UIView	by	calling	its	initializer	init(frame:).	I	type
as	far	as	this:

let	v	=	UIView(fr

Xcode	automatically	appends	the	closing	right	parenthesis,	with	the	insertion	point	still
positioned	before	it:

let	v	=	UIView(fr)

//	I	have	typed	^

That	closing	right	parenthesis,	however,	is	tentative;	it’s	in	gray.	Now	I	finish	typing	the
parameter;	the	right	parenthesis	is	still	gray:

let	v	=	UIView(frame:r)

//						I	have	typed	^

I	can	now	confirm	the	closing	right	parenthesis	in	any	of	several	ways:	I	can	actually	type
a	right	parenthesis,	or	I	can	type	Tab	or	Right	arrow.	The	tentative	right	parenthesis	is
replaced	by	a	real	right	parenthesis,	and	the	insertion	point	is	now	positioned	after	it,	ready
for	me	to	continue	typing.	Xcode	behaves	similarly	with	double	quotes,	right	curly	braces,
right	square	brackets,	and	so	on.

Autocompletion
As	you	write	code,	you’ll	take	advantage	of	Xcode’s	autocompletion	feature.	Cocoa	type
names	and	method	names	are	astonishingly	verbose,	and	whatever	reduces	your	time	and
effort	typing	will	be	a	relief.	However,	I	personally	do	not	check	“Suggest	completions
while	typing”	under	Editing;	instead,	I	check	“Use	Escape	key	to	show	completion
suggestions,”	and	when	I	want	autocompletion	to	happen,	I	ask	for	it	manually,	by
pressing	Esc.

For	example,	suppose	I	want	my	code	to	create	an	alert.	I	type	as	far	as

http://levien.com/type/myfonts/
https://github.com/adobe-fonts/source-code-pro

UIAlertController(and	press	Esc.	A	menu	pops	up,	listing	the	four	initializers
appropriate	to	a	UIAlertController	(Figure	9-2).	You	can	navigate	this	menu,	dismiss	it,	or
accept	the	selection,	using	only	the	keyboard.	So,	if	it	were	not	already	selected	by	default,
I	would	navigate	to	title:...	with	the	Down	arrow	key,	and	press	Return	to	accept	the
selected	choice.

Figure	9-2.	The	autocompletion	menu

When	I	choose	from	the	autocompletion	menu,	the	template	for	the	method	call	is	entered
in	my	code	(I’ve	broken	it	into	multiple	lines	here):

let	alert	=	UIAlertController(

				title:	<#String?#>,

				message:	<#String?#>,

				preferredStyle:	<#UIAlertControllerStyle#>)

The	expressions	in	<#...#>	are	placeholders,	showing	the	type	of	each	parameter.	They
appear	in	Xcode	as	cartouche-like	“text	tokens”	(see	Figure	9-2)	to	prevent	them	from
being	edited	accidentally.	You	can	select	the	next	placeholder	with	Tab	or	by	choosing
Navigate	→	Jump	to	Next	Placeholder	(Control-/).	Thus	I	can	select	a	placeholder	and
type	over	it,	entering	the	actual	argument	I	wish	to	pass,	select	the	next	placeholder	and
type	that	argument,	and	so	forth.	To	convert	a	placeholder	to	a	normal	string	without	the
delimiters,	select	it	and	press	Return,	or	double-click	it.

Autocompletion	and	its	contextual	intelligence	works	for	object	type	names,	method	calls,
and	property	names.	It	also	works	when	you’re	entering	a	declaration	for	a	function	that’s
inherited	or	defined	in	an	adopted	protocol.	You	don’t	need	to	type	even	the	initial	func;
just	type	the	first	few	letters	of	the	method’s	name.	For	example,	in	my	app	delegate	class
I	might	type:

applic

If	I	then	press	Esc,	I	see	a	list	of	methods	such	as
application:didFinishLaunchWithOptions:;	these	are	methods	that	might	be	sent	to	my
app	delegate	(by	virtue	of	its	being	the	app	delegate,	as	discussed	in	Chapter	11).	When	I
choose	one,	the	entire	declaration	is	filled	in	for	me,	including	the	curly	braces:

func	application(application:	UIApplication,

				didFinishLaunchingWithOptions	launchOptions:	[NSObject	:	AnyObject]?)

				->	Bool	{

								<#code#>

}

A	placeholder	for	the	code	appears	between	the	curly	braces,	and	it	is	selected,	ready	for
me	to	start	entering	the	body	of	the	function.	If	a	function	needs	an	override	designation,
Xcode’s	code	completion	provides	it.

Snippets

Code	autocompletion	is	supplemented	by	code	snippets.	A	code	snippet	is	a	bit	of	text
with	an	abbreviation.	Code	snippets	are	kept	in	the	Code	Snippet	library	(Command-
Option-Control-2),	but	a	code	snippet’s	abbreviation	is	globally	available	to	code
completion,	so	you	can	use	a	snippet	without	showing	the	library:	you	type	the
abbreviation	and	the	snippet’s	name	is	included	among	the	possible	completions.

For	example,	to	enter	a	class	declaration	at	the	top	level	of	a	file,	I	would	type	class	and
press	Esc,	to	get	autocompletion,	and	select	“Swift	Class”	or	“Swift	Subclass.”	When	I
press	Return,	the	template	appears	in	my	code:	the	class	name	and	superclass	name	are
placeholders,	the	curly	braces	are	provided,	and	the	body	of	the	declaration	(between	the
curly	braces)	is	another	placeholder.

To	learn	a	snippet’s	abbreviation,	you	must	open	its	editing	window	—	double-click	the
snippet	in	the	Code	Snippet	library	—	and	click	Edit.	If	learning	a	snippet’s	abbreviation
is	too	much	trouble,	simply	drag	the	snippet	from	the	Code	Snippet	library	into	your	text.
The	filter	bar	(Edit	→	Filter	→	Filter	in	Library,	Command-Option-L)	helps	you	reach	a
snippet	by	name	quickly.

You	can	add	your	own	snippets,	which	will	be	categorized	as	User	snippets;	the	easiest
way	is	to	drag	text	into	the	Code	Snippet	library.	Edit	to	suit	your	taste,	providing	a	name,
a	description,	and	an	abbreviation;	the	Completion	Scopes	pop-up	menu	lets	you	narrow
the	contexts	in	which	the	snippet	will	be	available	through	code	completion.	In	the	text	of
the	snippet,	use	the	<#...#>	construct	to	form	any	desired	placeholders.

For	example,	I’ve	created	an	outlet	snippet	defined	like	this:
@IBOutlet	var	<#name#>	:	<#type#>!

And	I’ve	created	an	action	snippet	defined	like	this:
@IBAction	func	<#name#>	(sender:AnyObject!)	{

				<#code#>

}

My	other	snippets	constitute	a	personal	library	of	utility	functions	that	I’ve	developed.	For
example,	my	delay	snippet	inserts	my	dispatch_after	wrapper	function	(see	Delayed
Performance).

Fix-it	and	Live	Syntax	Checking
Xcode’s	Fix-it	feature	can	make	and	implement	positive	suggestions	on	how	to	avert	a
problem.	To	summon	it,	click	on	an	issue	badge	in	the	gutter.	Such	an	issue	badge	will
appear	after	compilation	if	there’s	a	problem.

For	instance,	Figure	9-3,	at	the	top,	shows	that	I’ve	accidentally	forgotten	the	parentheses
after	a	method	call.	This	causes	a	compile	error,	because	the	backgroundColor	property
that	I’m	trying	to	set	is	a	UIColor,	not	a	function.	But	the	stop-sign	icon	next	to	the	error
tells	me	that	Fix-it	has	a	suggestion.	I	click	the	stop-sign	icon,	and	Figure	9-3,	at	the
bottom,	shows	what	happens:	a	Fix-It	dialog	pops	up,	telling	me	how	it	proposes	to	fix	the
problem	—	by	inserting	the	parentheses.	Moreover,	Xcode	is	showing	me	what	my	code
would	look	like	if	Fix-It	did	fix	the	problem	in	this	way.	If	I	press	Return,	or	double-click
the	“Fix-it”	suggestion	in	the	dialog,	Xcode	really	inserts	the	parentheses	—	and	the	error
vanishes,	because	the	problem	is	solved.

Figure	9-3.	A	compile	error	with	a	Fix-it	suggestion

TIP

If	you’re	confident	that	Xcode	will	do	the	right	thing,	choose	Editor	→	Fix	All	in	Scope	(Command-Option-Control-
F),	and	Xcode	will	implement	all	nearby	Fix-it	suggestions	without	your	even	having	to	show	the	dialog.

Live	syntax	checking	is	like	a	form	of	continual	compilation.	Even	if	you	don’t	compile	or
save,	live	syntax	checking	can	detect	the	presence	of	a	problem,	and	can	suggest	the
solution	with	Fix-it.	This	feature	can	be	toggled	on	or	off	using	the	“Show	live	issues”
checkbox	in	the	General	preference	pane.

Personally,	I	find	live	syntax	checking	intrusive.	My	code	is	almost	never	valid	while	I’m
in	the	middle	of	typing,	because	the	terms	and	parentheses	are	always	half-finished;	that’s
what	it	means	to	be	typing!	For	example,	merely	typing	the	first	letter	of	let	will	instantly
cause	the	syntax	checker	to	complain	of	an	unresolved	identifier;	I	hate	that.	So	I’ve	got
“Show	live	issues”	unchecked.

Navigation
Developing	an	Xcode	project	involves	editing	code	in	many	files	at	once.	Fortunately,
Xcode	provides	numerous	ways	to	navigate	your	code,	many	of	which	have	been
mentioned	in	previous	chapters.	Here	are	some	of	Xcode’s	chief	forms	of	navigation:

The	Project	navigator

If	you	know	something	about	the	name	of	a	file,	you	can	find	it	quickly	in	the	Project
navigator	(Command-1)	by	typing	into	the	search	field	in	the	filter	bar	at	the	bottom	of
the	navigator	(Edit	→	Filter	→	Filter	in	Navigator,	Command-Option-J).	For	example,
type	story	to	see	just	your	.storyboard	files.	Moreover,	after	using	the	filter	bar,	you
can	press	Tab	and	then	the	Up	or	Down	arrow	key	to	navigate	the	Project	navigator;
thus	you	can	reach	the	desired	file	with	the	keyboard	alone.

The	Symbol	navigator

If	you	highlight	the	first	two	icons	in	the	filter	bar	(the	first	two	are	blue,	the	third	is
dark),	the	Symbol	navigator	lists	your	project’s	object	types	and	their	members.	Click
on	a	symbol	to	navigate	to	its	declaration	in	the	editor.	As	with	the	Project	navigator,
the	filter	bar’s	search	field	can	help	get	you	where	you	want	to	go.

The	jump	bar

Every	path	component	of	the	code	editor’s	jump	bar	is	a	menu:

The	bottom	level

At	the	bottom	level	(farthest	right)	in	the	jump	bar	is	a	list	of	your	file’s	object	and
member	declarations,	in	the	order	in	which	they	appear	(hold	Command	while
choosing	the	menu	to	see	them	in	alphabetical	order);	choose	one	to	navigate	to	it.

You	can	inject	bold	section	titles	into	this	bottom-level	menu	using	a	comment	whose
first	word	is	MARK:.	For	example,	try	modifying	ViewController.swift	in	our	Empty
Window	project:

//	MARK:	-	view	lifecycle

override	func	viewDidLoad()	{

				super.viewDidLoad()

}

The	result	is	that	the	viewDidLoad	item	in	the	bottom-level	menu	is	preceded	by	view
lifecycle.	To	make	a	divider	line	in	the	menu,	type	a	MARK:	comment	whose	value
is	a	hyphen;	in	the	preceding	example,	both	a	hyphen	(to	make	a	divider	line)	and	a
title	(to	make	a	bold	title)	are	used.	Similarly,	comments	starting	with	TODO:	and
FIXME:	will	appear	in	the	bottom-level	menu.

Higher	levels

Higher-level	path	components	are	hierarchical	menus;	thus	you	can	use	any	of	them
to	work	your	way	down	the	file	hierarchy.

History

Each	editor	pane	remembers	the	names	of	files	you’ve	edited	in	it.	The	Back	and
Forward	triangles	are	both	buttons	and	pop-up	menus	(or	choose	Navigate	→	Go
Back	and	Navigate	→	Go	Forward,	Command-Control-Left	and	Command-Control-
Right).

Related	items

The	leftmost	button	in	the	jump	bar	summons	the	Related	Items	menu,	a	hierarchical
menu	of	files	related	to	the	current	file,	such	as	superclasses	and	adopted	protocols.
This	list	even	includes	functions	that	call	or	are	called	by	the	currently	selected
function.

TIP

A	path	component	menu	in	the	jump	bar	can	be	filtered!	Start	typing	while	a	jump	bar	menu	is	open,	to	filter	what	the
menu	displays.	This	filtering	uses	an	“intelligent”	search,	not	a	strict	text	containment	search;	for	example,	typing
“adf”	will	find	application:didFinishLaunchingWithOptions:	(if	it’s	present	in	the	menu).

The	Assistant	pane

The	Assistant	pane	lets	you	be	in	two	places	at	once	(see	Chapter	6).	Hold	Option	while
navigating	to	open	something	in	an	Assistant	pane	instead	of	the	primary	editor	pane.
The	Tracking	menu	in	an	Assistant	pane’s	jump	bar	sets	its	automatic	relationship	to	the
main	pane.

Tabs	and	windows

You	can	also	be	in	two	places	at	once	by	opening	a	tab	or	a	separate	window	(again,	see
Chapter	6).

Jump	to	definition

Navigate	→	Jump	to	Definition	(Command-Control-J)	lets	you	jump	to	the	declaration
of	the	symbol	already	selected	in	your	code.

Open	quickly

File	→	Open	Quickly	(Command-Shift-O)	opens	a	dialog	where	you	can	search	for	a
symbol	in	your	code	and	in	the	framework	headers.

Breakpoints

The	Breakpoint	navigator	lists	all	breakpoints	in	your	code.	Xcode	lacks	code
bookmarks,	but	you	can	misuse	a	disabled	breakpoint	as	a	bookmark.	Breakpoints	are
discussed	later	in	this	chapter.

Finding
Finding	is	a	form	of	navigation.	Xcode	has	both	a	global	find	(Find	→	Find	in	Project,
Command-Shift-F),	which	is	the	same	as	using	the	Find	navigator,	and	an	editor-level	find
(Find	→	Find,	Command-F);	don’t	confuse	them.

Find	options	are	all-important.	For	editor-level	find,	click	the	magnifying	glass	icon	in	the
search	field	to	get	the	Edit	Find	Options	item.	You	can	search	for	word	middles	or	word
starts,	case	sensitive	or	insensitive	—	you	can	even	find	using	regular	expressions.	There’s
a	lot	of	power	lurking	here!	The	global	find	options	appear	above	and	below	the	search
field,	and	include	a	scope,	allowing	you	to	specify	in	sophisticated	ways	which	files	will
be	searched:	click	the	current	scope	to	see	the	Search	Scopes	panel,	where	you	can	select	a
different	scope	or	create	a	custom	scope.

Global	find	options	above	the	search	field	include	Text,	Regular	Expression,	Definitions
(where	a	symbol	is	defined),	and	References	(where	a	symbol	is	used).	New	in	Xcode	7	is
the	Call	Hierarchy	find	option,	which	allows	you	to	trace	the	nests	of	calls	backwards
through	your	code.	Click	the	second	item	in	the	search	bar	to	summon	the	pop-up	menu,
and	choose	Call	Hierarchy;	alternatively,	select	a	term	in	your	code	and	choose	Find	→
Find	Call	Hierarchy	(Shift-Control-Command-H).	The	call	hierarchy	is	displayed	inverted
in	the	Find	navigator	(Figure	9-4).

Figure	9-4.	A	call	hierarchy	in	the	Find	navigator

To	replace	text,	click	the	word	Find	at	the	left	end	of	the	search	bar	to	summon	the	pop-up
menu,	and	choose	Replace.	You	can	replace	all	occurrences	(Replace	All),	or	select
particular	find	results	in	the	Find	navigator	and	replace	only	those	(Replace);	you	can	also
delete	find	results	from	the	Find	navigator,	to	protect	them	from	being	affected	by	Replace
All.	The	Find	navigator’s	Preview	button	summons	a	dialog	that	shows	you	the	effect	of
each	possible	replacement,	and	lets	you	accept	or	reject	particular	replacements	in	advance
of	performing	the	replacement.	For	editor-level	find,	hold	Option	before	clicking	Replace
All,	to	find-and-replace	within	only	the	current	selection.

A	sophisticated	form	of	editor-level	find	is	Editor	→	Edit	All	In	Scope,	which	finds
simultaneously	all	occurrences	of	the	currently	selected	term	within	the	same	scope;	you
can	use	this	to	change	the	name	of	a	variable	or	function	throughout	its	scope,	or	just	to
survey	how	the	name	is	used.

Running	in	the	Simulator
When	you	build	and	run	with	the	Simulator	as	the	destination,	you	run	in	the	iOS
Simulator	application.	The	Simulator	window	represents	a	device.	Depending	on	your	app
target’s	Base	SDK,	Deployment	Target,	and	Targeted	Device	Family	build	settings,	and	on
what	SDKs	you	have	installed,	you	may	have	choices	about	the	device	and	system	to	be
represented	by	the	Simulator	as	you	choose	your	destination	before	running	(see
Chapter	6).

The	Simulator	window	can	be	displayed	at	various	sizes:	choose	from	Window	→	Scale.
This	is	a	matter	of	display	merely,	comparable	to	zooming	the	window.	For	example,	you
might	run	a	double-resolution	device	in	the	Simulator	at	full	size	to	see	every	pixel,	or	at
half	size	to	save	space.

You	can	interact	with	the	Simulator	in	some	of	the	same	basic	ways	as	you	would	a
device.	Using	the	mouse,	you	can	tap	on	the	device’s	screen;	hold	Option	to	make	the
mouse	represent	two	fingers	moving	symmetrically	around	their	common	center,	and
Option-Shift	to	represent	two	fingers	moving	in	parallel.	To	click	the	Home	button,	choose
Hardware	→	Home	(Command-Shift-H).	Items	in	the	Hardware	menu	also	let	you
perform	hardware	gestures	such	as	rotating	the	device,	shaking	it,	and	locking	its	screen;
you	can	also	test	your	app	by	simulating	certain	rare	events,	such	as	a	low-memory
situation.

TIP

Clicking	the	Home	button	to	switch	from	the	app	you’re	running	in	Xcode	to	the	home	screen	does	not	stop	your	app
running,	in	Xcode	or	the	Simulator.	To	quit	your	app	in	the	Simulator,	quit	the	Simulator,	or	switch	to	Xcode	and
choose	Product	→	Stop.

The	Debug	menu	in	the	Simulator	is	useful	for	detecting	problems	with	animations	and
drawing.	Toggle	Slow	Animations	makes	animations	unfold	in	slow	motion	so	that	you
can	see	in	detail	what’s	happening.	The	next	four	menu	items	(their	names	begin	with
Color)	are	similar	to	features	available	when	running	using	Instruments,	under	the	Core
Animation	instrument,	revealing	possible	sources	of	inefficiency	in	screen	drawing.

The	Debug	menu	also	lets	you	open	the	log	in	the	Console	application,	and	lets	you	set	the
simulated	device’s	location	(useful	when	testing	a	Core	Location	app).

Debugging
Debugging	is	the	art	of	figuring	out	what’s	wrong	with	the	behavior	of	your	app	as	it	runs.
I	divide	this	art	into	two	main	techniques:	caveman	debugging	and	pausing	your	running
app.

Caveman	Debugging
Caveman	debugging	consists	of	altering	your	code,	usually	temporarily,	typically	by
adding	code	to	dump	informative	messages	into	the	console.	You	can	view	the	console	in
the	Debug	pane;	Chapter	6	describes	a	technique	for	displaying	the	console	in	a	tab	of	its
own.

The	standard	Swift	command	for	sending	a	message	to	the	console	is	the	print	function.
Using	Swift’s	string	interpolation	and	the	CustomStringConvertible	protocol	(which
requires	a	description	property;	see	Chapter	4),	you	can	pack	a	lot	of	useful	information
into	a	print	call.	Cocoa	objects	generally	have	built-in	description	property
implementations.	For	example:

print(self.view)

The	output	in	the	console	reads	something	like	this	(I’ve	formatted	it	for	clarity	here):
<UIView:	0x79121d40;

		frame	=	(0	0;	320	480);

		autoresize	=	RM+BM;

		layer	=	<CALayer:	0x79121eb0>>

We	learn	the	object’s	class,	its	address	in	memory	(useful	for	confirming	whether	two
instances	are	in	fact	the	same	instance),	and	the	values	of	some	additional	properties.

If	you’re	importing	Foundation	—	and	in	real	life	iOS	programming,	you	are	—	you	also
have	access	to	the	NSLog	C	function.	It	takes	an	NSString	which	operates	as	a	format
string,	followed	by	the	format	arguments.	A	format	string	is	a	string	containing	symbols
called	format	specifiers,	for	which	values	(the	format	arguments)	will	be	substituted	at
runtime.	All	format	specifiers	begin	with	a	percent	sign	(%),	so	the	only	way	to	enter	a
literal	percent	sign	in	a	format	string	is	as	a	double	percent	sign	(%%).	The	character(s)
following	the	percent	sign	specify	the	type	of	value	that	will	be	supplied	at	runtime.	The
most	common	format	specifiers	are	%@	(an	object	reference),	%d	(an	int),	%ld	(a	long),	and
%f	(a	double).	For	example:

NSLog("the	view:	%@",	self.view)

In	that	example,	self.view	is	the	first	(and	only)	format	argument,	so	its	value	will	be
substituted	for	the	first	(and	only)	format	specifier,	%@,	when	the	format	string	is	printed	in
the	console:

2015-01-26	10:43:35.314	Empty	Window[23702:809945]

		the	view:	<UIView:	0x7c233b90;

				frame	=	(0	0;	320	480);

				autoresize	=	RM+BM;

				layer	=	<CALayer:	0x7c233d00>>

I	like	NSLog’s	output	because	it	provides	the	current	time	and	date,	along	with	the	process
name,	process	ID,	and	thread	ID	(useful	for	determining	whether	two	logging	statements
are	called	on	the	same	thread).	Also,	NSLog	is	thread-safe,	whereas	it	appears	that	print	is
not.

For	the	complete	repertory	of	format	specifiers	available	in	a	format	string,	read	Apple’s
document	String	Format	Specifiers	(in	the	String	Programming	Guide).	The	format
specifiers	are	largely	based	on	those	of	the	C	printf	standard	library	function.

The	main	ways	to	go	wrong	with	NSLog	(or	any	format	string)	are	to	supply	a	different
number	of	format	arguments	from	the	number	of	format	specifiers	in	the	string,	or	to
supply	an	argument	value	different	from	the	type	declared	by	the	corresponding	format
specifier.	I	often	see	beginners	claim	that	logging	shows	a	certain	value	to	be	nonsense,
when	in	fact	it	is	their	NSLog	call	that	is	nonsense;	for	example,	a	format	specifier	was	%d
but	the	value	of	the	corresponding	argument	was	a	float.	Another	common	mistake	is
treating	an	NSNumber	as	if	it	were	the	type	of	number	it	contains;	an	NSNumber	isn’t	any
kind	of	number	—	it’s	an	object	(%@).	Problems	with	signed	vs.	unsigned	integers,	or	32-
bit	vs.	64-bit	numbers,	can	be	tricky	as	well.

C	structs	are	not	objects,	so	they	cannot	provide	a	description.	But	Swift	extends	some
of	the	most	common	C	structs	as	Swift	structs,	and	thus	allows	them	to	be	printed	with
print.	Thus,	for	example,	this	works:

print(self.view.frame)	//	(0.0,0.0,320.0,480.0)

However,	you	can’t	do	the	same	thing	with	NSLog.	For	this	reason,	common	Cocoa	structs
are	usually	accompanied	by	convenience	functions	that	render	them	as	strings.	For
example:

NSLog("%@",	NSStringFromCGRect(self.view.frame))	//	{{0,	0},	{320,	480}}

TIP

Swift	defines	four	special	literals,	particularly	useful	when	logging	because	they	describe	their	own	position	in	the
surrounding	file:	__FILE__,	__LINE__,	__COLUMN__,	and	__FUNCTION__.

You	will	probably	want	to	remove	your	logging	calls	before	shipping	your	app,	as	you
won’t	want	your	finished	app	to	dump	unnecessary	messages	into	the	console.	A	useful
trick	is	to	put	your	own	global	function	in	front	of	Swift’s	print	function:

func	print(object:	Any)	{

				Swift.print(object)

}

When	it’s	time	to	stop	logging,	just	comment	out	the	second	line:
func	print(object:	Any)	{

				//	Swift.print(object)

}

If	you	prefer	this	to	be	automatic,	you	can	use	conditional	compilation.	Swift’s	conditional
compilation	is	rudimentary,	but	it’s	sufficient	for	this	task.	For	example,	we	can	make	the
body	of	our	function	depend	upon	a	DEBUG	flag:

func	print(object:	Any)	{

				#if	DEBUG

								Swift.print(object)

				#endif

}

That	code	depends	upon	a	DEBUG	flag	that	doesn’t	actually	exist.	To	make	it	exist,	create	it
in	your	target’s	build	settings,	under	Other	Swift	Flags.	The	value	that	defines	a	flag	called
DEBUG	is	-D	DEBUG.	If	you	define	this	for	the	Debug	configuration	but	not	for	the	Release
configuration	(Figure	9-5),	then	a	debug	build	(build	and	run	in	Xcode)	will	log	with

print,	but	a	release	build	(archive	and	submit	to	the	App	Store)	will	not.

Figure	9-5.	Defining	a	Swift	flag

Another	useful	form	of	caveman	debugging	is	deliberately	aborting	your	app	because
something	has	gone	seriously	wrong.	See	the	discussion	of	assert,	precondition,	and
fatalError	in	Chapter	5.	precondition	and	fatalError	work	even	in	a	Release	build.
By	default,	assert	never	fails	in	a	Release	build,	so	it	is	safe	to	leave	it	in	your	code	when
your	app	is	ready	to	ship;	by	that	time,	of	course,	you	should	be	confident	that	the	bad
situation	your	assert	was	intended	to	detect	has	been	debugged	and	will	never	actually
occur.

Purists	may	scoff	at	caveman	debugging,	but	I	use	it	heavily:	it’s	easy,	informative,	and
lightweight.	And	sometimes	it’s	the	only	way.	Unlike	the	debugger,	console	logging	works
with	any	build	configuration	(Debug	or	Release)	and	wherever	your	app	runs	(in	the
Simulator	or	on	a	device).	It	works	when	pausing	is	impossible	(because	of	threading
issues,	for	example).	It	even	works	on	someone	else’s	device,	such	as	a	tester	to	whom
you’ve	distributed	your	app.	It’s	a	little	tricky	for	a	tester	to	get	a	look	at	the	console	so	as
to	be	able	to	report	back	to	you,	but	it	can	be	done:	for	example,	the	tester	can	connect	the
device	to	a	computer	and	view	its	log	in	Xcode’s	Devices	window.

The	Xcode	Debugger
When	you’re	building	and	running	in	Xcode,	you	can	pause	in	the	debugger	and	use
Xcode’s	debugging	facilities.	The	important	thing,	if	you	want	to	use	the	debugger,	is	that
the	app	should	be	built	with	the	Debug	build	configuration	(the	default	for	a	scheme’s	Run
action).	The	debugger	is	not	very	helpful	against	an	app	built	with	the	Release	build
configuration,	not	least	because	compiler	optimizations	can	destroy	the	correspondence
between	steps	in	the	compiled	code	and	lines	in	your	code.

Breakpoints

There	isn’t	a	strong	difference	between	running	and	debugging	in	Xcode;	the	main
distinction	is	whether	breakpoints	are	effective	or	ignored.	The	effectiveness	of
breakpoints	can	be	toggled	at	two	levels:

Globally	(active	vs.	inactive)

Breakpoints	as	a	whole	are	either	active	or	inactive.	If	breakpoints	are	inactive,	we
won’t	pause	at	any	breakpoints.

Individually	(enabled	vs.	disabled)

A	given	breakpoint	is	either	enabled	or	disabled.	Even	if	breakpoints	are	active,	we
won’t	pause	at	this	one	if	it	is	disabled.	Disabling	a	breakpoint	allows	you	to	leave	in
place	a	breakpoint	that	you	might	need	later	without	pausing	at	it	every	time	it’s
encountered.

To	create	a	breakpoint	(Figure	9-6),	select	in	the	editor	the	line	where	you	want	to	pause,
and	choose	Debug	→	Breakpoints	→	Add	Breakpoint	at	Current	Line	(Command-\).	This
keyboard	shortcut	toggles	between	adding	and	removing	a	breakpoint	for	the	current	line.
The	breakpoint	is	symbolized	by	an	arrow	in	the	gutter.	Alternatively,	a	simple	click	in	the
gutter	adds	a	breakpoint;	to	remove	a	breakpoint	gesturally,	drag	it	out	of	the	gutter.

Figure	9-6.	A	breakpoint

To	disable	a	breakpoint	at	the	current	line,	click	on	the	breakpoint	in	the	gutter	to	toggle	its
enabled	status.	Alternatively,	Control-click	on	the	breakpoint	and	choose	Disable
Breakpoint	in	the	contextual	menu.	A	dark	breakpoint	is	enabled;	a	light	breakpoint	is
disabled	(Figure	9-7).

Figure	9-7.	A	disabled	breakpoint

To	toggle	the	active	status	of	breakpoints	as	a	whole,	click	the	Breakpoints	button	in	the
bar	at	the	top	of	the	Debug	pane,	or	choose	Debug	→	Activate/Deactivate	Breakpoints
(Command-Y).	The	active	status	of	breakpoints	as	a	whole	doesn’t	affect	the	enabled	or
disabled	status	of	any	breakpoints;	if	breakpoints	are	inactive,	they	are	simply	ignored	en
masse,	and	no	pausing	at	breakpoints	takes	place.	Breakpoint	arrows	are	blue	if
breakpoints	are	active,	gray	if	they	are	inactive.

Once	you	have	some	breakpoints	in	your	code,	you’ll	want	to	survey	and	manage	them.
That’s	what	the	Breakpoint	navigator	is	for.	Here	you	can	navigate	to	a	breakpoint,	enable
or	disable	a	breakpoint	by	clicking	on	its	arrow	in	the	navigator,	and	delete	a	breakpoint.

You	can	also	edit	a	breakpoint’s	behavior.	Control-click	on	the	breakpoint,	in	the	gutter	or
in	the	Breakpoint	navigator,	and	choose	Edit	Breakpoint;	or	Command-Option-click	the
breakpoint.	This	is	a	very	powerful	facility:	you	can	have	a	breakpoint	pause	only	under	a
certain	condition	or	after	it	has	been	encountered	a	certain	number	of	times,	and	you	can
have	a	breakpoint	perform	one	or	more	actions	when	it	is	encountered,	such	as	issuing	a
debugger	command,	logging,	playing	a	sound,	speaking	text,	or	running	a	script.

A	breakpoint	can	be	configured	to	continue	automatically	after	performing	its	action	when
it	is	encountered.	This	can	be	an	excellent	alternative	to	caveman	debugging:	instead	of
inserting	a	print	or	NSLog	call,	which	must	be	compiled	into	your	code	and	later	removed
when	the	app	is	released,	you	can	set	a	breakpoint	that	logs	and	continues.	By	definition,
such	a	breakpoint	operates	only	when	you’re	actively	debugging	the	project;	it	won’t
dump	any	messages	into	the	console	when	the	app	runs	on	a	user’s	device,	because	there
are	no	breakpoints	on	a	user’s	device.

Certain	special	kinds	of	breakpoint	can	be	created	in	the	Breakpoint	navigator	—	click	the
Plus	button	at	the	bottom	of	the	navigator	and	choose	from	its	pop-up	menu	—	or	by
choosing	from	the	Debug	→	Breakpoints	hierarchical	menu:

Exception	breakpoint

An	exception	breakpoint	causes	your	app	to	pause	at	the	time	an	exception	is	thrown	or
caught,	without	regard	to	whether	the	exception	would	crash	your	app	later.	I
recommend	that	you	create	an	exception	breakpoint	to	pause	on	all	exceptions	when
they	are	thrown,	because	this	gives	the	best	view	of	the	call	stack	and	variable	values	at
the	moment	of	the	exception	(rather	than	later	when	the	crash	actually	occurs);	you	can
see	where	you	are	in	your	code,	and	you	can	examine	variable	values,	which	may	help
you	understand	the	cause	of	the	problem.	If	you	do	create	such	an	exception	breakpoint,
I	also	suggest	that	you	use	the	contextual	menu	to	say	Move	Breakpoint	To	→	User,
which	makes	this	breakpoint	permanent	and	global	to	all	your	projects.

WARNING

Sometimes	Apple’s	code	will	throw	an	exception	and	catch	it,	deliberately.	This	isn’t	a	crash,	and	nothing	has	gone
wrong;	but	if	you’ve	created	an	exception	breakpoint,	your	app	will	pause	at	it,	which	can	be	confusing.

Symbolic	breakpoint

A	symbolic	breakpoint	causes	your	app	to	pause	when	a	certain	method	or	function	is
called,	regardless	of	what	object	called	it	or	to	what	object	the	message	is	sent.	A
method	may	be	specified	in	one	of	two	ways:

Using	Objective-C	notation

The	instance	method	or	class	method	symbol	(-	or	+)	followed	by	square	brackets
containing	the	class	name	and	the	method	name.	For	example:

-[UIApplication	beginReceivingRemoteControlEvents]

By	method	name

The	method	name	alone.	The	debugger	will	resolve	this	for	you	into	all	possible
class–method	pairs,	as	if	you	had	entered	them	using	the	Objective-C	notation	that	I
just	described.	For	example:

beginReceivingRemoteControlEvents

If	you	enter	the	method	name	(or	class	name)	incorrectly,	the	symbolic	breakpoint
won’t	do	anything.	In	general,	you’ll	know	if	you	got	it	right,	because	you’ll	see	the
resolved	breakpoint	listed	hierarchically	below	yours.

Paused	at	a	breakpoint

When	the	app	runs	with	breakpoints	active	and	an	enabled	breakpoint	is	encountered	(and
assuming	its	conditions	are	met,	and	so	on),	the	app	pauses.	In	the	active	project	window,
the	editor	shows	the	file	containing	the	point	of	execution,	which	will	usually	be	the	file
containing	the	breakpoint.	The	point	of	execution	is	shown	as	a	green	arrow;	this	is	the
line	that	is	about	to	be	executed	(Figure	9-8).	Depending	on	the	settings	for	Running	→
Pauses	in	the	Behaviors	preference	pane,	the	Debug	navigator	and	the	Debug	pane	may
also	appear.

Figure	9-8.	Paused	at	a	breakpoint

Here	are	some	things	you	might	like	to	do	while	paused	at	a	breakpoint:

See	where	you	are

One	common	reason	for	setting	a	breakpoint	is	to	make	sure	that	the	path	of	execution
is	passing	through	a	certain	line.	Functions	listed	in	the	call	stack	in	the	Debug
navigator	with	a	User	icon,	with	the	text	in	black,	are	yours;	click	one	to	see	where	you
are	paused	in	that	function.	(Listings	with	the	text	in	gray	are	functions	and	methods	for
which	you	have	no	source	code,	so	there	would	be	little	point	clicking	one	unless	you
know	something	about	assembly	language.)	You	can	also	view	and	navigate	the	call
stack	using	the	jump	bar	at	the	top	of	the	Debug	pane.

Study	variable	values

In	the	Debug	pane,	variable	values	for	the	current	scope	(corresponding	to	what’s
selected	in	the	call	stack)	are	visible	in	the	variables	list.	You	can	see	additional	object
features,	such	as	collection	elements,	properties,	and	even	some	private	information,	by
opening	triangles.	(Local	variable	values	are	shown	even	if,	at	the	point	where	you	are
paused,	those	variables	have	not	yet	been	initialized;	such	values	are	meaningless,	so
ignore	them.)

You	can	use	the	search	field	to	filter	variables	by	name	or	value.	If	a	formatted
summary	isn’t	sufficiently	helpful,	you	can	send	description	(or,	if	this	object	adopts
CustomDebugStringConvertible,	debugDescription)	to	an	object	variable	and	view	the
output	in	the	console:	choose	Print	Description	of	[Variable]	from	the	contextual	menu,
or	select	the	variable	and	click	the	Info	button	below	the	variables	list.

You	can	also	view	a	variable’s	value	graphically:	select	the	variable	and	click	the	Quick
Look	button	(an	eye	icon)	below	the	variables	list,	or	press	Spacebar.	For	example,	in
the	case	of	a	CGRect,	the	graphical	representation	is	a	correctly	proportioned	rectangle.
You	can	make	instances	of	your	own	custom	class	viewable	in	the	same	way;	declare
the	following	method	and	return	an	instance	of	one	of	the	permitted	types	(see	Apple’s
Quick	Look	for	Custom	Types	in	the	Xcode	Debugger):

@objc	func	debugQuickLookObject()	->	AnyObject	{

				//	...	create	and	return	your	graphical	object	here…

}

You	can	also	inspect	a	variable’s	value	in	place	in	your	code,	by	examining	its	data	tip.
To	see	a	data	tip,	hover	the	mouse	over	the	name	of	a	variable	in	your	code.	The	data	tip
is	much	like	the	display	of	this	value	in	the	variables	list:	there’s	a	flippy	triangle	that
you	can	open	to	see	more	information,	plus	an	Info	button	that	displays	the	value
description	here	and	in	the	console,	and	a	Quick	Look	button	for	showing	a	value
graphically	(Figure	9-9).

Figure	9-9.	A	data	tip

Inspect	your	view	hierarchy

You	can	study	the	view	hierarchy	while	paused	in	the	debugger.	Click	the	Debug	View
Hierarchy	button	in	the	bar	at	the	top	of	the	Debug	pane,	or	choose	Debug	→	View
Debugging	→	Capture	View	Hierarchy.	Views	are	listed	in	an	outline	in	the	Debug
navigator.	The	editor	displays	your	views;	this	is	a	three-dimensional	projection	that
you	can	rotate.	The	Object	inspector	and	Size	inspector	display	information	about	the
currently	selected	view.

Manage	expressions

An	expression	is	code	to	be	added	to	the	variables	list	and	evaluated	every	time	we
pause.	Choose	Add	Expression	from	the	contextual	menu	in	the	variables	list.	The
expression	is	evaluated	within	the	current	context	in	your	code,	so	be	careful	of	side
effects.

Talk	to	the	debugger

You	can	communicate	directly	with	the	debugger	through	the	console.	Xcode’s
debugger	interface	is	a	front	end	to	the	real	debugger,	LLDB	(http://lldb.llvm.org);	by
talking	directly	to	LLDB,	you	can	do	everything	that	you	can	do	through	the	Xcode
debugger	interface,	and	more.	Common	commands	are:

fr	v	(short	for	frame	variable)

Alone,	prints	out	all	variables	locally	in	scope,	similar	to	the	display	in	the	variables
list.	Alternatively,	can	be	followed	by	the	name	of	a	variable	you	want	to	examine.

po	(meaning	“print	object”)

Followed	by	the	name	of	an	object	variable	in	scope,	similar	to	Print	Description:
displays	the	object	variable’s	value	in	accordance	with	its	description	or
debugDescription.

p	(or	expression,	expr,	or	simply	e)

Evaluates,	in	the	current	context,	any	expression	in	the	current	language.

Fiddle	with	breakpoints

http://lldb.llvm.org

You	are	free	to	create,	destroy,	edit,	enable	and	disable,	and	otherwise	manage
breakpoints	dynamically	even	while	your	app	is	running,	which	is	useful	because	where
you’d	like	to	pause	next	might	depend	on	what	you	learn	while	you’re	paused	here.
Indeed,	this	is	one	of	the	main	advantages	of	breakpoints	over	caveman	debugging.	To
change	your	caveman	debugging,	you	have	to	stop	the	app,	edit	it,	rebuild	it,	and	start
running	the	app	all	over	again.	But	to	fiddle	with	breakpoints,	you	don’t	have	to	be
stopped;	you	don’t	even	have	to	be	paused!	An	operation	that	went	wrong,	if	it	doesn’t
crash	your	app,	can	probably	be	repeated	in	real	time;	so	you	can	just	add	a	breakpoint
and	try	again.	For	example,	if	tapping	a	button	produces	the	wrong	results,	you	can	add
a	breakpoint	to	the	action	handler	and	tap	the	button	again;	you	pass	through	the	same
code,	and	this	time	you	can	work	out	what	the	trouble	is.

Step	or	continue

To	proceed	with	your	paused	app,	you	can	either	resume	running	until	the	next
breakpoint	is	encountered	(Debug	→	Continue)	or	take	one	step	and	pause	again.	Also,
you	can	select	in	a	line	and	choose	Debug	→	Continue	to	Current	Line	(or	Continue	to
Here	from	the	contextual	menu),	which	effectively	sets	a	breakpoint	at	the	chosen	line,
continues,	and	removes	the	breakpoint.	The	stepping	commands	(in	the	Debug	menu)
are:

Step	Over

Pause	at	the	next	line.

Step	Into

Pause	in	your	function	that	the	current	line	calls,	if	there	is	one;	otherwise,	pause	at
the	next	line.

Step	Out

Pause	when	we	return	from	the	current	function.

You	can	access	these	commands	through	convenient	buttons	in	the	bar	at	the	top	of	the
Debug	pane.	Even	if	the	Debug	pane	is	collapsed,	the	bar	containing	the	buttons
appears	while	running.

Start	over,	or	abort

To	kill	the	running	app,	click	Stop	in	the	toolbar	(Product	→	Stop,	Command-Period).
Clicking	the	Home	button	in	the	Simulator	(Hardware	→	Home)	or	on	the	device	does
not	stop	the	running	app	in	the	multitasking	world	of	iOS	4	and	later.	To	kill	the	running
app	and	relaunch	it	without	rebuilding	it,	Control-click	Run	in	the	toolbar	(Product	→
Perform	Action	→	Run	Without	Building,	Command-Control-R).

You	can	make	changes	to	your	code	while	the	app	is	running	or	paused,	but	those	changes
are	not	magically	communicated	to	the	running	app;	there	are	programming	milieus	where
that	sort	of	thing	is	possible,	but	Xcode	is	not	among	them.	You	must	stop	the	app	and	run
in	the	normal	way	(which	includes	building)	to	see	your	changes	in	action.

Testing
A	test	is	code	that	isn’t	part	of	your	app	target;	its	purpose	is	to	make	sure	that	your	app
works	as	expected.	Tests	can	be	of	two	kinds:

Unit	tests

A	unit	test	exercises	your	app	target	internally,	from	the	point	of	view	of	its	code.	For
example,	a	unit	test	might	call	some	method	in	your	app	target	code,	handing	it	various
parameters	and	looking	to	see	if	the	expected	result	is	returned	each	time,	not	just	under
normal	conditions	but	also	when	incorrect	or	extreme	inputs	are	supplied.

Interface	(UI)	tests

An	interface	test	(new	in	Xcode	7)	exercises	your	app	externally,	from	the	point	of	view
of	a	user.	Such	a	test	guides	your	app	through	use	case	scenarios	by	effectively	tapping
buttons	with	a	ghost	finger,	watching	to	make	sure	that	the	interface	behaves	as
expected.

Tests	should	ideally	be	written	and	run	constantly	as	you	develop	your	app.	It	can	even	be
useful	to	write	unit	tests	before	writing	the	real	code,	as	a	way	of	developing	a	working
algorithm.	Having	initially	ascertained	that	your	code	passes	your	tests,	you	continue	to
run	those	tests	to	detect	whether	a	bug	has	been	introduced	during	the	course	of
development.

Tests	are	bundled	in	a	separate	target	of	your	project	(see	Chapter	6).	The	application
templates	give	you	an	opportunity	to	add	a	test	target	at	the	time	you	create	your	project:
in	the	second	dialog	(“Choose	options”),	where	you	name	your	project,	you	can	check
Include	Unit	Tests	or	Include	UI	Tests,	or	both.	Alternatively,	you	can	easily	create	a	new
test	target	at	any	time:	make	a	new	target	and	specify	iOS	→	Test	→	iOS	Unit	Testing
Bundle	or	iOS	UI	Testing	Bundle.	Your	tests	do	not	run	until	you	explicitly	run	them.
Tests	can	be	managed	and	run	easily	from	the	Test	navigator	(Command-5)	as	well	as
from	within	a	test	class	file.

A	test	class	is	a	subclass	of	XCTestCase	(which	is	itself	a	subclass	of	XCTest).	A	test
method	is	an	instance	method	of	a	test	class,	returning	no	value	and	taking	no	parameters,
whose	name	starts	with	test.	The	test	target	depends	upon	the	app	target,	meaning	that
before	a	test	class	can	be	compiled	and	built,	the	app	target	must	be	compiled	and	built.
Running	a	test	also	runs	the	app;	the	test	target’s	product	is	a	bundle,	which	is	loaded	into
the	app	as	it	launches.

A	test	method	may	call	one	or	more	test	asserts;	in	Swift,	these	are	global	functions	whose
names	begin	with	XCTAssert.	For	a	list	of	these	functions,	see	Apple’s	document	Testing
With	Xcode,	in	the	“Writing	Test	Classes	and	Methods”	chapter,	under	“Assertions	Listed
by	Category.”	Unlike	the	corresponding	Objective-C	macros,	the	Swift	test	assert
functions	do	not	take	format	strings	(the	way	NSLog	does);	each	takes	a	single,	simple
message	string.	Test	assert	functions	marked	as	being	“for	scalars”	are	not	really	for
scalars	in	Swift,	because	in	Swift	there	are	no	scalars	(as	opposed	to	objects):	they	apply
to	any	types	that	adopt	Equatable	or	Comparable.

A	test	class	may	also	contain	utility	methods	that	are	called	by	the	test	methods.	In

addition,	you	can	override	any	of	four	special	methods	inherited	from	XCTestCase:

setUp	class	method

Called	once	before	all	test	methods	in	the	class.

setUp	instance	method

Called	before	each	test	method.

tearDown	instance	method

Called	after	each	test	method.

tearDown	class	method

Called	once	after	all	test	methods	in	the	class.

The	test	target	is	a	target,	and	what	it	produces	is	a	bundle,	with	build	phases	like	an	app
target.	This	means	that	resources,	such	as	test	data,	can	be	included	in	the	bundle.	You
might	use	setUp	to	load	such	resources;	you	can	get	a	reference	to	the	bundle	by	way	of
the	test	class,	as	NSBundle(forClass:	self.dynamicType).

The	test	target	is	also	a	module,	just	as	the	app	target	is	a	module.	In	order	to	see	into	the
app	target,	therefore,	the	test	target	must	import	the	app	target	as	a	module.	To	overcome
privacy	restrictions,	the	import	statement	should	be	preceded	by	the	@testable	attribute;
this	attribute,	new	in	Xcode	7,	temporarily	changes	internal	(explicit	or	implicit)	to
public	throughout	the	app	target.

As	an	example	of	writing	and	running	a	unit	test	method,	let’s	use	our	Empty	Window
project.	Give	the	ViewController	class	a	(nonsensical)	instance	method	dogMyCats:

func	dogMyCats(s:String)	->	String	{

				return	""

}

The	method	dogMyCats	is	supposed	to	receive	any	string	and	return	the	string	"dogs".	At
the	moment,	though,	it	doesn’t;	it	returns	an	empty	string	instead.	That’s	a	bug.	Now	we’ll
write	a	test	method	to	ferret	out	this	bug.

In	the	Empty	Window	project,	choose	File	→	New	→	Target	and	specify	iOS	→	Test	→
iOS	Unit	Testing	Bundle.	Call	the	product	EmptyWindowTests;	observe	that	the	target	to
be	tested	is	the	app	target.	Click	Finish.	In	the	Project	navigator,	a	new	group	has	been
created,	EmptyWindowTests,	containing	a	single	test	file,	EmptyWindowTests.swift.	It
contains	a	test	class	EmptyWindowTests,	including	stubs	for	two	test	methods,
testExample	and	testPerformanceExample;	comment	out	those	two	methods.	We’re
going	to	replace	them	with	a	test	method	that	calls	dogMyCats	and	makes	an	assertion
about	the	result:

1.	 At	the	top	of	EmptyWindowTests.swift,	where	we	are	importing	XCTest,	we	must
also	import	the	app	target:

@testable	import	Empty_Window

2.	 Prepare	an	instance	property	in	the	declaration	of	the	EmptyWindowTests	class	to
store	our	ViewController	instance:

var	viewController	=	ViewController()

3.	 Write	the	test	method.	Its	name	must	start	with	test!	Let’s	call	it	testDogMyCats.	It
has	access	to	the	ViewController	instance	as	self.viewController:

func	testDogMyCats()	{

				let	input	=	"cats"

				let	output	=	"dogs"

				XCTAssertEqual(output,

								self.viewController.dogMyCats(input),

								"Failed	to	produce	\(output)	from	\(input)")

}

TIP

If	you	add	a	unit	test	to	an	older	project,	you	may	need	some	additional	configuration.	To	ensure	that	the	app	target	is
capable	of	being	imported	with	the	@testable	attribute,	find	Enable	Testability	in	its	build	settings	and	make	sure	it	is
set	to	Yes	for	the	Debug	configuration.	Also,	edit	the	scheme	and	make	sure	that	the	Build	action	builds	the	test	target
only	for	the	Test	action.

We	are	now	ready	to	run	our	test!	There	are	many	ways	to	do	this.	Switch	to	the	Test
navigator,	and	you’ll	see	that	it	lists	our	test	target,	our	test	class,	and	our	test	method.
Hover	the	mouse	over	any	name,	and	a	button	appears	to	its	right.	By	clicking	the
appropriate	button,	you	can	thus	run	all	tests	in	every	test	class,	all	tests	in	the
EmptyWindowTests	class,	or	just	the	testDogMyCats	test.	But	wait,	there’s	more!	Back	in
EmptyWindowTests.swift,	there’s	also	a	diamond-shaped	indicator	in	the	gutter	to	the	left
of	the	class	declaration	and	the	test	method	name;	you	can	also	click	one	of	those	to	run,
respectively,	all	tests	in	this	class	or	an	individual	test.	Or,	to	run	all	tests,	you	can	choose
Product	→	Test.

So	now	let’s	run	testDogMyCats.	The	app	target	is	compiled	and	built;	the	test	target	is
compiled	and	built.	(If	any	of	those	steps	fails,	we	can’t	test,	and	we’ll	be	back	on	familiar
ground	with	a	compile	error	or	a	build	error.)	The	app	launches	in	the	Simulator,	and	the
test	runs.

The	test	fails!	(Well,	we	knew	that	was	going	to	happen,	didn’t	we?)	The	error	is	described
in	a	banner	next	to	the	assert	that	failed	in	our	code,	as	well	as	in	the	Issue	navigator	and
the	Report	navigator.	Moreover,	red	X	marks	appear	everywhere	—	in	the	Test	navigator
next	to	testDogMyCats,	in	the	Issue	navigator,	in	the	Report	navigator,	and	in
EmptyWindowTests.swift	next	to	the	class	declaration	and	the	first	line	of	testDogMyCats.

Now	let’s	fix	our	code.	In	ViewController.swift,	modify	dogMyCats	to	return	"dogs"
instead	of	an	empty	string.	Now	run	the	test	again.	It	passes!

Recently	run	tests	are	listed	in	the	Report	navigator.	When	you	select	one,	the	editor
displays	two	panes.	The	Tests	pane	lists	in	simple	outline	form	what	tests	passed	and
failed,	including	the	text	of	any	assertion	failure	messages.	The	Logs	pane	goes	into	much
more	detail;	by	expanding	transcripts,	you	can	see	the	full	console	output	from	the	test
run,	including	any	caveman	debugging	messages	(print)	that	you	may	have	sent	from
your	test	code.

When	a	test	failure	occurs,	you	might	like	to	pause	at	the	point	where	the	assertion	is
about	to	fail.	To	do	so,	in	the	Breakpoint	navigator,	click	the	Plus	button	at	the	bottom	and
choose	Add	Test	Failure	Breakpoint.	This	is	like	an	Exception	breakpoint,	pausing	on	the
assert	line	in	your	test	method	just	before	it	reports	failure.	You	could	then	switch	to	the
method	being	tested,	for	example,	and	debug	it,	examining	its	variables	and	so	forth,	to
work	out	the	reason	for	the	impending	failure.

There’s	a	helpful	feature	allowing	you	to	navigate	between	a	method	and	a	test	that	calls
it:	when	the	selection	is	within	a	method,	the	Related	Items	menu	in	the	jump	bar	includes
Test	Callers.	The	same	is	true	of	the	Tracking	menu	in	an	assistant	pane.

In	our	example,	we	made	a	new	ViewController	instance	in	order	to	initialize
EmptyWindowTests’s	self.viewController.	But	what	if	our	test	required	us	to	get	a
reference	to	the	existing	ViewController	instance?	This	is	the	same	general	problem	of
getting	a	reference	to	an	instance	that	crops	up	so	often	in	iOS	programming	(see	Instance
References,	and	Chapter	13).	The	test	code	runs	inside	a	bundle	that	is	effectively	injected
into	your	running	app.	This	means	that	it	can	see	app	globals	such	as
UIApplication.sharedApplication().	From	there,	you	can	work	your	way	to	the	desired
reference:

if	let	viewController	=

				(UIApplication.sharedApplication().delegate	as?	AppDelegate)?

								.window?.rootViewController	as?	ViewController	{

												//	...

}

Organization	of	your	test	methods	into	test	targets	(suites)	and	test	classes	is	largely	a
matter	of	convenience;	it	dictates	the	layout	of	the	Test	navigator	and	which	tests	will	be
run	together,	plus	each	test	class	has	its	own	properties,	its	own	setUp	method,	and	so	on.
To	make	a	new	test	target	or	a	new	test	class,	click	the	Plus	button	at	the	bottom	of	the
Test	navigator.

In	addition	to	simple	unit	tests	of	the	type	I’ve	just	illustrated,	there	are	two	other	forms	of
unit	test:

Asynchronous	testing

Allows	a	test	method	to	be	called	back	after	a	time-consuming	operation.	In	your	test
method,	you	create	an	XCTestExpectation	object	by	calling
expectationWithDescription;	then	you	initiate	an	operation	that	takes	a	completion
handler,	and	call	waitForExpectationsWithTimeout:handler:.	One	of	two	things	will
happen:

The	operation	completes

The	completion	handler	is	called.	In	the	completion	handler,	you	perform	any	asserts
having	to	do	with	the	result	of	the	operation,	and	then	call	fulfill	on	the
XCTestExpectation	object.	This	causes	the	timeout	handler	to	be	called.

The	operation	times	out

The	timeout	handler	is	called.	Thus,	the	timeout	handler	is	called	either	way,
allowing	you	to	clean	up	as	necessary.

Performance	testing

Allows	you	to	test	that	the	speed	of	an	operation	has	not	fallen	off.	In	your	test	method,
you	call	measureBlock	and,	in	the	block,	do	something	(possibly	many	times,	so	as	to
get	a	reasonable	time	measurement	sample).	If	the	block	involves	setup	and	teardown
that	you	don’t	want	included	in	the	measurement,	call
measureMetrics:automaticallyStartMeasuring:forBlock:	instead,	and	wrap	the
heart	of	the	block	with	calls	to	startMeasuring	and	stopMeasuring.

The	performance	test	runs	your	block	several	times,	recording	how	long	each	run	takes.
The	first	time	you	run	a	performance	test,	it	fails,	but	you	establish	a	baseline
measurement.	On	subsequent	runs,	it	fails	if	the	standard	deviation	of	the	runs	is	too	far
from	the	baseline,	or	if	the	average	time	has	grown	too	much.

Now	let’s	experiment	with	interface	testing.	I’m	going	to	assume	that	you	still	have	(from
Chapter	7)	a	button	in	the	Empty	Window	interface	with	an	action	method	hooked	to	a
ViewController	method	that	summons	an	alert.	We’ll	write	a	test	that	taps	that	button	and
makes	sure	that	the	alert	is	summoned.	Add	an	iOS	UI	Testing	Bundle	to	the	project;	call
it	EmptyWindowUITests.

Interface	test	code	is	based	on	accessibility,	a	feature	that	allows	the	screen	interface	to	be
described	verbally	and	to	be	manipulated	programmatically.	It	revolves	around	three
classes:	XCUIElement,	XCUIApplication	(an	XCUIElement	subclass),	and
XCUIElementQuery.	To	a	large	extent,	you	can	avoid	learning	anything	about	these
classes,	because	accessibility	actions	are	recordable.	This	means	that	you	can	generate
your	code	by	performing	the	actual	actions	that	constitute	the	test.	Let’s	try	it:

1.	 In	the	testExample	stub	method,	create	a	new	empty	line	and	leave	the	insertion
point	within	it.

2.	 Choose	Editor	→	Start	Recording	UI	Test.	(Alternatively,	there’s	a	Record	button	at
the	bottom	of	the	project	window,	in	the	debug	bar.)	The	app	launches	in	the
Simulator.

3.	 Tap	the	button	in	the	interface.	When	the	alert	appears,	tap	OK	to	dismiss	it.
4.	 Return	to	Xcode	and	choose	Editor	→	Stop	Recording	UI	Test.	Also	choose	Product

→	Stop	to	stop	running	in	the	Simulator.

The	following	code	has	been	generated	(assuming	that	your	interface	button’s	title	is
“Hello”):

let	app	=	XCUIApplication()

app.buttons["Hello"].tap()

app.alerts["Howdy!"].collectionViews.buttons["OK"].tap()

The	app	object,	obviously,	is	an	XCUIApplication	instance.	Properties	such	as	buttons
and	alerts	return	XCUIElementQuery	objects.	Subscripting	such	an	object	returns	an
XCUIElement,	which	can	then	be	sent	action	methods	such	as	tap.

Now	run	the	test	by	clicking	in	the	diamond	in	the	gutter	at	the	left	of	the	testExample
declaration.	The	app	launches	in	the	Simulator,	and	a	ghost	finger	performs	the	same
actions	we	performed,	tapping	first	the	button	in	the	interface	and	then,	when	the	alert
appears,	the	OK	button	that	dismisses	it.	The	test	ends	and	the	app	stops	running	in	the
simulator.	The	test	passes!

The	important	thing,	however,	is	that	if	the	interface	stops	looking	and	behaving	as	it	does

now,	the	test	will	not	pass.	For	example,	in	Main.storyboard,	select	the	button	and,	under
Control	in	the	Attributes	inspector,	uncheck	Enabled.	The	button	is	still	there,	but	it	can’t
be	tapped;	we’ve	broken	the	interface.	Run	the	test.	As	desired,	the	test	fails,	and	the
Report	navigator	explains	why:	when	we	came	to	the	Tap	the	“OK”	Button	step,	we	first
had	to	perform	Find	the	“OK”	Button,	and	after	two	retries,	we	failed	because	there	was
no	alert.	Ingeniously,	the	report	also	incorporates	screen	shots	so	that	we	can	inspect	the
state	of	the	interface	during	the	test.	Hover	the	mouse	over	Tap	the	“OK”	Button,	and	an
Eye	icon	appears.	Click	it,	and	a	screen	shot	shows	the	screen	at	that	moment,	displaying
clearly	the	disabled	interface	button	(and	no	alert).

Fix	the	bug	by	enabling	the	button	once	again.	If	you	now	choose	Product	→	Test,	all	tests
in	all	test	suites	are	run,	both	the	unit	tests	and	the	interface	tests,	and	they	all	pass.	Our
app	may	be	trivially	simple,	but	it’s	definitely	working!

As	I’ve	already	said,	interface	testing	depends	upon	accessibility.	Standard	interface
objects	are	accessible,	but	other	interface	that	you	create	might	not	be.	Select	an	interface
element	in	the	nib	editor	to	view	its	accessibility	characteristics	in	the	Identity	inspector.
Run	the	app	in	the	Simulator	and	choose	Xcode	→	Open	Developer	Tool	→	Accessibility
Inspector	to	explore	in	real	time	the	accessibility	characteristics	of	whatever	is	under	the
cursor.	For	more	about	adding	useful	accessibility	to	your	interface	objects,	see	Apple’s
Accessibility	Programming	Guide	for	iOS.

Clean
From	time	to	time,	during	repeated	testing	and	debugging,	and	before	making	a	different
sort	of	build	(switching	from	Debug	to	Release,	or	running	on	a	device	instead	of	the
Simulator),	it	is	a	good	idea	to	clean	your	target.	This	means	that	existing	builds	will	be
removed	and	caches	will	be	cleared,	so	that	all	code	will	be	considered	to	be	in	need	of
compilation	and	you	can	build	your	app	from	scratch.

Cleaning	removes	the	cruft,	quite	literally.	For	example,	suppose	you	have	been	including
a	certain	resource	in	your	app,	and	you	decide	it	is	no	longer	needed.	You	can	remove	it
from	the	Copy	Bundle	Resources	build	phase	(or	from	your	project	as	a	whole),	but	that
doesn’t	remove	it	from	your	built	app.	This	sort	of	leftover	resource	can	cause	all	kinds	of
mysterious	trouble.	The	wrong	version	of	a	nib	may	seem	to	appear	in	your	interface;	code
that	you’ve	edited	may	seem	to	behave	as	it	did	before	the	edit.	Cleaning	removes	the	built
app,	and	very	often	solves	the	problem.

I	think	of	cleaning	as	having	several	levels	or	degrees:

Shallow	clean

Choose	Product	→	Clean,	which	removes	the	built	app	and	some	of	the	intermediate
information	in	the	build	folder.

Deeper	clean

Hold	Option	and	choose	Product	→	Clean	Build	Folder,	which	removes	the	entire	build
folder.

Complete	clean

Close	the	project.	Open	the	Projects	window	(Window	→	Projects).	Find	your	project
listed	at	the	left	side;	click	it.	On	the	right,	click	Delete.	This	removes	the	project’s
entire	folder	in	your	user	Library/Developer/Xcode/DerivedData	folder.

Insanely	clean

Quit	Xcode.	Open	your	user	Library/Developer/Xcode/DerivedData	folder	and	move
all	its	contents	to	the	trash.	This	is	a	complete	clean	for	every	project	you’ve	opened
recently	—	plus	the	module	cache.	Removing	the	module	cache	can	reset	Swift	itself,
thus	causing	occasional	mysterious	compilation,	code-completion,	or	syntax	coloring
issues	to	go	away.

In	addition	to	cleaning	your	project,	you	should	also	remove	your	app	from	the	Simulator.
This	is	for	the	same	reason	as	cleaning	the	project:	when	the	app	is	built	and	copied	to	the
Simulator,	existing	resources	inside	the	built	app	may	not	be	removed	(in	order	to	save
time),	and	this	may	cause	the	app	to	behave	oddly.	To	clean	out	the	Simulator	while
running	the	Simulator,	choose	iOS	Simulator	→	Reset	Content	and	Settings.

Running	on	a	Device
Sooner	or	later,	you’ll	want	to	progress	from	running	and	testing	and	debugging	in	the
Simulator	to	running	and	testing	and	debugging	on	a	real	device.	The	Simulator	is	nice,
but	it’s	only	a	simulation;	there	are	many	differences	between	the	Simulator	and	a	real
device.	The	Simulator	is	really	your	computer,	which	is	fast	and	has	lots	of	memory,	so
problems	with	memory	management	and	speed	won’t	be	exposed	until	you	run	on	a
device.	User	interaction	with	the	Simulator	is	limited	to	what	can	be	done	with	a	mouse:
you	can	click,	you	can	drag,	you	can	hold	Option	to	simulate	use	of	two	fingers,	but	more
elaborate	gestures	can	be	performed	only	on	an	actual	device.	And	many	iOS	facilities,
such	as	the	accelerometer	and	access	to	the	music	library,	are	not	present	on	the	Simulator
at	all,	so	that	testing	an	app	that	uses	them	is	possible	only	on	a	device.

WARNING

Don’t	even	think	of	developing	an	app	without	testing	it	on	a	device.	You	have	no	idea	how	your	app	really	looks	and
behaves	until	you	run	it	on	a	device.	Submitting	to	the	App	Store	an	app	that	you	have	not	run	on	a	device	is	asking
for	trouble.

Running	an	app	on	a	device	is	a	remarkably	complicated	business.	You	will	need	to	sign
the	app	as	you	build	it.	An	app	that	is	not	properly	signed	for	a	device	will	not	run	on	that
device	(assuming	you	haven’t	jailbroken	the	device).	Signing	an	app	requires	two	things:

An	identity

An	identity	represents	Apple’s	permission	for	a	given	team	to	develop,	on	a	particular
computer,	apps	that	can	run	on	a	device.	It	consists	of	two	parts:

A	private	key

The	private	key	is	stored	in	the	keychain	on	your	computer.	Thus,	it	identifies	a
computer	where	this	team	can	potentially	develop	device-targeted	apps.

A	certificate

A	certificate	is	a	virtual	permission	slip	from	Apple.	It	contains	the	public	key
matching	the	private	key	(because	you	told	Apple	the	public	key	when	you	asked	for
the	certificate).	With	a	copy	of	this	certificate,	any	machine	holding	the	private	key
can	actually	be	used	to	develop	device-targeted	apps	under	the	name	of	this	team.

A	provisioning	profile

A	provisioning	profile	is	a	virtual	permission	slip	from	Apple,	uniting	four	things:

An	identity.
An	app,	identified	by	its	bundle	id.
A	list	of	eligible	devices,	identified	by	their	UDIDs	(unique	device	identifiers).
A	list	of	entitlements.	An	entitlement	is	a	special	privilege	that	not	every	app	needs,
such	as	the	ability	to	talk	to	iCloud.	You	won’t	concern	yourself	with	entitlements
unless	you	write	an	app	that	needs	one.

Thus,	a	provisioning	profile	is	sufficient	for	signing	an	app	as	you	build	it.	It	says	that
on	this	Mac	it	is	permitted	to	build	this	app	such	that	it	will	run	on	these	devices.

There	are	two	types	of	identity,	and	hence	two	types	of	certificate,	and	hence	two	types	of

provisioning	profile:	development	and	distribution	(a	distribution	certificate	is	also	called
a	production	certificate).	We	are	concerned	here	with	the	development	identity,	certificate,
and	profile;	I’ll	talk	about	the	distribution	side	later	in	this	chapter.

Apple	is	the	ultimate	keeper	of	all	information:	your	certificates,	your	provisioning
profiles,	what	apps	and	what	devices	you’ve	registered.	Your	communication	with	Apple,
when	you	need	to	verify	or	obtain	a	copy	of	this	information,	will	take	place	through	one
of	two	means:

The	Member	Center

A	set	of	web	pages	at	https://developer.apple.com/membercenter.	If	you	have	a
Developer	Program	membership,	you	can	click	Certificates,	Identifiers,	&	Profiles	to
access	all	features	and	information	to	which	you	are	entitled	by	your	membership	type
and	role.	(This	is	the	area	of	Apple’s	site	formerly	referred	to	as	the	Portal.)

Xcode

Except	for	obtaining	a	distribution	provisioning	profile,	just	about	everything	you
would	need	to	do	at	the	Member	Center	can	be	done	through	Xcode	instead.	When	all
goes	well,	using	Xcode	is	a	lot	simpler!	If	there’s	a	problem,	you	can	head	for	the
Member	Center	to	iron	it	out.

Running	Without	a	Developer	Program	Membership
In	the	past,	it	was	necessary	to	have	an	iOS	Developer	Program	membership	—	meaning
that	it	cost	you	an	annual	fee	—	just	to	test	your	app	on	your	own	device.	New	in	Xcode	7,
however,	you	can	configure	your	app	to	run	on	your	device	without	a	Developer	Program
membership.	All	you	need	is	an	Apple	ID,	which	you	surely	have	already.

Therefore,	before	describing	in	full	what	running	on	a	device	really	entails,	I’ll	explain	the
steps	needed	to	run	your	app	on	your	device	with	no	preparations	whatever:	you	have	no
Developer	Program	membership,	you	have	entered	no	account	information	in	Xcode,	and
you	have	never	run	any	app	on	a	device	before:

1.	 Edit	the	app	target,	switch	to	the	General	pane,	and	look	at	the	Team	pop-up	menu.
Assuming	there	is	no	team	listed,	your	first	move	is	to	create	one.	Choose	Add	an
Account	from	the	Team	pop-up	menu;	this	brings	up	the	Xcode	Accounts	preference
pane,	in	the	same	state	as	if	you	had	pressed	the	Plus	button	and	chosen	Add	Apple
ID.	Enter	your	Apple	ID	and	password.	The	result	is	a	free	account.	Dismiss	the
Accounts	preference	pane.	Back	in	the	Team	pop-up	menu,	choose	the	team	you	just
created.

2.	 Under	the	Team	pop-up	menu,	you’ll	see	a	warning	that	you	have	no	code	signing
identities.	Click	Fix	Issue.	Xcode	communicates	online	with	the	Member	Center.
The	issue	will	be	partly	fixed,	but	you	will	see	a	dialog:	“Unable	to	create	a
provisioning	profile	because	your	team	has	no	devices	registered	in	the	Member
Center…”	Click	Done.

3.	 Attach	your	device	to	the	computer.	Wait	while	the	symbol	files	are	processed	(you
can	track	this	by	choosing	Window	→	Devices	and	selecting	the	device,	or	you	can
just	go	get	a	cup	of	coffee	and	come	back	in	five	minutes).

4.	 The	device	is	now	ready	to	use	for	development.	Select	the	device	as	destination	in

https://developer.apple.com/membercenter

the	Scheme	pop-up	menu	and	attempt	to	run	the	project!	You’ll	see	a	dialog,	“Failed
to	code	sign…”	Click	Fix	Issue.	Xcode	will	communicate	online	with	the	Member
Center	once	again	—	and	your	app	will	then	build	and	run	on	the	device.

Behind	the	scenes,	Xcode	has	performed	several	necessary	steps:

It	has	created	a	Developer	identity	in	your	keychain	(use	the	Keychain	Access
application	to	see	it).
It	has	registered	your	device	with	the	Member	Center	(even	though,	without	a
Developer	Program	membership,	you	cannot	actually	log	in	to	the	Member	Center	to
see	this	registration).
It	has	created	and	downloaded	a	Team	Provisioning	Profile	uniting	those	two	things	—
that	is,	it	allows	your	app	to	be	run	on	this	device	from	this	computer.

Obtaining	a	Developer	Program	Membership
Sooner	or	later,	you’ll	likely	want	a	Developer	Program	membership.	Go	to	the	iOS
Developer	Program	web	page	(http://developer.apple.com/programs/ios)	to	initiate	the
enrollment	process.	When	you’re	starting	out,	the	Individual	program	is	sufficient.	The
Organization	program	costs	no	more,	but	adds	the	ability	to	privilege	additional
developers	in	various	roles.	You	do	not	need	the	Organization	program	merely	in	order	to
distribute	your	built	app	to	other	users	for	testing.

Your	iOS	Developer	Program	membership	involves	two	things:

An	Apple	ID

The	user	ID	that	identifies	you	at	Apple’s	site	(along	with	the	corresponding	password).
You’ll	use	your	Developer	Program	Apple	ID	for	all	kinds	of	things.	In	addition	to
letting	you	prepare	an	app	to	run	on	a	device,	this	same	Apple	ID	lets	you	post	on
Apple’s	development	forums,	download	Xcode	beta	versions,	and	so	forth.

A	team	name

You,	under	the	same	Apple	ID,	can	belong	to	more	than	one	team.	On	each	team,	you
will	have	a	role	dictating	your	privileges.	If	you	are	the	head	(or	sole	member)	of	the
team,	your	role	is	Agent,	meaning	that	you	can	do	everything:	you	can	develop	apps,
run	them	on	your	device,	submit	apps	to	the	App	Store,	and	receive	the	money	for	any
paid	apps	that	sell	any	copies	there.

Having	established	your	Developer	Program	Apple	ID,	you	should	enter	it	into	the
Accounts	preference	pane	in	Xcode.	Click	the	Plus	button	at	the	bottom	left	and	choose
Add	Apple	ID.	Provide	the	Apple	ID	and	password.	From	now	on,	Xcode	will	identify
you	through	the	team	name(s)	associated	with	this	Apple	ID;	you	shouldn’t	need	to	tell
Xcode	this	password	again.

Obtaining	a	Certificate
Setting	up	an	identity	and	obtaining	a	certificate	is	something	you	only	have	to	do	once
(or,	perhaps,	once	a	year	at	most;	you	might	have	to	do	it	again	when	your	annual
Developer	Program	membership	approaches	expiration	and	needs	to	be	renewed).	The
certificate,	you	remember,	depends	upon	a	private–public	key	pair.	The	private	key	will
live	in	your	keychain;	the	public	key	will	be	handed	over	to	Apple,	to	be	built	into	the

http://developer.apple.com/programs/ios

certificate.	The	way	you	give	Apple	your	public	key	is	through	a	request	for	the
certificate.	Ideally,	you’ll	be	able	to	do	this	easily	through	Xcode:

1.	 Open	Xcode’s	Accounts	preference	pane.
2.	 If	you	haven’t	entered	your	developer	Apple	ID	and	password,	do	so	now.
3.	 On	the	left,	select	your	Apple	ID.	On	the	right,	select	your	team.	Click	View	Details.
4.	 If	you	had	a	certificate	and	it	was	revoked	from	the	Member	Center	but	is	still	valid,

you	may	see	a	dialog	offering	to	request	and	download	the	certificate.	Click	Request.
Otherwise,	click	the	Create	button	to	the	right	of	iOS	Development.

Everything	then	happens	automatically:	the	private–public	key	pair	is	generated	in	your
keychain,	and	the	certificate	is	requested	from	the	Member	Center,	generated	at	the
Member	Center,	downloaded	from	the	Member	Center,	stored	in	your	keychain,	and	listed
under	Signing	Identities	in	the	View	Details	dialog	of	Xcode’s	Accounts	preference	pane.
Moreover,	a	universal	team	development	provisioning	profile	may	also	be	generated,	as
shown	in	Figure	9-11.	Thus	you	may	now	have	everything	you	need	to	run	any	app	on	a
device.

It	can	be	useful	to	know	also	the	more	elaborate	procedure	for	generating	the	private–
public	key	pair	and	the	certificate	request	manually.	Instructions	are	also	available	at	the
Member	Center	as	you	initiate	the	process	(go	to	the	Certificates	page	and	click	the	Plus
button	at	the	top	right):

1.	 You	launch	Keychain	Access	and	choose	Keychain	Access	→	Certificate	Assistant
→	Request	a	Certificate	from	a	Certificate	Authority.	Using	your	name	and	email
address	as	identifiers,	you	generate	and	save	to	disk	a	2048-bit	RSA	certificate
request	file.	Your	private	key	is	stored	in	your	keychain	then	and	there;	the
certificate	request	containing	your	public	key	has	been	saved	temporarily	onto	your
computer.	(For	example,	you	might	save	it	to	the	desktop.)

2.	 At	the	Member	Center,	you	are	presented	with	an	interface	allowing	you	to	upload
the	saved	certificate	request	file.	You	upload	it,	and	the	certificate	is	generated;	click
its	listing	at	the	Member	Center	to	expose	the	Download	button,	and	click
Download.

3.	 Locate	and	double-click	the	file	you	just	downloaded;	Keychain	Access
automatically	imports	the	certificate	and	stores	it	in	your	keychain,	where	Xcode	is
able	to	see	it	from	now	on.

You	do	not	need	to	keep	the	certificate	request	file	or	the	downloaded	certificate	file;	your
keychain	now	contains	all	the	needed	credentials.	If	this	has	worked,	you	can	see	the
certificate	in	your	keychain,	read	its	details,	and	observe	that	it	is	valid	and	linked	to	your
private	key	(Figure	9-10).	Moreover,	you	should	be	able	to	confirm	that	Xcode	now
knows	about	this	certificate:	in	the	Accounts	preference	pane,	click	your	Apple	ID	on	the
left	and	your	team	name	on	the	right,	and	click	View	Details;	a	dialog	opens	where	you
should	see	an	iOS	Development	signing	identity	listed	at	the	top,	with	a	Valid	status.

Figure	9-10.	A	valid	development	certificate,	as	shown	in	Keychain	Access

NOTE

If	this	is	your	very,	very	first	time	obtaining	any	certificate	from	the	Member	Center,	you	will	need	another
certificate:	the	WWDR	Intermediate	Certificate.	This	is	the	certificate	that	certifies	that	certificates	issued	by	WWDR
(the	Apple	Worldwide	Developer	Relations	Certification	Authority)	are	to	be	trusted.	(You	can’t	make	this	stuff	up.)
Xcode	should	automatically	install	this	in	your	keychain;	if	not,	you	can	obtain	a	copy	of	it	manually	by	clicking	a
link	at	the	bottom	of	the	page	at	the	Member	Center	where	you	begin	the	process	of	adding	a	certificate.

Obtaining	a	Development	Provisioning	Profile
A	provisioning	profile,	as	I’ve	already	mentioned,	unites	an	identity,	a	device,	and	an	app
bundle	id.	If	things	go	well,	in	the	simplest	case,	you’ll	be	able	to	obtain	a	development
provisioning	profile	in	a	single	step	from	within	Xcode.	If	an	app	doesn’t	require	special
entitlements	or	capabilities,	a	single	development	profile	associated	with	your	team	is
sufficient	for	all	your	apps,	so	you	might	only	have	to	do	this	step	once.

You	already	have	a	development	identity,	from	the	previous	section.	You	may	also	have	a
universal	team	development	provisioning	profile,	from	the	previous	section!	If	not,	the
simplest	solution	is	to	connect	your	device	to	your	computer	with	Xcode	running	and,
after	passing	through	any	necessary	delays	(such	as	telling	the	device	to	trust	the
computer),	choose	the	device	as	a	destination	and	try	to	run	your	project	on	it.	Xcode	will
register	the	device	at	the	Member	Center	for	you,	and	will	create	and	download	a
universal	team	provisioning	profile	for	this	device.

To	confirm	that	the	device	has	been	added	to	the	Member	Center,	go	there	in	your	browser
and	click	Devices.	To	confirm	that	you	have	the	universal	team	development	provisioning
profile,	click	View	Details	in	the	Accounts	preference	pane	(for	the	appropriate	team).
Certificates	and	profiles	are	listed	here.	The	universal	team	development	profile,	in
addition	to	the	title	“iOS	Team	Provisioning	Profile,”	will	have	a	nonspecific	app	bundle
id	associated	with	it,	indicated	by	an	asterisk	(Figure	9-11).

Figure	9-11.	A	universal	development	profile

The	universal	development	profile	allows	you	to	run	any	app	on	the	targeted	device	for

testing	purposes,	provided	that	the	app	doesn’t	require	special	entitlements	(such	as	using
iCloud).

It	is	also	possible	to	register	a	device	manually	at	the	Member	Center.	Under	Devices,
click	the	Plus	button	and	enter	a	name	for	this	device	along	with	its	UDID.	You	can	copy
the	device’s	UDID	from	its	listing	in	Xcode’s	Devices	window.	Alternatively,	you	can
submit	a	tab-delimited	text	file	of	UDIDs	and	names.

If	necessary,	you	can	make	a	provisioning	profile	for	a	specific	app	at	the	Member	Center:

1.	 Make	sure	your	app	is	registered	at	the	Member	Center	under	Identifiers	→	App
IDs.	If	it	isn’t,	add	it,	as	follows:	Click	Plus.	Enter	a	name	for	this	app.	Don’t	worry
about	the	nonsense	letters	and	numbers	that	the	Member	Center	adds	as	a	prefix	to
your	bundle	identifier;	use	the	Team	ID.	Enter	the	bundle	identifier	under	Explicit
App	ID	exactly	as	shown	in	Xcode,	in	the	Bundle	Identifier	field	under	General
when	you	edit	the	app	target.

2.	 Under	Provisioning	Profiles,	click	Plus.	Ask	for	an	iOS	App	Development	profile.
On	the	next	screen,	choose	the	App	ID.	On	the	next	screen,	check	your	development
certificate.	On	the	next	screen,	select	the	device(s)	you	want	to	run	on.	On	the	next
screen,	give	this	profile	a	name,	and	click	Generate.	Click	the	Download	button.

3.	 Find	the	downloaded	profile,	and	double-click	it	to	open	it	in	Xcode.	You	can	then
throw	the	downloaded	profile	away;	Xcode	has	made	a	copy.

Running	the	App
Once	you	have	a	development	profile	applicable	to	an	app	and	a	device	(or,	in	the	case	of
the	universal	team	profile,	all	apps	and	all	registered	devices),	connect	the	device,	choose
it	as	the	destination	in	the	Scheme	pop-up	menu,	and	build	and	run	the	app.	If	you’re
asked	for	permission	to	access	your	keychain,	grant	it.	If	necessary,	Xcode	will	install	the
associated	provisioning	profile	onto	the	device.

The	app	is	built,	loaded	onto	your	device,	and	runs	there.	As	long	as	you	launch	the	app
from	Xcode,	everything	is	just	as	when	running	in	the	Simulator:	you	can	run,	or	you	can
debug,	and	the	running	app	is	in	communication	with	Xcode,	so	that	you	can	stop	at
breakpoints,	read	messages	in	the	console,	and	so	on.	The	outward	difference	is	that	to
interact	physically	with	the	app,	you	use	the	device	(tethered	physically	to	your	computer),
not	the	Simulator.

Running	the	app	from	Xcode	on	the	device	can	also	be	used	simply	as	a	way	of	copying
the	current	version	of	the	app	to	the	device.	You	can	then	stop	the	app	(in	Xcode),
disconnect	the	device	from	your	computer,	and	launch	the	app	on	the	device	and	play	with
it.	This	is	a	good	way	of	testing.	You	are	not	debugging,	so	you	can’t	get	any	feedback	in
Xcode,	but	messages	are	written	to	the	console	internally	and	can	be	retrieved	later.

Profile	and	Device	Management
The	central	location	for	surveying	identities	and	provisioning	profiles	is	Xcode’s	Accounts
preference	pane.

An	important	feature	of	the	Accounts	preference	pane	is	the	ability	to	export	account
information.	You’ll	need	this	if	you	want	to	be	able	to	develop	on	a	different	computer.

Select	an	Apple	ID	and	use	the	Gear	menu	at	the	bottom	of	the	pane	to	choose	Export
Developer	Accounts.	You’ll	be	asked	for	a	file	name	and	a	place	to	save,	along	with	a
password;	this	password	is	associated	solely	with	this	file,	and	is	needed	only	to	open	the
file	later	on	another	computer.	On	the	other	computer,	to	which	you	have	copied	the
exported	file,	run	Xcode	and	double-click	the	exported	file;	Xcode	asks	for	its	password.
When	you	provide	it,	like	magic	the	entire	suite	of	teams	and	identities	and	certificates
and	provisioning	profiles	springs	to	life	in	that	other	copy	of	Xcode,	including	the	entries
in	your	keychain.

Alternatively,	you	might	need	to	export	just	an	identity,	without	any	provisioning	profiles.
You	can	do	that	with	the	contextual	menu	in	the	Accounts	preference	pane’s	View	Details
dialog.

If	the	provisioning	profiles	listed	in	the	Accounts	preference	pane’s	View	Details	dialog
get	out	of	sync	with	the	Member	Center,	click	the	Download	All	button	at	the	bottom	left.
If	that	doesn’t	help,	quit	Xcode	and,	in	the	Finder,	open	your	user
Library/MobileDevice/Provisioning	Profiles	folder,	and	delete	everything	that’s	in	there.
Relaunch	Xcode.	In	Accounts,	your	provisioning	profiles	are	gone!	Now	click	the
Download	All	button.	Xcode	will	download	fresh	copies	of	all	your	provisioning	profiles,
and	you’ll	be	back	in	sync	with	the	Member	Center.

When	a	device	is	attached	to	the	computer,	it	appears	in	Xcode’s	Devices	window.	Click
its	name	to	access	information	on	the	device.	You	can	see	(and	copy)	the	device’s	UDID.
You	can	see	(and	delete)	apps	that	have	been	installed	for	development	using	Xcode.	You
can	view	the	device’s	console	log	in	real	time.	(The	interface	for	this	is	a	little	obscure:
click	the	tiny	up-arrow	at	the	bottom	left	of	the	main	pane	of	the	Devices	window.)	Using
the	Gear	menu,	you	can	see	provisioning	profiles	that	have	been	installed	on	the	device.
You	can	see	log	reports	for	crashes	that	took	place	on	the	device.	And	you	can	take
screenshots	that	image	your	device’s	screen;	you’ll	need	to	do	this	for	your	app	when	you
submit	it	to	the	App	Store.

Profiling
Xcode	provides	tools	for	probing	the	internal	behavior	of	your	app	graphically	and
numerically,	and	you	should	keep	an	eye	on	those	tools.	The	gauges	in	the	Debug
navigator	allow	you	to	monitor	key	indicators,	such	as	CPU	and	memory	usage,	any	time
you	run	your	app.	And	Instruments,	a	sophisticated	and	powerful	utility	application,
collects	profiling	data	that	can	help	track	down	problems	and	provide	the	numeric
information	you	need	to	improve	your	app’s	performance	and	responsiveness.	You’ll
probably	want	to	spend	some	time	with	Instruments	as	your	app	approaches	completion
(optimizing	prematurely	is	notoriously	a	waste	of	time	and	effort).

Gauges
The	gauges	in	the	Debug	navigator	are	operating	whenever	you	build	and	run	your	app.
Click	on	a	gauge	to	see	further	detail	displayed	in	the	editor.	The	gauges	do	not	provide
highly	detailed	information,	but	they	are	extremely	lightweight	and	always	active,	so	they
provide	an	easy	way	to	get	a	general	sense	of	your	running	app’s	behavior	at	any	time.	In
particular,	if	there’s	a	problem,	such	as	a	prolonged	period	of	unexpectedly	high	CPU
usage	or	a	relentless	unchecked	increase	in	memory	usage,	you	can	spot	it	in	the	gauges
and	then	use	Instruments	to	help	track	it	down.

There	are	four	basic	gauges:	CPU,	Memory,	Disk,	and	Network.	Depending	on	the
circumstances,	you	may	see	additional	gauges.	For	example,	new	in	Xcode	7,	an	Energy
Impact	gauge	appears	when	running	on	a	device,	and	for	certain	devices,	a	GPU	gauge
may	appear	as	well.	If	your	app	is	iCloud-enabled,	you’ll	also	see	an	iCloud	gauge.

In	Figure	9-12,	I’ve	been	heavily	exercising	my	app	for	a	few	moments,	repeatedly
performing	the	most	memory-intensive	actions	I	expect	the	user	to	perform.	These	actions
do	cause	some	spikes	in	memory	usage,	but	my	app’s	memory	usage	then	always	settles
back	down	and	levels	off,	so	I	don’t	suspect	any	memory	issues.

Figure	9-12.	The	Debug	navigation	gauges

WARNING

Note	that	Figure	9-12	is	the	result	of	running	on	a	device.	Running	in	the	Simulator	gives	completely	different	—	and
therefore	misleading	—	results.

Instruments
You	can	use	Instruments	on	the	Simulator	or	the	device.	The	device	is	where	you’ll	do
your	ultimate	testing,	for	maximum	verisimilitude.

To	get	started	with	Instruments,	set	the	desired	destination	in	the	Scheme	pop-up	menu	in
the	project	window	toolbar,	and	choose	Product	→	Profile.	Your	app	builds	using	the
Profile	action	for	your	scheme;	by	default,	this	uses	the	Release	build	configuration,	which
is	probably	what	you	want.	If	you’re	running	on	a	device,	you	may	see	some	validation
warnings,	but	you	can	safely	ignore	them.	Instruments	launches;	if	your	scheme’s
Instrument	pop-up	menu	for	the	Profile	action	is	set	to	Ask	on	Launch	(the	default),
Instruments	presents	a	dialog	where	you	choose	a	trace	template.

Alternatively,	click	Profile	In	Instruments	in	a	Debug	navigator	gauge	editor;	this	is
convenient	when	the	gauges	have	suggested	a	possible	problem,	and	you	want	to
reproduce	that	problem	under	the	more	detailed	monitoring	of	Instruments.	Instruments
launches,	selecting	the	appropriate	trace	template	for	you.	A	dialog	offers	two	options:
Restart	stops	your	app	and	relaunches	it	with	Instruments,	whereas	Transfer	keeps	your
app	running	and	hooks	Instruments	into	it.

When	the	Instruments	main	window	appears,	it	can	be	further	customized	to	profile	the
kind	of	data	that	particularly	interests	you,	and	you	can	save	the	structure	of	the
Instruments	window	as	a	custom	template.	You	may	have	to	click	the	Record	button,	or

choose	File	→	Record	Trace,	to	get	your	app	running.	Now	you	should	interact	with	your
app	like	a	user;	Instruments	will	record	its	statistics.

WARNING

If	you’ve	archived	or	distributed	your	app	(as	explained	later	in	this	chapter)	with	the	Code	Signing	Identity	build
setting	for	the	Release	configuration	set	to	iOS	Distribution,	you	won’t	be	able	to	profile	in	Instruments	on	a	device.
You	must	set	that	build	setting	to	iOS	Developer	instead.

Use	of	Instruments	is	an	advanced	topic,	which	is	largely	beyond	the	scope	of	this	book.
Indeed,	an	entire	book	could	(and	really	should)	be	written	about	Instruments	alone.	For
proper	information,	you	should	read	Apple’s	documents,	especially	the	Instruments	User
Reference	and	Instruments	User	Guide.	Also,	many	WWDC	videos	from	current	and	prior
years	are	about	Instruments;	look	particularly	for	sessions	with	“Instruments”	or
“Performance”	in	their	names.	Here,	I’ll	just	demonstrate,	without	much	explanation,	the
sort	of	thing	Instruments	can	do.

Figure	9-13	shows	me	doing	much	the	same	thing	in	Instruments	that	I	did	with	the	Debug
navigator	gauges	in	Figure	9-12.	I’ve	set	the	destination	to	my	device.	I	choose	Product	→
Profile;	when	Instruments	launches,	I	choose	the	Allocations	trace	template.	With	my	app
running	under	Instruments,	I	exercise	it	for	a	while	and	then	pause	Instruments,	which
meanwhile	has	charted	my	memory	usage.	Examining	the	chart,	I	find	that	there	are	spikes
up	to	about	10MB,	but	the	app	in	general	settles	down	to	a	much	lower	level	(less	than
4MB).	Those	are	very	gentle	and	steady	memory	usage	figures,	so	I’m	happy.

Figure	9-13.	Instruments	graphs	memory	usage	over	time

Another	field	of	Instruments	expertise	is	the	ability	to	detect	memory	leaks.	In	Figure	9-
14,	I’ve	run	the	retain	cycle	code	from	Chapter	5:	I	have	a	Dog	class	instance	and	a	Cat
class	instance	with	persisting	references	to	one	another.	There	are	no	other	references	to
either	instance,	so	they	are	both	leaking.	I’ve	profiled	the	app	using	the	Leaks	trace
template.	Instruments	has	detected	the	leak,	and	has	even	drawn	me	a	diagram	showing
me	the	structure	of	my	mistake!

Figure	9-14.	Instruments	describes	a	retain	cycle

In	this	final	example,	I’m	curious	as	to	whether	I	can	shorten	the	time	it	takes	my
Diabelli’s	Theme	app	to	load	a	photo	image.	I’ve	set	the	destination	to	a	device,	because
that’s	where	speed	matters	and	needs	to	be	measured.	I	choose	Product	→	Profile.
Instruments	launches,	and	I	choose	the	Time	Profiler	trace	template.	When	the	app
launches	under	Instruments	on	the	device,	I	load	new	images	repeatedly	to	exercise	this
part	of	my	code.

In	Figure	9-15,	I’ve	paused	Instruments,	and	am	looking	at	what	it’s	telling	me.	Opening
the	triangles	in	the	lower	portion	of	the	window,	I	can	drill	down	to	my	own	code,
indicated	by	the	appearance	of	my	module	name,	MomApp2	(so	called	because	I
originally	wrote	this	app	as	a	birthday	present	for	my	mother).

Figure	9-15.	Drilling	down	into	the	time	profile

By	double-clicking	the	listing	of	that	line,	I	can	see	my	own	code,	time-profiled	(Figure	9-

16).	The	profiler	is	drawing	my	attention	to	the	call	to
CGImageSourceCreateThumbnailAtIndex;	this	is	where	we’re	spending	most	of	our	CPU
time.	That	call	is	in	the	ImageIO	framework;	it	isn’t	my	code,	so	I	can’t	make	it	run	any
faster.	It	may	be,	however,	that	I	could	load	the	image	another	way;	for	example,	at	the
expense	of	some	temporary	memory	usage,	perhaps	I	could	load	the	image	at	full	size	and
scale	it	down	by	redrawing	myself.	If	I’m	concerned	about	speed	here,	I	could	spend	a
little	time	experimenting.	The	point	is	that	now	I	know	what	the	experiment	should	be.
This	is	just	the	sort	of	focused,	fact-based	numerical	analysis	at	which	Instruments	excels.

Figure	9-16.	My	code,	time-profiled

Localization
A	device	can	be	set	by	the	user	to	prefer	a	certain	language	as	its	primary	language.	You
might	like	the	text	in	your	app’s	interface	to	respond	to	this	situation	by	appearing	in	that
language.	This	is	achieved	by	localizing	the	app	for	that	language.	You	will	probably	want
to	implement	localization	relatively	late	in	the	lifetime	of	the	app,	after	the	app	has
achieved	its	final	form,	in	preparation	for	distribution.

Localization	operates	through	localization	folders	in	your	project	folder	and	in	the	built
app	bundle.	Let’s	say	that	a	resource	in	one	of	these	localization	folders	has	a	counterpart
in	the	other	localization	folders.	Then,	when	your	app	goes	to	load	such	a	resource,	it
automatically	loads	the	one	appropriate	to	the	user’s	preferred	language.

Any	type	of	resource	can	live	in	these	localization	folders;	for	example,	you	can	have	one
version	of	an	image	to	be	loaded	for	one	language,	and	another	version	of	that	image	for
another	language.	You	will	be	most	concerned,	however,	with	text	that	is	to	appear	in	your
interface.	Such	text	must	be	maintained	in	specially	formatted	.strings	files,	with	special
names.	For	example:

To	localize	your	Info.plist	file,	use	InfoPlist.strings.
To	localize	your	Main.storyboard,	use	Main.strings.
To	localize	your	code	strings,	use	Localizable.strings.

You	don’t	have	to	create	or	maintain	these	files	manually.	Instead,	you	can	work	with
exported	XML	files	in	the	standard	.xliff	format.	Xcode	will	generate	these	files
automatically,	based	on	the	structure	and	content	of	your	project;	it	will	also	read	them
and	will	turn	them	automatically	into	the	various	localized	.strings	files.

To	help	you	understand	how	the	.xliff	export	and	import	process	works,	I’ll	start	by
explaining	what	you	would	have	to	do	in	order	to	create	and	maintain	your	.strings	files
manually.	Then	I’ll	describe	how	to	do	the	same	thing	using	.xliff	files.	I’ll	use	our	good
old	Empty	Window	project	as	the	basis	for	the	examples.

Localizing	the	Info.plist
I’ll	begin	by	localizing	the	string	that	appears	in	the	Springboard	under	the	app’s	icon	—
the	visible	title	of	the	app.	This	string	is	the	value	of	the	CFBundleDisplayName	key	in	our
Info.plist	file.	If	our	Info.plist	file	doesn’t	have	a	CFBundleDisplayName	key,	the	first	step
is	to	make	one:

1.	 Edit	the	Info.plist	file.
2.	 Select	“Bundle	name”	and	click	the	Plus	button	that	appears	to	its	right.
3.	 A	new	entry	appears.	From	the	pop-up	menu	of	key	names,	choose	“Bundle	display

name.”
4.	 For	the	value,	enter	“Empty	Window”	and	save.

Now	we’re	going	to	localize	that	string:	we’re	going	to	make	a	different	string	appear	in
the	Springboard	when	the	device’s	language	is	French.	How	is	the	Info.plist	file	localized?
It	depends	on	another	file,	which	by	default	is	not	created	by	the	app	template	—
InfoPlist.strings.	So	we	need	to	create	that	file:

1.	 Choose	File	→	New	→	File.

2.	 Select	iOS	→	Resource	→	Strings	File.	Click	Next.
3.	 Make	sure	this	file	is	part	of	our	app	target,	and	name	it	InfoPlist.	Get	the	name	and

capitalization	exactly	right!	Click	Create.
4.	 A	file	called	InfoPlist.strings	has	appeared	in	the	project	navigator.	Select	it	and,	in

the	File	inspector,	click	Localize.
5.	 A	dialog	appears	offering	us	a	choice	of	initial	languages.	The	default	is	Base,	which

is	fine.	Click	Localize.

We	are	now	ready	to	add	a	language!	Here’s	how	to	do	it:

1.	 Edit	the	project.	Under	Info,	the	Localizations	table	lists	our	app’s	localizations.	We
are	initially	localized	only	for	the	development	language	(English	in	my	case).

2.	 Click	the	Plus	button	under	the	Localizations	table.	From	the	pop-up	menu	that
appears,	choose	French.

3.	 A	dialog	appears,	listing	files	that	are	currently	localized	for	English	(because	they
came	that	way	as	part	of	the	app	template).	We’re	dealing	here	with	just
InfoPlist.strings,	so	leave	it	checked	but	uncheck	any	other	files	that	appear	here.
Click	Finish.

We	have	now	set	up	InfoPlist.strings	to	be	localized	for	both	English	and	French.	In	the
Project	navigator,	the	listing	for	InfoPlist.strings	has	acquired	a	flippy	triangle.	Open	the
triangle	to	reveal	that	our	project	now	contains	two	copies	of	InfoPlist.strings,	one	for
Base	(namely	English)	and	one	for	French.	Thus	we	can	now	edit	either	one	individually.

Now	let’s	edit	our	InfoPlist.strings	files.	A	.strings	file	is	a	collection	of	key–value	pairs	in
the	following	format:

/*	Optional	comments	are	C-style	comments	*/

"key"	=	"value";

In	the	case	of	InfoPlist.strings,	the	key	is	the	key	name	from	Info.plist	—	the	raw	key
name,	not	the	English-like	name.	So	the	English	InfoPlist.strings	should	look	like	this:

"CFBundleDisplayName"	=	"Empty	Window";

The	French	InfoPlist.strings	should	look	like	this:
"CFBundleDisplayName"	=	"Fenêtre	Vide";

That’s	all	there	is	to	it!	Now	let’s	try	it	out:

1.	 Build	and	run	Empty	Window	in	the	Simulator.
2.	 In	Xcode,	stop	the	running	project.	In	the	Simulator,	the	home	screen	is	revealed.
3.	 Examine	the	name	of	our	app,	as	displayed	in	the	Simulator	home	screen	(the

Springboard).	It	is	Empty	Window	(perhaps	truncated).
4.	 In	the	Simulator,	launch	the	Settings	app	and	change	the	language	to	French

(General	→	Language	&	Region	→	iPhone	Language	→	Français).	Click	Done.	An
action	sheet	asks	to	confirm	that	we	want	to	Change	to	French.	Do	so.

5.	 After	a	pause,	the	language	changes.	Quit	the	Settings	app	and	look	at	our	app	in	the
Springboard	again.	Its	name	is	now	displayed	as	Fenêtre	Vide!

Is	this	fun	or	what?	When	you’re	done	marveling	at	your	own	cosmopolitanism,	change
the	Simulator’s	language	back	to	English.

Localizing	a	Nib	File

Now	let’s	talk	about	how	nib	files	are	localized.	Once	upon	a	time,	it	was	necessary	to
localize	a	copy	of	the	entire	nib.	So,	for	example,	if	you	wanted	a	French	version	of	a	nib
file,	you	were	constantly	maintaining	two	separate	nib	files.	If	you	created	a	button	in	one
nib	file,	you	had	to	create	the	same	button	in	the	other	—	except	that	in	one,	the	title	was
in	English,	while	in	the	other,	the	title	was	in	French.	And	so	on,	for	every	interface	object
and	every	localization	language.	It	doesn’t	sound	like	fun,	does	it?

Nowadays,	happily,	there’s	a	better	way.	If	a	project	uses	base	internationalization,	then	a
correspondence	can	be	created	between	a	nib	file	in	a	Base.lproj	folder	and	a	.strings	file
in	a	localization	folder.	Thus	the	developer	has	just	one	copy	of	the	nib	file	to	maintain.	If
the	app	runs	on	a	device	that’s	localized	for	a	language	for	which	a	.strings	file	exists,	the
strings	in	the	.strings	file	are	substituted	for	the	strings	in	the	nib	file.

By	default,	our	Empty	Window	project	does	use	base	internationalization,	and	its
Main.storyboard	file	is	in	a	Base.lproj	folder.	So	we’re	ready	to	localize	the	storyboard
file	for	French.	You’re	going	to	need	something	in	the	storyboard	file	to	localize:

1.	 Edit	Main.storyboard	and	make	sure	that	the	initial	main	view	contains	a	button
whose	title	is	"Hello".	If	there	isn’t	one,	add	one.	Make	the	button	about	100	pixels
wide,	and	save	(that’s	important).

2.	 Still	editing	Main.storyboard,	look	at	the	File	inspector.	Under	Localization,	Base
should	be	checked	already.	In	addition,	check	French.

3.	 In	the	Project	navigator,	examine	the	listing	for	Main.storyboard.	It	now	has	a	flippy
triangle.	Flip	it	open.	Sure	enough,	there	is	now	a	base-localized	Main.storyboard
and	a	French-localized	Main.strings.

4.	 Edit	the	French	Main.strings.	It	has	been	created	automatically,	with	keys
corresponding	to	every	interface	item	in	Main.storyboard	that	has	a	title.	You	have	to
deduce,	from	comments	and	the	key	names,	how	this	correspondence	works.	In	our
case,	there’s	just	one	interface	item	in	Main.storyboard,	and	anyway	it’s	pretty	easy
to	guess	what	interface	item	the	key	represents.	It	looks	something	like	this:

/*	Class	=	"UIButton";	normalTitle	=	"Hello";	ObjectID	=	"PYn-zN-WlH";	*/

"PYn-zN-WlH.normalTitle"	=	"Hello";

5.	 In	the	second	line,	containing	the	key–value	pair,	change	the	value	to	"Bonjour".
Don’t	change	the	key!	It	has	been	generated	automatically,	and	correctly,	so	as	to
specify	the	correspondence	between	this	value	and	the	title	of	the	button.

Run	the	project	and	view	the	interface.	As	we	are	now	looking	at	our	own	app	in	action,
there’s	a	faster	way	to	view	it	in	any	language	for	which	it	is	localized:	instead	of
switching	the	device	language,	you	can	change	the	app	language.	To	do	so,	edit	the
scheme	and,	in	the	Run	action’s	Options	tab,	change	the	Application	Language	pop-up
menu.	Sure	enough,	the	button’s	title	appears	as	"Bonjour"	when	the	app	runs	in	French!

What	happens	if	we	now	modify	the	nib?	Suppose,	for	example,	we	add	another	button	to
the	view	in	Main.storyboard.	There’s	no	automatic	change	to	any	.strings	files
corresponding	to	nibs;	such	files	must	instead	be	regenerated	manually.	(That’s	why,	in
real	life,	it’s	a	good	idea	not	to	start	localizing	your	nib	files	until	your	interface	is	pretty
much	finished.)	But	all	is	not	lost:

1.	 Select	Main.storyboard	and	choose	File	→	Show	in	Finder.

2.	 Run	Terminal.	Type	xcrun	ibtool	--export-strings-file	output.strings
followed	by	a	space,	and	drag	Main.storyboard	from	the	Finder	into	the	Terminal
window.	Press	Return.

The	result	is	that	a	new	file	called	output.strings	based	on	Main.storyboard	is	generated	in
your	home	directory	(or	whatever	the	current	directory	is).	Merging	this	information	with
the	existing	localized	.strings	files	based	on	Main.storyboard	is	up	to	you.

In	that	example,	I	made	you	widen	the	"Hello"	button	in	advance,	to	make	room	for	a
longer	localized	title,	"Bonjour".	In	real	life,	you’ll	probably	use	autolayout;	this	allows
buttons	and	labels	to	grow	and	shrink	automatically,	while	shifting	other	parts	of	the
interface	to	compensate.

To	test	your	interface	under	different	localizations,	you	can	also	preview	your	localized	nib
files	within	Xcode,	without	running	the	app.	Edit	a	.storyboard	or	.xib	file	and	open	an
assistant	pane,	and	switch	the	Tracking	menu	to	Preview.	A	menu	at	the	lower	right	lists
localizations;	choose	from	the	menu	to	switch	between	them.	A	“double-length
pseudolanguage”	stress-tests	your	interface	with	really	long	localized	replacement	text.

TIP

New	in	iOS	9,	the	runtime	will	automatically	reverse	(mirror)	the	entire	interface	and	its	behavior	when	the	app	runs
in	a	right-to-left	language.	For	example,	a	push	transition	will	slide	the	old	view	out	to	the	right	and	bring	the	new
view	in	from	the	left.	If	you’re	already	using	autolayout	and	leading-and-trailing	constraints,	your	interface	will
reverse	correctly,	but	if	you	have	code	that	depends	upon	assumptions	about	left-to-right	directionality	you	will	need
to	adopt	some	new	UIView	API.

Localizing	Code	Strings
What	about	localizing	strings	whose	value	is	generated	in	code?	In	the	Empty	Window
app,	an	example	would	be	the	alert	summoned	by	tapping	the	button.	It	displays	text	—
the	title	and	message	of	the	alert,	and	the	title	of	the	button	that	dismisses	it:

@IBAction	func	buttonPressed(sender:AnyObject)	{

				let	alert	=	UIAlertController(

								title:	"Howdy!",	message:	"You	tapped	me!",	preferredStyle:	.Alert)

				alert.addAction(

								UIAlertAction(title:	"OK",	style:	.Cancel,	handler:	nil))

				self.presentViewController(alert,	animated:	true,	completion:	nil)

}

How	is	that	text	to	be	localized?	The	approach	is	the	same	—	a	.strings	file	—	but	your
code	must	be	modified	to	use	it	explicitly.	Your	code	calls	the	global	NSLocalizedString
function;	the	first	parameter	is	a	key	into	a	.strings	file,	and	the	comment	parameter
provides	an	explanatory	comment,	such	as	the	original	text	to	be	translated.
NSLocalizedString	takes	several	additional,	optional	parameters;	if	you	omit	them,	the
default	is	to	use	a	file	called	Localizable.strings.

So,	for	example,	we	might	modify	our	buttonPressed:	method	to	look	like	this:
@IBAction	func	buttonPressed(sender:AnyObject)	{

				let	alert	=	UIAlertController(

								title:	NSLocalizedString("ATitle",	comment:"Howdy!"),

								message:	NSLocalizedString("AMessage",	comment:"You	tapped	me!"),

								preferredStyle:	.Alert)

				alert.addAction(

								UIAlertAction(title:	NSLocalizedString("Accept",	comment:"OK"),

												style:	.Cancel,	handler:	nil))

				self.presentViewController(alert,	animated:	true,	completion:	nil)

}

Our	code	is	now	broken,	of	course,	because	there	is	no	Localizable.strings	file.	Let’s	make
one.	The	procedure	is	just	as	before:

1.	 Choose	File	→	New	→	File.
2.	 Select	iOS	→	Resource	→	Strings	File.	Click	Next.
3.	 Make	sure	this	file	is	part	of	our	app	target,	and	name	it	Localizable.	Get	the	name

and	capitalization	exactly	right!	Click	Create.
4.	 A	file	called	Localizable.strings	has	appeared	in	the	project	navigator.	Select	it	and,

in	the	File	inspector,	click	Localize.
5.	 A	dialog	appears	offering	us	a	choice	of	initial	languages.	The	default	is	Base,	which

is	fine.	Click	Localize.
6.	 In	the	File	inspector,	check	French.

The	Localizable.strings	file	now	exists	in	two	localizations,	Base	(meaning	English)	and
French.	We	must	now	provide	these	files	with	content.	Just	as	we	did	with	ibtool	earlier,
we	can	generate	the	initial	content	automatically	using	the	genstrings	tool.	For	example,
on	my	machine	I	would	now,	in	the	Terminal,	type	xcrun	genstrings	followed	by	space.
Then	I	drag	ViewController.swift	from	the	Finder	into	the	Terminal	window,	and	press
Return.	The	result	is	a	file	Localizable.strings	in	the	current	directory,	reading	as	follows:

/*	OK	*/

"Accept"	=	"Accept";

/*	You	tapped	me!	*/

"AMessage"	=	"AMessage";

/*	Howdy!	*/

"ATitle"	=	"ATitle";

Now	you	copy	and	paste	that	content	into	the	English	and	French	versions	of	our	project’s
Localizable.strings	files,	and	go	through	those	pairs,	changing	the	value	in	each	pair	so
that	it	reads	correctly	for	the	given	localization.	For	example,	in	the	English
Localizable.strings	file:

/*	Howdy!	*/

"ATitle"	=	"Howdy!";

And	in	the	French	Localizable.strings	file:
/*	Howdy!	*/

"ATitle"	=	"Bonjour!";

And	so	forth.

Localizing	With	XML	Files
Since	Xcode	6,	there’s	been	another	way	do	everything	we	just	did.	The	surface
mechanics	of	text	localization	can	be	made	to	revolve	around	the	exporting	and	importing
of	.xliff	files.	This	means	that	you	typically	won’t	actually	have	to	press	any	Localize
buttons	or	edit	any	.strings	files!	Instead,	you	edit	the	target	and	choose	Editor	→	Export
For	Localization;	when	you	save,	a	folder	is	created	containing	.xliff	files	for	your	various
localizations.	You	then	edit	these	files	(or	get	a	translation	house	to	edit	them	for	you)	and
import	the	edited	files:	edit	the	target	and	choose	Editor	→	Import	Localizations.	Xcode
reads	the	edited	.xliff	files	and	does	the	rest,	automatically	creating	localizations	and
generating	or	modifying	.strings	files	as	needed.

To	demonstrate,	let’s	add	another	language	—	namely,	Spanish	—	to	our	localizations:

1.	 Edit	the	target	and	choose	Editor	→	Export	For	Localization.
2.	 We	are	offered	a	chance	to	export	strings	in	our	existing	localizations	as	well	as	our

base	language.	If	we	were	planning	to	edit	our	French	localization	further,	we	would
export	it,	but	I’m	not	going	to	do	that	in	this	example.	Instead,	switch	the	Include
pop-up	menu	to	Development	Language	Only.

3.	 Specify	a	good	place	to	save	(such	as	the	Desktop).	You’re	creating	a	folder,	so	don’t
use	the	name	of	an	existing	folder	in	the	same	place.	For	example,	if	you’re	saving	to
the	same	folder	that	contains	the	project	folder,	you	might	call	it	Empty	Window
Localizations.	Click	Save.

4.	 In	the	Finder,	open	the	folder	you	just	created.	It	contains	an	.xliff	file	in	your
project’s	base	language.	For	example,	my	file	is	called	en.xliff	because	my
development	language	is	English.

Examine	this	.xliff	file,	and	you	will	see	that	Xcode	has	done	for	us	everything	that	we	did
manually.	No	.strings	files	need	be	present	initially!	Xcode	does	all	the	work:

For	every	Info.plist	file	in	your	project,	Xcode	has	created	a	corresponding	<file>
element.	When	imported,	these	elements	will	be	turned	into	localized	InfoPlist.strings
files.
For	every	.storyboard	and	.xib	file,	Xcode	has	run	ibtool	to	extract	the	text,	and	has
created	a	corresponding	<file>	element.	When	imported,	these	elements	will	be	turned
into	eponymous	localized	.strings	files.
For	every	code	file	containing	a	call	to	NSLocalizedString,	Xcode	has	run
genstrings,	and	has	created	a	corresponding	<file>	element.	When	imported,	these
elements	will	be	turned	into	localized	Localizable.strings	files.

We	now	proceed	to	translate	some	or	all	of	the	strings	in	this	file	into	some	other
language,	save	the	edited	.xliff	file,	and	import	it:

1.	 Open	the	.xliff	file	in	a	decent	text	editor	(or	an	XML	editor	if	you	have	one).
2.	 Just	for	the	sake	of	this	example,	I’m	going	to	localize	only	the	"Hello"	button	in

the	storyboard.	So	delete	(carefully,	so	as	not	to	mess	up	the	XML)	all	the	<file>...
</file>	element	groups	except	the	one	whose	original	attribute	is	"Empty
Window/Base.lproj/Main.storyboard".	And	delete	(carefully)	all	the	<trans-
unit>...</trans-unit>	elements	except	the	one	whose	<source>	is	"Hello".

3.	 To	specify	Spanish	as	the	target	language,	add	an	attribute	to	the	<file>	element:
target-language="es".

4.	 To	provide	an	actual	translation,	add	a	<target>	element	after	the	<source>	element,
and	give	it	some	text,	such	as	"Hola".	Save.	The	file	should	now	look	something	like
this:

<?xml	version="1.0"	encoding="UTF-8"	standalone="no"?>

<xliff	xmlns="urn:oasis:names:tc:xliff:document:1.2"

		xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	version="1.2"

		xsi:schemaLocation="urn:oasis:names:tc:xliff:document:1.2

		http://docs.oasis-open.org/xliff/v1.2/os/xliff-core-1.2-strict.xsd">

		<file	original="Empty	Window/Base.lproj/Main.storyboard"

		source-language="en"	target-language="es"	datatype="plaintext">

				<header>

						<tool	tool-id="com.apple.dt.xcode"	tool-name="Xcode"

						tool-version="6.2"	build-num="6C107a"/>

				</header>

				<body>

						<trans-unit	id="PYn-zN-WlH.normalTitle">

								<source>Hello</source>

								<target>Hola</target>

								<note>Class	=	"UIButton";	normalTitle	=	"Hello";

										ObjectID	=	"PYn-zN-WlH";</note>

						</trans-unit>

				</body>

		</file>

</xliff>

5.	 Back	in	Xcode,	edit	the	target	and	choose	Editor	→	Import	Localizations.	In	the
Open	dialog,	select	the	edited	en.xliff	and	click	Open.

6.	 Xcode	complains	that	we	didn’t	translate	everything	there	was	to	translate.	Ignore
that	complaint	and	click	Import.

Amazing	things	have	now	happened!	With	no	visible	prompting,	Xcode	has	added
Spanish	to	our	localizations,	and	has	created	an	additional	InfoPlist.strings	file,	an
additional	Main.strings	file,	and	an	additional	Localizable.strings	file,	all	localized	to
Spanish.	If	you	examine	Main.strings,	you’ll	see	that	it	looks	just	as	it	would	have	looked
if	we	had	edited	it	manually:

/*	Class	=	"UIButton";	normalTitle	=	"Hello";	ObjectID	=	"PYn-zN-WlH";	*/

"PYn-zN-WlH.normalTitle"	=	"Hola";

Clearly,	the	round-trip	to	and	from	an	.xliff	file	is	an	extremely	convenient	way	to	create
and	maintain	your	localizations.	The	structure	of	the	localization	within	your	project	is
exactly	the	same	as	I	described	earlier	in	this	section,	but	the	.xliff	file	externalizes	that
same	information	in	a	format	that	can	be	readily	edited	in	a	single	file.	The	.xliff	export
process	runs	ibtool	and	genstrings	for	you,	so	your	localized	content	is	easy	to	maintain
as	you	add	interface	and	code.

Archiving	and	Distribution
By	distribution	is	meant	providing	to	others	who	are	not	developers	on	your	team	your
built	app	for	running	on	their	devices.	There	are	two	kinds	of	distribution:

Ad	Hoc	distribution

You	are	providing	a	copy	of	your	app	to	a	limited	set	of	known	users	so	that	they	can
try	it	on	their	specific	devices	and	report	bugs,	make	suggestions,	and	so	forth.

App	Store	distribution

You	are	providing	the	app	to	the	App	Store	so	that	anyone	can	download	it	(possibly	for
a	fee)	and	run	it.

To	create	a	copy	of	your	app	for	distribution,	you	need	first	to	build	an	archive	of	your
app.	It	is	this	archive	that	will	subsequently	be	exported	for	Ad	Hoc	or	App	Store
distribution.	An	archive	is	basically	a	preserved	build.	It	has	three	main	purposes:

Distribution

An	archive	will	serve	as	the	basis	for	an	Ad	Hoc	distribution	or	an	App	Store
distribution.

Reproduction

Every	time	you	build,	conditions	can	vary,	so	the	resulting	app	might	behave	slightly
differently.	But	an	archive	preserves	a	specific	built	binary;	every	distribution	from	a
particular	archive	is	guaranteed	to	contain	an	identical	binary,	and	thus	will	behave	the
same	way.	This	fact	is	important	for	testing:	if	a	bug	report	comes	in	based	on	an	app
distributed	from	a	particular	archive,	you	can	Ad	Hoc	distribute	that	archive	to	yourself
and	run	it,	knowing	that	you	are	testing	exactly	the	same	app.

Symbolication

The	archive	includes	a	.dSYM	file	which	allows	Xcode	to	accept	a	crash	log	and	report
the	crash’s	location	in	your	code.	This	allows	you	to	deal	with	crash	reports	from	users.

Here’s	how	to	build	an	archive	of	your	app:

1.	 Set	the	destination	in	the	Scheme	pop-up	menu	in	the	project	window	toolbar	to	iOS
Device.	Until	you	do	this,	the	Product	→	Archive	menu	item	will	be	disabled.	You
do	not	have	to	have	a	device	connected;	you	are	not	building	to	run	on	a	particular
device,	but	saving	an	archive	that	will	run	on	some	device.

2.	 If	you	like,	edit	the	scheme	to	confirm	that	the	Release	build	configuration	will	be
used	for	the	Archive	action.	This	is	the	default,	but	it	does	no	harm	to	double-check.

3.	 Choose	Product	→	Archive.	The	app	is	compiled	and	built.	The	archive	itself	is
stored	in	a	date	folder	within	your	user	Library/Developer/Xcode/Archives	folder.
Also,	it	is	listed	in	Xcode’s	Organizer	window	(Window	→	Organizer)	under
Archives;	this	window	may	open	spontaneously	to	show	the	archive	you’ve	just
created.	You	can	add	a	comment	here;	you	can	also	change	the	archive’s	name	(this
won’t	affect	the	name	of	the	app).

To	perform	any	kind	of	distribution	based	on	your	archive,	you	will	also	need	a

distribution	identity	(a	private	key	and	a	distribution	certificate	in	your	computer’s
keychain)	and	a	distribution	profile	for	this	app.	If	you’re	doing	an	Ad	Hoc	distribution
and	an	App	Store	distribution,	you’ll	need	a	separate	distribution	profile	for	each.	Only	a
Developer	Program	member	can	obtain	a	distribution	identity	and	profile.

TIP

If	you	see	a	note	in	the	Organizer	window,	“Distribution	requires	enrollment	in	the	Apple	Developer	Program,”	you
must	have	postponed	signing	up	for	a	Developer	Program	membership.	Well,	now	is	the	moment!	Without	a
membership,	your	Organizer	window	is	a	Roach	Motel:	archives	check	in,	but	they	can’t	check	out.

You	can	obtain	a	distribution	identity	from	within	Xcode	in	exactly	the	same	way	as	I
described	obtaining	a	development	identity:	in	the	Accounts	preference	pane,	in	the	View
Details	dialog	for	your	team,	click	the	Create	button	to	the	right	of	iOS	Distribution.	If
that	doesn’t	work,	obtain	the	distribution	certificate	manually,	just	as	I	described	for	a
development	certificate.

In	theory,	Xcode	can	also	create	an	appropriate	distribution	profile	for	you	when	you
export	your	archive.	However,	I	have	never	found	this	to	work	reliably;	I	always	create
my	distribution	profiles	manually,	at	the	Member	Center,	in	a	web	browser.	Here’s	how	to
do	that:

1.	 If	this	is	to	be	an	Ad	Hoc	distribution	profile,	collect	the	UDIDs	of	all	the	devices
where	this	build	is	to	run,	and	add	each	of	them	at	the	Member	Center	under
Devices.	(For	an	App	Store	distribution	profile,	omit	this	step.)

2.	 Make	sure	that	the	app	is	registered	at	the	Member	Center,	as	I	described	earlier	in
this	chapter.

3.	 At	the	Member	Center,	under	Provisioning	Profiles,	click	the	Plus	button	to	ask	for	a
new	profile.	In	the	Add	iOS	Provisioning	Profile	form,	specify	an	Ad	Hoc	profile	or
an	App	Store	profile.	On	the	next	screen,	choose	your	app	from	the	pop-up	menu.
On	the	next	screen,	choose	your	distribution	certificate.	On	the	next	screen,	for	an
Ad	Hoc	profile	only,	specify	the	devices	you	want	this	app	to	run	on.	On	the	next
screen,	give	the	profile	a	name.	
Be	careful	about	the	profile’s	name,	as	you	will	need	to	be	able	to	recognize	it	later
from	within	Xcode!	My	own	practice	is	to	assign	a	name	containing	the	term
“AdHoc”	or	“AppStore”	and	the	name	of	the	app.

4.	 Click	Generate	to	generate	the	profile.	To	obtain	the	profile,	either	click	Download
and	then	find	the	downloaded	profile	and	double-click	it	to	get	Xcode	to	see	it,	or
else	open	the	View	Details	dialog	in	Xcode’s	Accounts	preference	pane	and	click	the
Download	All	button	at	the	bottom	left	to	make	Xcode	download	it.

Ad	Hoc	Distribution
Apple’s	docs	say	that	an	Ad	Hoc	distribution	build	should	include	an	icon	that	will	appear
in	iTunes,	but	my	experience	is	that	this	step,	though	it	does	work,	is	unnecessary.	If	you
want	to	include	this	icon,	it	should	be	a	PNG	or	JPEG	file,	512×512	pixels	in	size,	and	its
name	should	be	iTunesArtwork,	with	no	file	extension.	Make	sure	the	icon	is	included	in
the	build,	being	present	in	the	Copy	Bundle	Resources	build	phase.

Here	are	the	steps	for	creating	an	Ad	Hoc	distribution	file	(I’m	assuming	that	you	have	a
distribution	identity,	as	described	in	the	previous	section):

1.	 If	necessary,	create,	download,	and	install	an	Ad	Hoc	distribution	profile	for	this
app,	as	described	in	the	previous	section.

2.	 If	necessary,	create	an	archive	of	your	app,	as	described	in	the	previous	section.	Just
before	creating	the	archive,	double-check	your	Code	Signing	build	settings:	your
Code	Signing	Identity	for	a	Release	build	(or	whatever	build	configuration	your
scheme	uses	for	an	Archive	action)	should	be	iOS	Distribution,	and	your
Provisioning	Profile	should	be	Automatic.	(It	is	possible	to	specify	these	settings
more	precisely,	but	I	find	that	nowadays	these	general	settings	work	well.)

3.	 In	the	Organizer	window,	under	Archives,	select	the	archive	and	click	the	Export
button	at	the	upper	right	of	the	window.	A	dialog	appears.	Here,	you	are	to	specify	a
method;	choose	Save	for	Ad	Hoc	Deployment.	Click	Next.

4.	 You	are	now	asked	to	select	a	Development	Team.	Select	the	correct	team	and	click
Choose.

5.	 New	in	Xcode	7,	you	may	see	a	dialog	asking	whether	you	want	the	exported	app
thinned,	meaning	that	it	will	contain	resources	appropriate	only	to	one	type	of
device,	simulating	what	the	App	Store	will	do	when	the	user	downloads	the	app	to	a
device.	You	probably	don’t,	though	it	might	be	interesting	to	learn	the	size	of	your
thinned	app.

6.	 The	archive	is	prepared,	and	a	summary	window	is	displayed.	The	name	of	the
provisioning	profile	is	shown,	so	you	can	tell	that	the	right	thing	is	happening.	Click
Next.

7.	 The	file	is	saved	to	the	Desktop	inside	a	uniquely	named	folder.	It	will	have	the
suffix	.ipa	(“iPhone	app”).

8.	 Locate	in	the	Finder	the	file	you	just	saved.	Provide	this	file	to	your	users	with
instructions.

A	user	should	copy	the	.ipa	file	to	a	safe	location,	such	as	the	Desktop,	and	then	launch
iTunes	and	drag	the	.ipa	file	from	the	Finder	onto	the	iTunes	icon	in	the	Dock	(or	double-
click	the	.ipa	file).	Then	the	user	should	connect	the	device	to	the	computer,	make	certain
the	app	is	present	in	the	list	of	apps	for	this	device	and	that	it	will	be	installed	on	the	next
sync,	and	finally	sync	the	device	to	cause	the	app	to	be	copied	to	it.	(If	this	isn’t	the	first
version	of	your	app	that	you’ve	distributed	to	your	Ad	Hoc	testers,	the	user	might	need	to
delete	the	current	version	from	the	device	beforehand;	otherwise,	the	new	version	might
not	be	copied	to	the	device	when	syncing.)

If	you	listed	your	own	device	as	one	of	the	devices	for	which	this	Ad	Hoc	distribution
profile	was	to	be	enabled,	you	can	obey	these	instructions	yourself	to	make	sure	the	Ad

Hoc	distribution	is	working	as	expected.	First,	remove	from	your	device	any	previous
copies	of	this	app	(such	as	development	copies)	and	any	profiles	that	might	be	associated
with	this	app	(you	can	do	that	through	the	Devices	window	in	Xcode).	Then	copy	the	app
onto	your	device	by	syncing	with	iTunes	as	just	described.	The	app	should	run	on	your
device,	and	you	should	see	the	Ad	Hoc	distribution	profile	on	your	device.	Because	you
are	not	privileged	over	your	other	Ad	Hoc	testers,	what	works	for	you	should	work	for
them.

There	is	a	registration	limit	of	100	devices	per	year	per	developer	(not	per	app),	which
limits	your	number	of	Ad	Hoc	testers.	Devices	used	for	development	are	counted	against
this	limit.	You	can	work	around	this	limit,	and	provide	your	betas	more	conveniently	to
testers,	by	using	TestFlight	beta	testing	instead.

TestFlight	beta	testing	lifts	the	limit	of	100	devices	to	a	limit	of	1000	testers,	and	is	more
convenient	than	Ad	Hoc	distribution	because	your	users	download	and	install	prelease
versions	of	your	app	directly	from	the	App	Store	onto	their	devices	through	the	TestFlight
app	(acquired	by	Apple	in	2014	by	buying	Burstly).	Configuration	is	performed	at	the
iTunes	Connect	site;	a	prerelease	version	uploaded	to	iTunes	Connect	must	be	archived	as
if	for	App	Store	distribution	(see	the	discussion	of	App	Store	submission	later	in	this
chapter).	See	the	“TestFlight	Beta	Testing”	chapter	of	Apple’s	iTunes	Connect	Developer
Guide.

WARNING

Prerelease	versions	of	your	app	intended	for	distribution	to	beta	testers	(as	opposed	to	internal	testers	who	have	direct
access	to	your	iTunes	Connect	account)	require	review	by	Apple.

Final	App	Preparations
As	the	big	day	approaches	when	you’re	thinking	of	submitting	your	app	to	the	App	Store,
don’t	let	the	prospect	of	huge	fame	and	massive	profits	hasten	you	past	the	all-important
final	stages	of	app	preparation.	Apple	has	a	lot	of	requirements,	and	failure	to	meet	them
can	cause	your	app	to	be	rejected.	Take	your	time.	Make	a	checklist	and	go	through	it
carefully.	See	Apple’s	App	Distribution	Guide	as	well	as	the	“Icon	and	Image	Design”
chapter	of	the	Human	Interface	Guidelines	for	full	details.

Icons	in	the	App
The	simplest	way	to	provide	your	app	with	icons	is	to	use	the	asset	catalog.	If	you’re	not
using	an	asset	catalog	for	icons	and	you’d	like	to	switch	to	using	one,	edit	the	target	and,
in	the	General	pane,	under	App	Icons	and	Launch	Images,	next	to	App	Icons	Source,	click
the	Use	Asset	Catalog	button.	The	Use	Asset	Catalog	button	then	changes	to	a	pop-up
menu	listing	the	asset	catalog’s	name	and	the	name	of	the	image	set	within	the	catalog	to
be	used	for	icons.

The	image	sizes	needed	are	listed	in	the	asset	catalog	itself.	Select	an	image	slot	and	look
in	the	Attributes	inspector.	Confusingly,	“2x”	or	“3x”	means	that	the	image	should	be
double	or	triple	the	listed	dimensions	for	an	icon;	thus,	for	example,	an	iPhone	app	icon
listed	as	“60pt”	or	“60×60,”	but	also	with	“3x,”	means	that	you	should	provide	an	image
measuring	180×180.	To	determine	which	slots	should	be	displayed,	use	the	checkboxes	in
the	Attributes	inspector	when	you	select	an	icon	set	or	launch	image	set	(Figure	9-17).	To
add	an	image,	drag	it	from	the	Finder	into	the	appropriate	slot.

Figure	9-17.	Icon	slots	in	the	asset	catalog

An	icon	file	must	be	a	PNG	file,	without	alpha	transparency.	It	should	be	a	full	square;	the
rounding	of	the	corners	will	be	added	for	you.	Apple	seems	nowadays	to	prefer	simple,
cartoony	images	with	a	few	bright	colors	and	possibly	a	gentle	gradient	background.

When	your	app	is	built	and	the	asset	catalog	is	processed,	the	icons	are	written	out	to	the
top	level	of	the	app	bundle	and	are	given	appropriate	names	(Figure	6-15);	at	the	same

time,	an	appropriate	entry	is	written	into	the	app’s	Info.plist,	enabling	the	system	to	find
and	display	the	icon	on	a	device.	The	details	are	complicated,	but	you	won’t	have	to	worry
about	them	—	that	is	exactly	why	you’re	using	the	asset	catalog!

App	icon	sizes	have	changed	over	the	years.	If	your	app	is	to	be	backward-compatible	to
earlier	systems,	you	may	need	additional	icons	in	additional	sizes,	corresponding	to	the
expectations	of	those	earlier	systems.	Again,	this	is	exactly	the	sort	of	thing	the	asset
catalog	will	help	you	with.

Optionally,	you	may	elect	to	include	smaller	versions	of	your	icon	to	appear	when	the	user
does	a	search	on	the	device,	as	well	as	in	the	Settings	app	if	you	include	a	settings	bundle.
However,	I	never	include	those	icons.

Other	Icons
When	you	submit	an	app	to	the	App	Store,	you	will	be	asked	to	supply	a	1024×1024	PNG
or	high-quality	JPEG	icon	to	be	displayed	at	the	App	Store.	Apple’s	guidelines	say	that	it
should	not	merely	be	a	scaled-up	version	of	your	app’s	icon;	but	it	must	not	differ
perceptibly	from	your	app’s	icon,	either,	or	your	app	will	be	rejected	(I	know	this	from
bitter	experience).

The	App	Store	icon	does	not	need	to	be	built	into	your	app;	indeed,	it	should	not	be,	as	it
will	merely	swell	the	built	app’s	size	unnecessarily.	On	the	other	hand,	you	will	probably
want	to	keep	it	in	your	project	(and	in	your	project	folder)	so	that	you	can	find	and
maintain	it	easily.	So	I	recommend	that	you	import	it	into	your	project	and	copy	it	into
your	project	folder,	but	do	not	add	it	to	any	target.

If	you	created	an	iTunesArtwork	icon	for	Ad	Hoc	distribution,	you	may	wish	to	delete	it
from	the	Copy	Bundle	Resources	build	phase	now.

Launch	Images
There	is	a	delay	between	the	moment	when	the	user	taps	your	app’s	icon	to	launch	it	and
the	moment	when	your	app	is	up	and	running	and	displaying	its	initial	window.	To	cover
this	delay	and	give	the	user	a	visible	indication	that	something	is	happening,	a	launch
image	needs	to	be	displayed	during	that	interval.

The	launch	image	needn’t	be	detailed.	It	might	be	just	a	blank	depiction	of	the	main
elements	or	regions	of	the	interface	that	will	be	present	when	the	app	has	finished
launching.	In	this	way,	when	the	app	does	finish	launching,	the	transition	from	the	launch
image	to	the	real	app	will	be	a	matter	of	those	elements	or	regions	being	filled	in.

In	iOS	7	and	before,	the	launch	image	was	literally	an	image	(a	PNG	file).	It	had	to	be
included	in	your	app	bundle,	and	it	had	to	obey	certain	naming	conventions.	As	the	variety
of	screen	sizes	and	resolutions	of	iOS	devices	proliferated,	so	did	the	number	of	required
launch	images.	The	asset	catalog,	introduced	in	iOS	7,	was	helpful	in	this	regard.	But	with
the	introduction	of	the	iPhone	6	and	iPhone	6	Plus,	the	entire	situation	threatened	to
become	unmanageable.

For	this	reason,	iOS	8	introduced	a	better	solution.	Instead	of	a	set	of	launch	images,	you
now	provide	a	launch	nib	file	—	a	single	.xib	or	.storyboard	file	containing	a	single	view
to	be	displayed	as	a	launch	image.	You	construct	this	view	using	subviews	and	autolayout.

Thus,	the	view	is	automatically	reconfigured	to	match	the	screen	size	and	orientation	of
the	device	on	which	the	app	is	launching.

By	default,	a	new	app	project	comes	with	a	LaunchScreen.storyboard	file.	This	is	where
you	design	your	launch	image.	The	Info.plist	points	to	this	file	as	the	value	of	its	“Launch
screen	interface	file	base	name”	key	(UILaunchStoryboardName).	You	can	configure	the
Info.plist,	if	necessary,	by	editing	the	target	and	setting	the	Launch	Screen	File	field	(under
App	Icons	and	Launch	Images).

You	should	take	advantage	of	this	feature	—	and	not	merely	because	it	is	convenient.	The
presence	of	a	“Launch	screen	interface	file	base	name”	key	in	your	Info.plist	tells	the
system	that	your	app	runs	natively	on	newer	device	types,	such	as	the	iPhone	6	and	iPhone
6	Plus.	Without	it,	your	app	will	be	displayed	zoomed,	as	if	the	iPhone	6	were	just	a	big
iPhone	5S	—	in	effect,	you	won’t	be	getting	all	the	pixels	you’re	entitled	to	(and	the
display	will	be	somewhat	fuzzy).

Another	reason	for	using	a	launch	nib	file	is	that	it	is	localizable!	As	with	any	.xib	or
.storyboard	file,	strings	displayed	in	a	base-localized	launch	screen	.xib	or	.storyboard	file
can	be	localized	through	individual	.strings	files.

WARNING

As	far	as	I	can	tell,	custom	fonts	included	in	your	app	bundle	cannot	be	displayed	in	a	launch	nib	file.	This	is
evidently	because	they	have	not	yet	been	loaded	at	the	time	the	launch	screen	needs	to	be	displayed.

The	bad	news	is	that	if	your	app	is	to	be	backward-compatible	to	earlier	systems,	you’ll
have	to	supply	old-fashioned	launch	images	in	addition	to	the	launch	nib	file.	The
requirements	for	launch	images	in	iOS	7	and	before	are	complicated	—	and	are	made
more	complicated	by	the	fact	that	the	rules	have	changed	over	the	years,	so	that	the	more
systems	you	want	to	be	compatible	with,	the	more	requirements	you’ll	have	to	satisfy.	I
have	covered	these	requirements	in	earlier	editions	of	this	book,	and	I’m	not	going	to
repeat	them	here.

TIP

Apple	provides	an	extremely	helpful	sample	code	project	called	Application	Icons	and	Launch	Images	for	iOS.	It
provides	icons	and	launch	images	of	all	sizes	and	demonstrates	the	proper	naming	conventions.

Screenshots	and	Video	Previews
When	you	submit	your	app	to	the	App	Store,	you	will	be	asked	for	one	or	more
screenshots	of	your	app	in	action	to	be	displayed	at	the	App	Store.	You	should	take	these
screenshots	beforehand	and	be	prepared	to	provide	them	during	the	app	submission
process.	You	must	provide	at	least	one	screenshot	corresponding	to	the	screen	size	of
every	device	on	which	your	app	can	run,	in	the	corresponding	resolution.

You	can	obtain	screenshots	either	from	the	Simulator	or	from	a	device	connected	to	the
computer:

Simulator

Run	the	app	in	the	Simulator,	first	setting	the	destination	to	get	the	desired	device	type.
Choose	File	→	Save	Screen	Shot.

Device

In	Xcode,	in	the	Devices	window,	locate	your	connected	device	under	Devices	and	click
Take	Screenshot.	Alternatively,	choose	Debug	→	View	Debugging	→	Take	Screenshot
of	[Device].

In	both	cases,	the	screenshot	file	is	saved	to	wherever	screenshots	are	normally	saved	on
your	computer	(usually	the	Desktop).

You	can	also	take	a	screenshot	on	a	device	by	clicking	the	screen	lock	button	and	the
Home	button	simultaneously.	Now	the	screenshot	is	in	the	Camera	Roll	in	the	Photos	app,
and	you	can	communicate	it	to	your	computer	in	any	convenient	way	(such	as	by	emailing
it	to	yourself).

You	can	also	submit	to	the	App	Store	a	video	preview	showing	your	app	in	action.	It	can
be	up	to	30	seconds	long,	in	H.264	or	Apple	ProRes	format.	Your	computer	can	capture
video	of	your	device	if	it	is	running	OS	X	10.10	(“Yosemite”)	or	later.	Your	device	must
be	sufficiently	modern	to	have	a	Lightning	connector:

1.	 Connect	the	device	to	the	computer	and	launch	QuickTime	Player.	Choose	File	→
New	Movie	Recording.

2.	 If	necessary,	set	the	Camera	and	Microphone	to	the	device,	using	the	pop-up	menu
from	the	down-pointing	chevron	button	next	to	the	Record	button	that	appears	when
you	hover	the	mouse	over	the	QuickTime	Player	window.

3.	 Start	recording,	and	exercise	the	app	on	the	device.	When	you’re	finished,	stop
recording	and	save.

The	resulting	movie	file	can	be	edited	in	iMovie	or	Final	Cut	Pro	to	prepare	it	for
submission	to	the	App	Store.	For	example,	in	iMovie:

1.	 After	importing	the	movie	file,	choose	File	→	New	App	Preview.
2.	 Edit!	When	you’re	done	editing,	choose	File	→	Share	→	App	Preview.	This	ensures

the	correct	resolution	and	format.

For	more	details,	see	the	“App	Preview”	section	of	the	“First	Steps”	chapter	of	Apple’s
iTunes	Connect	Developer	Guide.

Property	List	Settings
A	number	of	settings	in	the	Info.plist	are	crucial	to	the	proper	behavior	of	your	app.	You
should	peruse	Apple’s	Information	Property	List	Key	Reference	for	full	information.	Most
of	the	required	keys	are	created	as	part	of	the	template,	and	are	given	reasonable	default
values,	but	you	should	check	them	anyway.	The	following	are	particularly	worthy	of
attention:

Bundle	display	name	(CFBundleDisplayName)

The	name	that	appears	under	your	app’s	icon	on	the	device	screen;	this	name	needs	to
be	short	in	order	to	avoid	truncation.	I	talked	earlier	in	this	chapter	about	how	to
localize	the	display	name.

Supported	interface	orientations	(UISupportedInterfaceOrientations)

This	key	designates	the	totality	of	orientations	in	which	the	app	is	ever	permitted	to
appear.	You	can	perform	this	setting	with	checkboxes	in	the	General	tab	of	the	target
editor.	But	you	may	also	need	to	edit	the	Info.plist	manually	to	rearrange	the	order	of
possible	orientations,	because	on	an	iPhone	the	first	orientation	listed	may	be	the	one
into	which	the	app	will	actually	launch.

Required	device	capabilities	(UIRequiredDeviceCapabilities)

You	should	set	this	key	if	the	app	requires	capabilities	that	are	not	present	on	all
devices.	But	don’t	use	this	key	unless	it	makes	no	sense	for	your	app	to	run	at	all	on	a
device	lacking	the	specified	capabilities.

Bundle	version	(CFBundleVersion)

Your	app	needs	a	version	number.	The	best	place	to	set	it	is	the	General	tab	of	the	target
editor.	Things	are	a	little	confusing	here	because	there	are	two	fields:

Version

Corresponds	in	the	Info.plist	to	“Bundle	versions	string,	short”
(CFBundleShortVersionString).

Build

Corresponds	in	the	Info.plist	to	“Bundle	version”	(CFBundleVersion).

As	far	as	I	can	determine,	Apple	will	pay	attention	to	the	former	if	it	is	set,	and
otherwise	will	fall	back	on	the	latter.	In	general	I	play	it	safe	and	set	both	to	the	same
value	when	submitting	to	the	App	Store.	The	value	needs	to	be	a	version	string,	such	as
"1.0".	The	version	string	will	be	displayed	at	the	App	Store,	distinguishing	one	release
from	another.	Failure	to	increment	the	version	string	when	submitting	an	update	will
cause	the	update	to	be	rejected.	It	is	legal,	however,	to	increment	the	Build	number
without	incrementing	the	Version	number,	and	you	will	need	to	do	so	if	you	submit
several	successive	builds	of	the	same	prospective	release	(during	the	course	of
TestFlight	testing,	or	because	you	found	a	bug	and	had	to	withdraw	a	submitted	binary
before	it	appeared	on	the	App	Store).

Submission	to	the	App	Store
When	you’re	satisfied	that	your	app	works	well,	and	you’ve	installed	or	collected	all	the
necessary	resources,	you’re	ready	to	submit	your	app	to	the	App	Store	for	distribution.	To
do	so,	you’ll	need	to	make	preparations	at	the	iTunes	Connect	web	site.	You	can	find	a
link	to	it	on	the	iOS	developer	pages	when	you’ve	logged	in	at	Apple’s	site.	You	can	go
directly	to	http://itunesconnect.apple.com,	but	you’ll	still	need	to	log	in	with	your	iOS
Developer	username	and	password.

NOTE

The	first	time	you	visit	iTunes	Connect,	you	should	go	to	the	Contracts	section	and	complete	submission	of	your
contract.	You	can’t	offer	any	apps	for	sale	until	you	do,	and	even	free	apps	require	completion	of	a	contractual	form.

I’m	not	going	to	recite	all	the	steps	you	have	to	go	through	to	tell	iTunes	Connect	about
your	app,	as	these	are	described	thoroughly	in	Apple’s	iTunes	Connect	Developer	Guide,
which	is	the	final	word	on	such	matters.	But	here	are	some	of	the	main	pieces	of
information	you	will	sooner	or	later	have	to	supply:

Your	app’s	name

This	is	the	name	that	will	appear	at	the	App	Store;	it	need	not	be	identical	to	the	short
name	that	will	appear	under	the	app’s	icon	on	the	device,	dictated	by	the	“Bundle
display	name”	setting	in	your	Info.plist	file.	Apple	recommends	that	this	be	25
characters	or	fewer,	though	it	can	be	longer.	You	can	get	a	rude	shock	when	you	submit
your	app’s	information	to	iTunes	Connect	and	discover	that	the	name	you	wanted	is
already	taken.	There	is	no	reliable	way	to	learn	this	in	advance,	and	such	a	discovery
can	necessitate	a	certain	amount	of	last-minute	scrambling	on	your	part.

Description

You	must	supply	a	description	of	fewer	than	4,000	characters;	Apple	recommends	fewer
than	580	characters,	and	the	first	paragraph	is	the	most	important,	because	this	may	be
all	that	users	see	at	first	when	they	visit	the	App	Store.	It	must	be	pure	text,	without
HTML	and	without	character	styling.

Keywords

This	is	a	comma-separated	list	shorter	than	100	characters.	These	keywords	will	be
used,	in	addition	to	your	app’s	name,	to	help	users	discover	your	app	through	the	Search
feature	of	the	App	Store.

Support

This	the	URL	of	a	web	site	where	users	can	find	more	information	about	your	app;	it’s
good	to	have	the	site	ready	in	advance.

Copyright

Do	not	include	a	copyright	symbol	in	this	string;	it	will	be	added	for	you	at	the	App
Store.

SKU	number

http://itunesconnect.apple.com

This	is	arbitrary,	so	don’t	get	nervous	about	it.	It’s	just	a	unique	identifier,	unique	within
the	world	of	your	own	apps.	It’s	convenient	if	it	has	something	to	do	with	your	app’s
name.	It	needn’t	be	a	number;	it	can	actually	be	any	string.

Price

You	don’t	get	to	make	up	a	price.	You	have	to	choose	from	a	list	of	pricing	“tiers.”

Availability	Date

There’s	an	option	to	make	the	app	available	as	soon	as	it	is	approved,	and	this	will
typically	be	your	choice.

TIP

As	you	submit	information,	click	Save	often!	If	the	connection	goes	down	and	you	haven’t	explicitly	saved,	all	your
work	can	be	lost.	(Can	you	guess	how	I	know	that?)

When	you’re	ready	to	upload	the	app	for	which	you’ve	already	submitted	the	information
at	iTunes	Connect,	you	can	perform	the	upload	using	Xcode.	You	should	have	an	iOS
Development	identity.	Your	app	should	already	have	been	archived	with	the	Code	Signing
Identity	build	setting	for	the	Release	configuration	set	to	iOS	Distribution	(presumably,
this	will	be	an	archive	you’ve	already	created	and	tested	using	Ad	Hoc	or	TestFlight
distribution).	Select	the	archived	build	in	the	Organizer	and	click	Upload	to	App	Store.
The	upload	will	be	performed,	and	the	app	will	be	validated	at	the	far	end.

Alternatively,	you	can	use	Application	Loader.	Export	the	archive	as	an	.ipa	file,	as	for	an
Ad	Hoc	distribution,	but	when	selecting	a	method	for	export,	choose	Save	for	iOS	App
Store	Deployment.	Launch	Application	Loader	by	choosing	Xcode	→	Open	Developer
Tool	→	Application	Loader,	and	hand	it	the	.ipa	file.

After	uploading	the	archive,	you	have	one	final	step	to	perform.	Wait	about	five	or	ten
minutes	for	the	binary	to	be	processed	at	Apple’s	end.	Then	return	to	iTunes	Connect,
where	you	submitted	your	app	information.	You	will	now	be	able	to	select	the	binary,
save,	and	submit	the	app	for	review.

You	will	subsequently	receive	emails	from	Apple	informing	you	of	your	app’s	status	as	it
passes	through	various	stages:	“Waiting	For	Review,”	“In	Review,”	and	finally,	if	all	has
gone	well,	“Ready	For	Sale”	(even	if	it’s	a	free	app).	Your	app	will	then	appear	at	the	App
Store.

Part	III.	Cocoa
The	Cocoa	Touch	frameworks	provide	the	general	capabilities	needed	by	any	iOS
application.	Buttons	can	be	tapped,	text	can	be	read,	screens	of	interface	can	succeed	one
another,	because	Cocoa	makes	it	so.	To	use	the	framework,	you	must	learn	to	let	the
framework	use	you.	You	must	put	your	code	in	the	right	place	so	that	it	will	be	called	at
the	right	time.	You	must	fulfill	certain	obligations	that	Cocoa	expects	of	you.	You	master
Cocoa	by	being	Cocoa’s	obedient	servant.	In	this	part	of	the	book,	that’s	what	you’ll	learn
to	do.

Chapter	10	describes	how	Cocoa	is	organized	and	structured	through	such	Objective-C
language	features	as	subclassing,	categories,	and	protocols.	Then	some	important	built-
in	Cocoa	object	types	are	introduced.	The	chapter	concludes	with	a	description	of
Cocoa	key–value	coding	and	a	look	at	how	the	root	NSObject	class	is	organized.
Chapter	11	presents	Cocoa’s	event-driven	model	of	activity,	along	with	its	major	design
patterns	and	event-related	features	—	notifications,	delegation,	data	sources,	target–
action,	the	responder	chain,	and	key–value	observing.	The	chapter	concludes	with
some	words	of	wisdom	about	managing	the	barrage	of	events	Cocoa	will	be	throwing
at	you,	and	how	to	escape	that	barrage	momentarily	with	delayed	performance.
Chapter	12	is	about	Cocoa	memory	management.	I’ll	explain	how	memory
management	of	reference	types	works.	Then	some	special	memory	management
situations	are	described:	autorelease	pools,	retain	cycles,	notifications	and	timers,	nib
loading,	and	CFTypeRefs.	The	chapter	concludes	with	a	discussion	of	Cocoa	property
memory	management,	and	advice	on	how	to	debug	memory	management	issues.
Chapter	13	discusses	the	question	of	how	your	objects	are	going	to	see	and
communicate	with	one	another	within	the	confines	of	the	Cocoa-based	world.	It
concludes	with	some	advice	about	adhering	to	the	model–view–controller	architecture.

Finally,	don’t	forget	to	read	Appendix	A	for	more	detail	about	how	Objective-C	and	Swift
interact	and	cooperate.

Chapter	10.	Cocoa	Classes
When	you	program	iOS,	you’re	programming	Cocoa.	So	you	need	to	be	acquainted	with
Cocoa;	you	have	to	know,	as	it	were,	who	you’re	talking	to	when	you	talk	to	Cocoa,	and
what	sort	of	behavior	Cocoa	is	likely	to	expect	from	you.	Cocoa	is	a	big	framework,
subdivided	into	many	smaller	frameworks,	and	it	takes	time	and	experience	to	become
reasonably	familiar	with	it.	Nevertheless,	Cocoa	has	certain	chief	conventions	and	primary
components	that	can	serve	as	guideposts	from	the	outset.

The	Cocoa	API	is	written	mostly	in	Objective-C,	and	Cocoa	itself	consists	mostly	of
Objective-C	classes,	derived	from	the	root	class,	NSObject.	When	programming	iOS,
you’ll	be	using	mostly	the	built-in	Cocoa	classes.	Objective-C	classes	are	comparable	to
and	compatible	with	Swift	classes,	but	the	other	two	Swift	object	type	flavors,	structs	and
enums,	are	not	matched	by	anything	in	Objective-C.	Structs	and	enums	declared	originally
in	Swift	cannot	generally	be	handed	across	the	bridge	from	Swift	to	Objective-C	and
Cocoa.	Fortunately,	some	of	the	most	important	native	Swift	object	types	are	also	bridged
to	Cocoa	classes.	(See	Appendix	A	for	more	details	about	the	Objective-C	language	and
how	communications	work	between	Swift	and	Objective-C.)

This	chapter	introduces	Cocoa’s	class	structure.	It	discusses	how	Cocoa	is	conceptually
organized,	in	terms	of	its	underlying	Objective-C	features,	and	then	surveys	some	of	the
most	commonly	encountered	Cocoa	utility	classes,	concluding	with	a	discussion	of	the
Cocoa	root	class	and	its	features,	which	are	inherited	by	all	Cocoa	classes.

Subclassing
Cocoa	effectively	hands	you	a	large	repertory	of	objects	that	already	know	how	to	behave
in	certain	desirable	ways.	A	UIButton,	for	example,	knows	how	to	draw	itself	and	how	to
respond	when	the	user	taps	it;	a	UITextField	knows	how	to	display	editable	text,	how	to
summon	the	keyboard,	and	how	to	accept	keyboard	input.

Often,	the	default	behavior	or	appearance	of	an	object	supplied	by	Cocoa	won’t	be	quite
what	you’re	after,	and	you’ll	want	to	customize	it.	This	does	not	necessarily	mean	that	you
need	to	subclass!	Cocoa	classes	are	heavily	endowed	with	methods	that	you	can	call,	and
properties	that	you	can	set,	precisely	in	order	to	customize	an	instance,	and	these	will	be
your	first	resort.	Always	study	the	documentation	for	a	Cocoa	class	to	see	whether
instances	can	already	be	made	to	do	what	you	want.	For	example,	the	class	documentation
for	UIButton	shows	that	you	can	set	a	button’s	title,	title	color,	internal	image,	background
image,	and	many	other	features	and	behaviors,	without	subclassing.

Nevertheless,	sometimes	setting	properties	and	calling	methods	won’t	suffice	to	customize
an	instance	the	way	you	want	to.	In	such	cases,	Cocoa	may	provide	methods	that	are
called	internally	as	an	instance	does	its	thing,	and	whose	behavior	you	can	customize	by
subclassing	and	overriding	(Chapter	4).	You	don’t	have	the	source	code	for	any	of	Cocoa’s
built-in	classes,	but	you	can	still	subclass	them,	creating	a	new	class	that	acts	just	like	a
built-in	class	except	for	the	modifications	you	provide.

Certain	Cocoa	Touch	classes	are	subclassed	routinely.	For	example,	a	plain	vanilla
UIViewController,	not	subclassed,	is	very	rare,	and	an	iOS	app	without	at	least	one
UIViewController	subclass	would	be	practically	impossible.

Another	case	in	point	is	UIView.	Cocoa	Touch	is	full	of	built-in	UIView	subclasses	that
behave	and	draw	themselves	as	needed	(UIButton,	UITextField,	and	so	on),	and	you	will
rarely	need	to	subclass	any	of	them.	On	the	other	hand,	you	might	create	your	own
UIView	subclass,	whose	job	would	be	to	draw	itself	in	some	completely	new	way.	You
don’t	actually	draw	a	UIView;	rather,	when	a	UIView	needs	drawing,	its	drawRect:
method	is	called	so	that	the	view	can	draw	itself.	So	the	way	to	draw	a	UIView	in	some
completely	custom	manner	is	to	subclass	UIView	and	implement	drawRect:	in	the
subclass.	As	the	documentation	says,	“Subclasses	that	…	draw	their	view’s	content	should
override	this	method	and	implement	their	drawing	code	there.”	The	documentation	is
saying	that	you	need	to	subclass	UIView	in	order	to	draw	content	that	is	completely	your
own.

For	example,	suppose	we	want	our	window	to	contain	a	horizontal	line.	There	is	no
horizontal	line	interface	widget	built	into	Cocoa,	so	we’ll	just	have	to	roll	our	own	—	a
UIView	that	draws	itself	as	a	horizontal	line.	Let’s	try	it:

1.	 In	our	Empty	Window	example	project,	choose	File	→	New	→	File	and	specify	iOS
→	Source	→	Cocoa	Touch	Class,	and	in	particular	a	subclass	of	UIView.	Call	the
class	MyHorizLine.	Xcode	creates	MyHorizLine.swift.	Make	sure	it’s	part	of	the	app
target.

2.	 In	MyHorizLine.swift,	replace	the	contents	of	the	class	declaration	with	this	(without
further	explanation):

required	init?(coder	aDecoder:	NSCoder)	{

				super.init(coder:aDecoder)

				self.backgroundColor	=	UIColor.clearColor()

}

override	func	drawRect(rect:	CGRect)	{

				let	c	=	UIGraphicsGetCurrentContext()!

				CGContextMoveToPoint(c,	0,	0)

				CGContextAddLineToPoint(c,	self.bounds.size.width,	0)

				CGContextStrokePath(c)

}

3.	 Edit	the	storyboard.	Find	UIView	in	the	Object	library	(it	is	called	simply	“View”),
and	drag	it	into	the	View	object	in	the	canvas.	You	may	resize	it	to	be	less	tall.

4.	 With	the	UIView	that	you	just	dragged	into	the	canvas	still	selected,	use	the	Identity
inspector	to	change	its	class	to	MyHorizLine.

Build	and	run	the	app	in	the	Simulator.	You’ll	see	a	horizontal	line	corresponding	to	the
location	of	the	top	of	the	MyHorizLine	instance	in	the	nib.	Our	view	has	drawn	itself	as	a
horizontal	line,	because	we	subclassed	it	to	do	so.

In	that	example,	we	started	with	a	bare	UIView	that	had	no	drawing	functionality	of	its
own.	That’s	why	there	was	no	need	to	call	super;	the	default	implementation	of	UIView’s
drawRect:	does	nothing.	But	you	might	also	be	able	to	subclass	a	built-in	UIView
subclass	to	modify	the	way	it	already	draws	itself.	For	example,	the	UILabel
documentation	shows	that	two	methods	are	present	for	exactly	this	purpose.	Both
drawTextInRect:	and	textRectForBounds:limitedToNumberOfLines:	explicitly	tell	us:
“This	method	should	only	be	overridden	by	subclasses	that	want	to	[modify	how	the	label
is	drawn].”	The	implication	is	that	these	are	methods	that	will	be	called	for	us,
automatically,	by	Cocoa,	as	a	label	draws	itself;	thus,	we	can	subclass	UILabel	and
implement	these	methods	in	our	subclass	to	modify	how	a	particular	type	of	label	draws
itself.

Here’s	an	example	from	one	of	my	own	apps,	in	which	I	subclass	UILabel	to	make	a	label
that	draws	its	own	rectangular	border	and	has	its	content	inset	somewhat	from	that	border,
by	overriding	drawTextInRect:.	As	the	documentation	tells	us:	“In	your	overridden
method,	you	can	configure	the	current	context	further	and	then	invoke	super	to	do	the
actual	drawing	[of	the	text].”	Let’s	try	it:

1.	 In	the	Empty	Window	project,	make	a	new	class	file,	a	UILabel	subclass;	call	the
class	MyBoundedLabel.

2.	 In	MyBoundedLabel.swift,	insert	this	code	into	the	body	of	the	class	declaration:
override	func	drawTextInRect(rect:	CGRect)	{

				let	context	=	UIGraphicsGetCurrentContext()!

				CGContextStrokeRect(context,	CGRectInset(self.bounds,	1.0,	1.0))

				super.drawTextInRect(CGRectInset(rect,	5.0,	5.0))

}

3.	 Edit	the	storyboard,	add	a	UILabel	to	the	interface,	and	change	its	class	in	the
Identity	inspector	to	MyBoundedLabel.

Build	and	run	the	app,	and	you’ll	see	how	the	rectangle	is	drawn	and	the	label’s	text	is
inset	within	it.

Oddly	enough,	however	(and	you	might	be	particularly	surprised	by	this	if	you’ve	used
another	object-oriented	application	framework),	subclassing	is	one	of	the	rarer	ways	in
which	your	code	will	relate	to	Cocoa.	Knowing	when	to	subclass	can	be	somewhat	tricky,
but	the	general	rule	is	that	you	probably	shouldn’t	subclass	unless	you’re	explicitly	invited

to	do	so.	Most	built-in	Cocoa	Touch	classes	will	never	need	subclassing	(and	some,	in
their	documentation,	downright	forbid	it).

One	reason	why	subclassing	is	rare	in	Cocoa	is	that	so	many	built-in	classes	use
delegation	(Chapter	11)	as	the	preferred	way	of	letting	you	customize	their	behavior.	For
example,	you	wouldn’t	subclass	UIApplication	(the	class	of	the	singleton	shared
application	instance)	just	in	order	to	respond	when	the	application	has	finished	launching,
because	the	delegate	mechanism	provides	a	way	to	do	that
(application:didFinishLaunchingWithOptions:).	That’s	why	the	templates	give	us	an
AppDelegate	class,	which	is	not	a	UIApplication	subclass,	but	which	does	adopt	the
UIApplicationDelegate	protocol.

On	the	other	hand,	if	you	needed	to	perform	certain	tricky	customizations	of	your	app’s
fundamental	event	messaging	behavior,	you	might	subclass	UIApplication	in	order	to
override	sendEvent:.	The	documentation	has	a	special	“Subclassing	Notes”	section	that
tells	you	this,	and	also	tells	you,	rightly,	that	doing	so	would	be	“very	rare.”	(See
Chapter	6	on	how	to	ensure	that	your	UIApplication	subclass	is	instantiated	as	the	app
launches.)

Categories	and	Extensions
A	category	is	an	Objective-C	language	feature	that	allows	code	to	reach	right	into	an
existing	class	and	inject	additional	methods.	This	is	comparable	to	a	Swift	extension	(see
Chapter	4).	Using	a	Swift	extension,	you	can	add	class	or	instance	methods	to	a	Cocoa
class;	the	Swift	headers	make	heavy	use	of	extensions,	both	as	a	way	of	organizing	Swift’s
own	object	types	and	as	a	way	of	modifying	Cocoa	classes.	In	the	same	way,	Cocoa	uses
categories	to	organize	its	own	classes.

TIP

Objective-C	categories	have	names,	and	you	may	see	references	to	these	names	in	the	headers,	the	documentation,
and	so	forth.	However,	the	names	are	effectively	meaningless,	so	don’t	worry	about	them.

How	Swift	Uses	Extensions
If	you	look	in	the	main	Swift	header,	you’ll	see	that	many	native	object	type	declarations
consist	of	an	initial	declaration	followed	by	a	series	of	extensions.	For	example,	after
declaring	the	generic	struct	Array<Element>,	the	header	proceeds	to	declare	no	fewer
than	seven	extensions	on	the	Array	struct.	Some	of	these	add	protocol	adoptions;	most	of
them	don’t.	All	of	them	add	declarations	of	properties	or	methods	to	Array;	that’s	what
extensions	are	for.

These	extensions	are	not,	of	themselves,	functionally	significant;	the	header	could	have
declared	the	Array	struct	with	all	of	those	properties	and	methods	within	the	body	of	a
single	declaration.	Instead,	it	breaks	things	up	into	multiple	extensions.	The	extensions	are
simply	a	way	of	clumping	related	functionality	together,	organizing	this	object	type’s
members	so	as	to	make	them	easier	for	human	readers	to	understand.

In	the	Swift	Core	Graphics	header,	just	about	everything	is	an	extension.	Here	Swift	is
adapting	types	defined	elsewhere	—	adapting	Swift	numeric	types	for	use	with	Core
Graphics	and	the	CGFloat	numeric	type,	and	adapting	Cocoa	structs	such	as	CGPoint	and
CGRect	as	Swift	object	types.	CGRect,	in	particular,	is	provided	with	numerous	additional
properties,	initializers,	and	methods	so	that	you	can	work	with	it	directly	as	a	Swift	struct
rather	than	having	to	call	the	Cocoa	Core	Graphics	C	utility	functions	that	manipulate	a
CGRect.

How	You	Use	Extensions
Swift	permits	you	to	write	global	functions,	and	there	is	nothing	formally	wrong	with
doing	so.	Nevertheless,	for	the	sake	of	object-oriented	encapsulation,	you	will	often	want
to	write	a	function	as	part	of	an	existing	object	type.	It	will	often	be	simplest	and	most
sensible	for	you	to	inject	such	functions,	as	methods,	into	an	existing	object	type	with	an
extension.	Subclassing	merely	to	add	a	method	or	two	is	heavy-handed	—	and	besides,	it
often	wouldn’t	help	you	do	what	you	need	to	do.	(Also,	extensions	work	on	all	three
flavors	of	Swift	object	type,	whereas	you	can’t	subclass	a	Swift	enum	or	struct.)

For	example,	suppose	you	wanted	to	add	a	method	to	Cocoa’s	UIView	class.	You	could
subclass	UIView	and	declare	your	method,	but	then	it	would	be	present	only	in	your
UIView	subclass	and	in	subclasses	of	that	subclass:	it	would	not	be	present	in	UIButton,
UILabel,	and	all	the	other	built-in	UIView	subclasses	—	because	they	are	subclasses	of

UIView,	not	of	your	subclass,	and	you	can’t	do	anything	to	change	that!	An	extension,	on
the	other	hand,	solves	the	problem	beautifully:	you	inject	your	method	into	UIView,	and	it
is	inherited	by	all	built-in	UIView	subclasses	as	well.

New	in	Swift	2.0,	you	can	use	protocol	extensions	to	inject	functionality	into	classes	in	a
selective	but	unified	manner.	Suppose	I	want	UIButton	and	UIBarButtonItem	—	which	is
not	a	UIView,	but	does	have	button-like	behavior	—	to	share	a	certain	method.	I	can
declare	a	protocol	with	a	method,	implement	that	method	in	a	protocol	extension,	and	then
use	extensions	to	make	UIButton	and	UIBarButtonItem	adopt	that	protocol	and	thus
acquire	that	method:

protocol	ButtonLike	{

				func	behaveInButtonLikeWay()

}

extension	ButtonLike	{

				func	behaveInButtonLikeWay()	{

								//	...

				}

}

extension	UIButton	:	ButtonLike	{}

extension	UIBarButtonItem	:	ButtonLike	{}

Chapter	4	provides	some	examples	of	extensions	I’ve	written	in	my	real	iOS	programming
life	(see	Extensions).	Also,	as	I	explain	there,	I	often	use	extensions	in	the	same	way	as
the	Swift	headers	do,	organizing	my	code	for	a	single	object	type	into	multiple	extensions
simply	for	clarity.

How	Cocoa	Uses	Categories
Cocoa	uses	categories	as	an	organizational	tool	very	much	as	Swift	uses	extensions.	The
declaration	of	a	class	will	often	be	divided	by	functionality	into	multiple	categories,	and
these	will	often	appear	in	separate	header	files.

A	good	example	is	NSString.	NSString	is	defined	as	part	of	the	Foundation	framework,
and	its	basic	methods	are	declared	in	NSString.h.	Here	we	find	that	NSString	itself,	aside
from	its	initializers,	has	just	two	methods,	length	and	characterAtIndex:,	because	these
are	regarded	as	the	minimum	functionality	that	a	string	needs	in	order	to	be	a	string.

Additional	NSString	methods	—	those	that	create	a	string,	deal	with	a	string’s	encoding,
split	a	string,	search	in	a	string,	and	so	on	—	are	clumped	into	categories.	These	are	shown
in	the	Swift	translation	of	the	header	as	extensions.	So,	for	example,	after	the	declaration
for	the	String	class	itself,	we	find	this	in	the	Swift	translation	of	the	header:

extension	NSString	{

				func	substringFromIndex(from:	Int)	->	String

				func	substringToIndex(to:	Int)	->	String

				//	...

}

That,	as	it	turns	out,	is	actually	Swift’s	translation	of	this	Objective-C	code:
@interface	NSString	(NSStringExtensionMethods)

-	(NSString	*)substringFromIndex:(NSUInteger)from;

-	(NSString	*)substringToIndex:(NSUInteger)to;

//	...

@end

That	notation	—	the	keyword	@interface,	followed	by	a	class	name,	followed	by	another
name	in	parentheses	—	is	an	Objective-C	category.

Moreover,	although	the	declarations	for	some	of	Cocoa’s	NSString	categories	appear	in

this	same	file,	NSString.h,	many	of	them	appear	elsewhere.	For	example:

A	string	may	serve	as	a	file	pathname,	so	we	also	find	a	category	on	NSString	in
NSPathUtilities.h,	where	methods	and	properties	such	as	pathComponents	are	declared
for	splitting	a	pathname	string	into	its	constituents	and	the	like.
In	NSURL.h,	which	is	primarily	devoted	to	declaring	the	NSURL	class	(and	its
categories),	there’s	also	another	NSString	category,	declaring	methods	for	dealing	with
percent-escaping	in	a	URL	string,	such	as
stringByAddingPercentEscapesUsingEncoding.
Off	in	a	completely	different	framework	(UIKit),	NSStringDrawing.h	adds	two	further
NSString	categories,	with	methods	like	drawAtPoint:	having	to	do	with	drawing	a
string	in	a	graphics	context.

This	organization	won’t	matter	to	you	as	a	programmer,	because	an	NSString	is	an
NSString,	no	matter	how	it	acquires	its	methods.	But	it	can	matter	when	you	consult	the
documentation!	The	NSString	methods	declared	in	NSString.h,	NSPathUtilities.h,	and
NSURL.h	are	documented	together	in	the	NSString	class	documentation	page.	But	the
NSString	methods	declared	in	NSStringDrawing.h	are	not;	instead,	they	appear	in	a
separate	document,	NSString	UIKit	Additions	Reference.	(Presumably,	this	is	because
because	they	originate	in	a	different	framework.)	As	a	result,	the	string	drawing	methods
can	be	difficult	to	discover,	especially	as	the	NSString	class	documentation	page	doesn’t
link	to	the	other	document.	I	regard	this	as	a	major	flaw	in	the	structure	of	the	Cocoa
documentation.

Protocols
Objective-C	has	protocols,	and	these	are	generally	comparable	to	and	compatible	with
Swift	protocols	(see	Chapter	4).	Since	classes	are	the	only	Objective-C	object	type,	all
Objective-C	protocols	are	seen	by	Swift	as	class	protocols.	Conversely,	Swift	protocols
marked	as	@objc	(which	are	implicitly	class	protocols)	can	be	seen	by	Objective-C.	Cocoa
makes	extensive	use	of	protocols.

For	example,	let’s	talk	about	how	Cocoa	objects	are	copied.	Some	objects	can	be	copied;
some	can’t.	This	has	nothing	to	do	with	an	object’s	class	heritage.	Yet	we	would	like	a
uniform	method	to	which	any	object	that	can	be	copied	will	respond.	So	Cocoa	defines	a
protocol	named	NSCopying,	which	declares	just	one	requred	method,	copyWithZone:.
Here’s	how	the	NSCopying	protocol	is	declared	in	Objective-C	(in	NSObject.h):

@protocol	NSCopying

-	(id)copyWithZone:(nullable	NSZone	*)zone;

@end

That’s	translated	into	Swift	as	follows:
protocol	NSCopying	{

				func	copyWithZone(zone:	NSZone)	->	AnyObject

}

The	NSCopying	protocol	declaration	in	NSObject.h,	however,	is	not	a	statement	that
NSObject	conforms	to	NSCopying.	Indeed,	NSObject	does	not	conform	to	NSCopying!
This	doesn’t	compile:

let	obj	=	NSObject().copyWithZone(nil)	//	compile	error

But	this	does	compile,	because	NSString	does	conform	to	NSCopying	(the	literal	"hello"
is	implicitly	bridged	to	NSString):

let	s	=	"hello".copyWithZone(nil)

A	typical	Cocoa	pattern	is	that	Cocoa	wants	to	say:	“An	instance	of	any	class	will	do	here,
provided	it	implements	the	following	methods.”	That,	obviously,	is	a	protocol.	For
example,	consider	how	a	protocol	is	used	in	connection	with	a	table	view	(UITableView).
A	table	view	gets	its	data	from	a	data	source.	For	this	purpose,	UITableView	declares	a
dataSource	property,	like	this:

@property	(nonatomic,	weak,	nullable)	id	<UITableViewDataSource>	dataSource;

That’s	translated	into	Swift	as	follows:
weak	var	dataSource:	UITableViewDataSource?

UITableViewDataSource	is	a	protocol.	The	table	view	is	saying:	“I	don’t	care	what	class
my	data	source	belongs	to,	but	whatever	it	is,	it	should	conform	to	the
UITableViewDataSource	protocol.”	Such	conformance	constitutes	a	promise	that	the	data
source	will	implement	at	least	the	required	instance	methods
tableView:numberOfRowsInSection:	and	tableView:cellForRowAtIndexPath:,	which
the	table	view	will	call	when	it	needs	to	know	what	data	to	display.	When	you	use	a
UITableView,	and	you	want	to	provide	it	with	a	data	source	object,	the	class	of	that	object
will	adopt	UITableViewDataSource	and	will	implement	its	required	methods;	otherwise,
your	code	won’t	compile:

let	obj	=	NSObject()

let	tv	=	UITableView()

tv.dataSource	=	obj	//	compile	error

Far	and	away	the	most	pervasive	use	of	protocols	in	Cocoa	is	in	connection	with	the
delegation	pattern.	I’ll	discuss	this	pattern	in	detail	in	Chapter	11,	but	you	can	readily	see
an	example	in	our	handy	Empty	Window	project:	the	AppDelegate	class	provided	by	the
project	template	is	declared	like	this:

class	AppDelegate:	UIResponder,	UIApplicationDelegate	{	//	...

AppDelegate’s	chief	purpose	on	earth	is	to	serve	as	the	shared	application’s	delegate.	The
shared	application	object	is	a	UIApplication,	and	UIApplication’s	delegate	property	is
declared	like	this:

unowned(unsafe)	var	delegate:	UIApplicationDelegate?

(I’ll	explain	the	unsafe	modifier	in	Chapter	12.)	The	UIApplicationDelegate	type	is	a
protocol.	This	is	how	the	shared	UIApplication	object	knows	that	its	delegate	might	be
capable	of	receiving	messages	such	as	application:didFinishLaunchingWithOptions:.
So	the	AppDelegate	class	officially	announces	its	role	by	explicitly	adopting	the
UIApplicationDelegate	protocol.

A	Cocoa	protocol	has	its	own	documentation	page.	When	the	UIApplication	class
documentation	tells	you	that	the	delegate	property	is	typed	as	a	UIApplicationDelegate,
it’s	implicitly	telling	you	that	if	you	want	to	know	what	messages	a	UIApplication’s
delegate	might	receive,	you	need	to	look	in	the	UIApplicationDelegate	protocol
documentation.	You	won’t	find	application:didFinishLaunchingWithOptions:
mentioned	anywhere	on	the	UIApplication	class	documentation	page!	It’s	documented	in
the	UIApplicationDelegate	protocol	documentation	page.

This	separation	of	information	can	be	particularly	confusing	when	a	class	adopts	a
protocol.	When	a	class’s	documentation	mentions	that	the	class	conforms	to	a	protocol,
don’t	forget	to	examine	that	protocol’s	documentation!	The	latter	might	contain	important
information	about	how	the	class	behaves.	To	learn	what	messages	can	be	sent	to	an	object,
you	need	to	look	upward	through	the	superclass	inheritance	chain;	you	also	need	to	look	at
any	protocols	that	this	object’s	class	(or	superclass)	conforms	to.	For	example,	as	I	already
mentioned	in	Chapter	8,	you	won’t	find	out	that	UIViewController	gets	a
viewWillTransitionToSize:withTransitionCoordinator:	event	by	looking	at	the
UIViewController	class	documentation	page:	you	have	to	look	in	the	documentation	for
the	UIContentContainer	protocol,	which	UIViewController	adopts.

Informal	Protocols
You	may	occasionally	see,	online	or	in	the	documentation,	a	reference	to	an	informal
protocol.	An	informal	protocol	isn’t	really	a	protocol	at	all;	it’s	just	a	way	of	providing	the
compiler	with	a	method	signature	so	that	it	will	allow	a	message	to	be	sent	without
complaining.

There	are	two	complementary	ways	to	implement	an	informal	protocol.	One	is	to	define	a
category	on	NSObject;	this	makes	any	object	eligible	to	receive	the	messages	listed	in	the
category.	The	other	is	to	define	a	protocol	to	which	no	class	formally	conforms;	instead,
messages	listed	in	the	protocol	are	sent	only	to	objects	typed	as	id	(AnyObject),	thus
suppressing	any	possible	objections	from	the	compiler	(see	Suppressing	type	checking).

These	techniques	were	widespread	before	protocols	could	declare	methods	as	optional;
now	they	are	largely	unnecessary,	and	are	also	mildly	dangerous.	In	iOS	9,	very	few
informal	protocols	remain	—	but	they	do	exist.	For	example,	NSKeyValueCoding
(discussed	later	in	this	chapter)	is	an	informal	protocol;	you	may	see	the	term
NSKeyValueCoding	in	the	documentation	and	elsewhere,	but	there	isn’t	actually	any	such
type:	it’s	a	category	on	NSObject.

Optional	Methods
Objective-C	protocols,	and	Swift	protocols	marked	as	@objc,	can	have	optional	members
(see	Optional	Protocol	Members).	The	question	thus	arises:	How,	in	practice,	is	an
optional	method	feasible?	We	know	that	if	a	message	is	sent	to	an	object	and	the	object
can’t	handle	that	message,	an	exception	is	raised	and	your	app	will	likely	crash.	But	a
method	declaration	is	a	contract	suggesting	that	the	object	can	handle	that	message.	If	we
subvert	that	contract	by	declaring	a	method	that	might	or	might	not	be	implemented,	aren’t
we	inviting	crashes?

The	answer	is	that	Objective-C	is	both	dynamic	and	introspective.	Objective-C	can	ask	an
object	whether	it	can	really	deal	with	a	message	without	actually	sending	it	that	message.
The	key	method	here	is	NSObject’s	respondsToSelector:	method,	which	takes	a	selector
parameter	and	returns	a	Bool.	(A	selector	is	basically	a	method	name	expressed
independently	of	any	method	call;	see	Appendix	A.)	Thus	it	is	possible	to	send	a	message
to	an	object	only	if	it	would	be	safe	to	do	so.

Demonstrating	respondsToSelector:	in	Swift	is	generally	a	little	tricky,	because	it’s	hard
to	get	Swift	to	throw	away	its	strict	type	checking	long	enough	to	let	us	send	an	object	a
message	to	which	it	might	not	respond.	In	this	artificial	example,	I	start	by	defining,	at	top
level,	two	classes:	one	that	derives	from	NSObject,	because	otherwise	we	can’t	send
respondsToSelector:	to	it,	and	another	to	declare	the	message	that	I	want	to	send
conditionally:

class	MyClass	:	NSObject	{

}

class	MyOtherClass	{

				@objc	func	woohoo()	{}

}

Now	I	can	say	this:
let	mc	=	MyClass()

if	mc.respondsToSelector("woohoo")	{

				(mc	as	AnyObject).woohoo()

}

Note	the	cast	of	mc	to	AnyObject.	This	causes	Swift	to	abandon	its	strict	type	checking
(see	Suppressing	type	checking);	we	can	now	send	this	object	any	message	that	Swift
knows	about,	provided	it	is	susceptible	to	Objective-C	introspection	—	that’s	why	I
marked	my	woohoo	declaration	as	@objc	to	start	with.	As	you	know,	Swift	provides	a
shorthand	for	sending	a	message	conditionally	—	append	a	question	mark	to	the	name	of
the	message:

let	mc	=	MyClass()

(mc	as	AnyObject).woohoo?()

Behind	the	scenes,	those	two	approaches	are	exactly	the	same;	the	latter	is	syntactic	sugar
for	the	former.	In	response	to	the	question	mark,	Swift	is	calling	respondsToSelector:

for	us,	and	will	refrain	from	sending	woohoo	to	this	object	if	it	doesn’t	respond	to	this
selector.

That	explains	also	how	optional	protocol	members	work.	It	is	no	coincidence	that	Swift
treats	optional	protocol	members	like	AnyObject	members.	Here’s	the	example	I	gave	in
Chapter	4:

@objc	protocol	Flier	{

				optional	var	song	:	String	{get}

				optional	func	sing()

}

When	you	call	sing?()	on	an	object	typed	as	a	Flier,	respondsToSelector:	is	called
behind	the	scenes	to	determine	whether	this	call	is	safe.

You	wouldn’t	want	to	send	a	message	optionally,	or	call	respondsToSelector:	explicitly,
before	sending	just	any	old	message,	because	it	isn’t	generally	necessary	except	with
optional	methods,	and	it	slows	things	down	a	little.	But	Cocoa	does	in	fact	call
respondsToSelector:	on	your	objects	as	a	matter	of	course.	To	see	that	this	is	true,
implement	respondsToSelector:	on	AppDelegate	in	our	Empty	Window	project	and
instrument	it	with	logging:

override	func	respondsToSelector(aSelector:	Selector)	->	Bool	{

				print(aSelector)

				return	super.respondsToSelector(aSelector)

}

The	output	on	my	machine,	as	the	Empty	Window	app	launches,	includes	the	following
(I’m	omitting	private	methods	and	multiple	calls	to	the	same	method):

application:handleOpenURL:

application:openURL:sourceApplication:annotation:

application:openURL:options:

applicationDidReceiveMemoryWarning:

applicationWillTerminate:

applicationSignificantTimeChange:

application:willChangeStatusBarOrientation:duration:

application:didChangeStatusBarOrientation:

application:willChangeStatusBarFrame:

application:didChangeStatusBarFrame:

application:deviceAccelerated:

application:deviceChangedOrientation:

applicationDidBecomeActive:

applicationWillResignActive:

applicationDidEnterBackground:

applicationWillEnterForeground:

application:didResumeWithOptions:

application:handleWatchKitExtensionRequest:reply:

application:shouldSaveApplicationState:

application:supportedInterfaceOrientationsForWindow:

application:performFetchWithCompletionHandler:

application:didReceiveRemoteNotification:fetchCompletionHandler:

application:willFinishLaunchingWithOptions:

application:didFinishLaunchingWithOptions:

That’s	Cocoa,	checking	to	see	which	of	the	optional	UIApplicationDelegate	protocol
methods	(including	a	couple	of	undocumented	methods)	are	actually	implemented	by	our
AppDelegate	instance	—	which,	because	it	is	the	UIApplication	object’s	delegate	and
formally	conforms	to	the	UIApplicationDelegate	protocol,	has	explicitly	agreed	that	it
might	be	willing	to	respond	to	any	of	those	messages.	The	entire	delegate	pattern
(Chapter	11)	depends	upon	this	technique.	Observe	the	policy	followed	here	by	Cocoa:	it
checks	all	the	optional	protocol	methods	once,	when	it	first	meets	the	object	in	question,
and	presumably	stores	the	results;	thus,	the	app	is	slowed	a	tiny	bit	by	this	one-time	initial

bombardment	of	respondsToSelector:	calls,	but	now	Cocoa	knows	all	the	answers	and
won’t	have	to	perform	any	of	these	same	checks	on	the	same	object	later.

Some	Foundation	Classes
The	Foundation	classes	of	Cocoa	provide	basic	data	types	and	utilities	that	will	form	the
basis	of	your	communication	with	Cocoa.	Obviously	I	can’t	list	all	of	them,	let	alone
describe	them	fully,	but	I	can	survey	those	that	you’ll	probably	want	to	be	aware	of	before
writing	even	the	simplest	iOS	program.	For	more	information,	start	with	Apple’s	list	of	the
Foundation	classes	in	the	Foundation	Framework	Reference.

Useful	Structs	and	Constants
NSRange	is	a	C	struct	(see	Appendix	A)	of	importance	in	dealing	with	some	of	the	classes
I’m	about	to	discuss.	Its	components	are	integers,	location	and	length.	For	example,	an
NSRange	whose	location	is	1	starts	at	the	second	element	of	something	(because	element
counting	is	always	zero-based),	and	if	its	length	is	2	it	designates	this	element	and	the
next.

Cocoa	supplies	various	convenience	functions	for	dealing	with	an	NSRange;	for	example,
you	can	create	an	NSRange	from	two	integers	by	calling	NSMakeRange.	(Note	that	the
name,	NSMakeRange,	is	backward	compared	to	names	like	CGPointMake	and	CGRectMake.)
Swift	helps	out	by	bridging	NSRange	as	a	Swift	struct,	and	you	can	convert	between	an
NSRange	and	a	Swift	Range	whose	endpoints	are	Ints:	Swift	gives	NSRange	an	initializer
that	takes	a	Swift	Range,	along	with	a	toRange	method.

NSNotFound	is	a	constant	integer	indicating	that	some	requested	element	was	not	found.
The	true	numeric	value	of	NSNotFound	is	of	no	concern	to	you;	always	compare	against
NSNotFound	itself,	to	learn	whether	a	result	is	meaningful.	For	example,	if	you	ask	for	the
index	of	a	certain	object	in	an	NSArray	and	the	object	isn’t	present,	the	result	is
NSNotFound:

let	arr	=	["hey"]	as	NSArray

let	ix	=	arr.indexOfObject("ho")

if	ix	==	NSNotFound	{

				print("it	wasn't	found")

}

Why	does	Cocoa	resort	to	an	integer	value	with	a	special	meaning	in	this	way?	Because	it
has	to.	The	result	could	not	be	0	to	indicate	the	absence	of	the	object,	because	0	would
indicate	the	first	element	of	the	array.	Nor	could	it	be	-1,	because	an	NSArray	index	value
is	always	positive.	Nor	could	it	be	nil,	because	Objective-C	can’t	return	nil	when	an
integer	is	expected	(and	even	if	it	could,	it	would	be	seen	as	another	way	of	saying	0).
Contrast	Swift,	whose	indexOf	method	returns	an	Int	wrapped	in	an	Optional,	allowing	it
to	return	nil	to	indicate	that	the	target	object	wasn’t	found.

If	a	search	returns	a	range	and	the	thing	sought	is	not	present,	the	location	component	of
the	resulting	NSRange	will	be	NSNotFound.	As	I	mentioned	in	Chapter	3,	Swift	will
sometimes	do	some	clever	automatic	bridging	for	you,	thus	saving	you	the	trouble	of
comparing	with	NSNotFound.	The	canonical	example	is	NSString’s	rangeOfString:
method.	As	defined	in	Cocoa,	it	returns	an	NSRange;	Swift	reconfigures	it	to	return	a
Swift	Range	(of	String.Index)	wrapped	in	an	Optional,	returning	nil	if	the	NSRange’s
location	is	NSNotFound:

let	s	=	"hello"

let	r	=	s.rangeOfString("ha")	//	nil;	an	Optional	wrapping	a	Swift	Range

That’s	great	if	what	you	wanted	is	a	Swift	Range,	suitable	for	further	slicing	a	Swift
String;	but	if	you	wanted	an	NSRange,	suitable	for	handing	back	to	Cocoa,	you’ll	need	to
cast	your	original	Swift	String	to	an	NSString	to	start	with	—	thus	causing	the	result	to
remain	in	the	Cocoa	world:

let	s	=	"hello"	as	NSString

let	r	=	s.rangeOfString("ha")	//	an	NSRange

if	r.location	==	NSNotFound	{

				print("it	wasn't	found")

}

NSString	and	Friends
NSString	is	the	Cocoa	object	version	of	a	string.	NSString	and	Swift	String	are	bridged	to
one	another,	and	you	will	often	move	between	them	without	thinking,	passing	a	Swift
String	to	Cocoa	where	an	NSString	is	expected,	calling	Cocoa	NSString	methods	on	a
Swift	String,	and	so	forth.	For	example:

let	s	=	"hello"

let	s2	=	s.capitalizedString

In	that	code,	s	is	a	Swift	String	and	s2	is	a	Swift	String,	but	the	capitalizedString
property	actually	belongs	to	Cocoa.	In	the	course	of	that	code,	a	Swift	String	has	been
bridged	to	NSString	and	passed	to	Cocoa,	which	has	processed	it	to	get	the	capitalized
string;	the	capitalized	string	is	an	NSString,	but	it	has	been	bridged	back	to	a	Swift	String.
In	all	likelihood,	you	are	not	conscious	of	the	bridging;	capitalizedString	feels	like	a
native	String	property,	but	it	isn’t	—	as	you	can	readily	prove	by	trying	to	use	it	in	an
environment	where	Foundation	is	not	imported	(you	can’t	do	it).

In	some	cases,	you	will	need	to	cross	the	bridge	yourself	by	casting	explicitly.	Swift	may
fail	to	cross	the	bridge	implicitly	for	you;	for	example,	if	s	is	a	Swift	string,	you	can’t	call
stringByAppendingPathExtension:	on	it	directly:

let	s	=	"MyFile"

let	s2	=	s.stringByAppendingPathExtension("txt")	//	compile	error

You	have	to	cast	explicitly	to	NSString:
let	s2	=	(s	as	NSString).stringByAppendingPathExtension("txt")

Also,	trouble	can	arise	where	you	need	to	provide	an	index	on	a	string.	For	example:
let	s	=	"hello"

let	s2	=	s.substringToIndex(4)	//	compile	error

The	problem	here	is	that	the	bridging	is	in	your	way.	Swift	has	no	objection	to	your	calling
the	substringToIndex:	method	on	a	Swift	String,	but	then	the	index	value	must	be	a
String.Index,	which	is	rather	tricky	to	construct	(see	Chapter	3):

let	s2	=	s.substringToIndex(s.startIndex.advancedBy(4))

If	you	don’t	want	to	talk	that	way,	you	must	cast	the	String	to	an	NSString	beforehand;
now	you	are	in	Cocoa’s	world,	where	string	indexes	are	integers:

let	s2	=	(s	as	NSString).substringToIndex(4)

As	I	explained	in	Chapter	3,	however,	those	two	calls	are	not	equivalent:	they	can	give
different	answers!	The	reason	is	that	String	and	NSString	have	fundamentally	different
notions	of	what	constitutes	an	element	of	a	string	(see	The	String–NSString	Element
Mismatch).	A	String	must	resolve	its	elements	into	characters,	which	means	that	it	must

walk	the	string,	coalescing	any	combining	codepoints;	an	NSString	behaves	as	if	it	were
an	array	of	UTF-16	codepoints.	On	the	Swift	side,	each	increment	in	a	String.Index
corresponds	to	a	true	character,	but	access	by	index	or	range	requires	walking	the	string;
on	the	Cocoa	side,	access	by	index	or	range	is	extremely	fast,	but	might	not	correspond	to
character	boundaries.	(See	the	“Characters	and	Grapheme	Clusters”	chapter	of	Apple’s
String	Programming	Guide.)

Another	important	difference	between	a	Swift	String	and	a	Cocoa	NSString	is	that	an
NSString	is	immutable.	This	means	that,	with	NSString,	you	can	do	things	such	as	obtain
a	new	string	based	on	the	first	—	as	capitalizedString	and	substringToIndex:	do	—
but	you	can’t	change	the	string	in	place.	To	do	that,	you	need	another	class,	a	subclass	of
NSString,	NSMutableString.	NSMutableString	has	many	useful	methods,	and	you’ll
probably	want	to	take	advantage	of	them;	but	Swift	String	isn’t	bridged	to
NSMutableString,	so	you	can’t	get	from	String	to	NSMutableString	merely	by	casting.	To
obtain	an	NSMutableString,	you’ll	have	to	make	one.	The	simplest	way	is	with
NSMutableString’s	initializer	init(string:),	which	expects	an	NSString	—	meaning	that
you	can	pass	a	Swift	String.	Coming	back	the	other	way,	you	can	cast	all	the	way	from
NSMutableString	to	a	Swift	String	in	one	move:

let	s	=	"hello"

let	ms	=	NSMutableString(string:s)

ms.deleteCharactersInRange(NSMakeRange(ms.length-1,1))

let	s2	=	(ms	as	String)	+	"ion"	//	now	s2	is	a	Swift	String

As	I	said	in	Chapter	3,	native	Swift	String	methods	are	thin	on	the	ground.	All	the	real
string-processing	power	lives	over	on	the	Cocoa	side	of	the	bridge.	So	you’re	going	to	be
crossing	that	bridge	a	lot!	And	this	will	not	be	only	for	the	power	of	the	NSString	and
NSMutableString	classes.	Many	other	useful	classes	are	associated	with	them.

For	example,	suppose	you	want	to	search	a	string	for	some	substring.	All	the	best	ways
come	from	Cocoa:

An	NSString	can	be	searched	using	various	rangeOfString:...	methods,	with
numerous	options	such	as	ignoring	diacriticals,	ignoring	case,	starting	at	the	end,	and
insisting	that	the	substring	occupy	the	start	or	end	of	the	searched	string.
Perhaps	you	don’t	know	exactly	what	you’re	looking	for:	you	need	to	describe	it
structurally.	NSScanner	lets	you	walk	through	a	string	looking	for	pieces	that	fit	certain
criteria;	for	example,	with	NSScanner	(and	NSCharacterSet)	you	can	skip	past
everything	in	a	string	that	precedes	a	number	and	then	extract	the	number.
By	specifying	the	option	.RegularExpressionSearch,	you	can	search	using	a	regular
expression.	Regular	expressions	are	also	supported	as	a	separate	class,
NSRegularExpression,	which	in	turn	uses	NSTextCheckingResult	to	describe	match
results.
More	sophisticated	automated	textual	analysis	is	supported	by	some	additional	classes,
such	as	NSDataDetector,	an	NSRegularExpression	subclass	that	efficiently	finds
certain	types	of	string	expression	such	as	a	URL	or	a	phone	number,	and
NSLinguisticTagger,	which	actually	attempts	to	analyze	text	into	its	grammatical	parts
of	speech.

In	this	example,	our	goal	is	to	replace	all	occurrences	of	the	word	“hell”	with	the	word
“heaven.”	We	don’t	want	to	replace	mere	occurrences	of	the	substring	“hell”	—	for

example,	“hello”	should	be	left	intact.	Thus	our	search	needs	some	intelligence	as	to	what
constitutes	a	word	boundary.	That	sounds	like	a	job	for	a	regular	expression.	Swift	doesn’t
have	regular	expressions,	so	everything	has	to	be	done	by	Cocoa:

let	s	=	NSMutableString(string:"hello	world,	go	to	hell")

let	r	=	try!	NSRegularExpression(

				pattern:	"\\bhell\\b",

				options:	.CaseInsensitive)

r.replaceMatchesInString(

				s,	options:	[],	range:	NSMakeRange(0,s.length),

				withTemplate:	"heaven")

//	s	is	"hello	world,	go	to	heaven"

NSString	also	has	convenience	utilities	for	working	with	a	file	path	string,	and	is	often
used	in	conjunction	with	NSURL,	which	is	another	Foundation	class	worth	looking	into.
In	addition,	NSString	—	like	some	other	classes	discussed	in	this	section	—	provides
methods	for	writing	out	to	a	file’s	contents	or	reading	in	a	file’s	contents;	the	file	can	be
specified	either	as	an	NSString	file	path	or	as	an	NSURL.

An	NSString	carries	no	font	and	size	information.	Interface	objects	that	display	strings
(such	as	UILabel)	have	a	font	property	that	is	a	UIFont;	but	this	determines	the	single
font	and	size	in	which	the	string	will	display.	If	you	want	styled	text	—	where	different
runs	of	text	have	different	style	attributes	(size,	font,	color,	and	so	forth)	—	you	need	to
use	NSAttributedString,	along	with	its	supporting	classes	NSMutableAttributedString,
NSParagraphStyle,	and	NSMutableParagraphStyle.	These	allow	you	to	style	text	and
paragraphs	easily	in	sophisticated	ways.	The	built-in	interface	objects	that	display	text	can
display	an	NSAttributedString.

String	drawing	in	a	graphics	context	can	be	performed	with	methods	provided	through	the
NSStringDrawing	category	on	NSString	(see	the	String	UIKit	Additions	Reference)	and	on
NSAttributedString	(see	the	NSAttributedString	UIKit	Additions	Reference).

NSDate	and	Friends
An	NSDate	is	a	date	and	time,	represented	internally	as	a	number	of	seconds
(NSTimeInterval)	since	some	reference	date.	Calling	NSDate’s	initializer	init()	—	i.e.,
saying	NSDate()	—	gives	you	a	date	object	for	the	current	date	and	time.	Many	date
operations	will	also	involve	the	use	of	NSDateComponents,	and	conversions	between
NSDate	and	NSDateComponents	require	that	you	pass	through	an	NSCalendar.	Here’s	an
example	of	constructing	a	date	based	on	its	calendrical	values:

let	greg	=	NSCalendar(calendarIdentifier:NSCalendarIdentifierGregorian)!

let	comp	=	NSDateComponents()

comp.year	=	2016

comp.month	=	8

comp.day	=	10

comp.hour	=	15

let	d	=	greg.dateFromComponents(comp)	//	Optional	wrapping	NSDate

Similarly,	NSDateComponents	provides	the	correct	way	to	do	date	arithmetic.	Here’s	how
to	add	one	month	to	a	given	date:

let	d	=	NSDate()	//	or	whatever

let	comp	=	NSDateComponents()

comp.month	=	1

let	greg	=	NSCalendar(calendarIdentifier:NSCalendarIdentifierGregorian)!

let	d2	=	greg.dateByAddingComponents(comp,	toDate:d,	options:[])

You	will	also	likely	be	concerned	with	dates	represented	as	strings.	If	you	don’t	take

explicit	charge	of	a	date’s	string	representation,	it	is	represented	by	a	string	whose	format
may	surprise	you.	For	example,	if	you	simply	print	an	NSDate,	you	are	shown	the	date	in
the	GMT	timezone,	which	can	be	confusing	if	that	isn’t	where	you	live.	A	simple	solution
is	to	call	descriptionWithLocale:;	the	locale	comprises	the	user’s	current	time	zone,
language,	region	format,	and	calendar	settings:

print(d)

//	2016-08-10	22:00:00	+0000

print(d.descriptionWithLocale(NSLocale.currentLocale()))

//	Wednesday,	August	10,	2016	at	3:00:00	PM	Pacific	Daylight	Time

For	exact	creation	and	parsing	of	date	strings,	use	NSDateFormatter,	which	uses	a	format
string	similar	to	NSLog	(and	NSString’s	stringWithFormat:).	In	this	example,	we
surrender	completely	to	the	user’s	locale	by	generating	an	NSDateFormatter’s	format	with
dateFormatFromTemplate:options:locale:	and	the	current	locale.	The	“template”	is	a
string	listing	the	date	components	to	be	used,	but	their	order,	punctuation,	and	language
are	left	up	to	the	locale:

let	df	=	NSDateFormatter()

let	format	=	NSDateFormatter.dateFormatFromTemplate(

				"dMMMMyyyyhmmaz",	options:0,	locale:NSLocale.currentLocale())

df.dateFormat	=	format

let	s	=	df.stringFromDate(NSDate())

The	result	is	the	date	shown	in	the	user’s	time	zone	and	language,	using	the	correct
linguistic	conventions.	It	involves	a	combination	of	region	format	and	language,	which	are
two	separate	settings.	Thus:

On	my	device,	the	result	might	be	“July	16,	2015,	7:44	AM	PDT.”
If	I	change	my	device’s	region	to	France,	it	might	be	“16	July	2015	7:44	AM	GMT-7.”
If	I	also	change	my	device’s	language	to	French,	it	might	be	“16	juillet	2015	7:44	AM
UTC−7.”

NSNumber
An	NSNumber	is	an	object	that	wraps	a	numeric	value.	The	wrapped	value	can	be	any
standard	Objective-C	numeric	type	(including	BOOL,	the	Objective-C	equivalent	of	Swift
Bool).	It	comes	as	a	surprise	to	Swift	users	that	NSNumber	is	needed.	But	an	ordinary
number	in	Objective-C	is	not	an	object	(it	is	a	scalar;	see	Appendix	A),	so	it	cannot	be
used	where	an	object	is	expected.	Thus,	NSNumber	solves	an	important	problem,
converting	a	number	into	an	object	and	back	again.

Swift	does	its	best	to	shield	you	from	having	to	deal	directly	with	NSNumber.	It	bridges
Swift	numeric	types	to	Objective-C	in	two	different	ways:

If	an	ordinary	number	is	expected,	a	Swift	number	is	bridged	to	an	ordinary	number	(a
scalar).
If	an	object	is	expected,	a	Swift	number	of	a	basic	numeric	type	is	bridged	to	an
NSNumber.	A	basic	numeric	type	is	Int,	UIInt,	Float,	or	Double	—	and	also	Bool,
because	NSNumber	can	wrap	an	Objective-C	BOOL.

Here’s	an	example:
let	ud	=	NSUserDefaults.standardUserDefaults()

let	i	=	0

ud.setInteger(i,	forKey:	"Score")	

ud.setObject(i,	forKey:	"Score")	

The	third	and	fourth	lines	look	alike,	but	Swift	treats	the	Int	value	of	i	differently:

setInteger:forKey:	expects	an	integer	(a	scalar)	as	its	first	parameter,	so	Swift	turns
the	Int	struct	value	of	i	into	an	ordinary	Objective-C	number.

setObject:forKey:	expects	an	object	as	its	first	parameter,	so	Swift	turns	the	Int	struct
value	of	i	into	an	NSNumber.

Naturally,	if	you	need	to	cross	the	bridge	explicitly,	you	can.	You	can	cast	a	Swift	number
(of	a	basic	numeric	type)	to	an	NSNumber:

let	n	=	0	as	NSNumber

For	more	control	over	what	numeric	type	an	NSNumber	will	wrap,	you	can	call	one	of
NSNumber’s	initializers:

let	n	=	NSNumber(float:0)

Coming	back	from	Objective-C	to	Swift,	a	value	will	typically	arrive	as	an	AnyObject	and
you	will	have	to	cast	down.	NSNumber	comes	with	properties	for	accessing	the	wrapped
value	by	its	numeric	type.	Recall	this	example	from	Chapter	5,	involving	an	NSNumber
extracted	as	a	value	from	an	NSNotification’s	userInfo	dictionary:

if	let	prog	=	(n.userInfo?["progress"]	as?	NSNumber)?.doubleValue	{

				self.progress	=	prog

}

An	NSNumber	can	also	be	cast	down	to	a	basic	Swift	numeric	type.	Therefore,	so	can	an
AnyObject	wrapping	an	NSNumber.	Thus,	the	same	example	can	be	rewritten	like	this,
without	explicitly	mentioning	NSNumber:

if	let	prog	=	n.userInfo?["progress"]	as?	Double	{

				self.progress	=	prog

}

In	the	second	version,	Swift	is	actually	doing	behind	the	scenes	exactly	what	we	did	in	the
first	version	—	treating	an	AnyObject	as	an	NSNumber	and	getting	its	doubleValue
property	to	extract	the	wrapped	number.

An	NSNumber	object	is	just	a	wrapper	and	no	more.	It	can’t	be	used	directly	for	numeric
calculations;	it	isn’t	a	number.	It	wraps	a	number.	One	way	or	another,	if	you	want	a
number,	you	have	to	extract	it	from	the	NSNumber.

An	NSNumber	subclass,	NSDecimalNumber,	on	the	other	hand,	can	be	used	in
calculations,	thanks	to	a	bunch	of	arithmetic	methods:

let	dec1	=	NSDecimalNumber(float:	4.0)

let	dec2	=	NSDecimalNumber(float:	5.0)

let	sum	=	dec1.decimalNumberByAdding(dec2)	//	9.0

NSDecimalNumber	is	useful	particularly	for	rounding,	because	there’s	a	handy	way	to
specify	the	desired	rounding	behavior.

Underlying	NSDecimalNumber	is	the	NSDecimal	struct	(it	is	an	NSDecimalNumber’s
decimalValue).	NSDecimal	comes	with	C	functions	that	are	faster	than
NSDecimalNumber	methods.

NSValue

NSValue	is	NSNumber’s	superclass.	It	is	used	for	wrapping	nonnumeric	C	values,	such	as
C	structs,	where	an	object	is	expected.	The	problem	being	solved	here	is	parallel	to	the
problem	solved	by	NSNumber:	a	Swift	struct	is	an	object,	but	a	C	struct	is	not,	so	a	struct
cannot	be	used	in	Objective-C	where	an	object	is	expected.

Convenience	methods	provided	through	the	NSValueUIGeometryExtensions	category	on
NSValue	(see	the	NSValue	UIKit	Additions	Reference)	allow	easy	wrapping	and
unwrapping	of	CGPoint,	CGSize,	CGRect,	CGAffineTransform,	UIEdgeInsets,	and
UIOffset;	additional	categories	allow	easy	wrapping	and	unwrapping	of	NSRange,
CATransform3D,	CMTime,	CMTimeMapping,	CMTimeRange,	MKCoordinate,	and
MKCoordinateSpan.	You	are	unlikely	to	need	to	store	any	other	kind	of	C	value	in	an
NSValue,	but	you	can	if	you	need	to.

Swift	will	not	magically	bridge	any	of	these	C	struct	types	to	or	from	an	NSValue.	You
must	manage	them	explicitly,	exactly	as	you	would	do	if	your	code	were	written	in
Objective-C.	In	this	example	from	my	own	code,	we	use	Core	Animation	to	animate	the
movement	of	a	button	in	the	interface	from	one	position	to	another;	the	button’s	starting
and	ending	positions	are	each	expressed	as	a	CGPoint,	but	an	animation’s	fromValue	and
toValue	must	be	objects.	A	CGPoint	is	not	an	Objective-C	object,	so	we	must	wrap	the
CGPoint	values	in	NSValue	objects:

let	ba	=	CABasicAnimation(keyPath:"position")

ba.duration	=	10

ba.fromValue	=	NSValue(CGPoint:self.oldButtonCenter)

ba.toValue	=	NSValue(CGPoint:goal)

self.button.layer.addAnimation(ba,	forKey:nil)

Similarly,	you	can	make	an	array	of	CGPoint	in	Swift,	because	CGPoint	becomes	a	Swift
object	type	(a	Swift	struct),	and	a	Swift	Array	can	have	elements	of	any	type;	but	you
can’t	hand	such	an	array	to	Objective-C,	because	an	Objective-C	NSArray	must	have
objects	as	its	elements,	and	a	CGPoint,	in	Objective-C,	is	not	an	object.	Thus	you	must
wrap	the	CGPoints	in	NSValue	objects	first.	This	is	another	animation	example,	where	I
set	the	values	array	(an	NSArray)	of	a	keyframe	animation	by	turning	an	array	of
CGPoints	into	an	array	of	NSValues:

anim.values	=	[oldP,p1,p2,newP].map{NSValue(CGPoint:$0)}

NSData
NSData	is	a	general	sequence	of	bytes;	basically,	it’s	just	a	buffer,	a	chunk	of	memory.	It	is
immutable;	the	mutable	version	is	its	subclass	NSMutableData.

In	practice,	NSData	tends	to	arise	in	two	main	ways:

When	downloading	data	from	the	Internet.	For	example,	NSURLConnection	and
NSURLSession	supply	whatever	they	retrieve	from	the	Internet	as	NSData.
Transforming	it	from	there	into	(let’s	say)	a	string,	specifying	the	correct	encoding,
would	then	be	up	to	you.
When	storing	an	object	as	a	file	or	in	user	preferences	(NSUserDefaults).	For	example,
you	can’t	store	a	UIColor	value	directly	into	user	preferences.	So	if	the	user	has	made	a
color	choice	and	you	need	to	save	it,	you	transform	the	UIColor	into	an	NSData	(using
NSKeyedArchiver)	and	save	that:

let	ud	=	NSUserDefaults.standardUserDefaults()

let	c	=	UIColor.blueColor()

let	cdata	=	NSKeyedArchiver.archivedDataWithRootObject(c)

ud.setObject(cdata,	forKey:	"myColor")

Equality	and	Comparison
In	Swift,	the	equality	and	comparison	operators	can	be	overridden	for	an	object	type	that
adopts	Equatable	and	Comparable	(Operators).	But	Objective-C	operators	can’t	do	that;
they	are	applicable	only	to	scalars.

To	permit	determination	of	whether	two	objects	are	“equal”	—	whatever	that	may	mean
for	this	object	type	—	an	Objective-C	class	must	implement	isEqual:,	which	is	inherited
from	NSObject.	Swift	will	help	out	by	treating	NSObject	as	Equatable	and	by	permitting
the	use	of	the	==	operator,	implicitly	converting	it	to	an	isEqual:	call.	Thus,	if	a	class
does	implement	isEqual:,	ordinary	Swift	comparison	will	work.	For	example:

let	n1	=	NSNumber(integer:1)

let	n2	=	NSNumber(integer:2)

let	n3	=	NSNumber(integer:3)

let	ok	=	n2	==	2	//	true	

let	ok2	=	n2	==	NSNumber(integer:2)	//	true	

let	ix	=	[n1,n2,n3].indexOf(2)	//	Optional	wrapping	1	

That	code	seems	to	do	three	impossible	things	before	breakfast:

We	directly	compare	an	Int	to	an	NSNumber,	and	we	get	the	right	answer,	as	if	we	were
comparing	the	Int	to	the	integer	wrapped	by	that	NSNumber.

We	directly	compare	two	NSNumber	objects	to	one	another,	and	we	get	the	right
answer,	as	if	we	were	comparing	the	integers	that	they	wrap.

We	treat	an	array	of	NSNumber	objects	as	an	array	of	Equatables	and	call	the	indexOf
method,	and	we	successfully	determine	which	NSNumber	object	is	“equal”	to	an	actual
number.

There	are	two	parts	to	this	apparent	magic:

The	numbers	are	being	wrapped	in	NSNumber	objects	for	us.
The	==	operator	(also	used	behind	the	scenes	by	the	indexOf	method)	is	being
converted	to	an	isEqual:	call.

NSNumber	implements	isEqual:	to	compare	two	NSNumber	objects	by	comparing	the
numeric	values	that	they	wrap;	therefore	the	equality	comparisons	all	work	correctly.

If	an	NSObject	subclass	doesn’t	implement	isEqual:,	it	inherits	NSObject’s
implementation,	which	compares	the	two	objects	for	identity	(like	Swift’s	===	operator).
For	example,	these	two	Dog	objects	can	be	compared	with	the	==	operator,	even	though
Dog	does	not	adopt	Equatable,	because	they	derive	from	NSObject	—	but	Dog	doesn’t
implement	isEqual:,	so	==	defaults	to	NSObject’s	identity	comparison:

class	Dog	:	NSObject	{

				var	name	:	String

				init(_	name:String)	{self.name	=	name}

}

let	d1	=	Dog("Fido")

let	d2	=	Dog("Fido")

let	ok	=	d1	==	d2	//	false

A	number	of	classes	that	implement	isEqual:	also	implement	more	specific	and	efficient
tests.	The	usual	Objective-C	way	to	determine	whether	two	NSNumber	objects	are	equal
(in	the	sense	of	wrapping	identical	numbers)	is	by	calling	isEqualToNumber:.	Similarly,
NSString	has	isEqualToString:,	NSDate	has	isEqualToDate:,	and	so	forth.	However,
these	classes	do	also	implement	isEqual:,	so	I	don’t	think	there’s	any	reason	not	to	use
the	Swift	==	operator.

Similarly,	in	Objective-C	it	is	up	to	individual	classes	to	supply	ordered	comparison
methods.	The	standard	method	is	called	compare:,	and	returns	one	of	three
NSComparisonResult	cases:
.OrderedAscending

The	receiver	is	less	than	the	argument.
.OrderedSame

The	receiver	is	equal	to	the	argument.
.OrderedDescending

The	receiver	is	greater	than	the	argument.

Swift	comparison	operators	(<	and	so	forth)	do	not	magically	call	compare:	for	you.	You
can’t	compare	two	NSNumber	values	directly:

let	n1	=	NSNumber(integer:1)

let	n2	=	NSNumber(integer:2)

let	ok	=	n1	<	n2	//	compile	error

You	will	typically	fall	back	on	calling	compare:	yourself,	exactly	as	in	Objective-C:
let	n1	=	NSNumber(integer:1)

let	n2	=	NSNumber(integer:2)

let	ok	=	n1.compare(n2)	==	.OrderedAscending	//	true

NSIndexSet
NSIndexSet	represents	a	collection	of	unique	whole	numbers;	its	purpose	is	to	express
element	numbers	of	an	ordered	collection,	such	as	an	NSArray.	Thus,	for	instance,	to
retrieve	multiple	objects	simultaneously	from	an	array,	you	specify	the	desired	indexes	as
an	NSIndexSet.	It	is	also	used	with	other	things	that	are	array-like;	for	example,	you	pass
an	NSIndexSet	to	a	UITableView	to	indicate	what	sections	to	insert	or	delete.

To	take	a	specific	example,	let’s	say	you	want	to	speak	of	elements	1,	2,	3,	4,	8,	9,	and	10
of	an	NSArray.	NSIndexSet	expresses	this	notion	in	some	compact	implementation	that
can	be	readily	queried.	The	actual	implementation	is	opaque,	but	you	can	imagine	that	this
NSIndexSet	might	consist	of	two	NSRange	structs,	{1,4}	and	{8,3},	and	NSIndexSet’s
methods	actually	invite	you	to	think	of	an	NSIndexSet	as	composed	of	ranges.

An	NSIndexSet	is	immutable;	its	mutable	subclass	is	NSMutableIndexSet.	You	can	form	a
simple	NSIndexSet	consisting	of	just	one	contiguous	range	directly,	by	passing	an
NSRange	to	indexSetWithIndexesInRange:;	but	to	form	a	more	complex	index	set	you’ll
need	to	use	NSMutableIndexSet	so	that	you	can	append	additional	ranges:

let	arr	=	["zero",	"one",	"two",	"three",	"four",	"five",

				"six",	"seven",	"eight",	"nine",	"ten"]

let	ixs	=	NSMutableIndexSet()

ixs.addIndexesInRange(NSRange(1…4))

ixs.addIndexesInRange(NSRange(8…10))

let	arr2	=	(arr	as	NSArray).objectsAtIndexes(ixs)

To	walk	through	(enumerate)	the	index	values	specified	by	an	NSIndexSet,	you	can	use
for…in;	alternatively,	you	can	walk	through	an	NSIndexSet’s	indexes	or	ranges	by	calling
enumerateIndexesUsingBlock:	or	enumerateRangesUsingBlock:	or	their	variants.

NSArray	and	NSMutableArray
NSArray	is	Objective-C’s	array	object	type.	It	is	fundamentally	similar	to	Swift	Array,	and
they	are	bridged	to	one	another.	But	NSArray	elements	must	be	objects	(classes	and	class
instances),	and	they	don’t	have	to	be	of	a	single	type.	For	a	full	discussion	of	how	to
bridge	back	and	forth	between	Swift	Array	and	Objective-C	NSArray,	implicitly	and	by
casting,	see	Swift	Array	and	Objective-C	NSArray.

TIP

New	in	iOS	9,	if	an	NSArray	object	has	a	single	element	type,	Objective-C	can	mark	up	its	declaration	to	say	what
that	type	is.	Swift	2.0	can	read	this	markup.	This	means	that	you	will	not	receive	an	[AnyObject]	—	and	be
compelled	to	cast	it	down	to	its	actual	type	—	as	often	as	in	the	past.	The	same	is	true	for	NSSet	and,	to	a	lesser
degree,	for	NSDictionary.

An	NSArray’s	length	is	its	count,	and	a	particular	object	can	be	obtained	by	index	number
using	objectAtIndex:.	The	index	of	the	first	object,	as	with	a	Swift	Array,	is	zero,	so	the
index	of	the	last	object	is	count	minus	one.

Instead	of	calling	objectAtIndex:,	you	can	use	subscripting	with	an	NSArray.	This	is	not
because	NSArray	is	bridged	to	Swift	Array,	but	because	NSArray	implements
objectAtIndexedSubscript:.	This	method	is	the	Objective-C	equivalent	of	a	Swift
subscript	getter,	and	Swift	knows	this.	In	fact,	by	a	kind	of	trickery,	when	you	examine
the	NSArray	header	file	translated	into	Swift,	this	method	is	shown	as	a	subscript
declaration!	Thus,	the	Objective-C	version	of	the	header	file	shows	this	declaration:

-	(ObjectType)objectAtIndexedSubscript:(NSUInteger)idx;

But	the	Swift	version	of	the	same	header	file	shows	this:
subscript	(idx:	Int)	->	AnyObject	{	get	}

(For	the	meaning	of	ObjectType	in	the	Objective-C	declaration,	see	Appendix	A).

You	can	seek	an	object	within	an	array	with	indexOfObject:	or
indexOfObjectIdenticalTo:;	the	former’s	idea	of	equality	is	to	call	isEqual:,	whereas
the	latter	uses	object	identity	(like	Swift’s	===).	As	I	mentioned	earlier,	if	the	object	is	not
found	in	the	array,	the	result	is	NSNotFound.

Unlike	a	Swift	Array,	and	like	an	Objective-C	NSString,	an	NSArray	is	immutable.	This
doesn’t	mean	you	can’t	mutate	any	of	the	objects	it	contains;	it	means	that	once	the
NSArray	is	formed	you	can’t	remove	an	object	from	it,	insert	an	object	into	it,	or	replace
an	object	at	a	given	index.	To	do	those	things	while	staying	in	the	Objective-C	world,	you
can	derive	a	new	array	consisting	of	the	original	array	plus	or	minus	some	objects,	or	use
NSArray’s	subclass,	NSMutableArray.	Swift	Array	is	not	bridged	to	NSMutableArray;	if
you	want	an	NSMutableArray,	you	must	create	it.	The	simplest	way	is	with	the
NSMutableArray	initializers,	init()	or	init(array:).

Once	you	have	an	NSMutableArray,	you	can	call	methods	such	as	NSMutableArray’s
addObject:	and	replaceObjectAtIndex:withObject:.	You	can	also	assign	into	an

NSMutableArray	using	subscripting.	Again,	this	is	because	NSMutableArray	implements
a	special	method,	setObject:atIndexedSubscript:;	Swift	recognizes	this	as	equivalent
to	a	subscript	setter.

Coming	back	the	other	way,	you	cannot	cast	directly	from	NSMutableArray	to	a	Swift
Array	of	any	type	other	than	[AnyObject];	the	usual	approach	is	to	cast	up	from
NSMutableArray	to	NSArray	and	then	down	to	a	specific	type	of	Swift	Array:

let	marr	=	NSMutableArray()

marr.addObject(1)	//	an	NSNumber

marr.addObject(2)	//	an	NSNumber

let	arr	=	marr	as	NSArray	as!	[Int]

Cocoa	provides	ways	to	search	or	filter	an	array	using	a	block.	You	can	also	derive	a
sorted	version	of	an	array,	supplying	the	sorting	rules	in	various	ways,	or	if	it’s	a	mutable
array,	you	can	sort	it	directly.	You	might	prefer	to	perform	those	kinds	of	operation	in	the
Swift	Array	world,	but	it	can	be	useful	to	know	how	to	do	them	the	Cocoa	way.	For
example:

let	pep	=	["Manny",	"Moe",	"Jack"]	as	NSArray

let	ems	=	pep.objectsAtIndexes(

				pep.indexesOfObjectsPassingTest	{

								obj,	idx,	stop	in

								return	(obj	as!	NSString).rangeOfString(

																"m",	options:.CaseInsensitiveSearch

).location	==	0

				}

)	//	["Manny",	"Moe"]

NSDictionary	and	NSMutableDictionary
NSDictionary	is	Objective-C’s	dictionary	object	type.	It	is	fundamentally	similar	to	Swift
Dictionary,	and	they	are	bridged	to	one	another.	But	NSDictionary	keys	and	values	must
be	objects	(classes	and	class	instances),	and	they	don’t	have	to	be	of	a	single	type;	the	keys
must	conform	to	NSCopying	and	be	hashable.	See	Swift	Dictionary	and	Objective-C
NSDictionary	for	a	full	discussion	of	how	to	bridge	back	and	forth	between	Swift
Dictionary	and	Objective-C	NSDictionary,	including	casting.

An	NSDictionary	is	immutable;	its	mutable	subclass	is	NSMutableDictionary.	Swift
Dictionary	is	not	bridged	to	NSMutableDictionary;	you	can	most	easily	make	an
NSMutableDictionary	with	an	initializer,	init()	or	init(dictionary:).

The	keys	of	an	NSDictionary	are	distinct	(using	isEqual:	for	comparison).	If	you	add	a
key–value	pair	to	an	NSMutableDictionary,	then	if	that	key	is	not	already	present,	the	pair
is	simply	added,	but	if	the	key	is	already	present,	then	the	corresponding	value	is	replaced.
This	is	parallel	to	the	behavior	of	Swift	Dictionary.

The	fundamental	use	of	an	NSDictionary	is	to	request	an	entry’s	value	by	key	(using
objectForKey:);	if	no	such	key	exists,	the	result	is	nil.	In	Objective-C,	nil	is	not	an
object,	and	thus	cannot	be	a	value	in	an	NSDictionary;	the	meaning	of	this	response	is	thus
unambiguous.	Swift	handles	this	by	treating	the	result	of	objectForKey:	as	an
AnyObject?	—	that	is,	an	Optional	wrapping	an	AnyObject.

Subscripting	is	possible	on	an	NSDictionary	or	an	NSMutableDictionary	for	similar
reasons	to	why	subscripting	is	possible	on	an	NSArray	or	an	NSMutableArray.
NSDictionary	implements	objectForKeyedSubscript:,	and	Swift	understands	this	as
equivalent	to	a	subscript	getter.	In	addition,	NSMutableDictionary	implements

setObject:forKeyedSubscript:,	and	Swift	understands	this	as	equivalent	to	a	subscript
setter.

You	can	get	from	an	NSDictionary	a	list	of	keys	(allKeys),	a	list	of	values	(allValues),
or	a	list	of	keys	sorted	by	value.	You	can	also	walk	through	the	key–value	pairs	together
using	a	block,	and	you	can	even	filter	an	NSDictionary	by	a	test	against	its	values.

NSSet	and	Friends
An	NSSet	is	an	unordered	collection	of	distinct	objects.	“Distinct”	means	that	no	two
objects	in	a	set	can	return	true	when	they	are	compared	using	isEqual:.	Learning
whether	an	object	is	present	in	a	set	is	much	more	efficient	than	seeking	it	in	an	array,	and
you	can	ask	whether	one	set	is	a	subset	of,	or	intersects,	another	set.	You	can	walk	through
(enumerate)	a	set	with	the	for…in	construct,	though	the	order	is	of	course	undefined.	You
can	filter	a	set,	as	you	can	an	NSArray.	Indeed,	much	of	what	you	can	do	with	a	set	is
parallel	to	what	you	can	do	with	an	array,	except	that	of	course	you	can’t	do	anything	with
a	set	that	involves	the	notion	of	ordering.

To	escape	even	that	restriction,	you	can	use	an	ordered	set.	An	ordered	set	(NSOrderedSet)
is	very	like	an	array,	and	the	methods	for	working	with	it	are	very	similar	to	the	methods
for	working	with	an	array	—	you	can	even	fetch	an	element	by	subscripting	(because	it
implements	objectAtIndexedSubscript:).	But	an	ordered	set’s	elements	must	be	distinct.
An	ordered	set	provides	many	of	the	advantages	of	sets:	for	example,	as	with	an	NSSet,
learning	whether	an	object	is	present	in	an	ordered	set	is	much	more	efficient	than	for	an
array,	and	you	can	readily	take	the	union,	intersection,	or	difference	with	another	set.
Since	the	distinctness	restriction	will	often	prove	no	restriction	at	all	(because	the	elements
were	going	to	be	distinct	anyway),	it	is	worthwhile	to	use	NSOrderedSet	instead	of
NSArray	wherever	possible.

TIP

Handing	an	array	over	to	an	ordered	set	uniques	the	array,	meaning	that	order	is	maintained	but	only	the	first
occurrence	of	an	equal	object	is	moved	to	the	set.

An	NSSet	is	immutable.	You	can	derive	one	NSSet	from	another	by	adding	or	removing
elements,	or	you	can	use	its	subclass,	NSMutableSet.	Similarly,	NSOrderedSet	has	its
mutable	counterpart,	NSMutableOrderedSet	(which	you	can	insert	into	by	subscripting,
because	it	implements	setObject:atIndexedSubscript:).	There	is	no	penalty	for	adding
to	a	set	an	object	that	the	set	already	contains;	nothing	is	added	(and	so	the	distinctness
rule	is	enforced),	but	there’s	no	error.

NSCountedSet,	a	subclass	of	NSMutableSet,	is	a	mutable	unordered	collection	of	objects
that	are	not	necessarily	distinct	(this	concept	is	often	referred	to	as	a	bag).	It	is
implemented	as	a	set	plus	a	count	of	how	many	times	each	element	has	been	added.

Swift	Set	is	bridged	to	NSSet.	But	NSSet	elements	must	be	objects	(classes	and	class
instances),	and	they	don’t	have	to	be	of	a	single	type.	For	details,	see	Swift	Set	and
Objective-C	NSSet.	Nothing	in	Swift	is	bridged	to	NSMutableSet,	NSCountedSet,
NSOrderedSet,	or	NSMutableOrderedSet,	but	they	are	easily	formed	by	coercion	from	a
set	or	an	array	using	an	initializer.	Coming	back	the	other	way,	you	can	cast	an
NSMutableSet	or	NSCountedSet	up	to	NSSet	and	down	to	a	Swift	Set	(similar	to	an

NSMutableArray).	NSOrderedSet	comes	with	“façade”	properties	that	present	it	as	an
array	or	a	set.	Because	of	their	special	behaviors,	however,	you	are	much	more	likely	to
leave	an	NSCountedSet	or	an	NSOrderedSet	in	its	Objective-C	form	for	as	long	you’re
working	with	it.

NSNull
The	NSNull	class	does	nothing	but	supply	a	pointer	to	a	singleton	object,	NSNull().	This
singleton	object	is	used	to	stand	for	nil	in	situations	where	an	actual	Objective-C	object	is
required	and	nil	is	not	permitted.	For	example,	you	can’t	use	nil	as	the	value	of	an
element	of	an	Objective-C	collection	(such	as	NSArray,	NSSet,	or	NSDictionary),	so
you’d	use	NSNull()	instead.

You	can	test	an	object	for	equality	against	NSNull()	using	the	ordinary	equality	operator
(==),	because	it	falls	back	on	NSObject’s	isEqual:,	which	is	identity	comparison.	This	is
a	singleton	instance,	and	therefore	identity	comparison	works.

Immutable	and	Mutable
Beginners	sometimes	have	difficulty	with	the	Cocoa	Foundation	notion	of	class	pairs
where	the	superclass	is	immutable	and	the	subclass	is	mutable.	This	notion	is	itself
reminiscent	of	the	Swift	distinction	between	a	constant	(let)	and	a	true	variable	(var),	and
has	similar	consequences.	For	example,	the	fact	that	NSArray	is	“immutable”	means	much
the	same	thing	as	the	fact	that	a	Swift	Array	is	referred	to	with	let:	you	can’t	append	or
insert	into	this	array,	or	replace	or	delete	an	element	of	this	array,	but	if	its	elements	are
reference	types	—	and	of	course,	for	an	NSArray,	they	are	reference	types	—	you	can
mutate	an	element	in	place.

The	reason	why	Cocoa	needs	these	immutable/mutable	pairs	is	to	prevent	unauthorized
mutation.	These	are	ordinary	classes,	so	an	NSArray	object,	say,	is	an	ordinary	class
instance	—	a	reference	type.	If	a	class	has	an	NSArray	property,	and	if	this	array	were
mutable,	the	array	could	be	mutated	by	some	other	object,	behind	this	class’s	back.	To
prevent	that	from	happening,	a	class	will	work	internally	and	temporarily	with	a	mutable
instance	but	then	store	and	vend	to	other	classes	an	immutable	instance,	thus	protecting
the	value	from	being	changed	accidentally	or	behind	its	own	back.	(Swift	doesn’t	face	the
same	issue,	because	its	fundamental	built-in	object	types	such	as	String,	Array,	and
Dictionary	are	structs,	and	therefore	are	value	types,	which	cannot	be	mutated	in	place;
they	can	be	changed	only	by	being	replaced,	and	that	is	something	that	can	be	guarded
against	or	detected	through	a	setter	observer.)

The	documentation	may	not	make	it	completely	obvious	that	the	mutable	classes	obey
and,	if	appropriate,	override	the	methods	of	their	immutable	superclasses.	For	example,
dozens	of	NSMutableArray	methods	are	not	listed	on	NSMutableArray’s	class
documentation	page,	because	they	are	inherited	from	NSArray.	And	when	such	methods
are	inherited	by	the	mutable	subclass,	they	may	be	overridden	to	fit	the	mutable	subclass.
For	example,	NSArray’s	init(array:)	generates	an	immutable	array,	but
NSMutableArray’s	init(array:)	—	which	isn’t	even	listed	on	the	NSMutableArray
documentation	page,	because	it	is	inherited	from	NSArray	—	generates	a	mutable	array.

That	fact	also	answers	the	question	of	how	to	make	an	immutable	array	mutable,	and	vice

versa.	If	init(array:),	sent	to	the	NSArray	class,	yields	a	new	immutable	array
containing	the	same	objects	in	the	same	order	as	the	original	array,	then	the	same
initializer,	init(array:),	sent	to	the	NSMutableArray	class,	yields	a	mutable	array
containing	the	same	objects	in	the	same	order	as	the	original.	Thus	this	single	method	can
transform	an	array	between	immutable	and	mutable	in	either	direction.	You	can	also	use
copy	(produces	an	immutable	copy)	and	mutableCopy	(produces	a	mutable	copy),	both
inherited	from	NSObject;	but	these	are	not	as	convenient	because	they	yield	an	AnyObject
which	must	then	be	cast.

WARNING

These	immutable/mutable	class	pairs	are	all	implemented	as	class	clusters,	which	means	that	Cocoa	uses	a	secret
class,	different	from	the	documented	class	you	work	with.	You	may	discover	this	by	peeking	under	the	hood;	for
example,	saying	NSStringFromClass(s.dynamicType),	where	s	is	an	NSString,	might	yield	a	mysterious	value
"__NSCFString".	You	should	not	spend	any	time	wondering	about	this	secret	class.	It	is	subject	to	change	without
notice	and	is	none	of	your	business;	you	should	never	have	looked	at	it	in	the	first	place.

Property	Lists
A	property	list	is	a	string	(XML)	representation	of	data.	The	Foundation	classes	NSString,
NSData,	NSArray,	and	NSDictionary	are	the	only	classes	that	can	be	converted	into	a
property	list.	Moreover,	an	NSArray	or	NSDictionary	can	be	converted	into	a	property	list
only	if	the	only	classes	it	collects	are	these	classes,	along	with	NSDate	and	NSNumber.
(This	is	why,	as	I	mentioned	earlier,	you	must	convert	a	UIColor	into	an	NSData	in	order
to	store	it	in	user	defaults;	the	user	defaults	is	a	property	list.)

The	primary	use	of	a	property	list	is	to	store	data	as	a	file.	It	is	a	way	of	serializing	a	value
—	saving	it	to	disk	in	a	form	from	which	it	can	be	reconstructed.	NSArray	and
NSDictionary	provide	convenience	methods	writeToFile:atomically:	and
writeToURL:atomically:	that	generate	property	list	files	given	a	pathname	or	file	URL,
respectively;	conversely,	they	also	provide	initializers	that	create	an	NSArray	object	or	an
NSDictionary	object	based	on	the	property	list	contents	of	a	given	file.	For	this	very
reason,	you	are	likely	to	start	with	one	of	these	classes	when	you	want	to	create	a	property
list.	(NSString	and	NSData,	with	their	methods	writeToFile:...	and	writeToURL:...,
just	write	the	data	out	as	a	file	directly,	not	as	a	property	list.)

When	you	reconstruct	an	NSArray	or	NSDictionary	object	from	a	property	list	file	in	this
way,	the	collections,	string	objects,	and	data	objects	in	the	collection	are	all	immutable.	If
you	want	them	to	be	mutable,	or	if	you	want	to	convert	an	instance	of	one	of	the	other
property	list	classes	to	a	property	list,	you’ll	use	the	NSPropertyListSerialization	class	(see
the	Property	List	Programming	Guide).

Accessors,	Properties,	and	Key–Value	Coding
An	Objective-C	instance	variable	is	structurally	similar	to	a	Swift	instance	property:	it’s	a
variable	that	accompanies	each	instance	of	a	class,	with	a	lifetime	and	value	associated
with	that	particular	instance.	An	Objective-C	instance	variable,	however,	is	usually
private,	in	the	sense	that	instances	of	other	classes	can’t	see	it	(and	Swift	can’t	see	it).	If	an
instance	variable	is	to	be	made	public,	an	Objective-C	class	will	typically	implement
accessor	methods:	a	getter	method	and	(if	this	instance	variable	is	to	be	publicly	writable)
a	setter	method.	This	is	such	a	common	thing	to	do	that	there	are	naming	conventions:

The	getter	method

A	getter	should	have	the	same	name	as	the	instance	variable	(without	an	initial
underscore	if	the	instance	variable	has	one).	Thus,	if	the	instance	variable	is	named
myVar	(or	_myVar),	the	getter	method	should	be	named	myVar.

The	setter	method

A	setter	method’s	name	should	start	with	set,	followed	by	a	capitalized	version	of	the
instance	variable’s	name	(without	an	initial	underscore	if	the	instance	variable	has	one).
The	setter	should	take	one	parameter	—	the	new	value	to	be	assigned	to	the	instance
variable.	Thus,	if	the	instance	variable	is	named	myVar	(or	_myVar),	the	setter	should	be
named	setMyVar:.

This	pattern	—	a	getter	method,	possibly	accompanied	by	an	appropriately	named	setter
method	—	is	so	common	that	there’s	a	shorthand:	an	Objective-C	class	can	declare	a
property,	using	the	keyword	@property	and	a	name.	Here,	for	example,	is	a	line	from	the
UIView	class	declaration:

@property(nonatomic)	CGRect	frame;

(Ignore	the	material	in	parentheses.)	Within	Objective-C,	this	declaration	constitutes	a
promise	that	there	is	a	getter	accessor	method	frame	returning	a	CGRect,	along	with	a
setter	accessor	method	setFrame:	that	takes	a	CGRect	parameter.

When	Objective-C	formally	declares	a	@property	in	this	way,	Swift	sees	it	as	a	Swift
property.	Thus,	UIView’s	frame	property	declaration	is	translated	directly	into	a	Swift
declaration	of	an	instance	property	frame	of	type	CGRect:

var	frame:	CGRect

An	Objective-C	property	name	is	mere	syntactic	sugar.	When	you	set	a	UIView’s	frame
property,	you	are	actually	calling	its	setFrame:	setter	method,	and	when	you	get	a
UIView’s	frame	property,	you	are	actually	calling	its	frame	getter	method.	In	Objective-C,
use	of	the	property	is	optional;	Objective-C	code	can,	and	often	does,	call	the	setFrame:
and	frame	methods	directly.	In	Swift,	however,	you	can’t	do	that.	If	an	Objective-C	class
has	a	formal	@property	declaration,	the	accessor	methods	are	hidden	from	Swift.

An	Objective-C	property	declaration	can	include	the	word	readonly	in	the	parentheses.
This	indicates	that	there	is	a	getter	but	no	setter.	So,	for	example	(ignore	the	other	material
in	the	parentheses):

@property(nonatomic,readonly,strong)	CALayer	*layer;

Swift	will	reflect	this	restriction	with	{get}	after	the	declaration,	as	if	this	were	a

computed	read-only	property;	the	compiler	will	not	permit	you	to	assign	to	such	a
property:

var	layer:	CALayer	{	get	}

An	Objective-C	property	and	its	accompanying	accessor	methods	have	a	life	of	their	own,
independent	of	any	underlying	instance	variable.	Although	accessor	methods	may	literally
be	ways	of	accessing	an	invisible	instance	variable,	they	don’t	have	to	be.	When	you	set	a
UIView’s	frame	property	and	the	setFrame:	accessor	method	is	called,	you	have	no	way
of	knowing	what	that	method	is	really	doing:	it	might	be	setting	an	instance	variable	called
frame	or	_frame,	but	who	knows?	In	this	sense,	accessors	and	properties	are	a	façade,
hiding	the	underlying	implementation.	This	is	similar	to	how,	within	Swift,	you	can	set	a
variable	without	knowing	or	caring	whether	it	is	a	stored	variable	or	a	computed	variable;
what	setting	the	variable	really	does	is	unimportant	(and	possibly	unknown)	to	the	code
that	sets	it.

Swift	Accessors
Just	as	Objective-C	properties	are	actually	a	shorthand	for	accessor	methods,	so	Objective-
C	treats	Swift	properties	as	a	shorthand	for	accessor	methods	—	even	though	no	such
methods	are	formally	present.	If	you,	in	Swift,	declare	that	a	class	has	a	property	prop,
Objective-C	can	call	a	prop	method	to	get	its	value	or	a	setProp:	method	to	set	its	value,
even	though	you	have	not	implemented	such	methods.	Those	calls	are	routed	to	your
property	through	implicit	accessor	methods.

In	Swift,	you	should	not	write	explicit	accessor	methods	for	a	property;	the	compiler	will
stop	you	if	you	attempt	to	do	so.	If	you	need	to	implement	an	accessor	method	explicitly
and	formally,	use	a	computed	property.	Here,	for	example,	I’ll	add	to	my
UIViewController	subclass	a	computed	color	property	with	a	getter	and	a	setter:

class	ViewController:	UIViewController	{

				var	color	:	UIColor	{

								get	{

												print("someone	called	the	getter")

												return	UIColor.redColor()

								}

								set	{

												print("someone	called	the	setter")

								}

				}

}

Objective-C	code	can	now	call	explicitly	the	implicit	setColor:	and	color	accessor
methods	—	and	when	it	does,	the	computed	property’s	setter	and	getter	methods	are	in
fact	called:

ViewController*	vc	=	[ViewController	new];

[vc	setColor:[UIColor	redColor]];	//	"someone	called	the	setter"

UIColor*	c	=	[vc	color];	//	"someone	called	the	getter"

This	proves	that,	in	Objective-C’s	mind,	you	have	provided	setColor:	and	color	accessor
methods.	You	can	even	change	the	Objective-C	names	of	these	accessor	methods!	To	do
so,	add	an	@objc(...)	attribute	with	the	Objective-C	name	in	parentheses.	You	can	add	it
to	a	computed	property’s	setter	and	getter	methods,	or	you	can	add	it	to	a	property	itself:

@objc(hue)	var	color	:	UIColor?

Objective-C	code	can	now	call	hue	and	setHue:	accessor	methods	directly.

If	all	you	want	to	do	is	add	functionality	to	the	setter,	use	a	setter	observer.	For	example,
to	add	functionality	to	the	Objective-C	setFrame:	method	in	your	UIView	subclass,	you
can	override	the	frame	property	and	write	a	didSet	observer:

class	MyView:	UIView	{

				override	var	frame	:	CGRect	{

								didSet	{

												print("the	frame	setter	was	called:	\(super.frame)")

								}

				}

}

Key–Value	Coding
Cocoa	can	dynamically	call	an	accessor	—	and	thus	can	access	a	Swift	property	—	based
on	a	string	name	specified	at	runtime,	through	a	mechanism	called	key–value	coding
(KVC).	(This	resembles,	and	is	related	to,	the	ability	to	use	a	selector	name	for
introspection	with	respondsToSelector:.)	The	string	name	is	the	key;	what	is	passed	to	or
returned	from	the	accessor	is	the	value.	The	basis	for	key–value	coding	is	the
NSKeyValueCoding	protocol,	an	informal	protocol;	it	is	actually	a	category	injected	into
NSObject.	A	Swift	class,	to	be	susceptible	to	key–value	coding,	must	therefore	be	derived
from	NSObject.

The	fundamental	key–value	coding	methods	are	valueForKey:	and	setValue:forKey:.
When	one	of	these	methods	is	called	on	an	object,	the	object	is	introspected.	In	simplified
terms,	first	the	appropriate	accessor	is	sought;	if	it	doesn’t	exist,	the	instance	variable	is
accessed	directly.	Another	useful	pair	of	methods	is	dictionaryWithValuesForKeys:	and
setValuesForKeysWithDictionary:,	which	allow	you	to	get	and	set	multiple	key–value
pairs	by	way	of	an	NSDictionary	with	a	single	command.

The	value	in	key–value	coding	must	be	an	Objective-C	object,	and	is	typed	in	Swift	as
AnyObject.	When	calling	valueForKey:,	you’ll	receive	an	Optional	wrapping	an
AnyObject;	you’ll	want	to	cast	this	down	safely	to	its	expected	type.

A	class	is	key–value	coding	compliant	(or	KVC	compliant)	on	a	given	key	if	it	provides
the	accessor	methods,	or	possesses	the	instance	variable,	required	for	access	through	that
key.	An	attempt	to	access	a	key	for	which	a	class	is	not	key–value	coding	compliant	will
cause	an	exception	at	runtime.	It	is	useful	to	be	familiar	with	the	message	you’ll	get	when
such	a	crash	occurs,	so	let’s	cause	it	deliberately:

let	obj	=	NSObject()

obj.setValue("hello",	forKey:"keyName")	//	crash

The	console	says:	“This	class	is	not	key	value	coding-compliant	for	the	key	keyName.”
The	last	word	in	that	error	message,	despite	the	lack	of	quotes,	is	the	key	string	that	caused
the	trouble.

What	would	it	take	for	that	method	call	not	to	crash?	The	class	of	the	object	to	which	it	is
sent	would	need	to	have	a	setKeyName:	setter	method	(or	a	keyName	or	_keyName	instance
variable).	In	Swift,	as	I	demonstrated	in	the	previous	section,	an	instance	property	implies
the	existence	of	accessor	methods.	Thus,	we	can	use	key–value	coding	on	an	instance	of
any	NSObject	subclass	that	has	a	declared	property,	provided	the	key	string	is	the	string
name	of	that	property.	Let’s	try	it!	Here	is	such	a	class:

class	Dog	:	NSObject	{

				var	name	:	String	=	""

}

And	here’s	our	test:
let	d	=	Dog()

d.setValue("Fido",	forKey:"name")	//	no	crash!

print(d.name)	//	"Fido"	-	it	worked!

Uses	of	Key–Value	Coding
Key–value	coding	allows	you,	in	effect,	to	decide	at	runtime,	based	on	a	string,	what
accessor	to	call.	In	the	simplest	case,	you’re	using	a	string	to	access	a	dynamically
specified	property.	That’s	useful	in	Objective-C	code;	but	such	unfettered	introspective
dynamism	is	contrary	to	the	spirit	of	Swift,	and	in	translating	my	own	Objective-C	code
into	Swift	I	have	found	myself	accomplishing	the	same	effect	in	other	ways.

Here’s	an	example.	In	a	flashcard	app,	I	have	a	class	Term,	representing	a	Latin	word.	It
declares	many	properties.	Each	card	displays	one	term,	with	its	various	properties	shown
in	different	text	fields.	If	the	user	taps	any	of	three	text	fields,	I	want	the	interface	to
change	from	the	term	that’s	currently	showing	to	the	next	term	whose	value	is	different	for
the	particular	property	that	this	text	field	represents.	Thus	this	code	is	the	same	for	all
three	text	fields;	the	only	difference	is	which	property	to	consider	as	we	hunt	for	the	next
term	to	be	displayed.	In	Objective-C,	by	far	the	simplest	way	to	express	this	parallelism	is
through	key–value	coding:

NSInteger	tag	=	g.view.tag;	//	the	tag	tells	us	which	text	field	was	tapped

NSString*	key	=	nil;

switch	(tag)	{

				case	1:	key	=	@"lesson";	break;

				case	2:	key	=	@"lessonSection";	break;

				case	3:	key	=	@"lessonSectionPartFirstWord";	break;

}

//	get	current	value	of	corresponding	instance	variable

NSString*	curValue	=	[[self	currentCardController].term	valueForKey:	key];

In	Swift,	however,	it’s	easy	to	implement	the	same	dynamism	using	an	array	of
anonymous	functions:

let	tag	=	g.view!.tag	-	1

let	arr	:	[(Term)	->	String]	=	[

				{$0.lesson},	{$0.lessonSection},	{$0.lessonSectionPartFirstWord}

]

let	f	=	arr[tag]

let	curValue	=	f(self.currentCardController().term)

Nevertheless,	key–value	coding	remains	valuable	in	programming	iOS,	especially	because
a	number	of	built-in	Cocoa	classes	permit	you	to	use	key–value	coding	in	special	ways.
For	example:

If	you	send	valueForKey:	to	an	NSArray,	it	sends	valueForKey:	to	each	of	its
elements	and	returns	a	new	array	consisting	of	the	results,	an	elegant	shorthand.	NSSet
behaves	similarly.
NSDictionary	implements	valueForKey:	as	an	alternative	to	objectForKey:	(useful
particularly	if	you	have	an	NSArray	of	dictionaries).	Similarly,	NSMutableDictionary
treats	setValue:forKey:	as	a	synonym	for	setObject:forKey:,	except	that	value:
can	be	nil,	in	which	case	removeObject:forKey:	is	called.
NSSortDescriptor	sorts	an	NSArray	by	sending	valueForKey:	to	each	of	its	elements.
This	makes	it	easy	to	sort	an	array	of	dictionaries	on	the	value	of	a	particular	dictionary
key,	or	an	array	of	objects	on	the	value	of	a	particular	property.

NSManagedObject,	used	in	conjunction	with	Core	Data,	is	guaranteed	to	be	key–value
coding	compliant	for	attributes	you’ve	configured	in	the	entity	model.	Thus,	it’s
common	to	access	those	attributes	with	valueForKey:	and	setValue:forKey:.
CALayer	and	CAAnimation	permit	you	to	use	key–value	coding	to	define	and	retrieve
the	values	for	arbitrary	keys,	as	if	they	were	a	kind	of	dictionary;	they	are,	in	effect,
key–value	coding	compliant	for	every	key.	This	is	extremely	helpful	for	attaching
identifying	and	configuration	information	to	an	instance	of	one	of	these	classes.	That,
in	fact,	is	my	own	most	common	way	of	using	key–value	coding	in	Swift.

KVC	and	Outlets
Key–value	coding	lies	at	the	heart	of	how	outlet	connections	work	(Chapter	7).	The	name
of	the	outlet	in	the	nib	is	a	string.	It	is	key–value	coding	that	turns	the	string	into	a	hunt	for
a	matching	property	at	nib-loading	time.

Suppose,	for	example,	that	you	have	a	class	Dog	with	an	@IBOutlet	property	master,	and
you’ve	drawn	a	"master"	outlet	from	that	class’s	representative	in	the	nib	to	a	Person	nib
object.	When	the	nib	loads,	the	outlet	name	"master"	is	translated	though	key–value
coding	to	the	accessor	method	name	setMaster:,	and	your	Dog	instance’s	setMaster:
implicit	accessor	method	is	called	with	the	Person	instance	as	its	parameter	—	thus	setting
the	value	of	your	Dog	instance’s	master	property	to	the	Person	instance	(Figure	7-9).

If	something	goes	wrong	with	the	match	between	the	outlet	name	in	the	nib	and	the	name
of	the	property	in	the	class,	then	at	runtime,	when	the	nib	loads,	Cocoa’s	attempt	to	use
key–value	coding	to	set	a	value	in	your	object	based	on	the	name	of	the	outlet	will	fail,
and	will	generate	an	exception,	complaining	that	the	class	is	not	key–value	coding
compliant	for	the	key	(the	outlet	name)	—	that	is,	your	app	will	crash	at	nib-loading	time.
A	likely	way	for	this	to	happen	is	that	you	form	the	outlet	correctly	but	then	later	change
the	name	of	(or	delete)	the	property	in	the	class	(see	Misconfigured	Outlets).

Key	Paths
A	key	path	allows	you	to	chain	keys	in	a	single	expression.	If	an	object	is	key–value
coding	compliant	for	a	certain	key,	and	if	the	value	of	that	key	is	itself	an	object	that	is
key–value	coding	compliant	for	another	key,	you	can	chain	those	keys	by	calling
valueForKeyPath:	and	setValue:forKeyPath:.	A	key	path	string	looks	like	a	succession
of	key	names	joined	using	dot-notation.	For	example,	valueForKeyPath("key1.key2")
effectively	calls	valueForKey:	on	the	message	receiver,	with	"key1"	as	the	key,	and	then
takes	the	object	returned	from	that	call	and	calls	valueForKey:	on	that	object,	with	"key2"
as	the	key.

To	illustrate	this	shorthand,	imagine	that	our	object	myObject	has	an	instance	property
theData	which	is	an	array	of	dictionaries	such	that	each	dictionary	has	a	name	key	and	a
description	key:

var	theData	=	[

				[

								"description"	:	"The	one	with	glasses.",

								"name"	:	"Manny"

],

				[

								"description"	:	"Looks	a	little	like	Governor	Dewey.",

								"name"	:	"Moe"

],

				[

								"description"	:	"The	one	without	a	mustache.",

								"name"	:	"Jack"

]

]

We	can	use	key–value	coding	with	a	key	path	to	drill	down	into	that	array	of	dictionaries:
let	arr	=	myObject.valueForKeyPath("theData.name")	as!	[String]

The	result	is	an	array	consisting	of	the	strings	"Manny",	"Moe",	and	"Jack".	If	you	don’t
see	why,	review	what	I	said	earlier	about	how	NSArray	and	NSDictionary	implement
valueForKey:.

TIP

Recall	also	the	discussion	of	user-defined	runtime	attributes,	in	Chapter	7.	This	feature	uses	key–value	coding!	The
string	you’re	entering	in	the	first	column	when	you	define	a	runtime	attribute	in	an	object’s	Identity	inspector	in	a	nib
is	a	key	path.

Array	Accessors
Key–value	coding	is	a	powerful	technology	with	many	additional	ramifications.	(See
Apple’s	Key-Value	Coding	Programming	Guide	for	full	information.)	I’ll	illustrate	just
one	of	them.	Key–value	coding	allows	an	object	to	synthesize	a	key	whose	value	appears
to	be	an	array	(or	a	set),	even	if	it	isn’t.	You	implement	specially	named	accessor	methods;
key–value	coding	sees	them	when	you	try	to	use	the	corresponding	key.

To	illustrate,	I’ll	add	these	methods	to	the	class	of	our	object	myObject:
func	countOfPepBoys()	->	Int	{

				return	self.theData.count

}

func	objectInPepBoysAtIndex(ix:Int)	->	AnyObject	{

				return	self.theData[ix]

}

By	implementing	countOf…	and	objectIn…AtIndex:,	I’m	telling	the	key–value	coding
system	to	act	as	if	the	given	key	—	"pepBoys",	in	this	case	—	exists	and	is	an	array.	An
attempt	to	fetch	the	value	of	the	key	"pepBoys"	by	way	of	key–value	coding	will	succeed,
and	will	return	an	object	that	can	be	treated	as	an	NSArray,	though	in	fact	it	is	a	proxy
object	(an	NSKeyValueArray).	Thus	we	can	now	say	things	like	this:

let	arr	:	AnyObject	=	myObject.valueForKey("pepBoys")!

let	arr2	:	AnyObject	=	myObject.valueForKeyPath("pepBoys.name")!

In	that	code,	arr	is	the	array	proxy,	and	arr2	is	the	same	array	of	the	names	of	the	three
Pep	Boys	as	before.	The	example	seems	pointless:	the	underlying	implementation	is
already	an	array,	so	how	does	saying	"pepBoys"	here	differ	from	saying	"theData",	as	we
did	before?	It	doesn’t.	But	it	could!	Imagine	that	there	is	no	simple	actual	array	—	that	the
result	of	countOfPepBoys	and	objectInPepBoysAtIndex:	is	obtained	through	some
completely	different	sort	of	operation.	In	effect,	we	have	created	a	key	that	poses	as	an
NSArray;	we	could	have	anything	at	all	hiding	behind	it.

The	Secret	Life	of	NSObject
Because	every	Objective-C	class	inherits	from	NSObject,	it’s	worth	taking	some	time	to
explore	NSObject.	NSObject	is	constructed	in	a	rather	elaborate	way:

It	defines	some	native	class	methods	and	instance	methods	having	mostly	to	do	with
the	basics	of	instantiation	and	of	method	sending	and	resolution.	(See	the	NSObject
Class	Reference.)
It	adopts	the	NSObject	protocol.	This	protocol	declares	instance	methods	having
mostly	to	do	with	memory	management,	the	relationship	between	an	instance	and	its
class,	and	introspection.	Because	all	the	NSObject	protocol	methods	are	required,	the
NSObject	class	implements	them	all.	(See	the	NSObject	Protocol	Reference.)	In	Swift,
the	NSObject	protocol	is	called	NSObjectProtocol,	to	avoid	name	clash.
It	implements	convenience	methods	related	to	the	NSCopying,	NSMutableCopying,
and	NSCoding	protocols,	without	formally	adopting	those	protocols.	NSObject
intentionally	doesn’t	adopt	these	protocols	because	this	would	cause	all	other	classes	to
adopt	them,	which	would	be	wrong.	But	thanks	to	this	architecture,	if	a	class	does
adopt	one	of	these	protocols,	you	can	call	the	corresponding	convenience	method.	For
example,	NSObject	implements	the	copy	instance	method,	so	you	can	call	copy	on	any
instance,	but	you’ll	crash	unless	the	instance’s	class	also	adopts	the	NSCopying
protocol	and	implements	copyWithZone:.
A	large	number	of	methods	are	injected	into	NSObject	by	more	than	two	dozen
categories	on	NSObject,	scattered	among	various	header	files.	For	example,
awakeFromNib	(see	Chapter	7)	comes	from	the	UINibLoadingAdditions	category	on
NSObject,	declared	in	UINibLoading.h.
A	class	object	is	an	object.	Therefore	all	Objective-C	classes,	which	are	objects	of	type
Class,	inherit	from	NSObject.	Therefore,	any	method	defined	as	an	instance	method	by
NSObject	can	be	called	on	a	class	object	as	a	class	method!	For	example,
respondsToSelector:	is	defined	as	an	instance	method	by	NSObject,	but	it	can
(therefore)	be	treated	also	as	a	class	method	and	sent	to	a	class	object.

The	problem	for	the	programmer	is	that	Apple’s	documentation	is	rather	rigid	about
classification.	When	you’re	trying	to	work	out	what	you	can	say	to	an	object,	you	don’t
care	where	that	object’s	methods	come	from;	you	just	care	what	you	can	say.	But	the
documentation	differentiates	methods	by	where	they	come	from.	As	a	result,	even	though
NSObject	is	the	root	class,	the	most	important	class,	from	which	all	other	classes	inherit,
no	single	page	of	the	documentation	provides	a	conspectus	of	all	its	methods.	Instead,	you
have	to	look	at	both	the	NSObject	Class	Reference	and	the	NSObject	Protocol	Reference
simultaneously,	plus	the	pages	documenting	the	NSCopying,	NSMutableCopying,	and
NSCoding	protocols	(in	order	to	understand	how	they	interact	with	methods	defined	by
NSObject),	plus	you	have	to	supply	mentally	a	class	method	version	of	every	NSObject
instance	method!

Then	there	are	the	methods	injected	into	NSObject	by	categories.	Some	that	are	general	in
nature	are	documented	on	the	NSObject	class	documentation	page	itself;	for	example,
awakeAfterUsingCoder:	comes	from	a	category	declared	in	a	separate	header,	but	it	is
documented	under	NSObject,	quite	rightly,	since	this	is	a	class	method,	and	therefore
effectively	a	global	method,	that	you	might	want	to	send	at	any	time.	Others	are	delegate

methods	used	in	restricted	situations	(so	that	these	are	really	informal	protocols),	and	do
not	need	centralized	documentation;	for	example,	animationDidStart:	is	documented
under	the	CAAnimation	class,	quite	rightly,	because	you	need	to	know	about	it	only	and
exactly	when	you’re	working	with	CAAnimation.	However,	every	object	responds	to
awakeFromNib,	and	it’s	likely	to	be	crucial	to	every	app	you	write;	yet	you	must	learn
about	it	outside	of	the	NSObject	documentation,	sitting	all	by	itself	in	the	NSObject	UIKit
Additions	Reference	page,	where	you’re	extremely	unlikely	to	discover	it!	The	same	goes,
it	might	be	argued,	for	all	the	key–value	coding	methods	(see	earlier	in	this	chapter)	and
key–value	observing	methods	(Chapter	11).

Once	you’ve	collected,	by	hook	or	by	crook,	all	the	NSObject	methods,	you	can	see	that
they	fall	into	a	certain	natural	classification:

Creation,	destruction,	and	memory	management

Methods	for	creating	an	instance,	such	as	alloc	and	copy,	along	with	methods	for
learning	when	something	is	happening	in	the	lifetime	of	an	object,	such	as	initialize
and	dealloc,	plus	methods	that	manage	memory.

Class	relationships

Methods	for	learning	an	object’s	class	and	inheritance,	such	as	superclass,
isKindOfClass:,	and	isMemberOfClass:.

Object	introspection	and	comparison

Methods	for	asking	what	would	happen	if	an	object	were	sent	a	certain	message,	such
as	respondsToSelector:,	for	representing	an	object	as	a	string	(description),	and	for
comparing	objects	(isEqual:).

Message	response

Methods	for	meddling	with	what	does	happen	when	an	object	is	sent	a	certain	message,
such	as	doesNotRecognizeSelector:.	If	you’re	curious,	see	the	Objective-C	Runtime
Programming	Guide.

Message	sending

Methods	for	sending	a	message	dynamically.	For	example,	performSelector:	takes	a
selector	as	parameter,	and	sending	it	to	an	object	tells	that	object	to	perform	that
selector.	This	might	seem	identical	to	just	sending	that	message	to	that	object,	but	what
if	you	don’t	know	what	message	to	send	until	runtime?	Moreover,	variants	on
performSelector:	allow	you	to	send	a	message	on	a	specified	thread,	or	send	a
message	after	a	certain	amount	of	time	has	passed
(performSelector:withObject:afterDelay:	and	similar).

TIP

The	performSelector…	methods	are	newly	available	in	Swift	2.0.	Previously,	they	could	not	be	called	from	Swift;	I
used	them	often	in	Objective-C,	but	translating	my	code	into	Swift	forced	me	to	find	other	ways	of	accomplishing	the
same	goals,	and	I	discovered	that	I	could	manage	quite	well	without	them.

Chapter	11.	Cocoa	Events
All	of	your	app’s	executable	code	lies	in	its	functions.	The	impetus	for	a	function	being
called	must	come	from	somewhere.	One	of	your	functions	may	call	another,	but	who	will
call	the	first	function	in	the	first	place?	How,	ultimately,	will	any	of	your	code	ever	run?
As	I	said	in	Chapter	6,	after	your	app	has	launched,	“UIApplicationMain	is	just	sitting
there,	watching	for	the	user	to	do	something,	maintaining	the	event	loop,	which	will
respond	to	user	actions	as	they	occur.”

The	event	loop	is	the	key.	The	runtime	is	watching	and	waiting	for	certain	things	to
happen,	such	as	the	user	making	a	gesture	on	the	screen,	or	some	specific	stage	arriving	in
the	lifetime	of	your	app.	When	such	things	do	happen,	the	runtime	calls	your	code.	But	the
runtime	can	call	your	code	only	if	your	code	is	there	to	be	called.	Your	code	is	like	a	panel
of	buttons,	waiting	for	Cocoa	to	press	one.	If	something	happens	that	Cocoa	feels	your
code	needs	to	know	about	and	respond	to,	it	presses	the	right	button	—	if	the	right	button
is	there.

The	art	of	Cocoa	programming	lies	in	knowing	what	Cocoa	wants	to	do.	You	organize
your	code,	right	from	the	start,	with	Cocoa’s	behavior	in	mind.	Cocoa	makes	certain
promises	about	how	and	when	it	will	dispatch	messages	to	your	code.	These	are	Cocoa’s
events.	You	know	what	these	events	are,	and	you	arrange	for	your	code	to	be	ready	when
Cocoa	delivers	them.

The	specific	events	that	you	can	receive	are	listed	in	the	documentation.	The	overall
architecture	of	how	and	when	events	are	dispatched	and	the	ways	in	which	your	code
arranges	to	receive	them	is	the	subject	of	this	chapter.

Reasons	for	Events
Broadly	speaking,	the	reasons	you	might	receive	an	event	may	be	divided	informally	into
four	categories.	These	categories	are	not	official;	I	made	them	up.	Often	it	isn’t	completely
clear	which	of	these	categories	an	event	fits	into;	an	event	may	well	appear	to	fit	two
categories.	But	they	are	still	generally	useful	for	visualizing	how	and	why	Cocoa	interacts
with	your	code:

User	events

The	user	does	something	interactive,	and	an	event	is	triggered	directly.	Obvious
examples	are	events	that	you	get	when	the	user	taps	or	swipes	the	screen,	or	types	a	key
on	the	keyboard.

Lifetime	events

These	are	events	notifying	you	of	the	arrival	of	a	stage	in	the	life	of	the	app,	such	as	the
fact	that	the	app	is	starting	up	or	is	about	to	go	into	the	background,	or	of	a	component
of	the	app,	such	as	the	fact	that	a	UIViewController’s	view	has	just	loaded	or	is	about	to
be	removed	from	the	screen.

Functional	events

Cocoa	is	about	to	do	something,	and	turns	to	you	in	case	you	want	to	supply	additional
functionality.	I	would	put	into	this	category	UIView’s	drawRect:	(your	chance	to	have	a
view	draw	itself)	and	UILabel’s	drawTextInRect:	(your	chance	to	modify	the	look	of	a
label),	with	which	we	experimented	in	Chapter	10.

Query	events

Cocoa	turns	to	you	to	ask	a	question;	its	behavior	will	depend	upon	your	answer.	For
example,	the	way	data	appears	in	a	table	(a	UITableView)	is	that	whenever	Cocoa	needs
a	cell	for	a	row	of	the	table,	it	turns	to	you	and	asks	for	the	cell.

Subclassing
A	built-in	Cocoa	class	may	define	methods	that	Cocoa	itself	will	call	and	that	you	are
invited	(or	required)	to	override	in	a	subclass,	so	that	your	custom	behavior,	and	not
(merely)	the	default	behavior,	will	take	place.

An	example	I	gave	in	Chapter	10	was	UIView’s	drawRect:.	This	is	what	I	call	a
functional	event.	By	overriding	drawRect:	in	a	UIView	subclass,	you	dictate	the	full
procedure	by	which	a	view	draws	itself.	You	don’t	know	exactly	when	this	method	will	be
called,	and	you	don’t	care;	when	it	is,	you	draw,	and	this	guarantees	that	the	view	will
always	appear	the	way	you	want	it	to.	(You	never	call	drawRect:	yourself;	if	some
underlying	condition	has	changed	and	you	want	the	view	to	be	redrawn,	you	call
setNeedsDisplay	and	let	Cocoa	call	drawRect:	in	response.)

Built-in	UIView	subclasses	may	have	other	functional	event	methods	you’ll	want	to
customize	through	subclassing.	Typically	this	will	be	in	order	to	change	the	way	the	view
is	drawn,	without	taking	command	of	the	entire	drawing	procedure	yourself.	In	Chapter	10
I	gave	an	example	involving	UILabel	and	its	drawTextInRect:.	A	similar	case	is	UISlider,
which	lets	you	customize	the	position	and	size	of	the	slider’s	“thumb”	by	overriding
thumbRectForBounds:trackRect:value:.

UIViewController	is	a	class	meant	for	subclassing.	Of	the	methods	listed	in	the
UIViewController	class	documentation,	just	about	all	are	methods	you	might	have	reason
to	override.	If	you	create	a	UIViewController	subclass	in	Xcode,	you’ll	see	that	the
template	already	includes	a	couple	of	method	overrides	to	get	you	started.	For	example,
viewDidLoad	is	called	to	let	you	know	that	your	view	controller	has	obtained	its	main
view	(its	view),	so	that	you	can	perform	initializations;	it’s	an	obvious	example	of	a
lifetime	event.	And	UIViewController	has	many	other	lifetime	events	that	you	can	and
will	override	in	order	to	get	fine	control	over	what	happens	when.	For	example,
viewWillAppear:	means	that	your	view	controller’s	view	is	about	to	be	placed	into	the
interface;	viewDidAppear:	means	that	your	view	controller’s	view	has	been	placed	into
the	interface;	viewDidLayoutSubviews	means	that	your	view	has	been	positioned	within
its	superview;	and	so	on.

A	UIViewController	method	like	supportedInterfaceOrientations	is	what	I	call	a
query	event.	Your	job	is	to	return	a	bitmask	telling	Cocoa	what	orientations	your	view	can
appear	in	at	this	moment	—	whenever	that	may	be.	You	trust	Cocoa	to	call	this	method	at
the	appropriate	moments,	so	that	if	the	user	rotates	the	device,	your	app’s	interface	will	or
won’t	be	rotated	to	compensate,	depending	on	what	value	you	return.

When	looking	for	events	that	you	can	receive	through	subclassing,	be	sure	to	look	upward
though	the	inheritance	hierarchy.	For	example,	if	you’re	wondering	how	to	be	notified
when	your	custom	UILabel	subclass	is	embedded	into	another	view,	you	won’t	find	the
answer	in	the	UILabel	class	documentation;	a	UILabel	receives	the	appropriate	event	by
virtue	of	being	a	UIView.	In	the	UIView	class	documentation,	you’ll	learn	that	you	can
override	didMoveToSuperview	to	be	informed	when	this	happens.	By	the	same	token,	look
upward	through	adopted	protocols	as	well.	If	you’re	wondering	how	to	be	notified	when
your	view	controller’s	view	is	about	to	undergo	app	rotation,	you	won’t	find	out	by
looking	in	the	UIViewController	class	documentation;	a	UIViewController	receives	the

appropriate	event	by	virtue	of	adopting	the	UIContentContainer	protocol.	In	the
UIContentContainer	protocol	documentation,	you’ll	learn	that	you	can	override
viewWillTransitionToSize:withTransitionCoordinator:.

Nevertheless,	as	I	said	in	Chapter	10,	subclassing	and	overriding	is	far	from	being	the
most	important	or	commmon	way	of	arranging	to	receive	events.	Aside	from
UIViewController,	it	is	hard	to	think	of	any	built-in	Cocoa	class	that	you	will	regularly
subclass	for	this	purpose.	So	what	are	the	other	ways	in	which	your	code	receives	events?
That’s	what	the	rest	of	this	chapter	is	about.

Notifications
Cocoa	provides	your	app	with	a	single	instance	of	NSNotificationCenter,	informally	called
the	notification	center.	This	instance,	available	by	calling
NSNotificationCenter.defaultCenter(),	is	the	basis	of	a	mechanism	for	sending
messages	called	notifications.	A	notification	is	an	instance	of	NSNotification.	The	idea	is
that	any	object	can	be	registered	with	the	notification	center	to	receive	certain
notifications.	Another	object	can	hand	the	notification	center	a	notification	to	send	out
(this	is	called	posting	the	notification).	The	notification	center	will	then	send	that
notification	to	all	objects	that	are	registered	to	receive	it.

The	notification	mechanism	is	often	described	as	a	dispatching	or	broadcasting
mechanism,	and	with	good	reason.	It	lets	an	object	send	a	message	without	knowing	or
caring	what	object	or	how	many	objects	receive	it.	This	relieves	your	app’s	architecture
from	the	formal	responsibility	of	somehow	hooking	up	instances	just	so	a	message	can
pass	from	one	to	the	other	(which	can	sometimes	be	quite	tricky	or	onerous,	as	discussed
in	Chapter	13).	When	objects	are	conceptually	“distant”	from	one	another,	notifications
can	be	a	fairly	lightweight	way	of	permitting	one	to	message	the	other.

An	NSNotification	instance	has	three	pieces	of	information	associated	with	it,	which	can
be	retrieved	by	instance	methods:
name

An	NSString	which	identifies	the	notification’s	meaning.
object

An	instance	associated	with	the	notification;	typically,	the	instance	that	posted	it.
userInfo

Not	every	notification	has	a	userInfo;	it	is	an	NSDictionary,	and	can	contain	additional
information	associated	with	the	notification.	What	information	this	NSDictionary	will
contain,	and	under	what	keys,	depends	on	the	particular	notification;	you	have	to
consult	the	documentation.	For	example,	the	documentation	tells	us	that
UIApplication’s	UIApplicationDidChangeStatusBarOrientationNotification
includes	a	userInfo	dictionary	with	a	key
UIApplicationStatusBarOrientationUserInfoKey	whose	value	is	the	status	bar’s
previous	orientation.	When	you	post	a	notification	yourself,	you	can	put	anything	you
like	into	the	userInfo	for	the	notification’s	recipient(s)	to	retrieve.

Cocoa	itself	posts	notifications	through	the	notification	center,	and	your	code	can	register
to	receive	them.	You’ll	find	a	separate	Notifications	section	in	the	documentation	for	a
class	that	provides	them.

Receiving	a	Notification
To	register	to	receive	a	notification,	you	send	one	of	two	messages	to	the	notification
center.	One	is	addObserver:selector:name:object:.	The	parameters	are	as	follows:
observer:

The	instance	to	which	the	notification	is	to	be	sent.	This	will	typically	be	self;	it	would
be	quite	unusual	for	one	instance	to	register	a	different	instance	as	the	receiver	of	a
notification.

selector:

The	message	to	be	sent	to	the	observer	instance	when	the	notification	occurs.	The
designated	method	should	return	no	result	(Void)	and	should	take	one	parameter,	which
will	be	the	NSNotification	instance	(so	the	parameter	should	be	typed	as
NSNotification	or	AnyObject).	In	Swift,	you	specify	the	selector	by	giving	the	name
of	the	method	as	a	string.

Don’t	get	the	string	name	of	this	method	wrong,	and	don’t	forget	to	implement	the
method!	If	the	notification	center	sends	a	notification	by	trying	to	call	the	method
specified	as	the	selector:,	and	if	that	exact	method	doesn’t	exist,	your	app	will	crash.
See	Appendix	A	for	the	rules	about	how	to	turn	a	method	name	into	a	string	name.

The	method	named	by	this	selector	cannot	be	called	unless	it	is	exposed	to	Objective-C.
If	the	notification	center	sends	a	notification	by	trying	to	call	the	method	specified	as
the	selector:,	and	if	Objective-C	can’t	see	that	method,	your	app	will	crash.
Objective-C	can	see	the	method	if	the	class	is	a	subclass	of	NSObject,	or	if	the	method
is	marked	@objc	(or	dynamic).

name:

The	string	name	of	the	notification	you’d	like	to	receive.	If	this	parameter	is	nil,	you’re
asking	to	receive	all	notifications	associated	with	the	object	designated	in	the	object:
parameter.	A	built-in	Cocoa	notification’s	name	is	usually	a	constant.	This	is	helpful,
because	if	you	flub	the	name	of	a	constant,	the	compiler	will	complain,	whereas	if	you
enter	the	name	of	the	notification	directly	as	a	string	literal	and	you	get	it	wrong,	the
compiler	won’t	complain	but	you	will	mysteriously	fail	to	get	any	notifications	(because
no	notification	has	the	name	you	actually	entered)	—	a	very	difficult	sort	of	mistake	to
track	down.

object:

The	object	of	the	notification	you’re	interested	in,	which	will	usually	be	the	object	that
posted	it.	If	this	is	nil,	you’re	asking	to	receive	all	notifications	with	the	name
designated	in	the	name:	parameter.	(If	both	the	name:	and	object:	parameters	are	nil,
you’re	asking	to	receive	all	notifications!)

For	example,	in	one	of	my	apps	I	want	to	change	the	interface	whenever	the	device’s
music	player	starts	playing	a	different	song.	The	API	for	the	device’s	built-in	music	player
belongs	to	the	MPMusicPlayerController	class;	this	class	provides	a	notification	to	tell	me
when	the	built-in	music	player	changes	what	song	is	being	played,	listed	under
Notifications	in	the	MPMusicPlayerController	class	documentation	as
MPMusicPlayerControllerNowPlayingItemDidChangeNotification.

It	turns	out,	looking	at	the	documentation,	that	this	notification	won’t	be	posted	at	all
unless	I	first	call	MPMusicPlayerController’s	beginGeneratingPlaybackNotifications
instance	method.	This	architecture	is	not	uncommon;	Cocoa	saves	itself	some	time	and
effort	by	not	sending	out	certain	notifications	unless	they	are	switched	on,	as	it	were.	So

my	first	job	is	to	get	an	instance	of	MPMusicPlayerController	and	call	this	method:
let	mp	=	MPMusicPlayerController.systemMusicPlayer()

mp.beginGeneratingPlaybackNotifications()

Now	I	register	myself	to	receive	the	desired	playback	notification:
NSNotificationCenter.defaultCenter().addObserver(self,

				selector:	"nowPlayingItemChanged:",

				name:	MPMusicPlayerControllerNowPlayingItemDidChangeNotification,

				object:	nil)

As	a	result,	whenever	an
MPMusicPlayerControllerNowPlayingItemDidChangeNotification	is	posted,	my
nowPlayingItemChanged:	method	will	be	called:

func	nowPlayingItemChanged	(n:NSNotification)	{

				self.updateNowPlayingItem()

				//	...	and	so	on…

}

For	addObserver:selector:name:object:	to	work	properly,	you	must	get	the	selector
right	and	make	sure	you	implement	the	corresponding	method.	Heavy	use	of
addObserver:selector:name:object:	means	that	your	code	ends	up	peppered	with
methods	that	exist	solely	in	order	to	be	called	by	the	notification	center.	There	is	nothing
about	these	methods	that	tells	you	what	they	are	for	—	you	will	probably	want	to	use
explicit	comments	in	order	to	remind	yourself	—	and	the	methods	are	separate	from	the
registration	call,	all	of	which	makes	your	code	rather	confusing.

This	problem	is	solved	by	using	the	other	way	of	registering	to	receive	a	notification	—
by	calling	addObserverForName:object:queue:usingBlock:.	It	returns	a	value,	whose
purpose	I’ll	explain	in	a	moment.	The	queue:	will	usually	be	nil;	a	non-nil	queue:	is	for
background	threading.	The	name:	and	object:	parameters	are	just	like	those	of
addObserver:selector:name:object:.	Instead	of	an	observer	and	a	selector,	you	provide
a	Swift	function	consisting	of	the	actual	code	to	be	executed	when	the	notification	arrives.
This	function	should	take	one	parameter	—	the	NSNotification	itself.	If	you	use	an
anonymous	function,	your	response	to	the	notification	you’re	registering	for	is	visible	as
part	of	the	registration:

let	ob	=	NSNotificationCenter.defaultCenter()

				.addObserverForName(

								MPMusicPlayerControllerNowPlayingItemDidChangeNotification,

								object:	nil,	queue:	nil)	{

												_	in

												self.updateNowPlayingItem()

												//	...	and	so	on…

								}

WARNING

Use	of	addObserverForName:...	can	impose	some	additional	memory	management	complications	that	I’ll	talk	about
in	Chapter	12.

Unregistering
It	is	up	to	you,	for	every	object	that	you	register	as	a	recipient	of	notifications,	to
unregister	that	object	before	it	goes	out	of	existence.	If	you	fail	to	do	this,	and	if	the	object
does	go	out	of	existence,	and	if	a	notification	for	which	that	object	is	registered	is	posted,
the	notification	center	will	attempt	to	send	the	appropriate	message	to	that	object,	which	is
now	missing	in	action.	The	result	will	be	a	crash	at	best,	and	chaos	at	worst.

To	unregister	an	object	as	a	recipient	of	notifications,	send	the	notification	center	the
removeObserver:	message.	(Alternatively,	you	can	unregister	an	object	for	just	a	specific
set	of	notifications	with	removeObserver:name:object:.)	The	object	passed	as	the
observer:	argument	is	the	object	that	is	no	longer	to	receive	notifications.	What	object
that	is	depends	on	how	you	registered	in	the	first	place:

You	called	addObserver:...

You	supplied	an	observer	originally;	that	is	the	observer	you	must	now	unregister.

You	called	addObserverForName:...

The	call	to	addObserverForName:...	returned	an	observer	token	object	typed	as	an
NSObjectProtocol	(its	real	class	and	nature	are	no	concern	of	yours);	that	is	the
observer	you	must	now	unregister.

The	trick	is	finding	the	right	moment	to	unregister.	The	fallback	solution	is	the	registered
instance’s	deinit	method,	this	being	the	last	lifetime	event	an	instance	is	sent	before	it
goes	out	of	existence.

If	you’re	calling	addObserverForName:...	multiple	times	from	the	same	class,	you’re
going	to	end	up	receiving	from	the	notification	center	multiple	observer	tokens,	which	you
need	to	preserve	so	that	you	can	unregister	all	of	them	later.	If	your	plan	is	to	unregister
everything	at	once,	one	way	to	handle	this	situation	is	through	an	instance	property	that	is
a	mutable	collection.	My	favored	approach	is	a	Set	property:

var	observers	=	Set<NSObject>()

Each	time	I	register	for	a	notification	using	addObserverForName…,	I	capture	the	result	and
add	it	to	the	set:

let	ob	=	NSNotificationCenter.defaultCenter().addObserverForName(/*...*/)

self.observers.insert(ob	as!	NSObject)

When	it’s	time	to	unregister,	I	enumerate	the	set	and	empty	it:
for	ob	in	self.observers	{

				NSNotificationCenter.defaultCenter().removeObserver(ob)

}

self.observers.removeAll()

WARNING

NSNotificationCenter	cannot	be	introspected:	you	cannot	ask	an	NSNotificationCenter	what	objects	are	registered
with	it	as	notification	recipients.	This	is	a	major	gap	in	Cocoa’s	functionality,	and	can	make	it	difficult	to	track	down
bugs	if	you	make	a	mistake	such	as	unregistering	an	observer	prematurely	(as	usual,	I	know	this	from	bitter
experience).

Posting	a	Notification
Although	you’ll	mostly	be	interested	in	receiving	notifications	from	Cocoa,	you	can	also
take	advantage	of	the	notification	mechanism	as	a	way	of	communicating	between	your
own	objects.	One	reason	for	doing	this	might	be	that	two	objects	are	conceptually	distant
or	independent	from	one	another.	You	should	probably	avoid	using	notifications	too	freely,
or	as	an	excuse	for	not	bothering	to	devise	proper	lines	of	communication	between
objects;	but	they	are	certainly	appropriate	in	some	circumstances.	(I’ll	raise	this	point
again	in	Chapter	13.)

To	use	notifications	in	this	way,	your	objects	must	play	both	roles	in	the	communication
chain.	One	of	your	objects	(or	more	than	one)	will	register	to	receive	a	notification,
identified	by	name	or	object	or	both,	as	I’ve	already	described.	Another	of	your	objects
will	post	a	notification,	identified	in	the	same	way.	The	notification	center	will	then	pass
the	message	along	from	the	poster	to	the	registered	recipient(s).

To	post	a	notification,	send	to	the	notification	center	the	message
postNotificationName:object:userInfo:.

For	example,	one	of	my	apps	is	a	simple	card	game.	The	game	needs	to	know	when	a	card
is	tapped.	But	a	card	knows	nothing	about	the	game;	when	it	is	tapped,	it	simply	emits	a
virtual	shriek	by	posting	a	notification:

NSNotificationCenter.defaultCenter().postNotificationName(

				"cardTapped",	object:	self)

The	game	object	has	registered	for	the	"cardTapped"	notification,	so	it	hears	about	this
and	retrieves	the	notification’s	object;	now	it	knows	what	card	was	tapped	and	can
proceed	correctly.

NSTimer
A	timer	(NSTimer)	is	not,	strictly	speaking,	a	notification;	but	it	behaves	very	similarly.	It
is	an	object	that	gives	off	a	signal	(fires)	after	the	lapse	of	a	certain	time	interval.	The
signal	is	a	message	to	one	of	your	instances.	Thus	you	can	arrange	to	be	notified	when	a
certain	time	has	elapsed.	The	timing	is	not	perfectly	accurate,	but	it’s	pretty	good.

Timer	management	is	not	exactly	tricky,	but	it	is	a	little	unusual.	A	timer	that	is	actively
watching	the	clock	is	said	to	be	scheduled.	A	timer	may	fire	once,	or	it	may	be	a	repeating
timer.	To	make	a	timer	go	out	of	existence,	it	must	be	invalidated.	A	timer	that	is	set	to	fire
once	is	invalidated	automatically	after	it	fires;	a	repeating	timer	repeats	until	you
invalidate	it	by	sending	it	the	invalidate	message.	An	invalidated	timer	should	be
regarded	as	off-limits:	you	cannot	revive	it	or	use	it	for	anything	further,	and	you	should
probably	not	send	any	messages	to	it.

The	straightforward	way	to	create	a	timer	is	with	the	NSTimer	class	method
scheduledTimerWithTimeInterval:target:selector:userInfo:repeats:.	This	both
creates	the	timer	and	schedules	it,	so	that	it	begins	watching	the	clock	immediately.	The
target	and	selector	determine	what	message	will	be	sent	to	what	object	when	the	timer
fires;	the	method	in	question	should	take	one	parameter,	which	will	be	a	reference	to	the
timer.	The	userInfo	is	just	like	the	userInfo	of	a	notification.

WARNING

The	same	cautions	apply	to	a	Timer’s	target:	and	selector:	as	for	NSNotifications.	At	the	time	that	a	timer	fires,
the	target	must	exist,	and	it	must	have	a	method	corresponding	exactly	to	the	action	selector,	and	Objective-C	must	be
able	to	see	that	method.	Otherwise,	bad	things	will	happen.

An	NSTimer	has	a	tolerance	property,	which	is	a	time	interval	signifying	how	long	after
the	timer	would	fire	you’re	willing	to	grant	before	it	really	does	fire.	The	documentation
suggests	that	you	can	improve	device	battery	life	and	app	responsiveness	by	supplying	a
value	of	at	least	10	percent	of	the	timeInterval.

For	example,	one	of	my	apps	is	a	game	with	a	score;	I	want	to	penalize	the	user,	by

diminishing	the	score,	for	every	ten	seconds	that	elapses	after	each	move	without	the	user
making	a	further	move.	So	each	time	the	user	makes	a	move,	I	create	a	repeating	timer
whose	time	interval	is	ten	seconds	(and	I	also	invalidate	any	existing	timer);	in	the	method
that	the	timer	calls,	I	diminish	the	score.

WARNING

Timers	have	some	memory	management	implications	that	I’ll	discuss	in	Chapter	12,	along	with	a	block-based
alternative	to	a	timer.

Delegation
Delegation	is	an	object-oriented	design	pattern,	a	relationship	between	two	objects,	in
which	a	primary	object’s	behavior	is	customized	or	assisted	by	a	secondary	object.	The
secondary	object	is	the	primary	object’s	delegate.	No	subclassing	is	involved,	and	indeed
the	primary	object	is	agnostic	about	the	delegate’s	class.

As	implemented	by	Cocoa,	here’s	how	delegation	works.	A	built-in	Cocoa	class	has	an
instance	property,	usually	called	delegate	(it	will	certainly	have	delegate	in	its	name).
For	some	instance	of	that	Cocoa	class,	you	set	the	value	of	this	property	to	an	instance	of
one	of	your	classes.	At	certain	moments	in	its	activity,	the	Cocoa	class	promises	to	turn	to
its	delegate	for	instructions	by	sending	it	a	certain	message:	if	the	Cocoa	instance	finds
that	its	delegate	is	not	nil,	and	that	its	delegate	is	prepared	to	receive	that	message,	the
Cocoa	instance	sends	the	message	to	the	delegate.

Recall	the	discussion	of	protocols	from	Chapter	10.	Delegation	is	one	of	Cocoa’s	main
uses	of	protocols.	In	the	old	days,	delegate	methods	were	listed	in	the	Cocoa	class’s
documentation,	and	their	method	signatures	were	made	known	to	the	compiler	through	an
informal	protocol	(a	category	on	NSObject).	Now,	though,	a	class’s	delegate	methods	are
usually	listed	in	a	genuine	protocol	with	its	own	documentation.	There	are	over	70	Cocoa
delegate	protocols,	showing	how	heavily	Cocoa	relies	on	delegation.	Most	delegate
methods	are	optional,	but	in	a	few	cases	you’ll	discover	some	that	are	required.

Cocoa	Delegation
To	customize	a	Cocoa	instance’s	behavior	through	delegation,	you	start	with	one	of	your
classes,	which	adopts	the	relevant	delegate	protocol.	When	the	app	runs,	you	set	the	Cocoa
instance’s	delegate	property	(or	whatever	its	name	is)	to	an	instance	of	your	class.	You
might	do	this	in	code;	alternatively,	you	might	do	it	in	a	nib,	by	connecting	an	instance’s
delegate	outlet	(or	whatever	it’s	called)	to	an	appropriate	instance	that	is	to	serve	as
delegate.	Your	delegate	class	will	probably	do	other	things	besides	serving	as	this
instance’s	delegate.	Indeed,	one	of	the	nice	things	about	delegation	is	that	it	leaves	you
free	to	slot	delegate	code	into	your	class	architecture	however	you	like;	the	delegate	type
is	a	protocol,	so	the	actual	delegate	can	be	an	instance	of	any	class.

In	this	simple	example,	I	want	to	ensure	that	my	app’s	root	view	controller,	a
UINavigationController,	doesn’t	permit	the	app	to	rotate	—	the	app	should	appear	only	in
portrait	orientation	when	this	view	controller	is	in	charge.	But	UINavigationController
isn’t	my	class;	it	belongs	to	Cocoa.	My	own	class	is	a	different	view	controller,	a
UIViewController	subclass,	which	acts	as	the	UINavigationController’s	child.	How	can
the	child	tell	the	parent	how	to	rotate?	Well,	UINavigationController	has	a	delegate
property,	typed	as	UINavigationControllerDelegate	(a	protocol).	It	promises	to	send	this
delegate	the	navigationControllerSupportedInterfaceOrientations	message	when	it
needs	to	know	how	to	rotate.	So	my	view	controller,	in	response	to	a	very	early	lifetime
event,	sets	itself	as	the	UINavigationController’s	delegate.	It	also	implements	the
navigationControllerSupportedInterfaceOrientations	method.	Presto,	the	problem
is	solved:

class	ViewController	:	UIViewController,	UINavigationControllerDelegate	{

				override	func	viewDidLoad()	{

								super.viewDidLoad()

								self.navigationController?.delegate	=	self

				}

				func	navigationControllerSupportedInterfaceOrientations(

								nav:	UINavigationController)	->	UIInterfaceOrientationMask	{

												return	.Portrait

				}

}

An	app’s	shared	application	instance,	UIApplication.sharedApplication(),	has	a
delegate	that	serves	such	an	important	role	in	the	life	of	the	app	that	the	Xcode	app
templates	automatically	supply	one	—	a	class	called	AppDelegate.	I	described	in
Chapter	6	how	an	app	gets	started	by	calling	UIApplicationMain,	which	instantiates	the
AppDelegate	class	and	makes	that	instance	the	delegate	of	the	shared	application	instance
(which	it	has	also	created).	As	I	pointed	out	in	Chapter	10,	AppDelegate	formally	adopts
the	UIApplicationDelegate	protocol,	signifying	that	it	is	ready	to	serve	in	this	role;
respondsToSelector:	is	then	sent	to	the	app	delegate	to	see	what	UIApplicationDelegate
protocol	methods	it	implements.	Thereafter,	the	application	delegate	instance	is	sent
messages	letting	it	know	of	major	events	in	the	lifetime	of	the	app.	That	is	why	the
UIApplicationDelegate	protocol	method
application:didFinishLaunchingWithOptions:	is	so	important;	it	is	one	of	the	earliest
opportunities	for	your	code	to	run.

TIP

The	UIApplication	delegate	methods	are	also	provided	as	notifications.	This	lets	an	instance	other	than	the	app
delegate	hear	conveniently	about	application	lifetime	events,	by	registering	for	them.	A	few	other	classes	provide
duplicate	events	similarly;	for	example,	UITableView’s	tableView:didSelectRowAtIndexPath:	delegate	method	is
matched	by	a	notification	UITableViewSelectionDidChangeNotification.

By	convention,	many	Cocoa	delegate	method	names	contain	the	modal	verbs	should,
will,	or	did.	A	will	message	is	sent	to	the	delegate	just	before	something	happens;	a	did
message	is	sent	to	the	delegate	just	after	something	happens.	A	should	method	is	special:
it	returns	a	Bool,	and	you	are	expected	to	respond	with	true	to	permit	something	or	false
to	prevent	it.	The	documentation	tells	you	what	the	default	response	is;	you	don’t	have	to
implement	a	should	method	if	the	default	response	is	always	acceptable.

In	many	cases,	a	property	will	control	some	overall	behavior,	while	a	delegate	method	lets
you	modify	that	behavior	based	on	circumstances	at	runtime.	For	example,	whether	the
user	can	tap	the	status	bar	to	make	a	scroll	view	scroll	quickly	to	the	top	is	governed	by
the	scroll	view’s	scrollsToTop	property;	but	even	if	this	property’s	value	is	true,	you	can
prevent	this	behavior	for	a	particular	tap	by	returning	false	from	the	scroll	view
delegate’s	scrollViewShouldScrollToTop:.

When	you’re	searching	the	documentation	for	how	you	can	be	notified	of	a	certain	event,
be	sure	to	consult	the	corresponding	delegate	protocol,	if	there	is	one.	You’d	like	to	know
when	the	user	taps	in	a	UITextField	to	start	editing	it?	You	won’t	find	anything	relevant	in
the	UITextField	class	documentation;	what	you’re	after	is	textFieldDidBeginEditing:	in
the	UITextFieldDelegate	protocol.	And	so	on.

Implementing	Delegation
The	Cocoa	pattern	of	a	delegate	whose	responsibilities	are	described	by	a	protocol	is	one
that	you	will	want	to	imitate	in	your	own	code.	Setting	up	this	pattern	takes	some	practice,
and	can	be	a	little	time-consuming,	but	it	is	often	the	correct	approach,	because	it

appropriately	assigns	knowledge	and	responsibility	to	the	various	objects	involved.

Consider	an	actual	case.	In	one	of	my	apps	I	present	a	view	controller	whose	view
contains	three	sliders	that	the	user	can	move	to	choose	a	color.	Appropriately,	this	view
controller	is	a	UIViewController	subclass	called	ColorPickerController.	When	the	user
taps	Done	or	Cancel,	the	view	should	be	dismissed;	but	first,	the	code	that	presented	this
view	needs	to	hear	about	what	color	the	user	chose.	So	I	need	to	send	a	message	from	the
ColorPickerController	instance	back	to	the	instance	that	presented	it.

Here	is	the	declaration	for	the	message	that	I	want	the	ColorPickerController	to	send
before	it	goes	out	of	existence:

func	colorPicker	(picker:ColorPickerController,

				didSetColorNamed	theName:String?,

				toColor	theColor:UIColor?)

The	question	is:	where	and	how	should	this	method	be	declared?

Now,	it	happens	that	in	my	app	I	know	the	class	of	the	instance	that	will	in	fact	present	the
ColorPickerController:	it	is	a	SettingsController.	So	I	could	simply	declare	this	method	in
SettingsController.	But	this,	if	it	is	all	I	do,	means	that	the	ColorPickerController,	in	order
to	send	this	message	to	the	SettingsController,	must	know	that	the	view	that	presented	it	is
a	SettingsController.	But	surely	it	is	merely	a	contingent	fact	that	the	instance	being	sent
this	message	is	a	SettingsController;	it	should	be	open	to	any	class	to	present	and	dismiss
a	ColorPickerController,	and	thus	to	be	eligible	to	receive	this	message.

Therefore	we	want	ColorPickerController	itself	to	declare	the	method	that	it	itself	is	going
to	call;	and	we	want	it	to	send	the	message	blindly	to	some	receiver,	without	regard	to	the
class	of	that	receiver.	That’s	what	a	protocol	is	for!	The	solution,	then,	is	for
ColorPickerController	to	define	a	protocol,	with	this	method	as	part	of	that	protocol,	and
for	the	class	that	presents	a	ColorPickerController	to	conform	to	that	protocol.
ColorPickerController	also	has	an	appropriately	typed	delegate	property;	this	provides
the	channel	of	communication,	and	tells	the	compiler	that	sending	this	message	is	legal:

protocol	ColorPickerDelegate	:	class	{

				//	color	==	nil	on	cancel

				func	colorPicker	(picker:ColorPickerController,

								didSetColorNamed	theName:String?,

								toColor	theColor:UIColor?)

}

class	ColorPickerController	:	UIViewController	{

				weak	var	delegate:	ColorPickerDelegate?

				//	...

}

(On	the	meaning	of	and	reasons	for	the	weak	attribute,	see	Chapter	5.)	When	my
SettingsController	instance	creates	and	configures	a	ColorPickerController	instance,	it
also	sets	itself	as	that	ColorPickerController’s	delegate	—	which	it	can	do,	because	it
adopts	the	protocol:

extension	SettingsController	:	ColorPickerDelegate	{

				func	showColorPicker()	{

								let	colorName	=	//	...

								let	c	=	//	...

								let	cpc	=	ColorPickerController(colorName:colorName,	andColor:c)

								cpc.delegate	=	self

								self.presentViewController(cpc,	animated:	true,	completion:	nil)

				}

				func	colorPicker	(picker:ColorPickerController,

								didSetColorNamed	theName:String?,

								toColor	theColor:UIColor?)	{

												//	...

				}

}

Now,	when	the	user	picks	a	color,	the	ColorPickerController	knows	to	whom	it	should
send	colorPicker:didSetColorNamed:toColor:	—	namely,	its	delegate!	And	the
compiler	allows	this,	because	the	delegate	has	adopted	the	ColorPickerDelegate	protocol:

@IBAction	func	dismissColorPicker(sender	:	AnyObject?)	{	//	user	tapped	Done

				let	c	:	UIColor?	=	self.color

				self.delegate?.colorPicker(

								self,	didSetColorNamed:	self.colorName,	toColor:	c)

}

Data	Sources
A	data	source	is	like	a	delegate,	except	that	its	methods	supply	the	data	for	another	object
to	display.	The	chief	Cocoa	classes	with	data	sources	are	UITableView,	UICollectionView,
UIPickerView,	and	UIPageViewController.	In	each	case,	the	data	source	must	formally
adopt	a	data	source	protocol	with	required	methods.

It	comes	as	a	surprise	to	some	beginners	that	a	data	source	is	necessary	at	all.	Why	isn’t	a
table’s	data	just	part	of	the	table?	Or	why	isn’t	there	at	least	some	fixed	data	structure	that
contains	the	data?	The	reason	is	that	such	an	architecture	would	violate	generality.	Use	of
a	data	source	separates	the	object	that	displays	the	data	from	the	object	that	manages	the
data,	and	leaves	the	latter	free	to	store	and	obtain	that	data	however	it	likes	(see	on	model–
view–controller	in	Chapter	13).	The	only	requirement	is	that	the	data	source	must	be	able
to	supply	information	quickly,	because	it	will	be	asked	for	it	in	real	time	when	the	data
needs	displaying.

Another	surprise	is	that	the	data	source	is	different	from	the	delegate.	But	this	again	is
only	for	generality;	it’s	an	option,	not	a	requirement.	There	is	no	reason	why	the	data
source	and	the	delegate	should	not	be	the	same	object,	and	most	of	the	time	they	probably
will	be.	Indeed,	in	most	cases,	data	source	methods	and	delegate	methods	will	work
closely	together;	you	won’t	even	be	conscious	of	the	distinction.

In	this	example	from	one	of	my	apps,	I	implement	a	UIPickerView	that	allows	the	user	to
configure	a	game	by	saying	how	many	stages	it	should	consist	of	(“1	Stage,”	“2	Stages”,
and	so	on).	The	first	two	methods	are	UIPickerView	data	source	methods;	the	third
method	is	a	UIPickerView	delegate	method.	It	takes	all	three	methods	to	supply	the	picker
view’s	content:

extension	NewGameController:	UIPickerViewDelegate,	UIPickerViewDataSource	{

				func	numberOfComponentsInPickerView(pickerView:	UIPickerView)	->	Int	{

								return	1

				}

				func	pickerView(pickerView:	UIPickerView,

								numberOfRowsInComponent	component:	Int)	->	Int	{

												return	9

				}

				func	pickerView(pickerView:	UIPickerView,

								titleForRow	row:	Int,	forComponent	component:	Int)	->	String?	{

												return	"\(row+1)	Stage"	+	(row	>	0	?	"s"	:	"")

				}

}

Actions
An	action	is	a	message	emitted	by	an	instance	of	a	UIControl	subclass	(a	control)
reporting	a	significant	user	event	taking	place	in	that	control.	The	UIControl	subclasses
are	all	simple	interface	objects	that	the	user	can	interact	with	directly,	such	as	a	button
(UIButton)	or	a	segmented	control	(UISegmentedControl).

The	significant	user	events	(control	events)	are	listed	under	UIControlEvents	in	the
Constants	section	of	the	UIControl	class	documentation.	Different	controls	implement
different	control	events:	for	example,	a	segmented	control’s	Value	Changed	event	signifies
that	the	user	has	tapped	to	select	a	different	segment,	but	a	button’s	Touch	Up	Inside	event
signifies	that	the	user	has	tapped	the	button.	Of	itself,	a	control	event	has	no	external
effect;	the	control	responds	visually	(for	example,	a	tapped	button	looks	tapped),	but	it
doesn’t	automatically	share	the	information	that	the	event	has	taken	place.	If	you	want	to
know	when	a	control	event	takes	place,	so	that	you	can	respond	to	it	in	your	code,	you
must	arrange	for	that	control	event	to	trigger	an	action	message.

Here’s	how	it	works.	A	control	maintains	an	internal	dispatch	table:	for	each	control	event,
there	can	be	any	number	of	target–action	pairs,	in	each	of	which	the	action	is	a	message
selector	(the	name	of	a	method)	and	the	target	is	the	object	to	which	that	message	is	to	be
sent.	When	a	control	event	occurs,	the	control	consults	its	dispatch	table,	finds	all	the
target–action	pairs	associated	with	that	control	event,	and	sends	each	action	message	to	the
corresponding	target	(Figure	11-1).

Figure	11-1.	The	target–action	architecture

There	are	two	ways	to	manipulate	a	control’s	action	dispatch	table:

Action	connection

You	can	configure	an	action	connection	in	a	nib.	I	described	in	Chapter	7	how	to	do
this,	but	I	didn’t	completely	explain	the	underlying	mechanism.	Now	all	is	revealed:	an
action	connection	formed	in	the	nib	editor	is	a	visual	way	of	configuring	a	control’s
action	dispatch	table.

Code

You	can	use	code	to	operate	directly	on	the	control’s	action	dispatch	table.	The	key
method	here	is	the	UIControl	instance	method	addTarget:action:forControlEvents:,
where	the	target:	is	an	object,	the	action:	is	a	selector	(in	Swift,	a	string),	and	the
controlEvents:	are	designated	by	a	bitmask	(see	Option	sets).	Unlike	a	notification
center,	a	control	also	has	methods	for	introspecting	the	dispatch	table.

WARNING

The	same	cautions	apply	to	a	UIControl’s	target:	and	action:	as	for	NSNotifications,	earlier	in	this	chapter.	At	the
time	that	a	control	event	fires,	the	target	must	exist,	and	it	must	have	a	method	corresponding	exactly	to	the	action
selector,	and	Objective-C	must	be	able	to	see	that	method.	Otherwise,	bad	things	will	happen.

Recall	the	example	of	a	control	and	its	action	from	Chapter	7.	We	have	a	buttonPressed:
method:

@IBAction	func	buttonPressed(sender:AnyObject)	{

				let	alert	=	UIAlertController(

								title:	"Howdy!",	message:	"You	tapped	me!",	preferredStyle:	.Alert)

				alert.addAction(

								UIAlertAction(title:	"OK",	style:	.Cancel,	handler:	nil))

				self.presentViewController(alert,	animated:	true,	completion:	nil)

}

The	purpose	of	this	method	is	to	be	called	when	the	user	taps	a	certain	button	in	the
interface.	In	Chapter	7,	we	arranged	for	that	to	happen	by	setting	up	an	action	connection
in	the	nib:	we	connected	the	button’s	Touch	Up	Inside	event	to	the	ViewController
buttonPressed:	method.	In	reality,	we	were	forming	a	target–action	pair	and	adding	that
target–action	pair	to	the	button’s	dispatch	table	for	the	Touch	Up	Inside	control	event.

Instead	of	making	that	arrangement	in	the	nib,	we	could	have	done	the	same	thing	in	code.
Suppose	we	had	never	drawn	that	action	connection.	And	suppose	that,	instead,	we	have
an	outlet	connection	from	the	view	controller	to	the	button,	called	button.	Then	the	view
controller,	after	the	nib	loads,	can	configure	the	button’s	dispatch	table	like	this:

self.button.addTarget(self,

				action:	"buttonPressed:",

				forControlEvents:	.TouchUpInside)

WARNING

A	control	event	can	have	multiple	target–action	pairs.	You	might	configure	it	this	way	intentionally,	but	it	is	also
possible	to	do	so	accidentally.	Unintentionally	giving	a	control	event	a	target–action	pair	without	removing	its
existing	target-action	pair	is	an	easy	mistake	to	make,	and	can	cause	some	very	mysterious	behavior.	For	example,	if
we	had	formed	an	action	connection	in	the	nib	and	configured	the	dispatch	table	in	code,	a	tap	on	the	button	would
cause	buttonPressed:	to	be	called	twice.

The	signature	for	the	action	selector	can	be	in	any	of	three	forms:

The	fullest	form	takes	two	parameters:

The	control,	usually	typed	as	AnyObject.
The	UIEvent	that	generated	the	control	event.

A	shorter	form,	the	one	most	commonly	used,	omits	the	second	parameter.
buttonPressed:	is	an	example;	it	takes	one	parameter,	sender.	When	buttonPressed:
is	called	through	an	action	message	emanating	from	the	button,	sender	will	be	a
reference	to	the	button.
There	is	a	still	shorter	form	that	omits	both	parameters.

What	is	the	UIEvent,	and	what	is	it	for?	Well,	a	touch	event	is	generated	whenever	the
user	does	something	with	a	finger	(sets	it	down	on	the	screen,	moves	it,	raises	it	from	the
screen).	UIEvents	are	the	lowest-level	objects	charged	with	communication	of	touch
events	to	your	app.	A	UIEvent	is	basically	a	timestamp	(a	Double)	along	with	a	collection
(Set)	of	touch	events	(UITouch).	The	action	mechanism	deliberately	shields	you	from	the
complexities	of	touch	events,	but	by	electing	to	receive	the	UIEvent,	you	can	still	deal

with	those	complexities	if	you	want	to.

WARNING

Curiously,	none	of	the	action	selector	parameters	provide	any	way	to	learn	which	control	event	triggered	the	current
action	selector	call!	Thus,	for	example,	to	distinguish	a	Touch	Up	Inside	control	event	from	a	Touch	Up	Outside
control	event,	their	corresponding	target–action	pairs	must	specify	two	different	action	handlers;	if	you	dispatch	them
to	the	same	action	handler,	that	handler	cannot	discover	which	control	event	occurred.

The	Responder	Chain
A	responder	is	an	object	that	knows	how	to	receive	UIEvents	directly	(see	the	previous
section).	It	knows	this	because	it	is	an	instance	of	UIResponder	or	a	UIResponder
subclass.	If	you	examine	the	Cocoa	class	hierarchy,	you’ll	find	that	just	about	any	class
that	has	anything	to	do	with	display	on	the	screen	is	a	responder.	A	UIView	is	a	responder.
A	UIWindow	is	a	responder.	A	UIViewController	is	a	responder.	Even	a	UIApplication	is
a	responder.	Even	the	app	delegate	is	a	responder!

A	UIResponder	has	four	low-level	methods	for	receiving	touch-related	UIEvents:

touchesBegan:withEvent:

touchesMoved:withEvent:

touchesEnded:withEvent:

touchesCancelled:withEvent:

These	methods	—	the	touch	methods	—	are	called	to	notify	a	responder	of	a	touch	event.
No	matter	how	your	code	ultimately	hears	about	a	user-related	touch	event	—	indeed,
even	if	your	code	never	hears	about	a	touch	event	(because	Cocoa	reacted	in	some
automatic	way	to	the	touch,	without	your	code’s	intervention)	—	the	touch	was	initially
communicated	to	a	responder	through	one	of	the	touch	methods.

The	mechanism	for	this	communication	starts	by	deciding	which	responder	the	user
touched.	The	UIView	methods	hitTest:withEvent:	and	pointInside:withEvent:	are
called	until	the	correct	view	(the	hit-test	view)	is	located.	Then	UIApplication’s
sendEvent:	method	is	called,	which	calls	UIWindow’s	sendEvent:,	which	calls	the
correct	touch	method	of	the	hit-test	view	(a	responder).

The	responders	in	your	app	participate	in	a	responder	chain,	which	essentially	links	them
up	through	the	view	hierarchy.	A	UIView	can	sit	inside	another	UIView,	its	superview,	and
so	on	until	we	reach	the	app’s	UIWindow	(a	UIView	that	has	no	superview).	The
responder	chain,	from	bottom	to	top,	looks	like	this:

1.	 The	UIView	that	we	start	with	(here,	the	hit-test	view).
2.	 If	this	UIView	is	a	UIViewController’s	view,	that	UIViewController.
3.	 The	UIView’s	superview.
4.	 Go	back	to	step	2	and	repeat!	Keep	repeating	until	we	reach…
5.	 The	UIWindow.
6.	 The	UIApplication.
7.	 The	UIApplication’s	delegate.

Deferring	Responsibility
The	responder	chain	can	be	used	to	let	a	responder	defer	responsibility	for	handling	a
touch	event.	If	a	responder	receives	a	touch	event	and	can’t	handle	it,	the	event	can	be
passed	up	the	responder	chain	to	look	for	a	responder	that	can	handle	it.	This	can	happen
in	two	main	ways:

The	responder	doesn’t	implement	the	relevant	touch	method.
The	responder	implements	the	relevant	touch	method	to	call	super.

For	example,	a	plain	vanilla	UIView	has	no	native	implementation	of	the	touch	methods.

Thus,	by	default,	even	if	a	UIView	is	the	hit-test	view,	the	touch	event	effectively	falls
through	the	UIView	and	travels	up	the	responder	chain,	looking	for	someone	to	respond	to
it.	In	certain	situations,	it	might	make	sense	for	you	to	defer	responsibility	for	this	touch	to
the	main	background	view,	or	even	to	the	UIViewController	that	controls	it.

Here’s	an	example	from	one	of	my	apps.	The	app	is	a	game	that’s	a	simple	jigsaw	puzzle:
a	rectangular	photo	is	divided	into	smaller	pieces,	and	the	pieces	are	shuffled.	The	user’s
job	is	to	tap	two	pieces	in	succession	to	swap	them.	The	background	view	is	a	UIView
subclass	called	Board;	the	puzzle	pieces	are	generic	UIView	objects,	and	are	subviews	of
the	Board.	Knowledge	of	how	a	piece	should	respond	when	tapped	resides	in	the	Board,
which	knows	the	overall	layout	of	the	pieces;	thus,	I	don’t	need	a	puzzle	piece	to	contain
any	tap	detection	logic.	Therefore	I	take	advantage	of	the	responder	chain	to	defer
responsibility:	the	puzzle	pieces	don’t	implement	any	touch	methods,	and	a	tap	on	a
puzzle	piece	falls	through	to	the	Board,	which	does	perform	touch	detection	and	handles
the	tap,	and	tells	the	tapped	piece	what	to	do.	The	user,	of	course,	knows	nothing	about
that:	outwardly,	you	touch	a	piece	and	the	piece	responds.

Nil-Targeted	Actions
A	nil-targeted	action	is	a	target–action	pair	in	which	the	target	is	nil.	There	is	no
designated	target	object,	so	the	following	rule	is	used:	starting	with	the	hit-test	view	(the
view	with	which	the	user	is	interacting),	Cocoa	walks	up	the	responder	chain,	one
responder	at	a	time,	looking	for	an	object	that	can	respond	to	the	action	message:

If	a	responder	is	found	that	handles	this	message,	that	method	is	called	on	that
responder,	and	that’s	the	end.
If	we	get	all	the	way	to	the	top	of	the	responder	chain	without	finding	a	responder	to
handle	this	message,	the	message	goes	unhandled	(with	no	penalty)	—	in	other	words,
nothing	happens.

Suppose,	for	example,	that	we	were	to	configure	a	button	in	code,	like	this:
self.button.addTarget(nil,

				action:	"buttonPressed:",

				forControlEvents:	.TouchUpInside)

That’s	a	nil-targeted	action.	So	what	happens	when	the	user	taps	the	button?	First,	Cocoa
looks	in	the	UIButton	itself	to	see	whether	it	responds	to	buttonPressed:.	If	not,	it	looks
in	the	UIView	that	is	its	superview.	And	so	on,	up	the	responder	chain.	If	self	is	the	view
controller	that	owns	the	view	that	contains	the	button,	and	if	the	class	of	this	view
controller	does	in	fact	implement	buttonPressed:,	tapping	the	button	will	cause	the	view
controller’s	buttonPressed:	to	be	called!

It’s	obvious	how	to	construct	a	nil-targeted	action	in	code:	you	set	up	a	target–action	pair
where	the	target	is	nil,	as	in	the	preceding	example.	But	how	do	you	construct	a	nil-
targeted	action	in	a	nib?	The	answer	is:	you	form	a	connection	to	the	First	Responder
proxy	object	(in	the	dock).	This	is	what	the	First	Responder	proxy	object	is	for!	The	First
Responder	isn’t	a	real	object	with	a	known	class,	so	before	you	can	connect	an	action	to	it,
you	have	to	define	the	action	message	within	the	First	Responder	proxy	object,	like	this:

1.	 Select	the	First	Responder	proxy	in	the	nib,	and	switch	to	the	Attributes	inspector.
2.	 You’ll	see	a	table	(probably	empty)	of	user-defined	nil-targeted	First	Responder

actions.	Click	the	Plus	button	and	give	the	new	action	a	signature;	it	must	take	a
single	parameter	(so	that	its	name	will	end	with	a	colon).

3.	 Now	you	can	Control-drag	from	a	control,	such	as	a	UIButton,	to	the	First
Responder	proxy	to	specify	a	nil-targeted	action	with	the	signature	you	specified.

Key–Value	Observing
Key–value	observing,	or	KVO,	is	a	notification	mechanism	that	doesn’t	use	the
NSNotificationCenter.	It	allows	one	object	to	be	registered	directly	with	a	second	object	so
as	to	be	notified	when	a	value	in	the	second	object	changes.	Moreover,	the	second	object
—	the	observed	object	—	doesn’t	actually	have	to	do	anything;	it	needn’t	even	be
conscious	of	the	fact	that	this	registration	has	taken	place.	When	the	value	in	the	observed
object	changes,	the	registered	object	—	the	observer	—	is	automatically	notified.	(Perhaps
a	better	architectural	analogy	would	be	with	the	target–action	mechanism;	this	is	a	target–
action	mechanism	that	works	between	any	two	objects.)

When	you	use	KVO,	the	observer	will	be	your	object;	you	will	write	the	code	that	will
respond	when	the	observer	is	notified	of	the	change	for	which	it	has	registered.	But	the
observed	object,	the	one	with	which	you	register	to	hear	about	changes,	needn’t	be	your
object	at	all;	in	fact,	it	often	will	not	be.	Many	Cocoa	objects	promise	to	behave	in	a	KVO
compliant	way,	and	you	are	invited	and	expected	to	use	KVO	on	them.	Typically,	KVO	is
used	in	place	of	delegation	or	notifications.

The	process	of	using	KVO	may	be	broken	down	into	three	stages:

Registration

To	hear	about	a	change	in	a	value	belonging	to	the	observed	object,	we	must	be
registered	with	the	observed	object.	This	typically	involves	calling	the	observed	object’s
addObserver:forKeyPath:options:context:	method.	(All	objects	derived	from
NSObject	have	this	method,	because	it	is	injected	into	NSObject	by	the	informal
protocol	NSKeyValueObserving,	which	is	actually	a	set	of	categories	on	NSObject	and
other	classes.)

Change

The	change	takes	place	in	the	value	belonging	to	the	observed	object,	and	it	must	take
place	in	a	special	way	—	a	KVO	compliant	way.	Typically,	this	means	using	a	key–
value	coding	compliant	accessor	to	make	the	change.	Setting	a	property	passes	through
a	key–value	coding	compliant	accessor.

Notification

The	observer	is	automatically	notified	that	the	value	in	the	observed	object	has	changed:
its	observeValueForKeyPath:ofObject:change:context:	method,	which	we	have
implemented	for	exactly	this	purpose,	is	called	by	the	runtime.

It	is	also	necessary,	sooner	or	later,	to	unregister	with	the	observed	object	when	we	no
longer	want	to	receive	this	notification,	by	sending	it	removeObserver:forKeyPath:	(or
removeObserver:forKeyPath:context:).	This	is	important	for	the	same	reason	that
unregistering	for	an	NSNotification	is	important:	if	we	don’t,	the	app	can	crash	if	the
notification	is	sent	to	an	observer	that	has	gone	out	of	existence.	You	must	explicitly
unregister	the	observer	for	every	key	path	for	which	it	is	registered;	you	can’t	use	nil	as
the	second	argument	to	mean	“all	key	paths.”	The	last	possible	moment	to	unregister	is	the
observer’s	deinit;	obviously,	this	requires	that	the	observer	have	a	reference	to	the
observed	object.

But	there’s	more.	All	observers	must	be	unregistered	from	an	observed	object	before	the
observed	object	goes	out	of	existence!	If	an	object	goes	out	of	existence	with	observers
still	registered	with	it,	your	app	will	crash,	with	a	helpful	message	in	the	console:	“An
instance	…	was	deallocated	while	key	value	observers	were	still	registered	with	it.”

Here’s	an	example	from	my	actual	code.	An	AVPlayerViewController	is	a	view	controller
whose	view	displays	video	content.	When	the	view	first	appears,	there	can	be	a	nasty
flash,	because	the	view	is	black	until	the	video	content	is	ready,	which	may	take	a	little
time.	The	solution	is	to	make	the	view	initially	invisible,	until	the	video	content	is	ready.
Thus,	we	want	to	be	notified	when	the	video	content	is	ready.	AVPlayerViewController
has	a	readyForDisplay	property	—	so	we	want	to	be	notified	when	that	property	becomes
true.	But	AVPlayerViewController	has	no	delegate,	and	provides	no	notifications.	The
solution	is	to	use	KVO:	we	register	ourself	with	the	AVPlayerViewController	to	hear
about	changes	in	its	readyForDisplay	property.	Here’s	the	part	of	my	code	that	configures
and	shows	an	AVPlayerViewController’s	view:

func	setUpChild()	{

				//	...

				let	av	=	AVPlayerViewController()

				av.player	=	player

				av.view.frame	=	CGRectMake(10,10,300,200)

				av.view.hidden	=	true	//	looks	nicer	if	we	don't	show	until	ready

				av.addObserver(self,

								forKeyPath:	"readyForDisplay",	options:	[],	context:	nil)	

				//	...

}

override	func	observeValueForKeyPath(keyPath:	String?,

				ofObject	object:	AnyObject?,	change:	[String	:	AnyObject]?,

				context:	UnsafeMutablePointer<()>)	{	

								if	keyPath	==	"readyForDisplay"	{

												if	let	obj	=	object	as?	AVPlayerViewController	{

																dispatch_async(dispatch_get_main_queue(),	{

																				self.finishConstructingInterface(obj)

																})

												}

								}

}

func	finishConstructingInterface	(vc:AVPlayerViewController)	{

				if	!vc.readyForDisplay	{

								return

				}

				vc.removeObserver(self,	forKeyPath:"readyForDisplay")	

				vc.view.hidden	=	false

}

The	AVPlayerViewController’s	view	starts	out	invisible	(hidden	is	true).	We	register	to
hear	about	any	change	in	its	readyForDisplay	property.

The	AVPlayerViewController’s	readyForDisplay	property	changes,	and	we	hear	about
it	because	our	observeValueForKeyPath:...	is	called.	We	make	sure	this	is	the	right
notification;	if	it	is,	we	proceed	to	finish	constructing	the	interface.	Note	that	the
observed	object	(the	AVPlayerViewController)	arrives	as	the	object	parameter;	this	not
only	helps	us	identify	the	notification,	but	also	allows	us	to	communicate	with	that
object.	There	are	no	guarantees	about	the	thread	on	which
observeValueForKeyPath:...	will	be	called,	so	we	step	out	to	the	main	thread	before
doing	anything	that	would	affect	the	interface.

After	one	final	check	to	make	sure	that	readyForDisplay	actually	changed	from	false
to	true,	we	unregister	—	we	only	need	to	hear	about	this	change	once	—	and	proceed
to	make	the	view	visible	(hidden	is	false).

The	options:	argument	is	a	bitmask	(NSKeyValueObservingOptions).	One	of	the	things
it	lets	us	do	is	ask	for	the	new	value	of	the	changed	property	to	be	sent	to	us	in	the
change:	dictionary.	Thus,	we	can	rewrite	our	code	so	as	to	move	the	check	for	whether
readyForDisplay	is	now	true	into	our	implementation	of	observeValueForKeyPath….	We
now	register	like	this:

av.addObserver(

				self,	forKeyPath:	"readyForDisplay",	options:	.New,	context:	nil)

And	here’s	the	rest	of	the	code;	as	I	suggested	in	Chapter	5,	a	sequence	of	guard
statements	reads	nicely	here:

override	func	observeValueForKeyPath(keyPath:	String?,

				ofObject	object:	AnyObject?,	change:	[String	:	AnyObject]?,

				context:	UnsafeMutablePointer<()>)	{

								guard	keyPath	==	"readyForDisplay"	else	{return}

								guard	let	obj	=	object	as?	AVPlayerViewController	else	{return}

								guard	let	ok	=	change?[NSKeyValueChangeNewKey]	as?	Bool	else	{return}

								guard	ok	else	{return}

								dispatch_async(dispatch_get_main_queue(),	{

												self.finishConstructingInterface(obj)

								})

}

func	finishConstructingInterface	(vc:AVPlayerViewController)	{

				vc.removeObserver(self,	forKeyPath:"readyForDisplay")

				vc.view.hidden	=	false

}

You’re	probably	wondering	about	the	context:	parameter	in	addObserver:...	and
observeValueForKeyPath:....	On	the	whole,	I	recommend	against	using	this	parameter,
but	I’ll	tell	you	about	it	anyway.	It	is	said	to	represent	“arbitrary	data”	that	is	handed	into
addObserver:...	and	retrieved	in	observeValueForKeyPath:....	You	have	to	be	careful
with	its	value,	however,	because	it	is	typed	as	UnsafeMutablePointer<Void>.	This	means
that	its	memory	is	not	managed	while	the	runtime	has	hold	of	it;	you	must	manage	its
memory	by	keeping	a	persistent	reference	to	the	value	elsewhere.	The	usual	approach	is	to
use	a	global	variable	(a	variable	declared	at	the	top	level	of	a	file);	to	prevent	it	from	being
too	global,	you	can	declare	it	private,	like	this:

private	var	con	=	"ObserveValue"

When	you	call	addObserver:...,	you	pass	the	address	of	this	variable,	&con,	as	the
context:	argument.	When	you	are	notified	in	observeValueForKeyPath:...,	you	can	use
the	context:	parameter	as	an	identifier	by	comparing	it	to	&con:

override	func	observeValueForKeyPath(keyPath:	String?,

				ofObject	object:	AnyObject?,	change:	[String	:	AnyObject]?,

				context:	UnsafeMutablePointer<Void>)	{

								if	context	!=	&con	{

												return	//	wrong	notification

								}

								//	...

				}

In	that	code,	the	value	stored	in	the	global	variable	is	irrelevant;	we	are	using	its	address
as	an	identifier.	If	you	want	to	use	the	value	stored	in	the	global	variable,	coerce	the
UnsafeMutablePointer	to	another	UnsafeMutablePointer	specified	as	the	underlying	type.
Now	you	can	access	the	underlying	value	as	the	UnsafeMutablePointer’s	memory	property.

In	our	example,	con	is	a	String:
override	func	observeValueForKeyPath(keyPath:	String?,

				ofObject	object:	AnyObject?,	change:	[String	:	AnyObject]?,

				context:	UnsafeMutablePointer<Void>)	{

								let	c	=	UnsafeMutablePointer<String>(context)

								let	s	=	c.memory	//	"ObserveValue"

								//	...

				}

Key–value	observing	is	a	deep	mechanism;	consult	Apple’s	Key-Value	Observing	Guide
for	full	information.	(For	example,	it	is	possible	to	observe	a	mutable	NSArray,	but	the
mechanism	is	more	elaborate	than	I	have	described	here.)	KVO	also	has	some	unfortunate
shortcomings.	For	one	thing,	all	notifications	arrive	by	calling	the	same	bottleneck
method;	that’s	a	pity.	And	keeping	track	of	who’s	observing	whom,	and	making	sure	both
observer	and	observed	have	appropriate	lifetimes	and	that	unregistration	takes	place	in	a
timely	fashion,	can	be	tricky.	But	in	general,	KVO	is	useful	for	keeping	values
coordinated	in	different	objects;	and,	as	I’ve	already	said,	certain	parts	of	Cocoa	will
expect	you	to	use	it.

TIP

Both	the	observed	and	the	observer	in	KVO	must	derive	from	NSObject.	Moreover,	if	the	property	to	be	observed	is
declared	in	Swift,	it	must	be	marked	dynamic	—	otherwise,	KVO	won’t	work.	(The	reason	is	that	KVO	works	by
swizzling	the	accessor	methods;	Cocoa	needs	to	be	able	to	reach	right	in	and	change	your	object’s	code,	and	it	can’t
do	that	unless	the	property	is	dynamic.)

Swamped	by	Events
Your	code	runs	only	because	Cocoa	sends	an	event	and	you	had	previously	set	up	a
method	ready	to	receive	it.	Cocoa	has	the	potential	to	send	lots	of	events,	telling	you	what
the	user	has	done,	informing	you	of	each	stage	in	the	lifetime	of	your	app	and	its	objects,
asking	for	your	input	on	how	to	proceed.	To	receive	the	events	that	you	need	to	hear
about,	your	code	is	peppered	with	methods	that	are	entry	points	—	methods	that	you	have
written	with	just	the	right	name	and	in	just	the	right	class	so	that	they	can	be	called	by
Cocoa	through	events.	In	fact,	it	is	easy	to	imagine	that	in	many	cases	your	code	for	a
class	will	consist	almost	entirely	of	entry	points.

Arranging	all	those	entry	points	is	one	of	your	primary	challenges	as	an	iOS	programmer.
You	know	what	you	want	to	do,	but	you	don’t	get	to	“just	do	it.”	You	have	to	divide	up
your	app’s	functionality	and	allocate	it	in	accordance	with	when	and	how	Cocoa	is	going
to	call	into	your	code.	Before	you’ve	written	a	single	line	of	your	own	code,	the	skeleton
structure	of	a	class	is	likely	to	have	been	largely	mapped	out	for	you	by	the	need	to	be
prepared	to	receive	the	events	that	Cocoa	is	going	to	want	to	send	you.

Suppose,	for	example,	that	your	iPhone	app	presents	an	interface	consisting	of	a	table
view.	(This	is	in	fact	an	extremely	probable	scenario.)	You’re	likely	to	have	a
corresponding	UITableViewController	subclass;	UITableViewController	is	a	built-in
UIViewController	subclass,	and	an	instance	of	your	UITableViewController	subclass	will
own	and	control	the	table	view,	plus	you’ll	probably	use	this	same	class	as	the	table	view’s
data	source	and	delegate.	In	this	single	class,	then,	you’re	likely	to	want	to	implement	at	a
minimum	the	following	methods:

initWithCoder:	or	initWithNibName:bundle:

UIViewController	lifetime	method,	where	you	perform	instance	initializations.
viewDidLoad

UIViewController	lifetime	method,	where	you	perform	view-related	initializations.
viewDidAppear:

UIViewController	lifetime	method,	where	you	set	up	states	that	need	to	apply	only
while	your	view	is	onscreen.	For	example,	if	you’re	going	to	register	for	a	notification
or	set	up	a	timer,	this	is	a	likely	place	to	do	it.

viewDidDisappear:

UIViewController	lifetime	method,	where	you	reverse	what	you	did	in
viewDidAppear:.	For	example,	this	would	be	a	likely	place	to	unregister	for	a
notification	or	invalidate	a	repeating	timer	that	you	set	up	in	viewDidAppear:.

supportedInterfaceOrientations

UIViewController	query	method,	where	you	specify	what	device	orientations	are
allowed	for	this	view	controller’s	main	view.

numberOfSectionsInTableView:	
tableView:numberOfRowsInSection:	
tableView:cellForRowAtIndexPath:

UITableView	data	source	query	methods,	where	you	specify	the	contents	of	the	table.
tableView:didSelectRowAtIndexPath:

UITableView	delegate	user	action	method,	where	you	respond	when	the	user	taps	a	row
of	the	table.

deinit

Swift	class	instance	lifetime	method,	where	you	perform	end-of-life	cleanup.

Suppose,	further,	that	you	did	in	fact	use	viewDidAppear:	to	register	for	a	notification	and
to	set	up	a	timer.	Then	that	notification	has	a	selector	(unless	you	used	a	block),	and	the
timer	has	a	selector;	you	must	therefore	also	implement	the	methods	specified	by	those
selectors.

We	already	have,	then,	about	a	dozen	methods	whose	presence	is	effectively	a	matter	of
boilerplate.	These	are	not	your	methods;	you	are	never	going	to	call	them.	They	are
Cocoa’s	methods,	which	you	have	placed	here	so	that	each	can	be	called	at	the	appropriate
moment	in	the	life	story	of	your	app.

The	logic	of	a	program	laid	out	in	this	fashion	is	by	no	means	easy	to	understand!	I’m	not
criticizing	Cocoa	here	—	indeed,	it’s	hard	to	imagine	how	else	an	application	framework
could	work	—	but,	purely	as	an	objective	matter	of	fact,	the	result	is	that	a	Cocoa
program,	even	your	own	program,	even	while	you’re	developing	it,	is	hard	to	read,
because	it	consists	of	numerous	disconnected	entry	points,	each	with	its	own	meaning,
each	called	at	its	own	set	moment	which	is	not	in	any	way	obvious	from	looking	at	the
program.	To	understand	what	our	hypothetical	class	does,	you	have	to	know	already	such
things	as	when	viewDidAppear:	is	called	and	how	it	is	typically	used;	otherwise,	you
don’t	even	know	where	to	look	to	find	the	program’s	logic	and	behavior,	let	alone	how	to
interpret	what	you	see	when	you	do	look	there.	And	this	difficulty	is	greatly	compounded
when	you	try	to	read	someone	else’s	code	(this	is	one	reason	why,	as	I	mentioned	in
Chapter	8,	sample	code	is	not	all	that	helpful	to	a	beginner).

Looking	at	the	code	of	an	iOS	program	—	even	your	own	code	—	your	eyes	can	easily
glaze	over	at	the	sight	of	all	these	methods	called	automatically	by	Cocoa	under	various
circumstances.	To	be	sure,	experience	will	teach	you	about	such	things	as	the	overridden
UIViewController	methods	and	the	table	view	delegate	and	data	source	methods.	On	the
other	hand,	no	amount	of	experience	will	tell	you	that	a	certain	method	is	called	as	a
button’s	action	or	through	a	notification.	Comments	really	help,	and	I	strongly	advise	you,
as	you	develop	any	iOS	app,	to	comment	every	method,	quite	heavily	if	need	be,	saying
what	that	method	does	and	under	what	circumstances	you	expect	it	to	be	called	—
especially	if	it	is	an	entry	point,	where	it	is	Cocoa	itself	that	will	do	the	calling.

Perhaps	the	most	common	kind	of	mistake	in	writing	a	Cocoa	app	is	not	that	there’s	a	bug
in	your	code	itself,	but	that	you’ve	put	the	code	in	the	wrong	place.	Your	code	isn’t
running,	or	it’s	running	at	the	wrong	time,	or	the	pieces	are	running	in	the	wrong	order.	I
see	questions	about	this	sort	of	thing	all	the	time	on	the	various	online	user	forums	(these
are	all	actual	examples	that	appeared	over	the	course	of	just	two	days):

There’s	a	delay	between	the	time	when	my	view	appears	and	when	my	button	takes	on
its	correct	title.	

That’s	because	you	put	the	code	that	sets	the	button’s	title	in	viewDidAppear:.	That’s
too	late;	your	code	needs	to	run	earlier,	perhaps	in	viewWillAppear:.
My	subviews	are	positioned	in	code	and	they’re	turning	out	all	wrong.	
That’s	because	you	put	the	code	that	positions	your	subviews	in	viewDidLoad.	That’s
too	early;	your	code	needs	to	run	later,	when	your	view’s	dimensions	have	been
determined.
My	view	is	rotating	even	though	my	view	controller’s
supportedInterfaceOrientations	says	not	to.	
That’s	because	you	implemented	supportedInterfaceOrientations	in	the	wrong
class;	it	needs	to	be	implemented	in	the	UINavigationController	that	contains	your
view	controller	(or	by	using	the	delegate’s
navigationControllerSupportedInterfaceOrientations,	as	I	described	earlier	in
this	chapter).
I	set	up	an	action	connection	for	Value	Changed	on	a	text	field,	but	my	code	isn’t	being
called	when	the	user	edits.	
That’s	because	you	connected	the	wrong	control	event;	a	text	field	emits	Editing
Changed,	not	Value	Changed.

Adding	to	your	challenges	is	that	fact	that	you	can’t	really	know	precisely	when	an	entry
point	will	be	called.	The	documentation	may	give	you	a	general	sense,	but	in	most	cases
there	are	no	guarantees	about	when	events	will	arrive	and	in	what	order.	What	you	think	is
going	to	happen,	and	even	what	the	documentation	leads	you	to	believe	is	going	to
happen,	might	not	be	quite	what	really	does	happen.	Your	own	code	can	trigger
unintended	events.	The	documentation	might	not	make	it	clear	just	when	a	notification
will	be	sent.	There	could	even	be	a	bug	in	Cocoa	such	that	events	are	called	in	a	way	that
seems	to	contradict	the	documentation.	And	you	have	no	access	to	the	Cocoa	source	code,
so	you	can’t	work	out	the	underlying	details.	Therefore	I	also	recommend	that	as	you
develop	your	app,	you	instrument	your	code	heavily	with	caveman	debugging	(print	and
NSLog;	see	Chapter	9).	As	you	test	your	code,	keep	an	eye	on	the	console	output	and	check
whether	the	messages	make	sense.	You	may	be	surprised	at	what	you	discover.

Delayed	Performance
Your	code	is	executed	in	response	to	some	event;	but	your	code	in	turn	may	trigger	a	new
event	or	chain	of	events.	Sometimes	this	causes	bad	things	to	happen:	there	might	be	a
crash,	or	Cocoa	might	appear	not	to	have	done	what	you	said	to	do.	To	solve	this	problem,
sometimes	you	just	need	to	step	outside	Cocoa’s	own	chain	of	events	for	a	moment	and
wait	for	everything	to	settle	down	before	proceeding.

The	technique	for	doing	this	is	called	delayed	performance.	You	tell	Cocoa	to	do
something,	not	right	this	moment,	but	in	a	little	while,	when	things	have	settled	down.
Perhaps	you	need	only	a	very	short	delay,	possibly	even	as	short	as	zero	seconds,	just	to
let	Cocoa	finish	doing	something,	such	as	laying	out	the	interface.	Technically,	you’re
allowing	the	current	run	loop	to	finish,	completing	and	unwinding	the	entire	current
method	call	stack,	before	proceeding	further	with	your	own	code.

When	you	program	iOS,	you’re	likely	to	be	using	delayed	performance	a	lot	more	than
you	might	expect.	With	experience,	you’ll	develop	a	kind	of	sixth	sense	for	when	delayed
performance	might	be	the	solution	to	your	difficulties.

The	main	way	to	get	delayed	performance	in	iOS	programming	is	by	calling
dispatch_after.	It	takes	a	block	(a	function)	stating	what	should	happen	after	the
specified	time	has	passed.	Calling	dispatch_after	is	a	bit	elaborate,	though,	especially	in
Swift	where	there’s	a	lot	of	coercing	to	do;	so	I’ve	written	a	utility	function	that	simplifies
things	and	calls	dispatch_after	for	me:

func	delay(delay:Double,	closure:()->())	{

				dispatch_after(

								dispatch_time(

												DISPATCH_TIME_NOW,

												Int64(delay	*	Double(NSEC_PER_SEC))

),

								dispatch_get_main_queue(),	closure)

}

That	utility	function	is	so	important	that	I	routinely	paste	it	at	the	top	level	of	the
AppDelegate	class	file	in	every	app	I	write.	It’s	going	to	come	in	handy,	I	know!	To	use	it,
I	call	delay	with	a	delay	time	(usually	a	very	small	number	of	seconds	such	as	0.1)	and	an
anonymous	function	saying	what	to	do	after	the	delay.	Note	that	what	you	propose	to	do	in
this	anonymous	function	will	be	done	later	on;	you’re	deliberately	breaking	out	of	your
own	code’s	line-by-line	sequence	of	execution.	So	a	delayed	performance	call	will	be	the
last	call	in	its	own	surrounding	function,	and	cannot	return	any	value.

In	this	actual	example	from	one	of	my	own	apps,	the	user	has	tapped	a	row	of	a	table,	and
my	code	responds	by	creating	and	showing	a	new	view	controller:

override	func	tableView(tableView:	UITableView,

				didSelectRowAtIndexPath	indexPath:	NSIndexPath)	{

								let	t	=	TracksViewController(

												mediaItemCollection:	self.albums[indexPath.row])

								self.navigationController!.pushViewController(

												t,	animated:	true)

}

Unfortunately,	the	innocent-looking	call	to	my	TracksViewController	initializer
init(mediaItemCollection:)	can	take	a	moment	to	complete,	so	the	app	comes	to	a	stop
with	the	table	row	highlighted	—	very	briefly,	but	just	long	enough	to	startle	the	user.	To
cover	this	delay	with	a	sense	of	activity,	I’ve	rigged	my	UITableViewCell	subclass	to

show	a	spinning	activity	indicator	when	it’s	selected:
override	func	setSelected(selected:	Bool,	animated:	Bool)	{

				if	selected	{

								self.activityIndicator.startAnimating()

				}	else	{

								self.activityIndicator.stopAnimating()

				}

				super.setSelected(selected,	animated:	animated)

}

But	there’s	a	problem:	the	spinning	activity	indicator	never	appears	and	never	spins.	The
reason	is	that	the	events	are	stumbling	over	one	another	here.	UITableViewCell’s
setSelected:animated:	isn’t	called	until	the	UITableView	delegate	method
tableView:didSelectRowAtIndexPath:	has	finished.	But	the	delay	we’re	trying	to	paper
over	is	during	tableView:didSelectRowAtIndexPath:;	the	whole	problem	is	that	it
doesn’t	finish	fast	enough.

Delayed	performance	to	the	rescue!	I’ll	rewrite	tableView:didSelectRowAtIndexPath:
so	that	it	finishes	immediately	—	thus	triggering	setSelected:animated:	immediately
and	causing	the	activity	indicator	to	appear	and	spin	—	and	I’ll	use	delayed	performance
to	call	init(mediaItemCollection:)	later	on,	when	the	interface	has	ironed	itself	out:

override	func	tableView(tableView:	UITableView,

				didSelectRowAtIndexPath	indexPath:	NSIndexPath)	{

								delay(0.1)	{	//	let	spinner	start	spinning

												let	t	=	TracksViewController(

																mediaItemCollection:	self.albums[indexPath.row])

												self.navigationController!.pushViewController(

																t,	animated:	true)

								}

}

Chapter	12.	Memory	Management
Class	instances,	both	in	Swift	and	in	Objective-C,	are	reference	types	(see	Value	Types
and	Reference	Types).	Behind	the	scenes,	Swift	and	Objective-C	memory	management	for
reference	types	works	essentially	the	same	way.	Such	memory	management,	as	I	pointed
out	in	Chapter	5,	can	be	a	tricky	business.

Fortunately,	Swift	uses	ARC	(automatic	reference	counting),	so	that	you	don’t	have	to
manage	the	memory	for	every	reference	type	object	explicitly	and	individually,	as	was
once	necessary	in	Objective-C.	Thanks	to	ARC,	you	are	far	less	likely	to	make	a	memory
management	mistake,	and	more	of	your	time	is	liberated	to	concentrate	on	what	your	app
actually	does	instead	of	dealing	with	memory	management	concerns.

But	even	with	ARC	it	is	still	possible	to	make	a	memory	management	mistake,	or	to	be
caught	unawares	by	Cocoa’s	memory	management	behavior.	A	memory	management
mistake	can	lead	to	runaway	excessive	memory	usage,	crashes,	or	mysterious	misbehavior
of	your	app,	and	even	in	Swift	it	is	possible	to	make	such	a	mistake.	Cocoa	memory
management	can	be	surprising	in	individual	cases,	and	you	need	to	understand,	and
prepare	for,	what	Cocoa	is	going	to	do.

Principles	of	Cocoa	Memory	Management
The	reason	why	reference	type	memory	must	be	managed	at	all	is	that	references	to
reference	type	objects	are	merely	pointers.	The	real	object	pointed	to	occupies	a	hunk	of
memory	that	must	be	explicitly	set	aside	when	the	object	is	brought	into	existence	and	that
must	be	explicitly	freed	up	when	the	object	goes	out	of	existence.	The	memory	is	set	aside
when	the	object	is	instantiated,	but	how	is	this	memory	to	be	freed	up,	and	when	should	it
happen?

At	the	very	least,	an	object	should	certainly	go	out	of	existence	when	no	other	objects
exist	that	have	a	pointer	to	it.	An	object	without	a	pointer	to	it	is	useless;	it	is	occupying
memory,	but	no	other	object	has,	or	can	ever	get,	a	reference	to	it.	This	is	a	memory	leak.
Many	computer	languages	solve	this	problem	through	a	policy	called	garbage	collection.
Simply	put,	the	language	prevents	memory	leaks	by	periodically	sweeping	through	a
central	list	of	all	objects	and	destroying	those	to	which	no	pointer	exists.	But	garbage
collection	would	be	an	expensive	strategy	on	an	iOS	device,	where	memory	is	strictly
limited	and	the	processor	is	relatively	slow	(and	may	have	only	a	single	core).	Thus,
memory	in	iOS	must	be	managed	more	or	less	manually,	on	an	individual	basis;	each
object	needs	to	go	out	of	existence	exactly	when	it	is	no	longer	needed.

The	hard	part	in	that	sentence	is	the	word	“exactly.”	An	object	must	go	out	of	existence
neither	too	late	nor	too	soon.	Multiple	objects	can	have	a	pointer	(a	reference)	to	the	very
same	object.	If	both	the	object	Manny	and	the	object	Moe	have	a	pointer	to	the	object
Jack,	and	if	Manny	somehow	tells	Jack	to	go	out	of	existence	now,	poor	old	Moe	is	left
with	a	pointer	to	nothing	(or	worse,	to	garbage).	A	pointer	whose	object	has	been
destroyed	behind	the	pointer’s	back	is	a	dangling	pointer.	If	Moe	subsequently	uses	that
dangling	pointer	to	send	a	message	to	the	object	that	it	thinks	is	there,	the	app	will	crash.

To	prevent	both	dangling	pointers	and	memory	leakage,	there	is	a	policy	of	manual
memory	management	based	on	a	number,	maintained	by	every	reference	type	object,
called	its	retain	count.	The	rule	is	that	other	objects	can	increment	or	decrement	an
object’s	retain	count	—	and	that’s	all	they	are	allowed	to	do.	As	long	as	an	object’s	retain
count	is	positive,	the	object	will	persist.	No	object	has	the	direct	power	to	tell	another
object	to	be	destroyed;	rather,	as	soon	as	an	object’s	retain	count	is	decremented	to	zero,	it
is	destroyed	automatically.

By	this	policy,	every	object	that	needs	Jack	to	persist	should	increment	Jack’s	retain	count,
and	should	decrement	it	once	again	when	it	no	longer	needs	Jack	to	persist.	As	long	as	all
objects	are	well-behaved	in	accordance	with	this	policy,	the	problem	of	manual	memory
management	is	effectively	solved:

There	cannot	be	any	dangling	pointers,	because	any	object	that	has	a	pointer	to	Jack
has	incremented	Jack’s	retain	count,	thus	ensuring	that	Jack	persists.
There	cannot	be	any	memory	leaks,	because	any	object	that	no	longer	needs	Jack
decrements	Jack’s	retain	count,	thus	ensuring	that	eventually	Jack	will	go	out	of
existence	(when	the	retain	count	reaches	zero,	indicating	that	no	object	needs	Jack	any
longer).

Rules	of	Cocoa	Memory	Management
An	object	is	well-behaved	with	respect	to	memory	management	as	long	as	it	adheres	to
certain	very	simple,	well-defined	rules	in	conformity	with	the	basic	concepts	of	memory
management.	The	underlying	ethic	is	that	each	object	that	has	a	reference	to	a	reference
type	object	is	responsible	solely	for	its	own	memory	management	of	that	object,	in
accordance	with	these	rules.	If	all	objects	that	ever	get	a	reference	to	this	reference	type
object	behave	correctly	with	respect	to	these	rules,	the	object’s	memory	will	be	managed
correctly	and	it	will	go	out	of	existence	exactly	when	it	is	no	longer	needed.

Consider	three	objects:	Manny,	Moe,	and	Jack.	Poor	old	Jack	is	going	to	be	the	victim
here:	we’re	going	to	manage	his	memory,	and	if	Jack’s	memory	is	managed	correctly,	Jack
will	go	out	of	existence	correctly.	Manny	and	Moe	are	going	to	participate	in	managing	in
Jack’s	memory.	How	will	they	do	that?	Everything	will	be	fine	as	long	as	Manny	and	Moe
follow	these	rules:

If	Manny	or	Moe	explicitly	instantiates	Jack	—	by	directly	calling	an	initializer	—	then
the	initializer	increments	Jack’s	retain	count.
If	Manny	or	Moe	makes	a	copy	of	Jack	—	by	calling	copy	or	copyWithZone:	or
mutableCopy	or	any	other	method	with	copy	in	its	name	—	then	the	copy	method
increments	the	retain	count	of	this	new,	duplicate	Jack.
If	Manny	or	Moe	acquires	a	reference	to	Jack	(not	through	explicit	instantiation	or
copying),	and	needs	Jack	to	persist	—	long	enough	to	work	with	Jack	in	code,	or	long
enough	to	be	the	value	of	an	instance	property	—	then	he	himself	increments	Jack’s
retain	count.	(This	is	called	retaining	Jack.)
If	and	only	if	Manny	or	Moe,	himself,	has	done	any	of	those	things	—	that	is,	if	Manny
or	Moe	has	ever	directly	or	indirectly	caused	Jack’s	retain	count	to	be	incremented	—
then	when	he	himself	no	longer	needs	his	reference	to	Jack,	before	letting	go	of	that
reference,	he	decrements	Jack’s	retain	count	to	balance	exactly	all	previous	increments
that	he	himself	has	performed.	(This	is	called	releasing	Jack.)	Having	released	Jack,
Manny	or	Moe	should	then	assume	that	Jack	no	longer	exists,	because	if	this	causes
Jack’s	retain	count	to	drop	to	zero,	Jack	will	no	longer	exist.	This	is	the	golden	rule	of
memory	management	—	the	rule	that	makes	memory	management	work	coherently	and
correctly.

A	general	way	of	understanding	the	golden	rule	of	memory	management	is	to	think	in
terms	of	ownership.	If	Manny	has	created,	copied,	or	retained	Jack	—	that	is,	if	Manny
has	ever	incremented	Jack’s	retain	count	—	Manny	has	asserted	ownership	of	Jack.	Both
Manny	and	Moe	can	own	Jack	at	once,	but	each	is	responsible	only	for	managing	his	own
ownership	of	Jack	correctly.	It	is	the	responsibility	of	an	owner	of	Jack	eventually	to
decrement	Jack’s	retain	count	—	to	release	Jack,	thus	resigning	ownership	of	Jack.	The
owner	thus	says:	“Jack	may	or	may	not	persist	after	this,	but	as	for	me,	I’m	done	with
Jack,	and	Jack	can	go	out	of	existence	as	far	as	I’m	concerned.”	At	the	same	time,	a
nonowner	of	Jack	must	never	release	Jack.	As	long	as	all	objects	behave	this	way	with
respect	to	Jack,	Jack	will	not	leak	nor	will	any	pointer	to	Jack	be	left	dangling.

What	ARC	Is	and	What	It	Does
Once	upon	a	time,	retaining	and	releasing	an	object	was	a	matter	of	you,	the	programmer,
literally	sending	retain	and	release	messages	to	it.	NSObject	still	implements	retain
and	release,	but	under	ARC	(and	in	Swift)	you	can’t	call	them.	That’s	because	ARC	is
calling	them	for	you!	That’s	ARC’s	job	—	to	do	for	you	what	you	would	have	had	to	do	if
memory	management	were	still	up	to	the	programmer.

ARC	is	implemented	as	part	of	the	compiler.	The	compiler	is	literally	modifying	your
code	by	inserting	retain	and	release	calls	behind	the	scenes.	Thus,	for	example,	when
you	receive	a	reference	type	object	by	calling	some	method,	ARC	immediately	retains	it
so	that	it	will	persist	for	as	long	as	this	same	code	continues	to	run;	then	ARC	releases	it
when	the	code	comes	to	an	end.	Similarly,	when	you	create	or	copy	a	reference	type
object,	ARC	knows	that	its	retain	count	has	been	incremented,	and	releases	it	when	the
code	comes	to	an	end.

ARC	is	very	conservative,	but	also	very	accurate.	In	effect,	ARC	retains	at	every	juncture
that	might	have	the	slightest	implications	for	memory	management:	it	retains	when	an
object	is	received	as	an	argument,	it	retains	when	an	object	is	assigned	to	a	variable,	and
so	forth.	It	may	even	insert	temporary	variables,	behind	the	scenes,	to	enable	it	to	refer
sufficiently	early	to	an	object	so	that	it	can	retain	it.	But	of	course	it	eventually	also
releases	to	match.

How	Cocoa	Objects	Manage	Memory
Built-in	Cocoa	objects	will	take	ownership	of	objects	that	you	hand	to	them,	by	retaining
them,	if	it	makes	sense	for	them	to	do	so,	and	will	of	course	then	balance	that	retain	with	a
release	later.	Indeed,	this	is	so	generally	true	that	if	a	Cocoa	object	is	not	going	to	retain	an
object	you	hand	it,	there	will	be	a	note	to	that	effect	in	the	documentation.

A	collection,	such	as	an	NSArray	or	an	NSDictionary,	is	a	particularly	obvious	case	in
point	(see	Chapter	10	for	a	discussion	of	the	common	collection	classes).	An	object	can
hardly	be	an	element	of	a	collection	if	that	object	can	go	out	of	existence	at	any	time;	so
when	you	add	an	element	to	a	collection,	the	collection	asserts	ownership	of	the	object	by
retaining	it.	Thereafter,	the	collection	acts	as	a	well-behaved	owner.	If	this	is	a	mutable
collection,	then	if	an	element	is	removed	from	it,	the	collection	releases	that	element.	If
the	collection	object	goes	out	of	existence,	it	releases	all	its	elements.

Prior	to	ARC,	removing	an	object	from	a	mutable	collection	constituted	a	potential	trap.
Consider	the	following	Objective-C	code:

id	obj	=	myMutableArray[0];

[myMutableArray	removeObjectAtIndex:	0];	//	bad	idea	in	non-ARC	code!

//	...	could	crash	here	by	referring	to	obj…

As	I	just	said,	when	you	remove	an	object	from	a	mutable	collection,	the	collection
releases	it.	So	the	commented	line	of	code	in	the	previous	example	involves	an	implicit
release	of	the	object	that	used	to	be	element	0	of	myMutableArray.	If	this	reduces	the
object’s	retain	count	to	zero,	it	will	be	destroyed.	The	pointer	obj	will	then	be	a	dangling
pointer,	and	a	crash	may	be	in	our	future	when	we	try	to	use	it	as	if	it	were	a	real	object.

With	ARC,	however,	that	sort	of	danger	doesn’t	exist.	Assigning	a	reference	type	object	to
a	variable	retains	it!	Thus	that	code	is	perfectly	safe,	and	so	is	its	Swift	equivalent:

let	obj	=	myMutableArray[0]

myMutableArray.removeObjectAtIndex(0)

//	...	safe	to	refer	to	obj…

The	first	line	retains	the	object.	The	second	line	releases	the	object,	but	that	release
balances	the	retain	that	was	placed	on	the	object	when	the	object	was	placed	in	the
collection	originally.	Thus	the	object’s	retain	count	is	still	more	than	zero,	and	it	continues
to	exist	for	the	duration	of	this	code.

Autorelease	Pool
When	a	method	creates	an	instance	and	returns	that	instance,	some	memory	management
hanky-panky	has	to	take	place.	For	example,	consider	this	simple	code:

func	makeImage()	->	UIImage?	{

				if	let	im	=	UIImage(named:"myImage")	{

								return	im

				}

				return	nil

}

Think	about	the	retain	count	of	im,	the	UIImage	we	are	returning.	This	retain	count	has
been	incremented	by	our	call	to	the	UIImage	initializer	UIImage(named:).	According	to
the	golden	rule	of	memory	management,	as	we	pass	im	out	of	our	own	control	by
returning	it,	we	should	decrement	the	retain	count	of	im,	to	balance	the	increment	and
surrender	ownership.	But	when	can	we	possibly	do	that?	If	we	do	it	before	the	line	return
im,	the	retain	count	of	im	will	be	zero	and	it	will	vanish	in	a	puff	of	smoke;	we	will	be
returning	a	dangling	pointer.	But	we	can’t	do	it	after	the	line	return	im,	because	when
that	line	is	executed,	our	code	comes	to	an	end.

Clearly,	we	need	a	way	to	vend	this	object	without	decrementing	its	retain	count	now	—
so	that	it	stays	in	existence	long	enough	for	the	caller	to	receive	and	work	with	it	—	while
ensuring	that	at	some	future	time	we	will	decrement	its	retain	count,	so	as	to	balance	our
init(named:)	call	and	fulfill	our	own	management	of	this	object’s	memory.	The	solution
is	something	midway	between	releasing	the	object	and	not	releasing	it	—	ARC
autoreleases	it.

Here’s	how	autoreleasing	works.	Your	code	runs	in	the	presence	of	something	called	an
autorelease	pool.	When	ARC	autoreleases	an	object,	that	object	is	placed	in	the
autorelease	pool,	and	a	number	is	incremented	saying	how	many	times	this	object	has
been	placed	in	this	autorelease	pool.	From	time	to	time,	when	nothing	else	is	going	on,	the
autorelease	pool	is	automatically	drained.	This	means	that	the	autorelease	pool	releases
each	of	its	objects,	the	same	number	of	times	as	that	object	was	placed	in	this	autorelease
pool,	and	empties	itself	of	all	objects.	If	that	causes	an	object’s	retain	count	to	be	zero,	so
be	it;	the	object	is	destroyed	in	the	usual	way.	So	autoreleasing	an	object	is	just	like
releasing	it,	but	with	a	proviso,	“later,	not	right	this	second.”

In	general,	autoreleasing	and	the	autorelease	pool	are	merely	an	implementation	detail.
You	can’t	see	them;	they	are	just	part	of	how	ARC	works.	So	why	am	I	telling	you	about
them?	It’s	because	sometimes,	on	very	rare	occasions,	you	might	want	to	drain	the
autorelease	pool	yourself.	Consider	the	following	code	(it’s	slightly	artificial,	but	that’s
because	demonstrating	the	need	to	drain	the	autorelease	pool	isn’t	easy):

func	test()	{

				let	path	=	NSBundle.mainBundle().pathForResource("001",	ofType:	"png")!

				for	j	in	0	..<	50	{

								for	i	in	0	..<	100	{

												let	im	=	UIImage(contentsOfFile:	path)

								}

				}

}

That	method	does	something	that	looks	utterly	innocuous;	it	loads	an	image.	But	it	loads	it
repeatedly	in	a	loop.	As	the	loop	runs,	memory	climbs	constantly	(Figure	12-1);	by	the
time	our	method	comes	to	an	end,	our	app’s	memory	usage	has	reached	almost	34MB.

This	is	not	because	the	images	aren’t	being	released	each	time	through	the	loop;	it’s
because	a	lot	of	intermediate	objects	—	things	you’ve	never	even	heard	of,	such	as
NSPathStore2	objects	—	are	secondarily	generated	by	our	call	to	init(contentsOfFile:)
and	are	autoreleased,	and	are	all	sitting	there,	piling	up	in	the	autorelease	pool	by	the	tens
of	thousands,	waiting	for	the	pool	to	be	drained.	When	our	code	finally	comes	to	an	end,
the	autorelease	pool	is	drained,	and	our	memory	usage	drops	precipitately	back	down	to
almost	nothing.

Figure	12-1.	Memory	usage	grows	during	a	loop

Granted,	34MB	isn’t	exactly	a	massive	amount	of	memory.	But	you	may	imagine	that	a
more	elaborate	inner	loop	might	generate	more	and	larger	autoreleased	objects,	and	that
our	memory	usage	could	potentially	rise	quite	significantly.	Thus,	it	would	be	nice	to	have
a	way	to	drain	the	autorelease	pool	manually	now	and	then	during	the	course	of	a	loop
with	many	iterations.	Swift	provides	such	a	way	—	the	global	autoreleasepool	function,
which	takes	a	single	argument	that	you’ll	supply	as	a	trailing	anonymous	function.	Before
the	anonymous	function	is	called,	a	special	temporary	autorelease	pool	is	created,	and	is
used	for	all	autoreleased	objects	thereafter.	After	the	anonymous	function	exits,	the
temporary	autorelease	pool	is	drained	and	goes	out	of	existence.	Here’s	the	same	method
with	an	autoreleasepool	call	wrapping	the	inner	loop:

func	test()	{

				let	path	=	NSBundle.mainBundle().pathForResource("001",	ofType:	"png")!

				for	j	in	0	..<	50	{

								autoreleasepool	{

												for	i	in	0	..<	100	{

																let	im	=	UIImage(contentsOfFile:	path)

												}

								}

				}

}

The	difference	in	memory	usage	is	dramatic:	memory	holds	roughly	steady	at	less	than
2MB	(Figure	12-2).	Setting	up	and	draining	the	temporary	autorelease	pool	probably
involves	some	overhead,	so	if	possible	you	may	want	to	divide	your	loop	into	an	outer	and
an	inner	loop,	as	shown	in	the	example,	so	that	the	autorelease	pool	is	not	set	up	and	torn
down	on	every	iteration.

Figure	12-2.	Memory	usage	holds	steady	with	an	autorelease	pool

Memory	Management	of	Instance	Properties
Before	ARC,	managing	memory	for	instance	properties	(Objective-C	instance	variables,
Chapter	10)	was	one	of	the	trickiest	parts	of	Cocoa	programming.	The	correct	behavior	is
to	retain	a	reference	type	object	when	you	assign	it	to	a	property,	and	then	release	it	when
either	of	these	things	happens:

You	assign	a	different	value	to	the	same	property.
The	instance	whose	instance	property	this	is	goes	out	of	existence.

In	order	to	obey	the	golden	rule	of	memory	management,	the	object	taking	charge	of	this
memory	management	—	the	owner	—	clearly	needs	to	be	the	object	whose	instance
property	this	is.	The	only	way	to	ensure	that	memory	management	of	a	property	is	handled
correctly,	therefore,	is	to	implement	it	in	the	setter	method	for	that	property.	The	setter
must	release	whatever	object	is	currently	the	value	of	the	property,	and	must	retain
whatever	object	is	being	assigned	to	that	property.	The	exact	details	can	be	quite	tricky
(what	if	they	are	the	same	object?),	and	before	ARC	it	was	easy	for	programmers	to	get
them	wrong.	And	that,	of	course,	is	not	the	only	memory	management	needed;	to	prevent
a	leak	when	the	owner	goes	out	of	existence,	the	owner’s	dealloc	method	(the	Objective-
C	equivalent	of	deinit)	had	to	be	implemented	to	release	every	object	being	retained	as
the	value	of	a	property.

Fortunately,	ARC	understands	all	that,	and	the	memory	of	instance	properties,	like	the
memory	of	all	variables,	is	managed	correctly	for	you.

This	fact	also	gives	us	a	clue	as	to	how	to	release	an	object	on	demand.	This	is	a	valuable
thing	to	be	able	to	do,	because	an	object	may	be	using	a	lot	of	memory.	You	don’t	want	to
put	too	great	a	strain	on	the	device’s	memory,	so	you	want	to	release	the	object	as	soon	as
you’re	done	with	it.	Also,	when	your	app	goes	into	the	background	and	is	suspended,	the
Watchdog	process	will	terminate	it	in	the	background	if	it	is	found	to	be	using	too	much
memory;	so	you	might	want	to	release	this	object	when	you	are	notified	that	the	app	is
about	to	be	backgrounded.	(I	talked	about	that	problem	in	Chapter	3.)

You	can’t	(and	mustn’t)	call	release	explicity,	so	you	need	another	way	to	do	it,	some
way	that	is	consonant	with	the	design	and	behavior	of	ARC.	The	solution	is	to	assign
something	else	—	something	small	—	to	this	property.	That	causes	the	object	that	was
previously	the	value	of	this	property	to	be	released.	A	commonly	used	approach	is	to	type
this	property	as	an	Optional	—	possibly,	to	simplify	matters,	an	implicitly	unwrapped
Optional.	This	means	that	nil	can	be	assigned	to	it,	purely	as	a	way	of	releasing	the
current	wrapped	value.

Retain	Cycles	and	Weak	References
As	I	explained	in	Chapter	5,	you	can	get	yourself	into	a	retain	cycle	where	two	objects
have	references	to	one	another	—	for	example,	each	is	the	value	of	the	other’s	instance
property.	If	such	a	situation	is	allowed	to	persist	until	no	other	objects	have	a	reference	to
either	of	these	objects,	then	neither	can	go	out	of	existence,	because	each	has	a	retain
count	greater	than	zero	and	neither	will	“go	first”	and	release	the	other.	Since	these	two
objects,	ex	hypothesi,	can	no	longer	be	referred	to	by	any	object	except	one	another,	this
situation	can	now	never	be	remedied	—	these	objects	are	leaking.

The	solution	is	to	step	in	and	modify	how	the	memory	is	managed	for	one	of	these
references.	By	default,	a	reference	is	a	persisting	reference	(what	ARC	calls	a	strong	or
retain	reference):	assigning	to	it	retains	the	assigned	value.	In	Swift,	you	can	declare	a
reference	type	variable	as	weak	or	as	unowned	to	change	the	way	its	memory	is	managed:
weak

A	weak	reference	takes	advantage	of	a	powerful	ARC	feature.	When	a	reference	is
weak,	ARC	does	not	retain	the	object	assigned	to	it.	This	seems	dangerous,	because	it
means	that	the	object	might	go	out	of	existence	behind	our	backs,	leaving	us	with	a
dangling	pointer	and	leading	to	a	potential	crash	later	on.	But	ARC	is	very	clever	about
this.	It	keeps	track	of	all	weak	references	and	all	objects	assigned	to	them.	When	such
an	object’s	retain	count	drops	to	zero	and	the	object	is	about	to	be	destroyed,	ARC
sneaks	in	and	assigns	nil	to	the	reference	—	that’s	why	a	weak	reference	in	Swift	must
be	an	Optional	declared	with	var,	so	that	ARC	can	do	that.	Thus,	provided	you	handle
the	Optional	coherently,	nothing	bad	can	happen.

unowned

An	unowned	reference	is	a	different	kettle	of	fish.	When	you	mark	a	reference	as
unowned,	you’re	telling	ARC	to	take	its	hands	off	completely:	it	does	no	memory
management	at	all	when	something	is	assigned	to	this	reference.	This	really	is
dangerous	—	if	the	object	referred	to	goes	out	of	existence,	you	really	can	be	left	with	a
dangling	pointer	and	you	really	can	crash.	That	is	why	you	must	never	use	unowned
unless	you	know	that	the	object	referred	to	will	not	go	out	of	existence:	unowned	is	safe,
provided	the	object	referred	to	will	outlive	the	object	that	refers	to	it.	That	is	why	an
unowned	object	should	be	some	single	object,	assigned	only	once,	without	which	the
referrer	cannot	exist	at	all.

In	real	life,	a	weak	reference	is	most	commonly	used	to	connect	an	object	to	its	delegate
(Chapter	11).	A	delegate	is	an	independent	entity;	there	is	usually	no	reason	why	an	object
needs	to	claim	ownership	of	its	delegate,	and	indeed	an	object	is	usually	its	delegate’s
servant,	not	its	owner.	Ownership,	if	there	is	any,	often	runs	the	other	way;	Object	A	might
create	and	retain	Object	B,	and	make	itself	Object	B’s	delegate.	That’s	potentially	a	retain
cycle.	Therefore,	most	delegates	should	be	declared	as	weak	references:

class	ColorPickerController	:	UIViewController	{

				weak	var	delegate:	ColorPickerDelegate?

				//	...

}

Unfortunately,	properties	of	built-in	Cocoa	classes	that	keep	weak	references	are
sometimes	non-ARC	weak	references	(because	they	are	old	and	backward-compatible,

whereas	ARC	is	new).	Such	properties	are	declared	using	the	keyword	assign.	For
example,	AVSpeechSynthesizer’s	delegate	property	is	declared	like	this:

@property(nonatomic,	assign,	nullable)

				id<AVSpeechSynthesizerDelegate>	delegate;

In	Swift,	that	declaration	is	translated	like	this:
unowned(unsafe)	var	delegate:	AVSpeechSynthesizerDelegate?

The	Swift	term	unowned	and	the	Objective-C	term	assign	are	synonyms;	they	tell	you	that
there’s	no	ARC	memory	management	here.	The	unsafe	designation	is	a	further	warning
inserted	by	Swift;	unlike	your	own	code,	where	you	won’t	use	unowned	unless	it	is	safe,
Cocoa’s	unowned	is	potentially	dangerous	and	you	need	to	exercise	caution.

Even	though	your	code	is	using	ARC,	the	fact	that	Cocoa’s	code	is	not	using	ARC	means
that	memory	management	mistakes	can	still	occur.	A	reference	such	as	an
AVSpeechSynthesizer’s	delegate	can	end	up	as	a	dangling	pointer,	pointing	at	garbage,	if
the	object	to	which	that	reference	was	pointing	has	gone	out	of	existence.	If	anyone	(you
or	Cocoa)	tries	to	send	a	message	by	way	of	such	a	reference,	the	app	will	then	crash	—
and,	since	this	typically	happens	long	after	the	point	where	the	real	mistake	occurred,
figuring	out	the	cause	of	the	crash	can	be	quite	difficult.	The	typical	sign	of	such	a	crash	is
that	EXC_BAD_ACCESS	is	reported	in	connection	with	memory	management	activity
(Figure	12-3).	(This	is	the	sort	of	situation	in	which	you	might	need	to	turn	on	zombies	in
order	to	debug,	as	I’ll	describe	later	in	this	chapter.)

Figure	12-3.	A	crash	from	messaging	a	dangling	pointer

Defending	against	this	kind	of	situation	is	up	to	you.	If	you	assign	some	object	to	a	non-
ARC	unsafe	reference,	such	as	an	AVSpeechSynthesizer’s	delegate,	and	if	that	object	is
about	to	go	out	of	existence	at	a	time	when	this	reference	still	exists,	you	have	a	duty	to
assign	nil	(or	some	other	object)	to	that	reference,	thus	rendering	it	harmless.

Unusual	Memory	Management	Situations
If	you	are	using	NSNotificationCenter	to	register	for	notifications	(Chapter	11),	and	if	you
registered	with	the	notification	center	using	addObserver:selector:name:object:,	you
handed	the	notification	center	a	reference	to	some	object	(usually	self)	as	the	first
argument;	the	notification	center’s	reference	to	this	object	is	a	non-ARC	unsafe	reference,
and	there	is	a	danger	that	after	this	object	goes	out	of	existence	the	notification	center	will
try	to	send	a	notification	to	whatever	is	referred	to,	which	will	be	garbage.	That	is	why
you	must	unregister	before	that	can	happen.	This	is	similar	to	the	situation	with	delegates
that	I	was	talking	about	a	moment	ago.

If	you	registered	with	the	notification	center	using	addObserverForName:object:
queue:usingBlock:,	memory	management	can	be	even	more	tricky,	because:

The	observer	token	returned	from	the	call	to	addObserverForName:
object:queue:usingBlock:	is	retained	by	the	notification	center	until	you
unregister	it.
The	observer	token	may	also	be	retaining	you	(self)	through	the	block	(a	function,
probably	anonymous),	if	it	refers	to	self.	If	so,	then	until	you	unregister	the	observer
token	from	the	notification	center,	the	notification	center	is	retaining	you.	This	means
that	you	will	leak	until	you	unregister.	But	you	cannot	unregister	from	the	notification
center	in	deinit,	because	deinit	isn’t	going	to	be	called	so	long	as	you	are	registered.
In	addition,	if	you	also	retain	the	observer	token,	then	if	the	observer	token	is	retaining
you,	you	have	a	retain	cycle	on	your	hands.

Thus,	use	of	addObserverForName:object:queue:usingBlock:	can	put	you	into	the	same
situation	that	I	described	in	Weak	and	Unowned	References	in	Anonymous	Functions.
And	the	solution	is	the	same:	mark	self	as	weak	or	(preferably)	unowned	in	the
anonymous	function	that	you	pass	in	as	the	block:	argument.

Consider,	for	example,	this	(artificial)	code,	in	which	we,	a	view	controller,	register	for	a
notification	and	assign	the	observer	token	to	an	instance	property:

var	observer	:	AnyObject!

override	func	viewWillAppear(animated:	Bool)	{

				super.viewWillAppear(animated)

				self.observer	=	NSNotificationCenter.defaultCenter().addObserverForName(

								"woohoo",	object:nil,	queue:nil)	{

												_	in

												self.description

				}

}

Our	intention	is	eventually	to	unregister	the	observer;	that’s	why	we’re	keeping	a
reference	to	it.	It’s	natural	to	do	this	in	viewDidDisappear::

override	func	viewDidDisappear(animated:	Bool)	{

				super.viewDidDisappear(animated)

				NSNotificationCenter.defaultCenter().removeObserver(self.observer)

}

This	works	in	the	sense	that	the	observer	is	unregistered;	but	the	view	controller	itself	is
leaking.	We	can	see	this	by	logging	on	deinit:

deinit	{

				print("deinit")

}

In	a	situation	where	this	view	controller	should	be	destroyed	—	for	example,	it	was	a
presented	view	controller,	and	now	it	is	being	dismissed	—	deinit	is	never	called.	We
have	a	retain	cycle!	The	simplest	solution	is	to	mark	self	as	unowned	as	it	enters	the
anonymous	function;	this	is	safe	because	self	will	not	outlive	the	anonymous	function:

self.observer	=	NSNotificationCenter.defaultCenter().addObserverForName(

				"woohoo",	object:nil,	queue:nil)	{

								[unowned	self]	_	in	//	fix	the	leak

								self.description

}

Another	unusual	case	is	NSTimer	(Chapter	10).	The	NSTimer	class	documentation	says
that	“run	loops	maintain	strong	references	to	their	timers”;	it	then	says	of
scheduledTimerWithTimeInterval:target:...	that	“The	timer	maintains	a	strong
reference	to	target	until	it	(the	timer)	is	invalidated.”	This	should	set	off	alarm	bells	in
your	head:	“Danger,	Will	Robinson,	danger!”	The	documentation	is	warning	you	that	as
long	as	a	repeating	timer	has	not	been	invalidated,	the	target	is	being	retained	by	the	run
loop;	the	only	way	to	stop	this	is	to	send	the	invalidate	message	to	the	timer.	(With	a
non-repeating	timer,	the	problem	arises	less	starkly,	because	the	timer	invalidates	itself
immediately	after	firing.)

When	you	called	scheduledTimerWithTimeInterval:target:...,	you	probably	supplied
self	as	the	target:	argument.	This	means	that	you	(self)	are	being	retained,	and	cannot
go	out	of	existence	until	you	invalidate	the	timer.	You	can’t	do	this	in	your	deinit
implementation,	because	as	long	as	the	timer	is	repeating	and	has	not	been	sent	the
invalidate	message,	deinit	won’t	be	called.	You	therefore	need	to	find	another
appropriate	moment	for	sending	invalidate	to	the	timer.	There’s	no	good	way	out	of	this
situation;	you	simply	have	to	find	such	a	moment,	and	that’s	that.	For	example,	you	could
balance	creation	and	invalidation	of	the	timer	by	doing	them	in	viewDidAppear:	and
viewWillDisappear::

var	timer	:	NSTimer!

override	func	viewWillAppear(animated:	Bool)	{

				super.viewWillAppear(animated)

				self.timer	=	NSTimer.scheduledTimerWithTimeInterval(

								1,	target:	self,	selector:	"dummy:",	userInfo:	nil,	repeats:	true)

				self.timer.tolerance	=	0.1

}

func	dummy(t:NSTimer)	{

				print("timer	fired")

}

override	func	viewDidDisappear(animated:	Bool)	{

				super.viewDidDisappear(animated)

				self.timer?.invalidate()

}

A	more	flexible	solution	is	to	use	the	block-based	alternative	to	a	repeating	timer,
available	through	GCD.	You	must	still	take	precautions	to	prevent	the	timer’s	block	from
retaining	self	and	causing	a	retain	cycle,	just	as	with	notification	observers;	but	this	is
easy	to	do,	and	the	result	is	that	there	is	no	retain	cycle,	so	you	can	invalidate	the	timer	in
deinit	if	you	want	to.	The	timer	“object”	is	a	dispatch_source_t,	and	must	be	retained,
typically	as	an	instance	property	(which	ARC	will	manage	for	you,	even	though	it’s	a
pseudo-object).	The	timer	will	fire	repeatedly	after	you	initially	“resume”	it,	and	will	stop
firing	when	it	is	released,	typically	by	setting	the	instance	property	to	nil.

To	generalize	this	approach,	I’ve	created	a	CancelableTimer	class	that	can	be	used	as	an
NSTimer	replacement.	It	is	basically	a	combination	of	a	Swift	closure	and	a	GCD	timer

dispatch	source.	The	initializer	is	init(once:handler:).	The	handler:	is	called	when	the
timer	fires.	If	once:	is	false,	this	will	be	a	repeating	timer.	It	obeys	two	methods,
startWithInterval:	and	cancel:

class	CancelableTimer:	NSObject	{

				private	var	q	=	dispatch_queue_create("timer",nil)

				private	var	timer	:	dispatch_source_t!

				private	var	firsttime	=	true

				private	var	once	:	Bool

				private	var	handler	:	()	->	()

				init(once:Bool,	handler:()->())	{

								self.once	=	once

								self.handler	=	handler

								super.init()

				}

				func	startWithInterval(interval:Double)	{

								self.firsttime	=	true

								self.cancel()

								self.timer	=	dispatch_source_create(

												DISPATCH_SOURCE_TYPE_TIMER,

												0,	0,	self.q)

								dispatch_source_set_timer(self.timer,

												dispatch_walltime(nil,	0),

												UInt64(interval	*	Double(NSEC_PER_SEC)),

												UInt64(0.05	*	Double(NSEC_PER_SEC)))

								dispatch_source_set_event_handler(self.timer,	{

												if	self.firsttime	{

																self.firsttime	=	false

																return

												}

												self.handler()

												if	self.once	{

																self.cancel()

												}

								})

								dispatch_resume(self.timer)

				}

				func	cancel()	{

								if	self.timer	!=	nil	{

												dispatch_source_cancel(timer)

								}

				}

}

And	here’s	how	to	use	it	in	a	view	controller;	observe	that	we	can	cancel	the	timer	in
deinit,	provided	our	handler:	anonymous	function	avoids	a	retain	cycle:

var	timer	:	CancelableTimer!

override	func	viewDidLoad()	{

				super.viewDidLoad()

				self.timer	=	CancelableTimer(once:	false)	{

								[unowned	self]	in	//	avoid	retain	cycle

								self.dummy()

				}

				self.timer.startWithInterval(1)

}

func	dummy()	{

				print("timer	fired")

}

deinit	{

				print("deinit")

				self.timer?.cancel()

}

Other	Cocoa	objects	with	unusual	memory	management	behavior	will	usually	be	called
out	clearly	in	the	documentation.	For	example,	the	UIWebView	documentation	warns:
“Before	releasing	an	instance	of	UIWebView	for	which	you	have	set	a	delegate,	you	must
first	set	its	delegate	property	to	nil.”	And	a	CAAnimation	object	retains	its	delegate;
this	is	exceptional	and	can	cause	trouble	if	you’re	not	conscious	of	it.

Unfortunately,	there	are	also	situations	where	the	documentation	fails	to	warn	of	any
special	memory	management	considerations,	but	you	can	wind	up	with	a	retain	cycle
anyway.	Discovering	the	problem	can	be	tricky.	Areas	of	Cocoa	that	have	given	me
trouble	include	UIKit	Dynamics	(a	UIDynamicBehavior’s	action	handler)	and	WebKit	(a
WKWebKit’s	WKScriptMessageHandler).

Three	Foundation	collection	classes	—	NSPointerArray,	NSHashTable,	and	NSMapTable
—	are	similar	respectively	to	NSMutableArray,	NSMutableSet,	and
NSMutableDictionary,	except	that	(among	other	things)	their	memory	management	policy
is	up	to	you.	An	NSHashTable	created	with	the	class	method	weakObjectsHashTable,	for
example,	maintains	ARC-weak	references	to	its	elements,	meaning	that	they	are	replaced
by	nil	if	the	retain	count	of	the	object	to	which	they	were	pointing	has	dropped	to	zero.
You	may	find	uses	for	these	classes	as	a	way	of	avoiding	retain	cycles.

Nib	Loading	and	Memory	Management
When	a	nib	loads,	it	instantiates	its	nib	objects	(Chapter	7).	What	happens	to	these
instantiated	objects?	A	view	retains	its	subviews,	but	what	about	the	top-level	objects,
which	are	not	subviews	of	any	view?	The	answer	is,	in	effect,	that	they	do	not	have
elevated	retain	counts;	if	someone	doesn’t	immediately	retain	them,	they’ll	simply	vanish
in	a	puff	of	smoke.

If	you	don’t	want	that	to	happen	—	and	if	you	did,	why	would	you	be	loading	this	nib	in
the	first	place?	—	you	need	to	capture	a	reference	to	the	top-level	objects	instantiated	from
the	nib.	There	are	two	mechanisms	for	doing	this.	When	a	nib	is	loaded	by	calling
NSBundle’s	loadNibNamed:owner:options:	or	UINib’s	instantiateWithOwner:
options:,	an	NSArray	is	returned	consisting	of	the	top-level	objects	instantiated	by	the
nib-loading	mechanism.	So	it’s	sufficient	to	retain	this	NSArray,	or	the	objects	in	it.

In	some	cases,	this	happens	without	your	even	being	aware	of	it.	For	example,	when	a
view	controller	is	automatically	instantiated	from	a	storyboard,	it	is	actually	loaded	from	a
nib	with	just	one	top-level	object	—	the	view	controller.	So	the	view	controller	ends	up	as
the	sole	element	of	the	array	returned	from	instantiateWithOwner:options:.	The	view
controller	is	then	extracted	from	this	array	and	is	retained	by	the	runtime	—	by	assigning
it	a	place	in	the	view	controller	hierarchy.

The	other	possibility	is	to	configure	the	nib	owner	with	outlets	that	will	retain	the	nib’s
top-level	objects	when	they	are	instantiated.	We	did	that	in	Chapter	7	when	we	set	up	an
outlet	like	this:

class	ViewController:	UIViewController	{

				@IBOutlet	var	coolview	:	UIView!

We	then	loaded	the	nib	manually,	with	this	view	controller	as	owner:
NSBundle.mainBundle().loadNibNamed("View",	owner:	self,	options:	nil)

self.view.addSubview(self.coolview)

The	first	line	instantiates	the	top-level	view	from	the	nib,	and	the	nib-loading	mechanism
assigns	it	to	self.coolview.	Since	self.coolview	is	a	strong	reference,	it	retains	the
view.	Thus,	the	view	is	still	there	when	we	insert	it	into	the	interface	in	the	second	line.

The	same	thing	happens	when	a	view	controller	loads	the	nib	containing	its	main	view.
The	view	controller	has	a	view	outlet,	and	is	the	owner	of	the	nib.	Thus,	the	view	is
instantiated	and	is	assigned	by	the	nib-loading	mechanism	to	the	view	controller’s	view
property	—	which	retains	it.

It	is	common,	however,	for	@IBOutlet	properties	that	you	declare	to	be	marked	weak.	This
is	not	obligatory,	and	it	probably	does	no	harm	to	omit	the	weak	designation.	The	reason
such	outlets	work	properly	even	when	they	are	designated	weak	is	that	you	use	this
designation	only	when	this	is	an	outlet	to	an	object	that	you	know	will	be	retained	by
someone	else	—	for	example,	it’s	a	subview	of	your	view	controller’s	main	view.	A	view
is	retained	by	its	superview,	so	unless	you’re	going	to	be	removing	this	view	from	its
superview	later,	you	know	that	it	will	persist	and	there	is	no	need	for	your	@IBOutlet
property	to	retain	it	as	well.

Memory	Management	of	CFTypeRefs
A	CFTypeRef	is	a	pure	C	analog	to	an	Objective-C	object.	It	is	a	pointer	to	an	opaque	C
struct	(see	Appendix	A),	where	“opaque”	means	that	the	struct	has	no	directly	accessible
components.	This	struct	acts	as	a	pseudo-object;	a	CFTypeRef	is	analogous	to	an	object
type.	It	is	not	an	object	type,	however,	and	code	that	works	with	a	CFTypeRef	is	not
object-oriented;	a	CFTypeRef	has	no	properties	or	methods,	and	you	do	not	send	any
messages	to	it.	You	work	with	CFTypeRefs	entirely	through	global	functions,	which	are
actually	C	functions.

In	Objective-C,	CFTypeRef	types	are	distinguished	by	the	suffix	Ref	at	the	end	of	their
name.	In	Swift,	however,	this	Ref	suffix	is	dropped.

Here’s	some	Swift	code	for	drawing	a	gradient:
let	con	=	UIGraphicsGetCurrentContext()!

let	locs	:	[CGFloat]	=	[0.0,	0.5,	1.0]

let	colors	:	[CGFloat]	=	[

				0.8,	0.4,	//	starting	color,	transparent	light	gray

				0.1,	0.5,	//	intermediate	color,	darker	less	transparent	gray

				0.8,	0.4,	//	ending	color,	transparent	light	gray

]

let	sp	=	CGColorSpaceCreateDeviceGray()

let	grad	=

				CGGradientCreateWithColorComponents	(sp,	colors,	locs,	3)

CGContextDrawLinearGradient	(

				con,	grad,	CGPointMake(89,0),	CGPointMake(111,0),	[])

In	that	code,	con	is	a	CGContextRef,	known	in	Swift	as	a	CGContext;	sp	is	a
CGColorSpaceRef,	known	in	Swift	as	a	CGColorSpace;	and	grad	is	a	CGGradientRef,
known	in	Swift	as	a	CGGradient.	They	are	all	CFTypeRefs.	The	code	is	not	object-
oriented;	it	is	a	sequence	of	calls	to	global	C	functions.

Nevertheless,	a	CFTypeRef	pseudo-object	genuinely	is	a	pseudo-object.	This	means	that
the	thing	pointed	to	—	the	C	struct	at	the	far	end	of	the	pointer	—	is	effectively	the	same
sort	of	thing	that	you’d	find	at	the	far	end	of	a	reference	to	a	class	instance.	And	that,	in
turn,	means	that	memory	for	CFTypeRefs	must	be	managed.	In	particular,	a	CFTypeRef
pseudo-object	has	a	retain	count!	And	this	retain	count	works	exactly	as	for	a	true	object,
in	accordance	with	the	golden	rule	of	memory	management.	A	CFTypeRef	must	be
retained	when	it	comes	within	the	sphere	of	influence	of	an	owner	who	wants	it	to	persist,
and	it	must	be	released	when	that	owner	no	longer	needs	it.

In	Objective-C,	the	golden	rule,	as	applied	to	CFTypeRefs,	is	that	if	you	obtained	a
CFTypeRef	object	through	a	function	whose	name	contains	the	word	Create	or	Copy,	its
retain	count	has	been	incremented.	In	addition,	if	you	are	worried	about	the	object
persisting,	you’ll	retain	it	explicitly	by	calling	the	CFRetain	function	to	increment	its
retain	count.	To	balance	your	Create,	Copy,	or	CFRetain	call,	you	must	eventually	release
the	object.	By	default,	you’ll	do	that	by	calling	the	CFRelease	function;	some
CFTypeRefs,	however,	have	their	own	dedicated	object	release	functions	—	for	example,
for	CGPath,	there’s	a	dedicated	CGPathRelease	function.

In	Swift,	however,	you	will	never	need	to	call	CFRetain,	or	any	form	of	CFRelease;
indeed,	you	cannot.	Swift	will	do	it	for	you,	behind	the	scenes,	automatically.

Think	of	CFTypeRefs	as	living	in	two	worlds:	the	CFTypeRef	world	of	pure	C,	and	the

memory-managed	object-oriented	world	of	Swift.	When	you	obtain	a	CFTypeRef	pseudo-
object,	it	crosses	the	bridge	from	the	CFTypeRef	world	into	the	Swift	world.	From	that
moment	on,	until	you	are	done	with	it,	it	needs	memory	management.	Swift	is	aware	of
this,	and	for	the	most	part,	Swift	itself	will	use	the	golden	rule	and	will	apply	correct
memory	management.	Thus,	for	example,	the	code	I	showed	earlier	for	drawing	a	gradient
is	in	fact	memory-management	complete.	In	Objective-C,	we	would	have	to	release	sp	and
grad,	because	they	arrived	into	our	world	through	Create	calls;	if	we	failed	to	do	this,
they	would	leak.	In	Swift,	however,	there	is	no	need,	because	Swift	will	do	it	for	us.

Working	with	CFTypeRefs	in	Swift	is	thus	much	easier	than	in	Objective-C.	In	Swift,	you
can	treat	CFTypeRef	pseudo-objects	as	actual	objects!	For	example,	you	can	assign	a
CFTypeRef	to	a	property	in	Swift,	or	pass	it	as	an	argument	to	a	Swift	function,	and	its
memory	will	be	managed	correctly;	in	Objective-C,	those	are	tricky	things	to	do.

It	is	possible,	however,	that	you	may	receive	a	CFTypeRef	through	some	API	that	lacks
memory	management	information.	Such	a	value	will	come	forcibly	to	your	attention,
because	it	will	arrive	into	Swift,	not	as	a	CFTypeRef,	but	as	an	Unmanaged	generic
wrapping	the	actual	CFTypeRef.	This	is	a	form	of	warning	that	Swift	does	not	know	how
to	proceed	with	the	memory	management	of	this	pseudo-object.	You	will	in	fact	be	unable
to	proceed	until	you	unwrap	the	CFTypeRef	by	calling	the	Unmanaged	object’s
takeRetainedValue	or	takeUnretainedValue	method.	You	will	call	whichever	method
tells	Swift	how	to	manage	the	memory	for	this	object	correctly.	For	a	CFTypeRef	obtained
from	a	built-in	function	with	Create	or	Copy	in	its	name,	call	takeRetainedValue;
otherwise,	call	takeUnretainedValue.

Property	Memory	Management	Policies
In	Objective-C,	a	@property	declaration	(see	Chapter	10)	includes	a	statement	of	the
memory	management	policy	that	is	followed	by	the	corresponding	setter	accessor	method.
It	is	useful	to	be	aware	of	this	and	to	know	how	such	policy	statements	are	translated	into
Swift.

For	example,	earlier	I	said	that	a	UIViewController	retains	its	view	(its	main	view).	How
do	I	know	this?	Because	the	@property	declaration	tells	me	so:

@property(null_resettable,	nonatomic,	strong)	UIView	*view;

The	term	strong	means	that	the	setter	retains	the	incoming	UIView	object.	The	Swift
translation	of	this	declaration	doesn’t	add	any	attribute	to	the	variable:

var	view:	UIView!

The	default	in	Swift	is	that	a	variable	referring	to	a	reference	object	type	is	a	strong
reference	—	a	persisting	reference.	This	means	that	it	retains	the	object.	Thus,	you	can
safely	conclude	from	this	declaration	that	UIViewController	retains	its	view.

The	possible	memory	management	policies	for	a	Cocoa	property	are:

strong,	retain	(no	Swift	equivalent)

The	default.	The	two	terms	are	pure	synonyms	of	one	another;	retain	is	the	term
inherited	from	pre-ARC	days.	Assignment	to	this	property	retains	the	incoming	value
and	releases	the	existing	value.

copy	(no	Swift	equivalent,	or	@NSCopying)

The	same	as	strong	or	retain,	except	that	the	setter	copies	the	incoming	value	by
sending	copy	to	it;	the	incoming	value	must	be	an	object	of	a	type	that	adopts
NSCopying,	to	ensure	that	this	is	possible.	The	copy,	which	has	an	increased	retain
count	already,	becomes	the	new	value.

weak	(Swift	weak)

An	ARC-weak	reference.	The	incoming	object	value	is	not	retained,	but	if	it	goes	out	of
existence	behind	our	back,	ARC	will	magically	substitute	nil	as	the	value	of	this
property,	which	must	be	typed	as	an	Optional	declared	with	var.

assign	(Swift	unowned(unsafe))

No	memory	management.	This	policy	is	inherited	from	pre-ARC	days,	and	is	inherently
unsafe	(hence	the	additional	unsafe	warning	in	the	Swift	translation	of	the	name):	if	the
object	referred	to	goes	out	of	existence,	this	reference	will	become	a	dangling	pointer
and	can	cause	a	crash	if	you	subsequently	try	to	use	it.

You’d	probably	like	to	hear	more	about	the	copy	policy,	as	I	haven’t	mentioned	it	until
now.	This	policy	is	used	by	Cocoa	particularly	when	an	immutable	class	has	a	mutable
subclass	(such	as	NSString	and	NSMutableString,	or	NSArray	and	NSMutableArray;	see
Chapter	10).	The	idea	is	to	deal	with	the	danger	of	the	setter’s	caller	passing	in	an	object
of	the	mutable	subclass.	A	moment’s	thought	will	reveal	that	this	is	possible,	because,	in
accordance	with	the	substitution	principle	of	polymorphism	(Chapter	4),	wherever	an

instance	of	a	class	is	expected,	an	instance	of	its	subclass	can	be	passed.	But	it	would	be
bad	if	this	were	to	happen,	because	now	the	caller	might	keep	a	reference	to	the	incoming
value	and,	since	it	is	in	fact	mutable,	could	later	mutate	it	behind	our	back.	To	prevent	this,
the	setter	calls	copy	on	the	incoming	object;	this	creates	a	new	instance,	separate	from	the
object	provided	—	and	belonging	to	the	immutable	class.

In	Swift,	this	problem	is	unlikely	to	arise	with	strings	and	arrays,	because	on	the	Swift
side	these	are	value	types	(structs)	and	are	effectively	copied	when	assigned,	passed	as	an
argument,	or	received	as	a	return	value.	Thus,	Cocoa’s	NSString	and	NSArray	property
declarations,	when	translated	into	Swift	as	String	and	Array	property	declarations,	don’t
show	any	special	marking	corresponding	to	Objective-C	copy.	But	Cocoa	types	that	are
not	automatically	bridged	from	Swift	structs	do	show	a	marking:	@NSCopying.	For
example,	the	declaration	of	the	attributedText	property	of	a	UILabel	appears	like	this	in
Swift:

@NSCopying	var	attributedText:	NSAttributedString?

NSAttributedString	has	a	mutable	subclass,	NSMutableAttributedString.	You’ve	probably
configured	this	attributed	string	as	an	NSMutableAttributedString,	and	now	you’re
assigning	it	as	the	UILabel’s	attributedText.	UILabel	doesn’t	want	you	keeping	a
reference	to	this	mutable	string	and	mutating	it	in	place,	since	that	would	change	the	value
of	the	property	without	passing	through	the	setter.	Thus,	it	copies	the	incoming	value	to
ensure	that	what	it	has	is	a	separate	immutable	NSAttributedString.

You	can	do	exactly	the	same	thing	in	your	own	code,	and	you	will	want	to	do	so.	If	your
class	has	an	NSAttributedString	instance	property,	you’ll	mark	it	as	@NSCopying	—	and
similarly	for	other	members	of	immutable/mutable	pairs,	such	as	NSIndexSet,
NSParagraphStyle,	NSURLRequest,	and	so	on.	Merely	providing	the	@NSCopying
designation	is	sufficient;	Swift	will	enforce	the	copy	policy	and	will	take	care	of	the	actual
copying	for	you	when	code	assigns	to	this	property.

If,	as	is	sometimes	the	case,	your	own	class	wants	the	internal	ability	to	mutate	the	value
of	this	property	while	preventing	a	mutable	value	from	arriving	from	outside,	put	a	private
computed	property	façade	in	front	of	it	that	transforms	it	to	the	corresponding	mutable
type:

class	StringDrawer	{

				@NSCopying	var	attributedString	:	NSAttributedString!

				private	var	mutableAttributedString	:	NSMutableAttributedString!	{

								get	{

												if	self.attributedString	==	nil	{return	nil}

												return	NSMutableAttributedString(

																attributedString:self.attributedString)

								}

								set	{

												self.attributedString	=	newValue

								}

				}

}

@NSCopying	can	be	used	only	for	instance	properties	of	classes,	not	of	structs	or	enums	—
and	only	in	the	presence	of	Foundation,	because	that	is	where	the	NSCopying	protocol	is
defined,	which	the	type	of	a	variable	marked	as	@NSCopying	must	adopt.

Debugging	Memory	Management	Mistakes
Though	far	less	likely	to	occur	under	ARC	(and	Swift),	memory	management	mistakes
still	can	occur,	especially	because	a	programmer	is	prone	to	suppose	(wrongly)	that	they
can’t.	Experience	suggests	that	you	should	use	every	tool	at	your	disposal	to	ferret	out
possible	mistakes.	Here	are	some	of	those	tools	(and	see	Chapter	9):

The	memory	gauge	in	the	Debug	navigator	charts	memory	usage	whenever	your	app
runs,	allowing	you	to	observe	possible	memory	leakage	or	other	unwarranted	heavy
memory	use.	Note	that	memory	management	in	the	Simulator	is	not	necessarily
indicative	of	reality!	Always	observe	the	memory	gauge	with	the	app	running	on	a
device	before	making	a	judgment.
Instruments	(Product	→	Profile)	has	excellent	tools	for	noticing	leaks	and	tracking
memory	management	of	individual	objects.
Good	old	caveman	debugging	can	help	confirm	that	your	objects	are	behaving	as	you
want	them	to.	Implement	deinit	with	a	print	call.	If	it	isn’t	called,	your	object	is	not
going	out	of	existence.	This	technique	can	reveal	problems	that	even	Instruments	will
not	directly	expose.
Dangling	pointers	are	particularly	difficult	to	track	down,	but	they	can	often	be	located
by	“turning	on	zombies.”	This	is	easy	in	Instruments	with	the	Zombies	template.
Alternatively,	edit	the	Run	action	in	your	scheme,	switch	to	the	Diagnostics	tab,	and
check	Enable	Zombie	Objects.	The	result	is	that	an	object	that	goes	out	of	existence	is
replaced	by	a	“zombie”	that	will	report	to	the	console	if	a	message	is	sent	to	it
(“message	sent	to	deallocated	instance”).	Be	sure	to	turn	zombies	back	off	when
you’ve	finished	tracking	down	your	dangling	pointers.	Don’t	use	zombies	with	the
Leaks	instrument:	zombies	are	leaks.

Even	these	tools	may	not	help	you	with	every	possible	memory	management	issue.	For
example,	some	objects,	such	as	a	UIView	containing	a	large	image,	are	themselves	small
(and	thus	may	not	cause	the	memory	gauge	or	Instruments	to	register	large	memory	use)
but	require	a	large	backing	store	nevertheless;	maintaining	references	to	too	many	such
objects	can	cause	your	app	to	be	summarily	killed	by	the	system.	This	sort	of	issue	is	not
easy	to	track	down.

Chapter	13.	Communication	Between
Objects
As	soon	as	an	app	grows	to	more	than	a	few	objects,	puzzling	questions	can	arise	about
how	to	send	a	message	or	communicate	data	between	one	object	and	another.	The	problem
is	essentially	one	of	architecture.	It	may	require	some	planning	to	construct	your	code	so
that	all	the	pieces	fit	together	and	information	can	be	shared	as	needed	at	the	right
moment.	This	chapter	presents	some	organizational	considerations	that	will	help	you
arrange	for	one	object	to	be	able	to	communicate	with	another.

The	problem	of	communication	often	comes	down	to	one	object	being	able	to	see	another:
the	object	Manny	needs	to	be	able	to	find	the	object	Jack	repeatedly	and	reliably	over	the
long	term	so	as	to	be	able	to	send	Jack	messages.

One	obvious	solution	is	an	instance	property	of	Manny	whose	value	is	Jack.	This	is
appropriate	particularly	when	Manny	and	Jack	share	certain	responsibilities	or	supplement
one	another’s	functionality.	The	application	object	and	its	delegate,	a	table	view	and	its
data	source,	a	view	controller	and	the	view	that	it	controls	—	these	are	cases	where	the
former	must	have	an	instance	property	pointing	at	the	latter.

This	does	not	necessarily	imply	that	Manny	needs	to	assert	ownership	of	Jack	as	a	matter
of	memory	management	policy	(see	Chapter	12)	—	but	it	might.	An	object	does	not
typically	retain	its	delegate	or	its	data	source;	similarly,	an	object	that	implements	the
target–action	pattern,	such	as	a	UIControl,	does	not	retain	its	target.	By	using	a	weak
reference	and	typing	the	property	as	an	Optional,	and	then	treating	the	Optional	coherently
and	safely,	Manny	can	avoid	owning	Jack	while	coping	with	the	possibility	that	his
supposed	reference	to	Jack	will	turn	out	to	be	nil.	On	the	other	hand,	a	view	controller	is
useless	without	a	view	to	control;	once	it	has	a	view,	it	will	retain	it,	releasing	it	only	when
it	itself	goes	out	of	existence.

Objects	can	perform	two-way	communication	without	both	of	them	holding	references	to
one	another.	It	may	be	sufficient	for	one	of	them	to	have	a	reference	to	the	other	—
because	the	former,	as	part	of	a	message	to	the	latter,	can	include	a	reference	to	himself.
For	example,	Manny	might	send	a	message	to	Jack	where	one	of	the	parameters	is	a
reference	to	Manny;	this	might	merely	constitute	a	form	of	identification,	or	an	invitation
to	Jack	to	send	a	message	back	to	Manny	if	Jack	needs	further	information	while	doing
whatever	this	method	does.	Manny	thus	makes	himself,	as	it	were,	momentarily	visible	to
Jack;	Jack	should	not	wantonly	retain	Manny	(especially	since	there’s	an	obvious	risk	of	a
retain	cycle).	Again,	this	is	a	common	pattern.	The	parameter	of	the	delegate	message
textFieldShouldBeginEditing:	is	a	reference	to	the	UITextField	that	sent	the	message.
The	first	parameter	of	a	target–action	message	is	a	reference	to	the	control	that	sent	the
message.

But	how	is	Manny	to	obtain	a	reference	to	Jack	in	the	first	place?	That’s	a	very	big
question.	Much	of	the	art	of	iOS	programming,	and	of	object-oriented	programming
generally,	lies	in	one	object	getting	a	reference	to	some	other	object	(see	Instance
References).	Every	case	is	different	and	must	be	solved	separately,	but	certain	general

patterns	emerge,	and	this	chapter	will	outline	some	of	them.

There	are	also	ways	for	Manny	to	send	a	message	that	Jack	receives	without	having	to
send	it	directly	to	Jack	—	possibly	without	even	knowing	or	caring	who	Jack	is.
Notifications	and	KVO	are	examples,	and	I’ll	mention	them	in	this	chapter	as	well.

Finally,	the	chapter	ends	with	a	section	on	the	larger	question	of	what	kinds	of	objects
need	to	see	one	another,	within	the	general	scope	of	a	typical	iOS	program.

Visibility	by	Instantiation
Every	instance	comes	from	somewhere	and	at	someone’s	behest:	some	object	sent	a
message	commanding	this	instance	to	come	into	existence	in	the	first	place.	The
commanding	object	therefore	has	a	reference	to	the	instance	at	that	moment.	When	Manny
creates	Jack,	Manny	has	a	reference	to	Jack.

That	simple	fact	can	serve	as	the	starting	point	for	establishing	future	communication.	If
Manny	creates	Jack	and	knows	that	he	(Manny)	will	need	a	reference	to	Jack	in	the	future,
Manny	can	keep	the	reference	that	he	obtained	by	creating	Jack	in	the	first	place.	Or,	it
may	be	that	what	Manny	knows	is	that	Jack	will	need	a	reference	to	Manny	in	the	future;
Manny	can	supply	that	reference	immediately	after	creating	Jack,	and	Jack	will	then	keep
it.

Delegation	is	a	case	in	point.	Manny	may	create	Jack	and	immediately	make	himself
Jack’s	delegate,	as	in	my	example	code	in	Chapter	11:

let	cpc	=	ColorPickerController(colorName:colorName,	andColor:c)

cpc.delegate	=	self

Indeed,	if	this	crucial,	you	might	endow	Jack	with	an	initializer	so	that	Manny	can	create
Jack	and	hand	Jack	a	reference	to	himself	at	the	same	time,	to	help	prevent	any	slip-ups.
Compare	the	approach	taken	by	UIBarButtonItem,	where	three	different	initializers,	such
as	init(title:style:target:action:),	require	as	a	parameter	the	target	to	which
future	messages	will	be	sent	by	the	UIBarButtonItem.

When	Manny	creates	Jack,	it	might	not	be	a	reference	to	Manny	himself	that	Jack	needs,
but	to	something	that	Manny	knows	or	has.	You	will	presumably	endow	Jack	with	a
method	so	that	Manny	can	hand	that	information	across;	again,	it	might	be	reasonable	to
make	that	method	Jack’s	initializer,	if	Jack	simply	cannot	live	without	the	information.

Recall	this	example	from	Chapter	11.	It	comes	from	a	table	view	controller.	The	user	has
tapped	a	row	of	the	table.	We	create	a	secondary	table	view	controller,	a
TracksViewController	instance,	handing	it	the	data	it	will	need,	and	display	the	secondary
table	view.	I	have	deliberately	devised	TracksViewController	to	have	a	designated
initializer	init(mediaItemCollection:),	making	it	virtually	obligatory	for	a
TracksViewController	to	have	access,	from	the	moment	it	comes	into	existence,	to	the	data
it	needs:

override	func	tableView(tableView:	UITableView,

				didSelectRowAtIndexPath	indexPath:	NSIndexPath)	{

								delay(0.1)	{	//	let	spinner	start	spinning

												let	t	=	TracksViewController(

																mediaItemCollection:	self.albums[indexPath.row])

												self.navigationController!.pushViewController(

																t,	animated:	true)

								}

}

In	that	example,	self	does	not	keep	a	reference	to	the	new	TracksViewController
instance,	nor	does	the	TracksViewController	acquire	a	reference	to	self.	But	self	does
create	the	TracksViewController	instance,	and	so,	for	one	brief	shining	moment,	it	has	a
reference	to	it.	Therefore	self	takes	advantage	of	that	moment	to	hand	the
TracksViewController	instance	the	information	it	needs.	There	will	be	no	better	moment	to
do	this.	Knowing	the	moment,	and	taking	care	not	to	miss	it,	is	part	of	the	art	of	data

communication.

Nib-loading	is	also	a	case	in	point.	The	loading	of	a	nib	is	a	way	of	instantiating	objects
from	the	nib.	Proper	preparation	is	essential	in	order	to	ensure	that	there’s	a	reference	for
those	objects,	so	that	they	don’t	simply	vanish	in	a	puff	of	smoke	(Nib	Loading	and
Memory	Management).	The	moment	of	the	nib	loading	is	the	moment	when	the	nib’s
owner	or	the	code	that	loads	the	nib	is	in	contact	with	those	objects;	it	takes	advantage	of
that	moment	to	secure	those	references.

Beginners	are	often	puzzled	by	how	two	objects	are	to	get	a	reference	to	one	another	if
they	will	be	instantiated	from	different	nibs	—	either	different	.xib	files	or	different	scenes
in	a	storyboard.	It	is	frustrating	that	you	can’t	draw	a	connection	between	an	object	in	nib
A	and	an	object	in	nib	B;	it’s	particularly	frustrating	when	you	can	see	both	objects	sitting
right	there	in	the	same	storyboard.	But,	as	I	explained	earlier	(Connections	Between	Nibs
—	Not!),	such	a	connection	would	be	meaningless,	which	is	why	it’s	impossible.	These
are	different	nibs,	and	they	will	load	at	different	times.	However,	some	object	(Manny)	is
going	to	be	the	owner	when	nib	A	loads,	and	some	object	(Jack)	is	going	to	be	the	owner
when	nib	B	loads.	Perhaps	they	(Manny	and	Jack)	can	then	see	each	other,	in	which	case,
given	all	the	necessary	outlets,	the	problem	is	solved.	Or	perhaps	some	third	object	(Moe)
can	see	both	of	them	and	will	provide	a	communication	path	for	them.

For	example,	when	a	segue	in	a	storyboard	is	triggered,	the	segue’s	destination	view
controller	is	instantiated,	and	the	segue	has	a	reference	to	it.	At	the	same	time,	the	segue’s
source	view	controller	already	exists,	and	the	segue	has	a	reference	to	it	as	well.	So	the
segue	sends	the	source	view	controller	the	prepareForSegue:sender:	message,
containing	a	reference	to	itself	(the	segue).	The	segue	is	Moe;	it	is	bringing	Manny	(the
source	view	controller)	and	Jack	(the	destination	view	controller)	together.	This	is	the
source	view	controller’s	chance	(Manny’s	moment)	to	obtain	a	reference	to	the	newly
instantiated	destination	view	controller	(a	reference	to	Jack),	by	asking	the	segue	for	it	—
and	now	the	source	view	controller	can	make	itself	the	destination	view	controller’s
delegate,	hand	it	any	needed	information,	and	so	forth.

Visibility	by	Relationship
Objects	may	acquire	the	ability	to	see	one	another	automatically	by	virtue	of	their	position
in	a	containing	structure.	Before	worrying	about	how	to	supply	one	object	with	a	reference
to	another,	consider	whether	there	may	already	be	a	chain	of	references	leading	from	one
to	the	other.

For	example,	a	subview	can	see	its	superview,	through	its	superview	property.	A
superview	can	see	all	its	subviews,	through	its	subviews	property,	and	can	pick	out	a
specific	subview	through	that	subview’s	tag	property,	by	calling	viewWithTag:.	A
subview	in	a	window	can	see	its	window,	through	its	window	property.	Thus,	by	working
your	way	up	or	down	the	view	hierarchy	by	means	of	these	properties,	it	may	be	possible
to	obtain	the	desired	reference.

Similarly,	a	responder	(Chapter	11)	can	see	the	next	object	up	the	responder	chain,	through
the	nextResponder	method	—	which	also	means,	because	of	the	structure	of	the	responder
chain,	that	a	view	controller’s	main	view	can	see	the	view	controller.	In	this	code	from	one
of	my	apps,	I	work	my	way	up	from	a	view	some	way	down	the	view	hierarchy	to	obtain	a
reference	to	the	view	controller	that’s	in	charge	of	this	whole	scene	(and	there	are	similar
examples	in	Chapter	5):

var	r	=	sender	as!	UIResponder

repeat	{	r	=	r.nextResponder()!	}	while	!(r	is	UIViewController)

Similarly,	view	controllers	are	themselves	part	of	a	hierarchy	and	therefore	can	see	one
another.	If	a	view	controller	is	currently	presenting	a	view	through	a	second	view
controller,	the	latter	is	the	former’s	presentedViewController,	and	the	former	is	the
latter’s	presentingViewController.	If	a	view	controller	is	the	child	of	a
UINavigationController,	the	latter	is	its	navigationController.	A
UINavigationController’s	visible	view	is	controlled	by	its	visibleViewController.	And
from	any	of	these,	you	can	reach	the	view	controller’s	view	through	its	view	property,	and
so	forth.

All	of	these	relationships	are	public.	So	if	you	can	get	a	reference	to	just	one	object	within
any	of	these	structures	or	a	similar	structure,	you	can	effectively	navigate	the	whole
structure	through	a	chain	of	references	and	lay	your	hands	on	any	other	object	within	the
structure.

Global	Visibility
Some	objects	are	globally	visible	—	that	is,	they	are	visible	to	all	other	objects.	Object
types	themselves	are	an	important	example.	As	I	pointed	out	in	Chapter	4,	it	is	perfectly
reasonable	to	use	a	Swift	struct	with	static	members	as	a	way	of	providing	globally
available	namespaced	constants	(Struct	As	Namespace).

Classes	sometimes	have	class	methods	that	vend	singleton	instances.	Some	of	these
singletons,	in	turn,	have	properties	pointing	to	other	objects,	making	those	other	objects
likewise	globally	visible.	For	example,	any	object	can	see	the	singleton	UIApplication
instance	by	calling	UIApplication.sharedApplication().	So	any	object	can	also	see	the
app’s	primary	window,	because	that	is	the	singleton	UIApplication	instance’s	keyWindow
property,	and	any	object	can	see	the	app	delegate,	because	that	is	its	delegate	property.
And	the	chain	continues:	any	object	can	see	the	app’s	root	view	controller,	because	that	is
the	primary	window’s	rootViewController	—	and	from	there,	as	I	said	in	the	previous
section,	we	can	navigate	the	view	controller	hierarchy	and	the	view	hierarchy.

You,	too,	can	make	your	own	objects	globally	visible	by	attaching	them	to	a	globally
visible	object.	For	example,	a	public	property	of	the	app	delegate,	which	you	are	free	to
create,	is	globally	visible	by	virtue	of	the	app	delegate	being	globally	visible	(by	virtue	of
the	shared	application	being	globally	visible).

Another	globally	visible	object	is	the	shared	defaults	object	obtained	by	calling
NSUserDefaults.standardUserDefaults().	This	object	is	the	gateway	to	storage	and
retrieval	of	user	defaults,	which	is	similar	to	a	dictionary	(a	collection	of	values	named	by
keys).	The	user	defaults	are	automatically	saved	when	your	application	quits	and	are
automatically	available	when	your	application	is	launched	again	later,	so	they	are	one	of
the	ways	in	which	your	app	maintains	information	between	launches.	But,	being	globally
visible,	they	are	also	a	conduit	for	communicating	values	within	your	app.

For	example,	in	one	of	my	apps	there’s	a	setting	I	call	HazyStripy.	This	determines
whether	a	certain	visible	interface	object	(a	card	in	a	game)	is	drawn	with	a	hazy	fill	or	a
stripy	fill.	This	is	a	setting	that	the	user	can	change,	so	there	is	a	preferences	interface
allowing	the	user	to	make	this	change.	When	the	user	displays	this	preferences	interface,	I
examine	the	HazyStripy	setting	in	the	user	defaults	to	configure	the	interface	to	reflect	it
in	a	segmented	control	(called	self.hazyStripy):

func	setHazyStripy	()	{

				let	hs	=	NSUserDefaults.standardUserDefaults()

								.objectForKey(Default.HazyStripy)	as!	Int

				self.hazyStripy.selectedSegmentIndex	=	hs

}

Conversely,	if	the	user	interacts	with	the	preferences	interface,	tapping	the	hazyStripy
segmented	control	to	change	its	setting,	I	respond	by	changing	the	actual	HazyStripy
setting	in	the	user	defaults:

@IBAction	func	hazyStripyChange(sender:AnyObject)	{

				let	hs	=	self.hazyStripy.selectedSegmentIndex

				NSUserDefaults.standardUserDefaults().setObject(

								hs,	forKey:	Default.HazyStripy)

}

But	here’s	the	really	interesting	part.	The	preferences	interface	is	not	the	only	object	that
uses	the	HazyStripy	setting	in	the	user	defaults;	the	drawing	code	that	actually	draws	the

hazy-or-stripy-filled	card	also	uses	it,	so	as	to	know	how	the	card	should	draw	itself!
When	the	user	leaves	the	preferences	interface	and	the	card	game	reappears,	the	cards	are
redrawn	—	consulting	the	HazyStripy	setting	in	NSUserDefaults	in	order	to	do	so:

override	func	drawRect(rect:	CGRect)	{

				let	hazy	:	Bool	=	NSUserDefaults.standardUserDefaults()

								.integerForKey(Default.HazyStripy)	==	HazyStripy.Hazy.rawValue

				CardPainter.sharedPainter().drawCard(self.card,	hazy:hazy)

}

Thus	there	is	no	need	for	the	card	object	and	the	view	controller	object	that	manages	the
preferences	interface	to	be	able	to	see	one	another,	because	they	can	both	see	this	common
object,	the	HazyStripy	user	default.	NSUserDefaults	becomes,	in	itself,	a	global	conduit
for	communicating	information	from	one	part	of	my	app	to	another.

Notifications	and	KVO
Notifications	(Chapter	11)	can	be	a	way	to	communicate	between	objects	that	are
conceptually	distant	from	one	another	without	bothering	to	provide	any	way	for	one	to	see
the	other.	All	they	really	need	to	have	in	common	is	a	knowledge	of	the	name	of	the
notification.	Every	object	can	see	the	notification	center	—	it	is	a	globally	visible	object
—	so	every	object	can	arrange	to	post	or	receive	a	notification.

Using	a	notification	in	this	way	may	seem	lazy,	an	evasion	of	your	responsibility	to
architect	your	objects	sensibly.	But	sometimes	one	object	doesn’t	need	to	know,	and
indeed	shouldn’t	know,	what	object	(or	objects)	it	is	sending	a	message	to.

Recall	the	example	I	gave	in	Chapter	11.	In	a	simple	card	game	app,	the	game	needs	to
know	when	a	card	is	tapped.	A	card,	when	it	is	tapped,	knowing	nothing	about	the	game,
simply	emits	a	virtual	shriek	by	posting	a	notification;	the	game	object	has	registered	for
this	notification	and	takes	over	from	there:

NSNotificationCenter.defaultCenter().postNotificationName(

				"cardTapped",	object:	self)

Here’s	another	example,	taking	advantage	of	the	fact	that	notifications	are	a	broadcast
mechanism.	In	one	of	my	apps,	the	app	delegate	may	detect	a	need	to	tear	down	the
interface	and	build	it	back	up	again	from	scratch.	If	this	is	to	happen	without	causing
memory	leaks	(and	all	sorts	of	other	havoc),	every	view	controller	that	is	currently	running
a	repeating	NSTimer	needs	to	invalidate	that	timer	(Chapter	12).	Rather	than	my	having	to
work	out	what	view	controllers	those	might	be,	and	endowing	every	view	controller	with	a
method	that	can	be	called,	I	simply	have	the	app	delegate	shout	“Everybody	stop	timers!”,
by	posting	a	notification.	All	my	view	controllers	that	run	timers	have	registered	for	this
notification,	and	they	know	what	to	do	when	they	receive	it.

Similarly,	KVO	(Chapter	11)	can	be	used	to	keep	two	conceptually	distant	objects
synchronized	with	one	another:	a	property	of	one	object	changes,	and	the	other	object
hears	about	the	change.

Model–View–Controller
In	Apple’s	documentation	and	elsewhere,	you’ll	find	references	to	the	term	model–view–
controller,	or	MVC.	This	refers	to	an	architectural	goal	of	maintaining	a	distinction
between	three	functional	aspects	of	a	program	where	the	user	can	view	and	edit
information	—	meaning,	in	effect,	a	program	with	a	graphical	user	interface.	The	notion
goes	back	to	the	days	of	Smalltalk,	and	much	has	been	written	about	it	since	then,	but
informally,	here’s	what	the	terms	mean:

Model

The	data	and	its	management,	often	referred	to	as	the	program’s	“business	logic;”	the
hard-core	stuff	that	the	program	is	really	all	about.

View

What	the	user	sees	and	interacts	with.

Controller

The	mediation	between	the	model	and	the	view.

Consider,	for	example,	a	game	where	the	current	score	is	displayed	to	the	user:

A	UILabel	that	shows	the	user	the	current	score	for	the	game	in	progress	is	view;	it	is
effectively	nothing	but	a	pixel-maker,	and	its	business	is	to	know	how	to	draw	itself.
The	knowledge	of	what	it	should	draw	—	the	score,	and	the	fact	that	this	is	a	score	—
lies	elsewhere.	
A	rookie	programmer	might	try	to	use	the	score	displayed	by	the	UILabel	as	the	actual
score:	to	increment	the	score,	read	the	UILabel’s	string,	turn	that	string	into	a	number,
increment	the	number,	turn	the	number	back	into	a	string,	and	present	that	string	in
place	of	the	previous	string.	That	is	a	gross	violation	of	the	MVC	philosophy!	The	view
presented	to	the	user	should	reflect	the	score;	it	should	not	store	the	score.
The	score	is	data	being	maintained	internally;	it	is	model.	It	could	be	as	simple	as	an
instance	property	along	with	a	public	increment	method	or	as	complicated	as	a	Score
object	with	a	raft	of	methods.	
The	score	is	numeric,	whereas	a	UILabel	displays	a	string;	this	alone	is	enough	to	show
that	the	view	and	the	model	are	naturally	different.
Telling	the	score	when	to	change,	and	causing	the	updated	score	to	be	reflected	in	the
user	interface,	is	the	work	of	the	controller.	This	will	be	particularly	clear	if	we
imagine	that	the	model’s	numeric	score	needs	to	be	transformed	in	some	way	for
presentation	to	the	user.	
For	example,	suppose	the	UILabel	that	presents	the	score	reads:	“The	score	is	20.”	The
model	is	presumably	storing	and	providing	the	number	20,	so	what’s	the	source	of	the
phrase	“The	score	is…”?	Whoever	is	causing	this	phrase	to	precede	the	score	in	the
presentation	of	the	score	to	the	user	is	a	controller.

Figure	13-1.	Model–view–controller

Even	this	simplistic	example	(Figure	13-1)	illustrates	very	well	the	advantages	of	MVC.
By	separating	powers	in	this	way,	we	allow	the	aspects	of	the	program	to	evolve	with	a
great	degree	of	independence.	Do	you	want	a	different	font	and	size	in	the	presentation	of
the	score?	Change	the	view;	the	model	and	controller	need	know	nothing	about	it,	but	will
just	go	on	working	exactly	as	they	did	before.	Do	you	want	to	change	the	phrase	that
precedes	the	score?	Change	the	controller;	the	model	and	view	are	unchanged.

Adherence	to	MVC	is	particularly	appropriate	in	a	Cocoa	app,	because	Cocoa	itself
adheres	to	it.	The	very	names	of	Cocoa	classes	reveal	the	MVC	philosophy	that	underlies
them.	A	UIView	is	a	view.	A	UIViewController	is	a	controller;	its	purpose	is	to	embody
the	logic	that	tells	the	view	what	to	display.	In	Chapter	11	we	saw	that	a	UIPickerView
does	not	hold	the	data	it	displays;	it	gets	that	data	from	a	data	source.	So	the
UIPickerView	is	a	view;	the	data	maintained	by	the	data	source	is	model.

A	further	distinction,	found	in	Apple’s	documentation,	is	this:	true	model	material	and	true
view	material	should	be	quite	reusable,	in	the	sense	that	they	can	be	transferred	wholesale
into	some	other	app;	controller	material	is	generally	not	reusable,	because	it	is	concerned
with	how	this	app	mediates	between	the	model	and	the	view.

In	one	of	my	own	apps,	for	example,	we	download	an	XML	(RSS)	news	feed	and	present
the	article	titles	to	the	user	as	a	table.	The	storage	and	parsing	of	the	XML	are	pure	model
material,	and	are	so	reusable	that	I	didn’t	even	write	this	part	of	the	code	(I	used	some
code	called	FeedParser,	by	Kevin	Ballard).	The	table	is	a	UITableView,	which	is	obviously
reusable,	seeing	as	I	obtained	it	directly	from	Cocoa.	But	when	the	UITableView	turns	to
my	code	and	asks	what	to	display	in	this	cell,	and	my	code	turns	to	the	XML	and	asks	for
the	title	of	the	article	corresponding	to	this	row	of	the	table,	that’s	controller	code,	and	is
applicable	only	to	this	app.

MVC	helps	to	provide	answers	about	what	objects	need	to	be	able	to	see	what	other
objects	in	your	app.	A	controller	object	will	usually	need	to	see	a	model	object	and	a	view
object.	A	model	object,	or	a	group	of	model	objects,	usually	won’t	need	to	see	outside
itself.	A	view	object	typically	doesn’t	need	to	see	outside	itself	specifically,	but	structural
devices	such	as	delegation,	data	source,	and	target–action	allow	a	view	object	to
communicate	agnostically	with	a	controller.

Appendix	A.	C,	Objective-C,	and	Swift
You	are	an	iOS	programmer,	and	you’ve	chosen	to	adopt	Apple’s	new	language,	Swift.
And	this	means	that	you’ll	never	have	to	concern	yourself	with	Apple’s	old	language,
Objective-C,	right?	Wrong.

Objective-C	is	not	dead.	Far	from	it.	You	may	be	using	Swift,	but	Cocoa	is	not.
Programming	iOS	involves	communicating	with	Cocoa	and	its	supplementary
frameworks.	The	APIs	for	those	frameworks	are	written	in	Objective-C	—	or	in	its
underlying	base	language,	C.	Messages	that	you	send	to	Cocoa	using	Swift	are	being
translated	for	you	into	Objective-C.	Objects	that	you	send	and	receive	back	and	forth
across	the	Swift/Objective-C	bridge	are	Objective-C	objects.	Some	objects	that	you	send
from	Swift	to	Objective-C	are	even	being	translated	for	you	into	other	object	types,	or	into
nonobject	types.

You	need	to	understand	what	Objective-C	expects	from	you	when	you	are	sending
messages	across	the	language	bridge.	You	need	to	know	what	Objective-C	is	going	to	do
with	those	messages.	You	need	to	know	what	is	coming	from	Objective-C,	and	how	it	will
be	represented	in	Swift.	Your	app	may	include	some	Objective-C	code	as	well	as	Swift
code,	so	you	need	to	know	how	the	parts	of	your	own	app	will	communicate.

This	appendix	summarizes	certain	linguistic	features	of	C	and	Objective-C,	and	describes
how	Swift	interfaces	with	those	features.	I	do	not	explain	here	how	to	write	Objective-C!
For	example,	I’ll	talk	about	Objective-C	methods	and	method	declarations,	because	you
need	to	know	how	to	call	an	Objective-C	method	from	Swift;	but	I’m	not	going	to	explain
how	to	call	an	Objective-C	method	in	Objective-C.	Earlier	editions	of	this	book	teach	C
and	Objective-C	systematically	and	in	detail,	and	I	recommend	consulting	one	for
information	about	those	languages.

The	C	Language
Objective-C	is	a	superset	of	C;	to	put	it	another	way,	C	provides	the	linguistic
underpinnings	of	Objective-C.	Everything	that	is	true	of	C	is	true	also	of	Objective-C.	It	is
possible,	and	often	necessary,	to	write	long	stretches	of	Objective-C	code	that	are,	in
effect,	pure	C.	Some	of	the	Cocoa	APIs	are	written	in	C.	Therefore,	in	order	to	know
about	Objective-C,	it	is	necessary	to	know	about	C.

C	statements,	including	declarations,	must	end	in	a	semicolon.	Variables	must	be	declared
before	use.	Variable	declaration	syntax	is:	a	data	type	name	followed	by	the	variable
name,	optionally	followed	by	assignment	of	an	initial	value:

int	i;

double	d	=	3.14159;

The	C	typedef	statement	starts	with	an	existing	type	name	and	defines	a	new	synonym	for
it:

typedef	double	NSTimeInterval;

C	Data	Types
C	is	not	an	object-oriented	language;	its	data	types	are	not	objects	(they	are	scalars).	The
basic	built-in	C	data	types	are	all	numeric:	char	(one	byte),	int	(four	bytes),	float	and
double	(floating-point	numbers),	and	varieties	such	as	short	(short	integer),	long	(long
integer),	unsigned	short,	and	so	on.	Objective-C	adds	NSInteger,	NSUInteger	(unsigned),
and	CGFloat.	The	C	bool	type	is	actually	a	numeric,	with	zero	representing	false;
Objective-C	adds	BOOL,	which	is	also	a	numeric.	The	C	native	text	type	(string)	is
actually	a	null-terminated	array	of	char.

Swift	explicitly	supplies	numeric	types	that	interface	directly	with	C	numeric	types,	even
though	Swift’s	types	are	objects	and	C’s	types	are	not.	Swift	type	aliases	provide	names
that	correspond	to	the	C	type	names:	a	Swift	CBool	is	a	C	bool,	a	Swift	CChar	is	a	C	char
(a	Swift	Int8),	a	Swift	CInt	is	a	C	int	(a	Swift	Int32),	a	Swift	CFloat	is	a	C	float	(a	Swift
Float),	and	so	on.	Swift	Int	interchanges	with	NSInteger;	Swift	UInt	interchanges	with
NSUInteger.	Swift	Bool	interchanges	with	Swift	ObjCBool,	which	represents	Objective-C
BOOL.	CGFloat	is	adopted	as	a	Swift	type	name.

A	major	difference	between	C	and	Swift	is	that	C	(and	therefore	Objective-C)	implicitly
coerces	when	values	of	different	numeric	types	are	assigned,	passed,	or	compared	to	one
another;	Swift	doesn’t,	so	you	must	coerce	explicitly	to	make	types	match	exactly.

The	native	C	string	type,	a	null-terminated	array	of	char,	is	typed	in	Swift,	for	reasons	that
will	be	clear	later,	as	UnsafePointer<Int8>	(recall	that	Int8	is	CChar).	A	C	string	can’t	be
formed	as	a	literal	in	Swift,	but	you	can	pass	a	Swift	String	where	a	C	string	is	expected:

let	q	=	dispatch_queue_create("MyQueue",	nil)

If	you	need	to	create	a	C	string	variable,	the	NSString	UTF8String	property	and
cStringUsingEncoding:	method	can	be	used	to	form	a	C	string.	Alternatively,	you	can
use	the	Swift	String	withCString	instance	method;	the	syntax	is	a	little	tricky.	In	this
example,	I	cycle	through	the	“characters”	of	the	C	string	until	I	reach	the	null	terminator
(I’ll	explain	the	memory	property	a	bit	later):

let	_	:	Void	=	"hello".withCString	{

				var	cs	=	$0

				while	cs.memory	!=	0	{

								print(cs.memory)

								cs	=	cs.successor()

				}

}

In	the	other	direction,	a	C	string	can	be	rendered	into	a	Swift	String	(wrapped	in	an
Optional)	by	way	of	the	Swift	String	static	method	fromCString.

C	Enums
A	C	enum	is	numeric;	values	are	some	form	of	integer,	and	can	be	implicit	(starting	from
0)	or	explicit.	Enums	arrive	in	various	forms	into	Swift,	depending	on	exactly	how	they
are	declared.	Let’s	start	with	the	simplest	(and	oldest)	form:

enum	State	{

				kDead,

				kAlive

};

typedef	enum	State	State;

(The	typedef	in	the	last	line	allows	C	programs	to	use	the	term	State	as	the	name	of	this
type	instead	of	the	more	verbose	enum	State.)	The	C	enumerand	names	kDead	and	kAlive
are	not	“cases”	of	anything;	they	are	not	namespaced.	They	are	constants,	and	as	they	are
not	explicitly	initialized,	they	represent	0	and	1	respectively.	An	enum	declaration	can
specify	the	integer	type	further;	this	one	doesn’t,	so	the	values	are	typed	in	Swift	as
UInt32.

In	Swift	2.0,	this	old-fashioned	sort	of	C	enum	arrives	as	a	Swift	struct	adopting	the
RawRepresentable	protocol.	This	struct	is	used	automatically	as	a	medium	of	interchange
wherever	a	State	enum	arrives	from	or	is	expected	by	C.	Thus,	if	a	C	function	setState
takes	a	State	enum	parameter,	you	can	call	it	with	one	of	the	State	names:

setState(kDead)

In	this	way,	Swift	has	done	its	best	to	import	these	names	helpfully	and	usefully,	trying	to
represent	State	as	a	type	even	though,	in	C,	it	really	isn’t	one.	If	you	are	curious	about
what	integer	is	represented	by	the	name	kDead,	you	have	to	take	its	rawValue.	You	can
also	create	an	arbitrary	State	value	by	calling	its	init(rawValue:)	initializer	—	there	is
no	compiler	or	runtime	check	to	see	whether	this	value	is	one	of	the	defined	constants.	But
you	aren’t	expected	to	do	either	of	those	things.

Starting	in	Xcode	4.4,	a	new	C	enum	notation	was	introduced,	based	on	the	NS_ENUM
macro:

typedef	NS_ENUM(NSInteger,	UIStatusBarAnimation)	{

				UIStatusBarAnimationNone,

				UIStatusBarAnimationFade,

				UIStatusBarAnimationSlide,

};

That	notation	explicitly	specifies	the	integer	type	and	associates	a	type	name	with	this
enum	as	a	whole.	Swift	imports	an	enum	declared	this	way	as	a	Swift	enum	with	the	name
and	raw	value	type	intact.	This	is	a	true	Swift	enum,	so	the	enumerand	names	become
namespaced	case	names.	Moreover,	Swift	automatically	subtracts	the	common	prefix	from
the	case	names:

enum	UIStatusBarAnimation	:	Int	{

				case	None

				case	Fade

				case	Slide

}

Going	the	other	way,	a	Swift	enum	with	an	Int	raw	value	type	can	be	exposed	to
Objective-C	using	the	@objc	attribute.	Thus,	for	example:

@objc	enum	Star	:	Int	{

				case	Blue

				case	White

				case	Yellow

				case	Red

}

Objective-C	sees	that	as	an	enum	with	type	NSInteger	and	enumerand	names	StarBlue,
StarWhite,	and	so	on.

There	is	another	variant	of	C	enum	notation,	based	on	the	NS_OPTIONS	macro,	suitable	for
bitmasks:

typedef	NS_OPTIONS(NSUInteger,	UIViewAutoresizing)	{

				UIViewAutoresizingNone																	=	0,

				UIViewAutoresizingFlexibleLeftMargin			=	1	<<	0,

				UIViewAutoresizingFlexibleWidth								=	1	<<	1,

				UIViewAutoresizingFlexibleRightMargin		=	1	<<	2,

				UIViewAutoresizingFlexibleTopMargin				=	1	<<	3,

				UIViewAutoresizingFlexibleHeight							=	1	<<	4,

				UIViewAutoresizingFlexibleBottomMargin	=	1	<<	5

};

An	enum	declared	this	way	arrives	into	Swift	as	a	struct	adopting	the	OptionSetType
protocol.	The	OptionSetType	protocol	adopts	the	RawRepresentable	protocol,	so	this	is	a
struct	with	a	rawValue	instance	property	holding	the	underlying	integer.	The	C	enum	case
names	are	represented	by	static	properties,	each	of	whose	values	is	an	instance	of	this
struct;	the	names	of	these	static	properties	are	imported	with	the	common	prefix
subtracted:

struct	UIViewAutoresizing	:	OptionSetType	{

				init(rawValue:	UInt)

				static	var	None:	UIViewAutoresizing	{	get	}

				static	var	FlexibleLeftMargin:	UIViewAutoresizing	{	get	}

				static	var	FlexibleWidth:	UIViewAutoresizing	{	get	}

				static	var	FlexibleRightMargin:	UIViewAutoresizing	{	get	}

				static	var	FlexibleTopMargin:	UIViewAutoresizing	{	get	}

				static	var	FlexibleHeight:	UIViewAutoresizing	{	get	}

				static	var	FlexibleBottomMargin:	UIViewAutoresizing	{	get	}

}

Thus,	for	example,	when	you	say	UIViewAutoresizing.FlexibleLeftMargin,	it	looks	as
if	you	are	initializing	a	case	of	a	Swift	enum,	but	in	fact	this	is	an	instance	of	the
UIViewAutoresizing	struct,	whose	rawValue	property	has	been	set	to	the	value	declared
by	the	original	C	enum	—	which,	for	.FlexibleLeftMargin,	is	1<<0.	Because	a	static
property	of	this	struct	is	an	instance	of	the	same	struct,	you	can,	as	with	an	enum,	omit	the
struct	name	when	supplying	a	static	property	name	where	the	struct	is	expected:

self.view.autoresizingMask	=	.FlexibleWidth

Moreover,	because	this	is	an	OptionSetType	struct,	set-like	operations	can	be	applied	—
thus	permitting	you	to	manipulate	the	bitmask	by	working	with	instances	as	if	this	were	a
Set:

self.view.autoresizingMask	=	[.FlexibleWidth,	.FlexibleHeight]

TIP

Where	an	NS_OPTIONS	enum	is	expected	in	Objective-C,	you	pass	0	to	indicate	that	no	options	are	provided.	In	Swift
2.0,	where	a	corresponding	struct	is	expected,	you	pass	[]	(an	empty	set).

Many	common	lists	of	alternatives,	unfortunately,	are	not	implemented	as	enums	in	the
first	place.	This	is	not	problematic,	but	it	is	inconvenient.	For	example,	the	names	of	the
AVFoundation	audio	session	categories	are	just	NSString	constants:

NSString	*const	AVAudioSessionCategoryAmbient;

NSString	*const	AVAudioSessionCategorySoloAmbient;

NSString	*const	AVAudioSessionCategoryPlayback;

//	...	and	so	on…

Even	though	this	is	a	list	of	alternatives	with	an	obvious	common	prefix,	Swift	cannot
(and	does	not)	magically	transform	it	into	an	AVAudioSessionCategory	enum	or	struct
with	abbreviated	names.	When	you	want	to	specify	the	Playback	category,	you	have	to	use
the	whole	name,	AVAudioSessionCategoryPlayback.

C	Structs
A	C	struct	is	a	compound	type	whose	elements	can	be	accessed	by	name	using	dot-
notation	after	a	reference	to	the	struct.	For	example:

struct	CGPoint	{

			CGFloat	x;

			CGFloat	y;

};

typedef	struct	CGPoint	CGPoint;

After	that	declaration,	it	becomes	possible	to	talk	like	this	in	C:
CGPoint	p;

p.x	=	100;

p.y	=	200;

A	C	struct	arrives	wholesale	into	Swift	as	a	Swift	struct,	which	is	thereupon	endowed	with
Swift	struct	features.	Thus,	for	example,	CGPoint	in	Swift	has	x	and	y	CGFloat	instance
properties,	as	you	would	expect;	but	it	also	magically	acquires	the	implicit	memberwise
initializer!	In	addition,	a	zeroing	initializer	with	no	parameters	is	injected;	thus,	saying
CGPoint()	makes	a	CGPoint	whose	x	and	y	are	both	0.	Extensions	can	supply	additional
features,	and	the	Swift	CoreGraphics	header	adds	a	few	to	CGPoint:

extension	CGPoint	{

				static	var	zeroPoint:	CGPoint	{	get	}

				init(x:	Int,	y:	Int)

				init(x:	Double,	y:	Double)

}

As	you	can	see,	a	Swift	CGPoint	has	additional	initializers	accepting	Int	or	Double
arguments,	along	with	another	way	of	making	a	zero	CGPoint,	CGPoint.zeroPoint.
CGSize	is	treated	similarly.	CGRect	is	particularly	well	endowed	with	added	methods	and
properties	in	Swift;	these	do	not	allow	you	to	do	anything	that	you	couldn’t	do	with	the
built-in	C	functions	provided	by	the	Core	Graphics	framework	for	manipulating	a
CGRect,	but	they	do	allow	you	to	do	those	things	in	a	Swiftier	way.

The	fact	that	a	Swift	struct	is	an	object,	while	a	C	struct	is	not,	does	not	pose	any	problems
of	communication.	You	can	assign	or	pass	a	Swift	CGPoint,	for	example,	where	a	C
CGPoint	is	expected,	because	CGPoint	came	from	C	in	the	first	place.	The	fact	that	Swift
has	endowed	CGPoint	with	object	methods	and	properties	doesn’t	matter;	C	doesn’t	see

them.	All	that	C	cares	about	are	the	x	and	y	elements	of	this	CGPoint,	which	are
communicated	from	Swift	to	C	without	difficulty.

C	Pointers
A	C	pointer	is	an	integer	designating	the	location	in	memory	(the	address)	where	the	real
data	resides.	Allocating	and	disposing	of	that	memory	is	a	separate	matter.	The	declaration
for	a	pointer	to	a	data	type	is	written	with	an	asterisk	after	the	data	type	name;	a	space	can
appear	on	either	or	both	sides	of	the	asterisk.	These	are	equivalent	declarations	of	a
pointer-to-int:

int	*intPtr1;

int*	intPtr2;

int	*	intPtr3;

The	type	name	itself	is	int*	(or,	with	a	space,	int	*).	Objective-C,	for	reasons	that	I’ll
explain	later,	uses	C	pointers	heavily,	so	you’re	going	to	be	seeing	that	asterisk	a	lot	if	you
look	at	any	Objective-C.

A	C	pointer	arrives	into	Swift	as	an	UnsafePointer	or,	if	writable,	an
UnsafeMutablePointer;	this	is	a	generic,	and	is	specified	to	the	actual	type	of	data	pointed
to.	(A	pointer	is	“unsafe”	because	Swift	isn’t	managing	the	memory	for,	and	can’t	even
guarantee	the	integrity	of,	what	is	pointed	to.)

For	example,	here’s	a	C	function	declaration;	I	haven’t	discussed	C	function	syntax	yet,
but	just	concentrate	on	the	types	which	precede	each	parameter	name:

void	CGRectDivide(CGRect	rect,

				CGRect	*slice,

				CGRect	*remainder,

				CGFloat	amount,

				CGRectEdge	edge)

The	term	void	means	that	this	function	returns	no	value.	CGRect	and	CGRectEdge	are	C
structs;	CGFloat	is	a	basic	numeric	type.	The	phrases	CGRect	*slice	and	CGRect
*remainder,	despite	the	position	of	the	space,	state	that	slice	and	remainder	are	both
CGRect*	—	that	is,	pointer-to-CGRect.	The	Swift	translation	of	that	declaration	looks	like
this:

func	CGRectDivide(rect:	CGRect,

				_	slice:	UnsafeMutablePointer<CGRect>,

				_	remainder:	UnsafeMutablePointer<CGRect>,

				_	amount:	CGFloat,

				_	edge:	CGRectEdge)

UnsafeMutablePointer	in	this	context	is	used	like	a	Swift	inout	parameter:	you	declare
and	initialize	a	var	of	the	appropriate	type	beforehand,	and	then	pass	its	address	as
argument	by	way	of	the	&	prefix	operator.	When	you	pass	the	address	of	a	reference	in	this
way,	you	are	in	fact	creating	and	passing	a	pointer:

var	arrow	=	CGRectZero

var	body	=	CGRectZero

CGRectDivide(rect,	&arrow,	&body,	Arrow.ARHEIGHT,	.MinYEdge)

In	C,	to	access	the	memory	pointed	to	by	a	pointer,	you	use	an	asterisk	before	the	pointer’s
name:	*intPtr	is	“the	thing	pointed	to	by	the	pointer	intPtr.”	In	Swift,	you	use	the
pointer’s	memory	property.

In	this	example,	we	receive	a	stop	parameter	typed	originally	as	a	BOOL*,	a	pointer-to-
BOOL;	in	Swift,	it’s	an	UnsafeMutablePointer<ObjCBool>.	To	set	the	BOOL	at	the	far

end	of	this	pointer,	we	set	the	pointer’s	memory	(mas	is	an	NSMutableAttributedString):
mas.enumerateAttribute("HERE",	inRange:	r,	options:	[])	{

				value,	r,	stop	in

				if	let	value	=	value	as?	Int	where	value	==	1		{

								//	...

								stop.memory	=	true

				}

}

The	most	general	type	of	C	pointer	is	pointer-to-void	(void*),	also	known	as	the	generic
pointer.	The	term	void	here	means	that	no	type	is	specified;	it	is	legal	in	C	to	use	a	generic
pointer	wherever	a	specific	type	of	pointer	is	expected,	and	vice	versa.	In	effect,	pointer-
to-void	casts	away	type	checking	as	to	what’s	at	the	far	end	of	the	pointer.	This	will	appear
in	Swift	as	a	pointer	generic	specified	to	Void	—	typically,
UnsafeMutablePointer<Void>,	or	its	equivalent	UnsafeMutablePointer<()>.	In	general,
when	you	encounter	pointers	of	this	type,	if	you	need	to	access	the	underlying	data,	you’ll
start	by	coercing	to	an	UnsafeMutablePointer	generic	specified	to	the	underlying	type.

C	Arrays
A	C	array	contains	a	fixed	number	of	elements	of	a	certain	data	type.	Under	the	hood,	it	is
a	block	of	memory	sized	to	accommodate	this	number	of	elements	of	this	data	type.	For
this	reason,	the	name	of	an	array	in	C	is	the	name	of	a	pointer	—	to	the	first	element	of	the
array.	For	example,	if	arr	has	been	declared	as	an	array	of	int,	the	term	arr	can	be	used
wherever	a	value	of	type	int*	(a	pointer-to-int)	is	expected.	The	C	language	will	indicate
an	array	type	either	by	appending	square	brackets	to	a	reference	or	as	a	pointer.

(This	also	explains	why	string	methods	involving	C	strings	type	those	C	strings	in	Swift	as
an	unsafe	pointer	to	Int8:	a	C	string	is	an	array	of	char,	and	an	Int8	is	a	char.)

For	example,	the	C	function	CGContextStrokeLineSegments	is	declared	like	this:
void	CGContextStrokeLineSegments(CGContextRef	c,

			const	CGPoint	points[],

			size_t	count

);

The	second	parameter	is	a	C	array	of	CGPoints;	that’s	what	the	square	brackets	tell	you.	A
C	array	carries	no	information	about	how	many	elements	it	contains,	so	to	pass	this	C
array	to	this	function,	you	must	also	tell	the	function	how	many	elements	the	array
contains;	that’s	what	the	third	parameter	is	for.	A	C	array	of	CGPoint	is	a	pointer	to	a
CGPoint,	so	this	function’s	declaration	is	translated	into	Swift	like	this:

func	CGContextStrokeLineSegments(c:	CGContext?,

				_	points:	UnsafePointer<CGPoint>,

				_	count:	Int)

To	call	this	function	and	pass	it	a	C	array	of	CGPoints,	it	would	appear	that	you	need	to
make	a	C	array	of	CGPoints.	A	C	array	is	not,	by	any	stretch	of	the	imagination,	a	Swift
array;	so	how	on	earth	will	you	do	this?	Surprise!	You	don’t	have	to.	Even	though	a	Swift
array	is	not	a	C	array,	you	can	pass	a	pointer	to	a	Swift	array	here.	In	fact,	you	don’t	even
need	to	pass	a	pointer;	you	can	pass	a	reference	to	a	Swift	array	itself.	And	since	this	is	not
a	mutable	pointer,	you	can	declare	the	array	with	let;	indeed,	you	can	even	pass	a	Swift
array	literal!	No	matter	which	approach	you	choose,	Swift	will	convert	to	a	C	array	for
you	as	the	argument	crosses	the	bridge	from	Swift	to	C:

let	c	=	UIGraphicsGetCurrentContext()!

let	arr	=	[CGPoint(x:0,y:0),

				CGPoint(x:50,y:50),

				CGPoint(x:50,y:50),

				CGPoint(x:0,y:100),

]

CGContextStrokeLineSegments(c,	arr,	4)

However,	you	can	form	a	C	array	if	you	really	want	to.	To	do	so,	you	must	first	set	aside
the	block	of	memory	yourself:	declare	an	UnsafeMutablePointer	of	the	desired	type,
calling	the	static	method	alloc	with	the	desired	number	of	elements.	You	can	then
initialize	the	memory	by	writing	the	elements	directly	into	it	with	subscripting.	Finally,
since	the	UnsafeMutablePointer	is	a	pointer,	you	pass	it,	not	a	pointer	to	it,	as	argument:

let	c	=	UIGraphicsGetCurrentContext()!

let	arr	=	UnsafeMutablePointer<CGPoint>.alloc(4)

arr[0]	=	CGPoint(x:0,y:0)

arr[1]	=	CGPoint(x:50,y:50)

arr[2]	=	CGPoint(x:50,y:50)

arr[3]	=	CGPoint(x:0,y:100)

CGContextStrokeLineSegments(c,	arr,	4)

The	same	convenient	subscripting	is	available	when	you	receive	a	C	array.	For	example:
let	col	=	UIColor(red:	0.5,	green:	0.6,	blue:	0.7,	alpha:	1.0)

let	comp	=	CGColorGetComponents(col.CGColor)

After	that	code,	comp	is	typed	as	an	UnsafePointer	to	CGFloat.	This	really	means	that	it’s	a
C	array	of	CGFloat	—	and	so	you	can	access	its	elements	by	subscripting:

if	let	sp	=	CGColorGetColorSpace(col.CGColor)	{

				if	CGColorSpaceGetModel(sp)	==	.RGB	{

								let	red	=	comp[0]

								let	green	=	comp[1]

								let	blue	=	comp[2]

								let	alpha	=	comp[3]

								//	...

				}

}

C	Functions
A	C	function	declaration	starts	with	the	return	type	(which	might	be	void,	meaning	no
returned	value),	followed	by	the	function	name,	followed	by	a	parameter	list,	in
parentheses,	of	comma-separated	pairs	consisting	of	the	type	followed	by	the	parameter
name.	The	parameter	names	are	purely	internal;	you	won’t	use	them	when	calling	a	C
function.

Here’s	the	C	declaration	for	CGPointMake,	which	returns	an	initialized	CGPoint:
CGPoint	CGPointMake	(

			CGFloat	x,

			CGFloat	y

);

And	here’s	how	to	call	it	in	Swift:
let	p	=	CGPointMake(50,50)

In	Objective-C,	where	CGPoint	is	not	an	object,	CGPointMake	is	the	main	way	to	create	a
CGPoint.	Swift,	as	I’ve	already	mentioned,	supplies	initializers	—	though	I	personally	still
prefer	CGPointMake.

In	C,	a	function	has	a	type	based	on	its	signature,	and	the	name	of	a	function	is	a	reference
to	the	function,	and	so	it	is	possible	to	pass	a	function	—	sometimes	referred	to	as	a
pointer-to-function	—	by	using	the	function’s	name	where	a	function	of	that	type	is

expected.	In	a	declaration,	a	pointer-to-function	may	be	symbolized	by	an	asterisk	in
parentheses.

For	example,	here’s	the	declaration	for	a	C	function	from	the	Audio	Toolbox	framework:
extern	OSStatus

AudioServicesAddSystemSoundCompletion(SystemSoundID	inSystemSoundID,

				CFRunLoopRef	__nullable	inRunLoop,

				CFStringRef	__nullable	inRunLoopMode,

				AudioServicesSystemSoundCompletionProc	inCompletionRoutine,

				void	*	__nullable	inClientData)

(Ignore	for	now	the	terms	__nullable,	which	I’ll	explain	later,	and	extern,	which	I
won’t.)	A	SystemSoundID	is	just	a	UInt32.	But	what’s	an
AudioServicesSystemSoundCompletionProc?	It’s	this:

typedef	void	(*AudioServicesSystemSoundCompletionProc)(SystemSoundID	ssID,

				void*	__nullable	clientData);

A	SystemSoundID	is	a	UInt32,	so	that	tells	you,	in	the	rather	tortured	syntax	that	C	uses
for	these	things,	that	an	AudioServicesSystemSoundCompletionProc	is	a	pointer	to	a
function	taking	two	parameters	(typed	UInt32	and	pointer-to-void)	and	returning	no	result.

In	Swift	1.2	and	before,	the	only	way	to	call	AudioServicesAddSystemSoundCompletion
was	to	form	the	AudioServicesSystemSoundCompletionProc	in	Objective-C.	This	C
function	parameter	was	typed	as	a	CFunctionPointer,	an	opaque	generic	struct	that	you
couldn’t	create	within	Swift.

In	Swift	2.0,	however,	you	can	pass	a	Swift	function	where	a	C	pointer-to-function	is
expected!	As	always	when	passing	a	function,	you	can	define	the	function	separately	and
pass	its	name,	or	you	can	form	the	function	inline	as	an	anonymous	function.	If	you’re
going	to	define	the	function	separately,	it	must	be	a	function	—	meaning	that	it	cannot	be	a
method.	A	function	defined	at	the	top	level	of	a	file	is	fine;	so	is	a	function	defined	locally
within	a	function.

So	here’s	my	AudioServicesSystemSoundCompletionProc,	declared	at	the	top	level	of	a
file:

func	soundFinished(snd:UInt32,	_	c:UnsafeMutablePointer<Void>)	->	Void	{

				AudioServicesRemoveSystemSoundCompletion(snd)

				AudioServicesDisposeSystemSoundID(snd)

}

And	here’s	my	code	for	playing	a	sound	file	as	a	system	sound,	including	a	call	to
AudioServicesAddSystemSoundCompletion:

let	sndurl	=

				NSBundle.mainBundle().URLForResource("test",	withExtension:	"aif")!

var	snd	:	SystemSoundID	=	0

AudioServicesCreateSystemSoundID(sndurl,	&snd)

AudioServicesAddSystemSoundCompletion(snd,	nil,	nil,	soundFinished,	nil)

AudioServicesPlaySystemSound(snd)

Objective-C
Objective-C	is	built	on	the	back	of	C.	It	adds	some	syntax	and	features,	but	it	continues	to
use	C	syntax	and	data	types,	and	remains	C	under	the	hood.

Unlike	Swift,	Objective-C	has	no	namespaces.	For	this	reason,	different	frameworks
distinguish	their	contents	by	starting	their	names	with	different	prefixes.	The	“CG”	in
“CGFloat”	stands	for	Core	Graphics,	because	it	is	declared	in	the	Core	Graphics
framework.	The	“NS”	in	“NSString”	stands	for	NeXTStep,	a	historical	name	for	the
framework	that	later	became	Cocoa.	And	so	on.

Objective-C	Objects	and	C	Pointers
All	the	data	types	and	syntax	of	C	are	part	of	Objective-C.	But	Objective-C	is	also	object-
oriented,	so	it	needs	a	way	of	adding	objects	to	C.	It	does	this	by	taking	advantage	of	C
pointers.	C	pointers	accommodate	having	anything	at	all	at	the	far	end	of	the	pointer;
management	of	whatever	is	pointed	to	is	a	separate	matter,	and	that’s	just	what	Objective-
C	takes	care	of.	Thus,	Objective-C	object	types	are	expressed	using	C	pointer	syntax.

For	example,	here’s	the	Objective-C	declaration	for	the	addSubview:	method:
-	(void)addSubview:(UIView	*)view;

I	haven’t	discussed	Objective-C	method	declaration	syntax	yet,	but	focus	on	the	type
declaration	for	the	view	parameter,	in	parentheses:	it	is	UIView*.	This	appears	to	mean	“a
pointer	to	a	UIView.”	It	does	mean	that	—	and	it	doesn’t.	All	Objective-C	object
references	are	pointers.	Thus,	the	fact	that	this	is	a	pointer	is	merely	a	way	of	saying	it’s	an
object.	What’s	at	the	far	end	of	the	pointer	is	a	UIView	instance.

The	Swift	translation	of	this	method	declaration,	however,	doesn’t	appear	to	involve	any
pointers:

func	addSubview(view:	UIView)

In	general,	in	Swift,	you	will	simply	pass	a	reference	to	a	class	instance	where	Objective-
C	expects	a	class	instance;	the	fact	that	an	asterisk	is	used	in	the	Objective-C	declaration
to	express	the	fact	that	this	is	an	object	won’t	matter.	What	you	pass	as	argument	when
calling	the	addSubview:	method	from	Swift	is	a	UIView	instance.	There	is	a	sense	in
which	you	are	passing	a	pointer	when	you	pass	a	class	instance	—	because	class	instances
are	reference	types.	Thus,	a	class	instance	is	actually	seen	the	same	way	by	both	Swift	and
Objective-C.	The	difference	is	that	Swift	doesn’t	use	pointer	notation.

Objective-C’s	id	type	is	a	general	pointer	to	an	object	—	the	object	equivalent	of	pointer-
to-void.	Any	object	type	can	be	assigned	or	cast	to	or	from	an	id.	(Swift’s	AnyObject	is
parallel.)	Because	id	is	itself	a	pointer,	a	reference	declared	as	id	doesn’t	use	an	asterisk;
you	will	probably	never	see	an	id*.

Objective-C	Objects	and	Swift	Objects
Objective-C	objects	are	classes	and	instances	of	classes.	They	arrive	into	Swift	more	or
less	intact.	You	won’t	have	any	trouble	subclassing	Objective-C	classes	or	working	with
instances	of	Objective-C	classes.

The	same	is	true	in	reverse.	If	Objective-C	expects	an	object,	it	expects	a	class,	and	Swift

can	provide	it.	In	the	most	general	case,	where	Objective-C	expects	an	id,	you	can	pass
any	instance	whose	type	adopts	AnyObject	—	that	is,	whose	type	is	a	class.	Moreover,
Swift	will	convert	certain	nonclass	types	to	their	Objective-C	class	equivalents	for	you.
The	following	structs	can	be	cast	to	AnyObject,	and	are	automatically	bridged	to
Objective-C	class	types	where	Objective-C	expects	an	object:

String	to	NSString
Int,	UInt,	Double,	Float,	and	Bool	to	NSNumber
Array	to	NSArray
Dictionary	to	NSDictionary
Set	to	NSSet

Swift’s	automatic	bridging	thus	makes	working	with	numeric	types	easier	than	in
Objective-C.	A	Swift	Int	can	be	used	where	an	Objective-C	object	is	expected,	because
Swift	will	wrap	it	in	an	NSNumber	for	you;	in	Objective-C,	you	would	have	had	to
remember	to	wrap	an	integer	in	an	NSNumber	yourself.

WARNING

A	Swift	collection	(Array,	Dictionary,	or	Set)	can	be	bridged	to	an	Objective-C	collection	only	if	the	types	of	its
elements	are	class	types	or	are	bridged	to	class	types	(they	can	be	cast	to	AnyObject)	and	only	if	they	are	not
Optionals	(because	an	Objective-C	collection	cannot	contain	nil).

Swift	can	see	just	about	all	aspects	of	an	Objective-C	class	type	(for	how	Swift	sees
Objective-C	properties	and	accessors,	see	Chapter	10).	But	much	of	Swift,	while	not
problematic	for	Objective-C,	is	simply	invisible	to	it.	Objective-C	can’t	see	any	of	the
following	types:

Swift	enums,	except	for	an	@objc	enum	with	an	Int	raw	value
Swift	structs,	except	for	structs	that	are	bridged	or	that	come	ultimately	from	C
Swift	classes	not	derived	from	NSObject
Nested	types,	generics,	and	tuples

Even	if	Objective-C	can	see	a	Swift	type,	therefore,	it	cannot	see	within	it	any	property
whose	type	is	a	type	that	it	can’t	see,	and	it	cannot	see	any	method	that	takes	a	parameter
or	returns	a	value	of	a	type	that	it	can’t	see.	You	are	perfectly	free	to	use	such	properties
and	methods,	even	in	a	subclass	or	extension	of	an	Objective-C	class	type;	they	won’t	give
Objective-C	any	difficulty,	because	as	far	as	Objective-C	is	concerned,	they	won’t	be
present	at	all.

TIP

If	Objective-C	can	see	a	type,	it	can	see	an	Optional	wrapping	that	type	—	except	for	numeric	types.	For	example,
Objective-C	can’t	see	a	property	typed	as	an	Int?.	This	is	presumably	because	Int	is	not	directly	bridged	to	Objective-
C;	it	has	to	be	wrapped	in	an	NSNumber,	and	that	doesn’t	happen	through	a	mere	type	declaration.

The	@objc	attribute	exposes	to	Objective-C	something	that	it	normally	would	not	be	able
to	see,	provided	it	is	legal	for	Objective-C	to	see	it.	And	it	has	another	purpose:	when	you
mark	something	with	@objc,	you	can	add	parentheses	containing	the	name	by	which	you
want	Objective-C	to	see	this	thing.	You	are	free	to	do	this	even	for	a	class	or	a	class
member	that	Objective-C	can	see	already,	as	in	this	example:

@objc(ViewController)	class	ViewController	:	UIViewController	{	//	...

That	code	demonstrates	something	that	is	in	fact	useful	to	do.	By	default,	Objective-C	sees
your	class’s	name	as	being	namespaced	(prefixed)	by	the	module	name	(typically,	the
project	name).	Thus,	this	ViewController	class	might	be	seen	by	Objective-C	as
MyCoolApp.ViewController.	This	can	wreck	the	association	between	the	class	name	and
something	else.	For	example,	when	you’re	translating	an	existing	Objective-C	project	into
Swift,	you	may	want	to	use	@objc(...)	syntax	to	prevent	a	nib	object	or	an	NSCoding
archive	from	losing	track	of	its	associated	class.

Objective-C	Methods
In	Objective-C,	method	parameters	can	have	names,	and	the	name	of	a	method	as	a	whole
is	not	distinct	from	the	names	of	the	parameters.	The	parameter	names	are	part	of	the
method	name,	with	a	colon	appearing	where	each	parameter	would	need	to	go.	For
example,	the	UIViewController	class	has	an	instance	method	called
presentViewController:animated:completion:.	That	name	contains	three	colons,	so
this	method	takes	three	parameters.	Here’s	a	typical	example	of	calling	it	in	Objective-C:

SecondViewController*	svc	=	[SecondViewController	new];

[self	presentViewController:svc	animated:YES	completion:nil];

The	declaration	for	an	Objective-C	method	has	three	parts:

Either	+	or	-,	meaning	that	the	method	is	a	class	method	or	an	instance	method,
respectively.
The	data	type	of	the	return	value,	in	parentheses.	It	might	be	void,	meaning	no	returned
value.
The	name	of	the	method,	split	after	each	colon	so	as	to	make	room	for	the	parameters.
Following	each	colon	is	the	data	type	of	the	parameter,	in	parentheses,	followed	by	a
placeholder	name	for	the	parameter.

So,	for	example,	the	Objective-C	declaration	for	the	UIViewController	instance	method
presentViewController:animated:completion:	is:

-	(void)presentViewController:	(UIViewController	*)viewControllerToPresent

				animated:	(BOOL)flag

				completion:	(void	(^	__nullable)(void))completion;

(That	mysterious-looking	third	parameter	type	is	a	block;	I’ll	discuss	blocks	later.)

Recall	that	Swift	methods,	by	default,	externalize	all	their	parameter	names	except	the
first.	So	an	Objective-C	method	declaration	is	translated	into	Swift	as	follows:

The	stuff	before	the	first	colon	becomes	the	name	of	the	function.
The	stuff	before	each	of	the	other	colons	becomes	an	external	parameter	name.	The
first	parameter	has	no	external	name.
The	names	after	the	parameter	types	become	internal	(local)	parameter	names.	If	an
external	parameter	name	would	be	the	same	as	the	internal	(local)	name,	there	is	no
need	to	repeat	it.

Thus,	the	Swift	translation	of	that	Objective-C	method	declaration	looks	like	this:
func	presentViewController(viewControllerToPresent:	UIViewController,

				animated	flag:	Bool,

				completion:	(()	->	Void)?)

When	you	call	a	method	in	Swift,	the	internal	parameter	names	don’t	come	into	play:

let	svc	=	SecondViewController()

self.presentViewController(svc,	animated:	true,	completion:	nil)

When	you	implement	a	method	declared	in	Objective-C,	it	will	be	to	conform	to	an
adopted	protocol	or	to	override	an	inherited	method.	The	internal	parameter	names	are
supplied	for	you	by	Xcode’s	code	completion	feature	—	but	you	are	free	to	change	them.
The	external	parameter	names,	however,	must	not	be	changed;	they	are	part	of	the	name	of
this	method!

Thus,	if	you	were	to	override	presentViewController:animated:completion:	(though
you	probably	wouldn’t),	this	would	be	legal:

override	func	presentViewController(vc:	UIViewController,

				animated	anim:	Bool,

				completion	handler:	(()	->	Void)?)	{

								//	...

}

Unlike	Swift,	Objective-C	does	not	permit	overloading	of	methods.	Two	ViewController
instance	methods	called	myMethod:	returning	no	result,	one	taking	a	CGFloat	parameter
and	one	taking	an	NSString	parameter,	would	be	illegal	in	Objective-C.	Therefore,	two
such	Swift	methods,	though	legal	as	far	as	Swift	is	concerned,	would	be	illegal	if	they
were	both	visible	to	Objective-C.	New	in	Swift	2.0,	you	can	use	the	@nonobjc	attribute	to
hide	from	Objective-C	something	that	it	would	normally	be	able	to	see.	Thus,	marking	one
of	the	methods	@nonobjc	solves	the	problem.

Objective-C	has	its	own	version	of	a	variadic	parameter.	For	example,	the	NSArray
instance	method	arrayWithObjects:	is	declared	like	this:

+	(id)arrayWithObjects:(id)firstObj,	...	;

Unlike	Swift,	such	methods	must	somehow	be	told	explicitly	how	many	arguments	are
being	supplied.	Many	such	methods,	including	arrayWithObjects:,	use	a	nil	terminator;
that	is,	the	caller	supplies	nil	after	the	last	argument,	and	the	callee	knows	when	it	has
reached	the	last	argument	because	it	encounters	nil.	A	call	to	arrayWithObjects:	in
Objective-C	would	look	something	like	this:

NSArray*	pep	=	[NSArray	arrayWithObjects:	manny,	moe,	jack,	nil];

Objective-C	cannot	call	(or	see)	a	Swift	method	that	takes	a	variadic	parameter.	Swift,
however,	can	call	an	Objective-C	method	that	takes	a	variadic	parameter,	provided	that	it
is	marked	NS_REQUIRES_NIL_TERMINATION.	arrayWithObjects:	is	marked	in	this	way,	so
you	can	say	NSArray(objects:1,	2,	3)	and	Swift	will	supply	the	missing	nil
terminator.

Objective-C	Initializers	and	Factories
Objective-C	initializer	methods	are	instance	methods;	actual	instantiation	is	performed
using	the	NSObject	class	method	alloc,	for	which	Swift	has	no	equivalent	(and	doesn’t
need	one),	and	the	initializer	message	is	sent	to	the	instance	that	results.	For	example,	this
is	how	you	create	a	UIColor	instance	by	supplying	red,	green,	blue,	and	alpha	values	in
Objective-C:

UIColor*	col	=	[[UIColor	alloc]	initWithRed:0.5	green:0.6	blue:0.7	alpha:1];

The	name	of	that	initializer,	in	Objective-C,	is	initWithRed:green:blue:alpha:.	It’s
declared	like	this:

-	(UIColor	*)initWithRed:(CGFloat)red	green:(CGFloat)green

				blue:(CGFloat)blue	alpha:(CGFloat)alpha;

In	short,	an	initializer	method,	to	all	outward	appearances,	is	just	an	instance	method	like
any	other	in	Objective-C.

Swift,	nevertheless,	is	able	to	detect	that	an	Objective-C	initializer	is	an	initializer,	because
the	name	is	special	—	it	starts	with	init!	Therefore,	Swift	is	able	to	translate	an
Objective-C	initializer	into	a	Swift	initializer.

This	translation	is	performed	in	a	special	way.	Unlike	an	ordinary	method,	an	Objective-C
initializer	is	translated	into	Swift	with	all	the	parameter	names	appearing	as	external
names	inside	the	parentheses.	At	the	same	time,	the	external	name	of	the	first	parameter	is
subject	to	some	automatic	shortening:	the	word	init	is	stripped	from	the	start	of	the	first
parameter	name,	and	the	word	With,	if	it	appears,	is	stripped	as	well.	Thus,	the	external
name	of	the	first	parameter	of	this	initializer	in	Swift	is	red:.	If	the	external	names	are	the
same	as	the	internal	names,	there’s	no	need	to	repeat	them.	Thus,	Swift	translates
Objective-C	initWithRed:green:blue:alpha:	into	the	Swift	initializer
init(red:green:blue:alpha:),	which	is	declared	like	this:

init(red:	CGFloat,	green:	CGFloat,	blue:	CGFloat,	alpha:	CGFloat)

And	you’d	call	it	like	this:
let	col	=	UIColor(red:	0.5,	green:	0.6,	blue:	0.7,	alpha:	1.0)

There	is	a	second	way	to	create	an	instance	in	Objective-C.	Very	commonly,	a	class	will
supply	a	class	method	that	is	a	factory	for	an	instance.	For	example,	the	UIColor	class	has
a	class	method	colorWithRed:green:blue:alpha:,	declared	as	follows:

+	(UIColor*)	colorWithRed:	(CGFloat)	red	green:	(CGFloat)	green

																					blue:	(CGFloat)	blue	alpha:	(CGFloat)	alpha;

Swift	detects	a	factory	method	of	this	kind	by	some	pattern-matching	rules	—	a	class
method	that	returns	an	instance	of	the	class,	and	whose	name	begins	with	the	name	of	the
class,	stripped	of	its	prefix	—	and	translates	it	as	an	initializer,	stripping	the	class	name
(and	the	With)	from	the	start	of	the	first	parameter	name.

If	the	resulting	initializer	exists	already,	as	it	does	in	this	example,	then	Swift	treats	the
factory	method	as	superfluous	and	suppresses	it	completely!	Thus,	the	Objective-C	class
method	colorWithRed:green:blue:alpha:	isn’t	callable	from	Swift,	because	it	would	be
identical	to	the	init(red:green:blue:alpha:)	that	already	exists.

The	same	name	munging	operates	also	in	reverse:	for	example,	a	Swift	initializer
init(value:)	is	visible	to	and	callable	by	Objective-C	under	the	name	initWithValue:.

Selectors
An	Objective-C	method	will	sometimes	expect	as	parameter	the	name	of	a	method	to	be
called	later.	Such	a	name	is	called	a	selector.	For	example,	the
addTarget:action:forControlEvents:	method	can	be	called	as	a	way	of	telling	a	button
in	the	interface,	“From	now	on,	whenever	you	are	tapped,	send	this	message	to	this
object.”	The	message,	the	action:	parameter,	is	a	selector.

You	may	imagine	that,	if	this	were	a	Swift	method,	you’d	be	passing	a	function	here.	A
selector,	however,	is	not	the	same	as	a	function.	It’s	just	a	name.	Objective-C,	unlike

Swift,	is	so	dynamic	that	it	is	able,	at	runtime,	to	construct	and	send	an	arbitrary	message
to	an	arbitrary	object	based	on	the	name	alone.

But	even	though	it	is	just	a	name,	a	selector	is	not	a	string,	either.	It	is,	in	fact,	a	separate
object	type,	designated	in	Objective-C	declarations	as	SEL	and	in	Swift	declarations	as
Selector.	In	most	cases,	however,	Swift	will	permit	you,	as	a	shortcut,	to	pass	a	string
where	a	selector	is	expected!	For	example:

b.addTarget(self,	action:	"doNewGame:",	forControlEvents:	.TouchUpInside)

Once	in	a	while,	you	may	have	to	form	an	actual	Selector	object,	which	you	can	do	by
coercing	a	string	to	a	Selector.	In	this	example,	a	Selector	arrives	as	a	parameter	and	we
need	to	identify	it	by	comparison.	We	can’t	compare	a	Selector	to	a	string,	so	we	coerce	a
string	to	a	Selector	so	that	we	can	compare	two	Selectors:

override	func	canPerformAction(action:	Selector,

				withSender	sender:	AnyObject!)	->	Bool	{

								if	action	==	Selector("undo:")	{	//	...

Now	please	pretend	that	I	am	banging	on	the	table	with	a	large	stick	and	screaming	at	you:
you	must	get	the	name	of	a	selector	right	when	you	supply	it!	If	you	call	a	method	like
addTarget:action:forControlEvents:	and	if	you	get	the	method	name	wrong	when	you
supply	the	action:	argument,	there	will	be	no	error	or	warning	at	compile	time,	but
Objective-C	will	later	attempt	to	send	this	wrong	message	to	your	target	and	your	app	will
crash,	along	with	the	dreaded	“unrecognized	selector”	message	in	the	console.	This	is	one
of	the	few	situations	in	which	Swift	opens	itself	to	the	sort	of	disastrous	Objective-C
programmer	error	that,	on	the	whole,	it	is	designed	to	prevent.	(I	regard	this	as	a	major
flaw	in	the	Swift	language.)

To	get	the	name	right,	you	need	to	translate	from	a	Swift	method	declaration	to	the
Objective-C	name	of	that	method.	This	translation	is	simple	and	follows	rules	that	are
completely	mechanical,	but	you	will	be	entering	the	name	as	a	literal	string	and	it	is	all	too
easy	to	make	a	typing	mistake,	so	be	careful:

1.	 The	name	starts	with	everything	that	precedes	the	left	parenthesis	in	the	method
name.

2.	 If	the	method	takes	no	parameters,	stop.	That’s	the	end	of	the	name.
3.	 If	the	method	takes	any	parameters,	add	a	colon.
4.	 If	the	method	takes	more	than	one	parameter,	add	the	external	names	of	all

parameters	except	the	first	parameter,	with	a	colon	after	each	external	parameter
name.

Observe	that	this	means	that	if	the	method	takes	any	parameters,	its	Objective-C	name	will
end	with	a	colon.	Capitalization	counts,	and	the	name	should	contain	no	spaces	or	other
punctuation	except	for	the	colons.

To	illustrate,	here	are	three	Swift	method	declarations,	with	their	Objective-C	names	given
as	a	string	in	a	comment:

func	sayHello()	->	String	//	"sayHello"

func	say(s:String)	//	"say:"

func	say(s:String,	times	n:Int)	//	"say:times:"

If	you	are	so	contrary	as	to	externalize	the	name	of	a	Swift	method’s	first	parameter,

Objective-C	adds	"With"	and	a	capitalized	version	of	the	external	parameter	name	to	the
first	part	of	the	method	name.	For	example:

func	say(string	s:String)	//	"sayWithString:"

It	is	possible	to	crash	even	though	your	selector	name	corresponds	correctly	to	a	declared
method.	For	example,	here’s	a	small	test	class	that	creates	an	NSTimer	and	tells	it	to	call	a
certain	method	once	per	second:

class	MyClass	{

				var	timer	:	NSTimer?

				func	startTimer()	{

								self.timer	=	NSTimer.scheduledTimerWithTimeInterval(1,

												target:	self,	selector:	"timerFired:",

												userInfo:	nil,	repeats:	true)

				}

				func	timerFired(t:NSTimer)	{

								print("timer	fired")

				}

}

There’s	nothing	wrong	with	that	class	structurally;	it	compiles,	and	can	be	instantiated
when	the	app	runs.	But	when	we	call	startTimer,	we	crash.	The	problem	is	not	that
timerFired	doesn’t	exist,	or	that	"timerFired:"	is	not	its	name;	the	problem	is	that
Cocoa	can’t	find	timerFired.	This,	in	turn,	is	because	our	class	MyClass	is	a	pure	Swift
class;	therefore	it	lacks	the	Objective-C	introspection	and	message-sending	machinery	that
would	permit	Cocoa	to	see	and	call	timerFired.	Any	of	the	following	solutions	will	solve
the	problem:

Declare	MyClass	as	a	subclass	of	NSObject.
Declare	timerFired	with	the	@obc	attribute.
Declare	timerFired	with	the	dynamic	keyword.	(But	this	would	be	overkill;	you
should	reserve	use	of	dynamic	for	situations	where	it	is	needed,	namely	where
Objective-C	needs	the	ability	to	alter	the	implementation	of	a	class	member.)

CFTypeRefs
CFTypeRef	functions	are	global	C	functions,	and	are	generally	easy	to	call.	The	resulting
code	will	usually	appear	almost	as	if	Swift	were	C.

For	CFTypeRef	pseudo-objects	and	their	memory	management,	see	Chapter	12.	A
CFTypeRef	is	a	pointer,	so	it	is	interchangeable	with	C	pointer-to-void.	And	because	it	is	a
pointer	to	a	pseudo-object,	it	is	interchangeable	with	Objective-C	id	and	Swift	AnyObject.

Many	CFTypeRefs	are	toll-free	bridged	to	corresponding	Objective-C	object	types.	For
example,	CFString	and	NSString,	CFNumber	and	NSNumber,	CFArray	and	NSArray,
CFDictionary	and	NSDictionary	are	all	toll-free	bridged	(and	there	are	many	others).	Such
pairs	are	interchangeable	by	casting,	and	sometimes	you’ll	need	to	do	so.	Again,	this	is
much	easier	in	Swift	than	in	Objective-C.	In	Objective-C,	you	must	perform	a	bridging
cast,	to	tell	Objective-C	how	to	manage	this	object’s	memory	as	it	crosses	between	the
memory-managed	world	of	Objective-C	objects	and	the	unmanaged	world	of	C	and
CFTypeRefs.	But	in	Swift,	CFTypeRefs	are	memory-managed,	and	so	there	is	no	need	for
a	bridging	cast;	you	can	just	cast,	plain	and	simple.	In	fact,	in	many	cases,	Swift	will	know
about	the	toll-free	bridging,	and	will	cast	for	you,	automatically!

For	example,	in	this	code	from	one	of	my	apps,	I’m	using	the	ImageIO	framework.	This

framework	has	a	C	API	and	uses	CFTypeRefs.	CGImageSourceCopyPropertiesAtIndex
returns	a	CFDictionary	whose	keys	are	CFStrings.	The	easiest	way	to	obtain	a	value	from
a	dictionary	is	by	subscripting,	but	you	can’t	do	that	with	a	CFDictionary,	because	it	isn’t
an	object	—	so	I	cast	it	to	a	Swift	Dictionary.	The	key	kCGImagePropertyPixelWidth	is	a
CFString,	which	is	not	a	Hashable	(it	isn’t	a	true	object	at	all,	and	can’t	adopt	protocols),
and	hence	cannot	be	used	as	a	Swift	dictionary	key;	but	when	I	try	to	use	it	directly	in	a
subscript,	Swift	allows	me	to	do	so,	because	it	casts	it	for	me	to	an	NSString:

let	result	=

				CGImageSourceCopyPropertiesAtIndex(src,	0,	nil)!	as	[NSObject:AnyObject]

let	width	=	result[kCGImagePropertyPixelWidth]	as!	CGFloat

Similarly,	in	this	code,	I	form	a	dictionary	d	using	CFString	keys	and	pass	it	to	the
CGImageSourceCreateThumbnailAtIndex	function	where	a	CFDictionary	is	expected.	I
don’t	need	to	cast	anything	explicitly!	But	I	do	need	to	type	the	dictionary	in	order	to	get
Swift	to	cast	all	the	keys	and	values	to	Objective-C	objects	for	me:

let	d	:	[NSObject:AnyObject]	=	[

				kCGImageSourceShouldAllowFloat	:	true,

				kCGImageSourceCreateThumbnailWithTransform	:	true,

				kCGImageSourceCreateThumbnailFromImageAlways	:	true,

				kCGImageSourceThumbnailMaxPixelSize	:	w

]

let	imref	=	CGImageSourceCreateThumbnailAtIndex(src,	0,	d)!

Blocks
A	block	is	a	C	language	feature	introduced	by	Apple	starting	in	iOS	4.	It	is	very	like	a	C
function,	but	it	is	not	a	C	function;	it	behaves	as	a	closure	and	can	be	passed	around	as	a
reference	type.	A	block,	in	fact,	is	parallel	to	and	compatible	with	a	Swift	function,	and
indeed	the	two	are	interchangeable:	you	can	pass	a	Swift	function	where	a	block	is
expected,	and	when	a	block	is	handed	to	you	by	Cocoa	it	appears	as	a	function.

In	C	and	Objective-C,	a	block	declaration	is	signified	by	the	caret	character	(^),	which
appears	where	a	function	name	(or	an	asterisk	in	parentheses)	would	appear	in	a	C
function	declaration.	For	example,	the	NSArray	instance	method
sortedArrayUsingComparator:	takes	an	NSComparator	parameter,	which	is	defined
through	a	typedef	like	this:

typedef	NSComparisonResult	(^NSComparator)(id	obj1,	id	obj2);

To	read	that	declaration,	it	helps	to	start	in	the	middle	and	work	your	way	outwards;	it
says:	“NSComparator	is	the	type	of	a	block	taking	two	id	parameters	and	returning	an
NSComparisonResult.”	In	Swift,	therefore,	that	typedef	is	translated	like	this:

typealias	NSComparator	=	(AnyObject,	AnyObject)	->	NSComparisonResult

In	many	cases,	there	won’t	be	a	typedef,	and	the	type	of	the	block	will	appear	directly	in
a	method	declaration.	Here’s	the	Objective-C	declaration	for	a	UIView	class	method	that
takes	two	block	parameters:

+	(void)animateWithDuration:(NSTimeInterval)duration

				animations:(void	(^)(void))animations

				completion:(void	(^	__nullable)(BOOL	finished))completion;

In	that	declaration,	animations:	is	a	block	taking	no	parameters	(void)	and	returning	no
value,	and	completion:	is	a	block	taking	one	parameter,	a	BOOL,	and	returning	no	value.
Here’s	the	Swift	translation:

class	func	animateWithDuration(duration:	NSTimeInterval,

				animations:	()	->	Void,

				completion:	((Bool)	->	Void)?)

Those	are	examples	of	methods	that	you	would	call,	passing	a	function	as	argument	where
a	block	parameter	is	expected.	Here’s	an	example	of	a	method	that	you	would	implement,
where	a	function	is	passed	to	you.	This	is	the	Objective-C	declaration:

-	(void)webView:(WKWebView	*)webView

				decidePolicyForNavigationAction:(WKNavigationAction	*)navigationAction

				decisionHandler:(void	(^)(WKNavigationActionPolicy))decisionHandler;

You	implement	this	method,	and	it	is	called	when	the	user	taps	a	link	in	a	web	view,	so
that	you	can	decide	how	to	respond.	The	third	parameter	is	a	block	that	takes	one
parameter	—	a	WKNavigationActionPolicy,	which	is	an	enum	—	and	returns	no	value.
The	block	is	passed	to	you	as	a	Swift	function,	and	you	respond	by	calling	the	function	to
report	your	decision:

func	webView(webView:	WKWebView,

				decidePolicyForNavigationAction	navigationAction:	WKNavigationAction,

				decisionHandler:	((WKNavigationActionPolicy)	->	Void))	{

								//	...

								decisionHandler(.Allow)

}

In	Objective-C,	a	block	can	be	cast	to	an	id.	A	Swift	function,	however,	cannot	readily	be
cast	to	an	AnyObject.	Nevertheless,	there	are	situations	where,	in	Objective-C,	you	would
have	supplied	a	block	where	an	id	is	expected,	and	you	may	wish	to	do	the	same	thing	in
Swift,	supplying	a	Swift	function	where	an	AnyObject	is	expected.	For	example,	some
object	types,	such	as	CALayer	and	CAAnimation,	permit	the	use	of	key–value	coding	to
attach	an	arbitrary	key–value	pair	and	to	retrieve	it	later;	it	is	perfectly	reasonable	to	want
to	attach	a	function	as	the	value.

A	simple	solution	is	to	declare	an	NSObject	subclass	consisting	of	a	single	property	of	our
function	type:

typealias	MyStringExpecter	=	(String)	->	()

class	StringExpecterHolder	:	NSObject	{

				var	f	:	MyStringExpecter!

}

We	can	now	wrap	a	function	in	an	instance	of	our	class:
func	f	(s:String)	{print(s)}

let	holder	=	StringExpecterHolder()

holder.f	=	f

We	can	then	pass	that	instance	where	an	AnyObject	is	expected:
let	lay	=	CALayer()

lay.setValue(holder,	forKey:"myFunction")

It	is	then	a	simple	matter,	at	some	future	time,	to	extract	the	instance,	cast	it	down	from
AnyObject,	and	call	the	function	that	it	wraps:

let	holder2	=	lay.valueForKey("myFunction")	as!	StringExpecterHolder

holder2.f("testing")

A	C	function	is	not	a	block,	but,	new	in	Swift	2.0,	you	can	also	use	a	Swift	function	where
a	C	function	is	expected,	as	I	demonstrated	earlier.	Going	in	the	other	direction,	to	declare
a	type	as	a	C	pointer-to-function,	mark	the	type	as	@convention(c).	For	example,	here	are
two	Swift	method	declarations:

func	blockTaker(f:()->())	{}

func	functionTaker(f:@convention(c)()	->	())	{}

Objective-C	sees	the	first	as	taking	an	Objective-C	block,	and	the	second	as	taking	a	C
pointer-to-function.

API	Markup
As	soon	as	Swift	was	first	introduced	to	the	programming	public	in	June	of	2014,	it	was
evident	that	Swift’s	strict,	specific	typing	was	a	poor	match	for	Objective-C’s	dynamic,
loose	typing.	The	chief	problems	were:

In	Objective-C,	any	object	instance	reference	can	be	nil.	But	in	Swift,	only	an
Optional	can	be	nil.	The	default	solution	was	to	use	implicitly	unwrapped	Optionals	as
the	medium	of	object	interchange	between	Objective-C	and	Swift.	But	this	was	a	blunt
instrument,	especially	because	most	objects	arriving	from	Objective-C	were	never	in
fact	going	to	be	nil.
In	Objective-C,	a	collection	type	such	as	NSArray	can	contain	elements	of	multiple
object	types,	and	the	collection	itself	is	agnostic	as	to	what	types	of	elements	it	may
contain.	But	a	Swift	collection	type	can	contain	elements	of	just	one	type,	and	is	itself
typed	according	that	element	type.	The	default	solution	was	for	every	collection	to
arrive	from	Objective-C	typed	in	the	most	general	way;	it	then	had	to	be	cast	down
explicitly	on	the	Swift	side.	It	was	particularly	galling	to	ask	for	a	view’s	subviews,	for
example,	and	get	back	an	[AnyObject]	which	had	to	be	cast	down	to	a	[UIView]	—
when	nothing	could	be	more	obvious	than	that	a	view’s	subviews	would	in	fact	all	be
UIView	objects.

These	problems	have	subsequently	been	solved	by	modifying	the	Objective-C	language	to
permit	markup	of	declarations	in	such	a	way	as	to	communicate	to	Swift	a	more	specific
knowledge	of	what	to	expect.

An	Objective-C	object	type	can	be	marked	as	nonnull	or	nullable,	to	specify,
respectively,	that	it	will	never	be	nil	or	that	it	might	be	nil.	In	the	same	way,	C	pointer
types	can	be	marked	__nonnull	or	__nullable.	Using	these	markers	obviates	all	need	for
implicitly	unwrapped	Optionals	as	a	medium	of	interchange;	every	type	can	be	either	a
normal	type	or	a	normal	Optional.	Thus,	implicitly	unwrapped	Optionals	are	a	rare	sight	in
the	Cocoa	APIs	nowadays.

If	you’re	writing	an	Objective-C	header	file	and	you	don’t	mark	up	any	of	it	as	to
nullability,	you’ll	return	to	the	bad	old	days:	Swift	will	see	your	types	as	implicitly
unwrapped	Optionals.	For	example,	here’s	an	Objective-C	method	declaration:

-	(NSString*)	badMethod:	(NSString*)	s;

In	the	absence	of	markup,	Swift	sees	that	as	follows:
func	badMethod(s:	String!)	->	String!

As	soon	as	your	header	file	contains	any	markup,	the	Objective-C	compiler	will	complain
until	it	is	completely	marked	up.	To	help	you	with	this,	you	can	mark	an	entire	stretch	of
your	header	file	with	a	default	nonnull	setting;	you	will	then	need	to	mark	up	only	the
exceptional	nullable	types:

NS_ASSUME_NONNULL_BEGIN

-	(NSString*)	badMethod:	(NSString*)	s;

-	(nullable	NSString*)	goodMethod:	(NSString*)	s;

NS_ASSUME_NONNULL_END

Swift	sees	that	with	no	implicitly	unwrapped	Optionals:
func	badMethod(s:	String)	->	String

func	goodMethod(s:	String)	->	String?

This	sort	of	markup	also	allows	the	Swift	compiler	to	be	stricter	than	in	the	past	about
whether	your	declaration	of	an	inherited	or	protocol-based	Objective-C	method	is	correct.
In	the	past,	you	could	change	the	optionality	of	a	type;	now	the	compiler	will	slap	your
hand	if	you	don’t	get	it	right.	For	example,	you	can’t	declare	a	type	as	String	if
Objective-C	declares	it	as	nullable	NSString*;	you	must	say	String?	to	match.

To	mark	a	collection	type	as	containing	a	certain	type	of	element,	put	the	element	type	in
angle	brackets	(<>)	after	the	name	of	the	collection	type	but	before	the	asterisk.	This	is	an
Objective-C	method	that	returns	an	array	of	strings:

-	(NSArray<NSString*>*)	pepBoys;

Swift	sees	the	return	type	of	that	method	as	[String],	and	there	will	be	no	need	to	cast	it
down.

In	the	declaration	of	an	actual	Objective-C	collection	type,	a	placeholder	name	stands	for
the	type	in	angle	brackets.	For	example,	the	declaration	for	NSArray	starts	like	this:

@interface	NSArray<ObjectType>

-	(NSArray<ObjectType>	*)arrayByAddingObject:(ObjectType)anObject;

//	...

The	first	line	says	that	we’re	going	to	use	ObjectType	as	the	placeholder	name	for	the
element	type.	The	second	line	says	that	the	arrayByAddingObject:	method	takes	an
object	of	the	element	type	and	returns	an	array	of	the	element	type.	If	a	particular	array	is
declared	as	NSArray<NSString*>*,	the	ObjectType	placeholder	would	be	resolved	to
NSString*.	(You	can	see	why	Apple	refers	to	this	as	a	“lightweight	generic.”)

Bilingual	Targets
It	is	legal	for	a	target	to	be	a	bilingual	target	—	one	that	contains	both	Swift	files	and
Objective-C	files.	A	bilingual	target	can	be	useful	for	various	reasons.	You	might	want	to
take	advantage	of	Objective-C	language	features.	You	might	want	to	incorporate	third-
party	code	written	in	Objective-C.	You	might	want	to	incorporate	your	own	existing	code
written	in	Objective-C.	Your	app	itself	may	have	been	written	in	Objective-C	originally,
and	now	you	want	to	migrate	part	of	it	(or	all	of	it,	in	stages)	into	Swift.

The	key	question	is	how,	within	a	single	target,	Swift	and	Objective-C	hear	about	one
another’s	code	in	the	first	place.	Recall	that	Objective-C,	unlike	Swift,	has	a	visibility
problem	already:	Objective-C	files	cannot	automatically	see	one	another.	Instead,	each
Objective-C	file	that	needs	to	see	another	Objective-C	file	must	be	instructed	explicitly	to
see	that	file,	usually	with	an	#import	directive	at	the	top	of	the	first	file.	In	order	to
prevent	unwanted	exposure	of	private	information,	an	Objective-C	class	declaration	is
conventionally	spread	over	two	files:	a	header	file	(.h)	containing	the	@interface	section,
and	a	code	file	(.m)	containing	the	@implementation	section.	Also	conventionally,	only	.h
files	are	ever	imported.	Thus,	if	declarations	of	class	members,	constants,	and	so	forth	are
to	be	public,	they	are	placed	in	a	.h	file.

Visibility	of	Swift	and	Objective-C	to	one	another	depends	upon	this	convention:	it	works
through	.h	files.	There	are	two	directions	of	visibility,	and	they	operate	separately:

How	Swift	sees	Objective-C

When	you	add	a	Swift	file	to	an	Objective-C	target,	or	an	Objective-C	file	to	a	Swift
target,	Xcode	offers	to	create	a	bridging	header.	This	is	a	.h	file	in	the	project.	Its
default	name	is	derived	from	the	target	name	—	for	example,	MyCoolApp-Bridging-
Header.h	—	but	the	name	is	arbitrary	and	can	be	changed,	provided	you	change	the
target’s	Objective-C	Bridging	Header	build	setting	to	match.	(Similarly,	if	you	decline
the	bridging	header	and	you	decide	later	that	you	want	one,	create	a	.h	file	manually	and
point	to	it	in	the	target’s	Objective-C	Bridging	Header	build	setting.)	An	Objective-C	.h
file	will	then	be	visible	to	Swift	provided	you	#import	it	in	this	bridging	header.

How	Objective-C	sees	Swift

If	you	have	a	bridging	header,	then	when	you	build	your	target,	the	appropriate	top-
level	declarations	of	all	your	Swift	files	are	automatically	translated	into	Objective-C
and	are	used	to	construct	a	hidden	bridging	header	inside	the	Intermediates	build	folder
for	this	target,	deep	inside	your	DerivedData	folder.	The	easiest	way	to	see	this	is	with
the	following	Terminal	command:

$	find	~/Library/Developer/Xcode/DerivedData	-name	"*Swift.h"

This	will	reveal	the	name	of	the	hidden	bridging	header.	For	example,	for	a	target	called
MyCoolApp,	the	hidden	bridging	header	is	called	MyCoolApp-Swift.h.	The	name	may
involve	some	transformation;	for	example,	a	space	in	the	target	name	is	translated	into
an	underscore.	Alternatively,	examine	(or	change)	the	target’s	Product	Module	Name
build	setting;	the	hidden	bridging	header’s	name	is	derived	from	this.	Your	Objective-C
files	will	be	able	to	see	your	Swift	declarations,	provided	you	#import	this	hidden
bridging	header	into	each	Objective-C	file	that	needs	to	see	it.

For	simplicity,	I	will	refer	to	these	two	bridging	headers	as	the	visible	and	invisible
bridging	headers,	respectively.

For	example,	let’s	say	that	I’ve	added	to	my	Swift	target,	called	MyCoolApp,	a	Thing
class	written	in	Objective-C.	It	is	distributed	over	two	files,	Thing.h	and	Thing.m.	Then:

For	Swift	code	to	see	the	Thing	class,	I	need	to	#import	"Thing.h"	in	the	visible
bridging	header	(MyCoolApp-Bridging-Header.h).
For	Thing	class	code	to	see	my	Swift	declarations,	I	need	to	import	the	invisible
bridging	header	(#import	"MyCoolApp-Swift.h")	at	the	top	of	Thing.m.

On	that	basis,	here’s	the	procedure	I	use	for	turning	my	own	Objective-C	apps	into	Swift
apps:

1.	 Pick	a	.m	file	to	be	translated	into	Swift.	Objective-C	cannot	subclass	a	Swift	class,
so	if	you	have	defined	both	a	class	and	its	subclass	in	Objective-C,	start	with	the
subclass.	Leave	the	app	delegate	class	for	last.

2.	 Remove	that	.m	file	from	the	target.	To	do	so,	select	the	.m	file	and	use	the	File
inspector.

3.	 In	every	Objective-C	file	that	#imports	the	corresponding	.h	file,	remove	that
#import	statement	and	import	in	its	place	the	invisible	bridging	header	(if	you	aren’t
importing	it	in	this	file	already).

4.	 If	you	were	importing	the	corresponding	.h	file	in	the	visible	bridging	header,
remove	the	#import	statement.

5.	 Create	the	.swift	file	for	this	class.	Make	sure	it	is	added	to	the	target.
6.	 In	the	.swift	file,	declare	the	class	and	provide	stub	declarations	for	all	members	that

were	being	made	public	in	the	.h	file.	If	this	class	needs	to	adopt	Cocoa	protocols,
adopt	them;	you	may	have	to	provide	stub	declarations	of	required	protocol	methods
as	well.	If	this	file	needs	to	refer	to	any	other	classes	that	your	target	still	declares	in
Objective-C,	import	their	.h	files	in	the	visible	bridging	header.

7.	 The	project	should	now	compile!	It	doesn’t	work,	of	course,	because	you	have	not
written	any	real	code	in	the	.swift	file.	But	who	cares	about	that?	Time	for	a	beer!

8.	 Now	fill	out	the	code	in	the	.swift	file.	My	technique	is	to	translate	more	or	less	line-
by-line	from	the	original	Objective-C	code,	even	though	the	outcome	is	not
particularly	idiomatic	(Swifty).

9.	 When	the	code	for	this	.m	file	is	completely	translated	into	Swift,	build	and	run	and
test.	If	the	runtime	complains	(probably	accompanied	by	crashing)	that	it	can’t	find
this	class,	find	all	references	to	it	in	the	nib	editor	and	reenter	the	class’s	name	in	the
Identity	inspector	(and	press	Tab	to	set	the	change).	Save	and	try	again.

10.	 On	to	the	next	.m	file!	Repeat	all	of	the	above	steps.
11.	 When	all	of	the	other	files	have	been	translated,	translate	the	app	delegate	class.	At

this	point,	if	there	are	no	Objective-C	files	left	in	the	target,	you	can	delete	the
main.m	file	(replacing	it	with	a	@UIApplicationMain	attribute	in	the	app	delegate
class	declaration)	and	the	.pch	(precompiled	header)	file.

Your	app	should	now	run,	and	is	now	written	in	pure	Swift	(or	is,	at	least,	as	pure	as	you
intend	to	make	it).	Now	go	back	and	think	about	the	code,	making	it	more	Swifty	and
idiomatic.	You	may	well	find	that	things	that	were	clumsy	or	tricky	in	Objective-C	can	be
made	much	neater	and	clearer	in	Swift.

Note	also	that	you	can	do	a	partial	conversion	of	an	Objective-C	class	by	extending	it	in
Swift.	This	can	be	useful	as	a	stage	along	the	path	to	total	conversion,	or	you	might	quite
reasonably	write	only	one	or	two	methods	of	an	Objective-C	class	in	Swift,	just	because
Swift	makes	it	so	much	easier	to	say	or	understand	certain	kinds	of	thing.	However,	Swift
cannot	see	the	Objective-C	class’s	members	unless	they	are	made	public,	so	methods	and
properties	that	you	were	previously	keeping	private	in	the	Objective-C	class’s	.m	file	may
have	to	be	declared	in	its	.h	file.

Index
A
aborting,	Aborting

access	control,	Privacy

accessibility,	Testing

Accessibility	Inspector,	Testing

accessors,	Accessors,	Properties,	and	Key–Value	Coding

Accounts	preferences,	Version	Control,	Obtaining	a	Developer	Program	Membership,
Profile	and	Device	Management

action	connections,	Action	Connections

action	connections,	creating,	Action	Connections

action	messages,	Action	Connections

action	selector	signatures,	Actions

action	target	of	a	control,	Actions

actions	(control),	Actions

actions,	misconfiguring,	Misconfigured	Actions

actions,	nil-targeted,	Nil-Targeted	Actions

Ad	Hoc	distribution,	Archiving	and	Distribution,	Ad	Hoc	Distribution

address	operator,	Modifiable	Parameters,	C	Pointers

adopt	a	protocol,	Protocols

advancedBy,	Character

alloc,	C	Arrays

ampersand,	Modifiable	Parameters,	C	Pointers

anonymous	functions,	Anonymous	Functions

anonymous	functions,	capture	list,	Weak	and	Unowned	References	in	Anonymous
Functions

anonymous	functions,	define-and-call,	Define-and-Call

anonymous	functions,	retain	cycles,	Weak	and	Unowned	References	in	Anonymous
Functions

anonymous	functions,	throws,	Throwing	and	catching	errors

Any,	Any

AnyClass,	AnyClass

AnyObject,	AnyObject–Object	identity	and	type	identity

Objective-C	id,	AnyObject

suppressing	type	checking,	Suppressing	type	checking

API,	Preface

app	bundle,	From	Project	to	Running	App

app	delegate,	Cocoa	Delegation

app	delegate	instance,	how	created,	UIApplicationMain

app	launch	process,	UIApplicationMain

app	name,	Renaming	Parts	of	a	Project,	Property	List	Settings,	Submission	to	the	App
Store

app	name,	localizing,	Localizing	the	Info.plist

App	Store,	Submission	to	the	App	Store

App	Store	distribution,	Archiving	and	Distribution

app	target,	The	Target

app	version	number,	Property	List	Settings

append,	Basic	array	properties	and	methods

appendContentsOf,	String,	Basic	array	properties	and	methods

Apple	ID,	Obtaining	a	Developer	Program	Membership

ARC,	Memory	Management

(see	also	memory	management)

architecture,	Summary	and	Conclusion

archive	(of	an	app),	Archiving	and	Distribution

arguments,	Function	Parameters	and	Return	Value

arithmetic	operators,	Arithmetic	operations

Array	struct,	Array

arrays,	Array–Swift	Array	and	Objective-C	NSArray

C	arrays,	C	Arrays

casting	element	type,	Array	casting	and	type	testing

concatenating,	Basic	array	properties	and	methods

declaration,	Array

enumerating,	Array	enumeration	and	transformation

equality,	Array	comparison

flattening,	Basic	array	properties	and	methods

indexing,	Array	subscripting

initializers,	Array

literal,	Array

mutating,	Array	subscripting

nested,	Nested	arrays

properties	and	methods,	Basic	array	properties	and	methods

searching,	Basic	array	properties	and	methods

sorting,	Basic	array	properties	and	methods

subscripting,	Array	subscripting

testing	element	type,	Array	casting	and	type	testing

transforming,	Array	enumeration	and	transformation

uniquing,	Set,	NSSet	and	Friends

wrapping	elements,	Array	casting	and	type	testing

arrow	operator,	Function	Parameters	and	Return	Value

as,	Casting,	Protocol	Type	Testing	and	Casting

assert,	Aborting

asset	catalog,	Resources	in	an	asset	catalog,	Icons	in	the	App

asset	catalog,	compiled,	From	Project	to	Running	App

asset	catalog,	nonimage	resources,	Resources	in	an	asset	catalog

assignment,	Variables

assignment,	compound,	Arithmetic	operations

assignment,	conditional,	Conditional	evaluation

assignment,	multiple,	Tuple

assistant	pane,	The	Editor,	Navigation

associated	type,	Generic	Declarations

associated	type	chains,	Associated	Type	Chains

associated	value,	Case	With	Typed	Value,	Switch	statement,	While	loops,	For	loops

Attributes	inspector,	The	Utilities	Pane,	Inspectors	and	Libraries

auditing,	Why	Optionals?

autoclosure,	Aborting

autocompletion,	Autocompletion

autolayout,	Inspectors	and	Libraries

autolinking,	Frameworks	and	SDKs

automatic	variables,	Variable	Scope	and	Lifetime

autorelease,	Autorelease	Pool

autorelease	pool,	Autorelease	Pool

availability,	Class	Documentation	Pages

available,	Backward	Compatibility

awakeFromNib,	Additional	Configuration	of	Nib-Based	Instances

B
backward	compatibility,	Backward	Compatibility

bag,	NSSet	and	Friends

balancing	delimiters,	Editing	and	Navigating	Your	Code

Ballard,	Kevin,	Model–View–Controller

base	class,	Subclass	and	Superclass

Base	SDK	build	setting,	Device	Architecture	and	Conditional	Code

Behaviors	preferences,	The	Navigator	Pane,	The	Editor

beta	testing,	Ad	Hoc	Distribution

bilingual	target,	Bilingual	Targets

binary	executable,	Build	Phases

binary	numbers,	Int

binding,	conditional,	Conditional	binding,	While	loops,	Guard

binding,	conditional,	nest	vs.	list,	Conditional	binding

bitmask,	Option	sets

bitwise	operators,	Arithmetic	operations

option	sets	instead,	Option	sets

blame,	Version	Control

blocks	(flow	control),	Flow	Control

blocks,	C,	Function	As	Value,	Blocks

body	of	a	function,	Function	Parameters	and	Return	Value

bookmarking	a	documentation	page,	The	Documentation	Window

bookmarking	a	line	of	code,	Navigation

BOOL,	NSNumber

Bool	struct,	Bool

Boolean	operators,	Bool

branching,	Flow	Control–Conditional	evaluation

branching,	shortcircuiting,	Shortcircuiting	and	labels

break,	Shortcircuiting	and	labels

Breakpoint	navigator,	The	Navigator	Pane

breakpoints,	Breakpoints

bridged	types,	Objective-C	Objects	and	Swift	Objects

AnyObject	and	id,	AnyObject

Array	and	NSArray,	Swift	Array	and	Objective-C	NSArray,	NSArray	and
NSMutableArray

casting,	Casting

CFTypeRefs,	CFTypeRefs

Dictionary	and	NSDictionary,	Swift	Dictionary	and	Objective-C	NSDictionary

ErrorType	and	NSError,	Throwing	and	catching	errors

number	and	NSNumber,	Casting,	NSNumber

Set	and	NSSet,	Swift	Set	and	Objective-C	NSSet,	NSSet	and	Friends

String	and	NSString,	String,	NSString	and	Friends

bridging	header,	Bilingual	Targets

build,	New	Project

build	configurations,	Configurations

build	phases,	Build	Phases

build	settings,	Build	Settings

bundle	identifier,	New	Project

bundle,	app,	From	Project	to	Running	App

bundle,	test,	Testing

C
C,	The	C	Language–C	Functions

(see	also	Objective-C)

C	arrays,	C	Arrays

C	blocks,	Blocks

C	data	types,	C	Data	Types

C	enums,	C	Enums

C	functions,	C	Functions

C	numeric	types,	Other	numeric	types

C	pointers,	C	Pointers

C	strings,	C	Data	Types

C	structs,	C	Structs

C	structs	in	Objective-C	collections,	Swift	Array	and	Objective-C	NSArray

C	structs,	wrapping	in	an	object,	Swift	Array	and	Objective-C	NSArray,	NSValue

call	stack,	The	Navigator	Pane,	Paused	at	a	breakpoint

calling	a	function,	Functions,	Function	Parameters	and	Return	Value

cancelable	timer,	Unusual	Memory	Management	Situations

canvas,	The	Nib	Editor	Interface,	Canvas

capitalization,	Variables

capture	list,	Weak	and	Unowned	References	in	Anonymous	Functions

captured	variable	references,	Closures

captured	variable	references,	preserving,	Closure	Preserving	Its	Captured	Environment

captured	variable	references,	setting,	Closure	Setting	a	Captured	Variable

case	(of	enum),	Enums

case	(of	switch	statement),	Switch	statement

casting,	Casting–Casting

casting	safely,	Casting,	Switch	statement

categories,	Categories	and	Extensions

caveman	debugging,	Caveman	Debugging

certificate,	Running	on	a	Device

certificate,	exporting,	Profile	and	Device	Management

CFTypeRefs,	CFTypeRefs

CFTypeRefs,	memory	management,	Memory	Management	of	CFTypeRefs

CGFloat	struct,	Other	numeric	types

character	sequence,	Character

Character	struct,	Character

characters	vs.	codepoints,	String

characters,	escaped,	String

class	clusters,	Immutable	and	Mutable

class	documentation	page,	Class	Documentation	Pages

class	members,	Instances

class	methods,	Methods

class	methods	of	NSObject,	The	Secret	Life	of	NSObject

class	methods	vs.	static	methods,	Class	Properties	and	Methods

class	of	object	in	nib,	changing,	Inspectors	and	Libraries

class	properties,	Variable	Scope	and	Lifetime,	Properties

class	properties	vs.	static	properties,	Class	Properties	and	Methods

class	protocols,	Class	Protocol

classes,	Classes–Class	Properties	and	Methods

(see	also	object	types)

class	methods,	Class	Properties	and	Methods

class	properties,	Class	Properties	and	Methods

deinitializers,	Class	Deinitializer

documentation,	Class	Documentation	Pages

generic,	subclassing,	Explicit	Specialization

hierarchy,	Subclass	and	Superclass

inheritance,	Subclass	and	Superclass

initializers,	Class	Initializers

instances,	multiple	references,	Value	Types	and	Reference	Types

instances,	mutating,	Modifiable	Parameters,	Value	Types	and	Reference	Types

methods,	overriding,	Subclass	and	Superclass

polymorphism,	Polymorphism

Objective-C	name,	Objective-C	Objects	and	Swift	Objects

overriding,	preventing,	Subclass	and	Superclass

polymorphism,	Polymorphism

properties,	overriding,	Class	Properties	and	Methods

reference	types,	Value	Types	and	Reference	Types

references	to,	AnyClass

static	methods,	Class	Properties	and	Methods

static	properties,	Class	Properties	and	Methods

subclass	and	superclass,	Subclass	and	Superclass

subclassing,	preventing,	Subclass	and	Superclass

subscripts,	overriding,	Subclass	and	Superclass

umbrella	type,	AnyObject,	AnyClass

cleaning,	Clean

closures,	Closures

Cocoa,	Cocoa	Classes–Model–View–Controller

actions	(control),	Actions

categories,	Categories	and	Extensions

data	sources,	Data	Sources

delegation,	Delegation

events,	Cocoa	Events

Foundation	classes,	Some	Foundation	Classes

key–value	coding,	Key–Value	Coding

key–value	observing,	Key–Value	Observing

memory	management,	Memory	Management

notifications,	Notifications

protocols,	Protocols

responder	chain,	The	Responder	Chain

subclassing,	Subclassing,	Subclassing

code	completion,	Autocompletion

Code	Snippet	library,	The	Utilities	Pane,	Snippets

code,	location,	Functions,	Cocoa	Events

codepoints	vs.	characters,	String

codepoints,	Unicode,	String

coercion,	numeric,	Coercion,	C	Data	Types

coercion,	Range	and	NSRange,	Range,	Useful	Structs	and	Constants

coercion,	String	and	Int,	String

collections,	Foundation,	NSIndexSet–Immutable	and	Mutable

collections,	memory	management,	How	Cocoa	Objects	Manage	Memory,	Unusual
Memory	Management	Situations

collections,	Swift,	Collection	Types–Swift	Set	and	Objective-C	NSSet

colon

adopting	protocol,	Protocols

argument	label,	External	Parameter	Names

enum	raw	value	type,	Case	With	Fixed	Value

generic	type	constraint,	Type	Constraints

key–value,	Dictionary

label,	Shortcircuiting	and	labels

parameter	name,	Function	Parameters	and	Return	Value

superclass,	Subclass	and	Superclass

ternary	operator,	Conditional	evaluation

variable	type,	Variable	Declaration

comments,	Ground	of	Being

comments,	self-documenting,	Quick	Help

communication	between	objects,	Communication	Between	Objects

Comparable,	Type	Constraints

compare:,	Equality	and	Comparison

comparison	of	Objective-C	objects,	Equality	and	Comparison

comparison	operators,	Comparison

compatibility,	backward,	Backward	Compatibility

compilation,	conditional,	Caveman	Debugging

compile	error,	Ground	of	Being

compile	single	file,	New	Project

Compile	Sources	build	phase,	Build	Phases

compiler,	Ground	of	Being

completion,	code,	Autocompletion

completion,	type-over,	Editing	and	Navigating	Your	Code

compound	assignment	operators,	Arithmetic	operations

computed	variable	initializer,	Computed	Initializer

computed	variables,	Computed	Variables

concatenating	arrays,	Basic	array	properties	and	methods

concatenating	strings,	String

conditional	assignment,	Conditional	evaluation

conditional	binding,	Conditional	binding,	While	loops,	Guard

conditional	binding,	nest	vs.	list,	Conditional	binding

conditional	compilation,	Caveman	Debugging

conditional	constraints,	Inspectors	and	Libraries

conditional	evaluation,	Conditional	evaluation

conditional	initialization,	Variable	Declaration

conditions,	Bool,	Flow	Control

configurations,	Configurations

conform	to	a	protocol,	Protocols

connections,	Connections

connections	between	nibs,	Connections	Between	Nibs	—	Not!,	Visibility	by	Instantiation

Connections	inspector,	The	Utilities	Pane

connections,	action,	Action	Connections

connections,	outlet,	Outlets,	KVC	and	Outlets

console,	The	Navigator	Pane,	Caveman	Debugging

constants,	Variables,	Variable	Declaration,	Struct	As	Namespace,	Value	Types	and
Reference	Types,	Receiving	a	Notification

constants,	documentation,	Class	Documentation	Pages

constraints	in	nib	files,	Inspectors	and	Libraries

constraints,	type,	Type	Constraints

constraints,	type,	extensions,	Extending	Generics

constraints,	type,	multiple,	Additional	Constraints

contains,	Character,	Range,	Basic	array	properties	and	methods

continue,	Shortcircuiting	and	labels

control	events,	Action	Connections,	Actions

convenience	initializers,	Kinds	of	class	initializer

convention(c),	Blocks

Copy	Bundle	Resources	build	phase,	Build	Phases

copying	instances,	Value	Types	and	Reference	Types

count,	String,	Basic	array	properties	and	methods,	Set

crash

class	not	key–value	coding	compliant,	Misconfigured	Outlets,	Key–Value	Coding,	KVC
and	Outlets

could	not	cast	value,	Casting

could	not	instantiate	class,	Frameworks	and	SDKs

deallocated	object,	Retain	Cycles	and	Weak	References

loaded	nib	but	view	outlet	was	not	set,	Misconfigured	Outlets

unexpectedly	found	nil,	The	magic	word	nil,	Misconfigured	Outlets

unrecognized	selector,	Misconfigured	Actions,	Selectors

creating	an	action	connection,	Action	Connections

creating	an	enum,	Enums

creating	an	instance,	Instances,	Initializers

creating	an	outlet,	More	Ways	to	Create	Outlets

curly	braces,	Ground	of	Being,	Flow	Control

currying,	Curried	Functions

CustomReflectable,	Introspection

CustomStringConvertible,	Why	Protocols?

D
dance,	weak–strong,	Weak	and	Unowned	References	in	Anonymous	Functions

dangling	pointers,	Principles	of	Cocoa	Memory	Management

Dash,	The	Documentation	Window

data	sources,	Data	Sources

data	tips,	Paused	at	a	breakpoint

dates,	NSDate	and	Friends

Debug	menu	(Simulator),	Running	in	the	Simulator

Debug	navigator,	The	Navigator	Pane,	Paused	at	a	breakpoint,	Gauges

Debug	pane,	The	Navigator	Pane,	Paused	at	a	breakpoint

debugger,	Xcode,	The	Xcode	Debugger

debugging,	Debugging–Paused	at	a	breakpoint

debugging	memory	management,	Debugging	Memory	Management	Mistakes

debugPrint,	Introspection

decimal	point,	Double

declaration	of	arrays,	Array

declaration	of	dictionaries,	Dictionary

declaration	of	enums,	Enums

declaration	of	extensions,	Extensions

declaration	of	functions,	Function	Parameters	and	Return	Value

declaration	of	generics,	Generic	Declarations

declaration	of	object	types,	Object	Type	Declarations	and	Features

declaration	of	operators,	Operators

declaration	of	protocols,	Declaring	a	Protocol

declaration	of	sets,	Set

declaration	of	variables,	Variable	Declaration

declaration,	jumping	to,	Symbols

decrement	operator,	Arithmetic	operations

defer	statement,	Defer

deferred	initialization,	Why	Optionals?

define-and-call,	Define-and-Call

deinit,	Class	Deinitializer

deinit	not	called,	Memory	Management,	Unusual	Memory	Management	Situations

delayed	performance,	Delayed	Performance

delegate,	Delegation

delegate,	memory	management,	Retain	Cycles	and	Weak	References

delegating	initializers,	Delegating	initializers

delegation,	Delegation

deleting	an	outlet,	Deleting	an	Outlet

delimiters,	balancing,	Editing	and	Navigating	Your	Code

Deployment	Target	build	setting,	Device	Architecture	and	Conditional	Code

description,	Why	Protocols?

Design	Patterns	(book),	Summary	and	Conclusion

designated	initializers,	Kinds	of	class	initializer

prevent	inheritance,	Subclass	initializers

destinations,	Schemes	and	Destinations

development	provisioning	profile,	Obtaining	a	Development	Provisioning	Profile

device	types,	running	on	different,	Device	Type

device,	running	on,	Running	on	a	Device

Devices	window,	Profile	and	Device	Management

dictionaries,	Dictionary–Swift	Dictionary	and	Objective-C	NSDictionary

casting,	Dictionary

declaration,	Dictionary

enumerating,	Basic	dictionary	properties	and	enumeration

keys	of,	Basic	dictionary	properties	and	enumeration

literals,	Dictionary

mutating,	Dictionary

properties,	Basic	dictionary	properties	and	enumeration

subscripting,	Dictionary

testing	type,	Dictionary

values	of,	Basic	dictionary	properties	and	enumeration

Dictionary	struct,	Dictionary

didSet,	Setter	Observers

dispatch	table,	Actions

dispatch,	dynamic,	Polymorphism

distributing	your	app,	Archiving	and	Distribution

distribution	provisioning	profile,	Archiving	and	Distribution

do	construct,	If	construct

do…catch,	Throwing	and	catching	errors

dock,	Document	Outline

document	outline,	Document	Outline

documentation,	Documentation–Internet	Resources

categories,	How	Cocoa	Uses	Categories

class,	Class	Documentation	Pages

comments,	Quick	Help

delegate,	Cocoa	Delegation

immutable	vs.	mutable	classes,	Immutable	and	Mutable

methods,	Class	Documentation	Pages

NSObject,	The	Secret	Life	of	NSObject

properties,	Class	Documentation	Pages

protocols,	Protocols

related	items,	The	Documentation	Window,	Class	Documentation	Pages

searching,	The	Documentation	Window

table	of	contents,	The	Documentation	Window

documentation	sets	(doc	sets),	Documentation

documentation	window,	The	Documentation	Window

dot-notation,	Everything	Is	an	Object?,	Namespaces

key	paths,	Key	Paths

Optionals,	Optional	chains

tuples,	Tuple

Double	struct,	Double

downcasting	(see	casting)

Downloads	preferences,	Schemes	and	Destinations,	Documentation

drawing	a	view,	Subclassing

drawing	text,	NSString	and	Friends

dropFirst,	Character,	Basic	array	properties	and	methods

dropLast,	Character,	Basic	array	properties	and	methods

dynamic,	Key–Value	Observing

dynamic	dispatch,	Polymorphism

dynamicType,	Type	Reference

E
early	exit,	Jumping

edit	all	in	scope,	Finding

editing	a	storyboard,	The	Nib	Editor	Interface

editing	a	xib	file,	Document	Outline

editing	the	project,	The	Target

editing	the	target,	The	Target

editing	your	code,	Editing	and	Navigating	Your	Code

editor,	The	Editor

elementsEqual,	Basic	array	properties	and	methods

Empty	Window	example	project,	New	Project,	Canvas,	Subclassing

Enable	Testability	build	setting,	Testing

encapsulation,	Object	Types	and	APIs

endIndex,	Character,	Basic	array	properties	and	methods

endsWith,	Basic	array	properties	and	methods

ensure	code	is	executed,	Defer

entitlements,	Running	on	a	Device

entry	point,	code,	Swamped	by	Events

entry	point,	storyboard,	Document	Outline

enumerate,	Tuple,	Array	enumeration	and	transformation,	For	loops

enums,	Enums–Why	Enums?

(see	also	object	types)

associated	value,	Case	With	Typed	Value,	Switch	statement,	While	loops,	For	loops

C	enums,	C	Enums

declaration,	Enums

equality,	Enums

indirect,	Value	Types	and	Reference	Types

initializers,	Enum	Initializers

initializing,	Enums

methods,	Enum	Methods

properties,	Enum	Properties

raw	value,	Case	With	Fixed	Value

subscripts,	Enum	Methods

equal	sign,	Variables

equality	of	Objective-C	objects,	Equality	and	Comparison

equality	of	Swift	objects,	Operators

equality	operators,	Comparison

Equatable,	Operators

errors,	Throwing	and	catching	errors–Throwing	and	catching	errors

catching,	Throwing	and	catching	errors

Objective-C,	Throwing	and	catching	errors

throwing,	Throwing	and	catching	errors

errors,	compiler,	Ground	of	Being

ambiguous,	Overloading

array	not	convertible,	Swift	Array	and	Objective-C	NSArray

method	with	Objective-C	selector	conflicts,	Overloading

protocol	can	only	be	used	as	a	generic	constraint,	Type	Constraints

required	initializer	must	be	provided,	Implicitly	Required	Initializers

return	from	initializer	without	initializing,	Initializers

value	of	optional	type	not	unwrapped,	Optional

ErrorType,	Throwing	and	catching	errors

escaped	characters,	String

evaluation,	conditional,	Conditional	evaluation

event-based	programming,	Swamped	by	Events

events,	Action	Connections,	Cocoa	Events

exception	breakpoint,	Breakpoints

exclamation	mark,	Unwrapping	an	Optional,	Implicitly	unwrapped	Optional,	Optional
chains,	Casting,	Optional	Protocol	Members

exit,	early,	Jumping

explicit	variable	type,	Variable	Declaration

exporting	certificates,	Profile	and	Device	Management

extensions,	Extensions–Extending	Generics,	How	Swift	Uses	Extensions

(see	also	categories)

built-in	object	types,	Extending	Object	Types

custom	object	types,	Extending	Object	Types

declaring,	Extensions

generics,	Extending	Generics

generics,	type	constraints,	Extending	Generics

protocols,	Extending	Protocols,	How	You	Use	Extensions

restrictions	on,	Extensions

structs,	Extending	Object	Types

external	parameter	names,	External	Parameter	Names

initializers,	Initializers

methods,	External	Parameter	Names

subscripts,	Subscripts

externalize,	External	Parameter	Names

F
factory	for	functions,	Function	Returning	Function

factory	for	instances,	Type	Reference

factory	methods,	Objective-C,	Objective-C	Initializers	and	Factories

failable	initializers,	Failable	initializers,	Subclass	initializers

fallthrough,	Switch	statement,	Shortcircuiting	and	labels

false,	Bool

Fast,	Whole	Module	Optimization,	Polymorphism,	Configurations

fatal	error	(see	crash)

fatalError,	Aborting

File	inspector,	The	Utilities	Pane

File	Template	library,	The	Utilities	Pane

file	templates,	Code	Files	and	the	App	Launch	Process

file,	Swift,	structure,	The	Structure	of	a	Swift	File

File’s	Owner,	The	Nib	Owner

filter,	Character,	Array	enumeration	and	transformation

final,	Subclass	and	Superclass

Find	navigator,	The	Navigator	Pane,	Finding

finding,	Finding

(see	also	searching)

first,	Character,	Basic	array	properties	and	methods

First	Responder	proxy	object,	Nil-Targeted	Actions

Fix-it,	Fix-it	and	Live	Syntax	Checking

flatten,	Basic	array	properties	and	methods

flavors	(of	object	type),	Three	Flavors	of	Object	Type

Float	struct,	Other	numeric	types

flow	control,	Flow	Control–Guard

folders	in	an	Xcode	project,	Resources	in	the	Project	navigator

font,	NSString	and	Friends

for	case,	For	loops

for	loop,	For	loops

for	loop,	C-style,	For	loops

for…in,	For	loops

forced	unwrap	operator,	Unwrapping	an	Optional

forEach,	Array	enumeration	and	transformation

format	string,	Caveman	Debugging

Foundation	framework,	Modules,	Some	Foundation	Classes

Fowler,	Martin,	Summary	and	Conclusion

frameworks,	Modules,	Frameworks	and	SDKs

creating,	Frameworks	and	SDKs

embedded,	Frameworks	and	SDKs

importing,	Frameworks	and	SDKs

linking,	Frameworks	and	SDKs

Swift,	From	Project	to	Running	App

function	in	function,	Function	In	Function

functional	events,	Reasons	for	Events

functions,	Functions,	Functions–Curried	Functions

anonymous,	Anonymous	Functions

anonymous,	retain	cycles,	Weak	and	Unowned	References	in	Anonymous	Functions

anonymous,	throws,	Throwing	and	catching	errors

body,	Function	Parameters	and	Return	Value

C	blocks,	Blocks

C	functions,	C	Functions

calling,	Functions,	Function	Parameters	and	Return	Value

casting	to	AnyObject,	Blocks

closures,	Closures

curried,	Curried	Functions

declaration,	Functions,	Function	Parameters	and	Return	Value

default	parameter	values,	Default	Parameter	Values

define-and-call,	Define-and-Call

external	parameter	names,	External	Parameter	Names

generic,	Generic	Declarations

global,	The	Structure	of	a	Swift	File,	Modules

global,	class	method	instead,	Extending	Object	Types

global,	instance	method	instead,	Extending	Protocols

ignored	parameters,	Ignored	Parameters

internal	parameter	names,	Function	Parameters	and	Return	Value

local,	Function	In	Function

mathematical,	Arithmetic	operations

modifiable	parameters,	Modifiable	Parameters

name,	External	Parameter	Names

overloading,	Overloading

recursion,	Recursion

rethrows,	Throwing	and	catching	errors

return	value,	Function	Parameters	and	Return	Value

returned	from	function,	Function	Returning	Function

signature,	Function	Signature

throws,	Throwing	and	catching	errors

throws,	calling,	Throwing	and	catching	errors

trailing,	Anonymous	Functions

type,	Function	As	Value

type,	umbrella,	Any

values,	Function	As	Value

variadic	parameters,	Variadic	Parameters

G
Gamma,	Erich,	et	al.	(the	Gang	of	Four),	Summary	and	Conclusion

garbage	collection,	Memory	Management,	Principles	of	Cocoa	Memory	Management

gauges,	The	Navigator	Pane,	Profiling

GCD	pseudo-objects	memory	management,	Unusual	Memory	Management	Situations

generate,	For	loops

generated	interface,	The	Editor

Generator.Element,	Associated	Type	Chains

generic	pointer,	C	Pointers

generics,	Generics–Additional	Constraints

associated	type	chains,	Associated	Type	Chains

classes,	subclassing,	Explicit	Specialization

declaration,	Generic	Declarations

explicit	specialization,	Explicit	Specialization

extensions,	Extending	Generics

functions,	Generic	Declarations

object	types,	Generic	Declarations

protocols,	Generic	Declarations

protocols,	constraining	associated	type,	Additional	Constraints

resolution,	Generics,	Generic	Declarations,	Explicit	Specialization

type	constraints,	Type	Constraints

type	constraints,	extensions,	Extending	Generics

type	constraints,	multiple,	Additional	Constraints

type,	telling	compiler,	Type	Constraints

where	clauses,	Additional	Constraints

where	clauses,	extensions,	Extending	Generics

getter,	Computed	Variables,	Accessors,	Properties,	and	Key–Value	Coding

git,	Version	Control

global	constants,	Struct	As	Namespace

global	functions,	The	Structure	of	a	Swift	File,	Modules

global	functions,	class	method	instead,	Extending	Object	Types

global	functions,	instance	method	instead,	Extending	Protocols

global	variables,	The	Structure	of	a	Swift	File,	Variable	Scope	and	Lifetime

global	variables,	initialization,	Lazy	Initialization

globally	visible	instances,	Global	Visibility

golden	rule	of	memory	management,	Rules	of	Cocoa	Memory	Management

groups,	The	Navigator	Pane,	The	Project	File	and	Its	Dependents

guard	case,	Guard

guard	let,	Guard

guard	statement,	Conditional	binding,	Guard

H
hand-tweaking,	Why	Optionals?

handlers,	Function	As	Value

Hashable,	Dictionary

hasPrefix,	String

hasSuffix,	String

header	files,	Header	Files

bridging,	Bilingual	Targets

Core	Graphics,	How	Swift	Uses	Extensions

jumping	to,	Header	Files

Objective-C,	Bilingual	Targets

Swift,	Modules,	Header	Files

heads-up	display,	The	Nib	Owner

hexadecimal	number,	Int

hierarchy	of	classes,	Subclass	and	Superclass

hierarchy	of	views,	Document	Outline

HUD,	The	Nib	Owner

I
IBAction,	Action	Connections

IBInspectable,	Additional	Configuration	of	Nib-Based	Instances

IBOutlet,	The	Nib	Owner

IBOutlet,	weak,	Nib	Loading	and	Memory	Management

icons,	From	Project	to	Running	App,	Icons	in	the	App

id	and	AnyObject,	AnyObject

identity,	Running	on	a	Device

Identity	inspector,	The	Utilities	Pane,	Inspectors	and	Libraries

identity	operator,	Object	identity	and	type	identity

if	case,	Switch	statement

if	construct,	If	construct

if	let,	Conditional	binding

image	files,	Resources	in	an	asset	catalog

immutable	Objective-C	classes,	Immutable	and	Mutable

iMovie,	Screenshots	and	Video	Previews

implicitly	unwrapped	Optional,	Implicitly	unwrapped	Optional

import	statement,	The	Structure	of	a	Swift	File,	Frameworks	and	SDKs

increment	operator,	Arithmetic	operations

index,	enumerate	with,	Tuple,	Array	enumeration	and	transformation,	For	loops

indexing	a	string,	Character,	Range

indexing	an	array,	Array	subscripting

indexOf,	Character,	Basic	array	properties	and	methods

indices,	Range,	Basic	array	properties	and	methods

indirect,	Value	Types	and	Reference	Types

inferred	variable	type,	Variable	Declaration

inferred	variable	type,	learning,	Other	numeric	types

Info.plist,	From	Project	to	Running	App,	Property	List	Settings,	Property	List	Settings

(see	also	property	list	settings)

informal	protocols,	Informal	Protocols

inheritance,	Subclass	and	Superclass

inheritance	of	initializers,	Subclass	initializers

init,	Initializers

init	with	self,	Delegating	initializers

init	with	super,	Subclass	initializers

init	with	type	reference,	Type	Reference

init(coder:),	Implicitly	Required	Initializers

initialization,	Variables,	Variable	Declaration

initialization	of	enums,	Enums

initialization	of	nib-based	instances,	Additional	Configuration	of	Nib-Based	Instances

initialization	of	Optionals,	The	magic	word	nil

initialization	of	properties,	Initializers

can’t	refer	to	instance	members,	Properties

initialization,	conditional,	Variable	Declaration

initialization,	deferred,	Why	Optionals?

initialization,	lazy,	Lazy	Initialization

initializers,	Initializers

class,	Class	Initializers

convenience,	Kinds	of	class	initializer

delegating,	Delegating	initializers

designated,	Kinds	of	class	initializer

designated,	prevent	inheritance,	Subclass	initializers

enum,	Enum	Initializers

failable,	Failable	initializers,	Subclass	initializers

implicit,	class,	Kinds	of	class	initializer

implicit,	enum,	Enums

implicit,	struct,	Struct	Initializers,	Properties,	and	Methods

inheritance,	Subclass	initializers

Objective-C,	Objective-C	Initializers	and	Factories

overriding,	Subclass	initializers

required,	Required	initializers,	Type	Reference,	Implicitly	Required	Initializers

required	by	Cocoa,	Surprises	from	Cocoa,	Implicitly	Required	Initializers

struct,	Struct	Initializers,	Properties,	and	Methods

surprises	from	Cocoa,	Surprises	from	Cocoa

inout,	Modifiable	Parameters

insert(atIndex:),	Basic	array	properties	and	methods

insertContentsOf,	Character

instance	methods,	Instances,	Methods

instance	properties,	Instances,	Variable	Scope	and	Lifetime,	Properties

(see	also	properties)

instance	variables,	Objective-C,	Accessors,	Properties,	and	Key–Value	Coding

instances,	Instances–self,	Instance	References

copying,	Value	Types	and	Reference	Types

creation,	Instances,	Initializers,	Instance	References

getting	a	reference,	Instance	References,	Communication	Between	Objects

globally	visible,	Global	Visibility

initial,	Instance	Creation,	Scope,	and	Lifetime,	UIApplicationMain

lifetime,	Instance	References

literals	instead,	Literal	Convertibles

multiple	references,	Value	Types	and	Reference	Types

mutating,	Modifiable	Parameters,	Value	Types	and	Reference	Types

nib-based,	Nib	Loading

relationships	between,	Visibility	by	Relationship

type,	Polymorphism

type,	telling	compiler,	Casting

type,	testing,	Casting

instantiation,	Instances,	Initializers,	Instance	References

instantiation,	nib-based,	Nib	Management

Instruments,	Profiling,	Debugging	Memory	Management	Mistakes

Int	struct,	Int

Interface	Builder,	Nib	Management

(see	also	nib	editor)

interface	tests,	Testing

internal,	Privacy

internal	identity	principle,	Polymorphism

internal	parameter	names,	Function	Parameters	and	Return	Value

internationalization	(see	localization)

Internet	as	documentation,	Internet	Resources

interpolation,	string,	String,	String

interval	operators,	Range

IntervalType,	Range

introspection,	Introspection,	Optional	Methods,	Key–Value	Coding

invisible	bridging	header,	Bilingual	Targets

iOS	Deployment	Target	build	setting,	Device	Architecture	and	Conditional	Code

is,	Casting,	Protocol	Type	Testing	and	Casting

isEmpty,	String,	Basic	array	properties	and	methods,	Set

isEqual:,	Equality	and	Comparison

Issue	navigator,	The	Navigator	Pane

issues,	live,	Fix-it	and	Live	Syntax	Checking

iteration,	Flow	Control

iTunes	Connect,	Submission	to	the	App	Store

J
joinWithSeparator,	String,	Basic	array	properties	and	methods

jump	bar,	The	Editor,	Navigation

Debug	pane,	Paused	at	a	breakpoint

Related	Items	menu,	The	Editor

Tracking	menu,	The	Editor

jumping,	Jumping–Guard

jumping	to	declaration,	Symbols

jumping	to	header	files,	Header	Files

K
Key	Bindings	preferences,	The	Project	Window

key	paths,	Key	Paths

keyboard	shortcuts	in	Xcode,	The	Project	Window

Keychain	Access,	Obtaining	a	Certificate

keys	(dictionary),	Dictionary

key–value	coding,	Key–Value	Coding–Array	Accessors

key–value	coding	compliant,	Key–Value	Coding

key–value	observing,	Key–Value	Observing

key–value	pairs,	Dictionary

KVC,	Key–Value	Coding

KVO,	Key–Value	Observing

L

labels	in	code,	Shortcircuiting	and	labels

labels	in	nib	editor,	Document	Outline

labels	in	nib	editor,	changed	by	outlet,	The	Nib	Owner

last,	Character,	Basic	array	properties	and	methods

launch	images,	Launch	Images

launch	nib,	Launch	Images

launch	process	of	an	app,	UIApplicationMain

layer,	configuring	in	the	nib,	Additional	Configuration	of	Nib-Based	Instances

lazy	initialization,	Lazy	Initialization

leaks,	memory,	Memory	Management,	Gauges,	Principles	of	Cocoa	Memory
Management,	Retain	Cycles	and	Weak	References

let,	Variables,	Variable	Declaration,	Value	Types	and	Reference	Types

lifetime,	Variables,	Scope	and	Lifetime,	Instance	References

(see	also	scope)

lifetime	events,	Reasons	for	Events

LIFO,	Object	Types	and	APIs

lightweight	generics,	Swift	Array	and	Objective-C	NSArray,	API	Markup

line,	Ground	of	Being

Link	Binary	With	Libraries	build	phase,	Build	Phases

linking,	Frameworks	and	SDKs

literals	where	instance	expected,	Literal	Convertibles

literals,	array,	Array

literals,	dictionary,	Dictionary

literals,	logging,	Caveman	Debugging

literals,	numeric,	Int

literals,	string,	String

live	issues,	Fix-it	and	Live	Syntax	Checking

LLDB,	Paused	at	a	breakpoint

loading	a	nib,	Nib	Management,	Nib	Loading

local	variables,	Variable	Scope	and	Lifetime

locale,	NSDate	and	Friends

localization,	Localization–Localizing	With	XML	Files

logging,	Caveman	Debugging

logging	C	structs,	Caveman	Debugging

logical	operators,	Bool

looping,	Flow	Control,	Loops–For	loops

looping,	shortcircuiting,	Shortcircuiting	and	labels

lowercaseString,	String

M
main	function,	The	entry	point

main	storyboard,	Nib	Files,	UIApplicationMain,	Device	Type

main	storyboard,	app	without,	App	without	a	storyboard

main	view	loaded	from	nib,	When	Nibs	Are	Loaded,	Automatically	Configured	Nibs

main	view	of	view	controller,	Document	Outline

main.swift	file,	Functions,	The	entry	point

maintenance	of	state,	Object	Types	and	APIs

map,	Array	enumeration	and	transformation

Markdown,	Quick	Help

math	functions,	Arithmetic	operations

maxElement,	Basic	array	properties	and	methods

Media	library,	The	Utilities	Pane,	Inspectors	and	Libraries

Member	Center,	Running	on	a	Device

members,	Object	Members

memberwise	initializer,	Struct	Initializers,	Properties,	and	Methods

memory	leaks,	Memory	Management,	Gauges,	Principles	of	Cocoa	Memory	Management,
Retain	Cycles	and	Weak	References

memory	management,	Memory	Management–Memory	Management	of	Protocol-Typed
References,	Memory	Management–Debugging	Memory	Management	Mistakes

anonymous	functions,	Weak	and	Unowned	References	in	Anonymous	Functions

ARC,	What	ARC	Is	and	What	It	Does

autorelease	pool,	Autorelease	Pool

CFTypeRefs,	Memory	Management	of	CFTypeRefs

collections,	How	Cocoa	Objects	Manage	Memory,	Unusual	Memory	Management
Situations

dangling	pointers,	Principles	of	Cocoa	Memory	Management

debugging,	Debugging	Memory	Management	Mistakes

delegates,	Retain	Cycles	and	Weak	References

GCD	pseudo-objects,	Unusual	Memory	Management	Situations

golden	rule,	Rules	of	Cocoa	Memory	Management

leaks,	Memory	Management,	Principles	of	Cocoa	Memory	Management

mutable	Objective-C	classes,	Property	Memory	Management	Policies

nib-loaded	objects,	Nib	Loading	and	Memory	Management

nilifying	unsafe	references,	Retain	Cycles	and	Weak	References

notifications,	Unusual	Memory	Management	Situations

ownership,	Rules	of	Cocoa	Memory	Management

properties,	Memory	Management	of	Instance	Properties

properties,	Objective-C,	Property	Memory	Management	Policies

protocol	references,	Memory	Management	of	Protocol-Typed	References

retain	cycles,	Memory	Management,	Retain	Cycles	and	Weak	References

retains,	unusual,	Unusual	Memory	Management	Situations

timers,	Unusual	Memory	Management	Situations

Unmanaged	struct,	Memory	Management	of	CFTypeRefs

unowned	references,	Unowned	References,	Retain	Cycles	and	Weak	References

unsafe	references,	Retain	Cycles	and	Weak	References

weak	references,	Weak	References,	Retain	Cycles	and	Weak	References

memory	property,	Modifiable	Parameters,	C	Pointers

messages,	Everything	Is	an	Object?

action	messages,	Action	Connections

sending	optionally,	Optional	Protocol	Members,	Optional	Methods

to	Optionals,	Optional	chains

to	self,	self

methods,	Object	Members,	Methods

(see	also	functions)

class,	Methods

class,	self,	Object	Type	Declarations	and	Features

documentation,	Class	Documentation	Pages

enums,	Enum	Methods

external	parameter	names,	External	Parameter	Names

inheritance,	Subclass	and	Superclass

instance,	Instances,	Methods

instance,	secret	life,	Methods

instance,	self,	self,	Object	Type	Declarations	and	Features

mutating,	Enum	Methods,	Struct	Initializers,	Properties,	and	Methods,	Value	Types	and
Reference	Types

Objective-C,	External	Parameter	Names,	Objective-C	Methods

optional,	Optional	Protocol	Members,	Optional	Methods

overriding,	Subclass	and	Superclass

overriding	and	polymorphism,	Polymorphism

selectors,	Selectors

static,	Methods

static	vs.	class,	Class	Properties	and	Methods

static,	self,	Object	Type	Declarations	and	Features

structs,	Struct	Initializers,	Properties,	and	Methods

minElement,	Basic	array	properties	and	methods

Mirror,	Introspection

model–view–controller,	Model–View–Controller

modules,	The	Structure	of	a	Swift	File,	Modules,	Frameworks	and	SDKs

modules,	importing,	Frameworks	and	SDKs

modules,	privacy,	Public	Declaration

mutable	Objective-C	classes,	Immutable	and	Mutable

memory	management,	Property	Memory	Management	Policies

mutating	an	instance,	Modifiable	Parameters,	Value	Types	and	Reference	Types

mutating	methods,	Enum	Methods,	Struct	Initializers,	Properties,	and	Methods,	Value
Types	and	Reference	Types

MVC,	Model–View–Controller

N
name	of	app,	Property	List	Settings,	Submission	to	the	App	Store

name	of	app,	localizing,	Localizing	the	Info.plist

names	of	accessors,	Accessors,	Properties,	and	Key–Value	Coding

names	of	accessors,	changing,	Swift	Accessors

namespaces,	Namespaces,	Nested	Object	Types,	Struct	As	Namespace,	Extending	Object
Types

namespaces,	Objective-C,	Objective-C

naming	image	files,	Resources	in	an	asset	catalog

navigating	your	code,	Navigation

Navigation	preferences,	The	Navigator	Pane

Navigator	pane,	The	Navigator	Pane

nested	arrays,	Nested	arrays

nested	scopes,	If	construct

nested	types,	Namespaces,	Object	Type	Declarations	and	Features,	Nested	Object	Types

NeXTStep,	Nib	Management

nib	editor,	Nib	Management

nib	files,	Nib	Files,	Nib	Management–Additional	Configuration	of	Nib-Based	Instances

nib	files,	launch,	Launch	Images

nib	files,	loading,	Nib	Loading

nib	files,	localizing,	Localizing	a	Nib	File

nib	objects,	Document	Outline

nib	owner,	The	Nib	Owner

nib-based	instantiation,	Nib	Management

memory	management,	Nib	Loading	and	Memory	Management

nibs,	connections	between,	Connections	Between	Nibs	—	Not!,	Visibility	by	Instantiation

nil,	The	magic	word	nil

nil	in	Objective-C	collections,	Swift	Array	and	Objective-C	NSArray,	NSNull

nil	not	used	for	empty	options,	Option	sets

nil	signalling	failure,	Why	Optionals?

nil	signalling	no	data,	Why	Optionals?

nil,	unwrapping,	The	magic	word	nil

nil-coalescing	operator,	Conditional	evaluation

nil-targeted	actions,	Nil-Targeted	Actions

nilifying	unsafe	references,	Retain	Cycles	and	Weak	References

nonnull,	API	Markup

noreturn,	Aborting

notifications,	Notifications

matching	delegate	methods,	Cocoa	Delegation

posting,	Posting	a	Notification

registering,	Receiving	a	Notification

retain	cycles,	Unusual	Memory	Management	Situations

unregistering,	Unregistering,	Unusual	Memory	Management	Situations

when	appropriate,	Posting	a	Notification,	Notifications	and	KVO

NSArray,	Swift	Array	and	Objective-C	NSArray,	NSArray	and	NSMutableArray

proxy,	key–value	coding,	Array	Accessors

NSAttributedString,	NSString	and	Friends

NSCalendar,	NSDate	and	Friends

NSCoding,	Implicitly	Required	Initializers,	Objective-C	Objects	and	Swift	Objects

NSComparisonResult,	Equality	and	Comparison

NSCopying,	Protocols,	Property	Memory	Management	Policies

NSCountedSet,	NSSet	and	Friends

NSData,	NSData

NSDataAsset,	Resources	in	an	asset	catalog

NSDate,	NSDate	and	Friends

NSDateComponents,	NSDate	and	Friends

NSDateFormatter,	NSDate	and	Friends

NSDecimalNumber,	NSNumber

NSDictionary,	Swift	Dictionary	and	Objective-C	NSDictionary,	NSDictionary	and
NSMutableDictionary

NSError,	Throwing	and	catching	errors

NSErrorPointer,	Throwing	and	catching	errors

NSFastEnumeration,	For	loops

NSHashTable,	Unusual	Memory	Management	Situations

NSIndexSet,	NSIndexSet

NSKeyedArchiver,	NSData

NSLinguisticTagger,	NSString	and	Friends

NSLog,	Caveman	Debugging

NSMapTable,	Unusual	Memory	Management	Situations

NSMutableArray,	Swift	Array	and	Objective-C	NSArray,	NSArray	and	NSMutableArray

NSMutableData,	NSData

NSMutableDictionary,	Swift	Dictionary	and	Objective-C	NSDictionary,	NSDictionary
and	NSMutableDictionary

NSMutableIndexSet,	NSIndexSet

NSMutableOrderedSet,	NSSet	and	Friends

NSMutableSet,	NSSet	and	Friends

NSMutableString,	NSString	and	Friends

NSNotFound,	Why	Optionals?,	Useful	Structs	and	Constants

NSNotification,	Notifications

NSNotificationCenter,	Notifications

NSNull,	Swift	Array	and	Objective-C	NSArray,	NSNull

NSNumber,	Casting,	NSNumber

NSObject,	Subclass	and	Superclass,	The	Secret	Life	of	NSObject–The	Secret	Life	of
NSObject

Equatable,	Equality	and	Comparison

Hashable,	Swift	Dictionary	and	Objective-C	NSDictionary

NSObjectProtocol,	The	Secret	Life	of	NSObject

NSOrderedSet,	NSSet	and	Friends

NSPointerArray,	Unusual	Memory	Management	Situations

NSRange,	Range,	Useful	Structs	and	Constants

NSRegularExpression,	NSString	and	Friends

NSScanner,	NSString	and	Friends

NSSet,	NSSet	and	Friends

NSString,	String,	NSString	and	Friends

NSTimer,	NSTimer

GCD	instead,	Unusual	Memory	Management	Situations

NSUserDefaults,	Struct	As	Namespace,	Global	Visibility

NSValue,	NSValue

nullable,	API	Markup

numeric	literals,	Int

numeric	types,	C,	Other	numeric	types

numeric	types,	Swift,	Numbers

numericCast,	Other	numeric	types

O
objc,	Optional	Protocol	Members,	Suppressing	type	checking,	Memory	Management	of
Protocol-Typed	References,	Swift	Accessors,	Receiving	a	Notification,	C	Enums,
Objective-C	Objects	and	Swift	Objects

Object	library,	The	Utilities	Pane,	Canvas

object	types,	Object	Types–Class	Properties	and	Methods

declaration,	Object	Type	Declarations	and	Features

definition	over	multiple	files,	Extending	Object	Types,	How	You	Use	Extensions

extensions,	Extending	Object	Types

flavors,	Three	Flavors	of	Object	Type

generic,	Generic	Declarations

generic,	extensions,	Extending	Generics

initializers,	Initializers

methods,	Methods

nested,	Nested	Object	Types

Objective-C,	Objective-C	Objects	and	Swift	Objects

passing	or	assigning,	Type	Reference

polymorphism,	Type	Reference

printing,	Type	Reference

properties,	Properties

reference	vs.	value,	Value	Types	and	Reference	Types

references	to,	Type	Reference

references	to,	Objective-C,	Objective-C	Objects	and	C	Pointers

scope,	Object	Type	Declarations	and	Features

subscripts,	Subscripts

umbrella	type,	Any

Objective-C,	C,	Objective-C,	and	Swift–API	Markup

(see	also	bridged	types)

accessors,	Computed	Variables,	Accessors,	Properties,	and	Key–Value	Coding

categories,	Categories	and	Extensions

collections,	Swift	Array	and	Objective-C	NSArray,	NSIndexSet–Immutable	and
Mutable

comparison,	Equality	and	Comparison

equality,	Equality	and	Comparison

factory	methods,	Objective-C	Initializers	and	Factories

header	files,	Bilingual	Targets

id,	AnyObject,	Objective-C	Objects	and	C	Pointers

immutable	vs.	mutable	classes,	Immutable	and	Mutable

initializers,	Objective-C	Initializers	and	Factories

instance	variables,	Accessors,	Properties,	and	Key–Value	Coding

lightweight	generics,	Swift	Array	and	Objective-C	NSArray,	API	Markup

methods,	Objective-C	Methods

namespaces,	Objective-C

object	references,	Objective-C	Objects	and	C	Pointers

object	types,	Objective-C	Objects	and	Swift	Objects

Optionals	and,	Why	Optionals?

properties,	Accessors,	Properties,	and	Key–Value	Coding

protocols,	Protocols

setter,	Setter	Observers

subscripts,	NSArray	and	NSMutableArray–NSSet	and	Friends

Swift	in	one	target	with,	Bilingual	Targets

Swift,	translating	app	into,	Bilingual	Targets

objects,	Everything	Is	an	Object?

(see	also	object	types)

communication	between,	Communication	Between	Objects

identity	of	two,	Object	identity	and	type	identity

initial,	Instance	Creation,	Scope,	and	Lifetime

octal	numbers,	Int

on-demand	resources,	Resources	in	an	asset	catalog

operator	syntax,	Everything	Is	an	Object?,	Operators

operators,	Operators–Operators

arithmetic,	Arithmetic	operations

bitwise,	Arithmetic	operations

Boolean,	Bool

comparison,	Comparison

compound	assignment,	Arithmetic	operations

creating,	Operators

declaration,	Operators

equality,	Comparison

identity,	Object	identity	and	type	identity

increment	and	decrement,	Arithmetic	operations

interval,	Range

nil-coalescing,	Conditional	evaluation

overriding,	Operators

ternary,	Conditional	evaluation

unwrap,	Unwrapping	an	Optional,	Optional	chains

Optimization	Level	build	setting,	Configurations

optimizing,	Profiling

option	sets,	Option	sets,	C	Enums

option	sets,	empty,	Option	sets

Optional	chains,	Optional	chains

Optional	enum,	Optional,	The	magic	word	nil,	Case	With	Typed	Value

generic,	Generics

optional	message	sending,	Optional	Protocol	Members,	Optional	Methods

optional	methods,	Optional	Protocol	Members,	Optional	Methods

optional	properties,	Optional	Protocol	Members

optional	unwrap	operator,	Optional	chains

Optionals,	Optional–Why	Optionals?

casting,	Casting

comparison,	Comparison	with	Optional

creating,	Optional

declaration,	Optional

deferred	initialization,	Why	Optionals?

double-wrapped,	Optional	Protocol	Members,	Basic	array	properties	and	methods

empty,	The	magic	word	nil

equality,	Comparison	with	Optional

implicitly	unwrapped,	Implicitly	unwrapped	Optional

initialization,	The	magic	word	nil

messages	to,	Optional	chains

nil,	The	magic	word	nil

None	and	Some,	Case	With	Typed	Value

Objective-C	and,	Why	Optionals?

properties,	Optional	properties

secret	life,	Generics

type,	Optional

type,	testing,	Casting

unwrapping,	Unwrapping	an	Optional

unwrapping	safely,	The	magic	word	nil,	Conditional	binding,	Switch	statement,
Conditional	evaluation,	While	loops,	Guard

wrapping,	Optional

wrapping	array	elements,	Array	casting	and	type	testing

OptionSetType,	Option	sets,	C	Enums

organization	identifier,	New	Project

Organizer	window,	Archiving	and	Distribution

orientation	of	interface,	Property	List	Settings

Other	Swift	Flags	build	setting,	Caveman	Debugging

outlet	collections,	Outlet	Collections

outlet	connections,	Outlets,	KVC	and	Outlets

outlets,	Outlets

creating,	More	Ways	to	Create	Outlets

deleting,	Deleting	an	Outlet

misconfiguring,	Misconfigured	Outlets

overflow,	Arithmetic	operations

overloading,	Overloading

overriding,	Subclass	and	Superclass

overriding	and	polymorphism,	Polymorphism

overriding,	initializers,	Subclass	initializers

overriding,	preventing,	Subclass	and	Superclass

owner	(memory	management),	Rules	of	Cocoa	Memory	Management

owner	(nib),	The	Nib	Owner

P
parameter	list,	Function	Parameters	and	Return	Value,	Tuple

parameters,	Function	Parameters	and	Return	Value

default	values,	Default	Parameter	Values

external	names,	External	Parameter	Names

external	names,	initializers,	Initializers

external	names,	methods,	External	Parameter	Names

external	names,	subscripts,	Subscripts

functions	as,	Function	As	Value

ignoring,	Ignored	Parameters

internal	names,	Function	Parameters	and	Return	Value

modifiable,	Modifiable	Parameters

variadic,	Variadic	Parameters

parentheses

calling	a	function,	Function	Parameters	and	Return	Value

coercion,	Coercion

declaring	a	function,	Function	Parameters	and	Return	Value

instantiating	an	object	type,	Instances,	Initializers

order	of	operations,	Bool,	Arithmetic	operations

signifying	Void,	Void	Return	Type	and	Parameters,	Tuple

tuples,	Tuple

patterns,	switch	statement,	Switch	statement

persistence	(see	lifetime)

persisting	references,	Memory	Management

placeholders,	Generics

(see	also	generics)

playgrounds,	The	Scope	of	This	Book

pointer-to-void,	C	Pointers

pointers,	Modifiable	Parameters,	Value	Types	and	Reference	Types

pointers,	C,	C	Pointers

pointers,	dangling,	Principles	of	Cocoa	Memory	Management

pointers,	generic,	C	Pointers

polymorphism,	Polymorphism

pool,	autorelease,	Autorelease	Pool

popFirst,	Basic	array	properties	and	methods

popLast,	Basic	array	properties	and	methods

Portal,	Running	on	a	Device

posting	a	notification,	Notifications

precondition,	Aborting

predecessor,	Character

prefix,	Character,	Basic	array	properties	and	methods

prefixThrough,	Basic	array	properties	and	methods

prefixUpTo,	Basic	array	properties	and	methods

previews,	video,	Screenshots	and	Video	Previews

print,	Ground	of	Being,	Variadic	Parameters,	String,	Caveman	Debugging

(see	also	logging)

privacy,	Privacy,	Privacy

private,	Privacy

product	name,	New	Project

profile	(see	provisioning	profile)

profiling,	Profiling

program,	growing,	Design

project,	Anatomy	of	an	Xcode	Project

project	file,	The	Project	File	and	Its	Dependents

project	folder,	The	Project	File	and	Its	Dependents,	Renaming	Parts	of	a	Project

Project	navigator,	The	Navigator	Pane,	Navigation

project	templates,	New	Project

project	window,	The	Project	Window

project,	renaming,	Renaming	Parts	of	a	Project

properties,	Object	Members,	Variable	Scope	and	Lifetime,	Properties

(see	also	variables)

accessors,	Swift	Accessors

class,	Variable	Scope	and	Lifetime,	Properties

classes,	overriding,	Class	Properties	and	Methods

computed	initialization,	Computed	Initializer

deferred	initialization,	Why	Optionals?

documentation,	Class	Documentation	Pages

dynamic,	Key–Value	Observing

enums,	Enum	Properties

initialization,	Initializers

can’t	refer	to	instance	members,	Properties

classes,	Class	Initializers

inspectable,	Additional	Configuration	of	Nib-Based	Instances

instance,	Instances,	Variable	Scope	and	Lifetime,	Properties

lazy	initialization,	Lazy	Initialization

memory	management,	Memory	Management	of	Instance	Properties

Objective-C,	Accessors,	Properties,	and	Key–Value	Coding

Objective-C,	memory	management,	Property	Memory	Management	Policies

Optional,	Optional	properties

optional,	Optional	Protocol	Members

overriding,	Class	Properties	and	Methods

private,	Privacy

releasing,	Memory	Management	of	Instance	Properties

static,	Variable	Scope	and	Lifetime,	Properties

static	vs.	class,	Class	Properties	and	Methods

static,	initialization,	Lazy	Initialization

static,	struct,	Struct	As	Namespace

structs,	Struct	Initializers,	Properties,	and	Methods

property	list	settings,	Property	List	Settings,	Property	List	Settings

property	lists,	Property	Lists

protocols,	Protocols–Literal	Convertibles,	Protocols

adopter,	Generic	Declarations

adopting,	Protocols

associated	type,	Generic	Declarations

associated	type,	chaining,	Associated	Type	Chains

associated	type,	constraining,	Additional	Constraints

casting,	Protocol	Type	Testing	and	Casting

class,	Class	Protocol

conforming	to,	Protocols

declaration,	Declaring	a	Protocol

delegate,	Implementing	Delegation

documentation,	Protocols

extensions,	Extending	Protocols,	How	You	Use	Extensions

extensions,	constraining	associated	type,	Extending	Generics

generic,	Generic	Declarations

generic,	constraining	associated	type,	Additional	Constraints

implicitly	required	initializers,	Implicitly	Required	Initializers

informal,	Informal	Protocols

literal	convertible,	Literal	Convertibles

memory	management,	Memory	Management	of	Protocol-Typed	References

Objective-C,	Protocols

optional	members,	Optional	Protocol	Members,	Optional	Methods

testing	type,	Protocol	Type	Testing	and	Casting

provisioning	profile,	Running	on	a	Device

provisioning	profile,	development,	Obtaining	a	Development	Provisioning	Profile

provisioning	profile,	distribution,	Archiving	and	Distribution

provisioning	profile,	exporting,	Profile	and	Device	Management

provisioning	profile,	universal,	Obtaining	a	Development	Provisioning	Profile

proxy	objects,	Document	Outline,	The	Nib	Owner

public,	Privacy

Q
query	events,	Reasons	for	Events

question	mark,	Optional,	Optional	chains,	Casting,	Optional	Protocol	Members,	Switch

statement,	Conditional	evaluation,	Conditional	evaluation

Quick	Help,	The	Utilities	Pane,	Quick	Help

Quick	Look	a	variable,	Paused	at	a	breakpoint

R
Range	struct,	Range

range,	indexing	with,	Range,	Array	subscripting

range,	modifying,	Range,	Basic	array	properties	and	methods

range,	string,	String

raw	value,	Case	With	Fixed	Value

RawRepresentable,	Extending	Protocols

read-only	variables,	Computed	Variables

recursion,	Recursion

recursive	references,	Value	Types	and	Reference	Types

reduce,	Array	enumeration	and	transformation

Refactoring	(book),	Summary	and	Conclusion

reference	types,	Value	Types	and	Reference	Types

reference	types,	memory	management,	Memory	Management

reference,	getting,	Instance	References,	Communication	Between	Objects

reference,	persisting,	Memory	Management

reference,	recursive,	Value	Types	and	Reference	Types

reference,	strong,	Memory	Management

reference,	unowned,	Unowned	References,	Retain	Cycles	and	Weak	References

reference,	unsafe,	Retain	Cycles	and	Weak	References

reference,	weak,	Weak	References,	Retain	Cycles	and	Weak	References

references	to	class	types,	AnyClass

references	to	object	types,	Type	Reference

references	to	object	types,	Objective-C,	Objective-C	Objects	and	C	Pointers

references	to	same	object,	Value	Types	and	Reference	Types,	Object	identity	and	type
identity

registering	for	a	notification,	Receiving	a	Notification

regular	expressions,	NSString	and	Friends

Related	Items	menu,	The	Editor

releasing	a	property,	Memory	Management	of	Instance	Properties

removeAtIndex,	Character,	Basic	array	properties	and	methods

removeFirst,	Basic	array	properties	and	methods

removeLast,	Basic	array	properties	and	methods

removeRange,	Range

removeValueForKey,	Dictionary

renaming	a	project	or	target,	Renaming	Parts	of	a	Project

REPL,	The	Scope	of	This	Book

replaceRange,	Range

replacing,	Finding

Report	navigator,	The	Navigator	Pane,	Testing

required	initializers,	Required	initializers,	Type	Reference,	Implicitly	Required	Initializers

resolution	of	generics,	Generics,	Generic	Declarations,	Explicit	Specialization

resolution,	screen,	Resources	in	an	asset	catalog,	Device	Type

resources,	Additional	Resources

resources	in	an	asset	catalog,	Resources	in	an	asset	catalog

resources	in	the	app	bundle,	Resources	in	the	Project	navigator

resources,	on-demand,	Resources	in	an	asset	catalog

responder,	The	Responder	Chain

responder	chain,	The	Responder	Chain

respondsToSelector:,	Optional	Methods

result	of	a	function,	Function	Parameters	and	Return	Value

retain	count,	Principles	of	Cocoa	Memory	Management

retain	cycles,	Memory	Management,	Retain	Cycles	and	Weak	References

anonymous	functions,	Weak	and	Unowned	References	in	Anonymous	Functions

notifications,	Unusual	Memory	Management	Situations

timers,	Unusual	Memory	Management	Situations

retains,	unusual,	Unusual	Memory	Management	Situations

rethrows,	Throwing	and	catching	errors

return	function	from	function,	Function	Returning	Function

return	statement,	Function	Parameters	and	Return	Value

return	value	of	function,	Function	Parameters	and	Return	Value

return,	omitting,	Anonymous	Functions

reverse,	Basic	array	properties	and	methods

root	class,	Subclass	and	Superclass

root	view	controller,	UIApplicationMain

run,	New	Project

running	on	a	device,	Running	on	a	Device

S
sample	code,	Apple’s,	Sample	Code

scalars,	Everything	Is	an	Object?,	NSNumber,	C	Data	Types

scene,	Document	Outline

scene	dock,	Document	Outline

Scheme	pop-up	menu,	Schemes	and	Destinations

schemes,	Schemes	and	Destinations

scientific	notation,	Double

scope,	Scope	and	Lifetime

scope,	exiting	early,	Jumping

scope,	nested,	If	construct

scope,	object	types,	Object	Type	Declarations	and	Features

scope,	variable,	Variable	Scope	and	Lifetime

screen	resolution,	Resources	in	an	asset	catalog,	Device	Type

screencasts,	Screenshots	and	Video	Previews

screenshots,	Screenshots	and	Video	Previews

SDKs,	Schemes	and	Destinations,	Frameworks	and	SDKs

SDKs,	earlier,	Backward	Compatibility

searching	arrays,	Basic	array	properties	and	methods

searching	for	symbols,	Symbols,	Header	Files

searching	the	documentation,	The	Documentation	Window

searching	your	code,	Finding

Selector,	Selectors

selectors,	Selectors

self,	self

Self,	Type	Reference,	Generic	Declarations

self	and	polymorphism,	Polymorphism

self	and	polymorphism,	class	type,	Type	Reference

self	in	instance	methods,	self

semicolon,	Ground	of	Being

sequence,	array	initializer,	Array

sequence,	character,	Character

sequence,	enumerating,	For	loops

sequence,	enumerating	multiple,	For	loops

sequence,	enumerating	with	index,	Tuple,	For	loops

sequence,	generating,	For	loops

sequence,	range	indexing,	Range

sequence,	transforming,	For	loops

SequenceType,	For	loops

serialization,	Property	Lists

Set	struct,	Set

sets,	Set–Swift	Set	and	Objective-C	NSSet,	NSSet	and	Friends

declaration,	Set

equality,	Set

initializers,	Set

literals,	Set

mutating,	Set

operations,	Set

option	sets,	Option	sets,	C	Enums

sampling,	Set

transformations,	Set

setter,	Computed	Variables,	Accessors,	Properties,	and	Key–Value	Coding

setter	observers,	Setter	Observers

shared	application	instance,	UIApplicationMain

should,	delegate	method	names	with,	Cocoa	Delegation

side	effects,	Function	Parameters	and	Return	Value

signature	of	a	function,	Function	Signature

signing	an	app,	Running	on	a	Device

Simulator,	Running	in	the	Simulator

Single	View	Application	template,	New	Project

singleton,	Lazy	Initialization

size	classes,	Inspectors	and	Libraries

Size	inspector,	The	Utilities	Pane,	Inspectors	and	Libraries

snippets,	Snippets

Some,	Case	With	Typed	Value

sort,	Basic	array	properties	and	methods

sorting	arrays,	Basic	array	properties	and	methods

sortInPlace,	Basic	array	properties	and	methods

Source	Control	preferences	and	menu,	Version	Control

specialization,	explicit,	Explicit	Specialization

splatting,	Variadic	Parameters

split,	Character,	Basic	array	properties	and	methods

square	brackets,	Subscripts,	Array,	Dictionary

stack,	Object	Types	and	APIs

startIndex,	Character,	Basic	array	properties	and	methods

startsWith,	Basic	array	properties	and	methods

state,	maintenance,	Object	Types	and	APIs

statement,	Ground	of	Being

static	members,	Instances

static	methods,	Methods

static	methods	vs.	class	methods,	Class	Properties	and	Methods

static	properties,	Variable	Scope	and	Lifetime,	Properties

static	properties	vs.	class	properties,	Class	Properties	and	Methods

static	properties,	initialization,	Lazy	Initialization

static	properties,	struct,	Struct	As	Namespace

stepping,	Paused	at	a	breakpoint

stored	variables,	Computed	Variables

storyboard	files,	Nib	Files

(see	also	main	storyboard)

compiled,	From	Project	to	Running	App

editing,	The	Nib	Editor	Interface

entry	point,	Document	Outline

launch,	Launch	Images

stride,	For	loops

String	struct,	String

String.Index	struct,	Character

strings,	String–Range

C	strings,	C	Data	Types

characters,	Character

coercion,	String

comparison,	String

concatenating,	String

equality,	String

format,	Caveman	Debugging

indexing,	Character,	Range

initializers,	String

interpolation,	String,	String

length,	String,	String

literals,	String

localizing,	Localizing	Code	Strings

modifying,	Character,	Range

range,	String

searching,	String

substrings,	String–Range,	NSString	and	Friends

Unicode,	String

strong	references,	Memory	Management

structs,	Structs–Struct	As	Namespace

(see	also	object	types)

C	structs,	C	Structs

C	structs	in	Objective-C	collections,	Swift	Array	and	Objective-C	NSArray

C	structs,	logging,	Caveman	Debugging

C	structs,	wrapping	in	an	object,	NSValue

initializers,	Struct	Initializers,	Properties,	and	Methods

initializers,	extensions,	Extending	Object	Types

methods,	Struct	Initializers,	Properties,	and	Methods

Objective-C	collections,	Swift	Array	and	Objective-C	NSArray

properties,	Struct	Initializers,	Properties,	and	Methods

static	properties,	Struct	As	Namespace

subscripts,	Struct	Initializers,	Properties,	and	Methods

styled	text,	NSString	and	Friends

subclass,	Subclass	and	Superclass

subclassing	in	Cocoa,	Subclassing,	Subclassing

subclassing	UIApplication,	Subclassing

subclassing	UILabel,	Subclassing

subclassing	UIView,	Subclassing,	Subclassing

subclassing	UIViewController,	Subclassing,	Subclassing

subclassing,	preventing,	Subclass	and	Superclass

subscripting,	Character,	Range,	Array	subscripting,	Dictionary

subscripting,	Objective-C,	NSArray	and	NSMutableArray–NSSet	and	Friends

subscripts,	Subscripts

classes,	Subclass	and	Superclass

enums,	Enum	Methods

overriding,	Subclass	and	Superclass

structs,	Struct	Initializers,	Properties,	and	Methods

substitution	principle,	Polymorphism

Subversion,	Version	Control

subview,	Document	Outline

successor,	Character

suffix,	Character,	Basic	array	properties	and	methods

suffixFrom,	Basic	array	properties	and	methods

super,	Subclass	and	Superclass

superclass,	Subclass	and	Superclass

superview,	Document	Outline

supported	interface	orientations,	Property	List	Settings

svn,	Version	Control

swapping	variables,	Tuple

Swift,	Preface,	The	Architecture	of	Swift–Memory	Management	of	Protocol-Typed
References

Swift	and	Objective-C	in	one	target,	Bilingual	Targets

Swift	header,	Modules

switch	statement,	Switch	statement

Symbol	navigator,	The	Navigator	Pane,	Navigation

symbolic	breakpoint,	Breakpoints

symbols,	searching	for,	Symbols,	Header	Files

syntax	checking,	Fix-it	and	Live	Syntax	Checking

T
tabs	in	Xcode,	The	Editor

target,	The	Target

target,	action,	Actions

target,	bilingual,	Bilingual	Targets

target,	framework,	Frameworks	and	SDKs

target,	test,	Testing

Targeted	Device	Family	build	setting,	Device	Architecture	and	Conditional	Code

team,	Obtaining	a	Developer	Program	Membership

templates,	file,	Code	Files	and	the	App	Launch	Process

templates,	project,	New	Project

ternary	operator,	Conditional	evaluation

test	bundle,	Testing

Test	Failure	breakpoint,	Testing

Test	navigator,	The	Navigator	Pane

test	target,	Testing

testable,	Testing

TestFlight,	Ad	Hoc	Distribution

tests,	Testing

text,	drawing,	NSString	and	Friends

text,	styled,	NSString	and	Friends

thinning	an	app,	Ad	Hoc	Distribution

throw,	Throwing	and	catching	errors

throws,	Throwing	and	catching	errors

timers,	NSTimer

timers	and	retain	cycles,	Unusual	Memory	Management	Situations

timers,	cancelable,	Unusual	Memory	Management	Situations

timers,	GCD-based,	Unusual	Memory	Management	Situations

times,	NSDate	and	Friends

top-level,	Modules

(see	also	global)

top-level	objects	(nib),	Document	Outline

tracking,	The	Editor

Tracking	menu,	The	Editor

trailing	function,	Anonymous	Functions

true,	Bool

try,	Throwing	and	catching	errors

tuples,	Tuple

Type,	Type	Reference

type	alias,	Function	As	Value,	Tuple

type	alias,	empty,	Generic	Declarations

type	checking,	suppressing,	Suppressing	type	checking

type	constraints,	Type	Constraints

type	constraints,	multiple,	Additional	Constraints

type	of	function,	Function	As	Value

type	of	instance	vs.	type	of	variable,	Polymorphism

type	of	instance,	testing,	Casting

type	of	Optional,	Optional

type	of	variable,	Variables,	Variable	Declaration

type	placeholders,	Generics

(see	also	generics)

type	references,	Type	Reference

type-over	completions,	Editing	and	Navigating	Your	Code

typecasting	(see	casting)

types,	Object	Type	Declarations	and	Features

(see	also	object	types)

U
UDID,	Running	on	a	Device

UI	tests,	Testing

UIApplication,	UIApplicationMain,	Subclassing

UIApplicationMain,	UIApplicationMain

UIBackgroundTaskIdentifier,	Variable	Declaration

UIControl,	Action	Connections,	Actions

UILabel,	Subclassing

UIPickerView,	Data	Sources

UIResponder,	The	Responder	Chain

UIView,	Subclassing,	Subclassing

(see	also	views)

UIViewController,	Subclassing,	Subclassing

(see	also	view	controller)

umbrella	types,	AnyObject

underflow,	Arithmetic	operations

Unicode,	String

UnicodeScalar	struct,	String

unique	an	array,	Set,	NSSet	and	Friends

unit	tests,	Testing

universal	app,	Device	Architecture	and	Conditional	Code

universal	development	provisioning	profile,	Obtaining	a	Development	Provisioning
Profile

Unmanaged	struct,	Memory	Management	of	CFTypeRefs

unowned	references,	Unowned	References,	Retain	Cycles	and	Weak	References

unregistering	for	a	notification,	Unregistering,	Unusual	Memory	Management	Situations

unsafe	references,	Retain	Cycles	and	Weak	References

UnsafeMutablePointer,	Modifiable	Parameters,	C	Pointers

memory	property,	Modifiable	Parameters,	C	Pointers

UnsafePointer,	C	Pointers

unwrapping	an	Optional,	Unwrapping	an	Optional

updateValue(forKey:),	Dictionary

uppercaseString,	String

User	Defined	Runtime	Attributes,	Additional	Configuration	of	Nib-Based	Instances

user	events,	Reasons	for	Events

UTF-8,	UTF-16,	UTF-32,	String

Utilities	pane,	The	Utilities	Pane

V
value	types,	Value	Types	and	Reference	Types

values	(dictionary),	Dictionary

var,	Variables,	Variable	Declaration,	Value	Types	and	Reference	Types

variables,	Variables,	Variables	and	Simple	Types–Lazy	Initialization

coercion,	Coercion

computed,	Computed	Variables

declaration,	Variables,	Variable	Declaration

façade,	Computed	Variables

functions	as	value	of,	Function	As	Value

global,	The	Structure	of	a	Swift	File,	Variable	Scope	and	Lifetime

global,	initialization,	Lazy	Initialization

initialization,	Variables

initialization	of	Optional,	The	magic	word	nil

lazy,	Lazy	Initialization

lifetime,	Variables,	Variable	Scope	and	Lifetime

local,	Variable	Scope	and	Lifetime

read-only,	Computed	Variables

scope,	Variable	Scope	and	Lifetime

setter	observers,	Setter	Observers

stored,	Computed	Variables

swapping,	Tuple

type,	Variables,	Variable	Declaration

type	vs.	instance	type,	Polymorphism

variables	list,	The	Navigator	Pane,	Paused	at	a	breakpoint

variadic	parameters,	Variadic	Parameters

version	control,	Version	Control

version	string,	Property	List	Settings

video	previews,	Screenshots	and	Video	Previews

view	controller,	App	without	a	storyboard,	Document	Outline,	When	Nibs	Are	Loaded

view	controller,	initial,	UIApplicationMain,	Document	Outline,	When	Nibs	Are	Loaded

view	debugging,	Paused	at	a	breakpoint

views,	The	Nib	Editor	Interface

views,	drawing,	Subclassing

visibility	(see	scope)

visibility,	instance,	Communication	Between	Objects

visible	bridging	header,	Bilingual	Targets

Void,	Void	Return	Type	and	Parameters,	Tuple

void,	C	Pointers

W
warnings,	compiler,	Ground	of	Being

weak	references,	Weak	References,	Retain	Cycles	and	Weak	References

weak–strong	dance,	Weak	and	Unowned	References	in	Anonymous	Functions

where,	Additional	Constraints,	Extending	Generics,	Conditional	binding,	Switch
statement,	For	loops

while	case,	While	loops

while	let,	While	loops

while	loop,	While	loops

Whole	Module	Optimization,	Polymorphism,	Configurations

willSet,	Setter	Observers

windows,	secondary,	in	Xcode,	The	Editor

WWDR	Intermediate	Certificate,	Obtaining	a	Certificate

X
Xcode,	Anatomy	of	an	Xcode	Project–Submission	to	the	App	Store

(see	also	nib	editor)

xib	files,	Nib	Files,	App	without	a	storyboard

xib	files,	editing,	Document	Outline

xliff	files,	Localizing	With	XML	Files

Z
zip,	For	loops

zombies,	Debugging	Memory	Management	Mistakes

Colophon
The	animal	on	the	cover	of	iOS	9	Programming	Fundamentals	with	Swift	is	a	harp	seal
(Pagophilus	groenlandicus),	a	Latin	name	that	translates	to	“ice-lover	from	Greenland.”
These	animals	are	native	to	the	northern	Atlantic	and	Arctic	Oceans,	and	spend	most	of
their	time	in	the	water,	only	going	onto	ice	packs	to	give	birth	and	molt.	As	earless
(“true”)	seals,	their	streamlined	bodies	and	energy-efficient	swimming	style	make	them
well-equipped	for	aquatic	life.	While	eared	seal	species	like	sea	lions	are	powerful
swimmers,	they	are	considered	semiaquatic	because	they	mate	and	rest	on	land.

The	harp	seal	has	silvery-gray	fur,	with	a	large	black	marking	on	its	back	that	resembles	a
harp	or	wishbone.	They	grow	to	be	5–6	feet	long,	and	weigh	300–400	pounds	as	adults.
Due	to	their	cold	habitat,	they	have	a	thick	coat	of	blubber	for	insulation.	A	harp	seal’s	diet
is	very	varied,	including	several	species	of	fish	and	crustaceans.	They	can	remain
underwater	for	an	average	of	16	minutes	to	hunt	for	food,	and	are	able	to	dive	several
hundred	feet.

Harp	seal	pups	are	born	without	any	protective	fat,	but	are	kept	warm	by	their	white	coat,
which	absorbs	heat	from	the	sun.	After	nursing	for	12	days,	the	seal	pups	are	abandoned,
having	tripled	their	weight	due	to	their	mother’s	high-fat	milk.	In	the	subsequent	weeks
until	they	are	able	to	swim	off	the	ice,	the	pups	are	very	vulnerable	to	predators	and	will
lose	nearly	half	of	their	weight.	Those	that	survive	reach	maturity	after	4–8	years
(depending	on	their	gender),	and	have	an	average	lifespan	of	35	years.

Harp	seals	are	hunted	commercially	off	the	coasts	of	Canada,	Norway,	Russia,	and
Greenland	for	their	meat,	oil,	and	fur.	Though	some	of	these	governments	have	regulations
and	enforce	hunting	quotas,	it	is	believed	that	the	number	of	animals	killed	every	year	is
underreported.	Public	outcry	and	efforts	by	conservationists	have	resulted	in	a	decline	in
market	demand	for	seal	pelts	and	other	products,	however.

The	cover	image	is	from	Wood’s	Animate	Creation.	The	cover	fonts	are	URW	Typewriter
and	Guardian	Sans.	The	text	font	is	Adobe	Minion	Pro;	the	heading	font	is	Adobe	Myriad
Condensed;	and	the	code	font	is	Dalton	Maag’s	Ubuntu	Mono.

iOS	9	Programming	Fundamentals	with	Swift

Swift,	Xcode,	and	Cocoa	Basics

Matt	Neuburg
Editor
Rachel	Roumeliotis

Editor
Kristen	Brown

Revision	History

2015-09-23 First	release

Copyright	©	2016	Matt	Neuburg
O’Reilly	books	may	be	purchased	for	educational,	business,	or	sales	promotional	use.	Online	editions	are	also	available
for	most	titles	(http://safaribooksonline.com).	For	more	information,	contact	our	corporate/institutional	sales	department:
800-998-9938	or	corporate@oreilly.com.

The	O’Reilly	logo	is	a	registered	trademark	of	O’Reilly	Media,	Inc.	iOS	9	Programming	Fundamentals	with	Swift,	the
image	of	a	harp	seal,	and	related	trade	dress	are	trademarks	of	O’Reilly	Media,	Inc.

While	the	publisher	and	the	author	have	used	good	faith	efforts	to	ensure	that	the	information	and	instructions	contained
in	this	work	are	accurate,	the	publisher	and	the	author	disclaim	all	responsibility	for	errors	or	omissions,	including
without	limitation	responsibility	for	damages	resulting	from	the	use	of	or	reliance	on	this	work.	Use	of	the	information
and	instructions	contained	in	this	work	is	at	your	own	risk.	If	any	code	samples	or	other	technology	this	work	contains	or
describes	is	subject	to	open	source	licenses	or	the	intellectual	property	rights	of	others,	it	is	your	responsibility	to	ensure
that	your	use	thereof	complies	with	such	licenses	and/or	rights.

O’Reilly	Media,	Inc.	

1005	Gravenstein	Highway	North

Sebastopol,	CA	95472

2015-09-25T19:11:24Z

http://safaribooksonline.com
mailto:corporate@oreilly.com

iOS	9	Programming	Fundamentals	with	Swift
Table	of	Contents

Preface

The	Scope	of	This	Book
Versions
Acknowledgments
From	the	Programming	iOS	4	Preface
Conventions	Used	in	This	Book
Using	Code	Examples
Safari®	Books	Online
How	to	Contact	Us

I.	Language

1.	The	Architecture	of	Swift

Ground	of	Being
Everything	Is	an	Object?
Three	Flavors	of	Object	Type
Variables
Functions
The	Structure	of	a	Swift	File
Scope	and	Lifetime
Object	Members
Namespaces
Modules
Instances
Why	Instances?
self
Privacy
Design

Object	Types	and	APIs
Instance	Creation,	Scope,	and	Lifetime
Summary	and	Conclusion

2.	Functions

Function	Parameters	and	Return	Value

Void	Return	Type	and	Parameters
Function	Signature

External	Parameter	Names
Overloading
Default	Parameter	Values
Variadic	Parameters
Ignored	Parameters
Modifiable	Parameters
Function	In	Function
Recursion
Function	As	Value
Anonymous	Functions
Define-and-Call
Closures

How	Closures	Improve	Code
Function	Returning	Function
Closure	Setting	a	Captured	Variable
Closure	Preserving	Its	Captured	Environment

Curried	Functions

3.	Variables	and	Simple	Types

Variable	Scope	and	Lifetime
Variable	Declaration
Computed	Initializer
Computed	Variables
Setter	Observers
Lazy	Initialization
Built-In	Simple	Types

Bool
Numbers

Int
Double
Coercion
Other	numeric	types
Arithmetic	operations
Comparison

String
Character
Range
Tuple
Optional

Unwrapping	an	Optional
Implicitly	unwrapped	Optional
The	magic	word	nil
Optional	chains
Comparison	with	Optional
Why	Optionals?

4.	Object	Types

Object	Type	Declarations	and	Features

Initializers

Optional	properties
Referring	to	self
Delegating	initializers
Failable	initializers

Properties
Methods
Subscripts
Nested	Object	Types
Instance	References

Enums

Case	With	Fixed	Value
Case	With	Typed	Value
Enum	Initializers
Enum	Properties
Enum	Methods
Why	Enums?

Structs

Struct	Initializers,	Properties,	and	Methods
Struct	As	Namespace

Classes

Value	Types	and	Reference	Types
Subclass	and	Superclass
Class	Initializers

Kinds	of	class	initializer
Subclass	initializers
Required	initializers
Surprises	from	Cocoa

Class	Deinitializer
Class	Properties	and	Methods

Polymorphism
Casting
Type	Reference

Protocols

Why	Protocols?
Protocol	Type	Testing	and	Casting
Declaring	a	Protocol
Optional	Protocol	Members
Class	Protocol
Implicitly	Required	Initializers
Literal	Convertibles

Generics

Generic	Declarations
Type	Constraints
Explicit	Specialization
Associated	Type	Chains
Additional	Constraints

Extensions

Extending	Object	Types
Extending	Protocols
Extending	Generics

Umbrella	Types

AnyObject

Suppressing	type	checking
Object	identity	and	type	identity

AnyClass
Any

Collection	Types

Array

Array	casting	and	type	testing
Array	comparison
Arrays	are	value	types
Array	subscripting
Nested	arrays
Basic	array	properties	and	methods
Array	enumeration	and	transformation
Swift	Array	and	Objective-C	NSArray

Dictionary

Basic	dictionary	properties	and	enumeration
Swift	Dictionary	and	Objective-C	NSDictionary

Set

Option	sets
Swift	Set	and	Objective-C	NSSet

5.	Flow	Control	and	More

Flow	Control

Branching

If	construct
Conditional	binding
Switch	statement
Conditional	evaluation

Loops

While	loops
For	loops

Jumping

Shortcircuiting	and	labels
Throwing	and	catching	errors
Defer
Aborting
Guard

Operators
Privacy

Private	Declaration
Public	Declaration
Privacy	Rules

Introspection
Memory	Management

Weak	References
Unowned	References
Weak	and	Unowned	References	in	Anonymous	Functions
Memory	Management	of	Protocol-Typed	References

II.	IDE

6.	Anatomy	of	an	Xcode	Project

New	Project
The	Project	Window

The	Navigator	Pane
The	Utilities	Pane
The	Editor

The	Project	File	and	Its	Dependents
The	Target

Build	Phases
Build	Settings
Configurations
Schemes	and	Destinations

From	Project	to	Running	App

Build	Settings
Property	List	Settings
Nib	Files
Additional	Resources

Resources	in	the	Project	navigator
Resources	in	an	asset	catalog

Code	Files	and	the	App	Launch	Process

The	entry	point
UIApplicationMain
App	without	a	storyboard

Frameworks	and	SDKs

Renaming	Parts	of	a	Project

7.	Nib	Management

The	Nib	Editor	Interface

Document	Outline
Canvas
Inspectors	and	Libraries

Nib	Loading

When	Nibs	Are	Loaded
Manual	Nib	Loading

Connections

Outlets
The	Nib	Owner
Automatically	Configured	Nibs
Misconfigured	Outlets
Deleting	an	Outlet
More	Ways	to	Create	Outlets
Outlet	Collections
Action	Connections
More	Ways	to	Create	Actions
Misconfigured	Actions
Connections	Between	Nibs	—	Not!

Additional	Configuration	of	Nib-Based	Instances

8.	Documentation

The	Documentation	Window
Class	Documentation	Pages
Sample	Code
Quick	Help
Symbols
Header	Files
Internet	Resources

9.	Life	Cycle	of	a	Project

Device	Architecture	and	Conditional	Code

Backward	Compatibility
Device	Type

Version	Control

Editing	and	Navigating	Your	Code

Autocompletion
Snippets
Fix-it	and	Live	Syntax	Checking
Navigation
Finding

Running	in	the	Simulator
Debugging

Caveman	Debugging
The	Xcode	Debugger

Breakpoints
Paused	at	a	breakpoint

Testing
Clean
Running	on	a	Device

Running	Without	a	Developer	Program	Membership
Obtaining	a	Developer	Program	Membership
Obtaining	a	Certificate
Obtaining	a	Development	Provisioning	Profile
Running	the	App
Profile	and	Device	Management

Profiling

Gauges
Instruments

Localization

Localizing	the	Info.plist
Localizing	a	Nib	File
Localizing	Code	Strings
Localizing	With	XML	Files

Archiving	and	Distribution
Ad	Hoc	Distribution

Final	App	Preparations

Icons	in	the	App
Other	Icons
Launch	Images
Screenshots	and	Video	Previews
Property	List	Settings

Submission	to	the	App	Store

III.	Cocoa

10.	Cocoa	Classes

Subclassing
Categories	and	Extensions

How	Swift	Uses	Extensions
How	You	Use	Extensions
How	Cocoa	Uses	Categories

Protocols

Informal	Protocols
Optional	Methods

Some	Foundation	Classes

Useful	Structs	and	Constants
NSString	and	Friends
NSDate	and	Friends
NSNumber
NSValue
NSData
Equality	and	Comparison
NSIndexSet
NSArray	and	NSMutableArray
NSDictionary	and	NSMutableDictionary
NSSet	and	Friends
NSNull
Immutable	and	Mutable
Property	Lists

Accessors,	Properties,	and	Key–Value	Coding

Swift	Accessors
Key–Value	Coding
Uses	of	Key–Value	Coding
KVC	and	Outlets
Key	Paths
Array	Accessors

The	Secret	Life	of	NSObject

11.	Cocoa	Events

Reasons	for	Events
Subclassing
Notifications

Receiving	a	Notification
Unregistering
Posting	a	Notification
NSTimer

Delegation

Cocoa	Delegation
Implementing	Delegation

Data	Sources
Actions
The	Responder	Chain

Deferring	Responsibility
Nil-Targeted	Actions

Key–Value	Observing
Swamped	by	Events
Delayed	Performance

12.	Memory	Management

Principles	of	Cocoa	Memory	Management
Rules	of	Cocoa	Memory	Management
What	ARC	Is	and	What	It	Does
How	Cocoa	Objects	Manage	Memory
Autorelease	Pool
Memory	Management	of	Instance	Properties
Retain	Cycles	and	Weak	References
Unusual	Memory	Management	Situations
Nib	Loading	and	Memory	Management
Memory	Management	of	CFTypeRefs
Property	Memory	Management	Policies
Debugging	Memory	Management	Mistakes

13.	Communication	Between	Objects

Visibility	by	Instantiation
Visibility	by	Relationship
Global	Visibility
Notifications	and	KVO
Model–View–Controller

A.	C,	Objective-C,	and	Swift

The	C	Language

C	Data	Types
C	Enums
C	Structs
C	Pointers
C	Arrays
C	Functions

Objective-C

Objective-C	Objects	and	C	Pointers
Objective-C	Objects	and	Swift	Objects
Objective-C	Methods
Objective-C	Initializers	and	Factories
Selectors
CFTypeRefs
Blocks
API	Markup

Bilingual	Targets

Index
Colophon
Copyright

	iOS 9 Programming Fundamentals with Swift
	Preface
	The Scope of This Book
	Versions
	Acknowledgments
	From the Programming iOS 4 Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	I. Language
	1. The Architecture of Swift
	Ground of Being
	Everything Is an Object?
	Three Flavors of Object Type
	Variables
	Functions
	The Structure of a Swift File
	Scope and Lifetime
	Object Members
	Namespaces
	Modules
	Instances
	Why Instances?
	self
	Privacy
	Design
	Object Types and APIs
	Instance Creation, Scope, and Lifetime
	Summary and Conclusion

	2. Functions
	Function Parameters and Return Value
	Void Return Type and Parameters
	Function Signature

	External Parameter Names
	Overloading
	Default Parameter Values
	Variadic Parameters
	Ignored Parameters
	Modifiable Parameters
	Function In Function
	Recursion
	Function As Value
	Anonymous Functions
	Define-and-Call
	Closures
	How Closures Improve Code
	Function Returning Function
	Closure Setting a Captured Variable
	Closure Preserving Its Captured Environment

	Curried Functions

	3. Variables and Simple Types
	Variable Scope and Lifetime
	Variable Declaration
	Computed Initializer
	Computed Variables
	Setter Observers
	Lazy Initialization
	Built-In Simple Types
	Bool
	Numbers
	Int
	Double
	Coercion
	Other numeric types
	Arithmetic operations
	Comparison

	String
	Character
	Range
	Tuple
	Optional
	Unwrapping an Optional
	Implicitly unwrapped Optional
	The magic word nil
	Optional chains
	Comparison with Optional
	Why Optionals?

	4. Object Types
	Object Type Declarations and Features
	Initializers
	Optional properties
	Referring to self
	Delegating initializers
	Failable initializers

	Properties
	Methods
	Subscripts
	Nested Object Types
	Instance References

	Enums
	Case With Fixed Value
	Case With Typed Value
	Enum Initializers
	Enum Properties
	Enum Methods
	Why Enums?

	Structs
	Struct Initializers, Properties, and Methods
	Struct As Namespace

	Classes
	Value Types and Reference Types
	Subclass and Superclass
	Class Initializers
	Kinds of class initializer
	Subclass initializers
	Required initializers
	Surprises from Cocoa

	Class Deinitializer
	Class Properties and Methods

	Polymorphism
	Casting
	Type Reference
	Protocols
	Why Protocols?
	Protocol Type Testing and Casting
	Declaring a Protocol
	Optional Protocol Members
	Class Protocol
	Implicitly Required Initializers
	Literal Convertibles

	Generics
	Generic Declarations
	Type Constraints
	Explicit Specialization
	Associated Type Chains
	Additional Constraints

	Extensions
	Extending Object Types
	Extending Protocols
	Extending Generics

	Umbrella Types
	AnyObject
	Suppressing type checking
	Object identity and type identity

	AnyClass
	Any

	Collection Types
	Array
	Array casting and type testing
	Array comparison
	Arrays are value types
	Array subscripting
	Nested arrays
	Basic array properties and methods
	Array enumeration and transformation
	Swift Array and Objective-C NSArray

	Dictionary
	Basic dictionary properties and enumeration
	Swift Dictionary and Objective-C NSDictionary

	Set
	Option sets
	Swift Set and Objective-C NSSet

	5. Flow Control and More
	Flow Control
	Branching
	If construct
	Conditional binding
	Switch statement
	Conditional evaluation

	Loops
	While loops
	For loops

	Jumping
	Shortcircuiting and labels
	Throwing and catching errors
	Defer
	Aborting
	Guard

	Operators
	Privacy
	Private Declaration
	Public Declaration
	Privacy Rules

	Introspection
	Memory Management
	Weak References
	Unowned References
	Weak and Unowned References in Anonymous Functions
	Memory Management of Protocol-Typed References

	II. IDE
	6. Anatomy of an Xcode Project
	New Project
	The Project Window
	The Navigator Pane
	The Utilities Pane
	The Editor

	The Project File and Its Dependents
	The Target
	Build Phases
	Build Settings
	Configurations
	Schemes and Destinations

	From Project to Running App
	Build Settings
	Property List Settings
	Nib Files
	Additional Resources
	Resources in the Project navigator
	Resources in an asset catalog

	Code Files and the App Launch Process
	The entry point
	UIApplicationMain
	App without a storyboard

	Frameworks and SDKs

	Renaming Parts of a Project

	7. Nib Management
	The Nib Editor Interface
	Document Outline
	Canvas
	Inspectors and Libraries

	Nib Loading
	When Nibs Are Loaded
	Manual Nib Loading

	Connections
	Outlets
	The Nib Owner
	Automatically Configured Nibs
	Misconfigured Outlets
	Deleting an Outlet
	More Ways to Create Outlets
	Outlet Collections
	Action Connections
	More Ways to Create Actions
	Misconfigured Actions
	Connections Between Nibs — Not!

	Additional Configuration of Nib-Based Instances

	8. Documentation
	The Documentation Window
	Class Documentation Pages
	Sample Code
	Quick Help
	Symbols
	Header Files
	Internet Resources

	9. Life Cycle of a Project
	Device Architecture and Conditional Code
	Backward Compatibility
	Device Type

	Version Control
	Editing and Navigating Your Code
	Autocompletion
	Snippets
	Fix-it and Live Syntax Checking
	Navigation
	Finding

	Running in the Simulator
	Debugging
	Caveman Debugging
	The Xcode Debugger
	Breakpoints
	Paused at a breakpoint

	Testing
	Clean
	Running on a Device
	Running Without a Developer Program Membership
	Obtaining a Developer Program Membership
	Obtaining a Certificate
	Obtaining a Development Provisioning Profile
	Running the App
	Profile and Device Management

	Profiling
	Gauges
	Instruments

	Localization
	Localizing the Info.plist
	Localizing a Nib File
	Localizing Code Strings
	Localizing With XML Files

	Archiving and Distribution
	Ad Hoc Distribution
	Final App Preparations
	Icons in the App
	Other Icons
	Launch Images
	Screenshots and Video Previews
	Property List Settings

	Submission to the App Store

	III. Cocoa
	10. Cocoa Classes
	Subclassing
	Categories and Extensions
	How Swift Uses Extensions
	How You Use Extensions
	How Cocoa Uses Categories

	Protocols
	Informal Protocols
	Optional Methods

	Some Foundation Classes
	Useful Structs and Constants
	NSString and Friends
	NSDate and Friends
	NSNumber
	NSValue
	NSData
	Equality and Comparison
	NSIndexSet
	NSArray and NSMutableArray
	NSDictionary and NSMutableDictionary
	NSSet and Friends
	NSNull
	Immutable and Mutable
	Property Lists

	Accessors, Properties, and Key–Value Coding
	Swift Accessors
	Key–Value Coding
	Uses of Key–Value Coding
	KVC and Outlets
	Key Paths
	Array Accessors

	The Secret Life of NSObject

	11. Cocoa Events
	Reasons for Events
	Subclassing
	Notifications
	Receiving a Notification
	Unregistering
	Posting a Notification
	NSTimer

	Delegation
	Cocoa Delegation
	Implementing Delegation

	Data Sources
	Actions
	The Responder Chain
	Deferring Responsibility
	Nil-Targeted Actions

	Key–Value Observing
	Swamped by Events
	Delayed Performance

	12. Memory Management
	Principles of Cocoa Memory Management
	Rules of Cocoa Memory Management
	What ARC Is and What It Does
	How Cocoa Objects Manage Memory
	Autorelease Pool
	Memory Management of Instance Properties
	Retain Cycles and Weak References
	Unusual Memory Management Situations
	Nib Loading and Memory Management
	Memory Management of CFTypeRefs
	Property Memory Management Policies
	Debugging Memory Management Mistakes

	13. Communication Between Objects
	Visibility by Instantiation
	Visibility by Relationship
	Global Visibility
	Notifications and KVO
	Model–View–Controller

	A. C, Objective-C, and Swift
	The C Language
	C Data Types
	C Enums
	C Structs
	C Pointers
	C Arrays
	C Functions

	Objective-C
	Objective-C Objects and C Pointers
	Objective-C Objects and Swift Objects
	Objective-C Methods
	Objective-C Initializers and Factories
	Selectors
	CFTypeRefs
	Blocks
	API Markup

	Bilingual Targets

	Index
	Colophon
	Copyright

