
Shelve in:
Programming Languages/Java

User level:
Intermediate–Advanced

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Friesen

www.apress.com

Java I/O, NIO and NIO.2
Java I/O, NIO and NIO.2 is a power-packed book that accelerates your mastery of Java’s
various I/O APIs. In this book, you’ll learn about classic I/O APIs (File, RandomAccessFile,
the stream classes and related types, and the reader/writer classes). Next, you’ll learn
about NIO’s buffer, channel, selector, regular expression, charset, and formatter APIs.
Finally, you’ll discover NIO.2’s offerings in terms of an improved file system interface,
asynchronous I/O, and the completion of socket channel functionality.

After reading and using this book, you’ll gain the accelerated knowledge and skill level to
really build applications with efficient data access, especially for today’s cloud computing
streaming data needs. Here are some of the highlights:

• Learn how to set permissions and more with the classic File class
• Learn how to build a flat file database with RandomAccessFile
• Get to know the byte array, file, filter, and other kinds of streams
• Master serialization and externalization
• Discover character streams and their associated writers/readers
• Tour the buffer APIs
• Work with channels to transfer buffers to and from I/O services
• Find out about selectors and readiness selection
• Master regular expressions
• Discover charsets and their association with Java’s String class
• Take advantage of the formatter API to create formatted output
• Learn how to customize the formatter API
• Explore the improved file system interface
• Discover asynchronous I/O and its association with futures and completion handlers
• Encounter socket channel improvements, including multicasting

SOURCE CODE ONLINE 9 781484 215661

54999
ISBN 978-1-4842-1566-1

Java I/O, NIO
and NIO.2

Jeff Friesen

Java I/O, NIO and NIO.2

Copyright © 2015 by Jeff Friesen

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of
the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always
be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-1566-1

ISBN-13 (electronic): 978-1-4842-1565-4

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Technical Reviewers: Vinay Kumar and Wallace Jackson
Editorial Board: Steve Anglin, Louise Corrigan, James T. DeWolf, Jonathan Gennick,

Robert Hutchinson, Michelle Lowman, James Markham, Susan McDermott, Matthew
Moodie, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing,
Steve Weiss

Coordinating Editor: Mark Powers
Copy Editor: Kezia Endsley
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available
to readers at www.apress.com/9781484215661. For detailed information about how to locate your
book’s source code, go to www.apress.com/source-code/. Readers can also access source code at
SpringerLink in the Supplementary Material section for each chapter.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484215661
www.apress.com/source-code/

To my parents.

v

Contents at a
Glance

About the Author ��xv

About the Technical Reviewers ��xvii

Acknowledgments ���xix

Introduction ���xxi

 ■Part I: Getting Started with I/O ��1

 ■Chapter 1: I/O Basics and APIs ��� 3

 ■Part II: Classic I/O APIs��17

 ■Chapter 2: File �� 19

 ■Chapter 3: RandomAccessFile �� 43

 ■Chapter 4: Streams ��� 59

 ■Chapter 5: Writers and Readers ��� 113

 ■Part III: New I/O APIs ���125

 ■Chapter 6: Buffers �� 127

 ■Chapter 7: Channels ��� 149

Contents at a Glancevi

 ■Chapter 8: Selectors ��� 203

 ■Chapter 9: Regular Expressions ��� 215

 ■Chapter 10: Charsets �� 231

 ■Chapter 11: Formatter �� 243

 ■Part IV: More New I/O APIs ��� 257

 ■Chapter 12: Improved File System Interface ������������������������������ 259

 ■Chapter 13: Asynchronous I/O �� 387

 ■Chapter 14: Completion of Socket Channel Functionality ���������� 417

 ■Part V: Appendices ��� 429

 ■Appendix A: Answers to Exercises ��� 431

 ■Appendix B: Sockets and Network Interfaces ���������������������������� 481

Index �� 513

vii

Contents

About the Author ��xv

About the Technical Reviewers ��xvii

Acknowledgments ���xix

Introduction ���xxi

 ■ Part I: Getting Started with I/O ��1

 ■Chapter 1: I/O Basics and APIs ��� 3

Classic I/O ��� 3

File System Access and the File Class ��� 3

Accessing File Content via RandomAccessFile �� 5

Streaming Data via Stream Classes ��� 5

JDK 1�1 and the Writer/Reader Classes �� 8

NIO ��� 8

Buffers �� 9

Channels ��� 10

Selectors ��� 11

Regular Expressions ��� 12

Charsets ��� 13

Formatter �� 13

Contentsviii

NIO�2 �� 13

Improved File System Interface �� 14

Asynchronous I/O �� 14

Completion of Socket Channel Functionality �� 14

Summary ��� 15

 ■Part II: Classic I/O APIs��17

 ■Chapter 2: File �� 19

Constructing File Instances ��� 19

Learning About Stored Abstract Paths ��� 22

Learning About a Path’s File or Directory �� 25

Listing File System Root Directories ��� 27

Obtaining Disk Space Information ��� 28

Listing Directories ��� 30

Creating/Modifying Files and Directories �� 33

Setting and Getting Permissions ��� 37

Exploring Miscellaneous Capabilities �� 39

Summary ��� 42

 ■Chapter 3: RandomAccessFile �� 43

Exploring RandomAccessFile �� 43

Using RandomAccessFile �� 49

Summary ��� 57

 ■Chapter 4: Streams ��� 59

Stream Classes Overview�� 59

Touring the Stream Classes��� 61

OutputStream and InputStream �� 61

ByteArrayOutputStream and ByteArrayInputStream ��� 64

FileOutputStream and FileInputStream �� 67

Contents

ix

PipedOutputStream and PipedInputStream �� 71

FilterOutputStream and FilterInputStream ��� 75

BufferedOutputStream and BufferedInputStream �� 84

DataOutputStream and DataInputStream ��� 86

Object Serialization and Deserialization ��� 88

PrintStream��� 104

Revisiting Standard I/O �� 107

Summary ��� 111

 ■Chapter 5: Writers and Readers ��� 113

Writer and Reader Classes Overview �� 114

Writer and Reader ��� 116

OutputStreamWriter and InputStreamReader ������������������������������������� 117

FileWriter and FileReader �� 119

BufferedWriter and BufferedReader �� 121

Summary ��� 124

 ■Part III: New I/O APIs ���125

 ■Chapter 6: Buffers �� 127

Introducing Buffers �� 127

Buffer and its Children �� 128

Buffers in Depth �� 133

Buffer Creation ��� 133

Buffer Writing and Reading��� 136

Flipping Buffers �� 139

Marking Buffers �� 141

Buffer Subclass Operations �� 142

Byte Ordering �� 143

Direct Byte Buffers ��� 145

Summary ��� 147

Contentsx

 ■Chapter 7: Channels ��� 149

Introducing Channels �� 149

Channel and Its Children ��� 149

Channels in Depth ��� 155

Scatter/Gather I/O ��� 155

File Channels �� 158

Socket Channels ��� 179

Pipes ��� 195

Summary ��� 201

 ■Chapter 8: Selectors ��� 203

Selector Fundamentals ��� 204

Selector Demonstration ��� 209

Summary ��� 214

 ■Chapter 9: Regular Expressions ��� 215

Pattern, PatternSyntaxException, and Matcher ����������������������������������� 215

Character Classes ��� 221

Capturing Groups �� 223

Boundary Matchers and Zero-Length Matches ����������������������������������� 224

Quantifiers ��� 225

Practical Regular Expressions ��� 228

Summary ��� 230

 ■Chapter 10: Charsets �� 231

A Brief Review of the Fundamentals ��� 231

Working with Charsets �� 232

Charsets and the String Class ��� 239

Summary ��� 241

Contents

xi

 ■Chapter 11: Formatter �� 243

Exploring Formatter ��� 243

Exploring Formattable and FormattableFlags ������������������������������������� 249

Summary ��� 255

 ■Part IV: More New I/O APIs ��257

 ■Chapter 12: Improved File System Interface ������������������������������ 259

Architecting a Better File Class ��� 259

File Systems and File System Providers ��� 261

Locating Files with Paths �� 263

Getting a Path and Accessing Its Name Elements �� 264

Relative and Absolute Paths ��� 267

Normalization, Relativization, and Resolution �� 269

Additional Capabilities �� 271

Performing File System Tasks with Files ��� 273

Accessing File Stores ��� 273

Managing Attributes ��� 276

Managing Files and Directories �� 305

Managing Symbolic and Hard Links ��� 343

Walking the File Tree �� 351

Working with Additional Capabilities �� 370

Using Path Matchers and Watch Services ��� 373

Matching Paths ��� 374

Watching Directories �� 377

Summary ��� 386

 ■Chapter 13: Asynchronous I/O �� 387

Asynchronous I/O Overview �� 388

Asynchronous File Channels ��� 390

Contentsxii

Asynchronous Socket Channels �� 395

AsynchronousServerSocketChannel ��� 396

AsynchronousSocketChannel ��� 403

Asynchronous Channel Groups�� 410

What About AsynchronousFileChannel? ��� 413

Summary ��� 415

 ■Chapter 14: Completion of Socket Channel Functionality ���������� 417

Binding and Option Configuration ��� 417

Channel-Based Multicasting ��� 422

Summary ��� 428

 ■Part V: Appendices ��429

 ■Appendix A: Answers to Exercises ��� 431

Chapter 1: I/O Basics and APIs �� 431

Chapter 2: File ��� 432

Chapter 3: RandomAccessFile ��� 435

Chapter 4: Streams �� 436

Chapter 5: Writers and Readers �� 444

Chapter 6: Buffers ��� 446

Chapter 7: Channels �� 449

Chapter 8: Selectors �� 453

Chapter 9: Regular Expressions �� 453

Chapter 10: Charsets ��� 455

Chapter 11: Formatter ��� 457

Chapter 12: Improved File System Interface ��������������������������������������� 458

Chapter 13: Asynchronous I/O ��� 471

Chapter 14: Completion of Socket Channel Functionality ������������������� 475

Contents

xiii

 ■Appendix B: Sockets and Network Interfaces ���������������������������� 481

Sockets �� 482

Socket Addresses ��� 484

Socket Options�� 486

Socket and ServerSocket ��� 488

DatagramSocket and MulticastSocket ��� 495

Network Interfaces �� 503

Using Network Interfaces with Sockets �� 511

Index �� 513

xv

About the Author
Jeff Friesen is a freelance tutor and software
developer with an emphasis on Java. In
addition to authoring Learn Java for Android
Development and co-authoring Android
Recipes, Jeff has written numerous articles
on Java and other technologies for JavaWorld
(JavaWorld.com), InformIT (InformIT.com),
Java.net and DevSource (DevSource.com).
Jeff can be contacted via his website at
TutorTutor.ca.

http://JavaWorld.com
http:\\InformIT.com
http://DevSource.com
http://TutorTutor.ca

xvii

About the Technical
Reviewers

Vinay Kumar is a Technology Evangelist.
He has extensive experience of 8+ years
in designing and implementing large scale
projects in Enterprise Technologies in various
consulting and system Integration Companies.
His passion helped him achieve certifications in
Oracle ADF, Webcenter Portal and Java/JEE.
Experience and in-depth knowledge has
helped him evolve into a focused domain
expert and a well-known technical blogger.
He loves to spend his time in mentoring and
writing technical blogs, publishing white papers
and maintaining a dedicated education channel

at YouTube for the ADF/ Webcenter. He has experience in Java, JEE and
various open stack technologies as well. Vinay has been contributing to the
Java/Oracle ADF/Webcenter community by publishing 300+ technical articles
at his personal blog www.techartifact.com. He was awarded an Oracle
ACE in June 2014. You can follow him at @vinaykuma201 or in.linkedin.com/
in/vinaykumar2.

http://www.techartifact.com
http://@vinaykuma201
http://in.linkedin.com/in/vinaykumar2
http://in.linkedin.com/in/vinaykumar2

About the Technical Reviewersxviii

Wallace Jackson has been writing for leading
multimedia publications about his work in new
media content development since the advent
of Multimedia Producer Magazine nearly two
decades ago. He has authored a half-dozen
Android book titles for Apress, including four
titles in the popular Pro Android series. Wallace
received his undergraduate degree in Business
Economics from the University of California at
Los Angeles (UCLA) and a graduate degree
in MIS Design and Implementation from the
University of Southern California (USC). He is
currently the CEO of Mind Taffy Design, a new
media content production and digital campaign
design and development agency.

xix

Acknowledgments

I have many people to thank for assisting me in the development of this
book. I especially thank Steve Anglin for asking me to write it and Mark
Powers for guiding me through the writing process.

xxi

Introduction

Input/output (I/O) is not a sexy subject, but it’s an important part of
non-trivial applications. This book introduces you to most of Java’s I/O
capabilities as of Java 8 update 51.

Chapter 1 presents a broad overview of I/O in terms of Java’s classic I/O,
New I/O (NIO), and NIO.2 categories. You learn what each category offers in
terms of its capabilities, and you also learn about concepts such as paths
and Direct Memory Access.

Chapters 2 through 5 cover classic I/O APIs. You learn about the File and
RandomAccessFile classes along with streams (including object serialization
and externalization) and writers/readers.

Chapters 6 through 11 focus on NIO. You explore buffers, channels,
selectors, regular expressions, charsets, and formatters. (Formatters were
not introduced with the other NIO types in Java 1.4 because they depend on
the variable arguments capability that was introduced in Java 5.)

NIO is missing several features, which were subsequently provided by
NIO.2. Chapters 12 through 14 cover NIO.2’s improved file system interface,
asynchronous I/O, and the completion of socket channel functionality.

Each chapter ends with assorted exercises that are designed to help you
master its content. Along with long answers and true/false questions, you
are often confronted with programming exercises. Appendix A provides the
answers and solutions.

Appendix B provides a tutorial on sockets and network interfaces. Although
not directly related to classic I/O, NIO, and NIO.2, they leverage I/O
capabilities and are mentioned elsewhere in this book.

Introductionxxii

Thanks for purchasing this book. I hope you find it helpful in understanding
classic I/O, NIO, and NIO.2.

—Jeff Friesen (September 2015)

Note I briefly use Java 8’s lambda expression and method reference
language features and also use Java 8’s Streams API in some examples,
but don’t provide a tutorial on them. You’ll need to look elsewhere for that
knowledge.

Note You can download this book’s source code by pointing your web
browser to www.apress.com/9781484215661 and clicking the Source
Code tab followed by the Download Now link.

www.apress.com/9781484215661

1

Part I
Getting Started with I/O

3

Chapter 1
I/O Basics and APIs
Input and output (I/O) facilities are fundamental parts of operating systems
along with computer languages and their libraries. All but trivial computer
programs perform some kind of input and/or output operations.

Java has always supported I/O. Its initial suite of I/O APIs and related
architecture are known as classic I/O. Because modern operating systems
feature newer I/O paradigms, which classic I/O doesn’t support, new I/O
(NIO) was introduced as part of JDK 1.4 to support them. Lack of time
prevented some planned NIO features from being included in this release,
which led to these other NIO features being deferred to JDK 5 and JDK 7.

This chapter introduces you to classic I/O, NIO, and more NIO (NIO.2).
You learn about the basic I/O features they address. Also, you receive an
overview of their APIs. Subsequent chapters dig deeper into these APIs.

Classic I/O
JDK 1.0 introduced rudimentary I/O facilities for accessing the file system
(to create a directory, remove a file, or perform another task), accessing file
content randomly (as opposed to sequentially), and streaming byte-oriented
data between sources and destinations in a sequential manner.

File System Access and the File Class
A file system is an operating system component that manages data storage
and subsequent retrieval. Operating systems on which a Java virtual
machine (JVM) runs support at least one file system. For example, Unix or

CHAPTER 1: I/O Basics and APIs4

Linux combines all mounted (attached and prepared) disks into one virtual
file system. In contrast, Windows associates a separate file system with
each active disk drive.

A file system stores data in files, which are stored in directories. Its file and
directory objects are accessed by specifying paths, which are compact
maps that locate and identify file system objects. Paths are either absolute
or relative:

	An absolute path is a path relative to the file system’s
root directory. It’s expressed as the root directory
symbol followed by a delimited hierarchy of directory
names that ends in the target directory or file name.

	A relative path is a path relative to some other directory.
It’s expressed similarly to an absolute path but without
the initial root directory symbol. In contrast, it’s often
prefixed with one or more delimited “..” character
sequences, where each sequence refers to a parent
directory.

Paths are specified differently depending on the operating system. For
example, Unix, Linux, and Unix-like operating systems identify the root
directory and delimit path components with a forward slash (/), whereas
Windows uses a backslash (\) for these purposes. Consider two examples:

/users/username/bin
\users\username\bin

Each absolute path accesses the bin subdirectory of the username
subdirectory of the users subdirectory of the root directory. The path on
the first line accesses bin in a Unix/Linux context, whereas the path on the
second line accesses this subdirectory in a Windows context.

Windows and similar operating systems can manage multiple file systems.
Each file system is identified with a drive specifier such as “C:”. When
specifying a path without a drive specifier, the path is relative to the current
file system. Otherwise, it is relative to the specified file system:

\users\username\bin
C:\users\username\bin

The first line accesses the path relative to the current file system, whereas
the second line accesses the path relative to the C: file system.

CHAPTER 1: I/O Basics and APIs

5

An instance of the java.io.File class abstracts a file or directory path. This
instance provides access to the file system to perform tasks on this path
such as removing the underlying file or directory. The following example
demonstrates this class:

new File("temp").mkdir();

The example constructs a File object initialized to the file system object
temp. It then calls mkdir() on this File object to make a new directory
named temp.

Chapter 2 explores the File class.

Accessing File Content via RandomAccessFile
File content can be accessed sequentially or randomly. Random access
can speed up searching and sorting capabilities. An instance of the java.
io.RandomAccessFile class provides random access to a file. This capability
is demonstrated in the following example:

RandomAccessFile raf = new RandomAccessFile("employees.dat", "r");
int empIndex = 10;
raf.seek(empIndex * EMP_REC_LEN);
// Read contents of employee record.

In this example, file employees.dat, which is divided into fixed-length
employee records where each record is EMP_REC_LEN bytes long, is being
accessed. The employee record at index 10 (the first record is located at
index 0) is being sought. This task is accomplished by seeking (setting the
file pointer) to the byte location of this record’s first byte, which is located at
the index multiplied by the record length. The record is then accessed.

Chapter 3 explores the RandomAccessFile class.

Streaming Data via Stream Classes
Classic I/O includes streams for performing I/O operations. A stream is an
ordered sequence of bytes of arbitrary length. Bytes flow over an output
stream from an application to a destination and flow over an input stream
from a source to an application. Figure 1-1 illustrates these flows.

http://dx.doi.org/10.1007/978-1-4842-1565-4_2
http://dx.doi.org/10.1007/978-1-4842-1565-4_3

CHAPTER 1: I/O Basics and APIs6

Java provides classes in the java.io package that identify various stream
destinations for writing; for example, byte arrays and files. Java also
provides classes in this package that identify various stream sources for
reading. Examples include files and thread pipes.

For example, you would use FileInputStream to open an existing file and
connect an input stream to it. You would then invoke various read()
methods to read bytes from the file over the input stream. Lastly, you would
invoke close() to close the stream and file. Consider the following example:

FileInputStream fis = null;
try
{
 fis = new FileInputStream("image.jpg");
 // Read bytes from file.
 int _byte;
 while ((_byte = fis.read()) != -1) // -1 signifies EOF
 ; // Process _byte in some way.
}
catch (IOException ioe)
{
 // Handle exception.
}
finally
{
 if (fis != null)
 try
 {
 fis.close();
 }
}

application

source

read

write

output stream

input stream

application

destination*

* * *

* *

Figure 1-1. Conceptualizing output and input streams as flows of bytes

CHAPTER 1: I/O Basics and APIs

7

This example demonstrates the traditional way to open a file and create an
input stream for reading bytes from the file. It then goes on to read the file’s
contents. An exception handler takes care of any thrown exceptions, which
are represented by instances of the java.io.IOException class.

Whether or not an exception is thrown, the input stream and underlying
file must be closed. This action takes place in the try statement’s finally
block. Because of the verbosity in closing the file, you can alternatively use
JDK 7’s try-with-resources statement to automatically close it, as follows:

try (FileInputStream fis = new FileInputStream("image.jpg"))
{
 // Read bytes from file.
 int _byte;
 while ((_byte = fis.read()) != -1) // -1 signifies EOF
 ; // Process _byte in some way.
}
catch (IOException ioe)
{
 // Handle exception.
}

I demonstrate both the traditional and try-with-resources approaches to
closing files throughout subsequent chapters.

Some stream classes are used to filter other streams. For example, to
improve performance, BufferedInputStream reads a block of bytes from
another stream and returns bytes from its buffer until the buffer is empty, in
which case it reads another block. Consider the following example:

try (FileInputStream fis = new FileInputStream("image.jpg");
 BufferedInputStream bis = new BufferedInputStream(fis))
{
 // Read bytes from file.
 int _byte;
 while ((_byte = bis.read()) != -1) // -1 signifies EOF
 ; // Process _byte in some way.
}
catch (IOException ioe)
{
 // Handle exception.
}

A file input stream that reads from the image.jpg file is created. This stream
is passed to a buffered input stream constructor. Subsequent reads are
performed on the buffered input stream, which calls file input stream read()
methods when appropriate.

Chapter 4 explores the stream classes.

http://dx.doi.org/10.1007/978-1-4842-1565-4_4

CHAPTER 1: I/O Basics and APIs8

Stream Classes and Standard I/O
Many operating systems support standard I/O, which is preconnected input
and output data streams between a computer program and its environment
when it begins execution. The preconnected streams are known as standard
input, standard output, and standard error.

Standard input defaults to reading its input from the keyboard. Also,
standard output and standard error default to writing their output to the
screen. However, these streams can be redirected to read input from a
different source and write output to a different destination (such as a file).

JDK 1.0 introduced support for standard I/O by adding the in, out, and
err objects of type InputStream and PrintStream to the java.lang.System
class. You specify method calls on these objects to access standard input,
standard output, and standard error, as follows:

int ch = System.in.read(); // Read single character from standard input.
System.out.println("Hello"); // Write string to standard output.
System.err.println("I/O error: " +
 ioe.getMessage()); // Write string to standard error.

As well as exploring InputStream and PrintStream, Chapter 4 also revisits
standard I/O to show you how to programmatically redirect these streams.

JDK 1.1 and the Writer/Reader Classes
JDK 1.0’s I/O capabilities are suitable for streaming bytes, but cannot
properly stream characters because they don’t account for character
encodings. JDK 1.1 overcame this problem by introducing writer/reader
classes that take character encodings into account. For example, the
java.io package includes FileWriter and FileReader classes for writing
and reading character streams.

Chapter 5 explores various writer and reader classes.

NIO
Modern operating systems offer sophisticated I/O services (such as
readiness selection) for improving I/O performance and simplifying I/O. Java
Specification Request (JSR) 51 (www.jcp.org/en/jsr/detail?id=51) was
created to address these capabilities.

http://dx.doi.org/10.1007/978-1-4842-1565-4_4
http://dx.doi.org/10.1007/978-1-4842-1565-4_5
http://www.jcp.org/en/jsr/detail?id=51

CHAPTER 1: I/O Basics and APIs

9

JSR 51’s description indicates that it provides APIs for scalable I/O, fast
buffered binary and character I/O, regular expressions, and charset
conversion. Collectively, these APIs are known as NIO. JDK 1.4 implemented
NIO in terms of the following APIs:

	Buffers

	Channels

	Selectors

	Regular expressions

	Charsets

The regular expression and charset APIs were provided to simplify common
I/O-related tasks.

Buffers
Buffers are the foundation for NIO operations. Essentially, NIO is all about
moving data into and out of buffers.

A process such as the JVM performs I/O by asking the operating system to
drain a buffer’s contents to storage via a write operation. Similarly, it asks
the operating system to fill a buffer with data read from a storage device.

Consider a read operation involving a disk drive. The operating system
issues a command to the disk controller to read a block of bytes from a
disk into an operating system buffer. Once this operation completes, the
operating system copies the buffer contents to the buffer specified by the
process when it issued a read() operation. Check out Figure 1-2.

Disk

Hardware

Buffer Process

Buffer
DMA read()

Disk
Controller

Figure 1-2. Filling a buffer at the operating system level

In Figure 1-2, a process has issued a read() call to the operating system.
In turn, the operating system has requested to the disk controller to read
a block of bytes from the disk. The disk controller (also known as a DMA
controller) reads these bytes directly into an operating system buffer via
Direct Memory Access (DMA), a feature of computer systems that allows

CHAPTER 1: I/O Basics and APIs10

certain hardware subsystems to access main system (RAM) memory
independently of the central processing unit (CPU). The operating system
then copies these bytes to the process’s buffer.

Copying bytes from the operating system buffer to the process buffer isn’t
very efficient. It would be more performant to have the DMA controller copy
directly to the process buffer, but there are two problems with this approach:

	The DMA controller typically cannot communicate
directly with the user space in which the JVM process
runs. Instead, it communicates with the operating
system’s kernel space.

	Block-oriented devices such as a DMA controller work
with fixed-size data blocks. In contrast, the JVM
process might request a size of data that isn’t a multiple
of the block size or that is misaligned.

Because of these problems, the operating system acts as an intermediary,
tearing apart and recombining data as it switches between the JVM process
and the DMA controller.

The data assembly/disassembly tasks can be made more efficient by
letting the JVM process pass a list of buffer addresses to the operating
system in a single system call. The operating system then fills or drains
these buffers in sequence, scattering data to multiple buffers during a read
operation or gathering data from several buffers during a write operation.
This scatter/gather activity reduces the number of (potentially expensive)
system calls that the JVM process must make and lets the operating system
optimize data handling because it knows the total amount of buffer space.
Furthermore, when multiple processors or cores are available, the operating
system may allow buffers to be filled or drained simultaneously.

JDK 1.4’s java.nio.Buffer class abstracts the concept of a JVM process
buffer. It serves as the superclass for java.nio.ByteBuffer and other buffer
classes. Because I/O is fundamentally byte-oriented, only ByteBuffer
instances can be used with channels (which are discussed shortly). Most of
the other Buffer subclasses are conveniences for working with multibyte
data (such as characters or integers).

Chapter 6 explores the Buffer class and its children.

Channels
Forcing a CPU to perform I/O tasks and wait for I/O completions (such a
CPU is said to be I/O bound) is wasteful of this resource. Performance
can be improved by offloading these tasks to DMA controllers so that the
processor can get on with other work.

https://en.wikipedia.org/wiki/Computer_storage#Computer%20storage
https://en.wikipedia.org/wiki/Central_processing_unit#Central%20processing%20unit
http://dx.doi.org/10.1007/978-1-4842-1565-4_6

CHAPTER 1: I/O Basics and APIs

11

A channel serves as a conduit for communicating (via the operating
system) with a DMA controller to efficiently drain byte buffers to or fill byte
buffers from a disk. JDK 1.4’s java.nio.channels.Channel interface, its
subinterfaces, and various classes implement the channel architecture.

One of these classes is called java.nio.channels.FileChannel, and it
abstracts a channel for reading, writing, mapping, and manipulating a file. One
interesting feature of FileChannel is its support for file locking, upon which
sophisticated applications such as database management systems rely.

File locking lets a process prevent or limit access to a file while the process
is accessing the file. Although file locking can be applied to an entire file, it is
often narrowed to a smaller region. A lock ranges from a starting byte offset
in the file and continues for a specific number of bytes.

Another interesting FileChannel feature is memory-mapped file I/O via the
map() method. map() returns a java.nio.MappedByteBuffer whose content is
a memory-mapped region of a file. File content is accessed via memory
accesses; buffer copies and read-write system calls are eliminated.

You can obtain a channel by calling the java.nio.channels.Channels class’s
methods or the methods in classic I/O classes such as RandomAccessFile.

Chapter 7 explores Channel, Channels, and more.

Selectors
I/O is classified as block-oriented or stream-oriented. Reading from or
writing to a file is an example of block-oriented I/O. In contrast, reading from
the keyboard or writing to a network connection is an example of stream-
oriented I/O.

Stream I/O is often slower than block I/O. Furthermore, input tends to be
intermittent. For example, the user might pause while entering a stream of
characters or momentary slowness in a network connection causes a
playing video to proceed in a jerky fashion.

Many operating systems allow streams to be configured to operate in
nonblocking mode in which a thread continually checks for available input
without blocking when no input is available. The thread can handle incoming
data or perform other tasks until data arrives.

This “polling for available input” activity can be wasteful, especially when
the thread needs to monitor many input streams (such as in a web server
context). Modern operating systems can perform this checking efficiently,
which is known as readiness selection, and which is often built on top of
nonblocking mode. The operating system monitors a collection of streams
and returns an indication to the thread of which streams are ready to

http://dx.doi.org/10.1007/978-1-4842-1565-4_7

CHAPTER 1: I/O Basics and APIs12

perform I/O. As a result, a single thread can multiplex many active streams
via common code and makes it possible, in a web server context, to manage
a huge number of network connections.

JDK 1.4 supports readiness selection by providing selectors, which are
instances of the java.nio.channels.Selector class that can examine one or
more channels and determine which channels are ready for reading or
writing. This way a single thread can manage multiple channels (and,
therefore, multiple network connections) efficiently. Being able to use fewer
threads is advantageous where thread creation and thread context switching
is expensive in terms of performance and/or memory use. See Figure 1-3.

Chapter 8 explores Selector and its related types.

Regular Expressions
Regular expressions were introduced as part of NIO. Although you might
wonder about the rationale for doing this (what have regular expressions got to
do with I/O?), regular expressions are commonly used to scan textual data that
is read from a file or other source. The need to perform these scans as quickly
as possible mandated their inclusion. JDK 1.4 supports regular expressions via
the java.util.regex package and its Pattern and Matcher classes.

Chapter 9 explores the Pattern and Matcher classes.

channel

selector

thread

channel channel

Figure 1-3. A thread manages three channels via a selector

http://dx.doi.org/10.1007/978-1-4842-1565-4_8
http://dx.doi.org/10.1007/978-1-4842-1565-4_9

CHAPTER 1: I/O Basics and APIs

13

Charsets
I previously mentioned that JDK 1.1 introduced writer/reader classes that
take character encodings into account. Originally, classes such as
java.io.InputStreamReader worked with the java.io.ByteToCharConverter
class to perform conversions based on encodings. ByteToCharConverter
was eventually deprecated and removed from JDK 6 and successors. In its
place, the more capable java.nio.charset package along with its Charset,
CharsetEncoder, CharsetDecoder, and related types was introduced.

Chapter 10 explores the Charset class.

Formatter
JSR 51 mentions a simple printf-style formatting facility. Such a facility
offers significant value in preparing data for presentation, to which many C
programmers can attest. However, JDK 1.4 did not include this capability
because it relies on variable argument lists, a language feature that did not
debut until JDK 5. Fortunately, JDK 5 also included a java.util.Formatter
class with a wealth of formatting capabilities along with related types that
support custom formatting, and added printf() (and related format())
methods to the PrintStream class.

Chapter 11 explores Formatter and demonstrates printf().

NIO.2
JSR 51 specifies that NIO would introduce an improved file system interface
that overcomes various problems with the legacy File class. However, lack
of time prevented this feature from being included. Also, it wasn’t possible
to support asynchronous I/O and complete socket channel functionality.
JSR 203 (www.jcp.org/en/jsr/detail?id=203) was subsequently created to
address these omissions, which debuted in JDK 7.

Note Before the official JDK 7 release, big buffers (buffers with 64-bit
addressability) were considered for NIO.2. Classes such as BigByteBuffer
and MappedBigByteBuffer were planned for inclusion in package java.nio
or a different package. However, as explained in the “BigByteBuffer/Mapped
BigByteBuffer” OpenJDK discussion topic (http://mail.openjdk.java
.net/pipermail/nio-discuss/2009-June/000207.html), this
capability was abandoned in favor of pursuing “64-bit arrays or collections.”

http://dx.doi.org/10.1007/978-1-4842-1565-4_10
http://dx.doi.org/10.1007/978-1-4842-1565-4_11
http://www.jcp.org/en/jsr/detail?id=203
http://mail.openjdk.java.net/pipermail/nio-discuss/2009-June/000207.html
http://mail.openjdk.java.net/pipermail/nio-discuss/2009-June/000207.html

CHAPTER 1: I/O Basics and APIs14

Improved File System Interface
The legacy File class suffers from various problems. For example, the
renameTo() method doesn’t work consistently across operating systems.
Also, many of File’s methods don’t scale; requesting a large directory
listing from a server could result in a hang. The new file system interface
mentioned in JSR 203 fixes these and other problems. For example, it
supports bulk access to file attributes, provides a change notification facility,
offers the ability to escape to file system-specific APIs, and has a service
provider interface for pluggable file system implementations.

Chapter 12 explores the improved file system interface.

Asynchronous I/O
Nonblocking mode improves performance by preventing a thread that
performs a read or write operation on a channel from blocking until input is
available or the output has been fully written. However, it doesn’t let an
application determine if it can perform an operation without actually
performing the operation. For example, when a nonblocking read operation
succeeds, the application learns that the read operation is possible but also
has read some data that must be managed. This duality prevents you from
separating code that checks for stream readiness from the data-processing
code without making your code significantly complicated.

Asynchronous I/O overcomes this problem by letting the thread initiate the
operation and immediately proceed to other work. The thread specifies
some kind of callback function that is invoked when the operation finishes.

Chapter 13 explores asynchronous I/O.

Completion of Socket Channel Functionality
JDK 1.4 added the DatagramChannel, ServerSocketChannel, and
SocketChannel classes to the java.nio.channels package. However, lack
of time prevented these classes from supporting binding and option
configuration. Also, channel-based multicast datagrams were not
supported. JDK 7 added binding support and option configuration to the
aforementioned classes. Also, it introduced a new java.nio.channels
.MulticastChannel interface.

Chapter 14 explores the completion of socket channel functionality.

http://dx.doi.org/10.1007/978-1-4842-1565-4_12
http://dx.doi.org/10.1007/978-1-4842-1565-4_13
http://dx.doi.org/10.1007/978-1-4842-1565-4_14

CHAPTER 1: I/O Basics and APIs

15

EXERCISES

The following exercises are designed to test your understanding of Chapter 1’s content:

1. Identify the API categories that comprise classic I/O.

2. What benefit is offered by the try-with-resources statement?

3. Identify the API categories that comprise NIO.

4. Which API class lets Java programs leverage readiness selection?

5. Identify the API categories that comprise NIO.2.

6. How does NIO.2 complete socket channel functionality?

Summary
I/O is fundamental to operating systems, computer languages, and language
libraries. Java supports I/O through its classic I/O, NIO, and NIO.2 API
categories.

Classic I/O provides APIs to access the file system, access file content
randomly (as opposed to sequentially), stream byte-oriented data between
sources and destinations, and support character streams.

NIO provides APIs to manage buffers, communicate buffered data over
channels, leverage readiness selection via selectors, scan textual data
quickly via regular expressions, specify character encodings via charsets,
and support printf-style formatting.

NIO.2 provides APIs to improve the file system interface; support
asynchronous I/O; and complete socket channel functionality by upgrading
DatagramChannel, ServerSocketChannel, and SocketChannel, and by
introducing a new MulticastChannel interface.

Chapter 2 presents classic I/O’s File class.

http://dx.doi.org/10.1007/978-1-4842-1565-4_1
http://dx.doi.org/10.1007/978-1-4842-1565-4_2

17

Part II
Classic I/O APIs

19

Chapter 2
File
Applications often interact with a file system, which is usually implemented
as a hierarchy of files and directories starting from a root directory.
Operating systems on which a Java virtual machine (JVM) runs typically
support at least one file system. For example, Unix/Linux combines all
mounted (attached and prepared) disks into one virtual file system. In
contrast, Windows associates a separate file system with each active disk
drive. Java offers access to the underlying operating system’s available file
system(s) via its concrete java.io.File class, which this chapter explores.

Constructing File Instances
An instance of the File class contains an abstract representation of a file
or directory path (a compact map that locates and identifies a file system
object). To create a File instance, call a constructor such as File(String
path), which creates a File instance that stores the path string:

File file1 = new File("/x/y");
File file2 = new File("C:\\temp\\x.dat");

The first line assumes a Unix/Linux operating system, starts the path with
root directory symbol /, and continues with directory name x, separator
character /, and file or directory name y. (It also works on Windows, which
assumes this path begins at the root directory on the current drive.)

Note An operating system-dependent separator character (such as the
Windows backslash [\] character) appears between a path’s consecutive names.

CHAPTER 2: File20

The second line assumes a Windows operating system, starts the path with
drive specifier C:, and continues with root directory symbol \, directory
name temp, separator character \, and file name x.dat (although x.dat might
refer to a directory). (You could also use forward slashes [/] on Windows.)

Each statement’s path is absolute, which is a path that starts with the root
directory symbol; no other information is required to locate the file/directory
that it denotes. In contrast, a relative path doesn’t start with the root
directory symbol; it’s interpreted via information taken from another path.

File instances contain abstract representations of file and directory paths
(these files or directories may or may not exist in their file systems) by
storing abstract paths, which offer operating system-independent views of
hierarchical paths. In contrast, user interfaces and operating systems use
operating system-dependent path strings to name files and directories.

An abstract path consists of an optional operating system-dependent prefix
string, such as a disk drive specifier, “/” for the Unix/Linux root directory, or
“\\” for a Windows Universal Naming Convention (UNC) path, and a
sequence of zero or more string names. The first name in an abstract path
may be a directory name or, in the case of Windows UNC paths, a
hostname. Each subsequent name denotes a directory; the last name may
denote a directory or a file. The empty abstract path has no prefix and an
empty name sequence.

The conversion of a path string to or from an abstract path is inherently
operating system-dependent. When a path string is converted into an
abstract path, the names within this string may be separated by the default
name-separator character or by any other name-separator character that is

Caution Always double backslash characters that appear in a string literal,
especially when specifying a path; otherwise, you run the risk of introducing
bugs or receiving compiler error messages. For example, I doubled the
backslash characters in the second statement to denote a backslash and not a
tab (\t) and to avoid a compiler error message (\x is illegal).

Note The java.io package’s classes default to resolving relative paths
against the current user (also known as working) directory, which is identified
by the system property user.dir and which is typically the directory in which
the JVM was launched. (You obtain a system property value by calling the
java.lang.System class’s getProperty() method.)

CHAPTER 2: File

21

supported by the underlying operating system. When an abstract path is
converted into a path string, each name is separated from the next by a
single copy of the default name-separator character.

File offers additional constructors for instantiating this class. For example,
the following constructors merge parent and child paths into combined
paths that are stored in File objects:

	File(String parent, String child) creates a new
File instance from a parent path string and a child
path string.

	File(File parent, String child) creates a new File
instance from a parent path File instance and a child
path string.

Each constructor’s parent parameter is passed a parent path, a path that
consists of all path components except for the last name, which is specified
by child. The following statement demonstrates this concept via the first
constructor:

File file3 = new File("prj/books/", "io");

The constructor merges the parent path prj/books/ with the child path io
into the prj/books/io path. (If I had specified prj/books as the parent path,
the constructor would have added the separator character after books.)

Note The default name-separator character is defined by the system
property file.separator and is made available in File’s public static
separator and separatorChar fields—the first field stores the character in
a java.lang.String instance and the second field stores it as a char value.

Tip Because File(String path), File(String parent, String
child), and File(File parent, String child) don’t detect invalid
path arguments (apart from throwing a java.lang.NullPointerException
when path or child is null), you must be careful when specifying paths. You
should strive to only specify paths that are valid for all operating systems on
which the application will run. For example, instead of hard-coding a drive
specifier (such as C:) in a path, use a root returned from listRoots(), which
I discuss later. Even better, keep your paths relative to the current user/working
directory (returned from the user.dir system property).

http://docs.oracle.com/javase/7/docs/api/java/io/File.html#separator
http://docs.oracle.com/javase/7/docs/api/java/io/File.html#separatorChar

CHAPTER 2: File22

Learning About Stored Abstract Paths
After obtaining a File object, you can interrogate it to learn about its stored
abstract path by calling the methods described in Table 2-1.

Table 2-1. File Methods for Learning About a Stored Abstract Path

Method Description

File getAbsoluteFile() Return the absolute form of this File object’s
abstract path. This method is equivalent to new
File(this.getAbsolutePath()).

String getAbsolutePath() Return the absolute path string of this File object’s
abstract path. When it’s already absolute, the path
string is returned as if by calling getPath(). When
it’s the empty abstract path, the path string of the
current user directory (identified via user.dir) is
returned. Otherwise, the abstract path is resolved in
an operating system-dependent manner. On Unix/
Linux operating systems, a relative path is made
absolute by resolving it against the current user
directory. On Windows operating systems, the path
is made absolute by resolving it against the current
directory of the drive named by the path, or the
current user directory when there is no drive.

File getCanonicalFile() Return the canonical (simplest possible, absolute
and unique) form of this File object’s abstract path.
This method throws java.io.IOException when
an I/O error occurs (creating the canonical path
may require file system queries); it equates to new
File(this.getCanonicalPath()).

String getCanonicalPath() Return the canonical path string of this File object’s
abstract path. This method first converts this path
to the absolute form when necessary, as if by
invoking getAbsolutePath(), and then maps it to
its unique form in an operating system-dependent
way. Doing so typically involves removing redundant
names such as “.” and “..” from the path, resolving
symbolic links (on Unix/Linux operating systems),
and converting drive letters to a standard case (on
Windows operating systems). This method throws
IOException when an I/O error occurs (creating the
canonical path may require file system queries).

(continued)

CHAPTER 2: File

23

Table 2-1 refers to IOException, which is the common exception superclass
for those exception classes that describe various kinds of I/O errors such as
java.io.FileNotFoundException.

Listing 2-1 instantiates File with its path command-line argument and calls
some of the File methods described in Table 2-1 to learn about this path.

Listing 2-1. Obtaining Abstract Path Information

import java.io.File;
import java.io.IOException;

public class PathInfo
{
 public static void main(final String[] args) throws IOException
 {
 if (args.length != 1)

Table 2-1. (continued)

Method Description

String getName() Return the file name or directory name denoted by
this File object’s abstract path. This name is the
last in a path’s name sequence. The empty string is
returned when the path’s name sequence is empty.

String getParent() Return the parent path string of this File object’s
path, or return null when this path doesn’t name a
parent directory.

File getParentFile() Return a File object storing this File object’s
abstract path’s parent abstract path; return null
when the parent path isn’t a directory.

String getPath() Convert this File object’s abstract path into a path
string where the names in the sequence are
separated by the character stored in File’s
separator field. Return the resulting path string.

boolean isAbsolute() Return true when this File object’s abstract path
is absolute; otherwise, return false when it’s
relative. The definition of absolute path is system
dependent. For Unix/Linux operating systems, a
path is absolute when its prefix is “/”. For Windows
operating systems, a path is absolute when its
prefix is a drive specifier followed by “\” or when its
prefix is “\\”.

String toString() A synonym for getPath().

CHAPTER 2: File24

 {
 System.err.println("usage: java PathInfo path");
 return;
 }
 File file = new File(args[0]);
 System.out.println("Absolute path = " + file.getAbsolutePath());
 System.out.println("Canonical path = " + file.getCanonicalPath());
 System.out.println("Name = " + file.getName());
 System.out.println("Parent = " + file.getParent());
 System.out.println("Path = " + file.getPath());
 System.out.println("Is absolute = " + file.isAbsolute());
 }
}

Compile Listing 2-1 as follows:

javac PathInfo.java

Run the resulting application as follows:

java PathInfo .

The period represents the current directory on my Windows 7 operating
system; use your own equivalent. I observed the following output:

Absolute path = C:\prj\books\io\ch02\code\PathInfo\.
Canonical path = C:\prj\books\io\ch02\code\PathInfo
Name = .
Parent = null
Path = .
Is absolute = false

This output reveals that the canonical path doesn’t include the period. It also
shows that there is no parent path and that the path is relative.

Continuing, specify java PathInfo C:\reports\2015\..\2014\February.
You should observe the following output:

Absolute path = C:\reports\2015\..\2014\February
Canonical path = C:\reports\2014\February
Name = February
Parent = C:\reports\2015\..\2014
Path = C:\reports\2015\..\2014\February
Is absolute = true

This output reveals that the canonical path doesn’t include 2015. It also
shows that the path is absolute.

CHAPTER 2: File

25

Finally, specify java PathInfo "" to obtain information for the empty path.
I observed the following output:

Absolute path = C:\prj\books\io\ch02\code\PathInfo
Canonical path = C:\prj\books\io\ch02\code\PathInfo
Name =
Parent = null
Path =
Is absolute = false

The output reveals that getName() and getPath() return the empty string ("")
because the empty path is empty. Also, C: is the default drive.

Learning About a Path’s File or Directory
You can interrogate the file system to learn about the file or directory
represented by a File object’s stored path by calling the methods that are
described in Table 2-2.

Table 2-2. File Methods for Learning About a File or Directory

Method Description

boolean exists() Return true if and only if the file or directory that’s
denoted by this File object’s abstract path exists.

boolean isDirectory() Return true when this File object’s abstract path refers
to an existing directory.

boolean isFile() Return true when this File object’s abstract path refers
to an existing normal file. A file is normal when it’s not a
directory and satisfies other operating system-dependent
criteria. It’s not a symbolic link or a named pipe, for
example. Any nondirectory file created by a Java
application is guaranteed to be a normal file.

boolean isHidden() Return true when the file denoted by this File object’s
abstract path is hidden. The exact definition of hidden is
operating system dependent. On Unix/Linux operating
systems, a file is hidden when its name begins with a
period character. On Windows operating systems, a file is
hidden when it has been marked as such in the file system.

(continued)

CHAPTER 2: File26

Listing 2-2 instantiates File with its path command-line argument and calls
all of the File methods described in Table 2-2 to learn about the path’s
file/directory.

Listing 2-2. Obtaining File/Directory Information

import java.io.File;
import java.io.IOException;

import java.util.Date;

public class FileDirectoryInfo
{
 public static void main(final String[] args) throws IOException
 {
 if (args.length != 1)
 {
 System.err.println("usage: java FileDirectoryInfo pathname");
 return;
 }
 File file = new File(args[0]);
 System.out.println("About " + file + ":");
 System.out.println("Exists = " + file.exists());
 System.out.println("Is directory = " + file.isDirectory());
 System.out.println("Is file = " + file.isFile());
 System.out.println("Is hidden = " + file.isHidden());
 System.out.println("Last modified = " +
 new Date(file.lastModified()));
 System.out.println("Length = " + file.length());
 }
}

Compile Listing 2-2 as follows:

javac FileDirectoryInfo.java

Method Description

long lastModified() Return the time that the file denoted by this File object’s
abstract path was last modified, or 0 when the file
doesn’t exist or an I/O error occurred during this method
call. The returned value is measured in milliseconds
since the Unix epoch (00:00:00 GMT, January 1, 1970).

long length() Return the length of the file denoted by this File object’s
abstract path. The return value is unspecified when the path
denotes a directory and will be 0 when the file doesn’t exist.

Table 2-2. (continued)

CHAPTER 2: File

27

Run the resulting application as follows:

java FileDirectoryInfo x.dat

Assuming the existence of a three-byte file named x.dat, you should
observe output similar to that shown here:

About x.dat:
Exists = true
Is directory = false
Is file = true
Is hidden = false
Last modified = Sat Jul 25 15:49:41 CDT 2015
Length = 3

Listing File System Root Directories
File declares the File[] listRoots() class method to return the root
directories (roots) of available file systems as an array of File objects.

Listing 2-3 presents a DumpRoots application that uses listRoots() to obtain
an array of available file system roots and then outputs the array’s contents.

Listing 2-3. Dumping Available File System Roots to Standard Output

import java.io.File;

public class DumpRoots
{
 public static void main(String[] args)
 {
 File[] roots = File.listRoots();
 for (File root: roots)
 System.out.println(root);
 }
}

Note The set of available file system roots is affected by operating
system-level operations, such as inserting or ejecting removable media, and
disconnecting or unmounting physical or virtual disk drives.

CHAPTER 2: File28

Compile Listing 2-3 as follows:

javac DumpRoots.java

Run the resulting application as follows:

java DumpRoots

When I run this application on my Windows 7 operating system, I receive the
following output, which reveals four available roots:

C:\
D:\
E:\
F:\

If I ran DumpRoots on a Unix or Linux operating system, I would receive one
line of output that consists of the virtual file system root (/).

Obtaining Disk Space Information
A partition is an operating system-specific portion of storage for a file
system. Obtaining the amount of partition free space is important to
installers and other applications. Until Java 6 arrived, the only portable way
to accomplish this task was to guess by creating files of different sizes.

Java 6 added to the File class long getFreeSpace(), long getTotalSpace(),
and long getUsableSpace() methods that return space information about the
partition described by the File instance’s abstract path:

	long getFreeSpace() returns the number of unallocated
bytes in the partition identified by this File object’s
abstract path; it returns zero when the abstract path
doesn’t name a partition.

	long getTotalSpace() returns the size (in bytes) of the
partition identified by this File object’s abstract path; it returns
zero when the abstract path doesn’t name a partition.

	long getUsableSpace() returns the number of bytes
available to the current JVM on the partition identified by
this File object’s abstract path; it returns zero when the
abstract path doesn’t name a partition.

Although getFreeSpace() and getUsableSpace() appear to be equivalent,
they differ in the following respect: unlike getFreeSpace(), getUsableSpace()
checks for write permissions and other operating system restrictions,
resulting in a more accurate estimate.

Note The getFreeSpace() and getUsableSpace() methods return a hint
(not a guarantee) that a Java application can use all (or most) of the unallocated
or available bytes. These values are hints because a program running outside
the JVM can allocate partition space, resulting in actual unallocated and
available values being lower than the values returned by these methods.

CHAPTER 2: File

29

Listing 2-4 presents an application that demonstrates these methods. After
obtaining an array of all available file system roots, this application obtains
and outputs the free, total, and usable space for each partition identified by
the array.

Listing 2-4. Outputting the Free, Usable, and Total Space on All Partitions

import java.io.File;

public class PartitionSpace
{
 public static void main(String[] args)
 {
 File[] roots = File.listRoots();
 for (File root: roots)
 {
 System.out.println("Partition: " + root);
 System.out.println("Free space on this partition = " +
 root.getFreeSpace());
 System.out.println("Usable space on this partition = " +
 root.getUsableSpace());
 System.out.println("Total space on this partition = " +
 root.getTotalSpace());
 System.out.println("***");
 }
 }
}

Compile Listing 2-4 as follows:

javac PartitionSpace.java

Run the resulting application as follows:

java PartitionSpace

Compile Listing 2-3 as follows:

javac DumpRoots.java

Run the resulting application as follows:

java DumpRoots

When I run this application on my Windows 7 operating system, I receive the
following output, which reveals four available roots:

C:\
D:\
E:\
F:\

If I ran DumpRoots on a Unix or Linux operating system, I would receive one
line of output that consists of the virtual file system root (/).

Obtaining Disk Space Information
A partition is an operating system-specific portion of storage for a file
system. Obtaining the amount of partition free space is important to
installers and other applications. Until Java 6 arrived, the only portable way
to accomplish this task was to guess by creating files of different sizes.

Java 6 added to the File class long getFreeSpace(), long getTotalSpace(),
and long getUsableSpace() methods that return space information about the
partition described by the File instance’s abstract path:

	long getFreeSpace() returns the number of unallocated
bytes in the partition identified by this File object’s
abstract path; it returns zero when the abstract path
doesn’t name a partition.

	long getTotalSpace() returns the size (in bytes) of the
partition identified by this File object’s abstract path; it returns
zero when the abstract path doesn’t name a partition.

	long getUsableSpace() returns the number of bytes
available to the current JVM on the partition identified by
this File object’s abstract path; it returns zero when the
abstract path doesn’t name a partition.

Although getFreeSpace() and getUsableSpace() appear to be equivalent,
they differ in the following respect: unlike getFreeSpace(), getUsableSpace()
checks for write permissions and other operating system restrictions,
resulting in a more accurate estimate.

Note The getFreeSpace() and getUsableSpace() methods return a hint
(not a guarantee) that a Java application can use all (or most) of the unallocated
or available bytes. These values are hints because a program running outside
the JVM can allocate partition space, resulting in actual unallocated and
available values being lower than the values returned by these methods.

CHAPTER 2: File30

When run on my Windows 7 machine with a hard drive designated as C:, a
DVD drive designated as D:, an external hard drive designated as E:, and a
flash drive designated as F:, I observed the following output (usually with
different free/usable space amounts on C:, E:, and F:):

Partition: C:\
Free space on this partition = 143271129088
Usable space on this partition = 143271129088
Total space on this partition = 499808989184

Partition: D:\
Free space on this partition = 0
Usable space on this partition = 0
Total space on this partition = 0

Partition: E:\
Free space on this partition = 733418569728
Usable space on this partition = 733418569728
Total space on this partition = 1000169533440

Partition: F:\
Free space on this partition = 33728192512
Usable space on this partition = 33728192512
Total space on this partition = 64021835776

Listing Directories
File declares five methods that return the names of files and directories
located in the directory identified by a File object’s abstract path. Table 2-3
describes these methods.

CHAPTER 2: File

31

Table 2-3. File Methods for Obtaining Directory Content

Method Description

String[] list() Return a potentially empty array of strings naming the
files and directories in the directory denoted by this
File object’s abstract path. If the path doesn’t denote
a directory, or if an I/O error occurs, this method
returns null. Otherwise, it returns an array of strings,
one string for each file or directory in the directory.

Names denoting the directory itself and the
directory’s parent directory are not included in the
result. Each string is a file name rather than a
complete path. Also, there is no guarantee that the
name strings in the resulting array will appear in
alphabetical or any other order.

String[]
list(FilenameFilter
filter)

A convenience method for calling list() and
returning only those Strings that satisfy filter.

File[] listFiles() A convenience method for calling list(), converting
its array of Strings to an array of Files, and returning
the Files array.

File[]
listFiles(FileFilter
filter)

A convenience method for calling list(), converting
its array of Strings to an array of Files, but only for
those Strings that satisfy filter, and returning the
Files array.

File[]
listFiles(FilenameFilter
filter)

A convenience method for calling list(), converting
its array of Strings to an array of Files, but only for
those Strings that satisfy filter, and returning the
Files array.

The overloaded list() methods return arrays of Strings denoting file and
directory names. The second method lets you return only those names of
interest (such as only those names that end with the.txt extension) via a
java.io.FilenameFilter-based filter object.

The FilenameFilter interface declares a single boolean accept(File dir,
String name) method that is called for each file/directory located in the
directory identified by the File object’s path:

	dir identifies the parent portion of the path (the
directory path).

	name identifies the final directory name or the file name
portion of the path.

CHAPTER 2: File32

The accept() method uses the arguments passed to these parameters to
determine whether or not the file or directory satisfies its criteria for what is
acceptable. It returns true when the file/directory name should be included
in the returned array; otherwise, this method returns false.

Listing 2-5 presents a Dir(ectory) application that uses list(FilenameFilter)
to obtain only those names that end with a specific extension.

Listing 2-5. Listing Specific Names

import java.io.File;
import java.io.FilenameFilter;

public class Dir
{
 public static void main(final String[] args)
 {
 if (args.length != 2)
 {
 System.err.println("usage: java Dir dirpath ext");
 return;
 }
 File file = new File(args[0]);
 FilenameFilter fnf = new FilenameFilter()
 {
 @Override
 public boolean accept(File dir, String name)
 {
 return name.endsWith(args[1]);
 }
 };
 String[] names = file.list(fnf);
 for (String name: names)
 System.out.println(name);
 }
}

Compile Listing 2-5 as follows:

javac Dir.java

Assuming Windows, run the resulting application as follows:

java Dir C:\windows exe

CHAPTER 2: File

33

I observe the following output, which consists of those file system objects
that have an .exe extension:

bfsvc.exe
explorer.exe
fveupdate.exe
HelpPane.exe
hh.exe
IsUninst.exe
kindlegen.exe
notepad.exe
regedit.exe
splwow64.exe
twunk_16.exe
twunk_32.exe
winhlp32.exe
write.exe

The overloaded listFiles() methods return arrays of Files. For the most
part, they’re symmetrical with their list() counterparts. However,
listFiles(FileFilter) introduces an asymmetry.

The java.io.FileFilter interface declares a single boolean accept(String
path) method that is called for each file/directory located in the directory
identified by the File object’s path. The argument passed to path identifies
the complete path of the file or directory.

The accept() method uses this argument to determine whether or not the
file or directory satisfies its criteria for what is acceptable. It returns true
when the file/directory name should be included in the returned array;
otherwise, this method returns false.

Creating/Modifying Files and Directories
File also declares several methods for creating new files and directories and
modifying existing files and directories. Table 2-4 describes these methods.

Note Because each interface’s accept() method accomplishes the same
task, you might be wondering which interface to use. If you prefer a path broken
into its directory and name components, use FilenameFilter. However, if you
prefer a complete path, use FileFilter; you can always call getParent()
and getName() to get these components.

CHAPTER 2: File34

Table 2-4. File Methods for Creating New and Manipulating Existing Files and Directories

Method Description

boolean createNewFile() Atomically create a new, empty file named by this
File object’s abstract path if and only if a file with
this name doesn’t yet exist. The check for file
existence and the creation of the file when it doesn’t
exist are a single operation that’s atomic with respect
to all other file system activities that might affect the
file. This method returns true when the named file
doesn’t exist and was successfully created, and
returns false when the named file already exists. It
throws IOException when an I/O error occurs.

static File
createTempFile(String
prefix, String suffix)

Create an empty file in the default temporary file
directory using the given prefix and suffix to
generate its name. This overloaded class method
calls its three-parameter variant, passing prefix,
suffix, and null to this other method, and returning
the other method’s return value.

static File
createTempFile(String
prefix, String suffix,
File directory)

Create an empty file in the specified directory
using the given prefix and suffix to generate its
name. The name begins with the character
sequence specified by prefix and ends with the
character sequence specified by suffix; “.tmp” is
used as the suffix when suffix is null. This method
returns the created file’s path when successful. It
throws java.lang.IllegalArgumentException when
prefix contains fewer than three characters and
IOException when the file can’t be created.

boolean delete() Delete the file or directory denoted by this File
object’s path. Return true when successful;
otherwise, return false. If the path denotes a
directory, the directory must be empty in order to be
deleted.

void deleteOnExit() Request that the file or directory denoted by this
File object’s abstract path be deleted when the JVM
terminates. Reinvoking this method on the same
File object has no effect. Once deletion has been
requested, it’s not possible to cancel the request.
Therefore, this method should be used with care.

(continued)

CHAPTER 2: File

35

Method Description

boolean mkdir() Create the directory named by this File object’s
abstract path. Return true when successful;
otherwise, return false.

boolean mkdirs() Create the directory and any necessary intermediate
directories named by this File object’s abstract
path. Return true when successful; otherwise,
return false.

boolean
renameTo(File dest)

Rename the file denoted by this File object’s
abstract path to dest. Return true when successful;
otherwise, return false. This method throws
NullPointerException when dest is null.

Many aspects of this method’s behavior are
operating system-dependent. For example, the
rename operation might not be able to move a file
from one file system to another, the operation might
not be atomic, or it might not succeed when a file
with the destination path already exists. The return
value should always be checked to make sure that
the rename operation was successful.

boolean
setLastModified(long time)

Set the last-modified time of the file or directory
named by this File object’s abstract path. Return
true when successful; otherwise, return false. This
method throws IllegalArgumentException when
time is negative.

All operating systems support file-modification
times to the nearest second, but some provide more
precision. The time value will be truncated to fit the
supported precision. If the operation succeeds and
no intervening operations on the file take place, the
next call to lastModified() will return the (possibly
truncated) time value passed to this method.

Table 2-4. (continued)

Suppose you’re designing a text editor application that a user will use to
open a text file and make changes to its content. Until the user explicitly
saves these changes to the file, you want the text file to remain unchanged.

Because the user doesn’t want to lose these changes when the application
crashes or the computer loses power, you design the application to save
these changes to a temporary file every few minutes. This way, the user has
a backup of the changes.

CHAPTER 2: File36

You can use the overloaded createTempFile() methods to create the
temporary file. If you don’t specify a directory in which to store this file, it’s
created in the directory identified by the java.io.tmpdir system property.

You probably want to remove the temporary file after the user tells the
application to save or discard the changes. The deleteOnExit() method lets
you register a temporary file for deletion; it’s deleted when the JVM ends
without a crash/power loss.

Listing 2-6 presents a TempFileDemo application for experimenting with the
createTempFile() and deleteOnExit() methods.

Listing 2-6. Experimenting with Temporary Files

import java.io.File;
import java.io.IOException;

public class TempFileDemo
{
 public static void main(String[] args) throws IOException
 {
 System.out.println(System.getProperty("java.io.tmpdir"));
 File temp = File.createTempFile("text", ".txt");
 System.out.println(temp);
 temp.deleteOnExit();
 }
}

After outputting the location where temporary files are stored, TempFileDemo
creates a temporary file whose name begins with text and which ends with
the .txt extension. TempFileDemo next outputs the temporary file’s name
and registers the temporary file for deletion upon the successful termination
of the application.

Compile Listing 2-6 as follows:

javac TempFileDemo.java

Run the resulting application as follows:

java TempFileDemo

I observed the following output during one run of TempFileDemo (and the file
disappeared on exit):

C:\Users\Owner\AppData\Local\Temp\
C:\Users\Owner\AppData\Local\Temp\text8621896953150462138.txt

CHAPTER 2: File

37

Setting and Getting Permissions
Java 1.2 added a boolean setReadOnly() method to the File class to mark a
file or directory as read-only. However, a method to revert the file or directory
to the writable state wasn’t added. More importantly, until Java 6’s arrival,
File offered no way to manage an abstract path’s read, write, and execute
permissions.

Java 6 added to the File class boolean setExecutable(boolean
executable), boolean setExecutable(boolean executable, boolean
ownerOnly), boolean setReadable(boolean readable), boolean
setReadable(boolean readable, boolean ownerOnly), boolean
setWritable(boolean writable), and boolean setWritable(boolean
writable, boolean ownerOnly) methods that let you set the owner’s or
everybody’s execute, read, and write permissions for the file identified by the
File object’s abstract path:

	boolean setExecutable(boolean executable, boolean
ownerOnly) enables (pass true to executable) or
disables (pass false to executable) this abstract
path’s execute permission for its owner (pass true
to ownerOnly) or everyone (pass false to ownerOnly).
When the file system doesn’t differentiate between the
owner and everyone, this permission always applies to
everyone. It returns true when the operation succeeds.
It returns false when the user doesn’t have permission
to change this abstract path’s access permissions or
when executable is false and the file system doesn’t
implement an execute permission.

	boolean setExecutable(boolean executable) is a
convenience method that invokes the previous method
to set the execute permission for the owner.

	boolean setReadable(boolean readable, boolean
ownerOnly) enables (pass true to readable) or disables
(pass false to readable) this abstract path’s read
permission for its owner (pass true to ownerOnly) or
everyone (pass false to ownerOnly). When the file
system doesn’t differentiate between the owner and
everyone, this permission always applies to everyone.
It returns true when the operation succeeds. It returns
false when the user doesn’t have permission to change
this abstract path’s access permissions or when
readable is false and the file system doesn’t implement
a read permission.

CHAPTER 2: File38

	boolean setReadable(boolean readable) is a
convenience method that invokes the previous method
to set the read permission for the owner.

	boolean setWritable(boolean writable, boolean
ownerOnly) enables (pass true to writable) or disables
(pass false to writable) this abstract path’s write
permission for its owner (pass true to ownerOnly) or
everyone (pass false to ownerOnly). When the file
system doesn’t differentiate between the owner and
everyone, this permission always applies to everyone.
It returns true when the operation succeeds. It returns
false when the user doesn’t have permission to change
this abstract path’s access permissions.

	boolean setWritable(boolean writable) is a
convenience method that invokes the previous method
to set the write permission for the owner.

Along with these methods, Java 6 retrofitted File’s boolean canRead() and
boolean canWrite() methods, and introduced a boolean canExecute()
method to return an abstract path’s access permissions. These methods
return true when the file or directory object identified by the abstract path
exists and when the appropriate permission is in effect. For example,
canWrite() returns true when the abstract path exists and when the
application has permission to write to the file.

The canRead(), canWrite(), and canExecute() methods can be used to
implement a simple utility that identifies which permissions have been
assigned to an arbitrary file or directory. This utility’s source code is
presented in Listing 2-7.

Listing 2-7. Checking a File’s or Directory’s Permissions

import java.io.File;

public class Permissions
{
 public static void main(String[] args)
 {
 if (args.length != 1)
 {
 System.err.println("usage: java Permissions filespec");
 return;
 }
 File file = new File(args[0]);
 System.out.println("Checking permissions for " + args[0]);
 System.out.println(" Execute = " + file.canExecute());

CHAPTER 2: File

39

 System.out.println(" Read = " + file.canRead());
 System.out.println(" Write = " + file.canWrite());
 }
}

Compile Listing 2-7 as follows:

javac Permissions.java

Assuming a readable and executable (only) file named x in the current
directory, run the resulting application as follows:

java Permissions x

You should observe the following output:

Checking permissions for x
 Execute = true
 Read = true
 Write = false

Exploring Miscellaneous Capabilities
Finally, File implements the java.lang.Comparable interface’s compareTo()
method and overrides equals() and hashCode(). Table 2-5 describes these
miscellaneous methods.

Table 2-5. File’s Miscellaneous Methods

Method Description

int compareTo(File path) Compare two paths lexicographically. The ordering
defined by this method depends on the underlying
operating system. For Unix/Linux operating systems,
alphabetic case is significant when comparing paths;
for Windows operating systems, alphabetic case is
insignificant. Return zero when path’s abstract path
equals this File object’s abstract path, a negative
value when this File object’s abstract path is less
than path, and a positive value otherwise. To
accurately compare two File objects, call
getCanonicalFile() on each File object and then
compare the returned File objects.

(continued)

CHAPTER 2: File40

Listing 2-8 presents an application that demonstrates compareTo() along
with getCanonicalFile().

Listing 2-8. Comparing Files

import java.io.File;
import java.io.IOException;

public class Compare
{
 public static void main(String[] args) throws IOException
 {
 if (args.length != 2)
 {
 System.err.println("usage: java Compare filespec1 filespec2");
 return;
 }

 File file1 = new File(args[0]);
 File file2 = new File(args[1]);
 System.out.println(file1.compareTo(file2));
 System.out.println(file1.getCanonicalFile()
 .compareTo(file2.getCanonicalFile()));
 }
}

Method Description

boolean
equals(Object obj))

Compare this File object with obj for equality.
Abstract path equality depends on the underlying
operating system. For Unix/Linux operating systems,
alphabetic case is significant when comparing paths;
for Windows operating systems, alphabetic case is
insignificant. Return true if and only if obj is not null
and is a File object whose abstract path denotes the
same file/directory as this File object’s abstract path.

int hashCode() Calculate and return a hash code for this path. This
calculation depends on the underlying operating
system. On Unix/Linux operating systems, a path’s
hash code equals the exclusive OR of its path
string’s hash code and decimal value 1234321. On
Windows operating systems, the hash code is the
exclusive OR of the lowercased path string’s hash
code and decimal value 1234321. The current locale
(geographical, political, or cultural region) is not taken
into account when lowercasing the path string.

Table 2-5. (continued)

CHAPTER 2: File

41

Compile Listing 2-8 as follows:

javac Compare.java

Assuming Windows, run the resulting application as follows:

java Compare Compare.class .\Compare.class

You should observe the following output:

53
0

The 53 indicates that file1’s abstract path is lexicographically greater
than file2’s abstract path. However, when comparing their canonical
representations, these abstract paths are considered to be identical
(as indicated by the 0).

EXERCISE

The following exercises are designed to test your understanding of Chapter 2’s content:

1. What is the purpose of the File class?

2. What do instances of the File class contain?

3. What is a path?

4. What is the difference between an absolute path and a relative path?

5. How do you obtain the current user (also known as working) directory?

6. Define parent path.

7. File’s constructors normalize their path arguments. What does
normalize mean?

8. How do you obtain the default name-separator character?

9. What is a canonical path?

10. What is the difference between File’s getParent() and
getName() methods?

11. True or false: File’s exists() method only determines whether or
not a file exists.

12. What is a normal file?

13. What does File’s lastModified() method return?

http://dx.doi.org/10.1007/978-1-4842-1565-4_2

CHAPTER 2: File42

14. What does File’s listRoots() method accomplish?

15. True or false: File’s list() method returns an array of Strings
where each entry is a file name rather than a complete path.

16. What is the difference between the FilenameFilter and
FileFilter interfaces?

17. True or false: File’s createNewFile() method doesn’t check for
file existence and create the file when it doesn’t exist in a single
operation that’s atomic with respect to all other file system activities
that might affect the file.

18. File’s createTempFile(String, String) method creates a
temporary file in the default temporary directory. How can you locate
this directory?

19. Temporary files should be removed when no longer needed after an
application exits (to avoid cluttering the file system). How do you
ensure that a temporary file is removed when the JVM ends normally
(it doesn’t crash and the power isn’t lost)?

20. Which one of the boolean canRead(), boolean canWrite(), and
boolean canExecute() methods was introduced by Java 6?

21. How would you accurately compare two File objects?

22. Create a Java application named Touch for setting a file’s or
directory’s timestamp to the current time. This application has the
following usage syntax: java Touch pathname.

Summary
The File class provides access to the underlying operating system’s
available file system(s). Each File instance stores the abstract path for some
file system object. Various File methods (such as void delete()) affect the
file system object represented by the abstract path.

You first learned how to construct File instances. You then explored
methods for obtaining information about stored abstract paths and their files
or directories, obtaining a list of roots and disk space, listing directories,
creating/modifying files/directories, setting/getting permissions, and more.

Chapter 3 presents classic I/O’s java.io.RandomAccessFile class.

http://dx.doi.org/10.1007/978-1-4842-1565-4_3

43

Chapter 3
RandomAccessFile
Files can be created and/or opened for random access in which a mixture of
write and read operations at various locations can occur until the file is closed.
Java supports this random access by providing a java.io.RandomAccessFile
class. I explore RandomAccessFile in this chapter.

Exploring RandomAccessFile
RandomAccessFile declares the following constructors:

	RandomAccessFile(File file, String mode): Create
and open a new file when it doesn’t exist or open an
existing file. The file is identified by file’s abstract path
and is created and/or opened according to mode.

	RandomAccessFile(String path, String mode): Create
and open a new file when it doesn’t exist or open an
existing file. The file is identified by path and is created
and/or opened according to mode.

Either constructor’s mode argument must be one of "r", "rw",
"rws", or "rwd"; otherwise, the constructor throws java.lang.
IllegalArgumentException. These string literals have the following
meanings:

	"r" informs the constructor to open an existing file for
reading only. Any attempt to write to the file results in a
thrown instance of the java.io.IOException class.

	"rw" informs the constructor to create and open a new
file when it doesn’t exist for reading and writing or open
an existing file for reading and writing.

CHAPTER 3: RandomAccessFile44

	"rwd" informs the constructor to create and open a new
file when it doesn’t exist for reading and writing or open
an existing file for reading and writing. Furthermore,
each update to the file’s content must be written
synchronously to the underlying storage device.

	"rws" informs the constructor to create and open a new
file when it doesn’t exist for reading and writing or open
an existing file for reading and writing. Furthermore,
each update to the file’s content or metadata must be
written synchronously to the underlying storage device.

The "rwd" and "rws" modes ensure than any writes to a file located on a
local storage device are written to the device, which guarantees that critical
data isn’t lost when the operating system crashes. No guarantee is made
when the file doesn’t reside on a local device.

These constructors throw java.io.FileNotFoundException when mode is "r"
and the file identified by path cannot be opened (it might not exist or it might
be a directory) or when mode is "rw" and path is read-only or a directory.
The following example demonstrates the second constructor by attempting
to open an existing file for read access via the "r" mode string:

RandomAccessFile raf = new RandomAccessFile("employee.dat", "r");

A random access file is associated with a file pointer, a cursor that identifies
the location of the next byte to write or read. When an existing file is
opened, the file pointer is set to its first byte at offset 0. The file pointer is
also set to 0 when the file is created.

Write or read operations start at the file pointer and advance it past the
number of bytes written or read. Operations that write past the current end
of the file cause the file to be extended. These operations continue until the
file is closed.

Note A file’s metadata is data about the file and not the actual file
contents. Examples of metadata include the file’s length and the time the
file was last modified.

Note Operations on a random access file opened in "rwd" or "rws" mode are
slower than these same operations on a random access file opened in "rw" mode.

CHAPTER 3: RandomAccessFile

45

RandomAccessFile declares many methods. I present a representative
sample of these methods in Table 3-1.

Table 3-1. RandomAccessFile Methods

Method Description

void close() Close the file and release any associated operating
system resources. Subsequent writes or reads result
in IOException. Also, the file cannot be reopened with
this RandomAccessFile object. This method throws
IOException when an I/O error occurs.

FileDescriptor getFD() Return the file’s associated file descriptor object. This
method throws IOException when an I/O error occurs.

long getFilePointer() Return the file pointer’s current zero-based byte offset
into the file. This method throws IOException when an
I/O error occurs.

long length() Return the length (measured in bytes) of the file. This
method throws IOException when an I/O error occurs.

int read() Read and return (as an int in the range 0 to 255) the
next byte from the file or return -1 when the end of the
file is reached. This method blocks when no input is
available and throws IOException when an I/O error
occurs.

int read(byte[] b) Read up to b.length bytes of data from the file into byte
array b. This method blocks until at least one byte of
input is available. It returns the number of bytes read
into the array, or returns -1 when the end of the file is
reached. It throws java.lang.NullPointerException
when b is null and IOException when an I/O error
occurs.

char readChar() Read and return a character from the file. This method
reads two bytes from the file starting at the current file
pointer. If the bytes read, in order, are b1 and b2, where
0 <= b1, b2 <= 255, the result is equal to (char) ((b1
<< 8) | b2). This method blocks until the two bytes are
read, the end of the file is detected, or an exception is
thrown. It throws java.io.EOFException (a subclass of
IOException) when the end of the file is reached before
reading both bytes and IOException when an I/O error
occurs.

(continued)

CHAPTER 3: RandomAccessFile46

Method Description

int readInt() Read and return a 32-bit integer from the file. This method
reads four bytes from the file starting at the current file
pointer. If the bytes read, in order, are b1, b2, b3, and b4,
where 0 <= b1, b2, b3, b4 <= 255, the result is equal to
(b1 << 24) | (b2 << 16) | (b3 << 8) | b4. This method
blocks until the four bytes are read, the end of the file is
detected, or an exception is thrown. It throws EOFException
when the end of the file is reached before reading the four
bytes and IOException when an I/O error occurs.

void seek(long pos) Set the file pointer’s current offset to pos (which is
measured in bytes from the beginning of the file). If the
offset is set beyond the end of the file, the file’s length
doesn’t change. The file length will only change by
writing after the offset has been set beyond the end of
the file. This method throws IOException when the value
in pos is negative or when an I/O error occurs.

void setLength(long
newLength)

Set the file’s length. If the present length as returned
by length() is greater than newLength, the file is
truncated. In this case, if the file offset as returned by
getFilePointer() is greater than newLength, the offset
will be equal to newLength after setLength() returns. If
the present length is smaller than newLength, the file is
extended. In this case, the contents of the extended
portion of the file are not defined. This method throws
IOException when an I/O error occurs.

int skipBytes(int n) Attempt to skip over n bytes. This method skips over a
smaller number of bytes (possibly zero) when the end of
file is reached before n bytes have been skipped. It
doesn’t throw EOFException in this situation. If n is
negative, no bytes are skipped. The actual number of
bytes skipped is returned. This method throws
IOException when an I/O error occurs.

void write(byte[] b) Write b.length bytes from byte array b to the file starting
at the current file pointer position. This method throws
IOException when an I/O error occurs.

Table 3-1. (continued)

(continued)

CHAPTER 3: RandomAccessFile

47

Method Description

void write(int b) Write the lower eight bits of b as a 32-bit integer to the
file at the current file pointer position. This method throws
IOException when an I/O error occurs.

void writeChars(String s) Write string s to the file as a sequence of characters
starting at the current file pointer position. This method
throws IOException when an I/O error occurs.

void writeInt(int i) Write 32-bit integer i to the file starting at the current file
pointer position. The four bytes are written with the high
byte first. This method throws IOException when an I/O
error occurs.

Table 3-1. (continued)

Most of Table 3-1’s methods are fairly self-explanatory. However, the
getFD() method requires further enlightenment.

Note RandomAccessFile’s read-prefixed methods and skipBytes()
originate in the java.io.DataInput interface, which this class implements.
Furthermore, RandomAccessFile’s write-prefixed methods originate in the
java.io.DataOutput interface, which this class also implements.

Note A handle is an identifier that Java passes to the underlying operating
system to identify, in this case, a specific open file when it requires that the
underlying operating system perform a file operation.

When a file is opened, the underlying operating system creates an operating
system-dependent structure to represent the file. A handle to this structure
is stored in an instance of the java.io.FileDescriptor class, which getFD()
returns.

FileDescriptor is a small class that declares three FileDescriptor
constants named in, out, and err. These constants let System.in, System.
out, and System.err provide access to the standard input, standard output,
and standard error streams.

FileDescriptor also declares the following pair of methods:

CHAPTER 3: RandomAccessFile48

	void sync() tells the underlying operating system to
flush (empty) the contents of the open file’s output
buffers to their associated local disk device. sync()
returns after all modified data and attributes have
been written to the relevant device. It throws java.
io.SyncFailedException when the buffers cannot be
flushed or because the operating system cannot
guarantee that all the buffers have been synchronized
with physical media.

	boolean valid() determines whether this file descriptor
object is valid. It returns true when the file descriptor
object represents an open file or other active I/O
connection; otherwise, it returns false.

Data that is written to an open file is stored in the underlying operating
system’s output buffers. When the buffers fill to capacity, the operating
system empties them to the disk. Buffers improve performance because
disk access is much slower than access to the computer’s internal memory.

However, when you write data to a random access file that’s been opened
via mode "rwd" or "rws", each write operation’s data is written straight to
the disk. As a result, write operations are slower than when the random
access file is opened in "rw" mode.

Suppose you have a situation that combines writing data through the
output buffers and writing data directly to the disk. The following example
addresses this hybrid scenario by opening the file in mode "rw" and
selectively calling FileDescriptor’s sync() method.

RandomAccessFile raf = new RandomAccessFile("employee.dat", "rw");
FileDescriptor fd = raf.getFD();
// Perform a critical write operation.
raf.write(...);
// Synchronize with the underlying disk by flushing the operating system
// output buffers to the disk.
fd.sync();
// Perform a non-critical write operation where synchronization isn't
// necessary.
raf.write(...);
// Do other work.
// Close the file, emptying output buffers to the disk.
raf.close();

CHAPTER 3: RandomAccessFile

49

Using RandomAccessFile
RandomAccessFile is useful for creating a flat file database, a single file
organized into records and fields. A record stores a single entry (such as a
part in a parts database) and a field stores a single attribute of the entry
(such as a part number).

A flat file database typically organizes its content into a sequence of
fixed-length records. Each record is further organized into one or more
fixed-length fields. Figure 3-1 illustrates this concept in the context of a
parts database.

Note The term field is also used to refer to a variable declared within a class.
To avoid confusion with this overloaded terminology, think of a field variable as
being analogous to a record’s field attribute.

Figure 3-1. A flat file database of automotive parts is divided into records and fields

According to Figure 3-1, each field has a name (partnum, desc, qty, and
ucost). Also, each record is assigned a number starting at 0. This example
consists of five records, of which only three are shown for brevity.

CHAPTER 3: RandomAccessFile50

To show you how to implement a flat file database in terms of
RandomAccessFile, I’ve created a simple PartsDB class to model Figure 3-1.
Check out Listing 3-1.

Listing 3-1. Implementing the Parts Flat File Database

import java.io.IOException;
import java.io.RandomAccessFile;

public class PartsDB
{
 public final static int PNUMLEN = 20;
 public final static int DESCLEN = 30;
 public final static int QUANLEN = 4;
 public final static int COSTLEN = 4;

 private final static int RECLEN = 2 * PNUMLEN + 2 * DESCLEN + QUANLEN +
 COSTLEN;
 private RandomAccessFile raf;

 public PartsDB(String path) throws IOException
 {
 raf = new RandomAccessFile(path, "rw");
 }

 public void append(String partnum, String partdesc, int qty, int ucost)
 throws IOException
 {
 raf.seek(raf.length());
 write(partnum, partdesc, qty, ucost);
 }

 public void close()
 {
 try
 {
 raf.close();
 }
 catch (IOException ioe)
 {
 System.err.println(ioe);
 }
 }

 public int numRecs() throws IOException
 {
 return (int) raf.length() / RECLEN;
 }

CHAPTER 3: RandomAccessFile

51

 public Part select(int recno) throws IOException
 {
 if (recno < 0 || recno >= numRecs())
 throw new IllegalArgumentException(recno + " out of range");
 raf.seek(recno * RECLEN);
 return read();
 }

 public void update(int recno, String partnum, String partdesc, int qty,
 int ucost) throws IOException
 {
 if (recno < 0 || recno >= numRecs())
 throw new IllegalArgumentException(recno + " out of range");
 raf.seek(recno * RECLEN);
 write(partnum, partdesc, qty, ucost);
 }

 private Part read() throws IOException
 {
 StringBuffer sb = new StringBuffer();
 for (int i = 0; i < PNUMLEN; i++)
 sb.append(raf.readChar());
 String partnum = sb.toString().trim();
 sb.setLength(0);
 for (int i = 0; i < DESCLEN; i++)
 sb.append(raf.readChar());
 String partdesc = sb.toString().trim();
 int qty = raf.readInt();
 int ucost = raf.readInt();
 return new Part(partnum, partdesc, qty, ucost);
 }

 private void write(String partnum, String partdesc, int qty, int ucost)
 throws IOException
 {
 StringBuffer sb = new StringBuffer(partnum);
 if (sb.length() > PNUMLEN)
 sb.setLength(PNUMLEN);
 else
 if (sb.length() < PNUMLEN)
 {
 int len = PNUMLEN - sb.length();
 for (int i = 0; i < len; i++)
 sb.append(" ");
 }
 raf.writeChars(sb.toString());
 sb = new StringBuffer(partdesc);
 if (sb.length() > DESCLEN)
 sb.setLength(DESCLEN);

CHAPTER 3: RandomAccessFile52

 else
 if (sb.length() < DESCLEN)
 {
 int len = DESCLEN - sb.length();
 for (int i = 0; i < len; i++)
 sb.append(" ");
 }
 raf.writeChars(sb.toString());
 raf.writeInt(qty);
 raf.writeInt(ucost);
 }

 public static class Part
 {
 private String partnum;
 private String desc;
 private int qty;
 private int ucost;

 public Part(String partnum, String desc, int qty, int ucost)
 {
 this.partnum = partnum;
 this.desc = desc;
 this.qty = qty;
 this.ucost = ucost;
 }

 String getDesc()
 {
 return desc;
 }

 String getPartnum()
 {
 return partnum;
 }

 int getQty()
 {
 return qty;
 }

 int getUnitCost()
 {
 return ucost;
 }
 }
}

CHAPTER 3: RandomAccessFile

53

PartsDB first declares constants that identify the lengths of the string and
32-bit integer fields. It then declares a constant that calculates the record
length in terms of bytes. The calculation takes into account the fact that a
character occupies two bytes in the file.

These constants are followed by a field named raf that is of type
RandomAccessFile. This field is assigned an instance of the RandomAccessFile
class in the subsequent constructor, which creates/opens a new file or
opens an existing file because of "rw".

PartsDB next declares append(), close(), numRecs(), select(), and
update(). These methods append a record to the file, close the file, return
the number of records in the file, select and return a specific record, and
update a specific record:

	The append() method first calls length() and seek().
Doing so ensures that the file pointer is positioned at the
end of the file before calling the private write() method
to write a record containing this method’s arguments.

	RandomAccessFile’s close() method can throw
IOException. Because this is a rare occurrence, I chose
to handle this exception in PartDB’s close() method,
which keeps that method’s signature simple. However, I
print a message when IOException occurs.

	The numRecs() method returns the number of records in
the file. These records are numbered starting with 0 and
ending with numRecs() - 1. Each of the select() and
update() methods verifies that its recno argument lies
within this range.

	The select() method calls the private read() method
to return the record identified by recno as an instance
of the nested Part class. Part’s constructor initializes
a Part object to a record’s field values, and its getter
methods return these values.

	The update() method is equally simple. As with
select(), it first positions the file pointer to the start of
the record identified by recno. As with append(), it calls
write() to write out its arguments but replaces a record
instead of adding one.

Records are written with the private write() method. Because fields must
have exact sizes, write() pads String-based values that are shorter than a
field size with spaces on the right and truncates these values to the field size
when needed.

CHAPTER 3: RandomAccessFile54

Records are read via the private read() method. read() removes the
padding before saving a String-based field value in the Part object.

By itself, PartsDB is useless. You need an application that lets you
experiment with this class, and Listing 3-2 fulfills this requirement.

Listing 3-2. Experimenting with the Parts Flat File Database

import java.io.IOException;

public class UsePartsDB
{
 public static void main(String[] args)
 {
 PartsDB pdb = null;
 try
 {
 pdb = new PartsDB("parts.db");
 if (pdb.numRecs() == 0)
 {
 // Populate the database with records.
 pdb.append("1-9009-3323-4x", "Wiper Blade Micro Edge", 30,
 2468);
 pdb.append("1-3233-44923-7j", "Parking Brake Cable", 5, 1439);
 pdb.append("2-3399-6693-2m", "Halogen Bulb H4 55/60W", 22, 813);
 pdb.append("2-599-2029-6k", "Turbo Oil Line O-Ring ", 26, 155);
 pdb.append("3-1299-3299-9u", "Air Pump Electric", 9, 20200);
 }
 dumpRecords(pdb);
 pdb.update(1, "1-3233-44923-7j", "Parking Brake Cable", 5, 1995);
 dumpRecords(pdb);
 }
 catch (IOException ioe)
 {
 System.err.println(ioe);
 }
 finally
 {
 if (pdb != null)
 pdb.close();
 }
 }

 static void dumpRecords(PartsDB pdb) throws IOException
 {
 for (int i = 0; i < pdb.numRecs(); i++)
 {
 PartsDB.Part part = pdb.select(i);
 System.out.print(format(part.getPartnum(), PartsDB.PNUMLEN, true));

CHAPTER 3: RandomAccessFile

55

 System.out.print(" | ");
 System.out.print(format(part.getDesc(), PartsDB.DESCLEN, true));
 System.out.print(" | ");
 System.out.print(format("" + part.getQty(), 10, false));
 System.out.print(" | ");
 String s = part.getUnitCost() / 100 + "." + part.getUnitCost() %
 100;
 if (s.charAt(s.length() - 2) == '.') s += "0";
 System.out.println(format(s, 10, false));
 }
 System.out.println("Number of records = " + pdb.numRecs());
 System.out.println();
 }

 static String format(String value, int maxWidth, boolean leftAlign)
 {
 StringBuffer sb = new StringBuffer();
 int len = value.length();
 if (len > maxWidth)
 {
 len = maxWidth;
 value = value.substring(0, len);
 }
 if (leftAlign)
 {
 sb.append(value);
 for (int i = 0; i < maxWidth - len; i++)
 sb.append(" ");
 }
 else
 {
 for (int i = 0; i < maxWidth - len; i++)
 sb.append(" ");
 sb.append(value);
 }
 return sb.toString();
 }
}

Listing 3-2’s main() method begins by instantiating PartsDB, with parts.db as
the name of the database file. When this file has no records, numRecs() returns
0 and several records are appended to the file via the append() method.

CHAPTER 3: RandomAccessFile56

main() next dumps the five records stored in parts.db to the standard
output stream, updates the unit cost in the record whose number is 1, once
again dumps these records to the standard output stream to show this
change, and closes the database.

main() relies on a dumpRecords() helper method to dump these records, and
dumpRecords() relies on a format() helper method to format field values so
that they can be presented in properly aligned columns—I could have used
java.util.Formatter (see Chapter 11) instead.

Compile Listings 3–1 and 3–2 as follows:

javac *.java

Run the resulting application as follows:

java UsePartsDB

The following output reveals the alignment achieved by format():

1-9009-3323-4x | Wiper Blade Micro Edge | 30 | 24.68
1-3233-44923-7j | Parking Brake Cable | 5 | 19.95
2-3399-6693-2m | Halogen Bulb H4 55/60W | 22 | 8.13
2-599-2029-6k | Turbo Oil Line O-Ring | 26 | 1.55
3-1299-3299-9u | Air Pump Electric | 9 | 202.00
Number of records = 5

1-9009-3323-4x | Wiper Blade Micro Edge | 30 | 24.68
1-3233-44923-7j | Parking Brake Cable | 5 | 19.95
2-3399-6693-2m | Halogen Bulb H4 55/60W | 22 | 8.13
2-599-2029-6k | Turbo Oil Line O-Ring | 26 | 1.55
3-1299-3299-9u | Air Pump Electric | 9 | 202.00
Number of records = 5

And there you have it: a simple flat file database. Despite its lack of support
for advanced database features such as indexes and transaction
management, a flat file database might be all that your Java application
requires.

Note I store unit cost values as integer-based penny amounts. For example, I
specify literal 1995 to represent 1995 pennies, or $19.95. If I were to use
java.math.BigDecimal objects to store currency values, I would have to
refactor PartsDB to take advantage of object serialization, and I’m not prepared
to do that right now. (I discuss object serialization in Chapter 4.)

Note Check out Wikipedia’s “Flat file database” entry
(https://en.wikipedia.org/wiki/Flat_file_database) to learn
more about flat file databases.

http://dx.doi.org/10.1007/978-1-4842-1565-4_11
http://dx.doi.org/10.1007/978-1-4842-1565-4_4
https://en.wikipedia.org/wiki/Flat_file_database

CHAPTER 3: RandomAccessFile

57

EXERCISES

The following exercises are designed to test your understanding of Chapter 3’s content:

1. What is the purpose of the RandomAccessFile class?

2. What is a file’s metadata?

3. What is the purpose of the "rwd" and "rws" mode arguments?

4. What is a file pointer?

5. What happens when you write past the end of the file?

6. True or false: When you call RandomAccessFile’s seek(long)
method to set the file pointer’s value, and when this value is greater
than the length of the file, the file’s length changes.

7. What does method void write(int b) accomplish?

8. What does FileDescriptor’s sync() method accomplish?

9. Define flat file database.

10. Write a small Java application named RAFDemo that opens file data in
read/write mode, uses void write(int b) to write byte value 127
followed by void writeChars(String s) to write string "Test"
(minus the quotes) to this file, resets the file pointer to the start of the
file, and read/outputs these values.

Summary
Files can be opened for random access in which a mixture of write and
read operations at various locations can occur until the file is closed.
Java supports this random access by providing the RandomAccessFile class
(in the java.io package).

You first learned about RandomAccessFile’s constructors, operation modes,
and the file pointer. You then explored a sample of this class’s methods.
Next, you learned about the FileDescriptor class and its methods. Lastly,
you learned how to use RandomAccessFile to create a flat file database.

Chapter 4 presents classic I/O’s stream classes.

main() next dumps the five records stored in parts.db to the standard
output stream, updates the unit cost in the record whose number is 1, once
again dumps these records to the standard output stream to show this
change, and closes the database.

main() relies on a dumpRecords() helper method to dump these records, and
dumpRecords() relies on a format() helper method to format field values so
that they can be presented in properly aligned columns—I could have used
java.util.Formatter (see Chapter 11) instead.

Compile Listings 3–1 and 3–2 as follows:

javac *.java

Run the resulting application as follows:

java UsePartsDB

The following output reveals the alignment achieved by format():

1-9009-3323-4x | Wiper Blade Micro Edge | 30 | 24.68
1-3233-44923-7j | Parking Brake Cable | 5 | 19.95
2-3399-6693-2m | Halogen Bulb H4 55/60W | 22 | 8.13
2-599-2029-6k | Turbo Oil Line O-Ring | 26 | 1.55
3-1299-3299-9u | Air Pump Electric | 9 | 202.00
Number of records = 5

1-9009-3323-4x | Wiper Blade Micro Edge | 30 | 24.68
1-3233-44923-7j | Parking Brake Cable | 5 | 19.95
2-3399-6693-2m | Halogen Bulb H4 55/60W | 22 | 8.13
2-599-2029-6k | Turbo Oil Line O-Ring | 26 | 1.55
3-1299-3299-9u | Air Pump Electric | 9 | 202.00
Number of records = 5

And there you have it: a simple flat file database. Despite its lack of support
for advanced database features such as indexes and transaction
management, a flat file database might be all that your Java application
requires.

Note I store unit cost values as integer-based penny amounts. For example, I
specify literal 1995 to represent 1995 pennies, or $19.95. If I were to use
java.math.BigDecimal objects to store currency values, I would have to
refactor PartsDB to take advantage of object serialization, and I’m not prepared
to do that right now. (I discuss object serialization in Chapter 4.)

Note Check out Wikipedia’s “Flat file database” entry
(https://en.wikipedia.org/wiki/Flat_file_database) to learn
more about flat file databases.

http://dx.doi.org/10.1007/978-1-4842-1565-4_3
http://dx.doi.org/10.1007/978-1-4842-1565-4_4
http://dx.doi.org/10.1007/978-1-4842-1565-4_11
http://dx.doi.org/10.1007/978-1-4842-1565-4_4
https://en.wikipedia.org/wiki/Flat_file_database

59

Chapter 4
Streams
Along with java.io.File and java.io.RandomAccessFile, Java’s classic I/O
infrastructure provides streams for performing I/O operations. A stream is an
ordered sequence of bytes of an arbitrary length. Bytes flow over an output
stream from an application to a destination and flow over an input stream
from a source to an application.

Java provides classes in the java.io package that identify various stream
destinations for writing; for example, byte arrays, files, and thread pipes.
Java also provides classes in this package that identify various stream
sources for reading. Examples include byte arrays, files, and thread pipes.
This chapter explores many of these classes.

Stream Classes Overview
The java.io package provides several output stream and input stream
classes that are descendants of its abstract OutputStream and InputStream
classes. Figure 4-1 reveals the hierarchy of output stream classes.

CHAPTER 4: Streams60

Figure 4-2 reveals the hierarchy of input stream classes.

Figure 4-1. All output stream classes except for PrintStream are denoted by their
OutputStream suffixes

Figure 4-2. LineNumberInputStream and StringBufferInputStream are deprecated

LineNumberInputStream and StringBufferInputStream have been deprecated
because they don’t support different character encodings, a topic I discuss
in Chapter 5. java.io.LineNumberReader and java.io.StringReader are their
replacements. (I discuss readers along with writers in Chapter 5.)

http://dx.doi.org/10.1007/978-1-4842-1565-4_5
http://dx.doi.org/10.1007/978-1-4842-1565-4_5

CHAPTER 4: Streams

61

Other Java packages provide additional output stream and input stream
classes. For example, java.util.zip provides four output stream classes
that compress uncompressed data into various formats and four matching
input stream classes that uncompress compressed data from the same
formats:

	CheckedOutputStream

	CheckedInputStream

	DeflaterOutputStream

	GZIPOutputStream

	GZIPInputStream

	InflaterInputStream

	ZipOutputStream

	ZipInputStream

Also, the java.util.jar package provides a pair of stream classes for
writing content to a JAR file and for reading content from a JAR file:

	JarOutputStream

	JarInputStream

Touring the Stream Classes
In the next several sections, I take you on a tour of most of java.io’s
output stream and input stream classes, beginning with OutputStream and
InputStream.

OutputStream and InputStream
Java provides the abstract OutputStream and InputStream classes to describe
classes that perform stream I/O. OutputStream is the superclass of all output
stream subclasses. Table 4-1 describes OutputStream’s methods.

Note PrintStream is another class that should be deprecated because it
doesn’t support different character encodings; java.io.PrintWriter is its
replacement. However, it’s doubtful that Oracle will deprecate this class because
PrintStream is the type of the java.lang.System class’s out and err
class fields, and too much legacy code depends on this fact.

CHAPTER 4: Streams62

Table 4-1. OutputStream Methods

Method Description

void close() Close this output stream and release any operating system
resources associated with the stream. This method throws
java.io.IOException when an I/O error occurs.

void flush() Flush this output stream by writing any buffered output
bytes to the destination. If the intended destination of this
output stream is an abstraction provided by the underlying
operating system (for example, a file), flushing the stream
only guarantees that bytes previously written to the stream
are passed to the underlying operating system for writing;
it doesn’t guarantee that they’re actually written to a
physical device such as a disk drive. This method throws
IOException when an I/O error occurs.

void write(byte[] b) Write b.length bytes from byte array b to this output
stream. In general, write(b) behaves as if you specified
write(b, 0, b.length). This method throws java.lang
.NullPointerException when b is null and IOException
when an I/O error occurs.

void write(byte[] b,
int off, int len)

Write len bytes from byte array b starting at offset
off to this output stream. This method throws
NullPointerException when b is null; java.lang
.IndexOutOfBoundsException when off is negative, len
is negative, or off + len is greater than b.length; and
IOException when an I/O error occurs.

void write(int b) Write byte b to this output stream. Only the eight low-order
bits are written; the 24 high-order bits are ignored. This
method throws IOException when an I/O error occurs.

The flush() method is useful in a long-running application that needs to
save changes every so often, for example, a text editor application that
saves changes to a temporary file every few minutes. Remember that
flush() only flushes bytes to the operating system; doing so doesn’t
necessarily result in the operating system flushing these bytes to the disk.

Note The close() method automatically flushes the output stream. If an
application ends before close() is called, the output stream is automatically
closed and its data is flushed.

CHAPTER 4: Streams

63

InputStream is the superclass of all input stream subclasses. Table 4-2
describes InputStream’s methods.

Table 4-2. InputStream Methods

Method Description

int available() Return an estimate of the number of bytes that can be
read from this input stream via the next read() method call
(or skipped over via skip()) without blocking the calling
thread. This method throws IOException when an I/O error
occurs.

It’s never correct to use this method’s return value to
allocate a buffer for holding all of the stream’s data because
a subclass might not return the total size of the stream.

void close() Close this input stream and release any operating system
resources associated with the stream. This method throws
IOException when an I/O error occurs.

void mark(int
readlimit)

Mark the current position in this input stream. A subsequent
call to reset() repositions this stream to the last marked
position so that subsequent read operations re-read the same
bytes. The readlimit argument tells this input stream to allow
that many bytes to be read before invalidating this mark (so
that the stream cannot be reset to the marked position).

boolean
markSupported()

Return true when this input stream supports mark() and
reset(); otherwise, return false.

int read() Read and return (as an int in the range 0 to 255) the
next byte from this input stream, or return -1 when the
end of the stream is reached. This method blocks until
input is available, the end of the stream is detected, or an
exception is thrown. It throws IOException when an I/O
error occurs.

int read(byte[] b) Read some number of bytes from this input stream and
store them in byte array b. Return the number of bytes
actually read (which might be less than b’s length but is
never more than its length), or return -1 when the end
of the stream is reached (no byte is available to read).
This method blocks until input is available, the end of the
stream is detected, or an exception is thrown. It throws
NullPointerException when b is null and IOException
when an I/O error occurs.

(continued)

CHAPTER 4: Streams64

Method Description

int read(byte[] b,
int off, int len)

Read no more than len bytes from this input stream and
store them in byte array b, starting at the offset specified by
off. Return the number of bytes actually read (which might
be less than len but is never more than len), or return -1
when the end of the stream is reached (no byte is available
to read). This method blocks until input is available, the
end of the stream is detected, or an exception is thrown.
It throws NullPointerException when b is null;
IndexOutOfBoundsException when off is negative, len is
negative, or len is greater than b.length - off; and
IOException when an I/O error occurs.

void reset() Reposition this input stream to the position at the time
mark() was last called. This method throws IOException
when this input stream has not been marked or the mark
has been invalidated.

long skip(long n) Skip over and discard n bytes of data from this input
stream. This method might skip over some smaller number
of bytes (possibly zero), for example, when the end of the
file is reached before n bytes have been skipped. The
actual number of bytes skipped is returned. When n is
negative, no bytes are skipped. This method throws
IOException when this input stream doesn’t support
skipping or when some other I/O error occurs.

Table 4-2. (continued)

InputStream subclasses such as ByteArrayInputStream support marking the
current read position in the input stream via the mark() method and later
return to that position via the reset() method.

ByteArrayOutputStream and ByteArrayInputStream
Byte arrays are often useful as stream destinations and sources. The
ByteArrayOutputStream class lets you write a stream of bytes to a byte
array; the ByteArrayInputStream class lets you read a stream of bytes from
a byte array.

Caution Don’t forget to call markSupported() to find out if the subclass
supports mark() and reset().

CHAPTER 4: Streams

65

ByteArrayOutputStream declares two constructors. Each constructor creates
a byte array output stream with an internal byte array; a copy of this array
can be returned by calling ByteArrayOutputStream’s byte[] toByteArray()
method:

	ByteArrayOutputStream() creates a byte array output
stream with an internal byte array whose initial size is 32
bytes. This array grows as necessary.

	ByteArrayOutputStream(int size) creates a byte array
output stream with an internal byte array whose initial
size is specified by size and grows as necessary. This
constructor throws java.lang.IllegalArgumentException
when size is less than zero.

The following example uses ByteArrayOutputStream() to create a byte array
output stream with an internal byte array set to the default size:

ByteArrayOutputStream baos = new ByteArrayOutputStream();

ByteArrayInputStream also declares a pair of constructors. Each constructor
creates a byte array input stream based on the specified byte array and keeps
track of the next byte to read from the array and the number of bytes to read:

	ByteArrayInputStream(byte[] ba) creates a byte array
input stream that uses ba as its byte array (ba is used
directly; a copy isn’t created). The position is set to 0
and the number of bytes to read is set to ba.length.

	ByteArrayInputStream(byte[] ba, int offset, int
count) creates a byte array input stream that uses ba as
its byte array (no copy is made). The position is set to
offset and the number of bytes to read is set to count.

The following example uses ByteArrayInputStream(byte[]) to create a byte
array input stream whose source is a copy of the previous byte array output
stream’s byte array:

ByteArrayInputStream bais = new ByteArrayInputStream(baos.toByteArray());

ByteArrayOutputStream and ByteArrayInputStream are useful when you
need to convert an image to an array of bytes, process these bytes in some
manner, and convert the bytes back to the image.

For example, suppose you’re writing an Android-based image-processing
application. You decode a file containing the image into an Android-
specific android.graphics.BitMap instance, compress this instance into
a ByteArrayOutputStream instance, obtain a copy of the byte array output
stream’s array, process this array in some manner, convert this array to a

CHAPTER 4: Streams66

ByteArrayInputStream instance, and use the byte array input stream to
decode these bytes into another BitMap instance, as follows:

String path = ... ; // Assume a legitimate path to an image.
Bitmap bm = BitmapFactory.decodeFile(path);
ByteArrayOutputStream baos = new ByteArrayOutputStream();
if (bm.compress(Bitmap.CompressFormat.PNG, 100, baos))
{
 byte[] imageBytes = baos.toByteArray();
 // Do something with imageBytes.
 bm = BitMapFactory.decodeStream(new ByteArrayInputStream(imageBytes));
}

This example obtains an image file’s path and then calls the concrete
android.graphics.BitmapFactory class’s Bitmap decodeFile(String path)
class method. This method decodes the image file identified by path into a
bitmap and returns a Bitmap instance that represents this bitmap.

After creating a ByteArrayOutputStream object, the example uses the returned
BitMap instance to call BitMap’s boolean compress(Bitmap.CompressFormat
format, int quality, OutputStream stream) method to write a compressed
version of the bitmap to the byte array output stream:

	format identifies the format of the compressed image.
I’ve chosen to use the popular Portable Network
Graphics (PNG) format.

	quality hints to the compressor as to how much
compression is required. This value ranges from 0 to 100,
where 0 means maximum compression at the expense of
quality and 100 means maximum quality at the expense
of compression. Formats such as PNG ignore quality
because they employ lossless compression.

	stream identifies the stream on which to write the
compressed image data.

When compress() returns true, which means that it successfully compressed
the image onto the byte array output stream in the PNG format, the
ByteArrayOutputStream object’s toByteArray() method is called to create
and return a byte array with the image’s bytes.

Next, the array is processed, a ByteArrayInputStream object is created
with the processed bytes as the source of this stream, and BitmapFactory’s
BitMap decodeStream(InputStream is) class method is called to convert the
byte array input stream’s source of bytes to a BitMap instance.

CHAPTER 4: Streams

67

FileOutputStream and FileInputStream
Files are common stream destinations and sources. The concrete
FileOutputStream class lets you write a stream of bytes to a file; the
concrete FileInputStream class lets you read a stream of bytes from a file.

FileOutputStream subclasses OutputStream and declares five constructors
for creating file output streams. For example, FileOutputStream(String name)
creates a file output stream to the existing file identified by name. This
constructor throws java.io.FileNotFoundException when the file doesn’t
exist and cannot be created, it is a directory rather than a normal file, or
there is some other reason why the file cannot be opened for output.

The following example uses FileOutputStream(String path) to create a file
output stream with employee.dat as its destination:

FileOutputStream fos = new FileOutputStream("employee.dat");

FileInputStream subclasses InputStream and declares three constructors
for creating file input streams. For example, FileInputStream(String name)
creates a file input stream from the existing file identified by name. This
constructor throws FileNotFoundException when the file doesn’t exist, it is a
directory rather than a normal file, or there is some other reason that the file
cannot be opened for input.

The following example uses FileInputStream(String name) to create a file
input stream with employee.dat as its source:

FileInputStream fis = new FileInputStream("employee.dat");

FileOutputStream and FileInputStream are useful in a file-copying context.
Listing 4-1 presents the source code to a Copy application that provides a
demonstration.

Tip FileOutputStream(String name) overwrites an existing file. To
append data instead of overwriting existing content, call a FileOutputStream
constructor that includes a boolean append parameter and pass true to this
parameter.

CHAPTER 4: Streams68

Listing 4-1. Copying a Source File to a Destination File

import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;

public class Copy
{
 public static void main(String[] args)
 {
 if (args.length != 2)
 {
 System.err.println("usage: java Copy srcfile dstfile");
 return;
 }
 FileInputStream fis = null;
 FileOutputStream fos = null;
 try
 {
 fis = new FileInputStream(args[0]);
 fos = new FileOutputStream(args[1]);
 int b; // I chose b instead of byte because byte is a reserved
 // word.
 while ((b = fis.read()) != -1)
 fos.write(b);
 }
 catch (FileNotFoundException fnfe)
 {
 System.err.println(args[0] + " could not be opened for input, or "
 + args[1] + " could not be created for output");
 }
 catch (IOException ioe)
 {
 System.err.println("I/O error: " + ioe.getMessage());
 }
 finally
 {
 if (fis != null)
 try
 {
 fis.close();
 }
 catch (IOException ioe)
 {
 assert false; // shouldn't happen in this context
 }

CHAPTER 4: Streams

69

 if (fos != null)
 try
 {
 fos.close();
 }
 catch (IOException ioe)
 {
 assert false; // shouldn't happen in this context
 }
 }
 }
}

Listing 4-1’s main() method first verifies that two command-line arguments,
identifying the names of source and destination files, are specified. It then
proceeds to instantiate FileInputStream and FileOutputStream and enter a
while loop that repeatedly reads bytes from the file input stream and writes
them to the file output stream.

Of course, something might go wrong. Perhaps the source file doesn’t exist,
or perhaps the destination file cannot be created (a same-named read-only
file might exist, for example). In either scenario, FileNotFoundException
is thrown and must be handled. Another possibility is that an I/O error
occurred during the copy operation. Such an error results in IOException.

Regardless of an exception being thrown or not, the input and output
streams are closed via the finally block. In a simple application like this,
you could ignore the close() method calls and let the application terminate.
Although Java automatically closes open files at this point, it’s good form to
explicitly close files upon exit.

Because close() is capable of throwing an instance of the checked
IOException class, a call to this method is wrapped in a try statement
with an appropriate catch block that catches this exception. Notice the if
statement that precedes each try statement. The if statement is necessary
to avoid a thrown NullPointerException instance when either fis or fos
contain the null reference.

Java 7’s try-with-resources statement can save you a lot of coding by
automatically closing open streams. To see the savings for yourself, check
out Listing 4-2, which presents the source code to another Copy application
that uses try-with-resources.

CHAPTER 4: Streams70

Listing 4-2. Copying a Source File to a Destination File, Version 2

import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;

public class Copy
{
 public static void main(String[] args)
 {
 if (args.length != 2)
 {
 System.err.println("usage: java Copy srcfile dstfile");
 return;
 }
 try (FileInputStream fis = new FileInputStream(args[0]);
 FileOutputStream fos = new FileOutputStream(args[1]))
 {
 int b; // I chose b instead of byte because byte is a reserved
 // word.
 while ((b = fis.read()) != -1)
 fos.write(b);
 }
 catch (FileNotFoundException fnfe)
 {
 System.err.println(args[0] + " could not be opened for input, or "
 + args[1] + " could not be created for output");
 }
 catch (IOException ioe)
 {
 System.err.println("I/O error: " + ioe.getMessage());
 }
 }
}

Compile Listing 4-1 or 4-2 as follows:

javac Copy.java

Run the resulting application as follows:

java Copy Copy.java Copy.bak

If all goes well, you should observe a Copy.bak file whose length and
contents are identical to that of Copy.java.

CHAPTER 4: Streams

71

PipedOutputStream and PipedInputStream
Threads must often communicate. One approach involves using shared
variables. Another approach involves using piped streams via the
PipedOutputStream and PipedInputStream classes. The PipedOutputStream
class lets a sending thread write a stream of bytes to an instance of the
PipedInputStream class, which a receiving thread uses to subsequently read
those bytes.

PipedOutputStream declares a pair of constructors for creating piped output
streams:

	PipedOutputStream() creates a piped output stream
that’s not yet connected to a piped input stream. It must
be connected to a piped input stream, either by the
receiver or the sender, before being used.

	PipedOutputStream(PipedInputStream dest) creates
a piped output stream that’s connected to the piped
input stream dest. Bytes written to the piped output
stream can be read from dest. This constructor throws
IOException when an I/O error occurs.

PipedOutputStream declares a void connect(PipedInputStream dest)
method that connects this piped output stream to dest. This method throws
IOException when this piped output stream is already connected to another
piped input stream.

PipedInputStream declares four constructors for creating piped input streams:

	PipedInputStream() creates a piped input stream that’s
not yet connected to a piped output stream. It must be
connected to a piped output stream before being used.

	PipedInputStream(int pipeSize) creates a piped
input stream that’s not yet connected to a piped output
stream and uses pipeSize to size the piped input
stream’s buffer. It must be connected to a piped output
stream before being used. This constructor throws
IllegalArgumentException when pipeSize is less than
or equal to 0.

Caution Attempting to use a PipedOutputStream object and a
PipedInputStream object from a single thread is not recommended because
it might deadlock the thread.

CHAPTER 4: Streams72

	PipedInputStream(PipedOutputStream src) creates
a piped input stream that’s connected to the piped
output stream src. Bytes written to src can be read
from this piped input stream. This constructor throws
IOException when an I/O error occurs.

	PipedInputStream(PipedOutputStream src, int
pipeSize) creates a piped input stream that’s
connected to the piped output stream src and uses
pipeSize to size the piped input stream’s buffer. Bytes
written to src can be read from this piped input stream.
This constructor throws IOException when an I/O error
occurs and IllegalArgumentException when pipeSize
is less than or equal to 0.

PipedInputStream declares a void connect(PipedOutputStream src)
method that connects this piped input stream to src. This method throws
IOException when this piped input stream is already connected to another
piped output stream.

The easiest way to create a pair of piped streams is in the same thread and
in either order. For example, you can first create the piped output stream:

PipedOutputStream pos = new PipedOutputStream();
PipedInputStream pis = new PipedInputStream(pos);

Alternatively, you can first create the piped input stream:

PipedInputStream pis = new PipedInputStream();
PipedOutputStream pos = new PipedOutputStream(pis);

You can leave both streams unconnected and later connect them to each
other using the appropriate piped stream’s connect() method, as follows:

PipedOutputStream pos = new PipedOutputStream();
PipedInputStream pis = new PipedInputStream();
// ...
pos.connect(pis);

Listing 4-3 presents a PipedStreamsDemo application whose sender thread
streams a sequence of randomly generated byte integers to a receiver
thread, which outputs this sequence.

CHAPTER 4: Streams

73

Listing 4-3. Piping Randomly Generated Bytes from a Sender Thread to a Receiver Thread

import java.io.IOException;
import java.io.PipedInputStream;
import java.io.PipedOutputStream;

public class PipedStreamsDemo
{
 final static int LIMIT = 10;

 public static void main(String[] args) throws IOException
 {
 final PipedOutputStream pos = new PipedOutputStream();
 final PipedInputStream pis = new PipedInputStream(pos);
 Runnable senderTask = () -> {
 try
 {
 for (int i = 0 ; i < LIMIT; i++)
 pos.write((byte)
 (Math.random() * 256));
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 finally
 {
 try
 {
 pos.close();
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 }
 };
 Runnable receiverTask = () -> {
 try
 {
 int b;
 while ((b = pis.read()) != -1)
 System.out.println(b);
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }

CHAPTER 4: Streams74

 finally
 {
 try
 {
 pis.close();
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 }
 };
 Thread sender = new Thread(senderTask);
 Thread receiver = new Thread(receiverTask);
 sender.start();
 receiver.start();
 }
}

Listing 4-3’s main() method creates piped output and piped input streams
that will be used by the senderTask thread to communicate a sequence of
randomly generated byte integers and by the receiverTask thread to receive
this sequence.

The sender task’s run() method explicitly closes its pipe stream when it
finishes sending the data. If it didn’t do this, an IOException instance with
a “write end dead” message would be thrown when the receiver thread
invoked read() for the final time (which would otherwise return -1 to
indicate end of stream). For more information on this message, check out
Daniel Ferber’s “What’s this? IOException: Write End Dead” blog post
(http://techtavern.wordpress.com/2008/07/16/whats-this-ioexception-
write-end-dead/).

Compile Listing 4-3 as follows:

javac PipedStreamsDemo.java

Run the resulting application as follows:

java PipedStreamsDemo

You’ll discover output similar to the following:

243
147
34
68
174

http://techtavern.wordpress.com/2008/07/16/whats-this-ioexception-write-end-dead/
http://techtavern.wordpress.com/2008/07/16/whats-this-ioexception-write-end-dead/

CHAPTER 4: Streams

75

251
99
44
7
19

FilterOutputStream and FilterInputStream
Byte array, file, and piped streams pass bytes unchanged to their
destinations. Java also supports filter streams that buffer, compress/
uncompress, encrypt/decrypt, or otherwise manipulate a stream’s byte
sequence (that is input to the filter) before it reaches its destination.

A filter output stream takes the data passed to its write() methods (the
input stream), filters it, and writes the filtered data to an underlying output
stream, which might be another filter output stream or a destination output
stream such as a file output stream.

Filter output streams are created from subclasses of the concrete
FilterOutputStream class, an OutputStream subclass. FilterOutputStream
declares a single FilterOutputStream(OutputStream out) constructor that
creates a filter output stream built on top of out, the underlying output
stream.

Listing 4-4 reveals that it’s easy to subclass FilterOutputStream. At a
minimum, you declare a constructor that passes its OutputStream argument
to FilterOutputStream’s constructor and override FilterOutputStream’s
write(int) method.

Listing 4-4. Scrambling a Stream of Bytes

import java.io.FilterOutputStream;
import java.io.IOException;
import java.io.OutputStream;

public class ScrambledOutputStream extends FilterOutputStream
{
 private int[] map;

 public ScrambledOutputStream(OutputStream out, int[] map)
 {
 super(out);
 if (map == null)
 throw new NullPointerException("map is null");
 if (map.length != 256)
 throw new IllegalArgumentException("map.length != 256");
 this.map = map;
 }

CHAPTER 4: Streams76

 @Override
 public void write(int b) throws IOException
 {
 out.write(map[b]);
 }
}

Listing 4-4 presents a ScrambledOutputStream class that performs trivial
encryption on its input stream by scrambling the input stream’s bytes via a
remapping operation. This constructor declares two parameters:

	out identifies the output stream on which to write the
scrambled bytes.

	map identifies an array of 256 byte-integer values to
which input stream bytes map.

The constructor first passes its out argument to the FilterOutputStream
parent via a super(out); call. It then verifies its map argument’s integrity
(map must be non-null and have a length of 256; a byte stream offers exactly
256 bytes to map) before saving map.

The write(int) method is trivial: it calls the underlying output stream’s
write(int) method with the byte to which argument b maps.
FilterOutputStream declares out to be protected (for performance),
which is why you can directly access this field.

Listing 4-5 presents the source code to a Scramble application for
experimenting with scrambling a source file’s bytes via ScrambledOutputStream
and writing these scrambled bytes to a destination file.

Listing 4-5. Scrambling a File’s Bytes

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

import java.util.Random;

Note It’s only essential to override write(int) because
FilterOutputStream’s other two write() methods are implemented via
this method.

CHAPTER 4: Streams

77

public class Scramble
{
 public static void main(String[] args)
 {
 if (args.length != 2)
 {
 System.err.println("usage: java Scramble srcpath destpath");
 return;
 }
 FileInputStream fis = null;
 ScrambledOutputStream sos = null;
 try
 {
 fis = new FileInputStream(args[0]);
 FileOutputStream fos = new FileOutputStream(args[1]);
 sos = new ScrambledOutputStream(fos, makeMap());
 int b;
 while ((b = fis.read()) != -1)
 sos.write(b);
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 finally
 {
 if (fis != null)
 try
 {
 fis.close();
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 if (sos != null)
 try
 {
 sos.close();
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 }
 }

CHAPTER 4: Streams78

 static int[] makeMap()
 {
 int[] map = new int[256];
 for (int i = 0; i < map.length; i++)
 map[i] = i;
 // Shuffle map.
 Random r = new Random(0);
 for (int i = 0; i < map.length; i++)
 {
 int n = r.nextInt(map.length);
 int temp = map[i];
 map[i] = map[n];
 map[n] = temp;
 }
 return map;
 }
}

Scramble’s main() method first verifies the number of command-line
arguments. The first argument identifies the source path of the file with
unscrambled content; the second argument identifies the destination path of
the file that stores scrambled content.

Assuming that two command-line arguments have been specified, main()
instantiates FileInputStream, creating a file input stream that’s connected to
the file identified by args[0].

Continuing, main() instantiates FileOutputStream, creating a file output
stream that’s connected to the file identified by args[1]. It then instantiates
ScrambledOutputStream and passes the FileOutputStream instance to
ScrambledOutputStream’s constructor.

main() now enters a loop, reading bytes from the file input stream and
writing them to the scrambled output stream by calling ScrambledOutputStream’s
write(int) method. This loop continues until FileInputStream’s read()
method returns -1 (end of file).

The finally block closes the file input stream and scrambled output stream
by calling their close() methods. It doesn’t call the file output stream’s
close() method because FilterOutputStream automatically calls the
underlying output stream’s close() method.

Note When a stream instance is passed to another stream class’s constructor,
the two streams are chained together. For example, the scrambled output
stream is chained to the file output stream.

CHAPTER 4: Streams

79

The makeMap() method is responsible for creating the map array that’s
passed to ScrambledOutputStream’s constructor. The idea is to populate the
array with all 256 byte-integer values, storing them in random order.

Compile Listings 4-4 and 4-5 as follows:

javac *.java

Assuming that you have a simple 15-byte file named hello.txt that contains
“Hello, World!” (followed by a carriage return and a line feed), run the
resulting application with this file as follows:

java Scramble hello.txt hello.out

On a Windows 7 operating system, I observe Figure 4-3’s scrambled output.

Note I pass 0 as the seed argument when creating the java.util.Random
object in order to return a predictable sequence of random numbers. I need to
use the same sequence of random numbers when creating the complementary
map array in the Unscramble application, which I will present shortly.
Unscrambling will not work without the same sequence.

Figure 4-3. Different fonts yield different-looking scrambled output

A filter input stream takes the data obtained from its underlying input
stream—which might be another filter input stream or a source input stream
such as a file input stream—filters it, and makes this data available via its
read() methods (the output stream).

CHAPTER 4: Streams80

Filter input streams are created from subclasses of the concrete
FilterInputStream class, an InputStream subclass. FilterInputStream
declares a single FilterInputStream(InputStream in) constructor that
creates a filter input stream built on top of in, the underlying input stream.

Listing 4-6 shows that it’s easy to subclass FilterInputStream. At a
minimum, declare a constructor that passes its InputStream argument to
FilterInputStream’s constructor and override FilterInputStream’s read()
and read(byte[], int, int) methods.

Listing 4-6. Unscrambling a Stream of Bytes

import java.io.FilterInputStream;
import java.io.InputStream;
import java.io.IOException;

public class ScrambledInputStream extends FilterInputStream
{
 private int[] map;

 public ScrambledInputStream(InputStream in, int[] map)
 {
 super(in);
 if (map == null)
 throw new NullPointerException("map is null");
 if (map.length != 256)
 throw new IllegalArgumentException("map.length != 256");
 this.map = map;
 }

 @Override
 public int read() throws IOException
 {
 int value = in.read();
 return (value == -1) ? -1 : map[value];
 }

 @Override
 public int read(byte[] b, int off, int len) throws IOException
 {
 int nBytes = in.read(b, off, len);
 if (nBytes <= 0)
 return nBytes;
 for (int i = 0; i < nBytes; i++)
 b[off + i] = (byte) map[off + i];
 return nBytes;
 }
}

CHAPTER 4: Streams

81

Listing 4-6 presents a ScrambledInputStream class that performs trivial
decryption on its underlying input stream by unscrambling the underlying
input stream’s scrambled bytes via a remapping operation.

The read() method first reads the scrambled byte from its underlying input
stream. If the returned value is -1 (end of file), this value is returned to its caller.
Otherwise, the byte is mapped to its unscrambled value, which is returned.

The read(byte[], int, int) method is similar to read(), but stores bytes
read from the underlying input stream in a byte array, taking an offset into
this array and a length (number of bytes to read) into account.

Once again, -1 might be returned from the underlying read() method call.
If so, this value must be returned. Otherwise, each byte in the array is
mapped to its unscrambled value, and the number of bytes read is returned.

Listing 4-7 presents the source code to an Unscramble application for
experimenting with ScrambledInputStream by unscrambling a source file’s
bytes and writing these unscrambled bytes to a destination file.

Listing 4-7. Unscrambling a File’s Bytes

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

import java.util.Random;

public class Unscramble
{
 public static void main(String[] args)
 {
 if (args.length != 2)
 {
 System.err.println("usage: java Unscramble srcpath destpath");
 return;
 }
 ScrambledInputStream sis = null;
 FileOutputStream fos = null;

Note It’s only essential to override read() and read(byte[], int, int)
because FilterInputStream’s read(byte[]) method is implemented via
the latter method.

CHAPTER 4: Streams82

 try
 {
 FileInputStream fis = new FileInputStream(args[0]);
 sis = new ScrambledInputStream(fis, makeMap());
 fos = new FileOutputStream(args[1]);
 int b;
 while ((b = sis.read()) != -1)
 fos.write(b);
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 finally
 {
 if (sis != null)
 try
 {
 sis.close();
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 if (fos != null)
 try
 {
 fos.close();
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 }
 }

 static int[] makeMap()
 {
 int[] map = new int[256];
 for (int i = 0; i < map.length; i++)
 map[i] = i;
 // Shuffle map.
 Random r = new Random(0);
 for (int i = 0; i < map.length; i++)
 {
 int n = r.nextInt(map.length);
 int temp = map[i];
 map[i] = map[n];
 map[n] = temp;
 }

CHAPTER 4: Streams

83

 int[] temp = new int[256];
 for (int i = 0; i < temp.length; i++)
 temp[map[i]] = i;
 return temp;
 }
}

Unscramble’s main() method first verifies the number of command-line
arguments: the first argument identifies the source path of the file with
scrambled content; the second argument identifies the destination path of
the file that stores unscrambled content.

Assuming that two command-line arguments have been specified, main()
instantiates FileInputStream, creating a file input stream that’s connected to
the file identified by args[1].

Continuing, main() instantiates FileInputStream, creating a file input stream
that’s connected to the file identified by args[0]. It then instantiates
ScrambledInputStream and passes the FileInputStream instance to
ScrambledInputStream’s constructor.

main() now enters a loop, reading bytes from the scrambled input stream
and writing them to the file output stream. This loop continues until
ScrambledInputStream’s read() method returns -1 (end of file).

The finally block closes the scrambled input stream and file output stream
by calling their close() methods. It doesn’t call the file input stream’s
close() method because FilterOutputStream automatically calls the
underlying input stream’s close() method.

The makeMap() method is responsible for creating the map array that’s
passed to ScrambledInputStream’s constructor. The idea is to duplicate
Listing 4-5’s map array and then invert it so that unscrambling can be
performed.

Compile Listings 4-6 and 4-7 as follows:

javac *.java

Note When a stream instance is passed to another stream class’s constructor,
the two streams are chained together. For example, the scrambled input stream
is chained to the file input stream.

CHAPTER 4: Streams84

Assuming that you have copied the previously generated hello.out file to
the current directory, run the resulting application with this file as follows:

java Unscramble hello.out hello.bak

You should see the same unscrambled content in hello.bak that’s present in
hello.txt.

BufferedOutputStream and BufferedInputStream
FileOutputStream and FileInputStream have a performance problem.
Each file output stream write() method call and file input stream read()
method call results in a native method call to one of the underlying operating
system’s functions, and these native method calls slow down I/O.

The concrete BufferedOutputStream and BufferedInputStream filter stream
classes improve performance by minimizing underlying output stream
write() and underlying input stream read() method calls. Instead, calls
to BufferedOutputStream’s write() and BufferedInputStream’s read()
methods take Java buffers into account:

	When a write buffer is full, write() calls the underlying
output stream write() method to empty the buffer.
Subsequent calls to BufferedOutputStream’s write()
methods store bytes in this buffer until it’s once again full.

	When the read buffer is empty, read() calls the
underlying input stream read() method to fill the buffer.
Subsequent calls to BufferedInputStream’s read()
methods return bytes from this buffer until it’s once
again empty.

Note For an additional example of a filter output stream and its
complementary filter input stream, check out the “Extending Java Streams
to Support Bit Streams” article (www.drdobbs.com/184410423) on the
Dr. Dobb’s web site. This article introduces BitStreamOutputStream
and BitStreamInputStream classes that are useful for outputting and
inputting bit streams. The article then demonstrates these classes in a
Java implementation of the Lempel-Zif-Welch (LZW) data compression and
decompression algorithm.

http://www.drdobbs.com/184410423

CHAPTER 4: Streams

85

BufferedOutputStream declares the following constructors:

	BufferedOutputStream(OutputStream out) creates a
buffered output stream that streams its output to out.
An internal buffer is created to store bytes written to out.

	BufferedOutputStream(OutputStream out, int size)
creates a buffered output stream that streams its output
to out. An internal buffer of length size is created to
store bytes written to out.

The following example chains a BufferedOutputStream instance to a
FileOutputStream instance. Subsequent write() method calls on the
BufferedOutputStream instance buffer bytes and occasionally result in
internal write() method calls on the encapsulated FileOutputStream
instance:

FileOutputStream fos = new FileOutputStream("employee.dat");
BufferedOutputStream bos = new BufferedOutputStream(fos); // Chain bos
 // to fos.
bos.write(0); // Write to employee.dat through the buffer.
// Additional write() method calls.
bos.close(); // This method call internally calls fos's close() method.

BufferedInputStream declares the following constructors:

	BufferedInputStream(InputStream in) creates a
buffered input stream that streams its input from in.
An internal buffer is created to store bytes read from in.

	BufferedInputStream(InputStream in, int size)
creates a buffered input stream that streams its input
from in. An internal buffer of length size is created to
store bytes read from in.

The following example chains a BufferedInputStream instance to a
FileInputStream instance. Subsequent read() method calls on the
BufferedInputStream instance unbuffer bytes and occasionally result in
internal read() method calls on the encapsulated FileInputStream instance:

FileInputStream fis = new FileInputStream("employee.dat");
BufferedInputStream bis = new BufferedInputStream(fis); // Chain bis to fis.
int ch = bis.read(); // Read employee.dat through the buffer.
// Additional read() method calls.
bis.close(); // This method call internally calls fis's close() method.

CHAPTER 4: Streams86

DataOutputStream and DataInputStream
FileOutputStream and FileInputStream are useful for writing and reading
bytes and arrays of bytes. However, they provide no support for writing and
reading primitive-type values (such as integers) and strings.

For this reason, Java provides the concrete DataOutputStream and
DataInputStream filter stream classes. Each class overcomes this limitation
by providing methods to write or read primitive-type values and strings in an
operating system-independent way:

	Integer values are written and read in big-endian format
(the most significant byte comes first). Check out
Wikipedia’s “Endianness” entry (http://en.wikipedia
.org/wiki/Endianness) to learn about the concept of
endianness.

	Floating-point and double precision floating-point
values are written and read according to the IEEE
754 standard, which specifies four bytes per floating-
point value and eight bytes per double precision
floating-point value.

	Strings are written and read according to a modified
version of UTF-8, a variable-length encoding
standard for efficiently storing two-byte Unicode
characters. Check out Wikipedia’s “UTF-8” entry
(http://en.wikipedia.org/wiki/Utf-8) to learn more
about UTF-8.

DataOutputStream declares a single DataOutputStream(OutputStream out)
constructor. Because this class implements the java.io.DataOutput
interface, DataOutputStream also provides access to the same-named write
methods as provided by java.io.RandomAccessFile.

DataInputStream declares a single DataInputStream(InputStream in)
constructor. Because this class implements the java.io.DataInput
interface, DataInputStream also provides access to the same-named read
methods as provided by RandomAccessFile.

Listing 4-8 presents the source code to a DataStreamsDemo application
that uses a DataOutputStream instance to write multibyte values to a
FileOutputStream instance and uses a DataInputStream instance to read
multibyte values from a FileInputStream instance.

http://en.wikipedia.org/wiki/Endianness
http://en.wikipedia.org/wiki/Endianness
http://en.wikipedia.org/wiki/Utf-8

CHAPTER 4: Streams

87

Listing 4-8. Outputting and then Inputting a Stream of Multibyte Values

import java.io.DataInputStream;
import java.io.DataOutputStream;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

public class DataStreamsDemo
{
 final static String FILENAME = "values.dat";

 public static void main(String[] args)
 {
 try (FileOutputStream fos = new FileOutputStream(FILENAME);
 DataOutputStream dos = new DataOutputStream(fos))
 {
 dos.writeInt(1995);
 dos.writeUTF("Saving this String in modified UTF-8 format!");
 dos.writeFloat(1.0F);
 }
 catch (IOException ioe)
 {
 System.err.println("I/O error: " + ioe.getMessage());
 }

 try (FileInputStream fis = new FileInputStream(FILENAME);
 DataInputStream dis = new DataInputStream(fis))
 {
 System.out.println(dis.readInt());
 System.out.println(dis.readUTF());
 System.out.println(dis.readFloat());
 }
 catch (IOException ioe)
 {
 System.err.println("I/O error: " + ioe.getMessage());
 }
 }
}

DataStreamsDemo creates a file named values.dat; calls DataOutputStream
methods to write an integer, a string, and a floating-point value to this file;
and calls DataInputStream methods to read back these values.

Compile Listing 4-8 as follows:

javac DataStreamsDemo.java

CHAPTER 4: Streams88

Run the resulting application as follows:

java DataStreamsDemo

You should observe the following output:

1995
Saving this String in modified UTF-8 format!
1.0

Object Serialization and Deserialization
Java provides the DataOutputStream and DataInputStream classes to
stream primitive-type values and String objects. However, you cannot use
these classes to stream non-String objects. Instead, you must use object
serialization and deserialization to stream objects of arbitrary types.

Object serialization is a Java virtual machine (JVM) mechanism for serializing
object state into a stream of bytes. Its deserialization counterpart is a JVM
mechanism for deserializing this state from a byte stream.

Java supports default serialization and deserialization, custom serialization
and deserialization, and externalization.

Note An object’s state consists of instance fields that store primitive-type
values and/or references to other objects. When an object is serialized, the
objects that are part of this state are also serialized (unless you prevent them
from being serialized). Furthermore, the objects that are part of those objects’
states are serialized (unless you prevent this), and so on.

Caution When reading a file of values written by a sequence of
DataOutputStream method calls, make sure to use the same method-
call sequence. Otherwise, you’re bound to end up with erroneous data and,
in the case of the readUTF() methods, thrown instances of the java.
io.UTFDataFormatException class (a subclass of IOException).

CHAPTER 4: Streams

89

Default Serialization and Deserialization
Default serialization and deserialization is the easiest form to use but offers
little control over how objects are serialized and deserialized. Although Java
handles most of the work on your behalf, there are a couple of tasks that
you must perform.

Your first task is to have the class of the object that’s to be serialized
implement the java.io.Serializable interface, either directly or indirectly
via the class’s superclass. The rationale for implementing Serializable is to
avoid unlimited serialization.

Note Serializable is an empty marker interface (there are no methods
to implement) that a class implements to tell the JVM that it’s okay to serialize
the class’s objects. When the serialization mechanism encounters an object
whose class doesn’t implement Serializable, it throws an instance of the
java.io.NotSerializableException class (an indirect subclass of
IOException).

Unlimited serialization is the process of serializing an entire object graph.
Java doesn’t support unlimited serialization for the following reasons:

	Security: If Java automatically serialized an object
containing sensitive information (such as a password or
a credit card number), it would be easy for a hacker to
discover this information and wreak havoc. It’s better
to give the developer a choice to prevent this from
happening.

	Performance: Serialization leverages the Reflection API,
which tends to slow down application performance.
Unlimited serialization could really hurt an application’s
performance.

	Objects not amenable to serialization: Some objects
exist only in the context of a running application and
it’s meaningless to serialize them. For example, a file
stream object that’s deserialized no longer represents a
connection to a file.

Listing 4-9 declares an Employee class that implements the Serializable
interface to tell the JVM that it’s okay to serialize Employee objects.

CHAPTER 4: Streams90

Listing 4-9. Implementing Serializable

import java.io.Serializable;

public class Employee implements Serializable
{
 private String name;
 private int age;

 public Employee(String name, int age)
 {
 this.name = name;
 this.age = age;
 }

 public String getName() { return name; }

 public int getAge() { return age; }
}

Because Employee implements Serializable, the serialization mechanism
will not throw a NotSerializableException instance when serializing an
Employee object. Not only does Employee implement Serializable, the
java.lang.String class also implements this interface.

Your second task is to work with the ObjectOutputStream class and its
writeObject() method to serialize an object and the OutputInputStream
class and its readObject() method to deserialize the object.

Java provides the concrete ObjectOutputStream class to initiate the
serialization of an object’s state to an object output stream. This class
declares an ObjectOutputStream(OutputStream out) constructor that chains
the object output stream to the output stream specified by out.

When you pass an output stream reference to out, this constructor
attempts to write a serialization header to that output stream. It throws
NullPointerException when out contains the null reference and IOException
when an I/O error prevents it from writing this header.

Note Although ObjectOutputStream extends OutputStream instead
of FilterOutputStream, and although ObjectInputStream extends
InputStream instead of FilterInputStream, these classes behave as
filter streams.

CHAPTER 4: Streams

91

ObjectOutputStream serializes an object via its void writeObject(Object obj)
method. This method attempts to write information about obj’s class followed
by the values of obj’s instance fields to the underlying output stream.

writeObject() doesn’t serialize the contents of static fields. In contrast,
it serializes the contents of all instance fields that are not explicitly prefixed
with the transient reserved word. For example, consider the following field
declaration:

public transient char[] password;

This declaration specifies transient to avoid serializing a password for
some hacker to encounter. The JVM’s serialization mechanism ignores any
instance field that’s marked transient.

writeObject() throws an instance of IOException or an IOException
subclass when something goes wrong. For example, this method throws
NotSerializableException when it encounters an object whose class
doesn’t implement Serializable.

Java provides the concrete ObjectInputStream class to initiate the
deserialization of an object’s state from an object input stream. This class
declares an ObjectInputStream(InputStream in) constructor that chains the
object input stream to the input stream specified by in.

When you pass an input stream reference to in, this constructor
attempts to read a serialization header from that input stream. It throws
NullPointerException when in is null, IOException when an I/O error
prevents it from reading this header, and java.io.StreamCorruptedException
(an indirect subclass of IOException) when the stream header is incorrect.

ObjectInputStream deserializes an object via its Object readObject() method.
This method attempts to read information about obj’s class followed by the
values of obj’s instance fields from the underlying input stream.

Note Check out my “Transience” blog post (www.javaworld.com/
community/node/13451) to learn more about transient.

Note Because ObjectOutputStream implements DataOutput, it also
declares methods for writing primitive-type values and strings to an object
output stream.

http://www.javaworld.com/community/node/13451
http://www.javaworld.com/community/node/13451

CHAPTER 4: Streams92

readObject() throws an instance of java.lang.ClassNotFoundException,
IOException, or an IOException subclass when something goes wrong.
For example, this method throws java.io.OptionalDataException when it
encounters primitive-type values instead of objects.

Listing 4-10 presents an application that uses these classes to serialize
and deserialize an instance of Listing 4-9’s Employee class to and from an
employee.dat file.

Listing 4-10. Serializing and Deserializing an Employee Object

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;

public class SerializationDemo
{
 final static String FILENAME = "employee.dat";

 public static void main(String[] args)
 {
 ObjectOutputStream oos = null;
 ObjectInputStream ois = null;
 try
 {
 FileOutputStream fos = new FileOutputStream(FILENAME);
 oos = new ObjectOutputStream(fos);
 Employee emp = new Employee("John Doe", 36);
 oos.writeObject(emp);
 oos.close();
 oos = null;
 FileInputStream fis = new FileInputStream(FILENAME);
 ois = new ObjectInputStream(fis);
 emp = (Employee) ois.readObject(); // (Employee) cast is necessary.
 ois.close();
 System.out.println(emp.getName());
 System.out.println(emp.getAge());
 }

Note Because ObjectInputStream implements DataInput, it also
declares methods for reading primitive-type values and strings from an object
input stream.

CHAPTER 4: Streams

93

 catch (ClassNotFoundException cnfe)
 {
 System.err.println(cnfe.getMessage());
 }
 catch (IOException ioe)
 {
 System.err.println(ioe.getMessage());
 }
 finally
 {
 if (oos != null)
 try
 {
 oos.close();
 }
 catch (IOException ioe)
 {
 assert false; // shouldn't happen in this context
 }

 if (ois != null)
 try
 {
 ois.close();
 }
 catch (IOException ioe)
 {
 assert false; // shouldn't happen in this context
 }
 }
 }
}

Listing 4-10’s main() method first instantiates Employee and serializes this
instance via writeObject() to employee.dat. It then deserializes this instance
from this file via readObject() and invokes the instance’s getName() and
getAge() methods.

Compile Listings 4-9 and 4-10 as follows:

javac *.java

Run the resulting application as follows:

java SerializationDemo

Along with employee.dat, you should discover the following output:

John Doe
36

CHAPTER 4: Streams94

There’s no guarantee that the same class will exist when a serialized
object is deserialized (perhaps an instance field has been deleted).
During deserialization, this mechanism causes readObject() to throw
java.io.InvalidClassException—an indirect subclass of the IOException
class—when it detects a difference between the deserialized object and
its class.

Every serialized object has an identifier. The deserialization mechanism
compares the identifier of the object being deserialized with the serialized
identifier of its class (all serializable classes are automatically given unique
identifiers unless they explicitly specify their own identifiers) and causes
InvalidClassException to be thrown when it detects a mismatch.

Perhaps you’ve added an instance field to a class, and you want the
deserialization mechanism to set the instance field to a default value rather
than have readObject() throw an InvalidClassException instance. (The
next time you serialize the object, the new field’s value will be written out.)

You can avoid the thrown InvalidClassException instance by adding a
static final long serialVersionUID = long integer value; declaration
to the class. The long integer value must be unique and is known as a
stream unique identifier (SUID).

During deserialization, the JVM will compare the deserialized object’s SUID
to its class’s SUID. If they match, readObject() will not throw
InvalidClassException when it encounters a compatible class change
(such as adding an instance field). However, it will still throw this exception
when it encounters an incompatible class change (such as changing an
instance field’s name or type).

The JDK provides a serialver tool for calculating the SUID. For example, to
generate an SUID for Listing 4-9’s Employee class, change to the directory
containing Employee.class and execute the following command:

serialver Employee

In response, serialver generates the following output, which you paste
(except for Employee:) into Employee.java:

Employee: static final long serialVersionUID = 1517331364702470316L;

Note Whenever you change a class in some fashion, you must calculate a new
SUID and assign it to serialVersionUID.

CHAPTER 4: Streams

95

The Windows version of serialver also provides a graphical user interface
that you might find more convenient to use. To access this interface, specify
the following command line:

serialver -show

When the serialver window appears, enter Employee into the Full Class
Name text field and click the Show button, as demonstrated in Figure 4-4.

Figure 4-4. The serialver user interface reveals Employee’s SUID

Custom Serialization and Deserialization
The previous discussion focused on default serialization and deserialization
(with the exception of marking an instance field transient to prevent it from
being included during serialization). However, situations arise where you
need to customize these tasks.

For example, suppose you want to serialize instances of a class that doesn’t
implement Serializable. As a workaround, you subclass this other class,
have the subclass implement Serializable, and forward the subclass
constructor calls to the superclass.

Although this workaround lets you serialize subclass objects, you cannot
deserialize these serialized objects when the superclass doesn’t declare a
noargument constructor, which is required by the deserialization mechanism.
Listing 4-11 demonstrates this problem.

Listing 4-11. Problematic Deserialization

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serializable;

CHAPTER 4: Streams96

class Employee
{
 private String name;

 Employee(String name)
 {
 this.name = name;
 }

 @Override
 public String toString()
 {
 return name;
 }
}

class SerEmployee extends Employee implements Serializable
{
 SerEmployee(String name)
 {
 super(name);
 }
}

public class SerializationDemo
{
 public static void main(String[] args)
 {
 ObjectOutputStream oos = null;
 ObjectInputStream ois = null;
 try
 {
 oos = new ObjectOutputStream(new FileOutputStream("employee.dat"));
 SerEmployee se = new SerEmployee("John Doe");
 System.out.println(se);
 oos.writeObject(se);
 oos.close();
 oos = null;
 System.out.println("se object written to file");
 ois = new ObjectInputStream(new FileInputStream("employee.dat"));
 se = (SerEmployee) ois.readObject();
 System.out.println("se object read from file");
 System.out.println(se);
 }
 catch (ClassNotFoundException cnfe)
 {
 cnfe.printStackTrace();
 }

CHAPTER 4: Streams

97

 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 finally
 {
 if (oos != null)
 try
 {
 oos.close();
 }
 catch (IOException ioe)
 {
 assert false; // shouldn't happen in this context
 }
 if (ois != null)
 try
 {
 ois.close();
 }
 catch (IOException ioe)
 {
 assert false; // shouldn't happen in this context
 }
 }
 }
}

Listing 4-11’s main() method instantiates SerEmployee with an employee
name. This class’s SerEmployee(String) constructor passes this argument
to its Employee counterpart.

main() next calls Employee’s toString() method indirectly via
System.out.println(), to obtain this name, which is then output.

Continuing, main() serializes the SerEmployee instance to an employee.dat file
via writeObject(). It then attempts to deserialize this object via readObject(),
and this is where the trouble occurs, as revealed by the following output:

John Doe
se object written to file
java.io.InvalidClassException: SerEmployee; no valid constructor
 at java.io.ObjectStreamClass$ExceptionInfo.newInvalidClassException

(ObjectStreamClass.java:150)
 at java.io.ObjectStreamClass.checkDeserialize(ObjectStreamClass.java:768)
 at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1775)
 at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1351)
 at java.io.ObjectInputStream.readObject(ObjectInputStream.java:371)
 at SerializationDemo.main(SerializationDemo.java:48)

CHAPTER 4: Streams98

This output reveals a thrown instance of the InvalidClassException class.
This exception object was thrown during deserialization because Employee
doesn’t possess a noargument constructor.

You can overcome this problem by taking advantage of the adapter pattern
(https://en.wikipedia.org/wiki/Adapter_pattern). Furthermore, you
declare a pair of private methods in the subclass that the serialization and
deserialization mechanisms look for and call.

Normally, the serialization mechanism writes out a class’s instance fields to
the underlying output stream. However, you can prevent this from happening
by declaring a private void writeObject(ObjectOutputStream oos) method
in that class.

When the serialization mechanism discovers this method, it calls the method
instead of automatically outputting instance field values. The only values
that are output are those explicitly output via the method.

Conversely, the deserialization mechanism assigns values to a class’s
instance fields that it reads from the underlying input stream. However, you
can prevent this from happening by declaring a private void
readObject(ObjectInputStream ois) method.

When the deserialization mechanism discovers this method, it calls the method
instead of automatically assigning values to instance fields. The only values that
are assigned to instance fields are those explicitly assigned via the method.

Because SerEmployee doesn’t introduce any fields, and because Employee
doesn’t offer access to its internal fields (assume you don’t have the source
code for this class), what would a serialized SerEmployee object include?

Although you cannot serialize Employee’s internal state, you can serialize the
argument(s) passed to its constructors, such as the employee name.

Listing 4-12 reveals the refactored SerEmployee and SerializationDemo
classes.

Listing 4-12. Solving Problematic Deserialization

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serializable;

https://en.wikipedia.org/wiki/Adapter_pattern

CHAPTER 4: Streams

99

class Employee
{
 private String name;

 Employee(String name)
 {
 this.name = name;
 }

 @Override
 public String toString()
 {
 return name;
 }
}

class SerEmployee implements Serializable
{
 private Employee emp;
 private String name;

 SerEmployee(String name)
 {
 this.name = name;
 emp = new Employee(name);
 }

 private void writeObject(ObjectOutputStream oos) throws IOException
 {
 oos.writeUTF(name);
 }

 private void readObject(ObjectInputStream ois)
 throws ClassNotFoundException, IOException
 {
 name = ois.readUTF();
 emp = new Employee(name);
 }

 @Override
 public String toString()
 {
 return name;
 }
}

CHAPTER 4: Streams100

public class SerializationDemo
{
 public static void main(String[] args)
 {
 ObjectOutputStream oos = null;
 ObjectInputStream ois = null;
 try
 {
 oos = new ObjectOutputStream(new FileOutputStream("employee.dat"));
 SerEmployee se = new SerEmployee("John Doe");
 System.out.println(se);
 oos.writeObject(se);
 oos.close();
 oos = null;
 System.out.println("se object written to file");
 ois = new ObjectInputStream(new FileInputStream("employee.dat"));
 se = (SerEmployee) ois.readObject();
 System.out.println("se object read from file");
 System.out.println(se);
 }
 catch (ClassNotFoundException cnfe)
 {
 cnfe.printStackTrace();
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 finally
 {
 if (oos != null)
 try
 {
 oos.close();
 }
 catch (IOException ioe)
 {
 assert false; // shouldn't happen in this context
 }
 if (ois != null)
 try
 {
 ois.close();
 }

CHAPTER 4: Streams

101

 catch (IOException ioe)
 {
 assert false; // shouldn't happen in this context
 }
 }
 }
}

SerEmployee’s writeObject() and readObject() methods rely on DataOutput
and DataInput methods: they don’t need to call ObjectOutputStream’s
writeObject() method and ObjectInputStream’s readObject() method to
perform their tasks.

When you run this application, it generates the following output:

John Doe
se object written to file
se object read from file
John Doe

The writeObject() and readObject() methods can be used to serialize/
deserialize data items beyond the normal state (non-transient instance
fields), for example, serializing/deserializing the contents of a static field.

However, before serializing or deserializing the additional data items, you
must tell the serialization and deserialization mechanisms to serialize or
deserialize the object’s normal state. The following methods help you
accomplish this task:

	ObjectOutputStream’s defaultWriteObject()
method outputs the object’s normal state. Your
writeObject() method first calls this method to output
that state and then outputs additional data items via
ObjectOutputStream methods such as writeUTF().

	ObjectInputStream’s defaultReadObject() method
inputs the object’s normal state. Your readObject()
method first calls this method to input that state and
then inputs additional data items via ObjectInputStream
methods such as readUTF().

Externalization
Along with default serialization/deserialization and custom serialization/
deserialization, Java supports externalization. Unlike default/custom
serialization/deserialization, externalization offers complete control over the
serialization and deserialization tasks.

CHAPTER 4: Streams102

Java supports externalization via java.io.Externalizable. This interface
declares the following pair of public methods:

	void writeExternal(ObjectOutput out) saves the
calling object’s contents by calling various methods on
the out object. This method throws IOException when
an I/O error occurs. (java.io.ObjectOutput is a
subinterface of DataOutput and is implemented by
ObjectOutputStream.)

	void readExternal(ObjectInput in) restores the calling
object’s contents by calling various methods on the in
object. This method throws IOException when an I/O
error occurs and ClassNotFoundException when the
class of the object being restored cannot be found.
(java.io.ObjectInput is a subinterface of DataInput
and is implemented by ObjectInputStream.)

If a class implements Externalizable, its writeExternal() method is
responsible for saving all field values that are to be saved. Also, its
readExternal() method is responsible for restoring all saved field values
and in the order they were saved.

Listing 4-13 presents a refactored version of Listing 4-9’s Employee class to
show you how to take advantage of externalization.

Listing 4-13. Refactoring Listing 4-9’s Employee Class to Support Externalization

import java.io.Externalizable;
import java.io.IOException;
import java.io.ObjectInput;
import java.io.ObjectOutput;

public class Employee implements Externalizable
{
 private String name;
 private int age;

 public Employee()
 {
 System.out.println("Employee() called");
 }

Note Externalization helps you improve the performance of the reflection-
based serialization and deserialization mechanisms by giving you complete
control over what fields are serialized and deserialized.

CHAPTER 4: Streams

103

 public Employee(String name, int age)
 {
 this.name = name;
 this.age = age;
 }

 public String getName() { return name; }

 public int getAge() { return age; }

 @Override
 public void writeExternal(ObjectOutput out) throws IOException
 {
 System.out.println("writeExternal() called");
 out.writeUTF(name);
 out.writeInt(age);
 }

 @Override
 public void readExternal(ObjectInput in)
 throws IOException, ClassNotFoundException
 {
 System.out.println("readExternal() called");
 name = in.readUTF();
 age = in.readInt();
 }
}

Employee declares a public Employee() constructor because each class that
participates in externalization must declare a public noargument
constructor. The deserialization mechanism calls this constructor to
instantiate the object.

Initiate externalization by instantiating ObjectOutputStream and calling its
writeObject(Object) method, or by instantiating ObjectInputStream and
calling its readObject() method.

Caution The deserialization mechanism throws InvalidClassException
with a “no valid constructor” message when it doesn’t detect a public
noargument constructor.

CHAPTER 4: Streams104

Suppose you compiled Listing 4-10’s SerializationDemo.java source code
and Listing 4-13’s Employee.java source code in the same directory. Now
suppose you executed java SerializationDemo. In response, you would
observe the following output:

writeExternal() called
Employee() called
readExternal() called
John Doe
36

Before serializing an object, the serialization mechanism checks the object’s
class to see if it implements Externalizable. If so, the mechanism calls
writeExternal(). Otherwise, it looks for a private writeObject(ObjectOutput
Stream) method and calls this method when present. When this method isn’t
present, this mechanism performs default serialization, which includes only
non-transient instance fields.

Before deserializing an object, the deserialization mechanism checks the
object’s class to see if it implements Externalizable. If so, the mechanism
attempts to instantiate the class via the public noargument constructor.
Assuming success, it calls readExternal().

When the object’s class doesn’t implement Externalizable, the
deserialization mechanism looks for a private readObject(ObjectInputStream)
method. When this method isn’t present, this mechanism performs default
deserialization, which includes only non-transient instance fields.

PrintStream
Of all the stream classes, PrintStream is an oddball: it should have been
named PrintOutputStream for consistency with the naming convention. This
filter output stream class writes string representations of input data items to
the underlying output stream.

Note When passing an object whose class (directly/indirectly) implements
Externalizable to writeObject(), the writeObject()-initiated
serialization mechanism writes only the identity of the object’s class to the
object output stream.

CHAPTER 4: Streams

105

PrintStream instances are print streams whose various print() and println()
methods print string representations of integers, floating-point values, and
other data items to the underlying output stream. Unlike the print() methods,
println() methods append a line terminator to their output.

The println() methods call their corresponding print() methods followed
by the equivalent of the void println() method, which eventually results
in line.separator’s value being output. For example, void println(int x)
outputs x’s string representation and calls this method to output the line
separator.

Note The line terminator (also known as line separator) isn’t necessarily
the newline (also commonly referred to as line feed). Instead, to promote
portability, the line separator is the sequence of characters defined by system
property line.separator. On Windows operating systems, System.
getProperty("line.separator") returns the actual carriage return code
(13), which is symbolically represented by \r, followed by the actual newline/
line feed code (10), which is symbolically represented by \n. In contrast,
System.getProperty("line.separator") returns only the actual
newline/line feed code on Unix and Linux operating systems.

Note PrintStream uses the default character encoding to convert a string’s
characters to bytes. (I’ll discuss character encodings when I introduce you to
writers and readers in Chapter 5.) Because PrintStream doesn’t support
different character encodings, you should use the equivalent PrintWriter
class instead of PrintStream. However, you need to know about
PrintStream because of standard I/O.

http://dx.doi.org/10.1007/978-1-4842-1565-4_5

CHAPTER 4: Streams106

PrintStream offers three other features that you’ll find useful:

	Unlike other output streams, a print stream never
rethrows an IOException instance thrown from the
underlying output stream. Instead, exceptional
situations set an internal flag that can be tested by
calling PrintStream’s boolean checkError() method,
which returns true to indicate a problem.

	PrintStream objects can be created to automatically
flush their output to the underlying output stream. In
other words, the flush() method is automatically called
after a byte array is written, one of the println() methods
is called, or a newline is written.

	PrintStream declares a PrintStream format(String
format, Object... args) method for achieving
formatted output. Behind the scene, this method works
with the Formatter class that I introduce in Chapter 11.
PrintStream also declares a printf(String format,
Object... args) convenience method that delegates to
the format() method. For example, invoking printf()
via out.printf(format, args) is identical to invoking
out.format(format, args).

Caution Never hard-code the \n escape sequence in a string literal that
you are going to output via a print() or println() method. Doing so isn’t
portable. For example, when Java executes System.out.print("first
line\n"); followed by System.out.println("second line");, you will
see first line on one line followed by second line on a subsequent line
when this output is viewed at the Windows command line. In contrast, you’ll
see first linesecond line when this output is viewed in the Windows
Notepad application (which requires a carriage return/line feed sequence to
terminate lines). When you need to output a blank line, the easiest way to
do this is to execute System.out.println();, which is why you find this
method call used elsewhere in my book. I confess that I don’t always follow my
own advice, so you might find instances of \n in literal strings being passed to
System.out.print() or System.out.println() elsewhere in this book.

http://dx.doi.org/10.1007/978-1-4842-1565-4_11

CHAPTER 4: Streams

107

Revisiting Standard I/O
Java supports standard I/O. You input data items from the standard input
stream by making System.in.read() method calls, you output data items
to the standard output stream by making System.out.print() and
System.out.println() method calls, and you output data items to the
standard error stream by making System.err.print() and System.err
.println() method calls.

System.in, System.out, and System.err are formally described by the
following class fields in the System class:

	public static final InputStream in

	public static final PrintStream out

	public static final PrintStream err

These fields contain references to InputStream and PrintStream objects that
represent the standard input, standard output, and standard error streams.

When you invoke System.in.read(), the input is originating from the source
identified by the InputStream instance assigned to in. Similarly, when you
invoke System.out.print() or System.err.println(), the output is being
sent to the destination identified by the PrintStream instance assigned to
out or err, respectively.

Java initializes in to refer to the keyboard or a file when the standard input
stream is redirected to the file. Similarly, Java initializes out/err to refer to the
screen or a file when the standard output/error stream is redirected to the file.
You can programmatically specify the input source, output destination, and
error destination by calling the following System class methods:

	void setIn(InputStream in)

	void setOut(PrintStream out)

	void setErr(PrintStream err)

Listing 4-14 presents a RedirectIO application that shows you how to use
these methods to programmatically redirect the standard input, standard
output, and standard error destinations.

Listing 4-14. Programmatically Specifying the Standard Input Source and Standard Output/Error
Destinations

import java.io.FileInputStream;
import java.io.IOException;
import java.io.PrintStream;

CHAPTER 4: Streams108

public class RedirectIO
{
 public static void main(String[] args) throws IOException
 {
 if (args.length != 3)
 {
 System.err.println("usage: java RedirectIO stdinfile " +
 "stdoutfile stderrfile");
 return;
 }

 System.setIn(new FileInputStream(args[0]));
 System.setOut(new PrintStream(args[1]));
 System.setErr(new PrintStream(args[2]));

 int ch;
 while ((ch = System.in.read()) != -1)
 System.out.print((char) ch);

 System.err.println("Redirected error output");
 }
}

Listing 4-14 lets you specify (via command-line arguments) the name of a
file from which System.in.read() obtains its content as well as the names of
the files to which System.out.print() and System.err.println() send their
content. It then proceeds to copy standard input to standard output and
then demonstrates outputting content to standard error.

new FileInputStream(args[0]) provides access to the input sequence
of bytes that is stored in the file identified by args[0]. Similarly, new
PrintStream(args[1]) provides access to the file identified by args[1],
which will store the output sequence of bytes, and new PrintStream(args[2])
provides access to the file identified by args[2], which will store the error
sequence of bytes.

Compile Listing 4-14 as follows:

javac RedirectIO.java

Run the resulting application as follows:

java RedirectIO RedirectIO.java out.txt err.txt

This command line produces no visual output on the screen. Instead, it
copies the contents of RedirectIO.java to out.txt. It also stores Redirected
error output in err.txt.

CHAPTER 4: Streams

109

EXERCISES

The following exercises are designed to test your understanding of Chapter 4’s content:

1. What is a stream?

2. What is the purpose of OutputStream’s flush() method?

3. True or false: OutputStream’s close() method automatically
flushes the output stream.

4. What is the purpose of InputStream’s mark(int) and reset()
methods?

5. How would you access a copy of a ByteArrayOutputStream
instance’s internal byte array?

6. True or false: FileOutputStream and FileInputStream provide
internal buffers to improve the performance of write and read
operations.

7. Why would you use PipedOutputStream and PipedInputStream?

8. Define filter stream.

9. What does it mean for two streams to be chained together?

10. How do you improve the performance of a file output stream or a file
input stream?

11. How do DataOutputStream and DataInputStream support
FileOutputStream and FileInputStream?

12. What is object serialization and deserialization?

13. What three forms of serialization and deserialization does Java
support?

14. What is the purpose of the Serializable interface?

15. What does the serialization mechanism do when it encounters an
object whose class doesn’t implement Serializable?

16. Identify the three stated reasons for Java not supporting unlimited
serialization.

17. How do you initiate serialization? How do you initiate deserialization?

18. True or false: Class fields are automatically serialized.

19. What is the purpose of the transient reserved word?

http://dx.doi.org/10.1007/978-1-4842-1565-4_4

CHAPTER 4: Streams110

20. What does the deserialization mechanism do when it attempts to
deserialize an object whose class has changed?

21. How does the deserialization mechanism detect that a serialized
object’s class has changed?

22. How can you add an instance field to a class and avoid trouble when
deserializing an object that was serialized before the instance field
was added? What JDK tool can you use to help with this task?

23. How do you customize the default serialization and deserialization
mechanisms without using externalization?

24. How do you tell the serialization and deserialization mechanisms to
serialize or deserialize the object’s normal state before serializing or
deserializing additional data items?

25. How does externalization differ from default and custom serialization
and deserialization?

26. How does a class indicate that it supports externalization?

27. True or false: During externalization, the deserialization mechanism
throws InvalidClassException with a “no valid constructor”
message when it doesn’t detect a public noargument constructor.

28. What is the difference between PrintStream’s print() and
println() methods?

29. What does PrintStream’s noargument void println() method
accomplish?

30. How do you redirect the standard input, standard output, and standard
error streams?

31. Improve Listing 4-1’s Copy application (performance wise) by using
BufferedInputStream and BufferedOutputStream. Copy
should read the bytes to be copied from the buffered input stream and
write these bytes to the buffered output stream.

32. Create a Java application named Split for splitting a large file into
a number of smaller partx files (where x starts at 0 and increments;
for example, part0, part1, part2, and so on). Each partx file
(except possibly the last partx file, which holds the remaining bytes)
will have the same size. This application has the following usage
syntax: java Split path. Furthermore, your implementation must
use the BufferedInputStream, BufferedOutputStream, File,
FileInputStream, and FileOutputStream classes.

CHAPTER 4: Streams

111

Summary
Java uses streams to perform I/O operations. A stream is an ordered
sequence of bytes of an arbitrary length. Bytes flow over an output stream
from an application to a destination and flow over an input stream from a
source to an application.

The java.io package provides several classes that identify various
stream destinations and sources. These classes are descendants of the
abstract OutputStream and InputStream classes. FileOutputStream and
BufferedInputStream are examples.

This chapter explored OutputStream and InputStream, followed by the
byte array, file, piped, filter, buffered, data, object, and print streams. While
covering object streams, it introduced the topics of serialization and
externalization. The chapter concluded by revisiting standard I/O.

Chapter 5 presents classic I/O’s writer and reader classes.

http://dx.doi.org/10.1007/978-1-4842-1565-4_5

113

Chapter 5
Writers and Readers

Java’s stream classes are good for streaming sequences of bytes, but
they’re not good for streaming sequences of characters because bytes and
characters are two different things: a byte represents an 8-bit data item and
a character represents a 16-bit data item. Also, Java’s char and java.lang.
String types naturally handle characters instead of bytes.

More importantly, byte streams have no knowledge of character sets (sets
of mappings between integer values, known as code points, and symbols,
such as Unicode) and their character encodings (mappings between the
members of a character set and sequences of bytes that encode these
characters for efficiency, such as UTF-8).

A BRIEF HISTORY OF CHARACTER SETS AND CHARACTER ENCODINGS

Early computers and programming languages were created mainly by English-speaking
programmers in countries where English was the native language. They developed a
standard mapping between code points 0 through 127 and the 128 commonly used
characters in the English language (such as A–Z). The resulting character set/encoding was
named American Standard Code for Information Interchange (ASCII).

The problem with ASCII is that it’s inadequate for most non-English languages. For example,
ASCII doesn’t support diacritical marks such as the cedilla used in French. Because a byte
can represent a maximum of 256 different characters, developers around the world started
creating different character sets/encodings that encoded the 128 ASCII characters, but
also encoded extra characters to meet the needs of languages such as French, Greek, and
Russian. Over the years, many legacy (and still important) data files have been created
whose bytes represent characters defined by specific character sets/encodings.

CHAPTER 5: Writers and Readers114

The International Organization for Standardization (ISO) and the International Electrotechnical
Commission (IEC) worked to standardize these 8-bit character sets/encodings under a joint
umbrella standard called ISO/IEC 8859. The result is a series of substandards named ISO/IEC
8859-1, ISO/IEC 8859-2, and so on. For example, ISO/IEC 8859-1 (also known as Latin-1)
defines a character set/encoding that consists of ASCII plus the characters covering most
Western European countries. Also, ISO/IEC 8859-2 (also known as Latin-2) defines a similar
character set/encoding covering Central and Eastern European countries.

Despite the ISO’s/IEC’s best efforts, a plethora of character sets/encodings is still inadequate. For
example, most character sets/encodings only allow you to create documents in a combination
of English and one other language (or a small number of other languages). You cannot, for
example, use an ISO/IEC character set/encoding to create a document using a combination of
English, French, Turkish, Russian, and Greek characters.

This and other problems are being addressed by an international effort that has created
and is continuing to develop Unicode, a single universal character set. Because Unicode
characters are bigger than ISO/IEC characters, Unicode uses one of several variable-
length encoding schemes known as Unicode Transformation Format (UTF) to encode
Unicode characters for efficiency. For example, UTF-8 encodes every character in the
Unicode character set in one to four bytes (and is backward-compatible with ASCII).

Finally, the terms character set and character encoding are often used interchangeably. They
mean the same thing in the context of ISO/IEC character sets in which a code point is the
encoding. However, these terms are different in the context of Unicode in which Unicode is the
character set and UTF-8 is one of several possible character encodings for Unicode characters.

If you need to stream characters, you should take advantage of Java’s writer
and reader classes, which were designed to support character I/O (they
work with char instead of byte). Furthermore, the writer and reader classes
take character encodings into account. Chapter 5 introduces you to Java’s
writer and reader classes.

Writer and Reader Classes Overview
The java.io package provides several writer and reader classes that are
descendants of this package’s abstract Writer and Reader classes. Figure 5-1
reveals the hierarchy of writer classes.

http://dx.doi.org/10.1007/978-1-4842-1565-4_5

CHAPTER 5: Writers and Readers

115

Figure 5-2 reveals the hierarchy of reader classes.

Figure 5-1. Unlike java.io.FilterOutputStream, FilterWriter is abstract

Figure 5-2. Unlike java.io.FilterInputStream, FilterReader is abstract

Although the writer and reader class hierarchies are similar to their
output stream and input stream counterparts, there are differences. For
example, FilterWriter and FilterReader are abstract, whereas their
FilterOutputStream and FilterInputStream equivalents are not abstract.
Also, BufferedWriter and BufferedReader don’t extend FilterWriter
and FilterReader, whereas java.io.BufferedOutputStream and
java.io.BufferedInputStream extend FilterOutputStream and
FilterInputStream.

CHAPTER 5: Writers and Readers116

The output stream and input stream classes were introduced in Java 1.0.
After their release, design issues emerged. For example,
FilterOutputStream and FilterInputStream should have been abstract.
However, it was too late to make these changes because the classes were
already being used; making these changes would have resulted in broken
code. The designers of Java 1.1’s writer and reader classes took the time to
correct these mistakes.

For brevity, I focus only on the Writer, Reader, OutputStreamWriter,
InputStreamReader, FileWriter, FileReader, BufferedWriter, and
BufferedReader classes in this chapter.

Writer and Reader
Java provides the Writer and Reader classes for performing character I/O.
Writer is the superclass of all writer subclasses. The following list identifies
the differences between Writer and java.io.OutputStream:

	Writer declares several append() methods for appending
characters to this writer. These methods exist because
Writer implements the java.lang.Appendable interface,
which is used in partnership with the java.util.Formatter
class (discussed in Chapter 11) to output formatted
strings.

	Writer declares additional write() methods, including a
convenient void write(String str) method for writing
a String object’s characters to this writer.

Note Regarding BufferedWriter and BufferedReader directly subclassing
Writer and Reader instead of FilterWriter and FilterReader, I believe
that this change has to do with performance. Calls to BufferedOutputStream’s
write() methods and BufferedInputStream’s read() methods result in
calls to FilterOutputStream’s write() methods and FilterInputStream’s
read() methods. Because a file I/O activity such as copying one file to another can
involve many write()/read() method calls, you want the best performance
possible. By not subclassing FilterWriter and FilterReader,
BufferedWriter and BufferedReader achieve better performance.

http://dx.doi.org/10.1007/978-1-4842-1565-4_11

CHAPTER 5: Writers and Readers

117

Reader is the superclass of all reader subclasses. The following list identifies
differences between Reader and java.io.InputStream:

	Reader declares read(char[]) and read(char[],
int, int) methods instead of read(byte[]) and
read(byte[], int, int) methods.

	Reader doesn’t declare an available() method.

	Reader declares a boolean ready() method that returns
true when the next read() call is guaranteed not to
block for input.

	Reader declares an int read(CharBuffer target)
method for reading characters from a character buffer.
(I discuss CharBuffer in Chapter 6.)

OutputStreamWriter and InputStreamReader
The concrete OutputStreamWriter class (a Writer subclass) is a bridge
between an incoming sequence of characters and an outgoing stream of
bytes. Characters written to this writer are encoded into bytes according to
the default or specified character encoding.

Note The default character encoding is accessible via the file.encoding
system property.

Each call to one of OutputStreamWriter’s write() methods causes an
encoder to be called on the given character(s). The resulting bytes are
accumulated in a buffer before being written to the underlying output
stream. The characters passed to the write() methods are not buffered.

OutputStreamWriter declares four constructors, including the following pair:

	OutputStreamWriter(OutputStream out) creates a
bridge between an incoming sequence of characters
(passed to OutputStreamWriter via its append() and
write() methods) and the underlying output stream
out. The default character encoding is used to encode
characters into bytes.

http://dx.doi.org/10.1007/978-1-4842-1565-4_6

CHAPTER 5: Writers and Readers118

	OutputStreamWriter(OutputStream out, String
charsetName) creates a bridge between an incoming
sequence of characters (passed to OutputStreamWriter
via its append() and write() methods) and the underlying
output stream out. charsetName identifies the character
encoding used to encode characters into bytes. This
constructor throws java.io.UnsupportedEncodingException
when the named character encoding isn’t supported.

The following example uses the second constructor to create a bridge to an
underlying file output stream so that Polish text can be written to an ISO/IEC
8859-2-encoded file.

FileOutputStream fos = new FileOutputStream("polish.txt");
OutputStreamWriter osw = new OutputStreamWriter(fos, "8859_2");
char ch = '\u0323'; // Accented N.
osw.write(ch);

The concrete InputStreamReader class (a Reader subclass) is a bridge
between an incoming stream of bytes and an outgoing sequence of
characters. Characters read from this reader are decoded from bytes
according to the default or specified character encoding.

Each call to one of InputStreamReader’s read() methods may cause one
or more bytes to be read from the underlying input stream. To enable the
efficient conversion of bytes to characters, more bytes may be read ahead
from the underlying stream than are necessary to satisfy the current read
operation.

InputStreamReader declares four constructors, including the following pair:

	InputStreamReader(InputStream in) creates a
bridge between the underlying input stream in and
an outgoing sequence of characters (returned from
InputStreamReader via its read() methods). The default
character encoding is used to decode bytes into
characters.

Note OutputStreamWriter depends on the abstract java.nio.charset.
Charset and java.nio.charset.CharsetEncoder classes (see Chapter 10)
to perform character encoding.

http://dx.doi.org/10.1007/978-1-4842-1565-4_10

CHAPTER 5: Writers and Readers

119

	InputStreamReader(InputStream in, String
charsetName) creates a bridge between the underlying
input stream in and an outgoing sequence of characters
(returned from InputStreamReader via its read()
methods). charsetName identifies the character encoding
used to decode bytes into characters. This constructor
throws UnsupportedEncodingException when the named
character encoding is not supported.

The following example uses the second constructor to create a bridge to an
underlying file input stream so that Polish text can be read from an ISO/IEC
8859-2-encoded file.

FileInputStream fis = new FileInputStream("polish.txt");
InputStreamReader isr = new InputStreamReader(fis, "8859_2");
char ch = isr.read(ch);

FileWriter and FileReader
FileWriter is a convenience class for writing characters to files. It subclasses
OutputStreamWriter, and its constructors, such as FileWriter(String path),
call OutputStreamWriter(OutputStream). An instance of this class is
equivalent to the following code fragment:

FileOutputStream fos = new FileOutputStream(path);
OutputStreamWriter osw;
osw = new OutputStreamWriter(fos, System.getProperty("file.encoding"));

Note InputStreamReader depends on the abstract Charset and
java.nio.charset.CharsetDecoder classes (see Chapter 10) to perform
character decoding.

Note OutputStreamWriter and InputStreamReader declare a String
getEncoding() method that returns the name of the character encoding in
use. If the encoding has a historical name, that name is returned; otherwise, the
encoding’s canonical name is returned.

http://docs.oracle.com/javase/7/docs/api/java/io/FileWriter.html#FileWriter%28java.lang.String%29
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html#class%20in%20java.lang
http://dx.doi.org/10.1007/978-1-4842-1565-4_10

CHAPTER 5: Writers and Readers120

FileReader is a convenience class for reading characters from files.
It subclasses InputStreamReader, and its constructors, such as
FileReader(String path), call InputStreamReader(InputStream). An
instance of this class is equivalent to the following code fragment:

FileInputStream fis = new FileInputStream(path);
InputStreamReader isr;
isr = new InputStreamReader(fis, System.getProperty("file.encoding"));

Neither FileWriter nor FileReader supply their own methods. Instead, you
call their inherited methods, such as the following:

	void write(String str, int off, int len): Write len
characters of string str starting at zero-based offset
off. Throw java.io.IOException when an I/O error
occurs.

	int read(char[] cbuf, int off, int len): Read len
characters into cbuf starting at zero-based offset off.
Throw IOException when an I/O error occurs.

Listing 5-1 presents a short application that demonstrates FileWriter,
FileReader, and these methods.

Listing 5-1. Demonstrating the FileWriter and FileReader Classes

import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;

public class FWFRDemo
{
 final static String MSG = "Test message";

 public static void main(String[] args) throws IOException
 {
 try (FileWriter fw = new FileWriter("temp"))
 {
 fw.write(MSG, 0, MSG.length());
 }
 char[] buf = new char[MSG.length()];
 try (FileReader fr = new FileReader("temp"))
 {
 fr.read(buf, 0, MSG.length());
 System.out.println(buf);
 }
 }
}

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html#class%20in%20java.lang
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html#class%20in%20java.lang

CHAPTER 5: Writers and Readers

121

FWFRDemo first creates a FileWriter instance connected to a file named
temp. It then invokes void write(String str, int off, int len) to write a
message to this file. The try-with-resources statement automatically closes
the file following this operation.

Next, FWFRDemo creates a buffer for storing a line of text, and then creates
a FileReader instance connected to temp. It then invokes int read(char[]
cbuf, int off, int len) to read the previously written message and output
it to the standard output stream. The file is then closed.

Compile Listing 5-1 as follows:

javac FWFRDemo.java

Run this application as follows:

java FWFRDemo

You should observe the following output (and a file named temp):

Test message

BufferedWriter and BufferedReader
BufferedWriter writes text to a character-output stream (a Writer instance),
buffering characters so as to provide for the efficient writing of single
characters, arrays, and strings. Invoke either of the following constructors to
construct a buffered writer:

	BufferedWriter(Writer out)

	BufferedWriter(Writer out, int size)

The buffer size may be specified, or the default size (8,192 bytes) may be
accepted. The default is large enough for most purposes.

BufferedWriter includes a handy void newLine() method for writing a
line-separator string, which effectively terminates the current line.

BufferedReader reads text from a character-input stream (a Reader instance),
buffering characters so as to provide for the efficient reading of characters,
arrays, and lines. Invoke either of the following constructors to construct a
buffered reader:

	BufferedReader(Reader in)

	BufferedReader(Reader in, int size)

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html#class%20in%20java.lang
http://docs.oracle.com/javase/7/docs/api/java/io/Writer.html#class%20in%20java.io
http://docs.oracle.com/javase/7/docs/api/java/io/Writer.html#class%20in%20java.io
http://docs.oracle.com/javase/7/docs/api/java/io/Reader.html#class%20in%20java.io
http://docs.oracle.com/javase/7/docs/api/java/io/Reader.html#class%20in%20java.io

CHAPTER 5: Writers and Readers122

The buffer size may be specified, or the default size (8,192 bytes) may be
used. The default is large enough for most purposes.

BufferedReader includes a handy String readLine() method for reading a
line of text, not including any line-termination characters.

Listing 5-2 presents a short application that demonstrates BufferedWriter,
BufferedReader, and these methods.

Listing 5-2. Demonstrating the BufferedWriter and BufferedReader Classes

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;

public class BWBRDemo
{
 static String[] lines =
 {
 "It was the best of times, it was the worst of times,",
 "it was the age of wisdom, it was the age of foolishness,",
 "it was the epoch of belief, it was the epoch of incredulity,",
 "it was the season of Light, it was the season of Darkness,",
 "it was the spring of hope, it was the winter of despair."
 };

 public static void main(String[] args) throws IOException
 {
 try (BufferedWriter bw = new BufferedWriter(new FileWriter("temp")))
 {
 for (String line: lines)
 {
 bw.write(line, 0, line.length());
 bw.newLine();
 }
 }
 try (BufferedReader br = new BufferedReader(new FileReader("temp")))
 {
 String line;
 while ((line = br.readLine()) != null)
 System.out.println(line);
 }
 }
}

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html#class%20in%20java.lang

CHAPTER 5: Writers and Readers

123

BWBRDemo first creates a BufferedWriter instance that wraps a created
FileWriter instance that is connected to a file named temp. It then iterates
over the line of strings, writing each line followed by a newline sequence.

Next, BWBRDemo creates a BufferedReader instance that wraps a created
FileReader instance that is connected to temp. It then reads and outputs
each line from the file until readLine() returns null.

Compile Listing 5-2 as follows:

javac BWBRDemo.java

Run this application as follows:

java BWBRDemo

You should observe the following output (and a file named temp):

It was the best of times, it was the worst of times,
it was the age of wisdom, it was the age of foolishness,
it was the epoch of belief, it was the epoch of incredulity,
it was the season of Light, it was the season of Darkness,
it was the spring of hope, it was the winter of despair.

EXERCISES

The following exercises are designed to test your understanding of Chapter 5’s content:

1. Why are Java’s stream classes not good at streaming characters?

2. What does Java provide as the preferred alternative to stream classes
when it comes to character I/O?

3. True or false: Reader declares an available() method.

4. What is the purpose of the OutputStreamWriter class? What is the
purpose of the InputStreamReader class?

5. How do you identify the default character encoding?

6. What is the purpose of the FileWriter class? What is the purpose of
the FileReader class?

http://dx.doi.org/10.1007/978-1-4842-1565-4_5

CHAPTER 5: Writers and Readers124

7. What method does BufferedWriter provide for writing a line
separator?

8. It’s often convenient to read lines of text from standard input, and the
InputStreamReader and BufferedReader classes make this task
possible. Create a Java application named CircleInfo that, after
obtaining a BufferedReader instance that is chained to standard
input, presents a loop that prompts the user to enter a radius, parses
the entered radius into a double value, and outputs a pair of messages
that report the circle’s circumference and area based on this radius.

Summary
Java’s stream classes are good for streaming sequences of bytes, but
they’re not good for streaming sequences of characters because bytes and
characters are two different things. A byte represents an 8-bit data item
and a character represents a 16-bit data item. Also, Java’s char and String
types naturally handle characters instead of bytes. More importantly, byte
streams have no knowledge of character sets and their encodings.

Java provides writer and reader classes to stream characters. They support
character I/O (they work with char instead of byte) and take character
encodings into account. The abstract Writer and Reader classes describe
what it means to be a writer and a reader.

Writer and Reader are subclassed by OutputStreamWriter and
InputStreamReader, which bridge the gap between character and byte
streams. These classes are subclassed by the FileWriter and FileReader
convenience classes, which facilitate writing/reading characters to/from
files. Writer and Reader are also subclassed by BufferedWriter and
BufferedReader, which buffer characters for efficiency.

Chapter 6 presents NIO’s buffer classes.

http://dx.doi.org/10.1007/978-1-4842-1565-4_6

125

Part III
New I/O APIs

127

Chapter 6
Buffers
NIO is based on buffers, whose contents are sent to or received from I/O
services via channels. This chapter introduces you to NIO’s buffer classes.

Introducing Buffers
A buffer is an object that stores a fixed amount of data to be sent to or
received from an I/O service (an operating system component for performing
input/output). It sits between an application and a channel that writes the
buffered data to the service or reads the data from the service and deposits
it into the buffer.

Buffers possess four properties:

	Capacity: The total number of data items that can be
stored in the buffer. The capacity is specified when the
buffer is created and cannot be changed later.

	Limit: The zero-based index of the first element that
should not be read or written. In other words, it identifies
the number of “live” data items in the buffer.

	Position: The zero-based index of the next data item
that can be read or the location where the data item can
be written.

	Mark: A zero-based index to which the buffer’s
position will be reset when the buffer’s reset() method
(presented shortly) is called. The mark is initially
undefined.

CHAPTER 6: Buffers128

These four properties are related as follows: 0 <= mark <= position <= limit
<= capacity

Figure 6-1 reveals a newly created and byte-oriented buffer with a capacity of 7.

770

0 1 2 3 4 5 6 7

mark position limit capacity

Figure 6-1. The logical layout of a byte-oriented buffer includes an undefined mark, a current
position, a limit, and a capacity

Figure 6-1’s buffer can store a maximum of seven elements. The mark is
initially undefined, the position is initially set to 0, and the limit is initially set
to the capacity (7), which specifies the maximum number of bytes that can
be stored in the buffer. You can only access positions 0 through 6. Position
7 lies beyond the buffer.

Buffer and its Children
Buffers are implemented by classes that derive from the abstract
java.nio.Buffer class. Table 6-1 describes Buffer’s methods.

CHAPTER 6: Buffers

129

Table 6-1. Buffer Methods

Method Description

Object array() Return the array that backs this buffer. This method is
intended to allow array-backed buffers to be passed to
native code more efficiently. Concrete subclasses override
this method and provide more strongly typed return
values via covariant return types. This method throws
java.nio.ReadOnlyBufferException when this buffer is
backed by an array but is read-only and throws
java.lang.UnsupportedOperationException when this
buffer isn’t backed by an accessible array.

int arrayOffset() Return the offset of the first buffer element within this
buffer’s backing array. When this buffer is backed by an
array, buffer position p corresponds to array index p +
arrayOffset(). Invoke hasArray() before invoking this
method to ensure that this buffer has an accessible backing
array. This method throws ReadOnlyBufferException when
this buffer is backed by an array but is read-only and
throws UnsupportedOperationException when this buffer
isn’t backed by an accessible array.

int capacity() Return this buffer’s capacity.

Buffer clear() Clear this buffer. The position is set to 0, the limit is set to
the capacity, and the mark is discarded. This method
doesn’t erase the data in the buffer but is named as if it did
because it will most often be used in situations in which
that might as well be the case.

Buffer flip() Flip this buffer. The limit is set to the current position and
then the position is set to 0. When the mark is defined, it’s
discarded.

boolean hasArray() Return true when this buffer is backed by an array and
isn’t read-only; otherwise, return false. When this method
returns true, array() and arrayOffset() may be invoked
safely.

boolean
hasRemaining()

Return true when at least one element remains in this
buffer (that is, between the current position and the limit);
otherwise, return false.

boolean isDirect() Return true when this buffer is a direct byte buffer
(discussed later in this chapter); otherwise, return false.

boolean
isReadOnly()

Return true when this buffer is read-only, otherwise, return
false.

(continued)

CHAPTER 6: Buffers130

Table 6-1 shows that many of Buffer’s methods return Buffer references so
that you can chain instance method calls together. For example, instead of
specifying the following three lines:

buf.mark();
buf.position(2);
buf.reset();

you can more conveniently specify the following line:

buf.mark().position(2).reset();

Table 6-1. (continued)

Method Description

int limit() Return this buffer’s limit.

Buffer limit(int
newLimit)

Set this buffer’s limit to newLimit. When the position is larger
than newLimit, the position is set to newLimit. When the mark
is defined and is larger than newLimit, the mark is discarded.
This method throws java.lang.IllegalArgumentException
when newLimit is negative or larger than this buffer’s capacity;
otherwise, it returns this buffer.

Buffer mark() Set this buffer’s mark to its position and return this buffer.

int position() Return this buffer’s position.

Buffer position
(int newPosition)

Set this buffer’s position to newPosition. When the mark
is defined and is larger than newPosition, the mark is
discarded. This method throws IllegalArgumentException
when newPosition is negative or larger than this buffer’s
current limit; otherwise, it returns this buffer.

int remaining() Return the number of elements between the current
position and the limit.

Buffer reset() Reset this buffer’s position to the previously marked
position. Invoking this method neither changes nor
discards the mark’s value. This method throws
java.nio.InvalidMarkException when the mark hasn’t
been set; otherwise, it returns this buffer.

Buffer rewind() Rewind and then return this buffer. The position is set to 0
and the mark is discarded.

CHAPTER 6: Buffers

131

Table 6-1 also shows that all buffers can be read but not all buffers can be
written—for example, a buffer backed by a memory-mapped file that’s read-
only. You must not write to a read-only buffer; otherwise,
ReadOnlyBufferException is thrown. Call isReadOnly() when you’re unsure
that a buffer is writable before attempting to write to that buffer.

The java.nio package includes several abstract classes that extend Buffer,
one for each primitive type except for Boolean: ByteBuffer, CharBuffer,
DoubleBuffer, FloatBuffer, IntBuffer, LongBuffer, and ShortBuffer.
Furthermore, this package includes MappedByteBuffer as an abstract
ByteBuffer subclass.

Listing 6-1 demonstrates the Buffer class in terms of ByteBuffer, capacity,
limit, position, and remaining elements.

Listing 6-1. Demonstrating a Byte-Oriented Buffer

import java.nio.Buffer;
import java.nio.ByteBuffer;

public class BufferDemo
{
 public static void main(String[] args)
 {
 Buffer buffer = ByteBuffer.allocate(7);
 System.out.println("Capacity: " + buffer.capacity());
 System.out.println("Limit: " + buffer.limit());
 System.out.println("Position: " + buffer.position());
 System.out.println("Remaining: " + buffer.remaining());

Caution Buffers are not thread-safe. You must employ synchronization when
you want to access a buffer from multiple threads.

Note Operating systems perform byte-oriented I/O and you use ByteBuffer
to create byte-oriented buffers that store the bytes to write to a destination or
that are read from a source. The other primitive-type buffer classes let you
create multibyte view buffers (discussed later) so that you can conceptually
perform I/O in terms of characters, double precision floating-point values, 32-bit
integers, and so on. However, the I/O operation is really being carried out as a
flow of bytes.

CHAPTER 6: Buffers132

 System.out.println("Changing buffer limit to 5");
 buffer.limit(5);
 System.out.println("Limit: " + buffer.limit());
 System.out.println("Position: " + buffer.position());
 System.out.println("Remaining: " + buffer.remaining());
 System.out.println("Changing buffer position to 3");
 buffer.position(3);
 System.out.println("Position: " + buffer.position());
 System.out.println("Remaining: " + buffer.remaining());
 System.out.println(buffer);
 }
}

Listing 6-1’s main() method first needs to obtain a buffer. It cannot
instantiate the Buffer class because that class is abstract. Instead, it uses
the ByteBuffer class and its allocate() class method to allocate the
seven-byte buffer shown in Figure 6-1. main() then calls assorted Buffer
methods to demonstrate capacity, limit, position, and remaining elements.

Compile Listing 6-1 as follows:

javac BufferDemo.java

Run the resulting application as follows:

java BufferDemo

You should observe the following output:

Capacity: 7
Limit: 7
Position: 0
Remaining: 7
Changing buffer limit to 5
Limit: 5
Position: 0
Remaining: 5
Changing buffer position to 3
Position: 3
Remaining: 2
java.nio.HeapByteBuffer[pos=3 lim=5 cap=7]

The final output line reveals that the ByteBuffer instance assigned to buffer
is actually an instance of the package-private java.nio.HeapByteBuffer
class.

CHAPTER 6: Buffers

133

Buffers in Depth
The previous discussion of the Buffer class has given you some insight into
NIO buffers. However, there’s much more to explore. This section takes you
deeper into buffers by exploring buffer creation, buffer writing and reading,
buffer flipping, buffer marking, Buffer subclass operations, byte ordering,
and direct buffers.

Buffer Creation
ByteBuffer and the other primitive-type buffer classes declare various class
methods for creating a buffer of that type. For example, ByteBuffer declares
the following class methods for creating ByteBuffer instances:

	ByteBuffer allocate(int capacity): Allocate a new
byte buffer with the specified capacity value. Its position
is 0, its limit is its capacity, its mark is undefined,
and each element is initialized to 0. It has a backing
array, and its array offset is 0. This method throws
IllegalArgumentException when capacity is negative.

	ByteBuffer allocateDirect(int capacity): Allocate
a new direct byte buffer (discussed later) with the
specified capacity value. Its position is 0, its limit is
its capacity, its mark is undefined, and each
element is initialized to 0. Whether or not it has a
backing array is unspecified. This method throws
IllegalArgumentException when capacity is negative.

Before JDK 7, direct buffers allocated via this method
were aligned on a page boundary. In JDK 7, the
implementation changed so that direct buffers are no
longer page-aligned. This should reduce the memory
requirements of applications that create lots of small
buffers. (To learn about an operating system’s paging
memory-management mechanism, which is based on
pages, check out Wikipedia’s “Paging” topic at
https://en.wikipedia.org/wiki/Paging.)

Note Although the primitive-type buffer classes have similar capabilities,
ByteBuffer is the largest and most versatile. After all, bytes are the basic unit
used by operating systems to transfer data items. I’ll therefore use ByteBuffer
to demonstrate most buffer operations. I’ll also use CharBuffer to add variety.

https://en.wikipedia.org/wiki/Paging

CHAPTER 6: Buffers134

	ByteBuffer wrap(byte[] array): Wrap a byte array
into a buffer. The new buffer is backed by array; that
is, modifications to the buffer will cause the array to be
modified and vice versa. The new buffer’s capacity and
limit are set to array.length, its position is set to 0, and
its mark is undefined. Its array offset is 0.

	ByteBuffer wrap(byte[] array, int offset, int
length): Wrap a byte array into a buffer. The new buffer
is backed by array. The new buffer’s capacity is set to
array.length, its position is set to offset, its limit is
set to offset + length, and its mark is undefined. Its
array offset is 0. This method throws java.lang.
IndexOutOfBoundsException when offset is negative or
greater than array.length or when length is negative or
greater than array.length - offset.

These methods show two ways to create a byte buffer: create the
ByteBuffer object and allocate an internal array that stores capacity bytes
or create the ByteBuffer object and use the specified array to store these
bytes. Consider these examples:

ByteBuffer buffer = ByteBuffer.allocate(10);
byte[] bytes = new byte[200];
ByteBuffer buffer2 = ByteBuffer.wrap(bytes);

The first line creates a byte buffer with an internal byte array that stores a
maximum of 10 bytes, and the second and third lines create a byte array
and a byte buffer that uses this array to store a maximum of 200 bytes.

Now consider the following example, which extends the previous example:

buffer = ByteBuffer.wrap(bytes, 10, 50);

This example creates a byte buffer with a position of 10, a limit of 50, and a
capacity of bytes.length (which happens to be 200). Although it appears
that the buffer can only access a subrange of this array, it actually has
access to the entire array: values 10 and 50 are only the starting values for
the position and limit.

ByteBuffers (and other primitive-type buffers) created via allocate() or
wrap() are nondirect byte buffers—you’ll learn about direct byte buffers
later. Nondirect byte buffers have backing arrays, and you can access these
backing arrays via the array() method (which happens to be declared as
byte[] array() in the ByteArray class) as long as hasArray() returns true.
(When hasArray() returns true, you’ll need to call arrayOffset() to obtain
the location of the first data item in the array.)

CHAPTER 6: Buffers

135

Listing 6-2 demonstrates buffer allocation and wrapping.

Listing 6-2. Creating Byte-Oriented Buffers via Allocation and Wrapping

import java.nio.ByteBuffer;

public class BufferDemo
{
 public static void main(String[] args)
 {
 ByteBuffer buffer1 = ByteBuffer.allocate(10);
 if (buffer1.hasArray())
 {
 System.out.println("buffer1 array: " + buffer1.array());
 System.out.println("Buffer1 array offset: " +
 buffer1.arrayOffset());
 System.out.println("Capacity: " + buffer1.capacity());
 System.out.println("Limit: " + buffer1.limit());
 System.out.println("Position: " + buffer1.position());
 System.out.println("Remaining: " + buffer1.remaining());
 System.out.println();
 }

 byte[] bytes = new byte[200];
 ByteBuffer buffer2 = ByteBuffer.wrap(bytes);
 buffer2 = ByteBuffer.wrap(bytes, 10, 50);
 if (buffer2.hasArray())
 {
 System.out.println("buffer2 array: " + buffer2.array());
 System.out.println("Buffer2 array offset: " +
 buffer2.arrayOffset());
 System.out.println("Capacity: " + buffer2.capacity());
 System.out.println("Limit: " + buffer2.limit());
 System.out.println("Position: " + buffer2.position());
 System.out.println("Remaining: " + buffer2.remaining());
 }
 }
}

Compile Listing 6-2 (javac BufferDemo.java) and run this application (java
BufferDemo). You should observe output that is similar to the following:

buffer1 array: [B@659e0bfd
Buffer1 array offset: 0
Capacity: 10
Limit: 10
Position: 0
Remaining: 10

CHAPTER 6: Buffers136

buffer2 array: [B@2a139a55
Buffer2 array offset: 0
Capacity: 200
Limit: 60
Position: 10
Remaining: 50

As well as managing data elements stored in external arrays (via the wrap()
methods), buffers can manage data stored in other buffers. When you create
a buffer that manages another buffer’s data, the created buffer is known as a
view buffer. Changes made in either buffer are reflected in the other.

View buffers are created by calling a Buffer subclass’s duplicate() method.
The resulting view buffer is equivalent to the original buffer; both buffers
share the same data items and have equivalent capacities. However, each
buffer has its own position, limit, and mark. When the buffer being
duplicated is read-only or direct, the view buffer is also read-only or direct.

Consider the following example:

ByteBuffer buffer = ByteBuffer.allocate(10);
ByteBuffer bufferView = buffer.duplicate();

The ByteBuffer instance identified by bufferView shares the same internal
array of 10 elements as buffer. At the moment, these buffers have the same
position, limit, and (undefined) mark. However, these properties in one buffer
can be changed independently of the properties in the other buffer.

View buffers are also created by calling one of ByteBuffer’s asxBuffer()
methods. For example, LongBuffer asLongBuffer() returns a view buffer
that conceptualizes the byte buffer as a buffer of long integers.

Buffer Writing and Reading
ByteBuffer and the other primitive-type buffer classes declare several
overloaded put() and get() methods for writing data items to and reading
data items from a buffer. These methods are absolute when they require an
index argument or relative when they don’t require an index.

Note Read-only view buffers can be created by calling a method such as
ByteBuffer asReadOnlyBuffer(). Any attempt to change a read-only view
buffer’s content results in ReadOnlyBufferException. However, the original
buffer content (provided that it isn’t read-only) can be changed, and the read-only
view buffer will reflect these changes.

CHAPTER 6: Buffers

137

For example, ByteBuffer declares the absolute ByteBuffer put(int index,
byte b) method to store byte b in the buffer at the index value and the
absolute byte get(int index) method to fetch the byte located at position
index. This class also declares the relative ByteBuffer put(byte b) method
to store byte b in the buffer at the current position and then increment the
current position, and the relative byte get() method to fetch the byte
located at the buffer’s current position and increment the current position.

The absolute put() and get() methods throw IndexOutOfBoundsException
when index is negative or greater than or equal to the buffer’s limit. The
relative put() method throws java.nio.BufferOverflowException when the
current position is greater than or equal to the limit, and the relative get()
method throws java.nio.BufferUnderflowException when the current
position is greater than or equal to the limit. Furthermore, the absolute and
relative put() methods throw ReadOnlyBufferException when the buffer is
read-only.

Listing 6-3 demonstrates the relative put() method and the absolute get()
method.

Listing 6-3. Writing Bytes to and Reading Them from a Buffer

import java.nio.ByteBuffer;

public class BufferDemo
{
 public static void main(String[] args)
 {
 ByteBuffer buffer = ByteBuffer.allocate(7);
 System.out.println("Capacity = " + buffer.capacity());
 System.out.println("Limit = " + buffer.limit());
 System.out.println("Position = " + buffer.position());
 System.out.println("Remaining = " + buffer.remaining());

 buffer.put((byte) 10).put((byte) 20).put((byte) 30);

 System.out.println("Capacity = " + buffer.capacity());
 System.out.println("Limit = " + buffer.limit());
 System.out.println("Position = " + buffer.position());
 System.out.println("Remaining = " + buffer.remaining());

 for (int i = 0; i < buffer.position(); i++)
 System.out.println(buffer.get(i));
 }
}

CHAPTER 6: Buffers138

Compile Listing 6-3 (javac BufferDemo.java) and run this application
(java BufferDemo). You should observe the following output:

Capacity = 7
Limit = 7
Position = 0
Remaining = 7
Capacity = 7
Limit = 7
Position = 3
Remaining = 4
10
20
30

Figure 6-2 illustrates the state of the buffer following the three put() method
calls and presented in the previous output.

773

0 1 2 3 4 5 6 7

mark position limit capacity

10 20 30

Figure 6-2. The buffer can store four more data items before reaching its capacity

The subsequent calls to the absolute get() method don’t change the
position, which remains set to 3.

Tip For maximum efficiency, you can perform bulk data transfers by using
the ByteBuffer put(byte[] src), ByteBuffer put(byte[] src,
int offset, int length), ByteBuffer get(byte[] dst), and
ByteBuffer get(byte[] dst, int offset, int length) methods to
write and read an array of bytes.

CHAPTER 6: Buffers

139

Flipping Buffers
After filling a buffer, you must prepare it for draining by a channel. When
you pass the buffer as is, the channel accesses undefined data beyond the
current position.

To solve this problem, you could reset the position to 0, but how would the
channel know when the end of the inserted data had been reached? The
solution is to work with the limit property, which indicates the end of the
active portion of the buffer. Basically, you set the limit to the current position
and then reset the current position to 0.

You could accomplish this task by executing the following code, which also
clears any defined mark:

buffer.limit(buffer.position()).position(0);

However, there’s an easier way to accomplish the same task, as shown here:

buffer.flip();

In either case, the buffer is ready to be drained.

Assuming that buffer.flip(); is executed at the end of Listing 6-3’s main()
method, Figure 6-3 reveals what the buffer state would look like after
calling flip().

730

0 1 2 3 4 5 6 7

mark position limit capacity

10 20 30

Figure 6-3. The buffer is ready to be drained

A call to buffer.remaining() would return 3. This value indicates the
number of bytes available for draining (10, 20, and 30).

Listing 6-4 provides another buffer-flipping demonstration, which uses a
character buffer.

CHAPTER 6: Buffers140

Listing 6-4. Writing Characters to and Reading Them from a Character Buffer

import java.nio.CharBuffer;

public class BufferDemo
{
 public static void main(String[] args)
 {
 String[] poem =
 {
 "Roses are red",
 "Violets are blue",
 "Sugar is sweet",
 "And so are you."
 };

 CharBuffer buffer = CharBuffer.allocate(50);

 for (int i = 0; i < poem.length; i++)
 {
 // Fill the buffer.
 for (int j = 0; j < poem[i].length(); j++)
 buffer.put(poem[i].charAt(j));

 // Flip the buffer so that its contents can be read.
 buffer.flip();

 // Drain the buffer.
 while (buffer.hasRemaining())
 System.out.print(buffer.get());

 // Empty the buffer to prevent BufferOverflowException.
 buffer.clear();

 System.out.println();
 }
 }
}

Compile Listing 6-4 (javac BufferDemo.java) and run this application
(java BufferDemo). You should observe the following output:

Roses are red
Violets are blue
Sugar is sweet
And so are you.

Note rewind() is similar to flip() but ignores the limit. Also, calling
flip() twice doesn’t return you to the original state. Instead, the buffer has
a zero size. Calling a put() method results in BufferOverflowException,
and calling a get() method results in BufferUnderflowException or (in
the case of get(int)), IndexOutOfBoundsException.

CHAPTER 6: Buffers

141

Marking Buffers
You can mark a buffer by invoking the mark() method and later return to
the marked position by invoking reset(). For example, suppose you’ve
executed ByteBuffer buffer = ByteBuffer.allocate(7);, followed by
buffer.put((byte) 10).put((byte) 20).put((byte) 30).put((byte) 40);,
followed by buffer.limit(4);. The current position and limit are set to 4.

Continuing, suppose you execute buffer.position(1).mark().
position(3);. Figure 6-4 reveals the buffer state at this point.

Listing 6-4. Writing Characters to and Reading Them from a Character Buffer

import java.nio.CharBuffer;

public class BufferDemo
{
 public static void main(String[] args)
 {
 String[] poem =
 {
 "Roses are red",
 "Violets are blue",
 "Sugar is sweet",
 "And so are you."
 };

 CharBuffer buffer = CharBuffer.allocate(50);

 for (int i = 0; i < poem.length; i++)
 {
 // Fill the buffer.
 for (int j = 0; j < poem[i].length(); j++)
 buffer.put(poem[i].charAt(j));

 // Flip the buffer so that its contents can be read.
 buffer.flip();

 // Drain the buffer.
 while (buffer.hasRemaining())
 System.out.print(buffer.get());

 // Empty the buffer to prevent BufferOverflowException.
 buffer.clear();

 System.out.println();
 }
 }
}

Compile Listing 6-4 (javac BufferDemo.java) and run this application
(java BufferDemo). You should observe the following output:

Roses are red
Violets are blue
Sugar is sweet
And so are you.

Note rewind() is similar to flip() but ignores the limit. Also, calling
flip() twice doesn’t return you to the original state. Instead, the buffer has
a zero size. Calling a put() method results in BufferOverflowException,
and calling a get() method results in BufferUnderflowException or (in
the case of get(int)), IndexOutOfBoundsException.

7431

0 1 2 3 4 5 6 7

mark position limit capacity

10 20 30 40

Figure 6-4. The mark has been set to position 1

If you sent this buffer to a channel, byte 40 would be sent (the current
position is 3 because of position(3)) and the position would advance to 4.
If you subsequently executed buffer.reset(); and sent this buffer to the
channel, the position would be set to the mark (1) and bytes 20, 30, and 40
(all bytes from the current position to one position below the limit) would be
sent to the channel (and in that order).

Listing 6-5 demonstrates this mark/reset scenario.

CHAPTER 6: Buffers142

Listing 6-5. Marking the Current Buffer Position and Resetting the Current Position to the Marked
Position

import java.nio.ByteBuffer;

public class BufferDemo
{
 public static void main(String[] args)
 {
 ByteBuffer buffer = ByteBuffer.allocate(7);
 buffer.put((byte) 10).put((byte) 20).put((byte) 30).put((byte) 40);
 buffer.limit(4);
 buffer.position(1).mark().position(3);
 System.out.println(buffer.get());
 System.out.println();
 buffer.reset();
 while (buffer.hasRemaining())
 System.out.println(buffer.get());
 }
}

Compile Listing 6-5 (javac BufferDemo.java) and run this application
(java BufferDemo). You should observe the following output:

40
20
30
40

Buffer Subclass Operations
ByteBuffer and the other primitive-type buffer classes declare a compact()
method that’s useful for compacting a buffer by copying all bytes between
the current position and the limit to the beginning of the buffer. The byte at
index p = position() is copied to index 0, the byte at index p + 1 is copied
to index 1, and so on until the byte at index limit() - 1 is copied to index
n = limit() - 1 - p. The buffer’s current position is then set to n + 1 and
its limit is set to its capacity. The mark, when defined, is discarded.

Caution Don’t confuse reset() with clear(). The clear() method marks
a buffer as empty whereas reset() changes the buffer’s current position to
the previously set mark, or throws InvalidMarkException when there’s no
previously set mark.

CHAPTER 6: Buffers

143

You invoke compact() after writing data from a buffer to handle situations
where not all of the buffer’s content is written. Consider the following
example, which copies content from an in channel to an out channel via
buffer buf:

buf.clear(); // Prepare buffer for use
while (in.read(buf) != -1)
{
 buf.flip(); // Prepare buffer for draining.
 out.write(buf); // Write the buffer.
 buf.compact(); // Do this in case of a partial write.
}

The compact() method call moves unwritten buffer data to the beginning
of the buffer so that the next read() method call appends read data to the
buffer’s data instead of overwriting that data when compact() isn’t specified.

You may occasionally need to compare buffers for equality or order. All
Buffer subclasses except for ByteBuffer’s MappedByteBuffer subclass
override the equals() and compareTo() methods to perform these
comparisons—MappedByteBuffer inherits these methods from its ByteBuffer
superclass. The following example shows you how to compare the byte
buffers bytBuf1 and bytBuf2 for equality and ordering:

System.out.println(bytBuf1.equals(bytBuf2));
System.out.println(bytBuf1.compareTo(bytBuf2));

The equals() contract for ByteBuffer states that two byte buffers are equal
if and only if they have the same element type; they have the same number
of remaining elements; and the two sequences of remaining elements,
considered independently of their starting positions, are individually equal.
This contract is the same for the other Buffer subclasses.

The compareTo() method for ByteBuffer states that two byte buffers are
compared for order by comparing their sequences of remaining elements
lexicographically, without regard to the starting position of each sequence
within its corresponding buffer. Pairs of byte elements are compared as if by
invoking Byte.compare(byte, byte). Similar descriptions apply to the other
Buffer subclasses.

Byte Ordering
Nonbyte primitive types except for Boolean (which might be represented
by a bit or by a byte) are composed of several bytes: a character or a
short integer occupies two bytes, a 32-bit integer or a floating-point value
occupies four bytes, and a long integer or a double precision floating-point

CHAPTER 6: Buffers144

value occupies eight bytes. Each value of one of these multibyte types is
stored in a sequence of contiguous memory locations. However, the order of
these bytes can differ from operating system to operating system.

For example, consider 32-bit long integer 0x10203040. This value’s four bytes
could be stored in memory (from low address to high address) as 10, 20, 30,
40; this arrangement is known as big endian order (the most-significant byte,
the “big” end, is stored at the lowest address). Alternatively, these bytes could
be stored as 40, 30, 20, 10; this arrangement is known as little endian order
(the least-significant byte, the “little” end, is stored at the lowest address).

Java provides the java.nio.ByteOrder class to help you deal with byte-
order issues when writing/reading multibyte values to/from a multibyte
buffer. ByteOrder declares a ByteOrder nativeOrder() method that returns
the operating system’s byte order as a ByteOrder instance. Because this
instance is one of ByteOrder’s BIG_ENDIAN and LITTLE_ENDIAN constants,
and because no other ByteOrder instances can be created, you can
compare nativeOrder()’s return value to one of these constants via the ==
or != operator.

Also, each multibyte class (such as FloatBuffer) declares a ByteOrder
order() method that returns the buffer’s byte order. This method returns
ByteOrder.BIG_ENDIAN or ByteOrder.LITTLE_ENDIAN.

The ByteOrder value returned from order() can take on a different value
based on how the buffer was created. If a multibyte buffer (such as a
floating-point buffer) was created by allocation or by wrapping an existing
array, the buffer’s byte order is the native order of the underlying operating
system. However, if a multibyte buffer was created as a view of a byte buffer,
the view buffer’s byte order is that of the byte buffer when the view was
created. The view buffer’s byte order cannot be subsequently changed.

ByteBuffer differs from the multibyte classes when it comes to byte order.
Its default byte order is always big endian, even when the underlying
operating system’s byte order is little endian. ByteBuffer defaults to big
endian because Java’s default byte order is also big endian, which lets
classfiles and serialized objects store data consistently across Java virtual
machines (JVMs).

Because this big endian default can impact performance on little endian
operating systems, ByteBuffer also declares a ByteBuffer order(ByteOrder
bo) method to change the byte buffer’s byte order.

Although it may seem unusual to change the byte order of a byte buffer
(where only single-byte data items are accessed), this method is useful
because ByteBuffer also declares several convenience methods for
writing and reading multibyte values (ByteBuffer putInt(int value) and
int getInt(), for example). These convenience methods write these values

CHAPTER 6: Buffers

145

according to the byte buffer’s current byte order. Furthermore, you can
subsequently call ByteBuffer’s LongBuffer asLongBuffer() or another
asxBuffer() method to return a view buffer whose order will reflect the byte
buffer’s changed byte order.

Direct Byte Buffers
Unlike multibyte buffers, byte buffers can serve as the sources and/or targets
of channel-based I/O. This shouldn’t come as a surprise because operating
systems perform I/O on memory areas that are contiguous sequences of
8-bit bytes (not floating-point values, not 32-bit integers, and so on).

Operating systems can directly access the address space of a process. For
example, an operating system could directly access a JVM process’s
address space to perform a data transfer operation based on a byte array.
However, a JVM might not store the array of bytes contiguously or its
garbage collector might move the byte array to another location. Because of
these limitations, direct byte buffers were created.

A direct byte buffer is a byte buffer that interacts with channels and native
code to perform I/O. The direct byte buffer attempts to store byte elements in
a memory area that a channel uses to perform direct (raw) access via native
code that tells the operating system to drain or fill the memory area directly.

Direct byte buffers are the most efficient means for performing I/O on the
JVM. Although you can also pass nondirect byte buffers to channels, a
performance problem might arise because nondirect byte buffers are not
always able to serve as the target of native I/O operations.

When passed a nondirect byte buffer, a channel might have to create a
temporary direct byte buffer, copy the nondirect byte buffer’s content to the
direct byte buffer, perform the I/O operation on the temporary direct byte
buffer, and copy the temporary direct byte buffer’s content to the nondirect
byte buffer. The temporary direct byte buffer will then be subject to garbage
collection.

Although optimal for I/O, a direct byte buffer can be expensive to create
because memory extraneous to the JVM’s heap will need to be allocated by
the operating system, and setting up/tearing down this memory might take
longer than when the buffer was located within the heap.

After your code is working and should you want to experiment with
performance optimization, you can easily obtain a direct byte buffer by
invoking ByteBuffer’s allocateDirect() method, which I discussed earlier.

CHAPTER 6: Buffers146

EXERCISES

The following exercises are designed to test your understanding of Chapter 6’s content:

1. What is a buffer?

2. Identify a buffer’s four properties.

3. What happens when you invoke Buffer’s array() method on a
buffer backed by a read-only array?

4. What happens when you invoke Buffer’s flip() method on a buffer?

5. What happens when you invoke Buffer’s reset() method on a
buffer where a mark has not been set?

6. True or false: Buffers are thread-safe.

7. Identify the classes that extend the abstract Buffer class.

8. How do you create a byte buffer?

9. Define view buffer.

10. How is a view buffer created?

11. How do you create a read-only view buffer?

12. Identify ByteBuffer’s methods for storing a single byte in a byte
buffer and fetching a single byte from a byte buffer.

13. What causes BufferOverflowException or
BufferUnderflowException to occur?

14. What is the equivalent of executing buffer.flip();?

15. True or false: Calling flip() twice returns you to the original state.

16. What is the difference between Buffer’s clear() and reset()
methods?

17. What does ByteBuffer’s compact() method accomplish?

18. What is the purpose of the ByteOrder class?

19. Define direct byte buffer.

20. How do you obtain a direct byte buffer?

21. Why could it be expensive to create a direct byte buffer?

22. Create a ViewBufferDemo application that populates a byte buffer
with the values 0, 0x6e, 0, 0x69, 0, 0x6f; creates a character view
buffer; and iterates over the view buffer, outputting each character.

http://dx.doi.org/10.1007/978-1-4842-1565-4_6

CHAPTER 6: Buffers

147

Summary
A buffer is an NIO object that stores a fixed amount of data to be sent to or
received from an I/O service. It sits between an application and a channel
that writes the buffered data to the service or reads the data from the service
and deposits it into the buffer.

Buffers possess capacity, limit, position, and mark properties. These four
properties are related as follows: 0 <= mark <= position <= limit <= capacity.

Buffers are implemented by abstract classes that derive from the abstract
Buffer class. These classes include ByteBuffer, CharBuffer, DoubleBuffer,
FloatBuffer, IntBuffer, LongBuffer, and ShortBuffer. Furthermore,
ByteBuffer is subclassed by the abstract MappedByteBuffer class.

In this chapter, you learned how to create buffers (including view buffers),
write and read buffer contents, flip buffers, mark buffers, and perform
additional operations on buffers such as compaction. You also learned
about byte ordering and direct byte buffers.

Chapter 7 presents NIO’s channel types.

http://dx.doi.org/10.1007/978-1-4842-1565-4_7

149

Chapter 7
Channels
Channels partner with buffers to achieve high-performance I/O. This chapter
introduces you to NIO’s channel types.

Introducing Channels
A channel is an object that represents an open connection to a hardware
device, a file, a network socket, an application component, or another entity
that’s capable of performing writes, reads, and other I/O operations.
Channels efficiently transfer data between byte buffers and operating
system-based I/O service sources or destinations.

There often exists a one-to-one correspondence between an operating
system file handle or file descriptor and a channel. When you work with
channels in a file context, the channel will often be connected to an open file
descriptor. Despite channels being more abstract than file descriptors, they
are still capable of modeling an operating system’s I/O facilities.

Channel and Its Children
Java supports channels via its java.nio.channels and java.nio.channels.spi
packages. Applications interact with the types located in the former package;
developers who are defining new selector providers work with the latter
package. (I will discuss selectors in the next chapter.)

Note Channels are gateways through which I/O services are accessed.
Channels use byte buffers as the endpoints for sending and receiving data.

CHAPTER 7: Channels150

All channels are instances of classes that ultimately implement the
java.nio.channels.Channel interface. Channel declares the following methods:

	void close(): Close this channel. When this channel is
already closed, invoking close() has no effect. When
another thread has already invoked close(), a new
close() invocation blocks until the first invocation
finishes, after which close() returns without effect. This
method throws java.io.IOException when an I/O error
occurs. After the channel is closed, any further attempts
to invoke I/O operations on it result in java.nio.
channels.ClosedChannelException being thrown.

	boolean isOpen(): Return this channel’s open status.
This method returns true when the channel is open;
otherwise, it returns false.

These methods indicate that only two operations are common to all
channels: close the channel and determine whether the channel is open
or closed. To support I/O, Channel is extended by the java.nio.channels.
WritableByteChannel and java.nio.channels.ReadableByteChannel
interfaces:

	WritableByteChannel declares an abstract int
write(ByteBuffer buffer) method that writes a sequence
of bytes from buffer to the current channel. This method
returns the number of bytes actually written. It throws
java.nio.channels.NonWritableChannelException
when the channel was not opened for writing, java.nio.
channels.ClosedChannelException when the channel is
closed, java.nio.channels.AsynchronousCloseException
when another thread closes the channel during the write,
java.nio.channels.ClosedByInterruptException when
another thread interrupts the current thread while the
write operation is in progress (thereby closing the channel
and setting the current thread’s interrupt status), and
IOException when some other I/O error occurs.

	ReadableByteChannel declares an abstract int
read(ByteBuffer buffer) method that reads bytes from
the current channel into buffer. This method returns the
number of bytes actually read (or -1 when there are no
more bytes to read). It throws java.nio.channels.
NonReadableChannelException when the channel was
not opened for reading; ClosedChannelException when
the channel is closed; AsynchronousCloseException

CHAPTER 7: Channels

151

when another thread closes the channel during the read;
ClosedByInterruptException when another thread
interrupts the current thread while the write operation is
in progress, thereby closing the channel and setting the
current thread’s interrupt status; and IOException when
some other I/O error occurs.

Channel is also extended by the java.nio.channels.InterruptibleChannel
interface. InterruptibleChannel describes a channel that can be
asynchronously closed and interrupted. This interface overrides its
Channel superinterface’s close() method header, presenting the
following additional stipulation to Channel’s contract for this method: Any
thread currently blocked in an I/O operation on this channel will receive
AsynchronousCloseException (an IOException descendent).

A channel that implements this interface is asynchronously closeable: When
a thread is blocked in an I/O operation on an interruptible channel, another
thread may invoke the channel’s close() method. This causes the blocked
thread to receive a thrown AsynchronousCloseException instance.

A channel that implements this interface is also interruptible: When a
thread is blocked in an I/O operation on an interruptible channel, another
thread may invoke the blocked thread’s interrupt() method. Doing this
causes the channel to be closed, the blocked thread to receive a thrown
ClosedByInterruptException instance, and the blocked thread to have its
interrupt status set. (When a thread’s interrupt status is already set and it
invokes a blocking I/O operation on a channel, the channel is closed and
the thread will immediately receive a thrown ClosedByInterruptException
instance; its interrupt status will remain set.)

Note A channel whose class implements only WritableByteChannel or
ReadableByteChannel is unidirectional. Attempting to read from a writable
byte channel or write to a readable byte channel results in a thrown exception.

You can use the instanceof operator to determine if a channel instance
implements either interface. Because it’s somewhat awkward to test for both
interfaces, Java supplies the java.nio.channels.ByteChannel interface,
which is an empty marker interface that subtypes WritableByteChannel and
ReadableByteChannel. When you need to learn whether or not a channel is
bidirectional, it’s more convenient to specify an expression such as channel
instanceof ByteChannel.

CHAPTER 7: Channels152

NIO’s designers chose to shut down a channel when a blocked thread is
interrupted because they couldn’t find a way to reliably handle interrupted
I/O operations in the same manner across operating systems. The only way
to guarantee deterministic behavior was to shut down the channel.

In Chapter 6, you learned that you must call a class method on a java.nio.
Buffer subclass to obtain a buffer. Regarding channels, there are two ways
to obtain a channel:

	The java.nio.channels package provides a Channels
utility class that offers two methods for obtaining
channels from streams. For each of the following
methods, the underlying stream is closed when the
channel is closed, and the channel isn’t buffered:

	WritableByteChannel newChannel(OutputStream
outputStream) returns a writable byte channel for
the given outputStream.

	ReadableByteChannel newChannel(InputStream
inputStream) returns a readable byte channel for
the given inputStream.

	Various classic I/O classes have been retrofitted
to support channel creation. For example,
java.io.RandomAccessFile declares a FileChannel
getChannel() method for returning a file channel,
and java.net.Socket declares a SocketChannel
getChannel() method for returning a socket channel.

Listing 7-1 uses the Channels class to obtain channels for the standard input
and output streams and then uses these channels to copy bytes from the
input channel to the output channel.

Listing 7-1. Copying Bytes from an Input Channel to an Output Channel

import java.io.IOException;

import java.nio.ByteBuffer;

import java.nio.channels.Channels;
import java.nio.channels.ReadableByteChannel;
import java.nio.channels.WritableByteChannel;

Tip You can determine whether or not a channel supports asynchronous
closing and interruption by using the instanceof operator in an expression
such as channel instanceof InterruptibleChannel.

http://dx.doi.org/10.1007/978-1-4842-1565-4_6

CHAPTER 7: Channels

153

public class ChannelDemo
{
 public static void main(String[] args)
 {
 ReadableByteChannel src = Channels.newChannel(System.in);
 WritableByteChannel dest = Channels.newChannel(System.out);

 try
 {
 copy(src, dest); // or copyAlt(src, dest);
 }
 catch (IOException ioe)
 {
 System.err.println("I/O error: " + ioe.getMessage());
 }
 finally
 {
 try
 {
 src.close();
 dest.close();
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 }
 }

 static void copy(ReadableByteChannel src, WritableByteChannel dest)
 throws IOException
 {
 ByteBuffer buffer = ByteBuffer.allocateDirect(2048);
 while (src.read(buffer) != -1)
 {
 buffer.flip();
 dest.write(buffer);
 buffer.compact();
 }
 buffer.flip();
 while (buffer.hasRemaining())
 dest.write(buffer);
 }

 static void copyAlt(ReadableByteChannel src, WritableByteChannel dest)
 throws IOException
 {
 ByteBuffer buffer = ByteBuffer.allocateDirect(2048);
 while (src.read(buffer) != -1)

CHAPTER 7: Channels154

 {
 buffer.flip();
 while (buffer.hasRemaining())
 dest.write(buffer);
 buffer.clear();
 }
 }
}

Listing 7-1 presents two approaches to copying bytes from the standard
input stream to the standard output stream. In the first approach, which is
exemplified by the copy() method, the goal is to minimize operating system
I/O calls (via the write() method calls), although more data may end up
being copied as a result of the compact() method calls. In the second
approach, as demonstrated by copyAlt(), the goal is to eliminate data
copying, although more operating system I/O calls might occur.

The copy() and copyAlt() methods first allocate a direct byte buffer (recall
that a direct byte buffer is the most efficient means for performing I/O on
the Java virtual machine [JVM]) and enter a while loop that continually
reads bytes from the source channel until end-of-input (read() returns -1).
Following the read, the buffer is flipped so that it can be drained. Here is
where the methods diverge.

	The copy() method while loop makes a single call to
write(). Because write() might not completely drain
the buffer, compact() is called to compact the buffer
before the next read. Compaction ensures that unwritten
buffer content isn’t overwritten during the next read
operation. Following the while loop, copy() flips the
buffer in preparation for draining any remaining content,
and then works with hasRemaining() and write() to
completely drain the buffer.

	The copyAlt() method while loop contains a nested
while loop that works with hasRemaining() and write()
to continue draining the buffer until the buffer is empty.
This is followed by a clear() method call, which
empties the buffer so that it can be filled on the next
read() call.

Note It’s important to realize that a single write() method call may not
output the entire content of a buffer. Similarly, a single read() call may not
completely fill a buffer.

CHAPTER 7: Channels

155

Compile Listing 7-1 as follows:

javac ChannelDemo.java

Run the resulting application as follows:

java ChannelDemo
java ChannelDemo <ChannelDemo.java >ChannelDemo.bak

The first command line copies the standard input to the standard output.
The second command line copies the contents of ChannelDemo.java to
ChannelDemo.bak. After testing the copy() method, replace copy(src, dest);
with copyAlt(src, dest); and repeat.

Channels in Depth
The previous discussion of the Channel interface and its direct descendants has
given you some insight into channels. However, there’s much more to explore.
This section takes you deeper into channels by exploring scatter/gather I/O,
file channels, socket channels, and pipes.

Scatter/Gather I/O
Channels provide the ability to perform a single I/O operation across multiple
buffers. This capability is known as scatter/gather I/O (and is also known as
vectored I/O).

In the context of a write operation, the contents of several buffers are
gathered (drained) in sequence and then sent through the channel to a
destination. These buffers are not required to have identical capacities. In
the context of a read operation, the contents of a channel are scattered
(filled) to multiple buffers in sequence; each buffer is filled to its limit until the
channel is empty or until the total buffer space is used.

Note Modern operating systems provide APIs that support vectored I/O to
eliminate (or at least reduce) system calls or buffer copies, and hence improve
performance. For example, the Win32/Win64 APIs provide ReadFileScatter()
and WriteFileGather() functions for this purpose.

CHAPTER 7: Channels156

Java provides the java.nio.channels.ScatteringByteChannel interface
to support scattering and the java.nio.channels.GatheringByteChannel
interface to support gathering.

ScatteringByteChannel offers the following methods:

	long read(ByteBuffer[] buffers, int offset,
int length)

	long read(ByteBuffer[] buffers)

GatheringByteChannel offers the following methods:

	long write(ByteBuffer[] buffers, int offset,
int length)

	long write(ByteBuffer[] buffers)

The first read() method and the first write() method let you identify the
first buffer to read/write by passing a zero-based offset to offset, and the
number of buffers to read/write by passing a value to length. The second
read() method and the second write() method read and write all buffers in
sequence.

Listing 7-2 demonstrates read(ByteBuffer[] buffers) and
write(ByteBuffer[] buffers).

Listing 7-2. Demonstrating Scatter/Gather

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

import java.nio.ByteBuffer;

import java.nio.channels.Channels;
import java.nio.channels.GatheringByteChannel;
import java.nio.channels.ReadableByteChannel;
import java.nio.channels.ScatteringByteChannel;

public class ChannelDemo
{
 public static void main(String[] args) throws IOException
 {
 ScatteringByteChannel src;
 FileInputStream fis = new FileInputStream("x.dat");
 src = (ScatteringByteChannel) Channels.newChannel(fis);
 ByteBuffer buffer1 = ByteBuffer.allocateDirect(5);
 ByteBuffer buffer2 = ByteBuffer.allocateDirect(3);
 ByteBuffer[] buffers = { buffer1, buffer2 };
 src.read(buffers);

CHAPTER 7: Channels

157

 buffer1.flip();
 while (buffer1.hasRemaining())
 System.out.println(buffer1.get());
 System.out.println();
 buffer2.flip();
 while (buffer2.hasRemaining())
 System.out.println(buffer2.get());
 buffer1.rewind();
 buffer2.rewind();
 GatheringByteChannel dest;
 FileOutputStream fos = new FileOutputStream("y.dat");
 dest = (GatheringByteChannel) Channels.newChannel(fos);
 buffers[0] = buffer2;
 buffers[1] = buffer1;
 dest.write(buffers);
 }
}

Listing 7-2’s main() method first obtains a scattering byte channel by
instantiating java.io.FileInputStream and passing this instance to the
Channels class’s ReadableByteChannel newChannel(InputStream
inputStream) method. The returned ReadableByteChannel instance is cast
to ScatteringByteChannel because this instance is actually a file channel
(discussed later) that implements ScatteringByteChannel.

Next, main() creates a couple of direct byte buffers; the first buffer has a
capacity of five bytes and the second buffer has a capacity of three bytes.
These buffers are subsequently stored in an array and this array is passed to
read(ByteBuffer[]) to fill them.

After filling the buffers, main() flips them so that it can output their contents
to standard output. After these contents have been output, the buffers are
rewound in preparation for being drained via a gather operation.

main() now obtains a gathering byte channel by instantiating
java.io.FileOutputStream and passing this instance to the Channels class’s
WritableByteChannel newChannel(OutputStream outputStream) method.
The returned WritableByteChannel instance is cast to GatheringByteChannel
because this instance is actually a file channel (discussed later) that
implements GatheringByteChannel.

Finally, main() assigns these buffers to the buffers array in reverse order to
how they were originally assigned, and then passes this array to
write(ByteBuffer[]) to drain them.

Create a file named x.dat and store the following text in this file:

12345abcdefg

CHAPTER 7: Channels158

Now compile Listing 7-2 (javac ChannelDemo.java) and run this application
(java ChannelDemo). You should observe the following Unicode values for the
first eight characters:

49
50
51
52
53

97
98
99

Additionally, you should observe a newly created y.dat file with the following
content:

abc12345

File Channels
I previously mentioned that RandomAccessFile declares a FileChannel
getChannel() method for returning a file channel instance, which
describes an open connection to a file. It turns out that FileInputStream
and FileOutputStream also provide the same method. In contrast,
java.io.FileReader and java.io.FileWriter don’t offer a way to obtain
a file channel.

The abstract java.nio.channels.FileChannel class describes a file channel.
Because this class implements the InterruptibleChannel interface, file
channels are interruptible. Because this class implements the ByteChannel,
GatheringByteChannel, and ScatteringByteChannel interfaces, you can write
to, read from, and perform scatter/gather I/O on underlying files. However,
there’s more.

Caution The file channel returned from FileInputStream’s getChannel()
method is read-only, and the file channel returned from FileOutputStream’s
getChannel() method is write-only. Attempting to write to a read-only file
channel or read from a write-only file channel results in an exception.

Note Unlike buffers, which are not thread-safe, file channels are thread-safe.

CHAPTER 7: Channels

159

A file channel maintains a current position into the file, which FileChannel
lets you obtain and change. It also lets you request that cached data be
forced to the disk, read/write file content, obtain the size of the file underlying
the channel, truncate a file, attempt to lock the entire file or just a region
of the file, perform memory-mapped file I/O, and transfer data directly to
another channel in a manner that has the potential to be optimized by the
operating system.

Table 7-1 describes a few of FileChannel’s methods.

Table 7-1. FileChannel Methods

Method Description

void force(boolean
metadata)

Request that all updates to this file channel be
committed to the storage device. When this method
returns, all modifications made to the file underlying
this channel have been committed when the file
resides on a local storage device. However, when the
file isn’t hosted locally (it’s on a networked file system,
for example), applications cannot be certain that the
modifications have been committed. (No assurances
are given that changes made to the file using methods
defined elsewhere will be committed. For example,
changes made via a mapped byte buffer may not be
committed.)

The metadata value indicates whether the update
should include the file’s metadata (such as last
modification time and last access time), when true is
passed, or not include the file’s metadata, when false
is passed. Passing true may invoke an underlying
write to the operating system
(if the operating system is maintaining metadata, such
as last access time), even when the channel is opened
as a read-only channel.

This method throws ClosedChannelException when
the channel is already closed and throws IOException
when any other I/O error occurs.

long position() Return the current zero-based file position
maintained by this file channel. This method throws
ClosedChannelException when the file channel is
closed and IOException when another I/O error occurs.

(continued)

CHAPTER 7: Channels160

Method Description

FileChannel
position(long
newPosition)

Set this file channel’s current file position to
newPosition. The argument is the number of bytes
counted from the start of the file. The position cannot be
set to a negative value. However, it can be set beyond
the current file size. If it’s set beyond the current file size,
attempts to read will return end of file. Write operations
will succeed, but they will fill the bytes between the
current end of file and the new position with the required
number of (unspecified) byte values. This method
throws java.lang.IllegalArgumentException when
offset is negative, ClosedChannelException when the
file channel is closed, and IOException when another
I/O error occurs.

int
read(ByteBuffer buffer)

Read bytes from this file channel into the given buffer.
The maximum number of bytes that will be read is
the remaining number of bytes in the buffer when the
method is invoked. The bytes will be copied into the
buffer starting at the buffer’s current position. The call
may block when other threads are also attempting to
read from this channel. Upon completion, the buffer’s
position is set to the end of the bytes that have been
read. The buffer’s limit isn’t changed. This method
returns the number of bytes actually read and throws
the same exceptions as previously discussed regarding
ReadableByteChannel.

int read(ByteBuffer
dst, long position)

Equivalent to the previous method except that
bytes are read starting at the specified file position.
IllegalArgumentException is thrown when position
is negative.

long size() Return the size (in bytes) of the file underlying this file
channel. This method throws ClosedChannelException
when the file channel is closed and IOException when
another I/O error occurs.

Table 7-1. (continued)

(continued)

http://c/Program%20Files/Java/jdk1.8.0/docs/api/java/nio/ByteBuffer.html#class%20in%20java.nio

CHAPTER 7: Channels

161

The force(boolean) method ensures that all changes made to a file residing
in the local file system and since this method was previously invoked are
written to the disk. This capability is vital for critical tasks such as transaction
processing, where you must maintain data integrity and ensure reliable
recovery. However, this guarantee doesn’t apply to remote file systems.

Passing true to force(boolean) results in metadata (last modification time,
access permissions, and so on) also being synchronized to the disk.
Because metadata isn’t usually critical to file recovery, you can often pass
false and gain a small performance increase because an extra I/O operation
isn’t required to output the metadata.

FileChannel objects support the concept of a current file position, which
determines the location where the next data item will be read from or
written to. The position() method returns the current position and the
position(long newPosition) method sets the current position to
newPosition. The value passed to newPosition must be non-negative or
IllegalArgumentException will be thrown.

Method Description

FileChannel
truncate(long size)

Truncate the file underlying this file channel to size.
Any bytes beyond the given size are removed from
the file. When there are no bytes beyond the given
size, the file contents are unmodified. When the
current file position is greater than the given size, it’s
set to size.

int write(ByteBuffer
buffer)

Write a sequence of bytes to this file channel from
the given buffer. Bytes are written starting at the
channel’s current file position unless the channel is in
append mode, in which case the position is first
advanced to the end of the file. The file is grown (when
necessary) to accommodate the written bytes, and
then the file position is updated with the number of
bytes actually written. Otherwise this method behaves
exactly as specified by the WritableByteChannel
interface. This method returns the number of bytes
actually written and throws the same exceptions as
previously discussed regarding WritableByteChannel.

int write(ByteBuffer
src, long position)

Equivalent to the previous method except that bytes
are written starting at the specified file position.
IllegalArgumentException is thrown when position
is negative.

Table 7-1. (continued)

http://c/Program%20Files/Java/jdk1.8.0/docs/api/java/nio/ByteBuffer.html#class%20in%20java.nio

CHAPTER 7: Channels162

There are two forms of the read() and write() methods. The relative forms
don’t take position arguments and ensure that the current file position is
updated after a call to either method. The absolute forms of these methods
take a position argument and don’t update the position. Absolute reads and
writes can be more efficient because the channel’s state doesn’t need to be
updated.

If you attempt to perform an absolute read past the end of a file, which
size() returns, -1 is returned to signify end of file. Attempting to perform an
absolute write past the end of a file causes the file to grow to accommodate
the bytes being written. The values of the bytes located between the
previous end of file and the first newly written byte are file system-specific
and may constitute a hole.

A hole occurs in a file when the amount of disk space allocated for the file
is smaller than the file’s size. Modern file systems typically allocate space
only for data that’s written to the file. When data is written to noncontiguous
areas, holes can appear. When the file is read, holes typically appear to be
zero-filled but don’t take up disk space.

The truncate(long size) method is useful for reducing a file’s size. This
method truncates all data beyond the specified size. When the file’s size is
greater than the specified size, all bytes past the specified size are
discarded. When the specified size is greater than or equal to the current
size, the file isn’t changed.

Listing 7-3 demonstrates various methods from Table 7-1.

Listing 7-3. Demonstrating a File Channel

import java.io.IOException;
import java.io.RandomAccessFile;

import java.nio.ByteBuffer;

import java.nio.channels.FileChannel;

public class ChannelDemo
{
 public static void main(String[] args) throws IOException
 {
 RandomAccessFile raf = new RandomAccessFile("temp", "rw");
 FileChannel fc = raf.getChannel();
 long pos;
 System.out.println("Position = " + (pos = fc.position()));
 System.out.println("size: " + fc.size());
 String msg = "This is a test message.";
 ByteBuffer buffer = ByteBuffer.allocateDirect(msg.length() * 2);
 buffer.asCharBuffer().put(msg);

CHAPTER 7: Channels

163

 fc.write(buffer);
 fc.force(true);
 System.out.println("position: " + fc.position());
 System.out.println("size: " + fc.size());
 buffer.clear();
 fc.position(pos);
 fc.read(buffer);
 buffer.flip();
 while (buffer.hasRemaining())
 System.out.print(buffer.getChar());
 }
}

Listing 7-3’s main() method first creates a randomly-accessible file named
temp for writing and reading. It then obtains a file channel for communicating
with this file and reports the file channel’s current position and the file’s size,
which are both 0 for a newly created file.

main() next allocates a direct byte buffer for storing a message to be written
to the file, treats this buffer as a character buffer, and calls the character
buffer’s put() method to store the message in the buffer, which is then
output to the file.

main() now calls force(true) to recommend to the underlying operating
system that the data be committed to the underlying storage device.

After reporting the new current position and file size, main() clears the
buffer, resets the file position to where it was before the message was
written, and reads the previously written content back into the buffer. It then
flips the buffer and outputs its contents.

Compile Listing 7-3 (javac ChannelDemo.java) and run this application (java
ChannelDemo). You should observe the following output:

Position = 0
size: 0
position: 46
size: 46
This is a test message.

On subsequent runs, the presence of a file named temp will change the
output to the following:

Position = 0
size: 46
position: 46
size: 46
This is a test message.

CHAPTER 7: Channels164

Locking Files
The ability to lock all or part of a file was an important but missing feature
from Java until Java 1.4 arrived. This capability lets a JVM process prevent
other processes from accessing all or part of a file until it’s finished with the
entire file or part of the file.

Although an entire file can be locked, it’s often desirable to lock a smaller
region. For example, a database management system might lock individual
table rows that are being updated instead of locking the entire table so that
read requests can be honored, which improves throughput.

Locks that are associated with files are known as file locks. Each file lock
starts at a certain byte position in the file and has a specific length (in bytes)
from this position. Together, they define the region governed by the lock. File
locks let processes coordinate access to various regions in a file.

There are two kinds of file locks: exclusive and shared. An exclusive lock
gives a single writer process access to a file region; it prohibits additional file
locks from being applied simultaneously to the region. A shared lock gives
one of multiple reader processes access to the same file region; it does not
prohibit other shared locks but does prohibit an exclusive lock from being
applied simultaneously to the region.

Exclusive and shared locks are commonly used in scenarios where a shared
file is primarily read and occasionally updated. A process that needs to
read from the file acquires a shared lock to the entire file or to the desired
subregion. A second process that also needs to read from the file acquires
a shared lock to the desired region. Both processes can read the file without
interfering with each other.

Suppose a third process wants to perform updates. To do so, it would
request an exclusive lock. The process would block until all exclusive or
shared locks that overlap with its region were released. Once the exclusive
lock was granted to the updater process, any reader process requesting a
shared lock would block until the exclusive lock was released. The updater
process could then update the file without the reader processes observing
inconsistent data.

CHAPTER 7: Channels

165

There are a couple more items to keep in mind regarding file locking:

	When an operating system doesn’t support shared
locks, a shared lock request is quietly promoted to a
request for an exclusive lock. Although correctness is
assured, performance may be impacted.

	Locks are applied on a per-file basis. They are not applied
on a per-thread or per-channel basis. Two threads
running on the same JVM that request, via different
channels, an exclusive lock to the same file region are
granted access. However, if these threads were running
on different JVMs, the second thread would block. Locks
are ultimately arbitrated by the operating system’s file
system, and almost always at the process level. They are
not arbitrated at the thread level. Locks associate with
files and not with file handles or channels.

FileChannel declares four methods for obtaining exclusive and shared locks:

	FileLock lock(): Obtain an exclusive lock on this file
channel’s underlying file. This convenience method is
equivalent to executing fileChannel.lock(0L, Long.
MAX_VALUE, false);, where fileChannel references a
file channel.

This method returns a java.nio.channels.FileLock
object representing the locked area. It throws
ClosedChannelException when the file channel is closed;
NonWritableChannelException when the channel isn’t open for
writing; java.nio.channels.OverlappingFileLockException
when either a lock that overlaps the requested region is
already held by this JVM, or another thread is already
blocked in this method and is attempting to lock an
overlapping region of the same file; java.nio.channels.
FileLockInterruptionException when the calling thread
was interrupted while waiting to acquire the lock;
AsynchronousCloseException when the channel was closed
while the calling thread was waiting to acquire the lock;
and IOException when some other I/O error occurs while
obtaining the requested lock.

	FileLock lock(long position, long size, boolean
shared): This method is similar to the previous method
except that it attempts to acquire a lock on the given
region of this channel’s file. Pass non-negative values to
position and size to delimit the region. Pass true
to shared to request a shared lock and false to shared
to request an exclusive lock.

CHAPTER 7: Channels166

	FileLock tryLock(): Attempt to obtain an exclusive
lock on this file channel’s underlying file without
blocking. This convenience method is equivalent to
executing fileChannel.tryLock(0L, Long.MAX_VALUE,
false); where fileChannel references a file channel.

This method returns a FileLock object representing the
locked area or null when the lock would overlap with an
existing exclusive lock in another operating system
process. It throws ClosedChannelException when the file
channel is closed; OverlappingFileLockException when a
lock that overlaps the requested region is already held by
this JVM, or when another thread is already blocked in this
method and is attempting to lock an overlapping region;
and IOException when some other I/O error occurs while
obtaining the requested lock.

	FileLock tryLock(long position, long size, boolean
shared): This method is similar to the previous method
except that it attempts to acquire a lock on the given
region of this channel’s file. Pass non-negative values
to position and size to delimit the region. Pass true to
shared to request a shared lock and false to shared to
request an exclusive lock.

The lock()methods block when the desired region to be locked is already
locked (unless both locks are shared locks). In contrast, the tryLock()
methods return immediately with a null value (when the lock would overlap
with an existing exclusive lock in another operating system process).

Each method returns a FileLock instance, which encapsulates a locked
region in the file. FileLock’s methods are described next:

	FileChannel channel(): Return the file channel on
whose file this lock was acquired or null when the lock
wasn’t acquired by a file channel.

	void close(): Invoke the release() method to release
the lock.

	boolean isShared(): Return true to identify the lock as
a shared lock or false to identify it as an exclusive lock.

	boolean isValid(): Return true to identify a valid lock;
otherwise, return false. A lock is valid until it’s released
or the associated file channel is closed, whichever
comes first.

CHAPTER 7: Channels

167

	boolean overlaps(long position, long size): Indicate
whether (return true) or not (return false) this lock’s
region overlaps the region described in the parameter
list.

	long position(): Return the position within the file of
the first byte of the locked region. A locked region doesn’t
need to be contained within or even overlap the underlying
file, so the value returned by this method may exceed
the file’s current size.

	void release(): Release this lock. If this lock object is
valid, invoking this method releases the lock and renders
the object invalid. If this lock object is invalid, invoking
this method has no effect.

	long size(): Return the length of the file lock (in bytes).

	String toString(): Return a string describing the range,
type, and validity of this lock.

A FileLock instance is associated with a FileChannel instance but the file
lock represented by the FileLock instance associates with the underlying file
and not with the file channel. Without care, you can run into conflicts (and
possibly even a deadlock) when you don’t release a file lock after you’re
finished using it. To avoid these problems, you should adopt a pattern such
as the following one to ensure that the file lock is always released:

FileLock lock = fileChannel.lock();
try
{
 // interact with the file channel
}
catch (IOException ioe)
{
 // handle the exception
}
finally
{
 lock.release();
}

I’ve created an application that demonstrates file locking. It follows this
pattern to ensure that the lock is released. Listing 7-4 presents its source
code.

CHAPTER 7: Channels168

Listing 7-4. Demonstrating File Locking

import java.io.IOException;
import java.io.RandomAccessFile;

import java.nio.ByteBuffer;
import java.nio.IntBuffer;

import java.nio.channels.FileChannel;
import java.nio.channels.FileLock;

public class ChannelDemo
{
 final static int MAXQUERIES = 150000;
 final static int MAXUPDATES = 150000;

 final static int RECLEN = 16;

 static ByteBuffer buffer = ByteBuffer.allocate(RECLEN);
 static IntBuffer intBuffer = buffer.asIntBuffer();

 static int counter = 1;

 public static void main(String[] args) throws IOException
 {
 boolean writer = false;
 if (args.length != 0)
 writer = true;
 RandomAccessFile raf = new RandomAccessFile("temp",
 (writer) ? "rw" : "r");
 FileChannel fc = raf.getChannel();
 if (writer)
 update(fc);
 else
 query(fc);
 }

 static void query(FileChannel fc) throws IOException
 {
 for (int i = 0; i < MAXQUERIES; i++)
 {
 System.out.println("acquiring shared lock");
 FileLock lock = fc.lock(0, RECLEN, true);
 try
 {
 buffer.clear();
 fc.read(buffer, 0);
 int a = intBuffer.get(0);
 int b = intBuffer.get(1);

CHAPTER 7: Channels

169

 int c = intBuffer.get(2);
 int d = intBuffer.get(3);
 System.out.println("Reading: " + a + " " +
 b + " " +
 c + " " +
 d);
 if (a * 2 != b || a * 3 != c || a * 4 != d)
 {
 System.out.println("error");
 return;
 }
 }
 finally
 {
 lock.release();
 }
 }
 }

 static void update(FileChannel fc) throws IOException
 {
 for (int i = 0; i < MAXUPDATES; i++)
 {
 System.out.println("acquiring exclusive lock");
 FileLock lock = fc.lock(0, RECLEN, false);
 try
 {
 intBuffer.clear();
 int a = counter;
 int b = counter * 2;
 int c = counter * 3;
 int d = counter * 4;
 System.out.println("Writing: " + a + " " +
 b + " " +
 c + " " +
 d);
 intBuffer.put(a);
 intBuffer.put(b);
 intBuffer.put(c);
 intBuffer.put(d);
 counter++;
 buffer.clear();
 fc.write(buffer, 0);
 }

CHAPTER 7: Channels170

 finally
 {
 lock.release();
 }
 }
 }
}

Listing 7-4 describes an application that either updates a file named temp
or queries this file. Because file locking applies at the process level and
not at the thread level, you need to run two copies of this application
to demonstrate file locking for yourself. One copy will behave as a writer,
updating the file. The other copy will behave as a reader, querying the file.

The ChannelDemo class first declares a pair of constants for controlling the
duration of the update and query loops, along with a constant that denotes
the length of a record. It then allocates a byte buffer that can accommodate
the entire 16-byte record and an int-based view buffer for treating the byte
buffer as a sequence of four int values. Finally, a counter variable initialized
to 1 is declared.

The main() method first determines whether the application runs as a writer
or reader. If you specify any command-line arguments, writer is assumed.
This method then either opens (for a reader) or creates (for a writer) temp as
a random access file. If this file doesn’t exist when you run the application
as a reader, an exception is thrown.

After opening or creating temp, a file channel to this file is obtained. This
channel is then passed to either the update() or query() method.

Consider update(). This method receives the file channel argument and
enters a fixed-length for loop whose duration is governed by the MAXUPDATES
constant. After outputting a lock-acquisition message, it attempts to obtain an
exclusive lock to the entire 16-byte record. If the reader process has locked
that record via a shared lock, lock() blocks until the shared lock is released.

Once the lock is obtained, the view buffer is cleared, which sets the position
to 0 and the limit to the capacity. The buffer is ready to be completely filled.

The counter variable’s current value is now accessed and saved in a
variable. This value is multiplied by 2, 3, and 4, and the results are also
saved in their own variables. After outputting a writing message that
identifies these values, update() makes four put() calls on the view buffer to
store the values in the byte buffer. The counter variable is incremented
and the byte buffer is cleared to ensure that it can be completely drained.
Finally, the file channel’s write() method is called to drain the buffer to the
underlying temp file.

CHAPTER 7: Channels

171

The query() method has a similar structure to the update() method.
However, it uses the file channel to read the temp file’s record and stores
the results in the byte buffer. After outputting a message to display the read
results, it verifies that the values are correct. Any deviation from what is
expected causes the method to terminate after outputting an error message.

Compile Listing 7-4 (javac ChannelDemo.java) and execute the following
command line in one command window:

java ChannelDemo w

You should observe messages similar to the following:

acquiring exclusive lock
Writing: 1 2 3 4
acquiring exclusive lock
Writing: 2 4 6 8
acquiring exclusive lock
Writing: 3 6 9 12
acquiring exclusive lock
Writing: 4 8 12 16
acquiring exclusive lock
Writing: 5 10 15 20

In a second command window, execute the following command line:

java ChannelDemo

You should observe messages similar to the following:

acquiring shared lock
Reading: 2500 5000 7500 10000
acquiring shared lock
Reading: 2501 5002 7503 10004
acquiring shared lock
Reading: 2502 5004 7506 10008
acquiring shared lock
Reading: 2503 5006 7509 10012
acquiring shared lock
Reading: 2504 5008 7512 10016

If you run these applications until they finish, you should observe no error
messages. The file locking ensures that only the writer process or the reader
process can access temp’s 16-byte record. The other process is denied
while these bytes are locked. As a result, there can be no corruption to this
record’s values.

CHAPTER 7: Channels172

To prove to yourself that the file locking is actually working, comment out the
following four lines from the previous listing, recompile ChannelDemo.java,
and re-run this application as a writer and as a reader:

FileLock lock = fc.lock(0, RECLEN, true);
FileLock lock = fc.lock(0, RECLEN, false);
lock.release();
lock.release();

At some point during the execution, you should observe output similar to
that shown here:

acquiring shared lock
Reading: 803 1606 2412 3216
error

The output is invalid—it should be 803 1606 2409 3212 but isn’t because the
reader and writer were able to access the record at the same time.

Mapping Files into Memory
FileChannel declares a map() method that lets you create a virtual memory
mapping between a region of an open file and a java.nio.MappedByteBuffer
instance that wraps itself around this region. This mapping mechanism
offers an efficient way to access a file because no time-consuming system
calls are needed to perform I/O.

The map()method has the following signature:

MappedByteBuffer map(FileChannel.MapMode mode, long position, long size)

Note The more ChannelDemo reader processes that run, the slower a
ChannelDemo writer process will run. Eventually, the ChannelDemo writer
process will block during a lock acquisition attempt and not unblock because
there will always be a shared lock in use.

Note Virtual memory is a kind of memory in which virtual addresses (also
known as artificial addresses) replace physical (RAM memory) addresses. Check
out Wikipedia’s “Virtual Memory” topic (http://en.wikipedia.org/wiki/
Virtual_memory) to learn more about virtual memory.

http://en.wikipedia.org/wiki/Virtual_memory
http://en.wikipedia.org/wiki/Virtual_memory

CHAPTER 7: Channels

173

The mode parameter defines the mapping mode and receives one of the
following constants defined by the FileChannel.MapMode enumerated type:

	READ_ONLY: Any attempt to modify the buffer will cause
java.nio.ReadOnlyBufferException to be thrown.

	READ_WRITE: Changes made to the resulting buffer will
eventually be propagated to the file; they might not be made
visible to other programs that have mapped the same file.

	PRIVATE: Changes made to the resulting buffer will not
be propagated to the file and will not be visible to other
programs that have mapped the same file. Instead,
changes will cause private copies of the modified
portions of the buffer to be created. These changes are
lost when the buffer is garbage collected.

The specified mapping mode is constrained by the invoking FileChannel
object’s access permissions. For example, if the file channel was opened as
a read-only channel, and if you request READ_WRITE mode, map()will throw
NonWritableChannelException because it cannot write to the file channel.
Similarly, NonReadableChannelException is thrown when the channel was
opened as write-only and you request READ_ONLY mode. (You can request
READ_ONLY for a file channel opened as a read-write channel.)

The position and size parameters define the start and extent of the mapped
region. Arguments passed to these parameters must be non-negative.
Furthermore, the argument passed to size must not exceed Integer.MAX_VALUE.

The specified range shouldn’t exceed the file’s size because the file will be
made larger to accommodate the range. For example, if you pass
Integer.MAX_VALUE to size, the file will grow to more than two gigabytes.
Also, for a read-only mapping, map()will probably throw IOException.

The returned MappedByteBuffer object behaves like a memory-mapped
buffer but its contents are stored in a file. When you invoke get() on this
object, the current contents of the file are obtained, even when these
contents have been modified by an external program. Similarly, when you
have write permission, invoking put() updates the file and changes are
available to external programs.

Tip Invoke MappedByteBuffer’s isReadOnly() method to determine
whether or not you can modify the mapped file.

CHAPTER 7: Channels174

Consider the following example:

MappedByteBuffer buffer = fileChannel.map(FileChannel.MapMode.READ_ONLY, 50, 100);

This example maps a subrange, from location 50 through location 149, of
the file described by fileChannel. In contrast, the following example maps
the entire file:

MappedByteBuffer buffer =
fileChannel.map(FileChannel.MapMode.READ_ONLY, 0, fileChannel.size());

There is no unmap() method. Once a mapping is established, it remains until
the MappedByteBuffer object is garbage collected (or the application exits,
whichever happens first). Because a mapped byte buffer isn’t connected to
the file channel by which it was created, the mapping isn’t destroyed when
the file channel is closed.

MappedByteBuffer inherits methods from its java.nio.ByteBuffer
superclass. It also declares the following methods:

	MappedByteBuffer load(): Attempt to load all of the
mapped file content into memory. This results in much
faster access for large files because the virtual memory
manager doesn’t have to load portions of the file into
memory as those portions are requested (by reading
from/writing to their locations) while traversing the
mapped buffer. Although load() makes a best effort, it
may not succeed because external programs may cause
the virtual memory manager to remove portions of the
loaded file content to make room for their requests to
load content into physical memory. Also, load() can be
expensive time-wise because it can cause the virtual
memory manager to perform many I/O operations; it may
take time for this method to complete.

	boolean isLoaded(): Return true when all of the mapped
file content has been loaded into memory; otherwise,
return false. If this method returns true, you can probably
access all of the content with few or no I/O operations.
If this method returns false, it’s still possible that buffer
access will be fast and that the mapped content will
be entirely resident in memory. Think of isLoaded() as
hinting at the mapped byte buffer’s status.

Note Because mapped byte buffers are direct byte buffers, the memory space
assigned to them exists outside of the JVM’s heap.

CHAPTER 7: Channels

175

	MappedByteBuffer force(): Cause changes made to
the mapped byte buffer to be written out to permanent
storage. When working with mapped byte buffers, you
should invoke this method instead of the file channel’s
force() method because the channel might be unaware of
various changes made through the mapped byte buffer.
Calling this method has no effect on READ_ONLY and
PRIVATE mappings.

Listing 7-5 presents an application that demonstrates file mapping.

Listing 7-5. Demonstrating File Mapping

import java.io.IOException;
import java.io.RandomAccessFile;

import java.nio.ByteBuffer;
import java.nio.MappedByteBuffer;

import java.nio.channels.FileChannel;

public class ChannelDemo
{
 public static void main(String[] args) throws IOException
 {
 if (args.length != 1)
 {
 System.out.println("usage: java ChannelDemo filespec");
 return;
 }
 RandomAccessFile raf = new RandomAccessFile(args[0], "rw");
 FileChannel fc = raf.getChannel();
 long size = fc.size();
 System.out.println("Size: " + size);
 MappedByteBuffer mbb = fc.map(FileChannel.MapMode.READ_WRITE, 0,
 size);
 while (mbb.remaining() > 0)
 System.out.print((char) mbb.get());
 System.out.println();
 System.out.println();
 for (int i = 0; i < mbb.limit() / 2; i++)
 {
 byte b1 = mbb.get(i);
 byte b2 = mbb.get(mbb.limit() - i - 1);
 mbb.put(i, b2);
 mbb.put(mbb.limit() - i - 1, b1);
 }

CHAPTER 7: Channels176

 mbb.flip();
 while (mbb.remaining() > 0)
 System.out.print((char) mbb.get());
 fc.close();
 }
}

After verifying that you’ve specified a single command-line argument, which
should identify an existing file, main() creates a RandomAccessFile object
for accessing this file in read/write mode. It then obtains a file channel for
communicating with this file.

After using the file channel to obtain the file size, which is subsequently
output, main() uses the file channel to invoke map()to obtain a read/write
mapping of the entire file. It subsequently outputs the contents of the
returned mapped byte buffer.

Later on, main() enters a for loop whose purpose is to reverse the file’s
contents. In each of the iterations, two bytes that mirror each other are
obtained and then swapped. After leaving this loop, main() flips the buffer
for draining and outputs its reversed contents.

Compile Listing 7-5 (javac ChannelDemo.java) and, assuming the existence
of a poem.txt file, execute the following command line to reverse this file’s
contents:

java ChannelDemo poem.txt

You should observe output similar to the following:

Size: 67
Roses are red,
Violets are blue,
Sugar is sweet,
And so are you!

!uoy era os dnA
,teews si raguS
,eulb era steloiV
,der era sesoR

Note that the blank lines in the reversed text result from reversing the
carriage return (13)/line feed (10) sequences on Windows operating systems.

Furthermore, the contents of poem.txt should be reversed.

CHAPTER 7: Channels

177

Transferring Bytes Among Channels
To optimize the common practice of performing bulk transfers, two methods
have been added to FileChannel that avoid the need for intermediate buffers:

	long transferFrom(ReadableByteChannel src, long
position, long count)

	long transferTo(long position, long count,
WritableByteChannel target)

transferFrom(ReadableByteChannel, long, long) transfers bytes into this
channel’s file from the given readable byte channel. Parameter src identifies
the source channel, position identifies the non-negative start position in
the file where the transfer is to start, and count identifies the non-negative
maximum number of bytes that are to be transferred.

This method returns the number of bytes (possibly 0) that were actually
transferred. It throws IllegalArgumentException when a precondition on a
parameter (such as position being non-negative) doesn’t hold;
NonReadableChannelException when the source channel wasn’t opened for
reading; NonWritableChannelException when this channel wasn’t opened for
writing; ClosedChannelException when this channel or the source channel is
closed; ClosedByInterruptException when another thread interrupts the
current thread while the transfer is in progress, thereby closing both channels
and setting the current thread’s interrupt status; and IOException when some
other I/O error occurs.

transferTo(long, long, WritableByteChannel) transfers bytes from this
channel’s file to the given writable byte channel. Parameter position
identifies the non-negative start position in the file where the transfer is to
start, count identifies the non-negative maximum number of bytes that are
to be transferred, and target identifies the target channel.

This method returns the number of bytes (possibly 0) that were actually
transferred. It throws IllegalArgumentException when a precondition on a
parameter doesn’t hold; NonReadableChannelException when this channel
wasn’t opened for reading; NonWritableChannelException when the target
channel wasn’t opened for writing; ClosedChannelException when this
channel or the target channel is closed; ClosedByInterruptException when
another thread interrupts the current thread while the transfer is in progress,
thereby closing both channels and setting the current thread’s interrupt
status; and IOException when some other I/O error occurs.

If you’re using transferTo() with a file channel as the transfer source, the
transfer stops at the end of the file when position plus count exceeds the
file’s size. Similarly, transferFrom()stops when src is a file channel and its
end of file is reached.

CHAPTER 7: Channels178

Listing 7-6 presents an application that demonstrates channel transfer.

Listing 7-6. Demonstrating Channel Transfer

import java.io.FileInputStream;
import java.io.IOException;

import java.nio.channels.Channels;
import java.nio.channels.FileChannel;
import java.nio.channels.WritableByteChannel;

public class ChannelDemo
{
 public static void main(String[] args)
 {
 if (args.length != 1)
 {
 System.err.println("usage: java ChannelDemo filespec");
 return;
 }

 try (FileInputStream fis = new FileInputStream(args[0]))
 {
 FileChannel inChannel = fis.getChannel();
 WritableByteChannel outChannel = Channels.newChannel(System.out);
 inChannel.transferTo(0, inChannel.size(), outChannel);
 }
 catch (IOException ioe)
 {
 System.out.println("I/O error: " + ioe.getMessage());
 }
 }
}

Listing 7-6’s main() method verifies that a single command-line argument
has been specified. This argument identifies a file whose contents are to be
copied to the standard output stream.

Next, main() creates a file input stream to the file identified by the
command-line argument and a file channel for reading from this file.

Finally, an output channel for sending bytes to the standard output stream
is obtained and the input file channel’s transferTo()method is called to
transfer the file content to standard output.

Compile Listing 7-6 (javac ChannelDemo.java) and execute the following
command line to make a copy of ChannelDemo.java:

java ChannelDemo ChannelDemo.java >ChannelDemo.bak

CHAPTER 7: Channels

179

You should observe a ChannelDemo.bak file with size and contents identical
to ChannelDemo.java.

Socket Channels
I previously mentioned that Socket declares a SocketChannel getChannel()
method for returning a socket channel instance, which describes an open
connection to a socket. Unlike sockets, socket channels are selectable and
can function in nonblocking mode. These capabilities (discussed later in this
chapter) enhance the scalability and flexibility of large applications (such as
web servers).

Socket channels are described by the java.nio.channels package’s
abstract ServerSocketChannel, SocketChannel, and DatagramChannel
classes. Each class ultimately extends java.nio.channels.
SelectableChannel and implements InterruptibleChannel, making
ServerSocketChannel, SocketChannel, and DatagramChannel instances
selectable and interruptible. Because SocketChannel and DatagramChannel
implement the ByteChannel, GatheringByteChannel, and
ScatteringByteChannel interfaces, you can write to, read from, and perform
scatter/gather I/O on their underlying sockets.

Each ServerSocketChannel, SocketChannel, and DatagramChannel instance
creates a peer socket object from the java.net.ServerSocket, Socket, or
java.net.DatagramSocket class. Each class has been retrofitted to work with
channels. You can obtain the peer socket object by invoking
ServerSocketChannel’s, SocketChannel’s, or DatagramChannel’s socket()
method.

Note Unlike buffers, which are not thread-safe, server socket channels, socket
channels, and datagram channels are thread-safe.

Note When invoked on the socket instance returned from socket(),
getChannel()returns the associated socket channel. However, when
invoked on a socket obtained by instantiating ServerSocket, Socket, or
DatagramSocket, getChannel() returns null.

CHAPTER 7: Channels180

Understanding Nonblocking Mode
The blocking nature of sockets created from Java’s socket classes is a
serious limitation to a network-oriented Java application’s scalability. For
example, the ServerSocket class’s Socket accept() method blocks until an
incoming connection arrives, at which point it creates and returns a Socket
instance that lets the server communicate with the client. If this method
didn’t block, scalability would improve because the server could be
accomplishing other useful work instead of having to wait.

The abstract SelectableChannel class is a common ancestor of the
ServerSocketChannel, SocketChannel, and DatagramChannel classes. As well as
letting the socket channel work in a selector context (I discuss selectors in
Chapter 8), SelectableChannel lets socket channels choose to block or operate
in nonblocking mode, in which a thread can check for input or send output
without blocking when no input is available or when the output buffer is full.

SelectableChannel offers the following methods to enable blocking or
nonblocking, determine whether the channel is blocking or nonblocking, and
obtain the blocking lock:

	SelectableChannel configureBlocking(boolean block):
Specify the calling selectable channel’s blocking
status. Pass true to make the channel blocking and
false to make the channel nonblocking. The method
returns the selectable channel or throws an exception:
ClosedChannelException when the channel is closed,
java.net.channels.IllegalBlockingModeException
when block is true and the channel has been registered
with one or more selectors, and IOException when an
I/O error occurs.

	boolean isBlocking(): This method returns true when
the calling selectable channel is blocking; otherwise, it
returns false. Newly created channels default to blocking.

	Object blockingLock(): Return the object on which
configureBlocking() synchronizes. The returned object
is useful in the implementation of adaptors that require
the current blocking mode value to not change for a
short period of time.

Note SelectableChannel merges functionality related to selectors with
nonblocking mode because nonblocking mode is most useful in conjunction
with selector-based multiplexing.

http://dx.doi.org/10.1007/978-1-4842-1565-4_8

CHAPTER 7: Channels

181

It’s trivial to set or reset a selectable channel’s blocking/nonblocking status.
To enable nonblocking, pass false to an invocation of configureBlocking(),
which the following example demonstrates:

ServerSocketChannel ssc = ServerSocketChannel.open();
ssc.configureBlocking(false); // enable nonblocking mode

Although nonblocking sockets are commonly used in server-oriented
applications, they are also beneficial on the client side. For example, a
GUI-based application can leverage nonblocking sockets to keep the user
interface responsive while communicating simultaneously with several server
applications.

The blockingLock() method lets you prevent other threads from changing a
socket channel’s blocking/nonblocking status. This method returns the
object that a channel implementation uses for synchronizing when changing
this status. Only the thread that holds the lock on this object can change the
status and the lock is often obtained by using Java’s synchronized keyword.
Consider the following example:

ServerSocketChannel ssc = ServerSocketChannel.open();
SocketChannel sc = null;
Object lock = ssc.blockingLock();

// Thread might block when obtaining the lock associated with
// the lock object.
synchronized(lock)
{
 // Current thread owns the lock. No other thread can
 // change blocking mode.

 // Obtaining server socket channel's current blocking mode.
 boolean blocking = ssc.isBlocking();

 // Set server socket channel to nonblocking.
 ssc.configureBlocking(false);

 // Obtain next connection, which is null when there is no
 // connection.
 sc = ssc.accept();

 // Restore previous blocking mode.
 ssc.configureBlocking(blocking);
}

// The lock is released and some other thread may modify the
// server socket channel's blocking mode.
if (sc != null)
 communicateWithSocket(sc);

CHAPTER 7: Channels182

Exploring Server Socket Channels
ServerSocketChannel is the simplest of the three socket channel classes.
This class includes the following methods:

	static ServerSocketChannel open(): Attempt to open
a server-socket channel, which is initially unbound; it
must be bound to a specific address via one of its peer
socket’s bind() methods before connections can be
accepted. If the channel cannot be opened, IOException
is thrown.

	ServerSocket socket(): Return the peer ServerSocket
instance associated with this server socket channel.

	SocketChannel accept(): Accept the connection made
to this channel’s socket. If this channel is nonblocking,
accept() immediately returns null when there are no
pending connections or returns a socket channel that
represents the connection. Otherwise, when the
channel is blocking, accept() blocks indefinitely until a
new connection is available or an I/O error occurs.
The socket channel returned by accept() is blocking
regardless of whether the server socket channel is
blocking or nonblocking. This method throws
ClosedChannelException when the server socket
channel is closed, AsynchronousCloseException when
another thread closes this server socket channel while
the accept operation is in progress, java.nio.channels.
NotYetBoundException when the server socket channel
hasn’t been bound, or IOException when an I/O error
occurs.

A server socket channel behaves as a server in the TCP/IP stream protocol.
You use server socket channels to listen for incoming connections with clients.

You create a new server socket channel by invoking the static open() factory
method. If all goes well, open() returns a ServerSocketChannel instance
associated with an unbound peer ServerSocket object. You can obtain this
object by invoking socket(), and then invoke ServerSocket’s bind() method
to bind the server socket (and ultimately the server socket channel) to a
specific address.

You can then invoke ServerSocketChannel’s accept() method to accept an
incoming connection. Depending on whether or not you have configured
the server socket channel to be nonblocking, this method either returns
immediately with null or a socket channel to an incoming connection, or
blocks until there is an incoming connection.

CHAPTER 7: Channels

183

Listing 7-7 presents a ChannelServer application that demonstrates
ServerSocketChannel.

Listing 7-7. Demonstrating ServerSocketChannel

import java.io.IOException;

import java.net.InetSocketAddress;

import java.nio.ByteBuffer;

import java.nio.channels.ServerSocketChannel;
import java.nio.channels.SocketChannel;

public class ChannelServer
{
 public static void main(String[] args) throws IOException
 {
 System.out.println("Starting server...");
 ServerSocketChannel ssc = ServerSocketChannel.open();
 ssc.socket().bind(new InetSocketAddress(9999));
 ssc.configureBlocking(false);
 String msg = "Local address: " + ssc.socket().getLocalSocketAddress();
 ByteBuffer buffer = ByteBuffer.wrap(msg.getBytes());
 while (true)
 {
 System.out.print(".");
 SocketChannel sc = ssc.accept();
 if (sc != null)
 {
 System.out.println();
 System.out.println("Received connection from " +
 sc.socket().getRemoteSocketAddress());
 buffer.rewind();
 sc.write(buffer);
 sc.close();
 }
 else
 try
 {
 Thread.sleep(100);
 }

Note Alternatively, you can invoke accept()on the peer ServerSocket object
that socket() returns. However, this accept() method will always block.

CHAPTER 7: Channels184

 catch (InterruptedException ie)
 {
 assert false; // shouldn't happen
 }
 }
 }
}

Listing 7-7’s main() method first outputs a startup message and then
obtains a server socket channel. Continuing, it accesses the ServerSocket
peer object and uses this object to bind the socket/channel to port 9999.

Next, main() configures the server socket channel to be nonblocking and
creates a byte buffer based on a message that identifies the server socket
channel’s local socket address.

main() now enters a while loop that repeatedly prints a single period
character to demonstrate the channel’s nonblocking status and checks for
an incoming connection. If a connection is detected, its SocketChannel
instance is used to obtain the remote socket address, which is output to the
standard output stream. The buffer is then rewound and its content is written
to the socket channel, which is then closed. However, if a connection isn’t
detected, main() sleeps for a fraction of a second.

Compile Listing 7-7 as follows:

javac ChannelServer.java

Execute the following command line to start the server:

java ChannelServer

You should observe a starting server... message followed by a growing
sequence of periods across the screen from left to right. At this point, there’s
nothing further to observe.

Exploring Socket Channels
SocketChannel is the most commonly used of the three socket channel
classes and models a connection-oriented stream protocol (such as TCP/IP).
This class includes the following methods:

	static SocketChannel open(): Attempt to open a
socket channel. If the channel cannot be opened,
IOException is thrown.

CHAPTER 7: Channels

185

	static SocketChannel open(InetSocketAddress
remoteAddr): Attempt to open a socket channel and
connect it to remoteAddr. This convenience method
works as if by invoking the open() method, invoking
the connect() method on the resulting socket channel,
passing it remoteAddr, and then returning that channel.
This method throws five different exceptions. It throws
AsynchronousCloseException when another thread
closes this channel while the connect operation is in
progress; ClosedByInterruptException when another
thread interrupts the current thread while the connect
operation is in progress, thereby closing the channel
and setting the current thread’s interrupt status;
java.nio.channels.UnresolvedAddressException
when the given remote address isn’t fully resolved;
java.nio.channels.UnsupportedAddressTypeException
when the type of the given remote address isn’t
supported; and IOException when some other I/O error
occurs.

	Socket socket(): Return the peer Socket instance
associated with this socket channel.

	boolean connect(SocketAddress remoteAddr): Attempt to
connect this socket channel’s socket object to the
remote address. If this channel is nonblocking, an
invocation of this method initiates a nonblocking
connection operation. If the connection is established
immediately, as can happen with a local connection, this
method returns true. Otherwise, this method returns false
and the connection operation must be subsequently
completed by repeatedly invoking the finishConnect()
method until this method returns true. This method throws
java.nio.channels.AlreadyConnectedException when
this channel is already connected; java.nio.channels.
ConnectionPendingException when a nonblocking
connection operation is already in progress on this channel;
ClosedChannelException when this channel is closed;
AsynchronousCloseException when another thread closes
this channel while the connect operation is in progress;
ClosedByInterruptException when another thread interrupts
the current thread while the connect operation is in
progress, thereby closing the channel and setting the
current thread’s interrupt status; UnresolvedAddressException
when the given remote address isn’t fully resolved;
UnsupportedAddressTypeException when the type of the

CHAPTER 7: Channels186

given remote address isn’t supported; and IOException
when some other I/O error occurs.

	boolean isConnectionPending(): Return true when a
connection operation is pending completion; otherwise,
return false.

	boolean finishConnect(): Finish the process of
connecting a socket channel. This method returns true
when the socket channel is fully connected; otherwise, it
returns false. This method throws java.nio.channels.
NoConnectionPendingException when this channel isn’t
connected and a connection operation hasn’t been
initiated; ClosedChannelException when this channel is
closed; AsynchronousCloseException when another
thread closes this channel while the connect operation is
in progress; ClosedByInterruptException when another
thread interrupts the current thread while the connect
operation is in progress, thereby closing the channel and
setting the current thread’s interrupt status; and IOException
when some other I/O error occurs.

	boolean isConnected(): Return true when this channel’s
socket is open and connected; otherwise, return false.

A socket channel behaves as a client in the TCP/IP stream protocol. You use
socket channels to initiate connections to listening servers.

Create a new socket channel by calling either of the open() methods.
Behind the scenes, a peer Socket object is created. Invoke SocketChannel’s
socket() method to return this peer object. Also, you can return the original
socket channel by invoking getChannel() on the peer Socket object.

A socket channel obtained from the noargument open() method isn’t
connected. Attempting to read from or write to this socket channel results in
java.nio.channels.NotYetConnectedException. To connect the socket, call
the connect() method on the socket channel or on its peer socket.

After a socket channel has been connected, it remains connected until
closed. To determine if a socket channel is connected, invoke
SocketChannel’s boolean isConnected() method.

The open() method that takes a java.net.InetSocketAddress argument also
lets you connect to another host at the specified remote address, as follows:

SocketChannel sc = SocketChannel.open(new InetSocketAddress("localhost", 9999));

CHAPTER 7: Channels

187

This convenience method is equivalent to invoking the following code
sequence:

SocketChannel sc = SocketChannel.open();
sc.connect(new InetSocketAddress("localhost", 9999);

When connecting to a server via the peer Socket object or via SocketChannel’s
connect()/second open() method on a blocking socket channel, the thread
that invokes connect() blocks until the socket channel is connected.
However, when the socket channel isn’t blocking, connect() returns
immediately, typically with false to indicate that the connection hasn’t
been made (although it might return true for a local loopback connection).
Because a connection must be established before you can perform I/O on
the socket channel, you need to repeatedly invoke finishConnect() until
this method returns true.

Listing 7-8 presents a ChannelClient application that demonstrates
SocketChannel.

Listing 7-8. Demonstrating SocketChannel

import java.io.IOException;

import java.net.InetSocketAddress;

import java.nio.ByteBuffer;

import java.nio.channels.SocketChannel;

public class ChannelClient
{
 public static void main(String[] args)
 {
 try
 {
 SocketChannel sc = SocketChannel.open();
 sc.configureBlocking(false);
 InetSocketAddress addr = new InetSocketAddress("localhost", 9999);
 sc.connect(addr);

 while (!sc.finishConnect())
 System.out.println("waiting to finish connection");

 ByteBuffer buffer = ByteBuffer.allocate(200);
 while (sc.read(buffer) >= 0)
 {
 buffer.flip();
 while (buffer.hasRemaining())

CHAPTER 7: Channels188

 System.out.print((char) buffer.get());
 buffer.clear();
 }
 sc.close();
 }
 catch (IOException ioe)
 {
 System.err.println("I/O error: " + ioe.getMessage());
 }
 }
}

Listing 7-8’s main() method first obtains a socket channel and configures it
to be nonblocking. It then creates an address to the previous channel server
application and initiates a connection to this address. Because of the
nonblocking status, it’s necessary to repeatedly invoke finishConnect()
until this method returns true, which indicates a connection to the remote
server application.

main() subsequently creates a byte buffer and enters a loop that repeatedly
reads content into this buffer and outputs this content to the standard
output stream. The channel is then closed.

Compile Listing 7-8 as follows:

javac ChannelClient.java

Assuming that the channel server is running, execute the following command
line to start the client:

java ChannelClient

You should observe a message similar to the following on the channel server
output stream:

Received connection from /127.0.0.1:51177

You should also observe the following message on the channel client output
stream:

Local address: /0:0:0:0:0:0:0:0:9999

CHAPTER 7: Channels

189

Exploring Datagram Channels
DatagramChannel models a connectionless packet-oriented protocol (such as
UDP/IP). This class includes the following methods:

	static DatagramChannel open(): Attempt to open a
datagram channel. If the channel cannot be opened,
IOException is thrown.

	DatagramSocket socket(): Return the peer DatagramSocket
instance associated with this datagram channel.

	DatagramChannel connect(SocketAddress remoteAddr):
Attempt to connect this datagram channel’s socket
object to the remote address. The channel’s socket is
configured so that it only receives datagrams from and
sends datagrams to the given address. Once connected,
datagrams cannot be received from or sent to any
other address. A datagram socket remains connected
until explicitly disconnected or closed. This method
returns the datagram channel upon success. It throws
ClosedChannelException when the datagram channel
is closed; AsynchronousCloseException when another
thread closes this channel while the connect operation
is in progress; ClosedByInterruptException when
another thread interrupts the current thread while the
connect operation is in progress, thereby closing the
channel and setting the current thread’s interrupt status;
and IOException when some other I/O error occurs.

	boolean isConnected(): Return true when this channel’s
socket is open and connected; otherwise, return false.

	DatagramChannel disconnect(): Disconnect this
channel’s socket. This method may be invoked at any
time and has no effect on read or write operations that are
already in progress. When the socket isn’t connected or
when the channel is closed, invoking this method has
no effect.

	SocketAddress receive(ByteBuffer buffer):
Receive a datagram via this channel. If a datagram is
immediately available or if this channel is blocking and
a datagram becomes available, the datagram is copied
into the given byte buffer and its source address is
returned. If this channel is nonblocking and a datagram
isn’t immediately available, this method immediately
returns null. The datagram is transferred into the

CHAPTER 7: Channels190

given byte buffer starting at its current position, as if
by a regular read operation. If there are fewer bytes
remaining in the buffer than are required to hold the
datagram, the remainder of the datagram is silently
discarded. This method returns the datagram’s
source address or null when the channel isn’t
blocking and no datagram is available. It throws
ClosedChannelException when the datagram channel
is closed; AsynchronousCloseException when another
thread closes this channel while the read operation is in
progress; ClosedByInterruptException when another
thread interrupts the current thread while the read
operation is in progress, thereby closing the channel
and setting the current thread’s interrupt status; and
IOException when some other I/O error occurs.

	int send(ByteBuffer buffer, SocketAddress
destAddr): Send a datagram via this channel. If this
channel is nonblocking and there is sufficient room in
the underlying output buffer, or if this channel is
blocking and sufficient room becomes available, the
remaining bytes in the given buffer are transmitted as a
single datagram to the given destination address. The
datagram is transferred from the byte buffer as if by a
regular write operation. This method returns the number
of bytes sent, which will be the number of bytes that
were remaining in the source buffer when this method
was invoked or, when this channel is nonblocking, may
be zero if there was insufficient room for the datagram
in the underlying output buffer. It throws
ClosedChannelException when the datagram channel
is closed; AsynchronousCloseException when another
thread closes this channel while the write operation is in
progress; ClosedByInterruptException when another
thread interrupts the current thread while the write
operation is in progress, thereby closing the channel and
setting the current thread’s interrupt status; and
IOException when some other I/O error occurs.

Additionally, there are several read() and write() methods that you might
like to use. Unlike send() and receive(), which don’t require the datagram
channel to be connected, the read() and write() methods require a
connection.

CHAPTER 7: Channels

191

As with ServerSocketChannel and SocketChannel, you obtain a
DatagramChannel instance by invoking the static open() method. The new
datagram channel is associated with a peer DatagramSocket object, which
you can obtain by invoking DatagramChannel’s socket() method.

A datagram channel can behave as both a client (the sender) and a server
(the listener). To act as a listener, the datagram channel must be bound to
a port and an optional address. Accomplish this task by obtaining the
DatagramSocket object and invoking bind() on this object, as follows:

DatagramChannel dc = DatagramChannel.open();
DatagramSocket ds = dc.socket();
ds.bind(new InetSocketAddress(9999)); // bind to port 9999

The receive() method copies the incoming datagram’s data payload into
the byte buffer argument and returns a socket address identifying the
datagram’s source address. If the channel is blocking, receive() sleeps
until the packet arrives or some event results in a thrown exception. If the
channel is nonblocking, receive() returns null when a datagram isn’t
available. If the data payload is larger than will fit in the buffer, excess bytes
are quietly removed.

The send() method sends the given byte buffer’s content, starting from the
current position and ranging to the buffer’s limit, to the destination address/
port number specified by the socket address argument. If the datagram
channel is blocking, send()sleeps until the datagram is queued for sending
or some event results in a thrown exception. If the channel isn’t blocking,
this method returns with one of two values: the entire length of the buffer
content that was sent or 0 indicating that the buffer content wasn’t sent
(nothing is sent when there isn’t room to store the entire datagram before
transmission).

Note Datagram protocols aren’t reliable. For one thing, they don’t guarantee
delivery. As a result, a nonzero return value from send() doesn’t mean that the
datagram reached its destination. Also, the underlying network might fragment
the datagram into multiple smaller packets. When a datagram is fragmented, it’s
more probable for one or more of these packets to not arrive at the destination.
Because the receiver cannot reassemble all of the packets, the entire datagram
is discarded. For this reason, data payloads should be restricted to several
hundred bytes maximum.

CHAPTER 7: Channels192

An example of where you might require a datagram channel is a stock ticker
that offers the latest stock prices for a given company. A client would submit
a company’s stock symbol (such as MSFT for Microsoft) as a datagram
payload and receive a datagram in response whose payload provides the
requested stock prices. Because the latest information is desired, the client
would re-request the stock prices when a response datagram doesn’t arrive.

Listing 7-9 presents a ChannelServer application that leverages
DatagramChannel to implement the server portion of the stock ticker.

Listing 7-9. Using DatagramChannel to Implement a Stock Ticker Server

import java.io.IOException;

import java.net.InetSocketAddress;
import java.net.SocketAddress;

import java.nio.ByteBuffer;

import java.nio.channels.DatagramChannel;

public class ChannelServer
{
 final static int PORT = 9999;

 public static void main(String[] args) throws IOException
 {
 System.out.println("server starting and listening on port " +
 PORT + " for incoming requests...");
 DatagramChannel dcServer = DatagramChannel.open();
 dcServer.socket().bind(new InetSocketAddress(PORT));
 ByteBuffer symbol = ByteBuffer.allocate(4);
 ByteBuffer payload = ByteBuffer.allocate(16);
 while (true)
 {
 payload.clear();
 symbol.clear();
 SocketAddress sa = dcServer.receive(symbol);
 if (sa == null)
 return;
 System.out.println("Received request from " + sa);
 String stockSymbol = new String(symbol.array(), 0, 4);
 System.out.println("Symbol: " + stockSymbol);
 if (stockSymbol.toUpperCase().equals("MSFT"))
 {
 payload.putFloat(0, 37.40f); // open share price
 payload.putFloat(4, 37.22f); // low share price

CHAPTER 7: Channels

193

 payload.putFloat(8, 37.48f); // high share price
 payload.putFloat(12, 37.41f); // close share price
 }
 else
 {
 payload.putFloat(0, 0.0f);
 payload.putFloat(4, 0.0f);
 payload.putFloat(8, 0.0f);
 payload.putFloat(12, 0.0f);
 }
 dcServer.send(payload, sa);
 }
 }
}

Listing 7-9’s main() method first creates a datagram channel and binds it to
port 9999. It then creates two byte buffers to hold a four-byte stock symbol
and a 16-byte response, which is organized into four four-byte floating-point
values representing open share price, low share price, high share price, and
close share price.

main() now enters an infinite loop that clears both byte buffers in
preparation for receiving new information from a client and receives the
next stock symbol. The subsequent if statement that tests sa for null isn’t
necessary for this application but is present in case you want to configure
the channel for nonblocking mode.

After outputting a message identifying the request, main() checks the stock
symbol to see if it equals MSFT. If so, the payload byte buffer is configured to
store four stock prices for Microsoft stock; otherwise, the payload byte buffer
is configured to store four 0 prices (to indicate unknown stock symbol).

Finally, main() sends the payload datagram payload to the receiver and
continues to loop.

Compile Listing 7-9 as follows:

javac ChannelServer.java

Note For convenience, I’m representing currency amounts as floating-point
values. This is not a good idea in practice and java.math.BigDecimal should
be used instead. Also, you wouldn’t embed stock prices in the source code but
would dynamically obtain them from some kind of external server or database.

CHAPTER 7: Channels194

Run the resulting application as follows:

java ChannelServer

You should observe the following message:

server starting and listening on port 9999 for incoming requests...

Listing 7-10 presents a ChannelClient application that leverages
DatagramChannel to implement the client portion of the stock ticker.

Listing 7-10. Using DatagramChannel to Implement a Stock Ticker Client

import java.io.IOException;

import java.net.InetSocketAddress;

import java.nio.ByteBuffer;

import java.nio.channels.DatagramChannel;

public class ChannelClient
{
 final static int PORT = 9999;

 public static void main(String[] args) throws IOException
 {
 if (args.length != 1)
 {
 System.err.println("usage: java ChannelClient stocksymbol");
 return;
 }

 DatagramChannel dcClient = DatagramChannel.open();

 ByteBuffer symbol = ByteBuffer.wrap(args[0].getBytes());
 ByteBuffer response = ByteBuffer.allocate(16);

 InetSocketAddress sa = new InetSocketAddress("localhost", PORT);
 dcClient.send(symbol, sa);
 System.out.println("Receiving datagram from " +
 dcClient.receive(response));
 System.out.println("Open price: " + response.getFloat(0));
 System.out.println("Low price: " + response.getFloat(4));
 System.out.println("High price: " + response.getFloat(8));
 System.out.println("Close price: " + response.getFloat(12));
 }
}

CHAPTER 7: Channels

195

Listing 7-10’s main() method first verifies that a single command-line
argument has been specified. This argument identifies a stock symbol. It
then creates a datagram channel and a pair of byte buffers: symbol stores
the specified symbol and response stores the response from the server.

Next, main() creates a socket address for communicating with and sends
the symbol buffer to the server. It then receives a response datagram from
the server, storing its payload in the response buffer.

Finally, main() accesses the response buffer, using getFloat() to convert
each set of four bytes to a floating-point value, which is subsequently output.

Compile Listing 7-10 as follows:

javac ChannelClient.java

Run the resulting application as follows:

java ChannelClient msft

Assuming that the server is still running, you should observe the following
messages (with, possibly, a different port number) in the server window:

Received request from /127.0.0.1:64837
Symbol: msft

Also, you should observe the following output in the client window:

Receiving datagram from /127.0.0.1:9999
Open price: 37.4
Low price: 37.22
High price: 37.48
Close price: 37.41

Pipes
The java.nio.channels package includes a Pipe class. Pipe describes a
pair of channels that implement a unidirectional pipe, which is a conduit for
passing data in one direction between two entities, such as two file channels
or two socket channels. Pipe is analogous to the java.io.PipedInputStream
and java.io.PipedOutputStream classes—see Chapter 4.

http://dx.doi.org/10.1007/978-1-4842-1565-4_4

CHAPTER 7: Channels196

Pipe declares nested SourceChannel and SinkChannel classes that serve as
readable and writable byte channels, respectively. Pipe also declares the
following methods:

	static Pipe open(): This class method opens a new
pipe, throwing IOException when an I/O error occurs.

	SourceChannel source(): This method returns the pipe’s
source channel (from which data originates).

	SinkChannel sink(): This method returns the pipe’s sink
channel (to which data is sent).

Pipes can be used to pass data within the same JVM; you cannot use them
to pass data between the JVM and an external program. Pipes are ideal in
producer/consumer scenarios because of encapsulation: you can use the
same code to write data to files, sockets, or pipes depending on the kind of
channel presented to the pipe.

Listing 7-11 presents a producer/consumer application that uses a pipe to
achieve communication between two threads.

Listing 7-11. Producing and Consuming Bytes via a Pipe

import java.io.IOException;

import java.nio.ByteBuffer;

import java.nio.channels.Pipe;
import java.nio.channels.ReadableByteChannel;
import java.nio.channels.WritableByteChannel;

public class ChannelDemo
{
 final static int BUFSIZE = 10;
 final static int LIMIT = 3;

 public static void main(String[] args) throws IOException
 {
 final Pipe pipe = Pipe.open();

 Runnable senderTask =
 new Runnable()
 {
 @Override
 public void run()
 {
 WritableByteChannel src = pipe.sink();
 ByteBuffer buffer = ByteBuffer.allocate(BUFSIZE);
 for (int i = 0; i < LIMIT; i++)

CHAPTER 7: Channels

197

 {
 buffer.clear();
 for (int j = 0; j < BUFSIZE; j++)
 buffer.put((byte) (Math.random() * 256));
 buffer.flip();
 try
 {
 while (src.write(buffer) > 0);
 }
 catch (IOException ioe)
 {
 System.err.println(ioe.getMessage());
 }
 }
 try
 {
 src.close();
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 }
 };

 Runnable receiverTask =
 new Runnable()
 {
 @Override
 public void run()
 {
 ReadableByteChannel dst = pipe.source();
 ByteBuffer buffer = ByteBuffer.allocate(BUFSIZE);
 try
 {
 while (dst.read(buffer) >= 0)
 {
 buffer.flip();
 while (buffer.remaining() > 0)
 System.out.println(buffer.get() & 255);
 buffer.clear();
 }
 }
 catch (IOException ioe)
 {
 System.err.println(ioe.getMessage());
 }
 }
 };

CHAPTER 7: Channels198

 Thread sender = new Thread(senderTask);
 Thread receiver = new Thread(receiverTask);
 sender.start();
 receiver.start();
 }
}

Listing 7-11’s main() method first obtains a pipe and then creates sender
and receiver tasks that serve as producer and consumer. main() then
creates sender and receiver threads and starts them.

The sender task’s run() method first obtains a writable byte channel from
the pipe by invoking Pipe’s sink() method. It then allocates a byte buffer for
storing content to be written.

run()continues by entering a pair of for loops for sending byte-oriented
data to the writable byte channel. Each of the outer for loop iterations
clears the buffer in preparation for filling by the inner for loop. The buffer is
then flipped in preparation for draining, which is accomplished by passing
the buffer to the writable byte channel’s write() method. Because a single
method call might not drain the entire buffer, write()is invoked in a loop
until it returns 0, which means that there is no more content to write. The
channel is then closed so that the receiver task doesn’t block when reading
from the channel because it expects to receive more data.

The receiver task’s run() method first obtains a readable byte channel from
the pipe by invoking Pipe’s source() method. It then allocates a buffer for
storing read content.

Continuing, run()enters a while loop that continually reads from the channel
until the read() method returns -1, which indicates that the channel has
reached the end of the stream. This method wouldn’t reach the end of the
stream if the sender’s run()method hadn’t closed the channel.

At this point, the buffer is flipped to prepare it for draining. It’s then drained
by printing its byte values to the standard output stream. Each byte is bitwise
ANDed with 255 to prevent a negative value from being output. Basically,
get() returns an 8-bit integer value that’s converted to a 32-bit integer
during the System.out.println() method call. This conversion applies sign
extension, which means that some byte values become negative 32-bit
integers. By bitwise ANDing the byte value with 255, the conversion ensures
that no byte value is turned into a negative 32-bit integer.

Finally, the buffer is cleared in preparation for filling and the loop continues.

CHAPTER 7: Channels

199

Compile Listing 7-11 (javac ChannelDemo.java) and run the application (java
ChannelDemo). You should observe a sequence of 30 random integers similar
to that shown here:

245
56
137
166
52
183
252
166
246
124
163
11
159
68
203
118
157
70
54
148
186
17
12
203
75
223
224
175
205
47

EXERCISES

The following exercises are designed to test your understanding of Chapter 7’s content:

1. What is a channel?

2. What capabilities does the Channel interface provide?

3. Identify the three interfaces that directly extend Channel.

4. True or false: A channel that implements InterruptibleChannel is
asynchronously closeable.

5. Identify the two ways to obtain a channel.

http://dx.doi.org/10.1007/978-1-4842-1565-4_7

CHAPTER 7: Channels200

6. Define scatter/gather I/O.

7. What interfaces are provided for achieving scatter/gather I/O?

8. Define file channel.

9. True or false: File channels don’t support scatter/gather I/O.

10. Define exclusive lock and shared lock.

11. What is the fundamental difference between FileChannel’s lock()
and tryLock() methods?

12. What does the FileLock lock() method do when either a lock
is already held that overlaps this lock request or another thread is
waiting to acquire a lock that will overlap with this request?

13. Specify the pattern that you should adopt to ensure that an acquired
file lock is always released.

14. What method does FileChannel provide for mapping a region of a
file into memory?

15. Identify the three file-mapping modes.

16. Which file-mapping mode corresponds to copy-on-write?

17. Identify the FileChannel methods that optimize the common
practice of performing bulk transfers.

18. True or false: Socket channels are selectable and can function in
nonblocking mode.

19. Identify the three classes that describe socket channels.

20. True or false: Datagram channels are not thread-safe.

21. Why do socket channels support nonblocking mode?

22. How would you obtain a socket channel’s associated socket?

23. How do you obtain a server socket channel?

24. Create a Copy application that uses the ByteBuffer and
FileChannel classes in partnership with FileInputStream and
FileOutputStream to copy a source file to a destination file.

CHAPTER 7: Channels

201

Summary
Channels partner with buffers to achieve high-performance I/O. A channel
is an object that represents an open connection to a hardware device, a file,
a network socket, an application component, or another entity that’s
capable of performing write, read, and other I/O operations. Channels
efficiently transfer data between byte buffers and operating system-based
I/O service sources or destinations.

Java supports channels by providing the Channel interface, its
WritableByteChannel and ReadableByteChannel subinterfaces, the Channels
class, and other types in the java.nio.channels package. While exploring
this package, you learned about scatter/gather I/O, file channels (in terms of
the FileChannel class with emphasis on its file locking, memory-mapped file
I/O, and byte-transfer capabilities), socket channels, and pipes.

Chapter 8 presents NIO’s support for selectors.

http://dx.doi.org/10.1007/978-1-4842-1565-4_8

203

Chapter 8
Selectors
I/O is either block-oriented (such as file I/O) or stream-oriented (such as
network I/O). Streams are often slower than block devices (such as fixed
disks) and read/write operations often cause the calling thread to block until
input is available or output has been fully written. To compensate, modern
operating systems let streams operate in nonblocking mode, which makes
it possible for a thread to read or write data without blocking. The operation
fully succeeds or indicates partial success. Either way, the thread is able to
perform other useful work instead of waiting.

Nonblocking mode doesn’t let an application determine if it can perform
an operation without actually performing the operation. For example,
when a nonblocking read operation succeeds, the application learns that
the read operation is possible but also has read some data that must be
managed. This duality prevents you from separating code that checks for
stream readiness from the data-processing code without making your code
significantly complicated.

Nonblocking mode serves as a foundation for performing readiness
selection, which offloads to the operating system the work involved in
checking for I/O stream readiness to perform write, read, and other
operations without actually performing the operations. The operating system
is instructed to observe a group of streams and return some indication of
which streams are ready to perform a specific operation (such as read) or
operations (such as accept and read). This capability lets a thread multiplex
a potentially huge number of active streams by using the readiness
information provided by the operating system. In this way, network servers
can handle large numbers of network connections; they are vastly scalable.

CHAPTER 8: Selectors204

Selectors let you achieve readiness selection in a Java context. This chapter
introduces you to selector fundamentals and then provides a demonstration.

Selector Fundamentals
A selector is an object created from a subclass of the abstract java.nio.
channels.Selector class. The selector maintains a set of channels that it
examines to determine which channels are ready for reading, writing,
completing a connection sequence, accepting another connection, or some
combination of these tasks. The actual work is delegated to the operating
system via a POSIX select() or similar system call.

Selectors are used with selectable channels, which are objects whose classes
ultimately inherit from the abstract java.nio.channels.SelectableChannel
class, which describes a channel that can be multiplexed by a selector.
Socket channels, server socket channels, datagram channels, and pipe
source/sink channels are selectable channels because java.nio.channels.
SocketChannel, java.nio.channels.ServerSocketChannel, java.nio.
channels.DatagramChannel, java.nio.channels.Pipe.SinkChannel, and
java.nio.channels.Pipe.SourceChannel are derived from SelectableChannel.
In contrast, file channels are not selectable channels because java.nio.
channels.FileChannel doesn’t include SelectableChannel in its ancestry.

One or more previously created selectable channels are registered with a
selector. Each registration returns an instance of a subclass of the abstract
SelectionKey class, which is a token signifying the relationship between one
channel and the selector. This key keeps track of two sets of operations:
interest set and ready set. The interest set identifies the operation categories
that will be tested for readiness the next time one of the selector’s selection
methods is invoked. The ready set identifies the operation categories for
which the key’s channel has been found to be ready by the key’s selector.

Note The ability to check a channel without having to wait when something
isn’t ready (such as bytes are not available for reading) and without also having
to perform the operation while checking is the key to scalability. A single thread
can manage a huge number of channels, which reduces code complexity and
potential threading issues.

Note Modern operating systems make readiness selection available to
applications by providing system calls such as the POSIX select() call.

CHAPTER 8: Selectors

205

When a selection method is invoked, the selector’s associated keys are
updated by checking all channels registered with that selector. The
application can then obtain a set of keys whose channels were found ready
and iterate over these keys to service each channel that has become ready
since the previous select method call.

To work with selectors, you first need to create one. You can accomplish this
task by invoking Selector’s Selector open() class method, which returns a
Selector instance on success or throws java.io.IOException on failure.
The following code fragment demonstrates this task:

Selector selector = Selector.open();

You can create your selectable channels before or after creating your
selector. However, you must ensure that each channel is in nonblocking
mode before registering the channel with the selector. You register a
selectable channel with a selector by invoking either of the following
SelectableChannel registration methods:

	SelectionKey register(Selector sel, int ops)

	SelectionKey register(Selector sel, int ops,
Object att)

Each method requires that you pass a previously created selector to sel
and a bitwise ORed combination of the following SelectionKey int-based
constants to ops, which signifies the interest set:

	OP_ACCEPT: Operation-set bit for socket-accept
operations.

	OP_CONNECT: Operation-set bit for socket-connect
operations.

	OP_READ: Operation-set bit for read operations.

	OP_WRITE: Operation-set bit for write operations.

The second method also lets you pass an arbitrary java.lang.Object or
a subclass instance (or null) to att. The non-null object is known as an
attachment and is a convenient way of recognizing a given channel
or attaching additional information to the channel. It’s stored in the
SelectionKey instance returned from this method.

Note A selectable channel can be registered with more than one selector. It
has no knowledge of the selectors to which it’s currently registered.

CHAPTER 8: Selectors206

Upon success, each method returns a SelectionKey instance that relates
the selectable channel with the selector. Upon failure, an exception is
thrown. For example, java.nio.channels.ClosedChannelException is
thrown when the channel is closed and java.nio.channels.
IllegalBlockingModeException is thrown when the channel hasn’t been set
to nonblocking mode.

The following code fragment extends the previous code fragment by
configuring a previously created channel to nonblocking mode and
registering the channel with the selector. The selection methods test the
channel for accept, read, and write readiness:

channel.configureBlocking(false);
SelectionKey key = channel.register(selector, SelectionKey.OP_ACCEPT |
 SelectionKey.OP_READ |
 SelectionKey.OP_WRITE);

At this point, the application typically enters an infinite loop where it
accomplishes the following tasks:

1. Performs a selection operation.

2. Obtains the selected keys followed by an iterator
over the selected keys.

3. Iterates over these keys and performs channel
operations.

A selection operation is performed by invoking one of Selector’s selection
methods. For example, int select() performs a blocking selection
operation. It doesn’t return until at least one channel is selected, until this
selector’s wakeup() method is invoked, or until the current thread is
interrupted, whichever comes first.

The select() method returns the number of channels that have become
ready since the last time it was called. For example, if you call select() and
it returns 1 because one channel has become ready, and if you call select()

Note Selector also declares an int select(long timeout) method
that doesn’t return until at least one channel is selected, until this selector’s
wakeup()method is invoked, until the current thread is interrupted, or until the
timeout value expires, whichever comes first. Additionally, Selector declares
int selectNow(), which is a nonblocking version of select().

CHAPTER 8: Selectors

207

again and a second channel has become ready, select() will once again
return 1. If you’ve not yet serviced the first ready channel, you now have
two ready channels to service. However, only one channel became ready
between the two select() calls.

A set of the selected keys (the ready set) is now obtained by invoking
Selector’s Set<SelectionKey> selectedKeys() method. Invoke the set’s
iterator() method to obtain an iterator over these keys.

Finally, the application iterates over the keys. For each of the iterations, a
SelectionKey instance is returned. Some combination of SelectionKey’s
boolean isAcceptable(), boolean isConnectable(), boolean isReadable(),
and boolean isWritable() methods is called to determine if the key
indicates that a channel is ready to accept a connection, is finished
connecting, is readable, or is writable.

Once the application determines that a channel is ready to perform a
specific operation, it can call SelectionKey’s SelectableChannel channel()
method to obtain the channel and then perform work on that channel.

When you’re finished processing a channel, you must remove the key from the
set of keys; the selector doesn’t perform this task. The next time the channel
becomes ready, the Selector will add the key to the selected key set.

Note The aforementioned methods offer a convenient alternative to specifying
expressions such as key.readyOps() & OP_READ != 0.
SelectionKey’s int readyOps() method returns the key’s ready set. The
returned set will only contain operation bits that are valid for this key’s channel.
For example, it never returns an operation bit that indicates that a read-only
channel is ready for writing. Note that every selectable channel also declares an
int validOps() method, which returns a bitwise ORed set of operations that
are valid for the channel.

Note SelectionKey also declares a Selector selector() method that
returns the selector for which the key was created.

http://c/Program%20Files/Java/jdk1.8.0/docs/api/java/util/Set.html#interface%20in%20java.util
http://c/Program%20Files/Java/jdk1.8.0/docs/api/java/nio/channels/SelectionKey.html#class%20in%20java.nio.channels

CHAPTER 8: Selectors208

The following code fragment continues from the previous code fragment and
demonstrates the aforementioned tasks:

while (true)
{
 int numReadyChannels = selector.select();
 if (numReadyChannels == 0)
 continue; // there are no ready channels to process

 Set<SelectionKey> selectedKeys = selector.selectedKeys();
 Iterator<SelectionKey> keyIterator = selectedKeys.iterator();

 while (keyIterator.hasNext())
 {
 SelectionKey key = keyIterator.next();

 if (key.isAcceptable())
 {
 // A connection was accepted by a ServerSocketChannel.
 ServerSocketChannel server = (ServerSocketChannel) key.channel();
 SocketChannel client = server.accept();
 if (client == null) // in case accept() returns null
 continue;
 client.configureBlocking(false); // must be nonblocking
 // Register socket channel with selector for read operations.
 client.register(selector, SelectionKey.OP_READ);
 }
 else
 if (key.isReadable())
 {
 // A socket channel is ready for reading.
 SocketChannel client = (SocketChannel) key.channel();
 // Perform work on the socket channel.
 }
 else
 if (key.isWritable())
 {
 // A socket channel is ready for writing.
 SocketChannel client = (SocketChannel) key.channel();
 // Perform work on the socket channel.
 }

 keyIterator.remove();
 }
}

CHAPTER 8: Selectors

209

As well as registering the server socket channel with the selector, each
incoming client socket channel is also registered with the server socket
channel. When a client socket channel becomes ready for read or write
operations, either key.isReadable() or key.isWritable() for the associated
socket channel return true and the socket channel can be read or written.

A key represents a relationship between a selectable channel and a selector.
This relationship can be terminated by invoking SelectionKey’s void
cancel() method. Upon return, the key will be invalid and will have been
added to its selector’s cancelled-key set. The key will be removed from all of
the selector’s key sets during the next selection operation.

When you’re finished with a selector, call Selector’s void close() method.
If a thread is currently blocked in one of this selector’s selection methods,
it’s interrupted as if by invoking the selector’s wakeup() method. Any
uncancelled keys still associated with this selector are invalidated, their
channels are deregistered, and any other resources associated with this
selector are released. If this selector is already closed, invoking close() has
no effect.

Selector Demonstration
Selectors are commonly used in server applications. Listing 8-1 shows the
source code of a server application that sends its local time to clients.

Listing 8-1. Serving Time to Clients

import java.io.IOException;

import java.net.InetSocketAddress;
import java.net.ServerSocket;

import java.nio.ByteBuffer;

import java.nio.channels.SelectionKey;
import java.nio.channels.Selector;
import java.nio.channels.ServerSocketChannel;
import java.nio.channels.SocketChannel;

import java.util.Iterator;

public class SelectorServer
{
 final static int DEFAULT_PORT = 9999;

 static ByteBuffer bb = ByteBuffer.allocateDirect(8);

CHAPTER 8: Selectors210

 public static void main(String[] args) throws IOException
 {
 int port = DEFAULT_PORT;
 if (args.length > 0)
 port = Integer.parseInt(args[0]);
 System.out.println("Server starting ... listening on port " + port);

 ServerSocketChannel ssc = ServerSocketChannel.open();
 ServerSocket ss = ssc.socket();
 ss.bind(new InetSocketAddress(port));
 ssc.configureBlocking(false);

 Selector s = Selector.open();
 ssc.register(s, SelectionKey.OP_ACCEPT);

 while (true)
 {
 int n = s.select();
 if (n == 0)
 continue;
 Iterator it = s.selectedKeys().iterator();
 while (it.hasNext())
 {
 SelectionKey key = (SelectionKey) it.next();
 if (key.isAcceptable())
 {
 SocketChannel sc;
 sc = ((ServerSocketChannel) key.channel()).accept();
 if (sc == null)
 continue;
 System.out.println("Receiving connection");
 bb.clear();
 bb.putLong(System.currentTimeMillis());
 bb.flip();
 System.out.println("Writing current time");
 while (bb.hasRemaining())
 sc.write(bb);
 sc.close();
 }
 it.remove();
 }
 }
 }
}

Listing 8-1’s server application consists of a SelectorServer class. This
class allocates a direct byte buffer after this class is loaded.

CHAPTER 8: Selectors

211

When the main() method is executed, it first checks for a command-line
argument, which is assumed to represent a port number. If no argument is
specified, a default port number is used; otherwise, main() tries to convert
it to an integer representing the port by passing the argument to Integer.
parseInt(). (This method throws java.lang.NumberFormatException when a
noninteger argument is passed.)

After outputting a startup message that identifies the listening port, main()
obtains a server socket channel followed by the underlying socket, which is
bound to the specified port. The server socket channel is then configured for
nonblocking mode in preparation for registering this channel with a selector.

A selector is now obtained and the server socket channel registers itself with
the selector so that it can learn when the channel is ready to perform an
accept operation. The returned key isn’t saved because it’s never cancelled
(and the selector is never closed).

main() now enters an infinite loop, first invoking the selector’s select()
method. If the server socket channel isn’t ready (select() returns 0), the rest
of the loop is skipped.

The selected keys (just one key in the example) along with an iterator for
iterating over them are now obtained and main() enters an inner loop to
loop over these keys. Each key’s isAcceptable() method is invoked to find
out if the server socket channel is ready to perform an accept operation. If
this is the case, the channel is obtained and cast to ServerSocketChannel,
and ServerSocketChannel’s accept() method is called to accept the new
connection.

To guard against the unlikely possibility of the returned SocketChannel
instance being null (accept() returns null when the server socket channel is
in nonblocking mode and no connection is available to be accepted), main()
tests for this scenario and continues the loop when null is detected.

A message about receiving a connection is output and the byte buffer is
cleared in preparation for storing the local time. After this long integer has been
stored in the buffer, the buffer is flipped in preparation for draining. A message
about writing the current time is output and the buffer is drained. The socket
channel is then closed and the key is removed from the set of keys.

Compile Listing 8-1 as follows:

javac SelectorServer.java

Run the resulting application as follows:

java SelectorServer

CHAPTER 8: Selectors212

You should observe the following output and the server should continue to run:

Server starting ... listening on port 9999

We need a client to exercise this server. Listing 8-2 shows the source code
of a sample client application.

Listing 8-2. Receiving Time from the Server

import java.io.IOException;

import java.net.InetSocketAddress;

import java.nio.ByteBuffer;

import java.nio.channels.SocketChannel;

import java.util.Date;

public class SelectorClient
{
 final static int DEFAULT_PORT = 9999;

 static ByteBuffer bb = ByteBuffer.allocateDirect(8);

 public static void main(String[] args)
 {
 int port = DEFAULT_PORT;
 if (args.length > 0)
 port = Integer.parseInt(args[0]);

 try
 {
 SocketChannel sc = SocketChannel.open();
 InetSocketAddress addr = new InetSocketAddress("localhost", port);
 sc.connect(addr);

 long time = 0;
 while (sc.read(bb) != -1)
 {
 bb.flip();
 while (bb.hasRemaining())
 {
 time <<= 8;
 time |= bb.get() & 255;
 }
 bb.clear();
 }
 System.out.println(new Date(time));

CHAPTER 8: Selectors

213

 sc.close();
 }
 catch (IOException ioe)
 {
 System.err.println("I/O error: " + ioe.getMessage());
 }
 }
}

Listing 8-2 is much simpler than Listing 8-1 because selectors aren’t used.
There’s no need for a selector in this simple application. You would typically
use selectors in a client context when the client interacts with several
servers.

There are a couple of interesting items in the source code:

	bb.get() returns a 32-bit integer representation of an
8-bit byte. Sign extension is used for byte values greater
than 127, which are regarded as negative numbers.
Because leading one bits affect the result after bitwise
ORing them with time, they are removed by bitwise
ANDing the integer with 255.

	This value in time is passed to the java.util.
Date(long time) constructor when a new Date object
is constructed. In turn, the Date object is passed to
System.out.println(), which invokes Date’s toString()
method to obtain a human-readable date/time string.

Compile Listing 8-2 as follows:

javac SelectorClient.java

In a second command window, run the resulting application as follows:

java SelectorClient

You should observe output similar to the following:

Tue Jul 28 13:38:20 CDT 2015

In the server command window, you should observe the following
messages:

Receiving connection
Writing current time

CHAPTER 8: Selectors214

EXERCISES

The following exercises are designed to test your understanding of Chapter 8’s content:

1. Define selector.

2. Identify the three main types that support selectors.

3. True or false: File channels can be used with selectors.

4. What does SelectionKey provide as a convenient alternative to the
expression key.readyOps() & OP_READ != 0?

Summary
A selector is an object created from a subclass of the abstract Selector class.
The selector maintains a set of channels that it examines to determine which
channels are ready for reading, writing, completing a connection sequence,
accepting another connection, or some combination of these tasks.

Selectors are used with selectable channels, which are objects whose
classes ultimately inherit from the abstract SelectableChannel class, which
describes a channel that can be multiplexed by a selector.

One or more previously created selectable channels are registered with a
selector. Each registration returns an instance of a subclass of the abstract
SelectionKey class, which is a token signifying the relationship between one
channel and the selector. When a selection method is invoked, the selector’s
associated keys are updated by checking all channels registered with that
selector. The application can then obtain a set of keys whose channels were
found ready and iterate over these keys to service each channel that has
become ready since the previous select method call.

Chapter 9 presents NIO’s support for regular expressions.

http://dx.doi.org/10.1007/978-1-4842-1565-4_8
http://dx.doi.org/10.1007/978-1-4842-1565-4_9

215

Chapter 9
Regular Expressions
Text-processing applications often need to match text against patterns
(character strings that concisely describe sets of strings that are considered
to be matches). For example, an application might need to locate all
occurrences of a specific word pattern in a text file so that it can replace
those occurrences with another word. NIO includes regular expressions
to help text-processing applications perform pattern matching with high
performance. This chapter introduces regular expressions.

Pattern, PatternSyntaxException, and
Matcher
A regular expression (also known as a regex or regexp) is a string-based
pattern that represents the set of strings that match this pattern. The pattern
consists of literal characters and metacharacters, which are characters with
special meanings instead of literal meanings.

The Regular Expressions API provides the java.util.regex.Pattern
class to represent patterns via compiled regexes. Regexes are compiled
for performance reasons; pattern matching via compiled regexes is
much faster than if the regexes were not compiled. Table 9-1 describes
Pattern’s methods.

CHAPTER 9: Regular Expressions216

Table 9-1. Pattern Methods

Method Description

static Pattern compile(String regex) Compile regex and return its Pattern
object. This method throws java.util.
regex.PatternSyntaxException when
regex’s syntax is invalid.

static Pattern compile(String
regex,int flags)

Compile regex according to the given
flags (a bitset consisting of some
combination of Pattern’s CANON_EQ,
CASE_INSENSITIVE, COMMENTS, DOTALL,
LITERAL, MULTILINE, UNICODE_CASE, and
UNIX_LINES constants) and return its
Pattern object. This method throws
PatternSyntaxException when regex’s
syntax is invalid, and throws java.lang.
IllegalArgumentException when bit
values other than those corresponding to
the defined match flags are set in flags.

int flags() Return this Pattern object’s match
flags. This method returns 0 for Pattern
instances created via compile(String) and
the bitset of flags for Pattern instances
created via compile(String, int).

Matcher matcher(CharSequence input) Return a java.util.regex.Matcher that
will match input against this Pattern’s
compiled regex.

static boolean matches(String regex,
CharSequence input)

Compile regex and attempt to match
input against the compiled regex. Return
true when there is a match; otherwise,
return false. This convenience method is
equivalent to Pattern.compile(regex).
matcher(input).matches() and throws
PatternSyntaxException when regex’s
syntax is invalid.

String pattern() Return this Pattern’s uncompiled regex.

static String quote(String s) Quote s using "\Q" and "\E" so that all other
metacharacters lose their special meaning.
When the returned java.lang.String object
is later compiled into a Pattern instance, it
only can be matched literally.

(continued)

CHAPTER 9: Regular Expressions

217

Table 9-1 reveals the java.lang.CharSequence interface, which describes
a readable and immutable sequence of char values—the underlying
implementation may be mutable. Instances of any class that implements
this interface (such as String, java.lang.StringBuffer, and java.lang.
StringBuilder) can be passed to Pattern methods that take CharSequence
arguments (such as split(CharSequence)).

Table 9-1 also reveals that each of Pattern’s compile() methods and
its matches() method (which calls the compile(String) method) throws
PatternSyntaxException when a syntax error is encountered while compiling
the pattern argument. Table 9-2 describes PatternSyntaxException’s
methods.

Table 9-1. (continued)

Method Description

String[] split(CharSequence input) Split input around matches of this
Pattern’s compiled regex and return an
array containing the matches.

String[] split(CharSequence input,
int limit)

Split input around matches of this
Pattern’s compiled regex; limit controls
the number of times the compiled regex
is applied and thus affects the length of
the resulting array.

String toString() Return this Pattern’s uncompiled regex.

Table 9-2. PatternSyntaxException Methods

Method Description

String getDescription() Return a description of the syntax error.

int getIndex() Return the approximate index of where the syntax
error occurred in the pattern or -1 when the index
isn’t known.

String getMessage() Return a multiline string containing the description
of the syntax error and its index, the erroneous
pattern, and a visual indication of the error index
within the pattern.

String getPattern() Return the erroneous pattern.

CHAPTER 9: Regular Expressions218

Finally, Table 9-1’s Matcher matcher(CharSequence input) method reveals
that the Regular Expressions API also provides the Matcher class, whose
matchers attempt to match compiled regexes against input text. Matcher
declares the following methods to perform matching operations:

	boolean matches(): Attempt to match the entire region
against the pattern. When the match succeeds, more
information can be obtained by calling Matcher’s
start(), end(), and group() methods. For example,
int start() returns the start index of the previous
match, int end() returns the offset of the first
character following the previous match, and String
group() returns the input subsequence matched by
the previous match. Each method throws java.lang.
IllegalStateException when a match has not yet been
attempted or the previous match attempt failed.

	boolean lookingAt(): Attempt to match the input
sequence, starting at the beginning of the region,
against the pattern. As with matches(), this method
always starts at the beginning of the region. Unlike
matches(), lookingAt() doesn’t require that the entire
region be matched. When the match succeeds, more
information can be obtained by calling Matcher’s
start(), end(), and group() methods.

	boolean find(): Attempt to find the next instance of the
input sequence that matches the pattern. It can start at
the beginning of this matcher’s region. Or, if a previous
call to this method was successful and the matcher
hasn’t since been reset (by calling Matcher’s Matcher
reset() or Matcher reset(CharSequence input)
method), it will start at the first character not matched
by the previous match. When the match succeeds, more
information can be obtained by calling Matcher’s
start(), end(), and group() methods.

Note A matcher finds matches in a subset of its input called the region.
By default, the region contains all of the matcher’s input. The region can
be modified by calling Matcher’s Matcher region(int start, int
end) method (set the limits of this matcher’s region) and queried by calling
Matcher’s int regionStart() and int regionEnd() methods.

CHAPTER 9: Regular Expressions

219

I’ve created a simple application that demonstrates Pattern,
PatternSyntaxException, and Matcher. Listing 9-1 presents this application’s
source code.

Listing 9-1. Playing with Regular Expressions

import java.util.regex.Matcher;
import java.util.regex.Pattern;
import java.util.regex.PatternSyntaxException;

public class RegExDemo
{
 public static void main(String[] args)
 {
 if (args.length != 2)
 {
 System.err.println("usage: java RegExDemo regex input");
 return;
 }
 try
 {
 System.out.println("regex = " + args[0]);
 System.out.println("input = " + args[1]);
 Pattern p = Pattern.compile(args[0]);
 Matcher m = p.matcher(args[1]);
 while (m.find())
 System.out.println("Located [" + m.group() + "] starting at "
 + m.start() + " and ending at " +
 (m.end() - 1));
 }
 catch (PatternSyntaxException pse)
 {
 System.err.println("Bad regex: " + pse.getMessage());
 System.err.println("Description: " + pse.getDescription());
 System.err.println("Index: " + pse.getIndex());
 System.err.println("Incorrect pattern: " + pse.getPattern());
 }
 }
}

Compile Listing 9-1 as follows:

javac RegExDemo.java

Run the resulting application as follows:

java RegExDemo ox ox

CHAPTER 9: Regular Expressions220

You’ll discover the following output:

regex = ox
input = ox
Located [ox] starting at 0 and ending at 1

find() searches for a match by comparing regex characters with the input
characters in left-to-right order and returns true because o equals o and x
equals x.

Continue by executing the following command line:

java RegExDemo box ox

This time, you’ll discover the following output:

regex = box
input = ox

find() first compares regex character b with input character o. Because
these characters are not equal and because there are not enough characters
in the input to continue the search, find() doesn’t output a “Located”
message to indicate a match. However, if you execute java RegExDemo ox
box, you’ll discover a match:

regex = ox
input = box
Located [ox] starting at 1 and ending at 2

The ox regex consists of literal characters. More sophisticated regexes
combine literal characters with metacharacters (such as the period [.]) and
other regex constructs.

Tip To specify a metacharacter as a literal character, precede the
metacharacter with a backslash character (as in \.) or place the metacharacter
between \Q and \E (as in \Q.\E). In either case, make sure to double the
backslash character when the escaped metacharacter appears in a string literal;
for example, "\\." or "\\Q.\\E".

CHAPTER 9: Regular Expressions

221

The period metacharacter matches all characters except for the line
terminator. For example, java RegExDemo .ox box and java RegExDemo .ox
fox both report a match because the period matches the b in box and the
f in fox.

Character Classes
A character class is a set of characters appearing between [and].
There are six kinds of character classes:

	A simple character class consists of literal characters
placed side by side and matches only these characters.
For example, [abc] consists of characters a, b, and c.
Also, java RegExDemo t[aiou]ck tack reports a match
because a is a member of [aiou]. It also reports a
match when the input is tick, tock, or tuck because i,
o, and u are members.

	A negation character class consists of a circumflex
metacharacter (^), followed by literal characters placed
side by side, and matches all characters except for
the characters in the class. For example, [^abc]
consists of all characters except for a, b, and c. Also,
java RegExDemo "[^b]ox" box doesn’t report a match
because b isn’t a member of [^b], whereas java
RegExDemo "[^b]ox" fox reports a match because f is
a member. (The double quotes surrounding [^b]ox are
necessary on my Windows 7 operating system because
^ is treated specially at the command line.)

	A range character class consists of successive literal
characters expressed as a starting literal character,
followed by the hyphen metacharacter (-), followed by
an ending literal character, and matches all characters
in this range. For example, [a-z] consists of all

Note Pattern recognizes the following line terminators: carriage return
(\r), newline (line feed) (\n), carriage return immediately followed by newline
(\r\n), next line (\u0085), line separator (\u2028), and paragraph separator
(\u2029). The period metacharacter can be made to also match these line
terminators by specifying the Pattern.DOTALL flag when calling Pattern.
compile(String, int).

CHAPTER 9: Regular Expressions222

characters from a through z. Also, java RegExDemo
[h-l]ouse house reports a match because h is a
member of the class, whereas java RegExDemo [h-l]
ouse mouse doesn’t report a match because m lies
outside of the range and is therefore not part of the
class. You can combine multiple ranges within the same
range character class by placing them side by side;
for example, [A-Za-z] consists of all uppercase and
lowercase Latin letters.

	A union character class consists of multiple nested
character classes and matches all characters that
belong to the resulting union. For example, [abc[u-z]]
consists of characters a, b, c, u, v, w, x, y, and z.
Also, java RegExDemo [[0-9][A-F][a-f]] e reports a
match because e is a hexadecimal character. (I could
have alternatively expressed this character class as
[0-9A-Fa-f] by combining multiple ranges.)

	An intersection character class consists of multiple
&&–separated nested character classes and matches all
characters that are common to these nested character
classes. For example, [a-c&&[c-f]] consists of
character c, which is the only character common to
[a-c] and [c-f]. Also, java RegExDemo "[aeiouy&&[y]]"
y reports a match because y is common to classes
[aeiouy] and [y].

	A subtraction character class consists of multiple
&&-separated nested character classes, where at least
one nested character class is a negation character
class, and matches all characters except for those
indicated by the negation character class/classes.
For example, [a-z&&[^x-z]] consists of characters a
through w. (The square brackets surrounding ^x-z are
necessary; otherwise, ^ is ignored and the resulting
class consists of only x, y, and z.) Also, java RegExDemo
"[a-z&&[^aeiou]]" g reports a match because g is a
consonant and only consonants belong to this class.
(I’m ignoring y, which is sometimes regarded as a
consonant and sometimes regarded as a vowel.)

A predefined character class is a regex construct for a commonly specified
character class. Table 9-3 identifies Pattern’s predefined character classes.

CHAPTER 9: Regular Expressions

223

For example, the following command line reports a match because \w
matches the word character a in abc:

java RegExDemo \wbc abc

Capturing Groups
A capturing group saves a match’s characters for later recall during pattern
matching and is expressed as a character sequence surrounded by
parentheses metacharacters (and). All characters within a capturing group
are treated as a unit. For example, the (Java) capturing group combines J,
a, v, and a into a unit. It matches the Java pattern against all occurrences
of Java in the input. Each match replaces the previous match’s saved Java
characters with the next match’s Java characters.

Capturing groups can appear inside other capturing groups. For example,
capturing groups (A) and (B(C)) appear inside capturing group ((A)
(B(C))), and capturing group (C) appears inside capturing group (B(C)).
Each nested or non-nested capturing group receives its own number,
numbering starts at 1, and capturing groups are numbered from left to
right. For example, ((A)(B(C))) is assigned 1, (A) is assigned 2, (B(C)) is
assigned 3, and (C) is assigned 4.

Table 9-3. Predefined Character Classes

Predefined Character Class Description

\d Match any digit character.
\d is equivalent to [0-9].

\D Match any nondigit character.
\D is equivalent to [^\d].

\s Match any whitespace character.
\s is equivalent to [\t\n\x0B\f\r].

\S Match any nonwhitespace character.
\S is equivalent to [^\s].

\w Match any word character.
\w is equivalent to [a-zA-Z0-9].

\W Match any nonword character.
\W is equivalent to [^\w].

CHAPTER 9: Regular Expressions224

A capturing group saves its match for later recall via a back reference, which
is a backslash character followed by a digit character denoting a capturing
group number. The back reference causes the matcher to use the back
reference’s capturing group number to recall the capturing group’s saved
match and then use that match’s characters to attempt a further match. The
following example uses a back reference to determine if the input consists of
two consecutive Java patterns:

java RegExDemo "(Java) \1" "Java Java"

RegExDemo reports a match because the matcher detects Java, followed by a
space, followed by Java in the input.

Boundary Matchers and Zero-Length Matches
A boundary matcher is a regex construct for identifying the beginning of a
line, a word boundary, the end of text, and other commonly occurring
boundaries. See Table 9-4.

Table 9-4. Boundary Matchers

Boundary Matcher Description

^ Match beginning of line.

$ Match end of line.

\b Match word boundary.

\B Match nonword boundary.

\A Match beginning of text.

\G Match end of previous match.

\Z Match end of text except for line terminator (when present).

\z Match end of text.

Consider the following example:

java RegExDemo \b\b "I think"

This example reports several matches, as revealed in the following output:

regex = \b\b
input = I think
Located [] starting at 0 and ending at -1
Located [] starting at 1 and ending at 0
Located [] starting at 2 and ending at 1
Located [] starting at 7 and ending at 6

CHAPTER 9: Regular Expressions

225

This output reveals several zero-length matches. When a zero-length match
occurs, the starting and ending indexes are equal, although the output
shows the ending index to be one less than the starting index because I
specified end() - 1 in Listing 9-1 (so that a match’s end index identifies a
non-zero-length match’s last character, not the character following the non-
zero-length match’s last character).

Quantifiers
The final regex construct I present is the quantifier, a numeric value implicitly
or explicitly bound to a pattern. Quantifiers are categorized as greedy,
reluctant, or possessive:

	A greedy quantifier (?, *, or +) attempts to find the
longest match. Specify X? to find one or no occurrences
of X, X* to find zero or more occurrences of X, X+ to
find one or more occurrences of X, X{n} to find n
occurrences of X, X{n,} to find at least n (and possibly
more) occurrences of X, and X{n,m} to find at least n but
no more than m occurrences of X.

	A reluctant quantifier (??, *?, or +?) attempts to find
the shortest match. Specify X?? to find one or no
occurrences of X, X*? to find zero or more occurrences
of X, X+? to find one or more occurrences of X, X{n}? to
find n occurrences of X, X{n,}? to find at least n (and
possibly more) occurrences of X, and X{n,m}? to find at
least n but no more than m occurrences of X.

	A possessive quantifier (?+, *+, or ++) is similar to a
greedy quantifier except that a possessive quantifier
makes only one attempt to find the longest match,
whereas a greedy quantifier can make multiple
attempts. Specify X?+ to find one or no occurrences
of X, X*+ to find zero or more occurrences of X, X++
to find one or more occurrences of X, X{n}+ to find n
occurrences of X, X{n,}+ to find at least n (and possibly
more) occurrences of X, and X{n,m}+ to find at least n
but no more than m occurrences of X.

Note A zero-length match occurs in empty input text, at the beginning of input
text, after the last character of input text, or between any two characters of that
text. Zero-length matches are easy to identify because they always start and
end at the same index position.

CHAPTER 9: Regular Expressions226

For an example of a greedy quantifier, execute the following command line:

java RegExDemo .*end "wend rend end"

You’ll discover the following output:

regex = .*end
input = wend rend end
Located [wend rend end] starting at 0 and ending at 12

The greedy quantifier (.*) matches the longest sequence of characters that
terminates in end. It starts by consuming all of the input text and then is
forced to back off until it discovers that the input text terminates with these
characters.

For an example of a reluctant quantifier, execute the following command line:

java RegExDemo .*?end "wend rend end"

You’ll discover the following output:

regex = .*?end
input = wend rend end
Located [wend] starting at 0 and ending at 3
Located [rend] starting at 4 and ending at 8
Located [end] starting at 9 and ending at 12

The reluctant quantifier (.*?) matches the shortest sequence of characters
that terminates in end. It begins by consuming nothing and then slowly
consumes characters until it finds a match. It then continues until it exhausts
the input text.

For an example of a possessive quantifier, execute the following command line:

java RegExDemo .*+end "wend rend end"

You’ll discover the following output:

regex = .*+end
input = wend rend end

The possessive quantifier (.*+) doesn’t detect a match because it consumes
the entire input text, leaving nothing left over to match end at the end of the
regex. Unlike a greedy quantifier, a possessive quantifier doesn’t back off.

CHAPTER 9: Regular Expressions

227

While working with quantifiers, you’ll probably encounter zero-length
matches. For example, execute the following command line:

java RegExDemo 1? 101101

You should observe the following output:

regex = 1?
input = 101101
Located [1] starting at 0 and ending at 0
Located [] starting at 1 and ending at 0
Located [1] starting at 2 and ending at 2
Located [1] starting at 3 and ending at 3
Located [] starting at 4 and ending at 3
Located [1] starting at 5 and ending at 5
Located [] starting at 6 and ending at 5

The result of this greedy quantifier is that 1 is detected at locations 0, 2,
3, and 5 in the input text, and nothing is detected (a zero-length match) at
locations 1, 4, and 6.

This time, execute the following command line:

java RegExDemo 1?? 101101

You should observe the following output:

regex = 1??
input = 101101
Located [] starting at 0 and ending at -1
Located [] starting at 1 and ending at 0
Located [] starting at 2 and ending at 1
Located [] starting at 3 and ending at 2
Located [] starting at 4 and ending at 3
Located [] starting at 5 and ending at 4
Located [] starting at 6 and ending at 5

This output might look surprising, but remember that a reluctant quantifier
looks for the shortest match, which (in this case) is no match at all.

Finally, execute the following command line:

java RegExDemo 1+? 101101

CHAPTER 9: Regular Expressions228

You should observe the following output:

regex = 1+?
input = 101101
Located [1] starting at 0 and ending at 0
Located [1] starting at 2 and ending at 2
Located [1] starting at 3 and ending at 3
Located [1] starting at 5 and ending at 5

This possessive quantifier only matches the locations where 1 is detected in
the input text. It doesn’t perform zero-length matches.

Practical Regular Expressions
Most of the previous regex examples haven’t been practical, except to help
you grasp how to use the various regex constructs. In contrast, the following
examples reveal a regex that matches phone numbers of the form (ddd)
ddd-dddd or ddd-dddd. A single space appears between (ddd) and ddd;
there’s no space on either side of the hyphen.

java RegExDemo "(\(\d{3}\))?\s*\d{3}-\d{4}" "(800) 555-1212"
regex = (\(\d{3}\))?\s*\d{3}-\d{4}
input = (800) 555-1212
Located [(800) 555-1212] starting at 0 and ending at 13

java RegExDemo "(\(\d{3}\))?\s*\d{3}-\d{4}" 555-1212
regex = (\(\d{3}\))?\s*\d{3}-\d{4}
input = 555-1212
Located [555-1212] starting at 0 and ending at 7

Note Check out the Java documentation on the Pattern class to learn about
additional regex constructs.

Note To learn more about regular expressions, check out “Lesson: Regular
Expressions” at http://download.oracle.com/javase/tutorial/
essential/regex/index.html in The Java Tutorials.

http://download.oracle.com/javase/tutorial/essential/regex/index.html
http://download.oracle.com/javase/tutorial/essential/regex/index.html

CHAPTER 9: Regular Expressions

229

EXERCISES

The following exercises are designed to test your understanding of Chapter 9’s content:

1. Define regular expression.

2. What does the Pattern class accomplish?

3. What do Pattern’s compile() methods do when they discover
illegal syntax in their regular expression arguments?

4. What does the Matcher class accomplish?

5. What is the difference between Matcher’s matches() and
lookingAt() methods?

6. Define character class.

7. Identify the various kinds of character classes.

8. True or false: An intersection character class consists of multiple
&&-separated nested character classes, where at least one nested
character class is a negation character class, and matches all
characters except for those indicated by the negation character
class/classes.

9. Define capturing group.

10. What is a zero-length match?

11. Define quantifier.

12. What is the difference between greedy and reluctant quantifiers?

13. How do possessive and greedy quantifiers differ?

14. Create a ReplaceText application that takes input text, a pattern
that specifies text to replace, and replacement text command-line
arguments, and uses Matcher’s String replaceAll(String
replacement) method to replace all matches of the pattern with
the replacement text (passed to replacement). For example,
java ReplaceText "too many embedded spaces"
"\s+" " " should output too many embedded spaces with
only a single space character between successive words.

http://dx.doi.org/10.1007/978-1-4842-1565-4_9

CHAPTER 9: Regular Expressions230

Summary
Text-processing applications often need to match text against patterns.
NIO includes regular expressions to help these applications perform pattern
matching with high performance. Java supports regular expressions by
providing the Pattern, PatternSyntaxException, and Matcher classes.

In this chapter, you explored Pattern, PatternSyntaxException, and
Matcher. You then learned about character classes, capturing groups,
boundary matchers and zero-length matches, and quantifiers. Finally,
you observed a practical use case for regexes: phone number matching.

Chapter 10 presents NIO’s support for charsets.

http://dx.doi.org/10.1007/978-1-4842-1565-4_10

231

Chapter 10
Charsets
In Chapter 5, I briefly introduced the concepts of character set and
character encoding. I also referred to some of the types located in the
java.nio.charset package. In this chapter, I expand on these topics and
explore this package. I also discuss the part of the java.lang.String class
that’s relevant to these topics.

A Brief Review of the Fundamentals
Java uses Unicode to represent characters. (Unicode is a 16-bit character
set standard [actually, more of an encoding standard because some
characters are represented by multiple numeric values; each value is known
as a code point] whose goal is to map all of the world’s significant character
sets into an all-encompassing map.) Although Unicode makes it much
easier to work with characters from different languages, it doesn’t automate
everything and you often need to work with charsets. Before I dig into this
topic, you should understand the following terms:

	Character: A meaningful symbol. For example, “$”
and “E” are characters. These symbols predate the
computer era.

	Character set: A set of characters. For example,
uppercase letters A through Z could be considered to
form a character set. No numeric values are assigned
to the characters in the set. There is no relationship to
Unicode, ASCII, EBCDIC, or any other kind of character
set standard.

http://dx.doi.org/10.1007/978-1-4842-1565-4_5

CHAPTER 10: Charsets232

	Coded character set: A character set where each
character is assigned a unique numeric value.
Standards bodies such as US-ASCII or ISO-8859-1
define mappings from characters to numeric values.

	Character-encoding scheme: An encoding of a coded
character set’s numeric values to sequences of bytes
that represent these values. Some encodings are one-
to-one. For example, in ASCII, character A is mapped to
integer 65 and encoded as integer 65. For some other
mappings, encodings are one-to-one or one-to-many.
For example, UTF-8 encodes Unicode characters.
Each character whose numeric value is less than 128 is
encoded as a single byte to be compatible with ASCII.
Other Unicode characters are encoded as two-to-six-
byte sequences. See www.ietf.org/rfc/rfc2279.txt for
more information.

	Charset: A coded character set combined with a
character-encoding scheme. Charsets are described by
the abstract java.nio.charset.Charset class.

Although Unicode is widely used and increasing in popularity, other
character set standards are also used. Because operating systems perform
I/O at the byte level, and because files store data as byte sequences, it’s
necessary to translate between byte sequences and the characters that are
encoded into these sequences. Charset and the other classes located in the
java.nio.charset package address this translation task.

Working with Charsets
Beginning with JDK 1.4, Java virtual machines (JVMs) were required to
support a standard collection of charsets and could support additional
charsets. They also support the default charset, which doesn’t have to be
one of the standard charsets and is obtained when the JVM starts running.
Table 10-1 identifies and describes the standard charsets.

http://www.ietf.org/rfc/rfc2279.txt

CHAPTER 10: Charsets

233

Charset names are case-insensitive and are maintained by the Internet
Assigned Names Authority (IANA). The names in Table 10-1 are included in
IANA’s official registry.

UTF-16BE and UTF-16LE encode each character as a two-byte sequence in
big-endian or little-endian order, respectively. A decoder for a UTF-16BE- or
UTF-16LE-encoded byte sequence needs to know how the byte sequence
was encoded or have a way to detect the byte order from the encoded data.
In contrast, UTF-16 relies on a byte order mark that appears at the beginning
of the sequence. If this mark is absent, decoding proceeds according to
UTF-16BE (Java’s native byte order). If this mark equals \uFEFF, the sequence
is decoded according to UTF-16BE. If this mark equals \uFFFE, the sequence
is decoded according to UTF-16LE.

Each charset name is associated with a Charset object, which you obtain
by invoking one of this class’s factory methods. Listing 10-1 presents an
application that shows you how to use this class to obtain the default and
standard charsets, which are then used to encode characters into byte
sequences.

Listing 10-1. Using Charsets to Encode Characters into Byte Sequences

import java.nio.ByteBuffer;

import java.nio.charset.Charset;

public class CharsetDemo

Table 10-1. Standard Charsets

Charset Name Description

US-ASCII Seven-bit ASCII, which forms the American-English character set.
Also known as the basic Latin block in Unicode.

ISO-8859-1 The 8-bit character set used by most European languages. It’s a
superset of ASCII and includes most non-English European
characters.

UTF-8 An 8-bit byte-oriented character encoding for Unicode. Characters
are encoded in one to six bytes.

UTF-16BE A 16-bit encoding using big-endian order for Unicode. Characters
are encoded in two bytes with the high-order eight bits written first.

UTF-16LE A 16-bit encoding using little-endian order for Unicode. Characters
are encoded in two bytes with the low-order eight bits written first.

UTF-16 A 16-bit encoding whose endian order is determined by an
optional byte-order mark.

CHAPTER 10: Charsets234

{
 public static void main(String[] args)
 {
 String msg = "façade touché";
 String[] csNames =
 {
 "US-ASCII",
 "ISO-8859-1",
 "UTF-8",
 "UTF-16BE",
 "UTF-16LE",
 "UTF-16"
 };

 encode(msg, Charset.defaultCharset());
 for (String csName: csNames)
 encode(msg, Charset.forName(csName));
 }

 static void encode(String msg, Charset cs)
 {
 System.out.println("Charset: " + cs.toString());
 System.out.println("Message: " + msg);

 ByteBuffer buffer = cs.encode(msg);
 System.out.println("Encoded: ");

 for (int i = 0; buffer.hasRemaining(); i++)
 {
 int _byte = buffer.get() & 255;
 char ch = (char) _byte;
 if (Character.isWhitespace(ch) || Character.isISOControl(ch))
 ch = '\u0000';
 System.out.printf("%2d: %02x (%c)%n", i, _byte, ch);
 }
 System.out.println();
 }
}

Listing 10-1’s main() method first creates a message consisting of two
French words and an array of names for the standard collection of charsets.
Next, it invokes the encode() method to encode the message according to
the default charset, which it obtains by calling Charset’s Charset
defaultCharset() factory method.

Continuing, main() invokes encode() for each of the standard charsets.
Charset’s Charset forName(String charsetName) factory method is used to
obtain the Charset instance that corresponds to charsetName.

CHAPTER 10: Charsets

235

The encode() method first identifies the charset and the message. It then
invokes Charset’s ByteBuffer encode(String s) method to return a new java.
nio.ByteBuffer object containing the bytes that encode the characters from s.

main() next iterates over the bytes in the byte buffer, converting each byte
to a character. It uses java.lang.Character’s isWhitespace() and
isISOControl() methods to determine if the character is whitespace or a
control character (neither is regarded as printable) and converts such a
character to Unicode 0 (an empty string). (A carriage return or newline would
screw up the output, for example.)

Finally, the index of the character, its hexadecimal value, and the character
itself are printed to the standard output stream. I chose to use System.out.
printf() for this task. You’ll learn about this method in the next chapter.

Compile Listing 10-1 as follows:

javac CharsetDemo.java

Run the resulting application as follows:

java CharsetDemo

You should observe the following output:

Charset: windows-1252
Message: façade touché
Encoded:
 0: 66 (f)
 1: 61 (a)
 2: e7 (ç)
 3: 61 (a)
 4: 64 (d)
 5: 65 (e)
 6: 20 ()
 7: 74 (t)
 8: 6f (o)
 9: 75 (u)

Caution forName() throws java.nio.charset.
IllegalCharsetNameException when the specified charset name is illegal
and throws java.nio.charset.UnsupportedCharsetException when
the desired charset isn’t supported by the JVM.

CHAPTER 10: Charsets236

10: 63 (c)
11: 68 (h)
12: e9 (é)

Charset: US-ASCII
Message: façade touché
Encoded:
 0: 66 (f)
 1: 61 (a)
 2: 3f (?)
 3: 61 (a)
 4: 64 (d)
 5: 65 (e)
 6: 20 ()
 7: 74 (t)
 8: 6f (o)
 9: 75 (u)
10: 63 (c)
11: 68 (h)
12: 3f (?)

Charset: ISO-8859-1
Message: façade touché
Encoded:
 0: 66 (f)
 1: 61 (a)
 2: e7 (ç)
 3: 61 (a)
 4: 64 (d)
 5: 65 (e)
 6: 20 ()
 7: 74 (t)
 8: 6f (o)
 9: 75 (u)
10: 63 (c)
11: 68 (h)
12: e9 (é)

Charset: UTF-8
Message: façade touché
Encoded:
 0: 66 (f)
 1: 61 (a)
 2: c3 (Ã)
 3: a7 (§)
 4: 61 (a)
 5: 64 (d)
 6: 65 (e)
 7: 20 ()

CHAPTER 10: Charsets

237

 8: 74 (t)
 9: 6f (o)
10: 75 (u)
11: 63 (c)
12: 68 (h)
13: c3 (Ã)
14: a9 (©)

Charset: UTF-16BE
Message: façade touché
Encoded:
 0: 00 ()
 1: 66 (f)
 2: 00 ()
 3: 61 (a)
 4: 00 ()
 5: e7 (ç)
 6: 00 ()
 7: 61 (a)
 8: 00 ()
 9: 64 (d)
10: 00 ()
11: 65 (e)
12: 00 ()
13: 20 ()
14: 00 ()
15: 74 (t)
16: 00 ()
17: 6f (o)
18: 00 ()
19: 75 (u)
20: 00 ()
21: 63 (c)
22: 00 ()
23: 68 (h)
24: 00 ()
25: e9 (é)

Charset: UTF-16LE
Message: façade touché
Encoded:
 0: 66 (f)
 1: 00 ()
 2: 61 (a)
 3: 00 ()
 4: e7 (ç)
 5: 00 ()
 6: 61 (a)
 7: 00 ()

CHAPTER 10: Charsets238

 8: 64 (d)
 9: 00 ()
10: 65 (e)
11: 00 ()
12: 20 ()
13: 00 ()
14: 74 (t)
15: 00 ()
16: 6f (o)
17: 00 ()
18: 75 (u)
19: 00 ()
20: 63 (c)
21: 00 ()
22: 68 (h)
23: 00 ()
24: e9 (é)
25: 00 ()

Charset: UTF-16
Message: façade touché
Encoded:
 0: fe (þ)
 1: ff (ÿ)
 2: 00 ()
 3: 66 (f)
 4: 00 ()
 5: 61 (a)
 6: 00 ()
 7: e7 (ç)
 8: 00 ()
 9: 61 (a)
10: 00 ()
11: 64 (d)
12: 00 ()
13: 65 (e)
14: 00 ()
15: 20 ()
16: 00 ()
17: 74 (t)
18: 00 ()
19: 6f (o)
20: 00 ()
21: 75 (u)
22: 00 ()
23: 63 (c)
24: 00 ()
25: 68 (h)
26: 00 ()
27: e9 (é)

CHAPTER 10: Charsets

239

As well as providing encoding methods such as the aforementioned
ByteBuffer encode(String s) method, Charset provides a complementary
CharBuffer decode(ByteBuffer buffer) decoding method. The return type
is java.nio.CharBuffer because byte sequences are decoded into
characters.

If you dig deeper into Charset, you’ll encounter the following pair of
methods:

	CharsetEncoder newEncoder()

	CharsetDecoder newDecoder()

These methods perform the actual work of encoding and decoding.
Charset’s encode() and decode() methods delegate to the java.nio.
charset.CharsetEncoder and java.nio.charset.CharsetDecoder objects
returned from newEncoder() and newDecoder(), and invoke their encode()
and decode() (along with additional) methods. (For brevity, I don’t discuss
CharsetEncoder and CharsetDecoder.)

Charsets and the String Class
The String class describes a string as a sequence of characters. It declares
constructors that can be passed byte arrays. Because a byte array contains
an encoded character sequence, a charset is required to decode them. Here
is a partial list of String constructors that work with charsets:

	String(byte[] data): Constructs a new String instance
by decoding the specified array of bytes using the
platform’s default charset.

	String(byte[] data, int offset, int byteCount):
Constructs a new String instance by decoding the
specified subsequence of the byte array using the
platform’s default charset.

	String(byte[] data, String charsetName): Constructs
a new String instance by decoding the specified array
of bytes using the named charset.

Note ByteBuffer encode(String s) is a convenience method for
specifying CharBuffer.wrap(s) and passing the result to the ByteBuffer
encode(CharBuffer buffer) method.

CHAPTER 10: Charsets240

Furthermore, String declares methods that encode its sequence of
characters into a byte array with help from the default charset or a named
charset. Two of these methods are described here:

	byte[] getBytes(): Returns a new byte array containing
the characters of this string encoded using the
platform’s default charset.

	byte[] getBytes(String charsetName): Returns a new
byte array containing the characters of this string
encoded using the named charset.

Note that String(byte[] data, String charsetName) and byte[]
getBytes(String charsetName) throw java.io.UnsupportedEncodingException
when the charset isn’t supported.

I’ve created a small application that demonstrates String and charsets.
Listing 10-2 presents the source code.

Listing 10-2. Using Charsets with String

import java.io.UnsupportedEncodingException;

public class CharsetDemo
{
 public static void main(String[] args)
 throws UnsupportedEncodingException
 {
 byte[] encodedMsg =
 {
 0x66, 0x61, (byte) 0xc3, (byte) 0xa7, 0x61, 0x64, 0x65, 0x20, 0x74,
 0x6f, 0x75, 0x63, 0x68, (byte) 0xc3, (byte) 0xa9
 };
 String s = new String(encodedMsg, "UTF-8");
 System.out.println(s);
 System.out.println();
 byte[] bytes = s.getBytes();
 for (byte _byte: bytes)
 System.out.print(Integer.toHexString(_byte & 255) + " ");
 System.out.println();
 }
}

Listing 10-2’s main() method first creates a byte array containing a UTF-8
encoded message. It then converts this array to a String object via the
UTF-8 charset. After outputting the resulting String object, it extracts this
object’s bytes into a new byte array and proceeds to output these bytes
in hexadecimal format. As demonstrated earlier in this chapter, I bitwise
AND each byte value with 255 to remove the 0xFF sign extension bytes for
negative integers when the 8-bit byte integer value is converted to a 32-bit
integer value. These sign extension bytes would otherwise be output.

CHAPTER 10: Charsets

241

Compile Listing 10-2 (javac CharsetDemo.java) and run this application
(java CharsetDemo). You should observe the following output:

façade touché

66 61 e7 61 64 65 20 74 6f 75 63 68 e9

You might be wondering why you observe e7 instead of c3 a7 (Latin small letter
c with a cedilla [a hook or tail]) and e9 instead of c3 a9 (Latin small letter e with
an acute accent). The answer is that I invoked the noargument getBytes()
method to encode the string. This method uses the default charset, which is
windows-1252 on my platform. According to this charset, e7 is equivalent to c3
a7 and e9 is equivalent to c3 a9. The result is a shorter encoded sequence.

EXERCISES

The following exercises are designed to test your understanding of Chapter 10’s content:

 1. Define charset.

 2. What is the purpose of the Charset class?

 3. Identify the standard charsets supported by the JVM.

 4. What is the purpose of the byte order mark?

 5. How do you obtain the default charset?

 6. What does Charset’s Charset forName(String charsetName)
factory method do when the desired charset isn’t supported by the JVM?

 7. How would you typically encode a string via a Charset instance?

 8. Identify the Charset methods that perform the actual encoding and
decoding tasks.

 9. What does String’s byte[] getBytes() method accomplish?

10. Write an AvailCharsets application that obtains and outputs a
map of all charsets that the current JVM supports. (Hint: You’ll find the
method that returns this map in the Charset class.)

Summary
Charsets combine coded character sets with character-encoding schemes.
They’re used to translate between byte sequences and the characters that
are encoded into these sequences. Java supports charsets by providing
Charset and related classes. It also uses charsets with the String class.

Chapter 11 presents NIO’s java.util.Formatter class and related types.

http://dx.doi.org/10.1007/978-1-4842-1565-4_10
http://dx.doi.org/10.1007/978-1-4842-1565-4_11

243

Chapter 11
Formatter
The description of JSR 51 (http://jcp.org/en/jsr/detail?id=51) indicates
that a simple printf-style formatting facility was proposed for inclusion in
NIO. If you’re familiar with the C language, you’ve probably worked with the
printf() family of functions that support formatted output.

One feature that makes the printf() functions useful is varargs, which lets
you pass a variable number of arguments to these functions. Because
support for varargs wasn’t added to Java until JDK 5, and because this
support is very useful for achieving formatted output, the printf-style
formatting facility was deferred to JDK 5.

This chapter explores JDK 5’s printf-style formatting facility.

Exploring Formatter
JDK 5 introduced the java.util.Formatter class as an interpreter for
printf()-style format strings. This class provides support for layout
justification and alignment; common formats for numeric, string, and
date/time data; and more. Commonly used Java types (such as byte and
java.math.BigDecimal) are supported.

Formatter declares several constructors for creating Formatter objects.
These constructors let you specify where you want formatted output to be
sent. For example, Formatter() writes formatted output to an internal
java.lang.StringBuilder instance and Formatter(OutputStream os)
writes formatted output to the specified output stream. You can access the
destination by calling Formatter’s Appendable out() method.

http://jcp.org/en/jsr/detail?id=51

CHAPTER 11: Formatter244

After creating a Formatter object, you would call a format() method to
format a varying number of values. For example, Formatter format(String
format, Object... args) formats the args array according to the string of
format specifiers passed to the format parameter, and returns a reference
to the invoking Formatter so that you can chain format() calls together
(for convenience).

Each format specifier has one of the following syntaxes:

	%[argument_index$][flags][width][.precision]conversion

	%[argument_index$][flags][width]conversion

	%[flags][width]conversion

The first syntax describes a format specifier for general (such as string),
character, and numeric types. The second syntax describes a format
specifier for types that are used to represent dates and times. The third
syntax describes a format specifier that doesn’t correspond to arguments.

The optional argument_index is a decimal integer indicating the position of
the argument in the argument list. The first argument is referenced by 1$, the
second argument is referenced by 2$, and so on.

The optional flags represents a set of characters that modify the output
format. The set of valid flags depends on the conversion.

The optional width is a positive decimal integer indicating the minimum
number of characters to be written to the output.

The optional precision is a nonnegative decimal integer typically used to
restrict the number of characters. The specific behavior depends on the
conversion.

The required conversion depends on the syntax. For the first syntax, it’s a
character indicating how the argument should be formatted. The set of valid
conversions for a given argument depends on the argument’s data type.

Note The java.lang.Appendable interface describes an object to
which char values and character sequences can be appended. Classes
(such as StringBuilder) whose instances are to receive formatted output
(via the Formatter class) implement Appendable. This interface declares
methods such as Appendable append(char c)—append c’s character
to this appendable. When an I/O error occurs, this method throws
java.io.IOException.

CHAPTER 11: Formatter

245

For the second syntax, it’s a two-character sequence. The first character is
t or T. The second character indicates the format to be used. For the third
syntax, it’s a character indicating content to be inserted in the output.

Conversions are divided into six categories: general, character, numeric
(integer or floating-point), date/time, percent, and line separator. The
following list identifies a few example format specifiers and their
conversions:

	%d: Formats the argument as a decimal integer.

	%x: Formats the argument as a hexadecimal integer.

	%c: Formats the argument as a character.

	%f: Formats the argument as a decimal number.

	%s: Formats the argument as a string.

	%n: Outputs an operating system-specific line separator.

	%10.2f: Formats the argument as a decimal number with
10 as the minimum number of characters to be written
(leading spaces are written when the number is smaller
than the width) and 2 as the number of characters to be
written after the decimal point.

	%05d: Formats the argument as a decimal integer with 5
as the minimum number of characters to be written
(leading 0s are written when the number is smaller than
the width).

When you’re finished with the formatter, you might want to invoke the void
flush() method to ensure that any buffered output in the destination is
written to the underlying stream. You would typically invoke flush() when
the destination is a file.

Continuing, invoke the formatter’s void close() method. As well as closing
the formatter, this method also closes the underlying output destination
when this destination’s class implements the java.io.Closeable interface.
If the formatter has been closed, this method has no effect. Attempting to
format after calling close() results in java.util.FormatterClosedException.

Listing 11-1 provides a simple demonstration of Formatter using the
aforementioned format specifiers.

CHAPTER 11: Formatter246

Listing 11-1. Demonstrating the Formatter Class

import java.util.Formatter;

public class FormatterDemo
{
 public static void main(String[] args)
 {
 Formatter formatter = new Formatter();
 formatter.format("%d", 123);
 System.out.println(formatter.toString());
 formatter.format("%x", 123);
 System.out.println(formatter.toString());
 formatter.format("%c", 'X');
 System.out.println(formatter.toString());
 formatter.format("%f", 0.1);
 System.out.println(formatter.toString());
 formatter.format("%s%n", "Hello, World");
 System.out.println(formatter.toString());
 formatter.format("%10.2f", 98.375);
 System.out.println(formatter.toString());
 formatter.format("%05d", 123);
 System.out.println(formatter.toString());
 formatter.format("%1$d %1$d", 123);
 System.out.println(formatter.toString());
 formatter.format("%d %d", 123);
 System.out.println(formatter.toString());
 formatter.close();
 }
}

Listing 11-1’s main() method first creates a Formatter object via the
Formatter() constructor, which sends formatted output to an internal
StringBuilder instance. It then demonstrates the aforementioned format
specifiers by invoking a format() method, followed by the toString()
method to obtain the formatted content, which is subsequently output.

The formatter.format("%1$d %1$d", 123); method call accesses the
single data item argument to be formatted (123) twice by referencing
this argument via 1$. Without this reference, which is demonstrated via
formatter.format("%d %d", 123);, an exception would be thrown because
there must be a separate argument for each format specifier unless you use
an argument index.

Lastly, the formatter is closed.

Compile Listing 11-1 as follows:

javac FormatterDemo.java

CHAPTER 11: Formatter

247

Run the resulting application as follows:

java FormatterDemo

You should observe the following output:

123
1237b
1237bX
1237bX0.100000
1237bX0.100000Hello, World

1237bX0.100000Hello, World
 98.38
1237bX0.100000Hello, World
 98.3800123
1237bX0.100000Hello, World
 98.3800123123 123
Exception in thread "main" java.util.MissingFormatArgumentException: Format
specifier '%d'
 at java.util.Formatter.format(Formatter.java:2519)
 at java.util.Formatter.format(Formatter.java:2455)
 at FormatterDemo.main(FormatterDemo.java:24)

The first thing to notice about the output is that each format() call appends
formatted output to the previously formatted output. The second thing to
notice is that java.util.MissingFormatArgumentException is thrown when
you don’t specify a needed argument.

If you aren’t happy with this concatenated output, there are two ways to
solve the problem:

	Instantiate a new Formatter instance, as in formatter =
new Formatter();, before calling format(). This ensures
that a new default and empty string builder is created.

	Create your own StringBuilder instance and pass it to
a constructor such as Formatter(Appendable a). After
outputting the formatted content, invoke StringBuilder’s
void setLength(int newLength) method with 0 as the
argument to erase the previous content.

Note MissingFormatArgumentException is one of several formatter
exception types, which subtype java.util.IllegalFormatException.

http://c/Program%20Files/Java/jdk1.8.0/docs/api/java/lang/Appendable.html#interface%20in%20java.lang

CHAPTER 11: Formatter248

It’s cumbersome to have to create and manage a Formatter object when
all you want to do is achieve something equivalent to the C language’s
printf() function. Java addresses this situation by adding format() and the
equivalent printf() methods to the java.io.PrintStream class.

Of the various formatter-oriented methods added to PrintStream, you’ll
often invoke PrintStream printf(String format, Object... args). After
sending its formatted content to the print stream, this method returns a
reference to this stream so that you can chain method calls together.

Listing 11-2 provides a small printf() demonstration.

Listing 11-2. Formatting via printf()

public class FormatterDemo
{
 public static void main(String[] args)
 {
 System.out.printf("%04X%n", 478);
 System.out.printf("Current date: %1$tb %1$te, %1$tY%n",
 System.currentTimeMillis());
 }
}

Listing 11-2’s main() method invokes System.out.printf() twice. The
first invocation formats 32-bit integer 478 into a four-digit hexadecimal
string with a leading zero and uppercase hexadecimal digits. The second
invocation formats the current millisecond value returned from System.
currentTimeMillis() into a date. The tb conversion specifies an
abbreviated month name (such as Jan), the te conversion specifies the day
of the month (such as 1 through 31), and the tY conversion specifies the
year (formatted with at least four digits, with leading 0s as necessary).

Compile Listing 11-2 (javac FormatterDemo.java) and run the application
(java FormatterDemo). You should observe output similar to the output
shown here:

01DE
Current date: Jul 28, 2015

Note For more information on Formatter and its supported format
specifiers, check out Formatter’s Java documentation.

CHAPTER 11: Formatter

249

Exploring Formattable and FormattableFlags
Formatter is accompanied by a java.util.Formattable interface and
a java.util.FormattableFlags class that collectively support limited
formatting customization for arbitrary user-defined types.

Formattable is implemented by any class that needs to perform custom
formatting using Formatter’s “s” (format argument as string) conversion
character. This interface allows basic control for formatting arbitrary objects.

Formattable declares the following method, which is called by Formatter’s
format() methods to perform custom formatting:

void formatTo(Formatter formatter, int flags, int width, int precision)

These parameters have the following meanings:

	formatter is the Formatter object that holds the locale
and is where you send the output when it’s done.

	flags is a bitmask of FormattableFlags constants:
ALTERNATE (the user specified # for alternate formatting),
LEFT_JUSTIFY (the user specified - for left justification),
and UPPERCASE (the user specified S for locale-based
conversion to uppercase).

	width is the minimum number of characters to be written
to the output. If the length of the converted value is
less than the width, the output will be padded by space
characters until the total number of characters equals
the width. By default, the padding is at the beginning
of the output. If FormattableFlags.LEFT_JUSTIFY is
specified, the padding will be at the end. If width is -1,
there is no minimum.

	precision is the maximum number of characters to
be written to the output. Because the precision is
applied before the width, the output will be truncated to
precision characters even when the width is greater than
the precision. If precision is -1, there is no explicit limit
on the number of characters in the output.

The width and precision parameters may seem confusing. To help you
understand them, consider the following examples:

System.out.printf("[%10.2s]%n", "ABC");
System.out.printf("[%10.12s]%n", "ABC");
System.out.printf("[%10.2s]%n", "ABCDEFGHIJKLMNOP");
System.out.printf("[%10.12s]%n", "ABCDEFGHIJKLMNOP");

https://docs.oracle.com/javase/8/docs/api/java/util/Formatter.html#class%20in%20java.util
https://docs.oracle.com/javase/8/docs/api/java/util/Formatter.html#class%20in%20java.util
https://docs.oracle.com/javase/8/docs/api/java/util/FormattableFlags.html#LEFT_JUSTIFY

CHAPTER 11: Formatter250

When you execute these statements, you should observe the following
output:

[AB]
[ABC]
[AB]
[ABCDEFGHIJKL]

The final example shows that 12 characters are output. Although this value
exceeds the width of 10 characters, it does not exceed the precision of
12 characters. The value passed to width is most useful from an alignment
perspective when fewer than width characters are output.

formatTo(Formatter, int, int, int) will build a string in a string builder
and then, before returning, pass the string to the formatter ’s format()
method. This method doesn’t return a value. However, it should throw
IllegalFormatException when any of the parameter values is invalid.

To put this discussion into a practical context, suppose you have created
the Employee class that appears in Listing 11-3.

Listing 11-3. An Employee Consists of a Name and Number

public class Employee
{
 private String name;

 private int empno;

 public Employee(String name, int empno)
 {
 this.name = name;
 this.empno = empno;
 }

 @Override
 public String toString()
 {
 return name + ": " + empno;
 }
}

Continuing, suppose you create the FormatterDemo application class that
appears in Listing 11-4.

CHAPTER 11: Formatter

251

Listing 11-4. Exercising the Employee Class

import java.util.Locale;

public class FormatterDemo
{
 public static void main(String[] args)
 {
 Employee emp = new Employee("John Doe", 1000);
 System.out.printf("[%s]%n", emp);
 System.out.printf(Locale.FRENCH, "[%s]%n", emp);
 System.out.printf("[%S]%n", emp);
 System.out.printf("[%10.3s]%n", emp);
 System.out.printf("[%-10.3s]%n", emp);
 System.out.printf("[%#s]%n", emp);
 }
}

The various System.out.printf() method calls attempt to format and then
output the string returned from the Employee object’s toString() method
in different ways. For example, the first call outputs the value returned from
toString() verbatim.

The second call attempts to output it in the French locale. You will see the
English name because there is no customization. The third call outputs the
name in uppercase; the fourth and fifth calls right-justify and left-justify the
first three characters from toString() in a width of 10 characters.

The final call attempts to use a conversion-dependent alternate form, which
is indicated by #s. However, because customization has not yet been added
to Employee, java.util.FormatFlagsConversionMismatchException will be
thrown when #s is detected.

Compile Listings 11-3 and 11-4 as follows:

javac *.java

Run the resulting application as follows:

java FormatterDemo

You should observe the following output:

[John Doe: 1000]
[John Doe: 1000]
[JOHN DOE: 1000]
[Joh]
[Joh]
[

CHAPTER 11: Formatter252

Exception in thread "main" java.util.FormatFlagsConversionMismatchException:
Conversion = s, Flags = #
 at java.util.Formatter$FormatSpecifier.failMismatch(Formatter.

java:4298)
 at java.util.Formatter$FormatSpecifier.printString(Formatter.

java:2882)
 at java.util.Formatter$FormatSpecifier.print(Formatter.java:2763)
 at java.util.Formatter.format(Formatter.java:2520)
 at java.io.PrintStream.format(PrintStream.java:970)
 at java.io.PrintStream.printf(PrintStream.java:871)
 at FormatterDemo.main(FormatterDemo.java:13)

We can improve on this output by having Employee implement Formattable.
For example, we can display an equivalent name for the French locale. Also,
we can display just the employee number when the precision is less than 8.
Listing 11-5 presents an improved Employee class.

Listing 11-5. Implementing Formattable

import java.util.Formattable;
import java.util.FormattableFlags;
import java.util.Formatter;
import java.util.Locale;

public class Employee implements Formattable
{
 private String name;

 private int empno;

 public Employee(String name, int empno)
 {
 this.name = name;
 this.empno = empno;
 }

 @Override
 public void formatTo(Formatter formatter, int flags, int width,
 int precision)
 {
 StringBuilder sb = new StringBuilder();

 String output = this.name;
 if (formatter.locale().equals(Locale.FRENCH) &&
 name.equals("John Doe"))
 output = "Jean Dupont";
 output += ": " + empno;

CHAPTER 11: Formatter

253

 if (((flags & FormattableFlags.UPPERCASE) ==
 FormattableFlags.UPPERCASE))
 output = output.toUpperCase();

 boolean alternate = (flags & FormattableFlags.ALTERNATE) ==
 FormattableFlags.ALTERNATE;
 alternate |= (precision >= 0 && precision < 8);
 if (alternate)
 output = "" + empno;

 if (precision == -1 || output.length() <= precision)
 sb.append(output);
 else
 sb.append(output.substring(0, precision - 1)).append('*');

 int len = sb.length();
 if (len < width)
 {
 boolean leftJustified = (flags & FormattableFlags.LEFT_JUSTIFY)
 == FormattableFlags.LEFT_JUSTIFY;
 for (int i = 0; i < width - len; i++)
 if (leftJustified)
 sb.append(' ');
 else
 sb.insert(0, ' ');
 }

 formatter.format(sb.toString());
 }

 @Override
 public String toString()
 {
 return name + ": " + empno;
 }
}

formatTo(Formatter, int, int, int) first creates a string builder to store
the output string.

Next, the output string is defaulted to the employee’s name. If the locale is
French and the name equals John Doe, the output string is changed to Jean
Dupont. A colon and the employee number are appended to this string. If
the uppercase flag was specified, the output string is uppercased.

Continuing, if the alternate flag was specified or the precision is between 0
and 7 inclusive, the output string is shortened to the employee number.

CHAPTER 11: Formatter254

If the precision equals -1 (unlimited) or the output string length doesn’t
exceed the precision, the output string is appended to the string buffer.
Otherwise, no more than the left-most precision -1 characters followed by *
(which signifies a truncated string) are appended.

At this point, if the number of characters in the string buffer is less than the
specified width, the string buffer contents are either left- or right-justified.

The work is now finished so the final task is to convert the string builder to a
string and then pass it to the formatter’s format() method.

Compile Listings 11-4 and 11-5 as follows:

javac *.java

Run the resulting application as follows:

java FormatterDemo

You should observe the following output:

[John Doe: 1000]
[Jean Dupont: 1000]
[JOHN DOE: 1000]
[10*]
[10*]
[1000]

EXERCISES

The following exercises are designed to test your understanding of Chapter 11’s content:

1. Identify the three nonexception types that contribute to NIO’s
printf-style formatting facility.

2. How do you reference an argument from within a format specifier
string?

3. What does the %n format specifier accomplish?

4. Modify Listing 11-1 so that FormatterDemo’s output isn’t
concatenated into one long string.

http://dx.doi.org/10.1007/978-1-4842-1565-4_11

CHAPTER 11: Formatter

255

Summary
JDK 5 introduced the Formatter class as an interpreter for printf()-style
format strings. This class provides support for layout justification and
alignment; common formats for numeric, string, and date/time data; and
more. Commonly used Java types (such as byte and BigDecimal) are
supported.

Formatter declares several constructors for creating Formatter objects.
These constructors let you specify where you want formatted output to
be sent. For example, Formatter() writes formatted output to an internal
StringBuilder instance. You can access the destination by calling
Formatter’s Appendable out() method.

After creating a Formatter object, call a format() method to format a
varying number of values. For example, Formatter format(String format,
Object... args) formats the args array according to the string of format
specifiers passed to the format parameter, and returns a reference to the
invoking Formatter so that you can chain the format() calls together.

It’s cumbersome to have to create and manage a Formatter object when
all you want to do is achieve something equivalent to the C language’s
printf() function. Java addresses this situation by adding format() and
equivalent printf() methods (such as PrintStream printf(String format,
Object... args)) to the PrintStream class.

Formatter is accompanied by a Formattable interface and a
FormattableFlags class that collectively support limited formatting
customization for arbitrary user-defined types. Formattable is implemented
by any class that needs to perform custom formatting using Formatter’s “s”
(format argument as string) conversion character.

Chapter 12 presents NIO.2’s improved file system interface.

https://docs.oracle.com/javase/8/docs/api/java/util/Formatter.html#class%20in%20java.util
http://dx.doi.org/10.1007/978-1-4842-1565-4_12

257

Part IV
More New I/O APIs

259

Chapter 12
Improved File System
Interface
NIO.2 improves the file system interface that was previously limited to the
java.io.File class. This chapter introduces the improved file system
interface’s architecture and shows you how to use the new APIs to
accomplish a wide range of file system tasks.

Architecting a Better File Class
The File-based file system interface is problematic. Several problems are
listed here:

	Many methods return Boolean values rather than throw
exceptions. As a result, you don’t know why an
operation fails. For example, when the delete() method
returns false, you don’t know why the file could not be
deleted (such as the file not existing or the user not having
the appropriate permission to perform the deletion).

	File doesn’t support file system-specific symbolic links
and hard links.

Note A file system manages files, which are classified as regular files,
directories, symbolic links (https://en.wikipedia.org/wiki/Symbolic_
link), and hard links (https://en.wikipedia.org/wiki/Hard_link).

https://en.wikipedia.org/wiki/Symbolic_link
https://en.wikipedia.org/wiki/Symbolic_link
https://en.wikipedia.org/wiki/Hard_link

CHAPTER 12: Improved File System Interface260

	File provides access to a limited set of file attributes.
For example, it doesn’t support access control lists
(ACLs) (https://en.wikipedia.org/wiki/Access_
control_list).

	File doesn’t support efficient file-attribute access. Every
query results in a call to the underlying operating system.

	File doesn’t scale to large directories. Requesting a
large directory listing over a server can result in a hung
application. Large directories can also cause memory
resource problems, resulting in a denial of service.

	File is limited to the default file system (the file system
that is accessible to the Java Virtual Machine—JVM). It
doesn’t support alternatives, such as a memory-based
file system.

	File doesn’t offer a file-copy or a file-move capability.
The renameTo() method, which is often used in a
file-move context, doesn’t work consistently across
operating systems.

NIO.2 provides an improved file system interface that offers solutions to the
previous problems. Some of its features are listed here:

	Methods throwing exceptions

	Support for symbolic links

	Broad and efficient support for file attributes

	Directory streams

	Support for alternative file systems via custom file
system providers

	Support for file copying and file moving

	Support for walking the file tree/visiting files and
watching directories

The improved file system interface is implemented mainly by the various
types in the following packages:

	java.nio.file: Provides interfaces and classes for
accessing file systems and their files.

	java.nio.file.attribute: Provides interfaces and
classes for accessing file system attributes.

	java.nio.file.spi: Provides classes for creating a file
system implementation.

https://en.wikipedia.org/wiki/Access_control_list
https://en.wikipedia.org/wiki/Access_control_list

CHAPTER 12: Improved File System Interface

261

These packages organize many types. FileSystem, FileSystems, and
FileSystemProvider form the core of the improved file system interface.

File Systems and File System Providers
An operating system can host one or more file systems. For example, Unix/
Linux combines all mounted disks into one virtual file system. In contrast,
Windows associates a separate file system with each active disk drive; for
example, FAT16 for drive A: and NTFS for drive C:.

The java.nio.file.FileSystem class interfaces between Java code and a
file system. Furthermore, FileSystem is a factory for obtaining many types of
file system-related objects (such as file stores and paths) and services (such
as watch services).

FileSystem cannot be instantiated because this class is abstract. Instead,
the java.nio.file.FileSystems utility class is used to obtain FileSystems
via several factory methods. For example, the FileSystem getDefault()
class method returns a FileSystem object for the default file system:

FileSystem fsDefault = FileSystems.getDefault();

FileSystems also declares a FileSystem getFileSystem(URI uri) class
method for obtaining a FileSystem associated with the specified uniform
resource identifier (URI) argument. Furthermore, FileSystems declares three
newFileSystem() methods for creating new FileSystems.

The abstract java.nio.file.spi.FileSystemProvider class is used by the
FileSystems factory methods to obtain existing file systems or create new
file systems. A concrete subclass of FileSystemProvider implements its
various methods for copying, moving, and deleting files; for obtaining a
path; for reading attributes and the targets of symbolic links; for creating
directories, links, and symbolic links; and more.

Figure 12-1 shows how FileSystem, FileSystems, and FileSystemProvider
are related.

CHAPTER 12: Improved File System Interface262

A Java implementation provides concrete FileSystemProvider subclasses
that describe different kinds of file system providers. If you’re curious about
the file system providers supported by your Java implementation, run the
application whose source code appears in Listing 12-1.

Listing 12-1. Identifying Installed File System Providers

import java.nio.file.spi.FileSystemProvider;

import java.util.List;

public class ListProviders
{
 public static void main(String[] args)
 {
 List<FileSystemProvider> providers =
 FileSystemProvider.installedProviders();
 for (FileSystemProvider provider: providers)
 System.out.println(provider);
 }
}

Figure 12-1. FileSystems methods instantiate FileSystemProviders to obtain FileSystems

CHAPTER 12: Improved File System Interface

263

Listing 12-1 invokes FileSystemProvider’s List<FileSystemProvider>
installedProviders() class method to obtain a list of the installed file
system providers. It then iterates over this list, implicitly invoking each
provider’s toString() method and outputting the resulting string.

Compile Listing 12-1 as follows:

javac ListProviders.java

Run the resulting application as follows:

java ListProviders

When I run this application, I observe the following output:

sun.nio.fs.WindowsFileSystemProvider@4aa298b7
com.sun.nio.zipfs.ZipFileSystemProvider@7d4991ad

This output tells me two things: FileSystems that interface to the file
systems that are native to my Windows 7 operating system are obtained
from the WindowsFileSystemProvider subclass. Also, I can obtain
FileSystems that are based on ZIP files.

With few exceptions, NIO.2’s various types ultimately delegate to the
foundational FileSystem, FileSystems, and FileSystemProvider types.

Locating Files with Paths
A file system stores files (definitely regular files and directories, and possibly
symbolic links and hard links). Files are typically stored in hierarchies and are
located by specifying paths, which are compact maps that navigate these
hierarchies via separated name element sequences.

The java.nio.file.Path interface represents a hierarchical path to a file that
may not exist. It optionally starts with a name element identifying a file
system hierarchy and optionally continues with a sequence of directory
elements separated by a separator character. The name element that is
farthest from the root of the directory hierarchy is the name of a directory or
other kind of file. The other name elements are directory names.

Note Path declares FileSystem getFileSystem() to return a reference
to the FileSystem that created the file described by the Path object.

http://mailto:com.sun.nio.zipfs.ZipFileSystemProvider@7d4991ad/

CHAPTER 12: Improved File System Interface264

A Path can represent a root, a root and a sequence of name elements, or
one or more name elements. It signifies an empty path when it consists
entirely of one name element that is empty. Accessing a file using an empty
path is equivalent to accessing the file system’s default directory.

Getting a Path and Accessing Its Name Elements
FileSystem provides a Path getPath(String first, String... more)
method for returning a Path object. The argument passed to first identifies
the initial part of the path string. The variable arguments (varargs) list that’s
assigned to more identifies additional strings that are joined to first to form
the complete path string.

Consider the following example:

Path path = fsDefault.getPath("x", "y");

This example constructs a Path with y subordinate to x. You could also
construct this Path as follows:

Path path = fsDefault.getPath("x\\y");

Unlike in the former example, I’ve included the backslash (\) name-separator
character (escaped to satisfy the Java compiler) that Windows understands.

Note Path declares File toFile() to return a File object representing
its path. toFile() throws UnsupportedOperationException when the
Path object isn’t associated with the default provider. File declares Path
toPath() to return a Path object representing the File object’s abstract path.
toPath() throws java.nio.file.InvalidPathException when a Path
cannot be constructed from the abstract path. These methods let you mix Path
and File in your source code so that you can slowly transition your legacy
File-based code to code that uses the improved file system interface.

Note When constructing a Path, its name elements are typically joined
by using the name separator that’s returned from FileSystem’s String
getSeparator() method. The resulting path string represents a system-
dependent file path.

CHAPTER 12: Improved File System Interface

265

A Path must conform to the syntax that is parsed by the file system provider
that created the FileSystem on which getPath() is called. Otherwise, this
method will throw InvalidPathException.

NIO.2 provides a more convenient java.nio.file.Paths utility class with a
pair of class methods for returning Path objects:

	Path get(String first, String... more)

	Path get(URI uri)

The first method is equivalent to calling getPath() on the default file system
and returning the result:

return FileSystems.getDefault().getPath(first, more);

The second method is a bit more involved. It iterates over the installed file
system providers to locate the provider that is identified by the given URI’s
scheme component. When this provider is found for the file scheme, this
method executes the following code:

return FileSystems.getDefault().provider().getPath(uri);

After obtaining the default file system, FileSystem’s FileSystemProvider
provider() method is called to return the file system provider that created
the FileSystem object. Then, FileSystemProvider’s Path getPath(URI uri)
method is called to convert the URI argument to a Path object.

For any other scheme, the installed providers list is searched for the first
provider with a matching scheme. getPath(uri) is called on the provider.

get(String, String...) throws InvalidPathException when a path cannot
be constructed because of bad syntax. get(URI) throws java.nio.file.
FileSystemNotFoundException when no FileSystem matches the scheme
and java.lang.IllegalArgumentException for a bad URI.

Caution When constructing a Path, you should avoid hardcoding name-
separator characters, such as the backslash on Windows. Although some
separators are legal, such as backslash or forward slash (/) on Windows, other
separators will probably result in InvalidPathException. For example,
specifying :x:y (for some hypothetical file system) as a path on Windows will
result in InvalidPathException.

CHAPTER 12: Improved File System Interface266

Path declares several methods for accessing its name elements:

	Path getFileName(): Return the name of the file
denoted by this path as a Path object.

	Path getName(int index): Return the indexth name
element in this path as a Path object. The index starts at
0, which represents the element closest to the root. The
element farthest from the root is identified by one less
than the name count.

	int getNameCount(): Return the number of name
elements in the path.

	Path getParent(): Return the parent path or null when
there is no parent.

	Path getRoot(): Return the root name element in this
path as a Path object or null when there is no root.

	Path subpath(int beginIndex, int endIndex): Return
a relative path that is a subsequence of the name
elements in this path. The first name element (closest
to the root) is located at beginIndex and the last name
element (farthest from the root) is located at one less
than endIndex.

Listing 12-2 presents the source code to an application that demonstrates
path construction and these methods.

Listing 12-2. Constructing a Path and Accessing Its Name Elements

import java.nio.file.FileSystem;
import java.nio.file.FileSystems;
import java.nio.file.Path;

public class PathDemo
{
 public static void main(String[] args)
 {
 FileSystem fsDefault = FileSystems.getDefault();
 Path path = fsDefault.getPath("a", "b", "c");
 System.out.println(path);
 System.out.printf("File name: %s%n", path.getFileName());
 for (int i = 0; i < path.getNameCount(); i++)
 System.out.println(path.getName(i));
 System.out.printf("Parent: %s%n", path.getParent());
 System.out.printf("Root: %s%n", path.getRoot());
 System.out.printf("SubPath [0, 2): %s%n", path.subpath(0, 2));
 }
}

https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html#interface%20in%20java.nio.file

CHAPTER 12: Improved File System Interface

267

Compile Listing 12-2 as follows:

javac PathDemo.java

Run the resulting application as follows:

java PathDemo

I observe the following output:

a\b\c
File name: c
a
b
c
Parent: a\b
Root: null
SubPath [0, 2): a\b

Relative and Absolute Paths
The previous path examples demonstrate relative paths. You can prove
this to yourself by invoking Path’s boolean isAbsolute() method on a Path
object. This method returns false to signify that the path isn’t absolute. To
create an absolute path, you need to pass a root as the first name element.

You obtain a file system’s root(s) by calling FileSystem’s Iterable<Path>
getRootDirectories() method, which returns an iterator over Path instances
that describe roots. Listing 12-3 presents the source code to an application
that demonstrates this method and absolute path creation.

Listing 12-3. Demonstrating Root Directory Iteration and Absolute Path Creation

import java.nio.file.FileSystem;
import java.nio.file.FileSystems;
import java.nio.file.Path;

public class PathDemo
{
 public static void main(String[] args)
 {
 FileSystem fsDefault = FileSystems.getDefault();
 Path path = fsDefault.getPath("a", "b", "c");
 System.out.println(path);
 System.out.printf("Absolute: %b%n", path.isAbsolute());
 System.out.printf("Root: %s%n", path.getRoot());

CHAPTER 12: Improved File System Interface268

 for (Path root: fsDefault.getRootDirectories())
 {
 path = fsDefault.getPath(root.toString(), "a", "b", "c");
 System.out.println(path);
 System.out.printf("Absolute: %b%n", path.isAbsolute());
 System.out.printf("Root: %s%n", path.getRoot());
 }
 }
}

Compile Listing 12-3 (javac PathDemo.java) and run the resulting application
(java PathDemo). I observe the following output:

a\b\c
Absolute: false
Root: null
C:\a\b\c
Absolute: true
Root: C:\
D:\a\b\c
Absolute: true
Root: D:\
E:\a\b\c
Absolute: true
Root: E:\
F:\a\b\c
Absolute: true
Root: F:\

If you have a relative path, you can convert it to an absolute path by calling
Path’s Path toAbsolutePath() method, as demonstrated in Listing 12-4.

Listing 12-4. Converting a Relative Path to an Absolute Path

import java.nio.file.Path;
import java.nio.file.Paths;

public class PathDemo
{
 public static void main(String[] args)
 {
 Path path = Paths.get("a", "b", "c");
 System.out.printf("Path: %s%n", path.toString());
 System.out.printf("Absolute: %b%n", path.isAbsolute());
 path = path.toAbsolutePath();
 System.out.printf("Path: %s%n", path.toString());
 System.out.printf("Absolute: %b%n", path.isAbsolute());
 }
}

CHAPTER 12: Improved File System Interface

269

PathDemo calls Path’s String toString() method to return a string
representation of the path.

Compile Listing 12-4 (javac PathDemo.java) and run the resulting application
(java PathDemo). I observe the following output:

Path: a\b\c
Absolute: false
Path: C:\prj\books\io\ch12\code\PathDemo\v3\a\b\c
Absolute: true

According to toAbsolutePath()’s JDK documentation, if the path is already
absolute, this method returns the path. Otherwise, this method resolves the
path in an implementation-dependent manner, typically by resolving the path
against a file system default directory. Depending on the implementation,
this method may throw an I/O error when the file system isn’t accessible.

Normalization, Relativization, and Resolution
Path declares several methods to remove path redundancies, to create a
relative path between two paths, and to resolve (join) two paths:

	Path normalize()

	Path relativize(Path other)

	Path resolve(Path other)

	Path resolve(String other)

normalize() is useful for removing redundancies from a path. For example,
reports/./2015/jan includes the redundant “.” (current directory) element.
When normalized, this path becomes the shorter reports/2015/jan.

relativize() creates a relative path between two paths. For example, given
current directory jan in the reports/2015/jan hierarchy, the relative path to
navigate to reports/2016/mar is ../../2016/mar.

resolve() is the inverse of relativize(). It lets you join a partial path (a
path without a root element) to another path. For example, resolving apr
against reports/2015 results in reports/2015/apr.

Furthermore, Path declares the following methods to resolve a path string
against the current path’s parent path:

	Path resolveSibling(Path other)

	Path resolveSibling(String other)

I’ve created an application that demonstrates these methods. Listing 12-5
presents its source code.

https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html#isAbsolute--

CHAPTER 12: Improved File System Interface270

Listing 12-5. Normalizing, Relativizing, and Resolving Paths

import java.nio.file.FileSystems;
import java.nio.file.Path;
import java.nio.file.Paths;

public class PathDemo
{
 public static void main(String[] args)
 {
 Path path1 = Paths.get("reports", ".", "2015", "jan");
 System.out.println(path1);
 System.out.println(path1.normalize());
 path1 = Paths.get("reports", "2015", "..", "jan");
 System.out.println(path1.normalize());
 System.out.println();
 path1 = Paths.get("reports", "2015", "jan");
 System.out.println(path1);
 System.out.println(path1.relativize(Paths.get("reports", "2016",
 "mar")));
 try
 {
 Path root = FileSystems.getDefault().getRootDirectories()
 .iterator().next();
 if (root != null)
 {
 System.out.printf("Root: %s%n", root.toString());
 Path path = Paths.get(root.toString(), "reports", "2016",
 "mar");
 System.out.printf("Path: %s%n", path);
 System.out.println(path1.relativize(path));
 }
 }
 catch (IllegalArgumentException iae)
 {
 iae.printStackTrace();
 }
 System.out.println();
 path1 = Paths.get("reports", "2015");
 System.out.println(path1);
 System.out.println(path1.resolve("apr"));
 System.out.println();
 Path path2 = Paths.get("reports", "2015", "jan");
 System.out.println(path2);
 System.out.println(path2.getParent());
 System.out.println(path2.resolveSibling(Paths.get("mar")));
 System.out.println(path2.resolve(Paths.get("mar")));
 }
}

CHAPTER 12: Improved File System Interface

271

Compile Listing 12-5 (javac PathDemo.java) and run the resulting application
(java PathDemo). I observe the following output:

reports\.\2015\jan
reports\2015\jan
reports\jan

reports\2015\jan
..\..\2016\mar
Root: C:\
Path: C:\reports\2016\mar
java.lang.IllegalArgumentException: 'other' is different type of Path
 at sun.nio.fs.WindowsPath.relativize(WindowsPath.java:388)
 at sun.nio.fs.WindowsPath.relativize(WindowsPath.java:44)
 at PathDemo.main(PathDemo.java:29)

reports\2015
reports\2015\apr

reports\2015\jan
reports\2015
reports\2015\mar
reports\2015\jan\mar

The output reveals IllegalArgumentException, which is thrown from
relativize() when it cannot relativize its Path argument against the current
Path. It cannot do so when one of the Paths has a root element.

The output also reveals the difference between resolveSibling() and
resolve(). resolveSibling() resolves mar against reports\2015 (the parent
of reports\2015\jan); resolve() resolves mar against reports\2015\jan.

Additional Capabilities
Path declares additional methods for comparing paths, determining
whether a path starts with or ends with another path, converting a path to
a java.net.URI (Uniform Resource Identifier) object, and more. Listing 12-6
demonstrates most of these methods.

Listing 12-6. Demonstrating Additional Path Methods

import java.io.IOException;

import java.nio.file.Path;
import java.nio.file.Paths;

CHAPTER 12: Improved File System Interface272

public class PathDemo
{
 public static void main(String[] args) throws IOException
 {
 Path path1 = Paths.get("a", "b", "c");
 Path path2 = Paths.get("a", "b", "c", "d");
 System.out.printf("path1: %s%n", path1.toString());
 System.out.printf("path2: %s%n", path2.toString());
 System.out.printf("path1.equals(path2): %b%n", path1.equals(path2));
 System.out.printf("path1.equals(path2.subpath(0, 3)): %b%n",
 path1.equals(path2.subpath(0, 3)));
 System.out.printf("path1.compareTo(path2): %d%n",
 path1.compareTo(path2));
 System.out.printf("path1.startsWith(\"x\"): %b%n",
 path1.startsWith("x"));
 System.out.printf("path1.startsWith(Paths.get(\"a\"): %b%n",
 path1.startsWith(Paths.get("a")));
 System.out.printf("path2.endsWith(\"d\"): %b%n",
 path2.startsWith("d"));
 System.out.printf("path2.endsWith(Paths.get(\"c\", \"d\"): " +
 "%b%n",
 path2.endsWith(Paths.get("c", "d")));
 System.out.printf("path2.toUri(): %s%n", path2.toUri());
 Path path3 = Paths.get(".");
 System.out.printf("path3: %s%n", path3.toString());
 System.out.printf("path3.toRealPath(): %s%n", path3.toRealPath());
 }
}

Listing 12-6’s main() method first obtains a reference to the current file
system and uses this reference to create a pair of Path objects. After
outputting each object’s path, it demonstrates path equality by invoking the
boolean equals(Object other) method.

You can also compare paths to determine whether they are equal or which
path alphabetically precedes the other path. The main() method invokes
Path’s int compareTo(Path other) method for this purpose.

Next, main() calls Path’s boolean startsWith(Path other), boolean
startsWith(String other), boolean endsWith(Path other), and boolean
endsWith(String other) methods to learn whether a path starts and ends
with another path.

At this point, main() demonstrates Path’s URI toUri() method to convert
the current Path instance to a URI object. This method could throw
java.io.IOError during the conversion.

CHAPTER 12: Improved File System Interface

273

Finally, main() demonstrates the Path toRealPath(LinkOption... options)
method for returning the real path of the file represented by the Path object.
This method generally derives, from this path, an absolute path that locates
the same file as this path, but with name elements that represent the actual
names of the directories and any nondirectory. It throws java.io.IOException
when the file doesn’t exist or an I/O error occurs.

You can pass a comma-delimited list of java.nio.file.LinkOption enum
constants as arguments to this method. This enum defines the options for
how symbolic links are handled. Currently, LinkOption declares only a
NOFOLLOW_LINKS (don’t follow symbolic links) constant.

Compile Listing 12-6 (javac PathDemo.java) and run the resulting application
(java PathDemo). I observe the following output:

path1: a\b\c
path2: a\b\c\d
path1.equals(path2): false
path1.equals(path2.subpath(0, 3)): true
path1.compareTo(path2): -2
path1.startsWith("x"): false
path1.startsWith(Paths.get("a"): true
path2.endsWith("d"): false
path2.endsWith(Paths.get("c", "d"): true
path2.toUri(): file:///C:/prj/books/io/ch12/code/PathDemo/v5/a/b/c/d
path3: .
path3.toRealPath(): C:\prj\books\io\ch12\code\PathDemo\v5

Performing File System Tasks with Files
For the most part, you could work with FileSystem, FileSystems, and
FileSystemProvider to perform various file system tasks, such as copy or
move a file. However, there is an easier way to perform these tasks: invoke
the java.nio.file.Files utility class’s static methods.

Accessing File Stores
FileSystem relies on the java.nio.file.FileStore class to provide information
about file stores, which are storage pools, devices, partitions, volumes, concrete
file systems, or other implementation-specific means of file storage. A file store
consists of a name, a type, space amounts (in bytes), and other information.

Note Files doesn’t support path-matching and directory-watching tasks.
However, Files exclusively supports walking the file tree and visiting its files.

https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html#isAbsolute--
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Files.html#isSameFile-java.nio.file.Path-java.nio.file.Path-

CHAPTER 12: Improved File System Interface274

Files declares the FileStore getFileStore(Path path) method to return
a FileStore representing the file store where the file identified by path
is stored. Once you have the FileStore, you can call methods to obtain
amounts of space, determine if the file store is read-only, and obtain the
name and type of the file store:

	long getTotalSpace(): Return the size, in bytes, of the
file store. This method throws IOException when an I/O
error occurs.

	long getUnallocatedSpace(): Return the number of
unallocated bytes in the file store. The returned number
of unallocated bytes is a hint, but not a guarantee, that
it’s possible to use most or any of these bytes. The
number of unallocated bytes is most likely to be
accurate immediately after the space attributes are
obtained. It’s likely to be made inaccurate by any
external I/O operations, including those made on the
operating system outside of this JVM. This method
throws IOException when an I/O error occurs.

	long getUsableSpace(): Return the number of bytes
available to this JVM on the file store. The returned
number of available bytes is a hint, but not a guarantee,
that it’s possible to use most or any of these bytes. The
number of usable bytes is most likely to be accurate
immediately after the space attributes are obtained.
It’s likely to be made inaccurate by any external I/O
operations, including those made on the operating
system outside of this JVM. This method throws
IOException when an I/O error occurs.

	boolean isReadOnly(): Return true when this file store
is read-only. A file store is read-only when it doesn’t
support write operations or other changes to files. Any
attempt to create a file, open an existing file for writing,
and so on, causes IOException to be thrown.

	String name(): Return the name of this file store. The
format of the name is highly implementation-specific. It
will typically be the name of the storage pool or volume.
The returned string may differ from the string returned
by the toString() method.

	String type(): Return the type of this file store. The
format of the returned string is highly implementation-
specific. It may indicate, for example, the format used or
whether the file store is local or remote.

CHAPTER 12: Improved File System Interface

275

Listing 12-7 presents the source code to an application that obtains a file
store corresponding to a path and outputs information about the file store.

Listing 12-7. Accessing a File Store and Outputting File Store Details

import java.io.IOException;

import java.nio.file.FileStore;
import java.nio.file.Files;
import java.nio.file.Paths;

public class FSDemo
{
 public static void main(String[] args) throws IOException
 {
 if (args.length != 1)
 {
 System.err.println("usage: java FSDemo path");
 return;
 }
 FileStore fs = Files.getFileStore(Paths.get(args[0]));
 System.out.printf("Total space: %d%n", fs.getTotalSpace());
 System.out.printf("Unallocated space: %d%n",
 fs.getUnallocatedSpace());
 System.out.printf("Usable space: %d%n",
 fs.getUsableSpace());
 System.out.printf("Read only: %b%n", fs.isReadOnly());
 System.out.printf("Name: %s%n", fs.name());
 System.out.printf("Type: %s%n%n", fs.type());
 }
}

Compile Listing 12-7 as follows:

javac FSDemo.java

Run the resulting application as follows:

java FSDemo FSDemo.java

In one run, I observed the following output:

Total space: 499808989184
Unallocated space: 108411215872
Usable space: 108411215872
Read only: false
Name:
Type: NTFS

CHAPTER 12: Improved File System Interface276

The getFileStore() method focuses on a specific file store. If you want to
iterate over all file stores for a given FileSystem object, you need to work
with FileSystem’s Iterable<FileStore> getFileStores() method, which
lets you iterate over all of the file stores.

Listing 12-8 presents the source code to an application that iterates over all
file stores for the default file system and outputs their names.

Listing 12-8. Iterating Over the Default File System’s File Stores

import java.io.IOException;

import java.nio.file.FileStore;
import java.nio.file.FileSystem;
import java.nio.file.FileSystems;

public class FSDemo
{
 public static void main(String[] args) throws IOException
 {
 FileSystem fsDefault = FileSystems.getDefault();
 for (FileStore fileStore: fsDefault.getFileStores())
 System.out.printf("Filestore: %s%n", fileStore);
 }
}

Compile Listing 12-8 (javac FSDemo.java) and run the resulting application
(java FSDemo). I observe the following output:

Filestore: (C:)
Filestore: My Passport (E:)
Filestore: BACKUP (F:)

Managing Attributes
Files are associated with attributes, such as size, last modification time,
hidden, permissions, and owner. NIO.2 supports attributes via the types
in the java.nio.file.attribute package along with the attribute-oriented
methods of the Files class and other types.

Attributes are grouped into views, where each view corresponds to a
specific file system implementation. Some views let you read attributes in
bulk by providing a readAttributes() method. Also, you can get and set
attributes by calling Files’s getAttribute() and setAttribute() methods.

CHAPTER 12: Improved File System Interface

277

Views are described by interfaces that descend from AttributeView, whose
String name() method returns the view’s name. This interface is subtyped
by FileAttributeView, which is a view of attributes associated with files.
FileAttributeView doesn’t contribute any methods.

FileAttributeView is subtyped by the following interfaces:

	BasicFileAttributeView: Provides a view of a basic set
of file attributes common to many file systems.

	FileOwnerAttributeView: Provides support for reading
or updating a file owner.

	UserDefinedFileAttributeView: Provides a view of
a file’s user-defined attributes (also called extended
attributes).

BasicFileAttributeView is subtyped by the following interfaces:

	DosFileAttributeView: Provides a view of the legacy
MS-DOS/PC-DOS file attributes.

	PosixFileAttributeView: Provides a view of the file
attributes commonly associated with files on file
systems used by operating systems that implement the
Portable Operating System Interface (POSIX) family of
standards.

FileOwnerAttributeView is subtyped by the following interfaces:

	AclFileAttributeView: Provides support for reading or
updating a file’s ACL or file owner attributes.

	PosixFileAttributeView

As you can see, PosixFileAttributeView has two immediate parent
interfaces; it’s a specialized basic file attribute view and a specialized file
owner attribute view. Figure 12-2 clarifies this relationship along with other
relationships among the view hierarchy’s interfaces.

CHAPTER 12: Improved File System Interface278

Determining View Support
Before working with any of these views, make sure that it’s supported.
One way to accomplish this task is to call FileSystem’s Set<String>
supportedFileAttributeViews() method, which returns a set of strings
identifying views that are supported by the invoking FileSystem.

Figure 12-2. Relating view types; subtypes are indented to the right

CHAPTER 12: Improved File System Interface

279

Listing 12-9 presents the source code to an application that outputs the
names of views supported by the default FileSystem.

Listing 12-9. Outputting the Names of Default File System-Supported File Attribute Views

import java.nio.file.FileSystem;
import java.nio.file.FileSystems;

public class FAVDemo
{
 public static void main(String[] args)
 {
 FileSystem fsDefault = FileSystems.getDefault();
 for (String view: fsDefault.supportedFileAttributeViews())
 System.out.println(view);
 }
}

Compile Listing 12-9 as follows:

javac FAVDemo.java

Run the resulting application as follows:

java FAVDemo

I observe the following output:

owner
dos
acl
basic
user

You could also use Files’s <V extends FileAttributeView> V
getFileAttributeView(Path path, Class<V> type, LinkOption...
options) method, which returns an object created from an implementation
of the view interface type or null when the view isn’t supported, to
accomplish this task. Listing 12-10 presents an application that uses this
method in a utility method context to determine view support.

Note All FileSystems support the basic file attribute view so you should see
at least basic in the output.

CHAPTER 12: Improved File System Interface280

Listing 12-10. Determining Specific File Attribute View Support

import java.nio.file.Files;
import java.nio.file.Paths;

import java.nio.file.attribute.AclFileAttributeView;
import java.nio.file.attribute.BasicFileAttributeView;
import java.nio.file.attribute.FileAttributeView;
import java.nio.file.attribute.PosixFileAttributeView;

public class FAVDemo
{
 public static void main(String[] args)
 {
 System.out.printf("Supports basic: %b%n",
 isSupported(BasicFileAttributeView.class));
 System.out.printf("Supports posix: %b%n",
 isSupported(PosixFileAttributeView.class));
 System.out.printf("Supports acl: %b%n",
 isSupported(AclFileAttributeView.class));
 }

 static boolean isSupported(Class<? extends FileAttributeView> clazz)
 {
 return Files.getFileAttributeView(Paths.get("."), clazz) != null;
 }
}

Listing 12-10 declares an isSupported() utility method that takes a
java.lang.Class object representing a FileAttributeView subinterface as
an argument. It returns true when the view is supported or false when it
isn’t supported.

The Class argument and a Path object describing the current directory are
passed to getFileAttributeView(), which returns either an object created
from a class that implements the interface when the view is supported or
null when it isn’t supported.

Compile Listing 12-10 (javac FAVDemo.java) and run the resulting application
(java FAVDemo). I observe the following output:

Supports basic: true
Supports posix: false
Supports acl: true

Ultimately, getFileAttributeView() provides a result for the FileSystem
associated with the Path argument. Because Paths.get(".") returns a
FileSystem for the default file system, isSupport() is relevant in a default file
system context only.

CHAPTER 12: Improved File System Interface

281

Finally, a file store can support various file attribute views. Call either of
FileStore’s supportsFileAttributeView() methods to determine whether
or not the file store supports the file attributes identified by the given file
attribute view:

	boolean supportsFileAttributeView(Class<? extends
FileAttributeView> type)

	boolean supportsFileAttributeView(String name)

One of these methods takes a Class object describing a subinterface of
FileAttributeView as an argument:

System.out.printf("supports basic file attribute view: %b%n",
 fileStore.supportsFileAttributeView(BasicFileAttributeView.class));

The other method takes a string argument, which is one of the strings
returned from FileSystem’s supportedFileAttributeViews() method:

System.out.printf("supports basic file attribute view: %b%n",
 fileStore.supportsFileAttributeView("basic"));

Exploring the Basic View
The BasicFileAttributeView interface supports several basic attributes. The
following list identifies each attribute in terms of its string name and type:

	creationTime (FileTime)

	fileKey (Object)

	isDirectory (Boolean)

	isOther (Boolean)

	isRegularFile (Boolean)

	isSymbolicLink (Boolean)

	lastAccessTime (FileTime)

	lastModifiedTime (FileTime)

	size (Long)

Each of creationTime, lastAccessTime, and lastModifiedTime has type
java.nio.file.attribute.FileTime, an immutable class representing a
file’s timestamp. fileKey has type java.lang.Object. Each of isDirectory,
isOther, isRegularFile, and isSymbolicLink has type java.lang.Boolean.
size has type java.lang.Long.

https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#class%20in%20java.lang

CHAPTER 12: Improved File System Interface282

BasicFileAttributeView declares the following methods:

	BasicFileAttributes readAttributes(): Read the
basic file attributes as a bulk operation.

	void setTimes(FileTime lastModifiedTime, FileTime
lastAccessTime, FileTime creationTime): Update any
or all of the file’s lastModifiedTime, lastAccessTime,
and creationTime attributes.

These methods throw IOException when an I/O error occurs.

readAttributes() returns a java.nio.file.attribute.BasicFileAttributes
object that offers type-safe methods for reading attribute values:

	FileTime creationTime()

	Object fileKey()

	boolean isDirectory()

	boolean isOther()

	boolean isRegularFile()

	boolean isSymbolicLink()

	FileTime lastAccessTime()

	FileTime lastModifiedTime()

	long size()

Reading Basic File Attribute Values in Bulk
Listing 12-11 presents the source code to an application that shows how to
read a file’s basic file attributes in bulk.

Note On some file systems, it’s possible to use an identifier or a combination
of identifiers to uniquely identify a file. Such identifiers are known as file keys.
File keys are important for operations such as file tree walks in file systems that
support symbolic links, and for file systems that allow a file to be an entry in
more than one directory. For example, on Unix-based file systems, the device ID
and information node (inode) are commonly used for such purposes.

https://docs.oracle.com/javase/8/docs/api/java/nio/file/package-summary.html#links

CHAPTER 12: Improved File System Interface

283

Listing 12-11. Reading Basic File Attributes in Bulk

import java.io.IOException;

import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

import java.nio.file.attribute.BasicFileAttributes;

public class BFAVDemo
{
 public static void main(String[] args) throws IOException
 {
 if (args.length != 1)
 {
 System.err.println("usage: java BFAVDemo path");
 return;
 }
 Path path = Paths.get(args[0]);
 BasicFileAttributes bfa;
 bfa = Files.readAttributes(path, BasicFileAttributes.class);
 System.out.printf("Creation time: %s%n", bfa.creationTime());
 System.out.printf("File key: %s%n", bfa.fileKey());
 System.out.printf("Is directory: %b%n", bfa.isDirectory());
 System.out.printf("Is other: %b%n", bfa.isOther());
 System.out.printf("Is regular file: %b%n", bfa.isRegularFile());
 System.out.printf("Is symbolic link: %b%n", bfa.isSymbolicLink());
 System.out.printf("Last access time: %s%n", bfa.lastAccessTime());
 System.out.printf("Last modified time: %s%n", bfa.lastModifiedTime());
 System.out.printf("Size: %d%n", bfa.size());
 }
}

The attributes are read by calling Files’s <A extends BasicFileAttributes>
A readAttributes(Path path, Class<A> type, LinkOption... options)
method. The argument passed to path is a Path object wrapping the single
command-line argument. BasicFileAttributes.class is passed to type
signifying that the basic file attributes corresponding to path are to be read.
Because nothing is passed to options, symbolic links are followed and the
attributes associated with the target of the link are read.

Compile Listing 12-11 as follows:

javac BFAVDemo.java

Run the resulting application as follows:

java BFAVDemo BFAVDemo.java

CHAPTER 12: Improved File System Interface284

I observe the following output:

Creation time: 2015-09-14T21:39:43.655763Z
File key: null
Is directory: false
Is other: false
Is regular file: true
Is symbolic link: false
Last access time: 2015-09-14T21:39:43.655763Z
Last modified time: 2015-09-14T21:44:59.238814Z
Size: 1144

Getting and Setting Single Basic File Attribute Values
Files declares getAttribute() and setAttribute() methods that you can
call to get or set single file attributes:

	Object getAttribute(Path path, String attribute,
LinkOption... options)

	Path setAttribute(Path path, String attribute,
Object value, LinkOption... options)

getAttribute() reads the value of a single file attribute. path identifies the
file whose attribute value is to be read, attribute identifies the attribute’s
name, and options identifies how symbolic links are handled. Specify
LinkOption.NOFOLLOW_LINKS when you want the value of the attribute for
the symbolic link file. Omit this argument when you want the value of the
attribute for the final target of the link.

The attribute parameter identifies the attribute to be read and adheres to
the following syntax:

[view-name:]attribute-name

The square brackets delineate an optional component and the colon
character (:) stands for itself. view-name is the name of a FileAttributeView
that identifies a set of file attributes. If it’s not specified, it defaults to basic,
the name of the file attribute view that identifies the basic set of file
attributes common to many file systems. attribute-name is the name of the
attribute.

setAttribute() sets the value of a single file attribute. path identifies the file
whose attribute value is to be set, attribute identifies the attribute’s name
and follows the previously specified syntax, value identifies the new value
for the attribute, and options identifies how symbolic links are handled.

https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#class%20in%20java.lang
https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#class%20in%20java.lang
https://docs.oracle.com/javase/8/docs/api/java/nio/file/LinkOption.html#enum%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/file/attribute/AttributeView.html#name--
https://docs.oracle.com/javase/8/docs/api/java/nio/file/attribute/FileAttributeView.html#interface%20in%20java.nio.file.attribute

CHAPTER 12: Improved File System Interface

285

Listing 12-12 presents the source code to an application that shows how to
get and set single basic file attribute values.

Listing 12-12. Getting and Setting Single Basic File Attribute Values

import java.io.IOException;

import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

import java.nio.file.attribute.FileTime;

import java.time.Instant;

public class BFAVDemo
{
 public static void main(String[] args) throws IOException
 {
 if (args.length < 1 || args.length > 2)
 {
 System.err.println("usage: java BFAVDemo path [set]");
 return;
 }
 Path path = Paths.get(args[0]);
 boolean setAttr = false;
 if (args.length == 2)
 setAttr = true;
 System.out.printf("Creation time: %s%n",
 Files.getAttribute(path, "creationTime"));
 System.out.printf("File key: %s%n",
 Files.getAttribute(path, "fileKey"));
 System.out.printf("Is directory: %b%n",
 Files.getAttribute(path, "isDirectory"));
 System.out.printf("Is other: %b%n",
 Files.getAttribute(path, "isOther"));
 System.out.printf("Is regular file: %b%n",
 Files.getAttribute(path, "isRegularFile"));
 System.out.printf("Is symbolic link: %b%n",
 Files.getAttribute(path, "isSymbolicLink"));
 System.out.printf("Last access time: %s%n",
 Files.getAttribute(path, "lastAccessTime"));
 System.out.printf("Last modified time: %s%n",
 Files.getAttribute(path, "lastModifiedTime"));
 System.out.printf("Size: %d%n", Files.getAttribute(path, "size"));

CHAPTER 12: Improved File System Interface286

 if (setAttr)
 {
 Files.setAttribute(path, "lastModifiedTime",
 FileTime.from(Instant.now().plusSeconds(60)));
 System.out.printf("Last modified time: %s%n",
 Files.getAttribute(path, "lastModifiedTime"));
 }
 }
}

Listing 12-12 obtains each basic file attribute value and outputs the
value. You must specify at least one command-line argument, which
identifies the path to a file. If you specify a second argument, this object’s
lastModifiedTime attribute is set (with help from FileTime’s FileTime
from(Instant instant) method) to the current time plus one minute.

Compile Listing 12-12 (javac BFAVDemo.java) and run the application as
follows:

java BFAVDemo BFAVDemo.java

You should observe output that’s similar to the output presented here:

Creation time: 2015-09-15T02:58:36.036073Z
File key: null
Is directory: false
Is other: false
Is regular file: true
Is symbolic link: false
Last access time: 2015-09-15T02:58:36.036073Z
Last modified time: 2015-09-15T03:07:25.763372Z
Size: 1885

Now, run BFAVDemo as follows:

java BFAVDemo BFAVDemo.java set

This time, after outputting basic file attribute values, the last modified time
will be set to the current time plus one minute.

Tip Use BasicFileAttributeView’s setTimes() method to set the
creation time, last access time, and last modified time in one method call.

CHAPTER 12: Improved File System Interface

287

Files declares several convenience methods for accessing specific basic
file attributes:

	FileTime getLastModifiedTime(Path path,
LinkOption... options)

	boolean isRegularFile(Path path, LinkOption...
options)

	boolean isSymbolicLink(Path path)

	Path setLastModifiedTime(Path path, FileTime time)

	long size(Path path)

Exploring the DOS View
The DosFileAttributeView interface extends BasicFileAttributeView and
supports the following four MS-DOS/PC-DOS file attributes:

	archive (Boolean)

	hidden (Boolean)

	readonly (Boolean)

	system (Boolean)

DosFileAttributeView declares the following methods:

	DosFileAttributes readAttributes(): Read the DOS
file attributes as a bulk operation.

	void setArchive(boolean value): Update the value of
the archive attribute.

	void setHidden(boolean value): Update the value of
the hidden attribute.

	void setReadOnly(boolean value): Update the value of
the readonly attribute.

	void setSystem(boolean value): Update the value of
the system attribute.

These methods throw IOException when an I/O error occurs.

readAttributes() returns a java.nio.file.attribute.DosFileAttributes
object that offers type-safe methods for reading attribute values:

	boolean isArchive()

	boolean isHidden()

CHAPTER 12: Improved File System Interface288

	boolean isReadOnly()

	boolean isSystem()

Reading DOS File Attribute Values in Bulk
Listing 12-13 presents the source code to an application that shows how to
read a file’s DOS file attributes in bulk.

Listing 12-13. Reading DOS File Attributes in Bulk

import java.io.IOException;

import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

import java.nio.file.attribute.DosFileAttributes;

public class DFAVDemo
{
 public static void main(String[] args) throws IOException
 {
 if (args.length != 1)
 {
 System.err.println("usage: java DFAVDemo path");
 return;
 }
 Path path = Paths.get(args[0]);
 DosFileAttributes dfa;
 dfa = Files.readAttributes(path, DosFileAttributes.class);
 System.out.printf("Is archive: %b%n", dfa.isArchive());
 System.out.printf("Is hidden: %b%n", dfa.isHidden());
 System.out.printf("Is readonly: %b%n", dfa.isReadOnly());
 System.out.printf("Is system: %b%n", dfa.isSystem());
 }
}

Compile Listing 12-13 as follows:

javac DFAVDemo.java

Assuming that the DOS file attribute view is supported, run the resulting
application as follows:

java DFAVDemo DFAVDemo.java

CHAPTER 12: Improved File System Interface

289

I observe the following output:

Is archive: true
Is hidden: false
Is readonly: false
Is system: false

Getting and Setting Single DOS File Attribute Values
Listing 12-14 presents the source code to an application that shows how to
get and set single DOS file attribute values.

Listing 12-14. Getting and Setting Single DOS File Attribute Values

import java.io.IOException;

import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

import java.nio.file.attribute.FileTime;

import java.time.Instant;

public class DFAVDemo
{
 public static void main(String[] args) throws IOException
 {
 if (args.length < 1 || args.length > 2)
 {
 System.err.println("usage: java DFAVDemo path [set]");
 return;
 }
 Path path = Paths.get(args[0]);
 boolean setAttr = false;
 if (args.length == 2)
 setAttr = true;
 System.out.printf("Is archive: %b%n",
 Files.getAttribute(path, "dos:archive"));
 System.out.printf("Is hidden: %b%n",
 Files.getAttribute(path, "dos:hidden"));
 System.out.printf("Is readonly: %b%n",
 Files.getAttribute(path, "dos:readonly"));
 System.out.printf("Is system: %b%n",
 Files.getAttribute(path, "dos:system"));

CHAPTER 12: Improved File System Interface290

 if (setAttr)
 {
 Files.setAttribute(path, "dos:system", true);
 System.out.printf("Is system: %s%n",
 Files.getAttribute(path, "dos:system"));
 }
 }
}

Unlike with basic file attributes, DOS file attribute names require a prefix,
which happens to be dos:.

Compile Listing 12-14 (javac DFAVDemo.java) and run the application as
follows:

java DFAVDemo DFAVDemo.java

Assuming that the DOS file attribute view is supported, you should observe
the following output:

Is archive: true
Is hidden: false
Is readonly: false
Is system: false

Now, run DFAVDemo as follows:

java DFAVDemo DFAVDemo.java set

This time, after outputting DOS attribute values, the system attribute should
be set.

Exploring the POSIX View
The PosixFileAttributeView interface extends BasicFileAttributeView and
supports the POSIX group owner and nine access permissions attributes:

	group (GroupPrincipal)

	permissions (Set<PosixFilePermission>)

PosixFileAttributeView declares the following methods:

	PosixFileAttributes readAttributes(): Read the
POSIX file attributes as a bulk operation.

	void setGroup(GroupPrincipal group): Update the file
group-owner.

	void setPermissions(Set<PosixFilePermission>
perms): Update the file permissions.

CHAPTER 12: Improved File System Interface

291

These methods throw IOException when an I/O error occurs. setPermissions()
throws java.lang.ClassCastException when the java.util.Set object contains
elements that are not of type java.nio.file.attribute.PosixFilePermission,
which is an enum that declares GROUP_EXECUTE, GROUP_READ, GROUP_WRITE,
OTHERS_EXECUTE, OTHERS_READ, OTHERS_WRITE, OWNER_EXECUTE, OWNER_READ, and
OWNER_WRITE constants.

readAttributes() returns a java.nio.file.attribute.PosixFileAttributes
object that offers type-safe methods for reading attribute values:

	GroupPrincipal group()

	UserPrincipal owner()

	Set<PosixFilePermission> permissions()

The empty java.nio.file.attribute.UserPrincipal interface represents
an identity for determining access rights to objects in a file system and
extends java.security.Principal. The empty java.nio.file.attribute.
GroupPrincipal interface represents a group identity and extends
UserPrincipal.

Reading POSIX File Attribute Values in Bulk
Listing 12-15 presents the source code to an application that shows how to
read a file’s POSIX file attributes in bulk.

Listing 12-15. Reading POSIX File Attributes in Bulk

import java.io.IOException;

import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

import java.nio.file.attribute.PosixFileAttributes;
import java.nio.file.attribute.PosixFilePermission;

public class PFAVDemo
{
 public static void main(String[] args) throws IOException
 {
 if (args.length != 1)
 {
 System.err.println("usage: java PFAVDemo path");
 return;
 }

CHAPTER 12: Improved File System Interface292

 Path path = Paths.get(args[0]);
 PosixFileAttributes pfa;
 pfa = Files.readAttributes(path, PosixFileAttributes.class);
 System.out.printf("Group: %s%n", pfa.group());
 for (PosixFilePermission perm: pfa.permissions())
 System.out.printf("Permission: %s%n", perm);
 }
}

Compile Listing 12-15 as follows:

javac PFAVDemo.java

Assuming that the POSIX file attribute view is supported, run the resulting
application as follows:

java PFAVDemo PFAVDemo.java

Because I’m running Windows 7, POSIX isn’t supported and I observe a
thrown UnsupportedOperationException message.

Getting and Setting Single POSIX File Attribute Values
Listing 12-16 presents the source code to an application that shows how to
get and set single POSIX file attribute values.

Listing 12-16. Getting and Setting Single POSIX File Attribute Values

import java.io.IOException;

import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

import java.nio.file.attribute.GroupPrincipal;
import java.nio.file.attribute.PosixFilePermission;

import java.util.Set;

public class PFAVDemo
{
 public static void main(String[] args) throws IOException
 {
 if (args.length < 1 || args.length > 2)
 {
 System.err.println("usage: java PFAVDemo path [group]");
 return;
 }

CHAPTER 12: Improved File System Interface

293

 Path path = Paths.get(args[0]);
 boolean setAttr = false;
 if (args.length == 2)
 setAttr = true;
 System.out.printf("Group: %b%n",
 Files.getAttribute(path, "posix:group"));
 @SuppressWarnings("unchecked")
 Set<PosixFilePermission> perms =
 (Set<PosixFilePermission>)
 Files.getAttribute(path, "posix: permissions");
 for (PosixFilePermission perm: perms)
 System.out.printf("Permission: %s%n", perm);
 if (setAttr)
 {
 GroupPrincipal gp = path.getFileSystem().
 getUserPrincipalLookupService().
 lookupPrincipalByGroupName(args[1]);
 Files.setAttribute(path, "posix:group", gp);
 System.out.printf("Group: %b%n",
 Files.getAttribute(path, "posix:group"));
 }
 }
}

Unlike with basic file attributes, POSIX file attribute names require a prefix,
which happens to be posix:.

To change the group attribute, you need to obtain a new GroupPrincipal
object that corresponds to the specified group name command-line
argument. This task is accomplished by following these steps:

1. Calling Path’s FileSystem getFileSystem() method
to return the FileSystem that created the Path object.

2. Calling FileSystem’s UserPrincipalLookupService
getUserPrincipalLookupService() method to return the
java.nio.file.attribute.UserPrincipalLookupService
object for obtaining UserPrincipals and
GroupPrincipals.

3. Calling UserPrincipalLookupService’s GroupPrincipal
lookupPrincipalByGroupName(String group) method
to return the desired GroupPrincipal object.

Compile Listing 12-16 (javac PFAVDemo.java) and, assuming that the POSIX
file attribute view is supported, run this application on an arbitrary file. I
observe UnsupportedOperationException.

CHAPTER 12: Improved File System Interface294

The Files class declares the following convenience methods for getting and
setting the POSIX permissions attribute:

	Set<PosixFilePermission> getPosixFilePermissions
(Path path, LinkOption... options)

	Path setPosixFilePermissions(Path path,
Set<PosixFilePermission> perms)

For example, instead of specifying

Set<PosixFilePermission> perms =
 (Set<PosixFilePermission>)
 Files.getAttribute(path, "posix: permissions");

you could more conveniently specify

Set<PosixFilePermission> perms = Files.getPosixFilePermissions(path);

Exploring the File Owner View
Many file systems support the concept of file ownership. A file owner is
the identity of the owner that created a file. NIO.2 supports file ownership
by providing the FileOwnerAttributeView interface, which supports the
following attribute:

	owner (UserPrincipal)

FileOwnerAttributeView declares the following methods to access this
attribute:

	UserPrincipal getOwner(): Read the file owner.

	void setOwner(UserPrincipal owner): Update the
file owner.

These methods show that a file owner is implemented as a user principal.
They throw IOException when an I/O error occurs.

You should never need to work directly with these methods because Files
declares the following more convenient methods:

	UserPrincipal getOwner(Path path, LinkOption...
options)

	Path setOwner(Path path, UserPrincipal owner)

https://docs.oracle.com/javase/8/docs/api/java/nio/file/attribute/UserPrincipal.html#interface%20in%20java.nio.file.attribute
https://docs.oracle.com/javase/8/docs/api/java/nio/file/attribute/UserPrincipal.html#interface%20in%20java.nio.file.attribute
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/file/LinkOption.html#enum%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/file/attribute/UserPrincipal.html#interface%20in%20java.nio.file.attribute

CHAPTER 12: Improved File System Interface

295

Listing 12-17 presents the source code to an application that demonstrates
getOwner() and setOwner().

Listing 12-17. Getting and Setting File Ownership

import java.io.IOException;

import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

import java.nio.file.attribute.UserPrincipal;

public class FOAVDemo
{
 public static void main(String[] args) throws IOException
 {
 if (args.length != 1)
 {
 System.err.println("usage: java FOAVDemo path");
 return;
 }
 Path path = Paths.get(args[0]);
 System.out.printf("Owner: %s%n", Files.getOwner(path));
 UserPrincipal up = path.getFileSystem().
 getUserPrincipalLookupService().
 lookupPrincipalByName("jeff");
 System.out.println(up);
 Files.setOwner(path, up);
 System.out.printf("Owner: %s%n", Files.getOwner(path));
 }
}

FOAVDemo’s main() method first validates the command line. It requires a
single command-line argument that identifies the path to a file.

main() subsequently obtains a Path object to the file. It invokes getOwner()
on this Path to obtain the current owner of the file and then outputs the owner.

Before the owner can be changed, a UserPrincipal named jeff is obtained
and output. (You must add this principal to your operating system before
you can run the application.)

Note You can also access the file owner attribute via Files.getAttribute()
or Files.setAttribute(). You will need to specify owner:owner for the
view prefix and attribute name.

CHAPTER 12: Improved File System Interface296

setOwner() is called to change the file’s ownership to jeff. Then, getOwner()
is called and its value is output to verify that the owner has been changed.

Compile Listing 12-17 as follows:

javac FOAVDemo.java

Assuming that a file named test exists, run the resulting application as
follows:

java FOAVDemo test

On my Windows 7 machine, I initially observed the following output:

Owner: Owner-PC\Owner (User)
Owner-PC\jeff (User)
Exception in thread "main" java.nio.file.FileSystemException: test: This
security ID may not be assigned as the owner of this object.

 at sun.nio.fs.WindowsException.translateToIOException(Windows

Exception.java:86)
 at sun.nio.fs.WindowsException.rethrowAsIOException(Windows

Exception.java:97)
 at sun.nio.fs.WindowsException.rethrowAsIOException(Windows

Exception.java:102)
 at sun.nio.fs.WindowsAclFileAttributeView.setOwner(WindowsAclFile

AttributeView.java:201)
 at sun.nio.fs.FileOwnerAttributeViewImpl.setOwner(FileOwnerAttribute

ViewImpl.java:102)
 at java.nio.file.Files.setOwner(Files.java:2127)
 at FOAVDemo.main(FOAVDemo.java:24)

The exception is thrown by setOwner() for the following reason: The owner
of a new object must be one of the users or groups you have been given the
right to assign as the owner. Typically, this is your user account and, if you
are an administrator, the administrator’s local group.

The solution to this problem is to elevate the privilege of the java application
by running cmd (the command interpreter) as an administrator. You can
accomplish this task by completing the following steps:

1. Go to the Start menu.

2. In the Search Programs and Files text field, input cmd.

3. While holding down the Shift and Ctrl keys, press the
Enter key.

CHAPTER 12: Improved File System Interface

297

4. The resulting User Account Control window asks if
you want to make changes. Click the Yes button and
you’ll observe the Administrator command window.

This time, running java FOAVDemo test results in the following output:

Owner: BUILTIN\Administrators (Alias)
Owner-PC\jeff (User)
Owner: Owner-PC\jeff (User)

Exploring the ACL View
The AclFileAttributeView interface extends FileOwnerAttributeView and
supports the following attribute:

	acl (List<AclEntry>)

AclFileAttributeView declares the following methods to access this
attribute:

	List<AclEntry> getAcl(): Read the ACL into a
java.util.List of java.nio.file.attribute.AclEntrys.

	void setAcl(List<AclEntry> acl): Update (replace)
the ACL.

These methods throw IOException when an I/O error occurs.

The AclEntry class describes an entry in an ACL. It has four components:

	type determines if the entry grants or denies access. It’s
read by calling the AclEntryType type() method. The
java.nio.file.attribute.AclEntryType enum defines
ALARM (generate an alarm, in a system-dependent way,
for the access specified in the permissions component
of the ACL entry), ALLOW (explicitly grant access to a
regular file or directory), AUDIT (log, in a system-
dependent way, the access specified in the permissions
component of the ACL entry), and DENY (explicitly deny
access to a regular file or directory entry) type constants.

Note POSIXFileAttributeView extends FileOwnerAttributeView,
inheriting the owner attribute. Files on a POSIX file system have a file owner in
addition to a group owner and access permissions.

https://docs.oracle.com/javase/8/docs/api/java/nio/file/attribute/AclEntry.html#type--

CHAPTER 12: Improved File System Interface298

	principal, sometimes called the “who” component, is
a UserPrincipal corresponding to the identity that the
entry grants or denies access. It’s read by calling the
UserPrincipal principal() method.

	permissions is a set of permissions. It’s read by calling
the Set<AclEntryPermission> permissions() method.
The java.nio.file.attribute.AclEntryPermission
enum defines APPEND_DATA (permission to append
data to a file), DELETE (permission to delete the file),
DELETE_CHILD (permission to delete a file in a directory),
EXECUTE (permission to execute a regular file), READ_ACL
(permission to read the ACL attribute), READ_ATTRIBUTES
(the ability to read nonACL file attributes), READ_DATA
(permission to read the file’s data), READ_NAMED_ATTRS
(permission to read the file’s named attributes),
SYNCHRONIZE (permission to access the file locally at
the server with synchronous reads and writes), WRITE_
ACL (permission to write the ACL attribute), WRITE_
ATTRIBUTES (the ability to write nonACL file attributes),
WRITE_DATA (permission to modify the file’s data),
WRITE_NAMED_ATTRS (permission to write the file’s named
attributes), and WRITE_OWNER (permission to change the
owner) permission constants.

	flags is a set of flags that indicate how entries are
inherited and propagated. It’s read by calling the
Set<AclEntryFlag> flags() method. The java.nio.
file.attribute.AclEntryFlag enum defines DIRECTORY_
INHERIT (can be placed on a directory and indicates that
the ACL entry should be added to each new directory
created), FILE_INHERIT (can be placed on a directory
and indicates that the ACL entry should be added
to each new nondirectory file created), INHERIT_ONLY
(can be placed on a directory but does not apply to
the directory, only to newly-created files/directories as
specified by the FILE_INHERIT and DIRECTORY_INHERIT
flags), and NO_PROPAGATE_INHERIT (can be placed on
a directory to indicate that the ACL entry should not
be placed on the newly-created directory, which is
inheritable by subdirectories of the created directory),
flag constants.

https://docs.oracle.com/javase/8/docs/api/java/nio/file/attribute/AclEntry.html#principal--
https://docs.oracle.com/javase/8/docs/api/java/nio/file/attribute/UserPrincipal.html#interface%20in%20java.nio.file.attribute
https://docs.oracle.com/javase/8/docs/api/java/nio/file/attribute/AclEntry.html#permissions--
https://docs.oracle.com/javase/8/docs/api/java/nio/file/attribute/AclEntryPermission.html#enum%20in%20java.nio.file.attribute
https://docs.oracle.com/javase/8/docs/api/java/nio/file/attribute/AclEntry.html#flags
https://docs.oracle.com/javase/8/docs/api/java/nio/file/attribute/AclEntryFlag.html#enum%20in%20java.nio.file.attribute
https://docs.oracle.com/javase/8/docs/api/java/nio/file/attribute/AclEntryFlag.html#FILE_INHERIT
https://docs.oracle.com/javase/8/docs/api/java/nio/file/attribute/AclEntryFlag.html#DIRECTORY_INHERIT

CHAPTER 12: Improved File System Interface

299

Listing 12-18 presents the source code to an application that demonstrates
reading the acl and inherited owner attributes.

Listing 12-18. Reading and Outputting a File’s Owner and ACL Information

import java.io.IOException;

import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

import java.util.List;

import java.nio.file.attribute.AclEntry;

public class ACLAVDemo
{
 public static void main(String[] args) throws IOException
 {
 if (args.length != 1)
 {
 System.err.println("usage: java ACLAVDemo path");
 return;
 }
 Path path = Paths.get(args[0]);
 System.out.printf("Owner: %s%n%n",
 Files.getAttribute(path, "acl:owner"));
 @SuppressWarnings("unchecked")
 List<AclEntry> aclentries =
 (List<AclEntry>) Files.getAttribute(path, "acl:acl");
 for (AclEntry aclentry: aclentries)
 System.out.printf("%s%n%n", aclentry);
 }
}

Unlike with basic file attributes, ACL file attribute names require a prefix,
which happens to be acl:.

Compile Listing 12-18 as follows:

javac ACLAVDemo.java

Run the resulting application as follows:

java ACLAVDemo ACLAVDemo.java

CHAPTER 12: Improved File System Interface300

I observe the following output:

Owner: Owner-PC\Owner (User)

NT AUTHORITY\Authenticated Users:READ_DATA/WRITE_DATA/APPEND_DATA/
READ_NAMED_ATTRS/WRITE_NAMED_ATTRS/EXECUTE/READ_ATTRIBUTES/WRITE_ATTRIBUTES/
DELETE/READ_ACL/SYNCHRONIZE:ALLOW

NT AUTHORITY\SYSTEM:READ_DATA/WRITE_DATA/APPEND_DATA/READ_NAMED_ATTRS/
WRITE_NAMED_ATTRS/EXECUTE/DELETE_CHILD/READ_ATTRIBUTES/WRITE_ATTRIBUTES/
DELETE/READ_ACL/WRITE_ACL/WRITE_OWNER/SYNCHRONIZE:ALLOW

BUILTIN\Administrators:READ_DATA/WRITE_DATA/APPEND_DATA/READ_NAMED_ATTRS/
WRITE_NAMED_ATTRS/EXECUTE/READ_ATTRIBUTES/WRITE_ATTRIBUTES/READ_ACL/
SYNCHRONIZE:ALLOW

BUILTIN\Users:READ_DATA/WRITE_DATA/APPEND_DATA/READ_NAMED_ATTRS/WRITE_NAMED_
ATTRS/EXECUTE/READ_ATTRIBUTES/WRITE_ATTRIBUTES/READ_ACL/SYNCHRONIZE:ALLOW

You can create an ACL entry by using the AclEntry.Builder class. The
following example shows how to create a builder:

AclEntry.Builder builder = AclEntry.Builder.newBuilder();

You then invoke AclEntry.Builder methods such as AclEntry.Builder
setType(AclEntryType type) to configure the builder. When you are
finished, call AclEntry.Builder’s AclEntry build() method to build the
entry. Note that the type and principal must be set to build an AclEntry:

builder.build();

After building your ACL entries, add them to a List<AclEntry> object and
pass this object to the value parameter in a Files.setAttribute() method
call, to update the ACL.

Exploring the User-Defined View
In addition to the previous built-in file attributes, you can define your own.
For example, you might want to provide a description attribute for the
objects of your file system. You can define attributes by using the
UserDefinedFileAttributeView interface. It declares the following methods:

	void delete(String name): Delete a user-defined
attribute.

	List<String> list(): Return a list of user-defined
attribute names.

CHAPTER 12: Improved File System Interface

301

	int read(String name, ByteBuffer dst): Read the
value of a user-defined attribute into a buffer.

	int size(String name): Return the size of the value of a
user-defined attribute.

	int write(String name, ByteBuffer src): Write the
value of a user-defined attribute from a buffer.

These methods throw IOException when an I/O error occurs. size() throws
java.lang.ArithmeticException when the attribute size is larger than
java.lang.Integer.MAX_VALUE. read() throws IllegalArgumentException
for a read-only destination buffer.

Before you can define your own attributes, you need to determine if the file
store supports the desired attributes. Accomplish this task by calling either
of FileStore’s supportsFileAttributeView() methods. The following code
fragment demonstrates:

FileStore fs = Files.getFileStore(path);
if (!fs.supportsFileAttributeView(UserDefinedFileAttributeView.class))
 System.out.println("User-defined attributes are supported.");
else
 System.out.println("User-defined attributes are not supported.");

Listing 12-19 presents the source code to an application that demonstrates
a user-defined file.description attribute for associating a description with
a file.

Listing 12-19. Associating a Description with a File

import java.io.IOException;

import java.nio.ByteBuffer;

import java.nio.charset.Charset;

import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

import java.nio.file.attribute.UserDefinedFileAttributeView;

https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#class%20in%20java.lang
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#class%20in%20java.lang
https://docs.oracle.com/javase/8/docs/api/java/nio/ByteBuffer.html#class%20in%20java.nio

CHAPTER 12: Improved File System Interface302

public class UDAVDemo
{
 public static void main(String[] args) throws IOException
 {
 if (args.length != 2)
 {
 System.err.println("usage: java UDAVDemo path w | l | r | d");
 return;
 }
 Path path = Paths.get(args[0]);
 UserDefinedFileAttributeView udfav =
 Files.getFileAttributeView(path,
 UserDefinedFileAttributeView.class);
 switch (args[1].charAt(0))
 {
 case 'W':
 case 'w': udfav.write("file.description",
 Charset.defaultCharset().encode("sample"));
 break;

 case 'L':
 case 'l': for (String name: udfav.list())
 System.out.println(name);
 break;

 case 'R':
 case 'r': int size = udfav.size("file.description");
 ByteBuffer buf = ByteBuffer.allocateDirect(size);
 udfav.read("file.description", buf);
 buf.flip();
 System.out.println(Charset.defaultCharset().decode(buf));
 break;

 case 'D':
 case 'd': udfav.delete("file.description");
 }
 }
}

UDAVDemo is called with two arguments: the path of a file and a letter that
identifies a user-defined attribute operation for the associated path:

	W: Write the file.description attribute with value
sample.

	L: List all user-defined attributes.

	R: Read the value of the file.description attribute.

	D: Delete the file.description attribute.

CHAPTER 12: Improved File System Interface

303

After obtaining a UserDefinedAttributeView object for the specified path,
main() executes the appropriate method to carry out the operation identified
by the aforementioned letter.

Compile Listing 12-19 as follows:

javac UDAVDemo.java

Run the resulting application as follows:

java UDAVDemo UDAVDemo.java w

You should observe no output. Continue by executing the following
command:

java UDAVDemo UDAVDemo.java l

You should observe the following output:

file.description

Now, execute the following command:

java UDAVDemo UDAVDemo.java r

You should observe the following output:

sample

Finally, execute the following command to delete file.description:

java UDAVDemo UDAVDemo.java d

You should observe no output.

Exploring the File Store View
AttributeView is also subtyped by java.nio.file.attribute.
FileStoreAttributeView, which is a view of attributes associated with a
file store. This interface declares no methods.

A file store has the totalSpace, unallocatedSpace, and usableSpace
attributes. You can access the values of these attributes by calling
FileStore’s getAttribute() method.

CHAPTER 12: Improved File System Interface304

The getAttribute() method takes a single string argument that identifies
an attribute according to the view-name:attribute-name syntax. For the
WindowsFileStore subclass, I’ve found that a view name isn’t required for
the totalSpace, unallocatedSpace, and usableSpace names:

System.out.printf("total space: %d%n",
 fileStore.getAttribute("totalSpace"));
System.out.printf("unallocated space: %d%n",
 fileStore.getAttribute("unallocatedSpace"));
System.out.printf("usable space: %d%n",
 fileStore.getAttribute("usableSpace"));

In contrast, you need to specify volume as the view-name when accessing
the Windows-specific vsn, isRemovable, and isCdrom attributes:

System.out.printf("volume serial number: %b%n",
 fileStore.getAttribute("volume:vsn"));
System.out.printf("is removable: %b%n",
 fileStore.getAttribute("volume:isRemovable"));
System.out.printf("is CD-ROM: %b%n",
 fileStore.getAttribute("volume:isCdrom"));

The totalSpace, unallocatedSpace, and usableSpace attributes are standard
attributes that are available to every file store. However, file stores can have
nonstandard attributes, such as a compression indicator. You can access
these nonstandard attributes by working with FileStoreAttributeView.

The empty FileStoreAttributeView interface can be extended by interfaces
that identify groups of nonstandard custom file store attributes. However,
the standard class library doesn’t expose any subinterfaces. If you have
access to a custom interface, you can call the following method:

<V extends FileStoreAttributeView> V getFileStoreAttributeView(Class<V> type)

This method is used where the file store attribute view declares type-safe
methods to read or update the file store attributes. The type parameter
specifies the type of the attribute view required and the method returns an
instance of this type when supported.

Note Instead of accessing totalSpace, unallocatedSpace, and
usableSpace via getAttribute(), it’s better to use FileStore’s type-safe
getTotalSpace(), getUnallocatedSpace(), and getUsableSpace()
methods, which I demonstrated earlier in this chapter.

CHAPTER 12: Improved File System Interface

305

Managing Files and Directories
Paths let you locate files. You will commonly use paths with assorted Files
methods to manage regular files, directories, and more. Management tasks
that you can perform range from checking a path to determine if the file it
represents exists to deleting a file.

Checking Paths
The Files class declares a pair of methods for checking a path to learn
whether or not the file that it represents exists:

	boolean exists(Path path, LinkOption... options):
Check the file represented by path to determine if it
exists. By default, symbolic links are followed, but if you
pass LinkOption.NOFOLLOW_LINKS to options, symbolic
links are not followed. Return true when the file exists;
return false when the file doesn’t exist or its existence
cannot be determined.

	boolean notExists(Path path, LinkOption...
options): Check the file represented by path to
determine if it doesn’t exist. By default, symbolic links
are followed, but if you pass LinkOption.NOFOLLOW_LINKS
to options, symbolic links are not followed. Return true
when the file doesn’t exist; return false when the file
exists or its existence cannot be determined.

The Files class also declares several is-prefixed methods for checking a
path for additional conditions:

	boolean isDirectory(Path path, LinkOption...
options): Check that path represents a directory. It
returns true for a directory and false for not a directory,
when there is no file backing the path, or when it cannot
be determined that path represents a directory. Specify
LinkOption.NOFOLLOW_LINKS when you don’t want this
method to follow symbolic links.

Note Expression !exists(path) isn’t equivalent to notExists(path).
This is probably because !exists() isn’t atomic (executed as a single
operation), whereas notExists() is atomic. Also, when exists() and
notExists() return false, the existence of the file cannot be verified.

CHAPTER 12: Improved File System Interface306

	boolean isExecutable(Path path): Check that path
represents an executable file. It returns true when the
file exists and is executable and false when the file
doesn’t exist, when execute access would be denied
because the JVM has insufficient privileges, or when
access cannot be determined.

	boolean isHidden(Path path): Check whether the file
represented by path is hidden. The exact definition of
hidden is operating system-dependent. For example,
Unix considers a file to be hidden when its name
begins with a period character. On Windows, a file is
considered hidden when it isn’t a directory and the DOS
hidden attribute is set. This method returns true when
the file is considered hidden; otherwise, it returns false.
It throws IOException when an I/O error occurs.

	boolean isReadable(Path path): Check that path
represents a readable file. It returns true when the file
exists and is readable and false when the file doesn’t
exist, when read access would be denied because the
JVM has insufficient privileges, or when access cannot
be determined.

	boolean isRegularFile(Path path, LinkOption...
options): Check that path represents a regular file. It
returns true for a regular file and false for not a regular
file, when there is no file backing the path, or when it
cannot be determined that path represents a regular file.
Specify LinkOption.NOFOLLOW_LINKS when you don’t
want this method to follow symbolic links.

	boolean isSameFile(Path path1, Path path2): Check
whether path1 and path2 locate the same file, returning
true when this is the case. If the two Path objects are
associated with different file system providers, this
method returns false. It throws IOException when an
I/O error occurs.

	boolean isWritable(Path path): Check that path
represents a writable file. It returns true when the file
exists and is writable and false when the file doesn’t
exist, when write access would be denied because the
JVM has insufficient privileges, or when access cannot
be determined.

https://docs.oracle.com/javase/8/docs/api/java/nio/file/attribute/DosFileAttributes.html#isHidden--

CHAPTER 12: Improved File System Interface

307

Each of isExecutable(), isReadable(), and isWritable() checks that a file
exists and that the JVM has appropriate privileges for executing the file,
opening it for reading, or opening it for writing. Depending on the
implementation, the method might need to read file permissions, ACLs, or
other file attributes to check the effective access to the file. Consequently,
the method might not be atomic with respect to other file system operations.

The return value from exists(), notExists(), isExecutable(), isReadable(),
and isWritable() is immediately outdated. The file system may experience
changes in the time between the method call and the use of its result.
This race condition (https://en.wikipedia.org/wiki/Race_condition) is
known as time-of-check-to-time-of-use (TOCTTOU). Check out https://
en.wikipedia.org/wiki/Time_of_check_to_time_of_use for more
information.

Listing 12-20 presents the source code to an application that demonstrates
these path-checking methods.

Listing 12-20. Checking Paths for Various Conditions

import java.io.IOException;

import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

public class CheckPath
{
 public static void main(String[] args) throws IOException
 {
 if (args.length < 1 || args.length > 2)
 {
 System.err.println("usage: java CheckPath path1 [path2]");
 return;
 }
 Path path1 = Paths.get(args[0]);
 System.out.printf("Path1: %s%n", path1);
 System.out.printf("Exists: %b%n", Files.exists(path1));
 System.out.printf("Not exists: %b%n", Files.notExists(path1));
 System.out.printf("Is directory: %b%n", Files.notExists(path1));
 System.out.printf("Is executable: %b%n", Files.isExecutable(path1));
 try
 {
 System.out.printf("Hidden: %b%n", Files.isHidden(path1));
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }

https://en.wikipedia.org/wiki/Race_condition
https://en.wikipedia.org/wiki/Time_of_check_to_time_of_use
https://en.wikipedia.org/wiki/Time_of_check_to_time_of_use

CHAPTER 12: Improved File System Interface308

 System.out.printf("Is readable: %b%n", Files.isReadable(path1));
 System.out.printf("Is regular file: %b%n",
 Files.isRegularFile(path1));
 System.out.printf("Is writable: %b%n",
 Files.isWritable(path1));
 if (args.length == 2)
 {
 Path path2 = Paths.get(args[1]);
 System.out.printf("Path2: %s%n", path2);
 System.out.printf("Is same path: %b%n",
 Files.isSameFile(path1, path2));
 }
 }
}

Compile Listing 12-20 as follows:

javac CheckPath.java

Run the resulting application as follows:

java CheckPath CheckPath.java

You should observe the following output:

Path1: CheckPath.java
Exists: true
Not exists: false
Is directory: false
Is executable: true
Hidden: false
Is readable: true
Is regular file: true
Is writable: true

It might not always be obvious that two paths point to the same file.
For example, one path might be absolute and the other path relative, as
demonstrated here:

java CheckPath C:\prj\books\io\ch12\code\CheckPath\CheckPath.java
.\CheckPath.java

CHAPTER 12: Improved File System Interface

309

This command line runs CheckPath on a Windows operating system with
absolute and relative paths to the same CheckPath.java file. I observe the
following output:

Path1: C:\prj\books\io\ch12\code\CheckPath\CheckPath.java
Exists: true
Not exists: false
Is directory: false
Is executable: true
Hidden: false
Is readable: true
Is regular file: true
Is writable: true
Path2: .\CheckPath.java
Is same path: true

Creating Files
You can create a new and empty regular file by calling the Files class’s
Path createFile(Path path, FileAttribute<?>... attrs) method. When
creating a file, you must specify a path and optionally specify a varargs list
of file attributes.

The attrs parameter specifies a list of file attribute objects whose classes
implement the java.nio.file.attribute.FileAttribute interface. Each
attribute is identified by its name. If more than one attribute of the same
name is included in the list, all but the last occurrence are ignored.

createFile() returns the Path to the file on success. It throws
UnsupportedOperationException when the list includes an attribute that
cannot be set atomically when creating the file, java.nio.file.
FileAlreadyExistsException when a file with the same name already exists,
and IOException when an I/O error occurs or the parent directory doesn’t exist.

Listing 12-21 presents the source code to an application that demonstrates
createFile() without file attributes.

Note FileAlreadyExistsException is an example of an optional specific
exception. It’s optional because it’s thrown when the underlying operating
system can detect the specific error leading to the exception. If the error cannot
be detected, its IOException ancestor is thrown instead.

https://docs.oracle.com/javase/8/docs/api/java/nio/file/attribute/FileAttribute.html#name--

CHAPTER 12: Improved File System Interface310

Listing 12-21. Creating an Empty File

import java.io.IOException;

import java.nio.file.Files;
import java.nio.file.Paths;

public class CFDemo
{
 public static void main(String[] args) throws IOException
 {
 if (args.length != 1)
 {
 System.err.println("usage: java CFDemo path");
 return;
 }
 Files.createFile(Paths.get(args[0]));
 }
}

Compile Listing 12-21 as follows:

javac CFDemo.java

Run the resulting application as follows:

java CFDemo x

You should observe no output as well as a zero-byte file named x in the
current directory. If you run this application again, you should observe a
FileAlreadyExistsException message on the standard error stream.

FileAttribute is the return type of the PosixFilePermissions class’s File
Attribute<Set<PosixFilePermission>> asFileAttribute(Set<PosixFile
Permission> perms) method, which creates a FileAttribute that encapsulates
a copy of the given file permissions. When creating a regular file, you can use
this method to assign a set of permissions on a POSIX file system, as
follows:

Set<PosixFilePermission> perms =
 PosixFilePermissions.fromString("rw-------");
FileAttribute<Set<PosixFilePermission>> fa =
 PosixFilePermissions.asFileAttribute(perms);
Files.createFile(Paths.get("report"), fa);

CHAPTER 12: Improved File System Interface

311

Creating and Deleting Temporary Files
Applications often need to create and work with temporary regular files. For
example, temporary files would probably be used by a memory-intensive
video-editing application. Also, an application that performs external
sorting (https://en.wikipedia.org/wiki/External_sorting) would output
intermediate sorted data to a temporary file.

You create a temporary file by working with either of the following methods:

	Path createTempFile(Path dir, String prefix,
String suffix, FileAttribute<?>... attrs)

	Path createTempFile(String prefix, String suffix,
FileAttribute<?>... attrs)

The first method creates this file in the directory identified by dir and the
second method creates this file in the default temporary-file directory
(identified by the Java property java.io.tmpdir). The name of the temporary
file begins with the specified prefix, continues with a sequence of digits,
and ends with the specified suffix. Either prefix or suffix may be null.
When prefix is null, nothing appears before the digit sequence. When
suffix is null, .tmp follows the digit sequence.

On success, each method returns the path to the newly-created file that
didn’t exist before this method was invoked. Otherwise, each method
throws IOException when an I/O error occurs (or, for the first method, when
the directory identified by dir doesn’t exist), IllegalArgumentException
when prefix or suffix cannot be used to create a candidate file name, or
UnsupportedOperationException when the attrs list includes an attribute
that cannot be set atomically when creating the file.

Listing 12-22 presents the source code to an application that demonstrates
the first createTempFile() method (without file attributes).

Listing 12-22. Creating an Empty Temporary File

import java.io.IOException;

import java.nio.file.Files;
import java.nio.file.Paths;

public class CTFDemo
{
 public static void main(String[] args) throws IOException
 {

https://en.wikipedia.org/wiki/External_sorting

CHAPTER 12: Improved File System Interface312

 if (args.length != 1)
 {
 System.err.println("usage: java CTFDemo path");
 return;
 }
 Files.createTempFile(Paths.get(args[0]), "video", null);
 }
}

Listing 12-22 describes an application that takes a single command-line
argument, which is a path to a directory in which to store the temporary file.
The temporary file is assigned the prefix video and (by virtue of suffix being
assigned a null argument) the suffix .tmp.

Compile Listing 12-22 as follows:

javac CTFDemo.java

Run the resulting application as follows:

java CTFDemo .

The period character signifies the current directory. You should observe an
empty file with a name similar to video5826353313510732011.tmp in this
directory.

When CTFDemo ends, the temporary file remains behind, which isn’t tidy and
would consume disk space if I chose to write data to it. It’s better to delete
the temporary file before the application ends. There are three ways to
accomplish this task:

	Add a shutdown hook (a runtime mechanism that lets
you clean up resources or save data before the JVM
shuts down) via the java.lang.Runtime class’s void
addShutdownHook(Thread hook) method.

	Convert the returned Path object to a File object (via
Path’s toFile() method) and invoke File’s void
deleteOnExit() method on the File object.

	Work with the Files class’s newOutputStream() method
and NIO.2’s DELETE_ON_CLOSE constant. You’ll learn
about this method and constant later in this chapter.

Listing 12-23 expands on Listing 12-22 by using toFile() followed by
deleteOnExit() to register the temporary file for deletion.

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html#class%20in%20java.lang

CHAPTER 12: Improved File System Interface

313

Listing 12-23. Registering a Temporary File for Deletion on Application Exit

import java.io.IOException;

import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

public class CTFDemo
{
 public static void main(String[] args) throws IOException
 {
 if (args.length != 1)
 {
 System.err.println("usage: java CTFDemo path");
 return;
 }
 Path path = Files.createTempFile(Paths.get(args[0]), "video", null);
 path.toFile().deleteOnExit();
 }
}

Compile Listing 12-23 (javac CTFDemo.java) and run the resulting application
(java CTFDemo .). You should not observe the temporary file in the current
directory after the application terminates.

Reading Files
The Files class provides support for reading regular file content by declaring
the following methods for reading all bytes or all text lines into memory:

	byte[] readAllBytes(Path path)

	List<String> readAllLines(Path path)

	List<String> readAllLines(Path path, Charset cs)

readAllBytes(Path path) reads the contents of the file identified by path
into a byte array and returns this array. It ensures that the file is closed after
all bytes have been read. IOException is thrown when an I/O error occurs
while reading from the file, and java.lang.OutOfMemoryError is thrown when
an array of the required size cannot be allocated (perhaps the file exceeds 2
gigabytes in length). readAllBytes() is intended for simple cases where it’s
convenient to read all bytes into a byte array. It’s not intended for reading in
large files.

readAllLines(Path path) behaves as if you specified Files.
readAllLines(path, java.nio.charset.StandardCharsets.UTF_8);.

CHAPTER 12: Improved File System Interface314

readAllLines(Path path, Charset cs) reads all lines from the file identified
by path into a list of strings and returns this list. Bytes from the file are
decoded into characters using charset cs. It currently recognizes carriage
return (\u000D), line feed (\u000A), or carriage return followed by line feed as
line terminators. Also, it ensures that the file is closed after all lines have
been read. IOException is thrown when an I/O error occurs while reading
from the file or a malformed or unmappable byte sequence is read.
readAllLines() is intended for simple cases where it’s convenient to read all
lines in a single operation. It’s not intended for reading in large files.

Listing 12-24 describes an application that uses readAllLines(Path path)
to read all lines from a text file. These lines are subsequently output.

Listing 12-24. Dumping a Text File to the Standard Output Stream

import java.io.IOException;

import java.nio.file.Files;
import java.nio.file.Paths;

import java.util.List;

public class DumpText
{
 public static void main(String[] args) throws IOException
 {
 if (args.length != 1)
 {
 System.err.println("usage: java DumpText textfilepath");
 return;
 }
 List<String> lines = Files.readAllLines(Paths.get(args[0]));
 for (String line: lines)
 System.out.println(line);
 }
}

Compile Listing 12-24 as follows:

javac DumpText.java

Run the resulting application as follows:

java DumpText DumpText.java

You should observe a duplicate of Listing 12-24 on the standard output
stream. If you try to dump a binary file, you will probably discover a
java.nio.charset.MalformedInputException message instead.

CHAPTER 12: Improved File System Interface

315

The former methods are limited to reading smaller files into memory. For
very large files, Files offers the following methods:

	BufferedReader newBufferedReader(Path path)

	BufferedReader newBufferedReader(Path path,
Charset cs)

	InputStream newInputStream(Path path,
OpenOption... options)

newBufferedReader(Path path) behaves as if you specified Files.new
BufferedReader(path, StandardCharsets.UTF_8);.

newBufferedReader(Path path, Charset cs) opens the file identified by
path and returns a java.io.BufferedReader (with the default buffer size)
that may be used to read text from the file in an efficient manner. Bytes from
the file are decoded into characters using charset cs. Reading starts at the
beginning of the file. IOException is thrown when an I/O error occurs. This
exception is also thrown when one of BufferedReader’s read() methods
reads a malformed or unmappable byte sequence.

newInputStream(Path path, OpenOption... options) opens the file
identified by path, returning a java.io.InputStream to read from the file. The
stream will not be buffered, and it’s not required to support the mark() or
reset() methods. The stream will be safe for access by multiple concurrent
threads. Reading commences at the beginning of the file.

A varargs list of java.nio.file.OpenOptions may be passed. These options
configure how to open or create the file. The java.nio.file.
StandardOpenOption enum implements this interface and provides the
following constants:

	APPEND: If the file is opened for WRITE access, write bytes
to the end of the file rather than to the beginning.

	CREATE: Create a new file when it doesn’t exist.

	CREATE_NEW: Create a new file, failing when the file
already exists.

	DELETE_ON_CLOSE: Make a best effort to delete the file
when the file is closed.

	DSYNC: Require that every update to the file’s content be
written synchronously to the underlying storage device.

	READ: Open the file for read access.

https://docs.oracle.com/javase/8/docs/api/java/io/InputStream.html#mark-int-
https://docs.oracle.com/javase/8/docs/api/java/io/InputStream.html#reset--

CHAPTER 12: Improved File System Interface316

	SPARSE: Open a sparse file (https://en.wikipedia.org/
wiki/Sparse_file). When used with the CREATE_NEW
option, SPARSE provides a hint that the new file will be
sparse. The option is ignored when the file system
doesn’t support the creation of sparse files.

	SYNC: Require that every update to the file’s content or
metadata be written synchronously to the underlying
storage device.

	TRUNCATE_EXISTING: Truncate the length of an existing
file that’s opened for WRITE access to 0.

	WRITE: Open the file for write access.

Not all of these constants apply to newInputStream(); some of them apply to
the newOutputStream() method, which I’ll discuss later in this chapter.

When no options are present, this method opens the file with the READ option.

IOException is thrown when an I/O error occurs. IllegalArgumentException
is thrown when an invalid combination of options is specified.
UnsupportedOperationException is thrown when an unsupported option
(such as WRITE) is specified.

Listing 12-25 describes an application that demonstrates
newBufferedReader(Path path).

Listing 12-25. Dumping a Text File to the Standard Output Stream, Revisited

import java.io.BufferedReader;
import java.io.IOException;

import java.nio.file.Files;
import java.nio.file.Paths;

public class DumpText
{
 public static void main(String[] args) throws IOException
 {
 if (args.length != 1)
 {
 System.err.println("usage: java DumpText textfilepath");
 return;
 }
 BufferedReader br = Files.newBufferedReader(Paths.get(args[0]));
 String line;
 while ((line = br.readLine()) != null)
 System.out.println(line);
 }
}

https://en.wikipedia.org/wiki/Sparse_file
https://en.wikipedia.org/wiki/Sparse_file
https://docs.oracle.com/javase/8/docs/api/java/nio/file/StandardOpenOption.html#CREATE_NEW
https://docs.oracle.com/javase/8/docs/api/java/nio/file/StandardOpenOption.html#WRITE

CHAPTER 12: Improved File System Interface

317

Compile Listing 12-25 (javac DumpText.java) and run the resulting
application (java DumpText DumpText.java). You should observe the same
output as previously shown.

Writing Files
The Files class provides support for writing regular file content by declaring
the following methods for writing all bytes or all text lines to a file:

	Path write(Path path, byte[] bytes, OpenOption...
options)

	Path write(Path path, Iterable<? extends
CharSequence> lines, Charset cs, OpenOption...
options)

	Path write(Path path, Iterable<? extends
CharSequence> lines, OpenOption... options)

write(Path path, byte[] bytes, OpenOption... options) writes bytes to
the file identified by path. The options parameter specifies how the file is
created or opened. When no options are present, this method operates as
if the CREATE, TRUNCATE_EXISTING, and WRITE options are present. All bytes
in the byte array are written to the file. The file is then closed, even when an
exception is thrown. This method throws UnsupportedOperationException
when an unsupported open option (such as READ) is specified. It throws
IOException when an I/O error occurs.

write(Path path, Iterable<? extends CharSequence> lines, Charset cs,
OpenOption... options) writes lines of text to the file identified by path.
Each line is a char sequence that’s written to the file in sequence with each
line terminated by the operating system’s line separator, as defined by the
Java property line.separator. Characters are encoded into bytes using
charset cs. The options parameter specifies how the file is created or
opened. When no options are present, this method operates as if the CREATE,
TRUNCATE_EXISTING, and WRITE options are present. All lines are written to the
file. The file is then closed, even when an exception is thrown. This method
throws UnsupportedOperationException when an unsupported open option
is specified. It throws IOException when an I/O error occurs or when the text
cannot be encoded using the specified charset.

write(Path path, Iterable<? extends CharSequence> lines,
OpenOption... options) behaves as if you specified Files.write(path,
lines, StandardCharsets.UTF_8, options);.

Listing 12-26 describes an application that reads a web page and saves its
HTML text to a file named page.html.

https://docs.oracle.com/javase/8/docs/api/java/nio/file/StandardOpenOption.html#CREATE
https://docs.oracle.com/javase/8/docs/api/java/nio/file/StandardOpenOption.html#TRUNCATE_EXISTING
https://docs.oracle.com/javase/8/docs/api/java/nio/file/StandardOpenOption.html#WRITE
https://docs.oracle.com/javase/8/docs/api/java/nio/file/StandardOpenOption.html#CREATE
https://docs.oracle.com/javase/8/docs/api/java/nio/file/StandardOpenOption.html#TRUNCATE_EXISTING
https://docs.oracle.com/javase/8/docs/api/java/nio/file/StandardOpenOption.html#WRITE

CHAPTER 12: Improved File System Interface318

Listing 12-26. Saving Web Page HTML to a Text File

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;

import java.net.URL;

import java.nio.file.Files;
import java.nio.file.Paths;

import java.util.ArrayList;
import java.util.List;

public class SavePage
{
 public static void main(String[] args) throws IOException
 {
 if (args.length != 1)
 {
 System.err.println("usage: java SavePage url");
 return;
 }
 URL url = new URL(args[0]);
 InputStreamReader isr = new InputStreamReader(url.openStream());
 BufferedReader br = new BufferedReader(isr);
 List<String> lines = new ArrayList<>();
 String line;
 while ((line = br.readLine()) != null)
 lines.add(line);
 Files.write(Paths.get("page.html"), lines);
 }
}

Listing 12-26 uses an input stream reader to connect a buffered reader to
the java.net.URL object’s input stream. Each line is read by calling
BufferedReader’s readLine() method and is stored in a list of strings. This
list is subsequently written to page.html via write(Path path, Iterable<?
extends CharSequence> lines, OpenOption... options).

Compile Listing 12-26 as follows:

javac SavePage.java

Run the resulting application as follows:

java SavePage http://apress.com

http://apress.com/

CHAPTER 12: Improved File System Interface

319

You should observe a page.html file containing the HTML content of
Apress’s main web page.

The former methods are limited to writing smaller amounts of content to
files. For very large amounts of content, Files offers the following methods:

	BufferedWriter newBufferedWriter(Path path, Charset
cs, OpenOption... options)

	BufferedWriter newBufferedWriter(Path path,
OpenOption... options)

	OutputStream newOutputStream(Path path,
OpenOption... options)

newBufferedWriter(Path path, Charset cs, OpenOption... options)
opens or creates the file identified by path for writing and returns a
java.io.BufferedWriter (with the default buffer size) that may be used to
efficiently write text. Characters are encoded into bytes using charset cs.
The options parameter specifies how the file is created or opened. When no
options are present, this method works as if the CREATE, TRUNCATE_EXISTING,
and WRITE options are present. It throws UnsupportedOperationException
when an unsupported option (such as READ) is specified. It throws
IOException when an I/O error occurs.

newBufferedWriter(Path path, OpenOption... options) behaves as if
you specified Files.newBufferedWriter(path, StandardCharsets.UTF_8,
options);.

newOutputStream(Path path, OpenOption... options) opens the file
identified by path, returning a java.io.OutputStream to write to the file. The
stream will not be buffered and will be safe for access by multiple
concurrent threads. The options parameter specifies how the file is
created or opened. When no options are specified, this method works as if
the CREATE, TRUNCATE_EXISTING, and WRITE options are present. It throws
UnsupportedOperationException when an unsupported option (such as READ)
is specified. It throws IOException when an I/O error occurs.

Listing 12-27 describes an application that demonstrates
newBufferedWriter(Path path, OpenOption... options).

Listing 12-27. Saving Web Page HTML to a Text File, Revisited

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.InputStreamReader;
import java.io.IOException;

import java.net.URL;

https://docs.oracle.com/javase/8/docs/api/java/io/BufferedWriter.html#class%20in%20java.io
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/charset/Charset.html#class%20in%20java.nio.charset
https://docs.oracle.com/javase/8/docs/api/java/nio/file/OpenOption.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/io/BufferedWriter.html#class%20in%20java.io
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/file/OpenOption.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/io/OutputStream.html#class%20in%20java.io
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/file/OpenOption.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/charset/Charset.html#class%20in%20java.nio.charset
https://docs.oracle.com/javase/8/docs/api/java/nio/file/OpenOption.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/file/StandardOpenOption.html#CREATE
https://docs.oracle.com/javase/8/docs/api/java/nio/file/StandardOpenOption.html#TRUNCATE_EXISTING
https://docs.oracle.com/javase/8/docs/api/java/nio/file/StandardOpenOption.html#WRITE
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/file/OpenOption.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/file/OpenOption.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/file/StandardOpenOption.html#CREATE
https://docs.oracle.com/javase/8/docs/api/java/nio/file/StandardOpenOption.html#TRUNCATE_EXISTING
https://docs.oracle.com/javase/8/docs/api/java/nio/file/StandardOpenOption.html#WRITE

CHAPTER 12: Improved File System Interface320

import java.nio.file.Files;
import java.nio.file.Paths;

public class SavePage
{
 public static void main(String[] args) throws IOException
 {
 if (args.length != 1)
 {
 System.err.println("usage: java SavePage url");
 return;
 }
 URL url = new URL(args[0]);
 InputStreamReader isr = new InputStreamReader(url.openStream());
 BufferedReader br = new BufferedReader(isr);
 BufferedWriter bw = Files.newBufferedWriter(Paths.get("page.html"));
 String line;
 while ((line = br.readLine()) != null)
 {
 bw.write(line, 0, line.length()); bw.newLine();
 }
 bw.close(); // You must close the file to write data to storage.
 }
}

Compile Listing 12-27 (javac SavePage.java) and run the resulting
application (java SavePage http://apress.com). You should observe the
same result as you observed for the previous version of this application.

Randomly Accessing Files
Chapter 3 introduced the java.io.RandomAccessFile class for creating and/
or opening regular files for random access. NIO.2 provides an equivalent
java.nio.channels.SeekableByteChannel interface.

SeekableByteChannel extends the java.nio.channels.ByteChannel interface
and describes a byte channel that maintains a current position and allows
the position to be changed. Table 12-1 presents its methods.

http://apress.com/
http://dx.doi.org/10.1007/978-1-4842-1565-4_3

CHAPTER 12: Improved File System Interface

321

Table 12-1. The Methods That Define a Seekable Byte Channel

Method Description

long position() Return this channel’s position, which is a non-
negative count of bytes from the beginning of the
seekable entity to the current position. This method
throws java.nio.channels.ClosedChannelException
when this channel is closed and IOException when
some other I/O error occurs.

SeekableByteChannel
position(long
newPosition)

Set this channel’s position to newPosition, a non-
negative count of bytes from the beginning of the
entity. Setting the position to a value greater than
the current size is legal but doesn’t change the size
of the entity. A later attempt to read bytes at such a
position immediately returns an end-of-file indication.
A later attempt to write bytes at the position causes
the entity to grow to accommodate the new bytes;
the values of any bytes between the previous end-
of-file and the newly-written bytes are unspecified.
Setting the channel’s position isn’t recommended
when connected to an entity that’s opened with the
APPEND option. When opened for append, the position
is advanced to the end before writing. This method
throws ClosedChannelException when this channel
is closed, IllegalArgumentException when the new
position is negative, and IOException when some
other I/O error occurs.

int read(ByteBuffer dst) Read a sequence of bytes from this channel into the
given buffer. Bytes are read starting at this channel’s
current position, and then the position is updated
with the number of bytes actually read. The number
of bytes read is returned. When end-of-stream is
reached, -1 is returned. This method throws
ClosedChannelException when this channel is closed;
java.nio.channels.AsynchronousCloseException
when another thread closes this channel while a read
operation is in progress; java.nio.channels.
ClosedByInterruptException when another thread
interrupts the current thread while the read operation
is in progress, thereby closing the channel and
setting the current thread’s interrupt status; and
IOException when some other I/O error occurs.

(continued)

https://docs.oracle.com/javase/8/docs/api/java/nio/file/StandardOpenOption.html#APPEND

CHAPTER 12: Improved File System Interface322

Method Description

long size() Return the current size (in bytes) of the entity to
which this channel is connected. This method throws
ClosedChannelException when this channel is closed
and IOException when some other I/O error occurs.

SeekableByteChannel
truncate(long size)

Truncate the entity to which this channel is connected
to size. If size is less than the current size, the entity
is truncated, discarding any bytes beyond the new
end. If size is greater than or equal to the current
size, the entity isn’t modified. In either case, when
the current position is greater than size the position
is set to size. This method throws java.nio.channels.
NonWritableChannelException when this channel
wasn’t opened for writing, ClosedChannelException
when this channel is closed, IllegalArgumentException
when size is negative, and IOException when some
other I/O error occurs.

int write(ByteBuffer src) Write a sequence of bytes to this channel from the
given buffer. Bytes are written starting at this channel’s
current position, unless the channel is connected to an
entity that’s opened with the APPEND option, in which
case the position is first advanced to the end. The
entity to which the channel is connected is grown,
when necessary, to accommodate the written bytes,
and then the position is updated with the number of
bytes actually written. This method returns a count of
the bytes written to the channel. It throws
ClosedChannelException when this channel is closed;
AsynchronousCloseException when another thread
closes this channel while the write operation is in
progress; ClosedByInterruptException when another
thread interrupts the current thread while the write
operation is in progress, thereby closing the channel
and setting the current thread’s interrupt status; and
IOException when some other I/O error occurs.

Table 12-1. (continued)

JDK 7 refactored the java.nio.channels.FileChannel class to implement
SeekableByteChannel. In Chapter 7, I covered SeekableByteChannel’s
methods in a FileChannel context. I specified FileChannel position(long
newPosition) and FileChannel truncate(long size) instead of
specifying SeekableByteChannel position(long newPosition) and
SeekableByteChannel truncate(long size) because SeekableByteChannel’s

https://docs.oracle.com/javase/8/docs/api/java/nio/file/StandardOpenOption.html#APPEND
http://dx.doi.org/10.1007/978-1-4842-1565-4_7

CHAPTER 12: Improved File System Interface

323

documentation recommends that the method return types be specialized by
classes that implement SeekableByteChannel so that method invocations on
the implementation classes can be chained together.

The Files class lets you obtain a SeekableByteChannel by providing the
following methods:

	SeekableByteChannel newByteChannel(Path path,
OpenOption... options)

	SeekableByteChannel newByteChannel(Path path, Set<?
extends OpenOption> options, FileAttribute<?>...
attrs)

Each method opens or creates a regular file, returning a seekable byte
channel to access the file. It throws IllegalArgumentException when an invalid
combination of open options is specified, UnsupportedOperationException
when an unsupported open option is specified, and IOException when an
I/O error occurs.

I’ve created an application that demonstrates SeekableByteChannel in a
FileChannel context and also in a more generic context. Listing 12-28
presents the application’s source code.

Listing 12-28. Demonstrating SeekableByteChannel

import java.io.IOException;

import java.nio.ByteBuffer;

import java.nio.channels.FileChannel;
import java.nio.channels.SeekableByteChannel;

import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

import java.util.EnumSet;

import static java.nio.file.StandardOpenOption.*;

public class SBCDemo
{
 final static int RECLEN = 50;

 public static void main(String[] args) throws IOException
 {
 Path path = Paths.get("emp");
 FileChannel fc;
 fc = FileChannel.open(path, CREATE, WRITE, SYNC).position(RECLEN * 2);

https://docs.oracle.com/javase/8/docs/api/java/nio/channels/SeekableByteChannel.html#interface%20in%20java.nio.channels
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/util/Set.html#interface%20in%20java.util
https://docs.oracle.com/javase/8/docs/api/java/nio/file/OpenOption.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/file/attribute/FileAttribute.html#interface%20in%20java.nio.file.attribute

CHAPTER 12: Improved File System Interface324

 ByteBuffer buffer = ByteBuffer.wrap("John Doe".getBytes());
 fc.write(buffer);
 fc.close();
 buffer.clear();
 SeekableByteChannel sbc;
 sbc = Files.newByteChannel(path, EnumSet.of(READ)).
 position(RECLEN * 2);
 sbc.read(buffer);
 sbc.close();
 System.out.println(new String(buffer.array()));
 }
}

Listing 12-28’s main() method first obtains a path to an emp (employee) file.
It then invokes FileChannel’s FileChannel open(Path path, OpenOption...
options) method to open or create and then return a channel to this file.

The open() method is called with the CREATE (create a new file when it
doesn’t exist), WRITE (open the file for write access), and SYNC (require that
every update to the file’s content or metadata be written synchronously to
the underlying storage device) options.

After successfully obtaining a seekable file channel, main() invokes
position() on the channel to set the read/write position to twice the length
of a record. (Assume that emp is a flat file database divided into records, with
each record having a length of RECLEN bytes.) Because position() returns a
FileChannel, this method call is chained to the result of the open() method.

At this point, a byte buffer is created by invoking java.nio.ByteBuffer’s
ByteBuffer wrap(byte[] array) method to wrap the byte array returned
from "John Doe".getBytes() into a buffer. The byte buffer is then written to
the file channel, which is subsequently closed. The emp file should contain
the John Doe byte sequence starting at position 100.

main() now opens emp and reads the recently written contents, which are
output. It approaches these tasks generically via newByteChannel() and
SeekableByteChannel. Rather than hardcode FileChannel in the source
code, it can be advantageous to work with SeekableByteChannel instead,

Note NIO.2 added FileChannel open(Path path, OpenOption...
options) and FileChannel open(Path path, Set<? extends
OpenOption> options, FileAttribute<?>... attrs) methods to the
FileChannel class so that you would no longer have to rely on a classic I/O
type (such as RandomAccessFile) to obtain a file channel.

CHAPTER 12: Improved File System Interface

325

for the same reason that you would declare a list collection variable using the
List interface as opposed to the java.util.ArrayList list-implementation
class: you want to minimize source code changes should you change
list-implementation classes. Although FileChannel is currently the only
implementation of SeekableByteChannel, that could change in the future and
you might want to minimize source code changes.

After closing the seekable byte channel, I chose to invoke ByteBuffer’s
byte[] array() method to return the array that backs the byte buffer, for
convenience. I pass this array to a java.lang.String constructor to
convert the byte array to a string, which I then print. Although array()
throws UnsupportedOperationException when the buffer isn’t backed by an
accessible array, this isn’t the case in this example.

Compile Listing 12-28 as follows:

javac SBCDemo.java

Run the resulting application as follows:

java SBCDemo

You should observe the following output (along with an emp file in the current
directory):

John Doe

Creating Directories
You can create a new directory by calling the Files class’s Path
createDirectory(Path dir, FileAttribute<?>... attrs) method. When
creating a directory, you must specify a path and optionally specify a varargs
list of file attributes.

The attrs parameter specifies a list of file attribute objects whose classes
implement the FileAttribute interface. Each attribute is identified by its
name. If more than one attribute of the same name is included in the list, all
but the last occurrence are ignored.

createDirectory() returns the Path to the directory on success. It throws
UnsupportedOperationException when the list includes an attribute that
cannot be set atomically when creating the file, FileAlreadyExistsException
when a file with the same name already exists, and IOException when an I/O
error occurs or the parent directory doesn’t exist.

Listing 12-29 presents the source code to an application that demonstrates
createDirectory() without file attributes.

https://docs.oracle.com/javase/8/docs/api/java/nio/file/attribute/FileAttribute.html#name--

CHAPTER 12: Improved File System Interface326

Listing 12-29. Creating an Empty Directory

import java.io.IOException;

import java.nio.file.Files;
import java.nio.file.Paths;

public class CDDemo
{
 public static void main(String[] args) throws IOException
 {
 if (args.length != 1)
 {
 System.err.println("usage: java CDDemo path");
 return;
 }
 Files.createDirectory(Paths.get(args[0]));
 }
}

Compile Listing 12-29 as follows:

javac CDDemo.java

Run the resulting application as follows:

java CDDemo x

You should observe no output as well as an empty directory named x in the
current directory. If you run this application again, you should observe a
FileAlreadyExistsException message on the standard error stream.

Now, run the resulting application as follows:

java CDDemo a/b

If directory a doesn’t exist before executing this command, you’ll receive a
message stating that java.nio.file.NoSuchFileException has been thrown.
When creating a directory, all specified ancestor directories must exist or
this exception is thrown. You can ensure that they exist by working with the
Files class’s Path createDirectories(Path dir, FileAttribute<?>...
attrs) method, which creates a directory after creating all nonexistent
ancestor directories. Unlike with createDirectory(), an exception isn’t
thrown when the directory couldn’t be created because it already exists.

FileAttribute is the return type of the PosixFilePermissions class’s File
Attribute<Set<PosixFilePermission>> asFileAttribute(Set<PosixFile
Permission> perms) method, which creates a FileAttribute that

https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/file/attribute/FileAttribute.html#interface%20in%20java.nio.file.attribute
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Files.html#createDirectory-java.nio.file.Path-java.nio.file.attribute.FileAttribute%E2%80%A6-

CHAPTER 12: Improved File System Interface

327

encapsulates a copy of the given file permissions. You can use this method
when creating a directory to assign a set of permissions on a POSIX file
system, as follows:

Set<PosixFilePermission> perms =
 PosixFilePermissions.fromString("rw-------");
FileAttribute<Set<PosixFilePermission>> fa =
 PosixFilePermissions.asFileAttribute(perms);
Files.createDirectory(Paths.get("images"), fa);

Creating and Deleting Temporary Directories
Applications often need to create and work with temporary directories in
which to store temporary files. You create a temporary directory by working
with either of the following methods:

	Path createTempDirectory(Path dir, String prefix,
FileAttribute<?>... attrs)

	Path createTempDirectory(String prefix,
FileAttribute<?>... attrs)

The first method creates this directory in the directory identified by dir
and the second method creates this directory in the default temporary-file
directory (identified by the Java property java.io.tmpdir). The name of the
temporary directory begins with the specified prefix and continues with a
sequence of digits. You can pass null to prefix. When prefix is null,
nothing appears before the digit sequence.

On success, each method returns the path to the newly-created directory
that didn’t exist before this method was invoked. Otherwise, each method
throws IOException when an I/O error occurs or the directory
dir/temporary directory doesn’t exist, IllegalArgumentException when
prefix cannot be used to create a candidate directory name, or
UnsupportedOperationException when the attrs list includes an attribute
that cannot be set atomically when creating the directory.

Listing 12-30 presents the source code to an application that demonstrates
the first createTempDirectory() method (without file attributes).

Listing 12-30. Creating an Empty Temporary Directory

import java.io.IOException;

import java.nio.file.Files;
import java.nio.file.Paths;

CHAPTER 12: Improved File System Interface328

public class CTDDemo
{
 public static void main(String[] args) throws IOException
 {
 if (args.length != 1)
 {
 System.err.println("usage: java CTDDemo path");
 return;
 }
 Files.createTempDirectory(Paths.get(args[0]), "images");
 }
}

Listing 12-30 describes an application that takes a single command-line
argument, which is a path to a directory in which to store the temporary
directory. The temporary directory is assigned the prefix images.

Compile Listing 12-30 as follows:

javac CTDDemo.java

Run the resulting application as follows:

java CTDDemo .

The period character signifies the current directory. You should observe an
empty directory with a name similar to images403981294881023944 in this
directory.

When CTDDemo ends, the temporary directory remains behind, which isn’t
tidy and consumes disk space. It’s better to delete the temporary directory
before the application ends. There are two ways to accomplish this task:

	Add a shutdown hook via the Runtime class’s void
addShutdownHook(Thread hook) method.

	Convert the returned Path object to a File object
(via Path’s toFile() method) and invoke File’s void
deleteOnExit() method on the File object.

Listing 12-31 expands on Listing 12-30 by using a shutdown hook to
remove a temporary directory before the JVM shuts down.

Listing 12-31. Using a Shutdown Hook to Remove a Temporary Directory on JVM Exit

import java.io.IOException;

import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html#class%20in%20java.lang

CHAPTER 12: Improved File System Interface

329

public class CTDDemo
{
 public static void main(String[] args) throws IOException
 {
 if (args.length != 1)
 {
 System.err.println("usage: java CTDDemo path");
 return;
 }
 Path path = Files.createTempDirectory(Paths.get(args[0]), "images");
 Runtime.getRuntime().addShutdownHook(new Thread()
 {
 @Override
 public void run()
 {
 try
 {
 Files.delete(path);
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 }
 });
 }
}

Listing 12-31 creates a shutdown hook that registers a java.lang.Thread
subclass object whose overriding run() method will execute before the
JVM ends. Specifically, it will execute Files.delete(path); to delete the
temporary directory. I’ll discuss this method later in this chapter.

Compile Listing 12-31 (javac CTDDemo.java) and run the resulting application
(java CTDDemo .). You should not observe the temporary directory in the
current directory after the application terminates.

Listing Directory Content
It’s often necessary to obtain a list of a directory’s entries. NIO.2 provides
the java.nio.file.DirectoryStream<T> interface to assist with this task.
DirectoryStream subtypes java.lang.Iterable<T>, which makes a directory
stream a target for the convenient enhanced for loop statement.

DirectoryStream also subtypes java.io.Closeable, which subtypes
java.lang.AutoCloseable. This arrangement makes it possible to use
DirectoryStream with the try-with-resources statement to automatically
close the directory stream.

CHAPTER 12: Improved File System Interface330

DirectoryStream inherits Iterable’s Iterator<T> iterator() method,
which makes directory streams the targets of enhanced for loops. Also,
DirectoryStream declares a nested Filter<T> interface that’s implemented
by classes to decide if a directory entry should be accepted or filtered.

You can obtain a DirectoryStream by calling one of the Files class’s
newDirectoryStream() methods:

	DirectoryStream<Path> newDirectoryStream(Path dir)

	DirectoryStream<Path> newDirectoryStream(Path dir,
DirectoryStream.Filter<? super Path> filter)

	DirectoryStream<Path> newDirectoryStream(Path dir,
String glob)

newDirectoryStream(Path dir) opens a directory, returning a DirectoryStream
to iterate over all entries in the directory. The elements returned by the
directory stream’s iterator are of type Path; each Path object represents an
entry in the directory. The Path objects are obtained as if by resolving the
name of the directory entry against dir. This method throws IOException
when an I/O error occurs and java.nio.file.NotDirectoryException when
the path couldn’t be opened because it’s not a directory.

Listing 12-32 presents an application that obtains and outputs all entries in
the specified directory.

Listing 12-32. Obtaining and Outputting All Entries in a Directory

import java.io.IOException;

import java.nio.file.DirectoryStream;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

public class DSDemo
{
 public static void main(String[] args) throws IOException
 {

Note When not using try-with-resources, invoke the directory stream’s
close() method after iteration is completed to free any resources held for the
open directory. A stream is automatically closed when the application ends.

https://docs.oracle.com/javase/8/docs/api/java/nio/file/DirectoryStream.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/file/DirectoryStream.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#class%20in%20java.lang
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/file/DirectoryStream.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/file/DirectoryStream.html#iterator--
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html#resolve-java.nio.file.Path-

CHAPTER 12: Improved File System Interface

331

 if (args.length != 1)
 {
 System.err.println("usage: java DSDemo dirpath");
 return;
 }
 Path path = Paths.get(args[0]);
 DirectoryStream<Path> ds = Files.newDirectoryStream(path);
 for (Path p: ds)
 System.out.println(p);
 }
}

In Listing 12-32, I didn’t bother to use try-with-resources, for convenience.
(After all, this is just a small throw-away application.) Also, I didn’t bother to
call close() because the directory stream is closed automatically when the
application terminates.

Compile Listing 12-32 as follows:

javac DSDemo.java

Run the resulting application as follows:

java DSDemo .

I obtained the following output:

.\DSDemo.class

.\DSDemo.java

newDirectoryStream(Path dir, DirectoryStream.Filter<? super Path>
filter) opens a directory, returning a DirectoryStream to iterate over the
entries in the directory. The elements returned by the directory stream’s
iterator are of type Path; each Path object represents an entry in the
directory. The Path objects are obtained as if by resolving the name of the
directory entry against dir. The entries returned by the iterator are filtered by
the given filter. This method throws IOException when an I/O error occurs
and NotDirectoryException when the path couldn’t be opened because it’s
not a directory.

To create a filter, you need to subclass DirectoryStream.Filter<T> and
override its boolean accept(T path) method, making sure to pass Path to T.

https://docs.oracle.com/javase/8/docs/api/java/nio/file/DirectoryStream.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/file/DirectoryStream.html#iterator--
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html#resolve-java.nio.file.Path-
https://docs.oracle.com/javase/8/docs/api/java/nio/file/DirectoryStream.Filter.html#interface%20in%20java.nio.file

CHAPTER 12: Improved File System Interface332

This method must return true when path is accepted (included in the
directory stream); otherwise, it must return false. The following example
demonstrates a filter:

DirectoryStream.Filter<Path> filter;
filter = new DirectoryStream.Filter<Path>()
 {
 @Override
 public boolean accept(Path path) throws IOException
 {
 return path.toString().endsWith(".java");
 }
 };

This filter accepts only those entries having the .java file extension.

Listing 12-33 presents an application that obtains and outputs all entries in
the specified directory that match a specific file extension.

Listing 12-33. Obtaining and Outputting All Directory Entries That Match an Extension

import java.io.IOException;

import java.nio.file.DirectoryStream;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

public class DSDemo
{
 public static void main(String[] args)
 {
 if (args.length != 2)
 {
 System.err.println("usage: java DSDemo dirpath ext");
 return;
 }
 DirectoryStream.Filter<Path> filter;
 filter = new DirectoryStream.Filter<Path>()
 {
 @Override
 public boolean accept(Path path) throws IOException
 {
 return path.toString().endsWith(args[1]);
 }
 };

CHAPTER 12: Improved File System Interface

333

 Path path = Paths.get(args[0]);
 try (DirectoryStream<Path> ds =
 Files.newDirectoryStream(path, filter))
 {
 for (Path p: ds)
 System.out.println(p);
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 }
}

Compile Listing 12-33 (javac DSDemo.java) and run the resulting application.
For example, I specified the following command line:

java DSDemo \temp .java

I then observed several files in my \temp directory whose extension is .java.

newDirectoryStream(Path dir, String glob) is similar to the previous method
but uses a globbing pattern (a simple regular expression-type pattern) to filter
files. Also, it throws java.util.regex.PatternSyntaxException when the
pattern is invalid.

Listing 12-34 presents a variation of Listing 12-33 that uses newDirectory
Stream(Path dir, String glob).

Listing 12-34. Obtaining and Outputting All Directory Entries That Match an Extension, Revisited

import java.io.IOException;

import java.nio.file.DirectoryStream;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

public class DSDemo
{
 public static void main(String[] args)
 {
 if (args.length != 2)
 {
 System.err.println("usage: java DSDemo dirpath ext");
 return;
 }

https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#class%20in%20java.lang
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#class%20in%20java.lang

CHAPTER 12: Improved File System Interface334

 Path path = Paths.get(args[0]);
 try (DirectoryStream<Path> ds =
 Files.newDirectoryStream(path, args[1]))
 {
 for (Path p: ds)
 System.out.println(p);
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 }
}

Compile Listing 12-34 (javac DSDemo.java) and run the resulting application.
For example, I specified the following command line with *.java as the
globbing pattern (the double quotes surrounding “*.java” prevent problems
related to wildcard expansion on Windows 7):

java DSDemo \temp "*.java"

I then observed a list of files that have the .java file extension.

Copying Files
A sore spot for many developers regarding the File class is its lack of a
copy() method for copying files to other files. The Files class addresses this
shortcoming by providing three copy() methods:

	long copy(InputStream in, Path target,
CopyOption... options): Copy from a classic I/O input
stream to a path.

	long copy(Path source, OutputStream out): Copy from
a path to a classic I/O output stream.

	Path copy(Path source, Path target, CopyOption...
options): Copy from one path to another.

copy(InputStream in, Path target, CopyOption... options) copies all
bytes from input stream in to the target path. On return, the input stream
will be at end-of-stream.

CHAPTER 12: Improved File System Interface

335

A varargs list of java.nio.file.CopyOptions may be passed. These options
configure the copy operation. The java.nio.file.StandardCopyOption enum
implements this interface and provides the following constants:

	ATOMIC_MOVE: Perform the move as an atomic file system
operation. This constant isn’t used by the copy()
methods because it’s meaningless in a copy context.

	COPY_ATTRIBUTES: Copy attributes as well as content.

	REPLACE_EXISTING: Replace an existing target.

CopyOption is also implemented by the LinkOption enum, which provides a
NOFOLLOW_LINKS constant (don’t follow symbolic links), and which I presented
earlier in this chapter.

By default, the copy operation fails when the target already exists or is a
symbolic link. If REPLACE_EXISTING is specified and the target already exists,
the target is replaced (unless it’s a nonempty directory). If the target exists
and is a symbolic link, the symbolic link is replaced.

This method returns the number of bytes read or written. It throws
IOException for an I/O error, FileAlreadyExistsException when the target
exists but cannot be replaced because REPLACE_EXISTING wasn’t specified,
DirectoryNotEmptyException when REPLACE_EXISTING is specified and the
target is a nonempty directory, and UnsupportedOperationException when
options includes an unsupported copy option (such as ATOMIC_MOVE).

Listing 12-35 refactors Listing 12-27’s SavePage application to use
copy(InputStream in, Path target, CopyOption... options) to copy a
web page to a file.

Listing 12-35. Saving Web Page HTML via copy(InputStream, Path, CopyOption...)

import java.io.IOException;

import java.net.URL;

import java.nio.file.Files;
import java.nio.file.Paths;

Caution If an I/O error occurs while reading from the input stream or writing
to the target path, it may do so after the target has been created and after some
bytes have been read or written. Consequently, the input stream may not be at
end-of-stream and may be in an inconsistent state. It’s strongly recommended
that the input stream be closed immediately when an I/O error occurs.

https://docs.oracle.com/javase/8/docs/api/java/nio/file/StandardCopyOption.html#REPLACE_EXISTING

CHAPTER 12: Improved File System Interface336

public class SavePage
{
 public static void main(String[] args) throws IOException
 {
 if (args.length != 1)
 {
 System.err.println("usage: java SavePage url");
 return;
 }
 URL url = new URL(args[0]);
 Files.copy(url.openStream(), Paths.get("page.html"));
 }
}

Listing 12-35’s use of copy() to copy from the URL’s input stream to the
Path’s page.html file results in a much shorter listing than its Listing 12-27
counterpart.

Compile Listing 12-35 (javac SavePage.java) and run the application (java
SavePage http://apress.com). You should observe a page.html file with
similar content to that generated by the earlier SavePage application.

copy(Path source, OutputStream out) copies all bytes from the source
path to output stream out. If the given output stream is flushable, its flush()
method may need to be invoked after this method finishes so as to flush any
buffered output. This method returns the number of bytes read or written. It
throws IOException when an I/O error occurs while reading or writing.

Listing 12-36 presents the source code to an application that copies all
bytes from a source path to a file output stream.

Listing 12-36. Copying from a Source Path to a File Output Stream

import java.io.FileOutputStream;
import java.io.IOException;

import java.nio.file.Files;
import java.nio.file.Paths;

Caution If an I/O error occurs while reading from the source path or writing
to the output stream, it may do so after some bytes have been read or written.
Therefore, the output stream may be in an inconsistent state. It’s strongly
recommended that the output stream be closed immediately after the I/O error.

http://apress.com/
https://docs.oracle.com/javase/8/docs/api/java/io/Flushable.html#interface%20in%20java.io
https://docs.oracle.com/javase/8/docs/api/java/io/Flushable.html#flush--

CHAPTER 12: Improved File System Interface

337

public class Copy
{
 public static void main(String[] args) throws IOException
 {
 if (args.length != 2)
 {
 System.err.println("usage: java Copy src dst");
 return;
 }
 Files.copy(Paths.get(args[0]), new FileOutputStream(args[1]));
 }
}

Compile Listing 12-36 as follows:

javac Copy.java

Run the resulting application as follows:

java Copy Copy.java Copy.bak

You should observe, in the current directory, a Copy.bak file containing the
same content as Copy.java.

copy(Path source, Path target, CopyOption... options) copies a source
path to a target path adhering to the specified copy options. By default, the
copy operation fails when the target exists or is a symbolic link. However,
when the source and target are the same, the method will complete without
performing a copy.

There are a few additional items to note:

	Attributes will not necessarily be copied to the target.

	When symbolic links are supported and the source is a
symbolic link, the final target of the link is copied.

	When the source is a directory, copy() creates an
empty directory in the target location (directory entries
are not copied).

You may specify the following copy options:

	COPY_ATTRIBUTES: Attempt to copy the attributes
associated with this path to the target. The exact
attributes that are copied are file system-dependent
and therefore unspecified. Minimally, lastModifiedTime
is copied to the target when supported by both the
source and target file stores. Note that copying
timestamps may result in precision loss.

CHAPTER 12: Improved File System Interface338

	NOFOLLOW_LINKS: Symbolic links are not followed. When
the path is a symbolic link, the symbolic link itself and
not the target of the link is copied. It’s implementation-
specific as to whether attributes can be copied to the
new link. In other words, COPY_ATTRIBUTES may be
ignored when copying a symbolic link.

	REPLACE_EXISTING: When the target exists, the target
is replaced unless it’s a nonempty directory. When the
target exists and is a symbolic link, the symbolic link
itself and not the target of the link is replaced.

This method returns the target Path object. It throws
UnsupportedOperationException when options includes an unsupported copy
option, IOException when an I/O error occurs, FileAlreadyExistsException
when the target exists but cannot be replaced because the REPLACE_EXISTING
option was not specified, and DirectoryNotEmptyException when REPLACE_
EXISTING was specified but the path cannot be replaced because it’s a
nonempty directory.

Listing 12-37 presents the source code to an application that copies all
bytes from a source path to a target path.

Listing 12-37. Copying from a Source Path to a Target Path

import java.io.IOException;

import java.nio.file.DirectoryNotEmptyException;
import java.nio.file.Files;
import java.nio.file.FileAlreadyExistsException;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.StandardCopyOption;

public class Copy
{
 public static void main(String[] args)
 {
 if (args.length != 2)
 {
 System.err.println("usage: java Copy source target");
 return;
 }
 Path source = Paths.get(args[0]);
 Path target = Paths.get(args[1]);
 try
 {
 Files.copy(source, target, StandardCopyOption.REPLACE_EXISTING);
 }

CHAPTER 12: Improved File System Interface

339

 catch (FileAlreadyExistsException faee)
 {
 System.err.printf("%s: file already exists%n", target);
 }
 catch (DirectoryNotEmptyException dnee)
 {
 System.err.printf("%s: not empty%n", target);
 }
 catch (IOException ioe)
 {
 System.err.printf("I/O error: %s%n", ioe.getMessage());
 }
 }
}

After obtaining the source and target paths, main() invokes copy() with the
REPLACE_EXISTING option to replace the target when it exists. Without this
option, FileAlreadyExistsException would be thrown.

Compile Listing 12-37 (javac Copy.java) and run the resulting application as
follows:

java Copy Copy.java Copy.bak

You should observe a Copy.bak file with identical content to Copy.java.

In the same directory as Copy.java, create a directory named x. Then copy
any file into this directory. Finally, execute the following command line:

java Copy Copy.java x

You should receive a message about x not being empty as a result of
DirectoryNotEmptyException being thrown.

Moving Files
File’s lack of a proper file-move capability has also bothered many
developers. The Files class addresses this problem by providing the Path
move(Path source, Path target, CopyOption... options) method.

move(Path source, Path target, CopyOption... options) moves the
source path to target. It fails when target exists except when source and
target are the same, in which case this method has no effect. If source is a
symbolic link, the link (and not its target) is moved.

https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/file/CopyOption.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/file/CopyOption.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Files.html#isSameFile-java.nio.file.Path-java.nio.file.Path-

CHAPTER 12: Improved File System Interface340

The following copy options are supported:

	ATOMIC_MOVE: The move is performed as an atomic
file system operation and all other options are
ignored. When the target exists, either the existing
target is replaced or this method fails by throwing
IOException. If the move cannot be performed as an
atomic file system operation, java.nio.file.
AtomicMoveNotSupportedException is thrown.

	REPLACE_EXISTING: When the target exists, the target
is replaced unless it’s a nonempty directory. When the
target exists and is a symbolic link, the symbolic link
itself and not the target of the link is replaced.

Moving a path will copy the lastModifiedTime attribute to the target when
supported by the source and target file stores. Copying timestamps may
result in precision loss. A move() implementation may also attempt to copy
other attributes. It’s not required to fail when they cannot be copied.

This method returns the target Path object. It throws
UnsupportedOperationException when options includes an unsupported
copy option, FileAlreadyExistsException when target exists but cannot
be replaced because REPLACE_EXISTING isn’t specified,
DirectoryNotEmptyException when REPLACE_EXISTING is specified but the
file cannot be replaced because it’s a nonempty directory,
AtomicMoveNotSupportedException when options includes ATOMIC_MOVE but
the file cannot be moved as an atomic file system operation, and
IOException when an I/O error occurs.

Listing 12-38 presents the source code to an application that copies all
bytes from a source path to a target path.

Note move() may be used to move an empty directory. When invoked to
move a nonempty directory, the directory is moved when it doesn’t require
moving the directory’s entries. For example, renaming a directory on the same
file store will usually not require moving the directory entries. When moving a
directory requires that its entries be moved, this method fails (by throwing
IOException).

https://docs.oracle.com/javase/8/docs/api/java/nio/file/attribute/BasicFileAttributes.html#lastModifiedTime--

CHAPTER 12: Improved File System Interface

341

Listing 12-38. Moving a Source Path to a Target Path

import java.io.IOException;

import java.nio.file.DirectoryNotEmptyException;
import java.nio.file.Files;
import java.nio.file.FileAlreadyExistsException;
import java.nio.file.Path;
import java.nio.file.Paths;

public class Move
{
 public static void main(String[] args)
 {
 if (args.length != 2)
 {
 System.err.println("usage: java Move source target");
 return;
 }
 Path source = Paths.get(args[0]);
 Path target = Paths.get(args[1]);
 try
 {
 Files.move(source, target);
 }
 catch (FileAlreadyExistsException faee)
 {
 System.err.printf("%s: file already exists%n", target);
 }
 catch (DirectoryNotEmptyException dnee)
 {
 System.err.printf("%s: not empty%n", target);
 }
 catch (IOException ioe)
 {
 System.err.printf("I/O error: %s%n", ioe.getMessage());
 }
 }
}

Compile Listing 12-38 as follows:

javac Move.java

Run the resulting application as follows:

java Move report.txt report.bak

CHAPTER 12: Improved File System Interface342

This example assumes the existence of a report.txt file. When Move
finishes, you should discover a report.bak file instead of report.txt.

Deleting Files
The Files class includes a pair of methods for deleting a file:

	void delete(Path path)

	boolean deleteIfExists(Path path)

delete(Path path) deletes the file identified by path. If path identifies a
directory, the directory must be empty. If path identifies a symbolic link,
the symbolic link (and not the final target of the link) is deleted.
NoSuchFileException is thrown when the file doesn’t exist,
DirectoryNotEmptyException is thrown when path identifies a directory that
couldn’t be deleted, and IOException is thrown when an I/O error occurs.

I previously demonstrated delete(Path path) in the context of using a
shutdown hook to delete a temporary directory.

deleteIfExists(Path path) deletes the file identified by path when it exists.
If path identifies a symbolic link, the symbolic link (and not the final target of
the link) is deleted. This method returns true when the file is deleted;
otherwise, it returns false. DirectoryNotEmptyException is thrown when
path identifies a directory that couldn’t be deleted, and IOException is
thrown when an I/O error occurs.

Listing 12-39 presents the source code to an application that demonstrates
deleteIfExists().

Listing 12-39. Deleting a File When It Exists

import java.io.IOException;

import java.nio.file.Files;
import java.nio.file.Paths;

public class Delete
{
 public static void main(String[] args) throws IOException
 {
 if (args.length != 1)
 {
 System.err.println("usage: java Delete path");
 return;
 }

CHAPTER 12: Improved File System Interface

343

 if (!Files.deleteIfExists(Paths.get(args[0])))
 System.err.printf("%s does not exist%n", args[0]);
 }
}

Compile Listing 12-39 as follows:

javac Delete.java

Run the resulting application as follows:

java Delete x

When there is no directory x in the current directory, you should observe the
following message:

x does not exist

Otherwise, you should observe no message.

Managing Symbolic and Hard Links
File systems store regular files, directories, and links, which are files that
point to real files, directories, or other links. Links are classified as symbolic
(also known as soft) or hard. Along with providing methods that take
symbolic links into account (such as the copy() and move() methods), the
Files class provides several methods for managing symbolic links. It also
provides a method for creating hard links.

Managing Symbolic Links
A symbolic link (soft link or symlink) is a special file that references another
file. Symbolic links are typically invisible to applications; operations on
symbolic links are automatically redirected to the link’s target (the file or
directory being pointed to), except for when a symbolic link is deleted or
renamed, in which case it’s the link that’s deleted or renamed and not the
target. Figure 12-3 illustrates a symbolic link.

CHAPTER 12: Improved File System Interface344

In Figure 12-3, the Jack and Jill files under CurSales are actually symbolic
links to Sales\Jack\2015\Q2 and Sales\Jill\2015\Q2, respectively. The
Q2 directories are the actual targets of these links. Each link is resolved by
substituting the actual location in the file system for the symbolic link.

Many file systems use symbolic links extensively. Now and then, a symbolic
link may be created that produces a circular reference (where the target of a
link points back to the original link). For example, directory X could point to
directory Y, which contains a subdirectory that points back to X. A circular
reference can be problematic when recursively walking a file tree, which is a
task that I’ll discuss later in this chapter. However, NIO.2’s file tree-walking
feature takes this possibility into account.

The Files class provides the Path createSymbolicLink(Path link, Path
target, FileAttribute<?>... attrs) method for creating a symbolic link to
a target. The link parameter identifies the symbolic link path and the target
parameter identifies the target path, which may be absolute or relative and

Figure 12-3. Jack and Jill’s symbolic links point to the most current quarterly sales directories
(for brevity, Q3 and Q4 are ignored)

https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html#isAbsolute--

CHAPTER 12: Improved File System Interface

345

may not exist. When the target is a relative path, file system operations
on the resulting link are relative to the link path. The attrs parameter
identifies optional attributes to set atomically when creating the link. Each
attribute is identified by its name. When more than one attribute of the
same name is included, all but the last occurrence is ignored. This method
returns the link Path object. It throws UnsupportedOperationException
when the implementation doesn’t support symbolic links or attrs includes
an attribute that cannot be set atomically when creating the symbolic link,
FileAlreadyExistsException when the link name already exists, and
IOException when an I/O error (such as the file store not supporting
symbolic links) occurs.

Listing 12-40 presents the source code to an application that demonstrates
symbolic link creation.

Listing 12-40. Creating a Symbolic Link

import java.io.IOException;

import java.nio.file.Files;
import java.nio.file.Paths;

public class CSLDemo
{
 public static void main(String[] args) throws IOException
 {
 if (args.length != 2)
 {
 System.err.println("usage: java CSLDemo linkpath targetpath");
 return;
 }
 Files.createSymbolicLink(Paths.get(args[0]), Paths.get(args[1]));
 }
}

Compile Listing 12-40 as follows:

javac CSLDemo.java

Assuming the existence of target, a subdirectory of the current directory,
run the application as follows:

java CSLDemo link target

https://docs.oracle.com/javase/8/docs/api/java/nio/file/attribute/FileAttribute.html#interface%20in%20java.nio.file.attribute
https://docs.oracle.com/javase/8/docs/api/java/nio/file/attribute/FileAttribute.html#name--

CHAPTER 12: Improved File System Interface346

If you run this command line on Windows 7, you might encounter the
following error message:

Exception in thread "main" java.nio.file.FileSystemException: link:
A required privilege is not held by the client.

 at sun.nio.fs.WindowsException.translateToIOException(Windows

Exception.java:86)
 at sun.nio.fs.WindowsException.rethrowAsIOException(Windows

Exception.java:97)
 at sun.nio.fs.WindowsException.rethrowAsIOException(Windows

Exception.java:102)
 at sun.nio.fs.WindowsFileSystemProvider.createSymbolicLink(Windows

FileSystemProvider.java:585)
 at java.nio.file.Files.createSymbolicLink(Files.java:1043)
 at CSLDemo.main(CSLDemo.java:15)

The solution to this problem is to elevate the privilege of the java application
by running cmd (the command interpreter) as an administrator. I showed how
to perform this task earlier in this chapter (in order to change the file owner).

Run the application again. This time, you should observe no output. Instead,
you should observe a <SYMLINKD> link [target] entry in the current
directory.

You might want to determine if an arbitrary path represents a symbolic link.
You can accomplish this task by calling the Files class’s boolean
isSymbolicLink(Path path) method, which returns true when path is a
symbolic link; and returns false when path identifies a nonexistent file, is
not a symbolic link, or it cannot be determined if the file is a symbolic link.

Listing 12-41 presents the source code to an application that demonstrates
symbolic link determination.

Listing 12-41. Determining if a Path is a Symbolic Link

import java.nio.file.Files;
import java.nio.file.Paths;

public class ISLDemo
{
 public static void main(String[] args)
 {
 if (args.length != 1)
 {
 System.err.println("usage: java ISLDemo path");
 return;
 }

CHAPTER 12: Improved File System Interface

347

 if (Files.isSymbolicLink(Paths.get(args[0])))
 System.out.println("is symbolic link");
 else
 System.out.println("is not symbolic link");
 }
}

Compile Listing 12-41 as follows:

javac ISLDemo.java

Assuming the existence of the previous target directory and link symbolic
link, run the application as follows:

java ISLDemo link

You should observe the following output:

is symbolic link

Now, run the application as follows:

java ISLDemo target

You should observe the following output:

is not symbolic link

Finally, you might want to be able to read the target of a symbolic link so
that you can interact with the target directly. You can accomplish this task by
invoking the Files class’s Path readSymbolicLink(Path link) method.

readSymbolicLink(Path link) reads the target of the symbolic link identified
by link. On success, this method returns the target’s Path object, which will
be associated with the same file system as link. If the file system doesn’t
support symbolic links, this method throws UnuspportedOperationException.
Also, it throws IOException when an I/O error occurs and java.nio.file.
NotLinkException when the target could not be read because path is not a
symbolic link.

Listing 12-42 presents the source code to an application that shows you
how to read a symbolic link to obtain the target.

https://docs.oracle.com/javase/8/docs/api/java/nio/file/package-summary.html#links

CHAPTER 12: Improved File System Interface348

Listing 12-42. Reading a Symbolic Link

import java.io.IOException;

import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

public class RSLDemo
{
 public static void main(String[] args) throws IOException
 {
 if (args.length != 1)
 {
 System.err.println("usage: java ISLDemo linkpath");
 return;
 }
 if (!Files.isSymbolicLink(Paths.get(args[0])))
 System.out.println("is not symbolic link");
 else
 {
 Path targetpath = Files.readSymbolicLink(Paths.get(args[0]));
 System.out.println(targetpath);
 }
 }
}

Compile Listing 12-42 as follows:

javac RSLDemo.java

Assuming the existence of the previous target directory and link symbolic
link, run the application as follows:

java RSLDemo link

You should observe the following output:

target

Now, run the application as follows:

java RSLDemo target

You should observe the following output:

is not symbolic link

CHAPTER 12: Improved File System Interface

349

Managing Hard Links
A hard link is a directory entry that associates a name with a file on a file
system. It’s basically the same entity as the original file. All attributes are
identical: they have the same file permissions, timestamps, and so on.
Figure 12-4 differentiates between a soft link and a hard link.

Figure 12-4. A soft link (top) versus a hard link (bottom) in an inode context

Figure 12-4 shows how soft links (symbolic links) and hard links work in a
Linux context. The upper half of each diagram shows the user perception of
a soft link or a hard link as an alias for some file. However, the bottom part
shows what is really happening.

https://en.wikipedia.org/wiki/Computer_file#Computer%20file

CHAPTER 12: Improved File System Interface350

For a soft link, the file points to an inode and the soft link points to another
inode. The soft link inode references the file inode, which points to the data
on the file store. For a hard link, both the file and the hard link point to the
file inode, which points to the data on the file store.

Hard links are more restrictive than soft links:

	The target of the link must exist.

	Hard links are generally not allowed on directories.

	Hard links are not allowed to cross partitions or
volumes. In other words, they cannot exist across file
systems.

	A hard link looks and behaves like a normal file and so
can be hard to find.

The Files class provides the Path createLink(Path link, Path
existing) method for creating a hard link (directory entry) for an
existing file. This method returns the link Path object. It throws
UnsupportedOperationException when the implementation doesn’t support
adding an existing file to a directory, FileAlreadyExistsException when
the entry couldn’t be created because the link name already exists, and
IOException when an I/O error occurs.

Listing 12-43 presents the source code to an application that demonstrates
hard link creation.

Listing 12-43. Creating a Hard Link

import java.io.IOException;

import java.nio.file.Files;
import java.nio.file.Paths;

public class CLDemo
{
 public static void main(String[] args) throws IOException
 {
 if (args.length != 2)
 {
 System.err.println("usage: java CLDemo linkpath existfilepath");
 return;
 }
 Files.createLink(Paths.get(args[0]), Paths.get(args[1]));
 }
}

CHAPTER 12: Improved File System Interface

351

Compile Listing 12-43 as follows:

javac CLDemo.java

Assuming the existence of a report.txt file, run the resulting application as
follows:

java CLDemo myrep report.txt

You should observe no output. Instead, you should observe a myrep entry
in the directory. This entry identifies the same content and attributes as
report.txt. If you change either myrep or report.txt, the changes can be
observed in the other.

Walking the File Tree
The Files class’s copy(), move(), and delete() methods copy, move, and
delete a single file instead of multiple objects. When combined with NIO.2’s
File Tree-Walking API, you can use these methods to copy, move, and delete
hierarchies of files.

Exploring the File Tree-Walking API
The File Tree-Walking API provides the ability to walk a file tree and visit all
of its files (regular files, directories, and links). As well as providing a private
implementation that performs the walk, this API provides a public interface
for an application to use.

The public interface is centered about the java.nio.file.FileVisitor<T>
interface type, which describes a visitor. At various points during a walk, the
File Tree-Walking implementation calls this interface’s methods to notify the
visitor that a file has been encountered and to provide other notifications:

	FileVisitResult postVisitDirectory(T dir,
IOException ioe)

	FileVisitResult preVisitDirectory(T dir,
BasicFileAttributes attrs)

	FileVisitResult visitFile(T file,
BasicFileAttributes attrs)

	FileVisitResult visitFileFailed(T file,
IOException ioe)

https://docs.oracle.com/javase/8/docs/api/java/nio/file/FileVisitResult.html#enum%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/file/FileVisitor.html#type%20parameter%20in%20FileVisitor
https://docs.oracle.com/javase/8/docs/api/java/io/IOException.html#class%20in%20java.io

CHAPTER 12: Improved File System Interface352

Each method is called with various arguments that the application code
can interrogate. When the method is finished, it returns one of the following
constants that are declared in the java.nio.file.FileVisitResult enum type:

	CONTINUE: Continue the walk. When returned from the
preVisitDirectory() method, it indicates that the
entries in the directory should also be visited.

	SKIP_SIBLINGS: Continue without visiting the siblings
of this file. If returned from the preVisitDirectory()
method, the entries in the directory are also skipped and
the postVisitDirectory() method is not invoked.

	SKIP_SUBTREE: Continue without visiting the entries
in this directory. This result is only meaningful when
returned from the preVisitDirectory() method;
otherwise, this result type is the same as CONTINUE.

	TERMINATE: Terminate the walk.

FileVisitResult postVisitDirectory(T dir, IOException ioe) is
invoked for a directory dir after the entries in the directory and all of their
descendants have been visited. It’s also invoked when iteration of the
directory completes prematurely (by visitFile() returning SKIP_SIBLINGS,
or by an I/O error when iterating over the directory). The value passed to
ioe is null when the iteration of the directory completes without an error;
otherwise, the value is the I/O exception that caused the iteration of the
directory to complete prematurely.

FileVisitResult preVisitDirectory(T dir, BasicFileAttributes attrs)
is invoked for a directory dir before entries in the directory are visited. If this
method returns CONTINUE, entries in the directory are visited. If this method
returns SKIP_SUBTREE or SKIP_SIBLINGS, entries in the directory (and any
descendants) will not be visited. For SKIP_SIBLINGS, postVisitDirectory()
will not be called. The value passed to attrs identifies the directory’s basic
attributes.

FileVisitResult visitFile(T file, BasicFileAttributes attrs) is
invoked for a nondirectory file in a directory. The value passed to attrs
identifies the file’s basic attributes.

FileVisitResult visitFileFailed(T file, IOException ioe) is invoked for a
file that could not be visited because its attributes could not be read, the
file is a directory that could not be opened, or for another reason. The
value passed to ioe identifies the I/O exception that prevented the file from
being visited.

https://docs.oracle.com/javase/8/docs/api/java/nio/file/FileVisitor.html#preVisitDirectory-T-java.nio.file.attribute.BasicFileAttributes-
https://docs.oracle.com/javase/8/docs/api/java/nio/file/FileVisitor.html#postVisitDirectory-T-java.io.IOException-
https://docs.oracle.com/javase/8/docs/api/java/nio/file/FileVisitor.html#preVisitDirectory-T-java.nio.file.attribute.BasicFileAttributes-
https://docs.oracle.com/javase/8/docs/api/java/nio/file/FileVisitResult.html#CONTINUE
https://docs.oracle.com/javase/8/docs/api/java/nio/file/FileVisitor.html#visitFile-T-java.nio.file.attribute.BasicFileAttributes-
https://docs.oracle.com/javase/8/docs/api/java/nio/file/FileVisitResult.html#SKIP_SIBLINGS
https://docs.oracle.com/javase/8/docs/api/java/nio/file/FileVisitResult.html#enum%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/file/FileVisitor.html#type%20parameter%20in%20FileVisitor
https://docs.oracle.com/javase/8/docs/api/java/io/IOException.html#class%20in%20java.io

CHAPTER 12: Improved File System Interface

353

Each method throws IOException when an I/O error occurs.

The java.nio.file.SimpleFileVisitor<T> class implements all four
methods, offering the default behavior of visiting all files and rethrowing
I/O errors. Each method except for visitFileFailed() returns CONTINUE;
visitFileFailed() rethrows the I/O exception that prevented the file from
being visited.

SimpleFileVisitor declares a protected constructor, which means that
you cannot instantiate this class directly. Instead, you must subclass
SimpleFileVisitor, which is demonstrated here:

class DoNothingVisitor extends SimpleFileVisitor<Path>
{
}

After declaring and implementing a visitor class, you can pass an instance of
this class along with a Path object that identifies the start of the walk to the
following method in the Files class:

Path walkFileTree(Path start, FileVisitor<? super Path> visitor)

This method initiates a depth-first walk of the entire file tree rooted in start.
It invokes the various methods in visitor as necessary. If one of these
methods throws IOException, walkFileTree() also throws IOException. The
following example demonstrates a walk that starts in the current directory:

Files.walkFileTree(Paths.get("."), new DoNothingVisitor());

Don’t expect to see any output. Instead, you will need to codify the visitor
methods to generate output. This task is demonstrated in Listing 12-44.

Listing 12-44. Visiting a File Tree and Reporting Last Modified Times and Sizes

import java.io.IOException;

import java.nio.file.Files;
import java.nio.file.FileVisitResult;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.SimpleFileVisitor;

import java.nio.file.attribute.BasicFileAttributes;

CHAPTER 12: Improved File System Interface354

public class FTWDemo
{
 public static void main(String[] args) throws IOException
 {
 if (args.length != 1)
 {
 System.err.println("usage: java FTWDemo path");
 return;
 }
 class DoNothingVisitor extends SimpleFileVisitor<Path>
 {
 @Override
 public FileVisitResult postVisitDirectory(Path dir,
 IOException ioe)
 throws IOException
 {
 System.out.printf("postVisitDirectory: %s %s%n%n", dir, ioe);
 return super.postVisitDirectory(dir, ioe);
 }

 @Override
 public FileVisitResult preVisitDirectory(Path dir,
 BasicFileAttributes attrs)
 throws IOException
 {
 System.out.printf("preVisitDirectory: %s%n", dir);
 System.out.printf(" lastModifiedTime: %s%n",
 attrs.lastModifiedTime());
 System.out.printf(" size: %d%n%n", attrs.size());
 return super.preVisitDirectory(dir, attrs);
 }

 @Override
 public FileVisitResult visitFile(Path file,
 BasicFileAttributes attrs)
 throws IOException
 {
 System.out.printf("visitFile: %s%n%n", file);
 System.out.printf(" lastModifiedTime: %s%n",
 attrs.lastModifiedTime());
 System.out.printf(" size: %d%n%n", attrs.size());
 return super.visitFile(file, attrs);
 }

 @Override
 public FileVisitResult visitFileFailed(Path file,
 IOException ioe)
 throws IOException

CHAPTER 12: Improved File System Interface

355

 {
 System.out.printf("visitFileFailed: %s %s%n%n", file, ioe);
 return super.visitFileFailed(file, ioe);
 }
 }
 Files.walkFileTree(Paths.get(args[0]), new DoNothingVisitor());
 }
}

Listing 12-44 expands the DoNothingVisitor local class by overriding
SimpleFileVisitor’s methods. The overriding methods output argument
values and then defer to the superclass methods.

Compile Listing 12-44 as follows:

javac FTWDemo.java

Run the resulting application as follows:

java FTWDemo .

This command line causes the current directory’s file tree to be walked.
In my case, this directory contains FTWDemo$1DoNothingVisitor.class,
FTWDemo.class, and FTWDemo.java. I observe the following output:

preVisitDirectory: .
 lastModifiedTime: 2015-09-24T19:31:17.841828Z
 size: 4096

visitFile: .\FTWDemo$1DoNothingVisitor.class

 lastModifiedTime: 2015-09-24T19:25:00.93227Z
 size: 2226

visitFile: .\FTWDemo.class

 lastModifiedTime: 2015-09-24T19:25:00.93727Z
 size: 878

visitFile: .\FTWDemo.java

 lastModifiedTime: 2015-09-24T19:24:53.190827Z
 size: 2324

visitFile: .\out

 lastModifiedTime: 2015-09-24T19:31:17.841828Z
 size: 0

postVisitDirectory: . null

CHAPTER 12: Improved File System Interface356

To observe output from visitFileFailed(), I executed the following
command line:

java FTWDemo D:

This command line attempts to walk the file tree of a disc inserted into
my DVD drive (D:). Because there was no disc in this drive when I ran the
application, I observe the following output instead:

visitFileFailed: D: java.nio.file.FileSystemException: D:: The device is
not ready.
Exception in thread "main" java.nio.file.FileSystemException: D:: The device
is not ready.

 at sun.nio.fs.WindowsException.translateToIOException(Windows

Exception.java:86)
 at sun.nio.fs.WindowsException.rethrowAsIOException(Windows

Exception.java:97)
 at sun.nio.fs.WindowsException.rethrowAsIOException(Windows

Exception.java:102)
 at sun.nio.fs.WindowsFileAttributeViews$Basic.readAttributes(Windows

FileAttributeViews.java:53)
 at sun.nio.fs.WindowsFileAttributeViews$Basic.readAttributes(Windows

FileAttributeViews.java:38)
 at sun.nio.fs.WindowsFileSystemProvider.readAttributes(WindowsFile

SystemProvider.java:193)
 at java.nio.file.Files.readAttributes(Files.java:1737)
 at java.nio.file.FileTreeWalker.getAttributes(FileTreeWalker.

java:219)
 at java.nio.file.FileTreeWalker.visit(FileTreeWalker.java:276)
 at java.nio.file.FileTreeWalker.walk(FileTreeWalker.java:322)
 at java.nio.file.Files.walkFileTree(Files.java:2662)
 at java.nio.file.Files.walkFileTree(Files.java:2742)
 at FTWDemo.main(FTWDemo.java:64)

The Path walkFileTree(Path start, FileVisitor<? super Path> visitor)
method is a shortcut for executing the following method:

Path walkFileTree(Path start, Set<FileVisitOption> options, int maxDepth,
 FileVisitor<? super Path> visitor)

As well as requiring a path and a visitor, this method also requires a set of
java.nio.file.FileVisitOptions and integer arguments. FileVisitOption
is an enum that declares file visit option constants. The only currently
supported option is FOLLOW_LINKS (follow symbolic links). The integer
identifies the maximum number of directory levels to walk. A value of
Integer.MAX_VALUE indicates that all levels should be walked.

CHAPTER 12: Improved File System Interface

357

If the options parameter includes the FOLLOW_LINKS option, this method
keeps track of directories visited so that cycles can be detected. A
cycle arises when a directory entry is an ancestor of the directory. Cycle
detection is performed by recording directory file keys, or, when file
keys are not available, by invoking the isSameFile() method to test if a
directory is the same file as an ancestor. When a cycle is detected, it’s
treated as an I/O error and visitFileFailed() is invoked with a java.nio.
file.FileSystemLoopException object argument.

The former walkFileTree() method invokes this walkFileTree() method as
follows (it doesn’t follow symbolic links and visits all levels of the file tree):

walkFileTree(start, EnumSet.noneOf(FileVisitOption.class),
 Integer.MAX_VALUE, visitor)

Copying a File Tree
The File Tree-Walking API can be used to copy a file tree. Listing 12-45
presents the source code to an application that accomplishes this task.

Listing 12-45. Copying a File Tree

import java.io.IOException;

import java.nio.file.Files;
import java.nio.file.FileVisitOption;
import java.nio.file.FileVisitResult;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.SimpleFileVisitor;
import java.nio.file.StandardCopyOption;

import java.nio.file.attribute.BasicFileAttributes;

import java.util.EnumSet;

public class Copy
{
 public static class CopyVisitor extends SimpleFileVisitor<Path>
 {
 private Path fromPath;
 private Path toPath;

 private StandardCopyOption copyOption =
 StandardCopyOption.REPLACE_EXISTING;

https://docs.oracle.com/javase/8/docs/api/java/nio/file/FileVisitOption.html#FOLLOW_LINKS
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Files.html#isSameFile-java.nio.file.Path-java.nio.file.Path-
https://docs.oracle.com/javase/8/docs/api/java/nio/file/FileVisitor.html#visitFileFailed-T-java.io.IOException-
https://docs.oracle.com/javase/8/docs/api/java/nio/file/FileSystemLoopException.html#class%20in%20java.nio.file

CHAPTER 12: Improved File System Interface358

 CopyVisitor(Path fromPath, Path toPath)
 {
 this.fromPath = fromPath;
 this.toPath = toPath;
 }

 @Override
 public FileVisitResult preVisitDirectory(Path dir,
 BasicFileAttributes attrs)
 throws IOException
 {
 System.out.println("dir = " + dir);
 System.out.println("fromPath = " + fromPath);
 System.out.println("toPath = " + toPath);
 System.out.println("fromPath.relativize(dir) = " +
 fromPath.relativize(dir));
 System.out.println("toPath.resolve(fromPath.relativize(dir)) = " +
 toPath.resolve(fromPath.relativize(dir)));

 Path targetPath = toPath.resolve(fromPath.relativize(dir));
 if (!Files.exists(targetPath))
 Files.createDirectory(targetPath);
 return FileVisitResult.CONTINUE;
 }

 @Override
 public FileVisitResult visitFile(Path file, BasicFileAttributes attrs)
 throws IOException
 {
 System.out.println("file = " + file);
 System.out.println("fromPath = " + fromPath);
 System.out.println("toPath = " + toPath);
 System.out.println("fromPath.relativize(file) = " +
 fromPath.relativize(file));
 System.out.println("toPath.resolve(fromPath.relativize(file)) = " +
 toPath.resolve(fromPath.relativize(file)));

 Files.copy(file, toPath.resolve(fromPath.relativize(file)),
 copyOption);
 return FileVisitResult.CONTINUE;
 }

 @Override
 public FileVisitResult visitFileFailed(Path file, IOException ioe)
 {
 System.err.println(ioe);
 return FileVisitResult.CONTINUE;
 }
 }

CHAPTER 12: Improved File System Interface

359

 public static void main(String[] args) throws IOException
 {
 if (args.length != 2)
 {
 System.err.println("usage: java Copy source target");
 return;
 }

 Path source = Paths.get(args[0]);
 Path target = Paths.get(args[1]);

 if (!Files.exists(source))
 {
 System.err.printf("%s source path doesn't exist%n", source);
 return;
 }

 if (!Files.isDirectory(source)) // Is source a nondirectory?
 {
 if (Files.exists(target))
 if (Files.isDirectory(target)) // Is target a directory?
 target = target.resolve(source.getFileName());

 try
 {
 Files.copy(source, target, StandardCopyOption.REPLACE_EXISTING);
 }
 catch (IOException ioe)
 {
 System.err.printf("I/O error: %s%n", ioe.getMessage());
 }
 return;
 }

 if (Files.exists(target) && !Files.isDirectory(target)) // Is target
 // an
 { // existing
 // file?
 System.err.printf("%s is not a directory%n", target);
 return;
 }

 EnumSet<FileVisitOption> options
 = EnumSet.of(FileVisitOption.FOLLOW_LINKS);
 CopyVisitor copier = new CopyVisitor(source, target);
 Files.walkFileTree(source, options, Integer.MAX_VALUE, copier);
 }
}

CHAPTER 12: Improved File System Interface360

Listing 12-45 presents a Copy class with a CopyVisitor nested class
(discussed later) and a main() method as its members.

main() first verifies that exactly two command-line arguments, which identify
the source and target paths of the copy operation, have been specified and
then obtains their Path objects. Next, main() invokes the Files class’s
exists() method on the source path (there is no point in attempting to copy
a nonexistent file). If this method returns false, the source path doesn’t
exist, an error message is output, and the application terminates.

main() now determines which file-copy operation (nondirectory to nondirectory,
nondirectory to directory, or directory hierarchy to directory hierarchy) to
perform. It tests the source path, via Files.isDirectory(source), to find out if
it describes a nondirectory file or a directory.

If the source path describes a nondirectory file, the compound statement
following if (!Files.isDirectory(source)) is executed. This statement
first determines whether the target path exists, and, if so, whether or not it
describes a directory. If the target path describes an existing directory, the
file name is extracted from the source path and resolved against the target
path so that the source file will be copied into the directory (and not replace
the directory). For example, if the source path is foo (a regular file) and the
target path is bak (a directory), the target path following resolution is bak\foo
(on Windows). If the target path doesn’t exist, it will be assumed to be a
nondirectory. In any case, the copy operation is performed. If the target
exists, it’s replaced.

At this point, the source path must describe a directory (directly or via a
symbolic link). Because the only other permitted file-copy operation is
directory hierarchy to directory hierarchy, main() verifies that the target
path describes an existing directory (via Files.exists(target) && !Files.
isDirectory(target)), outputting an error message and terminating the
application when this isn’t the case.

Finally, main() prepares NIO.2’s file tree-walking mechanism to walk through
all nondirectory files and directories in the source hierarchy and copy them
to the target; and then initiates the walk.

main() creates an enumerated set of FileVisitOptions (the only option
presented by this interface is FOLLOW_LINKS—follow symbolic links so that
the target of a link instead of the link itself will be copied) and then
instantiates CopyVisitor, which I’ll describe shortly, passing the source
and target paths to its constructor. main() initiates the walk by invoking
walkFileTree() with the source path, the options list, Integer.MAX_VALUE
(walk all directory levels), and the CopyVisitor object as arguments.

CHAPTER 12: Improved File System Interface

361

walkFileTree() performs a depth-first walk of the file tree rooted at the
source path. During this walk, it invokes the various methods provided by
CopyVisitor.

Before visiting a directory, walkFileTree() invokes preVisitDirectory()
with a path to the directory and the directory’s basic attributes as
arguments.

After outputting certain information (which is useful for learning more
about this aspect of the walk, and which helps you become comfortable
with relativization and resolution), preVisitDirectory() executes Path
targetPath = toPath.resolve(fromPath.relativize(dir)); for the
following reason: Each incoming directory path is relative to the source
path (known in CopyVisitor as fromPath) and it must be made relative to
the target path (known in CopyVisitor as toPath). For example, suppose
the source path is s, s contains directory d, and the target path is t. When
the method is called, dir contains s\d. Relativization produces d; resolution
produces t\d.

Variable targetPath is assigned the resolved result (for example, t\d).
preVisitDirectory() determines if this directory exists and creates the
directory (via the Files class’s Path createDirectory(Path dir,
FileAttribute<?>... attrs) method) when it doesn’t exist. Assuming that
createDirectory() doesn’t throw IOException, preVisitDirectory() returns
FileVisitResult.CONTINUE to continue the walk.

visitFile() is much simpler. It performs the copy operation (after
relativizing and resolving the file from the source to the target) and then
returns CONTINUE to continue the walk.

Finally, visitFileFailed() is called for a file that could not be visited; for
example, the file’s attributes could not be read or the file is a directory that
could not be opened. It outputs the exception and continues the walk, by
returning CONTINUE.

Compile Listing 12-45 as follows:

javac Copy.java

Before running the resulting application, create, in the current directory, a
directory structure consisting of directory s with subdirectory d and, in d, file
foo. Then, run the application as follows:

java Copy s t

CHAPTER 12: Improved File System Interface362

You should observe the following messages along with an identical directory
hierarchy rooted in t:

dir = s
fromPath = s
toPath = t
fromPath.relativize(dir) =
toPath.resolve(fromPath.relativize(dir)) = t
dir = s\d
fromPath = s
toPath = t
fromPath.relativize(dir) = d
toPath.resolve(fromPath.relativize(dir)) = t\d
file = s\d\foo
fromPath = s
toPath = t
fromPath.relativize(file) = d\foo
toPath.resolve(fromPath.relativize(file)) = t\d\foo

You might want to preserve source directory attributes (such as
lastModifiedTime) in the equivalent target directory when performing the
copy. You would accomplish this task by executing the appropriate code
in the postVisitDirectory() method (after the files have been copied).
For example, add the following method to Listing 12-45 to preserve
lastModifiedTime:

@Override
public FileVisitResult postVisitDirectory(Path dir, IOException ioe)
{
 if (ioe == null)
 {
 Path newdir = toPath.resolve(fromPath.relativize(dir));
 try
 {
 FileTime time = Files.getLastModifiedTime(dir);
 Files.setLastModifiedTime(newdir, time);
 }
 catch (IOException ioe2)
 {
 System.err.printf("cannot change lastModifiedTime: %s%n",
 newdir);
 }
 }
 else
 System.err.println(ioe); // should probably throw the exception
 // to terminate the walk

 return FileVisitResult.CONTINUE;
}

CHAPTER 12: Improved File System Interface

363

Before leaving this discussion, we should also consider how Copy behaves
when a cycle is detected. To find out, we need to create a cycle. I’ve chosen
to use Windows 7’s mklink program (for making symbolic or hard links) for
this task. Because C:\prj\books\io\ch12\code\Copy\v4 is the current
directory, I execute the following command (with elevated privilege) to create
a symbolic link named link that points to v4’s parent directory:

mklink /D link ..\v4

/D is specified to create a directory symbolic link. This program generates
the following output:

symbolic link created for link <<===>> ..\v4

I now execute the following command line:

java Copy link link2

I observe the following prefix of the output:

java.nio.file.FileSystemLoopException: link\link
dir = link
fromPath = link
toPath = link2
fromPath.relativize(dir) =
toPath.resolve(fromPath.relativize(dir)) = link2
file = link\Copy$CopyVisitor.class
fromPath = link
toPath = link2
fromPath.relativize(file) = Copy$CopyVisitor.class
toPath.resolve(fromPath.relativize(file)) = link2\Copy$CopyVisitor.class
file = link\Copy.class
fromPath = link
toPath = link2
fromPath.relativize(file) = Copy.class
toPath.resolve(fromPath.relativize(file)) = link2\Copy.class
file = link\Copy.java
fromPath = link
toPath = link2
fromPath.relativize(file) = Copy.java
toPath.resolve(fromPath.relativize(file)) = link2\Copy.java
dir = link\link2
fromPath = link
toPath = link2
fromPath.relativize(dir) = link2
toPath.resolve(fromPath.relativize(dir)) = link2\link2

CHAPTER 12: Improved File System Interface364

file = link\link2\Copy$CopyVisitor.class
fromPath = link
toPath = link2
fromPath.relativize(file) = link2\Copy$CopyVisitor.class
toPath.resolve(fromPath.relativize(file)) = link2\link2\Copy$CopyVisitor.
class
file = link\link2\Copy.class
fromPath = link
toPath = link2
fromPath.relativize(file) = link2\Copy.class
toPath.resolve(fromPath.relativize(file)) = link2\link2\Copy.class
file = link\link2\Copy.java
fromPath = link
toPath = link2
fromPath.relativize(file) = link2\Copy.java
toPath.resolve(fromPath.relativize(file)) = link2\link2\Copy.java
dir = link\link2\link2
fromPath = link
toPath = link2
fromPath.relativize(dir) = link2\link2
toPath.resolve(fromPath.relativize(dir)) = link2\link2\link2
file = link\link2\link2\Copy$CopyVisitor.class
fromPath = link
toPath = link2
fromPath.relativize(file) = link2\link2\Copy$CopyVisitor.class
toPath.resolve(fromPath.relativize(file)) = link2\link2\link2\
Copy$CopyVisitor.class
file = link\link2\link2\Copy.class
fromPath = link
toPath = link2
fromPath.relativize(file) = link2\link2\Copy.class
toPath.resolve(fromPath.relativize(file)) = link2\link2\link2\Copy.class
file = link\link2\link2\Copy.java
fromPath = link
toPath = link2
fromPath.relativize(file) = link2\link2\Copy.java
toPath.resolve(fromPath.relativize(file)) = link2\link2\link2\Copy.java
dir = link\link2\link2\link2
fromPath = link
toPath = link2
fromPath.relativize(dir) = link2\link2\link2
toPath.resolve(fromPath.relativize(dir)) = link2\link2\link2\link2

This output continues indefinitely because of the cycle. copy() creates a
link2 directory; copies Copy.java, Copy.class, and Copy$CopyVisitor.class
into this directory; creates a link2 subdirectory; copies these files into this
subdirectory; creates a link2 subdirectory of this subdirectory; copies these

CHAPTER 12: Improved File System Interface

365

files into this newest subdirectory; and so on. Although visitFileFailed()
reported the cycle, it’s foolish for this method to return CONTINUE. It would be
much better to throw the exception and avoid having to subsequently delete
huge file hierarchies.

Deleting a File Tree
The File Tree-Walking API can be used to delete a file tree. Listing 12-46
presents the source code to an application that accomplishes this task.

Listing 12-46. Deleting a File Tree

import java.io.IOException;

import java.nio.file.Files;
import java.nio.file.FileVisitResult;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.SimpleFileVisitor;

import java.nio.file.attribute.BasicFileAttributes;

public class Delete
{
 public static void main(String[] args) throws IOException
 {
 if (args.length != 1)
 {
 System.err.println("usage: java Delete path");
 return;
 }

 class DeleteVisitor extends SimpleFileVisitor<Path>
 {
 @Override
 public FileVisitResult postVisitDirectory(Path dir,
 IOException ioe)
 throws IOException
 {
 if (ioe == null)
 if (Files.deleteIfExists(dir))
 System.out.printf("deleted directory %s%n", dir);
 else
 System.out.printf("couldn't delete directory %s%n", dir);
 else
 throw ioe;
 return FileVisitResult.CONTINUE;
 }

CHAPTER 12: Improved File System Interface366

 @Override
 public FileVisitResult visitFile(Path file,
 BasicFileAttributes attr)
 throws IOException
 {
 if (Files.deleteIfExists(file))
 System.out.printf("deleted regular file %s%n", file);
 else
 System.out.printf("couldn't delete regular file %s%n", file);
 return FileVisitResult.CONTINUE;
 }
 }

 Files.walkFileTree(Paths.get(args[0]), new DeleteVisitor());
 }
}

Listing 12-46’s main() method accomplishes the delete. It first verifies that
exactly one command-line argument (identifying the file tree to be deleted)
has been specified. It then obtains the argument’s Path object and
instantiates the DeleteVisitor local class. Both objects are passed to
walkFileTree(), which walks the file tree rooted in this path. Symbolic links
are not followed.

DeleteVisitor deletes a nondirectory file in its visitFile() method. This
method performs the deletion by calling deleteIfExists(). If this method
returns true, a message about the file being deleted is output. Otherwise, a
message about not being able to delete the file is output. (The file could be
deleted by an external process between the time it was discovered during
the walk and the time that deleteIfExists() is called.)

Because a directory cannot be deleted until its regular file and other entries
have been deleted, DeleteVisitor deletes a directory in its
postVisitDirectory() method. When this method is called, all of the
entries in the directory will have been deleted. deleteIfExists() is called to
perform the deletion.

postVisitDirectory() will only attempt to delete the directory when an
exception did not occur while visiting the nondirectory files. If an exception
occurs, the exception is re-thrown.

Note Delete is designed to delete symbolic links and not their targets. A
symbolic link might point to a file that exists outside of the file tree and that
shouldn’t be deleted.

CHAPTER 12: Improved File System Interface

367

Compile Listing 12-46 as follows:

javac Delete.java

Assume the following file tree in the current directory:

sales
 joe
 2015
 q1
 sales.txt

Run the resulting application as follows:

java Delete sales

You should observe the following output:

deleted regular file sales\joe\2015\q1\sales.txt
deleted directory sales\joe\2015\q1
deleted directory sales\joe\2015
deleted directory sales\joe
deleted directory sales

Moving a File Tree
The File Tree-Walking API can be used to move a file tree. Listing 12-47
presents the source code to an application that accomplishes this task.

Listing 12-47. Moving a File Tree

import java.io.IOException;

import java.nio.file.Files;
import java.nio.file.FileVisitResult;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.SimpleFileVisitor;
import java.nio.file.StandardCopyOption;

import java.nio.file.attribute.BasicFileAttributes;

public class Move
{
 public static void main(String[] args) throws IOException
 {

CHAPTER 12: Improved File System Interface368

 if (args.length != 2)
 {
 System.err.println("usage: java Move srcpath destpath");
 return;
 }

 class MoveVisitor extends SimpleFileVisitor<Path>
 {
 private Path srcPath, dstPath;

 MoveVisitor(Path srcPath, Path dstPath)
 {
 this.srcPath = srcPath;
 this.dstPath = dstPath;
 }

 @Override
 public FileVisitResult postVisitDirectory(Path dir,
 IOException ioe)
 throws IOException
 {
 if (ioe == null)
 Files.delete(dir);
 else
 throw ioe;
 return FileVisitResult.CONTINUE;
 }

 @Override
 public FileVisitResult preVisitDirectory(Path dir,
 BasicFileAttributes attrs)
 throws IOException
 {
 Path targetPath = dstPath.resolve(srcPath.relativize(dir));
 Files.copy(dir, targetPath, StandardCopyOption.REPLACE_EXISTING,
 StandardCopyOption.COPY_ATTRIBUTES);
 return FileVisitResult.CONTINUE;
 }

 @Override
 public FileVisitResult visitFile(Path file,
 BasicFileAttributes attr)
 throws IOException
 {
 Path targetPath = dstPath.resolve(srcPath.relativize(file));
 Files.move(file, targetPath,
 StandardCopyOption.REPLACE_EXISTING,
 StandardCopyOption.ATOMIC_MOVE);

CHAPTER 12: Improved File System Interface

369

 return FileVisitResult.CONTINUE;
 }
 }

 Path src = Paths.get(args[0]);
 Path dst = Paths.get(args[1]);
 Files.walkFileTree(src, new MoveVisitor(src, dst));
 }
}

Listing 12-47’s main() method accomplishes the move. It first verifies that
exactly two command-line arguments (identifying the file tree to be moved
and its new location) have been specified. It then obtains each argument’s
Path object and instantiates the MoveVisitor local class, passing the source
and destination Path objects to MoveVisitor’s constructor. Lastly, main()
calls walkFileTree() to walk the file tree rooted in the source path. Symbolic
links are not followed.

Before a directory’s entries can be moved, the directory must be moved.
MoveVisitor’s preVisitDirectory() method accomplishes this task. You
might think that you could use the move() method instead. However, when
move() is invoked to move a nonempty directory, the directory is moved
only when it doesn’t require moving the directory’s entries. When the entries
must be moved, this method fails (by throwing IOException). The solution is
to use the copy() method, which does the following: when the file is a
directory, copy() creates an empty directory in the target location (entries in
the directory are not copied).

copy() is called with the REPLACE_EXISTING and COPY_ATTRIBUTES options.
REPLACE_EXISTING configures the copy as follows: when the target exists, the
target is replaced when it’s not a nonempty directory. When the target exists
and is a symbolic link, the symbolic link itself and not the target of the link is
replaced. COPY_ATTRIBUTES attempts to copy the attributes associated with
the directory to the target. The exact file attributes that are copied are file
system-dependent and therefore unspecified. Minimally, lastModifiedTime
is copied to the target when supported by both the source and target file
stores. The copying of timestamps may result in precision loss.

Nondirectory files are moved in the visitFile() method by calling move() with
REPLACE_EXISTING and ATOMIC_MOVE options. ATOMIC_MOVE configures the move
as follows: the move is performed as an atomic file system operation and all
other options are ignored (I also specified REPLACE_EXISTING anyway). When
the target exists, it’s implementation-specific if the existing file is replaced or
if this method fails by throwing IOException. If the move cannot be performed
as an atomic file system operation, AtomicMoveNotSupportedException is
thrown. This can arise, for example, when the target location is on a different
file store and would require that the file be copied.

https://docs.oracle.com/javase/8/docs/api/java/io/IOException.html#class%20in%20java.io
https://docs.oracle.com/javase/8/docs/api/java/nio/file/AtomicMoveNotSupportedException.html#class%20in%20java.nio.file

CHAPTER 12: Improved File System Interface370

Finally, the directory that was copied in preVisitDirectory() is deleted in
postVisitDirectory(), which completes the directory “move”.

Compile Listing 12-47 as follows:

javac Move.java

Assume the following file tree in the current directory:

sales
 joe
 2015
 q1
 sales.txt

Run the resulting application as follows:

java Move sales salesbak

You should observe no output. Instead, you should observe a salesbak
directory with an identical hierarchy to the sales hierarchy. The sales
directory should not be present.

Working with Additional Capabilities
You’ve explored nearly all of the methods in the Files class, but there is still
one group of methods to explore. These methods are designed for use with
Java 8’s Streams API and lambda expressions (anonymous functions that
are passed to constructors or methods for subsequent execution):

	Stream<Path> find(Path start, int maxDepth,
BiPredicate<Path,BasicFileAttributes> matcher,
FileVisitOption... options)

	Stream<String> lines(Path path)

	Stream<String> lines(Path path, Charset cs)

	Stream<Path> list(Path dir)

	Stream<Path> walk(Path start, FileVisitOption...
options)

	Stream<Path> walk(Path start, int maxDepth,
FileVisitOption... options)

http://en.wikipedia.org/wiki/Anonymous_function

CHAPTER 12: Improved File System Interface

371

The find() method returns a java.util.stream.Stream<Path> object that is
lazily populated with the Paths of those files that are accepted by a
java.util.function.BiPredicate object. Listing 12-48 presents the source
code to an application that demonstrates find() and BiPredicate.

Listing 12-48. Streaming and Outputting the Paths of All Files That Match a File Extension

import java.io.IOException;

import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

import java.nio.file.attribute.BasicFileAttributes;

import java.util.List;

import java.util.function.BiPredicate;

import java.util.stream.Collectors;
import java.util.stream.Stream;

public class StreamsDemo
{
 public static void main(String[] args)
 {
 if (args.length != 2)
 {
 System.err.println("usage: java StreamsDemo dirpath ext");
 return;
 }
 BiPredicate<Path, BasicFileAttributes> predicate = (path, attrs) ->
 attrs.isRegularFile() &&
 path.getFileName().toString().endsWith(args[1]);
 try (Stream<Path> stream = Files.find(Paths.get(args[0]), 1,
 predicate))
 {
 List<Path> entries = stream.collect(Collectors.toList());
 for (Path entry: entries)
 System.out.println(entry);
 }

Note As I mentioned in the book’s introduction, I assume that you’re familiar
with the Streams API and lambdas, and won’t discuss them in this book. If
you’re unfamiliar with streams, check out my article called “Java SE 8’s New
Streams API” (www.informit.com/articles/article.aspx?p=2198914).

http://www.informit.com/articles/article.aspx?p=2198914

CHAPTER 12: Improved File System Interface372

 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 }
}

After verifying that two command-line arguments (a directory path and a
file extension) have been passed, main() uses a lambda to create a two-
argument predicate (Boolean-valued function). This predicate returns
true when the path identifies a regular file and its file name ends with the
specified file extension. Otherwise, it returns false.

Because Stream inherits from AutoCloseable (streams are closed when
they’re no longer needed), I invoke find() and obtain the Stream in the
context of a try-with-resources statement. I then obtain a list of those
entries that match the predicate and iterate over the entries, outputting each
entry to the standard output stream.

Compile Listing 12-48 as follows:

javac StreamsDemo.java

I chose to run the resulting application against my C:\windows directory and
exe files as follows:

java StreamsDemo C:\windows exe

I then observed the following output:

C:\windows\bfsvc.exe
C:\windows\explorer.exe
C:\windows\fveupdate.exe
C:\windows\HelpPane.exe
C:\windows\hh.exe
C:\windows\IsUninst.exe
C:\windows\kindlegen.exe
C:\windows\notepad.exe
C:\windows\regedit.exe
C:\windows\splwow64.exe
C:\windows\twunk_16.exe
C:\windows\twunk_32.exe
C:\windows\unins000.exe
C:\windows\winhlp32.exe
C:\windows\write.exe

CHAPTER 12: Improved File System Interface

373

The lines() methods return Stream<String> objects that are lazily
populated with lines of text. lines(Path path) decodes bytes into
characters via the UTF-8 charset. In contrast, lines(Path path, Charset
cs) performs this decoding via charset cs. Listing 12-49 presents the source
code to an application that demonstrates lines(Path path).

Listing 12-49. Streaming and Outputting All Lines from a Text File

import java.io.IOException;

import java.nio.file.Files;
import java.nio.file.Paths;

public class StreamsDemo
{
 public static void main(String[] args) throws IOException
 {
 if (args.length != 1)
 {
 System.err.println("usage: java StreamsDemo textfilepath");
 return;
 }
 Files.lines(Paths.get(args[0])).forEach(System.out::println);
 }
}

In this application, main() first verifies that exactly one command-line
argument (identifying a text file path) has been specified. It then invokes
lines() on this path and forEach() on the resulting stream to iterate over
the strings. I pass a System.out::println method reference (a compact
representation of a lambda) argument to forEach(), which it executes to
output the string. The stream is closed when the application ends.

Compile Listing 12-49 (javac StreamsDemo.java) and run the resulting
application (java StreamsDemo StreamsDemo.java). You should observe the
contents of the text file on the standard output stream.

For brevity, I’m ignoring the remaining methods. If you need help using
them, check out “Java 8 Friday Goodies: The New New I/O APIs” at http://
blog.jooq.org/2014/01/24/java-8-friday-goodies-the-new-new-io-apis/.

Using Path Matchers and Watch Services
The Files class provides utility methods for most of the file system tasks
that you’ll encounter while working with I/O. However, it doesn’t provide
methods to handle path-matching and watch services. For these tasks, you
need to work directly with FileSystem.

http://blog.jooq.org/2014/01/24/java-8-friday-goodies-the-new-new-io-apis/
http://blog.jooq.org/2014/01/24/java-8-friday-goodies-the-new-new-io-apis/

CHAPTER 12: Improved File System Interface374

Matching Paths
We commonly take advantage of pattern matching to filter out those entries
of interest when obtaining a directory listing. For example, we might specify
ls -l *.html (Unix/Linux) or dir *.html to obtain a list of those files whose
extension is .html.

NIO.2 provides java.nio.file.PathMatcher to support the pattern matching
of paths. This interface declares a single method:

boolean matches(Path path)

matches() compares its path argument with the PathMatcher’s current
pattern. It returns true when there is a match; otherwise, it returns false.

FileSystem’s PathMatcher getPathMatcher(String syntaxAndPattern)
method returns a PathMatcher object for matching paths against the pattern
described by syntaxAndPattern, which identifies a pattern language (syntax)
and a pattern (pattern) via this syntax:

syntax:pattern

Two pattern languages are supported: regex and glob. When you specify
regex for syntax, you can specify any regular expression for pattern. For
example, you might specify regex:([^\s]+(\.(?i)(png|jpg))$) to match all
files with .png and .jpg extensions. (Chapter 9 covers regular expressions.)

Alternatively, you can specify glob for syntax. The glob pattern language is
more limited than regex; it resembles regular expressions with a simpler
syntax. The JDK documentation offers several examples of glob
expressions, which I repeat here:

	*.java: Match a path that represents a file name ending
in .java.

	.: Match file names containing a period character.

	*.{java,class}: Match file names ending with .java or
.class.

	foo.?: Match file names starting with foo. and a single
character extension.

	/home/*/*: Match Unix-like paths such as /home/gus/data.

	/home/**: Match Unix-like paths such as /home/gus and
/home/gus/data.

	C:*: Match Windows-like paths such as C:\foo and
C:\bar. (The backslash is escaped. As a Java string
literal, the pattern would be "C:*".)

http://dx.doi.org/10.1007/978-1-4842-1565-4_9

CHAPTER 12: Improved File System Interface

375

The JDK documentation also identifies several rules for interpreting glob
patterns. I repeat these rules here:

	The * character matches zero or more characters of a
name element without crossing directory boundaries.

	The ** characters match zero or more characters
crossing directory boundaries.

	The ? character matches exactly one character of a
name element.

	The backslash character (\) is used to escape
characters that would otherwise be interpreted as
special characters. For example, the expression \\
matches a single backslash and the expression \{
matches a left brace.

	The [and] characters delimit a bracket expression that
matches a single character of a name element out of a
set of characters. For example, [abc] matches a, b, or c.
The hyphen (-) may be used to specify a range, so [a-z]
specifies a range that matches from a to z (inclusive).
These forms can be mixed, so [abce-g] matches a, b, c,
e, f, or g. If the character after the [is a !, the ! is used
for negation, so [!a-c] matches any character except
for a, b, or c.

	Within a bracket expression, the *, ?, and \ characters
match themselves. The hyphen matches itself when it’s
the first character in the brackets, or when it’s the first
character after the ! when negating.

	The { and } characters identify a group of subpatterns,
where the group matches when any subpattern in the
group matches. The comma is used to separate the
subpatterns. Groups cannot be nested.

	Leading period/dot characters in file names are treated
as regular characters in match operations. For example,
the * glob pattern matches file name .login.

	All other characters match themselves in an
implementation-dependent manner. This includes
characters representing any name separators.

	The matching of root elements is highly implementation-
dependent and is not specified.

CHAPTER 12: Improved File System Interface376

Listing 12-50 shows you how to obtain a PathMatcher object and use this
object to match paths.

Listing 12-50. Demonstrating Path-Matching

import java.nio.file.FileSystem;
import java.nio.file.FileSystems;
import java.nio.file.Path;
import java.nio.file.PathMatcher;

public class PathMatcherDemo
{
 public static void main(String[] args)
 {
 if (args.length != 2)
 {
 System.err.println("usage: java PatchMatcherDemo " +
 "syntax:pattern path");
 return;
 }
 FileSystem fsDefault = FileSystems.getDefault();
 PathMatcher pm = fsDefault.getPathMatcher(args[0]);
 if (pm.matches(fsDefault.getPath(args[1])))
 System.out.printf("%s matches pattern%n", args[1]);
 else
 System.out.printf("%s doesn't match pattern%n", args[1]);
 }
}

Compile Listing 12-50 as follows:

javac PathMatcherDemo.java

Run the resulting application as follows:

java PathMatcherDemo glob:*.java PathMatcherDemo.java

You should observe the following output:

PathMatcherDemo.java matches pattern

Now, run the application as follows:

java PathMatcherDemo glob:*.java PathMatcherDemo.txt

This time, you should observe the following output:

PathMatcherDemo.txt doesn't match pattern

CHAPTER 12: Improved File System Interface

377

While you’re trying out this application, execute the following command line:

java PathMatcherDemo "regex:([^\s]+(\.(?i)(png|jpg))$)" figure1.jpg

The double quotes surrounding regex:([^\s]+(\.(?i)(png|jpg))$) are
necessary on Windows. You should observe the following output:

figure1.jpg matches pattern

You would observe similar output for a second argument of figure1.png.
However, you would observe that figure1.gif doesn’t match the pattern.

Watching Directories
The improved file system interface includes a Watch Service API that’s used
to watch registered directories for changes and events. For example, a file
manager can use a watch service to monitor a directory for changes so that
it can update its list-of-files display when files are created or deleted.

The Watch Service API consists of the following types in the java.nio.file
package:

	Watchable: An interface that describes any object that
may be registered with a watch service so that it can be
watched for changes and events. Because Path extends
Watchable, all entries in directories represented as Paths
can be watched.

	WatchEvent<T>: An interface describing any event or
repeated event for an object that’s registered with a
watch service.

	WatchEvent<T>.Kind: A nested interface that identifies
an event kind (such as directory entry creation).

	WatchEvent<T>.Modifier: A nested interface qualifying
how a watchable is registered with a watch service. This
interface isn’t used at this time.

	WatchKey: An interface describing a token representing
the registration of a watchable with a watch service.

	WatchService: An interface describing any object that
watches registered objects for changes and events.

CHAPTER 12: Improved File System Interface378

	StandardWatchEventKinds: A class describing four
event kind constants (directory entry creation, deletion,
or modification; and overflow, which indicates that
events may have been lost because the file system is
generating them too quickly).

	ClosedWatchServiceException: A class describing an
unchecked exception that’s thrown when an attempt is
made to invoke an operation on a watch service that’s
closed.

You would typically perform the following steps to interact with the Watch
Service API:

1. Create a WatchService object to watch one or more
directories with the current or some other file system.
This object is known as a watcher.

2. Register each directory to be monitored with the
watcher. When registering a directory, specify the
kinds of events (described by the
StandardWatchEventKinds class) of which you want
to receive notification. For each registration, you
will receive a WatchKey instance that serves as a
registration token.

3. Implement an infinite loop to wait for incoming
events. When an event occurs, the key is signaled
and placed into the watcher’s queue.

4. Retrieve the key from the watcher’s queue. You can
obtain the file name from the key.

5. Retrieve each pending event for the key (there might
be multiple events) and process as needed.

6. Reset the key and resume waiting for events.

7. Close the watch service. The watch service exits
when the thread exits or when it’s explicitly closed
(by invoking its close() method).

You create a WatchService object by invoking FileSystem’s WatchService
newWatchService() method:

WatchService watcher = FileSystems.getDefault().newWatchService();

CHAPTER 12: Improved File System Interface

379

You register a Path object with the watch service by invoking either of its
registration methods, which identify the watch service and event kinds:

	WatchKey register(WatchService ws, WatchEvent.
Kind<?>... events)

	WatchKey register(WatchService ws, WatchEvent.
Kind<?>[] events, WatchEvent.Modifier...
modifiers)

An invocation of the former register() method behaves as if you specified
watchable.register(watcher, events, new WatchEvent.Modifier[0]);.

Each register() method returns a WatchKey object representing the
registration of this object with the given watch service.

Within a loop, you will typically invoke WatchService’s WatchKey take()
method to retrieve and remove the next watch key. This method blocks until
a watch key is available. Alternatively, you can call one of WatchService’s
poll() methods to avoid blocking or to set an upper limit on the block time.

After extracting the watch key, you would call its List<WatchEvent<?>>
pollEvents() method to retrieve and remove all pending events. You would
then iterate over the returned list of WatchEvents, identifying the kind of
event and taking the appropriate action.

Finally, you reset the key by calling WatchKey’s boolean reset() method.
Calling reset() immediately requeues the watch key to the watch service
when there are pending events. If there are no pending events, the watch
key is put into the ready state and will remain in this state until an event is
detected or the watch key is canceled. This method returns true when the
watch key is valid and has been reset. When it returns false, the watch key
couldn’t be reset because it’s no longer valid. You can use this condition to
exit the infinite loop.

I’ve created an application that demonstrates how to interact with a watch
service. The application doesn’t call close() because the watch service is
closed automatically when the application ends (although it’s unlikely that
the loop will ever terminate). Listing 12-51 presents the source code.

Note A watch key has state. It’s in the ready state when initially created and
in the signaled state when an event is detected (the watch key is then queued
for retrieval by poll() or take()). Events detected while the key is in the
signaled state are queued but don’t cause the key to be requeued for retrieval.

https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html#register-java.nio.file.WatchService-java.nio.file.WatchEvent.Kind:A-java.nio.file.WatchEvent.Modifier%E2%80%A6-

CHAPTER 12: Improved File System Interface380

Listing 12-51. Watching a Directory for Creations, Deletions, and Modifications

import java.io.IOException;

import java.nio.file.FileSystem;
import java.nio.file.FileSystems;
import java.nio.file.Path;

import java.nio.file.WatchEvent;
import java.nio.file.WatchKey;
import java.nio.file.WatchService;

import static java.nio.file.StandardWatchEventKinds.*;

public class WatchServiceDemo
{
 public static void main(String[] args) throws IOException
 {
 if (args.length != 1)
 {
 System.err.println("usage: java WatchServiceDemo directory");
 return;
 }
 FileSystem fsDefault = FileSystems.getDefault();
 WatchService ws = fsDefault.newWatchService();
 Path dir = fsDefault.getPath(args[0]);
 dir.register(ws, ENTRY_CREATE, ENTRY_DELETE, ENTRY_MODIFY);
 for (;;)
 {
 WatchKey key;
 try
 {
 key = ws.take();
 }
 catch (InterruptedException ie)
 {
 return;
 }
 for (WatchEvent event: key.pollEvents())
 {
 WatchEvent.Kind kind = event.kind();
 if (kind == OVERFLOW)
 {
 System.out.println("overflow");
 continue;
 }
 WatchEvent ev = (WatchEvent) event;
 Path filename = (Path) ev.context();
 System.out.printf("%s: %s%n", ev.kind(), filename);
 }

CHAPTER 12: Improved File System Interface

381

 boolean valid = key.reset();
 if (!valid)
 break;
 }
 }
}

WatchServiceDemo’s main() method first validates that a single command-
line argument identifying a directory to watch has been specified. It then
creates a watch service, converts the command-line argument to a Path
object, and registers the Path object with the watch service. Events are to be
triggered when any entries are created, deleted, or modified in the directory
identified by the Path object.

At this point, an infinite loop is entered to take the next watch key and poll
its events. For each event, the kind is determined by calling WatchEvent’s
WatchEvent.Kind<T> kind() method. If the kind is OVERFLOW, a message
stating this fact is output. Otherwise, WatchEvent’s T context() method
is called to return the event context, which is subsequently output. For
ENTRY_CREATE, ENTRY_DELETE, and ENTRY_MODIFY events, the context is a Path
identifying the relative path between the directory registered with the watch
service and the entry that’s created, deleted, or modified.

Lastly, the loop attempts to reset the key. If reset fails because the key is no
longer valid (perhaps because the watch service has been closed), the loop
is broken and the application ends. Resetting the key is very important. If
you fail to invoke reset(), this key will not receive any further events.

Compile Listing 12-51 as follows:

javac WatchServiceDemo.java

Run the resulting application with a suitable directory argument. For
example, I specified the following:

java WatchServiceDemo \temp

Within the \temp directory, I executed the following commands:

md foo
rd foo
copy con test
abc

I then pressed the F6 function key.

https://docs.oracle.com/javase/8/docs/api/java/nio/file/WatchEvent.html#type%20parameter%20in%20WatchEvent
https://docs.oracle.com/javase/8/docs/api/java/nio/file/StandardWatchEventKinds.html#ENTRY_CREATE
https://docs.oracle.com/javase/8/docs/api/java/nio/file/StandardWatchEventKinds.html#ENTRY_DELETE
https://docs.oracle.com/javase/8/docs/api/java/nio/file/StandardWatchEventKinds.html#ENTRY_MODIFY
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html#relativize-java.nio.file.Path-

CHAPTER 12: Improved File System Interface382

In the command window where WatchServiceDemo is running, I observed the
following output:

ENTRY_CREATE: foo
ENTRY_DELETE: foo
ENTRY_CREATE: test
ENTRY_MODIFY: test
ENTRY_MODIFY: test

The extra ENTRY_MODFIY: test line probably has to do with writing out the
file metadata when the file is closed.

EXERCISES

The following exercises are designed to test your understanding of Chapter 12’s content:

1. Define file system and file.

2. The File-based file system interface is problematic. For example,
File’s delete() method returns false when it cannot delete a file.
Why is this behavior a problem?

3. Identify the packages that implement the improved file system
interface.

4. Identify the types that form the core of the improved file system
interface.

5. How do you obtain a reference to the default file system?

6. How would you create a new file system?

7. Define path.

8. True or false: The Path interface represents a hierarchical path to a
file that must exist.

9. Describe the element layout of a Path object.

10. What methods do Path and File provide for converting from Path to
File and from File to Path?

11. Identify the FileSystem method that returns a Path object.

Note If you attempt to run this application with a nondirectory argument, you
will probably observe NotDirectoryException.

http://dx.doi.org/10.1007/978-1-4842-1565-4_12

CHAPTER 12: Improved File System Interface

383

12. What happens when you attempt to create a Path object using syntax
that doesn’t conform to the syntax that is parsed by the file system
provider that created the FileSystem responsible for creating the
Path object?

13. Which methods does the Paths class provide for more conveniently
returning Path objects?

14. Identify Path’s methods for returning its name elements.

15. True or false: Path’s boolean isRelative() method returns
false to signify an absolute path.

16. How do you obtain a file system’s root(s)?

17. How do you convert a relative path to an absolute path?

18. Identify Path’s method for removing path redundancies, creating a
relative path between two paths, and resolving (joining) two paths.

19. How do you resolve a path string against the current path’s parent path?

20. How do you convert the current Path instance to a URI object?

21. What does the Path toRealPath(LinkOption... options)
method accomplish?

22. True or false: The Files class provides static methods for
performing path-matching and directory-watching tasks.

23. Define file store.

24. What method does the Files class provide for obtaining a file store?

25. What information can you obtain about a file store?

26. How can you access all available file stores for a given file system?

27. What support does NIO.2 offer for working with attributes?

28. How are attributes organized?

29. Describe the attribute type hierarchy.

30. How can you identify all supported attribute views for a given file
system?

31. What are basic attributes? Identify the view for managing basic
attributes and name the basic attributes.

32. True or false: You can read basic attributes in bulk by calling
BasicFileAttributeView’s BasicFileAttributes
readAttributes() method.

33. Define file key.

CHAPTER 12: Improved File System Interface384

34. When you call the Files class’s getAttribute() or
setAttribute() method to get or set a basic or other kind of
attribute value, what syntax must you follow for identifying the
attribute?

35. What do the UserPrincipal and GroupPrincipal interfaces
represent?

36. When would FileOwnerAttributeView’s setOwner() method
throw FileSystemException on a Windows operating system?

37. The AclEntry class describes an entry in an ACL. Identify its
components.

38. True or false: You can define your own file attributes.

39. Identity the attributes supported by FileStoreAttributeView.

40. True or false: !exists(path) is equivalent to notExists(path).

41. What is the isDirectory() method’s default policy on
symbolic links?

42. Why should you be careful when using the return values from
exists(), notExists(),isExecutable(), isReadable(), and
isWritable()?

43. What does the createFile() method do when called to create a file
that already exists?

44. Define optional specific exception.

45. How would you set POSIX file permissions when creating a file?

46. In which directory does Path createTempFile(String prefix,
String suffix, FileAttribute<?>... attrs) create a
temporary file?

47. Identify three ways to delete a temporary file before an application exits.

48. Identify NIO.2’s three methods for reading all bytes or lines of text from
a regular file into memory.

49. The methods in the previous exercise are great for reading the
contents of small regular files into memory. What methods would you
use to read very large files (whose contents probably don’t fit into
memory)?

50. The newInputStream() method supports a varargs list of open
options. Identify and describe the open options supported by the
StandardOpenOption enum. (Not all of these options apply to
newInputStream().)

CHAPTER 12: Improved File System Interface

385

51. Identify NIO.2’s three methods for writing all bytes or lines of text from
memory to a regular file.

52. The methods in the previous exercise are great for writing the contents
of memory to small regular files. What methods would you use to write
very large amounts of content (which probably doesn’t fit into memory)
to regular files?

53. True or false: When no options are specified, newOutputStream()
works as if the CREATE, TRUNCATE_EXISTING, and WRITE options
are present.

54. What is the purpose of the SeekableByteChannel interface?

55. The FileChannel class implements SeekableByteChannel. Why
does it specify FileChannel position(long newPosition)
and FileChannel truncate(long size) instead of specifying
SeekableByteChannel position(long newPosition) and
SeekableByteChannel truncate(long size)?

56. How do you obtain a SeekableByteChannel object?

57. What did NIO.2 add to the FileChannel class so that you would no
longer have to rely on a classic I/O type (such as RandomAccessFile)
to obtain a file channel?

58. What method does the Files class provide for creating a directory?

59. True or false: The Files class’s directory-creation method
automatically creates nonexistent ancestor directories of the directory
being created.

60. Identify the Files class’s methods for creating temporary directories.

61. What does NIO.2 provide for obtaining a list of a directory’s entries?

62. How do you filter a list of directory entries so that only desired entries
are returned?

63. What methods does Files provide to copy a file to another file?

64. Two of the copy() methods support a varargs list of copy options.
Identify and describe the copy options supported by the
StandardCopyOption enum.

65. What other copy option can be passed to these copy() methods?

66. What method does Files provide to move a file to another file?

67. What copy options are supported by this file-movement method?

68. Identify the Files methods for deleting files.

69. Define symbolic link and circular reference.

https://docs.oracle.com/javase/8/docs/api/java/nio/file/StandardOpenOption.html#CREATE
https://docs.oracle.com/javase/8/docs/api/java/nio/file/StandardOpenOption.html#TRUNCATE_EXISTING
https://docs.oracle.com/javase/8/docs/api/java/nio/file/StandardOpenOption.html#WRITE

CHAPTER 12: Improved File System Interface386

70. Identify the Files method for creating a symbolic link to a target.

71. How do you determine if an arbitrary path represents a symbolic link?

72. How do you read the target of a symbolic link?

73. Define hard link.

74. In what ways are hard links more restrictive than soft links?

75. Identify the Files method for creating a hard link for an existing file.

76. Describe the File Tree-Walking API.

77. Identify the types that comprise the public portion of the File
Tree-Walking API.

78. True or false: SKIP_SUBTREE is only meaningful when returned from
the preVisitDirectory() method; otherwise, this result type is the
same as CONTINUE.

79. What methods does the Files class provide for walking the file tree?

80. What does the Stream<Path> find(Path start, int
maxDepth, BiPredicate<Path,BasicFileAttributes>
matcher, FileVisitOption... options) method accomplish?

81. How does NIO.2 support path-matching?

82. What is the purpose of the Watch Service API?

83. Identify and describe the types that comprise the Watch Service API.

84. Exercise 22 in Chapter 2 asked you to create a Touch application.
Rewrite this application to use NIO.2 types.

Summary
NIO.2 improves the file system interface that was previously limited to the
File class. The improved file system interface features methods throwing
exceptions, support for symbolic links, broad and efficient support for file
attributes, directory streams, support for alternative file systems via custom
file system providers, support for file copying and file moving, support for
walking the file tree/visiting files and watching directories, and more.

The improved file system interface is implemented mainly by the various types
in the java.nio.file, java.nio.file.attribute, and java.nio.file.spi
packages. FileSystem, FileSystems, and FileSystemProvider form the core
of the improved file system interface.

Chapter 13 presents NIO.2’s support for asynchronous I/O.

https://docs.oracle.com/javase/8/docs/api/java/nio/file/FileVisitor.html#preVisitDirectory-T-java.nio.file.attribute.BasicFileAttributes-
https://docs.oracle.com/javase/8/docs/api/java/nio/file/FileVisitResult.html#CONTINUE
http://dx.doi.org/10.1007/978-1-4842-1565-4_2
http://dx.doi.org/10.1007/978-1-4842-1565-4_13

387

Chapter 13
Asynchronous I/O
NIO provides multiplexed I/O (a combination of nonblocking I/O, discussed
in Chapter 7, and readiness selection, discussed in Chapter 8) to facilitate
the creation of highly scalable servers. Client code registers a socket
channel with a selector to be notified when the channel is ready to start I/O.

NIO.2 provides asynchronous I/O, which lets client code initiate an I/O
operation and subsequently notifies the client when the operation is
complete. Like multiplexed I/O, asynchronous I/O is also commonly used to
facilitate the creation of highly scalable servers.

This chapter first presents an overview of asynchronous I/O. It then explores
asynchronous file channels, socket channels, and channel groups.

Note Multiplexed I/O is often used with operating systems that offer highly
scalable and performant polling interfaces—Linux and Solaris are examples.
Asynchronous I/O is often used with operating systems that provide highly
scalable and performant asynchronous I/O facilities—newer Windows operating
systems come to mind.

CHAPTER 13: Asynchronous I/O388

Asynchronous I/O Overview
The java.nio.channels.AsynchronousChannel interface describes an
asynchronous channel, which is a channel that supports asynchronous I/O
operations (reads, writes, and so on). An I/O operation is initiated by calling
a method that returns a future or requires a completion handler argument:

	Future<V> operation(...): Call operation and return
a java.util.concurrent.Future<V> interface object,
where V is operation’s result type. Future methods may
be called to check if the I/O operation has completed, to
wait for its completion, and to retrieve the result.

	void operation(... A attachment,
CompletionHandler<V,? super A> handler): Call
operation with attachment (an object attached to the
I/O operation to provide context when consuming the
result) and handler, which is an instance of the java.
nio.channels.CompletionHandler<V, A> interface,
as arguments. A is the type of the attachment. V is the
result type of the I/O operation. The attachment is
important for cases where a stateless CompletionHandler
object is used to consume the result of many I/O
operations. The handler is invoked to consume the
result of the I/O operation when it completes or fails.

CompletionHandler declares the following methods to consume the result of
an operation when it completes successfully, and to learn why the operation
failed and take appropriate action:

	void completed(V result, A attachment): Called when
the operation completes successfully. The operation’s
result is identified by result and the object attached to
the operation when it was initiated is identified by
attachment.

	void failed(Throwable t, A attachment): Called
when the operation fails. The reason why the operation
failed is identified by t and the object attached to the
operation when it was initiated is identified by attachment.

After being called, the method returns immediately. You then call Future
methods or provide code in the CompletionHandler implementation to learn
more about the I/O operation status and/or process the I/O operation’s
results.

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Future.html#interface%20in%20java.util.concurrent

CHAPTER 13: Asynchronous I/O

389

CANCELLATION

Future declares the boolean cancel(boolean mayInterruptIfRunning)
method to cancel execution. This method causes all threads waiting on the result of the I/O
operation to throw java.util.concurrent.CancellationException. Whether the
underlying I/O operation can be cancelled is highly implementation-specific and is therefore
not specified. If cancellation leaves the channel or the entity to which it’s connected in
an inconsistent state, the channel is put into an implementation-specific error state that
prevents further attempts to initiate I/O operations that are similar to the cancelled operation.
For example, if an operation is cancelled, but the implementation cannot guarantee that
bytes have not been read from the channel, it puts the channel into an error state. Further
attempts to initiate an operation cause an unspecified runtime exception to be thrown.
Similarly, if an operation is cancelled, but the implementation cannot guarantee that bytes
have not been written to the channel, subsequent attempts to initiate an operation will fail
with an unspecified runtime exception.

If cancel() is invoked with mayInterruptIfRunning set to true, the I/O operation may
be interrupted by closing the channel. In this case, all threads waiting on the I/O operation
result throw CancellationException and any other I/O operations outstanding on the
channel complete by throwing java.nio.channels.AsynchronousCloseException.

When cancel() is invoked to cancel reads or writes, it’s recommended that all buffers used
in the I/O operations be discarded, or that care be taken to ensure that the buffers are not
accessed while the channel remains open.

AsynchronousChannel extends the java.nio.channels.Channel interface (see
Chapter 7 for a discussion of Channel), inheriting its isOpen() and close()
methods. The close() method is subject to the following additional
stipulation: Any outstanding asynchronous operations on this channel will
complete with thrown AsynchronousCloseException objects. After a channel
is closed, further attempts to initiate asynchronous I/O operations complete
immediately with cause java.nio.channels.ClosedChannelException.

Note Asynchronous channels are safe for use by multiple concurrent threads.
Some channel implementations may support concurrent reading and writing,
but may not allow more than one read and one write to be outstanding at any
given time.

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CancellationException.html#class%20in%20java.util.concurrent
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Future.html#cancel-boolean-
https://docs.oracle.com/javase/8/docs/api/java/nio/channels/AsynchronousCloseException.html#class%20in%20java.nio.channels
https://docs.oracle.com/javase/8/docs/api/java/nio/channels/AsynchronousCloseException.html#class%20in%20java.nio.channels
https://docs.oracle.com/javase/8/docs/api/java/nio/channels/ClosedChannelException.html#class%20in%20java.nio.channels

CHAPTER 13: Asynchronous I/O390

The java.nio.channels.AsynchronousByteChannel interface extends
AsynchronousChannel. It offers the following four methods:

	Future<Integer> read(ByteBuffer dst): Read a
sequence of bytes from this channel into the byte buffer.
Return a Future to access the bytes when available.

	<A> void read(ByteBuffer dst, A attachment,
CompletionHandler<Integer,? super A> handler):
Read a sequence of bytes from this channel into the
byte buffer. Access the bytes in the CompletionHandler.

	Future<Integer> write(ByteBuffer src): Write a
sequence of bytes to this channel from the byte buffer.
Return a Future to access the write count when available.

	<A> void write(ByteBuffer src, A attachment,
CompletionHandler<Integer,? super A> handler):
Write a sequence of bytes to this channel from the byte
buffer. Access the write count in the CompletionHandler.

The read() methods throw java.nio.channels.ReadPendingException when
the channel doesn’t allow more than one read to be outstanding and a
previous read has not completed. The write() methods throw java.nio.
channels.WritePendingException when the channel doesn’t allow more than
one write to be outstanding and a previous write has not completed.

Asynchronous File Channels
The abstract java.nio.channels.AsynchronousFileChannel class
describes an asynchronous channel for reading, writing, and manipulating
a file. This channel is created when a file is opened by invoking one of
AsynchronousFileChannel’s open() methods, as follows:

AsynchronousFileChannel ch;
ch = AsynchronousFileChannel.open(Paths.get("somefile"));

The file contains a variable-length sequence of bytes that can be read and
written, and whose current size can be queried. The size of the file increases
when bytes are written beyond its current size; the size decreases when the
file is truncated.

Caution A java.nio.ByteBuffer object isn’t safe for use by multiple
concurrent threads. When a read or write is initiated, care must be taken to
ensure that the buffer isn’t accessed until the operation completes.

https://docs.oracle.com/javase/8/docs/api/java/nio/channels/AsynchronousFileChannel.html#open-java.nio.file.Path-java.util.Set-java.util.concurrent.ExecutorService-java.nio.file.attribute.FileAttribute%E2%80%A6-
https://docs.oracle.com/javase/8/docs/api/java/nio/channels/AsynchronousFileChannel.html#size--
https://docs.oracle.com/javase/8/docs/api/java/nio/channels/AsynchronousFileChannel.html#truncate-long-
https://docs.oracle.com/javase/8/docs/api/java/nio/ByteBuffer.html#class%20in%20java.nio

CHAPTER 13: Asynchronous I/O

391

Files are read and written by calling AsynchronousFileChannel’s read() and
write() methods. One pair returns a Future and the other pair receives a
CompletionHandler as an argument.

An asynchronous file channel doesn’t have a current position within the file.
Instead, the file position is passed as an argument to each read() and
write() method that initiates asynchronous operations.

In addition to supporting reads and writes, AsynchronousFileChannel defines
the following operations:

	Updates made to a file may be forced out to the
underlying storage device, ensuring that data isn’t lost
in case of a system crash. Call void force(boolean
metaData) to accomplish this task.

	A region of a file may be locked against access by
other programs. Call the various lock() and tryLock()
methods to accomplish this task. Two of the lock()
methods return a Future and take a CompletionHandler
as an argument.

Caution AsynchronousFileChannel implements
AsynchronousChannel instead of AsynchronousByteChannel because
this class’s read() and write() methods take position arguments and
AsynchronousByteChannel’s read() and write() methods don’t support
the concept of position.

Note The read() and write() methods must provide an absolute position
(relative to zero) in the file from which to read and write. There is no point for a
file to have an associated position and for reads/writes to occur relative to this
position because reads/writes can be initiated before previous operations have
completed and the order in which they occur isn’t guaranteed. For the same
reason, there are no methods in the AsynchronousFileChannel class (as
there are in java.nio.channels.FileChannel) for setting and querying the
position.

https://docs.oracle.com/javase/8/docs/api/java/nio/channels/AsynchronousFileChannel.html#force-boolean-
https://docs.oracle.com/javase/8/docs/api/java/nio/channels/AsynchronousFileChannel.html#lock-long-long-boolean-A-java.nio.channels.CompletionHandler-

CHAPTER 13: Asynchronous I/O392

I’ve created an AFCDemo application that uses AsynchronousFileChannel to
open a file and read up to the first 1024 bytes in a Future context. Listing 13-1
presents the source code.

Listing 13-1. Reading Bytes from a File and Polling the Returned Future for Completion

import java.io.IOException;

import java.nio.ByteBuffer;

import java.nio.channels.AsynchronousFileChannel;

import java.nio.file.Path;
import java.nio.file.Paths;

import java.util.concurrent.Future;

public class AFCDemo
{
 public static void main(String[] args) throws Exception
 {
 if (args.length != 1)
 {
 System.err.println("usage: java AFCDemo path");
 return;
 }
 Path path = Paths.get(args[0]);
 AsynchronousFileChannel ch = AsynchronousFileChannel.open(path);
 ByteBuffer buf = ByteBuffer.allocate(1024);
 Future<Integer> result = ch.read(buf, 0);
 while (!result.isDone())
 {
 System.out.println("Sleeping...");
 Thread.sleep(500);
 }
 System.out.println("Finished = " + result.isDone());
 System.out.println("Bytes read = " + result.get());
 ch.close();
 }
}

After verifying that a single command-line argument identifying a file path
has been specified, the main() method obtains a java.nio.file.Path
object that wraps this argument and passes it to AsynchronousFileChannel’s
AsynchronousFileChannel open(Path file, OpenOption... options)
method. This method is called to open an existing file for reading.

https://docs.oracle.com/javase/8/docs/api/java/nio/channels/AsynchronousFileChannel.html#class%20in%20java.nio.channels
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/file/OpenOption.html#interface%20in%20java.nio.file

CHAPTER 13: Asynchronous I/O

393

Assuming that an existing file is opened successfully, a byte buffer is
allocated and a read operation starting at position 0 is initiated. The returned
Future<Integer> object is repeatedly interrogated by calling its isDone()
method, which returns true when the operation completes. Until this
method returns true, the while loop alternately outputs a sleeping message
and sleeps for 500 milliseconds. Lastly, the done status and number of
bytes read are output, and the channel is closed.

Compile Listing 13-1 as follows:

javac AFCDemo.java

Run the resulting application as follows:

java AFCDemo AFCDemo.java

You should observe output similar to the following:

Sleeping...
Finished = true
Bytes read = 907

I’ve also created a second AFCDemo application that uses
AsynchronousFileChannel to open a file and read up to the first 1024 bytes
in a CompletionHandler context. Listing 13-2 presents the source code.

Listing 13-2. Reading Bytes from a File and Displaying the Results in a Completion Handler

import java.io.IOException;

import java.nio.ByteBuffer;

import java.nio.channels.AsynchronousFileChannel;
import java.nio.channels.CompletionHandler;

Note The AsynchronousFileChannel open(Path file,
OpenOption... options) method attempts to open or create a file for
reading and/or writing, returning an asynchronous file channel to access the file.
A variable number of options described by the java.nio.file.OpenOption
interface and implemented by the java.nio.file.StandardOpenOption
enum may be passed as arguments. When no options are specified, open()
attempts to open an existing file for reading.

https://docs.oracle.com/javase/8/docs/api/java/nio/channels/AsynchronousFileChannel.html#class%20in%20java.nio.channels
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/file/OpenOption.html#interface%20in%20java.nio.file

CHAPTER 13: Asynchronous I/O394

import java.nio.file.Path;
import java.nio.file.Paths;

public class AFCDemo
{
 public static void main(String[] args) throws Exception
 {
 if (args.length != 1)
 {
 System.err.println("usage: java AFCDemo path");
 return;
 }
 Path path = Paths.get(args[0]);
 AsynchronousFileChannel ch = AsynchronousFileChannel.open(path);
 ByteBuffer buf = ByteBuffer.allocate(1024);
 Thread mainThd = Thread.currentThread();
 ch.read(buf, 0, null,
 new CompletionHandler<Integer, Void>()
 {
 @Override
 public void completed(Integer result, Void v)
 {
 System.out.println("Bytes read = " + result);
 mainThd.interrupt();
 }
 @Override
 public void failed(Throwable t, Void v)
 {
 System.out.println("Failure: " + t.toString());
 mainThd.interrupt();
 }
 });
 System.out.println("Waiting for completion");
 try
 {
 mainThd.join();
 }
 catch (InterruptedException ie)
 {
 System.out.println("Terminating");
 }
 ch.close();
 }
}

The main() method verifies that a single command-line argument identifying
a file path has been specified, and then obtains a Path object that wraps this
argument and attempts to open this path. If successful, main() allocates a
byte buffer, obtains the main thread reference, and calls read().

CHAPTER 13: Asynchronous I/O

395

The read() call doesn’t require an attachment, but does require a
completion handler. This handler’s completed() method is called when
successful and outputs the number of bytes read. The handler’s failed()
method is called on failure and outputs a suitable failure message.

Whether the operation succeeds or fails, each method invokes interrupt()
on the main thread reference. The methods do so because, after outputting
a message, the main thread calls the join() method on its java.lang.
Thread reference, which causes the main thread to block indefinitely. The
thread can be woken up only by throwing java.lang.InterruptedException,
and this happens only when the interrupt() method is called after the I/O
operation completes. Lastly, main() closes the channel.

Compile Listing 13-2 as follows:

javac AFCDemo.java

A JDK 7 compiler would report an error about mainThd not being declared
final, as in final Thread mainThd = Thread.currentThread();. JDK 8
doesn’t require mainThd to be declared final as long as this variable is
effectively final (a variable that isn’t modified after being initialized).

Run the resulting application as follows:

java AFCDemo AFCDemo.java

You should observe the following output:

Waiting for completion
Bytes read = 1024
Terminating

Asynchronous Socket Channels
The abstract java.nio.channels.AsynchronousServerSocketChannel class
describes an asynchronous channel for stream-oriented listening sockets.
Its counterpart channel for stream-oriented connecting sockets is described
by the abstract java.nio.channels.AsynchronousSocketChannel class.

Note AsynchronousServerSocketChannel implements
AsynchronousChannel instead of AsynchronousByteChannel because it
doesn’t declare read()/write() methods. AsynchronousSocketChannel
implements AsynchronousByteChannel.

CHAPTER 13: Asynchronous I/O396

AsynchronousServerSocketChannel
To obtain an AsynchronousServerSocketChannel object, invoke this class’s
AsynchronousServerSocketChannel open() class method, as follows:

AsynchronousServerSocketChannel ch;
ch = AsynchronousServerSocketChannel.open();

According to AsynchronousServerSocketChannel’s documentation, this
method returns an asynchronous server socket channel that’s bound
to the default group. The alternative AsynchronousServerSocketChannel
open(AsynchronousChannelGroup group) method returns an asynchronous
server socket channel that’s bound to the specified group. I’ll discuss
asynchronous channel groups later in this chapter.

You can configure an asynchronous server socket channel by invoking the
<T> AsynchronousServerSocketChannel setOption(SocketOption<T> name,
T value) generic method. The only documented options that are supported
are SO_RCVBUF and SO_REUSEADDR.

A newly-created and possibly configured asynchronous server socket
channel is open but not yet bound to a local address. It can be bound to a
local address and configured to listen for connections by invoking one of
AsynchronousServerSocketChannel’s bind() methods. Once bound, either of
its accept() methods (one method returns a Future and the other method
takes a CompletionHandler argument) is used to initiate the accepting of
connections to the channel’s socket. Attempting to invoke accept() on an
unbound channel results in java.nio.channels.NotYetBoundException.

To demonstrate AsynchronousServerSocketChannel, I’ve created a Server
application consisting of Server, Attachment, ConnectionHandler, and
ReadWriteHandler classes. Listing 13-3 presents Server’s source code.

Note Asynchronous server socket channels are safe for use by multiple
concurrent threads, although at most one accept operation can be outstanding
at any time. If a thread initiates an accept operation before a previous accept
operation ends, java.nio.channels.AcceptPendingException is
thrown.

https://docs.oracle.com/javase/8/docs/api/java/nio/channels/AsynchronousServerSocketChannel.html#class%20in%20java.nio.channels
https://docs.oracle.com/javase/8/docs/api/java/nio/channels/AsynchronousServerSocketChannel.html#class%20in%20java.nio.channels
https://docs.oracle.com/javase/8/docs/api/java/nio/channels/AsynchronousChannelGroup.html#class%20in%20java.nio.channels
https://docs.oracle.com/javase/8/docs/api/java/nio/channels/AsynchronousServerSocketChannel.html#bind-java.net.SocketAddress-int-
https://docs.oracle.com/javase/8/docs/api/java/nio/channels/AsynchronousServerSocketChannel.html#accept-A-java.nio.channels.CompletionHandler-
https://docs.oracle.com/javase/8/docs/api/java/nio/channels/NotYetBoundException.html#class%20in%20java.nio.channels
https://docs.oracle.com/javase/8/docs/api/java/nio/channels/AcceptPendingException.html#class%20in%20java.nio.channels

CHAPTER 13: Asynchronous I/O

397

Listing 13-3. Launching a Server That Handles Connections and Reads/Writes Asynchronously

import java.io.IOException;

import java.net.InetSocketAddress;

import java.nio.channels.AsynchronousServerSocketChannel;

public class Server
{
 private final static int PORT = 9090;

 private final static String HOST = "localhost";

 public static void main(String[] args)
 {
 AsynchronousServerSocketChannel channelServer;
 try
 {
 channelServer = AsynchronousServerSocketChannel.open();
 channelServer.bind(new InetSocketAddress(HOST, PORT));
 System.out.printf("Server listening at %s%n",
 channelServer.getLocalAddress());
 }
 catch (IOException ioe)
 {
 System.err.println("Unable to open or bind server socket channel");
 return;
 }

 Attachment att = new Attachment();
 att.channelServer = channelServer;
 channelServer.accept(att, new ConnectionHandler());

 try
 {
 Thread.currentThread().join();
 }
 catch (InterruptedException ie)
 {
 System.out.println("Server terminating");
 }
 }
}

Listing 13-3’s main() method first attempts to open an asynchronous server
socket channel and then bind it to a local address, which happens to be
port 9090 on the localhost. It then calls AsynchronousServerSocketChannel’s

CHAPTER 13: Asynchronous I/O398

SocketAddress getLocalAddress() method to return the socket address to
which this channel’s socket (the local socket) is bound. Finally, it outputs a
message stating that the server is listening at this address.

If an exception is thrown, the server outputs a message and terminates.
Otherwise, it creates an Attachment object and initializes the object’s
channelServer field to the newly-opened asynchronous server socket
channel. (For convenience, I directly access public fields instead of
calling getter and setter methods.) This field will be accessed by the
ConnectionHandler object that is subsequently created, and which is passed
with the Attachment object to the <A> void accept(A attachment, Compl
etionHandler<AsynchronousSocketChannel,? super A> handler) generic
method. accept() listens for incoming connections and processes them
accordingly via the ConnectionHandler object.

At this point, main()’s thread of execution blocks by calling Thread.join().
The only way to unblock this thread and return from main() is to interrupt the
thread from another thread. However, I have not implemented this feature.

The server can interact with multiple clients simultaneously via a single
ConnectionHandler object and multiple ReadWriteHandler objects (one
object per client). The Attachment class lets the connection and read/write
handlers conveniently access the server socket channel. Also, it records
client-specific details. Listing 13-4 presents Attachment’s source code.

Listing 13-4. Bundling Fields That the Server and Clients Use to Communicate

import java.net.SocketAddress;

import java.nio.ByteBuffer;

import java.nio.channels.AsynchronousServerSocketChannel;
import java.nio.channels.AsynchronousSocketChannel;

public class Attachment
{
 public AsynchronousServerSocketChannel channelServer;
 public AsynchronousSocketChannel channelClient;
 public boolean isReadMode;
 public ByteBuffer buffer;
 public SocketAddress clientAddr;
}

The channelServer field stores the reference to the server socket channel
that was created in the Server class’s main() method. It’s used by the
connection handler to call AsynchronousServerSocketChannel’s accept()
method.

https://docs.oracle.com/javase/8/docs/api/java/net/SocketAddress.html#class%20in%20java.net
https://docs.oracle.com/javase/8/docs/api/java/nio/channels/CompletionHandler.html#interface%20in%20java.nio.channels
https://docs.oracle.com/javase/8/docs/api/java/nio/channels/CompletionHandler.html#interface%20in%20java.nio.channels
https://docs.oracle.com/javase/8/docs/api/java/nio/channels/AsynchronousSocketChannel.html#class%20in%20java.nio.channels

CHAPTER 13: Asynchronous I/O

399

The channelClient field stores the reference to the socket channel that is
passed to ConnectionHandler’s completed() method in response to
accept() successfully accepting a client connection. It’s also used in this
method to perform an initial read() call, and to perform read()/write() calls
in the ReadWriteHandler object.

The isReadMode field indicates that a read (true) or write (false) operation
was performed before the ReadWriteHandler object’s completed() method
was called. For a read, completed() obtains and outputs the read data. The
completed() method ends by performing the opposite operation.

The buffer field identifies the byte buffer that’s created in the connection
handler and that’s used to communicate bytes between the server and a
client. Each client has its own byte buffer.

Finally, the clientAddr field stores the java.net.SocketAddress of the
remote client. It stores the client’s socket address and is output as part of
various client-specific messages.

Listing 13-5 presents ConnectionHandler’s source code.

Listing 13-5. Managing Connections from Clients

import java.io.IOException;

import java.net.SocketAddress;

import java.nio.ByteBuffer;

import java.nio.channels.AsynchronousSocketChannel;
import java.nio.channels.CompletionHandler;

public class ConnectionHandler
 implements CompletionHandler<AsynchronousSocketChannel, Attachment>
{
 @Override
 public void completed(AsynchronousSocketChannel channelClient,
 Attachment att)
 {
 try
 {
 SocketAddress clientAddr = channelClient.getRemoteAddress();
 System.out.printf("Accepted connection from %s%n", clientAddr);

 att.channelServer.accept(att, this);

 Attachment newAtt = new Attachment();
 newAtt.channelServer = att.channelServer;
 newAtt.channelClient = channelClient;

CHAPTER 13: Asynchronous I/O400

 newAtt.isReadMode = true;
 newAtt.buffer = ByteBuffer.allocate(2048);
 newAtt.clientAddr = clientAddr;
 ReadWriteHandler rwh = new ReadWriteHandler();
 channelClient.read(newAtt.buffer, newAtt, rwh);
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 }

 @Override
 public void failed(Throwable t, Attachment att)
 {
 System.out.println("Failed to accept connection");
 }
}

ConnectionHandler is a CompletionHandler that responds to incoming
connections. Its completed() method is called when a connection is
successful; otherwise, its failed() method is called.

The completed() method’s first task is to obtain and output the
client’s socket address for identification. I specified channelClient.
getRemoteAddress() instead of channelClient.getLocalAddress() to
return the client’s socket address because the socket corresponding to
channelClient was created on the server side and it communicates with the
client-side socket. Calling getLocalAddress() on channelClient returns the
server-side socket address. Calling getRemoteAddress() on channelClient
returns the client-side socket address.

Next, completed() calls accept() on the server socket channel with the
passed Attachment object and a reference to the current completion handler
as arguments. This call allows the server to respond to the next incoming
connection.

The accept() method is called on the server socket channel referenced from
the Attachment object passed to completed(). This same object is passed
as the first argument to accept(). None of the other fields in the Attachment
object have been initialized because they aren’t required. This Attachment
object is only needed to identify the server socket channel.

After calling accept(), a second Attachment object is created and initialized
in preparation for reading from the client. Also, a ReadWriteHandler object
is created to respond to the read operation. The new Attachment object’s
byte buffer, the new Attachment object, and the ReadWriteHandler object are
passed as arguments to the client socket channel’s read() method.

CHAPTER 13: Asynchronous I/O

401

Listing 13-6 presents ReadWriteHandler’s source code.

Listing 13-6. Managing Reads and Writes with the Client

import java.io.IOException;

import java.nio.channels.CompletionHandler;

import java.nio.charset.Charset;

public class ReadWriteHandler
 implements CompletionHandler<Integer, Attachment>
{
 private final static Charset CSUTF8 = Charset.forName("UTF-8");

 @Override
 public void completed(Integer result, Attachment att)
 {
 if (result == -1)
 {
 try
 {
 att.channelClient.close();
 System.out.printf("Stopped listening to client %s%n",
 att.clientAddr);
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 return;
 }

 if (att.isReadMode)
 {
 att.buffer.flip();
 int limit = att.buffer.limit();
 byte bytes[] = new byte[limit];
 att.buffer.get(bytes, 0, limit);
 System.out.printf("Client at %s sends message: %s%n",
 att.clientAddr,
 new String(bytes, CSUTF8));

 att.isReadMode = false;

 att.buffer.rewind();
 att.channelClient.write(att.buffer, att, this);
 }
 else

CHAPTER 13: Asynchronous I/O402

 {
 att.isReadMode = true;

 att.buffer.clear();
 att.channelClient.read(att.buffer, att, this);
 }
 }

 @Override
 public void failed(Throwable t, Attachment att)
 {
 System.out.println("Connection with client broken");
 }
}

ReadWriteHandler is a CompletionHandler that responds to read() or
write() method completions. Its completed() method is called to respond
to a successful read() or write(), which includes issuing a counterpart
write() or read(). Its failed() method is called when the client breaks off
its connection with the server.

The completed() method’s first task is to respond to a read() call that
returns -1, which indicates that no bytes could be read because end-of-
stream has been reached. (The client may have terminated before writing
data.) It closes the client socket channel, outputs a message to indicate that
the server is no longer listening to the client, and returns.

Assuming that the read/write handler is operating in read mode (true),
the buffer contents are flipped and extracted to a bytes array, which is
subsequently converted to a string that is output.

The read/write handler is then configured for write mode by assigning false
to isReadMode, the buffer is rewound in preparation for being written, and the
buffer along with the attachment and current completion handler are passed
to the client socket channel’s write() method so that the buffer contents
can be sent to the client.

After a successful write operation, the read/write handler’s completed()
method is called. Because isReadMode is no longer true, the else part of the
if-else statement executes. It toggles isReadMode to true, clears the buffer,
and initiates a read operation to read from the client. This pattern continues
until the client presents nothing more to read and the completion handler
can terminate. (This latter scenario will probably never happen.)

Compile Listings 13-3 through 13-6 as follows:

javac Server.java

CHAPTER 13: Asynchronous I/O

403

Run the resulting application as follows:

java Server

You should observe the following initial output:

Server listening at /127.0.0.1:9090

AsynchronousSocketChannel
You can obtain an AsynchronousSocketChannel object by invoking this
class’s AsynchronousSocketChannel open() class method, as follows:

AsynchronousSocketChannel ch = AsynchronousSocketChannel.open();

According to AsynchronousSocketChannel’s documentation, this method
returns an asynchronous socket channel that’s bound to the default group.
The alternative AsynchronousSocketChannel open(AsynchronousChannelGroup
group) method returns an asynchronous socket channel that’s bound to the
specified group. Again, I’ll discuss asynchronous channel groups later in this
chapter.

You can configure an asynchronous socket channel by invoking the <T>
AsynchronousSocketChannel setOption(SocketOption<T> name, T value)
generic method. The only documented options that are supported are
SO_RCVBUF, SO_SNDBUF, SO_KEEPALIVE, SO_REUSEADDR, and TCP_NODELAY.

A newly-created and possibly configured asynchronous socket channel is
open but not yet connected. A connected asynchronous socket channel is
created when a connection is made to the socket of an asynchronous server
socket channel. It’s not possible to create an asynchronous socket channel
for an arbitrary, preexisting socket.

A newly-created socket channel is connected by invoking either of its
connect() methods; one connect() method returns a Future and the other
connect() method requires a CompletionHandler argument.

Once connected, a socket channel remains connected until closed. Whether
or not a socket channel is connected may be determined by invoking its
SocketAddress getRemoteAddress() method, which returns the socket
address of the remote socket (or null when there is no connection). An
attempt to invoke an I/O operation on an unconnected channel results in
NotYetConnectedException.

https://docs.oracle.com/javase/8/docs/api/java/nio/channels/AsynchronousServerSocketChannel.html#class%20in%20java.nio.channels
https://docs.oracle.com/javase/8/docs/api/java/nio/channels/AsynchronousServerSocketChannel.html#class%20in%20java.nio.channels
https://docs.oracle.com/javase/8/docs/api/java/nio/channels/AsynchronousChannelGroup.html#class%20in%20java.nio.channels
https://docs.oracle.com/javase/8/docs/api/java/nio/channels/AsynchronousServerSocketChannel.html#class%20in%20java.nio.channels
https://docs.oracle.com/javase/8/docs/api/java/nio/channels/AsynchronousServerSocketChannel.html#class%20in%20java.nio.channels
https://docs.oracle.com/javase/8/docs/api/java/net/Socket.html#class%20in%20java.net
https://docs.oracle.com/javase/8/docs/api/java/nio/channels/AsynchronousSocketChannel.html#connect-java.net.SocketAddress-A-java.nio.channels.CompletionHandler-
https://docs.oracle.com/javase/8/docs/api/java/nio/channels/NotYetConnectedException.html#class%20in%20java.nio.channels

CHAPTER 13: Asynchronous I/O404

To demonstrate AsynchronousSocketChannel, I’ve created a Client
application consisting of the Client, Attachment, and ReadWriteHandler
classes. Listing 13-7 presents Client’s source code.

Listing 13-7. Launching a Client That Handles Reads/Writes Asynchronously

import java.io.IOException;

import java.net.InetSocketAddress;

import java.nio.ByteBuffer;

import java.nio.channels.AsynchronousSocketChannel;

import java.nio.charset.Charset;

import java.util.concurrent.ExecutionException;

public class Client
{
 private final static Charset CSUTF8 = Charset.forName("UTF-8");

 private final static int PORT = 9090;

 private final static String HOST = "localhost";

 public static void main(String[] args)
 {
 AsynchronousSocketChannel channel;
 try
 {
 channel = AsynchronousSocketChannel.open();
 }
 catch (IOException ioe)
 {
 System.err.println("Unable to open client socket channel");
 return;
 }

Note Asynchronous socket channels are safe for use by multiple concurrent
threads. They support concurrent reads and writes, although at most one read
and one write can be outstanding at any time. If a thread initiates a read before
a previous read has completed, ReadPendingException will be thrown.
Similarly, an attempt to initiate a write before a previous write has completed
will throw WritePendingException.

https://docs.oracle.com/javase/8/docs/api/java/nio/channels/ReadPendingException.html#class%20in%20java.nio.channels
https://docs.oracle.com/javase/8/docs/api/java/nio/channels/WritePendingException.html#class%20in%20java.nio.channels

CHAPTER 13: Asynchronous I/O

405

 try
 {
 channel.connect(new InetSocketAddress(HOST, PORT)).get();
 System.out.printf("Client at %s connected%n",
 channel.getLocalAddress());
 }
 catch (ExecutionException | InterruptedException eie)
 {
 System.err.println("Server not responding");
 return;
 }
 catch (IOException ioe)
 {
 System.err.println("Unable to obtain client socket channel's " +
 "local address");
 return;
 }

 Attachment att = new Attachment();
 att.channel = channel;
 att.isReadMode = false;
 att.buffer = ByteBuffer.allocate(2048);
 att.mainThd = Thread.currentThread();

 byte[] data = "Hello".getBytes(CSUTF8);
 att.buffer.put(data);
 att.buffer.flip();
 channel.write(att.buffer, att, new ReadWriteHandler());

 try
 {
 att.mainThd.join();
 }
 catch (InterruptedException ie)
 {
 System.out.println("Client terminating");
 }
 }
}

Listing 13-7’s main() method first attempts to open an asynchronous
socket channel and connect it to the server at port 9090 on the localhost. It
then calls AsynchronousSocketChannel’s SocketAddress getLocalAddress()
method to return the socket address to which this channel’s socket (the
local socket) is bound, and it then outputs a message stating that the client
is connected at this address.

https://docs.oracle.com/javase/8/docs/api/java/net/SocketAddress.html#class%20in%20java.net

CHAPTER 13: Asynchronous I/O406

If an exception is thrown, the server outputs a message and terminates.
Otherwise, it creates an Attachment object and initializes its fields in
preparation for a write() method call.

An initial message is created and stored in a buffer, which is then written
to the socket channel. The Attachment object and a newly-created
ReadWriteHandler object (which responds to the write() call and performs
additional write()s and read()s) are passed to write().

At this point, main()’s thread of execution blocks itself by calling
Thread.join(). The only way to unblock this thread and return from main()
is to interrupt the thread from another thread. ReadWriteHandler takes care
of this task, as you will see later.

Listing 13-8 presents Attachment’s source code.

Listing 13-8. Binding Fields for Subsequent Communication

import java.nio.ByteBuffer;

import java.nio.channels.AsynchronousSocketChannel;

public class Attachment
{
 public AsynchronousSocketChannel channel;
 public boolean isReadMode;
 public ByteBuffer buffer;
 public Thread mainThd;
}

The channel field identifies the asynchronous socket channel. It’s
subsequently accessed by ReadWriteHandler’s completed() method to
perform reads and writes.

The isReadMode field is a toggle that lets completed() know if it needs to
perform a read or a write.

The buffer field identifies the byte buffer that’s created in Client’s main()
method, and that’s used to communicate bytes between the server and a
client. Each client has its own byte buffer.

Finally, the mainThd field references a Thread object that identifies main()’s
thread. The completed() method invokes interrupt() on this reference to
interrupt the client so that this application can exit.

CHAPTER 13: Asynchronous I/O

407

Listing 13-9 presents ReadWriteHandler’s source code.

Listing 13-9. Managing Reads and Writes with the Server

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;

import java.nio.channels.CompletionHandler;

import java.nio.charset.Charset;

public class ReadWriteHandler implements CompletionHandler<Integer,
Attachment>
{
 private final static Charset CSUTF8 = Charset.forName("UTF-8");

 private BufferedReader conReader =
 new BufferedReader(new InputStreamReader(System.in));

 @Override
 public void completed(Integer result, Attachment att)
 {
 if (att.isReadMode)
 {
 att.buffer.flip();
 int limit = att.buffer.limit();
 byte[] bytes = new byte[limit];
 att.buffer.get(bytes, 0, limit);
 String msg = new String(bytes, CSUTF8);
 System.out.printf("Server responded: %s%n", msg);

 try
 {
 msg = "";
 while (msg.length() == 0)
 {
 System.out.print("Enter message (\"end\" to quit): ");
 msg = conReader.readLine();
 }
 if (msg.equalsIgnoreCase("end"))
 {
 att.mainThd.interrupt();
 return;
 }
 }

CHAPTER 13: Asynchronous I/O408

 catch (IOException ioe)
 {
 System.err.println("Unable to read from console");
 }

 att.isReadMode = false;
 att.buffer.clear();
 byte[] data = msg.getBytes(CSUTF8);
 att.buffer.put(data);
 att.buffer.flip();
 att.channel.write(att.buffer, att, this);
 }
 else
 {
 att.isReadMode = true;

 att.buffer.clear();
 att.channel.read(att.buffer, att, this);
 }
 }

 @Override
 public void failed(Throwable t, Attachment att)
 {
 System.err.println("Server not responding");
 System.exit(1);
 }
}

ReadWriteHandler is a CompletionHandler that responds to read() or
write() completions. Its completed() method is called to respond to a
successful read() or write(), which includes issuing a counterpart write()
or read(). Its failed() method is called when the client breaks off its
connection with the server.

The completed() method’s first task is to determine if a read() has been
performed and respond accordingly. If so, it extracts the buffer’s bytes into
an array, which is converted to a string that is subsequently output.

Next, completed() gives the user the opportunity to enter a message
that will be sent to the server. If the user specifies end, the client thread is
interrupted and the client terminates. Any other message’s bytes are
extracted from the string and stored in the buffer, which is subsequently
written to the socket channel.

If a read() call had not occurred, completed() would execute the else part
of the if-else statement. After setting isReadMode to true, it empties the
buffer and calls read().

CHAPTER 13: Asynchronous I/O

409

To put this into perspective, here is what happens when the client starts
running.

1. Client’s main() method sets isReadMode to false,
stores a Hello message in the buffer, and write()s
the message to the channel, which results in the
message being sent to and displayed by the server.

2. The server’s read/write handler write()s this
message back to the client.

3. Because isReadMode is false, Client’s read/write
handler’s completed() method executes the else
part of the if-else statement, setting isReadMode to
true and calling read(), which stores in the buffer
the Hello bytes written by the server.

4. Client’s read/write handler’s completed() method
is called. It notes that isReadMode is true, extracts
the bytes from the buffer, and outputs the equivalent
string as part of a Server responded message.

5. The client will now obtain a message from the user
and act accordingly.

Compile Listings 13-7 through 13-9 as follows:

javac Client.java

Run the resulting application as follows:

java Client

Assuming that the server is running as shown previously, you should
observe output that’s similar to the following initial output:

Client at /0:0:0:0:0:0:0:0:55359 connected
Server responded: Hello
Enter message ("end" to quit):

Continuing, you should observe output that’s similar to the following output
on the server side:

Accepted connection from /127.0.0.1:55359
Client at /127.0.0.1:55359 sends message: Hello

CHAPTER 13: Asynchronous I/O410

As you enter messages via the client, you’ll see them echoed on the
server starting with “Client at /127.0.0.1:xxxxx sends message:”
(xxxxx indicates the port number) and on the client starting with “Server
responded:”. When you terminate the client, it displays Client terminating;
the server displays Connection with client broken.

Asynchronous Channel Groups
The abstract java.nio.channels.AsynchronousChannelGroup class describes
a grouping of asynchronous channels for the purpose of resource sharing.
A group has an associated thread pool to which tasks are submitted, to
handle I/O events and to dispatch to completion handlers that consume the
results of asynchronous operations performed on the group’s channels.

AsynchronousServerSocketChannels and AsynchronousSocketChannels
belong to groups. When you create an AsynchronousServerSocketChannel
or an AsynchronousSocketChannel via the noargument open() method, the
channel is bound to the default group, which is the system-wide channel
group that’s automatically constructed and maintained by the Java virtual
machine (JVM). The default group has an associated thread pool that
creates new threads as needed. You can configure the default group by
initializing the following system properties at JVM startup:

	java.nio.channels.DefaultThreadPool.threadFactory:
The value of this property is the fully-qualified name of
a concrete java.util.concurrent.ThreadFactory class.
The class is loaded using the system classloader and
instantiated. The factory’s newThread(Runnable r)
method is invoked to create each thread for the
default group’s thread pool. If the process to load and
instantiate the value of the property fails, an unspecified
error is thrown during the construction of the default
group. (If the ThreadFactory for the default group is not
configured, the pooled threads of the default group are
daemon threads.)

Note The associated thread pool is owned by the group; termination of the
group results in the associated thread pool being shut down.

https://docs.oracle.com/javase/8/docs/api/java/nio/channels/CompletionHandler.html#interface%20in%20java.nio.channels
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ThreadFactory.html#interface%20in%20java.util.concurrent
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ThreadFactory.html#newThread-java.lang.Runnable-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ThreadFactory.html#interface%20in%20java.util.concurrent
https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html#isDaemon--

CHAPTER 13: Asynchronous I/O

411

	java.nio.channels.DefaultThreadPool.initialSize:
The value of initialSize specifies the initialize size of
the default group’s thread pool. If the string-based value
cannot be parsed as an integer, it causes an unspecified
error to be thrown during the construction of the default
group.

You might prefer to define your own channel group because it gives you
more control over the threads that are used to service the I/O operations.
Furthermore, it provides the mechanisms to shut down threads and to await
termination. You would create your own asynchronous channel group by
calling one of the following class methods:

	AsynchronousChannelGroupwithCachedThreadPool
(ExecutorService executor, int initialSize): Create
an asynchronous channel group with a given thread pool
(specified as a java.util.concurrent.ExecutorService
object) that creates new threads as needed.

	AsynchronousChannelGroup withFixedThreadPool(int
nThreads, ThreadFactory threadFactory): Create an
asynchronous channel group with a fixed thread pool.

	AsynchronousChannelGroup withThreadPool
(ExecutorService executor): Create an asynchronous
channel group with a given thread pool (specified as an
ExecutorService object).

The following example creates a new channel group that has a fixed pool of
20 threads. Each thread is constructed with the default thread factory from
the java.util.concurrent.Executors class:

AsynchronousChannelGroup group;
group = AsynchronousChannelGroup.
 withFixedThreadPool(20,
 Executors.defaultThreadFactory());

After creating a group, you can bind an asynchronous server socket channel
and an asynchronous socket channel to the group by calling the following
class methods in their respective classes:

	AsynchronousServerSocketChannel
open(AsynchronousChannelGroup group)

	AsynchronousSocketChannel
open(AsynchronousChannelGroup group)

CHAPTER 13: Asynchronous I/O412

The following example creates an asynchronous server socket channel and
an asynchronous socket channel that are bound to the previously-created
group:

AsynchronousServerSocketChannel chServer;
chServer = AsynchronousServerSocketChannel.open(group);
AsynchronousSocketChannel chClient = AsynchronousSocketChannel.open(group);

You’ll primarily instantiate AsynchronousChannelGroup and bind your socket
channels to this group for shutdown and termination. The void shutdown()
method initiates an orderly shutdown of a group. An orderly shutdown marks
the group as shutdown; attempting to construct a channel that binds to
the group results in java.nio.channels.ShutdownChannelGroupException.
Whether or not a group is shut down can be tested by calling the boolean
isShutdown() method.

Once shut down, the group terminates when all asynchronous channels
that are bound to the group are closed, all actively executing completion
handlers have run to completion, and resources used by the group are
released. No attempt is made to stop or interrupt threads that are executing
completion handlers. The boolean isTerminated() method is used to test
if the group has terminated, and the boolean awaitTermination(long
timeout, TimeUnit unit) method is used to block until the group has
terminated.

The void shutdownNow() method is used to initiate a forceful shutdown of
the group. In addition to the actions performed by an orderly shutdown,
shutdownNow() closes all open channels in the group as if by invoking
each channel’s close() method.

The following example demonstrates the aforementioned methods:

// Initiate an I/O operation that isn't satisfied.

channel.accept(null, completionHandler);

// After the operation has begun, the channel group is used to control
// the shutdown.

Note When writing a completion handler, it’s important to avoid operations
that may block the thread. The entire application could block when all threads
are blocked. For a custom or cached thread pool, the queue could grow very
large and ultimately result in an out-of-memory situation.

https://docs.oracle.com/javase/8/docs/api/java/nio/channels/ShutdownChannelGroupException.html#class%20in%20java.nio.channels
https://docs.oracle.com/javase/8/docs/api/java/nio/channels/AsynchronousChannelGroup.html#isShutdown--
https://docs.oracle.com/javase/8/docs/api/java/nio/channels/AsynchronousChannelGroup.html#isTerminated--
https://docs.oracle.com/javase/8/docs/api/java/nio/channels/AsynchronousChannel.html#close--

CHAPTER 13: Asynchronous I/O

413

if (!group.isShutdown())
{
 // After the group is shut down, no more channels can be bound to it.

 group.shutdown();
}

if (!group.isTerminated())
{
 // Forcibly shut down the group. The channel is closed and the
 // accept operation aborts.

 group.shutdownNow();
}

// The group should be able to terminate; wait for 10 seconds maximum.

group.awaitTermination(10, TimeUnit.SECONDS);

What About AsynchronousFileChannel?
AsynchronousFileChannels don’t belong to groups. However, they are
associated with a thread pool to which tasks are submitted, to handle I/O
events and to dispatch to completion handlers that consume the results of
I/O operations on the channel.

The completion handler for an I/O operation initiated on a channel is
guaranteed to be invoked by one of the threads in the thread pool, which
ensures that the completion handler is run by a thread with the expected
identity. If an I/O operation completes immediately and the initiating thread
is itself a thread in the thread pool, the completion handler may be invoked
directly by the initiating thread.

When an asynchronous file channel is created without specifying a thread
pool, the channel is associated with a system-dependent default thread
pool that may be shared with other channels. The default thread pool is
configured by the system properties defined by AsynchronousChannelGroup.

An asynchronous file channel created by AsynchronousFileChannel’s
AsynchronousFileChannel open(Path file, OpenOption... options) class
method is associated with the default thread pool. You can associate a file
channel with another thread pool by calling the AsynchronousFileChannel
open(Path file, Set<? extends OpenOption> options, ExecutorService
executor, FileAttribute<?>... attrs) class method. Here, executor
identifies the desired thread pool.

https://docs.oracle.com/javase/8/docs/api/java/nio/channels/AsynchronousChannelGroup.html#class%20in%20java.nio.channels
https://docs.oracle.com/javase/8/docs/api/java/nio/channels/AsynchronousFileChannel.html#class%20in%20java.nio.channels
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/util/Set.html#interface%20in%20java.util
https://docs.oracle.com/javase/8/docs/api/java/nio/file/OpenOption.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html#interface%20in%20java.util.concurrent
https://docs.oracle.com/javase/8/docs/api/java/nio/file/attribute/FileAttribute.html#interface%20in%20java.nio.file.attribute

CHAPTER 13: Asynchronous I/O414

EXERCISES

The following exercises are designed to test your understanding of Chapter 13’s content:

1. Define asynchronous channel.

2. Identify the two ways to initiate an I/O operation with an asynchronous
channel.

3. True or false: After a channel is closed, further attempts to initiate
asynchronous I/O operations complete immediately with cause
AsynchronousCloseException.

4. Identify the methods declared by the AsynchronousByteChannel
interface.

5. True or false: The ByteBuffer object is safe for use by multiple
concurrent threads.

6. Identify the class for reading, writing, and manipulating a file
asynchronously.

7. True or false: An asynchronous file channel doesn’t have a current
position within a file.

8. If you pass no options to AsynchronousFileChannel’s
AsynchronousFileChannel open(Path file, OpenOption...
options) method, what is this method’s default behavior?

9. How do you obtain an AsynchronousServerSocketChannel object
or an AsynchronousSocketChannel object?

10. Identify AsynchronousServerSocketChannel's documented
socket options.

11. After obtaining an AsynchronousServerSocketChannel object,
what must you do before you can call either of its accept() methods?

12. After obtaining an AsynchronousSocketChannel object, what must
you do before you can perform reads and writes?

13. How do you determine if an asynchronous socket channel is connected
to an asynchronous server socket channel?

14. True or false: Asynchronous socket channels are safe for use by
multiple concurrent threads.

15. What is the purpose of the AsynchronousChannelGroup class?

16. What does a group use for task submission?

17. Identify the system properties for configuring the default group.

https://docs.oracle.com/javase/8/docs/api/java/nio/ByteBuffer.html#class%20in%20java.nio
https://docs.oracle.com/javase/8/docs/api/java/nio/channels/AsynchronousFileChannel.html#class%20in%20java.nio.channels
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/file/OpenOption.html#interface%20in%20java.nio.file

CHAPTER 13: Asynchronous I/O

415

18. Describe AsynchronousChannelGroup’s shutDownNow() method.

19. True or false: AsynchronousFileChannels belong to groups.

20. Write a Copy application that uses AsynchronousFileChannel to
copy a source file to a destination file asynchronously.

Summary
Asynchronous I/O lets client code initiate an I/O operation and subsequently
notifies the client when the operation is complete. The AsynchronousChannel
interface describes an asynchronous channel that supports asynchronous
I/O operations (reads, writes, and so on). An I/O operation is initiated by
calling a method that returns a Future or requires a CompletionHandler
argument.

CompletionHandler declares a completed() method to consume the result
of an operation when it completes successfully. It also declares a failed()
method to report operation failure (in terms of an exception) and allow an
application to take appropriate action.

The AsynchronousByteChannel interface extends AsynchronousChannel and
declares a pair of read() methods and a pair of write() methods. Each pair
consists of a method that returns a Future and a method that requires a
CompletionHandler argument.

The abstract AsynchronousFileChannel class describes an asynchronous
channel for reading, writing, and manipulating a file. The abstract
AsynchronousServerSocketChannel class describes an asynchronous
channel for stream-oriented listening sockets. Its counterpart channel for
stream-oriented connecting sockets is described by the abstract
AsynchronousSocketChannel class.

The abstract AsynchronousChannelGroup class describes a grouping of
asynchronous channels for the purpose of resource sharing. A group has
an associated thread pool to which tasks are submitted, to handle I/O
events and to dispatch to completion handlers that consume the results of
asynchronous operations performed on the group’s channels.

AsynchronousServerSocketChannels and AsynchronousSocketChannels
created via their noargument open() methods are bound to the default group.
They can be bound to groups created from AsynchronousChannelGroup’s class
methods by passing these group objects to their open(AsynchronousChannelGroup)
methods.

AsynchronousFileChannels don’t belong to groups. However, they are
associated with a default thread pool, which can be configured or replaced.

Chapter 14 presents NIO.2’s completion of socket channel functionality.

https://docs.oracle.com/javase/8/docs/api/java/nio/channels/CompletionHandler.html#interface%20in%20java.nio.channels

417

Chapter 14
Completion of Socket
Channel Functionality
Completion of socket channel functionality is JDK 7’s final contribution to NIO.2.
The java.nio.channels package’s DatagramChannel, ServerSocketChannel,
and SocketChannel classes have been extended to support binding and
option configuration. Also, channel-based multicasting is supported. This
chapter wraps up the book by introducing you to these capabilities.

Binding and Option Configuration
NIO’s DatagramChannel, ServerSocketChannel, and SocketChannel classes
don’t completely abstract a network socket. To bind into the channel’s
socket, or to get/set socket options, you have to first retrieve the peer
socket by invoking each class’s socket() method.

This counterintuitive mix of socket channel and socket APIs exists
because there wasn’t enough time to define a full socket channel API for
the JDK 1.4 release. JDK 7 overcame this problem by introducing the
java.nio.channels.NetworkChannel interface.

NetworkChannel represents a channel to a network socket. This interface is
implemented by DatagramChannel, ServerSocketChannel, SocketChannel,
java.nio.channels.AsynchronousServerSocketChannel (see Chapter 13),
and java.nio.channels.AsynchronousSocketChannel (see Chapter 13).

Table 14-1 presents NetworkChannel’s methods.

http://dx.doi.org/10.1007/978-1-4842-1565-4_13
http://dx.doi.org/10.1007/978-1-4842-1565-4_13

CHAPTER 14: Completion of Socket Channel Functionality418

Table 14-1. The Methods that Define a Network Channel

Method Description

NetworkChannel
bind(SocketAddress local)

Bind this channel’s socket to a local address. Once an
association is established, the socket remains bound
until this channel is closed. If you pass null to local,
the socket will be bound to an address that is
assigned automatically. bind() returns this channel
on success. Otherwise, it throws java.nio.channels.
AlreadyBoundException when the socket is already bound,
java.nio.channels.UnsupportedAddressTypeException
when the type of the given address is not supported,
java.nio.channels.ClosedChannelException when
this channel is closed, and java.io.IOException when
some other I/O error occurs.

SocketAddress
getLocalAddress()

Return the socket address to which this channel’s
socket is bound. When this channel is bound to an
Internet Protocol (IP) socket address, the return value
from this method is of type java.net.InetSocketAddress.
getLocalAddress() throws ClosedChannelException
when this channel is closed and IOException when an
I/O error occurs.

<T> T getOption
(SocketOption<T> name)

Return the value of the socket option identified by
name. A return value of null might be valid for some
socket options. getOption() throws java.lang.
UnsupportedOperationException when this channel
doesn’t support this socket option, ClosedChannelException
when this channel is closed, and IOException when
an I/O error occurs.

<T> NetworkChannel
setOption
(SocketOption<T> name,
T value)

Set the value of the socket option identified by name
to value. Passing null to value might be valid for
some socket options. setOption() returns this
channel. It throws UnsupportedOperationException
when this channel doesn’t support this socket option,
java.lang.IllegalArgumentException when the value
passed to value isn’t valid for this socket option,
ClosedChannelException when this channel is closed,
and IOException when an I/O error occurs.

Set<SocketOption<?>>
supportedOptions()

Return a set of the socket options supported by this
channel. This method will continue to return the set of
options even after this channel is closed.

https://docs.oracle.com/javase/8/docs/api/java/nio/channels/NetworkChannel.html#interface%20in%20java.nio.channels
https://docs.oracle.com/javase/8/docs/api/java/net/SocketAddress.html#class%20in%20java.net
https://docs.oracle.com/javase/8/docs/api/java/net/SocketAddress.html#class%20in%20java.net
https://docs.oracle.com/javase/8/docs/api/java/nio/channels/NetworkChannel.html#bind-java.net.SocketAddress-
https://docs.oracle.com/javase/8/docs/api/java/net/InetSocketAddress.html#class%20in%20java.net
https://docs.oracle.com/javase/8/docs/api/java/net/SocketOption.html#interface%20in%20java.net
https://docs.oracle.com/javase/8/docs/api/java/nio/channels/NetworkChannel.html#interface%20in%20java.nio.channels
https://docs.oracle.com/javase/8/docs/api/java/net/SocketOption.html#interface%20in%20java.net
https://docs.oracle.com/javase/8/docs/api/java/util/Set.html#interface%20in%20java.util
https://docs.oracle.com/javase/8/docs/api/java/net/SocketOption.html#interface%20in%20java.net

CHAPTER 14: Completion of Socket Channel Functionality

419

The arguments passed to getOption()’s and setOption()’s name parameters
must be of the java.net.SocketOption interface type. JDK 7 also added the
java.net.StandardSocketOptions class, which implements this interface
and enumerates various SocketOption constants, such as SO_RCVBUF (size of
socket receive buffer) and TCP_NODELAY (disable the Nagle algorithm).

The classes that implement NetworkChannel don’t support all of the socket
options identified by StandardSocketOptions constants. For example,
ServerSocketChannel supports only SO_RCVBUF and SO_REUSEADDR. Each
class’s Java documentation identifies its supported constants. When in
doubt, call supportedOptions() to find out what options are supported.

As well as providing NetworkChannel, JDK 7 upgraded DatagramChannel,
ServerSocketChannel, and SocketChannel with several useful methods:

	DatagramChannel received a SocketAddress
getRemoteAddress() method that returns the remote
address to which this channel’s socket is connected.

	ServerSocketChannel received a ServerSocketChannel
bind(SocketAddress local, int backlog) method that
also lets you specify the maximum number of pending
connections.

	SocketChannel received SocketChannel shutdownInput()
and SocketChannel shutdownOutput() methods that shut
down the connection for reading or writing, respectively,
without closing this channel. Also, it received a
SocketAddress getRemoteAddress() method that returns
the remote address to which this channel’s socket is
connected.

Listing 7-7’s ChannelServer application had to invoke socket() when
binding the channel’s socket to a local address, obtaining the local address,
and obtaining the remote address. Listing 14-1 simplifies this code by
making it NetworkChannel-compliant and using getRemoteAddress().

Listing 14-1. Demonstrating the Improved ServerSocketChannel

import java.io.IOException;

import java.net.InetSocketAddress;

import java.nio.ByteBuffer;

import java.nio.channels.ServerSocketChannel;
import java.nio.channels.SocketChannel;

https://docs.oracle.com/javase/8/docs/api/java/net/SocketAddress.html#class%20in%20java.net
https://docs.oracle.com/javase/8/docs/api/java/nio/channels/SocketChannel.html#class%20in%20java.nio.channels
https://docs.oracle.com/javase/8/docs/api/java/nio/channels/SocketChannel.html#class%20in%20java.nio.channels

CHAPTER 14: Completion of Socket Channel Functionality420

public class ChannelServer
{
 public static void main(String[] args) throws IOException
 {
 System.out.println("Starting server…");
 ServerSocketChannel ssc = ServerSocketChannel.open();
 ssc.bind(new InetSocketAddress(9999));
 ssc.configureBlocking(false);
 String msg = "Local address: " + ssc.getLocalAddress();
 ByteBuffer buffer = ByteBuffer.wrap(msg.getBytes());
 while (true)
 {
 System.out.print(".");
 SocketChannel sc = ssc.accept();
 if (sc != null)
 {
 System.out.println();
 System.out.println("Received connection from " +
 sc.getRemoteAddress());
 buffer.rewind();
 sc.write(buffer);
 sc.close();
 }
 else
 try
 {
 Thread.sleep(100);
 }
 catch (InterruptedException ie)
 {
 assert false; // shouldn't happen
 }
 }
 }
}

Listing 14-1 replaces ssc.socket().bind(new InetSocketAddress(9999));
with ssc.bind(new InetSocketAddress(9999));, ssc.socket().
getLocalSocketAddress(); with ssc.getLocalAddress();, and sc.socket().
getRemoteSocketAddress() with sc.getRemoteAddress().

Listing 14-2 expands on Listing 7-8’s ChannelClient application by invoking
supportedOptions() to obtain a set of supported options, which are
subsequently output, and by invoking getOption() to obtain the value of the
SO_RCVBUF option, which is also output.

CHAPTER 14: Completion of Socket Channel Functionality

421

Listing 14-2. Obtaining Supported Options and the Receive Buffer Size

import java.io.IOException;

import java.net.InetSocketAddress;
import java.net.SocketOption;
import java.net.StandardSocketOptions;

import java.nio.ByteBuffer;

import java.nio.channels.SocketChannel;

import java.util.Set;

public class ChannelClient
{
 public static void main(String[] args)
 {
 try
 {
 SocketChannel sc = SocketChannel.open();
 Set<SocketOption<?>> options = sc.supportedOptions();
 for (SocketOption<?> option: options)
 System.out.println(option);
 System.out.println(sc.getOption(StandardSocketOptions.SO_RCVBUF));
 sc.configureBlocking(false);
 InetSocketAddress addr = new InetSocketAddress("localhost", 9999);
 sc.connect(addr);

 while (!sc.finishConnect())
 System.out.println("waiting to finish connection");

 ByteBuffer buffer = ByteBuffer.allocate(200);
 while (sc.read(buffer) >= 0)
 {
 buffer.flip();
 while (buffer.hasRemaining())
 System.out.print((char) buffer.get());
 buffer.clear();
 }
 sc.close();
 }
 catch (IOException ioe)
 {
 System.err.println("I/O error: " + ioe.getMessage());
 }
 }
}

CHAPTER 14: Completion of Socket Channel Functionality422

Compile Listings 14-1 and 14-2 and run the resulting applications as
demonstrated in Chapter 7. I observe the following ChannelClient output:

SO_KEEPALIVE
TCP_NODELAY
IP_TOS
SO_LINGER
SO_SNDBUF
SO_RCVBUF
SO_REUSEADDR
SO_OOBINLINE
8192
Local address: /0:0:0:0:0:0:0:0:9999

Channel-Based Multicasting
JDK 7 introduced support for channel-based IP multicasting, which is the
transmission of IP datagrams to members of a group (zero or more hosts
identified by a single destination address). Multicasting is the Internet
version of broadcasting in which a television or radio signal is broadcast
from a source, and is available to everyone in the signal area with a suitable
and active receiving device.

A group is identified by a class D IP address, which is a multicast group
IPv4 address that ranges from 224.0.0.1 through 239.255.255.255. A new
receiver (client) joins a multicast group by connecting to the group via the
group’s IP address. The receiver then listens for incoming datagrams.

JDK 7 introduced the java.nio.channels.MulticastChannel interface to
support multicasting. MulticastChannel extends NetworkChannel and is
implemented by the DatagramChannel class. It declares a pair of join()
methods for joining a group and a close() method for closing the channel.

A receiver calls the MembershipKey join(InetAddress group,
NetworkInterface ni) method to join a multicast group to begin receiving all
datagrams sent to the group. It’s called with the group’s IP address and the
network interface on which to join the group as its arguments. When this
method succeeds, it returns a java.nio.channels.MembershipKey instance
that serves as a token representing membership in the group.

Note A network interface is described by an instance of the java.net.
NetworkInterface class. To obtain a NetworkInterface instance, call
various NetworkInterface class methods, such as NetworkInterface
getByInetAddress(InetAddress addr).

http://dx.doi.org/10.1007/978-1-4842-1565-4_7
https://docs.oracle.com/javase/8/docs/api/java/nio/channels/MembershipKey.html#class%20in%20java.nio.channels
https://docs.oracle.com/javase/8/docs/api/java/net/InetAddress.html#class%20in%20java.net
https://docs.oracle.com/javase/8/docs/api/java/net/NetworkInterface.html#class%20in%20java.net
https://docs.oracle.com/javase/8/docs/api/java/net/NetworkInterface.html#class%20in%20java.net
https://docs.oracle.com/javase/8/docs/api/java/net/InetAddress.html#class%20in%20java.net

CHAPTER 14: Completion of Socket Channel Functionality

423

Alternatively, a receiver can call the MembershipKey join(InetAddress group,
NetworkInterface ni, InetAddress source) method to join a multicast group
and receive datagrams from a specific source address. Because
membership is cumulative, this method can be reinvoked with the same
group and network interface to allow reception of datagrams sent by other
source addresses to the group.

The second join() method demonstrates source filtering in which you
can filter datagrams based on their sources. You would call this method to
receive datagrams from specific IP sources. This form of source filtering is
known as include-mode filtering.

MembershipKey declares several methods:

	MembershipKey block(InetAddress source): Block
multicast datagrams from the given source address
when this membership key is not source-specific and
the operating system supports source filtering.

	MulticastChannel channel(): Return the channel for
which this membership key was created.

	void drop(): Drop membership.

	InetAddress group(): Return the multicast group for
which this membership key was created.

	boolean isValid(): Return whether this membership is
valid (true) or not (false).

	NetworkInterface networkInterface(): Return the
network interface for which this membership key was
created.

	InetAddress sourceAddress(): Return the source
address when this membership key is source-specific;
return null when this membership is not source-specific.

	MembershipKey unblock(InetAddress source): Unblock
multicast datagrams from the given source address that
was previously blocked via block().

Note The first join() method is analogous to a cable television provider that
requires you to subscribe to packages of channels, including those channels
that are not of interest. The second join() method is analogous to a cable
television provider that lets you subscribe to specific channels of interest.

https://docs.oracle.com/javase/8/docs/api/java/nio/channels/MembershipKey.html#class%20in%20java.nio.channels
https://docs.oracle.com/javase/8/docs/api/java/net/InetAddress.html#class%20in%20java.net
https://docs.oracle.com/javase/8/docs/api/java/net/NetworkInterface.html#class%20in%20java.net
https://docs.oracle.com/javase/8/docs/api/java/net/InetAddress.html#class%20in%20java.net
https://docs.oracle.com/javase/8/docs/api/java/nio/channels/MembershipKey.html#class%20in%20java.nio.channels
https://docs.oracle.com/javase/8/docs/api/java/net/InetAddress.html#class%20in%20java.net
https://docs.oracle.com/javase/8/docs/api/java/nio/channels/MulticastChannel.html#interface%20in%20java.nio.channels
https://docs.oracle.com/javase/8/docs/api/java/net/InetAddress.html#class%20in%20java.net
https://docs.oracle.com/javase/8/docs/api/java/net/NetworkInterface.html#class%20in%20java.net
https://docs.oracle.com/javase/8/docs/api/java/net/InetAddress.html#class%20in%20java.net
https://docs.oracle.com/javase/8/docs/api/java/nio/channels/MembershipKey.html#class%20in%20java.nio.channels
https://docs.oracle.com/javase/8/docs/api/java/net/InetAddress.html#class%20in%20java.net

CHAPTER 14: Completion of Socket Channel Functionality424

You can use MembershipKey’s block() method to perform a second form of
source filtering in which a group is joined to receive all multicast datagrams
except those from specific IP source addresses. This form of source filtering,
which is known as exclude-mode filtering, is demonstrated here:

MembershipKey key = dc.join(group, nif).block(source1).block(source2);

Once a channel has joined a group, it receives multicast datagrams in the
same manner as unicast datagrams. When finished with the group, it
drops its membership by calling MembershipKey’s drop() method. It calls
MulticastChannel’s close() method after dropping all group memberships.

To create a multicast server or multicast client, there are three important
items to keep in mind:

	When creating the datagram channel, specify the protocol
family that corresponds to the address type of the
multicast groups that the channel will join. There is no
guarantee that a channel to a socket in one protocol
family can join and receive multicast datagrams when the
address of the multicast group corresponds to another
protocol family. For example, it’s implementation-specific
if a channel to an IPv6 socket can join an IPv4 multicast
group and receive multicast datagrams sent to the group.

	You create a datagram channel by calling
DatagramChannel’s DatagramChannel open(ProtocolFamily
family) class method. This method requires an argument
whose class implements the java.net.ProtocolFamily
interface. Because ProtocolFamily is implemented by
the java.net.StandardProtocolFamily enum, you would
pass one of this enum’s INET (for IPv4) or INET6 (for IPv6)
constants to family.

	The channel’s socket should be bound to the wildcard
address. If the socket is bound to a specific address,
rather than the wildcard address, it’s implementation-
specific if multicast datagrams are received by the socket.

	The InetSocketAddress class declares an
InetSocketAddress(int port) constructor that creates
a socket address where the IP address is the wildcard
address and the port number is the specified port value.

	The SO_REUSEADDR option should be enabled prior to
binding the socket. This is required to allow multiple
members of the group to bind to the same address.

https://docs.oracle.com/javase/8/docs/api/java/net/ProtocolFamily.html#interface%20in%20java.net
https://docs.oracle.com/javase/8/docs/api/java/net/StandardProtocolFamily.html#INET6
https://docs.oracle.com/javase/8/docs/api/java/net/StandardProtocolFamily.html#INET
https://docs.oracle.com/javase/8/docs/api/java/nio/channels/DatagramChannel.html#class%20in%20java.nio.channels
https://docs.oracle.com/javase/8/docs/api/java/net/ProtocolFamily.html#interface%20in%20java.net
https://docs.oracle.com/javase/8/docs/api/java/net/InetAddress.html#isAnyLocalAddress--
https://docs.oracle.com/javase/8/docs/api/java/net/StandardSocketOptions.html#SO_REUSEADDR
https://docs.oracle.com/javase/8/docs/api/java/nio/channels/NetworkChannel.html#bind-java.net.SocketAddress-

CHAPTER 14: Completion of Socket Channel Functionality

425

I’ve created multicast server and client applications that demonstrate
channel-based multicasting. Listing 14-3 presents the server.

Listing 14-3. Demonstrating a Channel-Based Multicast Server

import java.io.IOException;

import java.net.InetAddress;
import java.net.InetSocketAddress;
import java.net.NetworkInterface;
import java.net.StandardProtocolFamily;
import java.net.StandardSocketOptions;

import java.nio.ByteBuffer;

import java.nio.channels.DatagramChannel;
import java.nio.channels.MembershipKey;

public class ChannelServer
{
 final static int PORT = 9999;

 public static void main(String[] args) throws IOException
 {
 NetworkInterface ni;
 ni = NetworkInterface.getByInetAddress(InetAddress.getLocalHost());
 DatagramChannel dc;
 dc = DatagramChannel.open(StandardProtocolFamily.INET)
 .setOption(StandardSocketOptions.SO_REUSEADDR,
 true)
 .bind(new InetSocketAddress(PORT))
 .setOption(StandardSocketOptions.IP_MULTICAST_IF,
 ni);
 InetAddress group = InetAddress.getByName("239.255.0.1");

 int i = 0;
 while (true)
 {
 ByteBuffer bb = ByteBuffer.wrap(("line " + i).getBytes());
 dc.send(bb, new InetSocketAddress(group, PORT));
 i++;
 }
 }
}

ChannelServer’s main() method first obtains a network interface and then
opens and configures a datagram channel. Next, it obtains the group IP
address and enters an infinite loop that sends byte buffers of string-based
messages to the group.

CHAPTER 14: Completion of Socket Channel Functionality426

Listing 14-4 presents the companion client application.

Listing 14-4. Demonstrating a Channel-Based Multicast Client

import java.io.IOException;

import java.net.InetAddress;
import java.net.InetSocketAddress;
import java.net.NetworkInterface;
import java.net.StandardProtocolFamily;
import java.net.StandardSocketOptions;

import java.nio.ByteBuffer;

import java.nio.channels.DatagramChannel;
import java.nio.channels.MembershipKey;

public class ChannelClient
{
 final static int PORT = 9999;

 public static void main(String[] args) throws IOException
 {
 NetworkInterface ni;
 ni = NetworkInterface.getByInetAddress(InetAddress.getLocalHost());
 DatagramChannel dc;
 dc = DatagramChannel.open(StandardProtocolFamily.INET)
 .setOption(StandardSocketOptions.SO_REUSEADDR,
 true)
 .bind(new InetSocketAddress(PORT))
 .setOption(StandardSocketOptions.IP_MULTICAST_IF,
 ni);
 InetAddress group = InetAddress.getByName("239.255.0.1");
 MembershipKey key = dc.join(group, ni);

 ByteBuffer response = ByteBuffer.allocate(50);
 while (true)
 {
 dc.receive(response);
 response.flip();
 while (response.hasRemaining())
 System.out.print((char) response.get());
 System.out.println();
 response.clear();
 }
 }
}

CHAPTER 14: Completion of Socket Channel Functionality

427

ChannelClient’s main() method is identical to ChannelServer’s equivalent
until the join() call to join the group at the specified group IP address. A
byte buffer is then allocated to store datagrams. After receiving a datagram,
the buffer is flipped, its content is output, and the buffer is cleared.

Compile these listings and run the resulting applications in separate
windows. Here is a portion of ChannelClient’s output.

line 156573
line 156574
line 156575
line 156576
line 156577
line 156578
line 156579
line 156580
line 156581
line 156582

Run a second ChannelClient application in another window. You should
observe similar output in that window.

EXERCISES

The following exercises are designed to test your understanding of Chapter 14’s content:

1. What capabilities does NIO.2 provide for completing socket channel
functionality?

2. How did JDK 7 overcome the counterintuitive mix of socket channel
and socket APIs?

3. Identify the exceptions that are thrown by SocketChannel’s
shutdownInput() and shutdownOutput() methods.

4. How does JDK 7 support multicasting?

5. True or false: The MembershipKey join(InetAddress group,
NetworkInterface ni, InetAddress source) method performs
exclude-mode filtering.

6. Write an EnumNI application that enumerates your machine’s network
interfaces, outputting their names.

http://dx.doi.org/10.1007/978-1-4842-1565-4_14
https://docs.oracle.com/javase/8/docs/api/java/nio/channels/MembershipKey.html#class%20in%20java.nio.channels
https://docs.oracle.com/javase/8/docs/api/java/net/InetAddress.html#class%20in%20java.net
https://docs.oracle.com/javase/8/docs/api/java/net/NetworkInterface.html#class%20in%20java.net
https://docs.oracle.com/javase/8/docs/api/java/net/InetAddress.html#class%20in%20java.net

CHAPTER 14: Completion of Socket Channel Functionality428

7. Modify Listing 14-4’s ChannelClient application to also
demonstrate dropping membership from the group and closing the
channel before quitting the application.

8. Create a StockServer application that repeatedly broadcasts the
open, low, high, and close share prices for a stock as floating-point
values. Each broadcast should randomly adjust the low, high, and close
values, subject to the following constraints: the low share price must
not exceed the high share price, the close share price must not be
lower than the low share price, and the close share price must not be
higher than the high share price. Create a StockClient application
that joins a group to repeatedly receive these prices, which it outputs.

Summary
JDK 7 completed socket channel functionality by extending the
DatagramChannel, ServerSocketChannel, and SocketChannel classes to
support binding and option configuration. These capabilities are declared in
the NetworkChannel interface, which these and other classes implement.

JDK 7 also completed socket channel functionality by introducing support
for channel-based multicasting. This support consists of MulticastChannel
(an interface that extends NetworkChannel), the MembershipKey class, and an
open(ProtocolFamily) method in the DatagramChannel class.

Appendix A presents the answers to each chapter’s exercises.

429

Part V
Appendices

431

Appendix A
Answers to Exercises
Each of Chapters 1 through 14 closes with an “Exercises” section that
tests your understanding of the chapter’s material. The answers to those
exercises are presented in this appendix.

Chapter 1: I/O Basics and APIs
1. The API categories that comprise classic I/O are

File, RandomAccessFile, the stream classes, and the
writer/reader classes.

2. The benefit of the try-with-resources statement is a
reduction in verbosity. You can use this statement to
automatically close open files and other resources
instead of having to provide this resource-closing
code.

3. The API categories that comprise NIO are buffers,
channels, selectors, regular expressions, charsets,
and a printf-style formatting facility based mainly
on the Formatter class.

4. The Selector class (and related types) let Java
programs leverage readiness selection.

5. The API categories that comprise NIO.2 are an
improved file system interface, asynchronous I/O,
and the completion of socket channel functionality.

http://dx.doi.org/10.1007/978-1-4842-1565-4_1
http://dx.doi.org/10.1007/978-1-4842-1565-4_14
http://dx.doi.org/10.1007/978-1-4842-1565-4_1

APPENDIX A: Answers to Exercises432

6. NIO.2 completes the socket channel functionality
by adding binding support and option configuration
to the DatagramChannel, ServerSocketChannel, and
SocketChannel classes. It also introduces a
MulticastChannel interface.

Chapter 2: File
1. The purpose of the File class is to offer access to

the underlying operating system’s available file
system(s).

2. Instances of the File class contain the paths of files
and directories that might not exist in their file
systems.

3. A path is a compact map that locates and identifies
a file system object (also known as a file).

4. The difference between an absolute path and a
relative path is as follows: an absolute path starts
with the root directory symbol; no other information
is required to locate the file/directory that it denotes.
In contrast, a relative path doesn’t start with the
root directory symbol; it’s interpreted via information
taken from another path.

5. You obtain the current user directory (also known as
the working directory) by specifying
System.getProperty("user.dir").

6. A parent path consists of all path components
except for the last name.

7. Normalize means to replace separator characters
with the default name-separator character so that
the path is compliant with the underlying file system.

8. You obtain the default name-separator character by
accessing File’s separator and separatorChar class
fields. The first field stores the character as a char
and the second field stores it as a String.

9. A canonical path is a path that’s absolute and unique
and is formatted the same way every time.

http://dx.doi.org/10.1007/978-1-4842-1565-4_2

APPENDIX A: Answers to Exercises

433

10. The difference between File’s getParent() and
getName() methods is that getParent() returns the
parent path and getName() returns the last name in
the path’s name sequence.

11. The answer is false: File’s exists() method
determines whether a file or directory exists.

12. A normal file (also known as a regular file) is not a
directory and satisfies other operating system-
dependent criteria: it’s not a symbolic link or named
pipe, for example. Any nondirectory file created by a
Java application is guaranteed to be a normal file.

13. File’s lastModified() method returns the time that
the file denoted by this File object’s path was last
modified or 0 when the file doesn’t exist or an I/O
error occurred during this method call. The returned
value is measured in milliseconds since the Unix
epoch (00:00:00 GMT, January 1, 1970).

14. File’s listRoots() method returns an array of File
objects denoting the root directories (roots) of
available file systems.

15. The answer is true: File’s list() method returns an
array of Strings where each entry is a file name
rather than a complete path.

16. The difference between the FilenameFilter and
FileFilter interfaces is as follows: FilenameFilter
declares a single boolean accept(File dir, String
name) method, whereas FileFilter declares a
single boolean accept(String path) method. Either
method accomplishes the same task of accepting
(by returning true) or rejecting (by returning false)
the inclusion of the file or directory identified by the
argument(s) in a directory listing.

17. The answer is false: File’s createNewFile() method
checks for file existence and creates the file when it
doesn’t exist in a single operation that’s atomic with
respect to all other file system activities that might
affect the file.

APPENDIX A: Answers to Exercises434

18. The default temporary directory where File’s
createTempFile(String, String) method creates
temporary files can be located by reading the
java.io.tmpdir system property.

19. You ensure that a temporary file is removed when the
Java virtual machine (JVM) ends normally (it doesn’t
crash and the power isn’t lost) by registering the
temporary file for deletion through a call to File’s
deleteOnExit() method.

20. The boolean canExecute() method was introduced
by Java 6. It returns true when the file or directory
object identified by the abstract path exists and is
executable.

21. You would accurately compare two File objects by
first calling File’s getCanonicalFile() method on
each File object and then comparing the returned
File objects.

22. Listing A-1 presents the Touch application that was
called for in Chapter 2.

Listing A-1. Setting a File or Directory’s Timestamp to the Current Time

import java.io.File;

import java.util.Date;

public class Touch
{
 public static void main(String[] args)
 {
 if (args.length != 1)
 {
 System.err.println("usage: java Touch path");
 return;
 }
 new File(args[0]).setLastModified(new Date().getTime());
 }
}

http://dx.doi.org/10.1007/978-1-4842-1565-4_2

APPENDIX A: Answers to Exercises

435

Chapter 3: RandomAccessFile
1. The purpose of the RandomAccessFile class is to

create and/or open files for random access in which
a mixture of write and read operations at various
locations can occur until the file is closed.

2. A file’s metadata is data about the file and not the
actual file contents. Examples of metadata include
the file’s length and the time the file was last
modified.

3. The purpose of the "rwd" and "rws" mode
arguments is to ensure than any writes to a file
located on a local storage device are written to the
device, which guarantees that critical data isn’t lost
when the system crashes. No guarantee is made
when the file doesn’t reside on a local device.

4. A file pointer is a cursor that identifies the location
of the next byte to write or read. When an existing
file is opened, the file pointer is set to its first byte at
offset 0. The file pointer is also set to 0 when the file
is created.

5. When you write past the end of the file, the file is
extended.

6. The answer is false: when you call
RandomAccessFile’s seek(long) method to set the file
pointer’s value, and when this value is greater than
the length of the file, the file’s length doesn’t change.
The file length will only change by writing after the
offset has been set beyond the end of the file.

7. Method void write(int b) writes the lower eight
bits of b to the file at the current file pointer position.

8. FileDescriptor’s sync() method tells the underlying
operating system to empty the contents of the open
file’s output buffers to their associated local disk
device. sync() returns after all modified data and
attributes have been written to the relevant device.

http://dx.doi.org/10.1007/978-1-4842-1565-4_3

APPENDIX A: Answers to Exercises436

9. A flat file database is a single file organized into
records and fields. A record stores a single entry
(such as a part in a parts database) and a field
stores a single attribute of the entry (such as a part
number).

10. Listing A-2 presents the RAFDemo application that was
called for in Chapter 3.

Listing A-2. Demonstrating RandomAccessFile

import java.io.IOException;
import java.io.RandomAccessFile;

public class RAFDemo
{
 final static String MSG = "Test";

 public static void main(String[] args)
 {
 try (RandomAccessFile raf = new RandomAccessFile("data", "rw"))
 {
 raf.writeInt(127);
 raf.writeChars(MSG);
 raf.seek(0);
 System.out.println(raf.readInt());
 for (int i = 0; i < MSG.length(); i++)
 System.out.print(raf.readChar());
 System.out.println();
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 }
}

Chapter 4: Streams
1. A stream is an ordered sequence of bytes of arbitrary

length. Bytes flow over an output stream from an
application to a destination and flow over an input
stream from a source to an application.

http://dx.doi.org/10.1007/978-1-4842-1565-4_3
http://dx.doi.org/10.1007/978-1-4842-1565-4_4

APPENDIX A: Answers to Exercises

437

2. The purpose of OutputStream’s flush() method is to
write any buffered output bytes to the destination. If
the intended destination of this output stream is an
abstraction provided by the underlying operating
system (such as a file), flushing the stream only
guarantees that bytes previously written to the
stream are passed to the underlying operating
system for writing; it doesn’t guarantee that they’re
actually written to a physical device such as a disk
drive.

3. The answer is true: OutputStream’s close() method
automatically flushes the output stream. If an
application ends before close() is called, the
output stream is automatically closed and its data is
flushed.

4. The purpose of InputStream’s mark(int) and
reset() methods is to re-read a portion of a stream.
mark(int) marks the current position in this input
stream. A subsequent call to reset() repositions
this stream to the last marked position so that
subsequent read operations re-read the same bytes.
Don’t forget to call markSupported() to find out if the
subclass supports mark() and reset().

5. You would access a copy of a
ByteArrayOutputStream instance’s internal byte array
by calling ByteArrayOutputStream’s toByteArray()
method.

6. The answer is false: FileOutputStream and
FileInputStream don’t provide internal buffers to
improve the performance of write and read
operations.

7. You would use PipedOutputStream and
PipedInputStream to communicate data between a
pair of executing threads.

8. A filter stream is a stream that buffers, compresses/
uncompresses, encrypts/decrypts, or otherwise
manipulates an input stream’s byte sequence before
it reaches its destination.

APPENDIX A: Answers to Exercises438

9. Two streams are chained together when a stream
instance is passed to another stream class’s
constructor.

10. You improve the performance of a file output stream
by chaining a BufferedOutputStream instance to a
FileOutputStream instance and calling the
BufferedOutputStream instance’s write() methods
so that data is buffered before flowing to the file
output stream. You improve the performance of a
file input stream by chaining a BufferedInputStream
instance to a FileInputStream instance so that data
flowing from a file input stream is buffered before
being returned from the BufferedInputStream
instance by calling this instance’s read() methods.

11. DataOutputStream and DataInputStream support
FileOutputStream and FileInputStream by providing
methods to write and read primitive-type values and
strings in an operating system-independent way. In
contrast, FileOutputStream and FileInputStream
provide methods for writing/reading bytes and arrays
of bytes only.

12. Object serialization is a JVM mechanism for
serializing object state into a stream of bytes. Its
deserialization counterpart is a JVM mechanism for
deserializing this state from a byte stream.

13. The three forms of serialization and deserialization
that Java supports are default serialization and
deserialization, custom serialization and
deserialization, and externalization.

14. The purpose of the Serializable interface is to tell
the JVM that it’s okay to serialize objects of the
implementing class.

15. When the serialization mechanism encounters
an object whose class doesn’t implement
Serializable, it throws an instance of the
NotSerializableException class.

APPENDIX A: Answers to Exercises

439

16. The three stated reasons for Java not supporting
unlimited serialization are as follows: security,
performance, and objects not amenable to
serialization.

17. You initiate serialization by creating an
ObjectOutputStream instance and calling its
writeObject() method. You initiate deserialization by
creating an ObjectInputStream instance and calling
its readObject() method.

18. The answer is false: class fields are not automatically
serialized.

19. The purpose of the transient reserved word is to
mark instance fields that don’t participate in default
serialization and default deserialization.

20. The deserialization mechanism causes readObject()
to throw an instance of the InvalidClassException
class when it attempts to deserialize an object
whose class has changed.

21. The deserialization mechanism detects that a
serialized object’s class has changed as follows:
Every serialized object has an identifier. The
deserialization mechanism compares the identifier of
the object being deserialized with the serialized
identifier of its class (all serializable classes are
automatically given unique identifiers unless they
explicitly specify their own identifiers) and causes
InvalidClassException to be thrown when it detects
a mismatch.

22. You can add an instance field to a class and avoid
trouble when deserializing an object that was
serialized before the instance field was added by
introducing a long serialVersionUID = long
integer value; declaration into the class. The long
integer value must be unique and is known as a
stream unique identifier (SUID). You can use the
JDK’s serialver tool to help with this task.

APPENDIX A: Answers to Exercises440

23. You customize the default serialization and
deserialization mechanisms without using
externalization by declaring private void
writeObject(ObjectOutputStream) and void
readObject(ObjectInputStream) methods in
the class.

24. You tell the serialization and deserialization
mechanisms to serialize or deserialize the object’s
normal state before serializing or deserializing
additional data items by first calling
ObjectOutputStream’s defaultWriteObject() method
in writeObject(ObjectOutputStream) or by first
calling ObjectInputStream’s defaultReadObject()
method in readObject(ObjectInputStream).

25. Externalization differs from default and custom
serialization and deserialization in that it offers
complete control over the serialization and
deserialization tasks.

26. A class indicates that it supports externalization by
implementing the Externalizable interface instead
of Serializable and by declaring void
writeExternal(ObjectOutput) and void
readExternal(ObjectInput in) methods instead of
void writeObject(ObjectOutputStream) and void
readObject(ObjectInputStream) methods.

27. The answer is true: during externalization, the
deserialization mechanism throws
InvalidClassException with a “no valid constructor”
message when it doesn’t detect a public
noargument constructor.

28. The difference between PrintStream’s print() and
println() methods is that the print() methods
don’t append a line terminator to their output,
whereas the println() methods append a line
terminator.

APPENDIX A: Answers to Exercises

441

29. PrintStream’s noargument void println() method
outputs the line.separator system property’s value
to ensure that lines are terminated in a portable
manner (such as a carriage return followed by a
newline/line feed on Windows, or only a newline/line
feed on Unix/Linux).

30. You redirect the standard input, standard output,
and standard error streams by creating new stream
source and destination objects and passing them
as arguments to System’s setIn(InputStream),
setOut(PrintStream), and setErr(PrintStream)
methods.

31. Listing A-3 presents the Copy application that was
called for in Chapter 4.

Listing A-3. Copying a Source File to a Destination File with Buffered I/O

import java.io.BufferedInputStream;
import java.io.BufferedOutputStream;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;

public class Copy
{
 public static void main(String[] args)
 {
 if (args.length != 2)
 {
 System.err.println("usage: java Copy srcfile dstfile");
 return;
 }
 BufferedInputStream bis = null;
 BufferedOutputStream bos = null;
 try
 {
 FileInputStream fis = new FileInputStream(args[0]);
 bis = new BufferedInputStream(fis);
 FileOutputStream fos = new FileOutputStream(args[1]);
 bos = new BufferedOutputStream(fos);
 int b; // I chose b instead of byte because byte is a reserved
 // word.
 while ((b = bis.read()) != -1)
 bos.write(b);
 }

http://dx.doi.org/10.1007/978-1-4842-1565-4_4

APPENDIX A: Answers to Exercises442

 catch (FileNotFoundException fnfe)
 {
 System.err.println(args[0] + " could not be opened for input, or "
 + args[1] + " could not be created for output");
 }
 catch (IOException ioe)
 {
 System.err.println("I/O error: " + ioe.getMessage());
 }
 finally
 {
 if (bis != null)
 try
 {
 bis.close();
 }
 catch (IOException ioe)
 {
 assert false; // shouldn't happen in this context
 }

 if (bos != null)
 try
 {
 bos.close();
 }
 catch (IOException ioe)
 {
 assert false; // shouldn't happen in this context
 }
 }
 }
}

32. Listing A-4 presents the Split application that was
called for in Chapter 4.

Listing A-4. Splitting a Large File into Numerous Smaller Part Files

import java.io.BufferedInputStream;
import java.io.BufferedOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

http://dx.doi.org/10.1007/978-1-4842-1565-4_4

APPENDIX A: Answers to Exercises

443

public class Split
{
 static final int FILESIZE = 1400000;
 static byte[] buffer = new byte[FILESIZE];

 public static void main(String[] args)
 {
 if (args.length != 1)
 {
 System.err.println("usage: java Split path");
 return;
 }
 File file = new File(args[0]);
 long length = file.length();
 int nWholeParts = (int) (length / FILESIZE);
 int remainder = (int) (length % FILESIZE);
 System.out.printf("Splitting %s into %d parts%n", args[0],
 (remainder == 0) ? nWholeParts : nWholeParts + 1);
 BufferedInputStream bis = null;
 BufferedOutputStream bos = null;
 try
 {
 FileInputStream fis = new FileInputStream(args[0]);
 bis = new BufferedInputStream(fis);
 for (int i = 0; i < nWholeParts; i++)
 {
 bis.read(buffer);
 System.out.println("Writing part " + i);
 FileOutputStream fos = new FileOutputStream("part" + i);
 bos = new BufferedOutputStream(fos);
 bos.write(buffer);
 bos.close();
 bos = null;
 }
 if (remainder != 0)
 {
 int br = bis.read(buffer);
 if (br != remainder)
 {
 System.err.println("Last part mismatch: expected " +
 remainder + " bytes");
 System.exit(0);
 }
 System.out.println("Writing part " + nWholeParts);
 FileOutputStream fos = new FileOutputStream("part" +
 nWholeParts);
 bos = new BufferedOutputStream(fos);
 bos.write(buffer, 0, remainder);
 }
 }

APPENDIX A: Answers to Exercises444

 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 finally
 {
 if (bis != null)
 try
 {
 bis.close();
 }
 catch (IOException ioe)
 {
 assert false; // shouldn't happen in this context
 }
 if (bos != null)
 try
 {
 bos.close();
 }
 catch (IOException ioe)
 {
 assert false; // shouldn't happen in this context
 }
 }
 }
}

Chapter 5: Writers and Readers
1. Java’s stream classes are not good at streaming

characters because those classes have no
knowledge of character encodings.

2. Java provides writer and reader classes as the
preferred alternative to stream classes when it
comes to character I/O.

3. The answer is false: Reader doesn’t declare an
available() method.

4. The purpose of the OutputStreamWriter class is to
serve as a bridge between an incoming sequence
of characters and an outgoing stream of bytes.
Characters written to this writer are encoded into

http://dx.doi.org/10.1007/978-1-4842-1565-4_5

APPENDIX A: Answers to Exercises

445

bytes according to the default or specified character
encoding. The purpose of the InputStreamReader
class is to serve as a bridge between an incoming
stream of bytes and an outgoing sequence of
characters. Characters read from this reader are
decoded from bytes according to the default or
specified character encoding.

5. You identify the default character encoding by
reading the value of the file.encoding system
property.

6. The purpose of the FileWriter class is to
conveniently connect to the underlying file output
stream using the default character encoding. The
purpose of the FileReader class is to conveniently
connect to the underlying file input stream using the
default character encoding.

7. BufferedWriter provides the newLine() method for
writing a line separator.

8. Listing A-5 presents the CircleInfo application that
was called for in Chapter 5.

Listing A-5. Reading Lines of Text from Standard Input That Represent Circle Radii and Outputting
Circumference and Area Based on the Current Radius

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;

public class CircleInfo
{
 public static void main(String[] args) throws IOException
 {
 InputStreamReader isr = new InputStreamReader(System.in);
 BufferedReader br = new BufferedReader(isr);
 while (true)
 {
 System.out.print("Enter circle’s radius: ");
 String str = br.readLine();
 double radius;

http://dx.doi.org/10.1007/978-1-4842-1565-4_5

APPENDIX A: Answers to Exercises446

 try
 {
 radius = Double.valueOf(str).doubleValue();
 if (radius <= 0)
 System.err.println("radius must not be 0 or negative");
 else
 {
 System.out.println("Circumference: " + Math.PI * 2.0 *
 radius);
 System.out.println("Area: " + Math.PI * radius * radius);
 System.out.println();
 }
 }
 catch (NumberFormatException nfe)
 {
 System.err.println("not a number: " + nfe.getMessage());
 }
 }
 }
}

Chapter 6: Buffers
1. A buffer is an object that stores a fixed amount of

data to be sent to or received from an I/O service (an
operating system component for performing
input/output). It sits between an application and a
channel that writes the buffered data to the service
or reads the data from the service and deposits it into
the buffer.

2. A buffer’s four properties are capacity, limit, position,
and mark.

3. When you invoke Buffer’s array() method on a
buffer backed by a read-only array, this method
throws ReadOnlyBufferException.

4. When you invoke Buffer’s flip() method on a
buffer, the limit is set to the current position and then
the position is set to zero. When the mark is defined,
it’s discarded. The buffer is now ready to be drained.

5. When you invoke Buffer’s reset() method on a
buffer where a mark has not been set, this method
throws InvalidMarkException.

http://dx.doi.org/10.1007/978-1-4842-1565-4_6

APPENDIX A: Answers to Exercises

447

6. The answer is false: buffers are not thread-safe.

7. The abstract classes that extend the abstract Buffer
class are ByteBuffer, CharBuffer, DoubleBuffer,
FloatBuffer, IntBuffer, LongBuffer, and
ShortBuffer. Furthermore, ByteBuffer is subclassed
by the abstract MappedByteBuffer class.

8. You create a byte buffer by invoking one of its
allocate(), allocateDirect(), or wrap() class
methods.

9. A view buffer is a buffer that manages another
buffer’s data.

10. A view buffer is created by calling a Buffer
subclass’s duplicate() method.

11. You create a read-only view buffer by calling a
Buffer subclass method such as ByteBuffer
asReadOnlyBuffer() or CharBuffer
asReadOnlyBuffer().

12. ByteBuffer’s methods for storing a single byte in a
byte buffer are ByteBuffer put(int index, byte b)
and ByteBuffer put(byte b). ByteBuffer’s
methods for fetching a single byte from a byte buffer
are byte get(int index) and byte get().

13. Attempting to use the relative put() method or the
relative get() method when the current position
is greater than or equal to the limit causes
BufferOverflowException or
BufferUnderflowException to occur.

14. The equivalent of executing buffer.flip(); is to
execute buffer.limit(buffer.position()).
position(0);.

15. The answer is false: calling flip() twice doesn’t
return you to the original state. Instead, the buffer
has a zero size.

APPENDIX A: Answers to Exercises448

16. The difference between Buffer’s clear() and
reset() methods is as follows: the clear() method
marks a buffer as empty, whereas reset() changes
the buffer’s current position to the previously set
mark or throws InvalidMarkException when there’s
no previously set mark.

17. ByteBuffer’s compact() method compacts a buffer
by copying all bytes between the current position
and the limit to the beginning of the buffer. The byte
at index p = position() is copied to index 0, the
byte at index p + 1 is copied to index 1, and so on
until the byte at index limit() - 1 is copied to index
n = limit() - 1 - p. The buffer’s current position
is then set to n + 1 and its limit is set to its capacity.
The mark, when defined, is discarded.

18. The purpose of the ByteOrder class is to help you
deal with byte-order issues when writing/reading
multibyte values to/from a multibyte buffer.

19. A direct byte buffer is a byte buffer that interacts
with channels and native code to perform I/O. The
direct byte buffer attempts to store byte elements in
a memory area that a channel uses to perform direct
(raw) access via native code that tells the operating
system to drain or fill the memory area directly.

20. You obtain a direct byte buffer by invoking
ByteBuffer’s allocateDirect() method.

21. It can be expensive to create a direct byte buffer
because memory extraneous to the JVM’s heap will
need to be allocated by the operating system, and
setting up/tearing down this memory might take
longer than when the buffer was located within
the heap.

22. Listing A-6 presents the ViewBufferDemo application
that was called for in Chapter 6.

http://dx.doi.org/10.1007/978-1-4842-1565-4_6

APPENDIX A: Answers to Exercises

449

Listing A-6. Viewing a Byte Sequence as a Character Sequence

import java.nio.ByteBuffer;
import java.nio.CharBuffer;

public class ViewBufferDemo
{
 public static void main(String[] args)
 {
 ByteBuffer bb = ByteBuffer.allocate(6);
 byte zero = 0;
 bb.put(zero).put((byte) 0x6e).put(zero).put((byte) 0x69)
 .put(zero).put((byte) 0x6f);
 bb.rewind();
 CharBuffer cb = bb.asCharBuffer();
 for (int i = 0; i < cb.limit(); i++)
 System.out.print(cb.get());
 }
}

Chapter 7: Channels
1. A channel is an object that represents an open

connection to a hardware device, a file, a network
socket, an application component, or another entity
that’s capable of performing write, read, and other
I/O operations. Channels efficiently transfer data
between byte buffers and operating system-based
I/O service sources or destinations.

2. The capabilities that the Channel interface provides
are closing a channel (via the close() method) and
determining whether or not a channel is open (via the
isOpen() method).

3. The three interfaces that directly extend Channel are
WritableByteChannel, ReadableByteChannel, and
InterruptibleChannel.

4. The answer is true: a channel that implements
InterruptibleChannel is asynchronously closeable.

5. The two ways to obtain a channel are to invoke a
Channels class method, such as WritableByteChannel
newChannel(OutputStream outputStream), and to
invoke a channel method on a classic I/O class, such
as RandomAccessFile ’s FileChannel getChannel()
method.

http://dx.doi.org/10.1007/978-1-4842-1565-4_7

APPENDIX A: Answers to Exercises450

6. Scatter/gather I/O is the ability to perform a single
I/O operation across multiple buffers.

7. The ScatteringByteChannel and GatheringByteChannel
interfaces are provided for achieving scatter/gather I/O.

8. A file channel is a channel to an underlying file.

9. The answer is false: file channels support
scatter/gather I/O.

10. An exclusive lock gives a single writer process access
to a file region; it prohibits additional file locks from
being applied simultaneously to the region. A shared
lock gives one of multiple reader processes access to
the same file region; it does not prohibit other shared
locks but does prohibit an exclusive lock from being
applied simultaneously to the region.

11. The fundamental difference between FileChannel’s
lock() and tryLock() methods is that the lock()
methods can block and the tryLock() methods
never block.

12. The FileLock lock() method throws
OverlappingFileLockException when either a lock
is already held that overlaps this lock request or
another thread is waiting to acquire a lock that will
overlap with this request.

13. The pattern that you should adopt to ensure that an
acquired file lock is always released appears here:

FileLock lock = fileChannel.lock(); // Assume fileChannel exists.
try
{
 // interact with the file channel
}
catch (IOException ioe)
{
 // handle the exception
}
finally
{
 lock.release();
}

APPENDIX A: Answers to Exercises

451

14. FileChannel provides the MappedByteBuffer
map(FileChannel.MapMode mode, long position,
long size) method for mapping a region of a file into
memory.

15. The three file-mapping modes are read-only, read-
write, and private. They’re described by the READ_
ONLY, READ_WRITE, and PRIVATE constants declared by
the FileChannel.MapMode enumerated type.

16. The private file-mapping mode corresponds to copy-
on-write. Changes made to the resulting buffer will
not be propagated to the file and will not be visible
to other programs that have mapped the same file.
Instead, changes will cause private copies of the
modified portions of the buffer to be created.
These changes are lost when the buffer is garbage
collected.

17. The FileChannel methods that optimize the
common practice of performing bulk transfers are
transferFrom() and transferTo().

18. The answer is true: socket channels are selectable
and can function in nonblocking mode.

19. The three classes that describe socket channels
are ServerSocketChannel, SocketChannel, and
DatagramChannel.

20. The answer is false: datagram channels are thread-safe.

21. Socket channels support nonblocking mode
because the blocking nature of sockets created from
Java’s socket classes is a serious limitation to a
network-oriented Java application’s scalability.

22. You would obtain a socket channel’s associated
socket by invoking its socket() method.

23. You obtain a server socket channel by invoking
ServerSocketChannel’s open() class method.

24. Listing A-7 presents the Copy application that was
called for in Chapter 7.

http://dx.doi.org/10.1007/978-1-4842-1565-4_7

APPENDIX A: Answers to Exercises452

Listing A-7. Copying a File via a Byte Buffer and a File Channel

import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;

import java.nio.ByteBuffer;

import java.nio.channels.FileChannel;

public class Copy
{
 public static void main(String[] args)
 {
 if (args.length != 2)
 {
 System.err.println("usage: java Copy srcfile dstfile");
 return;
 }
 try (FileInputStream fis = new FileInputStream(args[0]);
 FileChannel fcSrc = fis.getChannel();
 FileOutputStream fos = new FileOutputStream(args[1]);
 FileChannel fcDest = fos.getChannel())
 {
 ByteBuffer buffer = ByteBuffer.allocateDirect(2048);
 while ((fcSrc.read(buffer)) != -1)
 {
 buffer.flip();
 while (buffer.hasRemaining())
 fcDest.write(buffer);
 buffer.clear();
 }
 }
 catch (FileNotFoundException fnfe)
 {
 System.err.println(args[0] +
 " could not be opened for input, or " +
 args[1] +
 " could not be created for output");
 }
 catch (IOException ioe)
 {
 System.err.println("I/O error: " + ioe.getMessage());
 }
 }
}

APPENDIX A: Answers to Exercises

453

Chapter 8: Selectors
1. A selector is an object created from a subclass of

the abstract Selector class. It maintains a set of
channels that it examines to determine which of
them are ready for reading, writing, completing a
connection sequence, accepting another connection,
or some combination of these tasks. The actual work
is delegated to the operating system via a POSIX
select() or similar system call.

2. The three main types that support selectors are
SelectableChannel, SelectionKey, and Selector.

3. The answer is false: file channels cannot be used
with selectors. Only channels that implement
SelectableChannel can be used with selectors.
FileChannel doesn’t implement SelectableChannel.

4. SelectionKey provides the boolean isReadable()
method as a convenient alternative to the expression
key.readyOps() & OP_READ != 0.

Chapter 9: Regular Expressions
1. A regular expression (also known as a regex or

regexp) is a string-based pattern that represents the
set of strings that match this pattern.

2. Instances of the Pattern class represent patterns
via compiled regexes. Regexes are compiled for
performance reasons; pattern matching via compiled
regexes is much faster than if the regexes were not
compiled.

3. Pattern’s compile() methods throw
PatternSyntaxException when they discover illegal
syntax in their regular expression arguments.

4. Instances of the Matcher class attempt to match
compiled regexes against input text.

http://dx.doi.org/10.1007/978-1-4842-1565-4_8
http://dx.doi.org/10.1007/978-1-4842-1565-4_9

APPENDIX A: Answers to Exercises454

5. The difference between Matcher’s matches() and
lookingAt() methods is that, unlike matches(),
lookingAt() doesn’t require the entire region to be
matched.

6. A character class is a set of characters appearing
between [and].

7. There are six kinds of character classes: simple,
negation, range, union, intersection, and subtraction.

8. The answer is false: a subtraction character class
consists of multiple &&-separated nested character
classes, where at least one nested character class
is a negation character class, and it matches all
characters except for those indicated by the
negation character class/classes.

9. A capturing group saves a match’s characters for
later recall during pattern matching.

10. A zero-length match is a match of zero length in
which the start and end indexes are equal.

11. A quantifier is a numeric value implicitly or explicitly
bound to a pattern. Quantifiers are categorized as
greedy, reluctant, or possessive.

12. The difference between greedy and reluctant
quantifiers is that a greedy quantifier attempts to find
the longest match, whereas a reluctant quantifier
attempts to find the shortest match.

13. Possessive and greedy quantifiers differ in that a
possessive quantifier only makes one attempt to find
the longest match, whereas a greedy quantifier can
make multiple attempts.

14. Listing A-8 presents the ReplaceText application that
was called for in Chapter 9.

http://dx.doi.org/10.1007/978-1-4842-1565-4_9

APPENDIX A: Answers to Exercises

455

Listing A-8. Replacing All Matches of the Pattern with Replacement Text

import java.util.regex.Matcher;
import java.util.regex.Pattern;
import java.util.regex.PatternSyntaxException;

public class ReplaceText
{
 public static void main(String[] args)
 {
 if (args.length != 3)
 {
 System.err.println("usage: java ReplaceText text oldText newText");
 return;
 }
 try
 {
 Pattern p = Pattern.compile(args[1]);
 Matcher m = p.matcher(args[0]);
 String result = m.replaceAll(args[2]);
 System.out.println(result);
 }
 catch (PatternSyntaxException pse)
 {
 System.err.println(pse);
 }
 }
}

Chapter 10: Charsets
1. A charset is a coded character set combined with a

character-encoding scheme.

2. The purpose of the Charset class is to translate
between byte sequences and the characters that are
encoded into these sequences.

3. The standard charsets supported by the JVM are
US-ASCII, ISO-8859-1, UTF-8, UTF-16BE, UTF-
16LE, and UTF-16.

4. The purpose of the byte order mark is to tell a
decoder how a UTF-16-encoded byte sequence was
encoded.

http://dx.doi.org/10.1007/978-1-4842-1565-4_10

APPENDIX A: Answers to Exercises456

5. You obtain the default charset by invoking Charset’s
Charset defaultCharset() factory method.

6. Charset’s Charset forName(String charsetName)
factory method throws UnsupportedCharsetException
when the desired charset isn’t supported by the JVM.

7. You would typically encode a string via a Charset
instance by invoking Charset’s ByteBuffer
encode(String s) method, which returns a new
ByteBuffer object containing the bytes that encode
the characters from s. You could also invoke
Charset’s ByteBuffer encode(CharBuffer cb)
method.

8. The Charset methods that perform the actual
encoding and decoding tasks are CharsetEncoder
newEncoder() and CharsetDecoder newDecoder().

9. String’s byte[] getBytes() method returns a new
byte array containing the characters of this string
encoded using the operating system’s default
charset.

10. Listing A-9 presents the AvailCharsets application
that was called for in Chapter 10.

Listing A-9. Obtaining and Outputting a Map of Available Charsets

import java.nio.charset.Charset;

import java.util.SortedMap;

public class AvailCharsets
{
 public static void main(String[] args)
 {
 SortedMap<String, Charset> acs = Charset.availableCharsets();
 System.out.println(acs);
 }
}

http://dx.doi.org/10.1007/978-1-4842-1565-4_10

APPENDIX A: Answers to Exercises

457

Chapter 11: Formatter
1. The three nonexception types that contribute to

NIO’s printf-style formatting facility are Formatter,
Formattable, and FormattableFlags.

2. You reference an argument from within a format
specifier string by specifying the argument’s 1-based
index followed by the dollar sign character. For
example, 1$ references the first argument and 2$
references the second argument.

3. The %n format specifier outputs an operating system-
specific line separator.

4. Listing A-10 presents the FormatterDemo application
that was called for in Chapter 11.

Listing A-10. Formatting Output to an External StringBuilder Object

import java.util.Formatter;

public class FormatterDemo
{
 public static void main(String[] args)
 {
 StringBuilder output = new StringBuilder();
 Formatter formatter = new Formatter(output);
 formatter.format("%d", 123);
 System.out.println(formatter.toString());
 output.setLength(0);
 formatter.format("%x", 123);
 System.out.println(formatter.toString());
 output.setLength(0);
 formatter.format("%c", ’X’);
 System.out.println(formatter.toString());
 output.setLength(0);
 formatter.format("%f", 0.1);
 System.out.println(formatter.toString());
 output.setLength(0);
 formatter.format("%s%n", "Hello, World");
 System.out.println(formatter.toString());
 output.setLength(0);
 formatter.format("%10.2f", 98.375);
 System.out.println(formatter.toString());
 output.setLength(0);
 formatter.format("%05d", 123);

http://dx.doi.org/10.1007/978-1-4842-1565-4_11
http://dx.doi.org/10.1007/978-1-4842-1565-4_11

APPENDIX A: Answers to Exercises458

 System.out.println(formatter.toString());
 output.setLength(0);
 formatter.format("%1$d %1$d", 123);
 System.out.println(formatter.toString());
 output.setLength(0);
 formatter.format("%d %d", 123);
 System.out.println(formatter.toString());
 output.setLength(0);
 formatter.close();
 }
}

Chapter 12: Improved File System Interface
1. A file system is an operating system component that

manages file-based data storage. A file is a regular
file, a directory, a symbolic link, or a hard link.

2. Having File’s delete() method return false when
something goes wrong is a problem because you
don’t know why the file could not be deleted (it may
not exist or the user may not have the appropriate
permission). Throwing a specific exception is more
helpful.

3. The packages that implement the improved file
system interface are java.nio.file, java.nio.file.
attribute, and java.nio.file.spi.

4. The types that form the core of the improved file
system interface are FileSystem, FileSystems, and
FileSystemProvider.

5. You obtain a reference to the default file system by
calling the FileSystems class’s FileSystem
getDefault() class method.

6. You create a new file system by calling the
FileSystems class’s newFileSystem() methods with
the appropriate arguments.

7. A path is a compact map that navigates a hierarchy
of files via a separated name element sequence.

8. The answer is false: the Path interface represents a
hierarchical path to a file that may not exist.

http://dx.doi.org/10.1007/978-1-4842-1565-4_12

APPENDIX A: Answers to Exercises

459

9. A Path object’s stored path optionally starts with a
name element identifying a file system hierarchy and
optionally continues with a sequence of directory
elements separated by a separator character. The
name element that is farthest from the root of the
directory hierarchy is the name of a directory or other
kind of file. The other name elements are directory
names.

10. Path declares File toFile() to return a File object
representing its path. File declares Path toPath()
to return a Path object representing the File object’s
abstract path.

11. FileSystem provides a Path getPath(String first,
String... more) method for returning a Path object.

12. When you attempt to create a Path object using
syntax that doesn’t conform to the syntax that is
parsed by the file system provider that created the
FileSystem responsible for creating the Path object,
InvalidPathException is thrown.

13. The methods that the Paths class provides for more
conveniently returning Path objects are Path
get(String first, String... more) and Path
get(URI uri).

14. Path’s methods for returning its name elements are
Path getFileName(), Path getName(int index), int
getNameCount(), Path getParent(), Path getRoot(),
and Path subpath(int beginIndex, int endIndex).

15. The answer is false: Path’s boolean isAbsolute()
method returns true to signify an absolute path.
There is no isRelative() method.

16. You obtain a file system’s root(s) by calling
FileSystem’s Iterable<Path> getRootDirectories()
method, which returns an iterator over Path
instances that describe roots.

17. You convert a relative path to an absolute path by
calling Path’s Path toAbsolutePath() method.

APPENDIX A: Answers to Exercises460

18. Path’s method for removing path redundancies,
creating a relative path between two paths, and
resolving (joining) two paths are Path normalize(),
Path relativize(Path other), Path resolve(Path
other), and Path resolve(String other),
respectively.

19. You resolve a path string against the current path’s
parent path by calling Path’s Path resolveSibling(Path
other) or Path resolveSibling(String other) method.

20. You convert the current Path instance to a URI object
by calling Path’s URI toURI() method.

21. The Path toRealPath(LinkOption... options)
method returns the real path of the file represented
by the Path object. This method generally derives,
from this path, an absolute path that locates the
same file as this path, but with name elements that
represent the actual names of the directories and
any nondirectory. You can pass a comma-delimited
list of LinkOption enum constants as arguments.
This enum defines the options for how symbolic links
are handled. Currently, LinkOption declares only a
NOFOLLOW_LINKS (don’t follow symbolic links) constant.

22. The answer is false: the Files class doesn’t provide
static methods for performing path-matching and
directory-watching tasks. You need to call
FileSystem methods to obtain path-matchers and
watch services.

23. A file store is a storage pool, device, partition,
volume, concrete file system, or other
implementation-specific means of file storage. A file
store consists of a name, a type, space amounts (in
bytes), and other information. A file store is
represented by the FileStore class.

24. The Files class provides the FileStore
getFileStore(Path path) method to return a
FileStore representing the file store where the file
identified by path is stored.

https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html#isAbsolute--
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Files.html#isSameFile-java.nio.file.Path-java.nio.file.Path-

APPENDIX A: Answers to Exercises

461

25. You can obtain amounts of space (total, unallocated,
and usable), an indication if the file store is read-only,
and the name and type of the file store.

26. You can obtain all file stores for a given file system
by calling FileSystem’s Iterable<FileStore>
getFileStores() method, which lets you iterate over
all of the file stores.

27. The support offered by NIO.2 for working with
attributes are the types stored in the java.nio.file.
attribute package along with the attribute-oriented
methods of the Files class and other types.

28. Attributes are organized into views where each view
corresponds to a specific file system implementation.

29. The attribute type hierarchy is rooted in
AttributeView. This interface is subtyped by
FileAttributeView. FileAttributeView is subtyped
by BasicFileAttributeView,
FileOwnerAttributeView, and
UserDefinedFileAttributeView.
BasicFileAttributeView is subtyped by
DosFileAttributeView and PosixFileAttributeView.
FileOwnerAttributeView is subtyped by
AclFileAttributeView and PosixFileAttributeView.
AttributeView is also subtyped by
FileStoreAttributeView.

30. You can identify all supported attribute views for a
given file system by calling FileSystem’s Set<String>
supportedFileAttributeViews() method, which
returns a set of strings identifying views that are
supported by the invoking FileSystem.

31. Basic attributes are those attributes that are common
to many file systems. The view for managing basic
attributes is BasicFileAttributeView. The basic
attributes are creationTime, fileKey, isDirectory,
isOther, isRegularFile, isSymbolicLink,
lastAccessTime, lastModifiedTime, and size.

APPENDIX A: Answers to Exercises462

32. The answer is true: you can read basic attributes in
bulk by calling BasicFileAttributeView’s
BasicFileAttributes readAttributes() method.
You would accomplish this task indirectly by calling
the Files class’s <A extends BasicFileAttributes>
A readAttributes(Path path, Class<A> type,
LinkOption... options) method, passing
BasicFileAttributes.class to type.

33. A file key is an identifier or a combination of
identifiers that uniquely identifies a file.

34. When you call the Files class’s getAttribute() or
setAttribute() method to get or set a basic or other
kind of attribute value, the syntax that you must
follow for identifying the attribute is [view-name:]
attribute-name. You don’t have to specify the
view-name for basic attributes because basic is the
default view-name.

35. UserPrincipal represents an identity for determining
access rights to objects in a file system and extends
Principal. GroupPrincipal represents a group
identity and extends UserPrincipal.

36. FileOwnerAttributeView’s setOwner() method
throws FileSystemException on a Windows
operating system when a security ID cannot be
assigned as the owner, which must be one of the
users or groups that you have been given the right
to assign as the owner. The solution is to elevate the
privilege of the Java application.

37. An AclEntry’s components are type, principal,
permissions, and flags. The components are
described by the AclEntryType, UserPrincipal,
AclEntryPermission, and AclEntryFlag types.

38. The answer is true: you can define your own file
attributes. Use the UserDefinedFileAttributeView
type for this task.

APPENDIX A: Answers to Exercises

463

39. The attributes supported by FileStoreAttributeView
are totalSpace, unallocatedSpace, and usableSpace.
You can access the values of these attributes by
passing these names to FileStore’s getAttribute()
method, although it’s preferred to access them
via FileStore’s type-safe getTotalSpace(),
getUnallocatedSpace(), and getUsableSpace()
methods.

40. The answer is false: !exists(path) is not equivalent
to notExists(path).

41. The isDirectory() method’s default policy on
symbolic links is to follow them. If you don’t want to
follow symbolic links, pass LinkOption.NOFOLLOW_
LINKS to this method.

42. You should be careful when using the return values
from exists(), notExists(), isExecutable(),
isReadable(), and isWritable() because the return
values are immediately outdated. The file system
may experience changes in the time between the
method call and the use of its result.

43. The createFile() method throws
FileAlreadyExistsException when called to create a
file that already exists.

44. An optional specific exception is an exception that’s
thrown when the underlying operating system can
detect the specific error leading to the exception. If
the error cannot be detected, its IOException
ancestor is thrown instead.

45. You would set POSIX file permissions when creating
a file by calling the PosixFilePermissions class’s
FileAttribute<Set<PosixFilePermission>>
asFileAttribute(Set<PosixFilePermission> perms)
method to create a FileAttribute that encapsulates a
copy of the given file permissions, and then passing
asFileAttribute()’s return value as the second
argument to createFile().

APPENDIX A: Answers to Exercises464

46. The Path createTempFile(String prefix, String
suffix, FileAttribute<?>... attrs) method
creates the temporary file in the default temporary-
file directory (identified by the Java property java.
io.tmpdir).

47. Three ways to delete a temporary file before an
application exits are as follows:

	Add a shutdown hook via the Runtime class’s void
addShutdownHook(Thread hook) method and delete
the file in the shutdown hook.

	Convert the returned Path object to a File object
(via Path’s toFile() method) and invoke File’s
void deleteOnExit() method on the File object.

	Work with the Files class’s newOutputStream()
method and NIO.2’s DELETE_ON_CLOSE constant.

48. NIO.2’s three methods for reading all bytes or lines
of text from a regular file into memory are byte[]
readAllBytes(Path path), List<String>
readAllLines(Path path), and List<String>
readAllLines(Path path, Charset cs).

49. The methods you would use to read very large files
(whose contents probably don’t fit into memory) are
BufferedReader newBufferedReader(Path path),
BufferedReader newBufferedReader(Path path,
Charset cs), and InputStream newInputStream(Path
path, OpenOption... options).

50. The open options supported by the
StandardOpenOption enum are as follows:

	APPEND: If the file is opened for WRITE access,
write bytes to the end of the file rather than to the
beginning.

	CREATE: Create a new file when it doesn’t exist.

	CREATE_NEW: Create a new file, failing when the file
already exists.

	DELETE_ON_CLOSE: Make a best effort to delete the
file when the file is closed.

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html#class%20in%20java.lang

APPENDIX A: Answers to Exercises

465

	DSYNC: Require that every update to the file’s
content be written synchronously to the
underlying storage device.

	READ: Open the file for read access.

	SPARSE: Open a sparse file. When used with the
CREATE_NEW option, SPARSE provides a hint that the
new file will be sparse. The option is ignored when
the file system doesn’t support the creation of
sparse files.

	SYNC: Require that every update to the file’s
content or metadata be written synchronously to
the underlying storage device.

	TRUNCATE_EXISTING: Truncate the length of an
existing file that’s opened for WRITE access to 0.

	WRITE: Open the file for write access.

51. NIO.2’s three methods for writing all bytes or lines
of text from memory to a regular file are Path
write(Path path, byte[] bytes, OpenOption...
options), Path write(Path path, Iterable<?
extends CharSequence> lines, Charset cs,
OpenOption... options), and Path write(Path
path, Iterable<? extends CharSequence> lines,
OpenOption... options).

52. The methods you use to write very large files (whose
contents probably don’t fit into memory) are
BufferedWriter newBufferedWriter(Path path,
Charset cs, OpenOption... options), BufferedWriter
newBufferedWriter(Path path, OpenOption...
options), and OutputStream newOutputStream(Path
path, OpenOption... options).

53. The answer is true: when no options are specified,
newOutputStream() works as if the CREATE,
TRUNCATE_EXISTING, and WRITE options are present.

54. The purpose of the SeekableByteChannel interface
is to describe byte channels that can be randomly
accessed. It provides the ability to obtain the current
position and to change the current position to a
new position.

https://docs.oracle.com/javase/8/docs/api/java/nio/file/StandardOpenOption.html#CREATE_NEW
https://docs.oracle.com/javase/8/docs/api/java/nio/file/StandardOpenOption.html#WRITE
https://docs.oracle.com/javase/8/docs/api/java/io/BufferedWriter.html#class%20in%20java.io
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/charset/Charset.html#class%20in%20java.nio.charset
https://docs.oracle.com/javase/8/docs/api/java/nio/file/OpenOption.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/io/BufferedWriter.html#class%20in%20java.io
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/file/OpenOption.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/io/OutputStream.html#class%20in%20java.io
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/file/OpenOption.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/file/StandardOpenOption.html#CREATE
https://docs.oracle.com/javase/8/docs/api/java/nio/file/StandardOpenOption.html#TRUNCATE_EXISTING
https://docs.oracle.com/javase/8/docs/api/java/nio/file/StandardOpenOption.html#WRITE

APPENDIX A: Answers to Exercises466

55. The FileChannel class specifies FileChannel
position(long newPosition) and FileChannel
truncate(long size) instead of specifying
SeekableByteChannel position(long newPosition)
and SeekableByteChannel truncate(long size) for
the following reason: SeekableByteChannel’s
documentation recommends that the method return
types be specialized by classes that implement
SeekableByteChannel so that method invocations on
the implementation classes can be chained together.

56. You obtain a SeekableByteChannel object by calling
the Files class’s SeekableByteChannel
newByteChannel(Path path, OpenOption...
options) method or its SeekableByteChannel
newByteChannel(Path path, Set<? extends
OpenOption> options, FileAttribute<?>... attrs)
method.

57. NIO.2 added FileChannel open(Path path,
OpenOption... options) and FileChannel
open(Path path, Set<? extends OpenOption>
options, FileAttribute<?>... attrs) methods
to the FileChannel class so that you would no
longer have to rely on a classic I/O type (such as
RandomAccessFile) to obtain a file channel.

58. The Files class provides the Path
createDirectory(Path dir, FileAttribute<?>...
attrs) method for creating a directory.

59. The answer is false: the Files class’s directory-
creation method doesn’t automatically create
nonexistent ancestor directories of the directory
being created. You need to use the
createDirectories() method for that task.

60. The Files class’s methods for creating temporary
directories are Path createTempDirectory(Path
dir, String prefix, FileAttribute<?>... attrs)
and Path createTempDirectory(String prefix,
FileAttribute<?>... attrs).

https://docs.oracle.com/javase/8/docs/api/java/nio/channels/SeekableByteChannel.html#interface%20in%20java.nio.channels
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/util/Set.html#interface%20in%20java.util
https://docs.oracle.com/javase/8/docs/api/java/nio/file/OpenOption.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/file/attribute/FileAttribute.html#interface%20in%20java.nio.file.attribute

APPENDIX A: Answers to Exercises

467

61. NIO.2 provides the DirectoryStream<T> interface along with
the DirectoryStream<Path> newDirectoryStream(Path dir),
DirectoryStream<Path> newDirectoryStream(Path dir,
DirectoryStream.Filter<? super Path> filter), and
DirectoryStream<Path> newDirectoryStream(Path dir,
String glob) methods in the Files class for obtaining a
list of a directory’s entries.

62. You filter a list of directory entries so that only
desired entries are returned by subclassing
DirectoryStream.Filter<T> and overriding its
boolean accept(T path) method, making sure to
pass Path to T. This method must return true when
path is accepted (included in the directory stream);
otherwise, false must be returned.

63. Files provides long copy(InputStream in, Path
target, CopyOption... options), long copy(Path
source, OutputStream out), and Path copy(Path
source, Path target, CopyOption... options)
methods to copy a file to another file.

64. The copy options supported by the
StandardCopyOption enum are as follows:

	ATOMIC_MOVE: Perform the move as an atomic file
system operation. This constant isn’t used by the
copy() methods because it’s meaningless in a
copy context.

	COPY_ATTRIBUTES: Copy attributes as well as content.

	REPLACE_EXISTING: Replace an existing target.

65. The other copy option that can be passed to these
copy() methods is NOFOLLOW_LINKS (symbolic links
are not followed). This copy option is provided by
the LinkOption enum, which (along with
StandardCopyOption) implements the CopyOption
interface. Ultimately, all copy options are CopyOption
instances.

66. Files provides the Path move(Path source, Path
target, CopyOption... options) method to move a
file to another file.

https://docs.oracle.com/javase/8/docs/api/java/nio/file/DirectoryStream.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/file/DirectoryStream.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#class%20in%20java.lang
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/file/CopyOption.html#interface%20in%20java.nio.file

APPENDIX A: Answers to Exercises468

67. The copy options supported by this file-movement
method are ATOMIC_MOVE and REPLACE_EXISTING.

68. The Files methods for deleting files are void
delete(Path path) and boolean deleteIfExists(Path
path).

69. A symbolic link (soft link or symlink) is a special file
that references another file. A circular reference is the
target of a link pointing back to the original link.

70. The Files class provides the Path
createSymbolicLink(Path link, Path target,
FileAttribute<?>... attrs) method for creating a
symbolic link to a target.

71. You determine if an arbitrary path represents a
symbolic link by calling the Files class’s boolean
isSymbolicLink(Path path) method. It returns true
when path is a symbolic link and returns false when
path identifies a nonexistent file, is not a symbolic
link, or it cannot be determined if the file is a
symbolic link.

72. You read the target of a symbolic link by calling the
Files class’s Path readSymbolicLink(Path link)
method.

73. A hard link is a directory entry that associates a
name with a file on a file system. It’s basically the
same entity as the original file. All attributes are
identical: they have the same file permissions,
timestamps, and so on.

74. Hard links are more restrictive than soft links in the
following ways:

	The target of the link must exist.

	Hard links are generally not allowed on directories.

	Hard links are not allowed to cross partitions or
volumes. In other words, they cannot exist across
file systems.

	A hard link looks and behaves like a normal file and
therefore can be hard to find.

https://en.wikipedia.org/wiki/Computer_file#Computer%20file

APPENDIX A: Answers to Exercises

469

75. The Files class provides the Path createLink(Path
link, Path existing) method for creating a hard
link (directory entry) for an existing file.

76. The File Tree-Walking API provides the ability to
walk a file tree and visit all of its files (regular files,
directories, and links). As well as providing a private
implementation that performs the walk, this API
provides a public interface for an application to use.

77. The types that comprise the public portion of the
File Tree-Walking API are FileVisitor<T>,
FileVisitResult, SimpleFileVisitor<T>,
FileVisitOption, and FileSystemLoopException.

78. The answer is true: SKIP_SUBTREE is only meaningful
when returned from the preVisitDirectory() method;
otherwise this result type is the same as CONTINUE.

79. The Files class provides Path walkFileTree(Path
start, FileVisitor<? super Path> visitor) and
Path walkFileTree(Path start, Set<FileVisitOption>
options, int maxDepth, FileVisitor<? super Path>
visitor) for walking the file tree.

80. The Stream<Path> find(Path start, int maxDepth,
BiPredicate<Path,BasicFileAttributes> matcher,
FileVisitOption... options) method returns a
Stream<Path> object that is lazily populated with
the Paths of those files that are accepted by a
BiPredicate object.

81. NIO.2 supports path-matching as follows:
FileSystem’s PathMatcher getPathMatcher(String
syntaxAndPattern) method returns a PathMatcher
object for matching paths against the pattern
described by syntaxAndPattern, which identifies a
pattern language (syntax) and a pattern (pattern)
via this syntax. The PathMatcher interface declares a
boolean matches(Path path) method that compares
its path argument with the PathMatcher’s current
pattern. It returns true when there is a match;
otherwise, it returns false.

https://docs.oracle.com/javase/8/docs/api/java/nio/file/FileVisitor.html#preVisitDirectory-T-java.nio.file.attribute.BasicFileAttributes-
https://docs.oracle.com/javase/8/docs/api/java/nio/file/FileVisitResult.html#CONTINUE

APPENDIX A: Answers to Exercises470

82. The purpose of the Watch Service API is to watch
registered directories for changes and events. For
example, a file manager can use a watch service to
monitor a directory for changes so that it can update
its list-of-files display when files are created or
deleted.

83. The following types comprise the Watch Service API:

	Watchable: An interface that describes any object
that may be registered with a watch service so
that it can be watched for changes and events.
Because Path extends Watchable, all entries in
directories represented as Paths can be watched.

	WatchEvent<T>: An interface describing any event
or repeated event for an object that’s registered
with a watch service.

	WatchEvent<T>.Kind: A nested interface that
identifies an event kind (such as directory entry
creation).

	WatchEvent<T>.Modifier: A nested interface
qualifying how a watchable is registered with a
watch service. This interface isn’t used at this
time.

	WatchKey: An interface describing a token
representing the registration of a watchable with a
watch service.

	WatchService: An interface describing any object
that watches registered objects for changes and
events.

	StandardWatchEventKinds: A class describing four
event kind constants (directory entry creation,
deletion, or modification; and overflow, which
indicates that events may have been lost because
the file system is generating them too quickly).

	ClosedWatchServiceException: A class describing
an unchecked exception that’s thrown when an
attempt is made to invoke an operation on a
watch service that’s closed.

84. Listing A-11 presents the Touch application that was
called for in Chapter 12.

http://dx.doi.org/10.1007/978-1-4842-1565-4_12

APPENDIX A: Answers to Exercises

471

Listing A-11. Setting a File or Directory’s Timestamp to the Current Time via NIO.2

import java.io.IOException;

import java.nio.file.Files;
import java.nio.file.Paths;

import java.nio.file.attribute.FileTime;

import java.time.Instant;

public class Touch
{
 public static void main(String[] args) throws IOException
 {
 if (args.length != 1)
 {
 System.err.println("usage: java Touch path");
 return;
 }
 Files.setLastModifiedTime(Paths.get(args[0]),
 FileTime.from(Instant.now()));
 }
}

Chapter 13: Asynchronous I/O
1. An asynchronous channel supports asynchronous

I/O operations (reads, writes, and so on).

2. The two ways to initiate an I/O operation with an
asynchronous channel are as follows: call a method
that returns a Future and call a method that takes a
CompletionHandler argument.

3. The answer is false: after a channel is closed,
further attempts to initiate asynchronous I/O
operations complete immediately with cause
ClosedChannelException.

4. The methods declared by the
AsynchronousByteChannel interface are
Future<Integer> read(ByteBuffer dst), <A>
void read(ByteBuffer dst, A attachment,
CompletionHandler<Integer,? super A> handler),
Future<Integer> write(ByteBuffer src), and
<A> void write(ByteBuffer src, A attachment,
CompletionHandler<Integer,? super A> handler).

http://dx.doi.org/10.1007/978-1-4842-1565-4_13

APPENDIX A: Answers to Exercises472

5. The answer is false: the ByteBuffer object isn’t safe
for use by multiple concurrent threads.

6. The class for reading, writing, and manipulating a file
asynchronously is AsynchronousFileChannel.

7. The answer is true: an asynchronous file channel
doesn’t have a current position within a file.

8. If you pass no options to AsynchronousFileChannel’s
AsynchronousFileChannel open(Path file,
OpenOption... options) method, this method
attempts to open an existing file.

9. You obtain an AsynchronousServerSocketChannel
object or an AsynchronousSocketChannel object by
calling either of each abstract class’s two open()
methods.

10. AsynchronousServerSocketChannel’s documented
socket options are SO_RCVBUF and SO_REUSEADDR.

11. After obtaining an AsynchronousServerSocketChannel
object, you must bind this channel to a local address
and configure it to listen for connections by invoking
one of AsynchronousServerSocketChannel’s bind()
methods before you can call either of its accept()
methods.

12. After obtaining an AsynchronousSocketChannel
object, you must connect it to the socket of an
asynchronous server socket channel by invoking one
of AsynchronousSocketChannel’s connect() methods
before you can perform reads and writes.

13. You determine if an asynchronous socket channel is
connected to an asynchronous server socket
channel by calling AsynchronousSocketChannel’s
getRemoteAddress() method, which returns null
when the channel’s socket isn’t connected.

14. The answer is true: asynchronous socket channels
are safe for use by multiple concurrent threads.

15. The purpose of the AsynchronousChannelGroup class
is to describe a grouping of asynchronous channels
for the purpose of resource sharing.

https://docs.oracle.com/javase/8/docs/api/java/nio/ByteBuffer.html#class%20in%20java.nio
https://docs.oracle.com/javase/8/docs/api/java/nio/channels/AsynchronousFileChannel.html#class%20in%20java.nio.channels
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/file/OpenOption.html#interface%20in%20java.nio.file
https://docs.oracle.com/javase/8/docs/api/java/nio/channels/AsynchronousServerSocketChannel.html#bind-java.net.SocketAddress-int-
https://docs.oracle.com/javase/8/docs/api/java/nio/channels/AsynchronousServerSocketChannel.html#class%20in%20java.nio.channels

APPENDIX A: Answers to Exercises

473

16. A group uses a thread pool for task submission.

17. The system properties for configuring the default
group are java.nio.channels.DefaultThreadPool.
threadFactory and java.nio.channels.
DefaultThreadPool.initialSize.

18. The void shutdownNow() method is used to initiate
a forceful shutdown of the group. In addition to the
actions performed by an orderly shutdown,
shutdownNow() closes all open channels in the group
as if by invoking each channel’s close() method.

19. The answer is false: AsynchronousFileChannels don’t
belong to groups. However, they are associated with
a thread pool to which tasks are submitted, to handle
I/O events and to dispatch to completion handlers
that consume the results of I/O operations on the
channel.

20. Listing A-12 presents the Copy application that was
called for in Chapter 13.

Listing A-12. Copying a Source File to a Destination File Asynchronously

import java.io.IOException;

import java.nio.ByteBuffer;

import java.nio.channels.AsynchronousFileChannel;
import java.nio.channels.CompletionHandler;

import java.nio.file.Paths;

import static java.nio.file.StandardOpenOption.*;

public class Copy
{
 final static Thread THDMAIN = Thread.currentThread();

 public static void main(String[] args) throws IOException
 {
 if (args.length != 2)
 {
 System.err.println("usage: java Copy src dest");
 return;
 }

https://docs.oracle.com/javase/8/docs/api/java/nio/channels/AsynchronousChannel.html#close--
http://dx.doi.org/10.1007/978-1-4842-1565-4_13

APPENDIX A: Answers to Exercises474

 copy(AsynchronousFileChannel.open(Paths.get(args[0])),
 AsynchronousFileChannel.open(Paths.get(args[1]), WRITE,
 TRUNCATE_EXISTING, CREATE));

 try
 {
 THDMAIN.join();
 }
 catch (InterruptedException ie)
 {
 System.out.println("done");
 }
 }

 public static void copy(AsynchronousFileChannel chSrc,
 AsynchronousFileChannel chDest)
 {
 ByteBuffer buffer = ByteBuffer.allocate(8192);

 class ReadCompletionHandler implements CompletionHandler<Integer,
 Integer>
 {
 @Override
 public void completed(Integer result, Integer pos)
 {
 if (result == -1)
 {
 THDMAIN.interrupt();
 return;
 }

 buffer.flip();
 chDest.write(buffer, pos, pos + result,
 new CompletionHandler<Integer, Integer>()
 {
 @Override
 public void completed(Integer result,
 Integer newPos)
 {
 buffer.compact();
 chSrc.read(buffer, newPos, newPos,
 ReadCompletionHandler.this);
 }

APPENDIX A: Answers to Exercises

475

 @Override
 public void failed(Throwable t, Integer pos)
 {
 System.out.println("write failure");
 THDMAIN.interrupt();
 }
 });
 }

 @Override
 public void failed(Throwable t, Integer pos)
 {
 System.out.println("read failure");
 THDMAIN.interrupt();
 }
 }

 chSrc.read(buffer, 0, 0, new ReadCompletionHandler());
 }
}

Chapter 14: Completion of Socket Channel
Functionality

1. The capabilities that NIO.2 provides for completing
socket channel functionality are support for binding
and option configuration in the DatagramChannel,
ServerSocketChannel, and SocketChannel classes
and support for channel-based multicasting.

2. JDK 7 overcame the counterintuitive mix of socket
channel and socket APIs by introducing the
NetworkChannel interface, which is implemented by
the DatagramChannel, ServerSocketChannel,
SocketChannel, AsynchronousServerSocketChannel,
and AsynchronousSocketChannel classes.

3. The exceptions that are thrown by SocketChannel’s
shutdownInput() and shutdownOutput() methods are
NotYetConnectedException, ClosedChannelException,
and IOException.

http://dx.doi.org/10.1007/978-1-4842-1565-4_14

APPENDIX A: Answers to Exercises476

4. JDK 7 supports multicasting by introducing a
MulticastChannel interface that extends
NetworkChannel, by introducing a MembershipKey
class, and by adding an open(ProtocolFamily)
method to the DatagramChannel class.

5. The answer is false: The MembershipKey
join(InetAddress group, NetworkInterface ni,
InetAddress source) method performs include-mode
filtering.

6. Listing A-13 presents the EnumNI application that was
called for in Chapter 14.

Listing A-13. Enumerating Network Interfaces and Outputting Their Names

import java.net.NetworkInterface;

import java.util.Enumeration;

public class EnumNI
{
 public static void main(String[] args) throws Exception
 {
 Enumeration<NetworkInterface> e;
 e = NetworkInterface.getNetworkInterfaces();
 while (e.hasMoreElements())
 System.out.println(e.nextElement());
 }
}

7. Listing A-14 presents the ChannelClient application
that was called for in Chapter 15.

Listing A-14. Dropping Group Membership and Closing the Channel

import java.io.IOException;

import java.net.InetAddress;
import java.net.InetSocketAddress;
import java.net.NetworkInterface;
import java.net.StandardProtocolFamily;
import java.net.StandardSocketOptions;

import java.nio.ByteBuffer;

import java.nio.channels.DatagramChannel;
import java.nio.channels.MembershipKey;

https://docs.oracle.com/javase/8/docs/api/java/nio/channels/MembershipKey.html#class%20in%20java.nio.channels
https://docs.oracle.com/javase/8/docs/api/java/net/InetAddress.html#class%20in%20java.net
https://docs.oracle.com/javase/8/docs/api/java/net/NetworkInterface.html#class%20in%20java.net
https://docs.oracle.com/javase/8/docs/api/java/net/InetAddress.html#class%20in%20java.net
http://dx.doi.org/10.1007/978-1-4842-1565-4_14
http://dx.doi.org/10.1007/978-1-4842-1565-4_15

APPENDIX A: Answers to Exercises

477

public class ChannelClient
{
 final static int PORT = 9999;

 public static void main(String[] args) throws IOException
 {
 NetworkInterface ni;
 ni = NetworkInterface.getByInetAddress(InetAddress.getLocalHost());
 DatagramChannel dc;
 dc = DatagramChannel.open(StandardProtocolFamily.INET)
 .setOption(StandardSocketOptions.SO_REUSEADDR,
 true)
 .bind(new InetSocketAddress(PORT))
 .setOption(StandardSocketOptions.IP_MULTICAST_IF,
 ni);
 InetAddress group = InetAddress.getByName("239.255.0.1");
 MembershipKey key = dc.join(group, ni);

 ByteBuffer response = ByteBuffer.allocate(50);
 for (int i = 0; i < 10; i++)
 {
 dc.receive(response);
 response.flip();
 while (response.hasRemaining())
 System.out.print((char) response.get());
 System.out.println();
 response.clear();
 }
 key.drop();
 dc.close();
 }
}

8. Listing A-15 presents the StockServer application
that was called for in Chapter 14.

Listing A-15. Broadcasting a Stock’s Fluctuating Share Prices

import java.io.IOException;

import java.net.InetAddress;
import java.net.InetSocketAddress;
import java.net.NetworkInterface;
import java.net.StandardProtocolFamily;
import java.net.StandardSocketOptions;

import java.nio.ByteBuffer;

http://dx.doi.org/10.1007/978-1-4842-1565-4_14

APPENDIX A: Answers to Exercises478

import java.nio.channels.DatagramChannel;
import java.nio.channels.MembershipKey;

public class StockServer
{
 final static int PORT = 9999;

 public static void main(String[] args) throws IOException
 {
 NetworkInterface ni;
 ni = NetworkInterface.getByInetAddress(InetAddress.getLocalHost());
 DatagramChannel dc;
 dc = DatagramChannel.open(StandardProtocolFamily.INET)
 .setOption(StandardSocketOptions.SO_REUSEADDR,
 true)
 .bind(new InetSocketAddress(PORT))
 .setOption(StandardSocketOptions.IP_MULTICAST_IF,
 ni);
 InetAddress group = InetAddress.getByName("239.255.0.1");
 InetSocketAddress isa = new InetSocketAddress(group, PORT);

 float openPrice = 37.4f;
 float lowPrice = 37.22f;
 float highPrice = 37.48f;
 float closePrice = 37.41f;
 ByteBuffer payload = ByteBuffer.allocate(16);
 while (true)
 {
 // fluctuate by a factor of -0.5 to almost +0.5
 float fluctuation = (float) (Math.random() - 0.5);

 lowPrice += fluctuation;
 lowPrice = Math.max(lowPrice, -lowPrice);
 highPrice += fluctuation;
 highPrice = Math.max(highPrice, -lowPrice);
 closePrice += fluctuation;
 closePrice = Math.max(closePrice, -lowPrice);

 payload.putFloat(openPrice);
 payload.putFloat(lowPrice);
 payload.putFloat(highPrice);
 payload.putFloat(closePrice);
 payload.flip();
 dc.send(payload, isa);
 payload.clear();

 openPrice = closePrice;
 }
 }
}

APPENDIX A: Answers to Exercises

479

Listing A-16 presents the StockClient application that was called for
in Chapter 14.

Listing A-16. Receiving a Stock’s Fluctuating Share Prices

import java.io.IOException;

import java.net.InetAddress;
import java.net.InetSocketAddress;
import java.net.NetworkInterface;
import java.net.StandardProtocolFamily;
import java.net.StandardSocketOptions;

import java.nio.ByteBuffer;

import java.nio.channels.DatagramChannel;
import java.nio.channels.MembershipKey;

public class StockClient
{
 final static int PORT = 9999;

 public static void main(String[] args) throws IOException
 {
 NetworkInterface ni;
 ni = NetworkInterface.getByInetAddress(InetAddress.getLocalHost());
 DatagramChannel dc;
 dc = DatagramChannel.open(StandardProtocolFamily.INET)
 .setOption(StandardSocketOptions.SO_REUSEADDR,
 true)
 .bind(new InetSocketAddress(PORT))
 .setOption(StandardSocketOptions.IP_MULTICAST_IF,
 ni);
 InetAddress group = InetAddress.getByName("239.255.0.1");
 MembershipKey key = dc.join(group, ni);

 ByteBuffer response = ByteBuffer.allocate(16);
 while (true)
 {
 dc.receive(response);
 response.flip();
 System.out.println("Open price: " + response.getFloat());
 System.out.println("Low price: " + response.getFloat());
 System.out.println("High price: " + response.getFloat());
 System.out.println("Close price: " + response.getFloat());
 response.clear();
 }
 }
}

http://dx.doi.org/10.1007/978-1-4842-1565-4_14

481

Appendix B
Sockets and Network
Interfaces
Chapter 7 introduced the concept of a peer socket, which is a socket that is
associated with a channel. Chapter 14 introduced the concept of a network
interface. This appendix introduces sockets, network interfaces, and the
APIs for interacting with these networking features.

Note A network is a group of interconnected nodes (computing devices such
as tablets, and peripherals such as scanners or laser printers) that can be
shared among the network’s users. Networks often use TCP/IP (http://
en.wikipedia.org/wiki/TCP/IP_model) to communicate between nodes.
TCP/IP includes Transmission Control Protocol (TCP), which is a connection-
oriented protocol; User Datagram Protocol (UDP), which is a connectionless
protocol; and Internet Protocol (IP), which is the basic protocol over which TCP
and UDP perform their tasks.

The java.net package provides types that support TCP/IP between processes
(executing applications) running on hosts (computer-based TCP/IP nodes).

http://dx.doi.org/10.1007/978-1-4842-1565-4_7
http://dx.doi.org/10.1007/978-1-4842-1565-4_14
http://en.wikipedia.org/wiki/TCP/IP_model
http://en.wikipedia.org/wiki/TCP/IP_model

APPENDIX B: Sockets and Network Interfaces482

Sockets
Two processes communicate by way of sockets, which are endpoints in a
communications link between these processes. Each endpoint is identified
by an IP address that identifies the host and by a port number that identifies
the process running on that host.

IP ADDRESSES AND PORT NUMBERS

An IP address is a 32-bit or 128-bit unsigned integer that uniquely identifies a network host
or some other network node (a router, for example).

It is common to specify a 32-bit IP address as four 8-bit integer components in a period-
separated decimal notation, where each component is a decimal integer ranging from 0
through 255 and is separated from the next component via a period (such as 127.0.0.1).
A 32-bit IP address is often referred to as an Internet Protocol Version 4 (IPv4) address
(see http://en.wikipedia.org/wiki/IPv4).

It’s common to specify a 128-bit IP address as eight 16-bit integer components in colon-
separated hexadecimal notation, where each component is a hexadecimal integer ranging
from 0 through FFFF and is separated from the next component via a colon (such as
1080:0:0:0:8:800:200C:417A). A 128-bit IP address is often referred to as an Internet
Protocol Version 6 (IPv6) address (see http://en.wikipedia.org/wiki/IPv6).

A port number is a 16-bit integer that uniquely identifies a process, which is the ultimate
source or recipient of a message. Port numbers that are less than 1024 are reserved for
standard processes. For example, port number 25 has traditionally identified the Simple Mail
Transfer Protocol (SMTP) process for sending email, although port number 587 has largely
obsoleted this older port number (see http://en.wikipedia.org/wiki/Smtp).

One process writes a message (a sequence of bytes) to its socket. The
network management software portion of the underlying platform breaks the
message into a sequence of packets (addressable message chunks that are
often referred to as IP datagrams) and forwards them to the other process’s
socket, where they are recombined into the original message for processing.

Figure B-1 shows how two sockets communicate in a TCP/IP context.

http://en.wikipedia.org/wiki/IPv4
http://en.wikipedia.org/wiki/IPv6
http://en.wikipedia.org/wiki/Smtp

APPENDIX B: Sockets and Network Interfaces

483

In the context of Figure B-1, suppose that Process A wants to send a
message to Process B. Process A sends that message to its socket with the
destination socket address of Process B. Host A’s network management
software (often referred to as a protocol stack) obtains this message and
reduces it to a sequence of packets, with each packet including the
destination host’s IP address and port number. The network management
software then sends these packets through Host A’s Network Interface Card
(NIC) to Host B.

Note The NIC’s various network interfaces are connections between a
computer and a network.

Figure B-1. Two processes communicate via a pair of sockets

APPENDIX B: Sockets and Network Interfaces484

Host B’s protocol stack receives packets through the NIC and reassembles
them into the original message (packets may be received out of order),
which it then makes available to Process B via its socket. This scenario
reverses when Process B communicates with Process A.

The network management software uses TCP to create an ongoing
conversation between two hosts in which messages are sent back and forth.
Before this conversation occurs, a connection is established between these
hosts. After the connection has been established, TCP enters a pattern
where it sends message packets and waits for a reply that they arrived
correctly (or for a timeout to expire when the reply doesn’t arrive because of
some network problem). This pattern repeats and guarantees a reliable
connection. For detailed information on this pattern, check out
http://en.wikipedia.org/wiki/Tcp_receive_window#Flow_control.

Because it can take time to establish a connection, and it also takes time to
send packets (as it is necessary to receive reply acknowledgments and
also because of timeouts), TCP is slow. On the other hand, UDP, which
doesn’t require connections and packet acknowledgement, is much
faster. The downside is that UDP isn’t as reliable (there’s no guarantee of
packet delivery, ordering, or protection against duplicate packets,
although UDP uses checksums to verify that data is correct) because
there’s no acknowledgment. Furthermore, UDP is limited to single-packet
conversations.

The java.net package provides Socket, ServerSocket, and other Socket-
suffixed classes for performing TCP-based or UDP-based communications.
Before investigating these classes, you need to understand socket
addresses and socket options.

Socket Addresses
An instance of a Socket-suffixed class is associated with a socket address
comprised of an IP address and a port number. These classes often rely on
the InetAddress class to represent the IPv4 or IPv6 address portion of the
socket address; the port number is represented separately.

Note InetAddress relies on its Inet4Address subclass to represent an
IPv4 address and on its Inet6Address subclass to represent an IPv6 address.

https://en.wikipedia.org/wiki/Tcp_receive_window#Flow_control

APPENDIX B: Sockets and Network Interfaces

485

InetAddress declares several class methods for obtaining an InetAddress
instance. These methods include the following:

	InetAddress[] getAllByName(String host) returns an
array of InetAddresses that store the IP addresses
associated with host. You can pass either a domain
name (such as “tutortutor.ca”) or an IP address (such
as “70.33.247.10”) argument to this parameter. (To learn
about domain names, check out Wikipedia’s “Domain name”
entry [http://en.wikipedia.org/wiki/Domain_name].)
Pass null to obtain an InetAddress instance that
stores the IP address of the loopback interface
(a software-based network interface where outgoing
data loops back as incoming data). This method throws
UnknownHostException when no IP address for the
specified host can be found, or when a scope identifier
is specified for a global IPv6 address.

	InetAddress getByAddress(byte[] addr) returns an
InetAddress object for the given raw IP address. The
argument passed to addr is in network byte order (most
significant byte comes first) where the highest order
byte is stored in addr[0]. The addr array’s length must
be 4 bytes for an IPv4 address and 16 bytes for an IPv6
address. This method throws UnknownHostException
when the array has another length.

	InetAddress getByAddress(String hostName, byte[]
ipAddress) returns an InetAddress instance based on
the hostname and IP address arguments. This method
throws UnknownHostException when the array’s length is
neither 4 nor 16.

	InetAddress getByName(String host) returns an
InetAddress instance based on the host argument,
which can be a machine name (such as “tutortutor.
ca”) or a textual representation of its IP address.
Passing null to host results in an InetAddress instance
representing an address of the loopback interface being
returned.

	InetAddress getLocalHost() returns the address of
the local host (the current host), which is represented
by hostname localhost or by an IP address that’s
commonly expressed as 127.0.0.1 (IPv4) or ::1 (IPv6).
This method throws UnknownHostException when the
local host couldn’t be resolved into an address.

http://en.wikipedia.org/wiki/Domain_name

APPENDIX B: Sockets and Network Interfaces486

After you obtain an InetAddress object, you can interrogate it by invoking
instance methods such as byte[] getAddress(), which returns the raw IP
address (in network byte order) of this InetAddress object, and boolean
isLoopbackAddress(), which determines whether or not this InetAddress
object represents a loopback address.

Java 1.4 introduced the abstract SocketAddress class to represent a socket
address “with no protocol attachment.” (This class’s creator might have
anticipated that Java would eventually support low-level communication
protocols other than the widely popular Internet Protocol.)

SocketAddress is subclassed by the concrete InetSocketAddress class,
which represents a socket address as an IP address and a port number. It
can also represent a hostname and a port number and will make an attempt
to resolve the hostname.

InetSocketAddress instances are created by invoking
InetSocketAddress(InetAddress addr, int port) and other constructors.
After an instance has been created, you can call methods such as InetAddress
getAddress() and int getPort() to return socket address components.

Socket Options
An instance of a Socket-suffixed class shares the concept of socket options,
which are parameters for configuring socket behavior. Socket options are
described by constants that are declared in the SocketOptions interface:

	IP_MULTICAST_IF: Specify the outgoing network
interface for multicast packets (on multihomed [multiple
NIC] hosts).

	IP_MULTICAST_IF2: Specify the outgoing network
interface for multicast packets using an interface index.

	IP_MULTICAST_LOOP: Enable or disable local loopback of
multicast datagrams.

	IP_TOS: Set the type-of-service (IPv4) or traffic class
(IPv6) field in the IP header for a TCP or UDP socket.

	SO_BINDADDR: Fetch the socket’s local address binding.

	SO_BROADCAST: Enable a socket to send broadcast
messages.

	SO_KEEPALIVE: Turn on the socket’s keepalive setting.

	SO_LINGER: Specify the number of seconds to wait when
closing a socket when there is still some buffered data
to be sent.

APPENDIX B: Sockets and Network Interfaces

487

	SO_OOBINLINE: Enable inline reception of TCP urgent data.

	SO_RCVBUF: Set or get the maximum socket receive
buffer size (in bytes).

	SO_REUSEADDR: Enable a socket’s reuse address.

	SO_SNDBUF: Set or get the maximum socket send buffer
size (in bytes).

	SO_TIMEOUT: Specify a timeout (in milliseconds) on
blocking accept or read/receive (but not write/send)
socket operations. (Don’t block forever!)

	TCP_NODELAY: Disable Nagle’s algorithm
(http://en.wikipedia.org/wiki/Nagle's_algorithm).
Written data to the network is not buffered, pending
acknowledgement of previously written data.

SocketOptions also declares the following methods for setting and getting
these options:

	void setOption(int optID, Object value)

	Object getOption(int optID)

optID is one of the aforementioned constants and value is an object of a
suitable class (such as java.lang.Boolean).

SocketOptions is implemented by the abstract SocketImpl and
DatagramSocketImpl classes. Concrete instances of these classes are
wrapped by the various Socket-suffixed classes. As a result, you cannot
invoke these methods. Instead, you work with the type-safe setter and
getter methods provided by the Socket-suffixed classes for setting and
getting these options.

For example, Socket declares void setKeepAlive(boolean keepAlive) for
setting the SO_KEEPALIVE option, and ServerSocket declares void
setSoTimeout(int timeout) for setting the SO_TIMEOUT option. Check the
documentation on the Socket-suffixed classes to learn about these and
other socket option methods.

Note Socket option methods that apply to DatagramSocket also apply to its
MulticastSocket subclass.

http://en.wikipedia.org/wiki/Nagle's_algorithm

APPENDIX B: Sockets and Network Interfaces488

Socket and ServerSocket
The Socket and ServerSocket classes support TCP-based communications
between client processes (such as an application running on a tablet) and
server processes (such as an application running on one of your Internet
Service Provider’s computers that provides access to the World Wide Web).
Because Socket is associated with the java.io.InputStream and java.
io.OutputStream classes, sockets based on the Socket class are commonly
referred to as stream sockets.

Socket supports the creation of client-side sockets. It declares several
constructors for this purpose, including the following pair:

	Socket(InetAddress dstAddress, int dstPort)
creates a stream socket and connects it to the
specified port number (described by dstPort) at the
specified IP address (described by dstAddress).
This constructor throws java.io.IOException when
an I/O error occurs while creating the socket,
java.lang.IllegalArgumentException when the
argument passed to dstPort is outside the valid range
of port values, which is 0 through 65535, and java.
lang.NullPointerException when dstAddress is null.

	Socket(String dstName, int dstPort) creates a stream
socket and connects it to the port identified by dstPort
on the host identified by dstName. When dstName is
null, this constructor is equivalent to invoking
Socket(InetAddress.getByName(null), port). It throws
the same IOException and IllegalArgumentException
instances as the previous constructor. However,
instead of throwing NullPointerException, it throws
UnknownHostException when the host’s IP address
cannot be determined.

After a Socket instance is created via these constructors, it’s bound to an
arbitrary local host socket address before a connection is made to the
remote host socket address. Binding makes a client socket address
available to a server socket so that a server process can communicate with
the client process via the server socket.

Socket offers additional constructors. For example, Socket() and
Socket(Proxy proxy) create unbound and unconnected sockets. Before
using these sockets, they must be bound to local socket addresses, by
calling void bind(SocketAddress localAddr), and then connections must be
made, by calling Socket’s connect() methods (void connect(SocketAddress
remoteAddr), for example).

APPENDIX B: Sockets and Network Interfaces

489

Another constructor is Socket(InetAddress dstAddress, int dstPort,
InetAddress localAddr, int localPort), which lets you specify your own
local host socket address via localAddr and localPort. This constructor
automatically binds to the local socket address and then attempts a
connection to the remote dstPort on dstAddress.

After creating a Socket instance, and possibly invoking bind() and
connect() on that instance, an application invokes Socket’s InputStream
getInputStream() and OutputStream getOutputStream() methods to acquire
an input stream for reading bytes from the socket and an output stream for
writing bytes to the socket. Also, the application often calls Socket’s void
close() method to close the socket when it’s no longer needed for I/O.

The following example demonstrates how to create a socket that’s bound
to port number 9999 on the local host and then access its input and output
streams—exceptions are ignored for brevity:

Socket socket = new Socket("localhost", 9999);
InputStream is = socket.getInputStream();
OutputStream os = socket.getOutputStream();
// Do some work with the socket.
socket.close();

ServerSocket supports the creation of server-side sockets. It declares the
following four constructors for this purpose:

	ServerSocket() creates an unbound server socket. You can
bind this socket to a specific socket address (to which client
sockets communicate) by invoking either of ServerSocket’s
two bind() methods. Binding makes the server socket
address available to a client socket so that a client process
can communicate with the server process via the client
socket. This constructor throws IOException when an I/O
error occurs while attempting to open the socket.

	ServerSocket(int port) creates a server socket bound
to the specified port value and an IP address associated
with one of the host’s NICs. When you pass 0 to port, an
arbitrary port number is chosen. The port number can be
retrieved by calling int getLocalPort(). The maximum
queue length for incoming connection requests from clients

Note A proxy is a host that sits between an intranet and the Internet for
security purposes. Proxy settings are represented via instances of the Proxy
class and help sockets communicate through proxies.

APPENDIX B: Sockets and Network Interfaces490

is set to 50. If a connection request arrives when the queue
is full, the connection is refused. This constructor throws
IOException when an I/O error occurs while attempting
to open the socket and IllegalArgumentException when
port’s value lies outside the specified range of valid port
values, which is between 0 and 65535, inclusive.

	ServerSocket(int port, int backlog) is equivalent to
the previous constructor, but it also lets you specify the
maximum queue length for incoming connections by
passing a positive integer to backlog.

	ServerSocket(int port, int backlog, InetAddress
localAddress) is equivalent to the previous constructor,
but it also lets you specify a different IP address to
which the server socket binds. (Any address is chosen
when null is passed.) This constructor is useful for
machines that have multiple NICs and you want to listen
for connection requests on a specific NIC.

After a server socket is created via these constructors, a server application
enters a loop that first invokes ServerSocket’s Socket accept() method to
listen for a connection request and return a Socket instance that lets it
communicate with the associated client socket. It then communicates with
the client socket to perform some kind of processing. When processing
finishes, the server socket calls the client socket’s close() method to
terminate its connection with the client.

The following example demonstrates how to create a server socket that’s
bound to port 9999 on the current host, listen for incoming connection
requests, return their sockets, perform work on those sockets, and close the
sockets; exceptions are ignored for brevity:

ServerSocket ss = new ServerSocket(9999);
while (true)
{
 Socket socket = ss.accept();
 // obtain socket input/output streams and communicate with socket
 socket.close();
}

Note ServerSocket declares a void close() method for closing a
server socket before terminating the server application. An unclosed socket is
automatically closed when an application terminates.

APPENDIX B: Sockets and Network Interfaces

491

The accept() method call blocks until a connection request is available
and then returns a Socket object so that the server application can
communicate with its associated client. The socket is closed after this
communication takes place. The server socket is automatically closed
when the application exits.

This example assumes that socket communication takes place on the server
application’s main thread, which is a problem when processing takes time
to perform because server response time to incoming connection requests
decreases.

To speed up response time, it’s often necessary to communicate with the
socket on a worker thread, as demonstrated in the following example:

ServerSocket ss = new ServerSocket(9999);
while (true)
{
 final Socket s = ss.accept();
 new Thread(new Runnable()
 {
 @Override
 public void run()
 {
 // obtain socket input/output streams and
 // communicate with socket
 try { s.close(); } catch (IOException ioe) {}
 }
 }).start();
}

Each time a connection request arrives, accept() returns a Socket instance,
and then a java.lang.Thread object is created whose runnable accesses
that socket for communicating with the socket on a worker thread.

I’ve created EchoClient and EchoServer applications that demonstrate
Socket and ServerSocket. Listing B-1 presents EchoClient’s source code.

Listing B-1. Echoing Data to and Receiving It Back from a Server

import java.io.BufferedReader;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.IOException;
import java.io.OutputStream;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;

APPENDIX B: Sockets and Network Interfaces492

import java.net.Socket;
import java.net.UnknownHostException;

public class EchoClient
{
 public static void main(String[] args)
 {
 if (args.length != 1)
 {
 System.err.println("usage : java EchoClient message");
 System.err.println("example: java EchoClient \"This is a test.\"");
 return;
 }
 try
 {
 Socket socket = new Socket("localhost", 9999);
 OutputStream os = socket.getOutputStream();
 OutputStreamWriter osw = new OutputStreamWriter(os);
 PrintWriter pw = new PrintWriter(osw);
 pw.println(args[0]);
 pw.flush();
 InputStream is = socket.getInputStream();
 InputStreamReader isr = new InputStreamReader(is);
 BufferedReader br = new BufferedReader(isr);
 System.out.println(br.readLine());
 }
 catch (UnknownHostException uhe)
 {
 System.err.println("unknown host: " + uhe.getMessage());
 }
 catch (IOException ioe)
 {
 System.err.println("I/O error: " + ioe.getMessage());
 }
 }
}

EchoClient first verifies that it has received a single command-line argument
and then creates a socket that will connect to a process running on port
9999 of the local host.

After creating the socket, EchoClient obtains an output stream for writing a
string to the socket. Because the output stream can only handle a sequence
of bytes, the java.io.OutputStreamWriter and java.io.PrintWriter classes
are used to connect the writer that outputs characters to the byte-oriented
output stream.

APPENDIX B: Sockets and Network Interfaces

493

After instantiating PrintWriter, EchoClient invokes its void println(String
str) method to write the string followed by a newline character. The void
flush() method is subsequently called to ensure that all pending data is
written to the server.

EchoClient now obtains an input stream for reading the string as a
sequence of bytes. It then connects the reader (that inputs characters) to the
byte-oriented input stream by instantiating java.io.InputStreamReader and
java.io.BufferedReader.

Finally, EchoClient invokes BufferedReader’s String readLine() method to
read the characters followed by a newline from the socket. (readLine()
doesn’t include the newline character in the returned string.) These
characters followed by a newline are then written to standard output.

Listing B-2 presents EchoServer’s source code.

Listing B-2. Receiving Data from and Echoing It Back to a Client

import java.io.BufferedReader;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.IOException;
import java.io.OutputStream;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;

import java.net.ServerSocket;
import java.net.Socket;

public class EchoServer
{
 public static void main(String[] args) throws IOException
 {
 System.out.println("Starting echo server...");
 ServerSocket ss = new ServerSocket(9999);
 while (true)
 {
 Socket s = ss.accept();
 try

Note In a long-running application, you would explicitly close the socket
instance by invoking its void close() method when the socket is no longer
needed. For brevity, I’ve chosen not to do so in this and most of the remaining
Socket-suffixed class examples.

APPENDIX B: Sockets and Network Interfaces494

 {
 InputStream is = s.getInputStream();
 InputStreamReader isr = new InputStreamReader(is);
 BufferedReader br = new BufferedReader(isr);
 String msg = br.readLine();
 System.out.println(msg);
 OutputStream os = s.getOutputStream();
 OutputStreamWriter osw = new OutputStreamWriter(os);
 PrintWriter pw = new PrintWriter(osw);
 pw.println(msg);
 pw.flush();
 }
 catch (IOException ioe)
 {
 System.err.println("I/O error: " + ioe.getMessage());
 }
 finally
 {
 try
 {
 s.close();
 }
 catch (IOException ioe)
 {
 assert false; // shouldn't happen in this context
 }
 }
 }
 }
}

EchoServer first outputs an introductory message to standard output and
then creates a server socket that listens for connections on port 9999. It
then enters an infinite loop, where each iteration invokes ServerSocket’s
Socket accept() method to block until a connection is received and then
return a Socket object representing this connection.

After obtaining the socket, EchoServer obtains an input stream for reading
from the socket. Because the input stream can only handle a sequence of
bytes, the InputStreamReader and BufferedReader classes are used to
connect the reader that inputs characters to the byte-oriented input stream.

EchoServer now obtains an output stream for writing the string as a
sequence of bytes. It then connects the writer that outputs characters to
the byte-oriented output stream by instantiating OutputStreamWriter and
PrintWriter.

After outputting the message to standard output, EchoServer calls flush()
to flush the output to the client. The client socket is then closed.

APPENDIX B: Sockets and Network Interfaces

495

To experiment with these applications, first copy EchoClient.java and
EchoServer.java to the same directory and open two console windows with
this directory being current.

Compile these source files as follows:

javac *.java

Run EchoServer in one window as follows:

java EchoServer

You should observe the following output:

Starting echo server...

Having started the server, run EchoClient in the other window as follows:

java EchoClient "This is a test."

You should observe “This is a test.” in both windows.

DatagramSocket and MulticastSocket
The DatagramSocket and MulticastSocket classes let you perform UDP-
based communications between a pair of hosts (DatagramSocket) or
between many hosts (MulticastSocket). With either class, you communicate
one-way messages via datagram packets, which are arrays of bytes
associated with instances of the DatagramPacket class.

Note If you have an enabled firewall (http://en.wikipedia.org/wiki/
Firewall_(computing)), you might need to enable port 9999.

Note Although you might think that Socket and ServerSocket are all
that you need, DatagramSocket and its MulticastSocket subclass have
their uses. For example, consider a scenario in which a group of machines
need to occasionally tell a server that they’re alive. It shouldn’t matter when
the occasional message is lost or even when the message doesn’t arrive on
time. Another example is a low-priority stock ticker that periodically broadcasts
stock prices. When a packet doesn’t arrive, odds are that the next packet will
arrive and you’ll then receive notification of the latest prices. Timely rather than
reliable or orderly delivery is more important in realtime applications.

http://en.wikipedia.org/wiki/Firewall_(computing)
http://en.wikipedia.org/wiki/Firewall_(computing)

APPENDIX B: Sockets and Network Interfaces496

DatagramPacket declares several constructors, with DatagramPacket(byte[]
buf, int length) being the simplest. This constructor requires you to pass
byte array and integer arguments to buf and length, where buf is a data
buffer that stores data to be sent or received, and length (which must be
less than or equal to buf.length) specifies the number of bytes (starting at
buf[0]) to send/receive.

The following example demonstrates this constructor:

byte[] buffer = new byte[100];
DatagramPacket dgp = new DatagramPacket(buffer, buffer.length);

DatagramSocket describes a socket for the client or server side of the UDP-
communication link. Although this class declares several constructors, I find
it convenient in this appendix to use the DatagramSocket() constructor for
the client side and the DatagramSocket(int port) constructor for the server
side. Either constructor throws SocketException when it cannot create the
datagram socket or bind the datagram socket to a local port.

After an application instantiates DatagramSocket, it calls void
send(DatagramPacket dgp) and void receive(DatagramPacket dgp) to send
and receive datagram packets.

Listing B-3 demonstrates DatagramPacket and DatagramSocket in a server
context.

Listing B-3. Receiving Datagram Packets from and Echoing Them Back to Clients

import java.io.IOException;

import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.SocketException;

public class DGServer
{
 final static int PORT = 10000;

 public static void main(String[] args) throws SocketException
 {
 System.out.println("Server is starting");

Note Additional constructors let you specify an offset into buf that identifies
the storage location of the first outgoing or incoming byte, and/or let you specify
a destination socket address.

APPENDIX B: Sockets and Network Interfaces

497

 DatagramSocket dgs = new DatagramSocket(PORT);
 try
 {
 System.out.println("Send buffer size = " +
 dgs.getSendBufferSize());
 System.out.println("Receive buffer size = " +
 dgs.getReceiveBufferSize());
 byte[] data = new byte[100];
 DatagramPacket dgp = new DatagramPacket(data, data.length);
 while (true)
 {
 dgs.receive(dgp);
 System.out.println(new String(data));
 dgs.send(dgp);
 }
 }
 catch (IOException ioe)
 {
 System.err.println("I/O error: " + ioe.getMessage());
 }
 }
}

Listing B-3’s main() method first creates a DatagramSocket object and binds
the socket to port 10000 on the local host. It then invokes DatagramSocket’s
int getSendBufferSize() and int getReceiveBufferSize() methods to get
the values of the SO_SNDBUF and SO_RCVBUF socket options, which are then
output.

Note Sockets are associated with underlying platform send and receive
buffers, and their sizes are accessed by calling getSendBufferSize() and
getReceiveBufferSize(). Similarly, their sizes can be set by calling
DatagramSocket’s void setReceiveBufferSize(int size) and void
setSendBufferSize(int size) methods. Although you can adjust these
buffer sizes to improve performance, there’s a practical limit with regard to UDP.
The maximum size of a UDP packet that can be sent or received is 65,507 bytes
under IPv4—it’s derived from subtracting the 8-byte UDP header and 20-byte IP
header values from 65,535. Although you can specify a send/receive buffer with
a greater value, doing so is wasteful because the largest packet is restricted to
65,507 bytes. Also, attempting to send or receive a packet with a buffer length
that exceeds 65,507 bytes results in IOException.

APPENDIX B: Sockets and Network Interfaces498

main() next instantiates DatagramPacket in preparation for receiving a
datagram packet from a client and then echoing the packet back to the
client. It assumes that packets will be 100 bytes or less in size.

Finally, main() enters an infinite loop that receives a packet, outputs packet
content, and sends the packet back to the client. The client’s addressing
information is stored in DatagramPacket.

Compile Listing B-3 as follows:

javac DGServer.java

Run the resulting application as follows:

java DGServer

You should observe output that’s the same as or similar to that shown here:

Server is starting
Send buffer size = 8192
Receive buffer size = 8192

Listing B-4 demonstrates DatagramPacket and DatagramSocket in a client
context.

Listing B-4. Sending a Datagram Packet to and Receiving It Back from a Server

import java.io.IOException;

import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.InetAddress;
import java.net.SocketException;

public class DGClient
{
 final static int PORT = 10000;
 final static String ADDR = "localhost";

 public static void main(String[] args) throws SocketException
 {
 System.out.println("client is starting");
 DatagramSocket dgs = new DatagramSocket();
 try
 {
 byte[] buffer;
 buffer = "Send me a datagram".getBytes();
 InetAddress ia = InetAddress.getByName(ADDR);

APPENDIX B: Sockets and Network Interfaces

499

 DatagramPacket dgp = new DatagramPacket(buffer, buffer.length,
 ia, PORT);
 dgs.send(dgp);
 byte[] buffer2 = new byte[100];
 dgp = new DatagramPacket(buffer2, buffer.length, ia, PORT);
 dgs.receive(dgp);
 System.out.println(new String(dgp.getData()));
 }
 catch (IOException ioe)
 {
 System.err.println("I/O error: " + ioe.getMessage());
 }
 }
}

Listing B-4 is similar to Listing B-3, but there’s one big difference. I use
the DatagramPacket(byte[] buf, int length, InetAddress address, int
port) constructor to specify the server’s destination, which happens to be
port 10000 on the local host, in the datagram packet. The send() method
call routes the packet to this destination.

Compile Listing B-4 as follows:

javac DGClient.java

Run the resulting application as follows:

java DGClient

Assuming that DGServer is also running, you should observe the following
output in DGClient’s command window (and the last line of this output in
DGServer’s command window):

client is starting
Send me a datagram

MulticastSocket describes a socket for the client or server side of a
UDP-based multicasting session. Two commonly used constructors are
MulticastSocket() (create a multicast socket not bound to a port) and
MulticastSocket(int port) (create a multicast socket bound to the
specified port). Either constructor throws IOException when an I/O error
occurs.

APPENDIX B: Sockets and Network Interfaces500

WHAT IS MULTICASTING?

Previous examples have demonstrated unicasting, which occurs when a server sends a
message to a single client. However, it’s also possible to broadcast the same message to
multiple clients (such as transmit a “school closed due to bad weather” announcement to all
members of a group of parents who have registered with an online program to receive this
announcement); this activity is known as multicasting.

A server multicasts by sending a sequence of datagram packets to a special IP address,
which is known as a multicast group address, and a specific port (as specified by a port
number). Clients wanting to receive these datagram packets create a multicast socket that
uses this port number. They request to join the group through a join group operation that
specifies the special IP address. At this point, the client can receive datagram packets sent
to the group and can even send datagram packets to other group members. After the client
has read all datagram packets that it wants to read, it removes itself from the group by
applying a leave group operation that specifies the special IP address.

IPv4 addresses 224.0.0.1 to 239.255.255.255 (inclusive) are reserved for use as multicast
group addresses.

Listing B-5 presents a multicasting server.

Listing B-5. Multicasting Datagram Packets

import java.io.IOException;

import java.net.DatagramPacket;
import java.net.InetAddress;
import java.net.MulticastSocket;

public class MCServer
{
 final static int PORT = 10000;

 public static void main(String[] args)
 {
 try
 {
 MulticastSocket mcs = new MulticastSocket();
 InetAddress group = InetAddress.getByName("231.0.0.1");
 byte[] dummy = new byte[0];
 DatagramPacket dgp = new DatagramPacket(dummy, 0, group, PORT);
 int i = 0;

APPENDIX B: Sockets and Network Interfaces

501

 while (true)
 {
 byte[] buffer = ("line " + i).getBytes();
 dgp.setData(buffer);
 dgp.setLength(buffer.length);
 mcs.send(dgp);
 i++;
 }
 }
 catch (IOException ioe)
 {
 System.err.println("I/O error: " + ioe.getMessage());
 }
 }
}

Listing B-5’s main() method first creates a MulticastSocket instance via
the MulticastSocket() constructor. The multicast socket doesn’t need to
bind to a port number because the port number is specified along with
the multicast group’s IP address (231.0.0.1) as part of the DatagramPacket
instance that’s subsequently created. (The dummy array is present to prevent
a NullPointerException object from being thrown from the DatagramPacket
constructor—this array isn’t used to store data to be broadcasted.)

At this point, main() enters an infinite loop that first creates an array of bytes
from a java.lang.String object, and it uses the platform’s default character
encoding to convert from Unicode characters to bytes. (Although extraneous
java.lang.StringBuilder and String objects are created via expression
"line " + i in each loop iteration, I’m not worried about their impact on
garbage collection in this short throwaway application.)

This data buffer is subsequently assigned to the DatagramPacket object by
calling its void setData(byte[] buf) method, and then the datagram packet
is broadcast to all members of the group associated with port 10000 and
multicast IP address 231.0.0.1.

Compile Listing B-5 as follows:

javac MCServer.java

Run the resulting application as follows:

java MCServer

You shouldn’t observe any output.

APPENDIX B: Sockets and Network Interfaces502

Listing B-6 presents a multicasting client.

Listing B-6. Receiving Multicasted Datagram Packets

import java.io.IOException;

import java.net.DatagramPacket;
import java.net.InetAddress;
import java.net.MulticastSocket;

public class MCClient
{
 final static int PORT = 10000;

 public static void main(String[] args)
 {
 try
 {
 MulticastSocket mcs = new MulticastSocket(PORT);
 InetAddress group = InetAddress.getByName("231.0.0.1");
 mcs.joinGroup(group);
 for (int i = 0; i < 10; i++)
 {
 byte[] buffer = new byte[256];
 DatagramPacket dgp = new DatagramPacket(buffer, buffer.length);
 mcs.receive(dgp);
 byte[] buffer2 = new byte[dgp.getLength()];
 System.arraycopy(dgp.getData(), 0, buffer2, 0, dgp.getLength());
 System.out.println(new String(buffer2));
 }
 mcs.leaveGroup(group);
 }
 catch (IOException ioe)
 {
 System.err.println("I/O error: " + ioe.getMessage());
 }
 }
}

Listing B-6’s main() method first creates a MulticastSocket instance bound
to port 10000 via the MulticastSocket(int port) constructor. It then
obtains an InetAddress object that contains multicast group IP address
231.0.0.1 and uses this object to join the group at this address by calling
MulticastSocket’s void joinGroup(InetAddress mcastaddr) method.

main() next receives 10 datagram packets, prints their contents, and leaves
the group by calling MulticastSocket’s void leaveGroup(InetAddress
mcastaddr) method with the same multicast IP address as its argument.

Note joinGroup() and leaveGroup() throw IOException when an I/O
error occurs while attempting to join or leave the group or when the IP address
is not a multicast IP address.

APPENDIX B: Sockets and Network Interfaces

503

Because the client doesn’t know exactly how long the arrays of bytes will
be, it assumes 256 bytes to ensure that the data buffer will hold the entire
array. If it tried to print out the returned array, you would see a lot of empty
space after the actual data had been printed.

To eliminate this space, the client invokes DatagramPacket’s int getLength()
method to obtain the actual length of the array, creates a second byte array
(buffer2) with this length, and uses System.arraycopy() to copy this many
bytes to buffer2. After converting this byte array to a String object (via the
String(byte[] bytes) constructor, which uses the platform’s default
character set), it prints the resulting characters to the standard output stream.

Compile Listing B-6 as follows:

javac MCClient.java

Run the resulting application as follows:

java MCClient

You should observe output similar to the following:

line 462615
line 462616
line 462617
line 462618
line 462619
line 462620
line 462621
line 462622
line 462623
line 462624

Network Interfaces
The NetworkInterface class represents a network interface in terms of a
name (such as le0) and a list of IP addresses assigned to this interface.
Although a network interface is often implemented on a physical NIC, it also
can be implemented in software; for example, the loopback interface (which
is useful for testing a client).

Listing B-6 presents a multicasting client.

Listing B-6. Receiving Multicasted Datagram Packets

import java.io.IOException;

import java.net.DatagramPacket;
import java.net.InetAddress;
import java.net.MulticastSocket;

public class MCClient
{
 final static int PORT = 10000;

 public static void main(String[] args)
 {
 try
 {
 MulticastSocket mcs = new MulticastSocket(PORT);
 InetAddress group = InetAddress.getByName("231.0.0.1");
 mcs.joinGroup(group);
 for (int i = 0; i < 10; i++)
 {
 byte[] buffer = new byte[256];
 DatagramPacket dgp = new DatagramPacket(buffer, buffer.length);
 mcs.receive(dgp);
 byte[] buffer2 = new byte[dgp.getLength()];
 System.arraycopy(dgp.getData(), 0, buffer2, 0, dgp.getLength());
 System.out.println(new String(buffer2));
 }
 mcs.leaveGroup(group);
 }
 catch (IOException ioe)
 {
 System.err.println("I/O error: " + ioe.getMessage());
 }
 }
}

Listing B-6’s main() method first creates a MulticastSocket instance bound
to port 10000 via the MulticastSocket(int port) constructor. It then
obtains an InetAddress object that contains multicast group IP address
231.0.0.1 and uses this object to join the group at this address by calling
MulticastSocket’s void joinGroup(InetAddress mcastaddr) method.

main() next receives 10 datagram packets, prints their contents, and leaves
the group by calling MulticastSocket’s void leaveGroup(InetAddress
mcastaddr) method with the same multicast IP address as its argument.

Note joinGroup() and leaveGroup() throw IOException when an I/O
error occurs while attempting to join or leave the group or when the IP address
is not a multicast IP address.

APPENDIX B: Sockets and Network Interfaces504

Table B-1 presents NetworkInterface’s methods.

Table B-1. NetworkInterface Methods

Method Description

boolean equals(Object obj) Compare this NetworkInterface object with obj.
The result is true if and only if obj isn’t null and
represents the same network interface as this
object. (Two NetworkInterface objects represent
the same network interface when their names and
addresses are the same.)

static NetworkInterface
getByInetAddress(InetAddress
address)

Return the NetworkInterface corresponding to
the given address or null when no interface has
this address. This method throws SocketException
when an I/O error occurs and NullPointerException
when address is null.

static NetworkInterface
getByName(String
interfaceName)

Return the NetworkInterface with the specified
name, or return null when there’s no such network
interface. This method throws SocketException
on an I/O error and NullPointerException when
interfaceName is null.

String getDisplayName() Return this network interface’s display name (a
human-readable string describing the network
device).

byte[] getHardwareAddress() Return an array of bytes containing this network
interface’s hardware address, which is often
referred to as the media access control (MAC)
address. When the interface doesn’t have a
MAC address, or when the address cannot be
accessed (perhaps the user doesn’t have sufficient
privileges), the method returns null. This method
throws SocketException when an I/O error occurs.

(continued)

Note A network interface is the point of interconnection between a computer
and a private or public network. It’s generally a network interface card (NIC),
but doesn’t need a physical form. Instead, it can be implemented in software.
For example, the loopback interface (127.0.0.1 for IPv4 and ::1 for IPv6) isn’t
a physical device but a piece of software simulating a network interface. The
loopback interface is commonly used in test environments.

APPENDIX B: Sockets and Network Interfaces

505

Table B-1. (continued)

Method Description

Enumeration<InetAddress>
getInetAddresses()

Return an enumeration (the results of an iteration)
with all or a subset of the addresses bound to this
network interface.

List<InterfaceAddress>
getInterfaceAddresses()

Return a java.util.List containing this network
interface’s InterfaceAddresses.

int getMTU() Return this network interface’s maximum
transmission unit (MTU). This method throws
SocketException when an I/O error occurs.

String getName() Return this network interface’s name (such as
eth0 or lo).

static
Enumeration<NetworkInterface>
getNetworkInterfaces()

Return all of the network interfaces on this
machine, or return null when no network
interfaces could be found. This method throws
SocketException when an I/O error occurs.

NetworkInterface getParent() Return this network interface’s parent
NetworkInterface when this network interface is a
subinterface. When this network interface has no
parent, or when it’s a physical (nonvirtual)
interface, this method returns null. (A physical
network interface can be logically divided into
multiple virtual subinterfaces, which are commonly
used in routing and switching. These subinterfaces
can be organized into a hierarchy where the
physical network interface serves as the root.)

Enumeration<NetworkInterface>
getSubInterfaces()

Return an enumeration containing the virtual
subinterfaces that are attached to this network
interface. For example, eth0:1 is a subinterface of
eth0.

int hashCode() This method is overridden because equals() is
overridden.

boolean isLoopback() Return true when this network interface reflects
outgoing data back to itself as incoming data.
This method throws SocketException when an I/O
error occurs.

boolean isPointToPoint() Return true when this network interface is point-
to-point (such as a PPP connection through a
modem). This method throws SocketException
when an I/O error occurs.

(continued)

APPENDIX B: Sockets and Network Interfaces506

You can use these methods to gather useful information about your
platform’s network interfaces. For example, Listing B-7 presents an
application that iterates over all network interfaces, invoking the methods
listed in Table B-1 that:

	Obtain the network interface’s name and display name

	Determine if the network interface is a loopback
interface

	Determine if the network interface is up and running

	Obtain the MTU

	Determine if the network interface supports multicasting

	Enumerate all of the network interface’s virtual
subinterfaces

Table B-1. (continued)

Method Description

boolean isUp() Return true when this network interface is up
(routing entries have been established) and
running (platform resources have been allocated).
This method throws SocketException when an I/O
error occurs.

boolean isVirtual() Return true when this network interface is a
virtual subinterface. On some platforms, virtual
subinterfaces are network interfaces created as
children of a physical network interface and given
different settings (such as address or MTU).
Usually, the name of the interface will be the name
of the parent followed by a colon (:) and a number
identifying the child because there can be several
virtual subinterfaces attached to a single physical
network interface.

boolean supportsMulticast() Return true when this network interface supports
multicasting. This method throws SocketException
when an I/O error occurs.

String toString() Return a string representation of this network
interface.

APPENDIX B: Sockets and Network Interfaces

507

Listing B-7. Enumerating All Network Interfaces

import java.net.NetworkInterface;
import java.net.SocketException;

import java.util.Collections;
import java.util.Enumeration;

public class NetInfo
{
 public static void main(String[] args) throws SocketException
 {
 Enumeration<NetworkInterface> eni;
 eni = NetworkInterface.getNetworkInterfaces();
 for (NetworkInterface ni: Collections.list(eni))
 {
 System.out.println("Name = " + ni.getName());
 System.out.println("Display Name = " + ni.getDisplayName());
 System.out.println("Loopback = " + ni.isLoopback());
 System.out.println("Up and running = " + ni.isUp());
 System.out.println("MTU = " + ni.getMTU());
 System.out.println("Supports multicast = " +
 ni.supportsMulticast());
 System.out.println("Sub-interfaces");
 Enumeration<NetworkInterface> eni2;
 eni2 = ni.getSubInterfaces();
 for (NetworkInterface ni2: Collections.list(eni2))
 System.out.println(" " + ni2);
 System.out.println();
 }
 }
}

Tip The java.util.Collections class’s ArrayList<T>
list(Enumeration<T> enumeration) method is useful for converting a
legacy enumeration to a modern array list.

APPENDIX B: Sockets and Network Interfaces508

Compile Listing B-7 as follows:

javac NetInfo.java

Run the resulting application as follows:

java NetInfo

When I run NetInfo on my Windows 7 platform, I observe information that
begins with the following output:

Name = lo
Display Name = Software Loopback Interface 1
Loopback = true
Up and running = true
MTU = -1
Supports multicast = true
Sub-interfaces

Name = net0
Display Name = WAN Miniport (SSTP)
Loopback = false
Up and running = false
MTU = -1
Supports multicast = true
Sub-interfaces

The complete output reveals a different MTU size for a few network
interfaces. Each size represents the maximum length of a message that
can fit into an IP datagram without needing to fragment the message into
multiple IP datagrams. This fragmentation has performance implications,
especially in the context of networked games. For this reason alone, the
getMTU() method is a valuable member of NetworkInterface.

The getInterfaceAddresses() method returns a list of InterfaceAddress
objects, with each object containing a network interface’s IP address along
with broadcast address and subnet mask (IPv4) or network prefix length
(IPv6).

Table B-2 presents InterfaceAddress’s methods.

APPENDIX B: Sockets and Network Interfaces

509

Listing B-8, which extends Listing B-7 (with a few lines removed),
enumerates all network interfaces, outputting their display names, and
enumerates each network interface’s interface addresses, outputting
interface address information.

Listing B-8. Enumerating All Network Interfaces and Interface Addresses

import java.net.InterfaceAddress;
import java.net.NetworkInterface;
import java.net.SocketException;

import java.util.Collections;
import java.util.Enumeration;
import java.util.Iterator;
import java.util.List;

Table B-2. InterfaceAddress Methods

Method Description

boolean equals(Object obj) Compare this InterfaceAddress object with obj.
Return true when obj is also an InterfaceAddress,
and when both objects contain the same
InetAddress, the same subnet masks/network
prefix lengths (depending on IPv4 or IPv6), and the
same broadcast addresses.

InetAddress getAddress() Return this InterfaceAddress’s IP address, as an
InetAddress object.

InetAddress getBroadcast() Return this InterfaceAddress’s broadcast address
(IPv4) or null (IPv6); IPv6 doesn’t support broadcast
addresses.

short
getNetworkPrefixLength()

Return this InterfaceAddress’s network prefix
length (IPv6) or subnet mask (IPv4). Oracle’s Java
documentation shows 128 (::1/128) and 10
(fe80::203:baff:fe27:1243/10) as typical IPv6
values. Typical IPv4 values are 8 (255.0.0.0), 16
(255.255.0.0), and 24 (255.255.255.0).

int hashCode() Return this InterfaceAddress’s hash code. The
hash code is a combination of the InetAddress’s
hash code, the broadcast address (when present)
hash code, and the network prefix length.

String toString() Return a string representation of this InterfaceAddress.
This representation has the form InetAddress /
network prefix length [broadcast address].

APPENDIX B: Sockets and Network Interfaces510

public class NetInfo
{
 public static void main(String[] args) throws SocketException
 {
 Enumeration<NetworkInterface> eni;
 eni = NetworkInterface.getNetworkInterfaces();
 for (NetworkInterface ni: Collections.list(eni))
 {
 System.out.println("Name = " + ni.getName());
 List<InterfaceAddress> ias = ni.getInterfaceAddresses();
 Iterator<InterfaceAddress> iter = ias.iterator();
 while (iter.hasNext())
 System.out.println(iter.next());
 System.out.println();
 }
 }
}

Compile Listing B-8 (javac NetInfo.java) and execute this application
(java NetInfo). When I run NetInfo on my Windows 7 platform, I observe
the following information:

Name = lo
/127.0.0.1/8 [/127.255.255.255]
/0:0:0:0:0:0:0:1/128 [null]

Name = net0

Name = net1

Name = net2

Name = ppp0

Name = eth0

Name = eth1

Name = eth2

Name = ppp1

Name = net3

Name = eth3
/x.x.x.x/24 [/x.x.x.x]
/x:x:x:x:x:x:x:x%eth3/64 [null]

APPENDIX B: Sockets and Network Interfaces

511

Name = net4
/x:x:x:x:x:x:x:x%net4/64 [null]

Name = eth4

Name = eth5
/x.x.x.x/24 [/x.x.x.x]
/x:x:x:x:x:x:x:x%eth5/64 [null]

Name = net5
/x:x:x:x:x:x:x:x%net5/128 [null]

Name = net6
/x:x:x:x:x:x:x:x%net6/128 [null]

Name = net7

Name = eth6

Name = eth7

Name = eth8

Name = eth9

Name = eth10

Name = eth11

Name = eth12

Name = eth13

Name = eth14

Using Network Interfaces with Sockets
NetworkInterface is useful for a multihomed system, which is a system
with multiple NICs. Using NetworkInterface, you can specify the NIC to use
for a specific network activity. For example, assume your machine has two
configured NICs and you want to send data to a server. You create a socket
as follows:

Socket socket = new Socket();
socket.connect(new InetSocketAddress(address, port));

APPENDIX B: Sockets and Network Interfaces512

Before sending the data, the operating system (OS) determines which
interface is to be used. However, if you have a preference or otherwise
need to specify the NIC to use, you can query the OS for the appropriate
interfaces and find an address on the interface you want to use. When you
create the socket and bind it to that address, the OS uses the associated
interface. Consider the following example:

NetworkInterface nif = NetworkInterface.getByName("bge0");
Enumeration<InetAddress> nifAddresses = nif.getInetAddresses();
Socket socket = new Socket();
socket.bind(new InetSocketAddress(nifAddresses.nextElement(), 0));
socket.connect(new InetSocketAddress(address, port));

You can also use NetworkInterface to identify the local interface on which a
multicast group is to be joined. Consider the following example:

NetworkInterface nif = NetworkInterface.getByName("bge0");
MulticastSocket ms = new MulticastSocket();
ms.joinGroup(new InetSocketAddress(hostname, port), nif);

These are just two of the many ways to use NetworkInterface with the
various Socket classes.

513

 ■A
accept() method, 182–183, 211
Access control lists (ACLs), 260
allocateDirect() method, 447
allocate() method, 447
American Standard Code

for Information
Interchange (ASCII), 113

append() method, 53, 116
array() method, 446
AsynchronousByteChannel

interface, 415
AsynchronousChannel, 389
AsynchronousChannelGroup

AsynchronousChannelGroupwith
CachedThreadPool, 411

AsynchronousChannelGroup
withFixedThreadPool, 411

AsynchronousChannelGroup
withThreadPool, 411

class methods, 411
default group, 410
java.nio.channels.

DefaultThreadPool.
initialSize, 411

java.nio.channels.
DefaultThreadPool.
threadFactory, 410

java.util.concurrent.
Executors class, 411

shutdown() method, 412
shutdownNow() method, 412
thread pool, 410

AsynchronousFileChannel
completed() method, 395
completion handler, 413
failed() method, 395
interrupt() method, 395
isDone() method, 393
lock() and tryLock() methods, 391
main() method, 392, 394
open() method, 390, 393
read() and write() methods, 391
reading bytes in

CompletionHandler
context, 393

reading bytes in
Future context, 392

thread pool, 413
void force, 391

Asynchronous I/O, 471
asynchronous

channel, 388–389, 395
asynchronous channel groups

(see Asynchronous
ChannelGroup)

asynchronous file channels (see
AsynchronousFileChannel)

asynchronous server
socket channel
(see AsynchronousServer
SocketChannel)

AsynchronousSocketChannel
(see Asynchronous
SocketChannel)

cancellation method, 389
CompletionHandler, 388, 415

Index

Index514

completion handler
argument, 388

java.nio.channels.
AsynchronousByte
Channel interface, 390

read() method, 390
AsynchronousServerSocketChannel

accept() method, 396, 400
buffer field, 399
channelClient field, 399
channelServer field, 398
clientAddr field, 399
completed() method, 400, 402
ConnectionHandler, 400
Connection handling, 399
exception handling, 398
getLocalAddress() method, 398
isReadMode field, 399
ReadWriteHandler, 401–402
Server application, 396

AsynchronousSocketChannel
buffer field, 406
channel field, 406
completed() method, 408
connect() methods, 403
exception handling, 406
execution, 409
isReadMode field, 406
mainThd field, 406
open() class method, 403
ReadWriteHandler classes, 404
ReadWriteHandler, 407–408
SocketAddress

getRemoteAddress()
methods, 403

available() method, 117

 ■B
Back reference, 224
bind() method, 182, 191
blockingLock() method, 181
boolean connect(SocketAddress

remoteAddr), 185

boolean find() method, 218
boolean finishConnect(), 186
boolean hasArray() method, 129
boolean hasRemaining()

method, 129
boolean isAcceptable() method, 207
boolean isBlocking() method, 180
boolean isConnectable()

method, 207
boolean isConnected()

method, 186, 189
boolean isConnection

Pending(), 186
boolean isDirect() method, 129
boolean isLoaded(), 174
boolean isOpen(), 150
boolean isReadable() method, 207
boolean isReadOnly() method, 129
boolean isShared(), 166
boolean isValid(), 166
boolean isWritable() method, 207
boolean lookingAt() method, 218
boolean matches() method, 218
boolean overlaps(long position,

long size), 167
boolean ready() method, 117
boolean valid(), 48
Buffers, 446

ByteBuffer class and allocate()
class method, 132

byte-oriented buffer, 128
creation

allocation method, 133, 135
buffer subclass’s duplicate()

method, 136
ByteBuffer’s

asxBuffer() methods, 136
wrapping method, 134–135

definition, 127
in depth

byte ordering, 143
creation. Buffer creation
direct byte buffers, 145
flipping, 139
mark() method, 141

Asynchronous I/O (cont.)

Index

515

subclass operations, 142
writing and reading, 136

java.nio package, 131
methods, 128
properties, 127–128

Buffer clear() method, 129
Buffer creation

allocation method, 133, 135
buffer subclass’s

duplicate() method, 136
ByteBuffer’s

asxBuffer() methods, 136
wrapping method, 134–135

BufferedReader, 121
BufferedWriter, 121
Buffer flip() method, 129
Buffer mark() method, 130
Buffer position method, 130
Buffer reset() method, 130
Buffer rewind() method, 130
ByteArrayOutputStream’s

toByteArray() method, 437
ByteBuffer encode(String s)

method, 235, 239
ByteChannel, 158
Bytes transferring, 177

 ■C
canExecute() method, 434
Central processing unit (CPU), 10
Channel-based IP multicasting

block() method, 424
channelClient’s output, 427
companion client

application, 426
datagram channel, 424
exclude-mode filtering, 424
first join() method, 423
include-mode filtering, 423
InetSocketAddress class, 424
MembershipKey, 423
multicast server, 425
second join() method, 423
SO_REUSEADDR option, 424

ChannelDemo class, 170
Channels, 449

copying bytes from
input channel to
output channel, 152

definition, 149
file channels, 158

locking files, 164
mapping files

into memory, 172
methods, 159
transferring bytes

among channels, 177
mapping files, 172
pipes, 195
scatter/gather I/O, 155
socket channels, 179

datagram channels, 189
nonblocking mode, 180
server, 182

Character buffer, 163
Character encoding, 114
Character set, 114
char readChar(), 45
CharsetDecoder

newDecoder(), 239
Charset defaultCharset()

factory method, 234
CharsetEncoder newEncoder(), 239
Charsets, 232, 455

byte sequences
ByteBuffer encode(String s)

method, 235, 239
encode() method, 234
encode characters, 233
isISOControl() methods, 235
isWhitespace() method, 235
main() method, 234
System.out.printf(), 235

character-encoding
scheme, 232

characters, 231
character set, 231
CharsetDecoder

newDecoder(), 239

Index516

CharsetEncoder
newEncoder(), 239

coded character set, 232
IANA, 233
ISO-8859-1, 233
String class

byte[] getBytes(), 240
byte[] getBytes(String

charsetName), 240
constructors, 239
source code, 240

Unicode, 231–232
US-ASCII, 233
UTF-8, 233
UTF-16, 233
UTF-16BE, 233
UTF-16LE, 233

close() method, 53, 245
Code point, 231
compact() method, 154, 448
compile(String) method, 217
configureBlocking(), 181
connect() method, 186–187
connect()/second

open() method, 187
copyAlt() method, 154
Copy() method, 154

ATOMIC_MOVE, 335
COPY_ATTRIBUTES, 335, 337
flush() method, 336
long copy() method,

input stream, 334
long copy() method,

output stream, 334
NOFOLLOW_LINKS, 338
Path copy() method, 334
REPLACE_EXISTING, 335, 338
SavePage application, 335
source to file output, 336
source to target path, 338
visitFile() method, 361
walkFileTree() method, 361

createFile() method, 463

 ■D
DatagramChannel

connect(SocketAddress
remoteAddr), 189

DatagramChannel disconnect(), 189
Datagram channels, 189, 419

to implement stock
ticker client, 194

to implement stock
ticker server, 192

DatagramSocket socket(), 189
defaultCharset()

factory method, 456
deleteOnExit() method, 36
Direct byte buffer, 154, 157, 163
Direct Memory Access (DMA), 9
dumpRecords() helper method, 56

 ■E
Employee class

Formattable
implementation, 252

FormatterDemo application, 250
name and number, 250

encode() method, 234
Exclusive lock, 164–165

methods for obtaining, 165

 ■F
File’s createNewFile() method, 433
File’s delete() method, 458
File’s deleteOnExit() method, 434
File’s exists() method, 433
File’s getCanonicalFile()

method, 434
File’s lastModified() method, 433
File’s listRoots() method, 433
File, 432

abstract path information, 23
and directories, 30
boolean createNewFile(), 34
boolean delete(), 34

Charsets (cont.)

Index

517

boolean isAbsolute(), 23
boolean mkdir(), 35
boolean mkdirs(), 35
boolean renameTo(File dest), 35
boolean setExecutable, 37
boolean setLast

Modified(long time), 35
boolean setReadable, 37
boolean setWritable, 38
disk space information, 28
File getAbsoluteFile(), 22
File getCanonicalFile(), 22
File getParentFile(), 23
file system root directories, 27
miscellaneous methods, 39
path’s file/directory, 25
setReadOnly() method, 37
static File createTempFile, 34
String getAbsolutePath(), 22
String getCanonicalPath(), 22
String getName(), 23
String getParent(), 23
String getPath(), 23
String toString(), 23
temporary files, 36
void deleteOnExit(), 34

FileChannel channel(), 166
FileChannel position

(long newPosition), 160
File channels, 158

locking, 164
per-file basis, 165
smaller regions, 164

mapping files into memory, 172
methods, 159
transferring bytes

among channels, 177
FileChannel’s lock() method, 450
FileChannel truncate(long size), 161
FileChannel’s tryLock() method, 450
FileDescriptor’s sync() method, 435
FileDescriptor getFD(), 45
FileLock lock()

method, 165–166, 450

FileLock lock(long position, long
size, boolean shared), 165

File locks, 164
releasing, 167

FileLock tryLock(), 166
FileLock tryLock(long position, long

size, boolean shared), 166
FileReader, 119
File system interface, 259, 458

attributes, 276
AclFileAttributeView

interface, 277, 297
BasicFileAttributeView

interface, 277, 281
DosFileAttributeView

interface, 277, 287
FileAttributeView, 281
FileOwnerAttributeView

interface, 277, 294
FileStoreAttributeView, 303
getAttribute() method, 276
getFileAttributeView()

method, 280
isSupported() utility

method, 280
PosixFileAttributeView

interface, 277, 290
readAttributes() method, 276
setAttribute() method, 276
supportedFileAttribute

Views() method, 278
UserDefinedFileAttributeView

interface, 277, 300
checking paths

absolute and
relative paths, 308

boolean exists()
method, 305

boolean isDirectory()
method, 305

boolean isExecutable()
method, 306

boolean isHidden()
method, 306

Index518

boolean isReadable()
method, 306

boolean isRegularFile()
method, 306

boolean isSameFile()
method, 306

boolean isWritable()
method, 306

boolean notExists()
method, 305

code implementation, 307
copy() method

(see Copy() method)
createDirectory()

method, 325
createFile() method, 309
createTempDirectory()

method, 327
createTempFile()

method, 311
delete() method, 342
deleteOnExit() method, 312
DirectoryStream, 329
move() method, 339
random access, 320
read files, 313
SeekableByteChannel, 320
shutdown hook, 312, 328
write files, 317

delete() method, 259
FileStore, 274

boolean isReadOnly
method, 274

code implementation, 275
default file system, 276
getFileStore() method, 276
long getTotalSpace()

method, 274
long getUnallocatedSpace()

method, 274
long getUsableSpace()

method, 274
String name() method, 274
String type() method, 274

FileSystem, 261
FileSystemProvider, 262
File Tree-Walking API, 351

CONTINUE constant, 352
copy() method, 357
delete() method, 365
FileVisitResult

postVisitDirectory()
method, 352

FileVisitResult
preVisitDirectory()
method, 352

FileVisitResult
visitFileFailed() method, 352

FileVisitResult visitFile()
method, 352

find() method, 371
lines() method, 373
move() method, 367
SimpleFileVisitor, 353
SKIP_SIBLINGS

constant, 352
SKIP_SUBTREE

constant, 352
TERMINATE constant, 352

getDefault()
class method, 261

hard link, 349
installedProviders()

class method, 263
packages, 260
path matchers, 374

code implementation, 376
glob expressions, 374
JDK documentation, 375

paths, 263
additional methods, 271
code implementation, 266
File toFile() method, 264
getFileSystem

method, 263
getPath() method, 264
getRootDirectories()

method, 267
getSeparator() method, 264

File system interface (cont.)

Index

519

int getNameCount()
method, 266

InvalidPathException, 265
isAbsolute() method, 267
normalize() method, 269
Path getFileName()

method, 266
Path getName() method, 266
Path getParent()

method, 266
Path getRoot() method, 266
Path subpath() method, 266
Path toPath() method, 264
relative paths, 267
resolve() method, 269, 271
relativize method, 269
String toString() method, 269
toAbsolutePath()

method, 268
renameTo() method, 260
symbolic link, 343
Watch Service API

code implementation, 379
creation, 378
performance, 378
pollEvents() method, 379
register() method, 379
reset() method, 379
take() method, 379
types, 377

File toFile() method, 459
FileWriter, 119
finishConnect()

method, 185, 187–188
Flat file database

append() method, 53
close() method, 53
definition, 49
dumpRecords()

helper method, 56
experiments, 54
implementation, 50
java UsePartsDB, 56
numRecs() method, 53
PartsDB class, 53

select() method, 53
update() method, 53

flip() method, 446
flush() method, 245
force(boolean) method, 161
Formatter’s Appendable

out() method, 243
Formatter, 457

argument_index, 244
conversions, 245
close() method, 245
constructors, 243
flags, 244
flush() method, 245
format specifiers, 245
Formattable and

FormattableFlags
employee class

(see Employee class)
formatTo, 250
parameters, 249

Formatter’s Appendable
out() method, 243

precision, 244
printf() functions, 243, 248
PrintStream, 248
width, 244

 ■G
GatheringByteChannel, 156–158
getAttribute() method, 462
getBytes() method, 456
getChannel()

method, 158, 179, 186
getFD() method, 47
getFileStores() method, 461
get() method, 173, 198
getName() method, 433
getParent() method, 433
getRemoteAddress() method, 472
getRootDirectories() method, 459

 ■H
Holes, in file channels, 162

Index520

 ■I
Input and output (I/O)

asynchronous I/O, 14
buffers, 9
channels, 10
Charset class, 13
file content, random access, 5
file input stream, 5
file system, 3
file system interface, 14
FileWriter and

FileReader classes, 8
formatter, 13
JDK 1.0’s I/O capabilities, 8
NIO, 8
NIO.2, 13
output and input streams, 6
regular expressions, 12
selectors, 11
socket channel functionality, 14
stream classes

and standard I/O, 8
InputStreamReader class, 117
InputStream’s

mark(int) method, 437
InputStream’s reset() methods, 437
int arrayOffset(), 129
int capacity() method, 129
Integer.parseInt() method, 211
Internet Assigned Names

Authority (IANA), 233
Internet Protocol

Version 4 (IPv4), 482
Internet Protocol

Version 6 (IPv6), 482
interrupt() method, 151
InterruptibleChannel, 151–152, 158
int getNameCount() method, 459
int limit() method, 130
int position() method, 130
int read(), 45
int read(byte[] b), 45
int read(ByteBuffer buffer)

method, 150, 160

int read(ByteBuffer dst,
long position), 160

int readInt(), 46
int readyOps() method, 207
int remaining() method, 130
int select(long timeout) method, 206
int select() method, 206
int selectNow() method, 206
int send(ByteBuffer buffer,

SocketAddress
destAddr), 190

int skipBytes(int n), 46
int validOps() method, 207
int write(ByteBuffer buffer)

method, 150, 161
int write(ByteBuffer src,

long position), 161
I/O Basics, 431
isAbsolute() method, 459
isDirectory() method, 463
isISOControl() methods, 235
ISO-8859-1, 455
ISO/IEC 8859, 114
isReadable() method, 453
isRelative() method, 459
isWhitespace() method, 235
iterator() method, 207

 ■J
java.io.RandomAccessFile, 152
java.net.Socket, 152

 ■K
key.isReadable(), 209
key.isWritable(), 209

 ■L
lock() method, 170
long getFilePointer(), 45
long length(), 45
long position(), 159, 167
long size(), 160, 167
lookingAt() method, 454

Index

521

 ■M
main() method, 234, 240, 246, 248
map() method, 172–173, 176
MappedByteBuffer, 174
MappedByteBuffer force(), 175
MappedByteBuffer load(), 174
Matcher

application’s
source code, 219

boolean find(), 218
boolean lookingAt(), 218
boolean matches(), 218
boundary matcher, 224
zero-length matches, 225

Matcher’s matches()
method, 454

matches() method, 217
Multicasting. See Channel-based

multicasting

 ■N
NetworkChannel, 417
Network Interfaces

definition, 503
enumeration, 507, 509
InterfaceAddress methods, 509
method, 504
NetInfo, 508, 510
sockets, 511

newFileSystem() methods, 458
newLine() method, 445
numRecs() method, 53

 ■O
Object array() method, 129
Object blockingLock() method, 180
open() factory method, 182
open() method, 186, 191
OutputStream’s close() method, 437
OutputStream’s flush() method, 437
OutputStreamWriter class, 117

 ■P
Path getFileName() method, 459
Path getParent() method, 459
Path getRoot() method, 459
Path toPath() method, 459
Pattern’s compile() methods, 217
Pattern method, 215, 219
PatternSyntaxException

Methods, 217, 219
Pipe open(), 196
Pipes, 195
position() method, 161
position(long newPosition)

method, 161
PrintStream, 61
relative put() method, 447
put() method, 163, 173

 ■Q
query() method, 171

 ■R
RandomAccessFile, 435

char readChar(), 45
FileDescriptor, 47

boolean valid(), 48
void sync(), 48

FileDescriptor getFD(), 45
flat file database

append() method, 53
close() method, 53
definition, 49
dumpRecords()

helper method, 56
experiments, 54
implementation, 50
java UsePartsDB, 56
numRecs() method, 53
PartsDB class, 53
select() method, 53
update() method, 53

Index522

int read(), 45
int read(byte[] b), 45
int readInt(), 46
int skipBytes(int n), 46
long getFilePointer(), 45
long length(), 45
pointer, 44
void close(), 45
void seek(long pos), 46
void setLength

(long newLength), 46
void write(byte[] b), 46
void writeChars(String s), 47
void write(int b), 47
void writeInt(int i), 47

ReadableByte
Channel, 150–151, 157

ReadableByteChannel
newChannel(InputStream
inputStream), 152

readAttributes() method, 462
Reader classes. See Writer and

reader classes
Readiness selection, 203–204
readObject() method, 439
receive() method, 191
Regular expression

capturing group, 223
character class

command line reports, 223
intersection, 222
negation, 221
predefined, 222
range, 221
simple, 221
subtraction, 222
union, 222

definition, 215
Matcher

application’s
source code, 219

boolean find(), 218
boolean lookingAt(), 218
boolean matches(), 218

boundary matcher, 224
zero-length matches, 225

pattern method, 215, 219
PatternSyntaxException

Methods, 217, 219
practical use, 228
quantifier

greedy, 225–227
possessive, 225–226, 228
reluctant, 225–227

Regular expressions, 453
relative get() method, 447
reset() method, 446
run() method, 198

 ■S
Scatter/gather I/O, 155
ScatteringByteChannel, 156–158
SeekableByteChannel, 320
select() method, 53, 206–207, 211
SelectableChannel class, 180
SelectableChannel channel()

method, 207
SelectableChannel

configureBlocking
(boolean block), 180

Selectable channels, 204–205
registering, 205

SelectionKey, 204, 206
interest set, 204
ready set, 204

SelectionKey register
(Selector sel, int ops), 205

SelectionKey register(Selector sel,
int ops, Object att), 205

Selector open() class method, 205
Selectors, 204, 453

creating, 205
demonstration, 209
fundamentals, 204
server application of, 209

Selector selector() method, 207
SelectorServer class, 210
send() method, 191

RandomAccessFile (cont.)

Index

523

Server socket
channels, 182, 209, 211, 419

ServerSocket socket(), 182
setAttribute() method, 462
Set<SelectionKey> selectedKeys()

method, 207
setOwner() method, 462
Shared lock, 164–165

methods for obtaining, 165
shutdownNow() method, 473
Simple Mail Transfer

Protocol (SMTP), 482
sink() method, 198
SinkChannel sink(), 196
socket() method, 179, 186, 191
Socket accept() method, 180
SocketAddress receive

(ByteBuffer buffer), 189
SocketChannel, 419
SocketChannel accept(), 182
Socket channel functionality, 475

binding and option configuration
channelClient output, 422
channelServer

application, 419
DatagramChannel, 419
NetworkChannel’s

methods, 417
ServerSocketChannel, 419
SocketChannel, 419
supported options, 420–421

channel-based IP multicasting
block() method, 424
channelClient’s output, 427
companion client

application, 426
datagram channel, 424
exclude-mode filtering, 424
first join() method, 423
include-mode filtering, 423
InetSocketAddress class, 424
MembershipKey, 423
multicast server, 425
second join() method, 423
SO_REUSEADDR option, 424

Socket channels, 179
datagram channels, 189
nonblocking mode, 180
server, 182

socket() method, 182
Sockets

constructors, 488
DatagramSocket, 495
InetAddress[]

getAllByName, 485
InetAddress getByAddress, 485
InetAddress getByName, 485
InetAddress getLocalHost, 485
IP addresses, 482
IP_MULTICAST_IF, 486
IP_MULTICAST_IF2, 486
IP_MULTICAST_LOOP, 486
IP_TOS, 486
MulticastSocket, 502
port number, 482
processes communication, 483
ServerSocket

constructors, 489
EchoClient, 492
echoing data, 491
EchoServer, 494
port 9999, 492

SO_BINDADDR, 486
SO_BROADCAST, 486
SO_KEEPALIVE, 486
SO_LINGER, 486
SO_OOBINLINE, 487
SO_RCVBUF, 487
SO_REUSEADDR, 487
SO_SNDBUF, 487
SO_TIMEOUT, 487
TCP_NODELAY, 487

Socket socket(), 185
source() method, 198
SourceChannel source(), 196
standard input stream, 107
static DatagramChannel open(), 189
static ServerSocket

Channel open(), 182
static SocketChannel open(), 184

Index524

static SocketChannel
open(InetSocketAddress
remoteAddr), 185

Streams, 203, 436
BufferedOutputStream and

BufferedInputStream, 84
ByteArrayInputStream

(byte[] ba), 65
ByteArrayOutputStream(), 65
DataOutputStream and

DataInputStream, 86
default serialization and

deserialization
Employee object, 92
implementation, 90
mechanism, 94, 98
ObjectOutputStream

class, 90
performance, 89
problematic

deserialization, 98
readObject()

methods, 92, 101
security, 89
serialver user interface, 95
writeObject()

method, 91, 101
externalization, 101
FileOutputStream and

FileInputStream, 67
filter input stream

main() method, 83
makeMap() method, 83
read() method, 81
ScrambledInputStream, 80

filter output stream
file’s bytes, 76
main() method, 78
ScrambledOutputStream, 75
write(int) method, 76
write() methods, 75

in nonblocking mode, 203
InputStream Methods, 63

LineNumberInputStream, 60
output stream classes, 60
OutputStream Methods, 62
PipedOutputStream and

PipedInputStream, 71
printStream, 104
StringBufferInputStream, 60

String toString(), 167

 ■T
Text-processing applications, 215
toAbsolutePath() method, 459
toString() method, 246, 251
transferFrom() method, 177, 451
transferTo() method, 177–178, 451
truncate(long size) method, 162

 ■U
Unicode, 231–232
Unicode Transformation

Format (UTF), 114
Universal Naming

Convention (UNC), 20
update() method, 53, 170
US-ASCII, 455
UTF-8, 455
UTF-16, 455
UTF-16BE, 455
UTF-16LE, 455

 ■V
Vectored I/O. See Scattered I/O
Virtual memory, 172
void cancel() method, 209
void close()

method, 45, 150, 166, 209
void force(boolean metadata), 159
void release(), 167
void seek(long pos), 46
void setLength(long newLength), 46
void sync(), 48

Index

525

void write(byte[] b), 46
void writeChars(String s), 47
void write(int b), 47
void writeInt(int i), 47

 ■W, X, Y, Z
wakeup() method, 206, 209
wrap() method, 447
WritableByteChannel, 150–151, 157
WritableByteChannel

newChannel(OutputStream
outputStream), 152

write() methods, 116, 170, 198

writeObject() method, 439
Writer and reader classes, 444

append() methods, 116
available() method, 117
boolean ready() method, 117
BufferedReader, 121
BufferedWriter, 121
FileReader, 119
FileWriter, 119
hierarchy of, 114–115
InputStreamReader class, 117
int read(CharBuffer target), 117
OutputStreamWriter class, 117

	Contents at aGlance
	Contents
	About the Author
	About the TechnicalReviewers
	Acknowledgments
	Introduction
	Part I: Getting Started with I/O
	Chapter 1: I/O Basics and APIs
	 Classic I/O
	 File System Access and the File Class
	 Accessing File Content via RandomAccessFile
	 Streaming Data via Stream Classes
	Stream Classes and Standard I/O

	 JDK 1.1 and the Writer/Reader Classes

	 NIO
	 Buffers
	 Channels
	 Selectors
	 Regular Expressions
	 Charsets
	 Formatter

	 NIO.2
	 Improved File System Interface
	 Asynchronous I/ O
	 Completion of Socket Channel Functionality

	 Summary

	Part II: Classic I/O APIs
	Chapter 2: File
	 Constructing File Instances
	 Learning About Stored Abstract Paths
	 Learning About a Path’s File or Directory
	 Listing File System Root Directories
	 Obtaining Disk Space Information
	 Listing Directories
	 Creating/Modifying Files and Directories
	 Setting and Getting Permissions
	 Exploring Miscellaneous Capabilities
	 Summary

	Chapter 3: RandomAccessFile
	 Exploring RandomAccessFile
	 Using RandomAccessFile
	 Summary

	Chapter 4: Streams
	 Stream Classes Overview
	 Touring the Stream Classes
	 OutputStream and InputStream
	 ByteArrayOutputStream and ByteArrayInputStream
	 FileOutputStream and FileInputStream
	 PipedOutputStream and PipedInputStream
	 FilterOutputStream and FilterInputStream
	 BufferedOutputStream and BufferedInputStream
	 DataOutputStream and DataInputStream
	 Object Serialization and Deserialization
	Default Serialization and Deserialization
	Custom Serialization and Deserialization
	 Externalization

	 PrintStream

	 Revisiting Standard I/O
	 Summary

	Chapter 5: Writers and Readers
	 Writer and Reader Classes Overview
	 Writer and Reader
	 OutputStreamWriter and InputStreamReader
	 FileWriter and FileReader
	 BufferedWriter and BufferedReader
	 Summary

	Part III: New I/O APIs
	Chapter 6: Buffers
	 Introducing Buffers
	 Buffer and its Children
	 Buffers in Depth
	 Buffer Creation
	 Buffer Writing and Reading
	 Flipping Buffers
	 Marking Buffers
	 Buffer Subclass Operations
	 Byte Ordering
	 Direct Byte Buffers

	 Summary

	Chapter 7: Channels
	 Introducing Channels
	 Channel and Its Children
	 Channels in Depth
	 Scatter/Gather I/O
	 File Channels
	 Locking Files
	 Mapping Files into Memory
	 Transferring Bytes Among Channels

	 Socket Channels
	 Understanding Nonblocking Mode
	 Exploring Server Socket Channels
	Exploring Socket Channels
	 Exploring Datagram Channels

	 Pipes

	 Summary

	Chapter 8: Selectors
	 Selector Fundamentals
	 Selector Demonstration
	 Summary

	Chapter 9: Regular Expressions
	 Pattern, PatternSyntaxException, and Matcher
	 Character Classes
	 Capturing Groups
	 Boundary Matchers and Zero-Length Matches
	 Quantifiers
	 Practical Regular Expressions
	 Summary

	Chapter 10: Charsets
	 A Brief Review of the Fundamentals
	 Working with Charsets
	 Charsets and the String Class
	 Summary

	Chapter 11: Formatter
	 Exploring Formatter
	 Exploring Formattable and FormattableFlags
	 Summary

	Part IV: More New I/O APIs
	Chapter 12: Improved File System Interface
	 Architecting a Better File Class
	 File Systems and File System Providers

	 Locating Files with Paths
	 Getting a Path and Accessing Its Name Elements
	 Relative and Absolute Paths
	 Normalization, Relativization, and Resolution
	 Additional Capabilities

	 Performing File System Tasks with Files
	 Accessing File Stores
	 Managing Attributes
	Determining View Support
	 Exploring the Basic View
	Reading Basic File Attribute Values in Bulk
	Getting and Setting Single Basic File Attribute Values

	 Exploring the DOS View
	Reading DOS File Attribute Values in Bulk
	Getting and Setting Single DOS File Attribute Values

	 Exploring the POSIX View
	Reading POSIX File Attribute Values in Bulk
	Getting and Setting Single POSIX File Attribute Values

	 Exploring the File Owner View
	 Exploring the ACL View
	 Exploring the User-Defined View
	 Exploring the File Store View

	 Managing Files and Directories
	Checking Paths
	 Creating Files
	Creating and Deleting Temporary Files
	 Reading Files
	 Writing Files
	 Randomly Accessing Files
	 Creating Directories
	Creating and Deleting Temporary Directories
	 Listing Directory Content
	Copying Files
	 Moving Files
	 Deleting Files

	 Managing Symbolic and Hard Links
	Managing Symbolic Links
	 Managing Hard Links

	 Walking the File Tree
	Exploring the File Tree-Walking API
	 Copying a File Tree
	 Deleting a File Tree
	 Moving a File Tree

	 Working with Additional Capabilities

	 Using Path Matchers and Watch Services
	 Matching Paths
	 Watching Directories

	 Summary

	Chapter 13: Asynchronous I/O
	 Asynchronous I/O Overview
	 Asynchronous File Channels
	 Asynchronous Socket Channels
	 AsynchronousServerSocketChannel
	 AsynchronousSocketChannel

	 Asynchronous Channel Groups
	 What About AsynchronousFileChannel?

	 Summary

	Chapter 14: Completion of Socket Channel Functionality
	 Binding and Option Configuration
	 Channel-Based Multicasting
	 Summary

	Part V: Appendices
	Appendix A: Answers to Exercises
	 Chapter 1: I/O Basics and APIs
	 Chapter 2: File
	 Chapter 3: RandomAccessFile
	 Chapter 4: Streams
	 Chapter 5: Writers and Readers
	 Chapter 6: Buffers
	 Chapter 7: Channels
	 Chapter 8: Selectors
	 Chapter 9: Regular Expressions
	 Chapter 10: Charsets
	 Chapter 11: Formatter
	 Chapter 12: Improved File System Interface
	 Chapter 13: Asynchronous I/O
	 Chapter 14: Completion of Socket Channel Functionality

	Appendix B: Sockets and Network Interfaces
	 Sockets
	 Socket Addresses
	 Socket Options
	 Socket and ServerSocket
	 DatagramSocket and MulticastSocket

	 Network Interfaces
	 Using Network Interfaces with Sockets

	Index

