

JavaScript	in	Plain	Language
A	Self-Study	Method
JSON	and	AngularJS	Prep

by

Tony	de	Araujo
Technical	Instructor

	New	Jersey	–	USA

Fully	updated	on	October	2015

ALSO	BY	TONY	DE	ARAU	JO

JavaScript	Objects	Functions	and	Arrays	Explained

Small	Projects	to	Learn	JavaScript	-	Drawing	Six	‘Lucky’	Numbers

AngularJS	Supplement:	Easy	Projects	on	Filters	and	Directives

	

http://www.amazon.com/JavaScript-Objects-Functions-Arrays-Explained-ebook/dp/B00GDEPBZQ/
http://www.amazon.com/Small-Projects-Learn-JavaScript-Mastering-ebook/dp/B00H4P987A/
http://www.amazon.com/AngularJS-Supplement-Projects-Filters-Directives-ebook/dp/B016FOYH8A/

copyright	©	Tony	de	Araujo

All	Rights	Reserved

To	my	family	and	friends
all	my	readers,	Amazon	

and	Amazon	supporting	staff…
Thank	you	so	much!

This	eBook	works	best	when	using	the	free	Kindle	Reading	App	due	to	all	the	resources
given	and	all	the	linked	exercises.

You	can	download	an	Amazon	Kindle	Reading	App	from	the	following	link:

amazon.com/gp/digital/fiona/kcp-landing-page

https://www.amazon.com/gp/digital/fiona/kcp-landing-page

Table	of	Contents
Introduction

What	you	should	know	before	reading	this	material

What	is	JavaScript

PART	I:	AT	THE	GATES	OF	ENLIGHTENMENT

1.1	The	browser	interface

1.2	Material	and	tools	needed

1.3	Declaring	a	variable	–	an	alias	name	for	a	memory	location

About	var

About	the	variable	name

About	the	semicolon	;

Adding	data	to	variables

Changing	the	value	in	the	variable

Adding	words	to	a	variable	instead	of	numbers

Let’s	talk	about	strings

Which	quotes	to	use:	single	or	double?

Assigning	variables	to	other	variables

1.4	Lab	work	1

Opening	the	Console

Declaring	some	variables

Inspecting	the	data	type	of	a	variable

What	is	typeof?

Why	it	“undefined”	and	what	is	undefined?

1.5	Manipulating	variable	data

Methods	and	Properties

The	DOT	operator

The	Bracket	notation

An	example	of	a	method

What’s	with	the	parentheses	()	?

1.6	Lab	work	2

Declaring	variables,	assigning	values,	using	basic	properties	and	methods

1.7	Adding	some	more	JavaScript	operators

+,	-,	+=,	-=,	/,	/=,	%,	*,	*=

The	+	plus	operator

Using	the	+	plus	operator	to	add	two	numbers

Using	the	+=	assignment	operator

The	++	(double	plus)	incrementing	operator

The	–,	—	and	-=	subtraction	operators

The	Division	/	or	/=	Operators

The	Modulus	%	Operator

The	Multiplication	Operator	*

1.8	Lab	work	3

Part	one:		working	with	+,	+=	,	++	and	—

Part	two:	Working	with	*,		/,		*=,	/=	and	%

1.9	Comparison	operators	and	booleans

===,	!==,	<,	>,	<=,	>=	true,	false

What	is	a	Boolean?

1.10	Lab	work	4

Practicing	with	===,	!==,	<,	>,	<=,	>=	true,	false.

1.11	Introducing	console.log,	alert,	prompt,	confirm

The	console.log

alert()

confirm()	and	prompt()

1.12	Logical	Operators

And:	&&

Or:	||

Not:	!

1.13	Lab	work	5

Getting	feedback	from	a	user

PART	II:	ENTERING	THE	SECOND	REALM

2.1	Adding	more	syntax

Code	blocks	-	Using	an	editor

Commenting	code

2.2	Conditional	Branching

if,	else	conditionals

Reviewing	if(),	else

What	about	else?

Adding	a	second	condition	in	the	middle	of	if(),	else

How	to	physically	write	the	braces	in	a	conditional	statement

When	to	use	an	else	if()

Is	Programming	an	Art	or	a	Science?

2.3	The	anatomy	of	a	function

Preliminary	things	to	know	about	a	function

Scripting	a	function

What	is	a	function	call?

What	is	the	purpose	of	return?

What	happens	to	the	data	when	a	function	returns?

2.4	Lab	work	6

Create	a	program	to	convert	Fahrenheit	to	Celsius

Create	a	program	to	convert	Celsius	to	Fahrenheit

In	JavaScript	a	function	always	returns	something

A	program	to	convert	Fahrenheit	to/from	Celsius

2.5	Filling	out	a	form	to	request	a	loop

What	no	one	tells	you	about	loops

2.6	The	for	loop

2.7	Looping	over	a	string	of	characters

2.8	Lab	work	7

Searching	for	the	position	of	a	string	character

Counting	numbers	and	declaring	their	odd/even	quality

Counting	apples

2.9	Array	lists

Strings	versus	arrays

Array	syntax

Using	push()	and	unshift()	to	insert	elements	into	an	array

Printing	array	items	with	a	for	loop

2.10	Lab	work	8

Creating	a	method	to	add	items	into	an	array

Create	a	generic	method	to	print	out	the	contents	of	an	array

Extra	bonus:	Create	a	generic	method	to	add	items	into	an	array

2.11	Other	useful	arrays	methods

sort()

join()

indexOf()

pop()	and	shift()

slice()

splice()

Splice	lab	work

2.12	Lab	work	9

2.13	Lab	work	10

Building	a	mechanism	to	fetch	a	variable	from	an	array

Adding	French	to	the	array

Printing	out	the	array	contents

2.14	Unordered	lists

Hashes,	objects,	associative	arrays,	unordered	lists

Creating	an	object

Why	should	we	wrap	key	labels	in	double	quotes?

Assigning	new	key-value	pairs	to	objects

Using	dot	notation	with	objects

Spanning	an	object	declaration	across	multiple	lines

What	is	a	property?

What	is	a	method?

Looping	through	an	object

Introducing	the	for	in	loop

2.15	Lab	work	11	-	redo	lab	work	10

Transforming	the	for	in	loop	into	an	object	method

PART	III:	STRENGTHENING	THE	WARRIOR’S	ARSENAL

3.1	Taking	an	inventory	of	what	we’ve	learned

3.2	More	about	functions

What	are	expressions	and	statements?

Assigning	functions	to	variables

What	is	an	anonymous	function?

Using	variables	as	pointers

The	balloon	concept

Function	parameters	and	arguments

The	object	arguments

3.3	Manipulating	variables	with	functions

Passing	data	by	value

Passing	data	by	reference

Functions	are	closed-	in	structures

“This”	as	an	object	placeholder

3.4	Lab	work	12

Part	A:	Expressions,	statements,	arguments

Part	B:	Passing	data	by	value	and	by	reference

Part	C:	Find	and	replace	a	word	in	a	string

Part	D:	Using	a	function	to	save	and	recall	our	code

Part	E:	Making	the	search	and	replace	more	portable

3.5	More	branching	techniques

The	switch

3.6	Lab	work	13

13a:	Switch	-	using	Boolean	matches

13b:	Switch	-	using	literal	matches

13c:	A	repeating	switch	routine

13d:	Using	a	while	loop	to	repeat	the	script

PART	IV:		ENTERING	THE	THIRD	REALM

4.1	About	this	section

4.2	An	introduction	to	JSON

Use	jsonlint,	a	tool	to	check	JSON	validation

Assigning	a	JSON	object	to	a	variable

Editing	the	JSON	object

JSON	library	methods

JSON.stringify

Using	a	second	argument	as	a	filter	on	stringify

Using	a	third	argument	on	stringify()	for	controlling	white	space

JSON.parse

In	summary

Document-oriented	databases	for	JSON	data

PART	V:	DEFEATING	THE	DRAGON

5.3	First	solid	steps	into	AngularJS

Intro

Directives

What	is	a	library?

What	is	a	directive?

What	does	ng-app	mean?

No	more	DOM	manipulation	tasks

What	is	an	expression?

ng-init

ng-bind

ng-cloak:	Avoiding	display	flickering

5.4	Lab	work	14

Part	A:	Initializing	an	object	and	outputting	its	contents	in	a	paragraph

Part	B:	Initializing	variables	and	outputting	a	calculation

5.5	Going	a	step	further	into	modularity

Assigning	a	module	name	to	ng-app

Configuring	a	Module	interface

5.6	Preparing	to	separate	data	from	presentation

Creating	a	controller

$scope

View

Controller

Your	turn:	Add	a	controller	to	your	exercise

Create	a	program	to	convert	Fahrenheit	to	Celsius

Placing	the	controller	on	a	separate	file

The	ng-model

Lab	work,	creating	the	conversion	script

More	Project	Ideas

Directives	summary	and	resources

In	conclusion

Can	you	do	this	for	me?

Errata,	Contact,	Updates

Introduction
This	book	is	for	everyone	who	wants	to	learn	basic	programming	using	the	JavaScript
language	without	taking	a	formal	course.	It	may	also	serve	as	a	classroom	supplement	for
practicing	and	review.

The	intended	audience	is	beginning,	intermediate,	or	an	advanced	reader	looking	to
restudy	the	subject.

This	book	contains	lots	of	exercises	with	answers	and	explanations.	Each	section	is	one
page	or	less	long	and	each	topic	is	followed	by	lab	work	with	links	to	raw	files.	There	is
also	a	forum	board	to	facilitate	further	reading	and	practice.	Since	all	scripts	are	short,
these	links	are	there	just	to	clear	any	possible	doubt	you	may	have	about	your	own	work.

I	suggest	spending	at	least	30	minutes	per	day	reading	and	practicing	each	chapter.	Do	not
rush	the	material	because	the	topics	covered	are	the	foundation	to	master	the	language.
Take	time	to	absorb	each	concept.	Do	not	go	into	a	new	subject	without	taking	a	conscious
break	from	the	computer	to	do	some	physical	activity	like	for	example	a	minor	stretch.

Read	each	subtopic	and	do	the	exercises.	Follow	the	book	from	beginning	to	end;	then
later	you	may	want	to	use	this	material	as	a	comprehensive	reference	to	refresh	your	mind
or	for	practicing	purposes.	For	further	practicing	refer	to	the	dedicated	forum	platform
presented	later	in	the	book.

If	you	study	every	day	you	will	complete	the	course	in	about	two	weeks.

If	you	just	read	it	as	a	review,	you	may	finish	it	on	a	weekend’s	time.

The	book	takes	advantage	of	your	browser’s	JavaScript	Console.	I	recommend	using	the
Console	from	Google	Chrome	and	I	will	explain	how	to	access	it	and	use	it	for	our
purposes.	Opera	and	Epic	will	work	the	same	way.	Of	course,	you	can	utilize	any	other
test	method	you	wish	as	long	as	you	know	how	to	access	it.	The	new	Microsoft	Edge
browser	also	has	a	JavaScript	Console	accessed	by	the	shortcut	F12.

Besides	recommending	Google	Chrome,	I	will	also	recommend	the	usage	of	jsbeautifier
(a	very	useful	online	editor),	as	well	as	my	own	website	forum	where	you	will	find	all	the
linked	exercises	and	further	reading	and	practicing	materials.

Don’t	worry	about	it	for	now;	there	will	be	plenty	of	reference	links	posted	at	the
appropriate	time.

What	you	should	know	before	reading	this	material
The	only	prerequisite	for	reading	and	practicing	the	projects	in	this	book	is	that	you	are
familiar	with	basic	computer	skills	such	as	copy/paste	and	editing	a	line	of	text.

For	a	more	complete	experience	you	need	access	to	the	Internet.

You	can	always	review	the	material	offline	but	you	will	not	be	able	to	access	any	of	my
sample	files	if	you	don’t	go	online.

In	order	to	fully	understand	the	last	section	of	the	book	which	introduces	AngularJS	in
plain	words,	you	will	need	to	know	basic	HTML	syntax	like	for	example,	understanding
how	a	basic	HTML	page	is	created,	the	HTML	tag,	the	BODY	tag,	how	to	create	a
paragraph	or	a	DIV	–	nothing	too	complex.

The	book	will	give	you	the	foundation	to	become	comfortable	with	JavaScript	so	that	you
can	advance	firmly	regardless	of	which	area	of	the	language	you	plan	to	specialize	on.

Basic	math	is	a	plus,	but	even	if	you	think	math	is	not	your	call,	all	math	examples	are
well	explained	in	the	book.	No	one	should	have	any	problem	with	them.

The	book	will	prepare	you	to	understand	modern	JavaScript.	This	includes	a	firm
introduction	to		JSON		and	AngularJS		in	plain	words,	which	will	open	doors	and	break
down	barriers	for	you	to	get	into	those	very	hot	technologies.

The	Spiral	approach	for	code	learning

This	eBook	utilizes	the	idea	of	a	spiral	approach	for	code	learning	as	outlined	below:

	

1-						The	history	of	development	is	preserved.

2-						Simple	solutions	are	provided	first	and	then	replaced	by	more	advanced,	robust
solutions.

3-						Only	the	concepts	used	in	a	spiral	are	explained,	with	links	for	further	reading
material.

Each	project	conserves	its	incremental	history	as	a	snapshot	of	something	useful	to	review,
like	a	spiral.	The	spiral	approach	is	a	technique	often	used	in	teaching	where	first	the	basic
facts	of	a	subject	are	learned,	without	worrying	for	detail.	Then	as	learning	progresses,
more	and	more	details	are	introduced	while	at	the	same	time	they	are	related	to	the	basics
which	are	reemphasized	many	times	to	help	the	internalization	of	concepts.

No	memorization	is	needed.

The	book	must	be	read	in	sequence	for	a	more	effective,	powerful	and	meaningful
experience.

The	exercises	should	be	repeated	not	just	right	after	finishing	the	current	lab	work,
but	also	after	finishing	the	whole	section	or	reading	the	whole	book.

Practice	like	you	would	be	practicing	guitar:	every	day	and	with	intent.	Think	of
JavaScript	exercises	as	scales	to	be	played.

After	finishing	an	exercise,	always	think	on	how	you	would	apply	the	concepts
covered	for	a	different	recipe.	Think	like	a	master	chef.	Programing	is	like	cooking.

Programming	is	also	like	plumbing.	We	create	interfaces	by	facilitating	connections.

Finally,	programming	is	part	science	part	art.	It	brings	together	the	best	of	both
worlds.

	

What	is	JavaScript
JavaScript	is	a	programming	language	designed	to	interact	with	the	computer	browser.
There	is	currently	no	other	language	with	the	same	browser	compatibility	as	JavaScript.
Most	of	those	languages	trying	to	replace	JavaScript	actually	decompile	their	code	into
JavaScript.

What	is	the	difference	between	JavaScript	and	HTML?

HTML	is	a	presentation	markup	language.	It	creates	objects	(container	boxes)	that	get
displayed	on	the	page.	It	does	not	make	decisions	based	on	user	interaction.	HTML	paints
the	computer	screen.

JavaScript	extends	HTML	in	the	sense	that	it	makes	the	page	dynamic	by	interacting	with
the	user	based	on	certain	conditions	and	outcomes.

In	order	to	create	outcomes	and	make	decisions	we	need	to	learn	JavaScript	syntax	and
that’s	what	this	book	is	about.

In	later	chapters	we	will	learn	how	to	create	modern	web	interaction	using	one	of	the	latest
implementation	techniques	called	AngularJS.

The	book	will	not	make	you	an	expert	in	AngularJS.	It	will	however	give	you	a	very	solid
foundation	to	empower	you	and	propel	you	forward	into	more	advanced	concepts.

This	book	follows	a	hands-on	approach.	Please	be	prepared	for	an	extensive	workout.

http://en.wikipedia.org/wiki/Decompiler

PART	I:	AT	THE	GATES	OF	ENLIGHTENMENT
“Empty	your	cup;	return	to	the	beginning”.

1.1	The	browser	interface
Every	time	we	go	online	we	get	to	use	an	interface	to	communicate	with	the	internet.	This
particular	interface	is	known	as	“the	browser”	and	its	purpose	is	to	translate	the	incoming
data	from	the	outer	world	into	our	computer	screen.	The	most	popular	browsers	are
Internet	Explorer	(known	as	IE	and	now	replaced	by	Microsoft	Edge),	Google	Chrome,
Firefox,	Opera	and	Safari	but	there	are	hundreds	of	other	browsers.

Browsers	place	text	and	images	on	the	screen	based	on	instructions	given	by	the
programmer	in	a	markup	language	known	as	HTML.	Then	this	text	and	images	are
rearranged	or	beautified	by	a	styling	language	called	CSS.	Finally,	the	website
dynamically	interacts	with	the	user	via	JavaScript	which	is	the	subject	of	this	book.

JavaScript	is	a	computer	language	designed	to	interact	with	and	recognized	by	all
browsers.	This	means	that	we	can	create	useful	programs	to	run	in	a	browser	by	writing
instructions	in	JavaScript.

Other	programming	languages	don’t	have	this	capability	and	they	need	to	run	on	special
platforms	acting	as	further	interfaces	to	the	browser	and	they	ask	for	JavaScript	to	assist
them	in	this	interaction.	This	is	the	reason	why	JavaScript	has	become	the	most	popular
programming	language	on	the	internet.	Computers	use	it,	websites	use	it,	other	software
such	as	for	example	Photoshop,	Word,	PDF		use	it,	and	last	but	not	least,	computer	servers
are	starting	to	use	it	on	their	own	backend	processing	which	is	great	news	for	the	future	of
JavaScript.

JavaScript	can	be	an	easy	language	when	learned	the	right	way,	but	it	can	also	be	a
difficult	language	to	learn	because	it	is	very	dynamic	and	rules	change	based	on	conditions
on	the	ground.

No	one	can	promise	to	teach	you	JavaScript	since	learning	is	a	personal	experience.	But	I
can	promise	you	this:		read	the	book	in	sequence,	think	about	each	concept	without
memorizing	it,	do	all	the	exercises,	and	you	will	be	a	much	better	programmer	by	the	time
you	reach	the	end	of	this	very	short	book.

As	an	author,	I	may	be	a	programmer	or	a	technical	writer,	but	above	all,	I	am	a	technical
Instructor.	My	writing	experience	comes	from	teaching,	coaching,	and	debugging	code
from	thousands	of	students.	When	I	write	about	these	concepts	I	always	think	about	the
struggling	I’ve	experienced	when	I	was	learning	this	material,	and	the	struggle	I	see	on
other	students	when	they	ask	for	help.	As	I	write,	those	problems	come	to	the	surface	and	I
try	to	address	them	ahead	of	time	in	order	to	prevent	you	from	falling	into	common	traps.

http://en.wikipedia.org/wiki/Interface_%28computing%29
http://en.wikipedia.org/wiki/Web_browser
http://en.wikipedia.org/wiki/List_of_web_browsers
http://en.wikipedia.org/wiki/HTML
http://en.wikipedia.org/wiki/Cascading_Style_Sheets
http://en.wikipedia.org/wiki/JavaScript
http://en.wikipedia.org/wiki/Internet

1.2	Material	and	tools	needed
All	the	exercises	on	this	book	will	be	tested	using	the	JavaScript	Console	from	the	Google
Chrome’s	browser.	Occasionally	I	also	use	Opera	which	works	similarly.	Please	feel	free
to	use	any	test	console	you	so	desire	since	every	browser	has	one.	Firefox	is	also	a	good
alternative	but	I	find	the	other	two	options	cleaner	and	easier	for	beginners	to	code.

If	you	don’t	have	one	of	those	browsers	on	your	computer	you	can	download	it	from	the
links	given	below.	I	recommend	using	both	of	them.	Experimenting	with	different
browsers	is	part	of	being	web-savvy	and	a	must	for	web	developers:

Google	Chrome	|	Opera

1-						To	access	the	console,	load	you	Chrome	browser	or	Opera,	and	then	press	the
following	key	sequence:

For	Windows	systems:	CTRL	SHIFT	j

For	Mac:	CMD	OPT	j

This	will	bring	up	the	console.

2-						If	this	is	your	first	time	using	the	console,	you	can	detach	the	console	from	the
browser	by	clicking	on	the	small	square	shown	at	the	bottom	left	of	the	console	(in
the	latest	browser	this	button	seems	to	be	on	the	top	right).	Detaching	the	Console
will	give	you	more	room	on	the	screen	since	you	will	be	able	to	minimize	the
browser	while	keeping	the	console	up.

3-						Make	sure	the	tab	on	the	top	of	the	console	is	set	to	console	and	not	to	any	of	the
other	available	options.

4-						You	may	see	a	few	error	messages	on	the	Console	when	you	first	open	it.	This	is
normal.	Just	clear	the	screen	by	right-clicking	and	selecting	“Clear	console”.

Let’s	now	read	a	few	more	pages	and	code	mentally.	We	will	do	some	hands	on	work	in	a
few	minutes	when	we	get	to	the	Lab	section.

https://www.google.com/intl/en/chrome/browser/
http://www.opera.com/computer/

1.3	Declaring	a	variable	–	an	alias	name	for	a	memory	location
Preliminary	information:

Browsers	use	computer	memory.	The	more	memory	a	computer	has,	the	faster	the	browser
works.	Since	working	memory	is	limited,	programs	need	to	constantly	rearrange	data	in
memory	by	deleting	what	expires	and	repositioning	what	is	still	in	use.

When	we	program	in	JavaScript	we	store	data	in	memory.	This	data	is	short	lived	since
once	we	close	the	browser	or	end	the	program,	the	data	is	wiped	out.

To	temporarily	store	data	in	memory	we	need	to	label	the	memory	address	location	with	a
word	that	makes	sense	to	humans,	so	that	we	can	program	or	manipulate	that	data.	We
can’t	just	tell	the	browser	to	store	the	string	of	characters	“hello	world!”	in	memory	by
giving	it	the	address	of	0x7fffffff.	Those	days	are	long	gone	as	it	would	be	too	complex
and	unpractical	as	well	as	ever	changing	since	data	is	shifted	around	from	location	to
location	due	to	automatic	memory	rearrangements.	So	to	address	this	problem,	we	use
names	as	alias	for	assigned	locations	and	allow	the	computer	to	manage	the	real	physical
address	of	the	data	as	it	sees	fit.

Those	memory	location	aliases	are	called	variables.	The	reason	they	are	called	variables
is	twofold:	the	address	of	the	data	can	be	changed	without	notice,	and	the	data	contained
in	each	variable	can	also	be	changed	at	any	time.	What	remains	constant	is	the	variable
name,	which	is	the	only	link	humans	have	to	this	piece	of	memory	real	estate.

As	for	the	change	of	a	value	in	a	variable,	that	may	be	either	done	manually	by	the
programmer	further	down	the	script	instructions,	or	automatically	by	JavaScript	itself	in	a
dynamic	reassignment	of	values.

Know	this:	To	create	a	memory	variable	we	have	to	declare	it	(declaring	a	variable	is
like	introducing	the	variable	to	JavaScript).	Example:

var	phoneBill;

(Just	read	along.	You	will	have	a	chance	to	try	it	yourself	when	we	get	to	the	Lab	Work
section	at	the	end	of	the	chapter.	All	chapters	are	purposely	short.	This	is	the	time	to	read
and	understand	conceptually.	Then	you	will	test	yourself	during	lab.	All	lab	exercises	are
followed	by	the	correct	answers	so	that	you	can	double	check	your	work).

http://en.wikipedia.org/wiki/Physical_address

About	var
Think	of	var	as	the	command	used	to	create	a	variable	(this	helps	you	remember	to	use	var
when	you	introduce	a	variable.

Another	thing	that	var	does	is	to	ground	the	variable	to	the	location	where	it	is	being
introduced,	sort	of	like	making	it	a	local	variable	(more	about	that	later).

About	the	variable	name
After	writing	var	we	provide	the	variable	name	which	in	our	case	is	phoneBill.	The	name
does	not	matter,	it	could	have	been	called	x	since	JavaScript	does	not	care	about	the
‘human	meaning’	we	choose	to	give	it.

However,	JavaScript	cares	about	the	choice	of	characters	we	use.	Make	sure	the	first
character	is	a	lowercase	letter	of	the	alphabet	(the	lowercase	is	not	mandatory,	just	good
practice	as	you	will	see	later).	The	variable	cannot	start	with	a	number	or	a	symbol.
Subsequent	letters	can	be	numbers,	but	symbols	are	not	allowed,	ever,	except	for	the
underscore	_.

In	summary:	always	start	your	variable	names	with	a	lower	case	letter.	Forget	about
the	underscore	as	the	first	character	because	it	is	usually	used	in	very	special
situations	and	therefore	should	not	be	considered	for	normal	usage.

My	own	variable	phoneBill		has	a	capital	B	in	the	middle.	This	is	a	common	style	of
writing	variable	names.	JavaScript	doesn’t	care	about	styles,	but	it	does	make	it	easier	for
the	human	eye	when	it	comes	to	inspect	the	script.

Another	popular	way	of	writing	names	is	with	an	underscore	separating	the	‘human
meaning’	of	each	word	in	the	variable	name.	The	reason	for	the	underscore	is	because
spaces	or	dashes	are	not	permitted	in	variable	names:	phone_bill

Remember	this:	The	‘meaning	of	a	word’	is	only	for	human	consumption.	If	instead
of	introducing	phoneBill	we	introduced	just	x,	JavaScript	would	have	accepted	it
without	complaining.	When	we	program,	we	do	it	both	for	the	computer	to
understand	and	also	for	a	human	to	understand	so	that	he/she	can	troubleshoot	or
update	the	program	later.	Choose	your	own	style	of	writing	variables	and	stick	to	it.
Consistency	is	important.	However,	become	familiar	with	all	common	styles	because
when	you	work	in	a	team	you	need	to	adjust	to	an	agreed	common	style	for	the	whole
team.	Practice	flexibility.

About	the	semicolon	;
The	semicolon	at	the	end	of	the	statement	tells	JavaScript	that	you	are	done	declaring	the
variable:

var	phoneBill;

The	semicolon	acts	as	a	command	terminator,	or	a	separator	between	two	different	and
independent	commands.	In	other	words,	we	are	instructing	JavaScript	to	stop	and	save	that
command	or	expression	as	an	independent	instruction	from	the	next	upcoming
instruction.	

Going	back	to	the	variable	name,

Keep	this	in	mind:	JavaScript	is	case	sensitive.	A	and	a	have	independent	meanings
in	JavaScript.	phoneBill	and	phonebill	are	not	the	same	word.	At	this	moment
phoneBill	is	an	existing	declared	variable,	and	phonebill	is	nothing,	JavaScript	will
throw	an	error	if	you	write	phonebill	by	mistake	instead	of	phoneBill	since	you	have
declared	phoneBill	as	the	variable,	and	not	phonebill.

Of	course	we	could	also	have	two	independent	variables,	one	named	phoneBill	and
another	named	phonebill	and	that	is	the	point,	for	JavaScript	they	are	two	different	words.

Adding	data	to	variables
Once	a	variable	is	declared,	a	memory	location	is	reserved	for	that	variable	and	then	we
can	assign	the	variable	to	some	data.

Isn’t	it	easier	to	just	remember	phoneBill	rather	than	making	a	written	map	of	reserved
memory	locations?

To	assign	data	into	a	variable	we	use	the	=	operator:
phoneBill	=	200;

Do	not	use	$	before	200.	That	would	trigger	an	error.	You	may	use	$	later	when	you
output	the	data	if	you	so	wish,	but	not	when	you	enter	your	data	into	the	computer
memory.	All	JavaScript	wants	is	the	number	200	in	its	pure	form.

I	have	just	saved	the	number	200	in	a	memory	location	listed	as	phoneBill.	Notice	the
semicolon	at	the	end.	It	terminates	my	statement.

We	could	have	declared	and	also	included	the	data	in	just	one-step:
var	utilitiesBill	=	400;

Sometimes	we	just	want	to	tell	JavaScript	to	reserve	a	location	under	a	certain	name.
Other	times	we	reserve	the	location	and	fill	it	with	data	all	at	once.	Don’t	worry	about	the
size	of	memory	needed.	Contrary	to	other	languages,	JavaScript	is	dynamic:	it	adjusts	the
memory	automatically.

Changing	the	value	in	the	variable
What	if	we	want	to	change	the	value	of	our	phoneBill	from	200	to	150?

To	change	the	value	of	a	variable	all	we	have	to	do	is	to	reassign	it	(no	declaration
needed):

phoneBill	=	150;

The	200	gets	deleted	and	the	computer	memory	at	location	phoneBill	now	holds	the	value
of	150.

Remember	this:	Never	use	var	twice	on	the	same	variable	name.	If	you	use	var	as	a
prefix	when	you	rewrite	an	existing	variable,	you	wipe	out	the	old	variable	since	you
have	just	re-declared	the	variable	again.	This	may	be	something	you	want	to	do	on
purpose,	but	for	the	most	part,	this	is	not	a	common	practice.	I	have	seen	this	done
many	times	as	a	mistake	by	new	programmers.

Adding	words	to	a	variable	instead	of	numbers
So	far	we	have	been	assigning	data	of	type	number	to	our	variables.	We	can	actually
assign	anything	to	a	variable.

Since	a	variable	is	just	a	memory	location,	we	can	assign	it	a	string	of	characters	also
known	as	a	value	of	type	string,	or	even	other	types	of	data	such	as	arrays,	functions,
objects…	more	about	those	later.

Let’s	talk	about	strings
A	string	of	characters	can	be	assigned	to	a	variable	but	we	need	to	let	JavaScript	know	it	is
a	string.	The	way	we	let	it	know,	is	by	wrapping	our	string	of	characters	in	quotes:
var	myName	=	“Tony”;

Any	word	not	wrapped	in	quotes	is	considered	to	be	a	reserved	term	stored	in	the
JavaScript	library.

If	I	just	write	var	myName	=	Tony;	(with	no	quotes	for	the	string	‘Tony’),	JavaScript
will	check	its	library	in	the	computer’s	memory	looking	for	a	command	or	a	variable
named	Tony.	Since	Tony	does	not	exist	as	a	reserved	term,	JavaScript	will	throw	an
error	on	the	screen.	Any	word	data	needs	to	be	wrapped	in	quotes.

After	we	declare	the	variable	myName,	the	word	myName	then	becomes	a	reserved	term
until	it	gets	wiped	out	from	memory	or	until	the	program	is	over.	No	quotes	for	variable
names.

Remember	this:	Data	of	type	string	needs	to	be	wrapped	in	quotes	as	opposed	to
declared	variables	names	which	are	never	written	in	quotes.

When	I	say	“remember	this”	it	doesn’t	mean	to	memorize	it.	It	only	means	to	focus	a	few
seconds	of	extra	attention	to	the	statement	that	is	about	to	follow.

Which	quotes	to	use:	single	or	double?
In	JavaScript,	a	pair	of	single	or	double	quotes	work	the	same	way.	Just	make	sure	the
closing	quote	matches	the	style	of	the	opening	quote.	Some	other	languages	act	differently
in	single	or	double	quotes;	not	JavaScript.

Below	you	will	find	another	variable	declaration	and	value	assignment	all	at	once.	You
will	see	how	combining	quotes	can	be	useful.	I	start	with	a	single	quote,	followed	by	a
double	quote.	However	JavaScript	ignores	the	double	quote	because	it	knows	the	closing
quote	must	by	single	in	order	to	match	the	opening	quote:

var	quoteOfTheDay	=	‘“living	is	not	essential;	creating	is
essential”		-	Fernando	Pessoa’;

Remember	this:	Never	wrap	a	variable	name	in	quotes.	If	you	do	that,	you	convert
the	name	into	a	string.	I	mean,	quoteOfTheDay	and	“quoteOfTheDay”	don’t	have	the
same	meaning	for	JavaScript.	The	first	one	is	a	declared	variable	stored	in	the
JavaScript	temporary	library.	The	second	one	is	just	a	plain	string	of	characters.
JavaScript	will	not	map	it	to	the	memory	location	assigned	to	quoteOfTheDay.

Assigning	variables	to	other	variables
We	have	seen	already	how	to	reassign	a	variable	to	a	new	value:

phoneBill	=	600;

Now,	phoneBill	is	no	longer	150.	It	holds	the	value	of	600.

What	about	assigning	a	variable	to	another	variable?

It	works	the	same	way	as	assigning	a	regular	value:

phoneBill	=	quoteOfTheDay;

Note:	No	quotes	are	being	used	because	both	words	are	previously	declared	variables.
The	real	value,	which	is	a	string	value,	is	being	passed	inside	of	the	variable
quoteOdTheDay.

Remember	this	rule:	
Assignments	work	from	right	to	left.	What	is	on	the	right	gets	assigned	to	the	left
operand.

The	value	of	phoneBill	has	now	been	changed	from	the	numeric	600	to	the	string	“living
is	not	essential;	creating	is	essential”	-	Fernando	Pessoa.

Basically,	JavaScript	copied	the	string	value	from	quoteOfTheDay	to	phoneBill.	We	now
have	two	strings	of	the	same	value	in	two	different	memory	locations.	This	copying	is	not
always	true	as	we	will	see	later.	Copying	only	happens	with	primitive	data	types,	such	as
numbers	and	strings.	When	we	reassign	complex	data	such	as	arrays	and	functions,	also
known	as	reference	types,	we	do	not	duplicate	the	data;	we	just	point	those	two	variables
to	the	same	data.	But	this	is	an	advanced	concept.	For	now,	just	think	of	duplicating
variable	values	when	we	reassign	a	variable	containing	simple	data	to	another	variable.

We	will	see	more	about	primitive	and	reference	types	later	in	the	book.	Sometimes	I	throw
in	terms	without	an	explanation.	The	idea	is	to	get	you	used	to	the	term	as	common
language	when	you	read	along	and	without	memorizing	it.	A	former	introduction	will
happen	at	the	appropriate	time.	Occasionally	you	will	see	a	link	to	sources	such	as
Wikipedia.	The	link	is	there	in	case	you	want	to	explore	the	topic	further,	but	no	external
link	it	essential	in	order	to	understand	the	material	we	are	covering.	Wikipedia	is	my
favorite	source	of	general	information	for	two	reasons:	It	gets	updated	quickly	and	it	does
not	have	annoying	popup	commercial	messages.

	

http://en.wikipedia.org/wiki/Primitive_data_type
http://en.wikipedia.org/wiki/Reference_type

1.4	Lab	work	1
Ready	for	some	lab	work?

Opening	the	Console
Almost	all	modern	browsers	have	a	test	Console	built	into	the	browser	to	assist	us	in
debugging	or	experimenting	with	JavaScript.	All	Consoles	provide	basically	the	same
options	once	we	have	them	open.	The	biggest	differences	are	how	we	access	the	Console
and	what	the	Console	looks	like	on	the	screen.

Select	one	of	the	following	browsers.	Download	it	if	you	don’t	have	it	installed	on	your
computer.	The	reason	to	use	one	of	these	browsers	is	so	that	my	instructions	may	coincide
with	your	actions	as	we	code	along	using	the	JavaScript	Console	that	comes	with	it.	Please
feel	free	to	use	any	other	Console	if	you	so	desire,	but	the	way	to	access	it	may	be
different.

Google	Chrome.

Opera.

Open	one	of	those	two	browsers	and	then	press	the	following	key	sequence	to	open	the
Console:

1-						If	you	are	using	Windows	or	Linux:

CTRL	SHIFT	j

If	on	a	MAC:

CMD	SHIFT	j	or	ALT-CMD-j

Most	likely	a	window	will	open	at	the	bottom	of	your	screen.

2-						Make	sure	the	tab	Console	is	selected.

If	you	get	any	error	messages,	just	clear	the	screen	by	right	clicking	on	the	white	area	and
selecting	“Clear	Console”.	These	errors	will	happen	almost	every	time	you	open	the
console	because	the	Console	is	inspecting	the	current	opened	document,	the	one	you	see
on	screen	before	you	access	the	Console,	and	things	may	not	be	100%	as	expected	by	the
Console,	hence	the	error	warnings.	Just	clear	the	message	so	that	we	gain	more	window
space.

3-						If	you	want	(recommended),	you	can	detach	the	Console	from	the	browser	and
minimize	the	browser	so	that	it	gets	out	of	your	way.	After	you	detach	the	Console
for	the	first	time,	it	will	always	stay	detached	unless	you	attach	it	again	by	toggling
the	same	button.

To	detach	the	Console	look	for	a	double	square	icon	on	the	tab	menu	of	the	Console,	and
click	on	it.	Now	you	should	have	two	different	windows.	Minimize	the	browser	to	get
more	room	on	your	Console	screen.

https://www.google.com/chrome/browser/
http://www.opera.com/

Declaring	some	variables
Let’s	start	coding…

1-						Declare	variables	x,	y	and	z	
(declaration	only,	no	assignments	of	values	at	this	moment)	
and	press	ENTER	after	each	semicolon	in	order	to	activate	the	expression:

It	should	look	like	this:

var	x;

var	y;

var	z;

You	could	also	just	use	one	var	and	separate	the	variable	names	with	a	comma.	That	might
save	you	some	time	if	you	are	simultaneously	declaring	a	bunch	of	variables	with	no
values	given.	Don’t	forget	the	semicolon	at	the	end:

var	x,	y,	z;

2-						Now,	declare	another	variable	but	assign	a	value	at	the	same	time.
I’m	using	variable		a	with	the	value	of	347:
var	a	=	347;

3-						Declare	a	variable	b	containing	your	first	name	(remember,	your	name	is	a	string
of	characters):

var	b	=	“Tony”;

NOTE:	You	can	read	the	value	of	each	variable	on	the	Console	by	just	typing	the
variable	name,	followed	by	the	semicolon,	and	pressing	ENTER.	Example:
b;
It	should		display	“Tony“;

Typing	the	variable	by	itself	in	order	to	get	a	value	displayed	is	only	possible	because	we
are	using	a	test	Console.	In	real	life	we	would	have	to	use	a	print	command	as	we	will	see
later.

Inspecting	the	data	type	of	a	variable
Great!	So	far	we	have	the	following	variables	declared:	
x,	y,	z,	a,	b.

What	kind	of	variable	is	variable	b?	I	mean,	what	type	of	data	does	it	contain?	We
know	b	holds	your	first	name,	right?

4-						To	inspect	the	variable	use	the	command	typeof:
typeof	b;

It	displays	“string“.	Variable	b	contains	your	first	name	in	quotes	and	therefore	it	is
a	string	of	characters.

5-						What	about	variable	a?
typeof	a;

It	displays	“number“.	Variable	a	contains	the	number	347	and	therefore	it	contains	data	of
type	number.

NOTE:	Did	you	notice	how	the	Console	tries	to	finish	the	word	typeof	?	If	you	don’t
want	to	write	the	whole	word	yourself	just	press	the	TAB	key	as	soon	as	you	see	the
hint	on	the	display.	Or	if	you’re	like	me,	you’d	rather	practice	typing,	just	be	aware	of
misspells.	The	automatic	completion	can	become	very	handy	to	speed	up
programming	and	avoid	typing	mistakes,	especially	when	it	comes	to	long
commands.	Auto	typing	also	helps	us	remember	how	each	command	is	written.	The
test	Console	is	really	useful;	I	use	it	in	real	life	hundreds	of	times	a	day	because	I’m
constantly	testing	stuff.

	

What	is	typeof?
typeof	is	a	unary	operator.	It	is	called	unary	(opposite	of	binary)	because	it	only	takes	one
operand,	the	variable	to	the	right	of	it.	An	example	of	a	binary	operator	would	be	the	+
sign	where	we	need	a	left	and	a	right	operands.

Let’s	do	a	few	more	inspections.

6-						What	type	of	data	is	contained	in	variables	x,	y,	and	z?	(test	them	all)

Answer	to	all:	“undefined“.

Why	it	“undefined”	and	what	is	undefined?		
These	variables	hold	the	value	of	undefined	because	we	haven’t	assigned	any	data	to	them
yet.

JavaScript	reserves	some	memory	for	each	one	of	these	variables	and	puts	a	placeholder
as	data.	This	placeholder	is	of	type	“undefined”.	It	is	still	a	value,	a	special	value,	and	we
can	take	advantage	of	it	for	decision	making	as	you	will	see	later.

Clear	the	screen	by	right-clicking	and	selecting	“Clear	console”.	Note:	Clearing	the	screen
does	not	erase	the	variables	from	memory;	it	only	gives	us	more	space	on	the	screen.

Let’s	assign	some	values	to	variables	x,	y,	z:

7-						Assign	the	following	string	value	to	x.	Make	sure	to	wrap	your	string	of	characters
with	quotes:

x	=	“The	quick	brown	fox	jumps	over	the	lazy	dog”;

8-						Verify	its	type	of	value:

typeof	x;

It	now	displays	“string”	as	a	type,	rather	than	“undefined“.

9-						Assign	the	variable	b	to	variable	y	
(assignments	go	from	right	to	left):

y	=	b;

y	should	now	contain	a	copy	of	your	first	name	just	like	b	does,	and	its	type	of	value
should	also	be	“string“.

Remember:	Assignments	work	from	the	right	operand	to	the	left	operand.	Also,	y
and	b	values	are	independent	of	each	other.	The	=	sign	does	not	mean
equality,	it	means	to	assign	right	to	left.

10-		Assign	a	value	of	type	number	(any	number)	to	variable	z.

Remember:	numbers	don’t	take	quotes.	If	you	wrap	a	number	in	quotes	it	becomes	a
string	of	characters	and	you	can’t	perform	any	calculations	with	it.

11-		For	further	practicing,	declare	some	new	variables	of	your	own,	assign	some	data
to	them	and	check	their	type	of	value.

Just	like	any	other	language,	the	only	way	to	learn	JavaScript	is	to	practice	daily.
Memorizing	will	not	do	it;	just	plain	practice	will	succeed	and	persist.

END	OF	LAB

1.5	Manipulating	variable	data
When	we	store	a	value	in	the	computer’s	memory	under	JavaScript	supervision,	this	value
inherits	some	properties	and	methods	characteristic	of	the	type	of	data	the	value
represents.

Where	do	these	properties/methods	come	from?

They	exist	in	the	JavaScript	library	located	in	your	browser.	When	we	create	a	new
instance	of	one	of	the	common	types,	our	instance	immediately	inherits	lots	of	tools	we
can	use	to	help	us	program	outcomes.

Methods	and	Properties
Properties	are	qualities	the	new	data	inherits	from	its	data	type.	It	will	make	more	sense
later.

Methods	are	functionality	that	creates	actions	upon	the	data.

There	is	no	need	to	memorize	these	terms.	They	will	be	repeated	so	many	times	that
you	will	know	them	by	heart	before	you	finish	reading	the	book.	Just	read	along	and
understand	the	concepts.	However,	if	you’re	curious,	each	term	has	a	link	to
Wikipedia	where	you	can	read	to	your	heart’s	delight.

To	see	an	example	of	a	property	in	action	let’s	declare	a	new	variable	of	the	string	type:
var	myName	=	“Tony”;

Since	“Tony”	is	of	type	string,	there	are	things	I	can	do	with	this	type	of	data,	or	things	I
can	find	out	about	string	data,	such	as	its	length	in	characters:
myName.length;

The	Console	will	display	4	and	it	means	that	the	value	of	variable	myName	which	is
“Tony”,	is	4	characters	long.

length	is	one	of	the	properties	inherited	from	the	type	string.	Other	types	of	data	also	use
this	property	because	it	comes	very	handy	in	decision	making	as	you	will	see	over	and
over	again.

Did	you	notice	the	dot	between	myName	and	length?

https://en.wikipedia.org/wiki/Property_(programming)
https://en.wikipedia.org/wiki/Method_(computer_programming)

The	DOT	operator
The	dot	in	myName.length	glues	variable	myName	to	its	property	length.

The	Dot	operator	connects	the	variable	to	its	property,	or	the	parent	to	the	child.	We	place
the	root	first,	or	the	owner	of	the	property.	Then	map	its	members	or	children	by	using
dots:

parent.child.grandchild;

or	in	a	more	explicit	example:

window.myName.length;

window	is	actually	the	parent	of	variable	myName.	We	will	come	back	to	it	in	a	while.

It’s	almost	like	saying	“What	is	the	person’s	name?”,	Do	you	see	the	‘s?	That	ties	the
name	to	the	person.	The	dot	notation	works	under	the	same	principle.

In	this	case	it	is	pretty	simple:	we	start	at	the	variable	name	and	go	down	one	level	to	its
property	length.	Other	times	the	targeting	address	may	become	more	complex,	perhaps
another	term	or	two	down	the	pipe.	We	will	have	a	chance	to	work	with	the	dot	operator
throughout	the	book.

When	working	with	the	dot	operator	we	are	using	what	is	called	Dot	Notation,	but	there
is	another	alternative	syntax	which	is	called	Bracket	Notation.

Please	refer	to	the	next	page	for	a	brief	introductory	explanation	of	bracket	notation.

	

The	Bracket	notation
I	don’t	mean	to	confuse	you	by	mentioning	two	different	notations	at	the	same	time.	We
will	be	using	bracket	notation	extensively	later.	Consider	this	as	a	primer	about	it.

Instead	of	instead	of:		myName.length;
Type	in	your	console	the	following:

myName[“length”];

It	displays	the	number	4,	just	like	it	did	with	Dot	Notation.	Notice	how	length	is	wrapped
in	quotes	inside	of	that	bracket.	We	are	passing	“length”	as	a	string,	or	as	a	label,	and
JavaScript	will	reconvert	it	back	to	its	rightful	rank	of	a	property	from	its	library.	There
are	advantages	of	using	Bracket	Notation	because	it	is	more	versatile,	but	don’t	break	your
head	over	it	just	yet.	We	will	use	both	Dot	Notation	and	Bracket	Notation.	Bracket
Notation	is	mostly	used	in	dynamic	situations.	You	will	see	later	that	Dot	Notation	is
“hard	wired”	and	Bracket	Notation	is	“soft	wired”	(when	we	don’t	know	the	real	value	at
the	time	of	writing	the	code).

Sometimes	we	go	out	on	the	sedan,	and	other	times	we	take	the	pickup	truck!	It	is	the	same
thing	with	notation	syntaxes.

An	example	of	a	method
The	string	data	also	inherits	methods	such	as	.toUpperCase():
myName.toUpperCase();

It	displays	“TONY”	instead	of	“Tony”.

Was	the	variable	myName	changed	to	uppercase?

No,	it	wasn’t.	It	only	displayed	it	in	upper	case	mode,	but	the	value	remains	as	it	was
originally	declared.

We	could	however	convert	the	original	value	to	uppercase	by	reassigning	the	variable
myName	to	itself	as	it	gets	transformed:
myName	=	myName.toUpperCase();

Now	myName	contains	“TONY”	as	its	value.	The	original	Tony	was	discarded.	Do	you
see	how	it	happened?	We	assigned	the	original	variable	to	its	own	transformation.	It’s
almost	like	the	dog	that	was	able	to	catch	its	own	tail.

What’s	with	the	parentheses	()	?
toUpperCase	is	a	method,	it	processes	some	action.	That	sounds	like	a	function,	which	we
haven’t	covered	yet.	The	()	represents	action,	or	function	processing,	or	evaluation.

Whenever	you	see	a	pair	of	parentheses	think	of	something	being	evaluated	by	JavaScript,
from	which	a	result	will	be	returned	back.	In	this	case	the	data	is	being	converted	to
uppercase;	that’s	the	result	of	the	evaluation.

More	about	the	parentheses	later.	Don’t	worry	about	it	for	now,	juts	acknowledge	it	and
move	forward.

Here’s	another	method:	toLowerCase():
myName.toLowerCase();

Now	the	value	of	myName	is	“tony”.	Did	you	notice	the	T	is	in	lowercase?	To	transform	a
string	to	lowercase	except	the	first	character	would	be	called	capitalizing.	Unfortunately
there	is	no	direct	method	in	JavaScript	to	capitalize.	It’s	either	all	lower	case	or	all
uppercase.	We	can	do	it	with	a	combination	of	methods	but	that	is	a	bit	advanced	for	now.
Also,	if	you	know	CSS	and	you	are	displaying	the	result	in	an	HTML	page	you	can	always
use	the	CSS	text	transformation	property	capitalize.

Note:	both	words	toUpperCase()	and	toLowerCase()	have	certain	characters
capitalized	and	others	characters	in	lowercase,	right?	JavaScript	is	case	sensitive,	it
sees	A	and	a	as	two	different	characters.

The	reason	why	I	wrote	toUpperCase	and	toLowerCase	in	this	way	was	not	because
camelCase	is	my	preferred	writing	style;	it	is	because	that	is	the	correct	name	given

http://jsplain.com/javascript/index.php/Thread/98-How-to-capitalizing-just-the-first-character-in-JavaScript/

to	these	methods	by	JavaScript	itself.	If	we	write	tolowercase,	it	will	not	work.	As
you	remember,	typeof	was	all	in	lowercase,	we	couldn’t	do	typeOf.	That	would	not
work.	This	is	one	of	the	reasons	why	the	automatic	completion	feature	on	the
Console	is	very	helpful:	it	takes	the	spelling	doubts	out	of	the	equation.

When	you	are	finished	with	this	book,	if	you	want	to	study	all	the	properties	and	methods
of	all	the	types	in	JavaScript,	you	may	consider	my	other	eBook	which	is	a	JavaScript
follow	up	from	this	one:

JavaScript	Objects	Functions	and	Arrays	Explained.

There	are	plenty	of	exercises	and	projects	in	there.

	Speaking	of	exercises,	let’s	do	some	more	lab	work.

http://www.amazon.com/JavaScript-Objects-Functions-Arrays-Explained-ebook/dp/B00GDEPBZQ/

1.6	Lab	work	2
Please	fire	up	your	JavaScript	Console	again	
(CTRL	SHIFT	j	or	CMD	SHIFT	j	or	ALT-CMD-j).

Declaring	variables,	assigning	values,	using	basic	properties	and	methods
(See	the	results	on	the	next	page)

1-						Declare	a	variable	named	x	and	give	it	a	string	value	of	
“The	quick	brown	fox	jumps	over	the	lazy	dog”.

2-						Display	x;

3-						Find	out	the	length	of	the	data	in	variable	x.

4-						Display	x	in	uppercase.	Hint:	toUpperCase()

5-						Now	convert	the	original	x	to	uppercase,	instead	of	just	displaying	it.

6-						Call	x	again.

7-						Finally	convert	the	variable	x	to	lowercase	again.	Hint:	toLowerCase()

8-						Call	x	just	to	be	sure.

9-						BONUS:	
Declare	variable	y	and	assign	it	the	value	of	x,	but	in	uppercase.

10-		Call	y.

11-		EXTRA,	EXTRA	BONUS:	
Declare	a	variable	named	z	and	assign	to	it	the	numeric	value	of	the	length	of	x.

12-			Call	z.

(See	the	results	on	the	next	page.	At	this	time,	do	the	same	exercises	as	you	verify	the
answers	on	the	next	page.	Practice,	practice,	practice)

Results:

1-						Declare	a	variable	named	x	and	give	it	a	string	value	of	
“The	quick	brown	fox	jumps	over	the	lazy	dog“:
var	x	=	“The	quick	brown	fox	jumps	over	the	lazy	dog”;

2-						Display	x:
x;

It	displays	“The	quick	brown	fox	jumps	over	the	lazy	dog”

3-						Find	out	the	length	of	the	data	in	variable	x:
x.length;

It	displays	43,	as	of	43	characters	including	spaces.

4-						Display	x	in	uppercase:
x.toUpperCase();

It	displays	“THE	QUICK	BROWN	FOX	JUMPS	OVER	THE	LAZY	DOG”

5-						Now	convert	the	original	x	to	uppercase,	instead	of	just	displaying	it:

x	=	x.toUpperCase();

6-						call	x	again:
x;

It	displays	“THE	QUICK	BROWN	FOX	JUMPS	OVER	THE	LAZY	DOG”

7-						Finally	convert	the	variable	x	to	lowercase	again:
x	=	x.toLowerCase();

8-						Call	x	just	to	be	sure:
x;

It	displays	“the	quick	brown	fox	jumps	over	the	lazy	dog”

9-						BONUS:	
Declare	variable	y	and	assign	it	the	value	of	x,	but	in	uppercase.
var	y	=	x.toUpperCase();

10-		Call	y:
y;

It	displays	“THE	QUICK	BROWN	FOX	JUMPS	OVER	THE	LAZY	DOG”

11-		EXTRA,	EXTRA	BONUS:	
Declare	a	variable	named	z	and	assign	to	it	the	numeric	value	of	the	length	of	x:
var	z	=	x.length;

12-		Call	z:
z;
It	displays	43,	the	value	of	z	is	43.

END	OF	LAB

1.7	Adding	some	more	JavaScript	operators

+,	-,	+=,	-=,	/,	/=,	%,	*,	*=
+	If	both	operands	are	numbers,	it	adds	the	left	operand	to	the	right	operand.
If	one	or	both	operands	are	strings,	it	concatenates	the	two	words	or	characters.

-	Subtracts	the	right	numeric	operand	from	left	numeric	operand.

+=	Adds	left	to	right	and	automatically	assigns	to	the	left**.

-=	Subtracts	right	from	left	and	automatically	assigns	to	the	left**.

/	Divides	the	left	operand	by	the	right	operand.

/=	Divides	the	left	operand	by	the	right	operand	and	automatically	assigns	the	quotient	to
the	left	operand**.

%	modulu	(fetches	the	remainder	of	the	left	operand	divided	by	the	right	operand).

*	Multiplies	the	left	operand	by	the	right	operand.

*=	Multiplies	the	left	operand	by	the	right	operand	and	automatically	assigns	the	product
to	the	left	operand**.

**	Notice:	Because	+=.	-=,	/=	and	*=	are	assignment	operators,	the	left	operand	must	be	a
variable,	it	cannot	be	a	direct	number.

We	will	expand	these	concepts	as	we	code	along.

	

The	+	plus	operator
The	+	sign	has	a	dual	function	depending	on	the	type	of	data	JavaScript	is	processing.

In	a	string	type,	the	+	operator	concatenates	words	like	in	the	following	examples:

“Hello”	+	“World!”;

JavaScript	puts	them	together	as	“HelloWorld!”

If	you	really	want	to	space	out	the	words	there	are	three	possible	ways	to	accomplish	the
task:

(1)
“Hello”	+	”	“	+	“World!”;

(2)	
“Hello	“	+	“World!”;

(3)	
“Hello”	+	“	World!”;

On	the	first	example	I’ve	added	an	independent	blank	space	by	wrapping	it	in	quotes.

On	the	second	example	I’ve	placed	a	space	after	Hello	and	before	the	closing	quotation
mark.

On	the	third	example	I’ve	added	a	trailing	space	on	the	word	World!

The	first	example	is	useful	when	we	add	two	variables	together	because	we	cannot
combine	leading	or	trailing	spaces	with	variables	due	to	lack	of	quotation	marks.

Here’s	what	I	mean:

var	x	=	“Hello”;

var	y	=	“World!”;

Now	I	concatenate	both	variables	together	and	assign	them	to	some	other	variable:

var	z	=	x	+	y;

The	result	for	z	is	“HelloWorld!“.	The	only	way	to	add	a	space	between	x	and	y	is	to	use
the	first	technique:
var	z	=	x	+	”	“	+	y;

Now	z	contains	“Hello	World!”.

http://en.wikipedia.org/wiki/Concatenation

Using	the	+	plus	operator	to	add	two	numbers
When	it	comes	to	numbers,	the	+	operator	adds	the	operands	like	shown	on	the	following
example:

3	+	4	+	5;

That	expression	will	result	in	12.

var	a	=	6;

var	b	=	10;

var	c	=	a	+	b;

Variable	c	is	assigned	to	16	which	is	the	sum	of	a	and	b.

Using	the	+=	assignment	operator
The	+=	is	very	useful.	Suppose	variable	i	has	the	value	of	3,	and	you	want	to	add	7	to	it,	I
mean	3	+	7:

var	i	=	3;

We	could	do	it	this	way:

i	=	i	+	7;

That	will	assign	variable	i	to	10.

However,	this	operation	is	so	common	(as	you	will	see	ahead),	that	programmers	created	a
shortcut	operator,	the	+=	(call	it	plus	equals	and	never	write	equals	plus	because	it	will	not
work):

i	+=	3;

Whenever	you	see	+=	it	means	to	take	the	value	of	the	left	operand	and	add	the	right
operand	to	it.

So	now	i	which	was	10	is	now	13.	What	happens	if	I	do	it	again?

i	+=	1;

Now	i	is	14.

What	about	this	one:

i	+=	i;	<—	that’s	i	not	1.

The	above	example	is	the	same	as	14	+	14,	which	results	in	28.

The	+=	operator	can	also	be	used	in	strings	to	add	more	characters	to	the	right	side	of	the
original	value:

var	n	=	“T”;

n	+=	“o”;		<—	results	in	“To”

n	+=	“n”;	<—	results	in	“Ton”

n	+=	“y”;	<—	results	in	“Tony”

This	can	be	very	useful	in	loops	in	order	to	automatically	construct	a	phrase	or	a	list	of
names	as	we	will	see	later.

The	++	(double	plus)	incrementing	operator
Many	times	we	want	to	increment	the	value	by	just	1	unit.	This	is	a	very	common
technique	in	programming.

We	could	do	it	in	three	ways:

Assuming	var	x	=	5;

x	=	x	+	1;	<—	now	x	is	6

x	+=	1;	<—	now	x	is	7

x++;	<—	now	x	is	8

x++;	<—	now	x	is	9

This	last	way	of	incrementing	is	limited	to	the	value	of	1	at	a	time.	The	other	ways	are
more	versatile	since	we	can	increment	by	as	much	at	a	time	as	we	wish.	However,	the	++
operator	is	extremely	popular	in	loops	because	loops	normally	(but	not	always)	increment
in	single	steps.	We	will	come	back	to	it	when	we	get	to	loop	around	a	bit.

The	–,	—	and	-=	subtraction	operators
The	subtraction	operator	is	only	used	in	numbers.	It	cannot	be	used	to	subtract	characters
from	a	string.

5	–	2;	<—	The	result	is	3

Examples:

var	x	=	100;

x	-	5;	<—	The	result	is	95,	but	x	is	still	100	because	it	was	not	re-assigned.

x	=	x	–	5;	<—	Now	x	is	95.

var	y	=	x	–	100;	<—	The	result	for	y	is	-5,	because	x	is	95

We	can	also	use	the	subtraction	unary	operator	if	we	want	to	subtract	by	1:

y—;	<—	now	y	is	-6

This	operator	—	is	the	same	as	y	=	y	-1	or	y	-=	1;

Read	the	-=	as	“minus	equals”	(never	as	equals	minus).

http://en.wikipedia.org/wiki/Unary_operator

The	Division	/	or	/=	Operators
To	divide	two	numbers	we	use	the	forward	slash:

8	/	4;	<—	It	results	in	2

Examples:

var	x	=	12;

var	y	=	3;

var	z	=	x	/	y;

Variable	z	gets	assigned	the	division	of	12	by	3,	resulting	in	4.

We	could	also	assign	the	result	of	a	division	back	to	the	original	variable:

x	=	x	/	3;

or	as	a	shortcut:

x	/=	3;

	The	“divide/equals”	is	not	used	as	much	as	+=	or	-=	but	it	is	good	to	know	it	exists.

The	Modulus	%	Operator
Sometimes	we	don’t	want	the	result	of	a	division,	I	mean	its	quotient.	We	may	be	looking
for	the	remainder	or	the	modulus	of	the	division.	This	is	very	common	in	programming	so
please	make	sure	to	understand	it.

When	I	divide	14	by	3,	I	get	a	result	of	4	and	also	a	remainder	of	2.	If	my	intention	is	only
to	get	the	remainder	I	can	ask	JavaScript	to	get	the	remainder	with	the	modulus	%
operator:

14	%	3;

JavaScript	divides	the	two	numbers	and	displays	the	remainder	of	the	division	which	is	2.

The	modulus	becomes	very	handy	for	things	like	figuring	out	odd	and	even	numbers.

In	12	%	2,	the	result	is	zero	which	tells	me	that	12	is	an	even	number.

In	13	%	2,	the	result	is	1	which	tells	me	that	13	is	an	odd	number.

in	2014	%	4,	the	result	is	2	which	tells	me	that	2014	is	not	a	leap	year	since	leap	years
are	divisible	by	4.

In	2016	%	4,	the	result	is	zero,	which	tells	me	that	2016	will	is	a	leap	year.

There	are	many	applications	for	the	modulus	operator	and	we	will	play	with	it	on	some
exercises	throughout	the	book.

The	Multiplication	Operator	*
To	multiply	numbers	or	numeric	variables	we	use	the	asterisk	because	we	can’t	use	the	x
symbol.	x	is	normally	used	as	a	variable	name.	So	in	computer	science	we	use	the	asterisk
to	represent	multiplication:

3	*	6;	<—	results	in	18

var	x	=	7;

var	y	=	5;

var	z	=	x	*	y;	<—	results	in	35

When	it	comes	to	assigning	the	result	back	to	the	original	variable	we	can	do	it	in	two
different	ways:

x	=	x	*	2;	<—	x	is	now	14

or

x	*=	2;	<—	x	is	now	14

	

1.8	Lab	work	3
Let’s	practice	a	bit	to	cement	the	concepts	covered	in	this	chapter.

Please	fire	up	your	Console	with		CTRL	SHIFT	j

or	CMD	SHIFT	j	for	Mac

or	ALT-CMD-j.

Part	one:		working	with	+,	+=	,	++	and	—
1-						Add	3	and	4

2-						Declare	a	variable	x	with	the	value	of	3	and
a	variable	y	with	the	value	of	5.	
Then	create	variable	z	and	assign	to	it	the	sum	of	x	and	y.

Call	variable	z,	it	should	contain	the	value	8.

3-						x	is	3.	Increment	x	to	4	using	the	unary	operator	++.	Then	call	x	to	see	the	result.

4-						Decrement	x	by	1,	using	the	unary	operator	—.	Then	call	x	to	see	the	result.

5-						Concatenate	“Hello”	to	“World!”.	Make	sure	to	include	a	blank	space	between	the
two	words.

6-						Declare	a	variable	named	myName	and	assign	it	only	the	first	character	of	your
name.

7-						Now	add	the	second	character	of	your	name	to	myName	using	the	+=	operator.

8-						Do	the	same	for	all	the	other	characters	of	your	name.	Call	variable	myName	to	see
the	result.

(see	the	results	on	the	next	page)

Part	one	results

1-						Add	3	and	4:
3	+	4;

2-						Declare	variable	x	with	the	value	of	3,	and	variable	y	with	the	value	of	5.	Then
create	variable	z	and	assign	to	it	the	sum	of	x	and	y.	Call	variable	z,	it	should	contain
the	value	8.
var	x	=	3;
var	y	=	5;
var	z	=	x	+	y;
z;		<–	should	be	8

3-						x	is	3.	Increment	x	to	4,	using	the	unary	operator	++.	Then	call	x	to	see	the	result.
x++;	<—	Displays	3	(see	note	below)
x;	<–	x	is	now	4
Note:	You	may	see	the	number	3	displayed	on	the	Console	instead	of	4.	That	is	just
an	automatic	feedback	from	the	Console.	The	++	increment	happens	after	the
feedback	occurs.	Had	we	programmed	it	as	++x	instead	of	x++	the	increment	would
have	happened	before	the	automatic	feedback	from	the	Console.	The	end	result	for
the	variable	x	is	4	in	both	ways.	We	will	cover	this	in	more	detail	at	a	later	lesson
when	we	get	to	loops.	For	the	most	part	stick	to	x++,	it	is	the	common	way	of
writing	it.

4-						Decrement	x	by	1	using	the	unary	operator	—.	Then	call	x	to	see	the	result.
x—;
x;	<—	It	displays	3.

5-						Concatenate	“Hello”	to	“World!”.	Make	sure	to	include	a	blank	space	between	the
two	words.
“Hello”	+	”	”	+	“World!”;
or	this	way:
“Hello	”	+	“World!”;
or	this	way:
“Hello”	+	”	World!”;

6-						Declare	a	variable	named	myName	and	assign	it	the	first	letter	of	your	name.
var	myName	=	“T”;

7-						Now	add	the	second	letter	of	your	name	to	myName	using	the	+=	operator.
myName	+=	“o”;

8-						Do	the	same	for	all	the	other	letters	of	your	name.	Call	variable	myName	to	see	the
result.
myName	+=	“ny”;
myName;	<—	it	displays	“Tony”.

Part	two:	Working	with	*,		/,		*=,	/=	and	%
Clear	the	Console	display	by	right	clicking	on	it	and	select	“Clear	Console”.

Let’s	work	with	multiplication,	division	and	modulus:

1-						Declare	three	variables:	x	=	12,	y	=	2	and	z	=	3

2-						Declare	another	variable,	a,	and	assign	to	it	the	multiplication	of	y	by	z.	Call	a	to
see	if	it	holds	the	value	6.

3-						Declare	variable	b	and	assign	it	the	result	of	the	division	of	x	by	a.	Call	b	to	inspect
its	result.

4-						Reassign	b	to	the	multiplication	of	itself.	Use	*=	for	that	effect.	Now	b	should	be
4.

5-						Reassign	b	to	the	division	of	itself.	Use	/=.	Now	b	should	be	1.

6-						The	value	of	x	is	12.	Use	the	modulus	operator	to	grab	the	remainder	of	dividing	x
by	2.	Do	not	assign	it	to	anything,	just	display	the	result.	It	should	be	zero.

7-						At	this	moment	x	is	still	12.	Use	the	modulus	operator	to	see	what	the	remainder	is
when	we	divide	x	by	5.	It	should	be	2	left.

(see	the	results	on	the	next	page).

Part	two	results	(answers):

1-						Declare	three	variables:	x	=	12,	y	=	2	and	z	=	3.
var	x	=	12;
var	y	=	2;
var	z	=	3;

2-						Declare	another	variable,	a,	and	assign	to	it	the	multiplication	of	y	by	z.	Call	a	to
see	if	it	holds	the	value	6
var	a	=	y	*	z;
a;

3-						Declare	variable	b	and	assign	it	the	result	of	the	division	of	x	by	a.	Call	b	to	inspect
its	result,	it	should	be	2.
var	b	=	x	/	a;
b;

4-						Reassign	b	to	the	multiplication	of	itself.	Use	*=	for	that	effect.	Now	b	should	be
4.
b	*=	b;

5-						Reassign	b	to	the	division	of	itself.	Use	/=.	Now	b	should	be	1.
b	/=	b;

6-						The	value	of	x	is	12.	Use	the	modulus	operator	to	grab	the	remainder	of	dividing	x
by	2.	Do	not	assign	it	to	anything,	just	display	the	result.	It	should	be	zero.
x	%	2;

7-						At	this	moment	x	is	still	12.	Use	the	modulus	operator	to	see	what	the	remainder	is
when	we	divide	x	by	5.	It	should	be	2	left.
x	%	5;

There	will	be	plenty	more	exercises	to	use	these	new	skills	along	with	other	more
advanced	ones.

Let’s	keep	going	forward.

END	OF	LAB

1.9	Comparison	operators	and	booleans

===,	!==,	<,	>,	<=,	>=	true,	false
In	math	we	use	the	equals	sign	to	determine	equality.

Not	in	JavaScript!	In	JavaScript	the	equals	sign	is	an	assignment	operator:	it	assigns	the
right	operand	to	the	left	operand:

x	=	12;	

In	the	example	above,	12	is	given	to	x.	This	is	an	assignment,	not	a	question	to	inspect
equality.

To	inspect	equality,	we	use	the	triple	=	operator	===

x	===	12;

The	expression	above	is	not	an	assignment,	it	is	a	question	and	the	question	is:	“are		the
values	in		x	and	in	12	the	same?”	in	other	words,	does	the	variable	x	contain	the	numeric
value	12?

Every	time	JavaScript	interpreter	sees	a	triple	equals	(===),	it	always	evaluates	and
replies	with	a	Boolean	true	or	a	Boolean	false.

What	is	a	Boolean?
A	Boolean	is	a	binary	evaluation	result	that	has	one	of	two	possible	value	outcomes:		
true	or	false.	In	JavaScript	a	Boolean	is	a	type	of	value	just	like	string,	number,	undefined,
null,	etc.

true	and	false	are	permanently	reserved	words	in	JavaScript.	We	can	literally	write	true
and	false	without	quotes	because	JavaScript	knows	what	they	mean.	However,	if	we	ever
write	“true”	or	“false”	in	quotes,	JavaScript	will	assume	it	is	a	string	which	has	no	value
as	a	Boolean.	So	if	you	ever	see	“true”	in	quotes,	it	is	because	that	information	is	being
spoken	to	a	human	being,	not	to	the	computer	itself.	JavaScript	only	accepts	true	and	false
as	Boolean	values	when	the	terms	are	not	wrapped	in	quotes	and	in	lower	case.

So,	we	could	create	a	question	on	the	console	for	JavaScript	to	answer	(this	question	is	a
command	to	get	a	Boolean	result):

x	===	12;

If	we	have	previously	declared	x	with	the	value	of	12,	JavaScript	will	reply	true	because
the	statement	is	true.

Else,	it	will	reply	false,	like	in	the	following	example:
x	===	14;

Question:

In	x	===	14	what	would	JavaScript	say	if	x	was	not	previously	declared	as	a	variable?

http://en.wikipedia.org/wiki/Boolean_expression

Since	x	is	not	wrapped	in	quotes,	it	is	not	a	string	value	and	therefore	it	must	be	a	variable
name.	However	JavaScript	doesn’t	find	it	in	its	library	because	it	hasn’t	been	declared.

In	that	case,	instead	of	replying	with	a	Boolean	true	or	false,	JavaScript	will	throw	an
error	like	this:

ReferenceError:	x	is	not	defined

	

Let’s	learn	a	few	more	comparison	operators	and	ask	more	questions	to	JavaScript.

Please	remember,	these	symbols	compare	the	left	operand,	to	the	right	operand.

Less	than:	<

Greater	than:	>

Less	or	equals	than:	<=

Greater	or	equals	than	>=

Not	the	same	as:	!==

Examples:

12	<	10;	The	Boolean	answer	is	false

12	>	10;	The	Boolean	answer	is	true

12	===	12;	The	Boolean	answer	is	true

12	===	“12”;	The	Boolean	answer	is	false*

12	!==	13;	The	Boolean	answer	is	true

12	!==	12;	The	Boolean	answer	is	false

12	<=	12;	The	Boolean	answer	is	true

12	=	12;	The	Boolean	answer	is	true

*Note:	You	may	have	seen	double	equals	==	used	in	JavaScript	in	another	book
somewhere.	In	a	different	programming	language	that	should	be	ok.	However,	in
JavaScript	the	double	equals	comparison	operator	is	not	recommended.	This	is	because	in
JavaScript	the	double	equals	==	does	not	fully	check	the	condition.	I	mean	it	does	not
check	the	type	of	data	the	operands	contain.	That	could	lead	to	errors	because	sometimes
we	have	numbers	in	quotes	which	makes	them	strings,	a	“12”	is	not	the	same	value	as	12.
The	first	is	a	string	of	characters	and	the	second	is	a	number.

In	JavaScript	always	use	the	triple	equals:	===	for	comparing	values.

1.10	Lab	work	4

Practicing	with	===,	!==,	<,	>,	<=,	>=	true,	false.
Go	to	your	favorite	JavaScript	Console	and	create	some	variables	and	values.

1-						Ask	JavaScript	if	12	is	greater	than	14.	
Then	ask	if	12	is	smaller	than	14.

2-						Declare	variable	num	with	a	value	of	12.	
Then	declare	variable	num2	with	the	value	of	“12”.	
Later,	ask	if	num	is	the	same	as	num2.

3-						Ask	if	num	is	not	the	same	as	num2.

4-						Ask	if	7	is	greater	or	equals	to	8.	
Also	if	7	is	less	or	equals	to	7.

5-						What	is	the	difference	between	true	and	“true”?

6-						Find	out	the	typeof	true.

7-						Find	out	the	typeof	“true”.

8-						Find	the	type	of	value	“7”.

9-						Find	the	type	of	value	8.

(see	results	on	the	next	page).

	

Results:

1-						Ask	JavaScript	if	12	is	greater	than	14.	
Then	ask	if	12	is	smaller	than	14.
12	>	14;	
	false
12	<	14;
true

2-						Declare	variable	num	with	a	value	of	12.	
Then	declare	variable	num2	with	the	value	of	“12”.	
Later,	ask	if	num	is	the	same	as	num2.
var	num	=	12;
var	num2	=	“12”;
num	===	num2;
false

3-						Ask	if	num	is	not	the	same	as	num2.
num	!==	num2;
true

4-						Ask	if	7	is	greater	or	equals	8.	
Also	if	7	is	less	or	equals	7.
7	>=	8;
false
7	<=	7;
true

5-						What	is	the	difference	between	true	and	“true”?
true	is	a	reserved	Boolean	term.	
“true”	is	just	a	string	of	characters.

6-						Find	out	the	typeof	true.
typeof	true;
“boolean”

7-						Find	out	the	typeof	“true”
typeof	“true”;
“string”

8-						Find	the	type	of	value	“7”.
typeof	“7”;
“string”

9-						Find	the	type	of	value	8.
typeof	8;
“number”

1.11	Introducing	console.log,	alert,	prompt,	confirm
So	far	we	have	been	testing	the	value	of	variables	by	just	typing	the	name	of	the	variable
and	pressing	the	ENTER	key.

This	works	because	we	are	using	a	test	Console.

However,	as	our	scripts	get	more	complex	we	will	need	to	have	a	more	explicit
mechanism	for	outputting	data	to	the	screen.

That’s	where	console.log()	comes	handy	.

	

The	console.log
The	Console	has	a	way	to	explicitly	log	data	to	the	screen	by	using	a	mechanism	called
log().

The	data	to	be	displayed	goes	inside	of	the	parentheses.	If	this	data	is	in	the	form	of	string
we	wrap	it	in	quotes.	However,	if	the	data	comes	from	a	variable	or	from	a	number,	we
always	write	the	variable	name	or	the	number	without	quotes.

Examples:

log(“Hello	bluebird”);	<—	This	will	not	work	as	written.
Please	wait	to	read	the	note	on	the	bottom	of	the	page
before	you	try	it	on	your	Console.

Another	example	is	log(x).	If	x	is	a	declared	variable,	this	will	display	the	value	of	x.	If	x
is	not	a	variable,	JavaScript	will	throw	an	error	because	any	word	that	is	not	a	variable
should	be	in	quotes	like	this:	log(“x”).

We	can	also	combine	strings	and	variables:

Like	for	example:

var	x	=	“big	bird”;

log(“Hello”	+	”	”	+	x);

Which	displays	Hello	big	bird

Or	if	you	remember,	we	could	do	it	this	way:

log(“Hello	”	+		x);

NOTE:

log()	by	itself	will	not	work.	We	need	to	use	Dot	syntax	to	bind	log()	to	the	Console
(lower	c):

console.log(“Hello	”	+		x);

That	is	the	correct	way	of	using	log(),	attaching	console	to	log()	with	dot	syntax.	Notice
how	console	is	in	lower	case.	The	correct	way	to	refer	to	the	Console	when	programming
is	console	in	lowercase.	It	is	an	object	named	console.	Capitalization	for	console	will	not
work	because	JavaScript	is	case	sensitive.

Here	are	some	more	examples:

console.log(3	+	5);		<—	It	displays	8

console.log(3	>	5);		<—	It	displays	false

Or	a	combination	of	a	string	and	a	number	comparison:

console.log(“3	>	5	is	”	+	(3	>	5));

It	displays:	3	>	5	is	false.

We	will	use	console.log()	extensively	throughout	the	book.

	

alert()
Before	console.log(),	there	was	alert().	Contrary	to	console.log(),	alert()	is	a	true
JavaScript	command	(console.log	is	not	really	from	the	JavaScript	core,	it	is	a	method
introduced	by	browsers	and	for	test	purposes).		Programmers	were	getting	tired	of	having
to	create	a	popup	box	with	alert()	just	for	testing	a	quick	output,	and	that’s	how
console.log()	was	invented.

When	we	transfer	a	program	from	testing	to	production,	we	need	to	convert	all
console.log()s	into	something	that	works	with	HTML,	and	alert()	is	one	of	such	output
statements.	There	are	many	other	output	implementations,	which	is	a	good	thing	since
alert()	is	synonymous	with	ugly	advertisement	popup	boxes.

Just	like	log()	is	called	from	the	Console,	such	as	console.log(“Hello!”);	alert	is	called
from	object	window,	like	this:
window.alert(“hello!!”);

Why	window?

The	object	window	is	the	mother	of	everything	we	do	on	a	browser.	Even	the	Console
itself	runs	under	window.	(no	relation	to	Microsoft	Windows).	The	complete	statement	is
actually:

window.console.log(“hello!”);

However,	since	we	are	coding	inside	of	the	Console,	we	don’t	really	need	to	explicitly
address	the	outer	part	of	the	Console	in	the	browser.	I	mean,	console.log()	is	good	enough
since	JavaScript	starts	looking	from	where	we	are	coding	and	moves	outward	from	there.
So	it	finds	the	command	log()	as	part	of	the	Console.	In	any	case,	even	alert	does	not	need
to	use	its	parent	window	in	order	to	work	(because	Console	is	a	child	of	window	and	a
child	has	access	to	its	parent’s	variables,	properties	and	methods.).

This	is	the	most	popular	way	to	code	an	alert:

alert(“hello!”);

We	will	have	an	opportunity	to	try	using	alert()	on	the	next	lab	assignment.

	

confirm()	and	prompt()
Another	popular	popup	box	is	confirm()

Just	like	alert(),	confirm()	also	comes	from	object	window	and	we	normally	code	it	like
this:

confirm(“are	you	sure	you	want	to	proceed?”);

It	pops	up	a	message	and	we	click	one	of	the	two	possible	buttons:

Ok	or	Cancel

Ok	will	return	a	Boolean	true,	and	Cancel	will	return	a	Boolean	false.	We	don’t	have	to
take	advantage	of	these	Booleans,	but	we	could	and	we	will	when	we	do	a	project	on
conditional	statements.

Another	useful	output	method	is	prompt()	which	also	acts	as	an	input	method.

prompt()	is	very	useful	to	gather	information	from	a	user	because	prompt()	will	open	a
widow	where	the	user	can	introduce	some	data.		We	can	then	assign	this	data	to	a	variable
and	use	the	value	to	create	some	other	outcome.

For	example:

var	answer	=	prompt(“yes	or	no?”);

Then	we	could	further	manipulate	the	answer	by	evaluating	it	with	a	Boolean	result:

answer	===	“yes”;

That	is	actually	a	question	for	which	JavaScript	will	answer	back	as	true	if	the	answer	is
“yes”,	or	as	false	if	the	answer	is	“no”.

This	will	make	more	sense	when	we	arrive	a	conditional	statements.	I	just	don’t	want	to
give	you	all	the	information	in	bulk	when	you	get	there	and	that’s	why	I’m	introducing
these	concepts	right	now.	Hopefully	when	we	get	to	conditional	statements	you	will
remember	the	basic	ingredients	used	on	a	conditional	recipe,	but	don’t	break	your	head
over	these	concepts,	we	will	revisit	them	again.

	

1.12	Logical	Operators
And:	&&,	Or:	||,	Not:	!

There	are	three	logical	operators	in	JavaScript.

And:	&&
With	&&	both	operands	need	to	be	Boolean	true	in	order	to	get	a	true	output.

Examples:

(10	>	9)	&&	(10	<	11);	<–	The	JavaScript	answer	is	true	
because	true	and	true	is	true.

(10	>	14)	&&	(10	<	11);	<–	The	JavaScript	answer	is	false	
because	false	and	true	is	false.

5	===	7	&&	5	===	5;	<–	The	JavaScript	answer	is	false

5	===	“5”	&&	5===	5;	<–	The	JavaScript	answer	is	false

5	===	5	&&	7	>	5;		<–	The	JavaScript	answer	is	true

Or:	||
The	two	vertical	bars	denote	an	OR	logical	operator.	In	US	Windows	you	can	access	the	||
by	pressing	SHIFT	and	the	last	key	on	the	right	at	the	row	starting	with	qwerty.

With	logical	or	||,	one	of	the	operands	needs	to	be	true	in	order	to	get	a	Boolean	true	as	the
output.

Normally	JavaScript	will	not	check	the	right	operand	in	an	OR	statement,	if	the	left
operand	is	already	true.	This	is	important	to	know,	especially	when	it	comes	to	conditional
decision	making	as	we	will	see	soon.

Examples:

(10	>	9)	||	(10	<	9);	<–	The	JavaScript	answer	is	true	because	the	first
expression	is	true.

(10	<	9)	||	(10	>	9);	<–	The	JavaScript	answer	is	true	because	the	second
expression	is	true.

(10	<	9)	||	(10	<	8);	<–	The	JavaScript	answer	is	false	because	none	of	the
expressions	are	true.

Not:	!
The	not	!	operator	is	used	to	invert	a	statement.	In	JavaScript	any	data	value	is	considered
true,	with	the	following	exceptions:	
Boolean	false,	the	number	zero,	the	value	known	as	undefined,	and	the	value	known	as
null	which	we	haven’t	covered	yet.

Let	me	declare	a	few	variables	and	values	in	order	to	do	some	tests:

var	x	=	3;

var	y	=	0;

var	z	=	“Tony”;

var	a;

Based	on	my	first	statement,	is	variable	x	true	or	false?	It	is	true	because	it	has	a	value.	On
the	other	hand,	variable	y	is	false.

Let	me	introduce	a	JavaScript	method	to	find	out	when	a	value	is	true	or	false:	(we	can
use	this	method	in	our	scripts	for	decision	making	but	it	is	not	used	that	much.	Just	be
aware	of	it):

Boolean();

And	now	we	are	going	to	compare	the	normal	result	of	the	method	with	the	result	of
inverting	the	question.	Remember,	we	are	asking	JavaScript	to	see	if	the	statement	is	true
or	false,	not	to	inspect	the	variable	and	give	us	a	value.	It’s	all	about	our	statement	inside
of	the	Boolean()	method.	Let’s	try:

In	for	example,		Boolean(x);	We	are	asking	the	following:	“Is	this	true?”,	“I	say	x	exists	as
true,	is	my	statement	true?”,	and	then	JavaScript	replies	with	true	or	false:

Boolean(x);		<—	the	statement	is	true	(since	our		x	from	the	previous	examples	is	3)

Boolean(!x);		<—	the	statement	is	false	(since	x	has	a	value,	!x	is	a	false	statement)

Boolean(y);	<—	the	statement	is	false	(y	is	0	and	zero	is	false)

Boolean(!y);	<—	the	statement	is	true	(since	y	is	0,	!y	is	a	true	statement)

Boolean(z);	<—	the	statement	is	true	(z	is	“Tony”	and		Tony	is	true)

Boolean(!z);	<—	the	statement	is	false	(since	z	has	a	value,	the	!z	statement	is	false)

Boolean(a);	<—	the	statement	is	false	(a	is	undefined	and	we	can’t	say	it	is	true)

Boolean(!a);	<—	the	a	statement	is	true	(since	a	is	undefined,	!a	is	a	true	statement)

Let’s	do	some	lab	work	to	review	all	these	concepts.

	

1.13	Lab	work	5

Getting	feedback	from	a	user
In	this	lab	session	we	will	work	together	step	by	step.	Please	turn	on	your	JavaScript
Console	and	play	along	with	me:

1-						Let’s	use	prompt()	to	ask	a	visitor	for	his/her	name:
prompt(“What	is	your	name”);

2-						A	popup	window	should	appear	on	your	browser	after	you	press	ENTER,	asking
for	your	name.

Answer	the	question	but	do	not	write	your	name	in	quotes.	Being	a	text	box	you
don’t	need	quotes.	The	input	mechanism	will	put	the	quotes	automatically:

Write	Tony	or	your	first	name,	and	then	press	ENTER

Ok,	what	happened?	Nothing	much	happened,	right?	The	name	was	displayed	on	the
Console	as	an	automatic	feedback	and	that’s	about	it.

This	is	because	we	didn’t	catch	the	input	name	given	by	the	user	to	the	prompt()
mechanism.	In	order	to	grab	the	input	name,	we	need	to	assign	the	result	to	a	variable.

Let’s	start	from	the	beginning	by	doing	it	all	over	again:

3-						Declare	a	variable	name	userName	and	assign	to	it	the	same	prompt()	as	before.
I’m	not	using	the	word	name	by	itself	because	it	is	a	reserved	word	in	the	browser,
which	makes	it	a	forbidden	term	to	use	as	a	variable	name):

var	userName	=	prompt(“What	is	your	name?”);

When	the	popup	window	appears	type	your	first	name	on	the	box	and	press	ENTER.

We	still	can’t	see	the	name,	but	on	our	next	step	we	are	going	to	use	console.log()	to
display	the	value	of	variable	userName	which	should	be	your	first	name.	By	the	way,	the
automatic	feedback	message	was	probably	the	term	undefined,	right?	That’s	because	the
feedback	happened	when	the	variable	was	declared,	and	then	the	assignment	happened.
You	don’t	need	to	know	this;	I	just	want	to	inform	you	so	that	you	don’t	get	distracted
trying	to	figure	out	what	really	happened	there.

4-						Use	console.log()	to	display	the	value	of	userName:

console.log(userName);	
Mine	displays	Tony

If	you	get	an	error	like	for	example	“ReferenceError:	myName	is	not	defined”,	make	sure
the	name	of	the	declared	variable	and	the	variable	name	you	used	on	the	console.log()	are
the	same.	A	common	mistake	is	to	write	username	and	then	on	the	second	time	write
userName.	As	you	know,	they	are	not	the	same.

5-						Let’s	make	our	output	a	bit	prettier.	Use	console.log	to	display	the	following
sentence:

“Hi,	Tony!	Nice	to	meet	you”	where	Tony	is	the	name	you	have	entered	on	the
prompt.	You	will	have	to	use	the	variable	userName	as	a	placeholder	(see	the	next
explanation).

console.log(“Hi,	”	+	userName	+	“!	Nice	to	meet	you.”);

Notice	the	white	space	after	Hi,	also	notice	that	I	have	used	the	variable	userName	instead
of	the	real	name.	That’s	because	as	programmers	we	create	scripts	to	work	with	any	name,
not	just	our	name.	Always	code	generically!

6-						Did	it	work	for	you?	Did	you	get	the	correct	name	displayed	on	your	output
sentence?

Now	it’s	your	turn…

On	the	next	few	exercises	you	are	going	to	repeat	what	we’ve	just	done.	Are	you	ready	to
do	it	on	your	own?	Please	read	the	following	recipe	instructions	and	then	program	it
yourself.

1-						Declare	a	variable	color	and	assign	to	it	a	prompt()	asking	a	user	to	define	his/her
favorite	color.

2-						Program	a	console.log	that	says	Hmmm…	orange	is	also	one	of	my	favorites!
where	orange	is	the	variable	color	which	represents	the	color	picked	by	the	user.

3-						For	practicing	purposes,	add	an	extra	line	with	a	confirm()	to	display	this	message:
“Are	you	ready	for	more	JavaScript?”.

(See	the	results	on	the	next	page).

Results:

1-						Declare	a	variable	color	and	assign	to	it	a	prompt()	asking	a	user	to	define	his/her
favorite	color:

var	color	=	prompt(“What	is	your	favorite	color?”);

2-						Program	a	console.log	that	says	Hmmm…	orange	is	also	one	of	my	favorites!
where	orange	is	the	color	they	have	picked.
console.log(“Hmmm…	”	+	color	+	”	is	also	one	of	my
favorites!”);

3-						For	practicing	purposes,	add	an	extra	line	with	a	confirm()	to	display	this	message
:
“Are	you	ready	for	more	JavaScript?”:

confirm(“Are	you	ready	for	more	JavaScript?”);

	

END	OF	LAB

Congratulations!

You	should	now	be	ready	for	the	second	level	of	this	programming	adventure.

Let’s	start	by	introducing	conditional	branching	techniques	so	that	we	can	go	a	little	faster
on	the	highway!

Thanks	for	sticking	around.

PART	II:	ENTERING	THE	SECOND	REALM
“I	try	all	night	to	play	a	pretty	note.”
	Jimi	Hendrix

	

2.1	Adding	more	syntax

Code	blocks	-	Using	an	editor
Up	this	this	point	we	have	been	writing	one	liner	statements	and	as	soon	as	we	press
ENTER	on	the	Console,	the	code	gets	executed.	We	could	actually	write	several	lines	of
code	in	the	Console	by	holding	the	shift-key	when	we	press	Enter.	That	would	take	us	to
the	second	line	where	we	could	continue	writing	our	script.	Although	this	works,	it	is	not
an	ideal	arrangement.	It	is	much	better	to	write	code	on	a	text	editor	and	then	copy/paste	it
to	the	Console	when	we	are	finished.

I’m	sure	you	have	some	sort	of	a	text	editor	on	your	computer.	Do	not	use	Word	or
WordPad	because	they	add	hidden	formatting	code	which	interferes	with	your	script.
Microsoft	Windows	comes	with	Notepad.	Notepad	works	and	I	use	it	hundreds	of	times	a
day	to	filter	out	text	as	I	copy	from	one	source	to	paste	onto	another	because	it	strips	any
visible	or	hidden	format.	But	I	also	use	other	free	editors	such	as	the	free	Notepad++,
Programmer’s	Notepad,		and	Brackets,		to	write	real	code.		

NOTE:	Since	May	2015,	Microsoft	has	release	a	really	cool	free	source	code	editor	called
Visual	Studio	Code	which	works	in	Windows	7	and	up,	Linux	and	Mac.	This	is	highly
recommended	but	for	now	I	am	going	to	recommend	something	much	simpler	to	do	our
exercises	and	you	will	see	why.	Please	read	on.

Of	course	you	may	use	any	one	of	your	favorite	plain	text	editors,	but	let	me	introduce	to
you	an	online	editor	that	comes	really	handy	because	you	don’t	have	to	rely	on	your
computer	to	get	going.	I	use	this	online	tool	many	times	a	day	because	it	also	allows	me	to
beautify	the	code	when	I	click	the	beautify	button	(creating	proper	white	space):

jsbeautifier.org

Please	Bookmark	the	site.	The	only	disadvantage	with	this	arrangement	is	that	you	can’t
save	the	code	directly,	but	right	now	we	are	not	saving	anything,	we	are	experimenting
and	jsbeautifier	works	well	for	this	purpose	because	it	actually	teaches	us	how	JavaScript
syntax	should	be	presented.

What	is	a	code	block?

A	code	block	is	usually	a	collection	of	different	statements	that	come	together	to	create	a
certain	functionality.	The	best	way	to	save	groups	of	code	is	by	creating	a	function.	We
will	get	to	play	with	functions	soon.

A	code	block	is	usually	limited	(surrounded)	by	an	opening	curly	brace	{	and	a	closing
curly	brace	}.

Here’s	an	example	of	a	code	block:

{
	var	x	=	“Hello”;
	console.log(x);
}

http://notepad-plus-plus.org/
http://www.pnotepad.org/
http://brackets.io/
https://code.visualstudio.com/
http://jsbeautifier.org/

We	will	use	code	blocks	from	our	next	project	on.

	

Commenting	code
Sometimes	we	want	to	make	a	note	in	our	code	to	explain	the	purpose	of	a	code	line	to
another	human	being	but	we	don’t	want	JavaScript	to	throw	an	error	when	it	sees	our
comment.

There	are	two	ways	to	make	comments:

1-						Using	two	forward	slashes.
With	this	style	of	commenting	we	can’t	press	the	Enter	key	and	write	a	second
comment	line.	It	must	be	done	all	in	one	continuous	line:
//	This	is	a	comment.	Hello	fellow	reader,	how	are	you?

2-						Using	a	forward	slash	and	an	asterisk	to	start	the	comment	and	an	asterisk
and	a	forward	slash	to	end	the	comment:	/*	*/	
This	comment	can	span	for	as	many	lines	as	you	wish:
/*	With	this	comment	I	can	comment	a	whole	page
and	create	as	many	lines	as	I	want.	Once	upon	a	time	in
a	very	far	away	land	called	New	Jersey,	formerly	known
as	Schejachbi,	there	was	an	American	Indian	tribe	known
as	Lenape…		*/

Let’s	move	on	to	conditional	branching	which	a	very	important	step	into	real
programming.

2.2	Conditional	Branching
We	have	just	learned	how	to	get	feedback	from	a	user	but	we	could	not	do	much	with	it
because	there	were	no	tools	to	make	decisions	based	on	the	user’s	given	feedback.	Well,
we	are	going	to	get	some	of	those	tools	right	now.

Suppose	we	ask	a	user	if	he/she	wants	to	play	along	and	based	on	the	user’s	answer,	we
either	keep	playing	or	exit	the	program.	It	sounds	like	we	need	to	apply	an	if()	else
conditional	code		statement,	right?

if,	else	conditionals
To	make	branching	decisions	in	JavaScript	we	need	to	know	about	the	if(),	else
conditional	statements.

Branching	is	when	we	either	go	this	way,	or	go	that	way,	depending	on	the	Boolean
statement	presented	at	the	point	of	branching.	In	other	words,	“if	true	go	this	way,	else	go
that	way”.

The	basic	if,	else	syntax	is	as	follows:

if(Boolean	true)	{	do	this	stuff;	}	else	{	do	that	stuff;	}

The	else	part	is	optional.

Notice	the	term	Boolean	true.	This	is	a	very	important	concept	that	many	code	students
miss	at	the	beginning.	Inside	of	the	parentheses	we	have	a	lock.	Independently	from	what
you	write	inside	of	those	parentheses,	the	condition	must	always	evaluate	to	a	Boolean
true	in	order	to	unlock	the	code	within	the	subsequent	curly	braces.		The	Boolean	true	is
always	the	correct	key	to	unlock	the	if()	statement.	JavaScript	will	only	execute	the	code
on	the	next	code	block	if	that	condition	is	true.	On	the	other	hand,	if	the	condition
evaluates	to	false	the	code	block	will	be	hidden	from	JavaScript,	and	JavaScript	will	exit
or	execute	the	next	code	block	if	there	is	one	available,	example:	else	{	}.

An	if(),	else	statement	is	in	a	sense	a	logical	OR	(or	XOR):	
Either	the	first	code	block	is	executed,	or	the	else	code	block	is	execute,	but	never
both.
Notice	how	the	else	does	not	have	a	condition,	it	works	automatically	when	and	only
when	the	Boolean	if()	evaluates	to	false.	

So	when	the	Boolean	condition	is	false,	JavaScript	jumps	over	the	curly	braces	and	moves
on.	In	this	case	we	can	catch	the	JavaScript	execution	with	an	optional	else	statement.	The
else	statement	does	not	take	conditions;	it	is	just	a	catcher	in	case	the	first	condition	is	not
met.	We	include	an	else	option	when	we	want	JavaScript	to	choose	one	of	two	paths.

Sometimes	we	want	a	certain	code	to	execute	only	if	a	condition	is	met,	but	we	do	not
have	an	alternative	condition.	In	this	case,	we	use	the	if(){}	by	itself	without	an	else{}.

An	if()	statement	by	itself	is	like	saying		“Nothing	to	do	here.	Let’s	keep	going”	when	the
condition	is	false.	Or	“Wait!	There	is	something	to	do	here.	Let’s	take	a	detour	and	do	this

thing	before	we	keep	going”	when	the	condition	is	true.

Please	note:	From	now	on,	some	lab	work	and	theory	lectures	are	going	to	coexist.
Please	code	along	as	we	discuss	the	subject.	Part	two	is	going	to	be	a	hands-on
adventure.

Let’s	construct	an	example	just	to	see	how	the	if(),	else	works.	Since	some	of	these	scripts
span	for	several	lines,	I	have	provided	a	link	to	an	original	file	which	is	located	on	one	of
my	support	websites.	I	recommend	writing	your	own	files	because	you	will	not	master	the
language	if	you	copy/paste	them,	but	at	times	it	becomes	convenient	to	just	copy	and
paste.	Use	your	best	judgment.

The	link	to	the	file	on	my	server	will	be	located	below	the	image,	like	in	the	example	seen
on	the	next	page.

Let’s	start	coding:

1-						On	your	editor	(or	jsbeautifier.org),	assign	a	prompt()	to	a	variable	x.	
In	the	prompt(),	ask	the	user	to	say	yes	if	he/she	want	to	continue,	
or	to	say	no,	if	he/she	wants	to	leave	the	program.	
Something	like	this:
var	x	=	prompt(“Would	you	like	to	continue?	yes	or	no”);

2-						Construct	an	if(x	===	“yes”)	statement	that	prints	to	screen	the	message	
“Ok,	let’s	play!”	
Otherwise,	it	prints	to	screen	
“Ok,	goodbye!”

After	you	finish	coding,	if	you	are	using	jsBeautifier,	press	the	button	“Beautify
JavaScript”,	or	CTRL-ENTER	to	make	your	code	more	presentable.	Notice	how	the	editor
adjusts	the	spacing	to	conform	to	standard	JavaScript	styling.

See	the	image	below.

http://jsbeautifier.org/

Fig	1	See	original	file:(here)	bit.ly/1uN96zN

3-						Copy	your	script	from	your	own	editor	or	from	my	own	linked	page	and	paste	it
on	the	Console.	Then	press	ENTER.

If	you	get	an	error,	recheck	your	code.	Debugging	is	what	programmers	do	best	because
that’s	where	they	spend	90%	of	their	time	(see	step	4	to	learn	how	to	repeat	the	execution
on	the	Console).

When	the	prompt	appears,	type	yes	without	quotes.	If	your	script	is	well	constructed	you
should	have	the	following	printout	on	your	Console:

Ok,	let’s	play!

To	copy	the	code	from	my	own	website,	click	on	the	2-page	icon	located	to	the	right	of	the
code	script.

4-						To	repeat	the	execution,	focus	your	mouse	on	the	Console	and	press	the	Up
Arrow.	That	will	take	you	up	to	the	last	executed	script.	From	there,	(you	can	edit	it
if	you	need	to	do	so)	and	then	press	Enter	to	run	it	again.	
This	time,	answer	no	to	the	prompt	question.	
You	should	get:	ok,	goodbye!	as	a	response.

5-						Did	you	notice	how	the	prompt()	takes	you	to	the	main	browser	but	then	you	have
to	look	back	at	the	console	for	an	answer?	
You	could	replace	console.log()	with	confirm()	or	with	alert()	
in	order	to	also	get	your	answer	on	the	browser.

Just	for	practicing	purposes,	change	your	first	console.log	to	confirm()	and	your
second	console.log()	to	alert()	.	Don’t	worry	about	this	inconstancy,	we	are	just
practicing.	
Use	the	editor	at	jsbeautifier	to	write	your	script.	
Then	test	both	if,	else	outcomes	like	we	did	on	steps	3	and	4:
confirm(“Ok,	let’s	play!”);
alert(“ok,	goodbye!”);

	

http://jsplain.com/javascript/index.php/Thread/8-branching1

Reviewing	if(),	else
Inside	of	an	if(){	do	this	stuff;	}	parentheses,	we	include	a	condition.	Keep	in
mind	that	it	is	not	the	condition	itself	that	unlocks	the	code	block:	it	is	the	truthiness	of	the
question	you	write	in	there	that	unlocks	the	code.

Examples:

if(10	===	10){}	<—	since	10	is	the	same	as	10,	JavaScript	will	evaluate	the
statement	as	true	and	it	unlocks	the	next	code	block.

if(10	===	“10”){}	<—	since	10	is	a	number	and	“10”	is	a	string,	JavaScript
evaluates	the	statement	as	false	and	jumps	over	the	next	code	block	without	executing	it.
var	x	=	33;
if(x){}	<—	since	x	has	a	value	other	than	0,	undefined,	or	null,	the	statement	is	true.

if(!x){}	<—	since	x	has	a	value	other	than	0,	undefined,	or	null,	this	statement	is	false.

var	y	=	“yes”;

if(y	===	“yes”){}	<—	since	the	value	of	y	is	string	yes,	this	statement	is	true.

if(y	!==	“yes”){}	<—	since	the	value	of	y	is	yes,	this	statement	is	false.

if(y	===	“no”){}	<–	since	the	value	of	y	is	yes,	this	statement	is	false.

if(y	===	“no”	||	y	===	“yes”){}	<—	since	one	of	the	statement	is	true,	the
statement	is	true.

if(y	===	“no”		&&	y	===	“yes”){}	<–	this	statement	is	false	since	one	of
the	operands	is	false.

What	about	else?
else	is	optional.	We	can	have	an	if()	conditional	statement	all	by	itself.	However,	we	can’t
have	an	else	by	itself	since	else	is	just	a	catcher	helper	for	when	if()	fails.	Or	in	other
words,	the	alternate	of		if().

Adding	a	second	condition	in	the	middle	of	if(),	else
Sometimes	an	if(),	else,	is	not	enough	to	accommodate	all	the	outcomes.	In	that	case	there
is	an	intermediate	statement	and	it	takes	a	condition	just	like	if()	does.

This	intermediate	conditional	is	called	else	if()

Here’s	the	basic	syntax:

Fig	2

How	to	physically	write	the	braces	in	a	conditional	statement
Notice	the	opening	brace	on	line	1.	This	is	the	JavaScript	common	way	of	doing	it.	If	you
come	from	an	older	language	such	as	C	,	you	may	be	used	to	code	the	opening	brace	on
the	second	line	by	itself.	That	is	perfectly	fine.	Whichever	way	you	choose	to	use	just
make	sure	you	don’t	mix	styles.

Also,	the	closing	brace	is	always	at	the	beginning	of	a	line	(example:	lines	3,	5	and	7).
After	the	if()	closing	brace	we	may	write	the	else	on	the	same	line,	or	the	else	if,	when
applicable,	and	finish	the	line	with	an	opening	curly	brace	(see	line	3).

The	very	final	closing	brace	always	stand	on	its	own	(line	7).	That	is	common	to	all
languages	that	use	braces.	A	very	popular	mistake	is	to	write	the	closing	brace	to	the	right
of	the	last	statement.	That	is	very	ugly	and	very	difficult	to	troubleshoot.

Sometimes	you	will	find	JavaScript	conditionals	without	braces	and	it	also	works.
However	I	do	not	recommend	such	practice	because	it	leads	to	inconstancies	and	it	may
trigger	an	error	sooner	or	later	because	the	JavaScript	interpreter	adds	semicolons
automatically	when	it	thinks	they	are	missing,	and	the	lack	of	a	curly	brace	may	trigger	the
interpreter	to	think	that	is	has	reached	the	end	of	a	statement.	Until	you	master	this	styling
concept	use	jsBeautifier	to	style	your	code	after	you	are	done	writing	it.

When	to	use	an	else	if()
Just	like	else,	the	else	if()	does	not	exist	without	first	having	an	if().	We	can	only	have	one
if()	and	one	optional	else,	but	we	can	have	as	many	else	if()s	as	we	wish.

Question:

What	is	the	difference	between	coding	else	if()s	or	just	writing	a	new	if()	statement	for	a
new	subsequent	condition?

Answer:	It	is	a	matter	of	semantics.	When	we	write	several	if()s,	we	are	creating
independent	statements.	This	means	that	JavaScript	interpreter	will	evaluate	all	of	them
and	output	all	those	that	are	true.	On	the	other	hand,	when	we	have	else	if()s	after	an	if(),
we	are	telling	the	JavaScript	interpreter	that	we	want	just	one	output	since	both	conditions
are	tied	together.	In	other	words,	when	the	if()	condition	is	true,	output	it	and	do	not
execute	the	next	else	if()	condition	because	we	are	done	here.

Side	note:	When	two	conditions	could	possibly	be	true	for	both	if()	and	else	if(),	try
to	write	the	most	common	condition	first,	in	order	to	avoid	an	incorrect	output.

Here’s	what	I	mean:	If	we	are	probing	for	numbers	that	are	divisible	by		3	or	divisible	by
5,	or	both,	make	sure	the	divisibility	3	&&	5	condition	goes	before	the	divisibility	by	3	or
by	5.

Let’s	practice	some	more:
1-						Use	your	editor	to	create	this	code,	then	paste	it	to	the	Console.

Declare	a	variable	x	and	assign	it	the	number	15.
Then	create	a	condition	that	prints	to	the	screen	(console.log)	one	of	the	following:
“yes,	x	is	divisible	by	3”
“yes,	x	is	divisible	by	5”
“yes,	x	is	divisible	by	3	and	5”
“No,	x	is	not	divisible	by	3	nor	5”

Remember	to	use	the	modulus	in	order	to	see	if	x	is	divisible	by	a	certain	number,	like	for
example:
if	(x	%	3	===	0)	Which	means	that	if	the	remainder	is	zero,	x	is	divisible	by	3,	right?

See	the	next	page	for	a	script	discussion	and	a	link	to	my	own	file.

Is	Programming	an	Art	or	a	Science?
There	are	many	ways	to	finish	the	task.	Programming	is	part	science	and	part	art.	In	a	way
it	is	like	planning	and	cooking	a	meal.

First	we	need	to	look	at	possible	solutions.	In	this	project	we	probably	need	three
conditional	statements,	which	means	that	we	may	have	to	employ	some	else	if()s	in	the
middle	before	we	get	to	the	catch	all	else	solution	at	the	end.	It’s	a	good	idea	to	take	a
walk	outside	while	putting	all	the	ingredients	together	in	our	mind	for	the	recipe	we	are
about	to	create.	Sketching	the	ingredients	on	a	piece	of	paper	also	helps	a	bit	(real	paper
and	pencil).

As	mentioned	before,	we	have	to	address	the	common	condition	first,	which	is	when	x	is
divisible	by	both	3	and	5.	That	should	become	our	main	if()	condition.	Then	we	create	two
additional	else	if()s	for	numbers	that	are	divisible	by	3	or	by	5.	
Finally,	we	assign	the	output	“No,	x	is	not	divisible	by	3	nor	5”	to	the	catcher	else.

2-						Let’s	do	the	first	condition	and	test:

Fig	3	(See	original	file:	here)	bit.ly/1uoc1N8

On	line	1	I	have	declared	variable	x	with	the	value	of	15.

On	line	2	the	&&	logical	operator	is	used	to	ask	JavaScript	if	both	left	and	right	operands
are	true.	Notice	how	each	operand	has	to	be	explicit.	Many	new	programmers	tend	to
write	it	this	way:	x	%	3	&&	5	===	0,	JavaScript	will	not	understand	this	syntax.	An
individual	Boolean	condition	for	each	case	is	necessary.

We	could	wrap	each	operand	in	parentheses	to	make	it	easier	in	the	human	eye:
if((x	%	3	===	0)	&&	(x	%	5	===	0)){	
If	you	do	it	this	way,	be	sure	to	close	all	parentheses.	There	is	an	even	number	of	them.

On	line	3,	I	used	console.log	to	print	the	appropriate	message.

3-						Test	your	script	to	look	for	errors	and	to	make	sure	you	get	the	correct	output.	If
you	wish,	reassign	x	to	another	number,	like	for	example,	14,	and	run	the
conditional	statement	again.	You	can	run	it	by	using	the	Up	Arrow	key	until	you	get
to	the	script,	edit	the	variable	x	and	press	ENTER.	When	x	is	14	you	will	not	get	any
output	which	means	that	JavaScript	jumped	over	the	code	block	because	the
condition	was	no	longer	true.	In	that	case	you	will	see	an	undefined	message	on	the
Console.	That	is	ok,	it	is	just	an	automatic	echo	from	the	Console	and	it	does	not

http://jsplain.com/javascript/index.php/Thread/9-branching2/

have	any	influence	on	your	script.

Note:	Subdividing	our	code	project	into	little	test	steps	is	a	good	practice.	There	is	nothing
worse	than	spending	an	hour	coding	a	script	only	to	realize	in	the	end	that	it	does	not
work.

4-						Now	we	are	ready	to	create	our	first	else	if()		statement.	
Which	one	of	these	conditions	should	we	do	first:	
the	one	that	checks	for	divisibility	by	3,	
or	the	one	checking	divisibility	by	5?

At	this	point	it	does	not	matter	since	we	have	resolved	the	ambiguity	of	being	divisible	by
both,	but	I	would	do	it	in	numerical	sequence	writing	the	3	condition	first.	See	lines	4
through	6	on	the	image	below:

Fig	4	(See	original	file:	here)	bit.ly/1uoc1N8

On	line	4	notice	how	else	if	is	coded	to	the	right	of	the	brace	that	closes	the	previous	if().
This	is	not	mandatory	but	it	looks	more	professional.

On	line	6	the	curly	brace	closes	the	else	if()	statement.

5-						Paste	your	script	onto	the	Console	and	press	ENTER	to	run	it.	You	should	still	get
the	first	output	because	variable	x	is	still	15	which	makes	the	first	condition	true.

In	order	to	test	the	second	condition,	reassign	variable	x	to	9.	To	change	the	value	of
variable	x	press	the	Up	Arrow	key	until	you	see	the	whole	script,	then	place	your	cursor	at
the	variable	declaration,	change	the	value	to	9	and	press	ENTER.
Now	we	should	get	the	second	output:	‘x	is	divisible	by	3’	because	9	is	divisible	by	3.

6-						It’s	time	to	write	the	final	else	if	and	also	the	catcher	else	at	the	very	end.	See	the
next	image:

http://jsplain.com/javascript/index.php/Thread/9-branching2/

Fig	5	(See	original	file:	here)	bit.ly/1uoc1N8

On	line	6	we	can	see	the	second	else	if()	condition.

On	line	8,	else	finally	catches	anything	that	is	not	divisible	by	3	or	divisible	by	5.	No
condition	is	necessary	since	this	is	the	“all	else”	optional	outcome.	JavaScript	will	throw
an	error	if	we	ever	write	a	condition	for	else.

On	line	10	lies	the	last	closing	brace	which	closes	the	else	statement.

Don’t	you	feel	like	you	are	getting	there?	I	hope	so.	Conditional	branching	is	an	important
part	of	creating	real	programs.

We	will	see	how	to	code	this	script	without	using	else	if()	in	a	bit,	just	to	illustrate	another
important	concept:	nested	conditionals.	For	now,	let’s	just	take	a	break	by	doing
something	else.

http://jsplain.com/javascript/index.php/Thread/9-branching2/

2.3	The	anatomy	of	a	function
On	the	last	exercise	we	kept	pressing	the	Up	Arrow	to	recall	the	program	in	order	to	test	it.

What	if	we	didn’t	have	an	Up	Arrow?	We	would	have	to	write	the	script	again	and	again,
correct?

This	is	where	functions	come	handy.	Stop!	Don’t	think	of	math	when	I	mention	functions
in	JavaScript.	Think	of	functionality.	In	JavaScript	functions	are	containers	of	program
routines.	We	could	have	saved	our	if(),	else	script	in	a	function	and	just	recall	it	by	calling
the	function.	That’s	one	word,	versus	10	lines	of	text.

Preliminary	things	to	know	about	a	function
a)						A	function	is	a	closed	container	like	the	blue	rectangle	in	the	picture	seen	below.

b)						To	feed	data	into	a	function	in	order	to	be	processed,	we	need	one	or	more	input
parameters.

c)						To	export	data	from	a	function	in	order	to	reuse	it,	we	need	to	implement	an
interface	called	return,	or	alternatively	assign	some	outer	variable	to	the	new	result.

Fig	6

	

Scripting	a	function
A	representation	of	a	function	goes	like	this:

function	funcName()	{	stuff	to	do;	}

The	above	function	does	not	take	any	input	data,	it	just	does	stuff.

To	create	a	function	that	takes	an	input	parameter	and	processes	it,	we	need	to	include	the
parameter	inside	of	the	parentheses:

function	funcName(inputParameter)	{	stuff	to	do;	}

When	we	say	to	“call	a	function”	it	means	to	have	the	function	execute	its	magic.	All	we
have	to	do	to	call	a	function,	is	to	write	the	function’s	name	and	attach	a	pair	of
parentheses	as	a	postfix	:

funcName();
Or,	if	the	function	has	an	input	parameter	we	must	include	and	argument	that	will	replace
the	parameter:

funcName(123);	
when	123	is	a	number.

or

funcName(x);	
when	x	is	a	variable.

or

funcName(“Tony”);	
When	Tony	is	a	string	of	characters.

Here’s	a	function	arbitrarily	named	sizeMeUp	that	converts	a	string	value	into	uppercase:
function	sizeMeUp(x){console.log(x.toUpperCase());}

Here,	x	is	the	input	parameter	that	gets	replaced	by	the	data	we	pass	in	when	we	call	the
function.

1-						Calling	the	function	in	order	to	up	case	“red	white	blue”:
sizeMeUp(“red	white	blue”);
It	displays	RED	WHITE	BLUE.

Let’s	go	back	to	our	previous	conditional	exercise…
Remember	how	we	had	to	use	the	Up	Arrow	in	order	to	repeat	the	code	for	another	test
run?

We	could	make	things	easier	by	inserting	our	conditional	exercise	inside	of	a	function
because	it	saves	us	from	having	to	retype	the	script	every	time	we	need	to	test	it.	
All	we	have	to	do	is	to	call	the	function	by	its	name:
functionName();

Shall	we	redo	it?

Here’s	the	previous	script	placed	inside	of	a	function	named	test1:

	link	(bit.ly/1wSjW9Z).

1-						Copy	the	code	from	the	link	and	paste	it	on	your	Console.
(To	copy	the	code	from	the	forum	post,	click	on	the	two-page	icon	at	the	top	right	side	of	the	code).	
After	pasting	the	code	on	the	console,	call	the	function	and	press	ENTER:
test1();

2-						Call	it	again,	and	again	until	you	realize	that	the	output	is	always	the	same	because
variable	x	never	changes.	Use	the	Up	Arrow	to	recall	the	function	or	just	call	the
function	manually	by	writing	the	function	call	each	time.	
Don’t	forget	to	include	the	parentheses	().

Another	cool	feature	of	a	function	is	on	the	following	explanation:

We	could	create	a	temporary	variable	that	could	be	modified	by	some	argument	data	we
pass	into	the	function	when	we	call	the	function.

Don’t	worry	about	understanding	everything	right	now.	We	will	get	there.	Just	go	along
with	me	and	try	the	next	step.

3-						Let’s	modify	the	function	by	removing	the	permanent	x	variable	declaration	on	the
top	(before	the	function	script),	and	placing	x	as	an	input	parameter.	Also	change	the
name	of	the	function	to	test2.	See	the	next	image	for	more	details:

http://jsplain.com/javascript/index.php/Thread/10-test1/

Fig	7	(See	original	file:	here)	bit.ly/1wAbQjv

Now	all	we	have	to	do	is	to	call	the	function	and	pass	in	a	number	so	that	we	can	test	it:

4-						Call	function	test2	and	see	the	results	for	each	one	of	these	numbers:	3,5,15,21:
test2(3);	
test2(5);	
test2(15);
test2(21);	
test2(11);	
etc.

The	input	parameter(s)	of	a	function	act	as	a	temporary	internal	variable.	This	is	really
useful	because	we	can	send	data	into	a	function	to	be	processed.	That’s	what	happened
during	our	test2()	function	calls.

Once	we	master	the	basic	syntax	of	a	function	we	start	to	create	some	real	cool	stuff.

Functions	may	still	be	confusing	for	you.	I	will	cover	all	the	basics	as	we	code	along.	It	is
not	a	difficult	subject	but	it	needs	to	be	approached	in	the	proper	sequence.

http://jsplain.com/javascript/index.php/Thread/11-test2/

What	is	a	function	call?
A	picture	is	worth	a	gazillion	words:

Fig	8	(See	original	file:	here.)	bit.ly/1raw6pT

Looking	at	figure	8,	on	the	bottom	left	side	we	are	calling	function	addTen()	and	passing
an	argument	data	of	4	to	the	function	parameter	n.

Then	4	will	become	the	temporary	value	for	parameter	n,	and	the	sum	of	10	+	4	is
executed.

Finally,	the	return	mechanism	exports	the	result	which	is	the	numeric	value	of	14.

We	could	have	used	a	console.log(n	+	10);		but	the	console.log	would	display	the	value	on
the	screen	without	exporting	it	out	of	the	function.	In	other	words,	we	would	not	be	able	to
use	the	number	14	outside	of	the	function	because	console.log()	does	not	export	data,	it
actually	displays	everything	as	a	string	value	on	the	screen,	even	if	it	looks	like	a	number.

So,	return	is	a	very	important	mechanism	in	functions.	Actually	it	is	native	to	functions.
We	cannot	use	the	command	return	outside	of	functions.	JavaScript	will	not	allow	it.

What	is	the	purpose	of	return?
The	purpose	of	return	is	twofold:

a)						To	export	data	from	inside	of	a	function	in	its	raw	form.

b)						To	stop	and	end	the	function	call.	This	is	important.	The	return	mechanism	acts	as
a	break	and	ends	the	act	of	calling	a	function.	Anything	written	in	the	function
below	the	return	statement	will	not	be	processed	because	JavaScript	exits	the
function	as	it	returns.	After	the	function	returns,	the	function	call	is	wiped	out	from
the	working	memory.	You	don’t	have	to	be	concerned	with	this	at	this	moment	but	it
is	good	to	know	that	function	calls	don’t	linger	in	memory	forever.	They	free	up
space	by	getting	out	of	the	way.	This	could	be	a	third	reason	to	include	your	code
inside	of	a	function:	memory	efficiency.

http://jsplain.com/javascript/index.php/Thread/12-Function-Call/

What	happens	to	the	data	when	a	function	returns?
If	we	want	to	reuse	the	data	for	further	processing,	we	need	to	catch	the	returned	data.
Otherwise	it	just	gets	lost	in	space.

How	do	we	catch	the	data	being	returned	from	a	function?

One	way	to	catch	it	is	to	assign	the	returned	value	to	a	variable.	In	other	words,	assign	the
function	call	to	a	variable.

In	the	example	of	figure	8	(see	the	link	below	the	image),	instead	of	just	calling	the
function:
addTen(4);

We	could	assign	it	to	some	variable:
var	y	=	addTen(4);

Now	y	holds	the	value	14.	The	function	call	gets	wiped	out	of	memory	but	the	value	is
retained	by	variable	y.

In	summary,	data	coming	from	a	function	needs	to	be	returned	and	assigned	to	a
variable	if	we	need	to	use	it	further	down	the	script.	When	we	output	data	from	a
function	via	a	console.log(),	alert(),	prompt()	or	confirm(),	we	are	just	displaying	it,
not	retaining	it.

2.4	Lab	work	6
Ready	for	more	lab	work?

Create	a	program	to	convert	Fahrenheit	to	Celsius
Operator	precedence	determines	the	order	in	which	operators	are	evaluated.	JavaScript
precedence	is	close	to	math	precedence:

Parentheses	are	evaluated	before	multiplication	or	division,	
and	multiplication	or	division	are	evaluated	before	subtraction	or	addition.	
All	being	equal,	operands	are	evaluated	from	left	to	right	and	from	inside	of
parentheses	out.	
…nothing	to	memorize,	just	practice	a	lot.

The	following	is	the	formula	to	convert	Fahrenheit	to	Celsius:

Deduct	32	from	the	variable	F,	
then	multiply	the	result	by	5,	
then	divide	the	new	result	by	9.

We	need	to	include	the	subtraction	within	parentheses	so	that	it	is	done	first.	Then	write
the	multiplication	next	so	that	it	is	done	before	the	final	division	which	should	be	placed
on	its	right	side.	The	formula	looks	like	this:

(f	-	32)	*	5	/	9

That	was	the	hard	part.	Now	let’s	code.

1-						Create	a	function	named	f2c	that	takes	1	input	parameter	called	f.

2-						Inside	of	the	function	send	the	result	of	the	formula	to	the	screen.	
In	other	words	use	console.log()	to	print	to	screen.	This	is	because	we	only	want	to
display	it,	not	to	reuse	it.	Notice	how	the	input	parameter’s	name	f	coincides	with
the	variable	given	to	our	formula.	That	was	done	on	purposes	so	the	JavaScript
interpreter	knows	where	to	plug	the	input	number	we	are	going	to	give	it	when	we
call	the	function.

3-						Call	the	function	and	pass	in	an	argument	of	212	degrees	Fahrenheit.	(write	just	the
number	by	itself).	Your	displayed	answer	should	be	100.

See	my	own	solution	here	(first	script):	f2c	|	bit.ly/1Dp2SKk

http://en.wikipedia.org/wiki/Order_of_operations
http://jsplain.com/javascript/index.php/Thread/13-Lab-6/

Create	a	program	to	convert	Celsius	to	Fahrenheit
The	formula	to	covert	Celsius	to	Fahrenheit	is

Multiply	c	by	9,	
then	divide	the	result	by	5,	
then	add	32	to	the	new	result.

There	is	no	need	to	insert	parentheses,	just	make	sure	the	multiplication	comes	first:

c	*	9	/	5	+	32

1-						Create	a	function	named	c2f	that	takes	1	parameter	called	c.

2-						Inside	of	the	function	send	the	result	of	the	formula	to	the	screen.	
In	other	words	use	console.log()	to	print	to	screen.

3-						Call	the	function	and	pass	in	an	argument	of	100	degrees	Celsius	(just	the	number).
Your	answer	should	be	212.

See	my	own	solution	here	(second	script):	c2f		|	bit.ly/1Dp2SKk

Why	are	we	using	console.log()	instead	of	return?

As	you	may	remember,	console.log()	was	designed	for	quick	testing	outputs.	At	this	time
we	are	not	concerned	with	returning	a	value	for	further	processing.	When	we	need	to	reuse
a	value	we	will	use	return	and	assign	the	value	to	a	variable.

However,	please	read	the	next	topic	for	information	about	the	return	mechanism.

http://jsplain.com/javascript/index.php/Thread/13-Lab-6/

In	JavaScript	a	function	always	returns	something
In	case	you	are	wondering	whether	the	function	call	gets	cleared	out	of	memory	when	we
don’t	explicitly	use	return,	the	answer	is	yes,	in	JavaScript	it	does.

In	JavaScript	every	function	returns	automatically	when	the	code	interpreter	reaches	the
closing	brace,	if	not	before.

When	that	happens,	JavaScript	will	return	the	value	of	undefined	if	a	return	statement	was
not	manually	written.

In	production	you	will	not	visually	see	this	automatic	return	but	on	the	test	Console	you
will	see	undefined	in	the	end	if	you	didn’t	ask	for	a	specific	return.	If	your	Console	is	still
open,	look	at	the	last	function	call.	You	will	see	the	term	undefined	below	the	number	212.

This	automatic	return	assures	proper	memory	management.	Memory	management	is
actually	done	by	the	browser,	not	by	JavaScript.	Different	browsers	have	different	garbage
collection	mechanisms.

http://en.wikipedia.org/wiki/Garbage_collection_%28computer_science%29

A	program	to	convert	Fahrenheit	to/from	Celsius
In	this	project	we	are	going	to	introduce	a	function	with	two	input	parameters.	The	first
input	parameter	will	take	a	numeric	value,	and	the	second	input	parameter	will	serve	as	a
condition	to	toggle	between	Celsius	and	Fahrenheit.

How	will	we	toggle	between	Celsius	and	Fahrenheit?

We	can	use	an	if(),	else	if(),	else	statement:

a)						If,	the	user	enters	an	f		for	Fahrenheit,	the	if()	output	will	convert	Fahrenheit	to
Celsius.

b)						Else	if,	the	user	enters	a	c,	the	number	gets	converted	from	Celsius	to	Fahrenheit.

c)						Else,	the	script	will	output	something	like
	”Sorry,	that	conversion	is	not	supported“.

When	we	create	a	function	with	multiple	input	parameters	like	for	example…

function	test(x,y)	{	return	x	-	y;	}

…we	need	to	call	the	function	and	pass	in	the	data	arguments	in	the	proper	sequence.

The	value	to	be	assigned	to	x	(which	is	the	leftmost	input	parameter)	should	be	written	in
the	function	call	as	the	first	data	argument.	On	the	following	function	call,	10	is	grabbed
by	parameter	x	and	3	is	grabbed	by	parameter	y:

test(10,3);

Notice	how	we	separate	them	by	commas.	Had	I	entered	3	first,	3	would	become	x	and	the
output	result	would	be	incorrect.

Let’s	start:

1-						Create	a	function	named	conversion	that	takes	two	input	parameters	named	num
(reminds	me	of	number),	and	degrees.	Notice	the	comma	separating	the	input
parameters:

function	conversion(num,degrees)	{	}

2-						Inside	of	the	function	create	your	first	if()	statement	that	says	
if(degrees	===	“f”)	{	
and	then	it	console.logs	the	formula	to	convert	Fahrenheit	to	Celsius.
The	formula	is	(f	-	32)	*	5	/	9		However,	please	read	the	note	below:

NOTE:	you	must	replace	the	f	in	the	formula	with	our	new	generic	input	parameter
num.

Bonus:		add	a	+	“c”	just	before	the	closing	parentheses	of	your	console.log().	This
is	so	that	the	output	will	look	like	100c.	Do	the	same	on	your	next	step	for	“f”.

3-						Next	create	the	else	if()	statement	that	says	

else	if(degrees	===	“c”)	{	
and	then	it	console.logs	the	formula	to	convert	Celsius	to	Fahrenheit.
The	formula	is	c	*	9	/	5	+	32

NOTE:	you	must	replace	the	c	in	the	formula	with	our	new	generic	input	parameter
num.

4-						Finally,	create	a	catch	all	else	statement	that	console.logs	
“Sorry,	that	conversion	is	not	supported“.

5-						Close	the	function	with	a	curly	brace	}.

6-						Paste	your	code	onto	the	Console	and	test	it	with	the	following	function	calls:
conversion(212,	“f”);	<—	should	result	in	100c
conversion(100,	“c”);	<—	should	result	in	212c
conversion(300,	“b”);	<—	Should	result	in	“Sorry,	that	conversion	is	not	supported”.
Remember,	the	character	input	is	a	string	and	it	should	be	in	quotes.

(See	my	own	solution	here	(third	script):	conversion		|	bit.ly/1Dp2SKk

Congratulations!
Don’t	stop	here!!	Please	take	a	look	at	the	next	page	for	more	practice	ideas.

http://jsplain.com/javascript/index.php/Thread/13-Lab-6/

You	need	to	start	creating	other	programs	of	your	own.

Below	please	find	some	suggestions	to	create	other	conversions:

a)						Perimeter
Suggested	function	design:	calcPerimeter(length,width)	{
Formula:	length	+	length	+	width	+	width

b)						kilometers	into	miles
Suggested	function	design:	kiloMiles(km)	{
Formula:	km	*	0.6214

c)						feet	to	meters
Suggested	function	design:	feetM(ft)	{
Formula:	ft	*	0.3048.

Go	for	it	:	spend	a	few	hours	creating	new	stuff.

If	you	would	like	to	save	your	scripts,	paste	them	onto	a	plain	text	editor	such	as	Windows
NOTEPAD	and	save	them	with	the	extension	of	.txt	which	represents	the	plain	text
format.

We	will	cover	other	ways	of	storing	executable	JavaScript	programs	later.

END	OF	LAB

2.5	Filling	out	a	form	to	request	a	loop
A	loop	is	a	subroutine	that	repeats	a	sequence	of	programming	instructions	over	and	over
until	it	gets	a	halt	command.

We	have	seen	how	to	create	a	function	to	store	code	that	runs	every	time	we	call	the
function.

We	can	also	store	code	in	a	loop	that	repeats	itself	for	a	determined	number	of	times.	Then
if	we	want	to	reuse	the	loop	at	will,	we	can	insert	the	loop	into	a	function	and	call	the
function	later	at	any	time	to	run	the	loop	without	having	to	re-write	another	loop	script.

Beware	of	infinite	loops.

Always	make	sure	you	design	a	way	to	stop	the	loop.	That	should	be	your	first	decision
when	creating	a	loop:	when	and	how	should	this	loop	end?	JavaScript	will	only	end	it
when	it	runs	out	of	memory.	We	must	instruct	JavaScript	to	end	it	much	earlier	than	that!

If	you	ever	run	into	trouble	while	testing,	click	on	the	universal	key	sequence	CTRL
c	to	stop	the	program.	Most	of	the	times	it	will	stop	it.

How	long	do	we	want	our	loop	to	repeat	itself?	Just	once,	5	times,	100	times,	or	until	a
certain	condition	happens	like	for	example	when	the	value	of	a	certain	variable	becomes
something	other	than	the	original	value.

All	this	sounds	so	abstract,	right?	Let’s	remove	the	abstractness	out	of	the	equation.

	

http://en.wikipedia.org/wiki/Subroutine

What	no	one	tells	you	about	loops
We	don’t	really	create	a	loop	ourselves.	This	mechanism	already	exists	in	the	JavaScript
library	located	in	your	browser	and	it	exists	in	several	different	styles	(for	loops,	while	loops,	do
while	loops,	etc.).

What	we	have	to	do	is	to	fill	in	a	request	form	for	a	certain	loop	style,	and	then	provide
instructions	to	JavaScript	for	what	we	want	it	to	accomplish	while	the	loop	runs.

Yes,	there	are	several	styles	of	loops	in	the	JavaScript	library.	They	all	loop	around	but
how	they	loop	can	make	a	difference	in	your	choice	of	loop	style	selection.

One	common	style	is	the	for	loop.	The	for	loop	repeats	itself	for	a	determinate	number	of
times.

Then	we	have	the		while	loop.	A	while	loop	repeats	itself	while	something	remains	true.	If
that	something	is	always	true,	the	while	loop	will	run	forever.	Sometimes	we	want	a	loop
to	run	forever,	like	when	the	computer	scans	the	keyboard	waiting	for	a	human	to	press	a
key.	If	the	human	does	not	press	a	key	any	time	soon,	the	while	loop	will	keep	scanning.
Don’t	worry	about	memory	because	this	type	of	scanning	is	not	using	much	memory,	it	is
just	looking	around	like	a	night	watchman.

JavaScript	also	has	in	its	library	a	loop	style	known	as	do	while.	A	do	while	loop	is
slightly	different	than	the	regular	while.	The	do	part	makes	it	run	once	whether	the
condition	is	true	or	false.

Why	does	a	do	while	loop	run	at	least	once?	Because	the	while	condition	part	of	the	loop
only	shows	up	at	the	end	of	the	script.	So	JavaScript	will	run	the	loop	and	then	at	the	end
checks	the	condition	to	see	if	it	should	run	a	second	time.	It	is	like	saying	“shoot	first	and
ask	questions	later”.

Remember:	in	order	to	use	a	loop	we	must	fill	in	a	loop	style	application.

We	will	cover	all	these	styles	of	loops	in	due	time.	For	now	let’s	talk	about	the	for	loop.

Don’t	burn	your	brains	out	trying	to	memorize	something	you	don’t	yet	need.	This	was
just	a	brief	introduction.	Now	let’s	get	our	hands	dirty	by	creating	loop	projects.

2.6	The	for	loop
We	are	going	to	learn	how	to	fill	in	the	form	request	for	a	loop	in	the	style	of	a	“for	loop”
because	it	will	be	used	on	our	next	lab	project.

The	idea	of	a	for	loop	is	to	repeat	itself	for	a	specified	amount	of	times.

The	basic	form	declaration	has	a	header	and	a	body	as	shown	on	the	following	pseudo
code:

for	(x	starting	at	zero;	and	for		x	less	than	5;	increment	x)	{	execute	this	code	}

Fig	9

We	have	three	instructions	to	be	evaluated	in	this	form,	hence	the	semicolon	separating	on
the	first	two	instructions	(to	make	them	independent	of	each	other).

for	x	starting	at	zero;

Here	JavaScript	stores	x	as	a	temporary	variable	with	the	value	of	zero.	The	name	x	is
unimportant,	most	programmers	use	the	name	i	instead.	The	correct	script	is	
for(var	x	=	0;	or	for	(var	i	=	0;	etc…

and	for	x	less	than	5;

At	this	point	JavaScript	evaluates	this	condition.	Since		x	is	<	5	because	it	is	zero,	the
condition	is	true	and	JavaScript	executes	the	code	in	the	body	once.	The	correct
expression	is:
x	<	5;

increment	x	++

After	JavaScript	runs	the	code	block	the	first	time	(step3),	it	returns	to	the	for	loop
declaration	and	it	increments	the	value	of	x	(step4).	Now	x	is	1	instead	of	zero.	The	correct
increment	script	is:
x++		or		x	=	x	+1
Since		x++	is	the	last	expression	to	be	evaluated,	the	semicolon	is	not	necessary.	Actually
it	is	undesirable	since	it	will	trigger	an	error,	preventing	JavaScript	from	running	the	code
block	because	it	thinks	it	is	at	the	end	of	the	for	loop.	The	first	semicolon	after	x++	should

http://en.wikipedia.org/wiki/Pseudocode

be	at	the	end	of	the	first	executable	statement	inside	of	the	body	code	block.

Once	JavaScript	runs	the	loop	the	first	time,	it	returns	to	the	form	for	a	second	evaluation.
The	second	evaluation	will	be	as	follows:

(For	x	starting	at	one;	and	for	x	less	than	5;	increment	x)	{	execute	this	code	}.

On	the	second	iteration	x	is	1	but	still	less	than	5	and	therefore	the	code	block	is	executed
again,	and	x	is	incremented	again	at	the	end.	And	so	on	until	x	becomes	5.

	

Let’s	create	a	simple	for	loop	to	see	how	it	works.

The	most	common	name	for	the	temporary	variable	to	be	used	as	x	is	i.	Perhaps	the	reason
is	because	it	reminds	us	of	the	word	index.	So	let’s	use	the	classic	name	i	instead	of	x:
for(var	i	=	0;	i	<	5;	i++)

That	is	the	header	form	which	means:

for	this	declared		variable	i	which	starts	with	the	value	of	zero;	as	long	as	i	is	less	than
five;	increment	i	by	1	after		each	loop	cycle.

On	line	2	we	include	the	executable	instructions	in	the	code	block.	These	instructions	will
be	repeated	5	times	by	JavaScript:

The	following	image	illustrates	the	concept:

Fig	10

Please	note:	If	you	code	this	loop	and	paste	it	onto	your	console	you	may	have	a	one
line	result	with	a	prefix	of	(5)	telling	you	that	the	Console	ran	it	5	times.	This	is
normal	behavior	of	Consoles.	They	don’t	usually	repeat	the	same	output	more	than
once	in	order	to	save	display	real	estate,	they	just	tell	you	how	many	times	the	loop
ran	with	it,	but	in	real	life	you	would	get	five	lines	displayed.	However,	if	the	print	is
different	for	each	time,	then	the	Console	displays	all	the	5	iterations	separately.

To	see	a	real	display	of	a	loop	at	work,	replace	console.log(“Say	hi	to	Mary!”);	with	
console.log(i);

Now	it	prints	the	value	of	variable	i	in	each	of	the	loop	repetitions	and	since	the	output	is
different	each	time,	the	Console	must	display	each	one	of	the	iterations.

If	you	want	a	more	presentable	output	you	can	try	this	one:
console.log(“the	value	of	i	is	now		”	+	i);

And	you	should	get:
the	value	of	i	is	now	0
the	value	of	i	is	now	1
the	value	of	i	is	now	2
the	value	of	i	is	now	3
the	value	of	i	is	now	4

It	displays	0	through	4	because	the	count	of	i	started	at	0	and	the	fifth	time	is	4.	This	is	ok,
it	still	loops	5	times.	However,	if	your	intention	is	to	display	1	through	5,	then	make	i
equals	1	from	the	start,	instead	of	from	zero.

	

2.7	Looping	over	a	string	of	characters
Do	you	still	remember	bracket	notation	and	dot	notation?

I	introduced	it	on	Part	One,	in	the	chapter	Manipulating	variable	data.

Let’s	review	and	expand	a	bit	more	about	the	topic.

I’m	going	to	declare	variable	x	with	“orange”	as	the	string	value:
var	x	=	“orange”;

The	value	“orange”	is	a	collection	of	sequential	characters	and	each	character	has	a
location	number	starting	at	zero,	like	o	is	zero,	r	is	one,	a	is	two,	n	is	three,	etc.

	We	can	use	bracket	notation	to	find	the	character	data	in	any	location	of	the	string:

x[location	Number];	<—	it	gives	us	the	value	inside	of	the	location.

Example:

x[2];

It	will	display	character	“a”	which	is	the	third	character	and	position	2	(counting	from
zero)

I	can’t	use	dot	notation	here	because	dot	notation	does	not	accept	numbers	or	symbols:

x.2	<—	this	will	give	me	an	error.

What	can	we	do	with	this	bracket	notation	syntax?

Bracket	notation	allows	us	to	address	a	specific	character	on	the	string	value.

Here’s	an	example	of	displaying	character	g	from	variable	x	by	sending	x[4]	via	a
console.log:

console.log(x[4]);

Here’s	another	example:	characters	ge:
console.log(x[4]	+	x[5]);

So	with	bracket	notation	we	can	probe	into	a	string	of	characters	and	fetch	the	contents	of
a	location	number.

What	about	dot	notation?

Dot	notation	is	good	to	grab	properties	of	string	values,	such	as	length,	remember?
x.length;
or
	console.log(x.length);

Dot	syntax	cannot	be	used	with	numbers,	symbols,	and	names	which	values	are	not
yet	known	when	the	code	is	being	written.	This	prevents	Dot	syntax	from	being	used
in	loops	since	the	value	in	a	loop	will	change	for	each	loop	cycle.	So	when	it	comes
to	dynamic	data,	only	Bracket	syntax	can	be	used.

	

	

2.8	Lab	work	7

Searching	for	the	position	of	a	string	character
In	this	project	we	will	have	variable	x	assigned	to
“orange”.
The	idea	is	to	search	for	character	“g”	and	display	its
location	on	the	screen.

1-						Declare	variable	x	and	assign	it	the	string	“orange”.
var	x	=	“orange”;

2-						Fill	in	a	for	loop	form,	
starting	with	i	=	0;	
and	the	range	of	i	<	x.length;

orange	has	6	characters	so	x.length	will	be	6	but	we	should	not	use	number	6;	we
should	program	generically	as	much	as	we	can	because	most	of	the	times	we	don’t
know	the	length	of	the	value	to	be	worked	on.

3-						In	the	body	of	the	for	loop	create	an	if()	condition	that	probes	for	the	existence	of
character	“g”.	The	Boolean	expression	should	look	like	this:
if(x[i]	===	“g”)	{

In	other	words:	if	the	character	at	current	position	i	is	g…

4-						If	the	condition	is	true,	print	the	position	number	of		“g”	to	the	screen.

5-						Close	the	if()	condition	and	then	close	the	loop.

6-						Test	your	code.	It	should	display	the	number	4	as	a	result.

Extra	practice:

a)						Replace	“g”	on	the	if()	statement	with	another	character	not	contained	in	“orange”,
and	create	an	else	statement	to	catch	it	with	the	following	output:	
“That	character	was	not	found!”

(See	discussion	and	result	on	the	next	page).

(Answer)	Searching	for	the	position	of	a	character

See	my	own	solution(s)	here:
	forum		|	bit.ly/XScVak

1-						Declare	variable	x	and	assign	it	the	string	“orange”.
var	x	=	“orange”;

2-						Fill	in	a	for	loop	form	
starting	with	i	=	0;	
and	the	range	of	i<	x.length;
for(var	i	=	0;	i	<	x.length;	i++){

3-						In	the	body	of	the	for	loop	create	an	if()	condition	that	probes	for	the	existence	of
character	“g”.
if(x[i]	===	“g”){

4-						If	the	condition	is	true,	print	the	position	number	of		“g”	to	the	screen.
console.log(i);

5-						Close	the	if()	condition	and	then	close	the	loop.
	}
}

If	something	is	not	clear,	please	read	the	previous	topic	Looping	through	a	string	of
characters.

The	last	output,	console.log(i);	displays	the	position	number	of	the	character	we
are	looking	for.

What	is	the	purpose	of	this	exercise?

There	are	many	applications	that	use	these	concepts.	Right	now	I	am	preparing	you	to
understand	the	next	topic	which	will	be	about	array	lists.	By	the	time	you	get	there	you
will	not	have	to	struggle	with	concepts	such	as	these.

For	practicing	purposes	please	do	the	next	exercise	on	your	own.

http://jsplain.com/javascript/index.php/Thread/14-Lab-7/

Counting	numbers	and	declaring	their	odd/even	quality
1-						Create	a	for	loop	that	counts	from	0	to	10

2-						For	each	count	display	their	odd/even	quality	like	for	example:
1	is	an	odd	number,	2	is	an	even	number,	etc.

See	my	own	solution	here	(sample	number	3):	
odd/even		|	bit.ly/XScVak

http://jsplain.com/javascript/index.php/Thread/14-Lab-7/

Counting	apples
1-						Create	a	for	loop	that	counts	up	to	3	apples.	Zero	is	not	allowed	and	the	output

must	say	1	apple	if	it’s	single	apple,	then		2	apples,	and	finally	3	apples.

Instead	of	using	i	as	a	counter	variable	I	am	going	to	use	a	variable	named	apples.
Please	feel	free	to	use	whatever	you	want.	The	goal	for	this	exercise	is	to	practice
more	for	loop	constructs	and	to	think	on	how	would	we	distinguish	between	a	single
output	and	a	plural	output.

See	my	own	solution	here	on	exercise	number	4:	
apples)	bit.ly/XScVak

END	OF	LAB

http://jsplain.com/javascript/index.php/Thread/14-Lab-7/

2.9	Array	lists

Strings	versus	arrays
Up	to	now	we	have	been	working	mostly	with	string	values.	Here’s	an	example	of	a	string
value	assigned	to	variable	x	which	has	already	been	initialized	by	var	:
x	=	“orange”;

As	far	character	mapping	is	concerned,	o	is	the	first	character	located	in	position	zero,	r	is
the	second	character	located	in	position	1,	a	is	the	third	character	located	in	position	2,	etc.

Here’s	another	example:

y	=	“orange	banana	apple”;

In	the	above	example,	b	is	the	eighth	character	(we	must	count	the	white	spaces)	and	it’s
located	in	position	number	7	(0,1,2,3,4,5,6,7).

What	if	we	wanted	to	count	the	words	instead	of	counting	the	number	of	characters?

We	can’t	separate	the	words	with	individual	quotes	because	JavaScript	will	throw	an	error:

y	=	“orange”	“banana”	“apple”;	<—	this	would	not	work.

And	even	if	we	separate	them	with	commas,

y	=	“orange”,“banana”,“apple”;

JavaScript	will	first	assign	y	to	orange,	then	reassigns	y	to	banana,	and	finally	to	apple
which,	in	the	end,	will	be	the	only	value	stored	in	y.

So	in	string	values,	mapping	is	limited	to	individual	characters.	The	whole	string	is
considered	one	unit	of	multiple	characters.

In	short,	if	we	want	to	save	words	as	separately	independent	units	on	a	variable,	we
need	to	use	a	different	data	type	because	string	will	not	do	it.	One	of	such	types	is
called	an	array	(there	are	others).

The	difference	between	an	array	type	and	a	string	type	is	that	we	can	store	individual
words.	Another	advantage	of	an	array	is	that	we	can	also	store	values	of	type	number,	as
well	as	other	types	such	as	functions,	objects	and	Booleans	in	individual	packets	of	the
same	variable.

Just	like	a	string	value,	in	arrays	we	also	address	each	position	numerically	starting	from
location	zero.	In	fact,	a	string	value	is	a	very	simple	array	of	individual	characters.

Think	of	an	array	as	a	pocket	folder.

Each	pocket	is	sequentially	labeled	and	in	each	pocket,	we	can	store	anything	we	want.

To	retrieve	the	contents	of	each	pocket	we	call	the	array	with	bracket	syntax	and	use	the
location	number	to	address	the	data	we	are	trying	to	fetch.

Array	syntax
To	declare	a	value	of	type	array	we	use	a	pair	of	square	brackets:
var	x	=	[];

You	may	read	on	the	web	about	bracket	syntax		as	being	referred	to	as	array	syntax	and
the	reason	is	that	bracket	syntax	comes	from	the	idea	of	array	pocket	locations.

The	above	example	is	an	empty	array	because	it	does	not	have	any	data	inside	of	the
brackets,	but	the	square	brackets	have	instructed	the	JavaScript	interpreter	to	declare
variable	y	as	a	type	array.

Going	back	to	our	last	string	example,	if	we	want	to	save	individually	independent	words
we	can	declare	and	assign	variable	y	in	the	following	manner:

	var	y	=	[“orange”,“banana”,“apple”];

Now	if	we	call	y’s	location	number	2,	we	get	“apple”	as	a	result:

y[2];	<—	it	displays	“apple”

or	more	implicitly:

console.log(y[2]);		<—	it	displays	apple

Knowing	that	our	array	y	has	three	values	spanning	from	location	zero	to	location	2,	we
can	add	more	values	to	it	by	addressing	subsequent	locations.	Example:

y[3]	=	“peach”;

Now	if	we	call	variable	y	on	the	Console	by	typing	y;	we	get:

[“orange”,	“banana”,	“apple”,	“peach”]

What	happens	if	we	reassign	one	of	the	existing	locations	such	as	for	example	location
zero?

y[0]	=	“grape”;

We	overwrite	the	previous	value	because	we	have	just	reassigned	the	location	to	a
different	value.	The	array	will	not	shift	positions	to	accommodate	one	more	items,	it	just
deletes	the	existing	value	by	reassigning	the	location	to	something	else.

Array	y	now	still	contains	the	previous	number	of	values	as	follows:
[“grape”,	“banana”,	“apple”,	“peach”]
	“orange”	was	deleted.

Using	push()	and	unshift()	to	insert	elements	into	an	array
As	arrays	get	larger	it	becomes	almost	impossible	to	know	how	many	items	the	array
contains	which	makes	it	very	difficult	to	add	new	items	since	when	we	add	an	item	to	a
position	in	the	array	and	this	position	is	already	filled,	JavaScript	replaces	the	new	item
with	the	old	item.	The	old	item	is	deleted	from	the	array.

To	prevent	this	deletion	from	happening,	JavaScript	has	two	mechanisms	that	help	us	add
items	to	an	array:	push	and	unshift.

Push()

The	most	common	way	of	adding	new	items	to	an	array	is	by	adding	them	to	the	very	end
of	the	list.

The	array	method	push()	adds	items	to	the	very	end	of	the	list.

Do	you	remember	how	we	appended	characters	to	a	string	by	using	+=	?

The	problem	with	+=	is	that	it	adds	the	new	item	to	the	last	item	as	one	unit	(by
attachment).

For	example,	in
var	y	=[“orange”,“banana”,“apple”,“peach”];

If	we	write	y	+=	“cherry”;

we	will	get	“orange,	banana,	apple,	peachcherry”

and	that’s	not	what	we	want	to	accomplish	in	an	array,	right?
We	want	independent	items.

The	correct	syntax	to	add	items	to	the	end	of	an	array	is	as	follows:
	y.push(“cherry”);

We	call	the	array	method	push()	with	dot	syntax	and	pass	in	“cherry”	as	a	data	argument.
It	works	just	like	calling	a	function	with	an	argument	data.

Now	the	array	contains	one	more	element:

[“orange”,	“banana”,	“apple”,	“peach”,	“cherry”]

Let’s	add	one	more	item,	avocado:
y.push(“avocado”);

Now	array	y	contains	the	following	items:
[“orange”,	“banana”,	“apple”,	“peach”,	“cherry”,	“avocado”]

The	meaning	of	push:

Imagine	a	stack	of	bricks.	When	we	place	a	new	brick	on	the	stack	it	pushes	down	the
others	because	of	its	weight.	The	top	of	the	stack	is	the	last	position	of	the	array.	We	push

it	in	order	to	insert	a	new	item	into	the	stack.

Now,	if	you	visualize	the	array	in	a	horizontal	manner	instead	of	vertically,	the	last	item	is
on	your	right	side.

We	will	use	push()	many	times	throughout	the	book	since	it	is	the	most	common	way	to
insert	new	array	items.

unshift()

The	method	unshift()	adds	items	to	the	beginning	of	the	array.

When	we	visualize	the	array	vertically	the	beginning	of	the	array	is	the	very	bottom	of	it,
and	horizontally,	it	is	the	left	most	side	of	the	array.

Taking	the	last	instance	of	array	y	from	the	previous	topic	as	an	example,	let’s	add
blueberry	to	the	beginning	of	the	array:

	y.unshift(“blueberry”);

Array	y	is	now:
[“blueberry”,	“orange”,	“banana”,	“apple”,	“peach”,	“cherry”,	“avocado”]

Notice	how	“orange”	moved	to	position	1,	or	second	item,	to	give	way	to	“blueberry”	as
the	new	position	zero.

The	meaning	of	unshift:

In	order	to	insert	a	new	brick	at	the	bottom	of	the	stack,	we	need	to	unshift	all	the	bricks
up	so	that	we	can	squeeze	a	new	brick	as	the	first	item	of	the	stack	since	the	first	item	is	at
the	bottom.

On	the	other	hand,	when	we	do	a	push	to	insert	a	new	item	to	the	top	of	the	stack,	we	are
actually	shifting	everything	down	as	we	push,	even	though	there	is	nowhere	to	go	at	the
bottom.	(Shift	is	actually	used	to	remove	an	item	from	the	bottom	as	we	will	see	later).
When	we	remove	the	item	the	bricks	get	shifted	down	but	they	are	not	being	pushed
because	we	are	not	inserting	a	new	item	at	the	top	of	the	stack.	This	is	just	to	help	you
understand	the	terms	and	where	they	came	from.	Don’t	worry	about	shift	for	now.	I	will
cover	it	later.

Right	now	we	know	about	push()	and	unshift().

	

Printing	array	items	with	a	for	loop
As	you’ve	probably	noticed,	the	visual	display	of	an	array	on	the	screen	when	we	call	it	by
name	is	in	its	raw	visual	format:
[“blueberry”,	“orange”,	“banana”,	“apple”,	“peach”,	“cherry”,	“avocado”]

How	do	we	display	the	items	by	themselves?

We	can	use	the	array	length	property,	and	a	for	loop,	to	do	such	thing.

The	length	property	works	just	like	it	did	for	strings.	We	can	find	out	the	length	of	an
array	by	attaching	.length	to	the	array	variable	name:

y.length;	<—	it	display	the	number	7

Now,	as	you	remember	from	playing	with	the	string	“orange”	earlier	(Lab	work	7),	when
we	know	the	length	of	the	item	we	are	going	to	scan,	we	initialize	a	for	loop	in	the
following	manner:

for(var	i	=	0;	i	<	7;	i++)	{	do	this	stuff;	}

However,	for	the	most	part	we	don’t	know	the	length	of	the	item	we	are	trying	to	scan	and
that’s	when	.length	comes	to	the	rescue:
for	(var	i	=	0;	i	<	y.length;	i++){	do	this	stuff;	}

This	last	implementation	is	much	more	efficient	because	we	don’t	have	to	worry	about
redoing	the	loop	if	the	array	ever	changes	length	when	we	delete	or	add	new	items	to	it.

The	rest	of	the	code	needed	to	manipulate	the	array	will	go	where	the	“do	this	stuff”	code
block	is.	There	we	could	print,	search,	or	create	many	other	possible	implementations.
Also	and	as	you	know,	the	code	block	is	usually	written	on	separate	lines.

Here’s	a	sample	loop	to	print	all	items	to	the	screen:

Fig	11

On	line	2	the	console.log()	is	addressing	each	array	location.	We	accomplish	this	by
assigning	i	as	the	number	for	the	location.	In	this	way,	as	the	loop	counts	the	i	numbers,	it
changes	the	position	of	the	y[i]	and	each	items	is	displayed	accordingly	(and	in	separate
lines).	Let’s	try	it	next.

2.10	Lab	work	8
Let’s	do	some	programming	to	cement	our	understanding	of	the	array	creation,	addition	of
items,	and	traversing	the	array	with	a	for	loop.

Please	fire	up	your	JavaScript	Console	and	let’s	get	our	hands	dirty!!

Try	doing	this	exercises	yourself	by	following	the	next	7	steps,	or	jump	to	the	guided
exercise	that	follows	in	order	to	do	it	as	I	explain	the	concepts.

NOTE:	These	seven	steps	are	not	a	project.	Each	step	is	an	independent	exercise	to	see
how	each	implementation	is	done.

Preliminary	project

1-						Create	an	empty	array	assigned	to	a	variable	named	misc
(short	for	miscellaneous).

2-						Create	another	array	assigned	to	a	variable	named		greekLetters,	and	with	the
following	items:	“alpha”,	“beta”,	“gamma”,	“delta”

3-						Assign	the	number	99	to	the	first	position	in	array	misc,	
assign	the	word	“bottles”	to	the	second	position	in	array	misc,	
and	assign	the	word	“beers”	to	the	ninth	position	in	array	misc.

4-						Print	to	screen	the	length	of	array	greekLetters.

5-						Print	to	screen	the	length	of	array	misc.

Using	push	and	unshift	
6-						Add	a	new	item	“epsilon”	to	the	end	of	array	greekLetters.

7-						Add	a	new	item	“folk	song”	to	the	beginning	of	array	misc.

(See	my	answers	on	the	next	page)

(Guided	exercise)	Preliminary	project

1-						Create	an	empty	array	assigned	to	a	variable	named	misc
(short	for	miscellaneous)	
var	misc	=	[];

2-						Create	another	array	assigned	to	a	variable	named		greekLetters,	and	with	the
following	items:	“alpha”,	“beta”,	“gamma”,	“delta”	
var	greekLetters	=	[“alpha”,	“beta”,	“gamma”,	“delta”];

3-						Assign	the	number	99	to	the	first	position	in	array	misc,	
assign	the	word	“bottles”	to	the	second	position	in	array	misc,	
and	assign	the	word	“beers”	to	the	ninth	position	in	array	misc.
misc[0]	=	99;		(no	quotes	for	number)
misc[1]	=	“bottles”;
misc[8]	=	“beers”;

4-						Print	to	screen	the	length	of	array	greekLetters.
console.log(greekLetters.length);	<—	results	in	4

5-						Print	to	screen	the	length	of	array	misc.
console.log(misc.length);	<—	results	in	9

Did	you	notice	how	we	were	able	to	add	a	ninth	position	to	the	array	misc?

Did	you	also	notice	how	the	array	misc	now	has	9	items,	which	means	that	6	items	are
reserved	with	the	placeholder	value	of	undefined?

Using	push	and	unshift

6-						Add	a	new	item	“epsilon”	to	the	end	of	array	greekLetters.
greekLetters.push(“epsilon”);

7-						Add	a	new	item	“folk	song”	to	the	beginning	of	array	misc.
misc.unshift(“folk	song”);

Practicing	is	the	only	way	to	get	good	at	it.

Let’s	practice	with		for	loops	on	arrays	by	wrapping	functionality	in	functions	and	use
some	if	else	conditionals	in	the	mix.	These	projects	will	cover	important	concepts	that	can
be	used	often.

	

Creating	a	method	to	add	items	into	an	array
Ready	for	a	simple	challenge?

We	are	going	to	create	a	function	that	automatically	adds	an	item	into	the	array	when	the
function	is	called.	This	will	allow	us	to	practice	with	array.length	as	an	alternate	solution
for	push.

Use	your	editor	first	before	pasting	onto	the	Console.	Try	doing	this	exercise	by
yourself	first	by	following	the	next	5	steps,	or	jump	to	the	guided	exercise	in	order	to
do	it	as	I	explain	the	concepts:

1-						Declare	an	empty	array	assigned	to	the	variable	x.

2-						Create	a	function	named	addMe	that	automatically	adds	an	item	to	array	x:

a)						Use	one	input	parameter	called	item.

b)						In	the	function	body	assign	the	input	item	to	the	first	empty	position	in	the	array,
based	on	x.length.

x.length	is	always	one	more	number	than	the	address	of	the	last	item.		By
assigning	an	item	to	location	[x.length]	it	will	always	match	the	next	position
available	in	the	array.	Give	it	some	thought	and	then	look	at	my	answer	if	you	are
unsure	on	how	to	do	it.

c)						Also	inside	of	the	function,	create	a	console.log	to	print	out	the	whole	array	in
its	raw	display	form	(no	loops	yet).

3-						Paste	the	script	in	the	Console	and
Call	the	function	by	passing	in	“grape”	as	an	input	item.

4-						Then	Call	the	function	again	and	pass	in	“apple”	as	an	input	item.

5-						Do	the	same	for	“banana”.

(See	the	answer	on	the	next	page).

http://jsbeautifier.org/

(Guided	exercise)	Create	a	method	to	add	items	into	an	array

1-						Declare	an	empty	array	assigned	to	the	variable	x.
var	x	=	[];

2-						Create	a	function	named	addMe	that	automatically	adds	an	item	to	array	x.

d)					Use	one	input	parameter	called	item.

e)						In	the	function	body	assign	the	input	item	to	the	first	empty	position	in	the	array,
based	on	x.length.

f)							Also	inside	of	the	function	create	a	console.log	to	print	out	the	whole	array	in	its
raw	display	form	(no	loops	yet).

Fig	12

On	line	1	the	array	x	was	declared.

On	line	3	a	function	addMe	with	item	as	an	input	parameter	was	declared.

On	line	4	whatever	data	is	passed	in	when	we	call	the	function,	the	data	gets	assigned	to
the	maximum	length	of	array	x.	As	you	know,	the	length	of	an	array	always	shows	the
number	of	items	in	existence.	It	so	happens	that	the	number	of	items	is	always	1	more	than
the	last	location	of	the	last	item.	Therefore,	the	length	of	the	array	always	corresponds	to
the	next	position	after	the	last	existing	location.	So	we	can	use	this	number	to	calculate	the
next	location	available.	This	is	actually	what	push()	would	do	automatically	but	here	we
are	doing	it	manually	in	order	to	understand	a	bit	more	about	arrays.

On	line	5	we	print	the	array	x	to	screen	in	its	new	raw	form.

3-						Paste	your	script	on	the	Console	and	
Call	the	function	by	passing	in	“grape”	as	an	input	item.	
Then	Call	the	function	and	pass	in	“apple”	as	an	input	item.	
Do	the	same	for	“banana“.
addMe(“grape”);	
addMe(“apple”);	
addMe(“banana”);

The	final	result	is:	[“grape”,	“apple”,	“banana”].

Great!

Whenever	you’re	ready,	please	move	on	to	the	next	page.	We	are	going	to	create	a
method	that	prints	out	the	items	of	an	array,	any	array.	Coding	generically	is	an
important	goal	as	programmers.

Create	a	generic	method	to	print	out	the	contents	of	an	array
Generic	is	synonymous	with	portable.	In	programming	scripts	should	be	made	as	portable
as	possible.	It	leads	to	reusability	and	memory	efficiency.	By	creating	a	portable	array
method	we	can	use	it	with	any	array,	not	just	the	one	we	are	programming	at	the	moment.

1-						Create	a	method	(a	method	is	a	function	mechanism)	named	printArray	that	takes
an	input	parameter	arbitrarily	named	inputArray

2-						Then	inside	of	the	function	create	a	for	loop	that	initializes	i	to	zero	and	runs	as
long	as	i	is	less	than	the	length	of	the	array	given	to	inputArray.

3-						In	the	body	of	the	loop,	console.log	the		inputArray[i],	this	will	correspond	to	each
item	location	of	the	given	array,	one	at	a	time.		

4-						Close	the	loop,	close	the	function.	You’re	done.

Testing…

5-						If	you	still	have	array	y	on	the	console,	print	array	y.	If	not,	add	array	y	as	shown
below:
var	y	=	[“grape”,	“apple”,	“banana”];

6-						Print	array	y	by	calling	the	function	printArray()	and	pass	y	as	an	argument.

7-						Create	several	other	arrays	and	use	the	generic	printArray()	method	to	print	them.

(See	my	answer	and	a	link	to	file	on	the	next	page).

(Guided	exercise)	
Create	a	generic	method	to	print	out	the	contents	of	an	array

1-						Create	a	method	(a	method	is	a	function	mechanism)	named	printArray	that	takes
an	input	parameter	arbitrarily	named	inputArray.
function	printArray(inputArray)	{

2-						Then,	inside	of	the	function	create	a	for	loop	that	initializes	i	to	zero;	and	runs	as
long	as	i	is	less	than	the	length	of	the	array	given	to	inputArray.
for(var	i	=	0;	i<	inputArray.length;	i++){

3-						In	the	body	of	the	loop,	console.log	inputArray[i],	this	will	correspond	to	each
item	of	the	given	array,	one	at	a	time.

console.log(inputArray[i]);

4-						Close	the	loop,	close	the	function.	You’re	done.
			}
}

5-						If	you	still	have	array	y	on	the	console,	print	array	y.	If	not,	add	array	y	as	shown
below	and	print	it:

var	y	=	[“grape”,	“apple”,	“banana”];

6-						Print	array	y	by	calling	the	function	printArray()	and	pass	y	as	an	argument.
printArray(y);

7-						Create	several	other	arrays	and	use	the	generic	printArray()	method	to	print	them.
See	my	file:	forum.	(bit.ly/1rdSRuA).

Discussion

Generic	methods	are	very	useful.	It	is	always	a	good	idea	to	save	them	for	future	use.
However,	since	you	are	practicing,	saving	code	for	a	future	copy/paste	might	not	be	as
beneficial	to	you	yet.	Code	snippets	act	like	recipes	for	cooking.	There	are	many
cookbooks	for	programmers	out	there	and	although	they	may	not	help	you	at	this	moment,
they	may	come	handy	in	the	future.	(Personally	I	don’t	own	any	of	those	books	since	I
enjoy	creating	my	own	stuff	but	in	a	professional	environment	they	can	be	useful,
especially	when	it	comes	to	more	advanced,	time	consuming	implementations).

The	inputArray	parameter	serves	as	a	placeholder	for	whatever	array	name	you	pass	in
when	you	call	the	function	printArray.	Instead	of	printing	the	array	to	screen	with	a
console.log()	we	could	have	done	something	else	with	the	array,	like	for	example	sorting
it.	We	will	get	there	when	I	introduce	more	properties	and	array	methods	from	the	internal
JavaScript	library.

Remember,	this	book	is	about	learning	how	to	use	JavaScript,	it	is	not	a	dictionary	of
methods.	You	can	always	refer	to	my	other	eBook	for	that	purpose,	but	only	after	you

http://jsplain.com/javascript/index.php/Thread/15-Lab-8/
http://www.amazon.com/JavaScript-Objects-Functions-Arrays-Explained-ebook/dp/B00GDEPBZQ

finish	this	one.

Extra	bonus:	Create	a	generic	method	to	add	items	into	an	array
To	do	this	exercise,	go	back	to	the	first	exercise	of	this	lab	work	(on	Fig	12),	and	recreate
it	in	a	way	that	we	could	add	items	to	any	array,	not	just	the	array	x	as	the	original
example	shows.

1-						You	need	to	add	two	input	parameters	to	the	function	I’m	calling	addMe2:

a)						One	input	for	the	array	name	
(I	will	call	it	inputArray),

b)						and	one	input	for	the	item	you	want	to	add	to	the	array	
(I	will	call	it	inputItem).

2-						Then	in	the	function	body,	create	a	script	that	assigns	the	location
inputArray.length	to	the	new	item	(inputItem):

inputArray[inputArray.length]	=	inputItem;

Note:	Since	the	script	gets	a	bit	more	complicated	than	the	original	one,	I	am	using	names
that	make	sense	to	humans	in	order	to	help	them	understand	what	the	script	does.	Even	if
we	code	for	our	own	use	(as	opposed	to	other	people),	we	will	not	remember	what	it	is
when	we	return	tomorrow.

3-						If	you	wish,	add	a	console.log(inputArray);	to	the	function	body	in	order	to
monitor	the	output.

4-						Finally,	create	some	empty	arrays	outside	of	the	function,	and	then	add	items	to
each	one	of	them	by	calling	the	function.

Whenever	you’re	ready,	please	refer	to	my	own	script:
	forum	board.	|	bit.ly/1pnR5S8

END	OF	LAB

http://jsplain.com/javascript/index.php/Thread/48-Lab-8b/

2.11	Other	useful	arrays	methods

sort()
In	order	to	sort	the	contents	of	an	array	we	can	use	the	JavaScript	library	method	sort():

Using	the	following	array,

var	y	=	[“grape”,	“apple”,	“banana”];

We	can	sort	it	like	this:

y.sort();

Or,	for	displaying	purposes:

console.log(y.sort());

Please	keep	in	mind	that	sorting	is	permanent,	it	affects	the	original	array.

When	it	comes	to	strings,	a	string	type	value	does	not	have	a	method	to	sort	because
sorting	needs	to	use	individual	elements	and	a	string	is	just	one	element	all	together.	If	you
ever	want	to	sort	a	string	you	will	have	to	convert	it	to	an	array,	then	sort	it,	and	then
reconvert	to	string	again.	

We	will	actual	do	this	exercise	in	a	bit.

	

join()
The	method	join	outputs	an	array	value	as	a	string	format:

Examples:

var	y	=	[“grape”,	“apple”,	“banana”];

y.join();

It	outputs:	“grape,apple,banana”

We	can	also	use	a	parameter	to	determine	what	separates	each	word.

Here	are	a	few	examples	of	separation	methods:

Adding	a	pair	of	quotes	as	the	parameter	but	without	a	space	between	quotes:

y.join(””);

It	outputs:	“grapeapplebanana”

Adding	a	space	in	between	quotes:

y.join(”	“);

It	outputs:	“grape	apple	banana”

Adding	a	comma	and	a	space:

y.join(“,	“);

It	outputs:		“grape,	apple,	banana”

Adding	a	dash	in	between	the	quotes:

y.join(“/”);

It	outputs:	“grape/apple/banana”

Adding	a	space,	dash,	space:

y.join(”	/	“);

It	outputs:	“grape	/	apple	/	banana”

Notice	that	I	have	been	writing	“it	outputs”.	In	order	to	convert	an	array	value	into	a	string
value	we	must	catch	the	output	by	assigning	it	to	a	variable.	If	we	assign	it	to	the	original
variable	we	convert	the	array	into	a	string.	When	we	assign	it	to	a	different	variable,	we
copy	the	values	into	a	string	format.	The	original	array	remains	intact.

	

What	about	sorting	before	converting	to	string?

	y.sort().join(”	“);

It	converts	to	a	sorted	array,	and	then	it	outputs	a	string:	
“apple	banana	grape”

Notice	the	dot	syntax	at	work	for	multiple	attached	methods.

Important:	Although	join()	does	not	affect	the	original	array	unless	we	assign	the
output	to	the	original	variable	name,	sort()	works	differently.	When	we	sort	an	array,
it	physically	rearranges	the	locations	of	each	item.	Sorting	is	permanent	and	it	does
not	have	to	be	explicitly	assigned.

Example:
var	y	=	[“grape”,	“apple”,	“banana”];

y[0];	<—	It	displays	“grape”

Now	we	sort	it	(without	an	explicit	assignment):

y.sort();

y[0];	<—	It	displays	“apple”

Sorting	is	permanent.

	

indexOf()
The	indexOf()	method	returns	the	location	position	of	an	item.

If	the	item	does	not	exist,	it	returns	a	-1.

This	is	a	very	useful	method	to	check	if	a	certain	item	already	exists	in	an	array	before	we
add	it,	or	to	search	for	a	specific	item	as	we	will	see	on	the	next	lab	work.

In	the	array

var	y	=	[“grape”,	“apple”,	“banana”];

y.indexOf(“banana”);	<—	returns	2	(for	location	2)

y.indexOf(“chestnut”);	<–	returns	-1	(as	in	‘not	found’)

Example:

In	
var	y	=	[“grape”,	“apple”,	“banana”];

We	could	see	if	chestnut	exists	and	code	a	script	to	dialog	with	the	user:
if(y.indexOf(“chestnut”)	<	0)	{
	console.log(“Not	found,	would	you	like	to	add	it?”);
}

It	outputs:
“Not	found,	would	you	like	to	add	it?”

Then	we	would	write	a	script	to	add	chestnut	to	the	array	as	we	have	done	in	a	previous
lab	work.

The	<	0	bit	is	to	check	if	the	indexOf		is	-1,	which	means	that	the	item	does	not	exist.

On	the	other	hand,	an	index	of	zero	or	above,	means	that	the	item	is	already	in	the
array.

Each	index	corresponds	to	an	item	location.

	

pop()	and	shift()
The	opposite	of	push(),	which	is	the	method	used	to	add	an	item	to	the	top	or	rightmost
place	in	an	array,	is	called	pop().

Think	of	“Pop!	Goes	the	Weasel”!

pop()	removes	one	item	from	the	very	end	of	the	array.

In	
var	y	=	[“grape”,	“apple”,	“banana”];

y.pop();

Will	remove	“banana”.	Now	y	is	only	[“grape”,	“apple”]

shift()	is	the	opposite	of	unshift().

We	unshift	all	items	to	insert	an	item	at	the	bottom	or	leftmost	place.

When	we	remove	an	item	from	the	bottom	or	leftmost	place,	all	the	other	items	get	shifted
down.

Let’s	remove	“grape”	which	is	currently	the	first	item	in	array	y:
y.shift();

Notice	how	pop()	and	shift()	don’t	take	any	argument	in	their	parentheses.	That’s	because
they	specifically	remove	the	last	or	the	first	item,	not	a	named	item.

Do	you	still	remember	how	to	put	the	items	back?

y.push(“banana”);

y.unshift(“grape”);

Now	array	y	is	back	to	its	original	state:
[“grape”,	“apple”,	“banana”]

slice()
The	method	slice()	extracts	specific	items	from	one	array	and	outputs	those	items	in	the
same	format	type:	array.

This	means	that,	if	we	catch	the	output	by	assigning	it	to	another	variable,	we	create
another	array.

What	is	the	difference	between	join()	and	slice()?

join()	converts	the	output	into	a	string	value.	We	use	the	parentheses	to	determine
how	the	string	words	will	be	separated.

slice()	converts	the	output	from	an	array	into	another	array.	Since	we	don’t	need	to
determine	how	to	separate	the	items	because	they	are	already	separated,	we	take
advantage	of	the	parentheses	to	pass	in	some	other	parameters	as	follows:

myArray.slice(0,4);	<—	zero	is	the	first	location	to	be	included	in	the	output,	and
4	is	the	first	location	to	be	excluded.

Example:

In
var	fruits	=	[“apples”,	“bananas”,	“blueberries”,	“grapes”,	“avocado”,
“peaches”];

I	am	going	to	declare	a	new	array	an	use	slice()	to	extract	some	fruit	items	from	the	fruits
array:

var	pickedFruits	=	fruits.slice(0,4);

Array	pickedFruits	now	contains:
[“apples”,	“bananas”,	“blueberries”,	“grapes”]

The	two	parameters	(0,4)	have	the	following	meaning:
The	first	parameter	represents	the	first	location	to	be	extracted.
The	second	parameter	represents	the	first	location	to	be	excluded	from	extraction.

A	(0,1)	would	extract	just	apples	because	it	excluded	bananas,	which	is	in	position	1.

A	(1,4)	would	extract	bananas,	blueberries,	grapes,	because	it		extracts	from	position	1
(location	one)	which	is	bananas,	and	it	excludes	from	position	4	which	is	avocado.	

For	more	advanced	techniques	on	slice	please	refer	to	my	eBook
JavaScript	Objects	Functions	and	Arrays	Explained.

http://www.amazon.com/JavaScript-Objects-Functions-Arrays-Explained-ebook/dp/B00GDEPBZQ/

splice()
The	Array	method	splice()	is	a	very	interesting	one.	Do	you	still	remember	push()	and
unshift()?	They	add	items	to	the	end	or	beginning	of	an	array,	right?

splice()	adds	items	to	a	specific	location	in	the	array.

Let’s	see	how	it	works.

Depending	on	how	many	arguments	you	use	in	the	parenthesis,	you	can	do	the	following:

a)						Delete	items	mode:
When	you	use	only	two	arguments	you	are	giving	the	index	positions	in	the
following	manner:
First	argument:		where	the	action	is	to	start	(inclusively),		
Second	argument:	How	many	items	will	be	removed.
In	a	way,	having	just	two	arguments	means	to	delete	because	there	is	nothing	to
add.
splice(0,3)	(explanation	further	down	the	page)

b)						Add	items	mode,
If	you	insert	more	than	two	arguments,	the	third	and	consecutive	arguments	are
data	to	be	inserted,	and	in	that	case	JavaScript	assumes	you	want	to	insert	items
into	the	array.
splice(2,0,	“yellow”)		

In	just	add	mode,	the	second	argument	is	zero,	which	means	that	no	items	will	be
deleted	in	exchange	for	the	items	we	are	adding	with	the	third	and	consecutive
parameters.
or…

c)						Replace	items	mode.	
If	the	second	parameter	in	add	mode	is	anything	other	than	zero,	this	number	will
indicate	how	many	items	will	be	deleted	in	exchange	for	the	items	being	added.
splice(2,1,	“yellow”)

For	example,	splice(0,3)	means	to	delete	3	items:	the	first,	the	second	and	the	third.
Number	3	represents	the	quantity	of	items	to	be	removed.	The	number	3	coincides	with
the	third	item	on	the	array	but	it	is	not	necessarily	so.	If	we	had	splice(2,3)	it	would
remove	the	third,	fourth	and	fifth	items,	which	correspond	to	positions	2,3,4	and	counting
from	zero.

The	3rd	and	consecutive	arguments	represent	the	items	to	be	inserted.

For	example,

splice(2,0,	“yellow”)	means	to	insert	yellow	in	position	two	(third	item)	and	unshift	the
others	because	the	zero	means	that	no	items	are	to	be	deleted.

splice(2,1,	“yellow”)	it	means	to	add	yellow	to	position	2	(third	item)	and	remove
whatever	is	there	(this	is	a	replacement	due	to	the	second	argument	being	anything	other
than	zero).

See	the	next	image	for	a	better	view	of	these	concepts.

Fig	13

Please	note	that,	unlike	other	implementations	where	we	were	displaying	items,	with
splice()	we	are	actually	editing	the	original	array.	It	is	a	permanent	operation	just	like
sort().

We	could	also	use	splice()	to	remove	and	transfer	some	items	into		a	new	array	(sort	of
what	we	did	with	slice(),	except	that	now	we	are	also	editing	the	original	array)

Here’s	an	example	using	the	following	array:
var	x	=[“blue”,“red”,“green”,“violet”,“brown”];

a)						Splitting	the	array	by	copying	the	first	three	items	into	newArray	before	deleting
them:
var	newArray	=	x.splice(0,3);

b)						Call	array	x:

x;
It	returns	[“violet”,	“brown”]

c)						Call	array	newArray:
newArray;
It	returns	[“blue”,	“red”,	“green”]

We	have	split	the	contents	of	x	into	two	different	arrays.	Had	we	used	slice()	instead	of
splice()	we	would	still	have	the	original	array	x	intact.

In	summary,	splice()	is	very	versatile	and	it	can	be	used	in	place	of	push(),	pop(),
unshift()	and	shift()	whenever	we	need	to	address	a	specific	position	in	the	array	instead	of
generically	using	the	end	or	the	beginning	of	the	array	to	insert	or	delete	items.

If	at	this	time	your	head	is	spinning	with	so	much	information	know	that	you’re	not	alone.
You	don’t	really	have	to	memorize	these	methods.	What	you	really	need	to	do	is	to
understand	how	they	work.	Then	later	when	you	need	to	use	them	you	can	always	come
back	and	review	the	concepts	one	more	time.	Eventually	they	will	become	part	of	your
internal	toolset.	Just	make	sure	you	understand	how	they	work.

Let’s	practice	a	bit	more	to	make	sure	you	get	the	idea!

	

Splice	lab	work
Let’s	try	a	few	samples	to	illustrate	the	concept	of	splice().

Deleting	items	with	splice():
1-	On	your	Console	declare	the	following	array:
var	x	=	[“blue”,“red”,“green”,“violet”,“brown”];

2-	Delete	3	items	starting	at	positions	0	which	is	blue.	
Exclude	from	deletion	position	3,	which	violet:	
x.splice(0,3);

We	have	just	deleted	blue,		red,	green	from	array	x.

3-						Call	in	the	array:	
x;

It	returns	[“violet”,	“brown”]	because	the	original	items	in	positions	0,1,2	were
deleted.

Adding	items	with	splice():
4-	Let’s	add	our	items	back	into	the	array,	starting	at	position	zero	and	without

deleting	any	items	in	exchange:
x.splice(0,0,	“blue”,“red”,“green”);

5-						Call	the	array:	
x;	
returns	[“blue”,	“red”,	“green”,	“violet”,	“brown”].

We	started	at	position	zero	and	added	all	the	listed	items,	and	deleted	zero	items.

You	may	not	use	splice()	extensively	on	your	programming	but	it	is	a	great	tool	to
understand	and	call	upon	it	when	needed.

There	are	many	more	methods	we	can	use	with	arrays.	Learning	all	of	them	at	once	is	just
overwhelming.	It	may	be	a	good	idea	to	acquire	my	other	book	about	JavaScript	library
methods	for	reference	purposes	and	for	an	easy	explanation	on	how	they	all	work.	If	I
thought	it	would	help	to	include	all	the	other	methods	here	at	once,	I	would	have	done	it.
Of	course	you	can	always	search	and	hope	not	to	get	confused	or	sidetracked	by	some
bogus	explanation	on	the	internet.	Knowing	these	tools	is	an	important	step	to	become	a
master	in	the	craft.

http://www.amazon.com/JavaScript-Objects-Functions-Arrays-Explained-ebook/dp/B00GDEPBZQ/

2.12	Lab	work	9
NOTE:	If	you	want	to	do	this	exercise	along	with	me	jump	the	next	14	steps.
Reserve	this	page	for	future	practice.

1-						Take	the	following	array	y	as	an	example	and	sort	the	array:
var	y	=	[“grape”,	“apple”,	“banana”];

2-						Now	assign	to	a	new	array	mySort,	the	contents	of	the	sorted	array	y.

3-						Test	mySort	by	displaying	its	contents	on	the	Console.

4-						Now,	display	the	array	mySort		in	a	string	type	format	and	
split	the	items	with	1	blank	space.	Hint:	use	join().

5-						Now,	instead	of	just	displaying	it,	assign	the	items	from	mySort	to	a	new	variable
z,	but	in	a	string	format.	
Use	a	combination	of	space,	forward	slash,	and	space	as	a	separator.

6-						Call	z.

7-						Use	the	indexOf()	method	to	find	the	position	of		“banana”	in	array	y.

8-						Test	for	the	existence	of	“banana”	in	array	y	(use	an	if	conditional	statement),	and
display	the	following	message	on	the	screen	using	console.log():	
“banana	is	contained	in	array	y”

9-						Using	the	same	method	as	the	last	exercise,	look	for	“chestnut“,	then
display	two	messages,	one	for	if()	and	another	for	else	as	follows:
“chestnut	is	contained	in	array	y“			
else:	“chestnut	is	not	found	in	array	y“.

10-		Remove	the	last	item	of	array	mySort	using	pop():

11-		Remove	the	first	item	of	array	mySort	using	shift():

12-		The	array	mySort	should	now	only	contain	“banana”.	
Add	“chestnut”	as	the	last	item.	
Use	push().

mySort	should	now	have	2	items,	[“banana”,	“chestnut”]

	

13-		Using	splice(),	insert	“apple”	in	array	mySort	at	position	1	(as	a	second	item).	Do
not	delete	any	existing	item.

mySort	should	now	contain	[“banana”,	“apple”,	“chestnut”]

14-		Using	slice(),	create	a	new	array	named	newArray	with	a	copy	of	the	second	and
third	items	(“apple”	and	“chestnut”)	from	mySort	array.
The	newArray	should	now	contain	[“apple”,	“chestnut”].

(See	my	results	on	the	next	page.)

Answers	to	Lab	work	9:

1-						Take	the	following	array	y	as	an	example	and	sort	the	array:
var	y	=	[“grape”,	“apple”,	“banana”];
y.sort();

It	returns	[“apple”,	“banana”,	“grape”]

2-						Assign	a	new	array	named	mySort	to	the	contents	of	a	sorted	array	y:
var	mySort	=	y.sort();

3-						Test	mySort:
mySort;

It	returns	[“apple”,	“banana”,	“grape”]

4-						Now	display	the	array	mySort		is	a	string	type	format,	
and	split	the	items	whit	1	blank	space.	Hint:	use	join():
mySort.join(”	“);
or	you	might	have	done	this	which	is	also	correct:
console.log(mySort.join(”	“));

It	returns	“apple	banana	grape”	in	a	string	format.

5-						Now,	instead	of	just	displaying	it,	assign	the	items	from	mySort	to	a	new	variable
z,	but	in	a	string	format.	Use	a	combination	of	space,	forward	slash,	and	space	as	a
separator:
var	z	=	mySort.join(”	/	“);

6-						Call	z:
z;

It	returns	“apple	/	banana	/	grape”

7-						Use	the	indexOf()	method	to	find	the	position	of		“banana”	in	array	y:
y.indexOf(“banana”);

It	returns	1,	which	means	that	“banana”	exists	and	is	located	on	position1	(second
item).

8-						Test	for	the	existence	of	“banana”	in	array	y	(use	an	if	conditional	statement),	and
display	the	following	message	on	the	screen	using	console.log():	
“banana	is	contained	in	array	y“:
if(y.indexOf(“banana”)	>=0){
	console.log(“banana	is	contained	in	array	y”);
}

It	returns	“banana	is	contained	in	array	y”

9-						Using	the	same	method	as	the	last	exercise,	look	for	“chestnut“.	
Then	display	two	messages,	one	for	if()	and	another	for	else	as	follows:
“chestnut	is	contained	in	array	y“			
else:	“chestnut	is	not	found	in	array	y“:
if(y.indexOf(“chestnut”)	>=0){
	console.log(“chestnut	is	contained	in	array	y”);
}	else	{
	console.log(“chestnut	is	not	found	in	array	y”);
}

It	returns	“chestnut	is	not	found	in	array	y”

10-		Remove	the	last	item	of	array	mySort	using	pop():
mySort.pop();

It	removes	“grape”

11-		Remove	the	first	item	of	array	mySort	using	shift():
mySort.shift();

It	removed	“apple”

12-		mySort	should	now	only	contain		“banana”.	
Add	“chestnut”	as	the	last	item,		using	push():
mySort.push(“chestnut”);

mySort	should	now	have	2	items,	[“banana”,	“chestnut”]

13-		Using	splice(),	insert	“apple”	in	array	mySort	at	position	1	(as	a	second	item)	and	
do	not	delete	any	existing	item.
mySort.splice(1,0,“apple”);

mySort	should	now	contain	[“banana”,	“apple”,	“chestnut”]

14-		Using	slice(),	create	a	new	array	named	newArray	with	a	copy	of	the	second	and
third	items	(“apple”	and	“chestnut”)	from	mySort	array:
var	newArray	=	mySort.slice(1,3);

The	newArray	now	contains	[“apple”,	“chestnut”].	
The	argument	1	represents	the	second	location	from	mySort,	and	argument	3
represents	the	exclusion	which	starts	at	location	3.

Yes,	location	3	does	not	exist,	but	we	had	to	cover	location	2	in	order	to	include
chestnut.	The	exclusion	started	at	location3,	which	is	item	4.

It	may	be	overwhelming	at	first.

Practice,	practice,	practice.

END	OF	LAB

2.13	Lab	work	10

Building	a	mechanism	to	fetch	a	variable	from	an	array
This	exercise	will	review	variable	assignments,	and	creating	arrays	with	variables	as
elements,	plus	function	declarations,	reassignment	of	variables	and	the	usage	of	indexOf.

The	idea	is	to	call	a	function	and	select	a	language	as	an
argument.	Then,	based	on	the	language	selected,	the	correct
sentence	will	be	displayed.	Does	it	sound	interesting?

Example:

When	calling	show(english);

This	sentence	gets	displayed:

“The	quick	brown	fox	jumped	over	the	lazy	dog”.

Notice	how	english	is	not	wrapped	in	quotes	(and	it	is	in	lower	case).	That	tells	us
that	it	must	be	a	variable	name,	not	a	string.

I	have	used	Google	Translate	to	convert	my	sentences	from	English	to	Portuguese	and
Spanish	(and	later	French).	My	apologies	to	native	speakers	if	it	sounds	funny,	it	is	well
intended.
Link	to	the	convenient	jsbeautify.

Please	do	the	exercise	on	your	own.	
A	link	to	my	own	file	will	be	given	in	the	end.	
Interim	files	will	also	be	available	so	that	you	can	check	your	work.

1-						Declare	three	variables	named
english,	portuguese,	spanish.	
Respectively,	assign	to	each	one	of	them	the	following	sentences:	
(Link	to	convenient	copy/paste:	raw	file		|	bit.ly/1mpqCsr)

“The	quick	brown	fox	jumped	over	the	lazy	dog”
“A	ligeira	raposa	marrom	saltou	sobre	o	cão	preguiçoso”
“El	rápido	zorro	marrón	saltó	sobre	el	perro	perezoso”

	

https://translate.google.com/
http://jsbeautifier.org/
http://icontemp.com/jpl/fox.txt

2-						Declare	an	array	named	langVersion	with	the	following	elements:	
english,	portuguese,	spanish.

Remember,	since	these	names	are	already	declared	as	variables,	we	should	not	write
them	in	quotes,	just	separate	them	with	commas.

The	purpose	of	this	array	is	to	save	each	variable	in	a	sequence.	Couldn’t	we	just	use
the	variables	directly	and	forget	about	the	array?	Yes,	we	could.	However,	in	a	large
program	those	variables	will	be	saved	along	with	many	others	and	by	creating	an
array	we	are	listing	the	variables	related	to	language	translation,	which	can	be
further	manipulated,	edited,	erased	or	even	become	part	of	a	larger	group	of
languages.	Of	course	there	are	other	ways	to	do	this	but	right	now	we	are	practicing
with	arrays	and	it	is	a	very	important	practice.

3-						Declare	one	more	variable	named	sentence	with	the	numeric	value	of	0.

This	variable	will	be	used	to	store	the	location	number	of	the	language	we	are	going
to	select	from	all	the	languages	in	the	array.

The	reason	why	we	are	giving	this	variable	a	value	of	zero	is	to	tell	JavaScript	ahead
of	time	that	this	variable	will	be	numeric.	In	reality	JavaScript	will	change	the	type
of	value	if	needs	be,	but	it	is	a	good	practice	to	declare	our	intention,	even	if	this
intention	may	only	help	a	human	inspecting	the	code,	rather	than	helping	JavaScript
to	process	it.

(Link	to	convenient	copy/paste	for	steps	1,2,3:	raw	file	|	bit.ly/1Dt7fnS)

4-						Below	your	current	code,	create	a	function	named	show.

The	purpose	of	this	function	will	be	to	display	the	correct	sentence	based	on	the
language	we	choose	when	we	call	the	function.	The	sentence	will	be	picked	from	the
array	of	languages.
function	show()	{}

5-						Introduce	to	the	function	an	input	parameter	named	language.

6-						In	the	function’s	body,	line	1,	reassign	the	already	declared	variable	sentence	to	the
location	number	of	the	language	selected.	We	do	this	by	using	indexOf()	to	find	the
location,	like	this:	
sentence	=	langVersion.indexOf(language);

Later,	when	we	call	the	function,	like	for	example	show(portugese),	the	parameter
language	will	be	replaced	by	whatever	language	argument	we	give	to	the	function.
And	the	indexOf(language)	will	assign	variable	sentence	with	the	correct	array
address	for	that	language.

7-						Finally,	on	the	next	line	and	still	inside	of	the	function	body,	write	a	console.log	to
display	the	contents	of	the	variable	chosen	when	someone	calls	the	function:	
console.log(langVersion[sentence]);

http://icontemp.com/jpl/fox1.txt

From	step	6	we	know	that	variable	sentence	is	the	location	number	of	one	of	the
items	in	the	array.

8-						Paste	your	code	on	the	Console	and	call	the	function	show()	to	test	each	sentence
(Note:	if	you	get	an	error	thank	the	gods	for	the	opportunity	to	do	some	debugging	because	it	is	a	very	good
practice):
show(english);
show(portuguese);
show(spanish);

You	may	see	on	your	screen	the	term	undefined	after	the	output	sentence.	That	is	normal
in	test	Consoles.	It	is	just	telling	us	that	the	function	show()	did	not	explicitly	return
anything	and	so,	it	automatically	returns	undefined	because	JavaScript	functions	always
return	something.

See	the	final	version	on	the	following	links:

	forum	|	raw	text.
bit.ly/1r0Ho2D	|	bit.ly/1mCJogu

Side	note:

If	something	is	not	clear,	do	not	move	forward	until	you	consciously	frame	a
question.	Stop,	step	back	and	try	to	see	what	each	line	is	attempting	to	do.	Try	it	100
times	if	you	need	to	do	so.	Then,	when	you	think	you	know	what	it	is	that	you	don’t
understand,	move	forward	to	see	if	understanding	comes	at	the	end	of	the	assignment
when	you	look	at	the	script	as	a	whole.	Do	not	let	it	go	if	you	have	any	doubts.
Concepts	need	to	be	thought	of;	we	can’t	fly	over	them	and	think	that	we	will	get
them	later.

On	the	other	hand,	understanding	comes	in	layers,	but	we	consciously	need	to	make
sure	we	can	continue	our	path	even	if	we	don’t	fully	grasp	the	idea	about	something.
Ask	yourself	a	question	and	give	yourself	an	honest	answer	before	moving	forward.
They	say	that	the	act	of	asking	is	in	itself	half	of	the	answer	and	many	times	the
answer	becomes	obvious	when	we	properly	frame	the	question.

http://jsplain.com/javascript/index.php/Thread/18-Lab-10/
http://icontemp.com/jpl/fox2.txt

Adding	French	to	the	array
Suddenly	someone	complains	because	there	is	not	French	version	of	the	Quick	brown	fox.

1-						If	you	still	have	your	Console	open,	add	a	variable	french	at	the	prompt:
var	french	=

Don’t	worry	about	being	all	the	way	at	the	bottom	of	the	script.	We	are	just	testing
stuff.	Notice	how	french	is	in	small	letters.

Variables	start	with	small	letters.

2-						Assign	the	following	line	to	variable	french:

“Le	renard	brun	rapide	saute	par	dessus	le	chien	paresseux”
raw	file.	|	bit.ly/1wGvYQS.

3-						Now,	use	the	method	push()	to	insert	the	variable	french	into	the	array
langVersion.
langVersion.push(french);

4-						Test	the	script	by	calling	
show(french);

See	final	version	here:
forum	|	raw	text.
bit.ly/1r0Ho2D	|	bit.ly/1mCJogu

	

http://icontemp.com/jpl/fox3.txt
http://jsplain.com/javascript/index.php/Thread/18-Lab-10/
http://icontemp.com/jpl/fox2b.txt

Printing	out	the	array	contents
Do	you	still	remember	how	to	create	a	for	loop?	for	loops	are	great	to	traverse	array
elements.

In	this	project	we	are	going	to	create	a	for	loop	to	console.log	the	items	from	array
langVersion	just	to	illustrate	a	point	leading	us	to	our	next	topic.

If	you	don’t	have	the	previous	script	on	your	Console,	copy	it	from	the	previous	page	all
the	way	at	the	bottom,	and	paste	it	on	the	Console.	Then	proceed	to	step	1:

1-						Create	a	for	loop	to	print	the	array	elements	to	screen.	
I	will	use	the	common	designation	i	as	a	variable	for	the	counter,	
and	langVersion.length	as	the	limiter	for	my	loop	repetition.

2-						In	the	loop	body,	console.log	the	contents	of	the	array.	
This	is	accomplished	by	dynamically	addressing	langVersion[i],	
which	is	the	current	location	of	each	element	as	the	loop	repeats	itself.

See	my	script	on	the	forum	(the	fourth	script	shown)	|	bit.ly/1r0Ho2D
or	as	a	raw	file	|	bit.ly/1DtOsZu

http://jsplain.com/javascript/index.php/Thread/18-Lab-10/
http://icontemp.com/jpl/fox4.txt

Did	you	notice	how	the	variable	names	are	not	being	printed?

The	only	thing	we	get	displayed	is	the	text	value	from	each	variable.

That’s	because	each	variable	name	is	instantly	evaluated	by	JavaScript	and	the	value	to
which	the	variable	points	to	is	the	one	that	JavaScript	fetches	and	displays	on	the	screen.

What	if	we	just	wanted	a	list	of	the	variable	names	as	shown	on	the	array?

To	get	those	labels	(english,	portuguese,	etc)	we	would	need	to	write	console.log(i)	by
itself,	instead	of	console.log(langVersion[i]).	However,	that	would	only	print	0,1,2,3.	Not
the	name	of	the	variables,	right?

I	really	would	like	to	display	my	labels.	How	can	we	list	those?

That	will	be	covered	on	the	next	topic.	You	see,	arrays	work	great	and	are	frequently	used
but	they	are	not	always	the	best	data	structure	for	the	job	at	hand.	When	it	comes	to	labels
such	as	the	names	of	those	variables,	an	unordered	list	may	be	more	appropriate,	as
opposed	to	an	ordered	list	like	an	array.

Let’s	move	forward	and	talk	about	unordered	lists.	If	they	are	unordered	we	don’t	address
them	numerically,	right?

Let’s	see	how	we	handle	unordered	lists.	They	are	really	popular	and	useful.

END	OF	LAB

https://en.wikipedia.org/wiki/Data_structure

2.14	Unordered	lists
We	have	seen	how	the	numeric	data	structure	of	type	array	stores	data	in	its
‘pockets’.	The	first	item	goes	on	pocket	zero,	the	second	item	on	pocket	1,	the	third
item	goes	on	pocket	2,	etc.

The	location	of	the	last	item	of	an	array	is	always	the	length	of	the	array	minus	1.	Do
not	memorize	this	fact,	just	understand	that	locations	start	counting	from	zero.	This	is
great	to	know	if	we	ever	need	to	manually	add	an	item	to	the	array.	As	for
automatically	adding	new	items,	we	may	use	push()	to	insert	them	at	the	end,	or
unshift()	to	place	them	at	the	beginning,	or	if	we	want	to	insert	an	item	in	a	specific
location	we	can	use	splice().	On	the	other	hand,	to	delete	items	we	use	pop()	if	the
item	is	at	the	end,	shift()	if	at	the	beginning,	and	the	versatile	splice()	if	we	want	to
delete	an	item	from	a	specific	location.

As	for	scanning	arrays,	we	traverse	the	array	with	a	for	loop	in	order	to	print	its
contents,	and	we	also	know	that	the	JavaScript	library	has	many	other	methods	we
can	use	for	further	manipulating	arrays.	Some	of	these	methods	were	covered	in	this
book,	and	the	other	more	advanced	methods	may	be	read	on	my	“explained”	eBook.

	

http://en.wikipedia.org/wiki/Data_structure
http://www.amazon.com/JavaScript-Objects-Functions-Arrays-Explained-ebook/dp/B00GDEPBZQ/

In	this	topic	we	are	going	to	work	with	unordered	lists.

In	unordered	lists	all	item	locations	are	labeled	with	a	string	value.

We	call	them	unordered	lists	because	each	pocket	is	literally	labeled.	This	label	can	be	a
single	character,	or	a	word,	or	even	a	number	(however	if	you	use	numbers	as	labels,
know	that	they	are	not	sequential	and	they	are	treated	as	characters	as	opposed	to	arrays
which	are	always	numerically	sequential).

In	truth,	the	unordered	list	is	unordered	because	JavaScript	maps	the	label	to	the	item.	In
the	end,	these	are	all	arrays,	even	if	such	characteristic	becomes	hidden	from	the
programmer.

In	an	official	array	we	don’t	have	to	name	the	address	or	pocket	label	because	it	is
numerically	assumed,	like	for	example:

var	myArray	=	[“duck”,	“lettuce”,	“sapphire”];

For	unordered	lists	we	need	to	label	the	location	of	the	item,	I	mean	the	pocket	where	the
item	is	stored.	That	can	be	advantageous	for	certain	applications:

var	x	=	{“animal”:	“duck”,	“vegetable”:	“lettuce”,
“mineral”:	“sapphire”};

Notice	how	the	assignment	to	each	item	is	made	like:	“animal”:	“duck”,

“animal”	is	the	label	and	“duck”	is	the	value.

There	is	a	colon	:	separating	the	two,	rather	than	an	=.

	We	use	the	curly	braces	to	wrap	the	list,		as	opposed	to	the	square	braces	which	are
reserved	to	arrays.

Please	note:	The	quotes	wrapping	the	label	are	optional,	but	not	the	quotes	wrapping
the	string	value,	those	are	mandatory	because	in	our	example	we	are	using	string
values.
More	about	that	later.

Hashes,	objects,	associative	arrays,	unordered	lists
In	JavaScript	all	these	names	are	synonymous.	Each	programming	language	uses	a
different	terminology	to	represent	unordered	lists.

Java	uses	HashMap,	HashTable.

C#	uses	HashTable,	Dictionary.

Python	uses	dict.

Ruby	uses	Hash.

Object-c	uses	NSDictionary.

C++	uses	std::unordered_map.

And	JavaScript	uses	object.

Did	I	just	say	object?	Personally	I	don’t	like	the	name	designation	because,	in	JavaScript,
almost	everything	is	an	object.	Arrays	are	also	objects,	and	so	are	functions.	However,	the
name	of	object	in	JavaScript	has	become	synonymous	with	unordered	lists.

Another	popular	name	is	associative	arrays.	Some	languages	actually	have	associative
arrays.	In	JavaScript	an	associative	array	which	is	an	array	with	key-value	pair
association,	is	called	an	object.	However	the	reason	why	an	associative	array	is	often
called	an	object	is	because	objects	in	the	sense	of	the	term	are	made	with	associative
arrays.	As	far	as	JavaScript	is	concerned,	all	these	names	are	unordered	lists	and	we	call
them	objects.

Hopefully	this	clears	up	some	of	the	confusion	by	knowing	that	they	all	mean	the	same
thing,	but	please	keep	in	mind	that	things	are	not	that	simple,	there	is	a	lot	more	to	this
subject	than	what	this	book	calls	for.

From	now	on	and	for	simplicity’s	sake,	we	are	going	to	call	any	key-value	pair
structure	an	object.

Creating	an	object
An	object	is	a	collection	of	values.

These	values	can	be	a	mix	of	anything:	strings,	numbers,	Boolean	expressions,	variables,
arrays,	functions	and	(often)	other	similar	objects.

JavaScript	is	very	versatile	in	that	aspect.	The	size	of	a	list	of	values	can	shrink	or	expand
at	any	time.	We	will	see	how	to	do	all	these,	like	creating,	editing,	adding	new	items,
deleting	items,	searching	and	printing	items	in	the	next	few	pages.	Most	of	these
techniques	have	already	been	introduced	to	you	and	you	will	remember	them	as	we
approach	each	one	of	them.

Declaring	an	object	and	assigning	values	at	the	same	time:
var	x	=	{“animal”:	“duck”,	“vegetable”:	“lettuce”,
“mineral”:	“sapphire”};

What	do	we	have	above?

We	have	a	variable	named	x	that	points	to	a	data	structure	of	type	object.	We	know	it	is	an
object	because	of	the	curly	braces	wrapping	the	data:	{	}.

	The	variable	x	and	the	data	structure	in	itself	are	in	separate	(and	different)	parts	of	the
memory.	They	are	independent	of	each	other.	This	memory	independence	also	happens	for
arrays	and	functions,	but	there	is	no	separation	of	variable	name	and	value	when	we
declare	a	simple	string	or	a	numeric	variable;	those	reside	on	the	same	location	as	the
variable	name.	We	will	cover	a	bit	more	about	it	later.

So	now	we	have	an	object	assigned	to	variable	x.

Since	the	data	structure	is	divided	into	key-value	pairs	we	can	address	the	values	by
calling	the	corresponding	keys.	Think	of	the	key	as	the	label	for	the	value.

Instead	of	x[0];	we	now	can	(and	must)	do	it	this	way:
x[“animal”];

It	displays	“duck”.	By	the	way,	when	using	bracket	notation,	the	quotes	wrapping	the
label	are	mandatory.	Notice	how	“animal”	is	wrapped	in	quotes.	Labels	are	strings	values.
Now	if	you	ever	use	a	number	as	a	key	(and	you	can	do	it),	you	may	also	wrap	it	in	quotes
or	you	may	not.	JavaScript	allows	numbers	to	be	written	in	both	styles	on	bracket
notation	(but	numbers	are	rarely	used	as	labels).

Why	should	we	wrap	key	labels	in	double	quotes?
Normally,	when	we	create	an	object	we	don’t	really	have	to	wrap	the	key	portion	of	a
property	in	quotes	and	you	may	see	it	more	often	that	way	(no	quotes).	Example:

var	example	=	{animal:	“duck”,	vegetable:	“lettuce”};

As	you	see,	there	are	no	quotes	for	animal	and	for	vegetable	in	the	object	declaration.

However,	wrapping	key	labels	with	double	quotes	is	being	used	more	and	more	in	modern
technology,	thanks	to	the	advent	of	JSON	which	is	being	applied	everywhere.	We	will
cover	the	basics	of	JSON	on	a	later	chapter.

So	if	you	are	beginning	to	learn	object	notation,	you	might	as	well	develop	the	habit	of
double	quoting	keys	when	you	declare	an	object.

The	above	example	should	then	look	like	the	following:

var	example	=	{“animal”:	“duck”,	“vegetable”:	“lettuce”};

Do	it	as	you	wish	but	please	keep	this	concept	in	mind.

	

http://en.wikipedia.org/wiki/Json

Assigning	new	key-value	pairs	to	objects
Let’s	do	some	lab	work…

1-	On	your	Console,	create	a	new	and	empty	object:
var	crazyList	=	{	};

Do	you	still	remember	how	to	check	the	type	of	a	variable	with	typeof	(covered	on	Lab
work	1)?

2-						Let’s	check	the	typeof	crazyList:
typeof	crazyList;

It	displays	“object“.	We	have	an	empty	object.

3-						Now	we	add	some	values	by	assigning	them	to	key	labels:
crazyList[“flower”]	=	“daisy”;

Object	crazyList	now	contains	{flower:	“daisy”}

4-						Let’s	add	another	key-value	pair:
crazyList[“drink”]	=	“water”;

crazyList	now	has	two	values:
{flower:	“daisy”,	drink:	“water”}

	

As	a	curiosity,	notice	how	JavaScript	is	placing	the	new	items	to	the	right	of	the	last	item.
However,	it	doesn’t	really	matter	where	the	items	are	being	placed	since,	unlike	arrays,	we
don’t	need	such	information	in	order	to	access	those	items.

5-						Now	we’re	going	to	add	some	numeric	keys	just	to	see	what	happens
(not	a	common	implementation):
crazyList[2]	=	“front	teeth”;

crazyList	is	now	holding	3	items:
{2:	“front	teeth”,	flower:	“daisy”,	drink:	“water”}

Do	you	see	how	the	numeric	key	was	placed	to	the	left	of	all	the	string	type	keys?
Again,	this	has	no	meaning	to	us	because	it	is	not	really	consistent.

6-						Let’s	add	two	other	numeric	keys:
crazyList[“1”]	=	“flying	bird”;

and
crazyList[3]	=	“is	a	crowd”;

Now	crazyList	contains:	
{1:	“flying	bird”,	2:	“front	teeth”,	3:	“is	a	crowd”,	flower:	“daisy”,	drink:
“water”}

So	we	see	that	when	the	key	is	numeric,	the	item	is	placed	on	the	left	side	and	also	in
numeric	sequence.	When	the	key	is	a	string	value,	the	item	is	placed	after	the	last
rightmost	item.

Also	notice	how	I	wrapped	[“1”]	in	quotes.	That	was	just	to	show	that,	when	it	comes	to
numeric	keys,	they	can	be	wrapped	or	not.	It	is	up	to	you.

The	sequential	positioning	of	key-value	pairs	has	no	value	for	us	at	this	moment.	It
was	just	mentioned	as	a	curiosity.	Please	don’t	try	to	memorize	such	characteristic
since	this	is	an	unordered	list	and	we	will	pick	items	by	calling	their	labels	at	will.

Using	dot	notation	with	objects
On	the	previous	example	we	had	used	bracket	notation	to	call	the	labels	that	correspond	to
each	object	property	(the	value).

We	can	also	use	dot	notation	to	represent	object	properties.

This	is	actually	a	very	popular	way	to	address	items	of	an	object.	In	truth,	we	need	to
become	very	familiar	with	both	styles	of	writing	because,	as	much	as	dot	notation	is
popular,	sometimes	it	cannot	be	used.	On	the	other	hand,	if	you	only	use	bracket	notation
your	code	will	look	different	than	the	norm	and	someone	will	ask	you	why	such	style	of
writing.	It	is	worth	learning	how	to	write	certain	expressions	in	dot	notation	and	others	in
bracket	notation.	Practice	will	tell	you	which	one	to	use	and	when.

Here’s	what	you	should	know	about	the	differences	between	these	two	styles	of
coding:

1.	 Dot	notation	will	not	work	with	numbers.

2.	 Dot	notation	will	not	work	with	dynamic	variables	(those	that	change	dynamically
such	as	a	counter	representing	a	key	in	a	key-value	pair	when	traversing	an	object
with	a	loop).

3.	 In	summary,	dot	notation	can	only	be	used	when	the	property	name	is	a	valid
identifier	of	a	property	and	as	long	as	this	identifier	is	not	numeric.

Think	of	dot	notation	as	hardwired	(the	value	must	be	known	when	dot	notation	is	used),
and	bracket	notation	as	soft	wired	(the	value	can	dynamically	change	or	be	unknown	at
the	time	the	code	is	presented	to	the	JavaScript	interpreter).

	

How	do	we	use	dot	notation	to	address	an	item	in	an	object?

Let’s	repeat	our	previous	examples	using	dot	notation	instead	of	bracket	notation:

1-	Create	a	new	and	empty	object:
var	crazyList	=	{	};

2-						Let’s	add	some	values	by	assigning	them	to	key	labels:
crazyList.flower	=	“daisy”;

Now	crazyList	contains	{flower:	“daisy”}

Notice	how	in	dot	notation	a	key	is	written	without	quotes.	This	is	because	flower	is
already	in	memory	as	a	declared	key	to	a	property	in	object	crazyList.	In	bracket	notation
however,	we	always	include	the	key	string	names	in	quotes,	like	“flower”.	In	dot	notation
quotes	are	not	valid.
This	crazyList.“flower”=	would	result	in	an	error

3-						Add	another	key-value	pair:
crazyList.drink	=	“water”;

Now	crazyList	contains:	
{flower:	“daisy”,	drink:	“water”}

4-						Add	a	numeric	key	using	dot	syntax:
crazyList.2	=	“front	teeth”;

We	get	the	following	error	as	a	result:
SyntaxError:	Unexpected	number

	Numbers	are	not	allowed	in	dot	syntax.		It	needs	to	be	done	this	way:
crazyList[2]	=	“front	teeth”;

	

In	summary:

We	can	declare	an	empty	object	by	assigning	a	pair	of	curly	braces	to	a	variable:
var	z	=	{	};

Then	we	can	add	items	by	providing	a	key	and	a	value	in	either	dot	notation	or	bracket
notation:
z.rent	=	750;

z[“gasBill”]	=	300;

And	now	we	have	{rent:	750,	gasBill:	300}

Or

We	can	declare	an	object	and	assign	items	to	it	all	at	once:

var	b	=	{“color”:	“red”,	“fabric”:	“cotton”};

And	now	we	have	{color:	“red”,	fabric:	“cotton”}.

	

Spanning	an	object	declaration	across	multiple	lines
Up	to	this	point	our	objects	have	been	short	and	one	liners.	For	the	most	part	however,
objects	are	more	complex	and	span	over	several	lines	of	code.	

There	is	no	difference	between	a	single	line	object	and	a	multiple	line	object.	The	second
style	of	writing	objects	is	just	easier	for	the	eye,	but	JavaScript	does	not	care	one	way	or
the	other.

1-						Here’s	an	example	of	a	multiple	line	syntax	style.	Please	write	the	code	along	with
me	just	for	practicing	purposes.	There	is	also	a	link	to	a	raw	file	below	the	image:

Fig	14	see	raw	file	|	bit.ly/ZbwxY3.

Notice	the	commas.	Just	like	in	a	single	line	object,	all	elements	are	separated	by	a	comma
except	the	last	item.	If	you	write	a	comma	there	(after	the	last	item)	you	will	get	an	error
because	the	JavaScript	interpreter	will	expect	another	element	to	its	right	(or	in	this	case
below	it).

Notice	the	quotes	on	numbers	2014	and	67,000.	The	reason	I	added	quotes	is	because	I
don’t	plan	to	do	any	calculations	with	these	numbers,	so	I’ve	decided	to	treat	them	as
strings.	This	is	optional;	you	could	skip	the	quotes	and	make	them	properties	of	type
number.	As	for	number	9,	I’ve	decided	to	keep	it	as	a	numeric	property	in	case	I	want	to
calculate	the	average	rating	for	all	the	cars	in	the	lot.	This	gives	us	two	possible
approaches	on	how	to	write	number	properties.

Also,	as	explained	before,	technologies	using	JSON	(JavaScript	Object	Notation)	want
the	key	to	be	in	double	quotes	so	I	have	placed	“make”,	“model”,	“color”,	etc		in	double
quotes.	In	this	way	this	script	becomes	machine	independent,	sort	of	like	when	one	writes
in	xml	notation.	By	writing	it	this	way	we	can	send	the	data	to	any	machine	that	reads
JSON	and	it	will	be	understood.	Quotes	in	keys	are	optional.	Do	it	as	you	wish.

http://icontemp.com/jpl/car1.txt

What	is	a	property?
A	property	is	what	we	call	the	data	elements	from	an	object.

We	could	call	them	variables	since	they	are	not	static	(their	values	can	be	changed	at	any
time),	or	just	object	elements,	but	in	object	oriented	language	they	are	called	object
properties.

Object	properties	are	the	data	contained	in	an	object	and	they	are	represented	by	a	
name:	value	pair,	also	known	as	a	key:	value	pair.

Think	of	an	object	as	the	owner	of	its	name:	value	pair	components.	These	components
are	properties	of	the	object,	just	like	my	car,	bike	and	scuba	equipment	are	my	properties.
var	tony	=	{“transportation”:	“car”,	“Computer”:	“desktop	pc”}

An	object	may	also	own	some	methods.

Let’s	talk	about	methods	next.

Don’t	get	wrapped	into	this	terminology	trying	to	memorize	what	is	called	what.	That
will	slow	you	down.		Just	move	along	and	let	your	brain	assimilate	these	terms	based
on	practicing,	not	based	on	memorization.

	

What	is	a	method?
A	method	is	a	property	that	executes	an	action	on	behalf	of	the	object.	If	the	property	is
not	a	“thing”	but	an	action	waiting	to	be	called	upon,	then	it	is	a	method.

Take	for	example	a	desktop	computer	as	an	object;	we	could	say	that	the	display,	the
keyboard	and	the	mouse	are	some	of	the	properties	of	the	desktop	computer.	Then	we
could	also	say	that	Firefox	and	Chrome	browsers,	as	well	as	Microsoft	Word	are	methods
of	the	desktop	computer	because	these	properties	have	functionality,	they	don’t	exist	in	the
physical	sense,	we	need	to	call	them	like	we	call	a	function,	in	order	to	use	them.	They
represent	some	of	the	methods	of	a	desktop	computer.	Their	existence	is	based	on	the
execution	of	some	program	routine.

When	we	mention	“execution”	we	immediately	thing	of	functions,	but	there	is	a	difference
between	what	a	function	is	and	what	a	method	is:

A	method	may	contain	one	or	more	functions.

	Do	you	see	the	difference?	A	function	could	be	a	method	of	an	object,	but	it	is	not
necessarily	a	method	in	itself.	A	method	is	a	collection	of	functionality	to	accomplish	a
task	on	behalf	of	an	object.	Like	a	method	to	print	out	a	list	of	contents,	or	a	method	to
update	the	contents	of	an	object,	or	a	method	to	sort	the	contents,	or	a	method	to	identify
the	person	asking	for	the	contents	of	an	object,	and	so	on.

Let’s	add	a	method	to	our	car	object.

2-						If	you’ve	been	coding	along	with	me,	add	a	new	comma	to	rating:	9,	because	we
are	about	to	add	one	more	property,	the	method	printRating.	(use	the	editor).

3-						Assign	to	label	printRating	a	function	that	prints	on	screen	the	following	message:
“The	car	rates	”	+	car.rating	+	”	out	of	10”

Fig	15	see	raw	file.	|	bit.ly/1C6I5d5.

4-						Let’s	play	with	this	object	a	bit.	Paste	the	object	script	from	this	last	raw	file	(or
your	own	script)	on	the	Console.

5-						Print	the	car’s	rating:
car.printRating();

Notice	how	we	call()	a	method	from	an	object.	It	starts	like	when	we	call	any	other
property	but	then	we	add	a	pair	of	parentheses	()	which	creates	a	function	action.
What	would	happen	if	we	excluded	the	parentheses?	It	would	just	print	the	contents
of	key	printRating	which	are	the	explicit	description	of	the	function.	That	can	be
handy	sometimes	when	we	want	to	assign	the	same	functionality	to	another	variable,
but	in	order	to	get	an	action	we	need	to	use	the	parentheses.

6-						What	about	bracket	notation?	How	would	we	call	the	method	printRating	using
bracket	notation?	Methods	are	best	called	with	dot	notation	because	it	is	an	easier
syntax	as	you	will	see	why	next,	but	it	is	good	to	understand	how	the	logic	goes	and
here	it	is:
car[“printRating”]();

Not	as	pretty	as	in	dot	syntax,	right?	Notice	how	the	parentheses	go	outside	of	the
brackets.	So	this	is	one	area	where	dot	syntax	is	mostly	used.	Bracket	syntax	is
reserved	more	for	the	dynamic	calling	of	a	property.	We	use	bracket	syntax	with	for
loops	because	there,	each	property	needs	to	be	accessed	dynamically	as	the	loop
goes	around.

Let’s	do	that!

	

http://jsbeautifier.org/
http://icontemp.com/jpl/car2.txt

Looping	through	an	object
Suppose	you	are	aware	of	an	object	existence	but	you	don’t	really	know	what	properties	it
contains.

You	can	loop	through	the	object	to	find	its	properties.

Introducing	the	for	in	loop
This	loop	is	written	specifically	for	the	object	we’ve	been	discussing:
See	original	file	here:		raw	file	|	bit.ly/1C6I5d5

The	loop	goes	like	this:

for(var	k	in	car){	
	console.log(k);	
}

The	for	in	loop	is	a	variation	of	the	regular	for	loop	in	the	sense	that	some	functionality	is
already	preprogrammed	in	the	JavaScript	library.	Let’s	explore	it	line	by	line:

for(var	k	in	car)	–	k	is	a	variable	introduced	by	the	programmer.	Its	purpose	is	to
temporarily	grab	and	hold	the	key	label	for	each	loop	count	(the	label	that	matches	the
location	number	in	each	loop	cycle).

Let	me	explain:	objects	are	in	a	sense	just	like	arrays.	The	only	difference	is	how	the	keys
are	mapped.	In	arrays,	JavaScript	maps	each	location	as	location	0,1,2,	3,	etc.	But	in
unordered	lists	or	objects	where	keys	are	being	used,	JavaScript	maps	the	internal	location
(whatever	location	it	is)	to	the	key	that	was	originally	declared	for	any	given	data	value.

So,	the	purpose	of	variable	k	is	to	count	each	location	(one	per	cycle)	and	at	the	same
time,	to	grab	the	key	name	that	corresponds	to	the	given	count,	so	that	we	can	get	to	the
data	value	assigned	to	it.	It’s	not	k	that	does	all	these.	It	is	JavaScript	that	provides	such
information	and	stores	it	in	k.

As	for	the	name	k,	we	could	use	any	name,	such	as	for	example	i	but	k	makes	more	sense
because	in	fact,	JavaScript	will	temporarily	store	the	key	values	on	variable	k,	one	key	per
loop	iteration.	So	the	letter	k	reminds	us	of	what	is	being	stored	there,	a	temporary
location	instance.	You	may	also	see	it	on	the	field	or	in	other	texts	as	key,	prop,	or
property.

(Why	am	I	telling	you	all	this?	because	I	don’t	want	you	to	start	reading	posts
on	the	web	and	think	that	there	are	a	thousand	different	kinds	of	for	in	loops.
There	is	only	one	for	in	loop	and	each	developer	gets	creative	with	temporary

variable	names).

Going	back	to	our	“for	k	in	car”,	in	this	example	we	have	a	dedicated	for	in	loop	because
we	know	the	name	of	the	object,	car.	We	could	however	make	this	loop	generic	and
substitute	car	with	another	temporary	variable	to	act	as	a	placeholder,	like	for	example	a

http://icontemp.com/jpl/car2.txt

parameter	from	a	function.	Then	we	could	insert	the	real	object	name	as	an	argument
when	we	call	the	function,	and	the	function	would	substitute	the	placeholder	with	the
correct	object	name.	We	will	try	that	on	another	exercise.

console.log(k)	–		This	line	is	used	to	print	all	key	names	as	they	are	passed	to
variable	k.	If	however,	we	wanted	to	print	the	values	instead	of	the	keys,	we	need	to
address	each	key-value	pair	dynamically	using	bracket	syntax:

console.log(car[k]);

JavaScript	evaluates	car[k]	and	replaces	it	with	the	value	of	the	property	corresponding	to
the	dynamic	label	instance	in	k.

Notice	the	lack	of	quotes	on	“k”.	k	is	a	declared	variable.Variables	never	take	quotes
because	that	will	make	them	a	string	and	JavaScript	will	think	it	is	a	different
identifier	other	than	the	one	we	intend	to	target.	k	is	a	variable,	“make”	or	“color”	are
not	variables,	they	are	real	keys	and	a	key	is	a	string.	Those	would	be	wrapped	in
quotes	if	used	in	bracket	notation:	car[“color”].

Also,	remember	that	dot	notation	will	not	work	here.	This	is	because	the	loop	is
dynamically	addressing	the	key	values	by	mapping	k	to	the	key,	and	dot	notation	only
accepts	the	real	key	name.	Remember:	hard	wire	versus	soft	wire.

	

1-						So	let’s	paste	the	object	on	the	Console,	then	paste	the	for	in	loop	just	to	print	the
key	names

Here’s	the	complete	raw	file	|	bit.ly/1rjbSvB.

You	should	see	the	following	keys	displayed:
make
model
color
year
mileage
rating	
printRating

2-						Replace	(k);	with	(car[k]);	on	your	console	log.	Remember,	you	can	move	up
in	the	Console	by	click	on	the	Up	Arrow,	then	modify	the	script	and	press	ENTER.

Now	the	printout	should	look	like	this:	
console.log(car[k]);

And	the	printout	should	be:
Subaru
Outback
blue
2014
67,000
9
function	()	{
						console.log(“The	car	rates	”	+	car.rating	+	”	out	of	10”);
				}

http://icontemp.com/jpl/car3.txt

Of	course	we	could	have	made	it	prettier	by	adding	the	key,	like	for	example	in	this	way:
console.log(k	+	“:	“	+	car[k]);

And	that	would	give	us:
make:	Subaru
model:	Outback
color:	blue
year:	2014
mileage:	67,000
rating:	9
printRating:	function	()	{
								console.log(“The	car	rates	”	+	car.rating	+	”	out	of	10”);
				}

NOTE:	I	will	show	how	to	exclude	the	printRating	method	from	the	printout	in	a	future
exercise.

P.S.	
In	case	you’re	wondering	about	it,	I	don’t	really	know	the	rating	for	an	Outback,	the
number	9	is	just	for	practicing	purposes	only.

2.15	Lab	work	11	-	redo	lab	work	10
Do	you	still	remember	when	in	Lab	10	we	displayed	“The	quick	brown	fox	jumps	over	the
lazy	dog”	in	English,	Portuguese,	Spanish	and	French?

There	were	four	variables:	english,	portuguese,	spanish	and	french.	Then	we	added	the
variables	to	an	array	of	variable	names.

The	problem	we	encountered	was	attempting	to	list	the	array	contents	as	variable	names,
or	as	key-value	pairs,	like	for	example:

english:	“The	quick	brown	fox	jumps	over	the	lazy	dog”.

We	could	not	dynamically	display	the	variable	name	from	the	array,	just	the	values
themselves.	This	is	because	JavaScript	treated	the	variable	as	an	expression	and	gave	us
the	evaluation	result,	which	was	the	data	inside	of	the	variable.	(Expressions	will	be	further
explained	on	the	next	topic).

Well,	now	we	can!	All	we	have	to	do	is,	instead	of	declaring	separate	variables,	we	declare
them	as	properties	of	an	object.

Let’s	do	this:

1-						Create	an	object	named	langVersion.

2-						Assign	to	this	object	four	property	keys:	english,	portuguese,	spanish,	french.

3-						For	each	key	add	the	correct	value	based	on	the	following	text:
	raw	file	|	bit.ly/1rt9dzZ

Do	not	declare	the	variables,	use	property	keys	instead	as	seen	on	the	raw	file.

4-						You	should	now	have	a	complete	object.	
Next	create	a	for	in	loop	outside	of	the	object,	to	print	out	the	contents	of	the	object.
The	display	of	each	property	should	look	something	like	this:
english:	“The	quick	brown	fox	jumped	over	the	lazy	dog”;

See	my	own	results	here:
forum	|	bit.ly/1tWQddJ
or		the	raw	file	version	|	bit.ly/1ofRRkS.

http://icontemp.com/jpl/fox5a.txt
http://jsplain.com/javascript/index.php/Thread/23-Lab-11/
http://icontemp.com/jpl/fox5.txt

Transforming	the	for	in	loop	into	an	object	method
5-						Once	you	have	finished	the	project	and	everything	is	working,	reengineer	the	for	in

loop	so	it	becomes	an	internal	method	of	object	langVersion	as	follows:

a)	Add	a	new	comma	after	the	original	last	property	in	the	object	so	that	you	can
write	another	property	below	it.

b)	Give	this	new	property	a	label	named	list	so	that	you	can	call	the	method	later,

c)	And	then	write	a	function	as	the	value	for	list.	
Inside	of	the	function	place	your	current	for	in	loop.

6-						Paste	your	little	program	on	the	Console	and
call	the	method	to	see	how	it	prints:
langVersion.list();

Compare	your	results	with	mine	here:	
forum	|	bit.ly/1uUYgbd
raw	file	|	bit.ly/1rl24Bl

http://jsplain.com/javascript/index.php/Thread/24-Lab-11b/
http://icontemp.com/jpl/fox6.txt

Your	listing	displays	all	the	properties	including	the	method	and	its	internal	script,	right?

We	can	tweak	the	list	method	to	filter	out	methods	from	printing	as	part	of	the	list.

If	you	want	to	eliminate	the	method	from	the	printed	list	you	can	use	a	conditional
statement	to	filter	out	anything	that	is	not	of	string	type	since	list()	is	a	function.	The	logic
behind	it	goes	like	this:	“if	the	type	of	property	is	a	‘string’,	print	it”.

Do	you	still	remember	how	to	use	typeof?	We	covered	it	on	Lab	work	1:

When	we	write:

typeof	“tony”;

JavaScript	replies	with	“string“.

7-						Reengineer	the	loop	once	again	so	that	
if	(typeof	langVersion[k]	===	“string”)	{
console.log	the	desired	output.	No	else	is	needed	for	this	one..

Compare	your	results	with	mine	here:	
forum	|	bit.ly/1tWSDsR
raw	file	|	bit.ly/1pqbvtZ

In	summary,	there	are	times	to	use	an	array	data	structure,	and	there	are	times	when	an
object	data	structure	is	more	appropriate.	In	the	end,	both	arrays	and	objects	are	lists	from
the	JavaScript	library	wearing	different	customs.

In	arrays	we	use	a	regular	for	loop	and	with	objects	we	use	a	for	in	loop	which	is	a	for
loop	preconfigured	to	print	out	label	names	and	with	no	length	value	declaration
necessary.

If	you	want	further	practice	visit	the	new	forum	as	I	will	expand	the	subject	there.	Also
my	other	eBook	has	many	real	life	exercises	to	drill	and	expand	this	subject.

END	OF	LAB

http://jsplain.com/javascript/index.php/Thread/25-Lab-11c/
http://icontemp.com/jpl/fox7.txt
http://www.amazon.com/JavaScript-Objects-Functions-Arrays-Explained-ebook/dp/B00GDEPBZQ/

PART	III:	STRENGTHENING	THE	WARRIOR’S	ARSENAL
JavaScript	is	an	instrument	that	needs	to	be	played.

3.1	Taking	an	inventory	of	what	we’ve	learned
Give	me	5	minutes	and	I’ll	tell	you	everything	I	know!

Sometimes	it	feels	like	that,	right?

Well,	we	have	covered	quite	a	lot:

The	purpose	of	variables;	The	type	of	data	assigned	to	variables;	How	we	introduce	a
variable	name	to	JavaScript	by	prefixing	it	with	var;	How	a	simple	variable	data	known	as
a	primitive	value	is	stored	in	the	same	location	as	its	variable	name,	as	opposed	to
complex	variables	known	as	reference	variables,	which	are	stored	on	a	separate	memory
location	than	the	variable	name	that	points	to	them…

We	have	seen	how	a	data	structure	such	as	an	array	acts	as	a	numerically	indexed	list	of
items,	and	how	to	use	the	for	loop	to	traverse	(scan)	the	array	and	manipulate	each	one	of
its	elements	based	on	the	array.length	property.

We	have	used	push()	and	unshift()	to		insert	new	items	into	an	array,	and	pop()	and	shift()
to	remove	items	from	the	array.

We	have	also	experimented	with	splice()	to	remove,	replace	or	add	new	items	into	any
specific	location	of	an	array,	and	how	we	can	copy	a	whole	section	of	the	array	into
another	array	by	using	slice().

What	about	sorting	arrays	with	sort()?	And	how	to	use	join()	to	convert	an	array	into	a
string.

Last	but	not	least,	we	have	seen	how	indexOf()	can	be	useful	to	find	the	location	number
of	a	certain	item,	or	to	check	if	the	item	has	already	been	inserted	in	the	array.

So	much	we’ve	learned	in	such	a	short	time!

What	about	objects?

We	know	that	almost	everything	in	JavaScript	is	an	object	of	some	sort,	but	normally	we
refer	to	objects	when	we	talk	about	unordered	lists,	those	lists	indexed	by	key	labels.

The	items	in	an	object,	which	are	called	properties,	can	be	addressed	by	either	dot	syntax
or	by	bracket	syntax.	Some	of	the	properties	are	called	methods	because	they	represent
functionality	and	functionality	involves	at	least	one	function	mechanism.

The	for	in	loop	is	a	variation	of	a	for	loop	specifically	created	to	traverse	over	objects.
The	temporary	counter	variable	serves	to	dynamically	store	the	key	names	of	each
property	so	that	we	can	manipulate	the	data,	such	as	printing	to	screen.

We	know	that	dot	syntax	does	not	work	with	dynamic	representations	of	properties.	Also
when	we	print	a	list	of	properties,	we	can	filter	out	the	methods	by	creating	a	condition	for
output	with	a	typeof	verification.

In	the	process	of	learning	all	these	we	also	learned	about	conditional	statements	by	using
if,	else	if,	else.

Boolean	true	and	false	were	introduced	and	we	learned	that,	in	JavaScript,	every	value	is

considered	true	except	Boolean	false,	number	zero,	or	the	values	undefined	and	null.

Functions	are	mechanisms	that	save	executable	code.	In	a	sense,	a	function	does	not	hold	a
value,	it	holds	a	potential	value	that	only	materializes	when	we	call	the	function.	A
function	can	have	input	parameters	as	temporary	placeholders	for	data	being	passed	into
the	function	when	the	function	is	called.	Of	course	we	can	also	have	functions	that	do	not
take	any	data,	they	just	perform	a	certain	task.

We	know	that	the	return	mechanism	is	the	only	true	raw	output	from	a	function	and	we
need	to	catch	this	returned	data	if	we	want	to	reuse	it	somewhere	else	before	it	gets	lost	in
cyberspace.

Another	way	to	output	data	from	a	function	is	to	internally	reassign	an	outer	variable,
since	functions	have	access	to	outer	variables.	As	for	console.log(),	it	is	just	a	way	to
display	data	on	the	screen	and	always	in	a	string	type	format.

And	there	you	have	it,	close	to	200	pages	of	fun	in	a	nutshell.

	

3.2	More	about	functions

What	are	expressions	and	statements?
We	have	been	using	the	terms	expression	and	statement	throughout	the	book	in	an
informal	way.	It	is	time	to	stop	and	think	about	these	terms	because	they	have	specific
meanings.

A	statement	is	a	complete	command	which	instructs	the	computer	to	carry	out	a
specific	task.	It’s	usually	written	in	one	line	(but	not	always)	and	terminated	by	a
semicolon.

Examples	of	statements:
var	z	=	1	+	2	+	3;

console.log(“Hello	World”);

if(z	>	2)	{
		console.log(“yes	it	is”);
}

In	the	last	example,	the	statement	starts	at	if	and	ends	at	the	semicolon.	If	you	place	the
semicolon	prematurely	you	will	get	an	error.	That	is	a	common	mistake	when	we	first	start
programming.

We	have	also	mentioned	several	times	“the	return	statement”.	Aside	from	a	return	being
only	allowed	in	functions,	it	is	written	as	a	statement:

return	3	+	4;

Many	times	statements	are	compounded	into	a	group	of	multiple	statements	in	which	case
we	use	the	curly	braces	to	wrap	the	compound	statements:

if(z	>	2)	{
	console.log(“yes	it	is”);
	console.log(“z	is	greater	than	2”);
	console.log(“z	is	also	the	last	word	of	the	alphabet”);
}

Notice	how	the	last	curly	brace	does	not	terminate	with	a	semicolon.	The	only	time	a
semicolon	is	placed	after	a	curly	is	when	we	assign	a	code	block	to	a	variable	like	for
example	when	we	create	and	object.

Then	we	have	expressions.

An	expression	is	anything	that	evaluates	to	a	one	unit.	Like	for	example,	when	JavaScript
sees	3	+	4	it	actually	see	7.	JavaScript	looks	at	the	expression	and	simplifies	the
expression	into	1	unit.	Just	like	statements,	expressions	are	everywhere	and	they	can	be
one	and	the	same.

Examples:

var	x	=	4;

Above,	var	x	=	4;	is	a	statement	and	also	an	expression.	Actually	we	have	two
expressions.	JavaScript	looks	at	the	code	and	subdivides	the	expressions	into:

1-						x,	which	results	in	4	when	evaluated,	and

2-						4,	which	results	in	itself.	JavaScript	looks	a	4	and	it	expresses	4	as	a	result.

if(10	<	11)	{	//	do	something;	}

Above,	if(10	<	11)	is	an	expression	because	JavaScript	does	not	see	the	literal
10<11,	it	only	sees	true	or	false,	one	or	the	other.		JavaScript	does	not	really	care	for
10<11	in	itself,	it	looks	at	it	and	internally	replaces	it	with	a	Boolean	true.

This	is	a	very	important	concept	in	order	to	understand	the	language:	We	write
expressions,	and	JavaScript	stores	the	result	of	their	evaluation.

Of	course	10	and	11	are	individual	expressions	in	their	own	right,	but	they	are	not	as
important	as	the	combination	of	10<11.	JavaScript	interprets	it	and	saves	it	as	just	plain
true.

Now,	look	at	the	semicolon	on	the	previous	if()	example.	That’s	where	the	statement	ends,
it	starts	on	if	and	it	ends	at	..thing;

	

What	about	a	function?	Is	it	an	expression	in	itself?

Take	for	example	the	following	function:

function	x	(num1,	num2){
	return	num1	+	num2;
}

The	above	function	by	itself	does	not	evaluate	to	anything.	It	could	potentially	evaluate	to
the	sum	of	num1	+	num2	but	only	when	the	function	is	called	upon:

x(2,4);

The	function	when	called	evaluates	to	6.

How	does	it	evaluate	to	6	when	we	call	function	x	with	arguments	2	and	4?

num1	becomes	an	expression	and	it	evaluates	to	2.
num2	becomes	an	expression	which	evaluates	to	4.
num1	+	num2	become	an	expression	which	evaluate	to	6.

Expression	evaluation	is	an	important	concept	in	order	to	truly	understand	JavaScript	(or
any	other	language	for	that	matter).

In	the	next	topic	we	will	see	how	to	assign	a	function	to	a	variable,	making	the
combination	of	function	and	variable,	an	expression.

Remember,	to	declare	a	variable	we	start	with	var.	To	declare	a	function	we	start	with
function:
var	x	=	33;

function	y	(){	}

Next	we	are	going	to	see	how	to	assign	a	function	as	a	value	to	a	variable	and	answer	a
few	of	common	questions	you	may	have.

	

Assigning	functions	to	variables
Up	to	this	point	we	have	been	declaring	functions	in	the	following	literal	manner:

function	x	()	{	return	5;	}

However,	we	could	also	assign	a	function	to	a	variable	like	this:

var	x	=	function	{	return	5;	};

Notice	the	semicolon	at	the	end.	This	is	because	the	whole	variable	declaration	is	in	itself
a	statement.	Statements	are	complete	command	sentences	given	to	JavaScript	and	they
usually	terminate	with	a	semicolon	which	separates	them	from	the	next	statement.

Wait,	I	still	don’t	get	it.	I	don’t	see	a	semicolon	on	a	function	declaration	like	we	have	done
before.	Why	does	this	one	get	a	semicolon?

The	semicolon	has	nothing	to	do	with	the	function.	A	function	in	itself	is	not	a	complete
command	statement	until	it	is	called	in.	When	we	call	a	function,	like	for	example	x();
we	add	a	semicolon.	The	earlier	semicolon	in	question	had	to	do	with	the	variable
assignment.	When	we	assign	a	value	to	a	variable	we	terminate	the	assignment	with	a
semicolon	because	the	assignment	is	a	command	sentence,	or	an	expression.

The	same	goes	for	any	other	assignment	such	as	an	array:

var	y	=	[1,2,3];

Or	as	for	object	assignments:

var	z	=	{“color”:	“green”};

Or	function	assignments:

var	z	=	function(){	return	5;	};

	

What	is	an	anonymous	function?
In	the	previous	example,	the	function	is	known	to	be	an	anonymous	function	because	it
has	no	proper	name.	z	is	just	some	variable	that	points	to	it.

However,	without	z	the	function	ceases	to	exist	because	the	browsers	will	clear	it	from
memory	since	it	has	nothing	point	at	it.	Any	loose	objects	in	memory	get	discarded
because	they	cannot	be	identified	(remember	functions	are	also	objects).

Using	variables	as	pointers
Speaking	of	pointers,	the	previous	variable	z	points	to	the	function	assigned	to	it.	We
could	use	more	than	one	pointer	by	assigning	the	“contents”	of	z	to	another	variable.
Take	for	example	the	following	function	assignment:

var	z	=	function(){	return	7;	};

Now	assign	a	to	z	and	b	to	a	to	see	what	happens:

var	a	=	z;

var	b	=	a;

Remember,	assignments	are	from	right	to	left.

What	is	the	content	of	variable	z?	

The	content	of	variable	z	is	function(){	return	7;	}.	That’s	right,	the	function	script	(the
string	of	words	and	symbols	that	make	up	the	function)		is	the	content	of	variable	z,	or
what	z	evaluates	to	by	itself.	The	only	time	we	get	the	value	7	is	when	we	call	the	function
by	post	fixing	a	pair	of	parentheses	to	z:	z();

Because	the	value	of	z	is	a	function	script,	when	we	assign	z	to	a,	or	z	to	b,	we	are
assigning	the	script	of	the	function.	This	is	very	powerful	in	JavaScript	because	it	means
that	we	can	plug	in	an	existing	function	anywhere	in	the	program	and	as	many	times	as	we
need	to.

Now	we	are	able	to	call	the	function	with	any	of	the	three	variables:

a();	//	returns	7

b();	//	returns	7

z();	//	returns7

In	summary

Remember,	an	expression	is	anything	that	evaluates	to	a	one	unit.	This	unit	is	what
JavaScript	actually	sees	from	the	code	we	write,	not	what	the	code	looks	like	to	the	human
eye.	As	programmers	we	need	to	think	like	a	computer	by	knowing	what	the	computer	is
going	to	see	when	it	encounters	an	expression.

1-						What	is	the	value	of	expression	z?
Ans:	function(){	return	7;	}

2-						What	is	the	value	of	z();
Ans:	7

3-	What	is	the	value	of	expression	a?
Ans:	function(){	return	7;	}

4-						What	is	the	value	of	expression	a()?
Ans:	7

5-						What	is	the	value	of	expression	b?
Ans:	function(){	return	7;	}

6-						What	is	the	value	of	expression	b()?
Ans:	7

And	just	to	solidify	the	concept,	here’s	a	question	unrelated	to	our	examples:

7-						What	is	the	value	of	expression	if(10	>	5)?
Ans:	true

true	is	what	JavaScript	sees	when	we	write	(10	>	5),	which	by	the	way,	an	expression	in	an
if()	statement	is	actually	a	question		as	far	as	JavaScript	is	concerned.

	

The	balloon	concept
Question:

If	a	function	was	a	balloon	tied	by	three	strings,	z,	a,	b,	what	would	happen	to	the	balloon
if	we	cut	off	string	z?

Answer:

Nothing	would	happen	to	the	balloon,	it	would	stay	the	same	because	a	and	b	still	hold	the
balloon.

What	would	happen	then	if	we	cut	both	a	and	b	from	the	balloon?	The	balloon	would	fly
away.

If	the	balloon	was	our	function	it	would	also	fly	away,	it	would	be	put	in	garbage
collection	mode	to	be	wiped	out	from	memory	by	the	browser.

In	the	next	few	exercises	we	will	practice	with	function	expressions	(those	assigned	to
variables)	instead	of	function	declarations	(the	syntax	style	we	had	first	learnt).	Bear	in
mind	that	one	function	or	another	will	yield	the	same	result,	but	it	is	important	to	become
with	both	styles.

	

http://en.wikipedia.org/wiki/Garbage_collection_%28computer_science%29

Function	parameters	and	arguments
A	function	can	have	input	parameters	so	that	when	we	call	the	function	we	pass	in	data
arguments.	Many	times	programmers	use	the	same	term	for	both	meanings,	either
parameter	or	arguments	and	it	has	been	accepted	as	such,	but	this	is	the	definition:	we	give
arguments	to	parameters	when	we	call	the	function.	A	parameter	is	a	physical	thing,	an
interface,	an	input	mechanism,	a	temporary	variable	that	gets	deleted	once	the	function
ends	its	execution.

The	sequence	of	our	data	arguments	when	we	call	the	function	will	always	coincide	with
the	physical	sequence	of	the	input	parameter	in	the	function	parentheses.

For	example:

var	x	=	function(num1,	num2){
return	num1	-	num2;
};

The	sequence	of	passing	data	into	inputs	num1	and	num2	matters	because	the	function’s
internal	program	is	wired	to	the	layout	sequence	of	the	input	parameters:

x(5,	3);

It	will	return	the	value	2	because	5	–	3	=	2

However,	if	we	call	the	function	and	write	the	arguments	in	reverse	order:

x(3,5);

The	function	will	return	the	value	-2	because	3	-5	=	-2

In	short,	when	we	call	the	function,	the	sequence	of	arguments	needs	to	be	observed.

What	happens	if	we	call	the	function	and	pass	in	three	arguments	instead	of	two?

x(5,3,4);

The	result	will	be	2,	as	of	5	-3	=	2.	The	last	argument	(4)	is	ignored	because	there	is	no
provision	to	do	anything	with	it	within	the	function.

What	happens	if	we	call	the	function	with	just	one	argument	even	though	the	function
is	hardwired	with	two	input	parameters?

x(5);

In	our	case	it	returns	NaN,	which	is	a	JavaScript	property	that	stands	for	Not-a-Number,
or	not	a	valid	number.	That’s	because	the	output	became	the	subtraction	of	5	–	num2	and
num2	was	not	assigned	to	anything	and	remained	“undefined”	which	is	its	original	value.

For	example,	in

var	x	=	function(input1,	input2){

return	input1	+	input2;
};

If	I	call	the	function	with	two	arguments:
x(“Tony”,	“deAraujo”);

I	get	an	output	of	“TonydeAraujo“.

If	on	the	other	hand	I	only	use	one	argument,	it	assumes	the	first	input	parameter,	and	the
other	input	parameters	will	be	undefined:
x(“Tony”);

It	outputs	“Tonyundefined“.

We	can	program	as	many	as	256	input	parameters	in	a	function.

Do	not	memorize	all	these,	juts	take	the	time	to	understand	it	and	move	forward.

The	object	arguments
The	input	parameters	are	written	into	a	function	by	the	programmer	because	he/she	wants
to	have	some	sort	of	sequence	of	data	input	and	for	the	most	part	this	works	out	greatly.

However,	JavaScript	functions	have	another	way	to	accept	arguments	via	an	object	that
belongs	to	(and	only	to)	functions:	the	object	arguments	(use	the	plural	name).

The	object	arguments	acts	like	an	array	in	the	sense	that	it	can	be	addressed	numerically,
but	it	is	not	a	full	featured	array	because	it	only	inherits	some	functionality	from	the	array
family,	not	all	of	its	library.

Let’s	see	how	this	object	works.
var	x	=	function(){
return	arguments[0]	+	arguments[1].toUpperCase();
};

The	above	function	has	no	input	parameters	specified.	However,	it	outputs	the	first
argument	we	give	to	it	when	we	call	the	function,	as	well	as	the	second	argument	in	upper
case	which	goes	on	position	1	(remember,	locations	are	zero	based	just	like	in	arrays):

x(“tony”,	“dearaujo”);

It	returns:	“tonyDEARAUJO”

So	we	can	still	program	our	functions	as	we	wish	and	with	no	specified	input	parameters.
Just	use	the	arguments	object	to	numerically	address	each	data	element.

I	go	into	much	more	detail	about	the	arguments	object	on	my	other	book	which,	although
written	earlier,	it	could	be	considered	a	second	volume	for	this	one.

http://en.wikipedia.org/wiki/Prototype-based_programming
http://www.amazon.com/JavaScript-Objects-Functions-Arrays-Explained-ebook/dp/B00GDEPBZQ/

3.3	Manipulating	variables	with	functions

Passing	data	by	value
Up	to	this	point	we	have	used	input	parameters	to	hardwire	and	interface	that	inserts	data
into	functions.	These	interfaces	serve	as	a	bridge	between	the	outer	world	and	the	inner
works	of	a	function.

Then,	we	realized	that	we	don’t	have	to	explicitly	write	parameters	in	order	to	input	data
into	the	function	since	we	can	program	the	object	arguments	to	grab	any	argument	we
include	when	we	call	the	function.

Here’s	something	new	to	keep	in	mind:

When	we	pass	arguments	to	a	function,	like	for	example:

x(2,3);

The	input	parameters	of	the	function	make	a	copy	of	the	data.	They	don’t	really	use	the
same	data	we	write	as	arguments.	This	is	because	the	function	call	resides	on	a	separate
memory	area	than	the	function	itself.	Later,	if	you	read	volume	two	you	will	see	that	this
area	of	memory	where	we	call	functions	or	assign	strings	or	numbers,	is	called	the	stack,
and	functions	(as	well	as	all	other	objects)	reside	in	another	area	called	the	heap.	There	is
no	connection	between	these	two	areas.	Hence	the	reason	why	the	data	is	copied	or
facsimiled.

When	we	copy	data,	we	are	adding	values	to	memory.	This	type	of	passing	data	from	one
mechanism	to	another	is	called	passing	by	value,	or	by	adding	more	value	to	memory	sort
of	speaking.

Another	common	data	transfer	done	by	value	is	when	we	assign	a	string	or	numerical
variable	to	another	variable.	As	you	know	from	an	earlier	chapter,	primitive	variables
(those	holding	strings	or	numbers)	keep	the	value	in	their	own	memory	location.	Take	for
example	the	following	variables:

var	x	=	33;

var	y	=	x;

x	holds	33	and	y	also	holds	33.	But	these	are	different	33	values.	Data	has	been	passed	by
value	because	we	added	new	data	into	memory.

Passing	data	by	reference
Complex	values	such	as	functions,	arrays	and	objects,	reside	in	the	heap	while	the	variable
that	points	to	them	resides	in	the	stack.	Unlike	simple	values,	these	values	and	their
variables	are	two	separate	entities.

Because	they	are	two	separate	entities,	when	we	assign	a	variable	pointing	to	a	complex
data	structure	to	another	variable,	the	values	are	not	copied	and	therefore	this	exchange	is
not	passed	by	value.	The	only	thing	we	are	doing	is	to	assign	the	reference	or	passing	by
reference	so	that	both	variables	now	point	at	the	same	value:

Take	for	example	the	array	a:

var	a	=	[1,2,3,4];

Now	assign	the	same	variable	to	another	variable:

var	b	=	a;

We	do	not	duplicate	the	contents	of	the	array,	function	or	object.	We	now	have	two
variables	pointing	at	the	same	data.	Remember	the	balloon	with	three	strings	z,	a,	b?

So	when	we	edit	a	value	in	array	a,	we	are	in	fact	also	changing	the	value	of	array	b,	or
vice	versa	since	they	both	point	to	the	same	array.

That	is	called	passing	data	by	reference.	There	is	no	duplication;	these	variables	just
refer	to	the	same	data.	If	we	delete	one	of	the	variables	or	assign	it	to	something	else,	the
data	remains	untouched	because	there	is	another	variable	holding	it	in	place	like	it
happened	with	the	balloon.

Functions	are	closed-	in	structures
In	JavaScript,	a	function	is	the	only	data	structure		able	to	protect	its	data	from	the	outer
world.

What	does	that	mean?

It	means	that	if	we	declare	a	variable	inside	of	a	function,	it	can’t	be	seen	from	the	global
scope	(outside	of	the	function).

The	global	scope	is	in	itself	an	inner	scope	if	we	compare	it	to	outer	worlds,	like	for
example	another	webpage	on	a	different	tab.	Everything	we	do	on	a	web	page	is	done
under	the	window	object	which	wraps	the	whole	page.	This	has	nothing	to	do	with	the
name	Windows	from	Microsoft.	window	here	refers	to	the	browser	displaying	of	a	page,
the	shell,		and	it	is	called	window	in	any	computer	system.

The	window	object	is,	as	far	as	a	web	page	is	concerned,	the	outer	world	or	the	global
scope	of	the	page.	Anything	declared	under	the	window	object	is	a	property	or	method	of
the	object	window.

We	could	actually	think	of	the	window	object	as	a	function	that	creates	everything	else
inside	it.

When	we	declare	a	variable,	like	for	example

var	x	=	33;

We	are	creating	this	variable	in	the	global	scope,	which	means	that	the	parent	of	variable	x
is	object	window.		To	call	this	variable,	we	write:
x;

And	it	displays	33.	But	we	could	also	call	it	like	in	the	following	example	and	it	would
work	the	same:

window.x;

By	using	dot	syntax	we	are	making	sure	we	call	the	correct	variable	x,	not	some	other	x
from	the	outer	galaxies.	For	the	most	part	window	is	understood	and	we	don’t	have	to
write	it	down,	as	we	have	seen	throughout	the	book.

And	what	are	those	different	galaxies?	You	might	ask.

Remember	when	I	said	that	we	could	think	of	the	window	object	as	a	big	function	that
holds	all	the	web	page	functionality	inside	of	itself	and	it	protects	it	from	other	webpages?

Well,	I	didn’t	put	it	quite	like	that	but	it	serves	the	purpose	which	is	to	say	that	every
function	acts	as	a	protective	parent	for	its	own	data.	In	JavaScript	functions	are	closed	in
data	structures.

	

http://en.wikipedia.org/wiki/Data_structure

We	could	actually	declare	another	variable	x	inside	of	a	function	because	JavaScript	will
accept	it	without	conflict,	even	knowing	that	there	is	another	x	declared	as	a	global
variable.	This	is	because	the	global	scope	does	not	see	the	inner	x	from	the	function.

However,	the	function	can	see	the	outer	variable	x.	That’s	right!	Functions	have	access	to
global	variables	because	functions	are	their	siblings.	A	function	can	see	the	outer	variable
world,	but	the	outer	world	cannot	see	what’s	inside	of	a	function.	The	siblings	of	a
function	can	see	the	function,	but	they	cannot	see	what	is	inside	of	the	function.	The	good
news	is	that	JavaScript	always	picks	the	closest	identifier	called	upon.	I	mean,	if	we	would
call	x	from	within	the	function,	JavaScript	would	grab	the	first	x	that	sees	which	is	the	one
inside	of	the	function.	So,	even	if	there	was	another	x	outside	of	the	function	and	knowing
that	the	function	has	access	to	it,	the	inner	x	would	be	JavaScript’s	first	choice	if	we	ever
addressed	x	from	within	the	function.

For	example:

var	x	=	33;
var	test	=	function(){
	var	x	=	5;
	return	x;
};

Call	function	test:
test();

It	returns	5.

So,	how	would	we	address	the	outer	x	from	inside	of	the	function	if	we	wanted	to	use
its	value	in	the	function?

window.x	would	come	to	mind.

We	will	see	next	how	to	access	the	global	x	from	within	the	function.

“This”	as	an	object	placeholder
What	if	we	wanted	to	return	the	outer	variable	x,	instead	of	the	inner	x	like	we	did	on	the
previous	example?

In	that	case	we	would	have	to	use	dot	syntax	to	address	the	global	x:
var	x	=	33;
var	test	=	function(){
var	x	=	5;
return	window.x;
};

test();

Now	it	returns	33,	which	is	the	outer	x,	not	the	inner	x	which	is	5.	That’s	because
window.x	addresses	the	global	variable	x	which	is	a	child	of	object	window.

Because	JavaScript	is	very	dynamic	and	also	because	we	should	write	code	as	portable	as
possible	(one	that	could	apply	to	any	object,	not	just	the	window	object),	programmers
have	come	up	with	a	generic	placeholder	to	properly	address	the	object	currently	calling
the	variable.

This	placeholder	is	the	word	this.

If	we	substitute	the	expression	window.x	for	this.x,	
at	the	time	of	execution	JavaScript	will	search	for	the	object	owning	the	property	being
called	upon,	and	substitutes	the	placeholder	this	for	the	correct	name,	which	in	our	case	is
object	window.

But	you	might	ask,	isn’t	function	test	also	an	object	and	if	so,	isn’t	the	owner	of	this.x	the
function	itself,	instead	of	object	window?

Not	really	(but	it	is	a	great	question).	Who	is	the	owner	of	the	act	of	calling	function
test()?	
Ans:	The	object	window	owns	the	command	test().

Now	if	function	test(){}	was	a	method	inside	of	some	other	object,	then	this	would	no
longer	represent	window,	it	would	represent	the	other	object.

Just	as	an	example	please	look	at	this	sample	script:

var	x	=	33;
var	myObject	=	{		
	x:	7,	
	test:	function()	{		
	var	x	=	5;	
	return	this.x;
	}
};

There,	we	have	a	global	x	with	the	value	of	33,	another	x	with	the	value	of	7	that	belongs
to	myObject	,	and	another	x	with	the	value	of	5	inside	of	the	function	belonging	to
myObject.

When	we	call	the	method	test():

myObject.test();

It	prints	out	7	which	is	the	second	x,	the	one	that	belongs	to	myObject.	window	is	no
longer	the	immediate	owner	of	this.x	because	myObject	is.

I	have	underlined	earlier	that	this	gets	assigned		“at	the	time	of	execution”,	not	only
because	the	substitution	happens	at	the	time	of	execution	and	not	any	earlier,	but	also
because	the	object	owning	the	property	may	change	from	the	time	the	property	was
declared	to	the	time	the	property	is	being	called	upon.	JavaScript	is	a	dynamic	language
and	we	need	to	be	careful	with	our	assumption	of	what	is	going	to	happen	dynamically.
We	will	see	ownership	confusion	happening	and	how	to	tackle	each	situation	as	we	code
more	advanced	scripts	(for	more	of	that	please	read	JavaScript	Objects	Functions	and
Arrays	Explained).

Here’s	the	original	function	written	in	a	more	portable	format	where	this	replaces	window:
var	x	=	33;
var	test	=	function(){
	var	x	=	5;
	return	this.x;
};

test();	(It	returns	33	instead	of	5).

http://www.amazon.com/JavaScript-Objects-Functions-Arrays-Explained-ebook/dp/B00GDEPBZQ/

3.4	Lab	work	12

Part	A:	Expressions,	statements,	arguments
(A	link	to	my	answers	will	be	posted	at	the	end	of	this	page.	You	may	actually	navigate	to
the	forum	to	mentally	answer	the	questions	because	the	answers	are	not	visible	until	you
click	on	the	individual	answer	button.)

Let’s	review	some	of	the	concepts	we	have	covered	in	this	section.	Please	try	to	answer	all
questions	before	you	check	my	answers.

In	general	an	expression	is	something	JavaScript	summarizes	into	one	unit,	and	a
statement	is	a	complete	sentence	representing	a	command	and	terminated	by	a	semicolon.

1-						In	the	following	example	what	are	the	expression(s)	and	what	are	the	statement(s)?

if(10	<	11)	{
console.log(“I	love	JavaScript”);
}

2-						In	the	following	function	assignment	what	is	the	value	of	variable	addTwo	and
what	is	the	value	of	addTwo	with	post-fixed	parentheses	addTwo()?
var	addTwo	=	function	(){
return	3	+	2;
};

3-						In	the	declaration	of	the	above	source	code,	which	section	of	addTwo	is	known	as
an	anonymous	function?

4-						On	the	function	assignment	from	question	2,	if	I	assign	variable	addTwo	to	a	new
variable	x,	and	then	later	I	reassign	addTwo	to	the	number	33,	what	will	the	value	of
both	variable	x	and	variable	x()	become?

5-						What	are	function	input	parameters	and	why	do	we	need	parameters	at	all?

6-						The	object	arguments	is	native	to	functions.	How	would	we	write	two	console.log
statements,	one	to	display	the	first	value	from	object	arguments,	and	the	other	to
display	the	third	value	from	object	arguments	of	a	function?

Answers	and	further	explanation	can	be	found	here:	
forum	|	bit.ly/1qqmwvg

http://jsplain.com/javascript/index.php/Thread/27-Lab-12a/

Part	B:	Passing	data	by	value	and	by	reference
(A	link	to	my	answers	will	be	posted	at	the	end	of	this	page.	You	may	actually	navigate	to
the	forum	to	mentally	answer	the	questions	because	the	answers	are	not	visible	until	you
click	on	the	individual	answer	button)

1-						Below,	I	have	declared	two	variables.	Variable	b	which	has	a	numeric	value	of	33,
and	variable	a	which	is	assigned	to	the	value	of	variable	b:
var	b	=	33;
var	a	=	b;

a)						Was	this	an	assignment	by	value	or	an	assignment	by	reference?

b)						What	happens	to	the	value	of	variable	a,	if	I	add	1	to	b?

2-						Below	I	have	declared	and	assigned	two	variables.	The	first	variable,	c,	is	assigned
to	an	array.	The	second	variable,	d,	is	assigned	to	a	function.
var	c	=	[1,2,3];
var	d	=	function(){	return	9;};

a)						Suddenly,	I	assign	the	value	of		c	to	d,	like	d	=	c;	What	is	now	the	value	of	d?	What
happens	to	the	previous	value	of	d	after	the	reassignment?

b)						What	is	then	the	value	of	d	if	I	reassign	c	to	value	null?
c	=	null;

3-						In	the	following	script,	what	will	be	the	output	of	function	myCastle()	when	we
call	it?
var	f	=	33;
var	myCastle	=	function()	{
	var	f	=	“Santarem”;
	return	f;
};
myCastle();

4-						How	would	you	rewrite	the	script	to	output	the	outer	variable	f,	instead	of	the	inner
variable	f?

5-						Which	object	acts	as	the	parent	for	all	global	variables	in	a	normal	web	page?

6-						What	data	structure	in	JavaScript	has	the	capability	of	wrapping	its	elements	in	a
private	manner?

Answers	and	further	explanation	can	be	found	here:	
forum	|	bit.ly/1rm2pUg.

http://jsplain.com/javascript/index.php/Thread/28-Lab-12b/

Part	C:	Find	and	replace	a	word	in	a	string
The	goal	for	this	project	is	to	create	a	mechanism	that	finds	a	word	in	a	paragraph	and
replaces	it	with	another	word.	The	idea	is	to	replace	brown	with	red	on	the	following
paragraph:

“The	quick	brown	fox	jumps	over	the	lazy	dog.”

The	tools	to	use	are	as	follows:

Several	variable	names	to	be	used	as	helpers:
paragraph	–	assigned	to	the	original	paragraph.
tempArray	–	assigned	to	the	result	of	converting	the	string	to	array.
oldWord	–	assigned	to	the	word	“brown”,	the	one	we	search	for	in	order	to	replace.
newWord	–	assigned	to	the	word	“red”,	the	one	we	want	to	use	as	a	replacement.

split()	which	converts	the	string	into	an	array	of	separate	words.	
The	result	of	splitting	the	string	will	be	assigned	to	an	array	called	tempArray.	
(The	reason	for	converting	the	string	sentence	into	an	array	of	words	is	so	that	we	can
target	the	desired	word	to	replace).

A	for	loop.	The	loop	will	traverse	the	array	in	order	to	find	the	targeted	word	and
replace	it.

join()	which	will	later	reconvert	the	array	back	to	string.

We	first	split	into	array,	then	search	and	replace,	then	convert	back	to	string	and	assign	the
result	back	to	the	variable	paragraph.

Finally	we	use	console.log	which	prints	variable	paragraph	displaying	the	end	result.

It	may	sound	complicated	but	it	becomes	easier	after	doing	it	the	first	time.

Here’s	a	recipe	guide:

Declare	the	original	string	variable.
Convert	the	variable	into	individual	words.
Introduce	the	word	that	needs	to	be	found.
Introduce	the	new	word	to	replace	the	existing	word
Iterate	over	the	array	to	find	and	to	replace	the	word
Reconvert	the	modified	array	to	string	by	assigning	it	to	the	original	variable
Display	your	results

Take	your	time	to	think	about	it.	Should	you	need	an	editor	use	jsbeautifier.org	to	write
your	script.	Then	paste	it	onto	the	Console	for	testing	purposes.

For	a	quick	peek	or	further	explanation	and	my	own	final	version	of	this	project
please	refer	to	the
forum	board	|	bit.ly/1pqFAcC.
Or	just	the	raw	file	|	bit.ly/1uVMHjS.

http://jsplain.com/javascript/index.php/Thread/29-Lab-12-c/
http://icontemp.com/jpl/lab12c.txt

Part	D:	Using	a	function	to	save	and	recall	our	code
Great	job!	Now	let’s	take	it	one	step	further:

Let’s	save	the	script	in	a	function	called	findReplace.

The	idea	is	to	convert	both	variables	oldWord	and	newWord	into	input	parameters,	instead
of	declaring	them	in	the	script	like	we’ve	done	before.	This	makes	our	search	and	replace
more	flexible	because	from	this	point	on	we	can	search	for	any	word	and	replace	it	with
any	other	word	we	want.

Use	either	choice	of	function	style:

function	findReplace	()	{	}	
or
var	findReplace	=	function()	{	};

I	will	use	the	first	option	but	either	one	will	be	fine.

Don’t	forget	to	include	the	input	parameters.

Once	you’re	done,	call	the	function	by	choosing	any	word	and	replacing	it	with	any	other
word	of	your	choice.

Examples:
findReplace(“brown”,	“red”);
findReplace(“quick”,	“slow”);
findReplace(“dog”,	“cat”);		…	you	will	have	a	problem	with	this	one	because
of	the	dot	at	the	end	of	the	paragraph.

For	a	quick	peek	or	further	explanation	and	my	own	final	version	of	this	project
please	refer	to	the	
forum	board	|	bit.ly/1rtG4EK.
or	just	the	raw	file	|	bit.ly/1ypiKg3

http://jsplain.com/javascript/index.php/Thread/30-Lab-12-d/
http://icontemp.com/jpl/lab12d.txt

Part	E:	Making	the	search	and	replace	more	portable
On	the	previous	project	we	created	an	automatic	find	and	replace	script,	but	it	only
worked	with	variable	paragraph.	It	would	be	nice	to	have	a	portable	function	so	that	we
can	apply	it	to	other	variables	or	even	to	loose	strings.

At	this	point	it	should	be	obvious	the	importance	of	using	functions	to	create	methods	that
can	be	reused	in	more	than	one	application.

In	order	to	make	the	project	more	portable	we	need	to	add	a	third	input	parameter,	one
which	represents	the	targeted	variable	or	just	any	string	value	for	that	matter.

1-						All	we	have	to	do	is	to	add	a	third	input	parameter	and	replace	all	the	paragraph
instance	names	from	inside	of	the	function,	to	this	new	input	parameter’s	name.

I	have	called	my	input	parameter	data.

For	a	quick	peek	or	further	explanation	and	my	own	final	version	of	this	project
please	refer	to	the	
forum	board	|	bit.ly/1mqMRhT.
Or	just	the		raw	file.	|	bit.ly/1uijwc9.

If	you	can’t	think	of	an	example	to	test	your	scrip	please	look	at	the	forum	board	for	two
samples	of	test	data.	You	should	find	them	right	below	the	script	we	have	just	discussed.

p.s.	I’m	so	happy	that	you	have	made	it	this	far,	thank	you!
We’re	almost	done	with	the	JavaScript	lectures	and	exercises.	Then,	JSON	and	AngularJS
will	be	optional	studies	that	you	can	tackle	later	on	if	you	need	to	take	a	break.	However,
please	keep	this	truth	in	check:	“out	of	sight,	out	of	mind”.	You	will	forget	if	you	don’t
keep	practicing	regularly,	then	you	will	have	to	read	the	book	from	the	beginning	again.

	

http://jsplain.com/javascript/index.php/Thread/31-Lab-12-e/
http://icontemp.com/jpl/lab12e.txt

3.5	More	branching	techniques

The	switch
So	far	we	have	learned	about	the	if(),	possible	else	if()	and	optional	else	conditional
statements,	right?

if(true)	{
//	do	this;
}	else	if(true)	{
//	do	that;
}	else	{

//	do	this	one	instead;
}

You	can	do	any	possible	outcome	by	using	the	above	powerful	combination	of	if,	elses.

Sometimes	however,	a	different	kind	of	branching	makes	more	sense.	I’m	talking	about
the	one	known	as	Switch	and	I	just	want	to	make	sure	it	is	explained	in	case	you	need	to
use	it.

It	is	called	switch	because	there	are	several	possible	outcomes	from	which	JavaScript
makes	an	executable	decision.	These	possible	outcomes	are	all	in	off	state,	and	JavaScript
will	turn	one	on	based	on	a	matching	Boolean	condition,	as	we	you’ll	see	next.

Here’s	the	layout	diagram:

Fig	16

On	line	1	we	declare	a	switch.	This	switch	function	method	takes	a	condition	from	which
JavaScript	will	compare	all	the	outcomes	in	order	to	select	one	of	the	possible	executions.

In	our	generic	example	(based	on	the	cases	we	have),	the	“condition	to	match”	should	be
substituted	by	either	a	1,	2,	or	3,	so	it	matches	one	of	the	cases	presented.	If	any	of	these
cases	matches	the	condition,	JavaScript	executes	the	code	given	by	the	case.	The	Boolean
true	is	what	unlocks	the	case.

Example:	if	the	correct	case	is	3,	JavaScript	will	ask:	
“is	it	1?	Ans:	false”,	
is	it	2?	Ans:	false”,	
is	it	3?	Ans:	true”,	run	the	code,		
BREAK	and	END.

After	the	execution	of	a	case,	JavaScript	exits	the	switch	due	to	the	break	command	that
follows.	If	we	don’t	include	the	break	command,	then	JavaScript	will	search	for	more
possible	results	and	you	may	have	several	correct	answers	instead	of	just	one.	And	even	if
there	are	no	other	correct	answers,	JavaScript	still	reads	all	the	other	conditions	which
could	be	a	time	delay	if	the	switch	has	thousands	of	possibilities	programmed	in	it.	So	the
break	is	a	very	important	implementation.

Whenever	there	are	no	conditions	that	match,	the	optional	default	takes	over	as	the	final
and	true	option	and	its	code	is	executed.	Notice	that	I	did	not	include	a	break	after	default.
You	could,	but	it	is	not	necessary	because	JavaScript	exits	the	switch	at	this	time	anyway.

For	further	reading	please	visit	this	post	|	bit.ly/1r4XRCL	on	the	forum.	Let’s	practice	a	bit
with	switches.

http://jsplain.com/javascript/index.php/Thread/20-How-does-a-switch-statement-work-in-JavaScript/

3.6	Lab	work	13

13a:	Switch	-	using	Boolean	matches
This	script	will	employ	a	switch	with	4	possible	outcomes.
The	user	will	try	to	guess	a	number,	and	the	program	will
display	a	feedback	message	of	either,	too	low,	too	high,
right!	or	That’s	not	a	number:

1-						Create	a	switch	inside	of	a	function	named	guessNum.

2-						This	function	takes	one	input	parameter,	num	.

3-						The	switch	should	be	hard	wired	to	true.
Example:	switch(true)	*

4-						The	cases	should	have	the	following	conditions:
num	<=	3	displays	“too	low”
num	>=5	displays	“too	high”
num	===	4	displays	“right,	the	number	was	4”
for	default	use	“That’s	not	a	number”

5-						Call	the	function	by	passing	a	numeric	argument	like	for	example:
guessNum(2);
guessNum(7);
guessNum(4);
guessNum(“a”);

For	a	quick	peek	or	further	explanation	and	my	own	final	version	of	this	project
please	refer	to	the	
forum	board	|	bit.ly/1qqwkWc
or	just	the	raw	file	|	bit.ly/1r50ODq

*	Think	of	expressions.
num	<=	3	will	be	converted	to	true	or	false.	The	same	goes	for	all	the	other	cases
and	therefore	the	switch	to	match	should	be	a	Boolean	true.

http://jsplain.com/javascript/index.php/Thread/32-Lab-13a/
http://icontemp.com/jpl/switch1.txt

13b:	Switch	-	using	literal	matches
On	this	next	project	we	are	going	to	use	the	following:

A	function	named	myFavColor,

A	prompt()	to	get	an	input	from	the	user,
which	will	be	converted	to	lower	case	so	it	matches
one	of	the	cases.	(JavaScript	is	case	sensitive).

Some	confirm()	outputs	so	that	we	don’t	always	use
console.log,

And	some	meaningful	statements	about	color.

The	statements	are	as	follows	(you	can	always	make	your	own
or	copy	from	this	
raw	file	|	bit.ly/1ypn1A2):

Green	is	the	color	of	balance	and	growth.

Blue	is	the	color	of	trust	and	peace.

Indigo	is	the	color	of	intuition.

Purple	is	the	color	of	the	imagination.

Orange	is	the	color	of	social	communication	and	optimism.

Sorry,	that	color	is	not	in	the	system	yet!

http://icontemp.com/jpl/colors1.txt

1-						Please	remember:	the	purpose	of	creating	a	function	is	to	recall	the	program
without	having	to	retype	it	again.	It	works	great	for	testing	purposes	and	in	real	life
as	well.	So	the	whole	switch	should	be	wrapped	in	a	function.	Please	feel	free	to
choose	the	function	style	you	prefer,	a	function	declaration,	or	a	function	expression
which	is	the	one	assigned	to	a	variable.	
I	will	use	the	first	method:
function	myFavColor()	{}

2-						Inside	of	the	function,	the	prompt()	will	be	assigned	to	variable	color.	
I	will	convert	the	input	from	the	user	into	all	lowercased	letters	so	that	it	matches
my	cases	which	will	be	in	all	in	small	letters.
var	color	=	prompt(“Enter	your	favorite	color”).toLowerCase();

3-						The	switch	expression	should	be	the	value	of	the	variable	color:
switch	(color)	{	}

4-						Each	case	needs	to	be	in	small	letters	because	the	input	will	be	converted	to
lowercase:
case	“green”:

5-						The	output	from	each	case	should	be	a	confirm()	followed	by	a	break:
confirm(“Green	is	the	color	of	balance	and	growth.”);
break;

6-						When	no	color	matches,	the	default	execution	takes	over	and	it	could	be	something
like	the	following	(no	break	is	necessary):	
default:
confirm(“Sorry,	that	color	is	not	in	the	system	yet!”);

7-						Finally,	don’t	forget	the	two	closing	braces:	one	for	the	switch	and	another	for	the
function	(the	ones	shown	in	red	on	the	top	of	this	page	,	steps	1	and	3).

For	a	quick	peek	or	further	explanation	and	my	own	final	version	of	this	project
please	refer	to	the	
forum	board		|	bit.ly/ZcaDUC
or	just	the	raw	file	|	bit.ly/1DwVBsd

To	test	your	script	just	call	the	function	and	follow	the	prompts:

myFavColor();

http://jsplain.com/javascript/index.php/Thread/33-Lab-13b/
http://icontemp.com/jpl/colors2.txt

13c:	A	repeating	switch	routine
Sometimes	we	want	the	script	to	run	repeatedly	such	as	for	example	in	a	game,	until	we
purposely	decide	to	exit.

In	order	to	make	our	previous	script	repeatable	all	we	have	to	do	is	to	call	the	function
myFavColor()	just	before	we	close	the	function,	and	the	function	will	trigger	a	new
instance	of	the	game.

When	I	first	introduced	the	confirm()	mechanism	I	had	mentioned	that	confirm()	can
return	a	Boolean	true	if	we	press	OK,	or	a	Boolean	false	if	we	press	Cancel.	We	can	catch
this	returned	data	to	trigger	the	new	function	call,	and	one	way	to	do	it	is	to	add	the
following	code	just	before	closing	the	outer	function	(the	variable	name	replay	is
arbitrary):

var	replay	=	confirm(“click	ok	to	play	again,	or	cancel	to
exit”)
	if	(replay	===	true)	{
	myFavColor();
}
}	<—	this	curly	brace	is	already	there,	it	is	the	very	last	brace	on	the	bottom.

So	in	a	sense	we	grab	the	Boolean	true	from	the	confirm	mechanism	and	reuse	it	to	call
myFavColor();

For	a	quick	peek	or	further	explanation	and	my	own	final	version	of	this	project
please	refer	to	the	
forum	board	|	bit.ly/1ogVffh
or	just	the	raw	file	|	bit.ly/1vdaYQT

http://jsplain.com/javascript/index.php/Thread/34-Lab-13c/
http://icontemp.com/jpl/colors3.txt

13d:	Using	a	while	loop	to	repeat	the	script
We	have	not	covered	while	loops.	The	only	loops	we	have	covered	were	the	for	loop	for
arrays	and	the	for	in	loop	for	objects.	There	are	many	different	styles	of	loops	and	they	are
all	based	on	the	for	loop	we	first	learned.

A	while	loop	is	one	that	runs	indefinitely	until	something	triggers	the	loop	to	exit.

A	popular	example	of	a	while	loop	is	the	mechanism	that	scans	the	computer	keyboard.
The	wile	loop	keeps	reading	the	input	from	the	keyboard	until	it	gets	a	signal	from	one	of
the	keys	which	in	turn	triggers	another	mechanism.

The	design	for	a	while	loop	is	as	follows:

while(this	Boolean	expression	is	true){
//	do	this	stuff;
//	something	to	change	the	condition	to	false	in	order	to
end	the	loop;
}

Until	that	something	triggers	a	Boolean	false,	the	while	loop	will	always	run.

We	can	use	this	while	loop	on	our	previous	color	description	game	to	run	the	switch
forever	until	the	user	clicks	on	the	confirm()’s	cancel	button.	In	this	way	we	don’t	have	to
recall	the	function	again,	all	we	have	to	do	is	to	keep	asking	the	user	to	enter	his/her
favorite	color,	until	the	user	press	the	cancel	button.

So	where	do	we	implement	the	change	from	Boolean	true,	to	Boolean	false?

We	implement	it	on	each	case	because	only	one	case	will	apply.	When	the	user	confirms
the	output	message	for	the	case,	the	user	also	has	a	chance	to	press	cancel	when	he/she
wants	to	exit	the	game.	Until	the	user	presses	cancel	the	game	will	go	on	forever.

Please	look	at	the	next	image	to	see	what	I	mean:

Fig	17

On	line	3	we	encapsulate	the	whole	switch	mechanism	inside	of	a	while	loop.

While	replay	is	true	(which	is	its	initial	state),	the	switch	will	run	and	the	loop	will	restart
the	switch	again	and	again	until	we	press	Cancel.	Pressing	ENTER	is	equivalent	to
pressing	OK	and	that	means	to	run	another	cycle.		Eventually	we	get	tired	of	playing	the
game	and	press	the	Cancel	option	on	the	confirm	box	which	will	trigger	JavaScript	to	exit
the	loop.

Notice	how	the	value	of	variable	replay,	which	is	originally	a	Boolean	true,	is	renewed
each	time	an	output	message	is	prompted.	This	gives	the	user	the	opportunity	to	opt	out	of
the	game.

It	looks	more	professional	than	the	previous	script	we	had	done	and	if	you	are	interested
on	creating	games	this	can	become	handy.

After	you	code	your	own	version	of	it	you	can	compare	it	with	mine	on	the	
forum	board	|	bit.ly/1DwVNYo.
or	just	the	raw	file	|	bit.ly/1sWgeWf

http://jsplain.com/javascript/index.php/Thread/35-Lab-13d/
http://icontemp.com/jpl/colors4.txt

PART	IV:		ENTERING	THE	THIRD	REALM

Please	note:		

The	book	is	getting	long!	If	you	wish	to	take	a	break,	this	is	the	right	time	to	do	so	because
what	we	are	going	to	cover	next	is	supplemental,	but	not	part	of	the	JavaScript	syntax
core.

On	the	other	hand,	if	you	are	in	a	hurry	to	get	to	AngularJS	you	can	safely	jump	over
JSON	for	the	moment	and	go	to	PART	V:	DEFEATING	THE	DRAGON.

JSON	is	a	necessary	topic	to	know	about	since	you	will	be	using	it	sooner	or	later,	but	it	is
not	needed	for	what	we	are	covering	on	PART	V.

I	hope	your	time	has	been	productive	and	I’m	really	grateful	for	the	investment	and	trust
you	placed	in	this	material.

Tony	de	Araujo

	

http://www.amazon.com/Tony-de-Araujo/e/B00D7V08WY/

4.1	About	this	section
We	have	covered	a	lot	of	JavaScript	territory	and	there	is	so	much	more	to	write	about.
However,	it	is	not	a	good	idea	to	do	it	all	at	once	because	it	loses	its	efficiency	and	defeats
the	purpose.	This	is	the	reason	why	I	have	subdivided	JavaScript	into	several	different
booklets:	to	give	the	reader	time	to	digest	all	the	data	covered	in	each	publication.
Continual	practice	and	repetition	with	conscious	awareness	expansion	seems	to	be	a	better
way	to	go.

JavaScript	Objects	Functions	and	Arrays	Explained	goes	into	more	detail	about	each
JavaScript	Library	method,	as	well	as	providing	more	advanced	practice	of	concepts.	If
you	did	all	the	exercises	covered	up	to	this	point,	you	should	be	more	than	ready	to	tackle
the	other	volume.

Another	very	popular	and	very	inexpensive	eBook	for	practicing	purposes	is	Draw	Six
Lucky	Numbers,	which	covers	loops,	random	numbers	and	it	reviews	functions	and
arrays.	This	is	a	quick	project	for	a	Sunday	afternoon.

Now	we	have	come	to	a	cross	roads.

The	rest	of	this	book	will	be	introducing	two	very	hot	technologies	that	every	JavaScript
intermediate	to	advanced	programmer	should	know:

JSON	(JavaScript	Object	Notation)	is	a	way	of	formatting	data	to	become	machine
independent.	This	format	is	in	many	ways	replacing	XML	and	being	used	in	modern	web
programming.	In	a	sense	I	have	been	introducing	it	from	the	beginning	of	the	book	so	this
material	should	look	familiar	to	you	and	therefore	it	will	be	a	relatively	short	section.

The	final	area	of	coverage	is	about	Google’s	framework	library	AngularJS,	which	is
based	on	JavaScript.

This	library	is	revolutionizing	the	way	we	build	websites	and	although	still	in	its	infancy,
it	has	already	made	a	permanent	impact	and	you	will	see	why	as	you	get	to	it.	By	the	time
you	finish	the	next	few	chapters	you	will	be	able	to	implement	dynamic	data	into	your
basic	webpage	in	an	easy	and	comprehensive	way.

Please	keep	in	mind	that	I	am	only	introducing	AngularJS,	this	is	not	a	complete	book
about	it	since	the	topic	spans	over	several	volumes.	What	I	hope	to	achieve	by	writing	this
material,	is	to	empower	you	to	pursue	further	studies	of	AngularJS.	This	information	will
unlock	what	I	consider	the	hardest	part	of	getting	into	AngularJS,	the	very	first	steps.
Through	the	exercises	and	explanations	given	you	should	be	able	to	easily	conquer	this
first	barrier.

http://www.amazon.com/JavaScript-Objects-Functions-Arrays-Explained-ebook/dp/B00GDEPBZQ/
http://www.amazon.com/Small-Projects-Learn-JavaScript-Mastering-ebook/dp/B00H4P987A/

	

4.2	An	introduction	to	JSON
JavaScript	Object	Notation,	JSON	(it	is	pronounced	J	SON),	is	an	open	standard	format
that	uses	human-readable	text	to	transmit	data	objects	consisting	of	key-value	pairs
(JavaScript	objects).	It	has	become	an	alternate	technology	to	XML	in	its	use	for
transmitting	data	between	a	server	and	web	application.	The	term	‘alternate’	may	be
outdated	because	nowadays	JSON	is	the	preferred	method	for	web	services.	

The	reason	why	I	am	introducing	JSON	at	this	point	is	because	at	the	time	of	this	writing
JSON	has	become	the	must	know	subset	of	JavaScript	if	one	wants	to	build	modern	web
pages	and	web	apps.	It	should	be	now	part	the	any	web	literacy	curriculum.

JSON	has	achieved	such	popularity	that	other	languages	are	now	implementing	it	in	their
own	vocabulary.

The	good	news	is	that	you	have	already	been	prepared	for	this	technology	throughout	the
book	and	it	is	just	a	matter	of	becoming	more	aware	of	its	existence.

JSON	format	is	syntactically	the	same	as	when	we	create	lists,	being	it	numeric	as	an	array
or	with	key-value	pairs	as	in	an	object.	We	can	also	combine	the	two	formats	to	create	a
more	complex	JSON	data	structure.

	The	following	is	a	collection	of	data	written	in	the	JSON	format:

{
“firstName”:	“Tony”,
“lastName”:	“deAraujo”,
“age”:	99
}

Or	we	can	also	have	an	array:

[1,	“hello”,	33]		

Please	note:	If	you	are	planning	to	convert	an	array	into	a	JSON	format,	avoid	using
mixed	array	data	types	like	the	array	I’ve	just	shown	you.	This	is	because	JSON	is
supposed	to	be	a	language	neutral	data	exchange	protocol	and	many	programming
language	do	not	allow	mixed	arrays	(those	containing	mixed	value	types)	and	this	would
cause	confusion.	The	following	would	be	ok	because	numbers	are	seen	as	strings
(compare	with	my	previous	example):

[“1”,	“hello”,	“33”]

Going	back	to	our	first	example	on	the	top,	notice	how	there	is	no	variable	assignment	to
the	JSON	object	or	array.	The	JSON	part	of	the	object	is	the	one	that	gets	exported	into
other	systems	in	a	seamless	manner.

When	writing	in	JSON	format	we	must	wrap	the	key	in	double	quotes.	Since	we	have	used
double	quotes	from	the	very	beginning	we	should	have	no	problems	with	that.

JSON	will	throw	an	error	if	keys	are	not	wrapped	in	double	quotes.	Single	quotes	will	not
work.

Also	none	of	these	data	structures	terminate	with	a	semicolon.	This	is	not	a	variable
assignment.	JSON	data	is	assigned	to	a	variable	at	its	destination	so	that	we	can
manipulate	the	data,	but	the	data	in	itself	is	exported	without	variables.	The	outer	most
tags	wrapping	the	whole	data	structure	must	be	curly	braces,	like	in	an	object	format.

In	a	more	complex	design	you	may	see	an	array	of	objects.	Arrays	work	out	great	to
gather	a	bunch	of	objects	that	belong	to	a	certain	class	criteria:

Fig	18	(note:	missing	outer	curly	braces	and	a	key	for	the	array.		See	explanation	below.)

This	is	the	data	that	can	be	portable	from	machine	to	machine.	However,	this	is	not	yet	a
valid	JSON	object	and	using	it	like	this	can	lead	to	an	unsecure	transmission.	It	needs
outer	curly	braces	and	a	key	name	for	the	array	in	order	to	become	a	good	JSON	data
format	as	we	will	see	on	the	next	image.

By	writing	it	this	way	(plus	the	outer	curly	braces)	we	can	feed	it	into	any	machine	able	to
translate	JSON	data	into	their	own	machine	format,	much	like	XML	doe	except	that	JSON
is	easier	to	implement.

For	a	while	now,	web	pages	have	been	communicating	with	the	server	by	exchanging
JSON	data.	What	I	mean	is	that	the	page	loads	on	your	browser	and	every	time	you	click
on	a	dynamic	field,	the	page	remains	the	same	but	the	data	is	updated	via	a	JSON	data
format	exchange.	This	is	one	of	the	reasons	why	becoming	aware	of	this	technology	is	a
must.

Keep	this	in	mind:	JSON-formatted	text	is	also	syntactically	legal	JavaScript	code.
However,	the	opposite	or	other	way	around	may	not	be	true.	This	is	the	reason	why,
when	we	learned	to	create	objects	earlier,	I	chose	to	wrap	the	keys	in	double	quotes,
making	it	legal	syntax	for	both	JavaScript	and	JSON.

The	next	image	will	show	a	more	extensive	example	of	a	JSON	object.	You	will	see	the
outer	object	subdivided	into	two	key	names:	staff	and	management.

Each	one	of	these	keys,	staff/management,	will	have	an	array	as	a	value.	The	arrays	will
contain	several	individual	records	in	the	form	of	objects.	Each	object	represents	an
employee	from	either	staff	or	management.	Let’s	look	at	the	image:

	

Fig	19	see	raw	file	|	bit.ly/1uF1qNH

Do	you	see	how	that	is	done?	There	are	two	properties:	staff	and	management.

In	our	example,	the	property	staff	contains	an	array	of	people	assigned	to	it,	and	each
person	is	also	an	object	with	its	own	data.	Right	now	we	only	have	“Tony”	as	staff	and	we
only	have	“Judy”	as	management,	but	we	could	add	a	comma	after	the	closing	brace	from
“Tony”	or	from	“Judy”,	and	add	another	person	to	each	array,	as	you	will	see	on	the
picture	further	down	the	page.

Don’t	get	confused	here.	Arrays	are	not	necessary	in	order	to	create	JSON	data	structures.
We	can	have	arrays,	strings,	numbers	and	objects,	represented	in	a	JSON	structure.	Every
identifier	needs	to	be	wrapped	in	double	quotes,	except	for	numbers	in	which	quotes	are
optional.	(As	noted	earlier,	always	double	quote	numbers	if	they	are	contained	in	an	array,
in	order	to	comply	with	programming	languages	that	forbid	mixed	arrays).

	

http://icontemp.com/jpl/json1b.txt

Use	jsonlint,	a	tool	to	check	JSON	validation
In	order	to	see	if	a	code	block	is	syntactically	well	written	in	JSON	we	can	check	it	with
an	online	tool	called	jsonlint	(jsonlint.com).	This	tool	becomes	an	important	check	in
order	to	avoid	errors	or	unsecured	JSON	data	scripts.

Practicing	exercise:

1-						Copy	the	code	from	the	previous	image	and	paste	it	on	the	box	at	jsonlint.	Then
click	validate.	If	everything	is	well	written,	you	should	see	a	green	bar	across	the
page.

2-						Try	removing	a	brace,	or	adding	a	variable	name,	or	a	semicolon	just	to	see	if	it
still	validates.

http://jsonlint.com/

Assigning	a	JSON	object	to	a	variable
Now,	if	we	want	to	manipulate	this	data	after	we	receive	it	at	the	destination,	we	need	to
assign	it	to	a	variable.	The	variable	will	point	to	the	data	in	memory	so	that	we	can	address
it.	That’s	when	JavaScript	comes	in:	We	move	data	around	in	the	JSON	format,	and	at	the
destination	we	assign	the	data	to	a	variable	if	we	want	to	further	manipulate	the	data.

The	next	extended	image	will	show	how	we	can	assign	a	variable	to	the	JSON	object.

Remember,	when	writing	your	code,	if	you	want	to	validate	your	JSON	data	with
jsonlint,	you	must	do	it	before	assigning	the	JSON	data	to	a	variable	and	before	adding	the
semicolon	at	the	end	to	terminate	the	statement.

Fig	20	see	raw	file	|	bit.ly/1DwXd57.

3-						On	this	step	extend	your	own	object	with	more	data,	or	copy	it	from	the	raw	file
below	image	20.

If	you	are	writing	your	own	script	and	want	to	validate	it	with	jsonlint,	do	it	before
adding	the	variable	(ex:	var	employees	=)	and	last	semicolon,	then	assign	the
variable	employees	to	the	object.

http://jsonlint.com/
http://icontemp.com/jpl/json1.txt

Now	that	we	have	assigned	the	JSON	object	to	the	variable	employees,	we	can	edit,	add,
delete	and	display	the	data	or	part	of	the	data	because	the	object	has	a	name	we	can	refer
to.

	

Editing	the	JSON	object
The	property	key	staff	has	an	array	assigned	to	it.	The	decision	to	have	an	array	was	so
that	we	could	include	several	objects	as	part	of	staff.	Each	person	in	the	array	is	an	object
in	itself.	The	same	goes	for	key	management	which	is	also	a	property	of	the	object
employees.

Practicing	exercise:		

4-						If	you	haven’t	done	so,	copy	the	raw	file	and	paste	it	onto	your	JavaScript	Console.

5-						How	would	we	address	staff	in	order	to	get	a	list	of	its	members?
We	could	use	dot	syntax		in	the	following	manner:
employees.staff;

That	would	give	us	a	list	of	employees	from	the	staff	array.	Your	Console	might	display	a
short	version	of	it,	something	like	object,	object,	object,	which	represents	each	employee,
but	in	real	life	you	would	get	the	complete	list.	To	see	the	contents	of	each	object,	just
click	on	it	(see	the	image	below).	That’s	how	the	Console	treats	the	output.

Fig	21

NOTE:	The	proto	property	is	a	list	of	all	the	methods	from	the	JavaScript	library	that
apply	to	this	object.	Just	ignore	it	because	it	has	nothing	to	do	with	JSON	and	it	is	not
portable.	I	cover	all	these	library	methods	on	the	Volume	2	book.

6-						How	would	we	address	the	first	object	in	the	staff	array?
employees.staff[0];
Explanation:
We	start	with	the	outer	object	which	is	employees,	and	then	address	its	staff	member.
Then,	since	staff	holds	as	array	of	inner	objects,	we	address	the	first	element	of	the
array	which	is	at	location	zero,	and	the	result	is	as	follows:

Object	{firstName:	“Tony”,	lastName:	“deAraujo”,	age:	99}

7-						Now	try	addressing	the	object	in	the	array	held	by	staff	at	the	position	containing
Mary.	She	is	the	third	element	of	the	staff	array,	which	corresponds	to	position	2.
See	the	result	here:	raw	file	|	bit.ly/1sWuXAy.

http://www.amazon.com/JavaScript-Objects-Functions-Arrays-Explained-ebook/dp/B00GDEPBZQ/
http://icontemp.com/jpl/json2.txt

8-						And	how	would	we	add	a	new	employee	to	the	staff	class?
This	is	the	new	employee	we	need	to	add:
“firstName”:“Loren”,	“lastName”:“Santos”,	“age”:29

Since	Loren	is	an	object	that	needs	to	be	added	to	an	array,	we	could	use	the	array
method	push()	to	push	it	into	staff:	(see	raw	file	|	bit.ly/1wKTPPB).

employees.staff.push({“firstName”:“Loren”,	“lastName”:“Santos”,	“age”:29});

9-						Try	adding	a	new	member	to		employees	management,	like	for	example:
“firstName”:“Peter”,	“lastName”:“Jones”,	“age”:55

When	finished,	try	addressing	(displaying)	this	new	member	at	its	location	in	the
array	assigned	to	management.

See	raw	file	|	bit.ly/1tXHoQM

10-		Call	the	employees	property	management	to	see	what	it	contains:

Great!	Now	let’s	just	look	at	two	useful	methods	to	work	with	JSON	data	structures.

http://icontemp.com/jpl/json3.txt
http://icontemp.com/jpl/json4.txt

JSON	library	methods
JavaScript	has	two	functions	to	parse	regular	JavaScript	into	a	JSON	format,	or	vice	versa.
Once	data	is	converted	into	a	JSON	format	we	can	send	the	data	across	the	globe	into
other	machines.

Let’s	see	how	they	basically	work.

JSON.stringify
The	function	stringify	compresses	the	object	by	stripping	its	white	space	and	converting	it
into	a	string	so	it	can	be	exported.

Taking	for	example	our	previous	object	employees	(as	seen	on	image	20),	we	can	strigify
it	like	this:

var	myString	=	JSON.stringify(employees);

I	have	assigned	the	result	to	variable	myString	(any	name	will	do)	which	is	now	a	string
variable	and	contains	the	following	data:
“{“staff”:[{“firstName”:“Tony”,“lastName”:“deAraujo”,“age”:99},
{“firstName”:“John”,“lastName”:“Smith”,“age”:33},
{“firstName”:“Mary”,“lastName”:“Adams”,“age”:29}],“management”:
[{“firstName”:“Judy”,“lastName”:“Garland”,“age”:43}]}”

Now	this	string	of	data	is	ready	to	be	sent	via	http	or	any	other	method	to	a	different
location	or	machine.	Any	programming	language	with	a	way	to	decode	JSON	(convert	to
or	read	to	JSON)	will	be	able	to	use	this	data.

NOTE(1):	If	you	want	to	validate	this	data	with	JSONLINT.com	you	need	to	exclude	the
variable	name	and	the	outer	quotes.

NOTE(2):	When	using	stringify,	functions	(methods)	inside	of	the	original	object	will	not
be	included.	This	is	intentionally	done.	The	only	data	that	gets	stringified	are	the	string
key/value	pairs	which	are	wrapped	in	quotes	(as	well	as	numbers).

NOTE(3):	There	is	a	way	to	prevent	JSON	from	compressing	the	data.	That
implementation	will	be	discussed	when	we	cover	the	third	argument	for	stringify,	a	few
pages	from	now.

Using	a	second	argument	as	a	filter	on	stringify
NOTE:	If	this	is	too	much	information	for	now,	just	read	it,
understand	it,	be	aware	of	it	and	return	when	you	want	to
revisit	the	subject.

The	method	stringify	can	take	a	second	argument	to	filter	out	everything	except	what	we
want	to	include	during	stringify.	This	second	argument	can	be	an	array,	or	it	can	be	a
function,	depending	on	what	we	are	trying	to	accomplish.

(a)			When	using	an	array	as	a	filter

When	we	use	and	array	as	second	argument,	we	pick	and	choose	the	data	we	want	to
strigify.

As	always,	the	first	argument	is	the	object	name	being	used.	When	the	second	argument	is
an	array,	JavaScript	only	strigifies	the	key/values	provided	in	that	array.	The	array	acts	as
an	inclusive	filter.

For	example,	I	want	to	stringify	just	the	array	staff	and	only	just	the	first	name	of	each
employee:

var	someString	=	JSON.stringify(employees,	[“staff”,
“firstName”]);

JavaScript	captures	staff	and	grabs	its	firstName	property.	The	result	of	this	serialization	is
as	follows:

“{“staff”:[{“firstName”:“Tony”},{“firstName”:“John”},{“firstName”:“Mary”}]}”

Here’s	another	example	where	age	is	also	included	(but	not	lastName):
var	someString	=	JSON.stringify(employees,	[“staff”,
“firstName”,	“age”]);

What	if	we	want	the	first	name	of	both	staff	and	management?
var	someString	=	JSON.stringify(employees,	[“staff”,
“management”,	“firstName”]);

It	results	in:

“{“staff”:[{“firstName”:“Tony”},{“firstName”:“John”},
{“firstName”:“Mary”}],“management”:[{“firstName”:“Judy”}]}”

NOTE:	If	you	try	validating	this	result	with	jsonlint	in	its	raw	format,	it	will	fail.	The
reason	is	that	we	need	to	strip	the	outer	quotation	marks	(the	ones	making	this	whole
script	a	string).	Once	you	remove	the	outer	quotes	you	will	get	a	green	light	from	jsonlint.
There	is	a	method	to	convert	this	string	back	into	an	object.	This	method	will	be	discussed
on	the	next	chapter.

http://jsonlint.com/

Try	this	one	on	your	own:
If	you	want	some	practice,	try	stringifying	both	staff	and	management	but	only	the	last
name	and	age	of	each	employee.	Use	a	variable	name	of	your	choice.

(b)			When	using	a	function	as	a	filter

So	far	we	have	used	an	array	as	a	second	argument	for	stringify.	That	allowed	us	to	pick
and	choose	which	elements	we	wanted	to	include	in	the	stringification.

With	a	function	as	a	second	parameter	we	can	do	the	opposite,	exclude	elements,	or
modify	how	certain	elements	will	be	represented.

The	function	takes	two	arguments	in	its	input	parameters.	The	first	argument	is	the	key	and
the	second	argument	is	the	value.	These	two	parameters	will	represent	every	key	and
every	value	of	the	JSON	object.	In	other	words,	because	we	are	grabbing	each	key	and
each	value	for	evaluation	before	processing,	we	can	write	a	script	in	the	body	that
addresses	specific	keys	and	specific	values,	as	the	function	scans	each	key	and	each	value
(see	the	image	below).

When	it	comes	to	parameter	names,	it	doesn’t	matter	what	you	call	them,	what	matters	is
their	position	which	needs	to	be	(key,	value).	You	can	call	them	(k,v)	or	(x,y),	or	anything
else.

As	an	example,	the	following	image	uses	the	function	filter	to	exclude	the	age	from	the
stringification:

Fig	22	see	raw	file	|	bit.ly/1v71zuT.

What	happens	here	is	that	an	undefined	value	will	not	be	included	as	a	JSON	file	because
in	JSON,	undefined	represents	and	empty	key/value	pair,	so	age	will	be	stripped	from	the
output.

As	another	example,	let’s	say	that	you	want	to	show	the	label	age	but	with	a	value	of	n/a.
You	could	change	the	return	value	from	undefined	which	strips	the	key,	to	the	following:	
return	“n/a”;

Now	“age”	will	show	“n/a”	as	a	value.

Great!

Moving	along,	what	about	programming	the	opposite,	like	for	example	when	we	receive
JSON	data	and	want	to	reconvert	it	back	into	an	object?

We	will	look	at	the	reconversion	in	a	few	minutes	but	let’s	first	discuss	how	to	prevent

http://icontemp.com/jpl/json4b.txt

stringify()	from	compressing	the	data	(I	mean	how	to	keep	the	original	white	space),
because	it	completes	our	discussion	on	the	function	stringify().

Using	a	third	argument	on	stringify()	for	controlling	white	space
Even	if	we	don’t	want	to	use	a	second	argument	to	filter	out	the	data	(like	for	example	an
array	or	a	function	as	explained	on	the	previous	page),	we	could	still	use	a	third	argument
(or	parameter)	to	control	the	white	spacing	when	we	stringify.

Taking	for	example	our	original	employees	object	(see	raw	file	|	bit.ly/1DwXd57),	instead
of	stringifying	it	like	we	did	before:
var	myString	=	JSON.stringify(employees);

We	could	instead,	add	a	third	argument,	which	would	activate	the	third	input	parameter	of
function	stringify:

var	myString	=	JSON.stringify(employees,	null,	4);

And	the	output	would	look	like	in	this	raw	file	|	bit.ly/1oh4ts1.

First,	notice	how	we	made	JavaScript	read	the	third	argument	without	having	a	second
argument:

We	made	the	second	argument	null.	That	works	because	now	we	can	have	a	third
argument.

Second,	the	number	4	is	the	number	of	indented	spaces.	There	is	no	provision	for	adding
lines	but	JavaScript	automatically	adds	lines	when	we	ask	for	indentation.	The	maximum
number	is	10.

Did	you	notice	the	second	sample	on	the	raw	file?	It	shows	dots	instead	of	spaces.

That	was	done	by	substituting	the	third	argument	from	a	number	to	a	string:

var	myString	=	JSON.stringify(employees,	null,	“…”);

This	last	one	will	not	validate	if	you	test	it	on	jsonlint,	but	it	serves	to	illustrate	the	third
argument	in	stringify.

http://icontemp.com/jpl/json1.txt
http://icontemp.com/jpl/json5.txt

JSON.parse
To	convert	the	string	back	into	an	object	just	like	we	had	it	before,	we	use	the	method
JSON.parse.

See	raw	file:	myString	|	bit.ly/1rtZclU.

var	myEmployees	=	JSON.parse(myString);

Variable	myEmployees	is	now	an	object	with	the	same	values	as	our	original	employees
object.

Note:	You	will	get	an	error	if	the	data	being	parsed	is	not	a	valid	JSON.

Properties	of	non-array	objects	are	not	guaranteed	to	be	stringified	in	any	particular	order
(which	makes	sense	since	key-value	pairs	don’t	really	need	a	numeric	order).	Do	not	rely
on	ordering	of	properties	within	the	same	object	when	stringifying.

http://icontemp.com/jpl/json6.txt

In	summary
	

I	hope	this	introduction	to	JSON	has	given	you	the	taste	for	it	and	inspire	you	to	start	your
own	data	import	export	projects.

Here	are	a	few	useful	links:

JSON.org,	the	official	website.

JSONLint,	the	JSON	validator	tool.

Wikipedia,	an	independent	reference	of	resources.

Mozila	Foundation,	a	good	glossary	and	resource	center.

JSON	vs	XML	–	A	comparison	of	these	two	technologies	written	by	JSON.org.

Before	we	move	on,	let	me	just	include	a	brief	introduction	of	another	technology	where
JSON	really	shines:	NoSQL.

http://www.json.org/
http://jsonlint.com/
https://en.wikipedia.org/wiki/JSON
https://developer.mozilla.org/en-US/docs/Glossary/JSON
http://www.json.org/xml.html

Document-oriented	databases	for	JSON	data
Modern	web	applications	have	data	needs	that	relational	databases	like	MySQL	may	have
trouble	delivering.	A	massive	change	is	underway	and	is	disrupting	the	database	world	as
we	know	it.	Today,	three	interrelated	trends	are	Big	Data,	Big	Users,	and	Cloud
Computing	–	all	pushing	the	adoption	of	NoSQL	technology.

What	is	NoSQL?

“A	NoSQL	or	Not	Only	SQL	database	provides	a	mechanism	for	storage	and	retrieval	of
data	that	is	modeled	in	means	other	than	the	tabular	relations	used	in	relational	databases.”
Wikipedia.

The	reason	for	the	term	“Not	only	SQL”	database	is	to	emphasize	that	they	may	support
SQL-like	query	languages.

NoSQL	is	increasingly	used	in	real-time	web	applications	(example:	Facebook’s	news
feed	and	Twitter).

NoSQL	are	document-oriented	databases.	Compared	to	relational	databases,	a	collection
of	data	could	be	considered	analogous	to	a	table	and	a	document	analogous	to	a	record	(a
document	could	be	encapsulated	and	encoded	in	one	of	the	standard	formats	such	as	XML
or	JSON).

A	list	of	NoSQL	databases	can	be	found	here:	nosql-database.org.

A	good	starting	point	if	you	want	to	get	into	this	technology	right	away	is	to	download
CouchDB,	which	stores	data	as	JSON	and	it	can	be	queried	in	JavaScript	.	You	can	use	it
on	your	local	computer	and	learn	its	operation	from	there.		CouchDB	is	an	Open	Source
project	supported	by	Apache.	A	collection	of	basic	lessons	can	be	found	here:	Guides.

http://en.wikipedia.org/wiki/NoSQL
http://en.wikipedia.org/wiki/Real-time_web
http://nosql-database.org/
http://couchdb.apache.org/
http://docs.couchdb.org/en/latest/intro/index.html

PART	V:	DEFEATING	THE	DRAGON
Welcome	to	modern	DOM	scripting.

October	2015

5.3	First	solid	steps	into	AngularJS

Intro
AngularJS	is	a	framework	for	developing	dynamic	web	pages.	It	was	created	by	Google	to
address	multiple	problems	with	conventional	web	design.	As	many	other	developers,	I
believe	AngularJS	is	the	hottest	technology	available	and	the	future	of	web	design,	and
because	it	is	backed	by	Google,	there	will	be	plenty	of	resources	to	make	it	stick.

In	a	way,	AngularJS	extends	HTML	attributes,	giving	them	superpowers	thanks	to	the
library	provided	by	AngularJS.	The	library	is	connected	to	your	webpage	via	a	link	just
like	you	would	do	for	CSS	or	JavaScript.

HTML	was	designed	for	static	pages.	AngularJS	is	what	HTML	could	have	been	if	it	was
designed	for	modern	applications.

At	this	point	you	really	need	to	know	basic	HTML	because	we	will	be	working	with	a
standard	HTML	page.	You	don’t	need	to	be	an	expert,	the	very	basic	stuff	will	do.	If	you
need	to	refresh	your	mind	or	learn	from	scratch,	give	Codecademy	a	visit.	You	may	see
me	there	at	times	as	a	moderator,	especially	on	their	JavaScript	exercises,	but	their	HTML
tutorial	is	pretty	cool	and	free!!

Links	of	interest	(for	future	reference):

AngularJS.org	|	Wikipedia	|	Documentation.

Before	you	get	yourself	lost	reading	their	material	let’s	become	familiar	with	the	basic
setup	and	what	it	can	do	for	a	web	developer	trying	to	design	a	more	dynamic	web	page.

Welcome	to	modern	web	design!

https://www.codecademy.com/
https://angularjs.org/
http://en.wikipedia.org/wiki/AngularJS
https://docs.angularjs.org/api/ng/directive/ngCloak

Directives
How	does	AngularJS	extend	HTML	capabilities?

First	we	provide	a	link	on	the	web	page	to	the	AngularJS’	library,	just	like	we	would	link
to	a	JavaScript	or	a	CSS	file.

Then	the	page	becomes	linked	to	this	huge	plethora	of	methods	that	can	be	used	by	you.

Let’s	suppose	that	we	want	to	supercharge	a	DIV	and	nothing	else	on	the	page,	like	for
example,	you	want	to	create	a	box	in	your	web	page	with	some	dynamic	data.

After	linking	to	the	library,	all	we	have	to	do	is	to	apply	a	directive	to	the	DIV.	The
directive	is	ng-app,	which	makes	this	DIV	an	application	controlled	by	AngularJS.	The
ng-app	directive	tells	AngularJS	that	this	DIV	needs	to	be	scanned	for	possible	AngularJS
functionality.	We	will	see	how	this	works	in	a	moment.

If	we	want	the	whole	page	to	be	scanned	and	mapped,	we	apply	the	same	directive	to	the
HTML	tag	instead	of	applying	it	to	a	DIV.	Actually,	any	HTML	tag	able	to	be	a	container
can	become	an	Angular	supercharged	element	without	even	affecting	the	rest	of	the	page.
We	could	use	a	paragraph	tag,	or	a	form	tag,	or	an	ordered	list.	For	the	most	part	however,
AngularJS	is	so	friendly	that	we	don’t	mind	associating	the	whole	page	to	it.

Please	look	at	the	following	image	to	have	a	better	idea	of	what	I	mean:

	

Fig	23	see	raw	file	|		html

The	above	image	is	a	basic	HTML	page	with	nothing	in	the	BODY	but	the	word	hello.

Well,	that	is	not	true.	At	the	bottom	of	the	BODY	(as	the	last	thing	to	be	written	in	the
body)	we	also	have	a	link	to	the	AngularJS	library	which	should	be	(as	of	October	2015):
<script
src=”https://ajax.googleapis.com/ajax/libs/angularjs/1.4.7/angular.min.js“>
</script>

You	can	also	substitute	the	http	for	an	https.

In	the	future,	to	get	the	latest	link	version,	go	to	angularJS.org	and	click	on	Download.	A
window	will	pop	up	with	different	ways	of	accessing	the	library.	Copy	the	link	on	the
CDN	window	and	paste	it	in	your	web	page	inside	of	the	opening	script	tag	as	shown
above.	For	our	exercises	you	don’t	have	to	do	this	step,	just	copy	the	raw	file	(see	link
below	the	image)	as	your	starting	HTML	skeleton	page.

The	reason	to	include	the	link	to	the	library	at	the	very	bottom	of	the	BODY	container	is
to	make	sure	that	all	the	HTML	elements	load	into	the	browser	before	calling	the	library.
As	an	alternative	we	could	include	the	link	in	the	HEAD	section	like	we	normally	do	for
CSS,	but	then	we	would	have	to	make	sure	that	there	were	no	side	effects	by	calling	the
library	prematurely.

On	line	6	I	have	included	a	directive	ng-app.	That	will	tell	AngularJS	that	everything
within	the	<html>	and	</html>	tags	can	use	the	tools	available	at	Google’s	AngularJS
library.	In	other	words,	the	whole	HTML	page	has	been	extended	with	more	functionality.
The	trick	is	to	know	what	functionality	is	available	and	what	we	can	do	with	it.

There	is	a	lot	to	learn	about	it	and	I	will	provide	links	for	further	studies	after	we	conquer
the	biggest	barrier:	The	first	step	toward	AngularJS’	world.

	

http://icontemp.com/jpl/ang14/ang1.txt
http://icontemp.com/jpl/ang14/ang1.html
https://angularjs.org/

What	is	a	library?
A	library	is	a	collection	of	functions	which	are	useful	when	writing	web	applications.
They	can	be	called	when	needed.

What	is	a	framework?

A	framework	is	a	particular	implementation	of	a	web	application.	In	a	framework	your
code	fills	in	the	details.	The	framework	is	in	charge	and	it	calls	into	your	code	when	it
needs	something	“app”	specific.

What	is	a	directive?
A	directive	is	something	that	introduces	new	functionality	to	the	existing	standard	syntax.
It	expands	the	syntax’s	capability,	it’s	a	way	of	teaching	an	old	dog	new	tricks.	By
attaching	a	directive	to	an	existing	HTML	tag,	the	behavior	of	that	tag	changes	by	what	is
written	on	the	Angular’s	library	under	the	name	of	such	directive.	In	some	cases	directives
specify	global	behavior,	while	in	other	cases	they	only	affect	a	local	section,	such	as	a
block	of	programming	code.

AngularJS	teaches	the	browser	new	syntax	through	constructs	called	directives.

If	you	ever	built	web	applications	before,	Angular	will	be	a	total	new	paradigm.	If	you	are
new	to	web	design,	AngularJS	will	teach	you	modern	and	best	practices	and	consider
yourself	lucky	because	you	don’t	have	to	forget	the	old	in	order	to	learn	the	new.

Yes	there	is	a	price	to	pay	at	first,	you	lose	flexibility.	What	you	gain	in	return	is
consistency,	speed	of	development,	and	something	that	works	today	and	tomorrow.	You	no
longer	need	to	know	how	to	build	a	motor	in	order	to	drive	the	car,	but	the	more	you	know
the	better	you	will	take	advantage	of	what	the	car	has	to	offer.		AngularJS	is	not	an	easy
technology	to	learn,	but	if	you	have	made	it	up	to	here	in	this	book,	then	you	have	gotten
the	discipline	and	skill	to	learn	and	master	AngularJS.

	

What	does	ng-app	mean?
It	just	tells	the	browser	to	use	AngularJS	as	the	root	of	the	page,	or	as	the	root	of	the	DIV,
depending	where	we	insert	the	ng-app	tag.	In	this	way	everything	will	be	relative	to
AngularJS	which	provides	core	functionality	to	your	page.

In	this	example,	

<html	ng-app>

The	whole	page	uses	AngularJS	as	its	root.

In	this	example,	

<div	ng-app>

Only	this	DIV	uses	AngularJS	as	its	root.	The	rest	of	the	web	is	not	aware	of	AngularJS.

We	can	also	name	the	application	we	are	building	by	adding	the	app	name	to	the	directive:
<html	ng-app=“myApp”>

This	becomes	very	useful	as	you	will	see	soon.

Because	the	application	name	inclusion	on	the	ng-app	directive	is	very	common,	you	will
see	the	following	syntax	in	many	articles	out	there:

<html	ng-app=””>

That’s	another	way	of	writing	a	directive	with	no	name,	instead	of	just	writing	ng-app	by
itself

Note:	Do	not	include	a	name	unless	such	name	exists	as	a	Module	because
AngularJS	will	not	work.	We	haven’t	covered	Modules	yet	so,	for	now,	we	only	use
ng-app	by	itself,	and	it	is	perfectly	fine	to	do	so	even	in	production.

Note:	Notice	how	ng-app=””	does	not	have	a	blank	space	between	quotes.	A	blank
space	would	be	considered	a	name	(even	if	blank)	and	a	Module	under	that	name
would	have	to	be	created.		Again,	let’s	just	use	ng-app	by	itself	for	now.

	

No	more	DOM	manipulation	tasks
The	Document	Object	Module	or	DOM	is	the	map	layout	of	all	existing	HTML	tags	or
nodes.	In	order	to	write	a	result	of	a	JavaScript	program	in	a	web	page	we	need	to	address
the	DOM	location	where	we	want	to	implement	the	scripted	result.	This	has	always	been	a
problem	due	to	browser	inconstancies	and	implementation	errors.	Then	jQuery	was
invented.	jQuery	is	a	library	of	methods	used	to	address	the	DOM.	When	properly
implemented,		jQuery	works	great.	Unfortunately	the	usage	of	jQuery	has	become	a
problem	because	many	users	do	not	learn	JavaScript,	they	just	memorize	jQuery	solutions
and	jQuery	is	manually	driven	leading	to	implementation	errors.

AngularJS	has	come	to	the	rescue.	The	low	level	implementation	will	no	longer	be	done
by	the	programmer	him/herself;	it	will	be	done	by	AngularJS	based	of	the	programmer’s
expressive	desires	for	a	certain	outcome.	The	programmer	has	become	a	plumber;	it	plugs
in	the	correct	directive	for	the	desired	outcome.	This	will	assure	best	practices	and	error
free	implementations.	With	AngularJS	you	are	freed	from	low	level	manipulation	tasks
and	you	can	use	your	extra	time	to	think	of	solutions	instead	of	code	grammar	and	security
implementations.

Of	course,	if	you	know	jQuery	you	can	still	use	it	with	AngularJS,	but	I	suspect	that
AngularJS	will	develop	more	and	more	ways	to	avoid	some	of	the	jQuery	popular
implementations.

In	AngularJS,	the	only	place	where	an	application	touches	the	DOM	is	within	directives.	If
however	you	need	to	access	the	DOM	directly	you	can	still	do	it	through	the	writing	of
custom	directives	|	bit.ly/1tYW95Q

Ok,	we	now	know	a	bit	about	directives.	Let’s	review	the	meaning	of	expressions	so	that
we	can	expand	our	AngularJS	topic.

	

https://docs.angularjs.org/guide/directive

What	is	an	expression?
Do	you	remember	from	a	previous	chapter	what	expressions	were?

An	expression	is	something	JavaScript	evaluates	to	a	single	value.

2	+	5;	
//	evaluates	to	7

“tony”	
//	evaluates	to	tony

“hello”.toUpperCase();	
//	evaluates	to	“HELLO”

and	so	on…

If,	on	our	web	page	we	have	an	expression	that	needs	to	be	passed	into	AngularJS	in	order
to	be	evaluated	by	the	JavaScript	interpreter,	we	do	so	by	wrapping	it	in	double	braces:

{{	this	expression	}}

AngularJS	will	write	the	result	of	a	JavaScript	evaluation	exactly	where	the	braces	are
located	on	the	web	page.	This	is	not	an	AngularJS	invention;	it	has	been	implemented	by
other	libraries	away	before	AngularJS.	Just	take	a	quick	look	at	Mustache	|
bit.ly/1DxihbF.

Let’s	play	with	a	couple	of	examples.	It	will	not	be	anything	practical	but	it	serves	to
familiarize	us	with	passing	expressions	to	AngularJS.

Note:	You	still	can	use	jsbeautifier.org	as	an	editor	but	unfortunately	you	cannot	save	your
files	unless	you	paste	your	code	onto	another	plain	text	editor.	NOTEPAD	comes	to	mind.
If	you’ve	done	HTML	before	you	probably	already	have	a	favorite	editor	that	you	can	use.

1-						First	we	fetch	our	sample	HTML	script:	
raw	file

2-						Paste	it	onto	a	local	editor	like	for	example	Windows	NOTEPAD	(I	also	use	the	free
and	colorful	Programmer’s	Notepad	from	pnotepad.org).	Save	it	as	an	HTML	file.		I	will	call	my
file	ang2.htm.	Make	sure	you	create	a	new	folder	just	for	our	examples.

3-						To	test	it,	go	to	your	file	list	and	double	click	on	the	file.	Since	it	is	an	HTML	file	it
will	open	in	the	browser	and	you	should	see	the	word	hello.

4-						Now	that	we	know	the	file	works,	let’s	go	back	to	the	editor	and	add	an	expression.
Replace	the	word	hello	with	the	following	sentence	and	expression:

Convert	the	expression	tony	to	uppercase:	{{“tony”.toUpperCase();}}

5-						Save	the	file,	refresh	your	browser	or	reopen	the	file,	and	you	should	see	the	word
TONY	in	upper	case.

http://en.wikipedia.org/wiki/Mustache_%28template_system%29
http://icontemp.com/jpl/ang14/ang1.txt
http://www.pnotepad.org/

See	the	image	below	for	an	explanation:

Fig	24	see	raw	file	|	html

The	HTML	script	is	still	the	same	as	before.	We	only	replaced	the	word	hello	with	the
sentence	seen	on	line	11,	followed	by	{{“tony”.toUpperCase();}}.

Anything	written	inside	of	the	double	curly	braces	is	to	be	evaluated	by	JavaScript.

Do	you	see	yourself	adding	JavaScript	evaluation	results	to	your	existent	HTML	pages?

Even	if	you	don’t	make	the	whole	page	an	AngularJS	app,	you	could	still	reserve	one
paragraph	or	one	DIV	for	some	output	you	may	need	to	ask	AngularJS	to	process.

On	the	next	image	we	have	the	same	script	but	this	time	I	only	reserved	one	little	space
inside	of	a	DIV	for	AngularJS	processing,	instead	of	declaring	the	whole	web	page	as	an
AngularJS	app:

http://icontemp.com/jpl/ang14/ang2.txt
http://icontemp.com/jpl/ang14/ang2.html

Fig	25	see	raw	file	|	html

From	line	8	through	12	I	declared	a	DIV	and	assigned	it	to	AngularJS	by	including	the
directive	ng-app.

On	line	10,	I	wrote	a	message	in	plain	text,	and	then	I	included	10	+	9	inside	of	the	double
braces.	This	will	instruct	AngularJS	to	have	this	expression	evaluated	by	JavaScript.

I	didn’t	write	any	JavaScript	code.	AngularJS	took	care	of	the	internal	process.	This	is
programming	at	a	higher	level	of	abstraction.	Do	we	still	need	to	know	JavaScript?	Of
course	we	do!	Your	knowledge	of	JavaScript	will	become	necessary	when	we	go	beyond
this	simple	testing.

Do	I	always	have	to	include	my	expressions	on	my	web	page?

No,	we	are	doing	it	just	for	testing	and	understanding	purposes	before	introducing	the
module	and	controller.	But	yes,	you	can	always	do	this	in	production	and	it	should	work
for	simple	stuff.

http://icontemp.com/jpl/ang14/ang4.txt
http://icontemp.com/jpl/ang14/ang4.html

ng-init
Let’s	introduce	another	directive	so	that	we	have	more	tools	to	play	with.

An	ng-app	directive	initializes	the	AngularJS	application.

An	ng-init	directive	initializes	some	data	to	be	used	on	the	application.

Let’s	see	how	ng-init	works	in	its	simplest	form:

1-						Open	your	basic	HTML	script	and	modify	the	HTML	tag	to	contain	a	second
directive	as	follows:

<html	ng-app	ng-init=”city=‘Harrisburg’;	state=‘Pennsylvania’”>

2-						Then	in	the	body	write	the	following:
Do	you	know	{{city}}	is	the	capital	of	{{state}}?

3-						Save	it	as	ang5.html	and	test	it.

You	should	see	the	following	sentence	on	your	browser	display:
Do	you	know	Harrisburg	is	the	capital	of	Pennsylvania?

Fig	26	raw	file	|	html

Do	you	see	what	happened?

We	initialized	two	variables	by	using	ng-init:	city	and	state,	and	then	we	were	able	to
process	them	via	two	expression	tags	on	the	HTML	output.	There	was	no	need	to	address
the	DOM	with	complicated	scripting.	There	are	better	ways	to	do	this	but	right	now	the
purpose	is	to	become	familiar	with	the	AngularJS’	basic	tools.

By	initializing	the	arguments	city	and	state	on	the	HTML	tag	they	became	available	to	use
on	the	web	page.	However	these	variables	are	normally	placed	on	a	separate	sheet.

ng-bind
Just	to	illustrate	the	purpose	of	the	double	curly	braces,	let’s	write	the	same	script	in	a
different	way:	by	using	a	directive	called	ng-bind.

6-						I’m	only	doing	it	for	variable	city	and	not	for	variable	state	just	to	show	how	both
will	work:

http://icontemp.com/jpl/ang14/ang5.txt
http://icontemp.com/jpl/ang14/ang5.html

Do	you	know		is	the	capital	of
{{state}}?

And	the	display	will	be:

Do	you	know	Harrisburg	is	the	capital	of	Pennsylvania?

Actually,	AngularJS	always	replaces	the	curly	braces	with	ng-bind	in	its	internal	process.
If	you	don’t	mind	writing	the	extra	SPAN	tag	this	actually	works	a	bit	faster.	When	you
refresh	the	page	(CTRL	f5	on	Windows)	and	focus	on	the	output,	you	will	see	that
Harrisburg	shows	up	immediately,	whereas	Pennsylvania	will	first	show	the	braces	and
then	it	converts	to	the	proper	word.	It	happens	very	fast	but	you	might	be	able	to	catch	it.

What	does	ng-bind	do?

It	binds	data	source	to	target.	No	need	to	play	the	getElementById		DOM	game	anymore.

There	is	a	lot	more	to	know	about	AngularJS	binding	but	we	need	to	go	slow	and	just
grasp	enough	to	understand	what	comes	next.	It	is	like	that	famous	expression	“Rome
wasn’t	built	in	a	day”.

https://en.wikipedia.org/wiki/Rome_wasn%27t_built_in_a_day

ng-cloak:	Avoiding	display	flickering
When	using	the	curly	braces	{{	}}	instead	of		you	may
notice	a	quick	flicker	on	the	display	because	the	curly	braces	have	not	yet	been	evaluated
by	AngularJS.

If	that	becomes	a	problem	for	you,	include	the	link	to	the	library	in	the	HEAD	section
instead	of	the	BODY	section.	This	way,	the	curly	braces	will	be	evaluated	before	the
browser	displays	the	document.	Including	the	link	in	the	head	may	have	some	side	effects,
depending	on	the	complexity	of	your	page,	hence	the	reason	why	more	and	more
developers	are	moving	library	links	to	the	bottom	of	the	page.

If	you	are	embedding	AngularJS	on	a	page	but	you	have	no	access	to	the	HEAD	script,
then	you	may	use	ng-bind	instead	of	the	curly	braces,	or	you	could	use	ng-cloak.

Since	ng-cloak	involves	CSS,	I	am	not	going	to	describe	here.	Please	check	the	following
link	for	a	full	description	of	this	implementation:
docs.angularjs.org/api/ng/directive/ngCloak.	|	bit.ly/1pcTqjF

	

https://docs.angularjs.org/api/ng/directive/ngCloak

5.4	Lab	work	14

Part	A:	Initializing	an	object	and	outputting	its	contents	in	a	paragraph
Speaking	of	binding,	let’s	“bind”	to	memory	all	we	have	covered	so	far	by	doing	a	few
exercises.

This	is	actually	a	familiar	exercise	from	our	JavaScript	lab	sessions.	Here	we	are	going	to
initialize	an	object	called	colors.	The	object	contains	the	following	properties:

a)							

“green”:	“green	is	the	color	of	balance	and	growth.”,
“blue”:	“blue	is	the	color	of	trust	and	peace.”,	
“indigo”:	“indigo	is	the	color	of	intuition”

Then	we	will	get	the	following	display	on	the	browser:

b)							

The	color	green	is	the	color	of	balance	and	growth.
The	color	blue	is	the	color	of	trust	and	peace.
The	color	indigo	is	the	color	of	intuition.

The	directives	we	are	going	to	use	are:

ng-app,	ng-init=’	‘	and	the	double	brace	{{	}}	expressions	where	the	output	display
evaluation	will	take	place.

Notice	how	ng-ini	is	using	single	quotes.	This	is	because	the	object	colors	we	are	going	to
insert	inside	of	the	quotes	have	in	itself	double	quotes.	By	using	single	quotes	for	the	init
we	assure	that	JavaScript	does	not	get	confused	and	abort	the	expression	prematurely.

Please	refer	to	the	following	link	if	you	want	to	copy	the	opening	HTML	tag	with	both	ng-
app	and	ng-init	plus	the	object	code	block:	this	raw	

Try	not	to	copy/paste	it	before	you	attempt	to	create	your	own	version	of	it,	or	take	just	a
quick	look	to	refresh	your	mind	and	then	try	doing	it	yourself.

Let’s	start.	(On	the	next	page	please	find	step	by	step	instructions).

	

http://icontemp.com/jpl/ang14/ang7b.txt

1-						Create	a	basic	HTML	page	(as	we’ve	done	before).
See	the	starter	raw	file		
If	you	are	not	using	the	starter	raw	file	make	sure	you	do	the	following:
a)	In	the	HTML	opening	tag	insert	a	directive	to	allow	AngularJS	to	manage	your
web	page.
b)	On	the	bottom	of	the	BODY	container	insert	the	URL	for	the	AngularJS	library.

2-						After	the	ng-app	directive,	but	still	inside	of	the	HTML	opening	tag,	
add	a	ng-init=’	‘
inside	of	the	‘	‘	insert	an	object	named	colors	with	the	properties	described	on	the
previous	page	under	exhibit	a.	
For	your	convenience	I	have	included	a	file	of	the	raw	text	to	be	inserted	as	an
object	from	which	you	can	copy/paste:	
raw	file

3-						In	the	BODY	section	add	three	paragraphs,	one	for	each	color.
See	the	first	sample	for	the	color	green	below:
<p>The	color	{{colors.green}}</p>

4-						Save	it	as	ang7.html	or	any	other	name	you	prefer.	
Open	it	on	your	browser.	
It	should	look	like	this:	html

5-						A	whole	script	and	further	explanation	can	also	be	seen	at	the	
forum	|	bit.ly/1rk2jLx

http://icontemp.com/jpl/ang14/ang1.txt
http://icontemp.com/jpl/ang14/ang7b.txt
http://icontemp.com/jpl/ang14/ang7.html
http://jsplain.com/javascript/index.php/Thread/36-Lab-14a

Part	B:	Initializing	variables	and	outputting	a	calculation
In	this	new	exercise	we	want	to	initialize	two	variables,	
length=9	and	width=3	
and	then	output	the	following	paragraph:

If	the	length	is	9	and	the	width	is	3,	the	perimeter	is	24.

Please	remember	that	where	it	says	9	and	3,	the	dynamic	markup	should	be	written	like	
{{length}}	and	{{width}}	
which	is	later	replaced	by	the	value	assigned	to	each	variable.

As	for	the	total	24,	it	should	be	the	perimeter	of	the	rectangle.	You	can	use	your	own
formula.	
I	am	going	to	use	length	*	2	+	width	*	2	as	my	expression.

	After	finishing	your	script	please	compare	it	with	mine	here:
	forum	|	bit.ly/1rk2KW8	|	raw	file	|	html

	

END	OF	LAB

	

http://jsplain.com/javascript/index.php/Thread/37-Lab-14b
http://icontemp.com/jpl/ang14/ang8.txt
http://icontemp.com/jpl/ang14/ang8.html

5.5	Going	a	step	further	into	modularity

Assigning	a	module	name	to	ng-app
Modular	programming	is	a	design	technique	that	emphasizes	splitting	the	functionality	of
a	program	into	independent	modules	and	in	such	a	way	that	each	module	contains
everything	necessary	to	execute	only	one	aspect	of	the	desired	outcome.

A	module	is	a	container	for	the	different	parts	of	an	app	including	related	controllers,
services,	filters	and	directives.

Your	web	page	app	is	a	module.

In	our	web	page	when	we	declared	ng-app	on	the	HTML	tag,	we	are	actually	creating	a
module	(ours	has	been	an	unnamed	module).	The	reason	why	we	have	not	given	a	name	to
our	test	web	page	(or	module)	is	because,	once	named,	it	stops	working	until	we
configured	the	module	interface,	which	means	to	officially	register	this	module	with
AngularJS	by	writing	a	declaration	inside	of	a	<script></script>	block.

That’s	why	we	kept	our	AngularJS	declaration	as	simple	as	possible	by	only	declaring:
<html	ng-app>

However,	it	is	a	common	best	practice	to	name	the	web	page	by	giving	it	a	module	name
like	for	example:	
<html	ng-app=“nameOfTheModule”>

nameOfTheModule	is	the	identity	of	this	web	page	in	reference	to	AngularJS	and	you	use
any	name	you	want.

Besides	being	a	best	practice	to	name	a	module,	it	is	actually	mandatory	if	you	make	your
page	more	complex	beyond	what	we	have	done	so	far.	Of	course,	for	quick	testing
purposes	we	can	just	create	an	unnamed	ng-app	like	this:
<html	ng-app=””>

Be	careful	here,	if	you	use	quotes	but	no	name,	make	sure	there	is	no	space	between
quotes	because	that	space	will	confuse	AngularJS	to	think	the	module	is	named	and	you
will	get	an	error	because	there	is	no	such	name	on	file.

My	favorite	test	syntax	is	still	ng-app	(or	data-ng-app	for	HTML5	validation
compatibilities).	I	only	use	the	extension	when	I	really	have	a	Module	name	to	include,
which	is	what	we	are	going	to	do	next.

Configuring	a	Module	interface
Once	we	assign	a	name	to	our	ng-app	we	have	to	configure	the	Module.

Take	for	example	the	last	exercise	we	did,	(Part	B:	Initializing	variables	and	outputting
a	calculation).	This	exercise	is	simple	enough	to	help	us	understand	how	to	configure	the
app	name	module:

Fig	27	(no	app	module	name	yet)

In	the	picture	above,	the	ng-app	has	no	name	and	it	works	just	fine.

If	however	we	insert	a	name	to	the	<html	ng-app>	such	as	for	example

<html	ng-app=“myFirstAppModule”>

the	page	will	stop	working	until	we	configure	the	Module	interface.

One	way	to	configure	the	app	module	is	to	open	a	new	<script></script>	container
just	below	the	link	to	AngularJS	at	the	bottom	of	the	BODY	of	your	HTML	page.

In	the	script	container	we	then	assign	a	function	call	to	some	variable	(like	for	example	x).
This	particular	function	or	method	comes	from	the	Angular	library	and	its	name	is
module.	Example:

var	x	=	angular.module();

An	image	of	this	assignment	can	be	seen	below	but	first	let	me	just	finish	the	explanation
of	this	assignment.

After	we	assign	the	module()	to	variable	x	we	then	include	the	name	of	the	app	as	the	first
argument	of	the	method	module().	The	second	argument	is	an	empty	array	and	it	should
look	as	follows:

var	x	=	angular.module(“myFirstAppModule”,[]);

Traditionally	the	x	variable	is	named	after	the	module	and	we	would	have	two
myFirstAppModule	words	in	this	declaration	(a	repetition	of	these	terms	would	not
conflict	since	they	are	on	different	areas	of	the	code	but	it	would	help	knowing	what	the
variable	x	was	used	for).	However,	since	the	name	match	is	not	mandatory	I	have	called	it
x	in	order	to	purposely	illustrate	where	the	module	name	goes	and	the	fact	that	it	has
nothing	to	do	with	the	variable.

This	declaration	is	good	enough	to	bring	our	ng-app	back	to	life	for	now.

Please	study	the	following	image	carefully.

Fig	28	(after	giving	ng-app	a	name	we	then	register	the	name	as	a	module)

Try	it	yourself.	Get	your	original	file	(original	raw	file),	add	a	name	to	your	ng-app	and
register	the	module	with	Angular	by	writing	the	declaration	at	the	bottom	of	the	BODY.
Notice	how	the	name	of	the	module	is	introduced	on	the	function	module()	within	quotes.
It	is	passed	in	as	a	string.

If	you	need	help	please	look	at	my	own	file	here:
final	raw	file.

Further	explanation:

Look	at	the	variable	x	declaration.	x	gets	assigned	to	a	function	that	belongs	to	object
angular.	This	function	which	is	called	module()	takes	two	arguments.	The	first	argument
is	a	string	containing	the	name	of	the	module	we	are	declaring.	Then,	separated	by	a
comma,	we	have	an	empty	array.		They	both	need	to	be	declared.

The	purpose	of	the	array	is	to	include	future	dependencies	for	the	module	being	created.
Sometimes	we	want	to	use	other	sub	modules	in	order	to	enhance	this	particular	module.

http://icontemp.com/jpl/ang14/ang8.txt
http://icontemp.com/jpl/ang14/ang8b.txt

Since	using	other	related	modules	is	very	common,	the	second	argument	was	hardwired
and	it	needs	to	be	included	when	we	declare	a	new	module.	In	our	case	we	just	write	the
array	as	an	empty	array	and	that	will	work	for	us.	If	however	you	skip	the	[],	the	module
will	not	work.	We	must	place	those	two	brackets	in	there.

5.6	Preparing	to	separate	data	from	presentation

Creating	a	controller
Congratulations,	we	are	moving	steadily	into	a	practical	presentation	of	AngularJS.	Please
be	patient,	we’re	almost	done.

Up	to	this	point	we	have	been	initializing	dynamic	data	with	ng-init.	This	may	come
handy	sometimes	but	it	is	not	an	ideal	implementation.

Fig	29	(ng-init	will	be	replaced	by	a	controller	at	the	bottom	of	the	page)

We	need	to	move	towards	a	separation	of	files	residing	in	properly	labeled	folders,	but	we
are	not	there	yet.	I	mean,	we	should	be	able	to	visualize	the	whole	picture	in	just	one	page
before	we	start	splitting	the	code	into	different	files,	and	that’s	what	we	are	doing	in	this
course:	learning	the	basic	parts	of	an	Angular	app.	If	we	split	code	into	folders	at	this	level
of	understanding	it	just	adds	unnecessary	complication	and	we	do	not	want	to	go	there
right	now.

What	we’re	going	to	do	next	is	to	stop	writing	our	data	on	the	top	of	the	page	with	ng-init
and	move	the	data	object	into	the	bottom	of	the	BODY	section	(inside	of	the	same	script
we	inserted	our	module	declaration).	Our	JavaScript	code	will	be	written	inside	of	a
controller,	which	is	a	special	AngularJS	function,	(a	method	or	property	of	the	module	we
have	just	created).

So,	right	now	we	are	going	to	split	the	body	of	the	web	page	into	the	following	conceptual
areas:

a)						The	standard	HTML	markup	and	its	regular	data,	the	one	that	does	not	need	any
influence	from	AngularJS.	This	data	could	actually	be	anywhere	across	the	page
because	dynamic	data	will	be	wrapped	into	code	blocks	as	you	will	see.

b)						The	area	where	we	want	AngularJS	to	display	some	dynamic	data.	This	area	is
known	as	a	view.	AngularJS	injects	into	the	page	a	number	of	mini	dynamic	views
that	blend	along	with	the	rest	of	the	HTML	presentation.	It	could	be	just	one	view,	or
many	views	depending	on	what	you	really	want	to	do.	Think	of	it	as	a	script	that	we
embed	into	the	page,	just	like	we	do	with	pictures	or	with	videos	from	YouTube.

c)						The	area	where	we	create	JavaScript	code.	We	call	this	area	a	controller.	The
area	is	surrounded	by	the	tag	<script></script>	just	like	the	link	to	the
framework	is.	The	idea	of	the	controller	at	this	point	is	to	store	data	and
functionality	like	we	did	with	ng-init.	The	controller	is	a	function	and	inside	of	the
function	we	have	our	dynamic	data.	Remember,	we	use	functions	to	store	code	that
can	run	when	called	upon.

We	are	going	to	remove	the	ng-init	from	our	previous	exercise	and	insert	the	data	into	the
controller	but	first	let’s	look	at	the	basic	structure	of	a	controller.	Let’s	start	with	the	image
of	an	empty	controller:

Fig	30	(controller	is	a	child	of	module	x.	JavaScript	code	goes	in	the	controller)

The	controller	function	is	a	child	of	module	which	in	our	example	is	assigned	to	variable	x
in	order	to	make	it	easy	to	implement	the	controller	(x	becomes	a	shortcut	to	the	whole
module	declaration).	So,	the	module	myFirstAppModule	is	assigned	to	x	and	from	variable
x	we	extract	a	controller	[line	3].	Inside	of	the	controller	method	we	have	two
parameters.	The	first	parameter	is	the	name	we	are	giving	to	the	controller	and	in	a	string
type	format	(I’m	calling	it	‘myFirstController’);	the	second	parameter	is	an	AngularJS
object	called	$scope.	$scope	is	an	Angular	object	that	keeps	track	of	all	data	and
properties	we	are	going	to	send	to	the	web	page	as	we	will	see	shortly.	Notice	how	all	this
code	is	inside	of	the	SCRIPT	tag	[lines	1	and	7]	where	the	ng-
app=“myFirstAppModule”	module	was	declared.

AngularJS	magically	makes	available	to	the	HTML	view	(the	view	assigned	to	this
controller)	whatever	code	and	data	we	write	inside	of	the	controller	and	assign	to	object

$scope.

We	could	say	that	$scope	is	the	glue	between	the	controller	and	the	page	view.	The
controller	wants	nothing	to	do	with	the	page	view	because	it	is	supposed	to	be	generically
written.	I	mean,	we	could	have	several	different	views	using	the	same	data	from	the
controller:	one	view	for	a	desktop	screen,	another	view	for	a	mobile	phone,	etc.	It	is	up	to
$scope	to	interface	with	the	external	world	of	views	and	AngularJS	provides	such
functionality	in	the	background.

Before	we	do	the	exercise	let	me	summarize	some	concepts	to	help	you	further	understand
what	is	going	on.

$scope
$scope	is	an	object	that	maps	the	whole	page	(the	DOM)	and	creates	properties	that	can	be
addressed.	In	a	sense	it	is	like	the	DOM	in	parallel.	Later	you	will	see	that	we	add	$scope
to	our	controller	and	then	can	add	variables	and	functions	into	$scope	which	in	turn	will
be	available	to	the	web	page	app.	(Note:	The	$	looks	like	an	“S”,	right?	that	reminds	us
that	$scope	is	an	AngularJS	service).

View
View	is	the	area	of	the	application	that	will	be	placed	on	display.	Just	like	images,	videos
or	other	embedded	text,	we	could	have	several	views	on	one	page	and	they	may	be
hardwired	or	linked	from	a	different	source.	Contrary	to	the	HTML	standard	presentation,
view	data	is	not	persistent	which	means	that	it	varies	based	on	the	logic	provided	by
$scope	(coming	from	the	assigned	controller),	or	the	behavior	of	a	user	interacting	with
the	page.		A	view	is	created	by	standard	HTML	elements	in	combination	with	AngularJS’
enhancements	from	data	binding	and	directives	and	curly	braces	{{}}.

Any	complex	logic	should	be	placed	in	the	controller	and	let	$scope	manage	the
feeding	of	this	logic	into	the	view.	This	does	not	mean	that	a	view	can’t	have	any
logic;	simple	expressions	can	be	placed	in	the	view	as	we	have	done	before	during
our	first	exercises.

Controller
The	controller	is	where	we	program	the	JavaScript	code	to	be	executed	when	the	page
runs.

The	controller’s	purpose	is	to	provide	the	logic	required	by	AngularJS	in	order	to	initialize
the	object	$scope,	which	is	the	object	that	maps	the	webpage	like	a	DOM.

Before	using	a	controller	with	$scope,	we	were	using	a	simple	ng-init	to	save	and
initialize	our	data	but	that	was	a	very	limited	implementation.	$scope	is	a	more	powerful
object	and	the	most	appropriate	way	to	declare	our	properties	and	methods.

This	next	image	shows	how	and	where	we	implement	the	data	we	previously	assigned	to
ng-init:

Fig	31

As	you	can	see,	all	the	JavaScript	code	is	treated	as	a	property	child	of	$scope.	AngularJS
will	grab	both	length	and	width	and	saves	them	as	part	of	$scope	(remember,	$scope	will
manage	the	DOM	which	is	how	and	where	things	are	displayed).

There	is	only	one	thing	left.	We	now	have	an	app	name	and	we	have	a	controller	with
some	JavaScript	variables	to	be	processed.	But	how	does	AngularJS	know	where	to
display	those	variables	in	the	paragraph	when	we	open	the	page?

As	a	reminder,	this	is	what	we	had	in	the	HTML	BODY	of	the	old	exercise:

Fig	32

The	answer	is,	we	should	wrap	the	whole	paragraph	in	a	DIV	and	assign	the	DIV	to	the
controller	which	is	called	myFirstController:

Fig	33	(we	wrap	the	paragraph	in	a	div	assigned	to	myFirstController)

Your	turn:	Add	a	controller	to	your	exercise
At	this	time	let’s	modify	our	previous	exercise	to	add	a	controller	to	it.

Here’s	the	original	raw	file	as	we	left	it	after	adding	the	module	myFirstAppModule.

1-						Add	the	controller	to	the	script	container,	one	line	below	the	module	declaration	as
seen	on	figure	30.

2-						Assign	length	and	width	to	$scope	as	seen	on	figure	31	and	then	remove	the	ng-
init	from	your	page.

3-						Wrap	your	paragraph	in	a	DIV	and	assign	the	DIV	to	the	controller	as	seen	on
figure	33.

4-						Test	your	HTML	Angular	app.	Here’s	my	own	version	of	it:
raw	file	|	html.

We	now	have	a	complete	simple	Angular	app.

Alternate	way	to	code	length	and	width

Another	way	to	include	the	length	and	width	on	our	exercise	is	by	making	them	properties
of	some	object	like	for	example	myPerimeter	and	then	write	them	inside	of	the	controller
as	follows:

$scope.myPerimeter	=	{
	“length”:	9,
	“width”:	3
};

Instead	of	using	$scope.length	=9;	and	$scope.width	=3;

In	the	HTML	view	we	would	write	them	as
{{myPerimeter	.length}},{{	myPerimeter	.width}}
	and	the	formula:	{{myPerimeter.length	*	2	+	myPerimeter.width	*
2}}

Let’s	keep	practicing	by	creating	a	few	cool	mini	projects.
	

http://icontemp.com/jpl/ang14/ang8b.txt
http://icontemp.com/jpl/ang14/ang8c.txt
http://icontemp.com/jpl/ang14/ang8c.html

Create	a	program	to	convert	Fahrenheit	to	Celsius
We	are	not	going	to	create	this	program	from	scratch	because	we	have	done	earlier	on	Lab
work	6	when	learning	JavaScript.

See	forum	|	bit.ly/1Dp2SKk
raw	file	|	bit.ly/1ruKrzi.

What	we	are	going	to	do	is	to	create	an	app	to	display	the	result	on	an	HTML	page.

The	idea	is	to	practice	setting	up	AngularJS	on	the	page	as	well	as	practicing	ways	to
include	code	implementations	in	the	controller.

Here’s	the	recipe	menu	for	my	sample:

Module	name:	myAppModule

Controller’s	name:	myController

Variable	to	display	the	result:	result	(hint:	it	will	be	$scope.result	in	the	controller).

Sentence	to	be	dynamically	displayed:

100	degrees	Fahrenheit	is	37.778	Celsius.

NOTE:	make	sure	you	change	the	original	f2c(212)	to	f2c(100)	when	calling	the	function.

Are	you	ready	for	the	challenge?

Please	do	the	exercise	yourself.	Here’s	a	summarized	guideline:

1-						Create	your	HTML	skeleton.	
Here’s	our	starter	file:	raw	file.

2-						Link	to	AngularJS	(if	you’re	using	the	starter	file	this	is	already	done).

3-						Add	the	ng-app	directive	(already	done)	and	name	it	myAppModule.

4-						Below	the	link	to	AngularJS	add	a	new	Script	container	and	declare	your	module
in	there.	(I’m	assigning	mine	to	variable	x).

5-						Add	your	controller	below	the	module	declaration.	The	name	of	the	controller	is
myController	and	it	belongs	to	variable	x.	Also	in	its	parameters	it	shows	a	string
with	the	name	of	the	controller	and	after	separating	with	a	comma,	a	second
parameter	introduces	a	function	which	passes	in	$scope.

6-						Add	the	Fahrenheit	to	Celsius	conversion	function	to	the	controller.
Here	we	have	a	few	alternatives.	Let	me	explain:

a)						First	get	a	copy	of	the	original	JavaScript	script	here:	raw	file.

b)						We	need	to	replace	console.log	with	return	because	we	are	catching	the	result	and
sending	it	to	$scope	so	that	it	can	be	displayed.

c)						Now	we	have	two	options	(see	steps	c	through	f):	
We	could	assign	function	f2c	as	a	property	of	$scope	this	way:
$scope.f2c	=	function(f){return	((f-32)	*	5	/	9);}

http://jsplain.com/javascript/index.php/Thread/13-Lab-6/
http://icontemp.com/jpl/f2c.txt
http://icontemp.com/jpl/ang14/ang1.txt
http://icontemp.com/jpl/f2c.txt

d)					Then,	when	we	get	to	the	HTML	page	view,	we	can	implement	the	result	this	way:
{{f2c(100)}}

e)						OR	(and	this	is	a	better	way	because	it	avoids	using	JavaScript	in	the	HTML
view),	we	can	insert	the	original	function	inside	of	the	controller	(except	for	the
console.log),	and	then	assign	to	$scope	a	variable	such	as	for	example	result,	with
the	result	of	a	function	call.
x.controller(‘myController’,	function($scope){
function	f2c(f){
	return	(f-32)	*	5	/	9;
}
$scope.result	=	f2c(100);

f)							If	we	use	option	(e),	we	then	apply	variable	result	in	the	view	like	this:
{{result}}

7-						In	the	BODY	of	the	HTML	page	create	a	view	by	adding	a	DIV	container.
Link	the	opening	DIV	tag	to	ng-controller=“myController”

8-						Inside	of	the	DIV	container	add	the	paragraph	with	the	following	message:
<p>100	degrees	Fahrenheit	is	{{YOUR	CODE	HERE}}	Celsius.</p>

9-						Where	it	says	YOUR	CODE	HERE,	replace	it	with	option	(d)	or	option	(f)	based
on	the	way	you	programmed	your	controller’s	JavaScript	as	stated	in	(c)	or	(e).

10-		Save	and	test	your	app.	The	display	result	should	be
100	degrees	Fahrenheit	is	37.77777777777778	Celsius

When	you’re	done,	compare	it	with	my	result	here:
forum	|	bit.ly/1ruKCKT
raw	file	|	
html	|

http://jsplain.com/javascript/index.php/Thread/42-Lab-15c/
http://icontemp.com/jpl/ang14/angc3m.txt
http://icontemp.com/jpl/ang14/angc3m.html

Suggestion:	Try	to	convert	some	of	the	other	JavaScript	exercises	into	Angular.	You	may
not	get	a	perfect	solution	but	you	will	get	plenty	of	practice.

	

Placing	the	controller	on	a	separate	file
Now	that	we	have	logically	separated	the	controller	and	view	units	(both	part	of	the
module),	we	can	safely	place	the	controller	and	module	configuration	on	a	separate	file.
This	is	by	no	means	the	end	of	the	story,	perhaps	just	the	beginning.

On	simple	applications	we	can	just	leave	it	on	the	same	page	as	we	have	done	earlier.
However,	as	versatile	developers	we	need	to	practice	separation	of	concerns	in	order	to	get
ready	for	bigger	things.

It’s	pretty	easy.	Let’s	take	for	example	the	exercise	we	just	finished	(Fahrenheit	to
Celsius):
	raw	file	|

1-						Save	it	under	a	different	name,	like	for	example	f2cfinal.html

Now	we	can	edit	the	file:

2-						Copy	and	cut	(delete)	all	the	contents	inside	of	the	<script></script>	where
the	controller	and	module	configuration	are.	Just	leave	the	SCRIPT	tags	by
themselves	so	that	we	can	add	a	link	to	the	separate	file.

3-						Paste	the	contents	on	a	new	file	and	save	it	as	mycontroller.js	(or	any	other	name).
Notice	the	.js	extension.	Make	sure	the	file	is	on	the	same	folder	as	f2cfinal.html.

4-						Go	back	to	f2cfinal.html	and	in	the	opening	SCRIPT	tag	that	belonged	to	the
controller,	type	the	path	to	the	new	file	which	should	be	the	following	including	the
script	tags:	
<script	src=“mycontroller.js”></script>

5-						Save	and	test.	
Compare	with	my	result	here:	
raw	file	|	
.js	file	|
html	|

Additional	information
For	updates	and	further	exploration	of	controllers	(aside	from	what	is	covered	in	this
eBook)	please	visit	the	following	post	at	JSplain.com:	Notes	on	controllers.

http://icontemp.com/jpl/ang14/angc3m.txt
http://icontemp.com/jpl/ang14/f2cfinal.txt
http://icontemp.com/jpl/ang14/mycontroller.js
http://icontemp.com/jpl/ang14/angc3m.html
http://jsplain.com/javascript/index.php/Thread/145-AngularJs-controllers-things-we-should-know/

The	ng-model
AngularJS	can	sometimes	be	really	simple.

Please	take	a	look	at	the	following	script	based	on	the	JavaScript	exercise	we	did	on	Part
C:

Fahrenheit	to	Celsius	/	to	Fahrenheit	conversion	|	bit.ly/ZQgTRW

Do	you	still	remember	how	we	did	the	JavaScript	raw	version	of	this	algorithm?

To	refresh	your	mind	see	the	third	example	shown	in	the	forum:	
Lab	6	|	bit.ly/1Dp2SKk

Now,	back	to	the	first	link	on	the	top,	it	looks	pretty	cool	and	it	is	being	displayed	on	a
web	page.	When	we	change	the	value	inside	of	the	text	box,	it	converts	the	value	to
Celsius	or	Fahrenheit	automatically.

Let’s	take	a	look	at	the	script	to	see	what	it	was	done	to	it.	It	is	much	simpler	than	our
original	JavaScript	version	from	lab	6.

In	the	forum	you	will	find	a	live	demo	and	the	script	right	below	it.	Please	read	the
explanation	for	each	line	of	code:

forum	board	|	bit.ly/ZQieYU.

After	reading	the	description	in	the	forum	and	play	with	the	demo	a	bit,	please	return	back
here	for	some	lab	work.	We	are	going	to	do	this	project	in	less	than	10	minutes,	promise!

	

http://icontemp.com/jpl/conversions.html
http://jsplain.com/javascript/index.php/Thread/13-Lab-6/
http://jsplain.com/javascript/index.php/Thread/45-Fahrenheit-to-Celsius-ng-model

Lab	work,	creating	the	conversion	script
Did	you	notice	there	is	no	controller	or	module	declared	for	the	temperature	conversion
program?

AngularJS	can	many	times	save	us	hours	of	work	and	it	is	getting	better	as	they	improve
their	game.	For	the	job	at	hand	all	we	need	are	a	few	tools	(and	an	introduction	to	the	ng-
model	directive):

a)						A	link	to	the	library

b)						An	ng-app	directive

c)						An	ng-model	directive.

d)					A	few	double	curly	braces

e)						And	two	HTML	input	boxes.

Ready	to	begin?

1-						Let’s	get	our	basic	HTML	script:		
raw	file	|

2-						Save	it	as	conversions.html

3-						In	the	BODY,	replace	hello	with	one	DIV	containing	two	other	DIVs	inside	it:
<div>
<div>	</div>
<div>	</div>
</div>

4-						If	you	are	not	using	my	given	starter	file,	make	sure	to	include	an	ng-app	directive
on	your	opening	HTML	tag	(or	on	a	DIV	that	wraps	the	view).

5-						On	the	top	most	opening	DIV	tag	from	step	3,	declare	an	ng-init	to	initialize	two
variable	as	shown	below		(the	init	is	because	we	are	not	going	to	use	a	controller	in
this	project):
<div	ng-init=“f=32;c=0”>

http://icontemp.com/jpl/ang14/ang1.txt

At	this	point	we	should	have	the	following	on	the	HTML	page:

a)						The	link	to	AngularJS’	library	(it	came	with	the	skeleton	script),

b)						The	ng-app	directive	somewhere	on	the	page,

c)						And	the	ng-init	to	introduce	variables	f	and	c	to	AngularJS.

6-						Just	for	testing	purposes	let’s	write	some	curly	braces	inside	of	the	DIV	container
like	this	(any	of	the	DIV	containers):
{{f	-c	+	f}}		
Then	save	it	and	open	it	on	your	browser.

If	you	see	this:	{{f	-c	+	f}}	on	display,	you	have	a	problem.	Inspect	your	code	to	see
what	is	missing	or	misspelled.

If	you	see	the	number	64	displayed,	then	your	script	is	working	so	far.

Once	your	script	is	working	properly,	remove	the	curly	braces	and	continue	the	project.
Early	testing	is	always	a	good	idea	in	order	to	save	loads	of	time	and	headaches	later.	We
should	test	in	gradual	stages	before	we	move	on	to	the	next	implementation	phase.	This
way	we	always	know	where	the	problem	might	reside.

7-						The	next	step	is	to	design	the	first	input	box.	
Inside	of	the	container	created	by	the	second	pair	of	DIVs,	
write	an	input	box	of	type	number.		
(About	input	boxes:	HTML	input	|	bit.ly/1qy2lvA)
Also	include	a	description	on	the	left	side.	Here’s	my	example:
Fahrenheit	to	Celsius:	<input	type=“number”>

NOTE:	You	may	be	accustomed	to	use	self-closing	tags	like	this	/>.	It	works	either	way.
With	the	advent	of	HTML5	I	prefer	to	write	without	self-closing.

	

http://en.wikipedia.org/wiki/Form_%28HTML%29

8-						Great,	now	let’s	add	an	ng-model	to	the	input	box	and	assign	it	to	variable	f:
Fahrenheit	to	Celsius:	<input	type=“number”	ng-model=“f”>

If	you	have	read	my	explanation	about	ng-model	on	the	forum	demo	you	will	know	that
the	directive	ng-model	is	an	object	that	saves	the	data	inputted	by	the	user,	and	links	it	(or
binds	it)	to	the	variable	assigned	to	this	ng-model,	the		=”someName”	part	of	this
declaration	(sort	of	what	prompt()	does	in	JavaScript	when	is	assigned	to	a	variable).	In
this	case	it	is	variable	f	which	although	it	defaults	to	32,	it	can	be	changed	by	the	input
data	the	user	enters	on	this	text	box	and	thanks	to	the	binding	provided	by	ng-model.

Do	not	confuse	these	terms:	model	versus	module.

Module	is	the	complete	application.	Model	is	a	little	object	that	saves	data	and	binds
it	to	some	variable.	There	could	be	hundreds	of	little	models	in	one	Module.

	

9-						Let’s	finish	this	line	by	adding	the	curly	double	braces	to	the	right	of	the	HTML
input	box.

Inside	of	the	braces	include	the	formula	to	convert	from	Fahrenheit	to	Celsius:

{{(f-32)	*	5	/	9}}c

NOTE:	The	little	c	on	the	right	is	just	a	character	to	tell	the	user	that	this	result	is	in
Celsius.	It	has	nothing	to	do	with	the	variable	c	previously	declared.

The	whole	line	should	look	like	this:
Fahrenheit	to	Celsius:	<input	type=“number”	ng-model=“f”>	{{(f-32)	*	5	/	9}}c

10-		Save	it	and	test	it.	
At	this	time	all	your	DIVs	should	look	like	the	following:

<div	ng-app	ng-init=“f=32;c=0”>
<div>
Fahrenheit	to	Celsius:	<input	type=“number”	ng-model=“f”>	{{(f-32)	*	5	/	9}}c
</div>
<div></div>
</div>

	

11-		Now,	let’s	write	the	input	box	for	the	conversion	of	Celsius	to	Fahrenheit.

On	the	next	DIV	container	write	the	following	code:
<div>
Celsius	to	Fahrenheit:	<input	type=“number”	ng-model=“c”>	{{c	*	9	/	5	+	32}}f
</div>

12-		Test	it,	test	both	conversions.

The	final	result	can	be	seen	on	the	
Forum	board	|	bit.ly/ZQieYU.

Would	you	like	extra	practice?

You	can	add	an	extra	box	and	initialize	another	variable	like	for	example	k:

Here	are	some	possible	conversion	formulas:

a)						Kelvin	to	Fahrenheit:	(K	-	273.15)	*	9/5	+	32

b)						Kelvin	to	Celsius:	K	-	273.15

http://jsplain.com/javascript/index.php/Thread/45-Fahrenheit-to-Celsius-ng-model

More	Project	Ideas
For	more	project	ideas	please	visit	the	following	link	on	the	forum	board	created	for	this
book

Project	Ideas	In	Angular

	

http://jsplain.com/javascript/index.php/Thread/144-Project-ideas-in-Angular/

Directives	summary	and	resources
As	a	review,	here	are	some	of	the	directives	we	have	covered,	along	with	other	useful
directives	and	their	respective	official	page	link.

I	will	continue	to	explain	these	and	other	directives	by	posting	examples	on	the	JSplain
forum	for	further	practicing:

Forum	thread	starter	|	bit.ly/1roi5qc

For	Modules/Controllers:

ng-app,	or	data-ng-app	or	ng-app=“appName”

ng-controller

For	Data	Binding:

ng-init

ng-model

ng-bind

For	DOM	Traversing:

ng-hide

ng-show

ng-view

ng-repeat

For	Events:

ng-mouseenter

ng-click

ng-keypress

For	a	quick	sample	of	a	module	and	controller	configurations	see	one	of	our	exercises
here:

Forum	|		bit.ly/1ve4e66.

http://jsplain.com/javascript/index.php/Thread/49-Directives-Summary-and-Resources/
https://docs.angularjs.org/api/ng/directive/ngApp
https://docs.angularjs.org/api/ng/directive/ngController
https://docs.angularjs.org/api/ng/directive/ngInit
https://docs.angularjs.org/api/ng/directive/ngModel
https://docs.angularjs.org/api/ng/directive/ngBind
https://docs.angularjs.org/api/ng/directive/ngHide
https://docs.angularjs.org/api/ng/directive/ngShow
https://docs.angularjs.org/api/ngRoute/directive/ngView
https://docs.angularjs.org/api/ng/directive/ngRepeat
https://docs.angularjs.org/api/ng/directive/ngMouseenter
https://docs.angularjs.org/api/ng/directive/ngClick
https://docs.angularjs.org/api/ng/directive/ngKeypress
http://jsplain.com/javascript/index.php/Thread/43-Lab-15a2

In	conclusion
Thank	you	for	staying	with	me	until	the	end	of	this	project.	I	always	feel	a	bit	emotional
when	I	get	to	this	part.

There	is	so	much	I	haven’t	written	about	JavaScript	and	AngularJS,	but	we	need	to	take	a
break	in	order	to	digest	all	we	have	covered	in	this	book.

It	is	my	belief	that	I	have	provided	the	necessary	boost	for	you	to	feel	empowered	and
continue	your	own	journey,	and	if	you	ever	have	a	question	that	I	may	be	able	to	help,	I’m
only	a	click	away	on	the	new	forum	platform	purposely	created	for	this	project.

Please	take	the	time	to	reread	this	book	and	practice	all	the	exercises	again.

If	you	feel	like	expanding	your	JavaScript	understanding,	my	other	eBook	is	all	about	the
JavaScript	library	methods,	objects,	closures	and	memory	management.

As	for	AngularJS,	it	is	a	whole	new	world	and	there	is	so	much	to	write	about	it.	We	have
covered	the	hardest	part	of	learning	to	use	AngularJS,	the	very	initial	concepts.

Update:	There	is	a	new	supplemental	exercise	eBook	if	you	want	to	do	more	AngularJS
exercises.	Please	take	a	look:

AngularJS	Supplement:	Easy	Projects	on	Filters	and	Directives

Thank	you	dear	reader,	I	hope	this	has	been	time	well	spent.

Tony	de	Araujo

New	Jersey,	USA

Amazon	Profile	|	amzn.to/1wMqHrb.

http://jsplain.com/javascript/index.php/Thread/49-Directives-Summary-and-Resources/
http://www.amazon.com/JavaScript-Objects-Functions-Arrays-Explained-ebook/dp/B00GDEPBZQ/
http://www.amazon.com/AngularJS-Supplement-Projects-Filters-Directives-ebook/dp/B016FOYH8A/
http://www.amazon.com/Tony-de-Araujo/e/B00D7V08WY/

Can	you	do	this	for	me?
Word-of-mouth	is	crucial	for	any	author	to	succeed.	If	you	enjoyed	the	book,	please
consider	leaving	a	comment	at	Amazon.	Even	if	it’s	only	a	line	or	two,	it	would	be	a	huge
help.

Here’s	my	profile	at	Amazon	from	which	you	can	find	this	book:

US:	http://www.amazon.com/Tony-de-Araujo/e/B00D7V08WY

UK:	http://www.amazon.co.uk/Tony-de-Araujo/e/B00D7V08WY

DE:	http://www.amazon.de/Tony-de-Araujo/e/B00D7V08WY

FR:	http://www.amazon.fr/Tony-de-Araujo/e/B00D7V08WY

NL:	http://www.amazon.nl/JavaScript-Plain-Language-Self-Study-AngularJS-
ebook/dp/B00NQERIEI/

IN:	http://www.amazon.in/gp/product/B00NQERIEI

AU:	http://www.amazon.com.au/gp/product/B00NQERIEI

MX:	http://www.amazon.com.mx/gp/product/B00NQERIEI

JP:	http://www.amazon.co.jp/gp/product/B00NQERIEI

ES:	http://www.amazon.es/gp/product/B00NQERIEI

I	may	not	have	a	profile	in	all	global	areas	but	you	can	always	find	my	eBook	at	your	local
Amazon.

Thank	you	so	much.

Tony	de	Araujo
Technical	Instructor,

USA

	

.

http://www.amazon.com/Tony-de-Araujo/e/B00D7V08WY
http://www.amazon.co.uk/Tony-de-Araujo/e/B00D7V08WY
http://www.amazon.de/Tony-de-Araujo/e/B00D7V08WY
http://www.amazon.fr/Tony-de-Araujo/e/B00D7V08WY
http://www.amazon.nl/JavaScript-Plain-Language-Self-Study-AngularJS-ebook/dp/B00NQERIEI/
http://www.amazon.in/gp/product/B00NQERIEI
http://www.amazon.com.au/gp/product/B00NQERIEI
http://www.amazon.com.mx/gp/product/B00NQERIEI
http://www.amazon.co.jp/gp/product/B00NQERIEI
http://www.amazon.es/gp/product/B00NQERIEI

Errata,	Contact,	Updates
JSplain.com	is	a	forum	dedicated	to	the	material	covered	on	this	eBook.

In	there	you	will	find	a	section	for	announcements	and	updates:

jsplain.com/javascript/index.php/Board/8-JSPL-Book-Announcements
bit.ly/1redx6M

Please	register	if	you	would	like	to	be	notified	of	any	update	or	enhancements.

(The	link	to	login	or	register	is	located	on	the	top	left	of	the	forum	board)

http://jsplain.com/javascript/index.php/Board/8-JSPL-Book-Announcements/
http://jsplain.com/javascript/index.php/Board/8-JSPL-Book-Announcements/

“For	the	things	we	have	to	learn	before	we	can	do	them,	we	learn	by	doing	them.”

―	Aristotle,	The	Nicomachean	Ethics

	

	

	

	PART I: AT THE GATES OF ENLIGHTENMENT
	1.1 The browser interface
	1.2 Material and tools needed
	1.3 Declaring a variable – an alias name for a memory location
	1.4 Lab work 1
	1.5 Manipulating variable data
	1.6 Lab work 2
	1.7 Adding some more JavaScript operators
	1.8 Lab work 3
	1.9 Comparison operators and booleans
	1.10 Lab work 4
	1.11 Introducing console.log, alert, prompt, confirm
	1.12 Logical Operators
	1.13 Lab work 5

	PART II: ENTERING THE SECOND REALM
	2.1 Adding more syntax
	2.2 Conditional Branching
	2.3 The anatomy of a function
	2.4 Lab work 6
	2.5 Filling out a form to request a loop
	2.6 The for loop
	2.7 Looping over a string of characters
	2.8 Lab work 7
	2.9 Array lists
	2.10 Lab work 8
	2.11 Other useful arrays methods
	2.12 Lab work 9
	2.13 Lab work 10
	2.14 Unordered lists
	2.15 Lab work 11 - redo lab work 10

	PART III: STRENGTHENING THE WARRIOR'S ARSENAL
	3.1 Taking an inventory of what we’ve learned
	3.2 More about functions
	3.3 Manipulating variables with functions
	3.4 Lab work 12
	3.5 More branching techniques
	3.6 Lab work 13

	PART IV: ENTERING THE THIRD REALM
	4.1 About this section
	4.2 An introduction to JSON

	PART V: DEFEATING THE DRAGON
	5.3 First solid steps into AngularJS
	5.4 Lab work 14
	5.5 Going a step further into modularity
	5.6 Preparing to separate data from presentation

