

Learning	JavaScript	Data	Structures	and
Algorithms

Table	of	Contents

Learning	JavaScript	Data	Structures	and	Algorithms

Credits

About	the	Author

Acknowledgments

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Downloading	the	color	images	of	this	book

Errata

Piracy

Questions

1.	JavaScript	–	A	Quick	Overview

Setting	up	the	environment

The	browser	is	enough

Using	web	servers	(XAMPP)

It’s	all	about	JavaScript	(Node.js)

JavaScript	basics

Variables

Variable	scope

Operators

Truthy	and	falsy

The	equals	operators	(==	and	===)

Control	structures

Conditional	statements

Loops

Functions

Object-oriented	programming

Debugging	and	tools

Summary

2.	Arrays

Why	should	we	use	arrays?

Creating	and	initializing	arrays

Adding	and	removing	elements

Two-dimensional	and	multi-dimensional	arrays

References	for	JavaScript	array	methods

Joining	multiple	arrays

Iterator	functions

Searching	and	sorting

Custom	sorting

Sorting	strings

Searching

Outputting	the	array	into	a	string

Summary

3.	Stacks

Creating	a	stack

The	complete	Stack	class

Using	the	Stack	class

Decimal	to	binary

Summary

4.	Queues

Creating	a	queue

The	complete	Queue	class

Using	the	Queue	class

The	priority	queue

The	circular	queue	–	Hot	Potato

Summary

5.	Linked	Lists

Creating	a	linked	list

Appending	elements	to	the	end	of	the	linked	list

Removing	elements	from	the	linked	list

Inserting	an	element	at	any	position

Implementing	other	methods

The	toString	method

The	indexOf	method

The	isEmpty,	size,	and	getHead	methods

Doubly	linked	lists

Inserting	a	new	element	at	any	position

Removing	elements	from	any	position

Circular	linked	lists

Summary

6.	Sets

Creating	a	set

The	has	(value)	method

The	add	method

The	remove	and	clear	methods

The	size	method

The	values	method

Using	the	Set	class

Set	operations

Set	union

Set	intersection

Set	difference

Subset

Summary

7.	Dictionaries	and	Hashes

Dictionaries

Creating	a	dictionary

The	has	and	set	methods

The	remove	method

The	get	and	values	methods

The	clear,	size,	keys,	and	getItems	methods

Using	the	Dictionary	class

The	hash	table

Creating	a	hash	table

Using	the	HashTable	class

Hash	table	versus	hash	set

Handling	collisions	between	hash	tables

Separate	chaining

The	put	method

The	get	method

The	remove	method

Linear	probing

The	put	method

The	get	method

The	remove	method

Creating	better	hash	functions

Summary

8.	Trees

Trees	terminology

Binary	tree	and	binary	search	tree

Creating	the	BinarySearchTree	class

Inserting	a	key	in	a	tree

Tree	traversal

In-order	traversal

Pre-order	traversal

Post-order	traversal

Searching	for	values	in	a	tree

Searching	for	minimum	and	maximum	values

Searching	for	a	specific	value

Removing	a	node

Removing	a	leaf	node

Removing	a	node	with	a	left	or	right	child

Removing	a	node	with	two	children

More	about	binary	trees

Summary

9.	Graphs

Graph	terminology

Directed	and	undirected	graphs

Representing	a	graph

The	adjacency	matrix

The	adjacency	list

The	incidence	matrix

Creating	the	Graph	class

Graph	traversals

Breadth-first	search	(BFS)

Finding	the	shortest	paths	using	BFS

Further	studies	on	the	shortest	paths	algorithms

Depth-first	search	(DFS)

Exploring	the	DFS	algorithm

Topological	sorting	using	DFS

Summary

10.	Sorting	and	Searching	Algorithms

Sorting	algorithms

Bubble	sort

Improved	bubble	sort

Selection	sort

Insertion	sort

Merge	sort

Quick	sort

The	partition	process

Quick	sort	in	action

Searching	algorithms

Sequential	search

Binary	search

Summary

Index

Learning	JavaScript	Data	Structures	and
Algorithms

Learning	JavaScript	Data	Structures	and
Algorithms
Copyright	©	2014	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	October	2014

Production	reference:	1201014

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78355-487-4

www.packtpub.com

http://www.packtpub.com

Credits
Author

Loiane	Groner

Reviewers

Yaroslav	Bigus

Maxwell	Dayvson	Da	Silva

Vincent	Lark

Vishal	Rajpal

Commissioning	Editor

Kunal	Parikh

Acquisition	Editor

Subho	Gupta

Content	Development	Editor

Akashdeep	Kundu

Technical	Editors

Madhuri	Das

Nikhil	Potdukhe

Copy	Editors

Maria	Gould

Ameesha	Green

Paul	Hindle

Project	Coordinator

Neha	Thakur

Proofreaders

Simran	Bhogal

Ameesha	Green

Indexers

Mariammal	Chettiyar

Tejal	Soni

Graphics

Ronak	Dhruv

Valentina	D’silva

Abhinash	Sahu

Production	Coordinator

Conidon	Miranda

Cover	Work

Conidon	Miranda

About	the	Author
Loiane	Groner	lives	in	São	Paulo,	Brazil,	and	has	over	8	years	of	software	development
experience.	While	at	university,	she	demonstrated	a	great	interest	in	IT.	She	worked	as	an
assistant	teacher	for	two	and	a	half	years	teaching	Algorithms,	Data	Structures,	and
Computing	Theory.	She	represented	her	university	at	the	ACM	International	Collegiate
Programming	Contest—Brazilian	finals	(South	America	regionals),	and	also	worked	as
student	delegate	of	the	Brazilian	Computing	Society	(SBC)	for	2	years.	She	won	a	merit
award	in	her	senior	year	for	being	one	of	the	top	three	students	in	the	Computer	Science
department	and	graduated	with	honors.

She	has	previously	worked	at	multinational	companies	such	as	IBM.	Her	areas	of
expertise	include	Java	SE	and	Java	EE	as	well	as	Sencha	technologies	(Ext	JS	and	Sencha
Touch).	Nowadays,	she	works	as	a	software	development	manager	at	a	financial
institution,	where	she	manages	overseas	solutions.	She	also	works	as	an	independent
Sencha	consultant	and	coach.

Loiane	is	also	the	author	of	Ext	JS	4	First	Look,	Mastering	Ext	JS,	and	Sencha	Architect
App	Development,	all	published	by	Packt	Publishing.

She	is	passionate	about	Sencha	and	Java,	and	is	the	Campinas	Java	Users	Group
(CampinasJUG)	leader	and	Espirito	Santo	Java	Users	Group	(ESJUG)	coordinator,	both
Brazilian	JUGs.

Loiane	also	contributes	to	the	software	development	community	through	her	blogs	at
http://loianegroner.com	(English)	and	http://loiane.com	(Brazilian	Portuguese),	where	she
writes	about	her	IT	career,	Ext	JS,	Sencha	Touch,	PhoneGap,	Spring	Framework,	and
general	development	notes	as	well	as	publishing	screencasts.

If	you	want	to	get	in	touch,	you	can	find	Loiane	on	Facebook
(https://www.facebook.com/loianegroner)	and	Twitter	(@loiane).

http://loianegroner.com
http://loiane.com
https://www.facebook.com/loianegroner

Acknowledgments
I	would	like	to	thank	my	parents	for	giving	me	education,	guidance,	and	advice	over	all
these	years	and	for	helping	me	to	be	a	better	human	being	and	professional.	A	very	special
thanks	to	my	husband,	for	being	patient	and	supportive	and	giving	me	encouragement.

I	would	also	like	to	thank	my	professors	from	FAESA,	who	taught	me	about	the
algorithms	and	data	structures	presented	in	this	book.

Also,	a	big	thanks	to	my	friends	and	readers	for	all	the	support.	It	is	really	nice	when
people	get	in	touch	at	conferences	and	by	any	social	network	mentioning	that	they	have
read	one	of	my	books	and	give	me	feedback.	Thank	you	very	much!

About	the	Reviewers
Yaroslav	Bigus	is	an	expert	in	building	cross-platform	web	and	mobile	applications.	He
has	over	5	years	of	experience	in	development	and	has	worked	for	companies	in	Leeds
and	New	York.	He	has	been	using	the	.NET	Framework	stack	to	develop	backend
systems;	JavaScript,	AngularJS,	jQuery,	and	Underscore	for	the	frontend;	and	Xamarin	for
mobile	devices.

He	is	currently	working	for	an	Israeli	start-up	named	yRuler	(Tangiblee).	Previously,	he
has	reviewed	Xamarin	Mobile	Application	Development	for	iOS	and	iOS	Development
with	Xamarin	Cookbook,	both	by	Packt	Publishing.

I	am	thankful	to	my	friends	and	family	for	their	support	and	love.

Maxwell	Dayvson	Da	Silva	is	a	native	Brazilian	who	works	as	a	software	architect	for
The	New	York	Times.	He	has	more	than	11	years	of	experience	working	for	two	of
Brazil’s	leading	digital	media	companies.	His	work	at	Terra,	a	global	digital	media
company,	helped	reach	an	audience	of	over	100	million	people	monthly	with
entertainment,	sports,	and	news	content.	Later,	he	was	part	of	Globo.com,	the	largest
media	conglomerate	in	Latin	America.	His	contribution	in	the	digital	media	field	is	only	a
portion	of	how	he	spends	his	time.	Combining	his	passion	for	art	and	science,	he	creates
games	and	interactive	art	installations.	Inspired	by	his	son,	Arthur,	he	continually	searches
for	new	ways	to	spread	science	in	a	fun	way	to	children	both	in	NYC	and	Brazil.	He	can
be	reached	at	https://github.com/dayvson.

I	would	like	to	say	thank	you	to	Juliane	Inês	do	Nascimento	for	taking	care	of	Arthur	in
such	an	amazing	way	while	I	am	away.	You	are	an	amazing	mother!

Vincent	Lark	is	an	experienced	programmer	who	has	worked	as	a	backend	and	frontend
web	developer	for	web	start-ups	in	Luxembourg	and	France.	He	now	focuses	on	creating
modern	web	UIs	and	develops	games	as	a	hobby.	He	has	also	reviewed	the	book	WebGL
HOTSHOT,	Packt	Publishing.

Vishal	Rajpal	is	an	experienced	software	engineer	who	started	developing	professional
software	applications	in	2011.	He	has	worked	primarily	on	Java,	JavaScript,	and
multiplatform	mobile	application	development	platforms	including	PhoneGap	and
Titanium.

At	present,	he	is	pursuing	his	Master’s	degree	in	Computer	Science	from	Northeastern
University,	Seattle,	and	has	been	working	on	Scheme	(Lisp),	Objective-C,	computer
systems,	and	algorithms.

He	lives	in	Seattle	and	can	be	reached	at	<vishalarajpal@gmail.com>.	You	can	also	find
out	more	about	his	work	at	https://github.com/vishalrajpal/	and	https://www.vishal-
rajpal.blogspot.com.	He	has	also	reviewed	the	book	PhoneGap	3.x	Mobile	Application
Development	HOTSHOT,	Packt	Publishing.

https://github.com/dayvson
mailto:vishalarajpal@gmail.com
https://github.com/vishalrajpal/
https://www.vishal-rajpal.blogspot.com

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
You	might	want	to	visit	www.PacktPub.com	for	support	files	and	downloads	related	to
your	book.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

http://PacktLib.PacktPub.com

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	access,	read	and	search	across	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print	and	bookmark	content
On	demand	and	accessible	via	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	nine	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
JavaScript	is	currently	the	most	popular	programming	language.	It	is	known	as	“the
Internet	language”	due	to	the	fact	that	Internet	browsers	understand	JavaScript	natively,
without	installing	any	plugins.	JavaScript	has	grown	so	much	that	it	is	no	longer	just	a
frontend	language;	it	is	now	also	present	on	the	server	(Node.js)	and	database	as	well
(MongoDB).

Understanding	data	structures	is	very	important	for	any	technology	professional.	Working
as	a	developer	means	you	have	the	ability	to	solve	problems	with	the	help	of	programming
languages	and	data	structures.	They	are	an	indispensable	piece	of	the	solutions	we	need	to
create	to	solve	these	problems.	Choosing	the	wrong	data	structure	can	also	impact	the
performance	of	the	program	we	are	writing.	This	is	why	it	is	important	to	get	to	know
different	data	structures	and	how	to	apply	them	properly.

Algorithms	play	a	major	role	in	the	art	of	Computer	Science.	There	are	so	many	ways	of
solving	the	same	problem,	and	some	approaches	are	better	than	others.	That	is	why	it	is
also	very	important	to	know	the	most	famous	algorithms.

Happy	coding!

What	this	book	covers
Chapter	1,	JavaScript	–	A	Quick	Overview,	covers	the	basics	of	JavaScript	you	need	to
know	prior	to	learning	about	data	structures	and	algorithms.	It	also	covers	setting	up	the
development	environment	needed	for	this	book.

Chapter	2,	Arrays,	explains	how	to	use	the	most	basic	and	most	used	data	structure	arrays.
This	chapter	demonstrates	how	to	declare,	initialize,	add,	and	remove	elements	from	an
array.	It	also	covers	how	to	use	the	native	JavaScript	array	methods.

Chapter	3,	Stacks,	introduces	the	stack	data	structure,	demonstrating	how	to	create	a	stack
and	how	to	add	and	remove	elements.	It	also	demonstrates	how	to	use	stacks	to	solve
some	Computer	Science	problems.

Chapter	4,	Queues,	covers	the	queue	data	structure,	demonstrating	how	to	create	a	queue
and	add	and	remove	elements.	It	also	demonstrates	how	to	use	queues	to	solve	some
Computer	Science	problems	and	the	major	differences	between	queues	and	stacks.

Chapter	5,	Linked	Lists,	explains	how	to	create	the	linked	list	data	structure	from	scratch
using	objects	and	the	pointer	concept.	Besides	covering	how	to	declare,	create,	add,	and
remove	elements,	it	also	covers	the	various	types	of	linked	lists	such	as	doubly	linked	lists
and	circular	linked	lists.

Chapter	6,	Sets,	introduces	the	set	data	structure	and	how	it	can	be	used	to	store	non-
repeated	elements.	It	also	explains	the	different	types	of	set	operations	and	how	to
implement	and	use	them.

Chapter	7,	Dictionaries	and	Hashes,	explains	the	dictionary	and	hash	data	structures	and
the	differences	between	them.	This	chapter	covers	how	to	declare,	create,	and	use	both
data	structures.	It	also	explains	how	to	handle	collisions	in	hashes	and	techniques	to	create
better	hash	functions.

Chapter	8,	Trees,	covers	the	tree	data	structure	and	its	terminologies,	focusing	on	binary
search	tree	data	as	well	as	the	methods	trees	use	to	search,	traverse,	add,	and	remove
nodes.	It	also	introduces	the	next	steps	you	can	take	to	delve	deeper	into	the	world	of
trees,	covering	what	tree	algorithms	should	be	learned	next.

Chapter	9,	Graphs,	introduces	the	amazing	world	of	the	graphs	data	structure	and	its
application	in	real-world	problems.	This	chapter	covers	the	most	common	graph
terminologies,	the	different	ways	of	representing	a	graph,	how	to	traverse	graphs	using	the
breadth-first	search	and	depth-first	search	algorithms,	and	its	applications.

Chapter	10,	Sorting	and	Searching	Algorithms,	explores	the	most	used	sorting	algorithms
such	as	bubble	sort	(and	its	improved	version),	selection	sort,	insertion	sort,	merge	sort,
and	quick	sort.	It	also	covers	searching	algorithms	such	as	sequential	and	binary	search.

Chapter	11,	More	About	Algorithms,	introduces	some	algorithm	techniques	and	the
famous	big-O	notation.	It	covers	the	recursion	concept	and	some	advanced	algorithm
techniques	such	as	dynamic	programming	and	greedy	algorithms.	This	chapter	introduces
big-O	notation	and	its	concepts.	Finally,	it	explains	how	to	take	your	algorithm	knowledge

to	the	next	level.	This	is	an	online	chapter	available	on	the	Packt	Publishing	website.	You
can	download	it	from
https://www.packtpub.com/sites/default/files/downloads/4874OS_Chapter11_More_About_Algorithms.pdf

Appendix,	Big-O	Cheat	Sheet,	lists	the	complexities	of	the	algorithms	(using	big-O
notation)	implemented	in	this	book.	This	is	also	an	online	chapter,	which	can	be
downloaded	from
https://www.packtpub.com/sites/default/files/downloads/4874OS_Appendix_Big_O_Cheat_Sheet.pdf

https://www.packtpub.com/sites/default/files/downloads/4874OS_Chapter11_More_About_Algorithms.pdf
https://www.packtpub.com/sites/default/files/downloads/4874OS_Appendix_Big_O_Cheat_Sheet.pdf

What	you	need	for	this	book
You	can	set	up	three	different	development	environments	for	this	book.	You	do	not	need	to
have	all	three	environments;	you	can	select	one	or	give	all	of	them	a	try!

For	the	first	option,	you	need	a	browser.	It	is	recommended	to	use	one	of	the
following	browsers:

Chrome	(https://www.google.com/chrome/browser/)
Firefox	(https://www.mozilla.org/en-US/firefox/new/)

For	the	second	option,	you	will	need:

One	of	the	browsers	listed	in	the	first	option
A	web	server;	if	you	do	not	have	any	web	server	installed	in	your	computer,	you
can	install	XAMPP	(https://www.apachefriends.org)

The	third	option	is	an	environment	100	percent	JavaScript!	For	this,	you	will	need	the
following	elements:

One	of	the	browsers	listed	in	the	first	option
Node.js	(http://nodejs.org/)
After	installing	Node.js,	install	http-server	(package)	as	follows:

npm	install	http-server	–g

You	can	find	more	detailed	instructions	in	Chapter	1,	JavaScript	–	A	Quick	Overview,	as
well.

https://www.google.com/chrome/browser/
https://www.mozilla.org/en-US/firefox/new/
https://www.apachefriends.org
http://nodejs.org/

Who	this	book	is	for
This	book	is	intended	for	students	of	Computer	Science,	people	who	are	just	starting	their
career	in	technology,	and	those	who	want	to	learn	about	data	structures	and	algorithms
with	JavaScript.	Some	knowledge	of	programming	logic	is	the	only	thing	you	need	to
know	to	start	having	fun	with	algorithms	and	JavaScript!

This	book	is	written	for	beginners	who	want	to	learn	about	data	structures	and	algorithms,
and	also	for	those	who	are	already	familiar	with	data	structures	and	algorithms	but	who
want	to	learn	how	to	use	them	with	JavaScript.

Conventions
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish	between	different
kinds	of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“Inside
the	script	tag,	we	have	the	JavaScript	code.”

A	block	of	code	is	set	as	follows:

console.log("num:	"+	num);

console.log("name:	"+	name);

console.log("trueValue:	"+	trueValue);

console.log("price:	"+	price);

console.log("nullVar:	"+	nullVar);

console.log("und:	"+	und);

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

<!DOCTYPE	html>

<html>

<head>

				<meta	charset="UTF-8">

</head>

<body>

				<script>

								alert('Hello,	World!');

				</script>

</body>

</html>

Any	command-line	input	or	output	is	written	as	follows:

npm	install	http-server	–g

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	in
menus	or	dialog	boxes	for	example,	appear	in	the	text	like	this:	“The	number	of	Node
Packages	Modules	(https://www.npmjs.org/)	also	grows	exponentially.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

https://www.npmjs.org

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	may	have	disliked.	Reader	feedback	is	important	for	us	to
develop	titles	that	you	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	send	an	e-mail	to	<feedback@packtpub.com>,	and
mention	the	book	title	via	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	on	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

For	this	book,	the	code	files	can	be	downloaded	or	forked	from	the	following	GitHub
repository	as	well:	https://github.com/loiane/javascript-datastructures-algorithms.

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/loiane/javascript-datastructures-algorithms

Downloading	the	color	images	of	this	book
We	also	provide	you	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams	used	in
this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the	output.	You
can	download	this	file	from
https://www.packtpub.com/sites/default/files/downloads/4874OS_ColoredImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/4874OS_ColoredImages.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	would	report	this	to	us.	By	doing	so,	you	can	save
other	readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If
you	find	any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-
errata,	selecting	your	book,	clicking	on	the	errata	submission	form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	on	our	website,	or	added	to	any	list	of	existing	errata,	under	the
Errata	section	of	that	title.	Any	existing	errata	can	be	viewed	by	selecting	your	title	from
http://www.packtpub.com/support.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Piracy
Piracy	of	copyright	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works,	in	any	form,	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors,	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
You	can	contact	us	at	<questions@packtpub.com>	if	you	are	having	a	problem	with	any
aspect	of	the	book,	and	we	will	do	our	best	to	address	it.

mailto:questions@packtpub.com

Chapter	1.	JavaScript	–	A	Quick
Overview
JavaScript	is	a	very	powerful	language.	It	is	the	most	popular	language	in	the	world	and	is
one	of	the	most	prominent	languages	on	the	Internet.	For	example,	GitHub	(the	world’s
largest	code	host,	available	at	https://github.com)	hosts	over	400,000	JavaScript
repositories	(the	largest	number	of	projects	is	in	JavaScript;	refer	to
http://goo.gl/ZFx6mg).	The	number	of	projects	in	JavaScript	in	GitHub	grows	every	year.

JavaScript	is	not	a	language	that	can	only	be	used	in	the	frontend.	It	can	also	be	used	in
the	backend	as	well,	and	Node.js	is	the	technology	responsible	for	this.	The	number	of
Node	Packages	Modules	(https://www.npmjs.org/)	also	grows	exponentially.

JavaScript	is	a	must-have	on	your	résumé	if	you	are	or	going	to	become	a	web	developer.

In	this	book,	you	are	going	to	learn	about	the	most	used	data	structures	and	algorithms.
But	why	use	JavaScript	to	learn	about	data	structures	and	algorithms?	We	have	already
answered	this	question.	JavaScript	is	very	popular,	and	JavaScript	is	appropriate	to	learn
about	data	structures	because	it	is	a	functional	language.	Also,	this	can	be	a	very	fun	way
of	learning	something	new,	as	it	is	very	different	(and	easier)	than	learning	about	data
structures	with	a	standard	language	such	as	C	or	Java.	And	who	said	data	structures	and
algorithms	were	only	made	for	languages	such	as	C	and	Java?	You	might	need	to
implement	some	of	these	languages	while	developing	for	the	frontend	as	well.

Learning	about	data	structures	and	algorithms	is	very	important.	The	first	reason	is
because	data	structures	and	algorithms	can	solve	the	most	common	problems	efficiently.
This	will	make	a	difference	on	the	quality	of	the	source	code	you	write	in	the	future
(including	performance—if	you	choose	the	incorrect	data	structure	or	algorithm
depending	on	the	scenario,	you	can	have	some	performance	issues).	Secondly,	algorithms
are	studied	in	college	together	with	introductory	concepts	of	Computer	Science.	And
thirdly,	if	you	are	planning	to	get	a	job	in	the	greatest	IT	(Information	Technology)
companies	(such	as	Google,	Amazon,	Ebay,	and	so	on),	data	structures	and	algorithms	are
subjects	of	interview	questions.

https://github.com
http://goo.gl/ZFx6mg
https://www.npmjs.org

Setting	up	the	environment
One	of	the	pros	of	the	JavaScript	language	compared	to	other	languages	is	that	you	do	not
need	to	install	or	configure	a	complicated	environment	to	get	started	with	it.	Every
computer	has	the	required	environment	already,	even	though	the	user	may	never	write	a
single	line	of	source	code.	All	we	need	is	a	browser!

To	execute	the	examples	in	this	book,	it	is	recommended	that	you	have	Google	Chrome	or
Firefox	installed	(you	can	use	the	one	you	like	the	most),	an	editor	of	your	preference
(such	as	Sublime	Text),	and	a	web	server	(XAMPP	or	any	other	of	your	preference—but
this	step	is	optional).	Chrome,	Firefox,	Sublime	Text,	and	XAMPP	are	available	for
Windows,	Linux,	and	Mac	OS.

If	you	use	Firefox,	it	is	also	recommended	to	install	the	Firebug	add-on
(https://getfirebug.com/).

We	are	going	to	present	you	with	three	options	to	set	up	your	environment.

https://getfirebug.com/

The	browser	is	enough
The	simplest	environment	that	you	can	use	is	a	browser.

You	can	use	Firefox	+	Firebug.	When	you	have	Firebug	installed,	you	will	see	the
following	icon	in	the	upper-right	corner:

When	you	open	Firebug	(simply	click	on	its	icon),	you	will	see	the	Console	tab	and	you
will	be	able	to	write	all	your	JavaScript	code	on	its	command-line	area	as	demonstrated	in
the	following	screenshot	(to	execute	the	source	code	you	need	to	click	on	the	Run	button):

You	can	also	expand	the	command	line	to	fit	the	entire	available	area	of	the	Firebug	add-
on.

You	can	also	use	Google	Chrome.	Chrome	already	comes	with	Google	Developer	Tools.
To	open	it,	locate	the	setting	and	control	icon	and	navigate	to	Tools	|	Developer	Tools,	as
shown	in	the	following	screenshot:

Then,	in	the	Console	tab,	you	can	write	your	own	JavaScript	code	for	testing,	as	follows:

Using	web	servers	(XAMPP)
The	second	environment	you	might	want	to	install	on	your	computer	is	also	simple,	but	a
little	bit	more	complex	than	just	using	a	browser.

You	will	need	to	install	XAMPP	(https://www.apachefriends.org)	or	any	web	server	of
your	preference.	Then,	inside	the	XAMPP	installation	folder,	you	will	find	the	htdocs
directory.	You	can	create	a	new	folder	where	you	can	execute	the	source	code	we	will
implement	in	this	book,	or	you	can	download	the	source	code	from	this	book	and	extract	it
to	the	htdocs	directory,	as	follows:

Then,	you	can	access	the	source	code	from	your	browser	using	your	localhost	URL	(after
starting	the	XAMPP	server)	as	shown	in	the	following	screenshot	(do	not	forget	to	enable
Firebug	or	Google	Developer	Tools	to	see	the	output):

https://www.apachefriends.org

Tip
When	executing	the	examples,	always	remember	to	have	Google	Developer	Tools	or
Firebug	open	to	see	the	output.

It’s	all	about	JavaScript	(Node.js)
The	third	option	is	having	an	environment	that	is	100	percent	JavaScript!	Instead	of	using
XAMPP,	which	is	an	Apache	server,	we	can	use	a	JavaScript	server.

To	do	so,	we	need	to	have	Node.js	installed.	Go	to	http://nodejs.org/	and	download	and
install	Node.js.	After	that,	open	the	terminal	application	(if	you	are	using	Windows,	open
the	command	prompt	with	Node.js	that	was	installed	with	Node.js)	and	run	the	following
command:

npm	install	http-server	–g

Make	sure	you	type	the	command	and	don’t	copy	and	paste	it.	Copying	the	command
might	give	you	some	errors.

You	can	also	execute	the	command	as	an	administrator.	For	Linux	and	Mac	systems,	use
the	following	command:

sudo	npm	install	http-server	–g

This	command	will	install	http-server,	which	is	a	JavaScript	server.	To	start	a	server	and
run	the	examples	from	this	book	in	the	terminal	application,	change	the	directory	to	the
folder	that	contains	the	book’s	source	code	and	type	http-server,	as	displayed	in	the
following	screenshot:

To	execute	the	examples,	open	the	browser	and	access	the	localhost	on	the	port	specified
by	the	http-server	command:

http://nodejs.org/

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

For	this	book,	the	code	files	can	be	downloaded	from	this	GitHub	repository:
https://github.com/loiane/javascript-datastructures-algorithms.

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/loiane/javascript-datastructures-algorithms

JavaScript	basics
Before	we	start	diving	into	the	various	data	structures	and	algorithms,	let’s	have	a	quick
overview	of	the	JavaScript	language.	This	section	will	present	the	JavaScript	basics
required	to	implement	the	algorithms	we	will	create	in	the	subsequent	chapters.

To	start,	let’s	see	the	two	different	ways	we	can	use	JavaScript	code	in	an	HTML	page:

<!DOCTYPE	html>

<html>

<head>

				<meta	charset="UTF-8">

</head>

<body>

				<script>

								alert('Hello,	World!');

				</script>

</body>

</html>

The	first	way	is	demonstrated	by	the	previous	code.	We	need	to	create	an	HTML	file	and
write	this	code	on	it.	In	this	example,	we	are	declaring	the	script	tag	inside	the	HTML
file,	and	inside	the	script	tag,	we	have	the	JavaScript	code.

For	the	second	example,	we	need	to	create	a	JavaScript	file	(we	can	save	it	as	01-
HelloWorld.js),	and	inside	this	file,	we	will	insert	the	following	code:

alert('Hello,	World!');

Then,	our	HTML	file	will	look	like	this:

<!DOCTYPE	html>

<html>

<head>

				<meta	charset="UTF-8">

</head>

<body>

				<script	src="01-HelloWorld.js">

				</script>

</body>

</html>

The	second	example	demonstrates	how	to	include	a	JavaScript	file	inside	an	HTML	file.

By	executing	any	of	these	two	examples,	the	output	will	be	the	same.	However,	the	second
example	is	the	best	practice.

Note
You	may	find	JavaScript	include	statements	or	JavaScript	code	inside	the	head	tag	in
some	examples	on	the	Internet.	As	a	best	practice,	we	will	include	any	JavaScript	code	at
the	end	of	the	body	tag.	This	way,	the	HTML	will	be	parsed	by	the	browser	and	displayed
before	the	scripts	are	loaded.	This	boosts	the	performance	of	the	page.

Variables
Variables	store	data	that	can	be	set,	updated,	and	retrieved	whenever	needed.	Values	that
are	assigned	to	a	variable	belong	to	a	type.	In	JavaScript,	the	available	types	are	numbers,
strings,	Booleans,	functions,	and	objects.	We	also	have	undefined	and	null,	along	with
arrays,	dates,	and	regular	expressions.	The	following	is	an	example	of	how	to	use
variables	in	JavaScript:

var	num	=	1;	//{1}

num	=	3;	//{2}

var	price	=	1.5;	//{3}

var	name	=	'Packt';	//{4}

var	trueValue	=	true;	//{5}

var	nullVar	=	null;	//{6}

var	und;		//7

On	line	{1},	we	have	an	example	of	how	to	declare	a	variable	in	JavaScript	(we	are
declaring	a	number).	Although	it	is	not	necessary	to	use	the	var	keyword	declaration,	it	is
a	good	practice	to	always	specify	when	we	are	declaring	a	new	variable.

On	line	{2},	we	are	updating	an	existing	variable.	JavaScript	is	not	a	strongly-typed
language.	This	means	you	can	declare	a	variable	and	initialize	it	with	a	number,	and	then
update	it	with	a	string	or	any	other	data	type.	Assigning	a	value	to	a	variable	that	is
different	from	its	original	type	is	also	not	a	good	practice.

On	line	{3},	we	are	also	declaring	a	number,	but	this	time	it	is	a	decimal	floating	point.	On
line	{4},	we	are	declaring	a	string;	on	line	{5},	we	are	declaring	a	Boolean.	On	line	{6},
we	are	declaring	a	null	value,	and	on	line	{7},	we	are	declaring	an	undefined	variable.	A
null	value	means	no	value	and	undefined	means	a	variable	that	has	been	declared	but	not
yet	assigned	a	value:

console.log("num:	"+	num);

console.log("name:	"+	name);

console.log("trueValue:	"+	trueValue);

console.log("price:	"+	price);

console.log("nullVar:	"+	nullVar);

console.log("und:	"+	und);

If	we	want	to	see	the	value	of	each	variable	we	have	declared,	we	can	use	console.log	to
do	so,	as	listed	in	the	previous	code	snippet.

Note
We	have	three	ways	of	outputting	values	in	JavaScript	that	we	can	use	with	the	examples
of	this	book.	The	first	one	is	alert('My	text	here'),	which	will	output	an	alert	window
on	the	browser;	the	second	one	is	console.log('My	text	here'),	which	will	output	text
on	the	Console	tab	of	the	debug	tool	(Google	Developer	Tools	or	Firebug,	depending	on
the	browser	you	are	using).	Finally,	the	third	way	is	outputting	the	value	directly	on	the
HTML	page	that	is	being	rendered	by	the	browser	by	using	document.write('My	text
here').	You	can	use	the	option	that	you	feel	most	comfortable	with.

The	console.log	method	also	accepts	more	than	just	arguments.	Instead	of
console.log("num:	"+	num),	we	can	also	use	console.log("num:	",	num).

We	will	discuss	functions	and	objects	later	in	this	chapter.

Variable	scope
Scope	refers	to	where	in	the	algorithm	we	can	access	the	variable	(it	can	also	be	a	function
when	we	are	working	with	function	scopes).	There	are	local	and	global	variables.

Let’s	look	at	an	example:

var	myVariable	=	'global';

myOtherVariable	=	'global';

function	myFunction(){

				var	myVariable	=	'local';

				return	myVariable;

}

function	myOtherFunction(){

				myOtherVariable	=	'local';

				return	myOtherVariable;

}

console.log(myVariable);			//{1}

console.log(myFunction());	//{2}

console.log(myOtherVariable);			//{3}

console.log(myOtherFunction());	//{4}

console.log(myOtherVariable);			//{5}

Line	{1}	will	output	global	because	we	are	referring	to	a	global	variable.	Line	{2}	will
output	local	because	we	declared	the	myVariable	variable	inside	the	myFunction
function	as	a	local	variable,	so	the	scope	will	be	inside	myFunction	only.

Line	{3}	will	output	global	because	we	are	referencing	the	global	variable	named
myOtherVariable	that	was	initialized	in	the	second	line	of	the	example.	Line	{4}	will
output	local.	Inside	the	myOtherFunction	function,	we	are	referencing	the
myOtherVariable	global	variable	and	assigning	the	value	local	to	it	because	we	are	not
declaring	the	variable	using	the	var	keyword.	For	this	reason,	line	{5}	will	output	local
(because	we	changed	the	value	of	the	variable	inside	myOtherFunction).

You	may	hear	that	global	variables	in	JavaScript	are	evil,	and	this	is	true.	Usually,	the
quality	of	JavaScript	source	code	is	measured	by	the	number	of	global	variables	and
functions	(a	large	number	is	bad).	So,	whenever	possible,	try	avoiding	global	variables.

Operators
We	need	operators	when	performing	any	operation	in	a	programming	language.	JavaScript
also	has	arithmetic,	assignment,	comparison,	logical,	bitwise,	and	unary	operators,	among
others.	Let’s	take	a	look	at	them:

var	num	=	0;	//	{1}

num	=	num	+	2;

num	=	num	*	3;

num	=	num	/	2;

num++;

num--;

num	+=	1;	//	{2}

num	-=	2;

num	*=	3;

num	/=	2;

num	%=	3;

console.log('num	==	1	:	'	+	(num	==	1));	//	{3}

console.log('num	===	1	:	'	+	(num	===	1));

console.log('num	!=	1	:	'	+	(num	!=	1));

console.log('num	>	1	:	'	+	(num	>	1));

console.log('num	<	1	:	'	+	(num	<	1));

console.log('num	>=	1	:	'	+	(num	>=	1));

console.log('num	<=	1	:	'	+	(num	<=	1));

console.log('true	&&	false	:	'	+	(true	&&	false));	//	{4}

console.log('true	||	false	:	'	+	(true	||	false));

console.log('!true	:	'	+	(!true));

On	line	{1},	we	have	the	arithmetic	operators.	In	the	following	table,	we	have	the
operators	and	their	descriptions:

Arithmetic	operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus	(remainder	of	a	division	operation)

++ Increment

-- Decrement

On	line	{2},	we	have	the	assignment	operators.	In	the	following	table,	we	have	the
operators	and	their	descriptions:

Assignment	operator Description

= Assignment

+= Addition	assignment	(x	+=	y)	==	(x	=	x	+	y)

-= Subtraction	assignment	(x	-=	y)	==	(x	=	x	-	y)

*= Multiplication	assignment	(x	*=	y)	==	(x	=	x	*	y)

/= Division	assignment	(x	/=	y)	==	(x	=	x	/	y)

%= Remainder	assignment	(x	%=	y)	==	(x	=	x	%	y)

On	line	{3},	we	have	the	comparison	operators.	In	the	following	table,	we	have	the
operators	and	their	descriptions:

Comparison	operator Description

== Equal	to

=== Equal	to	(value	and	object	type	both)

!= Not	equal	to

> Greater	than

>= Greater	than	or	equal	to

< Less	than

<= Less	than	or	equal	to

And	on	line	{4},	we	have	the	logical	operators.	In	the	following	table,	we	have	the
operators	and	their	descriptions:

Logical	operator Description

&& And

|| Or

! Not

JavaScript	also	supports	bitwise	operators,	shown	as	follows:

console.log('5	&	1:',	(5	&	1));	

console.log('5	|	1:',	(5	|	1));	

console.log('~	5:',	(~5));	

console.log('5	^	1:',	(5	^	1));	

console.log('5	<<	1:',	(5	<<	1));	

console.log('5	>>	1:',	(5	>>	1));

The	following	table	contains	more	detailed	descriptions	of	the	bitwise	operators:

Bitwise	operator Description

& And

| Or

~ Not

^ Xor

<< Left	shift

>> Right	shift

The	typeof	operator	returns	the	type	of	the	variable	or	expression.	For	example,	have	a
look	at	the	following	code:

console.log('typeof	num:',	typeof	num);

console.log('typeof	Packt:',	typeof	'Packt');

console.log('typeof	true:',	typeof	true);

console.log('typeof	[1,2,3]:',	typeof	[1,2,3]);

console.log('typeof	{name:John}:',	typeof	{name:'John'});

The	output	will	be	as	follows:

typeof	num:	number

typeof	Packt:	string

typeof	true:	boolean

typeof	[1,2,3]:	object

typeof	{name:John}:	object

JavaScript	also	supports	the	delete	operator,	which	deletes	a	property	from	an	object:

var	myObj	=	{name:	'John',	age:	21};

delete	myObj.age;

console.log(myObj);	//outputs	Object	{name:	"John"}

In	this	book’s	algorithms,	we	will	be	using	some	of	these	operators.

Truthy	and	falsy
In	JavaScript,	true	and	false	are	a	little	bit	tricky.	In	most	languages,	the	Boolean	values
true	and	false	represent	the	true/false	results.	In	JavaScript,	a	string	suchas	“Packt”	has
the	value	true,	for	example.

The	following	table	can	help	us	better	understand	how	true	and	false	work	in	JavaScript:

Value	type Result

undefined false.

null false.

Boolean true	is	true	and	false	is	false!

Number The	result	is	false	for	+0,	-0,	or	NaN;	otherwise,	the	result	is	true.

String The	result	is	false	if	the	string	is	empty	(length	is	0);	otherwise,	the	result	is	true	(length	>	1).

Object true.

Let’s	see	some	examples	and	verify	their	output:

function	testTruthy(val){

				return	val	?	console.log('truthy')	:	console.log('falsy');

}

testTruthy(true);	//true

testTruthy(false);	//false

testTruthy(new	Boolean(false));	//true	(object	is	always	true)

testTruthy('');	//false

testTruthy('Packt');	//true

testTruthy(new	String(''));	//true	(object	is	always	true)

testTruthy(1);	//true

testTruthy(-1);	//true

testTruthy(NaN);	//false

testTruthy(new	Number(NaN));	//true	(object	is	always	true)

testTruthy({});	//true	(object	is	always	true)

var	obj	=	{name:'John'};

testTruthy(obj);	//true

testTruthy(obj.name);	//true

testTruthy(obj.age);	//false	(age	does	not	exist)

The	equals	operators	(==	and	===)
The	two	equals	operators	supported	by	JavaScript	can	cause	a	little	bit	of	confusion	when
working	with	them.

When	using	==,	values	can	be	considered	equal	even	when	they	are	of	different	types.	This
can	be	confusing	even	for	a	senior	JavaScript	developer.	Let’s	analyze	how	==	works
using	the	following	table:

Type(x) Type(y) Result

null undefined true

undefined null true

Number String x	==	toNumber(y)

String Number toNumber(x)	==	y

Boolean Any toNumber(x)	==	y

Any Boolean x	==	toNumber(y)

String	or	Number Object x	==	toPrimitive(y)

Object String	or	Number toPrimitive(x)	==	y

If	x	and	y	are	the	same	type,	then	JavaScript	will	use	the	equals	method	to	compare	the
two	values	or	objects.	Any	other	combination	that	is	not	listed	in	the	table	gives	a	false
result.

The	toNumber	and	toPrimitive	methods	are	internal	and	evaluate	the	values	according	to
the	tables	that	follow.

The	toNumber	method	is	presented	here:

Value
type Result

undefined NaN.

null +0.

Boolean If	the	value	is	true,	the	result	is	1;	if	the	value	is	false,	the	result	is	+0.

Number The	value	of	the	number.

String
This	parses	the	string	into	a	number.	If	the	string	consists	of	alphabetical	characters,	the	result	is	NaN;	if
the	string	consists	of	numbers,	it	is	transformed	into	a	number.

Object toNumber(toPrimitive(value)).

And	toPrimitive	is	presented	here:

Value
type Result

Object
If	valueOf	returns	a	primitive	value,	this	returns	the	primitive	value;	otherwise,	if	toString	returns	a	primitive
value,	this	returns	the	primitive	value;	otherwise	returns	an	error.

Let’s	verify	the	results	of	some	examples.	First,	we	know	that	the	output	of	the	following
code	is	true	(string	length	>	1):

console.log('packt'	?	true	:	false);

Now,	what	about	the	following	code?	Let’s	see:

console.log('packt'	==	true);

The	output	is	false!	Let’s	understand	why:

1.	 First,	it	converts	the	Boolean	value	using	toNumber,	so	we	have	packt	==	1.
2.	 Then,	it	converts	the	string	value	using	toNumber.	As	the	string	consists	of

alphabetical	characters,	it	returns	NaN,	so	we	have	NaN	==	1,	which	is	false.

And	what	about	the	following	code?	Let’s	see:

console.log('packt'	==	false);

The	output	is	also	false!	The	following	are	the	steps:

1.	 First,	it	converts	the	Boolean	value	using	toNumber,	so	we	have	packt	==	0.
2.	 Then,	it	converts	the	string	value	using	toNumber.	As	the	string	consists	of

alphabetical	characters,	it	returns	NaN,	so	we	have	NaN	==	0,	which	is	false.

And	what	about	the	operator	===?	It	is	much	easier.	If	we	are	comparing	two	values	of
different	types,	the	result	is	always	false.	If	they	have	the	same	type,	they	are	compared
according	to	the	following	table:

Type(x) Values Result

Number x	has	the	same	value	as	y	(but	not	NaN) true

String x	and	y	are	identical	characters true

Boolean x	and	y	are	both	true	or	both	false true

Object x	and	y	reference	the	same	object true

If	x	and	y	are	different	types,	then	the	result	is	false.

Let’s	see	some	examples:

console.log('packt'	===	true);	//false

console.log('packt'	===	'packt');	//true

var	person1	=	{name:'John'};

var	person2	=	{name:'John'};

console.log(person1	===	person2);	//false,	different	objects

Control	structures
JavaScript	has	a	similar	set	of	control	structures	as	the	C	and	Java	languages.	Conditional
statements	are	supported	by	if…else	and	switch.	Loops	are	supported	by	while,	do…
while,	and	for	constructs.

Conditional	statements
The	first	conditional	statement	we	will	take	a	look	at	is	the	if…else	construct.	There	are	a
few	ways	we	can	use	the	if…else	construct.

We	can	use	the	if	statement	if	we	want	to	execute	a	script	only	if	the	condition	is	true:

var	num	=	1;

if	(num	===	1)	{

				console.log("num	is	equal	to	1");

}	

We	can	use	the	if…else	statement	if	we	want	to	execute	a	script	if	the	condition	is	true	or
another	script	just	in	case	the	condition	is	false	(else):

var	num	=	0;

if	(num	===	1)	{

				console.log("num	is	equal	to	1");

}	else	{

				console.log("num	is	not	equal	to	1,	the	value	of	num	is	"	+	num);

}

The	if…else	statement	can	also	be	represented	by	a	ternary	operator.	For	example,	take	a
look	at	the	following	if…else	statement:

if	(num	===	1){

				num--;

}	else	{

				num++;

}

It	can	also	be	represented	as	follows:

(num	===	1)	?	num--	:	num++;

And	if	we	have	several	scripts,	we	can	use	if…else	several	times	to	execute	different
scripts	based	on	different	conditions:

var	month	=	5;

if	(month	===	1)	{

				console.log("January");

}	else	if	(month	===	2){

				console.log("February");

}	else	if	(month	===	3){

				console.log("March");

}	else	{

				console.log("Month	is	not	January,	February	or	March");

}

Finally,	we	have	the	switch	statement.	If	the	condition	we	are	evaluating	is	the	same	as
the	previous	one	(however,	it	is	being	compared	to	different	values),	we	can	use	the
switch	statement:

var	month	=	5;

switch(month)	{

				case	1:

								console.log("January");

								break;

				case	2:

								console.log("February");

								break;

				case	3:

								console.log("March");

								break;

				default:

								console.log("Month	is	not	January,	February	or	March");

}

One	thing	that	is	very	important	in	a	switch	statement	is	the	usage	of	case	and	break
keywords.	The	case	clause	determines	whether	the	value	of	switch	is	equal	to	the	value
of	the	case	clause.	The	break	statement	stops	the	switch	statement	from	executing	the
rest	of	the	statement	(otherwise,	it	will	execute	all	the	scripts	from	all	case	clauses	below
the	matched	case	until	a	break	statement	is	found	in	one	of	the	case	clauses).	And	finally,
we	have	the	default	statement,	which	is	executed	by	default	if	none	of	the	case
statements	are	true	(or	if	the	executed	case	statement	does	not	have	the	break	statement).

Loops
Loops	are	very	often	used	when	we	work	with	arrays	(which	is	the	subject	of	the	next
chapter).	Specifically,	we	will	be	using	the	for	loop	in	our	algorithms.

The	for	loop	is	exactly	the	same	as	in	C	and	Java.	It	consists	of	a	loop	counter	that	is
usually	assigned	a	numeric	value,	then	the	variable	is	compared	against	another	value	(the
script	inside	the	for	loop	is	executed	while	this	condition	is	true),	and	then	the	numeric
value	is	increased	or	decreased.

In	the	following	example,	we	have	a	for	loop.	It	outputs	the	value	of	i	on	the	console
while	i	is	less	than	10;	i	is	initiated	with	0,	so	the	following	code	will	output	the	values	0
to	9:

for	(var	i=0;	i<10;	i++)	{

				console.log(i);

}

The	next	loop	construct	we	will	look	at	is	the	while	loop.	The	script	inside	the	while	loop
is	executed	while	the	condition	is	true.	In	the	following	code,	we	have	a	variable,	i,
initiated	with	the	value	0,	and	we	want	the	value	of	i	to	be	outputted	while	i	is	less	than
10	(or	less	than	or	equal	to	9).	The	output	will	be	the	values	from	0	to	9:

var	i	=	0;

while(i<10)

{

				console.log(i);

				i++;

}

The	do…while	loop	is	very	similar	to	the	while	loop.	The	only	difference	is	that	in	the
while	loop,	the	condition	is	evaluated	before	executing	the	script,	and	in	the	do…while
loop,	the	condition	is	evaluated	after	the	script	is	executed.	The	do…while	loop	ensures
that	the	script	is	executed	at	least	once.	The	following	code	also	outputs	the	values	0	to	9:

var	i	=	0;

do	{

				console.log(i);

				i++;

}	while	(i<10)

Functions
Functions	are	very	important	when	working	with	JavaScript.	We	will	also	use	functions	a
lot	in	our	examples.

The	following	code	demonstrates	the	basic	syntax	of	a	function.	It	does	not	have
arguments	or	the	return	statement:

function	sayHello()	{

				console.log('Hello!');

}

To	call	this	code,	we	simply	use	the	following	call:

sayHello();

We	can	also	pass	arguments	to	a	function.	Arguments	are	variables	with	which	a	function
is	supposed	to	do	something.	The	following	code	demonstrates	how	to	use	arguments	with
functions:

function	output(text)	{

				console.log(text);

}

To	use	this	function,	we	can	use	the	following	code:

output('Hello!');

You	can	use	as	many	arguments	as	you	like,	as	follows:

output('Hello!',	'Other	text');

In	this	case,	only	the	first	argument	is	used	by	the	function	and	the	second	one	is	ignored.

A	function	can	also	return	a	value,	as	follows:

function	sum(num1,	num2)	{

				return	num1	+	num2;

}

This	function	calculates	the	sum	of	two	given	numbers	and	returns	its	result.	We	can	use	it
as	follows:

var	result	=	sum(1,2);

output(result);

Object-oriented	programming
JavaScript	objects	are	very	simple	collections	of	name-value	pairs.	There	are	two	ways	of
creating	a	simple	object	in	JavaScript.	The	first	way	is	as	follows:

var	obj	=	new	Object();

And	the	second	way	is	as	follows:

var	obj	=	{};

We	can	also	create	an	object	entirely	as	follows:

obj	=	{

				name:	{

								first:	'Gandalf',

								last:	'the	Grey'

				},

				address:	'Middle	Earth'

};

In	object-oriented	programming	(OOP),	an	object	is	an	instance	of	a	class.	A	class
defines	the	characteristics	of	the	object.	For	our	algorithms	and	data	structures,	we	will
create	some	classes	that	will	represent	them.	This	is	how	we	can	declare	a	class	that
represents	a	book:

function	Book(title,	pages,	isbn){

				this.title	=	title;

				this.pages	=	pages;

				this.isbn	=	isbn;

}

To	instantiate	this	class,	we	can	use	the	following	code:

var	book	=	new	Book('title',	'pag',		'isbn');

Then,	we	can	access	its	attributes	and	update	them	as	follows:

console.log(book.title);	//outputs	the	book	title

book.title	=	'new	title';	//updates	the	value	of	the	book	title

console.log(book.title);	//outputs	the	updated	value

A	class	can	also	contain	functions.	We	can	declare	and	use	a	function	as	the	following
code	demonstrates:

Book.prototype.printTitle	=	function(){

				console.log(this.title);

};

book.printTitle();

We	can	declare	functions	directly	inside	the	class	definition	as	well:

function	Book(title,	pages,	isbn){

				this.title	=	title;

				this.pages	=	pages;

				this.isbn	=	isbn;

				this.printIsbn	=	function(){

								console.log(this.isbn);

				}

}

book.printIsbn();

Note
In	the	prototype	example,	the	printTitle	function	is	going	to	be	shared	between	all
instances,	and	only	one	copy	is	going	to	be	created.	When	we	use	class-based	definition,
as	in	the	previous	example,	each	instance	will	have	its	own	copy	of	the	functions.	Using
the	prototype	method	saves	memory	and	processing	cost	in	regards	to	assigning	the
functions	to	the	instance.	However,	you	can	only	declare	public	functions	and	properties
using	the	prototype	method.	With	a	class-based	definition,	you	can	declare	private
functions	and	properties	and	the	other	methods	inside	the	class	can	also	access	them.	You
will	notice	in	the	examples	of	this	book	that	we	use	a	class-based	definition	(because	we
want	to	keep	some	properties	and	functions	private).	But,	whenever	possible,	we	should
use	the	prototype	method.

Now	we	have	covered	all	the	basic	JavaScript	concepts	that	are	needed	for	us	to	start
having	some	fun	with	data	structures	and	algorithms!

Debugging	and	tools
Knowing	how	to	program	with	JavaScript	is	important,	but	so	is	knowing	how	to	debug
your	code.	Debugging	is	very	useful	to	help	find	bugs	in	your	code,	but	it	can	also	help
you	execute	your	code	at	a	lower	speed	so	you	can	see	everything	that	is	happening	(the
stack	of	methods	called,	variable	assignment,	and	so	on).	It	is	highly	recommended	that
you	spend	some	time	debugging	the	source	code	of	this	book	to	see	every	step	of	the
algorithm	(it	might	help	you	understand	it	better	as	well).

Both	Firefox	and	Chrome	support	debugging.	A	great	tutorial	from	Google	that	shows	you
how	to	use	Google	Developer	Tools	to	debug	JavaScript	can	be	found	at
https://developer.chrome.com/devtools/docs/javascript-debugging.

You	can	use	any	text	editor	of	your	preference.	But	there	are	other	great	tools	that	can	help
you	be	more	productive	when	working	with	JavaScript	as	well:

Aptana:	This	is	a	free	and	open	source	IDE	that	supports	JavaScript,	CSS3,	and
HTML5,	among	other	languages	(http://www.aptana.com/).
WebStorm:	This	is	a	very	powerful	JavaScript	IDE	with	support	for	the	latest	web
technologies	and	frameworks.	It	is	a	paid	IDE,	but	you	can	download	a	30-day	trial
version	(http://www.jetbrains.com/webstorm/).
Sublime	Text:	This	is	a	lightweight	text	editor,	and	you	can	customize	it	by	installing
plugins.	You	can	buy	the	license	to	support	the	development	team,	but	you	can	also
use	it	for	free	(the	trial	version	does	not	expire)	at	http://www.sublimetext.com/.

https://developer.chrome.com/devtools/docs/javascript-debugging
http://www.aptana.com/
http://www.jetbrains.com/webstorm/
http://www.sublimetext.com/

Summary
In	this	chapter,	we	learned	how	to	set	up	the	development	environment	to	be	able	to	create
or	execute	the	examples	in	this	book.

We	also	covered	the	basics	of	the	JavaScript	language	that	are	needed	prior	to	getting
started	with	constructing	the	algorithms	and	data	structures	covered	in	this	book.

In	the	next	chapter,	we	will	look	at	our	first	data	structure,	which	is	array,	the	most	basic
data	structure	that	many	languages	support	natively,	including	JavaScript.

Chapter	2.	Arrays
An	array	is	the	simplest	memory	data	structure.	For	this	reason,	all	programming
languages	have	a	built-in	array	data	type.	JavaScript	also	supports	arrays	natively,	even
though	its	first	version	was	released	without	array	support.	In	this	chapter,	we	will	dive
into	the	array	data	structure	and	its	capabilities.

An	array	stores	a	sequence	of	values	that	are	all	of	the	same	data	type.	Although
JavaScript	allows	us	to	create	arrays	with	values	from	different	data	types,	we	will	follow
the	best	practices	and	consider	that	we	cannot	do	that	(most	languages	do	not	have	this
capability).

Why	should	we	use	arrays?
Let’s	consider	that	we	need	to	store	the	average	temperature	of	each	month	of	the	year	of
the	city	that	we	live	in.	We	could	use	something	like	the	following	to	store	this
information:

var	averageTempJan	=	31.9;

var	averageTempFeb	=	35.3;

var	averageTempMar	=	42.4;

var	averageTempApr	=	52;

var	averageTempMay	=	60.8;

However,	this	is	not	the	best	approach.	If	we	store	the	temperature	for	only	1	year,	we
could	manage	12	variables.	However,	what	if	we	need	to	store	the	average	temperature	for
more	than	1	year?	Fortunately,	that	is	why	arrays	were	created,	and	we	can	easily
represent	the	same	information	mentioned	earlier	as	follows:

averageTemp[0]	=	31.9;

averageTemp[1]	=	35.3;

averageTemp[2]	=	42.4;

averageTemp[3]	=	52;

averageTemp[4]	=	60.8;

We	can	also	represent	the	averageTemp	array	graphically:

Creating	and	initializing	arrays
Declaring,	creating,	and	initializing	an	array	in	JavaScript	is	as	simple,	as	follows:

var	daysOfWeek	=	new	Array();	//{1}

var	daysOfWeek	=	new	Array(7);	//{2}

var	daysOfWeek	=	new	Array('Sunday',	'Monday',	'Tuesday',	'Wednesday',	

'Thursday',	'Friday',	'Saturday');	//{3}

We	can	simply	declare	and	instantiate	a	new	array	by	using	the	keyword	new	(line	{1}).
Also,	using	the	keyword	new,	we	can	create	a	new	array	specifying	the	length	of	the	array
(line	{2}).	And	a	third	option	would	be	passing	the	array	elements	directly	to	its
constructor	(line	{3}).

However,	using	the	new	keyword	is	not	a	best	practice.	If	you	want	to	create	an	array	in
JavaScript,	simply	use	brackets	([])	like	in	the	following	example:

var	daysOfWeek	=	[];

We	can	also	initialize	the	array	with	some	elements,	as	follows:

var	daysOfWeek	=	['Sunday',	'Monday',	'Tuesday',	'Wednesday',	'Thursday',	

'Friday',	'Saturday'];

If	we	would	like	to	know	how	many	elements	are	in	the	array,	we	can	use	the	length
property.	The	following	code	will	give	an	output	of	7:

console.log(daysOfWeek.length);

To	access	a	particular	position	of	the	array,	we	also	use	brackets,	passing	the	numeric
position	we	would	like	to	know	the	value	of	or	assign	a	new	value	to.	For	example,	let’s
say	we	would	like	to	output	all	elements	from	the	daysOfWeek	array.	To	do	so,	we	need	to
loop	the	array	and	print	the	elements,	as	follows:

for	(var	i=0;	i<daysOfWeek.length;	i++){

				console.log(daysOfWeek[i]);

}

Let’s	take	a	look	at	another	example.	Let’s	say	that	we	want	to	find	out	the	first	20
numbers	of	the	Fibonacci	sequence.	The	first	two	numbers	of	the	Fibonacci	sequence	are	1
and	2,	and	each	subsequent	number	is	the	sum	of	the	previous	two	numbers:

var	fibonacci	=	[];	//{1}

fibonacci[1]	=	1;	//{2}

fibonacci[2]	=	1;	//{3}

for(var	i	=	3;	i	<	20;	i++){

				fibonacci[i]	=	fibonacci[i-1]	+	fibonacci[i-2];	////{4}

}

for(var	i	=	1;	i<fibonacci.length;	i++){	//{5}

				console.log(fibonacci[i]);											//{6}

}

So,	in	line	{1},	we	are	declaring	and	creating	an	array.	In	lines	{2}	and	{3},	we	assign	the
first	two	numbers	of	the	Fibonacci	sequence	to	the	second	and	third	positions	of	the	array
(in	JavaScript,	the	first	position	of	the	array	is	always	referenced	by	0,	and	as	there	is	no	0
in	the	Fibonacci	sequence,	we	skip	it).

Then,	all	we	have	to	do	is	create	the	third	to	the	twentieth	number	of	the	sequence	(as	we
know	the	first	two	numbers	already).	To	do	so,	we	can	use	a	loop	and	assign	the	sum	of
the	previous	two	positions	of	the	array	to	the	current	position	(line	{4}—starting	from
index	3	of	the	array	to	the	19th	index).

Then,	to	see	the	output	(line	{6}),	we	just	need	to	loop	the	array	from	its	first	position	to
its	length	(line	{5}).

Tip
We	can	use	console.log	to	output	each	index	of	the	array	(lines	{5}	and	{6})	or	we	can
also	use	console.log(fibonacci)	to	output	the	array	itself.	Most	browsers	have	nice
array	representation	in	console.log.

If	you	would	like	to	generate	more	than	20	numbers	of	the	Fibonacci	sequence,	just
change	the	number	20	to	whatever	number	you	like.

Adding	and	removing	elements
Adding	and	removing	elements	from	an	array	is	not	that	difficult;	however,	it	can	be
tricky.	For	the	examples	we	will	use	in	this	section,	let’s	consider	we	have	the	following
numbers	array	initialized	with	numbers	from	0	to	9:

var	numbers	=	[0,1,2,3,4,5,6,7,8,9];

If	we	want	to	add	a	new	element	to	this	array	(for	example,	the	number	10),	all	we	have	to
do	is	reference	the	latest	free	position	of	the	array	and	assign	a	value	to	it:

numbers[numbers.length]	=	10;

Note
In	JavaScript,	an	array	is	a	mutable	object.	We	can	easily	add	new	elements	to	it.	The
object	will	grow	dynamically	as	we	add	new	elements	to	it.	In	many	other	languages,	such
as	C	and	Java,	we	need	to	determine	the	size	of	the	array,	and	if	we	need	to	add	more
elements	to	the	array,	we	need	to	create	a	completely	new	array;	we	cannot	simply	add
new	elements	to	it	as	we	need	them.

However,	there	is	also	a	method	called	push	that	allows	us	to	add	new	elements	to	the	end
of	the	array.	We	can	add	as	many	elements	as	we	want	as	arguments	to	the	push	method:

numbers.push(11);

numbers.push(12,	13);

The	output	of	the	numbers	array	will	be	the	numbers	from	0	to	13.

Now,	let’s	say	we	need	to	add	a	new	element	to	the	array,	and	we	would	like	to	insert	it	in
the	first	position,	not	the	last	one.	To	do	so,	first	we	need	to	free	the	first	position	by
shifting	all	the	elements	to	the	right.	We	can	loop	all	the	elements	of	the	array	starting
from	the	last	position	+	1	(length)	and	shifting	the	previous	element	to	the	new	position	to
finally	assign	the	new	value	we	want	to	the	first	position	(-1):

for	(var	i=numbers.length;	i>=0;	i--){

				numbers[i]	=	numbers[i-1];

}

numbers[0]	=	-1;

We	can	represent	this	action	with	the	following	diagram:

The	JavaScript	array	class	also	has	a	method	called	unshift,	which	inserts	the	values
passed	in	the	method’s	arguments	at	the	start	of	the	array:

numbers.unshift(-2);

numbers.unshift(-4,	-3);

So,	using	the	unshift	method,	we	can	add	the	value	-2	and	then	-3	and	-4	to	the
beginning	of	the	numbers	array.	The	output	of	this	array	will	be	the	numbers	from	-4	to	13.

So	far,	we	have	learned	how	to	add	values	to	the	end	and	at	the	beginning	of	an	array.
Let’s	see	how	we	can	remove	a	value	from	an	array.

To	remove	a	value	from	the	end	of	an	array,	we	can	use	the	pop	method:

numbers.pop();

Tip
The	push	and	pop	methods	allow	an	array	to	emulate	a	basic	stack	data	structure,	which	is
the	subject	of	the	next	chapter.

The	output	of	our	array	will	be	the	numbers	from	-4	to	12.	The	length	of	our	array	is	17.

To	remove	a	value	from	the	beginning	of	the	array,	we	can	use	the	following	code:

for	(var	i=0;	i<numbers.length;	i++){

				numbers[i]	=	numbers[i+1];

}

We	can	represent	the	previous	code	using	the	following	diagram:

We	shifted	all	the	elements	one	position	to	the	left.	However,	the	length	of	the	array	is	still
the	same	(17),	meaning	we	still	have	an	extra	element	in	our	array	(with	an	undefined
value).The	last	time	the	code	inside	the	loop	is	executed,	i+1	is	a	reference	to	a	position
that	does	not	exist	(in	some	languages,	the	code	would	throw	an	exception	and	we	would
have	to	end	our	loop	at	numbers.length	-1).

As	we	can	see,	we	have	only	overwritten	the	array’s	original	values,	and	we	did	not
remove	the	value	for	real	(as	the	length	of	the	array	is	still	the	same	and	we	have	this	extra
undefined	element).

To	actually	remove	an	element	from	the	beginning	of	the	array,	we	can	use	the	shift
method	as	follows:

numbers.shift();

So,	if	we	consider	our	array	has	the	values	-4	to	12	and	a	length	of	17,	after	we	execute	the
previous	code,	the	array	will	contain	the	values	-3	to	12	and	have	a	length	of	16.

Tip
The	shift	and	unshift	methods	allow	an	array	to	emulate	a	basic	queue	data	structure,
which	is	the	subject	of	Chapter	4,	Queues.

So	far,	we	have	learned	how	to	add	elements	at	the	end	and	at	the	beginning	of	an	array,
and	we	have	also	learned	how	to	remove	elements	from	the	beginning	and	end	of	an	array.
What	if	we	also	want	to	add	or	remove	elements	from	any	particular	position	of	our	array?
How	can	we	do	that?

We	can	use	the	splice	method	to	remove	an	element	from	an	array	by	simply	specifying
the	position/index	we	would	like	to	delete	from	and	how	many	elements	we	would	like	to

remove:

numbers.splice(5,3);

This	code	will	remove	three	elements	starting	from	index	5	of	our	array.	This	means
numbers[5],	numbers[6],	and	numbers[7]	will	be	removed	from	the	numbers	array.	The
content	of	our	array	will	be	-3,	-2,	-1,	0,	1,	5,	6,	7,	8,	9,	10,	11,	and	12	(as	numbers	2,	3,
and	4	have	been	removed).

Now,	let’s	say	we	want	to	insert	numbers	2	to	4	back	into	the	array	starting	from	position
5.	We	can	again	use	the	splice	method	to	do	this:

numbers.splice(5,0,2,3,4);

The	first	argument	of	the	method	is	the	index	we	want	to	remove	or	insert	elements	from.
The	second	argument	is	the	number	of	elements	we	want	to	remove	(in	this	case,	we	do
not	want	to	remove	any,	so	we	pass	the	value	0	(zero)).	And	the	third	argument	(and
onwards)	are	the	values	we	would	like	to	insert	into	the	array	(elements	2,	3,	and	4).	The
output	will	be	the	values	from	-3	to	12	again.

Finally,	let’s	execute	the	following	code:

numbers.splice(5,3,2,3,4);

The	output	will	be	the	values	from	-3	to	12.	This	is	because	we	are	removing	three
elements	starting	from	index	5	and	we	are	also	adding	the	elements	2,	3,	and	4	starting	at
index	5.

Two-dimensional	and	multi-dimensional
arrays
At	the	beginning	of	this	chapter,	we	used	the	temperature	measurement	example.	We	will
now	use	this	example	one	more	time.	Let’s	consider	that	we	need	to	measure	the
temperature	hourly	for	a	few	days.	Now	that	we	already	know	that	we	can	use	an	array	to
store	the	temperatures,	we	can	easily	write	the	following	code	to	store	the	temperatures
over	two	days:

var	averageTempDay1	=	[72,75,79,79,81,81];

var	averageTempDay2	=	[81,79,75,75,73,72];

However,	this	is	not	the	best	approach;	we	can	write	better	code!	We	can	use	a	matrix
(two-dimensional	array)	to	store	this	information,	where	each	row	will	represent	the	day
and	each	column	will	represent	every	hourly	measurement	of	the	temperature:

var	averageTemp	=	[];

averageTemp[0]	=	[72,75,79,79,81,81];

averageTemp[1]	=	[81,79,75,75,73,72];

JavaScript	only	supports	one-dimensional	arrays;	it	does	not	support	matrices.	However,
we	can	implement	matrices	or	any	multidimensional	array	by	using	an	array	of	arrays,	as
in	the	previous	code.	The	same	code	can	also	be	written	as	follows:

//day	1

averageTemp[0]	=	[];

averageTemp[0][0]	=	72;

averageTemp[0][1]	=	75;

averageTemp[0][2]	=	79;

averageTemp[0][3]	=	79;

averageTemp[0][4]	=	81;

averageTemp[0][5]	=	81;

//day	2

averageTemp[1]	=	[];

averageTemp[1][0]	=	81;

averageTemp[1][1]	=	79;

averageTemp[1][2]	=	75;

averageTemp[1][3]	=	75;

averageTemp[1][4]	=	73;

averageTemp[1][5]	=	72;

In	the	previous	code,	we	are	specifying	the	value	of	each	day	and	each	hour	separately.	We
can	also	represent	this	example	in	a	diagram	like	the	following:

Each	row	represents	a	day	and	each	column	represents	an	hour	of	the	day	(temperature).

If	we	would	like	to	see	the	output	of	the	matrix,	we	can	create	a	generic	function	to	log	its
output:

function	printMatrix(myMatrix)	{

				for	(var	i=0;	i<myMatrix.length;	i++){

								for	(var	j=0;	j<myMatrix[i].length;	j++){

												console.log(myMatrix[i][j]);

								}

				}

}

We	need	to	loop	through	all	the	rows	and	all	the	columns.	To	do	this,	we	need	to	use	a
nested	for	loop,	where	the	variable	i	represents	the	rows	and	j	represents	the	columns.

We	can	call	the	following	code	to	see	the	output	of	the	averageTemp	matrix:

printMatrix(averageTemp);

We	can	also	work	with	multidimensional	arrays	in	JavaScript.	For	example,	let’s	create	a	3
x	3	matrix.	Each	cell	will	contain	the	sum	of	i	(row)	+	j	(column)	+	z	(depth)	of	the
matrix:

var	matrix3x3x3	=	[];

for	(var	i=0;	i<3;	i++){

				matrix3x3x3[i]	=	[];

				for	(var	j=0;	j<3;	j++){

								matrix3x3x3[i][j]	=	[];

								for	(var	z=0;	z<3;	z++){

												matrix3x3x3[i][j][z]	=	i+j+z;

								}

				}

}

It	does	not	matter	how	many	dimensions	we	have	in	the	data	structure;	we	need	to	loop
each	dimension	to	access	the	cell.	We	can	represent	a	3	x	3	x	3	matrix	with	a	cube
diagram,	as	follows:

To	output	the	content	of	this	matrix,	we	can	use	the	following	code:

for	(var	i=0;	i<matrix3x3x3.length;	i++){

				for	(var	j=0;	j<matrix3x3x3[i].length;	j++){

								for	(var	z=0;	z<matrix3x3x3[i][j].length;	z++){

												console.log(matrix3x3x3[i][j][z]);

								}

				}

}

If	we	had	a	3	x	3	x	3	x	3	matrix,	we	would	have	four	nested	for	statements	in	our	code,
and	so	on.

References	for	JavaScript	array	methods
Arrays	in	JavaScript	are	modified	objects,	meaning	that	every	array	that	we	create	has	a
few	methods	available	to	be	used.	JavaScript	arrays	are	very	interesting	because	they	are
very	powerful	and	have	more	capabilities	available	than	the	primitive	arrays	of	other
languages.	This	means	that	we	do	not	need	to	write	basic	capabilities	ourselves,	such	as
adding	and	removing	elements	in/from	the	middle	of	the	data	structure.

The	following	is	a	list	of	the	core	available	methods	in	an	array	object.	We	have	covered
some	methods	already.

Method Description

concat Joins	multiple	arrays	and	returns	a	copy	of	the	joined	arrays

every Calls	a	function	for	every	element	of	the	array	until	false	is	returned

filter Creates	an	array	with	each	element	that	evaluates	to	true	in	the	function	provided

forEach Executes	a	specific	function	on	each	element	of	the	array

join Joins	all	the	array	elements	into	a	string

indexOf Searches	the	array	for	specific	elements	and	returns	its	position

lastIndexOf Returns	the	last	item	in	the	array	that	matches	the	search	criteria	and	returns	its	position

map Creates	a	new	array	with	the	result	of	calling	the	specified	function	on	each	element	of	the	array

reverse Reverses	the	array	so	the	last	items	become	the	first	and	vice	versa

slice Returns	a	new	array	from	the	specified	index

some Passes	each	element	through	the	supplied	function	until	true	is	returned

sort Sorts	the	array	alphabetically	or	by	the	supplied	function

toString Returns	the	array	as	a	string

valueOf Like	the	method	toString,	this	returns	the	array	as	a	string

We	have	already	covered	the	push,	pop,	shift,	unshift,	and	splice	methods.	Let’s	take	a
look	at	these	new	ones.	These	methods	will	be	very	useful	in	the	subsequent	chapters	of
this	book	where	we	will	code	our	own	data	structure	and	algorithms.

Joining	multiple	arrays
Consider	a	scenario	where	you	have	different	arrays	and	you	need	to	join	all	of	them	into	a
single	array.	We	could	iterate	each	array	and	add	each	element	to	the	final	array.
Fortunately,	JavaScript	already	has	a	method	that	can	do	that	for	us,	named	the	concat
method:

var	zero	=	0;

var	positiveNumbers	=	[1,2,3];

var	negativeNumbers	=	[-3,-2,-1];

var	numbers	=	negativeNumbers.concat(zero,	positiveNumbers);

We	can	pass	as	many	arrays	and	objects/elements	to	this	array	as	we	desire.	The	arrays
will	be	concatenated	to	the	specified	array	in	the	order	the	arguments	are	passed	to	the
method.	In	this	example,	zero	will	be	concatenated	to	negativeNumbers,	and	then
positiveNumbers	will	be	concatenated	to	the	resulting	array.	The	output	of	the	numbers
array	will	be	the	values	-3,	-2,	-1,	0,	1,	2,	and	3.

Iterator	functions
Sometimes	we	need	to	iterate	the	elements	of	an	array.	We	have	learned	that	we	can	use	a
loop	construct	to	do	this,	such	as	the	for	statement,	as	we	saw	in	some	previous	examples.

JavaScript	also	has	some	built-in	iterator	methods	that	we	can	use	with	arrays.	For	the
examples	of	this	section,	we	will	need	an	array	and	also	a	function.	We	will	use	an	array
with	values	from	1	to	15,	and	also	a	function	that	returns	true	if	the	number	is	a	multiple
of	2	(even),	and	false	otherwise:

var	isEven	=	function	(x)	{

				//	returns	true	if	x	is	a	multiple	of	2.

				console.log(x);

				return	(x	%	2	==	0)	?	true	:	false;

};

var	numbers	=	[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15];

return	(x	%	2	==	0)	?	true	:	false	can	also	be	represented	as	return	(x	%	2	==
0).

The	first	method	we	will	take	a	look	at	is	the	every	method.	The	every	method	will	iterate
each	element	of	the	array	until	the	return	of	the	function	is	false:

numbers.every(isEven);

In	this	case,	our	first	element	of	the	numbers	array	is	the	number	1.	1	is	not	a	multiple	of	2
(it	is	an	odd	number),	so	the	isEven	function	will	return	false	and	this	will	be	the	only
time	the	function	will	be	executed.

Next,	we	have	the	some	method.	It	has	the	same	behavior	as	the	every	method,	however,
the	some	method	will	iterate	each	element	of	the	array	until	the	return	of	the	function	is
true:

numbers.some(isEven);

In	our	case,	the	first	even	number	of	our	numbers	array	is	2	(the	second	element).	The	first
element	that	will	be	iterated	is	number	1;	it	will	return	false.	Then,	the	second	element
that	will	be	iterated	is	number	2,	and	it	will	return	true—and	the	iteration	will	stop.

If	we	need	the	array	to	be	completely	iterated	no	matter	what,	we	can	use	the	forEach
function.	It	has	the	same	result	as	using	a	for	loop	with	the	function’s	code	inside	it:

numbers.forEach(function(x){

				console.log((x	%	2	==	0));

});

JavaScript	also	has	two	other	iterator	methods	that	return	a	new	array	with	a	result.	The
first	one	is	the	map	method:

var	myMap	=	numbers.map(isEven);

The	myMap	array	will	have	the	following	values:	[false,	true,	false,	true,	false,
true,	false,	true,	false,	true,	false,	true,	false,	true,	false].	It	stores	the
result	of	the	isEven	function	that	was	passed	to	the	map	method.	This	way,	we	can	easily

know	whether	a	number	is	even	or	not.	For	example,	myMap[0]	returns	false	because	1	is
not	even	and	myMap[1]	returns	true	because	2	is	even.

We	also	have	the	filter	method.	It	returns	a	new	array	with	the	elements	that	the	function
returned	true:

var	evenNumbers	=	numbers.filter(isEven);

In	our	case,	the	evenNumbers	array	will	contain	the	elements	that	are	multiples	of	2:	[2,
4,	6,	8,	10,	12,	14].

Finally,	we	have	the	reduce	method.	The	reduce	method	also	receives	a	function	with	the
following	parameters:	previousValue,	currentValue,	index,	and	array.	We	can	use	this
function	to	return	a	value	that	will	be	added	to	an	accumulator,	which	is	going	to	be
returned	after	the	reduce	method	stops	being	executed.	It	can	be	very	useful	if	we	want	to
sum	up	all	the	values	in	an	array,	for	example:

numbers.reduce(function(previous,	current,	index){

				return	previous	+	current;

});

The	output	is	going	to	be	120.

Searching	and	sorting
Throughout	this	book,	we	will	learn	how	to	write	the	most	used	searching	and	sorting
algorithms.	However,	JavaScript	also	has	a	sorting	method	and	a	couple	of	searching
methods	available.	Let’s	take	a	look	at	them.

First,	let’s	take	our	numbers	array	and	put	the	elements	out	of	order	(1,	2,	3,	…	15	is
already	sorted).	To	do	that,	we	can	apply	the	reverse	method,	where	the	last	item	will	be
the	first	and	vice	versa:

numbers.reverse();

So	now,	the	output	for	the	numbers	array	will	be	the	following:	[15,	14,	13,	12,	11,
10,	9,	8,	7,	6,	5,	4,	3,	2,	1].	Then,	we	can	apply	the	sort	method:

numbers.sort();

However,	if	we	output	the	array,	the	result	will	be	[1,	10,	11,	12,	13,	14,	15,	2,	3,
4,	5,	6,	7,	8,	9].	This	is	not	ordered	correctly.	This	is	because	the	sort	method	sorts
the	elements	lexicographically	and	it	assumes	all	the	elements	are	strings.

We	can	also	write	our	own	comparison	function.	As	our	array	has	numeric	elements,	we
can	write	the	following	code:

numbers.sort(function(a,b){

				return	a-b;

});

This	code	will	return	a	negative	number	if	b	is	bigger	than	a,	a	positive	number	if	a	is
bigger	than	b,	and	zero	if	they	are	equal.	This	means	that	if	a	negative	value	is	returned,	it
implies	that	a	is	smaller	than	b,	which	is	further	used	by	the	sort	function	to	arrange	the
elements.

The	previous	code	can	be	represented	by	the	following	code	as	well:

function	compare(a,	b)	{

				if	(a	<	b)	{

								return	-1;

				}

				if	(a	>	b)	{

								return	1;

				}

				//	a	must	be	equal	to	b

				return	0;

}

numbers.sort(compare);

This	is	because	the	sort	function	from	the	JavaScript	Array	class	can	receive	a	parameter
called	compareFunction,	which	will	be	responsible	for	sorting	the	array.	In	our	example,
we	declared	a	function	that	will	be	responsible	for	comparing	the	elements	of	the	array,
resulting	in	an	array	sorted	in	ascending	order.

Custom	sorting

We	can	sort	an	array	with	any	type	of	object	in	it,	and	we	can	also	create	a
compareFunction	to	compare	the	elements	as	we	need	to.	For	example,	suppose	we	have
an	object,	Person,	with	name	and	age	and	we	want	to	sort	the	array	based	on	the	age	of	the
person;	we	can	use	the	following	code:

var	friends	=	[

				{name:	'John',	age:	30},

				{name:	'Ana',	age:	20},

				{name:	'Chris',	age:	25}

];

function	comparePerson(a,	b){

				if	(a.age	<	b.age){

								return	-1

				}

				if	(a.age	>	b.age){

								return	1

				}

				return	0;

}

console.log(friends.sort(comparePerson));

In	this	case,	the	output	from	the	previous	code	will	be	Ana	(20),	Chris	(25),	and	John	(30).

Sorting	strings
Suppose	we	have	the	following	array:

var	names	=['Ana',	'ana',	'john',	'John'];

console.log(names.sort());

What	do	you	think	is	going	to	be	the	output?	The	answer	is	as	follows:

["Ana",	"John",	"ana",	"john"]

Why	does	ana	come	after	John,	since	“a”	comes	first	in	the	alphabet?	The	answer	is
because	JavaScript	compares	each	character	according	to	its	ASCII	value.	For	example,	A,
J,	a,	and	j	have	the	decimal	ASCII	values	of	A:	65,	J:	74,	a:	97,	and	j:	106.

Therefore,	J	has	a	lower	value	than	a,	and	because	of	this,	it	comes	first	in	the	alphabet.

Note
For	more	information	about	the	ASCII	table,	please	visit	http://www.asciitable.com/.

Now,	if	we	pass	a	compareFunction	that	contains	the	code	to	ignore	the	case	of	the	letter,
we	will	have	the	output	["Ana",	"ana",	"John",	"john"],	as	follows:

names.sort(function(a,	b){

				if	(a.toLowerCase()	<	b.toLowerCase()){

								return	-1

				}

				if	(a.toLowerCase()	>	b.toLowerCase()){

								return	1

				}

http://www.asciitable.com/

				return	0;

});

For	accented	characters,	we	can	use	the	localeCompare	method	as	well:

var	names2	=	['Maève',	'Maeve'];

console.log(names2.sort(function(a,	b){

				return	a.localeCompare(b);

}));

And	the	output	will	be	["Maeve",	"Maève"].

Searching
We	have	two	options	for	searching:	the	indexOf	method,	which	returns	the	index	of	the
first	element	that	matches	the	argument	passed,	and	lastIndexOf,	which	returns	the	index
of	the	last	element	found	that	matches	the	argument	passed.	Let’s	go	back	to	the	numbers
array	we	were	using	before:

console.log(numbers.indexOf(10));

console.log(numbers.indexOf(100));

In	the	previous	example,	the	output	in	the	console	will	be	9	for	the	first	line	and	-1
(because	it	does	not	exist	in	our	array)	for	the	second	line.

We	get	the	same	result	with	the	following	code:

numbers.push(10);

console.log(numbers.lastIndexOf(10));

console.log(numbers.lastIndexOf(100));

We	added	a	new	element	with	a	value	of	10,	so	the	second	line	will	output	15	(our	array
now	has	values	from	1	to	15	+	10),	and	the	third	line	outputs	-1	(because	the	element	100
does	not	exist	in	our	array).

Outputting	the	array	into	a	string
Finally,	we	come	to	the	final	two	methods:	toString	and	join.

If	we	would	like	to	output	all	the	elements	of	the	array	into	a	single	string,	we	can	use	the
toString	method	as	follows:

console.log(numbers.toString());

This	will	output	the	values	1,	2,	3,	4,	5,	6,	7,	8,	9,	10,	11,	12,	13,	14,	15,	and	10	to	the
console.

If	we	would	like	to	separate	the	elements	by	a	different	separator,	such	as	-,	we	can	use
the	join	method	to	do	just	that:

var	numbersString	=	numbers.join('-');

console.log(numbersString);

The	output	will	be	as	follows:

1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-10

This	can	be	useful	if	we	need	to	send	the	array’s	content	to	a	server	or	to	be	decoded	(and
then,	knowing	the	separator,	it	is	easy	to	decode).

Note
There	are	some	great	resources	that	you	can	use	to	boost	your	knowledge	about	arrays	and
their	methods:

The	first	one	is	the	arrays	page	from	w3schools	at
http://www.w3schools.com/js/js_arrays.asp
The	second	one	is	the	array	methods	page	from	w3schools	at
http://www.w3schools.com/js/js_array_methods.asp
Mozilla	also	has	a	great	page	about	arrays	and	their	methods	with	great	examples	at
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Array	(http://goo.gl/vu1diT)
There	are	also	great	libraries	that	are	very	useful	when	working	with	arrays	in
JavaScript	projects:

The	Underscore	library:	http://underscorejs.org/
The	Lo-Dash	library:	http://lodash.com/

http://www.w3schools.com/js/js_arrays.asp
http://www.w3schools.com/js/js_array_methods.asp
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
http://goo.gl/vu1diT)
http://underscorejs.org/
http://lodash.com/

Summary
In	this	chapter,	we	covered	the	most	used	data	structure:	arrays.	We	learned	how	to
declare,	initialize,	and	assign	values	as	well	as	add	and	remove	elements.	We	also	learned
about	two-dimensional	and	multi-dimensional	arrays	as	well	as	the	main	methods	of	an
array,	which	will	be	very	useful	when	we	start	creating	our	own	algorithms	in	later
chapters.

In	the	next	chapter,	we	will	learn	about	stacks,	an	array	with	a	special	behavior.

Chapter	3.	Stacks
You	learned	in	the	previous	chapter	how	to	create	and	use	arrays,	which	are	the	most
common	type	of	data	structure	in	Computer	Science.	As	you	learned,	we	can	add	and
remove	elements	from	an	array	at	any	index	desired.	However,	sometimes	we	need	some
form	of	data	structure	where	we	have	more	control	over	adding	and	removing	items.	There
are	two	data	structures	that	have	some	similarities	to	arrays	but	give	us	more	control	over
the	addition	and	removal	of	elements.	These	data	structures	are	stacks	and	queues.	In	this
chapter,	we	will	cover	stacks.

A	stack	is	an	ordered	collection	of	items	that	follows	the	LIFO	(short	for	Last	In	First
Out)	principle.	The	addition	of	new	items	or	the	removal	of	existing	items	takes	place	at
the	same	end.	The	end	of	the	stack	is	known	as	the	top	and	the	opposite	is	known	as	the
base.	The	newest	elements	are	near	the	top,	and	the	oldest	elements	are	near	the	base.

We	have	several	examples	of	stacks	in	real	life,	for	example,	a	pile	of	books,	as	we	can	see
in	the	following	image,	or	a	stack	of	trays	from	a	cafeteria	or	food	court:

A	stack	is	also	used	by	compilers	in	programming	languages	and	by	computer	memory	to
store	variables	and	method	calls.

Creating	a	stack
We	are	going	to	create	our	own	class	to	represent	a	stack.	Let’s	start	from	the	basics	and
declare	our	class:

function	Stack()	{

				//properties	and	methods	go	here

}

First,	we	need	a	data	structure	that	will	store	the	elements	of	the	stack.	We	can	use	an
array	to	do	this:

var	items	=	[];

Next,	we	need	to	declare	the	methods	available	for	our	stack:

push(element(s)):	This	adds	a	new	item	(or	several	items)	to	the	top	of	the	stack.
pop():	This	removes	the	top	item	from	the	stack.	It	also	returns	the	removed	element.
peek():	This	returns	the	top	element	from	the	stack.	The	stack	is	not	modified	(it
does	not	remove	the	element;	it	only	returns	the	element	for	information	purposes).
isEmpty():	This	returns	true	if	the	stack	does	not	contain	any	elements	and	false	if
the	size	of	the	stack	is	bigger	than	0.
clear():	This	removes	all	the	elements	of	the	stack.
size():	This	returns	how	many	elements	the	stack	contains.	It	is	similar	to	the
length	property	of	an	array.

The	first	method	we	will	implement	is	the	push	method.	This	method	will	be	responsible
for	adding	new	elements	to	the	stack	with	one	very	important	detail:	we	can	only	add	new
items	to	the	top	of	the	stack,	meaning	at	the	end	of	the	stack.	The	push	method	is
represented	as	follows:

this.push	=	function(element){

				items.push(element);

};

As	we	are	using	an	array	to	store	the	elements	of	the	stack,	we	can	use	the	push	method
from	the	JavaScript	array	class	that	we	covered	in	the	previous	chapter.

Next,	we	are	going	to	implement	the	pop	method.	This	method	will	be	responsible	for
removing	the	items	from	the	stack.	As	the	stack	uses	the	LIFO	principle,	the	last	item	that
we	added	is	the	one	that	is	removed.	For	this	reason,	we	can	use	the	pop	method	from	the
JavaScript	array	class	that	we	also	covered	in	the	previous	chapter.	The	pop	method	is
represented	as	follows:

this.pop	=	function(){

				return	items.pop();

};

With	the	push	and	pop	methods	being	the	only	methods	available	for	adding	and	removing
items	from	the	stack,	the	LIFO	principle	will	apply	to	our	own	Stack	class.

Now,	let’s	implement	some	additional	helper	methods	for	our	class.	If	we	would	like	to

know	what	the	last	item	added	to	our	stack	was,	we	can	use	the	peek	method.	This	method
will	return	the	item	from	the	top	of	the	stack:

this.peek	=	function(){

				return	items[items.length-1];

};

As	we	are	using	an	array	to	store	the	items	internally,	we	can	obtain	the	last	item	from	an
array	using	length	-	1	as	follows:

For	example,	in	the	previous	diagram,	we	have	a	stack	with	three	items;	therefore,	the
length	of	the	internal	array	is	3.	The	last	position	used	in	the	internal	array	is	2.	As	a
result,	the	length	-	1	(3	-	1)	is	2!

The	next	method	is	the	isEmpty	method,	which	returns	true	if	the	stack	is	empty	(no	item
has	been	added)	and	false	otherwise:

this.isEmpty	=	function(){

				return	items.length	==	0;

};

Using	the	isEmpty	method,	we	can	simply	verify	whether	the	length	of	the	internal	array
is	0.

Similar	to	the	length	property	from	the	array	class,	we	can	also	implement	length	for
our	Stack	class.	For	collections,	we	usually	use	the	term	“size”	instead	of	“length.”	And
again,	as	we	are	using	an	array	to	store	the	items	internally,	we	can	simply	return	its
length:

this.size	=	function(){

				return	items.length;

};

Finally,	we	are	going	to	implement	the	clear	method.	The	clear	method	simply	empties

the	stack,	removing	all	its	elements.	The	simplest	way	of	implementing	this	method	is	as
follows:

this.clear	=	function(){

				items	=	[];

};

An	alternative	implementation	would	be	calling	the	pop	method	until	the	stack	is	empty.

And	we	are	done!	Our	Stack	class	is	implemented.	Just	to	make	our	lives	easier	during	the
examples,	to	help	us	inspect	the	contents	of	our	stack,	let’s	implement	a	helper	method
called	print	that	is	going	to	output	the	content	of	the	stack	on	the	console:

this.print	=	function(){

				console.log(items.toString());

};

And	now	we	are	really	done!

The	complete	Stack	class
Let’s	take	a	look	at	how	our	Stack	class	looks	after	its	full	implementation:

function	Stack()	{

				var	items	=	[];

				this.push	=	function(element){

								items.push(element);

				};

				this.pop	=	function(){

								return	items.pop();

				};

				this.peek	=	function(){

								return	items[items.length-1];

				};

				this.isEmpty	=	function(){

								return	items.length	==	0;

				};

				this.size	=	function(){

								return	items.length;

				};

				this.clear	=	function(){

								items	=	[];

				};

				this.print	=	function(){

								console.log(items.toString());

				};

}

Using	the	Stack	class
Before	we	dive	into	some	examples,	we	need	to	learn	how	to	use	the	Stack	class.

The	first	thing	we	need	to	do	is	instantiate	the	Stack	class	we	just	created.	Next,	we	can
verify	whether	it	is	empty	(the	output	is	true	because	we	have	not	added	any	elements	to
our	stack	yet):

var	stack	=	new	Stack();

console.log(stack.isEmpty());	//outputs	true

Next,	let’s	add	some	elements	to	it	(let’s	push	the	numbers	5	and	8;	you	can	add	any
element	type	to	the	stack):

stack.push(5);

stack.push(8);

If	we	call	the	peek	method,	the	output	will	be	the	number	8	because	it	was	the	last	element

that	was	added	to	the	stack:

console.log(stack.peek());	//	outputs	8

Let’s	also	add	another	element:

stack.push(11);

console.log(stack.size());	//	outputs	3

console.log(stack.isEmpty());	//outputs	false

We	added	the	element	11.	If	we	call	the	size	method,	it	will	give	the	output	as	3,	because
we	have	three	elements	in	our	stack	(5,	8,	and	11).	Also,	if	we	call	the	isEmpty	method,
the	output	will	be	false	(we	have	three	elements	in	our	stack).	Finally,	let’s	add	another
element:

stack.push(15);

The	following	diagram	shows	all	the	push	operations	we	have	executed	so	far	and	the
current	status	of	our	stack:

Next,	let’s	remove	two	elements	from	the	stack	by	calling	the	pop	method	twice:

stack.pop();

stack.pop();

console.log(stack.size());	//	outputs	2

stack.print();	//	outputs	[5,	8]

Before	we	called	the	pop	method	twice,	our	stack	had	four	elements	in	it.	After	the
execution	of	the	pop	method	two	times,	the	stack	now	has	only	two	elements:	5	and	8.	The
following	diagram	exemplifies	the	execution	of	the	pop	method:

Decimal	to	binary
Now	that	we	know	how	to	use	the	Stack	class,	let’s	use	it	to	solve	some	Computer
Science	problems.

You	are	probably	already	aware	of	the	decimal	base.	However,	binary	representation	is
very	important	in	Computer	Science	as	everything	in	a	computer	is	represented	by	binary
digits	(0	and	1).	Without	the	ability	to	convert	back	and	forth	between	decimal	and	binary
numbers,	it	would	be	a	little	bit	difficult	to	communicate	with	a	computer.

To	convert	a	decimal	number	to	a	binary	representation,	we	can	divide	the	number	by	2
(binary	is	base	2	number	system)	until	the	division	result	is	0.	As	an	example,	we	will
convert	the	number	10	into	binary	digits:

This	conversion	is	one	of	the	first	things	you	learn	in	college	(Computer	Science	classes).
The	following	is	our	algorithm:

function	divideBy2(decNumber){

				var	remStack	=	new	Stack(),

								rem,

								binaryString	=	'';

				while	(decNumber	>	0){	//{1}

								rem	=	Math.floor(decNumber	%	2);	//{2}

								remStack.push(rem);	//{3}

								decNumber	=	Math.floor(decNumber	/	2);	//{4}

				}

				while	(!remStack.isEmpty()){	//{5}

								binaryString	+=	remStack.pop().toString();

				}

				return	binaryString;

}

In	this	code,	while	the	division	result	is	not	zero	(line	{1}),	we	get	the	remainder	of	the
division	(mod)	and	push	it	to	the	stack	(lines	{2}	and	{3}),	and	finally,	we	update	the
number	that	will	be	divided	by	2	(line	{4}).	An	important	observation:	JavaScript	has	a
numeric	data	type,	but	it	does	not	distinguish	integers	from	floating	points.	For	this	reason,
we	need	to	use	the	Math.floor	function	to	obtain	only	the	integer	value	from	the	division
operations.	And	finally,	we	pop	the	elements	from	the	stack	until	it	is	empty,
concatenating	the	elements	that	were	removed	from	the	stack	into	a	string	(line	{5}).

We	can	try	the	previous	algorithm	and	output	its	result	on	the	console	using	the	following
code:

console.log(divideBy2(233));

console.log(divideBy2(10));

console.log(divideBy2(1000));

We	can	easily	modify	the	previous	algorithm	to	make	it	work	as	a	converter	from	decimal
to	any	base.	Instead	of	dividing	the	decimal	number	by	2,	we	can	pass	the	desired	base	as
an	argument	to	the	method	and	use	it	in	the	divisions,	as	shown	in	the	following
algorithm:

function	baseConverter(decNumber,	base){

				var	remStack	=	new	Stack(),

								rem,

								baseString	=	'',

								digits	=	'0123456789ABCDEF';	//{6}

				while	(decNumber	>	0){

								rem	=	Math.floor(decNumber	%	base);

								remStack.push(rem);

								decNumber	=	Math.floor(decNumber	/	base);

				}

				while	(!remStack.isEmpty()){

								baseString	+=	digits[remStack.pop()];	//{7}

				}

				return	baseString;

}

There	is	one	more	thing	we	need	to	change.	In	the	conversion	from	decimal	to	binary,	the
remainders	will	be	0	or	1;	in	the	conversion	from	decimal	to	octagonal,	the	remainders
will	be	from	0	to	8,	but	in	the	conversion	from	decimal	to	hexadecimal,	the	remainders
can	be	0	to	8	plus	the	letters	A	to	F	(values	10	to	15).	For	this	reason,	we	need	to	convert
these	values	as	well	(lines	{6}	and	{7}).

We	can	use	the	previous	algorithm	and	output	its	result	on	the	console	as	follows:

console.log(baseConverter(100345,	2));

console.log(baseConverter(100345,	8));

console.log(baseConverter(100345,	16));

Note
You	will	also	find	the	balanced	parentheses	and	the	Hanoi	tower	examples	when	you
download	the	source	code	of	this	book.

Summary
In	this	chapter,	you	learned	about	the	stack	data	structure.	We	implemented	our	own
algorithm	that	represents	a	stack	and	you	learned	how	to	add	and	remove	elements	from	it
using	the	push	and	pop	methods.	We	also	covered	a	very	famous	example	of	how	to	use	a
stack.

In	the	next	chapter,	you	will	learn	about	queues,	which	are	very	similar	to	stacks	but	use	a
different	principle	than	LIFO.

Chapter	4.	Queues
We	have	already	learned	how	stacks	work.	Queues	are	very	similar,	but	instead	of	LIFO,
they	use	a	different	principle	that	you	will	learn	about	in	this	chapter.

A	queue	is	an	ordered	collection	of	items	that	follows	the	FIFO	(which	stands	for	First	In
First	Out,	also	known	as	first-come	first-served)	principle.	The	addition	of	new	elements
in	a	queue	is	at	the	tail	and	the	removal	is	from	the	front.	The	newest	element	added	to	the
queue	must	wait	at	the	end	of	the	queue.

The	most	popular	example	of	a	queue	in	real	life	is	the	typical	line	that	we	form	from	time
to	time:

We	have	lines	for	movies,	the	cafeteria,	and	a	checkout	line	at	a	grocery	store,	among
other	examples.	The	first	person	that	is	in	the	line	is	the	first	one	that	will	be	attended.

A	very	popular	example	in	Computer	Science	is	the	printing	line.	Let’s	say	we	need	to
print	five	documents.	We	open	each	document	and	click	on	the	print	button.	Each
document	will	be	sent	to	the	print	line.	The	first	document	that	we	asked	to	be	printed	is
going	to	be	printed	first	and	so	on,	until	all	documents	are	printed.

Creating	a	queue
We	are	going	to	create	our	own	class	to	represent	a	queue.	Let’s	start	from	the	basics	and
declare	our	class:

function	Queue()	{

				//properties	and	methods	go	here

}

First,	we	need	a	data	structure	that	will	store	the	elements	of	the	queue.	We	can	use	an
array	to	do	it,	just	like	we	used	for	the	Stack	class	in	the	previous	chapter	(you	will	notice
the	Queue	and	Stack	class	are	very	similar,	just	the	principles	for	adding	and	removing	the
elements	are	different):

var	items	=	[];

Next,	we	need	to	declare	the	methods	available	for	a	queue:

enqueue(element(s)):	This	adds	a	new	item	(or	several	items)	at	the	back	of	the
queue.
dequeue():	This	removes	the	first	item	from	the	queue	(the	item	that	is	in	the	front	of
the	queue).	It	also	returns	the	removed	element.
front():	This	returns	the	first	element	from	the	queue,	the	first	one	added,	and	the
first	one	that	will	be	removed	from	the	queue.	The	queue	is	not	modified	(it	does	not
remove	the	element;	it	only	returns	the	element	for	information	purposes—very
similar	to	the	peek	method	from	the	Stack	class).
isEmpty():	This	returns	true	if	the	queue	does	not	contain	any	elements	and	false	if
the	queue	is	bigger	than	0.
size():	This	returns	how	many	elements	the	queue	contains.	It	is	similar	to	the
length	property	of	the	array.

The	first	method	we	will	implement	is	the	enqueue	method.	This	method	will	be
responsible	for	adding	new	elements	to	the	queue	with	one	very	important	detail;	we	can
only	add	new	items	to	the	end	of	the	queue:

this.enqueue	=	function(element){

				items.push(element);

};

As	we	are	using	an	array	to	store	the	elements	for	the	stack,	we	can	use	the	push	method
from	the	JavaScript	array	class	that	we	covered	in	Chapter	2,	Arrays,	and	also	in	Chapter
3,	Stacks.

Next,	we	are	going	to	implement	the	dequeue	method.	This	method	will	be	responsible	for
removing	the	items	from	the	queue.	As	the	queue	uses	the	FIFO	principle,	the	first	item
that	we	added	is	the	one	that	is	removed.	For	this	reason,	we	can	use	the	shift	method
from	the	JavaScript	array	class	that	we	also	covered	in	Chapter	2,	Arrays.	If	you	do	not
remember,	the	shift	method	will	remove	the	element	that	is	stored	at	the	index	0	(first
position)	of	the	array:

this.dequeue	=	function(){

				return	items.shift();

};

With	the	enqueue	and	dequeue	methods	being	the	only	methods	available	for	adding	and
removing	items	from	the	queue,	we	assured	the	FIFO	principle	for	our	own	Queue	class.

Now,	let’s	implement	some	additional	helper	methods	for	our	class.	If	we	want	to	know
what	the	front	item	of	our	queue	is,	we	can	use	the	front	method.	This	method	will	return
the	item	from	the	front	of	the	queue	(index	0	of	the	array):

this.front	=	function(){

				return	items[0];

};

The	next	method	is	the	isEmpty	method,	which	returns	true	if	the	queue	is	empty	and
false	otherwise	(note	that	this	method	is	the	same	as	the	one	in	the	Stack	class):

this.isEmpty	=	function(){

				return	items.length	==	0;

};

For	the	isEmpty	method,	we	can	simply	verify	that	the	length	of	the	internal	array	is	0.

Like	the	length	property	of	the	array	class,	we	can	also	implement	the	same	for	our
Queue	class.	The	size	method	is	also	the	same	for	the	Stack	class:

this.size	=	function(){

				return	items.length;

};

And	we	are	done!	Our	Queue	class	is	implemented.	Just	like	we	did	for	the	Stack	class,	we
can	also	add	the	print	method:

this.print	=	function(){

				console.log(items.toString());

};

And	now	we	are	really	done!

The	complete	Queue	class
Let’s	take	a	look	how	our	Queue	class	looks	like	after	its	full	implementation:

function	Queue()	{

				var	items	=	[];

				this.enqueue	=	function(element){

								items.push(element);

				};

				this.dequeue	=	function(){

								return	items.shift();

				};

				this.front	=	function(){

								return	items[0];

				};

				this.isEmpty	=	function(){

								return	items.length	==	0;

				};

				this.clear	=	function(){

								items	=	[];

				};

				this.size	=	function(){

								return	items.length;

				};

				this.print	=	function(){

								console.log(items.toString());

				};

}

Note
The	Queue	and	Stack	class	are	very	similar.	The	only	difference	is	the	dequeue	and	front
methods	because	of	the	difference	between	the	FIFO	and	LIFO	principles.

Using	the	Queue	class
The	first	thing	we	need	to	do	is	instantiate	the	Queue	class	we	just	created.	Next,	we	can
verify	that	it	is	empty	(the	output	is	true	because	we	have	not	added	any	elements	to	our
queue	yet):

var	queue	=	new	Queue();

console.log(queue.isEmpty());	//outputs	true

Next,	let’s	add	some	elements	to	it	(let’s	enqueue	the	elements	“John”	and	“Jack”—you
can	add	any	element	type	to	the	queue):

queue.enqueue("John");

queue.enqueue("Jack");

Let’s	add	another	element:

queue.enqueue("Camila");

Let’s	also	execute	some	other	commands:

queue.print();

console.log(queue.size());	//outputs	3

console.log(queue.isEmpty());	//outputs	false

queue.dequeue();

queue.dequeue();

queue.print();

If	we	ask	to	print	the	contents	of	the	queue,	we	will	get	John,	Jack,	and	Camila.	The	size
of	the	queue	will	be	3	because	we	have	three	elements	queued	on	it	(and	it	is	also	not
going	to	be	empty).

The	following	diagram	exemplifies	all	the	enqueue	operations	we	executed	so	far	and	the
current	status	of	our	queue:

Next,	we	asked	to	dequeue	two	elements	(the	dequeue	method	is	executed	twice).	The
following	diagram	exemplifies	the	dequeue	method	execution:

And	when	we	finally	ask	to	print	the	content	of	the	queue	again,	we	only	have	the	element
Camila.	The	first	two	elements	queued,	were	dequeued;	the	final	element	queued	to	the
data	structure	is	the	last	one	that	will	be	dequeued	from	it.	That	being	said,	we	are
following	the	FIFO	principle.

The	priority	queue
As	queues	are	largely	applied	in	Computer	Science	and	also	in	our	lives,	there	are	some
modified	versions	of	the	default	queue	we	implemented	in	the	previous	topic.

One	modified	version	is	the	priority	queue.	Elements	are	added	and	removed	based	on	a
priority.	An	example	from	real	life	is	the	boarding	line	at	the	airport.	First	class	and
business	class	passengers	have	priority	over	coach	class	passengers.	In	some	countries,
elderly	people	and	pregnant	women	(or	women	with	newborn	children)	also	have	priority
for	boarding	over	other	passengers.

Another	example	from	real	life	is	the	patient’s	waiting	room	from	a	hospital	(emergency
department).	Patients	that	have	a	severe	condition	are	seen	by	a	doctor	prior	to	patients
with	a	less	severe	condition.	Usually,	a	nurse	will	do	the	triage	and	assign	a	code	to	the
patient	depending	on	the	condition	severity.

There	are	two	options	when	implementing	a	priority	queue:	you	can	set	the	priority	and
add	the	element	at	the	correct	position,	or	you	can	queue	the	elements	as	they	are	added	to
the	queue	and	remove	them	according	to	the	priority.	For	this	example,	we	will	add	the
elements	at	their	correct	position,	so	we	can	dequeue	them	by	default:

function	PriorityQueue()	{

				var	items	=	[];

				function	QueueElement	(element,	priority){		//	{1}

								this.element	=	element;

								this.priority	=	priority;

				}

				this.enqueue	=	function(element,	priority){

								var	queueElement	=	new	QueueElement(element,	priority);	

								if	(this.isEmpty()){	

												items.push(queueElement);	//	{2}

								}	else	{

												var	added	=	false;

												for	(var	i=0;	i<items.length;	i++){

																	if	(queueElement.priority	<	items[i].priority){	

																				items.splice(i,0,queueElement);	//	{3}

																				added	=	true;

																				break;	//	{4}

																}

												}

												if	(!added){	//{5}

																items.push(queueElement);

												}

								}

				};

//other	methods	-	same	as	default	Queue	implementation

}

The	difference	between	the	implementation	of	the	default	Queue	and	PriorityQueue
classes	is	that	we	need	to	create	a	special	element	(line	{1})	to	be	added	to
PriorityQueue.	This	element	contains	the	element	we	want	to	add	to	the	queue	(it	can	be
any	type)	plus	the	priority	on	the	queue.

If	the	queue	is	empty,	we	can	simple	enqueue	the	element	(line	{2}).	If	the	queue	is	not
empty,	we	need	to	compare	its	priority	to	the	rest	of	the	elements.	When	we	find	an	item
that	has	a	higher	priority	than	the	element	we	are	trying	to	add,	then	we	insert	the	new
element	one	position	before	(with	this	logic,	we	also	respect	the	other	elements	with	the
same	priority,	but	were	added	to	the	queue	first).	To	do	this,	we	can	use	the	splice
method	from	the	JavaScript	array	class	that	you	learned	about	in	Chapter	2,	Arrays.	Once
we	find	the	element	with	bigger	priority,	we	insert	the	new	element	(line	{3})	and	we	stop
looping	the	queue	(line	{4}).	This	way,	our	queue	will	also	be	sorted	and	organized	by
priority.

Also,	if	the	priority	we	are	adding	is	greater	than	any	priority	already	added,	we	simply
add	to	the	end	of	the	queue	(line	{5}):

var	priorityQueue	=	new	PriorityQueue();

priorityQueue.enqueue("John",	2);

priorityQueue.enqueue("Jack",	1);

priorityQueue.enqueue("Camila",	1);

priorityQueue.print();

In	the	previous	code,	we	can	see	an	example	of	how	to	use	the	PriorityQueue	class.	We
can	see	each	command	result	in	the	following	diagram	(a	result	of	the	previous	code):

The	first	element	that	was	added	was	John	with	priority	2.	Because	the	queue	was	empty,
this	is	the	only	element	on	it.	Then,	we	added	Jack	with	priority	1.	As	Jack	has	higher
priority	than	John,	it	is	the	first	element	in	the	queue.	Then,	we	added	Camila	also	with
priority	1.	As	Camila	has	the	same	priority	as	Jack,	it	will	be	inserted	after	Jack	(as	it	was
inserted	first);	and	as	Camila	has	a	higher	priority	than	John,	it	will	be	inserted	before	this
element.

The	priority	queue	we	implemented	is	called	a	min	priority	queue,	because	we	are	adding
the	element	with	the	lower	value	(1	has	higher	priority)	to	the	front	of	the	queue.	There	is
also	the	max	priority	queue,	which	instead	of	adding	the	element	with	the	lower	value	to
front	of	the	queue,	it	adds	the	element	with	greater	value	to	the	front	of	the	queue.

The	circular	queue	–	Hot	Potato
We	also	have	another	modified	version	of	the	queue	implementation,	which	is	the	circular
queue.	An	example	of	a	circular	queue	is	the	Hot	Potato	game.	In	this	game,	children	are
organized	in	a	circle,	and	they	pass	the	hot	potato	to	the	neighbor	as	fast	as	they	can.	At	a
certain	point	of	the	game,	the	hot	potato	stops	being	passed	around	the	circle	of	children
and	the	child	that	has	the	hot	potato	is	removed	from	the	circle.	This	action	is	repeated
until	there	is	only	one	child	left	(the	winner).

For	this	example,	we	will	implement	a	simulation	of	the	Hot	Potato	game:

function	hotPotato	(nameList,	num){

				var	queue	=	new	Queue();	//	{1}

				for	(var	i=0;	i<nameList.length;	i++){

								queue.enqueue(nameList[i]);	//	{2}

				}

				var	eliminated	=	'';

				while	(queue.size()	>	1){

								for	(var	i=0;	i<num;	i++){

												queue.enqueue(queue.dequeue());	//	{3}

								}

								eliminated	=	queue.dequeue();//	{4}

								console.log(eliminated	+	'	was	eliminated	from	the	Hot	Potato	

game.');

				}

				return	queue.dequeue();//	{5}

}

var	names	=	['John','Jack','Camila','Ingrid','Carl'];

var	winner	=	hotPotato(names,	7);

console.log('The	winner	is:	'	+	winner);

To	implement	a	simulation	of	this	game,	we	will	use	the	Queue	class	we	implemented	at
the	beginning	of	this	chapter	(line	{1}).	We	will	get	a	list	of	names	and	queue	all	of	them
(line	{2}).	Given	a	number,	we	need	to	iterate	the	queue.	We	will	remove	an	item	from	the
beginning	of	the	queue	and	add	it	to	the	end	of	it	(line	{3})	to	simulate	the	hot	potato	(if
you	passed	the	hot	potato	to	your	neighbor,	you	are	not	threatened	to	be	eliminated	right
away).	Once	we	reach	the	number,	the	person	that	has	the	hot	potato	is	eliminated
(removed	from	the	queue—line	{4}).	When	there	is	only	one	person	left,	this	person	is
declared	the	winner	(line	{5}).

The	output	from	the	previous	algorithm	is:

Camila	was	eliminated	from	the	Hot	Potato	game.

Jack	was	eliminated	from	the	Hot	Potato	game.

Carl	was	eliminated	from	the	Hot	Potato	game.

Ingrid	was	eliminated	from	the	Hot	Potato	game.

The	winner	is:	John

This	output	is	simulated	in	the	following	diagram:

You	can	change	the	number	passed	to	the	hotPotato	function	to	simulate	different
scenarios.

Summary
In	this	chapter,	you	learned	about	the	queue	data	structure.	We	implemented	our	own
algorithm	that	represents	a	queue;	you	learned	how	to	add	and	remove	elements	from	it
using	the	enqueue	and	dequeue	methods.	We	also	covered	two	very	famous	special
implementations	of	the	queue:	the	priority	queue	and	the	circular	queue	(using	the	Hot
Potato	game	implementation).

In	the	next	chapter,	you	will	learn	about	linked	lists,	a	more	complex	data	structure	than
the	array.

Chapter	5.	Linked	Lists
In	Chapter	2,	Arrays,	we	learned	about	the	array	data	structure.	An	array	(or	we	can	also
call	it	a	list)	is	a	very	simple	data	structure	that	stores	a	sequence	of	data.	In	this	chapter,
you	will	learn	how	to	implement	and	use	a	linked	list,	which	is	a	dynamic	data	structure,
meaning	we	can	add	or	remove	items	from	it	at	will	and	it	will	grow	as	needed.

Arrays	(or	lists)	are	probably	the	most	common	data	structure	used	to	store	a	collection	of
elements.	As	we	mentioned	before	in	this	book,	each	language	has	its	own	implementation
of	arrays.	This	data	structure	is	very	convenient	and	provides	a	handy	[]	syntax	to	access
its	elements.	However,	this	data	structure	has	a	disadvantage:	the	size	of	the	array	is	fixed
(in	most	languages)	and	inserting	or	removing	items	from	the	beginning	or	from	the
middle	of	the	array	is	expensive	because	the	elements	need	to	be	shifted	over	(even	though
we	learned	that	JavaScript	has	methods	from	the	array	class	that	will	do	that	for	us,	this	is
what	happens	behind	the	scenes	as	well).

Linked	lists	store	a	sequential	collection	of	elements;	but	unlike	arrays,	in	linked	lists	the
elements	are	not	placed	contiguously	in	memory.	Each	element	consists	of	a	node	that
stores	the	element	itself	and	also	a	reference	(also	known	as	a	pointer	or	link)	that	points
to	the	next	element.	The	following	diagram	exemplifies	the	structure	of	a	linked	list:

One	of	the	benefits	of	a	linked	list	over	a	conventional	array	is	that	we	do	not	need	to	shift
elements	over	when	adding	or	removing	elements.	However,	we	need	to	use	pointers
when	working	with	a	linked	list,	and	because	of	it,	we	need	to	pay	some	extra	attention
when	implementing	a	linked	list.	Another	detail	in	the	array	is	that	we	can	directly	access
any	element	at	any	position;	with	the	linked	list,	if	we	want	to	access	an	element	from	the
middle,	we	need	to	start	from	the	beginning	(head)	and	iterate	the	list	until	we	find	the
desired	element.

We	have	some	real-world	examples	that	can	be	exemplified	as	a	linked	list.	The	first
example	is	a	conga	line.	Each	person	is	an	element,	and	the	hands	would	be	the	pointer
that	links	to	the	next	person	in	the	conga	line.	You	can	add	people	to	the	line—you	just
need	to	find	the	spot	where	you	want	to	add	this	person,	decouple	the	connection,	and	then
insert	the	new	person	and	make	the	connection	again.

Another	example	would	be	a	scavenger	hunt.	You	have	a	clue,	and	this	clue	is	the	pointer
to	the	place	where	you	can	find	the	next	clue.	With	this	link,	you	go	to	the	next	place	and
get	another	clue	that	will	lead	to	the	next	one.	The	only	way	to	get	a	clue	from	the	middle

of	the	list	is	to	follow	the	list	from	the	beginning	(from	the	first	clue).

We	have	another	example,	which	might	be	the	most	popular	one	used	to	exemplify	linked
lists,	which	is	a	train.	A	train	consists	of	a	series	of	vehicles	(also	known	as	wagons).	Each
vehicle	or	wagon	is	linked	to	each	other.	You	can	easily	decouple	a	wagon,	change	its
place,	or	add	or	remove	it.	The	following	figure	demonstrates	a	train.	Each	wagon	is	the
element	of	the	list	and	the	link	between	the	wagons	is	the	pointer:

In	this	chapter,	we	will	cover	the	linked	list	and	also	the	doubly	linked	list.	But	let’s	start
with	the	easiest	data	structure	first.

Creating	a	linked	list
Now	that	we	understand	what	a	linked	list	is,	let’s	start	implementing	our	data	structure.
This	is	the	skeleton	of	our	LinkedList	class:

function	LinkedList()	{

				var	Node	=	function(element){	//	{1}

								this.element	=	element;

								this.next	=	null;

				};

				var	length	=	0;	//	{2}

				var	head	=	null;	//	{3}

				this.append	=	function(element){};

				this.insert	=	function(position,	element){};

				this.removeAt	=	function(position){};

				this.remove	=	function(element){};

				this.indexOf	=	function(element){};

				this.isEmpty	=	function()	{};

				this.size	=	function()	{};

				this.toString	=	function(){};

				this.print	=	function(){};

}

For	the	LinkedList	data	structure,	we	need	a	helper	class	called	Node	(line	{1}).	The	Node
class	represents	the	item	that	we	want	to	add	to	the	list.	It	contains	an	element	attribute,
which	is	the	value	we	want	to	add	to	the	list,	and	a	next	attribute,	which	is	the	pointer	that
contains	the	link	to	the	next	node	item	of	the	list.

We	also	have	the	length	property	(line	{2})	in	the	LinkedList	class	(internal/private
variable)	that	will	store	how	many	items	we	have	on	the	list.

Another	important	note	is	that	we	need	to	store	a	reference	for	the	first	node	as	well.	To	do
this,	we	can	store	this	reference	inside	a	variable	that	we	will	call	head	(line	{3}).

Then,	we	have	the	methods	of	the	LinkedList	class.	Let’s	see	what	each	method	will	be
responsible	for	before	we	implement	each	one:

append(element):	This	adds	a	new	item	to	the	end	of	the	list.
insert(position,	element):	This	inserts	a	new	item	at	a	specified	position	in	the
list.
remove(element):	This	removes	an	item	from	the	list.
indexOf(element):	This	returns	the	index	of	the	element	in	the	list.	If	the	element	is
not	in	the	list,	it	returns	-1.
removeAt(position):	This	removes	an	item	from	a	specified	position	in	the	list.
isEmpty():	This	returns	true	if	the	linked	list	does	not	contain	any	elements	and
false	if	the	size	of	the	linked	list	is	bigger	than	0.
size():	This	returns	how	many	elements	the	linked	list	contains.	It	is	similar	to	the
length	property	of	the	array.

toString():	As	the	list	uses	a	Node	class	as	an	item,	we	need	to	overwrite	the	default
toString	method	inherited	from	the	JavaScript	object	to	output	only	the	element
values.

Appending	elements	to	the	end	of	the	linked	list
When	adding	an	element	to	the	end	of	a	LinkedList	object,	there	are	two	scenarios	that
can	happen:	the	list	is	empty	and	we	are	adding	its	first	element,	or	the	list	is	not	empty
and	we	are	appending	elements	to	it.

Here,	we	have	the	implementation	of	the	append	method:

this.append	=	function(element){

				var	node	=	new	Node(element),	//{1}

								current;	//{2}

				if	(head	===	null){	//first	node	on	list	//{3}

								head	=	node;

				}	else	{	

								current	=	head;	//{4}

								//loop	the	list	until	find	last	item

								while(current.next){

												current	=	current.next;

								}

								//get	last	item	and	assign	next	to	node	to	make	the	link

								current.next	=	node;	//{5}

				}

				length++;	//update	size	of	list	//{6}

};

The	first	thing	we	need	to	do	is	to	create	the	Node	item	passing	element	as	its	value	(line
{1}).

Let’s	implement	the	first	scenario	first:	adding	an	element	when	the	list	is	empty.	When
we	create	a	LinkedList	object,	the	head	will	be	pointing	to	null:

If	the	head	element	is	null	(the	list	is	empty—line	{3}),	it	means	we	are	adding	the	first
element	to	the	list.	So,	all	we	have	to	do	is	point	the	head	element	to	the	node	element.
The	next	node	element	will	be	null	automatically	(check	the	source	code	from	the

previous	topic).

Note
The	last	node	from	the	list	will	always	have	null	as	the	next	element.

So,	we	have	covered	the	first	scenario.	Let’s	go	to	the	second	one,	which	is	adding	an
element	to	the	end	of	the	list	when	it	is	not	empty.

To	add	an	element	to	the	end	of	the	list,	we	first	need	to	find	the	last	element.	Remember
that	we	only	have	a	reference	to	the	first	element	(line	{4}),	so	we	need	to	iterate	through
the	list	until	we	find	the	last	item.	To	do	so,	we	will	need	a	variable	that	will	point	to	the
current	item	of	the	list	(line	{2}).	When	looping	through	the	list,	we	know	we	reached	its
end	when	the	current.next	element	is	null.	Then,	all	we	have	to	do	is	link	the	current
element’s	(which	is	the	last	one)	next	pointer	to	the	node	we	want	to	add	to	the	list	(line
{5}).	The	following	diagram	exemplifies	this	action:

And	as	and	when	we	create	a	Node	element,	its	next	pointer	will	always	be	null.	We	are
OK	with	this	because	we	know	that	it	is	going	to	be	the	last	item	of	the	list.

And	of	course,	we	cannot	forget	to	increment	the	size	of	the	list	so	that	we	can	control	it
and	easily	get	the	list	size	(line	{6}).

We	can	use	and	test	the	data	structure	we’ve	created	so	far	with	the	following	code:

var	list	=	new	LinkedList();

list.append(15);

list.append(10);	

Removing	elements	from	the	linked	list
Now,	let’s	see	how	we	can	remove	elements	from	the	LinkedList	object.	There	are	also
two	scenarios	when	removing	elements:	the	first	one	is	removing	the	first	element,	and	the
second	one	is	removing	any	element	but	the	first	one.	We	are	going	to	implement	two
remove	methods:	the	first	one	is	removing	an	element	from	a	specified	position	and	the
second	one	is	based	on	the	element	value	(we	will	present	the	second	remove	method
later).

Here	is	the	implementation	of	the	method	that	will	remove	an	element	based	on	a	given
position:

this.removeAt	=	function(position){

				//check	for	out-of-bounds	values

				if	(position	>	-1	&&	position	<	length){	//	{1}

								var	current	=	head,	//	{2}

												previous,	//	{3}

												index	=	0;	//	{4}

								//removing	first	item

								if	(position	===	0){	//	{5}

												head	=	current.next;

								}	else	{

												while	(index++	<	position){	//	{6}

																previous	=	current;					//	{7}

																current	=	current.next;	//	{8}

												}

												//link	previous	with	current's	next:	skip	it	to	remove

												previous.next	=	current.next;	//	{9}

								}

								length--;	//	{10}

								return	current.element;

				}	else	{

								return	null;	//	{11}

				}

};

We	will	dive	into	this	code	step	by	step.	As	the	method	is	going	to	receive	the	position	of
the	element	that	needs	to	be	removed,	we	need	to	verify	that	the	position	value	is	a	valid
one	(line	{1}).	A	valid	position	would	be	from	0	(included)	to	the	size	of	the	list	(size	-
1,	as	the	index	starts	from	zero).	If	it	is	not	a	valid	position,	we	return	null	(meaning	no
element	was	removed	from	the	list).

Let’s	write	the	code	for	the	first	scenario:	we	want	to	remove	the	first	element	from	the	list
(position	===	0—line	{5}).	The	following	diagram	exemplifies	this:

So,	if	we	want	to	remove	the	first	element,	all	we	have	to	do	is	point	head	to	the	second
element	of	the	list.	We	will	make	a	reference	to	the	first	element	of	the	list	using	the
current	variable	(line	{2}—we	will	also	use	this	to	iterate	the	list,	but	we	will	get	there	in
a	minute).	So,	the	current	variable	is	a	reference	to	the	first	element	of	the	list.	If	we
assign	head	to	current.next,	we	will	be	removing	the	first	element.

Now,	let’s	say	we	want	to	remove	the	last	item	of	the	list	or	an	item	from	the	middle	of	the
list.	To	do	so,	we	need	to	iterate	the	list	until	the	desired	position	(line	{6}—we	will	use	an
index	variable	for	internal	control	and	increment)	with	one	detail:	the	current	variable
will	always	make	a	reference	to	the	current	element	of	the	list	that	we	are	looping	through
(line	{8}).	And	we	also	need	to	make	a	reference	to	the	element	that	comes	before	the
current	element	(line	{7});	we	will	name	it	previous	(line	{3}).

So,	to	remove	the	current	element	from	the	list,	all	we	have	to	do	is	link	previous.next
with	current.next	(line	{9}).	This	way,	the	current	element	will	be	lost	in	the	computer
memory	and	will	be	available	to	be	cleaned	by	the	garbage	collector.

Note
To	understand	better	how	the	JavaScript	garbage	collector	works,	please	read
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Memory_Management.

Let’s	try	to	understand	this	better	with	some	diagrams.	First,	let’s	consider	that	we	want	to
remove	the	last	element:

In	the	case	of	the	last	element,	when	we	get	off	the	loop	in	line	{6},	the	current	variable
will	be	a	reference	to	the	last	element	of	the	list	(the	one	we	want	to	remove).	The
current.next	value	will	be	null	(because	it	is	the	last	element).	As	we	also	keep	a
reference	of	the	previous	element	(one	element	before	the	current	one),	previous.next
will	be	pointing	to	current.	So	to	remove	current,	all	we	have	to	do	is	change	the	value

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Memory_Management

of	previous.next	to	current.next.

Now	let’s	see	whether	the	same	logic	applies	to	an	element	from	the	middle	of	the	list:

The	current	variable	is	a	reference	to	the	element	we	want	to	remove.	The	previous
variable	is	a	reference	to	the	element	that	comes	before	the	element	we	want	to	remove.
So	to	remove	the	current	element,	all	we	need	to	do	is	link	previous.next	to
current.next.	So,	our	logic	works	for	both	cases.

Inserting	an	element	at	any	position
Next,	we	are	going	to	implement	the	insert	method.	This	method	provides	you	with	the
capability	to	insert	an	element	at	any	position.	Let’s	take	a	look	at	its	implementation:

this.insert	=	function(position,	element){

				//check	for	out-of-bounds	values

				if	(position	>=	0	&&	position	<=	length){	//{1}

								var	node	=	new	Node(element),

												current	=	head,

												previous,

												index	=	0;

								if	(position	===	0){	//add	on	first	position

												node.next	=	current;	//{2}

												head	=	node;

								}	else	{

												while	(index++	<	position){	//{3}

																previous	=	current;

																current	=	current.next;

												}

												node.next	=	current;	//{4}

												previous.next	=	node;	//{5}

								}

								length++;	//update	size	of	list

								return	true;

				}	else	{

								return	false;	//{6}

				}

};

As	we	are	handling	positions,	we	need	to	check	the	out-of-bound	values	(line	{1},	just	like
we	did	in	the	remove	method).	If	it	is	out	of	bounds,	we	return	the	value	false	to	indicate
no	item	was	added	to	the	list	(line	{6}).

Now,	we	are	going	to	handle	the	different	scenarios.	The	first	scenario	is	if	in	case	we
need	to	add	an	element	at	the	beginning	of	the	list,	meaning	the	first	position.	The
following	diagram	exemplifies	this	scenario:

We	have	the	current	variable	doing	a	reference	to	the	first	element	of	the	list.	What	we
need	to	is	set	the	node.next	value	to	current	(the	first	element	of	the	list).	Now	we	have
head	and	also	node.next	pointing	to	current.	Next,	all	we	have	to	do	is	change	the	head
reference	to	node	(line	{2})	and	we	have	a	new	element	in	the	list.

Now	let’s	handle	the	second	scenario:	adding	an	element	in	the	middle	or	at	the	end	of	the
list.	First,	we	need	to	loop	through	the	list	until	we	reach	the	desired	position	(line	{3}).
When	we	get	out	of	the	loop,	the	current	variable	will	be	a	reference	to	an	element
present	after	the	position	we	would	like	to	insert	the	new	item,	and	previous	will	be	a
reference	to	an	element	present	before	the	position	we	would	like	to	insert	the	new	item.
In	this	case,	we	want	to	add	the	new	item	between	previous	and	current.	So,	first	we
need	to	make	a	link	between	the	new	item	(node)	and	current	item	(line	{4}),	and	then	we
need	to	change	the	link	between	previous	and	current.	We	need	previous.next	to	point
to	node	(line	{5}).

Let’s	see	the	code	in	action	using	a	diagram	to	exemplify	it:

If	we	try	to	add	a	new	element	to	the	last	position,	previous	will	be	a	reference	to	the	last
item	of	the	list	and	current	will	be	null.	In	this	case,	node.next	will	point	to	current	and
previous.next	will	point	to	node,	and	we	have	a	new	item	in	the	list.

Now,	let’s	see	how	to	add	a	new	element	in	the	middle	of	the	list:

In	this	case,	we	are	trying	to	insert	the	new	item	(node)	between	the	previous	and	current
elements.	First,	we	need	to	set	the	value	of	the	node.next	pointer	to	current.	Then,	set	the
value	of	previous.next	to	node.	And	then	we	have	a	new	item	in	the	list!

Tip
It	is	very	important	to	have	variables	referencing	the	nodes	we	need	to	control	so	that	we
do	not	lose	the	link	between	the	nodes.	We	could	work	with	only	one	variable	(previous),
but	it	would	be	harder	to	control	the	links	between	the	nodes.	For	this	reason,	it	is	better	to
declare	an	extra	variable	to	help	us	with	these	references.

Implementing	other	methods
In	this	section	we	will	learn	how	to	implement	the	other	methods	from	the	LinkedList
class,	such	as	toString,	indexOf,	isEmpty,	and	size.

The	toString	method
The	toString	method	converts	the	LinkedList	object	into	a	string.	The	following	is	the
implementation	of	the	toString	method:

this.toString	=	function(){

				var	current	=	head,	//{1}

								string	=	'';				//{2}

				while	(current)	{			//{3}

								string	=	current.element;	//{4}

								current	=	current.next;			//{5}

				}

				return	string;																//{6}

};

First,	to	iterate	through	all	elements	of	the	list,	we	need	a	starting	point,	which	is	head.	We
will	use	the	current	variable	as	our	index	(line	{1})	and	navigate	through	the	list.	We	also
need	to	initialize	the	variable	that	we	will	be	using	to	concatenate	the	elements’	values
(line	{2}).

Next,	we	iterate	each	element	of	the	list	(line	{3}).	We	are	going	to	use	current	to	check
whether	there	is	an	element	(if	the	list	is	empty	or	we	reach	the	next	of	last	element	of	the
list	(null),	the	code	inside	the	while	loop	will	not	be	executed).	Then,	we	get	the
element’s	content	and	concatenate	it	to	our	string	(line	{4}).	And	finally,	we	iterate	the
next	element	(line	{5}).

And	at	last,	we	return	the	string	with	the	list’s	content	(list	{6}).

The	indexOf	method
The	next	method	we	will	implement	is	the	indexOf	method.	The	indexOf	method	receives
the	value	of	an	element	and	returns	the	position	of	this	element	if	it	is	found.	Otherwise,	it
returns	-1.

Let’s	take	a	look	at	its	implementation:

this.indexOf	=	function(element){

				var	current	=	head,	//{1}

								index	=	-1;

				while	(current)	{			//{2}

								if	(element	===	current.element)	{	

												return	index;							//{3}

								}

								index++;																//{4}

								current	=	current.next;	//{5}

				}

				return	-1;

};

As	always,	we	need	a	variable	that	will	help	us	iterate	through	the	list;	this	variable	is
current	and	its	first	value	is	the	head	(the	first	element	of	the	list—we	also	need	a
variable	to	increment	to	count	the	position	number,	index	(line	{1})).	Then,	we	iterate
through	the	elements	(line	{2})	and	check	if	the	element	we	are	looking	for	is	the	current
one.	If	positive,	we	return	its	position	(line	{3}).	If	not,	we	continue	counting	(line	{4})
and	go	to	the	next	node	of	the	list	(line	{5}).

The	loop	will	not	be	executed	if	the	list	is	empty	or	we	reach	the	end	of	the	list	(current
=	current.next	will	be	null).	If	we	do	not	find	the	value,	we	return	-1.

With	this	method	implemented,	we	can	implement	other	methods,	such	as	the	remove
method:

this.remove	=	function(element){

				var	index	=	this.indexOf(element);

				return	this.removeAt(index);

};

We	already	have	a	method	that	removes	an	element	at	a	given	position	(removeAt).	Now
that	we	have	the	indexOf	method,	if	we	pass	the	element’s	value,	we	can	find	its	position
and	call	the	removeAt	method	passing	the	position	that	we	found.	It	is	very	simple	and	it	is
also	easier	if	we	need	to	change	the	code	from	the	removeAt	method—it	will	be	changed
for	both	methods	(this	is	what	is	nice	about	reusing	code).	This	way,	we	do	not	need	to
maintain	two	methods	to	remove	an	item	from	the	list,	we	need	only	one!	Also,	the
bounds	constraints	will	be	checked	by	the	removeAt	method.

The	isEmpty,	size,	and	getHead	methods
The	isEmpty	and	size	methods	are	the	same	as	the	ones	we	implemented	for	the	classes
implemented	in	previous	chapter.	But	let’s	take	a	look	at	them	anyway:

this.isEmpty	=	function()	{

				return	length	===	0;

};

The	isEmpty	method	returns	true	if	there	is	no	element	in	the	list	and	false	otherwise:

this.size	=	function()	{

				return	length;

};

The	size	method	returns	the	length	of	the	list.	As	a	difference	from	the	classes	we
implemented	in	earlier	chapters,	the	length	of	the	list	is	controlled	internally	as
LinkedList	is	a	class	built	from	scratch.

And	finally,	we	have	the	getHead	method:

this.getHead	=	function(){

				return	head;

};

The	head	variable	is	a	private	variable	from	the	LinkedList	class	(meaning	it	can	be
accessed	and	changed	only	by	the	LinkedList	instance,	not	outside	of	the	instance).	But	if
we	need	to	iterate	the	list	outside	the	class	implementation,	we	need	to	provide	a	way	to
get	the	first	element	of	the	class.

Doubly	linked	lists
There	are	some	different	types	of	linked	lists.	In	this	section,	we	are	going	to	cover	the
doubly	linked	list.	The	difference	between	a	doubly	linked	list	and	a	normal	linked	list	is
that	in	the	linked	list	we	make	the	link	from	one	node	to	the	next	one	only.	In	the	doubly
linked	list,	we	have	a	double	link:	one	for	the	next	element	and	one	for	the	previous
element,	as	shown	in	the	following	diagram:

Let’s	get	started	with	the	changes	that	are	needed	to	implement	the	DoublyLinkedList
class:

function	DoublyLinkedList()	{

				var	Node	=	function(element){

								this.element	=	element;

								this.next	=	null;

								this.prev	=	null;	//NEW

				};

				var	length	=	0;

				var	head	=	null;

				var	tail	=	null;	//NEW

				//methods	here

}

As	we	can	see	in	this	code,	the	differences	between	the	LinkedList	class	and	the
DoublyLinkedList	class	are	marked	by	NEW.	Inside	the	Node	class	we	have	the	prev
attribute	(a	new	pointer)	and	inside	the	DoublyLinkedList	class	we	also	have	the	tail
attribute	to	keep	the	reference	of	the	last	item	of	the	list.

The	doubly	linked	list	provides	us	with	two	ways	to	iterate	the	list:	from	the	beginning	to
its	end	or	vice	versa.	We	can	also	go	to	the	next	element	or	the	previous	element	of	a
particular	node.	In	the	singly	linked	list,	when	you	are	iterating	the	list	and	you	miss	the
desired	element,	you	need	to	go	back	to	the	beginning	of	the	list	and	start	iterating	it	again.
This	is	one	of	the	advantages	of	the	doubly	linked	list.

Inserting	a	new	element	at	any	position
Inserting	a	new	item	in	the	doubly	linked	list	is	very	similar	to	the	linked	list.	The
difference	is	that	in	the	linked	list	we	only	control	one	pointer	(next),	and	in	the	doubly
linked	list	we	have	to	control	both	next	and	prev	(previous).

Here	we	have	the	algorithm	to	insert	a	new	element	at	any	position:

this.insert	=	function(position,	element){

								//check	for	out-of-bounds	values

								if	(position	>=	0	&&	position	<=	length){

												var	node	=	new	Node(element),

																current	=	head,

																previous,

																index	=	0;

												if	(position	===	0){	//add	on	first	position

																if	(!head){														//NEW	{1}

																				head	=	node;

																				tail	=	node;

																}	else	{

																				node.next	=	current;

																				current.prev	=	node;	//NEW	{2}

																				head	=	node;

																}

												}	else		if	(position	===	length)	{	//last	item	//NEW

																current	=	tail;					//	{3}

																current.next	=	node;

																node.prev	=	current;

																tail	=	node;

												}	else	{

																while	(index++	<	position){	//{4}

																				previous	=	current;

																				current	=	current.next;

																}

																node.next	=	current;	//{5}

																previous.next	=	node;

																current.prev	=	node;	//NEW

																node.prev	=	previous;	//NEW

												}

												length++;	//update	size	of	list

												return	true;

								}	else	{

												return	false;

								}

				};

Let’s	analyze	the	first	scenario:	insert	a	new	element	at	the	first	position	of	the	list
(beginning	of	the	list).	If	the	list	is	empty	(line	{1}),	we	simply	need	to	point	head	and
tail	to	the	new	node.	If	not,	the	current	variable	will	be	a	reference	to	the	first	element
of	the	list.	As	we	did	for	the	linked	list,	we	set	node.next	to	current	and	head	will	point
to	the	node	(it	will	be	the	first	element	of	the	list).	The	difference	now	is	that	we	also	need
to	set	a	value	for	the	previous	pointer	of	the	elements.	The	current.prev	pointer	will	be
pointing	to	the	new	element	(node—line	{2})	instead	of	null.	And	the	node.prev	pointer
is	already	null,	so	we	do	not	need	to	update	anything.

The	following	diagram	demonstrates	this	process:

Now	let’s	analyze	this,	just	in	case	we	want	to	add	a	new	element	as	the	last	element	of	the
list.	As	we	are	also	controlling	the	pointer	to	the	last	element,	this	is	a	special	case.	The
current	variable	will	reference	the	last	element	(line	{3}).	Then,	we	start	making	the	first
link:	node.prev	will	reference	current.	The	current.next	pointer	(which	is	pointing	to
null)	will	point	to	node	(node.next	will	be	pointing	to	null	already	because	of	the
constructor).	Then,	there	is	only	one	thing	left	to	be	done,	which	is	updating	tail,	which
will	point	to	node	instead	of	current.	The	following	diagram	demonstrates	all	these
actions:

Then	we	have	the	third	scenario:	inserting	a	new	element	in	the	middle	of	the	list.	As	we
did	for	the	previous	methods,	we	will	iterate	the	list	until	we	get	to	the	desired	position
(line	{4}).	We	will	be	inserting	the	new	element	between	the	current	and	previous
elements.	First,	node.next	will	point	to	current	(line	{5})	and	previous.next	will	point
to	node,	so	that	we	do	not	lose	the	link	between	the	nodes.	Then,	we	need	to	fix	all	the
links:	current.prev	will	point	to	node	and	node.prev	will	point	to	previous.	The
following	diagram	exemplifies	this:

Tip
We	can	do	some	improvements	in	both	methods	we	implemented:	insert	and	remove.	In
the	case	of	a	negative	result,	we	could	insert	elements	at	the	end	of	the	list.	There	is	also	a
performance	improvement;	for	example,	if	position	is	greater	than	length/2,	it	is	best	to
iterate	from	the	end	than	start	from	the	beginning	(we	will	have	to	iterate	fewer	elements
from	the	list).

Removing	elements	from	any	position
Removing	elements	from	a	doubly	linked	list	is	also	very	similar	to	a	linked	list.	The	only
difference	is	that	we	need	to	set	the	previous	pointer	as	well.	Let’s	take	a	look	at	the
implementation:

this.removeAt	=	function(position){

				//look	for	out-of-bounds	values

				if	(position	>	-1	&&	position	<	length){

								var	current	=	head,

												previous,

												index	=	0;

								//removing	first	item

								if	(position	===	0){

												head	=	current.next;	//	{1}

												//if	there	is	only	one	item,	update	tail	//NEW

												if	(length	===	1){	//	{2}

																tail	=	null;

												}	else	{

																head.prev	=	null;	//	{3}

												}

								}	else	if	(position	===	length-1){	//last	item	//NEW

												current	=	tail;	//	{4}

												tail	=	current.prev;

												tail.next	=	null;

								}	else	{

												while	(index++	<	position){	//	{5}

																previous	=	current;

																current	=	current.next;

												}

												//link	previous	with	current's	next	-	skip	it

												previous.next	=	current.next;	//	{6}

												current.next.prev	=	previous;	//NEW

								}

								length--;

								return	current.element;

				}	else	{

								return	null;

				}

};

We	need	to	handle	three	scenarios:	removing	an	element	from	the	beginning,	from	the
middle,	and	the	last	element.

Let’s	take	a	look	how	to	remove	the	first	element.	The	current	variable	is	a	reference	to
the	first	element	of	the	list,	the	one	we	want	to	remove.	All	we	need	to	do	is	change	the
reference	from	head;	instead	of	current,	it	will	be	the	next	element	(current.next—line
{1}).	But	we	also	need	to	update	the	current.next	previous	pointer	(as	the	first	element
prev	pointer	is	a	reference	to	null).	So,	we	change	the	reference	of	head.prev	to	null
(line	{3}—as	head	is	also	pointing	to	the	new	first	element	of	the	list	or	we	can	also	use
current.next.prev).	As	we	also	need	to	control	the	tail	reference,	we	can	check
whether	the	element	we	are	trying	to	remove	is	the	first	one	and	if	positive,	all	we	need	to
do	is	set	tail	to	null	as	well	(line	{2}).

The	following	diagram	illustrates	the	removal	of	the	first	element	from	a	doubly	linked
list:

The	next	scenario	removes	an	element	from	the	last	position.	As	we	have	the	reference	to
the	last	element	already	(tail),	we	do	not	need	to	iterate	the	list	to	get	to	it.	So,	we	can
assign	the	tail	reference	to	the	current	variable	as	well	(line	{4}).	Next,	we	need	to
update	the	tail	reference	to	the	second-last	element	of	the	list	(current.prev	or
tail.prev	works	as	well).	And	now	that	tail	is	pointing	to	the	second-last	element,	all
we	need	to	do	is	update	the	next	pointer	to	null	(tail.next	=	null).	The	following
diagram	demonstrates	this	action:

And	the	third	and	final	scenario:	removing	an	element	from	the	middle	of	the	list.	First,

we	need	to	iterate	until	we	get	to	the	desired	position	(line	{5}).	The	element	we	want	to
remove	would	be	referenced	by	the	current	variable.	So,	to	remove	it,	we	can	skip	it	in
the	list	by	updating	the	references	of	previous.next	and	current.next.prev.	So,
previous.next	will	point	to	current.next	and	current.next.prev	will	point	to
previous,	as	demonstrated	by	the	following	diagram:

Note
To	know	the	implementation	of	other	methods	of	doubly	linked	lists,	refer	to	the	source
code	of	the	book.	The	download	link	of	the	source	code	is	mentioned	in	the	preface	of	the
book.

Circular	linked	lists
A	circular	linked	list	can	have	only	one	reference	direction	(as	the	linked	list)	or	a	double
reference	as	the	doubly	linked	list.	The	only	difference	between	the	circular	linked	list	and
a	linked	list	is	that	the	last	element’s	next	(tail.next)	pointer	does	not	make	a	reference
to	null,	but	to	the	first	element	(head),	as	we	can	see	in	the	following	diagram:

And	a	doubly	circular	linked	list	has	tail.next	pointing	to	the	head	element	and
head.prev	pointing	to	the	tail	element:

Note
We	don’t	have	the	scope	to	cover	the	CircularLinkedList	algorithm	in	this	book	(the
source	code	is	very	similar	to	LinkedList	and	DoublyLinkedList).	However,	you	can
access	the	code	by	downloading	this	book’s	source	code.

Summary
In	this	chapter,	you	learned	about	the	linked	list	data	structure	and	its	variants,	the	doubly
linked	list	and	the	circular	linked	list.	You	learned	how	to	remove	and	add	elements	at	any
position	and	how	to	iterate	through	a	linked	list.	You	also	learned	that	the	most	important
advantage	of	a	linked	list	over	an	array	is	that	you	can	easily	add	and	remove	elements
from	a	linked	list	without	shifting	over	its	elements.	So,	whenever	you	need	to	add	and
remove	lots	of	elements,	the	best	option	would	be	a	linked	list	instead	of	an	array.

In	the	next	chapter,	you	will	learn	about	sets,	the	last	sequential	data	structure	that	we	will
cover	in	this	book.

Chapter	6.	Sets
So	far,	we	have	learned	about	sequential	data	structures	such	as	arrays	(lists),	stacks,
queues,	and	linked	lists	(and	their	variants).	In	this	chapter,	we	will	cover	the	data
structure	called	a	set.

A	set	is	a	collection	of	items	that	are	unordered	and	consists	of	unique	elements	(meaning
they	cannot	be	repeated).	This	data	structure	uses	the	same	math	concept	as	of	finite	sets,
but	applied	to	a	Computer	Science	data	structure.

Let’s	take	a	look	at	the	math	concept	of	sets	before	we	dive	into	the	Computer	Science
implementation	of	it.	In	Mathematics,	a	set	is	a	collection	of	distinct	objects.

For	example,	we	have	a	set	of	natural	numbers,	which	consists	of	integer	numbers	greater
than	or	equal	to	0:	N	=	{0,	1,	2,	3,	4,	5,	6,	…}.	The	list	of	the	objects	within	the	set	is
surrounded	by	{}	(curly	braces).

There	is	also	the	null	set	concept.	A	set	with	no	element	is	called	a	null	set	or	empty	set.
For	example,	a	set	of	prime	numbers	between	24	and	29.	As	there	is	no	prime	number	(a
natural	number	greater	than	1	that	has	no	positive	divisors	other	than	1	and	itself)	between
24	and	29,	the	set	will	be	empty.	We	represent	an	empty	set	as	{	}.

You	can	also	imagine	a	set	as	an	array	with	no	repeated	elements	and	with	no	concept	or
order.

In	Mathematics,	a	set	also	has	some	basic	operations	such	as	union,	intersection,	and
difference.	We	will	also	cover	these	operations	in	this	chapter.

Creating	a	set
The	current	implementation	of	JavaScript	is	based	on	ECMAScript	5.1	(supported	by
modern	browsers)	published	on	June	2011.	It	contains	the	Array	class	implementation	that
we	covered	in	earlier	chapters.	ECMAScript	6	(a	work	in	progress,	expected	to	be	released
in	March	2015	at	the	time	of	writing	this	book)	contains	an	implementation	of	the	Set
class.

Note
You	can	see	the	details	of	the	ECMAScript	6	Set	class	implementation	at
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set
(or	http://goo.gl/2li2a5).

The	class	we	are	going	to	implement	in	this	chapter	is	based	on	the	Set	implementation	of
ECMAScript	6.

This	is	the	skeleton	of	our	Set	class:

function	Set()	{

				var	items	=	{};

}

A	very	important	detail	is	that	we	are	using	an	object	to	represent	our	set	(items)	instead
of	an	array.	But	we	could	also	use	an	array	to	do	this	implementation.	Let’s	use	an	object
to	implement	things	a	little	bit	differently	and	learn	new	ways	of	implementing	data
structures	that	are	similar.	And	also,	objects	in	JavaScript	do	not	allow	you	to	have	two
different	properties	on	the	same	key,	which	guarantees	unique	elements	in	our	set.

Next,	we	need	to	declare	the	methods	available	for	a	set	(we	will	try	to	simulate	the	same
Set	class	implemented	in	ECMAScript	6):

add(value):	This	adds	a	new	item	to	the	set.
remove(value):	This	removes	the	value	from	the	set.
has(value):	This	returns	true	if	the	value	exists	in	the	set	and	false	otherwise.
clear():	This	removes	all	the	items	from	the	set.
size():	This	returns	how	many	elements	the	set	contains.	It	is	similar	to	the	length
property	of	the	array.
values():	This	returns	an	array	of	all	the	values	of	the	set.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set
http://goo.gl/2li2a5

The	has	(value)	method
The	first	method	we	will	implement	is	the	has(value)	method.	We	will	implement	this
method	first	because	it	will	be	used	in	other	methods	such	as	add	and	remove.	We	can	see
its	implementation	here:

this.has	=	function(value){

				return	value	in	items;

};

As	we	are	using	an	object	to	store	all	the	values	of	the	set,	we	can	use	JavaScript’s	in
operator	to	verify	that	the	given	value	is	a	property	of	the	items	object.

But	there	is	a	better	way	of	implementing	this	method,	which	is	as	follows:

this.has	=	function(value){

				return	items.hasOwnProperty(value);

};

All	JavaScript	objects	have	the	hasOwnProperty	method.	This	method	returns	a	Boolean
indicating	whether	the	object	has	the	specified	property	or	not.

The	add	method
The	next	method	we	will	implement	is	the	add	method:

this.add	=	function(value){

				if	(!this.has(value)){

								items[value]	=	value;	//{1}

								return	true;

				}

				return	false;

};

Given	a	value,	we	can	check	whether	the	value	already	exists	in	the	set.	If	not,	we	add
the	value	to	the	set	(line	{1})	and	return	true	to	indicate	that	the	value	was	added.	If	the
value	already	exists	in	the	set,	we	simply	return	false	to	indicate	that	the	value	was	not
added.

Note
We	are	adding	the	value	as	key	and	value	because	it	will	help	us	search	for	the	value	if	we
store	it	as	the	key	as	well.

The	remove	and	clear	methods
Next,	we	will	implement	the	remove	method:

this.remove	=	function(value){

				if	(this.has(value)){

								delete	items[value];	//{2}

								return	true;

				}

				return	false;

};

In	the	remove	method,	we	will	verify	that	the	given	value	exists	in	the	set.	If	this	is
positive,	we	remove	the	value	from	the	set	(line	{2})	and	return	true	to	indicate	the	value
was	removed;	otherwise,	we	return	false.

As	we	are	using	an	object	to	store	the	items	object	of	the	set,	we	can	simply	use	the
delete	operator	to	remove	the	property	from	the	items	object	(line	{2}).

To	use	the	Set	class,	we	can	use	the	following	code	as	an	example:

var	set	=	new	Set();

set.add(1);

set.add(2);

Note
Just	out	of	curiosity,	if	we	output	the	items	variable	on	the	console	(console.log)	after
executing	the	previous	code,	this	will	be	the	output	in	Google	Chrome:

Object	{1:	1,	2:	2}

As	we	can	see,	it	is	an	object	with	two	properties.	The	property	name	is	the	value	we
added	to	the	set	and	its	value	as	well.

If	we	want	to	remove	all	the	values	from	the	set,	we	can	use	the	clear	method:

this.clear	=	function(){

				items	=	{};	//	{3}

};

All	we	need	to	do	to	reset	the	items	object	is	assign	it	to	an	empty	object	again	(line	{3}).
We	could	also	iterate	the	set	and	remove	all	the	values	one	by	one	using	the	remove
method,	but	that	is	too	much	work	as	we	have	an	easier	way	of	doing	it.

The	size	method
The	next	method	we	will	implement	is	the	size	method	(which	returns	how	many	items
are	in	the	set).	There	are	three	ways	of	implementing	this	method.

The	first	method	is	to	use	a	length	variable	and	control	it	whenever	we	use	the	add	or
remove	method,	as	we	used	in	the	LinkedList	class	in	the	previous	chapter.

In	the	second	method,	we	use	a	built-in	function	from	the	built-in	Object	class	in
JavaScript	(ECMAScript	5+):

this.size	=	function(){

				return	Object.keys(items).length;	//{4}

};

The	Object	class	in	JavaScript	contains	a	method	called	keys	that	returns	an	array	of	all
properties	of	a	given	object.	In	this	case,	we	can	use	the	length	property	of	this	array	(line
{4})	to	return	how	many	properties	we	have	in	the	items	object.	This	code	will	work	only
in	modern	browsers	(such	as	IE9+,	FF4+,	Chrome5+,	Opera12+,	Safari5+,	and	so	on).

The	third	method	is	to	extract	each	property	of	the	items	object	manually	and	count	how
many	properties	there	are	and	return	this	number.	This	method	will	work	in	any	browser
and	is	the	equivalent	of	the	previous	code:

this.sizeLegacy	=	function(){

				var	count	=	0;

				for(var	prop	in	items)	{	//{5}

								if(items.hasOwnProperty(prop))	//{6}

												++count;	//{7}

				}

				return	count;

};

So,	first	we	iterate	through	all	the	properties	of	the	items	object	(line	{5})	and	check
whether	that	property	is	really	a	property	(so	we	do	not	count	it	more	than	once—line
{6}).	If	positive,	we	increment	the	count	variable	(line	{7})	and	at	the	end	of	the	method
we	return	this	number.

Note
We	cannot	simply	use	the	for-in	statement	and	iterate	through	the	properties	of	the	items
object	and	increment	the	count	variable	value.	We	also	need	to	use	the	has	method	(to
verify	that	the	items	object	has	that	property)	because	the	object’s	prototype	contains
additional	properties	for	the	object	as	well	(properties	are	inherited	from	the	base
JavaScript	Object	class,	but	it	still	has	properties	of	the	object,	which	are	not	used	in	this
data	structure).

The	values	method
The	same	logic	applies	to	the	values	method,	using	which	we	want	to	extract	all	the
properties	of	the	items	object	and	return	it	as	an	array:

this.values	=	function(){

				return	Object.keys(items);

};

This	code	will	only	work	in	modern	browsers.	As	we	are	using	Google	Chrome	and
Firefox	as	testing	browsers	in	this	book,	the	code	will	work.

If	we	want	code	that	can	be	executed	in	any	browser,	we	can	use	the	following	code,
which	is	equivalent	to	the	previous	code:

this.valuesLegacy	=	function(){

				var	keys	=	[];

				for(var	key	in	items){	//{7}

								keys.push(key);	//{8}

				}

				return	keys;

};

So,	first	we	iterate	through	all	the	properties	of	the	items	object	(line	{7}),	add	them	to	an
array	(line	{8}),	and	return	this	array.

Using	the	Set	class
Now	that	we	have	finished	implementing	our	data	structure,	let’s	see	how	we	can	use	it.
Let’s	give	it	a	try	and	execute	some	commands	to	test	our	Set	class:

var	set	=	new	Set();

set.add(1);

console.log(set.values());	//outputs	["1"]

console.log(set.has(1));			//outputs	true

console.log(set.size());			//outputs	1

set.add(2);

console.log(set.values());	//outputs	["1",	"2"]

console.log(set.has(2));			//true

console.log(set.size());			//2

set.remove(1);

console.log(set.values());	//outputs	["2"]

set.remove(2);

console.log(set.values());	//outputs	[]

So,	now	we	have	a	very	similar	implementation	of	the	Set	class	as	in	ECMAScript	6.	As
mentioned	before,	we	could	also	have	used	an	array	instead	of	an	object	to	store	the
elements.	As	we	used	arrays	in	Chapter	2,	Arrays,	Chapter	3,	Stacks,	and	Chapter	4,
Queues,	it	is	nice	to	know	there	are	different	ways	of	implementing	the	same	thing.

Set	operations
We	can	perform	the	following	operations	on	sets:

Union:	Given	two	sets,	this	returns	a	new	set	with	the	elements	from	both	given	sets
Intersection:	Given	two	sets,	this	returns	a	new	set	with	the	elements	that	exist	in
both	sets
Difference:	Given	two	sets,	this	returns	a	new	set	with	all	elements	that	exist	in	the
first	set	and	do	not	exist	in	the	second	set
Subset:	This	confirms	whether	a	given	set	is	a	subset	of	another	set

Set	union
The	mathematic	concept	of	union	is	that	the	union	of	sets	A	and	B,	denoted	by	 ,	is
the	set	defined	as:

This	means	that	x	(the	element)	exists	in	A	or	x	exists	in	B.	The	following	diagram
exemplifies	the	union	operation:

Now	let’s	implement	the	union	method	in	our	Set	class:

this.union	=	function(otherSet){

				var	unionSet	=	new	Set();	//{1}

				var	values	=	this.values();	//{2}

				for	(var	i=0;	i<values.length;	i++){

								unionSet.add(values[i]);

				}

				values	=	otherSet.values();	//{3}

				for	(var	i=0;	i<values.length;	i++){

								unionSet.add(values[i]);

				}

				return	unionSet;

};

First,	we	need	to	create	a	new	set	to	represent	the	union	of	two	sets	(line	{1}).	Next,	we
get	all	the	values	from	the	first	set	(the	current	instance	of	the	Set	class),	iterate	through
them,	and	add	all	the	values	to	the	set	that	represents	the	union	(line	{2}).	Then,	we	do	the
exact	same	thing,	but	with	the	second	set	(line	{3}).	And	at	last,	we	return	the	result.

Let’s	test	the	previous	code:

var	setA	=	new	Set();

setA.add(1);

setA.add(2);

setA.add(3);

var	setB	=	new	Set();

setB.add(3);

setB.add(4);

setB.add(5);

setB.add(6);

var	unionAB	=	setA.union(setB);

console.log(unionAB.values());

The	output	will	be	["1",	"2",	"3",	"4",	"5",	"6"].	Note	that	the	element	3	is	present
in	both	A	and	B,	and	it	appears	only	once	in	the	result	set.

Set	intersection
The	mathematic	concept	of	intersection	is	that	the	intersection	of	sets	A	and	B,	denoted
by	 ,	is	the	set	defined	as:

This	means	that	x	(the	element)	exists	in	A	and	x	exists	in	B.	The	following	diagram
exemplifies	the	intersection	operation:

Now,	let’s	implement	the	intersection	method	in	our	Set	class:

this.intersection	=	function(otherSet){

				var	intersectionSet	=	new	Set();	//{1}

				var	values	=	this.values();

				for	(var	i=0;	i<values.length;	i++){	//{2}

								if	(otherSet.has(values[i])){				//{3}

												intersectionSet.add(values[i]);	//{4}

								}

				}

				return	intersectionSet;

}

For	the	intersection	method,	we	need	to	find	all	elements	from	the	current	instance	of
the	Set	class	that	also	exist	in	the	given	Set	instance.	So	first,	we	create	a	new	Set
instance	so	that	we	can	return	it	with	the	common	elements	(line	{1}).	Next,	we	iterate
through	all	the	values	of	the	current	instance	of	the	Set	class	(line	{2})	and	we	verify	that
the	value	exists	in	the	otherSet	instance	as	well	(line	{3}).	We	can	use	the	has	method
that	we	implemented	earlier	in	this	chapter	to	verify	that	the	element	exists	in	the	Set
instance.	Then,	if	the	value	exists	in	the	other	Set	instance	also,	we	add	it	to	the	created
intersectionSet	variable	(line	{4})	and	return	it.

Let’s	do	some	testing:

var	setA	=	new	Set();

setA.add(1);

setA.add(2);

setA.add(3);

var	setB	=	new	Set();

setB.add(2);

setB.add(3);

setB.add(4);

var	intersectionAB	=	setA.intersection(setB);

console.log(intersectionAB.values());

The	output	will	be	["2",	"3"],	as	the	values	2	and	3	exist	in	both	sets.

Set	difference
The	mathematic	concept	of	difference	is	that	the	difference	of	set	A	from	B,	denoted	by	A
-	B,	is	the	set	defined	as:

This	means	that	x	(the	element)	exists	in	A	and	x	does	not	exist	in	B.	The	following
diagram	exemplifies	the	difference	operation	between	sets	A	and	B:

Now	let’s	implement	the	difference	method	in	our	Set	class:

this.difference	=	function(otherSet){

				var	differenceSet	=	new	Set();	//{1}

				var	values	=	this.values();

				for	(var	i=0;	i<values.length;	i++){	//{2}

								if	(!otherSet.has(values[i])){				//{3}

												differenceSet.add(values[i]);	//{4}

								}

				}

				return	differenceSet;

};

The	intersection	method	will	get	all	the	values	that	exist	in	both	sets.	The	difference
method	will	get	all	the	values	that	exist	in	A	but	not	in	B.	So,	the	only	difference	in	the
implementation	of	the	method	is	in	line	{3}.	Instead	of	getting	the	values	that	also	exist	in
the	otherSet	instance,	we	will	get	only	the	values	that	do	not	exist.	Lines	{1},	{2},	and
{4}	are	exactly	the	same.

Let’s	do	some	testing	(with	the	same	sets	we	used	in	the	intersection	section):

var	setA	=	new	Set();

setA.add(1);

setA.add(2);

setA.add(3);

var	setB	=	new	Set();

setB.add(2);

setB.add(3);

setB.add(4);

var	differenceAB	=	setA.difference(setB);

console.log(differenceAB.values());

The	output	will	be	["1"]	because	1	is	the	only	element	that	exists	only	in	setA.

Subset
The	last	set	operation	we	will	cover	is	the	subset.	The	mathematic	concept	of	subset	is
that	A	is	a	subset	of	(or	is	included	in)	B,	denoted	by	 ,	and	is	defined	as:

This	means	that	for	every	x	(element)	that	exists	in	A	it	also	needs	to	exist	in	B.	The
following	diagram	exemplifies	when	A	is	a	subset	of	B	and	when	it	is	not:

Now	let’s	implement	the	subset	method	in	our	Set	class:

this.subset	=	function(otherSet){

				if	(this.size()	>	otherSet.size()){	//{1}

								return	false;

				}	else	{

								var	values	=	this.values();

								for	(var	i=0;	i<values.length;	i++){	//{2}

												if	(!otherSet.has(values[i])){				//{3}

																return	false;	//{4}

												}

								}

								return	true;	//{5}

				}

};

The	first	verification	that	we	need	to	do	is	check	the	size	of	the	current	instance	of	the	Set
class.	If	the	current	instance	has	more	elements	than	the	otherSet	instance,	it	is	not	a
subset	(line	{3}).	A	subset	needs	to	have	fewer	or	the	same	number	of	elements	than	the
compared	set.

Next,	we	will	iterate	through	all	the	set	elements	(line	{2})	and	we	will	verify	that	the
element	also	exists	in	otherSet	(line	{3}).	If	any	element	does	not	exist	in	otherSet,	it
means	that	it	is	not	a	subset,	so	we	return	false	(line	{4}).	If	all	elements	also	exist	in
otherSet,	line	{4}	will	not	be	executed	and	then	we	will	return	true	(line	{5}).

Let’s	try	the	previous	code:

var	setA	=	new	Set();

setA.add(1);

setA.add(2);

var	setB	=	new	Set();

setB.add(1);

setB.add(2);

setB.add(3);

var	setC	=	new	Set();

setC.add(2);

setC.add(3);

setC.add(4);

console.log(setA.subset(setB));

console.log(setA.subset(setC));

We	have	three	sets:	setA	is	a	subset	of	setB	(so	the	output	is	true),	however,	setA	is	not	a
subset	of	setC	(setC	only	contains	value	2	from	setA,	and	not	values	1	and	2),	so	the
output	will	be	false.

Summary
In	this	chapter,	we	learned	how	to	implement	a	Set	class	from	scratch,	which	is	similar	to
the	Set	class	defined	in	the	definition	of	ECMAScript	6.	We	also	covered	some	methods
that	are	not	usually	in	other	programming	language	implementations	of	the	set	data
structure,	such	as	union,	intersection,	difference,	and	subset.	So,	we	implemented	a	very
complete	Set	class	compared	to	the	current	implementation	of	Set	in	other	programming
languages.

In	the	next	chapter,	we	will	cover	hashes	and	dictionaries,	which	are	non	sequential	data
structures.

Chapter	7.	Dictionaries	and	Hashes
In	the	previous	chapter,	we	learned	about	sets.	In	this	chapter,	we	will	continue	our
discussion	about	data	structures	that	store	unique	values	(non-repeated	values)	using
dictionaries	and	hashes.

Sets,	dictionaries,	and	hashes	store	unique	values.	In	a	set,	we	are	interested	in	the	value
itself	as	the	primary	element.	In	a	dictionary	(or	map),	we	store	values	as	pairs	as	[key,
value].	The	same	goes	for	hashes	(they	store	values	as	pairs	as	[key,	value]);	however,	the
way	that	we	implement	these	data	structures	is	a	little	bit	different,	as	we	will	see	in	this
chapter.

Dictionaries
As	you	have	learned,	a	set	is	a	collection	of	distinct	elements	(non-repeated	elements).	A
dictionary	is	used	to	store	[key,	value]	pairs,	where	the	key	is	used	to	find	a	particular
element.	The	dictionary	is	very	similar	to	a	set;	a	set	stores	a	[key,	key]	collection	of
elements,	and	a	dictionary	stores	a	[key,	value]	collection	of	elements.	A	dictionary	is	also
known	as	a	map.

In	this	chapter,	we	will	cover	some	examples	of	the	use	of	the	dictionary	data	structure	in
the	real	world:	a	dictionary	itself	(the	words	and	their	definitions),	and	an	address	book.

Creating	a	dictionary
Similar	to	the	Set	class,	ECMAScript	6	also	contains	an	implementation	of	the	Map	class
—also	known	as	a	dictionary.

Note
You	can	check	out	the	details	of	the	ECMAScript	6	Map	class	implementation	at
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
(or	http://goo.gl/dm8VP6).

The	class	we	are	going	to	implement	in	this	chapter	is	based	on	the	Map	implementation	of
ECMAScript	6.	You	will	notice	that	it	is	very	similar	to	the	Set	class	(but	instead	of
storing	[key,	key]	pair,	we	will	store	[key,	value]	pair).

This	is	the	skeleton	of	our	Dictionary	class:

function	Dictionary(){

				var	items	=	{};

}

Similar	to	the	Set	class,	we	will	also	store	the	elements	in	an	Object	instance	instead	of	an
array.

Next,	we	need	to	declare	the	methods	available	for	a	map/dictionary:

set(key,value):	This	adds	a	new	item	to	the	dictionary.
remove(key):	This	removes	the	value	from	the	dictionary	using	the	key.
has(key):	This	returns	true	if	the	key	exists	in	the	dictionary	and	false	otherwise.
get(key):	This	returns	a	specific	value	searched	by	the	key.
clear():	This	removes	all	the	items	from	the	dictionary.
size():	This	returns	how	many	elements	the	dictionary	contains.	It	is	similar	to	the
length	property	of	the	array.
keys():	This	returns	an	array	of	all	the	keys	the	dictionary	contains.
values():	This	returns	an	array	of	all	the	values	of	the	dictionary.

The	has	and	set	methods
The	first	method	we	will	implement	is	the	has(key)	method.	We	will	implement	this
method	first	because	it	will	be	used	in	other	methods	such	as	set	and	remove.	We	can	see
its	implementation	in	the	following	code:

this.has	=	function(key){

				return	key	in	items;

};

The	implementation	is	exactly	the	same	as	what	we	did	for	the	Set	class.	We	are	using	the
JavaScript	in	operator	to	verify	that	the	key	is	a	property	of	the	items	object.

The	next	method	is	the	set	method:

this.set	=	function(key,	value){

				items[key]	=	value;	//{1}

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
http://goo.gl/dm8VP6

};

This	receives	a	key	and	a	value	parameter.	We	simply	set	the	value	to	the	key	property	of
the	items	object.	This	method	can	be	used	to	add	a	new	value	or	update	an	existing	one.

The	remove	method
Next,	we	will	implement	the	remove	method.	It	is	very	similar	to	the	remove	method	from
the	Set	class;	the	only	difference	is	that	we	first	search	for	key	(instead	of	value):

this.remove	=	function(key){

				if	(this.has(key)){

								delete	items[key];

								return	true;

				}

				return	false;

};

Then	we	use	the	JavaScript	remove	operator	to	remove	the	key	attribute	from	the	items
object.

The	get	and	values	methods
If	we	want	to	search	for	a	particular	item	from	the	dictionary	and	retrieve	its	value,	we	can
use	the	following	method:

this.get	=	function(key)	{

				return	this.has(key)	?	items[key]	:	undefined;

};

The	get	method	will	first	verify	that	the	value	that	we	would	like	to	retrieve	exists	(by
searching	for	key),	and	if	the	result	is	positive,	its	value	is	returned,	if	not,	an	undefined
value	is	returned	(remember	that	undefined	is	different	from	null—we	covered	this
concept	in	Chapter	1,	Javascript	–	A	Quick	Overview).

The	next	method	is	the	values	method.	This	method	will	be	used	to	retrieve	an	array	of	all
values	instances	present	in	the	dictionary:

this.values	=	function(){

				var	values	=	[];

				for	(var	k	in	items)	{	//{1}

								if	(this.has(k))	{

												values.push(items[k]);	//{2}

								}

				}

				return	values;

};

First,	we	will	iterate	through	all	attributes	from	the	items	object	(line	{1}).	Just	to	make
sure	the	value	exists,	we	will	use	the	has	function	to	verify	that	key	really	exists,	and	then
we	add	its	value	to	the	values	array	(line	{2}).	At	the	end,	we	simply	return	all	the	values
found.

Note

We	cannot	simply	use	the	for-in	statement	and	iterate	through	the	properties	of	the	items
object.	We	also	need	to	use	the	has	method	(to	verify	if	the	items	object	has	that	property)
because	the	object’s	prototype	contains	additional	properties	of	the	object	as	well
(properties	are	inherited	from	the	base	JavaScript	Object	class,	but	it	still	has	properties	of
the	object—which	we	are	not	interested	in	for	this	data	structure).

The	clear,	size,	keys,	and	getItems	methods
The	clear,	size,	and	keys	methods	are	exactly	the	same	from	the	Set	class.	For	this
reason,	we	will	not	go	through	them	again	in	this	chapter.

Finally,	just	so	that	we	can	verify	the	output	of	the	items	property,	let’s	implement	a
method	called	getItems	that	will	return	the	items	variable:

this.getItems	=	function(){

				return	items;

}

Using	the	Dictionary	class
First,	we	create	an	instance	of	the	Dictionary	class,	and	then	we	add	three	e-mails	to	it.
We	are	going	to	use	this	dictionary	instance	to	exemplify	an	e-mail	address	book.

Let’s	execute	some	code	using	the	class	we	created:

var	dictionary	=	new	Dictionary();

dictionary.set('Gandalf',	'gandalf@email.com');

dictionary.set('John',	'johnsnow@email.com');

dictionary.set('Tyrion',	'tyrion@email.com');

If	we	execute	the	following	code,	we	will	get	the	output	as	true:

console.log(dictionary.has('Gandalf'));

The	following	code	will	output	3	because	we	added	three	elements	to	our	dictionary
instance:

console.log(dictionary.size());

Now,	let’s	execute	the	following	lines	of	code:

console.log(dictionary.keys());

console.log(dictionary.values());

console.log(dictionary.get('Tyrion'));

The	output	will	be	as	follows,	in	the	respective	order:

["Gandalf",	"John",	"Tyrion"]

["gandalf@email.com",	"johnsnow@email.com",	"tyrion@email.com"]

tyrion@email.com

Finally,	let’s	execute	some	more	lines	of	code:

dictionary.remove('John');

Let’s	also	execute	the	following	ones:

console.log(dictionary.keys());

console.log(dictionary.values());	

console.log(dictionary.getItems());

The	output	will	be	as	follows:

["Gandalf",	"Tyrion"]

["gandalf@email.com",	"tyrion@email.com"]

Object	{Gandalf:	"gandalf@email.com",	Tyrion:	"tyrion@email.com"}

As	we	removed	one	element,	the	dictionary	instance	now	contains	only	two	elements.
The	highlighted	line	exemplifies	how	the	items	object	is	structured	internally.

The	hash	table
In	this	section,	you	will	learn	about	the	HashTable	class,	also	known	as	HashMap,	a	hash
implementation	of	the	Dictionary	class.

Hashing	consists	of	finding	a	value	in	a	data	structure	in	the	shortest	time	possible.	You
have	learned	from	previous	chapters	that	if	we	would	like	to	get	a	value	from	it	(using	a
get	method),	we	need	to	iterate	through	the	structure	until	we	find	it.	When	we	use	a	hash
function,	we	already	know	which	position	the	value	is	in,	so	we	can	simply	retrieve	it.	A
hash	function	is	a	function	that	given	a	key,	and	will	return	an	address	in	the	table	where
the	value	is.

For	example,	let’s	continue	using	the	e-mail	address	book	we	used	in	the	previous	section.
The	hash	function	we	will	use	is	the	most	common	one,	called	a	“lose	lose”	hash	function,
where	we	simply	sum	up	the	ASCII	values	of	each	character	of	the	key	length.

Creating	a	hash	table
We	will	use	an	array	to	represent	our	data	structure	to	have	a	data	structure	very	similar	to
the	one	we	used	in	the	diagram	in	the	previous	topic.

As	usual,	let’s	start	with	the	skeleton	of	our	class:

function	HashTable()	{

				var	table	=	[];

}				

Next,	we	need	to	add	some	methods	to	our	class.	We	will	implement	three	basic	methods
for	every	class:

put(key,value):	This	adds	a	new	item	to	the	hash	table	(or	it	can	also	update	it)
remove(key):	This	removes	the	value	from	the	hash	table	using	the	key
get(key):	This	returns	a	specific	value	searched	by	the	key

The	first	method	that	we	will	implement	before	we	implement	these	three	methods	is	the
hash	function.	This	is	a	private	method	of	the	HashTable	class:

var	loseloseHashCode	=	function	(key)	{

				var	hash	=	0;																											//{1}

				for	(var	i	=	0;	i	<	key.length;	i++)	{		//{2}

								hash	+=	key.charCodeAt(i);										//{3}

				}

				return	hash	%	37;																							//{4}

};

Given	a	key	parameter,	we	will	generate	a	number	based	on	the	sum	of	each	char	ASCII
value	that	composes	key.	So,	first	we	need	a	variable	to	store	the	sum	(line	{1}).	Then,	we
will	iterate	through	the	key	(line	{2})	and	add	the	ASCII	value	of	the	corresponding
character	value	from	the	ASCII	table	to	the	hash	variable	(to	do	so,	we	can	use	the
charCodeAt	method	from	the	JavaScript	String	class—line	{3}).	Finally,	we	return	this
hash	value.	To	work	with	lower	numbers,	we	will	use	the	rest	of	the	division	(mod)	of	the
hash	number	using	an	arbitrary	number	(line	{4}).

Note
For	more	information	about	ASCII,	please	go	to	http://www.asciitable.com/.

Now	that	we	have	our	hash	function,	we	can	implement	the	put	method:

this.put	=	function	(key,	value)	{

				var	position	=	loseloseHashCode(key);	//{5}

				console.log(position	+	'	-	'	+	key);	//{6}

				table[position]	=	value;	//{7}

};

First,	for	the	given	key,	we	need	to	find	a	position	in	the	table	using	the	hash	function	we
created	(line	{5}).	For	information	purposes,	we	will	log	the	position	on	the	console	(line
{6}).	We	can	remove	this	line	from	the	code	as	it	is	not	necessary.	Then,	all	we	have	to	do
is	add	the	value	parameter	to	position,	which	we	found	using	the	hash	function	(line

http://www.asciitable.com/

{7}).

To	retrieve	a	value	from	the	HashTable	instance	is	also	simple.	We	will	implement	the	get
method	for	this	purpose:

this.get	=	function	(key)	{

				return	table[loseloseHashCode(key)];

};

First,	we	will	retrieve	the	position	of	the	given	key	using	the	hash	function	we	created.
This	function	will	return	the	position	of	the	value	and	all	we	have	to	do	is	access	this
position	from	the	table	array	and	return	this	value.

The	last	method	we	will	implement	is	the	remove	method:

this.remove	=	function(key){

				table[loseloseHashCode	(key)]	=	undefined;

};

To	remove	an	element	of	the	HashTable	instance,	we	simply	need	to	access	the	desired
position	(that	we	can	get	using	the	hash	function)	and	assign	the	value	undefined	to	it.

For	the	HashTable	class,	we	do	not	need	to	remove	the	position	from	the	table	array	as
we	did	for	the	ArrayList	class.	As	the	elements	will	be	distributed	throughout	the	array,
some	positions	will	not	be	occupied	by	any	value,	having	the	undefined	value	by	default.
We	also	cannot	remove	the	position	itself	from	the	array	(this	will	shift	the	other
elements),	otherwise,	next	time	we	try	to	get	or	remove	another	existing	element,	the
element	will	not	be	present	in	the	position	we	get	from	the	hash	function.

Using	the	HashTable	class
Let’s	test	the	HashTable	class	by	executing	some	code:

var	hash	=	new	HashTable();

hash.put('Gandalf',	'gandalf@email.com');

hash.put('John',	'johnsnow@email.com');

hash.put('Tyrion',	'tyrion@email.com');

When	we	execute	the	previous	code,	we	will	get	the	following	output	on	the	console:

19	-	Gandalf

29	-	John

16	-	Tyrion

The	following	diagram	represents	the	HashTable	data	structure	with	these	three	elements
in	it:

Now,	let’s	test	the	get	method:

console.log(hash.get('Gandalf'));

console.log(hash.get('Loiane'));

We	will	have	the	following	output:

gandalf@email.com

undefined

As	Gandalf	is	a	key	that	exists	in	HashTable,	the	get	method	will	return	its	value.	As
Loiane	is	not	an	existing	key,	when	we	try	to	access	its	position	in	the	array	(a	position
generated	by	the	hash	function)	its	value	will	be	undefined	(non-existent).

Next,	let’s	try	to	remove	Gandalf	from	HashTable:

hash.remove('Gandalf');

console.log(hash.get('Gandalf'));

The	hash.get('Gandalf')	method	will	give	undefined	as	the	output	on	the	console,	as
Gandalf	no	longer	exists	in	the	table.

Hash	table	versus	hash	set
A	hash	table	is	the	same	thing	as	a	hash	map.	We	covered	this	data	structure	in	this
chapter.

In	some	programming	languages,	we	also	have	the	hash	set	implementation.	The	hash	set
data	structure	consists	of	a	set,	but	to	insert,	remove,	or	get	elements,	we	use	a	hash
function.	We	can	reuse	all	the	code	we	implemented	in	this	chapter	for	a	hash	set;	the
difference	is	that	instead	of	adding	a	key-value	pair,	we	will	insert	only	the	value,	not	the
key.	For	example,	we	could	use	a	hash	set	to	store	all	the	English	words	(without	their
definition).	Similar	to	set,	the	hash	set	also	stores	only	unique	values,	not	repeated	ones.

Handling	collisions	between	hash	tables
Sometimes,	different	keys	can	have	the	same	hash	value.	We	call	it	a	collision,	as	we	will
try	to	set	different	values	to	the	same	position	of	the	HashTable	instance.	For	example,
let’s	see	what	we	get	in	the	output	with	the	following	code:

var	hash	=	new	HashTable();

hash.put('Gandalf',	'gandalf@email.com');

hash.put('John',	'johnsnow@email.com');

hash.put('Tyrion',	'tyrion@email.com');

hash.put('Aaron',	'aaron@email.com');

hash.put('Donnie',	'donnie@email.com');

hash.put('Ana',	'ana@email.com');

hash.put('Jonathan',	'jonathan@email.com');

hash.put('Jamie',	'jamie@email.com');

hash.put('Sue',	'sue@email.com');

hash.put('Mindy',	'mindy@email.com');

hash.put('Paul',	'paul@email.com');

hash.put('Nathan',	'nathan@email.com');

The	following	will	be	the	output:

19	-	Gandalf

29	-	John

16	-	Tyrion

16	-	Aaron

13	-	Donnie

13	-	Ana

5	-	Jonathan

5	-	Jamie

5	-	Sue

32	-	Mindy

32	-	Paul

10	–	Nathan

Note	that	Tyrion	has	the	same	hash	value	as	Aaron	(16).	Donnie	has	the	same	hash	value
as	Ana	(13).	Jonathan,	Jamie,	and	Sue	(5)	have	the	same	hash	value	as	well	and	so	do
Mindy	and	Paul	(32).

What	will	happen	to	the	HashTable	instance?	Which	values	do	we	have	inside	it	after
executing	the	previous	code?

To	help	us	find	out,	let’s	implement	a	helper	method	called	print,	which	will	log	on	the
console	the	values	in	the	HashTable	instance:

this.print	=	function	()	{

				for	(var	i	=	0;	i	<	table.length;	++i)	{		//{1}

								if	(table[i]	!==	undefined)	{									//{2}

												console.log(i	+	":	"	+	table[i]);	//{3}

								}

				}

};

First,	we	iterate	through	all	the	elements	of	the	array	(line	{1}).	For	the	positions	that	have
a	value	(line	{2}),	we	will	log	the	position	and	its	value	on	the	console	(line	{3}).

Now,	let’s	use	this	method:

hash.print();

We	will	have	the	following	output	on	the	console:

5:	sue@email.com

10:	nathan@email.com

13:	ana@email.com

16:	aaron@email.com

19:	gandalf@email.com

29:	johnsnow@email.com

32:	paul@email.com

Jonathan,	Jamie,	and	Sue	have	the	same	hash	value,	that	is,	5.	As	Sue	was	the	last	one	to
be	added,	Sue	will	be	the	one	to	occupy	position	5	of	HashTable.	First,	Jonathan	will
occupy	it,	then	Jamie	will	overwrite	it,	and	Sue	will	overwrite	it	again.	The	same	will
happen	to	the	other	elements	that	have	a	collision.

The	idea	of	using	a	data	structure	to	store	all	these	values	is	obviously	not	to	lose	these
values,	it	is	to	keep	them	all	somehow.	For	this	reason,	we	need	to	handle	this	situation
when	it	happens.	There	are	a	few	techniques	to	handle	collisions:	separate	chaining,	linear
probing,	and	double	hashing.	We	will	cover	the	first	two	in	this	book.

Separate	chaining
The	separate	chaining	technique	consists	of	creating	a	linked	list	for	each	position	of	the
table	and	store	the	elements	in	it.	It	is	the	simplest	technique	to	handle	collisions;
however,	it	requires	additional	memory	outside	the	HashTable	instance.

For	example,	if	we	use	separate	chaining	in	the	code	we	used	to	do	some	testing	in	the
previous	topic,	this	would	be	the	output:

At	position	5,	we	would	have	a	LinkedList	instance	with	three	elements	in	it;	at	positions
13,	16,	and	32,	we	would	have	LinkedList	instances	with	two	elements	in	it,	and	at
positions	10,	19,	and	29,	we	would	have	LinkedList	instances	with	a	single	element	in	it.

For	separate	chaining	and	linear	probing,	we	only	need	to	override	three	methods:	put,
get,	and	remove.	These	three	methods	will	be	different	in	each	different	technique	we
decide	to	implement.

To	help	us	implement	a	HashTable	instance	using	the	separate	chaining	technique,	we	will
need	a	new	helper	class	to	represent	the	element	we	will	add	to	the	LinkedList	instance.
We	will	call	it	the	ValuePair	class	(declared	inside	the	HashTable	class):

var	ValuePair	=	function(key,	value){

				this.key	=	key;

				this.value	=	value;

				this.toString	=	function()	{

								return	'['	+	this.key	+	'	-	'	+	this.value	+	']';

				}

};

This	class	will	simply	store	key	and	value	in	an	Object	instance.	We	will	also	override
the	toString	method	to	help	us	later	in	outputting	the	results	on	the	browser	console.

The	put	method

Let’s	implement	the	first	method,	the	put	method,	as	follows:

this.put	=	function(key,	value){

				var	position	=	loseloseHashCode(key);

				if	(table[position]	==	undefined)	{	//{1}

								table[position]	=	new	LinkedList();

				}

				table[position].append(new	ValuePair(key,	value));	//{2}

};

In	this	method,	we	will	verify	that	the	position	we	are	trying	to	add	the	element	to	already
has	something	in	it	(line	{1}).	If	this	is	the	first	time	we	are	adding	an	element	in	this
position,	we	will	initialize	it	with	an	instance	of	the	LinkedList	class	(which	you	learned
about	in	Chapter	5,	Linked	Lists).	Then,	we	will	add	the	ValuePair	instance	(key	and
value)	to	the	LinkedList	instance	using	the	append	method	we	implemented	in	Chapter	5
(line	{2}).

The	get	method

Next,	we	will	implement	the	get	method	to	retrieve	a	specified	value:

this.get	=	function(key)	{

				var	position	=	loseloseHashCode(key);

				if	(table[position]	!==	undefined){	//{3}

								//iterate	linked	list	to	find	key/value

								var	current	=	table[position].getHead();	//{4}

								while(current.next){		//{5}

												if	(current.element.key	===	key){	//{6}

																return	current.element.value;	//{7}

												}	

												current	=	current.next;	//{8}

								}

								//check	in	case	first	or	last	element

								if	(current.element.key	===	key){	//{9}

												return	current.element.value;

								}

				}

				return	undefined;	//{10}

};

The	first	verification	we	need	to	do	is	to	see	whether	there	is	any	element	at	the	desired
position	(line	{3}).	If	not,	we	return	undefined	to	represent	that	the	value	was	not	found
in	the	HashTable	instance	(line	{10}).	If	there	is	a	value	in	the	position,	we	know	that	the
instance	is	a	LinkedList	instance.	Now,	all	we	have	to	do	is	search	for	the	element	we
want	to	find	by	iterating	through	the	list.	To	do	so,	we	need	to	get	the	reference	of	the	head
of	the	list	(line	{4})	and	then	we	can	iterate	through	it	until	we	find	the	end	of	the	list	(line
{5},	current.next,	will	be	null).

The	Node	list	contains	the	next	pointer	and	the	element	attribute.	The	element	attribute	is
an	instance	of	ValuePair,	so	it	has	the	attributes	value	and	key.	To	access	the	key
attribute	of	the	Node	list,	we	can	use	current.element.key	and	compare	it	to	see	whether
it	is	the	key	we	are	searching	for	(line	{6}).	(This	is	the	reason	we	are	using	the	helper
class	ValuePair	to	store	the	elements.	We	cannot	simply	store	the	value	itself,	as	we
would	not	know	which	value	corresponds	to	a	particular	key.)	If	it	is	the	same	key
attribute,	we	return	the	Node	value	(line	{7}),	and	if	not,	we	continue	iterating	through	the
list	by	going	to	the	next	element	of	the	list	(line	{8}).

If	the	element	we	are	looking	for	is	the	first	or	last	element	of	the	list,	it	will	not	go	inside
the	while	loop.	For	this	reason,	we	also	need	to	handle	this	special	case	in	line	{9}.

The	remove	method

Removing	an	element	from	the	HashTable	instance	using	the	separate	chaining	technique
is	a	little	bit	different	from	the	remove	method	we	implemented	earlier	in	this	chapter.
Now	that	we	are	using	LinkedList,	we	need	to	remove	the	element	from	LinkedList.
Let’s	check	the	remove	method	implementation:

this.remove	=	function(key){

				var	position	=	loseloseHashCode(key);

				if	(table[position]	!==	undefined){

								var	current	=	table[position].getHead();

								while(current.next){

												if	(current.element.key	===	key){	//{11}

																table[position].remove(current.element);	//{12}

																if	(table[position].isEmpty()){	//{13}

																				table[position]	=	undefined;	//{14}

																}

																return	true;	//{15}

												}

												current	=	current.next;

								}

								//check	in	case	first	or	last	element

								if	(current.element.key	===	key){	//{16}

												table[position].remove(current.element);

												if	(table[position].isEmpty()){

																table[position]	=	undefined;

												}

												return	true;

								}

				}

				return	false;	//{17}

};

In	the	remove	method,	we	will	do	the	same	thing	we	did	in	the	get	method	to	find	the
element	we	are	looking	for.	When	iterating	through	the	LinkedList	instance,	if	the
current	element	in	the	list	is	the	element	we	are	looking	for	(line	{11}),	we	will	use	the
remove	method	to	remove	it	from	LinkedList	(line	{12}).	Then	we	will	do	an	extra
validation:	if	the	list	is	empty	(line	{13}—there	are	no	elements	in	it	anymore),	we	will	set
the	table	position	as	undefined	(line	{14}),	so	we	can	skip	this	position	whenever	we
look	for	an	element	or	try	to	print	its	contents.	At	last,	we	return	true	to	indicate	that	the
element	was	removed	(line	{15})	or	we	return	false	at	the	end	to	indicate	that	the	element
was	not	present	in	HashTable	(line	{17}).	Also,	we	need	to	handle	the	special	case	of	first
or	last	element	(line	{16}),	as	we	did	for	the	get	method.

Overwriting	these	three	methods,	we	have	a	HashMap	instance	with	a	separate	chaining
technique	to	handle	collisions.

Linear	probing
Another	technique	of	collision	resolution	is	linear	probing.	When	we	try	to	add	a	new
element,	if	the	position	index	is	already	occupied,	then	we	try	index	+1.	If	index	+1	is
occupied,	then	we	try	index	+	2,	and	so	on.

The	put	method

Let’s	go	ahead	and	implement	the	three	methods	we	need	to	overwrite.	The	first	one	will
be	the	put	method:

this.put	=	function(key,	value){

				var	position	=	loseloseHashCode(key);	//	{1}

				if	(table[position]	==	undefined)	{	//	{2}

								table[position]	=	new	ValuePair(key,	value);	//	{3}

				}	else	{

								var	index	=	++position;	//	{4}

								while	(table[index]	!=	undefined){	//	{5}

												index++;	//	{6}

								}

								table[index]	=	new	ValuePair(key,	value);	//	{7}

				}

};

As	usual,	we	start	by	getting	the	position	generated	by	the	hash	function	(line	{1}).	Next,
we	verify	that	the	position	has	an	element	in	it	(if	it	is	already	occupied,	it	will	be	line
{2}).	If	not,	we	add	the	element	to	it	(line	{3}—an	instance	of	the	ValuePair	class).

If	the	position	is	already	occupied,	we	need	to	find	the	next	position	that	is	not	(position
is	undefined),	so	we	create	an	index	variable	and	assign	position	+	1	to	it	(line	{4}—
the	increment	operator	++	before	the	variable	will	increment	the	variable	first	and	then
assign	it	to	index).	Then	we	verify	that	the	position	if	occupied	(line	{5}),	and	if	it	is,	we
increment	index	(line	{6})	until	we	find	a	position	that	is	not	occupied.	Then,	all	we	have
to	do	is	assign	the	value	we	want	to	that	position	(line	{7}).

Note
In	some	languages,	we	need	to	define	the	size	of	the	array.	One	of	the	concerns	of	using
linear	probing	is	when	the	array	is	out	of	available	positions.	We	do	not	need	to	worry
about	this	in	JavaScript	as	we	do	not	need	to	define	a	size	for	the	array	and	it	can	grow	as
needed	automatically—this	is	part	of	JavaScript’s	built-in	functionality.

If	we	run	the	inserts	from	the	Handling	collisions	section	again,	this	will	be	the	result	for
the	hash	table	using	linear	probing:

Let’s	simulate	the	insertions	in	the	hash	table:

1.	 We	will	try	to	insert	Gandalf.	The	hash	value	is	19	and	as	the	hash	table	was	just
created,	so	position	19	is	empty—we	can	insert	the	name	here.

2.	 We	will	try	to	insert	John	at	position	29.	It	is	also	empty,	so	we	can	insert	the	name.
3.	 We	will	try	to	insert	Tyrion	at	position	16.	It	is	empty,	so	we	can	insert	the	name.
4.	 We	will	try	to	insert	Aaron,	which	also	has	a	hash	value	of	16.	Position	16	is	already

occupied	by	Tyrion,	so	we	need	to	go	to	position	+	1	(16	+1).	Position	17	is	free,	so
we	can	insert	Aaron	at	17.

5.	 Next,	we	will	try	to	insert	Donnie	in	position	13.	It	is	empty,	so	we	can	insert	it.
6.	 We	will	try	to	insert	Ana	also	at	position	13,	but	this	position	is	occupied.	So	we	try

position	14,	which	is	empty,	so	we	can	insert	the	name	here.
7.	 Next,	we	will	insert	Jonathan	at	position	5,	which	is	empty,	so	we	can	insert	the

name.
8.	 We	will	try	to	insert	Jamie	at	position	5,	but	this	position	is	occupied.	So,	we	go	to

position	6,	which	is	empty,	so	we	can	insert	the	name.
9.	 We	will	try	to	insert	Sue	at	position	5	as	well,	but	is	occupied.	So	we	go	to	position	6,

which	is	also	occupied.	Then	we	go	to	position	7,	which	is	empty,	so	we	can	insert
the	name.

And	so	on.

The	get	method

Now	that	we	have	added	our	elements,	let’s	implement	the	get	function	so	that	we	can
retrieve	their	values:

this.get	=	function(key)	{

				var	position	=	loseloseHashCode(key);

				if	(table[position]	!==	undefined){	//{8}

								if	(table[position].key	===	key)	{	//{9}

												return	table[position].value;	//{10}

								}	else	{

												var	index	=	++position;

												while	(table[index]	===	undefined	

||	table[index].key	!==	key){	//{11}

																index++;

												}

												if	(table[index].key	===	key)	{	//{12}

																return	table[index].value;	//{13}

												}

								}

				}

				return	undefined;	//{14}

};

To	retrieve	a	key’s	value,	we	first	need	to	verify	that	the	key	exists	(line	{8}).	If	it	does	not
exist,	it	means	that	the	value	is	not	in	the	hash	table,	so	we	can	return	undefined	(line
{14}).	If	it	does	exist,	we	need	to	check	whether	the	value	we	are	looking	for	is	the	one	at
the	specified	position	(line	{9}).	If	positive,	we	simply	return	its	value	(line	{10}).

If	not,	we	continue	searching	the	following	positions	in	the	HashTable	instance	until	we
find	a	position	that	contains	an	element,	and	this	element’s	key	matches	the	key	we	are
searching	for	(line	{11}).	Then,	we	verify	that	the	item	is	the	one	we	want	(line	{12}—just
to	make	sure)	and	then	we	return	its	value	(line	{13}).

This	is	the	reason	we	continue	using	the	ValuePair	class	to	represent	the	HashTable
element—because	we	do	not	know	at	which	position	the	element	will	actually	be.

The	remove	method

The	remove	method	will	be	exactly	the	same	as	the	get	method.	The	difference	will	be	in
lines	{10}	and	{13},	which	will	be	replaced	with	the	following	code:

table[index]	=	undefined;

To	remove	an	element,	we	simply	assign	the	value	undefined	to	represent	that	the
position	is	no	longer	occupied	and	it	is	free	to	receive	a	new	element	if	needed.

Creating	better	hash	functions
The	“lose	lose”	hash	function	we	implemented	is	not	a	good	hash	function	as	we	can
conclude	(too	many	collisions).	We	would	have	multiple	collisions	if	we	use	this	function.
A	good	hash	function	is	composed	by	some	factors:	time	to	insert	and	retrieve	an	element
(performance)	and	also	a	low	probability	of	collisions.	We	can	find	several	different
implementations	on	the	Internet	or	we	can	create	our	own.

Another	simple	hash	function	that	we	can	implement	and	is	better	than	the	“lose	lose”
hash	function	is	djb2:

var	djb2HashCode	=	function	(key)	{

				var	hash	=	5381;	//{1}

				for	(var	i	=	0;	i	<	key.length;	i++)	{	//{2}

								hash	=	hash	*	33	+	key.charCodeAt(i);	//{3}

				}

				return	hash	%	1013;	//{4}

};

This	consists	of	initializing	the	hash	variable	with	a	prime	number	(line	{1}—most
implementations	use	5381),	then	we	iterate	the	key	parameter	(line	{2}),	multiply	the	hash
value	by	33	(used	as	a	magical	number),	and	sum	it	with	the	ASCII	value	of	the	character
(line	{3}).

Finally,	we	are	going	to	use	the	rest	of	the	division	of	the	total	by	another	random	prime
number	(greater	than	the	size	we	think	the	HashTable	instance	can	have—in	our	case,	let’s
consider	1000	as	the	size).

If	we	run	the	inserts	from	the	Handling	collisions	section	again,	this	will	be	the	result	we
will	get	using	djb2HashCode	instead	of	loseloseHashCode:

798	-	Gandalf

838	-	John

624	-	Tyrion

215	-	Aaron

278	-	Donnie

925	-	Ana

288	-	Jonathan

962	-	Jamie

502	-	Sue

804	-	Mindy

54	-	Paul

223	-	Nathan

No	collisions!

This	is	not	the	best	hash	function	there	is,	but	it	is	one	of	the	most	highly	recommended
hash	functions	by	the	community.

Tip
There	are	also	a	few	techniques	to	create	a	hash	function	for	numeric	keys.	You	can	find	a
list	and	implementations	at	http://goo.gl/VtdN2x.

http://goo.gl/VtdN2x

Summary
In	this	chapter,	you	learned	about	dictionaries,	and	how	to	add,	remove,	and	get	elements
among	other	methods.	We	also	learned	the	difference	between	a	dictionary	and	a	set.

We	also	covered	hashing,	how	to	create	a	hash	table	(or	hash	map)	data	structure,	how	to
add,	remove,	and	get	elements,	and	also	how	to	create	hash	functions.	We	learned	how	to
handle	collision	in	a	hash	table	using	two	different	techniques.

In	the	next	chapter,	we	will	learn	a	new	data	structure	called	a	tree.

Chapter	8.	Trees
So	far	in	this	book,	we	have	covered	some	sequential	data	structures.	The	first	non
sequential	data	structure	we	covered	in	this	book	was	the	Hash	Table.	In	this	chapter,	we
will	learn	another	non	sequential	data	structure	called	a	tree,	which	is	very	useful	for
storing	information	that	needs	to	be	found	easily.

A	tree	is	an	abstract	model	of	a	hierarchical	structure.	The	most	common	example	of	a	tree
in	real	life	would	be	a	family	tree,	or	a	company	organizational	chart	as	we	can	see	in	the
following	figure:

Trees	terminology
A	tree	consists	of	nodes	with	a	parent-child	relationship.	Each	node	has	a	parent	(except
for	the	first	node	at	the	top)	and	zero	or	more	children:

The	top	node	of	a	tree	is	called	the	root	(11).	It	is	the	node	that	does	not	have	a	parent.
Each	element	of	the	tree	is	called	node.	There	are	internal	nodes	and	external	nodes.	An
internal	node	is	a	node	with	at	least	one	child	(7,	5,	9,	15,	13,	and	20	are	internal	nodes).	A
node	that	does	not	have	children	is	called	an	external	node	or	leaf	(3,	6,	8,	10,	12,	14,	18,
and	25	are	leaves).

A	node	can	have	ancestors	and	descendants.	The	ancestors	of	a	node	(except	the	root)	are
parent,	grandparent,	great-grandparent,	and	so	on.	The	descendants	of	a	node	are	child,
grandchild,	great-grandchild,	and	so	on.	For	example,	node	5	has	7	and	11	as	its	ancestors
and	3	and	6	as	its	descendants.

Another	terminology	used	with	trees	is	the	subtree.	A	subtree	consists	of	a	node	and	its
descendants.	For	example,	nodes	13,	12,	and	14	consist	a	subtree	of	the	tree	from	the
preceding	diagram.

The	depth	of	a	node	consists	of	the	number	of	ancestors.	For	example,	node	3	has	depth	3
because	it	has	3	ancestors	(5,	7,	and	11).

The	height	of	a	tree	consists	of	the	maximum	depth	of	any	node.	A	tree	can	also	be	broken
down	into	levels.	The	root	is	on	level	0,	its	children	are	on	level	1,	and	so	on.	The	tree
from	the	preceding	diagram	has	height	3	(maximum	depth	is	3	as	shown	in	the	preceding
figure—level	3).

Now	that	we	know	the	most	important	terms	related	to	trees,	we	can	start	learning	more
about	trees.

Binary	tree	and	binary	search	tree
A	node	in	a	binary	tree	has	at	most	two	children:	one	left	child	and	one	right	child.	This
definition	allows	us	to	write	more	efficient	algorithms	for	inserting,	searching,	and
deleting	nodes	to/from	a	tree.	Binary	trees	are	largely	used	in	computer	science.

A	binary	search	tree	is	a	binary	tree,	but	it	only	allows	you	to	store	nodes	with	lesser
values	on	the	left	side	and	nodes	with	greater	values	on	the	right	side.	The	diagram	in	the
previous	topic	exemplifies	a	binary	search	tree.

This	will	be	the	data	structure	we	will	be	working	on	in	this	chapter.

Creating	the	BinarySearchTree	class
Let’s	start	by	creating	our	BinarySearchTree	class.	First,	let’s	declare	its	skeleton:

function	BinarySearchTree()	{

				var	Node	=	function(key){	//{1}

								this.key	=	key;

								this.left	=	null;

								this.right	=	null;

				};

				var	root	=	null;	//{2}

}

The	following	diagram	exemplifies	how	our	Binary	Search	Tree	(BST)	will	be	organized
in	terms	of	data	structure:

Just	like	in	linked	lists,	we	will	work	with	pointers	again	to	represent	the	connection
between	the	nodes	(called	edges	in	tree	terminology).	When	we	worked	with	double
linked	lists,	each	node	had	two	pointers:	one	to	indicate	the	next	node	and	another	one	to
indicate	the	previous	node.	Working	with	trees,	we	will	use	the	same	approach	(we	will
also	work	with	two	pointers).	However,	one	pointer	will	point	to	the	left	child,	and	the
other	one	will	point	to	the	right	child.	For	this	reason,	we	will	declare	a	Node	class	that
will	represent	each	node	of	the	tree	({1}).	A	small	detail	that	is	worth	noticing	is	that
instead	of	calling	the	node	itself	as	a	node	or	item	as	we	did	in	the	previous	chapters,	we
will	call	it	a	key.	A	key	is	how	a	tree	node	is	known	in	tree	terminology.

We	are	going	to	follow	the	same	pattern	we	used	in	the	LinkedList	class	(from	Chapter	5,
Linked	Lists).	This	means	that	we	will	also	declare	a	variable	so	we	can	control	the	first
node	of	the	data	structure.	In	the	case	of	a	tree,	instead	of	the	head,	we	have	the	root	({2}).

Next,	we	need	to	implement	some	methods.	The	following	are	the	methods	we	will

implement	in	our	tree	class:

insert(key):	This	inserts	a	new	key	in	the	tree
search(key):	This	searches	for	the	key	in	the	tree	and	returns	true	if	it	exists	and
returns	false	if	the	node	does	not	exist
inOrderTraverse:	This	visits	all	nodes	of	the	tree	using	in-order	traverse
preOrderTraverse:	This	visits	all	nodes	of	the	tree	using	pre-order	traverse
postOrderTraverse:	This	visits	all	nodes	of	the	tree	using	post-order	traverse
min:	This	returns	the	minimum	value/key	in	the	tree
max:	This	returns	the	maximum	value/key	in	the	tree
remove(key):	This	removes	the	key	from	the	tree

We	will	implement	each	of	these	methods	in	the	subsequent	sections.

Inserting	a	key	in	a	tree
The	methods	we	will	be	implementing	in	this	chapter	are	a	little	bit	more	complex	than	the
ones	we	implemented	in	previous	chapters.	We	will	use	a	lot	of	recursion	in	our	methods.
If	you	are	not	familiar	with	recursion,	please	refer	to	the	Recursion	section	in	Chapter	11,
More	about	Algorithms.

The	following	code	is	the	first	piece	of	the	algorithm	used	to	insert	a	new	key	in	a	tree:

this.insert	=	function(key){

				var	newNode	=	new	Node(key);	//{1}

				if	(root	===	null){	//{2}

								root	=	newNode;

				}	else	{

								insertNode(root,newNode);	//{3}

				}

};

To	insert	a	new	node	(or	item)	in	a	tree,	there	are	three	steps	we	need	to	follow.

The	first	step	is	to	create	the	instance	of	the	Node	class	that	will	represent	the	new	node
({1}).	Because	of	its	constructor	properties,	we	only	need	to	pass	the	value	we	want	to	add
to	the	tree	and	its	pointers	left	and	right	will	have	a	null	value	automatically.

Second,	we	need	to	verify	that	the	insertion	is	a	special	case.	The	special	case	is	if	the
node	we	are	trying	to	add	is	the	first	one	in	the	tree	({2}).	If	it	is,	all	we	have	to	do	is	point
the	root	to	this	new	node.

The	third	step	is	to	add	a	node	to	a	different	position	than	the	root.	In	this	case,	we	will
need	a	helper	({3})	private	function	to	help	us	to	do	this,	which	is	declared	as	follows:

var	insertNode	=	function(node,	newNode){

				if	(newNode.key	<	node.key){	//{4}

								if	(node.left	===	null){			//{5}

												node.left	=	newNode;			//{6}

								}	else	{

												insertNode(node.left,	newNode);	//{7}

								}

				}	else	{

								if	(node.right	===	null){		//{8}

												node.right	=	newNode;		//{9}

								}	else	{

												insertNode(node.right,	newNode);	//{10}

								}

				}

};

The	insertNode	function	will	help	us	to	find	out	where	the	correct	place	to	insert	a	new
node	is.	The	following	are	the	steps	that	describe	what	this	function	does:

If	the	tree	is	not	empty,	we	need	to	find	a	place	to	add	a	new	node.	For	this	reason,
we	will	call	the	insertNode	function	passing	the	root	and	the	node	as	parameters

({3}).
If	the	node’s	key	is	less	than	the	current	node	key	(in	this	case,	it	is	the	root	({4})),
then	we	need	to	check	the	left	child	of	the	node.	If	there	is	no	left	node	({5}),	then	we
insert	the	new	node	there	({6}).	If	not,	we	need	to	descend	a	level	in	the	tree	by
calling	insertNode	recursively	({7}).	In	this	case,	the	node	we	will	be	comparing
next	time	will	be	the	left	child	of	the	current	node.
If	the	node’s	key	is	greater	than	the	current	node	key	and	there	is	no	right	child	({8}),
then	we	insert	the	new	node	there	({9}).	If	not,	we	will	also	need	to	call	the
insertNode	function	recursively,	but	the	new	node	to	be	compared	will	be	the	right
child	({10}).

Let’s	use	an	example	so	we	can	understand	this	process	better.

Consider	the	following	scenario:	we	have	a	new	tree,	and	we	are	trying	to	insert	its	first
key:

var	tree	=	new	BinarySearchTree();

tree.insert(11);

In	this	case,	we	will	have	a	single	node	in	our	tree,	and	the	root	pointer	will	be	pointing	to
it.	The	code	that	will	be	executed	is	in	line	{2}	of	our	source	code.

Now,	let’s	consider	we	already	have	the	following	tree:

The	code	to	create	the	tree	seen	in	the	preceding	diagram	is	a	continuation	of	the	previous
code	(where	we	inserted	key	11):

tree.insert(7);

tree.insert(15);

tree.insert(5);

tree.insert(3);

tree.insert(9);

tree.insert(8);

tree.insert(10);

tree.insert(13);

tree.insert(12);

tree.insert(14);

tree.insert(20);

tree.insert(18);

tree.insert(25);

And	we	would	like	to	insert	a	new	key	with	value	6,	so	we	will	execute	the	following
code:

tree.insert(6);

The	following	steps	will	be	executed:

1.	 The	tree	is	not	empty,	and	then	the	code	from	line	{3}	will	be	executed.	The	code
will	call	the	insertNode	method	(root,	key[6]).

2.	 The	algorithm	is	going	to	check	line	{4}	(key[6]	<	root[11]	is	true)	and	then	will
check	line	{5}	(node.left[7]	is	not	null)	and	then	will	go	to	line	{7}	calling
insertNode	(node.left[7],	key[6]).

3.	 We	will	go	inside	the	insertNode	method	again,	but	with	different	parameters.	It	will
check	line	{4}	again	(key[6]	<	node[7]	is	true)	and	then	will	check	line	{5}
(node.left[5]	is	not	null),	and	then	will	go	to	line	{7}	calling	insertNode
(node.left[5],	key[6]).

4.	 We	will	go	once	more	inside	the	insertNode	method.	It	will	check	line	{4}	again
(key[6]	<	node[5]	is	false),	and	then	it	will	go	to	line	{8}	(node.right	is	null—
node	5	does	not	have	any	right	child	descendents)	and	will	execute	line	{9},	inserting
key	6	as	the	right	child	of	node	5.

5.	 After	that,	the	stack	of	method	calls	will	pop	up	and	the	execution	will	end.

This	will	be	the	result	after	key	6	is	inserted	in	the	tree:

Tree	traversal
Traversing	(or	walking)	a	tree	is	the	process	of	visiting	all	nodes	of	a	tree	and	performing
an	operation	at	each	node.	But	how	should	we	do	that?	Should	we	start	from	the	top	of	the
tree	or	from	the	bottom?	From	the	left	or	the	right	side?	There	are	three	different
approaches	that	can	be	used	to	visit	all	the	nodes	in	a	tree:	in-order,	pre-order,	and	post-
order.

In	the	following	sections,	we	will	deep	dive	into	the	uses	and	implementations	of	these
three	types	of	tree	traversals.

In-order	traversal
An	in-order	traversal	visits	all	the	nodes	of	a	BST	in	ascending	order,	meaning	it	visits	the
nodes	from	the	smallest	to	largest.	An	application	of	in-order	traversal	would	be	to	sort	a
tree.	Let’s	check	out	its	implementation:

this.inOrderTraverse	=	function(callback){

				inOrderTraverseNode(root,	callback);	//{1}

};

The	inOrderTraverse	method	receives	a	callback	function	as	a	parameter.	This	function
can	be	used	to	perform	the	action	we	would	like	to	execute	when	the	node	is	visited	(this
is	known	as	the	visitor	pattern;	for	more	information	on	this,	refer	to
http://en.wikipedia.org/wiki/Visitor_pattern).	As	most	algorithms	we	are	implementing	for
the	BST	are	recursive,	we	will	use	a	private	helper	function	that	will	receive	a	node	and
the	callback	function	to	help	us	with	it	({1}):

var	inOrderTraverseNode	=	function	(node,	callback)	{

				if	(node	!==	null)	{	//{2}

								inOrderTraverseNode(node.left,	callback);		//{3}

								callback(node.key);																								//{4}

								inOrderTraverseNode(node.right,	callback);	//{5}

				}

};

To	traverse	a	tree	using	the	in-order	method,	first	we	need	to	check	whether	the	node	that
was	passed	as	parameter	is	null	(this	is	the	point	where	the	recursion	stops	being	executed
—line	{2}—the	base	case	of	the	recursion	algorithm).

Next,	we	visit	the	left	node	({3})	calling	the	same	function	recursively.	Then	we	visit	the
node	({4})	by	performing	an	action	with	it	(callback),	and	then	we	visit	the	right	node
({5}).

Let’s	try	to	execute	this	method	using	the	tree	from	the	previous	topic	as	an	example:

function	printNode(value){	//{6}

				console.log(value);

}

tree.inOrderTraverse(printNode);	//{7}

But	first,	we	need	to	create	a	callback	function	({6}).	All	we	are	going	to	do	is	print	the
node’s	value	on	the	browser’s	console.	Then,	we	can	call	the	inOrderTraverse	method
passing	our	callback	function	as	a	parameter	({7}).	When	we	execute	this	code,	the
following	will	be	the	output	in	the	console	(each	number	will	be	outputted	on	a	different
line):

3	5	6	7	8	9	10	11	12	13	14	15	18	20	25

The	following	diagram	illustrates	the	path	the	inOrderTraverse	method	followed:

http://en.wikipedia.org/wiki/Visitor_pattern

Pre-order	traversal
A	pre-order	traversal	visits	the	node	prior	to	its	descendants.	An	application	of	pre-order
traversal	could	be	to	print	a	structured	document.

Let’s	see	its	implementation:

this.preOrderTraverse	=	function(callback){

				preOrderTraverseNode(root,	callback);

};

The	preOrderTraverseNode	method	implementation	is	as	follows:

var	preOrderTraverseNode	=	function	(node,	callback)	{

				if	(node	!==	null)	{

								callback(node.key);	//{1}

								preOrderTraverseNode(node.left,	callback);	//{2}

								preOrderTraverseNode(node.right,	callback);	//{3}

				}

};

The	difference	between	the	in-order	and	the	pre-order	is	that	the	pre-order	will	visit	the
node	first	({1})	and	then	will	visit	the	left	node	({2})	and	then	the	right	node	({3}),	while
the	in-order	executes	the	lines	in	the	following	order:	{2},	{1},	and	{3}.

The	following	will	be	the	output	in	the	console	(each	number	will	be	outputted	on	a
different	line):

11	7	5	3	6	9	8	10	15	13	12	14	20	18	25

The	following	diagram	illustrates	the	path	followed	by	the	preOrderTraverse	method:

Post-order	traversal
A	post-order	traversal	visits	the	node	after	it	visits	its	descendants.	An	application	of	post-
order	could	be	computing	the	space	used	by	a	file	in	a	directory	and	its	subdirectories.

Let’s	see	its	implementation:

this.postOrderTraverse	=	function(callback){

				postOrderTraverseNode(root,	callback);

};

The	postOrderTraverseNode	implementation	is	as	follows:

var	postOrderTraverseNode	=	function	(node,	callback)	{

				if	(node	!==	null)	{

								postOrderTraverseNode(node.left,	callback);		//{1}

								postOrderTraverseNode(node.right,	callback);	//{2}

								callback(node.key);																										//{3}

				}

};

In	this	case,	the	post-order	traverse	will	visit	the	left	node	({1}),	and	then	the	right	node
({2}),	and	at	last,	it	will	visit	the	node	({3}).

As	you	can	see,	the	algorithms	for	the	in-order,	pre-order,	and	post-order	approaches	are
very	similar;	the	only	thing	that	changes	is	the	order	that	lines	{1},	{2},	and	{3}	are
executed	in	each	method.

This	will	be	the	output	in	the	console	(each	number	will	be	outputted	on	a	different	line):

3	6	5	8	10	9	7	12	14	13	18	25	20	15	11

The	following	diagram	illustrates	the	path	the	postOrderTraverse	method	followed:

Searching	for	values	in	a	tree
There	are	three	types	of	searches	that	are	usually	performed	in	trees:

Minimum	values
Maximum	values
Searching	for	a	specific	value

Let’s	take	a	look	at	each	one.

Searching	for	minimum	and	maximum	values
Let’s	use	the	following	tree	for	our	examples:

Just	looking	at	the	preceding	figure,	could	you	easily	find	the	minimum	and	maximum
values	of	the	tree?

If	you	take	a	look	at	the	left-most	node	in	the	last	level	of	tree,	you	will	find	the	value	3,
which	is	the	lowest	key	from	this	tree.	And	if	you	take	a	look	at	the	node	that	is	furthest	to
the	right	(also	in	the	last	level	of	the	tree),	you	will	find	the	key	25,	which	is	the	highest
key	in	this	tree.	This	information	helps	us	a	lot	when	implementing	methods	that	will	find
the	minimum	and	maximum	nodes	of	the	tree.

First,	let’s	take	a	look	at	the	method	that	will	find	the	minimum	key	of	the	tree:

this.min	=	function()	{

				return	minNode(root);	//{1}

};

The	min	method	will	be	the	method	exposed	to	the	user.	This	method	calls	the	minNode
method	({1}):

var	minNode	=	function	(node)	{

				if	(node){

								while	(node	&&	node.left	!==	null)	{	//{2}

												node	=	node.left;																//{3}

								}

								return	node.key;

				}

				return	null;		//{4}

};

The	minNode	method	allows	us	to	find	the	minimum	key	from	any	node	of	the	tree.	We
can	use	it	to	find	the	minimum	key	from	a	subtree	or	from	the	tree	itself.	For	this	reason,
we	call	the	minNode	method	passing	the	tree	root	({1})—because	we	want	to	find	the
minimum	key	of	the	whole	tree.

Inside	the	minNode	method,	we	will	traverse	the	left	edge	of	the	tree	({2}	and	{3})	until
we	find	the	node	at	the	highest	level	of	the	tree	(left	end).

In	a	similar	way,	we	also	have	the	max	method:

this.max	=	function()	{

				return	maxNode(root);

};

var	maxNode	=	function	(node)	{

				if	(node){

								while	(node	&&	node.right	!==	null)	{	//{5}

												node	=	node.right;

								}

								return	node.key;

				}

				return	null;

};

To	find	the	maximum	key,	we	will	traverse	the	right	edge	of	the	tree	({5})	until	we	find
the	last	node	at	the	right	end	of	the	tree.

So	for	the	minimum	value,	we	always	go	the	left	side	of	the	tree,	and	for	the	maximum
value,	we	will	always	navigate	to	the	right	side	of	the	tree.

Searching	for	a	specific	value
In	previous	chapters,	we	also	implemented	the	find,	search,	or	get	methods	to	find	a
specific	value	in	the	data	structure	(similar	to	the	has	method	we	implemented	in	previous
chapters).	We	will	also	implement	the	search	method	for	the	BST	as	well.	Let’s	see	its
implementation:

this.search	=	function(key){

				return	searchNode(root,	key);	//{1}

};

var	searchNode	=	function(node,	key){

				if	(node	===	null){	//{2}

								return	false;

				}

				if	(key	<	node.key){	//{3}

								return	searchNode(node.left,	key);	//{4}

				}	else	if	(key	>	node.key){	//{5}

								return	searchNode(node.right,	key);	//{6}

				}	else	{

								return	true;	//{7}

				}	

};

The	first	thing	we	need	to	do	is	declare	the	search	method.	Following	the	pattern	of	other
methods	declared	for	our	BST,	we	are	going	to	use	a	helper	function	to	help	us	({1}).

The	searchNode	method	can	be	used	to	find	a	specific	key	in	the	tree	or	any	of	its
subtrees.	This	is	the	reason	we	call	this	method	in	{1},	passing	the	tree	root	as	parameter.

Before	we	start	the	algorithm,	we	are	going	to	validate	that	the	node	passed	as	parameter
is	valid	(is	not	null).	If	it	is,	it	means	that	the	key	was	not	found	and	we	return	false.

If	the	node	is	not	null,	we	need	to	continue	the	verification.	If	the	key	we	are	looking	for
is	lower	than	the	current	node	({3}),	then	we	will	continue	the	search	using	the	left	child
subtree	({4}).	If	the	value	we	are	looking	for	is	greater	than	the	current	node	({5}),	then
we	continue	the	search	from	the	right	child	of	the	current	node	({6}).	Otherwise,	it	means
the	key	we	are	looking	for	is	equal	to	the	current	node’s	key,	and	we	return	true	to
indicate	we	found	the	key	({7}).

We	can	test	this	method	using	the	following	code:

console.log(tree.search(1)	?	'Key	1	found.'	:	'Key	1	not	found.');

console.log(tree.search(8)	?	'Key	8	found.'	:	'Key	8	not	found.');

It	will	output	the	following:

Value	1	not	found.

Value	8	found.

Let’s	go	into	more	detail	on	how	the	method	was	executed	to	find	the	key	1:

1.	 We	called	the	searchNode	method,	passing	the	root	as	parameter	({1}).
(node[root[11]])	is	not	null	({2}),	therefore	we	go	to	line	{3}.

2.	 (key[1]	<	node[11])	is	true	({3}),	therefore	we	go	to	line	{4}	and	call	the
searchNode	method	again,	passing	(node[7],	key[1])	as	parameters.

3.	 (node[7])	is	not	null	({2}),	therefore	we	go	to	line	{3}.
4.	 (key[1]	<	node[7])	is	true	({3}),	so	we	go	to	line	{4}	and	call	the	searchNode

method	again,	passing	(node[5],	key[1])	as	parameters.
5.	 (node[5])	is	not	null	({2}),	therefore	we	go	to	line	{3}.
6.	 (key[1]	<	node[5])	is	true	({3}),	therefore	we	go	to	line	{4}	and	call	the

searchNode	method	again,	passing	(node[3],	key[1])	as	parameters.
7.	 (node[3])	is	not	null	({2}),	therefore	we	go	to	line	{3}.
8.	 (key[1]	<	node[3])	is	true	({3}),	therefore	we	go	to	line	{4}	and	call	the

searchNode	method	again,	passing	(null,	key[1])	as	parameters.	null	was	passed
as	a	parameter	because	node[3]	is	a	leaf	(it	does	not	have	children,	so	the	left	child
will	have	the	value	null).

9.	 (null)	is	null	(in	line	{2},	the	node	to	search	in	this	case	is	null),	therefore	we
return	false.

10.	 After	that,	the	stack	of	method	calls	will	pop	up	and	the	execution	will	end.

Let’s	do	the	same	exercise	to	search	value	8:

1.	 We	called	the	searchNode	method,	passing	root	as	parameter	({1}).
(node[root[11]])	is	not	null	({2}),	therefore	we	go	to	line	{3}.

2.	 (key[8]	<	node[11])	is	true	({3}),	therefore	we	go	to	line	{4}	and	call	the
searchNode	method	again,	passing	(node[7],	key[8])	as	parameters.

3.	 (node[7])	is	not	null	({2}),	therefore	we	go	to	line	{3}.
4.	 (key[8]	<	node[7])	is	false	({3}),	therefore	we	go	to	line	{5}.
5.	 (key[8]	>	node[7])	is	true	({5}),	therefore	we	go	to	line	{6}	and	call	the

searchNode	method	again,	passing	(node[9],	key[8])	as	parameters.
6.	 (node[9])	is	not	null	({2}),	therefore	we	go	to	line	{3}.
7.	 (key[8]	<	node[9])	is	true	({3}),	therefore	we	go	to	line	{4}	and	call	the

searchNode	method	again,	passing	(node[8],	key[8])	as	a	parameter.
8.	 (node[8])	is	not	null	({2}),	therefore	we	go	to	line	{3}.
9.	 (key[8]	<	node[8])	is	false	({3}),	therefore	we	go	to	line	{5}.
10.	 (key[8]	>	node[8])	is	false	({5}),	therefore	we	go	to	line	{7}	and	return	true

because	node[8]	is	the	key	we	were	looking	for.
11.	 After	that,	the	stack	of	method	calls	will	pop	up	and	the	execution	will	end.

Removing	a	node
The	next	and	final	method	we	will	implement	for	our	BST	is	the	remove	method.	This	is
the	most	complex	method	we	will	implement	in	this	book.	Let’s	start	with	the	method	that
will	be	available	to	be	called	from	a	tree	instance:

this.remove	=	function(key){

				root	=	removeNode(root,	key);	//{1}

};

This	method	receives	the	desired	key	to	be	removed	and	it	also	calls	removeNode,	passing
root	and	key	to	be	removed	as	parameters	({1}).	One	thing	very	important	to	note	is	that
the	root	receives	the	return	of	the	method	removeNode.	We	will	understand	why	in	a
second.

The	complexity	of	the	removeNode	method	is	due	to	the	different	scenarios	that	we	need	to
handle	and	also	because	it	is	recursive.

Let’s	take	a	look	at	the	removeNode	implementation:

var	removeNode	=	function(node,	key){

				if	(node	===	null){	//{2}

								return	null;

				}

				if	(key	<	node.key){	//{3}

								node.left	=	removeNode(node.left,	key);	//{4}

								return	node;	//{5}

				}	else	if	(key	>	node.key){	//{6}

								node.right	=	removeNode(node.right,	key);	//{7}

								return	node;	//{8}

				}	else	{	//	key	is	equal	to	node.key

								//case	1	-	a	leaf	node

								if	(node.left	===	null	&&	node.right	===	null){	//{9}

												node	=	null;	//{10}

												return	node;	//{11}

								}

								//case	2	-	a	node	with	only	1	child

								if	(node.left	===	null){	//{12}

												node	=	node.right;	//{13}

												return	node;	//{14}

								}	else	if	(node.right	===	null){	//{15}

												node	=	node.left;	//{16}

												return	node;	//{17}

								}

								//case	3	-	a	node	with	2	children

								var	aux	=	findMinNode(node.right);	//{18}

								node.key	=	aux.key;	//{19}

								node.right	=	removeNode(node.right,	aux.key);	//{20}

								return	node;	//{21}

				}

};

As	a	stop	point	we	have	line	{2}.	If	the	node	we	are	analyzing	is	null,	it	means	the	key
does	not	exist	in	the	tree,	and	for	this	reason,	we	return	null.

Then,	the	first	thing	we	need	to	do	is	to	find	the	node	in	the	tree.	So	if	the	key	we	are
looking	for	has	a	lower	value	than	the	current	node	({3}),	then	we	go	to	the	next	node	at
the	left	edge	of	the	tree	({4}).	If	the	key	is	greater	than	the	current	node	({6}),	then	we
will	go	the	next	node	at	the	right	edge	of	the	tree	({7}).

If	we	find	the	key	we	are	looking	for	(key	is	equal	to	node.key),	then	we	have	three
different	scenarios	we	have	to	handle.

Removing	a	leaf	node
The	first	scenario	is	a	leaf	node	that	does	not	have	a	left	or	right	child—{9}.	In	this	case,
all	we	have	to	do	is	get	rid	of	this	node	by	assigning	null	to	it	({9}).	But	as	we	learned
during	the	implementation	of	linked	lists,	we	know	that	assigning	null	to	the	node	is	not
enough	and	we	also	need	to	take	care	of	the	pointers.	In	this	case,	the	node	does	not	have
any	children,	but	it	has	a	parent	node.	We	need	to	assign	null	to	its	parent	node	and	this
can	be	done	by	returning	null	({11}).

As	the	node	already	has	value	null,	the	parent	pointer	to	the	node	will	receive	this	value
as	well.	And	this	is	the	reason	we	are	returning	the	node	value	as	the	function	return.	The
parent	node	will	always	receive	the	value	returned	from	the	function.	An	alternative	to	this
approach	could	be	passing	the	parent	and	the	node	as	parameters	of	the	method.

If	we	take	a	look	back	at	the	first	lines	of	the	code	of	this	method,	we	will	notice	that	we
are	updating	the	pointer	values	of	the	left	and	right	pointer	of	the	nodes	in	{4}	and	{7}	and
we	are	also	returning	the	updated	node	in	{5}	and	{8}.

The	following	diagram	exemplifies	the	removal	of	a	leaf	node:

Removing	a	node	with	a	left	or	right	child
Now	let’s	take	a	look	at	the	second	scenario,	which	is	a	node	that	has	a	left	or	right	child.
In	this	case,	we	need	to	skip	this	node	and	assign	the	parent	pointer	to	the	child	node.

If	the	node	does	not	have	a	left	child	({12}),	it	means	it	has	a	right	child.	So,	we	change
the	reference	of	the	node	to	its	right	child	({13})	and	return	the	updated	node	({14}).	We
will	do	the	same	if	the	node	does	not	have	the	right	child	({15})—we	will	update	the	node
reference	to	its	left	child	({16})	and	return	the	updated	value	({17}).

The	following	diagram	exemplifies	the	removal	of	a	node	with	only	a	left	child	or	a	right
child:

Removing	a	node	with	two	children
Now	comes	the	third	scenario	and	the	most	complex	one,	which	is	the	scenario	where	the
node	we	are	trying	to	remove	has	two	children—the	right	and	left	one.	To	remove	a	node
with	children,	there	are	four	steps	that	need	to	be	performed:

1.	 Once	we	find	the	node	we	want	to	remove,	we	need	to	find	the	minimum	node	from
its	right	edge	subtree	(its	successor—line	{18}).

2.	 Then,	we	update	the	value	of	the	node	with	the	key	of	the	minimum	node	from	its
right	subtree	({19}).	With	this	action,	we	are	replacing	the	key	of	the	node,	which
means	it	was	removed.

3.	 However,	now	we	have	two	nodes	in	the	tree	with	the	same	key	and	this	cannot
happen.	What	we	need	to	do	now	is	remove	the	minimum	node	from	the	right
subtree,	since	we	moved	it	to	the	place	of	the	removed	node	({20}).

4.	 And	finally,	we	return	the	updated	node	reference	to	its	parent	({21}).

The	implementation	of	the	findMinNode	method	is	exactly	the	same	as	the	min	method.
The	only	difference	is	that	in	the	min	method,	we	return	only	the	key	and	in	the
findMinNode	method,	we	are	returning	the	node.

The	following	diagram	exemplifies	the	removal	of	a	node	with	only	a	left	child	and	right
child:

More	about	binary	trees
Now	that	you	know	how	to	work	with	BST,	you	can	dive	into	the	study	of	trees	if	you
would	like	to.

BST	has	an	problem:	depending	on	how	many	nodes	you	add,	one	of	the	edges	of	tree	can
be	very	deep,	meaning	a	branch	of	the	tree	can	have	a	high	level,	and	another	branch	can
have	a	low	level,	as	shown	in	the	following	diagram:

This	can	cause	performance	issues	when	adding,	removing,	and	searching	for	a	node	on	a
particular	edge	of	the	tree.	For	this	reason,	there	is	a	tree	called	Adelson-Velskii	and
Landis’	tree	(AVL	tree).	The	AVL	tree	is	a	self-balancing	BST	tree,	which	means	the
height	of	both	the	left	and	right	subtree	of	any	node	differs	by	1	at	most.	This	means	the
tree	will	try	to	become	a	complete	tree	whenever	possible	while	adding	or	removing	a
node.

We	will	not	cover	AVL	trees	in	this	book,	but	you	can	find	its	source	code	inside	the
chapter08	folder	of	this	book’s	source	code	and	take	a	look	at	it	there.

Note

Another	tree	that	you	should	also	learn	about	is	the	Red-Black	tree,	which	is	a	special	type
of	binary	tree.	This	tree	allows	efficient	in-order	traversal	of	its	nodes
(http://goo.gl/OxED8K).	You	should	also	check	out	the	Heap	tree	as	well
(http://goo.gl/SFlhW6).

http://goo.gl/OxED8K
http://goo.gl/SFlhW6

Summary
In	this	chapter,	we	covered	the	algorithms	to	add,	search,	and	remove	items	from	a	binary
search	tree,	which	is	the	basic	tree	data	structure	largely	used	in	Computer	Science.	We
also	covered	three	traversal	approaches	to	visit	all	the	nodes	of	a	tree.

In	the	next	chapter,	we	will	study	the	basic	concepts	of	graphs,	which	is	also	a	non	linear
data	structure.

Chapter	9.	Graphs
In	this	chapter,	you	will	learn	about	another	nonlinear	data	structure	called	graph.	This
will	be	the	last	data	structure	we	will	cover	before	diving	into	sorting	and	searching
algorithms.

This	chapter	will	cover	a	considerable	part	of	the	wonderful	applications	of	graphs.	Since
this	is	a	vast	topic,	we	could	write	a	book	like	this	just	to	dive	into	the	amazing	world	of
graph.

Graph	terminology
A	graph	is	an	abstract	model	of	a	network	structure.	A	graph	is	a	set	of	nodes	(or
vertices)	connected	by	edges.	Learning	about	graphs	is	important	because	any	binary
relationship	can	be	represented	by	a	graph.

Any	social	network,	such	as	Facebook,	Twitter,	and	Google	plus,	can	be	represented	by	a
graph.

We	can	also	use	graphs	to	represent	roads,	flights,	and	communications,	as	shown	in	the
following	image:

Let’s	learn	more	about	the	mathematical	and	technical	concepts	of	graphs.

A	graph	G	=	(V,	E)	is	composed	of:

V:	A	set	of	vertices
E:	A	set	of	edges	connecting	the	vertices	in	V

The	following	diagram	represents	a	graph:

Let’s	cover	some	graph	terminology	before	we	start	implementing	any	algorithms.

Vertices	connected	by	an	edge	are	called	adjacent	vertices.	For	example,	A	and	B	are
adjacent,	A	and	D	are	adjacent,	A	and	C	are	adjacent,	and	A	and	E	are	not	adjacent.

A	degree	of	a	vertex	consists	of	the	number	of	adjacent	vertices.	For	example,	A	is
connected	to	other	three	vertices,	therefore,	A	has	degree	3;	E	is	connected	to	other	two
vertices,	therefore,	E	has	degree	2.

A	path	is	a	sequence	of	consecutive	vertices	v1,	v2,	…,	vk,	where	vi	and	vi+1	are
adjacent.	Using	the	graph	from	the	previous	diagram	as	an	example,	we	have	paths	A	B	E
I	and	A	C	D	G,	among	others.

A	simple	path	does	not	contain	repeated	vertices.	As	an	example,	we	have	the	path	A	D
G.	A	cycle	is	a	simple	path,	except	for	the	last	vertex,	which	is	the	same	as	the	first	vertex:
A	D	C	A	(back	to	A).

A	graph	is	acyclic	if	it	does	not	have	cycles.	A	graph	is	connected	if	there	is	a	path
between	every	pair	of	vertices.

Directed	and	undirected	graphs
Graphs	can	be	undirected	(where	edges	do	not	have	a	direction)	or	directed	(digraph),
where	edges	have	a	direction,	as	demonstrated	here:

A	graph	is	strongly	connected	if	there	is	a	path	in	both	directions	between	every	pair	of
vertices.	For	example,	C	and	D	are	strongly	connected	while	A	and	B	are	not	strongly
connected.

Graphs	can	also	be	unweighted	(as	we	have	seen	so	far)	or	weighted,	where	the	edges
have	weights,	as	shown	in	the	following	diagram:

We	can	solve	many	problems	in	the	Computer	Science	world	using	graphs,	such	as
searching	a	graph	for	a	specific	vertex	or	searching	for	a	specific	edge,	finding	a	path	in
the	graph	(from	one	vertex	to	another),	finding	the	shortest	path	between	two	vertices,	and
cycle	detection.

Representing	a	graph
There	are	a	few	ways	we	can	represent	graphs	when	it	comes	to	data	structures.	There	is
no	correct	way	of	representing	a	graph	among	the	existing	possibilities.	It	depends	on	the
type	of	problem	you	need	to	resolve	and	the	type	of	graph	as	well.

The	adjacency	matrix
The	most	common	implementation	is	the	adjacency	matrix.	Each	node	is	associated	with
an	integer,	which	is	the	array	index.	We	represent	the	connectivity	between	vertices	using
a	two-dimensional	array,	as	array[i][j]	===	1	if	there	is	an	edge	from	the	node	with	index
i	to	the	node	with	index	j;	or	as	array[i][j]	===	0	otherwise,	as	demonstrated	by	the
following	diagram:

Graphs	that	are	not	strongly	connected	(sparse	graphs)	will	be	represented	by	a	matrix
with	many	zero	entries	in	the	adjacency	matrix.	This	means	we	will	waste	space	in	the
computer	memory	to	represent	edges	that	do	not	exist;	for	example,	if	we	need	to	find	the
adjacent	vertices	of	a	given	vertex,	we	will	have	to	iterate	through	the	whole	row	even	if
this	vertex	has	only	one	adjacent	vertex.	Another	reason	this	might	not	be	a	good
representation	is	because	the	number	of	vertices	in	the	graph	may	change	and	a	two-
dimensional	array	is	inflexible.

The	adjacency	list
We	can	use	a	dynamic	data	structure	to	represent	graphs	as	well,	called	an	adjacency	list.
This	consists	of	a	list	of	adjacent	vertices	for	every	vertex	of	the	graph.	There	are	a	few
different	ways	we	can	represent	this	data	structure.	To	represent	the	list	of	adjacent
vertices,	we	can	use	a	list	(array),	a	linked	list,	or	even	a	hash	map	or	dictionary.	The
following	diagram	exemplifies	the	adjacency	list	data	structure:

Both	representations	are	very	useful	and	have	different	properties	(for	example,	finding
out	whether	vertices	v	and	w	are	adjacent	is	faster	using	adjacent	matrix),	although
adjacency	lists	are	probably	better	for	most	problems.	We	are	going	to	use	the	adjacency
list	representation	for	the	examples	in	this	book.

The	incidence	matrix
We	can	also	represent	a	graph	using	an	incidence	matrix.	In	an	incidence	matrix,	each
row	of	the	matrix	represents	a	vertex	and	each	column	represents	an	edge.	We	represent
the	connectivity	between	the	two	objects	using	a	two-dimensional	array,	as	array[v][e]
===	1	if	the	vertex	v	is	incident	upon	edge	e;	or	as	array[v][e]	===	0	otherwise,	as
demonstrated	in	the	following	diagram:

An	incidence	matrix	is	usually	used	to	save	space	and	memory	when	we	have	more	edges
than	vertices.

Creating	the	Graph	class
As	usual,	we	are	going	to	declare	the	skeleton	of	our	class:

function	Graph()	{

				var	vertices	=	[];	//{1}

				var	adjList	=	new	Dictionary();	//{2}

}

We	are	going	to	use	an	array	to	store	the	names	of	all	the	vertices	of	the	graph	(line	{1})
and	we	are	going	to	use	a	dictionary	(implemented	in	Chapter	7,	Dictionaries	and	Hashes)
to	store	the	adjacent	list	(line	{2}).	The	dictionary	will	use	the	name	of	the	vertex	as	key
and	the	list	of	adjacent	vertices	as	a	value.	Both	the	vertices	array	and	the	adjList
dictionary	are	private	attributes	of	our	Graph	class.

Next,	we	are	going	to	implement	two	methods:	one	to	add	a	new	vertex	to	the	graph
(because	when	we	instantiate	the	graph,	it	will	create	an	empty	one)	and	another	method
to	add	edges	between	the	vertices.	Let’s	implement	the	addVertex	method	first:

this.addVertex	=	function(v){

				vertices.push(v);	//{3}

				adjList.set(v,	[]);	//{4}

};

This	method	receives	a	vertex	v	as	parameter.	We	are	going	to	add	this	vertex	to	the	list	of
vertices	(line	{3}),	and	we	are	also	going	to	initialize	the	adjacent	list	with	an	empty	array
by	setting	the	dictionary	value	of	the	vertex	v	key	with	an	empty	array	(line	{4}).

Now,	let’s	implement	the	addEdge	method:

this.addEdge	=	function(v,	w){

				adjList.get(v).push(w);	//{5}

				adjList.get(w).push(v);	//{6}

};

This	method	receives	two	vertices	as	parameters.	First,	we	are	going	to	add	an	edge	from
vertex	v	to	vertex	w	(line	{5})	by	adding	w	to	the	adjacent	list	of	v.	If	you	want	to
implement	a	directed	graph,	line	{5}	is	enough.	As	we	are	going	to	work	with	undirected
graphs	in	most	examples	in	this	chapter,	we	also	need	to	add	the	edge	from	w	to	v	(line
{6}).

Note	that	we	are	only	adding	new	elements	to	the	array,	since	we	have	already	initialized
it	in	line	{4}.

Let’s	test	this	code:

var	graph	=	new	Graph();

var	myVertices	=	['A','B','C','D','E','F','G','H','I'];	//{7}

for	(var	i=0;	i<myVertices.length;	i++){	//{8}

				graph.addVertex(myVertices[i]);

}

graph.addEdge('A',	'B');	//{9}

graph.addEdge('A',	'C');

graph.addEdge('A',	'D');

graph.addEdge('C',	'D');

graph.addEdge('C',	'G');

graph.addEdge('D',	'G');

graph.addEdge('D',	'H');

graph.addEdge('B',	'E');

graph.addEdge('B',	'F');

graph.addEdge('E',	'I');

To	make	our	lives	easier,	let’s	create	an	array	with	all	the	vertices	we	want	to	add	to	our
graph	(line	{7}).	Then,	we	only	need	to	iterate	through	the	vertices	array	and	add	the
values	one	by	one	to	our	graph	(line	{8}).	Finally,	we	add	the	desired	edges	(line	{9}).
This	code	will	create	the	graph	we	used	in	the	diagrams	presented	so	far	in	this	chapter.

To	make	our	lives	even	easier,	let’s	also	implement	the	toString	method	for	this	Graph
class,	so	that	we	can	output	the	graph	on	the	console:

this.toString	=	function(){

				var	s	=	'';

				for	(var	i=0;	i<vertices.length;	i++){	//{10}

								s	+=	vertices[i]	+	'	->	';

								var	neighbors	=	adjList.get(vertices[i]);	//{11}

								for	(var	j=0;	j<neighbors.length;	j++){	//{12}

												s	+=	neighbors[j]	+	'	';

								}

								s	+=	'\n';	//{13}

				}

				return	s;

};

We	are	going	to	build	a	string	with	the	adjacent	list	representation.	First,	we	are	going	to
iterate	the	list	of	vertices	array	(line	{10})	and	add	the	name	of	the	vertex	to	our	string.
Then,	we	are	going	to	get	the	adjacent	list	for	this	vertex	(line	{11})	and	we	are	also	going
to	iterate	it	(line	{12})	to	get	the	name	of	the	adjacent	vertex	and	add	it	to	our	string.	After
we	have	iterated	the	adjacent	list,	we	are	going	to	add	a	new	line	to	our	string	(line	{13}),
so	we	can	see	a	pretty	output	on	the	console.	Let’s	try	this	code:

console.log(graph.toString());

This	will	be	the	output:

A	->	B	C	D	

B	->	A	E	F	

C	->	A	D	G	

D	->	A	C	G	H	

E	->	B	I	

F	->	B	

G	->	C	D	

H	->	D	

I	->	E

A	pretty	adjacent	list!	From	this	output,	we	know	that	vertex	A	has	the	following	adjacent
vertices:	B,	C,	and	D.

Graph	traversals
Similar	to	the	tree	data	structure,	we	can	also	visit	all	the	nodes	of	a	graph.	There	are	two
algorithms	that	can	be	used	to	traverse	a	graph	called	breadth-first	search	(BFS)	and
depth-first	search	(DFS).	Traversing	a	graph	can	be	used	to	find	a	specific	vertex	or	to
find	a	path	between	two	vertices,	check	whether	the	graph	is	connected,	check	whether	it
contains	cycles,	and	so	on.

Before	we	implement	the	algorithms,	let’s	try	to	better	understand	the	idea	of	traversing	a
graph.

The	idea	of	graph	traversal	algorithms	is	that	we	must	track	each	vertex	when	we	first	visit
it	and	keep	track	of	which	vertices	have	not	yet	been	completely	explored.	For	both
traversal	graph	algorithms,	we	need	to	specify	which	is	going	to	be	the	first	vertex	to	be
visited.

To	completely	explore	a	vertex,	we	need	to	look	at	each	edge	of	this	vertex.	For	each	edge
connected	to	a	vertex	that	has	not	been	visited	yet,	we	mark	it	as	discovered	and	add	it	to
the	list	of	vertices	to	be	visited.

In	order	to	have	efficient	algorithms,	we	must	visit	each	vertex	twice,	at	the	most,	when
each	of	its	endpoints	are	explored.	Every	edge	and	vertex	in	the	connected	graph	will	be
visited.

The	BFS	and	DFS	algorithms	are	basically	the	same,	with	only	one	difference,	which	is
the	data	structure	used	to	store	the	list	of	vertices	to	be	visited:

Algorithm Data
structure Description

DFS Stack By	storing	the	vertices	in	a	stack	(learned	in	Chapter	3,	Stacks),	the	vertices	are	explored	by
lurching	along	a	path,	visiting	a	new	adjacent	vertex	if	there	is	one	available.

BFS Queue By	storing	the	vertices	in	a	queue	(learned	in	Chapter	4,	Queues),	the	oldest	unexplored	vertices
are	explored	first.

When	marking	the	vertices	that	we	have	already	visited,	we	use	three	colors	to	reflect	their
status:

White:	This	represents	that	the	vertex	has	not	been	visited
Grey:	This	represents	that	the	vertex	has	been	visited	but	not	explored
Black:	This	represents	that	the	vertex	has	been	completely	explored

This	is	why	we	must	visit	each	vertex	twice,	at	the	most,	as	mentioned	earlier.

Breadth-first	search	(BFS)
The	BFS	algorithm	will	start	traversing	the	graph	from	the	first	specified	vertex	and	will
visit	all	its	neighbors	(adjacent	vertices)	first,	as	it	is	visiting	each	layer	of	the	graph	at	a
time.	In	other	words,	it	visits	the	vertices	first	widely	and	then	deeply,	as	demonstrated	by
the	following	diagram:

These	are	the	steps	followed	by	the	BFS	algorithm	starting	at	vertex	v:

1.	 Create	a	queue	Q.
2.	 Mark	v	as	discovered	(grey)	and	enqueue	v	into	Q.
3.	 While	Q	is	not	empty,	perform	the	following	steps:

1.	 Dequeue	u	from	Q.
2.	 Mark	u	as	discovered	(grey).
3.	 Enqueue	all	unvisited	(white)	neighbors	w	of	u.
4.	 Mark	u	as	explored	(black).

Let’s	implement	the	BFS	algorithm:

var	initializeColor	=	function(){

				var	color	=	[];

				for	(var	i=0;	i<vertices.length;	i++){

								color[vertices[i]]	=	'white';	//{1}

				}

				return	color;

};

this.bfs	=	function(v,	callback){

				var	color	=	initializeColor(),	//{2}

								queue	=	new	Queue();							//{3}

				queue.enqueue(v);														//{4}

				while	(!queue.isEmpty()){						//{5}

								var	u	=	queue.dequeue(),								//{6}

												neighbors	=	adjList.get(u);	//{7}

								color[u]	=	'grey';																						//{8}

								for	(var	i=0;	i<neighbors.length;	i++){	//{9}

												var	w	=	neighbors[i];															//{10}

												if	(color[w]	===	'white'){										//{11}

																color[w]	=	'grey';														//{12}

																queue.enqueue(w);															//{13}

												}

								}

								color[u]	=	'black';	//{14}

								if	(callback)	{					//{15}

												callback(u);

								}

				}

};

For	both	BFS	and	DFS,	we	will	need	to	mark	the	vertices	visited.	To	do	so,	we	will	use	a
helper	array	called	color.	As	and	when	we	start	executing	the	BFS	or	DFS	algorithms,	all
vertices	have	the	color	white	(line	{1}),	so	we	can	create	a	helper	function	called
initializeColor,	which	will	do	this	for	us	for	both	the	algorithms	we	are	implementing.

Let’s	dive	into	the	BFS	method	implementation.	The	first	thing	we	will	do	is	use	the
initializeColor	function	to	initialize	the	color	array	with	the	color	white	(line	{2}).	We
also	need	to	declare	and	create	a	Queue	instance	(line	{3})	that	will	store	the	vertices	that
need	to	be	visited	and	explored.

Following	the	steps	we	explained	at	the	beginning	of	this	chapter,	the	bfs	method	receives
a	vertex	that	will	be	used	as	the	point	of	origin	for	our	algorithm.	As	we	need	a	starting
point,	we	will	enqueue	this	vertex	into	the	queue	(line	{4}).

If	the	queue	is	not	empty	(line	{5}),	we	will	remove	a	vertex	from	the	queue	by	dequeuing
it	(line	{6})	and	we	will	get	its	adjacency	list	that	contains	all	its	neighbors	(line	{7}).	We
will	also	mark	this	vertex	as	grey,	meaning	we	discovered	it	(but	have	not	finished
exploring	it	yet).

For	each	neighbor	of	u	(line	{9}),	we	will	obtain	its	value	(the	name	of	the	vertex—line
{10}),	and	if	it	has	not	been	visited	yet	(color	set	to	white—line	{11}),	we	will	mark	that
we	have	discovered	it	(color	is	set	to	grey—line	{12}),	and	will	add	this	vertex	to	the
queue	(line	{13}),	so	it	can	be	finished	exploring	when	we	dequeue	it	from	the	queue.

When	we	finish	exploring	the	vertex	and	its	adjacent	vertices,	we	mark	is	as	explored
(color	is	set	to	black—line	{14}).

The	bfs	method	we	are	implementing	also	receives	a	callback	(we	used	a	similar	approach
in	Chapter	8,	Trees,	for	tree	traversals).	This	parameter	is	optional,	and	if	we	pass	any
callback	function	(line	{15}),	we	will	use	it.

Let’s	test	this	algorithm	by	executing	the	following	code:

function	printNode(value){	//{16}

				console.log('Visited	vertex:	'	+	value);	//{17}

}

graph.bfs(myVertices[0],	printNode);	//{18}

First,	we	declared	a	callback	function	(line	{16})	that	will	simply	output	in	the	browser’s
console	the	name	(line	{17})	of	the	vertex	that	was	completely	explored	by	the	algorithm.
Then,	we	will	call	the	bfs	method,	passing	the	first	vertex	(A—from	the	myVertices	array
that	we	declared	at	the	beginning	of	this	chapter)	and	the	callback	function.	When	we
execute	this	code,	the	algorithm	will	output	the	following	result	in	the	browser’s	console:

Visited	vertex:	A

Visited	vertex:	B

Visited	vertex:	C

Visited	vertex:	D

Visited	vertex:	E

Visited	vertex:	F

Visited	vertex:	G

Visited	vertex:	H

Visited	vertex:	I

As	you	can	see,	the	order	of	the	vertices	visited	is	the	same	as	shown	by	the	diagram	at	the
beginning	of	this	section.

Finding	the	shortest	paths	using	BFS
So	far,	we	have	only	demonstrated	how	the	BFS	algorithm	works.	We	can	use	it	for	more
things	than	just	outputting	the	order	of	vertices	visited.	For	example,	how	would	we	solve
the	following	problem?

Given	a	graph	G	and	the	source	vertex	v,	find	the	distance	(in	number	of	edges)	from	v	to
each	vertex	u	Î	G	along	the	shortest	path	between	v	and	u.

Given	a	vertex	v,	the	BFS	algorithm	visits	all	vertices	with	distance	1,	and	then	distance	2,
and	so	on.	So,	we	can	use	the	BFS	algorithm	to	solve	this	problem.	We	can	modify	the	bfs
method	to	return	some	information	for	us:

The	distances	d[u]	from	v	to	u
The	predecessors	pred[u],	which	is	used	to	derive	a	shortest	path	from	v	to	every
other	vertex	u

Let’	see	the	implementation	of	an	improved	BFS	method:

this.BFS	=	function(v){

				var	color	=	initializeColor(),

								queue	=	new	Queue(),

								d	=	[],				//{1}

							pred	=	[];	//{2}

				queue.enqueue(v);

				for	(var	i=0;	i<vertices.length;	i++){	//{3}

								d[vertices[i]]	=	0;																//{4}

								pred[vertices[i]]	=	null;										//{5}

				}

				while	(!queue.isEmpty()){

								var	u	=	queue.dequeue(),

												neighbors	=	adjList.get(u);

								color[u]	=	'grey';

								for	(i=0;	i<neighbors.length;	i++){

												var	w	=	neighbors[i];

												if	(color[w]	===	'white'){

																color[w]	=	'grey';

																d[w]	=	d[u]	+	1;											//{6}

															pred[w]	=	u;															//{7}

																queue.enqueue(w);

												}

								}

								color[u]	=	'black';

				}

				return	{	//{8}

								distances:	d,	

								predecessors:	pred

				};

};

What	has	changed	in	this	version	of	the	BFS	method?

Note
The	source	code	of	this	chapter	contains	two	bfs	methods:	bfs	(the	first	one	we
implemented)	and	BFS	(the	improved	one).

We	also	need	to	declare	the	d	array	(line	{1}),	which	represents	the	distances	and	the	pred
array	(line	{2}),	which	represents	the	predecessors.	The	next	step	would	be	initializing	the
d	array	with	0	(zero—line	{4})	and	the	pred	array	with	null	(line	{5})	for	every	vertex	of
the	graph	(line	{3}).

When	we	discover	the	neighbor	w	of	a	vertex	u,	we	set	the	predecessor	value	of	w	as	u	(line
{7})	and	we	also	increment	the	distance	(line	{6})	between	v	and	w	by	adding	1	and	the
distance	of	u	(as	u	is	a	predecessor	of	w,	we	have	the	value	of	d[u]	already).

At	the	end	of	the	method,	we	can	return	an	object	with	d	and	pred	(line	{8}).

Now,	we	can	execute	the	BFS	method	again	and	store	its	return	value	in	a	variable:

var	shortestPathA	=	graph.BFS(myVertices[0]);

console.log(shortestPathA);

As	we	executed	the	BFS	method	for	the	vertex	A,	this	will	be	the	output	on	the	console:

distances:	[A:	0,	B:	1,	C:	1,	D:	1,	E:	2,	F:	2,	G:	2,	H:	2	,	I:	3],	

predecessors:	[A:	null,	B:	"A",	C:	"A",	D:	"A",	E:	"B",	F:	"B",	G:	"C",	H:	

"D",	I:	"E"]

This	means	that	vertex	A	has	distance	of	1	edge	from	vertices	B,	C,	and	D;	a	distance	of	2
edges	from	vertices	E,	F,	G,	and	H;	and	a	distance	of	3	edges	from	vertex	I.

With	the	predecessors	array,	we	can	build	the	path	from	vertex	A	to	the	other	vertices	by
using	the	following	code:

var	fromVertex	=	myVertices[0];	//{9}

for	(var	i=1;	i<myVertices.length;	i++){	//{10}

				var	toVertex	=	myVertices[i],	//{11}

								path	=	new	Stack();							//{12}

				for	(var	v=toVertex;	v!==	fromVertex;	

												v=shortestPathA.predecessors[v])	{	//{13}

								path.push(v);																										//{14}

				}

				path.push(fromVertex);							//{15}

				var	s	=	path.pop();										//{16}

				while	(!path.isEmpty()){					//{17}

								s	+=	'	-	'	+	path.pop();	//{18}

				}

				console.log(s);	//{19}

}

We	will	use	vertex	A	as	the	source	vertex	(line	{9}).	For	every	other	vertex	(except	vertex
A—line	{10}),	we	will	calculate	the	path	from	vertex	A	to	it.	To	do	so,	we	will	get	the
value	of	the	toVertex	method	from	the	vertices	array	(line	{11}),	and	we	will	create	a
stack	to	store	the	path	values	(line	{12}).

Next,	we	will	follow	the	path	from	toVertex	to	fromVertex	(line	{13}).	The	v	variable
will	receive	the	value	of	its	predecessor	and	we	will	be	able	to	take	the	same	path
backwards.	We	will	add	the	v	variable	to	the	stack	(line	{14}).	Finally,	we	will	add	the
origin	vertex	to	the	stack	as	well	(line	{15})	to	have	the	complete	path.

After	this,	we	will	create	an	s	string	and	we	will	assign	the	origin	vertex	to	it	(this	will	be
the	last	vertex	added	to	the	stack,	so	it	is	the	first	item	to	be	popped	out—line	{16}).
While	the	stack	is	not	empty	(line	{17}),	we	will	remove	an	item	from	the	stack	and	will
concatenate	it	to	the	existing	value	of	the	s	string	(line	{18}).	Finally	(line	{19}),	we
simply	output	the	path	on	the	browser’s	console.

After	executing	the	previous	code,	we	will	get	the	following	output:

A	-	B

A	-	C

A	-	D

A	-	B	-	E

A	-	B	-	F

A	-	C	-	G

A	-	D	-	H

A	-	B	-	E	-	I	

Here,	we	have	the	shortest	path	(in	number	of	edges)	from	A	to	the	other	vertices	of	the
graph.

Further	studies	on	the	shortest	paths	algorithms
The	graph	we	used	in	this	example	is	not	a	weighted	graph.	If	we	want	to	calculate	the
shortest	path	in	weighted	graphs	(for	example,	what	the	shortest	path	is	between	city	A
and	city	B—an	algorithm	used	in	GPS	and	Google	Maps),	BFS	is	not	the	indicated
algorithm.

There	is	Dijkstra’s	algorithm,	which	solves	the	single-source	shortest	path	problem	for

example.	The	Bellman–Ford	algorithm	solves	the	single-source	problem	if	edge	weights
are	negative.	The	A*	search	algorithm	provides	the	shortest	path	for	a	single	pair	of
vertices	using	heuristics	to	try	to	speed	up	the	search.	The	Floyd–Warshall	algorithm
provides	the	shortest	path	for	all	pairs	of	vertices.

As	mentioned	on	the	first	page	of	this	chapter,	the	subject	of	graphs	is	an	extensive	topic,
and	we	have	many	solutions	for	the	shortest	path	problem	and	its	variations.	But	before
we	start	studying	these	other	solutions,	you	need	to	learn	the	basic	concepts	of	graphs,
which	we	covered	in	this	chapter.	These	other	solutions	will	not	be	covered	in	the	book,
but	you	can	have	an	adventure	of	your	own	exploring	the	amazing	graph	world.

Depth-first	search	(DFS)
The	DFS	algorithm	will	start	traversing	the	graph	from	the	first	specified	vertex	and	will
follow	a	path	until	the	last	vertex	of	this	path	is	visited,	and	then	will	backtrack	and	then
follow	the	next	path.	In	another	words,	it	visits	the	vertices	first	deeply	and	then	widely,	as
demonstrated	in	the	following	diagram:

The	DFS	algorithm	does	not	need	a	source	vertex.	In	the	DFS	algorithm,	for	each
unvisited	vertex	v	in	graph	G,	visit	the	vertex	v.

To	visit	vertex	v,	do	the	following:

1.	 Mark	v	as	discovered	(grey).
2.	 For	all	unvisited	(white)	neighbors	w	of	v:

1.	 Visit	vertex	w.

3.	 Mark	v	as	explored	(black).

As	you	can	see,	the	DFS	steps	are	recursive,	meaning	the	DFS	algorithm	uses	a	stack	to
store	the	calls	(a	stack	created	by	the	recursive	calls).

Let’s	implement	the	DFS	algorithm:

this.dfs	=	function(callback){

				var	color	=	initializeColor();	//{1}

				for	(var	i=0;	i<vertices.length;	i++){	//{2}

								if	(color[vertices[i]]	===	'white'){	//{3}

												dfsVisit(vertices[i],	color,	callback);	//{4}

								}

				}

};

var	dfsVisit	=	function(u,	color,	callback){

				color[u]	=	'grey';	//{5}

				if	(callback)	{				//{6}

								callback(u);

				}

				var	neighbors	=	adjList.get(u);									//{7}

				for	(var	i=0;	i<neighbors.length;	i++){	//{8}

								var	w	=	neighbors[i];															//{9}

								if	(color[w]	===	'white'){										//{10}

												dfsVisit(w,	color,	callback);			//{11}

								}

				}

				color[u]	=	'black';	//{12}

};

The	first	thing	we	need	to	do	is	create	and	initialize	the	color	array	(line	{1})	with	the
value	white	for	each	vertex	of	the	graph.	We	did	the	same	thing	for	the	BFS	algorithm.
Then,	for	each	non-visited	vertex	(lines	{2}	and	{3})	of	the	Graph	instance,	we	will	call
the	recursive	private	function	dfsVisit,	passing	the	vertex,	the	color	array,	and	the
callback	function	(line	{4}).

Whenever	we	visit	the	u	vertex,	we	mark	it	as	discovered	(grey—line	{5}).	If	there	is	a
callback	function	(line	{6}),	we	will	execute	it	to	output	the	vertex	visited.	Then,	the	next
step	is	getting	the	list	of	neighbors	of	vertex	u	(line	{7}).	For	each	unvisited	(color	white
—lines	{10}	and	{8})	neighbor	w	(line	{9})	of	u,	we	will	call	the	dfsVisit	function,
passing	w	and	the	other	parameters	(line	{11}—add	the	vertex	w	to	the	stack	so	it	can	be
visited	next).	At	the	end,	after	the	vertex	and	its	adjacent	vertices	were	visited	deeply,	we
backtrack,	meaning	the	vertex	is	completely	explored,	and	is	marked	black	(line	{12}).

Let’s	test	the	dfs	method	by	executing	the	following	code:

graph.dfs(printNode);

This	will	be	its	output:

Visited	vertex:	A

Visited	vertex:	B

Visited	vertex:	E

Visited	vertex:	I

Visited	vertex:	F

Visited	vertex:	C

Visited	vertex:	D

Visited	vertex:	G

Visited	vertex:	H

The	order	is	the	same	as	demonstrated	by	the	diagram	at	the	beginning	of	this	section.	The
following	diagram	demonstrates	the	step-by-step	process	of	the	algorithm:

In	this	graph	that	we	used	as	an	example,	line	{4}	will	be	executed	only	once,	because	all
the	other	vertices	have	a	path	to	the	first	one	that	called	the	dfsVisit	function	(vertex	A).
If	vertex	B	is	the	first	one	to	call	the	function,	then	line	{4}	would	be	executed	again	for
another	vertex	(for	example,	vertex	A).

Exploring	the	DFS	algorithm
So	far,	we	have	only	demonstrated	how	the	DFS	algorithm	works.	We	can	use	it	for	more
functions	than	just	outputting	the	order	of	vertices	visited.

Given	a	graph	G,	the	DFS	algorithm	traverses	all	vertices	of	G	and	constructs	a	forest	(a
collection	of	rooted	trees)	together	with	a	set	of	source	vertices	(roots),	and	outputs	two
arrays:	discovery	time	and	finish	explorer	time.	We	can	modify	the	dfs	method	to	return
some	information	for	us:

The	discovery	time	d[u]	of	u
The	finish	time	f[u]	when	u	is	marked	black
The	predecessors	p[u]	of	u

Let’s	see	the	implementation	of	the	improved	BFS	method:

var	time	=	0;	//{1}

this.DFS	=	function(){

				var	color	=	initializeColor(),	//{2}

								d	=	[],																				

								f	=	[],																			

								p	=	[];

				time	=	0;

				for	(var	i=0;	i<vertices.length;	i++){	//{3}

								f[vertices[i]]	=	0;

								d[vertices[i]]	=	0;

								p[vertices[i]]	=	null;

				}

				for	(i=0;	i<vertices.length;	i++){													

								if	(color[vertices[i]]	===	'white'){						

												DFSVisit(vertices[i],	color,	d,	f,	p);	

								}

				}

				return	{											//{4}

								discovery:	d,

								finished:	f,

								predecessors:	p

				};

};

var	DFSVisit	=	function(u,	color,	d,	f,	p){

				console.log('discovered	'	+	u);	

				color[u]	=	'grey';	

				d[u]	=	++time;					//{5}

				var	neighbors	=	adjList.get(u);	

				for	(var	i=0;	i<neighbors.length;	i++){	

								var	w	=	neighbors[i];															

								if	(color[w]	===	'white'){										

												p[w]	=	u;																							//{6}

												DFSVisit(w,color,	d,	f,	p);				

								}

				}

				color[u]	=	'black';	

				f[u]	=	++time;						//{7}

				console.log('explored	'	+	u);

};

As	we	want	to	track	the	time	of	discovery	and	time	when	we	finished	exploring,	we	need
to	declare	a	variable	to	do	it	(line	{1}).	We	cannot	pass	time	as	a	parameter	because
variables	that	are	not	objects	cannot	be	passed	as	a	reference	to	other	JavaScript	methods
(passing	a	variable	as	a	reference	means	that	if	this	variable	is	modified	inside	the	other
method,	the	new	values	will	also	be	reflected	in	the	original	variable).	Next,	we	will
declare	the	d,	f,	and	p	arrays	too	(line	{2}).	We	also	need	to	initialize	these	arrays	for	each
vertex	of	the	graph	(line	{3}).	At	the	end	of	the	method,	we	will	return	these	values	(line
{4})	so	we	can	work	with	them	later.

When	a	vertex	is	first	discovered,	we	track	its	discovery	time	(line	{5}).	When	it	is

discovered	as	an	edge	from	u,	we	also	keep	track	of	its	predecessor	(line	{6}).	At	the	end,
when	the	vertex	is	completely	explored,	we	track	its	finish	time	(line	{7}).

What	is	the	idea	behind	the	DFS	algorithm?	The	edges	are	explored	out	of	the	most
recently	discovered	vertex	u.	Only	edges	to	non-visited	vertices	are	explored.	When	all
edges	of	u	have	been	explored,	the	algorithm	backtracks	to	explore	other	edges	where	the
vertex	u	was	discovered.	The	process	continues	until	we	have	discovered	all	the	vertices
that	are	reachable	from	the	original	source	vertex.	If	any	undiscovered	vertices	remain,
then	we	repeat	the	process	for	a	new	source	vertex.	We	repeat	the	algorithm	until	all
vertices	from	the	graph	are	explored.

There	are	two	things	we	need	to	check	for	the	improved	DFS	algorithm:

The	time	variable	can	only	have	values	from	one	to	two	times	the	number	of	vertices
of	the	graph	(2|V|)
For	all	vertices	u,	d[u]	<	f[u]	(meaning	the	discovered	time	needs	to	have	a	lower
value	than	the	finish	time—meaning	all	the	vertices	have	been	explored)

With	these	two	assumptions,	we	have	the	following	rule:

1	≤	d[u]	<	f[u]	≤	2|V|

If	we	run	the	new	DFS	method	for	the	same	graph	again,	we	will	get	the	following
discovery/finish	time	for	each	vertex	of	the	graph:

But	what	can	we	do	with	this	information?	Let’s	see	in	the	following	section.

Topological	sorting	using	DFS
Given	the	following	graph,	suppose	each	vertex	is	a	task	that	you	need	to	execute:

Note
This	is	a	directed	graph,	meaning	there	is	an	order	that	the	tasks	need	to	be	executed.	For
example,	task	F	cannot	be	executed	before	task	A.	Note	that	the	previous	graph	also	does
not	have	a	cycle,	meaning	it	is	an	acyclic	graph.	So,	we	can	say	that	the	previous	graph	is
a	directed	acyclic	graph	(DAG).

When	we	need	to	specify	the	order	that	some	tasks	or	steps	need	to	be	executed	in,	it	is
called	topological	sorting	(or	topsort	or	even	toposort).	This	problem	is	present	in
different	scenarios	of	our	lives.	For	example,	when	we	start	a	Computer	Science	course,
there	is	an	order	of	disciplines	we	can	take	before	taking	any	other	discipline	(you	cannot
take	Algorithms	II	before	taking	Algorithms	I).	When	we	are	working	in	a	development
project,	there	are	some	steps	that	need	to	be	executed	in	order,	for	example,	first	we	need
to	get	the	requirements	from	the	client,	then	develop	what	was	asked	by	the	client,	and
then	deliver	the	project.	You	cannot	deliver	the	project	and	after	that	gather	the
requirements.

Topological	sorting	can	only	be	applied	to	DAGs.	So,	how	can	we	use	topological	sorting
using	DFS?	Let’s	execute	the	DFS	algorithm	for	the	diagram	presented	at	the	beginning	of
this	topic:

graph	=	new	Graph();

myVertices	=	['A','B','C','D','E','F'];

for	(i=0;	i<myVertices.length;	i++){

				graph.addVertex(myVertices[i]);

}

graph.addEdge('A',	'C');

graph.addEdge('A',	'D');

graph.addEdge('B',	'D');

graph.addEdge('B',	'E');

graph.addEdge('C',	'F');

graph.addEdge('F',	'E');

var	result	=	graph.DFS();

This	code	will	create	the	graph,	apply	the	edges,	execute	the	improved	DFS	algorithm,	and
store	the	results	inside	the	result	variable.	The	following	diagram	demonstrates	the
discovery	and	finish	times	of	the	graph	after	DFS	is	executed:

Now	all	we	have	to	do	is	sort	the	finishing	time	array	in	decreased	order	of	finishing	time
and	we	have	the	topological	sorting	for	the	graph:

B	-	A	-	D	-	C	-	F	-	E

Note	that	the	previous	toposort	result	is	only	one	of	the	possibilities.	There	might	be
different	results	if	we	modify	the	algorithm	a	little	bit,	for	example,	the	following	result	is
one	of	the	many	other	possibilities:

A	-	B	-	C	-	D	-	F	-	E

This	could	also	be	an	acceptable	result.

Summary
In	this	chapter,	we	covered	the	basic	concepts	of	graphs.	We	learned	the	different	ways	we
can	represent	this	data	structure	and	we	implemented	an	algorithm	to	represent	a	graph
using	adjacency	list.	You	also	learned	how	to	traverse	a	graph	using	BFS	and	DFS
approaches.	This	chapter	also	covered	two	applications	of	BFS	and	DFS,	which	are
finding	the	shortest	path	using	BFS	and	topological	sorting	using	DFS.

In	the	next	chapter,	you	will	learn	the	most	common	sorting	algorithms	used	in	Computer
Science.

Chapter	10.	Sorting	and	Searching
Algorithms
Suppose	we	have	a	telephone	agenda	(or	a	notebook)	that	does	not	have	any	sorting	order.
When	you	need	to	add	a	contact	with	telephone	numbers,	you	simply	write	it	down	in	the
next	available	slot.	Suppose	you	also	have	a	high	number	of	contacts	in	your	contact	list.
On	any	ordinary	day,	you	need	to	find	a	particular	contact	and	their	telephone	numbers.
But	as	the	contact	list	is	not	organized	in	any	order,	you	have	to	check	it	contact	by	contact
until	you	find	the	desired	one.	This	approach	is	horrible,	don’t	you	agree?	Imagine	that
you	have	to	search	for	a	contact	in	the	Yellow	Pages	and	it	is	not	organized!	It	could	take
forever!

For	this	reason,	among	others,	we	need	to	organize	sets	of	information,	such	as	the
information	we	have	stored	in	data	structures.	Sorting	and	searching	algorithms	are	widely
used	in	daily	problems	we	have	to	solve.	In	this	chapter,	you	will	learn	about	the	most
commonly	used	sorting	and	searching	algorithms.

Sorting	algorithms
From	this	introduction,	you	should	understand	that	you	need	to	learn	how	to	sort	first	and
then	search	the	information	given.	In	this	section,	we	will	cover	some	of	the	most	well-
known	sorting	algorithms	in	Computer	Science.	We	will	start	with	the	slowest	one,	and
then	we	will	cover	some	better	algorithms.

Before	we	get	started	with	the	sorting	algorithms,	let’s	create	an	array	(list)	to	represent
the	data	structure	we	want	to	sort	and	search:

function	ArrayList(){

				var	array	=	[];	//{1}

				this.insert	=	function(item){	//{2}

								array.push(item);

				};

				this.toString=	function(){	//{3}

								return	array.join();

				};

}

As	you	can	see,	the	ArrayList	is	a	simple	data	structure	that	will	store	the	items	in	an
array	({1}).	We	only	have	an	insert	method	to	add	elements	to	our	data	structure	({2}),
which	simply	uses	the	native	push	method	of	the	JavaScript	Array	class	that	we	covered
in	Chapter	2,	Arrays.	Finally,	to	help	us	verify	the	result,	the	toString	method	({3})	will
concatenate	all	the	array’s	elements	into	a	single	string	so	we	can	easily	output	the	result
in	the	browser’s	console	by	using	the	join	method	from	the	native	JavaScript	Array	class.

Note
The	join	method	joins	the	elements	of	an	array	into	a	string	and	returns	the	string.

Note	that	this	ArrayList	class	does	not	have	any	method	to	remove	data	or	insert	it	into
specific	positions.	We	want	to	keep	it	simple	so	we	can	focus	on	the	sorting	and	searching
algorithms.	We	will	add	all	the	sorting	and	searching	methods	to	this	class.

Now	we	can	get	started!

Bubble	sort
When	people	first	start	learning	sorting	algorithms,	they	usually	learn	the	bubble	sort
algorithm	first,	because	it	is	the	simplest	of	all	the	sorting	algorithms.	However,	it	is	one
of	the	worst-case	sorting	algorithms	with	respect	to	runtime,	and	you	will	see	why.

The	bubble	sort	algorithm	compares	every	two	adjacent	items	and	swaps	them	if	the	first
one	is	bigger	than	the	second	one.	It	has	this	name	because	the	items	tend	to	move	up	into
the	correct	order	like	bubbles	rising	to	the	surface.

Let’s	implement	the	bubble	sort	algorithm:

this.bubbleSort	=	function(){

				var	length	=	array.length;											//{1}

				for	(var	i=0;	i<length;	i++){								//{2}

								for	(var	j=0;	j<length-1;	j++){	//{3}

												if	(array[j]	>	array[j+1]){		//{4}

																swap(j,	j+1);												//{5}

												}

								}

				}

};

First,	let’s	declare	a	variable	called	length,	which	will	store	the	size	of	the	array	({1}).
This	step	will	help	us	to	get	the	size	of	the	array	on	{2}	and	{3},	and	this	step	is	optional.
Then,	we	will	have	an	outer	loop	({2})	that	will	iterate	the	array	from	its	first	position	to
the	last	one,	controlling	how	many	passes	are	done	in	the	array	(should	be	one	pass	per
item	of	the	array,	as	the	number	of	passes	is	equal	to	the	size	of	the	array).	Then,	we	have
an	inner	loop	({3})	that	will	iterate	the	array	starting	from	its	first	position	to	the
penultimate	item	that	will	actually	do	the	comparison	between	the	current	item	and	the
next	one	({4}).	If	the	items	are	out	of	order	(the	current	one	is	bigger	than	the	next	one),
then	we	swap	them	({5}),	meaning	that	the	value	of	position	j+1	will	be	transferred	to
position	j	and	vice	versa.

Now	we	need	to	declare	the	swap	function	(a	private	function	that	is	available	only	to	the
code	inside	the	ArrayList	class):

var	swap	=	function(index1,	index2){

				var	aux	=	array[index1];

				array[index1]	=	array[index2];

				array[index2]	=	aux;

};

To	make	the	swap,	we	need	a	temporary	variable	to	store	the	value	of	one	of	the	items	in.
We	will	use	this	method	for	other	sorting	methods	as	well,	and	this	is	the	reason	we
declare	this	swap	code	into	a	function	so	that	we	can	reuse	it.

The	following	diagram	illustrates	the	bubble	sort	in	action:

Each	different	section	in	the	preceding	diagram	represents	a	pass	made	by	the	outer	loop
({2}),	and	each	comparison	between	two	adjacent	items	is	made	by	the	inner	loop	({3}).

To	test	the	bubble	sort	algorithm	and	get	the	same	results	shown	by	the	diagram,	we	are
going	to	use	the	following	code:

function	createNonSortedArray(size){	//{6}

				var	array	=	new	ArrayList();

				for	(var	i	=	size;	i>	0;	i--){

								array.insert(i);

				}

		return	array;

}

var	array	=	createNonSortedArray(5);	//{7}

console.log(array.toString());							//{8}

array.bubbleSort();																		//{9}

console.log(array.toString());							//{10}

To	help	us	test	the	sorting	algorithms	you	will	learn	in	this	chapter,	we	are	going	to	create
a	function	that	will	automatically	create	a	non-sorted	array	with	the	size	that	is	passed	by
the	parameter	({6}).	If	we	pass	5	as	parameter,	the	function	will	create	the	following	array
for	us:	[5,	4,	3,	2,	1].	Then,	all	we	have	to	do	is	call	this	function	and	store	its	return
value	in	a	variable	that	will	contain	the	instance	of	the	ArrayList	class	initialized	with
some	numbers	({7}).	Just	to	make	sure	we	have	an	unsorted	array,	we	will	output	the
array’s	content	on	console	({8}),	call	the	bubble	sort	method	({9}),	and	output	the	array’s
content	on	console	again	so	we	can	verify	that	the	array	was	sorted	({10}).

Note
You	can	find	the	complete	source	code	of	the	ArrayList	class	and	the	testing	code	(with

additional	comments)	on	the	source	code	that	you	downloaded	from	the	support	page	(or
from	the	GitHub	repository).

Note	that	when	the	algorithm	executes	the	second	pass	of	the	outer	loop	(the	second
section	of	the	the	previous	diagram),	the	numbers	4	and	5	are	already	sorted.	Nevertheless,
on	the	subsequent	comparisons,	we	keep	comparing	them	even	the	comparison	it	is	not
needed.	For	this	reason,	we	make	a	small	improvement	on	the	bubble	sort	algorithm.

Improved	bubble	sort
If	we	subtract	the	number	of	passes	from	the	inner	loop,	we	will	avoid	all	the	unnecessary
comparisons	done	by	the	inner	loop	({1}):

this.modifiedBubbleSort	=	function(){

				var	length	=	array.length;

				for	(var	i=0;	i<length;	i++){

								for	(var	j=0;	j<length-1-i;	j++){	//{1}

												if	(array[j]	>	array[j+1]){

																swap(j,	j+1);

												}

								}

				}

};

The	following	diagram	exemplifies	how	the	improved	bubble	sort	works:

Note
Note	that	we	do	not	compare	the	numbers	that	are	already	in	place.	Even	though	we	have
made	this	small	change	to	improve	the	bubble	sort	algorithm	a	little	bit,	it	is	not	a
recommended	algorithm.	It	has	a	complexity	of	O(n2).

We	will	talk	more	about	the	big	O	notation	in	the	next	chapter.

Selection	sort
The	selection	sort	algorithm	is	an	in-place	comparison	sort	algorithm.	The	general	idea	of
the	selection	sort	is	to	find	the	minimum	value	in	the	data	structure	and	place	it	in	the	first
position,	then	find	the	second	minimum	value	and	place	it	in	the	second	position,	and	so
on.

The	following	is	the	source	code	for	the	selection	sort	algorithm:

this.selectionSort	=	function(){

				var	length	=	array.length,												//{1}

								indexMin;

				for	(var	i=0;	i<length-1;	i++){							//{2}

								indexMin	=	i;																					//{3}

								for	(var	j=i;	j<length;	j++){					//{4}

												if(array[indexMin]>array[j]){	//{5}

																indexMin	=	j;													//{6}

												}

								}

								if	(i	!==	indexMin){														//{7}

												swap(i,	indexMin);

								}

				}

};

First,	we	declare	some	variables	we	are	going	to	use	in	the	algorithm	({1}).	Then,	we	have
an	outer	loop	({2})	that	will	iterate	the	array	and	control	the	passes	(which	nth	value	of	the
array	we	need	to	find	next—the	next	min	value).	We	assume	that	the	first	value	of	the
current	pass	is	the	minimum	value	of	the	array	({3}).	Then,	starting	from	the	current	i
value	to	the	end	of	the	array	({4}),	we	compare	whether	the	value	in	the	position	j	is	less
than	the	current	minimum	value	({5});	if	true,	we	change	the	value	of	the	minimum	to	the
new	minimum	value	({6}).	When	we	get	out	of	the	inner	loop	({4}),	we	will	have	the	nth
minimum	value	of	the	array.	Then,	if	the	minimum	value	is	different	from	the	original
minimum	value	({7})	we	swap	them.

To	test	the	selection	sort	algorithm,	we	can	use	the	following	code:

array	=	createNonSortedArray(5);

console.log(array.toString());

array.selectionSort();

console.log(array.toString());

The	following	diagram	exemplifies	the	selection	sort	algorithm	in	action,	based	on	our
array	that	is	used	in	the	preceding	code	[5,	4,	3,	2,	1]:

The	arrows	on	the	bottom	of	the	array	indicate	the	positions	currently	in	consideration	to
find	the	minimum	value	(inner	loop	{4}),	and	each	step	of	the	preceding	diagram
represents	the	outer	loop	({2}).

The	selection	sort	is	also	an	algorithm	of	complexity	O(n2).	Like	the	bubble	sort,	it
contains	two	nested	loops,	which	are	responsible	for	the	quadratic	complexity.	However,
the	selection	sort	performs	worse	than	the	insertion	sort	algorithm	you	will	learn	next.

Insertion	sort
The	insertion	sort	algorithm	builds	the	final	sorted	array	one	item	at	a	time.	It	assumes	that
the	first	element	is	already	sorted.	Then,	a	comparison	with	the	second	item	is	performed
—should	the	second	item	stay	in	its	place	or	be	inserted	before	the	first	item?	So,	the	first
two	items	get	sorted	and	the	comparison	takes	place	with	the	third	item	(should	it	be
inserted	in	the	first,	second,	or	third	position?),	and	so	on.

The	following	code	represents	the	insertion	sort	algorithm:

this.insertionSort	=	function(){

				var	length	=	array.length,												//{1}

								j,	temp;

				for	(var	i=1;	i<length;	i++){									//{2}

								j	=	i;																												//{3}

								temp	=	array[i];																		//{4}

								while	(j>0	&&	array[j-1]	>	temp){	//{5}

												array[j]	=	array[j-1];								//{6}

												j--;

								}

								array[j]	=	temp;																		//{7}

				}

};

As	usual,	the	first	line	of	the	algorithm	is	used	to	declare	the	variables	we	will	use	in	the
source	code	({1}).	Then,	we	will	iterate	the	array	to	find	the	correct	place	for	the	ith	item
({2}).	Note	that	we	start	from	the	second	position	(index	1),	instead	of	position	0	(we
consider	the	first	item	already	sorted).	Then,	we	will	initiate	an	auxiliary	variable	with	the
value	of	i	({3}),	and	we	will	also	store	the	value	in	a	temporary	value	({4})	so	we	can
insert	it	in	the	correct	position	later.	The	next	step	is	finding	the	correct	place	to	insert	the
item.	As	long	the	j	variable	is	bigger	than	0	(because	the	first	index	of	the	array	is	0—
there	is	no	negative	index)	and	the	previous	value	in	the	array	is	bigger	than	the	value	we
are	comparing	({5}),	we	shift	the	previous	value	to	the	current	position	({6})	and	decrease
j.	At	the	end,	we	will	insert	the	value	in	its	correct	position.

The	following	diagram	exemplifies	the	insertion	sort	in	action:

For	example,	suppose	the	array	we	are	trying	to	sort	is	[3,	5,	1,	4,	2].	These	values
will	be	carried	out	in	the	steps	performed	by	the	insertion	sort	algorithm,	as	described	in
the	following	steps:

1.	 Value	3	is	already	sorted,	so	we	start	sorting	the	second	value	of	the	array,	which	is
value	5.	Value	3	is	less	than	value	5,	so	5	stays	in	the	same	place	(meaning	the	second
position	of	the	array).	Values	3	and	5	are	already	sorted.

2.	 The	next	value	to	be	sorted	and	inserted	in	the	correct	place	is	1	(currently	in	the	third
position	of	the	array).	5	is	greater	than	1,	so	5	is	shifted	to	the	third	position.	We	need
to	analyze	whether	1	should	be	inserted	in	the	second	position—is	1	greater	than	3?
No,	so	value	3	gets	shifted	to	second	position.	Next,	we	need	to	verify	that	1	should
be	inserted	in	the	first	position	of	the	array.	As	0	is	the	first	position	and	there	is	not	a
negative	position,	1	needs	to	be	inserted	on	the	first	position.	Values	1,	3,	and	5	are
sorted.

3.	 We	move	to	the	next	value:	4.	Should	value	4	stay	in	the	current	position	(index	3)	or
does	it	need	to	be	moved	to	a	lower	position?	4	is	less	than	5,	so	5	gets	shifted	to
index	3.	Should	we	insert	4	in	the	index	2?	Value	4	is	greater	than	3,	so	4	is	inserted
in	position	3	of	the	array.

4.	 The	next	value	to	be	inserted	is	2	(position	4	of	array).	Value	5	is	greater	than	2,	so	5
gets	shifted	to	index	4.	Value	4	is	greater	than	2,	so	4	also	gets	shifted	(position	3).
Value	3	is	also	greater	than	2,	and	3	also	gets	shifted.	1	is	less	than	2,	so	2	is	inserted
on	the	second	position	of	the	array.	Thus,	the	array	is	sorted.

This	algorithm	has	a	better	performance	than	the	selection	and	bubble	sort	algorithms
when	sorting	small	arrays.

Merge	sort
The	merge	sort	algorithm	is	the	first	sorting	algorithm	that	can	be	used	in	the	real	world.
The	three	first	sorting	algorithms	you	learned	in	this	book	do	not	give	a	good
performance,	but	the	merge	sort	gives	a	good	performance,	with	a	complexity	of	O(n	log
n).

Note
The	JavaScript	Array	class	defines	a	sort	function	(Array.prototype.sort)	that	can	be
used	to	sort	arrays	using	JavaScript	(with	no	need	to	implement	the	algorithm	ourselves).
ECMAScript	does	not	define	which	sorting	algorithm	needs	to	be	used,	so	each	browser
can	implement	its	own	algorithm.	For	example,	Mozilla	Firefox	uses	merge	sort	as	the
Array.prototype.sort	implementation,	while	Chrome	uses	a	variation	of	quick	sort
(which	we	will	learn	next).

The	merge	sort	is	a	divide	and	conquer	algorithm.	The	idea	behind	it	is	to	divide	the
original	array	into	smaller	arrays	until	each	small	array	has	only	one	position	and	then
merge	these	smaller	arrays	into	bigger	ones	until	we	have	a	single	big	array	at	the	end	that
is	sorted.

Because	of	the	divide	and	conquer	approach,	the	merge	sort	algorithm	is	also	recursive:

this.mergeSort	=	function(){

				array	=	mergeSortRec(array);

};

Like	in	the	previous	chapters,	whenever	we	implemented	a	recursive	function,	we	always
implemented	a	helper	function	that	was	going	to	be	executed.	For	the	merge	sort,	we	will
do	the	same.	We	are	going	to	declare	the	mergeSort	method	that	will	be	available	for	use
and	the	mergeSort	method	will	call	mergeSortRec,	which	is	a	recursive	function:

var	mergeSortRec	=	function(array){

				var	length	=	array.length;

				if(length	===	1)	{						//{1}

								return	array;							//{2}

				}

				var	mid	=	Math.floor(length	/	2),					//{3}

								left	=	array.slice(0,	mid),							//{4}

								right	=	array.slice(mid,	length);	//{5}

				return	merge(mergeSortRec(left),	mergeSortRec(right));	//{6}

};

The	merge	sort	will	transform	a	bigger	array	into	smaller	arrays	until	they	have	only	one
item	in	them.	As	the	algorithm	is	recursive,	we	need	a	stop	condition,	which	is	if	the	array
has	size	equal	to	1	({1}).	If	positive,	we	return	the	array	with	size	1	({2})	because	is
already	sorted.

If	the	array	is	bigger	than	1,	then	we	will	split	it	into	smaller	arrays.	To	do	so,	first	we
need	to	find	the	middle	of	the	array	({3}),	and	once	we	find	the	middle,	we	will	split	the
array	into	two	smaller	arrays	that	we	will	call	left	({4})	and	right	({5}).	The	left	array

comprises	of	elements	from	index	0	to	the	middle	index,	and	the	right	array	consists	from
the	middle	index	to	the	end	of	the	original	array.

The	next	steps	will	be	to	call	the	merge	function	({6}),	which	will	be	responsible	for
merging	and	sorting	the	smaller	arrays	into	bigger	ones	until	we	have	the	original	array
sorted	and	back	together.	To	keep	breaking	the	original	array	into	smaller	pieces,	we	will
recursively	call	mergeSortRec	again,	passing	the	left	smaller	array	as	a	parameter	and
another	call	for	the	right	array:

var	merge	=	function(left,	right){

				var	result	=	[],	//	{7}

								il	=	0,

								ir	=	0;

	

				while(il	<	left.length	&&	ir	<	right.length)	{	//	{8}

								if(left[il]	<	right[ir])	{

												result.push(left[il++]);		//	{9}

								}	else{

												result.push(right[ir++]);	//	{10}

								}

				}

				while	(il	<	left.length){				//	{11}

								result.push(left[il++]);

				}

				while	(ir	<	right.length){			//	{12}

								result.push(right[ir++]);

				}

				return	result;	//	{13}

};

The	merge	function	receives	two	arrays	and	merges	them	into	a	bigger	array.	During	the
merge	is	when	the	sorting	happens.	First,	we	need	to	declare	a	new	array	that	is	going	to
be	created	for	the	merge	and	also	declare	two	variables	({7})	that	are	going	to	be	used	to
iterate	the	two	arrays	(the	left	and	right	arrays).	While	we	can	iterate	through	the	two
arrays	{8},	we	are	going	to	compare	whether	the	item	from	the	left	array	is	less	than	the
item	from	the	right	array.	If	positive,	we	add	the	item	from	the	left	array	to	the	merged
result	array	and	also	increment	the	variable	that	is	used	to	iterate	the	array	({9});
otherwise,	we	add	the	item	from	the	right	array	and	increment	the	variable	that	is	used	to
iterate	the	array	({10}).	Next,	we	will	add	every	remaining	item	from	the	left	array
({11})	to	the	merged	result	array	and	do	the	same	for	the	remaining	items	from	the	right
array	({12}).	At	the	end,	we	return	a	merged	array	as	the	result	({13}).

If	we	execute	the	mergeSort	function,	this	is	how	it	is	going	to	be	executed:

Note	that	first	the	algorithm	splits	the	original	array	until	it	has	smaller	arrays	with	a
single	element,	and	then	it	starts	merging.	While	merging,	it	does	the	sorting	as	well	until
we	have	the	original	array	completely	back	together	and	sorted.

Quick	sort
The	quick	sort	is	probably	the	most	used	sorting	algorithm.	It	has	a	complexity	of	O(n	log
n),	and	it	usually	performs	better	than	other	O(n	log	n)	sorting	algorithms.	Like	the	merge
sort,	it	also	uses	the	divide	and	conquer	approach,	dividing	the	original	array	into	smaller
ones	(but	without	splitting	them	as	the	merge	sort	does)	to	do	the	sorting.

The	quick	sort	algorithm	is	a	little	bit	more	complex	than	the	other	ones	you	have	learned
so	far.	Let’s	learn	it	step	by	step	as	follows:

1.	 First,	we	need	to	select	an	item	from	the	array	that	is	called	as	a	pivot,	which	is	the
middle	item	in	the	array.

2.	 We	will	create	two	pointers—the	left	one	will	point	to	the	first	item	of	the	array	and
the	right	one	will	point	to	the	last	item	of	the	array.	We	will	move	the	left	pointer
until	we	find	an	item	that	is	bigger	than	the	pivot	and	we	will	also	move	the	right
pointer	until	we	find	an	item	that	is	less	than	the	pivot	and	we	will	swap	them.	We
repeat	this	process	until	the	left	pointer	passes	the	right	pointer.	This	process	helps	to
have	values	lower	than	the	pivot	before	the	pivot	and	values	greater	than	the	pivot
after	the	pivot.	This	is	called	the	partition	operation.

3.	 Next,	the	algorithm	repeats	the	previous	two	steps	for	smaller	arrays	(sub-arrays	with
smaller	values,	and	then	sub-arrays	with	greater	values)	until	the	array	is	completely
sorted.

Let’s	start	the	implementation	of	the	quick	sort:

this.quickSort	=	function(){

				quick(array,		0,	array.length	-	1);

};

Like	the	merge	sort,	we	will	start	declaring	the	main	method	that	will	call	the	recursive
function,	passing	the	array	that	we	want	to	sort	along	with	indexes	0	and	its	last	position
(because	we	want	to	have	the	whole	array	sorted,	not	only	a	subset	of	it):

var	quick	=	function(array,	left,	right){

				var	index;	//{1}

				if	(array.length	>	1)	{	//{2}

								index	=	partition(array,	left,	right);	//{3}

								if	(left	<	index	-	1)	{		 						//{4}

												quick(array,	left,	index	-	1);					//{5}

								}

								if	(index	<	right)	{																			//{6}

												quick(array,	index,	right);								//{7}

								}

				}

};

First	we	have	the	index	variable	({1}),	which	will	help	us	to	separate	the	sub-array	with
smaller	and	greater	values	so	we	can	recursively	call	the	quick	function	again.	We	will
obtain	the	index	value	as	return	value	of	the	partition	function	({3}).

If	the	size	of	the	array	is	bigger	than	1	(because	an	array	with	a	single	element	is	already
sorted—line	{2}),	we	will	execute	the	partition	operation	on	the	given	sub-array	(the	first
call	will	pass	the	complete	array)	to	obtain	index	({3}).	If	a	sub-array	with	smaller
elements	exists	({4}),	we	will	repeat	the	process	for	the	sub-array	({5}).	We	will	do	the
same	thing	for	the	sub-array	with	greater	values.	If	there	is	any	sub-array	with	greater
values	({6}),	we	will	repeat	the	quick	sort	process	({7})	as	well.

The	partition	process
Now,	let’s	take	a	look	at	the	partition	process:

var	partition	=	function(array,	left,	right)	{

				var	pivot	=	array[Math.floor((right	+	left)	/	2)],	//{8}

								i	=	left,																																						//{9}

								j	=	right;																																					//{10}

				while	(i	<=	j)	{																//{11}

								while	(array[i]	<	pivot)	{		//{12}

												i++;

								}

								while	(array[j]	>	pivot)	{		//{13}

												j--;

								}

								if	(i	<=	j)	{	//{14}

												swapQuickStort(array,	i,	j);	//{15}

												i++;

												j--;

								}

				}

				return	i;	//{16}

};

The	first	thing	we	need	to	do	is	choose	the	pivot	element.	There	are	a	few	ways	we	can
do	it.	The	simplest	one	is	selecting	the	first	item	of	the	array	(the	leftmost	item).	However,
studies	show	that	this	is	not	a	good	selection	if	the	array	is	almost	sorted,	causing	the
worst	behavior	of	the	algorithm.	Another	approach	is	selecting	a	random	item	of	the	array
or	the	middle	item.	For	this	implementation,	we	will	select	the	middle	item	as	pivot	({8}).
We	will	also	initiate	the	two	pointers:	left	(low—line	{9})	with	the	first	element	of	the
array	and	right	(high—line	{10})	with	the	last	element	of	the	array.

While	the	left	and	right	pointers	do	not	cross	each	other	({11}),	we	will	execute	the
partition	operation.	First,	until	we	find	an	element	that	is	greater	than	pivot	({12}),	we
will	shift	the	left	pointer.	We	will	do	the	same	with	the	right	pointer	until	we	find	an
element	that	is	less	than	pivot,	we	will	shift	the	right	pointer	as	well	({13}).

When	the	left	pointer	is	greater	than	the	pivot	and	the	right	pointer	is	lower	than	the
pivot,	we	compare	whether	the	left	pointer	index	is	not	bigger	than	the	right	pointer

index	({14}),	meaning	the	left	item	is	greater	than	the	right	item	(in	value).	We	swap	them
({15})	and	shift	both	pointers	and	repeat	the	process	(start	again	at	line	{11}).

At	the	end	of	the	partition	operation,	we	return	the	index	of	the	left	pointer	that	will	be
used	to	create	the	sub-arrays	in	line	{3}.

The	swapQuickStort	function	is	very	similar	to	the	swap	function	we	implemented	at	the
beginning	of	this	chapter.	The	only	difference	is	that	this	one	also	receives	the	array	that
will	suffer	the	swap	as	a	parameter:

var	swapQuickStort	=	function(array,	index1,	index2){

				var	aux	=	array[index1];

				array[index1]	=	array[index2];

				array[index2]	=	aux;

};

Quick	sort	in	action
Let’s	see	the	quick	sort	algorithm	in	action	step	by	step:

Given	the	array	[3,	5,	1,	6,	4,	7,	2],	the	preceding	diagram	represents	the	first
execution	of	the	partition	operation.

The	following	diagram	exemplifies	the	execution	of	the	partition	operation	for	the	first
sub-array	of	lower	values	(note	that	7	and	6	are	not	part	of	the	sub-array):

Next,	we	continue	creating	sub-arrays,	as	seen	in	the	following	diagram,	but	now	with
greater	values	than	the	sub-array	of	the	preceding	diagram	(the	lower	sub-array	with	value
1	does	not	need	to	be	partitioned	because	it	only	contains	one	item):

The	lower	sub-array	[2,	3]	from	sub-array	([2,	3,	5,	4])	continues	to	be	partitioned
(line	{5}	from	the	algorithm):

Then	the	greater	sub-array	[5,	4]	from	the	sub-array	[2,	3,	5,	4]	also	continues	to	be

partitioned	(line	{7}	from	the	algorithm),	as	shown	in	the	following	diagram:

At	the	end,	the	greater	sub-array	[6,	7]	will	also	suffer	the	partition	operation,
completing	the	execution	of	the	quick	sort	algorithm.

Searching	algorithms
Now,	let’s	talk	about	searching	algorithms.	If	we	take	a	look	at	the	algorithms	we
implemented	in	previous	chapters,	such	as	the	search	method	of	the	BinarySearchTree
class	(Chapter	8,	Trees)	or	the	indexOf	method	of	the	LinkedList	class	(Chapter	5,	Linked
Lists),	these	are	all	search	algorithms,	and	of	course,	each	one	was	implemented	according
to	the	behavior	of	its	data	structure.	So	we	are	already	familiar	with	two-searches
algorithm,	we	just	do	not	know	their	“official”	names	yet!

Sequential	search
The	sequential	or	linear	search	is	the	most	basic	search	algorithm.	It	consists	of	comparing
each	element	of	the	data	structure	with	the	one	we	are	looking	for.	It	is	also	the	most
inefficient	one.

Let’s	take	a	look	at	its	implementation:

this.sequentialSearch	=	function(item){	

				for	(var	i=0;	i<array.length;	i++){	//{1}

								if	(item	===	array[i]){									//{2}

												return	i;																			//{3}

								}

				}

				return	-1;		//{4}

};

The	sequential	search	will	iterate	through	the	array	({1}),	and	will	compare	each	item	with
the	value	we	are	searching	for	({2}).	If	we	find	it,	then	we	can	return	something	to
indicate	we	found	it.	We	can	return	the	item	itself,	the	value	true,	or	its	index	({3}).	In	the
preceding	implementation,	we	are	returning	the	index	of	the	item.	If	we	don’t	find	the
item,	we	can	return	-1	({4}),	indicating	the	index	does	not	exist;	the	values	false	and
null	are	among	other	options.

Suppose	we	have	the	array	[5,	4,	3,	2,	1]	and	we	are	looking	for	the	value	3,	then	the
following	diagram	shows	the	steps	of	the	sequential	search:

Binary	search
The	binary	search	algorithm	works	similar	to	the	number	guessing	game,	where	someone
says	“I’m	thinking	of	a	number	between	1	and	100”.	We	begin	by	responding	with	a
number	and	the	person	will	say	higher,	lower,	or	that	we	got	it	right.

To	make	the	algorithm	work,	the	data	structure	needs	to	be	sorted	first.	These	are	the	steps
that	the	algorithm	follows:

1.	 A	value	is	selected	in	the	middle	of	the	array.
2.	 If	the	item	is	the	one	we	are	looking	for,	we	are	done	(the	value	is	right).
3.	 If	the	value	we	are	looking	for	is	less	than	the	selected	one,	then	we	go	to	the	left	and

go	back	to	1	(lower).
4.	 If	the	value	we	are	looking	for	is	bigger	than	the	selected	one,	then	we	go	to	the	right

and	go	back	to	1	(higher).

Let’s	see	its	implementation:

this.binarySearch	=	function(item){

				this.quickSort();		//{1}

				var	low	=	0,																	//{2}

								high	=	array.length	-	1,	//{3}

								mid,	element;

				while	(low	<=	high){	//{4}

								mid	=	Math.floor((low	+	high)	/	2);	//{5}

								element	=	array[mid];															//{6}

								if	(element	<	item)	{															//{7}

												low	=	mid	+	1;																		//{8}

								}	else	if	(element	>	item)	{								//{9}

												high	=	mid	-	1;																	//{10}

								}	else	{

												return	mid;																					//{11}

								}

				}

				return	-1;	//{12}

};

To	get	started,	the	first	thing	we	need	to	do	is	sort	the	array.	We	can	use	any	algorithm	we
implemented	in	the	Sorting	algorithms	section.	Quick	sort	was	chosen	for	this
implementation	({1}).	After	the	array	is	sorted,	we	will	set	the	low	({2})	and	high	({3})
pointer	(which	will	work	as	boundaries).

While	low	is	lower	than	high	(line	{4}),	in	this	case,	low	is	greater	than	high	means	the
value	does	not	exist	and	we	return	-1	({12}),	we	find	the	middle	index	({5})	and	hence
have	the	value	of	the	middle	item	({6}).	Then,	we	start	comparing	whether	the	selected
value	is	less	than	the	value	we	are	looking	for	({7})	and	we	need	to	go	lower	({8})	and
start	over.	If	the	selected	value	is	greater	than	the	value	we	are	looking	for	({9})	and	we
need	to	go	higher	({10})	and	start	over.	Otherwise,	it	means	the	value	is	equal	to	the	value
we	are	looking	for,	therefore	we	return	its	index	({11}).

Given	the	array	in	the	following	diagram,	let’s	try	to	search	for	value	2.	These	are	the
steps	the	algorithm	will	perform:

Note
The	BinarySearchTree	class	we	implemented	in	Chapter	8,	Trees,	has	the	search	method,
which	is	exactly	the	same	as	the	binary	search,	but	is	applied	to	tree	data	structures.

Summary
In	this	chapter,	you	learned	about	sorting	and	searching	algorithms.	You	learned	the
bubble,	selection,	insertion,	merge,	and	quick	sort	algorithms,	which	are	used	to	sort	data
structures.	You	also	learned	the	sequential	search	and	binary	search	(which	required	the
data	structure	to	be	sorted	already).

You	can	apply	any	logic	you	learned	in	this	chapter	to	any	data	structure	or	any	type	of
data.	You	just	need	to	make	the	necessary	modifications	on	the	source	code.

In	the	next	chapter,	you	will	learn	some	advanced	techniques	used	in	algorithms	and	also
more	about	the	big	O	notation	that	was	mentioned	in	this	chapter.

Index
A

A*	search	algorithm
about	/	Further	studies	on	the	shortest	paths	algorithms

acyclic	graph
about	/	Graph	terminology

add	method
about	/	The	add	method

adjacency	list
about	/	The	adjacency	list

adjacency	matrix
about	/	The	adjacency	matrix

adjacent	vertices	/	Graph	terminology
Aptana

about	/	Debugging	and	tools
URL	/	Debugging	and	tools

arguments
about	/	Functions

arithmetic	operators
about	/	Operators

arrays
about	/	Variables
creating	/	Creating	and	initializing	arrays
initializing	/	Creating	and	initializing	arrays
elements,	removing	from	/	Adding	and	removing	elements
elements,	adding	in	/	Adding	and	removing	elements
outputting,	into	string	/	Outputting	the	array	into	a	string
references	/	Outputting	the	array	into	a	string

ASCII
URL	/	Creating	a	hash	table

ASCII	table
URL	/	Sorting	strings

assignment	operators
about	/	Operators

AVL	tree
about	/	More	about	binary	trees

B
balanced	parentheses	examples	/	Decimal	to	binary
Bellman-Ford	algorithm

about	/	Further	studies	on	the	shortest	paths	algorithms
BFS

about	/	Graph	traversals,	Breadth-first	search	(BFS)
used,	for	searching	shortest	paths	/	Finding	the	shortest	paths	using	BFS
shortest	paths	algorithms	/	Further	studies	on	the	shortest	paths	algorithms

binary	representation
decimal	number,	converting	to	/	Decimal	to	binary

binary	search	algorithm
about	/	Binary	search

binary	search	tree
BinarySearchTree	class,	creating	/	Creating	the	BinarySearchTree	class

BinarySearchTree	class
creating	/	Creating	the	BinarySearchTree	class
insert(key)	method	/	Creating	the	BinarySearchTree	class
search(key)	method	/	Creating	the	BinarySearchTree	class
inOrderTraverse	method	/	Creating	the	BinarySearchTree	class
preOrderTraverse	method	/	Creating	the	BinarySearchTree	class
postOrderTraverse	method	/	Creating	the	BinarySearchTree	class
min	method	/	Creating	the	BinarySearchTree	class
max	method	/	Creating	the	BinarySearchTree	class
remove(key)	method	/	Creating	the	BinarySearchTree	class

binary	tree
about	/	Binary	tree	and	binary	search	tree

bitwise	operators
about	/	Operators

body	tag	/	JavaScript	basics
Booleans

about	/	Variables
break	statement	/	Conditional	statements
browser

used,	for	environment	setup	/	The	browser	is	enough
BST

BinarySearchTree	class,	creating	/	Creating	the	BinarySearchTree	class
about	/	Creating	the	BinarySearchTree	class
working	with	/	More	about	binary	trees

bubble	sort	algorithm
about	/	Bubble	sort
improvement	/	Improved	bubble	sort

C
case	clause	/	Conditional	statements
circular	linked	list

about	/	Circular	linked	lists
circular	queue

about	/	The	circular	queue	–	Hot	Potato
example	/	The	circular	queue	–	Hot	Potato

class
about	/	Object-oriented	programming

clear	method
about	/	The	add	method,	The	remove	and	clear	methods,	The	clear,	size,	keys,
and	getItems	methods

collisions
handling,	between	hash	table	/	Handling	collisions	between	hash	tables
handling,	with	separate	chaining	technique	/	Separate	chaining
handling,	with	linear	probing	technique	/	Linear	probing

comparison	operators
about	/	Operators

conditional	statements
about	/	Conditional	statements
if…else	construct	/	Conditional	statements
switch	statement	/	Conditional	statements
case	clause	/	Conditional	statements
break	statement	/	Conditional	statements

connected	graph
about	/	Graph	terminology

console.log	method
about	/	Variables

control	structures
about	/	Control	structures
conditional	statements	/	Conditional	statements
loops	/	Loops

custom	sorting	/	Custom	sorting
cycle

about	/	Graph	terminology

D
dates

about	/	Variables
debugging

about	/	Debugging	and	tools
decimal	number

converting,	to	binary	representation	/	Decimal	to	binary
degree,	vertices

about	/	Graph	terminology
delete	operator	/	Operators
DFS

about	/	Graph	traversals,	Depth-first	search	(DFS)
exploring	/	Exploring	the	DFS	algorithm
used,	for	topological	sorting	/	Topological	sorting	using	DFS

dictionary
about	/	Dictionaries
creating	/	Creating	a	dictionary
set	method	/	The	has	and	set	methods
has	method	/	The	has	and	set	methods
remove	method	/	The	remove	method
get	method	/	The	get	and	values	methods
values	method	/	The	get	and	values	methods
getItems	method	/	The	clear,	size,	keys,	and	getItems	methods
clear	method	/	The	clear,	size,	keys,	and	getItems	methods
size	method	/	The	clear,	size,	keys,	and	getItems	methods
keys	method	/	The	clear,	size,	keys,	and	getItems	methods
Dictionary	class,	using	/	Using	the	Dictionary	class

Dictionary	class
using	/	Using	the	Dictionary	class

difference	operation
about	/	Set	operations,	Set	difference

Dijkstra’s	algorithm
about	/	Further	studies	on	the	shortest	paths	algorithms

directed	acyclic	graph	(DAG)
about	/	Topological	sorting	using	DFS

directed	graph
about	/	Directed	and	undirected	graphs

djb2
about	/	Creating	better	hash	functions

doubly	circular	linked	list
about	/	Circular	linked	lists

doubly	linked	list
about	/	Doubly	linked	lists

new	element,	inserting	at	any	position	/	Inserting	a	new	element	at	any	position
elements,	removing	from	any	position	/	Removing	elements	from	any	position

DoublyLinkedList	class	/	Doubly	linked	lists
versus	LinkedList	class	/	Doubly	linked	lists

do…while	loop	/	Loops

E
ECMAScript	5.1	/	Creating	a	set
edges

about	/	Creating	the	BinarySearchTree	class
elements

adding,	in	arrays	/	Adding	and	removing	elements
removing,	from	arrays	/	Adding	and	removing	elements
appending,	to	end	of	linked	list	/	Appending	elements	to	the	end	of	the	linked
list
removing,	from	linked	list	/	Removing	elements	from	the	linked	list

environment
setting	up	/	Setting	up	the	environment
setting	up,	browser	used	/	The	browser	is	enough
setting	up,	web	servers	(XAMPP)	used	/	Using	web	servers	(XAMPP)
setting	up,	JavaScript	(Node.js)	used	/	It’s	all	about	JavaScript	(Node.js)

equals	operators	(==	and	===)	/	The	equals	operators	(==	and	===)
every	method	/	Iterator	functions

F
false	value	/	Truthy	and	falsy
filter	method	/	Iterator	functions
Firebug	add-on

URL,	for	installing	/	Setting	up	the	environment
Floyd-Warshall	algorithm

about	/	Further	studies	on	the	shortest	paths	algorithms
for	loop

about	/	Loops
functions

about	/	Variables,	Functions

G
getHead	method

implementing	/	The	isEmpty,	size,	and	getHead	methods
getItems	method

about	/	The	clear,	size,	keys,	and	getItems	methods
get	method

about	/	The	get	and	values	methods
Google	Developer	Tools

about	/	The	browser	is	enough
graph

about	/	Graph	terminology
terminology	/	Graph	terminology
edges	/	Graph	terminology
nodes	/	Graph	terminology
vertices	/	Graph	terminology
undirected	graph	/	Directed	and	undirected	graphs
directed	graph	/	Directed	and	undirected	graphs
representing	/	Representing	a	graph

Graph	class
creating	/	Creating	the	Graph	class

graph	representation
adjacency	matrix	/	The	adjacency	matrix
adjacency	list	/	The	adjacency	list
incidence	matrix	/	The	incidence	matrix

graph	traversals
about	/	Graph	traversals
BFS	/	Graph	traversals,	Breadth-first	search	(BFS)
DFS	/	Graph	traversals,	Depth-first	search	(DFS)

H
Hanoi	tower	examples	/	Decimal	to	binary
has(value)	method

about	/	The	has	(value)	method
hash	functions

creating	/	Creating	better	hash	functions
hashing

about	/	The	hash	table
hash	set

versus	hash	table	/	Hash	table	versus	hash	set
hash	table

about	/	The	hash	table
creating	/	Creating	a	hash	table
HashTable	class,	using	/	Using	the	HashTable	class
versus	hash	set	/	Hash	table	versus	hash	set
collisions,	handling	between	/	Handling	collisions	between	hash	tables

HashTable	class
using	/	Using	the	HashTable	class

has	method
about	/	The	has	and	set	methods

head	tag	/	JavaScript	basics
Heap	tree

URL	/	More	about	binary	trees
Hot	Potato	game

about	/	The	circular	queue	–	Hot	Potato
simulation,	implementing	/	The	circular	queue	–	Hot	Potato

I
if…else	construct	/	Conditional	statements
in-order	traversal

about	/	In-order	traversal
incidence	matrix

about	/	The	incidence	matrix
indexOf	method	/	Searching

implementing	/	The	indexOf	method
about	/	Searching	algorithms

insertion	sort	algorithm
about	/	Insertion	sort

insertNode	function	/	Inserting	a	key	in	a	tree
intersection	operation

about	/	Set	operations,	Set	intersection
isEmpty	method

implementing	/	The	isEmpty,	size,	and	getHead	methods
iterator	functions

about	/	Iterator	functions
every	/	Iterator	functions
some	/	Iterator	functions
map	/	Iterator	functions
filter	/	Iterator	functions
reduce	/	Iterator	functions

J
JavaScript	(Node.js)

used,	for	environment	setup	/	It’s	all	about	JavaScript	(Node.js)
JavaScript	array	methods

about	/	References	for	JavaScript	array	methods
concat	/	References	for	JavaScript	array	methods
every	/	References	for	JavaScript	array	methods
filter	/	References	for	JavaScript	array	methods
forEach	/	References	for	JavaScript	array	methods
join	/	References	for	JavaScript	array	methods
indexOf	/	References	for	JavaScript	array	methods
lastIndexOf	/	References	for	JavaScript	array	methods
map	/	References	for	JavaScript	array	methods
reverse	/	References	for	JavaScript	array	methods
slice	/	References	for	JavaScript	array	methods
some	/	References	for	JavaScript	array	methods
sort	/	References	for	JavaScript	array	methods
toString	/	References	for	JavaScript	array	methods
valueOf	/	References	for	JavaScript	array	methods

JavaScript	basics
about	/	JavaScript	basics
variables	/	Variables
operators	/	Operators
true	value	/	Truthy	and	falsy
false	value	/	Truthy	and	falsy
equals	operators	(==	and	===)	/	The	equals	operators	(==	and	===)

JavaScript	garbage	collector
reference	link	/	Removing	elements	from	the	linked	list

join	method	/	Outputting	the	array	into	a	string

K
key

inserting,	in	tree	/	Inserting	a	key	in	a	tree
keys	method

about	/	The	clear,	size,	keys,	and	getItems	methods

L
lastIndexOf	method	/	Searching
leaf	node

removing	/	Removing	a	leaf	node
linear	probing

about	/	Linear	probing
put	method	/	The	put	method
get	method	/	The	get	method
remove	method	/	The	remove	method

linked	list
creating	/	Creating	a	linked	list
elements,	appending	to	end	of	/	Appending	elements	to	the	end	of	the	linked	list
elements,	removing	from	/	Removing	elements	from	the	linked	list
element,	inserting	at	any	position	/	Inserting	an	element	at	any	position

LinkedList	class
about	/	Creating	a	linked	list
versus	DoublyLinkedList	class	/	Doubly	linked	lists

Lo-Dash	library
URL	/	Outputting	the	array	into	a	string

logical	operators
about	/	Operators

loops
about	/	Loops
for	loop	/	Loops
while	loop	/	Loops
do…while	loop	/	Loops

M
map

about	/	Dictionaries
map	method	/	Iterator	functions
merge	function

about	/	Merge	sort
merge	sort	algorithm

about	/	Merge	sort
methods,	LinkedList	class

append(element)	/	Creating	a	linked	list,	Appending	elements	to	the	end	of	the
linked	list
insert(position,	element)	/	Creating	a	linked	list,	Inserting	an	element	at	any
position
remove(element)	/	Creating	a	linked	list,	Removing	elements	from	the	linked	list
indexOf(element)	/	Creating	a	linked	list,	The	indexOf	method
removeAt(position)	/	Creating	a	linked	list
isEmpty()	/	Creating	a	linked	list,	The	isEmpty,	size,	and	getHead	methods
size()	/	Creating	a	linked	list,	The	isEmpty,	size,	and	getHead	methods
toString()	/	Creating	a	linked	list,	The	toString	method

methods,	queue
enqueue(element(s))	/	Creating	a	queue
dequeue()	/	Creating	a	queue
front()	/	Creating	a	queue
isEmpty()	/	Creating	a	queue
size()	/	Creating	a	queue

methods,	stack
push(element(s))	/	Creating	a	stack
pop()	/	Creating	a	stack
peek()	/	Creating	a	stack
isEmpty()	/	Creating	a	stack
clear()	/	Creating	a	stack
size()	/	Creating	a	stack

minNode	method
about	/	Searching	for	minimum	and	maximum	values

multi-dimensional	arrays
about	/	Two-dimensional	and	multi-dimensional	arrays

multiple	arrays
joining	/	Joining	multiple	arrays

N
node

removing	/	Removing	a	node
leaf	node,	removing	/	Removing	a	leaf	node
removing,	with	left/right	child	/	Removing	a	node	with	a	left	or	right	child
removing,	with	with	two	children	/	Removing	a	node	with	two	children

Node.js
URL	/	It’s	all	about	JavaScript	(Node.js)

null
about	/	Variables

numbers
about	/	Variables

O
object

about	/	Object-oriented	programming
object-oriented	programming	(OOP)

about	/	Object-oriented	programming
objects

about	/	Variables
operators

about	/	Operators
arithmetic	/	Operators
assignment	/	Operators
comparison	/	Operators
logical	/	Operators
bitwise	/	Operators
typeof	/	Operators
delete	/	Operators

P
partition	process,	quick	sort	algorithm

about	/	Quick	sort,	The	partition	process
path

about	/	Graph	terminology
pop	method	/	Creating	a	stack
post-order	traversal

about	/	Post-order	traversal
pre-order	traversal

about	/	Pre-order	traversal
printTitle	function	/	Object-oriented	programming
priority	queue

about	/	The	priority	queue
example	/	The	priority	queue

push	method	/	Creating	a	stack

Q
queue

creating	/	Creating	a	queue
Queue	class

about	/	The	complete	Queue	class
using	/	Using	the	Queue	class

quick	sort	algorithm
about	/	Quick	sort
partition	process	/	The	partition	process
executing	/	Quick	sort	in	action

R
Red-Black	tree

about	/	More	about	binary	trees
URL	/	More	about	binary	trees

reduce	method	/	Iterator	functions
regular	expressions

about	/	Variables
remove	method

about	/	The	add	method,	The	remove	and	clear	methods,	The	remove	method
return	statement	/	Functions
root	/	Trees	terminology
rooted	trees

about	/	Exploring	the	DFS	algorithm

S
script	tag	/	JavaScript	basics
searching	algorithms

about	/	Searching	algorithms
sequential	search	/	Sequential	search
binary	search	/	Binary	search

searching	methods
about	/	Searching	and	sorting
indexOf	method	/	Searching
lastIndexOf	method	/	Searching

search	method
about	/	Searching	algorithms

selection	sort	algorithm
about	/	Selection	sort

separate	chaining
about	/	Separate	chaining
put	method	/	The	put	method
get	method	/	The	get	method
remove	method	/	The	remove	method

sequential	search
about	/	Sequential	search

set
creating	/	Creating	a	set
has(value)	method	/	The	has	(value)	method
add	method	/	The	add	method
remove	method	/	The	remove	and	clear	methods
clear	method	/	The	remove	and	clear	methods
size	method	/	The	size	method
values	method	/	The	values	method
Set	class,	using	/	Using	the	Set	class

Set	class
URL,	for	implementation	/	Creating	a	set
using	/	Using	the	Set	class

set	method
about	/	The	has	and	set	methods

set	operations
union	/	Set	operations,	Set	union
intersection	/	Set	operations,	Set	intersection
difference	/	Set	operations,	Set	difference
subset	/	Set	operations,	Subset

shortest	paths
searching,	BFS	used	/	Finding	the	shortest	paths	using	BFS

shortest	paths	algorithms

Dijkstra’s	algorithm	/	Further	studies	on	the	shortest	paths	algorithms
Bellman-Ford	algorithm	/	Further	studies	on	the	shortest	paths	algorithms
A*	search	algorithm	/	Further	studies	on	the	shortest	paths	algorithms
Floyd-Warshall	algorithm	/	Further	studies	on	the	shortest	paths	algorithms

simple	path
about	/	Graph	terminology

size	method
implementing	/	The	isEmpty,	size,	and	getHead	methods
about	/	The	size	method,	The	clear,	size,	keys,	and	getItems	methods

some	method	/	Iterator	functions
sorting	algorithms

about	/	Sorting	algorithms
bubble	sort	/	Bubble	sort
selection	sort	/	Selection	sort
insertion	sort	/	Insertion	sort
merge	sort	/	Merge	sort
quick	sort	/	Quick	sort

sorting	method
about	/	Searching	and	sorting
custom	sorting	/	Custom	sorting

sparse	graphs
about	/	The	adjacency	matrix

stack
creating	/	Creating	a	stack

Stack	class
additional	helper	methods,	implementing	/	Creating	a	stack
implementing	/	The	complete	Stack	class
using	/	Using	the	Stack	class

string
array,	outputting	into	/	Outputting	the	array	into	a	string

strings
about	/	Variables
sorting	/	Sorting	strings

strongly	connected	graph
about	/	Directed	and	undirected	graphs

Sublime	Text
about	/	Debugging	and	tools
URL	/	Debugging	and	tools

subset	operation
about	/	Set	operations,	Subset

swapQuickStort	function
about	/	The	partition	process

switch	statement	/	Conditional	statements

T
toNumber	method	/	The	equals	operators	(==	and	===)
tools

about	/	Debugging	and	tools
Aptana	/	Debugging	and	tools
WebStorm	/	Debugging	and	tools
Sublime	Text	/	Debugging	and	tools

topological	sorting
with	DFS	/	Topological	sorting	using	DFS
about	/	Topological	sorting	using	DFS

toPrimitive	method	/	The	equals	operators	(==	and	===)
toString	method	/	Outputting	the	array	into	a	string

implementing	/	The	toString	method
traversing

about	/	Tree	traversal
tree

terminology	/	Trees	terminology
binary	tree	/	Binary	tree	and	binary	search	tree
BST	/	Binary	tree	and	binary	search	tree
key,	inserting	/	Inserting	a	key	in	a	tree
values,	searching	/	Searching	for	values	in	a	tree
minimum	values,	searching	/	Searching	for	minimum	and	maximum	values
maximum	values,	searching	/	Searching	for	minimum	and	maximum	values
specific	value,	searching	/	Searching	for	a	specific	value
node,	removing	/	Removing	a	node

tree	traversal
about	/	Tree	traversal
in-order	traversal	/	In-order	traversal
pre-order	traversal	/	Pre-order	traversal
post-order	traversal	/	Post-order	traversal

true	value	/	Truthy	and	falsy
two-dimensional	array

about	/	Two-dimensional	and	multi-dimensional	arrays
typeof	operator	/	Operators

U
undefined

about	/	Variables
Underscore	library

URL	/	Outputting	the	array	into	a	string
undirected	graph

about	/	Directed	and	undirected	graphs
union	operation

about	/	Set	operations,	Set	union
unweighted	graph

about	/	Directed	and	undirected	graphs

V
values	method

about	/	The	values	method,	The	get	and	values	methods
variables

about	/	Variables
variable	scope

about	/	Variable	scope
visitor	pattern

URL	/	In-order	traversal

W
web	servers	(XAMPP)

used,	for	environment	setup	/	Using	web	servers	(XAMPP)
WebStorm

about	/	Debugging	and	tools
URL	/	Debugging	and	tools

weighted	graph
about	/	Directed	and	undirected	graphs

while	loop
about	/	Loops

X
XAMPP

URL,	for	installing	/	Using	web	servers	(XAMPP)

	Learning JavaScript Data Structures and Algorithms
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. JavaScript – A Quick Overview
	Setting up the environment
	The browser is enough
	Using web servers (XAMPP)
	It's all about JavaScript (Node.js)
	JavaScript basics
	Variables
	Variable scope
	Operators
	Truthy and falsy
	The equals operators (== and ===)
	Control structures
	Conditional statements
	Loops
	Functions
	Object-oriented programming
	Debugging and tools
	Summary
	2. Arrays
	Why should we use arrays?
	Creating and initializing arrays
	Adding and removing elements
	Two-dimensional and multi-dimensional arrays
	References for JavaScript array methods
	Joining multiple arrays
	Iterator functions
	Searching and sorting
	Custom sorting
	Sorting strings
	Searching
	Outputting the array into a string
	Summary
	3. Stacks
	Creating a stack
	The complete Stack class
	Using the Stack class
	Decimal to binary
	Summary
	4. Queues
	Creating a queue
	The complete Queue class
	Using the Queue class
	The priority queue
	The circular queue – Hot Potato
	Summary
	5. Linked Lists
	Creating a linked list
	Appending elements to the end of the linked list
	Removing elements from the linked list
	Inserting an element at any position
	Implementing other methods
	The toString method
	The indexOf method
	The isEmpty, size, and getHead methods
	Doubly linked lists
	Inserting a new element at any position
	Removing elements from any position
	Circular linked lists
	Summary
	6. Sets
	Creating a set
	The has (value) method
	The add method
	The remove and clear methods
	The size method
	The values method
	Using the Set class
	Set operations
	Set union
	Set intersection
	Set difference
	Subset
	Summary
	7. Dictionaries and Hashes
	Dictionaries
	Creating a dictionary
	The has and set methods
	The remove method
	The get and values methods
	The clear, size, keys, and getItems methods
	Using the Dictionary class
	The hash table
	Creating a hash table
	Using the HashTable class
	Hash table versus hash set
	Handling collisions between hash tables
	Separate chaining
	The put method
	The get method
	The remove method
	Linear probing
	The put method
	The get method
	The remove method
	Creating better hash functions
	Summary
	8. Trees
	Trees terminology
	Binary tree and binary search tree
	Creating the BinarySearchTree class
	Inserting a key in a tree
	Tree traversal
	In-order traversal
	Pre-order traversal
	Post-order traversal
	Searching for values in a tree
	Searching for minimum and maximum values
	Searching for a specific value
	Removing a node
	Removing a leaf node
	Removing a node with a left or right child
	Removing a node with two children
	More about binary trees
	Summary
	9. Graphs
	Graph terminology
	Directed and undirected graphs
	Representing a graph
	The adjacency matrix
	The adjacency list
	The incidence matrix
	Creating the Graph class
	Graph traversals
	Breadth-first search (BFS)
	Finding the shortest paths using BFS
	Further studies on the shortest paths algorithms
	Depth-first search (DFS)
	Exploring the DFS algorithm
	Topological sorting using DFS
	Summary
	10. Sorting and Searching Algorithms
	Sorting algorithms
	Bubble sort
	Improved bubble sort
	Selection sort
	Insertion sort
	Merge sort
	Quick sort
	The partition process
	Quick sort in action
	Searching algorithms
	Sequential search
	Binary search
	Summary
	Index

