
13549_TTLX_Da l e . qxd 2/ 7/ 11 6: 16 AM Pa ge i

Jones & Bartlett Learning books and products are available through most bookstores and online booksellers. To
contact Jones & Bartlett Learning directly, call 800-832-0034, fax 978-443-8000, or visit our website,
www.jblearning.com.

Substantial discounts on bulk quantities of Jones & Bartlett Learning publications are available to corpora-
tions, professional associations, and other qualified organizations. For details and specific discount informa-
tion, contact the special sales department at Jones & Bartlett Learning via the above contact information or
send an email to specialsales@jblearning.com.

Copyright © 2012 by Jones & Bartlett Learning, LLC

All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form,
electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system,
without written permission from the copyright owner.

Production Credits
Publisher: Cathleen Sether
Senior Acquisitions Editor: Timothy Anderson
Senior Editorial Assistant: Stephanie Sguigna
Production Director: Amy Rose
Associate Production Editor: Tiffany Sliter
Associate Marketing Manager: Lindsay White
V.P., Manufacturing and Inventory Control: Therese Connell
Cover and Title Page Design: Kristin E. Parker
Composition: Northeast Compositors, Inc.
Cover Image: © Image Source/age fotostock
Chapter opener image courtesy of Earth Sciences and Image Analysis Laboratory, NASA Johnson Space Center

[ref #STS026-41-86], http://eol.jsc.nasa.gov
Printing and Binding: Malloy, Inc.
Cover Printing: Malloy, Inc.

Library of Congress Cataloging- in- Publication Data
Dale, Nell.

Object-oriented data structures using Java / Nell Dale, Daniel T.
Joyce, and Chip Weems. — [3rd ed.].

p. cm.
Includes index.
ISBN-13: 978-1-4496-1354-9 (casebound)
ISBN-10: 1-4496-1354-3 (casebound)

1. Object-oriented programming (Computer science) 2. Data structures
(Computer science) 3. Java (Computer program language) I. Joyce,
Daniel T. II. Weems, Chip. III. Title.

QA76.64.D35 2012
005.1’17—dc22

2010043038
6048

Printed in the United States of America
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

World Headquarters
Jones & Bartlett Learning
40 Tall Pine Drive
Sudbury, MA 01776
978-443-5000
info@jblearning.com
www.jblearning.com

Jones & Bartlett Learning Canada
6339 Ormindale Way
Mississauga, Ontario L5V 1J2
Canada

Jones & Bartlett Learning International
Barb House, Barb Mews
London W6 7PA
United Kingdom

13549_TTLX_Da l e . qxd 2/ 7/ 11 6: 16 AM Pa ge i i

To Alfred G. Dale.

–ND

To Kathy, Tom, and Julie, thanks for the love and support.

–DJ

To Lisa, Charlie, and Abby, thank you for tolerating all of the hours that
I have not been able to spend with you, while working on this.

–CW

13549_TTLX_Da l e . qxd 2/ 7/ 11 6: 16 AM Pa ge i i i

Intentional Blank

13549_TTLX_Da l e . qxd 2/ 7/ 11 6: 16 AM Pa ge i v

Welcome to the third edition of Object-Oriented Data Structures Using Java™.
This book presents the algorithmic, programming, and structuring tech-
niques of a traditional data structures course in an object-oriented context.

You’ll find the familiar topics of stacks, queues, lists, trees, graphs, sorting, searching,
Big-O complexity analysis, and recursion, all covered from an object-oriented point
of view using Java. We stress software engineering principles throughout, including
modularization, information hiding, data abstraction, stepwise refinement, the use of
visual aids, the analysis of algorithms, and software verification methods.

To the Student
At this point you have completed at least one semester of computer science course-
work. You know that an algorithm is a sequence of unambiguous instructions for
solving a problem. You can take a problem of moderate complexity, design a small
set of classes/objects that work together to solve the problem, code the method algo-
rithms needed to make the objects work, and demonstrate the correctness of your
solution.

Algorithms describe actions. These actions manipulate data. For most interesting
problems that are solved using computers, the structure of the data is just as impor-
tant as the structure of the algorithms used to manipulate the data. Using this text-
book you will discover that the way you structure data affects how efficiently you
can use the data; you will see how the nature of the problem you are attempting to
solve dictates your structuring decisions; and you will learn about the data structures
that computer scientists have developed over the years to help solve problems.

Abstract Data Types
Over the last 20 years the focus of the data structures course has broadened consider-
ably. The topic of data structures now has been subsumed under the broader topic of
abstract data types (ADTs)—the study of classes of objects whose logical behavior is

13549_PREF_Da l e . qxd 1/ 26/ 11 11: 00 AM Pa ge v

defined by a set of values and a set of operations. The term abstract data type represents
a domain of values and a set of operations on those values that are specified indepen-
dently of any particular implementation. The shift in emphasis is representative of the
move toward more abstraction in computing education. We are interested in the
abstract properties of classes of data objects in addition to how the objects might be
represented in a program.

In this textbook we view our data structures from three different perspectives: their
specification, their application, and their implementation. The specification describes the
logical or abstract level—what the logical relationships among the data elements are and
what operations can be performed on the structure. The application level, sometimes
called the user level, is concerned with how the data structure is used to solve a prob-
lem—why the operations do what they do. The implementation level involves the coding
details—how the structures and operations are implemented.

Object- Oriented Programming with Java
Our primary goal is to present the traditional data structure topics with an emphasis on
problem solving and software design. Using the Java programming language as a vehicle
for problem solutions, however, presents an opportunity for students to expand their
familiarity with a modern programming language and the object-oriented paradigm. As
our data structure coverage unfolds, we introduce and use the appropriate Java constructs
that support our primary goals. Starting early and continuing throughout the text, we
introduce and expand on the use of many Java features such as classes, objects, generics,
packages, interfaces, library classes, inheritance, and exceptions. Our case studies demon-
strate how to identify and filter candidate classes and how to organize modular solutions
to interesting problems. We use Universal Modeling Language (UML) class diagrams
throughout to help us model and visualize our classes and their interrelationships.

Second Edition Improvements Retained
The second edition of this textbook included many significant changes to the first edi-
tion. This third edition retains and builds on all of those improvements. We maintain
the early introduction to the heart of the textbook material, introducing data structures
and the use of references (pointers, links) as a structuring mechanism in Chapter 1. We
have retained the popular Chapter 2, which was added to the second edition, where we
introduce a simple yet interesting ADT (a StringLog). Our development of this ADT,
including both array-based and reference-based implementations, acts as a gentle intro-
duction to the approaches used for the more complicated ADTs throughout the rest of
the text.

In the second edition we also rearranged our coverage of the classic data structures,
starting with the simpler stack and queue structures and then moving to the more com-
plicated lists, trees, and graphs. We continue to follow that approach, as well as intro-
ducing recursion much earlier (Chapter 4 rather than Chapter 7), immediately after our
coverage of the related Stack ADT. This rearrangement of topics from the second edition
allows our List ADT coverage in Chapter 6 to include both traditional and recursive
implementations of list operations, and to include a presentation of an indexed list ADT.

vi | Preface

13549_PREF_Da l e . qxd 1/ 26/ 11 11: 00 AM Pa ge vi

In addition to the major structural changes in the second edition, we streamlined
our presentation of concepts throughout, added even more exercises, and included
many additional example applications. We took advantage of several of the new fea-
tures of Java 5.0, including autoboxing and the Scanner class, to simplify our problem
solutions. Two new appendices that rounded out our second edition improvements have
been retained—one devoted to Java 5.0’s new generics mechanism and one providing
Application Programmer Interfaces (APIs) for the Java library classes used throughout
the textbook.

New to the Third Edition
When we published the second edition we chose to omit generics for reasons outlined in
Section 3.2 of that edition. We believe that was a reasonable decision at the time—but
since then, Java generics have become a mature technology. Therefore, we now include
their use throughout the textbook, providing the dual benefits of allowing for a type-
safe use of data structures while exposing students to modern approaches.

With this edition we are pleased to be among the first data structures textbooks
to address the topics of concurrency and synchronization, which are growing in
importance as computer systems move to using more cores and threads to obtain
additional performance with each new generation. We introduce the topic in the new
Section 5.7 where we start with the basics of Java threads, continue through exam-
ples of thread interference and synchronization, and culminate in a discussion of
efficiency concerns.

In addition to the two major changes described above, we have improved the
book in many smaller ways. We have included more code examples, added program-
ming exercises including several project-type exercises, rearranged the order of pres-
entation of topics in several chapters, simplified the list architecture used in Chapter
6, and clarified many tables and figures. In the robust set of exercises at the end of
each chapter, you will still find the familiar computer icon indicating an exercise
involving programming—but now you will see two such icons beside those problems
with a "significant" programming component, indicating exercises that might be used
for major class projects.

We hope that you enjoy this updated, modern approach to the data structures
course.

Prerequisite Assumptions
In this book, we assume that readers are familiar with the following Java constructs:

• Built-in simple data types and the array type
• Control structures while, do, for, if, and switch
• Creating and instantiating objects
• Basic user-defined classes

• variables and methods
• constructors, method parameters, and the return statement
• visibility modifiers

Preface | vii

13549_PREF_Da l e . qxd 1/ 26/ 11 11: 00 AM Pa ge vi i

Throughout the text we use several of the support classes from the Java Class
Library, such as String, Scanner (new in Java 5.0), System, Random, and Math. Appen-
dix E provides an introduction to these classes.

Input/Output
It is difficult to know what background the students using a data structures textbook
will have in Java I/O. Some may have learned Java in an environment where the
Java input/output statements were “hidden” behind a package provided with their
introductory textbook. Others may have learned graphical input/output techniques,
but never learned how to do file input/output. Some have learned how to create
graphical interfaces using the Java AWT; others have learned Swing; others have
learned neither. To allow all the students using our textbook to concentrate on the
primary topic of data structures, we use the simplest I/O approach we can, namely
console I/O. For input we use the Scanner class, a class introduced in Java 5.0 that
greatly simplifies the input task. Output is accomplished using the simple
System.out.print command.

To support those teachers and students who prefer to work with graphical user
interfaces (GUIs), we provide GUIs for many of our case studies (in addition to the con-
sole-based solutions). In this way they have a code base to support instruction and addi-
tional work using GUIs. At the conclusion of each case study we discuss the GUI-based
solution, include some screenshots of the program in action, and provide some related
exercises.

Content and Organization
Chapter 1 is all about Getting Organized. It introduces ways of organizing software
development and software solutions. An overview of object orientation stresses mecha-
nisms for organizing objects and classes of objects. Our primary topic of data structures
starts with a look at the classic structures and the two fundamental language constructs
that are used to implement those structures: the array and the reference (link/pointer).
The chapter concludes with a study of Big-O analysis—how we evaluate algorithms that
provide access to, or otherwise use, our data structures.

Chapter 2 introduces Abstract Data Types (ADTs). We view data from three differ-
ent levels: the logical, application, and implementation levels. We introduce the Java
interface mechanism as a means of supporting this three-tiered view. As a simple exam-
ple of an ADT we present a collection of strings and show how it is handled at each of
the three levels. For the implementation level we include both array-based and refer-
ence-based approaches. To support the reference-based approach we introduce the
linked list structure. We also address ways of verifying the correctness of our work.
Finally, in a case study, we see how the use of abstraction simplifies the task of imple-
menting a trivia game system.

Chapter 3 presents The Stack ADT. The stack is first considered from its abstract
perspective, and the idea of recording the logical abstraction in an ADT specification as
a Java interface is reinforced. Sub-interfacing allows us to define both bounded and
unbounded stack abstractions. We investigate the kinds of elements we should store in

viii | Preface

13549_PREF_Da l e . qxd 1/ 26/ 11 11: 00 AM Pa ge vi i i

our collection ADTs, such as the stack, to make them generally usable. We also study
ways of handling exceptional situations that might arise when using our ADTs. We
show how stacks are used to determine if a set of grouping symbols is well formed and
to support evaluation of mathematical expressions. We investigate the implementation
of stacks using the two basic implementation approaches introduced previously in the
text: arrays and references. We also investigate an approach using the Java Library
class ArrayList.

Chapter 4 discusses Recursion, first providing an intuitive view of the concept, and
then showing how recursion can be used to solve programming problems. Guidelines for
writing recursive methods are illustrated with many examples. After demonstrating that
a by-hand simulation of a recursive routine can be very tedious, a simple three-question
technique is introduced for verifying the correctness of recursive methods. A more
detailed discussion of how recursion works leads to an understanding of how recursion
can be replaced with iteration and stacks. Our sample applications include the classic
Towers of Hanoi and Blob Counting (image analysis).

Chapter 5 presents The Queue ADT. As with the stack, the queue ADT is first con-
sidered from its abstract perspective, followed by a formal specification, and then imple-
mented using both array-based and reference-based approaches. We include an
array-based approach to implementing an unbounded queue. Example applications for
the queue involve checking for palindromes, simulating the card game War, and simu-
lating a system of real-world queues. Finally, we look at Java’s concurrency and syn-
chronization mechanisms, explaining issues of interference and efficiency.

Chapter 6 introduces The List ADT. Because list management requires us to
directly compare objects, the chapter begins with a review of that topic. This is fol-
lowed by a general discussion of lists and then a formal specification of a list frame-
work, supporting unsorted, sorted, and indexed lists. We use inheritance to take
advantage of the commonalities among our list variations for both our array-based
and reference-based implementations. Three interesting applications, involving poker,
golf, and music, demonstrate how each of the list variations can be used to help solve
problems. This chapter includes a study of the binary search algorithm, which is use-
ful when searching for an element in an array-based sorted list. The chapter concludes
with a section on the practical topic of storing and retrieving data structures using
files.

Chapter 7 looks at More Lists: circular linked lists, doubly linked lists, and lists
with headers and trailers. An alternative representation of a linked structure, using
static allocation (an array of nodes), is designed. The case study uses a list ADT devel-
oped specifically to support the implementation of large integers.

Chapter 8 introduces Binary Search Trees as a way to arrange data, giving the
flexibility of a linked structure with efficient insertion and deletion time. We exploit the
inherent recursive nature of binary trees by presenting recursive algorithms for many of
the operations. We also address the problems of balancing binary search trees and
implementing them with an array. The case study discusses the process of building an
index for a manuscript and implements the first phase of the process.

Chapter 9 presents a collection of other ADTs: Priority Queues, Heaps, and
Graphs. The graph algorithms make use of stacks, queues, and priority queues, thus

Preface | ix

13549_PREF_Da l e . qxd 1/ 26/ 11 11: 00 AM Pa ge i x

both reinforcing earlier material and demonstrating the general usability of these
structures.

Chapter 10 presents a number of Sorting and Searching Algorithms. The sorting
algorithms that are illustrated, implemented, and compared include straight selection
sort, two versions of bubble sort, insertion sort, quick sort, heap sort, and merge sort.
The sorting algorithms are compared using Big-O notation. The discussion of algorithm
analysis continues in the context of searching. Previously presented searching algo-
rithms are reviewed and new ones are described. Hashing techniques are discussed in
some detail.

Additional Features
Chapter Goals Sets of knowledge and skill goals are presented at the beginning of
each chapter to help the students assess what they have learned.

Sample Programs Numerous sample programs and program segments illustrate the
abstract concepts throughout the text.

Case Studies Each of the five major case studies includes a problem description, an
analysis of the problem, the identification of a set of support classes to use in solving
the problem, the development of the code for the support classes and the driving
application, and a discussion of testing the solution. The class identification stage
includes descriptions of brainstorming, filtering, and scenario analysis techniques as
needed.

Chapter Summaries Each chapter concludes with a summary section that reviews the
most important topics of the chapter and ties together related topics.

Chapter Exercises We average more than 40 exercises per chapter. The exercises are
organized by chapter sections to make them easier for you to manage. They vary in
levels of difficulty, including short and long programming problems (marked with
“programming-required” icons—one icon to indicate short exercises and two icons for
projects), the analysis of algorithms, and problems to test students’ understanding of
abstract concepts.

Appendices The appendices summarize the Java reserved word set, operator
precedence, primitive data types, the ASCII subset of Unicode, and the Java library
classes used in the textbook.

Website http://www.jblearning/catalog/9781449613549/
This website provides access to the textbook’s source code files, presentation slides

for each chapter, and a glossary of terms. Additionally, registered instructors are able to
access answers to most of the textbook’s exercises and a test item file. Please contact
the authors if you have material related to the text that you would like to share with
others.

x | Preface

13549_PREF_Da l e . qxd 1/ 26/ 11 11: 00 AM Pa ge x

Acknowledgments
We would like to thank the following people who took the time to review this textbook:
Mark Llewellyn at the University of Central Florida, Chenglie Hu at Carroll College, Val
Tannen at the University of Pennsylvania, Chris Dovolis at the University of Minnesota,
Mike Coe at Plano Senior High School, Mikel Petty at University of Alabama in Hunts-
ville, Gene Sheppard at Georgia Perimeter College, Noni Bohonak at the University of
South Carolina–Lancaster, Jose Cordova at the University of Louisiana–Monroe, and
Judy Gurka at the Metropolitan State College of Denver. A special thanks to Christine
Shannon at Centre College, to Phil LaMastra at Fairfield University, and to Kristen
Obermyer and Tara Srihara, both at Villanova University, for specific comments leading
to improvements to this edition.

A virtual bouquet of roses to the people at Jones & Bartlett Learning who contributed
so much, especially Tim Anderson, Amy Rose, Tiffany Sliter, Melissa Potter, and Stephanie
Sguigna.

ND
DJ
CW

Preface | xi

13549_PREF_Da l e . qxd 1/ 26/ 11 11: 00 AM Pa ge xi

Intentional Blank

13549_PREF_Da l e . qxd 1/ 26/ 11 11: 00 AM Pa ge xi i

l

r

xrv (on rents

1.7 1Comparing Algorithms: Big-0 Anralysis 41

Big-0 Notation 43

Co1nmon Orclers of Magnitude 45

Example I: Surn or Conscculive lntegers 46

F.xa111ple 2: Finding a Nun,ber in <,1 Phone Book 48

Summary 50

Exercises 51

Abstract Data Tyoes ·BJ
2. 1 Abstractlon 64

1,,font1alion l1iding 64

Data Abstraction 65

Data Levels 66

Preconditions and Postconditions 67

Java lnterfaces 68

2.2 The Stringlog ADT Specification 72

Constructors 72

Transrorrr1ers 7J

ObSCTV('f'S 73

The Stringloglnterface 73

Using Lhe StringloglnlerFace 7 5

2.3 Array-1Based StringLog ADT Implementation 77

lns.lanc-e Variables 77

Constructors 79

Transforn1ers 80

Observers 82

2.4 Software Testing 91'

ldcntifying Test Cases 92

Test Plans 94

Test1ng ADT lrnple1T1enla Lions 94

2.S Introduction to Link,ed Lists 102

Array Versus Linked Lists 102

The LLShingNode Class 103

Operations on Lh1ked Lists 107

3

2.16 linked List Stranglog AOT Implementation 113

lnstance Variables 115

Constructors 11 5

Tnn,sfonners 116

Observers. 119

2. 7 Softwar,e Des.ign: ldentification of Classes 124

Brainstorm 1 2.4

filter 1 25

St-cnario Analysis 1 25

Nouns and Verbs t 25

Cohesi"Ve Designs 126

Su1111nalion of Our Approach 126

Df'Sign Choices 12R

2.'B Case Study: A Trivia Game 128

The Source of the Trivia Ga,ne 129

lden Lifying· Support Classes I J 1

1 mp l em en ting the S l1 pp o rt Class<!s 11 J

TI1e Triv;a Carne Application 1 ·40

Case Study S\lmmation 145

Summary 146

Exerci�es 146

The Stack ADT l 59

3.1 Stacks 1 60

Opera1 ions on Stacks 1 6 I

Using Stacks 161

3.2 Collec-tion Elements 163

Ge-n era lly Usable Collections 164

3.3 Exceptional Situa1tions 167

Handlin� c)(ceµtional Situatijons J 67

Exceptions and ADTs: An Exa,nple 168

Error Situations and ADTs 173

3.4 Formal Specification 175

Exceptfonal Situations 176

The lntcrfaccs 179

Example Use 1 a 2

Content., I

xvi (on rents

4

3.5 Array-:Bas,ed lmplementati,o ,ns 185

Th� Arrn),St(3ck ,c1ass 18 5

Definitions of Stack Operations 188

Test Plan 190

3.6 Application: Wei I-Formed Expressions 194

The Ba lanced Class 194

Tht Application 200

3.7 Link-Based lmpJementation 202

The LLObjec1 Node Class 203

The Lin�edStack 1Clas.s. 204

The push Operation 20 5

The p,op Operation 209

·r11e Other Stack Operatiot1s 211

Compt1ring Stt1ck ·1mple1111.�ntr1tions 21 J

3.8 1Case Sttldy: Postfix Expre.ss�on Evaluator 214

D1scu�sion 214

Evaluating Postfix Express[ons 21 5

Postfix Expre5sion Evaluation Algorithrn 216

Specification: Progran1 Postfix Evt1fualion 219

Brainstorming and Filtering 220

The PostFixEvaluaror Class 222

The PP;xconsole Class 224

Testing the rostfix Evaluator 226

'St1m1m.ary 229

Exerrc_ises 229

Recursion 243

4.1 R,ec:urrsive Definitions, Algorithms, and Programs 244

Recursive Definitions 244

Recursive Algorith1ns. 24�

Recursive Programs 246

4.2 The Three Questions 251

Verifying Recursive A�yori1hms 251

Writing Recursive Methods 253

Debugging Recursive Methods 2SJ

4.3 Towers of Hanoi 254

Tl,e Algorithrn 254

5

The Method 256

Tht! Progrr1m 257

4.4 Counting Slobs 260

Generating Blobs 261

111e Counting AlgorithtTI 262

The Marking Algorithn, 263

The Grid Class 264

The Program 267

4.5 Recursive linked-List Processing 269

Reverse Printing 269

4.6 Removing Recursion 27 3

Hay,,, 'Recursion Works 274

lteration 278·

St�cking 279

4.7 Deciding Whether to Use a Recursive Solution 281

Rt:·Cur�ian Overhead 282

Inefficient Algorithn1s 28 2

Clarity 285

Summary 285

Exercise_s 28 6

The Queue ADT 2 97

5.1 Queues 298

Operations on the Queues 29·9

Using Queues 299

.S.2 formal Speci1fication 300

Example Use JOJ

5.3: Array-Based Implementations 305

The ArrayBndQueue Class J05

The ArrayUnbndQueue Class 31 2

5.4 A.pplicatian: Pal�ndromes 315

The Palindrorr,e Class 31 6

The A.pµlication 31 B

5.5 Application: Th1e 1Card Game of War 3 21

The RankCardDeck Class 321

The VVa rGa rne Cl ass 3 2 J

The \"VarGa,oeApp Class 3 27

Content., I ..

XI/II

xv11i l (onrcnts

6

5.6 Link-Based Implementations J 31

Th� Enque11� Operation JJ2

The D ·equeue Operation 334

The Queue lrnp lerr1 ent.alion 3 3 6

A Circu lar Liniked Queue D1esign JJ7

Comparing Queue lrr1ple1ri e11Lations 338

5.7 Concurrency, Interference, a1nd Synchronization 340

The counter Class J40

Java Threads 342

lnterference J 45

Synchronizatiort 3 46

A SY11chronized Queue 348

5.8 1Case Study: Average Waiting Time 353

Problem Discussion 3 54

Program Design J 56

Program Details 360

Testing Consid ·erations 369

Sum, mary 370

Exercises J 7 2

The List ADT 383

6. 1 1Comparing Objects Revjsited 384

The eq uals Method J:84

The Comparable Interface 3 86

6.2 Lists 388

\tarieties of Lists 389

As·stn11ptions for Our Lists 3 89

8.3 Formal Specification 3 90

The Listln terrace J90

The lnd exed List ln Lerrface 393

Example lJse 394

6.4 Array-,BaSced Implementations 397

The A-rrayUnsoirLcdlis1 Class 398

The ArraySortedList Class '103

The ArraylndexedList Class 4 1 1

6.5 Appliications: Poker, Go ilf, and Music 4 1 4

Poker ll l 4

7

Golf 418

t�usic: 42 1

6.16 The Binary Search Algorithm 425

lmµrovin ,g Linear Search in a Sorted LisL 426

Binary Search Algorithm � 26

Rflcursive Birraty Search 43 I

Efficiency Analysis 4 J 2

6 ,. 7 Reference-Bas.e.d lmplem,entations. 43:3

TI1e RefUnsortedlist Clas.s 434

The ReFSortedlist Class 440

6i.8 Storing Oibjects and Structur,e s in Files 446

Saving Object Data in Text files 445

Serializa Lion or Obje(:LS 447

Serializing Struc:tur� 450

Application: Song Lists 451

Summary 468

Exercises. 459

Mare Lists 4 73

7.1 Circular Lijnked Lfsts 474

An Unsorted Circular lisl 475

TI1e CRefUnsortedList Class 476,

Circular Versus Linear li11ked Lis ,ls 482

7 .2 I) o u bly Linked lists 48 3

Tile Add and Rernove Operations 484

7 .3: linkt'!d Lists with Heade rs and T ra i:le rs 48 7

7.4 A linked List as an Array of Nodes 488

V\fhy Use a r1 Array? 48 8

HOV\' Is a n Array Used? 489

7.5 A Specialized list AOT 497

The Specification 496

TI1e ln1plern1er1tation 499

7.6 Case Study: Large Integers 504

TI1e Largelnt Class 508

Addilion and Su blraction 51 o

Content<, I xix

l (onrcnts

8

Test Plan S 19

Th� LargelntApp Progr()m1 5 i 9

Summary 523

Exercises 523

Bi nary Search Trees 531

8. 1

8.2

Trees 532

Binal)' Trees 534

Bfn:=1ty Search Trees 536

Binal)' Tree rl'raversals 5J8

The Log ica I Level 540

Tree Ele1rien ts 540

The Binary Sea rth Tree Specification 541

8.3 The A.pplicaition Level .543

8.4 ihe Implementation Level: Basi1cs 545

8.5 lterativ ,e Versus Recursive Method Implementations 548

Recursive Approach to the size l\�ethod 5'19

lteraLive Approach to the size 1\/lethod :5 53

Recursion or Iteration? 555

8.6 Tlhe Implementation Level: Remaining Opeta'tlo1ns 555

The contains and get Operations 555

The add Operation 559

The remove Operation 564

Iteration 571

Testing Binal), Search Tree Operations S7�·
8.7 Comparing Binary Search lree and Linear Lists S 77

Bf g-0 Cornparisons 577

8.8 Balancing a Binary Search Tr ,ee 578

8.9 A Nonlinked Representation of Binary Tire-es 584

8.10 Cas� Study: Word Frequc-nicy Generator 588

Pro blen, 58 B

Discussion 588

Brainstorm;ng 588

Filtering 589

The;, User lnterfflc� 589

Error Handling 590

Scl·nario Analysis '590

9

10

The \'VordFreq Class 592

TI1t! Word Frequency Generator Program 594

Testing 596

Summary 598

Exercises 599

Priority Queues, Heaps, and Graphs 61 3
9. 1 Priority Uueues 6 1 4

Logical Lev1el 6 1 '1

Application Level 6 1 6

lrnplementation Level 6 1 6

9.2 Heaps 617

Heap lmplementation 62 1

The enqueue Method 623

The d1;qu1;u� Mt;thod 626

A San1ple Use 630

Heaps Versus OLher Rcprcs,entations or PtioriL,y Queues 632

9.3: Introduction to Graphs 633

9.4 Formal Spectficatio1n of a Graph A01T 637

9.5 lmplementatic'.lins of Graphs 640

Array-Based ln1plen1entatiot1 6<10

Linked lrnplernentatio11 645

9.6 Graph Applica1t;ons 646

Depth-First Sea rching 64 7

Bread th-First Searching 6 5 1

The Sing'le-Source Shortest-Paths r>roblern 654

Summary 661

Exercises 662

Sorti ng and Searching Algorithms 671
10. 1 Sortrng 672

A Test Harness 673

10.2 Simple Sorts 676

Straight Selection Sort 676

Bubb le Sorl 68 2.

lnsertion Sort 686

Content., I xx,

x�ii (onrc11ts

10.3

10.4

O(N 11og2
N) Sort� 690

M E;>rge Sort 6'90

Quick Sort 698

Heap Sort 704

More Sorting Considerations 710

Testing 7 1 0

Efficiency 710

Objects arid References 712

Using Lhe Comparable �nlerface 1·12

Using the Con1paralof· Interface 7 1 J

Stability 719

10.S Searching 720

Linear Searcl1 ing 720

High Probability Ordering 721

Sorted Lists 722

10.6 Hashing 72.2

Collisions 726

Choosing a Good Hash Function 734
Con,plexity 73 7

Sum mary 73 B

Exerre:ises 7 3 9

Appendix A Java Reserved Words 7 49

Appendix B Opera torr Precedence 7 50

Append ix (� Prim itijve D.a ta l y pes 7 S 1

Append ix D ASCH Subset o,f Unicode 7 5 2

Append ix E App li ta ti on of Programmer lnte rfac@s for the
Java Cj:a sses and lnterlaees Used in Th is
Book 7SJ

lnd,ex 769

Knowledge Goals
You should be able to
■ describe software life-cycle activities
■ describe several differences between the classic approach to software development and agile methods of

software development
■ describe the goals for “quality” software
■ define the following terms: software engineering, software requirements, software specifications, method-

ology
■ describe some benefits of object-oriented programming
■ describe the genesis of the Unified Method
■ explain the relationships among classes, objects, and inheritance
■ explain how method calls are bound to method implementations with respect to inheritance
■ describe, at a high level, the following structures: array, linked list, stack, queue, list, tree, graph
■ identify which structures are implementation dependent and which are implementation independent
■ explain the subtle ramifications of using references/pointers
■ explain the use of Big-O notation to describe the amount of work done by an algorithm

Skill Goals
You should be able to
■ interpret a basic UML class diagram
■ design and implement a Java class that uses primitive data types for its instance variables
■ create a Java application that uses the Java class
■ use packages to organize Java compilation units
■ predict the output of short segments of Java code that exhibit aliasing
■ declare, initialize, and use one- and two-dimensional arrays in Java, including both arrays of a primitive type and arrays

of objects
■ given an algorithm, identify an appropriate size representation and determine its Big-O complexity
■ given a section of code, determine its Big-O complexity

Getting Organized
G

o

a

l

s

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 1

2 | Chapter 1: Getting Organized

Before embarking on any new project, it is a good idea to prepare carefully—to “get
organized.” In this first chapter that is exactly what we do. A careful study of the topics
of this chapter will prepare you for the material on data structures and algorithms cov-
ered in the remainder of the book. The chapter topics themselves are all about organiza-
tion. Section 1.1, “Software Engineering,” discusses ways of organizing software
development. Section 1.2, “Object Orientation,” reviews the primary benefits of the
object approach. Java’s object-oriented support constructs that are used to organize our
programs are treated in Section 1.3, “Classes, Objects, and Applications,” and Section
1.4, “Organizing Classes.” Structures that computer scientists have created to organize
data are introduced in Section 1.5, “Data Structures.” Section 1.6, “Basic Structuring
Mechanisms,” looks at the two fundamental language constructs that are used to imple-
ment those structures. Finally, Section 1.7, “Comparing Algorithms: Big-O Analysis,”
describes how we can evaluate algorithms that provide access to or otherwise use our
data structures.

1.1 Software Engineering

When we consider computer programming, we immediately think of writing code in
some computer language. As a beginning student of computer science, you wrote pro-
grams that solved relatively simple problems. Much of your effort went into learning
the syntax of a programming language such as Java: the language’s reserved words, its
data types, its modularization constructs, its constructs for selection and looping, and its
input/output mechanisms.

You learned a programming methodology that takes you from a problem descrip-
tion all the way through the delivery of a software solution. There are many design
techniques, coding standards, and testing methods that programmers use to develop
high-quality software. Why bother with all that methodology? Why not just sit down at
a computer and enter code? Aren’t we wasting a lot of time and effort, when we could
just get started on the “real” job?

If the degree of our programming sophistication never had to rise above the level of
trivial programs (such as summing a list of prices or averaging grades), we might get
away with such a code-first technique. Some new programmers work this way, hacking
away at the code until the program works more or less correctly—usually less!

As your programs grow larger and more complex, you must pay attention to other
software issues in addition to coding. If you become a
software professional, you may work as part of a team
that develops a system containing tens of thousands,
or even millions, of lines of code. The successful cre-
ation of complex programs requires an organized
approach. We use the term software engineering to
refer to the field concerned with all aspects of the
development of high-quality, complex software sys-

Software engineering The field devoted to the speci-
fication, design, production, and maintenance of com-
puter programs that are developed to meet
specifications on time and within cost estimates, using
tools that help to manage the size and complexity of
the resulting software products

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 2

1.1 Software Engineering | 3

tems. It encompasses all variations of tasks required during software development
including supporting activities such as documentation and teamwork.

Software engineering is a broad field. Most computing education programs devote
one or more advanced courses to the topic. In fact, several schools offer degrees in the
discipline. This section provides a brief introduction to this important field.

Software Life Cycles
The term “software engineering” was coined in the 1960s to emphasize that engineer-
ing-like discipline is required when creating software. At that time software develop-
ment was characterized by haphazard approaches with little organization. The primary
early contribution of software engineering was the identification and study of the vari-
ous activities involved in developing successful systems. These activities make up the
“life cycle” of a software project:

• Problem analysis Understanding the nature of the problem to be solved
• Requirements elicitation Determining exactly what the program must do
• Requirements specification Specifying what the program must do (the func-

tional requirements) and the constraints on the solution approach (nonfunctional
requirements, such as which language to use)

• Architectural and detailed design Recording how the program meets the
requirements, from the “big picture” overview to the detailed design

• Implementation of the design Coding a program in a computer language
• Testing and verification Detecting and fixing errors and demonstrating the cor-

rectness of the program
• Delivery Turning over the tested program to the customer or user (or instructor!)
• Operation Actually using the program
• Maintenance Making changes to fix operational errors and to add or modify

the function of the program

Classically, these activities were performed in the sequence shown above. Each
stage would culminate in the creation of structured documentation, which would pro-
vide the foundation upon which to build the following stage. This became known as the
“waterfall” life cycle, because its graphical depiction resembled a cascading waterfall, as
shown in Figure 1.1(a). Each stage’s documented output would be fed into the following
stage, like water flowing down a waterfall.

The waterfall approach was widely used for a number of years and was instrumen-
tal in organizing software development. However, software projects differ from one
another in many important ways—for example, size, duration, scope, required reliability,
and application area. It is not reasonable to expect that the same life-cycle approach
will be appropriate for all projects. The waterfall model’s inflexible partitioning of proj-
ects into separate stages and its heavy emphasis on documentation caused it to lose
popularity. It is still useful when requirements are well understood and unlikely to
change, but that is rarely the case for modern software development.

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 3

4 | Chapter 1: Getting Organized

Figure 1.1 Life-cycle models

Design

Implementation

Testing

Delivery

Maintenance

Requirements
identification

Analysis

(a) Waterfall model

START

Analysis

First
prototype

<Implement>
<Evaluate>

<Plan>

<Test >

<Design>

Set objectives Risk assessment

Validation Development

Preliminary
design

(b) Spiral model

<Risk analysis>

<Risk management><Consider alternatives>

<Identify constraints>

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 4

1.1 Software Engineering | 5

Alternative life-cycle approaches evolved. For example, the spiral model depicted in
Figure 1.1(b) directly addresses major risks inherent in software development, such as
the risk of creating an unneeded product, the risk of including unnecessary features, and
the risk of creating a confusing interface. Important activities, such as objective setting,
risk assessment, development, and validation, are repeated over and over in a spiral
manner as the project moves from its original concept to its final form. The spiral model
emphasizes continual assessment and adjustment of goals.

Many other models of the software development process have been defined. There
are models that emphasize prototyping, models for real-time systems development,
and models that encourage creative problem solving. In one sense, as many models
exist as organizations that develop software. Each organization, if it has wise manage-
ment, pulls those ideas from the various standard approaches that best fit with its
goals and creates its own version of the life cycle, one that works best for its particu-
lar situation. The top organizations constantly measure how well their approaches are
working and attempt to continually improve their processes. Software development in
the real world is not easy and requires good organization, flexibility, and vigilant
management.

Agile Methods
The formal software engineering methods that emerged prior to the 1990s emphasized
careful planning, detailed specifications, controlled development, and rigorous testing.
These approaches remain useful for developing large software systems that are intended
to be used for many years. However, a large percentage of current software does not fall
into this category.

Today it is often important from a business standpoint for software to be developed
quickly so as to meet a pressing need or to provide leverage in a rapidly changing
world. In such cases the carefully controlled, document-heavy, classic approaches do
not work well. A collection of methods, often called “agile” or “lightweight” methods,
has been identified to help in such situations.

Specific agile methods include, but are not limited to, the following:

• Heavy customer involvement in all stages of the project Agile approaches
encourage having a customer representative become a member of the develop-
ment team. This representative takes an active role in the development of the
product, ensuring that the communication lines between the developers and the
customer remain open throughout the project.

• Incremental delivery of the product Rather than delivering the final product to a
customer in one large package at the end of the project, agile approaches favor
incremental development and delivery.

• An openness to change in the specifications of the system No matter how care-
fully requirements are specified, they still tend to change as the project unfolds.

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 5

6 | Chapter 1: Getting Organized

Agile methods embrace this change, emphasizing that customer satisfaction is
the primary goal, not conforming to original plans.

• Developers working in pairs in a supportive, collaborative manner Pair program-
ming is an approach to coding in which two programmers sit side by side, design-
ing and coding, at a single workstation. Studies have confirmed that such an
approach results in fewer code defects than programmers working by themselves.

The common purposes of agile methods are to produce software that can be changed
quickly, to satisfy the customer, and to increase the morale of the development team.
Your instructor may have you practice some of these approaches as you study data
structures.

Goals of Quality Software
No matter which approach is used, our objective is to develop quality software. Quality
software is much more than a program that runs without run-time errors or without
locking up the computer. Specific quality objectives for a software system vary from
project to project. The overall purpose of each project will usually help developers
derive these specific goals, goals related to cost, efficiency, reliability, and robustness.

Here are four quality goals that all software should meet to some degree:

1. It works.
2. It can be modified without excessive time and effort.
3. It is reusable.
4. It is completed on time and within budget.

Let’s wrap up this short introduction to software engineering by looking at each of these
goals a little more closely.

Goal 1: Quality Software Works
A program must accomplish its job, and it must do so correctly and completely. Thus an
important task is to determine the program’s requirements. For students, requirements
often are included in the instructor’s problem description. For programmers on a govern-
ment contract, a requirements document may be hundreds of pages long. For “agile” pro-
grammers, the requirements might be embodied in the person of a customer representative.

We develop programs that meet requirements by fulfilling their software specifica-
tions. The specifications indicate the format of the input and output, details about pro-

cessing, performance measures (How fast? How big?
How accurate?), actions to take in case of errors, and
so on. The specifications tell what the program does,
but not how it is done. Sometimes your instructor will
provide detailed specifications; at other times you will
have to determine them yourself, based on a partial
problem description, conversations with your instruc-
tor, or intuition.

Requirements Requirements capture what is to be
provided by a computer system or software product
Software specification A detailed description of the
function, inputs, processing, outputs, and other
requirements of a software product

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 6

1.1 Software Engineering | 7

How do you know when the program works? A typical program has to be

• complete: It should “do everything” needed.
• correct: It should “do it right.”
• usable: Its user interface should be “easy to work with.”
• efficient: It should finish in a “reasonable amount of time” considering the com-

plexity and size of the task.

Goal 2: Quality Software Can Be Modified
Software changes often and in all phases of its life cycle. Recognizing this fact, experi-
enced software engineers try to develop programs that are easy to modify. Modifications
to programs often are not made by the original authors but rather by subsequent main-
tenance programmers. Someday you may be the one making the modifications to some-
one else’s program.

What makes a program easy to modify? First, it should be readable and understand-
able to humans. Before it can be changed, it must be understood.

Second, it should be well designed. Before a change can be made, the maintenance
programmer must locate the place or places to make the change. When a program is
well designed, it is usually easy to determine where the changes must take place.

Finally, it should be able to withstand small changes easily. The key idea is to parti-
tion your programs into manageable pieces that work together to solve the problem, yet
are relatively independent.

Goal 3: Quality Software Is Reusable
It takes time and effort to create quality software. Therefore, it is important to wring as
much value from the software as possible.

One way to save time and effort when building a software solution is to reuse pro-
grams, classes, methods, and so on, from previous projects. By using previously
designed and tested code, you arrive at your solution sooner and with less effort.

Creating reusable software does not happen automatically. It requires extra effort
during the specification and design of the software. Reusable software is well docu-
mented and easy to read. It usually has a simple interface so that it can easily be
plugged into another system. It is modifiable (Goal 2), in case a small change is needed
to adapt it to the new system.

When creating software to fulfill a narrow, specific function, you can sometimes
make the software more generally usable with a minimal amount of extra effort. For
example, if you are creating a routine that sorts a list of integers, you might generalize
the routine so that it can also sort other types of data.

Goal 4: Quality Software Is Completed on Time and Within Budget
You know what happens in school when you turn your program in late. Although the
consequences of tardiness sometimes are minimal in the academic world, they often are
significant in the business world. A program that meets its functional requirements is
not useful if it isn’t ready when needed.

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 7

8 | Chapter 1: Getting Organized

If the program is part of a contract with a customer, there may be monetary penal-
ties for missed deadlines. If it is being developed for commercial sales, delayed comple-
tion may mean being beaten to the market by a competitor and being forced out of
business.

1.2 Object Orientation

Software design was originally driven by an emphasis on actions. Programs were modu-
larized by breaking them into subprograms or procedures. A subprogram performs some
calculations and returns information to the calling program, but it doesn’t “remember”
anything. It is like an old-fashioned bathroom scale that simply shows your weight
when you step onto it. In the late 1960s, researchers argued that this approach was too
limiting and did not allow us to successfully represent the constructs needed to build
complex systems.

Two Norwegians, Kristen Nygaard and Ole-Johan Dahl, created Simula 67 in
1967. It was the first language to support object-oriented programming. Object-
oriented languages promote the object as the prime modularization mechanism.
Objects represent both information and behavior and can “remember” internal infor-
mation from one use to the next. They are like modern bathroom scales that show
your weight and then cheerfully report: “You have gained three pounds.” This crucial
difference allows them to be used in many versatile ways. In 2001, Nygaard and Dahl
received the Turing Award, sometimes referred to as the Nobel Prize of computing,
for their work.

The capability of objects to represent both information (the objects have attributes)
and behavior (the objects have responsibilities) allows them to be used to represent “real-
world” entities as varied as bank accounts, genomes, and hobbits. The self-contained
nature of objects makes them easier to implement, modify, and test for correctness.

Object-oriented classes, when designed properly, are very easy to reuse. Addition-
ally, the inheritance mechanism, which is a key facet of the object-oriented approach,
makes it easy to incrementally change the definitions of classes so that they can be
reused in new situations.

The Unified Method
The object-oriented approach to programming is
based on implementing models of reality. But how do
you go about this? Where do you start? How do you
proceed? The best plan is to follow an organized
approach called a methodology.

In the late 1980s, many people proposed object-
oriented methodologies. By the mid-1990s, three proposals stood out: the Object Model-
ing Technique, the Objectory Process, and the Booch Method. Between 1994 and 1997,
the primary authors of these proposals got together and consolidated their ideas. The

Methodology A collection of specific procedures for
creating a software system to meet a user’s needs

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 8

1.3 Classes, Objects, and Applications | 9

1. The official definition of the UML is maintained by the Object Management Group. Detailed information
can be found at http://www.uml.org/.
2. The Java library includes a Da t e class, j a va . ut i l . Da t e . However, the familiar properties of dates make
them a natural example to use in explaining object-oriented concepts. Here we ignore the existence of the
library class, as if we must design our own Da t e class.

resulting methodology was dubbed the Unified Method. It is now, by far, the most pop-
ular organized approach to creating object-oriented systems.

The Unified Method features three key elements:

1. It is use-case driven. A use-case is a description of a sequence of actions performed
by a user within the system to accomplish some task. The term “user” here should
be interpreted in a broad sense and could represent another system.

2. It is architecture-centric. The word “architecture” refers to the overall structure of
the target system; the way in which its components interact.

3. It is iterative and incremental. Like the spiral life-cycle model described in Section
1.1, the Unified Method involves a series of cycles, with each one building upon the
foundation established by its predecessors.

One of the main benefits of the Unified Method is improved communication among the
people involved in the project. The Unified Method includes a set of diagrams for this pur-
pose, called the Unified Modeling Language (UML).1 UML diagrams have become a de facto
industry standard for modeling software. They are used to specify, visualize, construct, and
document the components of a software system. We use UML class diagrams throughout
this text, starting in Section 1.3, to model our classes and their interrelationships.

1.3 Classes, Objects, and Applications

Object orientation is centered on classes and objects. Objects are the basic run-time
entities used by applications. An object is an instantiation of a class; alternatively, a
class defines the structure of its objects. In this section we review these object-oriented
programming constructs, which we use to organize our programs.

Java-reserved words (when used as such), user-defined identifiers, class and file
names, and so on, appear in t hi s f ont throughout the entire textbook.

Classes
A class defines the structure of an object or a set of objects. A class definition includes
variables (data) and methods (actions) that determine the behavior of an object. The fol-
lowing Java code defines a Da t e class that can be used to create and manipulate Da t e
objects—for example, within a school course-scheduling application. The Da t e class can
be used to create Da t e objects and to learn about the year, month, or day of any partic-
ular Da t e object.2 The class also provides methods that return the Lilian Day Number of

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 9

10 | Chapter 1: Getting Organized

3. Appendix E includes information concerning the Java St r i ng class.

the date (the code details have been omitted—see the feature section on Lilian Day Num-
bers for more information) and return a string3 representation of the date. Note that
within comments the word “this” represents the current object.

/ / -
/ / Da t e . j a va by Da l e / J oyc e / We e ms Cha pt e r 1
/ /
/ / Suppor t s da t e obj e c t s wi t h ye a r , mont h, a nd da y a t t r i but e s .
/ / -

publ i c c l a s s Da t e
{

pr ot e c t e d i nt ye a r ;
pr ot e c t e d i nt mont h;
pr ot e c t e d i nt da y;
publ i c s t a t i c f i na l i nt MI NYEAR = 1583;

/ / Cons t r uc t or
publ i c Da t e (i nt ne wMont h, i nt ne wDa y, i nt ne wYe a r)
{

mont h = ne wMont h;
da y = ne wDa y;
ye a r = ne wYe a r ;

}

/ / Obs e r ve r s
publ i c i nt ge t Ye a r ()
{

r e t ur n ye a r ;
}

publ i c i nt ge t Mont h()
{

r e t ur n mont h;
}

publ i c i nt ge t Da y()
{

r e t ur n da y;
}

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 10

1.3 Classes, Objects, and Applications | 11

publ i c i nt l i l i a n()
{

/ / Re t ur ns t he Li l i a n Da y Numbe r of t hi s da t e .

/ / Al gor i t hm goe s he r e .
/ / Se e Li l i a n Da y Numbe r s f e a t ur e s e c t i on f or de t a i l s .

}

publ i c St r i ng t oSt r i ng()
/ / Re t ur ns t hi s da t e a s a St r i ng.
{

r e t ur n(mont h + " / " + da y + " / " + ye a r) ;
}

}

The Da t e class demonstrates two kinds of variables: instance variables and class vari-
ables. The instance variables of this class are ye a r , mont h, and da y declared as

pr ot e c t e d i nt ye a r ;
pr ot e c t e d i nt mont h;
pr ot e c t e d i nt da y;

Their values vary for each different instance of an object of the class. Instance variables
represent the attributes of an object. MI NYEAR is declared as

publ i c s t a t i c f i na l i nt MI NYEAR = 1593;

It is a class variable because it is defined to be s t a t i c . It is associated directly with the
Da t e class, instead of with objects of the class. A single copy of a class variable is
maintained for all objects of the class.

Remember that the f i na l modifier states that a variable is in its final form and
cannot be modified; thus MI NYEAR is a constant. By convention, we use only capital let-
ters when naming constants. It is standard procedure to declare constants as class vari-
ables. Because the value of the variable cannot change, there is no need to force every
object of a class to carry around its own version of the value. In addition to holding
shared constants, class variables can be used to maintain information that is common to
an entire class. For example, a Ba nkAc c ount class may have a class variable that holds
the number of current accounts.

In the Da t e class example, the MI NYEAR constant represents the first full year that
the widely used Gregorian calendar was in effect. The idea here is that programmers
should not use the class to represent dates that predate that year. We look at ways to
enforce this rule in Section 3.3, where we discuss handling exceptional situations.

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 11

12 | Chapter 1: Getting Organized

Table 1.1 Java Access Control Modifiers

Access Is Allowed

Within Within
Subclasses in Subclasses in

Within the the Same Other
Class Package Packages Everywhere

publ i c X X X X
pr ot e c t e d X X X
pa c ka ge X X
pr i va t e X

The methods of the class are Da t e , ge t Ye a r ,
ge t Mont h, ge t Da y, l i l i a n , and t oSt r i ng . Note
that the Da t e method has the same name as the
class. Recall that this means it is a special type of
method, called a class constructor. Constructors are
used to create new instances of a class—that is, to
instantiate objects of a class. The other five methods
are classified as observer methods, because they
“observe” and return information based on the

instance variable values. Other names for observer methods are “accessor” methods
and “getters,” as in accessing or getting information. In addition to constructors and
observers, there is one other general category of method, called a transformer. As you
probably recall, transformers change the object in some way; for example, a method
that changes the year of a Da t e object would be classified as a transformer.

You have undoubtedly noticed the use of the access modifiers pr ot e c t e d and
publ i c within the Da t e class. Let’s review the purpose and use of access modifiers. This
discussion assumes you recall the basic ideas behind inheritance and packages. Inheri-
tance supports the extension of one class, called the superclass, by another class, called
the subclass. The subclass “inherits” properties (data and actions) from the superclass.
We say that the subclass is derived from the superclass. Packages let us group related
classes together into a single unit. Inheritance and packages are both discussed more
extensively in the next section.

Java allows a wide spectrum of access control, as summarized in Table 1.1. The
publ i c access modifier used with the methods of Da t e makes them “publicly” avail-
able; any code that can “see” an object of the class can use its public methods. We say
that these methods are “exported” from the class. Additionally, any class that is derived
from the Da t e class using inheritance inherits its public parts.

Constructor An operation that creates a new
instance of a class
Observer An operation that allows us to observe the
state of an object without changing it
Transformer An operation that changes the internal
state of an object

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 12

1.3 Classes, Objects, and Applications | 13

Figure 1.2 Class diagram for the Da t e class

Date
#ye a r : i nt
#mont h: i nt
#da y: i nt
+MI NYEAR: i nt = 1583

+Da t e (ne wMont h: i nt , ne wDa y: i nt , ne wYe a r : i nt)
+ge t Ye a r () : i nt
+ge t Mont h() : i nt
+ge t Da y() : i nt
+l i l i a n() : i nt
+t oSt r i ng() : St r i ng

Public access sits at one end of the access spectrum, allowing open access. At the
other end of the spectrum is private access. When you declare a class’s variables and
methods as pr i va t e , they can be used only inside the class itself and are not inherited
by subclasses. You should routinely use private access within your classes to hide their
data. You do not want the data values to be changed by code that is outside the class.
However, if you plan to extend your classes using inheritance, you may want to use
protected or package access instead.

An exception to this guideline of hiding data within a class is shown in the Da t e
example. Notice that the MI NYEAR constant is publicly accessible. It can be accessed
directly by client code. For example, a client could include the statement

i f (myYe a r <= Da t e . MI NYEAR) . . .

Because MI NYEAR is a final variable, its value cannot be changed by the client. Thus,
even though it is publicly accessible, no other code can change its value. It is not neces-
sary to hide it. The client code above also shows how to access a public class variable
from outside the class. Because MI NYEAR is a class variable, it is accessed through the
class name, Da t e , rather than through an object of the class.

The pr ot e c t e d access modifier used in Da t e provides visibility similar to private
access, only slightly less rigid. It “protects” its data from outside access, but allows the
data to be accessed from within its own class or from any class derived from its class.
Therefore, the methods within the Da t e class can access ye a r , mont h , and da y , and if,
as we will show in Section 1.4, the Da t e class is extended, the methods in the extended
class can also access those variables.

The remaining type of access is called package access. A variable or method of a class
defaults to package access if none of the other three modifiers are used. Package access
means that the variable or method is accessible to any other class in the same package; also,
the variable or method is inherited by any of its subclasses that are in the same package.

A diagram representing the Da t e class is shown in Figure 1.2. The diagram follows the
standard UML class notation approach. The name of the class appears in the top section of

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 13

14 | Chapter 1: Getting Organized

the diagram, the variables (attributes) appear in the next section, and the methods (opera-
tions) appear in the final section. The diagram includes information about the nature of the
variables and method parameters; for example, we can see at a glance that ye a r , mont h,
and da y are all of type i nt . Note that the variable MI NYEAR is underlined; this indicates
that it is a class variable rather than an instance variable. The diagram also indicates the
visibility or protection associated with each part of the class (+ = public, # = protected).

Lilian Day Numbers
Various approaches to numbering days have been proposed. The idea is to choose a particular
day in history as day 1, and then to number the actual sequence of days from that day forward
with the numbers 2, 3, and so on. The Lilian Day Number (LDN) system uses October 15, 1582, as
day 1, or LDN 1.

Our current calendar is called the Gregorian calendar. It was established in 1582 by Pope
Gregory XIII. At that time 10 days were dropped from the month of October, to make up for
small errors that had accumulated throughout the years.

Thus, the day following October 4, 1582, in the Gregorian calendar is October 15, 1582, also
known as LDN 1 in the Lilian day numbering scheme. The scheme is named after Aloysius Lilius,
an advisor to Pope Gregory and one of the principal instigators of the calendar reform.

Originally, Catholic European countries adopted the Gregorian calendar. Many Protestant
nations, such as England and its colonies, did not adopt the Gregorian calendar until 1752, at
which time they also “lost” 11 days. Today, most countries use the Gregorian calendar, at least
for official international business. When comparing historical dates, one must be careful about
which calendars are being used.

In our Da t e class implementation, MI NYEAR is 1583, representing the first full year during
which the Gregorian calendar was in operation. We assume that programmers will not use the
Da t e class to represent dates before that time, although this rule is not enforced by the class.
This assumption simplifies calculation of LDNs, as we do not have to worry about the phantom
10 days of October 1582.

To calculate LDNs we must understand how the Gregorian calendar works. Years are usually
365 days long. However, every year evenly divisible by 4 is a leap year, 366 days long. This aligns
the calendar closer to astronomical reality. To fine-tune the adjustment, if a year is evenly divis-
ible by 100, it is not a leap year but, if it is also evenly divisible by 400, it is still a leap year. Thus
2000 was a leap year, but 1900 was not.

Given a date, the l i l i a n method of the Da t e class counts the number of days between
that date and the hypothetical date 1/1/0—that is, January 1 of the year 0. This count is made
under the assumption that the Gregorian reforms were in place during that entire time period. In
other words, it uses the rules described in the previous paragraph. Let’s call this number the Rel-
ative Day Number (RDN). To transform a given RDN to its corresponding LDN, we just need to
subtract the RDN of October 14, 1582, from it. For example, to calculate the LDN of July 4,

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 14

1.3 Classes, Objects, and Applications | 15

4. The use of preconditions is covered in Section 2.1.

1776, the method first calculates its RDN (648,856) and then subtracts from it the RDN of Octo-
ber 14, 1582 (578,100), giving the result of 70,756.

Here is the code of the l i l i a n method:

publ i c i nt l i l i a n()
{

/ / Re t ur ns t he Li l i a n Da y Numbe r of t hi s da t e .
/ / Pr e c ondi t i on4: Thi s da t e i s a va l i d da t e a f t e r 10/ 14/ 1582.
/ /
/ / Comput e s t he numbe r of da ys be t we e n 1/ 1/ 0 a nd t hi s da t e a s i f
/ / no c a l e nda r r e f or ms t ook pl a c e , t he n s ubt r a c t s 578, 100 s o t ha t
/ / Oc t obe r 15, 1582, i s da y 1.

f i na l i nt SUBDAYS = 578100; / / numbe r of c a l c ul a t e d da ys
/ / f r om 1/ 1/ 0 t o 10/ 14/ 1582

i nt numDa ys = 0;

/ / Add da ys i n ye a r s .
numDa ys = ye a r * 365;

/ / Add da ys i n t he mont hs .
i f (mont h <= 2)

numDa ys = numDa ys + (mont h - 1) * 31;
e l s e

numDa ys = numDa ys + ((mont h - 1) * 31)
- ((4 * (mont h- 1) + 27) / 10) ;

/ / Add da ys i n t he da ys .
numDa ys = numDa ys + da y;

/ / Ta ke c a r e of l e a p ye a r s .
numDa ys = numDa ys + (ye a r / 4) - (ye a r / 100) + (ye a r / 400) ;

/ / Ha ndl e s pe c i a l c a s e of l e a p ye a r but not ye t l e a p da y.
i f (mont h < 3)
{

i f ((ye a r % 4) == 0) numDa ys = numDa ys - 1;
i f ((ye a r % 100) == 0) numDa ys = numDa ys + 1;
i f ((ye a r % 400) == 0) numDa ys = numDa ys - 1;

}

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 15

16 | Chapter 1: Getting Organized

Figure 1.3 Class diagram showing Da t e objects

Date
#ye a r : i nt
#mont h: i nt
#da y: i nt
+MI NYEAR: i nt = 1583

+Da t e (ne wMont h: i nt , ne wDa y: i nt , ne wYe a r : i nt)
+ge t Ye a r () : i nt
+ge t Mont h() : i nt
+ge t Da y() : i nt
+l i l i a n() : i nt
+t oSt r i ng() : St r i ng

your Da t e

ye a r : 1951
mont h: 6
da y: 24

ye a r : 1953
mont h: 10
da y: 11

myDa t e

ye a r : 1985
mont h: 6
da y: 15

our Da t e

/ / Subt r a c t e xt r a da ys up t o 10/ 14/ 1582.
numDa ys = numDa ys - SUBDAYS;

r e t ur n numDa ys ;
}

Objects
Objects are created from classes at run time. They can contain and manipulate data. Mul-
tiple objects can be created from the same class definition. Once a class such as Da t e has
been defined, a program can create and use objects of that class. The effect is similar to
expanding the language’s set of standard types to include a Da t e type. To create an object
in Java we use the ne w operator, along with the class constructor, as follows:

Da t e myDa t e = ne w Da t e (6, 24, 1951) ;
Da t e your Da t e = ne w Da t e (10, 11, 1953) ;
Da t e our Da t e = ne w Da t e (6, 15, 1985) ;

We say that the variables myDa t e , your Da t e , and our Da t e reference “objects of the
class Da t e ” or simply “objects of type Da t e .” We could also refer to them as “Da t e
objects.”

In Figure 1.3 we have extended our previous diagram (shown in Figure 1.2) to show
the relationship between the instantiated Da t e objects and the Da t e class. As you can

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 16

1.3 Classes, Objects, and Applications | 17

5. Appendix E includes information concerning the Sys t e m class.

see, the objects are concrete instantiations of the class, as represented by arrows in the
figure. Notice that the myDa t e , your Da t e , and our Da t e variables are not objects, but
actually hold references to the objects. The references are shown by the pointers from
the variable boxes to the objects. In reality, references are memory addresses. The mem-
ory address of the instantiated object is stored in the memory location assigned to the
variable. If no object has been instantiated for a particular variable, then its memory
location holds a nul l reference.

Object methods are invoked through the object upon which they are to act. For
example, to assign the value of the ye a r attribute of the our Da t e object to the integer
variable t he Ye a r , a programmer would code

t he Ye a r = our Da t e . ge t Ye a r () ;

Recall that the t oSt r i ng method is invoked in a special way. Just as Java automatically
changes an integer value, such as that returned by ge t Da y, to a string in the statement5

Sys t e m. out . pr i nt l n(" The bi g da y i s " + our Da t e . ge t Da y()) ;

it automatically changes an object, such as our Da t e , to a string in the statement

Sys t e m. out . pr i nt l n(" The pa r t y wi l l be on " + our Da t e) ;

The output from these statements would be

The big day is 15
The party will be on 6/15/1985

To determine how to change the object to a string, the Java compiler automatically
looks for a t oSt r i ng method for that object, such as the t oSt r i ng method we defined
for Da t e objects in our Da t e class.

Applications
You should view an object-oriented program as a set of objects working together, by
sending one another messages, to solve a problem. But where does it all begin? How are
the objects created in the first place?

A Java program typically begins running when the user executes the Java Virtual
Machine and passes it the program. How you begin executing the Java Virtual Machine
depends on your environment. You may simply use the command “java” if you are working
in a command line environment. Or, you may click a “run” icon if you are working within
an integrated development environment. In any case, you indicate the name of a class that
contains a ma i n method. The Java Virtual Machine loads that class and starts executing
that method. The class that contains the ma i n method is called a Java application.

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 17

18 | Chapter 1: Getting Organized

display instructions
prompt for and read in information about the first date
create the date1 object
prompt for and read in information about the second date
create the date2 object
if dates entered are too early

print an error message
else

use the date.lilian method to obtain the Lilian Day Numbers
compute and print the number of days between the dates

Let’s consider an example. Suppose we want to write a program named Da ys Be -
t we e n that provides information about the number of days between two dates. The idea
is for the program to prompt the user for two dates, calculate the number of days
between them, and report this information back to the user.

In object-oriented programming a key step is identifying classes that can be used to
help solve a problem. Our Da t e class is a perfect fit for the days-between problem. It
allows us to create and access date objects. Plus, its l i l i a n method returns a value that
can help us determine the number of days between two dates. We simply subtract the
two Lilian Day Numbers.

The design of our application is

6. Appendix E includes information concerning the Java Sc a nne r class.

The application code is shown below. Some items to note:

• The program imports the ut i l package from the Java class library. The ut i l
package contains Java’s Sc a nne r class,6 which the program uses for input. We
call our Sc a nne r object c onI n because it represents console input.

• The Da ys Be t we e n class contains just a single method, the ma i n method. It is
possible to define other methods within an application and to invoke them from
the ma i n method. Such functional modularization can be used if the ma i n
method becomes long and complicated. However, because we are emphasizing
an object-oriented approach, our applications rarely subdivide a solution in that
manner. Rather, we will use the ma i n method to instantiate objects that help us
solve our problems. Classes and objects are our primary modularization mecha-
nisms, not application methods.

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 18

1.3 Classes, Objects, and Applications | 19

• Although the program checks to ensure the entered years of the dates are “mod-
ern,” it does not do any other input correctness checking. This issue is addressed
in Exercise 23.

/ / -
/ / Da ys Be t we e n. j a va by Da l e / J oyc e / We e ms Cha pt e r 1
/ /
/ / As ks t he us e r t o e nt e r t wo " mode r n" da t e s a nd t he n r e por t s
/ / t he numbe r of da ys be t we e n t he t wo da t e s .
/ / -

i mpor t j a va . ut i l . Sc a nne r ;

publ i c c l a s s Da ys Be t we e n
{

publ i c s t a t i c voi d ma i n(St r i ng[] a r gs)
{

Sc a nne r c onI n = ne w Sc a nne r (Sys t e m. i n) ;
i nt da y, mont h, ye a r ;

Sys t e m. out . pr i nt l n(" Ent e r t wo ' mode r n' da t e s : mont h da y ye a r ") ;
Sys t e m. out . pr i nt l n(" For e xa mpl e , J a nua r y 12, 1954, woul d be : 1 12 1954") ;
Sys t e m. out . pr i nt l n() ;
Sys t e m. out . pr i nt l n(" Mode r n da t e s oc c ur a f t e r " + Da t e . MI NYEAR + " . ") ;
Sys t e m. out . pr i nt l n() ;
Sys t e m. out . pr i nt l n(" Ent e r t he f i r s t da t e : ") ;
mont h = c onI n. ne xt I nt () ;
da y = c onI n. ne xt I nt () ;
ye a r = c onI n. ne xt I nt () ;
Da t e da t e 1 = ne w Da t e (mont h, da y, ye a r) ;
Sys t e m. out . pr i nt l n(" Ent e r t he s e c ond da t e : ") ;
mont h = c onI n. ne xt I nt () ;
da y = c onI n. ne xt I nt () ;
ye a r = c onI n. ne xt I nt () ;
Da t e da t e 2 = ne w Da t e (mont h, da y, ye a r) ;
i f ((da t e 1. ge t Ye a r () <= Da t e . MI NYEAR)

| |
(da t e 2. ge t Ye a r () <= Da t e . MI NYEAR))

Sys t e m. out . pr i nt l n(" You e nt e r e d a ' pr e - mode r n' da t e . ") ;
e l s e
{

Sys t e m. out . pr i nt l n(" The numbe r of da ys be t we e n") ;
Sys t e m. out . pr i nt (da t e 1) ;
Sys t e m. out . pr i nt (" a nd ") ;
Sys t e m. out . pr i nt (da t e 2) ;

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 19

20 | Chapter 1: Getting Organized

Sys t e m. out . pr i nt (" i s ") ;
Sys t e m. out . pr i nt l n(Ma t h. a bs (da t e 1. l i l i a n() - da t e 2. l i l i a n())) ;

}
}

}

Here’s the result of a sample run of the application. User input is shown in this color.
We’ll use the birth date of a friend and the date this chapter was last modified.

Enter two ‘modern’ dates: month day year
For example, January 12, 1954, would be: 1 12 1954
Modern dates occur after 1583.

Enter the first date:
1 12 1954

Enter the second date:
5 25 2010

The number of days between
1/12/1954 and 5/25/2010 is 20587

Wow. That’s a lot of days!

1.4 Organizing Classes

During object-oriented development dozens—even hundreds—of classes can be generated
or reused to help build a system. The task of keeping track of all of these classes would
be impossible without some type of organizational structure. In this section we review
two of the most important ways of organizing Java classes: inheritance and packages. As
you will see, both of these approaches are used “simultaneously” for most projects.

Inheritance
Inheritance is much more than just an organizational mechanism. It is, in fact, a power-
ful reuse mechanism. Inheritance allows programmers to create a new class that is a
specialization of an existing class. We say that the new class is a subclass of the exist-
ing class, which in turn is the superclass of the new class.

A subclass “inherits” features from its superclass. It adds new features, as needed,
related to its specialization. It can also redefine inherited features as necessary. “Super”
and “sub” refer to the relative positions of the classes in a hierarchy. A subclass is below
its superclass and a superclass is above its subclasses.

Suppose we already have a Da t e class as defined previously, and we are creating a
new application to manipulate Da t e objects. Suppose also that in the new application
we are often required to “increment” a Da t e object—that is, to change a Da t e object so

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 20

1.4 Organizing Classes | 21

that it represents the next day. For example, if the Da t e object represents 7/31/2001, it
would represent 8/1/2001 after being incremented. The algorithm for incrementing the
date is not trivial, especially when you consider leap year rules. But in addition to
developing the algorithm, another question that must be addressed is where to put that
algorithm. There are several options:

• Implement the algorithm within the new application. The code would need to
obtain the month, day, and year from the Da t e object using the observer meth-
ods; calculate the new month, day, and year; instantiate a new Da t e object to
hold the updated month, day, and year; and assign the new object to all the
variables currently referencing the original Da t e object. This might be a com-
plex task. Besides, if future applications also need this functionality, their pro-
grammers would have to reimplement the solution for themselves. This approach
does not support reusability and possibly requires complex tracking of object
aliases.

• Add a new method, called i nc r e me nt , to the Da t e class. This method would
update the value of the current object. Such an approach allows future programs to
use the new functionality. However, in some cases, a programmer may want a
Da t e class with protection against any changes to its objects. Such objects are said
to be immutable. Adding i nc r e me nt to the Da t e class undermines this protection.

• Use inheritance. Create a new class, called I nc Da t e , which inherits all the fea-
tures of the current Da t e class, but that also provides the i nc r e me nt method.
This approach resolves the drawbacks of the previous two approaches.

We now look at how to implement the last approach, that is, to use inheritance to solve our
problem. We often call the inheritance relationship an is a relationship. In this case we
would say that an object of the class I nc Da t e is also a Da t e object, because it can do any-
thing that a Da t e object can do—and more. This idea can be clarified by remembering that
inheritance typically means specialization. I nc Da t e is a special case of Da t e , but not the
other way around. To create I nc Da t e in Java we would code:

publ i c c l a s s I nc Da t e e xt e nds Da t e
{

publ i c I nc Da t e (i nt ne wMont h, i nt ne wDa y, i nt ne wYe a r)
{

s upe r (ne wMont h, ne wDa y, ne wYe a r) ;
}

publ i c voi d i nc r e me nt ()
/ / I nc r e me nt s t hi s I nc Da t e t o r e pr e s e nt t he ne xt da y.
/ / For e xa mpl e , i f t hi s = 6/ 30/ 2005, t he n t hi s be c ome s 7/ 1/ 2005.
{

/ / I nc r e me nt a l gor i t hm goe s he r e .
}

}

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 21

22 | Chapter 1: Getting Organized

Note that sometimes in code listings in this textbook we emphasize the sections of code
most pertinent to the current discussion by underlining them.

Inheritance is indicated by the keyword e xt e nds , which shows that I nc Da t e
inherits from Da t e . It is not possible in Java to inherit constructors, so I nc Da t e must
supply its own. In this case, the I nc Da t e constructor simply takes the month, day, and
year arguments and passes them to the constructor of its superclass (that is, to the Da t e
class constructor) using the s upe r reserved word.

The other part of the I nc Da t e class is the new i nc r e me nt method, which is classi-
fied as a transformer because it changes the internal state of the object. The i nc r e me nt
method changes the object’s da y and possibly the mont h and ye a r values. The method
is invoked through the object that it is to transform. For example, the statement

our Da t e . i nc r e me nt () ;

transforms the our Da t e object.
Note that we have left out the details of the i nc r e me nt method because they are

not crucial to our current discussion (see Exercise 30).
A program with access to each of the date classes can now declare and use both

Da t e and I nc Da t e objects. Consider the following program segment:

Da t e myDa t e = ne w Da t e (6, 24, 1951) ;
I nc Da t e a Da t e = ne w I nc Da t e (1, 11, 2001) ;

Sys t e m. out . pr i nt l n(" myda t e da y i s : " + myDa t e . ge t Da y()) ;
Sys t e m. out . pr i nt l n(" a Da t e da y i s : " + a Da t e . ge t Da y()) ;

a Da t e . i nc r e me nt () ;
Sys t e m. out . pr i nt l n(" t he da y a f t e r i s : " + a Da t e . ge t Da y()) ;

This program segment instantiates and initializes myDa t e and a Da t e , outputs the values
of their days, increments a Da t e , and finally outputs the new day value of a Da t e . You
might ask, “How does the system resolve the use of the ge t Da y method by an I nc Da t e
object when ge t Da y is defined in the Da t e class?” Understanding how inheritance is
supported by Java provides the answer to this question. The extended class diagram in
Figure 1.4, which shows the inheritance relationships and captures the state of the sys-
tem after the a Da t e object has been incremented, helps us investigate the situation. As is
standard with UML class diagrams, inheritance is indicated by a solid arrow with an open
arrow head (a triangle). Note that the arrow points from the subclass to the superclass.

The compiler has available to it all the declaration information captured in the
extended class diagram. Consider the ge t Da y method call in the statement

Sys t e m. out . pr i nt l n(" a Da t e da y i s : " + a Da t e . ge t Da y()) ;

To resolve this method call, the compiler follows the reference from the a Da t e variable
to the I nc Da t e class. It does not find a definition for a ge t Da y method in the I nc Da t e
class, so it follows the inheritance link to the superclass Da t e . There it finds, and uses,
the ge t Da y method. In this case, the ge t Da y method returns an i n t value that repre-

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 22

1.4 Organizing Classes | 23

Figure 1.4 Extended class diagram showing inheritance

Date
#ye a r : i nt
#mont h: i nt
#da y: i nt
+MI NYEAR: i nt = 1583

+Da t e (ne wMont h: i nt , ne wDa y: i nt , ne wYe a r : i nt)
+ge t Ye a r () : i nt
+ge t Mont h() : i nt
+ge t Da y() : i nt
+l i l i a n() : i nt
+t oSt r i ng() : St r i ng

+I nc Da t e (i n ne wMont h: i nt , i n ne wDa y: i nt , i n ne wYe a r : i nt)
+i nc r e me nt () : voi d

Object

a Da t e : I nc Da t e

ye a r : i nt = 2001
mont h: i nt = 1
da y: i nt = 12

a Da t e

myDa t e : Da t e

ye a r : i nt = 1951
mont h: i nt = 6
da y: i nt = 24

myDa t e

+Obj e c t () : Obj e c t
#c l one () : Obj e c t
+e qua l s (i n a r g: Obj e c t) : bool e a n
+t oSt r i ng() : St r i ng
+e t c ()

IncDate

sents the da y value of the a Da t e object. During execution, the system changes the
i n t value to a St r i ng , concatenates it to the string “aDate day is: ”, and prints it to
Sys t e m. out .

The Inheritance Tree
Java supports single inheritance only. This means that a class can extend only one other
class. Therefore, in Java, the inheritance relationships define an inheritance tree.

Class

Class Class Class

Class

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 23

24 | Chapter 1: Getting Organized

Figure 1.4 shows one branch of the overall system inheritance tree. Note that because of
the way method calls are resolved, by searching up the inheritance tree, only objects of
the class I nc Da t e can use the i nc r e me nt method—if you try to use the i nc r e me nt
method on an object of the class Da t e , such as the myDa t e object, no definition is
available in either the Da t e class or any of the classes above Da t e in the inheritance
tree. The compiler would report a syntax error in this situation.

Notice the Obj e c t class in Figure 1.4. Where did it come from? In Java, any class
that does not explicitly extend another class implicitly extends the predefined Obj e c t
class. Because Da t e does not explicitly extend any other class, it inherits directly from
Obj e c t .Da t e as a subclass of Obj e c t . The solid arrows with the open arrowheads indi-
cate inheritance in the diagram.

All Java classes can be traced back to the Obj e c t class. We say that the Obj e c t
class is the root of the inheritance tree. The Obj e c t class defines several basic methods:
comparison for equality (e qua l s), conversion to a string (t oSt r i ng), and so on. There-
fore, for example, any object in any Java program supports the method t oSt r i ng
because it is inherited from the Obj e c t class. Let’s consider the t oSt r i ng example
more carefully.

As discussed previously, just as Java automatically changes an integer value to a
string in the statement

Sys t e m. out . pr i nt l n(" a Da t e da y i s : " + a Da t e . ge t Da y()) ;

so it automatically changes an object to a string in the statement

Sys t e m. out . pr i nt l n(" t omor r ow: " + a Da t e) ;

If you use an object as a string anywhere in a Java program, the Java compiler auto-
matically looks for a t oSt r i ng method for that object. In this case the t oSt r i ng
method is not found in the I nc Da t e class, but it is found in its superclass, the Da t e
class. However, if it was not defined in the Da t e class, the compiler would continue
looking up the inheritance hierarchy and would find the t oSt r i ng method in the
Obj e c t class. Given that all classes trace their roots back to Obj e c t , the compiler is
always guaranteed to find a t oSt r i ng method eventually.

But wait a minute. What does it mean to “change an object to a string”? Well, that
depends on the definition of the t oSt r i ng method that is associated with the object.
The t oSt r i ng method of the Obj e c t class returns a string representing some of the
internal system implementation details about the object. This information is somewhat
cryptic and generally not useful to us. This situation is an example of where it is useful
to redefine an inherited method. We generally override the default t oSt r i ng method
when creating our own classes so as to return a more relevant string, as we did with the
Da t e class.

Table 1.2 shows the output from the following program segment:

Da t e myDa t e = ne w Da t e (6, 24, 1951) ;
I nc Da t e c ur r Da t e = ne w I nc Da t e (1, 11, 2001) ;

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 24

1.4 Organizing Classes | 25

Table 1.2 Output from Program Segment

Object Class toString Used Date Class toString Used
myda t e : Da t e @256a 7c
t oda y: I nc Da t e @720e e b
t omor r ow: I nc Da t e @720e e b

myda t e : 6 / 24/ 1951
t oda y: 1 / 11/ 2001
t omor r ow: 1/ 12/ 2001

Sys t e m. out . pr i nt l n(" myda t e : " + myDa t e) ;
Sys t e m. out . pr i nt l n(" t oda y: " + c ur r Da t e) ;

c ur r Da t e . i nc r e me nt () ;
Sys t e m. out . pr i nt l n(" t omor r ow: " + c ur r Da t e) ;

The results on the left show an example of the output generated if the t oSt r i ng
method of the Obj e c t class is used by default; the results on the right show the out-
come if the t oSt r i ng method of our Da t e class is used.

One last note: Remember that subclasses are assignment compatible with the super-
classes above them in the inheritance hierarchy. Therefore, in our example, the statement

myDa t e = c ur r Da t e ;

would be legal, but the statement

c ur r Da t e = myDa t e ;

would cause an “incompatible-type” syntax error.

Packages
Java lets us group related classes together into a unit called a package. Packages pro-
vide several advantages:

• They let us organize our files.
• They can be compiled separately and imported into our programs.
• They make it easier for programs to use common class files.
• They help us avoid naming conflicts (two classes can have the same name if they

are in different packages).

Package Syntax
The syntax for a package is extremely simple. All we have to do is to specify the pack-
age name at the start of the file containing the class. The first noncomment, nonblank

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 25

26 | Chapter 1: Getting Organized

line of the file must contain the keyword pa c ka ge followed by an identifier and a semi-
colon. By convention, Java programmers start a package identifier with a lowercase let-
ter to distinguish package names from class names:

pa c ka ge s ome Na me ;

Following the package name specification in the file, we can write import declarations,
so as to make the contents of other packages available to the classes inside the package
we are defining, and then one or more declarations of classes. Java calls this file a com-
pilation unit. The classes defined in the file are members of the package. The imported
classes are not members of the package.

The name of the file containing the compilation unit must match the name of the
public class within the unit. Therefore, although we can declare multiple classes in a
compilation unit, only one of them can be declared public. All nonpublic classes in the
file are hidden from the world outside the package. If a compilation unit can hold at
most one public class, how do we create packages with multiple public classes? We have
to use multiple compilation units, as described next.

Packages with Multiple Compilation Units
Each Java compilation unit is stored in its own file. The Java system identifies the file
using a combination of the package name and the name of the public class in the com-
pilation unit. Java restricts us to having a single public class in a file so that it can use
file names to locate all public classes. Thus a package with multiple public classes must
be implemented with multiple compilation units, each in a separate file.

Using multiple compilation units has the further advantage of providing us with
greater flexibility in developing the classes of a package. Team programming projects
would be more cumbersome if Java made multiple programmers share a single package
file.

We split a package among multiple files simply by placing its members into separate
compilation units with the same package name. For example, we can create one file con-
taining the following code (the ... between the braces represents the code for each class):

pa c ka ge ga mma ;
publ i c c l a s s One { . . . }
c l a s s Two{ . . . }

A second file could contain this code:

pa c ka ge ga mma ;
c l a s s Thr e e { . . . }
publ i c c l a s s Four { . . . }

The result: The package ga mma contains four classes. Two of the classes, One and Four ,
are public, so they are available to be imported by application code. The two file names

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 26

1.4 Organizing Classes | 27

must match the two public class names; that is, the files must be named One . j a va and
Four . j a va , respectively.

Many programmers place every class in its own compilation unit. Others gather the
nonpublic classes into one unit, separate from the public classes. How you organize
your packages is up to you, but you should be consistent, to make it easy to find a spe-
cific member of a package among all of its files.

How does the Java compiler manage to find these pieces and put them together?
The answer is that it requires that all compilation unit files for a package be kept in a
single directory or folder that matches the name of the package. For our preceding
example, a Java system would store the source code in files called One . j a va and
Four . j a va , both in a directory called ga mma .

The Import Statement
To access the contents of a package from within a program, you must import it into
your program. You can use either of the following forms of import statements:

i mpor t pa c ka ge na me . *;
i mpor t pa c ka ge na me . Cl a s s na me ;

An import declaration begins with the keyword i mpor t , the name of a package, and a
dot (period). Following the dot you can write either the name of a class in the package
or an asterisk (*). The declaration ends with a semicolon. If you want to use exactly one
class in a particular package, then you can simply give its name in the import declara-
tion. More often, however, you want to use more than one of the classes in a package.
In this case the asterisk is a shorthand notation to the compiler that says, “Import what-
ever classes from this package that this program uses.”

Packages and Subdirectories
Many computer platforms use a hierarchical file system. The Java package rules are
defined to work seamlessly with such systems. Java package names may also be hierar-
chical; they may contain “periods” separating different parts of the name—for example,
c h03. s t a c ks . In such a case, the package files must be placed underneath a set of sub-
directories that match the separate parts of the package name. Continuing the same
example, the package files should be placed in a directory named s t a c ks that is a sub-
directory of a directory named c h03. You can then import the entire package into your
program with the following statement:

i mpor t c h03. s t a c ks . *;

As long as the directory that contains the c h03 directory is on the Cl a s s Pa t h of
your system, the compiler will be able to find the package you requested. The compiler
automatically looks in all directories listed in Cl a s s Pa t h. Most programming environ-
ments provide a command to specify the directories to be included in the Cl a s s Pa t h.
You will need to consult the documentation for your particular system to see how to do
this. In our example, the compiler will search all Cl a s s Pa t h directories for a subdirectory

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 27

28 | Chapter 1: Getting Organized

named c h03 that contains a subdirectory named s t a c ks ; upon finding such a subdirec-
tory, it will import all of the members of the c h03. s t a c ks package that it finds there.

The Textbook Program Files
Many of the files created to support this textbook are organized into packages. They are organized
exactly as described above and are available at the book’s website, www.jblearning.com/
catalog/9781449613549/. All of the files are found in a directory named bookFi l e s . It contains a
separate subdirectory for each chapter of the book: c h01, c h02, Where packages are used, you
will find the corresponding subdirectories underneath the chapter subdirectories. For example, the
c h03 subdirectory does, indeed, contain a subdirectory named s t a c ks , which in turn contains files
that define Java classes related to a Stack ADT. Each of the class files begins with the statement

pa c ka ge c h03. s t a c ks ;

Thus they are all in the c h03. s t a c ks package. If you write a program that needs to use these
files, you can simply import the package into your program and make sure the parent directory
of the c h03 directory (that is, the bookFi l e s directory), is included in your computer’s
Cl a s s Pa t h.

We suggest that you copy the entire bookFi l e s directory to your computer’s hard drive,
ensuring easy access to all of the book’s files and maintaining the crucial subdirectory structure
required by the packages. Also, make sure you extend your computer’s Cl a s s Pa t h to include
your new bookFi l e s directory.

1.5 Data Structures

You are already familiar with various ways of organizing data. When you look up a
number in a telephone directory or a word in a dictionary, you are using an ordered list
of words. When you take a number at a delicatessen or barbershop, you become part of
a line of people awaiting service. When you study the pairings in a sports tournament
and try to predict which team or player will advance through all the rounds and become
champion, you create a treelike list of predicted results.

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 28

1.5 Data Structures | 29

Just as we use many approaches to organize data to deal with everyday problems, pro-
grammers use a wide variety of approaches to organize data when solving problems using
computers. When programming, the way you view and structure the data that your pro-
grams manipulate greatly influences your success. A language’s set of primitive types
(Java’s are byt e , c ha r , s hor t , i nt , l ong, f l oa t , doubl e , and bool e a n) can be very use-
ful if we need a counter, a sum, or an index in a program. Generally, however, we must
also deal with large amounts of data that have complex interrelationships.

Computer scientists have devised many organizational structures to represent data
relationships. These structures act as a unifying theme for this textbook. In this section
we introduce the topic in an informal way, by briefly describing some of the classic
approaches.

Implementation- Dependent Structures
The underlying implementation of the first two structures we present is an inherent part
of their definition. These structures act as building blocks for many of the other structures.

Array

You have studied and used arrays in your previous work. An array’s components are
accessed by using their positions in the structure. Arrays are one of the most important

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 29

30 | Chapter 1: Getting Organized

organizational structures. They are available as a basic language construct in most
high-level programming languages. Additionally, they are one of the basic building
blocks for implementing other structures. We look at arrays more closely in Section 1.6,
“Basic Structuring Mechanisms.”

Linked List

A linked list is a collection of separate elements, with each element linked to the one
that follows it in the list. We can think of a linked list as a chain of elements. The linked
list is a versatile, powerful, basic implementation structure and, like the array, it is one
of the primary building blocks for the more complicated structures. Teaching you how
to work with links and linked lists is one of the important goals of this textbook. We
look at Java’s link mechanism in Section 1.6, “Basic Structuring Mechanisms.” Addi-
tionally, throughout the rest of the textbook we study how to use links and linked lists
to implement other structures.

Implementation- Independent Structures
Unlike the array and the linked list, the organizational structures presented in this
subsection are not tied to a particular implementation approach. They are more
abstract.

The structures presented here display different kinds of relationships among their
constituent elements. For stacks and queues, the organization is based on when the ele-
ments were placed into the structure; for sorted lists, it is related to the values of the
elements; and for trees and graphs, it reflects some feature of the problem domain that
is captured in the relative positions of the elements.

Each of these structures is treated separately later in the textbook, when we
describe them in more detail, investigate ways of using them, and look at several possi-
ble implementations.

xLL

x

x

x

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 30

1.5 Data Structures | 31

Stack

The defining feature of a stack is that whenever you access or remove an element, you work
with the element that was most recently inserted. Stacks are “last in, first out” (LIFO) struc-
tures. To see how they work, think about a stack of dishes or trays. Note that the concept of
a stack is completely defined by the relationship between its accessing operations, the oper-
ations for inserting something into it or removing something from it. No matter what the
underlying implementation is, as long as the LIFO relationship holds, we have a stack.

Queue

Queues are, in one sense, the opposite of stacks. They are “first in, first out” (FIFO)
structures. The defining feature of a queue is that whenever you access or remove an
element from a queue, you work with the element that was in the queue for the longest
time. Think about an orderly line of people waiting to board a bus or a group of people,
holding onto their service numbers, at a delicatessen. In both cases, the people will be
served in the order in which they arrived. In fact, this is a good example of how the
abstract organizational construct, the queue, can have more than one implementation
approach—an orderly line or service numbers.

Sorted List

Both the telephone directory and the dictionary are examples of sorted lists. The ele-
ments of such a list display a linear relationship. Each element (except the first) has a
predecessor, and each element (except the last) has a successor. In a sorted list, the
relationship also reflects an ordering of the elements, from “smallest” to “largest,” or
vice versa.

George, John, Paul, Ringo

xx xx

InOut

x

x

x

x

x

In Out

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 31

32 | Chapter 1: Getting Organized

You might be thinking that an array whose elements are sorted is a sorted list—and
you would be correct! As we said earlier, arrays are one of the basic building blocks for
constructing other structures. But that is not the only way to implement a sorted list.
We will cover several other approaches.

Tree

Stacks, queues, and lists are all linear structures. Their elements can be drawn in a line
because each element has at most one element preceding it and one following it.

Trees and graphs are nonlinear. Each element of a tree is capable of having many
successor elements, called its children. A child element can have only one parent. Thus,
a tree is a branching structure. Every tree has a special beginning element called the
root. The root is the only element that does not have a parent.

Trees are useful for representing hierarchical relationships among data elements.
For example, they can be used to classify the members of the animal kingdom or to
organize a set of tasks into subtasks. Trees can even be used to reflect an is a relation-
ship among Java classes, as defined by the Java inheritance mechanism.

Graph

A graph is made up of a set of elements, usually called nodes or vertices, and a set of
edges that connect the vertices. Unlike with trees, there are no restrictions on the con-
nections between the elements. Typically, the connections, or edges, describe relation-
ships among the vertices. In some cases, values, also called weights, are associated
with the edges to represent some feature of the relationship. For example, the vertices
may represent cities and the edges may represent pairs of cities that are connected by
airplane routes. Values of the edges could represent the distances or travel times
between cities.

Throughout the years, dozens of ways to organize data have been identified, with
hundreds of variations. In this textbook we explore all of the ones introduced in this
section, plus a few more. This will provide you with a diverse set of structures to help
solve problems with computers and give you the background needed to continue your
exploration of the many available advanced structures on your own.

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 32

1.6 Basic Structuring Mechanisms | 33

What Is a Data Structure?
We have divided our examples of structures into implementation-dependent and imple-
mentation-independent categories. Originally, in the infancy of computing, such a dis-
tinction was not made. Most of the emphasis on the study of structures at that time
dealt with their implementation. The term “data structure” was associated with the
details of coding lists, stacks, trees, and so on. As our approaches to problem solving
have evolved, we have recognized the importance of separating our study of such struc-
tures into both abstract and implementation levels.

As is true for many terms in the discipline of computing, you can find varied uses
of the term “data structure” throughout the literature. One approach is to say that a
data structure is the implementation of organized data. With this approach, of the
structures described in this section, only the implementation-dependent structures, the
array and the linked list, are considered data structures. Another approach is to consider
any view of organizing data as a data structure. With this second approach, the imple-
mentation-independent structures, such as the stack and the graph, are also considered
data structures.

No matter how you label them, all of the structures described here are important
tools for solving problems with programs. In this textbook we will explore all of these
data structures, plus many additional structures, from several perspectives.

1.6 Basic Structuring Mechanisms

All of the structures described in Section 1.5 can be implemented using some combina-
tion of two basic structuring mechanisms, the reference and the array. Most general-
purpose high-level languages provide these two mechanisms. In this section we review
Java’s versions of them. In Chapter 2 we will begin to use references and arrays to build
organizational structures.

To help present the concepts of this section, we assume access to a Ci r c l e class.
The Ci r c l e class defines circular objects of different diameters. It provides a construc-
tor that accepts an integer value that represents the diameter of the circle. The Ci r c l e
class provides a convenient example, allowing us to graphically represent objects in our
figures—we simply use actual circles of various diameters to represent the Ci r c l e
objects.

References
As discussed in Section 1.3, “Classes, Objects, and Applications,” variables of an object
class hold references to objects. Consider the effects of the following Java statements:

Ci r c l e c i r c l e A;
Ci r c l e c i r c l e B = ne w Ci r c l e (8) ;

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 33

34 | Chapter 1: Getting Organized

The first statement reserves memory space for a variable of class Ci r c l e . The second
statement does the same thing, but also creates an object of class Ci r c l e and places a
reference to that object in the c i r c l e B variable.

The reference is indicated by an arrow. In reality, the reference is a memory address.
References are sometimes referred to as links, addresses, or pointers. The memory
address of the Ci r c l e object is stored in the memory location assigned to the c i r c l e B
variable. Note how we are representing the Ci r c l e object with an actual circle. In real-
ity it would consist of a section of memory allocated to the object.

Because no object has been instantiated or assigned to the c i r c l e A variable, its
memory location holds a nul l reference. Java uses the reserved word nul l to indicate
an “absence of reference.” If a reference variable is declared without being assigned an
instantiated object, it is automatically initialized to the value nul l . You can also explic-
itly assign nul l to a variable:

c i r c l e B = nul l ;

In addition, you can use nul l in a comparison:

i f (c i r c l e A == nul l)
Sys t e m. out . pr i nt l n(" The Ci r c l e doe s not e xi s t ") ;

Reference Types Versus Primitive Types
It is important to understand the differences in how primitive and nonprimitive types
are handled in Java. Primitive types, such as the i nt type, are handled “by value.” Non-
primitive types, such as arrays and classes, are handled “by reference.” Whereas the
variable of a primitive type holds the value of the variable, the variable of a nonprimi-
tive type holds a reference to the value of the variable. That is, the variable holds the
address where the system can find the value associated with the variable.

The differences in how “by value” and “by reference” variables are handled are seen
dramatically in the result of a simple assignment statement. Figure 1.5 shows the result
of the assignment of one i nt variable to another i nt variable, and the result of the
assignment of one Ci r c l e variable to another Ci r c l e variable.

When we assign a variable of a primitive type to another variable of the same type,
the latter becomes a copy of the former. But, as you can see from Figure 1.5, this is not
the case with reference types. When we assign Ci r c l e c 2 to Ci r c l e c 1, c 1 does not
become a copy of c 2. Instead, the reference associated with c 1 becomes a copy of the
reference associated with c 2. As a consequence, both c 1 and c 2 now reference the same
object. The ramifications of this difference are discussed in the next four subsections.

c i r c l e B

c i r c l e A null

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 34

1.6 Basic Structuring Mechanisms | 35

Figure 1.5 Results of assignment statements

i nt A i nt A = i nt B

i nt B

15

10

i nt A

i nt B

10

10

c 1

c 2

c 1

c 2

Initial state Final stateOperation

c 1 = c 2

Aliases
The assignment of one object to another object, as shown in Figure 1.5, results in both
object variables referring to the same object. Thus we have two “names” for the same
object. In this case we have an “alias” of the object. Good programmers avoid aliases
because they make programs difficult to understand. An object’s state can change, even
though it appears that the program did not access the object, when the object is
accessed through the alias. For example, consider the I nc Da t e class that was defined in
Section 1.4. If da t e 1 and da t e 2 are aliases for the same I nc Da t e object, then the code

Sys t e m. out . pr i nt l n(da t e 1) ;
da t e 2. i nc r e me nt () ;
Sys t e m. out . pr i nt l n(da t e 1) ;

would print out two different dates, even though at first glance it would appear that it
should print out the same date twice (see Figure 1.6). This behavior can be very confusing
for a maintenance programmer and lead to hours of frustrating testing and debugging.

Garbage
It would be fair to ask in the situation depicted in the lower half of Figure 1.5, “What
happens to the space being used by the larger circle?” After the assignment statement
the program has lost its reference to the large circle, so it can no longer be accessed.
This kind of memory space, which has been allocated to a program but can no longer be

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 35

36 | Chapter 1: Getting Organized

Figure 1.6 Aliases can be confusing

da t e 1

Initial state

da t e 2

year 2005
month 1
day 1

da t e 1

State after date2. increment ()

da t e 2

year 2005
month 1
day 2

accessed by a program, is called garbage. Garbage can
be created in several other ways in a Java program.
For example, the following code would create 100
objects of class Ci r c l e , but only one of them can be

accessed through the c 1 variable after the loop finishes executing:

Ci r c l e c 1;
f or (n = 1; n <= 100; n++)
{

Ci r c l e c 1 = ne w Ci r c l e (n) ;
/ / Code t o i ni t i a l i z e a nd us e c 1 goe s he r e .

}

The other 99 objects cannot be reached by the program. They are garbage.
When an object is unreachable, the Java run-time system marks it as garbage. The

system regularly performs an operation known as garbage collection, in which it identi-
fies unreachable objects and deallocates their storage space, returning the space to the
free pool for the creation of new objects.

This approach—creating and destroying objects
at different points in the application by allocating
and deallocating space in the free pool—is called
dynamic memory management. Without it, the com-
puter would be much more likely to run out of stor-
age space for data.

Comparing Objects
The fact that nonprimitive types are handled by ref-
erence affects the results returned by the == compari-
son operator. Two variables of a nonprimitive type

Garbage collection The process of finding all
unreachable objects and deallocating their storage
space
Deallocate To return the storage space for an object
to the pool of free memory so that it can be reallo-
cated to new objects
Dynamic memory management The allocation and
deallocation of storage space as needed while an appli-
cation is executing

Garbage The set of currently unreachable objects

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 36

1.6 Basic Structuring Mechanisms | 37

Figure 1.7 Comparing primitive and nonprimitive variables

i nt A

i nt B
" i nt A == i nt B" e va l ua t e s t o t r ue

" c 1 == c 2" e va l ua t e s t o f a l s e

" c 1 == c 2" e va l ua t e s t o t r ue

10

10

c 1

c 2

c 1

c 2

are considered identical, in terms of the == operator, only if they are aliases for each
other. This makes sense when you consider that the system compares the contents of the
two variables; that is, it compares the two references that those variables contain. So
even if two variables of type Ci r c l e reference circles with the same diameter, they are
not considered equal in terms of the comparison operator. Figure 1.7 shows the results
of using the comparison operator in various situations.

Parameters
When methods are invoked, they are often passed information (arguments) through
parameters. Some programming languages allow the programmer to control whether
arguments are passed by value (a copy of the argument’s value is used) or by reference
(a copy of the argument’s address is used). Java does not allow such control. Whenever
a variable is passed as an argument, the value stored in that variable is copied into the
method’s corresponding parameter variable. In other words, all Java arguments are
passed by value. Therefore, if the argument is of a primitive type, the actual value (i nt ,
doubl e , and so on) is passed to the method. However, if the argument is a reference
type, an object, or an array, then the value passed to the method is the value of the ref-
erence—it is the address of the object or the array.

As a consequence, passing an object variable as an argument causes the receiving
method to create an alias of the object. If the method uses the alias to make changes to
the object, then when the method returns, an access via the original variable finds the
object in its modified state.

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 37

38 | Chapter 1: Getting Organized

7. Appendix E includes information concerning the Java Exc e pt i on class.

Arrays
The second basic structuring construct is the array. Whereas a reference provides the
programmer with a direct address mechanism, an array allows the programmer to access
a sequence of locations using an indexed approach. We assume you are already familiar
with the basic use of arrays from your previous work. In this subsection we review some
of the subtle aspects of using arrays in Java.

Arrays in Java are a nonprimitive type and, therefore, are handled by reference, just
like objects. Thus they need to be treated carefully, just like objects, in terms of aliases,
comparison, and their use as arguments. And like objects, in addition to being declared,
arrays must be instantiated. At instantiation you specify how large the array will be:

numbe r s = ne w i nt [10] ;

As with objects, you can both declare and instantiate arrays with a single command:

i nt [] numbe r s = ne w i nt [10] ;

Let’s discuss a few questions you may have about arrays:

• What are the initial values in an array instantiated by using ne w? If the array
components are primitive types, they are set to their default value. If the array
components are reference types, such as arrays or classes, the components are set
to nul l .

• Can you provide initial values for an array? Yes. An alternative way to create an
array is with an initializer list. For example, the following line of code declares,
instantiates, and initializes the array numbe r s :

i nt numbe r s [] = {5, 32, - 23, 57, 1 , 0 , 27, 13, 32, 32} ;

• What happens if we try to execute the statement

numbe r s [n] = va l ue ;

when n is less than 0 or when n is greater than 9? A memory location outside
the array would be accessed, which causes an out-of-bounds error. Some lan-
guages—C++, for instance—do not check for this error, but Java does. If your
program attempts to use an index that is not within the bounds of the array, an
Ar r a yI nde xOut Of Bounds Exc e pt i on7 is thrown.

In addition to component selection, one other “operation” is available for our
arrays. In Java, each array that is instantiated has a public instance variable, called

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 38

1.6 Basic Structuring Mechanisms | 39

l e ngt h, associated with it that contains the number of components in the array. You
access this variable using the same syntax you use to invoke object methods—you use
the name of the object followed by a period, followed by the name of the instance vari-
able. For the numbe r s example, the expression

numbe r s . l e ngt h

would have the value 10.

Arrays of Objects
Although arrays with primitive-type components are very common, many applications
require a collection of objects. In such a case we can simply define an array whose com-
ponents are objects.

Let’s define an array of Ci r c l e objects. Declaring and creating the array of
objects are exactly like declaring and creating an array where the components are
primitive types:

Ci r c l e [] a l l Ci r c l e s = ne w Ci r c l e [10] ;

This means a l l Ci r c l e s is an array that can hold 10 references to Ci r c l e objects.
What are the diameters of the circles? We don’t know yet. The array of circles has
been instantiated, but the Ci r c l e objects themselves have not. Another way of saying
this is that a l l Ci r c l e s is an array of references to Ci r c l e objects, which are set to
nul l when the array is instantiated. The objects must be instantiated separately. The
following code segment initializes the first and second circles. We’ll assume that a
Ci r c l e object myCi r c l e has already been instantiated and initialized to have a diam-
eter of 8.

Ci r c l e [] a l l Ci r c l e s = ne w Ci r c l e [10] ;
a l l Ci r c l e s [0] = myCi r c l e ;
a l l Ci r c l e s [1] = ne w Ci r c l e (4) ;

Normally, such an array would be initialized using a “for loop” and a constructor
method, but we used the above approach so that we could demonstrate several of the
subtleties of the construct. Figure 1.8 provides a visual representation of the array.

Two- Dimensional Arrays
A one-dimensional array is used to represent elements in a list or a sequence of values.
A two-dimensional array is used to represent elements in a table with rows and
columns.

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 39

40 | Chapter 1: Getting Organized

Figure 1.8 The a l l Ci r c l e s array

a l l Ci r c l e s

a l l Ci r c l e s [0]

a l l Ci r c l e s [1]

a l l Ci r c l e s [2]

•
•
•

•
•
•

a l l Ci r c l e s [9]

myCi r c l e

null

null

Figure 1.9 shows a two-dimensional array with 100 rows and 9 columns. The rows
are accessed by an integer ranging from 0 through 99; the columns are accessed by an
integer ranging from 0 through 8. Each component is accessed by a row–column pair—
for example, [0][5].

A two-dimensional array variable is declared in exactly the same way as a one-
dimensional array variable, except that there are two pairs of brackets. A two-dimen-
sional array object is instantiated in exactly the same way, except that sizes must be
specified for two dimensions.

The following code fragment would create the array shown in Figure 1.9, where the
data in the table are of type doubl e .

doubl e [] [] a l pha ;
a l pha = ne w doubl e [100] [9] ;

The first dimension specifies the number of rows, and the second dimension specifies
the number of columns.

To access an individual component of the a l pha array, two expressions (one for
each dimension) are used to specify its position. We place each expression in its own
pair of brackets next to the name of the array:

a l pha [0] [5] = 36. 4;

Row
number

Column
number

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 40

1.7 Comparing Algorithms: Big- O Analysis | 41

Figure 1.9 Java implementation of the a l pha array

[0]

[0]

[1]

[1]

[2]

[2]

[3]

[3] [4] [5] [6] [7] [8]

•
•
•

[98]

[99]

a l pha [0] [5]

a l pha [98] [2]

•
•
•

•
•
•

a l pha

Note that a l pha . l e ngt h would give the number of rows in the array. To obtain the
number of columns in a row of an array, we access the l e ngt h field for the specific
row. For example, the statement

r owLe ngt h = a l pha [30] . l e ngt h;

stores the length of row 30 of the array a l pha , which is 9, into the i nt variable
r owLe ngt h.

Remember that in Java each row of a two-dimensional array is itself a one-dimen-
sional array. Many programming languages directly support two-dimensional arrays;
Java doesn’t. In Java, a two-dimensional array is an array of references to array objects.

1.7 Comparing Algorithms: Big- O Analysis

The analysis of algorithms is an important area of theoretical computer science. In this sec-
tion we introduce this topic to an extent that will allow you to determine which of two
algorithms requires less work to accomplish a particular task. The efficiency of algorithms
and the code that implements them can be studied in terms of both time (the number of
statements executed) and space (the amount of memory required). When appropriate

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 41

42 | Chapter 1: Getting Organized

Figure 1.10 Map to Joe’s Diner

DINER

Joe's
Diner

Junk
Yard

HONEYSUCKLE LODGE

Fields of
Flowers

Pine
Forest

Billboard Forest

You are
here

Windin
g

C

o

u

n
t
r
y

R

o
a
d

Big Highway

To Houston

Y'ALL COME INN

USED
CARS

Lazy Creek

EATatJOE'S

DALE'SICECREAM

DAVID'SBEER

Bank atDALLY

throughout this textbook we point out space considerations, but usually we concentrate on
the time aspect—how fast the algorithm is as opposed to how much space it uses.

As you already know, there is more than one way to solve most problems. If you
were asked for directions to Joe’s Diner (see Figure 1.10), for example, you could give
either of two equally correct answers:

1. “Go east on the Big Highway to the Y’all Come Inn, and turn left.”
2. “Take the Winding Country Road to Honeysuckle Lodge, and turn right.”

The two answers are not the same, but because following either route gets the traveler
to Joe’s Diner, both answers are functionally correct.

How we choose between two algorithms that do the same task often comes down to
a question of efficiency. Which one does the job with the least amount of work?

How do programmers measure the work that two algorithms perform? The first
approach that comes to mind is simply to code the algorithms and then compare the
execution times for running the two programs. The one with the shorter execution time
is clearly the better algorithm. Or is it? Using this technique, we really can determine
only that program A is more efficient than program B on a particular computer at a par-
ticular time using a particular set of input. Execution times are specific to a particular
computer, because different computers run at different speeds. Sometimes they are
dependent on what else the computer is doing in the background. For example, if the

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 42

1.7 Comparing Algorithms: Big- O Analysis | 43

Java run-time engine is performing garbage collection, it can affect the execution time
of the program. Of course, we could test the algorithms on many possible computers at
various times, but that would be unrealistic and too specific (new computers become
available all the time). We want a more general measure.

A second possibility is to count the number of instructions or statements executed.
This measure, however, varies with the programming language used as well as with the
style of the individual programmer.

A standard approach, and the one we use in this text, is to isolate a particular oper-
ation fundamental to the algorithm and count the number of times that this operation is
performed. Suppose, for example, that we are iteratively summing the elements in an
integer array. To measure the amount of work required, we could count the integer
addition operations. For an array holding 100 integers, there are 99 addition operations.
Note, however, that we do not actually have to count the number of addition opera-
tions; it is some function of the number of elements (N) in the array. Therefore, we can
express the number of addition operations in terms of N: For an array of N elements,
there are N 1 addition operations. Now we can compare the algorithms for the gen-
eral case, not just for a specific number of integers.

Big- O Notation
We have been talking about work as a func-
tion of the size of the input to the operation
(for instance, the number of integers in the
array to be summed). We can express an
approximation of this function using a mathe-
matical notation called order of magnitude, or
Big-O notation. (This is a letter O, not a zero.) The order of magnitude of a function is
identified with the term in the function that increases fastest relative to the size of the
function input. For instance, if

f (N) = N4 + 100N2 + 500,

then f (N) is of order N 4—or, in Big-O notation, O(N 4). That is, some multiple of N 4 dom-
inates the function for sufficiently large values of N.

How is it that we can just drop the low-order terms? Consider Table 1.3, which shows
the amounts and percentage contributed to the total by each of the terms of f (N).

As you can see, for large values of N, N 4 is so much larger than 500, or even
100N2, that we can ignore these other terms if we are approximating the value of f (N).
This doesn’t mean that the other terms do not contribute to the computing time; it
merely indicates that they are not significant in our approximation when N is “large.”

What is this value N? N represents the size of the problem. Most of the problems in
this book involve data structures—stacks, queues, lists, trees, and graphs. Each structure
is composed of elements. We develop algorithms to add an element to the structure and
to modify or remove an element from the structure. We can describe the work done by
these operations in terms of N, where N is the number of elements in the structure.

Big- O notation A notation that expresses computing
time (complexity) as the term in a function that
increases most rapidly relative to the size of a problem

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 43

44 | Chapter 1: Getting Organized

Table 1.3

N N4 100N2 500 f (N)

1 1 00.17% 100 16.64% 500 83.19% 601

10 10,000 48.78% 10,000 48.78% 500 02.44% 20,500

100 100,000,000 99.01% 1,000,000 00.99% 500 00.00% 101,000,500

1,000 1,000,000,000,000 99.99% 100,000,000 00.01% 500 00.00% 1,000,100,000,500

Is Sum Greater Than Zero?
Set sum to zero // Initialization.

while more integers in the array // Summing N values.
Set sum to sum + next integer

if sum > 0 // Compare and return result.
Return true

else
Return false

Let us look at a variation of our example of summing the integers in an array. Sup-
pose that we have an array called Numbe r s that is full of integers. We want to create a
method that returns t r ue if the sum of the integers in Numbe r s is greater than 0, and
f a l s e otherwise. How much work is that? The answer depends on how many integers
are in the array. Our algorithm is as follows:

If N is the number of integers in the array, the “time” required to do this task is

t i me - t o- s e t - s um- t o- z e r o
+ (N * t i me - t o- do- a n- a ddi t i on)
+ t i me - t o- c ompa r e - s um- t o- z e r o
+ t i me - t o- r e t ur n- Bool e a n- va l ue

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 44

1.7 Comparing Algorithms: Big- O Analysis | 45

Table 1.4 Comparison of Rates of Growth

N log2N N log2N N2 N3 2N

1 0 1 1 1 2
2 1 2 4 8 4
4 2 8 16 64 16
8 3 24 64 512 256

16 4 64 256 4,096 65,536
32 5 160 1,024 32,768 4,294,967,296
64 6 384 4,096 262,144 About 1 month’s worth

of instructions on a
supercomputer

128 7 896 16,384 2,097,152 About 1012 times
greater than the age
of the universe in
nanoseconds (for a 6-billion-
year estimate)

256 8 2,048 65,536 16,777,216 Don’t ask!

This algorithm is O(N) because the time required to perform the task is proportional to
the number of elements (N)—plus a little time to do a set, a compare, and a return. How
can we ignore the set, compare, and return times when determining the Big-O approxi-
mation? If the array has only a few integers, the time needed to set, compare, and return
may be significant. For large values of N, however, adding the integers accounts for
most of the algorithm’s time.

Common Orders of Magnitude
O(1) is called bounded time. The amount of work is bounded by a constant and is not
dependent on the size of the problem. Initializing a sum to 0 is O(l). Although bounded
time is often called constant time, the amount of work is not necessarily constant. It is,
however, bounded by a constant.

O(log2N) is called logarithmic time. The amount of work depends on the logarithm,
in base 2, of the size of the problem (Table 1.4 shows some values of log2N). Algorithms
that successively cut the amount of data to be processed in half at each step typically
fall into this category. Note that in the world of computing we often just say “log N”
when we mean log2N. The base 2 is assumed.

O(N) is called linear time. The amount of work is some constant times the size of
the problem. Printing all the elements in a list of N elements is O(N).

O(N log2N) is called (for lack of a better term) N log N time. Algorithms of this type
typically involve applying a logarithmic algorithm N times. The better sorting algorithms,

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 45

46 | Chapter 1: Getting Organized

Algorithm Sum1
sum = 0;
for (count = 1; count <= n; count++)

sum = sum + count;

such as Quicksort, Heapsort, and Mergesort presented in Chapter 10, have N log N com-
plexity. That is, these algorithms can transform an unsorted array of size N into a sorted
array in O(N log2N) time.

O(N 2) is called quadratic time. Algorithms of this type typically involve applying a
linear algorithm N times. Most simple sorting algorithms are O(N2) algorithms.

O(2N) is called exponential time. These algorithms are extremely slow. An example
of a problem for which the best-known solution is exponential is the traveling sales-
person problem—given a set of cities and a set of roads that connect some of them, plus
the lengths of the roads, find a route that visits every city exactly once and minimizes
total travel distance. As you can see in Table 1.4, exponential times increase dramati-
cally in relation to the size of N.

Example 1: Sum of Consecutive Integers
Let’s look at two different algorithms that calculate the sum of the integers from 1 to N.
Algorithm Sum1 is a simple for loop that adds successive integers to keep a running total.

That seems simple enough. The second algorithm calculates the sum by using a formula.
To understand the formula, consider writing two arithmetic expressions of the sum, one
“forward” and one “backward,” and then adding together each of the columns as
shown:

s um = 1 + 2 + 3 + . . . + (N – 1) + N
+ s um = N + (N – 1) + (N – 2) + . . . + 2 + 1

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2 s um = (N + 1) + (N + 1) + (N + 1) + . . . + (N + 1) + (N + 1)

We pair up each number from 1 to N with another, such that each pair adds up to N + 1.
There are N such pairs, giving us a total of (N + 1) * N. Now, because each number is
included twice, we divide the product by 2. This gives us the formula sum = (N
(N – 1))/2. Now we have a second algorithm:

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 46

1.7 Comparing Algorithms: Big- O Analysis | 47

Algorithm Sum2
sum = (N * (N + 1))/2;

The descriptions of both algorithms are short. Let’s compare the algorithms using Big-O
notation. The size of the problem is N, which represents how many numbers are
included in the sum. The basic operation performed by Sum1 is the addition operation
that takes place within the for loop. This operation occurs once, each time through the
loop. It is easy to see that the loop is executed N times. Therefore, the Sum1 algorithm is
O(N). As N gets larger, the amount of work grows proportionally. If N is 50, Sum1
works 10 times as hard as when N is 5.

Sum1 Algorithm Sum2 Algorithm

Sum2 is even easier to analyze. It always consists of an addition, a multiplication,
and a division. No matter whether N = 5 or N = 50, it still requires only those three
operations. In fact, whatever value we assign to N, the algorithm does the same amount
of work to solve the problem. Algorithm Sum2, therefore, takes a constant amount of
time. We say it is O(1). Sum2 is more efficient than Sum1.

Does this mean that Sum2 is always faster? Is it always a better choice than
Sum1? That depends. Sum2 might seem to do more “work,” because the formula
involves multiplication and division, whereas Sum1 is a simple running total. In fact,
for very small values of N, Sum2 actually might do more work than Sum1. So the
choice between the algorithms depends in part on whether they are used for small or
large values of N.

Another issue is the fact that Sum2 is not as obvious as Sum1, and thus it is harder
for the programmer (a human) to understand. Sometimes a more efficient solution to a

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 47

48 | Chapter 1: Getting Organized

Algorithm Lookup1
Check the first name in the book
while (have not yet found the name)

Check the next name in the book

problem is more complicated; we may save computer time at the expense of the pro-
grammer’s time.

So, what’s the verdict? As usual in the design of computer programs, there are trade-
offs. We must look at our program’s requirements and then decide which solution is better.

Example 2: Finding a Number in a Phone Book
Suppose you need to look up a friend’s number in a phone book. How would you go
about finding the number? To keep matters simple, assume that the name you are
searching for is in the book—you won’t come up empty. Here is a straightforward
approach.

Even though this algorithm is inefficient, it is correct and does work.
What is the Big-O efficiency rating of this algorithm? How many steps does it take

to find someone’s name? Clearly the answers to these questions depend on the size of
the phone book and the name that you are searching for. If you are looking for your
friend Aaron Aardvark, it probably takes you only one or two steps. If your friend’s
name is Zina Zyne, you are not so lucky.

The Lookup1 algorithm displays different efficiency ratings under different input
conditions. This is not unusual. To handle this situation, analysts define three complex-
ity cases: best case, worst case, and average case. Best case complexity tells us the com-
plexity when we are very lucky; it represents the smallest number of steps that an

algorithm can take. In general, best case complexity
is not very useful as a complexity measure. Worst
case complexity, by contrast, represents the greatest
number of steps that an algorithm would require.
Average case complexity represents the average
number of steps required, considering all possible
inputs.

Let’s evaluate Lookup1 in each of these cases.
Following our previous convention we label the size
of our phone book N. Our fundamental operation is
“checking a name.”

Best case complexity Related to the minimum num-
ber of steps required by an algorithm, given an ideal
set of input values in terms of efficiency
Worst case complexity Related to the maximum
number of steps required by an algorithm, given the
worst possible set of input values in terms of efficiency
Average case complexity Related to the average
number of steps required by an algorithm, calculated
across all possible sets of input values

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 48

1.7 Comparing Algorithms: Big- O Analysis | 49

Algorithm Lookup2
Set the search area to the entire book
Check the middle name in the search area
while (have not yet found the name)

if the middle name is greater than the target name
Set the search area to the first half of the search area

else
Set the search area to the second half of the search area

Check the middle name in the search area

• Best case The name we are looking for is the first name in the phone book, so
it takes us only one step to find the name. The best case Big-O complexity of the
algorithm is constant or O(1).

• Worst case The name we are looking for is the last name in the phone book, so
it takes us N steps to find the name. The worst case Big-O complexity of the
algorithm is O(N).

• Average case Assuming that each name in the phone book is equally likely to
be the name we are searching for, the average number of steps required is N/2.
Sometimes the name is toward the front of the book, and sometimes it is toward
the back of the book. On the average, it is in the middle of the book—thus N/2
steps. The average case Big-O complexity of the algorithm is also O(N).

The average case analysis is usually the most difficult. Often, as in this example, it eval-
uates to the same Big-O efficiency class as the worst case. For our purposes we will typ-
ically use worst case analysis.

Let’s look at a more efficient algorithm for finding a name in a phone book.

With this algorithm we eliminate half of the remaining phone book from consideration
each time we check a name. What is the worst case complexity? Another way of asking
this is to say, “How many times can you reduce N by half, before you get down to 1?”
This is essentially the definition of log2N. Thus the worst case complexity of Lookup2 is
O(log2N). This is significantly better than the worst case for Lookup1. For example, if
each of New York City’s 22 million people were listed in your phone book, then in the
worst case Lookup1 would take you 22,000,000 steps, but Lookup2 would require only
25 steps.

Note that the successful use of the Lookup2 algorithm depends on the fact that the
phone book organizes names in alphabetical order. This is a good example of a situation
in which the way the data are structured and organized affects the efficiency of our use
of the data.

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 49

50 | Chapter 1: Getting Organized

B

And so on?

Algorithm Lookup1 Algorithm Lookup2

Goal: Find "Smith, John"

Done!

A

AA

A

1 2

3 4

5 6

BB

LL

7 8

500499

RR

750749

UT

876875

SS

812811

Smith, John

Summary
This chapter is all about organization.

When studying data structures from an academic point of view, it is easy to forget
how software is developed in the real world to solve real problems. Complex problems
often require teamwork, and using an organized approach is necessary to handle both
the complexity of the problem and the complex interactions among the team members.
Software engineering is the field devoted to these issues. We begin the book with an
introduction to this field to emphasize its importance in the overall scheme of software
development.

Object orientation is one approach to software analysis and design. It allows developers
to organize their solutions around models of reality, accruing benefits of understandability,

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 50

Exercises | 51

reusability, and maintainability. The primary construct for creating systems using this
approach is the class. Classes are used to create objects that work together to provide solu-
tions to problems. Java’s inheritance mechanism and package construct help us organize
our classes.

Programs operate on data, so how the data are organized is of prime importance. Data
structures deal with this organization. Several classical organizational structures have
been identified through the years to help programmers create correct and efficient solu-
tions to problems. The Java language provides basic structuring mechanisms for creating
these structures—namely, the array and the reference mechanisms. Big-O notation is an
approach for classifying the efficiency of algorithms that we will use when studying the
algorithms for implementing and using our data structures.

Programmers are problem solvers. Software engineering provides proven approaches
to working in teams to identify the problems and design the solutions. Object orientation
allows seamless integration of problem analysis and design, resulting in problem solu-
tions that are maintainable and reusable. Data structures provide ways of organizing the
data of the problem domain so that solutions are correct and efficient. Staying organized
is the key to solving difficult problems!

Exercises
1.1 Software Engineering

1. Explain what we mean by “software engineering.”
2. Which of these statements is always true?

a. All of the program requirements must be completely defined before design
begins.

b. All of the program design must be complete before any coding begins.
c. All of the coding must be complete before any testing can begin.
d. Different development activities often take place concurrently, overlapping in

the software life cycle.
3. Create your own software “process.” In other words, write a description of the

steps you follow when working on a programming project. This is a good exer-
cise for students to work on together, in small teams. Perhaps the teams that cre-
ate the most interesting processes could present their results to the class.

4. Research Question: Locate information about agile software development meth-
ods. Identify one particular agile approach that you find intriguing. Write a para-
graph describing the approach and explain which aspect of that approach
intrigues you.

5. Research Question: Locate the Agile Manifesto on the Web. Browse through the
list of hundreds of signatories and see what they have to say about agile
approaches. Select two interesting statements to share with your classmates.

6. List the four goals for quality software described in this section. Note that these
are broad, general goals. Now create your own list of more specific goals. This is

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 51

52 | Chapter 1: Getting Organized

a good exercise for students to work on together, brainstorming a list of specific
goals that software projects might aspire to.

7. Explain why software might need to be modified
a. In the design phase
b. In the coding phase
c. In the testing phase
d. In the maintenance phase

8. Goal 4 says, “Quality software is completed on time and within budget.”
a. Explain some of the consequences of not meeting this goal for a student

preparing a class programming assignment.
b. Explain some of the consequences of not meeting this goal for a team devel-

oping a highly competitive new software product.

1.2 Object Orientation
9. Research Question: The Turing Award has been awarded annually since 1966 to

a person or persons for making contributions of lasting and major technical
importance to the computer field. Locate information about this award on the
Web. Study the list of award winners and their contributions. Identify those win-
ners whose contributions dealt directly with programming. Then identify those
winners whose contributions dealt directly with object orientation.

10. Explain how object-oriented approaches support each of the four goals for soft-
ware quality.

11. Research Question: List and briefly describe the UML’s 12 main diagramming types.

1.3 Classes, Objects, and Applications
12. Find a tool that you can use to create UML class diagrams and re-create the dia-

gram of the Da t e class shown in Figure 1.2.
13. What is the difference between an object and a class? Give some examples.
14. Describe each of the four levels of visibility provided by Java’s access modifiers.
15. A common use of an object is to “keep track” of something. The object is fed

data through its transformer methods and returns information through its
observer methods. Define (no coding necessary) a reasonable set of instance
variables, class variables, and methods for each of the following classes. Indicate
the access level for each construct. Note that each of these class descriptions are
somewhat fuzzy and allow multiple “correct” answers.
a. A time counter—this will keep track of total time; it will be fed discrete time

amounts (in either minutes and seconds or just in seconds); it should provide
information about the total time in several “formats,” the number of discrete
time units, and the average time per unit. Think of this class as a tool that

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 52

Exercises | 53

could be used to keep track of the total time of a collection of music, given
the time for each song.

b. Basketball statistics tracker—this will keep track of the score and shooting
statistics for a basketball team (not for each player, but for the team as a
unit); it should be fed data each time a shot is taken; it should provide infor-
mation about shooting percentages and the total score when requested.

c. Tic-tac-toe game tracker—this will keep track of a tic-tac-toe game; it should
be fed moves and return an indication of whether a move was legal; it should
provide information about the status of the game (Is it over? Who won?)
when requested.

16. For one or more of the classes described in the previous exercise
a. Implement the class.
b. Design and implement an application that uses the class.
c. Use your application to help verify the correctness of your class implementation.

17. Modify the Da t e class so that
a. Its t oSt r i ng method returns a string of the form “month number, number”—

for example, “May 13, 1919.”
b. It provides a public class mj d (standing for Modified Julian Day) that returns

the number of days since November 17, 1858.
c. It provides a public class dj d (standing for Dublin Julian Day) that returns

the number of days since January 1, 1900.
18. Think about how you might test the Da ys Be t we e n application. What type of

input should give a result of 0? Of 1? Of 7? Of 365? Of 366? Try out the test
cases that you identified.

19. According to the Da ys Be t we e n application, how many days are between 1/1/1900
and 1/1/2000? How many leap years are there between those dates? What about
between 1/1/2000 and 1/1/2100? Explain the difference in these answers.

20. Use the Da ys Be t we e n application to answer the following:
a. How old are you, in days?
b. How many days has it been since the United States adopted the Declaration

of Independence on July 4, 1776?
c. How many days between the day that Jean-François Pilâtre de Rozier and

François Laurent became the first human pilots, traveling 10 kilometers in a
hot-air balloon on November 21, 1783, and the day Neil Armstrong took one
small step onto the moon at the Sea of Tranquility on July 20, 1969?

21. Based on the range of the Java i nt type (see Appendix C), what is the latest date
that can be “handled” by the Da t e class?

22. Modify the Da ys Be t we e n application so that after it displays the information
about the number of days between the two dates, it prompts the user to see

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 53

54 | Chapter 1: Getting Organized

whether he or she wants to continue. If the answer is “yes,” it repeats the
sequence of interactions with the user, again prompting for two dates, and so on.

23. The Da ys Be t we e n application is not very robust. That is, it does not gracefully
handle erroneous input. This exercise asks you to revise the application so that it
is more robust.
a. When a user is prompted to enter a date, the program does not check whether

the user entered an integer. If the user does not enter an integer, the program
will “bomb” due to an input mismatch error. Revise the program so that it
uses the Sc a nne r class’s ha s Ne xt I nt method to check that the next input
value is an integer before reading it. If it is not, the program should display
the message “Illegal input was entered” and exit. Note that you can exit the
program using Java’s r e t ur n statement.

b. Users can enter any combination of three integers to represent a date, even
those that do not make any sense. For example, 15 37 2006 would represent the
thirty-seventh day of the fifteenth month of 2006. To remedy this potential
problem, you should first add a public instance method va l i d to the Da t e class.
The method should return t r ue if the date represented by the object is a valid
date and f a l s e otherwise. Valid dates are “real” dates that occur after October
14, 1582. Don’t forget about leap years. After creating and testing the va l i d
method, use it to check dates from within the Da ys Be t we e n program. If an
invalid date is entered, display the message “That is not a valid date” and exit.

24. You will create a class that keeps track of the total cost, average cost, and num-
ber of items in a shopping bag.
a. Create a class called Shoppi ngBa g. Objects of this class represent a single

shopping bag. Attributes of such an object include the number of items in the
bag and the total retail cost of those items. Provide a constructor that accepts
a tax rate as a f l oa t parameter. Provide a transformer method called pl a c e
that accepts an i nt parameter indicating the number of the particular items
that are being placed in the bag and a f l oa t parameter that indicates the
cost of each of the items. For example, myBa g. pl a c e (5, 10. 5) ; represents
placing 5 items that cost $10.50 each into myBa g. Provide getter methods for
the number of items in the bag and their total retail cost. Provide a t ot a l -
Cos t method that returns the total cost with tax included. Provide a
t oSt r i ng method that returns a nicely formatted string that summarizes the
current status of the shopping bag. Finally, provide a program, a “test
driver,” that demonstrates that your Shoppi ngBa g class performs correctly.

b. Create an application that repeatedly prompts the user for a number of items
to put in the bag, followed by a prompt for the cost of those items. Use a 0
for the number of items to indicate that there are no more items. The pro-
gram then displays a summary of the status of the shopping bag. Assume the
tax rate is 6%. A short sample run might look something like this:

Enter count (use 0 to stop): 5

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 54

Exercises | 55

Enter cost: 10. 50
Enter count (use 0 to stop): 2
Enter cost: 2. 07
Enter count (use 0 to stop): 0

The bag contains 7 items. The retail cost of the items is $161.64.
The total cost of the items is $171.34.

25. You will create a class that keeps track of some statistics, including the score, of
a bowling game. If you do not understand bowling terminology or how points
are earned in bowling you should research the game or talk to someone who
does understand . . . or both!
a. Create a class called Bowl i ngGa me . Objects of this class represent a single

game of bowling. Attributes of such an object include the name of the
bowler, the current score and frame, and the number of strikes, spares, and
gutter balls rolled so far in the game. Provide
• A constructor that accepts the name of the bowler as a St r i ng parameter.
• A transformer method called s hot that accepts an i nt parameter indicat-

ing the number of pins knocked down on the next “shot.” The s hot
method should return a bool e a n indicating whether the current frame is
over for the bowler. You can assume that the s hot method will only be
passed integers that “make sense” within the current bowling game (e.g., it
will not be passed a negative, it will not be passed a 5 if there are only 3
pins currently standing).

• Getter methods for the various attributes
• A t oSt r i ng method that returns a nicely formatted string that summarizes

the current status of the game
• A “test driver” program that demonstrates that your Bowl i ngGa me class

performs correctly
b. Create an application that prompts the user for his or her name and instanti-

ates a Bowl i ngGa me object using his or her name. The program should then
repeatedly prompt the user for the number of pins knocked over by the next
ball rolled, reporting the status of the game after each frame, until the game
is over. You can assume that the user provides numbers that “make sense.” A
partial sample run might look something like this:

Your name: Fr e d
Pins knocked over : 5
Pins knocked over : 0
Fred’s game after frame 1: Score is 5, Strikes 0, Spares 0, Gutter Balls 1
Pins knocked over : 10
Fred’s game after frame 2: Score is 15, Strikes 1, Spares 0, Gutter Balls 1
Pins knocked over : 5
Pins knocked over : 5
Fred’s game after frame 3: Score is 35, Strikes 1, Spares 1, Gutter Balls 1
And so on.

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 55

56 | Chapter 1: Getting Organized

26. You will create a class that represents a polynomial; for example, it could repre-
sent 5x3 + 2x – 3 or x2 – 1.
a. Create a class called Pol ynomi a l . Objects of this class represent a single

polynomial. Attributes of such an object include its degree and the coeffi-
cients of each of its terms. Provide a constructor that accepts the degree of
the polynomial as an i nt parameter. Provide a transformer method called
s e t Coe f f i c i e nt that accepts as i nt parameters the degree of the term it is
setting and the coefficient to which it should be set. For example, the polyno-
mial 5x3 + 2x – 3 could be created by the sequence of statements:

Pol ynomi a l myPol y = ne w Pol ynomi a l (3) ;
myPol y. s e t Coe f f i c i e nt (3, 5) ;
myPol y. s e t Coe f f i c i e nt (1, 2) ;
myPol y. s e t Coe f f i c i e nt (0, - 3) ;

Provide an e va l ua t e method that accepts a f l oa t parameter and returns
the value of the polynomial, as a f l oa t , as evaluated at the parameter value.
For example, given the previous code the following sequence of code would
print -3.0, 4.0, and -1.375.

Sys t e m. out . pr i nt l n(myPol y. e va l ua t e (0)) ;
Sys t e m. out . pr i nt l n(myPol y. e va l ua t e (1)) ;
Sys t e m. out . pr i nt l n(myPol y. e va l ua t e (0. 5)) ;

Finally, provide a program, a “test driver,” that demonstrates that your Pol y-
nomi a l class performs correctly.

b. Create an application that accepts the degree of a polynomial and the coeffi-
cients of the polynomial, from highest degree to lowest, as a command line
parameter and then creates the corresponding Pol ynomi a l object. For exam-
ple, the polynomial 5x3 + 2x – 3 would be represented by the command line
parameter “3 5 0 2 –3.” The program should then repeatedly prompt the
user for a float value at which to evaluate the polynomial and report the
result of the evaluation. A sample run, assuming the previously stated com-
mand line parameter, might look something like this:

Enter a value> 0
The result is -3.0
Continue?> Ye s
Enter a value> 1
The result is 4.0
Continue?> Ye s
Enter a value> 0. 5
The result is -1.375
Continue?> No

c. Create an application that accepts the degree of a polynomial and the coef-
ficients of the polynomial as a command line parameter as in part b. The

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 56

Exercises | 57

program should then prompt the user for two float values that will repre-
sent the end points of an interval on which the polynomial is defined. Your
program should then calculate and output the approximation of the definite
integral of the polynomial on the indicated interval, using 1000 bounded
rectangles.

1.4 Organizing Classes
27. Describe the concept of inheritance, and explain how the inheritance tree is

traversed to bind method calls with method implementations in an object-
oriented system.

28. Given the definitions of the Da t e and I nc Da t e classes in this chapter, and the
following declarations

i nt t e mp;
Da t e da t e 1 = ne w Da t e (10, 2, 1989) ;
Da t e da t e 2 = ne w Da t e (4, 2, 1992) ;
I nc Da t e da t e 3 = ne w I nc Da t e (12, 25, 2001) ;

indicate which of the following statements are illegal, and which are legal.
Explain your answers.
a. t e mp = da t e 1. ge t Da y() ;

b. t e mp = da t e 3. ge t Ye a r () ;

c. da t e 1. i nc r e me nt () ;

d. da t e 3. i nc r e me nt () ;

e. da t e 2 = da t e 1;

f. da t e 2 = da t e 3;

g. da t e 3 = da t e 2;

29. Create a Da t e class and an I nc Da t e class as described in this chapter (or copy
them from the website). In the I nc Da t e class you must create the code for the
i nc r e me nt method, as that was left undefined in the chapter. Remember to fol-
low the rules of the Gregorian calendar: A year is a leap year if either (1) it is
divisible by 4 but not by 100, or (2) it is divisible by 400. Create an application
that uses these classes.

30. Modify your I nc Da t e class from Exercise 29 so that it also provides an i nc r e -
me nt method that accepts an argument numDa ys of type i nt and modifies the
date so that it is numDa ys later. For example, if the date represents December 31,
2002, then after an invocation of i nc r e me nt (3) the date would represent Janu-
ary 3, 2003. Hint: You may consider creating an “inverse” l i l i a n method that
takes an LDN and converts it to a date to help you solve this problem.

31. You will extend your Bowl i ngGa me class from Exercise 25 with a new class
called RBowl i ngGa me (“Robust Bowling Game”).

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 57

58 | Chapter 1: Getting Organized

a. The RBowl i ngGa me class provides a new s hot method for which the
assumption that the integral parameter “makes sense” is dropped. If the
parameter is less than 0, the method will act as if the parameter was 0. If the
parameter indicates a number of pins that is more than the current number of
pins standing, then the method will act as if the parameter was equal to the
number of pins standing. Also create a test driver that shows that your
RBowl i ngGa me class works correctly.

b. Create an application that instantiates two bowling game objects, one for
the bowler “Steady Freddy” using the Bowl i ngGa me class and one for the
bowler “Wild Child” using the RBowl i ngGa me class. When Steady Freddy
bowls he knocks down either 4 or 5 pins with each ball. About half the
time he knocks down 4 pins and about half the time he knocks down 5
pins. Therefore, for the number of pins he knocks down with any particular
ball you can generate a random integer in the range 4 to 5. Wild Child, on
the other hand, is not so predictable. For the number of pins she knocks
down with any particular ball you can generate a random integer in the
range -3 to 15. Your application should simulate a bowling match between
these two bowlers, showing the results frame by frame. Who do you think
will win?

32. Explain how packages are used to organize Java files.
33. Suppose file 1 contains and file 2 contains

pa c ka ge me di a . r e c or ds ; pa c ka ge me di a . r e c or ds ;
publ i c c l a s s La be l s { . . . } publ i c c l a s s Le ngt h{ . . . }
c l a s s Che c k { . . . } c l a s s Re vi e w { . . . }

a. Are the Che c k class and the Re vi e w class in the same package?
b. What is the name of file 1?
c. What is the name of file 2?
d. What is the name of the directory that contains the two files?
e. What is the directory in part d a subdirectory of ?

34. Organize the files you created to solve Exercise 29 with a package called da t e s .

1.5 Data Structures
35. Research Question: On the Web find two distinct definitions of the term “data

structure.” Compare and contrast them.
36. Identify things in the following story that remind you of the various data struc-

tures described in this section. Be imaginative. How many can you find? What
are they? (Note: We can find nine!)

Sally arrives at the train station with just a few minutes to spare. This weekend is
shaping up to be a disaster. She studies the electronic map on the wall for a few
seconds in confusion. She then realizes she just needs to select her destination
from the alphabetized list of buttons on the right. When she presses Gloucester, a

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 58

Exercises | 59

path on the map lights up—so, she should take the Blue train to Birmingham,
where she can connect to the Red train that will take her to Gloucester. The wait
in line to buy her ticket doesn’t take long. She hurries to the platform and
approaches the fourth car of the train. Double-checking that her ticket says “car
4,” she boards the train and finds a seat. Whew, just in time, as a few seconds
later the train pulls out of the station. About an hour into the journey Sally
decides it’s time for lunch. She walks through cars 5, 6, and 7 to arrive at car 8,
the dining car. She grabs the top tray (it’s still warm from the tray dryer) and
heads for the candy machine, thinking to herself, “May as well figure out what to
have for dessert first, as usual. Hmmm, that’s an interesting Pez dispenser in slot
F4.” She presses the button contentedly, and thinks, “Looks like this is going to be
a nice weekend after all. Thank goodness for data structures.”

37. Describe three uses of the tree structure as a way of organizing information that
you are familiar with.

38. Some aspect of each of the following can be modeled with a graph structure.
Describe, in each case, what the nodes would represent and what the edges
would represent.
a. Travel routes available through an airline
b. Countries and their borders
c. A collection of research articles about data structures
d. Actors (research the “six degrees of Kevin Bacon”)
e. The computers at a university
f. The Web

1.6 Basic Structuring Mechanisms
39. What is an alias? Show an example of how it is created by a Java program.

Explain the dangers of aliases.
40. Assume that da t e 1 and da t e 2 are objects of class I nc Da t e as defined in Sec-

tion 1.4. What would be the output of the following code?

da t e 1 = ne w I nc Da t e (5, 5 , 2000) ;
da t e 2 = da t e 1;
Sys t e m. out . pr i nt l n(da t e 1) ;
Sys t e m. out . pr i nt l n(da t e 2) ;
da t e 1. i nc r e me nt () ;
Sys t e m. out . pr i nt l n(da t e 1) ;
Sys t e m. out . pr i nt l n(da t e 2) ;

41. What is garbage? Show an example of how it is created by a Java program.
42. Assume that da t e 1 and da t e 2 are objects of class I nc Da t e as defined in Sec-

tion 1.4. What would be the output of the following code?

da t e 1 = ne w I nc Da t e (5, 5 , 2000) ;
da t e 2 = ne w I nc Da t e (5, 5 , 2000) ;

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 59

60 | Chapter 1: Getting Organized

i f (da t e 1 == da t e 2)
Sys t e m. out . pr i nt l n(" e qua l ") ;

e l s e
Sys t e m. out . pr i nt l n(" not e qua l ") ;

da t e 1 = da t e 2;
i f (da t e 1 == da t e 2)

Sys t e m. out . pr i nt l n(" e qua l ") ;
e l s e

Sys t e m. out . pr i nt l n(" not e qua l ") ;
da t e 1. i nc r e me nt () ;
i f (da t e 1 == da t e 2)

Sys t e m. out . pr i nt l n(" e qua l ") ;
e l s e

Sys t e m. out . pr i nt l n(" not e qua l ") ;

43. Write a program that declares a 10-element array of i nt , uses a loop to initialize
each element to the value of its index squared, and then uses another loop to
print the contents of the array, one integer per line.

44. Write a program that declares a 10-element array of Da t e , uses a loop to initial-
ize the elements to December 1 through 10 of 2005, and then uses another loop
to print the contents of the array, one date per line.

45. Create an application that instantiates a 20 20 two-dimensional array of inte-
gers, populates it with random integers drawn from the range 1 to 100, and then
outputs the index of the row with the highest sum among all the rows and the
index of the column with the highest sum among all the columns.

1.7 Comparing Algorithms: Big- O Analysis
46. Describe the order of magnitude of each of the following functions using Big-O

notation:
a. N 2 + 3N
b. 3N 2 + N
c. N 5 + 100N 3 + 245
d. 3Nlog2N + N 2

e. 1 + N + N 2 + N 3 + N 4

f. (N * (N 1)) / 2
47. Give an example of an algorithm (other than the examples discussed in the chap-

ter) that is
a. O(1)
b. O(N)
c. O(N 2)

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 60

Exercises | 61

48. Describe the order of magnitude of each of the following code sections, using
Big-O notation:
a. c ount = 0;

f or (i = 1; i <= N; i ++)
c ount ++;

b. c ount = 0;
f or (i = 1; i <= N; i ++)

f or (j = 1; j <= N; j ++)
c ount ++;

c. va l ue = N;
c ount = 0;
whi l e (va l ue > 1)
{

va l ue = va l ue / 2;
c ount ++;

}

d. c ount = 0;
va l ue = N;
va l ue = N * (N – 1) ;
c ount = c ount + va l ue ;

e. c ount = 0;
f or (i = 1; i <= N; i ++)

c ount ++;
f or (i = N; i >= 0; i - -)

c ount ++;

49. Assume that numbe r s is a large array of integers, currently holding N values in
locations 0 through N–1. Describe the order of magnitude of each of the follow-
ing operations, using Big-O notation:
a. Insert the number 17 into location N of numbe r s .
b. Shift all values in the numbe r s array to the “right” one location to make

room at location 0 for a new number without disrupting the order of the cur-
rent values; insert the number 17 into location 0.

c. Randomly choose a location L from 0 to N–1; shift all the values in the num-
be r s array, from location L to location N–1, to the right one location to
make room at location L for a new number; insert the number 17 into loca-
tion L.

50. Consider the following two algorithms that initialize every element in an N-
element array to zero.

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 61

62 | Chapter 1: Getting Organized

Algorithm Init1 Algorithm Init2
elements[0] = 0; for (index = 0; index < N; index++)
elements[1] = 0; elements[index] = 0;
elements[2] = 0;
elements[3] = 0;
.
.
.
elements[N–1] = 0;

What is the Big-O efficiency of the first algorithm? Of the second algorithm?
Explain.

51. Algorithm 1 does a particular task in a “time” of N 3, where N is the number of
elements processed. Algorithm 2 does the same task in a “time” of 3N + 1000.
a. What is the Big-O efficiency of each algorithm?
b. Which algorithm is more efficient by Big-O standards?
c. Under what conditions, if any, would the “less efficient” algorithm execute

more quickly than the “more efficient” algorithm?

13549_CH01_Da l e . qxd 2/ 7/ 11 6: 19 AM Pa ge 62

Knowledge Goals
You should be able to
■ explain the following terms and their relationships: abstraction, information hiding, data abstraction, data

encapsulation, abstract data type (ADT)
■ describe the benefits of using an abstract data type
■ define, for the Java programming language, the meanings of abstract method and interface
■ describe the benefits of using a Java i nt e r f a c e to specify an ADT
■ describe the StringLog ADT from three perspectives: logical level, application level, and implementation

level
■ classify StringLog operations into the categories of constructor, observer, and transformer
■ describe two variations of stepwise refinement
■ describe strategies to avoid software errors

Skill Goals
You should be able to
■ use the Java i nt e r f a c e construct to formally specify an ADT
■ use stepwise refinement to transform a high-level algorithm into code
■ specify the preconditions and postconditions (effects) of a public method
■ design a reasonable test plan for an ADT
■ create a test driver for an ADT
■ define and use a self-referential class to build a chain of objects (a linked structure)
■ draw figures representing a sequence of operations on a linked list
■ implement the StringLog ADT as an array-based structure
■ implement the StringLog ADT as a linked structure
■ determine the Big-O efficiency of each of the StringLog implementation methods
■ use the StringLog ADT as a component of a solution to an application problem

Abstract Data Types
G

o

a

l

s

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 63

64 | Chapter 2: Abstract Data Types

This chapter focuses on the use of abstraction in program design. Here you begin to
learn how to deal with the complexity of your data using abstraction and how to use
the Java language mechanisms that support this approach.

We review the related concepts of abstraction and information hiding and show
how these approaches encourage us to view our data at three different “levels”—the
application, logical, and implementation levels. We introduce the Java i nt e r f a c e
mechanism as a means of supporting this three-tiered perspective. As an example of the
abstraction of data, we present a collection of strings and show how it is handled at
each of the three levels. For the implementation level, we include both array-based and
reference-based approaches. To support the reference-based approach, we introduce the
linked list structure. We also address ways of verifying the correctness of our work.
Finally, in a case study, we see how the use of abstraction simplifies the task of imple-
menting a trivia game system.

2.1 Abstraction 2.1

The universe is filled with complex systems. We learn about such systems through mod-
els. A model may be mathematical, like equations describing the motion of satellites
around the earth. A physical object such as a model airplane used in wind-tunnel tests
is another form of model. Typically, only the relevant characteristics of the system
being studied are modeled; irrelevant details are ignored. For example, in-flight movies
are not included in the model airplanes used to study aerodynamics.

An abstraction is a simplifying model of an object
or process that includes only the essential details. What
does abstraction have to do with software develop-
ment? Writing software is difficult because both the
systems we model and the processes we use to develop
the software are complex. Abstractions are the funda-

mental way that we manage complexity. In every chapter of this textbook we make use
of abstractions to simplify our work.

Information Hiding
Many software design methods are based on decomposing a problem’s solution into
modules. By “module” we mean a cohesive system subunit that performs a share of the
work. In Java, the primary module mechanism is the class. Decomposing a system into
modules helps us handle complexity.

Modules act as an abstraction tool. The complexity of their internal structure can be
hidden from the rest of the system. As a consequence, the details involved in imple-

menting a module are isolated from the details of the
rest of the system. Why is hiding the details desirable?
Shouldn’t the programmer know everything? No! Infor-
mation hiding helps manage the complexity of a sys-
tem because a programmer can safely concentrate on
different parts of a system at different times.

Abstraction A model of a system that includes only
the details essential to the perspective of the viewer of
the system

Information hiding The practice of hiding details
within a module with the goal of controlling access to
the details from the rest of the system

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 64

2.1 Abstraction | 65

Of course, a program’s modules are interrelated—they work together to solve the
problem. Modules provide services to one another through carefully defined interfaces.
The interface in Java is usually provided by the public methods of a class. Programmers
of one module do not need to know the internal details of the modules it interacts with,
but they do need to know the interfaces. Consider a driving analogy—you can start a car
without knowing how many cylinders are in the engine. You just have to understand
the interface; that is, you only need to know how to turn the key.

Data Abstraction
Any data, such as a value of type i nt , processed by a computer is just a collection of
bits that can be turned on or off. The computer manipulates data in this form. People,
however, tend to think of data in terms of more abstract units such as numbers and
lists, and thus we want our programs to refer to data in a way that makes sense to us.
To hide the irrelevant details of the computer’s view of data from our own, we use data
abstraction to create another view.

Let’s take a closer look at the very con-
crete—and very abstract—integer you’ve been
using since you wrote your earliest programs.
Just what is an integer? Integers are physi-
cally represented in different ways on differ-
ent computers. However, knowing exactly
how integers are represented on your com-
puter is not a prerequisite for using integers in
a high-level language. With a high-level lan-
guage you use an abstraction of an integer. This is one of the reasons it’s called a
“high”-level language.

The Java language encapsulates integers for us. Data encapsulation means that the
physical representation of the data remains hidden. The programmer using the data
doesn’t see the underlying implementation but deals with the data only in terms of its
logical picture—its abstraction.

But if the data are encapsulated, how can the programmer get to them? Simple—the
language provides operations that allow the programmer to create, access, and change
the data. As an example, let’s look at the operations Java provides for the encapsulated
data type i nt . First, you can create variables of type i nt using declarations in your
program. Then you can assign values to these integer variables by using the assignment
operator and perform arithmetic operations on them by using the +, - , *, / , and %oper-
ators. Figure 2.1 shows how Java has encapsulated the type i nt in a nice, neat black
box.

The point of this discussion is that you have already been dealing with a logical
data abstraction of integers. The advantages of doing so are clear: You can think of the
data and the operations in a logical sense and can consider their use without having to
worry about implementation details. The lower levels are still there—they’re just hidden
from you.

Data abstraction The separation of a data type’s log-
ical properties from its implementation
Data encapsulation The separation of the represen-
tation of data from the applications that use the data
at a logical level; a programming language feature that
enforces information hiding

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 65

66 | Chapter 2: Abstract Data Types

We refer to the set of all possible values (the
domain) of an encapsulated data “object,” plus the
specifications of the operations that are provided to cre-
ate and manipulate the data, as an abstract data type
(ADT for short).

In effect, all of Java’s built-in types, such as i nt , are ADTs. A Java programmer
can declare variables of those types without understanding the underlying implementa-
tion. The programmer can initialize, modify, and access the information held by the
variables via the provided operations.

In addition to the built-in ADTs, Java programmers can use the Java class mecha-
nism to create their own ADTs. For example, the Da t e class defined in Chapter 1 can be
viewed as an ADT. Yes, it is true that the programmers who created it needed to know
about its underlying implementation; for example, they needed to know that a Da t e is
composed of three i nt instance variables, and they needed to know the names of the
instance variables. The application programmers who use the Da t e class, however, do
not need this information. They simply need to know how to create a Da t e object and
how to invoke its exported methods so as to use the object.

Data Levels
In this textbook we define, create, and use ADTs. We say that we deal with ADTs from
three different perspectives, or levels:

1. Application (or user or client) level As the application programmer, we use the ADT
to solve a problem. When working at this level we simply need to know what pro-
gram statements to use to create instances of the ADT and invoke its operations. That
is, our application is a client of the ADT. There can be many different applications
that use the same ADT.

Figure 2.1 A black box representing an integer

Visible Type i nt

Value range: –2147483648

 to

 +2147483647

Operations: + prefix identity
 - prefix negation
 + infix addition
 - infix subtraction
 * infix multiplication
 / infix division
 % infix remainder (modulo)

Relational Operators infix comparisons

(for example, 32 bits two’s complement)

plus

Implementation of operations

Hidden Representation of i nt

Abstract data type (ADT) A data type whose proper-
ties (domain and operations) are specified independ-
ently of any particular implementation

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 66

2.1 Abstraction | 67

2. Logical (or abstract) level This level provides an abstract view of the data values
(the domain) and the set of operations to manipulate them. At this level, we deal
with the what questions: What is the ADT? What does it model? What are its
responsibilities? What is its interface? At this level we provide a specification of the
properties of the ADT independent of its implementation.

3. Implementation (or concrete) level At this level we provide a specific representa-
tion of the structure to hold the data as well as the implementation (coding) of the
operations. Here we deal with the how questions: How do we represent and manipu-
late the data in memory? How do we fulfill the responsibilities of the ADT? There
can be many different answers to these questions.

When you write a program, you often deal with data at each of these three levels. In
this section, which features abstraction, we concentrate on the logical level. In one sense,
the ADT approach centers on the logical level. The logical level provides an abstraction of
the implementation level for use at the application level. Its description acts as a contract
created by the designer of the ADT, relied upon by the application programmers who use
the ADT, and fulfilled by the programmers who implement the ADT.

For the most part the logical level provides independence between the application
and implementation levels. Keep in mind, however, that there is one way that the imple-
mentation details can affect the applications that use the ADT—in terms of efficiency.
The decisions we make about the way data are structured affect how efficiently we can
implement the various operations on that data. The efficiency of operations can be
important to the users of the data.

Preconditions and Postconditions
Suppose we want to design an ADT to provide a service. Access to the ADT is provided
through its exported methods. To ensure that an ADT is usable at the application level,
we must clarify how to use these methods. To be able to invoke a method, an applica-
tion programmer must know its exact interface: its name, the types of its expected
parameters, and its return type. But this information isn’t enough: The programmer also
needs to know any assumptions that must be
true for the method to work correctly and the
effects of invoking the method.

We call the assumptions that must be true
when invoking a method preconditions. The
preconditions are like a product disclaimer:

WARNING
If you try to execute this operation

when the preconditions are not true,
the results are not guaranteed.

Preconditions Assumptions that must be true on
entry into a method for it to work correctly

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 67

68 | Chapter 2: Abstract Data Types

For example, the i nc r e me nt method of the I nc Da t e class, described in Chapter 1,
could have preconditions related to legal date values and the start of the Gregorian cal-
endar. The preconditions should be listed at the beginning of the method declaration as
a comment:

publ i c voi d i nc r e me nt ()
/ / Pr e c ondi t i ons : Va l ue s of da y, mont h, a nd ye a r r e pr e s e nt
/ / a va l i d da t e .
/ / The va l ue of ye a r i s not l e s s t ha n MI NYEAR.

Establishing the preconditions for a method creates a contract between the pro-
grammer who creates the method and the programmers who use the method. The con-
tract says that the method meets its specifications if the preconditions are satisfied. It is
up to the programmers who use the method to ensure that the preconditions are true
whenever the method is invoked. This approach is sometimes called “programming by
contract.”

We must also specify which conditions are true
when the method is finished. The postconditions are
statements that describe the effects of the method. The
postconditions do not tell us how these results are
accomplished; they merely tell us what the results
should be. We use the convention of stating the main

effects—that is, the postconditions—within the opening comment of a method, immedi-
ately after any preconditions that are listed. For example,

publ i c voi d i nc r e me nt ()
/ / Pr e c ondi t i ons : Va l ue s of da y, mont h, a nd ye a r r e pr e s e nt
/ / a va l i d da t e .
/ / The va l ue of ye a r i s not l e s s t ha n MI NYEAR.
/ /
/ / I nc r e me nt s t hi s I nc Da t e t o r e pr e s e nt t he ne xt da y.

Java Interfaces
Java provides a construct, the i nt e r f a c e , which we can use to formally specify the
logical level of our ADTs.

The word “interface” means a common boundary shared by two interacting sys-
tems. We use the term in many ways in computer science. For example, the user inter-
face of a program is the part of the program that interacts with the user, and the
interface of an object’s method is its set of parameters and the return value it provides.

In Java, the word “interface” has a very specific meaning. In fact, i nt e r f a c e is a
Java keyword. It represents a specific type of program unit. A Java interface looks very

similar to a Java class. It can include variable declara-
tions and methods. However, all variables declared in
an interface must be constants and all the methods
must be abstract. An abstract method includes only a

Postconditions (effects) The results expected at the
exit of a method, assuming that the preconditions are
true

Abstract method A method declared in a class or an
interface without a method body

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 68

2.1 Abstraction | 69

description of its parameters; no method bodies or implementations are allowed. In
other words, only the interface of the method is included.

Unlike a class, a Java interface cannot be instantiated. What purpose can a Java
interface serve if it can only hold abstract methods and cannot be instantiated? It pro-
vides a template for classes to fit. To make an interface useful, a separate class must
“implement” it. That is, a class must be created that supplies the bodies for the method
headings specified by the interface. In essence, Java interfaces are used to describe
requirements for classes.

Here is an example of an interface with one constant (PI) and four abstract meth-
ods (pe r i me t e r , a r e a , s e t Sc a l e , and we i ght):

publ i c i nt e r f a c e Fi gur e Ge ome t r y
{

f i na l f l oa t PI = 3. 14f ;

f l oa t pe r i me t e r () ;
/ / Re t ur ns pe r i me t e r of t hi s f i gur e .

f l oa t a r e a () ;
/ / Re t ur ns a r e a of t hi s f i gur e .

voi d s e t Sc a l e (i nt s c a l e) ;
/ / Sc a l e of t hi s f i gur e i s s e t t o " s c a l e . "

f l oa t we i ght () ;
/ / Pr e c ondi t i on: Sc a l e of t hi s f i gur e ha s be e n s e t .
/ /
/ / Re t ur ns we i ght of t hi s f i gur e . We i ght = a r e a s c a l e .

}

Although Java provides the keyword a bs t r a c t that we can use when declaring an
abstract method, we should not use it when defining the methods in an interface. Its use
is redundant, because all methods of an interface must be abstract. Similarly, we can
omit the keyword publ i c from the method signatures, because interface methods are
public by default. It is best not to use these unnecessary modifiers when defining an
interface, as future versions of Java may not support their use.

Interfaces are compiled, just like classes and applications. Each of our interfaces is
kept in a separate file. The name of the file must match the name of the interface. For
example, the interface shown above must reside in a file called Fi gur e Ge ome t r y. j a va .
The compiler checks the interface code for errors; if there are none, it generates a Java
byte code file for the interface. In our example, that file would be called Fi gur e Ge ome -
t r y. c l a s s .

To use this interface a programmer could, for example, create a Ci r c l e class that
implements the interface.

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 69

70 | Chapter 2: Abstract Data Types

When a class implements an interface, it receives access to all of the constants
defined in the interface and it must provide an implementation—that is, a body—for all
of the abstract methods declared in the interface. Thus the Ci r c l e class, and any other
class that implements the Fi gur e Ge ome t r y interface, would be required to repeat the
declarations of the four methods and provide code for their bodies.

publ i c c l a s s Ci r c l e i mpl e me nt s Fi gur e Ge ome t r y
{

pr ot e c t e d f l oa t r a di us ;
pr ot e c t e d i nt s c a l e ;

publ i c Ci r c l e (f l oa t r a di us)
{

t hi s . r a di us = r a di us ;
}

publ i c f l oa t pe r i me t e r ()
/ / Re t ur ns pe r i me t e r of t hi s f i gur e .
{

r e t ur n(2 * PI * r a di us) ;
}

publ i c f l oa t a r e a ()
/ / Re t ur ns a r e a of t hi s f i gur e .
{

r e t ur n(PI * r a di us * r a di us) ;
}

publ i c voi d s e t Sc a l e (i nt s c a l e)
/ / Sc a l e of t hi s f i gur e i s s e t t o " s c a l e . "
{

t hi s . s c a l e = s c a l e ;
}

publ i c f l oa t we i ght ()
/ / Pr e c ondi t i on: Sc a l e of t hi s f i gur e ha s be e n s e t .
/ /
/ / Re t ur ns we i ght of t hi s f i gur e . We i ght = a r e a s c a l e .
{

r e t ur n(t hi s . a r e a () * s c a l e) ;
}

}

Note that many different classes can all implement the same interface. For example,
you can imagine the classes Re c t a ngl e , Squa r e , and Pa r a l l e l ogr a m, all of which

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 70

2.1 Abstraction | 71

Figure 2.2 The Ci r c l e class implements the Fi gur e Ge ome t r y interface

<<interface>>
FigureGeometry

+ pe r i me t e r () : f l oa t
+ a r e a () : f l oa t
+ s e t Sc a l e (s c a l e i nt) : voi d
+ we i ght () : f l oa t

+PI : f l oa t

Circle

+Ci r c l e (r a di us : f l oa t)
+pe r i me t e r () : f l oa t
+a r e a () : f l oa t
+s e t Sc a l e (s c a l e i nt) : voi d
+we i ght () : f l oa t

#r a di us : f l oa t
#s c a l e : i nt

 implements
 Key:

implement the Fi gur e Ge ome t r y interface. A programmer who knows that these
classes implement the Fi gur e Ge ome t r y interface can be guaranteed that each pro-
vides implementations for the pe r i me t e r , a r e a , s e t Sc a l e , and we i ght methods.

The UML class diagram in Figure 2.2 shows the relationship between the Fi gur e -
Ge ome t r y interface and the Ci r c l e class. The dotted arrow with the open arrowhead
indicates a class implementing an interface. Classes that implement an interface are not
constrained to implementing the abstract methods of the interface as in this example;
they can also add data fields and methods of their own.

Interfaces are a versatile and powerful programming construct. Among other things,
they can be used to specify the logical view of an ADT. Within the interface we define
abstract methods that correspond to the exported methods of the ADT implementation.
We use comments to describe the preconditions and postconditions of each abstract
method. An implementation programmer, who intends to create a class that implements
the ADT, knows that he or she must fulfill the contract spelled out by the interface. An
application programmer, who wants to use the ADT, can use any class that implements
the interface.

Using the Java interface construct in this way for our ADT specifications produces
several benefits:

1. We can formally check the syntax of our specification. When we compile the inter-
face, the compiler uncovers any syntactical errors in the method interface definitions.

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 71

72 | Chapter 2: Abstract Data Types

2. We can formally verify that the interface “contract” is satisfied by the implementa-
tion. When we compile the implementation, the compiler ensures that the method
names, parameters, and return types match those defined in the interface.

3. We can provide a consistent interface to applications from among alternative
implementations of the ADT. Some implementations may optimize the use of mem-
ory space; others may emphasize speed. An implementation may also provide extra
functionality beyond that defined in the interface. Yet all of the implementations
will have the specified interface in common.

In the next section we use a Java interface to specify an ADT that provides a collec-
tion of strings.

2.2 The StringLog ADT Specification2.2

In this section we specify an ADT that we will use throughout the rest of this chapter—
the StringLog ADT. You are already familiar with the concept of a “log.” For example, a
ship’s captain keeps a log of a voyage to record its progress, and students log into a sci-
ence laboratory to show that they attended a help session. The name of the former log
might be “The Nautilus,” while the latter might be called “Intermediate Chemistry Lab.”

A log is used to record entries and allow someone to access those entries at a later
time. Our StringLog ADT provides similar functionality. The primary responsibility of
the StringLog ADT is to remember all the strings that have been inserted into it and,
when presented with any given string, indicate whether an identical string has already
been inserted. A StringLog client uses a StringLog to record strings and later check
whether a particular string has been recorded.

In this section we address the logical level, so we do not have to worry about how
the strings will be stored. Recall that at this level we deal with the what questions—in
particular, “What services should a StringLog provide?”

Constructors
A constructor creates a new instance of the ADT. Users of the StringLog instantiate a
StringLog object by invoking the ne w command on a constructor. It is up to the imple-
menter of the StringLog to decide how many, and what kind of, constructors to provide.

Every StringLog must have a name. The implementer of a StringLog might decide to
provide a default name within the implementation. However, that means that every time
a StringLog is created it will have the same name. A more flexible approach is to allow
the user to pass a name to a constructor when instantiating the StringLog:

s hi pLog = ne w St r i ngLogI mpl e me nt a t i on(" The Na ut i l us ") ;

We use this approach in our implementations later in the chapter.
Another question facing the implementer is “How many strings can be held in a

StringLog?” There are several possible answers—for example, design an unbounded

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 72

2.2 The StringLog ADT Specification | 73

StringLog with no limits on size, or a bounded StringLog of a default size, or a bounded
StringLog where the maximum size is indicated by a constructor parameter. Using the
third approach, the instantiation of a new StringLog might look like this:

c l a s s Log = ne w St r i ngLogI mpl e me nt a t i on(" Phys i c s " , 100) ;

Later in this chapter we study both bounded and unbounded implementations.

Transformers
Transformers change the content of the StringLog in some way. We include two trans-
formers:

• i ns e r t This operation requires a parameter representing the string to be
inserted. It adds that string to the log of strings. Note that this operation does not
specify any relationship among the strings in the log; there is no implicit order-
ing of the log’s contents. As part of the “contract” for using the StringLog, we
disallow insertion of a string if the StringLog is already full. The application pro-
grammer can use the i s Ful l operation (see the “Observers” subsection) to check
whether the log is full before attempting to insert another string.

• c l e a r This operation resets the StringLog to the empty state; the StringLog
retains its name.

Observers
We specify five operations that observe something about a StringLog object and return
the observed information:

• c ont a i ns This operation embodies the prime functionality of a StringLog. It
requires a string as a parameter to search for and returns whether the StringLog
contains that string. We ignore case when comparing the strings. For example,
“JoHn” and “john” are considered equal.

• s i z e This operation returns the number of elements currently held in the
StringLog.

• i s Ful l This operation returns whether the StringLog is full. If full, the client
should no longer invoke the i ns e r t operation.

• ge t Na me This operation returns the na me attribute of the StringLog.
• t oSt r i ng This operation returns a nicely formatted string that represents the

entire contents of the StringLog.

The StringLogInterface
It is possible to identify many more potential operations for a StringLog. However, our
goal in this chapter is to illustrate defining, implementing, and using ADTs, for which
our minimal set of operations is sufficient.

So far we have specified the StringLog ADT only informally. We have not yet care-
fully defined the interface, preconditions, or effects of the operations. This detailed

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 73

74 | Chapter 2: Abstract Data Types

information is required by both the programmer who implements the StringLog and any
programmers who intend to use the StringLog.

Our next step is to use Java’s i nt e r f a c e construct to formally capture our specifi-
cation. The method interfaces are listed as Java code. All other parts of the specification
are presented as comments. Here is the interface of the StringLog:

/ / -
/ / St r i ngLogI nt e r f a c e . j a va by Da l e / J oyc e / We e ms Cha pt e r 2
/ /
/ / I nt e r f a c e f or a c l a s s t ha t i mpl e me nt s a l og of s t r i ngs .
/ / A l og " r e me mbe r s " t he e l e me nt s pl a c e d i nt o i t .
/ /
/ / A l og mus t ha ve a " na me . "
/ / -

pa c ka ge c h02. s t r i ngLogs ;

publ i c i nt e r f a c e St r i ngLogI nt e r f a c e
{

voi d i ns e r t (St r i ng e l e me nt) ;
/ / Pr e c ondi t i on: Thi s St r i ngLog i s not f ul l .
/ /
/ / Pl a c e s e l e me nt i nt o t hi s St r i ngLog.

bool e a n i s Ful l () ;
/ / Re t ur ns t r ue i f t hi s St r i ngLog i s f ul l , ot he r wi s e r e t ur ns f a l s e .

i nt s i z e () ;
/ / Re t ur ns t he numbe r of s t r i ngs i n t hi s St r i ngLog.

bool e a n c ont a i ns (St r i ng e l e me nt) ;
/ / Re t ur ns t r ue i f e l e me nt i s i n t hi s St r i ngLog,
/ / ot he r wi s e r e t ur ns f a l s e .
/ / I gnor e s c a s e di f f e r e nc e s whe n doi ng a s t r i ng c ompa r i s on.

voi d c l e a r () ;
/ / Ma ke s t hi s St r i ngLog e mpt y.

St r i ng ge t Na me () ;
/ / Re t ur ns t he na me of t hi s St r i ngLog.

St r i ng t oSt r i ng() ;
/ / Re t ur ns a ni c e l y f or ma t t e d s t r i ng r e pr e s e nt i ng t hi s St r i ngLog.

}

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 74

2.2 The StringLog ADT Specification | 75

1. The files can be found in the s t r i ngLogs subdirectory of the c h02 subdirectory of the bookFi l e s directory
that contains the program files associated with the textbook.

We call the interface St r i ngLogI nt e r f a c e . Note that it includes a pa c ka ge statement.
This interface is the first of several units we develop to specify and implement our
StringLog ADT. To help keep our files organized, we collect them in a single package
called c h02. s t r i ngLogs .1

An interface does not include constructors. Because you cannot instantiate
objects of an interface, it does not make sense to define constructors. In fact, Java
syntax rules do not allow it. The class that implements the interface provides the
appropriate constructors.

Only one of our operations, i ns e r t , has a precondition. What happens if this oper-
ation is invoked and the precondition is not satisfied? In this specification, the responsi-
bility of checking for error conditions is borne by the programmer who is using the
class. The effect of the i ns e r t method, if invoked when the StringLog is full, is unspec-
ified. Anything could happen! Recall that we call this approach programming “by con-
tract.” We have provided the i s Ful l operation, so the user of the StringLog can verify
that the precondition is met before invoking i ns e r t .

Using the StringLogInterface
Here is a simple example of an application program that uses the St r i ngLogI nt e r -
f a c e and creates and uses a StringLog. It imports the c h02. s t r i ngLogs package so
that it has access to the interface and the associated implementation.

/ / -
/ / Us e St r i ngLog. j a va by Da l e / J oyc e / We e ms Cha pt e r 2
/ /
/ / Si mpl e e xa mpl e of t he us e of a St r i ngLog.
/ / -

i mpor t c h02. s t r i ngLogs . *;

publ i c c l a s s Us e St r i ngLog
{

publ i c s t a t i c voi d ma i n(St r i ng[] a r gs)
{

St r i ngLogI nt e r f a c e s a mpl e ;
s a mpl e = ne w Ar r a ySt r i ngLog(" Exa mpl e Us e ") ;
s a mpl e . i ns e r t (" El vi s ") ;
s a mpl e . i ns e r t (" Ki ng Loui s XI I ") ;
s a mpl e . i ns e r t (" Ca pt a i n Ki r k") ;

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 75

76 | Chapter 2: Abstract Data Types

Sys t e m. out . pr i nt l n(s a mpl e) ;
Sys t e m. out . pr i nt l n(" The s i z e of t he l og i s " + s a mpl e . s i z e ()) ;
Sys t e m. out . pr i nt l n(" El vi s i s i n t he l og: " + s a mpl e . c ont a i ns (" El vi s ")) ;
Sys t e m. out . pr i nt l n(" Sa nt a i s i n t he l og: " + s a mpl e . c ont a i ns (" Sa nt a ")) ;

}
}

We have emphasized the code that uses St r i ngLogI nt e r f a c e . Note, however, that
the ne w command is applied through the Ar r a ySt r i ngLog class (this is also empha-
sized). This class, which is developed in Section 2.3, is an implementation of the
St r i ngLogI nt e r f a c e . It is good practice for a client program to declare the ADT at as
abstract a level as possible. This approach makes it easier to change the choice of imple-
mentation later. Thus s a mpl e is declared to be the more abstract St r i ngLogI nt e r f a c e
rather than the more concrete Ar r a ySt r i ngLog.

The output from the Us e St r i ngLog program follows:

Log: Example Use

1. Elvis
2. King Louis XII
3. Captain Kirk

The size of the log is 3
Elvis is in the log: true
Santa is in the log: false

To review, for the StringLog ADT, we deal with three different perspectives or levels:

1. Application level The Us e St r i ngLog program is the application. It declares a vari-
able s a mpl e of type St r i ngLogI nt e r f a c e . It uses the Ar r a ySt r i ngLog imple-
mentation of the St r i ngLogI nt e r f a c e to perform some simple tasks.

2. Logical level The St r i ngLogI nt e r f a c e interface provides an abstract view of the
StringLog ADT. It is used by the Us e St r i ngLog application and implemented by
the Ar r a ySt r i ngLog class.

3. Implementation level The Ar r a ySt r i ngLog class (see Section 2.3) provides a spe-
cific implementation of the StringLog ADT, fulfilling the contract presented by the
St r i ngLogI nt e r f a c e . It can be used by applications such as Us e St r i ngLog.
Likewise, the Li nke dSt r i ngLog class (see Section 2.6) provides an implementation.

The UML diagram in Figure 2.3 shows the relationships among St r i ngLogI nt e r -
f a c e , Ar r a ySt r i ngLog, Li nke dSt r i ngLog, and Us e St r i ngLog. The exported method
and instance variable name details have been omitted from the figure.

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 76

2.3 Array- Based StringLog ADT Implementation | 77

Figure 2.3 UML diagram showing relationship among StringLog classes

<<interface>>
StringLogInterface

Li s t of publ i c a bs t r a c t me t hods

LinkedStringLog

publ i c me t hods

i ns t a nc e va r i a bl e s

ArrayStringLog

publ i c me t hods

i ns t a nc e va r i a bl e s

Us e St r i ngLog

 uses

 implements

 Key:

2.3 Array- Based StringLog ADT Implementation2.3

In this section we look at an array-based StringLog implementation. The distinguish-
ing feature of this implementation is that the strings are stored sequentially, in adja-
cent slots in an array. We call the class Ar r a ySt r i ngLog to show that it implements
the StringLog interface using an array and to differentiate it from the reference-based
implementation studied later. Like the St r i ngLogI nt e r f a c e , it is placed in the
c h02. s t r i ngLogs package. Ar r a ySt r i ngLog is an example of a bounded imple-
mentation.

Instance Variables
In this implementation, the elements of a StringLog are stored in an array of St r i ng
objects named l og.

St r i ng[] l og; / / a r r a y t ha t hol ds s t r i ngs

Originally the array is empty. Each time the i ns e r t command is invoked, another
string is added to the array. A straightforward approach for handling this task is to use
a variable that tracks the index of the “last” string inserted into the array. This way we
know how far to search in the array when looking for a string and where to store the
next string that is inserted. We call this variable l a s t I nde x. Because our language is
Java, we must remember that the first slot of the array is indexed by 0. Because initially
there are no strings in the array, we initialize l a s t I nde x to 1.

i nt l a s t I nde x = - 1; / / i nde x of l a s t s t r i ng i n a r r a y

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 77

78 | Chapter 2: Abstract Data Types

With this implementation of a bounded StringLog, there is another size-related
attribute of the StringLog: capacity. The capacity of a StringLog is the maximum num-
ber of elements that can be stored in the StringLog. We do not need an instance vari-
able to hold the capacity of the StringLog—we can use the array attribute l e ngt h to
determine the capacity of the StringLog at any point within our implementation. In
other words, the capacity of our StringLog is the length of the underlying array:
l og. l e ngt h.

A review of the specification for StringLog in Section 2.2 reveals one additional
instance variable that we must declare. Can you think of what it is? We must declare a
variable to hold the name attribute of the StringLog. Recall that every StringLog must
have a name. We call the needed variable na me .

St r i ng na me ; / / na me of t hi s l og

Here is the beginning of the class file, which includes the instance variable declara-
tions. Note that it also includes the pa c ka ge statement, an introductory comment, and
descriptive comments for each of the variables.

/ / -
/ / Ar r a ySt r i ngLog. j a va by Da l e / J oyc e / We e ms Cha pt e r 2
/ /
/ / I mpl e me nt s St r i ngLogI nt e r f a c e us i ng a n a r r a y t o hol d t he l og s t r i ngs .
/ / -

pa c ka ge c h02. s t r i ngLogs ;

publ i c c l a s s Ar r a ySt r i ngLog i mpl e me nt s St r i ngLogI nt e r f a c e
{

pr ot e c t e d St r i ng na me ; / / na me of t hi s l og
pr ot e c t e d St r i ng[] l og; / / a r r a y t ha t hol ds l og s t r i ngs
pr ot e c t e d i nt l a s t I nde x = - 1; / / i nde x of l a s t s t r i ng i n a r r a y
.
.
.

Notice that we follow the principle of information hiding and use the pr o-
t e c t e d visibility modifier for each of the variables. Recall that this form of access
means that the variables can be “seen” by subclasses of the Ar r a ySt r i ngLog class.
It is not unusual to extend an ADT class to create a related ADT. Using pr o t e c t e d
allows us to easily extend the class, yet still provides a reasonable degree of infor-
mation hiding.

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 78

2.3 Array- Based StringLog ADT Implementation | 79

Constructors
Now let’s look at the operations for the StringLog ADT. The first things we need are
constructors that create empty StringLogs. Recall that a class constructor is a method
having the same name as the class but no return type. A constructor instantiates and
returns an object of the class. If necessary, it initializes variables and allocates resources
(usually memory) for the object being constructed. Like any other method, a constructor
has access to all the variables and methods of the class.

Our constructor requires two parameters: a string that indicates the name of the
StringLog and a positive integer parameter that indicates the maximum size. We use
this size value to create the array that holds the strings.

publ i c Ar r a ySt r i ngLog(St r i ng na me , i nt ma xSi z e)
/ / Pr e c ondi t i on: ma xSi z e > 0
/ /
/ / I ns t a nt i a t e s a nd r e t ur ns a r e f e r e nc e t o a n e mpt y Ar r a ySt r i ngLog
/ / obj e c t wi t h na me " na me " a nd r oom f or ma xSi z e s t r i ngs .
{

l og = ne w St r i ng[ma xSi z e] ;
t hi s . na me = na me ;

}

The code for this constructor is straightforward and requires little explanation.
When it creates the array of capacity ma xSi z e , it must set the value in each of the array
slots to null.2 Therefore the efficiency of this constructor is O(N), where N is ma xSi z e .

Note the use of the Java keyword t hi s , which is used to access the na me instance
variable as opposed to the na me parameter. The instance variable na me is set equal to
the argument represented by the parameter na me .

Figure 2.4 shows both the internal and abstract views of a StringLog implemented
as an Ar r a ySt r i ngLog as it goes through various stages of use. The first two stages
show a StringLog object called s t r Log after it has been declared and instantiated using
the above constructor.

We decide to include a second constructor, one that does not have a size parameter.
In this case, we make the default size of the underlying array 100, and note that deci-
sion within the introductory comment.

publ i c Ar r a ySt r i ngLog(St r i ng na me)
/ / I ns t a nt i a t e s a nd r e t ur ns a r e f e r e nc e t o a n e mpt y Ar r a ySt r i ngLog
/ / obj e c t wi t h na me " na me " a nd r oom f or 100 s t r i ngs .
{

l og = ne w St r i ng[100] ;
t hi s . na me = na me ;

}

2. Setting the array slots to nul l occurs automatically. We do not have to explicitly code it.

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 79

80 | Chapter 2: Abstract Data Types

Overloading of Names
Notice that the two constructors have the same name: Ar r a ySt r i ngLog. How is this possible?
Recall that in the case of methods, Java uses more than just the name to identify them; it also

uses the parameter list. A method’s name, the number
and type of parameters that are passed to it, and the
ordering of the different parameter types within the list
combine to form what Java calls the signature of the
method.

Java allows us to use the name of a method as
many times as we wish as long as each method has a
different signature. When we use a method name more
than once, we are overloading its identifier. The Java

compiler needs to be able to look at a method call and determine which version of the method
to invoke. The two constructors in the class Ar r a ySt r i ngLog have different signatures: One
takes a string argument and an integer argument; the other takes only a string argument. Java
decides which version to call based on the arguments in the statement that invokes
Ar r a ySt r i ngLog.

Transformers
We have two transformer operations: i ns e r t and c l e a r . Let’s start with i ns e r t —
after all, to use a StringLog you must first insert something into it. As we explained
earlier, the plan is to place a new string into the next available array slot. Because
l a s t I nde x indicates the highest array slot being used, we just increment it to access
the next slot.

publ i c voi d i ns e r t (St r i ng e l e me nt)
/ / Pr e c ondi t i on: Thi s St r i ngLog i s not f ul l .
/ /
/ / Pl a c e s e l e me nt i nt o t hi s St r i ngLog.
{

l a s t I nde x++;
l og[l a s t I nde x] = e l e me nt ;

}

Note that in addition to inserting the new string into the array, we have changed the
value of l a s t I nde x so that it continues to indicate the highest array slot being used. The
precondition permits us to assume that we do not increase this value inappropriately—
that is, to an index past the end of the array. Because the i ns e r t method always exe-
cutes just two statements, its execution efficiency is O(1).

You can now study the rest of Figure 2.4, which shows both the internal (imple-
mentation) view and the abstract view of a StringLog object called s t r Log after it has

Signature The distinguishing features of a method
heading; the combination of a method name with the
number and type(s) of its parameters in their given
order
Overloading The repeated use of a method name
with a different signature

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 80

2.3 Array- Based StringLog ADT Implementation | 81

Figure 2.4 Results of St r i ngLog operations with an array implementation

Internal View Abstract View

ArrayStringLog strLog;

strLog = new ArrayStringLog("Nicknames", 4);

strLog: null (Nonexistent)

Nicknames:
<Empty>

Nicknames:
Babyface

Nicknames:
Babyface
Slim

null null null null

strLog: "Nicknames"

0 1 2 3

name:

lastIndex: –1

log:

strLog.insert("Babyface");

null null null

strLog: "Nicknames"

0 1 2 3

name:

lastIndex: 0

log:

"Babyface"

String s1 = new String ("Slim");
strLog.insert (s1)

null null

strLog: "Nicknames"

s1: "Slim"

0 1 2 3

name:

lastIndex: 1

log:

"Babyface"

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 81

82 | Chapter 2: Abstract Data Types

been declared, instantiated, and received several i ns e r t messages. In one invocation of
i ns e r t a string literal is passed as the argument; in the other invocation a string vari-
able is passed. Here is the application code represented in the figure:

Ar r a ySt r i ngLog s t r Log;
s t r Log = ne w Ar r a ySt r i ngLog(" Ni c kna me s " , 4) ;
s t r Log. i ns e r t (" Ba byf a c e ") ;
St r i ng s 1 = ne w St r i ng(" Sl i m") ;
s t r Log. i ns e r t (s 1) ;

Figure 2.4 shows the strings as existing outside of the s t r Log object. Although these
strings are referenced by the l og array, they exist independently of the s t r Log object. This
is most obvious in the case of the string “Slim,” which is referenced by another variable, s 1.

The remaining transformation operation is c l e a r . At first glance, this operation
might appear simple. We just have to set the value of the l a s t I nde x variable back to its
original value, 1. Of course, by resetting that value we are saying that we no longer
need to access any of the strings that were previously inserted into the array. Yet the array
still references those strings, as shown in Figure 2.5(a). To allow the garbage collector to
reclaim the space used by those strings, it is better to set each of the array slots to nul l , as
shown in Figure 2.5(b). Otherwise, the garbage collector assumes the strings are still being
used, as they are still being referenced. Resetting the slots requires using a for loop to step
through the section of the array being used and to reset all string references to nul l .

publ i c voi d c l e a r ()
/ / Ma ke s t hi s St r i ngLog e mpt y.
{

f or (i nt i = 0; i <= l a s t I nde x; i ++)
l og[i] = nul l ;

l a s t I nde x = - 1;
}

The “lazy” clear approach, where we just set l a s t I nde x to 1, has a Big-O com-
plexity of O(1). The “thorough” approach, represented by the code above, has an effi-
ciency of O(N), where N is the number of strings in the StringLog. Although the lazy
approach is more efficient in terms of time, the thorough approach allows unused mem-
ory locations to be reclaimed for future use. For many problems the differences between
these two approaches would have little effect on the performance of your system; in
those situations where it is important, your decision regarding which approach to follow
should be guided by the overall system goals with respect to resource use.

Observers
We continue by looking at the implementations of the simple observer operations
i s Ful l , s i z e , ge t Na me , and t oSt r i ng. For the Big-O analysis of these operations we
assume the StringLog contains N strings. The i s Ful l operation just compares the

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 82

2.3 Array- Based StringLog ADT Implementation | 83

Figure 2.5 (a) A StringLog after a poorly designed clear operation, and
(b) A StringLog after a well-designed clear operation

(a) Internal view after "lazy" strLog.clear();

null null

strLog: "Nicknames"

s1: "Slim"

0 1 2 3

name:

lastIndex: –1

log:

"Babyface"

(b) Internal view after "thorough" strLog.clear();

nullnullnull null

strLog: "Nicknames"

s1: "Slim"

0 1 2 3

name:

lastIndex: –1

log:

"BabyFace"

current value of l a s t I nde x to the length of the array. Because array indexing begins at
0, the comparison is actually made to the length of the array minus 1.

publ i c bool e a n i s Ful l ()
/ / Re t ur ns t r ue i f t hi s St r i ngLog i s f ul l , o t he r wi s e r e t ur ns f a l s e .
{

i f (l a s t I nde x == (l og. l e ngt h - 1))
r e t ur n t r ue ;

e l s e
r e t ur n f a l s e ;

}

The body of the observer method s i z e is just one statement.

publ i c i nt s i z e ()
/ / Re t ur ns t he numbe r of s t r i ngs i n t hi s St r i ngLog.

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 83

84 | Chapter 2: Abstract Data Types

{
r e t ur n (l a s t I nde x + 1) ;

}

Likewise, the ge t Na me method is simple, as getter methods usually are.

publ i c St r i ng ge t Na me ()
/ / Re t ur ns t he na me of t hi s St r i ngLog.
{

r e t ur n na me ;
}

It is easy to see that each of these operations is O(1).
The t oSt r i ng method is intended to create a nicely formatted string that represents

the information in the StringLog. There are many ways to design such a string. We
implement t oSt r i ng so that it first displays the name of the StringLog and then pro-
vides a numbered list of the current contents. For example, if the StringLog is named
“Three Stooges” and contains the strings “Larry,” “Moe,” and “Curly Joe,” then the result
of displaying the string returned by t oSt r i ng would be

Log: Three Stooges

1. Larry
2. Moe
3. Curly Joe

The implementation of t oSt r i ng is O(N), as it must handle each of the strings:

publ i c St r i ng t oSt r i ng()
/ / Re t ur ns a ni c e l y f or ma t t e d s t r i ng r e pr e s e nt i ng t hi s St r i ngLog.
{

St r i ng l ogSt r i ng = " Log: " + na me + " \ n\ n" ;

f or (i nt i = 0; i <= l a s t I nde x; i ++)
l ogSt r i ng = l ogSt r i ng + (i +1) + " . " + l og[i] + " \ n" ;

r e t ur n l ogSt r i ng;
}

The final observer operation, c ont a i ns , is the most complicated method of
Ar r a ySt r i ngLog. The c ont a i ns operation allows the application programmer to pro-
vide an argument string and discover whether an identical string already exists in the
StringLog. A bool e a n value is returned by the method—if the argument string matches
a string in the StringLog, t r ue is returned; otherwise, f a l s e is returned.

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 84

2.3 Array- Based StringLog ADT Implementation | 85

As described in the specification, we ignore case distinctions between strings when
comparing them. Several methods for comparing strings are available from the Java
library’s St r i ng class. Given that we wish to ignore case, a good choice for us is the
e qua l s I gnor e Ca s e method. It returns t r ue if the string passed to it as an argument is
equal, ignoring case, to the string upon which it is invoked, and f a l s e otherwise. For
example, if the St r i ng object na me contains the string “Rumplestiltskin,” then

na me . e qua l s I gnor e Ca s e (" r umpl e STI LTs ki n")

returns t r ue , while

na me . e qua l s I gnor e Ca s e (" Rumpl e s t i l t s ki nny")

returns f a l s e .
The overall approach we should use is obvious: traverse the array one location after

another, comparing the array contents with the parameter string e l e me nt until we
either find a match or reach the end of the stored elements. If e l e me nt is not in the
array, this algorithm requires N steps, as it must compare e l e me nt to each of the N
strings in the StringLog. In the worst case, the efficiency of this approach is O(N).

Although the implementation of our algorithm is not overly difficult, neither is it
trivial. Stepwise refinement is a technique we can use to help us design nontrivial meth-
ods. The feature section on “Stepwise Refinement” introduces this technique and pres-
ents as an example the development of the code for c ont a i ns .

This concludes our implementation of the Ar r a ySt r i ngLog class. The code in its
entirety is listed below. Of course, our work is not finished. We still need to test our
implementation. In the next section we discuss software testing issues in general. At the
end of the section we explicitly address testing of our Ar r a ySt r i ngLog class and
develop a test driver for it.

/ / -
/ / Ar r a ySt r i ngLog. j a va by Da l e / J oyc e / We e ms Cha pt e r 2
/ /
/ / I mpl e me nt s St r i ngLogI nt e r f a c e us i ng a n a r r a y t o hol d t he s t r i ngs .
/ / -

pa c ka ge c h02. s t r i ngLogs ;

publ i c c l a s s Ar r a ySt r i ngLog i mpl e me nt s St r i ngLogI nt e r f a c e
{

pr ot e c t e d St r i ng na me ; / / na me of t hi s St r i ngLog
pr ot e c t e d St r i ng[] l og; / / a r r a y t ha t hol ds s t r i ngs
pr ot e c t e d i nt l a s t I nde x = - 1; / / i nde x of l a s t s t r i ng i n a r r a y

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 85

86 | Chapter 2: Abstract Data Types

publ i c Ar r a ySt r i ngLog(St r i ng na me , i nt ma xSi z e)
/ / Pr e c ondi t i on: ma xSi z e > 0
/ /
/ / I ns t a nt i a t e s a nd r e t ur ns a r e f e r e nc e t o a n e mpt y St r i ngLog obj e c t
/ / wi t h na me " na me " a nd r oom f or ma xSi z e s t r i ngs .
{

l og = ne w St r i ng[ma xSi z e] ;
t hi s . na me = na me ;

}

publ i c Ar r a ySt r i ngLog(St r i ng na me)
/ / I ns t a nt i a t e s a nd r e t ur ns a r e f e r e nc e t o a n e mpt y St r i ngLog obj e c t
/ / wi t h na me " na me " a nd r oom f or 100 s t r i ngs .
{

l og = ne w St r i ng[100] ;
t hi s . na me = na me ;

}

publ i c voi d i ns e r t (St r i ng e l e me nt)
/ / Pr e c ondi t i on: Thi s St r i ngLog i s not f ul l .
/ /
/ / Pl a c e s e l e me nt i nt o t hi s St r i ngLog.
{

l a s t I nde x++;
l og[l a s t I nde x] = e l e me nt ;

}

publ i c bool e a n i s Ful l ()
/ / Re t ur ns t r ue i f t hi s St r i ngLog i s f ul l , ot he r wi s e r e t ur ns f a l s e .
{

i f (l a s t I nde x == (l og. l e ngt h - 1))
r e t ur n t r ue ;

e l s e
r e t ur n f a l s e ;

}

publ i c i nt s i z e ()
/ / Re t ur ns t he numbe r of s t r i ngs i n t hi s St r i ngLog.
{

r e t ur n (l a s t I nde x + 1) ;
}

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 86

2.3 Array- Based StringLog ADT Implementation | 87

publ i c bool e a n c ont a i ns (St r i ng e l e me nt)
/ / Re t ur ns t r ue i f e l e me nt i s i n t hi s St r i ngLog,
/ / ot he r wi s e r e t ur ns f a l s e .
/ / I gnor e s c a s e di f f e r e nc e s whe n doi ng s t r i ng c ompa r i s on.
{

i nt l oc a t i on = 0;

whi l e (l oc a t i on <= l a s t I nde x)
{

i f (e l e me nt . e qua l s I gnor e Ca s e (l og[l oc a t i on])) / / i f t he y ma t c h
r e t ur n t r ue ;

e l s e
l oc a t i on++;

}

r e t ur n f a l s e ;
}

publ i c voi d c l e a r ()
/ / Ma ke s t hi s St r i ngLog e mpt y.
{

f or (i nt i = 0; i <= l a s t I nde x; i ++)
l og[i] = nul l ;

l a s t I nde x = - 1;
}

publ i c St r i ng ge t Na me ()
/ / Re t ur ns t he na me of t hi s St r i ngLog.
{

r e t ur n na me ;
}

publ i c St r i ng t oSt r i ng()
/ / Re t ur ns a ni c e l y f or ma t t e d s t r i ng r e pr e s e nt i ng t hi s St r i ngLog.
{

St r i ng l ogSt r i ng = " Log: " + na me + " \ n\ n" ;

f or (i nt i = 0; i <= l a s t I nde x; i ++)
l ogSt r i ng = l ogSt r i ng + (i +1) + " . " + l og[i] + " \ n" ;

r e t ur n l ogSt r i ng;
}

}

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 87

88 | Chapter 2: Abstract Data Types

Stepwise Refinement
In addition to concepts such as abstraction and information hiding, software developers need
practical approaches to conquer complexity. Stepwise refinement is a widely applicable
approach. Undoubtedly you have learned a variation of stepwise refinement in your studies,
because it is a standard method for organizing and writing essays, term papers, and books. For
example, to write a book an author first determines the main theme and the major subthemes.
Next, the chapter topics can be identified, followed by section and subsection topics. Outlines
can be produced and further refined for each subsection. At some point the author is ready to
add detail—to actually begin writing sentences.

In general, with stepwise refinement, a problem is approached in stages. Similar steps are
followed during each stage, with the only difference being the level of detail involved. The com-
pletion of each stage brings us closer to solving our problem. There are two standard variations
of stepwise refinement:

• Top-down First the problem is broken into several large parts. Each of these parts is, in
turn, divided into sections, then the sections are subdivided, and so on. The important fea-
ture is that details are deferred as long as possible as we move from a general solution to a
specific solution. The outline approach to writing a book is a form of top-down stepwise
refinement.

• Bottom-up As you might guess, with this approach the details come first. It is the oppo-
site of the top-down approach. After the detailed components are identified and designed,
they are brought together into increasingly higher-level components. This strategy could
be used, for example, by the author of a cookbook who first writes all the recipes and then
decides how to organize them into sections and chapters. In the world of programming,
the bottom-up approach is useful if you can identify previously created program compo-
nents to reuse in creating your system.

The top-down approach is often used for the design of nontrivial methods. Let’s apply this
approach to the development of the c ont a i ns method for the Ar r a ySt r i ngLog class. The idea
is to start with an abstract solution and to add detail as we refine the solution in successive steps.

In the early and middle steps, we express our solution using a mixture of Java and English.
We use Java to structure our solution, and we use English to describe our solution in an
abstract way. A combination of a programming language with a natural language, such as we
use here, is called pseudocode and is a convenient means for expressing algorithms. As we
refine our solution we will use increasingly more Java and increasingly less English until we
arrive at our final solution, which is expressed completely in Java. Our pseudocode will evolve
into real code!

We’ve already identified an overall approach: traverse the array one location after another,
comparing the array contents with the string element until we either find a match or reach the
end of the stored elements. Capturing this approach in pseudocode we get

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 88

2.3 Array- Based StringLog ADT Implementation | 89

public boolean contains(String element)
{

Set variables
while (we still need to search)
{

Check the next value
}
return (whether we found the element)

}

public boolean contains(String element)
{

Set variables;
while (we still need to search)
{

if (the next value equals element)
return true;

}
return false;

}

Assuming that we correctly “refine” this solution, it looks good. Which part of it should we
refine first? Let’s work on finding the element as that is the central focus of the operation.

When we “Check the next value,” if it matches the argument e l e me nt , we can immedi-
ately return t r ue . Recall that a return statement terminates the execution of the method, so
upon finding the element we end execution and return t r ue .

But what if we do not find the element? By the time the while loop is exited, if we have not
found the element, then it is not in the StringLog. Therefore, if we exit the while loop, we can
properly return f a l s e . The second refinement captures these decisions:

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 89

90 | Chapter 2: Abstract Data Types

public boolean contains(String element)
{

int location = 0;
while (we still need to search)
{

if (element.equalsIgnoreCase(log[location]))
return true;

else
location++;

}
return false;

}

Our algorithm is beginning to look more like Java code. Next we tackle the issue of “next
value.” What exactly does that mean? Upon reflection we realize that we really need to keep
track of the current array location we are checking. If we don’t have a match to e l e me nt , we
need to increment that location to the next location in the array.

We use a variable l oc a t i on to represent the current location of the array that we need to
check. We initialize l oc a t i on to 0 so that we begin checking at the beginning of the array, as
we planned. At this point we can add the string comparison detail, using the e qua l s I gnor e -
Ca s e operation provided by the St r i ng class. Putting all of this together, we get

The only part of the solution left to address is how to determine when “there are more val-
ues to search.” Recall that the object variable l a s t I nde x holds the index of the rightmost
string in the array. Therefore there are more values to search as long as the current value of
l oc a t i on is less than or equal to the value of l a s t I nde x. Incorporating this idea, plus adding
a few explanatory comments, completes our development of the c ont a i ns method:

publ i c bool e a n c ont a i ns (St r i ng e l e me nt)
/ / Re t ur ns t r ue i f e l e me nt i s i n t hi s St r i ngLog,
/ / o t he r wi s e r e t ur ns f a l s e .
/ / I gnor e s c a s e di f f e r e nc e s whe n doi ng s t r i ng c ompa r i s on.

{
i nt l oc a t i on = 0;
whi l e (l oc a t i on <= l a s t I nde x)
{

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 90

2.4 Software Testing | 91

i f (e l e me nt . e qua l s I gnor e Ca s e (l og[l oc a t i on])) / / i f t he y ma t c h
r e t ur n t r ue ;

e l s e
l oc a t i on++;

}
r e t ur n f a l s e ;

}

2.4 Software Testing2.4

In Chapter 1 we discussed some characteristics of good programs. The first of these cri-
teria was that a good program works—it accomplishes its intended function. How do you
know when your program meets that goal? The
simple answer is, test it. Of course, software
testing is only one facet of software verifica-
tion. Verification activities don’t need to start
when the program is completely coded; they
can be incorporated into the whole software
development process, from the requirements phase on. See the feature section “Valida-
tion and Verification” for a discussion of this topic. In this section we concentrate on
testing.

The software testing process requires us to devise a set of test cases that, taken
together, allow us to claim that a program works correctly. The goal of each test case is
to verify a particular program feature. For instance, we may design several test cases to
demonstrate that the program correctly handles various classes of input errors. Or we
may design cases to check the processing when a data structure (such as an array) is
empty or when it contains the maximum number of elements.

For each test case, we must perform the following tasks:

• Identify inputs that represent the test case.
• Determine the expected behavior of the program for the given input.
• Run the program and observe the resulting behavior.
• Compare the expected behavior and the actual behavior of the program.

For now we are talking about test cases at a class, or method, level. It’s much
easier to test and debug modules of a program one at a time, rather than trying to
get the entire program solution to work all at once. Testing at this level is called unit
testing.

Software testing The process of executing a program
with data sets designed to discover errors
Unit testing Testing a class or method by itself

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 91

92 | Chapter 2: Abstract Data Types

How do we know which kinds of unit test cases are appropriate and how many are
needed? Identifying the set of test cases that is sufficient to validate a unit of a program
is in itself a difficult task.

Identifying Test Cases
In those limited cases where the set of valid inputs, or
the functional domain, is extremely small, we can ver-
ify a program unit by testing it against every possible
input element. This approach, known as exhaustive test-
ing, can prove conclusively that the software meets its
specifications. In most cases, however, the functional
domain is very large, so exhaustive testing is almost
always impractical or impossible.

You can attempt program testing in a haphazard way, entering data randomly until
you cause the program to fail. Guessing doesn’t hurt, but it may not help much either.
The random approach is likely to uncover some bugs in a program, but it is very unlikely
to find them all. Fortunately there are strategies for detecting errors in a systematic way.

One goal-oriented approach is to cover general dimensions of data. Within each
dimension you identify categories of inputs and expected results. You then test at least
one instance of each combination of categories across dimensions. For example, the fol-
lowing dimensions and categories could be identified for the c ont a i ns method of the
StringLog ADT:

• Expected result: true, false
• Size of StringLog: empty, small, large, full
• Properties of element: no blanks, contains blanks
• Properties of match: perfect match, imperfect match where character cases differ
• Position of match: first string placed in StringLog, last string placed in

StringLog, “middle” string placed in StringLog

From this list we can identify dozens of test cases—for example, a test where the expected
result is true, the StringLog is full, the element contains blanks, it’s an imperfect match,
and the string being matched was the “middle” string placed into the StringLog.

Note that some combinations across dimensions do not make sense. For example,
we cannot construct a test case where the expected result is false and the match is per-
fect. By carefully identifying dimensions and categories, and by ensuring that all feasi-
ble combinations of categories across dimensions are tested, we can arrive at a
reasonably sized set of test cases that provide a good representation of the functional
domain.

Testing like this, based on data coverage, is called black-box testing. The tester must
understand the external interface to the module—its inputs and expected outputs—but does
not need to consider what is happening inside the module (the inside of the black box).

Functional domain The set of valid input data for a
program or method
Black- box testing Testing a program or method
based on the possible input values, treating the code as
a “black box”

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 92

2.4 Software Testing | 93

3. B. W. Boehm, Software Engineering Economics (Englewood Cliffs, NJ: Prentice Hall, 1981).

Validation and Verification
Software validation and verification activities span the entire software life cycle. These
activities address separate, albeit related, concerns. Software validation activities help
ensure that the delivered software actually fits the
needs of the intended user. There have been countless
times when a programmer finishes a large project and
delivers the software, only to be told, “Well, that’s
what I asked for, but it’s not what I need.” Software
verification activities help ensure that each stage of
software development succeeds in terms of its stated
goals. In other words, validation asks, “Are we doing
the right job?” and verification asks, “Are we doing
the job right?”3 .2

Design Review Activities
When an individual programmer is designing and implementing a program, he or she can find
many software errors with old-fashioned pencil and paper. Deskchecking the design solution is a
widely used method of manually verifying a program. The programmer writes down essential data
(variables, input values, parameters, and so on) and walks
through the design, marking changes in the data on the
paper. Known trouble spots in the design or code should
be double-checked. A checklist of typical errors (such as
loops that do not terminate, variables that are used
before they are initialized, and parameters that are given
in incorrect order on method calls) can be used to make
the deskcheck more effective. A few minutes spent
deskchecking your designs can save lots of time and
eliminate difficult problems that would otherwise sur-
face later in the life cycle (or even worse, would not sur-
face until after delivery).

Most sizable computer programs are developed by teams of programmers. Two extensions
of deskchecking that are effectively used by programming teams are design or code walk-
throughs and inspections. These formal team activities are intended to move the responsibility
for uncovering bugs from the individual programmer to the group. Because testing is time-
consuming and errors cost more the later they are discovered, the goal is to identify errors
before testing begins.

In a walk-through, the team performs a manual simulation of the design or program with
sample test inputs, keeping track of the program’s data by hand on paper or a blackboard. Unlike

Software validation The process of determining the
degree to which software fulfills its intended purpose
Software verification The process of determining the
degree to which a software product fulfills its specifi-
cations

Deskchecking Tracing an execution of a design or
program on paper
Walk- through A verification method in which a team
performs a manual simulation of the program or design
Inspection A verification method in which one mem-
ber of a team reads the program or design line by line
and the others point out errors

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 93

94 | Chapter 2: Abstract Data Types

Test Plans
The organization of all the test cases for a class or system is called a test plan. Some test
plans are very informal—for example, a list of test cases, written by hand on a piece of

paper. Even this type of test plan may be more than
you have ever been required to write for a class pro-
gramming project. Other test plans (particularly those
submitted to management or to a customer for
approval) are very formal, containing the details of
each test case in a standardized format.

For program testing to be effective, it must be planned. You must design your test-
ing in an organized way, and you must put your design in writing. You should deter-
mine the required or desired level of testing, and plan your general strategy and test
cases before testing begins. In fact, it’s advantageous to start planning for testing before
writing a single line of code.

Testing ADT Implementations
The major focus of this textbook is data structures: what they are, how we use them,
and how we implement them as ADTs using Java. It seems appropriate to end this
section about software testing with a look at how we can test the ADTs we implement
in Java.

A General Approach
Every ADT that we implement supports a set of opera-
tions. For each ADT, we can create an interactive test
driver program that allows us to test the operations in a
variety of sequences. How can we write a single test
driver that allows us to test numerous operation

thorough program testing, the walk-through is not intended to simulate all possible test cases.
Instead, its purpose is to stimulate discussion about the way the programmer chose to design or
implement the program’s requirements.

At an inspection, a reader (never the program’s author) goes through the requirements,
design, or code line by line. The inspection participants are given the material in advance and
are expected to have reviewed it carefully. During the inspection, the participants point out
errors that are recorded on an inspection report. Many of the errors may have been noted by
team members during their preinspection preparation. Other errors are uncovered just by the
process of reading aloud.

As with the walk-through, the chief benefit of the team meeting is the discussion that
takes place among team members. This interaction among programmers, testers, and other team
members can uncover many program errors long before the testing stage begins.

Test driver A program that calls operations exported
from a class, allowing us to test the results of the
operations

Test plan A document showing the test cases
planned for a program or module, along with their pur-
poses, inputs, expected outputs, and criteria for success

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 94

2.4 Software Testing | 95

sequences? The solution is to create a test driver that repeatedly presents the user—that
is, the tester—with a choice of operations representing the exported methods of the ADT.
In this way the tester can test any sequence of operations he or she chooses. When the
tester chooses an operation that requires one or more arguments, then the test driver
must prompt the tester to supply the arguments.

Our interactive test drivers all follow the same basic algorithm. Here is a
pseudocode description:

The interactive test driver program obtains the operation requests from the user one
at a time, performs the operation by invoking the methods of the class being tested, and
reports the results to an output stream. In addition to requesting one of the ADT opera-
tions, the user can request a display of the contents of the ADT instance or indicate that
he or she is finished with the program. This approach provides us with maximum flexi-
bility for minimum extra work when we are testing our ADTs.

Notice that the first step prompts for, reads, and displays the name of the test case. This
step might seem unnecessary for an interactive program given that the name of the test is
reported directly back to the user who enters it. However, the programmer performing the
test may want to save a record of the interactive dialogue for later study or as archival test
documentation, so establishing a name for the interactive dialogue can prove useful.

A Test Driver for the ArrayStringLog Class
Here we present an interactive test driver for our Ar r a ySt r i ngLog class. The imple-
mentation is fairly straightforward and is based on our pseudocode. We call the pro-
gram I TDAr r a ySt r i ngLog, with the “ITD” standing for “Interactive Test Driver.”

Interactive Test Driver for ADT Implementation
Prompt for, read, and display test name
Determine which constructor to use, obtain any needed parameters, and instantiate a new instance of the ADT
while (testing continues)
{

Display a menu of operation choices, one choice for each
method exported by the ADT implementation, plus a “show
contents” choice, plus a “stop testing” choice

Get the user’s choice and obtain any needed parameters
Perform the chosen operation

}

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 95

96 | Chapter 2: Abstract Data Types

/ / -
/ / I TDAr r a ySt r i ngLog. j a va by Da l e / J oyc e / We e ms Cha pt e r 2
/ /
/ / I nt e r a c t i ve Te s t Dr i ve r f or t he Ar r a ySt r i ngLog c l a s s .
/ / -

i mpor t j a va . ut i l . * ;
i mpor t c h02. s t r i ngLogs . *;

publ i c c l a s s I TDAr r a ySt r i ngLog
{

publ i c s t a t i c voi d ma i n(St r i ng[] a r gs)
{

Ar r a ySt r i ngLog t e s t = ne w Ar r a ySt r i ngLog(" Te s t i ng") ;
Sc a nne r c onI n = ne w Sc a nne r (Sys t e m. i n) ;

St r i ng s ki p; / / s ki p e nd of l i ne a f t e r r e a di ng a n i nt e ge r
bool e a n ke e pGoi ng; / / f l a g f or " c hoos e ope r a t i on" l oop
i nt c ons t r uc t or ; / / i ndi c a t e s us e r ' s c hoi c e of c ons t r uc t or
i nt ope r a t i on; / / i ndi c a t e s us e r ' s c hoi c e of ope r a t i on

Sys t e m. out . pr i nt l n(" Wha t i s t he na me of t hi s t e s t ? ") ;
St r i ng t e s t Na me = c onI n. ne xt Li ne () ;
Sys t e m. out . pr i nt l n(" \ nThi s i s t e s t " + t e s t Na me + " \ n") ;

Sys t e m. out . pr i nt l n(" Choos e a c ons t r uc t or : ") ;
Sys t e m. out . pr i nt l n(" 1: Ar r a ySt r i ngLog(St r i ng na me) ") ;
Sys t e m. out . pr i nt l n(" 2: Ar r a ySt r i ngLog(St r i ng na me , i nt ma xSi z e) ") ;
i f (c onI n. ha s Ne xt I nt ())

c ons t r uc t or = c onI n. ne xt I nt () ;
e l s e
{

Sys t e m. out . pr i nt l n(" Er r or : you mus t e nt e r a n i nt e ge r . ") ;
Sys t e m. out . pr i nt l n(" Te r mi na t i ng t e s t . ") ;
r e t ur n;

}
s ki p = c onI n. ne xt Li ne () ;

s wi t c h (c ons t r uc t or)
{

c a s e 1:
t e s t = ne w Ar r a ySt r i ngLog(t e s t Na me) ;
br e a k;

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 96

2.4 Software Testing | 97

c a s e 2:
Sys t e m. out . pr i nt l n(" Ent e r a ma xi mum s i z e : ") ;
i nt ma xSi z e ;
i f (c onI n. ha s Ne xt I nt ())

ma xSi z e = c onI n. ne xt I nt () ;
e l s e
{

Sys t e m. out . pr i nt l n(" Er r or : you mus t e nt e r a n i nt e ge r . ") ;
Sys t e m. out . pr i nt l n(" Te r mi na t i ng t e s t . ") ;
r e t ur n;

}
s ki p = c onI n. ne xt Li ne () ;
t e s t = ne w Ar r a ySt r i ngLog(t e s t Na me , ma xSi z e) ;
br e a k;

de f a ul t :
Sys t e m. out . pr i nt l n(" Er r or i n c ons t r uc t or c hoi c e . Te r mi na t i ng t e s t . ") ;
r e t ur n;

}

ke e pGoi ng = t r ue ;
whi l e (ke e pGoi ng)
{

Sys t e m. out . pr i nt l n(" \ nChoos e a n ope r a t i on: ") ;
Sys t e m. out . pr i nt l n(" 1: i ns e r t (St r i ng e l e me nt) ") ;
Sys t e m. out . pr i nt l n(" 2: c l e a r () ") ;
Sys t e m. out . pr i nt l n(" 3: c ont a i ns (St r i ng e l e me nt) ") ;
Sys t e m. out . pr i nt l n(" 4: i s Ful l () ") ;
Sys t e m. out . pr i nt l n(" 5: s i z e () ") ;
Sys t e m. out . pr i nt l n(" 6: ge t Na me () ") ;
Sys t e m. out . pr i nt l n(" 7: s how c ont e nt s ") ;
Sys t e m. out . pr i nt l n(" 8: s t op t e s t i ng") ;
i f (c onI n. ha s Ne xt I nt ())

ope r a t i on = c onI n. ne xt I nt () ;
e l s e
{

Sys t e m. out . pr i nt l n(" Er r or : you mus t e nt e r a n i nt e ge r . ") ;
Sys t e m. out . pr i nt l n(" Te r mi na t i ng t e s t . ") ;
r e t ur n;

}
s ki p = c onI n. ne xt Li ne () ;

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 97

98 | Chapter 2: Abstract Data Types

s wi t c h (ope r a t i on)
{

c a s e 1: / / i ns e r t
Sys t e m. out . pr i nt l n(" Ent e r s t r i ng t o i ns e r t : ") ;
St r i ng i ns e r t St r i ng = c onI n. ne xt Li ne () ;
t e s t . i ns e r t (i ns e r t St r i ng) ;
br e a k;

c a s e 2: / / c l e a r
t e s t . c l e a r () ;
br e a k;

c a s e 3: / / c ont a i ns
Sys t e m. out . pr i nt l n(" Ent e r s t r i ng t o s e a r c h f or : ") ;
St r i ng s e a r c hSt r i ng = c onI n. ne xt Li ne () ;
Sys t e m. out . pr i nt l n(" Re s ul t : " + t e s t . c ont a i ns (s e a r c hSt r i ng)) ;
br e a k;

c a s e 4: / / i s Ful l
Sys t e m. out . pr i nt l n(" Re s ul t : " + t e s t . i s Ful l ()) ;
br e a k;

c a s e 5: / / s i z e
Sys t e m. out . pr i nt l n(" Re s ul t : " + t e s t . s i z e ()) ;
br e a k;

c a s e 6: / / ge t Na me
Sys t e m. out . pr i nt l n(" Re s ul t : " + t e s t . ge t Na me ()) ;
br e a k;

c a s e 7: / / s how c ont e nt s
Sys t e m. out . pr i nt l n(t e s t . t oSt r i ng()) ;
br e a k;

c a s e 8: / / s t op t e s t i ng
ke e pGoi ng = f a l s e ;
br e a k;

de f a ul t :
Sys t e m. out . pr i nt l n(" Er r or i n ope r a t i on c hoi c e . Te r mi na t i ng t e s t . ") ;
r e t ur n;

}
}

Sys t e m. out . pr i nt l n(" End of I nt e r a c t i ve Te s t Dr i ve r ") ;
}

}

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 98

2.4 Software Testing | 99

Study the test driver program. You should be able to follow the control logic and
recognize that it is a refinement of the pseudocode presented earlier. You should also
understand the purpose of each statement. Although the program is straightforward, a
few points require further explanation:

• The program starts by using ne w to instantiate t e s t , an Ar r a ySt r i ngLog vari-
able. It then proceeds to ask the user to select one of the two available construc-
tors and, under the control of the first s wi t c h statement, instantiates t e s t
again. It does not appear that the first use of the ne w command, in the opening
statement of the ma i n method, is necessary. It seems to be redundant. However,
some Java compilers require that statement. Without it they report an error such
as “variable t e s t might not have been initialized” because the later ne w com-
mands are embedded within a decision structure (the s wi t c h statement) that
includes a branch without a ne w command (the de f a ul t branch). These compil-
ers conclude that ne w may not be executed. Including the ne w command in the
opening statement resolves the problem.

• This test driver does some error checking to ensure that user inputs are valid, but
it does not represent a completely robust program. For instance, it doesn’t verify
that the size provided for the second constructor is a positive number, and it
doesn’t prevent the user from inserting too many elements into a StringLog.
Although both of these situations are disallowed by the contract of
Ar r a ySt r i ngLog, based on the stated preconditions, they should not be pre-
vented by our test driver program. The user of the test driver, who is testing the
Ar r a ySt r i ngLog, might wish to determine what happens when preconditions
are not met and, therefore, needs the ability to violate the preconditions during a
test run.

Using the Test Driver
The subsection “Identifying Test Cases” gave an example that dealt with the c ont a i ns
method of the Ar r a ySt r i ngLog class. The specific test case involved the following
conditions:

• The expected result is true,
• The StringLog is full,
• The element contains blanks,
• It’s an imperfect match, and
• The string being matched is the “middle” string placed into the StringLog.

Here’s the result of a run of the test driver where this test is administered. User input is
shown in green. The repeated display of the operation menu has been replaced with . . .
in most places.

Wha t i s t he na me of t hi s t e s t ?

Te xt book Exampl e

Thi s i s t e s t Te xt book Exa mpl e

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 99

100 | Chapter 2: Abstract Data Types

Choos e a c ons t r uc t or :

1: Ar r a ySt r i ngLog(St r i ng na me)

2: Ar r a ySt r i ngLog(St r i ng na me , i nt ma xSi z e)

2

Ent e r a ma xi mum s i z e :

3

Choos e a n ope r a t i on:

1: i ns e r t (St r i ng e l e me nt)

2: c l e a r ()

3: c ont a i ns (St r i ng e l e me nt)

4: i s Ful l ()

5: s i z e ()

6: ge t Na me ()

7: s how c ont e nt s

8: s t op t e s t i ng

1

Ent e r s t r i ng t o i ns e r t :

t r oubl e i n t he f i e l ds

Choos e a n ope r a t i on:

. . .

1

Ent e r s t r i ng t o i ns e r t :

l ove at t he f i ve and di me

Choos e a n ope r a t i on:

. . .

1

Ent e r s t r i ng t o i ns e r t :

onc e i n a ve r y bl ue moon

Choos e a n ope r a t i on:

. . .

4

Re s ul t : t r ue

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 100

2.4 Software Testing | 101

Choos e a n ope r a t i on:

. . .

3

Ent e r s t r i ng t o s e a r c h f or :

Love at t he Fi ve and Di me

Re s ul t : t r ue

Choos e a n ope r a t i on:

. . .

8

End of I nt e r a c t i ve Te s t Dr i ve r

Our Ar r a ySt r i ngLog class passed the test. Note that if desired a single execution
of our test driver could be used to run several tests. It would have been easy to continue
the preceding test and test for exact matches in the middle, matches at the beginning or
end, and so on. A carefully designed test plan can help minimize the number of test
runs needed.

Professional Testing
The interactive testing approach described in this section provides several benefits:

• It allows us to easily change our test case—we just have to change the sequence of opera-
tions requested or the argument values supplied.

• Pedagogically it provides an example of a program that “uses” our ADT, and it allows a stu-
dent to experiment interactively with the ADT.

However, in a production environment where hundreds or even thousands of test cases need to
be performed, an interactive approach can be unwieldy to use. Instead, automated test drivers
are created to run in batch mode.

For example, a software engineer constructing a test case equivalent to the one addressed
in the “Using the Test Driver” subsection might create the following program (let’s assume this is
test case number 34):

publ i c c l a s s Te s t 034

i mpor t c h02. s t r i ngLogs . *;

{
publ i c s t a t i c voi d ma i n(St r i ng[] a r gs)
{

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 101

102 | Chapter 2: Abstract Data Types

Ar r a ySt r i ngLog t e s t = ne w Ar r a ySt r i ngLog(" Te s t 34" , 3) ;
t e s t . i ns e r t (" t r oubl e i n t he f i e l ds ") ;
t e s t . i ns e r t (" l ove a t t he f i ve a nd di me ") ;
t e s t . i ns e r t (" onc e i n a ve r y bl ue moon") ;
i f (t e s t . c ont a i ns (" Love a t t he Fi ve a nd Di me "))

Sys t e m. out . pr i nt l n(" Te s t 34 pa s s e d") ;
e l s e

Sys t e m. out . pr i nt l n(" Te s t 34 f a i l e d") ;
}

}

This program can run without user intervention and will report whether the test case has been
passed. By developing an entire suite of such programs, software engineers can automate the test-
ing process. Aprime benefit of such an approach is that the same set of test programs can be used
over and over again, throughout the development and maintenance stages of the software process.
Frameworks exist that simplify the creation, management, and use of batch test suites. For example,
you can find information about JUnit, a popular Java-based testing framework, at www.junit.org.

Exercise 39 asks you to construct a batch test program.

2.5 Introduction to Linked Lists2

Recall from Section 1.5, “Data Structures,” that the array and the linked list are the two
primary building blocks for the more complex data structures. In this section we discuss
linked lists in more detail, show how to create linked lists using Java, and introduce
operations on linked lists. We use linked lists of strings in our examples to support the
ongoing example of an ADT in this chapter, the StringLog ADT.

Arrays Versus Linked Lists

The figure depicts abstract views of an array of strings and a linked list of strings. An
important difference between the two approaches is the underlying layout of the data in
memory and the way in which we access the individual elements. With an array, we
view all the elements as being grouped together, sitting in one block of memory. With a
linked list, each element sits separately in its own block of memory. We call this small
separate block of memory a “node.”

An array is a built-in structure in Java and most other programming languages. In
contrast, although a few languages provide built-in linked lists (e.g., Lisp and Scheme),

"B" "B""C" "D"

Array Linked List

[0] [1] [2] [3] [4]

"C"
"D"

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 102

2.5 Introduction to Linked Lists | 103

most do not. Java supports common types of linked lists through a part of its Class
Library called the Collections Framework. Even though the linked lists in the library are
sufficient for many applications, software engineers need to understand how they work,
both to appreciate their limitations, and also to be able to build custom linked list
classes when the need arises. In the next subsection we show you how to create a linked
list class using Java references.

As you know, the array structure allows us to access any element directly via its index.
In comparison, the linked list structure seems very limited, as its nodes can only be accessed
in a sequential manner, starting at the beginning of the list and following the links. So why
should we bother to use a linked list in the first place? There are several potential reasons:

• The size of an array is fixed. It is provided as an argument to the ne w command
when the array is instantiated. The size of a linked list varies. The nodes of a
linked list can be allocated on an “as needed” basis. When no longer needed, the
nodes can be returned to the memory manager.

• For some operations a linked list is a more efficient implementation approach
than an array. For example, to place an element into the front of a collection of
elements with an array you must shift all elements by one place toward the back
of the array. This task requires many steps. With a linked list you simply allocate
a new node and link it to the front of the list. This task requires only two steps.

• For some applications you never have to directly access a node that is deep
within the list without first accessing the nodes that precede it on the list. In
those cases the fact that nodes of a linked list must be accessed sequentially
doesn’t adversely affect performance.

The LLStringNode Class
To create a linked list we need to know how to do two things: allocate space for a node
dynamically and allow a node to link to, or reference, another node. Java supplies an
operation for dynamically allocating space, an operation we have been using for all of
our objects—the ne w operation. Clearly, that part is easy. But how can we allow a node to
reference another node? Essentially a node in a linked list is an object that holds some
important information, such as a string, plus a link to another node. That other node is
the exact same type of object—it is also a node
in the linked list.

When we define the node class, we must
allow the objects created from it to reference
node class objects. We call this type of class
a self-referential class. We include in its

"B" "B""C" "D"

2

Array Linked List

[0] [1] [2] [3] [4]

"A""A"

"C"
"D"

4 1

123

Self- referential class A class that includes an
instance variable or variables that can hold a reference
to an object of the same class

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 103

104 | Chapter 2: Abstract Data Types

definition two instance variables: one that holds the important information that the
linked list is maintaining and one that is a reference to an object of its same class. As
an example, let’s design a self-referential class that provides nodes for use within a
linked list of strings. We call our class LLSt r i ngNode . Because we use it only to sup-
port a link or reference-based implementation of the StringLog ADT, we make its
instance variables pr i va t e and place it in the c h02 . s t r i ngLogs package. Its decla-
rations include the self-referential code, which is emphasized here:

publ i c c l a s s LLSt r i ngNode

pa c ka ge c h02. s t r i ngLogs ;

{
pr i va t e St r i ng i nf o; / / i nf or ma t i on s t or e d i n l i s t
pr i va t e LLSt r i ngNode l i nk; / / r e f e r e nc e t o a node
. . .

The LLSt r i ngNode class defines an instance variable i nf o to hold a reference to
the string represented by the node and an instance variable l i nk to reference another
LLSt r i ngNode object. That next LLSt r i ngNode can hold a reference to a string and a
reference to another LLSt r i ngNode object, which in turn holds a reference to a string
and a reference to another LLSt r i ngNode object, and so on. The chain ends when the
LLSt r i ngNode holds the value nul l in its l i nk, indicating the end of the linked list.
As an example, here is a linked list with three nodes, referenced by the LLSt r i ngNode
variable l e t t e r s . Given that we know how the nodes of our linked list are imple-
mented, we now use a more concrete view in our figures.

We define one constructor for the LLSt r i ngNode class:

publ i c LLSt r i ngNode (St r i ng i nf o)
{

t hi s . i nf o = i nf o;
l i nk = nul l ;

}

The constructor accepts a string as an argument and sets the i nf o variable to that
string. For example,

LLSt r i ngNode s Node 1 = ne w LLSt r i ngNode (" ba s ke t ba l l ") ;

letters

"B" "C" "D"info:

link:

info:

link:

info:

link: null

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 104

2.5 Introduction to Linked Lists | 105

results in the structure

We could have created other constructors, such as one that accepts an LLSt r i ngNode
reference as an argument and sets the l i nk variable. We do not think they would add
much to the usability of the class.

Note that our constructor essentially creates a linked list with a single element.
How, then, can you represent an empty linked list? You do so by declaring a variable of
class LLSt r i ngNode but not instantiating it with the ne w operation. In that case, the
value held in the string node variable is nul l .

LLSt r i ngNode t he Li s t ;

Completing the class are the definitions of the setters and getters. Their code is stan-
dard and straightforward. The s e t Li nk method is used to link nodes together into a list.
For example, the following code

LLSt r i ngNode s Node 1 = ne w LLSt r i ngNode (“ ba s ke t ba l l ”) ;
LLSt r i ngNode s Node 2 = ne w LLSt r i ngNode (“ ba s e ba l l ”) ;
s Node 1. s e t Li nk(s Node 2) ;

results in the structure

The complete LLSt r i ngNode class is shown next. It is used in Section 2.6 to create
a reference-based implementation of the StringLog ADT. Before seeing how that is
accomplished, we introduce the standard operations on linked lists.

sNode1

"baseball""basketball"info:

link:

info:

link: null

sNode2

theList: null

sNode1

"basketball"info:

link: null

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 105

106 | Chapter 2: Abstract Data Types

/ / -
/ / LLSt r i ngNode . j a va by Da l e / J oyc e / We e ms Cha pt e r 2
/ /
/ / I mpl e me nt s St r i ng node s f or a Li nke d Li s t .
/ / -

pa c ka ge c h02. s t r i ngLogs ;

publ i c c l a s s LLSt r i ngNode
{

pr i va t e St r i ng i nf o;
pr i va t e LLSt r i ngNode l i nk;

publ i c LLSt r i ngNode (St r i ng i nf o)
{

t hi s . i nf o = i nf o;
l i nk = nul l ;

}

publ i c voi d s e t I nf o(St r i ng i nf o)
/ / Se t s i nf o s t r i ng of t hi s LLSt r i ngNode .
{

t hi s . i nf o = i nf o;
}

publ i c St r i ng ge t I nf o()
/ / Re t ur ns i nf o s t r i ng of t hi s LLSt r i ngNode .
{

r e t ur n i nf o;
}

publ i c voi d s e t Li nk(LLSt r i ngNode l i nk)
/ / Se t s l i nk of t hi s LLSt r i ngNode .
{

t hi s . l i nk = l i nk;
}

publ i c LLSt r i ngNode ge t Li nk()
/ / Re t ur ns l i nk of t hi s LLSt r i ngNode .
{

r e t ur n l i nk;
}

}

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 106

2.5 Introduction to Linked Lists | 107

Set currNode to first node on the list
while (currNode is not pointing off the end of the list)

display the information at currNode
change currNode to point to the next node on the list

Operations on Linked Lists
Node classes, such as LLSt r i ngNode , provide a set of building blocks for linked lists. It
is up to us to use these building blocks to create and manipulate linked lists.

Three basic operations are performed on linked lists: A linked list can be traversed
to obtain information from it, a node can be added to a linked list, and a node can be
removed from a linked list. Let’s look more carefully at each of these categories. To help
simplify our presentation, we assume the existence of this linked list of LLSt r i ngNode
objects referenced by the variable l e t t e r s :

Traversal
Information held in a linked list is retrieved by traversing the list. There are many poten-
tial reasons for traversing a list—for the purposes of this discussion we assume that we
want to display the information contained in the l e t t e r s linked list one line at a time,
starting at the beginning of the list and finishing at the end of the list.

To traverse the linked list we need some way to keep track of our current position in
the list. With an array we use an index variable. That approach will not work with a
linked list because it is not indexed. Instead we need to use a variable that can reference
the current node of the list. Let’s call it c ur r Node . The traversal algorithm is

letters

"B" "C" "D"info:

link:

info:

link:

info:

link: null

Let’s refine this algorithm, transforming it into Java code as we go. Our l e t t e r s list is
a linked list of LLSt r i ngNode objects. Therefore c ur r Node must be an LLSt r i ngNode
variable. We initialize c ur r Node to point to the beginning of the list:

LLStringNode currNode = letters;
while (currNode is not pointing off the end of the list)

display the information at currNode
change currNode to point to the next node on the list

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 107

108 | Chapter 2: Abstract Data Types

LLStringNode currNode = letters;
while (currNode is not pointing off the end of the list)
{

System.out.println(currNode.getInfo());
currNode = currNode.getLink();

}

Next let’s turn our attention to the body of the while loop. Displaying the informa-
tion at c ur r Node is achieved using the ge t I nf o method. That part is easy:

Sys t e m. out . pr i nt l n(c ur r Node . ge t I nf o()) ;

But how do we “change currNode to point to the next node on the list”? Consider the
situation after c ur r Node has been initialized to the beginning of the linked list:

We want to change c ur r Node to point to the next node, the node where the i nf o vari-
able points to the string “C.” In the preceding figure notice what points to that node—
the l i nk variable of the node currently referenced by c ur r Node . Therefore we use the
ge t Li nk method of the LLSt r i ngNode class to return that value and set the new value
of c ur r Node :

c ur r Node = c ur r Node . ge t Li nk() ;

Putting this all together we now have the following pseudocode:

letters:

currNode:

"B" "C" "D"info:

link:

info:

link:

info:

link: null

The only thing left to do is determine when c ur r Node is pointing off the end of the list.
The value of c ur r Node is repeatedly set to the value in the l i nk variable of the next
node. When we reach the end of the list, the value in this variable is nul l . So, as long
as the value of c ur r Node is not nul l , it “is not pointing off the end of the list.” Our
final code segment is

LLSt r i ngNode c ur r Node = l e t t e r s ;
whi l e (c ur r Node ! = nul l)

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 108

2.5 Introduction to Linked Lists | 109

{
Sys t e m. out . pr i nt l n(c ur r Node . ge t I nf o()) ;
c ur r Node = c ur r Node . ge t Li nk() ;

}

Figure 2.6 traces through this code, graphically depicting what occurs using our
example linked list.

Before leaving this example we should see how our code handles the case of the
empty linked list. The empty linked list is an important boundary condition. Whenever
you are dealing with linked lists, you should always double-check that your approach
works for this oft-encountered special case.

Figure 2.6 Trace of traversal code on l e t t e r s linked list

letters
"B" "C" "D"info:

link:

info:

link:

info:

link: null

Internal View Output

letters

currNode

"B"

B

B

C

B

C
D

"C" "D"info:

link:

info:

link:

info:

link: null

After "LLStringNode currNode = letters;":

letters

currNode

"B" "C" "D"info:

link:

info:

link:

info:

link: null

After first time through while loop:

letters

currNode

"B" "C" "D"info:

link:

info:

link:

info:

link: null

After second time through while loop:

letters

currNode: null

"B" "C" "D"info:

link:

info:

link:

info:

link: null

After third time through while loop:

The while conditon is now false.

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 109

110 | Chapter 2: Abstract Data Types

Recall that an empty linked list is one in which the value in the variable that repre-
sents the list is nul l :

What does our traversal code do in this case? The c ur r Node variable is initially set to
the value held in the l e t t e r s variable, which is nul l . Therefore c ur r Node starts out
nul l , the while loop condition

(c ur r Node ! = nul l)

is immediately false, and the while loop body is not entered. Essentially, nothing
happens—exactly what we would like to happen when traversing an empty list! Our
code passes this deskcheck. We should also remember to check this case with a test
program.

Insertion
Three general cases of insertion into a linked list must be considered: insertion at the
beginning of the list, insertion in the middle of the list, and insertion at the end of the list.

Let’s consider the case where we want to insert a node into the beginning of the list.
Suppose we have the node ne wNode to insert into the beginning of the l e t t e r s linked
list:

Our first step is to set the l i nk variable of the ne wNode node to point to the beginning
of the list:

letters
"B" "C" "D"info:

link:

newNode
"A"info:

link: null

info:

link:

info:

link: null

letters

"B" "C" "D"info:

link:

info:

link:

info:

link: null

Insert
at end

Insert
at beginning

Insert
in middle

letters: null

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 110

2.5 Introduction to Linked Lists | 111

To finish the insertion we set the l e t t e r s variable to point to the ne wNode , making it
the new beginning of the list:

The insertion code corresponding to these two steps is

ne wNode . s e t Li nk(l e t t e r s) ;
l e t t e r s = ne wNode ;

Note that the order of these statements is critical. If we reversed the order of the
statements, we would end up with this:

You must be very careful when manipulating references. Drawing figures to help you
follow what is going on is usually a good idea.

As we did for the traverse operation, we should ask what happens if our insertion
code is called when the linked list is empty. Figure 2.7 depicts this situation graphically.
Does the method correctly link the new node to the beginning of the empty linked list?
In other words, does it correctly create a list with a single node? First, the l i nk of the
new node is assigned the value of l e t t e r s . What is this value when the list is empty?
It is nul l , which is exactly what we want to put into the l i nk of the only node of a

letters
"B" "C" "D"info:

link:

newNode
"A"info:

link:

info:

link:

info:

link: null

letters
"B" "C" "D"info:

link:

newNode
"A"info:

link:

info:

link:

info:

link: null

letters
"B" "C" "D"info:

link:

newNode
"A"info:

link:

info:

link:

info:

link: null

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 111

112 | Chapter 2: Abstract Data Types

Figure 2.7 Results of insertion code on an empty linked list

"A"info:

link: null

newNode

letters: null

"A"info:

link: null

newNode

letters: null
After "newNode.setLink(letters);"

"A"info:

link: null

newNode

letters
After "letters = newNode;"

linked list. Then l e t t e r s is reset to point to the new node. The new node becomes the
first, and only, node on the list. Thus this method works for an empty linked list as well
as a linked list that contains elements.

Implementation of the other two kinds of insertion operations requires similar care-
ful manipulation of references.

Remaining Operations
So far in this section we have developed Java code that performs a traversal of a linked
list and an insertion into the beginning of a linked list. We provided these examples to
give you an idea of how you can work with linked lists at the code level.

Our purpose in introducing linked lists was to enable us to use them later for imple-
menting ADTs. We defer development of the remaining linked list operations, including
deletions, until they are needed to support the implementation of a specific ADT. For
now, we will simply say that, as with insertion, there are three general cases of deletion
of nodes from a linked list: deletion at the beginning of the list, deletion in the middle
of the list, and deletion at the end of the list.

letters

Delete
beginning
node

"B" "C" "D"info:

link:

info:

link:

info:

link: null

Delete a
node in
the middle

Delete
ending
node

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 112

2.6 Linked List StringLog ADT Implementation | 113

Insertion Deletion

Chapt Structure Traversal Beginning Middle End Beginning Middle End

2 StringLog � �
3 Stack � �
5 Queue � �
6 List � � � � � � �

In this chapter our ongoing example is the StringLog ADT. The next section
presents an implementation that uses a linked list as the underlying construct to
hold the collection of strings. It only requires a traversal operation and an insertion
into the beginning of the list operation, which just happen to be the two operations
we have already covered! In Chapters 3 (stacks), 5 (queues), and 6 (lists), we will
encounter ADTs encapsulating other classic linear data structures. The following
table shows which operations are an inherent part of the linked implementation of
each structure. By the time you finish Chapter 6, you will have encountered all of
the basic operations.

2.6 Linked List StringLog ADT Implementation2.6

You have already seen an implementation of the StringLog ADT using an array. In this
section we show how you can implement a StringLog using a linked list. Note that we do
not plan to use a linked list directly at the application level to store strings. Rather, we
hide the linked list within our ADT implementation. A StringLog is not an array and it is
not a linked list. It is an abstract entity—a container that holds strings, has a name, and
provides the operations i ns e r t , i s Ful l , s i z e , c ont a i ns , c l e a r , ge t Na me , and
t oSt r i ng.

We call our new StringLog class the Li nke dSt r i ngLog class to differentiate it
from the array-based class of Section 2.3. We also refer to this approach as a reference-
based approach. Determining names for our classes is important and not always easy.
See the feature “Naming Constructs” for more discussion of this topic.

Like the Ar r a ySt r i ngLog class, our Li nke dSt r i ngLog class is part of the
c h02. s t r i ngLogs package, fulfills the StringLog specification, and implements the
St r i ngLogI nt e r f a c e interface. Recall that when we developed the specification and
created the interface, our purpose was to provide a definition of a StringLog ADT that
did not depend on the underlying implementation. Unlike the Ar r a ySt r i ngLog, the
Li nke dSt r i ngLog will implement an unbounded StringLog. In other words, there is no
limit on how many strings it can hold. This criterion is a natural choice when using a
linked list to implement an ADT. Of course, we are not required to use this approach.

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 113

114 | Chapter 2: Abstract Data Types

Naming Constructs
Choosing appropriate names for programmer-defined constructs is an important task. In this
sidebar, we discuss this task and explain some of the naming conventions used in this textbook.

Java is very lenient in terms of its rules for programmer-defined names. We have been fol-
lowing standard conventions when naming the constructs created for this text. Our class and
interface names all begin with an uppercase letter, such as Ar r a ySt r i ngLog and
St r i ngLogI nt e r f a c e . Our method and variable names all begin with a lowercase letter, such
as i ns e r t and l og. If a name contains more than one word, we capitalize the start of each
additional word, such as ge t Li nk and l a s t I nde x. Finally, when naming constants such as
MI NYEAR, we use all capital letters.

The name assigned to a construct should provide useful information to someone who is
working with that construct. For example, if you declare a variable within a method that should
hold the maximum value of a set of numbers, you should name it based on its use—name it
ma xi mumor ma xVa l ue instead of X. The same is true for class, interface, and method names.

Because classes tend to represent objects, we typically name them using nouns—for exam-
ple, Da t e and Ar r a ySt r i ngLog. Because methods tend to represent actions, we generally
name them using verbs—for example, i ns e r t and c ont a i ns .

When we use interfaces to specify ADTs, we use the name of the ADT plus the term “inter-
face” within the name of our interface—for example, St r i ngLogI nt e r f a c e . Although this
nomenclature is a bit redundant, it is the approach favored by the Java library creators. Note
that the name of the interface does not imply any implementation detail. Classes that imple-
ment the St r i ngLogI nt e r f a c e interface can use arrays, vectors, array lists, or references—
the interface itself does not restrict implementation options and its name does not imply
anything about implementation details. The name does help us identify the purpose of the con-
struct; thus St r i ngLogI nt e r f a c e defines the interface required by the StringLog ADT.

Implementation- Based Class Names
We must confess that we were hesitant to use names such as Ar r a ySt r i ngLog and Li nke d-
St r i ngLog for our classes. Can you guess why? Recall our goal of information hiding: We want
to hide the implementation used to support our ADTs. When we use terms such as “Ar r a y” and
“Li nke d” in the names of our ADTs, we reveal clues about the very information we are trying to
hide. However, we finally settled on using implementation-dependent terms within our class
names. There are several reasons why we took this approach:

1. It is the same approach used by the Java library—for example, the Ar r a yLi s t class.
2. Although information hiding is important, some information about the implementation is

valuable to the client programmer, because it affects the space used by objects of the class
and the execution efficiency of the methods of the class. Using “array” and “linked” in the
class names does help convey this information.

3. We already have a construct associated with our ADTs whose name is independent of imple-
mentation: the interface.

4. In this textbook we create multiple implementations of many different ADTs; this multiplicity
is fundamental to the way we study ADTs. Using implementation-dependent names makes it
easier to distinguish among these different implementations.

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 114

2.6 Linked List StringLog ADT Implementation | 115

If we desired, we could implement a bounded StringLog using links or, alternatively, an
unbounded StringLog using arrays. Such approaches require extra work but are possi-
ble, as we will see later in the text.

In this section we follow the same basic outline that we employed when describing
the array-based implementation, making it easy to compare and contrast the two imple-
mentation approaches.

Instance Variables
In this implementation, the elements of a StringLog are stored in a linked list of
LLSt r i ngNode objects. The LLSt r i ngNode class was defined in Section 2.5. As we did
in the array-based approach, we call the instance variable that we use to access the
strings l og. It will reference the first node on the linked list, so it is a reference to an
object of the class LLSt r i ngNode .

As with the array approach, we use a string variable called na me to hold the name
of the StringLog. For the array-based approach we needed one additional instance vari-
able to keep track of the last position in the array that was being used. We do not need
to track that information for the linked approach, as we do not use indexes. The begin-
ning of the class definition looks like this:

/ / -
/ / Li nke dSt r i ngLog. j a va by Da l e / J oyc e / We e ms Cha pt e r 2
/ /
/ / I mpl e me nt s St r i ngLogI nt e r f a c e us i ng a l i nke d l i s t
/ / of LLSt r i ngNode t o hol d t he l og s t r i ngs .
/ / -

pa c ka ge c h02. s t r i ngLogs ;

publ i c c l a s s Li nke dSt r i ngLog i mpl e me nt s St r i ngLogI nt e r f a c e
{

pr ot e c t e d LLSt r i ngNode l og; / / r e f e r e nc e t o f i r s t node of l i nke d
/ / l i s t t ha t hol ds t he St r i ngLog s t r i ngs

pr ot e c t e d St r i ng na me ; / / na me of t hi s St r i ngLog
. . .

Constructors
For the array-based approach we included two constructors: one in which the capacity
of the array was specified as an argument and one in which it wasn’t. Because a linked
list is a dynamic structure that grows as we add elements to it, we do not need to worry
about a size parameter. We need only a single constructor.

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 115

116 | Chapter 2: Abstract Data Types

Our constructor requires one parameter: a string that indicates the name attribute of
the StringLog. A new StringLog is created empty; that is, the number of strings in it is
0. Therefore, when we instantiate an object of class Li nke dSt r i ngLog, we set the l og
variable to nul l . The code for this constructor is straightforward. Its efficiency is O(1),
as it requires only two steps.

publ i c Li nke dSt r i ngLog(St r i ng na me)
/ / I ns t a nt i a t e s a nd r e t ur ns a r e f e r e nc e t o a n e mpt y
/ / St r i ngLog obj e c t wi t h na me " na me . "
{

l og = nul l ;
t hi s . na me = na me ;

}

The first two stages of Figure 2.8 show both the internal or implementation view and
the abstract view of a StringLog object called s t r Log after it has been declared and
instantiated using this constructor.

Transformers
We have two transformer operations: i ns e r t and c l e a r . Each time the i ns e r t com-
mand is invoked, another string is added to the linked list. The best approach for han-
dling this task is to insert the new string at the beginning of the linked list. It is the
most efficient approach because we already have a reference to the beginning of the list
in the form of the variable l og. In Section 2.5 we developed an approach for insertion
of a node into the front of a linked list. In this case we must first create the node so
that it holds the string passed to the method in the e l e me nt parameter, and then insert
the node into the linked list. This operation has an efficiency of O(1).

publ i c voi d i ns e r t (St r i ng e l e me nt)
/ / Pr e c ondi t i on: Thi s St r i ngLog i s not f ul l .
/ /
/ / Pl a c e s e l e me nt i nt o t hi s St r i ngLog.
{

LLSt r i ngNode ne wNode = ne w LLSt r i ngNode (e l e me nt) ;
ne wNode . s e t Li nk(l og) ;
l og = ne wNode ;

}

Figure 2.8 shows a StringLog object called s t r Log after it has been declared,
instantiated, and received several i ns e r t messages, as shown in the following code:

Li nke dSt r i ngLog s t r Log;
s t r Log = ne w Li nke dSt r i ngLog(" Ni c kna me s ") ;
s t r Log. i ns e r t (" Ba byf a c e ") ;

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 116

2.6 Linked List StringLog ADT Implementation | 117

Figure 2.8 Results of St r i ngLog operations with a linked list implementation

Internal View Abstract View

LinkedStringLog strLog;

strLog = new LinkedStringLog("Nicknames");

strLog: null (Nonexistent)

Nicknames:
<Empty>

Nicknames:
Babyface

Nicknames:
Babyface
Slim

strLog: "Nicknames"name:

log: null

"Nicknames"name:

log:

"Babyface"info:

link: null

strLog.insert("Babyface");

strLog:

String s1 = new String ("Slim");
strLog.insert (s1);

"Nicknames"name:

log:

"Slim"info:

link:

info:

link: null

strLog:

s1:

"Babyface"

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 117

118 | Chapter 2: Abstract Data Types

Figure 2.9 A StringLog after the clear operation

strLog.clear();

"Nicknames"name:

log: null

"Slim"info:

link

info:

link: null

strLog:

s1:

"Babyface"

Garbage

St r i ng s 1 = ne w St r i ng(" Sl i m") ;
s t r Log. i ns e r t (s 1) ;

In one invocation of i ns e r t a string literal is passed as the argument; in the other invo-
cation a string variable is passed. You might like to compare this figure with Figure 2.4,
which displays the results of a similar sequence of operations for the array-based
approach.

Recall that for the c l e a r operation in the array-based approach we set the array
slots that weren’t being used to nul l , allowing the garbage collector to reclaim the
space used by those strings if appropriate. We do not have to worry about this issue
with the linked list approach. If we set the instance variable l og to nul l , in effect
unlinking the list from the StringLog object, the garbage collector is able to reclaim the
space used by the LLSt r i ngNode objects and any unreachable strings.

publ i c voi d c l e a r ()
/ / Ma ke s t hi s St r i ngLog e mpt y.
{

l og = nul l ;
}

Figure 2.9 continues the example from Figure 2.8, showing the result of the c l e a r
method. Although the Big-O complexity of this clear operation is apparently O(1), which

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 118

2.6 Linked List StringLog ADT Implementation | 119

is more efficient than the O(N) operation we used with the array-based implementation,
the difference between these operations is misleading. With the linked list approach, the
garbage collector still takes N steps to reclaim the cleared nodes. The job of clearing and
reclaiming is still O(N).

Observers
First let’s look at the observer operation i s Ful l . Given that we are implementing an
unbounded StringLog, we do not have an explicit limit on the StringLog size. As a con-
sequence, we always return f a l s e for the i s Ful l method. The only way the log could
be full is if the program runs out of system space. In this rare case the Java run-time
system causes an error anyway.

publ i c bool e a n i s Ful l ()
/ / Re t ur ns t r ue i f t hi s St r i ngLog i s f ul l , f a l s e ot he r wi s e .
{

r e t ur n f a l s e ;
}

The ge t Na me method is also simple. In fact, it is unchanged from the array-based
approach.

publ i c St r i ng ge t Na me ()
/ / Re t ur ns t he na me of t hi s St r i ngLog.
{

r e t ur n na me ;
}

Both of these methods, i s Ful l and ge t Na me , are O(1).
The s i z e method was easy to write for the array-based approach. We just

returned the value of l a s t I nde x + 1. However, we do not have any indexes in the
linked list approach. To determine the number of strings in the StringLog we must tra-
verse the linked list, counting the strings. In Section 2.5 we developed an approach for
traversing a linked list. Now we simply modify that approach to count list elements.
That is easy—we just start our count at 0 and increment it by 1 each time we visit
another node.

publ i c i nt s i z e ()
/ / Re t ur ns t he numbe r of s t r i ngs i n t hi s St r i ngLog.
{

i nt c ount = 0;
LLSt r i ngNode node ;
node = l og;

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 119

120 | Chapter 2: Abstract Data Types

whi l e (node ! = nul l)
{

c ount ++;
node = node . ge t Li nk() ;

}
r e t ur n c ount ;

}

This method has Big-O complexity of O(N). An alternative approach to handle this oper-
ation is to declare another instance variable, of type i nt , and use it to keep track of the
size of the StringLog as changes are made to it. This approach would simplify the imple-
mentation of s i z e but adds an extra step to the i ns e r t method, as each time a string is
inserted we need to increment the value of the variable. Whether we realize an effi-
ciency savings depends on the relative number of times our application invokes the
i ns e r t and s i z e methods. We ask you to investigate this alternative approach in Exer-
cise 52.

The implementation of the t oSt r i ng method is also just a simple modification of
our traversal approach. We told you that traversing a linked list was a common opera-
tion! Like s i z e , the t oSt r i ng method has an efficiency of O(N).

publ i c St r i ng t oSt r i ng()
/ / Re t ur ns a ni c e l y f or ma t t e d s t r i ng r e pr e s e nt i ng t hi s St r i ngLog.
{

St r i ng l ogSt r i ng = " Log: " + na me + " \ n\ n" ;
LLSt r i ngNode node ;
node = l og;
i nt c ount = 0;

whi l e (node ! = nul l)
{

c ount ++;
l ogSt r i ng = l ogSt r i ng + c ount + " . " + node . ge t I nf o() + " \ n" ;
node = node . ge t Li nk() ;

}

r e t ur n l ogSt r i ng;
}

Because our i ns e r t method always inserts strings at the front of the linked list, the
t oSt r i ng method displays the strings in the opposite order of their insertion. We have
not assumed that insertion order is important for our StringLogs, so this behavior is
acceptable.

The final observer operation, c ont a i ns , is yet another variation of a list traversal.
Recall that in the array-based approach we used stepwise refinement to design our code

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 120

2.6 Linked List StringLog ADT Implementation | 121

public boolean contains(String element)
{

Set variables;
while (we still need to search)
{

if (the next value equals element)
return true;

}
return false;

}

for this operation. We can now reuse our design of the array-based c ont a i ns method,
replacing the array-related statements with their linked list counterparts.

The overall approach is the same: traverse the structure containing the log strings
one element after another, comparing the strings with the parameter string e l e me nt
until we either find a match or reach the end of the list. Here is the second stage of
refinement from our array-based approach:

None of this pseudocode depends on using an array. We already understand how to
encode the required operations using a linked list, so it is easy to create the code. This
method is O(N), just like its array-based counterpart.

publ i c bool e a n c ont a i ns (St r i ng e l e me nt)
/ / Re t ur ns t r ue i f e l e me nt i s i n t hi s St r i ngLog,
/ / o t he r wi s e r e t ur ns f a l s e .
/ / I gnor e s c a s e di f f e r e nc e whe n doi ng s t r i ng c ompa r i s on.
{

LLSt r i ngNode node ;
node = l og;

whi l e (node ! = nul l)
{

i f (e l e me nt . e qua l s I gnor e Ca s e (node . ge t I nf o())) / / i f t he y ma t c h
r e t ur n t r ue ;

e l s e
node = node . ge t Li nk() ;

}

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 121

122 | Chapter 2: Abstract Data Types

r e t ur n f a l s e ;
}

The Li nke dSt r i ngLog class is now complete. We list the class in its entirety
below. Exercise 53 asks you to create and use a test driver for this class.

/ / -
/ / Li nke dSt r i ngLog. j a va by Da l e / J oyc e / We e ms Cha pt e r 2
/ /
/ / I mpl e me nt s St r i ngLogI nt e r f a c e us i ng a l i nke d l i s t
/ / of LLSt r i ngNode s t o hol d t he l og s t r i ngs .
/ / -

pa c ka ge c h02. s t r i ngLogs ;

publ i c c l a s s Li nke dSt r i ngLog i mpl e me nt s St r i ngLogI nt e r f a c e
{

pr ot e c t e d LLSt r i ngNode l og; / / r e f e r e nc e t o f i r s t node of l i nke d
/ / l i s t t ha t hol ds t he St r i ngLog s t r i ngs

pr ot e c t e d St r i ng na me ; / / na me of t hi s St r i ngLog

publ i c Li nke dSt r i ngLog(St r i ng na me)
/ / I ns t a nt i a t e s a nd r e t ur ns a r e f e r e nc e t o a n e mpt y St r i ngLog obj e c t
/ / wi t h na me " na me . "
{

l og = nul l ;
t hi s . na me = na me ;

}

publ i c voi d i ns e r t (St r i ng e l e me nt)
/ / Pr e c ondi t i on: Thi s St r i ngLog i s not f ul l .
/ /
/ / Pl a c e s e l e me nt i nt o t hi s St r i ngLog.
{

LLSt r i ngNode ne wNode = ne w LLSt r i ngNode (e l e me nt) ;
ne wNode . s e t Li nk(l og) ;
l og = ne wNode ;

}

publ i c bool e a n i s Ful l ()
/ / Re t ur ns t r ue i f t hi s St r i ngLog i s f ul l , f a l s e ot he r wi s e .
{

r e t ur n f a l s e ;
}

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 122

2.6 Linked List StringLog ADT Implementation | 123

publ i c i nt s i z e ()
/ / Re t ur ns t he numbe r of s t r i ngs i n t hi s St r i ngLog.
{

i nt c ount = 0;
LLSt r i ngNode node ;
node = l og;
whi l e (node ! = nul l)
{

c ount ++;
node = node . ge t Li nk() ;

}
r e t ur n c ount ;

}

publ i c bool e a n c ont a i ns (St r i ng e l e me nt)
/ / Re t ur ns t r ue i f e l e me nt i s i n t hi s St r i ngLog,
/ / ot he r wi s e r e t ur ns f a l s e .
/ / I gnor e s c a s e di f f e r e nc e whe n doi ng s t r i ng c ompa r i s on.
{

LLSt r i ngNode node ;
node = l og;

whi l e (node ! = nul l)
{

i f (e l e me nt . e qua l s I gnor e Ca s e (node . ge t I nf o())) / / i f t he y ma t c h
r e t ur n t r ue ;

e l s e
node = node . ge t Li nk() ;

}

r e t ur n f a l s e ;
}

publ i c voi d c l e a r ()
/ / Ma ke s t hi s St r i ngLog e mpt y.
{

l og = nul l ;
}

publ i c St r i ng ge t Na me ()
/ / Re t ur ns t he na me of t hi s St r i ngLog.

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 123

124 | Chapter 2: Abstract Data Types

{
r e t ur n na me ;

}

publ i c St r i ng t oSt r i ng()
/ / Re t ur ns a ni c e l y f or ma t t e d s t r i ng r e pr e s e nt i ng t hi s St r i ngLog.
{

St r i ng l ogSt r i ng = " Log: " + na me + " \ n\ n" ;
LLSt r i ngNode node ;
node = l og;
i nt c ount = 0;

whi l e (node ! = nul l)
{

c ount ++;
l ogSt r i ng = l ogSt r i ng + c ount + " . " + node . ge t I nf o() + " \ n" ;
node = node . ge t Li nk() ;

}

r e t ur n l ogSt r i ng;
}

}

2.7 Software Design: Identification of Classes2.7

In this section we take a brief look at the object-oriented design approach we use in our
case studies throughout the text. We then apply this approach to design and create a
trivia game in Section 2.8.

Brainstorm
The key task in solving a problem with an object-oriented program is identifying
classes to use within the solution. There is no foolproof technique for doing this.
One approach is to just start brainstorming ideas. A large program is typically writ-
ten by a team of programmers, so the brainstorming process often occurs in a team
setting. Team members identify whatever objects they see in the problem and then
propose classes to represent them. The proposed classes and their responsibilities are
all written on a board. None of the ideas for classes are discussed or rejected in this
first stage.

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 124

2.7 Software Design: Identification of Classes | 125

Filter
After brainstorming, the team goes through a process of filtering the classes. First they
eliminate duplicates. Then they discuss whether each class really represents objects in the
problem. (It’s easy to get carried away and include classes, such as “the user,” that are
beyond the scope of the problem.) The team next looks for classes that seem to be related.
Perhaps they aren’t duplicates but have much in common, so they are grouped together
on the board. Such classes might potentially be merged or organized with inheritance. At
the same time, the discussion may reveal some classes that were overlooked.

Scenario Analysis
Usually it is not difficult to identify an initial set of classes. In most problems we naturally
find entities that we wish to represent as class objects. For example, in designing a program
that manages a checking account, we might identify checks, deposits, an account balance,
and account statements as objects. These objects interact with one another through mes-
sages (invoking methods). For example, we might decide that a check object should send a
message to a balance object that tells it to deduct an amount object from itself. If we didn’t
originally list an amount class in our initial set of classes, we have now identified another
class that we need to represent.

Our example illustrates a common approach to object-oriented design. We begin by
identifying a set of classes that we think are important in a problem. Then we consider
some scenarios in which objects of these classes interact to accomplish a task. In the
process of envisioning how a scenario plays out, we identify additional classes, objects, and
messages. We keep creating new scenarios until we feel that our set of classes, objects, and
messages is sufficient to accomplish any task that the problem requires. This “scenario
analysis” is similar to the more formal “use-case analysis” briefly described in Chapter 1.

Nouns and Verbs
A standard technique for identifying classes and their attributes and responsibilities is to
look for objects in the problem statement. Candidate objects and their attributes are some-
times found in the nouns. For example, suppose the problem statement includes these sen-
tences: “The student averages must be sorted from best to worst before being output. The
output should list the names and averages of each student.” A potential class is “student.”
Potential attributes of objects of this class are “name” and “average.” A potential responsi-
bility is to maintain the correct value of the average.

If you have a printed copy of your requirements, you can circle the nouns. The set of
circled nouns then represents your candidate classes. Of course, you have to filter this list,
but at least it provides a good starting point for design. You might also highlight the verbs
some way, perhaps by underlining—the verbs are often associated with responsibilities and
actions for the classes.

The student averages must be sorted from best to worst before being

output. The output should list the names and averages of each student.

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 125

126 | Chapter 2: Abstract Data Types

Identification of ClassesR
repeat

Brainstorm ideas, perhaps using the nouns in the problem statement to help identify potential object classes
Filter the classes into a set that appears to help solve the problem
Consider problem scenarios where the classes carry out the activities of the scenario

until the set of classes provides an elegant design that successfully supports the collection of scenarios

Cohesive Designs
Elegant designs are easy to understand. One property that helps distinguish an elegant
design from an inelegant one is the cohesiveness of the classes. A cohesive class
exhibits a single purpose or identity, and it “sticks” together well. A good way to vali-
date the cohesiveness of an identified class is to try to describe its primary responsibility
in a single coherent phrase. If you cannot do so, then you should reconsider your
design. Some examples of cohesive responsibilities follow:

• Maintain a list of integers
• Handle file interaction
• Represent a date

Examples of “poor” responsibilities include these two:

• Maintain a list of integers and provide special integer output routines
• Handle file interaction and draw graphs on the screen

Summation of Our Approach
In summation, we have developed the following approach to identifying classes for our
systems. We present it here as an algorithm.

This simple approach works well for the types and sizes of problems we encounter in
this textbook. More complicated approaches are required to solve more complicated
problems, but they are beyond the scope of this book.

Sources for Classes
Java programs are built using a combination of the basic language and preexisting classes. In effect,
the preexisting classes act as extensions to the basic language; this extended Java language is
large, complex, robust, powerful, and ever changing. Java programmers should never stop learning
about the nuances of the extended language—an exciting prospect for those who like an intellec-
tual challenge.

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 126

2.7 Software Design: Identification of Classes | 127

When designing a Java-based system to solve a problem, we first determine which classes
are needed. Next we determine whether any of these classes already exist. If not, we try to dis-
cover classes that do exist that can be used to build the needed classes. Additionally, we often
create our own classes, “helper” classes that are used to build the needed classes.

Where do the classes come from? There are three sources:

1. The Java Class Library The Java language is bundled with a class library that includes hun-
dreds of useful classes. The library classes that we use throughout the text are introduced in
Appendix E.

2. Build your own Suppose you determine that a certain class would be useful in solving your
programming problem, but the class does not exist. You then create the needed class, possi-
bly using preexisting classes in the process. The new class becomes part of the extended
language and can be used on future projects. Our ADT implementations are examples of
such classes.

3. Off the shelf Software components, such as classes or packages of classes, that are
obtained from third-party sources are called off-the-shelf components. When they are
bought, we call them “commercial off-the-shelf” components (COTS). Java components can
be bought from software shops or even found free on the Web. When you obtain software,
or anything else, from the Web for your own use, you should make sure you are not violating
a copyright. You also need to use care in determining that free components work correctly
and do not contain viruses or other code that could cause problems on your system.

Programmer

Basic Java Language

Java Class Library

Off-the-Shelf Components

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 127

128 | Chapter 2: Abstract Data Types

Design Choices
When working on a design, keep in mind that many different correct solutions are pos-
sible for most problems. The design techniques we use to create our programs may
seem imprecise, especially compared with the precision that is demanded by the com-
puter. But the computer merely demands that we express a particular solution precisely.
The process of deciding which particular solution to use is far less precise. It is our
human ability to make choices without having complete information that enables us to
solve problems. Different choices naturally lead to different solutions to a problem.

For example, in developing a simulation of an air traffic control system, we might
decide that airplanes and control towers are objects that communicate with each other.
Alternatively, we might decide that pilots and controllers are the objects that communi-
cate. This choice affects how we subsequently view the problem and which responsibili-
ties we assign to the objects. Either choice can lead to a working application. We may
simply prefer the one with which we are most familiar.

Some of our choices may lead to designs that are more or less efficient than others.
For example, keeping a list of names in alphabetical rather than random order makes it
possible for a program to find a particular name much faster. However, choosing to
leave the list randomly ordered still produces a valid (but slower) solution, and it may
even be the best solution if you do not need to search the list very often.

The point is this: Don’t hesitate to begin solving a problem because you are waiting
for some flash of genius that leads you to the perfect solution. There is no such thing. It
is better to jump in and try something, step back, see if you like the result, and then
either proceed onward or make changes. Designing successful software solutions to
problems is a challenging, yet rewarding, task.

2.8 Case Study: A Trivia Game2.8

Our task for this case study is to create an interactive trivia game for a single user. The
user is told the name of the game, the number of questions, and the number of chances
he or she will have to answer the questions. As is typical for trivia games, to provide
context each question has an associated category that is presented along with the ques-
tion. The program cycles through the questions until they are all answered correctly or
there are no more chances remaining.

After responding to a question the user is told whether the answer is correct.
Answers entered by the user will be compared to a set of acceptable answers using case-
insensitive comparison.

Here’s an example of how a game played through the console might appear. User
input is shown in blue.

Welcome to the General Trivia 1 trivia quiz.
You will have 6 chances to answer 4 questions.

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 128

2.8 Case Study: A Trivia Game | 129

Rock and Roll: Give the first name of one of The Beatles.
Pete
Incorrect

Math: What is 5 + 2?
7
Correct!

History: Who was the second president of the United States?
Ford
Incorrect

Vegetables: What color are carrots?
orange
Correct!

Rock and Roll: Give the first name of one of The Beatles.
ringo
Correct!

History: Who was the second president of the United States?
Smith
Incorrect

Game Over

Results:
Chances used: 6 Number Correct: 3

Thank you.

The Source of the Trivia Game
Before we start development, let’s discuss where to obtain information about a specific
game. For example, how many questions are there? What are their categories? What are
the questions? What are the acceptable answers? The game information might come
from several possible sources: It might come from a database of trivia questions, it
might come from a structured file, or it could even be generated by another program.

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 129

130 | Chapter 2: Abstract Data Types

We will design the program to be easily adapted to any of these sources. For practi-
cal reasons, we limit our actual code example to a single approach, in which the infor-
mation is in a text file in a specific format. With this approach, to make a different quiz
we just create a new text file of information.

We assume all the data about the trivia quiz is located in a text file named ga me . t xt .
The system reads the quiz information from the file and then presents the quiz to the user.

The information in the file should be organized as follows:

• Line 1: the quiz name
• Line 2: the number of questions
• Line 3: the number of chances allowed
• For each question:

■ Line a: the category
■ Line b: the question
■ Line c: the number of acceptable answers
■ For each acceptable answer:

� The answer

For example, the sample run we saw previously was based on the following file:

General Trivia 1
4
6
Rock and Roll
Give the first name of one of The Beatles.
5
John
Paul
George
Ringo
Richard
Math
What is 5 + 2?
2
7
seven
History
Who was the second president of the United States?
2
Adams

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 130

2.8 Case Study: A Trivia Game | 131

John Adams
Vegetables
What color are carrots?
1
orange

Note that our approach permits a great deal of freedom—the author of a quiz can
include as many questions, chances, and acceptable answers as he or she chooses.

Identifying Support Classes
Let’s use the design approach introduced in Section 2.7.

Brainstorm
We said that nouns in the problem statement represent potential classes/objects/attrib-
utes. Let’s identify the nouns in the problem statement.

Our task is to create an interactive trivia game for a single user. The user is told the
name of the game, the number of questions, and the number of chances he or she
will have to answer the questions. As is typical for trivia games, to provide context,
each question has an associated category that is presented along with the question.
The program cycles through the questions until they are all answered correctly or
there are no more chances remaining.
After responding to a question the user is told whether the answer is correct.
Answers entered by the user will be compared to a set of acceptable answers using
case-insensitive comparison.

The relevant nouns are trivia game, name of the game, questions, associated category,
number of questions, number of questions answered correctly, number of chances, num-
ber of chances left, answers, and set of acceptable answers. Let’s examine these nouns
and see what insights they give us into the solution of this problem.

Filter
First let’s group together those nouns that “go together”—for example, question and
answer are obviously related to each other. It doesn’t take long to reorganize our nouns
into two sets:

• Trivia game
• Name of the game
• Number of questions
• Number of chances
• Number of questions answered correctly
• Number of chances remaining

• Question
• Associated category
• Answer
• Set of acceptable answers

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 131

132 | Chapter 2: Abstract Data Types

4. Originally this was the approach we used. But as the design evolved it didn’t feel right, so we had to back
up and redesign. Sometimes during design you’ll make poor decisions—be open to recognizing such situations,
regrouping, and redesigning.

We have identified two candidate classes: a trivia game and a question. The other
nouns in the problem statement can all be considered attributes of objects of one of
these two classes. Let’s call our candidate classes Tr i vi a Ga me and Tr i vi a Que s t i on.

Scenario Analysis

We decide the Tr i vi a Ga me class should hold the current state of the trivia game. Ini-
tially it will hold all the information contained in the text file that represents the game
(or whatever source representation is used), but as the game progresses it must be
updated to capture the ongoing changes in the state of the game. The objects of the
Tr i v i a Que s t i on class should represent the different questions associated with the
trivia game. We imagine a scenario where the game information is read from its
source (file, database, or whatever) to create the original Tr i v i a Ga me object; the pro-
gram then repeatedly retrieves a Tr i v i a Que s t i on object from the game object, uses it
to present the question to the user, and checks if the provided answer is correct, with
the state of the Tr i v i a Ga me object being updated accordingly. This entire process
repeats until the game is over.

Based on our brief scenario analysis we are content that we are following a rea-
sonable approach, so we continue with a bottom-up development of our system. First
we consider the Tr i v i a Que s t i on class. What are the responsibilities of this class?
The prime responsibility is to represent a trivia question—its category, the text of the
question, and a set of acceptable answers. The class must allow this information to be
set appropriately and to be observed at a later time. Also, because the relevant infor-
mation includes the set of acceptable answers, we decide to make the class responsible
for determining whether a given answer is in that set.

Given that we intend to use the Tr i vi a Que s t i on class to support a trivia game, it is
tempting to assign it the responsibility of remembering whether a question has been
answered correctly.4 We could initialize a bool e a n instance variable to f a l s e , set it to
t r ue when the question is answered correctly, and provide an observer method to return
its value. But does such information really belong in the Tr i vi a Que s t i on object? The
“correctly answered” status of a question is an aspect of a particular instance of a trivia
game. Recall from our previous scenario analysis that maintaining such information is the
responsibility of the Tr i vi a Ga me object—the object that represents the game, not the
Tr i vi a Que s t i on object that represents the question. Therefore we do not include this
responsibility for the Tr i vi a Que s t i on class.

Table 2.1 captures the abstract view of our Tr i v i a Que s t i on class. This type of
view can be created during the design stage, used to help with scenario analysis, and
later consulted to help determine implementation needs.

Next we consider the Tr i vi a Ga me class. An object of this class represents an entire
trivia game, including static information such as the list of questions and dynamic

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 132

2.8 Case Study: A Trivia Game | 133

Table 2.2 Abstract View of Tr i vi a Ga me Class

Class Name: TriviaGame
Primary Responsibility: Maintain a representation of a trivia game in a consistent state
Responsibilities:

Provide ways of setting game information
Provide ways of getting game information
Keep track of whether a question has already been answered correctly
Keep track of the number of remaining chances and the number of correct and incorrect answers
Determine whether the game is over

Table 2.1 Abstract View of Tr i vi a Que s t i on Class

Class Name: TriviaQuestion
Primary Responsibility: Model a question for the trivia game problem
Responsibilities:

Provide ways of setting the question information
Provide ways of getting the question information
Inform whether an attempted answer is correct

information such as which questions have already been answered correctly and whether
the game is over.

Of course, in addition to holding game information the class provides ways for a
client to access and update the information as needed. We decide that it is the responsi-
bility of the Tr i vi a Ga me class to keep itself in a consistent state that represents the
current status of the game. In contrast, it is the responsibility of the client program to
send appropriate messages to the Tr i vi a Ga me class as the game unfolds—for example,
to indicate that the user has answered a question correctly or incorrectly.

Putting all of this together, we arrive at the abstract view of the Tr i vi a Ga me class
shown in Table 2.2.

Implementing the Support Classes
Next we continue with the detailed design of these classes.

The TriviaQuestion Class
An object of this class represents a single question. It will support attributes represent-
ing the category, the text of the question, and the set of acceptable answers. Both the
category and text can be strings. But what about the set of answers?

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 133

134 | Chapter 2: Abstract Data Types

We could hold the answers in an array, but we have a more suitable structure.
What do you think it is? Consider what we need to do with the set of answers. We
need to initialize the set by inserting the answers into it as we read them from the
file. Also, we need to see whether a user’s answer is in the set of acceptable answers.
Thus, we need a class that supports insertion of strings and allows us to see whether a
given string has been previously inserted. That does sound familiar, doesn’t it? Our
StringLog ADT is a perfect choice!

We have two StringLog ADT implementations: the Ar r a ySt r i ngLog and the
Li nke dSt r i ngLog. Which should we use to hold the trivia question answers? One of
the key differences between the two implementations is that the former implements a
bounded StringLog, while the latter implements an unbounded StringLog. Recall that
our input text file includes, for each question, the number of its acceptable answers.
Therefore we know exactly how many answers are associated with a trivia question as
we are initializing the trivia game. We decide to use the bounded StringLog implemen-
tation, the Ar r a ySt r i ngLog.

The code for the Tr i vi a Que s t i on class is shown below. It includes a constructor
that takes arguments containing the category, the text of the question, and an integer
indicating the maximum number of acceptable answers. The last argument allows it to
instantiate the St r i ngLog object to hold the answers. A s t or e Ans we r method allows
the client to repeatedly store the acceptable answers. The class also provides getter
operations so a client can retrieve information about the question. In addition, it pro-
vides the t r yAns we r method that identifies whether a given answer is correct.

The implementation of the class is very straightforward, thanks mostly to the fact
that the StringLog ADT is doing all the hard work for us. Note that the a ns we r s object
is declared to be of type St r i ngLogI nt e r f a c e but instantiated as an object of class
Ar r a ySt r i ngLog. We have emphasized the code that directly involves a StringLog.

/ / -
/ / Tr i vi a Que s t i on. j a va by Da l e / J oyc e / We e ms Cha pt e r 2
/ /
/ / Pr ovi de s t r i vi a que s t i on obj e c t s .
/ / -

i mpor t c h02. s t r i ngLogs . *;

publ i c c l a s s Tr i vi a Que s t i on
{

pr i va t e St r i ng c a t e gor y; / / c a t e gor y of que s t i on
pr i va t e St r i ng que s t i on; / / t he que s t i on
pr i va t e St r i ngLogI nt e r f a c e a ns we r s ; / / a c c e pt a bl e a ns we r s

publ i c Tr i vi a Que s t i on(St r i ng c a t e gor y, St r i ng que s t i on,
i nt ma xNumAns we r s)

/ / Pr e c ondi t i on: ma xNumAns we r s > 0

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 134

2.8 Case Study: A Trivia Game | 135

{
t hi s . c a t e gor y = c a t e gor y;
t hi s . que s t i on = que s t i on;
a ns we r s = ne w Ar r a ySt r i ngLog(" t r i vi a " , ma xNumAns we r s) ;

}

publ i c St r i ng ge t Ca t e gor y()
{

r e t ur n c a t e gor y;
}

publ i c St r i ng ge t Que s t i on()
{

r e t ur n que s t i on;
}

publ i c bool e a n t r yAns we r (St r i ng a ns we r)
{

r e t ur n a ns we r s . c ont a i ns (a ns we r) ;
}

publ i c voi d s t or e Ans we r (St r i ng a ns we r)
/ / Pr e c ondi t i on: a ns we r s i s not f ul l
{

a ns we r s . i ns e r t (a ns we r) ;
}

}

Of course, before continuing with the design of other classes, the Tr i vi a Que s t i on
class should be thoroughly tested. A test driver for the class should allow a tester to cre-
ate trivia question objects and exercise the various observer methods.

The TriviaGame Class
The code for the Tr i vi a Ga me class is shown below. Most of the game information is
initially set through the constructor. After instantiation, i ns e r t Que s t i on is used to
add Tr i vi a Que s t i on objects to the game. Tr i vi a Que s t i on objects are added to the
private que s t i ons array. Note that the class transforms the provided question numbers,
which start at one, into array indexes, which start at zero.

The Tr i vi a Ga me class also keeps track of which questions have been answered
correctly. To support this task, we include a bool e a n array c or r e c t . Each time
i ns e r t Que s t i on is called, the corresponding element of the c or r e c t array is set to
f a l s e . We also provide a method, called c or r e c t Ans we r , that the client program calls

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 135

136 | Chapter 2: Abstract Data Types

when a particular question has been answered correctly. When invoked, c or r e c t An-
s we r sets the corresponding element of the c or r e c t array to t r ue , increments num-
Cor r e c t , and decrements r e ma i ni ngCha nc e s . Similarly, an invocation of
i nc or r e c t Ans we r increments numI nc or r e c t and decrements r e ma i ni ngCha nc e s .

/ / -
/ / Tr i vi a Ga me . j a va by Da l e / J oyc e / We e ms Cha pt e r 2
/ /
/ / Pr ovi de s t r i vi a ga me obj e c t s .
/ / -

publ i c c l a s s Tr i vi a Ga me
{

pr i va t e St r i ng qui z Na me ;
pr i va t e i nt ma xNumQue s t i ons ;
pr i va t e i nt numCha nc e s ;
pr i va t e i nt r e ma i ni ngCha nc e s ;
pr i va t e i nt numCor r e c t = 0;
pr i va t e i nt numI nc or r e c t = 0;
pr i va t e Tr i vi a Que s t i on[] que s t i ons ; / / t he s e t of que s t i ons
pr i va t e bool e a n[] c or r e c t ; / / t r ue i f c or r e s pondi ng

/ / que s t i on a ns we r e d c or r e c t l y
pr i va t e i nt c ur r NumQue s t i ons = 0;

publ i c Tr i vi a Ga me (St r i ng qui z Na me , i nt ma xNumQue s t i ons , i nt numCha nc e s)
/ / Pr e c ondi t i on: ma xNumQue s t i ons > 0 a nd numCha nc e s > 0
{

t hi s . qui z Na me = qui z Na me ;
t hi s . ma xNumQue s t i ons = ma xNumQue s t i ons ;
t hi s . numCha nc e s = numCha nc e s ;
r e ma i ni ngCha nc e s = numCha nc e s ;
que s t i ons = ne w Tr i vi a Que s t i on[ma xNumQue s t i ons] ;
c or r e c t = ne w bool e a n[ma xNumQue s t i ons] ;

}

publ i c St r i ng ge t Qui z Na me ()
{

r e t ur n qui z Na me ;
}

publ i c i nt ge t NumCha nc e s ()
{

r e t ur n numCha nc e s ;
}

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 136

2.8 Case Study: A Trivia Game | 137

publ i c i nt ge t Re ma i ni ngCha nc e s ()
{

r e t ur n r e ma i ni ngCha nc e s ;
}

publ i c i nt ge t NumCor r e c t ()
{

r e t ur n numCor r e c t ;
}

publ i c i nt ge t NumI nc or r e c t ()
{

r e t ur n numI nc or r e c t ;
}

publ i c i nt ge t Cur r NumQue s t i ons ()
{

r e t ur n c ur r NumQue s t i ons ;
}

publ i c Tr i vi a Que s t i on ge t Tr i vi a Que s t i on(i nt que s t i onNumbe r)
/ / Pr e c ondi t i on: 0 < que s t i onNumbe r <= c ur r NumQue s t i ons
{

r e t ur n que s t i ons [que s t i onNumbe r - 1] ;
}

publ i c bool e a n i s Ans we r e d(i nt que s t i onNumbe r)
/ / Pr e c ondi t i on: 0 < que s t i onNumbe r <= c ur r NumQue s t i ons
{

r e t ur n c or r e c t [que s t i onNumbe r - 1] ;
}

publ i c bool e a n i s Ove r ()
/ / Re t ur ns t r ue i f t hi s ga me i s ove r , f a l s e ot he r wi s e .
{

r e t ur n (numCor r e c t == c ur r NumQue s t i ons)
| |
(r e ma i ni ngCha nc e s <= 0) ;

}

publ i c voi d i ns e r t Que s t i on(Tr i vi a Que s t i on que s t i on)
/ / Pr e c ondi t i on: c ur r NumQue s t i ons < ma xNumQue s t i ons
/ /
/ / Adds que s t i on t o t hi s Tr i vi a Ga me .

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 137

138 | Chapter 2: Abstract Data Types

{
que s t i ons [c ur r NumQue s t i ons] = que s t i on;
c or r e c t [c ur r NumQue s t i ons] = f a l s e ;
c ur r NumQue s t i ons = c ur r NumQue s t i ons + 1;

}

publ i c voi d c or r e c t Ans we r (i nt que s t i onNumbe r)
/ / Pr e c ondi t i ons : 0 < que s t i onNumbe r < ma xNumQue s t i ons
/ /
/ / Upda t e s ga me s t a t us t o i ndi c a t e t ha t que s t i on numbe r
/ / que s t i onNumbe r wa s a ns we r e d c or r e c t l y .
{

c or r e c t [que s t i onNumbe r - 1] = t r ue ;
numCor r e c t = numCor r e c t + 1;
r e ma i ni ngCha nc e s = r e ma i ni ngCha nc e s - 1;

}

publ i c voi d i nc or r e c t Ans we r ()
/ / Upda t e s ga me s t a t us t o i ndi c a t e t ha t a que s t i on
/ / wa s a ns we r e d i nc or r e c t l y .
{

numI nc or r e c t = numI nc or r e c t + 1;
r e ma i ni ngCha nc e s = r e ma i ni ngCha nc e s - 1;

}
}

The GetTriviaGame Class
How do we initialize our Tr i vi a Ga me objects? Recall that the game information sits in
the file ga me . t xt . We need a way to transform that information into a game object.
One approach is to allow a Tr i vi a Ga me object to extract the information from the text
file and initialize itself. However, so that our system is easily adaptable to alternative
game sources in the future, we decide to decouple this task from the Tr i vi a Ga me class.
We create a separate class, Ge t Tr i vi a Ga me , whose responsibility is to obtain trivia
game information from a source and manufacture a Tr i vi a Ga me object.

For this case study we handle only a single game source in our Ge t Tr i vi a Ga me
class, the text file described previously. However, the class could be expanded to handle
alternative sources.

The code for the class appears below. It uses a Sc a nne r object to read the informa-
tion from the specified file. After constructing the Tr i vi a Ga me object, it repeatedly
scans the input source for each question, constructs a corresponding Tr i vi a Que s t i on
object, and inserts it into the trivia game.

Consider how abstraction has simplified our task. Although we know that
Ar r a ySt r i ngLog objects are being created and used to support this system, all of the
details of their use—in fact, their very existence—remain hidden from us. At this level we

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 138

2.8 Case Study: A Trivia Game | 139

5. The Fi l e Re a de r constructor throws an I OExc e pt i on if its argument does not indicate an appropriate file.

need not worry about them. We can concentrate on higher-level constructs, such as the
trivia game itself.

/ / -
/ / Ge t Tr i vi a Ga me . j a va by Da l e / J oyc e / We e ms Cha pt e r 2
/ /
/ / Pr ovi de s me t hods t ha t obt a i n i nf or ma t i on a bout a t r i vi a ga me ,
/ / c r e a t e a nd r e t ur n Tr i vi a Ga me obj e c t s .
/ /
/ / Not e : Cur r e nt l y onl y opt i on i s t o obt a i n a ga me f r om a t e xt f i l e ,
/ / but ot he r opt i ons c oul d be a dde d l a t e r .
/ / -

i mpor t j a va . ut i l . * ;
i mpor t j a va . i o . *;

publ i c c l a s s Ge t Tr i vi a Ga me
{

publ i c s t a t i c Tr i vi a Ga me us e Te xt Fi l e (St r i ng t e xt f i l e)
t hr ows I OExc e pt i on5

/ / Pr e c ondi t i on: The t e xt f i l e e xi s t s a nd c ont a i ns a c or r e c t l y
/ / f or ma t t e d ga me .
{

Tr i vi a Ga me ga me ;

St r i ng qui z Na me ;
i nt numQue s t i ons ;
i nt numCha nc e s ;

/ / f or a s pe c i f i c t r i vi a que s t i on
Tr i vi a Que s t i on t q;
St r i ng c a t e gor y;
St r i ng que s t i on;
St r i ng a ns we r ;
i nt numAns we r s ;

Fi l e Re a de r f i n = ne w Fi l e Re a de r (t e xt f i l e) ;
Sc a nne r t r i vi a I n = ne w Sc a nne r (f i n) ;
St r i ng s ki p; / / s ki p e nd of l i ne a f t e r r e a di ng i nt e ge r

/ / Sc a n i n ba s i c t r i vi a qui z i nf or ma t i on a nd s e t va r i a bl e s .
qui z Na me = t r i vi a I n. ne xt Li ne () ;

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 139

140 | Chapter 2: Abstract Data Types

numQue s t i ons = t r i vi a I n. ne xt I nt () ;
numCha nc e s = t r i vi a I n. ne xt I nt () ;
s ki p = t r i vi a I n. ne xt Li ne () ;

/ / I ns t a nt i a t e t he Tr i vi a Ga me .
ga me = ne w Tr i vi a Ga me (qui z Na me , numQue s t i ons , numCha nc e s) ;

/ / Sc a n i n a nd s e t up t he que s t i ons a nd a ns we r s .
f or (i nt i = 1; i <= numQue s t i ons ; i ++)
{

c a t e gor y = t r i vi a I n. ne xt Li ne () ;
que s t i on = t r i vi a I n. ne xt Li ne () ;
numAns we r s = t r i vi a I n. ne xt I nt () ;
s ki p = t r i vi a I n. ne xt Li ne () ;
t q = ne w Tr i vi a Que s t i on(c a t e gor y, que s t i on, numAns we r s) ;
f or (i nt j = 1; j <= numAns we r s ; j ++)
{

a ns we r = t r i vi a I n. ne xt Li ne () ;
t q . s t or e Ans we r (a ns we r) ;

}
ga me . i ns e r t Que s t i on(t q) ;

}

r e t ur n ga me ;
}

}

Some testing of the Tr i vi a Ga me and Ge t Tr i vi a Ga me classes should be performed
using a simple test driver. However, because the functionality of the class is intimately
tied to the functionality of our trivia game playing system, it can be most thoroughly
tested after we have completed a working version of the entire system.

We have now developed classes to represent trivia questions and games. Although
this wasn’t trivial, it also wasn’t difficult. We were helped by the availability of preex-
isting classes, most notably the St r i ng class from the Java library and the
Ar r a ySt r i ngLog class developed earlier in this chapter. We took advantage of abstrac-
tion in that we just used these classes based on their external interfaces, without worry-
ing about their internal details. As we move forward, we can use our two new classes,
Tr i vi a Que s t i on and Tr i vi a Ga me , in the same way to simplify the rest of our job.

The Trivia Game Application
Our approach to program design in this textbook is to separate, as best we can, the user
interface code from the rest of the program. We design classes, such as Tr i vi a Que s t i on
and Tr i vi a Ga me , that use our ADTs to solve some type of problem. We then design an

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 140

2.8 Case Study: A Trivia Game | 141

TriviaConsole
Get the trivia game
Welcome the user
while (the game isn’t over)

Determine the number of the next unanswered question
Display the question
Obtain the user’s answer
Update the game status based on the correctness of the answer

Display the final results

application class that interacts with the user, taking advantage of the previously defined
classes. In our examples and case studies we present console-based application programs.
For the case studies we also create GUI-based applications and provide a few screenshots
of the program in action. The GUI-based application is always presented briefly in a fea-
ture section, at the conclusion of the case study, for those readers who are interested. Here
we describe the console-based application in some detail.

The TriviaConsole Class
Our basic algorithm for the console approach is as follows:

Implementing this algorithm turns out to be incredibly easy, thanks to the work we accom-
plished earlier. Let’s look at it line by line:

• Get the trivia game The Ge t Tr i vi a Ga me class provides this functionality.
• Welcome the user This is done with pr i nt l n statements. We access game infor-

mation with the getter methods from the Tr i vi a Ga me class and then print it.
• While (the game isn’t over) We use the Tr i vi a Ga me i s Ove r method.
• Determine the number of the next unanswered question We know there is at least

one unanswered question; otherwise the game would be over. We continually incre-
ment the current question number until we find a question that is unanswered.
When incrementing the question number, we must remember to “wrap around” to
question number 1 if we reach the end of the questions.

• Display the question We use the Tr i vi a Ga me ge t Tr i vi a Que s t i on method, fol-
lowed by the Tr i vi a Que s t i on ge t Que s t i on method to obtain the question, and
then display it with a pr i nt l n statement.

• Obtain the user’s answer We use the Sc a nne r ne xt Li ne method.
• Update the game status based on the correctness of the answer We use the Tr i vi a -

Que s t i on t r yAns we r method to determine whether the provided answer is correct.
Based on the result we report either “correct” or “incorrect” to the user and call the

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 141

142 | Chapter 2: Abstract Data Types

appropriate method of the Tr i vi a Ga me class, either c or r e c t Ans we r or i nc or -
r e c t Ans we r , to update the status of the game. Note that when we call c or r e c t An-
s we r we must pass it the number of the question, as the Tr i vi a Ga me class is
responsible for keeping track of which questions have been answered correctly.

• Display the final results We use some of the getter methods of Tr i vi a Ga me
and display the results.

The program can be tested by constructing a variety of trivia games and playing
them. In particular, boundary conditions should be tested, such as a game with only a
single question or a particular instance of a game when no questions are answered cor-
rectly. You have already seen a sample run of the Tr i vi a Cons ol e program earlier in
this section. The code for the class appears below.

/ / -
/ / Tr i vi a Cons ol e . j a va by Da l e / J oyc e / We e ms Cha pt e r 2
/ /
/ / Al l ows t he us e r t o pl a y a t r i vi a ga me .
/ / Us e s a c ons ol e i nt e r f a c e .
/ / -

i mpor t j a va . i o . *;
i mpor t j a va . ut i l . Sc a nne r ;

publ i c c l a s s Tr i vi a Cons ol e
{

publ i c s t a t i c voi d ma i n(St r i ng[] a r gs) t hr ows I OExc e pt i on
{

Sc a nne r c onI n = ne w Sc a nne r (Sys t e m. i n) ;

Tr i vi a Ga me ga me ; / / t he t r i vi a ga me

i nt que s t Num; / / c ur r e nt que s t i on numbe r
Tr i vi a Que s t i on t q; / / c ur r e nt que s t i on
St r i ng a ns we r ; / / a ns we r pr ovi de d by us e r

/ / I ni t i a l i z e t he ga me .
ga me = Ge t Tr i vi a Ga me . us e Te xt Fi l e (" ga me . t xt ") ;

/ / Gr e e t t he us e r .
Sys t e m. out . pr i nt l n(" We l c ome t o t he " + ga me . ge t Qui z Na me ()

+ " t r i vi a qui z . ") ;

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 142

2.8 Case Study: A Trivia Game | 143

Sys t e m. out . pr i nt (" You wi l l ha ve " + ga me . ge t NumCha nc e s ()
+ " c ha nc e s ") ;

Sys t e m. out . pr i nt l n(" t o a ns we r " + ga me . ge t Cur r NumQue s t i ons ()
+ " que s t i ons . \ n") ;

que s t Num = 0;
whi l e (! ga me . i s Ove r ())
{

/ / Ge t numbe r of ne xt una ns we r e d que s t i on.
do

i f (que s t Num == ga me . ge t Cur r NumQue s t i ons ())
que s t Num = 1;

e l s e
que s t Num = que s t Num + 1;

whi l e (ga me . i s Ans we r e d(que s t Num)) ;

/ / As k que s t i on a nd ha ndl e us e r ' s r e s pons e .
t q = ga me . ge t Tr i vi a Que s t i on(que s t Num) ;
Sys t e m. out . pr i nt l n(t q . ge t Ca t e gor y() + " : " + t q . ge t Que s t i on()) ;
a ns we r = c onI n. ne xt Li ne () ;
i f (t q. t r yAns we r (a ns we r))
{

Sys t e m. out . pr i nt l n(" Cor r e c t ! \ n") ;
ga me . c or r e c t Ans we r (que s t Num) ;

}
e l s e
{

Sys t e m. out . pr i nt l n(" I nc or r e c t \ n") ;
ga me . i nc or r e c t Ans we r () ;

}
}

Sys t e m. out . pr i nt l n(" \ nGa me Ove r ") ;
Sys t e m. out . pr i nt l n(" \ nRe s ul t s : ") ;
Sys t e m. out . pr i nt (" Cha nc e s us e d: " + (ga me . ge t NumCha nc e s ()

- ga me . ge t Re ma i ni ngCha nc e s ())) ;
Sys t e m. out . pr i nt l n(" Numbe r Cor r e c t : " + ga me . ge t NumCor r e c t ()) ;
Sys t e m. out . pr i nt l n(" \ nTha nk you. \ n") ;

}
}

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 143

144 | Chapter 2: Abstract Data Types

The GUI Approach
As promised, we include here a GUI-based implementation of this case study. First is an
example of the opening screen. For this game the user gets nine chances to answer seven
questions. With our GUI approach, we allow the user to specify the category of the next
question.

Here is a screen capture taken during the game. Note that when the user answers a
category question correctly, that category is grayed out on the interface and can no longer be
chosen.

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 144

2.8 Case Study: A Trivia Game | 145

The GUI application is contained in the Tr i vi a GUI class. We do not list the code for that
class here, but you can find it with the rest of the textbook code on the website. A look at that
code reveals a straightforward implementation:

• Panels, labels, buttons, and textfields are declared globally so that the various methods all
have access to them.

• In separate sections of the class, the layouts of the panels are set, label fonts are defined
and set, label text is set, buttons are initialized, constructs are added to eight main panels,
and finally those panels are added, one after another using the box layout scheme, to the
interface.

• A separate method, s e t Ga me Va l ue s , sets the appropriate labels and buttons so that the
current state of the Tr i vi a Ga me object is reflected in the interface.

• The remaining methods implement the actions to take when the user clicks an interface
button.

Exercises
1. As the game is being played, the first “available” category button is always selected until the

user clicks a different category. Explain where and how the program selects the first “avail-
able” button.

2. Explain why the value 1 is consistently added to the s e l e c t e dI nde x before it is passed to
Tr i vi a Ga me methods—for example, in the s ubmi t But t on class’s a c t i onPe r f or me d
method in the statement

ga me . c or r e c t Ans we r (s e l e c t e dI nde x + 1) ;

3. [Class project] Create your own GUI for the trivia game system. Demonstrate your GUI to your
class. Constructively criticize one another’s approaches and award a prize to the overall best
approach.

Case Study Summation
We have created a trivia game that is versatile enough to support alternative data
sources, although we implemented only one of the approaches with the us e Te xt Fi l e
method. We implemented two user-interaction approaches: one for console-based play
and one that uses a GUI. Our development efforts were simplified through the use of
abstraction and bottom-up refinement, as we used Java library classes such as St r i ng
and Sc a nne r as well as some classes of our own design: Ar r a ySt r i ngLog, Tr i vi a -
Que s t i on, and Tr i vi a Ga me .

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 145

146 | Chapter 2: Abstract Data Types

Summary
Data can be viewed from multiple perspectives. As we have seen, Java encapsulates the
implementations of its predefined types and allows us to encapsulate our own class
implementations.

In this chapter we specified a StringLog ADT and saw how to formalize our
StringLog concept using the Java i nt e r f a c e construct. We created two implementa-
tions of the StringLog ADT: one based on arrays and one based on references. To sup-
port our reference-based approach, we first learned how to create and manipulate a
reference-based linked list. We also discussed software verification in general and we
saw how we can test the implementation of an ADT in particular. Finally, we developed
an application that administers a trivia quiz to a user, as an example of using the
StringLog ADT.

When we use data abstraction to work with data structures such as a log of
strings, there are three levels or views from which we can consider our structures.
The logical or abstract level describes what the ADT provides to us. This view
includes the domain of what the ADT represents and what it can do, as specified by
its interface. At the application level, we decide when to use the ADT to solve prob-
lems. Finally, the implementation level provides the specific details of how we repre-
sent our structure and the code that supports the operations. The logical level acts as
a contract between the application level “above” it and the implementation level
“below” it.

What do we gain by separating these views of the data? First, we reduce complexity
at the higher levels of the design, making the client program easier to understand. Sec-
ond, we make the program more readily modifiable: The implementation can be
changed without affecting the program that uses the data structure. Third, we develop
software that is reusable: The structure and its accessing operations can be used by
other programs, for completely different applications, as long as the correct interfaces
are maintained.

Exercises
2.1 Abstraction

1. Describe four ways you use abstraction in your everyday life.
2. Explain what we mean by data abstraction.
3. What is data encapsulation? Explain the programming goal, “to protect our data

abstraction through encapsulation.”
4. Name three different perspectives from which we can view data. Using the logi-

cal data structure “a list of student academic records,” give examples of how we
might view the data from each perspective.

5. Describe one way that the implementation details can affect the applications that
use an ADT, despite the use of data abstraction.

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 146

Exercises | 147

6. What is an abstract method?
7. What kinds of constructs can be declared in a Java interface?
8. What happens if a Java interface specifies a particular method signature, and a

class that implements the interface provides a different signature for that
method? For example, suppose interface Sa mpl e I nt e r f a c e is defined as

publ i c i nt e r f a c e Sa mpl e I nt e r f a c e
{

publ i c i nt s a mpl e Me t hod() ;
}

and the class Sa mpl e Cl a s s is

publ i c c l a s s Sa mpl e Cl a s s i mpl e me nt s Sa mpl e I nt e r f a c e
{

publ i c bool e a n s a mpl e Me t hod()
{

r e t ur n t r ue ;
}

}

9. True or False? Explain your answers.
a. You can define constructors for a Java interface.
b. Classes implement interfaces.
c. Classes extend interfaces.
d. A class that implements an interface can include methods that are not

required by the interface.
e. A class that implements an interface can leave out methods that are required

by an interface.
f. You can instantiate objects of an interface.
g. An interface definition can include concrete methods.

10. Create Java classes Ci r c l e and Re c t a ngl e that implement the Fi gur e Ge ome -
t r y interface defined in the “Java Interfaces” subsection. The Ci r c l e class
should include a constructor that accepts a f l oa t value as an argument repre-
senting the radius of the circle. The Re c t a ngl e class should include a construc-
tor that accepts two f l oa t values as arguments representing the length and
width of the rectangle. Given access to your classes, the following application
program should produce the output shown below:

publ i c c l a s s Us e Fi gs
{

publ i c s t a t i c voi d ma i n(St r i ng[] a r gs)
{

Ci r c l e myCi r c l e = ne w Ci r c l e (5) ;

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 147

148 | Chapter 2: Abstract Data Types

Sys t e m. out . pr i nt l n(myCi r c l e . pe r i me t e r ()) ;
Sys t e m. out . pr i nt l n(myCi r c l e . a r e a ()) ;

Re c t a ngl e myRe c t a ngl e = ne w Re c t a ngl e (7, 8) ;
Sys t e m. out . pr i nt l n(myRe c t a ngl e . pe r i me t e r ()) ;
Sys t e m. out . pr i nt l n(myRe c t a ngl e . a r e a ()) ;

}
}

Output:
31.400002
78.5
30.0
56.0

11. Consider an ADT called Squa r e Ma t r i x. (The matrix can be represented by a
two-dimensional array of integers with n rows and n columns.)
a. Write the specification for the ADT as a Java interface. Include the following

operations (parameters are already listed for the first two operations; for the
remaining operations you must determine which parameters to use yourself, as
part of the exercise):
Ma ke Empt y(n) , which sets the first n rows and columns to zero
St or e Va l ue (i , j , va l ue) , which stores va l ue into the position at row i ,
column j
Add, which adds two matrices together
Subt r a c t , which subtracts one matrix from another
Copy, which copies one matrix into another

b. Create a Java class that implements the interface. Assume a maximum size of
50 rows and columns.

c. Create a small application that uses the class.

2.2 The StringLog ADT Specification
12. The StringLog interface represents a contract between the implementer of a

StringLog ADT and the programmer who uses the ADT. List the main points of
the contract.

13. St r i ngLogI nt e r f a c e defines seven abstract methods. Describe four other oper-
ations that might be useful to export from a StringLog ADT.

14. Suppose instead of a log of strings we wish to have a log of variables of type i nt .
Create an I nt LogI nt e r f a c e file that is similar to the St r i ngLogI nt e r f a c e file.

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 148

Exercises | 149

15. A friend of yours is having trouble instantiating an object of type StringLogIn-
terface. His code includes the statement

St r i ngLogI nt e r f a c e myLog = ne w St r i ngLogI nt e r f a c e () ;

What do you tell your friend?

2.3 Array- Based StringLog ADT Implementation
16. Design and implement a constructor for Ar r a ySt r i ngLog that does not accept a

na me parameter. Note that the constructor should still assign a name to the
StringLog it creates.

17. For each of the methods exported from Ar r a ySt r i ngLog (both constructors,
i ns e r t , i s Ful l , s i z e , c ont a i ns , c l e a r , ge t Na me , t oSt r i ng) identify what
type of operation it is (constructor, observer, or transformer) and its Big-O
efficiency.

18. Describe the ramifications of each of the following changes to the code for
Ar r a ySt r i ngLog:
a. Constructors: reverse the order of the two statements within one of the con-

structors
b. i ns e r t : reverse the order of its two statements
c. i s Ful l : change (l a s t I nde x == (l og. l e ngt h - 1)) to (l a s t I nde x >

l og. l e ngt h)

d. c ont a i ns : change i nt l oc a t i on = 0 to i nt l oc a t i on = 1

e. c ont a i ns : change (l oc a t i on <= l a s t I nde x) to (l oc a t i on <
l a s t I nde x) in both places

19. Explain the difference between the “lazy” and “thorough” approaches to the
c l e a r operation for the Ar r a ySt r i ngLog class.

20. What is the functional difference between these two portions of code?

St r i ngLogI nt e r f a c e l og;
l og = ne w Ar r a ySt r i ngLog(" Exe r 20") ;
l og. i ns e r t (" wha t i s t he di f f e r e nc e ") ;
l og. c l e a r () ;

St r i ngLogI nt e r f a c e l og;
l og = ne w Ar r a ySt r i ngLog(" Exe r 20") ;
l og. i ns e r t (" wha t i s t he di f f e r e nc e ") ;
l og = ne w Ar r a ySt r i ngLog(l og. ge t Na me ()) ;

21. Design and code a new method to be exported from Ar r a ySt r i ngLog called
i s Empt y, with the following signature:

publ i c bool e a n i s Empt y()

The method returns t r ue if the StringLog is empty and f a l s e otherwise.

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 149

150 | Chapter 2: Abstract Data Types

For Exercises 22–25, use case-insensitive string comparisons.
22. Design and code a new method to be exported from Ar r a ySt r i ngLog called

howMa ny, with the following signature:

publ i c i nt howMa ny(St r i ng e l e me nt)

The method returns an i nt value indicating how many times e l e me nt occurs in
the StringLog.

23. Design and code a new method to be exported from Ar r a ySt r i ngLog called
uni qI ns e r t , with the following signature:

publ i c bool e a n uni qI ns e r t (St r i ng e l e me nt)

The method inserts e l e me nt into the StringLog unless an identical string
already exists in the StringLog, in which case it has no effect on the StringLog.
If it does insert the string, it returns t r ue ; otherwise, it returns f a l s e .

24. Design and code a new method to be exported from Ar r a ySt r i ngLog called
de l e t e , with the following signature:

publ i c bool e a n de l e t e (St r i ng e l e me nt)

The method deletes one occurrence of e l e me nt from the StringLog, if possible. It
returns t r ue if a deletion is made and f a l s e otherwise.

25. Design and code a new method to be exported from Ar r a ySt r i ngLog called
de l e t e Al l , with the following signature:

publ i c i nt de l e t e Al l (St r i ng e l e me nt)

The method deletes all occurrences of e l e me nt from the StringLog. It returns the
number of deletions that occurred.

26. Design and code a new method to be exported from Ar r a ySt r i ngLog called
s ma l l e s t , with the following signature:

publ i c St r i ng s ma l l e s t ()

The method returns the smallest string in the StringLog. By “smallest,” we mean in
terms of the lexicographic ordering supported by the St r i ng class’s c ompa r e To
method. As a precondition you should assume that the StringLog is not empty.

27. Create a new implementation of the StringLog ADT using the Java library’s
Ar r a yLi s t class instead of an array to hold the strings. Call your new class
ALSt r i ngLog. You may create a case-sensitive c ont a i ns method.

28. In Exercise 14 you were asked to design and create an I nt LogI nt e r f a c e .
a. Using the same approaches developed in the text for the Ar r a ySt r i ngLog,

create an Ar r a yI nt Log class that implements the I nt LogI nt e r f a c e .

b. Create an application called Te s t Luc k that repeatedly generates random num-
bers between 1 and 10,000 until it generates the same number twice. The pro-
gram should report how many numbers it had to generate before it matched a

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 150

Exercises | 151

previously generated number. Your application should store generated num-
bers in an Ar r a yI nt Log and use its c ont a i ns method to test for matches.

c. Run your program 10 times and record the results. What is the average
result? Is this about what you expected? Explain.

29. A St r i ngBa g ADT is similar to a St r i ngLog ADT. Clients can insert strings into it,
clear it, use its t oSt r i ng, and check to see if it is full. However, for a bag rather
than checking to see if it contains a given string, the client can only remove a ran-
dom string (as if the client is blindly reaching into a bag of candy and taking one
piece). The r e move method randomly selects a string from the bag, “deletes” it from
the bag, and returns it to the client. The number of copies of a string that are put
into the bag IS important—if three “lollypop” strings are inserted, then three “lolly-
pop” strings can be removed. We can assume that r e move is not called if the bag is
empty—therefore a bag should include an i s Empt y method that returns whether or
not the bag is empty, for the client’s use. For example, the client code here might
produce the output shown below it:

St r i ngBa g b = ne w St r i ngBa g(5) ;
b. i ns e r t (" J e a nni ne ") ;
b. i ns e r t (" Dor a ") ;
b. i ns e r t (" Dor a ") ;
b. i ns e r t (" J o- Anne ") ;
whi l e (! b . i s Empt y())
{

Sys t e m. out . pr i nt l n(b. r e move ()) ;
}

Dor a
Dor a
J o- Anne
J e a nni ne

Design a StringBag ADT, define it with a St r i ngBa g interface, and then imple-
ment it using a private array to hold the inserted strings. Design a test driver
that shows that your St r i ngBa g. j a va class works correctly. Create a report
that documents your design decisions, lists your interface, class, and driver code,
shows the results of using the driver, and describes your experience with this
project (what went well, what went wrong, etc.).

30. This is a three-part exercise:
a. Create a Ca r d class that represents a typical playing card. It should hide two

attributes: rank (1 through 13 representing Ace through King, respectively)
and suit (1 through 4 representing clubs, diamonds, hearts, spades, respec-
tively). A constructor accepts rank and suit as i nt parameters. Provide the
standard getter methods and a t oSt r i ng method. For example, the client
code here might produce the output shown below it:

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 151

152 | Chapter 2: Abstract Data Types

Ca r d c = ne w Ca r d(1, 4) ;
Sys t e m. out . pr i nt l n(c . ge t Sui t ()) ;
Sys t e m. out . pr i nt l n(c) ;

4
Ac e of Spa de s

Create a driver program that demonstrates the functionality of the Ca r d class.
b. Design a De c kof Ca r ds class that represents a typical deck of 52 playing

cards using a private array of Ca r d. The constructor of the class should ini-
tialize the hidden array to contain the standard deck of cards. The class
should implement the following interface

publ i c i nt e r f a c e De c kof Ca r ds I nt e r f a c e
{

publ i c voi d s huf f l e () ;
/ / s huf f l e s t he de c k of c a r ds a nd r e s e t s de a l
/ / t o be gi nni ng of de c k

publ i c i nt c a r ds Le f t () ;
/ / r e t ur ns numbe r of unde a l t c a r ds

publ i c Ca r d de a l Ca r d() ;
/ / i f a l l c a r ds de a l t , s huf f l e s c a r ds
/ / r e t ur ns ne xt c a r d

publ i c St r i ng t oSt r i ng() ;
/ / r e t ur ns a s t r i ng r e pr e s e nt i ng t he e nt i r e de c k of c a r ds

}

Design a test driver that shows that your De c kof Ca r ds . j a va class works cor-
rectly. Create a report that documents your design decisions, lists your inter-
face, class, and driver code, shows the results of using the driver, and describes
your experience with this project (what went well, what went wrong, etc.).

c. Design a card game that uses your deck of cards. Make the game as compli-
cated as you like. A straightforward game is “in-between” where the player is
dealt two cards and then must predict, possibly through betting, whether the
next card dealt will be “in-between” the first two cards, based on its rank.
Submit a report about your game.

2.4 Software Testing
31. Explain the difference between program verification and program validation.
32. Describe the similarities and differences among deskchecking, walk-throughs,

and inspections.

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 152

Exercises | 153

33. The following program has two separate errors, each of which would cause an
infinite loop. As a member of the inspection team, you could save the programmer
a lot of testing time by finding the errors during the inspection. Can you help?

publ i c c l a s s Tr yI nc r e me nt
{

publ i c s t a t i c voi d ma i n(St r i ng[] a r gs) t hr ows I OExc e pt i on
{

i nt c ount = 1;
whi l e (c ount < 10)

Sys t e m. out . pr i nt l n(" The numbe r a f t e r " + c ount) ; / * Now we wi l l
c ount = c ount + 1; a dd 1 t o c ount */
out put . pr i nt l n(" i s " + c ount) ;

}
}

34. When is it appropriate to start planning a program’s testing?
a. During design or even earlier
b. While coding
c. As soon as the coding is complete

35. Devise a black-box-based test plan to test the i nc r e me nt method of the I nc -
Da t e class from Chapter 1.

36. A programmer has created a module s a me Si gn that accepts two i nt arguments
and returns t r ue if they are both the same sign—that is, if they are both positive,
both negative, or both zero. Otherwise, it returns f a l s e . Identify a reasonable set
of test cases for this module.

37. A program is to read in a numeric score (0 to 100) as an integer and display an
appropriate letter grade (A, B, C, D, or F).
a. What is the functional domain of this program?
b. Is exhaustive data coverage possible for this program?

38. Devise a black-box test plan for testing the i s Ful l method of the
Ar r a ySt r i ngLog class. Enumerate the test cases within the plan. Use the
I TDAr r a ySt r i ngLog program to carry out the plan.

39. Design a noninteractive program that carries out the test plan you identified for
Exercise 38. Call the program Te s t I s Ful l . It should run without input and
report whether all test cases were passed successfully. If any test cases are not
passed, it should report their test numbers.

2.5 Introduction to Linked Lists
40. What is a self-referential class?
41. What changes would need to be made to the LLSt r i ngNode class to allow it to

support linked lists of integers instead of linked lists of strings?

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 153

154 | Chapter 2: Abstract Data Types

42. Draw figures representing our abstract view of the structures created by each of
the following code sequences.
a. LLSt r i ngNode node 1 = ne w LLSt r i ngNode (" a l pha ") ;

LLSt r i ngNode node 2 = ne w LLSt r i ngNode (" be t a ") ;
LLSt r i ngNode node 3 = ne w LLSt r i ngNode (" ga mma ") ;
node 1. s e t Li nk(node 3) ;
node 2. s e t Li nk(node 3) ;

b. LLSt r i ngNode node 1 = ne w LLSt r i ngNode (" a l pha ") ;
LLSt r i ngNode node 2 = ne w LLSt r i ngNode (" be t a ") ;
LLSt r i ngNode node 3 = ne w LLSt r i ngNode (" ga mma ") ;
node 1. s e t Li nk(node 2) ;
node 2. s e t Li nk(node 3) ;
node 3. s e t Li nk(node 1) ;

c. LLSt r i ngNode node 1 = ne w LLSt r i ngNode (" a l pha ") ;
LLSt r i ngNode node 2 = ne w LLSt r i ngNode (" be t a ") ;
LLSt r i ngNode node 3 = ne w LLSt r i ngNode (" ga mma ") ;
node 1. s e t Li nk(node 3) ;
node 2. s e t Li nk(node 1. ge t Li nk()) ;

d. LLSt r i ngNode node Li s t = ne w LLSt r i ngNode (" a l pha ") ;
LLSt r i ngNode node = ne w LLSt r i ngNode (" be t a ") ;
node . s e t Li nk(node Li s t) ;
node Li s t = node ;
LLSt r i ngNode node = ne w LLSt r i ngNode (" ga mma ") ;
node . s e t Li nk(node Li s t) ;
node Li s t = node ;

43. In this section we developed Java code for traversing a linked list. Here are sev-
eral alternate, possibly flawed, approaches for traversal of the linked list
accessed through l e t t e r s . Critique each of them:
a. LLSt r i ngNode c ur r Node = l e t t e r s ;

whi l e (c ur r Node ! = nul l)
{

Sys t e m. out . pr i nt l n(c ur r Node . ge t I nf o()) ;
c ur r Node = c ur r Node . ge t Li nk() ;

}

b. LLSt r i ngNode c ur r Node = l e t t e r s ;
whi l e (c ur r Node ! = nul l)
{

c ur r Node = c ur r Node . ge t Li nk() ;
Sys t e m. out . pr i nt l n(c ur r Node . ge t I nf o()) ;

}

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 154

Exercises | 155

c. LLSt r i ngNode c ur r Node = l e t t e r s ;
whi l e (c ur r Node ! = nul l)
{

Sys t e m. out . pr i nt l n(c ur r Node . ge t I nf o()) ;
i f c ur r Node . ge t Li nk() ! = nul l

c ur r Node = c ur r Node . ge t Li nk() ;
e l s e

c ur r Node = nul l ;
}

2.6 Linked List StringLog ADT Implementation
44. What is the main difference, in terms of memory allocation, between using an

array-based StringLog and a reference-based StringLog?
45. Compare our array- and reference-based StringLog implementations in terms of

the Big-O efficiency of their methods.
46. Trace the following code segment and show its expected output. Normally when

tracing application code that uses an ADT you need not worry about the details
of the code implementation. But for this exercise we want you to “wear the hat”
of the implementer and carry your tracing down to the implementation level so
that you can see exactly what is returned by the t oSt r i ng methods. Explain
why the two StringLogs are not displayed in exactly the same way.

St r i ngLogI nt e r f a c e i nf o1;
St r i ngLogI nt e r f a c e i nf o2;
i nf o1 = ne w Ar r a ySt r i ngLog(" I nf or ma t i on 1") ;
i nf o2 = ne w Li nke dSt r i ngLog(" I nf or ma t i on 2") ;
i nf o1. i ns e r t (" Tom") ;
i nf o2. i ns e r t (" Tom") ;
i nf o1. i ns e r t (" J ul i e ") ;
i nf o2. i ns e r t (" J ul i e ") ;
Sys t e m. out . pr i nt l n(i nf o1. t oSt r i ng()) ;
Sys t e m. out . pr i nt l n(i nf o2. t oSt r i ng()) ;

47. Describe the ramifications of each of the following changes to the code for
Li nke dSt r i ngLog:
a. Constructor: reverse the order of the two statements
b. i ns e r t : reverse the order of the last two statements
c. s i z e : change i nt c ount = 0; to i nt c ount = 1; and change node =

l og; to node = l og. ge t Li nk() ;

d. c ont a i ns : reverse the order of the two statements in the else statement
e. t oSt r i ng: change i nt c ount = 0; to i nt c ount = 1; and move the

increment of the count variable from the first statement of the while loop to
the last statement of the while loop

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 155

156 | Chapter 2: Abstract Data Types

48. Design and code a new method to be exported from Li nke dSt r i ngLog called
i s Empt y, with the following signature:

publ i c bool e a n i s Empt y()

The method returns t r ue if the StringLog is empty and f a l s e otherwise.
For Exercises 49–50 use case-insensitive string comparisons.

49. Design and code a new method to be exported from Li nke dSt r i ngLog called
howMa ny, with the following signature:

publ i c i nt howMa ny(St r i ng e l e me nt)

The method returns an i nt value indicating how many times e l e me nt occurs in
the StringLog.

50. Design and code a new method to be exported from Li nke dSt r i ngLog called
uni qI ns e r t , with the following signature:

publ i c bool e a n uni qI ns e r t (St r i ng e l e me nt)

The method inserts e l e me nt into the StringLog unless an identical string
already exists in the StringLog, in which case it has no effect on the StringLog.
If it does insert the string, it returns t r ue ; otherwise, it returns f a l s e .

51. Design and code a new method to be exported from Li nke dSt r i ngLog called
s ma l l e s t , with the following signature:

publ i c St r i ng s ma l l e s t ()

The method returns the smallest string in the StringLog. By “smallest,” we mean in
terms of the lexicographic ordering supported by the St r i ng class’s c ompa r e To
method. As a precondition you should assume that the StringLog is not empty.

52. An alternative design for the Li nke dSt r i ngLog class is to include an instance
variable s i z e that represents the number of strings contained in the
StringLog.
a. Describe the changes you would make to the Li nke dSt r i ngLog implemen-

tation presented in the text as a result of this new approach.
b. Create a new class, Li nke dSt r i ngLog2, that uses this approach.
c. Test the Li nke dSt r i ngLog2 class.
d. How would this change affect an application program that uses a StringLog?

53. Design, code, and use an interactive test driver for the Li nke dSt r i ngLog class.
(Hint: You could proceed by making a copy of the I TDAr r a ySt r i ngLog class
and then implementing the appropriate changes.)

54. Design a StringBag ADT (see Exercise 29), define it with a St r i ngBa g interface,
and then implement it using a private linked list to hold the inserted strings.
Design a test driver that shows that your St r i ngBa g. j a va class works cor-
rectly. Create a report that documents your design decisions, lists your interface,
class, and driver code, shows the results of using the driver, and describes your
experience with this project (what went well, what went wrong, etc.).

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 156

Exercises | 157

2.7 Software Design: Identification of Classes
55. Make a list of potential classes that you might design to help create the following

programs:
a. A screen saver that looks like an aquarium
b. An interactive version of the card game Blackjack
c. A traffic simulation for modeling the effects of new highway proposals
d. A fantasy role-playing game based on the Lord of the Rings mythology

56. Explain how to use the nouns and verbs in a problem description to help iden-
tify candidate classes and methods for a design.

2.8 Case Study: A Trivia Game
57. Create your own trivia ga me . t xt file containing a trivia game of your devising.

Exchange files with classmates and see who does the best job answering trivia
questions, using our trivia game application.

58. Explain why and how the StringLog ADT is used to support the Tr i vi a Que s -
t i on class.

59. Describe how you would change the code of the Tr i vi a Que s t i on class so that
it uses the reference-based implementation of the StringLog ADT rather than the
array-based implementation.

60. Describe the ramifications of each of the following changes to the code for the
trivia game system:
a. In the constructor for Tr i vi a Que s t i on reverse the order of the first two

statements.
b. In the i ns e r t Que s t i on method of Tr i vi a Ga me reverse the order of the first

two statements.
c. In the i s Ove r method of Tr i vi a Ga me change the | | operation to &&.

61. Several of the methods of the Tr i vi a Ga me class have preconditions. What hap-
pens if those preconditions are not met?

62. Describe what changes you would make to the Tr i vi a Ga me class so that it con-
stantly keeps track of the “game over” status in an instance variable, rather than
calculating that status whenever the i s Ove r method is called.

63. Change our trivia game playing system so that it keeps track, and reports to the
user in an appropriate fashion, how many times the user attempts to answer
each of the various questions.

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 157

13549_CH02_Da l e . qxd 2/ 7/ 11 6: 23 AM Pa ge 158

Knowledge Goals
You should be able to
■ describe a stack and its operations at a logical level
■ list three options for making a collection ADT generally usable
■ explain three ways to “handle” exceptional situations when defining an ADT
■ explain the difference between the formal definitions of bounded and unbounded stacks
■ describe an algorithm for determining whether grouping symbols (such as parentheses) within a string are

balanced using a stack
■ describe algorithms for implementing stack operations using an array
■ describe algorithms for implementing stack operations using an Ar r a yLi s t
■ describe algorithms for implementing stack operations using a linked list
■ use Big-O analysis to describe and compare the efficiency of algorithms for implementing stack operations using various

data structuring mechanisms
■ define inheritance of interfaces and multiple inheritance of interfaces
■ describe an algorithm for evaluating postfix expressions, using a stack

Skill Goals
You should be able to
■ use the Java generics mechanism when designing/implementing a collections ADT
■ implement the Stack ADT using an array
■ implement the Stack ADT using the Java library’s Ar r a yLi s t class
■ implement the Stack ADT using a linked list
■ draw diagrams showing the effect of stack operations for a particular implementation of a stack
■ create a Java exception class
■ throw Java exceptions from within an ADT and catch them within an application that uses the ADT
■ use a Stack ADT as a component of an application
■ evaluate a postfix expression “by hand”

The Stack ADT
G

o

a

l

s

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 159

160 | Chapter 3: The Stack ADT

Figure 3.1 Real-life stacks

A stack of
cafeteria trays

A stack
of pennies

A stack of
shoe boxes

A stack of
neatly folded shirts

In this chapter we investigate the stack, an important data structure. As we described in
Chapter 1, a stack is a “last in, first out” structure. We study the stack as an ADT, look-
ing at it from the logical, application, and implementation levels. At the logical level we
formally define our Stack ADT using a Java i nt e r f a c e . We discuss many applications
of stacks and look in particular at how stacks are used to determine whether a set of
grouping symbols is well formed and to support evaluation of mathematical expres-
sions. We investigate the implementation of stacks using our two basic approaches:
arrays and linked lists. We also investigate an approach using the Java library’s
Ar r a yLi s t class.

This chapter will also expand your understanding of ADTs and your practical
knowledge of the Java language. Early in the chapter we look at ways to make an ADT
generally usable and options for addressing exceptional situations. Java topics in this
chapter include a closer look at the exception mechanism and the introduction of gener-
ics and the inheritance of interfaces.

3.1 Stacks

Consider the items pictured in Figure 3.1. Although the objects are all different, each
illustrates a common concept—the stack. At the logical level, a stack is an ordered group

of homogeneous elements. The removal of existing ele-
ments and the addition of new ones can take place only
at the top of the stack. For instance, if your favorite
blue shirt is underneath a faded, old, red one in a stack
of shirts, you first take the red shirt from the top of the
stack. Then you remove the blue shirt, which is now at

the top of the stack. The red shirt may then be put back on the top of the stack. Or it
could be thrown away!

Stack A structure in which elements are added and
removed from only one end; a “last in, first out” (LIFO)
structure

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 160

3.1 Stacks | 161

1. Another common approach is to define a pop operation in the classical way—that is, it removes and
returns the top element—and to define another operation, often called pe e k, that simply returns the top ele-
ment.

A stack may be considered “ordered” because elements occur in sequence according
to how long they’ve been in the stack. The elements that have been in the stack the
longest are at the bottom; the most recent are at the top. At any time, given any two
elements in a stack, one is higher than the other. (For instance, the red shirt was higher
in the stack than the blue shirt.)

Because elements are added and removed only from the top of the stack, the last
element to be added is the first to be removed. There is a handy mnemonic to help you
remember this rule of stack behavior: A stack is a LIFO (“last in, first out”) structure.

The accessing protocol for a stack is summarized as follows: Both to retrieve ele-
ments and to store new elements, access only the top of the stack.

Operations on Stacks
The logical picture of the structure is only half the definition of an abstract data type.
The other half is a set of operations that allows the user to access and manipulate the
elements stored in the structure. What operations do we need to use a stack?

When we begin using a stack, it should be empty. Thus we assume that our stack
has at least one class constructor that sets it to the empty state.

The operation that adds an element to the top of a stack is usually called push, and
the operation that removes the top element off the stack is referred to as pop. Classi-
cally, the pop operation has both removed the top element of the stack and returned the
top element to the client program that invoked pop. More recently, programmers have
been defining two separate operations to perform these actions because operations that
combine observations and transformation can result in confusing programs.

We follow modern convention and define a pop operation that removes the top ele-
ment from a stack and a top operation that returns the top element of a stack.1 Our push
and pop operations are strictly transformers, and our top operation is strictly an
observer. Figure 3.2 shows how a stack, envisioned as a stack of building blocks, is
modified by several push and pop operations.

Using Stacks
Stacks are very useful ADTs, especially in the field of computing system software. They
are most often used in situations in which we must process nested components. For
example, programming language systems typically use a stack to keep track of opera-
tion calls. The main program calls operation A, which in turn calls operation B, which
in turn calls operation C. When C finishes, control returns to B; when B finishes, control
returns to A; and so on. The call and return sequence is essentially a last in, first out
sequence, so a stack is the perfect structure for tracking it, as shown in Figure 3.3.

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 161

162 | Chapter 3: The Stack ADT

Figure 3.2 The effects of pus h and pop operations

2

2

3pop top = block3

3

2

2

3

5push block5

4push block4

top = block5

top = block4

3

2

originally

push block2

push block3

stack is empty

top = block2

top = block3

You may have encountered a case where a Java exception has produced an error
message that mentions “a system stack trace.” This trace shows the nested sequence of
method calls that ultimately led to the exception being thrown. These calls were saved
on the “system stack.”

Compilers use stacks to analyze language statements. A program often consists of
nested components—for example, a for loop containing an if-then statement that con-
tains a while loop. As a compiler is working through such nested constructs, it “saves”
information about what it is currently working on in a stack; when it finishes its work
on the innermost construct, it can “retrieve” its previous status from the stack and pick
up where it left off.

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 162

3.2 Collection Elements | 163

Figure 3.3 Call-return stack

main running Top: <empty>

main calls method A
method A running

Stack contains

Top: main
Stack contains

method A calls method B
method B running Top: A

 main

Stack contains

method C returns
method B running Top: A

 main

Stack contains

method B returns
method A running Top: main

Stack contains

method A returns
main running Top: <empty>

Stack contains

method B calls method C
method C running Top: B

 A
 main

Stack contains

Similarly, an operating system sometimes saves information about the current exe-
cuting process on a stack so that it can work on a higher-priority, interrupting process.
If that process is interrupted by an even higher-priority process, its information can also
be pushed on the process stack. When the operating system finishes its work on the
highest-priority process, it retrieves the information about the most recently stacked
process and continues working on it.

3.2 Collection Elements

A stack is an example of a collection ADT. A
stack collects together elements for future use,
while maintaining a first in, last out ordering
among the elements. Before continuing our
coverage of stacks, we examine the question of
which types of elements can be stored in a collection. We look at several variations that
are possible when structuring collections of elements and describe the approaches we
adopt for use throughout this text. It is important to understand the various options,
along with their strengths and weaknesses, so that you can make informed decisions
about which approach to use based on your particular situation.

Collection An object that holds other objects. Typi-
cally we are interested in inserting, removing, and iter-
ating through the contents of a collection.

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 163

164 | Chapter 3: The Stack ADT

Figure 3.4 Options for collection elements

String String String Integer Integer Integer

Integer Integer Integer

Bank
Account

Bank
Account

Bank
Account

(a)

(b)

(c)

StringLog Collection

String String String

ObjectLog Collection ObjectLog Collection

Integer String Bank
Account

ObjectLog Collection

Monster Monster TreasureHero

Drawable Collection

IntegerLog Collection BankAccountLog Collection

NumberString BankAccount

Monster

Hero

Treasure

Object

Integer

<interface>
Drawable

+ draw(): void

String String String Integer Integer Integer Bank
Account

Bank
Account

Bank
Account

(d) Log<String> Collection Log<Integer> Collection Log<BankAccount> Collection

Generally Usable Collections
The StringLog ADT we constructed in Chapter 2 is also a collection ADT. It was con-
strained to holding data of one specific type—namely, strings. Based on the approach
used in that chapter, if we wanted to have a log of something else—say, integers or pro-
grammer-defined bank account objects—we would have to design and code additional
ADTs. (See Figure 3.4a.)

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 164

3.2 Collection Elements | 165

Although the StringLog ADT is handy, a Log ADT would be much more useful if
it could hold any kind of information. In Chapter 2 our goal was to present basic ADT
concepts using a simple example, so we were content to create an ADT restricted to a
single type of element. In this section we present several ways to design our collec-
tions so that they hold different types of information, making them more generally
usable.

Collections of Class Object
One approach to creating generally usable collections is to have the collection ADT hold
variables of class Obj e c t . Because all Java classes ultimately inherit from Obj e c t , such
an ADT is able to hold a variable of any class. (See Figure 3.4b.) This approach works
well, especially when the elements of the collection don’t have any special properties—
for example, if the elements don’t have to be sorted.

Although this approach is simple, it is not without problems. One drawback: When-
ever an element is removed from the collection, it can be referenced only as an Obj e c t .
If you intend to use it as something else, you must cast it into the type that you intend
to use. For example, suppose you place a string into a collection and then retrieve it. To
use the retrieved object as a St r i ng object you must cast it, as emphasized here:

c ol l e c t i on. pus h(" E. E. Cummi ngs ") ; / / pus h s t r i ng on a s t a c k
St r i ng poe t = (St r i ng) c ol l e c t i on. t op() ; / / c a s t t op t o St r i ng
Sys t e m. out . pr i nt l n(poe t . t oLowe r Ca s e ()) ; / / us e t he s t r i ng

Without the cast you will get a compile error, because Java is a strongly typed lan-
guage and will not allow you to assign a variable of type Obj e c t to a variable of type
St r i ng. The c a s t operation tells the compiler that you, the programmer, are guarantee-
ing that the Obj e c t is, indeed, a St r i ng.

The Obj e c t approach works by converting every class of object into class Obj e c t
as it is stored in the collection. Users of the collection must remember what kinds of
objects have been stored in it, and then explicitly cast those objects back into their orig-
inal classes when they are removed from the collection.

As shown by the third Obj e c t Log collection in Figure 3.4(b), this approach allows
a program to mix the types of elements in a single collection. That collection holds an
I nt e ge r , a St r i ng, and a Ba nkAc c ount . In general, such mixing is not considered to
be a good idea, and it should be used only in rare cases under careful control. Its use
can easily lead to a program that retrieves one type of object—say, an I nt e ge r —and
tries to cast it as another type of object—say, a St r i ng. This, of course, is an error.

Collections of a Class That Implements a Particular Interface
Sometimes we may want to ensure that all of the objects in a collection support a par-
ticular operation or set of operations. As an example, suppose the objects represent ele-
ments of a video game. Many different types of elements exist, such as monsters,
heroes, and treasure. When an element is removed from the collection it is drawn on the

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 165

166 | Chapter 3: The Stack ADT

screen, using a dr a w operation. In this case, we would like to ensure that only objects
that support the dr a w operation can be placed in the collection.

Recall from Chapter 2 that a Java interface can include only abstract methods—that
is, methods without bodies. Once an interface is defined we can create classes that
implement the interface by supplying the missing method bodies. For our video game
example we could create an interface with an abstract dr a w method. A good name for
the interface might be Dr a wa bl e , as classes that implement this interface provide
objects that can be drawn. The various types of video game elements that can be drawn
on the screen should all be defined as implementing the Dr a wa bl e interface.

Now we can ensure that the elements in our example collection are all “legal” by
designing it as a collection of Dr a wa bl e objects—in other words, objects that implement
the Dr a wa bl e interface. In this way we ensure that only objects that support a dr a w
operation are allowed in the collection. (See Figure 3.4c.)

Later in the text we present two data structures, the sorted list and the binary search
tree, whose elements are organized in a sorted order. Every element that is inserted into
one of these collections must provide an operation that allows us to compare it to other
objects in its class. That is, objects inserted into the collection must support a c om-
pa r e To operation. To enforce this requirement we define our sorted list and binary
search ADTs as collections of Compa r a bl e objects. The Compa r a bl e interface is defined
within the j a va . l a ng package and includes exactly one abstract method: c ompa r e To.

Generic Collections
Beginning with version 5.0, the Java language supports generics. Generics allow us to
define a set of operations that manipulate objects of a particular class, without specify-
ing the class of the objects being manipulated until a later time. Generics represented
one of the most significant changes to the language in this version of Java.

In a nutshell, generics are parameterized types. Of course, you are already familiar
with the concept of a parameter. For example, in our St r i ngLog class the i ns e r t
method has a St r i ng parameter named e l e me nt . When we invoke that method we
must pass it a St r i ng argument, such as “Elvis”:

l og. i ns e r t (" El vi s ") ;

Generics allow us to pass type names such as I nt e ge r , St r i ng, or Ba nkAc c ount
as arguments. Notice the subtle difference—with generics we actually pass a type, for
example, St r i ng, instead of a value of a particular type, for example, “Elvis.”

With this capability, we can define a collection class, such as Log, as containing
elements of a type T, where T is a placeholder for the name of a type. We indicate the
name of the placeholder (convention tells us to use T) within braces; that is, <T>, in the
header of the class.

publ i c c l a s s Log<T>
{

pr i va t e T[] l og; / / a r r a y t ha t hol ds obj e c t s of c l a s s T

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 166

3.3 Exceptional Situations | 167

3.3 Exceptional Situations

There is one more topic to cover before formally specifying our Stack ADT. In this sec-
tion we take a look at various methods of handling exceptional situations that might
arise when running a program. For example, what should happen if a stack is empty
and the pop operation is invoked? There is nothing to pop! As part of formally specify-
ing a stack, or any ADT, we must determine how such exceptional situations will be
addressed.

Handling Exceptional Situations
Many different types of exceptional situations
can occur when a program is running. Excep-
tional situations alter the flow of control of the
program, sometimes resulting in a crash. Some
examples follow:

• A user enters an input value of the wrong type.
• While reading information from a file, the end of the file is reached.

Exceptional situation Associated with an unusual,
sometimes unpredictable event, detectable by software
or hardware, which requires special processing. The
event may or may not be erroneous.

pr i va t e i nt l a s t I nde x = - 1; / / i nde x of l a s t T i n t he a r r a y
. . .

In a subsequent application we can supply the actual type, such as I nt e ge r ,
St r i ng, or Ba nkAc c ount , when the collection is instantiated.

Log<I nt e ge r > numbe r s ;
Log<Ba nkAc c ount > i nve s t me nt s ;
Log<St r i ng> a ns we r s ;

If we pass Ba nkAc c ount as the argument, we get a Ba nkAc c ount log; if we pass
St r i ng, we get a St r i ng log; and so on.

In place of passing a type when instantiating a generic collection we have the
option of passing a java i nt e r f a c e , for example

Log<Dr a wa bl e > a va t a r s ;

As discussed in the previous subsection, this could then allow us to include any object
that implements the interface in the collection—the a va t a r s log could contain humans,
elves, and ogres, as long as each of their respective classes implements the Dr a wa bl e
interface.

Generics provide the flexibility to design generally usable collections yet retain the
benefit of Java’s strong type checking. They are an excellent solution and we will use
this approach throughout most of the remainder of this textbook.

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 167

168 | Chapter 3: The Stack ADT

• A user presses a control key combination.
• An illegal mathematical operation occurs, such as divide-by-zero.
• An impossible operation is requested of an ADT, such as an attempt to pop an

empty stack.

Working with these kinds of exceptional situations begins at the design phase, when
several questions arise: What are the unusual situations that the program should recog-
nize? Where in the program can the situations be detected? How should the situations
be handled if they occur?

Java (along with some other languages) provides built-in mechanisms to manage
exceptional situations. In Java an exceptional situation is referred to simply as an
exception. The Java exception mechanism has three major parts:

• Defining the exception Usually as a subclass of Java’s Exc e pt i on class
• Generating (raising) the exception By recognizing the exceptional situation and

then using Java’s t hr ow statement to “announce” that the exception has
occurred

• Handling the exception Using Java’s t r y-c a t c h statement to discover that an
exception has been thrown and then take the appropriate action

Java also includes numerous predefined built-in exceptions that are raised automati-
cally under certain situations.

From this point on we use the Java term “exception,” instead of the more general
phrase exceptional situation. Here are some general guidelines for using exceptions:

• An exception may be handled anywhere in the software hierarchy—from the
place in the program module where it is first detected through the top level of
the program.

• Unhandled built-in exceptions carry the penalty of program termination.
• Where in an application an exception is handled is a design decision; however,

exceptions should always be handled at a level that knows what the exception
means.

• An exception need not be fatal.
• For nonfatal exceptions, the thread of execution can continue from various

points in the program, but execution should continue from the lowest level that
can recover from the exception.

Exceptions and ADTs: An Example
When creating our own ADTs we identify exceptions that require special processing. If
the special processing is application dependent, we use the Java exception mechanism
to throw the problem out of the ADT and force the application programmers to handle
it. Conversely, if the exception handling can be hidden within the ADT, then there is no
need to burden the application programmers with the task.

For an example of an exception created to support a programmer-defined ADT, let’s
return to our Da t e class from Chapter 1.

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 168

3.3 Exceptional Situations | 169

publ i c c l a s s Da t e
{

pr ot e c t e d i nt ye a r ;
pr ot e c t e d i nt mont h;
pr ot e c t e d i nt da y;
publ i c s t a t i c f i na l i nt MI NYEAR = 1583;

publ i c Da t e (i nt ne wMont h, i nt ne wDa y, i nt ne wYe a r)
{

mont h = ne wMont h;
da y = ne wDa y;
ye a r = ne wYe a r ;

}

publ i c i nt ge t Ye a r ()
{

r e t ur n ye a r ;
}

publ i c i nt ge t Mont h()
{

r e t ur n mont h;
}

publ i c i nt ge t Da y()
{

r e t ur n da y;
}

publ i c i nt l i l i a n()
{

/ / Re t ur ns t he Li l i a n Da y Numbe r of t hi s da t e .
/ / Al gor i t hm goe s he r e .
/ / Se e " Li l i a n Da y Numbe r s " f e a t ur e , Cha pt e r 1 , f or de t a i l s .

}

publ i c St r i ng t oSt r i ng()
{

r e t ur n(mont h + " / " + da y + " / " + ye a r) ;
}

}

As currently defined, an application could invoke the Da t e constructor with an
impossible date—for example, 25/15/2000. We can avoid the creation of such dates by

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 169

170 | Chapter 3: The Stack ADT

checking the legality of the month argument passed to the constructor. But what should
our constructor do if it discovers an illegal argument? Here are some options:

• Write a warning message to the output stream. This is not a good option because
within the Da t e ADT we don’t really know which output stream is used by the
application.

• Instantiate the new Da t e object to some default date, perhaps 0/0/0. The problem
with this approach is that the application program may just continue processing
as if nothing is wrong and produce erroneous results. In general it is better for a
program to “bomb” than to produce erroneous results that may be used to make
bad decisions.

• Throw an exception. This way, normal processing is interrupted and the con-
structor does not have to return a new object; instead, the application program is
forced to acknowledge the problem (catch the exception) and either handle it or
throw it to the next level.

Once we have decided to handle the situation with an exception, we must decide
whether to use one of the Java library’s predefined exceptions or to create one of our
own. A study of the library in this case reveals a candidate exception called Da t a For -
ma t Exc e pt i on, to be used to signal data format errors. We could use that exception but
we decide it doesn’t really fit: It’s not the format of the data that is the problem in this
case, it’s the value of the data.

We decide to create our own exception, Da t e Out Of Bounds . We could call it
“MonthOutOfBounds” but we decide that we want to use the exception to indicate other
potential problems with dates, not just problems with the month value.

We create our Da t e Out Of Bounds exception by extending the library’s Exc e pt i on
class. It is customary when creating your own exceptions to define two constructors,
mirroring the two constructors of the Exc e pt i on class. In fact, the easiest thing to do is
define the constructors so that they just call the corresponding constructors of the
superclass:

publ i c c l a s s Da t e Out Of Bounds Exc e pt i on e xt e nds Exc e pt i on
{

publ i c Da t e Out Of Bounds Exc e pt i on()
{

s upe r () ;
}
publ i c Da t e Out Of Bounds Exc e pt i on(St r i ng me s s a ge)
{

s upe r (me s s a ge) ;
}

}

The first constructor creates an exception without an associated message. The second
constructor creates an exception with a message equal to the string argument passed to
the constructor.

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 170

3.3 Exceptional Situations | 171

Next we need to consider where, within our Da t e ADT, we throw the exception. All
places within our ADT where a date value is created or changed should be examined to
see if the resultant value could be an illegal date. If so, we should create an object of
our exception class with an appropriate message and throw the exception.

Here is how we might write a Da t e constructor to check for legal months and years:

publ i c Da t e (i nt ne wMont h, i nt ne wDa y, i nt ne wYe a r)
t hr ows Da t e Out Of Bounds Exc e pt i on

{
i f ((ne wMont h <= 0) | | (ne wMont h > 12))

t hr ow ne w Da t e Out Of Bounds Exc e pt i on(" mont h " + ne wMont h + " out of r a nge ") ;
e l s e

mont h = ne wMont h;

da y = ne wDa y;

i f (ne wYe a r < MI NYEAR)
t hr ow ne w Da t e Out Of Bounds Exc e pt i on(" ye a r " + ne wYe a r + " i s t oo e a r l y") ;

e l s e
ye a r = ne wYe a r ;

}

Notice that the message defined for each t hr ow statement pertains to the problem dis-
covered at that point in the code. This should help the application program that is han-
dling the exception, or at least provide pertinent information to the user of the program
if the exception is propagated all the way to the user level.

Finally, let’s see how an application program might use the revised Da t e class.
Consider a program called Us e Da t e s that prompts the user for a month, day, and year
and creates a Da t e object based on the user’s responses. In the following code we hide
the details of how the prompt and response are handled, by replacing those statements
with comments. This way we can emphasize the code related to our current discussion:

publ i c c l a s s Us e Da t e s
{

publ i c s t a t i c voi d ma i n(St r i ng[] a r gs)
t hr ows Da t e Out Of Bounds Exc e pt i on

{
Da t e t he Da t e ;

/ / Pr ogr a m pr ompt s us e r f or a da t e .
/ / M i s s e t e qua l t o us e r ' s mont h.
/ / D i s s e t e qua l t o us e r ' s da y.
/ / Y i s s e t e qua l t o us e r ' s ye a r .

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 171

172 | Chapter 3: The Stack ADT

t he Da t e = ne w Da t e (M, D, Y) ;

/ / Pr ogr a m c ont i nue s . . .
}

}

When this program runs, if the user responds with an illegal value—for example, a year
of 1051—the Da t e Out Of Bounds Exc e pt i on is thrown by the Da t e constructor; because
it is not caught and handled within the program, it is thrown to the interpreter as indi-
cated by the emphasized t hr ows clause. The interpreter stops the program and displays
a message like this:

Exc e pt i on i n t hr e a d " ma i n" Da t e Out Of Bounds Exc e pt i on: ye a r 1051 i s t oo
e a r l y

a t Da t e . <i ni t >(Da t e . j a va : 18)
a t Us e Da t e s . ma i n(Us e Da t e s . j a va : 57)

The interpreter’s message includes the name and message string of the exception as
well as a trace of calls leading up to the exception (the system stack trace mentioned in
Section 3.1.)

Alternatively, the Us e Da t e s class could catch and handle the exception itself,
rather than throwing it to the interpreter. The application could ask for a new date when
the exception occurs. Here is how Us e Da t e s can be written to do this (again we ignore
user interface details and emphasize code related to exceptions):

publ i c c l a s s Us e Da t e s
{

publ i c s t a t i c voi d ma i n(St r i ng[] a r gs)
{

Da t e t he Da t e ;
bool e a n Da t e OK = f a l s e ;

whi l e (! Da t e OK)
{

/ / Pr ogr a m pr ompt s us e r f or a da t e .
/ / M i s s e t e qua l t o us e r ' s mont h.
/ / D i s s e t e qua l t o us e r ' s da y.
/ / Y i s s e t e qua l t o us e r ' s ye a r .
t r y
{

t he Da t e = ne w Da t e (M, D, Y) ;
Da t e OK = t r ue ;

}
c a t c h(Da t e Out Of Bounds Exc e pt i on Da t e OBExc e pt)
{

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 172

3.3 Exceptional Situations | 173

out put . pr i nt l n(Da t e OBExc e pt . ge t Me s s a ge ()) ;
}

}

/ / Pr ogr a m c ont i nue s . . .
}

}

If the ne w statement executes without any trouble, meaning the Da t e constructor
did not throw an exception, then the Da t e OK variable is set to t r ue and the while loop
terminates. However, if the Da t e Out Of Bounds exception is thrown by the Da t e con-
structor, it is caught by the c a t c h statement. This, in turn, prints the message from the
exception and the whi l e loop is reexecuted, again prompting the user for a date. The
program repeatedly prompts for date information until it is given a legal date. Notice
that the ma i n method no longer throws Da t e Out Of Bounds Exc e pt i on, as it handles the
exception itself.

One last important note about exceptions. The j a va . l a ng. RunTi me Exc e pt i on
class is treated uniquely by the Java environment. Exceptions of this class are thrown
when a standard run-time program error occurs. Examples of run-time errors include
division-by-zero and array-index-out-of-bounds. Because run-time exceptions can hap-
pen in virtually any method or segment of code, we are not required to explicitly handle
these exceptions. Otherwise, our programs would become unreadable because of so
many t r y, c a t c h, and t hr ow statements. These errors are classified as unchecked
exceptions. The exceptions we create later in
this chapter to support our Stack ADT are
extensions of the Java RunTi me Exc e pt i on
class and, therefore, are unchecked.

Error Situations and ADTs
When dealing with error situations within our ADT methods, we have several options.

First, we can detect and handle the error within the method itself. This is the best
approach if the error can be handled internally and if it does not greatly complicate the
design. For example, if an illegal value is passed to a method, we may be able to
replace it with a useful default value. Suppose we have a method used to set the
employee discount for an online store. Passing it a negative number might be con-
strued as an error—it might be reasonable in such a case to set the value to zero and
continue processing. When handling a problem internally in this way, it may be possi-
ble to pass information about the situation from the method to the caller through a
return value. For example, we could design a pus h operation for a stack that returns a
bool e a n value of t r ue if the operation is successful and the argument is pushed onto
the stack, and a value of f a l s e if the operation fails for some reason (e.g., because the

Unchecked exception An exception of the Run-
Ti me Exc e pt i on class. It does not have to be
explicitly handled by the method within which it might
be raised.

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 173

174 | Chapter 3: The Stack ADT

stack is full). As another example, consider a t op operation that returns the object
from the top of the stack. Instead of terminating the program if the stack is empty, the
operation could return the value nul l , indicating that the operation “failed.” In these
examples the caller is responsible for checking the returned value and acting appropri-
ately if failure is indicated.

Second, we can detect the error within the method, throw an exception related to
the error, and thereby force the calling method to deal with the exception. If it is not
clear how to handle a particular error situation, this approach might be best—throw it to
a level where it can be handled. For example, if an application passes a nonsensical date
to the Da t e class constructor, it is best to throw an exception—the constructor doesn’t
“know” what the ramifications of the impossible date are, but the application should.
Another example is when an application attempts to pop something from an empty
stack. The Stack ADT doesn’t “know” what this erroneous situation means, but the
application should. Of course, if the caller does not catch and handle the thrown excep-
tion, it will continue to be thrown until it is either handled or thrown all the way to the
interpreter, causing program termination.

Third, we can ignore the error situation. Recall the “programming by contract” dis-
cussion related to preconditions in Chapter 2. With this approach, if the preconditions of
a method are not met, the method is not responsible for the consequences. For example,
suppose a method requires a prime number as an argument. If this is a precondition,
then the method assumes that the argument is prime—it does not test the primality of
the number. If the number is not prime, then the results are undefined. It is the respon-
sibility of the calling code to ensure that the precondition is met. See the feature “Pro-
gramming by Contract” for more information.

When we define an ADT, we partition error situations into three sets: those to be
handled internally, those to be thrown back to the calling process, and those that are
assumed not to occur. We document this third approach in the preconditions of the
appropriate methods. Our goal is to strike a balance between the complexity required to
handle every error situation internally and the lack of safety resulting from handling
everything by contract.

Programming by Contract
Let’s revisit briefly our “programming by contract” approach. We want to emphasize the way we
handle method preconditions, because some programmers use a different methodology: They
test preconditions within a method and throw exceptions when preconditions aren’t met. They
treat unmet preconditions as errors. We don’t.

We don’t believe in unmet preconditions. If a condition might not be true when a method is
called, then it shouldn’t be listed as a precondition. It should be listed as an error condition. The
point of a precondition is to simplify our code and make it more efficient, not to complicate
things with extra levels of unneeded testing.

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 174

3.4 Formal Specification | 175

Why is our approach more efficient? Preconditions are always supposed to be true. Thus
testing them each time a method is called is a waste of time.

Consider the example of the method that requires a prime number as an argument. Suppose
me t hodA obtains a prime number and passes it to me t hodB. It guarantees that the number is
prime. If we require me t hodB to test the primality of the number (a nontrivial task), we are
unnecessarily complicating me t hodB and slowing down our program. Instead, we simply state
within our preconditions that the argument is prime and no longer worry about it:

publ i c voi d me t hodB(i nt pr i me numbe r)
/ / Pr e c ondi t i on: pr i me numbe r i s pr i me .
. . .

On the other hand, if we cannot assume that the number passed to me t hodB is prime, then we
document this possibility as a potential error condition, test for it, and handle it if needed:

publ i c voi d me t hodB(i nt pr i me numbe r) t hr ows Not Pr i me Exc e pt i on
/ / Thr ows Not Pr i me Exc e pt i on i f pr i me numbe r i s not pr i me ,
/ / o t he r wi s e . . .

For any specific condition we use one or the other of these approaches, but not both!

3.4 Formal Specification

In this section we use the Java interface construct to create a formal specification of our
Stack ADT. To specify any collection ADT we must determine which types of elements it
will hold, which operations it will export, and how exceptional situations will be han-
dled. Some of these decisions have already been documented.

Recall from Section 3.1 that a stack is a “last in, first out” structure, with three pri-
mary operations:

• pus h Adds an element to the top of the stack.
• pop Removes the top element off the stack.
• t op Returns the top element of a stack.

In addition to these operations we need a constructor that creates an empty stack.
As noted in Section 3.2, our Stack ADT will be a generic stack. The class of ele-

ments that a stack stores will be specified by the client code at the time the stack is
instantiated. Following the common Java coding convention, we use <T> to represent
the class of objects stored in our stack.

Now we look at exceptional situations. As you’ll see, this exploration can lead to
the identification of additional operations.

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 175

176 | Chapter 3: The Stack ADT

Exceptional Situations
Are there any exceptional situations that require handling? The constructor simply ini-
tializes a new empty stack. This action, in itself, cannot cause an error—assuming, of
course, that it is coded correctly.

The remaining operations all present potential problem situations. The descriptions
of the pop and t op operations both refer to manipulating the “top element of the stack.”
But what if the stack is empty? Then there is no top element to manipulate. We know
that there are three ways to deal with this scenario. Can we handle the problem within
the methods themselves? Should we detect the situation and throw an exception? Is it
reasonable to state, as a precondition, that the stack be nonempty?

How might the problem be handled within the methods themselves? Given that the
pop method is strictly a transformer, it could simply do nothing when it is invoked on
an empty stack. In effect, it could perform a vacuous transformation. For t op, which
must return an Obj e c t reference, the response might be to return nul l . For some appli-
cations this might be a reasonable approach, but for most cases it would merely compli-
cate the application code.

What if we state a precondition that a stack must not be empty before calling t op
or pop? Then we do not have to worry about handling the situation within the ADT. Of
course, we can’t expect every application that uses our stack to keep track of whether it
is empty; that should be the responsibility of the Stack ADT itself. To address this
requirement we define an observer called i s Empt y, which returns a bool e a n value of
t r ue if the stack is empty. Then the application can prevent misuse of the pop and t op
operations.

i f ! mySt a c k. i s Empt y()
myObj e c t = mySt a c k. t op() ;

This approach appears promising but can place an unwanted burden on the application.
If an application must perform a guarding test before every stack operation, its code
might become inefficient and difficult to read.

It is also a good idea to provide an exception related to accessing an empty stack.
Consider the situation where a large number of stack calls take place within a section of
code. If we define an exception—for example, St a c kUnde r f l owExc e pt i on—to be
thrown by both pop and t op if they are called when the stack is empty, then such a
section of code could be surrounded by a single try-catch statement, rather than use
multiple calls to the i s Empt y operation.

We decide to use this last approach. That is, we define a St a c kUnde r f l owExc e p-
t i on, to be thrown by both pop and t op if they are called when the stack is empty. To
provide flexibility to the application programmer, we also include the i s Empt y opera-
tion in our ADT. Now the application programmer can decide either to prevent popping
or accessing an empty stack by using the i s Empt y operation as a guard or, as shown
next, to “try” the operations on the stack and “catch and handle” the raised exception, if
the stack is empty.

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 176

3.4 Formal Specification | 177

2. The files can be found in the s t a c ks subdirectory of the c h03 subdirectory of the bookFi l e s directory that
contains the program files associated with the textbook.

t r y
{

myObj e c t = mySt a c k. t op() ;
mySt a c k. pop() ;
myOt he r Obj e c t = mySt a c k. t op() ;
mySt a c k. pop() ;

}
c a t c h (St a c kUnde r f l owExc e pt i on unde r f l ow)
{

Sys t e m. out . pr i nt l n(" The r e wa s a pr obl e m i n t he ABC r out i ne . ") ;
Sys t e m. out . pr i nt l n(" Pl e a s e i nf or m Sys t e m Cont r ol . ") ;
Sys t e m. out . pr i nt l n(" Exc e pt i on: " + unde r f l ow. ge t Me s s a ge ()) ;
Sys t e m. e xi t (1) ;

}

We define St a c kUnde r f l owExc e pt i on to extend the Java Runt i me Exc e pt i on, as
it represents a situation that a programmer can avoid by using the stack properly. The
Runt i me Exc e pt i on class is typically used in such situations. Recall that such excep-
tions are unchecked; in other words, they do not have to be explicitly caught by a pro-
gram.

Here is the code for our St a c kUnde r f l owExc e pt i on class. Note that it includes a
pa c ka ge statement. This class is the first of several classes and interfaces we develop
related to the stack data structure. We collect all of these together into a single package
called c h03. s t a c ks .2

pa c ka ge c h03. s t a c ks ;

publ i c c l a s s St a c kUnde r f l owExc e pt i on e xt e nds Runt i me Exc e pt i on
{

publ i c St a c kUnde r f l owExc e pt i on()
{

s upe r () ;
}

publ i c St a c kUnde r f l owExc e pt i on(St r i ng me s s a ge)
{

s upe r (me s s a ge) ;
}

}

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 177

178 | Chapter 3: The Stack ADT

Because St a c kUnde r f l owExc e pt i on is an unchecked exception, if it is raised and
not caught it is eventually thrown to the run-time environment, which displays an error
message and halts. An example of such a message follows:

Exception in thread “main” ch03.stacks.StackUnderflowException: Top attempted on an
empty stack.
at ch03.stacks.ArrayStack.top(ArrayStack.java:78)
at MyTestStack.main(MyTestStack.java:25)

On the other hand, if the programmer explicitly catches the exception, as we showed in
the t r y- c a t c h example, the error message can be tailored more closely to the specific
problem:

There was a problem in the ABC routine.
Please inform System Control.
Exception: top attempted on an empty stack.

A consideration of the pus h operation reveals another potential problem: What if
we try to push something onto a stack and there is no room for it? In an abstract sense,
a stack is never conceptually “full.” Sometimes, however, it is useful to specify an upper
bound on the size of a stack. We might know that memory is in short supply or prob-
lem-related constraints may dictate a limit on the number of pus h operations that can
occur without corresponding pop operations.

We can address this problem in a way analogous to the stack underflow problem.
First, we provide an additional bool e a n observer operation called i s Ful l , which
returns t r ue if the stack is full. The application programmer can use this operation to
prevent misuse of the pus h operation. Second, we define St a c kOve r f l owExc e pt i on,
which is thrown by the pus h operation if it is called when the stack is full. Here is the
code for the St a c kOve r f l owExc e pt i on class:

pa c ka ge c h03. s t a c ks ;

publ i c c l a s s St a c kOve r f l owExc e pt i on e xt e nds Runt i me Exc e pt i on
{

publ i c St a c kOve r f l owExc e pt i on()
{

s upe r () ;
}

publ i c St a c kOve r f l owExc e pt i on(St r i ng me s s a ge)
{

s upe r (me s s a ge) ;
}

}

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 178

3.4 Formal Specification | 179

3. Because our stack exceptions are unchecked exceptions, including them in the interface actually has no
effect on anything from a syntactic or run-time error-checking point of view. They aren’t checked. However,
we still list them as being thrown because we are also trying to communicate our requirements to the imple-
mentation programmer.

As with the underflow situation, the application programmer can decide either to
prevent pushing information onto a full stack through use of the i s Ful l operation or
to “try” the operation on a stack and “catch and handle” any raised exception. The
St a c kOve r f l owExc e pt i on is also an unchecked exception.

The Interfaces
We are now ready to formally specify our Stack ADT. As we planned, we use the Java
i nt e r f a c e construct. But how do we handle the fact that sometimes we may want to use
a stack with an upper bound on its size and sometimes we want an unbounded stack?

We were faced with this same situation in developing our St r i ngLog ADT in Chap-
ter 2. In that case we decided to include the i s Ful l operation as part of the single inter-
face, even though its existence did not make sense for some implementations of the
St r i ngLog. Recall that in the linked-list-based implementation, i s Ful l always returned
f a l s e . For the Stack ADT we use a different approach: We define separate interfaces for
the bounded and unbounded versions of the stack. In fact, we define three interfaces.

Whether a stack is bounded in size affects only the pus h operation and the need for
an i s Ful l operation. It has no effect on the pop, t op, or i s Empt y operations. First, we
define a general stack interface, St a c kI nt e r f a c e , that contains the signatures of those
three operations:

/ / -
/ / St a c kI nt e r f a c e . j a va by Da l e / J oyc e / We e ms Cha pt e r 3
/ /
/ / I nt e r f a c e f or a c l a s s t ha t i mpl e me nt s a s t a c k of T.
/ / A s t a c k i s a l a s t i n, f i r s t out s t r uc t ur e .
/ / -

pa c ka ge c h03. s t a c ks ;

publ i c i nt e r f a c e St a c kI nt e r f a c e <T>

{
voi d pop() t hr ows St a c kUnde r f l owExc e pt i on3;
/ / Thr ows St a c kUnde r f l owExc e pt i on i f t hi s s t a c k i s e mpt y,
/ / ot he r wi s e r e move s t op e l e me nt f r om t hi s s t a c k.

T t op() t hr ows St a c kUnde r f l owExc e pt i on;
/ / Thr ows St a c kUnde r f l owExc e pt i on i f t hi s s t a c k i s e mpt y,
/ / ot he r wi s e r e t ur ns t op e l e me nt f r om t hi s s t a c k.

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 179

180 | Chapter 3: The Stack ADT

4. In contrast, a Java class can extend only one other class.

bool e a n i s Empt y() ;
/ / Re t ur ns t r ue i f t hi s s t a c k i s e mpt y, ot he r wi s e r e t ur ns f a l s e .

}

In Section 3.2 we presented our intention to create generic collection ADTs. This means
that in addition to implementing our ADTs as generic classes—that is, classes that accept
a parameter type upon instantiation—we also will define generic interfaces for those
classes. Note the use of <T> in the header of St a c kI nt e r f a c e . As with generic classes,
<T> used in this way indicates that T is a placeholder for a type provided by the client
code. T represents the class of objects held by the specified stack. Since the t op method
returns one of those objects, in the interface it is listed as returning T. This same
approach is used for ADT interfaces throughout the remainder of the textbook.

Note that we document the effects of the operations, the postconditions, as com-
ments. For this ADT there are no preconditions because we have elected to throw excep-
tions for all error situations.

Next, we turn our attention to the bounded version of the stack, for which we cre-
ate a second interface, Bounde dSt a c kI nt e r f a c e . A stack that is bounded in size must

support all of the operations of a “regular” stack plus
the i s Ful l operation. It must also provide a pus h
operation that throws an exception if the operation is
invoked when the stack is full.

Java supports inheritance of interfaces. That is, one
interface can extend another interface. (In fact, the lan-
guage supports multiple inheritance of interfaces so
that a single interface can extend any number of other
interfaces.) The fact that the new interface requires all
of the operations of our current St a c kI nt e r f a c e
makes this a perfect place to use inheritance. We define
our Bounde dSt a c kI nt e r f a c e as a new interface that
extends St a c kI nt e r f a c e and adds i s Ful l and pus h
methods. Here is the code for the new interface (note
the e xt e nds clause):

/ / -
/ / Bounde dSt a c kI nt e r f a c e . j a va by Da l e / J oyc e / We e ms Cha pt e r 3
/ /
/ / I nt e r f a c e f or a c l a s s t ha t i mpl e me nt s a s t a c k of T wi t h a bound
/ / on t he s i z e of t he s t a c k. A s t a c k i s a l a s t i n, f i r s t out s t r uc t ur e .
/ / -

pa c ka ge c h03. s t a c ks ;

Inheritance of interfaces A Java interface can extend
another Java interface, inheriting its requirements. If
interface B extends interface A, then classes that
implement interface B must also implement interface
A. Usually, interface B adds abstract methods to those
required by interface A.
Multiple inheritance of interfaces A Java interface
may extend more than one interface.4 If interface C
extends both interface A and interface B, then classes
that implement interface C must also implement both
interface A and interface B. Sometimes multiple inheri-
tance of interfaces is used simply to combine the
requirements of two interfaces, without adding any
more methods.

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 180

3.4 Formal Specification | 181

5. The only way it could be full is if the system runs out of space. In this rare case the Java run-time system
raises an exception anyway.

publ i c i nt e r f a c e Bounde dSt a c kI nt e r f a c e <T> e xt e nds St a c kI nt e r f a c e <T>

{
voi d pus h(T e l e me nt) t hr ows St a c kOve r f l owExc e pt i on;
/ / Thr ows St a c kOve r f l owExc e pt i on i f t hi s s t a c k i s f ul l ,
/ / ot he r wi s e pl a c e s e l e me nt a t t he t op of t hi s s t a c k.

bool e a n i s Ful l () ;
/ / Re t ur ns t r ue i f t hi s s t a c k i s f ul l , ot he r wi s e r e t ur ns f a l s e .

}

Finally, we create an interface for the unbounded case. An unbounded stack need
not support an i s Ful l operation, because it will “never” be full.5 For this same reason,
the pus h operation need not throw an exception.

/ / -
/ / Unbounde dSt a c kI nt e r f a c e . j a va by Da l e / J oyc e / We e ms Cha pt e r 3
/ /
/ / I nt e r f a c e f or a c l a s s t ha t i mpl e me nt s a s t a c k of T wi t h no bound
/ / on t he s i z e of t he s t a c k. A s t a c k i s a l a s t i n, f i r s t out s t r uc t ur e .
/ / -

pa c ka ge c h03. s t a c ks ;

publ i c i nt e r f a c e Unbounde dSt a c kI nt e r f a c e <T> e xt e nds St a c kI nt e r f a c e <T>

{
voi d pus h(T e l e me nt) ;
/ / Pl a c e s e l e me nt a t t he t op of t hi s s t a c k.

}

We have now defined our three interfaces, along with two exception classes. Their
relationship is shown in the UML diagram in Figure 3.5. A specific implementation of a
stack would i mpl e me nt either the Bounde dSt a c kI nt e r f a c e or the Unbounde dSt a c k-
I nt e r f a c e . By virtue of the interface inheritance rules, it must also implement the
St a c kI nt e r f a c e .

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 181

182 | Chapter 3: The Stack ADT

Figure 3.5 UML diagram of our Stack ADT interfaces

+ St a c kOve r f l owExc e pt i on()
+ St a c kOve r f l owExc e pt i on(St r i ng me s s a ge)

<<interface>>
StackInterface<T>

+ pop() : voi d
+ t op() : T
+ i s Empt y() : bool e a n

StackOverflowException<<interface>>
UnboundedStackInterface<T>

+ pus h(T e l e me nt) : voi d

<<interface>>
BoundedStackInterface<T>

+ pus h(T e l e me nt) : voi d
+ i s Ful l () : bool e a n

StackUnderflowException

+St a c kUnde r f l owExc e pt i on()
+St a c kUnde r f l owExc e pt i on(St r i ng me s s a ge)

 uses

 extends

 Key:

Note that our Stack ADT interfaces are not an example of multiple inheritance of
interfaces. That occurs when one interface inherits from more than one other inter-
face. Here we have defined two interfaces that inherit from the same interface, just
as in a normal class hierarchy. We discussed multiple inheritance in this section
simply because it is an aspect of the Java syntax for interface inheritance that you
should be aware of.

Example Use
The simple Re ve r s e St r i ngs example shows how we can use a stack to store strings
provided by a user and then to output the strings in the opposite order from which they
were entered. The code uses the array-based implementation of a stack we develop in
the following section. The parts of the code directly related to the creation and use of
the stack are emphasized. We declare the stack to be of type Bounde dSt a c kI nt e r -
f a c e <St r i ng> and then instantiate it as an Ar r a ySt a c k<St r i ng>. Within the for
loop, three strings provided by the user are pushed onto the stack. The while loop
repeatedly removes and prints the top string from the stack until the stack is empty. If
we try to push any type of object other than a St r i ng onto the stack, we will receive a
compile time error message saying that the pus h method cannot be applied to that type
of object.

/ / -
/ / Re ve r s e St r i ngs . j a va by Da l e / J oyc e / We e ms Cha pt e r 3
/ /
/ / Sa mpl e us e of s t a c k. Out put s s t r i ngs i n r e ve r s e or de r of e nt r y.
/ / -

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 182

3.4 Formal Specification | 183

i mpor t c h03. s t a c ks . *;
i mpor t j a va . ut i l . Sc a nne r ;

publ i c c l a s s Re ve r s e St r i ngs
{

publ i c s t a t i c voi d ma i n(St r i ng[] a r gs)
{

Sc a nne r c onI n = ne w Sc a nne r (Sys t e m. i n) ;

Bounde dSt a c kI nt e r f a c e <St r i ng> s t a c k;
s t a c k = ne w Ar r a ySt a c k<St r i ng>(3) ;

St r i ng l i ne ;

f or (i nt i = 1; i <= 3; i ++)
{

Sys t e m. out . pr i nt (“ Ent e r a l i ne of t e xt > “) ;
l i ne = c onI n. ne xt Li ne () ;
s t a c k. pus h(l i ne) ;

}

Sys t e m. out . pr i nt l n(“ \ nRe ve r s e i s : \ n”) ;
whi l e (! s t a c k. i s Empt y())
{

l i ne = s t a c k. t op() ;
s t a c k. pop() ;
Sys t e m. out . pr i nt l n(l i ne) ;

}
}

}

Here is the output from a sample run:

Enter a line of text > the beginning of a story
Enter a line of text > is often different than
Enter a line of text > the end of a story

Reverse is:

the end of a story
is often different than
the beginning of a story

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 183

184 | Chapter 3: The Stack ADT

6. In the library i s Empt y is called e mpt y, and t op is called pe e k.

The Java Stack Class and the Collections Framework
The Java library provides classes that implement ADTs that are based on common data struc-
tures—stacks, queues, lists, maps, sets, and more. The library’s St a c k class is similar to the Stack
ADT we develop in this chapter in that it provides a LIFO structure. However, in addition to our
pus h, t op, and i s Empt y6 operations, it includes two other operations:

• pop Removes and returns the top element from the stack.
• s e a r c h(Obj e c t o) Returns the position of object o on the stack.

Because the library St a c k class extends the library Ve c t or class, it also inherits the many
operations defined for Ve c t or and its ancestors.

Here is how you might implement the reverse strings application using the St a c k class
from the Java library. The minimal differences between this application and the one using our
Stack ADT are emphasized.

/ / -
/ / Re ve r s e St r i ngs 2. j a va by Da l e / J oyc e / We e ms Cha pt e r 3
/ /
/ / Sa mpl e us e of t he l i br a r y St a c k.
/ / Out put s s t r i ngs i n r e ve r s e or de r of e nt r y.
/ / -

i mpor t j a va . ut i l . St a c k;
i mpor t j a va . ut i l . Sc a nne r ;

publ i c c l a s s Re ve r s e St r i ngs 2
{

publ i c s t a t i c voi d ma i n(St r i ng[] a r gs)
{

Sc a nne r c onI n = ne w Sc a nne r (Sys t e m. i n) ;

St a c k<St r i ng> s t a c k = ne w St a c k<St r i ng>() ;

St r i ng l i ne ;

f or (i nt i = 1; i <= 3; i ++)
{

Sys t e m. out . pr i nt (“ Ent e r a l i ne of t e xt > “) ;
l i ne = c onI n. ne xt Li ne () ;
s t a c k. pus h(l i ne) ;

}

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 184

3.5 Array- Based Implementations | 185

Sys t e m. out . pr i nt l n(“ \ nRe ve r s e i s : \ n”) ;
whi l e (! s t a c k. e mpt y())
{

l i ne = s t a c k. pe e k() ;
s t a c k. pop() ;
Sys t e m. out . pr i nt l n(l i ne) ;

}
}

}

As discussed in Section 3.2, another term for a data structure is collection. The Java
developers refer to the set of library classes, such as St a c k, that support data structures as
the Collections Framework. This framework includes both interfaces and classes. It also
includes documentation that explains how the developers intend for us to use them. As of
Java 5.0 all the structures in the Collections Framework support generics (see the subsection
Generic Collections in Section 3.2).

The Collections Framework comprises an extensive set of tools. It does more than just
provide implementations of data structures; it provides a unified architecture for working with
collections. In this textbook we do not cover the framework in great detail. This textbook is
meant to teach you about the fundamental nature of data structures and to demonstrate how
we define, implement, and use them. It is not an exploration of how to use Java’s specific
library architecture of similar structures.

Before you become a professional Java programmer, you should carefully study the Collec-
tions Framework and learn how to use it productively. This textbook prepares you to do this not
just for Java, but for other languages and libraries as well. Nevertheless, when we discuss a data
structure that has a counterpart in the Java library, we will briefly describe the similarities and
differences between our approach and the library’s approach, as we did here for stacks.

If you are interested in learning more about the Java Collections Framework, you can study
the extensive documentation available at Oracle’s website.

3.5 Array- Based Implementations

In this section we study an array-based implementation of the Stack ADT. Additionally,
in a feature section, we look at an alternative implementation that uses the Java
library’s Ar r a yLi s t class.

Note that Figure 3.17, in the Summary on page 230, shows the relationships among
the primary classes and interfaces created to support our Stack ADT, including those
developed in this section.

The ArrayStack Class
First we develop a Java class that implements the Bounde dSt a c kI nt e r f a c e . We call
this class Ar r a ySt a c k, in recognition of the fact that it uses an array as the underlying

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 185

186 | Chapter 3: The Stack ADT

structure. An array is a reasonable structure to contain elements of a stack. We can put
elements into sequential slots in the array, placing the first element pushed onto the
stack into the first array position, the second element pushed into the second array posi-
tion, and so on. The floating “high-water” mark is the top element in the stack. Given
that stacks grow and shrink from only one end, we do not have to worry about inserting
an element into the middle of the elements already stored in the array.

What instance variables does our implementation need? We need the stack elements
themselves and a variable indicating the top of the stack. We hold the stack elements in
a protected array called s t a c k. We use a protected integer variable called t opI nde x to
indicate which element of the array is the top. We initialize t opI nde x to 1, as noth-
ing is stored on the stack when it is first created.

As we push and pop elements, respectively, we increment and decrement the value
of t opI nde x. For example, starting with an empty stack and pushing “A,” “B,” and “C”
we would have

We provide two constructors for use by clients of the Ar r a ySt a c k class: One
allows the client to specify the maximum expected size of the stack, and the other
assumes a default maximum size of 100 elements. To facilitate the latter constructor, we
define a constant DEFCAP (default capacity) set to 100.

The beginning of the Ar r a ySt a c k. j a va file is shown here:

/ / -
/ / Ar r a ySt a c k. j a va by Da l e / J oyc e / We e ms Cha pt e r 3
/ /
/ / I mpl e me nt s Bounde dSt a c kI nt e r f a c e us i ng a n a r r a y t o hol d t he
/ / s t a c k e l e me nt s .
/ /

t opI nde x: 2

[2]

[1]

[0]

•
•
•

"C"

"B"

"A"

t opI nde x: —1

[2]

[1]

[0]

•
•
•

null

null

null

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 186

3.5 Array- Based Implementations | 187

6. An unchecked cast warning is generated because the compiler cannot ensure that the array contains objects
of class T—the warning can safely be ignored.

/ / Two c ons t r uc t or s a r e pr ovi de d: one t ha t c r e a t e s a n a r r a y of a
/ / de f a ul t s i z e a nd one t ha t a l l ows t he c a l l i ng pr ogr a m t o
/ / s pe c i f y t he s i z e .
/ / -

pa c ka ge c h03. s t a c ks ;

publ i c c l a s s Ar r a ySt a c k<T> i mpl e me nt s Bounde dSt a c kI nt e r f a c e <T>
{

pr ot e c t e d f i na l i nt DEFCAP = 100; / / de f a ul t c a pa c i t y
pr ot e c t e d T[] s t a c k; / / hol ds s t a c k e l e me nt s
pr ot e c t e d i nt t opI nde x = - 1; / / i nde x of t op e l e me nt i n s t a c k

publ i c Ar r a ySt a c k()
{

s t a c k = (T[]) ne w Obj e c t [DEFCAP] ; 6

}

publ i c Ar r a ySt a c k(i nt ma xSi z e)
{

s t a c k = (T[]) ne w Obj e c t [ma xSi z e] ; 6

}

We can see that this class accepts a generic parameter <T> as listed in the class
header. The s t a c k variable is declared to be of type T[] , that is, an array of class T.
This class implements a stack of T’s—the class of T is not yet determined. It will be
specified by the client class that uses the bounded stack. Because the Java translator
will not generate references to a generic type, our code must specify Obj e c t along
with the new statement within our constructors. Thus, although we declare our array
to be an array of class T, we must instantiate it to be an array of class Obj e c t . Then,
to ensure that the desired type checking takes place, we cast array elements into class
T, as shown here:

s t a c k = (T[]) ne w Obj e c t [DEFCAP] ;

Even though this approach is somewhat awkward and typically generates a compiler
warning, it is how we must create generic collections using arrays in Java. We could use
the Java library’s generic Ar r a yLi s t to rectify the problem (see the feature The

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 187

188 | Chapter 3: The Stack ADT

Ar r a yLi s t St a c k Class at the end of this section), but we prefer to use the more basic
array structure for pedagogic reasons. The compiler warning can safely be ignored.

Definitions of Stack Operations
As we are now implementing the Bounde dSt a c kI nt e r f a c e , we must provide a con-
crete implementation of the i s Ful l method. For the array-based approach, the imple-
mentations of i s Ful l and its counterpart, i s Empt y, are both very simple. The stack is
empty if the top index is equal to –1, and the stack is full if the top index is equal to
one less than the size of the array.

publ i c bool e a n i s Empt y()
/ / Re t ur ns t r ue i f t hi s s t a c k i s e mpt y, ot he r wi s e r e t ur ns f a l s e .
{

i f (t opI nde x == - 1)
r e t ur n t r ue ;

e l s e
r e t ur n f a l s e ;

}

publ i c bool e a n i s Ful l ()
/ / Re t ur ns t r ue i f t hi s s t a c k i s f ul l , o t he r wi s e r e t ur ns f a l s e .
{

i f (t opI nde x == (s t a c k. l e ngt h - 1))
r e t ur n t r ue ;

e l s e
r e t ur n f a l s e ;

}

Now let’s write the method to push an element of type T onto the top of the stack. If
the stack is already full when we invoke pus h, there is nowhere to put the element.
Recall that this condition is called stack overflow. Our formal specifications state that
the method should throw the St a c kOve r f l owExc e pt i on in this case. We include a
pertinent error message when the exception is thrown. If the stack is not full, pus h must
increment t opI nde x and store the new element into s t a c k[t opI nde x] . The imple-
mentation of this method is straightforward.

publ i c voi d pus h(T e l e me nt)
/ / Thr ows St a c kOve r f l owExc e pt i on i f t hi s s t a c k i s f ul l ,
/ / o t he r wi s e pl a c e s e l e me nt a t t he t op of t hi s s t a c k.
{

i f (! i s Ful l ())
{

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 188

3.5 Array- Based Implementations | 189

t opI nde x++;
s t a c k[t opI nde x] = e l e me nt ;

}
e l s e

t hr ow ne w St a c kOve r f l owExc e pt i on(" Pus h a t t e mpt e d on a f ul l s t a c k. ") ;
}

The pop method is essentially the reverse of pus h: Instead of putting an element
onto the top of the stack, we remove the top element from the stack by decrementing
t opI nde x. It is good practice to also “null out” the array location associated with the
current top. Setting the array value to nul l removes the physical reference. Figure 3.6
shows the difference between the “lazy” approach to coding pop and the “proper”
approach.

If the stack is empty when we invoke pop, there is no top element to remove and
we have stack underflow. As with the pus h method, the specifications say to throw an
exception.

publ i c voi d pop()
/ / Thr ows St a c kUnde r f l owExc e pt i on i f t hi s s t a c k i s e mpt y,
/ / o t he r wi s e r e move s t op e l e me nt f r om t hi s s t a c k.
{

i f (! i s Empt y())
{

s t a c k[t opI nde x] = nul l ;
t opI nde x- - ;

}
e l s e

t hr ow ne w St a c kUnde r f l owExc e pt i on(" Pop a t t e mpt e d on a n e mpt y s t a c k. ") ;
}

Figure 3.6 Lazy versus proper pop approaches for an array-based stack after pus h(“ A”) , pus h(“ B”) ,
and pop()

[1]

[0]

•
•
• t opI nde x: 0

"B"

"A"

"Lazy" Approach

[1]

[0]

•
•
• t opI nde x: 0

"A"

null

"Proper" Approach

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 189

190 | Chapter 3: The Stack ADT

Finally, the t op operation simply returns the top element of the stack, the element
indexed by t opI nde x. Consistent with our generic approach, the t op method shows
type T as its return type. As with the pop operation, if we attempt to perform the t op
operation on an empty stack, a stack underflow results.

publ i c T t op()
/ / Thr ows St a c kUnde r f l owExc e pt i on i f t hi s s t a c k i s e mpt y,
/ / o t he r wi s e r e t ur ns t op e l e me nt f r om t hi s s t a c k.
{

T t opOf St a c k = nul l ;
i f (! i s Empt y())

t opOf St a c k = s t a c k[t opI nde x] ;
e l s e

t hr ow ne w St a c kUnde r f l owExc e pt i on(" Top a t t e mpt e d on a n e mpt y s t a c k. ") ;
r e t ur n t opOf St a c k;

}

Test Plan
Our Ar r a ySt a c k implementation can be tested using the general ADT testing approach
described in Section 2.4, “Software Testing,” where we presented an example based on
the StringLog ADT. Unlike the StringLog ADT, our Stack ADT does not include a
t oSt r i ng operation. Therefore it is not as easy to check the contents of a stack during
testing. There are several ways we can address this problem. For instance, we could add
a t oSt r i ng operation to our stack implementations. (See Exercise 29.) Alternatively, we
could create an application-level method that is passed a stack; uses t op, pop, and
pus h to take the stack apart and display its contents; and then uses the same operations
to put the stack back together. This approach requires a second stack to hold the con-
tents of the original stack under investigation, while it is being “taken apart.” (See Exer-
cise 30d.)

Once the problem of viewing the contents of a stack has been solved, we can create
an interactive test driver, as we did for the Ar r a ySt r i ngLog in Chapter 2. Such a
driver helps us carry out our test plans.

Page 191 shows a short test plan for the Ar r a ySt a c k. The test plan tests a stack of
I nt e ge r . The type of data stored in the stack has no effect on the operations that manip-
ulate the stack, so testing an I nt e ge r stack suffices. We set the stack size to 5, to keep
our test cases manageable.

One final note about using an array to implement a stack. We implemented the
Bounde dSt a c kI nt e r f a c e using an array because the size of an array is fixed. We can
also use arrays to implement the Unbounde dSt a c kI nt e r f a c e . One approach is to
instantiate increasingly larger arrays, as needed during processing, copying the current
array into the larger, newly instantiated array. We investigate this approach when we
implement the Queue ADT in Chapter 5.

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 190

3.5 Array- Based Implementations | 191

Operation to be Tested
and Description of
Action Input Values Expected Output

Ar r a ySt a c k 5
apply isEmpty immediately Stack is empty

pus h, pop, and t op
push 4 items, top/pop and print 5,7,6,9 9,6,7,5
push with duplicates and
top/pop and print 2,3,3,4 4,3,3,2
interlace operations
push 5
pop
push 3
push 7
pop
top and print 3

i s Empt y
invoke when empty Stack is empty
push and invoke Stack is not empty
pop and invoke Stack is empty

i s Ful l
push 4 items and invoke Stack is not full
push 1 item and invoke Stack is full

throw St a c kOve r f l owExc e pt i on Outputs string:
push 5 items then ”Push attempted on a full stack.”
push another item Program terminates

throw St a c kUnde r f l owExc e pt i on Outputs string:
when stack is empty “Pop attempted on an empty stack.”
attempt to pop Program terminates

when stack is empty Outputs string:
attempt to top “Top attempted on an empty stack.”

Program terminates

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 191

7. Appendix E contains information concerning the Java Ar r a yLi s t class.

The ArrayListStack Class
There are often many ways to implement an ADT. In this feature, we present an alternate implemen-
tation for the Stack ADT based on the Ar r a yLi s t 7 class of the Java class library. The Ar r a yLi s t
is part of the Java Collections Framework discussed at the end of Section 3.4.

The defining quality of the Ar r a yLi s t class is that it can grow and shrink in response to
the program’s needs. As a consequence, when we use the Ar r a yLi s t approach we do not have
to worry about our stacks being bounded. Instead of implementing the Bounde dSt a c kI nt e r -
f a c e , we implement the Unbounde dSt a c kI nt e r f a c e . Our constructor no longer needs to
declare a stack size. We do not implement an i s Ful l operation. We do not have to handle stack
overflows.

One could argue that if a program runs completely out of memory, then the stack could
be considered full and should throw St a c kOve r f l owExc e pt i on. However, in that case the
run-time environment throws an “out of memory” exception anyway; we do not have to worry
about the situation going unnoticed. Furthermore, running out of system memory is a serious
problem (and ideally a rare event) and cannot be handled in the same way as a Stack ADT
overflow.

The fact that an Ar r a yLi s t automatically grows as needed makes it a good choice for
implementing our unbounded Stack ADT. Additionally, it provides a s i z e method that we can
use to keep track of the top of our stack. The index of the top of the stack is always the s i z e
minus one.

Study the following code. Compare this implementation to the previous implementation. They
are similar, yet different. One is based directly on arrays, whereas the other uses arrays indirectly
through the Ar r a yLi s t class. One nice benefit of using the Ar r a yLi s t approach is we no
longer receive the annoying unchecked cast warning from the compiler. This is because an
Ar r a yLi s t object, unlike the basic array, is a first-class object in Java and fully supports the
use of generics. Despite the obvious benefits of using Ar r a yLi s t we will continue to use arrays
as one of our basic ADT implementation structures throughout most of the rest of the book.
Learning to use the standard array is important for future professional software developers.

/ / -
/ / Ar r a yLi s t St a c k. j a va by Da l e / J oyc e / We e ms Cha pt e r 3
/ /
/ / I mpl e me nt s Unbounde dSt a c kI nt e r f a c e us i ng a n Ar r a yLi s t t o
/ / hol d t he s t a c k e l e me nt s .
/ / -

pa c ka ge c h03. s t a c ks ;

i mpor t j a va . ut i l . *;

192 | Chapter 3: The Stack ADT

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 192

3.5 Array- Based Implementations | 193

publ i c c l a s s Ar r a yLi s t St a c k<T> i mpl e me nt s Unbounde dSt a c kI nt e r f a c e <T>
{

pr ot e c t e d Ar r a yLi s t <T> s t a c k; / / Ar r a yLi s t t ha t hol ds s t a c k
/ / e l e me nt s

publ i c Ar r a yLi s t St a c k()
{

s t a c k = ne w Ar r a yLi s t <T>() ;
}

publ i c voi d pus h(T e l e me nt)
/ / Pl a c e s e l e me nt a t t he t op of t hi s s t a c k.
{

s t a c k. a dd(e l e me nt) ;
}

publ i c voi d pop()
/ / Thr ows St a c kUnde r f l owExc e pt i on i f t hi s s t a c k i s e mpt y,
/ / ot he r wi s e r e move s t op e l e me nt f r om t hi s s t a ck.
{

i f (! i s Empt y())
{

s t a c k. r e move (s t a c k. s i z e () - 1) ;
}
e l s e

t hr ow ne w St a c kUnde r f l owExc e pt i on(" Pop a t t e mpt e d on a n e mpt y " +
" s t a c k. ") ;

}

publ i c T t op()
/ / Thr ows St a c kUnde r f l owExc e pt i on i f t hi s s t a c k i s e mpt y,
/ / ot he r wi s e r e t ur ns t op e l e me nt f r om t hi s s t a ck.
{

T t opOf St a c k = nul l ;
i f (! i s Empt y())

t opOf St a c k = s t a c k. ge t (s t a c k. s i z e () - 1) ;
e l s e

t hr ow ne w St a c kUnde r f l owExc e pt i on(" Top a t t e mpt e d on a n e mpt y " +
" s t a c k. ") ;

r e t ur n t opOf St a c k;
}

publ i c bool e a n i s Empt y()
/ / Re t ur ns t r ue i f t hi s s t a c k i s e mpt y, ot he r wi s e r e t ur ns f a l s e .
{

i f (s t a c k. s i z e () == 0)
r e t ur n t r ue ;

e l s e
r e t ur n f a l s e ;

}
}

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 193

3.6 Application: Well- Formed Expressions

Stacks are great for “remembering” things that have to be “taken care of” at a later time.
In this sample application we tackle a problem that perplexes many beginning program-
mers: matching parentheses, brackets, and braces in writing code. Matching grouping
symbols is an important problem in the world of computing. For example, it is related to
the legality of arithmetic equations, the syntactical correctness of computer programs,
and the validity of XHTML tags used to define web pages. This problem is a classic situa-
tion for using a stack, because we must “remember” an open symbol (e.g., (, [, or {)
until it is “taken care of” later by matching a corresponding close symbol (e.g.,) ,] , or } ,
respectively). When the grouping symbols in an expression are properly matched, com-
puter scientists say that the expression is well formed and that the grouping symbols are
balanced.

Given a set of grouping symbols, our problem is to determine whether the open and
close versions of each symbol are matched correctly. We’ll focus on the normal pairs:
() , [] , and {} . In theory, of course, we could define any pair of symbols (e.g., <> or / \)
as grouping symbols. Any number of other characters may appear in the input expres-
sion before, between, or after a grouping pair, and an expression may contain nested
groupings. Each close symbol must match the last unmatched open grouping symbol,
and each open grouping symbol must have a matching close symbol. Thus, matching
symbols can be unbalanced for two reasons: There is a mismatching close symbol (e.g.,
{]) or there is a missing close symbol (e.g., {{ [] }). Figure 3.7 shows examples of both
well-formed and ill-formed expressions.

The Balanced Class
To help solve our problem we create a class called Ba l a nc e d, with a single exported
method t e s t that takes an expression as a string argument and checks whether the
grouping symbols in the expression are balanced. As there are two ways that an expres-
sion can fail the balance test, there are three possible results. We use an integer to indi-
cate the result of the test:

0 means the symbols are balanced, such as (([xx]) xx)
1 means the expression has unbalanced symbols, such as (([xx}xx))
2 means the expression came to an end prematurely, such as (([xxx]) xx

194 | Chapter 3: The Stack ADT

Figure 3.7 Well-formed and ill-formed expressions

Well- Formed Expressions Ill- Formed Expressions
(xx (xx ()) xx) (xx (xx ()) xxx) xxx)
[] () { }] [
([] { xxx } xxx () xxx) (xx [xxx) xx]
([{ [(([{ x }]) x)] } x]) ([{ [(([{ x }]) x)] } x })
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxx {

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 194

3.6 Application: Well- Formed Expressions | 195

We include a single constructor for the Ba l a nc e d class. To make the class more
generally usable, we allow the application to specify the open and close symbols. We
thus define two string parameters for the constructor, ope nSe t and c l os e Se t ,
through which the user can pass the symbols. The symbols in the two sets match up
by position. For our specific problem the two arguments could be “([{” and “)] } .”

It is important that each symbol in the combined open and close sets is unique and
that the sets be the same size. Otherwise, it is impossible to determine matching crite-
ria. We use programming by contract and state these criteria in a precondition of the
constructor.

publ i c Ba l a nc e d(St r i ng ope nSe t , St r i ng c l os e Se t)
/ / Pr e c ondi t i ons : No c ha r a c t e r i s c ont a i ne d mor e t ha n onc e i n t he
/ / c ombi ne d ope nSe t a nd c l os e Se t s t r i ngs .
/ / The s i z e of ope nSe t = t he s i z e of c l os e Se t .
{

t hi s . ope nSe t = ope nSe t ;
t hi s . c l os e Se t = c l os e Se t ;

}

Now we turn our attention to the t e s t method. It is passed a St r i ng argument
through its s ubj e c t parameter and must determine, based on the characters in
ope nSe t and c l os e Se t , whether the symbols in s ubj e c t are balanced. The method
processes the characters in s ubj e c t one at a time. For each character, it performs one
of three tasks:

• If the character is an open symbol, it is pushed on the stack.
• If the character is a close symbol, it is checked against the last open symbol,

which is obtained from the top of the stack. If they match, processing continues
with the next character. If the close symbol does not match the top of the stack
or if the stack is empty, then the expression is ill formed.

• If the character is not a special symbol, it is skipped.

The stack is the appropriate data structure in which to save the open symbols
because we always need to examine the most recent one. When all of the characters
have been processed, the stack should be empty—otherwise, there are open symbols left
over.

Now we are ready to write the main algorithm for t e s t . We assume an instance of
a Stack ADT as defined by Bounde dSt a c kI nt e r f a c e . We use a bounded stack because
we know the stack cannot contain more elements than the number of characters in the
expression. We also declare a bool e a n variable s t i l l Ba l a nc e d, initialized to t r ue , to
record whether the expression, as processed so far, is balanced.

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 195

196 | Chapter 3: The Stack ADT

Test for Well-Formed Expression Algorithm (String subject)
Create a new stack of size equal to the length of subject
Set stillBalanced to true
Get the first character from subject

while (the expression is still balanced AND there are still more characters to process)
Process the current character
Get the next character from subject

if (!stillBalanced)
return 1

else if (stack is not empty)
return 2

else
return 0

The part of this algorithm that requires expansion before moving on to the coding
stage is the “Process the current character” command. We previously described how to
handle each type of character. Here are those steps in algorithmic form:

if (the character is an open symbol)
Push the open symbol character onto the stack

else if (the character is a close symbol)
if (the stack is empty)

Set stillBalanced to false
else

Set open symbol character to the value at the top of the stack
Pop the stack
if the close symbol character does not “match” the open symbol character

Set stillBalanced to false
else

Skip the character

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 196

3.6 Application: Well- Formed Expressions | 197

The code for the Ba l a nc e d class is listed next. Because the focus of this chapter is
stacks, we have emphasized the calls to the stack operations in the code listing. There
are several interesting things to note about the Ba l a nc e d class:

1. We declare our stack to be of type Bounde dSt a c kI nt e r f a c e , but instantiate it as
class Ar r a ySt a c k, following the convention suggested in “Using the StringLogIn-
terface” at the end of Section 2.2.

2. We use a shortcut for determining whether a close symbol matches an open sym-
bol. According to our rules, the symbols match if they share the same relative
position in their respective sets. This means that when we encounter an open
special symbol, rather than save the actual character on the stack, we can push
its position in the ope nSe t string onto the stack. Later in the processing, when
we encounter a close symbol, we can just compare its position with the position
value on the stack. Thus, rather than push a character value onto the stack, we
push an integer value.

3. We instantiate our stacks to hold elements of type I nt e ge r . But, as just mentioned,
in the t e s t method we push elements of the primitive type i nt onto our stack.
How can this be? As of Java 5.0, Java includes a feature called Autoboxing. If a
programmer uses a value of a primitive type as an Obj e c t , it is automatically con-
verted (boxed) into an object of its corresponding wrapper class. So when the t e s t
method says

s t a c k. pus h(ope nI nde x) ;

the integer value of ope nI nde x is automatically converted to an I nt e ge r object
before being stored on the stack. In previous versions of Java we would have
needed to state the conversion explicitly:

I nt e ge r ope nI nde xObj e c t = ne w I nt e ge r (ope nI nde x) ;
s t a c k. pus h(ope nI nde xObj e c t) ;

4. A corresponding feature, introduced with Java 5.0, called Unboxing, reverses the
effect of the Autoboxing. When we access the top of the stack with the statement

ope nI nde x = s t a c k. t op() ;

the I nt e ge r object at the top of the stack is automatically converted to an integer
value. In previous versions of Java we would have needed to write

ope nI nde x = s t a c k. t op() . i nt Va l ue () ;

5. In processing a closing symbol, we access the stack to see if its top holds the corre-
sponding opening symbol. If the stack is empty, it indicates an unbalanced expres-
sion. We have two ways to check whether the stack is empty: We can use the
i s Empt y method or we can try to access the stack and catch a St a c kUnde r f l owEx-
c e pt i on. We choose the latter approach. It seems to fit the spirit of the algorithm,
because we expect to find the open symbol and finding the stack empty is the
“exceptional” case.

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 197

198 | Chapter 3: The Stack ADT

6. In contrast, we use i s Empt y to check for an empty stack at the end of processing
the expression. Here, we don’t want to extract an element from the stack—we just
need to know whether it is empty.

Here is the code for the entire class:

/ / -
/ / Ba l a nc e d. j a va by Da l e / J oyc e / We e ms Cha pt e r 3
/ /
/ / Che c ks f or ba l a nc e d e xpr e s s i ons us i ng s t a nda r d r ul e s .
/ /
/ / Ma t c hi ng pa i r s of ope n a nd c l os e s ymbol s a r e pr ovi de d t o t he
/ / c ons t r uc t or t hr ough t wo s t r i ng pa r a me t e r s .
/ / -

i mpor t c h03. s t a c ks . *;

publ i c c l a s s Ba l a nc e d
{

pr i va t e St r i ng ope nSe t ;
pr i va t e St r i ng c l os e Se t ;

publ i c Ba l a nc e d(St r i ng ope nSe t , St r i ng c l os e Se t)
/ / Pr e c ondi t i ons : No c ha r a c t e r i s c ont a i ne d mor e t ha n onc e i n t he
/ / c ombi ne d ope nSe t a nd c l os e Se t s t r i ngs .
/ / The s i z e of ope nSe t = t he s i z e of c l os e Se t .
{

t hi s . ope nSe t = ope nSe t ;
t hi s . c l os e Se t = c l os e Se t ;

}

publ i c i nt t e s t (St r i ng e xpr e s s i on)
/ / Re t ur ns 0 i f e xpr e s s i on i s ba l a nc e d.
/ / Re t ur ns 1 i f e xpr e s s i on ha s unba l a nc e d s ymbol s .
/ / Re t ur ns 2 i f e xpr e s s i on c a me t o e nd pr e ma t ur e l y.
{

c ha r c ur r Cha r ; / / c ur r e nt e xpr e s s i on c ha r a c t e r be i ng s t udi e d
i nt c ur r Cha r I nde x; / / i nde x of c ur r e nt c ha r a c t e r
i nt l a s t Cha r I nde x; / / i nde x of l a s t c ha r a c t e r i n t he e xpr e s s i on

i nt ope nI nde x; / / i nde x of c ur r e nt c ha r a c t e r i n ope nSe t
i nt c l os e I nde x; / / i nde x of c ur r e nt c ha r a c t e r i n c l os e Se t

bool e a n s t i l l Ba l a nc e d = t r ue ; / / t r ue a s l ong a s e xpr e s s i on i s ba l a nc e d

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 198

3.6 Application: Well- Formed Expressions | 199

/ / hol ds unma t c he d ope n s ymbol s
Bounde dSt a c kI nt e r f a c e <I nt e ge r > s t a c k;
s t a c k = ne w Ar r a ySt a c k<I nt e ge r >(e xpr e s s i on. l e ngt h()) ;

c ur r Cha r I nde x = 0;
l a s t Cha r I nde x = e xpr e s s i on. l e ngt h() - 1;

whi l e (s t i l l Ba l a nc e d && (c ur r Cha r I nde x <= l a s t Cha r I nde x))
/ / whi l e e xpr e s s i on s t i l l ba l a nc e d a nd not a t e nd of e xpr e s s i on
{

c ur r Cha r = e xpr e s s i on. c ha r At (c ur r Cha r I nde x) ;
ope nI nde x = ope nSe t . i nde xOf (c ur r Cha r) ;

i f (ope nI nde x ! = - 1) / / i f t he c ur r e nt c ha r a c t e r i s i n t he ope nSe t
{

/ / Pus h t he i nde x ont o t he s t a c k.
s t a c k. pus h(ope nI nde x) ;

}
e l s e
{

c l os e I nde x = c l os e Se t . i nde xOf (c ur r Cha r) ;
i f (c l os e I nde x ! = - 1) / / i f t he c ur r e nt c ha r a c t e r i s i n t he c l os e Se t
{

t r y / / t r y t o pop a n i nde x of f t he s t a c k
{

ope nI nde x = s t a c k. t op() ;
s t a c k. pop() ;

i f (ope nI nde x ! = c l os e I nde x) / / i f poppe d i nde x doe s n' t ma t c h
{

s t i l l Ba l a nc e d = f a l s e ; / / t he n e xpr e s s i on not ba l a nc e d
}

}
c a t c h(St a c kUnde r f l owExc e pt i on e) / / i f s t a c k wa s e mpt y
{

s t i l l Ba l a nc e d = f a l s e ; / / t he n e xpr e s s i on not ba l a nc e d
}

}
}
c ur r Cha r I nde x++; / / s e t up pr oc e s s i ng of ne xt c ha r a c t e r

}

i f (! s t i l l Ba l a nc e d)
r e t ur n 1; / / unba l a nc e d s ymbol s

e l s e

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 199

200 | Chapter 3: The Stack ADT

i f (! s t a c k. i s Empt y())
r e t ur n 2; / / pr e ma t ur e e nd of e xpr e s s i on

e l s e
r e t ur n 0; / / e xpr e s s i on i s ba l a nc e d

}
}

The Application
Now that we have the Ba l a nc e d class, it is not difficult to finish our application. Of
course, we should carefully test the class first—but in this case we can use our applica-
tion as a test driver.

Because the Ba l a nc e d class is responsible for determining whether grouping sym-
bols are balanced, all that remains is to implement the user input and output. Rather than
processing just one expression, we allow the user to enter a series of expressions, asking
whether he or she wishes to continue after each result is output. Following our standard
approach, we implement a console-based system. It is straightforward to convert this
application to a GUI, if you are familiar with Java’s Swing classes. We call our program
Ba l a nc e dApp. Note that when the Ba l a nc e d class is instantiated, the constructor is
passed the strings “({[” “)] }” so that it corresponds to our specific problem.

/ / -
/ / Ba l a nc e dApp. j a va by Da l e / J oyc e / We e ms Cha pt e r 3
/ /
/ / Che c ks f or ba l a nc e d gr oupi ng s ymbol s .
/ / I nput c ons i s t s of a s e que nc e of e xpr e s s i ons , one pe r l i ne .
/ / Spe c i a l s ymbol t ype s a r e () , [] , a nd {} .
/ / -

i mpor t j a va . ut i l . Sc a nne r ;

publ i c c l a s s Ba l a nc e dApp
{

publ i c s t a t i c voi d ma i n(St r i ng[] a r gs)
{

Sc a nne r c onI n = ne w Sc a nne r (Sys t e m. i n) ;

/ / I ns t a nt i a t e ne w Ba l a nc e d c l a s s wi t h gr oupi ng s ymbol s .
Ba l a nc e d ba l = ne w Ba l a nc e d(" ([{" , ")] }") ;

i nt r e s ul t ; / / 0 = ba l a nc e d, 1 = unba l a nc e d,
/ / 2 = pr e ma t ur e e nd

St r i ng e xpr e s s i on = nul l ; / / e xpr e s s i on t o be e va l ua t e d
St r i ng mor e = nul l ; / / us e d t o s t op or c ont i nue pr oc e s s i ng

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 200

3.6 Application: Well- Formed Expressions | 201

do
{

/ / Ge t ne xt e xpr e s s i on t o be pr oc e s s e d.
Sys t e m. out . pr i nt l n(" Ent e r a n e xpr e s s i on t o be e va l ua t e d: ") ;
e xpr e s s i on = c onI n. ne xt Li ne () ;

/ / Obt a i n a nd out put r e s ul t of ba l a nc e d t e s t i ng.
r e s ul t = ba l . t e s t (e xpr e s s i on) ;
i f (r e s ul t == 1)

Sys t e m. out . pr i nt l n(" Unba l a nc e d s ymbol s ") ;
e l s e
i f (r e s ul t == 2)

Sys t e m. out . pr i nt l n(" Pr e ma t ur e e nd of e xpr e s s i on") ;
e l s e

Sys t e m. out . pr i nt l n(" The s ymbol s a r e ba l a nc e d. ") ;

/ / De t e r mi ne i f t he r e i s a not he r e xpr e s s i on t o pr oc e s s .
Sys t e m. out . pr i nt l n() ;
Sys t e m. out . pr i nt (" Eva l ua t e a not he r e xpr e s s i on? (Y=Ye s) : ") ;
mor e = c onI n. ne xt Li ne () ;
Sys t e m. out . pr i nt l n() ;

}
whi l e (mor e . e qua l s I gnor e Ca s e (" y")) ;

}
}

Here is the output from a sample run:

Enter an expression to be evaluated:
(xx[yy]{ ttt})
The symbols are balanced.

Evaluate another expression? (Y=Yes): Y

Enter an expression to be evaluated:
((())
Premature end of expression

Evaluate another expression? (Y=Yes): Y

Enter an expression to be evaluated:
(tttttttt]

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 201

202 | Chapter 3: The Stack ADT

Unbalanced symbols

Evaluate another expression? (Y=Yes): Y

Enter an expression to be evaluated:
(){ } [][({ { [{ ({ })}]} })]
The symbols are balanced.

Evaluate another expression? (Y=Yes): n

Figure 3.8 is a UML diagram showing the relationships among our interfaces and classes
used in this program. The intent is to show the general architecture, so we do not
include details about attributes and operations.

3.7 Link- Based Implementation

In Chapter 2 we introduced linked lists and explained how they provide an alternative
to arrays when implementing collections. It is important for you to learn both
approaches. Recall that a “link” is the same thing as a “reference.” The Stack ADT
implementation presented in this section is therefore referred to as a reference- or link-
based implementation.

Figure 3.17, in the Summary on page 230, shows the relationships among the pri-
mary classes and interfaces created to support our Stack ADT, including those developed
in this section.

Figure 3.8 Program architecture

<<interface>>
StackInterface StackUnderflowException

<<interface>>
BoundedStackInterface

ArrayStack Balanced BalancedApp

 extends

 uses

 implements

 Key:

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 202

3.7 Link- Based Implementation | 203

Figure 3.9 UML class diagram of LLNode

+LLNode (T i nf o)
+s e t I nf o(T i nf o) : voi d
+ge t I nf o() : T
+s e t Li nk(LLNode l i nk) : voi d
+ge t Li nk() : LLNode

–LLNode : l i nk

–T: i nf o

LLNode<T>

8. The LLNode class file can be found in the s uppor t subdirectory of the bookFi l e s directory that contains
the program files associated with the textbook.

The LLNode Class
Recall from Chapter 2 that to create a linked list we needed to define a self-referential class
to act as the nodes of the list. Our approach there was to define the LLSt r i ngNode class
that allowed us to create a linked list of strings. If we merely needed to create stacks of
strings, we could reuse the LLSt r i ngNode class to support our link-based implementation
of stacks. However, the class of objects held by our stacks must be parametizable—it will
be specified by the client whenever a stack is instantiated. Therefore we define a class
that is analogous to the LLSt r i ngNode class called LLNode . Figure 3.9 shows the corre-
sponding UML class diagram. The self-referential nature of the class is evident from the fact
that an LLNode has an instance variable, l i nk, of class LLNode . Because we plan to use
this class to support our development of several data structures, we place it in a package
named s uppor t .8

The implementation of the LLNode class is essentially the same as that of the
LLSt r i ngNode class. The i nf o variable contains a reference to the object of class T
representing the information held by the node, and the l i nk variable holds a reference
to the next LLNode on the list. The code includes a constructor that accepts an object of
class T as an argument and constructs a node that references that object. An abstract
view of a single LLNode is pictured in Figure 3.10. The code also includes setters and
getters for both the i nf o and l i nk attributes so that we can create, manipulate, and
traverse the linked list of T nodes.

Figure 3.10 A single node

link:

info: Object of class T

Another
node

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 203

204 | Chapter 3: The Stack ADT

/ / -
/ / LLNode . j a va by Da l e / J oyc e / We e ms Cha pt e r 3
/ /
/ / I mpl e me nt s <T> node s f or a l i nke d l i s t .
/ / -

pa c ka ge s uppor t ;

publ i c c l a s s LLNode <T>
{

pr i va t e LLNode l i nk;
pr i va t e T i nf o;

publ i c LLNode (T i nf o)
{

t hi s . i nf o = i nf o;
l i nk = nul l ;

}

publ i c voi d s e t I nf o(T i nf o)
/ / Se t s i nf o of t hi s LLNode .
{

t hi s . i nf o = i nf o;
}

publ i c T ge t I nf o()
/ / Re t ur ns i nf o of t hi s LLNode .
{

r e t ur n i nf o;
}

publ i c voi d s e t Li nk(LLNode l i nk)
/ / Se t s l i nk of t hi s LLNode .
{

t hi s . l i nk = l i nk;
}

publ i c LLNode ge t Li nk()
/ / Re t ur ns l i nk of t hi s LLNode .
{

r e t ur n l i nk;
}

}

The LinkedStack Class
We call our new stack class Li nke dSt a c k, to differentiate it from the array-based classes
of the previous section. Li nke dSt a c k implements the Unbounde dSt a c kI nt e r f a c e .

We need to define only one instance variable in the Li nke dSt a c k class, to hold a
reference to the linked list of objects that represents the stack. Because we just need

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 204

3.7 Link- Based Implementation | 205

quick access to the top of the stack, we maintain a reference to the node representing
the most recent element pushed onto the stack. That node will, in turn, hold a reference
to the node representing the next most recent element. That pattern continues until a
particular node holds a null reference in its l i nk attribute, signifying the bottom of the
stack. We call the original reference variable t op, as it will always reference the top of
the stack. It is a reference to a LLNode . When we instantiate an object of class Li nke d-
St a c k, we create an empty stack by setting t op to nul l . The beginning of the class
definition is shown here. Note the i mpor t statement that allows us to use the LLNode
class.

/ / -
/ / Li nke dSt a c k. j a va by Da l e / J oyc e / We e ms Cha pt e r 3
/ /
/ / I mpl e me nt s Unbounde dSt a c kI nt e r f a c e us i ng a l i nke d l i s t
/ / t o hol d t he s t a c k e l e me nt s .
/ / -

pa c ka ge c h03. s t a c ks ;

i mpor t s uppor t . LLNode ;

publ i c c l a s s Li nke dSt a c k<T> i mpl e me nt s Unbounde dSt a c kI nt e r f a c e <T>
{

pr ot e c t e d LLNode <T> t op; / / r e f e r e nc e t o t he t op of t hi s s t a c k

publ i c Li nke dSt a c k()
{

t op = nul l ;
}

. . .

Now, let’s see how we implement our link-based stack operations.

The push Operation
Pushing an element onto the stack means creating a new node and linking it to the cur-
rent chain of nodes. Figure 3.11 shows the result of the sequence of operations listed
here. It graphically demonstrates the dynamic allocation of space for the references to
the stack elements. Assume A, B, and C represent objects of class St r i ng.

Unbounde dSt a c kI nt e r f a c e <St r i ng> mySt a c k;
mySt a c k = ne w Li nke dSt a c k<St r i ng>() ;
mySt a c k. pus h(A) ;
mySt a c k. pus h(B) ;
mySt a c k. pus h(C) ;

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 205

206 | Chapter 3: The Stack ADT

Figure 3.11 Results of stack operations using LLNode

(Nonexistent)nullmyStack:

UnboundedStackInterface<String> myStack;

Internal View Abstract View

(Empty)myStack: top: null

myStack=new LinkedStack<String>();

A
myStack: toptop:

myStack.push(A);

info:

link: null

A

B

A
myStack:

top
myStack.push(B);

top:

info:

link: null

A info:

link:

B

C

B

A

myStack:

top
myStack.push(C);

top:

info:

link: null

A info:

link:

B info:

link:

C

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 206

3.7 Link- Based Implementation | 207

push(element)
Allocate space for the next stack node

and set the node info to element
Set the node link to the previous top of stack
Set the top of stack to the new stack node

When performing the pus h operation we must allocate space for each new node
dynamically. Here is the general algorithm:

Figure 3.12 graphically displays the effect of each step of the algorithm, starting
with a stack that already contains A and B and showing what happens when C is
pushed onto it. This is the same algorithm we studied previously in Section 2.5 for
insertion into the beginning of a linked list. We have arranged the node boxes visually
to emphasize the last in, first out nature of a stack.

Let’s look at the algorithm line by line, creating our code as we go. Follow our
progress through both the algorithm and Figure 3.12 during this discussion. We begin
by allocating space for a new stack node and setting its i nf o attribute to the e l e me nt :

LLNode <T> ne wNode = ne w LLNode <T>(e l e me nt) ;

Thus, ne wNode is a reference to an object that contains two attributes: i nf o of class T and
l i nk of the class LLNode . The constructor has set the i nf o attribute to reference e l e me nt ,
as required. Next we need to set the value of the l i nk attribute:

ne wNode . s e t Li nk(t op) ;

Now i nf o references the e l e me nt pushed onto the stack, and l i nk references the pre-
vious top of stack. Finally, we need to reset the top of the stack to reference the new
node:

t op = ne wNode ;

Putting it all together, the code for the pus h method is

publ i c voi d pus h(T e l e me nt)
/ / Pl a c e s e l e me nt a t t he t op of t hi s s t a c k.
{

LLNode <T> ne wNode = ne w LLNode <T>(e l e me nt) ;
ne wNode . s e t Li nk(t op) ;
t op = ne wNode ;

}

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 207

208 | Chapter 3: The Stack ADT

Figure 3.12 Results of pus h operation

stack:

Set the top of stack to the new stack node

top:

info:

link: null

A info:

link:

B info:

link:

C

stack:

Set the node link to the previous top of stack

top:

info:

link: null

A info:

link:

B info:

link:

C

stack: top:

info:

link: null

A info:

link:

B info:

link: null

C

Allocate space for the next stack node and set the node info to element

newNode:

newNode:

newNode:

Note that the order of these tasks is critical. If we reset the t op variable before setting
the l i nk of the new node, we would lose access to the stack nodes! This situation is gener-
ally true when we are dealing with a linked structure: You must be very careful to change
the references in the correct order, so that you do not lose access to any of the data.

You have seen how the algorithm works on a stack that contains elements. What hap-
pens if the stack is empty? Although we verified in Section 2.5 that our approach works in
this case, let’s trace through it again. Figure 3.13 shows graphically what occurs.

Space is allocated for the new node and the node’s i nf o attribute is set to reference
e l e me nt . Now we need to correctly set the various links. The l i nk of the new node is
assigned the value of t op. What is this value when the stack is empty? It is nul l , which
is exactly what we want to put into the l i nk of the last (bottom) node of a linked stack.
Then t op is reset to point to the new node, making the new node the top of the stack.
The result is exactly what we would expect—the new node is the only node on the
linked list and it is the current top of the stack.

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 208

3.7 Link- Based Implementation | 209

Figure 3.13 Results of pus h operation on an empty stack

stack:

Set the top of stack to the new stack node

top:

info:

link: null

A

stack:

Set the node link to the previous top of stack

top: null

info:

link: null

A

stack: top: null

info:

link: null

A

Allocate space for the next stack node and set the node info to element

newNode:

newNode:

newNode:

The pop Operation
The pop operation is equivalent to deleting the first node of a linked list. It is essentially
the reverse of the pus h operation.

To accomplish it we simply reset the stack’s t op variable to reference the node that
represents the next element. That is all we really have to do. Resetting t op to the next
stack node effectively removes the top element from the stack. See Figure 3.14. This
requires only a single line of code:

t op = t op. ge t Li nk() ;

The assignment copies the reference from the l i nk attribute of the top stack node into
the variable t op. After this code is executed, t op refers to the LLNode object just below
the prior top of the stack. We can no longer use t op to reference the previous top
object, because we overwrote our only reference to it.

As indicated in Figure 3.14, the former top of the stack is labeled as garbage; the
system garbage collector will eventually reclaim the space. If the i nf o attribute of this
object is the only reference to the data object labeled C in the figure, it, too, is garbage
and its space will be reclaimed.

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 209

210 | Chapter 3: The Stack ADT

Figure 3.14 Results of pop operation

Internal View Abstract View

C

B

A

topmyStack: top:

info:

link: null

A info:

link:

B info:

link:

C

Original

topmyStack: top:

info:

link: null

A info:

link:

B info:

link:

C

After mySt a c k. pop() ;

B

A

which equals: t op = t op. ge t Li nk() ;

garbage?

garbage

Are there any special cases to consider? Given that we are removing an element
from the stack, we should be concerned with empty stack situations. What happens if
we try to pop an empty stack? In this case the t op variable contains nul l and the
assignment statement “t op = t op . ge t Li nk; ” results in a run-time error: Nul l -
Poi n t e r Exc e pt i on. To control this problem ourselves, we protect the assignment
statement using the Stack ADT’s i s Empt y operation. The code for our pop method is
shown next.

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 210

3.7 Link- Based Implementation | 211

publ i c voi d pop()
/ / Thr ows St a c kUnde r f l owExc e pt i on i f t hi s s t a c k i s e mpt y,
/ / o t he r wi s e r e move s t op e l e me nt f r om t hi s s t a c k.
{

i f (! i s Empt y())
{

t op = t op. ge t Li nk() ;
}
e l s e

t hr ow ne w St a c kUnde r f l owExc e pt i on(" Pop a t t e mpt e d on a n e mpt y s t a c k. ") ;
}

We use the same St a c kUnde r f l owExc e pt i on we used in our array-based approaches.
There is one more special case—popping from a stack with only one element. We

need to make sure that this operation results in an empty stack. Let’s see if it does.
When our stack is instantiated, t op is set to nul l . When an element is pushed onto the
stack, the l i nk of the node that represents the element is set to the current t op vari-
able; therefore, when the first element is pushed onto our stack, the l i nk of its node is
set to nul l . Of course, the first element pushed onto the stack is the last element
popped off. This means that the last element popped off the stack has an associated
l i nk value of nul l . Because the pop method sets t op to the value of this l i nk attrib-
ute, after the last value is popped t op again has the value nul l , just as it did when the
stack was first instantiated. We conclude that the pop method works for a stack of one
element. Figure 3.15 graphically depicts pushing a single element onto a stack and then
popping it off.

The Other Stack Operations
Recall that the t op operation simply returns a reference to the top element of the stack.
At first glance this might seem very straightforward. Simply code

r e t ur n t op;

as t op references the element on the top of the stack. However, remember that t op ref-
erences an LLNode object. Whatever program is using the Stack ADT is not concerned
about LLNode objects. The client program is only interested in the object that is refer-
enced by the i nf o variable of the LLNode object.

Let’s try again. To return the i nf o of the top LLNode object we code

r e t ur n t op. ge t I nf o() ;

That’s better, but we still need to do a little more work. What about the special case
when the stack is empty? In that situation we need to throw an exception instead of
returning an object. The final code for the t op method is shown next.

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 211

212 | Chapter 3: The Stack ADT

Figure 3.15 Results of pus h , then pop on an empty stack

Empty Stack:

myStack: top: null

myStack: top: null

myStack: top:

info:

link: null

A

info:

link: null

A

After

And then mySt a c k. pop() ;

garbage?

garbage

mySt a c k. pus h(A) :

publ i c T t op()
/ / Thr ows St a c kUnde r f l owExc e pt i on i f t hi s s t a c k i s e mpt y,
/ / o t he r wi s e r e t ur ns t op e l e me nt f r om t hi s s t a c k.
{

i f (! i s Empt y())
r e t ur n t op. ge t I nf o() ;

e l s e
t hr ow ne w St a c kUnde r f l owExc e pt i on(" Top a t t e mpt e d on a n e mpt y s t a c k. ") ;

}

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 212

3.7 Link- Based Implementation | 213

That wasn’t bad, but the i s Empt y method is even easier. If we initialize an empty stack
by setting the t op variable to nul l , then we can detect an empty stack by checking for
the value nul l .

publ i c bool e a n i s Empt y()
/ / Re t ur ns t r ue i f t hi s s t a c k i s e mpt y, ot he r wi s e r e t ur ns f a l s e .
{

i f (t op == nul l)
r e t ur n t r ue ;

e l s e
r e t ur n f a l s e ;

}

An even simpler way of writing this is

r e t ur n (t op == nul l) ;

The linked implementation of the Stack ADT can be tested using the same test plan
that was presented for the array-based version, except we would not have to test an
i s Ful l operation.

Comparing Stack Implementations
Let’s compare our two classic implementations of the Stack ADT, Ar r a ySt a c k and
Li nke dSt a c k, in terms of storage requirements and efficiency of the algorithms. First
we consider the storage requirements. An array that is instantiated to match the maxi-
mum stack size takes the same amount of memory, no matter how many array slots are
actually used. The linked implementation, using dynamically allocated storage, requires
space only for the number of elements actually on the stack at run time. Note, however,
that the elements are larger because we must store the reference to the next element as
well as the reference to the user’s data.

We now compare the relative execution “efficiency” of the two implementations in
terms of Big-O notation. The implementations of i s Ful l and i s Empt y, where required, are
clearly O(1); they always take a constant amount of work. What about pus h, pop, and t op?
Does the number of elements in the stack affect the amount of work required by these oper-
ations? No, it does not. In both implementations, we directly access the top of the stack, so
these operations also take a constant amount of work. They, too, have O(1) complexity.

Only the class constructor differs from one implementation to the other in terms of
the Big-O efficiency. In the array-based implementation, when the array is instantiated,
the system creates and initializes each of the array locations. As it is an array of objects,
each array slot is initialized to nul l . The number of array slots is equal to the maxi-
mum number of possible stack elements. We call this number N and say that the array-
based constructor is O(N). For the linked approach, the constructor simply sets the t op
variable to nul l , so it is only O(1).

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 213

214 | Chapter 3: The Stack ADT

9. Postfix notation is also known as reverse Polish notation (RPN), so named after the Polish logician Jan
Lukasiewicz (1875–1956) who developed it.

Overall the two stack implementations are roughly equivalent in terms of the
amount of work they do.

So, which is better? The answer, as usual, is “It depends.” The linked implementa-
tion does not have space limitations, and in applications where the number of stack
elements can vary greatly, it wastes less space when the stack is small. Why would
we ever want to use the array-based implementation? Because it’s short, simple, and
efficient. If pushing occurs frequently, the array-based implementation executes
faster than the link-based implementation because it does not incur the run-time
overhead of repeatedly invoking the ne w operation. When the maximum size is small
and we know the maximum size with certainty, the array-based implementation is a
good choice.

3.8 Case Study: Postfix Expression Evaluator

Postfix notation9 is a notation for writing arithmetic expressions in which the operators
appear after their operands. For example, instead of writing

(2 + 14) 23

we write

2 14 + 23

With postfix notation, there are no precedence rules to learn, and parentheses are
never needed. Because of this simplicity, some popular handheld calculators of the
1980s used postfix notation to avoid the complications of the multiple parentheses
required in traditional algebraic notation. Postfix notation is also used by compilers for
generating nonambiguous expressions.

In this case study, we create a computer program that evaluates postfix expressions.

Discussion
In elementary school you learned how to evaluate simple expressions that involve the
basic binary operators: addition, subtraction, multiplication, and division. These are
called binary operators because they each operate on two operands. It is easy to see how
a child would solve the following problem:

2 + 5 = ?

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 214

3.8 Case Study: Postfix Expression Evaluator | 215

10. See Appendix B, Java Operator Precedence.

As expressions become more complicated, the pencil-and-paper solutions require a
little more work. Multiple tasks must be performed to solve the following problem:

(((13 1) / 2) (3 + 5)) = ?

These expressions are written using a format known as infix notation, which is the
same notation used for expressions in Java. The operator in an infix expression is writ-
ten in between its operands. When an expression contains multiple operators such as

3 + 5 2

we need a set of rules to determine which operation to carry out first. You learned in
your mathematics classes that multiplication is done before addition. You learned Java’s
operator-precedence rules10 in your first Java programming course. We can use paren-
theses to override the normal ordering rules. Still, it is easy to make a mistake when
writing or interpreting an infix expression containing multiple operations.

Evaluating Postfix Expressions
Postfix notation is another format for writing arithmetic expressions. In this notation,
the operator is written after (post) the two operands. Here are some simple postfix
expressions and their results:

Postfix Expression Result

4 5 + 9
9 3 / 3
17 8 9

The rules for evaluating postfix expressions with multiple operators are much sim-
pler than those for evaluating infix expressions; simply perform the operations from left
to right. Now, let’s look at a postfix expression containing two operators.

6 2 / 5 +

We evaluate the expression by scanning from left to right. The first item, 6, is an
operand, so we go on. The second item, 2, is also an operand, so again we continue. The
third item is the division operator. We now apply this operator to the two previous
operands. Which of the two saved operands is the divisor? The one we saw most

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 215

216 | Chapter 3: The Stack ADT

recently. We divide 6 by 2 and substitute 3 back into the expression, replacing 6 2 /.
Our expression now looks like this:

3 5 +

We continue our scanning. The next item is an operand, 5, so we go on. The next
(and last) item is the operator +. We apply this operator to the two previous operands,
obtaining a result of 8.

Here’s another example:

5 7 + 6 2

As we scan from left to right, the first operator we encounter is +. Applying this to the
two preceding operands (5 and 7), we obtain the expression

12 6 2

The next operator we encounter is , so we subtract 2 from 6, obtaining

12 4

We apply the last operator, , to its two preceding operands and obtain our final
answer: 48.

Here are some more examples of postfix expressions containing multiple operators,
equivalent expressions in infix notation, and the results of evaluating them. See if you
get the same results when you evaluate the postfix expressions.

Postfix Expression Infix Equivalent Result

4 5 7 2 + 4 (5 (7 + 2)) 16
3 4 + 2 7 / ((3 + 4) 2)/7 2
5 7 + 6 2 (5 + 7) (6 2) 48
4 2 3 5 1 + + ? (4 + (2 (3 + (5 1)))) not enough operands
4 2 + 3 5 1 + (4 + 2) + (3 (5 1)) 18

Our task is to write a program that evaluates postfix expressions entered interactively
from the keyboard. In addition to computing and displaying the value of an expression, our
program must display error messages when appropriate (“not enough operands,” “too many
operands,” and “illegal symbol”). Before we describe our specific requirements, let’s look at
the data structure and algorithm involved in postfix expression evaluation.

Postfix Expression Evaluation Algorithm
As so often happens, our by-hand algorithm can serve as a guideline for our computer
algorithm. From the previous discussion, we see that there are two basic items in a post-

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 216

3.8 Case Study: Postfix Expression Evaluator | 217

Evaluate Expression
while more items exist

Get an item
if item is an operand

stack.push(item)
else

operand2 = stack.top()
stack.pop()
operand1 = stack.top()
stack.pop()
Set result to (apply operation corresponding to item to operand1 and operand2)
stack.push(result)

result = stack.top()
stack.pop()
return result

fix expression: operands (numbers) and operators. We access items (an operand or an
operator) from left to right, one at a time. When the item we get is an operator, we
apply it to the preceding two operands.

We must save previously scanned operands in a collection object of some kind. A
stack is the ideal place to store the previous operands, because the top item is always
the most recent operand and the next item on the stack is always the second most
recent operand—just the two operands required when we find an operator. The following
algorithm uses a stack to evaluate a postfix expression:

Each iteration of the while loop processes one operator or one operand from the
expression. When an operand is found, there is nothing to do with it (we haven’t yet
found the operator to apply to it), so we save it on the stack until later. When an
operator is found, we get the two topmost operands from the stack, perform the
operation, and put the result back on the stack; the result may be an operand for a
future operator.

Let’s trace this algorithm. Before we enter the loop, the input remaining to be
processed and the stack look like this:

5 7 + 6 2 – *

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 217

218 | Chapter 3: The Stack ADT

After one iteration of the loop, we have processed the first operand and pushed it onto
the stack.

After the second iteration of the loop, the stack contains two operands.

We encounter the + operator in the third iteration. We remove the two operands from
the stack, perform the operation, and push the result onto the stack.

In the next two iterations of the loop, we push two operands onto the stack.

When we find the operator, we remove the top two operands, subtract, and push the
result onto the stack.

5 7 + 6 2 – *

4
12

5 7 + 6 2 – *

2
6

12

5 7 + 6 2 – *

12

5 7 + 6 2 – *

7
5

5 7 + 6 2 – *

5

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 218

3.8 Case Study: Postfix Expression Evaluator | 219

When we find the * operator, we remove the top two operands, multiply, and push the
result onto the stack.

Now that we have processed all of the items on the input line, we exit the loop. We
remove the result, 48, from the stack.

Of course, we have glossed over a few “minor” details, such as how we recognize an
operator and how we know when we are finished. All of the input values in this example
were one-digit numbers. Clearly, this is too restrictive. We also need to handle invalid
input. We discuss these challenges as we continue to evolve the solution to our problem.

Specification: Program Postfix Evaluation
Here is a more formal specification of our problem.

Function
The program evaluates postfix arithmetic expressions containing integers and the binary
operators +, -, *, and /.

Interface
Following our established conventions, we are not specifying which type of interface
the program should provide. We develop a console-based solution but also provide a
GUI solution for your study. In either case, the program must allow the user to enter
a postfix expression, have it evaluated, and see the results of the evaluation. The
user should then have the option of entering additional expressions or ending the
program.

Input
The input is a series of arithmetic postfix expressions, entered interactively from the
keyboard. An expression is made up of operators (the characters +, - , *, and /) and
integers (the operands). Operators and operands must be separated by at least one blank.

5 7 + 6 2 – *

Result

48

5 7 + 6 2 – *

48

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 219

220 | Chapter 3: The Stack ADT

Data
All numbers input, manipulated, and output by the program are integers.

Output
After the evaluation of each expression, the results are displayed:

“Result = value”

Error Processing
The program should recognize illegal postfix expressions. Instead of displaying an inte-
ger result when the expression is entered, in such a case it should display error messages
as follows:

Type of Illegal Expression Error Message

An expression contains a symbol that is not Illegal symbol
an integer or not one of “+”, “-”, “*”, and “/”

An expression requires more than 50 stack items Too many operands—stack overflow

There is more than one operand left on the stack Too many operands—operands left over
after the expression is processed; for example,
the expression 5 6 7 + has too many operands

There are not enough operands on the stack Not enough operands—stack underflow
when it is time to perform an operation; for
example, 6 7 + + +; and, for example, 5 + 5

Assumptions
1. The operations in expressions are valid at run time. This means that we do not try

to divide by zero. Also, we do not generate numbers outside of the range of the
Java i nt type.

2. A postfix expression has a maximum of 50 operands.

Brainstorming and Filtering
A study of the specifications provides the following list of nouns that appear to be pos-
sibilities for classes: postfix arithmetic expressions, operators, result, operands, and error
messages. Let’s look at each in turn.

• The postfix arithmetic expressions are entered by the user and consist of both
numbers and other characters. We conclude that an expression should be repre-
sented by a string.

• This means we can probably represent operators as strings, too. Another possibil-
ity is to hold the operators in an ADT that provides a “set” of characters. How-

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 220

3.8 Case Study: Postfix Expression Evaluator | 221

ever, upon reflection, we realize that all we really have to do is recognize the
operator character, and the built-in string and character operations we already
have at our disposal should be sufficient.

• The result of an evaluation is an interesting case. Where does the result come
from? We propose the creation of a separate class Pos t Fi xEva l ua t or that pro-
vides an e va l ua t e method that accepts a postfix expression as a string and
returns the value of the expression. Our main program will use this class (and a
few others) to solve the problem.

• The operands are integers.
• The error messages we need to generate are all related to the evaluation of the

postfix expression. Because the Pos t Fi xEva l ua t or class evaluates the postfix
expression, it will discover the errors. Therefore, to communicate the error mes-
sages between Pos t Fi xEva l ua t or and the main program, we propose the cre-
ation of an exception class called Pos t Fi xExc e pt i on.

From our knowledge of the postfix expression evaluation algorithm we know we
also need a stack. We decide to use our Ar r a ySt a c k class, which implements the
Bounde dSt a c kI nt e r f a c e , because the problem description places an upper bound of
50 on the size of the stack. Additionally, we intend to use our standard approach and
create a main program that provides interaction with the user.

Let’s look at a short scenario describing how these classes can be used to solve our
problem. The main program will prompt the user for an expression and read it into a
string variable. It can then pass this string to the e va l ua t e method of the Pos t Fi x-
Eva l ua t or class, which will use an Ar r a ySt a c k object to help determine the value of
the expression, assuming it is a legal expression. The e va l ua t e method is used within a
try-catch statement that allows the main program to determine whether any Pos t Fi x-
Exc e pt i on exceptions have been thrown. In either case it reports the result to the user
and prompts for another expression. We can proceed with confidence that our set of
classes seems sufficient to solve the problem.

We now move on to the design, implementation, and testing of the classes. Note
that we can test the classes together, once they have all been created, by evaluating a
number of postfix expressions (both legal and illegal) with the application.

Evolving a Program
We present our case studies in an idealized fashion. We make a general problem statement; dis-
cuss it; define formal specifications; identify classes; design and code the classes; and then test
the system. In reality, however, such an application would probably evolve gradually, with small
unit tests performed along the way. Especially during design and coding, it is sometimes helpful
to take smaller steps and to evolve your program rather than trying to create it all at once. For
example, for this case study you could take the following steps:

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 221

222 | Chapter 3: The Stack ADT

1. Build a prototype of the main program that just provides input/output activity—it would not
support any processing. Its purpose is to test the usability of the user interface and provide a
driver for further development.

2. Build a small part of Pos t Fi xEva l ua t or and see if you can pass it a string from the inter-
face at the appropriate time.

3. See if you can pass back some information—any information—about the string from Pos t -
Fi xEva l ua t or to the main program and have it display on the user interface. For example,
you could display the number of tokens in the string.

4. Upgrade Pos t Fi xEva l ua t or so that it recognizes operands and transforms them into
integers. Have it obtain an operand from the expression string, transform it, push the integer
onto a stack, retrieve it, and pass it back for display.

5. Upgrade Pos t Fi xEva l ua t or to recognize operators and process expressions that are more
complicated. Test some legal expressions.

6. Add the error trapping and reporting portion. Test using illegal expressions.

Devising a good program evolution plan is often the key to successful programming.

The PostFixEvaluator Class
The purpose of this class is to provide an e va l ua t e method that accepts a postfix expres-
sion as a string and returns the value of the expression. We do not need any objects of
the class, so we implement e va l ua t e as a publ i c s t a t i c method. This means that it is
invoked through the class itself, rather than through an object of the class.

The e va l ua t e method must take a postfix expression as a string argument and
return the value of the expression. The code for the class is listed below. It follows the
basic postfix expression algorithm that we developed earlier, using an Ar r a ySt a c k
object to hold operands of class I nt e ge r until they are needed. Note that it instantiates
a Sc a nne r object to “read” the string argument and break it into tokens.

Let’s consider error message generation. Look through the code for the lines that
throw Pos t Fi xExc e pt i on exceptions. You should be able to see that we cover all of the
error conditions required by the problem specification. As would be expected, the error
messages directly related to the stack processing are all protected by if statements that
check whether the stack is empty (not enough operands) or full (too many operands). The
only other error trapping occurs if the string stored in operator does not match any of the
legal operators, in which case we throw an exception with the message “Illegal symbol.”

/ / -
/ / Pos t Fi xEva l ua t or . j a va by Da l e / J oyc e / We e ms Cha pt e r 3
/ /
/ / Pr ovi de s a pos t f i x e xpr e s s i on e va l ua t i on.
/ / -

pa c ka ge c h03. pos t f i x;

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 222

3.8 Case Study: Postfix Expression Evaluator | 223

i mpor t c h03. s t a c ks . *;
i mpor t j a va . ut i l . Sc a nne r ;

publ i c c l a s s Pos t Fi xEva l ua t or
{

publ i c s t a t i c i nt e va l ua t e (St r i ng e xpr e s s i on)
{

Bounde dSt a c kI nt e r f a c e <I nt e ge r > s t a c k = ne w Ar r a ySt a c k<I nt e ge r >(50) ;

i nt va l ue ;
St r i ng ope r a t or ;

i nt ope r a nd1;
i nt ope r a nd2;

i nt r e s ul t = 0;

Sc a nne r t oke ni z e r = ne w Sc a nne r (e xpr e s s i on) ;

whi l e (t oke ni z e r . ha s Ne xt ())
{

i f (t oke ni z e r . ha s Ne xt I nt ())
{

/ / Pr oc e s s ope r a nd.
va l ue = t oke ni z e r . ne xt I nt () ;
i f (s t a c k. i s Ful l ())

t hr ow ne w Pos t Fi xExc e pt i on(" Too ma ny ope r a nds - s t a c k ove r f l ow") ;
s t a c k. pus h(va l ue) ;

}
e l s e
{

/ / Pr oc e s s ope r a t or .
ope r a t or = t oke ni z e r . ne xt () ;

/ / Obt a i n s e c ond ope r a nd f r om s t a c k.
i f (s t a c k. i s Empt y())

t hr ow ne w Pos t Fi xExc e pt i on(" Not e nough ope r a nds - s t a c k " +
" unde r f l ow") ;

ope r a nd2 = s t a c k. t op() ;
s t a c k. pop() ;

/ / Obt a i n f i r s t ope r a nd f r om s t a c k.
i f (s t a c k. i s Empt y())

t hr ow ne w Pos t Fi xExc e pt i on(" Not e nough ope r a nds - s t a c k " +
" unde r f l ow") ;

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 223

224 | Chapter 3: The Stack ADT

ope r a nd1 = s t a c k. t op() ;
s t a c k. pop() ;

/ / Pe r f or m ope r a t i on.
i f (ope r a t or . e qua l s (" / "))

r e s ul t = ope r a nd1 / ope r a nd2;
e l s e
i f (ope r a t or . e qua l s (" *"))

r e s ul t = ope r a nd1 * ope r a nd2;
e l s e
i f (ope r a t or . e qua l s (" +"))

r e s ul t = ope r a nd1 + ope r a nd2;
e l s e
i f (ope r a t or . e qua l s (" - "))

r e s ul t = ope r a nd1 - ope r a nd2;
e l s e

t hr ow ne w Pos t Fi xExc e pt i on(" I l l e ga l s ymbol : " + ope r a t or) ;

/ / Pus h r e s ul t of ope r a t i on ont o s t a c k.
s t a c k. pus h(r e s ul t) ;

}
}

/ / Obt a i n f i na l r e s ul t f r om s t a c k.
i f (s t a c k. i s Empt y())

t hr ow ne w Pos t Fi xExc e pt i on(" Not e nough ope r a nds - s t a c k unde r f l ow") ;
r e s ul t = s t a c k. t op() ;
s t a c k. pop() ;

/ / St a c k s houl d now be e mpt y.
i f (! s t a c k. i s Empt y())

t hr ow ne w Pos t Fi xExc e pt i on(" Too ma ny ope r a nds - ope r a nds l e f t ove r ") ;

/ / Re t ur n t he f i na l r e s ul t .
r e t ur n r e s ul t ;

}
}

The PFixConsole Class
This class is the main driver for our console-based application. Using the Pos t Fi xEva l u-
a t or and Pos t Fi xExc e pt i on classes, it is easy to design our program. We follow the
same basic approach we used for Ba l a nc e dApp earlier in the chapter—namely, prompt the
user for an expression, evaluate it, return the results to the user, and ask the user if he or

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 224

3.8 Case Study: Postfix Expression Evaluator | 225

she would like to continue. Note that the main program does not directly use Ar r a ySt a c k;
it is used strictly by the Pos t Fi xEva l ua t or class when evaluating an expression.

/ / -
/ / PFi xCons ol e . j a va by Da l e / J oyc e / We e ms Cha pt e r 3
/ /
/ / Eva l ua t e s pos t f i x e xpr e s s i ons e nt e r e d by t he us e r .
/ / Us e s a c ons ol e i nt e r f a c e .
/ / -

i mpor t j a va . ut i l . Sc a nne r ;
i mpor t c h03. pos t f i x . *;

publ i c c l a s s PFi xCons ol e
{

publ i c s t a t i c voi d ma i n(St r i ng[] a r gs)
{

Sc a nne r c onI n = ne w Sc a nne r (Sys t e m. i n) ;

St r i ng l i ne = nul l ; / / s t r i ng t o be e va l ua t e d
St r i ng mor e = nul l ; / / us e d t o s t op or c ont i nue pr oc e s s i ng

i nt r e s ul t ; / / r e s ul t of e va l ua t i on

do
{

/ / Ge t ne xt e xpr e s s i on t o be pr oc e s s e d.
Sys t e m. out . pr i nt l n(" Ent e r a pos t f i x e xpr e s s i on t o be e va l ua t e d: ") ;
l i ne = c onI n. ne xt Li ne () ;

/ / Obt a i n a nd out put r e s ul t of e xpr e s s i on e va l ua t i on.
t r y
{

r e s ul t = Pos t Fi xEva l ua t or . e va l ua t e (l i ne) ;

/ / Out put r e s ul t .
Sys t e m. out . pr i nt l n() ;
Sys t e m. out . pr i nt l n(" Re s ul t = " + r e s ul t) ;

}
c a t c h (Pos t Fi xExc e pt i on e r r or)
{

/ / Out put e r r or me s s a ge .
Sys t e m. out . pr i nt l n() ;
Sys t e m. out . pr i nt l n(" Er r or i n e xpr e s s i on - " + e r r or . ge t Me s s a ge ()) ;

}

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 225

226 | Chapter 3: The Stack ADT

/ / De t e r mi ne i f t he r e i s a not he r e xpr e s s i on t o pr oc e s s .
Sys t e m. out . pr i nt l n() ;
Sys t e m. out . pr i nt (" Eva l ua t e a not he r e xpr e s s i on? (Y = Ye s) : ") ;
mor e = c onI n. ne xt Li ne () ;
Sys t e m. out . pr i nt l n() ;

}
whi l e (mor e . e qua l s I gnor e Ca s e (" y")) ;

Sys t e m. out . pr i nt l n(" Pr ogr a m c ompl e t e d. ") ;
}

}

Here is a sample run of our console-based application:

Enter a postfix expression to be evaluated:
5 7 + 6 2 - *

Result = 48

Evaluate another expression? (Y = Yes): y

Enter a postfix expression to be evaluated:
4 2 3 5 1 - + * + *

Error in expression - Not enough operands - stack underflow

Evaluate another expression? (Y = Yes): n

Program completed.

Testing the Postfix Evaluator
As mentioned earlier, we can test all of the classes created for this case study by simply
running the postfix evaluator program and entering postfix expressions. We should test
expressions that contain only additions, subtractions, multiplications, and divisions, as
well as expressions that contain a mixture of operations. We should test expressions
where the operators all come last and expressions where the operators are intermingled
with the operands. Of course, we must evaluate all test expressions “by hand” to verify
the correctness of the program’s results. Finally, we must test that illegal expressions are
correctly handled, as defined in the specifications. This includes a test of stack overflow,
which requires at least 51 operands.

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 226

3.8 Case Study: Postfix Expression Evaluator | 227

The GUI Approach
Most of the code in the PFi xCons ol e program is responsible for presenting a console-based
interface to the user. Just as that program used the Pos t Fi xEva l ua t or and Pos t Fi xEx-
c e pt i on classes to do its primary processing, so can a program that presents a graphical user
interface. Our PFi xGUI program does just that. We do not list the code for this program here,
but the interested reader can find it with the rest of the textbook code on the website. It uses
the Bor de r layout with nested containers.

Here are a few screenshots from the running program. The first shows the interface as orig-
inally presented to the user:

Here’s the result of a successful evaluation:

Next, the Clear button is clicked:

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 227

228 | Chapter 3: The Stack ADT

Here’s what happens when the user enters an expression with too many operands:

And finally, here’s what happens when an illegal operand is used:

Exercises
1. Revise and test the PFi xGUI application to meet these specifications:

a. Use Fl ow layout exclusively.
b. Keep track of statistics about the numbers pushed onto the stack during the evaluation

of an expression. The program should output the largest and smallest numbers pushed,
how many numbers were pushed, and the average value of pushed numbers.

2. Revise and test the PFi xGUI application so that it will step through the evaluation of a
postfix expression one step at a time, showing the intermediate results as it goes. Include a
Step button on the interface so the user can control when a step is taken. For example, if
the original expression is 2 3 4 + + 5 - , clicking Step once will display in the expres-
sion box 2 7 + 5 - , clicking it again will display 9 5 - , and clicking it one last time will
display 4.

3. Design and implement your own GUI for this problem. Write a short explanation about why
your interface is better than the one shown in the textbook.

Figure 3.16 is a UML diagram showing the “uses” relationships among the stack
implementation class, the postfix expression evaluation class, and the two main driver
classes (one console-based and one GUI-based).

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 228

Exercises | 229

Figure 3.16 UML diagram for postfix program

ArrayStack PostFixEvaluator

PFixConsole

PFixGUI

Summary
We have defined a stack at the logical level as an abstract data type, used a stack in two
applications, and presented three implementations (array-based, link-based, and
Ar r a yLi s t -based). We have also seen how to use Java’s generics to enable our stack
implementations to work with different kinds of objects.

Although our logical picture of a stack is a linear collection of data elements with the
newest element (the top) at one end and the oldest element at the other end, the physi-
cal representation of the stack class does not have to re-create our mental image. The
implementation of the stack class must always support the last in, first out (LIFO) prop-
erty; how this property is supported, however, is another matter.

Usually more than one functionally correct design is possible for the same data struc-
ture. When multiple correct solutions exist, the requirements and specifications of the
application may determine which solution represents the best design.

We have seen how a hierarchy of interfaces can be used to represent the essential
features of a data structure ADT and then extend it with different properties, such as
being bounded or unbounded in size. We have also seen three different approaches to
dealing with exceptional situations that are encountered within an ADT.

In this chapter we developed algorithms for two important applications of stacks in
computer science. We can now check whether the grouping symbols in a string are bal-
anced, and we can evaluate a postfix arithmetic expression.

Figure 3.17 is a UML diagram showing the stack-related interfaces and classes devel-
oped in this chapter, along with a few other supporting classes, and their relationships.

Exercises
3.1 Stacks

1. True or False?
a. A stack is a first in, first out structure.
b. The item that has been in a stack the longest is at the “bottom” of the stack.
c. If you pus h five items onto an empty stack and then pop the stack five times,

the stack will be empty again.
d. If you pus h five items onto an empty stack and then perform the t op opera-

tion five times, the stack will be empty again.

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 229

230 | Chapter 3: The Stack ADT

Figure 3.17 The stack-related interfaces and classes developed in Chapter 3

<<interface>>
StackInterface<T>

<<interface>>
UnboundedStackInterface<T>

<<interface>>
BoundedStackInterface

+pop() : voi d
+t op() : T
+i s Empt y() : bool e a n

+pus h(T e l e me nt) : voi d

LinkedStack<T>

#t op: LLNode

+Li nke dSt a c k()
+pus h(T e l e me nt : voi d
+pop() : voi d
+t op() : T
+i s Empt y() : bool e a n

<<interface>>
BoundedStackInterface<T>

StackUnderflowException

+pus h(T e l e me nt) : voi d
+i s Ful l () : bool e a n

+St a c kUnde r f l owExc e pt i on()
+St a c kUnde r f l owExc e pt i on(St r i ng me s s a ge)

StackOverflowException

+St a c kOve r f l owExc e pt i on()
+St a c kOve r f l owExc e pt i on(St r i ng me s s a ge)

ArrayStack<T>

#DEFCAP: i nt
#s t a c k: T[]
#t opI nde x: i nt

+Ar r a ySt a c k()
+Ar r a ySt a c k(i nt ma xs i z e)
+pus h(T e l e me nt) : voi d
+pop() : voi d
+t op() : T
+i s Empt y() : bool e a n
+i s Ful l () : bool e a n

 uses

 extends

 implements

 Key:

e. The pus h operation should be classified as a “transformer.”
f. The t op operation should be classified as a “transformer.”
g. The pop operation should be classified as an “observer.”
h. If we first pus h i t e mA onto a stack and then pus h i t e mB, then the t op of

the stack is i t e mB.
2. Following the style of Figure 3.2, show the effects of the following stack opera-

tions, assuming you begin with an empty stack:

push block5
push block7
pop
pop
push block2
push block1

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 230

Exercises | 231

pop
push block8

3.2 Collection Elements
3. In Section 3.2 we looked at four approaches to defining the types of elements

we can hold in a collection ADT. Briefly describe each of the four approaches.
4. For each of the following programs that involve casting, predict the result of

compiling and running the program. Potential answers include “there is a syntax
error because . . . ,” “there is a run-time error because . . . ,” and “the output of
the program would be”
a. publ i c c l a s s t e s t 1

{
publ i c s t a t i c voi d ma i n(St r i ng[] a r gs)
{

St r i ng s 1, s 2;
Obj e c t o1;
s 2 = " E. E. Cummi ngs " ;
o1 = s 2;
s 1 = o1;
Sys t e m. out . pr i nt l n(s 1. t oLowe r Ca s e ()) ;

}
}

b. publ i c c l a s s t e s t 2
{

publ i c s t a t i c voi d ma i n(St r i ng[] a r gs)
{

St r i ng s 1, s 2;
Obj e c t o1;
s 2 = " E. E. Cummi ngs " ;
o1 = s 2;
s 1 = (St r i ng) o1;
Sys t e m. out . pr i nt l n(s 1. t oLowe r Ca s e ()) ;

}
}

5. In Chapter 2 we developed a St r i ngLog ADT. It represents a “log” that holds
objects of class St r i ng. Suppose that instead of restricting ourselves to strings,
we decided to create a “log” that holds objects of type Obj e c t . Describe the
changes you would have to make to each of the following classes to implement
such a change.
a. Change St r i ngLogI nt e r f a c e to Obj e c t LogI nt e r f a c e .
b. Change Ar r a ySt r i ngLog to Ar r a yObj e c t Log.

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 231

232 | Chapter 3: The Stack ADT

c. Change I TDAr r a ySt r i ngLog to I TDAr r a yObj e c t Log.
d. Change LLSt r i ngNode to LLObj e c t Node .
e. Change Li nke dSt r i ngLog to Li nke dObj e c t Log.

6. Create a generic array-based log class that features all the functionality of the
St r i ngLog class, as specified in Section 2.2. Create a driver application that
demonstrates that your implementation works correctly.

7. Create a generic link-based ba g class that features all the functionality of the
Ba g class specified in Exercise 29 of Chapter 2. Create a driver application that
demonstrates that your implementation works correctly.

3.3 Exceptional Situations
8. Explain the difference between a programmer-defined exception that extends the

Java Exc e pt i on class and one that extends the Java RunTi me Exc e pt i on class.
9. Expand your solution to Exercise 29 of Chapter 1, where you implemented the

Da t e class, to include the appropriate throwing of the Da t e Out Of Bounds Ex-
c e pt i on by the class constructor, as described in this chapter. Don’t forget to
check for legal days, in addition to months and years.

10. Let’s assume you have correctly implemented the Da t e class, as requested in
Exercise 9. Recall that the I nc Da t e class extends Da t e , adding a method
called i nc r e me nt that adds one day to the date represented by the Da t e
object. Consider exceptional situations that might be related to the i nc r e -
me nt method.
a. Should the i nc r e me nt method test the current date values to make sure they

are legal before incrementing the date?
b. How about after incrementing the date? Would it be a good idea for the

i nc r e me nt method to test the new date to make sure it is legal, perhaps rais-
ing the Da t e Out Of Bounds Exc e pt i on if it is not?

11. Describe three ways to “handle” error situations within our ADT
specification/implementation. For each approach, include a brief description of
when it is most appropriate to use it.

12. What is wrong with the following method, based on our conventions for han-
dling error situations?

publ i c voi d me t hod10(i nt numbe r)
/ / Pr e c ondi t i on: numbe r i s > 0.
/ / Thr ows Not Pos i t i ve Exc e pt i on i f numbe r i s not > 0,
/ / o t he r wi s e . . .

13. There are three parts to this exercise:
a. Create a “standard” exception class called Thi r t e e nExc e pt i on.
b. Write a program that repeatedly prompts the user to enter a string. After each

string is entered the program outputs the length of the string, unless the

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 232

Exercises | 233

length of the string is 13, in which case the Thi r t e e nExc e pt i on is thrown
with the message “Use thirteen letter words and stainless steel to protect
yourself!” Your ma i n method should simply throw the Thi r t e e nExc e pt i on
exception out to the run-time environment. A sample run of the program
might be:

I nput a s t r i ng > Vi l l anova Uni ve r s i t y
Tha t s t r i ng ha s l e ngt h 20.
I nput a s t r i ng > Tr i s c ade c aphobi a
Tha t s t r i ng ha s l e ngt h 16.
I nput a s t r i ng > mi s pr ogr amme d

At this point the program bombs and the system provides some information,
including the “Use thirteen letter words and stainless steel to protect your-
self!” message.

c. Create another program similar to the one you created for part b, except this
time, within your code, include a try-catch clause so that you catch the
exception when it is thrown. If it is thrown, then catch it, print its message,
and end the program “normally.”

14. Write a class Ar r a y that encapsulates an array and provides bounds-checked
access. The private instance variables should be i nt i nde x and i nt
a r r a y[10] . The public members should be a default constructor and methods
(signatures shown below) to provide read and write access to the array.

voi d i ns e r t (i nt l oc a t i on, i nt va l ue) ;
i nt r e t r i e ve (i nt l oc a t i on) ;

If the l oc a t i on is within the correct range for the array, the i ns e r t method
should set that location of the array to the value. Likewise, if the l oc a t i on is
within the correct range for the array, the r e t r i e ve method should return the
value at that location—the approach taken by the library before Java 5.0. In either
case, if l oc a t i on is not within the correct range, the method should throw an
exception of class Ar r a yOut Of Bounds Exc e pt i on. Write an application that helps
you test your implementation. Your application should assign values to the array by
using the i ns e r t method, then use the r e t r i e ve method to read these values back
from the array. It should also try calling both methods with illegal location values.
Catch any exceptions thrown by placing the “illegal” calls in a t r y block with an
appropriate c a t c h.

3.4 Formal Specification
15. Based on our Stack ADT specification, an application programmer has two ways

to check for an empty stack. Describe them and discuss when one approach
might be preferable to the other approach.

16. Show what is written by the following segments of code, given that i t e m1,
i t e m2, and i t e m3 are i nt variables, and s t a c k is an object that fits the

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 233

234 | Chapter 3: The Stack ADT

abstract description of a stack as given in the section. Assume that you can store
and retrieve variables of type i nt on s t a c k.
a. i t e m1 = 1;

i t e m2 = 0;
i t e m3 = 4;
s t a c k. pus h(i t e m2) ;
s t a c k. pus h(i t e m1) ;
s t a c k. pus h(i t e m1 + i t e m3) ;
i t e m2 = s t a c k. t op() ;
s t a c k. pus h (i t e m3*i t e m3) ;
s t a c k. pus h(i t e m2) ;
s t a c k. pus h(3) ;
i t e m1 = s t a c k. t op() ;
s t a c k. pop() ;
Sys t e m. out . pr i nt l n(i t e m1 + " " + i t e m2 + " " + i t e m3) ;
whi l e (! s t a c k. i s Empt y())
{

i t e m1 = s t a c k. t op() ;
s t a c k. pop() ;
Sys t e m. out . pr i nt l n(i t e m1) ;

}

b. i t e m1 = 4;
i t e m3 = 0;
i t e m2 = i t e m1 + 1;
s t a c k. pus h(i t e m2) ;
s t a c k. pus h(i t e m2 + 1) ;
s t a c k. pus h(i t e m1) ;
i t e m2 = s t a c k. t op() ;
s t a c k. pop() ;
i t e m1 = i t e m2 + 1;
s t a c k. pus h(i t e m1) ;
s t a c k. pus h(i t e m3) ;
whi l e (! s t a c k. i s Empt y())
{

i t e m3 = s t a c k. t op() ;
s t a c k. pop() ;
Sys t e m. out . pr i nt l n(i t e m3) ;

}
Sys t e m. out . pr i nt l n(i t e m1 + " " + i t e m2 + " " + i t e m3) ;

17. Your friend Bill says, “The pus h and pop stack operations are inverses of each
other. Therefore performing a pus h followed by a pop is always equivalent to per-
forming a pop followed by a pus h. You get the same result!” How would you
respond to that? Do you agree?

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 234

Exercises | 235

18. The following code segment is a count-controlled loop going from 1 through 5. At
each iteration, the loop counter is either printed or put on a stack depending on the
bool e a n result returned by the method r a ndom. (Assume that r a ndom randomly
returns either t r ue or f a l s e .) At the end of the loop, the items on the stack are
removed and printed. Because of the logical properties of a stack, this code segment
cannot print certain sequences of the values of the loop counter. You are given an
output and asked to determine whether the code segment could generate the output.
f or (c ount = 1; c ount <= 5; c ount ++)
{

i f (r a ndom())
Sys t e m. out . pr i nt l n(c ount) ;

e l s e
s t a c k. pus h(c ount) ;

}
whi l e (! s t a c k. i s Empt y())
{

numbe r = s t a c k. t op() ;
s t a c k. pop() ;
Sys t e m. out . pr i nt l n(numbe r) ;

}

a. The following output is possible: 1 3 5 2 4
i. True ii. False iii. Not enough information

b. The following output is possible: 1 3 5 4 2
i. True ii. False iii. Not enough information

c. The following output is possible: 1 2 3 4 5
i. True ii. False iii. Not enough information

d. The following output is possible: 5 4 3 2 1
i. True ii. False iii. Not enough information

19. In compiler construction, we need an observer method to examine stack ele-
ments based on their location in the stack (the top of the stack is considered
location 1, the second element from the top is location 2, and so on). This is
sometimes called (colloquially) a “glass stack” or (more formally) a “traversable
stack.” The definition of the stack is exactly as we specify in this chapter, except
we add a public method named i ns pe c t or that accepts an i nt argument indi-
cating the location to be returned. The method should return nul l if the argu-
ment indicates an unused location. Describe explicitly what you would add to
the St a c kI nt e r f a c e interface to include this method.

20. In compiler construction, we need to be able to pop more than one element at
a time, discarding the items popped. To do so, we provide an i nt parameter
c ount for a popSome method that removes the top c ount items from the
stack. The new method should throw St a c kUnde r f l owExc e pt i on as needed.

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 235

236 | Chapter 3: The Stack ADT

Write the popSome method at the application level, using operations from
St a c kI nt e r f a c e .

21. In each plastic container of Pez candy, the colors are stored in random order.
Your little brother Phil likes only the yellow ones, so he painstakingly takes out
all the candies one by one, eats the yellow ones, and keeps the others in order,
so that he can return them to the container in exactly the same order as before—
minus the yellow candies, of course. Write the algorithm to simulate this
process. (You may use any of the stack operations defined in the Stack ADT, but
may not assume any knowledge of how the stack is implemented.)

22. Describe inheritance of interfaces and explain why it was used in Section 3.4.
Exercises 23–26 require “outside” research.

23. Describe the major differences between the Java library’s Ve c t or and
Ar r a yLi s t classes.

24. Explain how the iterators in the Java Collections Framework are used.
25. What is the defining feature of the Java library’s Se t class?
26. Which classes of the Java library implement the Col l e c t i on interface?

3.5 Array- Based Implementations
27. Explain why an array is a good implementation structure for a bounded stack.
28. Describe the effects each of the following changes would have on the

Ar r a ySt a c k class.
a. Remove the f i na l attribute from the DEFCAP instance variable.
b. Change the value assigned to DEFCAP to 10.
c. Change the value assigned to DEFCAP to 10.
d. In the first constructor change the statement to s t a c k = (T[]) ne w

Obj e c t [100] ;

e. In i s Empt y, change “t opI nde x == - 1” to “t opI nde x < 0”.
f. Reverse the order of the two statements in the i f clause of the pus h method.
g. Reverse the order of the two statements in the i f clause of the pop method.
h. In the t hr ows statement of the t op method change the argument string from

“Top attempted on an empty stack” to “Pop attempted on an empty stack.”
29. Create a t oSt r i ng method for the Ar r a ySt a c k class. This method should create

and return a string that correctly represents the current stack. Such a method
could prove useful for testing and debugging the Ar r a ySt a c k class and for test-
ing and debugging applications that use the Ar r a ySt a c k class.

30. Write a segment of code (application level) to perform each of the following oper-
ations. Assume mySt a c k is an object of the class Ar r a ySt a c k. You may call any
of the public methods of Ar r a ySt a c k. You may declare additional stack objects.
a. Set s e c ondEl e me nt to the second element from the top of mySt a c k, leaving

mySt a c k without its original top two elements.

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 236

Exercises | 237

b. Set bot t omequal to the bottom element in mySt a c k, leaving mySt a c k empty.
c. Set bot t om equal to the bottom element in mySt a c k, leaving mySt a c k

unchanged.
d. Print out the contents of mySt a c k, leaving mySt a c k unchanged.

31. Explain the differences between arrays and array lists.
32. Explain why we use a comparison to 1 for the i s Empt y method of Ar r a ySt a c k,

yet in the i s Empt y method for Ar r a yLi s t St a c k we use a comparison to 0.
33. Exercise 19 described an i ns pe c t or method for a stack.

a. Implement i ns pe c t or for the Ar r a ySt a c k class.
b. Implement i ns pe c t or for the Ar r a yLi s t St a c k class.

34. Exercise 20 described a popSome method for a stack.
a. Implement popSome for the Ar r a ySt a c k class.
b. Implement popSome for the Ar r a yLi s t St a c k class.

35. Two stacks of positive integers are needed, both containing integers with values
less than or equal to 1000. One stack contains even integers; the other contains odd
integers. The total number of elements in the combined stacks is never more than
200 at any time, but we cannot predict how many are in each stack. (All of the ele-
ments could be in one stack, they could be evenly divided, both stacks could be
empty, and so on.) Can you think of a way to implement both stacks in one array?
a. Draw a diagram of how the stacks might look.
b. Write the definitions for such a double-stack structure.
c. Implement the pus h operation; it should store the new item into the correct

stack according to its value (even or odd).

3.6 Application: Well- Formed Expressions
36. For each of the following programs that involve casting and Autoboxing, predict

the result of compiling and running the program. Potential answers include
“there is a syntax error because . . . ,” “there is a run-time error because . . . ,”
and “the output of the program would be”
a. publ i c c l a s s t e s t 3

{
publ i c s t a t i c voi d ma i n(St r i ng[] a r gs)
{

St r i ng s 1;
i nt i 1;
Obj e c t o1;
i 1 = 35;
o1 = i 1;
s 1 = (St r i ng) o1;

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 237

238 | Chapter 3: The Stack ADT

Sys t e m. out . pr i nt l n(s 1. t oLowe r Ca s e ()) ;
}

}

b. publ i c c l a s s t e s t 4
{

publ i c s t a t i c voi d ma i n(St r i ng[] a r gs)
{

I nt e ge r I 1;
i nt i 1;
Obj e c t o1;
i 1 = 35;
o1 = i 1;
I 1 = (I nt e ge r) o1;
Sys t e m. out . pr i nt l n(I 1) ;

}
}

37. Answer the following questions about the Ba l a nc e d class:
a. Is there any functional difference between the class being instantiated in the

following two ways?

Ba l a nc e d ba l = ne w Ba l a nc e d (" a bc " , " xyz ") ;
Ba l a nc e d ba l = ne w Ba l a nc e d (" c a b" , " z xy") ;

b. Is there any functional difference between the class being instantiated in the
following two ways?

Ba l a nc e d ba l = ne w Ba l a nc e d (" a bc " , " xyz ") ;
Ba l a nc e d ba l = ne w Ba l a nc e d (" a bc " , " z xy") ;

c. Is there any functional difference between the class being instantiated in the
following two ways?

Ba l a nc e d ba l = ne w Ba l a nc e d (" a bc " , " xyz ") ;
Ba l a nc e d ba l = ne w Ba l a nc e d (" xyz " , " a bc ") ;

d. Which type is pushed onto the s t a c k? A c ha r ? An i nt ? An I nt e ge r ? Explain.
e. Under which circumstances is the first operation performed on the s t a c k

(not counting the ne w operation) the t op operation?
f. What happens if the string s , which is passed to the t e s t method, is an

empty string?
38. Suppose we want to change our application so that it reports more information

about an unbalanced string—namely, the location and value of the first unbal-
anced character. To report character locations to the user, we number the char-

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 238

Exercises | 239

acters starting with 1. For example, if the user enters the string “(xxx[x}]xx)x”
the output would be “Unbalanced symbol } at location 7.”
a. Describe how you would change the classes to implement this change.
b. Make the changes to the application and test the result.

3.7 Link- Based Implementation
39. What are the main differences, in terms of memory allocation, between using an

array-based stack and using a reference-based stack?
40. Consider the code for the pus h method of the Li nke dSt a c k class. What would

be the effect of the following changes to that code?
a. Switch the first and second lines.
b. Switch the second and third lines.

41. Draw a sequence of diagrams, of the style used in Section 3.7, to depict what hap-
pens from the inside view with the dynamic allocation of space for the references
to the stack elements. Assume A, B, and C represent objects of class St r i ng.
a. Unbounde dSt a c kI nt e r f a c e <St r i ng> mySt a c k;

mySt a c k = ne w Li nke dSt a c k<St r i ng>() ;
mySt a c k. pus h(A) ;
mySt a c k. pop() ;
mySt a c k. pus h(B) ;
mySt a c k. pus h(C) ;

b. Unbounde dSt a c kI nt e r f a c e <St r i ng> mySt a c k;
mySt a c k = ne w Li nke dSt a c k<St r i ng>() ;
mySt a c k. pus h(A) ;
mySt a c k. pus h(B) ;
mySt a c k. pus h(A) ;

c. Unbounde dSt a c kI nt e r f a c e <St r i ng> mySt a c k;
mySt a c k = ne w Li nke dSt a c k<St r i ng>() ;
mySt a c k. pus h(A) ;
mySt a c k. pus h(C) ;
mySt a c k. pus h(B) ;
mySt a c k. pop() ;

42. Create a t oSt r i ng method for the Li nke dSt a c k class. This method should cre-
ate and return a string that correctly represents the current stack. Such a method
could prove useful for testing and debugging the Li nke dSt a c k class and for
testing and debugging applications that use the Li nke dSt a c k class.

43. Exercise 19 described an i ns pe c t or method for a stack. Implement i ns pe c t or
for the Li nke dSt a c k class.

44. Exercise 20 described a popSome method for a stack. Implement popSome for the
Li nke dSt a c k class.

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 239

240 | Chapter 3: The Stack ADT

45. We decide to add a new operation to our Stack ADT called popTop. We add the
following code to our St a c kI nt e r f a c e interface:

publ i c T popTop() t hr ows St a c kUnde r f l owExc e pt i on;
/ / Thr ows St a c kUnde r f l owExc e pt i on i f t hi s s t a c k i s e mpt y,
/ / o t he r wi s e r e move s a nd r e t ur ns t op e l e me nt f r om t hi s s t a c k.

An operation like this is often included for stacks. Implement the popTop
method for the Li nke dSt a c k class.

46. Suppose we decide to add a new operation to our Stack ADT called s i z e I s ,
which returns a value of primitive type i nt equal to the number of items on the
stack. The method signature for s i z e I s is

publ i c i nt s i z e I s ()

a. Write the code for s i z e I s for the Ar r a ySt a c k class.
b. Write the code for s i z e I s for the Li nke dSt a c k class (do not add any

instance variables to the class; each time s i z e I s is called you must “walk”
through the stack and count the nodes).

c. Suppose you decide to augment the Li nke dSt a c k class with an instance
variable s i z e that always holds the current size of the stack. Now you can
implement the s i z e I s operation by just returning the value of s i z e . Identify
all of the methods of Li nke dSt a c k that you need to modify to maintain the
correct value in the s i z e variable and describe how you would change them.

d. Analyze the methods created/changed in parts a, b, and c in terms of Big-O
efficiency.

47. Use the Li nke dSt a c k class to support an application that tracks the status of an
online auction. Bidding begins at 1 (dollars, pounds, euros, or whatever) and
proceeds in increments of at least 1. If a bid arrives that is less than the current
bid, it is discarded. If a bid arrives that is more than the current bid, but less
than the maximum bid by the current high bidder, then the current bid for the
current high bidder is increased to match it and the new bid is discarded. If a bid
arrives that is more than the maximum bid for the current high bidder, then the
new bidder becomes the current high bidder, at a bid of one more than the pre-
vious high bidder’s maximum. When the auction is over (the end of the input is
reached), a history of the actual bids (the ones not discarded), from high bid to
low bid, should be displayed. For example:

New Bid Result High Bidder High Bid Maximum Bid
7 John New high bidder John 1 7
5 Hank High bid increased John 5 7
10 Jill New high bidder Jill 8 10
8 Thad No change Jill 8 10
15 Joey New high bidder Joey 11 15

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 240

Exercises | 241

The bid history for this auction would be
Joey 11
Jill 8
John 5
John 1

Input/output details can be determined by you or your instructor. In any case, as
input proceeds the current status of the auction should be displayed. The final
output should include the bid history as described above.

3.8 Case Study: Postfix Expression Evaluator
48. Evaluate the following postfix expressions.

a. 5 7 8 * +
b. 5 7 8 + *
c. 5 7 + 8 *
d. 1 2 + 3 4 + 5 6 * 2 *

49. Evaluate the following postfix expressions. Some of them may be ill-formed
expressions—in that case, identify the appropriate error message (e.g., too many
operands, too few operands).
a. 1 2 3 4 5 + + +
b. 1 2 + + 5
c. 1 2 * 5 6 *
d. / 23 * 87
e. 4567 234 / 45372 231 * + 34526 342 / + 0 *

50. Revise and test the postfix expression evaluator program as specified here.
a. Use the Ar r a yLi s t St a c k class instead of the Ar r a ySt a c k class—do not

worry about stack overflow.
b. Catch and handle the divide-by-zero situation that was assumed not to hap-

pen. For example, if the input expression is 5 3 3 - /, the result would be
the message “illegal divide by zero.”

c. Support a new operation indicated by “ ”̂ that returns the larger of its
operands. For example, 5 7 ̂ = 7.

d. Keep track of statistics about the numbers pushed onto the stack during the
evaluation of an expression. The program should output the largest and
smallest numbers pushed, the total numbers pushed, and the average value of
pushed numbers.

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 241

13549_CH03_Da l e . qxd 1/ 6/ 11 9: 35 AM Pa ge 242

Knowledge Goals
You should be able to
■ define recursion
■ discuss recursion as a problem-solving technique
■ describe the three questions used to analyze a recursive approach
■ do the following, given a recursive method:

■ determine whether the method halts
■ determine the base cases
■ determine the general cases
■ determine what the method does
■ determine whether the method is correct and, if it is not, correct it

■ compare and contrast dynamic storage allocation and static storage allocation in relation to using recursion
■ explain how recursion works internally by showing the contents of the run-time stack
■ explain why recursion may or may not be a good choice to implement the solution of a problem

Skill Goals
You should be able to
■ do the following, given a recursive-problem description:

■ determine the base cases
■ determine the general cases
■ design and code the solution using recursion

■ verify a recursive method, using the Three-Question Approach
■ decide whether a recursive solution is appropriate for a problem
■ solve the Towers of Hanoi problem recursively
■ count the number of blobs on a grid using a recursive approach
■ visit the nodes of a linked list in reverse order using recursion
■ create an iterative version of a program that uses tail recursion
■ replace a recursive solution with a solution based on a stack
■ design and implement a recursive solution to a problem

Recursion
G

o

a

l

s

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 243

244 | Chapter 4: Recursion

This chapter introduces the topic of recursion—a distinct algorithmic problem-solving
approach supported by many computer languages (Java included). What’s recursion?
Let’s look first at a visual analogy.

You may have seen a set of brightly painted Russian dolls that fit inside one
another. Inside the first doll is a smaller doll, inside of which is an even smaller doll,
inside of which is yet a smaller doll, and so on. Solving a problem recursively is like
taking apart such a set of Russian dolls. You first create smaller and smaller versions of
the same problem until a version is reached that can no longer be subdivided (and that
is easily solved)—that is, until the smallest doll is reached. Determining the overall solu-
tion often requires combining the smaller solutions, analogous to putting the dolls back
together again.

Recursion, when applied properly, is an extremely powerful and useful problem-
solving tool. We will use it many times in upcoming chapters to support our work.

4.1 Recursive Definitions, Algorithms, and Programs

Recursive Definitions
You are already familiar with recursive definitions. Consider the following definition of
the directories (or catalogs, or folders) you use to organize files on a computer:

A directory is an entity in a file system that contains a group of files and other
directories.

This is a recursive definition because it expresses directory in terms of itself.
Here’s another example:

A compound sentence is a sentence that consists of two sentences joined together by
a coordinating conjunction.

Do you see the recursiveness here? Based on the
recursive nature of this definition you can make
compound sentences of any length.

Recursive definition A definition in which something
is defined in terms of smaller versions of itself

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 244

4.1 Recursive Definitions, Algorithms, and Programs | 245

Mathematicians regularly define concepts in terms of themselves. For instance, n! (read
“n factorial”) is used to calculate the number of permutations of n elements. A nonre-
cursive definition of n! is

Consider the case of 4!. Because n > 0, we use the second part of the definition:

4! = 4 3 2 1 = 24

This definition of n! is not mathematically rigorous. It uses the three dots, rather
informally, to stand for intermediate factors. For example, the definition of 8! is 8 7
 6 . . . 1, with the . . . in this case standing for 5 4 3 2.

We can express n! more elegantly, without using the three dots, by using recursion:

This is a recursive definition because we express the factorial function in terms of itself.
The definition of 8! is now 8 7!.

Recursive Algorithms
Let’s walk through the calculation of 4! using our recursive definition. We can use a set
of index cards to help track our work—not only does this demonstrate how we use a
recursive definition, but it also models the actions of a computer system executing a
recursive program.

We take out an index card and write on it:

Calculate 4!
4! =

n
n

n n n
!

()!
if
if

=
=

× − >
�
�
�

1 0
1 0

n
n

n n n n
!

if
if

=
=

× −() × −() × × >
�
�
�

1 0
1 2 1 0

Tom i s t a l l .

Tom i s t a l l a nd Sa l l y i s s hor t .

Tom i s t a l l a nd Sa l l y i s s hor t a nd Al be r t i s a ve r a ge .

Sa l l y i s s hor t . Al be r t i s a ve r a ge .

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 245

246 | Chapter 4: Recursion

Looking at our recursive definition we determine that 4 is greater than 0, so we use the
second part of the definition and continue writing:

Of course, we can’t complete the third line because we don’t know the value of 3!.
Before continuing with our original problem (calculating 4!), we have to solve this new
problem (calculating 3!). So we take out another index card, stack it on top of our origi-
nal card, and write down our new problem:

Again we look at our recursive definition. We determine that 3 is greater than 0, so we
use the second part of the definition and continue writing:

As before, we can’t complete the third line because we don’t know the value of 2!. We
take out another index card and write down our new problem. Continuing in this way
we eventually have five cards stacked on our desk:

At this point, when we turn to our recursive definition to calculate 0! we find that
we can use the first part of the definition: 0! equals 1.

Calculate 4!
4! = 4 × (4 –1)!
4! = 4 × 3!
4! = 4 × →

Calculate 3!
3! = 3 × (3 –1)!
3! = 3 × 2!
3! = 3 × →

Calculate 2!
2! = 3 × (3 –1)!
2! 1113 × 2!
2! = 3 × →

Calculate 1!
1! = 1 × (1 –1)!
1! = 1 × 0!
1! = 1 × →

Calculate 0!
0! =

Calculate 4!
4! = 4 × (4 –1)!
4! = 4 × 3!
4! = 4 × →

Calculate 3!
3! = 3 × (3 –1)!
3! = 3 × 2!
3! = 3 ×

Calculate 4!
4! = 4 × (4 –1)!
4! = 4 × 3!
4! = 4 × →

Calculate 3!
3! =

Calculate 4!
4! = 4 × (4 –1)!
4! = 4 × 3!
4! = 4 ×

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 246

4.1 Recursive Definitions, Algorithms, and Programs | 247

We have finished the problem at the top of our stack of cards. Its result is 1.
Remembering that result, we throw away the top card, write the “1” into the empty slot
on the card that is now on top (the Calculate 1! card), and continue working on that
problem. Because we know how to calculate 1 1, we can quickly finish that problem
and enter its result.

As before, we remember this result, discard the top card, enter the result onto the next
card (the Calculate 2! card), and continue. In quick succession we determine that

2! = 2 1 = 2

3! = 3 2 = 6

4! = 4 6 = 24

ending with the solution to our original problem:

We stop creating new problem cards when we reach a case for which we know the
answer without resorting to the recursive part of the definition. In this example, that point
occurred when we reached Calculate 0!. We know that value is 1 directly from the defini-
tion without having to resort to recursion.

When the answer for a case is directly
known, without requiring further recursion, it is
called a base case. A recursive definition may

Calculate 4!
4! = 4 × (4 – 1)!
4! = 4 × 3!
4! = 4 × 6
4! = 24

From the discarded
Calculate 3! card

Calculate 4!
4! = 4 × (4 –1)!
4! = 4 × 3!
4! = 4 × →

Calculate 3!
3! = 3 × (3 –1)!
3! = 3 × 2!
3! = 3 × →

Calculate 2!
2! = 3 × (3 –1)!
2! 1113 × 2!
2! = 3 × →

Calculate 1!
1! = 1 × (1 –1)!
1! = 1 × 0!
1! = 1 × 1
1! = 1

From the discarded
Calculate 0! card

Calculate 4!
4! = 4 × (4 –1)!
4! = 4 × 3!
4! = 4 × →

Calculate 3!
3! = 3 × (3 –1)!
3! = 3 × 2!
3! = 3 × →

Calculate 2!
2! = 3 × (3 –1)!
2! 1113 × 2!
2! = 3 × →

Calculate 1!
1! = 1 × (1 –1)!
1! = 1 × 0!
1! = 1 × →

Calculate 0!
0! = 1

Base case The case for which the solution can be
stated nonrecursively

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 247

248 | Chapter 4: Recursion

Factorial (int n)
// Precondition: n >= 0
if (n == 0)

return (1)
else

return (n * Factorial (n – 1))

Recursive Programs
In Java, a method can invoke other methods. A method can even invoke itself! When a

method invokes itself, we say it is making a recursive
call. It should not come as a surprise that we use
recursive method calls to implement recursive-problem
solutions.

Here is a Java method that corresponds to our
recursive factorial algorithm. It uses a recursive call (emphasized) to calculate the facto-
rial of its integer argument.

publ i c s t a t i c i nt f a c t or i a l (i nt n) 1

/ / Pr e c ondi t i on: n i s nonne ga t i ve
/ /
/ / Re t ur ns t he va l ue of " n! "

1. Normally we do not use single-letter identifiers in our programs. However, several of the examples of this
chapter are classically described using single-letter names—and we follow that tradition in our discussions and
programs.

have more than one base case. The case (or cases) for
which the solution is expressed in terms of a smaller
version (or versions) of itself is called the recursive or
general case. A recursive algorithm is an algorithm that
expresses a solution in terms of smaller versions of
itself. A recursive algorithm must terminate; that is, it
must have a base case, and the recursive cases must
eventually lead to a base case.

Here is our recursive algorithm for calculating n! based directly on the recursive
definition. It assumes that n is a nonnegative integer.

General (recursive) case The case for which the solu-
tion is expressed in terms of a smaller version of itself
Recursive algorithm A solution that is expressed in
terms of (1) smaller instances of itself, and (2) a base
case

Recursive call A method call in which the method
being called is the same as the one making the call

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 248

4.1 Recursive Definitions, Algorithms, and Programs | 249

{
i f (n == 0)

r e t ur n 1; / / Ba s e c a s e
e l s e

r e t ur n (n * f a c t or i a l (n - 1)) ; / / Ge ne r a l c a s e
}

The argument in the recursive call, n - 1, is different from the argument in the original
call, n. This is an important and necessary condition; otherwise, the method would con-
tinue calling itself indefinitely.

In our example, the f a c t or i a l method invokes itself. This type of recursion is
sometimes called direct recursion, because the
method directly calls itself. All of the examples
in this chapter involve direct recursion. Indirect
recursion occurs when method A calls method
B, and method B calls method A; the chain of
method calls could be even longer, but if it
eventually leads back to method A, then it is
indirect recursion.

Let’s augment our recursive f a c t or i a l method with some trace statements that
allow us to track its progress toward the solution. We include one pr i nt l n statement at
the beginning of the method to show that the method was entered, and another one at
the end to show the value that is about to be returned. We use a statically defined
St r i ng variable i nde nt , initialized to the blank string, to preface every output state-
ment. The length of i nde nt is increased (decreased) by two upon entering (leaving) the
f a c t or i a l method. This formatting allows us to visually match the entry to the
method with the value returned from that method, for each invocation. Note that we
need to declare a variable r e t Va l ue to store the return value of the function, as we
wish to output the value before actually returning it. The code, with trace-related
statements emphasized, follows:

pr i va t e s t a t i c i nt f a c t or i a l (i nt n)
/ / Pr e c ondi t i on: n i s nonne ga t i ve
/ /
/ / Re t ur ns t he va l ue of " n! "
{

i nt r e t Va l ue ; / / r e t ur n va l ue
Sys t e m. out . pr i nt l n(i nde nt + " Ent e r f a c t or i a l " + n) ;
i nde nt = i nde nt + " " ;

i f (n == 0)
r e t Va l ue = 1;

e l s e
r e t Va l ue = (n * f a c t or i a l (n - 1)) ;

Direct recursion Recursion in which a method
directly calls itself
Indirect recursion Recursion in which a chain of two
or more method calls returns to the method that origi-
nated the chain

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 249

250 | Chapter 4: Recursion

i nde nt = i nde nt . s ubs t r i ng(2) ;
Sys t e m. out . pr i nt l n(i nde nt + " Re t ur n " + r e t Va l ue) ;

r e t ur n(r e t Va l ue) ;
}

Here is the output if we invoke this augmented f a c t or i a l method with an argu-
ment of 9. Note that the final result is 362,880. Although the factorial function starts
slowly, it grows very quickly.

Recursion is a powerful programming technique, but we must be careful when
using it. Recursive solutions can be less efficient than iterative solutions to the same
problem. In fact, some of the examples presented in this chapter, including f a c t or i a l ,
are better suited to iterative approaches. We discuss this topic more in Section 4.7.

Re t ur n 1
Re t ur n 1

Re t ur n 2

Re t ur n 24
Re t ur n 120

Re t ur n 720
Re t ur n 5040

Re t ur n 40320
Re t ur n 362880

Re t ur n 6

Ent e r f a c t or i a l 9
Ent e r f a c t or i a l 8

Ent e r f a c t or i a l 7
Ent e r f a c t or i a l 6

Ent e r f a c t or i a l 5
Ent e r f a c t or i a l 4

Ent e r f a c t or i a l 3
Ent e r f a c t or i a l 2

Ent e r f a c t or i a l 1
Ent e r f a c t or i a l 0

Iterative Solution for Factorial
We used the factorial algorithm to demonstrate recursion because it is familiar and easy to visu-
alize. In practice, we would never want to solve this problem using recursion, as a straightfor-
ward, more efficient iterative solution exists. Let’s look at the iterative solution to the problem:

/ / I t e r a t i ve s ol ut i on
publ i c s t a t i c i nt f a c t or i a l (i nt n)
{

i nt va l ue = n;
i nt r e t Va l ue = 1; / / r e t ur n va l ue
whi l e (va l ue ! = 0)

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 250

4.2 The Three Questions | 251

{
r e t Va l ue = r e t Va l ue * va l ue ;
va l ue = va l ue - 1;

}
r e t ur n(r e t Va l ue) ;

}

For easy comparison, we repeat the code from the recursive solution:

/ / Re c ur s i ve s ol ut i on
publ i c s t a t i c i nt f a c t or i a l (i nt n)
{

i f (n == 0)
r e t ur n 1; / / Ba s e c a s e

e l s e
r e t ur n (n * f a c t or i a l (n - 1)) ; / / Ge ne r a l c a s e

}

Iterative solutions tend to employ loops, whereas recursive solutions tend to have selection
statements—either an if or a switch statement. A branching structure is usually the main control
structure in a recursive method. A looping structure is the corresponding control structure in an
iterative method. The iterative version of factorial has two local variables (r e t Va l ue and
va l ue), whereas the recursive version has none. There are usually fewer local variables in a
recursive method than in an iterative method. The iterative solution is more efficient because
starting a new iteration of a loop is a faster operation than calling a method.

4.2 The Three Questions

In this section we present three questions to ask about any recursive algorithm or pro-
gram. Using these questions helps us verify, design, and debug recursive solutions to
problems.

Verifying Recursive Algorithms
The kind of walk-through we did in Section 4.1, using index cards, is useful for under-
standing the recursive process—but it is not sufficient for validating the correctness of a
recursive algorithm. After all, simulating the execution of f a c t or i a l (4) tells us the
method works when the argument equals 4, but it doesn’t tell us whether the method is
valid for other arguments.

We use the Three-Question Approach for verifying recursive algorithms. To verify
that a recursive solution works, we must be able to answer yes to all three of these
questions:

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 251

Factorial (int n)
// Precondition: n >= 0
if (n == 0)

return (1)
else

return (n * Factorial (n – 1))

1. The Base-Case Question Is there a nonrecursive way out of the algorithm, and
does the algorithm work correctly for this base case?

2. The Smaller-Caller Question Does each recursive call to the algorithm involve a
smaller case of the original problem, leading inescapably to the base case?

3. The General-Case Question Assuming the recursive call(s) to the smaller case(s)
works correctly, does the algorithm work correctly for the general case?

Let’s apply these three questions to the f a c t or i a l algorithm:

252 | Chapter 4: Recursion

1. The Base-Case Question The base case occurs when n is 0. The Fa c t or i a l algo-
rithm then returns the value of 1, which is the correct value of 0!, and no further
(recursive) calls to Fa c t or i a l are made. The answer is yes.

2. The Smaller-Caller Question The parameter is n and the recursive call passes the
argument n 1. Therefore each subsequent recursive call sends a smaller value,
until the value sent is finally 0. At this point, as we verified with the base-case
question, we have reached the smallest case, and no further recursive calls are
made. The answer is yes.

3. The General-Case Question Assuming that the recursive call Fa c t or i a l (n - 1)
gives us the correct value of (n 1)!, the return statement computes n * (n 1)!.
This is the definition of a factorial, so we know that the algorithm works in the
general case. The answer is yes.

Because the answers to all three questions are yes, we can conclude that the algo-
rithm works. If you are familiar with inductive proofs, you should recognize what we
have done. Having made the assumption that the algorithm works for the smaller case,
we have shown that the algorithm works for the general case. Because we have also
shown that the algorithm works for the base case of 0, we have inductively shown that
it works for any integer argument greater than or equal to 0.

For the factorial problem we assumed the original value for n is greater than or
equal to 0. Note that without this assumption we cannot answer the smaller-caller ques-
tion affirmatively. For example, if we start with n = 5, the recursive call would pass
an argument of 6, which is farther from the base case, not closer, as required.

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 252

4.2 The Three Questions | 253

These kinds of constraints often exist on the valid input arguments for a recursive
algorithm. We can typically use our three-question analysis to determine these con-
straints. Simply check whether there are any starting argument values for which the
smaller call does not produce a new argument that is closer to the base case. Such start-
ing values are invalid. Constrain your legal input arguments so that these values are not
permitted.

Writing Recursive Methods
The questions used for verifying recursive algorithms can also be used as a guide for writ-
ing recursive methods. We can take the following approach to write a recursive method:

1. Get an exact definition of the problem to be solved. (This, of course, is the first step
in solving any programming problem.)

2. Determine the size of the problem to be solved on this call to the method. On the
initial call to the method, the size of the whole problem is expressed in the value(s)
of the argument(s).

3. Identify and solve the base case(s) in which the problem can be expressed nonrecur-
sively. This ensures a yes answer to the base-case question.

4. Identify and solve the general case(s) correctly in terms of a smaller case of the
same problem—a recursive call. This ensures yes answers to the smaller-caller and
general-case questions.

In the case of the factorial problem, the definition of the problem is summarized in
the definition of the factorial function. The size of the problem is the number of values to
be multiplied: n. The base case occurs when n is 0, in which case we take the nonrecur-
sive path. The general case occurs when n > 0, resulting in a recursive call to f a c t or i a l
for a smaller case: f a c t or i a l (n - 1) . We can summarize this information in table form
as follows:

Recursive factorial(int n) Method: Returns int

Definition: Calculates and returns n!
Precondition: n is nonnegative
Size: Value of n
Base Case: If n equals 0, return 1
General Case: If n > 0, return n*factorial(n – 1)

Debugging Recursive Methods
Because of their nested calls to themselves, recursive methods can be confusing to debug.
The most serious problem is the possibility that the method recurses forever. A typical
symptom of this problem is an error message telling us that the system has run out of
space in the run-time stack, due to the level of recursive calls. (In Section 4.6 we look at

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 253

254 | Chapter 4: Recursion

how recursion uses the run-time stack.) Using the Three-Question Approach to verify
recursive methods and determine argument constraints should help us avoid this
problem.

Success with the three questions does not guarantee, however, that the program will
not fail due to lack of space. In Section 4.7 we discuss the amount of space overhead
required to support recursive method calls. Because a call to a recursive method may
generate many, many levels of method calls to itself, the space consumed might be
more than the system can handle.

One error that programmers often make when they first start writing recursive
methods is to use a looping structure instead of a branching one. Because they tend to
think of the problem in terms of a repetitive action, they inadvertently use a while state-
ment rather than an if statement. The body of a recursive method should always break
down into base and recursive cases. Hence, we use a branching statement. It’s a good
idea to double-check our recursive methods to make sure that we used an if or switch
statement to select the recursive or base case.

Recursive methods are good places to put debug output statements during testing,
similar to the trace statements we used with f a c t or i a l . Print out the arguments and
local variables, if any, at the beginning and end of the method. Remember to print the
values of the arguments on the recursive call(s) so you can check that each call is trying
to solve a problem smaller than the previous one.

4.3 Towers of Hanoi

One of your first toys may have been a plastic contraption with pegs holding colored
rings of different diameters. If so, you probably spent countless hours moving the rings
from one peg to another. If we put some constraints on how they can be moved, we have
an adult game called the Towers of Hanoi. When the game begins, all the rings are on
the first peg in order by size, with the smallest on the top. The object of the game is to
move the rings, one at a time, to the third peg. The catch is that a ring cannot be placed
on top of one that is smaller in diameter. The middle peg can be used as an auxiliary
peg, but it must be empty at the beginning and at the end of the game. The rings can
only be moved one at a time.

The Algorithm
To get a feel for how this might be done, let’s look at some sketches of what the config-
uration must be at certain points for a solution to be possible. We use four rings. The
beginning configuration is

1 2 3

1
2
3
4

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 254

4.3 Towers of Hanoi | 255

To move the largest ring (ring 4) to peg 3, we must move the three smaller rings to peg
2 (this cannot be done with one move). Let’s assume we can do this. Then ring 4 can be
moved into its final place:

Now, to move the next largest ring (ring 3) into place, we must move the two rings on
top of it onto an auxiliary peg (peg 1 in this case). Again we assume we can do this.
Then ring 3 can be moved to its final place:

To get ring 2 into place, we must assume we can move ring 1 to another peg, freeing
ring 2 to be moved to its final place on peg 3. This is an easy assumption to make:

The last ring (ring 1) can now be moved into its final place, and we are finished:

If all of our assumptions are valid, we have solved the problem for four rings. Can
you see that all of the assumptions involve solving smaller versions of the problem? We
have solved the problem using recursion. The general recursive algorithm for moving n
rings from the starting peg to the destination peg is:

2
3
41

1 2 3 1 2 3

1
2
3
4

1 2 3

3
42 1

2
3
41

1 2 3

1 2 3

43
1
2

3
4

1
2

1 2 3

1 2 3

4

1
2
3 4

1
2
3

1 2 3

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 255

Move n Rings from Starting Peg to Destination Peg
Move n - 1 rings from starting peg to auxiliary peg
Move the nth ring from starting peg to destination peg
Move n - 1 rings from auxiliary peg to destination peg

256 | Chapter 4: Recursion

The Method
Let’s write a recursive method that implements this algorithm. We can see that recursion
works well because the first and third steps of the algorithm essentially repeat the over-
all algorithm, albeit with a smaller number of rings. Notice, however, that the starting
peg, the destination peg, and the auxiliary peg are different for the subproblems; they
keep changing during the recursive execution of the algorithm. To make the method
easier to follow, we call the pegs s t a r t Pe g, e ndPe g, and a uxPe g. These three pegs,
along with the number of rings on the starting peg, are the parameters of the method.
We won’t actually move any rings but we will print out a message describing the moves.

Our algorithm explicitly defines the recursive or general case, but what about a base
case? How do we know when to stop the recursive process? The clue lies in the expres-
sion “Move n rings.” If we don’t have any rings to move, we don’t have anything to do.
We are finished with that stage. Therefore, when the number of rings equals 0, we do
nothing (that is, we simply return). That is the base case.

publ i c s t a t i c voi d doTowe r s (
i nt n , / / Numbe r of r i ngs t o move
i nt s t a r t Pe g, / / Pe g c ont a i ni ng r i ngs t o move
i nt a uxPe g, / / Pe g hol di ng r i ngs t e mpor a r i l y
i nt e ndPe g) / / Pe g r e c e i vi ng r i ngs be i ng move d

{
i f (n > 0)
{

/ / Move n - 1 r i ngs f r om s t a r t i ng pe g t o a uxi l i a r y pe g
doTowe r s (n - 1 , s t a r t Pe g, e ndPe g, a uxPe g) ;

Sys t e m. out . pr i nt l n(" Move r i ng f r om pe g " + s t a r t Pe g
+ " t o pe g " + e ndPe g) ;

/ / Move n - 1 r i ngs f r om a uxi l i a r y pe g t o e ndi ng pe g
doTowe r s (n - 1 , a uxPe g, s t a r t Pe g, e ndPe g) ;

}
}

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 256

4.3 Towers of Hanoi | 257

It’s hard to believe that such a simple method actually works, but it does. Let’s
investigate using the Three-Question Approach:

1. The Base-Case Question Is there a nonrecursive way out of the method, and does the
method work correctly for this base case? If the doTowe r s method is passed an argu-
ment equal to 0 for the number of rings (parameter n), it skips the body of the if state-
ment and does nothing. This response is appropriate because there are no rings to be
moved. This degenerate case does not inspire much confidence. Let’s consider the case
where the number of rings is 1. One ring must be moved from the s t a r t Pe g to the
e ndPe g. The doTowe r s method is invoked with an argument of 1 for the parameter n.
In this case the body of the if statement is entered. The two recursive calls to doTow-
e r s are passed ring count arguments of n 1 = 0 and, as just noted, will do nothing.
That leaves only the output statement, which correctly records the movement of a
single ring from s t a r t Pe g to e ndPe g. The answer to the base-case question is yes.

2. The Smaller-Caller Question Does each recursive call to the method involve a
smaller case of the original problem, leading inescapably to the base case? The
answer is yes, because the method receives a ring count argument n and in its
recursive calls passes the ring count argument n - 1. The subsequent recursive
calls also pass a decremented value of the argument, until finally the value sent is 1.

3. The General-Case Question Assuming the recursive calls work correctly, does the
method work in the general case? The answer is yes. Our goal is to move n rings from
the starting peg to the ending peg. The first recursive call within the method moves
n 1 rings from the starting peg to the auxiliary peg. Assuming that operation works
correctly, we now have one ring left on the starting peg and the ending peg is empty.
That ring must be the largest, because all of the other rings were on top of it. We can
move that ring directly from the starting peg to the ending peg, as described in the out-
put statement. The second recursive call now moves the n 1 rings that are on the
auxiliary peg to the ending peg, placing them on top of the largest ring that was just
moved. As we assume this transfer works correctly, we now have all n rings on the
ending peg.

We have answered all three questions affirmatively.

The Program
We enclose the doTowe r s method within a driver class called Towe r s . It prompts the
user for the number of rings and then uses doTowe r s to report the solution.

/ / -
/ / Towe r s . j a va by Da l e / J oyc e / We e ms Cha pt e r 4
/ /
/ / Dr i ve r c l a s s f or doTowe r s me t hod t ha t ge t s i ni t i a l va l ue s a nd
/ / c a l l s t he me t hod.
/ / -

i mpor t j a va . ut i l . Sc a nne r ;

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 257

258 | Chapter 4: Recursion

publ i c c l a s s Towe r s
{

pr i va t e s t a t i c St r i ng i nde nt = " " ; / / i nde nt a t i on f or t r a c e

publ i c s t a t i c voi d ma i n(St r i ng[] a r gs)
{

Sc a nne r c onI n = ne w Sc a nne r (Sys t e m. i n) ;

/ / Numbe r of r i ngs on s t a r t i ng pe g.
i nt n;
Sys t e m. out . pr i nt (" I nput t he numbe r of r i ngs : ") ;
i f (c onI n. ha s Ne xt I nt ())

n = c onI n. ne xt I nt () ;
e l s e
{

Sys t e m. out . pr i nt l n(" Er r or : you mus t e nt e r a n i nt e ge r . ") ;
Sys t e m. out . pr i nt l n(" Te r mi na t i ng pr ogr a m. ") ;
r e t ur n;

}

Sys t e m. out . pr i nt l n(" Towe r s of Ha noi wi t h " + n + " r i ngs \ n") ;
doTowe r s (n, 1 , 2 , 3) ;

}

publ i c s t a t i c voi d doTowe r s (
i nt n , / / Numbe r of r i ngs t o move
i nt s t a r t Pe g, / / Pe g c ont a i ni ng r i ngs t o move
i nt a uxPe g, / / Pe g hol di ng r i ngs t e mpor a r i l y
i nt e ndPe g) / / Pe g r e c e i vi ng r i ngs be i ng move d

{
i f (n > 0)
{

i nde nt = i nde nt + " " ;

Sys t e m. out . pr i nt l n(i nde nt + " Ge t " + n + " r i ngs move d f r om pe g "
+ s t a r t Pe g + " t o pe g " + e ndPe g) ;

/ / Move n - 1 r i ngs f r om s t a r t i ng pe g t o a uxi l i a r y pe g.
doTowe r s (n - 1 , s t a r t Pe g, e ndPe g, a uxPe g) ;

/ / Move nt h r i ng f r om s t a r t i ng pe g t o e ndi ng pe g.
Sys t e m. out . pr i nt l n(i nde nt + " Move r i ng " + n + " f r om pe g "

+ s t a r t Pe g + " t o pe g" + " e ndPe g"

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 258

4.3 Towers of Hanoi | 259

/ / Move n - 1 r i ngs f r om a uxi l i a r y pe g t o e ndi ng pe g.
doTowe r s (n - 1 , a uxPe g, s t a r t Pe g, e ndPe g) ;

i nde nt = i nde nt . s ubs t r i ng(2) ;
}

}
}

Within doTowe r s we added an output trace statement to display the subgoal being
addressed each time the body of the if statement is entered. Indentation of the output
statements helps us visualize the depth of each method call. Here is the output from a
run with four rings:

I nput t he numbe r of r i ngs : 4

Towe r s of Ha noi wi t h 4 r i ngs

Ge t 4 r i ngs move d f r om pe g 1 t o pe g 3

Ge t 3 r i ngs move d f r om pe g 1 t o pe g 2

Ge t 2 r i ngs move d f r om pe g 1 t o pe g 3

Ge t 1 r i ngs move d f r om pe g 1 t o pe g 2

Move r i ng 1 f r om pe g 1 t o pe g 2

Move r i ng 2 f r om pe g 1 t o pe g 3

Ge t 1 r i ngs move d f r om pe g 2 t o pe g 3

Move r i ng 1 f r om pe g 2 t o pe g 3

Move r i ng 3 f r om pe g 1 t o pe g 2

Ge t 2 r i ngs move d f r om pe g 3 t o pe g 2

Ge t 1 r i ngs move d f r om pe g 3 t o pe g 1

Move r i ng 1 f r om pe g 3 t o pe g 1

Move r i ng 2 f r om pe g 3 t o pe g 2

Ge t 1 r i ngs move d f r om pe g 1 t o pe g 2

Move r i ng 1 f r om pe g 1 t o pe g 2

Move r i ng 4 f r om pe g 1 t o pe g 3

Ge t 3 r i ngs move d f r om pe g 2 t o pe g 3

Ge t 2 r i ngs move d f r om pe g 2 t o pe g 1

Ge t 1 r i ngs move d f r om pe g 2 t o pe g 3

Move r i ng 1 f r om pe g 2 t o pe g 3

Move r i ng 2 f r om pe g 2 t o pe g 1

Ge t 1 r i ngs move d f r om pe g 3 t o pe g 1

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 259

260 | Chapter 4: Recursion

Move r i ng 1 f r om pe g 3 t o pe g 1

Move r i ng 3 f r om pe g 2 t o pe g 3

Ge t 2 r i ngs move d f r om pe g 1 t o pe g 3

Ge t 1 r i ngs move d f r om pe g 1 t o pe g 2

Move r i ng 1 f r om pe g 1 t o pe g 2

Move r i ng 2 f r om pe g 1 t o pe g 3

Ge t 1 r i ngs move d f r om pe g 2 t o pe g 3

Move r i ng 1 f r om pe g 2 t o pe g 3

Here is the output with the trace statements removed:

I nput t he numbe r of r i ngs : 4

Move r i ng 1 f r om pe g 1 t o pe g 2

Move r i ng 2 f r om pe g 1 t o pe g 3

Move r i ng 1 f r om pe g 2 t o pe g 3

Move r i ng 3 f r om pe g 1 t o pe g 2

Move r i ng 1 f r om pe g 3 t o pe g 1

Move r i ng 2 f r om pe g 3 t o pe g 2

Move r i ng 1 f r om pe g 1 t o pe g 2

Move r i ng 4 f r om pe g 1 t o pe g 3

Move r i ng 1 f r om pe g 2 t o pe g 3

Move r i ng 2 f r om pe g 2 t o pe g 1

Move r i ng 1 f r om pe g 3 t o pe g 1

Move r i ng 3 f r om pe g 2 t o pe g 3

Move r i ng 1 f r om pe g 1 t o pe g 2

Move r i ng 2 f r om pe g 1 t o pe g 3

Move r i ng 1 f r om pe g 2 t o pe g 3

Try the program for yourself. But be careful—with two recursive calls within the
doTowe r s method, the amount of output generated by the program grows quickly. In
fact, every time you add one more ring to the starting peg, you more than double the
amount of output from the program. A run of Towe r s on the author’s system, with an
input argument indicating 16 rings, generated a 10-megabyte output file.

4.4 Counting Blobs

In this section you learn about blobs—what they are, how to generate a grid of them,
and how to count them. This apparently whimsical topic provides a good example of
the power of recursion and introduces the important computing technique of marking

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 260

4.4 Counting Blobs | 261

completed work so that it is not reattempted at a later time. Additionally, the identifi-
cation of blobs in a grid is related to an important computer imaging problem: label-
ing connected components. Given an image, it is sometimes important to automatically
identify, label, classify, and count the separate items within the image—for example,
identifying sun spots on the surface of the sun, separating urban and rural areas on a
satellite image, or locating fires in grasslands. All of these problems are related to
identifying connected components. The approach we present in this section for mark-
ing blobs can also be used to identify connected components in image processing.

For our purposes, blobs are found in grids of characters. A blob is a contiguous col-
lection of X’s. Two X’s in a grid are considered contiguous if they are beside each other
horizontally or vertically. For example, the left grid contains five blobs, as indicated in
the corresponding right grid where the blobs are outlined:

Our goal is to create an application that generates a grid with randomly placed blob
characters, displays the grid, and then counts and reports the number of blobs.

Generating Blobs
We will generate our blobs randomly. Each character in a grid is either the blob char-
acter “X” or the nonblob character “-”. To make things interesting, we allow the user
of our application to indicate the percentage of blob characters. The user provides a
percentage between 0 and 100 that indicates the probability that any particular char-
acter is a blob character. For example, grids with percentages 0, 33, 67, and 100
might appear as follows:

Internally we represent a grid as a two-dimensional array of bool e a n values, with
t r ue indicating a blob character and f a l s e indicating a nonblob character. Even
though we visualize the characters as either “X” or “-”, it is easier to manipulate them

XXXXX
XXXXXXXXXXX
XXXXXXXXXXX
XXXXXXXXXXX
XXXXXXXXXXX
XXXXXXXXXXX

XXXXX

XXXXXXX X

XX
XXXXX

X X
X X X

X X X

X
XX X

XX
XXX

X X X

XXX

XXX

XX

Percentage 0
Blobs 0

Percentage 33
Blobs 13

Percentage 67
Blobs 3

Percentage 100
Blobs 1

X X X X
XXX

XXXX

XX
XX
X
X

X X X X
XXX

XXXX

XX
XX
X
X

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 261

262 | Chapter 4: Recursion

within our program by representing them with bool e a n values. It is only when a grid is
displayed that we have to worry about using the “X” and “-” characters.

Given that the number of rows and columns of a grid are r ows and c ol s , and that
the percentage probability of a character being a blob character is pe r c e nt a ge , the fol-
lowing code generates a grid:

f or (i nt i = 0; i < r ows ; i ++)
f or (i nt j = 0; j < c ol s ; j ++)
{

r a ndI nt = r a nd. ne xt I nt (100) ; / / r a ndom numbe r 0 t o 99
i f (r a ndI nt < pe r c e nt a ge)

gr i d[i] [j] = t r ue ;
e l s e

gr i d[i] [j] = f a l s e ;
}

The r a nd variable is an object of the Java library’s Ra ndom class. Its ne xt I n t
method returns a random integer between 0 and 99. This random integer is com-
pared to pe r c e n t a ge to determine whether a grid location should hold a blob
character.

The Counting Algorithm
Let’s consider how we can count the number of blobs on a grid. We can walk through
the grid, one row at a time, and each time we see a blob character, increment our count.
We “see” a blob character at position i , j when the value of gr i d[i , j] is t r ue . This
reasoning leads to the following code:

i nt c ount = 0;
f or (i nt i = 0; i < r ows ; i ++)

f or (i nt j = 0; j < c ol s ; j ++)
i f (gr i d[i] [j])

c ount ++;

But there is a problem with this code—do you see it? It counts the number of blob char-
acters, not the number of blobs.

When we encounter a blob character, we need some way of determining whether it
is part of a blob that has already been counted. Whenever we encounter and count a
blob character, we must somehow mark all of the characters within that blob as having
been counted. We say that such characters have already been “visited.”

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 262

4.4 Counting Blobs | 263

To support this approach we create a “parallel” grid called vi s i t e d. This grid is
also a two-dimensional array of bool e a n values. Initially all of its entries are f a l s e ,
as no blob characters have been visited before we start counting. Let’s assume we have
a method called ma r kBl ob, which accepts as arguments the row and column indexes of
a blob character, and proceeds to “mark” all characters within that blob as having been
visited. In other words, it sets the corresponding values within the vi s i t e d structure to
t r ue . We’ll worry about how to implement ma r kBl ob in the next section. For now,
given that ma r kBl ob does its job correctly, we can redesign the counting code:

i nt c ount = 0;
f or (i nt i = 0; i < r ows ; i ++)

f or (i nt j = 0; j < c ol s ; j ++)
i f (gr i d[i] [j] && ! vi s i t e d[i] [j])
{

c ount ++;
ma r kBl ob(i , j) ;

}

With our new approach we count a blob character only if it has not already been
visited. Once we count it, we proceed to mark it, and all the other characters within its
blob, as having been visited using the ma r kBl ob method.

We use this approach of marking elements as having been visited again, later in the
text, when we study trees and graphs.

The Marking Algorithm
All that remains for us to do is to create the method that marks the characters in a blob.
As you have probably guessed, we use recursion to simplify the solution to this problem.

The ma r kBl ob method is passed the location of a blob character that needs to be
marked through its two arguments, r ow and c ol . So that is the first thing it does—it
marks the location as being visited:

vi s i t e d[r ow] [c ol] = t r ue ;

But this method is also responsible for marking all of the other characters in the blob.
Thus, in addition to marking the indicated location, it checks the four locations
“around” that location to see whether they need to be marked. That is, it checks the
locations above, below, to the right of, and to the left of the indicated location.

When should one of those locations be marked? There are three necessary conditions:

1. The location exists; that is, it is not outside the boundaries of the grid.
2. The location contains a blob character.
3. The location has not already been visited.

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 263

264 | Chapter 4: Recursion

For example, the following code checks and marks the location above the indicated
location:

i f ((r ow - 1) >= 0) / / i f i t ' s on t he gr i d
i f (gr i d[r ow - 1] [c ol]) / / a nd ha s a bl ob c ha r a c t e r

i f (! vi s i t e d[r ow - 1] [c ol]) / / a nd ha s not be e n vi s i t e d,
ma r kBl ob(r ow - 1 , c ol) ; / / t he n ma r k i t

The code for the remaining three directions (down, left, and right) is similar.
The recursive nature of the ma r kBl ob method ensures that all of the blob characters

are marked: All of the neighbors of the specified blob character are checked and, if any
of them are in the blob, all of their neighbors are checked, and so on. The fact that we
mark a character position as visited when it is first encountered guarantees that our
method won’t recurse forever.

Let’s investigate the ma r kBl ob method using the Three-Question Approach. Recall that
the goal of the method is to mark all blob characters within a blob as having been visited.

1. The Base-Case Question Is there a nonrecursive way out of the method, and does
the method work correctly for this base case? If the ma r kBl ob method is passed
arguments indicating the final unmarked location within a blob, then each check of
the four contiguous locations will “fail” for one reason or another and no recursive
calls to ma r kBl ob will be made. The only action the method takes in this case is to
mark the indicated location as having been visited; then it returns. The answer to
the base-case question is yes.

2. The Smaller-Caller Question Does each recursive call to the method involve a
smaller case of the original problem, leading inescapably to the base case? The
answer is yes because every time the method is called, another blob location is
marked as being visited. As a consequence, one less blob location needs to be
marked. The subsequent recursive calls also mark a location until finally there are
no more locations to be marked.

3. The General-Case Question Assuming the recursive calls work correctly, does the
method work in the general case? The answer is yes. Our goal is to mark all loca-
tions within the blob. Starting with any given location within the blob, we check its
four contiguous locations. If any of them are within the blob, they are also marked
and we assume that their neighbors are checked and marked as appropriate (we are
assuming the recursive calls work correctly). Because each location within the blob
is contiguous to some other location within the blob, we eventually check and mark
all of the blob locations.

We answered all three questions affirmatively.

The Grid Class
To support our application we create a Gr i d class. An object of this class, when instan-
tiated, is passed its dimensions and the percentage of blob characters it should contain.

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 264

4.4 Counting Blobs | 265

It proceeds to create a grid of characters based on those specifications. Our class exports
a bl obCount method that returns the number of blobs contained in the grid. We use the
grid-generation and blob-counting algorithms developed previously in this section. The
Gr i d class also exports a t oSt r i ng method that transforms the bool e a n-based grid
into the appropriate string of characters for display.

/ / -
/ / Gr i d. j a va by Da l e / J oyc e / We e ms Cha pt e r 4
/ /
/ / Suppor t s gr i d obj e c t s c ons i s t i ng of bl ob a nd nonbl ob c ha r a c t e r s .
/ / Al l ows t he numbe r of bl obs i t c ont a i ns t o be c ount e d.
/ / -

i mpor t j a va . ut i l . Ra ndom;

publ i c c l a s s Gr i d
{

pr ot e c t e d i nt r ows ; / / numbe r of gr i d r ows
pr ot e c t e d i nt c ol s ; / / numbe r of gr i d c ol umns

pr ot e c t e d bool e a n [] [] gr i d; / / t he gr i d c ont a i ni ng bl obs
bool e a n [] [] vi s i t e d; / / us e d by bl obCount

publ i c Gr i d(i nt r ows , i nt c ol s , i nt pe r c e nt a ge)
/ / Pr e c ondi t i ons : r ows a nd c ol s > 0
/ / 0 <= pe r c e nt a ge <= 100
/ /
/ / I ns t a nt i a t e s a gr i d of s i z e r ows by c ol s , whe r e l oc a t i ons a r e s e t t o
/ / i ndi c a t e bl ob c ha r a c t e r s ba s e d on t he pe r c e nt a ge pr oba bi l i t y .
{

t hi s . r ows = r ows ;
t hi s . c ol s = c ol s ;
gr i d = ne w bool e a n [r ows] [c ol s] ;

/ / t o ge ne r a t e r a ndom numbe r s .
i nt r a ndI nt ;
Ra ndom r a nd = ne w Ra ndom() ;

f or (i nt i = 0; i < r ows ; i ++)
f or (i nt j = 0; j < c ol s ; j ++)
{

r a ndI nt = r a nd. ne xt I nt (100) ; / / r a ndom numbe r 0 t o 99
i f (r a ndI nt < pe r c e nt a ge)

gr i d[i] [j] = t r ue ;

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 265

266 | Chapter 4: Recursion

e l s e
gr i d[i] [j] = f a l s e ;

}
}

publ i c St r i ng t oSt r i ng()
{

St r i ng gr i dSt r i ng = " " ;
f or (i nt i = 0; i < r ows ; i ++)
{

f or (i nt j = 0; j < c ol s ; j ++)
{

i f (gr i d[i] [j])
gr i dSt r i ng = gr i dSt r i ng + " X" ;

e l s e
gr i dSt r i ng = gr i dSt r i ng + " - " ;

}
gr i dSt r i ng = gr i dSt r i ng + " \ n" ; / / e nd of r ow

}
r e t ur n gr i dSt r i ng;

}

publ i c i nt bl obCount ()
/ / Re t ur ns t he numbe r of bl obs i n t hi s gr i d .
{

i nt c ount = 0;
vi s i t e d = ne w bool e a n [r ows] [c ol s] ; / / t r ue i f l oc a t i on vi s i t e d

/ / i ni t i a l i z e vi s i t e d
f or (i nt i = 0; i < r ows ; i ++)

f or (i nt j = 0; j < c ol s ; j ++)
vi s i t e d[i] [j] = f a l s e ;

/ / c ount bl obs
f or (i nt i = 0; i < r ows ; i ++)

f or (i nt j = 0; j < c ol s ; j ++)
i f (gr i d[i] [j] && ! vi s i t e d[i] [j])
{

c ount ++;
ma r kBl ob(i , j) ;

}

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 266

4.4 Counting Blobs | 267

r e t ur n c ount ;
}

pr i va t e voi d ma r kBl ob(i nt r ow, i nt c ol)
/ / Ma r k pos i t i on r ow, c ol a s ha vi ng be e n vi s i t e d.
/ / Che c k a nd i f a ppr opr i a t e ma r k l oc a t i ons a bove , be l ow, l e f t ,
/ / a nd r i ght of t ha t pos i t i on.
{

vi s i t e d[r ow] [c ol] = t r ue ;

/ / c he c k a bove
i f ((r ow - 1) >= 0) / / i f i t ' s on t he gr i d

i f (gr i d[r ow - 1] [c ol]) / / a nd ha s a bl ob c ha r a c t e r
i f (! vi s i t e d[r ow - 1] [c ol]) / / a nd ha s not be e n vi s i t e d,

ma r kBl ob(r ow - 1, c ol) ; / / t he n ma r k i t

/ / c he c k be l ow
i f ((r ow + 1) < r ows) / / i f i t ' s on t he gr i d

i f (gr i d[r ow + 1] [c ol]) / / a nd ha s a bl ob c ha r a c t e r
i f (! vi s i t e d[r ow + 1] [c ol]) / / a nd ha s not be e n vi s i t e d,

ma r kBl ob(r ow + 1, c ol) ; / / t he n ma r k i t

/ / c he c k l e f t
i f ((c ol - 1) >= 0) / / i f i t ' s on t he gr i d

i f (gr i d[r ow] [c ol - 1]) / / a nd ha s a bl ob c ha r a c t e r
i f (! vi s i t e d[r ow] [c ol - 1]) / / a nd ha s not be e n vi s i t e d,

ma r kBl ob(r ow, c ol - 1) ; / / t he n ma r k i t

/ / c he c k r i ght
i f ((c ol + 1) < c ol s) / / i f i t ' s on t he gr i d

i f (gr i d[r ow] [c ol + 1]) / / a nd ha s a bl ob c ha r a c t e r
i f (! vi s i t e d[r ow] [c ol + 1]) / / a nd ha s not be e n vi s i t e d,

ma r kBl ob(r ow, c ol + 1) ; / / t he n ma r k i t
}

}

The Program
Given the Gr i d class it is easy to create our application. We assume that a grid should
have 10 rows and 40 columns. Our application prompts the user for a percentage proba-
bility value, generates the grid based on this value, displays the grid, and then reports
the number of blobs.

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 267

268 | Chapter 4: Recursion

/ / -
/ / Bl obApp. j a va by Da l e / J oyc e / We e ms Cha pt e r 4
/ /
/ / I ns t a nt i a t e s a gr i d ba s e d on a pe r c e nt a ge pr oba bi l i t y pr ovi de d by t he
/ / us e r a nd r e por t s t he numbe r of bl obs i n t he gr i d.
/ / -

i mpor t j a va . ut i l . Sc a nne r ;

publ i c c l a s s Bl obApp
{

publ i c s t a t i c voi d ma i n(St r i ng[] a r gs)
{

Sc a nne r c onI n = ne w Sc a nne r (Sys t e m. i n) ;

f i na l i nt GRI DR = 10; / / numbe r of gr i d r ows
f i na l i nt GRI DC = 40; / / numbe r of gr i d c ol umns

/ / Ge t pe r c e nt a ge pr oba bi l i t y of bl ob c ha r a c t e r s .
i nt pe r c e nt a ge ;
Sys t e m. out . pr i nt (" I nput pe r c e nt a ge pr oba bi l i t y (0 t o 100) : ") ;
i f (c onI n. ha s Ne xt I nt ())

pe r c e nt a ge = c onI n. ne xt I nt () ;
e l s e
{

Sys t e m. out . pr i nt l n(" Er r or : you mus t e nt e r a n i nt e ge r . ") ;
Sys t e m. out . pr i nt l n(" Te r mi na t i ng pr ogr a m. ") ;
r e t ur n;

}
Sys t e m. out . pr i nt l n() ;

/ / c r e a t e gr i d
Gr i d gr i d = ne w Gr i d(GRI DR, GRI DC, pe r c e nt a ge) ;

/ / d i s pl a y gr i d a nd bl ob c ount
Sys t e m. out . pr i nt l n(gr i d) ;
Sys t e m. out . pr i nt l n(" \ nThe r e a r e " + gr i d . bl obCount () + " bl obs . \ n") ;

}
}

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 268

4.5 Recursive Linked- List Processing | 269

Here is a sample run of the program:

I nput pe r c e nt a ge (0 t o 100) : 50

The r e a r e 36 bl obs .

4.5 Recursive Linked- List Processing

In this section we look at a problem that uses a recursive approach for traversing a
linked list. In the case of a singly linked list, a recursive approach can sometimes be
useful for “backing up” in the list. We use the LLNode class introduced in Section 3.7 to
support our list. To simplify our linked list figures in this section, we use a capital letter
to stand for a node’s information, an arrow to represent the link to the next node (as
always), and a slash to represent the nul l reference.

Reverse Printing
Our goal is to print the elements of a linked list. This task is simple to accomplish itera-
tively, so it does not make any sense to write it recursively. But here’s the catch: We
want to print the elements in reverse order. Now the problem is much more easily and
elegantly solved recursively than it is iteratively.

To see why, let’s think for a moment about how we could perform this task iter-
atively. One approach is to use nested loops to repeatedly traverse the list, looking
ahead to see if it is time to stop the traversal. The first time through we stop at the
node whose next node link is nu l l —that is, when we reach the end of the list. We
then print the information of the node where the traversal stopped. We also remem-
ber that node. The next time through the list we stop at the node whose next node
link is to the remembered node. This is the second from last node. Again we print
the information and remember the node. Continuing in this fashion, each time

A B DC El i s t •••••

XXXX XXXXXX
XXXX XXX

XXX
XXX

XX XX
XXXXXXX

XXXX
X X X X XX

XX
XX X X X X X X XXX

XX XX XX XX
XX XX XXX

XXX XXX XXX
XXX XXXXXXXXX

XXXXXXXXXXX XXXXXXX XX
XX XXXXXX XXXXXX

XX
XX XXX XXXXXXX XX X X X X

XXXXX XXXXXXX XXXX X X
X X X X

X X

X X X X X
X X X X X

XX XX XXX X X

XXX XXXX X X X X

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 269

270 | Chapter 4: Recursion

Iterative revPrint (listRef)
initialize endTraversal to null // the link of the last node on the list is null
while (endTraversal != listRef)

set currNode to listRef
while (currNode.getLink() != endTraversal)

change currNode to point to the next node on the list
print out the information at currNode // the last node
change endTraversal to point to currNode // back endTraversal up by one node

Figure 4.1 Recursive revPrint

A B DC El i s t •••••

First, print out this section of the list, backward.
Then, print
this element.

E D C B AResult:

through the list we stop one node earlier than before, printing the information of the
node where we stop. Eventually we print out the entire contents of the list, in
reverse order.

Here is the algorithm. The l i s t Re f parameter represents the reference to the first
node on the list.

This approach requires that we scan the list each time we print an element. For a list
with N elements, it takes O(N2) operations. As we see in Section 4.6, using a stack allows us
to reduce the number of operations to O(N). But we will still need two loops and a user-
defined stack structure for the solution. With recursion, we can avoid all of this complexity.

The key is seeing how a linked list can be viewed recursively. For example, a linked
list of five nodes is a node followed by a linked list of four nodes. To print the five
nodes in reverse order, we can first print the last four nodes in reverse order and then
print the first node. But how do we print the last four nodes in reverse order? That’s
right, we recurse: We treat the last four nodes as a “first” node followed by a linked list
of three nodes, and so on. The algorithm follows and is illustrated in Figure 4.1.

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 270

4.5 Recursive Linked- List Processing | 271

revPrint the rest of the list (third through last elements)
Then print the second element in the list

Recursive revPrint (listRef)
Print out the second through last elements in the list referenced by listRef in reverse order
Then print the first element in the list referenced by listRef

Now let’s turn our algorithm into code. The second part of the algorithm is simple.
If l i s t Re f references the first node in the list, we can print out its contents with the
statement

Sys t e m. out . pr i nt l n(" " + l i s t Re f . ge t I nf o()) ;

The first part of the algorithm—printing out all the other nodes in the list in reverse
order—is also simple because we have a method that prints out lists in reverse order: We
just invoke the method r e vPr i nt recursively. Of course, we have to adjust the argu-
ment so that we are referencing the remaining nodes. The invocation is

r e vPr i nt (l i s t Re f . ge t Li nk())

This says, “Print, in reverse order, the linked list pointed to by the node referenced by
l i s t Re f .” This task, in turn, is accomplished recursively in two steps:

Of course, the first part of this task is accomplished recursively.
Where does it all end? We need a base case. We can stop calling r e vPr i nt when

we have completed its smallest case: reverse printing a list of one element. Then the
value of l i s t Re f . ge t Li nk() is nul l , and we can stop making recursive calls. Let’s
summarize the problem.

Reverse Print (listRef)

Definition: Prints out the list referenced by listRef in reverse
order.

Size: Number of elements in the list referenced by
listRef.

Base Case: If the list is empty, do nothing.
General Case: Reverse print the list referenced by

listRef.getLink(), then print listRef.getInfo().

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 271

272 | Chapter 4: Recursion

2. Li nke dSt a c k is presented in Section 3.7.

To appreciate how elegant the recursive approach is, compare it to the iterative
algorithm. The recursive approach takes only O(N) operations to print the list in reverse
order, and it doesn’t need any loops or a user-defined stack.

To provide a home for our algorithm, we create a Li nke dSt a c k2 class that extends
the Li nke dSt a c k2 class with a reverse print operation. We are adding an operation that
will print the elements of the stack in reverse order—that is, in the order in which they
were pushed onto the stack. Recall that the Li nke dSt a c k class implements a stack as a
linked list. Thus, although we are using a stack class for our example, we are actually
accessing a linked list. Here is the code:

/ / -
/ / Li nke dSt a c k2. j a va by Da l e / J oyc e / We e ms Cha pt e r 4
/ /
/ / Ext e nds Li nke dSt a c k wi t h a pr i nt Re ve r s e d me t hod.
/ / -

i mpor t c h03. s t a c ks . *;
i mpor t s uppor t . LLNode ;

publ i c c l a s s Li nke dSt a c k2<T> e xt e nds Li nke dSt a c k<T>
{

pr i va t e voi d r e vPr i nt (LLNode <T> l i s t Re f)
{

i f (l i s t Re f ! = nul l)
{

r e vPr i nt (l i s t Re f . ge t Li nk()) ;
Sys t e m. out . pr i nt l n(" " + l i s t Re f . ge t I nf o()) ;

}
}

publ i c voi d pr i nt Re ve r s e d()
{

r e vPr i nt (t op) ;
}

}

Notice that r e vPr i nt is a private method of the Li nke dSt a c k2 class. Could we
make r e vPr i nt a public method instead? The answer is no. To print the whole linked
list, the client’s initial call to r e vPr i nt must pass as an argument the reference to the
first node in the list. But in our Li nke dSt a c k class this reference (t op) is a protected
instance variable of the class, so the following client code is not permitted:

mySt a c k2. r e vPr i nt (t op) ; / / Not a l l owe d- - t op i s pr ot e c t e d

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 272

4.6 Removing Recursion | 273

Therefore, we must create r e vPr i nt as an auxiliary, private method and define a public
method, pr i nt Re ve r s e d, that calls r e vPr i nt :

publ i c voi d pr i nt Re ve r s e d()
{

r e vPr i nt (t op) ;
}

This pattern of defining a private recursive method with a public entry method is used
in many of our recursive solutions later in the text. Given this design, the client can
now print the entire stack in reverse order:

mySt a c k2. pr i nt Re ve r s e d() ;

The public pr i nt Re ve r s e d() then invokes r e vPr i nt , passing it the top of the stack.
Let’s verify r e vPr i nt using the Three-Question Approach.

1. The Base-Case Question When l i s t Re f is equal to nul l , we skip the if body and
return. The answer is yes.

2. The Smaller-Caller Question The recursive call passes the list referenced by
l i s t Re f . ge t Li nk() , which is one node smaller than the list referenced by
l i s t Re f . Eventually it will pass the empty list; that is, it will pass the nul l refer-
ence found in the last node on the original list. That is the base case. The answer is
yes.

3. The General-Case Question We assume that r e vPr i nt (l i s t Re f . ge t Li nk())
correctly prints out the rest of the list in reverse order; this call, followed by the
statement printing the value of the first element, gives us the whole list, printed in
reverse order. The answer is yes.

We conclude that our approach works correctly. Of course, we still must test the meth-
ods using stacks of varying size, including a test with an empty stack.

We will study many other examples of using recursion with linked structures later
in the text.

4.6 Removing Recursion

Some languages do not support recursion. Sometimes, even when a language does sup-
port recursion, a recursive solution is not desired because it is too costly in terms of
space or time. In this section we consider two general techniques that are often substi-
tuted for recursion: iteration and stacking. First we take a look at how recursion is
implemented. Understanding how recursion works helps us see how to develop nonre-
cursive solutions.

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 273

274 | Chapter 4: Recursion

How Recursion Works
The translation of high-level programs into machine language is a complex process. To
facilitate our study of recursion, we make several simplifying assumptions about this
process. Furthermore, we use a simple program, called Ki ds , that is not object-oriented;
nor is it a good example of program design. It does provide a useful example for the
current discussion, however.

The Java Programming Model
Java is generally used as an interpreted language. When you compile a Java program, it is trans-
lated into a language called Java bytecode. When you run a Java program, your machine’s Java
interpreter interprets the bytecode version of your program. The interpreter dynamically gener-
ates machine code based on the bytecode and then executes the machine code on your com-
puter. You can also use a Java bytecode compiler to translate your bytecode files directly into
machine code. In that case, you can run your programs directly on your computer without hav-
ing to use an interpreter. In either case, your Java programs must be transformed into the
machine language of your computer at some point in time.

In this section, we discuss the machine language representation of programs. Programmers
working with most other high-level languages typically use compilers that translate programs
directly into machine language.

Static Storage Allocation
A compiler that translates a high-level language program into machine code for execu-
tion on a computer must perform two functions:

1. Reserve space for the program variables.
2. Translate the high-level executable statements into equivalent machine language

statements.

Typically a compiler performs these tasks modularly for separate program subunits.
Consider the following program:

publ i c c l a s s Ki ds
{

pr i va t e s t a t i c i nt c ount Ki ds (i nt gi r l Count , i nt boyCount)
{

i nt t ot a l Ki ds ;
t ot a l Ki ds = gi r l Count + boyCount ;
r e t ur n(t ot a l Ki ds) ;

}

publ i c s t a t i c voi d ma i n(St r i ng[] a r gs)

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 274

4.6 Removing Recursion | 275

{
i nt numGi r l s ;
i nt numBoys ;
i nt numChi l dr e n;

numGi r l s = 12;
numBoys = 13;
numChi l dr e n = c ount Ki ds (numGi r l s , numBoys) ;

Sys t e m. out . pr i nt l n(" Numbe r of c hi l dr e n i s " + numChi l dr e n) ;
}

}

A compiler could create two separate machine code units for this program: one for the
c ount Ki ds method and one for the ma i n method. Each unit would include space for its
variables plus the sequence of machine language statements that implement its high-
level code.

In our simple Ki ds program, the only invocation of the c ount Ki ds method is from
the main program. The flow of control of the program is

The machine code that corresponds to the Ki ds program might be arranged in
memory something like this:

main

main

countKids

-
s pa c e f or t he ma i n me t hod va r i a bl e s

-
ma i n me t hod c ode t ha t i ni t i a l i z e s va r i a bl e s
j ump t o t he c ount Ki ds me t hod
ma i n me t hod c ode t ha t pr i nt s i nf or ma t i on
e xi t
-

s pa c e f or t he c ount Ki ds me t hod pa r a me t e r s a nd l oc a l va r i a bl e s
-
t he c ount Ki ds me t hod c ode
r e t ur n t o t he ma i n pr ogr a m

Static allocation like this is the simplest approach possible. But it does not support
recursion. Do you see why?

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 275

276 | Chapter 4: Recursion

The space for the c ount Ki ds method is assigned to it at compile time. This strategy
works well when the method will be called once and then always return, before it is
called again. Of course, a recursive method may be called again and again before it
returns. Where do the second and subsequent calls find space for their parameters and
local variables? Each call requires space to hold its own values. This space cannot be
allocated statically because the number of calls is unknown at compile time. A language
that uses only static storage allocation cannot support recursion.

Dynamic Storage Allocation
Dynamic storage allocation provides memory space for a method when it is called. Local
variables are thus not associated with actual memory addresses until run time.

Let’s look at a simplified version of how this
approach might work in Java. (The actual implementa-
tion depends on the particular system.) When a method
is invoked, it needs space to keep its parameters, its
local variables, and the return address (the address in
the calling code to which the computer returns when

the method completes its execution). This space is called an activation record or stack
frame. Consider our recursive f a c t or i a l method:

publ i c s t a t i c i nt f a c t or i a l (i nt n)
{

i f (n == 0)
r e t ur n 1; / / Ba s e c a s e

e l s e
r e t ur n (n * f a c t or i a l (n - 1)) ; / / Ge ne r a l c a s e

}

A simplified version of an activation record for method f a c t or i a l might have the fol-
lowing “declaration”:

c l a s s Ac t i va t i onRe c or dType
{

Addr e s s Type r e t ur nAddr ; / / Re t ur n a ddr e s s
i nt r e s ul t ; / / Re t ur ne d va l ue
i nt n; / / Pa r a me t e r

}

Each call to a method, including recursive calls, causes the Java run-time system to
allocate additional memory space for a new activation record. Within the method, refer-
ences to the parameters and local variables use the values in the activation record.
When the method ends, the activation record space is released.

What happens to the activation record of one method when a second method is
invoked? Consider a program whose ma i n method calls pr oc 1, which then calls pr oc 2.

Activation record (stack frame) Space used at run
time to store information about a method call, includ-
ing the parameters, local variables, and return address

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 276

4.6 Removing Recursion | 277

When the program begins executing, the “main” activation record is generated (the
ma i n method’s activation record exists for the entire execution of the program).

At the first method call, an activation record is generated for pr oc 1.

When pr oc 2 is called from within pr oc 1, its activation record is generated.
Because pr oc 1 has not finished executing, its activation record is still around. Just like
the index cards we used in Section 4.1, the activation record is stored until needed:

When pr oc 2 finishes executing, its activation record is released. But which of the
other two activation records becomes the active one: pr oc 1’s or ma i n 's? You can see
that pr oc 1’s activation record should now be
active, of course. The order of activation
follows the last in, first out rule. We know of a
structure that supports LIFO access—the stack—
so it should come as no surprise that the
structure that keeps track of activation records
at run time is called the run-time or system stack.

When a method is invoked, its activation record is pushed onto the run-time stack.
Each nested level of method invocation adds another activation record to the stack. As
each method completes its execution, its activation record is popped from the stack.

ma i n activation record

pr oc l activation record

pr oc 2 activation record

ma i n activation record

pr oc l activation record

ma i n activation record

Run- time (system) stack A system data structure
that keeps track of activation records during the exe-
cution of a program

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 277

278 | Chapter 4: Recursion

Recursive method calls, like calls to any other method, cause a new activation record to
be generated.

The number of recursive calls that a method goes
through before returning determines how many of its
activation records appear on the run-time stack. The
number of these calls is the depth of the recursion.

Now that we have an understanding of how recur-
sion works, we turn to the primary topic of this section: how to develop nonrecursive
solutions to problems based on recursive solutions.

Iteration

When the recursive call is the last action executed in a recursive method, an interesting
situation occurs. The recursive call causes an activation record to be put on the run-time
stack; this record will contain the invoked method’s arguments and local variables.
When the recursive call finishes executing, the run-time stack is popped and the previ-
ous values of the variables are restored. Execution continues where it left off before the
recursive call was made. Because the recursive call is the last statement in the method,
however, there is nothing more to execute and the method terminates without using the
restored local variable values. The local variables did not need to be saved. Only the
arguments in the call and its return value are actually significant.

In such a case we do not really need recursion. The sequence of recursive calls can
be replaced by a loop structure. For instance, for the f a c t or i a l method presented in
Section 4.1, the recursive call is the last statement in the method:

publ i c s t a t i c i nt f a c t or i a l (i nt n)
{

i f (n == 0)
r e t ur n 1; / / Ba s e c a s e

e l s e
r e t ur n (n * f a c t or i a l (n - 1)) ; / / Ge ne r a l c a s e

}

Let’s investigate how we could move from the recursive version to an iterative version
using a while loop.

For the iterative solution we need to declare a variable to hold the intermediate val-
ues of our computation. We call it r e t Va l ue , because eventually it holds the final value
to be returned.

A look at the base case of the recursive solution shows us the initial value we
should assign to r e t Va l ue . We must initialize it to 1, the value that is returned in the
base case. This way the iterative method works correctly in the case when the loop body
is not entered.

Now let’s turn our attention to the body of the while loop. Each time through the
loop should correspond to the computation performed by one recursive call. Therefore

Depth of the recursion The number of activation
records on the system stack associated with a given
recursive method

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 278

4.6 Removing Recursion | 279

we need to multiply our intermediate value, r e t Va l ue , by the current value of the n
variable. Also, we need to decrement the value of n by 1 each time through the loop—
this action corresponds to the smaller-caller aspect of each invocation.

Finally, we need to determine the loop termination conditions. Because the recur-
sive solution has one base case—if the n argument is 0—we have a single termination
condition. We continue processing the loop as long as the base case is not met:

whi l e (n ! = 0)

Putting everything together we arrive at an iterative version of the method:

pr i va t e s t a t i c i nt f a c t or i a l (i nt n)
{

i nt r e t Va l ue = 1; / / r e t ur n va l ue
whi l e (n ! = 0)
{

r e t Va l ue = r e t Va l ue * n;
n = n - 1;

}
r e t ur n(r e t Va l ue) ;

}

Cases in which the recursive call is the last
statement executed are called tail recursion.
Tail recursion can be replaced by iteration to
remove recursion from the solution.

Stacking
When the recursive call is not the last action executed in a recursive method, we cannot
simply substitute a loop for the recursion. For instance, consider the method r e vPr i nt ,
which we developed in Section 4.5 for printing a linked list in reverse order:

pr i va t e voi d r e vPr i nt (LLNode <T> l i s t Re f)
{

i f (l i s t Re f ! = nul l)
{

r e vPr i nt (l i s t Re f . ge t Li nk()) ;
Sys t e m. out . pr i nt l n(" " + l i s t Re f . ge t I nf o()) ;

}
}

Tail recursion The case in which a method contains
only a single recursive invocation and it is the last
statement to be executed in the method

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 279

280 | Chapter 4: Recursion

printReversed (listRef)T
Create an empty stack of objects
while listRef is not null

Push listRef.getInfo() onto the stack
Advance listRef

while the stack is not empty
Pop the stack to get information
Print information

Here we make the recursive call and then print the value in the current node. In cases
like this one, to remove recursion we must replace the stacking that is done by the sys-
tem with stacking that is done by the programmer.

For our reverse-printing example, we must traverse the list in a forward direction,
saving the information from each node onto a stack, until we reach the end of the list
(when our current reference equals nul l). When we reach the end of the list, we print
the information from the last node. Then, using the information we saved on the stack,
we back up (pop) and print again, back up and print, and so on, until we have printed
the information from the first list element.

The general solution follows: .

To provide a home for our previous reverse-printing example (the recursive example),
we created a Li nke dSt a c k2 class that extended the Li nke dSt a c k class with a reverse
print operation. For this iterative example, let’s use a similar Li nke dSt a c k3 class.

/ / -
/ / Li nke dSt a c k3. j a va by Da l e / J oyc e / We e ms Cha pt e r 4
/ /
/ / Ext e nds Li nke dSt a c k wi t h a nonr e c ur s i ve pr i nt Re ve r s e d me t hod.
/ / -

i mpor t c h03. s t a c ks . *;
i mpor t s uppor t . LLNode ;

publ i c c l a s s Li nke dSt a c k3<T> e xt e nds Li nke dSt a c k<T>
{

publ i c voi d pr i nt Re ve r s e d()

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 280

4.7 Deciding Whether to Use a Recursive Solution | 281

{
Unbounde dSt a c kI nt e r f a c e <T> s t a c k = ne w Li nke dSt a c k<T>() ;
LLNode <T> l i s t Node ;

l i s t Node = t op;

whi l e (l i s t Node ! = nul l) / / Put r e f e r e nc e s ont o t he s t a c k
{

s t a c k. pus h(l i s t Node . ge t I nf o()) ;
l i s t Node = l i s t Node . ge t Li nk() ;

}

/ / Re t r i e ve r e f e r e nc e s i n r e ve r s e or de r a nd pr i nt e l e me nt s
whi l e (! s t a c k. i s Empt y())
{

Sys t e m. out . pr i nt l n(" " + s t a c k. t op()) ;
s t a c k. pop() ;

}
}

}

The stack we use within this solution to save our information is of the class Li nke d-
St a c k. It may appear strange to use a Li nke dSt a c k object to implement a method for
a class that extends the Li nke dSt a c k class. In fact, it is a perfectly reasonable choice.
After all, we need a stack to hold information of class T and we do not know ahead of
time how large the stack might be.

Notice that the programmer stack version of pr i nt Re ve r s e d is quite a bit longer
than its recursive counterpart, especially if we add in the code for the stack methods
pus h, pop, t op, and i s Empt y. This extra length is caused by our need to stack and
unstack the information explicitly. Knowing that recursion uses the system stack, we
can see that the recursive algorithm for reverse printing is also using a stack—an invisi-
ble stack that is automatically supplied by the system. That’s the secret to the elegance
of recursive-problem solutions!

4.7 Deciding Whether to Use a Recursive Solution

We might consider several factors when deciding whether to use a recursive solution to
a problem. The main issues are the efficiency and the clarity of the solution.

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 281

282 | Chapter 4: Recursion

Recursion Overhead
A recursive solution is often more costly in terms of both computer time and space
than a nonrecursive solution. (This is not always the case; it really depends on the
problem, the computer, and the compiler.) A recursive solution usually requires more
“overhead” because of the nested recursive method calls, in terms of both time (each
call involves processing to create and dispose of the activation record and to manage
the run-time stack) and space (activation records must be stored). Calling a recursive
method may generate many layers of recursive calls. For instance, the call to an itera-
tive solution to f a c t or i a l involves a single method invocation, causing one activation
record to be put on the run-time stack. Invoking the recursive version of f a c t or i a l
requires n + 1 method calls and pushes n + 1 activation records onto the run-time
stack. That is, the depth of recursion is O(n). For some problems, the system just may
not have enough space in the run-time stack to run a recursive solution.

Inefficient Algorithms
Another potential problem is that a particular recursive solution might just be inher-
ently inefficient. Such inefficiency is not a reflection of how we choose to implement
the algorithm; rather, it is an indictment of the algorithm itself.

Combinations
Consider the problem of determining how many combinations of a certain size can be
made out of a group of items. For instance, if we have 20 different books to pass out to
four students, we can easily see that—to be equitable—we should give each student five
books. But how many combinations of five books can be made from 20 books?

A recursive mathematical formula can be used for solving this problem. Given that
C is the total number of combinations, group is the total size of the group to pick from,
members is the size of each subgroup, and group members,

Because this definition of C is recursive, it is easy to see how a recursive method can be
used to solve the problem.

publ i c s t a t i c i nt c ombi na t i ons (i nt gr oup, i nt me mbe r s)
{

i f (me mbe r s == 1)
r e t ur n gr oup; / / Ba s e c a s e 1

e l s e i f (me mbe r s == gr oup)
r e t ur n 1; / / Ba s e c a s e 2

C() ,group, members
group, if members

if me=
=1

1 mmbers group
group members group

=
− − + −C C(,) (1 1 1,,)members if group members> >

�
�
�

�
� 1

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 282

4.7 Deciding Whether to Use a Recursive Solution | 283

Figure 4.2 Calculating c ombi na t i ons (4, 3)

combinations(4, 3)

combinations(3, 2) combinations(3, 3)

combinations(2, 1) combinations(2, 2)

4

1

11112

e l s e
r e t ur n (c ombi na t i ons (gr oup - 1 , me mbe r s - 1) +

c ombi na t i ons (gr oup - 1 , me mbe r s)) ;
}

The recursive calls for this method, given initial arguments (4, 3), are shown in Figure 4.2.
Returning to our original problem, we can now find out how many combinations of

five books can be made from the original set of 20 books with the statement

Sys t e m. out . pr i nt l n(" Combi na t i ons = " + c ombi na t i ons (20, 5)) ;

that outputs “Combinations = 15504.” Did you guess that it would be that large a num-
ber? Recursive definitions can be used to define functions that grow quickly!

Although it may appear elegant, this approach to calculating the number of combi-
nations is extremely inefficient. The example of this method illustrated in Figure 4.2,
c ombi na t i ons (4, 3) , seems straightforward enough. But consider the execution of
c ombi na t i ons (6, 4) , as illustrated in Figure 4.3. The inherent problem with this

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 283

284 | Chapter 4: Recursion

c

o

m

b

i

n

a

t

i

o

n

s

(

6

,

4

)

c

o

m

b

i

n

a

t

i

o

n

s

(

5

,

3

)

c

o

m

b

i

n

a

t

i

o

n

s

(

5

,

4

)

c

o

m

b

i

n

a

t

i

o

n

s

(

4

,

2

)

c

o

m

b

i

n

a

t

i

o

n

s

(

4

,

3

)

c

o

m

b

i

n

a

t

i

o

n

s

(

4

,

3

)

c

o

m

b

i

n

a

t

i

o

n

s

(

4

,

4

)

+

c

o

m

b

i

n

a

t

i

o

n

s

(

3

,

1

)

c

o

m

b

i

n

a

t

i

o

n

s

(

3

,

2

)

+

c

o

m

b

i

n

a

t

i

o

n

s

(

3

,

2

)

c

o

m

b

i

n

a

t

i

o

n

s

(

3

,

3

)

+

c

o

m

b

i

n

a

t

i

o

n

s

(

3

,

2

)

c

o

m

b

i

n

a

t

i

o

n

s

(

3

,

3

)

+

+

+

+

c

o

m

b

i

n

a

t

i

o

n

s

(

2

,

1

)

c

o

m

b

i

n

a

t

i

o

n

s

(

2

,

2

)

+

+

c

o

m

b

i

n

a

t

i

o

n

s

(

2

,

1

)

+

c

o

m

b

i

n

a

t

i

o

n

s

(

2

,

2

)

+

+

+

====

+

+

=

+

=

+

+

+

+

+

+

+

c

o

m

b

i

n

a

t

i

o

n

s

(

2

,

1

)

c

o

m

b

i

n

a

t

i

o

n

s

(

2

,

2

)

+

+

+

+

1

1

1

3

11

2

1

1

1

1

2

1

2

3

1

5

F

i

g

u

r

e

4

.

3

C

a

l

c

u

l

a

t

i

n

g

c

o

m

b

i

n

a

t

i

o

n

s

(

6

,

4

)

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 284

Summary | 285

method is that the same values are calculated over and over. For example, c ombi na -
t i ons (4, 3) is calculated in two different places, and c ombi na t i ons (3, 2) is calcu-
lated in three places, as are c ombi na t i ons (2, 1) and c ombi na t i ons (2, 2) .

It is unlikely that we could solve a combinatorial problem of any large size using
this method. For large problems the program runs “forever”—or until it exhausts the
capacity of the computer; it is an exponential-time, O(2N), solution to the problem.

Although our recursive method is very easy to understand, it is not a practical solu-
tion. In such cases, you should seek an alternative solution. A programming approach
called dynamic programming, where solutions to subproblems that are needed repeat-
edly are saved in a data structure instead of being recalculated, can often prove useful.
Or, even better, you might discover an iterative solution. For the combinations problem
an easy (and efficient) iterative solution does exist, as mathematicians can provide us
with another definition of the function C:

C(group, members) = group! / ((members!) (group members)!)

A carefully constructed iterative program based on this formula is much more efficient
than our recursive solution.

Clarity
The issue of the clarity of a problem solution is also an important factor. For many
problems, a recursive solution is simpler and more natural for the programmer to write.
The total amount of work required to solve a problem can be envisioned as an iceberg.
By using recursive programming, the application programmer may limit his or her view
to the tip of the iceberg. The system takes care of the great bulk of the work below the
surface.

Compare, for example, the recursive and nonrecursive approaches to printing a
linked list in reverse order that were developed earlier in this chapter. In the recursive
version, the system took care of the stacking that we had to do explicitly in the nonre-
cursive method. Thus recursion is a tool that can help reduce the complexity of a pro-
gram by hiding some of the implementation details. With the cost of computer time and
memory decreasing and the cost of a programmer’s time rising, it is worthwhile to use
recursive solutions to such problems.

Summary
Recursion is a very powerful problem-solving technique. Used appropriately, it can sim-
plify the solution of a problem, often resulting in shorter, more easily understood source
code. As usual in computing, trade-offs become necessary: Recursive methods are often
less efficient in terms of both time and space, due to the overhead of many levels of
method calls. The magnitude of this cost depends on the problem, the computer system,
and the compiler.

A recursive solution to a problem must have at least one base case—that is, a case in
which the solution is derived nonrecursively. Without a base case, the method recurses

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 285

286 | Chapter 4: Recursion

forever (or at least until the computer runs out of memory). The recursive solution also
has one or more general cases that include recursive calls to the method. These recursive
calls must involve a “smaller caller.” One (or more) of the argument values must change
in each recursive call to redefine the problem to be smaller than it was on the previous
call. Thus each recursive call leads the solution of the problem toward the base case.

A typical system implementation of recursion involves the use of a stack. Each call to
a method generates an activation record to contain its return address, parameters, and
local variables. The activation records are accessed in a last in, first out manner. Thus a
stack is the best choice for the data structure. Recursion can be supported by systems
and languages that use dynamic storage allocation. The method parameters and local
variables do not become bound to addresses until an activation record is created at run
time. As a consequence, multiple copies of the intermediate values of recursive calls to
the method can be supported, as new activation records are created for them.

With static storage allocation, in contrast, a single location is reserved at compile
time for each parameter and local variable of a method. There is no place to store inter-
mediate values calculated by repeated nested calls to the same method. Therefore, sys-
tems and languages that provide for only static storage allocation cannot support
recursion.

When recursion is not possible or appropriate, a recursive algorithm can be imple-
mented nonrecursively in some cases by using a loop or by pushing and popping rele-
vant values onto a stack. This programmer-controlled stack explicitly replaces the
system’s run-time stack. Although such nonrecursive solutions are often more efficient
in terms of time and space, a trade-off is usually required in terms of the elegance of
the solution.

Exercises
The exercises for this chapter are divided into three units: Basics (Sections 4.1 and 4.2),
Examples (Sections 4.3, 4.4, and 4.5), and Advanced (Sections 4.6 and 4.7).

Basics (Sections 4.1 and 4.2)
1. Create a recursive factorial program that prompts the user for an integer N and

writes out a series of equations representing the calculation of N!. For example,
if the input is 4, the output could be

4! = 4!
= 4 * 3!
= 4 * 3 * 2!
= 4 * 3 * 2 * 1!
= 4 * 3 * 2 * 1 * 0!

Exercises 2–4 use the following three mathematical functions (assume N ≥ 0):

• Sum(N) = 1 + 2 + 3 + ... + N

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 286

Exercises | 287

• BiPower(N) = 2N

• TimesFive(N) = 5N

2. Define recursively
a. Sum(N)
b. BiPower(N)
c. TimesFive(N)

3. Create a recursive program that prompts the user for a nonnegative integer N and
outputs.
a. Sum(N)
b. BiPower(N)
c. TimesFive(N)
Describe any input constraints in the opening comment of your recursive
methods.

4. Use the Three-Question Approach to verify the program(s) you created for Exer-
cise 3.

5. Describe the difference between direct and indirect recursion.
Exercises 6–7 use the following method:

i nt puz z l e (i nt ba s e , i nt l i mi t)
{

i f (ba s e > l i mi t)
r e t ur n - 1;

e l s e
i f (ba s e == l i mi t)

r e t ur n 1;
e l s e

r e t ur n ba s e * puz z l e (ba s e + 1, l i mi t) ;
}

6. Identify
a. The base case(s) of the puz z l e method
b. The general case(s) of the puz z l e method
c. Constraints on the arguments passed to the puz z l e method

7. Show what would be written by the following calls to the recursive method
puz z l e .
a. Sys t e m. out . pr i nt l n(puz z l e (14, 10)) ;

b. Sys t e m. out . pr i nt l n(puz z l e (4 , 7)) ;

c. Sys t e m. out . pr i nt l n(puz z l e (0 , 0)) ;

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 287

288 | Chapter 4: Recursion

8. Given the following method:

i nt e xe r (i nt num)
{

i f (num == 0)
r e t ur n 0;

e l s e
r e t ur n num + e xe r (num + 1) ;

}

a. Is there a constraint on the value that can be passed as an argument for this
method to pass the smaller-caller test?

b. Is e xe r (7) a valid call? If so, what is returned from the method?
c. Is e xe r (0) a valid call? If so, what is returned from the method?
d. Is e xe r (- 5) a valid call? If so, what is returned from the method?

9. For each of the following recursive methods, identify the base case, the general case,
and the constraints on the argument values, and explain what the method does.
a. i nt powe r (i nt ba s e , i nt e xpone nt)

{
i f (e xpone nt == 0)

r e t ur n 1;
e l s e

r e t ur n (ba s e * powe r (ba s e , e xpone nt - 1)) ;
}

b. i nt f a c t or i a l (i nt n)
{

i f (n > 0)
r e t ur n (n * f a c t or i a l (n - 1)) ;

e l s e
i f (n == 0)

r e t ur n 1;
}

c. i nt r e c ur (i nt n)
{

i f (n < 0)
r e t ur n - 1;

e l s e i f (n < 10)
r e t ur n 1;

e l s e
r e t ur n (1 + r e c ur (n / 10)) ;

}
d. i nt r e c ur 2(i nt n)

{
i f (n < 0)

r e t ur n - 1;

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 288

Exercises | 289

e l s e i f (n < 10)
r e t ur n n;

e l s e
r e t ur n ((n % 10) + r e c ur 2(n / 10)) ;

}

10. The Fibonacci sequence is the series of integers
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .
See the pattern? Each element in the series is the sum of the preceding two ele-
ments. Here is a recursive formula for calculating the nth number of the sequence:

a. Write a recursive method f i bona c c i that returns the nth Fibonacci number
when passed the argument n.

b. Write a nonrecursive version of the method f i bona c c i .
c. Write a driver to test your two versions of the method f i bona c c i .
d. Compare the recursive and iterative versions for efficiency. (Use words, not

Big-O notation.)

Examples (Sections 4.3, 4.4, and 4.5)
11. What are the constraints on the arguments for parameter n of the doTowe r s

method? What happens if the constraints are not met?
12. Change the Towers of Hanoi program so that it does the following:

a. Prints out only the number of ring moves needed to solve the problem. Use a
static variable c ount of type i nt to hold the number of moves.

b. Repeatedly prompts the user for the number of rings and reports the results,
until the user enters a number less than 0.

13. Using your version of the Towers of Hanoi program from Exercise 12, answer the
following:
a. Fill in the table with the number of moves required to solve the problem,

starting with the given number of rings.

Rings Moves
1
2
3
4
5
6
7

Fib
if or 1

Fib Fib if
N

N N
N N N

()=
=

−()+ −() >
,

,
0

2 1 11
�
�
�

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 289

290 | Chapter 4: Recursion

b. Describe the pattern you see in the number of moves listed in your table.
c. Assuming n > 0, define the number of moves required to move n rings using

a recursive mathematical formula.
d. Suppose you have a physical Towers of Hanoi puzzle with 11 rings. If it takes

one second to move a ring from one peg to another, how long would it take
you to “solve” the puzzle?

e. In Java the data type i nt uses 32 bits and can represent integers in the range
 2,147,483,648 to 2,147,483,647. By experimenting with your program from
Exercise 12, figure out the largest number of rings that the program can han-
dle before “blowing up”—that is, before the value in c ount overflows.

f. What is the number of moves reported for that number of rings? How close is
that to the maximum i nt value? Explain.

14. What would be the effect of the following changes to the Gr i d class in Section 4.4?
a. In the constructor, the values assigned to r ows and c ol s are reversed.
b. In the constructor, the line

i f (r a ndI nt < pe r c e nt a ge)

is changed to

i f (r a ndI nt >= pe r c e nt a ge)

c. Within the ma r kBl ob method we drop the line

vi s i t e d[r ow] [c ol] = t r ue ;

15. What are the ramifications of the following user responses when the Bl obApp
program prompts for a percentage?
a. 10
b. 300
c. twenty

16. If the blob percentage is 0, there are no blobs. Explain why. If the blob percent-
age is 100, there is one blob. Explain why. As the blob density changes from 0
to 100, the typical number of blobs increases from 0 to some number and then
decreases down to 1. Experiment with the Bl obApp program to determine
approximately what density of blob characters exhibits the greatest number of
blobs. If you like, you may modify the program to help your investigation.

17. Modify the blob classes so that the application does the following:
a. Allows the user to enter the dimensions of the grid.
b. Outputs the average size of a blob in addition to the number of blobs.
c. Instead of counting the number of blobs, allows the user to repeatedly enter

the coordinates of a grid location and then reports to the user the size of the
blob, if any, at that location.

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 290

Exercises | 291

d. A “buffer” of nonblob characters encircles the grid of characters that is being
used. The existence of these characters means that the program no longer
needs to worry if the location being checked is on the grid.

e. An alternative algorithm is used for ma r kBl ob. Rather than marking the indi-
cated location and then checking whether its surrounding locations should be
passed to ma r kBl ob, it checks whether the indicated location should be
marked (Is it on the grid? Does it hold a blob character? Is it currently unvis-
ited?). If so, the algorithm marks it and then “blindly” calls ma r kBl ob four
times, once for each of its surrounding locations. If the original location does
not need to be marked, the method does nothing—it just returns.

18. What are the constraints on the arguments for the r e vPr i nt method? What
happens if the constraints are not met?

19. Using the recursive method r e vPr i nt as a model, write a recursive method
pr i nt Li s t , which traverses the elements in a linked list in forward order. Does
one of these methods constitute a better use of recursion? If so, which one?

20. You must assign the grades for a programming class. Right now the class is
studying recursion, and students have been given this simple assignment: Write
a recursive method s umSqua r e s that takes a reference to a linked list of I nt e -
ge r elements and returns the sum of the squares of the elements. The list nodes
are of class LLNode <I nt e ge r >. The objects in the list are all of class I nt e ge r .
Example:

Assume that the list is not empty.
You have received quite a variety of solutions. Grade the methods below,

marking errors where you see them.
a. i nt s umSqua r e s (LLNode <I nt e ge r > l i s t)

{
r e t ur n 0;
i f (l i s t ! = nul l)

r e t ur n (l i s t . ge t I nf o()
* l i s t . ge t I nf o()
+ s umSqua r e s (l i s t . ge t Li nk())) ;

}

b. i nt s umSqua r e s (LLNode <I nt e ge r > l i s t)
{

i nt s um = 0;

5 2

s umSqua r e s (l i s t) yields (5 * 5) + (2 * 2) + (3 * 3) + (1 * 1) = 39

13l i s t ••••

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 291

292 | Chapter 4: Recursion

sqrRoot number, approx, tol
approx if | app

()=
rrox number | tol

sqrRoot(number, (approx

2 − ≤
22 number)

(2 approx)
, tol) if | approx num+

�
−2 bber | tol>

�

�
�

�
�

whi l e (l i s t ! = nul l)
{

s um = l i s t . ge t I nf o() + s um;
l i s t = l i s t . ge t Li nk() ;

}
r e t ur n s um;

}

c. i nt s umSqua r e s (LLNode <I nt e ge r > l i s t)
{

i f (l i s t == nul l)
r e t ur n 0;

e l s e
r e t ur n l i s t . ge t I nf o() * l i s t . ge t I nf o()

+ s umSqua r e s (l i s t . ge t Li nk()) ;
}

d. i nt s umSqua r e s (LLNode <I nt e ge r > l i s t)
{

i f (l i s t . ge t Li nk() == nul l)
r e t ur n l i s t . ge t I nf o() *

l i s t . ge t I nf o() ;
e l s e

r e t ur n l i s t . ge t I nf o() * l i s t . ge t I nf o()
+ s umSqua r e s (l i s t . ge t Li nk()) ;

}

e. i nt s umSqua r e s (LLNode <I nt e ge r > l i s t)
{

i f (l i s t == nul l)
r e t ur n 0;

e l s e
r e t ur n (s umSqua r e s (l i s t . ge t Li nk()) *

s umSqua r e s (l i s t . ge t Li nk())) ;
}

21. The following defines a function that calculates an approximation of the square
root of a number, starting with an approximate answer (a ppr ox), within the speci-
fied tolerance (t ol).

a. What limitations must be placed on the values of the arguments if this func-
tion is to work correctly?

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 292

Exercises | 293

b. Write a recursive method s qr Root that implements the function.
c. Write a nonrecursive version of the method s qr Root .
d. Write a driver to test the recursive and iterative versions of the method s qr -

Root .
22. A palindrome is a string that reads the same forward as well as backward. For

example, “otto” and “never odd or even” are palindromes. When determining if a
string is a palindrome, we ignore characters that are not letters.
a. Give a recursive definition of a palindrome. (Hint: Consider what you get if

you remove the first and last letters of a palindrome.)
b. What is the base case of your definition?
c. Write a recursive program based on your definition that repeatedly prompts

the user for a string and then reports whether the string is a palindrome.
d. Write an iterative program that does the same thing.
e. Compare your two programs in terms of time and space efficiency.

23. We want to count the number of possible paths to move from row 1, column 1
to row N, column N in a two-dimensional grid. Steps are restricted to going up
or to the right, but not diagonally. The illustration shows three of many paths, if
N = 10:

a. The following method, numPa t hs , is supposed to count the number of paths,
but it has some problems. Debug the method.

i nt numPa t hs (i nt r ow, i nt c ol , i nt n)
{

1 1098765432

10

9

8

7

6

5

4

3

2

1

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 293

i f (r ow == n)
r e t ur n 1;

e l s e
i f (c ol == n)

r e t ur n (numPa t hs + 1) ;
e l s e

r e t ur n (numPa t hs (r ow + 1, c ol) * numPa t hs (r ow, c ol + 1))
}

b. After you have corrected the method, trace the execution of numPa t hs with
n = 4 by hand. Why is this algorithm inefficient?

c. The efficiency of this operation can be improved by keeping intermediate val-
ues of numPa t hs in a two-dimensional array of integer values. This approach
keeps the method from having to recalculate values that it has already done.
Design and code a version of numPa t hs that uses this approach.

d. Show an invocation of the version of numPa t hs in part c, including any
array initialization necessary.

e. How do the two versions of numPa t hs compare in terms of time efficiency?
Space efficiency?

24. Create a program that uses methods provided by the Java class library for
exploring files and folders (Hint: The Fi l e class is a good place to start). The
path to a specific file folder is provided to your program as a command line
argument. Your program should do each of the following tasks:
a. “Print” to standard output a list of all of the files in the argument folder plus

their size, along with a list of any folders in the argument folder. Include for
each listed folder a list of its files (including sizes) and folders. Do this “recur-
sively” as long as there are subfolders to be listed. Your output should display
the hierarchy of folders and files in a visually appealing manner.

b. “Print” to standard output the name, path name, and size of the largest file in
the list generated in part a.

c. Create a report about your program that includes a program listing, sample
output, and a description of your experience creating the program.

Advanced (Sections 4.6 and 4.7)
25. Explain what is meant by the following terms:

a. Run-time stack
b. Static storage allocation
c. Dynamic storage allocation
d. Activation record
e. Tail recursion

26. Explain the relationship between dynamic storage allocation and recursion.

294 | Chapter 4: Recursion

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 294

Exercises | 295

gcd(m, n)
if m < n, then swap the values of m, n
if n is a divisor of m, return n

else return gcd(n, m % n)

27. The greatest common divisor of two positive integers m and n, referred to as
gcd(m, n), is the largest divisor common to m and n. For example, gcd(24, 36) =
12, as the divisors common to 24 and 36 are 1, 2, 3, 4, 6, and 12. An efficient
approach to calculating the gcd, attributed to the famous ancient Greek mathe-
matician Euclid, is based on the following recursive algorithm:

a. Design, implement, and test a program Euc l i d that repeatedly prompts the
user for a pair of positive integers and reports the gcd of the entered pair.
Your program should use a recursive method gc d based on the above
algorithm.

b. Create an iterative version of the same program called Euc l i d2. Use what
you learned in Section 4.6 about removing tail recursion to design your itera-
tive approach.

28. Implement a program that repeatedly asks the user to input a positive integer
and outputs the factorial of that input integer. Your program should be based
on our recursive solution to the factorial problem, but instead of using recur-
sion you should use a stack.

29. True or False? Explain your answers. Recursive methods:
a. Often have fewer local variables than the equivalent nonrecursive methods
b. Generally use while or for statements as their main control structure
c. Are possible only in languages with static storage allocation
d. Should be used whenever execution speed is critical
e. Are always shorter and clearer than the equivalent nonrecursive methods
f. Must always contain a path that does not contain a recursive call
g. Are always less efficient in terms of Big-O complexity, than the equivalent

nonrecursive methods
30. Using the c ombi na t i ons method from Section 4.7:

a. Create a program that repeatedly prompts the user for two integers, N and M,
and outputs the number of combinations of Mitems that can be made out of
N items.

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 295

296 | Chapter 4: Recursion

b. Enhance your program so that it also outputs the number of times the c om-
bi na t i ons method is invoked when determining each result.

c. Experiment with your enhanced program, using different variations of input
values. Write a short report about the results of your experiment.

31. True or False? Explain your answers. A recursive solution should be used when:
a. Computing time is critical
b. The nonrecursive solution would be longer and more difficult to write
c. Computing space is critical
d. Your instructor says to use recursion

13549_CH04_Da l e . qxd 1/ 6/ 11 9: 36 AM Pa ge 296

Knowledge Goals
You should be able to
■ describe a queue and its operations at a logical level
■ explain the differences between bounded and unbounded queue interfaces
■ describe and compare three approaches for determining whether a string is a palindrome
■ describe algorithms for implementing queue operations using an array
■ compare fixed- and floating-front approaches to an array-based implementation of a queue
■ explain how to implement an unbounded queue using arrays
■ describe algorithms for implementing queue operations using a linked list
■ use Big-O analysis to describe and compare the efficiency of queue algorithms
■ describe an algorithm for simulating the card game of War, using queues and recursion
■ explain how concurent threads can interfere with each other resulting in errors, and how such interference

can be prevented
■ define inter-arrival time, service time, turnaround time, and waiting time for elements on a queue

Skill Goals
You should be able to
■ implement the Bounded Queue ADT using an array
■ implement the Unbounded Queue ADT using an array
■ implement the Unbounded Queue ADT using a linked list
■ draw diagrams showing the effect of queue operations for a particular implementation of a queue
■ use a Queue ADT as a component of an application
■ expand a queue implementation to define a new class of queue that helps solve a specific problem
■ implement a program that properly uses threads to take advantage of parallelism inherent within a problem solution
■ calculate turnaround and waiting times for queue elements, given arrival times and service requirements
■ use our queue simulation system to investigate properties of real-world queues

The Queue ADT
G

o

a

l

s

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 297

298 | Chapter 5: The Queue ADT

In this chapter we consider the queue, which is the logical counterpart of the stack.
Whereas the stack is a “last in, first out” (LIFO) structure, a queue is a “first in, first out”
(FIFO) structure. Whichever element is in the queue the longest is the next element to be
removed. Like the stack, the queue has many important uses related to computer sys-
tems software and also offers advantages for many other applications.

We study the queue as an ADT, looking at it from the logical, application, and imple-
mentation levels. At the logical level, we formally define our Queue ADT using a Java
i nt e r f a c e . We discuss many applications of queues, looking in particular at how queues
are used to determine whether a string is a palindrome and to simulate the card game of
War. We investigate the implementation of queues using our two basic approaches: arrays
and linked lists. In addition to using an array to implement a bounded queue, we see how
to implement an unbounded queue using an array. We discuss how queues are often used
to hold tasks targeted for parallel execution and how to indicate that Java can safely
exploit such parallelism if it can be used to improve performance. In a case study we
design a program that helps us analyze the properties of real-world queues.

5.1 Queues

The stacks we studied in Chapter 3 are structures in which elements are always added to
and removed from the same end. But what if we need to represent a collection that
operates in a different manner? Suppose we want to simulate cars passing through the
stages of a car wash. The cars go in one end and come out the other end. A data struc-
ture in which elements enter at one end and are removed from the opposite end is called
a queue. The queue data structure, like the car wash, has the property that the first ele-
ment (car) to go in is the first element (car) to come out.

Several variations on this basic form of queue exist, so to distinguish it we some-
times refer to this version as a FIFO queue. In the rest of this chapter, “queue” refers to a
FIFO queue. (Another queue-like data structure, the priority queue, is discussed in Chap-
ter 9.) As we did with the stack, we consider the queue as an ADT from three levels: log-
ical, implementation, and application.

A queue is an ordered group of elements in which
new elements are added at one end (the “rear”) and ele-
ments are removed from the other end (the “front”). As
another example of a queue, consider a line of students
waiting to pay for their textbooks at a university book-
store (see Figure 5.1). In theory, if not in practice, each

new student gets in line at the rear. When the cashier is ready for a new customer, the
student at the front of the line is served.

To add elements to a queue, we access the rear of the queue; to remove elements,
we access the front. The middle elements are logically inaccessible. It is convenient to
picture the queue as a linear structure with the front at one end and the rear at the other
end. However, we must stress that the “ends” of the queue are abstractions; they may or
may not correspond to any physical characteristics of the queue’s implementation. The
essential property of the queue is its FIFO access.

Queue A structure in which elements are added to
the rear and removed from the front; a “first in, first
out” (FIFO) structure

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 298

5.1 Queues | 299

Figure 5.1 A FIFO queue

Rear of
Queue

Front of
Queue

next...

PAY HERE

Like the stack, the queue is a holding structure for data that we plan to use later.
We put a data element into the queue; then, when we need it, we remove it from the
queue. If we want to change the value of an element, we should take that element
from the front of the queue, change its value, and return it to the back of the queue.
We usually do not directly manipulate the values of elements that are currently in
the queue.

Operations on Queues
The bookstore example suggests two operations that can be applied to a queue. First,
new elements can be added to the rear of the queue, an operation that we call enqueue.
Second, we can remove elements from the front of the queue, an operation that we call
dequeue. Figure 5.2 shows how a series of these operations would affect a queue, envi-
sioned as a series of blocks.

Unlike the stack operations pus h and pop, the addition and removal operations for
a queue do not have standard names. The enqueue operation is sometimes called enq,
enque, add, or insert; dequeue is also called deq, deque, remove, or serve.

Using Queues
In Chapter 3 we discussed how operating systems and compilers use stacks. Similarly,
queues are often used for system programming purposes. For example, an operating
system often maintains a queue of processes that are ready to execute or that are wait-
ing for a particular event to occur.

Computer systems must often provide a “holding area” for messages that are being
transmitted between two processes, two programs, or even two systems. This holding

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 299

Figure 5.2 The effects of enqueue and dequeue operations

3

3 5

2

2

Originally

enqueue block2

enqueue block3

2enqueue block5

Queue is empty

front = block2 rear = block2

front = block2 rear = block3

53dequeue front = block3 rear = block5

front = block2 rear = block5

5 43enqueue block4 front = block3 rear = block4

area is usually called a “buffer” and is often implemented as a queue. For example, if a
large number of mail messages arrive at a mail server at about the same time, the mes-
sages are held in a buffer until the mail server can get around to processing them. If it
processes the messages in the order they arrived—in “first come, first served” order—then
the buffer is a queue.

Many other applications need to store requests before processing. Consider applica-
tions that provide services to customers—for example, selling airline or theater tickets.
Such applications typically use a queue to manage the requests.

As shown by the bookstore example, our software queues have counterparts in real-
world queues. We wait in queues to buy pizza, to enter movie theaters, to drive on a
turnpike, and to ride on a roller coaster. Another important application of the queue
data structure is to help us simulate and analyze such real-world queues, as we’ll see in
a case study in Section 5.8.

5.2 Formal Specification

In this section we formally specify our Queue ADT. Other than the fact that we support
the operations e nque ue and de que ue rather than pus h, pop, and t op, we use the same
basic approach as we did for our Stack ADT:

• Our queues are generic—the type of object held by a particular queue is indicated
by the client at the time the queue is instantiated.

• The classes defined to support our queues are grouped together in the
c h05. que ue s package.

300 | Chapter 5: The Queue ADT

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 300

5.2 Formal Specification | 301

• We provide observer operations i s Empt y and i s Ful l so that an application,
when appropriate, can prevent itself from trying to remove an element from an
empty queue or insert an element into a full queue.

• We create Que ue Unde r f l owExc e pt i on and Que ue Ove r f l owExc e pt i on classes.
• We create a Que ue I nt e r f a c e that defines the signatures of the queue methods

that do not depend on the boundedness of the queue.
• We create a Bounde dQue ue I nt e r f a c e and an Unbounde dQue ue I nt e r f a c e ,

which extend Que ue I nt e r f a c e and define the remaining pertinent method sig-
natures. An implementation of a queue should i mpl e me nt one of these two
interfaces.

The code for the two exception classes is essentially the same as that used for the two
stack exception classes in Chapter 3, so we do not show it here.

Here is the Que ue I nt e r f a c e . As you can see, it defines the signatures of the
de que ue and i s Empt y methods. These signatures are the same for an unbounded and a
bounded queue, so they are included in the general interface.

/ / -
/ / Que ue I nt e r f a c e . j a va by Da l e / J oyc e / We e ms Cha pt e r 5
/ /
/ / I nt e r f a c e f or a c l a s s t ha t i mpl e me nt s a que ue of T.
/ / A que ue i s a " f i r s t i n, f i r s t out " s t r uc t ur e .
/ / -

pa c ka ge c h05. que ue s ;

publ i c i nt e r f a c e Que ue I nt e r f a c e <T>

{
T de que ue () t hr ows Que ue Unde r f l owExc e pt i on;
/ / Thr ows Que ue Unde r f l owExc e pt i on i f t hi s que ue i s e mpt y;
/ / ot he r wi s e , r e move s f r ont e l e me nt f r om t hi s que ue a nd r e t ur ns i t .

bool e a n i s Empt y() ;
/ / Re t ur ns t r ue i f t hi s que ue i s e mpt y; ot he r wi s e , r e t ur ns f a l s e .

}

The main difference between an unbounded and a bounded queue is the need for
the latter to handle the potential of overflow. In the bounded queue interface, we define
the signature for an i s Ful l method. Additionally, the signature of e nque ue in the
bounded queue interface shows it throwing the Que ue Ove r f l owExc e pt i on.1 Here is
the Bounde dQue ue I nt e r f a c e :

1. The queue exceptions are unchecked exceptions; therefore including them in the interface has no effect
from a syntactic or run-time error-checking standpoint. We show them in the interfaces to describe our
expectations for the implementation.

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 301

/ / -
/ / Bounde dQue ue I nt e r f a c e . j a va by Da l e / J oyc e / We e ms Cha pt e r 5
/ /
/ / I nt e r f a c e f or a c l a s s t ha t i mpl e me nt s a que ue of T wi t h a bound
/ / on t he s i z e of t he que ue . A que ue i s a " f i r s t i n, f i r s t out " s t r uc t ur e .
/ / -

pa c ka ge c h05. que ue s ;

publ i c i nt e r f a c e Bounde dQue ue I nt e r f a c e <T> e xt e nds Que ue I nt e r f a c e <T>
{

voi d e nque ue (T e l e me nt) t hr ows Que ue Ove r f l owExc e pt i on;
/ / Thr ows Que ue Ove r f l owExc e pt i on i f t hi s que ue i s f ul l ;
/ / ot he r wi s e , a dds e l e me nt t o t he r e a r of t hi s que ue .

bool e a n i s Ful l () ;
/ / Re t ur ns t r ue i f t hi s que ue i s f ul l ; ot he r wi s e , r e t ur ns f a l s e .

}

And the Unbounde dQue ue I nt e r f a c e :

/ / -
/ / Unbounde dQue ue I nt e r f a c e . j a va by Da l e / J oyc e / We e ms Cha pt e r 5
/ /
/ / I nt e r f a c e f or a c l a s s t ha t i mpl e me nt s a que ue of T wi t h no bound
/ / on t he s i z e of t he que ue . A que ue i s a " f i r s t i n, f i r s t out " s t r uc t ur e .
/ / -

pa c ka ge c h05. que ue s ;

publ i c i nt e r f a c e Unbounde dQue ue I nt e r f a c e <T> e xt e nds Que ue I nt e r f a c e <T>

{
voi d e nque ue (T e l e me nt) ;
/ / Adds e l e me nt t o t he r e a r of t hi s que ue .

}

As with stacks, the application programmer can decide to prevent problems by
using the i s Ful l and i s Empt y observers before accessing a queue or to “try” the
access operations and “catch and handle” any raised exception.

302 | Chapter 5: The Queue ADT

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 302

The relationships among our three interfaces and two exception classes are shown
in the UML diagram in Figure 5.3. A specific implementation of a queue would imple-
ment either the Bounde dQue ue I nt e r f a c e or the Unbounde dQue ue I nt e r f a c e . By
virtue of the interface inheritance rules, the implementation must also implement the
methods of Que ue I nt e r f a c e .

Example Use
As we did for stacks we provide a simple example use of a queue to end this section
about formal specification. The Re pe a t St r i ngs example shows how we can use
a queue to store strings provided by a user and then to output the strings in the
same order in which they were entered. The code uses the array-based implementa-
tion of a queue we develop in the following section. The parts of the code directly
related to the creation and use of the queue are emphasized. We declare the queue
to be of type Bounde dQue ue I nt e r f a c e <St r i ng> and then instantiate it as an
Ar r a yBndQue ue <St r i ng>. Within the for loop, three strings provided by the user are
enqueued into the queue. The while loop repeatedly dequeues and prints the front string
from the queue until the queue is empty.

/ / -
/ / Re pe a t St r i ngs . j a va by Da l e / J oyc e / We e ms Cha pt e r 5
/ /
/ / Sa mpl e us e of que ue . Out put s s t r i ngs i n s a me or de r of e nt r y.
/ / -

i mpor t c h05. que ue s . *;

5.2 Formal Specification | 303

Figure 5.3 UML diagram of our queue interfaces

+Que ue Ove r f l owExc e pt i on()
+Que ue Ove r f l owExc e pt i on(St r i ng me s s a ge)

<<interface>>
QueueInterface<T>

+de que ue () : T
+i s Empt y() : bool e a n

QueueOverflowException

+Que ue Unde r f l owExc e pt i on()
+Que ue Unde r f l owExc e pt i on(St r i ng me s s a ge)

QueueUnderflowException

<<interface>>
UnboundedQueueInterface<T>

+e nque ue (T e l e me nt) : voi d

<<interface>>
BoundedQueueInterface<T>

+e nque ue (T e l e me nt) : voi d
+i s Ful l () : bool e a n

 uses

 extends

 Key:

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 303

i mpor t j a va . ut i l . Sc a nne r ;

publ i c c l a s s Re pe a t St r i ngs
{

publ i c s t a t i c voi d ma i n(St r i ng[] a r gs)
{

Sc a nne r c onI n = ne w Sc a nne r (Sys t e m. i n) ;

Bounde dQue ue I nt e r f a c e <St r i ng> que ue ;
que ue = ne w Ar r a yBndQue ue <St r i ng>(3) ;

St r i ng l i ne ;

f or (i nt i = 1; i <= 3; i ++)
{

Sys t e m. out . pr i nt (" Ent e r a l i ne of t e xt > ") ;
l i ne = c onI n. ne xt Li ne () ;
que ue . e nque ue (l i ne) ;

}

Sys t e m. out . pr i nt l n(" \ nOr de r i s : \ n") ;
whi l e (! que ue . i s Empt y())
{

l i ne = que ue . de que ue () ;
Sys t e m. out . pr i nt l n(l i ne) ;

}
}

}

Here is the output from a sample run:

Ent e r a l i ne of t e xt > t he be gi nni ng of a s t or y

Ent e r a l i ne of t e xt > i s of t e n di f f e r e nt t han

Ent e r a l i ne of t e xt > t he e nd of a s t or y

Or de r i s :

t he be gi nni ng of a s t or y

i s of t e n di f f e r e nt t ha n

t he e nd of a s t or y

304 | Chapter 5: The Queue ADT

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 304

5.3 Array- Based Implementations | 305

The Java Library Collection Framework Queue
A Que ue interface was added to the Java library Collection Framework with Java 5.0. As expected,
the library’s Que ue ADT interface is similar to our Queue ADT interfaces in that elements are always
removed from the “front” of the queue. However, it also exhibits several important differences:

• It does not require elements to be inserted into the “rear” of the queue. For example, inserted
elements might be ordered based on a priority value.

• Because it extends the Col l e c t i on interface, any class that implements it must also imple-
ment eight predefined abstract methods. These include methods to observe the size of the
queue and to turn the queue into an array.

• No separate interfaces for bounded and unbounded queues exist. Instead, the programmer
chooses whether to place a limit on the number of elements a queue holds.

• It provides two operations for enqueuing: a dd, which throws an exception if invoked on a
full queue, and of f e r , which returns a bool e a n value of f a l s e if invoked on a full queue.

• It provides two operations for dequeuing: r e move , which throws an exception, and pol l ,
which returns f a l s e , when invoked on an empty queue.

• Operations for obtaining the front element, without removing it, are included.

The Java library Collections Framework includes nine classes that implement its Que ue interface.

5.3 Array- Based Implementations

In this section we study two array-based implementations of the Queue ADT: one that
implements a bounded queue and one that implements an unbounded queue. We con-
tinue to simplify some of our figures by using a capital letter to represent an element’s
information.

Note that Figure 5.15, in the chapter’s “Summary” section, shows the relationships
among all the classes and interfaces created to support our Queue ADT.

The ArrayBndQueue Class
First we develop a Java class that implements the Bounde dQue ue I nt e r f a c e . We call
this class Ar r a yBndQue ue , in recognition of the fact that it uses an array as the under-
lying structure. The term Bnd in the name distinguishes it from the array-based
unbounded queue that we will develop later in this section.

Our first task is to decide how we will store the queue in the array: We need some
way of determining the front and rear elements of the queue. Several possible alterna-
tives are available.

Fixed- Front Design Approach
In implementing the stack, we began by inserting an element into the first array posi-
tion and adjusted the location of t op with subsequent pus h and pop operations. The

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 305

306 | Chapter 5: The Queue ADT

bottom of the stack, however, was always the first slot in the array. Can we use a simi-
lar solution for a queue, keeping the front of the queue fixed in the first array slot and
letting the rear move as we add new elements?

Let’s see what happens after a few e nque ue and de que ue operations if we insert
the first element into the first array position, the second element into the second posi-
tion, and so on. To simplify our figures in this chapter, we show the element sitting
inside its corresponding array slot—keep in mind that, in actuality, the array slot holds a
reference to the element. After four calls to e nque ue with arguments ‘A’, ‘B’, ‘C’, and ‘D’,
the queue would look like this:

Remember that the front of the queue is fixed at the first slot in the array, whereas
the rear of the queue moves down with each enqueue. Now we dequeue the front ele-
ment from the queue:

This operation removes the element in the first array slot and leaves a hole. To keep
the front of the queue fixed at the top of the array, we need to move every element in
the queue up one slot:

With this design the e nque ue operation is the same as pus h. The de que ue opera-
tion is more complicated than pop, because the remaining elements of the queue have
to shift up toward the front of the array.

Now let’s evaluate this design. Its strengths are its simplicity and ease of coding; it
is almost as simple as the stack implementation. Although the queue is accessed from
both ends rather than one (as in the stack), we just have to keep track of the rear,
because the front is fixed. Only the de que ue operation is more complicated. What is the
weakness of the design? We have to move all of the elements up every time we
dequeue, which increases the amount of work done.

How serious is this weakness? To make this judgment, we have to know something
about how the queue will be used. If it will hold large numbers of elements, the process-
ing required to move the elements with each dequeue makes this solution a poor one.
Conversely, if the queue generally contains only a few elements, the data movement
may not be too costly. Although this design can be made to work and has acceptable

 B

[0] [1] [2] [3] [4]

C D f r ont : 0
r e a r : 2

[0] [1] [2] [3] [4]

B C D

 A

[0] [1] [2] [3] [4]

B C D f r ont : 0
r e a r : 3

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 306

5.3 Array- Based Implementations | 307

performance in some situations, in general it isn’t the most efficient choice. Let’s see if
we can develop a design that avoids the need to move the queue elements for each
de que ue operation.

Floating- Front Design Approach
The need to move the elements in the array was created by our decision to keep the
front of the queue fixed in the first array slot and to let only the rear move. What if we
allow both the front and the rear to move? As before, an e nque ue operation adds an
element at the rear of the queue and adjusts the location of the rear. But now a
de que ue operation removes the element at the front and simply adjusts the location of
the front. No movement of elements is required. However, we now have to keep track of
the array indexes of both the front and the rear of the queue.

Figure 5.4 shows how several e nque ue and de que ue operations would affect a
queue that uses this approach.

Letting the queue elements float in the array creates a new problem when the rear
indicator gets to the end of the array. In our first design, this situation told us that the
queue was full. Now, however, the rear of the queue could potentially reach the end of
the (physical) array when the (logical) queue is not yet full (Figure 5.5a).

Figure 5.4 The effect of e nque ue and de que ue

 A

[0] [1] [2] [3] [4]

 A B

[0] [1] [2] [3] [4]

 A B C

[0] [1] [2] [3] [4]

 B C

[0] [1] [2] [3] [4]

(a) que ue . e nque ue (' A')

(b) que ue . e nque ue (' B')

(c) que ue . e nque ue (' C')

(d) e l e me nt =que ue . de que ue () ;

f r ont : 0
r e a r : 0

f r ont : 0
r e a r : 1

f r ont : 0
r e a r : 2

f r ont : 1
r e a r : 2

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 307

308 | Chapter 5: The Queue ADT

Figure 5.5 Wrapping the queue elements around the array

J K L?

[0] [1] [2] [3] [4]

 L J K

[0] [1] [2] [3] [4]

(a) There is no room at the end of the array

(b) Using the array as a circular structure,
 we can wrap the queue around to the
 beginning of the array

f r ont : 3

f r ont : 3
r e a r : 0

r e a r : 5?

Because there may still be space available at the beginning of the array, the obvious
solution is to let the queue elements “wrap around” the end of the array. In other words,
the array can be treated as a circular structure in which the last slot is followed by the
first slot (Figure 5.5b). To get the next position for the rear indicator, for instance, we
can use an if statement. Assume c a pa c i t y represents the size of the array:

i f (r e a r == (c a pa c i t y - 1))
r e a r = 0;

e l s e
r e a r = r e a r + 1;

Another way to reset r e a r is to use the modulo (%) operator:

r e a r = (r e a r + 1) % c a pa c i t y;

Comparing Design Approaches
The circular array (floating-front) solution is not as simple as the fixed-front design. What
do we gain by adding this complexity to our design? By using a more efficient de que ue
operation, we achieve better performance. Because the amount of work needed to move all
the remaining elements is proportional to the number of elements, the fixed-front version
of de que ue is an O(N) operation. The floating-front design requires de que ue to perform
just a few simple operations. The amount of work never exceeds some fixed constant, no
matter how many elements are in the queue, so the algorithm’s complexity is O(1).

We will use the floating-front approach.

The Instance Variables and Constructors
What instance variables does our implementation need? We need the queue elements them-
selves; they are held in the underlying array. From our earlier analysis, we know that we
must add two instance variables to the class: f r ont and r e a r . And we know that to help

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 308

5.3 Array- Based Implementations | 309

2. An unchecked cast warning is generated because the compiler cannot ensure that the array contains objects
of class T—the warning can safely be ignored.

wrap around the value of r e a r it is useful to know the capacity of the underlying array—
that is, the maximum number of elements the queue can hold. The capacity is supplied by
the array’s length attribute. We are now confident that we can handle the e nque ue and
de que ue operations, but what about the remaining operations? To facilitate the i s Empt y
and i s Ful l operations we decide to use one more instance variable, numEl e me nt s . The
numEl e me nt s variable holds the current number of elements in the queue.

The beginning of the Ar r a yBndQue ue . j a va file is shown here:

/ / -
/ / Ar r a yBndQue ue . j a va by Da l e / J oyc e / We e ms Cha pt e r 5
/ /
/ / I mpl e me nt s Bounde dQue ue I nt e r f a c e wi t h a n a r r a y t o hol d t he que ue e l e me nt s .
/ /
/ / Two c ons t r uc t or s a r e pr ovi de d: one t ha t c r e a t e s a que ue of a de f a ul t
/ / c a pa c i t y a nd one t ha t a l l ows t he c a l l i ng pr ogr a m t o s pe c i f y t he c a pa c i t y.
/ / -

pa c ka ge c h05. que ue s ;

publ i c c l a s s Ar r a yBndQue ue <T> i mpl e me nt s Bounde dQue ue I nt e r f a c e <T>
{

pr ot e c t e d f i na l i nt DEFCAP = 100; / / de f a ul t c a pa c i t y
pr ot e c t e d T[] que ue ; / / a r r a y t ha t hol ds que ue e l e me nt s
pr ot e c t e d i nt numEl e me nt s = 0; / / numbe r of e l e me nt s i n t he que ue
pr ot e c t e d i nt f r ont = 0; / / i nde x of f r ont of que ue
pr ot e c t e d i nt r e a r ; / / i nde x of r e a r of que ue

publ i c Ar r a yBndQue ue ()
{

que ue = (T[]) ne w Obj e c t [DEFCAP] ; 2

r e a r = DEFCAP - 1;
}

publ i c Ar r a yBndQue ue (i nt ma xSi z e)
{

que ue = (T[]) ne w Obj e c t [ma xSi z e] ; 2

r e a r = ma xSi z e - 1;
}

As you can see, we have included the two standard constructors for a bounded
structure: one for which the client program specifies a maximum size and one that
defaults to a maximum size of DEFCAP elements (the default capacity is 100). Recall that

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 309

310 | Chapter 5: The Queue ADT

because the Java translator will not generate references to a generic type, our code must
specify Obj e c t along with the new statement within our constructors. Thus we declare
our arrays to be arrays of class T but instantiate them to be arrays of class Obj e c t .
Then, to ensure that the desired type checking takes place, we cast array elements into
class T. Even though this approach is somewhat awkward and typically generates a
compiler warning, it is how we must create generic collections using arrays in Java.

The r e a r variable is initialized to the capacity 1. The first time something is
enqueued, this value is changed to 0, indicating the array slot that should hold that first
element. The f r ont variable is initialized to 0, as that is the array index of the first ele-
ment that is dequeued. Note that when the queue holds just one element, f r ont and
r e a r will have the same value.

Definitions of Queue Operations
Given the preceding discussion, the implementations of our queue operations are
straightforward. Recall that for the bounded queue the e nque ue method should throw
an exception if the queue is full. If the queue is not full, the method should simply
increment the r e a r variable, “wrapping it around” if necessary; insert the argument
into the r e a r location; and increment the numEl e me nt s variable.

publ i c voi d e nque ue (T e l e me nt)
/ / Thr ows Que ue Ove r f l owExc e pt i on i f t hi s que ue i s f ul l ;
/ / o t he r wi s e , a dds e l e me nt t o t he r e a r of t hi s que ue .
{

i f (i s Ful l ())
t hr ow ne w Que ue Ove r f l owExc e pt i on(" Enque ue a t t e mpt e d on a f ul l que ue . ") ;

e l s e
{

r e a r = (r e a r + 1) % que ue . l e ngt h;
que ue [r e a r] = e l e me nt ;
numEl e me nt s = numEl e me nt s + 1;

}
}

The de que ue method is essentially the reverse of this operation. It throws an excep-
tion if the queue is empty; otherwise, it increments f r ont , also wrapping if necessary;
decrements numEl e me nt s ; and returns the element previously indicated by the f r ont
variable. Note that this method starts by making a copy of the reference to the object it
eventually returns. It does so because during its next few steps, it removes the reference
to the object from the array.

publ i c T de que ue ()
/ / Thr ows Que ue Unde r f l owExc e pt i on i f t hi s que ue i s e mpt y;
/ / o t he r wi s e , r e move s f r ont e l e me nt f r om t hi s que ue a nd r e t ur ns i t .
{

i f (i s Empt y())

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 310

5.3 Array- Based Implementations | 311

t hr ow ne w Que ue Unde r f l owExc e pt i on(" De que ue a t t e mpt e d on e mpt y que ue . ") ;
e l s e
{

T t oRe t ur n = que ue [f r ont] ;
que ue [f r ont] = nul l ;
f r ont = (f r ont + 1) % que ue . l e ngt h;
numEl e me nt s = numEl e me nt s - 1;
r e t ur n t oRe t ur n;

}
}

Note that de que ue , like the stack pop operation, sets the value of the array location
associated with the removed element to nul l . This allows the Java garbage collection
process to work with up-to-date information.

The observer methods are very simple, thanks to the fact that we keep track of the
size of the queue in the numEl e me nt s variable:

publ i c bool e a n i s Empt y()
/ / Re t ur ns t r ue i f t hi s que ue i s e mpt y; ot he r wi s e , r e t ur ns f a l s e .
{

r e t ur n (numEl e me nt s == 0) ;
}

publ i c bool e a n i s Ful l ()
/ / Re t ur ns t r ue i f t hi s que ue i s f ul l ; o t he r wi s e , r e t ur ns f a l s e .
{

r e t ur n (numEl e me nt s == que ue . l e ngt h) ;
}

Test Plan
We should make a comprehensive test plan for our queue implementations, as we did
for stacks, listing all of the queue operations and the tests needed for each operation.
For example, to test the method i s Empt y, we must call it at least five times. We call it
in the following scenarios:

• The queue is originally empty.
• The queue is empty after having been nonempty.
• The queue is nonempty.
• The queue has cycled through the empty and nonempty states a few times and is

now nonempty.
• The queue is full.

We might e nque ue elements until the queue is full and then call methods i s Empt y
and i s Ful l to see whether they correctly judge the state of the queue. We could then
de que ue the elements in the queue, printing them out as we go to make sure that they
are correctly removed. At this point we could call the queue status methods again to see

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 311

312 | Chapter 5: The Queue ADT

whether the empty condition is correctly detected. We must also remember to test the
“tricky” part of the array-based algorithm: We e nque ue until the queue is full; de que ue
an element; and then e nque ue again, forcing the operation to circle back to the begin-
ning of the array.

A t oSt r i ng method would help us examine the contents of the queue during test-
ing. In the exercises you are asked to create such a method for the various queue imple-
mentations.

The ArrayUnbndQueue Class
Here we develop a Java class that uses an array and implements the Unbounde d-
Que ue I nt e r f a c e . It may seem surprising to implement an unbounded structure using
an array, given that once an array is created its capacity cannot be changed. The trick is
to create a new, larger array, when needed, and copy the structure into the new array.

To create the Ar r a yUnbndQue ue class we can reuse some of the code from the
Ar r a yBndQue ue class. Starting with that class, what changes do we need to make so
that the queue never becomes full? First, of course, we change the name of the class and
indicate that it implements the Unbounde dQue ue I nt e r f a c e :

publ i c c l a s s Ar r a yUnbndQue ue <T> i mpl e me nt s Unbounde dQue ue I nt e r f a c e <T>

We can drop the i s Ful l method from the class, as it is not required by the
Unbounde dQue ue I nt e r f a c e .

Those are the “easy” changes. Now let’s address the issue of making the structure
unbounded. We must change the e nque ue method to increase the capacity of the array
if it has run out of space. Because enlarging the array is conceptually a separate opera-
tion from enqueuing, we implement it as a separate method named e nl a r ge . Now we
can begin the e nque ue method with the following statement

i f (numEl e me nt s == que ue . l e ngt h)
e nl a r ge () ;

Next we need to implement the e nl a r ge method. By how much should we increase
the size of the array? Several options are possible:

• We could set a constant increment value or multiplying factor within the class.
• We could allow the application to specify an increment value or multiplying fac-

tor when the queue is instantiated.
• We could use the original capacity as the increment value.

Because e nl a r ge must copy the contents of the entire array, it is a O(N) operation—
and therefore we do not want to invoke it too often. This fact implies that we should
increment the capacity by a large amount. Of course, if we increment by too large an
amount, we waste both time and space.

Let’s use the original capacity as the increment value. Our e nl a r ge method instan-
tiates an array with a size equal to the current capacity plus the original capacity. In our

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 312

5.3 Array- Based Implementations | 313

3. An unchecked cast warning is generated because the compiler cannot ensure that the array contains objects
of class T—the warning can safely be ignored.

constructors we remember the value of the original capacity using an instance variable
or i gCa p.

Within e nl a r ge , when copying the contents from the old array into the new array,
we must be careful to step through the elements of the old array, beginning at f r ont ,
and properly wrapping around the end of the array on our way to r e a r . In the new
array we place the elements at the beginning of the array. After the copy operation, we
update instance variables appropriately. Here is the entire Ar r a yUnbndQue ue class, with
the code changes from the bounded version emphasized.

/ / -
/ / Ar r a yUnbndQue ue . j a va by Da l e / J oyc e / We e ms Cha pt e r 5
/ /
/ / I mpl e me nt s Unbounde dQue ue I nt e r f a c e wi t h a n a r r a y t o hol d que ue e l e me nt s .
/ /
/ / Two c ons t r uc t or s a r e pr ovi de d: one t ha t c r e a t e s a que ue of a de f a ul t
/ / or i gi na l c a pa c i t y a nd one t ha t a l l ows t he c a l l i ng pr ogr a m t o s pe c i f y t he
/ / or i gi na l c a pa c i t y.
/ /
/ / I f a n e nque ue i s a t t e mpt e d whe n t he r e i s no r oom a va i l a bl e i n t he a r r a y, a
/ / ne w a r r a y i s c r e a t e d, wi t h c a pa c i t y i nc r e me nt e d by t he or i gi na l c a pa c i t y.
/ / -

pa c ka ge c h05. que ue s ;

publ i c c l a s s Ar r a yUnbndQue ue <T> i mpl e me nt s Unbounde dQue ue I nt e r f a c e <T>
{

pr ot e c t e d f i na l i nt DEFCAP = 100; / / de f a ul t c a pa c i t y
pr ot e c t e d T[] que ue ; / / a r r a y t ha t hol ds que ue e l e me nt s
pr ot e c t e d i nt or i gCa p; / / or i gi na l c a pa c i t y
pr ot e c t e d i nt numEl e me nt s = 0; / / numbe r of e l e me nt s i n t he que ue
pr ot e c t e d i nt f r ont = 0; / / i nde x of f r ont of que ue
pr ot e c t e d i nt r e a r = - 1; / / i nde x of r e a r of que ue

publ i c Ar r a yUnbndQue ue ()
{

que ue = (T[]) ne w Obj e c t [DEFCAP] ; 3

r e a r = DEFCAP - 1;
or i gCa p = DEFCAP;

}

publ i c Ar r a yUnbndQue ue (i nt or i gCa p)
{

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 313

314 | Chapter 5: The Queue ADT

4. An unchecked cast warning is generated because the compiler cannot ensure that the array contains objects
of class T—the warning can safely be ignored.

que ue = (T[]) ne w Obj e c t [or i gCa p] ; 4

r e a r = or i gCa p - 1;
t hi s . or i gCa p = or i gCa p;

}

pr i va t e voi d e nl a r ge ()
/ / I nc r e me nt s t he c a pa c i t y of t he que ue by a n a mount
/ / e qua l t o t he or i gi na l c a pa c i t y.
{

/ / c r e a t e t he l a r ge r a r r a y
T[] l a r ge r = (T[]) ne w Obj e c t [que ue . l e ngt h + or i gCa p] ; 4

/ / c opy t he c ont e nt s f r om t he s ma l l e r a r r a y i nt o t he l a r ge r a r r a y
i nt c ur r Sma l l e r = f r ont ;
f or (i nt c ur r La r ge r = 0; c ur r La r ge r < numEl e me nt s ; c ur r La r ge r ++)
{

l a r ge r [c ur r La r ge r] = que ue [c ur r Sma l l e r] ;
c ur r Sma l l e r = (c ur r Sma l l e r + 1) % que ue . l e ngt h;

}

/ / upda t e i ns t a nc e va r i a bl e s
que ue = l a r ge r ;
f r ont = 0;
r e a r = numEl e me nt s - 1;

}

publ i c voi d e nque ue (T e l e me nt)
/ / Adds e l e me nt t o t he r e a r of t hi s que ue .
{

i f (numEl e me nt s == que ue . l e ngt h)
e nl a r ge () ;

r e a r = (r e a r + 1) % que ue . l e ngt h;
que ue [r e a r] = e l e me nt ;
numEl e me nt s = numEl e me nt s + 1;

}

publ i c T de que ue ()
/ / Thr ows Que ue Unde r f l owExc e pt i on i f t hi s que ue i s e mpt y;
/ / ot he r wi s e , r e move s f r ont e l e me nt f r om t hi s que ue a nd r e t ur ns i t .
{

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 314

5.4 Application: Palindromes | 315

i f (i s Empt y())
t hr ow ne w Que ue Unde r f l owExc e pt i on(" De que ue a t t e mpt e d on e mpt y que ue . ") ;

e l s e
{

T t oRe t ur n = que ue [f r ont] ;
que ue [f r ont] = nul l ;
f r ont = (f r ont + 1) % que ue . l e ngt h;
numEl e me nt s = numEl e me nt s - 1;
r e t ur n t oRe t ur n;

}
}
publ i c bool e a n i s Empt y()
/ / Re t ur ns t r ue i f t hi s que ue i s e mpt y; ot he r wi s e , r e t ur ns f a l s e
{

r e t ur n (numEl e me nt s == 0) ;
}

}

In Section 3.5 we included a feature about implementing a stack using the Java
Library Ar r a yLi s t class. The Ar r a yLi s t class is part of the Java Collections Framework.
Ar r a yLi s t can also be used to implement our Unbounde dQue ue I nt e r f a c e —in fact it’s a
good choice for the implementation because it provides a structure that grows in size as
needed and it supports the use of generic types without the generation of any compiler
warnings. Exercise 19 asks you to explore this implementation approach.

5.4 Application: Palindromes

To demonstrate the use of queues, we look at the problem of identifying palindromes. A
palindrome is a string that reads the same forward and backward. While we are not sure
of their general usefulness, identifying them provides us with a good example for the
use of both queues and stacks. Besides, palindromes can be entertaining. Consider these
famous palindromes:

• A tribute to Teddy Roosevelt, who orchestrated the creation of the Panama
Canal: “A man, a plan, a canal—Panama!”

• Allegedly muttered by Napoleon Bonaparte upon his exile to the island of Elba
(although this is difficult to believe given that Napoleon mostly spoke French!):
“Able was I, ere I saw Elba.”

• Overheard in a busy Chinese restaurant: “Won ton? Not now!”
• Possibly the world’s first palindrome: “Madam, I’m Adam.”
• Followed immediately by one of the world’s shortest palindromes: “Eve.”

As you can see, the rules for what is a palindrome are somewhat lenient. Typically, we
do not worry about punctuation, spaces, or matching the case of letters.

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 315

316 | Chapter 5: The Queue ADT

Test for Palindrome (String candidate)
Create a new stack
Create a new queue
for each character in candidate

if the character is a letter
Change the character to lowercase
Push the character onto the stack
Enqueue the character onto the queue

Set stillPalindrome to true
while (there are still more characters in the structures

&& stillPalindrome)
Pop character1 from the stack
Dequeue character2 from the queue
if (character1 != character2)

Set stillPalindrome to false
return (stillPalindrome)

The Palindrome Class
As with previous examples, we separate the user interface from the part of the program
that does the main processing. First we concentrate on that main processing—identify-
ing a palindrome.

We create a class Pa l i ndr ome with a single exported static method t e s t , which
takes a candidate string argument and returns a bool e a n value indicating whether the
string is a palindrome. Because the method is static, we do not define a constructor for
the class. Instead, we invoke the t e s t method using the name of the class.

The t e s t method, when invoked, creates a new stack of characters and a new
queue of characters. It then repeatedly pushes each letter from the input line onto the
stack, and also enqueues the letter onto the queue. It discards any nonletter characters,
because they are not considered part of a palindrome. To simplify the comparison later,
we push and enqueue lowercase versions of the characters.

When all of the characters of the candidate string have been processed, the program
repeatedly pops a letter from the stack and dequeues a letter from the queue. As long as
these letters match each other the entire way through this process, we have a palin-
drome. Can you see why? Because the queue is a “first in, first out” structure, the letters
are returned from the queue in the same order they appear in the string. But the letters
taken from the stack, a “last in, first out” structure, are returned in the opposite order.
Thus we are comparing the forward view of the string to the backward view of the
string.

Here is the algorithm for determining whether a string is a palindrome:

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 316

5.4 Application: Palindromes | 317

One part of the algorithm that requires expansion is the determination of when
“there are still more characters in the structures.” This could be done with the i s Empt y
methods of the s t a c k and que ue classes. But there is another approach: We can count
the number of letters in the string as we are storing them. Remember, only letters are
placed in the structures. We can use this count to control how many times we remove
and compare characters.

We take this second approach. The code for the Pa l i ndr ome class follows. We
emphasize the code that involves a queue.

/ / -
/ / Pa l i ndr ome . j a va by Da l e / J oyc e / We e ms Cha pt e r 5
/ /
/ / Pr ovi de s a me t hod t o t e s t whe t he r a s t r i ng i s a pa l i ndr ome .
/ / Nonl e t t e r s a r e s ki ppe d.
/ / -

i mpor t c h03. s t a c ks . *;
i mpor t c h05. que ue s . *;

publ i c c l a s s Pa l i ndr ome
{

publ i c s t a t i c bool e a n t e s t (St r i ng c a ndi da t e)
/ / Re t ur ns t r ue i f c a ndi da t e i s a pa l i ndr ome , f a l s e ot he r wi s e .
{

c ha r c h; / / c ur r e nt c a ndi da t e c ha r a c t e r be i ng pr oc e s s e d
i nt l e ngt h; / / l e ngt h of c a ndi da t e s t r i ng
i nt numLe t t e r s ; / / numbe r of l e t t e r s i n c a ndi da t e s t r i ng
i nt c ha r Count ; / / numbe r of c ha r a c t e r s c he c ke d s o f a r

c ha r f r omSt a c k; / / c ur r e nt c ha r a c t e r poppe d f r om s t a c k
c ha r f r omQue ue ; / / c ur r e nt c ha r a c t e r de que ue d f r om que ue
bool e a n s t i l l Pa l i ndr ome ; / / t r ue i f s t r i ng mi ght s t i l l be a pa l i ndr ome

Bounde dSt a c kI nt e r f a c e <Cha r a c t e r > s t a c k; / / s t r i ng c ha r a c t e r s
Bounde dQue ue I nt e r f a c e <Cha r a c t e r > que ue ; / / s t r i ng c ha r a c t e r s

/ / i n i t i a l i z e va r i a bl e s a nd s t r uc t ur e s
l e ngt h = c a ndi da t e . l e ngt h() ;
s t a c k = ne w Ar r a ySt a c k<Cha r a c t e r >(l e ngt h) ;
que ue = ne w Ar r a yBndQue ue <Cha r a c t e r >(l e ngt h) ;
numLe t t e r s = 0;

/ / obt a i n a nd ha ndl e c ha r a c t e r s
f or (i nt i = 0; i < l e ngt h; i ++)
{

c h = c a ndi da t e . c ha r At (i) ;
i f (Cha r a c t e r . i s Le t t e r (c h))

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 317

318 | Chapter 5: The Queue ADT

{
numLe t t e r s ++;
c h = Cha r a c t e r . t oLowe r Ca s e (c h) ;
s t a c k. pus h(c h) ;
que ue . e nque ue (c h) ;

}
}

/ / de t e r mi ne i f pa l i ndr ome
s t i l l Pa l i ndr ome = t r ue ;
c ha r Count = 0;
whi l e (s t i l l Pa l i ndr ome && (c ha r Count < numLe t t e r s))
{

f r omSt a c k = s t a c k. t op() ;
s t a c k. pop() ;
f r omQue ue = que ue . de que ue () ;
i f (f r omSt a c k ! = f r omQue ue)

s t i l l Pa l i ndr ome = f a l s e ;
c ha r Count ++;

}

/ / r e t ur n r e s ul t
r e t ur n s t i l l Pa l i ndr ome ;

}
}

Note that we use a bounded queue implementation, Ar r a yBndQue ue . This implemen-
tation was developed in Section 5.3. It is appropriate to use bounded structures because
we know the structures need not be larger than the length of the candidate string. Also
note that we make use of Java 5.0’s autoboxing and unboxing features, when we insert
and remove variables of the primitive type c ha r to and from the structures. The system
automatically wraps the c ha r values in a Cha r a c t e r object before insertion, then
unwraps the returned Cha r a c t e r object back into a c ha r value after it is removed.

The Application
The Pa l i ndr ome class does most of the work for us. All that is left to do now is to imple-
ment the user I/O. The Pa l i ndr ome App program is similar to the console-based programs
presented in previous chapters. Its basic flow is to prompt the user for a string, use the
Pa l i ndr ome class’s t e s t method to determine whether the string is a palindrome, output
the result, and then ask the user if he or she wants to continue. Here is the application:

/ / -
/ / Pa l i ndr ome App. j a va by Da l e / J oyc e / We e ms Cha pt e r 5
/ /
/ / Che c ks f or s t r i ngs t ha t a r e pa l i ndr ome s .
/ / I nput c ons i s t s of a s e que nc e of s t r i ngs .

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 318

5.4 Application: Palindromes | 319

/ / Out put c ons i s t s of whe t he r t he i nput s t r i ng i s a pa l i ndr ome .
/ / -

i mpor t j a va . ut i l . Sc a nne r ;

publ i c c l a s s Pa l i ndr ome App
{

publ i c s t a t i c voi d ma i n(St r i ng[] a r gs)
{

Sc a nne r c onI n = ne w Sc a nne r (Sys t e m. i n) ;

St r i ng c a ndi da t e = nul l ; / / s t r i ng t o be e va l ua t e d
St r i ng mor e = nul l ; / / us e d t o s t op or c ont i nue pr oc e s s i ng

do
{

/ / Ge t ne xt c a ndi da t e s t r i ng t o be pr oc e s s e d.
Sys t e m. out . pr i nt l n(" Ent e r a s t r i ng t o be e va l ua t e d: ") ;
c a ndi da t e = c onI n. ne xt Li ne () ;

/ / Obt a i n a nd out put r e s ul t of pa l i ndr ome t e s t i ng.
i f (Pa l i ndr ome . t e s t (c a ndi da t e))

Sys t e m. out . pr i nt l n(" i s a pa l i ndr ome . ") ;
e l s e

Sys t e m. out . pr i nt l n(" i s NOT a pa l i ndr ome . ") ;

/ / De t e r mi ne i f t he r e i s a not he r c a ndi da t e s t r i ng t o pr oc e s s .
Sys t e m. out . pr i nt l n() ;
Sys t e m. out . pr i nt (" Eva l ua t e a not he r s t r i ng? (Y=Ye s) : ") ;
mor e = c onI n. ne xt Li ne () ;
Sys t e m. out . pr i nt l n() ;

}
whi l e (mor e . e qua l s I gnor e Ca s e (" y")) ;

}
}

Here is a sample run of the program:

Enter a string to be evaluated:
racecar
is a palindrome.

Evaluate another string? (Y=Yes): y

Enter a string to be evaluated:
aaaaaaaaabaaaaaaaa
is NOT a palindrome.

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 319

320 | Chapter 5: The Queue ADT

Figure 5.6 Palindrome program architecture

<<interface>>
StackInterface<T>

<<interface>>
BoundedStackInterface<T>

<<interface>>
BoundedQueueInterface<T>

ArrayStack<T>

Palindrome PalindromeApp

<<interface>>
QueueInterface<T>

ArrayBndQueue<T>

 extends

 uses

 implements

 Key:

Evaluate another string? (Y=Yes): y

Enter a string to be evaluated:
fred
is NOT a palindrome.

Evaluate another string? (Y=Yes): y

Enter a string to be evaluated:
Are we not drawn onward, we few? Drawn onward to new era!
is a palindrome.

Evaluate another string? (Y=Yes): n

There are other—probably better—ways of determining whether a string is a palin-
drome. In fact, in Exercise 22 of Chapter 4 we asked you to consider some other
approaches. We included this example application for several reasons: It’s interesting
but not too complicated, it’s fun, and it clearly demonstrates the association between a
stack and a queue. Figure 5.6 is a UML diagram showing the relationships among the
stack and queue interfaces and classes used in this program.

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 320

5.5 Application: The Card Game of War | 321

5.5 Application: The Card Game of War

In this section we present an application that simulates a popular card game. We use
queues for both players’ hands and for the pile of cards that is the prize of a card battle.
Our solution also provides an interesting example of the use of recursion.

One of the easiest card games to learn is the game of War. A standard deck of play-
ing cards is shuffled and dealt to two players. Each player starts with a hand of 26
cards. The players repeatedly battle with their cards. A battle consists of each player
placing the top card from his or her hand face up on the table. Whoever has the higher
of the two cards wins the battle prize (the two cards) and places those cards at the bot-
tom of their hands. A tied battle means war!

In a war each player adds three more cards to the prize pile and then turns up
another battle card. Whoever wins this battle gets to add the entire prize pile—all 10
cards—to the bottom of his or her hand. What if that battle is also a tie? Then there is
another war and the prize pile grows even larger. The card game continues until one of
the players runs out of cards, either during a regular battle or during a war. That player
loses.

Notice how each player takes cards from the front of his or her hand to put in the
prize pile. If a player wins, he or she places the cards from the prize pile at the back of
the hand. Thus each hand acts like a queue. In fact, because the cards in the prize pile
are kept in order, the prize pile can also be treated as a queue.

The game of War does not require much thought. In fact, the only real decision
required is whether to play at all. Our program helps us with that decision. It simulates
several games of War and tells us, on average, how many battles are waged in each game.
This gives us an idea of how long a game takes, which may influence our decision to play.

To simulate War, we just have to deal cards randomly to the two hands. Then we
coordinate the dequeuing and enqueuing operations among the two hands and the prize
pile according to the rules of the game.

Our program requires two input values: the number of games to simulate and the
maximum number of battles allowed before a game is discontinued. The latter value is
needed to ensure that our program doesn’t run forever. There is no guarantee that a
game of War will ever end! Output from the program consists of statistics about the
number of discontinued games, the number of completed games, and the average num-
ber of battles waged in completed games.

The RankCardDeck Class
To support our solution we create a class that models a deck of cards. In the game of
War we merely need to compare the “rank” of cards; we are not interested in the card
suits. This allows us to create a simple card deck class. We call the class Ra nkCa r dDe c k
to emphasize that it simply models the ranks of the cards. Because we are interested
only in gathering statistics and not in displaying cards, we use the integers 0 through
12 to represent the card ranks two through ace. Here is the class:

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 321

322 | Chapter 5: The Queue ADT

/ / -
/ / Ra nkCa r dDe c k. j a va by Da l e / J oyc e / We e ms Cha pt e r 5
/ /
/ / Mode l s a de c k of c a r ds .
/ / Re t ur ns a r a ndom c a r d upon r e que s t .
/ / Ca r ds a r e r e pr e s e nt e d by r a nk onl y t o a n i nt e ge r be t we e n 0 a nd 12.
/ / -

pa c ka ge s uppor t ;

i mpor t j a va . ut i l . Ra ndom;

publ i c c l a s s Ra nkCa r dDe c k
{

pr i va t e s t a t i c f i na l i nt numCa r ds = 52;

pr ot e c t e d i nt [] c a r dde c k = ne w i nt [numCa r ds] ;
pr ot e c t e d i nt c ur Ca r dPos = 0; / / pos i t i on of t he ne xt c a r d t o be de a l t

pr ot e c t e d Ra ndom r a nd = ne w Ra ndom() ; / / t o ge ne r a t e r a ndom numbe r s

publ i c Ra nkCa r dDe c k()
{

f or (i nt i = 0; i < numCa r ds ; i ++)
c a r dde c k[i] = i / 4; / / t he r e a r e 4 c a r ds of e a c h r a nk

}

publ i c voi d s huf f l e ()
/ / Ra ndomi z e s t he or de r of t he c a r ds i n t he de c k a nd r e s e t s t he
/ / pos i t i on of t he c ur r e nt c a r d t o c a r d 0.
{

i nt r a ndLoc ; / / r a ndom l oc a t i on i n c a r d de c k
i nt t e mp; / / f or s wa p of c a r ds
f or (i nt i = (numCa r ds - 1) ; i > 0; i - -)
{

r a ndLoc = r a nd. ne xt I nt (i) ; / / r a ndom i nt e ge r be t we e n 0 a nd i - 1
t e mp = c a r dde c k[r a ndLoc] ;
c a r dde c k[r a ndLoc] = c a r dde c k[i] ;
c a r dde c k[i] = t e mp;

}
c ur Ca r dPos = 0;

}

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 322

5.5 Application: The Card Game of War | 323

publ i c bool e a n ha s Mor e Ca r ds ()
/ / Re t ur ns t r ue i f t he r e a r e s t i l l c a r ds l e f t t o be de a l t ;
/ / ot he r wi s e , r e t ur ns f a l s e .
{

r e t ur n (c ur Ca r dPos ! = numCa r ds) ;
}

publ i c i nt ne xt Ca r d()
/ / Pr e c ondi t i on: c ur Ca r dPos ! = numCa r ds
/ /
/ / Mode l s a c a r d be i ng de a l t by r e t ur ni ng a n i nt e ge r r e pr e s e nt i ng
/ / i t s r a nk a nd i nc r e me nt i ng t he pos i t i on of t he c ur r e nt c a r d.
{

c ur Ca r dPos = c ur Ca r dPos + 1;
r e t ur n (c a r dde c k[c ur Ca r dPos - 1]) ;

}
}

As you can see, the Ra nkCa r dCl a s s allows an application to create a card deck,
shuffle it, check whether there are more cards to be dealt, and deal the next card. The
shuffle algorithm is the same one used by the Java library Col l e c t i ons class. It works
through the deck (array) backward, selecting a random position from the preceding por-
tion of the deck, and swaps the card at that position with the card at the current posi-
tion. To select a random position it uses the Java library’s Ra ndom class. The call to
r a nd. ne xt I nt (i) returns a random integer between 0 and i – 1.

The WarGame Class
This class simulates a game of War. Its constructor requires an argument indicating the
maximum number of battles permitted before discontinuing a game. The class exports
a pl a y method that simulates a game until it is finished or discontinued, returning
t r ue if the game finished normally and f a l s e if the game was discontinued. It also
exports an observer method that returns the number of battles waged in the most
recent game.

The pl a y method, when invoked, creates three queues: one for each player’s hand
and one for the prize pile of cards. Next the method shuffles the deck of cards and
“deals” them to the two players—dealing a card to a player’s hand consists of enqueuing
the card on the corresponding queue. Once the cards are dealt, the pl a y method repeat-
edly calls the ba t t l e method, which enacts the battle between the two players. This
cycle continues until the game is over or discontinued.

The ba t t l e method is recursive. Here is the algorithm for ba t t l e , using War game
terminology:

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 323

324 | Chapter 5: The Queue ADT

battle()
Get player1’s card from player1’s hand
Put player1’s card in the prize pile
Get player2’s card from player2’s hand
Put player2’s card in the prize pile
if (player1’s card > player2’s card)
{

remove all the cards from the prize pile
and put them in player1’s hand

}
else

if (player2’s card > player1’s card)
{

remove all the cards from the prize pile
and put them in player2’s hand

}
else // war!
{

each player puts three cards in the prize pile
battle()

}

The method models a battle between the two players, obtaining (dequeuing) their
battle cards, adding (enqueuing) the cards to the prize pile, and then comparing the
cards. Whoever has the higher card gets the cards in the prize pile added to the back of
his or her hand (dequeue from prize pile, enqueue to player’s hand). If the battle is a tie,
there is a war: Three cards from each player’s hand are added to the prize pile, and then
ba t t l e recursively calls itself. Whoever wins this recursive battle wins all the cards in
the prize pile—unless there is another war, in which case the method calls itself again.

Before we continue the discussion of the Wa r Ga me class, you should study the code.
We have emphasized the parts that involve the Queue ADT.

/ / -
/ / Wa r Ga me . j a va by Da l e / J oyc e / We e ms Cha pt e r 5
/ /
/ / Mode l s t he c a r d ga me Wa r .
/ / Tr a c ks how ma ny ba t t l e s a r e pl a ye d.
/ / -

i mpor t c h05. que ue s . *;

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 324

5.5 Application: The Card Game of War | 325

i mpor t s uppor t . *; / / f or Ra nkCa r dDe c k

publ i c c l a s s Wa r Ga me
{

Bounde dQue ue I nt e r f a c e <I nt e ge r > pl a ye r 1; / / pl a ye r 1' s ha nd
Bounde dQue ue I nt e r f a c e <I nt e ge r > pl a ye r 2; / / pl a ye r 2' s ha nd

i nt ma xNumBa t t l e s ; / / ma xi mum numbe r of ba t t l e s a l l owe d be f or e
/ / ga me i s di s cont i nue d

i nt numBa t t l e s = 0; / / numbe r of ba t t l e s pl a ye d i n c ur r e nt ga me

Ra nkCa r dDe c k de c k; / / de c k of c a r ds

Bounde dQue ue I nt e r f a c e <I nt e ge r > pr i z e ; / / c a r ds f or c ur r e nt ba t t l e

s t a t i c f i na l i nt numCa r ds = 52; / / numbe r of c a r ds i n a de c k

publ i c Wa r Ga me (i nt ma xNumBa t t l e s)
{

t hi s . ma xNumBa t t l e s = ma xNumBa t t l e s ;
de c k = ne w Ra nkCa r dDe c k() ;

}

publ i c i nt ge t NumBa t t l e s ()
{

r e t ur n numBa t t l e s ;
}

publ i c bool e a n pl a y()
/ / Si mul a t e s one ga me . I f numbe r of ba t t l e s pl a ye d
/ / r e a c he s ma xNumBa t t l e s , t he ga me i s di s c ont i nue d.
/ / Re t ur ns t r ue i f ga me f i ni s he s nor ma l l y; r e t ur ns f a l s e
/ / i f ga me i s di s c ont i nue d.
{

/ / i ns t a nt i a t e pl a ye r s ' ha nds
pl a ye r 1 = ne w Ar r a yBndQue ue <I nt e ge r >(numCa r ds) ;
pl a ye r 2 = ne w Ar r a yBndQue ue <I nt e ge r >(numCa r ds) ;

/ / i ns t a nt i a t e pr i z e pi l e
pr i z e = ne w Ar r a yBndQue ue <I nt e ge r >(numCa r ds) ;

bool e a n ga me Ove r = f a l s e ; / / be c ome s t r ue whe n t he ga me i s ove r
bool e a n ga me OK = t r ue ; / / be c ome s f a l s e i f ga me i s di s c ont i nue d

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 325

326 | Chapter 5: The Queue ADT

/ / de a l or i gi na l ha nds
de c k. s huf f l e () ;
whi l e (de c k. ha s Mor e Ca r ds ())
{

pl a ye r 1. e nque ue (de c k. ne xt Ca r d()) ;
i f (de c k. ha s Mor e Ca r ds ())

pl a ye r 2. e nque ue (de c k. ne xt Ca r d()) ;
}

/ / pl a y ga me unt i l s ome body r uns out of c a r ds or
/ / r e a c h t he ma xi mum numbe r of ba t t l e s
numBa t t l e s = 0;
whi l e (! ga me Ove r)
{

t r y
{

numBa t t l e s = numBa t t l e s + 1;
ba t t l e () ;

}
c a t c h (Que ue Unde r f l owExc e pt i on e xc e pt i onVa r)
{

ga me Ove r = t r ue ;
}

i f (numBa t t l e s == ma xNumBa t t l e s)
{

ga me Ove r = t r ue ;
ga me OK = f a l s e ;

}
}
r e t ur n ga me OK;

}

pr i va t e voi d ba t t l e ()
/ / Mode l s a ba t t l e be t we e n pl a ye r 1 a nd pl a ye r 2. I f t he ba t t l e
/ / r e s ul t s i n a wa r , t hr e e c a r ds f r om e a c h pl a ye r a r e pl a c e d
/ / i n t he pr i z e que ue a nd t he ba t t l e i s c ont i nue d r e c ur s i ve l y.
{

/ / c a r ds f or t hi s ba t t l e
i nt p1c a r d;
i nt p2c a r d;

/ / ge t c a r ds f r om pl a ye r s a nd pl a c e i n pr i z e que ue
p1c a r d = pl a ye r 1. de que ue () ;
pr i z e . e nque ue (p1c a r d) ;
p2c a r d = pl a ye r 2. de que ue () ;

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 326

5.5 Application: The Card Game of War | 327

pr i z e . e nque ue (p2c a r d) ;

/ / de t e r mi ne a nd ha ndl e r e s ul t of ba t t l e
i f (p1c a r d > p2c a r d) / / pl a ye r 1 wi ns

whi l e (! pr i z e . i s Empt y())
pl a ye r 1. e nque ue (pr i z e . de que ue ()) ;

e l s e
{

i f (p2c a r d > p1c a r d) / / pl a ye r 2 wi ns
whi l e (! pr i z e . i s Empt y())

pl a ye r 2. e nque ue (pr i z e . de que ue ()) ;
e l s e
{

/ / i t ' s a wa r . . .
/ / e a c h pl a ye r pl a c e s 3 c a r ds i n pr i z e pi l e
f or (i nt i = 0; i < 3; i ++)
{

pr i z e . e nque ue (pl a ye r 1. de que ue ()) ;
pr i z e . e nque ue (pl a ye r 2. de que ue ()) ;

}
/ / now c ont i nue t he ba t t l e t o de t e r mi ne who wi ns pr i z e
ba t t l e () ;

}
}

}
}

A few more notes about this class:

• The pl a ye r 1, pl a ye r 2, and pr i z e queues all hold cards—but remember that for
this program a card is essentially an i nt value. When an i nt is enqueued, Java
5.0’s autoboxing feature wraps it in an I nt e ge r object, as our queues hold ele-
ments of class I nt e ge r . When we remove a card from a queue, the unboxing
feature will let us use it as an i nt value again.

• Recall that a game ends when one of the players runs out of cards. Rather than
repeatedly testing whether a player’s hand is empty before dequeuing a card from
it, we have used the fact that the de que ue method throws an underflow exception
when invoked on an empty queue. The try-catch clause in the pl a y method
catches the occurrence of the underflow and appropriately stops the simulation.

The WarGameApp Class
The Wa r Ga me class does most of the work for us. All that is left to do is to implement
the user input and present the results. The Wa r Ga me App program is similar to our previ-
ous console-based programs. It prompts the user for the number of games to simulate
and the maximum number of battles to allow before discontinuing a game. It then uses

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 327

328 | Chapter 5: The Queue ADT

a for loop to repeatedly invoke the Wa r Ga me class’s pl a y method, and it collects the
results. Finally it presents the results to the user. Note that we assume a friendly user—
we do not validate input values.

/ / -
/ / Wa r Ga me App. j a va by Da l e / J oyc e / We e ms Cha pt e r 5
/ /
/ / I nt e r a c t s wi t h t he us e r t hr ough t he c ons ol e .
/ /
/ / Si mul a t e s a numbe r of i ns t a nc e s of t he c a r d ga me Wa r a nd r e por t s
/ / t he a ve r a ge numbe r of ba t t l e s r e qui r e d t o c ompl e t e a ga me .
/ /
/ / I nput c ons i s t s of t he numbe r of ga me s t o s i mul a t e a nd t he ma xi mum
/ / numbe r of ba t t l e s a l l owe d f or a ga me be f or e i t i s di s c ont i nue d.
/ /
/ / Out put c ons i s t s of s t a t i s t i c s on t he numbe r of di s c ont i nue d ga me s ,
/ / t he numbe r of c ompl e t e d ga me s , a nd t he a ve r a ge numbe r of ba t t l e s
/ / i n t he c ompl e t e d ga me s .
/ / -

i mpor t j a va . ut i l . Sc a nne r ;

publ i c c l a s s Wa r Ga me App
{

publ i c s t a t i c voi d ma i n(St r i ng[] a r gs)
{

Sc a nne r c onI n = ne w Sc a nne r (Sys t e m. i n) ;

Wa r Ga me ga me ;

i nt numGa me s ; / / numbe r of ga me s t o s i mul a t e
i nt ma xNumBa t t l e s ; / / ma xi mum numbe r of ba t t l e s a l l owe d f or a ga me

i nt numDi s c ont = 0; / / numbe r of di c ont i nue d ga me s
i nt numCompl e t e d = 0; / / numbe r of c ompl e t e d ga me s

i nt t ot Ba t t l e s = 0; / / t o t a l numbe r of ba t t l e s i n c ompl e t e d ga me s

Sys t e m. out . pr i nt l n(" How ma ny ga me s s houl d be s i mul a t e d? ") ;
numGa me s = c onI n. ne xt I nt () ;

Sys t e m. out . pr i nt l n(" Wha t i s t he ma xi mum numbe r of ba t t l e s pe r ga me ? ") ;
ma xNumBa t t l e s = c onI n. ne xt I nt () ;

ga me = ne w Wa r Ga me (ma xNumBa t t l e s) ;

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 328

5.5 Application: The Card Game of War | 329

f or (i nt i = 0; i < numGa me s ; i ++)
{

i f (ga me . pl a y())
{

numCompl e t e d = numCompl e t e d + 1;
t ot Ba t t l e s = t ot Ba t t l e s + ga me . ge t NumBa t t l e s () ;

}
e l s e

numDi s c ont = numDi s c ont + 1;
}

/ / Out put r e s ul t s
Sys t e m. out . pr i nt l n(" Numbe r of Ga me s Si mul a t e d: " + numGa me s) ;
Sys t e m. out . pr i nt l n(" Numbe r of Di s c ont i nue d Ga me s : " + numDi s c ont) ;
Sys t e m. out . pr i nt l n(" Numbe r of Compl e t e d Ga me s : " + numCompl e t e d) ;
Sys t e m. out . pr i nt l n() ;

i f (numCompl e t e d > 0)
{

Sys t e m. out . pr i nt l n(" I n t he c ompl e t e d ga me s ") ;
Sys t e m. out . pr i nt l n(" Tot a l Numbe r of Ba t t l e s " + t ot Ba t t l e s) ;
Sys t e m. out . pr i nt l n(" Ave r a ge Numbe r of Ba t t l e s "

+ t ot Ba t t l e s / numCompl e t e d) ;
}

Sys t e m. out . pr i nt l n(" \ nPr ogr a m c ompl e t e d. ") ;
}

}

Testing this program is not easy. One approach is to add testing-related output state-
ments throughout the program to determine whether it correctly represents a game of
War. However, the amount of output could be huge, so we may need to reduce the num-
ber of opening cards dealt to a player to keep the output reasonable. Another helpful tech-
nique is to comment out the part of the code that randomly generates cards and replace it
with a sequence of statements that place carefully selected cards in each player’s hand—
for example, to see whether the program correctly handles multiple levels of nested wars.

Once tested, the program can be used to investigate the game of War. Suppose we
put a limit of 300 battles on a game and simulate 1000 games. How many of those
games are discontinued? Of the games that are completed, what is the average number
of battles per game? Here are our results:

How many games should be simulated?
1000
What is the maximum number of battles per game?
300
Number of Games Simulated: 1000

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 329

330 | Chapter 5: The Queue ADT

Figure 5.7 War game simulation program architecture

<<interface>>
QueueInterface<T>QueueUnderflowException

<<interface>>
BoundedQueueInterface<T>

ArrayBndQueue<T>

WarGame WarGameAppRankCardDeck

 extends

 uses

 implements

 Key:

Number of Discontinued Games: 658
Number of Completed Games: 342

In the completed games
Total Number of Battles 56138
Average Number of Battles 164

Program completed.

At least for that run of the program, only about one third of the games were completed
when we specified a limit of 300 battles per game. What if we allow more battles—say,
500 or 1000? Just rerun the program with the new input values and see what you
discover!

We thought we would investigate how many very short games occurred on average.
We ran the program with a maximum battle limit of 7, and we simulated 50,000 games.
Only one completed game was recorded. The amazing thing was that the game had only
two battles! Each of those battles must have been a multilevel war. It’s hard to believe
that a game of War could be decided with just two battles. To investigate, you could try
playing 50,000 games yourself, by hand. Better yet, study the situation using our simu-
lation program.

Figure 5.7 is a UML diagram showing the relationships among the various interfaces
and classes developed in this chapter and used within the War game simulation program.

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 330

5.6 Link- Based Implementations | 331

5.6 Link- Based Implementations

In this section we implement an unbounded queue using a linked list. We call our class
Li nke dUnbndQue ue . As we did for the linked implementation of stacks presented in
Chapter 3, we use the LLNode class from our s uppor t package to provide the nodes for
the underlying representation.

In the array-based implementation of a queue, we kept track of two indexes that
indicated the front and rear boundaries of the data in the queue. In a linked representa-
tion, we can use two references, f r ont and r e a r , to mark the front and the rear of the
queue, respectively. When the queue is empty, both of these references should equal
nul l . Therefore, the constructor for the queue must initialize them both accordingly.
The beginning of our class definition looks like this:

/ / -
/ / Li nke dUnbndQue ue . j a va by Da l e / J oyc e / We e ms Cha pt e r 5
/ /
/ / I mpl e me nt s Unbounde dQue ue I nt e r f a c e us i ng a l i nke d l i s t
/ / -

pa c ka ge c h05. que ue s ;
i mpor t s uppor t . LLNode ;
publ i c c l a s s Li nke dUnbndQue ue <T> i mpl e me nt s Unbounde dQue ue I nt e r f a c e <T>
{

pr ot e c t e d LLNode <T> f r ont ; / / r e f e r e nc e t o t he f r ont of t hi s que ue
pr ot e c t e d LLNode <T> r e a r ; / / r e f e r e nc e t o t he r e a r of t hi s que ue

publ i c Li nke dUnbndQue ue ()
{

f r ont = nul l ;
r e a r = nul l ;

}

Figure 5.8 graphically depicts our queue representation. We often depict queues by
showing their instance variables (f r ont and r e a r) in different areas of the figure.

Figure 5.8 A linked queue representation

• •

•••

• • •

f r ont r e a r

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 331

332 | Chapter 5: The Queue ADT

Figure 5.9 A bad queue design

• •

••

r e a r

•

• • •

f r ont

To dequeue, we must be able to reset
front to point to the preceding node.
But we can't get there from here.

Figure 5.10 The e nque ue operation

• •

••••

f r ont

•

New
node

1

r e a r

ne wNode

2

3

Recall that these variables are actually collected together in a single queue object. Also,
recall that dynamically allocated nodes in linked structures exist “somewhere in the sys-
tem memory” although we show the nodes arranged linearly for clarity.

Note the relative positions of f r ont and r e a r in Figure 5.8. Had they been reversed
(as in Figure 5.9), we would have difficulty implementing the de que ue operation. Recall
that we de que ue from the front end of the queue. To remove the node that represents the
front of the queue, we have to reset the f r ont reference to the next node on the chain.

If we implement the queue as in Figure 5.9, we can’t easily obtain a reference to the
next node in the chain, as it is the preceding node. We would have to either traverse the
whole list (an O(N) solution—very inefficient, especially if the queue is long) or keep a
linked list with references in both directions. Use of a doubly linked structure is not
necessary if we set up our queue references correctly in the first place.

The Enqueue Operation
In our linked implementations of the StringLog and Stack ADTs, we have already seen
how to insert and delete a node at the beginning of a linked list. We add new elements
to a queue by inserting them at the rear of the structure—we have not yet seen that
operation. We need a new algorithm to implement the e nque ue operation (see Figure
5.10).

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 332

5.6 Link- Based Implementations | 333

Enqueue (element)
Create a node for the new element
Insert the new node at the rear of the queue
Update the reference to the rear of the queue

The first of these tasks is familiar. We create a new node for the e l e me nt by
instantiating a new LLNode object and passing it the e l e me nt as an argument.

The next part of the e nque ue algorithm involves inserting our new node at the rear
of the queue. We set the link of the current last element to reference the new node,
using the LLNode s e t Li nk method:

r e a r . s e t Li nk(ne wNode) ;

But what happens if the queue is empty when we e nque ue the element? When
using references, you must always be sure to handle the special case of nul l ; you can-
not use it to access an object. If the queue is empty when we insert the element, the
value of r e a r would be nul l and the use of r e a r . s e t Li nk would raise a run-time
exception. Instead, we must set f r ont to point to the new node:

i f (r e a r == nul l)
f r ont = ne wNode ;

e l s e
r e a r . s e t Li nk(ne wNode) ;

The last task in the e nque ue algorithm, updating the r e a r reference, simply
involves the assignment

r e a r = ne wNode ;

Does this work if it is the first node in the queue—that is, if we are inserting into an
empty queue? Yes, because we always have r e a r pointing to the new node following a
call to e nque ue , regardless of how many elements are in the queue.

Putting this all together, we get the following code for the e nque ue method:

publ i c voi d e nque ue (T e l e me nt)
/ / Adds e l e me nt t o t he r e a r of t hi s que ue .
{

LLNode <T> ne wNode = ne w LLNode <T>(e l e me nt) ;
i f (r e a r == nul l)

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 333

334 | Chapter 5: The Queue ADT

Figure 5.11 The de que ue operation

•

••

r e a r

•

f r ont

•

info

e l e me nt1

2

Dequeue: returns Object
Set element to the information in the front node
Remove the front node from the queue
if the queue is empty

Set the rear to null
return element

f r ont = ne wNode ;
e l s e

r e a r . s e t Li nk(ne wNode) ;
r e a r = ne wNode ;

}

The Dequeue Operation
The de que ue operation is similar to the stack’s pop operation in that it removes an ele-
ment from the beginning of the linked list. However, recall that pop only removed the
top element from the stack, whereas de que ue both removes and returns the element.
Also, as with the stack’s t op operation, we do not want to return the entire LLNode , just
the information the node contains.

In writing the e nque ue algorithm, we noticed that inserting into an empty queue is
a special case because we need to make f r ont point to the new node. Similarly, in our
de que ue algorithm we need to allow for the special case of deleting the only node in
the queue, leaving it empty. If f r ont is nul l after we have reset it, the queue is empty
and we need to set r e a r to nul l . The algorithm for removing the front element from a
linked queue is illustrated in Figure 5.11.

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 334

5.6 Link- Based Implementations | 335

Let’s look at the implementation line by line. We start by “remembering” the infor-
mation from the first element so that we can return it later. We declare a local T vari-
able e l e me nt and then assign the information (i.e., the reference to the information)
from the front queue element to it:

T e l e me nt ;
e l e me nt = f r ont . ge t I nf o() ;

Next we remove the front node from the queue. This step is easy: We just assign the
link to the next element to f r ont (see Figure 5.11). This approach works even if the
resultant queue is empty, because the link would be nul l . If the queue becomes empty,
we also set the r e a r of the queue to nul l , as discussed earlier:

f r ont = f r ont . ge t Li nk() ;
i f (f r ont == nul l)

r e a r = nul l ;

Now we just return the information we saved earlier:

r e t ur n e l e me nt ;

Finally, we must remember to throw a Que ue Unde r f l owExc e pt i on if the de que ue
operation is attempted on an empty queue. Putting it all together, the code is as shown
here:

publ i c T de que ue ()
/ / Thr ows Que ue Unde r f l owExc e pt i on i f t hi s que ue i s e mpt y;
/ / o t he r wi s e , r e move s f r ont e l e me nt f r om t hi s que ue a nd r e t ur ns i t .
{

i f (i s Empt y())
t hr ow ne w Que ue Unde r f l owExc e pt i on(" De que ue a t t e mpt e d on e mpt y que ue . ") ;

e l s e
{

T e l e me nt ;
e l e me nt = f r ont . ge t I nf o() ;
f r ont = f r ont . ge t Li nk() ;
i f (f r ont == nul l)

r e a r = nul l ;

r e t ur n e l e me nt ;
}

}

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 335

336 | Chapter 5: The Queue ADT

The Queue Implementation
The remaining operation i s Empt y is very straightforward. Here is the code for the
entire unbounded FIFO Queue implementation based on the linked approach:

/ / -
/ / Li nke dUnbndQue ue . j a va by Da l e / J oyc e / We e ms Cha pt e r 5
/ /
/ / I mpl e me nt s Unbounde dQue ue I nt e r f a c e us i ng a l i nke d l i s t
/ / -

pa c ka ge c h05. que ue s ;

i mpor t s uppor t . LLNode ;

publ i c c l a s s Li nke dUnbndQue ue <T> i mpl e me nt s Unbounde dQue ue I nt e r f a c e <T>
{

pr ot e c t e d LLNode <T> f r ont ; / / r e f e r e nc e t o t he f r ont of t hi s que ue
pr ot e c t e d LLNode <T> r e a r ; / / r e f e r e nc e t o t he r e a r of t hi s que ue

publ i c Li nke dUnbndQue ue ()
{

f r ont = nul l ;
r e a r = nul l ;

}

publ i c voi d e nque ue (T e l e me nt)
/ / Adds e l e me nt t o t he r e a r of t hi s que ue .
{

LLNode <T> ne wNode = ne w LLNode <T>(e l e me nt) ;
i f (r e a r == nul l)

f r ont = ne wNode ;
e l s e

r e a r . s e t Li nk(ne wNode) ;
r e a r = ne wNode ;

}

publ i c T de que ue ()
/ / Thr ows Que ue Unde r f l owExc e pt i on i f t hi s que ue i s e mpt y;
/ / ot he r wi s e , r e move s f r ont e l e me nt f r om t hi s que ue a nd r e t ur ns i t .
{

i f (i s Empt y())
t hr ow ne w Que ue Unde r f l owExc e pt i on(" De que ue a t t e mpt e d on e mpt y que ue . ") ;

e l s e
{

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 336

5.6 Link- Based Implementations | 337

Figure 5.12 A circular linked queue

•

•

r e a r

••

• • •
 Front of

queue
Rear of
queue

T e l e me nt ;
e l e me nt = f r ont . ge t I nf o() ;
f r ont = f r ont . ge t Li nk() ;
i f (f r ont == nul l)

r e a r = nul l ;

r e t ur n e l e me nt ;
}

}

publ i c bool e a n i s Empt y()
/ / Re t ur ns t r ue i f t hi s que ue i s e mpt y; ot he r wi s e , r e t ur ns f a l s e .
{

i f (f r ont == nul l)
r e t ur n t r ue ;

e l s e
r e t ur n f a l s e ;

}
}

A Circular Linked Queue Design
Our Li nke dUnbndQue ue class contains two instance variables, one to reference each
end of the queue. This design is based on the linear structure of the linked queue. Can
we implement the class using only one instance variable? Given only a reference to the
front of the queue, we could follow the links to get to the rear of the queue, but this
choice makes accessing the rear (to enqueue an element) an O(N) operation. With a ref-
erence only to the rear of the queue, we could not access the front because the refer-
ences only go from front to rear.

However, we could efficiently access both ends of the queue from a single reference
if we made the queue circularly linked. That is, the link of the rear node would reference
the front node of the queue (see Figure 5.12). Then Li nke dUnbndQue ue would have
only one instance variable, rather than two. This queue implementation differs from the
logical picture of a queue as a linear structure with two ends. Instead, we have a circular
structure with no ends. What makes it a queue is its support of FIFO access.

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 337

338 | Chapter 5: The Queue ADT

To enqueue an element, we access the “rear” node directly through the reference
r e a r . To dequeue an element, we must access the “front” node of the queue. We don’t
have a reference to this node, but we do have a reference to the node preceding it—
r e a r . The reference to the “front” node of the queue is in r e a r . ge t Li nk() . For an
empty queue, r e a r would be nul l . Designing and coding the queue operations using a
circular linked implementation is left for you as an exercise.

Both linked implementations of the Queue ADT can be tested using the same test
plan that was discussed for the array-based version.

Comparing Queue Implementations
We have now looked at several different implementations of the Queue ADT. How do
they compare? We consider two different factors: the amount of memory required to
store the structure and the amount of “work” the solution requires, as expressed in Big-
O notation. Let’s first compare the Ar r a yBndQue ue and Li nke dUnbndQue ue implemen-
tations.

The array in the bounded queue consumes the same amount of memory, no matter
how many slots are actually used; we need to reserve space for the maximum number of
elements. The linked implementation using dynamically allocated storage space requires
space only for the number of elements actually in the queue. Note, however, that the
node elements are twice as large, because we must store the link (the reference to the
next node) as well as the reference to the element.

Figure 5.13 illustrates each queue implementation approach, assuming a current
queue size of 5 and a maximum queue size (for the array-based implementation) of 100.
Note that the array-based implementation requires space for 4 integers and 101 refer-
ences (one for myQue ue and one for each array slot) regardless of the size of the queue.
The linked implementation requires space for only 13 references (one for f r ont , one for
r e a r , two for each of the current queue elements, and one for myQue ue). However, the
required space increases if the size of the queue increases, based on the following for-
mula:

Number of required references = 3 + (2 * size of queue)

A simple analysis reveals that if the queue size is less than half the maximum queue
size, then the linked representation uses less space than the array representation.
Beyond that size, the linked representation requires more space. In any case, unless the
maximum queue size is significantly larger than the average queue size, the difference
between the two implementations in terms of space is probably not important.

We can also compare the relative execution “efficiency” of the two implementations
in terms of Big-O notation. In both implementations, the complexity of the observer
methods (i s Ful l for the array implementation and i s Empt y for both implementa-
tions) is clearly O(1). These methods always take the same amount of work regardless
of how many elements are on the queue. As was the case for stacks, the queue con-
structor requires O(N) steps for the array representation, but is O(1) for the linked
representation.

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 338

5.6 Link- Based Implementations | 339

Figure 5.13 Comparing queue implementations

Queues with
 Maximum size 100
 Current size 5
 x = null

Array–Based Implementation

Linked Implementation

capacity: 100
size:
front:
rear: 6
queue:

myQueue:

0 1 2 3 4 5 6 7 98 99
X X XX X

. . .

. . .

A B C D E

myQueue: front:

rear:

Ainfo:

link:

Binfo:

link:

Dinfo:

link:

Einfo:

link: X

Cinfo:

link:

5
2

What about e nque ue and de que ue ? Does the number of elements in the queue
affect the amount of work done by these operations? No, it does not; in both implemen-
tations, we can directly access the front and the rear of the queue. The amount of work
done by these operations is independent of the queue size, so these operations also have
O(1) complexity. As with the array-based and linked implementations of stacks, both
queue implementations are roughly equivalent in terms of the amount of work they do.

Now let’s briefly consider our Ar r a yUnbndQue ue approach. The analysis for the
bounded approach applies to the unbounded approach. However, with the unbounded
approach we can start with an array size that handles an average-size queue; only when
the queue becomes larger is the array expanded. Thus we do not pay as big a penalty in

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 339

340 | Chapter 5: The Queue ADT

terms of extra space. The drawback is the extra time, O(N), required to resize the array.
For most applications this operation is not required very often.

5.7 Concurrency, Interference, and Synchronization

The complexities of today require many people to engage in multitasking. For example,
right now you may be texting on your phone while watching TV and eating lunch, all
at the same time you are doing your data structures homework! Computers also multi-

task. A computer system can be printing a document,
burning a CD, and interacting with a user all at the
same time.

Many computer programs require multitasking
capabilities. For example, a game program might have
separate code sequences to react to changes in user
input, to detect collisions between the objects in the
game, and to update a scoreboard reflecting the game
status. For such a game to be playable each of the code

sequences must be active simultaneously and they must interact with each other. Pro-
grams that perform this way are called concurrent programs.

Concurrent programs are very common—programs that control systems, provide
games, support work productivity, or allow communication are usually concurrent. On a
single processor system concurrency is achieved through the interleaving of the instruc-
tions of the various code sequences. The computer jumps back and forth among code
sequences, executing a “few” instructions from one sequence, and then a “few” from
another sequence, and so on. On systems with dual processors, quad processors, or
higher levels of physical support for parallelism the concurrency can be “real.” The
computer’s operating system hides the presence or absence of physical concurrency sup-
port from the program designer so that as programmers we need not be concerned with
the details of that support.

A formal study of program concurrency is typically provided in operating systems,
database, or algorithm courses within a computing curriculum and is beyond the scope
of this book. However, in this section we introduce the topic by:

• Defining terminology related to concurrency.
• Showing how to indicate that parts of a Java program should be executed con-

currently.
• Explaining how concurrent code sequences might interfere with each other.
• Demonstrating how to synchronize the execution of the code sequences so that

such interference does not occur.

The Count e r Class
To support our investigation of the topics of this section we use the following simple
Count e r class. It provides an integral attribute that is originally zero, and that can be

Multitask Perform more than one task at a time
Concurrency Several interacting code sequences are
executing simultaneously, possibly through an inter-
leaving of their statements by a single processor, possi-
bly through execution on distinct processors

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 340

5.7 Concurrency, Interference, and Synchronization | 341

incremented through calls to an i nc r e me nt method. All auxiliary classes created for
this section of the text are placed into the c h05. t hr e a ds package.

/ / -
/ / Count e r . j a va by Da l e / J oyc e / We e ms Cha pt e r 5
/ /
/ / Tr a c ks t he c ur r e nt va l ue of a c ount e r .
/ / -

pa c ka ge c h05. t hr e a ds ;

publ i c c l a s s Count e r
{

pr i va t e i nt c ount ;

publ i c Count e r ()
{

c ount = 0;
}

publ i c voi d i nc r e me nt ()
{

c ount ++;
}

publ i c St r i ng t oSt r i ng()
{

r e t ur n " Count i s : \ t " + c ount ;
}

}

The sample program De mo01 instantiates a Count e r object, increments it three
times, and then prints its status. The sample output is as expected, showing a count of 3.
All of the application programs created for this section of the text are placed into the
c h05. c onc ur r e nc y folder.

i mpor t c h05. t hr e a ds . *;

publ i c c l a s s De mo01
{

publ i c s t a t i c voi d ma i n(St r i ng[] a r gs)

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 341

342 | Chapter 5: The Queue ADT

{
Count e r myCount e r = ne w Count e r () ;
myCount e r . i nc r e me nt () ;
myCount e r . i nc r e me nt () ;
myCount e r . i nc r e me nt () ;
Sys t e m. out . pr i nt l n(myCount e r) ;

}
}

The output of the program is:

Count i s : 3

Java Threads
The Java concurrency mechanism we present is the thread. Every Java program that
executes has a thread, the “main” thread of the program. The main thread has the ability
to generate additional threads. When this occurs the various threads of the program run
concurrently. The program terminates when all of its threads terminate.

We create thread objects by first defining a class that implements the Java library’s
Runna bl e interface. Such classes must provide a public r un method. As an example see
the following I nc r e a s e class that accepts a Count e r object and an integer a mount
through its constructor, and provides a r un method that increments the Count e r object
the number of times indicated by the value of a mount .

pa c ka ge c h05. t hr e a ds ;

publ i c c l a s s I nc r e a s e i mpl e me nt s Runna bl e
{

pr i va t e Count e r c ;
pr i va t e i nt a mount ;

publ i c I nc r e a s e (Count e r c , i nt a mount)
{

t hi s . c = c ; t hi s . a mount = a mount ;
}

publ i c voi d r un()
{

f or (i nt i = 1; i <= a mount ; i ++)
c . i nc r e me nt () ;

}
}

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 342

5.7 Concurrency, Interference, and Synchronization | 343

5. The Thr e a d object can throw the checked run-time I nt e r r upt e dExc e pt i on exception. Therefore we must
either catch and handle that exception or throw it out to the execution environment.

We can then instantiate a Thr e a d object by passing its constructor an I nc r e a s e object
(or any Runna bl e object). The instantiated Thr e a d object can be used to execute the
I nc r e a s e object’s r un method in a separate thread from the main program thread. To
do this we call the thread object’s s t a r t method. Consider the De mo02 example:

i mpor t c h05. t hr e a ds . *;

publ i c c l a s s De mo02
{

publ i c s t a t i c voi d ma i n(St r i ng[] a r gs) t hr ows I nt e r r upt e dExc e pt i on5

{
Count e r c = ne w Count e r () ;
Runna bl e r = ne w I nc r e a s e (c , 10000) ;
Thr e a d t = ne w Thr e a d(r) ;

t . s t a r t () ;

Sys t e m. out . pr i nt l n(" Count i s : " + c) ;
}

}

The De mo02 program instantiates a Count e r object c , uses c plus the integer literal
10,000 to instantiate a Runna bl e object r , and uses r to instantiate a Thr e a d object t .
The thread object runs, in a separate thread, after the call to its s t a r t method. The pro-
gram displays the value of the counter object before terminating. What value will it dis-
play? Considering that the I nc r e a s e object will increment the counter 10,000 times
you might expect the output of the program to be the following:

Count i s : 10000

But the increment of the counter and the display of its value occur in different threads,
as shown in Figure 5.14. There is no guarantee that the incrementing of the counter by
the second thread will finish before its value is displayed by the main thread. In fact, it
is very likely that a value other than 10,000 will be output. When run on the author’s
computer, the De mo02 program reports values such as 86, 66, and 44.

We can indicate that we want one thread to wait for the completion of another
thread by using the j oi n command. The following program produces the “correct” out-
put, reporting a count of 10,000, since it indicates that the main thread should wait for
completion of the t thread before displaying the value of the counter object. The line of
code that accomplishes this is emphasized.

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 343

344 | Chapter 5: The Queue ADT

Figure 5.14 Execution of the De mo02 program

mai n t hr e ad
T

i ns t a nt i a t e c ount e r c
T

i ns t a nt i a t e r unna bl e r
T

i ns t a nt i a t e t hr e a d t
T

s t a r t t hr e a d t - - - - - - >

T

di s pl a y c ount e r c

t hr e ad t
T

i nc r e me nt c ount e r c
T

i nc r e me nt c ount e r c
.
.
.

i nc r e me nt c ount e r c
T

i nc r e me nt c ount e r c
T

i nc r e me nt c ount e r c

i mpor t c h05. t hr e a ds . *;

publ i c c l a s s De mo03
{

publ i c s t a t i c voi d ma i n(St r i ng[] a r gs) t hr ows I nt e r r upt e dExc e pt i on
{

Count e r c = ne w Count e r () ;
Runna bl e r = ne w I nc r e a s e (c , 10000) ;
Thr e a d t = ne w Thr e a d(r) ;

t . s t a r t () ;
t . j o i n() ;

Sys t e m. out . pr i nt l n(" Count i s : " + c) ;
}

}

The j oi n command indicates that the main thread should wait until completion of the
thread t before continuing. Therefore the counter is incremented completely before its
value is output.

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 344

5.7 Concurrency, Interference, and Synchronization | 345

Interference
When two or more threads of a program make changes to the same data at the same
time they can interfere with each other and create unintended, undesired results. Con-
sider the De mo04 program that has a total of three threads; the main thread and two
others.

i mpor t c h05. t hr e a ds . *;

publ i c c l a s s De mo04
{

publ i c s t a t i c voi d ma i n(St r i ng[] a r gs) t hr ows I nt e r r upt e dExc e pt i on
{

Count e r c = ne w Count e r () ;
Runna bl e r 1 = ne w I nc r e a s e (c , 5000) ;
Runna bl e r 2 = ne w I nc r e a s e (c , 5000) ;
Thr e a d t 1 = ne w Thr e a d(r 1) ;
Thr e a d t 2 = ne w Thr e a d(r 2) ;

t 1. s t a r t () ;
t 2. s t a r t () ;
t 1. j oi n() ;
t 2. j oi n() ;

Sys t e m. out . pr i nt l n(" Count i s : " + c) ;
}

}

As you can see, the De mo04 program runs two separate threads, each of which incre-
ments the shared counter object 5000 times. The program uses the j oi n method to
ensure that all auxiliary threads are finished before it accesses and displays the final
values of the counter. Again we ask—what values will this program display? Clearly we
would expect the result to be:

Count i s : 10000

However, we would be wrong. This example demonstrates the dangers of working with
concurrency. Programmers who use concurrency must be very careful how they wield
its power. Three separate runs of the De mo04 program on the author’s computer produce
the following three outputs:

Count i s : 9861
Count i s : 9478
Count i s : 9203

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 345

346 | Chapter 5: The Queue ADT

The reason for these unexpected results is that the two incrementing threads interfere
with each other. Consider that to increment a counter requires three steps in Java byte
code: obtain the current value of the counter, add one to that value, and store the result.
If two threads executing simultaneously interleave the execution of these steps, then the
resultant value of the counter will be one less than the expected value. For example,
consider the following sequence of steps, where the counter begins with the value 12
and both threads increment the counter. Although we would expect the resultant value
to be 14, due to the “interference” the final value is only 13:

Thr e ad t 1 Thr e ad t 2
St e p 1: obt a i ns va l ue 12

T St e p 2: obt a i ns va l ue 12
St e p 3: i nc r e me nt s va l ue t o 13 T
St e p 4: s t or e s t he va l ue 13 T

St e p 5: i nc r e me nt s va l ue t o 13
St e p 6: s t or e s t he va l ue 13

Examining the output from the De mo04 program we conclude that such interference
occurs multiple times during the execution of the code. When concurrent threads make
changes to shared variables, such as in the De mo04 program, they must synchronize
their access of the shared information.

Synchronization
In Java we can force synchronization at either the statement level or the method level.
We will use method level synchronization. In the De mo04 example, the method that
requires synchronization is the i nc r e me nt method of the Count e r class. To demon-
strate the use of a synchronized method we create a separate counter class Sync -
Count e r . Indicating that a method is synchronized simply requires the use of the
s ync hr oni z e d keyword as a modifier in the method declaration line, as emphasized in
the following code.

/ / -
/ / Sync Count e r . j a va by Da l e / J oyc e / We e ms Cha pt e r 5
/ /
/ / Tr a c ks t he c ur r e nt va l ue of a c ount e r .
/ / Pr ovi de s s ync hr oni z e d a c c e s s t o t he i nc r e me nt me t hod.
/ / -

pa c ka ge c h05. t hr e a ds ;

publ i c c l a s s Sync Count e r
{

pr i va t e i nt c ount ;

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 346

5.7 Concurrency, Interference, and Synchronization | 347

publ i c Sync Count e r ()
{

c ount = 0;
}

publ i c s ync hr oni z e d voi d i nc r e me nt ()
{

c ount ++;
}

publ i c St r i ng t oSt r i ng()
{

r e t ur n " Count i s : \ t " + c ount ;
}

}

Thread access to the i nc r e me nt method of the Sync Count e r class will be executed in
a safe fashion. If one thread is in the middle of executing code within the method, no
other thread will be given access to the method. No interleaving of Java byte code state-
ments for this method will occur. This prevents the interference that led to the unex-
pected results in the De mo04 program.

Whenever the De mo05 program below is executed it correctly reports the expected
value for the counter of 10,000. The I nc r e a s e 2 class used in the program is identical
to the I nc r e a s e class except that it accepts a Sync Count e r instead of Count e r as its
first parameter.

i mpor t c h05. t hr e a ds . *;

publ i c c l a s s De mo05
{

publ i c s t a t i c voi d ma i n(St r i ng[] a r gs) t hr ows I nt e r r upt e dExc e pt i on
{

Sync Count e r s c = ne w Sync Count e r () ;
Runna bl e r 1 = ne w I nc r e a s e 2(s c , 5000) ;
Runna bl e r 2 = ne w I nc r e a s e 2(s c , 5000) ;
Thr e a d t 1 = ne w Thr e a d(r 1) ;
Thr e a d t 2 = ne w Thr e a d(r 2) ;

t 1. s t a r t () ; t 2 . s t a r t () ;
t 1. j oi n() ; t 2 . j oi n() ;

Sys t e m. out . pr i nt l n(" Count i s : " + s c) ;
}

}

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 347

348 | Chapter 5: The Queue ADT

A Synchronized Queue
Data collections are sometimes at the heart of concurrent programs. The Queue ADT in
particular is often used concurrently, for example, to store tasks generated by “pro-
ducer” threads of a system that need to be handled later by separate “consumer” threads
of the system, in essence acting as a repository for unfinished work. When a collection
is used by multiple threads, access to it must be synchronized. Otherwise some elements
may be mistakenly skipped and others may be erroneously accessed more than once, as
threads interfere with each other while manipulating the data structure that underlies
the collection.

In this subsection we investigate using a queue as described in the previous para-
graph. We use a simple example so that we can concentrate on the synchronization
issues. First we look at an unsynchronized version of the program and discuss its poten-
tial problems, then we see how to resolve the raised issues. Here is the first version of
the program:

i mpor t c h05. t hr e a ds . *;
i mpor t c h05. que ue s . *;

publ i c c l a s s De mo06
{

publ i c s t a t i c voi d ma i n(St r i ng[] a r gs) t hr ows I nt e r r upt e dExc e pt i on
{

i nt LI MI T = 100;
Sync Count e r c = ne w Sync Count e r () ;
Bounde dQue ue I nt e r f a c e <I nt e ge r > q;
q = ne w Ar r a yBndQue ue <I nt e ge r >(LI MI T) ;

f or (i nt i = 1; i <= LI MI T; i ++)
q. e nque ue (i) ;

Runna bl e r 1 = ne w I nc r e a s e 3(c , q) ;
Runna bl e r 2 = ne w I nc r e a s e 3(c , q) ;
Thr e a d t 1 = ne w Thr e a d(r 1) ;
Thr e a d t 2 = ne w Thr e a d(r 2) ;

t 1. s t a r t () ; t 2 . s t a r t () ;
t 1. j oi n() ; t 2 . j oi n() ;

Sys t e m. out . pr i nt l n(" Count i s : " + c) ;
}

}

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 348

5.7 Concurrency, Interference, and Synchronization | 349

The De mo06 program above creates a queue of integers and inserts the integers from 1
to 100 into the queue. It then generates and runs two threads: t 1 and t 2. These threads
each contain a copy of an I nc r e a s e 3 object (see the code below). Therefore each of the
threads checks the queue to see whether it is empty, and if not, the thread removes the
next number from the queue and increments the shared counter object that number of
times. So perhaps the t 1 thread increments the counter once while the t 2 counter is
incrementing the counter twice; and then the t 2 thread may increment the counter
three times while the t 1 counter is incrementing the counter four times, and so on.
Remember that access to the counter is synchronized. After both threads complete, the
value of the counter is output.

pa c ka ge c h05. t hr e a ds ;

i mpor t c h05. que ue s . *;

publ i c c l a s s I nc r e a s e 3 i mpl e me nt s Runna bl e
{

pr i va t e Sync Count e r c ;
pr i va t e Bounde dQue ue I nt e r f a c e <I nt e ge r > q;

publ i c I nc r e a s e 3 (Sync Count e r c , Bounde dQue ue I nt e r f a c e <I nt e ge r > q)
{

t hi s . c = c ; t hi s . q = q;
}

publ i c voi d r un()
{

i nt hol d;
whi l e (! q . i s Empt y())
{

hol d = q. de que ue () ;
f or (i nt i = 1; i <= hol d; i ++)

c . i nc r e me nt () ;
}

}
}

Let’s review. The De mo06 program inserts the numbers from 1 to 100 into a queue. The
t 1 and t 2 threads remove numbers from that queue and increment the counter c
accordingly. The value of the counter is then output. What is that value? It should be
5050, which is equal to the sum of the integers between 1 and 100, correct? When exe-
cuted on the author’s computer the result is 5050. Good. So the program works as
expected. Not so fast—when dealing with concurrent programs it is possible for inter-
ference errors to occur intermittently. Such errors depend upon the timing of thread

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 349

350 | Chapter 5: The Queue ADT

interleaving, and so although the program may work as expected on one run, on
another run we may get unexpected results.

We ran this program 10 times, and 10 times the result was 5050. But the eleventh
test run produced a result of 4980. And the sixteenth test run produced a null pointer
exception. Although access to the counter is synchronized, access to the queue itself
is not. That is the source of these unexpected results. Interference during access to the
de que ue method, perhaps multiple times, would explain both of these unexpected
results. Readers are encouraged to try this experiment for themselves and see what
happens on their systems.

To create a reliable version of this program we need to create a synchronized queue
class. Fortunately this is not difficult. We simply add the s ync hr oni z e d keyword to the
qualifiers of each of the exported methods of our queue implementation as emphasized
in the Sync Ar r a yBndQue ue class below. Adding the s ync hr oni z e d keyword to multi-
ple methods guarantees that if one thread is active in any of those methods, then no
other thread will be allowed into the same method or any of the other methods. Using
this class in place of the Ar r a yBndQue ue class in the De mo06 program creates a reliable
example. We ran that new system over one 100 times and received the expected result
of 5050 every time.

/ / -
/ / Sync Ar r a yBndQue ue . j a va by Da l e / J oyc e / We e ms Cha pt e r 5
/ /
/ / I mpl e me nt s Bounde dQue ue I nt e r f a c e wi t h a n a r r a y t o hol d t he que ue
/ / e l e me nt s .
/ / Ope r a t i ons a r e s ync hr oni z e d t o a l l ow c onc ur r e nt a c c e s s .
/ /
/ / Two c ons t r uc t or s a r e pr ovi de d: one t ha t c r e a t e s a que ue of a de f a ul t
/ / c a pa c i t y a nd one t ha t a l l ows t he c a l l i ng pr ogr a m t o s pe c i f y t he
/ / c a pa c i t y.
/ / -

pa c ka ge c h05. que ue s ;

publ i c c l a s s Sync Ar r a yBndQue ue <T> i mpl e me nt s Bounde dQue ue I nt e r f a c e <T>
{

pr ot e c t e d f i na l i nt DEFCAP = 100; / / de f a ul t c a pa c i t y
pr ot e c t e d T[] que ue ; / / a r r a y t ha t hol ds que ue e l e me nt s
pr ot e c t e d i nt numEl e me nt s = 0; / / numbe r of e l e me nt s i n t he que ue
pr ot e c t e d i nt f r ont = 0; / / i nde x of f r ont of que ue
pr ot e c t e d i nt r e a r ; / / i nde x of r e a r of que ue

publ i c Sync Ar r a yBndQue ue ()
{

que ue = (T[]) ne w Obj e c t [DEFCAP] ;

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 350

5.7 Concurrency, Interference, and Synchronization | 351

r e a r = DEFCAP - 1;
}

publ i c Sync Ar r a yBndQue ue (i nt ma xSi z e)
{

que ue = (T[]) ne w Obj e c t [ma xSi z e] ;
r e a r = ma xSi z e - 1;

}

publ i c s ync hr oni z e d voi d e nque ue (T e l e me nt)
/ / Thr ows Que ue Ove r f l owExc e pt i on i f t hi s que ue i s f ul l ;
/ / ot he r wi s e , a dds e l e me nt t o t he r e a r of t hi s que ue .
{

i f (i s Ful l ())
t hr ow ne w Que ue Ove r f l owExc e pt i on(" Enque ue a t t e mpt e d on a f ul l

que ue . ") ;
e l s e
{

r e a r = (r e a r + 1) % que ue . l e ngt h;
que ue [r e a r] = e l e me nt ;
numEl e me nt s = numEl e me nt s + 1;

}
}

publ i c s ync hr oni z e d T de que ue ()
/ / Thr ows Que ue Unde r f l owExc e pt i on i f t hi s que ue i s e mpt y;
/ / ot he r wi s e , r e move s f r ont e l e me nt f r om t hi s que ue a nd r e t ur ns i t .
{

i f (i s Empt y())
t hr ow ne w Que ue Unde r f l owExc e pt i on(" De que ue a t t e mpt e d on e mpt y

que ue . ") ;
e l s e
{

T t oRe t ur n = que ue [f r ont] ;
que ue [f r ont] = nul l ;
f r ont = (f r ont + 1) % que ue . l e ngt h;
numEl e me nt s = numEl e me nt s - 1;
r e t ur n t oRe t ur n;

}
}

publ i c s ync hr oni z e d bool e a n i s Empt y()
/ / Re t ur ns t r ue i f t hi s que ue i s e mpt y; ot he r wi s e , r e t ur ns f a l s e .

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 351

352 | Chapter 5: The Queue ADT

{
r e t ur n (numEl e me nt s == 0) ;

}

publ i c s ync hr oni z e d bool e a n i s Ful l ()
/ / Re t ur ns t r ue i f t hi s que ue i s f ul l ; o t he r wi s e , r e t ur ns f a l s e .
{

r e t ur n (numEl e me nt s == que ue . l e ngt h) ;
}

}

We have avoided the interference problems by making all of the queue access and
increment methods synchronized. As a result, every attempt to access the queue waits if
the other thread is currently accessing it. Once a thread has the increment value from
the queue, it attempts to access the shared counter, but because it too is synchronized,
the thread will wait until the other thread is done incrementing the counter. As a result,
there are very few concurrent operations taking place. While one thread is increment-
ing, the other thread can access the queue, and vice versa. If our goal is to make use of
two physical processors in the computer to finish the task twice as quickly, the actual
speed improvement will be disappointing.

Programmers of concurrent systems often encounter situations such as this. To
ensure correctness, they must include so much synchronization that most of the work
done by the threads takes place sequentially rather than concurrently. To get greater
concurrency, it may be necessary to rethink the solution to the problem.

For example, if each of our threads had its own private counter, they could each get
values from the synchronized queue and perform their increments concurrently on their
own counters. On completion, each thread would return its counter value, and the main
thread would add the two values to get the final result. The threads would only wait on
occasions where they interfere in accessing the queue and would no longer need to wait
when accessing a counter. Executing this solution on two processors could yield nearly
a doubling of performance.

We say, “could,” because there are other factors involved in achieving good per-
formance with concurrent processing. For example, creating each new thread requires
the run-time system to do some work. If the work to be done by each thread is less than
the work required to create the thread, then it actually takes longer to create the threads
and do the work concurrently than to do the work in the usual, sequential way. As you
can see, concurrency brings many additional considerations to programming.

In every new generation of computer chip, manufacturers add more cores (proces-
sors), with each core capable of running multiple threads simultaneously. Taking advan-
tage of these capabilities requires programs to divide their work among multiple threads.
Concurrent programming is thus an important future trend in computing, and program-
mers who learn to do it well will be in great demand.

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 352

5.8 Case Study: Average Waiting Time | 353

Concurrency and the Java Library Collection Classes
In Section 5.2 a feature section introduced The Java Library Collection Framework Queue and
explained that the library includes a Que ue interface plus nine classes that implement that
interface. As we emphasized in the current section, queues are often used in concurrent pro-
grams. Lending credence to this statement is the fact that most of the queue interface imple-
mentations in the Java library support concurrent use in one way or another:

• The Ar r a yBl oc ki ngQue ue , Li nke dBl oc ki ngQue ue , De l a yQue ue , Sync hr onous -
Que ue , and Pr i or i t yBl oc ki ngQue ue all share the feature that a thread attempting to
put an element into a full queue object will block until such time that the queue object has
space available, and that a thread attempting to retrieve an element from an empty queue
object will block until an element is available.

• The Conc ur r e nt Li nke dQue ue is thread-safe. This means that like the Sync Ar r a y-
BndQue ue we developed in this section, operations on objects of the Conc ur r e nt -
Li nke dQue ue are synchronized to allow concurrent access.

Originally most of the collection classes in the Collections Framework were thread-safe, just like
the Conc ur r e nt Li nke dQue ue class. These include the Ve c t or , St a c k, Di c t i ona r y, and
Ha s hTa bl e classes. However, due to the protection code required there is an execution time
cost associated with maintaining thread safeness. Furthermore, many users of the collection
classes do not need nor want to use concurrent threads, so the built-in cost of thread safeness
was considered unnecessary overhead. Therefore, with the release of Java 2, similar classes were
included in the library for all of the original collection classes. For example, the Ar r a yLi s t
class is a non-thread-safe alternative for the Ve c t or class and Ha s hSe t or Ha s hMa p are
alternatives to Ha s hTa bl e .

The original set of collection classes, the thread-safe collection classes, are now known as
the “historical” collection classes. Most programmers prefer not to use them; instead, program-
mers use the collection classes introduced with Java 2 or later. There are facilities in the library
for transforming these newer classes into thread-safe classes. For example, you could create a
synchronized Se t collection using the unsynchronized Ha s hSe t class with the statement

Se t s = Col l e c t i on. s ync hr oni z e dSe t (ne w Ha s hSe t ()) ;

5.8 Case Study: Average Waiting Time

Queues are useful data structures within computer systems: We have process queues,
print job queues, and service queues. Queues are also commonly seen in the real world:
We have toll-booth queues, ticket-counter queues, and fast-food queues.

The primary function of a queue is to provide a place for a “customer” to wait
before receiving a “service.” Processes are waiting for a processor, print jobs are waiting

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 353

354 | Chapter 5: The Queue ADT

6. Some systems have several queues feeding into one server. In this section we assume that each queue has
its own dedicated server.

for a printer, and hungry people are waiting for their hamburgers. Management is inter-
ested in how much time customers spend waiting in queues. For example, a computer
system manager wants quick system response time and a fast-food restaurant manager
wants to keep his or her customers happy. These goals are achieved by minimizing the
time spent in the queues.

One way to minimize queue waiting time is to add more servers, and therefore more
queues, to the system.6 Print jobs spend less time in the print queue if there are 10
printers churning out jobs than they do if there is only one printer. Likewise, a fast-food
restaurant with six teller lines can handle more customers, more quickly, than a restau-
rant with only two lines. However, additional servers are not free—there is usually some
cost associated with them. Management must balance the benefits of adding extra
servers against the costs when deciding how many servers to provide.

In this case study we create a program that simulates a system of queues. The goal
is to help management analyze queuing systems. Computer simulations are a powerful
and widely used technique for analysis of complicated real-world problems.

Problem Discussion
Our program simulates a series of customers arriving for service, entering queues, wait-
ing, being served, and finally leaving the queue. It tracks the time the customers spend
waiting in queues and outputs the average waiting time.

How do we calculate the waiting time of a customer? To simplify things we assume
that time is measured in integer units, and that our simulation starts at time 0. Suppose
a customer arrives at time X and leaves at time Y. Is the waiting time for that customer
equal to Y X ? No, part of that time the customer was being served. The time Y X
is called the turnaround time; it is the total time the customer spends in the system,
including the service time. Waiting time is turnaround time minus service time.

To calculate waiting time we need to know the arrival time, finish time, and service
time. The arrival time and service time depend on the individual customers—when they
show up and how much service they need. The finish time depends on the number of
queues, the number of other customers in the queues, and the service needs of those
other customers.

Generating Arrival and Service Times
A sequence of customers is represented by their arrival times and service requirements.
These values can be obtained in several ways. One approach is to read the values from a
file. This strategy is great for testing because it allows the programmer to completely
control the input values. However, it is awkward if you want to simulate a large number
of customers.

Another approach is to generate the values randomly. We will take this approach. It
is easy to generate the random service times: The user simply enters the minimum and

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 354

5.8 Case Study: Average Waiting Time | 355

maximum expected service times, and using Java’s Ra ndom class our program generates
service times between those two values.

We follow a slightly different algorithm with arrival times. Service time measures
an amount of time, but arrival time specifies when the customer arrives. For example,
customer 1 arrives at 10:00 A.M., customer 2 at 10:05, customer 3 at 10:07, and so on.
In our simulation, we simply start the clock at 0 and keep the arrival time as an integer.
We cannot directly create a sequence of increasing times by using the random number
generator, however. Instead, we randomly generate the times between customer arrivals
(the inter-arrival times), and keep a running total of those values.

For example, we might generate a sequence of inter-arrival times of 5, 7, 4, 10, and
7. Given that our simulation starts at time 0, the arrival times are then 5, 12, 16, 26, and
33. To constrain the range of inter-arrival times, we can let the user specify a minimum
value and a maximum value.

For each customer our program generates an arrival time and a service time.
Through the simulation it then determines the finish time and, based on those values,
calculates the waiting time.

The Simulation
In addition to inter-arrival and service time information, our program obtains the num-
ber of simulated queues from the user. We index the queues starting at 0; if there are N
queues, they are indexed 0 to N 1. The user also provides the total number of cus-
tomers to be simulated. To ease the input burden, our program will allow the user to
enter the sets of minimum and maximum time parameters once, and then run repeated
simulations where he or she indicates the number of queues and customers.

Each simulation should take customers in the order they arrive and place them into
queues. We assume that a customer always chooses the smallest queue available. In
case of a tie, the customer chooses the smaller-numbered queue. The program has to
model only two situations: a customer arriving for service and a customer leaving after
being served. When a customer leaves, the program must remember the customer’s
waiting time so that it can calculate the overall average waiting time.

As an example, consider a case with the following four customers:

Suppose we have two queues. The first customer arrives at time 3 and enters queue 0.
We can see that the expected finish time is 13, because the service time is 10. The

Customer Arrival Time

1

2

3

4

3

4

5

25

Service Time

10

3

10

7

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 355

356 | Chapter 5: The Queue ADT

second customer arrives before the first is finished and enters queue 1. The finish time is
7. This scenario is represented by the following chart:

The third customer arrives at time 5, before either of the preceding customers is fin-
ished. So customer 3 enters queue 0, behind customer 1, and has an expected finish
time of 23. Do you see why? Customer 1 finishes at time 13 and then customer 3 has a
service time of 10.

If you continue this simulation by hand, you should get the following results, for an
average waiting time of 8 ÷ 4 = 2.0 time units.

Program Design
Let’s walk through the process of brainstorming classes, filtering, and scenario analysis.
The description below is idealized—the actual design took more head-knocking and
backtracking than what is shown here.

Brainstorming
A study of the problem discussion reveals the following nouns, which we have
grouped together based on natural relationships. The nouns represent candidate object
classes.

Customer Arrival Time

1

2

3

4

3

4

5

25

Service Time

10

3

10

7

Finish Time

13

7

23

32

Wait Time

0

0

8

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25Time

Q0 cust1

Q1 cust2

cust3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25Time

Q0 cust1

Q1 cust2

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 356

5.8 Case Study: Average Waiting Time | 357

Two of these nouns jump out as good candidate classes: queue and customer. We
already have several queue classes that we have developed in this chapter. Perhaps one
of them can be used to model the real-world queues. Thinking about the customers, we
decide to create a Cus t ome r class to model customers. It should allow us to create cus-
tomer objects and place them in the queues. Further reflection reveals that many of the
“time” nouns are really just attributes of a customer: A customer has an arrival time, a
service time, a finish time, and a wait time. Turnaround time is not needed for the simu-
lation and can be discarded from our list.

Recall that each of the queues has its own dedicated server. As a consequence, we
do not really need a separate “server” class. The activity of a server can be bundled with
a queue. We no longer need to consider it as a potential class. Thinking further about
“numbered queues,” we decide they can be represented by an array of queues to be used
in the simulation.

Filtering
Continuing with filtering of the candidate classes, we recognize that “user” simply rep-
resents the user of the system. Following our conventions for handling I/O, we know
that the main driving program will handle all interactions with the user. In a sense, the
driving program represents the user. We call the program Si mul a t i onApp.

Let’s see where we stand. Here are the currently identified classes and the remaining
candidate classes:

Identified Classes Candidate Classes

Customer time
Queue simulation
SimulationApp

Should we have a Ti me class? No. We can use a variable to keep track of the time.
What about a Si mul a t i on class? Because we already have a driver application that

interacts with the user, creating a separate class to perform the required work is an
excellent idea. A Si mul a t i on object can be created based on the parameters obtained
from the driving program, perform the simulation, and return the average waiting time.

customer

simulation

user servers

queue

numbered queues

time

waiting time

turnaround time

arrival time

service time

finish time

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 357

358 | Chapter 5: The Queue ADT

In summation, we have identified three new classes: Cus t ome r , Si mul a t i on, and
Si mul a t i onApp. The Si mul a t i on class will, in turn, use an array of queues. Next we
look at each new class more closely, using scenario analysis to see whether this collec-
tion of classes is sufficient for solving the problem.

Scenario Analysis
First we consider the responsibilities of the Cus t ome r class. An object of this class rep-
resents a single customer. The arrival and service times of the customer can be provided
as arguments when a Cus t ome r object is instantiated. A Cus t ome r must provide
observer methods, and it should also provide methods to both set and observe the finish
time. Given that the object eventually knows its arrival, service, and finish times, it can
be responsible for calculating and returning its own waiting time. Table 5.1 shows our
current abstract view of the Cus t ome r class. Tables such as this one help us record and
organize our evolving design.

We now must ask, “Where do Cus t ome r objects originate?” They could be created
by the Si mul a t i onApp class, but after some consideration we decide that this responsi-
bility should reside elsewhere. We decide to create a Cus t ome r Ge ne r a t or class. An
object of this class is passed the minimum and maximum inter-arrival and service times
of the customers upon instantiation. Its primary responsibility is to generate and return
the “next” customer when requested, as shown in Table 5.2.

Next we consider the Si mul a t i on class. An object of this class performs our simu-
lation. To do so, it gets the simulation setup from the Si mul a t i onApp class. Because the

Table 5.1 Abstract View of the Cus t ome r Class

Class Name: Customer
Primary Responsibility: Model a customer
Responsibilities:

Allow instantiation with arrival and service time arguments
Provide a way to set the finish time attribute
Provide a way to observe the arrival, service, and finish times
Calculate and return the waiting time

Table 5.2 Abstract View of the Cus t ome r Ge ne r a t or Class

Class Name: CustomerGenerator
Primary Responsibility: Generate a sequence of Customer objects
Responsibilities:

Allow instantiation with minimum and maximum inter-arrival and service time arguments
Provide a way to obtain the next customer
Provide a way to reset the sequence of customers

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 358

5.8 Case Study: Average Waiting Time | 359

user must be able to run multiple simulations using the same customer parameters (the
time-related parameters), we decide to pass these parameters to the Si mul a t i on object
once, at instantiation—that is, through the constructor of the Si mul a t i on object. The
constructor, in turn, creates a Cus t ome r Ge ne r a t or object to use during the subsequent
simulation runs. The application can “ask” the Si mul a t i on object to run simulations,
always using the same Cus t ome r Ge ne r a t or but with differing numbers of queues and
customers. We summarize our decisions regarding the Si mul a t i on class in Table 5.3.

Let’s now consider the actual simulation process. As already determined, our pro-
gram uses an array of queues to hold the customers. It must be able to take the next
generated Cus t ome r object from the Cus t ome r Ge ne r a t or object and insert it into the
correct queue. But how can it determine the correct queue? It must pick the smallest
queue; therefore it needs to be able to learn the size of the queues. We cannot use any
of our previously defined queue classes because they do not provide an observer that
returns the queue size. Instead, we must derive a new queue class.

Do we need any other special operations for these queues? After the program deter-
mines which queue to use, it must e nque ue the customer into that queue. Recall that
we can determine the finish time of a customer as soon as we know which queue the
customer is entering. If the queue is empty, then that customer’s finish time is equal to
the arrival time plus the service time. If the queue is not empty, then the new customer’s
finish time is equal to the finish time of the customer at the rear of the queue plus the
new customer’s own service time. Thus the program can set the finish time of a cus-
tomer before enqueuing the customer. Note that if the queue is nonempty, the program
must be able to peek at the customer at the rear of the queue to set the finish time. For
this reason, we add peeking at the rear of a queue to our list of required operations.

To perform the simulation the program must also be able to determine when the
“next” customer is ready to leave a queue, and then remove and return that customer.
How does it determine when a customer is ready to leave a queue? Because customers
in a queue know their finish times, the program just needs to compare the finish times
of the customers at the front of each queue and determine which is the earliest. There-
fore the program must be able to peek at the customer at the front of a queue. That is
one more operation to add to our list.

To provide the necessary queue operations, we extend the Ar r a yUnbndQue ue class
with a class called Gl a s s Que ue , which provides s i z e , pe e kFr ont , and pe e kRe a r
methods. Table 5.4 captures these responsibilities.

Table 5.3 Abstract View of the Si mul a t i on Class

Class Name: Simulation
Primary Responsibility: Run our simulation and provide access to the results
Responsibilities:

Allow instantiation with customer information
Perform a simulation using its CustomerGenerator object and arguments that indicate the number of
queues and customers

Provide a way to obtain the results of the simulation

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 359

360 | Chapter 5: The Queue ADT

Table 5.4 Abstract View of the Gl a s s Que ue Class

Class Name: GlassQueue
Primary Responsibility: Extend ArrayUnbndQueue with some operations that allow examination of

the queue
Responsibilities:
Return the size of the queue
Return a link to the front element of the queue
Return a link to the rear element of the queue

We have now finished our scenario analysis. We are convinced that we have
defined a good set of classes to solve our problem. We are ready to begin coding.

Program Details
In this subsection we look at the code for each class we create to solve our problem. We
elaborate when we feel sections of the code require explanation.

We design and create five new classes. The key to understanding a program like this
one is to use abstraction. Don’t worry about all the details of all the classes at once.
Instead, concentrate on one class’s responsibilities at a time. When convinced that a
class meets its responsibilities, you can move on to the next class.

The Customer Class
Because we may want to use customers in other applications later in the textbook, we
decide to place the Cus t ome r and Cus t ome r Ge ne r a t or classes in the s uppor t pack-
age. The Cus t ome r class is very straightforward:

/ / -
/ / Cus t ome r . j a va by Da l e / J oyc e / We e ms Cha pt e r 5
/ /
/ / Suppor t s c us t ome r obj e c t s ha vi ng a r r i va l , s e r vi c e , a nd f i ni s h t i me
/ / a t t r i but e s . Re s pons i bl e f or c omput i ng a nd r e t ur ni ng wa i t t i me .
/ / -

pa c ka ge s uppor t ;

publ i c c l a s s Cus t ome r
{

pr ot e c t e d i nt a r r i va l Ti me ;
pr ot e c t e d i nt s e r vi c e Ti me ;
pr ot e c t e d i nt f i ni s hTi me ;

publ i c Cus t ome r (i nt a r r i va l Ti me , i nt s e r vi c e Ti me)
{

t hi s . a r r i va l Ti me = a r r i va l Ti me ;

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 360

5.8 Case Study: Average Waiting Time | 361

t hi s . s e r vi c e Ti me = s e r vi c e Ti me ;
}

publ i c i nt ge t Ar r i va l Ti me ()
{

r e t ur n a r r i va l Ti me ;
}

publ i c i nt ge t Se r vi c e Ti me ()
{

r e t ur n s e r vi c e Ti me ;
}

publ i c voi d s e t Fi ni s hTi me (i nt t i me)
{

f i ni s hTi me = t i me ;
}

publ i c i nt ge t Fi ni s hTi me ()
{

r e t ur n f i ni s hTi me ;
}

publ i c i nt ge t Wa i t Ti me ()
{

r e t ur n (f i ni s hTi me - a r r i va l Ti me - s e r vi c e Ti me) ;
}

}

The CustomerGenerator Class
This class uses the Java library’s Ra ndom class. Recall that a call to r a nd. ne xt I nt (N)
returns a random integer between 0 and N 1. Note that a Cus t ome r Ge ne r a t or object
keeps track of the current time, so it can calculate the next arrival time.

/ / -
/ / Cus t ome r Ge ne r a t or . j a va by Da l e / J oyc e / We e ms Cha pt e r 5
/ /
/ / Ge ne r a t e s a s e que nc e of r a ndom Cus t ome r obj e c t s ba s e d on t he
/ / c ons t r uc t or a r gume nt s f or mi n a nd ma x i nt e r - a r r i va l a nd s e r vi c e t i me s .
/ / As s ume s a f l a t di s t r i but i on of bot h i nt e r - a r r i va l a nd s e r vi c e t i me s .
/ / As s ume s t i me s t a r t s a t 0 .
/ / -

pa c ka ge s uppor t ;

i mpor t j a va . ut i l . Ra ndom;

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 361

362 | Chapter 5: The Queue ADT

publ i c c l a s s Cus t ome r Ge ne r a t or
{

pr ot e c t e d i nt mi nI AT; / / mi ni mum i nt e r - a r r i va l t i me
pr ot e c t e d i nt ma xI AT; / / ma xi mum i nt e r - a r r i va l t i me
pr ot e c t e d i nt mi nST; / / mi ni mum s e r vi c e t i me
pr ot e c t e d i nt ma xST; / / ma xi mum s e r vi c e t i me
pr ot e c t e d i nt c ur r Ti me = 0; / / c ur r e nt t i me
Ra ndom r a nd = ne w Ra ndom() ; / / t o ge ne r a t e r a ndom numbe r s

publ i c Cus t ome r Ge ne r a t or (i nt mi nI AT, i nt ma xI AT, i nt mi nST, i nt ma xST)
/ / Pr e c ondi t i ons : a l l a r gume nt s >= 0, mi nI AT <= ma xI AT, mi nST <= ma xST
{

t hi s . mi nI AT = mi nI AT;
t hi s . ma xI AT = ma xI AT;
t hi s . mi nST = mi nST;
t hi s . ma xST = ma xST;

}

publ i c voi d r e s e t ()
{

c ur r Ti me = 0;
}

publ i c Cus t ome r ne xt Cus t ome r ()
/ / Cr e a t e s a nd r e t ur ns t he ne xt r a ndom c us t ome r .
{

i nt I AT; / / ne xt i nt e r - a r r i va l t i me
i nt ST; / / ne xt s e r vi c e t i me
I AT = mi nI AT + r a nd. ne xt I nt (ma xI AT - mi nI AT + 1) ;
ST = mi nST + r a nd. ne xt I nt (ma xST - mi nST + 1) ;
c ur r Ti me = c ur r Ti me + I AT; / / upda t e s c ur r e nt t i me t o t he a r r i va l

/ / t i me of ne xt c us t ome r
Cus t ome r ne xt = ne w Cus t ome r (c ur r Ti me , ST) ;
r e t ur n ne xt ;

}
}

The GlassQueue Class
This class is a straightforward extension of the Ar r a yUnbndQue ue class.

/ / -
/ / Gl a s s Que ue . j a va by Da l e / J oyc e / We e ms Cha pt e r 5
/ /
/ / Ext e nds Ar r a yUnbndQue ue wi t h ope r a t i ons t o de t e r mi ne t he s i z e of t he que ue

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 362

5.8 Case Study: Average Waiting Time | 363

/ / a nd t o a c c e s s t he f r ont a nd r e a r que ue e l e me nt s wi t hout r e movi ng t he m.
/ / -

pa c ka ge c h05. que ue s ;

publ i c c l a s s Gl a s s Que ue <T> e xt e nds Ar r a yUnbndQueue <T>
{

publ i c Gl a s s Que ue ()
{

s upe r () ;
}

publ i c Gl a s s Que ue (i nt or i gCa p)
{

s upe r (or i gCa p) ;
}

publ i c i nt s i z e ()
/ / Re t ur ns t he numbe r of e l e me nt s i n t hi s que ue .
{

r e t ur n numEl e me nt s ;
}

publ i c T pe e kFr ont ()
/ / Re t ur ns t he obj e c t a t t he f r ont of t hi s queue .
/ / I f t he que ue i s e mpt y, r e t ur ns nul l .
{

r e t ur n que ue [f r ont] ;
}

publ i c T pe e kRe a r ()
/ / Re t ur ns t he obj e c t a t t he r e a r of t hi s que ue .
/ / I f t he que ue i s e mpt y, r e t ur ns nul l .
{

r e t ur n que ue [r e a r] ;
}

}

The Simulation Class
The s i mul a t e method works through the simulation until finished. Each time through
the while loop one of two things is simulated: a new customer is inserted into the
queues or a customer is removed from a queue. To decide which of these two actions to
simulate, the method determines and compares the next arrival time and the next
departure time. The constant MAXTI ME is used to simplify the code; an arrival/departure
time value of MAXTI ME indicates that there are no arrivals/departures.

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 363

364 | Chapter 5: The Queue ADT

7. An unchecked cast warning is generated because the compiler cannot ensure that the array actually con-
tains objects of class Gl a s s Que ue <Cus t ome r >.

/ / -
/ / Si mul a t i on. j a va by Da l e / J oyc e / We e ms Cha pt e r 5
/ /
/ / Mode l s a s e que nc e of c us t ome r s be i ng s e r vi c e d
/ / by a numbe r of que ue s .
/ / -

i mpor t s uppor t . *; / / Cus t ome r , Cus t ome r Ge ne r a t or
i mpor t c h05. que ue s . *;

publ i c c l a s s Si mul a t i on
{

f i na l i nt MAXTI ME = I nt e ge r . MAX_VALUE;

Cus t ome r Ge ne r a t or c us t Ge n; / / a c us t ome r ge ne r a t or
f l oa t a vgWa i t Ti me = 0. 0f ; / / a ve r a ge wa i t t i me f or mos t r e c e nt s i mul a t i on

publ i c Si mul a t i on(i nt mi nI AT, i nt ma xI AT, i nt mi nST, i nt ma xST)
{

c us t Ge n = ne w Cus t ome r Ge ne r a t or (mi nI AT, ma xI AT, mi nST, ma xST) ;
}

publ i c f l oa t ge t AvgWa i t Ti me ()
{

r e t ur n a vgWa i t Ti me ;
}

publ i c voi d s i mul a t e (i nt numQue ue s , i nt numCus t ome r s)
/ / Pr e c ondi t i ons : numQue ue s > 0
/ / numCus t ome r s > 0
/ / No t i me ge ne r a t e d dur i ng s i mul a t i on i s > MAXTI ME
/ /
/ / Si mul a t e s numCus t ome r s c us t ome r s e nt e r i ng a nd l e a vi ng t he
/ / a que ui ng s ys t e m wi t h numQue ue s que ue s
{

/ / t he que ue s
Gl a s s Que ue <Cus t ome r >[] que ue s = ne w Gl a s s Que ue [numQue ue s] ; 7

Cus t ome r ne xt Cus t ; / / ne xt c us t ome r f r om ge ne r a t or
Cus t ome r c us t ; / / hol ds c us t ome r f or t e mpor a r y us e

i nt t ot Wa i t Ti me = 0; / / t ot a l wa i t t i me
i nt c us t I nCount = 0; / / c ount of c us t ome r s s t a r t e d s o f a r

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 364

5.8 Case Study: Average Waiting Time | 365

i nt c us t Out Count = 0; / / c ount of c us t ome r s f i ni s he d s o f a r

i nt ne xt Ar r Ti me ; / / ne xt a r r i va l t i me
i nt ne xt De pTi me ; / / ne xt de pa r t ur e t i me
i nt ne xt Que ue ; / / i nde x of que ue f or ne xt de pa r t ur e

i nt s hor t e s t ; / / i nde x of s hor t e s t que ue
i nt s hor t e s t Si z e ; / / s i z e of s hor t e s t que ue
Cus t ome r r e a r Cus t ; / / c us t ome r a t r e a r of s hor t e s t que ue
i nt f i ni s hTi me ; / / c a l c ul a t e d f i ni s h t i me

/ / i ns t a nt i a t e t he que ue s
f or (i nt i = 0; i < numQue ue s ; i ++)

que ue s [i] = ne w Gl a s s Que ue <Cus t ome r >() ;

/ / s e t c us t ome r ge ne r a t or a nd ge t f i r s t c us t ome r
c us t Ge n. r e s e t () ;
ne xt Cus t = c us t Ge n. ne xt Cus t ome r () ;

whi l e (c us t Out Count < numCus t ome r s) / / whi l e mor e c us t ome r s t o ha ndl e
{

/ / ge t ne xt a r r i va l t i me
i f (c us t I nCount ! = numCus t ome r s)

ne xt Ar r Ti me = ne xt Cus t . ge t Ar r i va l Ti me () ;
e l s e

ne xt Ar r Ti me = MAXTI ME;

/ / ge t ne xt de pa r t ur e t i me a nd s e t ne xt Queue
ne xt De pTi me = MAXTI ME;
ne xt Que ue = - 1;
f or (i nt i = 0; i < numQue ue s ; i ++)

i f (que ue s [i] . s i z e () ! = 0)
{

c us t = que ue s [i] . pe e kFr ont () ;
i f (c us t . ge t Fi ni s hTi me () < ne xt De pTi me)
{

ne xt De pTi me = c us t . ge t Fi ni s hTi me () ;
ne xt Que ue = i ;

}
}

i f (ne xt Ar r Ti me < ne xt De pTi me)
/ / ha ndl e c us t ome r a r r i vi ng
{

/ / de t e r mi ne s hor t e s t que ue
s hor t e s t = 0;

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 365

366 | Chapter 5: The Queue ADT

s hor t e s t Si z e = que ue s [0] . s i z e () ;
f or (i nt i = 1; i < numQue ue s ; i ++)
{

i f (que ue s [i] . s i z e () < s hor t e s t Si z e)
{

s hor t e s t = i ;
s hor t e s t Si z e = que ue s [i] . s i z e () ;

}
}

/ / de t e r mi ne t he f i ni s h t i me
i f (s hor t e s t Si z e == 0)

f i ni s hTi me = ne xt Cus t . ge t Ar r i va l Ti me () + ne xt Cus t . ge t Se r vi c e Ti me () ;
e l s e
{

r e a r Cus t = que ue s [s hor t e s t] . pe e kRe a r () ;
f i ni s hTi me = r e a r Cus t . ge t Fi ni s hTi me () + ne xt Cus t . ge t Se r vi c e Ti me () ;

}

/ / s e t f i ni s h t i me a nd e nque ue c us t ome r
ne xt Cus t . s e t Fi ni s hTi me (f i ni s hTi me) ;
que ue s [s hor t e s t] . e nque ue (ne xt Cus t) ;

c us t I nCount = c us t I nCount + 1;

/ / i f ne e de d, ge t ne xt c us t ome r t o e nque ue
i f (c us t I nCount < numCus t ome r s)

ne xt Cus t = c us t Ge n. ne xt Cus t ome r () ;
}
e l s e
/ / ha ndl e c us t ome r l e a vi ng
{

c us t = que ue s [ne xt Que ue] . de que ue () ;
t ot Wa i t Ti me = t ot Wa i t Ti me + c us t . ge t Wa i t Ti me () ;
c us t Out Count = c us t Out Count + 1;

}
} / / e nd whi l e

a vgWa i t Ti me = t ot Wa i t Ti me / (f l oa t) numCus t ome r s ;
}

}

The Application
This application is similar in structure to those presented previously in the text. The pri-
mary responsibility of Si mul a t i onApp is interacting with the user. We make the sim-
plifying assumption that the user is well behaved—in other words, the user provides

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 366

5.8 Case Study: Average Waiting Time | 367

valid input data. For example, the minimum service time the user enters is not larger
than the maximum service time.

/ / -
/ / Si mul a t i onApp. j a va by Da l e / J oyc e / We e ms Cha pt e r 5
/ /
/ / Si mul a t e s c us t ome r s wa i t i ng i n que ue s . Cus t ome r s a l wa ys e nt e r
/ / t he s hor t e s t que ue .
/ /
/ / I nput c ons i s t s of c us t ome r i nf or ma t i on:
/ / Mi ni mum a nd ma xi mum c us t ome r i nt e r - a r r i va l t i me .
/ / Mi ni mum a nd ma xi mum c us t ome r s e r vi c e t i me .
/ / Fol l owe d by a s e que nc e of s i mul a t i on i ns t a nc e i nf or ma t i on:
/ / Numbe r of que ue s a nd c us t ome r s .
/ /
/ / Out put i nc l ude s , f or e a c h s i mul a t i on i ns t a nc e :
/ / The a ve r a ge wa i t i ng t i me f or a c us t ome r .
/ / -

i mpor t j a va . ut i l . Sc a nne r ;

publ i c c l a s s Si mul a t i onApp
{

publ i c s t a t i c voi d ma i n(St r i ng[] a r gs)
{

Sc a nne r c onI n = ne w Sc a nne r (Sys t e m. i n) ;

i nt mi nI AT; / / mi ni mum i nt e r - a r r i va l t i me
i nt ma xI AT; / / ma xi mum i nt e r - a r r i va l t i me
i nt mi nST; / / mi ni mum s e r vi c e t i me
i nt ma xST; / / ma xi mum s e r vi c e t i me
i nt numQue ue s ; / / numbe r of que ue s
i nt numCus t ; / / numbe r of c us t ome r s

St r i ng s ki p; / / s ki p e nd of l i ne a f t e r r e a di ng a n i nt e ge r
St r i ng mor e = nul l ; / / us e d t o s t op or c ont i nue pr oc e s s i ng

/ / Ge t c us t ome r i nf or ma t i on
Sys t e m. out . pr i nt (" Ent e r mi ni mum i nt e r - a r r i va l t i me : ") ;
mi nI AT = c onI n. ne xt I nt () ;
Sys t e m. out . pr i nt (" Ent e r ma xi mum i nt e r - a r r i va l t i me : ") ;
ma xI AT = c onI n. ne xt I nt () ;
Sys t e m. out . pr i nt (" Ent e r mi ni mum s e r vi c e t i me : ") ;
mi nST = c onI n. ne xt I nt () ;
Sys t e m. out . pr i nt (" Ent e r ma xi mum s e r vi c e t i me : ") ;
ma xST = c onI n. ne xt I nt () ;

/ / c r e a t e obj e c t t o pe r f or m s i mul a t i on
Si mul a t i on s i m = ne w Si mul a t i on(mi nI AT, ma xI AT, mi nST, ma xST) ;

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 367

368 | Chapter 5: The Queue ADT

do
{

/ / Ge t ne xt s i mul a t i on i ns t a nc e t o be pr oc e s s e d.
Sys t e m. out . pr i nt (" Ent e r numbe r of que ue s : ") ;
numQue ue s = c onI n. ne xt I nt () ;
Sys t e m. out . pr i nt (" Ent e r numbe r of c us t ome r s : ") ;
numCus t = c onI n. ne xt I nt () ;
s ki p = c onI n. ne xt Li ne () ; / / s ki p e nd of l i ne

/ / r un s i mul a t i on a nd out put a ve r a ge wa i t i ng t i me
s i m. s i mul a t e (numQue ue s , numCus t) ;
Sys t e m. out . pr i nt l n(" Ave r a ge wa i t i ng t i me i s " + s i m. ge t AvgWa i t Ti me ()) ;

/ / De t e r mi ne i f t he r e i s a not he r s i mul a t i on i ns t a nc e t o pr oc e s s .
Sys t e m. out . pr i nt l n() ;
Sys t e m. out . pr i nt (" Eva l ua t e a not he r s i mul a t i on i ns t a nc e ? (Y=Ye s) : ") ;
mor e = c onI n. ne xt Li ne () ;
Sys t e m. out . pr i nt l n() ;

}
whi l e (mor e . e qua l s I gnor e Ca s e (" y")) ;

Sys t e m. out . pr i nt l n(" Pr ogr a m c ompl e t e d. ") ;
}

}

Here is an output from a sample run of this program:

Enter minimum inter-arrival time: 0
Enter maximum inter-arrival time: 10
Enter minimum service time: 5
Enter maximum service time: 20
Enter number of queues: 2
Enter number of customers: 2000
Average waiting time is 1185.632

Evaluate another simulation instance? (Y=Yes): y

Enter number of queues: 3
Enter number of customers: 2000
Average waiting time is 5.7245

Evaluate another simulation instance? (Y=Yes): n

Program completed.

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 368

5.8 Case Study: Average Waiting Time | 369

As you can see, our program provides us with a powerful analysis tool. Under the
conditions of inter-arrival times between 0 and 10 and service times between 5 and 20,
with only two queues the waiting time “blows up.” But by simply adding one more
queue, the expected waiting time becomes very reasonable.

Testing Considerations
How do we know our program works? Besides being careful with the design and coding,
we must test it. We should test each of the classes separately as we create it. To do so,
we need to create test driver programs that allow us to evaluate the classes under differ-
ent conditions.

We can test the overall system by carefully selecting the values we enter for input.
For example, if we enter the minimum and maximum inter-arrival times both as 5, then
we know that a customer should arrive every 5 time units. By controlling the arrival
times and service requirements, along with the number of available queues, we can see
whether our system provides reasonable answers. Finally, we could tweak the Cus -
t ome r Ge ne r a t or code slightly, so that it outputs the arrival and service times of each
of the customers it generates. Using this information, we can hand-check the results of a
simulation to confirm that it is correct.

The GUI Approach
The console-based Si mul a t i onApp class can easily be replaced by a GUI-based class. Our
Si mGUI class does just that. Like Si mul a t i onApp, it obtains input from the user, instantiates
a Cus t ome r Ge ne r a t or object, uses the Si mul a t i on class to perform the simulation, and
obtains and presents the result. Here is a screenshot of the program in action:

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 369

370 | Chapter 5: The Queue ADT

A benefit of the GUI approach is that the user can easily change just one input value and
rerun the simulation to see the effect of that change. A drawback of the approach is the previ-
ous result is no longer readily available. The Si mGUI class file is included with the rest of the
textbook program files on the website.

Exercises
1. Explain the following:

a. Some of the text fields, such as Mi nI ATTe xt , are declared as class variables.
b. We use the I nt e ge r class’s pa r s e I nt method.
c. The “Clear” action blanks out a number of text values, but sets one text value to a non-

empty string.
d. The effect of changing the following line:

J But t on s i mul a t e = ne w J But t on(" Si mul a t e ") ;
to

J But t on s i mul a t e = ne w J But t on(" Eva l ua t e ") ;
Would the program still work? Why or why not?

2. Revise and test the Si mGUI application as described here:

a. It keeps track of and displays how many simulations have been executed during the cur-
rent program.

b. It validates the input arguments. Minimum values must be less than maximum values.
The inter-arrival times must be greater than or equal to zero. All other input values must
be greater than or equal to one. If invalid input arguments are discovered, an appropriate
error message is displayed.

c. It provides pull-down lists for the input arguments instead of text boxes. Note that this
change eliminates the need to validate input arguments.

3. Design and implement your own GUI for this problem. Write a short explanation of why your
interface is better than the one shown in the textbook.

Summary
A queue is a “first in, first out” (FIFO) structure. We defined a queue at the logical level
as an abstract data type, creating both a bounded queue interface and an unbounded
queue interface. For the bounded queue interface, we created an array-based implemen-
tation. For the unbounded queue interface, we created two implementations: one array-
based and one link-based.

Queues are often used to hold information until it needs to be used or jobs until they
can be served. We developed two applications that highlighted this nature of queues. In
the palindrome identifier, a queue held a sequence of characters until they could be
compared to the characters from a stack. In the card game simulator, queues held a
player’s cards until it was time to put them into play as well as the pile of prize cards
until they were won by a player. We also discussed the use of queues for managing

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 370

Summary | 371

Figure 5.15 The queue-related interfaces and classes developed in this chapter—instance variable information is
omitted

<<interface>>
QueueInterface<T>

<<interface>>
UnboundedQueueInterface<T>

+de que ue () : T
+i s Empt y() : bool e a n

+e nque ue (T e l e me nt) : voi d

LinkedUnbndQueue<T>

+Li nke dUnbndQue ue ()
+e nque ue (T e l e me nt) : voi d
+de que ue () : T
+i s Empt y() : bool e a n

ArrayUnbndQueue<T>

+Ar r a yUnbndQue ue ()
+Ar r a yUnbndQue ue (i nt or i gCa p)
+e nque ue (T e l e me nt) : voi d
+de que ue () : T
+i s Empt y() : bool e a n

ArrayBndQueue<T>

+Ar r a yBndQue ue ()
+Ar r a yBndQue ue (i nt ma xSi z e)
+e nque ue (T e l e me nt) : voi d
+de que ue () : T
+i s Empt y() : bool e a n
+i s Ful l () : bool e a m

<<interface>>
BoundedQueueInterface<T>

QueueUnderflowException

+e nque ue (T e l e me nt) : voi d
+i s Ful l () : bool e a m

+Que ue Unde r f l owExc e pt i on()
+Que ue Unde r f l owExc e pt i on(St r i ng me s s a ge)

QueueOverflowException

+Que ue Ove r f l owExc e pt i on()
+Que ue Ove r f l owExc e pt i on(St r i ng me s s a ge)

GlassQueue<T>

+Gl a s s Que ue ()
+Gl a s s Que ue (i nt ma xSi z e)
+s i z e () : i nt
+pe e kFr ont () : T
+pe e kRe a r () : T

 uses

 extends

 implements

 Key:

tasks that can be executed concurrently and looked at some of Java’s mechanisms for
indicating concurrency and for synchronizing concurrent threads.

In the case study, we developed a tool to analyze queue behavior. Our program
allowed us to control the arrival rate and service needs of queue elements, and discover
the average amount of time an element spent waiting on a queue. By varying the num-
ber of queues, we could determine the suitability of adding new servers to a queuing
system. To support the case study, we devised an extension of our standard queue, a
“glass” queue that allowed an application to look inside the queue abstraction.

Figure 5.15 is a UML diagram showing the queue-related interfaces and classes
developed in this chapter, and their relationships. It includes the Gl a s s Que ue class
developed to support the case study.

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 371

372 | Chapter 5: The Queue ADT

Exercises
5.1 Queues

1. True or False?
a. A queue is a “first in, first out” structure.
b. The element that has been in a queue the longest is at the “rear” of the queue.
c. If you e nque ue five elements into an empty queue and then de que ue five

elements, the queue will be empty again.
d. If you e nque ue five elements into an empty queue and then perform the

i s Empt y operation five times, the queue will be empty again.
e. The e nque ue operation should be classified as a “transformer.”
f. The i s Empt y operation should be classified as a “transformer.”
g. The de que ue operation should be classified as an “observer.”
h. If we first e nque ue e l e me nt A into an empty queue and then e nque ue

e l e me nt B, the f r ont of the queue is e l e me nt A.
2. Indicate whether a queue would be a suitable data structure to use in each of the

following applications.
a. An ailing company wants to evaluate employee records so that it can lay off

some workers on the basis of service time (the most recently hired employees
are laid off first).

b. A program is to keep track of patients as they check into a clinic, assigning
them to doctors on a “first come, first served” basis.

c. A program to solve a maze is to backtrack to an earlier position (the last
place where a choice was made) when a dead-end position is reached.

d. An inventory of parts is to be processed by part number.
e. An operating system is to process requests for computer resources by allocat-

ing the resources in the order in which they are requested.
f. A grocery chain wants to run a simulation to see how average customer

wait time would be affected by changing the number of checkout lines in
its stores.

g. A dictionary of words used by a spelling checker is to be initialized.
h. Customers are to take numbers at a bakery and be served in order when their

number comes up.
i. Gamblers take numbers in the lottery and win if their numbers are picked.

5.2 Formal Specification
3. Based on our Queue ADT specification, an application programmer has two ways

to check for an empty queue. Describe them and discuss when one approach
might be preferable to the other approach.

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 372

Exercises | 373

4. If we include the abstract i s Empt y method in the Unbounde dQue ue I nt e r f a c e
in addition to the Que ue I nt e r f a c e , what happens? Is it an error? Does it affect
classes that implement the interfaces?

5. In the UML diagram in Figure 5.3, explain the meaning of the following:
a. Italicized text
b. A plus sign
c. A dashed open-head arrow
d. A solid closed-head arrow

6. Show what is written by the following segments of code, given that e l e me nt 1,
e l e me nt 2, and e l e me nt 3 are i nt variables, and que ue is an object that fits the
abstract description of a queue as given in Section 5.2. Assume that you can
store and retrieve values of type i nt in que ue .
a. e l e me nt 1 = 1;

e l e me nt 2 = 0;
e l e me nt 3 = 4
que ue . e nque ue (e l e me nt 2) ;
que ue . e nque ue (e l e me nt 1) ;
que ue . e nque ue (e l e me nt 1 + e l e me nt 3) ;
e l e me nt 2 = que ue . de que ue ()
que ue . e nque ue (e l e me nt 3*e l e me nt 3) ;
que ue . e nque ue (e l e me nt 2) ;
que ue . e nque ue (3) ;
e l e me nt 1 = que ue . de que ue () ;
Sys t e m. out . pr i nt l n(e l e me nt 1 + " " + e l e me nt 2 + " " +

e l e me nt 3) ;
whi l e (! que ue . i s Empt y())
{

e l e me nt 1 = que ue . de que ue () ;
Sys t e m. out . pr i nt l n(e l e me nt 1) ;

}

b. e l e me nt 1 = 4;
e l e me nt 3 = 0;
e l e me nt 2 = e l e me nt 1 + 1;
que ue . e nque ue (e l e me nt 2) ;
que ue . e nque ue (e l e me nt 2 + 1) ;
que ue . e nque ue (e l e me nt 1) ;
e l e me nt 2 = que ue . de que ue () ;
e l e me nt 1 = e l e me nt 2 + 1;
que ue . e nque ue (e l e me nt 1) ;
que ue . e nque ue (e l e me nt 3) ;
whi l e (! que ue . I s Empt y())
{

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 373

374 | Chapter 5: The Queue ADT

e l e me nt 1 = que ue . de que ue () ;
Sys t e m. out . pr i nt l n(e l e me nt 1) ;

}
Sys t e m. out . pr i nt l n(e l e me nt 1 + " " + e l e me nt 2 + " " +

e l e me nt 3) ;

7. The following code segment is a count-controlled loop going from 1 through 5.
At each iteration, the loop counter is either printed or put on a queue depending
on the bool e a n result returned by the method r a ndom. (Assume that r a ndom
randomly returns either t r ue or f a l s e .) At the end of the loop, the elements in
the queue are removed and printed. Because of the logical properties of a queue,
this code segment cannot print certain sequences of the values of the loop
counter. You are given an output and asked to determine whether the code seg-
ment could generate the output.

f or (c ount = 1; c ount <= 5; c ount ++)
{

i f (r a ndom())
Sys t e m. out . pr i nt l n(c ount) ;

e l s e
que ue . e nque ue (c ount) ;

}
whi l e (! que ue . i s Empt y())
{

numbe r = que ue . de que ue () ;
Sys t e m. out . pr i nt l n(numbe r) ;

}

a. The following output is possible: 1 2 3 4 5
i. True ii. False iii. Not enough information

b. The following output is possible: 1 3 5 4 2
i. True ii. False iii. Not enough information

c. The following output is possible: 1 3 5 2 4
i. True ii. False iii. Not enough information

Questions 8–10 require “outside” research.
8. List the Java library classes that implement the Java library Que ue interface.
9. In the Java library, the Bl oc ki ngQue ue interface extends the Que ue interface.

Briefly describe the main differences between a “blocking” queue and a “normal”
queue.

10. The informal description provided of the Java library Que ue suggests that inser-
tion of a nul l object into a queue be disallowed. Why?

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 374

Exercises | 375

5.3 Array- Based Implementations
11. Discuss the relative efficiency of the e nque ue and de que ue operations for fixed-

front and floating-front approaches to an array-based implementation of a queue.
12. Draw the “internal” view of memory for each step of the following code

sequence:

Ar r a yBndQue ue <St r i ng> q = ne w Ar r a yBndQue ue <St r i ng>(5) ;
q. e nque ue (" X") ;
q. e nque ue (" M") ;
q. de que ue () ;
q. e nque ue (" T") ;

13. Describe the effects each of the following changes would have on the
Ar r a yBndQue ue class:
a. Remove the f i na l attribute from the DEFCAP instance variable.
b. Change the value assigned to DEFCAP to 10.
c. Change the value assigned to DEFCAP to 10.
d. In the first constructor, change the first statement to

que ue = (T[]) ne wObj e c t [100] ;

e. In the first constructor, change the last statement to

r e a r = c a pa c i t y;

f. In the first constructor, change the last statement to

r e a r = - 1;

g. Reverse the order of the last two statements in the else clause of the e nque ue
method.

h. Reverse the order of the first two statements in the else clause of the
de que ue method.

i. In i s Empt y, change “==” to “=. ”
14. Consider a t oSt r i ng method for a queue that would create and return a string

that nicely represents the current queue. Assume each e nque ue d object already
provides its own reasonable t oSt r i ng method that you can invoke from the
queue’s t oSt r i ng method.
a. Design, code, and test a t oSt r i ng method for the Ar r a yBndQue ue class.
b. What changes do you need to make to the method created for part a for it to

work with the Ar r a yUnbndQue ue class?
15. Write a segment of code (application level) to perform each of the following

operations. Assume myQue ue is an object of the class Ar r a yUnbndQue ue . You
may call any of the public methods. You may also declare additional queue
objects.

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 375

376 | Chapter 5: The Queue ADT

a. Set s e c ondEl e me nt to the second element from the beginning of myQue ue ,
leaving myQue ue without its original two front elements.

b. Set r e a r equal to the rear element in myQue ue , leaving myQue ue empty.
c. Set r e a r equal to the rear element in myQue ue , leaving myQue ue unchanged.
d. Print out the contents of myQue ue , leaving myQue ue unchanged.

16. Consider our array-based unbounded queue implementation.
a. What would be the effect of starting with a capacity of 1?
b. What would be the effect of starting with a capacity of 0?

17. Create an interactive test driver for the Ar r a yBndQue ue class. See Section 2.4,
“Software Testing” for information about interactive test drivers.

18. A “dequeue” is like a queue but it also allows you to insert into the front of the
queue and to remove from the rear of the queue. Create an array-based De que ue
class.

19. Create an Ar r a yLi s t UnbndQue ue class, using an Ar r a yLi s t instead of an
array as the underlying storage.

5.4 Application: Palindromes
20. Consider the t e s t method of Pa l i ndr ome . What is the effect of:

a. Switching the order of the pus h and e nque ue statements in the for loop?
b. Changing “<” to “<=” in the while loop termination condition?
c. Removing the s t a c k. pop() statement?
d. The c a ndi da t e string being nul l ?
e. The c a ndi da t e string having no letters?

21. How would you change the t e s t method of the Pa l i ndr ome class so that it
considers all characters, not just letters? Identify the statements you would
change, and how you would change them.

22. This question deals with palindromic dates—that is, dates that read the same for-
ward and backward.
a. The year 2002 was a palindromic year. When is the next palindromic year?
b. If dates are written MMDDYYYY, then May 2, 2050, is a palindromic date.

What is the earliest palindromic date of the 21st century?
c. Create a program that identifies all palindromic dates in a given year. First a

user enters a year. Then the program reports the palindromic dates. Finally,
the program asks the user if he or she wishes to try again. Note that you need
a Pa l i ndr ome class that permits testing “digit” characters.

23. Write a program that repeatedly prompts the user to enter strings, using the
string “x done” to indicate when finished. The user is assumed to only enter
strings of the form “f name” or “m name.” Output the names that had “m” indi-
cated in the same order they were entered, and then do the same for the names
that had “f” indicated. Use two Ar r a yUnbndQue ue objects in your program.

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 376

Exercises | 377

Sample Run
Input a gender and name (x done to quit) > m Fred
Input a gender and name (x done to quit) > f Wilma
Input a gender and name (x done to quit) > m Barney
Input a gender and name (x done to quit) > m BamBam
Input a gender and name (x done to quit) > f Betty
Input a gender and name (x done to quit) > x done

males: Fred Barney BamBam
females: Wilma Betty

5.5 Application: The Card Game of War
24. Can a game of War end in a tie? If not, why not? If so, explain how, and

describe what our War program would do in that case.
25. When you play cards, you normally shuffle the deck several times before play-

ing. Yet the shuffling algorithm used in our program walks through the array of
cards only once. Explain the difference between these two situations.

26. Suppose only four cards are dealt in a game of War, two to each player. Describe
a deck of four cards, such that when dealt, will result in a game of War that con-
tinues forever.

27. In the pl a y method of the Wa r Ga me class, what is the effect of removing the
s huf f l e method invocation?

28. The following changes can be assigned separately or in combinations. Change
the War game program so that it meets these conditions:
a. It has a default maximum number of battles of 200.
b. The user also enters the number of decks to use in the game.
c. The program also reports the average number of “wars” in a game, where a

“war” is defined as any time that a “battle” ends in a tie.
d. The program also reports the total number of wins for each player.
e. The user also inputs the number of cards to deal to player 1; player 2 gets all

the remaining cards.
f. ba t t l e is not recursive (see the information in Chapter 4 about removing tail

recursion).

5.6 Link- Based Implementations
29. Draw the “internal” view of memory for each step of the following code sequence:

Li nke dUnbndQue ue <St r i ng> q;
q = ne w Li nke dUnbndQue ue <St r i ng>() ;
q. e nque ue (" X") ;
q. e nque ue (" M") ;
q. de que ue () ;
q. e nque ue (" T") ;

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 377

30. Describe the effects each of the following changes would have on the
Li nke dUnbndQue ue class:
a. In the constructor, change “r e a r = nul l ” to “r e a r = f r ont .”
b. In the e nque ue method, move the last statement “r e a r = ne wNode ” to just

before the if statement.
c. In the e nque ue method, change the bool e a n expression “r e a r == nul l ” to

“f r ont == nul l .”
d. In the de que ue method, switch the second and third statements in the else

clause.
31. Given the following specification of a f r ont operation for a queue:

Effect: Returns a reference to the front element on the queue.
Precondition: Queue is not empty.

a. Write this operation as client code, using operations from the
Li nke dUnbndQue ue class. (Remember, the client code has no access to the
nonpublic variables of the class.)

b. Write this operation as a new public method of the Li nke dUnbndQue ue class.
32. Consider a t oSt r i ng method for a queue that would create and return a string

that nicely represents the current queue. Assume each enqueued object already
provides its own reasonable t oSt r i ng method that you can invoke from the
queue’s t oSt r i ng method. Design, code, and test a t oSt r i ng method for the
Li nke dUnbndQue ue class.

33. With the linked implementation of a queue, what are the ramifications of an
application enqueuing the same object twice before dequeuing it?

34. Assume that an integer requires 2 bytes of space and a reference requires 4 bytes
of space. Also assume the maximum queue size is 200. We define “overhead”
space as the space required by the structure that does not include the space used
by the elements the structure contains.
a. How much overhead space is needed for:

i. Our bounded array-based queue holding 20 elements?
ii. Our bounded array-based queue holding 100 elements?

iii. Our bounded array-based queue holding 200 elements?
iv. Our reference-based queue holding 20 elements?
v. Our reference-based queue holding 100 elements?

vi. Our reference-based queue holding 200 elements?
b. For what size queue do the array-based and reference-based approaches use

approximately the same amount of overhead space?
35. A “dequeue” is like a queue but it also allows you to insert into the front of the

queue and to remove from the rear of the queue. Create a reference-based
De Que ue class.

36. Implement the Queue ADT using a circular linked list as discussed at the end of
Section 5.6.

378 | Chapter 5: The Queue ADT

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 378

Exercises | 379

5.7 Concurrency, Interference, and Synchronization
37. Seats to events such as concerts are often sold online, at ticket kiosks, and at

walk-up ticket booths, simultaneously. Discuss potential interference problems in
such situations and options for controlling the interference.

38. What is the output of each of the following code sequences? List all possible
results and explain your answers.
a. Count e r c = ne w Count e r () ;

c . i nc r e me nt () ;
c . i nc r e me nt () ;
Sys t e m. out . pr i nt l n(c) ;

b. Count e r c = ne w Count e r () ;
Runna bl e r = ne w I nc r e a s e (c , 3) ;
Thr e a d t = ne w Thr e a d(r) ;
t . s t a r t () ;
Sys t e m. out . pr i nt l n(c) ;

c. Count e r c = ne w Count e r () ;
Runna bl e r = ne w I nc r e a s e (c , 3) ;
Thr e a d t = ne w Thr e a d(r) ;
c . i nc r e me nt () ;
t . s t a r t () ;
Sys t e m. out . pr i nt l n(c) ;

d. Count e r c = ne w Count e r () ;
Runna bl e r = ne w I nc r e a s e (c , 3) ;
Thr e a d t = ne w Thr e a d(r) ;
t . s t a r t () ;
c . i nc r e me nt () ;
Sys t e m. out . pr i nt l n(c) ;

e. Count e r c = ne w Count e r () ;
Runna bl e r = ne w I nc r e a s e (c , 3) ;
Thr e a d t = ne w Thr e a d(r) ;
t . s t a r t () ;
t . j o i n() ;
c . i nc r e me nt () ;
Sys t e m. out . pr i nt l n(c) ;

f. Count e r c = ne w Count e r () ;
Runna bl e r = ne w I nc r e a s e (c , 3) ;
Thr e a d t = ne w Thr e a d(r) ;
t . s t a r t () ;
c . i nc r e me nt () ;
t . j o i n() ;
Sys t e m. out . pr i nt l n(c) ;

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 379

380 | Chapter 5: The Queue ADT

g. Sync Count e r s c = ne w Sync Count e r () ;
Runna bl e r = ne w I nc r e a s e 2(s c , 3) ;
Thr e a d t = ne w Thr e a d(r) ;
t . s t a r t () ;
s c . i nc r e me nt () ;
t . j o i n() ;
Sys t e m. out . pr i nt l n(s c) ;

39. Create a Pr i nt Cha r class that implements Runna bl e . The constructor should
accept a character and an integer as parameters. The r un method should print
the character the number of times indicated by the integer. Create an application
that instantiates two Pr i nt Cha r objects, one passed “A” and 200 and one
passed “B” and 200. It then instantiates and starts two thread objects, one for
each of the two Pr i nt Cha r objects. Experiment with the resulting system, using
different numerical parameters for the Pr i nt Cha r objects. Create a report about
the results of your experimentation.

40. Create an application that instantiates a 20 20 two-dimensional array of inte-
gers, populates it with random integers drawn from the range 1 to 100, and then
outputs the index of the row with the highest sum among all the rows. To facili-
tate this create a class from which you can instantiate Runna bl e objects, each of
which will sum one row of the two-dimensional array and then place the sum of
that row into the appropriate slot of a one-dimensional, 20-element array. To
summarize, your application will:
a. Generate the two-dimensional array of random integers
b. Start 20 concurrent threads, each of which places the sum of one row of

the two-dimensional array into the corresponding slot of a one-dimensional
array

c. Output the index of the maximum value in the one-dimensional array

5.8 Case Study: Average Waiting Time
41. Complete the following table:

Customer Arrival Time Service Time Finish Time Wait Time

1 0 10
2 8 3
3 8 10
4 20 7
5 32 18

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 380

Exercises | 381

a. Assuming one queue—what is the average waiting time?
b. Assuming two queues—what is the average waiting time?
c. Assuming three queues—what is the average waiting time?

42. In the Average Waiting Time program, which class (Cus t ome r , Cus t ome r Ge n-
e r a t or , Gl a s s Que ue , Si mul a t i on, or Si mul a t i onApp) is responsible for:
a. Providing the size of a queue?
b. Deciding which queue a customer enters?
c. Obtaining the number of queues from the user?
d. Calculating the arrival time of a customer?
e. Calculating the finish time of a customer?
f. Calculating the waiting time for a customer?
g. Calculating the average waiting time?

43. Use the Average Waiting Time program to determine a reasonable number of
queues to use if there are 1000 customers and:
a. The inter-arrival time is 5 and the service time is 5.
b. The inter-arrival time is 1 and the service time is 5.
c. The inter-arrival time ranges from 0 to 20, and the service time ranges from

20 to 100.
d. The inter-arrival time ranges from 0 to 2, and the service time ranges from

20 to 100.
In each case, describe how you arrived at your result.

44. Revise the Average Waiting Time program to do the following:
a. Also output the largest number of customers who were on a queue at the

same time.
b. Choose the queue for a customer to enter based on shortest finish time, rather

than shortest size. The user should have the ability to choose which approach
to use for any simulation run.

45. Solitaire: For this console-based application you should use the Gl a s s Que ue .
Use the Ra nkCa r dDe c k class from Section 5.5 to create a deck of cards. Also
create three queues of cards (essentially integers); let’s call them queues A, B,
and C. Shuffle the deck. Deal a card to queue A, then B, then C until 30 cards
have been dealt. The user starts with $30. The card values at the front of queues
A and C are displayed to the user, with a “?” in between, for example: 5 ? 0.
The ? is supposed to represent the card value at the front of queue B. The user
must bet anything between $10 and his or her total money that the ? will be “in-
between” the other two cards (ties do not count so for example, 3 is not in-
between 3 and 5; if the two cards displayed happen to have the same rank value,

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 381

382 | Chapter 5: The Queue ADT

then the loser is out of luck). If the ? card is in between the other two cards, he
or she wins (e.g., if he or she bets $20 he or she gets back the $20 plus an addi-
tional $20). Play continues for 10 rounds or until the player runs out of money.
During the game provide appropriate feedback to the user.

46. Do Exercise 45 as a GUI.

13549_CH05_Da l e . qxd 2/ 7/ 11 6: 26 AM Pa ge 382

Knowledge Goals
You should be able to
■ describe different approaches to comparing objects
■ describe a list and its operations at a logical level
■ explain the ramifications of changing the following assumptions about lists:

■ Lists may have duplicate elements
■ Lists are unbounded

■ describe our three kinds of lists and explain their differences
■ classify a given list operation as a constructor, iterator, observer, or transformer
■ explain the relationships among list interfaces and/or classes
■ describe algorithms for list operations using an array
■ describe algorithms for list operations using a linked list
■ use Big-O analysis to describe and compare the efficiency of list algorithms
■ describe and compare algorithms for searching a sorted array
■ discuss approaches for saving objects in files

Skill Goals
You should be able to
■ create a class that implements the Compa r a bl e interface
■ implement the Li s t I nt e r f a c e using an array and providing an unsorted list
■ implement the Li s t I nt e r f a c e using an array and providing a sorted list
■ implement the I nde xe dLi s t I nt e r f a c e using an array
■ implement the Li s t I nt e r f a c e using a linked list and providing an unsorted list
■ implement the Li s t I nt e r f a c e using a linked list and providing a sorted list
■ draw diagrams showing the effect of list operations for a particular implementation of a list
■ implement nonrecursive and recursive versions of the binary search algorithm
■ predict the output of an application that uses a particular list implementation
■ use a List ADT as a component of an application
■ save an object to a file and then retrieve it

The List ADT
G

o

a

l

s

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 383

384 | Chapter 6: The List ADT

This chapter focuses on the List ADT: its definition, its implementation, and its use in
problem solving. Lists are one of the most widely used ADTs in computer science, which
is only natural given how often we use them in daily life. We make to-do lists, shopping
lists, checklists, party invitation lists, and so on. The list of the kinds of lists that we
make is endless!

Fortunately, we need only a few variations of the List ADT to represent the majority
of real-world lists. We define, implement, and use three kinds of lists: unsorted, sorted,
and indexed. Our list interface and class designs take advantage of the commonality
among these three kinds of lists, while supporting their differences. We use both arrays
and references to implement our ADT.

Most of the differences in lists relate to the types of values that are stored in them,
rather than to their structure or operations. We will see, however, that one significant
structural difference is how the values are ordered with respect to one another within each
type of list.

Because list operations and organization sometimes depend on the content of the
list elements, we begin the chapter with a look at how we compare objects. The chapter
concludes with a section on saving objects in files. Armed with this knowledge, we can
create a list of objects with one program and use it later, in another program.

6.1 Comparing Objects Revisited

With stacks and queues, we access only the ends of our structures. We push or pop the
top element of a stack, or we enqueue a value at the tail of a queue and dequeue it from
the head. We do not access elements stored at other places within the structure.

With a list, however, we access elements within the structure. For example, we
check whether a given item appears on our to-do list. We insert a name into a list in
alphabetical order. We delete the entry with the matching serial number from a parts
inventory list. List operations such as these require us to compare the values of objects.
For this reason, we need to understand our options for such comparisons.

In Section 1.6, “Basic Structuring Mechanisms,” we discussed comparing objects
using the comparison operator (==). Recall that when using ==, the comparison is actu-
ally made between the contents of the two reference variables that point to the objects,
and not between the contents of the objects themselves. This is demonstrated in Figure
6.1 (which replicates Figure 1.7).

The equals Method
The comparison operator doesn’t compare the contents of objects. What else can we do?
How do we compare the actual objects? One option is to use the e qua l s method.
Because this method is exported from the Obj e c t class, which is the root of the Java
inheritance tree, it can be used with objects of any Java class. If c 1 and c 2 are objects
of the class Ci r c l e , then we can compare them using

c 1. e qua l s (c 2)

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 384

6.1 Comparing Objects Revisited | 385

Figure 6.1 Comparing primitive and nonprimitive variables

i nt A

i nt B
" i nt A == i nt B" e va l ua t e s t o t r ue

" c 1 == c 2" e va l ua t e s t o f a l s e

" c 1 == c 2" e va l ua t e s t o t r ue

10

10

c 1

c 2

c 1

c 2

The e qua l s method, as defined in the Obj e c t class, acts in much the same way as
the comparison operator. It returns t r ue if and only if the two variables reference the
same object. To circumvent this problem we can, within a class, redefine the e qua l s
method to fit the goals of the class.

Suppose we have a Ci r c l e class that features a r a di us attribute of type i nt . A
reasonable definition for equality of Ci r c l e objects is that they are equal if they have
equal radii. To implement this approach, we include the following method in the Ci r -
c l e class:

publ i c bool e a n e qua l s (Ci r c l e c i r c l e)
/ / Pr e c ondi t i on: c i r c l e ! = nul l
/ /
/ / Re t ur ns t r ue i f t he c i r c l e s ha ve t he s a me r a di us ;
/ / ot he r wi s e , r e t ur ns f a l s e .
{

i f (t hi s . r a di us == c i r c l e . r a di us)
r e t ur n t r ue ;

e l s e
r e t ur n f a l s e ;

}

Now when a statement such as

c 1. e qua l s (c 2)

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 385

is encountered, the customized e qua l s method of the Ci r c l e class is used, rather than
the generic e qua l s method of the Obj e c t class. Even though c 1 and c 2 may reference
different objects, if those objects have equal radii, the e qua l s method returns t r ue .

A Ci r c l e object may have other attributes. For example, it may have a s c a l e
attribute, as did the circles we defined in Section 2.1. Here, however, we have defined
equality of Ci r c l e objects solely on the basis of their radii. Even though two circles
have different scales, as long as they have the same radii, we say they are equal. This is
a design choice. When defining the e qua l s method, we may compare just one attribute,
multiple attributes, all attributes, or some functional combination of the attributes (for
example, we could use the “weight” of a circle calculated as the area times the scale).

The Comparable Interface
We can use the e qua l s method when checking whether a particular element is on a list.
But in addition to checking objects for equality, there is another type of comparison we
need. To support a sorted list, we need to be able to tell when one object is less than,
equal to, or greater than another object. The Java library provides an interface, called
Compa r a bl e , that can be used to ensure that a class provides this functionality.

The Compa r a bl e interface consists of exactly one abstract method:

publ i c i nt c ompa r e To(T o) ;
/ / Re t ur ns a ne ga t i ve i nt e ge r , z e r o, or a pos i t i ve i nt e ge r a s t hi s obj e c t
/ / i s l e s s t ha n, e qua l t o , or gr e a t e r t ha n t he s pe c i f i e d obj e c t .

The c ompa r e To method returns an integer value that indicates the relative “size” rela-
tionship between the object upon which the method is invoked and the object passed to
the method as an argument.

We intend to use the c ompa r e To method when working with the elements of our
sorted lists. To ensure that all such objects support the c ompa r e To operation, we require
sorted list elements to be objects of a class that implements the Compa r a bl e interface.
We call such objects Compa r a bl e objects.

Each class that implements the Compa r a bl e interface defines its own c ompa r e To
method, with a signature that matches the abstract method defined in the interface.
After all, the implementer of the class is in the best position to define how objects of the
class should be compared.

As of Java 5.0, the Java Compa r a bl e interface has been retrofitted to handle gener-
ics. Use of generic types with the c ompa r e To method helps ensure that comparison
takes place only between compatible objects. Let’s return to our circle example. A rea-
sonable definition of relative size for Ci r c l e objects is based on the values of their
radii. Here is an example of a Ci r c l e class that provides its own e qua l s method and
implements the Compa r a bl e interface:

publ i c c l a s s Ci r c l e i mpl e me nt s Compa r a bl e <Ci r c l e >
{

pr ot e c t e d f l oa t r a di us ;

386 | Chapter 6: The List ADT

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 386

6.1 Comparing Objects Revisited | 387

pr ot e c t e d s t a t i c f i na l f l oa t PI = 3. 14f ;

publ i c Ci r c l e (f l oa t r a di us)
{

t hi s . r a di us = r a di us ;
}

publ i c bool e a n e qua l s (Ci r c l e c i r c l e)
/ / Pr e c ondi t i on: c i r c l e ! = nul l
/ /
/ / Re t ur ns t r ue i f t he c i r c l e s ha ve t he s a me r a di us ;
/ / ot he r wi s e , r e t ur ns f a l s e .
{

i f (t hi s . r a di us == c i r c l e . r a di us)
r e t ur n t r ue ;

e l s e
r e t ur n f a l s e ;

}

publ i c i nt c ompa r e To(Ci r c l e c i r c l e)
/ / Pr e c ondi t i on: o ! = nul l
/ /
/ / Re t ur ns a ne ga t i ve i nt e ge r , z e r o, or a pos i t i ve i nt e ge r a s t hi s Ci r c l e
/ / i s l e s s t ha n, e qua l t o , or gr e a t e r t ha n t he pa r a me t e r Ci r c l e .
{

i f (t hi s . r a di us < c i r c l e . r a di us)
r e t ur n - 1;

e l s e
i f (t hi s . r a di us == c i r c l e . r a di us)

r e t ur n 0;
e l s e

r e t ur n 1;
}

publ i c f l oa t pe r i me t e r ()
/ / Re t ur ns pe r i me t e r of t hi s f i gur e .
{

r e t ur n(2 * PI * r a di us) ;
}

publ i c f l oa t a r e a ()
/ / Re t ur ns a r e a of t hi s f i gur e .
{

r e t ur n(PI * r a di us * r a di us) ;
}

}

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 387

Both the c ompa r e To method and the e qua l s method accept arguments of class
Ci r c l e . It makes good sense to have circles only compared to other circles.

Notice that the e qua l s method and the c ompa r e To method are consistent with
each other. In other words, the e qua l s method returns t r ue for two circles if and only
if the c ompa r e To method returns 0 for the two circles. It is good programming practice
to ensure consistency between these two methods.

To simplify discussion in this text, we sometimes
refer to the attribute, or combination of attributes, of an
object used by the c ompa r e To method to determine the
logical order of a collection as the key of the collection.
For example, in our Ci r c l e class the radius of a circle
is its key.

6.2 Lists

We all know intuitively what a list is. In our everyday lives, we use lists all the time—
grocery lists, lists of assignments, playlists of songs, lists of e-mail addresses, and so on.

In computer programs, lists are extremely versatile ADTs. Similar to stacks and
queues, they provide storage for information. Unlike stacks and queues, however, they
do not impose any limitations on how that information is added, accessed, or removed.
There are even languages in which the list is a built-in structure. In Lisp, for example,

the list is the main data type provided in the language.
From a programming point of view, a list is a col-

lection of elements, with a linear relationship existing
among its elements. A linear relationship means that, at
the logical level, each element on the list except the
first one has a unique predecessor and each element
except the last one has a unique successor. The number
of elements on the list, which we call the size of the
list, is a property of a list. That is, every list has a size.

388 | Chapter 6: The List ADT

Key The attributes that are used to determine the
logical order of the elements in a collection

List A collection that exhibits a linear relationship
among its elements
Linear relationship Each element except the first has
a unique predecessor, and each element except the last
has a unique successor
Size The number of elements in a list; the size can
vary over time

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 388

6.2 Lists | 389

Varieties of Lists
Lists can be unsorted—their elements may be
placed into the list in no particular order—or
they can be sorted. For instance, a list of num-
bers can be sorted numerically, a list of strings
can be sorted alphabetically, and a list of cir-
cles can be sorted by size. We often access a
list based on content. For example, we may
want to determine whether an element is on
the list or we may want to remove an element
from the list. To access elements by content,
we use the e qua l s method, as described in
Section 6.1.

When the elements in a sorted list exhibit several attributes, we can define their
logical order in many different ways. As an example, suppose we have a list of stu-
dent information, with each student represented by his or her first name, last name,
identification number, and three test scores. Here are some of the ways we can sort
such a list:

• By last name, alphabetically
• By last name, alphabetically, and then by first name, alphabetically (in other

words, the first name is used to determine relative ordering if two or more last
names are identical)

• By identification number
• By average test score

The sort order for our sorted lists is determined using the c ompa r e To operation on
the list elements. Therefore we constrain our sorted lists to contain only objects that are
Compa r a bl e , as described in Section 6.1.

Another kind of list is an indexed list, where each element can be accessed by its
position, or index, on the list. The indexed lists used in this book allow access in this
manner.

Assumptions for Our Lists
Many variations of general list properties are possible. To keep the extent of our cover-
age manageable, we make the following assumptions:

• Our lists are unbounded. When implementing a list with an array, we use the
same approach we did with the Ar r a yUnbndQue ue class presented in Section
5.3. That is, if an element is added to a “full” list, then the capacity of the under-
lying array is increased.

• We allow duplicate elements on our lists. When an operation involves “finding”
such an element, it can “find” any one of the duplicates. We do not specify any
distinction among duplicate elements in these cases, with the exception of one
indexed list method (i nde xOf).

Unsorted list A list in which elements are placed in
no particular order; the only relationship between data
elements is the list predecessor and successor
relationships
Sorted list A list that is sorted by some property of
its elements; there is an ordered relationship among
the elements in the list, reflected by their relative
positions
Indexed list A list in which each element has an
index value associated with it

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 389

• We do not support nul l elements. As a general precondition for all of our list
methods, nul l elements cannot be used as arguments. Rather than stating this
precondition for each method, we state it once in the general list interface.

• Other than prohibiting nul l elements, we have minimal preconditions for our
operations. For example, it is possible to specify a r e move operation that requires
a matching object to be present on the list. We do not do this. Instead, we define a
r e move operation that returns a bool e a n value indicating whether the operation
succeeded. This approach provides greater flexibility to applications.

• Our sorted lists are sorted in increasing order, as defined by the c ompa r e To
operation applied to objects on the list.

• We assume consistency between the e qua l s and c ompa r e To methods of our
sorted list elements.

• In our indexed lists, the indexes in use at any given time are contiguous, starting
at 0. If an indexed list method is passed an index that is outside the current valid
range, it will raise an exception.

The exercises at the end of the chapter ask you to investigate the ramifications of
changing some of these assumptions.

6.3 Formal Specification

A multitude of operations is possible with lists. For example, the Java library’s Li s t
interface defines about 25 operations (see the feature on the library's list at the end of
this section). We define a small but useful set of operations that will work with our lists.
In general we try not to include redundant operations: If we can get a job done using a
combination of two of our operations, we do not bother defining a third operation just
for that job.

The ListInterface
As we did with stacks and queues, we capture the formal specifications of our List ADT
using the Java i nt e r f a c e construct. Our lists are generic—the type of object held by
any particular list is indicated by the client at the time the list is instantiated. The fol-
lowing operations allow a client to obtain general information about a list:

• s i z e Returns the number of elements on the list.
• t oSt r i ng Returns a nicely formatted string representing the list.

Here are the operations for dealing with specifically identified list elements—for adding
and removing them, checking to see whether they are on the list, and obtaining their
information:

• a dd Passed an object argument, adds the object to the list. This operation’s
behavior must be clarified for each variety of list we implement.

• c ont a i ns Passed an object argument and returns a bool e a n value indicating
whether the list contains an equivalent element, as determined using the object’s
e qua l s method.

390 | Chapter 6: The List ADT

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 390

6.3 Formal Specification | 391

• r e move Passed an object argument and, if an equivalent element exists on the
list, removes one instance of that element. Returns a bool e a n value indicating
whether an object was actually removed.

• ge t Passed an object argument and returns an equivalent object if one exists
on the list. If no such object exists, returns nul l . Remember that equivalency of
objects is defined by their e qua l s method, and that two objects can be equiva-
lent but not identical.

The next two operations require some explanation. Because a list has a linear rela-
tionship among its elements, we can support iteration through the list. Iteration means
that we provide a mechanism to process the entire list, element by element, from the
first element to the last element. Each of our list variations provides the operations
r e s e t and ge t Ne xt to support this activity.

• r e s e t Sets the current position (the position of the next element to be
processed) to the first element on the list.

• ge t Ne xt Returns the next element and updates the current position.

At any point in time there is a current position within the list. The r e s e t method
sets this current position to the beginning of the list. Then each subsequent call to the
ge t Ne xt operation advances the current position to the next position. Thus the current
position always indicates the next element to be processed. We reset it automatically to
the beginning of the list when the last element is returned by ge t Ne xt .

We call this mechanism iteration because
we typically place the ge t Ne xt method in a
loop that processes one list element per loop
iteration. We refer to ge t Ne xt as an iterator
method.

Consider how the application programmer
might use the list iteration methods. The size of
the list can help control the loop that looks at
each element in turn:

l i s t Si z e = myLi s t . s i z e () ;
myLi s t . r e s e t () ;
f or (i nt i = 0; i < l i s t Si z e ; i ++)
{

myEl e me nt = myLi s t . ge t Ne xt () ;
/ / do s ome t hi ng wi t h myEl e me nt

}

What happens if the program inserts or removes an element in the middle of iterat-
ing through the structure? Nothing good, you can be sure! Adding and deleting ele-
ments changes the size of the list, making the termination condition of the
iteration-counting loop invalid. Depending on whether an addition or deletion occurs
before or after the current position, our iteration loop could end up skipping or repeat-
ing elements.

Iteration A mechanism that allows us to process the
elements of a data structure one at a time in a given
sequence
Iterator method A method that returns an element of
a data structure and advances the current position to
the next element

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 391

We have several choices of how to handle this possibly dangerous situation. We can
throw an exception, reset the current position whenever an insertion or deletion occurs,
or just disallow transformer operations while iteration is taking place. We use the latter
approach by mandating a precondition in the documentation of ge t Ne xt .

Here is the code for our Li s t I nt e r f a c e . Study the comments and method signa-
tures to learn more about the details of our List ADT.

/ / -
/ / Li s t I nt e r f a c e . j a va by Da l e / J oyc e / We e ms Cha pt e r 6
/ /
/ / The l i s t s a r e unbounde d a nd a l l ow dupl i c a t e e l e me nt s , but do not a l l ow nul l
/ / e l e me nt s . As a ge ne r a l pr e c ondi t i on, nul l e l e me nt s a r e not pa s s e d a s
/ / a r gume nt s t o a ny of t he me t hods .
/ /
/ / The l i s t ha s a pr ope r t y c a l l e d t he c ur r e nt pos i t i on - t he pos i t i on
/ / of t he ne xt e l e me nt t o be a c c e s s e d by ge t Ne xt dur i ng a n i t e r a t i on
/ / t hr ough t he l i s t . Onl y r e s e t a nd ge t Ne xt a f f e c t t he c ur r e nt pos i t i on.
/ / -

pa c ka ge c h06. l i s t s ;

publ i c i nt e r f a c e Li s t I nt e r f a c e <T>
{

i nt s i z e () ;
/ / Re t ur ns t he numbe r of e l e me nt s on t hi s l i s t .

voi d a dd(T e l e me nt) ;
/ / Adds e l e me nt t o t hi s l i s t .

bool e a n c ont a i ns (T e l e me nt) ;
/ / Re t ur ns t r ue i f t hi s l i s t c ont a i ns a n e l e me nt e s uc h t ha t
/ / e . e qua l s (e l e me nt) ; ot he r wi s e , r e t ur ns f a l s e .

bool e a n r e move (T e l e me nt) ;
/ / Re move s a n e l e me nt e f r om t hi s l i s t s uc h t ha t e . e qua l s (e l e me nt)
/ / a nd r e t ur ns t r ue ; i f no s uc h e l e me nt e xi s t s , r e t ur ns f a l s e .

T ge t (T e l e me nt) ;
/ / Re t ur ns a n e l e me nt e f r om t hi s l i s t s uc h t ha t e . e qua l s (e l e me nt) ;
/ / i f no s uc h e l e me nt e xi s t s , r e t ur ns nul l .

St r i ng t oSt r i ng() ;
/ / Re t ur ns a ni c e l y f or ma t t e d s t r i ng t ha t r e pr e s e nt s t hi s l i s t .

392 | Chapter 6: The List ADT

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 392

6.3 Formal Specification | 393

voi d r e s e t () ;
/ / I ni t i a l i z e s c ur r e nt pos i t i on f or a n i t e r a t i on t hr ough t hi s l i s t ,
/ / t o t he f i r s t e l e me nt on t hi s l i s t .

T ge t Ne xt () ;
/ / Pr e c ondi t i ons : The l i s t i s not e mpt y
/ / The l i s t ha s be e n r e s e t
/ / The l i s t ha s not be e n modi f i e d s i nc e mos t r e c e nt r e s e t
/ /
/ / Re t ur ns t he e l e me nt a t t he c ur r e nt pos i t i on on t hi s l i s t .
/ / I f t he c ur r e nt pos i t i on i s t he l a s t e l e me nt , t he n i t adva nc e s t he va l ue
/ / of t he c ur r e nt pos i t i on t o t he f i r s t e l e me nt ; ot he r wi s e , i t a dva nc e s
/ / t he va l ue of t he c ur r e nt pos i t i on t o t he ne xt e l e me nt .

}

The Indexed List Interface
The Li s t I nt e r f a c e suffices for use with our unsorted and sorted lists. Indexed lists,
however, require several additional operations—all of the operations involving indexes.
We extend the Li s t I nt e r f a c e with a separate interface for indexed lists. Classes that
implement the I nde xe dLi s t I nt e r f a c e must, by virtue of the extension, also imple-
ment the Li s t I nt e r f a c e .

The elements of an indexed list are indexed sequentially, from zero to one less
than the size of the list. For example, if a list has five elements, they are indexed 0,
1, 2, 3, and 4. No “holes” are allowed in the indexing scheme. The interface defines
methods for adding, retrieving, changing, and removing an element at an indicated
index, as well as a method for determining the index of an element. Details of the
operations are included in the comments.

/ / -
/ / I nde xe dLi s t I nt e r f a c e . j a va by Da l e / J oyc e / We e ms Cha pt e r 6
/ /
/ / Ext e nds t he Li s t I nt e r f a c e wi t h me t hods s pe c i f i c t o i nde xe d l i s t s .
/ / -

pa c ka ge c h06. l i s t s ;

publ i c i nt e r f a c e I nde xe dLi s t I nt e r f a c e <T> e xt e nds Li s t I nt e r f a c e <T>
{

voi d a dd(i nt i nde x, T e l e me nt) ;
/ / Thr ows I nde xOut Of Bounds Exc e pt i on i f pa s s e d a n i nde x a r gume nt
/ / s uc h t ha t i nde x < 0 or i nde x > s i z e () .
/ / Ot he r wi s e , a dds e l e me nt t o l i s t a t pos i t i on i nde x; a l l c ur r e nt
/ / e l e me nt s a t t ha t pos i t i on or hi ghe r ha ve 1 a dde d t o t he i r i nde x.

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 393

T s e t (i nt i nde x, T e l e me nt) ;
/ / Thr ows I nde xOut Of Bounds Exc e pt i on i f pa s s e d a n i nde x a r gume nt
/ / s uc h t ha t i nde x < 0 or i nde x >= s i z e () .
/ / Ot he r wi s e , r e pl a c e s e l e me nt on t hi s l i s t a t pos i t i on i nde x a nd
/ / r e t ur ns t he r e pl a c e d e l e me nt .

T ge t (i nt i nde x) ;
/ / Thr ows I nde xOut Of Bounds Exc e pt i on i f pa s s e d a n i nde x a r gume nt
/ / s uc h t ha t i nde x < 0 or i nde x >= s i z e () .
/ / Ot he r wi s e , r e t ur ns t he e l e me nt on t hi s l i s t a t pos i t i on i nde x.

i nt i nde xOf (T e l e me nt) ;
/ / I f t hi s l i s t c ont a i ns a n e l e me nt e s uc h t ha t e . e qua l s (e l e me nt) ,
/ / t he n r e t ur ns t he i nde x of t he f i r s t s uc h e l e me nt .
/ / Ot he r wi s e , r e t ur ns - 1.

T r e move (i nt i nde x) ;
/ / Thr ows I nde xOut Of Bounds Exc e pt i on i f pa s s e d a n i nde x a r gume nt
/ / s uc h t ha t i nde x < 0 or i nde x >= s i z e () .
/ / Ot he r wi s e , r e move s e l e me nt on t hi s l i s t a t pos i t i on i nde x a nd
/ / r e t ur ns t he r e move d e l e me nt ; a l l c ur r e nt e l e me nt s a t pos i t i ons
/ / hi ghe r t ha n t ha t pos i t i on ha ve 1 s ubt r a c t e d f r om t he i r i nde x.

}

Each method that accepts an index as an argument throws an exception if the
index is invalid. Applications must use valid indexes—they can determine the range of
valid indexes by using the s i z e method. Indexes go from 0 to (s i z e () - 1). To allow
addition of an element to the end of the list, the valid range for a dd includes s i z e () .

We do not define our own exception class to use with the indexed list, because the
Java library provides an appropriate exception called I nde xOut Of Bounds Exc e pt i on.
This class extends RunTi me Exc e pt i on, so it is unchecked.

The relationship of our two list interfaces is shown in the UML diagram in Figure
6.2.

Example Use
Studying the output from the following code helps us appreciate the differences among
our three types of lists. The code uses the array-based list implementations developed
later in this chapter. As you can see, the data and insertion order for each list is identi-
cal, but when the list is printed, the ordering of the elements is different for each type of
list.

Code Section
Li s t I nt e r f a c e <St r i ng> l i s t 1 = ne w Ar r a yUns or t e dLi s t <St r i ng>(3) ;
l i s t 1 . a dd(" Wi r t h") ;
l i s t 1 . a dd(" Dyks t r a ") ;
l i s t 1 . a dd(" De Pa s qua l e ") ;

394 | Chapter 6: The List ADT

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 394

6.3 Formal Specification | 395

Figure 6.2 UML diagram of our list interfaces

<<interface>>
ListInterface<T>

+s i z e () : i nt
+a dd(T e l e me nt) : voi d
+c ont a i ns (T e l e me nt) : bool e a n
+r e move (T e l e me nt) : bool e a n
+ge t (T e l e me nt) : T
+t oSt r i ng() : St r i ng
+r e s e t () : voi d
+ge t Ne xt () : T

<<interface>>
IndexedListInterface<T>

+a dd(i nt i nde x, T e l e me nt) : voi d
+s e t (i nt i nde x, T e l e me nt) : T
+ge t (i nt i nde x) : T
+i nde xOf (T e l e me nt) : i nt
+r e move (i nt i nde x) : T

 extends
 Key:

l i s t 1. a dd(" Da hl ") ;
l i s t 1. a dd(" Nyga a r d") ;
l i s t 1. r e move (" De Pa s qua l e ") ;

Li s t I nt e r f a c e <St r i ng> l i s t 2 = ne w Ar r a ySor t e dLi s t <St r i ng>(3) ;
l i s t 2. a dd(" Wi r t h") ;
l i s t 2. a dd(" Dyks t r a ") ;
l i s t 2. a dd(" De Pa s qua l e ") ;
l i s t 2. a dd(" Da hl ") ;
l i s t 2. a dd(" Nyga a r d") ;
l i s t 2. r e move (" De Pa s qua l e ") ;

I nde xe dLi s t I nt e r f a c e <St r i ng> l i s t 3 = ne w
Ar r a yI nde xe dLi s t <St r i ng>(3) ;
l i s t 3. a dd(0, " Wi r t h") ;
l i s t 3. a dd(0, " Dyks t r a ") ;
l i s t 3. a dd(0, " De Pa s qua l e ") ;
l i s t 3. a dd(3, " Da hl ") ;
l i s t 3. a dd(2, " Nyga a r d") ;
l i s t 3. r e move (" De Pa s qua l e ") ;

Sys t e m. out . pr i nt (" Uns or t e d ") ;
Sys t e m. out . pr i nt l n(l i s t 1) ;
Sys t e m. out . pr i nt (" Sor t e d ") ;
Sys t e m. out . pr i nt l n(l i s t 2) ;

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 395

396 | Chapter 6: The List ADT

Sys t e m. out . pr i nt (" I nde xe d ") ;
Sys t e m. out . pr i nt l n(l i s t 3) ;

Output
Uns or t e d Li s t :

Wi r t h
Dyks t r a
Nyga a r d
Da hl

Sor t e d Li s t :
Da hl
Dyks t r a
Nyga a r d
Wi r t h

I nde xe d Li s t :
[0] Dyks t r a
[1] Nyga a r d
[2] Wi r t h
[3] Da hl

For the unsorted list, the elements are held in an arbitrary order. For the sorted list,
the elements are displayed in alphabetical order. For the indexed list, the indexes passed
as arguments to the a dd command determine the order.

The specifications of our lists are somewhat arbitrary. We could change our defini-
tions of specific operations or even change our basic assumptions underlying the entire
list structure. For instance, we could require that the r e move method always be invoked
with an argument equal to an element already on the list. In that case, r e move would
not need to return a bool e a n value. On a broader scale, we could require our list ele-
ments to be unique—that is, we could disallow duplicate elements on the list. Prohibit-
ing duplicates in this ADT implies changes in several operations. For example, each a dd
operation must handle the case of being passed an element that is already on the list.
Our assumptions are really examples of design choices. For a specific application,
design choices are based on the requirements of the problem. In the exercises you are
asked to explore some potential changes to our design choices.

The Java Collections Framework Lists
The lists defined by the Java library’s Li s t interface are quite similar to our indexed lists. They
are unbounded, allow duplicate elements, and provide positional access. Because the Li s t
interface extends the Col l e c t i on interface, however, any class that implements Li s t must
also implement the 15 standard methods defined in Col l e c t i on—methods such as s i z e ,
e qua l s , and i s Empt y. Additionally, the Li s t interface itself requires 11 methods, most of
which are index-related counterparts of the standard operations.

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 396

6.4 Array- Based Implementations | 397

The Java Library Collections Framework includes two full implementations of the Li s t
interface. We used one of these implementations, Ar r a yLi s t , in Chapter 3 to implement a
stack. Because a stack is a specialized list, one with access restricted to a single end of the list,
we were able to implement it on top of a list structure. The library’s Ar r a yLi s t class imple-
ments the Li s t interface using an underlying array. The other library class that implements
Li s t is called Li nke dLi s t . As you would expect, it uses a reference-based approach to pro-
vide the list structure.

The Iterator Interface
Unlike our lists, the library lists do not provide r e s e t and ge t Ne xt operations. Instead, they
provide an operation called l i s t I t e r a t or , which returns an object that implements the
library’s I t e r a t or interface. This I t e r a t or object provides the means to iterate through the
list. I t e r a t or objects provide three operations: ha s Ne xt , ne xt , and r e move . The ha s Ne xt
method returns t r ue if the iterator has not yet reached the end of the list. Rather than return to
the beginning of the list when the end is reached as we did with our own lists, applications are
expected to use ha s Ne xt to prevent going past the end of the list. The r e move method removes
the element that was just visited by the iterator. The implementation keeps track of that element,
to allow efficient removal if requested.

As noted, there is no r e s e t method. With the library’s approach, r e s e t is not necessary. If
an application wants to start at the beginning of a list, it simply instantiates a new I t e r a t or
object. In fact, an application can iterate through a list at several different points at the same
time, using different I t e r a t or objects.

The Iterable Interface
The Java library includes another interface related to iterating through a collection. The
I t e r a bl e interface requires a single method, i t e r a t or () , which returns an I t e r a t or object.
Java provides an enhanced for loop for use with array or I t e r a bl e objects. Referred to as a for-
each loop, this version of the for loop allows programmers to indicate that a block of instructions
should be executed “for each” of the objects in the array or I t e r a bl e object.

6.4 Array- Based Implementations

In this section we study array-based implementations of our unsorted, sorted, and
indexed lists. We look at reference-based approaches in Section 6.7.

Our basic approach is simple: If a list has N elements, we hold the elements in the
first N locations of the array (i.e., in array locations 0 to N 1). We maintain an
instance variable, numEl e me nt s , to hold the current number of elements in the list.
This example shows how we would represent a sorted list of South American country
abbreviations:

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 397

398 | Chapter 6: The List ADT

If an element is added to the “middle” of the list, the remaining elements must be
shifted up in the array to make room for the new element:

Likewise, if an element is removed from the “middle,” the remaining elements must be
shifted down to close the hole:

We use this same overall approach for each of our array-based lists—for unsorted,
sorted, and indexed lists.

The ArrayUnsortedList Class
The Ar r a yUns or t e dLi s t class implements the Li s t I nt e r f a c e using an array. We are
not concerned about the order in which elements are stored. The implementation of the
Ar r a yUns or t e dLi s t class is straightforward, especially if you are familiar with the
array-based implementations of the StringLog ADT from Chapter 2 and of the
Unbounded Queue ADT from Chapter 5. Figure 6.10, in this chapter’s summary, shows
the relationships among the primary classes and interfaces created to support our List
ADT, including those developed in this subsection.

As was the case with our array-based generic stacks and queues, the instantiation of an
array as an array of Obj e c t , and subsequent casting of it as an array of T, typically gener-
ates a compiler warning. Even though this approach is somewhat awkward and results in a
compiler warning, it is how we must create generic collections using arrays in Java.

[0] [1] [2] [3] [4]

"ARG" "BOL" "BRA" "PAR" "PER"list:

Remove

numElements: 5 4

[0] [1] [2] [3] [4]

"ARG" "BRA" "PAR" "PER"

numElements: 4 5

list:

"BOL"

[0] [1] [2] [3] [4]

"ARG" "BRA" "PAR" "PER"

numElements: 4

list:

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 398

6.4 Array- Based Implementations | 399

For our Ar r a yUns or t e dLi s t class we place the code for the array search in a pro-
tected helper method, called f i nd, which is invoked by each method that needs to
search for an element. The f i nd method sets the values of the protected instance vari-
ables f ound and l oc a t i on, thereby indicating the results of the search. The algorithm
used here for searching the array for an element is the same one we used for the
StringLog c ont a i ns method. We discussed the algorithm extensively in the feature sec-
tion on stepwise refinement in Chapter 2.

The Ar r a yUns or t e dLi s t constructors should remind you of the constructors cre-
ated for the array-based unbounded queue in Chapter 5. After all, Li s t also implements
an unbounded structure using the array construct. We use the same protocol as in
Chapter 5, allowing an application to indicate an original capacity or to just use the
default capacity.

As we did for queues, if the list runs out of room, the capacity of the current array
is increased by the original capacity through a helper method called e nl a r ge .

In the remove method we take advantage of the unsorted nature of the array. In the
general case for a list, when an element is removed, all of the remaining elements are
shifted over to fill the gap. Shifting maintains the relative ordering of the list elements,
as required for sorted and indexed lists. Of course, ordering is not necessary for
unsorted lists. Instead, we can simply move the element at the end of the list into the
position occupied by the element to be removed:

Here is the code for the Ar r a yUns or t e dLi s t class:
/ / -
/ / Ar r a yUns or t e dLi s t . j a va by Da l e / J oyc e / We e ms Cha pt e r 6
/ /
/ / I mpl e me nt s t he Li s t I nt e r f a c e us i ng a n a r r a y.
/ /
/ / Nul l e l e me nt s a r e not pe r mi t t e d on a l i s t .
/ /
/ / Two c ons t r uc t or s a r e pr ovi de d: one t ha t c r e a t e s a l i s t of a de f a ul t
/ / or i gi na l c a pa c i t y, a nd one t ha t a l l ows t he c a l l i ng pr ogr a m t o s pe c i f y
/ / t he or i gi na l c a pa c i t y.
/ / -

pa c ka ge c h06. l i s t s ;

[0] [1] [2] [3] [4]

"BRA" "MEX" "PER" "ARG" "COL"list:

Remove

numElements: 5 4

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 399

400 | Chapter 6: The List ADT

1. An unchecked cast warning is generated because of the way Java implements generics—the warning can
safely be ignored.

publ i c c l a s s Ar r a yUns or t e dLi s t <T> i mpl e me nt s Uns or t e dLi s t I nt e r f a c e <T>

{
pr ot e c t e d f i na l i nt DEFCAP = 100; / / de f a ul t c a pa c i t y
pr ot e c t e d i nt or i gCa p; / / or i gi na l c a pa c i t y
pr ot e c t e d T[] l i s t ; / / a r r a y t o hol d t hi s l i s t ' s e l e me nt s
pr ot e c t e d i nt numEl e me nt s = 0; / / numbe r of e l e me nt s i n t hi s l i s t
pr ot e c t e d i nt c ur r e nt Pos ; / / c ur r e nt pos i t i on f or i t e r a t i on

/ / s e t by f i nd me t hod
pr ot e c t e d bool e a n f ound; / / t r ue i f e l e me nt f ound, ot he r wi s e f a l s e
pr ot e c t e d i nt l oc a t i on; / / i ndi c a t e s l oc a t i on of e l e me nt i f f ound

publ i c Ar r a yUns or t e dLi s t ()
{

l i s t = (T[]) ne w Obj e c t [DEFCAP] ; 1

or i gCa p = DEFCAP;
}

publ i c Ar r a yUns or t e dLi s t (i nt or i gCa p)
{

l i s t = (T[]) ne w Obj e c t [or i gCa p] ; 1

t hi s . or i gCa p = or i gCa p;
}

pr ot e c t e d voi d e nl a r ge ()
/ / I nc r e me nt s t he c a pa c i t y of t he l i s t by a n a mount
/ / e qua l t o t he or i gi na l c a pa c i t y.
{

/ / Cr e a t e t he l a r ge r a r r a y.
T[] l a r ge r = (T[]) ne w Obj e c t [l i s t . l e ngt h + or i gCa p] ; 1

/ / Copy t he c ont e nt s f r om t he s ma l l e r a r r a y i nt o t he l a r ge r a r r a y.
f or (i nt i = 0; i < numEl e me nt s ; i ++)
{

l a r ge r [i] = l i s t [i] ;
}

/ / Re a s s i gn l i s t r e f e r e nc e .
l i s t = l a r ge r ;

}

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 400

6.4 Array- Based Implementations | 401

pr ot e c t e d voi d f i nd(T t a r ge t)
/ / Se a r c he s l i s t f or a n oc c ur e nc e of a n e l e me nt e s uc h t ha t
/ / e . e qua l s (t a r ge t) . I f s uc c e s s f ul , s e t s i ns t a nc e va r i a bl e s
/ / f ound t o t r ue a nd l oc a t i on t o t he a r r a y i nde x of e . I f
/ / not s uc c e s s f ul , s e t s f ound t o f a l s e .
{

l oc a t i on = 0;
f ound = f a l s e ;

whi l e (l oc a t i on < numEl e me nt s)
{

i f (l i s t [l oc a t i on] . e qua l s (t a r ge t))
{

f ound = t r ue ;
r e t ur n;

}
e l s e

l oc a t i on++;
}

}

publ i c voi d a dd(T e l e me nt)
/ / Adds e l e me nt t o t hi s l i s t .
{

i f (numEl e me nt s == l i s t . l e ngt h)
e nl a r ge () ;

l i s t [numEl e me nt s] = e l e me nt ;
numEl e me nt s ++;

}

publ i c bool e a n r e move (T e l e me nt)
/ / Re move s a n e l e me nt e f r om t hi s l i s t s uc h t ha t e . e qua l s (e l e me nt)
/ / a nd r e t ur ns t r ue ; i f no s uc h e l e me nt e xi s t s , r e t ur ns f a l s e .
{

f i nd(e l e me nt) ;
i f (f ound)
{

l i s t [l oc a t i on] = l i s t [numEl e me nt s - 1] ;
l i s t [numEl e me nt s - 1] = nul l ;
numEl e me nt s - - ;

}
r e t ur n f ound;

}

publ i c i nt s i z e ()

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 401

402 | Chapter 6: The List ADT

/ / Re t ur ns t he numbe r of e l e me nt s on t hi s l i s t .
{

r e t ur n numEl e me nt s ;
}

publ i c bool e a n c ont a i ns (T e l e me nt)
/ / Re t ur ns t r ue i f t hi s l i s t c ont a i ns a n e l e me nt e s uc h t ha t
/ / e . e qua l s (e l e me nt) ; ot he r wi s e , r e t ur ns f a l s e .
{

f i nd(e l e me nt) ;
r e t ur n f ound;

}

publ i c T ge t (T e l e me nt)
/ / Re t ur ns a n e l e me nt e f r om t hi s l i s t s uc h t ha t e . e qua l s (e l e me nt) ;
/ / i f no s uc h e l e me nt e xi s t s , r e t ur ns nul l .
{

f i nd(e l e me nt) ;
i f (f ound)

r e t ur n l i s t [l oc a t i on] ;
e l s e

r e t ur n nul l ;
}

publ i c St r i ng t oSt r i ng()
/ / Re t ur ns a ni c e l y f or ma t t e d s t r i ng t ha t r e pr e s e nt s t hi s l i s t .
{

St r i ng l i s t St r i ng = " Li s t : \ n" ;
f or (i nt i = 0; i < numEl e me nt s ; i ++)

l i s t St r i ng = l i s t St r i ng + " " + l i s t [i] + " \ n" ;
r e t ur n l i s t St r i ng;

}

publ i c voi d r e s e t ()
/ / I ni t i a l i z e s c ur r e nt pos i t i on f or a n i t e r a t i on t hr ough t hi s l i s t ,
/ / t o t he f i r s t e l e me nt on t hi s l i s t .
{

c ur r e nt Pos = 0;
}

publ i c T ge t Ne xt ()
/ / Pr e c ondi t i ons : The l i s t i s not e mpt y
/ / The l i s t ha s be e n r e s e t
/ / The l i s t ha s not be e n modi f i e d s i nc e t he mos t r e c e nt
/ / r e s e t

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 402

6.4 Array- Based Implementations | 403

2. Due to restrictions imposed by Java generics, we are not able, in this case, to use a generic type T that
extends Compa r a bl e . If we could do so, it would remove the need for casting and prevent the compiler warn-
ing message.

/ /
/ / Re t ur ns t he e l e me nt a t t he c ur r e nt pos i t i on on t hi s l i s t .
/ / I f t he c ur r e nt pos i t i on i s t he l a s t e l e me nt , i t a dva nc e s t he va l ue
/ / of t he c ur r e nt pos i t i on t o t he f i r s t e l e me nt ; ot he r wi s e , i t a dva nc e s
/ / t he va l ue of t he c ur r e nt pos i t i on t o t he ne xt e l e me nt .
{

T ne xt = l i s t [c ur r e nt Pos] ;
i f (c ur r e nt Pos == (numEl e me nt s - 1))

c ur r e nt Pos = 0;
e l s e

c ur r e nt Pos ++;
r e t ur n ne xt ;

}
}

The ArraySortedList Class
The Ar r a ySor t e dLi s t class implements the Li s t I nt e r f a c e using an array. For this
class we are concerned about the order in which we keep elements stored—the array
must be kept sorted. Nevertheless, the implementation of the Ar r a ySor t e dLi s t class
has much in common with the implementation of the Ar r a yUns or t e dLi s t class. The
only required differences are in the a dd and r e move methods, because these are the
only methods that affect the ordering of the elements. To take advantage of the similari-
ties, the Ar r a ySor t e dLi s t class extends the Ar r a yUns or t e dLi s t class. Figure 6.10,
in the chapter summary, shows the relationships among the primary classes and inter-
faces created to support our List ADT, including those developed in this subsection.

First let’s consider the a dd method. We must override the a dd method of the
Ar r a yUns or t e dLi s t class. We specify as a precondition of the new a dd method that
its argument is an object of class Compa r a bl e . This ensures us that only Compa r a bl e
objects are contained on a sorted list, because the a dd method is the only way for an
element to get onto the list. Therefore, we are guaranteed that all elements of a sorted
list support a c ompa r e To operation.

As objects are added to the list, their c ompa r e To operation is used to determine the
correct location for insertion, to keep the list sorted. Within the a dd method we must
cast list elements as Compa r a bl e , so that the Java complier will accept our use of the
c ompa r e To method.2 Some compilers will generate a warning message regarding an
unchecked call to c ompa r e To, because there is no way for the compiler to verify that
the generic type T will actually implement Compa r a bl e . Because we understand the
reason for the warning message and because our precondition prohibits the use of ele-
ments that do not implement Compa r a bl e , we can safely ignore the compiler warning.
An application that ignores the precondition and adds elements to a sorted list that are

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 403

404 | Chapter 6: The List ADT

not Compa r a bl e will cause a type mismatch exception to be thrown—which is exactly
the result we desire because incomparable elements should not be added to a sorted list.

To add an element to a sorted list, we first check whether there is room for it,
invoking our e nl a r ge method if there is not.

Next we must discover where the new element belongs. We use an example to illus-
trate how this works. Suppose we want to add “CHI” to the list of abbreviations “ARG,”
“BOL,” “BRA,” “COL,” and “ECU.” To maintain the alphabetic ordering of the list, we
must accomplish three tasks:

1. Find the place where the new element belongs.
2. Create space for the new element.
3. Put the new element in the created space.

We first traverse the list, comparing the new element to each element on the list,
until we find an element that is greater than or equal to it. In our example, this occurs
when we reach the fourth element, “COL.” To create space we then shift all of the
remaining elements starting with “COL” one array location higher. The best way to
accomplish this is to start at the end of the list, copying the object references one at a
time to the next higher array location, until we have worked our way backward to
“COL.” Finally, we insert “CHI” into the created space.

This approach is pictured in Figure 6.3. An alternative approach that combines
searching and shifting, starting from the back of the list, is investigated in Exercise 29.
The code for the a dd method can be found in the listing at the end of this subsection.

Once an element has been added to the list, we assume the element is not changed
in any way that might affect where it belongs on the list. We investigate this issue fur-
ther in the feature section “Implementing ADTs ‘by Copy’ or ‘by Reference.’”

In the remove method for the unsorted list we took advantage of the unsorted
nature of the array and simply moved the element at the end of the list into the position
occupied by the element to be removed. For our sorted lists when an element is
removed, all of the remaining elements are shifted over to fill the gap. Shifting main-
tains the relative ordering of the list elements.

The code for our Ar r a ySor t e dLi s t class is shown below. There are significantly
more efficient approaches to finding an element in a sorted array than just looking
through the array sequentially, as the inherited f i nd method used by the class does.
Discussion of those approaches is deferred until Section 6.6.

/ / -
/ / Ar r a ySor t e dLi s t . j a va by Da l e / J oyc e / We e ms Cha pt e r 6
/ /
/ / I mpl e me nt s t he Li s t I nt e r f a c e us i ng a n a r r a y. I t i s ke pt i n i nc r e a s i ng
/ / or de r a s de f i ne d by t he c ompa r e To me t hod of t he a dde d e l e me nt s . Onl y
/ / Compa r a bl e e l e me nt s ma y be a dde d t o a l i s t .
/ /
/ / Nul l e l e me nt s a r e not pe r mi t t e d on a l i s t .
/ /

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 404

6.4 Array- Based Implementations | 405

Figure 6.3 Adding an element to a sorted list

[0] [1] [2] [3] [4]

"ARG" "BOL" "BRA" "COL" "ECU"

[5] [6] [7]

Step 1

compareTo ("CHI") < 0

[0] [1] [2] [3] [4]

"ARG" "BOL" "BRA" "COL" "ECU"

[5] [6] [7]

Step 2

compareTo ("CHI") < 0

[0] [1] [2] [3] [4]

"ARG" "BOL" "BRA" "COL" "ECU"

[5] [6] [7]

Step 3

compareTo ("CHI") < 0

[0] [1] [2] [3] [4]

"ARG" "BOL" "BRA" "COL" "ECU"

[5] [6] [7]

Step 4

compareTo ("CHI") ≥ 0

[0] [1] [2] [3] [4]

"ARG" "BOL" "BRA" "COL" "ECU" "ECU"

[5] [6] [7]

Step 5

[0] [1] [2] [3] [4]

"ARG" "BOL" "BRA" "COL" "COL" "ECU"

[5] [6] [7]

Step 6

[0] [1] [2] [3] [4]

"ARG" "BOL" "BRA" "CHI"

"CHI"

"COL" "ECU"

[5] [6] [7]

Step 7

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 405

406 | Chapter 6: The List ADT

3. Some compilers will generate a warning message regarding an unchecked call to c ompa r e To, because there
is no way for the compiler to verify that the generic type T will actually implement Compa r a bl e .

/ / Two c ons t r uc t or s a r e pr ovi de d: one t ha t c r e a t e s a l i s t of a de f a ul t
/ / or i gi na l c a pa c i t y , a nd one t ha t a l l ows t he c a l l i ng pr ogr a m t o s pe c i f y
/ / t he or i gi na l c a pa c i t y .
/ / -

pa c ka ge c h06. l i s t s ;

publ i c c l a s s Ar r a ySor t e dLi s t <T> e xt e nds Ar r a yUns or t e dLi s t <T>
i mpl e me nt s Li s t I nt e r f a c e <T>

{
publ i c Ar r a ySor t e dLi s t ()
{

s upe r () ;
}

publ i c Ar r a ySor t e dLi s t (i nt or i gCa p)
{

s upe r (or i gCa p) ;
}

publ i c voi d a dd(T e l e me nt)
/ / Pr e c ondi t i on: e l e me nt i s Compa r a bl e .
/ /
/ / Adds e l e me nt t o t hi s l i s t .
{

T l i s t El e me nt ;
i nt l oc a t i on = 0;

i f (numEl e me nt s == l i s t . l e ngt h)
e nl a r ge () ;

whi l e (l oc a t i on < numEl e me nt s)
{

l i s t El e me nt = (T) l i s t [l oc a t i on] ;
i f (((Compa r a bl e) l i s t El e me nt) . c ompa r e To(e l e me nt) < 0) 3

/ / l i s t e l e me nt < a dd e l e me nt
l oc a t i on++;

e l s e
br e a k; / / l i s t e l e me nt >= a dd e l e me nt

}

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 406

6.4 Array- Based Implementations | 407

f or (i nt i nde x = numEl e me nt s ; i nde x > l oc a t i on; i nde x- -)
l i s t [i nde x] = l i s t [i nde x - 1] ;

l i s t [l oc a t i on] = e l e me nt ;
numEl e me nt s ++;

}

publ i c bool e a n r e move (T e l e me nt)
/ / Re move s a n e l e me nt e f r om t hi s l i s t s uc h t ha t e . e qua l s (e l e me nt)
/ / a nd r e t ur ns t r ue ; i f no s uc h e l e me nt e xi s t s , r e t ur ns f a l s e .
{

f i nd(e l e me nt) ;
i f (f ound)
{

f or (i nt i = l oc a t i on; i <= numEl e me nt s - 2; i ++)
l i s t [i] = l i s t [i +1] ;

l i s t [numEl e me nt s - 1] = nul l ;
numEl e me nt s - - ;

}
r e t ur n f ound;

}
}

Implementing ADTs “by Copy” or “by Reference”
When designing an ADT, such as for a stack, queue, or list, we have a choice about how to han-
dle the elements—“by copy” or “by reference.”

By Copy
With this approach, the ADT manipulates copies of the data used in the client program. When
the ADT is presented with a data element to store, it makes a copy of the element and stores
that copy. Making a valid copy of an object can be a complicated process, especially if the object
is composed of other objects. Valid copies of an object are typically created using the object’s
c l one method. Classes that provide a c l one method must indicate this fact to the run-time
system by implementing the Cl one a bl e interface. In the examples that follow, we assume the
object classes provide a rigorous c l one method and implement the Cl one a bl e interface. In
that case, code for a list a dd operation might be

publ i c voi d a dd (T e l e me nt)
/ / Adds a c opy of t he e l e me nt t o t hi s l i s t
{

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 407

408 | Chapter 6: The List ADT

l i s t [numEl e me nt s] = e l e me nt . c l one () ;
numEl e me nt s ++;

}

In Java, of course, if the list elements are objects, then it is really a reference to a copy of the
element that is stored—because all Java objects are manipulated by reference. The key distinc-
tion here is that it is a reference to a copy of the element, and not a reference to the element
itself, that is stored.

Similarly, when an ADTreturns an element using the “by copy” approach, it actually returns a
reference to a copy of the element. As an example, consider the code for a list ge t Ne xt El e me nt
operation:

publ i c T ge t Ne xt El e me nt ()
/ / Re t ur ns a c opy of t he ne xt e l e me nt on t hi s l i s t
{

T ne xt = l i s t [c ur r e nt Pos] ;
i f (c ur r e nt Pos == (numEl e me nt s - 1))

c ur r e nt Pos = 0;
e l s e

c ur r e nt Pos ++;
r e t ur n ne xt . c l one () ;

}

This approach provides strong information hiding. In effect, the ADT is providing a separate
repository for a copy of the client’s data.

By Reference
In this approach, an ADT manipulates references to the actual elements passed to it by the client
program. For example, code for a list a dd operation might be

publ i c voi d a dd (T e l e me nt)
/ / Adds a n e l e me nt t o t hi s l i s t
{

l i s t [numEl e me nt s] = e l e me nt ;
numEl e me nt s ++;

}

Because the client program retains a reference to the element, we have exposed the contents of
the collection ADT to the client program. The ADT still hides the way the data is organized—for
example, the use of an array of objects—but it allows direct access to the individual elements of
the collection by the client program through the client program’s own references. In effect, the
ADT provides an organization for the original client data.

The “by reference” method is the most commonly used approach and the one we use
throughout this textbook. It has the advantage that it takes less time and space than the “by

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 408

6.4 Array- Based Implementations | 409

copy” method. Copying objects takes time, especially if the objects are large and require compli-
cated deep-copying methods. Storing extra copies of objects also requires extra memory. Thus
the “by reference” approach is an attractive strategy.

When we use the “by reference” approach, we create aliases of our elements, so we
must deal with the potential problems associated with aliases. If our data elements are
immutable, then no problems will occur. If the elements can be changed, however, problems
can arise.

If an element is accessed and changed through one alias, it could disrupt the status of the
element when it is accessed through the other alias. This situation is especially dangerous if the
client program can change an attribute that the ADT uses to determine the underlying organiza-
tion of the elements. For example, if the client changes an attribute that determines an object’s
position on a sorted list, then the object may no longer be in the proper place. Because the
change did not go through a method of the sorted list class, the class has no way of knowing
that it should correct this situation. A subsequent ge t operation on this list would likely fail.

An Example
The diagrams in Figure 6.4 show the ramifications of both approaches. Suppose we have
objects that hold a person’s na me and we i ght . Further suppose that we have a list of these
objects sorted by the variable we i ght . We add three objects onto the list, and then transform
one of the objects with a di e t method, which changes the we i ght of the object. The left
side of the figure models the approach of storing references to copies of the objects—the “by
copy” approach. The right side models the approach of storing references to the original
objects—the “by reference” approach.

The middle section of the figure, showing the state of things after the objects have been
inserted into the lists, clearly demonstrates the differences in the underlying implementations.
The “by copy” approach creates copies and the list elements reference them; these copies take
up space that is not required in the “by reference” approach. It is also clear from the right side of
the figure that the “by reference” approach creates aliases for the objects, as we can see more
than one reference to an object. In both approaches, the list elements are kept sorted by weight.

The situation becomes more interesting when we modify one of the objects. When the per-
son represented by the S1 object loses some weight, the di e t method is invoked to decrease the
we i ght of the object. In this scenario, both approaches display problems. In the “by copy”
approach, we see that the S1 object has been updated. The copy of the S1 object maintained on
the list is clearly out-of-date. It holds the old weight value. A programmer must remember that
such a list stores only the values of objects as they existed at the time of the a dd operation and
that changes to those objects are not reflected in the objects stored on the list. The programmer
must design the code to update the list, if appropriate.

In the “by reference” approach, the object referred to by the list contains the up-to-date
weight information, because it is the same object referred to by the S1 variable. The list, how-
ever, is no longer sorted by the we i ght attribute. Because the update to we i ght took place
without any list activity, the list objects remain in the same order as before. The list structure is
now corrupt, and calls to the list methods may behave unpredictably. Instead of directly updat-
ing the S1 object, the program should have removed the object from the list, updated the object,
and then reinserted it onto the list.

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 409

410 | Chapter 6: The List ADT

Figure 6.4 Store “by copy” versus store “by reference”

S1

S2

Doug, 125

S3 Jenn, 127

Jane, 120

Processing
S1.diet(-105)

Final State

list

S1

S2

Doug, 230

S3 Jenn, 127

Jane, 120

Processing
list.add(S1);
list.add(S2);
list.add(S3);

New State

list

S1

S2

Doug, 230

S3 Jenn, 127

Jane, 120

”By Reference” Approach

Initial State

list

S1

S2

Doug, 230

Doug
230

S3 Jenn, 127

Jenn
127

Jane, 120

Jane
120

Processing
list.add(S1);
list.add(S2);
list.add(S3);

New State

list

S1

S2

Doug, 125

Doug
230

S3 Jenn, 127

Jenn
127

Jane, 120

Jane
120

Processing
S1.diet(-105)

Final State

list

S1

S2

Doug, 230

S3 Jenn, 127

Jane, 120

”By Copy” Approach

Initial State

list

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 410

6.4 Array- Based Implementations | 411

Summation
Which approach is better? That depends. If processing time and space are issues, and if we
are comfortable counting on the application programs to behave properly, then the “by refer-
ence” approach is probably the best choice. If we are not overly concerned about time and
space usage (maybe our list objects are not too large), but we are concerned with maintain-
ing careful control over the access to and integrity of our lists, then the “by copy” approach
is probably the best choice. The suitability of either approach depends on what the list is
used for.

The ArrayIndexedList Class
The Ar r a yI nde xe dLi s t class also extends the Ar r a yUns or t e dLi s t class in order to
reuse code. It implements the I nde xe dLi s t I nt e r f a c e . Figure 6.10, in the chapter
summary, shows the relationships among the primary classes and interfaces created to
support our List ADT, including those developed in this subsection.

The Ar r a yUns or t e dLi s t class does not include any methods involving the use of
indexes. We must implement all of those methods within Ar r a yI nde xe dLi s t . Recall
that the elements of a list are indexed sequentially, from zero to one less than the size of
the list. Because that is exactly the same way the underlying array is indexed, our pro-
gramming task is very easy.

Consider, for example, the ge t operation. It is passed an integer argument through
its i nde x parameter and must return the list element that is associated with that index.
This is trivial:

r e t ur n l i s t [i nde x] ;

Although implementing the other index-related operations is not quite so easy, they are
all straightforward.

Whenever an application provides an index argument, it is tested for legality, and
an I nde xOut Of Bounds Exc e pt i on is thrown if the argument fails the test. Because this
error is an unchecked exception, we do not need to include a t hr ows clause in the
method headers.

The only method from Ar r a yUns or t e dLi s t that we override is the t oSt r i ng
method. Instead of just returning a string containing representations of the list elements, the
indexed list t oSt r i ng method also includes the indexes of the elements within the string.

/ / -
/ / Ar r a yI nde xe dLi s t . j a va by Da l e / J oyc e / We e ms Cha pt e r 6
/ /
/ / I mpl e me nt s t he I nde xe dLi s t I nt e r f a c e us i ng a n a r r a y.
/ /
/ / Nul l e l e me nt s a r e not pe r mi t t e d on a l i s t .
/ /
/ / Two c ons t r uc t or s a r e pr ovi de d: one t ha t c r e a t e s a l i s t of a de f a ul t

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 411

412 | Chapter 6: The List ADT

/ / or i gi na l c a pa c i t y, a nd one t ha t a l l ows t he c a l l i ng pr ogr a m t o s pe c i f y
/ / t he or i gi na l c a pa c i t y.
/ / -

pa c ka ge c h06. l i s t s ;

publ i c c l a s s Ar r a yI nde xe dLi s t <T> e xt e nds Ar r a yUns or t e dLi s t <T>
i mpl e me nt s I nde xe dLi s t I nt e r f a c e <T>

{
publ i c Ar r a yI nde xe dLi s t ()
{

s upe r () ;
}

publ i c Ar r a yI nde xe dLi s t (i nt or i gCa p)
{

s upe r (or i gCa p) ;
}

publ i c voi d a dd(i nt i nde x, T e l e me nt)
/ / Thr ows I nde xOut Of Bounds Exc e pt i on i f pa s s e d a n i nde x a r gume nt
/ / s uc h t ha t i nde x < 0 or i nde x > s i z e () .
/ / Ot he r wi s e , a dds e l e me nt t o t hi s l i s t a t pos i t i on i nde x; a l l c ur r e nt
/ / e l e me nt s a t t ha t i nde x or hi ghe r ha ve 1 a dde d t o t he i r i nde x.
{

i f ((i nde x < 0) | | (i nde x > s i z e ()))
t hr ow ne w I nde xOut Of Bounds Exc e pt i on(" i l l e ga l i nde x of " + i nde x +

" pa s s e d t o Ar r a yI nde xe dLi s t a dd me t hod. \ n") ;

i f (numEl e me nt s == l i s t . l e ngt h)
e nl a r ge () ;

f or (i nt i = numEl e me nt s ; i > i nde x; i - -)
l i s t [i] = l i s t [i - 1] ;

l i s t [i nde x] = e l e me nt ;
numEl e me nt s ++;

}

publ i c T s e t (i nt i nde x, T e l e me nt)
/ / Thr ows I nde xOut Of Bounds Exc e pt i on i f pa s s e d a n i nde x a r gume nt
/ / s uc h t ha t i nde x < 0 or i nde x >= s i z e () .
/ / Ot he r wi s e , r e pl a c e s e l e me nt on t hi s l i s t a t pos i t i on i nde x a nd
/ / r e t ur ns t he r e pl a c e d e l e me nt .
{

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 412

6.4 Array- Based Implementations | 413

i f ((i nde x < 0) | | (i nde x >= s i z e ()))
t hr ow ne w I nde xOut Of Bounds Exc e pt i on(" i l l e ga l i nde x of " + i nde x +

" pa s s e d t o Ar r a yI nde xe dLi s t s e t me t hod. \ n") ;

T hol d = l i s t [i nde x] ;
l i s t [i nde x] = e l e me nt ;
r e t ur n hol d;

}

publ i c T ge t (i nt i nde x)
/ / Thr ows I nde xOut Of Bounds Exc e pt i on i f pa s s e d a n i nde x a r gume nt
/ / s uc h t ha t i nde x < 0 or i nde x >= s i z e () .
/ / Ot he r wi s e , r e t ur ns t he e l e me nt on t hi s l i s t a t pos i t i on i nde x.
{

i f ((i nde x < 0) | | (i nde x >= s i z e ()))
t hr ow ne w I nde xOut Of Bounds Exc e pt i on(" i l l e ga l i nde x of " + i nde x +

" pa s s e d t o Ar r a yI nde xe dLi s t s e t me t hod. \ n") ;

r e t ur n l i s t [i nde x] ;
}

publ i c i nt i nde xOf (T e l e me nt)
/ / I f t hi s l i s t c ont a i ns a n e l e me nt e s uc h t ha t e . e qua l s (e l e me nt) ,
/ / t he n r e t ur ns t he i nde x of t he f i r s t s uc h e l e me nt .
/ / Ot he r wi s e , r e t ur ns - 1.
{

f i nd(e l e me nt) ;
i f (f ound)

r e t ur n l oc a t i on;
e l s e

r e t ur n - 1;
}

publ i c T r e move (i nt i nde x)
/ / Thr ows I nde xOut Of Bounds Exc e pt i on i f pa s s e d a n i nde x a r gume nt
/ / s uc h t ha t i nde x < 0 or i nde x >= s i z e () .
/ / Ot he r wi s e , r e move s e l e me nt on t hi s l i s t a t pos i t i on i nde x a nd
/ / r e t ur ns t he r e move d e l e me nt ; a l l c ur r e nt e l e me nt s a t pos i t i ons
/ / hi ghe r t ha n t ha t i nde x ha ve 1 s ubt r a c t e d f r om t he i r i nde x.
{

i f ((i nde x < 0) | | (i nde x >= s i z e ()))
t hr ow ne w I nde xOut Of Bounds Exc e pt i on(" i l l e ga l i nde x of " + i nde x +

" pa s s e d t o Ar r a yI nde xe dLi s t r e move me t hod. \ n") ;

T hol d = l i s t [i nde x] ;

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 413

414 | Chapter 6: The List ADT

f or (i nt i = i nde x; i < (numEl e me nt s – 1) ; i ++)
l i s t [i] = l i s t [i + 1] ;

l i s t [numEl e me nt s – 1] = nul l ;
numEl e me nt s - - ;
r e t ur n hol d;

}

publ i c St r i ng t oSt r i ng()
/ / Re t ur ns a ni c e l y f or ma t t e d s t r i ng t ha t r e pr e s e nt s t hi s l i s t .
{

St r i ng l i s t St r i ng = " Li s t : \ n" ;
f or (i nt i = 0; i < numEl e me nt s ; i ++)

l i s t St r i ng = l i s t St r i ng + " [" + i + "] " + l i s t [i] + " \ n" ;
r e t ur n l i s t St r i ng;

}
}

This completes our development of the three array-based list implementations, at
least for now. As with our previous ADT implementations, we must test all of our
classes carefully to ensure that they fulfill the ADT specifications. In particular, when
testing lists we should remember that it can make a difference if an element is in the
first position on the list, in the last position on the list, or somewhere else on the list.
Thus we need to include several test cases for each operation being tested.

In the next section we create three applications that use lists, one for each of our
list varieties. In Section 6.6, we expand on our approach for the sorted list, making
some of the operations more efficient.

6.5 Applications: Poker, Golf, and Music

In this section we look at three applications to see how our list implementations can be
used to help solve problems.

Poker
This example shows how we can use program simulation to help verify formal analysis,
and vice versa.

Seven-Card Stud is a popular poker game. Each player is dealt seven cards from a
standard 52-card playing deck. From those seven cards the participants play their best
five-card poker hand. The player with the best hand wins. Keep in mind that the playing
cards have two qualities: suit (spades, hearts, clubs, and diamonds) and rank (two
through ace). Hands are rated, from best to worst, as follows:

• Royal Flush All cards of the same suit. Ranks from 10 through ace.
• Straight Flush All cards of the same suit. Rank in sequence.

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 414

6.5 Applications: Poker, Golf, and Music | 415

• Four of a Kind Four cards with the same rank.
• Full House Three cards of one rank, and two cards of a second rank.
• Flush All cards of the same suit.
• Straight All cards with ranks in sequence (e.g., 4-5-6-7-8).
• Three of a Kind Three cards with the same rank.
• Two Pair Two sets of cards of the same rank (e.g., 8-8-3-3-9).
• One Pair Two cards of the same rank.
• High Card If we have none of the above, the highest-ranking card in our hand

is the “high card.”

To help us understand the game of poker, we want to know the probability, when
dealt a random seven-card hand, that we get at least two cards of the same rank. We are
not concerned with straights and flushes; we are only concerned with getting cards of
the same rank.

There are two approaches to investigate this question: We can analyze the situation
mathematically or we can write a program that simulates the situation. Let’s do both.
We can then compare and verify our results.

Numerical Analysis
The analysis is simplified if we turn the question around. We figure out the probability
(a real number in the range from 0 to 1) that we do not get two cards of the same rank,
and then subtract that probability from 1 (which represents absolute certainty).

We proceed one card at a time. When we are dealt the first card, what is the proba-
bility we do not have two cards of the same rank? With only one card, it’s certain that
we don’t have a matching pair! We calculate this fact mathematically by using the clas-
sic probability formula of number of favorable events ÷ total number of possible events:

There are 52 total possible cards to choose from, and picking any of the 52 has the
desired “favorable” result (no matches). The probability we have a pair of matching
cards is thus 1 1 = 0 (impossible). It’s impossible to have a pair of matching cards
when we have only one card. Why do we need this mathematical complexity to say
something that’s so obvious? Because it acts as a foundation for our continuing analy-
sis.

Now we are dealt the second card. The first card has some rank between 2 and ace.
Of the 51 cards that are still in the deck, 48 of them do not have the same rank as the
first card. Thus there are 48 chances out of 51 that this second card will not match the
first card. To calculate the overall probability of two sequential events occurring, we
multiply their individual probabilities. Therefore, after two cards the probability that we
do not have a pair is

52
52

48
51

0 941× ≈ .

52
52

1=

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 415

416 | Chapter 6: The List ADT

At this point, the probability that we do have a pair is approximately 1 0.941 =
0.059.

For the third card dealt, there are 50 cards left in the deck. Six of those cards match
one or the other of the two cards previously dealt, because we are assuming we do not
have a pair already. Thus there are 44 chances out of 50 that we do not get a pair with
the third card, giving us the probability

Continuing in this way we get the following probability that we do not have a pair
of matching cards after seven cards are dealt:

Therefore the probability that we get at least two matching cards is approximately
1 0.210 = 0.790. We should expect to get at least one pair about eight times out of
ten.

Simulation Analysis
Now we address the same problem using simulation. Not only does this endeavor help
us double-check our theoretical results, but it also helps validate our programming and
the random number generator used to simulate shuffling the cards.

We create a program that deals 1 million seven-card poker hands and tracks how
many of them have at least one pair of identical cards.

We use the Ra nkCa r dDe c k class developed for the game of War application in
Chapter 5. Recall that this class has a ne xt Ca r d method that returns the rank of the
next card in a 52-card deck. It also provides a s huf f l e method that reorders the cards
in the deck.

Our approach is to reshuffle the cards for every new hand. As cards are dealt, they
are placed in an unsorted list called ha nd. For each new card, we check the list to see
whether a card with the same rank is already in ha nd. The cards themselves are repre-
sented as integers—that is, variables of type i nt . When they are added to the list, they
are automatically boxed as I nt e ge r objects.

/ / -
/ / Poke r App. j a va by Da l e / J oyc e / We e ms Cha pt e r 6
/ /
/ / Si mul a t e s de a l i ng poke r ha nds t o c a l c ul a t e t he pr oba bi l i t y of
/ / ge t t i ng a t l e a s t one pa i r of ma t c hi ng c a r ds .
/ / -

52
52

48
51

44
50

40
49

36
48

32
47

28
46

0 210× × × × × × ≈ .

52
52

48
51

44
50

0 828× × ≈ .

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 416

6.5 Applications: Poker, Golf, and Music | 417

i mpor t c h06. l i s t s . *;
i mpor t s uppor t . *; / / Ra nkCa r dDe c k

publ i c c l a s s Poke r App
{

publ i c s t a t i c voi d ma i n(St r i ng[] a r gs)
{

f i na l i nt HANDSI ZE = 7; / / numbe r of c a r ds pe r ha nd
f i na l i nt NUMHANDS = 1000000; / / t o t a l numbe r of ha nds
i nt numPa i r s = 0; / / numbe r of ha nds wi t h pa i r s
bool e a n i s Pa i r ; / / s t a t us of c ur r e nt ha nd
f l oa t pr oba bi l i t y; / / c a l c ul a t e d pr oba bi l i t y

Li s t I nt e r f a c e <I nt e ge r > ha nd;
Ra nkCa r dDe c k de c k = ne w Ra nkCa r dDe c k() ;
i nt c a r d;
f or (i nt i = 0; i < NUMHANDS i ++)
{

de c k. s huf f l e () ;
ha nd = ne w Ar r a yUns or t e dLi s t <I nt e ge r >(HANDSI ZE) ;
i s Pa i r = f a l s e ;
f or (i nt j = 0; j < HANDSI ZE; j ++)
{

c a r d = de c k. ne xt Ca r d() ;
i f (ha nd. c ont a i ns (c a r d))

i s Pa i r = t r ue ;
ha nd. a dd(c a r d) ;

}
i f (i s Pa i r)

numPa i r s = numPa i r s + 1;
}

pr oba bi l i t y = numPa i r s / (f l oa t) NUMHANDS;

Sys t e m. out . pr i nt l n() ;
Sys t e m. out . pr i nt (" The r e we r e " + numPa i r s + " ha nds out of " + NUMHANDS) ;
Sys t e m. out . pr i nt l n(" t ha t ha d a t l e a s t one pa i r of ma t c he d c a r ds . ") ;
Sys t e m. out . pr i nt (" The pr oba bi l i t y of ge t t i ng a t l e a s t one pa i r , ") ;
Sys t e m. out . pr i nt (" ba s e d on t hi s s i mul a t i on, i s ") ;
Sys t e m. out . pr i nt l n(pr oba bi l i t y) ;

}
}

As we have seen several times before, the use of predefined classes, such as our
Ar r a yUns or t e dLi s t class and our Ra nkCa r dDe c k class, makes programming much

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 417

418 | Chapter 6: The List ADT

easier. Here is the result of one run of this program (which took about 20 seconds to
execute on the author’s machine):

There were 790291 hands out of 1000000 that had at least one pair of matched cards.
The probability of getting at least one pair, based on this simulation, is 0.790291.

This result is very close to our theoretical result. Additional program runs also produced
acceptably close results.

Golf
This application demonstrates how to create classes that implement the Compa r a bl e
interface and how to use them with our sorted list class, to help solve a problem.

Golf is a wonderful sport, enjoyed by all kinds of people—young and old, male and
female. At the end of the day we may want to compare results and rank the players
based on their scores. Our application accepts golfers’ names and scores, creating a
sorted list of results, ordered from best to worst score.

Recall that our sorted list class only permits Compa r a bl e objects. Therefore, we first
create a Gol f e r class that implements the Compa r a bl e <Gol f e r > interface. By passing
the Gol f e r type itself as a parameter to the Compa r a bl e interface we guarantee that
golfers will only be compared to other golfers. Golfers have two attributes: their names
and their scores. We sort only on the score, making it the sorting key for the list. The
implementation of the Gol f e r class is straightforward.

/ / -
/ / Gol f e r . j a va by Da l e / J oyc e / We e ms Cha pt e r 6
/ /
/ / Suppor t s gol f e r obj e c t s ha vi ng a na me a nd a s c or e .
/ / Al l ows gol f e r s t o be c ompa r e d ba s e d on t he i r s c or e s .
/ / -

pa c ka ge s uppor t ;

publ i c c l a s s Gol f e r i mpl e me nt s Compa r a bl e <Gol f e r >
{

pr ot e c t e d St r i ng na me ;
pr ot e c t e d i nt s c or e ;

publ i c Gol f e r (St r i ng na me , i nt s c or e)
{

t hi s . na me = na me ;
t hi s . s c or e = s c or e ;

}

publ i c St r i ng ge t Na me ()
{

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 418

6.5 Applications: Poker, Golf, and Music | 419

r e t ur n na me ;
}

publ i c i nt ge t Sc or e ()
{

r e t ur n s c or e ;
}

publ i c i nt c ompa r e To(Gol f e r ot he r)
{

i f (t hi s . s c or e < ot he r . s c or e)
r e t ur n - 1;

e l s e
i f (t hi s . s c or e == ot he r . s c or e)

r e t ur n 0;
e l s e

r e t ur n +1;
}

publ i c St r i ng t oSt r i ng()
{

r e t ur n (s c or e + " : " + na me) ;
}

}

The application is also straightforward. Because we are mainly interested in demon-
strating the use of the sorted list, we did not include input validation. (We ask you to
rectify this shortcoming in Exercise 37.) The application asks the user to enter golfer
names and scores and then displays the sorted list of golfers. The end of the input is
indicated when the user enters a blank golfer name. Here is the program:

/ / -
/ / Gol f App. j a va by Da l e / J oyc e / We e ms Cha pt e r 6
/ /
/ / Al l ows us e r t o e nt e r gol f e r na me a nd s c or e i nf or ma t i on.
/ / Di s pl a ys i nf or ma t i on or de r e d by s c or e .
/ / -

i mpor t j a va . ut i l . Sc a nne r ;
i mpor t c h06. l i s t s . *;
i mpor t s uppor t . *; / / Gol f e r

publ i c c l a s s Gol f App
{

publ i c s t a t i c voi d ma i n(St r i ng[] a r gs)

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 419

420 | Chapter 6: The List ADT

{
Sc a nne r c onI n = ne w Sc a nne r (Sys t e m. i n) ;

St r i ng na me ; / / gol f e r ' s na me
i nt s c or e ; / / gol f e r ' s s c or e

Li s t I nt e r f a c e <Gol f e r > gol f e r s = ne w Ar r a ySor t e dLi s t <Gol f e r >(20) ;
Gol f e r gol f e r ;
St r i ng s ki p; / / Us e d t o s ki p r e s t of i nput l i ne a f t e r r e a di ng i nt e ge r

Sys t e m. out . pr i nt (" Gol f e r na me (pr e s s Ent e r t o e nd) : ") ;
na me = c onI n. ne xt Li ne () ;
whi l e (! na me . e qua l s (" "))
{

Sys t e m. out . pr i nt (" Sc or e : ") ;
s c or e = c onI n. ne xt I nt () ;
s ki p = c onI n. ne xt Li ne () ;

gol f e r = ne w Gol f e r (na me , s c or e) ;
gol f e r s . a dd(gol f e r) ;

Sys t e m. out . pr i nt (" Gol f e r na me (pr e s s Ent e r t o e nd) : ") ;
na me = c onI n. ne xt Li ne () ;

}
Sys t e m. out . pr i nt l n() ;
Sys t e m. out . pr i nt l n(" The f i na l r e s ul t s a r e ") ;
Sys t e m. out . pr i nt l n(gol f e r s) ;

}
}

The sample run is

Golfer name (press Enter to end): Annika
Score: 72
Golfer name (press Enter to end): Tiger
Score: 74
Golfer name (press Enter to end): Grace
Score: 75
Golfer name (press Enter to end): Arnold
Score: 68
Golfer name (press Enter to end): Vijay
Score: 72

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 420

6.5 Applications: Poker, Golf, and Music | 421

Golfer name (press Enter to end): Cristie
Score: 70
Golfer name (press Enter to end):
The final results are
List:

68: Arnold
70: Cristie
72: Vijay
72: Annika
74: Tiger
75: Grace

Music
We round out our set of examples with an application that uses our indexed list. This
application takes advantage of the indexing capabilities of the list to allow the user to
organize a collection of songs.

Whether someone is creating a cassette, burning a CD, or just organizing a playlist
on an MP3 player, a common task is to create an indexed collection of songs and to
calculate the total length of the collection. Our application allows a user to enter songs
and their lengths. The user indicates where—that is, at what index—in the list of songs to
place the current song. The user also enters the length of each song so that the applica-
tion can keep track of the total amount of time for the entire list.

This example is similar to our earlier golf application. We create a support class
called Song. Objects of the Song class represent a specific song by its name and dura-
tion. Unlike the Gol f e r class, however, the Song class need not support a c ompa r e To
method, because objects on our indexed list do not need to be Compa r a bl e . Within the
Song class we use a De c i ma l For ma t object, from the j a va . t e xt library package, to
format seconds for the t oSt r i ng method. For example, we want 5 seconds to appear as
“05,” not “5.” Here is the Song class:

/ / -
/ / Song. j a va by Da l e / J oyc e / We e ms Cha pt e r 6
/ /
/ / Suppor t s s ong obj e c t s ha vi ng a na me a nd a dur a t i on.
/ / -

pa c ka ge s uppor t ;

i mpor t j a va . t e xt . *;

publ i c c l a s s Song
{

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 421

422 | Chapter 6: The List ADT

pr ot e c t e d St r i ng na me ;
pr ot e c t e d i nt dur a t i on; / / i n s e c onds

De c i ma l For ma t f mt = ne w De c i ma l For ma t (" 00") ; / / t o f or ma t s e c onds

publ i c Song(St r i ng na me , i nt s e c onds)
{

t hi s . na me = na me ;
dur a t i on = s e c onds ;

}

publ i c Song(St r i ng na me , i nt mi nut e s , i nt s e c onds)
{

t hi s . na me = na me ;
dur a t i on = (60 * mi nut e s) + s e c onds ;

}

publ i c St r i ng ge t Na me ()
{

r e t ur n na me ;
}

publ i c i nt ge t Dur a t i on()
{

r e t ur n dur a t i on;
}

publ i c St r i ng t oSt r i ng()
{

r e t ur n (na me + " " + (dur a t i on / 60) + " : "
+ f mt . f or ma t (dur a t i on % 60)) ;

}
}

As with the golfer application, the song organizer repeatedly asks the user for infor-
mation, uses a list implementation to keep the information organized, and presents the
information to the user when required.

/ / -
/ / Songs App. j a va by Da l e / J oyc e / We e ms Cha pt e r 6
/ /
/ / Al l ows us e r t o e nt e r a c ol l e c t i on of s ongs .
/ / Ke e ps t r a c k of or de r a nd t ot a l t i me .
/ / -

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 422

6.5 Applications: Poker, Golf, and Music | 423

i mpor t j a va . ut i l . Sc a nne r ;
i mpor t j a va . t e xt . *;
i mpor t c h06. l i s t s . *;
i mpor t s uppor t . *; / / Song
publ i c c l a s s Songs App
{

publ i c s t a t i c voi d ma i n(St r i ng[] a r gs)
{

Sc a nne r c onI n = ne w Sc a nne r (Sys t e m. i n) ;

St r i ng na me ; / / s ong na me
i nt mi nut e s ; / / s ong dur a t i on
i nt s e c onds ; / / s ong dur a t i on
i nt numbe r ; / / s ong numbe r
i nt numSongs = 0; / / numbe r of s ongs e nt e r e d
i nt t ot Ti me = 0; / / t o t a l dur a t i on of s ongs e nt e r e d s o f a r

De c i ma l For ma t f mt = ne w De c i ma l For ma t (" 00") ; / / t o f or ma t s e c onds

Ar r a yI nde xe dLi s t <Song> s ongLi s t = ne w Ar r a yI nde xe dLi s t <Song>(20) ;
Song s ong;

St r i ng s ki p; / / Us e d t o s ki p r e s t of i nput l i ne a f t e r r e a di ng i nt e ge r

Sys t e m. out . pr i nt (" Song na me (pr e s s Ent e r t o e nd) : ") ;
na me = c onI n. ne xt Li ne () ;
whi l e (! na me . e qua l s (" "))
{

Sys t e m. out . pr i nt (" Mi nut e s : ") ;
mi nut e s = c onI n. ne xt I nt () ;
s ki p = c onI n. ne xt Li ne () ;
Sys t e m. out . pr i nt (" Se c onds : ") ;
s e c onds = c onI n. ne xt I nt () ;
s ki p = c onI n. ne xt Li ne () ;
t ot Ti me = t ot Ti me + (mi nut e s * 60) + s e c onds ;

s ong = ne w Song(na me , mi nut e s , s e c onds) ;

Sys t e m. out . pr i nt (" Song numbe r be t we e n 0 a nd " + s ongLi s t . s i z e () + " : ") ;
numbe r = c onI n. ne xt I nt () ;
s ki p = c onI n. ne xt Li ne () ;
s ongLi s t . a dd(numbe r , s ong) ;
Sys t e m. out . pr i nt l n() ;
Sys t e m. out . pr i nt l n(s ongLi s t) ;

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 423

424 | Chapter 6: The List ADT

Sys t e m. out . pr i nt l n(" Tot a l Ti me : " + (t ot Ti me / 60) +" : "
+ f mt . f or ma t (t ot Ti me % 60)) ;

Sys t e m. out . pr i nt l n() ;

Sys t e m. out . pr i nt (" Song na me (pr e s s Ent e r t o e nd) : ") ;
na me = c onI n. ne xt Li ne () ;

}
Sys t e m. out . pr i nt l n() ;
Sys t e m. out . pr i nt l n(" The f i na l r e s ul t i s \ n") ;
Sys t e m. out . pr i nt l n(s ongLi s t) ;
Sys t e m. out . pr i nt l n(" Tot a l Ti me : " + (t ot Ti me / 60) +" : "

+ f mt . f or ma t (t ot Ti me % 60)) ;
Sys t e m. out . pr i nt l n() ;

}
}

Here is a sample run:

Song name (press Enter to end): Cheeseburger in Paradise
Minutes: 2
Seconds: 51
Song number between 0 and 0: 0

List:
[0] Cheeseburger in Paradise 2:51

Total Time: 2:51
Song name (press Enter to end): Growing older but not up
Minutes: 3
Seconds: 7
Song number between 0 and 1: 0

List:
[0] Growing older but not up 3:07
[1] Cheeseburger in Paradise 2:51

Total Time: 5:58

Song name (press Enter to end): Captain America
Minutes: 3

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 424

6.6 The Binary Search Algorithm | 425

Seconds: 17
Song number between 0 and 2: 1

List:
[0] Growing older but not up 3:07
[1] Captain America 3:17
[2] Cheeseburger in Paradise 2:51

Total Time: 9:15

Song name (press Enter to end):

The final result is

List:
[0] Growing older but not up 3:23
[1] Captain America 3:17
[2] Cheeseburger in Paradise 2:51

Total Time: 9:15

6.6 The Binary Search Algorithm

In Section 6.4 we developed Ar r a ySor t e dLi s t , an array-based implementation of
our Sorted List ADT. The Ar r a ySor t e dLi s t class inherits the public methods c on-
t a i ns , r e move , and ge t from the Ar r a yUns or t e dLi s t class. All three of these
methods use the protected method f i nd, also defined within the Ar r a yUns or t -
e dLi s t class, which searches the list sequentially (a linear search), looking for a
matching object. The f i nd method sets the instance variables, f ound and l oc a t i on,
to indicate the results of the search. These variables are then used by the three calling
methods.

In the case of an array-based sorted list, a more efficient approach is available for
searching the list: the binary search algorithm. We discussed this algorithm briefly when
we considered the problem of finding a number in a phone book in Chapter 1. Now we
look at the algorithm more carefully, learning how to use it to improve the efficiency of
the f i nd method for the sorted list. Before doing so, we discuss a simple improvement
that can be made to the linear search approach when the list is already sorted.

Throughout this section, remember that we assume the e qua l s and c ompa r e To
methods of the list elements are consistent, as discussed at the end of Section 6.1.

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 425

426 | Chapter 6: The List ADT

Improving a Linear Search in a Sorted List
If a list is not sorted, the normal way to search for a target element is to start at the
beginning and compare the target element to each element in the list sequentially. This
linear search algorithm is used by f i nd in the Ar r a yUns or t e dLi s t class.

If the list is sorted, however, there is an obvious way to improve the linear search-
ing algorithm: Simply stop searching when we find an element larger than the target
element. At that point we know the target element is not on the list. We used this
approach in the a dd method of the Ar r a ySor t e dLi s t class to find the location in the
array to add the new element.

Consider the following sorted list:

If we are searching for “BOL,” we first compare it to “ARG" and then to “BRA." The
comparison with “BRA” would show that “BRA” is larger. At this point we can stop and
set f ound to f a l s e . This strategy is an improvement over the general linear search
approach because we do not have to look through the entire list, but it provides minimal
benefits:

• If the target element is on the list, we do the same amount of work as we would
using the unimproved approach, examining each element between the start of
the list and the target element.

• If the target element is not on the list and its expected location is toward the end
of the list, as is the case with “USA,” then we still have to examine most of the
elements on the list.

The original linear search algorithm and the improved linear search algorithm are
both O(N), where N is the size of the list. The improvement described here does not
change the Big-O efficiency of the operation. We do not implement the improved linear
search algorithm, because we can do much better, as we see next.

Binary Search Algorithm
Let’s revisit our phone book example from Chapter 1. Think of how you might go about
finding a name in a phone book, and you can get an idea of a faster way to search. Let’s
look for the name “David.” We open the phone book to the middle and see that the
names there begin with M. M is larger than (comes after) D, so we can now limit our
search to the first half of the phone book, the section that contains A to M.

We turn to the middle of the first half and see that the names there begin with G. G
is larger than D, so we search the first half of this section, from A to G. We turn to the
middle page of this section and find that the names there begin with C. C is smaller than
D, so we search the second half of this section—that is, from C to G—and so on, until we
are down to the single page that contains the name “David.” This algorithm is illustrated
in Figure 6.5.

[0] [1] [2] [3] [4]

"ARG" "BRA" "PAR" "PER" "URU"

[5]

"VEN"

numElements: 6

list:

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 426

6.6 The Binary Search Algorithm | 427

Figure 6.5 A binary search of a phone book

L M

G G

C C D D

PHONE
BOOK

A–Z

(A–M)

(A–G)

(A–C) (C–G)

David

4. The term “binary” is associated with this search approach because the search area is divided by 2 after each
iteration.

Let’s now analyze this same approach when applied to the problem of searching an
array-based sorted list for a target element. The code for our improved f i nd method is
shown below. We begin our search with the whole list, by setting the first and last vari-
ables as follows:

i nt f i r s t = l i s t [0] ;
i nt l a s t = l i s t [numEl e me nt s - 1] ;

In each iteration of the while loop, we set l oc a t i on to the midpoint of f i r s t and l a s t :

l oc a t i on = (f i r s t + l a s t) / 2 ;

If the target element is not found at l oc a t i on, we split the current search area in half
at the midpoint,4 by either changing the value of f i r s t to just past l oc a t i on,

f i r s t = l oc a t i on + 1;

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 427

428 | Chapter 6: The List ADT

5. Some compilers generate a warning message regarding an unchecked call to c ompa r e To, because there is
no way for the compiler to verify that the generic type T will actually implement Compa r a bl e .

or by changing the value of l a s t to just before l oc a t i on,

l a s t = l oc a t i on - 1;

In the next iteration of the while loop, we search the appropriate part of the array. We
compute a new value for l oc a t i on, at the midpoint of the new search area:

l oc a t i on = (f i r s t + l a s t) / 2 ;

Each time through the loop, the size of the search area is cut in half.
How do we know when to quit searching? Two terminating conditions are possible:

the target element is not on the list, and the target element has been found. The first
terminating condition occurs when there is no more to search in the current search area.
Therefore we continue searching only if (f i r s t <= l a s t) . The second terminating
condition occurs when we actually find the target element. In that case we set f ound to
t r ue and break out of the loop.

pr ot e c t e d voi d f i nd(T t a r ge t)
/ / Se a r c he s l i s t f or a n oc c ur r e nc e of a n e l e me nt e s uc h t ha t
/ / t a r ge t . e qua l s (e) . I f s uc c e s s f ul , s e t s i ns t a nc e va r i a bl e s
/ / f ound t o t r ue a nd l oc a t i on t o t he a r r a y i nde x of e . I f
/ / not s uc c e s s f ul , s e t s f ound t o f a l s e .
{

i nt f i r s t = 0;
i nt l a s t = numEl e me nt s - 1;
i nt c ompa r e Re s ul t ;
Compa r a bl e t a r ge t El e me nt = (Compa r a bl e) t a r ge t ;

f ound = f a l s e ;

whi l e (f i r s t <= l a s t)
{

l oc a t i on = (f i r s t + l a s t) / 2 ;
c ompa r e Re s ul t = t a r ge t El e me nt . c ompa r e To(l i s t [l oc a t i on]) ; 5

i f (c ompa r e Re s ul t == 0)
{

f ound = t r ue ;
br e a k;

}
e l s e i f (c ompa r e Re s ul t < 0)

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 428

6.6 The Binary Search Algorithm | 429

/ / t a r ge t e l e me nt i s l e s s t ha n e l e me nt a t l oc a t i on
l a s t = l oc a t i on - 1;

e l s e / / t a r ge t e l e me nt i s gr e a t e r t ha n e l e me nt a t l oc a t i on
f i r s t = l oc a t i on + 1;

}
}

Let’s do a walk-through. The element being searched for is “bat.” Figure 6.6(a)
shows the values of f i r s t , l a s t , and l oc a t i on during the first iteration. In this itera-
tion, “bat” is compared with “dog,” the value in l i s t [l oc a t i on] . Because “bat” is less
than (comes before) “dog,” l a s t becomes l oc a t i on - 1 and f i r s t stays the same.
Figure 6.6(b) shows the situation during the second iteration. This time, “bat” is com-
pared with “chicken,” the value in l i s t [l oc a t i on] . Because “bat” is less than (comes
before) “chicken,” l a s t becomes l oc a t i on - 1 and f i r s t again stays the same.

In the third iteration (Figure 6.6c), l oc a t i on and f i r s t are both 0. The element
“bat” is compared with “ant,” the element in l i s t [l oc a t i on] . Because “bat” is
greater than (comes after) “ant,” f i r s t becomes l oc a t i on + 1. In the fourth iteration
(Figure 6.6d), f i r s t , l a s t , and l oc a t i on are all the same. Again, “bat” is compared
with the element in l i s t [l oc a t i on] . Because “bat” is less than “cat,” l a s t becomes
l oc a t i on - 1 . Now that l a s t is less than f i r s t , the process stops; f ound is f a l s e .

Table 6.1 shows f i r s t , l a s t , l oc a t i on, and l i s t [l oc a t i on] for searches of the
elements “fish,” “snake,” and “zebra” using the same data as in the previous example.
Examine the results in Table 6.1 carefully. Trace the code yourself to see whether you
get the same values.

Table 6.1 Trace Results Using the Binary Search Algorithm
Terminating

Iteration first last location list[location] Condition

item: fish
First 0 10 5 dog
Second 6 10 8 horse
Third 6 7 6 fish found is true

item: snake
First 0 10 5 dog
Second 6 10 8 horse
Third 9 10 9 monkey
Fourth 10 10 10 snake found is true

item: zebra
First 0 10 5 dog
Second 6 10 8 horse
Third 9 10 9 monkey
Fourth 10 10 10 snake
Fifth 11 10 last < first

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 429

430 | Chapter 6: The List ADT

Figure 6.6 Trace of the binary search algorithm

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

ant

cat

chicken

cow

deer

dog

fish

goat

horse

monkey

snake

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

first

location

last

first

location

last

first and location

last first, last,
and location

bat cannot be in
this part of the list

bat cannot be
in this part
of the list

bat cannot be
in this part
of the list

bat cannot be
in this part
of the list

First iteration
bat < dog

Second iteration
bat < chicken

Third iteration
bat > ant

Fourth iteration
bat < cat

ant

cat

chicken

cow

deer

dog

fish

goat

horse

monkey

snake

(a) (b)

ant

cat

chicken

cow

deer

dog

fish

goat

horse

monkey

snake

(c)

ant

cat

chicken

cow

deer

dog

fish

goat

horse

monkey

snake

(d)

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 430

6.6 The Binary Search Algorithm | 431

Where do we put our new version of f i nd? We can’t place it in the Ar r a y-
Uns or t e dLi s t class, because it doesn’t work for unsorted lists. We must place it in our
sorted list implementation class. To ensure that we don’t invalidate our previous cover-
age of the sorted list, we create a completely new sorted list implementation, called
Ar r a ySor t e dLi s t 2. It implements Li s t I nt e r f a c e and extends Ar r a yUns or t e dLi s t ,
the same as Ar r a ySor t e dLi s t . The only difference between the two classes is that the
new class includes our improved f i nd method.

If we instantiate an object of class Ar r a ySor t e dLi s t 2 and invoke any of its meth-
ods c ont a i ns , r e move , or ge t , those methods in turn invoke the protected method
f i nd. When they do so, they activate the more efficient f i nd contained in Ar r a y-
Sor t e dLi s t 2, rather than the f i nd contained in Ar r a yUns or t e dLi s t . The rules of
inheritance dictate that they use the overriding method, even though those three meth-
ods are defined themselves in the Ar r a yUns or t e dLi s t class.

The Ar r a ySor t e dLi s t 2 class can be found in this book’s c h06. l i s t s package.

Recursive Binary Search
Consider this informal description of the binary search algorithm:

To search a list, check the middle element on the list. If it’s the target element, you
are done; if it’s less than the target element, search the second half of the list; oth-
erwise, search the first half of the list.

There is something inherently recursive about this description. We search the list by
searching half the list. The solution is expressed in smaller versions of the original prob-
lem: If the answer isn’t found in the middle position, perform a binary search (a recur-
sive call) to search the appropriate half of the list (a smaller problem). Here we show a
f i nd method that uses recursion.

In the iterative version, we kept track of the bounds of the current search area
with two local variables: f i r s t and l a s t . In the recursive version, we call the recur-
sive method with these two values as parameters. In the iterative version, we used a
while loop. In the recursive version, we use recursive calls embedded in a selection
structure.

We create a third array-based sorted list class, Ar r a ySor t e dLi s t 3, in which we
implement the recursive approach. It is also found in the c h06. l i s t s package, along
with the other list-related classes. The Ar r a ySor t e dLi s t 3 class fits with the other list
classes and interfaces exactly the same as Ar r a ySor t e dLi s t 2.

The f i nd method itself is not recursive, but it does make use of a recursive “helper”
method called r e c Fi nd, which does the actual searching. Although a single recursive
method might solve our problem, we want to keep the signature of f i nd the same as it
was before, so that we do not have to change the three public methods of the Ar r a y-
Uns or t e dLi s t class that use it.

pr ot e c t e d voi d r e c Fi nd(Compa r a bl e t a r ge t , i nt f r omLoc a t i on, i nt
t oLoc a t i on)
/ / Se a r c he s l i s t be t we e n f r omLoc a t i on a nd t oLoc a t i on
/ / f or a n oc c ur r e nc e of a n e l e me nt e s uc h t ha t

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 431

432 | Chapter 6: The List ADT

6. Some compilers generate a warning message regarding an unchecked call to c ompa r e To, because we have
declared Compa r a bl e objects without specifying a generic type. Because we understand the reason for the
warning message, we can safely ignore it. The code will still compile.

/ / t a r ge t . e qua l s (e) . I f s uc c e s s f ul , s e t s i ns t a nc e va r i a bl e s
/ / f ound t o t r ue a nd l oc a t i on t o t he a r r a y i nde x of e . I f
/ / not s uc c e s s f ul , s e t s f ound t o f a l s e .
{

i f (f r omLoc a t i on > t oLoc a t i on) / / Ba s e c a s e 1
f ound = f a l s e ;

e l s e
{

i nt c ompa r e Re s ul t ;
l oc a t i on = (f r omLoc a t i on + t oLoc a t i on) / 2;
c ompa r e Re s ul t = t a r ge t . c ompa r e To6 (l i s t [l oc a t i on]) ;

i f (c ompa r e Re s ul t == 0) / / Ba s e c a s e 2
f ound = t r ue ;

e l s e i f (c ompa r e Re s ul t < 0)
/ / t a r ge t i s l e s s t ha n e l e me nt a t l oc a t i on
r e c Fi nd (t a r ge t , f r omLoc a t i on, l oc a t i on - 1) ;

e l s e
/ / t a r ge t i s gr e a t e r t ha n e l e me nt a t l oc a t i on
r e c Fi nd (t a r ge t , l oc a t i on + 1, t oLoc a t i on) ;

}
}

pr ot e c t e d voi d f i nd(T t a r ge t)
/ / Se a r c he s l i s t f or a n oc c ur r e nc e of a n e l e me nt e s uc h t ha t
/ / t a r ge t . e qua l s (e) . I f s uc c e s s f ul , s e t s i ns t a nc e va r i a bl e s
/ / f ound t o t r ue a nd l oc a t i on t o t he a r r a y i nde x of e . I f
/ / not s uc c e s s f ul , s e t s f ound t o f a l s e .
{

Compa r a bl e t a r ge t El e me nt = (Compa r a bl e) t a r ge t ;
f ound = f a l s e ;
r e c Fi nd(t a r ge t El e me nt , 0, numEl e me nt s - 1) ;

}

Efficiency Analysis
Did you notice that for all the examples dealing with the binary search algorithm, we
never had to do more than four comparisons, even though the list had 11 elements?
This is because the list is cut in half each time through the main part of the algorithm.
The binary search algorithm is O(log2N), a significant improvement over the O(N) linear
search algorithm. Table 6.2 compares a linear search and a binary search in terms of the
maximum number of iterations needed to find an element.

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 432

6.7 Reference- Based Implementations | 433

Table 6.2 Comparison of Linear and Binary Searches

Maximum Number of Iterations

Length Linear Search Binary Search

10 10 4
100 100 7

1,000 1,000 10
10,000 10,000 14

100,000 100,000 17
1,000,000 1,000,000 20

If the binary search is so much faster, why not use it all the time? It is certainly
faster in terms of the number of list comparisons, but more work is needed each time
through a stage of the binary search than through a stage of the linear search algorithm.
If the number of components on the list is small (say, less than 20), linear search algo-
rithms are faster because they perform less work during each iteration. As the number
of components on the list increases, however, the binary search algorithm becomes
much more efficient. Of course, the binary search requires the list to be sorted in the
first place, and sorting also takes time.

6.7 Reference- Based Implementations

In this section we develop list implementations using references (links). We follow the same
basic pattern of development here that we employed in Section 6.4, where we developed
list implementations using arrays. Our reference-based implementations fulfill the inter-
faces we developed in Section 6.3. As we did for arrays, first we implement an unsorted
version and then we extend it with a sorted version. Figure 6.10, in the chapter sum-
mary, shows the relationships among the primary classes and interfaces created to sup-
port our List ADT, including those developed in this section.

We’ll implement both unsorted and sorted lists using the linked approach, but we do
not implement indexed lists in this way. Why not? The indexed list features four operations
(a dd, s e t , ge t , r e move) involving index arguments. There is no simple way to implement
those operations efficiently using a linked approach. Consider the ge t operation. In the
array-based implementation, it is a simple matter: Return the array element located at the
index. It’s an O(1) operation. With our linked approach we would need to traverse the list,
counting nodes until we reach the requested node. This is an O(N) operation.

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 433

434 | Chapter 6: The List ADT

Certain linked structures do enable efficient indexed access to a collection of ele-
ments, but they are not simple lists. Thus we do not cover a linked indexed list here.

There do exist linked structures that enable efficient indexed access to a collection of
elements, but they are not simple lists. Remember, a list is an abstraction. Just because we
envision it as being written down like a series of lines on a page, we don’t have to imple-
ment it that way. For example, a room full of filing cabinets with folders arranged by date
is effectively a very long list. Each drawer has a range of dates on the front that we can use
to jump into the list near our desired index. As you can imagine, implementing a similar
approach to obtain an efficient linked indexed list would result in a different kind of data
structure than the linear linked list we have been using, and would use much different
algorithms.

As we did for our reference-based stacks and queues, we again use the LLNode class
from the s uppor t package to provide our nodes. The information attribute of a node
contains the list element; the link attribute contains a reference to the node holding the
next list element. We maintain a variable, l i s t , that references the first node on the list.

The RefUnsortedList Class
If we followed our established naming protocol, we would probably give the linked
classes names such as Li nke dLi s t . The Java library, however, already has a
Li nke dLi s t class, and we have been using the standard term “linked list” to refer to an
implementation-dependent structure. So as not to confuse things, we use the term “Ref”
(reference) when naming classes in this section.

We discuss each of the methods required for the Re f Uns or t e dLi s t class here. The
code for the class is included at the end of this subsection.

• s i z e Returns the number of elements on the list.
In the array-based approach, an instance variable numEl e me nt s held the number
of elements in the array and was used to indicate the first empty array location.
Because we are now using a linked list, we do not have array locations. Never-
theless, to support the s i z e operation we still maintain numEl e me nt s , incre-
menting it whenever an element is added to the list and decrementing it
whenever an element is removed. For both the unsorted and sorted versions,
s i z e simply returns the value of numEl e me nt s .

• a dd Passed an obj e c t argument and adds it to the list.
Because the list is unsorted, and order of the elements is not important, we can
just add new elements to the front of the list. This is the easiest, most efficient
approach, because l i s t already provides a reference to the front of the list. We
used this same approach for the StringLogs in Chapter 2.

• c ont a i ns Passed an obj e c t argument and returns a bool e a n indicating
whether the list contains an equivalent element.
This operation is implemented by traversing the linked list from the first element
to the last element, stopping when the argument is found or the end of the list is

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 434

6.7 Reference- Based Implementations | 435

reached. As was discussed in Section 6.6, when searching a sorted list in this
manner, we can stop searching if we reach an element larger than the target ele-
ment. The implementers of the sorted list class can override this method to use
that slightly more efficient approach. This same situation exists for the r e move
and ge t methods.

• r e move Passed an obj e c t argument and, if an equivalent element exists on the
list, removes one instance of that element from the list. Returns a bool e a n value
indicating whether an object was actually removed.
The element being removed can be found using the approach described for c on-
t a i ns . Once found, it can be removed by “jumping over” it. This is discussed in
more detail below.

• ge t Passed an obj e c t argument. Returns an equivalent object if one exists on
the list. If not, returns nul l .
The approach described for c ont a i ns to find the required element works here.
Once found, the element is returned.

• t oSt r i ng Returns a nicely formatted string representing the list.
This requires a traversal of the underlying linked list, saving elements to a string
variable as the traversal proceeds.

• r e s e t Initializes the list for an iteration.
This only requires setting the current position to the beginning of the list.

• ge t Ne xt Returns the next element of an iteration, and updates the current position.
This only requires returning the element at the current position and correctly
updating the value of the current position. Remember that if the current position
is the end of the list, then it is set back to the beginning of the list.

The implementations of the s i z e , c ont a i ns , ge t , t oSt r i ng, r e s e t , and ge t Ne xt
methods do not need further explanation. We discuss the remaining methods (the con-
structor and the f i nd and r e move methods) next.

There is only one constructor provided for Re f Uns or t e dLi s t , because there is no
need to deal with capacity as there was with the array-based implementation. The con-
structor sets the instance variables numEl e me nt s , l i s t , and c ur r e nt Pos to their ini-
tial values, essentially constructing an empty list.

The protected f i nd method is used by the public methods c ont a i ns , r e move , and
ge t . It follows the same algorithm as the f i nd method of the array-based implementation:
Walk through the list until the target element is found or the end of the list is reached. The
only difference is the use of linked list statements instead of array-related statements. Here
is the code for both methods, for comparison. In the array-based approach, l oc a t i on is of
type i nt , indicating the array index of the target element; in the reference-based approach,
l oc a t i on is an LLNode , indicating the node containing the target element.

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 435

436 | Chapter 6: The List ADT

Array Based
pr ot e c t e d voi d f i nd(T t a r ge t)
{

l oc a t i on = 0; f ound = f a l s e ;
whi l e (l oc a t i on < numEl e me nt s)
{

i f (l i s t [l oc a t i on] . e qua l s (t a r ge t))
{

f ound = t r ue ;
r e t ur n;

}
e l s e

l oc a t i on++;
}

}

Reference Based
pr ot e c t e d voi d f i nd(T t a r ge t)
{

l oc a t i on = l i s t ; f ound = f a l s e ;
whi l e (l oc a t i on ! = nul l)
{

i f (l oc a t i on. ge t I nf o() . e qua l s (t a r ge t))
{

f ound = t r ue ;
r e t ur n;

}
e l s e
{

pr e vi ous = l oc a t i on;
l oc a t i on = l oc a t i on. ge t Li nk() ;

}
}

}

Actually, we lied. There is another difference between the two f i nd implementa-
tions. Do you see it? The reference-based implementation assigns a value to a variable
named pr e vi ous that is not mentioned in the array-based implementation. This vari-
able is used by the Re f Li s t r e move method. Let’s take a closer look at this method.

To remove an element, we must first find it. We do so by using the f i nd method,
which sets the l oc a t i on variable to indicate the target element. As shown in Figure
6.7, however, to actually remove the node referenced by l oc a t i on, we must change the
reference in the previous node. That is, we must change the link of the previous node to
reference the node following the one being removed. We “jump over” the removed
node. This is where we use the pr e vi ous variable.

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 436

6.7 Reference- Based Implementations | 437

Figure 6.7 Removing an element from a linked list

•••Katel i s t •Lila Becca John

•

l oc a t i on

•

pr e vi ous

Remove Lila

Not only does f i nd set l oc a t i on, but it also sets pr e vi ous so that the r e move
method has access to the previous node and can implement the “jump over” step.

Removing the first node must be treated as a special case because the main refer-
ence to the list (l i s t) must be changed. We handle that special case with an if state-
ment at the beginning of the code for r e move . Is removing the last node a special case?
No. The link of the last node, referenced by l oc a t i on, is nul l . Therefore, in the case of
removing the last node the statement

pr e vi ous . s e t Li nk(l oc a t i on. ge t Li nk()) ;

correctly sets the value of the link of the previous node to nul l , indicating that it is
now the end of the list.

/ / -
/ / Re f Uns or t e dLi s t . j a va by Da l e / J oyc e / We e ms Cha pt e r 6
/ /
/ / I mpl e me nt s t he Li s t I nt e r f a c e us i ng r e f e r e nc e s (a l i nke d l i s t) .
/ /
/ / Nul l e l e me nt s a r e not pe r mi t t e d on a l i s t .
/ /
/ / One c ons t r uc t or i s pr ovi de d; one t ha t c r e a t e s a n e mpt y l i s t .
/ / -

pa c ka ge c h06. l i s t s ;

i mpor t s uppor t . LLNode ;

publ i c c l a s s Re f Uns or t e dLi s t <T> i mpl e me nt s Li s t I nt e r f a c e <T>
{

pr ot e c t e d i nt numEl e me nt s ; / / numbe r of e l e me nt s i n t hi s l i s t
pr ot e c t e d LLNode <T> c ur r e nt Pos ; / / c ur r e nt pos i t i on f or i t e r a t i on

/ / s e t by f i nd me t hod

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 437

438 | Chapter 6: The List ADT

pr ot e c t e d bool e a n f ound; / / t r ue i f e l e me nt f ound, e l s e f a l s e
pr ot e c t e d LLNode <T> l oc a t i on; / / node c ont a i ni ng e l e me nt , i f f ound
pr ot e c t e d LLNode <T> pr e vi ous ; / / node pr e c e e di ng l oc a t i on

pr ot e c t e d LLNode <T> l i s t ; / / f i r s t node on t he l i s t

publ i c Re f Uns or t e dLi s t ()
{

numEl e me nt s = 0;
l i s t = nul l ;
c ur r e nt Pos = nul l ;

}

publ i c voi d a dd(T e l e me nt)
/ / Adds e l e me nt t o t hi s l i s t .
{

LLNode <T> ne wNode = ne w LLNode <T>(e l e me nt) ;
ne wNode . s e t Li nk(l i s t) ;
l i s t = ne wNode ;
numEl e me nt s ++;

}

pr ot e c t e d voi d f i nd(T t a r ge t)
/ / Se a r c he s l i s t f or a n oc c ur r e nc e of a n e l e me nt e s uc h t ha t
/ / e . e qua l s (t a r ge t) . I f s uc c e s s f ul , s e t s i ns t a nc e va r i a bl e s
/ / f ound t o t r ue , l oc a t i on t o node c ont a i ni ng e , a nd pr e vi ous
/ / t o t he node t ha t l i nks t o l oc a t i on. I f not s uc c e s s f ul , s e t s
/ / f ound t o f a l s e .
{

l oc a t i on = l i s t ;
f ound = f a l s e ;

whi l e (l oc a t i on ! = nul l)
{

i f (l oc a t i on. ge t I nf o() . e qua l s (t a r ge t)) / / i f t he y ma t c h
{

f ound = t r ue ;
r e t ur n;

}
e l s e
{

pr e vi ous = l oc a t i on;
l oc a t i on = l oc a t i on. ge t Li nk() ;

}
}

}

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 438

6.7 Reference- Based Implementations | 439

publ i c i nt s i z e ()
/ / Re t ur ns t he numbe r of e l e me nt s on t hi s l i s t .
{

r e t ur n numEl e me nt s ;
}

publ i c bool e a n c ont a i ns (T e l e me nt)
/ / Re t ur ns t r ue i f t hi s l i s t c ont a i ns a n e l e me nt e s uc h t ha t
/ / e . e qua l s (e l e me nt) ; ot he r wi s e , r e t ur ns f a l s e .
{

f i nd(e l e me nt) ;
r e t ur n f ound;

}

publ i c bool e a n r e move (T e l e me nt)
/ / Re move s a n e l e me nt e f r om t hi s l i s t s uc h t ha t e . e qua l s (e l e me nt)
/ / a nd r e t ur ns t r ue ; i f no s uc h e l e me nt e xi s t s , r e t ur ns f a l s e .
{

f i nd(e l e me nt) ;
i f (f ound)
{

i f (l i s t == l oc a t i on)
l i s t = l i s t . ge t Li nk() ; / / r e move f i r s t node

e l s e
pr e vi ous . s e t Li nk(l oc a t i on. ge t Li nk()) ; / / r e move node a t l oc a t i on

numEl e me nt s - - ;
}
r e t ur n f ound;

}

publ i c T ge t (T e l e me nt)
/ / Re t ur ns a n e l e me nt e f r om t hi s l i s t s uc h t ha t e . e qua l s (e l e me nt) ;
/ / i f no s uc h e l e me nt e xi s t s , r e t ur ns nul l .
{

f i nd(e l e me nt) ;
i f (f ound)

r e t ur n l oc a t i on. ge t I nf o() ;
e l s e

r e t ur n nul l ;
}

publ i c St r i ng t oSt r i ng()
/ / Re t ur ns a ni c e l y f or ma t t e d s t r i ng t ha t r e pr e s e nt s t hi s l i s t .

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 439

440 | Chapter 6: The List ADT

{
LLNode <T> c ur r Node = l i s t ;
St r i ng l i s t St r i ng = " Li s t : \ n" ;
whi l e (c ur r Node ! = nul l)
{

l i s t St r i ng = l i s t St r i ng + " " + c ur r Node . ge t I nf o() + " \ n" ;
c ur r Node = c ur r Node . ge t Li nk() ;

}
r e t ur n l i s t St r i ng;

}

publ i c voi d r e s e t ()
/ / I ni t i a l i z e s c ur r e nt pos i t i on f or a n i t e r a t i on t hr ough t hi s l i s t ,
/ / t o t he f i r s t e l e me nt on t hi s l i s t .
{

c ur r e nt Pos = l i s t ;
}

publ i c T ge t Ne xt ()
/ / Pr e c ondi t i ons : The l i s t i s not e mpt y
/ / The l i s t ha s be e n r e s e t
/ / The l i s t ha s not be e n modi f i e d s i nc e mos t r e c e nt r e s e t
/ /
/ / Re t ur ns t he e l e me nt a t t he c ur r e nt pos i t i on on t hi s l i s t .
/ / I f t he c ur r e nt pos i t i on i s t he l a s t e l e me nt , t he n i t a dva nc e s t he va l ue
/ / of t he c ur r e nt pos i t i on t o t he f i r s t e l e me nt ; ot he r wi s e , i t a dva nc e s
/ / t he va l ue of t he c ur r e nt pos i t i on t o t he ne xt e l e me nt .
{

T ne xt = c ur r e nt Pos . ge t I nf o() ;
i f (c ur r e nt Pos . ge t Li nk() == nul l)

c ur r e nt Pos = l i s t ;
e l s e

c ur r e nt Pos = c ur r e nt Pos . ge t Li nk() ;
r e t ur n ne xt ;

}
}

The RefSortedList Class
The Re f Sor t e dLi s t class implements the Li s t I nt e r f a c e . We take advantage of simi-
larities between the unsorted and sorted lists by having Re f Sor t e dLi s t extend Re f -
Uns or t e dLi s t . The only method we need to override is the a dd method. The new a dd
method must insert an element into the correct position on the list. When we imple-
mented stacks, we inserted elements at the front of a linked list. When we implemented
queues, we inserted elements at the end of a linked list. This is the first time we have
implemented a general insert method for a linked list.

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 440

6.7 Reference- Based Implementations | 441

Adding an element to a reference-based sorted list requires three steps:

1. Find the location where the new element belongs.
2. Create a node for the new element.
3. Correctly link the new node into the identified location.

We are already familiar with how to do step 1: Walk through the list until we reach an
element that is greater than or equal to our insertion element or we reach the end of the
list. By now we have a lot of experience traversing a linked list, so it is not difficult to
create code that sets a l oc a t i on variable to reference the node on the list that is to fol-
low our new node.

Our experience in coding the r e move method for the Re f Uns or t e dLi s t class,
however, tells us that it is not enough to know the location that will follow the new
node. To link the new node into the identified location, we also need a reference to the
previous node. Therefore, while traversing the list during the search, each time we
update the l oc a t i on variable, we first save its value in a pr e vLoc variable:

pr e vLoc = l oc a t i on;
l oc a t i on = l oc a t i on. ge t Li nk() ;

As an example, Figure 6.8(a) shows the result of searching a list to add “cow.”
For the array-based approach, to create space for the new element we had to shift

array elements over one location. With the linked approach, no shifting is necessary. To
create space for the new element (step 2), we simply instantiate a new LLNode object
called ne wNode , passing its constructor the new element for use as the information
attribute of the node. See Figure 6.8(b).

Now we just have to complete the third step: Correctly link the new node into the
identified location. We change the link in the ne wNode to reference the node indicated
by l oc a t i on and change the link in our pr e vLoc node to reference the ne wNode :

ne wNode . s e t Li nk(l oc a t i on) ;
pr e vLoc . s e t Li nk(ne wNode) ;

See Figure 6.8(c).
Just as with the r e move method in the Re f Uns or t e dLi s t class, dealing with the

situation when l oc a t i on indicates the first node of the list is a special case. In this case
we do not have a previous node. Instead, we must change the main reference to the list
(l i s t). We handle the special case using an if statement that checks whether the value
of pr e vLoc is nul l :

i f (pr e vLoc == nul l)
{

/ / I ns e r t a s f i r s t node .
ne wNode . s e t Li nk(l i s t) ;
l i s t = ne wNode ;

}

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 441

442 | Chapter 6: The List ADT

Figure 6.8 Adding an element to a sorted linked list

•••antl i s t •ball dog pen

•

l oc a t i on

•

pr e vLoc

(a) Add "cow"

•••antl i s t

• cowne wNode

•ball dog pen

•

l oc a t i on

•

pr e vLoc

•••antl i s t

•• cowne wNode

•ball dog pen

•

l oc a t i on

•

pr e vLoc

(b)

(c)

Figure 6.9 depicts the required sequence of steps.
Are there any more special cases to consider? Yes, two: adding an element to the

end of the list, and adding an element to an empty list. Both of these cases are handled
correctly by the code that is already in place; we leave verification of this to you. The
entire Re f Sor t e dLi s t class is listed below.

Since we are not using arrays within this implementation (because they are not
“first-class” objects Java arrays do not work well with Java generics) we are able to use
a generic-type T that extends Compa r a bl e in the header for our Re f Sor t e dLi s t . This
ensures that only comparable elements are added to our list and removes any need to
cast elements as Compa r a bl e , as we had to do within Ar r a ySor t e dLi s t .

/ / -
/ / Re f Sor t e dLi s t . j a va by Da l e / J oyc e / We e ms Cha pt e r 6
/ /
/ / I mpl e me nt s t he Li s t I nt e r f a c e us i ng a l i nke d l i s t . I t i s ke pt i n i nc r e a s i ng
/ / or de r a s de f i ne d by t he c ompa r e To me t hod of t he a dde d e l e me nt s .

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 442

6.7 Reference- Based Implementations | 443

Figure 6.9 Adding an element to the beginning of a sorted linked list

•••antl i s t •ball dog pen

•l oc a t i on

pr e vLoc

(a) Add "ace"

•••antl i s t

• acene wNode

•ball dog pen

(b)

•l oc a t i on

pr e vLoc

•l oc a t i on

pr e vLoc

•••antl i s t

•• acene wNode

•ball dog pen

(c)

/ / Onl y c ompa r a bl e e l e me nt s ma y be a dde d t o a l i s t .
/ /
/ / Nul l e l e me nt s a r e not pe r mi t t e d on a l i s t .
/ /
/ / One c ons t r uc t or i s pr ovi de d; one t ha t c r e a t e s a n e mpt y l i s t .
/ / -

pa c ka ge c h06. l i s t s ;

i mpor t s uppor t . LLNode ;

publ i c c l a s s Re f Sor t e dLi s t <T e xt e nds Compa r a bl e <T>>

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 443

444 | Chapter 6: The List ADT

e xt e nds Re f Uns or t e dLi s t <T>
i mpl e me nt s Li s t I nt e r f a c e <T>

{
publ i c Re f Sor t e dLi s t ()
{

s upe r () ;
}

publ i c voi d a dd(T e l e me nt)
/ / Adds e l e me nt t o t hi s l i s t .
{

LLNode <T> pr e vLoc ; / / t r a i l i ng r e f e r e nc e
LLNode <T> l oc a t i on; / / t r a ve l i ng r e f e r e nc e
T l i s t El e me nt ; / / c ur r e nt l i s t e l e me nt be i ng c ompa r e d

/ / Se t up s e a r c h f or i ns e r t i on poi nt .
l oc a t i on = l i s t ;
pr e vLoc = nul l ;

/ / Fi nd i ns e r t i on poi nt .
whi l e (l oc a t i on ! = nul l)
{

l i s t El e me nt = l oc a t i on. ge t I nf o() ;
i f (l i s t El e me nt . c ompa r e To(e l e me nt) < 0) / / l i s t e l e me nt < a dd e l e me nt
{

pr e vLoc = l oc a t i on;
l oc a t i on = l oc a t i on. ge t Li nk() ;

}
e l s e

br e a k;
}

/ / Pr e pa r e node f or i ns e r t i on.
LLNode <T> ne wNode = ne w LLNode <T>(e l e me nt) ;

/ / I ns e r t node i nt o l i s t .
i f (pr e vLoc == nul l)
{

/ / I ns e r t a s f i r s t node .
ne wNode . s e t Li nk(l i s t) ;
l i s t = ne wNode ;

}
e l s e

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 444

6.8 Storing Objects and Structures in Files | 445

{
/ / I ns e r t e l s e whe r e .
ne wNode . s e t Li nk(l oc a t i on) ;
pr e vLoc . s e t Li nk(ne wNode) ;

}
numEl e me nt s ++;

}
}

We could develop an improved version of the f i nd method for the Re f Sor t e d-
Li s t class, but that is left for you as an exercise.

That wraps up our development of the two reference-based list implementations. Both
implementations should be carefully tested. It is possible to develop test drivers that work
well with all of our list implementations—the unsorted, sorted, and indexed varieties as well
as the array- and reference-based implementations. Of course, additional test cases would
be required for the sorted and indexed cases because they provide additional functionality.

6.8 Storing Objects and Structures in Files

Suppose we want to save a stack, queue, or list between program runs. Our current pro-
grams can build structures and use them for processing information, but the structures
are lost when the program terminates. The memory space occupied by the structures,
along with all the other memory space used by the program, is returned to the operating
system for use by other programs.

Many programs need to save information between program runs. Alternatively,
we may want one program to save information for later use by another program. In
either case, this information is stored in files, which are the mechanism for perma-
nently storing information on computers. In this subsection we investigate
approaches, including Java’s serialization facilities, for saving and retrieving objects
and structures using files.

Saving Object Data in Text Files

Any information we need to save can be represented by its primitive parts. Consider the
Song class we defined in Section 6.5. A Song object had two instance variables:

pr ot e c t e d St r i ng na me ;
pr ot e c t e d i nt dur a t i on;

A song is not a “primitive” object, but when broken into its constituent parts its infor-
mation consists of a St r i ng and an i nt . Both of these components can be saved as

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 445

446 | Chapter 6: The List ADT

7. Appendix E includes a brief introduction to the Fi l e Wr i t e r , Fi l e Re a de r , and Pr i nt Wr i t e r classes.

strings. We can save a Song object by breaking it into its constituent parts and writing
the strings that represent both parts to a text file. Here's an example:7

i mpor t j a va . i o . *;
i mpor t s uppor t . *;

publ i c c l a s s Sa ve Song
{

pr i va t e s t a t i c Pr i nt Wr i t e r out Fi l e ;

publ i c s t a t i c voi d ma i n(St r i ng[] a r gs) t hr ows I OExc e pt i on
{

Song s ong1 = ne w Song(" Pe nny La ne " , 2, 57) ;

out Fi l e = ne w Pr i nt Wr i t e r (ne w Fi l e Wr i t e r (" s ong. t xt ")) ;
out Fi l e . pr i nt l n(s ong1. ge t Na me ()) ;
out Fi l e . pr i nt l n(s ong1. ge t Dur a t i on()) ;
out Fi l e . c l os e () ;

}
}

When this program is executed, it creates the s ong. t xt file:

When we need to retrieve the Song object, we just reverse the process: Read the strings, and
reconstruct the song. We can use the familiar Sc a nne r class to help with this task.

i mpor t j a va . i o . *;
i mpor t j a va . ut i l . * ;
i mpor t s uppor t . *;

publ i c c l a s s Ge t Song
{

publ i c s t a t i c voi d ma i n(St r i ng[] a r gs) t hr ows I OExc e pt i on
{

St r i ng na me ;
i nt dur a t i on;

Penny Lane
177

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 446

6.8 Storing Objects and Structures in Files | 447

Fi l e Re a de r f i n = ne w Fi l e Re a de r (" s ong. t xt ") ;
Sc a nne r s ongI n = ne w Sc a nne r (f i n) ;

na me = s ongI n. ne xt Li ne () ;
dur a t i on = s ongI n. ne xt I nt () ;

Song s ong2 = ne w Song(na me , dur a t i on) ;

Sys t e m. out . pr i nt l n(" The na me of t he s ong i s " + s ong2. ge t Na me ()) ;
Sys t e m. out . pr i nt l n(" The dur a t i on of t he s ong i s " +

s ong2. ge t Dur a t i on()) ;
}

}

When these two programs are executed back to back, the second program produces this
output:

The name of the song is Penny Lane
The duration of the song is 177

As you can see, the Song object created and saved as text strings by the first program
was successfully retrieved, recreated, and used by the second program.

Serialization of Objects
Transforming objects into strings and back again is a lot of work for the programmer.
Fortunately, Java provides another way to save objects, called serializing the object.

Support Constructs
Before seeing how to serialize objects, we must learn about a new interface and two
support classes.

We can write objects using the wr i t e Obj e c t method of the Obj e c t Out put St r e a m
class. We can read objects using the r e a dObj e c t method of the Obj e c t I nput St r e a m
class. To prepare for the output of serialized objects to the file obj e c t s . da t using the
stream variable out , we write

Obj e c t Out put St r e a m out = ne w Obj e c t Out put St r e a m(ne w
Fi l e Out put St r e a m(" obj e c t s . da t ")) ;

Similarly, to prepare for reading from the same file, but this time using the variable i n,
we write

Obj e c t I nput St r e a m i n = ne w Obj e c t I nput St r e a m(ne w
Fi l e I nput St r e a m(" obj e c t s . da t ")) ;

Finally, any class whose objects we plan to serialize must implement the Se r i a l -
i z a bl e interface. This interface has no methods! It is merely a way of marking a class

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 447

448 | Chapter 6: The List ADT

as potentially being serialized for I/O, so that the Java run-time engine knows to con-
vert references as needed on output or input of class instances. Thus, to make our
objects serializable, we simply have to state that their class implements this interface.
The Se r i a l i z a bl e interface is part of the Java i o package.

Serializing Objects
Here’s the code for a serializable version of our song class, called Se r Song:

/ / -
/ / Se r Song. j a va by Da l e / J oyc e / We e ms Cha pt e r 6
/ /
/ / Suppor t s s ong obj e c t s ha vi ng a na me a nd a dur a t i on.
/ / I mpl e me nt s Se r i a l i z a bl e .
/ / -

pa c ka ge s uppor t ;

i mpor t j a va . i o . *;
i mpor t j a va . t e xt . *;

publ i c c l a s s Se r Song i mpl e me nt s Se r i a l i z a bl e
{

pr ot e c t e d St r i ng na me ;
pr ot e c t e d i nt dur a t i on; / / i n s e c onds

De c i ma l For ma t f mt = ne w De c i ma l For ma t (" 00") ; / / t o f or ma t s e c onds

publ i c Se r Song(St r i ng na me , i nt s e c onds)
{

t hi s . na me = na me ;
dur a t i on = s e c onds ;

}

publ i c Se r Song(St r i ng na me , i nt mi nut e s , i nt s e c onds)
{

t hi s . na me = na me ;
dur a t i on = (60 * mi nut e s) + s e c onds ;

}

publ i c St r i ng ge t Na me ()
{

r e t ur n na me ;
}

publ i c i nt ge t Dur a t i on()
{

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 448

6.8 Storing Objects and Structures in Files | 449

r e t ur n dur a t i on;
}

publ i c St r i ng t oSt r i ng()
{

r e t ur n (na me + " " + (dur a t i on / 60) + " : "
+ f mt . f or ma t (dur a t i on % 60)) ;

}
}

We have emphasized the differences between this class and our previous Song class—the
name of the class, the statement that it implements Se r i a l i z a bl e , and some updated
comments. Additionally, this class must import the j a va . i o package because the
Se r i a l i z a bl e interface is defined there.

Now let’s look at a program that creates and saves a Se r Song object:

i mpor t j a va . i o . *;
i mpor t s uppor t . *;

publ i c c l a s s Sa ve Se r Song
{

pr i va t e s t a t i c Pr i nt Wr i t e r out Fi l e ;
publ i c s t a t i c voi d ma i n(St r i ng[] a r gs) t hr ows I OExc e pt i on
{

Se r Song s ong1 = ne w Se r Song(" Pe nny La ne " , 2 , 57) ;

Obj e c t Out put St r e a m out = ne w Obj e c t Out put St r e a m(ne w
Fi l e Out put St r e a m(" s ong. da t ")) ;

out . wr i t e Obj e c t (s ong1) ;
out . c l os e () ;

}
}

As you can see, to save the Se r Song object we simply write the object to the out
stream. We do not have to handle the individual attributes separately.

Let’s see the corresponding version of retrieving a song:

i mpor t j a va . i o . *;
i mpor t s uppor t . *;

publ i c c l a s s Ge t Se r Song
{

publ i c s t a t i c voi d ma i n(St r i ng[] a r gs) t hr ows I OExc e pt i on
{

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 449

450 | Chapter 6: The List ADT

Se r Song s ong2;
Obj e c t I nput St r e a m i n = ne w Obj e c t I nput St r e a m(ne w

Fi l e I nput St r e a m(" s ong. da t ")) ;

t r y
{

s ong2 = (Se r Song) i n. r e a dObj e c t () ;
Sys t e m. out . pr i nt l n(" The na me of t he s ong i s " +

s ong2. ge t Na me ()) ;
Sys t e m. out . pr i nt l n(" The dur a t i on of t he s ong i s "

+ s ong2. ge t Dur a t i on()) ;
}
c a t c h (Exc e pt i on e)
{

Sys t e m. out . pr i nt l n(" Er r or i n r e a dObj e c t : " + e) ;
Sys t e m. e xi t (1) ;

}
}

}

The object read from the file must be cast into a Se r Song object before being assigned
to the s ong2 variable. Essentially, we promise the compiler that the object retrieved is a
Se r Song object. Also notice that the r e a dObj e c t method throws several checked
exceptions, so we must enclose it in a try-catch statement. Other than that, it is a simple
matter to read in our Se r Song object. Java takes care of all the work of rebuilding the
object.

Serializing Structures
The power of Java’s serialization tools really becomes evident when we are dealing with
data structures. For example, we can save or restore an entire array of Se r Song objects
with a single statement. To save the array:

Se r Song[] s ongs = ne w Se r Song[100] ;
. . .
out . wr i t e Obj e c t (s ongs) ;

To retrieve it later, perhaps from another program:

Se r Song[] l a t e r Songs = (Se r Song[]) i n. r e a dObj e c t () ;

Even more impressive, Java’s serialization works for linked structures. We can save
an entire linked list using a single wr i t e Obj e c t statement, and later restore it using a
single r e a dObj e c t statement. For example, if the wr i t e Obj e c t statement is invoked
on an object l i s t , Java follows all references that start with l i s t and lead to other

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 450

6.8 Storing Objects and Structures in Files | 451

objects, and it saves those objects along with the l i s t object. Of course, all of the
objects involved and their constituent parts, including the original l i s t object, must
implement the Se r i a l i z a bl e interface.

This approach works even for the nonlinear reference-based structures we will
study in later chapters. The tree and graph structures retain both their information and
their structure when we use serialization.

Application: Song Lists
For an example of serialization of a structure, let’s revisit our music application that
used indexed lists. Our program allowed us to enter song titles and lengths; it then dis-
played the song information. Wouldn’t it be more useful if the song information we
entered could be saved for later use?

Our new program uses Java serialization to accomplish this task. For serialization to
work, all of the objects involved must be Se r i a l i z a bl e . Therefore, we created serial-
ized versions of the interfaces and classes needed to support our indexed list, and we
placed them in a new package called c h06. s e r Li s t s .

In addition to saving information between runs, the new program includes a few
more enhancements:

• The original program forced the user to deal with song indexes starting at 0. This
is unnatural for most users. The new program presents the user with song
indexes that start at 1.

• If the user provides an illegal index for a song, the program inserts the song at
the end of the song list instead of throwing an exception.

• The user can now provide a name for the list of songs, such as “Favorite Rap
Oldies” or “New Disco Hits.” This provision is a nice feature, considering that a
user can now retrieve a song list long after it was created.

• If the data file s ongs . da t does not exist, then the program prompts the user for
a song list name and creates a brand new song list. If s ongs . da t does exist, the
program retrieves all of the previously entered song data from the file and the
user continues working with it wherever he or she left off the last time the pro-
gram was run.

The SerSongList Class
To support the new functionality, we create a Se r SongLi s t class. Objects of this
class maintain a list of songs in an array-based indexed list. They also maintain, and
allow access to, information about the name of the song list and the total duration of
the song list. This information is serializable, so that an application can easily save
song list data for later use, by writing the entire Se r SongLi s t object to an
Obj e c t Out put St r e a m.

Se r SongLi s t objects are provided with a name—the name associated with the list
of songs—when they are instantiated. Applications can add songs to the list at a speci-
fied index through the a dd method. The Se r SongLi s t class hides the fact that the
underlying array-based list uses indexes starting at 0 from the application, allowing the

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 451

452 | Chapter 6: The List ADT

application to assume indexing starts at 1. When a song is added, the program auto-
matically updates the total duration of the songs on the list. Applications can use
observer methods to get the name, size, and total duration of the song list. Finally, a
t oSt r i ng method returns a nicely formatted string representing the entire list of songs.

Recall from Chapter 3 that one option for handling error situations within our ADT
methods is “detect and handle the error within the method itself.” We have not seen
many examples of this approach, but the Se r SongLi s t a dd method provides a good
example. If the a dd method is passed an invalid index—for example, a negative number
or a number past the end of the list—instead of raising an exception or ignoring the
error it inserts the specified song at the end of the list. This approach is reasonable
because the end of the list is the most common place for us to add songs onto a song
list. Any application that uses Se r SongLi s t can override this behavior by catching the
erroneous input list index itself, before the index is passed to a dd.

/ / -
/ / Se r SongLi s t . j a va by Da l e / J oyc e / We e ms Cha pt e r 6
/ /
/ / Suppor t s a l i s t of s ong obj e c t s ha vi ng a na me a nd a t ot a l dur a t i on.
/ / Al l ows a ppl i c a t i on t o vi e w i nde xi ng a s s t a r t i ng a t 1 .
/ / I mpl e me nt s Se r i a l i z a bl e .
/ / -

pa c ka ge c h06. s e r Li s t s ;

i mpor t j a va . i o . *; / / Se r i a l i z a bl e i nt e r f a c e
i mpor t j a va . t e xt . *; / / De c i ma l For ma t
i mpor t s uppor t . *; / / Se r Song

publ i c c l a s s Se r SongLi s t i mpl e me nt s Se r i a l i z a bl e
{

pr ot e c t e d St r i ng l i s t Na me ; / / na me of s ong l i s t
pr ot e c t e d i nt t ot Dur a t i on = 0; / / t o t a l dur a t i on of s ongs i n s e c onds

pr ot e c t e d SAr r a yI nde xe dLi s t s ongLi s t ;

De c i ma l For ma t f mt = ne w De c i ma l For ma t (" 00") ; / / t o f or ma t s e c onds

publ i c Se r SongLi s t (St r i ng l i s t Na me)
{

t hi s . l i s t Na me = l i s t Na me ;
s ongLi s t = ne w SAr r a yI nde xe dLi s t (10) ;

}

publ i c St r i ng ge t Li s t Na me ()
{

r e t ur n l i s t Na me ;

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 452

6.8 Storing Objects and Structures in Files | 453

}

publ i c i nt ge t Tot Dur a t i on()
{

r e t ur n t ot Dur a t i on;
}

publ i c i nt ge t Si z e ()
{

r e t ur n s ongLi s t . s i z e () ;
}

publ i c voi d a dd(i nt numbe r , Se r Song s ong)
/ / I f numbe r i s a l e ga l pos i t i on, t he n a dds s ong ont o t he
/ / i nde xe d s ongLi s t a t pos i t i on (numbe r - 1) .
/ / Ot he r wi s e , a dds s ong a t t he e nd of t he s ongLi s t .
{

t ot Dur a t i on = t ot Dur a t i on + s ong. ge t Dur a t i on() ;
i f ((numbe r <= 0) | | (numbe r > (s ongLi s t . s i z e () + 1)))

s ongLi s t . a dd(s ongLi s t . s i z e () , s ong) ;
e l s e

s ongLi s t . a dd(numbe r - 1 , s ong) ;
}

publ i c St r i ng t oSt r i ng()
{

/ / Re t ur ns a ni c e l y f or ma t t e d s t r i ng t ha t r e pr e s e nt s t hi s Se r SongLi s t .
Se r Song s ong;
i nt dur a t i on;
i nt numSongs = s ongLi s t . s i z e () ;

St r i ng hol d = l i s t Na me + " : \ n" ;
f or (i nt i = 0; i < numSongs ; i ++)
{

s ong = (Se r Song) s ongLi s t . ge t (i) ;
dur a t i on = s ong. ge t Dur a t i on() ;
hol d = hol d + (i + 1) + " : " + s ong. ge t Na me () + " ["

+ (dur a t i on / 60) + " : " + f mt . f or ma t (dur a t i on % 60) + "] \ n" ;
}
hol d = hol d + " \ n" ;
hol d = hol d + " Tot a l Ti me : " + (t ot Dur a t i on / 60) +" mi nut e s , "

+ f mt . f or ma t (t ot Dur a t i on % 60) + " s e c onds \ n" ;
r e t ur n hol d;

}
}

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 453

454 | Chapter 6: The List ADT

The Application
The application Se r Songs App can be viewed as having three stages:

1. Initializing the song list First the application tries to obtain the serialized song list
information from the s ongs . da t file. This is accomplished with a single r e a dObj e c t
command. If this attempt is successful, the Se r SongLi s t object s ongs is an exact
copy of the s ongs object saved the last time the application was executed. If it fails, as
indicated by a thrown exception, then the application creates a new song list.

2. Updating the song list Next the application repeatedly prompts the user for song
name, duration, and index information. It saves that information on the song list
through the Se r SongLi s t a dd method. The user indicates that he or she is finished
entering song information by entering a blank song name.

3. Saving the song list Finally, the application saves the entire Se r SongLi s t object
s ongs in the s ongs . da t file for later use, using a single wr i t e Obj e c t command.

Serialization has allowed us to easily save and retrieve a nontrivial object.

/ / -
/ / Se r Songs App. j a va by Da l e / J oyc e / We e ms Cha pt e r 6
/ /
/ / Al l ows us e r t o ma na ge a s ong l i s t .
/ / Us e s t he f i l e s ongs . da t t o s t or e a nd r e t r i e ve s ong l i s t i nf o.
/ / -

i mpor t j a va . ut i l . * ; / / Sc a nne r
i mpor t j a va . i o . *; / / s t r e a ms
i mpor t c h06. s e r Li s t s . *; / / Se r SongLi s t
i mpor t s uppor t . *; / / Se r Song

publ i c c l a s s Se r Songs App
{

publ i c s t a t i c voi d ma i n(St r i ng[] a r gs)
{

Sc a nne r c onI n = ne w Sc a nne r (Sys t e m. i n) ;
f i na l St r i ng FI LENAME = " s ongs . da t " ;

St r i ng na me ; / / s ong na me
St r i ng l i s t Na me ; / / na me of t he s ong l i s t
i nt mi nut e s ; / / s ong dur a t i on
i nt s e c onds ; / / s ong dur a t i on
i nt numbe r ; / / s ong numbe r

Se r SongLi s t s ongs ; / / l i s t of s ongs
Se r Song s ong; / / a s i ngl e s ong

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 454

6.8 Storing Objects and Structures in Files | 455

St r i ng s ki p; / / s ki p r e s t of i nput l i ne a f t e r r e a di ng i nt e ge r

t r y
{

/ / Obt a i n s ong i nf or ma t i on f r om f i l e a nd di s pl a y i t .
Obj e c t I nput St r e a m i n = ne w Obj e c t I nput St r e a m(ne w

Fi l e I nput St r e a m(FI LENAME)) ;
s ongs = (Se r SongLi s t) i n . r e a dObj e c t () ;
Sys t e m. out . pr i nt l n(s ongs) ;

}
c a t c h (Exc e pt i on e)
{

/ / Cr e a t e a ne w s ong l i s t .
Sys t e m. out . pr i nt l n(" Be c a us e t he " + FI LENAME + " f i l e doe s not e xi s t ") ;
Sys t e m. out . pr i nt l n(" or c a n ' t be us e d, a ne w s ong l i s t wi l l be ") ;
Sys t e m. out . pr i nt I n(" c r e a t e d. \ n") ;
Sys t e m. out . pr i nt (" Song l i s t na me : ") ;
l i s t Na me = c onI n. ne xt Li ne () ;
s ongs = ne w Se r SongLi s t (l i s t Na me) ;

}

/ / Ge t s ong i nf or ma t i on f r om us e r .
Sys t e m. out . pr i nt (" \ nSong na me (pr e s s Ent e r t o e nd) : ") ;
na me = c onI n. ne xt Li ne () ;
whi l e (! na me . e qua l s (" "))
{

Sys t e m. out . pr i nt (" Mi nut e s : ") ;
mi nut e s = c onI n. ne xt I nt () ;
s ki p = c onI n. ne xt Li ne () ;
Sys t e m. out . pr i nt (" Se c onds : ") ;
s e c onds = c onI n. ne xt I nt () ;
s ki p = c onI n. ne xt Li ne () ;

s ong = ne w Se r Song(na me , mi nut e s , s e c onds) ;

Sys t e m. out . pr i nt (" Song numbe r be t we e n 1 a nd "
+ (s ongs . ge t Si z e () + 1) + " : ") ;

numbe r = c onI n. ne xt I nt () ;
s ki p = c onI n. ne xt Li ne () ;
s ongs . a dd(numbe r , s ong) ;

Sys t e m. out . pr i nt l n() ;
Sys t e m. out . pr i nt l n(s ongs) ;
Sys t e m. out . pr i nt l n() ;

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 455

456 | Chapter 6: The List ADT

Sys t e m. out . pr i nt (" Song na me (pr e s s Ent e r t o e nd) : ") ;
na me = c onI n. ne xt Li ne () ;

}

/ / Di s pl a y r e s ul t s .
Sys t e m. out . pr i nt l n() ;
Sys t e m. out . pr i nt l n(" Thi s s ong l i s t wi l l be s a ve d i n " + FI LENAME +

" : \ n") ;
Sys t e m. out . pr i nt l n(s ongs) ;
Sys t e m. out . pr i nt l n() ;

/ / Sa ve l i s t .
t r y
{

Obj e c t Out put St r e a m out = ne w Obj e c t Out put St r e a m(ne w
Fi l e Out put St r e a m(FI LENAME)) ;

out . wr i t e Obj e c t (s ongs) ;
out . c l os e () ;

}
c a t c h (Exc e pt i on e)
{

Sys t e m. out . pr i nt l n(" Una bl e t o s a ve s ong i nf or ma t i on. ") ;
}

}
}

What follows is a trace of two consecutive program runs. For the first run the
s ongs . da t file is not found, so a new song list is created.

Run 1
Because the songs.dat file does not exist
or can’t be used, a new song list will be created.

Song list name: My Favorites

Song name (press Enter to end): Hey Jude
Minutes: 7
Seconds: 6
Song number between 1 and 1: 1

My Favorites:
1: Hey Jude [7:06]

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 456

6.8 Storing Objects and Structures in Files | 457

Total Time: 7 minutes, 06 seconds

Song name (press Enter to end): Let It Be
Minutes: 4
Seconds: 1
Song number between 1 and 2: 2

My Favorites:
1: Hey Jude [7:06]
2: Let It Be [4:01]

Total Time: 11 minutes, 07 seconds

Song name (press Enter to end):

This song list will be saved in songs.dat:

My Favorites:
1: Hey Jude [7:06]
2: Let It Be [4:01]

Total Time: 11 minutes, 07 seconds

Run 2
My Favorites:
1: Hey Jude [7:06]
2: Let It Be [4:01]

Total Time: 11 minutes, 07 seconds

Song name (press Enter to end): Penny Lane
Minutes: 2
Seconds: 57
Song number between 1 and 3: 2

My Favorites:
1: Hey Jude [7:06]
2: Penny Lane [2:57]
3: Let It Be [4:01]

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 457

458 | Chapter 6: The List ADT

Total Time: 14 minutes, 04 seconds
Song name (press Enter to end):

This song list will be saved in songs.dat:
My Favorites:

1: Hey Jude [7:06]
2: Penny Lane [2:57]
3: Let It Be [4:01]

Total Time: 14 minutes, 04 seconds

Many other improvements can be made to this program. Some of them are suggested in
the exercises.

Summary
This chapter examined lists. To support lists, we first had to consider how objects are
compared to each other. We need to be able to tell whether a given object appears on a
list. For sorted lists, we need to know where to insert a new object.

We explored three variations of lists. The Unsorted List ADT makes no assumptions
about the ordering of the list elements. The Sorted List ADT maintains an order among
the elements. The Indexed List ADT allows applications to access list elements based on
an index value. We viewed each of these ADTs from three perspectives: the logical level,
the application level, and the implementation level.

By carefully studying the relationships among our list variations we were able to
reuse interfaces and implementations by taking advantage of the Java inheritance
mechanism. We created both array-based and reference-based implementations of our
lists. Figure 6.10 shows the relationships among the primary classes and interfaces cre-
ated to support our List ADT in this chapter.

We saw an example application for each type of list. The poker application used an
unsorted list to study the probability of obtaining a particular poker hand. The golf
application used a sorted list to keep track of golfers ordered by score. The music appli-
cation used the indexed list to organize a collection of songs. It is important to choose
the best abstraction/structure to support a particular application.

We learned how to improve the efficiency of several of the sorted list operations by
using the binary search algorithm. We created both nonrecursive and recursive imple-
mentations of this algorithm.

The chapter concluded by examining ways of storing object and structure informa-
tion between runs of a program.

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 458

Exercises | 459

Figure 6.10 The primary classes and interfaces created to support our List ADT

<<interface>>
ListInterface<T>

+ s i z e () : i n t
+ a dd(T e l e me nt) : voi d
+ c ont a i ns (T e l e me nt) : bool e a n
+ r e move (T e l e me nt) : bool e a n
+ ge t (T e l e me nt) : T
+ t oSt r i ng() : St r i ng
+ r e s e t () : voi d
+ ge t Ne xt () : T

<<interface>>
IndexedListInterface<T>

+ a dd(i nt i nde x, T e l e me nt) : voi d
+ s e t (i nt i nde x, T e l e me nt) : T
+ ge t (i nt i nde x) : T
+ i nde xOf (T e l e me nt) : i nt
+ r e move (i nt i nde x) : T

DEFCAP: i nt
or i gCa p: i nt
l i s t : T[]
numEl e me nt s : i nt
f ound: bool e a n
l oc a t i on: i nt
c ur r e nt Pos : i nt

+ Ar r a yUns or t e dLi s t ()
+ Ar r a yUns or t e dLi s t (i nt or i gCa p)
e nl a r ge () : voi d
f i nd(T t a r ge t) : voi d
+ a dd(T e l e me nt) : voi d
+ r e move (T e l e me nt) : bool e a n
+ s i z e () : i nt
+ c ont a i ns (T e l e me nt) : bool e a n
+ ge t (T e l e me nt) : T
+ t oSt r i ng() : St r i ng
+ r e s e t () : voi d
+ ge t Ne xt () : T

ArrayUnsortedList<T>

l i s t : LLNode <T>
numEl e me nt s : i nt
f ound: bool e a n
l oc a t i on: LLNode <T>
pr e vi ous : LLNode <T>
c ur r e nt Pos : LLNode <T>

+ Re f Uns or t e dLi s t ()
f i nd(T t a r ge t) : voi d
+ a dd(T e l e me nt) : voi d
+ r e move (T e l e me nt) : bool e a n
+ s i z e () : i n t
+ c ont a i ns (T e l e me nt) : bool e a n
+ ge t (T e l e me nt) : T
+ t oSt r i ng() : St r i ng
+ r e s e t () : voi d
+ ge t Ne xt () : T

RefUnsortedList<T>

+ Ar r a yI nde xe dLi s t ()
+ Ar r a yI nde xe dLi s t (i nt or i gCa p)
+ a dd(i nt i nde x, T e l e me nt) : voi d
+ s e t (i nt i nde x, T e l e me nt) : T
+ ge t (i nt i nde x) : T
+ i nde xOf (T e l e me nt) : i nt
+ r e move (i nt i nde x) : T
+ t oSt r i ng() : St r i ng

ArrayIndexedList<T>

+ Re f Sor t e dLi s t ()
+ a dd(T e l e me nt) : voi d

RefSortedList<T>

ArraySortedList<T>

+ Ar r a ySor t e dLi s t ()
+ Ar r a ySor t e dLi s t (i nt or i gCa p)
+ a dd(T e l e me nt) : voi d
+ r e move (T e l e me nt) : bool e a n

 extends

 implements

 Key:

Exercises
6.1 Comparing Objects Revisited

1. Based on the e qua l s method for Ci r c l e objects defined in Section 6.1, what is
the output of the following code sequence?

Ci r c l e c 1 = ne w Ci r c l e (5) ;
Ci r c l e c 2 = ne w Ci r c l e (5) ;
Ci r c l e c 3 = ne w Ci r c l e (15) ;

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 459

460 | Chapter 6: The List ADT

Ci r c l e c 4 = nul l ;
Sys t e m. out . pr i nt l n(c 1 == c 1) ;
Sys t e m. out . pr i nt l n(c 1 == c 2) ;
Sys t e m. out . pr i nt l n(c 1 == c 3) ;
Sys t e m. out . pr i nt l n(c 1 == c 4) ;
Sys t e m. out . pr i nt l n(c 1. e qua l s (c 1)) ;
Sys t e m. out . pr i nt l n(c 1. e qua l s (c 2)) ;
Sys t e m. out . pr i nt l n(c 1. e qua l s (c 3)) ;
Sys t e m. out . pr i nt l n(c 1. e qua l s (c 4)) ;

2. Rewrite the Ci r c l e class’s e qua l s method so that if it is passed a nul l parameter
it returns the value f a l s e . How would this new definition of e qua l s affect your
answer to Exercise 1?

3. An e qua l s method is supposed to provide an equivalence relation among the
objects of a class. This means that if a , b, and c are non-null objects of the class,
then

i. a . e qua l s (a) is t r ue .
ii. a . e qua l s (b) has the same value as b. e qua l s (a) .

iii. If a . e qua l s (b) is t r ue and b. e qua l s (c) is t r ue , then a . e qua l s (c)
is t r ue .

State whether the following definitions of e qua l s are valid. If they are not,
explain why not.
a. Two circles are equal if they have the same area.
b. Two circles are equal if their radii are within 10% of each other.
c. Two integers are equal if they have the same remainder when divided by a

specific integer—for example, when divided by 3.
d. Two integers are equal if the second integer is a multiple of the first.

4. Suppose we have a Re c t a ngl e class that includes l e ngt h and wi dt h attributes,
of type i nt , both set by the constructor. Create an e qua l s method for this class
so that two rectangle objects are considered equal if
a. They have the exact same l e ngt h and wi dt h.
b. They have the same dimensions—that is, they are congruent.
c. They have the same shape—that is, they are similar.
d. They have the same perimeter.
e. They have the same area.
Are all of these definitions of e qua l s valid, based on the criteria listed in Exer-
cise 3?

5. Create an e qua l s method for the Ar r a ySt r i ngLog class from Chapter 2 such
that two StringLogs are considered equal if
a. They contain the same number of strings.

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 460

Exercises | 461

b. They contain the same strings (case-insensitive comparison) in the same order.
c. They contain the same strings (case-insensitive comparison) in any order.
Are all of these definitions of e qua l s valid, based on the criteria listed in Exer-
cise 3?

6. Based on the c ompa r e To method for Ci r c l e objects defined in Section 6.1,
what is the output of the following code sequence?
Ci r c l e c 1 = ne w Ci r c l e (5) ;
Ci r c l e c 2 = ne w Ci r c l e (5) ;
Ci r c l e c 3 = ne w Ci r c l e (15) ;
Sys t e m. out . pr i nt l n(c 1. c ompa r e To(c 1)) ;
Sys t e m. out . pr i nt l n(c 1. c ompa r e To(c 2)) ;
Sys t e m. out . pr i nt l n(c 2. c ompa r e To(c 3)) ;
Sys t e m. out . pr i nt l n(c 3. c ompa r e To(c 2)) ;

7. In Exercise 3 we stated some rules for the behavior of the e qua l s method. What
similar rule or rules should the c ompa r e To method follow?

8. Suppose we have a Re c t a ngl e class that includes l e ngt h and wi dt h attributes
of type i nt , both set by the constructor. Create a c ompa r e To method for this
class so that rectangle objects are ordered based on their
a. Perimeter.
b. Area.

9. a. How many “known” classes in the Java library implement the Compa r a bl e
interface?

b. List five such classes that you have used before, or at least have studied.

6.2 Lists
10. Give examples from the “real world” of unsorted lists, sorted lists, indexed lists,

lists that permit duplicate elements, and lists that do not permit duplicate elements.
11. Besides unsorted lists, sorted lists, and indexed lists, are there other potential

varieties of lists? Describe a few of them informally.
12. We do not allow nul l elements on our lists. Why not? Describe some of the

ramifications of removing this restriction—that is, of allowing nul l elements.
You should include the potential effects on implementation details.

6.3 Formal Specification
13. Classify each of the List ADT operations according to operation type (construc-

tor, iterator, observer, transformer).
14. Explain the purpose of each of the preconditions listed in the ge t Ne xt method

definition.
15. Suppose i ndLi s t is an indexed list that contains seven elements. Suppose

e l e me nt is an Obj e c t that is not already on the list. For each of the following

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 461

462 | Chapter 6: The List ADT

method invocations, indicate whether they would result in the I nde xOut Of -
Bounds Exc e pt i on being thrown. Each part of this question is independent.
a. i ndLi s t . a dd(6, e l e me nt)

b. i ndLi s t . a dd(7, e l e me nt)

c. i ndLi s t . s e t (6, e l e me nt)

d. i ndLi s t . s e t (7, e l e me nt)

e. i ndLi s t . r e move (e l e me nt)

f. i ndLi s t . ge t (e l e me nt)

g. i ndLi s t . r e move (- 1)

h. i ndLi s t . r e move (0)
16. Our List ADT specifications apply to unbounded lists. How would you change

the specifications to address the issues related to placing a bound on the size of
the lists?

17. The specifications for our List ADT allow lists to contain duplicate elements.
Describe how you would change the specifications if duplicate elements were not
permitted.

6.4 Array- Based Implementations
18. Show the output of the following program:

i mpor t c h06. l i s t s . *;
publ i c c l a s s Li s t Exe r
{

publ i c s t a t i c voi d ma i n(St r i ng[] a r gs)
{

Li s t I nt e r f a c e <St r i ng> l i s t 1
= ne w Ar r a yUns or t e dLi s t <St r i ng>() ;

l i s t 1. a dd(" a ppl e ") ;
l i s t 1. a dd(" pe a c h") ;
l i s t 1. a dd(" or a nge ") ;
l i s t 1. a dd(" pe a r ") ;
l i s t 1. r e move (" pe a c h") ;

Li s t I nt e r f a c e <St r i ng> l i s t 2
= ne w Ar r a ySor t e dLi s t <St r i ng>() ;

l i s t 2. a dd(" a ppl e ") ;
l i s t 2. a dd(" pe a c h") ;
l i s t 2. a dd(" or a nge ") ;
l i s t 2. a dd(" pe a r ") ;
l i s t 2. r e move (" pe a c h") ;

I nde xe dLi s t I nt e r f a c e <St r i ng> l i s t 3
= ne w Ar r a yI nde xe dLi s t <St r i ng>() ;

l i s t 3. a dd(0, " a ppl e ") ;

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 462

Exercises | 463

l i s t 3. a dd(0, " pe a c h") ;
l i s t 3. a dd(1, " or a nge ") ;
l i s t 3. a dd(0, " pe a r ") ;
l i s t 3. a dd(2, " pl um") ;
l i s t 3. r e move (" pe a c h") ;

Sys t e m. out . pr i nt (" Uns or t e d") ;
Sys t e m. out . pr i nt l n(l i s t 1) ;
Sys t e m. out . pr i nt (" Sor t e d") ;
Sys t e m. out . pr i nt l n(l i s t 2) ;
Sys t e m. out . pr i nt (" I nde xe d") ;
Sys t e m. out . pr i nt l n(l i s t 3) ;

}
}

19. Exercise 17 asked you to describe how the decision to disallow duplicate list ele-
ments would affect the list specifications. Now describe how this decision would
affect the array-based implementations.

20. What happens if the second constructor for Ar r a yUns or t e dLi s t is passed a
negative argument? How could this situation be handled by redesigning the con-
structor?

21. Describe the ramifications of each of the following changes to the chapter’s code
for the Ar r a yUns or t e dLi s t class:
a. In the first line of e nl a r ge , change “+” to “*”.
b. In the boolean expression of f i nd, change the second “<“ to “<=”.
c. In s i z e , change “r e t ur n numEl e me nt s ; ” to “r e t ur n l i s t . l e ngt h; ”.
d. In r e move , drop the statement “numEl e me nt s - - ”.

22. Someone suggests that, instead of shifting list elements to the left when an object
is removed, the array location holding that object should just be set to nul l . Dis-
cuss the ramifications of such an approach for each of our three list types.

23. Consider the operation: isEmpty—returns t r ue if the list is empty, otherwise
returns f a l s e . Design a method to be added to the Ar r a yUns or t e dLi s t class
that implements the operation. Code and test your method.

24. Consider the operation: removeAll—removes all elements from the list that are
equal to the argument element and returns an i nt indicating how many ele-
ments were removed. Design a method to be added to the Ar r a yUns or t e dLi s t
class that implements the operation. Code and test your method.

25. This chapter specifies and implements an Unsorted List ADT.
a. Design an algorithm for an application-level method l a s t that accepts an

unsorted Ci r c l e list as an argument and returns a Ci r c l e . If the list is
empty, the method returns nul l . Otherwise, it returns the last element of the
list. The signature for the routine should be

Ci r c l e l a s t (Li s t I nt e r f a c e l i s t)

b. Devise a test plan for your algorithm.

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 463

464 | Chapter 6: The List ADT

c. Implement and test your algorithm.
26. This chapter specifies and implements an Unsorted List ADT.

a. Design an algorithm for an application-level routine that accepts two Ci r c l e
lists as arguments, and returns a count of how many elements from the first
list are also on the second list (using the e qua l s method to determine equal-
ity). The signature for the method should be
i nt c ompa r e Li s t s (Li s t I nt e r f a c e <Ci r c l e > l i s t 1 ,

Li s t I nt e r f a c e <Ci r c l e > l i s t 2)

b. Devise a test plan for your algorithm.
c. Implement and test your algorithm.

27. Our implementation of the r e move operation for the Unsorted List ADT
(Ar r a yUns or t e dLi s t) does not maintain the order of insertions because the
algorithm swaps the last element into the location of the element being
removed.
a. Would there be any advantage to having r e move maintain the insertion

order? Justify your answer.
b. Modify r e move so that the insertion order is maintained. Code your algo-

rithm, and then test it.
28. This chapter specifies and implements a Sorted List ADT.

a. Design an algorithm for an application level routine that accepts two Ci r c l e
lists as arguments and returns a count of how many elements from the first list
are also on the second list (using the e qua l s method to determine equality).
The signature for the routine should be
i nt c ompa r e Li s t s (Ar r a ySor t e dLi s t <Ci r c l e > l i s t 1,

Ar r a ySor t e dLi s t <Ci r c l e > l i s t 2)

b. Devise a test plan for your algorithm.
c. Implement and test your algorithm.

29. The algorithm for the Sorted List ADT’s a dd operation starts at the beginning of
the list and looks at each element so as to determine where the insertion should
take place. Once the insertion location is determined, the algorithm moves each
list element between that location and the end of the list, starting at the end of
the list, over to the next location. This operation creates space for the new
element to be inserted.

Another approach to this problem is just to start at the last location, exam-
ine the element there to see whether the new element should be placed before it
or after it, and shift the element in that location to the next location if the
answer is “before.” Repeating this procedure with the next-to-last element, then
the one next to that, and so on, will eventually move all of the elements that
need to be moved. When the answer is finally “after” (or the beginning of the
list is reached), the needed location is available for the new element.
a. Formalize this new algorithm with a pseudocode description, such as the

algorithms presented in the text.

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 464

Exercises | 465

b. Rewrite the a dd method of the Ar r a ySor t e dLi s t class to use the new
algorithm.

c. Test the new method.
30. The Sorted List ADT (Ar r a ySor t e dLi s t) is to be extended with an operation

called me r ge , which adds the contents of a sorted list argument to the current list.
a. Write the specifications for this operation. The signature for the routine

should be

voi d me r ge (Ar r a ySor t e dLi s t <T> l i s t)

b. Design an algorithm for this operation.
c. Devise a test plan for your algorithm.
d. Implement and test your algorithm.

31. Describe the ramifications of each of the following changes to the chapter’s code
for the Ar r a yI nde xe dLi s t class:
a. In the first line of a dd, change “>” to “>=”.
b. In the first line of s e t , change “>=” to “>”.
c. In s e t , change the order of the two statements immediately before the return

statement.
d. Rewrite i nde xOf to invoke f i nd, as it currently does, but then just “r e t ur n

l oc a t i on”.
e. Remove the statement “l i s t [numEl e me nt s] = nul l ; ” from the r e move

method.

6.5 Applications: Poker, Golf, and Music
32. In this exercise you investigate potential improvements to the Poke r App

program.
a. Run the program five times on your machine. Record how long it takes. Create

a table and record both the reported probability and the number of seconds
taken for each run.

b. Redesign and recode the program so that instead of always dealing out
seven cards to a hand, it stops dealing whenever a pair is discovered. Run
the program five times, and record both the results and the execution
time. Compare your findings to the data gathered in part a, and discuss
the differences.

c. Starting again with the original program, redesign and recode it so that
instead of reshuffling after every hand, the deck is reshuffled after every
seven hands. Run the program five times, recording both the results and the
execution time. Compare your findings to the data gathered in parts a and b,
and discuss the differences.

33. Change the Poke r App program so that it asks the user how many hands to sim-
ulate and how many cards should be in a single hand. Use the new program to
investigate the probability of getting a pair in a five-card hand.

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 465

466 | Chapter 6: The List ADT

34. You need to change the Poke r App program so that instead of reporting the
probability of getting a pair of identical ranks, it reports the probability of get-
ting three cards of the same rank.
a. Describe how you would achieve this using the Ar r a yUns or t e dLi s t class as

defined in Section 6.4.
b. Suppose you include a c ount method in the Ar r a yUns or t e dLi s t class,

which returns the number of elements on the list that are equal to its argu-
ment element. Describe how you would use this functionality to help solve
our new problem.

c. Choose one of two approaches to solve the new problem and implement it.
What is the reported probability?

35. In the Gol f App program, a sorted list of size 20 is instantiated. What happens if
more than 20 golfers are entered by the user?

36. Describe how you would change our golf application so that
a. It lists golfers from worst score to best score.
b. It lists golfers in alphabetical order.

37. Upgrade the Gol f App program so that if a user enters anything except a positive
integer when asked to enter a score, he or she is reprompted for new input.

38. Explain the difference between the two constructors of the Song class.
39. Update the Songs App program so that

a. It is more robust. It should check any numerical input for legality and
reprompt the user if the input values are illegal.

b. After the user is finished entering songs, he or she is given the option to
remove songs. The user can be asked to repeatedly enter the index of a song to
remove. Input of 1 can indicate that the user does not wish to remove any
more songs.

40. Suppose we have a class called Ca r that models cars. This class has instance
variables ye a r , ma ke , mode l , and pr i c e . It also provides appropriate observer
methods, including one called ge t Pr i c e that returns a value of type i nt indi-
cating the price of “this” car. Implement a client method t ot a l Pr i c e , which
accepts a list (Ar r a yUns or t e dLi s t c a r Li s t) of cars and returns an integer
equal to the total cost of the cars on the list.

41. Use one of our three array-based list implementations to support an application
that does the following:
a. Allows a user to enter a list of the countries he or she has visited and then

displays the list in alphabetical order, plus a count of how many countries
are on the list. If the user mistakenly enters the same country twice, the pro-
gram should include it on the list only once.

b. Allows a user to enter information about university courses: an identification
number, a name, and the name of the professor. Once the information is

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 466

Exercises | 467

entered, the user can request information based on a course number. The pro-
gram should handle any input “problems” in a reasonable way.

c. Allows a user to enter a sequence of product information—namely, a prod-
uct’s description and cost. After the information is entered, the user can
repeatedly enter a price range, and it displays all of the products in that price
range, ordered from the cheapest to the most expensive.

6.6 The Binary Search Algorithm
Exercises 42–45 use the following sorted list of 15 elements, indexed from 0 to 14:

[0] algorithm [5] formula [10] kilo
[1] binary [6] graph [11] log
[2] computer [7] heap [12] mega
[3] digital [8] int [13] nano
[4] efficiency [9] java [14] open

42. Fill in the table to show how many comparisons of the target element to a list
element would be made when searching for the given target element using the
algorithm shown at the top of the column.

Target Linear Search Improved Linear Search Binary Search

algorithm
computer
heap
int
open
bit
stack
queue

43. Trace the f i nd algorithm of the Ar r a ySor t e dLi s t 2 class and create a table
similar to Table 6.1, assuming you are searching for “computer.”

44. Trace the f i nd algorithm of the Ar r a ySor t e dLi s t 2 class and create a table
similar to Table 6.1, assuming you are searching for “open.”

45. How many calls to the r e c Fi nd method of the Ar r a ySor t e dLi s t 3 class are
made when the f i nd method of the class is passed each of the following targets?
a. algorithm
b. heap
c. mega
d. dynamic
e. zebra

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 467

468 | Chapter 6: The List ADT

46. Can the linear search algorithm be encoded using recursion? If not, why not? If
so, outline an approach and discuss its advantages and disadvantages.

6.7 Reference- Based Implementations
47. Following the style of the figures in this chapter, draw the list that would result

from each of the following code sequences:
a. Re f Uns or t e dLi s t <I nt e ge r > myLi s t

= ne w Re f Uns or t e dLi s t <I nt e ge r >() ;
myLi s t . a dd(5) ;
myLi s t . a dd(9) ;
myLi s t . a dd(3) ;

b. Re f Uns or t e dLi s t <I nt e ge r > myLi s t
= ne w Re f Uns or t e dLi s t <I nt e ge r >() ;

myLi s t . a dd(5) ;
myLi s t . a dd(9) ;
myLi s t . a dd(3) ;
myLi s t . r e move (9) ;

c. Re f Sor t e dLi s t <I nt e ge r > myLi s t
= ne w Re f Sor t e dLi s t <I nt e ge r >() ;

myLi s t . a dd(5) ;
myLi s t . a dd(9) ;
myLi s t . a dd(3) ;

d. Re f Sor t e dLi s t <I nt e ge r > myLi s t
= ne w Re f Sor t e dLi s t <I nt e ge r >() ;

myLi s t . a dd(5) ;
myLi s t . a dd(9) ;
myLi s t . a dd(3) ;
myLi s t . r e move (9) ;

48. Show the output of the following program:
i mpor t c h06. l i s t s . *;
publ i c c l a s s Li s t Exe r 2
{

publ i c s t a t i c voi d ma i n(St r i ng[] a r gs)
{

Li s t I nt e r f a c e <St r i ng> l i s t 1
= ne w Re f Uns or t e dLi s t <St r i ng>() ;

l i s t 1. a dd(" a ppl e ") ;
l i s t 1. a dd(" pe a c h") ;
l i s t 1. a dd(" or a nge ") ;
l i s t 1. a dd(" pe a r ") ;
l i s t 1. r e move (" pe a c h") ;

Li s t I nt e r f a c e <St r i ng> l i s t 2
= ne w Re f Sor t e dLi s t <St r i ng>() ;

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 468

Exercises | 469

l i s t 2. a dd(" a ppl e ") ;
l i s t 2. a dd(" pe a c h") ;
l i s t 2. a dd(" or a nge ") ;
l i s t 2. a dd(" pe a r ") ;
l i s t 2. r e move (" pe a c h") ;

Sys t e m. out . pr i nt (" Uns or t e d") ;
Sys t e m. out . pr i nt l n(l i s t 1) ;
Sys t e m. out . pr i nt (" Sor t e d") ;
Sys t e m. out . pr i nt l n(l i s t 2) ;

}
}

49. Exercise 17 asked you to describe how the decision to disallow duplicate list ele-
ments would affect the list specifications. Now describe how this decision would
affect the reference-based implementations.

50. Describe the ramifications of each of the following changes to the chapter’s code
for the Re f Uns or t e dLi s t class:
a. In the i f condition of f i nd, use “==” instead of “e qua l s .”
b. In the e l s e clause of f i nd, switch the order of the two statements.
c. In t oSt r i ng, drop “ c ur r Node = c ur r Node . ge t Li nk() ; .”

51. Consider the operation: r e move Al l , which removes all elements from the list that
are equal to the argument element and returns an i nt indicating the number of
elements removed. Design a method to be added to the Re f Uns or t e dLi s t class
that implements the operation. Code and test your method.

52. The algorithm for the reference-based sorted list’s f i nd operation starts at the
beginning of the list and looks at each element so as to determine whether the
target element is on the list. Another approach to this algorithm is to stop
searching once a point in the list is reached that contains an element larger than
the target element, because it is then known that the element is not on the list.
a. Create this new f i nd method and add it to the Re f Sor t e dLi s t class.
b. Test the new method. Describe how you tested it.

53. You are discussing Exercise 52 with a friend. Your friend suggests that you
use the binary search algorithm to improve the f i nd method. How do you
respond?

54. Describe how you would change the Poke r App program, presented in Section
6.5, so that it uses the Re f Uns or t e dLi s t class instead of the Ar r a yUns or t -
e dLi s t class.

55. Expand our Re f Uns or t e dLi s t class with a public method e ndI ns e r t , which
inserts an element at the end of the list. Do not add any instance variables to the
class. The method signature is

publ i c voi d e ndI ns e r t (T e l e me nt)

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 469

470 | Chapter 6: The List ADT

56. Expand our Re f Sor t e dLi s t class with a public method c e i l i ngLi s t , which
returns a new list that contains all elements of the current list that are less than
or equal to the element argument. The method signature is

publ i c Re f Sor t e dLi s t <T> c e i l i ngLi s t (T e l e me nt)

57. Consider the operation of merging together two reference-based sorted lists,
l i s t 1 and l i s t 2, into a single reference-based sorted list, l i s t 3. Suppose
l i s t 1 is size M, and l i s t 2 is size N.
a. Suppose you implemented this operation at the application level by using the

iteration operations to first obtain each element of l i s t 1, adding all of them
to l i s t 3, and then to obtain each element of l i s t 2, also adding all of them
to l i s t 3. What is the Big-O complexity of this approach? (Remember to
count the time taken by the list methods.)

b. Another approach is to implement the operation as a public method me r ge
of the Re f Sor t e dLi s t class. The me r ge method would create and return a
new reference-based sorted list that consists of the merger of the current
list and an argument list.

publ i c Re f Sor t e dLi s t <T> me r ge (Re f Sor t e dLi s t <T> i nLi s t)
/ / Re t ur ns a ne w l i s t c ons i s t i ng of a me r ge of
/ / t hi s l i s t wi t h i nLi s t .

Describe an algorithm for implementing this method. What is the Big-O com-
plexity of your algorithm?

c. Discuss the difference between your answers to parts a and b. What can you
conclude from the difference?

58. Fill in the following table with the Big-O efficiency values of the operations as
implemented in this chapter within the classes.

Array- Based Reference- Based

uns or t e d s or t e d s or t e d2 i nde xe d uns or t e d s or t e d

s i z e

c ont a i ns

r e move

ge t

ge t Ne xt

a dd

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 470

Exercises | 471

6.8 Storing Objects and Structures in Files
59. Investigate how information is stored between program runs.

a. Run the Sa ve Song application. It creates a file named s ong. t xt . Look at
that file using a text editor. Describe what you see.

b. Run the Sa ve Se r Song application. It creates a file named s ong. da t . Look at
that file using a text editor. Describe what you see.

c. Explain the difference between what you saw for parts a and b.
60. Create programs similar to Sa ve Song and Ge t Song that save and retrieve a

Cus t ome r object. See the s uppor t package for the Cus t ome r class.
61. Improve the Se r SongApp program so that

a. It is more robust in terms of checking user input and reprompting in case of
illegal input.

b. When a user is prompted for the index of a new song, he or she can just
press Enter and the song will go on the end of the list. Remember to describe
this option clearly in the user interface.

c. On a menu-driven interface, the user can choose among four options:
1. Add a song to the list.
2. Remove a song from the list.
3. Change the index of a song.
4. Change the name of the list.
To implement this improvement, you must update both the Se r SongLi s t
and Se r Songs App classes.

d. Instead of just maintaining a single song list, it maintains several song lists,
allowing the user to choose among them.

62. Create a program that works similarly to Se r SongApp with regard to storing and
retrieving information between program runs and allows users to
a. Enter information about golfers (their names and scores), and provides a

list of golfers sorted by score. Note that the Gol f e r class is already
defined in the s uppor t package. You will need to create a Se r i a l i z a b l e
version of it.

b. Keep track of test scores, and report an average. A test score consists of two
values: the weight of the test and the points earned.

c. Enter information about movies they want to watch; they can provide a movie
rating between 1 and 10, with a higher number meaning a higher priority for
watching the movie. Users must be able to remove movies from the list after
they have watched them.

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 471

13549_CH06_Da l e . qxd 1/ 20/ 11 10: 23 AM Pa ge 472

Knowledge Goals
You should be able to
■ describe the benefits and limitations of

■ circular linked lists
■ doubly linked lists
■ linked lists with headers and trailers
■ array-based linked lists

■ discuss options, in terms of reuse of existing classes, for implementing new list approaches
■ choose a reasonable list approach based on a set of list requirements
■ if needed, define a new list approach to help solve a specified problem
■ describe an approach for implementing large integers using a linked list

Skill Goals
You should be able to
■ implement an unsorted circular linked list
■ implement a sorted circular linked list
■ implement an unsorted doubly linked list
■ implement a sorted doubly linked list
■ implement a linked list with a header node, a trailer node, or both
■ implement a linked list as an array of nodes
■ use one of the new list approaches to help solve a problem

More Lists
G

o

a

l

s

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 473

474 | Chapter 7: More Lists

Figure 7.1 A circular linked list

•••••A B C Dl i s t

This chapter introduces three new varieties of reference-based lists: circular linked
lists, doubly linked lists, and lists with headers and trailers. It also describes an
array-based approach to implementing a linked list, which is widely used in operating
systems.

All of the lists presented to this point have been general; that is, they are designed
to be useful for many applications. At the end of this chapter, we design a List ADT with
unique properties targeted for a specific application. In the case study, we design and
implement a calculator for working with large integers.

We simplify many of the figures of this chapter by using a capital letter to represent
an object, rather than showing a reference to the object using an arrow.

7.1 Circular Linked Lists

The lists that we implemented in Chapter 6 are characterized by a linear relationship
between the elements: Each element (except the first one) has a unique predecessor, and
each element (except the last one) has a unique successor.

Let’s consider a small change to our reference-based approach and see how it would
affect our implementation and use of the List ADT.
Suppose we change the l i nk of the last node so that it
points back to the first node instead of containing nul l
(Figure 7.1). Now our list is a circular linked list rather
than a linear linked list. We can start at any node in the
list and traverse the whole list.

Of course, we must now ensure that all of our list operations maintain this new
property of the list: After the execution of any list operation, the last node should con-
tinue to point to the front node. A quick consideration of each of the operations con-
vinces us that we can efficiently support almost all of them. The one exception is when
an operation changes the first element on the list. Consider, for example, if we try to
remove the first element. Our previous approach simply changes the l i s t reference to
point to the second element on the list. Now, however, we must also update the refer-
ence in the last element so that it points to the new first element. To do so, we must tra-
verse the list until we reach the last element and then make the change. A similar
problem arises if we add an element to the front of the list.

Adding and removing elements at the front of a list might be a common operation
for some applications. Our linear linked list approach supported these operations very

Circular linked list A list in which every node has a
successor; the “last” element is succeeded by the “first”
element

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 474

7.1 Circular Linked Lists | 475

Figure 7.2 Circular linked lists with the external pointer pointing to the rear element

•

•

•••A B C D
l i s t

•

•A l i s t

l i s t (empty list)

(a)

(b)

(c)

efficiently, but our circular linked list approach does not. We can fix this problem by
letting our l i s t reference point to the last element in the list rather than the first; now
we have direct access to both the first and the last elements in the list. Figure 7.2 dis-
plays three examples of this approach. When the list is not empty, l i s t references its
last node, and l i s t . ge t Li nk() references its first node.

An Unsorted Circular List
Let’s implement an unsorted list using our new approach. We must first decide where
this class fits in our list framework. Certainly, we expect the new class to implement the
Li s t I nt e r f a c e . The question is whether it should implement the interface directly or
extend our current Re f Uns or t e dLi s t class that already implements the interface. To
resolve these issues, let’s consider more carefully how the new approach affects our
implementation:

• There is no need to change the basic underlying structure of the list. We can still
use the LLNode class to supply the nodes for the structure. After all, the design
of the nodes is the same; only the value of the l i nk reference of the last node
has changed.

• We can continue to use the same instance variables as before, because we still
need a reference into the list, a count of the number of elements on the list, and
a current position indicator for list iterations.

• The list constructor does not change—the reference variables are still initialized
to nul l —and the number of elements on the original empty list is still zero.

• The s i z e method still needs to just return the value of numEl e me nt s .

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 475

476 | Chapter 7: More Lists

• We can continue to use our same rules for the f i nd method, having it set the
instance variables f ound, l oc a t i on, and pr e vi ous to indicate the results of its
search. However, we do have to change the f i nd implementation.

• We must change the search termination condition used by f i nd, because the end
of the list is no longer marked by nul l .

• The a dd and r e move methods change the structure of the list, so we must make
sure they maintain the circular nature of the list.

• The iterator and t oSt r i ng methods both need to be updated.

Given that so many of our methods are affected by the structure change, we decide
not to use inheritance with any of our existing classes, but rather to start over with a
new set of classes. It is important to understand that our design decision is just that—a
decision. We could have taken other approaches, such as extending the current list
classes, and still succeeded in implementing our new list.

The CRefUnsortedList Class
The CRe f Uns or t e dLi s t class will be similar to its linear list counterpart Re f -
Uns or t e dLi s t . The instance variables and constructor are unchanged. As we’ve noted,
the s i z e method need not be changed. Also, if we provide a revised f i nd helper
method with functionality that corresponds to the f i nd in Re f Uns or t e dLi s t , we can
reuse both the c ont a i ns and ge t methods. Here we develop the remaining methods.

The Iterator Methods
The required changes here are interesting in that the r e s e t method becomes more com-
plicated and the ge t Ne xt method becomes simpler. Here’s the code for the linear linked
list and circular linked list, presented side by side for easy comparison:

Linear Circular
publ i c voi d r e s e t () publ i c voi d r e s e t ()
{ {

c ur r e nt Pos = l i s t ; i f (l i s t ! = nul l)
} c ur r e nt Pos = l i s t . ge t Li nk() ;

}
publ i c T ge t Ne xt ()
{ publ i c T ge t Ne xt ()

T ne xt = c ur r e nt Pos . ge t I nf o() ; {
i f (c ur r e nt Pos . ge t Li nk() == nul l) T ne xt = c ur r e nt Pos . ge t I nf o() ;

c ur r e nt Pos = l i s t ; c ur r e nt Pos = c ur r e nt Pos . ge t Li nk() ;
e l s e r e t ur n ne xt ;

c ur r e nt Pos = c ur r e nt Pos . ge t Li nk() ; }

r e t ur n ne xt ;
}

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 476

7.1 Circular Linked Lists | 477

Because we want the r e s e t method to set the current position to the beginning of
the list and our l i s t reference variable points to the last list element, we must access
the beginning of the list using l i s t . ge t Li nk() . If the list is empty, however, this ref-
erence does not exist. In that case, the l i s t variable itself holds the value nul l . There-
fore, we must protect the assignment statement

c ur r e nt Pos = l i s t . ge t Li nk() ;

with the test for the empty list.
As noted earlier, the ge t Ne xt method has become simpler. For the linear list, this

method had to explicitly test for the end of the list condition and handle it as a special
case. For the circular list, this step is no longer necessary. When an iteration reaches the
end of the list, the circular nature of the list ensures that it is redirected to the beginning
of the list, as we wish.

The toString Method
Within the t oSt r i ng method, we use a little trick to simplify the code. We want to start
the string with the first element on the list. The temporary pr e vNode variable is origi-
nally set to the value of l i s t . It references the last node on the list. As a consequence,
the information in the first node on the list is accessed through the expression

pr e vNode . ge t Li nk() . ge t I nf o()

That expression is used over and over again within the do-while loop, as the pr e vNode
variable is updated to walk through the list. We are always accessing one node past
where pr e vNode is currently pointing. The loop is exited as soon as pr e vNode equals
l i s t , that is, when pr e vNode becomes the last node in the structure. At that time we
know that the information in the last node in the structure has already been added to
the string—it was added in the previous step when pr e vNode referenced the next-to-last
node.

publ i c St r i ng t oSt r i ng()
/ / Re t ur ns a ni c e l y f or ma t t e d St r i ng t ha t r e pr e s e nt s t hi s l i s t .
{

St r i ng l i s t St r i ng = " Li s t : \ n" ;
i f (l i s t ! = nul l)
{

LLNode <T> pr e vNode = l i s t ;
do
{

l i s t St r i ng = l i s t St r i ng + " " + pr e vNode . ge t Li nk() . ge t I nf o() + " \ n" ;
pr e vNode = pr e vNode . ge t Li nk() ;

}
whi l e (pr e vNode ! = l i s t) ;

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 477

478 | Chapter 7: More Lists

}
r e t ur n l i s t St r i ng;

}

You should trace the t oSt r i ng method to convince yourself that it works for lists of
size zero, one, or more elements.

The find Method
Recall that we wish to start our search at the beginning of the list, then continue search-
ing sequentially until we find an element equal to the targeted element or we reach the
end of the list. We must make sure that we start searching at the beginning of the list.
An easy way to do so is to change the comparison so that instead of looking at l oc a -
t i on we look at l oc a t i on. ge t Li nk() . Thus, rather than updating l oc a t i on at the
end of the search loop, we update it at the beginning of the loop, before the comparison
is made.

pr ot e c t e d voi d f i nd(T t a r ge t)
/ / Se a r c he s l i s t f or a n oc c ur r e nc e of a n e l e me nt e s uc h t ha t
/ / e . e qua l s (t a r ge t) . I f s uc c e s s f ul s e t s i ns t a nc e va r i a bl e s
/ / f ound t o t r ue , l oc a t i on t o node c ont a i ni ng e , a nd pr e vi ous
/ / t o t he node t ha t l i nks t o l oc a t i on. I f not s uc c e s s f ul s e t s
/ / f ound t o f a l s e .
{

l oc a t i on = l i s t ;
f ound = f a l s e ;

i f (l i s t ! = nul l)
do
{

/ / move s e a r c h t o t he ne xt node
pr e vi ous = l oc a t i on;
l oc a t i on = l oc a t i on. ge t Li nk() ;

/ / c he c k f or a ma t c h
i f (l oc a t i on. ge t I nf o() . e qua l s (t a r ge t))

f ound = t r ue ;
}
whi l e ((l oc a t i on ! = l i s t) && ! f ound) ;

}

We also have to revise our method of determining when we reach the end of the list. We
use an if statement to prevent attempting to access an empty list. For a nonempty list,

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 478

7.1 Circular Linked Lists | 479

the f i nd implementation in the Re f Uns or t e dLi s t class terminates its search when
l oc a t i on becomes nul l , indicating that the search has exhausted the entire list:

whi l e (l oc a t i on ! = nul l)

With the circular list, this test no longer works—the list loops back on itself rather than ter-
minating with nul l . The goal is to stop searching when the end of the list is reached. With
the circular list, we know we have reached the end of the list when l oc a t i on references
the same node as the l i s t variable (recall that l i s t always indicates the last node on the
list for the circular approach). Thus the terminating condition is set appropriately:

whi l e = (l oc a t i on ! = l i s t) . . .

This is one of the rare occasions when we really do want to compare the references,
rather than comparing the contents of the objects they refer to!

The contains and get Methods
Because the c ont a i ns and ge t s methods access the structure of the list only through
the f i nd method, updating the f i nd method as we have done allows us to leave those
two methods unchanged.

The remove Method
We can use the same basic approach for removing an element from a circular list as we
used for a linear list. First, we use the f i nd method to determine whether any element
matches the targeted element and, if so, to set the values of l oc a t i on and pr e vi ous .
To remove the identified element, we unlink it from the chain of elements by setting the
l i nk reference of the element immediately prior to the identified element to reference
the element after the identified element:

pr e vi ous . s e t Li nk(l oc a t i on. ge t Li nk()) ; / / r e move node a t l oc a t i on

That approach still works for the general case, at least (see Figure 7.3a).
Which special cases do we have to consider? In the linear list version, we had to

check whether we were removing the first (or first-and-only) element. The primary rea-
son that this was a special case was that the overall list reference pointed to the first list
element and had to be updated if that element was removed. In the circular version, the
overall list reference points to the last list element, so removing the first element is not
a special case; Figure 7.3(b) shows why. Removing the only node in a circular list is a
special case, however, as we see in Figure 7.3(c). The reference to the list must be set to
nul l to indicate that the list is now empty. We can detect this situation by checking
whether l i s t is equal to l i s t . ge t Li nk() —in other words, if the node pointed to by
l i s t points to itself.

We might also guess that removing the last list element (the last node) from a circu-
lar list is a special case. After all, l i s t points to the last element, so if we remove it, we

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 479

480 | Chapter 7: More Lists

Figure 7.3 Removing a node from a circular linked list

••• CBA

•

l oc a t i on

•

l i s t

•

pr e vi ous

pr e vi ous . s e t Li nk(l oc a t i on. ge t Li nk())

(a) The general case (remove B)

••• BA

•

l oc a t i on

•

l i s t

•

pr e vi ous

pr e vi ous . s e t Li nk(l oc a t i on. ge t Li nk())

(b) Special case (?): Removing the first element (remove A)

••• B CA

•

l oc a t i on

•

l i s t

•

pr e vi ous

l i s t = pr e vi ous ;
pr e vi ous . s e t Li nk(l oc a t i on. ge t Li nk()) :

(d) Special case: Removing the last element (remove C)

•A

•

l oc a t i on

•

l i s t

•

pr e vi ous

l i s t = nul l ;

(c) Special case: Removing the only element (remove A)

. . .

must change the value in l i s t . As Figure 7.3(d) illustrates, when we remove the last
node, we must first update the overall list reference to point to the preceding element.
We can detect this situation by checking whether pr e vi ous . ge t Li nk() equals l i s t
after the search phase.

You should trace through the r e move code and convince yourself that it handles
the general case as well as all of the special cases properly.

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 480

7.1 Circular Linked Lists | 481

publ i c bool e a n r e move (T e l e me nt)
/ / Re move s a n e l e me nt e f r om t hi s l i s t s uc h t ha t e . e qua l s (e l e me nt)
/ / a nd r e t ur ns t r ue ; i f no s uc h e l e me nt e xi s t s , r e t ur ns f a l s e .
{

f i nd(e l e me nt) ;
i f (f ound)
{

i f (l i s t == l i s t . ge t Li nk()) / / i f s i ngl e - e l e me nt l i s t
l i s t = nul l ;

e l s e
i f (pr e vi ous . ge t Li nk() == l i s t) / / i f r e movi ng l a s t node

l i s t = pr e vi ous ;
pr e vi ous . s e t Li nk(l oc a t i on. ge t Li nk()) ; / / r e move node

numEl e me nt s - - ;
}
r e t ur n f ound;

}

The add Method
The implementation of the a dd method is relatively straightforward. First we create the
new node using the LLNode constructor. Because our list is unsorted, the only special
case we need to consider is adding an element to an empty list. In that case we set the
l i s t variable to reference the new element and link the new element to itself. Other-
wise, we simply add the element to the list in the most convenient place—at the location
referenced by l i s t . In either case we increment numEl e me nt s . See Figure 7.4.

Figure 7.4 Adding a node to a circular linked list

(a) The general case (add H)

•••• B C H
2

A

•

ne wNodel i s t

•

•A

ne wNode

•

l i s t

•

(b) Special case: The empty list (add A)

3

2

1

1

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 481

publ i c voi d a dd(T e l e me nt)
/ / Adds e l e me nt t o t hi s l i s t .
{

LLNode <T> ne wNode = ne w LLNode <T>(e l e me nt) ;
i f (l i s t == nul l)
{

/ / a dd e l e me nt t o a n e mpt y l i s t
l i s t = ne wNode ;
ne wNode . s e t Li nk(l i s t) ;

}
e l s e
{

/ / a dd e l e me nt t o a none mpt y l i s t
ne wNode . s e t Li nk(l i s t . ge t Li nk()) ;
l i s t . s e t Li nk(ne wNode) ;
l i s t = ne wNode ;

}
numEl e me nt s ++;

}
}

Circular Versus Linear Linked Lists
Studying circular linked lists provided us with good practice in using references and
self-referential structures. Are circular lists good for anything else? You may have
noticed that the only operation that is simpler for the circular approach, as compared to
the linear approach, is ge t Ne xt ; that minimal advantage is counterbalanced by a more
complicated r e s e t operation. Why, then, might we want to use a circular—rather than
linear—linked list?

Circular lists offer advantages in applications that require access to both ends of the
list. For example, a circular sorted list class could provide additional operations that
take advantage of the new implementation. Perhaps we need an operation i nBe t we e n
that returns a boolean value indicating whether an argument is “in between” the largest
and smallest elements of the list; with the circular approach, we have easy access to
both the largest element (through l i s t) and the smallest element (through
l i s t . ge t Li nk()). Therefore, with the circular list we could implement i nBe t we e n as
an O(1) operation, whereas with our linear approach it would be an O(N) operation.

On many occasions, the data we want to add to a sorted list will already be in
order. Sometimes people manually sort raw data before turning the information over to
a data entry clerk. Data produced by other programs are often in sorted order. Given a
Sorted List ADT and sorted input data, we always add at the end of the list—the most
expensive place to add in terms of machine time. A circular sorted list, with the list ref-
erence to the end of the list, can avoid this execution overhead.

482 | Chapter 7: More Lists

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 482

7.2 Doubly Linked Lists | 483

You may have realized that many of the benefits described here for circular lists
could also be obtained by using the linear linked list defined in Chapter 6 augmented
with a reference to the last element of the list. This is yet another list variation; as with
the circular list, it requires changes to some of the linear list methods. We ask you to
explore this variation in the exercises.

Some objects truly are more naturally implemented with a circular list—for exam-
ple, a slide show that repeats continuously or a repeating playlist of songs. In an operat-
ing system, the list of tasks being processed may be stored in a circular list. The system
runs through the list, giving each task a little bit of processing time before moving on to
the next task, thus allowing multiple tasks to seemingly proceed at the same time. When
the operating system reaches the end of the list, it goes back to the first task and repeats
the process.

In Section 7.2, we look at another important list structure, doubly linked lists. In
this case, the major advantage of the new approach is obvious—it lets us easily traverse
a list in either direction.

7.2 Doubly Linked Lists

As discussed previously, circular linked lists enable us to reach any node in the list from
any starting point. Although this structure offers advantages over a linear linked list for
some applications, it is still too limited for others. Suppose we want to remove a partic-
ular node in a list, given only a reference to that node. This task involves changing the
l i nk reference of the preceding node. Given only a reference to a node, however, it is
not easy to access its predecessor in the list.

Another task that is difficult to perform on a linear linked list (or even a circular
linked list) is traversing the list in reverse. For instance, suppose we have a list of stu-
dent records, sorted by grade point average (GPA) from lowest to highest. The Dean of
Students might want a printout of the records, ordered from highest to lowest, to use in
preparing the dean’s list.

In cases where we need to access the node
that precedes a given node, a doubly linked
list is useful. In a doubly linked list, the nodes
are linked in both directions. Each node of a
doubly linked list contains three parts:

i nf o: the element stored in the node
l i nk: the reference to the following node
ba c k: the reference to the preceding node

A linear doubly linked list is pictured in Figure 7.5. The ba c k reference of the first
node, as well as the l i nk reference of the last node, contains nul l . Nodes for such a list
could be provided by the following DLLNode class, which extends our previously
defined LLNode class with the required functionality:

Doubly linked list A linked list in which each node is
linked to both its successor and its predecessor

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 483

Figure 7.5 A linear doubly linked list

•

•

••

•••

David Joshua Leah Miriaml i s t

/ / -
/ / DLLNode . j a va by Da l e / J oyc e / We e ms Cha pt e r 7
/ /
/ / I mpl e me nt s <T> node s f or a Doubl y Li nke d Li s t .
/ / -

pa c ka ge s uppor t ;

publ i c c l a s s DLLNode <T> e xt e nds LLNode <T>
{

pr i va t e DLLNode <T> ba c k;

publ i c DLLNode (T i nf o)
{

s upe r (i nf o) ;
ba c k = nul l ;

}

publ i c voi d s e t Ba c k(DLLNode <T> ba c k)
/ / Se t s ba c k l i nk of t hi s DLLNode .
{

t hi s . ba c k = ba c k;
}

publ i c DLLNode <T> ge t Ba c k()
/ / Re t ur ns ba c k l i nk of t hi s DLLNode .
{

r e t ur n ba c k;
}

}

The Add and Remove Operations
Using the definition of DLLNode , let’s discuss the corresponding a dd and r e move meth-
ods for a doubly linked sorted list. The first step for both is to find the location at which
to perform the addition or removal. This step was complicated in the singly linked list
situation by the need to hold on to a reference to the previous location during the
search. That reference is no longer needed; instead, we can get the predecessor to any
node through its ba c k reference.

484 | Chapter 7: More Lists

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 484

7.2 Doubly Linked Lists | 485

Although our search phase is simpler, the algorithms for the addition and removal
operations on a doubly linked list are somewhat more complicated than their counter-
parts for a singly linked list. The reason is clear: Each node has an extra reference to
manipulate with a doubly linked list.

As an example, consider a dd. To link a new node ne wNode , after a given node ref-
erenced by pr e vi ous , in a singly linked list, we need to change two references: ne w-
Node . l i nk and pr e vi ous . l i nk (see Figure 7.6a). The same operation on a doubly
linked list requires four reference changes (see Figure 7.6b).

Figure 7.6 Additions to single and doubly linked lists

••l i s t ••

•

David Joshua Miriam Robert

Leah

(a) Inserting into a singly linked list

•

• •

Leah

(b) Inserting into a doubly linked list

ne wNode

ne wNode

•

pr e vi ous

•

•

••

•••

David Joshua Miriam Robertl i s t

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 485

486 | Chapter 7: More Lists

To add a new node, we allocate space for the new node and search the list to find
the insertion point. When our search is complete, l oc a t i on references the node that
should follow the new node. Now we are ready to link the new node into the list.
Because of the complexity of the operation, we must be careful about the order in which
we change the references. For instance, when adding the new node before l oc a t i on, if
we change the reference in l oc a t i on. ba c k first, we lose our reference to the node that
is to precede the new node. The correct order for the reference changes is illustrated in
Figure 7.7. The corresponding code would be

ne wNode . s e t Ba c k(l oc a t i on. ge t Ba c k()) ;
ne wNode . s e t Li nk(l oc a t i on) ;
l oc a t i on. ge t Ba c k() . s e t Li nk(ne wNode) ;
l oc a t i on. s e t Ba c k(ne wNode) ;

We do have to be careful about adding into an empty list, as it is a special case.
Now let’s consider the r e move method. One useful feature of a doubly linked list is

that we don’t need a reference to a node’s predecessor to remove the node. Through the
ba c k reference, we can alter the l i nk variable of the preceding node to make it “jump
over” the unwanted node. Then we make the ba c k reference of the succeeding node
point to the preceding node. This operation is depicted in Figure 7.8.

We do, however, have to be careful about the end cases. If l oc a t i on. ge t Ba c k()
is nul l , we are removing the first node; if l oc a t i on. ge t Li nk() is nul l , we are
removing the last node. If both l oc a t i on. ge t Ba c k() and l oc a t i on. ge t Li nk() are
nul l , we are removing the only node. We leave the complete coding of the doubly
linked list for you as an exercise.

Figure 7.7 Adding a node to a doubly linked list

•

•

• •

Leah

ne wNode

Joshua Miriam
•

•

•

•

•

•

1
3 4

2

l oc a t i on

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 486

7.3 Linked Lists with Headers and Trailers | 487

Figure 7.8 Removing a node from a doubly linked list

•

•

•

•

••

David Joshua Miriaml i s t

l oc a t i on

Delete Joshua

7.3 Linked Lists with Headers and Trailers

In writing the a dd and r e move methods for the sorted linked list, we see that special
cases arise for the first and the last nodes on the list. One way to simplify these methods
is to make sure that we never add or remove elements at the ends of the list.

How can we do this? Recall that the elements in the sorted linked list are arranged
according to the value in some key—for example, alphabetically by name. If we can
identify the range of possible values for the
key, it is often a simple matter to set up
dummy nodes with values outside of this
range. A header node, containing a value
smaller than any possible list element key, can
be placed at the beginning of the list. A trailer
node, containing a value larger than any legit-
imate element key, can be placed at the end of the list.

The header and the trailer are regular nodes of the same type as the real data nodes
in the list. They have a different purpose, however: Instead of storing list data, they act
as placeholders.

If a list of students is sorted by last name, for example, we might assume that no
students are named “AAAAAAAAAA” or “ZZZZZZZZZZ.” We could therefore initialize
our linked list to contain header and trailer nodes with these values as the keys. (See
Figure 7.9.) How can we implement a general list ADT if we must know the minimum

Header node A placeholder node at the beginning of
a list; used to simplify list processing
Trailer node A placeholder node at the end of a list;
used to simplify list processing

Figure 7.9 An “empty” list with a header and a trailer

•• “AAAAAAAAAA” “ZZZZZZZZZZ”

Header
node

Trailer
node

l i s t

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 487

488 | Chapter 7: More Lists

Figure 7.10 Linked lists in dynamic and static storage

••

l i s t
••A B C D

(a) A linked list in dynamic storage

•

l i s t node s :

f i r s t : 2

(b) A linked list in static storage

[0] [1] [2] [3] [4]

B
6

A
1

C
4

D
–1

[5] [6]

and maximum key values? We can use a parameterized class constructor and let the
user pass elements containing the dummy keys as arguments.

7.4 A Linked List as an Array of Nodes

We tend to think of linked structures as consisting of self-referential nodes that are
dynamically allocated as needed, as illustrated in Figure 7.10(a), but this is not a
requirement. A linked list could be implemented in an array; the elements might be
stored in the array in any order and “linked” by their indexes (see Figure 7.10b). In this
section, we develop an array-based linked list implementation.

In our previous reference-based implementations of lists, we used Java’s built-in
memory management services when we needed a new node for addition or when we
were finished with a node and wanted to remove it. Obtaining a new node is easy in
Java; we just use the familiar ne w operation. Releasing a node from use is also easy; we
just remove our references to it and depend on the Java run-time system’s garbage col-
lector to reclaim the space used by the node.

For the array-based linked representation, we must predetermine the maximum list
size and instantiate an array of nodes of that size. We then directly manage the nodes in
the array. We keep a separate list of the available nodes, and we write routines to allo-
cate nodes to and deallocate nodes from this free list.

Why Use an Array?
We have seen that dynamic allocation of list nodes has many advantages, so why would
we even consider using an array-of-nodes implementation? Recall that dynamic alloca-

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 488

7.4 A Linked List as an Array of Nodes | 489

tion is just one advantage of choosing a linked implementation; another advantage is
the greater efficiency of the a dd and r e move algorithms. Most of the algorithms for
operations on a linked structure can be used for either an array-based or a reference-
based implementation. The main difference arises from the requirement that we manage
our own free space in an array-based implementation. Sometimes managing the free
space ourselves gives us greater flexibility.

Another reason to use an array of nodes is that some programming languages do
not support dynamic allocation or reference types. You can still use linked structures if
you are programming in one of these languages, using the techniques presented in this
section.

Finally, sometimes dynamic allocation of each node, one at a time, is too costly in
terms of time—especially in real-time system software such as operating systems, air
traffic controllers, and automotive systems. In such situations, an array-based linked
approach provides the benefits of linked structures without the same run-time costs.

A desire for static allocation is one of the primary motivations driving the array-
based linked approach, so we drop our assumption that our lists are of unlimited size in
this section. Here, our lists will not grow as needed. Applications should not add ele-
ments to a full list. To support this approach, our list will export an i s Ful l operation,
in addition to the other standard list operations.

How Is an Array Used?
Let’s return to our discussion of how a linked list can be implemented in an array. We
can associate a ne xt variable with each array node to indicate the array index of the
succeeding node. The beginning of the list is accessed through a “reference” that con-
tains the array index of the first element in the list. Figure 7.11 shows how a sorted list
containing the elements “David,” “Joshua,” “Leah,” “Miriam,” and “Robert” might be
stored in an array of nodes. Do you see how the order of the elements in the list is
explicitly indicated by the chain of ne xt indexes?

What goes in the ne xt index of the last list element? Its “null” value must be an
invalid address for a real list element. Because the node s array indexes begin at 0, the
value 1 is not a valid index into the array; that is, there is no node s [- 1] . Therefore,
 1 makes an ideal value to use as a “null” address. We could use the literal value -1 in
our programs:

whi l e (l oc a t i on ! = - 1)

It is better programming style to declare a named constant, however. We use the identi-
fier NUL and define it to be 1:

pr i va t e s t a t i c f i na l i nt NUL = - 1;

When an array-of-nodes implementation is used to represent a linked list, the pro-
grammer must write routines to manage the free space available for new list elements.
Where is this free space? Look again at Figure 7.11. All of the array elements that do

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 489

490 | Chapter 7: More Lists

Figure 7.11 A sorted list stored in an array of nodes

David

Miriam

Joshua

Robert

Leah

4

6

7

–1

2

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

0l i s t

node s . i nf o . ne xt

not contain values in the list constitute free space. Instead of the built-in allocator ne w,
which allocates memory dynamically, we must write our own method to allocate nodes
from the free space. We call this method ge t Node . We use ge t Node when we add new
elements to the list.

When we remove an element from the list, we need to reclaim its space—that is, we
need to return the removed node to the free space so it can be used again later. We can
not depend on a garbage collector; the node we remove remains in the allocated array
so it is not reclaimed by the run-time engine. We write our own method, f r e e Node , to
put a node back into the pool of free space.

Of course, we need a way to track the collection of nodes that are not being used to
hold list elements. We can link this collection of unused array elements together into a
second list, a linked list of free nodes. Figure 7.12 shows the array nodes with both the
list of elements and the list of free space linked through their ne xt values. The l i s t
variable is a reference to a list that begins at index 0 (containing the value “David”).
Following the links in ne xt , we see that the list continues with the array slots at index
4 (“Joshua”), 7 (“Leah”), 2 (“Miriam”), and 6 (“Robert”), in that order. The free list begins

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 490

7.4 A Linked List as an Array of Nodes | 491

Figure 7.12 An array with a linked list of values and free space

David

Miriam

Joshua

Robert

Leah

4

5

6

8

7

3

NUL

2

9

NUL

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

0l i s t

f r e e

node s . i nf o . ne xt

1

at f r e e , at index 1. Following the ne xt links, we see that the free list also includes the
array slots at indexes 5, 3, 8, and 9. We see two NUL values in the next column because
there are two linked lists contained in the nodes array; thus the array includes two end-
of-list values.

There are two approaches to using an array-of-nodes implementation for linked
structures. First, we can simulate dynamic memory with a single array. One array is
used to store many different linked lists, just as the computer’s free space can be
dynamically allocated to hold different lists. In this approach, the references to the lists
are not part of the storage structure, but the reference to the list of free nodes is part of
the structure.

Figure 7.13 shows an array that contains two different lists. The list indicated by
l i s t 1 contains the values “John,” “Nell,” “Susan,” and “Susanne”; the list indicated by
l i s t 2 contains the values “Mark,” “Naomi,” and “Robert.” The remaining three array
slots in Figure 7.13 are linked together in the free list.

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 491

492 | Chapter 7: More Lists

Figure 7.13 An array with three lists (including the free list)

John

Mark

Nell

Naomi

Robert

Susan

Susanne

4

5

3

NUL

8

6

NUL

2

9

NUL

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

0l i s t 1

l i s t 2

node s . i nf o . ne xt

1

7f r e e

The second approach is to create one array of nodes for each list. In this approach,
the reference to the list is part of the storage structure itself (see Figure 7.14). This strat-
egy works because there is only one list. The list constructor has a parameter that speci-
fies the maximum number of elements in the list. This parameter is used to dynamically
allocate an array of the appropriate size.

In this section, we implement this second approach. As with the examples we have
been using in this section, we implement a sorted list of strings. This nongeneric
approach allows us to avoid the problems associated with mixing Java’s arrays and
generics, with the related need for casts and compiler warnings. It simplifies the code,
allowing you to concentrate on the primary topic of this section—implementing a
linked-list using an underlying array.

We call our new class Ar r a yRe f Sor t e dSt r i ngLi s t . In implementing our class
methods, we need to keep in mind that there are two distinct processes going on within
the array of nodes: bookkeeping relating to the space (such as initializing the array of

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 492

7.4 A Linked List as an Array of Nodes | 493

Figure 7.14 List and link structure are together

David

Miriam

Joshua

Robert

Leah

4

5

6

8

7

4

NUL

2

9

NUL

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

1f r e e

l i s t

node s . i nf o . ne xt

0

nodes, getting a new node, and freeing a node) and the operations on the list that
contain the user’s data. The bookkeeping operations are transparent to the user. Our
list interface does not change. In fact, our new class implements the Li s t -
I nt e r f a c e <St r i ng> interface. The private data, however, changes.

Our class must include the array of nodes. Let’s call this array node s and have it
hold elements of the class ALi s t Node . Objects of the ALi s t Node class contain two
attributes: i nf o, of class St r i ng, which holds a reference to a copy of the user’s data;
and ne xt , of the primitive type i nt , which holds the index of the next element on the
list. We define ALi s t Node as a protected class within our Ar r a yRe f Sor t e dSt r i ng-
Li s t class. This tactic provides reasonable protection, while allowing us to directly
access the instance variables i nf o and ne xt from within the Ar r a yRe f Sor t e dSt r i ng-
Li s t class.

In addition to the array of nodes, we need one integer “reference” to the first node
of the list (that we call l i s t) and another to the first free node (that we call f r e e).
Of course, we still need our numEl e me nt s and c ur r e nt Pos variables, as well as the

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 493

494 | Chapter 7: More Lists

variables set by the f i nd method and used by c ont a i ns , ge t , and r e move . Here is the
beginning of our class file:

/ / -
/ / Ar r a yRe f Sor t e dSt r i ngLi s t . j a va by Da l e / J oyc e / We e ms Cha pt e r 7
/ /
/ / I mpl e me nt s a n a r r a y- ba s e d s or t e d l i nke d l i s t of s t r i ngs
/ / -

pa c ka ge c h07. a r r a y;

i mpor t c h06. l i s t s . *;

publ i c c l a s s Ar r a yRe f Sor t e dSt r i ngLi s t i mpl e me nt s Li s t I nt e r f a c e <St r i ng>
{

pr ot e c t e d s t a t i c f i na l i nt NUL = - 1; / / End of l i s t s ymbol

pr ot e c t e d c l a s s ALi s t Node
{

pr i va t e St r i ng i nf o; / / The i nf o i n a l i s t node
pr i va t e i nt ne xt ; / / A l i nk t o t he ne xt node on t he l i s t

}

pr ot e c t e d ALi s t Node [] node s ; / / Ar r a y of ALi s t Node hol ds t he l i nke d l i s t

pr ot e c t e d i nt l i s t ; / / Re f e r e nc e t o f i r s t node on t he l i s t
pr ot e c t e d i nt f r e e ; / / Re f e r e nc e t o f i r s t node on t he f r e e l i s t

pr ot e c t e d i nt numEl e me nt s ; / / Numbe r of e l e me nt s i n t he l i s t
pr ot e c t e d i nt c ur r e nt Pos ; / / Cur r e nt pos i t i on f or i t e r a t i on

/ / s e t by f i nd me t hod
pr ot e c t e d bool e a n f ound; / / t r ue i f e l e me nt f ound, e l s e f a l s e
pr ot e c t e d i nt l oc a t i on; / / node c ont a i ni ng e l e me nt , i f f ound
pr ot e c t e d i nt pr e vi ous ; / / node pr e c e di ng l oc a t i on

The class constructors for class Ar r a yRe f Sor t e dSt r i ngLi s t allocate the stor-
age for the array of nodes and initialize the instance variables. They also set up the
initial free list of nodes. At the time of instantiation, all of the nodes are on the free
list. Thus the variable f r e e is set to 0 to “reference” the first array node, the ne xt
value of that node is set to 1, and so on, until all of the nodes are chained together.
This initialization can be handled by a for loop, followed by a single assignment
statement to set the last ne xt value to NUL. To be consistent with our past array-
based implementations, we provide two constructors: one that accepts a size parame-

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 494

7.4 A Linked List as an Array of Nodes | 495

ter and one that uses a default maximum size. Here is the code for the constructor
that takes a parameter:

publ i c Ar r a yRe f Sor t e dSt r i ngLi s t (i nt ma xEl e me nt s)
/ / I ns t a nt i a t e s a nd r e t ur ns a r e f e r e nc e t o a n e mpt y l i s t obj e c t wi t h
/ / r oom f or ma xEl e me nt s e l e me nt s .
{

node s = ne w ALi s t Node [ma xEl e me nt s] ;
f or (i nt i nde x = 0; i nde x < ma xEl e me nt s ; i nde x++)

node s [i nde x] = ne w ALi s t Node () ;

/ / Li nk t oge t he r t he f r e e node s .
f or (i nt i nde x = 1; i nde x < ma xEl e me nt s ; i nde x++)

node s [i nde x - 1] . ne xt = i nde x;
node s [ma xEl e me nt s - 1] . ne xt = NUL;

l i s t = NUL;
f r e e = 0;
numEl e me nt s = 0;
c ur r e nt Pos = NUL;

}

The methods that do the bookkeeping, ge t Node and f r e e Node , are auxiliary
(“helper”) methods and, therefore, are protected methods. The ge t Node method returns
the index of the next free node. The easiest node to use is the one at the beginning of
the free list, so ge t Node returns the value of f r e e . In addition, ge t Node updates the
value of f r e e to indicate the next node on the free list. Other than the fact that we
must be careful of our order of operations and use a temporary variable to hold the
index we need to return, this method is straightforward:

pr ot e c t e d i nt ge t Node ()
/ / Re t ur ns t he i nde x of t he ne xt a va i l a bl e node f r om t he f r e e l i s t
/ / a nd upda t e s t he f r e e l i s t i nde x.
{

i nt hol d;
hol d = f r e e ;
f r e e = node s [f r e e] . ne xt ;
r e t ur n hol d;

}

The f r e e Node method takes the node index received as an argument and adds the
corresponding node into the list of free nodes. The easiest approach is to add the node
to the beginning of the list.

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 495

496 | Chapter 7: More Lists

Abstract Array- Based Reference- Based Array Index Links

the node at not applicable l oc a t i on node s [l oc a t i on]
l oc a t i on

the element at l i s t [l oc a t i on] l oc a t i on. ge t I nf o() node s [l oc a t i on] . i nf o
l oc a t i on

the next location l i s t [l oc a t i on+1] l oc a t i on. ge t Li nk() node s [l oc a t i on] . ne xt

allocate a node not applicable ne w ge t Node ()

free a node not applicable remove links, garbage collector f r e e Node (node)

pr ot e c t e d voi d f r e e Node (i nt i nde x)
/ / Fr e e s t he node a t a r r a y pos i t i on i nde x by l i nki ng i t i n t o t he
/ / f r e e l i s t .
{

node s [i nde x] . ne xt = f r e e ;
f r e e = i nde x;

}

Yes, we are keeping the free list as a stack—not because we need the LIFO property, but
because it is the most efficient approach.

The public methods are very similar to their reference-based linked list counter-
parts. From the point of view of the algorithm used, they are identical. The following
table shows equivalent expressions for different list implementations. It also shows the
expressions for allocating and freeing nodes, where appropriate.

We look here at two of the methods; we leave the rest for you as an exercise. First
comes an easy one: i s Ful l . Recall that we are assuming that the size of our list is
bounded, so we need to export an i s Ful l operation. We have two ways of determining
whether the list is full. First, we can compare the number of elements on the list to the
size of the underlying array. If they are equal, then the list is full. But there is a second,
even easier way. Can you think of it? If the entire array is being used to hold our list, then
the list of free space must be empty. Thus we can just check whether f r e e is equal to NUL.

publ i c bool e a n i s Ful l ()
/ / Re t ur ns whe t he r t hi s l i s t i s f ul l .
{

r e t ur n (f r e e == NUL) ;
}

The remaining methods can be implemented following the same scheme devised for the
reference-based approach. We must be careful, however, to correctly transform the
implementation. Also, we must remember to handle the memory management ourselves,

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 496

7.5 A Specialized List ADT | 497

using our ge t Node and f r e e Node methods. Let’s look at the r e move method. Compare
the following code to that developed in Chapter 6:

publ i c bool e a n r e move (St r i ng e l e me nt)
/ / Re move s a n e l e me nt e f r om t hi s l i s t s uc h t ha t e . e qua l s (e l e me nt)
/ / a nd r e t ur ns t r ue ; i f no s uc h e l e me nt e xi s t s , r e t ur ns f a l s e
{

i nt hol d; / / t o r e me mbe r r e move d node i nde x
f i nd(e l e me nt) ;
i f (f ound)
{

hol d = l oc a t i on;
i f (l i s t == l oc a t i on)

l i s t = node s [l i s t] . ne xt ; / / r e move f i r s t node
e l s e

node s [pr e vi ous] . ne xt = node s [l oc a t i on] . ne xt ;
f r e e Node (hol d) ;
numEl e me nt s - - ;

}
r e t ur n f ound;

}

Notice how we carefully store the index of the node being removed, so that we can
“free” it before leaving the method.

7.5 A Specialized List ADT

We have defined Unsorted, Sorted, and Indexed List ADTs as well as several implemen-
tations of each ADT. Our lists can be used for many applications. There are always
some applications, however, that need special-purpose lists. Perhaps they require spe-
cific list operations that are not defined by our List ADTs, or perhaps the specific quali-
ties of our lists (for example, allowing duplicate elements) do not fit with the
requirements of the application. In such cases, we may be able to extend one of our list
classes to create a new list that meets the needs of the application. Alternatively, it may
be better just to create a new list class, customized specifically for the application in
question.

In the case study in Section 7.6, we need lists with a unique set of properties and
operations. The lists must hold elements of the primitive type byt e ; duplicate elements
are allowed. The lists need not support i s Ful l , c ont a i ns , ge t , or r e move . In fact, the
only list operations that we have been using that are required by this new list construct
are the s i z e operation and the iterator operations. For the case study, we will need to
process elements from left to right and from right to left, so we need to support two
iterators. In addition, we will need to add elements at the front and at the back of our

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 497

498 | Chapter 7: More Lists

lists. The reasons for these requirements are made clear in the case study; for now we
just accept the requirements as stated and consider how to implement this new list.

The Specification
Given this unique set of requirements, we decide to start from scratch for our new List
ADT. Of course, we can tap into our knowledge of lists and perhaps even reuse (cut and
paste) some of the code from the previous list implementations, but we will not imple-
ment any of the previously defined interfaces or extend any of our current classes.

Because the new list construct creates a specialized list for a specific application, we
call the list class Spe c i a l i z e dLi s t , and we specify its behavior in an interface called
Spe c i a l i z e dLi s t I nt e r f a c e . The new list does not provide a list of generic objects;
instead, it provides a list of byt e elements. Recall that a byte is one of Java’s primitive
integer types. A byte can hold an integer between –128 and +127. We place the classes
related to our new list in a package called c h07. byt e Li s t s .

Given the requirement that we must be able to iterate through the list in both direc-
tions, instead of our standard “current position” property, lists of the class Spe c i a l -
i z e dLi s t have both a “current forward position” and a “current backward position”
and provide iterator operations for traversing the list in either direction. This does not
mean that an iteration can change directions—it simply means that two separate itera-
tions can be going on at the same time, one forward and one backward.

Here is the formal specification of the new List ADT:

/ / -
/ / Spe c i a l i z e dLi s t I nt e r f a c e . j a va by Da l e / J oyc e / We e ms Cha pt e r 7
/ /
/ / I nt e r f a c e f or a c l a s s t ha t i mpl e me nt s a l i s t of byt e s .
/ / The r e c a n be dupl i c a t e e l e me nt s on t he l i s t .
/ / The l i s t ha s t wo s pe c i a l pr ope r t i e s c a l l e d t he c ur r e nt f or wa r d pos i t i on
/ / a nd t he c ur r e nt ba c kwa r d pos i t i on - - t he pos i t i ons of t he ne xt e l e me nt
/ / t o be a c c e s s e d by ge t Ne xt El e me nt a nd by ge t Pr i or El e me nt dur i ng a n i t e r a t i on
/ / t hr ough t he l i s t . Onl y r e s e t For wa r d a nd ge t Ne xt El e me nt a f f e c t t he c ur r e nt
/ / f or wa r d pos i t i on. Onl y r e s e t Ba c kwa r d a nd ge t Pr i or El e me nt a f f e c t t he c ur r e nt
/ / ba c kwa r d pos i t i on.
/ / -

pa c ka ge c h07. byt e Li s t s ;

publ i c i nt e r f a c e Spe c i a l i z e dLi s t I nt e r f a c e
{

voi d r e s e t For wa r d() ;
/ / I ni t i a l i z e s c ur r e nt f or wa r d pos i t i on f or t hi s l i s t t o t he f i r s t
/ / byt e on t he l i s t .

byt e ge t Ne xt El e me nt () ;

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 498

7.5 A Specialized List ADT | 499

/ / Pr e c ondi t i ons : t he l i s t i s not e mpt y
/ / t he l i s t ha s be e n r e s e t For wa r d
/ / t he l i s t ha s not be e n modi f i e d s i nc e mos t r e c e nt r e s e t
/ /
/ / Re t ur ns t he va l ue of t he byt e a t t he c ur r e nt f or wa r d pos i t i on on
/ / t hi s l i s t . I f t he c ur r e nt f or wa r d pos i t i on i s t he l a s t e l e me nt , t he n
/ / i t a dva nc e s t he va l ue of t he c ur r e nt f or wa r d pos i t i on t o t he f i r s t
/ / e l e me nt ; ot he r wi s e , i t a dva nc e s t he va l ue of t he c ur r e nt f or wa r d pos i t i on
/ / t o t he ne xt e l e me nt .

voi d r e s e t Ba c kwa r d() ;
/ / I ni t i a l i z e s c ur r e nt ba c kwa r d pos i t i on f or t hi s l i s t t o t he l a s t
/ / byt e on t he l i s t .

byt e ge t Pr i or El e me nt () ;
/ / Pr e c ondi t i ons : t he l i s t i s not e mpt y
/ / t he l i s t ha s be e n r e s e t Ba c kwa r d
/ / t he l i s t ha s not be e n modi f i e d s i nc e mos t r e c e nt r e s e t
/ /
/ / Re t ur ns t he va l ue of t he byt e a t t he c ur r e nt ba c kwa r d pos i t i on on
/ / t hi s l i s t . I f t he c ur r e nt ba c kwa r d pos i t i on i s t he f i r s t e l e me nt , t he n
/ / i t a dva nc e s t he va l ue of t he c ur r e nt ba c kwa r d pos i t i on t o t he l a s t
/ / e l e me nt ; ot he r wi s e i t a dva nc e s t he va l ue of t he c ur r e nt ba c kwa r d pos i t i on
/ / t o t he pr e vi ous e l e me nt .

i nt s i z e () ;
/ / Re t ur ns t he numbe r of e l e me nt s on t hi s l i s t .

voi d a ddFr ont (byt e e l e me nt) ;
/ / Adds t he va l ue of e l e me nt t o t he f r ont of t hi s l i s t .

voi d a ddEnd (byt e e l e me nt) ;
/ / Adds t he va l ue of e l e me nt t o t he e nd of t hi s l i s t .

}

The Implementation
The unique requirement for the Spe c i a l i z e dLi s t is that we must be able to traverse it
by going either forward or backward. Because a doubly linked list is linked in both
directions, traversing the list either way is equally simple. Therefore, we use a reference-
based doubly linked structure for our implementation.

To begin our backward traversals, and to support the new a ddEnd operation, it is
clear that we need easy access to the end of the list. We have already seen how keeping
the list reference pointing to the last element in a circular structure gives direct access

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 499

500 | Chapter 7: More Lists

Figure 7.15 A doubly linked list with two references

•

•

•

••

info info info info

l i s t Fi r s t

l i s t La s t

•

••

to both the first element and the last element. Thus we could use a doubly linked circu-
lar structure. Another approach is also possible, however: We can maintain two list ref-
erences, one for the front of the list and one for the back of the list. We use this
approach as shown in Figure 7.15.

Here is the beginning of the Spe c i a l i z e dLi s t class. We follow a doubly linked
reference-based approach, using nodes of the SLi s t Node class. We use instance vari-
ables to track the first list element, the last list element, the number of elements on the
list, and the positions for both the forward traversal and the backward traversal. The
i nf o attribute of the SLi s t Node class holds a value of the primitive byt e type, as dis-
cussed earlier. The SLi s t Node class is meant to be used only within the Spe c i a l -
i z e dLi s t class, so it is defined within the class. This strategy protects it from misuse
but allows it to be easily accessed from within the class itself.

/ / -
/ / Spe c i a l i z e dLi s t . j a va by Da l e / J oyc e / We e ms Cha pt e r 7
/ /
/ / I mpl e me nt s t he s pe c i a l i z e d l i s t ADT us i ng a doubl y l i nke d l i s t of node s
/ / -

pa c ka ge c h07. byt e Li s t s ;

publ i c c l a s s Spe c i a l i z e dLi s t i mpl e me nt s Spe c i a l i z e dLi s t I nt e r f a c e
{

pr ot e c t e d c l a s s SLi s t Node
/ / Li s t node s f or t he s pe c i a l i z e d l i s t i mpl e me nt a t i on
{

pr ot e c t e d byt e i nf o; / / The i nf o i n a l i s t node
pr ot e c t e d SLi s t Node ne xt ; / / A l i nk t o t he ne xt node on t he l i s t
pr ot e c t e d SLi s t Node ba c k; / / A l i nk t o t he pr e vi ous node on t he l i s t

}

pr ot e c t e d SLi s t Node l i s t Fi r s t ; / / Re f e r e nc e t o f i r s t node on l i s t

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 500

7.5 A Specialized List ADT | 501

pr ot e c t e d SLi s t Node l i s t La s t ; / / Re f e r e nc e t o l a s t node on t he l i s t
pr ot e c t e d i nt numEl e me nt s ; / / Numbe r of e l e me nt s on t he l i s t
pr ot e c t e d SLi s t Node c ur r e nt FPos ; / / Cur r e nt f or wa r d pos i t i on f or i t e r a t i on
pr ot e c t e d SLi s t Node c ur r e nt BPos ; / / Cur r e nt ba c kwa r d pos i t i on f or i t e r a t i on

publ i c Spe c i a l i z e dLi s t ()
/ / Cr e a t e s a n e mpt y l i s t obj e c t
{

numEl e me nt s = 0;
l i s t Fi r s t = nul l ;
l i s t La s t = nul l ;
c ur r e nt FPos = nul l ;
c ur r e nt BPos = nul l ;

}

The s i z e method is essentially unchanged from previous implementations—it sim-
ply returns the value of the numEl e me nt s instance variable.

publ i c i nt s i z e ()
/ / De t e r mi ne s t he numbe r of e l e me nt s on t hi s l i s t
{

r e t ur n numEl e me nt s ;
}

The iterator methods are straightforward. Resetting an iteration simply requires set-
ting the appropriate instance variable to either the front of the list or the back of the
list. The methods that return the next element for an iteration work as they have in the
past.

publ i c voi d r e s e t For wa r d()
/ / I ni t i a l i z e s c ur r e nt f or wa r d pos i t i on f or a n i t e r a t i on t hr ough t hi s l i s t
{

c ur r e nt FPos = l i s t Fi r s t ;
}

publ i c byt e ge t Ne xt El e me nt ()
/ / Re t ur ns t he va l ue of t he ne xt e l e me nt i n l i s t i n f or wa r d i t e r a t i on
{

byt e ne xt El e me nt I nf o = c ur r e nt FPos . i nf o;
i f (c ur r e nt FPos == l i s t La s t)

c ur r e nt FPos = l i s t Fi r s t ;
e l s e

c ur r e nt FPos = c ur r e nt FPos . ne xt ;

r e t ur n ne xt El e me nt I nf o;

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 501

502 | Chapter 7: More Lists

}

publ i c voi d r e s e t Ba c kwa r d()
/ / I ni t i a l i z e s c ur r e nt ba c kwa r d pos i t i on f or a n i t e r a t i on t hr ough t hi s l i s t
{

c ur r e nt BPos = l i s t La s t ;
}

publ i c byt e ge t Pr i or El e me nt ()
/ / Re t ur ns t he va l ue of t he ne xt e l e me nt i n l i s t i n ba c kwa r d i t e r a t i on
{

byt e ne xt El e me nt I nf o = c ur r e nt BPos . i nf o;
i f (c ur r e nt BPos == l i s t Fi r s t)

c ur r e nt BPos = l i s t La s t ;
e l s e

c ur r e nt BPos = c ur r e nt BPos . ba c k;

r e t ur n ne xt El e me nt I nf o;
}

The addition methods for our new list are simpler than the addition method for
the doubly linked list we used before, because we do not have to handle the general
case of addition. The a ddFr ont method always adds at the beginning of the list and
the a ddEnd method always adds at the end of the list. Let’s look at a ddFr ont (see Fig-
ure 7.16a).

The method begins by creating the new node and initializing its attributes. The new
node is the new front of the list, so we know that its ne xt link should reference the cur-
rent front of the list, and its ba c k link should be nul l . An if statement guards the case
when the addition occurs into an empty list (see Figure 7.16b). In that case, both the
l i s t Fi r s t and l i s t La s t instance variables must reference the new node, as it is both
the first and last element of the list. Otherwise, the ba c k link of the previous first ele-
ment is set to reference the new element, along with the l i s t Fi r s t instance variable.
Of course, we must also increment the value of numEl e me nt s .

publ i c voi d a ddFr ont (byt e e l e me nt)
/ / Adds t he va l ue of e l e me nt t o t he f r ont of t hi s l i s t
{

SLi s t Node ne wNode = ne w SLi s t Node () ; / / Re f e r e nc e t o node be i ng a dde d
ne wNode . i nf o = e l e me nt ;
ne wNode . ne xt = l i s t Fi r s t ;
ne wNode . ba c k = nul l ;
i f (l i s t Fi r s t == nul l) / / Addi ng i nt o a n e mpt y l i s t
{

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 502

7.5 A Specialized List ADT | 503

Figure 7.16 Adding at the beginning and at the end of the new list

••

7 2 8

(a) a ddFr ont (5)

BEFORE

••

5 7 2

l i s t Fi r s t :
l i s t La s t :
numEl e me nt s : 4

l i s t Fi r s t :
l i s t La s t :
numEl e me nt s : 3

•

8
AFTER

•

•

7 2 8

l i s t Fi r s t :
l i s t La s t :
numEl e me nt s : 4

•

5
AFTER

••

7 2 8
BEFORE

l i s t Fi r s t :
l i s t La s t :
numEl e me nt s : 3

l i s t Fi r s t : nul l
l i s t La s t : nul l
numEl e me nt s : 0

l i s t Fi r s t :
l i s t La s t :
numEl e me nt s : 1

(b) a ddFr ont (5) into an empty list

(c) a ddEnd(5)

BEFORE

5
AFTER

••

•

•••

•

•••

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 503

504 | Chapter 7: More Lists

l i s t Fi r s t = ne wNode ;
l i s t La s t = ne wNode ;

}
e l s e / / Addi ng i nt o a none mpt y l i s t
{

l i s t Fi r s t . ba c k = ne wNode ;
l i s t Fi r s t = ne wNode ;

}
numEl e me nt s ++;

}

The code for the a ddEnd method is similar (see Figure 7.16c):

publ i c voi d a ddEnd (byt e e l e me nt)
/ / Adds t he va l ue of e l e me nt t o t he e nd of t hi s l i s t
{

SLi s t Node ne wNode = ne w SLi s t Node () ; / / Re f e r e nc e t o node be i ng a dde d
ne wNode . i nf o = e l e me nt ;
ne wNode . ne xt = nul l ;
ne wNode . ba c k = l i s t La s t ;
i f (l i s t Fi r s t == nul l) / / Addi ng i nt o a n e mpt y l i s t
{

l i s t Fi r s t = ne wNode ;
l i s t La s t = ne wNode ;

}
e l s e / / Addi ng i nt o a none mpt y l i s t
{

l i s t La s t . ne xt = ne wNode ;
l i s t La s t = ne wNode ;

}
numEl e me nt s ++;

}

7.6 Case Study: Large Integers

The range of integer values that can be supported in Java varies from one primitive
integer type to another. Appendix C contains a table showing the default value, the pos-
sible range of values, and the number of bits used to implement each integer type. The
largest type, l ong, can represent values between 9,223,372,036,854,775,808 and
9,223,372,036,854,775,807. Wow! That would seem to suffice for most applications.
Some programmer, however, is certain to want to represent integers with even larger

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 504

7.6 Case Study: Large Integers | 505

1. Note that the Java library already provides a similar class, j a va . ma t h. Bi gI nt e ge r . We are imple-
menting our own version here because it is a good demonstration of the use of lists, and because it is informa-
tive to see how to implement such a class.

values. Let’s create a class La r ge I nt that allows the programmer to manipulate integers
in which the number of digits is limited only by the amount of memory available.1

Because we are providing an alternative implementation for a mathematical object,
an integer number, the operations are already familiar: addition, subtraction, multiplica-
tion, division, assignment, and the relational operators. For this case study, we limit our
attention to addition and subtraction. We ask you to enhance this ADT with some of the
other operations in the exercises.

In addition to the standard mathematical operations, we need an operation to con-
struct a number digit by digit. This operation cannot be a constructor with an integer
parameter, because the desired integer might be too large to represent in Java—after all,
that is the idea of this ADT. Thus we must have a special member method, a ddDi gi t ,
that can be called within a loop to insert digits one at a time, from most significant digit
to least significant digit, as we would normally read a number.

We assume the sign of a large integer is positive, and we provide a way to make it
negative. We call the corresponding method s e t Ne ga t i ve . Additionally, we must have
an observer operation that returns a string representation of the large integer. We follow
the Java convention and call this operation t oSt r i ng. It is also convenient to have a
constructor that accepts a string argument that represents an integer and instantiates
the corresponding La r ge I nt object.

The Underlying Representation
Before we look at the algorithms for these operations, we need to decide on our under-
lying representation. Because we said earlier that we were designing Spe c i a l i z e dLi s t
to use in this case study, you know that we will use it to represent our large integers.
Nevertheless, let’s assume we don’t already know about this choice and look at the rea-
soning behind our design of the Spe c i a l i z e dLi s t .

The fact that a large integer can be any size leads us to a dynamic memory-based
representation. Also, given that an integer is a list of digits, it is natural to investigate
the possibility of representing it as a linked list of digits. Figure 7.17 shows two ways of
storing numbers in a singly linked list and an example of addition. Parts (a) and (c) show
one digit per node; part (b) shows several digits per node. We develop our Large Integer
ADT using a single digit per node. (You are asked in the exercises to explore the changes
necessary to include more than one digit in each node.) Thus we have decided to repre-
sent our large integers as linked lists of digits. Because a single digit can be represented
by Java’s smallest integer type, the byt e , we decide to use linked lists of byt e values.

Throughout Chapters 6 and 7, we developed several implementations of linked lists.
Can we use one of our predefined generic list classes such as Ar r a yUns or t e dLi s t or

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 505

506 | Chapter 7: More Lists

Figure 7.17 Representing large integers with linked lists

••7 5 2•• 3 6• 0 •numbe r

••8 3 5• 6 • 3 •num1

••752 036numbe r

••4 1num2

••8 3 5• 7 • 7 •num3

+
+

=
=

(a) number = 752,036

(b) number = 752,036

(c) sum = 83,536 + 41

CRe f Uns or t e dLi s t ? No, we cannot, for several reasons. Most importantly, those lists
do not guarantee that their contents would be kept in any specific order. We need to
know that the representation preserves the order in which we insert digits. None of our
generic list implementations can guarantee that property, without extra work by the
application. Thus we define a special-purpose list class just for our large integers.

What operations must be supported by this class? The first thing to consider is how
large integer objects are to be constructed. We have already decided to build our repre-
sentation, one digit at a time, from left to right across a particular large integer. That is
how we initialize large integers directly. But large integers can also be created as a
result of arithmetic operations. Think about how you perform arithmetic operations
such as addition—you work from the least significant digit to the most significant digit,
obtaining the result as you proceed. Therefore, we also need to create large integers by
inserting digits in order from least significant to most significant. Thus our linked list
should support insertion of digits at both the beginning and the end of the list.

What type of access do we need? We must be able to access one digit at a time,
working from left to right to build a string for display. To support arithmetic operations

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 506

7.6 Case Study: Large Integers | 507

Figure 7.18 Three points of view of large integers

(a)
A = 1,234,567,999,999,999
B = 5,722,853,720,010
C = A+B

{ La r ge I nt A;
La r ge I nt B;

C = La r ge I nt . Add(A, B) ;

...

...

Application
Programmers

(b) Numbers: 5 7 2 2 8 5 3
sign: +

pr i va t e Spe c i a l i z e dLi s t numbe r s ;
pr i va t e bool e a n s i gn;
publ i c s t a t i c La r ge I nt Add (. . .) ;

LargeInt
Creator

...

(c)

pr ot e c t e d c l a s s SLi s t Node
{pr ot e c t e d byt e i nf o;

pr ot e c t e d SLi s t Node ne xt ;

SpecializedList
Programmer

...

•

•

•

•

5 7 2 2List:

first:
last:
etc

. . .
••

Note!! For this case study we are developing a Large Integer ADT that can be used by any
application program that requires large integers. This ADT provides operations to build large
integers, perform arithmetic operations on large integers, and return strings representing large
integers. Now we are discussing using a List ADT to hold the underlying representation of a
large integer. In other words, the application program uses the Large Integer ADTsince it pro-
vides large integers, and the Large Integer ADT uses the List ADT since it provides a list of
byt e values. See Figure 7.18.

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 507

508 | Chapter 7: More Lists

on large integers, we must also be able to access the digits from right to left. We con-
clude that we should use a list that supports both forward and backward iterations. This
is beginning to sound familiar! At last we can appreciate the reasoning behind the spec-
ification of the Spe c i a l i z e dLi s t class from Section 7.5.

The LargeInt Class
Now we can concentrate on the rest of the definition of the large integer class. In addition
to digits, integers have a sign, which indicates whether they are positive or negative. We
represent the sign of a large integer with a bool e a n instance variable s i gn. Furthermore,
we define two bool e a n constants, PLUS = t r ue and MI NUS = f a l s e , to use with s i gn.

Here is the first approximation of the beginning of the class La r ge I nt . It includes
the instance variables, two constructors, and the three methods s e t Ne ga t i ve (to make
a large integer negative), a ddDi gi t (to build a large integer digit by digit), and
t oSt r i ng (to provide a string representation of a large integer, complete with commas
separating every three digits). We place it in the package c h07. l a r ge I nt s . Our new
class uses the Spe c i a l i z e dLi s t class, so it must import the c h07. byt e Li s t s package.

/ / -
/ / La r ge I nt . j a va by Da l e / J oyc e / We e ms Cha pt e r 7
/ /
/ / Pr ovi de s a La r ge I nt e ge r ADT. La r ge i nt e ge r s c a n c ons i s t of a ny numbe r
/ / of di gi t s , pl us a s i gn. Suppor t s a n a dd a nd a s ubt r a c t ope r a t i on.
/ / -
pa c ka ge c h07. l a r ge I nt s ;

i mpor t c h07. byt e Li s t s . *;

publ i c c l a s s La r ge I nt
{

pr i va t e Spe c i a l i z e dLi s t numbe r s ; / / Hol ds di gi t s

/ / Cons t a nt s f or s i gn va r i a bl e
pr i va t e s t a t i c f i na l bool e a n PLUS = t r ue ;
pr i va t e s t a t i c f i na l bool e a n MI NUS = f a l s e ;

pr i va t e bool e a n s i gn;

publ i c La r ge I nt ()
/ / I ns t a nt i a t e s a n " e mpt y" l a r ge i nt e ge r .
{

numbe r s = ne w Spe c i a l i z e dLi s t () ;
s i gn = PLUS;

}

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 508

7.6 Case Study: Large Integers | 509

publ i c La r ge I nt (St r i ng i nt St r i ng)
/ / Pr e c ondi t i on: i nt St r i ng c ont a i ns a we l l - f or ma t t e d i nt e ge r
/ /
/ / I ns t a nt i a t e s a l a r ge i nt e ge r a s i ndi c a t e d by i nt St r i ng
{

numbe r s = ne w Spe c i a l i z e dLi s t () ;
s i gn = PLUS;

i nt f i r s t Di gi t Pos i t i on; / / Pos i t i on of f i r s t di gi t i n i nt St r i ng
i nt l a s t Di gi t Pos i t i on; / / Pos i t i on of l a s t di gi t i n i nt St r i ng

/ / Us e d t o t r a ns l a t e c ha r a c t e r t o byt e
c ha r di gi t Cha r ;
i nt di gi t I nt ;
byt e di gi t Byt e ;

f i r s t Di gi t Pos i t i on = 0;
i f (i nt St r i ng. c ha r At (0) == ' +') / / Ski p l e a di ng pl us s i gn

f i r s t Di gi t Pos i t i on = 1;
e l s e
i f (i nt St r i ng. c ha r At (0) == ' - ') / / Ha ndl e l e a di ng mi nus s i gn
{

f i r s t Di gi t Pos i t i on = 1;
s i gn = MI NUS;

}

l a s t Di gi t Pos i t i on = i nt St r i ng. l e ngt h() - 1;

f or (i nt c ount = f i r s t Di gi t Pos i t i on; c ount <= l a s t Di gi t Pos i t i on; c ount ++)
{

di gi t Cha r = i nt St r i ng. c ha r At (c ount) ;
di gi t I nt = Cha r a c t e r . di gi t (di gi t Cha r , 10) ;
di gi t Byt e = (byt e) di gi t I nt ;
a ddDi gi t (di gi t Byt e) ;

}
}

publ i c voi d s e t Ne ga t i ve ()
{

s i gn = MI NUS;
}

publ i c voi d a ddDi gi t (byt e di gi t)
{

numbe r s . a ddEnd(di gi t) ;
}

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 509

510 | Chapter 7: More Lists

publ i c St r i ng t oSt r i ng()
{

St r i ng l a r ge I nt St r i ng;
i f (s i gn == PLUS)

l a r ge I nt St r i ng = " +" ;
e l s e

l a r ge I nt St r i ng = " - " ;

i nt l e ngt h;
l e ngt h = numbe r s . s i z e () ;
numbe r s . r e s e t For wa r d() ;
f or (i nt c ount = l e ngt h; c ount >= 1; c ount - -)
{

l a r ge I nt St r i ng = l a r ge I nt St r i ng + numbe r s . ge t Ne xt El e me nt () ;
i f ((((c ount - 1) % 3) == 0) && (c ount ! = 1))

l a r ge I nt St r i ng = l a r ge I nt St r i ng + " , " ;
}
r e t ur n(l a r ge I nt St r i ng) ;

}

Addition and Subtraction
Do you recall when you learned about addition of integers? Remember how special rules
applied depending on what the signs of the operands were and which operand had the
larger absolute value? For example, to perform the addition (312) + (+200), what steps
would you take? Let’s see: The numbers have unlike signs, so we subtract the smaller
absolute value (200) from the larger absolute value (312), giving us 112, and use the
sign of the larger absolute value (), giving the final result of (112). Try a few more
additions:

(+200) + (+100) = ?

(300) + (134) = ?

(+34) + (62) = ?

(34) + (+62) = ?

Did you get the respective correct answers (+300, 434, 28, +28)?
Did you notice anything about the actual arithmetic operations that you had to per-

form to calculate the results of the summations listed above? You performed only two
kinds of operations: adding two positive numbers and subtracting a smaller positive

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 510

7.6 Case Study: Large Integers | 511

number from a larger positive number. That’s it. In combination with rules about how to
handle signs, these operations allow you to do all of your sums.

Helper Methods
In programming, as in mathematics, we also like to reuse common operations. There-
fore, to support the addition operation, we first define a few helper operations. These
base operations should apply to the absolute values of our numbers, which means we
can ignore the s i gn for now. Which common operations do we need? Based on the pre-
ceding discussion, we need to be able to add together two lists of digits, and to subtract
a smaller list from a larger list. That means we also have to be able to identify which of
two lists of digits is larger. Thus we need three operations, which we call a ddLi s t s ,
s ubt r a c t Li s t s , and gr e a t e r Li s t .

Let’s begin with gr e a t e r Li s t . We pass gr e a t e r Li s t two Spe c i a l i z e dLi s t
arguments; it returns t r ue if the first argument represents a larger number than the
second argument, and f a l s e otherwise. When comparing strings, we compare pairs of
characters in corresponding positions from left to right. The first characters that do not
match determine which number is greater. When comparing positive numbers, we have
to compare the numbers digit by digit only if they are the same length. We first com-
pare the lengths; if they are not the same, we return the appropriate result. If the num-
ber of digits is the same, we compare the digits from left to right. In the code, we
originally set a bool e a n variable gr e a t e r to f a l s e , and we change this setting if we
discover that the first number is larger than the second number. In the end, we return
the bool e a n value of gr e a t e r .

pr i va t e s t a t i c bool e a n gr e a t e r Li s t (Spe c i a l i z e dLi s t f i r s t ,
Spe c i a l i z e dLi s t s e c ond)

/ / Pr e c ondi t i on: no l e a di ng z e r os
/ /
/ / Re t ur ns t r ue i f f i r s t r e pr e s e nt s a l a r ge r numbe r t ha n s e c ond:
/ / ot he r wi s e r e t ur ns f a l s e .
{

bool e a n gr e a t e r = f a l s e ;
i f (f i r s t . s i z e () > s e c ond. s i z e ())

gr e a t e r = t r ue ;
e l s e
i f (f i r s t . s i z e () < s e c ond. s i z e ())

gr e a t e r = f a l s e ;
e l s e
{

byt e di gi t Fi r s t ;
byt e di gi t Se c ond;
f i r s t . r e s e t For wa r d() ;
s e c ond. r e s e t For wa r d() ;

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 511

512 | Chapter 7: More Lists

/ / Se t up l oop
i nt l e ngt h = f i r s t . s i z e () ;
bool e a n ke e pChe c ki ng = t r ue ;
i nt c ount = 1;

whi l e ((c ount <= l e ngt h) && (ke e pChe c ki ng))
{

di gi t Fi r s t = f i r s t . ge t Ne xt El e me nt () ;
di gi t Se c ond = s e c ond. ge t Ne xt El e me nt () ;
i f (di gi t Fi r s t > di gi t Se c ond)
{

gr e a t e r = t r ue ;
ke e pChe c ki ng = f a l s e ;

}
e l s e
i f (di gi t Fi r s t < di gi t Se c ond)
{

gr e a t e r = f a l s e ;
ke e pChe c ki ng = f a l s e ;

}
c ount ++;

}
}
r e t ur n gr e a t e r ;

}

If we exit the while loop without finding a difference, the numbers are equal and
we return the original value of gr e a t e r , which is f a l s e (because f i r s t is not greater
than s e c ond). Because we blindly look at the lengths of the lists, we must assume that
the numbers do not include leading zeros (for example, the method would report that
005 > 14). We make the gr e a t e r Li s t method private: Helper methods are not intended
for use by the client programmer; they are intended for use only within the La r ge I nt
class itself.

Let’s look at a ddLi s t s next. We pass a ddLi s t s its two operands as Spe c i a l -
i z e dLi s t parameters, and the method returns a new Spe c i a l i z e dLi s t as the result.
The processing for a ddLi s t s can be simplified if we assume that the first argument is
larger than (or equal to) the second argument. We already have access to a
gr e a t e r Li s t method, so we make this assumption.

We begin by adding the two least significant digits (the units position). Next, we
add the digits in the tens position (if present) plus the carry from the sum of the least
significant digits (if any). This process continues until we finish with the digits of the
smaller operand. For the remaining digits of the larger operand, we may need to propa-
gate a carry, but we do not have to add digits from the smaller operand. Finally, if a
carry value is left over, we create a new most significant location and place it there. We

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 512

7.6 Case Study: Large Integers | 513

addLists (SpecializedList larger, SpecializedList smaller) returns SpecializedList
Set result to new SpecializedList();
Set carry to 0;
larger.resetBackward();
smaller.resetBackward();

for the length of the smaller list
Set digit1 to larger.getPriorElement();
Set digit2 to smaller.getPriorElement();
Set temp to digit1 + digit2 + carry
Set carry to temp/10
result.addFront(temp % 10)

Finish up digits in larger, adding carries if necessary
if (carry != 0))

result.addFront(carry)
return result

use integer division and modulus operators to determine the carry value and the value
to insert into the result. The algorithm follows:

Apply the algorithm to the following examples to convince yourself that it works. The
code follows.

pr i va t e s t a t i c Spe c i a l i z e dLi s t a ddLi s t s (Spe c i a l i z e dLi s t l a r ge r ,
Spe c i a l i z e dLi s t s ma l l e r)

/ / Pr e c ondi t i on: l a r ge r >= s ma l l e r
/ /
/ / Re t ur ns a s pe c i a l i z e d l i s t t ha t i s a byt e - by- byt e s um of t he t wo
/ / a r gume nt l i s t s
{

byt e di gi t 1;
byt e di gi t 2;
byt e t e mp;
byt e c a r r y = 0;

322
44

366

388
108
496

399
1

400

999
11

10100

3
44
47

1
99

100

988
100
1088

0
0
0

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 513

514 | Chapter 7: More Lists

i nt l a r ge r Le ngt h = l a r ge r . s i z e () ;
i nt s ma l l e r Le ngt h = s ma l l e r . s i z e () ;
i nt l e ngt hDi f f ;

Spe c i a l i z e dLi s t r e s ul t = ne w Spe c i a l i z e dLi s t () ;

l a r ge r . r e s e t Ba c kwa r d() ;
s ma l l e r . r e s e t Ba c kwa r d() ;

/ / Pr oc e s s bot h l i s t s whi l e bot h ha ve di gi t s
f or (i nt c ount = 1; c ount <= s ma l l e r Le ngt h; c ount ++)
{

di gi t 1 = l a r ge r . ge t Pr i or El e me nt () ;
di gi t 2 = s ma l l e r . ge t Pr i or El e me nt () ;
t e mp = (byt e) (di gi t 1 + di gi t 2 + c a r r y) ;
c a r r y = (byt e) (t e mp / 10) ;
r e s ul t . a ddFr ont ((byt e) (t e mp % 10)) ;

}

/ / Fi ni s h pr oc e s s i ng of l e f t ove r di gi t s
l e ngt hDi f f = (l a r ge r Le ngt h - s ma l l e r Le ngt h) ;
f or (i nt c ount = 1; c ount <= l e ngt hDi f f ; c ount ++)
{

di gi t 1 = l a r ge r . ge t Pr i or El e me nt () ;
t e mp = (byt e) (di gi t 1 + c a r r y) ;
c a r r y = (byt e) (t e mp / 10) ;
r e s ul t . a ddFr ont ((byt e) (t e mp % 10)) ;

}
i f (c a r r y ! = 0)

r e s ul t . a ddFr ont ((byt e) c a r r y) ;

r e t ur n r e s ul t ;
}

Now let’s examine subtraction. Remember that for our helper method s ubt r a c t Li s t s
we are handling only the simplest case: Both integers are positive, and the smaller one is
subtracted from the larger one. As with a ddLi s t s , we accept two Spe c i a l i z e dLi s t
parameters, the first being larger than the second, and we return a new Spe c i a l i z e dLi s t .

We begin with the pair of digits in the units position. Let’s call the digit in the larger
argument di gi t 1 and the digit in the smaller argument di gi t 2. If di gi t 2 is less than
di gi t 1, we subtract and insert the resulting digit at the front of the result. If di gi t 2 is
greater than di gi t 1, we borrow 10 and subtract. Then we access the digits in the tens posi-
tion. If we have borrowed, we subtract 1 from the new l a r ge r and proceed as before.
Because we have limited our problem to the case where l a r ge r is larger than s ma l l e r ,
both either run out of digits together or l a r ge r still contains digits when s ma l l e r has been

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 514

7.6 Case Study: Large Integers | 515

processed. This constraint guarantees that borrowing does not extend beyond the most sig-
nificant digit of l a r ge r . See if you can follow the algorithm we just described in the code.

pr i va t e s t a t i c Spe c i a l i z e dLi s t s ubt r a c t Li s t s (Spe c i a l i z e dLi s t l a r ge r ,
Spe c i a l i z e dLi s t s ma l l e r)

/ / Pr e c ondi t i on: l a r ge r >= s ma l l e r
/ /
/ / Re t ur ns a s pe c i a l i z e d l i s t t ha t i s t he di f f e r e nc e of t he t wo a r gume nt l i s t s
{

byt e di gi t 1;
byt e di gi t 2;
byt e t e mp;
bool e a n bor r ow = f a l s e ;

i nt l a r ge r Le ngt h = l a r ge r . s i z e () ;
i nt s ma l l e r Le ngt h = s ma l l e r . s i z e () ;
i nt l e ngt hDi f f ;

Spe c i a l i z e dLi s t r e s ul t = ne w Spe c i a l i z e dLi s t () ;

l a r ge r . r e s e t Ba c kwa r d() ;
s ma l l e r . r e s e t Ba c kwa r d() ;

/ / Pr oc e s s bot h l i s t s whi l e bot h ha ve di gi t s .
f or (i nt c ount = 1; c ount <= s ma l l e r Le ngt h; c ount ++)
{

di gi t 1 = l a r ge r . ge t Pr i or El e me nt () ;
i f (bor r ow)
{

i f (di gi t 1 ! = 0)
{

di gi t 1 = (byt e) (di gi t 1 - 1) ;
bor r ow = f a l s e ;

}
e l s e
{

di gi t 1 = 9;
bor r ow = t r ue ;

}
}

di gi t 2 = s ma l l e r . ge t Pr i or El e me nt () ;

i f (di gi t 2 <= di gi t 1)
r e s ul t . a ddFr ont ((byt e) (di gi t 1 - di gi t 2)) ;

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 515

516 | Chapter 7: More Lists

e l s e
{

bor r ow = t r ue ;
r e s ul t . a ddFr ont ((byt e) (di gi t 1 + 10 - di gi t 2)) ;

}
}

/ / Fi ni s h pr oc e s s i ng of l e f t ove r di gi t s
l e ngt hDi f f = (l a r ge r Le ngt h - s ma l l e r Le ngt h) ;
f or (i nt c ount = 1; c ount <= l e ngt hDi f f ; c ount ++)
{

di gi t 1 = l a r ge r . ge t Pr i or El e me nt () ;
i f (bor r ow)
{

i f (di gi t 1 ! = 0)
{

di gi t 1 = (byt e) (di gi t 1 - 1) ;
bor r ow = f a l s e ;

}
e l s e
{

di gi t 1 = 9;
bor r ow = t r ue ;

}
}
r e s ul t . a ddFr ont (di gi t 1) ;

}

r e t ur n r e s ul t ;
}

Addition
Now that we have finished the helper methods, we can turn our attention to the public
methods provided to clients of the La r ge I nt class. First, let’s look at addition. Here are
the rules for addition you learned when studying arithmetic:

Addition Rules
1. If both operands are positive, add the absolute values and make the result positive.
2. If both operands are negative, add the absolute values and make the result negative.
3. If one operand is negative and one operand is positive, subtract the smaller absolute

value from the larger absolute value and give the result the sign of the larger
absolute value.

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 516

7.6 Case Study: Large Integers | 517

We use these rules to help us design our a dd method. We can combine the first two
rules as follows: “If the operands have the same sign, add the absolute values and make
the sign of the result the same as the sign of the operands.” Our code uses the appropri-
ate helper method to generate the new list of digits and then sets the sign based on the
rules. Remember that to use our helper methods we pass them the required arguments in
the correct order (larger first). Here is the code for a dd:

publ i c s t a t i c La r ge I nt a dd(La r ge I nt f i r s t , La r ge I nt s e c ond)
/ / Re t ur ns a La r ge I nt t ha t i s t he s um of t he t wo a r gume nt La r ge I nt s
{

La r ge I nt s um = ne w La r ge I nt () ;

i f (f i r s t . s i gn == s e c ond. s i gn)
{

i f (gr e a t e r Li s t (f i r s t . numbe r s , s e c ond. numbe r s))
s um. numbe r s = a ddLi s t s (f i r s t . numbe r s , s e c ond. numbe r s) ;

e l s e
s um. numbe r s = a ddLi s t s (s e c ond. numbe r s , f i r s t . numbe r s) ;

s um. s i gn = f i r s t . s i gn;
}
e l s e / / Si gns a r e di f f e r e nt
{

i f (gr e a t e r Li s t (f i r s t . numbe r s , s e c ond. numbe r s))
{

s um. numbe r s = s ubt r a c t Li s t s (f i r s t . numbe r s , s e c ond. numbe r s) ;
s um. s i gn = f i r s t . s i gn;

}
e l s e
{

s um. numbe r s = s ubt r a c t Li s t s (s e c ond. numbe r s , f i r s t . numbe r s) ;
s um. s i gn = s e c ond. s i gn;

}
}

r e t ur n s um;
}

The a dd method accepts two La r ge I nt objects and returns a new La r ge I nt object
equal to their sum. Because it is passed both operands as parameters and returns the
result explicitly, it is defined as a s t a t i c method, which is invoked through the class,
rather than through an object. For example, the code

La r ge I nt LI 1 = ne w La r ge I nt () ;
La r ge I nt LI 2 = ne w La r ge I nt () ;
La r ge I nt LI 3;

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 517

518 | Chapter 7: More Lists

LI 1. a ddDi gi t ((byt e) 9) ;
LI 1. a ddDi gi t ((byt e) 9) ;
LI 1. a ddDi gi t ((byt e) 9) ;

LI 2. a ddDi gi t ((byt e) 9) ;
LI 2. a ddDi gi t ((byt e) 8) ;
LI 2. a ddDi gi t ((byt e) 7) ;

LI 3 = La r ge I nt . a dd(LI 1, LI 2) ;

Sys t e m. out . pr i nt l n(" LI 3 i s " + LI 3) ;

would result in the output of the string “LI3 is +1986.”

Subtraction
Remember how subtraction seemed harder than addition when you were learning arith-
metic? Not anymore. We need to use only one subtraction rule: “Change the sign of the
subtrahend, and add.” We do have to be careful about how we “change the sign of the
subtrahend,” because we do not want to change the sign of the actual argument passed
to s ubt r a c t —that would produce an unwanted side effect of our method. Therefore, we
create a new La r ge I nt object, make it a copy of the second parameter, invert its sign,
and then invoke a dd:

publ i c s t a t i c La r ge I nt s ubt r a c t (La r ge I nt f i r s t , La r ge I nt s e c ond)
/ / Re t ur ns a La r ge I nt t ha t i s t he di f f e r e nc e of t he t wo a r gume nt La r ge I nt s
{

La r ge I nt di f f = ne w La r ge I nt () ;

/ / Cr e a t e a n i nve r s e of s e c ond
La r ge I nt ne gSe c ond = ne w La r ge I nt () ;
ne gSe c ond. s i gn = ! s e c ond. s i gn;
s e c ond. numbe r s . r e s e t For wa r d() ;
i nt l e ngt h = s e c ond. numbe r s . s i z e () ;
f or (i nt c ount = 1; c ount <= l e ngt h; c ount ++)

ne gSe c ond. numbe r s . a ddEnd(s e c ond. numbe r s . ge t Ne xt El e me nt ()) ;

/ / Add f i r s t t o i nve r s e of s e c ond
di f f = a dd(f i r s t , ne gSe c ond) ;

r e t ur n di f f ;
}

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 518

7.6 Case Study: Large Integers | 519

Test Plan
Each La r ge I nt operation must be unit tested. We should choose test data that represent
all the varieties of possible input. This set of input would involve varying combinations
of signs and relative relationships between the absolute values of operands. The
examples used in the discussion can serve as test data for those operations. Other test
cases should also be included, such as cases in which one or both of the operands are
zero, or the expected result is zero. We can use the application developed next as a test
driver.

The LargeIntApp Program
The La r ge I nt App program allows the user to enter two large integers, performs the
addition and subtraction of the two integers, and reports the results. Study the code
below. You should be able to identify the statements that declare, instantiate and initial-
ize, transform, and observe large integers.

/ / -
/ / La r ge I nt App. j a va by Da l e / J oyc e / We e ms Cha pt e r 7
/ /
/ / Al l ows us e r t o a dd or s ubt r a c t l a r ge i nt e ge r s .
/ / -

i mpor t j a va . ut i l . Sc a nne r ;
i mpor t c h07. l a r ge I nt s . La r ge I nt ;

publ i c c l a s s La r ge I nt App
{

publ i c s t a t i c voi d ma i n(St r i ng[] a r gs)
{

Sc a nne r c onI n = ne w Sc a nne r (Sys t e m. i n) ;

La r ge I nt f i r s t ;
La r ge I nt s e c ond;

St r i ng i nt St r i ng;
St r i ng mor e = nul l ; / / us e d t o s t op or c ont i nue pr oc e s s i ng

do
{

/ / Ge t l a r ge i nt e ge r s .
Sys t e m. out . pr i nt l n(" Ent e r t he f i r s t l a r ge i nt e ge r : ") ;
i nt St r i ng = c onI n. ne xt Li ne () ;
f i r s t = ne w La r ge I nt (i nt St r i ng) ;

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 519

520 | Chapter 7: More Lists

Sys t e m. out . pr i nt l n(" Ent e r t he s e c ond l a r ge i nt e ge r : ") ;
i nt St r i ng = c onI n. ne xt Li ne () ;
s e c ond = ne w La r ge I nt (i nt St r i ng) ;
Sys t e m. out . pr i nt l n() ;

/ / Pe r f or m a nd r e por t t he a ddi t i on a nd s ubt r a c t i on.
Sys t e m. out . pr i nt (" Fi r s t numbe r : ") ;
Sys t e m. out . pr i nt l n(f i r s t) ;
Sys t e m. out . pr i nt (" Se c ond numbe r : ") ;
Sys t e m. out . pr i nt l n(s e c ond) ;
Sys t e m. out . pr i nt (" Sum: ") ;
Sys t e m. out . pr i nt l n(La r ge I nt . a dd(f i r s t , s e c ond)) ;
Sys t e m. out . pr i nt (" Di f f e r e nc e : ") ;
Sys t e m. out . pr i nt l n(La r ge I nt . s ubt r a c t (f i r s t , s e c ond)) ;

/ / De t e r mi ne i f t he r e i s mor e t o pr oc e s s .
Sys t e m. out . pr i nt l n() ;
Sys t e m. out . pr i nt (" Pr oc e s s a not he r pa i r of numbe r s ? (Y=Ye s) : ") ;
mor e = c onI n. ne xt Li ne () ;
Sys t e m. out . pr i nt l n() ;

}
whi l e (mor e . e qua l s I gnor e Ca s e (" y")) ;

}
}

Here is the result of a sample run of the program:

Enter the first large integer:
15463663748473748374988477777777777777777
Enter the second large integer:
4536748465999347474948722222222222222223

First number: +15,463,663,748,473,748,374,988,477,777,777,777,777,777
Second number: +4,536,748,465,999,347,474,948,722,222,222,222,222,223
Sum: +20,000,412,214,473,095,849,937,200,000,000,000,000,000
Difference: +10,926,915,282,474,400,900,039,755,555,555,555,555,554
Process another pair of numbers? (Y=Yes): N

You are encouraged to try the program out for yourself. If you do, you may discover
a few problem situations. These situations form the basis for some end-of-chapter
exercises.

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 520

7.6 Case Study: Large Integers | 521

The GUI Approach: A Large Integer Calculator
The La r ge I nt class can also be used as the basis for an interactive large integer calculator. The
interested reader can find the code for this calculator on this book’s website. Here are some
screenshots, to give you a feeling for the application.

The user first sees this screen:

Here is the result of entering two operands, choosing addition, and clicking Calculate:

How about subtraction?

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 521

522 | Chapter 7: More Lists

Wait a second, is that answer correct? Of course . . . remember that 1000 (2000) = 1000 +
2000. Let’s look at an example using really big integers, which is the purpose of the Large Inte-
ger ADT:

Exercises
1. The Large Integer Calculator program does not “catch” ill-formatted input the way that the

Postfix Expression Evaluator program did. For example, consider the following screenshot:

Fix the program so that it is more robust, and so that in situations such as that shown above
it writes an appropriate error message to the display.

2. Consider the multiplication of large integers.
a. Describe an algorithm.
b. Implement a mul t i pl y method for the La r ge I nt class.
c. Add multiplication to the Large Integer Calculator program.

3. Design and implement your own GUI for this problem. Write a short explanation about why
your interface is better than the one shown in the textbook.

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 522

Exercises | 523

Summary
This chapter extended the idea of linking the elements in a list to include lists with header
and trailer nodes, circular lists, and doubly linked lists. In addition to using dynamically
allocated nodes to implement a linked structure, we looked at a technique for implement-
ing linked structures in an array of nodes. With this technique, the links are not refer-
ences into the free store but rather indexes into the array of nodes. This type of linking is
used extensively in systems software.

The case study at the end of the chapter designed a Large Integer ADT, for which the
number of digits is bounded only by the size of memory. The Large Integer ADT
required a specialized list for its implementation; none of the lists developed so far pro-
vided the needed functionality. Thus we created a new class Spe c i a l i z e dLi s t . This
case study provided a good example of how one ADT can be implemented with the aid
of another ADT, emphasizing the importance of viewing systems as a hierarchy of
abstractions.

Exercises
7.1 Circular Linked Lists

1. Describe the differences, if any, between Chapter 6’s Re f Uns or t e dLi s t and
Chapter 7’s CRe f Uns or t e dLi s t versions of the following methods. Also explain
the reasons for the differences.
a. The constructors
b. f i nd

c. s i z e

d. c ont a i ns

e. r e move

f. t oSt r i ng

g. r e s e t

h. ge t Ne xt

2. Write a public method pr i nt Re ve r s e that prints the elements of a CRe f Un-
s or t e dLi s t object in reverse order. For instance, for the list X Y Z,
l i s t . pr i nt Re ve r s e () would output Z Y X. Assume that the list elements all
have an associated t oSt r i ng method. You may use as a precondition that the
list is not empty.

3. Using the same approach we used for the unsorted circular list, create a sorted
circular list class called CRe f Sor t e dLi s t . Be sure to test your final result.

4. Suppose we define an operation on a sorted list called i nBe t we e n that accepts an
element as a parameter and returns t r ue if the element is “in between” the small-
est and largest list elements. That is, based on the c ompa r e To method defined for

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 523

524 | Chapter 7: More Lists

list elements, the element is larger than the smallest list element and smaller than
the largest list element. Otherwise, the method returns f a l s e (even if the element
“matches” the smallest or largest element).
a. Design and code i nBe t we e n as client code, using operations of the

Ar r a ySor t e dLi s t class (the array-based sorted list class from Chapter 6).
b. Design and code i nBe t we e n as a public method of the Ar r a ySor t e dLi s t class.
c. Design and code i nBe t we e n as a public method of the Re f Sor t e dLi s t class

(from Chapter 6).
d. Design and code i nBe t we e n as a public method of the CRe f Sor t e dLi s t

class (from Exercise 3).
e. State the Big-O complexity of each of your implementations in terms of N,

the size of the list.
5. We implemented the CRe f Uns or t e dLi s t by maintaining a single reference, to

the last element of the list. Suppose we changed our approach so that we main-
tain two references into the linked list, one to the first list element and one to
the last list element.
a. Would the new approach necessitate a change in the class constructor? If so,

describe the change.
b. Would the new approach necessitate a change in the ge t Ne xt method? If so,

describe the change.
c. Would the new approach necessitate a change in the f i nd method? If so,

describe the change.
d. Would the new approach necessitate a change in the a dd method? If so,

describe the change.
6. At the end of the Section 7.1 it was suggested that many of the claimed benefits

of circular linked lists could also be obtained by simply augmenting our linear
linked list class (from Chapter 6) with a private variable that references the last
element of the list. Outline the changes to the public methods of the Re f Sor t -
e dLi s t class that should be made to accommodate such a change. For each
change, identify whether the change is necessary to support the new implementa-
tion or whether it is an improvement made possible by the new implementation.

7.2 Doubly Linked Lists
7. We discussed the add operation for a doubly linked list and showed that the cor-

rect order for the reference changes is

ne wNode . s e t Ba c k(l oc a t i on. ge t Ba c k()) ;
ne wNode . s e t Li nk(l oc a t i on) ;
l oc a t i on. ge t Ba c k() . s e t Li nk(ne wNode) ;
l oc a t i on. s e t Ba c k(ne wNode) ;

Describe the ramifications of making the reference changes in a different order
as shown here:

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 524

Exercises | 525

a. l oc a t i on. s e t Ba c k(ne wNode) ;
ne wNode . s e t Ba c k(l oc a t i on. ge t Ba c k()) ;
ne wNode . s e t Li nk(l oc a t i on) ;
l oc a t i on. ge t Ba c k() . s e t Li nk(ne wNode) ;

b. ne wNode . s e t Ba c k(l oc a t i on. ge t Ba c k()) ;
l oc a t i on. ge t Ba c k() . s e t Li nk(ne wNode) ;
ne wNode . s e t Li nk(l oc a t i on) ;
l oc a t i on. s e t Ba c k(ne wNode) ;

c. ne wNode . s e t Li nk(l oc a t i on) ;
ne wNode . s e t Ba c k(l oc a t i on. ge t Ba c k()) ;
l oc a t i on. ge t Ba c k() . s e t Li nk(ne wNode) ;
l oc a t i on. s e t Ba c k(ne wNode) ;

8. Consider the r e move operation for a doubly linked list.
a. For the situation depicted in Figure 7.8, show the correct order of reference

changes so that the node at l oc a t i on is removed from the list.

b. Design and create the code for r e move . Remember to handle all of the special
cases.

9. Using the circular doubly linked list below, give the expression corresponding to
each of the following descriptions.

For example, the expression for the i nf o value of node 1, referenced from refer-
ence A, would be A. ge t I nf o() .
a. The i nf o value of node 1, referenced from reference C

b. The i nf o value of node 2, referenced from reference B
c. The l i nk value of node 2, referenced from reference A
d. The l i nk value of node 4, referenced from reference C
e. Node 1, referenced from reference B
f. The ba c k value of node 4, referenced from reference C
g. The ba c k value of node 1, referenced from reference A

10. Design, implement, and test a doubly linked list ADT, using DLLNode objects as
the nodes. In addition to our standard list operations, your class should provide

•••

••••

•

•

•

Node
1

Node
2

Node
3

Node
4

Node
5

A B C

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 525

526 | Chapter 7: More Lists

for backward iteration through the list. To support this operation, it should
export a r e s e t Ba c k method and a ge t Pr e vi ous method. To facilitate this, you
may want to include an instance variable l a s t that always references the last
element on the list.

7.3 Linked Lists with Headers and Trailers
11. Dummy nodes are used to simplify list processing by eliminating some “special

cases.”
a. Which special case is eliminated by a header node in a reference-based linked

list?
b. Which special case is eliminated by a trailer node in a reference-based linked

list?
c. Would dummy nodes be useful in implementing a linked stack? That is,

would their use eliminate a special case?
d. Would dummy nodes be useful in implementing a linked queue with a refer-

ence to both the header and the trailer elements?
e. Would dummy nodes be useful in implementing a circular linked queue?

12. Of the three variations of linked lists (circular, with header and trailer nodes, and
doubly linked), which would be most appropriate for each of the following appli-
cations?
a. You must search a list for a key and return the keys of the two elements that

come before it and the keys of the two elements that come after it.
b. A text file contains integer elements, one per line, sorted from smallest to

largest. You must read the values from the file and create a sorted linked list
containing the values.

c. You need a list that is short and frequently becomes empty. You want the
optimal implementation for adding an element into the empty list and
removing the last element from the list.

13. John and Mary are programmers for the local school district. One morning John
commented to Mary about the funny last name the new family in the district
had: “Have you ever heard of a family named Zzuan?” Mary replied, “Uh, oh; we
have some work to do. Let’s get going.” Can you explain Mary’s response?

7.4 A Linked List as an Array of Nodes
14. What is the Big-O complexity for initializing the free list in the array-based

linked implementation? For the methods ge t Node and f r e e Node ?
15. Use the linked lists contained in the array pictured in Figure 7.13 to answer these

questions:
a. Which elements are in the list pointed to by l i s t 1?
b. Which elements are in the list pointed to by l i s t 2?

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 526

Exercises | 527

c. Which array positions (indexes) are part of the free space list?
d. Draw a figure that represents the array after the removal of “Nell” from the

first list.
e. Draw a figure that represents the array after the addition of “Anne” to the

second list. Assume that before the addition that the array is as pictured in
Figure 7.13.

16. An array of nodes is used to hold a doubly linked sorted list, with the ne xt
and ba c k node values indicating the indexes of the linked nodes in each
direction.
a. Show how the array would look after it was initialized to an empty state,

with all the nodes linked into the free space list. (Free space nodes have to be
linked in only one direction.)

b. Draw a box-and-arrow picture of an abstract doubly linked list into which
the following numbers are added into their proper places: 17, 4, 25.

c. Show how the array in part a would look after the following numbers are
added into their proper places in the doubly linked list: 17, 4, 25.

[0]

[1]

[2]

[3]

[4]

[5]

f r e e

l i s t

node s . i nf o . ne xt . ba c k

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 527

528 | Chapter 7: More Lists

d. Show how the array in part c would look after 17 is removed from the doubly
linked list.

17. We developed code for the constructor and the ge t Node , f r e e Node , i s Ful l ,
and r e move methods of our Ar r a yRe f Sor t e dLi s t class. Develop the code for
the following methods:
a. f i nd

[0]

[1]

[2]

[3]

[4]

[5]

f r e e

l i s t

node s . i nf o . ne xt . ba c k

[0]

[1]

[2]

[3]

[4]

[5]

f r e e

l i s t

node s . i nf o . ne xt . ba c k

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 528

Exercises | 529

b. s i z e

c. c ont a i ns

d. ge t

e. t oSt r i ng

f. r e s e t

g. ge t Ne xt

h. a dd

7.5 A Specialized List ADT
18. True or False? The Spe c i a l i z e dLi s t class

a. Uses the “by copy” approach with its elements.
b. Implements the Li s t I nt e r f a c e interface.
c. Keeps its data elements sorted.
d. Allows duplicate elements.
e. Throws an exception if an iteration “walks off ” the end of the list.
f. Can hold objects of any Java class.
g. Has only O(1) operations, including its constructor.

19. Describe the difference between the ge t Pr i or El e me nt method of the Spe c i a l -
i z e dLi s t class and the proposed ge t Pr e vi ous El e me nt method of the Dou-
bl yLi nke dLi s t class.

7.6 Case Study: Large Integers
20. Discuss the changes that would be necessary within the La r ge I nt class if more

than one digit is stored per node.
21. The Large Integer Application does not “catch” ill-formatted input. For example,

consider the following program run:

Enter the first large integer:
twenty

Enter the second large integer:
two

First number: +-1-1-1,-1-1-1
Second number: +-1-1-1
Sum: +-1-1-1,-2-2-2
Difference: +-1-1-1,000

Process another pair of numbers? (Y=Yes): n

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 529

530 | Chapter 7: More Lists

Fix the program so that it is more robust, and so that in situations such as that
shown above it writes an appropriate error message to the display.

22. Consider the multiplication of large integers.
a. Describe an algorithm.
b. Implement a multiply method for the La r ge I nt class.
c. Add multiplication to the Large Integer Application.

23. The private method gr e a t e r Li s t of the La r ge I nt class assumes that its argu-
ments have no leading zeros. When this assumption is violated, strange results
can occur. Consider the following run of the Large Integer Application that
claims 35 3 is 968:

Enter the first large integer:
35

Enter the second large integer:
003

First number: +35
Second number: +003
Sum: +038
Difference: -968

Process another pair of numbers? (Y=Yes): n

a. Why do leading zeros cause a problem?
b. Identify at least two approaches to correcting this problem.
c. Describe the benefits and drawbacks of each of your identified approaches.
d. Choose one of your approaches and implement the solution.

13549_CH07_Da l e . qxd 1/ 8/ 11 8: 03 AM Pa ge 530

Knowledge Goals
You should be able to
■ define and use the following tree terminology:

■ binary tree ■ descendant
■ binary search tree ■ level
■ root ■ height
■ parent ■ subtree
■ child ■ full
■ ancestor ■ complete

■ given a binary tree, identify the order the nodes would be visited for preorder, inorder, and postorder traversals
■ define a binary search tree at the logical level
■ describe an algorithm for balancing a binary search tree
■ given a problem description, determine whether a binary search tree is an appropriate structure for solving the problem

Skill Goals
You should be able to
■ show how a binary search tree would be structured after a series of insertions and removals
■ implement the following binary search tree algorithms in Java:

■ finding an element ■ removing an element
■ counting the number of nodes ■ retrieving an element
■ adding an element ■ traversing a tree in preorder, inorder, and postorder

■ discuss the Big-O efficiency of a given binary search tree operation
■ use a binary search tree as a component of a problem solution
■ show how a binary tree can be represented as an array, with implicit positional links between the elements

Binary Search Trees
G

o

a

l

s

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 531

We have described some of the advantages of using a linear linked list to store sorted
information. One drawback of using a linear linked list is the time it takes to search a
long list. A sequential or linear search of (possibly) all the nodes in the entire list is an
O(N) operation. In Chapter 6, we saw how a binary search could find an element in a
sorted list stored sequentially in an array. The binary search is an O(log2N) operation. It
would be nice if we could use a binary search with a linked list, but there is no practical
way to find the midpoint of a linked list of nodes. We can, however, reorganize the list’s
elements into a linked structure that is perfect for binary searching: the binary search
tree. The binary search tree provides us with a data structure that retains the flexibility
of a linked list while allowing quicker [O(log2N) in the average case] access to any node
in the list.

This chapter introduces some basic tree vocabulary and then develops the algo-
rithms and implementations of the operations needed to use a binary search tree. The
case study uses a binary search tree to calculate the frequency of words in a text file.

8.1 Trees

Each node in a singly linked list may point to one other node: the one that follows it.
Thus a singly linked list is a linear structure; each node in the list (except the last) has a
unique successor. A tree is a nonlinear structure in which each node is capable of hav-
ing multiple successor nodes, called children. Each of the children, being nodes in a tree,

can also have multiple child nodes, and these children
can in turn have many children, and so on, giving the
tree its branching structure. The “beginning” of the tree
is a unique starting node called the root.

Trees are useful for representing hierarchical rela-
tionships among data elements. Figure 8.1 shows three
example trees. The first represents the chapters, sec-
tions, and subsections of this textbook; the second rep-
resents the hierarchical inheritance relationship among

a set of Java classes, and the third represents a scientific classification of butterflies.
Trees are recursive structures. We can view any tree node as being the root of its

own tree; such a tree is called a subtree of the original tree. For example, in Figure
8.1(a) the node labeled “1. Getting Organized” is the root of a subtree containing all of
the Chapter 1 material. There is one more defining quality of a tree—a tree’s subtrees are
disjoint; that is, they do not share any nodes. Another way of expressing this property is
to say that there is a unique path from the root of a tree to any other node of the tree.
As a consequence, every node (except the root) has a unique parent. In the structure at
the top of page 534, this rule is violated any way we look at it: The subtrees of A are
not disjoint; there are two paths from the root to the node containing D; D has two par-
ents. Therefore, this structure is not a tree.

532 | Chapter 8: Binary Search Trees

Tree A structure with a unique starting node (the
root), in which each node is capable of having multiple
child nodes, and in which a unique path exists from the
root to every other node
Root The top node of a tree structure; a node with no
parent

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 532

8.1 Trees | 533

Figure 8.1 Trees model hierarchical relationships

(a) A textbook

Data Structures in Java

1. Getting
 Organized

2. Abstract
 Data Types

3. The Stack
 ADT

4 . . .

. . .

etc. etc.

etc. etc. etc.

Software
Engineering

1.1

(c) Scientific classification of butterflies and moths

Butterflies/Moths

Hesperioidea Papilionoidea Hedyloidea

etc.

etc.

Hesperiidae

Papilionidae Pieridae Lycaenidae Nymphalidae

(b) Java classes

Object

Boolean AbstractCollection . . .

etc.

AbstractList AbstractSet

Byte

AbstractSequentialList ArrayList Vector

Linked List Stack

etc.

1.2 Object
 Orientation

1.3 Classes, Objects, and
 Applications

 . . .

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 533

Trees are useful structures. In this chapter, we concentrate on a particular form of
tree: the binary tree. In fact, we concentrate on a particular type of binary tree: the
binary search tree.

Binary Trees
A binary tree is a tree where each node is capable of having two children. Figure 8.2
depicts such a binary tree. The root node of this binary tree contains the value A. Each
node in the tree may have zero, one, or two children. The node to the left of a node, if it
exists, is called its left child. For instance, the left child of the root node contains the

value B. The node to the right of a node, if it exists, is
its right child. The right child of the root node contains
the value C. The root node is the parent of the nodes
containing B and C. If a node in the tree has no chil-
dren, it is called a leaf. For instance, the nodes contain-
ing G, H, E, I, and J are leaf nodes.

In Figure 8.2, each of the root node’s children is
itself the root of a smaller binary tree, or subtree. The
root node’s left child, containing B, is the root of its left
subtree, whereas the right child, containing C, is the
root of its right subtree. In fact, any node in the tree
can be considered the root node of a binary subtree.

The subtree whose root node has the value B also includes the nodes with values D, G,
H, and E. These nodes are the descendants of the node containing B. The descendants of
the node containing C are the nodes with the values F, I, and J. The leaf nodes have no
descendants. A node is the ancestor of another node if it is the parent of the node, or
the parent of some other ancestor of that node. (Yes, this is a recursive definition.) The
ancestors of the node with the value G are the nodes containing D, B, and A. Obviously,
the root of the tree is the ancestor of every other node in the tree, but the root node has
no ancestors itself.

The level of a node refers to its distance from the root. In Figure 8.2, the level of the
node containing A (the root node) is 0 (zero), the level of the nodes containing B and C

A

B

DC

•notTree

534 | Chapter 8: Binary Search Trees

Binary tree A tree in which each node is capable of
having two child nodes: a left child node and a right
child node
Leaf A tree node that has no children
Descendant A child of a node, or a child of a
descendant
Ancestor A parent of a node, or a parent of an
ancestor

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 534

8.1 Trees | 535

Figure 8.2 A binary tree

A

CB

FED

G H I J

•

Level 0

Level 1

Level 2

Level 3

tree

is 1, the level of the nodes containing D, E, and F is 2, and the level of the nodes con-
taining G, H, I, and J is 3.

The maximum level in a tree determines its height. The maximum number of nodes
at any level N is 2N. Often, however, levels do not contain the maximum number of
nodes. For instance, in Figure 8.2, level 2 could contain four nodes, but because the
node containing C in level 1 has only one child, level 2 contains only three nodes. Level
3, which could contain eight nodes, has only four. We could make many differently
shaped binary trees out of the 10 nodes in this tree. A few variations are illustrated in
Figure 8.3. It is easy to see that the maximum number of levels in a binary tree with N
nodes is N (counting level 0 as one of the levels). But what is the minimum number of
levels? If we fill the tree by giving every node in each level two children until we run
out of nodes, the tree has log2N + 1 levels (Figure 8.3a). Demonstrate this fact to your-
self by drawing “full” trees with 8 [log2(8) = 3] and 16 [log2(16) = 4] nodes. What if
there are 7, 12, or 18 nodes?

The height of a tree is the critical factor in determining how efficiently we can
search for elements. Consider the maximum-height tree shown in Figure 8.3(c). If we
begin searching at the root node and follow the references from one node to the next,
accessing the node with the value J (the farthest from the root) is an O(N) operation—no
better than searching a linear list! Conversely, given the minimum-height tree depicted
in Figure 8.3(a), to access the node containing J, we have to look at only three other
nodes—the ones containing E, A, and G—before we find J. Thus, if the tree is of mini-
mum height, its structure supports O(log2N) access to any element.

The arrangement of the values in the tree pictured in Figure 8.3(a), however, does
not lend itself to quick searching. Suppose we want to find the value G. We begin
searching at the root of the tree. This node contains E, not G, so we keep searching. But
which of its children should we look at next, the right or the left? There is no special

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 535

536 | Chapter 8: Binary Search Trees

Figure 8.3 Binary trees

E A

A

B G

F B C

E I

HC J

D

F

H I

E

G

•

A

E

F

G

H

I

J

B

C

D

••

tree

(a) A 4-level tree (b) A 5-level tree (c) A 10-level tree

tree tree

order to the nodes, so we have to check both subtrees. We could search the tree, level by
level, until we come across the value we are searching for. But that is an O(N) search
operation, which is no more efficient than searching a linear linked list!

Binary Search Trees
To support O(log2N) searching, we add a special property based on the relationship
among the values of the elements in the binary tree. We put all of the nodes with values
smaller than or equal to the value in the root into its left subtree, and all of the nodes
with values larger than the value in the root into its right subtree. Figure 8.4 shows the
nodes from Figure 8.3(a) rearranged to satisfy this property. The root node, which con-
tains E, references two subtrees. The left subtree contains all values smaller than or
equal to E and the right subtree contains all values larger than E.

When searching for the value G, we look first in the root node. G is larger than E,
so we know that G must be in the root node’s right subtree. The right child of the root

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 536

8.1 Trees | 537

node contains H. Now what? Do we go to the right or to the left? This subtree is also
arranged according to the binary search property: The nodes with smaller or equal val-
ues are to the left and the nodes with larger values are to the right. The value of this
node, H, is greater than G, so we search to its left. The left child of this node contains
the value F, which is smaller than G, so we reapply the rule and move to the right. The
node to the right contains G; we have found the node we were searching for.

A binary tree with this special property is
called a binary search tree. As with any binary
tree, it gets its branching structure by allowing
each node to have a maximum of two child
nodes. It gets its easy-to-search structure by
maintaining the binary search property: The
left child of any node (if one exists) is the root
of a subtree that contains only values smaller
than or equal to the node. The right child of
any node (if one exists) is the root of a subtree that contains only values that are larger
than the node.

Four comparisons instead of a maximum ten doesn’t sound like such a big deal, but
as the number of elements in the structure increases, the difference becomes impressive.
In the worst case—searching for the last node in a linear linked list—we must look at

Figure 8.4 A binary tree

E

C

A

B

E

H

F

G J

I

•

tree

(Left
subtree)

(Right
subtree)

(Root node)

All values in the left subtree
are less than or equal to the
 value in the root node.

All values in the right subtree
are greater than the value in the
root node.

Binary search tree A binary tree in which the value
in any node is greater than or equal to the value in its
left child and any of its descendants (the nodes in the
left subtree) and less than the value in its right child
and any of its descendants (the nodes in the right sub-
tree)

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 537

538 | Chapter 8: Binary Search Trees

1. When we say “visit,” we mean that the algorithm does whatever it needs to do with the values in the node—
print them, sum certain values, or remove them, for example. For this section we assume that a visit means to
print out the value of the node.

every node in the list; on average, we must search half of the list. If the list contains
1000 nodes, we must make 1000 comparisons to find the last node! If the 1000 nodes
were arranged in a binary search tree of minimum height, we would never make more
than 10 comparisons [log2(1000) < 10], no matter which node we were seeking!

Binary Tree Traversals
To traverse a linear linked list, we set a temporary reference to be equal to the begin-
ning of the list and then follow the list references from one node to the other until we
reach a node whose reference value is nul l . Similarly, to traverse a binary tree, we ini-
tialize our reference to the root of the tree. But where do we go from there—to the left or
to the right? Do we visit1 the root or the leaves first? The answer is “all of these.” There
are only two standard ways to traverse a list: forward and backward. In contrast, there
are many ways to traverse a tree. We define three common ones in this subsection.

Our traversal definitions depend on the relative order in which we visit a root and
its subtrees. We define three possibilities here:

• Preorder traversal: Visit the root, visit the left subtree, visit the right subtree
• Inorder traversal: Visit the left subtree, visit the root, visit the right subtree
• Postorder traversal: Visit the left subtree, visit the right subtree, visit the root

The name given to each traversal specifies where the
root itself is processed in relation to its subtrees. Also
notice that these definitions are recursive.

We can visualize each of these traversal orders by
drawing a “loop” around a binary tree as shown in Fig-
ure 8.5. Before drawing the loop, extend the nodes of
the tree that have fewer than two children with short
lines so that every node has two “edges.” Then draw the
loop from the root of the tree, down the left subtree, and
back up again, hugging the shape of the tree as you go.
Each node of the tree is “touched” three times by the
loop (the touches are numbered in Figure 8.5): once on
the way down before the left subtree is reached; once
after finishing the left subtree but before starting the
right subtree; and once on the way up, after finishing

the right subtree. To generate a preorder traversal, follow the loop and visit each node
the first time it is touched (before visiting the left subtree). To generate an inorder
traversal, follow the loop and visit each node the second time it is touched (in between

Preorder traversal A systematic way of visiting all
the nodes in a binary tree by visiting a node, then visit-
ing the nodes in the left subtree of the node, and then
visiting the nodes in the right subtree of the node
Inorder traversal A systematic way of visiting all the
nodes in a binary tree by visiting the nodes in the left
subtree of a node, then visiting the node, and then vis-
iting the nodes in the right subtree of the node
Postorder traversal A systematic way of visiting all
the nodes in a binary tree by visiting the nodes in the
left subtree of a node, then visiting the nodes in the
right subtree of the node, and then visiting the node

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 538

8.1 Trees | 539

visiting the two subtrees). To generate a postorder traversal, follow the loop and visit
each node the third time it is touched (after visiting the right subtree). Use this method
on the tree in Figure 8.6 and see whether you agree with the listed traversal orders.

You may have noticed that an inorder traversal of a binary search tree visits the
nodes in order from the smallest to the largest. Obviously, this type of traversal would
be useful when we need to access the elements in ascending key order—for example, to
print a sorted list of the elements. There are also useful applications of the other tra-
versal orders. For example, the preorder and postorder traversals can be used to trans-
late infix arithmetic expressions into their prefix and postfix counterparts.

Figure 8.5 Visualizing binary tree traversals

A binary tree

D

B

A C

F

G

D

B

A C

F

G

The extended tree

1

1

1

1

1

2 2

3 3 1
3

3

3

3

2

2

2

2

Preorder:
Inorder:

Postorder:

D B A C F G
A B C D F G
A C B G F D

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 539

540 | Chapter 8: Binary Search Trees

Figure 8.6 Three binary tree traversals

W

T ZG

B H R Y

•tree

F S

P

Inorder:
Preorder:
Postorder: B

P
B F

F
G

G
B
H

H
H
F

P
G
R

R
S
W

S
R
T

T
Y
Z

W
T
Y

Y
W
S

Z
Z
P

8.2 The Logical Level

In this section, we specify our Binary Search Tree ADT. As we have done for stacks,
queues, and lists, we use the Java interface construct to write the specification. Our
binary search tree specification is very similar to our sorted list specification. In fact, we
could just view a binary search tree as an implementation of a sorted list and not bother
specifying a binary search tree interface at all. This is not surprising, because both
sorted lists and binary search trees are typically used to store and retrieve sorted data.
Of course, the binary search tree can also be treated as a separate ADT. It will be more
instructive to see how it can be viewed from the logical, implementation, and applica-
tion levels, so we’ll take the latter approach.

Before proceeding with the specification, we have to decide which kinds of elements
we will store in our trees.

Tree Elements
To support a binary search tree we need to be able to tell when one object is less than,
equal to, or greater than another object. Recall from Chapter 6 that the Java library pro-
vides an interface, called Compa r a bl e , that can be used to ensure that a class provides
this functionality. As we saw there, a class that implements Compa r a bl e just needs to
supply a c ompa r e To method.

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 540

8.2 The Logical Level | 541

We will use the c ompa r e To method when working with the elements of our binary
search trees. To ensure that all such objects support the c ompa r e To operation, we
require that binary search tree elements be objects of a class that implements the Com-
pa r a bl e interface. In other words, they must be Compa r a bl e objects. When we talk
about “comparing” the key values of elements of the tree, we really mean using the
c ompa r e To method to compare the objects. In effect, the c ompa r e To method defines
the key values used to compare the objects.

As we saw in Chapter 6, the Java library’s Compa r a bl e interface supports gener-
ics. This allows us to indicate that our tree elements must be of type <T e x t e nds
Compa r a b l e <T>>, ensuring that only objects that can be compared to each other can
be inserted into out trees.

The Binary Search Tree Specification
We now know that our binary search trees hold Compa r a bl e elements. Do we have any
other decisions to make before we can formally specify our Binary Search Tree ADT?

First, we must decide whether to allow duplicate elements in our trees. In one sense,
we have already made this decision. Our definition of a binary search tree allows dupli-
cate elements. Do you see why? This definition allows the value of a node to be greater
than or equal to the values in its left subtree. Therefore, two tree nodes can hold the
same value, as long as one is not in the right subtree of the other.

Of course, we could change the definition of a binary search tree to state that the
key value of a node may only be greater than the key values of the nodes in its left sub-
tree. But we don’t; instead, we assume that our trees can have duplicate elements. This
decision is consistent with our list approach.

As with our lists, we specify that our binary search trees are unbounded and may
not hold nul l elements.

In Section 8.1, we defined three types of binary tree traversals. Which one should
we use to iterate through our tree? Why not support all three? We define the r e s e t and
ge t Ne xt operations with a parameter to indicate which of the three traversals to use. As
we did with our specialized list in Chapter 7, we allow more than one traversal to be in
progress at a time. Within our interface definition we define three constants for use as
parameters to r e s e t and ge t Ne xt :

publ i c s t a t i c f i na l i nt I NORDER = 1;
publ i c s t a t i c f i na l i nt PREORDER = 2;
publ i c s t a t i c f i na l i nt POSTORDER = 3;

These constants are available to any class that implements the interface. Their use is
demonstrated in the next section.

We make one other modification to the definition of the r e s e t operation, as com-
pared to the r e s e t operation for lists. The binary search tree’s r e s e t method, in addi-
tion to setting up an iteration, returns the current number of nodes in the tree. We

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 541

542 | Chapter 8: Binary Search Trees

explain the reason for this change in the subsection that discusses the implementation
of the iteration methods.

Here is the specification of our Binary Search Tree ADT:

/ / -
/ / BSTI nt e r f a c e . j a va by Da l e / J oyc e / We e ms Cha pt e r 8
/ /
/ / I nt e r f a c e f or a c l a s s t ha t i mpl e me nt s a bi na r y s e a r c h t r e e (BST) .
/ /
/ / The t r e e s a r e unbounde d a nd a l l ow dupl i c a t e e l e me nt s , but do not a l l ow nul l
/ / e l e me nt s . As a ge ne r a l pr e c ondi t i on, nul l e l e me nt s a r e not pa s s e d a s
/ / a r gume nt s t o a ny of t he me t hods .
/ /
/ / The t r e e s uppor t s i t e r a t i on t hr ough i t s e l e me nt s i n I NORDER, PREORDER,
/ / a nd POSTORDER.
/ / -

pa c ka ge c h08. t r e e s ;

publ i c i nt e r f a c e BSTI nt e r f a c e <T e xt e nds Compa r a bl e <T>>
{

/ / us e d t o s pe c i f y t r a ve r s a l or de r
s t a t i c f i na l i nt I NORDER = 1;
s t a t i c f i na l i nt PREORDER = 2;
s t a t i c f i na l i nt POSTORDER = 3;

bool e a n i s Empt y() ;
/ / Re t ur ns t r ue i f t hi s BST i s e mpt y; ot he r wi s e , r e t ur ns f a l s e .

i nt s i z e () ;
/ / Re t ur ns t he numbe r of e l e me nt s on t hi s BST.

bool e a n c ont a i ns (T e l e me nt) ;
/ / Re t ur ns t r ue i f t hi s BST c ont a i ns a n e l e me nt e s uc h t ha t
/ / e . c ompa r e To(e l e me nt) == O; ot he r wi s e , r e t ur ns f a l s e .

bool e a n r e move (T e l e me nt) ;
/ / Re move s a n e l e me nt e f r om t hi s BST s uc h t ha t e . c ompa r e To(e l e me nt) == O
/ / a nd r e t ur ns t r ue ; i f no s uc h e l e me nt e xi s t s , r e t ur ns f a l s e .

T ge t (T e l e me nt) ;
/ / Re t ur ns a n e l e me nt e f r om t hi s BST s uc h t ha t e . c ompa r e To(e l e me nt) == O;
/ / i f no s uc h e l e me nt e xi s t s , r e t ur ns nul l .

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 542

8.3 The Application Level | 543

voi d a dd (T e l e me nt) ;
/ / Adds e l e me nt t o t hi s BST. The t r e e r e t a i ns i t s BST pr ope r t y.

i nt r e s e t (i nt or de r Type) ;
/ / I ni t i a l i z e s c ur r e nt pos i t i on f or a n i t e r a t i on t hr ough t hi s BST
/ / i n or de r Type or de r . Re t ur ns c ur r e nt numbe r of node s i n t he BST.

T ge t Ne xt (i nt or de r Type) ;
/ / Pr e c ondi t i ons : The BST i s not e mpt y
/ / The BST ha s be e n r e s e t f or or de r Type
/ / The BST ha s not be e n modi f i e d s i nc e t he mos t r e c e nt r e s e t
/ / The e nd of or de r Type i t e r a t i on ha s not be e n r e a c he d
/ /
/ / Re t ur ns t he e l e me nt a t t he c ur r e nt pos i t i on on t hi s BST f or or de r Type
/ / a nd a dva nc e s t he va l ue of t he c ur r e nt pos i t i on ba s e d on t he or de r Type .

}

8.3 The Application Level

As we have already pointed out, our Binary Search Tree ADT is very similar to our
Sorted List ADT, from a functional point of view. A comparison of the BSTI nt e r f a c e
listed in Section 8.2 to the Li s t I nt e r f a c e presented in Section 6.3 reveals only a few
changes. The biggest difference is that we support three iteration paths through the tree
rather than just one, as we do with the list.

Another important difference between our sorted lists and our binary search trees is
in the efficiency of some of the operations; we highlight these differences later in this
chapter. The similarity between our ADTs means that we can use the binary search tree
in many of the same applications where we use lists.

For example, we used the Sorted List ADT in the golf score application in Section
6.5. Let’s reimplement that application using a binary search tree. This example shows
how a binary search tree client performs tree iteration. The parts of the application that
have changed are emphasized. As you can see, there are very few changes.

/ / -
/ / Gol f App2. j a va by Da l e / J oyc e / We e ms Cha pt e r 8
/ /
/ / Al l ows us e r t o e nt e r gol f e r na me a nd s c or e i nf or ma t i on.
/ / Di s pl a ys i nf or ma t i on or de r e d by s c or e .
/ / -

i mpor t j a va . ut i l . Sc a nne r ;
i mpor t c h08. t r e e s . *;

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 543

544 | Chapter 8: Binary Search Trees

i mpor t s uppor t . *; / / Gol f e r

publ i c c l a s s Gol f App2
{

publ i c s t a t i c voi d ma i n(St r i ng[] a r gs)
{

Sc a nne r c onI n = ne w Sc a nne r (Sys t e m. i n) ;

St r i ng na me ; / / gol f e r ' s na me
i nt s c or e ; / / gol f e r ' s s c or e

BSTI nt e r f a c e <Gol f e r > gol f e r s = ne w Bi na r ySe a r c hTr e e <Gol f e r >() ;
Gol f e r gol f e r ;
i nt numGol f e r s ;

St r i ng s ki p; / / Us e d t o s ki p r e s t of i nput l i ne a f t e r r e a di ng i nt e ge r

Sys t e m. out . pr i nt (" Gol f e r na me (pr e s s Ent e r t o e nd) : ") ;
na me = c onI n. ne xt Li ne () ;
whi l e (! na me . e qua l s (" "))
{

Sys t e m. out . pr i nt (" Sc or e : ") ;
s c or e = c onI n. ne xt I nt () ;
s ki p = c onI n. ne xt Li ne () ;

gol f e r = ne w Gol f e r (na me , s c or e) ;
gol f e r s . a dd(gol f e r) ;

Sys t e m. out . pr i nt (" Gol f e r na me (pr e s s Ent e r t o e nd) : ") ;
na me = c onI n. ne xt Li ne () ;

}
Sys t e m. out . pr i nt l n() ;
Sys t e m. out . pr i nt l n(" The f i na l r e s ul t s a r e ") ;

numGol f e r s = gol f e r s . r e s e t (Bi na r ySe a r c hTr e e . I NORDER) ;
f or (i nt c ount = 1; c ount <= numGol f e r s ; c ount ++)
{

Sys t e m. out . pr i nt l n(gol f e r s . ge t Ne xt (Bi na r ySe a r c hTr e e . I NORDER)) ;
}

}
}

We use the constant I NORDER as an argument to the r e s e t and ge t Ne xt methods.
It is defined in the BSTI nt e r f a c e interface. We access this constant through the Bi na -
r ySe a r c hTr e e class, which implements the interface.

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 544

8.4 The Implementation Level: Basics | 545

We make use of the new functionality of the r e s e t operation. It tells us the num-
ber of elements in the tree, and we then use that value to control the number of itera-
tions through the for loop.

A sample run of the program appears very similar to that shown in Chapter 6:

Golfer name (press Enter to end): Annika
Score: 72
Golfer name (press Enter to end): Grace
Score: 75
Golfer name (press Enter to end): Arnold
Score: 68
Golfer name (press Enter to end): Vijay
Score: 72
Golfer name (press Enter to end): Christie
Score: 70
Golfer name (press Enter to end):

The final results are
68: Arnold
70: Christie
72: Vijay
72: Annika
75: Grace

8.4 The Implementation Level: Basics

We represent a tree as a linked structure whose nodes are allocated dynamically. Before
we go on, we need to decide exactly what a node of the tree is. In our earlier discussion
of binary trees, we talked about r i ght and l e f t children. These children are the struc-
tural references in the tree; they hold the tree together. We also need a place to store the
user’s data in the node. We might as well continue to call it i nf o. Figure 8.7 shows how
we can visualize a node.

Figure 8.7 Binary tree nodes

•••

Another
tree
node

Comparable
object

Another
tree
node

left rightinfo

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 545

546 | Chapter 8: Binary Search Trees

Here is the definition of a BSTNode class that corresponds to the picture in Figure
8.7:

/ / -
/ / BSTNode . j a va by Da l e / J oyc e / We e ms Cha pt e r 8
/ /
/ / I mpl e me nt s Compa r a bl e node s f or a bi na r y s e a r c h t r e e .
/ / -

pa c ka ge s uppor t ;

publ i c c l a s s BSTNode <T e xt e nds Compa r a bl e <T>>
{

/ / Us e d t o hol d r e f e r e nc e s t o BST node s f or t he l i nke d i mpl e me nt a t i on
pr ot e c t e d T i nf o; / / The i nf o i n a BST node
pr ot e c t e d BSTNode l e f t ; / / A l i nk t o t he l e f t c hi l d node
pr ot e c t e d BSTNode r i ght ; / / A l i nk t o t he r i ght c hi l d node

publ i c BSTNode (T i nf o)
{

t hi s . i nf o = i nf o;
l e f t = nul l ;
r i ght = nul l ;

}

publ i c voi d s e t I nf o(T i nf o)
/ / Se t s i nf o of t hi s BSTNode .
{

t hi s . i nf o = i nf o;
}

publ i c T ge t I nf o()
/ / Re t ur ns i nf o of t hi s BSTNode .
{

r e t ur n i nf o;
}

publ i c voi d s e t Le f t (BSTNode l i nk)
/ / Se t s l e f t l i nk of t hi s BSTNode .
{

l e f t = l i nk;
}

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 546

8.4 The Implementation Level: Basics | 547

publ i c voi d s e t Ri ght (BSTNode l i nk)
/ / Se t s r i ght l i nk of t hi s BSTNode .
{

r i ght = l i nk;
}

publ i c BSTNode ge t Le f t ()
/ / Re t ur ns l e f t l i nk of t hi s BSTNode .
{

r e t ur n l e f t ;
}

publ i c BSTNode ge t Ri ght ()
/ / Re t ur ns r i ght l i nk of t hi s BSTNode .
{

r e t ur n r i ght ;
}

}

We will call our implementation class Bi na r ySe a r c hTr e e . It implements the
BSTI nt e r f a c e . The relationships among our binary search tree classes and interfaces
are depicted in Figure 8.25 in this chapter’s “Summary” section.

The instance variable r oot references the root node of the tree. It is set to nul l by
the constructor. The beginning of the class definition follows:

/ / -
/ / Bi na r ySe a r c hTr e e . j a va by Da l e / J oyc e / We e ms Cha pt e r 8
/ /
/ / De f i ne s a l l c ons t r uc t s f or a r e f e r e nc e - ba s e d BST
/ / -

pa c ka ge c h08. t r e e s ;

i mpor t c h05. que ue s . *;
i mpor t c h03. s t a c ks . *;
i mpor t s uppor t . BSTNode ;

publ i c c l a s s Bi na r ySe a r c hTr e e <T e xt e nds Compa r a bl e <T>>
i mpl e me nt s BSTI nt e r f a c e <T>

{
pr ot e c t e d BSTNode r oot ; / / r e f e r e nc e t o t he r oot of t hi s BST

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 547

548 | Chapter 8: Binary Search Trees

bool e a n f ound; / / us e d by r e move

/ / f or t r a ve r s a l s
pr ot e c t e d Li nkUnbndQue ue <T> i nOr de r Que ue ; / / que ue of i nf o
pr ot e c t e d Li nkUnbndQue ue <T> pr e Or de r Que ue ; / / que ue of i nf o
pr ot e c t e d Li nkUnbndQue ue <T> pos t Or de r Que ue ; / / que ue of i nf o

publ i c Bi na r ySe a r c hTr e e ()
/ / Cr e a t e s a n e mpt y BST obj e c t .
{

r oot = nul l ;
}

The class is part of the c h08. t r e e s package. The reason for importing queues and
stacks will become apparent as we develop the rest of the class. We call the variable that
references the actual tree structure r oot , because it is a link to the root of the tree.

Next let’s look at the simple observer method called i s Empt y. We could make use
of the s i z e method: If it returns 0, i s Empt y returns t r ue ; otherwise, it returns f a l s e .
But the s i z e method has to count the nodes on the tree each time it is called. This task
takes at least O(N) steps, where N is the number of nodes (as we see in Section 8.5). Is
there a more efficient way to determine whether the list is empty? Yes, just see whether
the root of the tree is currently nul l . This approach takes only O(1) steps.

publ i c bool e a n i s Empt y()
/ / Re t ur ns t r ue i f t hi s BST i s e mpt y; ot he r wi s e , r e t ur ns f a l s e .
{

r e t ur n (r oot == nul l) ;
}

We next look at methods that are more complicated. We start with the s i z e method
and use it to investigate the differences between iterative and recursive approaches per-
forming tree operations.

8.5 Iterative Versus Recursive Method Implementations

Binary search trees provide us with a good opportunity to compare iterative and recur-
sive approaches to a problem. You may have noticed that trees are inherently recursive:
Any node in a tree can be considered the root of a subtree. We even use recursive defi-
nitions when talking about properties of trees—for example, “A node is the ancestor of
another node if it is the parent of the node, or the parent of some other ancestor of that
node.” Of course, the formal definition of a binary tree node, embodied in the class

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 548

8.5 Iterative Versus Recursive Method Implementations | 549

BSTNode , is itself recursive. Thus recursive solutions will likely work well when we are
dealing with trees. In this section we address that hypothesis.

First, we develop recursive and iterative implementations of the s i z e method. Of
course, this method could be implemented by maintaining a running count of tree nodes
(incrementing it for every a dd operation and decrementing it for every r e move opera-
tion). In fact, we used that approach for lists. The alternative approach of traversing the
tree and counting the nodes each time the number is needed is also viable, and we use it
here.

After we look at the two implementations of the s i z e method, we discuss the bene-
fits of recursion versus iteration for this problem.

Recursive Approach to the size Method
As we’ve done in previous cases where we have implemented an ADT operation using
recursion, we must use a public method to access the s i z e operation and a private
recursive method to do all the work. The recursive method requires a reference to a
tree node as an argument; because tree nodes remain hidden from the client, the
client cannot directly invoke the recursive method. Thus we resort to the
public/private pattern.

The public method, s i z e , calls the private recursive method, r e c Si z e , and
passes it a reference to the root of the tree. We design the recursive method to return
the number of nodes in the subtree referenced by the argument passed to it. Because
s i z e passes it the root of the tree, r e c Si z e returns the number of nodes in the
entire tree to s i z e , which in turn returns it to the client program. The code for s i z e
is very simple:

publ i c i nt s i z e ()
/ / Re t ur ns t he numbe r of e l e me nt s i n t hi s BST.
{

r e t ur n r e c Si z e (r oot) ;
}

Recall that for function Fa c t or i a l we said that we could determine the factorial
of N if we knew the factorial of N 1. The analogous statement here is that we can
determine the number of nodes in the tree if we know the number of nodes in its left
subtree and the number of nodes in its right subtree. That is, the number of nodes in
a tree is

number of nodes in left subtree + number of nodes in right subtree + 1

This is easy. Given a method r e c Si z e and a reference to a tree node, we know how
to calculate the number of nodes in a subtree: We call r e c Si z e recursively with the ref-
erence to the subtree as the argument. Thus we know how to write the general case.
What about the base case? A leaf node has no subtrees, so the number of nodes is 1.

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 549

550 | Chapter 8: Binary Search Trees

recSize(tree): returns int Version 1
if (tree.getLeft() is null) AND (tree.getRight() is null)

return 1
else

return recSize(tree.getLeft()) + recSize(tree.getRight()) + 1

Figure 8.8 Two binary search trees

M

A Q

•

tree

(a)

L

P

•

tree

(b)

How do we determine that a node has no subtrees? The references to its children are
nul l . Let’s summarize these observations into an algorithm, where t r e e is a reference
to a node.

Let’s try this algorithm on a couple of examples to be sure that it works (see Figure 8.8).
We call r e c Si z e with the tree in Figure 8.8(a). The left and right children of the

root node (M) are not nul l , so we call r e c Si z e with the node containing A as the root.
Because both the left and right children are nul l on this call, we send back the answer
1. Now we call r e c Si z e with the tree containing Q as the root. Both of its children are
nul l , so we send back the answer 1. Now we can calculate the number of nodes in the
tree with M in the root:

1 + 1 + 1 = 3

This seems okay.

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 550

8.5 Iterative Versus Recursive Method Implementations | 551

recSize(tree): returns int Version 2
if (tree.getLeft() is null) AND (tree.getRight() is null)

return 1
else if tree.getLeft() is null

return recSize(tree.getRight()) + 1
else if tree.getRight() is null

return recSize(tree.getLeft()) + 1
else return recSize(tree.getLeft()) + recSize(tree.getRight()) + 1

recSize(tree): returns int Version 3
if tree is null

return 0
else if (tree.getLeft() is null) AND (tree.getRight() is null)

return 1
else if tree.getLeft() is null

return recSize(tree.getRight()) + 1
else if tree.getRight() is null

return recSize(tree.getLeft()) + 1
else return recSize(tree.getLeft()) + recSize(tree.getRight()) + 1

The left subtree of the root of the tree in Figure 8.8(b) is empty; let’s see if this con-
dition proves to be a problem. It is not true that both children of the root (L) are nul l ,
so r e c Si z e is called with the left child as the argument. OOPS! We do have a problem.
The left child of L is nul l , so we just called r e c Si z e with a nul l argument. The first
statement checks whether the children of the tree referenced by the argument are nul l ,
but the value of t r e e itself is nul l . The method crashes when we try to access
t r e e . ge t Le f t () when t r e e is nul l . To prevent this outcome, we can check whether a
child is nul l , and not call r e c Si z e if it is.

Version 2 works correctly if r e c Si z e has a precondition that the tree is not empty.
An initially empty tree, however, causes a crash. We must check whether the tree is
empty as the first statement in the algorithm and, if it is, return zero.

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 551

552 | Chapter 8: Binary Search Trees

recSize(tree): returns int Version 4
if tree is null

return 0
else

return recSize(tree.getLeft()) + recSize(tree.getRight()) + 1

This certainly looks complicated. There must be a simpler solution—and there is. We
can collapse the two base cases into one. There is no need to make the leaf node be a
special case. We can simply have one base case: An empty tree returns zero. Now we do
not have to check the left and right subtrees. If they are nul l and we process them,
they just contribute a value of zero.

We have taken the time to work through the versions containing errors and unnec-
essary complications because they illustrate two important points about recursion with
trees: (1) Always check for the empty tree first, and (2) leaf nodes do not need to be
treated as separate cases.

Here is the method specification:

Method recSize(tree)

Definition: Counts and returns the number of nodes in
tree

Size: Number of nodes in tree
Base case: If tree is null, return 0
General case: Return recSize(tree.getLeft()) +

recSize(tree.getRight()) + 1

Here is the code:

pr i va t e i nt r e c Si z e (BSTNode <T> t r e e)
/ / Re t ur ns t he numbe r of e l e me nt s i n t r e e .
{

i f (t r e e == nul l)
r e t ur n 0;

e l s e
r e t ur n r e c Si z e (t r e e . ge t Le f t ()) + r e c Si z e (t r e e . ge t Ri ght ()) + 1;

}

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 552

8.5 Iterative Versus Recursive Method Implementations | 553

Iterative Approach to the size Method
An iterative method to count the nodes on a linked list is simple to write:

c ount = 0;
whi l e (l i s t ! = nul l)
{

c ount ++;
l i s t = l i s t . ge t Li nk() ;

}
r e t ur n c ount ;

However, taking a similar approach to develop an iterative method to count the
nodes in a binary tree quickly runs into trouble. We start at the root and increment the
count. Now what? Should we count the nodes in the left subtree or the right subtree?
Suppose we decide to count the nodes in the left subtree. We must remember to come
back later and count the nodes in the right subtree. In fact, every time we make a deci-
sion on which subtree to count we must remember to return to that node and count the
nodes of its other subtree. How can we remember all of this?

In the recursive version, we did not have to explicitly remember which subtrees we
still needed to process. The trail of unfinished business was maintained on the system
stack for us automatically. For the iterative version, we must maintain the information
explicitly, on our own stack. Whenever we postpone processing a subtree, we can push
a reference to that subtree on a stack of references. Then, when we are finished with our
current processing, we can remove the reference that is on the top of the stack and con-
tinue our processing with it.

We must be careful that we process each node in the tree exactly once. To ensure
that we do not process a node twice, we follow these rules:

1. Process a node immediately after removing it from the stack.
2. Do not process nodes at any other time.
3. Once a node is removed from the stack, do not push it back onto the stack.

To ensure that we do not miss any nodes, we begin execution by pushing the root
onto the stack. As part of the processing of every node, we push its children onto the
stack. This guarantees that all descendants of the root are eventually pushed onto the
stack—in other words, it guarantees that we do not miss any nodes.

Finally, we push only references to actual tree nodes; we do not push any nul l ref-
erences. This way, when we remove a reference from the stack, we can increment the
count of nodes and access the left and right links of the referenced node without worry-
ing about nul l reference errors. Here is an algorithm for the iterative s i z e :

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 553

554 | Chapter 8: Binary Search Trees

size: returns int
Set count to 0
if the tree is not empty

Instantiate a stack
Push the root of the tree onto the stack
while the stack is not empty

Set currNode to top of stack
Pop the stack
Increment count
if currNode has a left child

Push currNode’s left child onto the stack
if currNode has a right child

Push currNode’s right child onto the stack
return count

The corresponding code, using a stack named hol d, follows:

publ i c i nt s i z e ()
/ / Re t ur ns t he numbe r of e l e me nt s i n t hi s BST.
{

i nt c ount = 0;
i f (r oot ! = nul l)
{

Li nke dSt a c k<BSTNode <T>> hol d = ne w Li nke dSt a c k<BSTNode <T>>;
BSTNode <T> c ur r Node ;
hol d. pus h(r oot) ;
whi l e (! hol d. i s Empt y())
{

c ur r Node = hol d. t op() ;
hol d. pop() ;
c ount ++;
i f (c ur r Node . ge t Le f t () ! = nul l)

hol d. pus h(c ur r Node . ge t Le f t ()) ;
i f (c ur r Node . ge t Ri ght () ! = nul l)

hol d. pus h(c ur r Node . ge t Ri ght ()) ;
}

}
r e t ur n c ount ;

}

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 554

8.6 The Implementation Level: Remaining Operations | 555

Recursion or Iteration?
Now that we have examined both the recursive and the iterative versions of counting
nodes, can we determine which is a better choice? In Section 4.6 we discussed some
guidelines for determining when recursion is appropriate. Let’s apply these guidelines to
the use of recursion for counting nodes.

Is the depth of recursion relatively shallow?

Yes. The depth of recursion depends on the height of the tree. If the tree is well balanced
(relatively short and bushy, not tall and stringy), the depth of recursion is closer to
O(log2N) than to O(N).

Is the recursive solution shorter or clearer than the nonrecursive version?

Yes. The recursive solution is shorter than the iterative method, especially if we count
the code for implementing the stack against the iterative approach. Is the recursive solu-
tion clearer? Although we spent more space discussing the recursive solution, we do
believe it is clearer. We used extra space to teach you a little more about recursive
design. We believe the recursive version is intuitively obvious. It is very easy to see that
the number of nodes in a binary tree that has a root is 1 plus the number of nodes in its
two subtrees. The iterative version is not as clear. We need to worry that we did not
count any node twice, and that we did not miss any nodes. Compare the code for the
two approaches and see what you think.

Is the recursive version much less efficient than the nonrecursive version?

No. Both the recursive and the nonrecursive versions of s i z e are O(N) operations. Both
have to count every node.

We give the recursive version of the method an “A”; it is a good use of recursion.

8.6 The Implementation Level: Remaining Operations

In this section, we use recursion to implement the remaining Binary Search Tree ADT
operations.

The contains and get Operations
At the beginning of this chapter, we demonstrated how to search for an element in a
binary search tree. First check whether the element searched for is in the root. If it is
not, compare the element with the root and look in either the left or the right subtree.
This is a recursive algorithm.

We implement c ont a i ns using a private recursive method called r e c Cont a i ns .
This method is passed the element we are searching for and a reference to a subtree in
which to search. It follows the algorithm described above in a straightforward manner.

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 555

556 | Chapter 8: Binary Search Trees

The only remaining question is how to determine that there is no element with the same
key in the tree. If the subtree we are searching is empty, then there cannot be an ele-
ment with the same key as the element’s key. We summarize these observations in a
table, which is followed by the code.

Method recContains (element, tree)

Definition: Searches for an item in tree with the same key
as element’s key
If found, return true; otherwise, return false

Size: Number of nodes in tree (or number of nodes
in the path)

Base cases: (1) If element’s key matches key in tree.get-
Info(), return true
(2) If tree = null, return false

General case: If element’s key is less than key in
tree.getInfo(),
return recContains(element, tree.getLeft());
otherwise, return
recContains(element, tree.getRight())

pr i va t e bool e a n r e c Cont a i ns (T e l e me nt , BSTNode <T> t r e e)
/ / Re t ur ns t r ue i f t r e e c ont a i ns a n e l e me nt e s uc h t ha t
/ / e . c ompa r e To(e l e me nt) == O; ot he r wi s e , r e t ur ns f a l s e .
{

i f (t r e e == nul l)
r e t ur n f a l s e ; / / e l e me nt i s not f ound

e l s e i f (e l e me nt . c ompa r e To(t r e e . ge t I nf o()) < 0)
r e t ur n r e c Cont a i ns (e l e me nt , t r e e . ge t Le f t ()) ; / / Se a r c h l e f t s ubt r e e

e l s e i f (e l e me nt . c ompa r e To(t r e e . ge t I nf o()) > 0)
r e t ur n r e c Cont a i ns (e l e me nt , t r e e . ge t Ri ght ()) ; / / Se a r c h r i ght s ubt r e e

e l s e
r e t ur n t r ue ; / / e l e me nt i s f ound

}

publ i c bool e a n c ont a i ns (T e l e me nt)
/ / Re t ur ns t r ue i f t hi s BST c ont a i ns a n e l e me nt e s uc h t ha t
/ / e . c ompa r e To(e l e me nt) == O; ot he r wi s e , r e t ur ns f a l s e .
{

r e t ur n r e c Cont a i ns (e l e me nt , r oot) ;
}

Let’s trace this operation using the tree in Figure 8.9. In our trace we substitute
actual arguments for the method parameters. We assume we can work with integers. We

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 556

8.6 The Implementation Level: Remaining Operations | 557

Figure 8.9 Tracing the c ont a i ns operation

17

9 20

16 18 25

•tree

want to search for the element with the key 18 in a tree myTr e e , so the call to the pub-
lic method is

myTr e e . c ont a i ns (18) ;

The c ont a i ns method, in turn, immediately calls the recursive method:

r e t ur n r e c Cont a i ns (18, r oot) ;

Because r oot is not nul l and 18 > t r e e . ge t I nf o() —that is, 18 is greater than 17—
we issue the first recursive call:

r e t ur n r e c Cont a i ns (18, t r e e . r i ght) ;

Now t r e e references the node whose key is 20, so 18 < t r e e . ge t I nf o() . The next
recursive call is

r e t ur n r e c Cont a i ns (18, t r e e . l e f t) ;

Now t r e e references the node with the key 18, so processing falls through to the last
else statement:

r e t ur n t r ue ;

This halts the recursive descent, and the value t r ue is passed back up the line of recur-
sive calls until it is returned to the original c ont a i ns method and then to the client
program.

Next, let’s look at an example where the key is not found in the tree. We want to
find the element with the key 7. The public method call is

myTr e e . c ont a i ns (7) ;

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 557

558 | Chapter 8: Binary Search Trees

followed immediately by

r e c Cont a i ns (7, r oot)

Because t r e e is not nul l and 7 < t r e e . ge t I nf o() , the first recursive call is

r e c Cont a i ns (7, t r e e . l e f t)

Now t r e e is pointing to the node that contains 9; t r e e is not nul l . We issue the sec-
ond recursive call

r e c Cont a i ns (7, t r e e . l e f t)

Now tree is nul l , and the return value of f a l s e makes its way back to the original
caller.

The ge t method is very similar to the c ont a i ns operation. In both cases we search
the tree recursively to locate the tree element that matches the parameter e l e me nt .
However, there is one difference. Instead of returning a bool e a n value, we must return
a reference to the tree element that matches e l e me nt . Recall that the actual tree ele-
ment is the i nf o of the tree node; thus we must return a reference to the i nf o object.
The i nf o variable references an object of class Compa r a bl e . If the element is not in the
tree, we return nul l .

pr i va t e T r e c Ge t (T e l e me nt , BSTNode <T> t r e e)
/ / Re t ur ns a n e l e me nt e f r om t r e e s uc h t ha t e . c ompa r e To(e l e me nt) == O;
/ / i f no s uc h e l e me nt e xi s t s , r e t ur ns nul l .
{

i f (t r e e == nul l)
r e t ur n nul l ; / / e l e me nt i s not f ound

e l s e i f (e l e me nt . c ompa r e To(t r e e . ge t I nf o()) < 0)
r e t ur n r e c Ge t (e l e me nt , t r e e . ge t Le f t ()) ; / / ge t f r om l e f t s ubt r e e

e l s e
i f (e l e me nt . c ompa r e To(t r e e . ge t I nf o()) > 0)

r e t ur n r e c Ge t (e l e me nt , t r e e . ge t Ri ght ()) ; / / ge t f r om r i ght s ubt r e e
e l s e

r e t ur n t r e e . ge t I nf o() ; / / e l e me nt i s f ound
}

publ i c T ge t (T e l e me nt)
/ / Re t ur ns a n e l e me nt e f r om t hi s BST s uc h t ha t e . c ompa r e To(e l e me nt) == O;
/ / i f no s uc h e l e me nt e xi s t s , r e t ur ns nul l .
{

r e t ur n r e c Ge t (e l e me nt , r oot) ;
}

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 558

8.6 The Implementation Level: Remaining Operations | 559

Figure 8.10 Insertions into a binary search tree

5

9

•tree

(a) tree

(b) add 5

(e) add 3

(h) add 6 (i) add 5 (j) add 20

(f) add 8 (g) add 12

(c) add 9 (d) add 7

5•tree

9

5

7

•tree

93

5

7

•tree

9

8

3

5

7

•tree

9

8

3

5

7 12

•tree

9

86

3

5

7 12 5

•tree

9

86

3

5

7 12

•tree

5

9

8 206

3

5

7 12

•tree

The add Operation
To create and maintain the information stored in a binary search tree, we must have an
operation that inserts new nodes into the tree. We use the following insertion approach:
A new node is always inserted into its appropriate position in the tree as a leaf. Figure
8.10 shows a series of insertions into a binary tree.

For the implementation we use the same general approach as we used for c ont a i ns
and ge t . A public method, a dd, is passed the e l e me nt for insertion. The a dd method

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 559

560 | Chapter 8: Binary Search Trees

invokes the recursive method, r e c Add, and passes it the e l e me nt plus a reference to the
r oot of the tree.

publ i c voi d a dd (T e l e me nt)
/ / Adds e l e me nt t o t hi s BST. The t r e e r e t a i ns i t s BST pr ope r t y.
{

r oot = r e c Add(e l e me nt , r oot) ;
}

The call to r e c Add returns a BSTNode . It returns a reference to the new tree—that is, to
the tree that includes e l e me nt . The statement

r oot = r e c Add(e l e me nt , r oot) ;

can be interpreted as “Set the reference of the root of this tree to the root of the tree that
is generated when the element is added to this tree.” At first this might seem inefficient.
We always perform insertions as leaves, so why do we have to change the root of the
tree? Look again at the sequence of insertions in Figure 8.10. Do any of the insertions
affect the value of the root of the tree? Yes, the original insertion into the empty tree
changes the value held in the root. In the case of all the other insertions, the statement
in the a dd method just copies the current value of the root onto itself; however, we still
need the assignment statement to handle the degenerate case of insertion into an empty
tree. When does the assignment statement occur? After all the recursive calls to r e c Add
have been processed and have returned.

Before we begin the development of r e c Add, we want to reiterate that every node
in a binary search tree is the root node of a binary search tree. In Figure 8.11(a) we
want to insert a node with the key value 13 into our tree whose root is the node con-
taining 7. Because 13 is greater than 7, we know that the new node belongs in the root
node’s right subtree. We now have redefined a smaller version of our original problem.
We want to insert a node with the key value 13 into the tree whose root is
t r e e . ge t Ri ght () (Figure 8.11b—in the figure we show the actual arguments rather
than the formal parameters). Of course, we have a method to insert elements into a
binary search tree: r e c Add. The r e c Add method is called recursively:

t r e e . ge t Ri ght () = r e c Add(e l e me nt , t r e e . r i ght) ;

Of course, r e c Add still returns a reference to a BSTNode ; it is the same r e c Add method
that was originally called from a dd, so it must behave in the same way. The above
statement says “Set the reference of the right subtree of the tree to the root of the tree
that is generated when the element is inserted into the right subtree of tree.” Once
again, the actual assignment statement does not occur until after the remaining recur-
sive calls to r e c Add have finished processing and have returned.

The r e c Add method begins its execution, looking for the place to insert e l e me nt in
the tree whose root is the node with the key value 15. We compare the key of e l e me nt
(13) to the key of the root node; 13 is less than 15, so we know that the new element

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 560

8.6 The Implementation Level: Remaining Operations | 561

Figure 8.11 The recursive a dd operation

r oot = r e c Add(13, r oot) ;
r oot : ? 7

15

2010

3

2

(a)

r oot . r i ght = r e c Add(13, r oot . r i ght) ;
r oot : ? 7

15

2010

3

2

(b)

?

r oot . r i ght . l e f t = r e c Add(13, r oot . r i ght . l e f t) ;
r oot : ? 7

15

2010

3

2

(c)

?

?

?

?

r oot . r i ght . l e f t . r i ght = r e c Add(13, r oot . r i ght . l e f t . r i ght)
r oot : ? 7

15

2010

3

2

(d)

?

null

I ni t i a l c a l l r e t ur ns r e f e r e nc e
r oot 7

15

13

2010

3

2

(h)

Pr e vi ous c a l l r e t ur ns r e f e r e nc e
r oot : ?

Pr e vi ous c a l l r e t ur ns r e f e r e nc e
r oot : ?

7

15

2010

3

2

(g)

7

15

2010

3

2

(f)

?

?

Ba s e c a s e
r oot : ? 7

15

2010

3

2

(e)

?

13

13

13

belongs in the tree’s left subtree. Again, we have obtained a smaller version of the prob-
lem. We want to insert a node with the key value 13 into the tree whose root is
t r e e . ge t Le f t () (Figure 8.11c). We call r e c Add recursively to perform this task.
Remember that in this (recursive) execution of r e c Add, t r e e points to the node whose
key is 15, not the original tree root:

t r e e . ge t Le f t () = r e c I ns e r t (e l e me nt , t r e e . l e f t) ;

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 561

562 | Chapter 8: Binary Search Trees

Now we recursively execute r e c Add another time. We compare the key of e l e me nt
to the key of the (current) root node and then call r e c Add to insert e l e me nt into the
correct subtree—the left subtree if e l e me nt ’s key is less than or equal to the key of the
root node, the right subtree if e l e me nt ’s key is greater than the key of the root node.

Where does it all end? There must be a base case, in which space for the new ele-
ment is allocated and the value of e l e me nt copied into it. This case occurs when t r e e
is nul l —that is, when the subtree we wish to insert into is empty. (Remember, we plan
to add e l e me nt as a leaf node.) Figure 8.11(d) illustrates the base case. We create the
new node and return a reference to it to the most recent invocation of r e c Add, where
the reference is assigned to the r i ght link of the node containing 10 (see Figure 8.11e).
That invocation of r e c Add is then finished; it returns a reference to its subtree to the
previous invocation (see Figure 8.11f), where the reference is assigned to the l e f t link
of the node containing 15. This process continues until a reference to the entire tree is
returned to the original a dd method, which assigns it to r oot , as shown in Figure
8.11(g) and (h).

While backing out of the recursive calls, the only assignment statement that actu-
ally changes a value is the one at the deepest nested level; it changes the right subtree
of the node containing 10 from nul l to a reference to the new node. All of the other
assignment statements simply assign a reference to the variable that held that reference
previously. This is a typical recursive approach. We do not know ahead of time at which
level the crucial assignment takes place, so we perform the assignment at every level.

The recursive method for insertion into a binary search tree is summarized as follows:

Method recAdd(element, tree) returns tree reference

Definition: Inserts element into the binary search tree
Size: The number of elements in the path from root

to insertion place
Base case: If tree is null, allocate a new leaf to contain

element
General cases: (1) If element <= tree.getInfo(), then

recAdd(element, tree.getLeft())
(2) If element > tree.getInfo(), then
recAdd(element, tree.getRight())

Here is the code that implements this recursive algorithm:

pr i va t e BSTNode <T> r e c Add(T e l e me nt , BSTNode <T> t r e e)
/ / Adds e l e me nt t o t r e e ; t r e e r e t a i ns i t s BST pr ope r t y.
{

i f (t r e e == nul l)
/ / Addi t i on pl a c e f ound
t r e e = ne w BSTNode <T>(e l e me nt) ;

e l s e i f (e l e me nt . c ompa r e To(t r e e . ge t I nf o()) <= 0)
t r e e . s e t Le f t (r e c Add(e l e me nt , t r e e . ge t Le f t ())) ; / / Add i n l e f t s ubt r e e

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 562

8.6 The Implementation Level: Remaining Operations | 563

e l s e
t r e e . s e t Ri ght (r e c Add(e l e me nt , t r e e . ge t Ri ght ())) ; / / Add i n r i ght s ubt r e e

r e t ur n t r e e ;
}

Insertion Order and Tree Shape
Because nodes are always added as leaves, the order in which nodes are inserted determines
the shape of the tree. Figure 8.12 illustrates how the same data, inserted in different orders,

Figure 8.12 The insertion order determines the shape of the tree

•tree

(a) Input: D B F A C E G

(b) Input: B A D C G F E

(c) Input: A B C D E F G

F

D

E G

B

A C

•tree

•tree

D

B

C

E

F

G

A

A

B

C

D

E

F

G

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 563

564 | Chapter 8: Binary Search Trees

produce very differently shaped trees. If the values are inserted in order (or in reverse
order), the tree is completely skewed (a long, “narrow” tree shape). A random mix of the
elements produces a shorter, “bushy” tree. Because the height of the tree determines the
maximum number of comparisons in a binary search, the tree’s shape is very important.
Obviously, minimizing the height of the tree maximizes the efficiency of the search. Algo-
rithms have been developed that adjust a tree to make its shape more desirable; one such
scheme is presented in Section 8.8.

The remove Operation
The r e move operation is the most complicated of the binary search tree operations. We
must ensure that when we remove an element from the tree, we maintain the binary
search tree property.

The setup for the r e move operation is the same as that for the a dd operation. The
private r e c Re move method is invoked from the public r e move method with arguments
equal to the e l e me nt to be removed and the subtree to remove it from. The recursive
method returns a reference to the revised tree, just as it did for a dd. Here is the code for
r e move :

publ i c bool e a n r e move (T e l e me nt)
/ / Re move s a n e l e me nt e f r om t hi s BST s uc h t ha t e . c ompa r e To(e l e me nt) == O
/ / a nd r e t ur ns t r ue ; i f no s uc h e l e me nt e xi s t s , r e t ur ns f a l s e .
{

r oot = r e c Re move (e l e me nt , r oot) ;
r e t ur n f ound;

}

In most cases the root of the tree is not affected by the r e c Re move call, in which
case the assignment statement is somewhat superfluous, as it is reassigning the current
value of r oot to itself. If the node being removed happens to be the root node, how-
ever, then this assignment statement is crucial. The r e move method returns the
bool e a n value stored in f ound, indicating the result of the removal. The r e c Re move
method sets the value of f ound to indicate whether the element was found in the tree.
Obviously, if the element is not originally in the tree, then it cannot be removed.

The r e c Re move method receives an element and the external reference to the
binary search tree, finds and removes the node matching the element’s key from the tree
if possible, and returns a reference to the newly created tree. We know how to deter-
mine whether the element is in the tree, and if it is present, how to find its node; we did
it for ge t . As with that operation, we use recursive calls to r e c Re move to progressively
decrease the size of the tree where the target node could be, until we actually locate the
node.

Now we must remove the node and return a reference to the new subtree—this is
somewhat complicated. This task varies according to the position of the target node in
the tree. Obviously, it is simpler to remove a leaf node than to remove a nonleaf node.

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 564

8.6 The Implementation Level: Remaining Operations | 565

Figure 8.13 Removing a leaf node

•tree

QB

R

Z

L

J

•tree

QB

RL

Z

J

remove

BEFORE AFTER

Remove the node containing Z

In fact, we can break down the removal operation into three cases, depending on the
number of children linked to the node we want to remove:

1. Removing a leaf (no children) As shown in Figure 8.13, removing a leaf is simply
a matter of setting the appropriate link of its parent to nul l .

2. Removing a node with only one child The simple solution for removing a leaf does
not suffice for removing a node with a child, because we don’t want to lose all of
its descendants from the tree. We want to make the reference from the parent skip
over the removed node and point instead to the child of the node we intend to
remove (see Figure 8.14).

3. Removing a node with two children This case is the most complicated because we
cannot make the parent of the removed node point to both of the removed node’s
children. The tree must remain a binary tree and the search property must remain
intact. There are several ways to accomplish this removal. The method we use does
not remove the node but rather replaces its i nf o with the i nf o from another node
in the tree so that the search property is retained. We then remove this other node.
Hmmm. That also sounds like a candidate for recursion. Let’s see how this turns out.

Which element could we replace the removed e l e me nt with that would maintain
the search property? The elements whose keys immediately precede or follow the key of
e l e me nt —that is, the logical predecessor or successor of e l e me nt . We replace the i nf o
of the node we wish to remove with the i nf o of its logical predecessor—the node whose
key is closest in value to, but less than or equal to, the key of the node to be removed.

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 565

566 | Chapter 8: Binary Search Trees

Figure 8.14 Removing a node with one child

•tree

QB

R

Z

L

J

•tree

QB

ZL

RJ

remove

BEFORE AFTER

Remove the node containing R

Figure 8.15 Removing a node with two children

M P

K N Z

L R

•tree

B Q

J

M

K N Z

L R

•tree

B P

J

Q

remove

BEFORE AFTER

Remove the node containing Q

Look back at Figure 8.10(j) and locate the logical predecessor of the root node 5 and
the nodes 9 and 7. Do you see the pattern? The logical predecessor of the root node 5 is
the leaf node 5, the largest value in the root’s left subtree. The logical predecessor of 9 is
8, the largest value in 9’s left subtree. The logical predecessor of 7 is 6, the largest value
in 7’s left subtree. This replacement value is always in a node with either zero or one
child. After copying the replacement value, it is easy to remove the node that the
replacement value was in by changing one of its parent’s references (see Figure 8.15).

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 566

8.6 The Implementation Level: Remaining Operations | 567

Figure 8.16 Removals from a binary search tree

FA J

•tree

(a) The initial tree

C H

D P

L

F

•tree

(c) remove C

A H

D P

L

•tree

(e) remove D

F

A P

H •tree

(f) remove A

F P

H

•tree

(d) remove L

A F

D P

H

FA

•tree

(b) remove J

C H

D P

L

Examples of all of these types of removals are shown in Figure 8.16.
It is clear that the removal task involves changing the reference from the parent

node to the node to be removed. That explains why the r e c Re move method must return
a reference to a BSTNode . Let’s look at each of the three cases in terms of our imple-
mentation.

If both child references of the node to be removed are nul l , the node is a leaf and
we just return nul l . The previous reference to this leaf node is replaced by nul l in the
calling method, effectively removing the leaf node from the tree.

If one child reference is nul l , we return the other child reference. The previous ref-
erence to this node is replaced by a reference to the node’s only child, effectively jump-
ing over the node and removing it from the tree (similar to the way we removed a node
from a singly linked list).

If neither child reference is nul l , we replace the i nf o of the node with the i nf o of
the node’s logical predecessor and remove the node containing the predecessor. The
node containing the predecessor came from the left subtree of the current node, so we
remove it from that subtree. We then return the original reference to the node (we have

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 567

568 | Chapter 8: Binary Search Trees

removeNode (tree): returns BSTNode
if (tree.getLeft() is null) AND (tree.getRight() is null)

return null
else if tree.getLeft() is null

return tree.getRight()
else if tree.getRight() is null

return tree.getLeft()
else

Find predecessor
tree.setInfo(predecessor.getInfo())
tree.setLeft(recRemove(predecessor.getInfo(), tree.getLeft()))
return tree

not created a new node with a new reference; we have just changed the node’s i nf o
reference).

Let’s summarize all of this in algorithmic form as r e move Node . Within the algo-
rithm and the code, the reference to the node to be removed is t r e e .

Now we can write the recursive definition and code for r e c Re move .

Method recRemove (element, tree) returns BSTNode

Definition: Removes element from tree
Size: The number of nodes in the path from the root

to the node to be removed
Base case 1: If element is not in the tree, set found to false
Base case 2: If element’s key matches key in tree.info,

remove node pointed to by tree and set found
to true

General case: If element < tree.getInfo(),
recRemove(element, tree.getLeft());

else recRemove(element, tree.getRight())

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 568

8.6 The Implementation Level: Remaining Operations | 569

pr i va t e BSTNode <T> r e c Re move (T e l e me nt , BSTNode <T> t r e e)
/ / Re move s a n e l e me nt e f r om t r e e s uc h t ha t e . c ompa r e To(e l e me nt) == O
/ / a nd r e t ur ns t r ue ; i f no s uc h e l e me nt e xi s t s , r e t ur ns f a l s e .
{

i f (t r e e == nul l)
f ound = f a l s e ;

e l s e i f (e l e me nt . c ompa r e To(t r e e . ge t I nf o()) < 0)
t r e e . s e t Le f t (r e c Re move (e l e me nt , t r e e . ge t Le f t ())) ;

e l s e i f (e l e me nt . c ompa r e To(t r e e . ge t I nf o()) > 0)
t r e e . s e t Ri ght (r e c Re move (e l e me nt , t r e e . ge t Ri ght ())) ;

e l s e
{

t r e e = r e move Node (t r e e) ;
f ound = t r ue ;

}
r e t ur n t r e e ;

}

Before we code r e move Node , let’s look at its algorithm again. We can eliminate one
of the tests if we notice that the action taken when the left child reference is nul l also
takes care of the case in which both child references are nul l . When the left child refer-
ence is nul l , the right child reference is returned. If the right child reference is also
nul l , then nul l is returned, which is what we want if both nodes are nul l .

Let’s now write the code for r e move Node using ge t Pr e de c e s s or as the name of
an operation that returns the i nf o reference of the predecessor of the node with two
children.

pr i va t e BSTNode <T> r e move Node (BSTNode <T> t r e e)
/ / Re move s t he i nf or ma t i on a t t he node r e f e r e nc e d by t r e e .
/ / The us e r ' s da t a i n t he node r e f e r e nc e d by t r e e i s no
/ / l onge r i n t he t r e e . I f t r e e i s a l e a f node or ha s onl y
/ / a non- nul l c hi l d poi nt e r , t he node poi nt e d t o by t r e e i s
/ / r e move d; ot he r wi s e , t he us e r ' s da t a i s r e pl a c e d by i t s
/ / l ogi c a l pr e de c e s s or a nd t he pr e de c e s s or ' s node i s r e move d.
{

T da t a ;

i f (t r e e . ge t Le f t () == nul l)
r e t ur n t r e e . ge t Ri ght () ;

e l s e i f (t r e e . ge t Ri ght () == nul l)
r e t ur n t r e e . ge t Le f t () ;

e l s e
{

da t a = ge t Pr e de c e s s or (t r e e . ge t Le f t ()) ;

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 569

570 | Chapter 8: Binary Search Trees

Figure 8.17 The methods used to remove a node

= parameter

= return value

classes

element: Comparable
root: BSTNode
node: BSTNode

Client remove

element

element

element

root
node

node

node

node

element, node

node
recRemove

element, node

node

removeNode

getPredecessor

t r e e . s e t I nf o(da t a) ;
t r e e . s e t Le f t (r e c Re move (da t a , t r e e . ge t Le f t ())) ;
r e t ur n t r e e ;

}
}

Now we must look at the operation for finding the logical predecessor. We know
that the logical predecessor is the maximum value in t r e e ’s left subtree. Where is this
node? The maximum value in a binary search tree is in its rightmost node. Therefore,
given t r e e ’s left subtree, we just keep moving right until the right child is nul l . When
this occurs, we return the i nf o reference of the node. There is no reason to look for the
predecessor recursively in this case. A simple iteration until t r e e . ge t Ri ght () is nul l
suffices.

pr i va t e T ge t Pr e de c e s s or (BSTNode <T> t r e e)
/ / Re t ur ns t he i nf or ma t i on he l d i n t he r i ght mos t node i n t r e e
{

whi l e (t r e e . ge t Ri ght () ! = nul l)
t r e e = t r e e . ge t Ri ght () ;

r e t ur n t r e e . ge t I nf o() ;
}

That’s it. We have used four methods to implement the binary search tree’s
r e move operation! Figure 8.17 illustrates the calling relationships among these four

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 570

8.6 The Implementation Level: Remaining Operations | 571

methods. Notice that we used both types of recursion in our solution: direct recursion
(r e c Re move invokes itself) and indirect recursion (r e c Re move invokes r e move Node ,
which in turn may invoke r e c Re move). Due to the nature of our approach, we are
guaranteed that we never go deeper than one level of recursion. Whenever r e move N-
ode invokes r e c Re move , it passes an element and a reference to a subtree such that
the element matches the largest element in the subtree. Therefore, the element
matches the rightmost element of the subtree, which does not have a right child. This
situation is one of the base cases for the r e c Re move method, so the recursion stops
there.

If duplicate copies of the largest element in the subtree are present, the code will
stop at the first one it finds—the one closest to the root of the tree. The remaining dupli-
cates must be in that element’s left subtree, based on the way we defined binary search
trees and the way we implemented the a dd method. Thus, even in this case, the indirect
recursion does not proceed deeper than one level of recursion.

Iteration
For the golf application developed in Section 8.3, we created a program that printed the
contents of a binary search tree in order. This program printed the value of a node in
between printing the values in its left subtree and the values in its right subtree. Using
the inorder traversal resulted in a listing of the values of the binary search tree in
ascending key order.

Let’s review our traversal definitions:

• Preorder traversal: Visit the root, visit the left subtree, visit the right subtree
• Inorder traversal: Visit the left subtree, visit the root, visit the right subtree
• Postorder traversal: Visit the left subtree, visit the right subtree, visit the root

Recall that the name given to each traversal specifies where the root itself is processed
in relation to its subtrees.

Our Binary Search Tree ADT supports all three traversal orders. How can it man-
age this feat? As we saw in the golf application, the client program passes the r e s e t
and ge t Ne xt methods an argument indicating which of the three traversal orders to
use for that particular invocation of the method. Imagine, for example, that r e s e t is
called with an I NORDER argument, followed by several calls to ge t Ne xt with
I NORDER arguments. How does ge t Ne xt keep track of which tree node to return
next? It is not as simple a matter as maintaining an instance variable that references
the next element, as we did for linked lists. A simple reference to a node does not
capture the status of the traversal. Sure, ge t Ne xt could return the referenced element,
but then how does it update the reference in preparation for the next call? Does it go
down the left subtree, or down the right subtree, or back up to the parent? The pro-
gram could save more information about the indicated traversal, enough to let it find
the next element; due to the recursive nature of the traversals it would have to save
this information in a stack.

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 571

572 | Chapter 8: Binary Search Trees

There is a simpler way, however: We let r e s e t generate a queue of node contents
in the indicated order and let ge t Ne xt process the node contents from the queue. Each
of the traversal orders is supported by a separate queue. Therefore, the instance vari-
ables of our Bi na r ySe a r c hTr e e class must include three queues:

pr ot e c t e d Li nke dUnbndQue ue <T> i nOr de r Que ue ; / / Que ue of i nf o
pr ot e c t e d Li nke dUnbndQue ue <T> pr e Or de r Que ue ; / / Que ue of i nf o
pr ot e c t e d Li nke dUnbndQue ue <T> pos t Or de r Que ue ; / / Que ue of i nf o

The r e s e t method instantiates one of the queues, based on its argument. It then
calls one of three recursive methods, depending on the value of its argument. Each of
these methods implements a recursive traversal, enqueuing the node contents onto the
corresponding queue in the appropriate order.

What happens when ge t Ne xt reaches the end of the collection of elements? At
that point, the corresponding queue is empty, and another call to ge t Ne xt results in a
run-time exception being thrown. Unlike with our List ADT, iterations on binary
search trees do not “wrap around.” The client must be sure not to call ge t Ne xt in-
appropriately.

The code for r e s e t and ge t Ne xt appears below.

publ i c i nt r e s e t (i nt or de r Type)
/ / I ni t i a l i z e s c ur r e nt pos i t i on f or a n i t e r a t i on t hr ough t hi s BST
/ / i n or de r Type or de r . Re t ur ns c ur r e nt numbe r of node s i n t he BST.
{

i nt numNode s = s i z e () ;
i f (or de r Type == I NORDER)
{

i nOr de r Que ue = ne w Li nke dUnbndQue ue <T>(numNode s) ;
i nOr de r (r oot) ;

}
e l s e
i f (or de r Type == PREORDER)
{

pr e Or de r Que ue = ne w Li nke dUnbndQue ue <T>(numNode s) ;
pr e Or de r (r oot) ;

}
i f (or de r Type == POSTORDER)
{

pos t Or de r Que ue = ne w Li nke dUnbndQue ue <T>(numNode s) ;
pos t Or de r (r oot) ;

}
r e t ur n numNode s ;

}

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 572

8.6 The Implementation Level: Remaining Operations | 573

Figure 8.18 Visiting all the nodes in order

•tree

JA

D

M

TQ

R

visits first visits last

visits second

publ i c T ge t Ne xt (i nt or de r Type)
/ / Pr e c ondi t i ons : The BST i s not e mpt y
/ / The BST ha s be e n r e s e t f or or de r Type
/ / The BST ha s not be e n modi f i e d s i nc e t he mos t r e c e nt r e s e t
/ / The e nd of or de r Type i t e r a t i on ha s not be e n r e a c he d
/ /
/ / Re t ur ns t he e l e me nt a t t he c ur r e nt pos i t i on on t hi s BST f or or de r Type
/ / a nd a dva nc e s t he va l ue of t he c ur r e nt pos i t i on ba s e d on t he or de r Type .
{

i f (or de r Type == I NORDER)
r e t ur n i nOr de r Que ue . de que ue () ;

e l s e
i f (or de r Type == PREORDER)

r e t ur n pr e Or de r Que ue . de que ue () ;
e l s e
i f (or de r Type == POSTORDER)

r e t ur n pos t Or de r Que ue . de que ue () ;
e l s e r e t ur n nul l ;

}

All that is left to do is to define the three traversal methods to store the required
information into the queues in the correct order.

We start with the inorder traversal. We first need to visit the root’s left subtree,
which contains all the values in the tree that are smaller than or equal to the value in
the root node. Then we visit the root node by enqueuing its information in our
i nOr de r Que ue . Finally, we visit the root’s right subtree, which contains all the values
in the tree that are larger than the value in the root node (see Figure 8.18).

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 573

574 | Chapter 8: Binary Search Trees

Let’s describe this problem again, developing our algorithm as we proceed. We
assume our method is named i nOr de r and is passed a parameter t r e e . We want to
visit the elements in the binary search tree rooted at t r e e in order; that is, first we visit
the left subtree in order, then we visit the root, and finally we visit the right subtree in
order. The call with t r e e . ge t Le f t () references the root of the left subtree. Because
the left subtree is also a binary search tree, we can call method i nOr de r to visit it,
using t r e e . ge t Le f t () as the argument. When i nOr de r finishes visiting the left sub-
tree, we enqueue the information of the root node. Then we call method i nOr de r to
visit the right subtree, using t r e e . ge t Ri ght () as the argument.

Of course, both of the calls to method i nOr de r use the same approach to visit the
subtree: They visit the left subtree with a call to i nOr de r , visit the root, and then visit
the right subtree with another call to i nOr de r . What happens if the incoming argument
is nul l on one of the recursive calls? The argument is then the root of an empty tree. In
this case, we just want to exit the method—clearly there’s no point to visiting an empty
subtree. That is our base case.

Method inOrder (tree)

Definition: Enqueues the elements in the binary search
tree in order from smallest to largest

Size: The number of nodes in the tree whose root is
tree

Base case: If tree = null, do nothing
General case: Traverse the left subtree in order

Then enqueue tree.getInfo()
Then traverse the right subtree in order

This is coded as the following recursive method:

pr i va t e voi d i nOr de r (BSTNode <T> t r e e)
/ / I ni t i a l i z e s i nOr de r Que ue wi t h t r e e e l e me nt s i n i nOr de r or de r
{

i f (t r e e ! = nul l)
{

i nOr de r (t r e e . ge t Le f t ()) ;
i nOr de r Que ue . e nque ue (t r e e . ge t I nf o()) ;
i nOr de r (t r e e . ge t Ri ght ()) ;

}
}

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 574

8.6 The Implementation Level: Remaining Operations | 575

The remaining two traversals are approached in exactly the same way, except that
the relative order in which they visit the root and the subtrees is changed. Recursion
certainly allows for an elegant solution to the binary tree traversal problem.

pr i va t e voi d pr e Or de r (BSTNode <T> t r e e)
/ / I ni t i a l i z e s pr e Or de r Que ue wi t h t r e e e l e me nt s i n pr e Or de r or de r .
{

i f (t r e e ! = nul l)
{

pr e Or de r Que ue . e nque ue (t r e e . ge t I nf o()) ;
pr e Or de r (t r e e . ge t Le f t ()) ;
pr e Or de r (t r e e . ge t Ri ght ()) ;

}
}

pr i va t e voi d pos t Or de r (BSTNode <T> t r e e)
/ / I ni t i a l i z e s pos t Or de r Que ue wi t h t r e e e l e me nt s i n pos t Or de r or de r .
{

i f (t r e e ! = nul l)
{

pos t Or de r (t r e e . ge t Le f t ()) ;
pos t Or de r (t r e e . ge t Ri ght ()) ;
pos t Or de r Que ue . e nque ue (t r e e . ge t I nf o()) ;

}
}

Testing Binary Search Tree Operations
Now that we’ve finished the implementation of the Binary Search Tree ADT we must
address testing of our implementation. The code for the entire Bi na r ySe a r c hTr e e class
is included with the rest of the files for this book. It provides both the recursive s i z e
method and the iterative version (s i z e 2). We have also included an interactive test
driver for the ADT called I TDBi na r ySe a r c hTr e e . This test driver allows the user to
create, manipulate, and observe trees containing strings. In addition to directly support-
ing testing of all the ADT operations, the test driver supports a print operation that
allows the user to indicate one of the traversal orders and “prints” the contents of the
tree, in that order.

An example of a test run is on the next page. The pr i nt Tr e e results can be used to
help verify the shape of the tree. The repeated display of the operation menu has been
replaced with “. . .” in most cases.

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 575

576 | Chapter 8: Binary Search Trees

What is the name of this test?
Textbook Example

This is test Textbook Example.

Choose an operation:
1: isEmpty
2: size
3: size2
4: contains (string)
5: remove (string)
6: get (string)
7: add (string)
8: print (traversal order)
9: stop Testing

Enter choice: 7
Enter string to add: delta

Choose an operation:
. . .
Enter choice: 7
Enter string to add: alpha

Choose an operation:
. . .
Enter choice: 7
Enter string to add: alpha

Choose an operation:
. . .
Enter choice: 7
Enter string to add: gamma

Choose an operation:
. . .
Enter choice: 7
Enter string to add: beta

Choose an operation:
. . .
Enter choice: 8
Choose a traversal order:
1: Preorder
2: Inorder
3: Postorder
1
The tree in Preorder is:
delta
alpha
alpha
beta
gamma

Choose an operation:
. . .
Enter choice: 5
Enter string to remove: alpha
remove(alpha) returns true

Choose an operation:
. . .
Enter choice: 8
Choose a traversal order:
1: Preorder
2: Inorder
3: Postorder
1
The tree in Preorder is:
delta
alpha
beta
gamma

Choose an operation:
. . .
Enter choice: 9
End of Interactive Test Driver

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 576

8.7 Comparing Binary Search Trees and Linear Lists | 577

You are invited to use the test driver to test the various tree operations. Be sure to
test all of the operations, in many combinations. In particular, you should test both
skewed and balanced trees. Also, don’t forget to test trees with duplicate elements.

8.7 Comparing Binary Search Trees and Linear Lists

A binary search tree is an appropriate structure for many of the same applications dis-
cussed previously in conjunction with other sorted list structures. The special advantage
of using a binary search tree is that it facilitates searching while conferring the benefits
of linking the elements. It provides the best features of both the sorted array-based list
and the linked list. Similar to a sorted array-based list, it can be searched quickly, using
a binary search. Similar to a linked list, it allows insertions and removals without hav-
ing to move data. Thus a binary search tree is particularly suitable for applications in
which search time must be minimized or in which the nodes are not necessarily
processed in sequential order.

As usual, there is a trade-off. The binary search tree, with its extra reference in each
node, takes up more memory space than a singly linked list. In addition, the algorithms
for manipulating the tree are somewhat more complicated. If all of the list’s uses involve
sequential rather than random processing of the elements, the tree may not be the best
choice.

Suppose we have 100,000 customer records in a list. If the main activity in the
application is to send out updated monthly statements to the customers, and if the order
in which the statements are printed is the same as the order in which the information
appears on the list, a linked list would be suitable. But suppose we decide to provide
access as part of a pledge to give out account information to the customers whenever
they ask. If the data are kept in a linked list, the first customer on the list can be given
information almost instantly, but the last customer has to wait while 99,999 nodes are
examined and skipped. When direct access to the nodes is a requirement, a binary
search tree is a more appropriate structure.

Big- O Comparisons
Finding a node using the c ont a i ns method, as we would expect in a structure dedi-
cated to searching, is the most interesting operation to analyze. In the best case—if the
order that the elements were inserted results in a short, bushy tree—we can find any
node in the tree with at most log2N + 1 comparisons. We would expect to be able to
locate a random element in such a tree much faster than we could find an element in a
sorted linked list. In the worst case—if the elements were inserted in order from smallest
to largest, or vice versa—the tree won’t really be a tree at all; it will be a linear list,
linked through either the l e f t or r i ght references. This is called a “degenerate” tree. In
this case, the tree operations should perform much the same as the operations on a
linked list.

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 577

578 | Chapter 8: Binary Search Trees

If we were doing a worst-case analysis, we would have to say that the complexity
of the tree operations is identical to the comparable linked list operations. In the follow-
ing analysis, however, we assume that the elements are inserted into the tree in random
order, giving a balanced tree.

The a dd and ge t operations are basically finding the node [O(log2N)] plus tasks that
are O(1)—for instance, creating a node or returning references. Thus these operations are
all described as O(log2N). The r e move operation consists of finding the node plus invok-
ing r e move Node . In the worst case (removing a node with two children), r e move Node
must find the replacement value, an O(log2N) operation. (Actually, the two tasks
together add up to log2N comparisons, because if the target node is higher in the tree,
fewer comparisons are needed to find it, but more comparisons may be needed to find
its replacement node; and vice versa.) Otherwise, if the removed node has zero or one
child, r e move Node is an O(1) operation. Thus r e move may also be described as an
O(log2N) operation.

The s i z e and r e s e t operations require the tree to be traversed, processing each
element once. These are O(N) operations. Of course, iterating through an entire collec-
tion of elements takes O(N) steps even if both r e s e t and ge t Ne xt are O(1), as ge t Ne xt
must be called N times by the client.

Table 8.1 compares the orders of magnitude for the tree and list operations as we
have coded them. The binary search tree operations are based on a random insertion
order of the elements; the Find operation in the array-based implementation is based on
using a binary search. We do not include either the list’s or the tree’s s i z e method in
Table 8.1. These methods can be implemented with a simple return statement if the
object maintains an instance variable holding the size of the structure. Of course, this
instance variable would have to be updated every time an element is inserted or
removed from the structure, so the cost really would depend on how often those opera-
tions occur.

8.8 Balancing a Binary Search Tree

In our Big-O analysis of binary search tree operations, we assumed that our tree was
balanced. If we drop this assumption and then perform a worst-case analysis assuming
a completely skewed tree, the efficiency benefits of the binary search tree disappear. The
time required to perform the c ont a i ns , ge t , a dd, and r e move operations is now O(N),
just as it is for the linked list. Therefore, a beneficial enhancement to our Binary Search
Tree ADT operations is a ba l a nc e operation that balances the tree. The specification of
the operation is

publ i c ba l a nc e () ;
/ / Re s t r uc t ur e s t hi s BST t o be opt i ma l l y ba l a nc e d

Of course, it is up to the client program to use the ba l a nc e method appropriately. It
should not be invoked too often, as it also has an execution cost associated with it.

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 578

8.8 Balancing a Binary Search Tree | 579

Table 8.1 Big-O Comparison of List Operations

Binary Search Tree Array- Based Linear List Linked List

Class constructor O(1) O(N) O(1)
i s Empt y O(1) O(1) O(1)
r e s e t O(N) O(1) O(1)
ge t Ne xt O(1) O(1) O(1)
c ont a i ns O(log2N) O(log2N) O(N)
ge t

Find O(log2N) O(log2N) O(N)
Process O(1) O(1) O(1)
Total O(log2N) O(log2N) O(N)

a dd

Find O(log2N) O(log2N) O(N)
Process O(1) O(N) O(1)
Total O(log2N) O(N) O(N)

r e move

Find O(log2N) O(log2N) O(N)
Process O(1) O(N) O(1)
Total O(log2N) O(N) O(N)

There are several ways to restructure a binary search tree. We use a simple
approach:

The structure of the new tree depends on the order in which we save the informa-
tion into the array, the order in which we insert the information back into the tree, or
both. Let’s start by assuming we insert the array elements back into the tree in “index”
order—that is, starting at index 0 and working through the array. We use the following
algorithm:

Save the tree information in an array
Insert the information from the array back into the tree

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 579

580 | Chapter 8: Binary Search Trees

Does that balance the tree? It’s impossible to tell what it does without knowing the
order of the tree traversal.

Let’s consider what happens if we use an inorder traversal. Figure 8.19 provides an
example. The results are not very satisfactory, are they? We have taken a perfectly nice
bushy tree and turned it into a degenerate skewed tree that does not efficiently support
our tree operations. That is the opposite of what we wanted to accomplish. There must
be a better approach.

Next we try a preorder traversal, as shown in Figure 8.20. We end up with an
exact copy of our tree. Will this always be the case? Yes. Recall our rule for inserting
elements into a tree—we always insert at a leaf position. Do you see what this
means? Consider the tree in Figure 8.20(a). Assuming it has had no removals, what
was the first node inserted into that tree when it was created? It had to be the root
node, the node containing the value 10, because the only time the root node is also a
leaf is when the tree contains a single element. What was the second element
inserted? It was either the node containing 7 or the node containing 15—they are the
roots of the left subtree and right subtree. If we re-create the tree based on a pre-
order traversal (root first!) of the original tree, we obtain an exact copy of the tree.
Because we always insert a node before any of its descendants, we maintain the
ancestor–descendant relationships of the original tree and obtain an exact copy. This
interesting discovery could be useful if we wanted to duplicate a tree, but it doesn’t
help us balance a tree.

Using a postorder traversal doesn’t help either. Try it out.
How can we do better? One way to ensure a balanced tree is to even out, as much

as possible, the number of descendants in each node’s left and right subtrees. We
insert elements “root first,” which means that we should first insert the “middle” ele-
ment. (If we list the elements from smallest to largest, the “middle” element is the one
in the middle of the list—it has as many elements less than or equal to it as it has
greater than it, or at least as close as possible.) The middle element becomes the root
of the tree. It has about the same number of descendants in its left subtree as it has in
its right subtree. Good. Which element do we insert next? Let’s work on the left sub-
tree. Its root should be the “middle” element of all the elements that are less than or
equal to the root. That element is inserted next. Now, when the remaining elements

Set ORDER to one of the tree traversal orders
Set count to tree.reset(ORDER)
for (int index = 0; index < count; index++)

array[index] = tree.getNext(ORDER)
tree = new BinarySearchTree()
for (int index = 0; index < count; index++)

tree.add(array[index])

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 580

8.8 Balancing a Binary Search Tree | 581

Figure 8.19 A skewed tree is produced

10

15

1812

7

5

(a) The original tree

(b) The inorder traversal

(c) The resultant tree if linear traversal of array is used

1

array:

0 1 2 3 4 5 6

1 5 7 10 12 15 18

1

5

7

10

12

15

18

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 581

582 | Chapter 8: Binary Search Trees

Figure 8.20 An exact copy is produced

10

15

1812

7

5

(a) The original tree

(b) The preorder traversal

(c) The resultant tree if linear traversal of array is used

1

10

15

1812

7

5

1

array:

0 1 2 3 4 5 6

10 7 5 1 15 12 18

that are less than or equal to the root are inserted, about half of them will be in the
left subtree of the element, and about half will be in its right subtree. Sounds recur-
sive, doesn’t it?

Here is an algorithm for balancing a tree based on the approach described above.
The algorithm consists of two parts: one iterative, and one recursive. The iterative part,
Balance, creates the array and invokes the recursive part, InsertTree, which then rebuilds
the tree.

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 582

8.8 Balancing a Binary Search Tree | 583

We first store the nodes of the tree into our array using an inorder traversal, so that
they are stored, in order, from smallest to largest. The algorithm continues by invoking
the recursive algorithm InsertTree, passing it the bounds of the array. The InsertTree
algorithm checks the array bounds it is passed. If the low and high bounds are the same
(base case 1), it inserts the corresponding array element into the tree. If the bounds dif-
fer by only one location (base case 2), the algorithm inserts both elements into the tree.
Otherwise, it computes the “middle” element of the subarray, inserts it into the tree, and
then makes two recursive calls to itself: one to process the elements less than the middle
element, and one to process the elements greater than the element.

Trace the InsertTree algorithm using sorted arrays of both even and odd length to
convince yourself that it works. The code for ba l a nc e and a helper method
i ns e r t Tr e e follows directly from the algorithm; writing it is left for you as an exer-
cise. Figure 8.21 shows the results of using this approach on the previous example.

Balance
Set count to tree.reset(INORDER)
for (int index = 0; index < count; index++)

array[index] = tree.getNext(INORDER)
tree = new BinarySearchTree()
tree.InsertTree(0, count - 1)

InsertTree(low, high)
if (low == high) // Base case 1

tree.add(nodes[low])
else if ((low + 1) == high) // Base case 2

tree.add(nodes[low])
tree.add(nodes[high])

else
mid = (low + high) / 2
tree.add(mid)
tree.InsertTree(low, mid – 1)
tree.InsertTree(mid + 1, high)

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 583

584 | Chapter 8: Binary Search Trees

Figure 8.21 An optimal transformation

10

15

1812

7

5

(a) The original tree

(b) The inorder traversal

(c) The resultant tree if InsertTree (0,6) is used

1

10

15

18127

5

1

array:

0 1 2 3 4 5 6

1 5 7 10 12 15 18

8.9 A Nonlinked Representation of Binary Trees

Our discussion of the implementation of binary trees has so far been limited to a scheme
in which the links from parent to children are explicit in the implementation structure.
In other words, an instance variable was declared in each node for the reference to the
left child and the reference to the right child.

A binary tree can be stored in an array in such a way that the relationships in the
tree are not physically represented by link members, but rather are implicit in the algo-
rithms that manipulate the tree stored in the array. The code is, of course, much less
self-documenting and less intuitive, but we might save memory space because no refer-
ences are required.

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 584

8.9 A Nonlinked Representation of Binary Trees | 585

Let’s take a binary tree and store it in an array in such a way that the parent–child rela-
tionships are not lost. We store the tree elements in the array, level by level, from left to
right. If the number of nodes in the tree is numEl e me nt s , we can package the array and
numEl e me nt s into an object, as illustrated in Figure 8.22. The tree elements are stored with
the root in t r e e . node s [0] and the last node in t r e e . node s [numEl e me nt s - 1] .

To implement the algorithms that manipulate the tree, we must be able to find the
left and right children of a node in the tree. Comparing the tree and the array in Figure
8.22, we make the following observations:

t r e e . node s [0] ’s children are in t r e e . node s [1] and t r e e . node s [2] .
t r e e . node s [1] ’s children are in t r e e . node s [3] and t r e e . node s [4] .
t r e e . node s [2] ’s children are in t r e e . node s [5] and t r e e . node s [6] .

Do you see the pattern? For any node t r e e . node s [i nde x] , its left child is in
t r e e . node s [i nde x*2 + 1] and its right child is in t r e e . node s [i nde x*2 + 2]
(provided that these child nodes exist). Notice that the nodes in the array from
t r e e . node s [t r e e . numEl e me nt s / 2] to t r e e . node s [t r e e . numEl e me nt s - 1] are
leaf nodes.

Not only can we easily calculate the location of a node’s children, but we can also
determine the location of its parent node. This task is not an easy one in a binary tree linked
together with references from parent to child nodes, but it is very simple in our implicit link
implementation: t r e e . node s [i nde x] ’s parent is in t r e e . node s [(i nde x - 1) / 2] .

Because integer division truncates any remainder, (i nde x - 1) / 2 is the correct
parent index for either a left or right child. Thus this implementation of a binary tree is
linked in both directions: from parent to child, and from child to parent. We take
advantage of this fact in Chapter 9, when we study heaps.

Figure 8.22 A binary tree and its array representation

[maxElements - 1]

tree.numElements = 10

tree

tree.nodes

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

G

D I

B F H J

A C E

G

D

I

B

F

H

J

A

C

E

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 585

586 | Chapter 8: Binary Search Trees

This tree representation works well for any binary tree that is full or complete. A
full binary tree is a binary tree in which all of the leaves are on the same level and
every nonleaf node has two children. The basic shape of a full binary tree is triangular:

A complete binary tree is a binary tree that is either full or full through the next-to-
last level, with the leaves on the last level as far to the left as possible. The shape of a
complete binary tree is either triangular (if the tree is full) or something like the follow-
ing:

Figure 8.23 shows some examples of different types
of binary trees.

The array-based representation is simple to imple-
ment for trees that are full or complete, because the ele-
ments occupy contiguous array slots. If a tree is not full
or complete, however, we must account for the gaps
where nodes are missing. To use the array representa-
tion, we must store a dummy value in those positions
in the array to maintain the proper parent–child rela-

tionship. The choice of a dummy value depends on the information that is stored in the
tree. For instance, if the elements in the tree are nonnegative integers, a negative value
can be stored in the dummy nodes; if the elements are objects, we can use a nul l value.

Figure 8.24 illustrates an incomplete tree and its corresponding array. Some of the
array slots do not contain actual tree elements, but rather dummy values. The algo-
rithms to manipulate the tree must reflect this situation. For example, to determine
whether the node in t r e e . node s [i nde x] has a left child, we must check whether
i nde x*2 + 1 < t r e e . numEl e me nt s , and then check whether the value in
t r e e . node s [i nde x*2 + 1] is the dummy value.

Just as with all of our array-based implementations, we must specify the size of the
array when we create it, and this size is then fixed. As a consequence, we may waste
space if we create an array that is much bigger than needed, and we could potentially
run out of space if the tree grows larger than we anticipate. A full implementation of an

Full binary tree A binary tree in which all of the
leaves are on the same level and every nonleaf node
has two children
Complete binary tree A binary tree that is either full
or full through the next-to-last level, with the leaves
on the last level as far to the left as possible

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 586

8.9 A Nonlinked Representation of Binary Trees | 587

Figure 8.23 Examples of different types of binary trees

(a) Full and complete (b) Neither full nor
complete

(e) Neither full nor
complete

(c) Complete

(f) Complete(d) Full and complete

Figure 8.24 A binary search tree stored in an array with dummy values

[maxElements - 1]

tree.numElements = 10

tree

tree.nodes

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

50

40 60

29 45 70

42

50

40

60

29

45

–1

70

–1

–1

42

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 587

588 | Chapter 8: Binary Search Trees

array-based binary search tree class would need to check any attempt to insert a node,
and either throw an exception or automatically instantiate a larger array and copy the
data from the original array to the new one if more space is needed.

8.10Case Study: Word Frequency Generator

Problem
Our firm is planning to create several types of text analysis software—for example, soft-
ware that automatically calculates the reading level of a document. As a first step, we’ve
been assigned the task of creating a word frequency generator. This generator will be
used to perform some preliminary text analysis during the planning stage of the project;
if it works well, it may be incorporated into the tools developed later.

The word frequency generator is to read a text file and generate an alphabetical
listing of the unique words that the file contains, along with a count of how many times
each word occurs. To allow users to control the amount of useful output from the gen-
erator, based on the particular problem they are studying, the generator must allow
users to specify a minimum word size and a minimum frequency count. The generator
should skip over words smaller than the minimum word size; it should not include a
word on its output list if the word occurs fewer times than the minimum frequency
count. Finally, the generator should present a few summary statistics: the total number
of words, the number of words whose length is at least the minimum word size, and the
number of unique words of the specified size whose frequency is at least the minimum
frequency count.

Discussion
The first thing we must do is define a “word.” We discuss this question with our man-
ager. What is a tentative definition of a word in this context? How about “something
between two blanks”? Or better yet, a “character string between two blanks”? That defi-
nition works for most words. All words that immediately precede a period or a comma,
however, would have the “.” and “,” attached. Also, quoted words would cause a prob-
lem. Therefore, we settle on the following definition: A word is a string of alphanumeric
characters between markers, where markers are whitespace and all punctuation marks.

Although we “lose” some words following this definition (for example, contractions
such as “can’t” are treated as two words, “can” and “t”), we decide that these small
problems do not adversely affect our goals. Finally, our manager points out that all
words should be transformed into lowercase characters for processing—“THE” and “the”
represent the same word.

Brainstorming
Let’s list objects that might be useful in solving the problem. Scanning the problem
statement we identify the following “nouns”: word frequency generator, input text file,
user, alphabetical listing, unique words, word count, minimum word size, minimum fre-
quency count, output list, summary statistics, and word totals. That’s 11 candidate

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 588

8.10 Case Study: Word Frequency Generator | 589

objects. We realize that we need to use a data structure to store words—for now we just
call it the word store and add that to our list, giving us 12 candidate objects.

Listing the verbs in a problem statement often helps identify the actions our program
needs to take. In this case, however, we are clear on the actions needed: Read in the words,
determine their frequencies, and output the results. A quick scan of the problem statement
reminds us that the results are to be sorted alphabetically and that some pruning of the
data is required based on minimum thresholds for word size and word frequency.

Filtering
We have identified 12 candidate objects. A few of them can be discarded immediately:
word frequency generator is the entire program; minimum word size and minimum fre-
quency count are input values and can be stored as primitive i nt values. Some of the
candidate objects (input text file, user, output list) are related to the user interface. (We
discuss the interface in the next subsection.) The remaining candidates are grouped as
follows:

• Summary statistics, word totals These terms are really the same thing. We
decide the statistics can be tracked by the main processing class and pre-
sented to the user at the conclusion of processing—this does not require a sep-
arate object.

• Unique words, word count These two terms are related because we need to have
a word count for each unique word. We decide to create a class called Wor dFr e q
to hold a word frequency pair. A quick analysis tells us that we have to be able
to initialize objects of the class, increment the frequency, and observe both the
word and the frequency values. We could make this class generic, replacing
“word” with a type provided by the client program; however, considering that
this is just a preliminary project we decide to simply have the class hide strings
(words) and integers (frequency).

• Alphabetical listing, word store We can combine these objects by using a con-
tainer that supports sorted traversals to hold our Wor dFr e q objects. We decide to
delay our choice of containers until after we perform scenario analysis, but we
know it must support insertion, searching, and “in order” traversal. At this point
we consider both the Sorted List ADT and the Binary Search Tree ADT as candi-
dates. For now we call this class Cont a i ne r .

The User Interface
We do not include an example of a graphical user interface for this case study. Accord-
ing to the problem description, the program is to be used only for preliminary analysis
of texts, as an aid in planning full-fledged text analysis tools, and the program is tar-
geted to be embedded in a larger system later, a system that presumably already has a
user interface.

For these reasons, we include only a console-based interface. It is easy to create and
suits our purposes. We assume that the text file containing the words is named

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 589

590 | Chapter 8: Binary Search Trees

Initialize variables and objects

while there are more words to process
Get the next word
Increment numWords
if current word size is OK

Increment numValidWords
Change word to all lowercase
wordToTry = new WordFreq object based on current word
if wordToTry is already in the container

Get the corresponding WordFreq object from the container
Increment the frequency of the WordFreq object
Save the WordFreq object back into the container

else
Insert a new WordFreq object representing wordToTry into the container

Set up a traversal through the container
while there are more WordFreq elements in the container

Get the next WordFreq element
if the frequency of the WordFreq element is large enough

Increment numValidFreqs
Display the WordFreq information

Display the summary statistics

wor ds . da t . The user enters two pieces of information to the program when prompted:
the minimum word size and the minimum frequency count. The program reads text
from the input file, breaks it into words, generates the word frequency list, displays it,
and displays the summary statistics.

Error Handling
For the same reasons we are not creating a graphical interface, we do not worry about
checking input arguments for validity. We assume that when our program is embedded
in a larger system, this system will ensure valid input. For now, we rely on the user to
supply appropriate program arguments and we assume that the input file exists in the
correct format and is readable.

Scenario Analysis
There really is only one scenario for this problem: Read a file, break it into words,
process the words, and output the results. Let’s describe it in algorithmic form:

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 590

8.10 Case Study: Word Frequency Generator | 591

if wordToTry is already in the container
Get the corresponding WordFreq object from the container
Increment the frequency of the WordFreq object
Save the WordFreq object back into the container

else
Insert a new WordFreq object representing wordToTry into the container

We need to walk through this algorithm a few times to complete our helper class
definitions. At each step, we ask ourselves how we could accomplish that step:

• We can use Java’s Sc a nne r to break the input file into words. It allows us to
know when “there are more words to process” and allows us to “get the next
word.”

• The Sc a nne r class permits us to define the set of delimiters used to separate the
tokens found in its input source by invoking its us e De l i mi t e r method. In our
program we can state that the delimiters are “ â-zA-Z0-9”; this regular expres-
sion means anything that is not a letter or a digit.

• Checking a word’s size and changing it to lowercase can both be accomplished
by using methods of the St r i ng class.

• Iterating through the Wor dFr e q elements for output just requires using the
iteration tools of whatever data structure we choose for our container. Creat-
ing the output does require the output of “Wor dFr e q information,” so we
decide to expand the set of Wor dFr e q operations to include a t oSt r i ng
operation.

That leaves one section of the algorithm for more careful analysis: the section deal-
ing with the container. Let’s look at it again and decide exactly which container class to
use.

The first thing we notice is the repeated access to the container required for each
word. Potentially we may have to check the container to see whether the word is already
there, get the word from the container, and save the word back into the container. Ignor-
ing the fact that we are not sure what “save back” means for now, we realize that we
should consider achieving efficient access to the container to be a high priority. Our input
files could have thousands of words, so the underlying structure can be large. The need for
repeated access and searching in a large structure leads us to choose the binary search tree
for our container. This decision means that the Wor dFr e q class must implement the
Compa r a bl e <Wor dFr e q> interface, so that we can store Wor dFr e q objects on our tree.

Now let’s address the “save back” question. The way we “save” information in our
tree is to add it. Of course the tree would already have a Wor dFr e q object that corre-
sponds to the current word. If we add the revised Wor dFr e q object, we would have
“identical” copies of that object in the tree. Thus, to “save back” the Wor dFr e q object,

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 591

592 | Chapter 8: Binary Search Trees

wordInTree = tree.get(wordToTry)
if (wordInTree == null)

Insert wordToTry into the tree
else

Increment the frequency of wordInTree

we would first have to remove the previous version of the object and then insert the
new version. But wait a minute: Do we really have to do that? Recall that our tree stores
objects “by reference.” When we retrieve a Wor dFr e q object from the tree, we are actu-
ally retrieving a reference to the object. If we use that reference to access the object and
increment its frequency count, the frequency count of the object in the tree is incre-
mented. We do not have to “save back” the object at all!

In our discussion of the perils of “store by reference” in the feature section in Chap-
ter 6, we stated that it is dangerous for the client to use a reference to reach into a data
structure hidden by an ADT and change a data element. But as we also noted, this prac-
tice is dangerous only if the change affects the parts of the element used to determine
the underlying physical relationship of the structure. In this case, the structure is based
on the word information of a Wor dFr e q object; we are changing the frequency infor-
mation. We can reach into the tree and increment the frequency count of one of its ele-
ments without affecting the tree’s structure. Thus we can reduce this part of our
algorithm to

We have reduced the number of times the tree is “searched” to handle a word that is
already in the tree to 1.

The WordFreq Class
The code for the Wor dFr e q class is very straightforward. It is placed in the package
c h08. wor dFr e qs . A few observations are appropriate:

• The constructor initializes the f r e q variable to 0. As a consequence, the main
program must increment a Wor dFr e q object before placing it on the tree for the
first time. We could have coded the constructor to set the original frequency to
1, but we think it is more natural to begin a frequency count at 0. There may
be other applications that can use Wor dFr e q where this ability would be
important.

• In the t oSt r i ng method, we use Java’s De c i ma l For ma t class to force the string
generated from the frequency count to be at least five characters wide. This helps
line up output information for applications such as our word frequency generator.

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 592

8.10 Case Study: Word Frequency Generator | 593

The code corresponding to these points is emphasized in the listing below.

/ / -
/ / Wor dFr e q. j a va by Da l e / J oyc e / We e ms Cha pt e r 8
/ /
/ / De f i ne s wor d f r e que nc y pa i r s
/ / -

pa c ka ge c h08. wor dFr e qs ;

i mpor t j a va . t e xt . De c i ma l For ma t ;

publ i c c l a s s Wor dFr e q i mpl e me nt s Compa r a bl e <Wor dFr e q>
{

pr i va t e St r i ng wor d;
pr i va t e i nt f r e q;

De c i ma l For ma t f mt = ne w De c i ma l For ma t (" 00000") ;

publ i c Wor dFr e q(St r i ng ne wWor d)
{

wor d = ne wWor d;
f r e q = 0;

}

publ i c voi d i nc ()
{

f r e q++;
}

publ i c i nt c ompa r e To(Wor dFr e q ot he r)
{

r e t ur n t hi s . wor d. c ompa r e To(ot he r . wor d) ;
}

publ i c St r i ng t oSt r i ng()
{

r e t ur n(f mt . f or ma t (f r e q) + " " + wor d) ;
}

publ i c St r i ng wor dI s ()
{

r e t ur n wor d;
}

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 593

594 | Chapter 8: Binary Search Trees

publ i c i nt f r e qI s ()
{

r e t ur n f r e q;
}

}

The Word Frequency Generator Program
The main program is provided by the Fr e que nc yLi s t class. It implements the algo-
rithm developed in the “Scenario Analysis” section.

/ / -
/ / Fr e que nc yLi s t . j a va by Da l e / J oyc e / We e ms Cha pt e r 8
/ /
/ / Di s pl a ys a wor d f r e que nc y l i s t of t he wor ds l i s t e d i n t he i nput f i l e .
/ / Pr ompt s us e r f or mi nSi z e a nd mi nFr e q.
/ / Doe s not pr oc e s s wor ds l e s s t ha n mi nSi z e i n l e ngt h.
/ / Doe s not out put wor ds unl e s s t he i r f r e que nc y i s a t l e a s t mi nFr e q.
/ / -

i mpor t j a va . i o. *;
i mpor t j a va . ut i l . *;
i mpor t c h08. t r e e s . *;
i mpor t c h08. wor dFr e qs . *;

publ i c c l a s s Fr e que nc yLi s t
{

publ i c s t a t i c voi d ma i n(St r i ng[] a r gs) t hr ows I OExc e pt i on
{

St r i ng wor d;
Wor dFr e q wor dToTr y;
Wor dFr e q wor dI nTr e e ;
Wor dFr e q wor dFr omTr e e ;

Bi na r ySe a r c hTr e e <Wor dFr e q> t r e e = ne w Bi na r ySe a r c hTr e e <Wor dFr e q>() ;
St r i ng s ki p; / / s ki p e nd of l i ne a f t e r r e a di ng i nt e ge r

i nt numWor ds = 0;
i nt numVa l i dWor ds = 0;
i nt numVa l i dFr e qs = 0;
i nt mi nSi z e ;

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 594

8.10 Case Study: Word Frequency Generator | 595

i nt mi nFr e q;
i nt t r e e Si z e ;

/ / Se t up f i l e r e a di ng
Fi l e Re a de r f i n = ne w Fi l e Re a de r (" wor ds . da t ") ;
Sc a nne r wor ds I n = ne w Sc a nne r (f i n) ;
wor ds I n. us e De l i mi t e r (" [^a - z A- Z0- 9] ") ; / / de l i mi t e r s a r e nonl e t t e r s - di gi t s

/ / Se t up c ons ol e r e a di ng
Sc a nne r c onI n = ne w Sc a nne r (Sys t e m. i n) ;

/ / Ge t wor d a nd f r e que nc y l i mi t s f r om us e r
Sys t e m. out . pr i nt (" Mi ni mum wor d s i z e : ") ;
mi nSi z e = c onI n. ne xt I nt () ;
s ki p = c onI n. ne xt Li ne () ;
Sys t e m. out . pr i nt (" Mi ni mum wor d f r e que nc y: ") ;
mi nFr e q = c onI n. ne xt I nt () ;
s ki p = c onI n. ne xt Li ne () ;

whi l e (wor ds I n. ha s Ne xt ()) / / whi l e mor e wor ds t o pr oc e s s
{

wor d = wor ds I n. ne xt () ;
numWor ds ++;
i f (wor d. l e ngt h() >= mi nSi z e)
{

numVa l i dWor ds ++;
wor d = wor d. t oLowe r Ca s e () ;
wor dToTr y = ne w Wor dFr e q(wor d) ;
wor dI nTr e e = t r e e . ge t (wor dToTr y) ;
i f (wor dI nTr e e == nul l)
{

/ / i ns e r t ne w wor d i nt o t r e e
wor dToTr y. i nc () ; / / s e t f r e que nc y t o 1
t r e e . a dd(wor dToTr y) ;

}
e l s e
{

/ / wor d a l r e a dy i n t r e e , j us t i nc r e me nt f r e que nc y
wor dI nTr e e . i nc () ;

}
}

}

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 595

596 | Chapter 8: Binary Search Trees

t r e e Si z e = t r e e . r e s e t (Bi na r ySe a r c hTr e e . I NORDER) ;
Sys t e m. out . pr i nt l n(" The wor ds of l e ngt h " + mi nSi z e + " a nd a bove , ") ;
Sys t e m. out . pr i nt l n(" wi t h f r e que nc y c ount s of " + mi nFr e q + " a nd a bove : ") ;
Sys t e m. out . pr i nt l n() ;
Sys t e m. out . pr i nt l n(" Fr e q Wor d") ;
Sys t e m. out . pr i nt l n(" - - - - - - - - - - - - - - - - - - - - - - ") ;
f or (i nt c ount = 1; c ount <= t r e e Si z e ; c ount ++)
{

wor dFr omTr e e = t r e e . ge t Ne xt (Bi na r ySe a r c hTr e e . I NORDER) ;
i f (wor dFr omTr e e . f r e qI s () >= mi nFr e q)
{

numVa l i dFr e qs ++;
Sys t e m. out . pr i nt l n(wor dFr omTr e e) ;

}
}

Sys t e m. out . pr i nt l n() ;
Sys t e m. out . pr i nt l n(numWor ds + " wor ds i n t he i nput f i l e . ") ;
Sys t e m. out . pr i nt l n(numVa l i dWor ds + " of t he m a r e a t l e a s t "

+ mi nSi z e + " c ha r a c t e r s . ") ;
Sys t e m. out . pr i nt l n(numVa l i dFr e qs + " of t he s e oc c ur a t l e a s t "

+ mi nFr e q + " t i me s . ") ;
Sys t e m. out . pr i nt l n(" Pr ogr a m c ompl e t e d. ") ;

}
}

Testing
This program should first be tested using small files, where it is easy for us to deter-
mine the expected output. It should then be tested on many different files, using
varying minimum word sizes and frequency counts. Here we show the results of run-
ning the program on a text file version of the Constitution of the United States of
America. The minimum word size was set to 7 and the minimum frequency count was
set to 6.

Minimum word size: 7
Minimum word frequency: 6
The words of length 7 and above,
with frequency counts of 6 and above:

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 596

8.10 Case Study: Word Frequency Generator | 597

Freq Word
----- -------------
00008 against
00006 another
00008 article
00007 authority
00007 between
00007 citizens
00029 congress
00010 consent
00015 constitution
00006 elected
00007 electors
00007 executive
00009 legislature
00008 members
00006 necessary
00008 officers
00006 persons
00033 president
00008 provide
00015 representatives
00022 section
00008 senators
00006 service
00009 several
00007 supreme
00012 thereof
00007 treason
00007 without

5617 words in the input file.
979 of them are at least 7 characters.
28 of these occur at least 6 times.
Program completed.

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 597

598 | Chapter 8: Binary Search Trees

Summary
In this chapter we saw how the binary tree may be used to structure sorted information
to reduce the search time for any particular element. For applications in which direct
access to the elements in a sorted structure is needed, the binary search tree is a very
useful data structure. If the tree is balanced, we can access any node in the tree with an
O(log2N) operation. The binary search tree combines the advantages of quick random
access (like a binary search on a linear list) with the flexibility of a linked structure.

We also saw that the tree operations could be implemented very elegantly and con-
cisely using recursion. This makes sense, because a binary tree is itself a “recursive”
structure: Any node in the tree is the root of another binary tree. Each time we moved
down a level in the tree, taking either the right or left path from a node, we cut the size
of the (current) tree in half, a clear case of the smaller-caller.

We also discussed a tree-balancing approach and a structuring approach that use
arrays. Finally, we presented a case study that used our Binary Search Tree ADT.

Figure 8.25 is a UML diagram showing the relationships among the binary search
tree classes and interfaces developed in this chapter.

Exercises
8.1 Trees

1. Answer the following questions about binary tree levels.
a. What does the level of a binary search tree mean in relation to the searching

efficiency?
b. What is the maximum number of levels that a binary search tree with 100

nodes can have?
c. What is the minimum number of levels that a binary search tree with 100

nodes can have?
2. Which of these formulas gives the maximum total number of nodes in a binary

tree that has N levels? (Remember that the root is level 0.)
a. N2 1
b. 2N

c. 2N 1 1
d. 2N 1

3. Which of these formulas gives the maximum number of nodes in the Nth level of
a binary tree?
a. N2

b. 2N

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 598

Exercises | 599

Figure 8.25 Classes and interfaces related to the Binary Search Tree ADT

<<interface>>
BSTInterface<T extends Comparable<T>>

+i s Empt y() : bool e a n
+s i z e () : i nt
+c ont a i ns (T e l e me nt) : bool e a n
+r e move (T e l e me nt) : bool e a n
+ge t (T e l e me nt) : T
+a dd(T e l e me nt) : voi d
+r e s e t (i nt or de r Type) : i nt
+ge t Ne xt (i nt or de r Type) : T

BSTNode<T extends Comparable<T>>
#BSTNode <T>: l e f t
#BSTNode <T>: r i ght
#T: i nf o

+BSTNode (T i nf o)
+s e t I nf o(T i nf o) : voi d
+ge t I nf o() : T
+s e t Le f t (BSTNode <T> l i nk) : voi d
+s e t Ri ght (BSTNode <T> l i nk) : voi d
+ge t Le f t () : BSTNode <T>
+ge t Ri ght () : BSTNode <T>

#r oot : BSTNode <T>
#f ound: bool e a n
#i nOr de r Que ue : Li nke dUnbndQue ue <T>
#pr e Or de r Que ue : Li nke dUnbndQue ue <T>
#pos t Or de r Que ue : Li nke dUnbndQue ue <T>

+Bi na r ySe a r c hTr e e ()
+i s Empt y() : bool e a n
–r e c Si z e (BSTNode <T> t r e e) : i nt
+s i z e () : i nt
+s i z e 2() : i nt
–r e c Cont a i ns (T e l e me nt , BSTNode <T> t r e e) : bool e a n
+c ont a i ns (T e l e me nt) : bool e a n
–r e c Ge t (T e l e me nt , BSTNode <T> t r e e) : T
+ge t (T e l e me nt) : T
–r e c Add(T e l e me nt , BSTNode <T> t r e e) : BSTNode <T>
+a dd(T e l e me nt) : voi d
–ge t Pr e de c e s s or (BSTNode <T> t r e e) : T
–r e move Node (BSTNode <T> t r e e) : BSTNode <T>
–r e c Re move (T e l e me nt , BSTNode <T> t r e e) : BSTNode <T>
+r e move (T e l e me nt) : bool e a n
–i nOr de r (BSTNode <T> t r e e) : voi d
–pr e Or de r (BSTNode <T> t r e e) : voi d
–pos t Or de r (BSTNode <T> t r e e) : voi d
+r e s e t (i nt or de r Type) : i nt
+ge t Ne xt (i nt or de r Type) : T

BinarySearchTree<T extends Comparable<T>>

#I NORDER: i nt

#PREORDER: i nt

#POSTORDER: i nt

 implements

 uses

 Key:

c. 2N 1

d. 2N 1
4. How many ancestors does a node in the Nth level of a binary search tree have?
5. How many different binary trees can be made from three nodes that contain the

key values 1, 2, and 3?
6. How many different binary search trees can be made from three nodes that con-

tain the key values 1, 2, and 3?

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 599

600 | Chapter 8: Binary Search Trees

7. Draw all the possible binary trees (show their shapes) that have four leaves and
whose nonleaf nodes all have two children.

8. Answer the following questions about treeA.
a. What are the ancestors of node P?
b. What are the descendants of node K?
c. What is the maximum possible number of nodes at the level of node W?
d. What is the maximum possible number of nodes at the level of node N?
e. What is the order in which the nodes are visited by an inorder traversal?
f. What is the order in which the nodes are visited by a preorder traversal?
g. What is the order in which the nodes are visited by a postorder traversal?

23 30 61 64

59

11 6229

•treeB 56

47 69

22 49

R Y

B W

N

J P

•treeA Q

K T

D M

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 600

Exercises | 601

9. Answer the following questions about treeB.
a. What is the height of the tree?
b. Which nodes are on level 3?
c. Which levels have the maximum number of nodes that they could contain?
d. What is the maximum height of a binary search tree containing these nodes?

Draw such a tree.
e. What is the minimum height of a binary search tree containing these nodes?

Draw such a tree.
f. What is the order in which the nodes are visited by an inorder traversal?
g. What is the order in which the nodes are visited by a preorder traversal?
h. What is the order in which the nodes are visited by a postorder traversal?

10. True or False? A preorder traversal of a binary search tree processes the nodes in
the tree in the exact reverse order that a postorder traversal processes them.

8.2 The Logical Level
11. Describe the differences between our specifications of the Sorted List ADT and

the Binary Search Tree ADT.
12. Suppose you decide to change our Binary Search Tree ADT to not allow dupli-

cate elements. How would you have to change the ADT’s specification?
13. At least one of the operations specified in our Binary Search Tree interface is

redundant; that is, the functionality it provides is available through another
operation or a combination of other operations. Describe the redundant opera-
tion or operations and explain the reason for your choices.

8.3 The Application Level
14. Does the order in which golfers and their scores are entered into the golf appli-

cation have any effect on the outcome of the program? Explain your answer.

For Exercises 15, 16, 17, and 43 we assume the client is working with a tree of
Gol f e r objects. The Gol f e r class is included in the s uppor t package that is
included with the textbook code.

15. Write a client method that returns a count of the number of nodes in a binary
search tree that contain a value less than or equal to the argument value. The
signature of the method is
i nt c ount Le s s (Bi na r ySe a r c hTr e e <Gol f e r > t r e e , Gol f e r ma xVa l ue)

16. Write a client method that returns a reference to the information in the node
with the “smallest” value in a binary search tree. The signature of the method is
Gol f e r mi n(Bi na r ySe a r c hTr e e <Gol f e r > t r e e)

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 601

602 | Chapter 8: Binary Search Trees

17. Write a client method that returns a reference to the information in the node
with the “largest” value in a binary search tree. The signature of the method is
Gol f e r ma x(Bi na r ySe a r c hTr e e <Gol f e r > t r e e)

8.4 The Implementation Level: Basics
18. Describe the similarities and differences between our LLNode and BSTNode

classes.
19. What changes would you make to the BSTI nt e r f a c e and to the basic part of

the implementation if our binary search trees were bounded?
20. Extend the Binary Search Tree ADT to include a basic public method ge t Root

that returns a reference to the root of the tree. If the tree is empty, the method
should return nul l .

8.5 Iterative Versus Recursive Method Implementations
21. Use the Three-Question Method to verify the recursive version of the s i z e

method.
22. Extend the Binary Search Tree ADT to include a public method l e a f Count that

returns the number of leaf nodes in the tree.
23. Extend the Binary Search Tree ADT to include a public method s i ngl e Pa r e nt -

Count that returns the number of nodes in the tree that have only one child.
24. The Binary Search Tree ADT is extended to include a bool e a n method s i mi -

l a r Tr e e s that receives references to two binary trees and determines whether
the shapes of the trees are the same. (The nodes do not have to contain the same
values, but each node must have the same number of children.)
a. Write the declaration of the s i mi l a r Tr e e s method. Include adequate

comments.
b. Write the body of the s i mi l a r Tr e e s method.

25. We need a public method for our Binary Search Tree ADT that returns a refer-
ence to the information in the node with the “smallest” value in the tree. The
signature of the method is
publ i c T mi n()

a. Design an iterative version of the method.
b. Design a recursive version of the method.
c. Which approach is better? Explain.

26. We need a public method for our Binary Search Tree ADT that returns a reference
to the information in the node with the “largest” value in the tree. The signature
of the method is
publ i c T ma x()

a. Design an iterative version of the method.
b. Design a recursive version of the method.

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 602

Exercises | 603

c. Which approach is better? Explain.
27. We need a public method for our Binary Search Tree ADT that returns a count of

the number of nodes of the tree that contain a value equal to the argument
value. The signature of the method is
publ i c i nt c ount Le s s (T ma xVa l ue)

a. Design an iterative version of the method.
b. Design a recursive version of the method.
c. Which approach is better? Explain.

8.6 The Implementation Level: Remaining Operations
28. Show how we visualize treeA (page 600) after each of the following changes.

Also list the sequence of Bi na r ySe a r c hTr e e method calls, both public and pri-
vate, that would be made when executing the change. Use the original tree to
answer each part of this question.
a. Add node C.
b. Add node Z.
c. Add node Q.
d. Remove node M.
e. Remove node Q.
f. Remove node R.

29. Draw the binary search tree whose elements are inserted in the following order:
50 72 96 94 107 26 12 11 9 2 10 25 51 16 17 95

30. Draw the binary search tree whose elements are inserted in the following order:
50 72 96 50 107 26 50 72 9 2 10 2 50 107 17 95

Exercises 31–34 use treeB (page 600).
31. Trace the path that would be followed in searching for

a. A node containing 61.
b. A node containing 28.

32. Show how treeB would look after the removal of 29, 59, and 47.
33. Show how the (original) treeB would look after the insertion of nodes containing

63, 77, 76, 48, 9, and 10 (in that order).
34. Show how the (original) treeB would look after the insertion of nodes containing

56, 49, 22, 59, 59, and 59 (in that order).
35. The key of each node in a binary search tree is a short character string.

a. Show how such a tree would look after the following words were inserted (in
the order indicated):
“hippopotamus” “canary” “donkey” “deer” “zebra” “yak” “walrus” “vulture”
“penguin” “quail”

b. Show how the tree would look if the same words were inserted in this order:
“quail” “walrus” “donkey” “deer” “hippopotamus” “vulture” “yak” “penguin”
“zebra” “canary”

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 603

604 | Chapter 8: Binary Search Trees

c. Show how the tree would look if the same words were inserted in this order:
“zebra” “yak” “walrus” “vulture” “quail” “penguin” “hippopotamus” “donkey”
“deer” “canary”

Examine the following binary search tree and answer the questions in Exercises 36–39.
The numbers on the nodes are labels so that we can talk about the nodes; they are not
key values within the nodes.

36. If an element is to be inserted whose key value is less than the key value in node
1 but greater than the key value in node 5, where would it be inserted?

37. If node 1 is to be removed, the value in which node could be used to replace it?
38. 4 2 7 5 1 6 8 3 is a traversal of the tree in which order?
39. 1 2 4 5 7 3 6 8 is a traversal of the tree in which order?
40. Devise a set of test cases and use the test driver, developed in Section 8.6, to test

our Binary Search Tree ADT and show that the implementation
a. Correctly removes the root of a balanced tree containing the three elements

“A,” “B,” and “C.”
b. Correctly builds a skewed tree when the elements “A,” “B,” “C,” “D,” and “E”

are inserted in alphabetical order.
c. Correctly reports the “contains” value for “B,” “C,” and “D” in a tree created

by adding “C,” then “A,” and then “E.”
Remember that the “print tree” results can be used to help verify the “shape”
of the tree.

8.7 Comparing Binary Search Trees and Linear Lists
41. Suppose 100 integer elements are chosen at random and are inserted into a

sorted linked list and a binary search tree. Describe the efficiency of searching
for an element in each structure, in terms of Big-O.

42. Suppose 100 integer elements are inserted in order, from smallest to largest, into
a sorted linked list and a binary search tree. Describe the efficiency of searching
for an element in each structure, in terms of Big-O.

6

87

1

2 3

4 5

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 604

Exercises | 605

43. Write a client bool e a n method ma t c hi ngEl e me nt s that determines whether a
binary search tree of Gol f e r and a sorted list of Gol f e r contain the same val-
ues. The signature of the method is
bool e a n ma t c hi ngEl e me nt s (Bi na r ySe a r c hTr e e <Gol f e r > t r e e ,

Sor t e dLi s t <Gol f e r > l i s t)

44. In Chapter 7, we discussed how a linked list could be stored in an array of nodes
by using index values as “references” and managing our list of free nodes. We
can use these same techniques to store the nodes of a binary search tree in an
array, rather than using dynamic storage allocation. Free space is linked through
the left member.
a. Show how the array would look after these elements are inserted in this order:

Q L W F M R N S

Be sure to fill in all the spaces. If you do not know the contents of a space,
use “?”.

[0]

nodes .info .left .right

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

free

root

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 605

606 | Chapter 8: Binary Search Trees

b. Show the contents of the array after “B” has been inserted and “R” has been
removed.

8.8 Balancing a Binary Search Tree
45. Show the tree that would result from storing the nodes of the tree in Figure

8.19(a) in postorder order into an array, and then traversing the array in index
order while inserting the nodes into a new tree.

46. Using the Balance algorithm, show the tree that would be created if the follow-
ing values represented the inorder traversal of the original tree.
a. 3 6 9 15 17 19 29
b. 3 6 9 15 17 19 29 37
c. 1 2 3 3 3 3 3 3 3 24 37

[0]

nodes .info .left .right

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

free

root

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 606

Exercises | 607

47. Revise our BSTI nt e r f a c e interface and Bi na r ySe a r c hTr e e class to include
the ba l a nc e method. How can you test your revision?

8.9 A Nonlinked Representation of Binary Trees
48. Consider the following trees.

a. Which fulfill the binary search tree property?
b. Which are complete?
c. Which are full?

65

27

26

50

42

12 4

(a)

(b)

(c)

(d)

(e)

(f)

19

tree

46

14

916

tree tree

50

46

2

37

35

12 8

19 11

tree

50

48

45

49

44

40 41

46

4342

47

tree

32

5 8

50

40

20

tree

40

20

2

1 3

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 607

608 | Chapter 8: Binary Search Trees

49. The elements in a binary tree are to be stored in an array, as described in Section
8.9. Each element is a nonnegative i nt value.
a. Which value can you use as the dummy value, if the binary tree is not com-

plete?
b. Show the contents of the array, given the tree illustrated below.

44 60

tree
.numElements
.elements

tree

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

26

14 38

1 33 50

7 35

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 608

Exercises | 609

50. The elements in a complete binary tree are to be stored in an array, as described
in Section 8.9. Each element is a nonnegative i nt value. Show the contents of
the array, given the tree illustrated below.

tree
.numElements
.elements

tree[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

60

53 3

49 146 2

1648 25 40

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 609

610 | Chapter 8: Binary Search Trees

51. Given the array pictured below, draw the binary tree that can be created from its
elements. (The elements are arranged in the array as discussed in Section 8.9.)

52. A complete binary tree is stored in an array called t r e e Node s , which is indexed
from 0 to 99, as described in Section 8.9. The tree contains 85 elements. Mark
each of the following statements as true or false, and explain your answers.
a. t r e e Node s [42] is a leaf node.
b. t r e e Node s [41] has only one child.
c. The right child of t r e e Node s [12] is t r e e Node s [25] .
d. The subtree rooted at t r e e Node s [7] is a full binary tree with four levels.
e. The tree has seven levels that are full, and one additional level that contains

some elements.

8.10 Case Study: Word Frequency Generator
53. List all of the classes used directly by the Fr e que nc yLi s t program.
54. Describe the effect that each of the following changes would have on the Fr e -

que nc yLi s t program.
a. Remove the call to the us e De l i mi t e r method of the Sc a nne r class.
b. Remove the call to the t oLowe r Ca s e method of the St r i ng class.
c. Change the call to the t oLowe r Ca s e method to a call to the t oUppe r Ca s e

method.
d. In the else clause, change the statement wor dI nTr e e . i nc () to wor d-

ToTr y. i nc () .

tree.numElements
tree.elements

10

[0] 15

[1] 10

[2] 12

[3] 3

[4] 47

[5] 8

[6] 3

[7] 20

[8] 17

[9] 8

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 610

Exercises | 611

55. We want the word frequency generator program to output one additional piece
of information, the number of unique words in the input file.
a. Describe two different ways you could solve this problem—that is, two ways

to handle the additional words the program now must track.
b. Which approach do you believe is better? Why?
c. Implement the change.

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 611

13549_CH08_Da l e . qxd 2/ 7/ 11 6: 28 AM Pa ge 612

Knowledge Goals
You should be able to
■ describe a priority queue at the logical level and discuss alternative implementation approaches
■ define a heap and the operations reheap up and reheap down
■ describe the shape and order properties of a heap
■ compare the implementations of a priority queue using a heap, linked list, and binary search tree
■ define the following terms related to graphs:

■ directed graph ■ complete graph
■ undirected graph ■ weighted graph
■ vertex ■ adjacency matrix
■ edge ■ adjacency list
■ path

■ explain the difference between a depth-first search and a breadth-first search
■ describe the shortest-path algorithm for graphs

Skill Goals
You should be able to
■ implement a priority queue as a heap
■ implement a heap using an array-based nonlinked tree representation
■ implement a graph using an adjacency matrix to represent the edges
■ implement a graph using adjacency lists
■ implement the depth-first searching strategy for a graph using a stack for auxiliary storage
■ implement the breadth-first searching strategy for a graph using a queue for auxiliary storage
■ implement a shortest-paths operation for a graph, using a priority queue to access the edge with the minimum weight

Priority Queues,
Heaps, and Graphs

G

o

a

l

s

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 613

614 | Chapter 9: Priority Queues, Heaps, and Graphs

So far, we have examined several basic data structures in depth, discussing their uses and
operations, as well as one or more implementations of each. As we have constructed
these programmer-defined data structures out of the built-in types provided by our high-
level language, we have noted variations that adapt them to the needs of different appli-
cations. In Chapter 8 we looked at how a tree structure—the binary search tree—facilitates
searching data stored in a linked structure. In this chapter we see how other branching
structures are defined and implemented to support a variety of applications.

9.1 Priority Queues

A priority queue is an abstract data type with an interesting accessing protocol. Only
the highest-priority element can be accessed. “Highest priority” can mean different
things, depending on the application. Consider, for example, a small company with one
secretary. When employees leave work on the secretary’s desk, which jobs get done
first? The jobs are processed in order of the employee’s importance in the company; the
secretary completes the president’s work before starting the vice president’s, and does
the marketing director’s work before beginning the work of the staff programmers. The
priority of each job relates to the level of the employee who initiated it.

In a telephone answering system, calls are answered in the order that they are
received; that is, the highest-priority call is the one that has been waiting the longest.
Thus a FIFO queue can be considered a priority queue whose highest-priority element is
the one that has been queued the longest time.

Sometimes a printer shared by a number of computers is configured to always print
the smallest job in its queue first. This way, someone who is printing only a few pages
does not have to wait for large jobs to finish. For such printers, the priority of the jobs
relates to the size of the job: Shortest job first.

Priority queues are useful for any application that involves processing elements by
priority.

Logical Level
The operations defined for the Priority Queue ADT include enqueuing elements and
dequeuing elements, as well as testing for an empty or full priority queue. These opera-
tions are very similar to those specified for the FIFO queue discussed in Chapter 5. The
e nque ue operation adds a given element to the priority queue. The de que ue operation
removes the highest-priority element from the priority queue and returns it to the user.
The difference is that the Priority Queue ADT does not follow the “first in, first out”
approach; instead, it always returns the highest-priority element from the current set of
enqueued elements, no matter when it was enqueued. Here is the specification, as a Java
interface named Pr i Que ue I nt e r f a c e :

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 614

9.1 Priority Queues | 615

/ / -
/ / Pr i Que ue I nt e r f a c e . j a va by Da l e / J oyc e / We e ms Cha pt e r 9
/ /
/ / I nt e r f a c e f or a c l a s s t ha t i mpl e me nt s a pr i or i t y que ue .
/ / -

pa c ka ge c h09. pr i or i t yQue ue s ;

publ i c i nt e r f a c e Pr i Que ue I nt e r f a c e <T e xt e nds Compa r a bl e <T>>
{

bool e a n i s Empt y() ;
/ / Re t ur ns t r ue i f t hi s pr i or i t y que ue i s e mpt y; ot he r wi s e , r e t ur ns f a l s e .

bool e a n i s Ful l () ;
/ / Re t ur ns t r ue i f t hi s pr i or i t y que ue i s f ul l ; ot he r wi s e , r e t ur ns f a l s e .

voi d e nque ue (T e l e me nt) ;
/ / Thr ows Pr i QOve r f l owExc e pt i on i f t hi s pr i or i t y que ue i s f ul l ;
/ / ot he r wi s e , a dds e l e me nt t o t hi s pr i or i t y que ue .

T de que ue () ;
/ / Thr ows Pr i QUnde r f l owExc e pt i on i f t hi s pr i or i t y que ue i s empt y;
/ / ot he r wi s e , r e move s e l e me nt wi t h hi ghe s t pr i or i t y f r om t hi s
/ / pr i or i t y que ue a nd r e t ur ns i t .

}

A few notes on the specification follow:

• Our priority queues hold objects of class T e xt e nds Compa r a bl e <T>. This
allows us to compare elements and rank them by priority. We are also assured
that only elements that can be compared to each other can be inserted into a
specific priority queue.

• Our priority queues are bounded—at least, that is the implication of including an
i s Ful l method in the interface. We could, however, create an unbounded prior-
ity queue that implements this interface by having its i s Ful l method always
return f a l s e .

• Our priority queues can hold duplicate elements—that is, elements with the same
key value.

• Attempting to enqueue an element into a full priority queue, or dequeue an ele-
ment from an empty priority queue, causes an unchecked exception to be thrown.

We define the exceptions using the standard approach established in Chapter 3.
Here are the definitions of the two exception classes used by our priority queue class:

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 615

616 | Chapter 9: Priority Queues, Heaps, and Graphs

pa c ka ge c h09. pr i or i t yQue ue s ;

c l a s s Pr i QUnde r f l owExc e pt i on e xt e nds Runt i me Exc e pt i on
{

publ i c Pr i QUnde r f l owExc e pt i on()
{

s upe r () ;
}

publ i c Pr i QUnde r f l owExc e pt i on(St r i ng me s s a ge)
{

s upe r (me s s a ge) ;
}

}

pa c ka ge c h09. pr i or i t yQue ue s ;

c l a s s Pr i QOve r f l owExc e pt i on e xt e nds Runt i me Exc e pt i on
{

publ i c Pr i QOve r f l owExc e pt i on()
{

s upe r () ;
}

publ i c Pr i QOve r f l owExc e pt i on(St r i ng me s s a ge)
{

s upe r (me s s a ge) ;
}

}

Application Level
In discussing FIFO queue applications in Chapter 5, we said that the operating system of
a multiuser computer system may use job queues to save user requests in the order in
which they are made. Another way such requests may be handled is according to how
important the job request is. That is, a request from the head of the company might get
higher priority than a request from the junior programmer. Similarly, an interactive pro-
gram might be designated as a higher priority than a job to print out a report that isn’t
needed until the next day. To handle these requests efficiently, the operating system
may use a priority queue.

Priority queues are also useful in sorting data. Given a set of elements to sort, we
can enqueue the elements into a priority queue, and then dequeue them in sorted order
(from largest to smallest). We look more at how priority queues can be used in sorting
in Chapter 10.

Implementation Level
There are many ways to implement a priority queue. In any implementation, we want to
be able to access the element with the highest priority quickly and easily. Let’s briefly
consider some possible approaches.

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 616

9.2 Heaps | 617

1. “Heap” is also a synonym for the free store of a computer—the area of memory available for dynamically
allocated data. The heap as a data structure is not to be confused with this unrelated computer system concept
of the same name.

An Unsorted List
Enqueuing an element would be very easy with an unsorted list: Simply insert it at the
end of the list. Dequeuing, however, would require searching through the entire list to
find the largest element.

An Array- Based Sorted List
Dequeuing is very easy with this array-based approach: Simply return the last list ele-
ment and reduce the size of the list; de que ue is a O(1) operation. Enqueuing, however,
would be more expensive, because we have to find the place to enqueue the element.
This is an O(log2N) step if we use a binary search. Shifting the elements of the list to
make room for the new element is an O(N) step.

A Reference- Based Sorted List
Let’s assume the linked list is kept sorted from largest to smallest. Dequeuing with this
reference-based approach simply requires removing and returning the first list element,
an operation that takes only a few steps. But enqueuing again is an O(N) operation,
because we must search the list one element at a time to find the insertion location.

A Binary Search Tree
For this approach, the e nque ue operation is implemented as a standard binary search
tree i ns e r t operation. We know that operation requires O(log2N) steps on average.
Assuming we have access to the underlying implementation structure of the tree, we can
implement the de que ue operation by returning the rightmost tree element. We follow the
right subtree references down, maintaining a trailing reference as we go, until we reach a
node with an empty right subtree. The trailing reference allows us to “unlink” the node
from the tree. We then return the node. This is also a O(log2N) operation, on average.

The binary tree approach is the best—it requires, on average, only O(log2N) steps for
both e nque ue and de que ue . If the tree is skewed, however, the performance degener-
ates to O(N) steps for each operation. In Section 9.2 we present another approach, called
the heap, that guarantees O(log2N) steps, even in the worst case.

9.2 Heaps

A heap1 is an implementation of a priority
queue that uses a binary tree that satisfies two
properties, one concerning its shape and the
other concerning the order of its elements. The
shape property is simply stated: The tree must
be a complete binary tree (see Section 8.9). The
order property says that, for every node in the
tree, the value stored in that node is greater than or equal to the value in each of its
children.

Heap An implementation of a priority queue based on
a complete binary tree, each of whose elements con-
tains a value that is greater than or equal to the value
of each of its children

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 617

618 | Chapter 9: Priority Queues, Heaps, and Graphs

Figure 9.1 Two heaps containing the letters “A” through “J”

heap

J

H I

D G F A

B C E

(a)

heap

J

I G

H F E B

C A D

(b)

It might be more accurate to call this structure a “maximum heap,” because the root
node contains the maximum value in the structure. It is also possible to create a “mini-
mum heap,” each of whose elements contains a value that is less than or equal to the
value of each of its children. The term “heap” is used for both the abstract data type—the
priority queue implementation—and the underlying structure—the tree that fulfills the
shape and order properties.

Figure 9.1 shows two trees containing the letters “A” through “J” that fulfill both
the shape and order properties. The placement of the values differs in the two trees, but
the shape is the same: a complete binary tree of 10 elements. The two trees have the
same root node. A group of values can be stored in a binary tree in many ways and still
satisfy the order property of heaps. Because of the shape property, we know that all
heap trees with a given number of elements have the same shape. We also know,
because of the order property, that the root node always contains the largest value in
the tree. This helps us implement an efficient de que ue operation. Finally, note that
every subtree of a heap is also a heap.

Let’s say that we want to dequeue an element from the heap—in other words, we
want to remove and return the element with the largest value from the tree. The largest
element is in the root node, so we can easily remove it, as illustrated in Figure 9.2(a). Of
course, this leaves a hole in the root position. Because the heap’s tree must be complete,

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 618

9.2 Heaps | 619

Figure 9.2 The de que ue operation

(a)

(b)

(c)

heap

Still a heap

Still a heap

Remove J

H I

D G F A

B C E

J

heap

H I

D G F A

B C E

E

heap

H F

D G E A

B C

I

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 619

620 | Chapter 9: Priority Queues, Heaps, and Graphs

Figure 9.3 The r e he a pUp operation

heap

H I

D G F A

B EC

M

heap

K I

D H F A

B GEC

M

(a) Add K

(b) reheapUp

we decide to fill the hole with the bottom rightmost element from the tree; now the
structure satisfies the shape property (Figure 9.2b). The replacement value, however,
came from the bottom of the tree, where the smaller values are; as a consequence, the
tree no longer satisfies the order property of heaps.

This situation suggests one of the standard heap-support operations: Given a binary
tree that satisfies the heap properties, except that the root position is empty, insert an
element into the structure so that it again becomes a heap. This operation, called
r e he a pDown, involves starting at the root position and moving the “hole” (the empty
position) down, while moving tree elements up, until we find a position for the hole
where the element can be inserted (see Figure 9.2c). We say that we s wa p the hole with
one of its children. The r e he a pDown operation has the following specification:

reheapDown (element)

Effect: Adds element to the heap
Precondition: The root of the tree is empty

To dequeue an element from the heap, we remove and return the root element,
remove the bottom rightmost element, and then pass the bottom rightmost element to
r e he a pDown to restore the heap.

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 620

9.2 Heaps | 621

Figure 9.4 Heap values in an array representation

heap

H I

D G F A

B EC

J

heap.elements

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

J

H

I

D

G

F

A

B

C

E

Now suppose that we want to enqueue an element to the heap—where do we put it?
The shape property tells us that the tree must be complete, so we put the new element in
the next bottom rightmost place in the tree, as illustrated in Figure 9.3(a). Now the
shape property is satisfied, but the order property may be violated. This situation illus-
trates the need for another heap-support operation: Given a binary tree that satisfies the
heap properties, except that the last position is empty, insert a given element into the
structure so that it again becomes a heap. Instead of inserting the element in the next
bottom rightmost position in the tree, we imagine we have another hole there. We then
float the hole position up the tree, while moving tree elements down, until the hole is in
a position (see Figure 9.3b) that allows us to legally insert the element. This operation is
called r e he a pUp. Here is the specification:

reheapUp (element)

Effect: Adds element to the heap
Precondition: The last index position of the tree is empty

Heap Implementation
Figure 9.17 in the chapter summary section displays a UML class diagram showing our
priority queue classes and interfaces.

Although we have graphically depicted heaps as binary trees with nodes and links, it
would be very impractical to implement the heap operations using the usual linked tree
representation. The shape property of heaps tells us that the binary tree is complete, so we
know that it is never unbalanced. Thus we can easily store the tree in an array with
implicit links, as discussed in Section 8.9, without wasting any space. Figure 9.4 shows
how the values in a heap would be stored in this array representation. If a heap with
numEl e me nt s elements is implemented this way, the shape property says that the heap
elements are stored in numEl e me nt s consecutive slots in the array, with the root element
in the first slot (index 0) and the last leaf node in the slot with index numEl e me nt s - 1.

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 621

622 | Chapter 9: Priority Queues, Heaps, and Graphs

2. The API for the Ar r a yLi s t class is included at the beginning of Appendix E.

Recall that when we use this representation of a binary tree, the following relation-
ships hold for an element at position i nde x:

• If the element is not the root, its parent is at position (i nde x - 1) / 2 .
• If the element has a left child, the child is at position (i nde x * 2) + 1.
• If the element has a right child, the child is at position (i nde x * 2) + 2.

These relationships allow us to efficiently calculate the parent, left child, or right child
of any node. Also, because the tree is complete, we do not waste space using the array
representation. Time efficiency and space efficiency! We make use of these features in
our heap implementation.

Rather than directly use an array to implement our heaps we use the Java library’s
Ar r a yLi s t 2 class. This provides you with another example of Ar r a yLi s t use (in Chap-
ter 3 we saw how to use it to implement a stack), and allows us to create a generic heap
without needing to deal with the troublesome issues surrounding the use of generics and
arrays in Java. An Ar r a yLi s t is essentially just a wrapper around an array—therefore
the use of an Ar r a yLi s t does not cost much, if anything, in terms of efficiency. This is
especially true since we design our heap-based priority queue to be of a fixed capacity,
and therefore we prevent the use of the automatic, time-inefficient copying of the
underlying array that occurs when an Ar r a yLi s t object needs to be resized. Further-
more, we only ever a dd or r e move elements at the “end” of the Ar r a yLi s t —adding or
removing anywhere else would require costly element shifting.

Here is the beginning of our He a p class. As you can see, it implements
Pr i Que ue I nt e r f a c e . Because it implements a priority queue, we placed it in the
c h09. pr i or i t yQue ue s package. Also, note that the only constructor requires an inte-
ger argument, used to set the size of the underlying Ar r a yLi s t . The i s Empt y and
i s Ful l operations are trivial.

/ / -
/ / He a p. j a va by Da l e / J oyc e / We e ms Cha pt e r 9
/ /
/ / De f i ne s a l l c ons t r uc t s f or a he a p.
/ / The de que ue me t hod r e t ur ns t he l a r ge s t e l e me nt i n t he he a p.
/ / -

pa c ka ge c h09. pr i or i t yQue ue s ;

i mpor t j a va . ut i l . *;

publ i c c l a s s He a p<T e xt e nds Compa r a bl e <T>> i mpl e me nt s Pr i Que ue I nt e r f a c e <T>
{

pr i va t e Ar r a yLi s t <T> e l e me nt s ; / / pr i or i t y que ue e l e me nt s

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 622

9.2 Heaps | 623

pr i va t e i nt l a s t I nde x; / / i nde x of l a s t e l e me nt i n pr i or i t y que ue
pr i va t e i nt ma xI nde x; / / i nde x of l a s t pos i t i on i n Ar r a yLi s t

publ i c He a p(i nt ma xSi z e)
{

e l e me nt s = ne w Ar r a yLi s t <T>(ma xSi z e) ;
l a s t I nde x = - 1;
ma xI nde x = ma xSi z e - 1;

}

publ i c bool e a n i s Empt y()
/ / Re t ur ns t r ue i f t hi s pr i or i t y que ue i s e mpt y; ot he r wi s e , r e t ur ns f a l s e .
{

r e t ur n (l a s t I nde x == - 1) ;
}

publ i c bool e a n i s Ful l ()
/ / Re t ur ns t r ue i f t hi s pr i or i t y que ue i s f ul l ; ot he r wi s e , r e t ur ns f a l s e .
{

r e t ur n (l a s t I nde x == ma xI nde x) ;
}

The enqueue Method
We next look at the e nque ue method, which is the simpler of the two transformer
methods. If we assume the existence of a r e he a pUp helper method, as specified previ-
ously, the e nque ue method is

publ i c voi d e nque ue (T e l e me nt) t hr ows Pr i QOve r f l owExc e pt i on
/ / Thr ows Pr i QOve r f l owExc e pt i on i f t hi s pr i or i t y que ue i s f ul l ;
/ / o t he r wi s e , a dds e l e me nt t o t hi s pr i or i t y que ue .
{

i f (l a s t I nde x == ma xI nde x)
t hr ow ne w Pr i QOve r f l owExc e pt i on(" Pr i or i t y que ue i s f ul l ") ;

e l s e
{

l a s t I nde x++;
e l e me nt s . a dd(l a s t I nde x, e l e me nt) ;
r e he a pUp(e l e me nt) ;

}
}

If the heap is already full, we throw the appropriate exception. Otherwise, we increase
the l a s t I nde x value, add the element to the heap at that location, and call the

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 623

624 | Chapter 9: Priority Queues, Heaps, and Graphs

Figure 9.5 The r e he a pUp operation in action

B

D

H

C E

G

M

I

Kelement

heap

hole

F A

(a) Add K

B

D

H

C E G

M

I

Kelement

heap

hole
F A

(b) Move hole up

B

D

K

C E G

M

I

heap

F A

(d) Place element into hole

B

D

C E G

M

I

Kelement

heap

hole

F A

(c) Move hole up

H H

r e he a pUp method. Of course, the r e he a pUp method is doing all of the interesting work.
Let’s look at it more closely.

The r e he a pUp algorithm starts with a tree whose last node is empty; we continue to
call this empty node the “hole.” We swap the hole up the tree until it reaches a spot where
the e l e me nt argument can be placed into the hole without violating the order property
of the heap. While the hole moves up the tree, the elements it is replacing move down the
tree, filling in the previous location of the hole. This situation is illustrated in Figure 9.5.

The sequence of nodes between a leaf and the root of a heap can be viewed as a sorted
linked list. This is guaranteed by the heap’s order property. The r e he a pUp algorithm is
essentially inserting an element into this sorted linked list. As we progress from the leaf to

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 624

9.2 Heaps | 625

the root along this path, we compare the value of e l e me nt with the value in the hole’s
parent node. If the parent’s value is smaller, we cannot place e l e me nt into the current
hole, because the order property would be violated, so we move the hole up. Moving the
hole up really means copying the value of the hole’s parent into the hole’s location. Now
the parent’s location is available and it becomes the new hole. We repeat this process until
(1) the hole is the root of the heap or (2) e l e me nt ’s value is less than or equal to the value
in the hole’s parent node. In either case, we can now safely copy e l e me nt into the hole’s
position.

Here’s the algorithm:

This algorithm requires us to be able to find a given node’s parent quickly. This task
appears difficult, based on our experiences with references that can be traversed in only
one direction. But, as we saw earlier, it is very simple with our implicit link
implementation:

• If the element is not the root, its parent is at position (i nde x - 1) / 2 .

Here is the code for the r e he a pUp method:

pr i va t e voi d r e he a pUp(T e l e me nt)
/ / Cur r e nt l a s t I nde x pos i t i on i s " e mpt y" .
/ / I ns e r t s e l e me nt i nt o t he t r e e a nd e ns ur e s s ha pe a nd or de r pr ope r t i e s .
{

i nt hol e = l a s t I nde x;
whi l e ((hol e > 0) / / hol e i s not r oot a nd e l e me nt > hol e ' s pa r e nt

&&
(e l e me nt . c ompa r e To(e l e me nt s . ge t ((hol e - 1) / 2)) > 0))
{
/ / move hol e ' s pa r e nt down a nd t he n move hol e up
e l e me nt s . s e t (hol e , e l e me nt s . ge t ((hol e - 1) / 2)) ;
hol e = (hol e - 1) / 2 ;

}

e l e me nt s . s e t (hol e , e l e me nt) ; / / p l a c e e l e me nt i nt o f i na l hol e
}

reheapUp(element)
Set hole to lastIndex
while (the hole is not the root) AND (element > the hole’s parent)

Swap hole with hole’s parent
Set hole to element

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 625

626 | Chapter 9: Priority Queues, Heaps, and Graphs

This method takes advantage of the short-circuit nature of Java’s && operator. If the cur-
rent hol e is the root of the heap, then the first half of the while loop control expression

(hol e > 0)

is f a l s e , and the second half

(e l e me nt . c ompa r e To(e l e me nt s . ge t ((hol e - 1) / 2)) > 0))

is not evaluated. If it was evaluated in that case, it would cause an I nde xOut Of Bounds -
Exc e pt i on to be thrown.

The dequeue Method
Finally, we look at the de que ue method. As for e nque ue , if we assume the existence
of the helper method, in this case the r e he a pDown method, the de que ue method is
very simple:

publ i c T de que ue () t hr ows Pr i QUnde r f l owExc e pt i on
/ / Thr ows Pr i QUnde r f l owExc e pt i on i f t hi s pr i or i t y que ue i s e mpt y;
/ / ot he r wi s e , r e move s e l e me nt wi t h hi ghe s t pr i or i t y f r om t hi s
/ / pr i or i t y que ue a nd r e t ur ns i t .
{

T hol d; / / e l e me nt t o be de que ue d a nd r e t ur ne d
T t oMove ; / / e l e me nt t o move down he a p

i f (l a s t I nde x == - 1)
t hr ow ne w Pr i QUnde r f l owExc e pt i on(" Pr i or i t y que ue i s e mpt y") ;

e l s e
{

hol d = e l e me nt s . ge t (0) ; / / r e me mbe r e l e me nt t o be r e t ur ne d
t oMove = e l e me nt s . r e move (l a s t I nde x) ; / / e l e me nt t o r e he a p down
l a s t I nde x- - ; / / de c r e a s e pr i or i t y que ue s i z e
i f (l a s t I nde x ! = - 1)

r e he a pDown(t oMove) ; / / r e s t or e he a p pr ope r t i e s
r e t ur n hol d; / / r e t ur n l a r ge s t e l e me nt

}
}

If the heap is empty, we throw the appropriate exception. Otherwise, we first make a
copy of the root element (the maximum element in the tree), so that we can return it to
the client program when we are finished. We also make a copy of the element in the

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 626

9.2 Heaps | 627

“last” position and remove it from the Ar r a yLi s t . Recall that this is the element we use
to move into the hole vacated by the root element, so we call it the t oMove element. We
decrement the l a s t I nde x variable to reflect the new bounds of the heap and, assuming
the heap is not now empty, pass the t oMove element to the r e he a pDown method. The
only thing remaining to do is to return the saved value of the previous root element, the
hol d variable, to the client.

Let’s look at the r e he a pDown algorithm more closely. In many ways, it is similar to
the r e he a pUp algorithm. In both cases, we have a “hole” in the tree and an e l e me nt to
be placed into the tree so that the tree remains a heap. In both cases, we move the hole
through the tree (actually moving tree elements into the hole) until it reaches a location
where it can legally hold the e l e me nt . The r e he a pDown operation, however, is a more
complex operation because it is moving the hole down the tree instead of up the tree.
When we are moving down, we have more decisions to make.

When r e he a pDown is first called, the root of the tree can be considered a hole; that
position in the tree is available, because the de que ue method has already saved the
contents in its hol d variable. The job of r e he a pDown is to “move” the hole down the
tree until it reaches a spot where e l e me nt can replace it. See Figure 9.6.

Before we can move the hole, we need to know where to move it. It should move
either to its left child or to its right child, or it should stay where it is. Let’s assume the
existence of another helper method, called ne wHol e , that provides us this information.
The specification for ne wHol e is

pr i va t e i nt ne wHol e (i nt hol e , T e l e me nt)
/ / I f e i t he r c hi l d of hol e i s l a r ge r t ha n e l e me nt , r e t ur n t he i nde x
/ / of t he l a r ge r c hi l d; ot he r wi s e , r e t ur n t he i nde x of hol e .

Given the index of the hole, ne wHol e returns the index of the next location for the
hole. If ne wHol e returns the same index that is passed to it, we know the hole is at its
final location. The r e he a pDown algorithm repeatedly calls ne wHol e to find the next
index for the hole, and then moves the hole down to that location. It does this until
ne wHol e returns the same index that is passed to it. The existence of ne wHol e simpli-
fies r e he a pDown so that we can now create its code:

pr i va t e voi d r e he a pDown(T e l e me nt)
/ / Cur r e nt r oot pos i t i on i s " e mpt y" ;
/ / i ns e r t s e l e me nt i nt o t he t r e e a nd e ns ur e s s ha pe a nd or de r pr ope r t i e s .
{

i nt hol e = 0; / / c ur r e nt i nde x of hol e
i nt ne whol e ; / / i nde x whe r e hol e s houl d move t o

ne whol e = ne wHol e (hol e , e l e me nt) ; / / f i nd ne xt hol e
whi l e (ne whol e ! = hol e)

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 627

Figure 9.6 The r e he a pDown operation in action

B

B

D

H

C A

G

J

Eelement

heap

F A

(a) reheapDown (E);

B

D

C A D

G

J

Eelement

heap

F

A

(c) Move hole down

H

D B B

D

H

C A

G

J

Eelement

heap

F A

(b) Move hole down

D B

B

D

H

C A

G

Jheap

E

F

A

(d) Fill in final hole

D B
hole

hole

hole

{
e l e me nt s . s e t (hol e , e l e me nt s . ge t (ne whol e)) ; / / move e l e me nt up
hol e = ne whol e ; / / move hol e down
ne whol e = ne wHol e (hol e , e l e me nt) ; / / f i nd ne xt hol e

}
e l e me nt s . s e t (hol e , e l e me nt) ; / / f i l l i n t he f i na l hol e

}

Now the only thing left to do is create the ne wHol e method. This method does quite
a lot of work for us. Consider Figure 9.6 again. Given the initial configuration, ne wHol e
should return the index of the node containing J, the right child of the hole node; J is

628 | Chapter 9: Priority Queues, Heaps, and Graphs

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 628

9.2 Heaps | 629

larger than either the element (E) or the left child of the hole node (H). Thus ne wHol e
must compare three values (the values in e l e me nt , the left child of the hole node, and
the right child of the hole node) and return the index of the greatest value. Think about
that. It doesn’t seem very hard but it does become a little messy when described in algo-
rithmic form:

Of course, other approaches to this algorithm are possible, but they all require about
the same number of comparisons. One benefit of the preceding algorithm is that if e l e -
me nt is tied for being the largest of the three arguments, its index is returned. This
choice increases the efficiency of our program because in this situation we want the
hole to stop moving (r e he a pDown breaks out of its loop when the value of hol e is
returned). Trace the algorithm with various combinations of arguments to convince
yourself that it works.

Our algorithm applies only to the case when the hole node has two children. Of
course, the ne wHol e method must also handle the cases where the hole node is a leaf
and where the hole node has only one child. How can we tell if a node is a leaf or if it
has only one child? Easily, based on the fact that our tree is complete. First, we calcu-
late the expected position of the left child; if this position is greater than l a s t I nde x,
then the tree has no node at this position and the hole node is a leaf. (Remember, if it
doesn’t have a left child, it cannot have a right child because the tree is complete.) In
this case ne wHol e just returns the index of its hole parameter, because the hole cannot
move anymore. If the expected position of the left child is equal to l a s t I nde x, then the
node has only one child, and ne wHol e returns the index of that child if the child’s value
is larger than the value of e l e me nt .

Here is the code for ne wHol e . As you can see, it is a sequence of if-else statements
that capture the approaches described in the preceding paragraphs.

Greatest(left, right, element) returns index
if (left < right)

if (right <= element)
return element

else
return right

else
if (left <= element)

return element;
else

return left;

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 629

630 | Chapter 9: Priority Queues, Heaps, and Graphs

pr i va t e i nt ne wHol e (i nt hol e , T e l e me nt)
/ / I f e i t he r c hi l d of hol e i s l a r ge r t ha n e l e me nt , r e t ur n t he i nde x
/ / of t he l a r ge r c hi l d; ot he r wi s e , r e t ur n t he i nde x of hol e .
{

i nt l e f t = (hol e * 2) + 1;
i nt r i ght = (hol e * 2) + 2;

i f (l e f t > l a s t I nde x)
/ / hol e ha s no c hi l dr e n
r e t ur n hol e ;

e l s e
i f (l e f t == l a s t I nde x)

/ / hol e ha s l e f t c hi l d onl y
i f (e l e me nt . c ompa r e To(e l e me nt s . ge t (l e f t)) < 0)

/ / e l e me nt < l e f t c hi l d
r e t ur n l e f t ;

e l s e
/ / e l e me nt >= l e f t c hi l d
r e t ur n hol e ;

e l s e
/ / hol e ha s t wo c hi l dr e n
i f (e l e me nt s . ge t (l e f t) . c ompa r e To(e l e me nt s . ge t (r i ght)) < 0)

/ / l e f t c hi l d < r i ght c hi l d
i f (e l e me nt s . ge t (r i ght) . c ompa r e To(e l e me nt) <= 0)

/ / r i ght c hi l d <= e l e me nt
r e t ur n hol e ;

e l s e
/ / e l e me nt < r i ght c hi l d
r e t ur n r i ght ;

e l s e
/ / l e f t c hi l d >= r i ght c hi l d
i f (e l e me nt s . ge t (l e f t) . c ompa r e To(e l e me nt) <= 0)

/ / l e f t c hi l d <= e l e me nt
r e t ur n hol e ;

e l s e
/ / e l e me nt < l e f t c hi l d
r e t ur n l e f t ;

}

A Sample Use
To allow us to test our heap we include the following t oSt r i ng method within its
implementation:

publ i c St r i ng t oSt r i ng()
/ / Re t ur ns a s t r i ng of a l l t he he a p e l e me nt s .

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 630

9.2 Heaps | 631

{
St r i ng t he He a p = ne w St r i ng(" t he he a p i s : \ n") ;
f or (i nt i nde x = 0; i nde x <= l a s t I nde x; i nde x++)

t he He a p = t he He a p + i nde x + " . " + e l e me nt s . ge t (i nde x) + " \ n" ;
r e t ur n t he He a p;

}

This t oSt r i ng method simply returns a string indicating each index used in the heap,
along with the corresponding element contained at that index. It allows us to devise test
programs that create and manipulate heaps, and then displays their structure.

Suppose you enqueue the strings “J,” “A,” “M,” “B,” “L,” and “E” into a new heap.
How would you draw our logical view of the ensuing heap? Which values would be in
which Ar r a yLi s t slots? Suppose you dequeue an element and print it? Which element
would be printed, and how would the realigned heap appear?

To demonstrate how you might declare and use a heap in an application we provide
a short example of a program that performs those operations, and we show the output
from the program. Were your predictions correct?

/ / -
/ / Us e He a p. j a va by Da l e / J oyc e / We e ms Cha pt e r 9
/ /
/ / Exa mpl e of a s i mpl e us e of t he He a p.
/ / -

i mpor t c h09. pr i or i t yQue ue s . *;

publ i c c l a s s Us e He a p
{

publ i c s t a t i c voi d ma i n(St r i ng[] a r gs)
{

Pr i Que ue I nt e r f a c e <St r i ng> h = ne w He a p<St r i ng>(10) ;
h. e nque ue (" J ") ;
h. e nque ue (" A") ;
h. e nque ue (" M") ;
h. e nque ue (" B") ;
h. e nque ue (" L") ;
h. e nque ue (" E") ;

Sys t e m. out . pr i nt l n(h) ;

Sys t e m. out . pr i nt l n(h. de que ue () + " \ n") ;

Sys t e m. out . pr i nt l n(h) ;
}

}

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 631

L

E J

A B

M

L J

A B
E

Here is the output from the program, with our logical view of the heap, both before
and after dequeing the largest element, drawn to the right:

t he he a p i s :
0. M
1. L
2. J
3. A
4. B
5. E

M

t he he a p i s :
0. L
1. E
2. J
3. A
4. B

Heaps Versus Other Representations of Priority Queues
How efficient is the heap implementation of a priority queue? The constructor i s Empt y
and i s Ful l methods are trivial, so we examine only the operations to add and remove
elements. The e nque ue and de que ue methods both consist of a few basic operations
plus a call to a helper method. The r e he a pUp method creates a slot for a new element
by moving a hole up the tree, level by level; because a complete tree is of minimum
height, there are at most log2N levels above the leaf level (N = number of elements).
Thus e nque ue is an O(log2N) operation. The r e he a pDown method is invoked to fill the
hole in the root created by the de que ue method. This operation moves the hole down in
the tree, level by level. Again, there are at most log2N levels below the root, so de que ue
is also an O(log2N) operation.

How does this implementation compare to the others we mentioned in the previ-
ous section? If we implement the priority queue with a linked list, sorted from
largest to smallest priority, de que ue merely removes the first node from the list—an
O(1) operation. The e nque ue operation, by contrast, however, must search up to all
the elements in the list to find the appropriate insertion place; thus it is an O(N)
operation.

If the priority queue is implemented using a binary search tree, the efficiency of the
operations depends on the shape of the tree. When the tree is bushy, both de que ue and
e nque ue are O(log2N) operations. In the worst case, if the tree degenerates to a linked

632 | Chapter 9: Priority Queues, Heaps, and Graphs

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 632

9.3 Introduction to Graphs | 633

Table 9.1 Comparison of Priority Queue Implementations

enqueue dequeue

Heap O(log2N) O(log2N)
Linked list O(N) O(1)
Binary search tree

Balanced O(log2N) O(log2N)
Skewed O(N) O(N)

list, both e nque ue and de que ue have O(N) efficiency. Table 9.1 summarizes the effi-
ciency of the various implementations.

Overall, the binary search tree looks good, if it is balanced. It can, however, become
skewed, which reduces the efficiency of the operations. The heap, by contrast, is always
a tree of minimum height. It is not a good structure for accessing a randomly selected
element, but that is not one of the operations defined for priority queues. The accessing
protocol of a priority queue specifies that only the largest (or highest-priority) element
can be accessed. The linked list is a good option for this operation (assuming the list is
sorted from largest to smallest), but we may have to search the whole list to find the
place to add a new element. For the operations specified for priority queues, therefore,
the heap is an excellent choice.

9.3 Introduction to Graphs

Binary trees provide a very useful way of representing relationships in which a hier-
archy exists. That is, a node is pointed to by at most one other node (its parent), and
each node points to at most two other nodes (its children). If we remove the restric-
tion that each node can have at most two children, we have a general tree, as pic-
tured below.

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 633

634 | Chapter 9: Priority Queues, Heaps, and Graphs

If we also remove the restriction that each node
may have only one parent node, we have a data struc-
ture called a graph. A graph is made up of a set of
nodes called vertices and a set of lines called edges (or
arcs) that connect the nodes.

The set of edges describes relationships among the
vertices. For instance, if the vertices are the names of
cities, the edges that link the vertices could represent
roads between pairs of cities. Because the road that
runs between Houston and Austin also runs between
Austin and Houston, the edges in this graph have no
direction. This is called an undirected graph. If the
edges that link the vertices represent flights from one
city to another, however, the direction of each edge is

important. The existence of a flight (edge) from Houston to Austin does not assure the
existence of a flight from Austin to Houston. A graph whose edges are directed from
one vertex to another is called a directed graph, or digraph.

From a programmer’s perspective, vertices represent whatever is the subject of our
study: people, houses, cities, courses, and so on. Mathematically, however, vertices are
the abstract concept upon which graph theory rests. In fact, a great deal of formal
mathematics is associated with graphs. In other computing courses, you may analyze
graphs and prove theorems about them. This textbook introduces the graph as an
abstract data type, teaches some basic terminology, discusses how a graph might be
implemented, and describes how algorithms that manipulate graphs make use of stacks,
queues, and priority queues.

Formally, a graph G is defined as follows:

G = (V, E)

where

V(G) is a finite, nonempty set of vertices
E(G) is a set of edges (written as pairs of vertices)

The set of vertices is specified by listing them in set notation, within { } braces. The fol-
lowing set defines the four vertices of the graph pictured in Figure 9.7(a):

V(Graph1) = {A, B, C, D}

The set of edges is specified by listing a sequence of edges. Each edge is denoted by
writing the names of the two vertices it connects in parentheses, with a comma between
them. For instance, the vertices in Graph1 in Figure 9.7(a) are connected by the four
edges described below:

E(Graph1) = {(A, B), (A, D), (B, C), (B, D)}

Graph A data structure that consists of a set of
nodes and a set of edges that relate the nodes to each
other
Vertex A node in a graph
Edge (arc) A pair of vertices representing a connection
between two nodes in a graph
Undirected graph A graph in which the edges have no
direction
Directed graph (digraph) A graph in which each edge
is directed from one vertex to another (or the same)
vertex

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 634

9.3 Introduction to Graphs | 635

Figure 9.7 Some examples of graphs

B

C

1

11 5 7

9

3

DA

(a) Graph1 is an undirected graph.

(b) Graph2 is a directed graph.

(c) Graph3 is a directed graph.

V(Graph1) = {A, B, C, D}
E(Graph1) = {(A, B), (A, D), (B, C), (B, D)}

V(Graph3) = {A, B, C, D, E, F, G, H, I, J}
E(Graph3) = {(G, D), (G, I), (D, B), (D, F), (I, H), (I, J), (B, A), (B, C), (F, E)}

V(Graph2) = {1, 3, 5, 7, 9, 11}
E(Graph2) = {(1, 3), (3, 1), (5, 7), (5, 9), (9, 11), (9, 9), (11, 1)}

A C E

G

D I

B F H J

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 635

636 | Chapter 9: Priority Queues, Heaps, and Graphs

Because Graph1 is an undirected graph, the order of the vertices in each edge is unim-
portant. The set of edges in Graph1 can also be described as follows:

E(Graph1) = {(B, A), (D, A), (C, B), (D, B)}

If the graph is a digraph, the direction of the edge is indicated by which vertex is
listed first. For instance, in Figure 9.7(b), the edge (5, 7) represents a link from vertex 5
to vertex 7. There is no corresponding edge (7, 5) in Graph2. In pictures of digraphs, the
arrows indicate the direction of the relationship.

We do not have duplicate vertices or edges in a graph. This point is implied in the
definition, because sets do not have repeated elements.

If two vertices in a graph are connected by an edge,
they are said to be adjacent. In Graph1 (Figure 9.7a),
vertices A and B are adjacent, but vertices A and C are
not. If the vertices are connected by a directed edge,
then the first vertex is said to be adjacent to the second,
and the second vertex is said to be adjacent from the
first. For example, in Graph2 (in Figure 9.7b), vertex 5 is
adjacent to vertices 7 and 9, while vertex 1 is adjacent
from vertices 3 and 11.

The picture of Graph3 in Figure 9.7(c) may look
familiar; it is the tree we looked at earlier in connection

with the nonlinked representation of a binary tree. A tree is a special case of a directed
graph in which each vertex may only be adjacent from one other vertex (its parent
node) and one vertex (the root) is not adjacent from any other vertex.

A path from one vertex to another consists of a sequence of vertices that connect
them. For a path to exist, there must be an uninterrupted sequence of edges from the
first vertex, through any number of vertices, to the second vertex. For example, in
Graph2, there is a path from vertex 5 to vertex 3, but not from vertex 3 to vertex 5. In a
tree, such as Graph3 (Figure 9.7c), there is a unique path from the root to every other
node in the tree.

A complete graph is one in which every vertex is adjacent to every other vertex.
Figure 9.8 shows two complete graphs. If there are N vertices, there are N * (N 1)
edges in a complete directed graph and N * (N 1) / 2 edges in a complete undirected
graph.

A weighted graph is a graph in which each edge carries a value. Weighted graphs
can be used to represent applications in which the value of the connection between the
vertices is important, not just the existence of a connection. For instance, in the
weighted graph pictured in Figure 9.9, the vertices represent cities and the edges indi-
cate the Air Busters Airlines flights that connect the cities. The weights attached to the
edges represent the air distances between pairs of cities.

To see whether we can get from Denver to Washington, we look for a path between
them. If the total travel distance is determined by the sum of the distances between each
pair of cities along the way, we can calculate the travel distance by adding the weights
attached to the edges that constitute the path between them. There may be multiple

Adjacent vertices Two vertices in a graph that are
connected by an edge
Path A sequence of vertices that connects two nodes
in a graph
Complete graph A graph in which every vertex is
directly connected to every other vertex
Weighted graph A graph in which each edge carries a
value

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 636

9.4 Formal Specification of a Graph ADT | 637

Figure 9.8 Two complete graphs

A B

(a) Complete directed graph. (b) Complete undirected graph.

C D ML

K N

J

Figure 9.9 A weighted graph

200

200
1300

1400

6
0
0

6
0
0

7

8

0

10
00

10
00

160 800
800

9
0
0

Austin

Dallas

Denver

Chicago
Houston

Atlanta

Washington

paths between two vertices. Later in this chapter, we talk about a way to find the short-
est path between two vertices.

9.4 Formal Specification of a Graph ADT

We have described a graph at the abstract level as a set of vertices and a set of edges that
connect some or all of the vertices to one another. What kind of operations are defined on
a graph? In this chapter we specify and implement a small set of useful graph operations.
Many other operations on graphs can be defined as well; we have chosen operations that
are useful in the graph applications described later in the chapter.

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 637

638 | Chapter 9: Priority Queues, Heaps, and Graphs

Our specification for the Graph ADT includes 11 public methods. As expected, it
includes methods to check whether the graph is empty or full, and methods to add ver-
tices and edges. Next we describe the remaining, more unusual methods.

The ha s Ve r t e x method can be used to check whether the argument object is used
as a vertex in the graph. This issue is important because many of the other methods that
accept a vertex as an argument assume, as a precondition, that the given vertex exists
within the graph. Equivalence of vertices is determined using the vertices’ e qua l s
method—so if the vertex class has overwritten the Obj e c t class e qua l s method, then
equality will be as defined within the vertex class; otherwise it is defined using the
default approach of comparing references.

The we i ght I s method can be used to determine whether a given edge is in the
graph. It returns the weight of the edge between two given vertices; if there is no such
edge, it returns a special value indicating that fact. The special value could vary from
one application to another. For example, the value 1 could be used for a graph
whose edges represent distances, because there is no such thing as a negative distance.
The special value for a specific application could be passed to the Graph constructor.

The most interesting method is ge t ToVe r t i c e s , which returns a queue of vertex
objects. The idea is that an application may need to know which vertices are adjacent to
a given vertex. This method returns the collection of such vertices as a queue. The
application can then dequeue the vertices one at a time, as needed. The return value of
the method is of “type” Que ue I nt e r f a c e . The implementation programmer can choose
to use any queue class that implements this interface.

Another approach to solving the “get to vertices” problem is to have the method
return a Java I t e r a t or object. We discussed iterators in the “Java Collections Frame-
work List” feature in Chapter 6.

Often, when an application uses a graph, it must traverse the graph—that is, it must
visit the vertices of the graph and perform some operation at each vertex. Because so
many paths through a graph are possible, it is not unusual for the traversal algorithm to
attempt to visit a vertex more than once. In such cases it is usually important for the
application to “know” that it has previously visited the vertex. To facilitate this recogni-
tion, our interface includes several methods related to marking vertices as visited. The
ma r kVe r t e x and i s Ma r ke d methods are used to mark vertices and check for marks,
respectively. The c l e a r Ma r ks method clears all of the marks throughout the graph; it is
used to prepare for a new traversal. Finally, the ge t Unma r ke d method returns an
unmarked vertex. This ability is useful for beginning a traversal or for continuing a tra-
versal, when the application is not sure it has visited every vertex.

/ / -
/ / We i ght e dGr a phI nt e r f a c e . j a va by Da l e / J oyc e / We e ms Cha pt e r 9
/ /
/ / I nt e r f a c e f or a c l a s s t ha t i mpl e me nt s a di r e c t e d gr a ph wi t h we i ght e d e dge s .
/ / Ve r t i c e s a r e obj e c t s of c l a s s T a nd c a n be ma r ke d a s ha vi ng be e n vi s i t e d.
/ / Edge we i ght s a r e i nt e ge r s .
/ / Equi va l e nc e of ve r t i c e s i s de t e r mi ne d by t he ve r t i c e s ' e qua l s me t hod.
/ /

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 638

9.4 Formal Specification of a Graph ADT | 639

/ / Ge ne r a l pr e c ondi t i on: Exc e pt f or t he a ddVe r t e x a nd ha s Ve r t e x me t hods ,
/ / a ny ve r t e x pa s s e d a s a n a r gume nt t o a me t hod i s i n t hi s gr a ph.
/ / -

pa c ka ge c h09. gr a phs ;

i mpor t c h05. que ue s . *;

publ i c i nt e r f a c e We i ght e dGr a phI nt e r f a c e <T>
{

bool e a n i s Empt y() ;
/ / Re t ur ns t r ue i f t hi s gr a ph i s e mpt y; ot he r wi s e , r e t ur ns f a l s e .

bool e a n i s Ful l () ;
/ / Re t ur ns t r ue i f t hi s gr a ph i s f ul l ; ot he r wi s e , r e t ur ns f a l s e .

voi d a ddVe r t e x(T ve r t e x) ;
/ / Pr e c ondi t i ons : Thi s gr a ph i s not f ul l .
/ / Ve r t e x i s not a l r e a dy i n t hi s gr a ph.
/ / Ve r t e x i s not nul l .
/ /
/ / Adds ve r t e x t o t hi s gr a ph.

bool e a n ha s Ve r t e x(T ve r t e x) ;
/ / Re t ur ns t r ue i f t hi s gr a ph c ont a i ns ve r t ex; ot he r wi s e , r e t ur ns f a l s e .

voi d a ddEdge (T f r omVe r t e x, T t oVe r t e x, i nt we i ght) ;
/ / Adds a n e dge wi t h t he s pe c i f i e d we i ght f r om f r omVe r t e x t o t oVe r t e x.

i nt we i ght I s (T f r omVe r t e x, T t oVe r t e x) ;
/ / I f e dge f r om f r omVe r t e x t o t oVe r t e x e xi s t s , r e t ur ns t he we i ght of e dge ;
/ / ot he r wi s e , r e t ur ns a s pe c i a l " nul l - e dge " va l ue .

Unbounde dQue ue I nt e r f a c e <T> ge t ToVe r t i c e s (T ve r t e x) ;
/ / Re t ur ns a que ue of t he ve r t i c e s t ha t a r e a dj a c e nt f r om ve r t e x.

voi d c l e a r Ma r ks () ;
/ / Se t s ma r ks f or a l l ve r t i c e s t o f a l s e .

voi d ma r kVe r t e x(T ve r t e x) ;
/ / Se t s ma r k f or ve r t e x t o t r ue .

bool e a n i s Ma r ke d(T ve r t e x) ;
/ / Re t ur ns t r ue i f ve r t e x i s ma r ke d; ot he r wi s e , r e t ur ns f a l s e .

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 639

640 | Chapter 9: Priority Queues, Heaps, and Graphs

T ge t Unma r ke d() ;
/ / Re t ur ns a n unma r ke d ve r t e x i f a ny e xi s t ; ot he r wi s e , r e t ur ns nul l .

}

9.5 Implementations of Graphs

Array- Based Implementation
Figure 9.18 in the chapter summary section displays a UML class diagram representing
our array-based graph implementation class.

A simple way to represent V(graph), the vertices in the graph, is to use an array
where the array elements are the vertices. For example, if the vertices represent city
names, the array might hold strings. A simple way to represent E(graph), the edges in a

graph, is to use an adjacency matrix, a two-
dimensional array of edge values (weights), where the
indexes of a weight correspond to the vertices con-
nected by the edge. Thus a graph consists of an integer
variable numVe r t i c e s , a one-dimensional array ve r -
t i c e s , and a two-dimensional array e dge s . Figure

9.10 depicts the implementation of the graph of Air Busters flights between seven cities
shown in Figure 9.9. For simplicity, we omit the additional bool e a n data needed to
mark vertices as “visited” during a traversal from the figure. Although the city names in
Figure 9.10 are in alphabetical order, there is no requirement that the elements in this
array be sorted.

At any time, within this representation of a graph,

• numVe r t i c e s is the number of vertices in the graph.
• V(graph) is contained in ve r t i c e s [0] t o ve r t i c e s [numVe r t i c e s - 1] .
• E(graph) is contained in the square array e dge s [0] [0] t o e dge s [numVe r t i c e s

- 1] [numVe r t i c e s - 1] .

The names of the cities are contained in gr a ph. ve r t i c e s . The weight of each edge
in gr a ph. e dge s represents the air distance between two cities that are connected by a
flight. For example, the value in gr a ph. e dge s [1] [3] tells us that there is a direct
flight between Austin and Dallas, and that the air distance is 200 miles. A NULL_EDGE
value (0) in gr a ph. e dge s [1] [6] tells us that the airline has no direct flights between
Austin and Washington. Because this is a weighted graph in which the weights are air
distances, we use i nt for the edge value type. If it were not a weighted graph, the edge
value type would be bool e a n, and each position in the adjacency matrix would be
t r ue if an edge exists between the pair of vertices, and f a l s e if no edge exists.

Here is the beginning of the definition of class We i ght e dGr a ph. For simplicity, we
assume that the edge value type is i nt and that a null edge is indicated by a 0 value.

Adjacency matrix For a graph with N nodes, an N by
N table that shows the existence (and weights) of all
edges in the graph

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 640

9.5 Implementations of Graphs | 641

Figure 9.10 Matrix representation of graph of flight connections between cities

graph
.numVertices 7
.vertices .edges

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[0] [1] [2] [3] [4]

(Array positions marked “• ” are undefined)

[5] [6] [7] [8] [9]

[0]

[1]

[2]

[3]

[4]

[5]

[6]

0

0

0

0

1400

800

600

0

0

0

200

0

0

0

0

0

0

900

1000

0

0

0

200

0

0

0

0

1300

0

0

1000

780

0

0

0

800

160

0

0

0

0

0

600

0

0

0

0

0

0

[7]

[8]

[9]

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

"Atlanta "

"Austin "

"Chicago "

"Dallas "

"Denver "

"Houston "

"Washington"

/ / -
/ / We i ght e dGr a ph. j a va by Da l e / J oyc e / We e ms Cha pt e r 9
/ /
/ / I mpl e me nt s a di r e c t e d gr a ph wi t h we i ght e d e dge s .
/ / Ve r t i c e s a r e obj e c t s of c l a s s T a nd c a n be ma r ke d a s ha vi ng be e n vi s i t e d.
/ / Edge we i ght s a r e i nt e ge r s .
/ / Equi va l e nc e of ve r t i c e s i s de t e r mi ne d by t he ve r t i c e s ' e qua l s me t hod.
/ /
/ / Ge ne r a l pr e c ondi t i on: Exc e pt f or t he a ddVe r t e x a nd ha s Ve r t e x me t hods ,
/ / a ny ve r t e x pa s s e d a s a n a r gume nt t o a me t hod i s i n t hi s gr a ph.
/ / -

pa c ka ge c h09. gr a phs ;

i mpor t c h05. que ue s . *;

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 641

642 | Chapter 9: Priority Queues, Heaps, and Graphs

3. An unchecked cast warning is generated because the compiler cannot ensure that the array contains objects
of class T—the warning can safely be ignored.

publ i c c l a s s We i ght e dGr a ph<T> i mpl e me nt s We i ght e dGr a phI nt e r f a c e <T>
{

publ i c s t a t i c f i na l i nt NULL_EDGE = 0;
pr i va t e s t a t i c f i na l i nt DEFCAP = 50; / / de f a ul t c a pa c i t y
pr i va t e i nt numVe r t i c e s ;
pr i va t e i nt ma xVe r t i c e s ;
pr i va t e T[] ve r t i c e s ;
pr i va t e i nt [] [] e dge s ;
pr i va t e bool e a n[] ma r ks ; / / ma r ks [i] i s ma r k f or ve r t i c e s [i]

publ i c We i ght e dGr a ph()
/ / I ns t a nt i a t e s a gr a ph wi t h c a pa c i t y DEFCAP ve r t i c e s .
{

numVe r t i c e s = 0;
ma xVe r t i c e s = DEFCAP;
ve r t i c e s = (T[]) ne w Obj e c t [DEFCAP] ; 3

ma r ks = ne w bool e a n[DEFCAP] ;
e dge s = ne w i nt [DEFCAP] [DEFCAP] ;

}

publ i c We i ght e dGr a ph(i nt ma xV)
/ / I ns t a nt i a t e s a gr a ph wi t h c a pa c i t y ma xV.
{

numVe r t i c e s = 0;
ma xVe r t i c e s = ma xV;
ve r t i c e s = (T[]) ne w Obj e c t [ma xV] ; 3

ma r ks = ne w bool e a n[ma xV] ;
e dge s = ne w i nt [ma xV] [ma xV] ;

}
. . .
}

The class constructors have to allocate the space for ve r t i c e s and ma r ks (the
bool e a n array indicating whether a vertex has been marked). The default constructor
sets up space for DEFCAP = 50 ve r t i c e s and ma r ks . The parameterized constructor lets
the user specify the maximum number of vertices.

The a ddVe r t e x operation puts a vertex into the next free space in the array of ver-
tices. Because the new vertex has no edges defined yet, we also initialize the appropriate
row and column of edges to contain NULL_EDGE (0 in this case).

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 642

9.5 Implementations of Graphs | 643

addEdge(fromVertex, toVertex, weight)
Set fromIndex to index of fromVertex in V(graph)
Set toIndex to index of toVertex in V(graph)
Set edges[fromIndex, toIndex] to weight

publ i c voi d a ddVe r t e x(T ve r t e x)
/ / Pr e c ondi t i ons : Thi s gr a ph i s not f ul l .
/ / Ve r t e x i s not a l r e a dy i n t hi s gr a ph.
/ / Ve r t e x i s not nul l .
/ /
/ / Adds ve r t e x t o t hi s gr a ph.
{

ve r t i c e s [numVe r t i c e s] = ve r t e x;
f or (i nt i nde x = 0; i nde x < numVe r t i c e s ; i nde x++)
{

e dge s [numVe r t i c e s] [i nde x] = NULL_EDGE;
e dge s [i nde x] [numVe r t i c e s] = NULL_EDGE;

}
numVe r t i c e s ++;

}

To add an edge to the graph, we must first locate the f r omVe r t e x and t oVe r t e x
that define the edge we want to add. These values become the arguments to a ddEdge
and are of the generic T class. Of course, the client really passes references to the vertex
objects, because that is how we manipulate objects in Java. We are implementing our
graphs “by reference” so this strategy should not pose a problem for the client. To index
the correct matrix slot, we need the index in the ve r t i c e s array that corresponds to
each vertex. Once we know the indexes, it is a simple matter to set the weight of the
edge in the matrix. Here is the algorithm:

To find the index of each vertex, let’s write a search method that receives a vertex
and returns its location (index) in ve r t i c e s . Based on the general precondition stated
in the opening comment of the We i ght e dGr a ph class, we can assume that the
f r omVe r t e x and t oVe r t e x arguments passed to a ddEdge are already in V(graph). This
assumption simplifies the search method, which we code as helper method i nde xI s .
Here is the code for i nde xI s and a ddEdge :

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 643

644 | Chapter 9: Priority Queues, Heaps, and Graphs

pr i va t e i nt i nde xI s (T ve r t e x)
/ / Re t ur ns t he i nde x of ve r t e x i n ve r t i c e s .
{

i nt i nde x = 0;
whi l e (! ve r t e x. e qua l s (ve r t i c e s [i nde x]))

i nde x++;
r e t ur n i nde x;

}

publ i c voi d a ddEdge (T f r omVe r t e x, T t oVe r t e x, i nt we i ght)
/ / Adds a n e dge wi t h t he s pe c i f i e d we i ght f r om f r omVe r t e x t o t oVe r t e x.
{

i nt r ow;
i nt c ol umn;

r ow = i nde xI s (f r omVe r t e x) ;
c ol umn = i nde xI s (t oVe r t e x) ;
e dge s [r ow] [c ol umn] = we i ght ;

}

The we i ght I s operation is the mirror image of a ddEdge .

publ i c i nt we i ght I s (T f r omVe r t e x, T t oVe r t e x)
/ / I f e dge f r om f r omVe r t e x t o t oVe r t e x e xi s t s , r e t ur ns t he
/ / we i ght of e dge ; ot he r wi s e , r e t ur ns a s pe c i a l " nul l - e dge " va l ue .
{

i nt r ow;
i nt c ol umn;

r ow = i nde xI s (f r omVe r t e x) ;
c ol umn = i nde xI s (t oVe r t e x) ;
r e t ur n e dge s [r ow] [c ol umn] ;

}

The last graph operation that we address is ge t ToVe r t i c e s . This method receives a
vertex as an argument, and it returns a queue of vertices that are adjacent from the des-
ignated vertex. That is, it returns a queue of all the vertices that we can get to from this
vertex in one step. Using an adjacency matrix to represent the edges, it is a simple mat-
ter to determine the nodes to which the vertex is adjacent. We merely loop through the
appropriate row in e dge s ; whenever a value is found that is not NULL_EDGE, we add
another vertex to the queue.

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 644

9.5 Implementations of Graphs | 645

publ i c Unbounde dQue ue I nt e r f a c e <T> ge t ToVe r t i c e s (T ve r t e x)
/ / Re t ur ns a que ue of t he ve r t i c e s t ha t a r e a dj a c e nt f r om ve r t e x.
{

Unbounde dQue ue I nt e r f a c e <T> a dj Ve r t i c e s = ne w Li nke dUnbndQue ue <T>() ;
i nt f r omI nde x;
i nt t oI nde x;
f r omI nde x = i nde xI s (ve r t e x) ;
f or (t oI nde x = 0; t oI nde x < numVe r t i c e s ; t oI nde x++)

i f (e dge s [f r omI nde x] [t oI nde x] ! = NULL_EDGE)
a dj Ve r t i c e s . e nque ue (ve r t i c e s [t oI nde x]) ;

r e t ur n a dj Ve r t i c e s ;
}

We leave writing i s Ful l , i s Empt y, ha s Ve r t e x, and the marking operations (c l e a r -
Ma r ks , ma r kVe r t e x, i s Ma r ke d, and ge t Unma r ke d) for you as exercises.

Linked Implementation
The advantages of representing the edges in a graph with an adjacency matrix are
twofold: speed and simplicity. Given the indexes of two vertices, determining the exis-
tence (or the weight) of an edge between them is an O(1) operation. The problem with
adjacency matrices is that their use of space is an O(N2) operation, where N is the maxi-
mum number of vertices in the graph. If the maximum number of vertices is large, adja-
cency matrices may waste a lot of space. The space used could be minimized by
dynamically allocating larger arrays as needed, but that approach can be inefficient in
terms of time. We can save space by allocating memory as we need it at run time, using
linked structures. Adjacency lists are linked
lists, one list per vertex, that identify the ver-
tices to which each vertex is connected. They
can be implemented in several different ways.
Figure 9.11 shows two different adjacency list
representations of the graph in Figure 9.9.

In Figure 9.11(a), the vertices are stored in an array. Each component of this array
contains a reference to a linked list of edge nodes. Each node in these linked lists con-
tains an index number, a weight, and a reference to the next node in the adjacency list.
Let’s look at the adjacency list for Denver. The first node in the list indicates that there
is a 1400-mile flight from Denver to Atlanta (the vertex whose index is 0) and a 1000-
mile flight from Denver to Chicago (the vertex whose index is 2).

No arrays are used in the implementation illustrated in Figure 9.11(b). Instead, the
list of vertices is implemented as a linked list. Now each node in the adjacency list con-
tains a reference to the vertex information rather than the index of the vertex. Because
Figure 9.11(b) includes so many of these references, we have used text to describe the
vertex that each reference designates rather than draw them as arrows.

Adjacency list A linked list that identifies all the ver-
tices to which a particular vertex is connected; each
vertex has its own adjacency list

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 645

646 | Chapter 9: Priority Queues, Heaps, and Graphs

Figure 9.11 Adjacency list representation of graphs

graph

edge nodes

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

"Atlanta "

"Austin "

"Chicago "

"Dallas "

"Denver "

"Houston "

"Washington"

8005

2003

10004

2001

14000

8000

6000

6006

1605

9002 7804

10002

13003

Index of
adjacent vertex Weight

Reference
to next

edge node

(a)

(continues)

We leave the implementation of the Gr a ph class methods using the linked approach
as a programming exercise.

9.6 Graph Applications

The graph specification given in Section 9.4 included only the most basic operations;
it did not include any traversal operations. As you might imagine, we can traverse a
graph in many different orders. As a result, we treat traversal as a graph application
rather than an innate operation. The basic operations given in our specification allow us
to implement different traversals independent of how the graph itself is implemented.
Our graph applications can also be considered graph-related algorithms.

In Chapter 8, we discussed the postorder tree traversal, which goes to the deepest
level of the tree and works up. This strategy of going down a branch to its deepest point
and moving up is called a depth-first strategy. Another systematic way to visit each
vertex in a tree is to visit each vertex on level 0 (the root), then each vertex on level 1,
then each vertex on level 2, and so on. Visiting each vertex by level in this way is
called a breadth-first strategy. With graphs, both depth-first and breadth-first strategies
are useful. We discuss algorithms for employing both strategies within the context of
determining whether two cities are connected in our airline example.

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 646

9.6 Graph Applications | 647

Figure 9.11 (continued)

graph edge nodes

800

200

1000

200

1400

800

600

Reference
to Houston

node

Reference
to Dallas

node

Reference
to Denver

node

Reference
to Austin

node

Reference
to Atlanta

node

Reference
to Atlanta

node

Reference
to Atlanta

node

Reference to
vertex node Weight

Reference
to next

edge node

vertices
(header nodes)

Vertex
info

Pointer
to next

vertex node

Pointer
to first

edge node

"Austin "

"Chicago "

"Dallas "

"Atlanta "

"Denver "

"Houston "

"Washington"

600

160

900

1000

1300

Reference
to Wash.

node

Reference
to Houston

node

Reference
to Chicago

node

Reference
to Chicago

node

Reference
to Dallas

node

780
Reference
to Denver

node

(b)

Depth- First Searching
One question we can answer with the graph in Figure 9.9 is “Can I get from city X to
city Y on my favorite airline?” This is equivalent to asking, “Does a path exist in the
graph from vertex X to vertex Y?” Using a depth-first strategy, let’s develop an algo-
rithm IsPath that determines whether a path exists from s t a r t Ve r t e x to e ndVe r t e x.

We need a systematic way to keep track of the cities as we investigate them. With a
depth-first search, we examine the first vertex that is adjacent from s t a r t Ve r t e x; if it

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 647

648 | Chapter 9: Priority Queues, Heaps, and Graphs

Figure 9.12 Using a stack to store the routes

(a) (b) (c) (d)

Austin

Stack Dallas

Houston

Stack

Dallas

Atlanta

Stack

Dallas

Washington

Stack

IsPath (startVertex, endVertex): returns boolean
Set found to false
stack.push(startVertex)
do

vertex = stack.top() Caution:
stack.pop() Contains error
if vertex = endVertex

Set found to true
else

Push all adjacent vertices onto stack
while !stack.isEmpty() AND !found
return found

Caution:
Contains error

is e ndVe r t e x, the search is over. Otherwise, we examine all of the vertices that can be
reached in one step (are adjacent) from this first vertex. While we examine these
vertices, we need to store the remaining vertices adjacent from s t a r t Ve r t e x that have
not yet been examined. If a path does not exist from the first vertex, we come back and
try the second vertex, third vertex, and so on. Because we want to travel as far as we
can down one path, backtracking if the e ndVe r t e x is not found, a stack is a good
structure for storing the vertices. Here is the algorithm we use:

Let’s apply this algorithm to the sample airline-route graph in Figure 9.9. We
want to fly from Austin to Washington. We initialize our search by pushing our start-
ing city onto the stack (Figure 9.12a). At the beginning of the loop we retrieve the
current city, Austin, from the stack using the t op method and then remove it from the
stack using the pop method. The places we can reach directly from Austin are Dallas
and Houston; we push both of these vertices onto the stack (Figure 9.12b). At the
beginning of the second iteration we retrieve and remove the top vertex from the
stack—Houston. Houston is not our destination, so we resume our search from there.

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 648

9.6 Graph Applications | 649

IsPath (startVertex, endVertex): returns boolean
Set found to false
graph.clearMarks()
stack.push(startVertex)
do

vertex = stack.top() Corrected
stack.pop() version
if vertex = endVertex

Set found to true
else

if vertex is not marked
Mark vertex
Push all adjacent unmarked vertices onto stack

while !stack.isEmpty() AND !found
return found

Corrected
version

There is only one flight out of Houston, to Atlanta; we push Atlanta onto the stack
(Figure 9.12c). Again we retrieve and remove the top vertex from the stack. Atlanta is
not our destination, so we continue searching from there. Atlanta has flights to two
cities: Houston and Washington.

But we just came from Houston! We don’t want to fly back to cities that we have
already visited, as it could cause an infinite loop. We have to prevent cycling in this
algorithm. We must mark a city as having been visited so that it is not investigated a
second time. Here is the corrected version of the algorithm:

Let’s assume that we have marked the cities that have already been tried, and con-
tinue our example. Houston has already been visited, so we ignore it. The second adja-
cent vertex, Washington, has not been visited, so we push it onto the stack (Figure
9.12d). Again we retrieve and remove the top vertex from the stack. Washington is our
destination, so the search is complete. The examined edges of the graph, using a depth-
first search, are illustrated in Figure 9.13.

In the depth-first search, we go to the deepest branch, examining all the paths
beginning at Houston, before we come back to search from Dallas. When we have to
backtrack, we take the branch closest to where we dead-ended. That is, we go as far as
we can down one path before we take alternative choices at earlier branches.

Method i s Pa t h receives a graph object, a starting vertex, and a target vertex. It
uses the depth-first strategy to determine whether a path exists from the starting city to
the ending city, displaying the names of all cities visited in the search. Nothing in the
method depends on the implementation of the graph. The method is implemented as a

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 649

650 | Chapter 9: Priority Queues, Heaps, and Graphs

Figure 9.13 The depth-first search

Start
here

Dallas

Austin

Chicago

Denver

Houston

Atlanta

Washington

2

3

1

graph application; it uses the Graph ADT operations without knowing how the graph is
represented. We use a graph of strings, since we can represent a city by its name. In the
following code, we assume that a stack and a queue implementation have been
imported into the client class. (The i s Pa t h method is included in the Us e Gr a ph. j a va
application, available with the rest of the textbook code.)

pr i va t e s t a t i c bool e a n i s Pa t h(We i ght e dGr a phI nt e r f a c e gr a ph,
St r i ng s t a r t Ve r t e x,
St r i ng e ndVe r t e x)

/ / Re t ur ns t r ue i f a pa t h e xi s t s on gr a ph, f r om s t a r t Ve r t e x t o e ndVe r t e x;
/ / o t he r wi s e , r e t ur ns f a l s e . Us e s de pt h- f i r s t s e a r c h a l gor i t hm.

{
Unbounde dSt a c kI nt e r f a c e <St r i ng> s t a c k = ne w Li nke dSt a c k<St r i ng>() ;
Unbounde dQue ue I nt e r f a c e <St r i ng> ve r t e xQue ue

= ne w Li nke dUnbndQue ue <St r i ng>() ;

bool e a n f ound = f a l s e ;
St r i ng ve r t e x;
St r i ng i t e m;

gr a ph. c l e a r Ma r ks () ;
s t a c k. pus h(s t a r t Ve r t e x) ;
do
{

ve r t e x = s t a c k. t op() ;
s t a c k. pop() ;
i f (ve r t e x == e ndVe r t e x)

f ound = t r ue ;

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 650

9.6 Graph Applications | 651

e l s e
{

i f (! gr a ph. i s Ma r ke d(ve r t e x))
{

gr a ph. ma r kVe r t e x(ve r t e x) ;
ve r t e xQue ue = gr a ph. ge t ToVe r t i c e s (ve r t e x) ;

whi l e (! ve r t e xQue ue . i s Empt y())
{

i t e m = ve r t e xQue ue . de que ue () ;
i f (! gr a ph. i s Ma r ke d(i t e m))

s t a c k. pus h(i t e m) ;
}

}
}

} whi l e (! s t a c k. i s Empt y() && ! f ound) ;

r e t ur n f ound;
}

Breadth- First Searching
A breadth-first search looks at all possible paths at the same depth before it goes to a
deeper level. In our flight example, a breadth-first search checks all possible one-stop
connections before checking any two-stop connections. For most travelers, this strategy
is the preferred approach for booking flights.

When we come to a dead end in a depth-first search, we back up as little as possi-
ble. We then try another route from a recent vertex—the route on top of our stack. In a
breadth-first search, we want to back up as far as possible to find a route originating
from the earliest vertices. The stack is not the right structure for finding an early route,
because it keeps track of things in the order opposite of their occurrence—the latest
route is on top. To keep track of things in the order in which they happened, we use a
FIFO queue. The route at the front of this queue is a route from an earlier vertex; the
route at the back of the queue is from a later vertex.

To modify the search to use a breadth-first strategy, we change all calls to stack
operations to the analogous FIFO queue operations. Searching for a path from
Austin to Washington, we first enqueue all the cities that can be reached directly
from Austin: Dallas and Houston (Figure 9.14a). Then we dequeue the front queue
element. Dallas is not the destination we seek, so we enqueue all the adjacent cities
that have not yet been visited: Chicago and Denver (Figure 9.14b). (Austin has been
visited already, so it is not enqueued.) Again we dequeue the front element from the
queue. This element is the other “one-stop” city: Houston. Houston is not the desired
destination, so we continue the search. There is only one flight out of Houston, and
it is to Atlanta. Because we haven’t visited Atlanta before, it is enqueued (Figure
9.14c).

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 651

652 | Chapter 9: Priority Queues, Heaps, and Graphs

Figure 9.14 Using a queue to store the routes

DallasHouston

HoustonChicagoDenver

ChicagoDenverAtlanta

DenverAtlantaDenver

AtlantaDenverAtlanta

Dallas

Houston

Chicago

Denver

TO
RUNWAYQueue

(Rear of Queue) (Front of Queue)

Dallas
Dequeued

Houston
Dequeued

Chicago
Dequeued

Denver
Dequeued

(a)

(b)

(c)

(d)

(e)

Now we know that we cannot reach Washington with one stop, so we start examin-
ing the two-stop connections. We dequeue Chicago; it is not our destination, so we put
its adjacent city, Denver, into the queue (Figure 9.14d). Now this is an interesting situa-
tion: Denver is in the queue twice. Should we mark a city as having been visited when
we put it in the queue or after it has been dequeued, when we are examining its outgoing
flights? If we mark it only after it is dequeued, multiple copies of the same vertex may
appear in the queue (so we need to check whether a city is marked after it is dequeued).

An alternative approach is to mark the city as having been visited before it is put
into the queue. Which is better? It depends on the processing goals. We may want to
know whether alternative routes exist, in which case we would want to put a city into
the queue more than once.

Back to our example: We have put Denver into the queue in one step and removed
its previous entry at the next step. Denver is not our destination, so we put its adjacent
cities that we haven’t already marked (only Atlanta) into the queue (Figure 9.14e). This
processing continues until Washington is put into the queue (from Atlanta), and is
finally dequeued. We have found the desired city, and the search is complete. This
search is illustrated in Figure 9.15, where the numbers on the edges show the order in
which they are investigated.

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 652

9.6 Graph Applications | 653

Figure 9.15 The breadth-first search

Start
here Austin

Dallas

Washington
Denver

Chicago

Atlanta

Houston
2

3

4

5

6

7
8

1

The source code for the breadth-first search approach is identical to the depth-first
search code, except for the replacement of the stack with a FIFO queue. It is also
included in the Us e Gr a ph. j a va application, as the method i s Pa t h2, available with the
rest of the textbook code.

pr i va t e s t a t i c bool e a n i s Pa t h2(We i ght e dGr a phI nt e r f a c e <St r i ng> gr a ph,
St r i ng s t a r t Ve r t e x,
St r i ng e ndVe r t e x)

/ / Re t ur ns t r ue i f a pa t h e xi s t s on gr a ph, f r om s t a r t Ve r t e x t o e ndVe r t e x;
/ / o t he r wi s e , r e t ur ns f a l s e . Us e s br e a dt h- f i r s t s e a r c h a l gor i t hm.

{
Unbounde dQue ue I nt e r f a c e <St r i ng> que ue = ne w Li nke dUnbndQue ue <St r i ng>() ;
Unbounde dQue ue I nt e r f a c e <St r i ng> ve r t e xQue ue

= ne w Li nke dUnbndQue ue <St r i ng>() ;

bool e a n f ound = f a l s e ;
St r i ng ve r t e x;
St r i ng e l e me nt ;

gr a ph. c l e a r Ma r ks () ;
que ue . e nque ue (s t a r t Ve r t e x) ;
do
{

ve r t e x = que ue . de que ue () ;
i f (ve r t e x == e ndVe r t e x)

f ound = t r ue ;
e l s e
{

i f (! gr a ph. i s Ma r ke d(ve r t e x))

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 653

654 | Chapter 9: Priority Queues, Heaps, and Graphs

{
gr a ph. ma r kVe r t e x(ve r t e x) ;
ve r t e xQue ue = gr a ph. ge t ToVe r t i c e s (ve r t e x) ;

whi l e (! ve r t e xQue ue . i s Empt y())
{

e l e me nt = ve r t e xQue ue . de que ue () ;
i f (! gr a ph. i s Ma r ke d(e l e me nt))

que ue . e nque ue (e l e me nt) ;
}

}
}

} whi l e (! que ue . i s Empt y() && ! f ound) ;

r e t ur n f ound;
}

The Single- Source Shortest- Paths Problem
We know from the two search operations just discussed that there may be multiple
paths from one vertex to another. Suppose that we want to find the shortest path from
Austin to each of the other cities that Air Busters serves. By “shortest path” we mean the
path whose edge values (weights), added together, have the smallest sum. Consider the
following two paths from Austin to Washington:

Clearly, the first path is preferable, unless we want to collect extra frequent-flyer miles.
Let’s develop an algorithm that displays the shortest path from a designated

starting city to every other city in the graph—this time we are not searching for a
path between a starting city and an ending city. As in the two graph searches
described earlier, we need an auxiliary structure for storing cities that we process
later. By retrieving the city that was most recently put into the structure, the depth-
first search tries to keep going “forward.” It tries a one-flight solution, then a two-
flight solution, then a three-flight solution, and so on. It backtracks to a fewer-flight

Austin

Houston

Atlanta

Washington

160 miles

800 miles

600 miles

Total miles 1560 miles

Dallas

Denver

Atlanta

Washington

780 miles

1400 miles

600 miles

Total miles 2980 miles

Austin

200 miles

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 654

9.6 Graph Applications | 655

shortestPaths(graph, startVertex)
graph.ClearMarks()
Create flight(startVertex, startVertex, 0)
pq.enqueue(flight)
do

flight = pq.dequeue()
if flight.getToVertex() is not marked

Mark flight.getToVertex()
Write flight.getFromVertex, flight.getToVertex, flight.getDistance
flight.setFromVertex(flight.getToVertex())
Set minDistance to flight.getDistance()
Get queue vertexQueue of vertices adjacent from flight.getFromVertex()
while more vertices in vertexQueue

Get next vertex from vertexQueue
if vertex not marked

flight.setToVertex(vertex)
flight.setDistance(minDistance + graph.weightIs(flight.getFromVertex(), vertex))
pq.enqueue(flight)

while !pq.isEmpty()

Caution:
Contains subtle error

solution only when it reaches a dead end. That approach is not suitable for our short-
est-paths problem.

By retrieving the city that had been in the structure the longest time, the breadth-
first search tries all one-flight solutions, then all two-flight solutions, and so on. The
breadth-first search finds a path with a minimum number of flights. But a minimum
number of flights does not necessarily mean the minimum total distance. That approach
is also unsuitable for our shortest-paths problem.

Unlike the depth-first and breadth-first searches, this shortest-path traversal must
use the number of miles (edge weights) between cities. We want to retrieve the vertex
that is closest to the current vertex—that is, the vertex connected with the minimum
edge weight. If we consider minimum distance to be the highest priority, then we know
the perfect structure—the priority queue. Our algorithm can use a priority queue whose
elements are flights (edges) with the distance from the starting city as the priority. That
is, the elements in the priority queue are objects with three attributes: f r omVe r t e x,
t oVe r t e x, and di s t a nc e . We use a class named Fl i ght to define these objects. The
class implements the Compa r a bl e <Fl i ght > interface, using the di s t a nc e attribute to
compare two flights (shorter is better). It provides a constructor that accepts three argu-
ments, one for each attribute, and it provides the standard setter and getter methods for
the attributes. The code is part of our s uppor t package. Here is the shortest-path
algorithm:

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 655

656 | Chapter 9: Priority Queues, Heaps, and Graphs

while more vertices in vertexQueue
Get next vertex from vertexQueue
if vertex not marked

flight.setToVertex(vertex)
flight.setDistance(minDistance + graph.weightIs(flight.getFromVertex(), vertex))
pq.enqueue(flight)

The algorithm for the shortest-path traversal is similar to those we used for the
depth-first and breadth-first searches, albeit with three major differences:

1. We use a priority queue rather than a FIFO queue or stack.
2. We stop only when there are no more cities to process; there is no destination.
3. It is incorrect if we use a store-by-reference priority queue!

When we code this algorithm, we are likely to make a subtle, but crucial error. This
error is related to the fact that our queues store information “by reference” and not “by
copy.” Take a minute to review the algorithm to see if you can spot the error before
continuing.

Recall the feature section in Chapter 6 that discussed the dangers of storing infor-
mation by reference. In particular, it warned us to be careful when inserting an object
into a structure and later making changes to that object. If we use the same reference to
the object when we make changes to it, the changes are made to the object that is in the
structure. Sometimes this outcome is what we want (see the case study in Chapter 8); at
other times it causes problems, as in the current example. Here is the incorrect part of
the algorithm:

Now can you see the problem? This part of the algorithm walks through the
queue of vertices adjacent to the current vertex and enqueues Fl i gh t objects onto
the priority queue pq based on the information discovered there. The f l i ght variable
is actually a reference to a Fl i ght object. Suppose the queue of adjacent vertices
holds information related to the cities Atlanta and Houston. The first time through
this loop, we insert information related to Atlanta in f l i ght and enqueue it in pq.
The next time through the loop, however, we make changes to the Fl i ght object ref-
erenced by f l i gh t . We update it to contain information about Houston using the set-
ter methods; and again we enqueue it in pq. So now pq contains information about
Atlanta and Houston, correct? Nope. When we change the information in f l i ght to
the Houston information, those changes are reflected in the f l i ght that is already on
pq. The f l i gh t variable still references that object. In reality, the pq structure now
contains two references to the same f l i gh t , and that f l i ght contains Houston
information.

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 656

9.6 Graph Applications | 657

while more vertices in vertexQueue
Get next vertex from vertexQueue
if vertex not marked

Set newDistance to minDistance + graph.weightIs(flight.getFromVertex(), vertex)
Create new Flight(flight.getFromVertex(), vertex, newDistance)
pq.enqueue(newFlight)

To solve this problem, we must create a new f l i ght object before storing on pq.
Here is the corrected version of that part of the algorithm:

Here is the source code for the shortest-path algorithm (also included in the
Us e Gr a ph. j a va application). As before, the code assumes that a priority queue and a
queue implementation have been imported into the client class. For the priority queue,
we use our He a p class. We want a smaller distance to indicate a higher priority, but our
He a p class implements a maximum heap, returning the largest value from the de que ue
method. To fix this problem, we could define a new heap class, a minimum heap. But
there is an easier way. The current He a p class bases its decision about what is “larger”
on the values returned by the flight’s c ompa r e To method. Thus we just define the c om-
pa r e To method of the Fl i ght class to indicate that the current flight is “larger” than
the argument flight if its di s t a nc e is smaller. For every flight in the heap’s tree,
f l i ght . di s t a nc e is then less than or equal to the di s t a nc e value of each of its chil-
dren. We can still use our maximum heap.

pr i va t e s t a t i c voi d s hor t e s t Pa t hs (We i ght e dGr a phI nt e r f a c e <St r i ng> gr a ph,
St r i ng s t a r t Ve r t e x)

/ / Wr i t e s t he s hor t e s t di s t a nc e f r om s t a r t Ve r t e x t o e ve r y
/ / ot he r r e a c ha bl e ve r t e x i n gr a ph.
{

Fl i ght f l i ght ;
Fl i ght s a ve Fl i ght ; / / f or s a vi ng on pr i or i t y que ue
i nt mi nDi s t a nc e ;
i nt ne wDi s t a nc e ;

Pr i Que ue I nt e r f a c e <Fl i ght > pq
= ne w He a p<Fl i ght >(20) ; / / As s ume a t mos t 20 ve r t i c e s

St r i ng ve r t e x;
Unbounde dQue ue I nt e r f a c e ve r t e xQue ue <St r i ng>

= ne w Li nke dUnbndQue ue <St r i ng>() ;

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 657

658 | Chapter 9: Priority Queues, Heaps, and Graphs

gr a ph. c l e a r Ma r ks () ;
s a ve Fl i ght = ne w Fl i ght (s t a r t Ve r t e x, s t a r t Ve r t e x, 0) ;
pq. e nque ue (s a ve Fl i ght) ;

Sys t e m. out . pr i nt l n(" La s t Ve r t e x De s t i na t i on Di s t a nc e ") ;
Sys t e m. out . pr i nt l n(" - ") ;

do
{

f l i ght = pq. de que ue () ;
i f (! gr a ph. i s Ma r ke d(f l i ght . ge t ToVe r t e x()))
{

gr a ph. ma r kVe r t e x(f l i ght . ge t ToVe r t e x()) ;
Sys t e m. out . pr i nt l n(f l i ght) ;
f l i ght . s e t Fr omVe r t e x(f l i ght . ge t ToVe r t e x()) ;
mi nDi s t a nc e = f l i ght . ge t Di s t a nc e () ;
ve r t e xQue ue = gr a ph. ge t ToVe r t i c e s (f l i ght . ge t Fr omVe r t e x()) ;
whi l e (! ve r t e xQue ue . i s Empt y())
{

ve r t e x = ve r t e xQue ue . de que ue () ;
i f (! gr a ph. i s Ma r ke d(ve r t e x))
{

ne wDi s t a nc e = mi nDi s t a nc e
+ gr a ph. we i ght I s (f l i ght . ge t Fr omVe r t e x() , ve r t e x) ;

s a ve Fl i ght = ne w Fl i ght (f l i ght . ge t Fr omVe r t e x() , ve r t e x,
ne wDi s t a nc e) ;

pq. e nque ue (s a ve Fl i ght) ;
}

}
}

} whi l e (! pq. i s Empt y()) ;
}

The output from this method is a table of city pairs (edges) showing the total mini-
mum distance from s t a r t Ve r t e x to each of the other vertices in the graph, as well as
the last vertex visited before the destination. We assume that printing a vertex means
printing the name of the corresponding city. If gr a ph contains the information shown
in Figure 9.9, the method call

s hor t e s t Pa t hs (gr a ph, s t a r t Ve r t e x) ;

where s t a r t Ve r t e x corresponds to Washington, would print the following:

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 658

9.6 Graph Applications | 659

Figure 9.16 A new set of airline-flight legs

200

200

1400

6
0
0

6
0
0

7

8

0

10
00

10
00

160 800
800

9
0
0

Austin

Dallas

Denver

Chicago
Houston

Atlanta

Washington

Last Vertex Destination Distance

Washington Washington 0
Washington Atlanta 600
Washington Dallas 1300
Atlanta Houston 1400
Dallas Austin 1500
Dallas Denver 2080
Dallas Chicago 2200

The shortest-path distance from Washington to each destination is shown in the two
columns to the right. For example, our flights from Washington to Chicago total 2200
miles. The left-hand column shows which city immediately preceded the destination in
the traversal. Let’s figure out the shortest path from Washington to Chicago. We see
from the left-hand column that the next-to-last vertex in the path is Dallas. Now we
look up Dallas in the Destination (middle) column: The vertex before Dallas is Washing-
ton. The whole path is Washington–Dallas–Chicago. (We might want to consider
another airline for a more direct route!)

Unreachable Vertices
You may have noticed that in all of our examples so far we have been able to “reach”
all of the other vertices in our graphs from our given starting vertex. What if this is not
the case? Consider the weighted graph in Figure 9.16, which depicts a new set of

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 659

660 | Chapter 9: Priority Queues, Heaps, and Graphs

airline-flight legs. It is identical to Figure 9.9 except that we removed the Washing-
ton–Dallas leg. If we invoke our s hor t e s t Pa t hs method, passing it this graph and a
starting vertex of Washington, we get the following output:

Last Vertex Destination Distance

Washington Washington 0
Washington Atlanta 600
Atlanta Houston 1400

A careful study of the new graph confirms that one can reach Atlanta and Houston only
when starting in Washington, at least when flying Air Buster Airlines.

Suppose we extend the specification of our s hor t e s t Pa t hs method to require that
it also print the unreachable vertices. How can we determine the unreachable vertices
after we have generated the information about the reachable ones? Easy! The unreach-
able vertices are the unmarked vertices. We simply need to check whether any vertices
remain unmarked. Our Graph ADT provides the operation ge t Unma r ke d specifically for
this situation.

Sys t e m. out . pr i nt l n(" The unr e a c ha bl e ve r t i c e s a r e : ") ;
ve r t e x = gr a ph. ge t Unma r ke d() ;
whi l e (ve r t e x ! = nul l)
{

Sys t e m. out . pr i nt l n(ve r t e x) ;
gr a ph. ma r kVe r t e x(ve r t e x) ;
ve r t e x = gr a ph. ge t Unma r ke d() ;

}

Now the output from the call to s hor t e s t Pa t hs would be

Last Vertex Destination Distance

Washington Washington 0
Washington Atlanta 600
Atlanta Houston 1400

The unreachable vertices are:
Austin
Chicago
Dallas
Denver

In Exercise 35 we ask you to investigate counting the “connected components” of a
graph. This is another interesting application of the ge t Unma r ke d method. It is related
to the blob-counting problem discussed in Chapter 4. In fact, it is the logical equivalent
of that problem.

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 660

Summary | 661

Figure 9.17 The priority queue–related class and interface developed in this chapter

<<interface>>
PriQueueInterface<T extends Comparable<T>>

+e nque ue (T e l e me nt) : voi d
+de que ue () : T
+i s Ful l () : bool e a n
+i s Empt y() : bool e a n

Heap<T extends Comparable<T>>

–e l e me nt s : Ar r a yLi s t <T>
–l a s t I nde x: i nt
–ma xI nde x: i nt

+He a p(i nt ma xSi z e)
+i s Empt y() : bool e a n
+i s Ful l () : bool e a n
+e nque ue (e l e me nt T) : voi d
+de que ue () : T
+t oSt r i ng() : St r i ng
–r e he a pUp(e l e me nt T) ; voi d
–ne wHol e (hol e : i nt , e l e me nt : T) : i nt
–r e he a pDown(e l e me nt T) : voi d

 implements
 Key:

Summary
In this chapter, we discussed two data structures: priority queues and graphs. For the
former, we saw an elegant implementation based on a binary tree with special shape
and order properties. The corresponding UML diagram appears in Figure 9.17. For the
latter, we saw a time-efficient array-based implementation (see the UML diagram in Fig-
ure 9.18) and discussed a space-efficient reference-based implementation. Time and
space efficiency tradeoffs are often the key considerations when choosing among alter-
native implementations of a data structure.

Graphs are the most complex structure we studied. They are very versatile and are a
good way to model many real-world objects and situations. Because many different
types of applications could potentially use graphs, numerous variations and generaliza-
tions of their definitions and implementations exist. In addition, many advanced algo-
rithms for manipulating and traversing graphs have been discovered. They are generally
covered in detail in advanced computer science courses on algorithms.

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 661

662 | Chapter 9: Priority Queues, Heaps, and Graphs

Figure 9.18 The weighted graph–related class and interface developed in this chapter

<<interface>>
WeightedGraphInterface<T>

+i s Ful l () : bool e a n
+i s Empt y() : bool e a n
+a ddVe r t e x(ve r t e x: T) : voi d
+ha s Ve r t e x(ve r t e x: T) : bool e a n
+a ddEdge (f r omVe r t e x: T, t oVe r t e x: T, we i ght : i nt) : voi d
+we i ght I s (f r omVe r t e x: T, t oVe r t e x: T) : i nt
+ge t ToVe r t i c e s (ve r t e x: T) : Unbounde dQue ue I nt e r f a c e <T>
+c l e a r Ma r ks () : voi d
+ma r kVe r t e x(ve r t e x: T) : voi d
+i s Ma r ke d(ve r t e x: T) : bool e a n
+ge t Unma r ke d() : T

WeightedGraph<T>

+NULL_EDGE = 0
–DEFCAP = 50
–numVe r t i c e s : i nt
–ma xVe r t i c e s : i nt
–ve r t i c e s : T[]
–e dge s : i nt [] []
–ma r ks : bool e a n[]

+We i ght e dGr a ph()
+We i ght e dGr a ph(i nt ma xV)
+i s Ful l () : bool e a n
+i s Empt y() : bool e a n
+a ddVe r t e x(ve r t e x: T) : voi d
+ha s Ve r t e x(ve r t e x: T) : bool e a n
+a ddEdge (f r omVe r t e x: T, t oVe r t e x: T, we i ght : i nt) : voi d
+we i ght I s (f r omVe r t e x: T, t oVe r t e x: T) : i nt
+ge t ToVe r t i c e s (ve r t e x: T) : Unbounde dQue ue I nt e r f a c e <T>
+c l e a r Ma r ks () : voi d
+ma r kVe r t e x(ve r t e x: T) : voi d
+i s Ma r ke d(ve r t e x: T) : bool e a n
+ge t Unma r ke d() : T
–i nde xI s (ve r t e x: T) : i nt

 implements
 Key:

Exercises
9.1 Priority Queues

1. A priority queue is implemented as a linked list, sorted from largest to smallest
element.
a. Write the declarations needed for this implementation.
b. Write the e nque ue operation, using this implementation.
c. Write the de que ue operation, using this implementation.

2. A priority queue is implemented as a binary search tree.
a. Write the declarations needed for this implementation.
b. Write the e nque ue operation, using this implementation.
c. Write the de que ue operation, using this implementation.

3. A priority queue is implemented as a sequential array-based list. The highest-pri-
ority element is in the first array position, the second-highest priority element is
in the second array position, and so on.
a. Write the declarations needed for this implementation.

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 662

Exercises | 663

b. Write the e nque ue operation, using this implementation.
c. Write the de que ue operation, using this implementation.

4. A stack is implemented using a priority queue. Each element is time-stamped as
it is put into the stack. (The time stamp is a number between zero and I nt e -
ge r . MAX_VALUE. Each time an element is pushed onto the stack, it is assigned
the next largest number.)
a. What is the highest-priority element?
b. Describe how the pus h, t op, and pop operations could be implemented.

5. A FIFO queue is implemented using a priority queue. Each element is time-
stamped as it is put into the queue. (The time stamp is a number between zero
and I nt e ge r . MAX_VALUE. Each time an element is enqueued, it is assigned the
next largest number.)
a. What is the highest-priority element?
b. Describe how the e nque ue and de que ue operations could be implemented.

9.2 Heaps
6. Which of the following trees are heaps?

65

27

26

50

42

12 4

(a)

(b)

(c)

(d)

(e)

(f)

19

tree

46

14

916

tree tree

50

46

2

37

35

12 8

19 11

tree

50

48

45

49

44

40 41

46

4342

47

tree

32

5 8

50

40

20

tree

40

20

2

1 3

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 663

664 | Chapter 9: Priority Queues, Heaps, and Graphs

7. Draw a tree that satisfies both the binary search property and the order property
of heaps.

8. A minimum heap has the following order property: The value of each element is
less than or equal to the value of each of its children. What changes must be
made in the heap operations given in this chapter?

9. We created iterative versions of the heap helper methods r e he a pDown and
r e he a pUp in this chapter.
a. Write a recursive version of r e he a pDown.
b. Write a recursive version of r e he a pUp.
c. Describe the recursive versions of these operations in terms of Big-O notation.

10. A priority queue containing characters is implemented as a heap stored in an array.
The precondition states that this priority queue cannot contain duplicate elements.
There are 10 elements currently in the priority queue, as shown below. What values
might be stored in array positions 7–9 so that the properties of a heap are satisfied?

11. A priority queue is implemented as a heap:

pq 56

27 42

26 315 19

2425 5

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Z

F

J

E

B

G

H

?

?

?

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 664

Exercises | 665

a. Show how this heap would look after the following series of operations:
pq. e nque ue (28) ;
pq. e nque ue (2) ;
pq. e nque ue (40) ;
x = pq. de que ue () ;
y = pq. de que ue () ;
z = pq. de que ue () ;

b. What would the values of x, y, and z be after the series of operations in
part a?

12. Write and compare two implementations of a priority queue whose highest-pri-
ority element is the one with the smallest key value. The first implementation
uses a minimum heap. You need to modify the heap operations to keep the mini-
mum—rather than maximum—element in the root. The second implementation
uses a linear linked list whose elements are ordered by key value. Create a data
set that contains 50 elements with priorities generated by a random-number
generator. To compare the operations, you must modify the e nque ue and
de que ue operations to count how many elements are accessed (compared or
swapped, in the case of reheaping) during its execution. Write a driver to
enqueue and dequeue the 50 test elements and print out the number of elements
accessed for the operations. Run your driver once with each implementation.

Deliverables

• A listing of specification and implementation files for both priority queue
implementations

• A listing of your driver
• A listing of your test data
• A listing of the output from both runs
• A report comparing the number of elements accessed in executing each oper-

ation

9.3 Introduction to Graphs
Use the following description of an undirected graph in Exercises 13 and 14:

EmployeeGraph = (V, E)
V(EmployeeGraph) = {Susan, Darlene, Mike, Fred, John, Sander, Lance, Jean, Brent,

Fran}
E(EmployeeGraph) = {(Susan, Darlene), (Fred, Brent), (Sander, Susan), (Lance, Fran),

(Sander, Fran), (Fran, John), (Lance, Jean), (Jean, Susan), (Mike,
Darlene), (Brent, Lance), (Susan, John)}

13. Draw a picture of Empl oye e Gr a ph.

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 665

666 | Chapter 9: Priority Queues, Heaps, and Graphs

14. Which one of the following phrases best describes the relationship represented
by the edges between the vertices in Empl oye e Gr a ph?
a. “works for”
b. “is the supervisor of ”
c. “is senior to”
d. “works with”

Use the following specification of a directed graph in Exercises 15–17:

ZooGraph = (V, E)
V(ZooGraph) = {dog, cat, animal, vertebrate, oyster, shellfish, invertebrate,

crab, poodle, monkey, banana, dalmatian, dachshund}
E(ZooGraph) = {(vertebrate, animal), (invertebrate, animal), (dog, vertebrate),

(cat, vertebrate), (monkey, vertebrate), (shellfish, invertebrate),
(crab, shellfish), (oyster, shellfish), (poodle, dog), (dalmatian,
dog), (dachshund, dog)}

15. Draw a picture of ZooGr a ph.
16. To tell if one element in ZooGr a ph has relation X to another element, you look

for a path between them. Show whether the following statements are true, using
the picture or adjacency matrix.
a. dalmatian X dog
b. dalmatian X vertebrate
c. dalmatian X poodle
d. banana X invertebrate
e. oyster X invertebrate
f. monkey X invertebrate

17. Which of the following phrases best describes relation X in Exercise 16?
a. “has a”
b. “is an example of ”
c. “is a generalization of ”
d. “eats”

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 666

Exercises | 667

Use the following graph for Exercises 18 and 19:

18. Describe the graph pictured above, using the formal graph notation.

V(StateGraph) =
E(StateGraph) =

19. In the states graph:
a. Is there a path from Oregon to any other state in the graph?
b. Is there a path from Hawaii to every other state in the graph?
c. From which state(s) in the graph is there a path to Hawaii?

9.4 Formal Specification of a Graph ADT
20. Classify the methods defined in the We i ght e dGr a phI nt e r f a c e as observers or

transformers.
21. It is possible to define more operations for a Graph ADT. Describe two operations

that you think would be useful additions to the We i ght e dGr a phI nt e r f a c e .

9.5 Implementations of Graphs
22. Draw the adjacency matrix for Empl oye e Gr a ph (see Exercise 13). Store the ver-

tex values in alphabetical order.
23. Draw the adjacency matrix for ZooGr a ph (see Exercise 15). Store the vertices in

alphabetical order.
24. Complete the implementation of the Weighted Graph that we began in this

chapter by providing bodies for the methods i s Empt y, i s Ful l , ha s Ve r t e x,

Oregon

Alaska

Texas

Hawaii

Vermont New York

California

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 667

668 | Chapter 9: Priority Queues, Heaps, and Graphs

c l e a r Ma r ks , ma r kVe r t e x, i s Ma r ke d, and ge t Unma r ke d in the We i ght e d-
Gr a ph. j a va file. Test the completed implementation using the Us e Gr a ph class.
When implementing ha s Ve r t e x, don’t forget to use the e qua l s method to com-
pare vertices.

25. Class We i ght e dGr a ph in this chapter is to be extended to include a bool e a n
e dge Exi s t s operation, which determines whether two vertices are connected by
an edge.
a. Write the declaration of this method. Include adequate comments.
b. Using the adjacency matrix implementation developed in this chapter and the

declaration from part a, implement the body of the method.
26. Class We i ght e dGr a ph in this chapter is to be extended to include a r e move Edge

operation, which removes a given edge.
a. Write the declaration of this method. Include adequate comments.
b. Using the adjacency matrix implementation developed in this chapter and the

declaration from part a, implement the body of the method.
27. Class We i ght e dGr a ph in this chapter is to be extended to include a r e move Ve r -

t e x operation, which removes a vertex from the graph. Deleting a vertex is more
complicated than deleting an edge from the graph. Discuss the reasons for this
operation’s greater complexity.

28. Graphs can be implemented using arrays or references. For the states graph (see
Exercise 18):
a. Show the adjacency matrix that would describe the edges in this graph. Store

the vertices in alphabetical order.
b. Show the array-of-references adjacency lists that would describe the edges in

this graph.
29. Design and code a reference-based weighted graph class with the vertices stored

in an array as in Figure 9.11(a). Your class should implement our We i ght e d-
Gr a phI nt e r f a c e .

30. Design and code a reference-based weighted graph class with the vertices stored
in a linked list as in Figure 9.11(b). Your class should implement our We i ght e d-
Gr a phI nt e r f a c e .

9.6 Graph Applications
31. Using the Empl oye e Gr a ph (see Exercise 13) describe the path from Susan to

Lance
a. Using a breadth-first strategy.
b. Using a depth-first strategy.

32. The depth-first search operation can be implemented without a stack by using
recursion.
a. Name the base case(s). Name the general case(s).
b. Write the algorithm for a recursive depth-first search.

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 668

Exercises | 669

Exercises 33–35 assume completion of Exercise 24, 29, or 30.
33. In our i s Pa t h2 method we use a breadth-first search approach that marks ver-

tices as being visited after they are removed from the queue. An alternative
approach, discussed in Section 9.6, marks the vertices before they are enqueued.
Implement another method, i s Pa t h3, that uses this alternative approach. You
can put your new method in our us e Gr a ph class and use it to test your code.

34. Our s hor t e s t Pa t hs method is concerned with the minimum distance between
two vertices of a graph. Create a mi nEdge s method that returns the minimum
number of edges that exist on a path between two given vertices. You can put
your new method in our us e Gr a ph class and use it to test your code.

35. Informally, a connected component of a graph is a subset of the vertices of the
graph such that all of the vertices in the subset are connected to each other by a
path. For example, the following graph consists of three connected components.

Create a numCompone nt s method that returns the number of connected compo-
nents that exist in a graph. You can put your new method in our us e Gr a ph class
and use it to test your code.

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 669

13549_CH09_Da l e . qxd 2/ 7/ 11 6: 29 AM Pa ge 670

Knowledge Goals
You should be able to
■ describe the following sorting algorithms:

■ straight selection sort ■ quick sort
■ bubble sort (two versions) ■ merge sort
■ insertion sort ■ heap sort

■ analyze the efficiency of the six sorting algorithms in terms of Big-O time and space requirements
■ discuss other sorting efficiency considerations: overhead, elimination of method calls, and programmer time
■ describe and discuss the performance of the following search algorithms:

■ sequential search of an unsorted list
■ sequential search of a sorted list
■ binary search
■ searching a high-probability sorted list

■ define the following terms:
■ hashing ■ linear probing
■ rehashing ■ clustering
■ collisions
■ discuss the efficiency considerations for the searching and hashing algorithms in terms of Big-O complexity

Skill Goals
You should be able to
■ implement the following sorting algorithms:

■ straight selection sort ■ quick sort
■ bubble sort (two versions) ■ merge sort
■ insertion sort ■ heap sort

■ determine the stability of a specific implementation of a sorting algorithm
■ use the Java Compa r a t or interface to define multiple sort orders for objects of a class
■ design and implement an appropriate hashing function for an application
■ design and implement a collision-resolution algorithm for a hash table

Sorting and
Searching Algorithms

G

o

a

l

s

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 671

672 | Chapter 10: Sorting and Searching Algorithms

At many points in this book, we have gone to great trouble to keep lists of elements in
sorted order: golfers sorted by score, airline routes sorted by distance, integers sorted
from smallest to largest, and words sorted alphabetically. One goal of keeping sorted
lists, of course, is to facilitate searching. Given an appropriate implementation structure,
a particular list element can be found faster if the list is sorted.

In this chapter we directly examine strategies for both sorting and searching, two
tasks that are fundamental to a variety of computing problems. Section 10.1 intro-
duces the topic of sorting. Section 10.2 discusses the straight selection sort, the bub-
ble sort, and the insertion sort—three simple sorting algorithms that students
sometimes study in their first course. Section 10.3 introduces three more complex (but
more efficient) sorting algorithms: the merge sort, the quick sort, and the heap sort.
So that we can concentrate on the algorithms, during the initial discussions we
assume that our goal is to sort a given list of integers that is held in an array. In Sec-
tion 10.4, we address issues related to sorting objects in general. We introduce the
topic of searching in Section 10.5, and in Section 10.6, we discuss in some detail
hashing, an approach that allows us to store and retrieve information very quickly
under certain conditions.

10.1Sorting

Putting an unsorted list of data elements into order—sorting—is a very common and use-
ful operation. Entire books have been written about sorting algorithms as well as algo-
rithms for searching a sorted list to find a particular element.

Because sorting a large number of elements can be extremely time consuming, an
efficient sorting algorithm is very desirable. How do we describe efficiency? List element
comparison—that is, the operation that compares two list elements to see which is
smaller—is an operation central to most sorting algorithms. We use the number of
required element comparisons as a measure of the efficiency of each algorithm. For each
algorithm we calculate the number of comparisons relative to the size of the list being
sorted. We then use Big-O notation based on the result of our calculation to succinctly
describe the efficiency of the algorithm.

In addition to comparing elements, each of our algorithms includes another basic
operation: swapping the locations of two elements on the list. The number of element
swaps needed to sort a list is another measure of sorting efficiency. In the exercises we
ask you to analyze the sorting algorithms developed in this chapter in terms of that
alternative measure.

Another efficiency consideration is the amount of memory space required. In
general, memory space is not a very important factor when choosing a sorting algo-
rithm. We look at only two sorts in which space would be a consideration. The usual
time versus space trade-off applies to sorts—more space often means less time, and
vice versa.

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 672

10.1 Sorting | 673

A Test Harness
To facilitate our study of sorting we develop a standard test harness, a driver program
that we can use to test each of our sorting algorithms. Because we are using this pro-
gram just to test our implementations and
facilitate our study, we keep it simple: It con-
sists of a single class called Sor t s . This class
defines an array that can hold 50 integers. The
array is named va l ue s . Several static methods
are defined:

• i ni t Va l ue s Initializes the va l ue s array with random numbers between 0 and
99; uses the a bs method (absolute value) from the Java library’s Ma t h class and
the ne xt I nt method from the Ra ndom class.

• i s Sor t e d Returns a bool e a n value indicating whether the va l ue s array is
currently sorted.

• s wa p Swapping data values between two array locations is common in many
sorting algorithms—this method swaps the integers between va l ue s [i nde x1]
and va l ue s [i nde x2] , where i nde x1 and i nde x2 are parameters of the method.

• pr i nt Va l ue s Prints the contents of the va l ue s array to the Sys t e m. out
stream; the output is arranged evenly in 10 columns.

Here is the code for the test harness:

/ / -
/ / Sor t s . j a va by Da l e / J oyc e / We e ms Cha pt e r 10
/ /
/ / Te s t ha r ne s s us e d t o r un s or t i ng a l gor i t hms .
/ / -

i mpor t j a va . ut i l . *;
i mpor t j a va . t e xt . De c i ma l For ma t ;

publ i c c l a s s Sor t s
{

s t a t i c f i na l i nt SI ZE = 50; / / s i z e of a r r a y t o be s or t e d
s t a t i c i nt [] va l ue s = ne w i nt [SI ZE] ; / / va l ue s t o be s or t e d

s t a t i c voi d i ni t Va l ue s ()
/ / I ni t i a l i z e s t he va l ue s a r r a y wi t h r a ndom i nt e ge r s f r om 0 t o 99.
{

Ra ndom r a nd = ne w Ra ndom() ;
f or (i nt i nde x = 0; i nde x < SI ZE; i nde x++)

va l ue s [i nde x] = Ma t h. a bs (r a nd. ne xt I nt ()) % 100;
}

Test harness A stand-alone program designed to
facilitate testing of the implementations of algorithms

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 673

674 | Chapter 10: Sorting and Searching Algorithms

s t a t i c publ i c bool e a n i s Sor t e d()
/ / Re t ur ns t r ue i f t he a r r a y va l ue s a r e s or t e d, a nd f a l s e ot he r wi s e .
{

bool e a n s or t e d = t r ue ;
f or (i nt i nde x = 0; i nde x < (SI ZE - 1) ; i nde x++)

i f (va l ue s [i nde x] > va l ue s [i nde x + 1])
s or t e d = f a l s e ;

r e t ur n s or t e d;
}

s t a t i c publ i c voi d s wa p(i nt i nde x1, i nt i nde x2)
/ / Pr e c ondi t i on: i nde x1 a nd i nde x2 a r e >= 0 a nd < SI ZE.
/ /
/ / Swa ps t he i nt e ge r s a t l oc a t i ons i nde x1 a nd i nde x2 of t he va l ue s a r r a y.
{

i nt t e mp = va l ue s [i nde x1] ;
va l ue s [i nde x1] = va l ue s [i nde x2] ;
va l ue s [i nde x2] = t e mp;

}

s t a t i c publ i c voi d pr i nt Va l ue s ()
/ / Pr i nt s a l l t he va l ue s i nt e ge r s .
{

i nt va l ue ;
De c i ma l For ma t f mt = ne w De c i ma l For ma t (" 00") ;
Sys t e m. out . pr i nt l n(" The va l ue s a r r a y i s : ") ;
f or (i nt i nde x = 0; i nde x < SI ZE; i nde x++)
{

va l ue = va l ue s [i nde x] ;
i f (((i nde x + 1) % 10) == 0)

Sys t e m. out . pr i nt l n(f mt . f or ma t (va l ue)) ;
e l s e

Sys t e m. out . pr i nt (f mt . f or ma t (va l ue) + " ") ;
}
Sys t e m. out . pr i nt l n() ;

}

publ i c s t a t i c voi d ma i n(St r i ng[] a r gs) t hr ows I OExc e pt i on
{

i ni t Va l ue s () ;
pr i nt Va l ue s () ;
Sys t e m. out . pr i nt l n(" va l ue s i s s or t e d: " + i s Sor t e d()) ;
Sys t e m. out . pr i nt l n() ;

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 674

10.1 Sorting | 675

s wa p(0, 1) ;
pr i nt Va l ue s () ;
Sys t e m. out . pr i nt l n(" va l ue s i s s or t e d: " + i s Sor t e d()) ;
Sys t e m. out . pr i nt l n() ;

}
}

In this version of Sor t s , the main method initializes the va l ue s array, prints the
array, prints the value of i s Sor t e d, swaps the first two values of the array, and again
prints information about the array. The output from this class as currently defined
would look something like this:

The values array is:
20 49 07 50 45 69 20 07 88 02
89 87 35 98 23 98 61 03 75 48
25 81 97 79 40 78 47 56 24 07
63 39 52 80 11 63 51 45 25 78
35 62 72 05 98 83 05 14 30 23

values is sorted: false

The values array is:
49 20 07 50 45 69 20 07 88 02
89 87 35 98 23 98 61 03 75 48
25 81 97 79 40 78 47 56 24 07
63 39 52 80 11 63 51 45 25 78
35 62 72 05 98 83 05 14 30 23

values is sorted: false

As we proceed in our study of sorting algorithms, we will add methods that imple-
ment the algorithms to the Sor t s class and change the main method to invoke those
methods. We can use the i s Sor t e d and pr i nt Va l ue s methods to help us check the
results.

Because our sorting methods are implemented for use with this test harness, they
can directly access the static va l ue s array. In the general case, we could modify
each sorting method to accept a reference to an array-based list to be sorted as an
argument.

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 675

676 | Chapter 10: Sorting and Searching Algorithms

10.2Simple Sorts

In this section we present three “simple” sorts, so called because they use an unsophisti-
cated, brute-force approach. They may not be very efficient, but they are easy to under-
stand and to implement.

Straight Selection Sort
If we were handed a list of names on a sheet of paper and asked to put them in alpha-
betical order, we might use this general approach:

1. Select the name that comes first in alphabetical order, and write it on a second
sheet of paper.

2. Cross the name out on the original sheet.
3. Repeat steps 1 and 2 for the second name, the third name, and so on, until all the

names on the original sheet have been crossed out and written onto the second
sheet, at which point the list on the second sheet is sorted.

This algorithm is simple to translate into a computer program, but it has one draw-
back: It requires space in memory to store two complete lists. This duplication is clearly
wasteful. A slight adjustment to this manual approach does away with the need to
duplicate space. Instead of writing the “first” name onto a separate sheet of paper, we
exchange it with the name in the first location on the original sheet.

1

2

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 676

10.2 Simple Sorts | 677

SelectionSort
for current going from 0 to SIZE 2

Find the index in the array of the smallest unsorted element
Swap the current element with the smallest unsorted one

Repeating this process until finished results in a sorted list on the original sheet of
paper.

Within our program, the “by-hand list” is represented in an array. Here is a more
formal algorithm:

1

2

Figure 10.1 shows the steps taken by the algorithm to sort a five-element array.
Each section of the figure represents one iteration of the for loop. The first part of a sec-
tion represents the “find the smallest unsorted array element” step. To do so, we repeat-
edly examine the unsorted elements, asking if each one is the smallest we have seen so
far. The second part of a figure section shows the two array elements to be swapped,
and the final part shows the result of the swap.

During the progression, we can view the array as being divided into a sorted part
and an unsorted part. Each time we perform the body of the for loop, the sorted part
grows by one element and the unsorted part shrinks by one element. The exception is
the very last step, when the sorted part grows by two elements. Do you see why? When
all of the array elements except the last one are in their correct locations, the last one is

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 677

Figure 10.1 Example of a straight selection sort (sorted elements are shaded)

126
43
26

1
113

[0]
[1]
[2]
[3]
[4]

va l ue s

(a)
1 <126?

<43?
<26?
<1?

YES
YES

NO

2
3
4

126
43
26

1
113

[0]
[1]
[2]
[3]
[4]

va l ue s
1

43
26

126
113

[0]
[1]
[2]
[3]
[4]

va l ue s

1
43
26

126
113

[0]
[1]
[2]
[3]
[4]

va l ue s

(b) 1 <43?
<26?
<26?

NO
NO

2
3

1
43
26

126
113

[0]
[1]
[2]
[3]
[4]

va l ue s
1

26
43

126
113

[0]
[1]
[2]
[3]
[4]

va l ue s

1
26
43

126
113

[0]
[1]
[2]
[3]
[4]

va l ue s

(c)
1 <43?

<43?
NO
NO2

1
26
43

126
113

[0]
[1]
[2]
[3]
[4]

va l ue s
1

26
43

126
113

[0]
[1]
[2]
[3]
[4]

va l ue s

1
26
43

126
113

[0]
[1]
[2]
[3]
[4]

va l ue s

(d)

1 <126

1
26
43

126
113

[0]
[1]
[2]
[3]
[4]

va l ue s
1

26
43

113
126

[0]
[1]
[2]
[3]
[4]

va l ue s

678 | Chapter 10: Sorting and Searching Algorithms

in its correct location by default. This is why our for loop can stop at index SI ZE - 2
instead of at the end of the array, index SI ZE - 1.

We implement the algorithm with a method s e l e c t i onSor t that becomes part of
our Sor t s class. This method sorts the va l ue s array, which is declared in that class. It
has access to the SI ZE constant, which indicates the number of elements in the array.
Within the s e l e c t i onSor t method we use a variable, c ur r e nt , to mark the beginning
of the unsorted part of the array. Thus the unsorted part of the array goes from index
c ur r e nt to index SI ZE - 1. We start out by setting c ur r e nt to the index of the first
position (0). Figure 10.2 provides a snapshot of the array during the selection sort algo-
rithm.

We use a helper method to find the index of the smallest value in the unsorted part
of the array. The mi nI nde x method receives the first and last indexes of the unsorted
part, and returns the index of the smallest value in this part of the array. We also use
the s wa p method that is part of our test harness.

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 678

Figure 10.2 A snapshot of the selection sort algorithm

[0]

va l ue s [0] t o va l ue s [c ur r e nt - 1]
are sorted and <= to any values in
va l ue s [c ur r e nt] t o va l ue s [SI ZE–1]

Sorted part

Unsorted part

[c ur r e nt - 1]
[c ur r e nt]

[SI ZE–1]

va l ue s

•

•

•

•

•

•

10.2 Simple Sorts | 679

Here is the code for the mi nI nde x and s e l e c t i onSor t methods. Because they are
placed directly in our test harness class, a class with a main method, they are declared
as static methods.

s t a t i c i nt mi nI nde x(i nt s t a r t I nde x, i nt e ndI nde x)
/ / Re t ur ns t he i nde x of t he s ma l l e s t va l ue i n
/ / va l ue s [s t a r t I nde x] t o va l ue s [e ndI nde x] .
{

i nt i nde xOf Mi n = s t a r t I nde x;
f or (i nt i nde x = s t a r t I nde x + 1; i nde x <= e ndI nde x; i nde x++)

i f (va l ue s [i nde x] < va l ue s [i nde xOf Mi n])
i nde xOf Mi n = i nde x;

r e t ur n i nde xOf Mi n;
}

s t a t i c voi d s e l e c t i onSor t ()
/ / Sor t s t he va l ue s a r r a y us i ng t he s e l e c t i on s or t a l gor i t hm.
{

i nt e ndI nde x = SI ZE - 1;
f or (i nt c ur r e nt = 0; c ur r e nt < e ndI nde x; c ur r e nt ++)

s wa p(c ur r e nt , mi nI nde x(c ur r e nt , e ndI nde x)) ;
}

Let’s change the main body of the test harness:

i ni t Va l ue s () ;
pr i nt Va l ue s () ;
Sys t e m. out . pr i nt l n(" va l ue s i s s or t e d: " + i s Sor t e d()) ;

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 679

680 | Chapter 10: Sorting and Searching Algorithms

Sys t e m. out . pr i nt l n() ;

s e l e c t i onSor t () ;
Sys t e m. out . pr i nt l n(" Se l e c t i on Sor t c a l l e d\ n") ;
pr i nt Va l ue s () ;
Sys t e m. out . pr i nt l n(" va l ue s i s s or t e d: " + i s Sor t e d()) ;
Sys t e m. out . pr i nt l n() ;

Now we get an output from the program that looks like this:

The values array is:
92 66 38 17 21 78 10 43 69 19
17 96 29 19 77 24 47 01 97 91
13 33 84 93 49 85 09 54 13 06
21 21 93 49 67 42 25 29 05 74
96 82 26 25 11 74 03 76 29 10

values is sorted: false

Selection Sort called

The values array is:
01 03 05 06 09 10 10 11 13 13
17 17 19 19 21 21 21 24 25 25
26 29 29 29 33 38 42 43 47 49
49 54 66 67 69 74 74 76 77 78
82 84 85 91 92 93 93 96 96 97

values is sorted: true

We can test all of our sorting methods using this same approach.

Analyzing the Selection Sort
Now let’s try measuring the amount of “work” required by this algorithm. We describe
the number of comparisons as a function of the number of elements in the array—that
is, SI ZE. To be concise, in this discussion we refer to SI ZE as N.

The comparison operation is in the mi nI nde x method. We know from the loop con-
dition in the s e l e c t i onSor t method that mi nI nde x is called N 1 times. Within
mi nI nde x, the number of comparisons varies, depending on the values of s t a r t I nde x
and e ndI nde x:

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 680

10.2 Simple Sorts | 681

Table 10.1 Number of Comparisons Required to Sort Arrays of Different Sizes
Using Selection Sort

Number of Elements Number of Comparisons

10 45
20 190
100 4,950
1,000 499,500
10,000 49,995,000

f or (i nt i nde x = s t a r t I nde x + 1; i nde x <= e ndI nde x; i nde x++)
i f (va l ue s [i nde x] < va l ue s [i nde xOf Mi n])

i nde xOf Mi n = i nde x;

In the first call to mi nI nde x, s t a r t I nde x is 0 and e ndI nde x is SI ZE - 1, so there
are N 1 comparisons; in the next call, there are N 2 comparisons; and so on;
until the last call, when there is only one comparison. The total number of compar-
isons is

(N 1) + (N 2) + (N 3) + .. . + 1 = N(N 1)/2

To accomplish our goal of sorting an array of N elements, the straight selection sort
requires N(N 1)/2 comparisons. The particular arrangement of values in the array
does not affect the amount of work done at all. Even if the array is in sorted order
before the call to s e l e c t i onSor t , the method still makes N(N 1)/2 comparisons.
Table 10.1 shows the number of comparisons required for arrays of various sizes.

How do we describe this algorithm in terms of Big-O notation? If we express
N(N 1)/2 as 1–2 N2 1–2 N, the complexity is easy to determine. In Big-O notation we
consider only the term 1–2 N2, because it increases fastest relative to N. Further, we ignore
the constant, 1–2 , making this algorithm O(N2). Thus, for large values of N, the computa-
tion time is approximately proportional to N2. Looking at Table 10.1, we see that multi-
plying the number of elements by 10 increases the number of comparisons by a factor
of more than 100; that is, the number of comparisons is multiplied by approximately
the square of the increase in the number of elements. Looking at this table makes us
appreciate why sorting algorithms are the subject of so much attention: Using s e l e c -
t i onSor t to sort an array of 1,000 elements requires almost a half million compar-
isons!

The identifying feature of a selection sort is that, on each pass through the loop,
one element is put into its proper place. In the straight selection sort, each iteration
finds the smallest unsorted element and puts it into its correct place. If we had made the
helper method find the largest value instead of the smallest one, the algorithm would

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 681

682 | Chapter 10: Sorting and Searching Algorithms

have sorted in descending order. We could also have made the loop go down from
SI ZE - 1 to 1, putting the elements into the end of the array first. All of these
approaches are variations on the straight selection sort. The variations do not change
the basic way that the minimum (or maximum) element is found.

Bubble Sort
The bubble sort uses a different scheme for finding the minimum (or maximum) value.
Each iteration puts the smallest unsorted element into its correct place, but it also makes
changes in the locations of the other elements in the array. The first iteration puts the
smallest element in the array into the first array position. Starting with the last array
element, we compare successive pairs of elements, swapping whenever the bottom ele-
ment of the pair is smaller than the one above it. In this way the smallest element “bub-
bles up” to the top of the array.

Figure 10.3(a) shows the result of the first iteration through a five-element array.
The next iteration puts the smallest element in the unsorted part of the array into the

Figure 10.3 Example of a bubble sort (sorted elements are shaded)

36
24

3
12

6

[0]
[1]
[2]
[3]
[4]

va l ue s

(a)

36
24

3
6

12

[0]
[1]
[2]
[3]
[4]

va l ue s
36
24

3
6

12

[0]
[1]
[2]
[3]
[4]

va l ue s

(b)

36
3

24
6

12

[0]
[1]
[2]
[3]
[4]

va l ue s
3

36
24

6
12

[0]
[1]
[2]
[3]
[4]

va l ue s

(c)

(d)

OK

OK

3
36
24

6
12

[0]
[1]
[2]
[3]
[4]

va l ue s
3

36
24

6
12

[0]
[1]
[2]
[3]
[4]

va l ue s
3

36
6

24
12

[0]
[1]
[2]
[3]
[4]

va l ue s
3
6

36
24
12

[0]
[1]
[2]
[3]
[4]

va l ue s

3
6

36
24
12

[0]
[1]
[2]
[3]
[4]

va l ue s
3
6

36
12
24

[0]
[1]
[2]
[3]
[4]

va l ue s
3
6

12
36
24

[0]
[1]
[2]
[3]
[4]

va l ue s

3
6

12
36
24

[0]
[1]
[2]
[3]
[4]

va l ue s
3
6

12
24
36

[0]
[1]
[2]
[3]
[4]

va l ue s

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 682

10.2 Simple Sorts | 683

second array position, using the same technique, as shown in Figure 10.3(b). The rest of
the sorting process is represented in Figure 10.3(c) and (d). In addition to putting one
element into its proper place, each iteration can cause some intermediate changes in the
array. Also note that as with selection sort, the last iteration effectively puts two ele-
ments into their correct places.

The basic algorithm for the bubble sort follows:

The overall approach is similar to that followed in the s e l e c t i onSor t . The
unsorted part of the array is the area from va l ue s [c ur r e nt] to va l ue s [SI ZE - 1] .
The value of c ur r e nt begins at 0, and we loop until c ur r e nt reaches SI ZE - 2, with
c ur r e nt incremented in each iteration. On entrance to each iteration of the loop body,
the first c ur r e nt values are already sorted, and all the elements in the unsorted part of
the array are greater than or equal to the sorted elements.

The inside of the loop body is different, however. Each iteration of the loop “bub-
bles up” the smallest value in the unsorted part of the array to the c ur r e nt position.
The algorithm for the bubbling task is

A snapshot of the array during this algorithm is shown in Figure 10.4. We use the
s wa p method as before. The code for methods bubbl e Up and bubbl e Sor t follows. The
code can be tested using our test harness.

BubbleSort
Set current to the index of first element in the array
while more elements in unsorted part of array

“Bubble up” the smallest element in the unsorted part, causing intermediate swaps as needed
Shrink the unsorted part of the array by incrementing current

bubbleUp(startIndex, endIndex)
for index going from endIndex DOWNTO startIndex +1

if values[index] < values[index 1]
Swap the value at index with the value at index 1

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 683

684 | Chapter 10: Sorting and Searching Algorithms

Figure 10.4 A snapshot of the bubble sort algorithm

[0]

sorted part: va l ue s [0] t o va l ue s [c ur r e nt - 1]

In Bubbl e Up:
Not yet examined: va l ue s [c ur r e nt] t o va l ue s [i nde x- 1]

Examined: va l ue s [i nde x+1] t o va l ue s [SI ZE- 1]
are all greater than va l ue s [i nde x]

[c ur r e nt - 1]
[c ur r e nt]

[i nde x- 1]
[i nde x]

[i nde x+1]

[SI ZE- 1]

va l ue s

•

•

•

•

•

•

•

•

•

s t a t i c voi d bubbl e Up(i nt s t a r t I nde x, i nt e ndI nde x)
/ / Swi t c he s a dj a c e nt pa i r s t ha t a r e out of or de r
/ / be t we e n va l ue s [s t a r t I nde x] t o va l ue s [e ndI nde x]
/ / be gi nni ng a t va l ue s [e ndI nde x] .
{

f or (i nt i nde x = e ndI nde x; i nde x > s t a r t I nde x; i nde x- -)
i f (va l ue s [i nde x] < va l ue s [i nde x - 1])

s wa p(i nde x, i nde x - 1) ;
}

s t a t i c voi d bubbl e Sor t ()
/ / Sor t s t he va l ue s a r r a y us i ng t he bubbl e s or t a l gor i t hm.
{

i nt c ur r e nt = 0;
whi l e (c ur r e nt < (SI ZE - 1))
{

bubbl e Up(c ur r e nt , SI ZE - 1) ;
c ur r e nt ++;

}
}

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 684

10.2 Simple Sorts | 685

Analyzing the Bubble Sort
Analyzing the work required by bubbl e Sor t is easy, because it is the same as for the
straight selection sort algorithm. The comparisons are in bubbl e Up, which is called
N 1 times. There are N 1 comparisons the first time, N 2 comparisons the second
time, and so on. Therefore, both bubbl e Sor t and s e l e c t i onSor t require the same
amount of work in terms of the number of comparisons. The bubbl e Sor t algorithm
does more than just make comparisons, however; s e l e c t i onSor t has only one data
swap per iteration, but bubbl e Sor t may do many additional data swaps.

What is the result of these intermediate data swaps? By reversing out-of-order pairs
of data as they are noticed, bubble sort can move several elements closer to their final
destination during each pass. Its possible that the method will get the array in sorted
order before N 1 calls to bubbl e Up. This version of the bubble sort, however, makes
no provision for stopping when the array is completely sorted. Even if the array is
already in sorted order when bubbl e Sor t is called, this method continues to call bub-
bl e Up (which changes nothing) N 1 times.

We could quit before the maximum number of iterations if bubbl e Up returns a
bool e a n flag, telling us when the array is sorted. Within bubbl e Up, we initially set a
variable s or t e d to t r ue ; then in the loop, if any swaps are made, we reset s or t e d to
f a l s e . If no elements have been swapped, we know that the array is already in order.
Now the bubble sort needs to make only one extra call to bubbl e Up when the array is
in order. This version of the bubble sort is as follows:

s t a t i c bool e a n bubbl e Up2(i nt s t a r t I nde x, i nt e ndI nde x)
/ / Swi t c he s a dj a c e nt pa i r s t ha t a r e out of or de r
/ / be t we e n va l ue s [s t a r t I nde x] t o va l ue s [e ndI nde x]
/ / be gi nni ng a t va l ue s [e ndI nde x] .
/ /
/ / Re t ur ns f a l s e i f a s wa p wa s ma de ; ot he r wi s e , r e t ur ns t r ue .
{

bool e a n s or t e d = t r ue ;
f or (i nt i nde x = e ndI nde x; i nde x > s t a r t I nde x; i nde x- -)

i f (va l ue s [i nde x] < va l ue s [i nde x - 1])
{

s wa p(i nde x, i nde x - 1) ;
s or t e d = f a l s e ;

}
r e t ur n s or t e d;

}

s t a t i c voi d s hor t Bubbl e ()
/ / Sor t s t he va l ue s a r r a y us i ng t he bubbl e s or t a l gor i t hm.
/ / The pr oc e s s s t ops a s s oon a s va l ue s i s s or t e d.
{

i nt c ur r e nt = 0;

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 685

686 | Chapter 10: Sorting and Searching Algorithms

bool e a n s or t e d = f a l s e ;
whi l e ((c ur r e nt < (SI ZE - 1)) && ! s or t e d)
{

s or t e d = bubbl e Up2(c ur r e nt , SI ZE - 1) ;
c ur r e nt ++;

}
}

The analysis of s hor t Bubbl e is more difficult. Clearly, if the array is already sorted
to begin with, one call to bubbl e Up tells us so. In this best-case scenario, s hor t Bubbl e
is O(N); only N 1 comparisons are required for the sort. But what if the original array
was actually sorted in descending order before the call to s hor t Bubbl e ? This is the
worst possible case: s hor t Bubbl e requires as many comparisons as bubbl e Sor t and
s e l e c t i onSor t , not to mention the “overhead”—all the extra swaps and setting and
resetting the s or t e d flag. Can we calculate an average case? In the first call to bub-
bl e Up, when c ur r e nt is 0, there are SI ZE 1 comparisons; on the second call, when
c ur r e nt is 1, there are SI ZE 2 comparisons. The number of comparisons in any call
to bubbl e Up is SI ZE c ur r e nt 1. If we let N indicate SI ZE and K indicate the
number of calls to bubbl e Up executed before s hor t Bubbl e finishes its work, the total
number of comparisons required is

A little algebra changes this to

In Big-O notation, the term that is increasing the fastest relative to N is 2KN. We
know that K is between 1 and N 1. On average, over all possible input orders, K is
proportional to N. Therefore, 2KN is proportional to N2; that is, the s hor t Bubbl e algo-
rithm is also O(N2).

Why do we even bother to mention the bubble sort algorithm if it is O(N2) and
requires extra data movements? Due to the extra intermediate swaps performed by the
bubble sort, it can quickly sort an array that is “almost” sorted. If the s hor t Bubbl e
variation is used, a bubble sort can be very efficient in this situation.

Insertion Sort
In Chapter 6, we created a sorted list by inserting each new element into its appropri-
ate place in an array. We can use a similar approach for sorting an array. The princi-
ple of the insertion sort is quite simple: Each successive element in the array to be
sorted is inserted into its proper place with respect to the other, already sorted ele-
ments. As with the previously mentioned sorting strategies, we divide our array into a
sorted part and an unsorted part. (Unlike with the straight selection and bubble sorts,

()/2 2 22KN K K− −

N N N−() + −() + −()1 2 3
1st call 2ndcall 3rdcalll th call

+ + −()L N K
K

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 686

10.2 Simple Sorts | 687

insertionSort
for count going from 1 through SIZE 1

insertElement(0, count)

InsertElement(startIndex, endIndex)
Set finished to false
Set current to endIndex
Set moreToSearch to true
while moreToSearch AND NOT finished

if values[current] < values[current 1]
swap(values[current], values[current 1])
Decrement current
Set moreToSearch to (current does not equal startIndex)

else
Set finished to true

there may be values in the unsorted part that are less than values in the sorted part.)
Initially, the sorted portion contains only one element: the first element in the array.
Now we take the second element in the array and put it into its correct place in the
sorted part; that is, va l ue s [0] and va l ue s [1] are in order with respect to
each other. Now the value in va l ue s [2] is put into its proper place, so va l ue s [0] t o
va l ue s [2] are in order with respect to each other. This process continues until all
elements have been sorted.

In Chapter 6, our strategy was to search for the insertion point from the beginning
of the array and to shift the elements from the insertion point down one slot to make
room for the new element. We can combine the searching and shifting by beginning at
the end of the sorted part of the array. We compare the element at va l ue s [c ur r e nt]
to the one before it. If it is less than its predecessor, we swap the two elements. We then
compare the element at va l ue s [c ur r e nt - 1] to the one before it, and swap if neces-
sary. The process stops when the comparison shows that the values are in order or we
have swapped into the first place in the array.

This approach was investigated in Exercise 29 in Chapter 6. Figure 10.5 illustrates
this process, which we describe in the following algorithm, and Figure 10.6 shows a
snapshot of the array during the algorithm.

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 687

688 | Chapter 10: Sorting and Searching Algorithms

Figure 10.5 Example of an insertion sort

36
10
24

6
32

[0]
[1]
[2]
[3]
[4]

va l ue s

(a)

(b)

(c)

(d)

OK

36
10
24

6
32

[0]
[1]
[2]
[3]
[4]

va l ue s
10
36
24

6
32

[0]
[1]
[2]
[3]
[4]

va l ue s

10
36
24

6
32

[0]
[1]
[2]
[3]
[4]

va l ue s
10
24
36

6
32

[0]
[1]
[2]
[3]
[4]

va l ue s

(e)
OK

6
10
24
36
32

[0]
[1]
[2]
[3]
[4]

va l ue s
6

10
24
32
36

[0]
[1]
[2]
[3]
[4]

va l ue s

10
24
36

6
32

[0]
[1]
[2]
[3]
[4]

va l ue s
10
24

6
36
32

[0]
[1]
[2]
[3]
[4]

va l ue s
10

6
24
36
32

[0]
[1]
[2]
[3]
[4]

va l ue s
6

10
24
36
32

[0]
[1]
[2]
[3]
[4]

va l ue s

Here are the coded versions of i ns e r t El e me nt and i ns e r t i onSor t :

s t a t i c voi d i ns e r t El e me nt (i nt s t a r t I nde x, i nt e ndI nde x)
/ / Upon c ompl e t i on, va l ue s [0] t o va l ue s [e ndI nde x] a r e s or t e d.
{

bool e a n f i ni s he d = f a l s e ;
i nt c ur r e nt = e ndI nde x;
bool e a n mor e ToSe a r c h = t r ue ;

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 688

10.2 Simple Sorts | 689

Figure 10.6 A snapshot of the insertion sort algorithm

[0]

Sorted part
va l ue s [0] t o va l ue s [c ur r e nt –1]

va l ue s [c ur r e nt] is inserted into
sorted portion

Nothing is known about
va l ue s [c ur r e nt +1] t o va l ue s [SI ZE–1]

[c ur r e nt - 1]
[c ur r e nt]

[SI ZE- 1]

va l ue s

•

•

•

•

•

•

whi l e (mor e ToSe a r c h && ! f i ni s he d)
{

i f (va l ue s [c ur r e nt] < va l ue s [c ur r e nt - 1])
{

s wa p(c ur r e nt , c ur r e nt - 1) ;
c ur r e nt - - ;
mor e ToSe a r c h = (c ur r e nt ! = s t a r t I nde x) ;

}
e l s e

f i ni s he d = t r ue ;
}

}

s t a t i c voi d i ns e r t i onSor t ()
/ / Sor t s t he va l ue s a r r a y us i ng t he i ns e r t i on s or t a l gor i t hm.
{

f or (i nt c ount = 1; c ount < SI ZE; c ount ++)
i ns e r t El e me nt (0, c ount) ;

}

Analyzing the Insertion Sort
The general case for this algorithm mirrors the s e l e c t i onSor t and the bubbl e Sor t ,
so the general case is O(N2). But as for s hor t Bubbl e , i ns e r t i onSor t has a best case:
The data are already sorted in ascending order. When the data are in ascending order,
i ns e r t El e me nt is called N times, but only one comparison is made each time and no
swaps are necessary. The maximum number of comparisons is made only when the ele-
ments in the array are in reverse order.

If we know nothing about the original order of the data to be sorted, s e l e c t i on-
Sor t , s hor t Bubbl e , and i ns e r t i onSor t are all O(N2) sorts and are very time
consuming for sorting large arrays. Several sorting methods that work better when N is
large are presented in the next section.

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 689

690 | Chapter 10: Sorting and Searching Algorithms

Figure 10.7 Rationale for divide-and-conquer sorts

[0] [99]

data

[0] [49] [50] [99]

Cut list in half.

 N = 50 N = 50
(N)2 + (N)2 To sort

+ N To merge
= (50)2 + (50)2 + 100
= 5100

N 2 = (100)2 = 10,000

• • • • • •

N = 100

mergeSort
Cut the array in half
Sort the left half
Sort the right half
Merge the two sorted halves into one sorted array

10.3O(N log2N) Sorts

The sorting algorithms covered in Section 10.2 are all O(N2). Considering how rapidly N2

grows as the size of the array increases, can’t we do better? We note that N2 is a lot
larger than (1–2 N)2 + (1–2 N)2. If we could cut the array into two pieces, sort each segment,
and then merge the two back together, we should end up sorting the entire array with a
lot less work. An example of this approach is shown in Figure 10.7.

The idea of “divide and conquer” has been applied to the sorting problem in differ-
ent ways, resulting in a number of algorithms that can do the job much more efficiently
than O(N2). In fact, there is a category of sorting algorithms that are O(N log2N). We
examine three of these algorithms here: me r ge Sor t , qui c kSor t , and he a pSor t . As
you might guess, the efficiency of these algorithms is achieved at the expense of the
simplicity seen in the straight selection, bubble, and insertion sorts.

Merge Sort
The merge sort algorithm is taken directly from the idea presented above.

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 690

10.3 O(N log2 N) Sorts | 691

mergeSort—Recursive
Cut the array in half
mergeSort the left half
mergeSort the right half
Merge the two sorted halves into one sorted array

Merging the two halves together is a O(N) task: We merely go through the sorted
halves, comparing successive pairs of values (one in each half) and putting the smaller
value into the next slot in the final solution. Even if the sorting algorithm used for each
half is O(N2), we should see some improvement over sorting the whole array at once, as
indicated in Figure 10.7.

Actually, because me r ge Sor t is itself a sorting algorithm, we might as well use it
to sort the two halves. That’s right—we can make me r ge Sor t a recursive method and let
it call itself to sort each of the two subarrays:

This is the general case, of course. What is the base case, the case that does not
involve any recursive calls to me r ge Sor t ? If the “half” to be sorted doesn’t hold more
than one element, we can consider it already sorted and just return.

Let’s summarize me r ge Sor t in the format we used for other recursive algorithms.
The initial method call would be me r ge Sor t (0, SI ZE - 1) .

Method mergeSort(first, last)

Definition: Sorts the array elements in ascending order.
Size: last first + 1
Base case: If size less than 2, do nothing.
General case: Cut the array in half.

mergeSort the left half.
mergeSort the right half.
Merge the sorted halves into one sorted array.

Cutting the array in half is simply a matter of finding the midpoint between the
first and last indexes:

mi ddl e = (f i r s t + l a s t) / 2 ;

Then, in the smaller-caller tradition, we can make the recursive calls to me r ge Sor t :

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 691

692 | Chapter 10: Sorting and Searching Algorithms

Figure 10.8 Strategy for merging two sorted arrays

1 3 7 11 12 2 4 6

1 < 2, so move from array1 to final Array

2 < 3, so move from array2 to final Array

array2 is finished, so move remainder
of array1 to final Array

6 < 7, so move from array2 to final Array

array1

1

2

3

4

6

7

11

12

finalArray

array2

.

.

.

me r ge Sor t (f i r s t , mi ddl e) ;
me r ge Sor t (mi ddl e + 1, l a s t) ;

So far this is simple enough. Now we just have to merge the two halves and we’re done.

Merging the Sorted Halves
Obviously, all the serious work takes place in the merge step. Let’s first look at the gen-
eral algorithm for merging two sorted arrays, and then we can look at the specific prob-
lem of our subarrays.

To merge two sorted arrays, we compare successive pairs of elements, one from
each array, moving the smaller of each pair to the “final” array. We can stop when one
array runs out of elements, and then move all of the remaining elements from the other
array to the final array. Figure 10.8 illustrates the general algorithm. In our specific
problem, the two “arrays” to be merged are actually subarrays of the original array (Fig-
ure 10.9). Just as in Figure 10.8, where we merged array1 and array2 into a third array,
we need to merge our two subarrays into some auxiliary structure. We need this struc-
ture, another array, only temporarily. After the merge step, we can copy the now-sorted
elements back into the original array. The entire process is shown in Figure 10.10.

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 692

10.3 O(N log2 N) Sorts | 693

Figure 10.9 Two subarrays

values

left
First

Left part Right part

left
Last

right
First

right
Last

.

[][][][]
1 3 7 11 12 2 4 6

Figure 10.10 Merging sorted halves

left
Last[][]

1 3 7 11 12 2 4 6

values
left
First

right
First

right
Last

.

1 2 3 4 6 7 11 12

tempArray

.

1 2 3 4 6 7 11 12

values

.

[] []

Let’s specify a method, me r ge , to do this task:

merge(int leftFirst, int leftLast, int rightFirst, int rightLast)

Method: Merges two sorted subarrays into a single
sorted piece of the array

Preconditions: values[leftFirst] to values[leftLast] are sorted
values[rightFirst] to values[rightLast] are sorted

Postcondition: values[leftFirst] to values[rightLast] are sorted

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 693

694 | Chapter 10: Sorting and Searching Algorithms

merge (leftFirst, leftLast, rightFirst, rightLast)
(uses a local array, tempArray)

Set index to leftFirst
while more elements in left half AND more elements in right half

if values[leftFirst] < values[rightFirst]
Set tempArray[index] to values[leftFirst]
Increment leftFirst

else
Set tempArray[index] to values[rightFirst]
Increment rightFirst

Increment index
Copy any remaining elements from left half to tempArray
Copy any remaining elements from right half to tempArray
Copy the sorted elements from tempArray back into values

Here is the algorithm for me r ge :

In the coding of method me r ge , we use l e f t Fi r s t and r i ght Fi r s t to indicate
the “current” position in the left and right halves, respectively. Because these variables
are values of the primitive type i nt and not objects, copies of these parameters are
passed to method me r ge , rather than references to the parameters. These copies are
changed in the method; changing the copies does not affect the original values. Both of
the “copy any remaining elements” loops are included. During the execution of this
method, one of these loops never executes. Can you explain why?

s t a t i c voi d me r ge (i nt l e f t Fi r s t , i nt l e f t La s t , i nt r i ght Fi r s t , i nt r i ght La s t)
/ / Pr e c ondi t i ons : va l ue s [l e f t Fi r s t] t o va l ue s [l e f t La s t] a r e s or t e d.
/ / va l ue s [r i ght Fi r s t] t o va l ue s [r i ght La s t] a r e s or t e d.
/ /
/ / Sor t s va l ue s [l e f t Fi r s t] t o va l ue s [r i ght La s t] by me r gi ng t he t wo s uba r r a ys .
{

i nt [] t e mpAr r a y = ne w i nt [SI ZE] ;
i nt i nde x = l e f t Fi r s t ;
i nt s a ve Fi r s t = l e f t Fi r s t ; / / t o r e me mbe r whe r e t o c opy ba c k

whi l e ((l e f t Fi r s t <= l e f t La s t) && (r i ght Fi r s t <= r i ght La s t))
{

i f (va l ue s [l e f t Fi r s t] < va l ue s [r i ght Fi r s t])
{

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 694

10.3 O(N log2 N) Sorts | 695

t e mpAr r a y[i nde x] = va l ue s [l e f t Fi r s t] ;
l e f t Fi r s t ++;

}
e l s e
{

t e mpAr r a y[i nde x] = va l ue s [r i ght Fi r s t] ;
r i ght Fi r s t ++;

}
i nde x++;

}

whi l e (l e f t Fi r s t <= l e f t La s t)
/ / Copy r e ma i ni ng e l e me nt s f r om l e f t ha l f .

{
t e mpAr r a y[i nde x] = va l ue s [l e f t Fi r s t] ;
l e f t Fi r s t ++;
i nde x++;

}

whi l e (r i ght Fi r s t <= r i ght La s t)
/ / Copy r e ma i ni ng e l e me nt s f r om r i ght ha l f .
{

t e mpAr r a y[i nde x] = va l ue s [r i ght Fi r s t] ;
r i ght Fi r s t ++;
i nde x++;

}

f or (i nde x = s a ve Fi r s t ; i nde x <= r i ght La s t ; i nde x++)
va l ue s [i nde x] = t e mpAr r a y[i nde x] ;

}

As we said, most of the work occurs in the merge task. The actual me r ge Sor t method is
short and simple:

s t a t i c voi d me r ge Sor t (i nt f i r s t , i nt l a s t)
/ / Sor t s t he va l ue s a r r a y us i ng t he me r ge s or t a l gor i t hm.
{

i f (f i r s t < l a s t)
{

i nt mi ddl e = (f i r s t + l a s t) / 2;
me r ge Sor t (f i r s t , mi ddl e) ;
me r ge Sor t (mi ddl e + 1, l a s t) ;
me r ge (f i r s t , mi ddl e , mi ddl e + 1, l a s t) ;

}
}

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 695

696 | Chapter 10: Sorting and Searching Algorithms

Figure 10.11 Analysis of the merge sort algorithm with N= 16

1 1

2 2

4

8 8

4 4 4

2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1

16

l og

216 = 4 l e ve l s of me r gi ng

Analyzing mergeSort
The me r ge Sor t method splits the original array into two halves. It first sorts the first
half of the array; it then sorts the second half of the array using the same approach;
finally it merges the two halves. To sort the first half of the array, it follows the same
approach of splitting and merging. It does likewise for the second half. During the sort-
ing process, the splitting and merging operations all become intermingled. Analysis is
simplified if we imagine that all of the splitting occurs first, followed by all of the merg-
ing—we can view the process this way without affecting the correctness of the algo-
rithm.

We view the me r ge Sor t algorithm as continually dividing the original array (of
size N) in two, until it has created N one-element subarrays. Figure 10.11 shows this
point of view for an array with an original size of 16. The total work needed to divide
the array in half, over and over again until we reach subarrays of size 1, is O(N). After
all, we end up with N subarrays of size 1.

Each subarray of size 1 is obviously a sorted subarray. The real work of the algo-
rithm involves merging the smaller sorted subarrays back into the larger sorted
subarrays. To merge two sorted subarrays of size X and size Y into a single sorted
subarray using the me r ge operation requires O(X + Y) steps. We can see this because
each time through the while loops of the me r ge method we advance either the l e f t -
Fi r s t index or the r i ght Fi r s t index by 1. Because we stop processing when these
indexes become greater than their “last” counterparts, we know that we take a total of
(l e f t La s t - l e f t Fi r s t + 1) + (r i ght La s t - r i ght Fi r s t + 1) steps. This
expression represents the sum of the lengths of the two subarrays being processed.

How many times must we perform the me r ge operation? And what are the sizes of
the subarrays involved? Let’s work from the bottom up. The original array of size N is

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 696

10.3 O(N log2 N) Sorts | 697

eventually split into N subarrays of size 1. Merging two of those subarrays into a
subarray of size 2 requires O(1 + 1) = O(2) steps, based on the analysis of the preceding
paragraph. That is, it requires a small constant number of steps in each case. We must
perform this merge operation a total of 1–2 N times (we have N one-element subarrays and
we are merging them two at a time). Thus the total number of steps to create all of the
sorted two-element subarrays is O(N) because (2 * 1–2 N = N). Now we repeat this process
to create four-element subarrays. It takes four steps to merge two two-element subar-
rays. We must perform this merge operation a total of 1–4 N times (we have 1–2 N two-
element subarrays and we are merging them two at a time). Thus the total number of
steps to create all of the sorted four-element subarrays is also O(N) because (4 * 1–4 N = N).
The same reasoning leads us to conclude that each of the other levels of merging
requires O(N) steps—at each level the sizes of the subarrays double, but the number of
subarrays is cut in half, balancing them out.

We now know that it takes O(N) total steps to perform merging at each “level” of
merging. How many levels are there? The number of levels of merging is equal to the
number of times we can split the original array in half. If the original array is size N, we
have log2N levels. (This is the same as the analysis of the binary search algorithm in
Section 6.6.) For example, in Figure 10.11 the size of the original array is 16 and the
number of levels of merging is 4.

Because we have log2N levels, and we require O(N) steps at each level, the total cost
of the merge operation is O(N log2N). Because the splitting phase was only O(N), we
conclude that the merge sort algorithm is O(N log2N). Table 10.2 illustrates that, for
large values of N, O(N log2N) is a big improvement over O(N2).

A disadvantage of me r ge Sor t is that it requires an auxiliary array that is as large
as the original array to be sorted. If the array is large and space is a critical factor, then
this sort may not be an appropriate choice. Next we discuss two O(N log2N) sorts that
move elements around in the original array and do not need an auxiliary array.

Table 10.2 Comparing N2 and N log2N

N log2N N2 N log2N

32 5 1,024 160
64 6 4,096 384
128 7 16,384 896
256 8 65,536 2,048
512 9 262,144 4,608
1,024 10 1,048,576 10,240
2,048 11 4,194,304 22,528
4,096 12 16,777,216 49,152

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 697

698 | Chapter 10: Sorting and Searching Algorithms

Figure 10.12 Ordering a list using the quick sort algorithm

A . . . L

A . . . Z

M . . . Z

G . . . LA . . . F S . . . ZM . . . R

Quick Sort
Similar to the merge sort, the quick sort is a divide-and-conquer algorithm, which is
inherently recursive. If we were given a large stack of final exams to sort by name, we
might use the following approach (see Figure 10.12): Pick a splitting value—say, L—and
divide the stack of tests into two piles, A–L and M–Z. (The two piles do not necessarily
contain the same number of tests.) Then take the first pile and subdivide it into two
piles, A–F and G–L. The A–F pile can be further broken down into A–C and D–F. This
division process goes on until the piles are small enough to be easily sorted. The same
process is applied to the M–Z pile.

Eventually, all the small sorted piles can be collected one on top of the other to pro-
duce a sorted set of tests.

This strategy is recursive: On each attempt to sort the pile of tests, the pile is
divided, and then the same approach is used to sort each of the smaller piles (a smaller
case). This process continues until the small piles do not need to be further divided (the
base case). The parameter list of the qui c kSor t method reflects the part of the list that
is currently being processed; we pass the first and last indexes that define the part of
the array to be processed on this call. The initial call to qui c kSor t is

qui c kSor t (0, SI ZE - 1) ;

Method quickSort(first, last)

Definition: Sorts the elements in subarray values[first]
to values[last].

Size: last first + 1
Base case: If size less than 2, do nothing.
General case: Split the array according to splitting value.

quickSort the elements <= splitting value.
quickSort the elements > splitting value.

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 698

10.3 O(N log2 N) Sorts | 699

quickSort
if there is more than one element in values[first] to values[last]

Select splitVal
Split the array so that

values[first] to values[splitPoint 1] <= splitVal
values[splitPoint] = splitVal
values[splitPoint + 1] to values[last] > splitVal

quickSort the left subarray
quickSort the right subarray

As you can see, the algorithm depends on the selection of a “split value,” called
s pl i t Va l , that is used to divide the array into two subarrays. How do we select s pl i t -
Va l ? One simple solution is to use the value in va l ue s [f i r s t] as the splitting value.
(We show a better solution later.)

We create a helper method s pl i t , to rearrange the array elements as planned. After
the call to s pl i t , all of the elements that are less than or equal to s pl i t Va l appear on
the left side of the array and all of the elements that are greater than s pl i t Va l appear
on the right side of the array.

The two subarrays meet at s pl i t Poi nt , the index of the last element that is less
than or equal to s pl i t Va l . We don’t know the value of s pl i t Poi nt until the splitting
process is complete. Its value is returned by s pl i t . We can then swap s pl i t Va l with
the value at s pl i t Poi nt .

6

[first] [splitPoint]

smaller or equal values larger values

[last]

8 9 10 14 20 60 11

9

[first]

smaller or equal values larger values

[last]

8 6 10 14 20 60 11

[splitPoint]

9

[first] [last]

splitVal = 9

20 6 10 14 8 60 11

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 699

700 | Chapter 10: Sorting and Searching Algorithms

Our recursive calls to qui c kSor t use this index (s pl i t Poi nt) to reduce the size of
the problem in the general case.

qui c kSor t (f i r s t , s pl i t Poi nt - 1) sorts the left subarray. qui c kSor t (s pl i t -
Poi nt + 1, l a s t) sorts the right subarray. s pl i t Va l is already in its correct position
in va l ue s [s pl i t Poi nt] .

What is the base case? When the segment being examined holds fewer than two
elements, we do not need to go on. So “there is more than one element in
va l ue s [f i r s t] t o va l ue s [l a s t] ” can be translated into “i f (f i r s t < l a s t) ”. We
can now code our qui c kSor t method.

s t a t i c voi d qui c kSor t (i nt f i r s t , i n t l a s t)
{

i f (f i r s t < l a s t)
{

i nt s pl i t Poi nt ;

s pl i t Poi nt = s pl i t (f i r s t , l a s t) ;
/ / va l ue s [f i r s t] t o va l ue s [s pl i t Poi nt - 1] <= s pl i t Va l
/ / va l ue s [s pl i t Poi nt] = s pl i t Va l
/ / va l ue s [s pl i t Poi nt +1] t o va l ue s [l a s t] > s pl i t Va l

qui c kSor t (f i r s t , s pl i t Poi nt - 1) ;
qui c kSor t (s pl i t Poi nt + 1, l a s t) ;

}
}

Now we must develop our splitting algorithm. We must find a way to get all of the
elements equal to or less than s pl i t Va l on one side of s pl i t Va l and the elements
greater than s pl i t Va l on the other side.

We do so by moving the indexes, f i r s t and l a s t , toward the middle of the array,
looking for elements that are on the wrong side of the split point and swapping them
(Figure 10.13). While this operation is proceeding, the s pl i t Va l remains in the f i r s t
position of the subarray being processed. As a final step, we swap it with the value at
the s pl i t Poi nt ; therefore, we save the original value of f i r s t in a local variable,
s a ve F. (See Figure 10.13a.)

We start out by moving f i r s t to the right, toward the middle, comparing va l -
ue s [f i r s t] to s pl i t Va l . If va l ue s [f i r s t] is less than or equal to s pl i t Va l , we
keep incrementing f i r s t ; otherwise, we leave f i r s t where it is and begin moving
l a s t toward the middle. (See Figure 10.13b.)

Now va l ue s [l a s t] is compared to s pl i t Va l . If it is greater than s pl i t Va l , we
continue decrementing l a s t ; otherwise, we leave l a s t in place. (See Figure 10.13c.) At
this point, it is clear that both va l ue s [l a s t] and va l ue s [f i r s t] are on the wrong sides
of the array. The elements to the left of va l ue s [f i r s t] and to the right of va l ue s [l a s t]
are not necessarily sorted; they are just on the correct side of the array with respect to

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 700

10.3 O(N log2 N) Sorts | 701

Figure 10.13 The split operation

9 20 6 10 14 8 60 11

(a) Initialization. Note that s pl i t Va l = va l ue s [f i r s t] = 9.

[s a ve F]
[f i r s t]

[l a s t]

9 20 6 10 14 8 60 11

(b) Increment f i r s t until va l ue s [f i r s t] >s pl i t Va l .

[s a ve F] [f i r s t] [l a s t]

9 20 6 10 14 8 60 11

(c) Decrement l a s t until va l ue s [l a s t] <= s pl i t Va l .

[s a ve F] [f i r s t] [l a s t]

9 8 6 10 14 20 60 11

(d) Swap va l ue s [f i r s t] and va l ue s [l a s t] ; move f i r s t and l a s t
 toward each other.

[s a ve F] [l a s t][f i r s t]

9 8 6 10 14 20 60 11

(e) Increment f i r s t until va l ue s [f i r s t] >s pl i t Va l or f i r s t >l a s t .
 Decrement l a s t until va l ue s [l a s t] <= s pl i t Va l or f i r s t >l a s t .

[s a ve F] [l a s t] [f i r s t]

6 8 9 10 14 20 60 11

(f) f i r s t >l a s t so no swap occurs within the loop.
 Swap va l ue s [s a ve F] and va l ue s [l a s t] .

[s a ve F] [l a s t]
(s pl i t Poi nt)

s pl i t Va l . To put va l ue s [f i r s t] and va l ue s [l a s t] into their correct sides, we merely
swap them; we then increment f i r s t and decrement l a s t . (See Figure 10.13d.)

Now we repeat the whole cycle, incrementing f i r s t until we encounter a value
that is greater than s pl i t Va l , then decrementing l a s t until we encounter a value that
is less than or equal to s pl i t Va l . (See Figure 10.13e.)

When does the process stop? When f i r s t and l a s t meet each other, no further
swaps are necessary. Where they meet determines the s pl i t Poi nt . This is the location

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 701

702 | Chapter 10: Sorting and Searching Algorithms

where s pl i t Va l belongs, so we swap va l ue s [s a ve F] , which contains l a s t , with the ele-
ment at va l ue s [l a s t] (Figure 10.13f). The index l a s t is returned from the method, to be
used by qui c kSor t as the s pl i t poi nt for the next pair of recursive calls.

s t a t i c i nt s pl i t (i nt f i r s t , i n t l a s t)
{

i nt s pl i t Va l = va l ue s [f i r s t] ;
i nt s a ve F = f i r s t ;
bool e a n onCor r e c t Si de ;

f i r s t ++;
do
{

onCor r e c t Si de = t r ue ;
whi l e (onCor r e c t Si de) / / move f i r s t t owa r d l a s t

i f (va l ue s [f i r s t] > s pl i t Va l)
onCor r e c t Si de = f a l s e ;

e l s e
{

f i r s t ++;
onCor r e c t Si de = (f i r s t <= l a s t) ;

}

onCor r e c t Si de = (f i r s t <= l a s t) ;
whi l e (onCor r e c t Si de) / / move l a s t t owa r d f i r s t

i f (va l ue s [l a s t] <= s pl i t Va l)
onCor r e c t Si de = f a l s e ;

e l s e
{

l a s t - - ;
onCor r e c t Si de = (f i r s t <= l a s t) ;

}

i f (f i r s t < l a s t)
{

s wa p(f i r s t , l a s t) ;
f i r s t ++;
l a s t - - ;

}
} whi l e (f i r s t <= l a s t) ;

s wa p(s a ve F, l a s t) ;
r e t ur n l a s t ;

}

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 702

10.3 O(N log2 N) Sorts | 703

What happens if our splitting value is the largest value or the smallest value in the
segment? The algorithm still works correctly, but because the split is lopsided, it is not
so quick.

Is this situation likely to occur? That depends on how we choose our splitting value
and on the original order of the data in the array. If we use va l ue s [f i r s t] as the
splitting value and the array is already sorted, then every split is lopsided. One side con-
tains one element, whereas the other side contains all but one of the elements. Thus our
qui c kSor t method is not a “quick” sort. Our splitting algorithm works best for an array
in random order.

It is not unusual, however, to want to sort an array that is already in nearly sorted
order. If this is the case, a better splitting value would be the middle value:

va l ue s [(f i r s t + l a s t) / 2]

This value could be swapped with va l ue s [f i r s t] at the beginning of the method.

Analyzing quickSort
The analysis of qui c kSor t is very similar to that of me r ge Sor t . On the first call, every
element in the array is compared to the dividing value (the “split value”), so the work
done is O(N). The array is divided into two subarrays (not necessarily halves), which are
then examined.

Each of these pieces is then divided in two, and so on. If each piece is split approxi-
mately in half, there are O(log2N) levels of splits. At each level, we make O(N) compar-
isons. Thus the quick sort is also an O(N log2N) algorithm, which is quicker than the
O(N2) sorts we discussed at the beginning of this chapter.

But the quick sort isn’t always quicker. We have log2N levels of splits if each split
divides the segment of the array approximately in half. As we’ve seen, the array divi-
sion of the quick sort is sensitive to the order of the data—that is, to the choice of the
splitting value.

What happens if the array is already sorted when our version of qui c kSor t is
called? The splits are very lopsided, and the subsequent recursive calls to qui c kSor t
break our data into a segment containing one element and a segment containing all the
rest of the array. This situation produces a sort that is not at all quick. In fact, there are
N 1 levels; in this case, the complexity of the quick sort is O(N2).

Such a situation is very unlikely to occur by chance. By way of analogy, consider the
odds of shuffling a deck of cards and coming up with a sorted deck. Of course, in some
applications we may know that the original array is likely to be sorted or nearly sorted. In
such cases we would want to use either a different splitting algorithm or a different sort—
maybe even s hor t Bubbl e !

What about space requirements? A quick sort does not require an extra array, as a merge
sort does. Are there any extra space requirements, besides the few local variables? Yes—recall
that the quick sort uses a recursive approach. Many levels of recursion may be “saved” on the
system stack at any time. On average, the algorithm requires O(log2N) extra space to hold this
information and in the worst case requires O(N) extra space, the same as a merge sort.

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 703

704 | Chapter 10: Sorting and Searching Algorithms

Heap Sort
In each iteration of the selection sort, we searched the array for the next-smallest ele-
ment and put it into its correct place in the array. Another way to write a selection sort
is to find the maximum value in the array and swap it with the last array element, then
find the next-to-largest element and put it into its place, and so on. Most of the work
involved in this sorting algorithm comes from searching the remaining part of the array
in each iteration, looking for the maximum value.

In Chapter 9, we discussed the heap, a data structure with a very special feature: We
always know where to find its largest element. Because of the order property of heaps,
the maximum value of a heap is in the root node. We can take advantage of this situa-
tion by using a heap to help us sort data. The general approach of the heap sort is as
follows:

1. Take the root (maximum) element off the heap, and put it into its place.
2. Reheap the remaining elements. (This puts the next-largest element into the root

position.)
3. Repeat until there are no more elements.

The first part of this algorithm sounds a lot like the straight selection sort. What
makes the heap sort rapid is the second step: finding the next-largest element. Because
the shape property of heaps guarantees a binary tree of minimum height, we make only
O(log2N) comparisons in each iteration, as compared with O(N) comparisons in each
iteration of the selection sort.

Building a Heap
By now you are probably protesting that we are dealing with an unsorted array of ele-
ments, not a heap. Where does the original heap come from? Before we go on, we have
to convert the unsorted array, va l ue s , into a heap.

Let’s look at how the heap relates to our array of unsorted elements. In Chapter 9,
we saw how heaps can be represented in an array with implicit links. Because of the
shape property, we know that the heap elements take up consecutive positions in the
array. In fact, the unsorted array of data elements already satisfies the shape property of
heaps. Figure 10.14 shows an unsorted array and its equivalent tree.

We also need to make the unsorted array elements satisfy the order property of
heaps. First, let’s discover whether any part of the tree already satisfies the order prop-
erty. All of the leaf nodes (subtrees with only a single node) are heaps. In Figure
10.15(a), the subtrees whose roots contain the values 19, 7, 3, 100, and 1 are heaps
because they consist solely of root nodes.

Now let’s look at the first nonleaf node, the one containing the value 2 (Figure
10.15b). The subtree rooted at this node is not a heap, but it is almost a heap—all of the
nodes except the root node of this subtree satisfy the order property. We know how to
fix this problem. In Chapter 9, we developed a heap utility method, r e he a pDown, that
we can use to handle this exact situation. Given a tree whose elements satisfy the order
property of heaps, except that the tree has an empty root, and a value to insert into the
heap, r e he a pDown rearranges the nodes, leaving the (sub)tree containing the new

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 704

10.3 O(N log2 N) Sorts | 705

Figure 10.14 An unsorted array and its tree

719

2 3 100 1

25

3617

25[0]

17[1]

36[2]

2[3]

3[4]

100[5]

1[6]

19[7]

7[8]

values

element as a heap. We can just invoke r e he a pDown on the subtree, passing it the cur-
rent root value of the subtree as the element to be inserted.

We apply this method to all the subtrees on this level, and then we move up a level
in the tree and continue reheaping until we reach the root node. After r e he a pDown has
been called for the root node, the entire tree should satisfy the order property of heaps.
Figure 10.15 illustrates this heap-building process; Figure 10.16 shows the changing
contents of the array.

In Chapter 9, we defined r e he a pDown as a private method of the He a p class. There,
the method had only one parameter: the element being inserted into the heap. It always
worked on the entire tree; that is, it always started with an empty node at index 0 and
assumed that the last tree index of the heap was l a s t I nde x. Here, we use a slight vari-
ation: r e he a pDown is a static method of our Sor t s class that takes a second parame-
ter—the index of the node that is the root of the subtree that is to be made into a heap.
This is an easy change; if we call the parameter r oot , we simply add the following
statement to the beginning of the r e he a pDown method:

i nt hol e = r oot ; / / Cur r e nt i nde x of hol e

The algorithm for building a heap is summarized here:

buildHeap
for index going from first nonleaf node up to the root node

reheapDown(values[index], index)

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 705

706 | Chapter 10: Sorting and Searching Algorithms

Figure 10.15 The heap-building process

719

2 3 100 1

25

3617

(b)

719

2 3 100 1

25

3617

(a)

Heaps

72

19 3 36 1

25

10017

(d)

72

19 3 100 1

25

3617

(c)

72

17 3 25 1

100

3619

(f) Tree now represents a heap

72

17 3 36 1

25

10019

(e)

Figure 10.16 Changing contents of the array

25

25

25
25

100

Original values

After index = 2
After index = 1
After index = 0
Tree is a heap.

After reheapDown
index = 3

[0]
36

36

100
100
36

[2]
100

100

36
36
25

[5]
17

17

17
19
19

[1]
2

19

19
17
17

[3]
19

2

2
2
2

[7]
3

3

3
3
3

[4]
1

1

1
1
1

[6]
7

7

7
7
7

[8]

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 706

10.3 O(N log2 N) Sorts | 707

We know where the root node is stored in our array representation of heaps:
va l ue s [0] . Where is the first nonleaf node? Because half the nodes of a complete binary
tree are leaves (prove this yourself), the first nonleaf node is found at position SI ZE/ 2 - 1.

Sorting Using the Heap
Now that we are satisfied that we can turn the unsorted array of elements into a heap,
let’s take another look at the sorting algorithm.

We can easily access the largest element from the original heap—it’s in the root node.
In our array representation of heaps, the location of the largest element is
va l ue s [0] . This value belongs in the last-used array position va l ue s [SI ZE - 1] ,
so we can just swap the values in these two positions. Because va l ue s [SI ZE - 1]
now contains the largest value in the array (its correct sorted value), we want to leave
this position alone. Now we are dealing with a set of elements, from va l ue s [0]
through va l ue s [SI ZE - 2] , that is almost a heap. We know that all of these elements
satisfy the order property of heaps, except (perhaps) the root node. To correct this condi-
tion, we call our heap utility, r e he a pDown. (But our original r e he a pDown method
assumed that the heap’s tree ends at position l a s t I nde x. We must again redefine
r e he a pDown, so that it now accepts three parameters, with the third being the ending
index of the heap. Once again the change is easy; the new code for r e he a pDown is
included in the Sor t s class.)

At this point we know that the next-largest element in the array is in the root node
of the heap. To put this element in its correct position, we swap it with the element in
va l ue s [SI ZE - 2] . Now the two largest elements are in their final correct positions,
and the elements in va l ue s [0] through va l ue s [SI ZE - 3] are almost a heap. We
call r e he a pDown again, and now the third-largest element is in the root of the heap.

We repeat this process until all of the elements are in their correct positions—that is,
until the heap contains only a single element, which must be the smallest element in the
array, in va l ue s [0] . This is its correct position, so the array is now completely sorted
from the smallest to the largest element. At each iteration, the size of the unsorted por-
tion (represented as a heap) gets smaller and the size of the sorted portion gets larger.
When the algorithm ends, the size of the sorted portion is the size of the original array.

The heap sort algorithm, as we have described it here, sounds like a recursive
process. Each time we swap and reheap a smaller portion of the total array. Because it
uses tail recursion, we can code the repetition just as clearly using a simple for loop. The
node-sorting algorithm is as follows:

Sort Nodes
for index going from last node up to next-to-root node

Swap data in root node with values[index]
reheapDown(values[0], 0, index - 1)

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 707

708 | Chapter 10: Sorting and Searching Algorithms

Method he a pSor t first builds the heap and then sorts the nodes, using the algo-
rithms just discussed.

s t a t i c voi d he a pSor t ()
/ / Pos t : The e l e me nt s i n t he a r r a y va l ue s a r e s or t e d by ke y
{

i nt i nde x;
/ / Conve r t t he a r r a y of va l ue s i nt o a he a p
f or (i nde x = SI ZE/ 2 - 1; i nde x >= 0; i nde x- -)

r e he a pDown(va l ue s [i nde x] , i nde x, SI ZE - 1) ;

/ / Sor t t he a r r a y
f or (i nde x = SI ZE - 1; i nde x >=1; i nde x- -)
{

s wa p(0, i nde x) ;
r e he a pDown(va l ue s [0] , 0 , i nde x - 1) ;

}
}

Figure 10.17 shows how each iteration of the sorting loop (the second for loop)
would change the heap created in Figure 10.16. Each line represents the array after one
operation. The sorted elements are shaded.

We entered the he a pSor t method with a simple array of unsorted values and
returned with an array of the same values sorted in ascending order. Where did the heap
go? The heap in he a pSor t is just a temporary structure, internal to the sorting algo-
rithm. It is created at the beginning of the method to aid in the sorting process, but then
is methodically diminished element by element as the sorted part of the array grows.
When the method ends, the sorted part fills the array and the heap has completely dis-
appeared. When we used heaps to implement priority queues in Chapter 9, the heap
structure stayed around for the duration of the use of the queue. The heap in he a pSor t ,
by contrast, is not a retained data structure. It exists only temporarily, during the exe-
cution of the he a pSor t method.

Analyzing heapSort
The code for method he a pSor t is very short—only a few lines of new code plus the helper
method r e he a pDown, which we developed in Chapter 9 (albeit slightly revised). These few

Unsorted
data in array

Enter heapSort

Same values
rearranged
into a heap
for sorting

Same values
reordered
(sorted)

Exit heapSort

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 708

10.3 O(N log2 N) Sorts | 709

Figure 10.17 Effect of he a pSor t on the array

100

2
25
1

values

swap
reheapDown

reheapDown
swap

swap

[0]
7

100
100
100

[8]
19

19
19
19

[1]
36

25
7
7

[2]
17

17
17
17

[3]
3

3
3
3

[4]
25

7
2
2

[5]
1

1
1

25

[6]
2

36
36

7
36

100
100

19
19

36
25

17
17

3
3

25
7

1
1

2
2

36
19

2
7
1

reheapDown

swap
reheapDown

reheapDown
swap

swap
100

100
100
100

17

3
3
3

7

7
2
2

1

1
1
7

3

17
17
17

2

19
19
19

25

25
25
25

36

36
36

2
17

100
100

17
3

7
7

1
1

3
2

19
19

25
25

36
36

36
3

1
1

reheapDown

swap
reheapDown

reheapDown
Exit from
sorting loop

swap
100

100
100

1

2
2

2

3
3

7

7
7

17

17
17

19

19
19

25

25
25

36

36
36

2
2

100
100

1
1

3
3

7
7

17
17

19
19

25
25

36
36

[7]

1 1002 3 7 17 19 25 36

lines of code, however, do quite a bit of work. All of the elements in the original array are
rearranged to satisfy the order property of heaps, moving the largest element up to the top
of the array, only to put it immediately into its place at the bottom. It’s hard to believe
from a small example such as the one in Figure 10.17 that he a pSor t is very efficient.

In fact, for small arrays, he a pSor t is not very efficient because of its “overhead.”
For large arrays, however, he a pSor t is very efficient. Let’s consider the sorting loop.
We loop through N 1 times, swapping elements and reheaping. The comparisons
occur in r e he a pDown (actually in its helper method ne wHol e). A complete binary tree
with N nodes has O(log2(N + 1)) levels. In the worst case, if the root element had to be
bumped down to a leaf position, the r e he a pDown method would make O(log2N) com-
parisons. Thus method r e he a pDown is O(log2N). Multiplying this activity by the N 1
iterations shows that the sorting loop is O(N log2N).

Combining the original heap build, which is O(N), and the sorting loop, we can see
that the heap sort requires O(N log2N) comparisons. Unlike the quick sort, the heap sort’s
efficiency is not affected by the initial order of the elements. A heap sort is just as effi-
cient in terms of space; only one array is used to store the data. The heap sort requires
only constant extra space.

The heap sort is an elegant, fast, robust, space-efficient algorithm!

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 709

710 | Chapter 10: Sorting and Searching Algorithms

10.4More Sorting Considerations

In this section we wrap up our coverage of sorting by revisiting testing and efficiency,
considering the “stability” of sorting algorithms, and discussing special concerns
involved with sorting objects rather than primitive types.

Testing
All of our sorts were implemented within the test harness presented in Section 10.1.
That test harness program, Sor t s , allows us to generate a random array of size 50, sort
it with one of our algorithms, and view the sorted array. It is easy to determine whether
the sort was successful. If we do not want to verify success by eyeballing the output, we
can always use a call to the i s Sor t e d method of the Sor t s class.

The Sor t s program is a useful tool for helping evaluate the correctness of our sort-
ing methods. To thoroughly test them, however, we should vary the size of the array
they are sorting. A small revision to Sor t s , allowing the user to pass the array size as a
command line parameter, would facilitate this process. We should also vary the original
order of the array—for example, test an array that is in reverse order, one that is almost
sorted, and one that has all identical elements (to make sure we do not generate an
“array index out of bounds” error).

Besides validating that our sort methods create a sorted array, we can check their
performance. At the start of the sorting phase we can initialize two variables, numSwa ps
and numCompa r e s , to 0. By carefully placing statements incrementing these variables
throughout our code, we can use them to track how many times the code performs
swaps and comparisons. Once we output these values, we can compare them to the pre-
dicted theoretical values. Inconsistencies would require further review of the code (or
maybe the theory!).

Efficiency
When N Is Small
As we have stressed throughout this chapter, our analysis of efficiency relies on the
number of comparisons made by a sorting algorithm. This number gives us a rough esti-
mate of the computation time involved. The other activities that accompany the com-
parison (swapping, keeping track of bool e a n flags, and so forth) contribute to the
“constant of proportionality” of the algorithm.

In comparing Big-O evaluations, we ignored constants and smaller-order terms
because we wanted to know how the algorithm would perform for large values of N. In
general, an O(N2) sort requires few extra activities in addition to the comparisons, so its
constant of proportionality is fairly small. Conversely, an O(N log2N) sort may be more
complex, with more overhead and thus a larger constant of proportionality. This situa-
tion may cause anomalies in the relative performances of the algorithms when the value
of N is small. In this case, N2 is not much greater than N log2N, and the constants may
dominate instead, causing an O(N2) sort to run faster than an O(N log2N) sort.

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 710

10.4 More Sorting Considerations | 711

We have discussed sorting algorithms that have complexity of either O(N2) or (N log2N).
Now we ask an obvious question: Do algorithms that are better than (N log2N) exist? No, it
has been proven theoretically that we cannot do better than (N log2N) for sorting algo-
rithms that are based on comparing keys—that is, on pairwise comparison of elements.

Eliminating Calls to Methods
Sometimes it may be desirable, for efficiency reasons, to streamline the code as
much as possible, even at the expense of readability. For instance, we have consis-
tently used

s wa p(i nde x1, i nde x2) ;

when we wanted to swap two elements in the va l ue s array. We would achieve slightly
better execution efficiency by dropping the method call and directly coding

t e mpVa l ue = va l ue s [i nde x1] ;
va l ue s [i nde x1] = va l ue s [i nde x2] ;
va l ue s [i nde x2] = t e mpVa l ue ;

Coding the swap operation as a method made the code simpler to write and to under-
stand, avoiding a cluttered sort method. Of course, method calls require extra overhead
that we may prefer to avoid during a real sort, where the method is called over and over
again within a loop.

The recursive sorting methods, me r ge Sor t and qui c kSor t , bring up a similar situ-
ation: They require the extra overhead involved in executing the recursive calls. We
may want to avoid this overhead by coding nonrecursive versions of these methods.

In some cases, an optimizing compiler replaces method calls with the inline expan-
sion of the code of the method. In that case, we get the benefits of both readability and
efficiency.

Programmer Time
If the recursive calls are less efficient, why would anyone ever decide to use a recursive
version of a sort? This decision involves a choice between types of efficiency. Until
now, we have been concerned only with minimizing computer time. While computers
are becoming faster and cheaper, however, it is not at all clear that computer program-
mers are following that trend. In fact, programmers are becoming more expensive.
Therefore, in some situations, programmer time may be an important consideration in
choosing an algorithm and its implementation. In this respect, the recursive version of
the quick sort is more desirable than its nonrecursive counterpart, which requires the
programmer to simulate the recursion explicitly.

Of course, if a programmer is familiar with a language’s support library, the pro-
grammer can use the sort routines provided there. The Ar r a ys class in the Java library’s

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 711

712 | Chapter 10: Sorting and Searching Algorithms

Figure 10.18 Sorting arrays with references

B

D

A

Z

X

B

D

A

Z

X

[0]
[1]
[2]
[3]
[4]

(a) Before sorting

[0]
[1]
[2]
[3]
[4]

(b) After sorting

ut i l package defines a number of sorts for sorting arrays. Likewise, the Java Collec-
tions Framework, which was introduced at the end of Section 3.4, provides methods for
sorting many of its collection objects.

Space Considerations
Another efficiency consideration is the amount of memory space required. In small
applications, memory space is not a very important factor in choosing a sorting algo-
rithm. In large applications, such as a database with many gigabytes of data, space may
pose a serious concern. We looked at only two sorts, me r ge Sor t and qui c kSor t , that
required more than constant extra space. The usual time versus space tradeoff applies to
sorts: More space often means less time, and vice versa.

Because processing time is the factor that applies most often to sorting algorithms,
we have considered it in detail here. Of course, as in any application, the programmer
must determine the program’s goals and requirements before selecting an algorithm and
starting to code.

Objects and References
So that we could concentrate on the algorithms, we limited our implementations to sort-
ing arrays of integers. Do the same approaches work for sorting objects? Of course,
although a few special considerations apply.

Keep in mind that when we sort an array of objects, we are manipulating references
to the objects, not the objects themselves. (See Figure 10.18.) This point does not affect
any of our algorithms, but it is still important to understand. For example, if we decide
to swap the objects at index 0 and index 1 of an array, it is actually the references to
the objects that we swap, not the objects themselves. In one sense, we view objects, and
the references to the objects, as identical.

Using the Comparable Interface
When sorting objects, we must have a way to compare two objects and decide which is
“larger.” Two basic approaches are used when dealing with Java objects.

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 712

10.4 More Sorting Considerations | 713

The first approach you are familiar with from previous chapters. If the object
class exports a c ompa r e To operation, or something similar, it can be used to provide
the needed comparison. We have used this approach throughout the text. For our
sorted lists, binary search trees, and priority queues, we used objects that imple-
mented Java’s Compa r a bl e interface. In fact, the only requirement for a Compa r a bl e
object is that it provides a c ompa r e To operation. Indeed, Java programmers, when
creating methods that need to compare objects, often insist that all arguments be of
type Compa r a bl e .

For example, here is how we code bubbl e Up to sort objects of type Compa r a bl e ,
rather than just integers:

s t a t i c voi d bubbl e Up(i nt s t a r t I nde x, i nt e ndI nde x)
/ / Swi t c he s a dj a c e nt pa i r s t ha t a r e out of or de r
/ / be t we e n va l ue s [s t a r t I nde x] t o va l ue s [e ndI nde x]
/ / be gi nni ng a t va l ue s [e ndI nde x] .
{

f or (i nt i nde x = e ndI nde x; i nde x > s t a r t I nde x; i nde x- -)
i f (va l ue s [i nde x] . c ompa r e To(va l ue s [i nde x - 1]) < 0)

s wa p(i nde x, i nde x - 1) ;
}

A limitation of this approach is that a class can have only one c ompa r e To method.
What if we have a class of objects—for example, student records—that we want to sort in
many various ways: by name, by grade, by postal code, in increasing order, and in
decreasing order? In this case we need to use the approach explained next.

Using the Comparator Interface
The second approach allows more flexibility. The Java library provides another interface
related to comparing objects, a generic interface called Compa r a t or . This interface
defines two abstract methods:

publ i c a bs t r a c t i nt c ompa r e (T o1, T o2) ;
/ / Re t ur ns a ne ga t i ve i nt e ge r , z e r o, or a pos i t i ve i nt e ge r t o
/ / i ndi c a t e t ha t o1 i s l e s s t ha n, e qua l t o , or gr e a t e r t ha n o2

publ i c a bs t r a c t bool e a n e qua l s (Obj e c t obj) ;
/ / Re t ur ns t r ue i f t hi s Compa r a t or e qua l s obj ; ot he r wi s e , f a l s e

The first method, c ompa r e , is very similar to the familiar c ompa r e To method. It
takes two arguments, however, rather than one. The second method, e qua l s , is speci-
fied in the same way as the e qua l s method of the Obj e c t class, and can be inherited
from Obj e c t . Recall, however, that it usually is important for the e qua l s and c om-
pa r e To methods of a class to be consistent. We do not address the e qua l s method
again in this discussion.

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 713

714 | Chapter 10: Sorting and Searching Algorithms

Any sort implementation must compare elements. Our methods so far have used
built- in integer comparison operations such as “<” or “<=”. If we sort Compa r a b l e
objects instead of integers, we could use the c ompa r e To method that is guaranteed
to exist by that interface. Alternatively, we could use a versatile approach supported
by the Compa r a t o r interface. If we pass a Compa r a t o r object c omp to a sorting
method as a parameter, the method can use c omp. c ompa r e to determine the relative
order of two objects and base its sort on that relative order. Passing a different
Compa r a t o r object results in a different sorting order. Perhaps one Compa r a t or
object defines an increasing order, and another defines a decreasing order. Or per-
haps the different Compa r a t o r objects could define order based on different attrib-
utes of the objects. Now, with a single sorting method, we can produce many
different sort orders.

Let’s look at an example. To allow us to concentrate on the topic of discussion, we
use a simple circle class, with public instance variables. The fact that the variables are
public makes it easy to demonstrate the concepts of this section. We define circles as
follows:

pa c ka ge c h10. c i r c l e s ;

publ i c c l a s s Sor t Ci r c l e
{

publ i c i nt xVa l ue ;
publ i c i nt yVa l ue ;
publ i c i nt r a di us ;
publ i c bool e a n s ol i d;

}

Here is the definition of a Compa r a t or object that orders Sor t Ci r c l e objects based on
their xVa l ue :

Compa r a t or <Sor t Ci r c l e > xComp = ne w Compa r a t or <Sor t Ci r c l e >()
{

publ i c i nt c ompa r e (Sor t Ci r c l e a , Sor t Ci r c l e b)
{

r e t ur n (a . xVa l ue – b. xVa l ue) ;
}

}

Here is a s e l e c t i onSor t method, along with its helper method mi nI nde x, that accepts
and uses a Compa r a t or object (the changes from the previous version of s e l e c t i on-
Sor t are emphasized):

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 714

10.4 More Sorting Considerations | 715

s t a t i c i nt mi nI nde x(i nt s t a r t I nde x, i nt e ndI nde x,
Compa r a t or <Sor t Ci r c l e >)

/ / Re t ur ns t he i nde x of t he s ma l l e s t va l ue i n
/ / va l ue s [s t a r t I nde x] t o va l ue s [e ndI nde x] .
{

i nt i nde xOf Mi n = s t a r t I nde x;
f or (i nt i nde x = s t a r t I nde x + 1; i nde x <= e ndI nde x; i nde x++)

i f (c omp. c ompa r e (va l ue s [i nde x] , va l ue s [i nde xOf Mi n]) < 0)
i nde xOf Mi n = i nde x;

r e t ur n i nde xOf Mi n;
}

s t a t i c voi d s e l e c t i onSor t (Compa r a t or <Sor t Ci r c l e > c omp)
/ / Sor t s t he va l ue s a r r a y us i ng t he s e l e c t i on s or t a l gor i t hm.
{

i nt e ndI nde x = SI ZE - 1;
f or (i nt c ur r e nt = 0; c ur r e nt < e ndI nde x; c ur r e nt ++)

s wa p(c ur r e nt , mi nI nde x(c ur r e nt , e ndI nde x, c omp)) ;
}

Passing a different Compa r a t or object to s e l e c t i onSor t would result in a differ-
ent sort order. This makes the sort operation extremely versatile. Just by passing it dif-
ferent Compa r a t or objects, it can sort circles in increasing or decreasing order based on
any of the circle fields, or even any mathematical combination of circle fields.

The program called Sor t s 2 demonstrates our new flexibility. It generates an array
of six random Sor t Ci r c l e objects, prints them, sorts them by xVa l ue , prints them,
sorts them by yVa l ue , and then prints them again. Study the program carefully.

/ / -
/ / Sor t s 2. j a va by Da l e / J oyc e / We e ms Cha pt e r 10
/ /
/ / Te s t ha r ne s s us e d t o r un s or t i ng a l gor i t hms t ha t us e Compa r a t or .
/ / -

i mpor t j a va . ut i l . *;
i mpor t j a va . t e xt . De c i ma l For ma t ;
i mpor t c h10. c i r c l e s . *;

publ i c c l a s s Sor t s 2
{

s t a t i c f i na l i nt SI ZE = 6; / / s i z e of a r r a y t o be s or t e d
s t a t i c Sor t Ci r c l e [] va l ue s = ne w Sor t Ci r c l e [SI ZE] ; / / va l ue s t o be s or t e d

s t a t i c voi d i ni t Va l ue s ()
/ / I ni t i a l i z e s t he va l ue s a r r a y wi t h r a ndom c i r c l e s .

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 715

716 | Chapter 10: Sorting and Searching Algorithms

{
Ra ndom r a nd = ne w Ra ndom() ;
f or (i nt i nde x = 0; i nde x < SI ZE; i nde x++)
{

va l ue s [i nde x] = ne w Sor t Ci r c l e () ;
va l ue s [i nde x] . xVa l ue = Ma t h. a bs (r a nd. ne xt I nt ()) % 100;
va l ue s [i nde x] . yVa l ue = Ma t h. a bs (r a nd. ne xt I nt ()) % 100;
va l ue s [i nde x] . r a di us = Ma t h. a bs (r a nd. ne xt I nt ()) % 100;
va l ue s [i nde x] . s ol i d = ((Ma t h. a bs (r a nd. ne xt I nt ()) % 2) == 0) ;

}
}

s t a t i c publ i c voi d s wa p(i nt i nde x1, i nt i nde x2)
/ / Swa ps t he Sor t Ci r c l e s a t l oc a t i ons i nde x1 a nd i nde x2 of a r r a y va l ue s .
{

Sor t Ci r c l e t e mp = va l ue s [i nde x1] ;
va l ue s [i nde x1] = va l ue s [i nde x2] ;
va l ue s [i nde x2] = t e mp;

}

s t a t i c publ i c voi d pr i nt Va l ue s ()
/ / Pr i nt s a l l t he va l ue s i nt e ge r s .
{

Sor t Ci r c l e va l ue ;
De c i ma l For ma t f mt = ne w De c i ma l For ma t (" 00") ;
Sys t e m. out . pr i nt l n(" The va l ue s a r r a y i s : ") ;
Sys t e m. out . pr i nt l n() ;
Sys t e m. out . pr i nt l n(" x y r s ol i d") ;
Sys t e m. out . pr i nt l n(" - - - - - - - - - - - ") ;
f or (i nt i nde x = 0; i nde x < SI ZE; i nde x++)
{

va l ue = va l ue s [i nde x] ;
Sys t e m. out . pr i nt (f mt . f or ma t (va l ue . xVa l ue) + " ") ;
Sys t e m. out . pr i nt (f mt . f or ma t (va l ue . yVa l ue) + " ") ;
Sys t e m. out . pr i nt (f mt . f or ma t (va l ue . r a di us) + " ") ;
Sys t e m. out . pr i nt (va l ue . s ol i d) ;
Sys t e m. out . pr i nt l n() ;

}
Sys t e m. out . pr i nt l n() ;

}

s t a t i c i nt mi nI nde x(i nt s t a r t I nde x, i nt e ndI nde x,
Compa r a t or <Sor t Ci r c l e >)

/ / Re t ur ns t he i nde x of t he s ma l l e s t va l ue i n

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 716

10.4 More Sorting Considerations | 717

/ / va l ue s [s t a r t I nde x] t o va l ue s [e ndI nde x]
/ / ba s e d on t he Compa r a t or c omp.
{

i nt i nde xOf Mi n = s t a r t I nde x;
f or (i nt i nde x = s t a r t I nde x + 1; i nde x <= e ndI nde x; i nde x++)

i f (c omp. c ompa r e (va l ue s [i nde x] , va l ue s [i nde xOf Mi n]) < 0)
i nde xOf Mi n = i nde x;

r e t ur n i nde xOf Mi n;
}

s t a t i c voi d s e l e c t i onSor t (Compa r a t or <Sor t Ci r c l e > comp)
/ / Sor t s t he va l ue s a r r a y us i ng t he s e l e c t i on s or t a l gor i t hm.
{

i nt e ndI nde x = SI ZE - 1;
f or (i nt c ur r e nt = 0; c ur r e nt < e ndI nde x; c ur r e nt ++)

s wa p(c ur r e nt , mi nI nde x(c ur r e nt , e ndI nde x, c omp)) ;
}

publ i c s t a t i c voi d ma i n(St r i ng[] a r gs)
{

Compa r a t or <Sor t Ci r c l e > xComp = ne w Compa r a t or <Sor t Ci r c l e >()
{

publ i c i nt c ompa r e (Sor t Ci r c l e a , Sor t Ci r c l e b)
{

r e t ur n (a . xVa l ue – b. xVa l ue) ;
}

} ;

Compa r a t or <Sor t Ci r c l e > yComp = ne w Compa r a t or <Sor t Ci r c l e >()
{

publ i c i nt c ompa r e (Sor t Ci r c l e a , Sor t Ci r c l e b)
{

r e t ur n (a . yVa l ue – b. yVa l ue) ;
}

} ;

i ni t Va l ue s () ;
pr i nt Va l ue s () ;
s e l e c t i onSor t (xComp) ;
pr i nt Va l ue s () ;
s e l e c t i onSor t (yComp) ;
pr i nt Va l ue s () ;

}
}

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 717

718 | Chapter 10: Sorting and Searching Algorithms

The output from an execution of the program follows:

The va l ue s a r r a y i s :

x y r s ol i d

- - - - - - - - - - -

37 83 82 t r ue

46 25 71 f a l s e

43 73 62 t r ue

08 67 40 f a l s e

69 68 70 t r ue

20 95 15 f a l s e

The va l ue s a r r a y i s :

x y r s ol i d

- - - - - - - - - - -

08 67 40 f a l s e

20 95 15 f a l s e

37 83 82 t r ue

43 73 62 t r ue

46 25 71 f a l s e

69 68 70 t r ue

The va l ue s a r r a y i s :

x y r s ol i d

- - - - - - - - - - -

46 25 71 f a l s e

08 67 40 f a l s e

69 68 70 t r ue

43 73 62 t r ue

37 83 82 t r ue

20 95 15 f a l s e

Remember that using the Compa r a t or approach does require revising our sorting rou-
tines slightly; they must accept a Compa r a t or as a parameter and use it appropriately.
With similar changes, we could use this approach for any of our ADTs that involve
comparing elements: our lists, binary search trees, and priority queues. If our goal is to

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 718

make our ADTs as generally usable as possible, we should certainly consider this
approach.

However, the added flexibility of Compa r a t or comes at a cost to performance. Just
as writing the swap operation within a separate method adds overhead to execution
time, so performing the comparison within a method takes more time than a direct com-
parison. The Compa r a bl e interface also places the c ompa r e To operation within a
method, but most optimizing compilers are able to automatically extract the code from
the method and place it directly in the sort to avoid this cost. With Compa r a t or , differ-
ent methods are used at different times, so the same optimization can’t be applied.

Stability
The stability of a sorting algorithm is based on what it does with duplicate values. Of
course, the duplicate values all appear consecutively in the final order. For example, if
we sort the list A B B A, we get A A B B. But is the relative order of the duplicates the
same in the final order as it was in the original
order? If that property is guaranteed, we have
a stable sort.

In our descriptions of the various sorts, we
showed examples of sorting arrays of integers.
Stability is not important when sorting primitive types. If we sort objects, however, the
stability of a sorting algorithm can become more important. We may want to preserve
the original order of unique objects considered identical by the comparison operation.

Suppose the elements in our array are student objects with instance values repre-
senting their names, postal codes, and identification numbers. The list may normally be
sorted by the unique identification numbers. For some purposes we might want to see a
listing in order by name. In this case the comparison would be based on the name vari-
able. To sort by postal code, we would sort on that instance variable.

If the sort is stable, we can get a listing by postal code, with the names in alphabet-
ical order within each postal code, by sorting twice: the first time by name and the sec-
ond time by postal code. A stable sort preserves the order of the elements when it finds
a match. The second sort, by postal code, produces many such matches, but the alpha-
betical order imposed by the first sort is preserved.

Of the various types of sorts that we have discussed in this book, only he a pSor t
and qui c kSor t are inherently unstable. The stability of the other sorts depends on how
the code handles duplicate values. In some cases, stability depends on whether a < or a
<= comparison is used in some crucial comparison statement. In the exercises at the end
of this chapter, you are asked to examine the code for the various sorts and determine
whether they are stable.

Of course, if we can directly control the comparison operation used by our sort
method, we can allow more than one variable to be used in determining a sort order.
Thus another, more efficient approach to sorting our students by ZIP code and name is
to define an appropriate c ompa r e To method for determining sort order as follows (for
simplicity, this code assumes we can directly compare the name values):

10.4 More Sorting Considerations | 719

Stable sort A sorting algorithm that preserves the
order of duplicates

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 719

720 | Chapter 10: Sorting and Searching Algorithms

i f (pos t a l c ode < ot he r . pos t a l c ode)
r e t ur n - 1;

e l s e
i f (pos t a l c ode > ot he r . pos t a l c ode)

r e t ur n +1;
e l s e
/ / Pos t a l c ode s a r e e qua l
i f (na me < ot he r . na me)

r e t ur n - 1;
e l s e
i f (na me > ot he r . na me)

r e t ur n +1;
e l s e

r e t ur n 0;

With this approach we need to sort the array only once.

10.5Searching

Sometimes access to a needed element stored in a structure can be achieved directly. For
example, with both our array-based and reference-based stack ADT implementations,
we can directly access the top element on the stack; the t op method is O(1). Access to
our array-based indexed lists, given a position on the list, is also direct; O(1) time is
needed. Often, however, direct access is not possible, especially when we want to access
an element based on its value. For instance, if a list contains student records, we may
want to find the record of the student named Suzy Brown or the record of the student
whose ID number is 203557. In such cases, some kind of searching technique is needed
to allow retrieval of the desired record.

In this section we look at some of the basic “search by value” techniques for lists.
Some of these techniques (linear and binary search) we have encountered previously in
the text. In Section 10.6 we look at an advanced technique, called hashing, that can
often provide O(1) searches by value.

Linear Searching
We cannot discuss efficient ways to find an element in a list without considering how
the elements were added into the list. Therefore, our discussion of search algorithms is
related to the issue of the list’s a dd operation. Suppose that we want to add elements as
quickly as possible, and we are not overly concerned about how long it takes to find
them. We would put the element into the last slot in an array-based list or the first slot
in a linked list. Both are O(1) insertion algorithms. The resulting list is sorted according
to the time of insertion, not according to key value.

To search this list for the element with a given key, we must use a simple linear (or
sequential) search. For example, we used a linear search for the f i nd method of our

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 720

10.5 Searching | 721

1. This approach is possible only with our unsorted lists. It could not be used with our sorted or indexed lists,
because with those lists the positions of elements is predetermined.

Li s t class in Chapter 6. Beginning with the first element in the list, we search for the
desired element by examining each subsequent element’s key until either the search is
successful or the list is exhausted.

Based on the number of comparisons, this search is O(N), where N represents the
number of elements. In the worst case, in which we are looking for the last element in
the list or for a nonexistent element, we will make N key comparisons. On average,
assuming that there is an equal probability of searching for any element in the list, we
will make N/2 comparisons for a successful search; that is, on average we must search
half of the list.

High- Probability Ordering
The assumption of equal probability for every element in the list is not always valid.
Sometimes certain list elements are in much greater demand than others. This observa-
tion suggests a way to improve the search: Put the most-often-desired elements at the
beginning of the list.1 Using this scheme, we are more likely to make a hit in the first
few tries, and rarely do we have to search the whole list.

If the elements in the list are not static or if we cannot predict their relative
demand, we need some scheme to keep the most frequently used elements at the front
of the list. One way to accomplish this goal is to move each element accessed to the
front of the list. Of course, there is no guarantee that this element is later frequently
used. If the element is not retrieved again, however, it drifts toward the end of the list as
other elements move to the front. This scheme is easy to implement for linked lists,
requiring only a few pointer changes. It is less desirable for lists kept sequentially in
arrays, because we need to move all the other elements down to make room at the front.

An alternative approach, which causes elements to move toward the front of the list
gradually, is appropriate for either linked or array-based list representations. As an ele-
ment is found, it is swapped with the element that precedes it. Over many list retrievals,
the most frequently desired elements tend to be grouped at the front of the list. To
implement this approach, we need to modify only the end of the algorithm to exchange
the found element with the one before it in the list (unless it is the first element). This
change should be documented; it is an unexpected side effect of searching the list.

Keeping the most active elements at the front of the list does not affect the worst
case; if the search value is the last element or is not in the list, the search still takes N
comparisons. It is still an O(N) search. However, the average performance on successful
searches should improve. Both of these high-probability ordering algorithms depend on
the assumption that some elements in the list are used much more often than others. If
this assumption is erroneous, a different ordering strategy is needed to improve the effi-
ciency of the search technique.

Lists in which the relative positions of the elements are changed in an attempt to
improve search efficiency are called self-organizing or self-adjusting lists.

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 721

722 | Chapter 10: Sorting and Searching Algorithms

Sorted Lists
As discussed in Section 6.6, “The Binary Search Algorithm,” if a list is sorted, we can
write more efficient search routines.

If the list is sorted, a sequential search no longer needs to search the whole list to
discover that an element does not exist. It just needs to search until it has passed the
element’s logical place in the list—that is, until it encounters an element with a larger
key value.

One advantage of linear searching of a sorted list is the ability to stop searching
before the list is exhausted if the element does not exist. Again, the search is O(N)—the
worst case, searching for the largest element, still requires N comparisons. The average
number of comparisons for an unsuccessful search is now N/2, however, instead of a
guaranteed N.

Another advantage of linear searching is its simplicity. The disadvantage is its per-
formance: In the worst case we have to make N comparisons. If the list is sorted and
stored in an array, we can improve the search time to a worst case of O(log2N) by using
a binary search. This improvement in efficiency, however, comes at the expense of sim-
plicity.

The binary search is not guaranteed to be faster for searching very small lists.
Even though such a search generally requires fewer comparisons, each comparison
involves more computation. When N is very small, this extra work (the constants and
smaller terms that we ignore in determining the Big-O approximation) may dominate.
For instance, in one assembly-language program, the linear search required 5 time
units per comparison, whereas the binary search took 35. For a list size of 16 ele-
ments, therefore, the worst-case linear search would require 5 * 16 = 80 time units.
The worst-case binary search requires only 4 comparisons, but at 35 time units each,
the comparisons take 140 time units. In cases where the number of elements in the
list is small, a linear search is certainly adequate and sometimes faster than a binary
search.

As the number of elements increases, the magnitude of the difference between the
linear search and the binary search grows very quickly. Look back at Table 6.2 to com-
pare the rates of growth for the two algorithms.

The binary search discussed here is appropriate only for list elements stored in a
sequential array-based representation. After all, how can we efficiently find the mid-
point of a linked list? We already know one structure that allows us to perform a binary
search on a linked data representation: the binary search tree. The operations used to
search a binary tree were discussed in Chapter 8.

10.6Hashing

So far, we have succeeded in paring down our O(N) search to a complexity of O(log2N)
by keeping the list sorted sequentially with respect to the key value. That is, the key in
the first element is less than (or equal to) the key in the second element, which is less

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 722

10.6 Hashing | 723

than (or equal to) the key in the third, and so on. Can we do better than that? Is it possi-
ble to design a search of O(1)—that is, one with a constant search time, no matter where
the element is in the list?

In theory, that is not an impossible dream. Let’s look at an example, a list of
employees of a fairly small company. Each of the 100 employees has an ID number in
the range 0 to 99, and we want to access the employee information by the key i dNum. If
we store the elements in an array that is indexed from 0 to 99, we can directly access
any employee’s information through the array index. A one-to-one correspondence
exists between the element keys and the array index; in effect, the array index functions
as the key of each element.

In practice, this perfect relationship between the key value and the location of an
element is not so easy to establish or maintain. Consider a similar small company that
uses its employees’ five-digit ID numbers as the primary key. Now the range of key val-
ues is from 00000 to 99999. It is impractical to set up an array of 100,000 elements, of
which only 100 are needed, just to make sure that each employee’s element is in a per-
fectly unique and predictable location.

What if we keep the array size down to the size that we actually need (an array of 100
elements) and use just the last two digits of the key to identify each employee? For instance,
the element of employee 53374 is in e mpl oye e Li s t [74] , and the element of employee
81235 is in e mpl oye e Li s t [35] . The elements
are not sorted according to the value of the key
as they were in our earlier discussion; indeed, the
position of employee 81235’s information pre-
cedes that of employee 53374 in the array, even
though the value of its key is larger. Instead, the
elements are sorted with respect to some function
of the key value.

This function is called a hash function, and
the search technique we are using is called
hashing. The underlying data structure is called
a hash table.

To simplify our discussion in this chapter, we make three assumptions about the
array-based unsorted lists we are searching:

• There is enough room in the underlying array to hold all potential list elements.
• The elements of a list are unique with respect to their key.
• We will not attempt to ge t or r e move an element from the list that is not on the

list.

Although these assumptions are not crucial, they do simplify matters somewhat and
allow us to focus on hashing itself without worrying about too many special situations.
Furthermore, these assumptions are not that unusual for applications where hashing is a
good support tool.

Hash function A function used to manipulate the key
of an element in a list to identify its location in the list
Hashing The technique used for ordering and access-
ing elements in a list in a relatively constant amount of
time by manipulating the key to identify its location in
the list
Hash table The data structure used to store elements
using hashing

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 723

724 | Chapter 10: Sorting and Searching Algorithms

Figure 10.19 Using a hash function to determine the location of the element in an array

[00]

[01]

[02]

[03]

[04]

[99]

employeeList

idNum = 50704

[4]

Hash function:
idNum % 100

•

•

•

•

•

•

Let’s return to our discussion of hash functions. In the case of the employee list
described earlier, the hash function is (i dNum % 100) . The key (i dNum) is divided by
100, and the remainder is used as an index into the array of employee elements, as
illustrated in Figure 10.19. This function assumes that the array is indexed from 0 to 99
(MAX_ELEMENTS = 100). The method to perform the conversion of key values to indexes
is very simple:

i nt ha s h()
/ / Re t ur ns a n i nt e ge r be t we e n 0 a nd MAX_ELEMENTS - 1 .
{

r e t ur n (i dNum % MAX_ELEMENTS) ;
}

Here we assume that ha s h is a public method of El e me nt Type , the type (class) of
the elements in the list, and that i dNum is an instance variable of El e me nt Type . To use
hashing to facilitate access to a list we can create a new interface Ha s ha bl e :

publ i c i nt e r f a c e Ha s ha bl e
/ / Obj e c t s of c l a s s e s t ha t i mpl e me nt t hi s i nt e r f a c e c a n be us e d
/ / wi t h l i s t s ba s e d on ha s hi ng.
{

/ / A ma t he ma t i c a l f unc t i on i s us e d t o ma ni pul a t e t he ke y of a n e l e me nt
/ / i n a l i s t t o i de nt i f y i t s l oc a t i on i n t he l i s t .
i nt ha s h() ;

}

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 724

10.6 Hashing | 725

When we create a class of objects that we intend to store on a hash table we have it
implement the Ha s ha bl e interface, guaranteeing that its objects provide a ha s h
method. For example, consider the following simple Empl oye e class:

/ / -
/ / Empl oye e . j a va by Da l e / J oyc e / We e ms Cha pt e r 10
/ /
/ / Exa mpl e of a c l a s s f or us e wi t h a ha s h t a bl e .
/ / -

publ i c c l a s s Empl oye e i mpl e me nt s Ha s ha bl e
{

pr ot e c t e d St r i ng na me ;
pr ot e c t e d i nt i dNum;
pr ot e c t e d i nt ye a r s Of Se r vi c e ;

pr ot e c t e d f i na l i nt MAX_ELEMENTS = 100;

publ i c Empl oye e (St r i ng na me , i nt i d , i nt ye a r s)
{

t hi s . na me = na me ;
i dNum = i d;
ye a r s Of Se r vi c e = ye a r s ;

}

publ i c i nt ha s h()
/ / Re t ur ns a n i nt e ge r be t we e n 0 a nd MAX_ELEMENTS – 1.
{

r e t ur n (i dNum % MAX_ELEMENTS) ;
}

}

The hash function has two uses. First, it is used to access a list element. The result
of the hash function tells us where to look for a particular element—information we
need to find the element. Here, for example, is a simple variation of our list method
ge t , which assumes that each potential list element hashes to a unique location in the
list:

publ i c Ha s ha bl e ge t (Ha s ha bl e e l e me nt)
/ / Re t ur ns a n e l e me nt e f r om t hi s l i s t s uc h t ha t e . e qua l s (e l e me nt) .
{

i nt l oc a t i on;
l oc a t i on = e l e me nt . ha s h() ;
r e t ur n (Ha s ha bl e) l i s t [l oc a t i on] ;

}

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 725

726 | Chapter 10: Sorting and Searching Algorithms

The second use of the hash function is to determine where in the array to store the
element. If the employee list elements were added into the list using an a dd operation
from Chapter 6—into sequential array slots or into slots with their relative order deter-
mined by the key value—we could not use the hash function to find them. We have to
create a version of the a dd operation that puts each new element into the correct slot
according to the hash function. Here is a simple version of a dd, which assumes that the
array slot at the index returned from the hash function is not in use:

publ i c voi d a dd (Ha s ha bl e e l e me nt)
/ / Adds e l e me nt t o t hi s l i s t a t pos i t i on e l e me nt . ha s h() .
{

i nt l oc a t i on;
l oc a t i on = e l e me nt . ha s h() ;
l i s t [l oc a t i on] = e l e me nt ;
numEl e me nt s ++;

}

Figure 10.20 shows an array whose elements—information for the employees with
the key values (unique ID numbers) 12704, 31300, 49001, 52202, and 65606—were
added using a dd. This method does not fill the array positions sequentially. Because we
have not yet added any elements whose keys produce the hash values 3 and 5, the array
slots [3] and [5] are logically “empty.”

Collisions
By now you are probably objecting to this scheme on the grounds that it does not
guarantee unique hash locations. Unique ID numbers 01234 and 91234 both “hash” to

the same location: l i s t [34] . The problem of avoiding
such collisions is the biggest challenge in designing a
good hash function. A good hash function minimizes
collisions by spreading the elements uniformly

Figure 10.20 Result of adding elements based on a hash function

31300[00]
49001[01]
52202[02]
null[03]

12704[04]
[05]

65606[06]
[07]

Hashed

•

•

•

•

•

•

null

null

Collision The condition resulting when two or more
keys produce the same hash location

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 726

10.6 Hashing | 727

throughout the array. We say “minimizes collisions” because it is extremely difficult
to avoid them completely.

Assuming that some collisions occur, where do we store the elements that cause
them? We briefly describe several popular collision-handling algorithms next. Of course,
the scheme that is used to find the place to store an element determines the approach
subsequently used to find it.

Linear Probing
A simple scheme for resolving collisions is to
store the colliding element into the next avail-
able space. This technique is known as linear
probing. In the situation depicted in Figure
10.21, we want to add the employee element
with the key ID number 77003. The hash func-
tion returns 3. But there already is an element stored in this array slot, the record for
employee 50003. We increment l oc a t i on to 4 and examine the next array slot.
Because l i s t [4] is also in use, we increment l oc a t i on again. This time we find a slot
that is empty, so we store the new element into l i s t [5] .

What happens if the key hashes to the last index in the array and that space is in
use? We can consider the array to be a circular structure and continue looking for an
empty slot at the beginning of the array. This situation is similar to our circular array-
based queue in Chapter 5. There we used the % operator when we incremented our
index. We can use similar logic here.

How do we know whether an array slot is “empty”? Assuming we have an array of
objects, this is easy—just check whether the value of the array slot is nul l .

Linear probing Resolving a hash collision by sequen-
tially searching a hash table beginning at the location
returned by the hash function

Figure 10.21 Handling collisions with linear probing

First free slot

Add element
with key = 77003

[3]

Hash function:
key % 100

null[00]
Element with key = 14001[01]

[02]
Element with key = 50003[03]
Element with key = 00104[04]

[05]
Element with key = 79606[06]

[07]
[08]

Element with key = 33099[99]

•

•

•

•

•

•

null

null

null
null

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 727

728 | Chapter 10: Sorting and Searching Algorithms

contains (element): return boolean
Set location to element.hash()
Return (list[location] != null)

The following version of a dd uses linear probing to find a place in which to store a
new element. We assume that there is room in the array for another element.

publ i c s t a t i c voi d a dd (Ha s ha bl e e l e me nt)
/ / Adds e l e me nt t o t hi s l i s t a t pos i t i on e l e me nt . ha s h()
/ / or t he ne xt f r e e a r r a y s l ot .
{

i nt l oc a t i on;
l oc a t i on = e l e me nt . ha s h() ;
whi l e (l i s t [l oc a t i on] ! = nul l)

l oc a t i on = (l oc a t i on + 1) % l i s t . l e ngt h;
l i s t [l oc a t i on] = e l e me nt ;
numEl e me nt s ++;

}

To search for an element using this collision-handling technique, we perform the hash
function on the key, then compare the desired key to the actual key in the element at the
designated location. If the keys do not match, we use linear probing, beginning at the next
slot in the array. Following is a version of the ge t method that uses this approach. Recall
that our ge t method for hashed lists assumes that the element being retrieved is on the list.

publ i c s t a t i c Ha s ha bl e ge t (Ha s ha bl e e l e me nt)
/ / Re t ur ns a n e l e me nt e f r om t hi s l i s t s uc h t ha t e . e qua l s (e l e me nt) .
{

i nt l oc a t i on;
l oc a t i on = e l e me nt . ha s h() ;
whi l e (! l i s t [l oc a t i on] . e qua l s (e l e me nt))

l oc a t i on = (l oc a t i on + 1) % l i s t . l e ngt h;

r e t ur n (Ha s ha bl e) l i s t [l oc a t i on] ;
}

Although we have discussed the insertion and retrieval of elements in a hash table,
we have not yet mentioned how to determine whether an element is in the table (c on-
t a i ns) or how to remove an element from the table (r e move). If we did not need to
concern ourselves with collisions, the algorithms would be simple:

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 728

10.6 Hashing | 729

Figure 10.22 A hash program with linear probing

Order of Insertion:

[00]
Element with key = 14001[01]

[02]
Element with key = 50003[03]
Element with key = 00104[04]
Element with key = 77003[05]
Element with key = 42504[06]

[07]
[08]

Element with key = 33099[99]

14001
00104
50003
77003
42504
33099

•

•

•

•

•

•

•

•

•

null

null

null
null

remove (element)
Set location to element.hash()
Set list[location] to null

Collisions, however, complicate the matter. We cannot be sure that our element is in
location e l e me nt . ha s h() . For r e move , because we assume the element to be deleted is
in the table, we can use the same approach that we used for ge t . We examine every array
element, starting with location e l e me nt . ha s h() , until we find the matching element.
For c ont a i ns , we need an extra check to determine whether we have looped all the way
back to our starting position without finding a match, in which case we return f a l s e .

Let’s look at an example. In Figure 10.22, suppose we remove the element with the
key 77003 by setting the array slot [5] to nul l . A subsequent search for the element
with the key 42504 would begin at the hash location [4]. The element in this slot is not
the one we are looking for, so we increment the hash location to [5]. This slot, which
formerly was occupied by the element that we deleted, is now empty (contains nul l),
but we cannot terminate the search—the record that we are looking for is in the next
slot.

Not being able to assume that an empty list element indicates the end of a linear
probe severely undermines the efficiency of this approach. Even when the hash table is
sparsely populated, we must examine every location before determining that an element
is not present in the table. This problem illustrates that hash tables, in the forms that we
have studied thus far, are not the most effective data structure for implementing lists
whose elements may be deleted.

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 729

730 | Chapter 10: Sorting and Searching Algorithms

Clustering
One problem with linear probing is that it results in a
situation called clustering. A good hash function yields
a uniform distribution of indexes throughout the
array’s index range. Initially, elements are added
throughout the array, with each slot being equally
likely to be filled. Over time, after a number of colli-

sions have been resolved, the distribution of elements in the array becomes less and less
uniform. The elements tend to cluster together, as multiple keys begin to compete for a
single hash location.

Consider the hash table in Figure 10.22. Only an element whose key produces the
hash value 8 would be inserted into array slot [8]. Any elements with keys that produce
a hash value of 3, 4, 5, 6, or 7 would be inserted into array slot [7]. That is, array slot [7]
is five times more likely than array slot [8] to be filled. Clustering results in inconsistent
efficiency of list operations.

Rehashing
The technique of linear probing discussed here is an
example of collision resolution by rehashing. If the hash
function produces a collision, the hash value is used as
the input to a rehash function to compute a new hash
value. In the previous section, we added 1 to the hash
value to create a new hash value; that is, we used the

rehash function:

(Ha s hVa l ue + 1) % MAX_ELEMENTS

For rehashing with linear probing, we can use any function

(Ha s hVa l ue + c ons t a nt) % a r r a y- s i z e

as long as c ons t a nt and a r r a y- s i z e are relatively prime—that is, if the largest num-
ber that divides both of them evenly is 1. For instance, given the 100-slot array in Fig-
ure 10.23, we might use the constant 3 in the rehash function:

(Ha s hVa l ue + 3) % 100

(Although 100 is not a prime number, 3 and 100 are relatively prime; they have no
common factor larger than 1.)

Suppose that we want to add an element with the key 14001 to the hash table in
Figure 10.23. The original hash function (key % 100) returns the hash value 1, but this
array slot is in use; it contains the element with the key 44001. To determine the next
array slot to try, we apply the rehash function using the results of the first hash func-
tion as input: (1 + 3) % 100 = 4. The array slot at index [4] is also in use, so we reapply
the rehash function until we find an available slot. Each time, we use the value com-
puted from the previous rehash as input to the rehash function. The second rehash gives

Clustering The tendency of elements to become
unevenly distributed in the hash table, with many ele-
ments clustering around a single hash location

Rehashing Resolving a collision by computing a new
hash location from a hash function that manipulates
the original location rather than the element’s key

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 730

10.6 Hashing | 731

Figure 10.23 Handling collisions with rehashing

Add element
with key = 14001

[01]

Hash function:
key % 100

[00]
Element with key = 44001[01]

[02]
Element with key = 50003[03]
Element with key = 42004[04]
Element with key = 77005[05]

[06]
Element with key = 12007[07]

[08]
Element with key = 66009[09]

[10]

Element with key = 33999[99]

•

•

•

•

•

•

null

null

null

null

null

(4 + 3) % 100 = 7; this slot is in use. The third rehash gives (7 + 3) % 100 = 10; the
array slot at index [10] is empty, so the new element is added there.

To understand why the constant and the number of array slots must be relatively
prime, consider the rehash function

(Ha s hVa l ue + 2) % 100

We want to add the element with the key 14001 to the hash table pictured in Figure
10.23. The original hash function, key % 100, returns the hash value 1. This array slot is
already occupied. We resolve the collision by applying the rehash function above,
examining successive odd-numbered indexes until we find a free slot. What happens if
all of the slots with odd-numbered indexes are already in use? The search would fail—
even though there are free slots with even-numbered indexes. This rehash function does
not cover the full index range of the array. If the constant and the number of array slots
are relatively prime (such as 3 and 100), however, the function produces successive
rehashes that eventually cover every index in the array.

Rehash functions that use linear probing do not eliminate clustering (although the
clusters are not always visually apparent in a figure). For example, in Figure 10.23, any
element with a key that produces the hash value 1, 4, 7, or 10 would be inserted into the
slot at index [10].

In linear probing, we add a constant (usually
1) in each successive application of the rehash
function. Another approach, called quadratic
probing, makes the result of rehashing depend-
ent on how many times the rehash function has
been applied. The function is:

(Ha s hVa l ue +/ - I 2) % a r r a y- s i z e

Quadratic probing Resolving a hash collision by
using the rehashing formula (HashValue +/- I2) %
array-size

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 731

732 | Chapter 10: Sorting and Searching Algorithms

Figure 10.24 Handling collisions by hashing with buckets

Add element
with key = 77003

[3]

Hash function:
key % 100

[00]
Element with key = 14001[01]

[02]
Element with key = 50003[03]
Element with key = 00104[04]

[05]

Element with key = 56399[99]

null
Element with key = 72101

null
Add new element here

Element with key = 30504
null

Element with key = 32199

null
null
null
null

Element with key = 56004
null

null

•

•

•

•

•

•

•

•

•

•

•

•

null

null

null

The first rehash adds 1 to Ha s hVa l ue , the second rehash subtracts 1, the third rehash
adds 4, the fourth subtracts 4, the fifth adds 9, and so on. Quadratic probing reduces
clustering, but it does not necessarily examine every slot in the array. For example, if
a r r a y- s i z e is a power of 2 (512 or 1024, for example), relatively few array slots are
examined. If a r r a y- s i z e is a prime number of the form (4 * some-integer + 3), quad-
ratic probing does examine every slot in the array.

A third approach uses a pseudo-random-number
generator to determine the increment to Ha s hVa l ue in
each application of the rehash function. Random prob-
ing is an excellent choice for eliminating clustering, but
it tends to be slower than the other techniques we have
discussed.

Buckets and Chaining
Another alternative for handling collisions is to allow multiple element keys to hash to
the same location. One solution lets each computed hash location contain slots for mul-
tiple elements, rather than just a single element. Each of these multielement locations is
called a bucket. Figure 10.24 shows a hash table with buckets that can contain three

elements each. Using this approach, we can allow colli-
sions to produce duplicate entries at the same hash
location, up to a point. When the bucket becomes full,
we must again deal with handling collisions.

Another solution, which avoids this problem, is to
use the hash value not as the actual location of the ele-
ment, but rather as an index identifying a linked list of

elements. Each array slot accesses a chain of elements that share the same hash loca-
tion. Figure 10.25 illustrates this solution to the problem of collisions. Rather than
rehashing, we simply allow both elements to share hash location [3]. The entry in the
array at this location contains a reference to a linked list that includes both elements.

To search for a given element, we first apply the hash function to the key and then
search the chain for the element. Searching is not eliminated, but it is limited to ele-
ments that actually share a hash value. By contrast, with linear probing we may have to

Random probing Resolving a hash collision by gener-
ating pseudo-random hash values in successive appli-
cations of the rehash function

Bucket A collection of elements associated with a
particular hash location
Chain A linked list of elements that share the same
hash location

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 732

10.6 Hashing | 733

Figure 10.25 Handling collisions by hashing with chaining

Add element
with key = 77003

[3]

Hash function:
key % 100

[00]
[01]
[02]
[03]
[04]
[05]

[99]

Element with key = 14001

Element with key = 50003

Element with key = 00104

Element with key = 33099

Add element
with key =
77003 here.

•

•

•

•

•

•

search through many additional elements if the slots following the hash location are
filled with elements from collisions on other hash locations.

Figure 10.26 compares the chaining and hash-and-search schemes. The elements
were added in the following order:

45300
20006
50002
40000
25001
13000
65905
30001
95000

Figure 10.26 Comparison of linear probing and chaining schemes

[00]

(b) Chaining

[01]

[02]

[03]

[04]

[05]

[06]

[99]

[00]

(a) Linear Probing

[01]

[02]

[03]

[04]

[05]

[06]

[07]

[08]

[99]

key = 45300 45300

key = 40000

key = 50002

key = 25001

key = 13000

key = 65905

key = 20006

25001

50002

65905

20006
key = 30001

key = 95000

40000 13000 95000

30001

•

•

•

•

•

•

•

•

•

•

•

•

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 733

734 | Chapter 10: Sorting and Searching Algorithms

Figure 10.26(a) represents the linear probing approach to collision handling; Figure
10.26(b) shows the result of chaining the colliding elements. Let’s search for the element
with the key 30001.

Using linear probing, we apply the hash function to get the index [1]. Because
l i s t [1] does not contain the element with the key 30001, we search sequentially until
we find the element in l i s t [7] . This requires seven steps.

Using the chaining approach, we apply the hash function to get the index [1]. Next,
l i s t [1] directs us to a chain of elements whose keys hash to 1. We search this linked
list until we find the element with the desired key. This requires only two steps.

Another advantage of chaining is that it simplifies the removal of elements from
the hash table. We apply the hash function to obtain the index of the array slot that
contains the pointer to the appropriate chain. We can then delete the node from this
chain using the linked list algorithm from Chapter 6.

Choosing a Good Hash Function
One way to minimize collisions is to use a data structure that has significantly more
space than is actually needed for the number of elements, thereby increasing the range
of the hash function. In practice, it is desirable to have the array size be somewhat
larger than the number of elements required, so as to reduce the number of collisions.
(This approach assumes we are not using a method that requires the c ont a i ns method
to continue searching when it encounters an empty array slot.)

Selecting the table size involves a space versus time trade-off. The larger the range
of hash locations, the less likely it is that two keys will hash to the same location. Of
course, allocating an array that contains too large a number of empty slots wastes
space.

More important, we can design our hash function to minimize collisions. Our goal
is to distribute the elements as uniformly as possible throughout the array. Therefore,
our hash function should produce unique values as often as possible. Once we admit
collisions, we must introduce some sort of searching, either through array or chain
searching or through rehashing. The access to each element is no longer direct, and the
search is no longer O(1). In fact, if the collisions create very disproportionate-size
chains, the worst case may be almost O(N).

To avoid such a situation, we need to know something about the statistical distribu-
tion of keys. Imagine a company whose employee information is sorted according to a
six-digit ID number. The firm has 500 employees, and we decide to use a chained
approach to handle collisions. We set up 100 chains (expecting an average of five ele-
ments per chain) and use the hash function

i dNum % 100

That is, we use the last two digits of the six-digit ID number as our index. The planned
hash scheme is shown in Figure 10.27(a). Figure 10.27(b) shows what happened when
the hash scheme was implemented. How could the distribution of the elements be so
skewed?

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 734

10.6 Hashing | 735

Figure 10.27 Hash scheme to handle employee elements

[00]

(a) The plan

[01]
[02]
[03]

[99]

Average 5 records/chain
5 records 100 chains = 500 employees
Expected search — 0(5)

376 employees hired in 1987
97 employees hired in 1988
27 employees hired in 1989

[87]
[88]
[89]

376 records

97 records

27 records

[99]

[00]

(b) The reality

No records

No records

[01]
[02]

500 employees
Actual search 0(N)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 735

736 | Chapter 10: Sorting and Searching Algorithms

It turns out that the company’s ID number is a concatenation of three values:

The hash scheme depended solely on the year hired to produce hash values. Because the
company was founded in 1987, all of the elements were crowded very disproportion-
ately into a small subset of the hash locations. A search for an employee element, in this
case, is O(N). Although this is an exaggerated example, it illustrates the need to under-
stand as completely as possible the domain and predicted values of keys in a hash
scheme. In the example situation it is much better to use some combination of the first
three digits for the hash function.

Division Method
The most common hash functions use division (%) to compute hash values. We used this
type of function in the preceding examples. The general function is

ke y % t a bl e Si z e

We have already mentioned the idea of making the table somewhat larger than the
number of elements required, thereby increasing the range of hash values. In addition,
better results are produced with the division method when the table size is a prime
number.

The advantage of the division hash function is its simplicity. Sometimes, however,
it is necessary to use a more complicated (or even exotic) hash function to achieve a
more uniform distribution of hash values.

Other Hash Methods
How can we use hashing if the element key is a string instead of an integer? One
approach uses an arithmetic combination of the internal representations of the string’s
characters to create a number that can be used as an index. (Each Unicode character is
represented in memory as an integer.)

A hash method called folding involves breaking the
key into several pieces and then concatenating or
exclusive-OR’ing some of those pieces to form the hash
value. Another method is to square the key and then
use some of the digits (or bits) of the key as a hash
value. A number of other techniques are available as

well, all of which are intended to make the hash location as unique and random (within
the allowed range) as possible.

When using an exotic hash function, we should keep two considerations in
mind. First, we should consider the efficiency of calculating the function. Even if a

3 digits,
unique number

(000–999)

1 digit,
dept. number

(0–9)

2 digits,
year hired
(e.g., 89)

XXX X XX

Folding A hash method that breaks the key into sev-
eral pieces and then concatenates or exclusive-ORs
some of those pieces to form the hash value

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 736

10.6 Hashing | 737

hash function always produces unique values, it is not a good choice if it takes longer
to calculate the hash value than to search half the list. Second, we should consider pro-
grammer time. An extremely exotic function that somehow produces unique hash val-
ues for all of the known key values may fail if the domain of possible key values
changes in a later modification. The programmer who has to modify the program may
then waste a lot of time trying to find another hash function that is equally clever.

Finally, note that if we know all of the possible keys ahead of time, it is possible to
determine a perfect hash function. For example, if we needed a list of elements whose
keys were the reserved words in a computer language, we could find a hash function
that hashes each word to a unique location. In general, it takes a great deal of work to
discover a perfect hash function.

Java’s Support for Hashing
The Java library includes a Ha s hTa bl e class that uses hash techniques to support storing
objects in a table. In fact, the library includes several other collection classes, such as
Ha s hSe t , that provide an ADT whose underlying implementation takes advantage of the
approaches described in this section.

The Java Obj e c t class exports a ha s hCode method that returns an i nt hash code.
Because all Java objects ultimately inherit from Obj e c t , all Java objects have an associ-
ated hash code. This is the hash value that Java uses within its hash-based library classes.

The standard Java hash code for an object is a function of the object’s memory location.
As a consequence, it cannot be used to relate separate objects with identical contents. For
example, even if c i r c l e A and c i r c l e B have identical field values, it is very unlikely that
they have the same hash code. Of course, if c i r c l e A and c i r c l e B both reference the same
circle object, then their hash codes are identical because they hold the same memory reference.

For most applications, hash codes based on memory locations are not usable. Therefore,
many of the Java classes that define commonly used objects (such as St r i ng and I nt e -
ge r) override the Obj e c t class’s ha s hCode method with one that is based on the con-
tents of the object. If you plan to use hash tables in your programs, you should do likewise.

Complexity
We began our discussion of hashing by trying to find a list implementation where the
addition and removal of elements had a complexity of O(1). If our hash function never
produces duplicates and the array size is large compared to the expected number of ele-
ments in the list, then we have reached our goal. In general, this is not the case. Clearly,
as the number of elements approaches the array size, the efficiency of the algorithms
deteriorates. A precise analysis of the complexity of hashing is beyond the scope of this
book. Informally, we can say that the larger the array is relative to the expected number
of elements and the smaller the number of collisions produced by the hash function, the
more time efficient the algorithms are.

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 737

738 | Chapter 10: Sorting and Searching Algorithms

Table 10.3 Comparison of Sorting Algorithms

Order of Magnitude

Sort Best Case Average Case Worst Case

s e l e c t i onSor t O(N2) O(N2) O(N2)
bubbl e Sor t O(N2) O(N2) O(N2)
s hor t Bubbl e O(N)* O(N2) O(N2)
i ns e r t i onSor t O(N)* O(N2) O(N2)
me r ge Sor t O(N log2N) O(N log2N) O(N log2N)
qui c kSor t O(N log2N) O(N log2N) O(N2) (depends on split)
he a pSor t O(N log2N) O(N log2N) O(N log2N)

*Data almost sorted.

Summary
We have not attempted in this chapter to describe every known sorting algorithm.
Instead, we have presented a few of the popular sorts, of which many variations exist. It
should be clear from this discussion that no single sort is best for all applications. The
simpler, generally O(N2) sorts work as well as, and sometimes better than, the more
complicated sorts for fairly small values of N. Because they are simple, these sorts
require relatively little programmer time to write and maintain. As we add features to
improve sorts, we also increase the complexity of the algorithms, expanding both the
work required by the routines and the programmer time needed to maintain them.

Another consideration in choosing a sort algorithm is the order of the original data.
If the data are already sorted (or almost sorted), s hor t Bubbl e is O(N), whereas some
versions of qui c kSor t are O(N2).

As always, the first step in choosing an algorithm is to determine the goals of the
particular application. This effort usually narrows the choice of options considerably.
After that, knowledge of the strong and weak points of the various algorithms assists
us in selecting a sorting method.

Table 10.3 compares the sorts discussed in this chapter in terms of Big-O notation.
Searching, similar to sorting, is a topic that is closely tied to the goal of efficiency.

We speak of a sequential search of a list as an O(N) search, because it may require as
many as N comparisons to locate an element. (N refers to the number of elements in the
list.) Binary searches are considered to be O(log2N) and are appropriate for array-based
lists if they are sorted. A binary search tree may be used to allow binary searches on a
linked structure. The goal of hashing is to produce a search that approaches O(1) time
efficiency. Because of collisions of hash locations, some searching or rehashing is usu-
ally necessary. A good hash function minimizes collisions and distributes the elements
randomly throughout the table.

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 738

Exercises | 739

It is important that you become familiar with several of the basic sorting and
searching techniques. We use these tools over and over again in a programming envi-
ronment, and we need to know which ones are appropriate solutions to different prob-
lems. Our review of sorting and searching techniques has given us another
opportunity to examine a measuring tool—the Big-O approximation—that helps us
determine how much work is required by a particular algorithm. Both building tools
and measuring tools are needed to construct sound program solutions.

Exercises
10.1 Sorting

1. A test harness program for testing sorting methods is provided with the rest of
the textbook program files. It is in the file Sor t s . j a va in the c h10 package. The
program includes a s wa p method that is used by all of the sorting methods to
swap array elements.
a. Describe an approach to modifying the program so that after calling a sorting

method the program prints out the number of swaps needed by the sorting
method.

b. Implement your approach.
c. Test your new program by running the s e l e c t i onSor t method. Your pro-

gram should report 49 swaps.

10.2 Simple Sorts
2. Multiple choice: How many comparisons would be needed to sort an array con-

taining 100 elements using a selection sort if the original array values were
already sorted?
a. 10,000
b. 9,900
c. 4,950
d. 99
e. None of these

3. Determine the Big-O complexity for the selection sort based on the number of
elements moved rather than on the number of comparisons
a. For the best case.
b. For the worst case.

4. In what case(s), if any, is the complexity of the selection sort O(log2N)?
5. Write a version of the bubble sort algorithm that sorts a list of integers in

descending order.
6. In what case(s), if any, is the complexity of the bubble sort O(N)?
7. How many comparisons would be needed to sort an array containing 100 ele-

ments using s hor t Bubbl e

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 739

740 | Chapter 10: Sorting and Searching Algorithms

a. In the worst case?
b. In the best case?

8. Show the contents of the array

after the fourth iteration of
a. s e l e c t i onSor t .
b. bubbl e Sor t .
c. i ns e r t i onSor t .

9. A sorting function is called to sort a list of 100 integers that have been read
from a file. If all 100 values are zero, what would the execution costs (in terms
of Big-O notation) be if the sort used was
a. bubbl e Sor t ?
b. s hor t Bubbl e ?
c. s e l e c t i onSor t ?
d. i ns e r t i onSor t ?

10. In Exercise 1 you were asked to modify the Sor t s program so that it would out-
put the number of swaps used by a sorting method. It is a little more difficult to
have the program also output the number of comparisons (compares) needed.
You must include one or more statements to increment your counter within the
sorting methods themselves. For each of the listed methods, make and test the
changes needed, and list both the number of swaps and the number of compares
needed by the Sor t s program to sort an array of 50 random integers.
a. s e l e c t i onSor t swaps: ____ compares: ____
b. bubbl e Sor t swaps: ____ compares: ____
c. s hor t Bubbl e swaps: ____ compares: ____
d. i ns e r t i onSor t swaps: ____ compares: ____

10.3 O(N log2N) Sorts
11. A merge sort is used to sort an array of 1000 test scores in descending order.

Which one of the following statements is true?
a. The sort is fastest if the original test scores are sorted from smallest to

largest.
b. The sort is fastest if the original test scores are in completely random order.
c. The sort is fastest if the original test scores are sorted from largest to small-

est.

43

[0]

7

[1]

10

[2]

23

[3]

18

[4]

4

[5]

19

[6]

5

[7]

66

[8]

14

[9]

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 740

Exercises | 741

d. The sort is the same, no matter what the order of the original elements.
12. Show how the values in the array in Exercise 8 would be arranged immediately

before the execution of method me r ge in the original (nonrecursive) call to
me r ge Sor t .

13. Determine the Big-O complexity for me r ge Sor t based on the number of ele-
ments moved rather than on the number of comparisons
a. For the best case.
b. For the worst case.

14. Use the Three-Question Method to verify me r ge Sor t .
15. In what case(s), if any, is the complexity of the quick sort O(N2)?
16. Which is true about the quick sort?

a. A recursive version executes faster than a nonrecursive version.
b. A recursive version has fewer lines of code than a nonrecursive version.
c. A nonrecursive version takes more space on the run-time stack than a recur-

sive version.
d. It can be programmed only as a recursive function.

17. Determine the Big-O complexity for qui c kSor t based on the number of ele-
ments moved rather than on the number of comparisons
a. For the best case.
b. For the worst case.

18. Use the Three-Question Method to verify qui c kSor t .
19. Using the algorithms for creating a heap and sorting an array using a heap-

based approach:
a. Show how the values in the array in Exercise 8 would have to be rearranged

to satisfy the heap property.
b. Show how the array would look with four values in the sorted portion after

reheaping.
20. A sorting function is called to sort a list of 100 integers that have been read

from a file. If all 100 values are zero, what would the execution costs (in terms
of Big-O notation) be if the sort used was
a. me r ge Sor t ?
b. qui c kSor t , with the first element used as the split value?
c. he a pSor t ?

21. Suppose a list is already sorted from smallest to largest when a sort is called.
Which of the following sorts would take the longest time to execute and which
would take the shortest time?
a. qui c kSor t , with the first element used as the split value

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 741

742 | Chapter 10: Sorting and Searching Algorithms

b. s hor t Bubbl e

c. s e l e c t i onSor t

d. he a pSor t

e. i ns e r t i onSor t

f. me r ge Sor t

22. A very large array of elements is to be sorted. The program will be run on a per-
sonal computer with limited memory. Which sort would be a better choice: a
heap sort or a merge sort? Why?

23. True or False? Explain your answers.
a. me r ge Sor t requires more space to execute than he a pSor t .
b. qui c kSor t (using the first element as the split value) is better for nearly

sorted data than he a pSor t .
c. The efficiency of he a pSor t is not affected by the original order of the ele-

ments.
24. In Exercise 1 you were asked to modify the Sor t s program so that it would out-

put the number of swaps used by a sorting method. It is a little more difficult to
have the program also output the number of comparisons needed. You must
include one or more statements to increment your counter within the sorting
methods themselves. For each of the listed methods, make and test the changes
needed, and list the number of comparisons needed by Sor t s to sort an array of
50 random integers.
a. me r ge Sor t compares: ____
b. qui c kSor t compares: ____
c. he a pSor t compares: ____

10.4 More Sorting Considerations
25. For small values of N, the number of steps required for an O(N2) sort might be

less than the number of steps required for a sort of a lower degree. For each of
the following pairs of mathematical functions f and g below, determine a value
N such that if n > N, g(n) > f(n). This value represents the cutoff point, above
which the O(n2) function is always larger than the other function.
a. f (n) = 4n g(n) = n2 + 1
b. f (n) = 3n + 20 g(n) = 1–2 n2 + 2
c. f (n) = 4 log2n + 10 g(n) = n2

26. Give arguments for and against using methods (such as s wa p) to encapsulate
frequently used code in a sorting routine.

27. Many times, to simplify our code, we create recursive methods of the form
i f c ondi t i on

do s ome t hi ng

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 742

Exercises | 743

If the condition is false, the recursive method does nothing and returns. To
avoid the overhead of extra method invocations, it is more efficient to perform
the test on the condition before invoking the recursive method. Thus the
method becomes
do s ome t hi ng

An example of this is our qui c kSor t method. Describe how you would change
qui c kSor t to avoid the overhead of unneeded invocations. Don’t forget to
address any needed changes to the original invocation of qui c kSor t .

28. What is meant by this statement: “Programmer time is an efficiency consideration.”
Give an example of a situation in which programmer time is used to justify the
choice of an algorithm, possibly at the expense of other efficiency considerations.

29. Modify the Sor t s 2 class so that it also sorts the array of Sor t Ci r c l e s

a. From smallest to largest.
b. From right to left, based on the position of the center of the circle. (The coor-

dinate system uses increasing values moving from left to right.)
c. Based on the distance of the circle from the point 0, 0; shortest distance first.

30. The Sor t s 2 class is similar to the Sor t s class we used to study sorting algo-
rithms. Instead of using integers, the Sor t s 2 class generates an array of random
Sor t Ci r c l e objects, and then sorts them first by xVa l ue and then by yVa l ue .
Create an i s Sor t e d method for Sor t s 2, similar to the i s Sor t e d method of
Sor t s except it must accept and use a Compa r a t or parameter. Modify Sor t s 2
to include this new method; remember to call the method both before and after
the calls to the sort routines.

31. Go through the sorting algorithms coded in this chapter and determine which
ones are stable as coded. Identify the key statement in the corresponding method
that determines the stability. If there are unstable algorithms (other than the
quick sort and heap sort), make them stable.

32. We said that the heap sort algorithm is inherently unstable. Explain why.
33. Which sorting algorithm would you not use under each of the following conditions?

a. The sort must be stable.
b. Space is very limited.

10.5 Searching
34. Fill in the following table, showing the number of comparisons needed either to

find the value or to determine that the value is not in the indicated structure
based on the given approach and given the following values:

26, 15, 27, 12, 33, 95, 9, 5, 99, 14

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 743

744 | Chapter 10: Sorting and Searching Algorithms

35. If you know the index of an element stored in an array of N unsorted elements,
which of the following best describes the order of the algorithm to find the ele-
ment?
a. O(1)
b. O(N)
c. O(log2N)
d. O(N2)
e. O(0.5N)

36. The element being searched for is not in an array of 100 elements. What is the
average number of comparisons needed in a sequential search to determine that
the element is not there
a. If the elements are completely unsorted?
b. If the elements are sorted from smallest to largest?
c. If the elements are sorted from largest to smallest?

37. The element being searched for is not in an array of 100 elements. What is the
maximum number of comparisons needed in a sequential search to determine
that the element is not there
a. If the elements are completely unsorted?
b. If the elements are sorted from smallest to largest?
c. If the elements are sorted from largest to smallest?

Sorted
Array,
Binary
Search

15

Value

Unsorted
Array in the
order shown

Sorted Array,
Sequential
Search

17

14

5

99

100

0

Binary
Search
Tree
with
elements
added in the
order shown

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 744

Exercises | 745

38. The element being searched for is in an array of 100 elements. What is the aver-
age number of comparisons needed in a sequential search to determine the posi-
tion of the element
a. If the elements are completely unsorted?
b. If the elements are sorted from smallest to largest?
c. If the elements are sorted from largest to smallest?

39. Choose the answer that correctly completes the following sentence: The elements
in an array may be sorted by highest probability of being requested to reduce
a. The average number of comparisons needed to find an element in the list.
b. The maximum number of comparisons needed to detect that an element is not

in the list.
c. The average number of comparisons needed to detect that an element is not

in the list.
d. The maximum number of comparisons needed to find an element that is in

the list.
40. True or False? Explain your answers.

a. A binary search of a sorted set of elements in an array is always faster than a
sequential search of the elements.

b. A binary search is an O(N log2N) algorithm.
c. A binary search of elements in an array requires that the elements be sorted

from smallest to largest.
d. A high-probability ordering scheme would be a poor choice for arranging an

array of elements that are equally likely to be requested.
41. How might you order the elements in a list of Java’s reserved words to use the

idea of high-probability ordering?

10.6 Hashing
For Exercises 42–45, use the following values:

66, 47, 87, 90, 126, 140, 145, 153, 177, 285, 393, 395, 467, 566, 620, 735

42. Store the values into a hash table with 20 positions, using the division method
of hashing and the linear probing method of resolving collisions.

43. Store the values into a hash table with 20 positions, using rehashing as the
method of collision resolution. Use ke y % t a bl e Si z e as the hash function, and
(ke y + 3) % t a bl e Si z e as the rehash function.

44. Store the values into a hash table with 10 buckets, each containing three slots. If
a bucket is full, use the next (sequential) bucket that contains a free slot.

45. Store the values into a hash table that uses the hash function ke y % 10 to
determine which of 10 chains to put the value into.

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 745

746 | Chapter 10: Sorting and Searching Algorithms

46. Fill in the following table, showing the number of comparisons needed to find
each value using the hashing representations given in Exercises 42–45.

47. True or False? Explain your answers.
a. When a hash function is used to determine the placement of elements in an

array, the order in which the elements are added does not affect the resulting
array.

b. When hashing is used, increasing the size of the array always reduces the
number of collisions.

c. If we use buckets in a hashing scheme, we do not have to worry about colli-
sion resolution.

d. If we use chaining in a hashing scheme, we do not have to worry about colli-
sion resolution.

e. The goal of a successful hashing scheme is an O(1) search.
48. Choose the answer that correctly completes the following sentence: The number

of comparisons required to find an element in a hash table with N buckets, of
which M are full,
a. Is always 1.
b. Is usually only slightly less than N.
c. May be large if M is only slightly less than N.
d. Is approximately log2M.
e. Is approximately log2N.

49. Write a program that repeatedly accepts a string from the user and outputs the
hash code for the string, using the St r i ng class’s predefined ha s hCode method.

66

Value Exercise 42

467

566

735

285

87

Exercise 43

Number of Comparisons

Exercise 44 Exercise 45

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 746

Exercises | 747

50. Create a data set with 100 integer values. Create a program that uses the division
method of hashing to store the data values into hash tables with table sizes of 7,
51, and 151. Use the linear probing method of collision resolution. Print out the
tables after the data values have been stored. Search for 10 different values in
each of the three hash tables, counting the number of comparisons necessary.
Print out the number of comparisons necessary in each case in tabular form.
Turn in a listing of your program and a listing of the output.

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 747

13549_CH10_Da l e . qxd 1/ 11/ 11 8: 14 AM Pa ge 748

Appendix A

Java Reserved Words

a bs t r a c t
a s s e r t
bool e a n
br e a k
byt e
c a s e
c a t c h
c ha r
c l a s s
c ons t

c ont i nue
de f a ul t
do
doubl e
e l s e
e num
e xt e nds
f i na l
f i na l l y
f l oa t

f or
got o
i f
i mpl e me nt s
i mpor t
i ns t a nc e of
i nt
i nt e r f a c e
l ong
na t i ve

ne w
pa c ka ge
pr i va t e
pr ot e c t e d
publ i c
r e t ur n
s hor t
s t a t i c
s t r i c t f p
s upe r

s wi t c h
s ync hr oni z e d
t hi s
t hr ow
t hr ows
t r a ns i e nt
t r y
voi d
vol a t i l e
whi l e

13549_APPA_Da l e . qxd 1/ 3/ 11 9: 52 AM Pa ge 749

Appendix B

Operator Precedence

Precedence (highest to lowest)

Operator Assoc.* Operand Type(s) Operation Performed

. LR object, member object member access
[] LR array, int array element access
(a r gs) LR method, arglist method invocation
++, - - LR variable post-increment, decrement
++, - - RL variable pre-increment, decrement
+, - RL number unary plus, unary minus
~ RL integer bitwise complement
! RL boolean boolean NOT
ne w RL class, arglist object creation
(t ype) RL type, any cast (type conversion)
*, / , % LR number, number multiplication, division, remainder
+, - LR number, number addition, subtraction
+ LR string, any string concatenation
<< LR integer, integer left shift
>> LR integer, integer right shift with sign extension
>>> LR integer, integer right shift with zero extension
<, <= LR number, number less than, less than or equal
>, >= LR number, number greater than, greater than or equal
i ns t a nc e of LR reference, type type comparison
== LR primitive, primitive equal (have identical values)
! = LR primitive, primitive not equal (have different values)
== LR reference, reference equal (refer to the same object)
! = LR reference, reference not equal (refer to different objects)
& LR integer, integer bitwise AND
& LR boolean, boolean boolean AND
^ LR integer, integer bitwise XOR
^ LR boolean, boolean boolean XOR

*LR means left-to-right associativity; RL means right-to-left associativity.

750 | Appendix B

In the following table, the operators are grouped by precedence level (highest to lowest), and a horizontal line
separates each precedence level from the next-lower level.

13549_APPB_Da l e . qxd 1/ 3/ 11 9: 51 AM Pa ge 750

Precedence (highest to lowest)

Operator Assoc.* Operand Types(s) Operation Performed

| LR integer, integer bitwise OR
| LR boolean, boolean boolean OR
&& LR boolean, boolean conditional AND

(short circuit evaluation)
| | LR boolean, boolean conditional OR

(short circuit evaluation)
? : RL boolean, any, any conditional (ternary) operator
= RL variable, any assignment
*=, / =, %=, +=, - =, <<=,
>>=, >>>=, &=, ^ =, | = RL variable, any assignment with operation

*LR means left-to-right associativity; RL means right-to-left associativity.

Appendix C

Primitive Data Types

Type Value Stored Default Value Size Range of Values

c ha r Unicode character Character code 0 16 bits 0 t o 65535
byt e Integer value 0 8 bits 128 t o 127
s hor t Integer value 0 16 bits 32768 t o 32767
i nt Integer value 0 32 bits 2147483648 t o 2147483647
l ong Integer value 0 64 bits 9223372036854775808 t o

9223372036854775807
f l oa t Real value 0. 0 32 bits 1. 4E- 45 t o

 3. 4028235E+38
doubl e Real value 0. 0 64 bits 4. 9E- 324 t o

 1. 7976931348623157E+308
bool e a n t r ue or f a l s e f a l s e 1 bit NA

Appendix C | 751

13549_APPC_Da l e . qxd 1/ 3/ 11 9: 51 AM Pa ge 751

752 | Appendix D

Appendix D

ASCII Subset of Unicode

The following chart shows the ordering of characters in the ASCII (American Standard Code for Information
Interchange) subset of Unicode. The internal representation for each character is shown in decimal. For exam-
ple, the letter A is represented internally as the integer 65. The space (blank) character is denoted by a “ ”.

Right A SCII
Left Digit

Digit(s) 0 1 2 3 4 5 6 7 8 9

0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT
1 LF VT FF CR SO SI DLE DC1 DC2 DC3
2 DC4 NAK SYN ETB CAN EM SUB ESC FS GS
3 RS US ! “ # $ % & ´
4 () * + , – . / 0 1
5 2 3 4 5 6 7 8 9 : ;
6 < = > ? @ A B C D E
7 F G H I J K L M N O
8 P Q R S T U V W X Y
9 Z [\] ^ _ ` a b c

10 d e f g h i j k l m
11 n o p q r s t u v w
12 x y z { | } ~ DEL

Codes 00–31 and 127 are the following nonprintable control characters:

NUL Null character VT Vertical tab SYN Synchronous idle
SOH Start of header FF Form feed ETB End of transmitted block
STX Start of text CR Carriage return CAN Cancel
ETX End of text SO Shift out EM End of medium
EOT End of transmission SI Shift in SUB Substitute
ENQ Enquiry DLE Data link escape ESC Escape
ACK Acknowledge DC1 Device control one FS File separator
BEL Bell character (beep) DC2 Device control two GS Group separator
BS Back space DC3 Device control three RS Record separator
HT Horizontal tab DC4 Device control four US Unit separator
LF Line feed NAK Negative acknowledge DEL Delete

13549_APPD_Da l e . qxd 1/ 3/ 11 9: 53 AM Pa ge 752

Appendix E

Application Programmer
Interfaces for the Java Classes
and Interfaces Used in This Book

In this appendix we have listed the application programmer interfaces (APIs) for the
Java classes and interfaces, used in this book, plus a few others we believe you may find
useful. For each class/interface, the header line shows the name of the class/interface on
the left and the name of the library package that contains the class/interface on the
right. This is followed by a brief description of the class/interface, plus a selected list of
constants, constructors, and methods. There are more constructs for the classes pre-
sented here, and there are many more classes and interfaces in the Java class library.
You should also explore the robust information about Java APIs at www.java.sun.com.

ArrayList<E> java.util
Implements a dynamically resizable array of object references that can be treated as a
list. The functionality of the Ar r a yLi s t class is similar to that of an array. In fact, the
array is the underlying implementation structure used in this class. An Ar r a yLi s t
includes a capacity attribute representing the size of this underlying array. The
Ar r a yLi s t is a member of the Java Collections Framework. As of Java 5.0, this class
supports generics; E indicates the type of element that can be stored in the collection. If
no value for E is supplied to the constructor, it defaults to Obj e c t .

Appendix E | 753

13549_APPE_Da l e . qxd 1/ 3/ 11 9: 55 AM Pa ge 753

754 | Appendix E

Constructors

Ar r a yLi s t ()
Constructs an Ar r a yLi s t object with an initial capacity of 10.

Ar r a yLi s t (i nt i ni t i a l Ca pa c i t y)
Constructs an Ar r a yLi s t object with the specified initial capacity. Throws an
I l l e ga l Ar gume nt Exc e pt i on if i ni t i a l Ca pa c i t y is negative.

Methods

bool e a n a dd(E e l e me nt)
Appends the specified element to the end of this list. Returns t r ue .

voi d a dd(i nt i nde x, E e l e me nt)
Inserts the specified element to the specified location of this list. Shifts the remaining
elements one position “to the right.” Throws the I nde xOut Of Bounds Exc e pt i on if
the indicated index is out of the legal range.

voi d c l e a r ()
Removes all elements from this list.

bool e a n c ont a i ns (Obj e c t e l e me nt)
Returns t r ue if e l e me nt is on this list; otherwise, returns f a l s e .

voi d e ns ur e Ca pa c i t y(i nt mi nCa pa c i t y)
If the current capacity of this list is less than mi nCa pa c i t y, increases the capacity to
mi nCa pa c i t y.

Obj e c t ge t (i nt i nde x)
Returns the element at the specified i nde x position; the element is not removed from
this list.

i nt i nde xOf (Obj e c t e l e me nt)
Returns the index of the first occurrence of e l e me nt on this list. If e l e me nt is not
on this list, returns 1.

bool e a n i s Empt y()
Returns t r ue if this list is empty; otherwise, returns f a l s e .

Obj e c t r e move (i nt i nde x)
Returns and removes the element at the specified i nde x position.

Obj e c t s e t (i nt i nde x, E ne wEl e me nt)
Returns the element at the specified i nde x position and replaces that element with
ne wEl e me nt .

i nt s i z e ()
Returns the number of elements in this list.

voi d t r i mToSi z e ()
Sets the capacity to this list’s current size.

13549_APPE_Da l e . qxd 1/ 3/ 11 9: 55 AM Pa ge 754

Appendix E | 755

Character java.lang
The Java class library provides a wrapper class for each of the primitive types. The
wrapper class allows us to store a primitive value in an Obj e c t variable. Cha r a c t e r is
the wrapper class that creates an equivalent object for a c ha r variable. It also provides
useful conversion and utility methods for working with characters. Characters are based
on the Unicode standard.

Constructor

Cha r a c t e r (c ha r c h)
Instantiates a Cha r a c t e r object that corresponds to a c ha r variable having the same
value as c h.

Methods

c ha r c ha r Va l ue ()
Returns the corresponding c ha r value of this Cha r a c t e r .

i nt c ompa r e To(Cha r a c t e r a not he r Cha r a c t e r)
Compares this Cha r a c t e r to the argument Cha r a c t e r numerically, returning a neg-
ative number, zero, or a positive number if this Cha r a c t e r is less than, equal to, or
greater than the argument Cha r a c t e r , respectively.

bool e a n e qua l s (Obj e c t obj)
Returns t r ue if obj represents the same c ha r value as this Cha r a c t e r object; oth-
erwise, returns f a l s e .

i nt ha s hCode ()
Returns a hash code for this Cha r a c t e r .

bool e a n i s Di gi t (c ha r c h)
Static method that returns t r ue if the argument is a digit; otherwise, returns f a l s e .

bool e a n i s Le t t e r (c ha r c h)
Static method that returns t r ue if the argument is a letter; otherwise, returns f a l s e .

bool e a n i s Whi t e s pa c e (c ha r c h)
Static method that returns t r ue if the argument is whitespace, according to Java;
otherwise, returns f a l s e .

c ha r t oLowe r Ca s e (c ha r c)
Static method that returns the lowercase version of the c ha r argument.

St r i ng t oSt r i ng()
Returns a St r i ng object representing this Cha r a c t e r .

c ha r t oUppe r Ca s e (c ha r c)
Static method that returns the uppercase version of the c ha r argument.

13549_APPE_Da l e . qxd 1/ 3/ 11 9: 55 AM Pa ge 755

756 | Appendix E

Cha r a c t e r va l ue Of (c ha r c)
Static method that returns an instance of Cha r a c t e r representing the argument
c ha r .

Cloneable (interface) java.lang
The Cl one a bl e interface has a unique protocol: Declaring that a class implements
Cl one a bl e amounts to a promise by the implementer that clients of the class can safely
invoke a c l one method on objects of the class. Either the class provides its own reliable
c l one method or the implementer guarantees that the inherited Obj e c t class’s c l one
method (a bitwise copy operation—that is, an exact copy of the object’s memory repre-
sentation; see Obj e c t) can be used. If c l one is invoked on an object of a class that
does not implement the Cl one a bl e interface, the Cl one Not Suppor t e dExc e pt i on is
thrown.

Comparable<T> (interface) java.lang
The Compa r a bl e interface consists of exactly one abstract method:

i nt c ompa r e To(T o)
Compares this object to the argument object, returning a negative number, zero, or a
positive number if this object is less than, equal to, or greater than the argument
object, respectively.

See Section 6.1, “Comparing Objects Revisited,” for more information.
This interface is a member of the Java Collections Framework. As of Java 5.0, it

supports generics; T indicates the types of objects that can be compared. A
Cl a s s Ca s t Exc e pt i on is thrown if the argument object’s type is not compatible with
the object upon which c ompa r e To is invoked. If no value for T is supplied when a class
indicates that it implements Compa r a bl e , it defaults to Obj e c t . In that case, however,
many compilers will generate an “unchecked warning” wherever the c ompa r e To
method is invoked.

Comparator<T> (interface) java.util
The Compa r a t or interface consists of two abstract methods:

i nt c ompa r e (T o1, T o2) ;
Returns a negative integer, zero, or a positive integer to indicate that o1 is less than,
equal to, or greater than o2, respectively.

bool e a n e qua l s (Obj e c t obj) ;
Returns t r ue if this Obj e c t equals obj ; otherwise, returns f a l s e .

See Section 10.4, “More Sorting Considerations,” for more information.
This interface is a member of the Java Collections Framework. As of Java 5.0, it

supports generics; T indicates the types of objects that can be compared. A
Cl a s s Ca s t Exc e pt i on is thrown if the argument types of c ompa r e are not compatible

13549_APPE_Da l e . qxd 1/ 3/ 11 9: 55 AM Pa ge 756

Appendix E | 757

with each other. If no value for T is supplied when a class indicates that it implements
Compa r a t or , it defaults to Obj e c t .

DecimalFormat java.text
Provides methods for formatting numbers for output.

Constructor

De c i ma l For ma t (St r i ng pa t t e r n)
Instantiates a De c i ma l For ma t object with the output pa t t e r n specified in the argu-
ment.

Method

St r i ng f or ma t (doubl e numbe r)
Returns a St r i ng representation of numbe r formatted according to the De c i ma l -
For ma t pattern used to instantiate this object. This method is inherited from the
Numbe r For ma t class.

Commonly Used Pattern Symbols for a DecimalFormat Object

Symbol Meaning

0 Required digit. If the value for the digit in this position is 0, print a zero.
Digit. Don’t print anything if the digit is a leading zero.
. Decimal point.
, Comma separator.
% Multiply by 100 and display a percent sign.

Exception java.lang
The superclass for all predefined Java exceptions. All subclasses of the Exc e pt i on class
inherit these publ i c methods. See Section 3.3, “Exceptional Situations,” for more infor-
mation.

Constructors

Exc e pt i on()
Instantiates an Exc e pt i on object that has the nul l string as its default message.

Exc e pt i on(St r i ng s t r)
Instantiates an Exc e pt i on object that has the s t r string as its default message.

13549_APPE_Da l e . qxd 1/ 3/ 11 9: 55 AM Pa ge 757

758 | Appendix E

Methods

St r i ng ge t Me s s a ge ()
Returns a message indicating the cause of this exception. This method is inherited
from the Thr owa bl e class.

voi d pr i nt St a c kTr a c e ()
Prints the line number of the code that caused this exception, along with the
sequence of method calls leading up to this exception.

St r i ng t oSt r i ng()
Returns a St r i ng containing the exception class name and a message indicating the
cause of this exception.

FileInputStream java.io
Reads bytes from a file.

Constructor

Fi l e I nput St r e a m(St r i ng f i l e na me)
Constructs a Fi l e I nput St r e a m object from a St r i ng representing the name of a
file. Throws a Fi l e Not FoundExc e pt i on if a corresponding file does not exist or is
not readable.

FileOutputStream java.io
Writes bytes to a file.

Constructor

Fi l e Out put St r e a m(St r i ng f i l e na me , bool e a n mode)
Constructs a Fi l e Out put St r e a m object from a St r i ng representing the name of a
file; if mode is false, we will write to the file; if mode is t r ue , we will append to the
file. Throws a Fi l e Not FoundExc e pt i on if the named file cannot be opened for
writing.

FileReader java.io
Reads characters from a text file.

Constructor
Fi l e Re a de r (St r i ng f i l e na me)

Constructs a Fi l e Re a de r object from a St r i ng representing the name of a file. Throws a
Fi l e Not FoundExc e pt i on if a corresponding file does not exist or is not readable.

FileWriter java.io
Writes characters to a text file.

Constructor
Fi l e Wr i t e r (St r i ng f i l e Na me , bool e a n mode)

13549_APPE_Da l e . qxd 1/ 3/ 11 9: 55 AM Pa ge 758

Appendix E | 759

Constructs a Fi l e Wr i t e r object from a St r i ng representing the name of a file; if
mode is f a l s e , we will write to the file; if it is t r ue , we will append to the file.
Throws an I OExc e pt i on if the named file cannot be opened for writing.

Integer java.lang
The Java class library provides a wrapper class for each of the primitive types. The
wrapper class allows us to store a primitive value in an Obj e c t variable. I nt e ge r is the
wrapper class that creates an equivalent object for an i nt variable. It also provides use-
ful conversion and utility methods for working with integers.

Constructor

I nt e ge r (i nt i)
Instantiates an I nt e ge r object that corresponds to an i nt variable having the same
value as i .

Methods

i nt c ompa r e To(I nt e ge r a not he r I nt e ge r)
Compares this I nt e ge r to the argument I nt e ge r numerically, returning a negative
number, zero, or a positive number if this I nt e ge r is less than, equal to, or greater
than the argument I nt e ge r , respectively.

bool e a n e qua l s (Obj e c t obj)
Returns t r ue if obj represents the same i nt value as this I nt e ge r object; other-
wise, returns f a l s e .

i nt ha s hCode ()
Returns a hash code for this I nt e ge r .

i nt i nt Va l ue ()
Returns the corresponding i nt value of this I nt e ge r .

i nt pa r s e I nt (St r i ng s)
Static method that converts the St r i ng s to an i nt and returns that value.

St r i ng t oSt r i ng()
Returns a St r i ng object representing this I nt e ge r .

I nt e ge r va l ue Of (i nt i)
Static method that returns an instance of I nt e ge r representing the argument i nt .

I nt e ge r va l ue Of (St r i ng s)
Static method that converts the St r i ng s to an I nt e ge r object and returns that
object.

Iterable<T> (interface) java.lang
Objects of a class that implements this interface can be used with the f or e a c h state-
ment. The interface consists of one abstract method:

13549_APPE_Da l e . qxd 1/ 3/ 11 9: 55 AM Pa ge 759

760 | Appendix E

I t e r a t or <T> i t e r a t or () ;
Returns an I t e r a t or to be used over a collection of elements of type T.

This interface is new in Java 5.0. It supports generics; T indicates the types of
objects that can be iterated through. If no value for T is supplied when a class indicates
that it implements I t e r a bl e , it defaults to Obj e c t .

Iterator<E> (interface) java.util
Objects of a class that implements this interface can be iterated through. That is, the ele-
ments that make up the collection represented by the object can be visited, one after the
other, using the methods required by the interface. Those methods are described below:

bool e a n ha s Ne xt () ;
Returns t r ue if there are more elements to visit during this iteration; otherwise,
returns f a l s e .

E ne xt ()
Returns the next element, of type E, for this iteration.

voi d r e move ()
Removes the most recent element visited by the iteration from this collection.

This interface is a member of the Java Collections Framework. As of Java 5.0, it
supports generics; E indicates the types of objects that can be iterated through. If no
value for E is supplied when a class indicates that it implements I t e r a t or , it defaults
to Obj e c t .

Math java.lang
Provides methods for performing common mathematical computations. All methods are
static.

Predefined Static Constants

E doubl e The base of the natural logarithm. Approximate value is 2.78.
PI doubl e Pi, the ratio of the circumference of a circle to its diameter. Approxi-

mate value is 3.14.

Static Methods

da t a Type Of Ar g a bs (a r g)
Returns the absolute value of the argument a r g, which can be a doubl e , f l oa t ,
i nt , or l ong.

doubl e l og(doubl e a)
Returns the natural logarithm (in base e) of its argument. For example, log(1) returns
0 and log(Ma t h. E) returns 1.

13549_APPE_Da l e . qxd 1/ 3/ 11 9: 55 AM Pa ge 760

Appendix E | 761

da t a Type Of Ar gs ma x(a r gA, a r gB)
Returns the larger of the two arguments. The arguments can be of type doubl e ,
f l oa t , i nt , or l ong.

da t a Type Of Ar gs mi n(a r gA, a r gB)
Returns the smaller of the two arguments. The arguments can be of type doubl e ,
f l oa t , i nt , or l ong.

doubl e pow(doubl e ba s e , doubl e e xp)
Returns the value of ba s e raised to the e xp power.

doubl e r a ndom()
Returns a random number greater than or equal to 0 and less than 1.

i nt r ound(f l oa t a)
Returns the closest integer to its argument, a .

doubl e s qr t (doubl e a)
Returns the positive square root of a .

NumberFormat java.text
Provides methods for formatting numbers in currency, percent, and other formats. There
are no constructors for this class.

Methods

St r i ng f or ma t (doubl e numbe r)
Returns a St r i ng representation of numbe r formatted according to the Numbe r For ma t
object reference used to call the method.

Numbe r For ma t ge t Cur r e nc yI ns t a nc e ()
This static method creates a format for printing money.

Numbe r For ma t ge t Pe r c e nt I ns t a nc e ()
This static method creates a format for printing a percentage.

Object java.lang
This class is the root of the Java class tree. Every other class inherits from Obj e c t ; it is
a superclass of every other class.

Constructor

Obj e c t ()
Instantiates a new instance of the Obj e c t class.

Methods

Obj e c t c l one ()
Creates a bit-by-bit copy of this object and returns it. See Cl one a bl e for more infor-
mation.

13549_APPE_Da l e . qxd 1/ 3/ 11 9: 55 AM Pa ge 761

762 | Appendix E

bool e a n e qua l s (Obj e c t obj)
Returns t r ue if obj represents the same object as this Obj e c t ; otherwise, returns
f a l s e .

i nt ha s hCode ()
Returns a hash code for this Obj e c t .

St r i ng t oSt r i ng()
Returns a St r i ng object representing this Obj e c t .

ObjectInputStream java.io
Reads serialized objects from a file. See Section 6.8, “Storing Objects and Structures in
Files,” for more information.

Constructor

Obj e c t I nput St r e a m(I nput St r e a m i n)
Constructs an Obj e c t I nput St r e a m from the I nput St r e a m i n. Throws an I OEx-
c e pt i on when appropriate.

Methods

voi d c l os e ()
Closes this input stream.

Obj e c t r e a dObj e c t ()
Reads the next object from this input stream and returns it. The object read must be
an instance of a class that implements the Se r i a l i z a bl e interface. When the end of
the file is reached, an EOFExc e pt i on is thrown. Also throws an I OExc e pt i on and
Cl a s s Not FoundExc e pt i on when appropriate.

ObjectOutputStream java.io
Writes objects in a serialized format to a file. See Section 6.8, “Storing Objects and
Structures in Files,” for more information.

Constructor

Obj e c t Out put St r e a m(Out put St r e a m out)
Creates an Obj e c t Out put St r e a m that writes to the Out put St r e a m out . Throws an
I OExc e pt i on.

Methods

voi d c l os e ()
Closes this output stream.

voi d wr i t e Obj e c t (Obj e c t obj)
Writes the object obj to this output stream. That object must be an instance of a
class that implements the Se r i a l i z a bl e interface. Throws an I nva l i dCl a s s -
Exc e pt i on, Not Se r i a l i z a bl e Exc e pt i on, and I OExc e pt i on when appropriate.

13549_APPE_Da l e . qxd 1/ 3/ 11 9: 55 AM Pa ge 762

Appendix E | 763

PrintWriter java.io
Writes primitive data types and St r i ngs to a text file.

Constructor

Pr i nt Wr i t e r (Out put St r e a m os)
Constructs a Pr i nt Wr i t e r object from the Out put St r e a m object.

Methods

voi d c l os e ()
Releases the resources associated with this Pr i nt Wr i t e r object.

voi d pr i nt (bool e a n b)
Prints the bool e a n b to the Out put St r e a m.

voi d pr i nt (c ha r c)
Prints the c ha r c to the Out put St r e a m.

voi d pr i nt (doubl e d)
Prints the doubl e d to the Out put St r e a m.

voi d pr i nt (i nt i)
Prints the i nt i to the Out put St r e a m.

voi d pr i nt (St r i ng s)
Prints the St r i ng s to the Out put St r e a m.

voi d pr i nt l n(bool e a n b)
Prints the bool e a n b to the Out put St r e a m and appends a newline.

voi d pr i nt l n(c ha r c)
Prints the c ha r c to the Out put St r e a m and appends a newline.

voi d pr i nt l n(doubl e d)
Prints the doubl e d to the Out put St r e a m and appends a newline.

voi d pr i nt l n(i nt i)
Prints the i nt i to the Out put St r e a m and appends a newline.

voi d pr i nt l n(St r i ng s)
Prints the St r i ng s to the Out put St r e a m and appends a newline.

Random java.util
Provides sequences of pseudo-random numbers. A sequence of numbers is based on an
initial seed. Two instances created with the same seed will generate the same sequence
of numbers. Also see the r a ndom method of the Ma t h class.

13549_APPE_Da l e . qxd 1/ 3/ 11 9: 55 AM Pa ge 763

764 | Appendix E

Constructors

Ra ndom()
Creates a new random-number generator, using a seed dependent on the current sys-
tem status.

Ra ndom(l ong s e e d)
Creates a new random-number generator, using a seed equal to s e e d.

Methods

i nt ne xt I nt ()
Returns the next pseudo-random number.

i nt ne xt I nt (i nt n)
Returns the next pseudo-random number between 0 (inclusive) and n (exclusive).

Scanner java.util
Provides support for reading from an input stream or file. A Sc a nne r object breaks the
contents of its input stream into tokens, and returns the tokens one at a time when
requested. Unless otherwise indicated, the Sc a nne r assumes that standard whitespace
separates tokens.

Constructors

Sc a nne r (I nput St r e a m s our c e)
Creates a Sc a nne r object for reading from s our c e . If s our c e is Sys t e m. i n, this
instantiates a Sc a nne r object for reading from the Java console.

Sc a nne r (Fi l e s our c e)
Creates a Sc a nne r object for reading from a file.

Methods

bool e a n ha s Ne xt ()
Returns t r ue if there is another token in the input stream; otherwise, returns f a l s e .

bool e a n ha s Ne xt Bool e a n()
Returns t r ue if the next token in the input stream can be read as a bool e a n; other-
wise, returns f a l s e .

bool e a n ha s Ne xt Byt e ()
Returns t r ue if the next token in the input stream can be read as a byt e ; otherwise,
returns f a l s e .

bool e a n ha s Ne xt Doubl e ()
Returns t r ue if the next token in the input stream can be read as a doubl e ; other-
wise, returns f a l s e .

13549_APPE_Da l e . qxd 1/ 3/ 11 9: 55 AM Pa ge 764

Appendix E | 765

bool e a n ha s Ne xt Fl oa t ()
Returns t r ue if the next token in the input stream can be read as a f l oa t ; other-
wise, returns f a l s e .

bool e a n ha s Ne xt I nt ()
Returns t r ue if the next token in the input stream can be read as an i nt ; otherwise,
returns f a l s e .

bool e a n ha s Ne xt Long()
Returns t r ue if the next token in the input stream can be read as a l ong; otherwise,
returns f a l s e .

bool e a n ha s Ne xt Shor t ()
Returns t r ue if the next token can be read as a s hor t ; otherwise, returns f a l s e .

St r i ng ne xt ()
Returns the next token in the input stream as a St r i ng.

bool e a n ne xt Bool e a n()
Returns the next input token as a bool e a n. Throws an I nput Mi s ma t c hExc e pt i on
when appropriate.

byt e ne xt Byt e ()
Returns the next input token as a byt e . Throws an I nput Mi s ma t c hExc e pt i on
when appropriate.

doubl e ne xt Doubl e ()
Returns the next input token as a doubl e . Throws an I nput Mi s ma t c hExc e pt i on
when appropriate.

f l oa t ne xt Fl oa t ()
Returns the next input token as a f l oa t . Throws an I nput Mi s ma t c hExc e pt i on
when appropriate.

i nt ne xt I nt ()
Returns the next input token as an i nt . Throws an I nput Mi s ma t c hExc e pt i on
when appropriate.

St r i ng ne xt Li ne ()
Returns the remainder of the input line as a St r i ng.

l ong ne xt Long()
Returns the next input token as a l ong. Throws an I nput Mi s ma t c hExc e pt i on
when appropriate.

s hor t ne xt Shor t ()
Returns the next input token as a s hor t . Throws an I nput Mi s ma t c hExc e pt i on
when appropriate.

Sc a nne r us e De l i mi t e r (Pa t t e r n pa t t e r n)
Sets up the Sc a nne r so that it uses the characters indicated in the argument pa t -
t e r n to separate tokens in its stream.

13549_APPE_Da l e . qxd 1/ 3/ 11 9: 55 AM Pa ge 765

766 | Appendix E

Serializable (interface) java.io
The Se r i a l i z a bl e interface has no abstract methods. A class implements this interface
simply by declaring that it implements the interface. Implementation of this interface
enables a class to be serialized. See Section 6.8, “Storing Objects and Structures in
Files,” for more information.

String java.lang
Provides support for storing, searching, and manipulating sequences of characters.
St r i ng objects are immutable—once they are created, they are not changed. None of
the methods of the St r i ng class changes the value of a string. Instead, whenever a
change is made, a new St r i ng object is created.

The Java language provides a few shortcuts for using the St r i ng class. Just as Java
provides literals for all of its primitive types (for example, - 154 is a literal of type i nt
and t r ue is a literal of type bool e a n), so it provides a literal string mechanism. To
indicate a literal string, you simply enclose the sequence of characters within double
quotation marks—for example, “ t hi s i s a l i t e r a l s t r i ng.” A literal string actu-
ally represents an object of the class St r i ng.

The second shortcut is the provision of an infix string concatenation operand. The
St r i ng class provides a c onc a t method to concatenate two strings together to create a
third string. Because this operation is so prevalent, however, the language also provides
a shortcut operand, +. For example, if s 1, s 2, and s 3 are all St r i ng variables, then
these two statements are equivalent:

s 3 = s 1. c onc a t (s 2) ; 2 s 3 = s 1 + s 2;

Constructors

St r i ng(St r i ng s t r)
Creates a St r i ng object with the value of s t r , which can be a St r i ng object or a
St r i ng literal.

St r i ng()
Creates an empty St r i ng object.

St r i ng(c ha r [] c ha r Ar r a y)
Creates a St r i ng object containing the characters in the c ha r array c ha r Ar r a y.

Methods

c ha r c ha r At (i nt i nde x)
Returns the character at the position in this St r i ng specified by i nde x. The first
index is 0.

i nt c ompa r e To(St r i ng s t r)
Compares the values of the two St r i ngs. If this St r i ng object is less than the argu-
ment, returns a negative integer. If this St r i ng object is greater than the St r i ng
argument, returns a positive integer. If the two St r i ngs are equal, returns 0.

13549_APPE_Da l e . qxd 1/ 3/ 11 9: 55 AM Pa ge 766

Appendix E | 767

St r i ng c onc a t (St r i ng s t r)
Concatenates the argument to the end of this St r i ng and returns the result.

bool e a n e qua l s (Obj e c t s t r)
Compares the value of two strings. Returns t r ue if s t r is a St r i ng, is not nul l , and
is equal to this St r i ng object; otherwise, returns f a l s e .

bool e a n e qua l s I gnor e Ca s e (St r i ng s t r)
Compares the values of two strings, treating uppercase and lowercase characters as
equal. Returns t r ue if the strings are equal; otherwise, returns f a l s e .

i nt i nde xOf (c ha r s e a r c hCha r)
Returns the index of the first occurrence of s e a r c hCha r in this St r i ng.

St r i ng i nde xOf (St r i ng s ubs t r i ng)
Returns the index of the first occurrence of s ubs t r i ng in this St r i ng.

i nt l e ngt h()
Returns the length of this St r i ng (the number of characters).

St r i ng r e pl a c e (c ha r ol dCha r , c ha r ne wCha r)
Replaces each occurrence of ol dCha r in this St r i ng with ne wCha r and returns the
resultant St r i ng.

St r i ng s ubs t r i ng(i nt s t a r t I nde x, i nt e ndI nde x)
Returns a substring of this St r i ng beginning at the character at index s t a r t I nde x
and ending at the character at index (e ndI nde x - 1).

St r i ng t oLowe r Ca s e ()
Converts all letters in this St r i ng to lowercase and returns the resultant St r i ng.

St r i ng t oUppe r Ca s e ()
Converts all letters in this St r i ng to uppercase and returns the resultant St r i ng.

System java.lang
All of the Sys t e m class’s methods and variables are static. The Sys t e m class cannot be
instantiated. It includes facilities for accessing the system’s standard input, output, and
error streams, and for determining various properties of the underlying computer
system.

Constants

Sys t e m. out
The out class constant of the Sys t e m class is a Pr i nt St r e a m object, which repre-
sents the standard system output device. The following Pr i nt St r e a m methods can
be called using the object reference Sys t e m. out to print to the Java console.

13549_APPE_Da l e . qxd 1/ 3/ 11 9: 55 AM Pa ge 767

768 | Appendix E

Methods

voi d pr i nt (a r gume nt)
Prints argument to the standard output device. The argument is usually any primitive
data type or a St r i ng object.

voi d pr i nt l n(a r gume nt)
Prints a r gume nt to the standard output device, then prints a newline character. The
argument is usually any primitive data type or a St r i ng object.

Likewise, Sys t e m. i n and Sys t e m. e r r represent the standard system input and error
streams.

Method

voi d e xi t (i nt s t a t us)
Static method that exits the currently running Java Virtual Machine.

13549_APPE_Da l e . qxd 1/ 3/ 11 9: 55 AM Pa ge 768

Index
Note: Italicized page locators indicate a figure;
tables are noted with a t.

A
Abstract data types, 63–146

abstraction, 64–72
array-based StringLog ADT implementation,

77–91
error situations and, 173–174
exceptions and: an example, 168–173
implementing “by copy” or “by reference,”

407–409
example of, 409
summation, 411

linked lists introduction, 102–113
linked list StringLog ADT implementation,

113–124
software design: identification of classes,

124–128
software testing, 91–102
StringLog ADT specification, 72–77
testing implementations of, 94–101
trivia game case study, 128–145

Abstraction, 64–72, 88
data abstraction, 65–66
data levels, 66–67
defined, 64

information hiding, 64–65
Java interfaces, 68–72
preconditions and postconditions, 67–68

a bs t r a c t keyword, 69
Abstract methods

declaring, 69
defined, 68

Access modifiers
Java, 12t
purpose and use of, 12–14

Actions, in class definition, 9
Activation record (stack frame), defined, 276
a ddDi gi t method, 505
a ddEdge algorithm, 643
a ddEdge method, code for, 644
a ddEnd method, code for, 504
a ddFr ont method, Spe c i a l i z e dLi s t class, 502
a dd hashable element, linear probing and, 728
Addition, in large integers case study, 510–518
Addition methods, for Spe c i a l i z e dLi s t class,

502
Addition rules, for La r ge I nt class, 516–518
a ddLi s t s operation, 511, 512–514

algorithm for, 513
a dd method

CRe f Uns or t e d class and, 481–482

13549_I NDX_Da l e . qxd 2/ 7/ 11 10: 29 AM Pa ge 769

770 | Index

Re f Uns or t e dLi s t class and, 434
a dd operation

Big-O comparisons for binary search trees vs.
linear lists and, 578

doubly linked list and, 484–486
hash function and, 726
identified list elements and, 390
implementing Binary Search Tree ADT and,

559–563
code for implementing recursive algorithm,

562–563
insertion order and tree shape, 563–564

linear searching and, 720
recursive, 561

Addresses, references as, 34a ddVe r t e x operation, 642
Adjacency lists

defined, 645
representation of graphs with, 645, 646–647

Adjacency matrix
defined, 640
representing edges in graph with, advantages,

645
Adjacent vertices, defined, 636
ADTs. See Abstract data types
Agile (or lightweight) methods, characteristics of,

5–6
Airline-flight legs, unreachable vertices and new

set of, 659, 659–660
Airline-route graph

breadth-first searching and, 646, 651–654
depth-first searching and, 646, 647–651I s Pa t h algorithm applied to, 648–650

Algorithms
comparing: Big-O analysis, 41–50
finding a number in a phone book, 48–49, 50
inefficient, recursive solution and, 282–285
recursive, 245–248
sorting, 46
sum of consecutive integers, 46–48
Towers of Hanoi, 254, 254–256, 255

traversal, 107, 108
Aliases, 35

ALi s t Node class, attributes in, 493
a l pha array

accessing individual components of, 40–41
Java implementation of, 41

Ancestors, 548
in binary trees, defined, 534

Application (or user) level
of ADT, 66
for Priority Queue ADT, 616
for StringLog ADT, 76

Applications, 17–20
Architectural and detailed design, in software life

cycle, 3, 4
Architecture, 9a r e a method, 71
Array-based implementations, 185–191

Ar r a ySt a c k class, 185–188
definitions of Stack operations, 188–190
of graphs, 640–645
for List ADT, 397–414
for Queue ADT, 305–315
test plan, 190

Array-based linear lists, Big-O comparison of list
operations, 579t

Array-based sorted lists, implementing priority
queues and, 617

Array-based StringLog ADT implementation,
77–91

constructors, 79
instance variables, 77–78
observers, 82–87
transformers, 80, 82Ar r a yBl oc ki ngQue ue , 353

Ar r a yBndQue ue class, 305–312
combining design approaches, 308
definitions of queue operations, 310–311
fixed-front design approach, 305–307
floating-front design approach, 307–308
instance variables and constructors, 308–309

13549_I NDX_Da l e . qxd 2/ 7/ 11 10: 29 AM Pa ge 770

Index | 771

test plan, 311–312
Ar r a yBndQue ue implementations, Li nke d-

UnbndQue ue implementations vs.,
338–340, 339

Ar r a yBndQue ue . j a va , code for beginning of, 309
Ar r a yI nde xe dLi s t class, 411–414

code for, 411–414
implementation of, 411

“Array-index-out-of-bounds” errors, 173, 710
Ar r a yLi s t class, 160, 187, 315, 622
Ar r a yLi s t St a c k class, 192–193
Ar r a yLi s t St a c k. j a va , code for, 192–193
Array of nodes, sorted list stored in, 490
Array-of-nodes implementation, for linked struc-

tures, two approaches with, 491–492
Ar r a yRe f Sor t e dSt r i ngLi s t class, 492
Ar r a yRe f Sor t e dSt r i ngLi s t . j a va

code for beginning of file, 494
code for constructor that takes a parameter, 495

Array representation, for binary tree, 585
Arrays, 29, 29–30, 38–41

defined, 102
hash function used to determine location of

element in, 724
with linked list of values and free space, 491
linked lists vs., 102–103
of objects, 39
with references, sorting, 712
specifying size of, 38
with three lists, 492
two-dimensional, 39–41Ar r a ys class, 711–712

Ar r a ySor t e dLi s t class, 403–407, 425
code for, 404, 406–407
implementation of, 403–404

Ar r a ySor t e dLi s t 2 class, 431
Ar r a ySt a c k class, developing, 185–188
Ar r a ySt a c k implementation

Li nke dSt a c k implementation vs., 213–214
test plan for, 190–191

Ar r a ySt a c k. j a va , beginning of file for, 186–187

Ar r a ySt r i ngLog class, 76, 77, 190
code for, 85–87
implementation of, 77–85
test driver for, 95–99

Ar r a ySt r i ngLog. j a va , code for, 78
Ar r a yUnbndQue ue class, 312–315

code for, with changes from bounded version
emphasized, 313–315

Ar r a yUns or t e dLi s t class, 398–403, 505
code for, 399–403
implementation of, 398–399

Arrows, references indicated by, 34
Assignment statements, results of, 35
Asterisk (*), in import declarations, 27
Attributes, of objects, 8
Autoboxing feature, 197
Average case complexity, 48, 49
Average waiting time case study, 353–369

problem discussion, 354
generating arrival and service times, 354–355
simulation, 355–356

program design, 356–360
brainstorming, 356–357
filtering, 357–358
scenario analysis, 358–360

program details, 360–369
application, 366–369Cus t ome r class, 360–361
Cus t ome r Ge ne r a t or class, 361–362
Gl a s s Que ue class, 362–363
Si mul a t i on class, 363–366

testing considerations, 369

B
Ba l a nc e dApp program

code for, 200–201
UML diagram, program architecture, 202

Ba l a nc e d class, 194–198
code for, 198–200
items to note about, 197–198

Balanced grouping symbols, 194

13549_I NDX_Da l e . qxd 2/ 7/ 11 10: 29 AM Pa ge 771

772 | Index

ba l a nc e operation, for balancing binary search
tree, 578

Base case
defined, 247
merge sort and, 691
quick sort and, 700

Base-Case Question
ma r kBl ob method investigated with, 264
recursive algorithms verified with, 252
r e vPr i nt verified with, 273
Towers of Hanoi and, 257

Best case complexity, 48, 49
Big-O analysis

of linear searching, 720–721
of me r ge Sor t , 696–697, 697t
of observer operations, array-based StringLog

ADT implementation, 82–85
of qui c kSor t , 703
of selection sort, 680–682

Big-O comparisons, binary search trees vs. linear
lists, 577–578

Big-O efficiency
for binary search algorithm, 432–433
for finding number in phone book algorithm,

48
of he a pSor t method, 709
for implementation approaches with priority

queues, 617
linear linked lists and, 532
Li nke dSt a c k implementation vs. Ar r a ySt a c k

implementation, 213
of priority queue implementations, 632–633,

633t
with recursive approach, 272
of sorted lists, 722
sorting and, 672, 710–711

Big-O notation, 43–50, 51
bubble sort analysis with, 685–686
common orders of magnitude, 45–46
comparing implementations for Queue ADT

and, 338–340, 339

comparison of sorting algorithms with, 738t
defined, 43
finding a number in a phone book: example 2,

48–49, 50
insert sort analysis and, 689
selection sort analysis and, 681

s hor t Bubbl e analysis in, 686
sum of consecutive integers: example 1, 46–48

Binary operators, 214
specification of program postfix evaluation

and, 219
Binary Search ADT

implementation level: remaining operations,
555–575

a dd operation, 559–564
c ont a i ns and ge t operations, 555–558
iteration, 571–575
r e move operation, 564–571

logical level, 540–543
Binary Search Tree specification, 541–543
tree elements, 540–541

Binary search algorithm, 426–431
efficiency analysis, 432–433
informal description of, 431
for list ADT, 425–433
trace results using, 429t
traces of, 430

Binary searches
Big-O efficiency with, 738
linear searches vs., 433t
sorted lists and, 722

Binary search property, 537
Binary search tree

balancing
exact copy produced, 582
optimal transformation, 584
skewed tree produced, 581

Binary Search Tree ADT, 598
application level for, 543–545
classes and interfaces related to, 599
implementation level: basics, 545–548

13549_I NDX_Da l e . qxd 2/ 7/ 11 10: 29 AM Pa ge 772

Index | 773

iteration, 571–575
Sorted List ADT vs., 543
specification for, 541–543
traversal orders supported by, 571

Bi na r ySe a r c hTr e e class, 544, 575
code for, 547–548

Binary search tree classes and interfaces, UML
diagram of relationships among, 599

Binary search tree operations
orders of magnitude for, 579t
testing, 575–577

Binary search trees, 531–598
advantages/disadvantages with, 577, 598
balancing, 578–584

iterative part of algorithm, 582, 583
recursive part of algorithm, 582, 583

defined, 537
flexibility with, 532
implementing priority queues and, 617
insertions into, 559
iterative vs. recursive method implementations,

548–555
iterative approach to

s i z e method, 553–554
recursion or iteration?, 555
recursive approach to s i z e method, 549–552

linear lists vs., 577
Big-O comparisons, 577–578

removals from, 567
restructuring, 579
specification for, 541–542
stored in array with dummy values, 587
two, 550

Binary trees, 534–536, 535, 536, 537, 598
array representation for, 585
complete, 586, 586, 587
defined, 534
full, 586, 586, 587
full and complete, 587
general, 633, 633
height of, 535
neither full nor complete, 587

nodes for, 545
nonlinked representation of, 584–588
as recursive structures, 598
types of, 587

Binary tree traversals, 538–540, 540
inorder traversal, 538, 573
postorder traversal, 538, 575
preorder traversal, 538, 575
visualizing, 539

Black-box testing, defined, 92

Bl obApp. j a va , program for, 268–269
Blobs

counting, 260–269
counting algorithm, 262–263
defined, 261
generating, 261–262
Gr i d class, 264–269
identification of, in a grid, 261
marking algorithm, 263–264

Booch Method, 8
Bookstore queue, 298, 299
bool e a n type, 29
bool e a n values

generating blobs and, 261, 262
vi s i t e d grid and, 263

Bottom-up stepwise refinement, 88
Boundary conditions, empty linked lists, 109, 110
Bounded implementation, Ar r a ySt r i ngLog class

as example of, 77
Bounde dQue ue I nt e r f a c e , code for, 302
Bounde dSt a c kI nt e r f a c e . j a va , 185, 187, 190

Ba l a nc e d class and, 195, 197
code for, 180–181
creating, 180

Bounded time O (1), 45
Bounded versions of stacks, 180
Braces

matching, in writing code, 194
placeholder name within, 166

Brackets, matching in writing code, 194
Brainstorming

13549_I NDX_Da l e . qxd 2/ 7/ 11 10: 29 AM Pa ge 773

774 | Index

for average waiting time case study, 356–357
ideas, 124
identifying support classes for trivia game and,

131
specification of program postfix evaluation

and, 220–221
in word frequency generator case study,

588–589
Branching structures, recursive method and, 251
Breadth-first search code, 653–654
Breadth-first searching, airline-route graph and,

646, 651–654
BSTI nt e r f a c e interface, 544, 547
BSTNode class, 567

code for, 546–547
Bubble sort, 682–686

analyzing, 685–686
basic algorithm for, 683
example of, 682
snapshot of algorithm, 684

bubbl e Sor t method, 684
code for, 684
order of magnitude for, 738t

bubbl e Up method, 683
code for, 684
coding to sort objects of type Compa r a bl e , 713

bubbl e Up2, code for, 685–686
Bubbling task, algorithm for, 683
Buckets

defined, 732
handling collisions by hashing with, 732

Budget, quality software completed within, 7–8
Buffers, queues and, 300
By reference variables, by value variables vs., 34
Bytecode, Java, 274
byt e type, 29
By value variables, by reference variables vs., 34

C
Call-return stack, 163
Capacity, of a StringLog, 78
Capitalization, of constants, 11
Case distinctions, ignoring between strings, 85
Case studies

average waiting time, 353–369
large integers, 504–522
postfix expression evaluator, 214–229
trivia game, 128–145
word frequency generator, 588–597

Chaining, handling collisions by hashing with,
733

Chaining schemes, linear probing vs., 733
Chains, defined, 732

c ha r type, 29
Child nodes, 532
Children

in binary trees, 534, 633
nonlinked representation of binary trees and,

584–585
in trees, 32, 532

Ci r c l e class, 33, 69
code for, 70
Compa r a bl e interface implemented by,

386–387
Fi gur e Ge ome t r y interface implemented by, 71
r a di us attribute in, 385

Ci r c l e objects, defining array of, 39
Circles, defined, 714
Circular linked lists, 474, 474–483

code for linear linked lists, 476
CRe f Uns or t e dLi s t class, 476–482
defined, 474
with external pointer pointing to rear element,

475, 475
linear linked lists vs., 482–483
nodes added to, 481
nodes removed from, 480
traversing in reverse, difficulty with, 483

13549_I NDX_Da l e . qxd 2/ 7/ 11 10: 29 AM Pa ge 774

Index | 775

unsorted circular list, 475–476
Circular linked queue design, 337, 337–338
Circular lists, 523
Clarity, recursive solutions and, 285
Class, hiding data within, 13
Class diagrams, UML, 9
Classes, 9–16, 51

filtering, 125
identification of, 124–126
interfaces implemented by, 69–70
object-oriented, 8
organizing, 20–28

inheritance, 20–25
packages, 25–28

role of, 9
sources for, 126–127Cl a s s Pa t h directories, 27

Class T, 188, 189
Class variables

constants declared as, 11
in Da t e class, 11

c l e a r Ma r ks method, in Graph ADT, 638
c l e a r method, Big-O efficiency of, 118–119
c l e a r operation, 73, 80, 82, 116

StringLog after, 118
poorly designed and well-designed, 83

Cl one a bl e interface, 407
c l one method, 407
Closed symbols, Ba l a nc e d class and, 195, 197
Cl os e Se t constructor, Ba l a nc e d class and, 195
Close symbols, matching, 194, 197
Clustering

defined, 730
random probing and elimination of, 732

Cohesive classes, elegant vs. inelegant design and,
126

Cohesive designs, 126
Collection ADTs, specifying, 175
Collection elements, 163–167

options for, 164

Collections
of class

Obj e c t , 165
of class that implements a particular interface,

165–166
defined, 163
generally usable, 164–167
generic, 166–167

Collections Framework, 103
concurrency and, 353
lists in, 396–397
Que ue interface added to, 305
St a c k class and, 184–185

Collisions, 726–734, 738
buckets and chaining, 732–734
clustering and, 730
defined, 726
handling by hashing with buckets, 732
handling with rehashing, 731
linear probing and, 727–729
rehashing and, 730–732

Combinations, recursive solution and, 282–283,
284, 285

c ombi na t i ons (4. 3) , calculating, 283, 283
c ombi na t i ons (6. 4) , calculating, 283, 284
Commercial off-the-shelf components, 127
Compa r a bl e interface, 386–388, 719

binary search trees and, 540, 541
Ci r c l e class and implementation by, 386–387
using, 712–713

Compa r a bl e objects, 541
Compa r a t or interface

flexibility with, 719
using, 713–715

c ompa r e method, 713
c ompa r e To method, 386, 388, 713, 714

binary search trees and, 540, 541
c ompa r e To operation, 713, 719
Comparison operator (==), 36, 37, 384
Compilation units, multiple, packages with, 26–27

13549_I NDX_Da l e . qxd 2/ 7/ 11 10: 29 AM Pa ge 775

776 | Index

Compiler
interface code checks and, 69
static storage allocation and, 274, 275

Complete binary tree, defined and shape of, 586,
586, 587

Complete directed graph, 637
Complete graphs

defined, 636
types of, 637

Complete undirected graph, 637
Complex problems, teamwork and, 50
c omp object, 714
Computers, multi-tasking and, 340
Concurrency, 371

defined, 340
Java Library Collection classes and, 353

Conc ur r e nt Li nke dQue ue , 353
Concurrent programming, 352
c onI n, 18
Constants, capitalization of, 11
Constant time, 45
Constructors

for array-based Queue ADT implementation,
308–309

for array-based StringLog ADT implementation,
79

defined, 12
for linked list StringLog ADT implementation,

115–116
for LLSt r i ngNode class, 104–105
in StringLog ADT specification, 72–73

Constructs, naming, 114
c ont a i ns method, 120, 122, 577

CRe f Uns or t e d class and, 479
development of, for Ar r a ySt r i ngLog class and,

88–91
dimensions/categories identified for, StringLog

ADT, 92
for Re f Uns or t e dLi s t class, 434–435

c ont a i ns operation, 73

identified list elements and, 390
implementing Binary Search Tree ADT and,

555–558
StringLog ADT implementation and, 84
tracing, 557

Correctness, of quality software, 6–7
COTS. See Commercial off-the-shelf components

Count e r class, 340–342
Count e r object, 341
Counting algorithm, for blobs on a grid, 262–263
c ount Ki ds method, 275, 276
CRe f Uns or t e d class, 476–482

a dd method, 481–482
c ont a i ns and ge t methods, 479
f i nd method, 478–479
iterator methods, 476–477
r e move method, 479–481
t oSt r i ng method, 477–478

Cus t ome r class, 357
abstract view of, 358t
code for, 360–361

Cus t ome r Ge ne r a t or class
abstract view of, 358t
code for, 361–362

Cus t ome r Ge ne r a t or object, 359

D
Dahl, Ole-Johan, 8
Data

in class definition, 9
hiding within a class, 13
specification of program postfix evaluation

and, 220
Data abstraction, 65–66, 146
Data encapsulation, 146

defined, 65
Data levels, 66–67
Data structures, 28–33, 51, 94, 102

defining, 33
implementation dependent structures, 29–30

13549_I NDX_Da l e . qxd 2/ 7/ 11 10: 29 AM Pa ge 776

Index | 777

implementation independent structures, 30–32
Da t e ADT, 170, 171
Da t e class, 9, 10–11, 20, 24, 66

class diagram for, 13
code for, 169
days-between problem and, 18

Da t e constructor, 169, 171, 173, 174
Da t e For ma t Exc e pt i on, 170
Da t e method, 12
Da t e objects, 9, 20–21, 66

class diagram for, 16
Da t e Out Of Bounds exception, 170, 172, 173
Da ys Be t we e n program, code for, 18–20
Deallocate, defined, 36
Debugging, recursive methods, 253–254
De c i ma l For ma t class, 592
Declarations, import, 27
DEFCAP elements, 309
Degenerate trees, 577
De l a yQue ue , 353
Delivery, in software life cycle, 3, 4
De m02 program, 343

execution of, 344
De m04 program, interference and, 345
De m05 class, code for, 347
De m06 class, 349

code for, 348
Depth-first search code, 650–651
Depth-first searching, 646, 647–651
Depth of the recursion, defined, 278
Dequeueing, in array-based sorted list, 617
de que ue method, 310, 311

heap implementation and, 626–630
de que ue operation, 299

fixed-front design approach in Ar r a yBndQue ue
class and, 306

floating-front design approach in Ar r a y-
BndQue ue class and, 307, 307

heaps and, 619

link-based implementations for Queue ADT,
334, 334–335

other representations of priority queues vs.
heaps and, 632

for Priority Queue ADT, 614
priority queue implementations and, 633t
test plan for queue implementations and, 311,

312
Descendants, in binary trees, defined, 534
Design. See also Software design

choices, 128
review activities and, 93–94
waterfall model, 4

Deskchecking, defined, 93
Development, spiral life-cycle model, 4

Di c t i ona r y class, 353
Directed graph (digraph), 635, 636

defined, 634
Directory, defined, 244
Direct recursion

defined, 249
r e move operation and, 571

Disjoint subtrees, 532
Divide-and-conquer algorithm, quick sort and,

698
Divide-and-conquer sorts, rationale for, 690, 690
Division-by-zero run-time errors, 173
Division hash function, advantages with, 736
DLLNode , 484
doTowe r s method, 256, 257, 259, 260
doubl e type, 29, 40
Doubly linked lists, 483–487, 523

a dd and r e move operations, 484–486
adding a node to, 486
additions to single lists and, 485
defined, 483
linear, 484
removing a node from, 487
with two references, 500

Dr a wa bl e objects, 166

13549_I NDX_Da l e . qxd 2/ 7/ 11 10: 29 AM Pa ge 777

778 | Index

dr a w operation, 166
Dummy values, binary search tree stored in, 587
Dynamic allocation, array-based linked approach,

489
Dynamic memory management, defined, 36
Dynamic programming, 285
Dynamic storage, linked lists in, 488
Dynamic storage allocation, 286

recursion and, 276–278

E
Edges (arcs), 637

adding to graphs, 643
in graphs, 32, 634

representing, 640
Efficiency, of quality software, 7
Elegant designs, 126El e me nt Type , 724
Empl oye e class, code for, 725
Employee elements, hash scheme for handling,

735
Empty linked lists

insertion operation and, 111
results of insertion code on, 112
traversal operation and, 109, 110

Empty lists
adding into, cautionary note, 486
with header and trailer, 487

Empty stacks, 175, 176
results of pop operation on, 210
results of pus h, then pop on, 212
results of pus h operation on, 208, 209

Encapsulation, 65, 146
e ndI nde x, selection sort analysis and, 680, 681
e nl a r ge method, Ar r a yUnbndQue ue class and,

312, 313
Enqueueing, in array-based sorted list, 617
Enqueueing elements, with unsorted list, 617
e nque ue method, 310

heap implementation and, 623–626
e nque ue operation, 299

fixed-front design approach in

Ar r a yBndQue ue
class and, 306

floating-front design approach in Ar r a y-
BndQue ue class and, 307, 307

link-based implementations for Queue ADT,
332, 332–334

other representations of priority queues vs.
heaps and, 632

for Priority Queue ADT, 614
priority queue implementations and, 633t
test plan for queue implementations and, 311,

312
e qua l s I gnor e Ca s e operation, 90
e qua l s method, 384–386, 388, 713

accessing elements on list with, 389
in Graph ADT, 638

Error handling, for word frequency generator case
study, 590

Error processing, specification of program postfix
evaluation and, 220

Errors, run-time, examples of, 173
Error situations, ADTs and, 173–174
e va l ua t e method, 222
Evolving a program, 221–222
Exceptional situations, 167–174

defined, 167
error situations and ADTs, 173–174
exceptions and ADTs: an example, 168–173
handling, 167–168
Stack ADT and, 176–179

Exc e pt i on class, 168, 170
Exceptions

parts of, 168
unchecked, 173

Execution time, Big-O analysis and, 41–50
Exhaustive testing, 92
Exponential time, O(2

N), 46

F
Fa c t or i a l function, 549
f a c t or i a l method, 249, 276

13549_I NDX_Da l e . qxd 2/ 7/ 11 10: 29 AM Pa ge 778

Index | 779

iterative solution for, 250–251
recursive call in, 278

FIFO. See First in, first out
Fi gur e Ge ome t r y interface, Ci r c l e class and

implementation of, 71
Fi gur e Ge ome t r y. j a va , 69, 70, 71
Filtering

for average waiting time case study, 357–358
classes, 125
identifying support classes for trivia game and,

131–132
specification of program postfix evaluation

and, 220–221
for word frequency generator case study, 589

f i na l modifier, purpose of, 11
f i nd method

array based vs. reference based, 436
Ar r a yUns or t e dLi s t class and, 399
CRe f Uns or t e d class and, 478–479
linear searching and, 720–721
new version of, binary search algorithm, 425,

426, 427, 431
First in, first out, 31

as priority queue, 614
First in, first out queue operations, breadth-first

searching and, 651
Fixed-front design approach, for Ar r a yBndQue ue

class, 305–307
Fl i ght objects, 656
f l i ght variable, 656
Floating-front design approach, for Ar r a y-

BndQue ue class, 307–308
f l oa t type, 29
Folding, defined, 736–737
for-each loops, 397
for loop

heap sort algorithm and, 707
straight selection sort and, 677, 678

Formal specification, 175–183
for List ADT, 390–396
for Queue ADT, 300–304

for Stack ADT
example use, 182–183
exceptional situations, 176–179
interfaces, 179–182

Free lists, 492, 496

f r e e Node method, 495
Fr e que nc yLi s t class, code for, 594–596
Full binary tree, defined and shape of, 586, 586,

587
Functional domain, defined, 92
Functional modularization, 18

G
Garbage

creating, 35–36
defined, 36

Garbage collection, defined, 36
General case

merge sort and, 691
quick sort and, 700

General-Case Questionma r kBl ob method investigated with, 264
recursive algorithms verified with, 252
r e vPr i nt verified with, 273
Towers of Hanoi and, 257

Generally usable collections, 164–167
General (recursive) case, defined, 248
Generic collection ADTs, 180
Generic collections, 166–167
ge t Da y method, 22
ge t Ma r ke d operation, for Graph ADT, 660
ge t method

CRe f Uns or t e d class and, 479
implementing Binary Search Tree ADT and, 558
linear probing and, 728
Re f Uns or t e dLi s t class and, 435

ge t Na me method, Big-O efficiency of, 119
ge t Ne xt method

code for, 573
CRe f Uns or t e d class and, 476
INORDER constant as argument to, 544

13549_I NDX_Da l e . qxd 2/ 7/ 11 10: 29 AM Pa ge 779

780 | Index

for Re f Uns or t e dLi s t class, 435
ge t Ne xt operation

Big-O comparisons for binary search trees vs.
linear lists and, 578

identified list elements and, 391
ge t Node method, 490, 495
ge t operation

Big-O comparisons for binary search trees vs.
linear lists and, 578

identified list elements and, 391
ge t ToVe r t i c e s method, in Graph ADT, 638,

644–645
Ge t Tr i vi a Ga me class, code for, 138–140
ge t Unma r ke d method, for Graph ADT, 638
ge t Unma r ke d operation, for Graph ADT, 660
Gl a s s Que ue class, 359, 371

abstract view of, 360t
code for, 362–363

Gol f App. j a va , code for, 419–421
Golf application, 418–421
Gol f App2. j a va , code for, 543–544
Gol f e r class, code for, 418–419
Graph ADT, formal specification of, 637–640
Graph applications, 646–660

breadth-first searching and, 646, 651–654
depth-first searching and, 646, 647–651

Graphs, 32, 32, 662
adjacency list representation of, 645, 646–647
complete, 636
defined, 634
directed, 634, 635
edges added to, 643
edges in, 634
examples of, 635
of flight connections between cities, matrix

representation, 641
implementations of, 640–646

array-based implementation, 640–645
linked implementation, 645–646

introduction to, 633–627
undirected, 634, 635, 636

vertices in, 634
weighted, 636, 637, 659, 662

Gr e a t e r Li s t operation, 511–512
Gregorian calendar, 11, 14
Gr i d class

code for, 265–267
creating, 264–265

Grids
counting number of blobs on, 262–263
generating, code for, 262
identifying blobs in, 261
marking algorithm for blobs on, 263–264

Grouping symbols, matching, 194
Growth rates, comparison of, 45t
GUI approach

to large integer calculator, 521–522
to PostFix Expression Evaluator Programs, 227
to

Si mul a t i onApp class, 369–370
to trivia game case study, 144–145

H
Ha s ha bl e interface, 724, 725
Hash code, 737
Hash functions

defined, 723
division method and, 736
exotic, 736–737
good, choosing, 734, 736–737
minimizing collisions with, 726–727, 738
result of adding elements based on, 726
uses for, 725–726
using to determine location of element in array,

724
Hashing, 722–737

collisions, 726–734
buckets and chaining, 732–734
clustering, 730
linear probing, 727–729
rehashing, 730–732

complexity of, 737
defined, 723

13549_I NDX_Da l e . qxd 2/ 7/ 11 10: 29 AM Pa ge 780

Index | 781

goal of, 738
Java’s support for, 737

Ha s hMa p class, 353
ha s h method, 725
Ha s hSe t class, 353, 737
Hash table

clustering and, 730
defined, 723

Ha s hTa bl e class, 353, 737
ha s Ve r t e x method, in Graph ADT, 638
Header nodes, 523

defined, 487
He a p class, 657, 705

code for, 622–623
Heaps, 617–633

building, 704–707
algorithm for, 705
changing contents of array, 706
process for, 706

defined, 617
dequeueing elements from, 620
enqueueing elements to, 621
implementation of, 621–630

de que ue method, 626–630
e nque ue method, 623–626

maximum, 618
other representations of priority queues vs.,

632–633
testing, 630–631
two, containing letters “A” through “I,” 618,

618
Heap sort, general approach of, 704
Heapsort, N log N complexity of, 46
he a pSor t method, 690

analyzing, 708–709
building heap and, 708
effect of, on array, 709
efficiency of, 709
inherent unstability of, 719
order of magnitude for, 738t

Heap values, in array representation, 621

Height
of binary tree, 535
of tree, searching efficiency and, 535–536

Helper operations, in large integers case study,
511

Hierarchical relationships, trees and modeling of,
533

High-probability ordering, 721

hol d stack, 554

I
Ideas, brainstorming about, 124
if statement, recursive solutions and, 251
if-then statement, 162
Illegal expression types, 220
Ill-formed expressions, 194
Implementation-based class names, 114
Implementation dependent structures, 29–30

arrays, 29–30
linked lists, 30

Implementation independent structures, 30–32
graphs, 32
queues, 31
sorted lists, 31–32
stacks, 31
trees, 32

Implementation of design, in software life cycle,
3, 4

Implementation (or concrete) level
of ADT, 67
for Priority Queue ADT, 616–617
for StringLog ADT, 76i mpor t keyword, 27

Import statements, forms of, 27
I nc Da t e class, 21, 68
Incompatible type syntax errors, 25
I nc r e a s e 2 class, 347
i nc r e me nt method, 21, 22, 24, 68, 341

synchronization and, 346, 347
Indexed List ADTs, 458, 497
IndexedListInterface, code for, 393–394

13549_I NDX_Da l e . qxd 2/ 7/ 11 10: 29 AM Pa ge 781

782 | Index

Indexed lists, 389, 390
i nde xI s , code for, 644
I nde xOut Of Bounds Exc e pt i on, 394
Indirect recursion

defined, 249
r e move operation and, 571

Inefficient algorithms, recursive solution and,
282–285

Infix notation, 215
evaluating, 215, 216, 216t

i nf o object, 545, 545
Information hiding, 64–65, 78, 88
i nf o variable, 104
Inheritance, 12, 20–25, 51

extended class diagram for, 23
of interfaces, 180

Inheritance tree, 23, 23–25
i ni t Va l ue s method, for Sor t s class, 673
INORDER constant, 541, 544

as argument to r e s e t and ge t Ne xt methods,
544

i nOr de r method, code for, 574
Inorder traversal, 540, 571, 581

balancing binary search tree and, 580
code for, 573–574
defined, 538
generating, 538–529
uses for, 539
visualizing, 539

Input, specification of program postfix evaluation
and, 219

i ns e r t El e me nt , code for, 688–689
I ns e r t El e me nt algorithm, 687
Insertion

into binary search trees, 559
in linked lists, 110–112

Insertion order, tree shape and, 563, 563–564
Insertion sort, 686–689

analyzing, 689
example of, 688

i ns e r t i onSor t , 689

algorithm of, 687
code for, 688–689
order of magnitude for, 738t

i ns e r t method, 80
i ns e r t operation, 73, 75, 80, 116
InsertTree algorithm, 582, 583
i ns e r t Tr e e method, 583
Inspection

defined, 93
described, 94

Instance variables
for array-based implementation of Queue ADT,

308–309
array-based StringLog ADT implementation,

77–78
in Da t e class, 11
linked list StringLog ADT implementation, 115
for Li nke dUnbndQue ue class, 337

Instantiation of arrays, 38
I nt e ge r object, Ba l a nc e d class and, 197
Integers, black box representation of, 66
Interactive testing approach, benefits with,

101–102
i nt e r f a c e construct, 74, 146, 390

in formally specifying Stack ADT, 179
i nt e r f a c e keyword, 68
Interfaces

benefits of, with ADT specifications, 71–72
class implementation of, 69–70
example of, 69
inheritance of, 180
in Java, 68–72
multiple inheritance of, 180
specification of program postfix evaluation

and, 219
for Stack ADT, 179–182
versatility and power of, 71

Interference, threads and, 345–346i nt type, 29, 34, 65, 66
Is a relationships, trees and, 32
i s Empt y method, 548

13549_I NDX_Da l e . qxd 2/ 7/ 11 10: 29 AM Pa ge 782

Index | 783

implementing, 188, 213
i s Empt y observer, 176, 301, 302
i s Empt y operation, queue implementation and,

336
i s Ful l method, 496

implementing, 188
i s Ful l observers, 301, 302
i s Ful l operation, 73, 75

Big-O efficiency of, 119
in formally specifying Stack ADT, 179

i s Ma r ke d method, in Graph ADT, 638
I s Pa t h algorithm, 648
i s Pa t h method, airline-route graph and, 649–650
i s Sor t e d method, for Sor t s class, 673, 674
Is Sum Greater Than Zero algorithm, 44
I TDAr r a ySt r i ngLog program, code for, 95–98
I TDBi na r ySe a r c hTr e e test driver, 575
I t e r a bl e interface, 397
Iteration

Binary Search Tree ADT, 571–575
defined, 391
recursive calls and, 278–279

Iterative approach, to s i z e method, 553–554
Iterative solution, for factorial, 250–251
I t e r a t or interface, 397
i t e r a t or () method, 397
Iterator methods

for CRe f Uns or t e d class, 476–477
defined, 391
for Spe c i a l i z e dLi s t class, 501

I t e r a t or object, 638

J
Java, 51

access control modifiers in, 12t
bytecode, 274
Collections Framework in, 103
interfaces in, 68–72
primitive types in, 29
range of integer values supported in, 504

Java Class Library, 127. See also Collection
Framework

St a c k class in, 184
ut i l package in, 18

Java code, 9
j a va . l a ng. RunTi me Exc e pt i on class, unique

treatment of, 173
Java programming model, description of, 274
Java threads, 342–344
Java Virtual Machine, executing, 17
j oi n command, 343, 344
JUnit, finding information about, 102

K
Key, defined, 388
Ki ds class, code for, 274–275

L
La r ge I nt App program, code for, 519–520
La r ge I nt class, 505

addition rules, 516–518
Large Integer ADT, 507

designing, 504–522, 523
Large integer calculator, GUI approach to,

521–522
Large integers

representing with linked lists, 506
three points of views relative to, 507

Large integers case study, 504–522
addition and subtraction, 510–518

addition rules, 516–518
helper methods, 511–516
subtraction, 518

GUI approach: large integer calculator, 521–522La r ge I nt App program, 519–520
La r ge I nt class, 508–510
test plan, 519
underlying representation, 505–508

La r ge I nt . j a va , code for, 508–510
La r ge I nt object, 505
Last in, first out, 31, 175, 229

13549_I NDX_Da l e . qxd 2/ 7/ 11 10: 29 AM Pa ge 783

784 | Index

stacks and, 160, 161
l a s t I nde x variable, 77, 90

StringLog ADT implementation, 80, 83
Lazy approach, thorough approach vs., 82
LDN. See Lilian Day Numbers
Leaf

in binary trees, defined, 534
removing, 565

Leaf nodes, removing, 565
Left children, 545, 545

in binary trees, 534, 537
l e f t Fi r s t , coding of me r ge method and,

694–695
Left subtrees, 534, 536
l e ngt h variable, 38–39
l e t t e r s linked list, 107

trace of traversal code on, 109
Life cycles, software, 3, 4, 5
LIFO. See Last in, first out
Lilian Day Numbers, 9–10, 14–16, 18
l i l i a n method, 18

code for, 15–16
Lilius, Aloysius, 14
Linear linked lists

code for circular linked list and, 476
drawbacks with, 532
traversing in reverse, difficulty with, 483

Linear lists
binary search trees vs., 577

Big-O comparisons, 577–578
Linear probing

chaining schemes vs., 733
clustering and, 730
defined, 727
handling collisions with, 727
hash program with, 729
quadratic probing and, 731–732
rehashing and, 730–732

Linear relationship, defined, 388
Linear searches, 720–721

advantages/disadvantages with, 722

binary searches vs., 433t
improving in sorted lists, 426

Linear time, O (N), 45
Link-based implementations

comparing stack implementations, 213–214

i s Empt y method, 213
Li nke dSt a c k class, 204–205
LLNode class, 203–204
pop operation, 209–211
pus h operation, 205, 207–208, 209
for Queue ADT, 331–340

de que ue operation, 334, 334–335
e nque ue operation, 332, 332–334

for Stack ADT, 202–214
t op operation, 211

Li nke dBl oc ki ngQue ue , 353
Linked implementation, for Graph ADT, 645–646
Linked list implementation, results of StringLog

operations with, 117
Linked lists, 30, 30, 102–113, 202

as array of nodes, 488–497
how array is used, 489–497
reasons for using array, 488–489

arrays vs., 102–103
Big-O comparison of list operations, 579t
in dynamic and static storage, 488
empty, 109, 110
with headers and trailers, 487–488
large integers represented with, 506LLSt r i ngNode class, 103–106
operations on, 107–113

insertion, 110–112
remaining operations, 112–113
traversal, 107–110

removing element from, 437
StringLog ADT implementation, 113, 115–124
traversing, recursive linked-list processing and,

269–273
Linked queue representation, 331
Li nke dSt a c k class, 204, 281

code for, 205

13549_I NDX_Da l e . qxd 2/ 7/ 11 10: 29 AM Pa ge 784

Index | 785

Li nke dSt a c k2 class, code for, 272
Li nke dSt a c k3 class, code for, 280–281
Li nke dSt a c k implementation, Ar r a ySt a c k

implementation vs., 213–214
Li nke dSt r i ng class, code for, 122–124
Li nke dSt r i ngLog class, 113
Linked structures

array-of-nodes implementation for, approaches
for, 491–492

list together with, 493
Li nke dUnbndQue ue class, 331
Li nke dUnbndQue ue implementations,

Ar r a yBndQue ue implementations vs.,
338–340, 339

Li nke dUnboundQue ue . j a va , code for, 336–337
Links, references as, 34
l i nk variable, 104, 105
Lisp, 102
List ADT, 383–458

array-based implementations for, 397–414
binary search algorithm for, 425–433
formal specification for, 390–396
Golf application, 418–421
Music application, 421–425
Poker application, 414–418
primary classes and interfaces created to sup-

port, 459
reference-based implementation for, 433–445
specialized, 497–504
storing objects and structures in files, 445–458Li s t class, 721

Li s t I nt e r f a c e , 390–393
code for, 392–393

Li s t interface, lists defined by, 396
List interfaces

example use, 394–396
UML diagram of, 395

l i s t I t e r a t or operation, 397
List operations, Big-O comparison of, 579t
l i s t reference, 474, 475

l i s t Re f parameter
algorithm for, 270
problem summary, 271

Lists, 388–390
assumptions about, 389–390
circular linked, 474–483
defined, 388
doubly linked, 483–487
equivalent expressions for different implemen-

tations, 496
indexed, 389
in Java Collections Framework, 396–397
large integers case study, 504–522
linked, as array of nodes, 488–497
linked, with headers and trailers, 487–488
link structure together with, 493
size of, 388
sorted, 389, 722
unsorted, 389
varieties of, 389l i s t variable, 490
CRe f Uns or t e d class and, 477

LLNode , results of stack operation using, 206
LLNode class, 434, 475

code for, 204
implementation of, 203–204

LLSt r i ngNode class, 103–106, 107
code for, 106

l oc a t i on variable, 90
Logarithmic time, O (log2N), 45
Logical (or abstract) level, 146

of ADT, 67
for Priority Queue ADT, 614–616
for StringLog ADT, 76

Logical predecessor, finding, node removal and,
570

Logs, 72
l ong type, 29
Looping structure, iterative method and, 251
Loops, iterative solutions and, 251

13549_I NDX_Da l e . qxd 2/ 7/ 11 10: 29 AM Pa ge 785

786 | Index

M
Machine language, translation of high-level

programs into, 274
ma i n method, 17, 18
Maintainability, 51
Maintenance, in software life cycle, 3, 4
Main thread, 342
ma r kBl ob method, 263

recursive nature of, 264
Marking algorithm, for blobs on grid, 263–264
ma r kVe r t e x method, in Graph ADT, 638
Matching grouping symbols, 194
Maximum heap, 618

shortest-path algorithm and, 657
MAXTIME constant, 363
Memory addresses, 17
me r ge method

algorithm for, 694
specifying, 693

Merge sort, 690–697
algorithm for, 690
analysis of algorithm with N = 16, 696
merging for sorted halves, 691, 692, 694–695

Mergesort, N log N complexity of, 46
me r ge Sor t algorithm, analysis of, with N = 16,

696, 696
me r ge Sor t method, 690, 711

analyzing, 696–697
code for, 695
order of magnitude for, 738t
space considerations and, 712
summary of, in format used for other recursive

algorithms, 691
me r ge Sor t - Re c ur s i ve , algorithm for, 691
Merging two sorted arrays, strategy for, 692, 693,

694–695
Methodology, defined, 8
Methods

in class definition, 9
recursive calls made by, 248

mi nI nde x method, 678, 714

code for, 679
selection sort analysis and, 680, 681

MINYEAR constant, 11, 13
Models, 64
Modifiability, of quality software, 7
Modules, 64, 65
Multiple inheritance, of interfaces, 180
Multi-tasking, defined, 340
Music application, 421–425

N
Names

overloading of, 80
for StringLog, 78

na me variable, 78, 79
Naming constructs, 114
Nested constructs, 162
ne wHol e method, 627

code for, 630
creating, 628–629

ne w operation, 103
ne w statement, exceptions and, 173
ne xt I nt method, 262
“Next value,” meaning of, 90
N log N time, 46
n! (n factorial), 245
Node classes, linked lists and, 107
Nodes, 545

adding to circular linked list, 481
adding to doubly linked list, 486
as ancestors of other nodes, 548
in binary trees, 534, 545, 633
in graphs, 32
header, 487–488
iterative method to counting of, on linked lists,

553
in linked lists, 102, 103
removing

from circular linked list, 480
from doubly linked list, 487
methods for, 570, 570–571

13549_I NDX_Da l e . qxd 2/ 7/ 11 10: 29 AM Pa ge 786

Index | 787

single, LLNode class and, 207
sorted list stored in array of, 490
trailer, 487–488
of trees, 532
visiting all in order, 573
without subtrees, determining, 550

node s array, 493
Node-sorting algorithm, 707
Node with only one child, removing, 565, 566
Node with two children, removing, 565, 566
Nonleaf nodes, building a heap and, 704
Nonprimitive variables, primitive variables vs.,

37, 385
Nonrecursive solutions, 286
Nouns, 114, 125
nul l reference, 17, 34
nul l value, 104
Numbers in phone book algorithm, 48–49, 50
numCompa r e s variable, initializing, 710
numEl e me nt s variable, 397, 398

a dd method in circular linked list and, 481
Spe c i a l i z e dLi s t class, 502

numSwa ps variable, initializing, 710
numVe r t i c e s integer variable, 640
N value, 43, 44t
Nygaard, Kristen, 8

O
Obj e c t class, 24, 187, 713, 737

collections of, 165
e qua l s method defined in, 385

Object data, saving in text files, 445–447
Objective setting, spiral life-cycle model, 4
Object methods, invoking, 17
Object Modeling Technique, 8
Object orientation, 8–9, 50, 51
Object-oriented design, 125
Objectory Process, 8
Objects, 8, 16–17

aliases and, 35
array of, 39

changing to strings, 24
comparing, 36–37, 384–388
hash code for, 737
serializing, 448–450
sorting, 712

Observers
array-based StringLog ADT implementation,

82–87
defined, 12
linked list StringLog ADT implementation,

119–124
in StringLog ADT specification, 73

One-dimensional array variables, declaring, 40
O(N log

2N) sorts, 690–709
heap sort, 704–709
merge sort, 690–697
quick sort, 698–703

ope nSe t constructor, Ba l a nc e d class and, 195
Open symbols

Ba l a nc e d class and, 195, 197
matching, 197

Operands
in postfix expression evaluation algorithm, 217,

218, 219
storing in stacks, 217

Operations
reusing, 511
in software life cycle, 3
on stacks, 161

Operator-precedence rules, 215
Operators, in postfix expression evaluation

algorithm, 217, 218, 219
Order property, 617
Orders of magnitude, 43

exponential time, 46
linear time, 45
logarithmic time, 45–46
N log N time, 46
quadratic time, 46
for sorting algorithms, 738t
for tree and list operations, 579t

13549_I NDX_Da l e . qxd 2/ 7/ 11 10: 29 AM Pa ge 787

788 | Index

Output, specification of program postfix evalua-
tion and, 220

Overloading
defined, 80
of names, 80

P
Package access, 13
pa c ka ge access modifier, 12t
Packages, 12, 51

with multiple compilation units, 26–27
subdirectories and, 27–28
syntax for, 25–26
textbook program files, 28

pa c ka ge statement, 78
for StringLogInterface, 75

Pa l i ndr ome App. j a va , code for, 318–319
Pa l i ndr ome class

code for, 317–318
creating, 316

Palindrome program, architecture for, 320
Palindromes

algorithm for determining if string qualifies as,
316

defined, 315
Palindromes application, 315–320
Pa r a l l e l ogr a m class, 70
Parameterized types, generics as, 166
Parameters, 37
Parentheses, for overriding normal ordering rules,

215
Parents

in binary trees, 633
nonlinked representation of binary trees and,

584–585
in trees, 32, 532

Paths, between vertices, 636
pe r i me t e r method, 71
Period (.), in import declarations, 27
PFi xCons ol e class, 224

code for, 225–226

Phone book numbers algorithm, 48–49, 50
Placeholders, name of, 166
Pointers, references as, 34
Poker application, 414–418

code for, 416–417
numerical analysis, 415–416
simulation analysis, 416

pop method, 189
code for, 211
I s Pa t h algorithm applied to, 648
lazy vs. proper approach to coding, 189, 189

pop operation, 161, 162, 175, 176
implementing, 209
results of, 210
St a c k class and, 184

Postconditions, defined, 68
Postfix evaluation program specification,

219–220
assumptions, 220
data, 220
error processing, 220
function, 219
input, 219
interface, 219
output, 220

Postfix evaluator, testing, 226–227
Pos t Fi xEva l ua t or class

code for, 222–224
purpose of, 222

Postfix expression algorithm, 216–219
Postfix expressions, evaluating, 215–216, 216t
Postfix notation, defined, 214
Postfix notation evaluator case study, 214–229

brainstorming and filtering, 220–221
discussion, 214–215
evaluating postfix expressions, 215–216
GUI approach to PostFix Expression Evaluation

Program, 227–228
PFi xCons ol e class, 224–226
Pos t Fi xEva l ua t or class, 222–224

13549_I NDX_Da l e . qxd 2/ 7/ 11 10: 29 AM Pa ge 788

Index | 789

postfix expression evaluation algorithm,
216–219

specification: program postfix evaluation,
219–220

assumptions, 220
data, 220
error processing, 220
function, 219
input, 219
interface, 219
output, 220

testing postfix evaluator, 226
Postfix program, UML diagram for, 229
POSTORDER constant, 541
Postorder traversal, 540, 571

balancing binary search tree and, 580
code for, 575
defined, 538
generating, 539
uses for, 539
visualizing, 539

Preconditions, defined, 67
PREORDER constant, 541
Preorder traversal, 540, 571

balancing binary search tree and, 580, 582
code for, 575
defined, 538
generating, 538
uses for, 539
visualizing, 539

Primitive types, 29
reference types vs., 34

Primitive variables, nonprimitive variables vs.,
37, 385

pr i nt Va l ue s method, for Sor t s class, 673, 675
Pr i or i t yBl oc ki ngQue ue , 353
Priority Queue ADT

application level for, 616
implementation level for, 616–617
logical level for, 614–616

Priority queues, 662

class and interface for, 661
defined, 614
heaps used for implementing, 708
heaps vs. other representations of, 632–633
implementations, comparison of, 633t

Pr i Que ue I nt e r f a c e , 622
code for, 614–615

Private access, 13
pr i va t e access modifier, 12t, 13
Private recursive methods, defining with public

entry method, 273
Problem analysis, in software life cycle, 3, 4
Problem solving, 51
Procedures, 8
Product disclaimers, 67
Professional testing, 101–102
Programmer time, recursive calls and, 711–712
Programming

concurrent, 352
dynamic, 285
object oriented, 8–9

Programming by contract approach, 174–175
Programs

evolving, 221–222
recursive, 247–250pr ot e c t e d access modifier, 12, 12t, 13

pr ot e c t e d variable, 78
Public access, 13
publ i c access modifier, 12, 12t
Public entry method, private recursive method

defined with, 273
publ i c keyword, 69
pus h method, 189

code for, 207
pus h operation, 161, 162, 175

implementing, 205, 207–208
results for, 208

on empty stack, 208, 209

13549_I NDX_Da l e . qxd 2/ 7/ 11 10: 29 AM Pa ge 789

790 | Index

Q
Quadratic probing

defined, 731
linear probing and, 731–732

Quadratic time, O(N2), 46
Quality software

goals of, 6–8
modifiability, 7
on-time completion within budget, 7–8
reusability, 7
workability, 6–7

Queue ADT, 297–371
array-based implementation of, 305–315
average waiting time case study, 353–369
comparing implementations, 338–340
formal specification for, 300–304
link-based implementations, 331–340
palindromes application, 315–320
synchronized queues and, 348–352Que ue interface, in Java Library Collection

Framework, 305
Que ue I nt e r f a c e . j a va , code for, 301
Queue interfaces, UML diagram of, 303
Queue operations, definitions of, “wrapping

around” and, 310
Que ue Ove r f l owExc e pt i on class, 301
Queue-related interfaces, 371
Queues, 31, 32, 298–300. See also Priority queues

defined, 298
as first in, first out structures, 298, 299, 370
operations on, 299
primary function of, 353–354
for storing airline routes, 652
synchronized, 348–352
using, 299–300

Que ue Unde r f l owExc e pt i on, 301, 335
Quicksort, N log N complexity of, 46
Quick sort algorithm, 698–703

list ordered with, 698
qui c kSor t method, 690, 711

algorithm for, 699

analyzing, 703
inherent unstability of, 719
initial call to, 698
order of magnitude for, 738t
space considerations and, 712

R

Ra di us attribute, in Ci r c l e class, 385
Ra ndom class, 262, 355
Random probing, defined, 732
r a nd variable, 262
Ra nkCa r dDe c k class, 321–323, 416

code for, 322–323
RDN. See Relative Day Number
Readability, eliminating calls to methods and, 711
r e a dObj e c t method, of Obj e c t I nput St r e a m

class, 447
r e c Add method, 560, 561, 562
r e c Re move method, 564, 571

recursive definition and code for, 568–569
r e c Si z e method, 549, 550, 551
Re c t a ngl e class, 70
Recursion, 243–286

counting blobs, 260–269
debugging recursive methods, 253–254
deciding whether to use recursive solution,

281–285
depth of, 278
direct, 249
elegant implementation of tree operations with,

598
as elegant solution to binary tree traversal

problem, 575
how it works, 274–278

dynamic storage allocation, 276–278
static storage allocation, 274–276

indirect, 249
iteration and, 278–279
power of, 285
recursive algorithms, 245–248
recursive definitions, 244–245

13549_I NDX_Da l e . qxd 2/ 7/ 11 10: 29 AM Pa ge 790

Index | 791

recursive linked-list processing, 269–273
recursive programs, 248–251
removing, 273–281
Russian dolls analogy, 244
stacking and, 279–281
tail, 279
Three Questions Approach, 251–253
Towers of Hanoi, 254–260
writing recursive methods, 253

Recursion overhead, recursive solution and, 282
Recursive algorithms, 245–248

defined, 248
verifying, 251–253

Recursive approach, to
s i z e method, 549–552

Recursive binary search, 431–432
Recursive call, defined, 248
Recursive definitions, 244–245
Recursive linked-list processing, 269

reverse printing, 269–273
Recursive methods, 285

debugging, 253–254
writing, 253

Recursive programs, 247–250
Recursive solutions, 285–286

clarity, 285
inefficient algorithms and, 282–285
recursion overhead and, 282
selection statements and, 251
when to use, 281–285

Recursive sorting methods, executing recursive
calls and, 711

Recursive structures, trees as, 532
Reference-based approach, 113
Reference-based implementations, of List ADT,

433–445
Reference-based sorted lists, implementing prior-

ity queues and, 617
References, 33–37

manipulating, exercising care in, 111
sorting and, 712
sorting arrays with, 712

Reference types, primitive types vs., 34

Re f Sor t e dLi s t class, 440–445
code for, 442–445
implementation of, 440–442

Re f Uns or t e dLi s t class, 434–440
code for, 437–440
implementing unsorted circular list and,

475–476
methods required for, 434–435

Rehashing, 738
collisions handled with, 731
defined, 730
linear probing and, 730–732

r e he a pDown algorithm, 627
r e he a pDown method, 708

building a heap and, 704, 705
r e he a pDown operation

in action, 628
specification for, 620

r e he a pUp algorithm, 625
r e he a pUp element, specification for, 621
r e he a pUp method, code for, 625
r e he a pUp operation, 620

in action, 624
Relative Day Number, 14
Removals

from binary search trees, 567
of node with only one child, 565, 566
of node with two children, 565, 566

r e move (e l e me nt) , algorithm for, 729
r e move method, 497

CRe f Uns or t e d class and, 479–481
Re f Uns or t e dLi s t class and, 435

r e move Node
algorithm for, 568
code for, 569–570

r e move operation
Big-O comparisons for binary search trees vs.

linear lists and, 578
doubly linked list and, 484–486
identified list elements and, 391

13549_I NDX_Da l e . qxd 2/ 7/ 11 10: 29 AM Pa ge 791

792 | Index

implementing, four methods for, 570, 570–571
implementing Binary Search Tree ADT and,

564–571
Re pe a t St r i ngs . j a va , code for, 303–304
Requirements, defined, 6
Requirements elicitation, in software life cycle, 3,

4
Requirements specification, in software life cycle,

3
Reserved words, in Java, 9
r e s e t method

code for, 572
CRe f Uns or t e d class and, 476, 477
INORDER constant as argument to, 544
Re f Uns or t e dLi s t class and, 435

r e s e t operation, 545
Big-O comparisons for binary search trees vs.

linear lists and, 578
Binary Search Tree specification and, 541
identified list elements and, 391

Responsibilities
cohesive and poor, examples of, 126
of objects, 8

Reusability, 51
Reusable software, 7, 146
Reverse printing, recursive linked-list processing,

269–273Re ve r s e St r i ngs . j a va , code for, 182–183
r e vPr i nt method, 272

iterative, algorithm for, 270
recursive, 270
stacking and, 279

Right children, 545, 545
in binary trees, 534, 536

r i ght Fi r s t , coding of me r ge method and, 694
Right subtrees, 534, 536
Risk assessment, in spiral life-cycle model, 4
Root

defined, 532
in trees, 32

r oot instance variable, 547

Root node
in binary trees, 534

r e he a pDown method and, 704, 705
Runna bl e interface, 343
Run-time errors, examples of, 173
RunTi me Exc e pt i on class, 173, 177, 394
Run-time (system) stack, defined, 277

S
Sc a nne r class, 18, 591
Scenario analysis, 125

for average waiting time case study, 358–360
identifying support classes for trivia game and,

132–133
for word frequency generator case study,

590–592
Scheme, 103
Searching, 720–722

high-probability ordering, 721
linear, 720–721
sorted lists, 722s e a r c h (Obj e c t o) operation, St a c k class and,

184
Selection sort

analyzing, 680–682
number of comparisons required to sort arrays

of different sizes with, 681t
Selection sort algorithm, snapshot of, 679
s e l e c t i onSor t method, 678, 681, 683, 689,

714–715
code for, 679
order of magnitude for, 738t

Selection statements, recursive solutions and, 251
Self-organizing (or self-adjusting) lists, 721
Self-referential class, defined, 103
Se r i a l i z a bl e interface, 447, 451
Serialization

of objects, 447–459
of structures, 450–451

Se r SongLi s t class, 451–453
code for, 452–453

13549_I NDX_Da l e . qxd 2/ 7/ 11 10: 29 AM Pa ge 792

Index | 793

creating, 451
Se r Songs App. j a va

application of, 454
code for, 454–456

s e t Ne ga t i ve method, 505
s e t Sc a l e method, 71
Se t Song class, code for, 448–449
Se t Song object, creating and saving, program for,

449
Seven-Card Stud poker game, rating of hands in,

414–415
Shape property, 617
s hor t Bubbl e , 689

Big-O analysis of, 686
order of magnitude for, 738t

Shortest-path algorithm, code for, 657–658
s hor t e s t Pa t hs algorithm, 655
Shortest-path traversal algorithm

corrected version of, 657
incorrect part of, 656

Shortest-path traversals, 655
s hor t type, 29
Signature, defined, 80
Si mGUI class file, 370
Simple sorts, 676–689

bubble sort, 682–686
insertion sort, 686–689
straight selection sort, 676–682

Simula 67, 8
s i mul a t e method, 363
Si mul a t i onApp class, 358

code for, 367–368
GUI approach to, 369–370
primary responsibility of, 366–367

Si mul a t i on class, 357, 358, 363
abstract view of, 359t
code for, 364–366

Si mul a t i on object, 359
Single-source shortest-paths problem, 654–660
Size, of list, 388
SIZE, selection sort analysis and, 680, 681, 682

s i z e method, 119, 548
Big-O complexity of, 120
iterative approach to, 553–554
recursive approach to, 549–552
Re f Uns or t e dLi s t class and, 434
Spe c i a l i z e dLi s t class and, 501

Size of problem, N value and, 43
s i z e operation, 73

Big-O comparisons for binary search trees vs.
linear lists and, 578

lists and, 390
Skewed trees, 581
SLi s t Node class, 500
Smaller-Caller Question

ma r kBl ob method investigated with, 264
recursive algorithms verified with, 252
r e vPr i nt verified with, 273
Towers of Hanoi and, 257

Software, reusable, 146. See also Quality software
Software design, 124–128

brainstorming, 124
cohesive designs, 126
filtering, 125
nouns and verbs, 125
scenario analysis, 125
summation, 126

Software engineering, 2–8, 51
agile methods, 5–6
coining of term, 3
defined, 2
goals of quality software, 8

Software life cycles, 3, 4, 5
Software specification, defined, 6
Software testing, 91–102

defined, 91
identifying test cases, 92
testing ADT implementations, 94–102
test plans, 94

Software validation, defined, 93
Software verification, 146

13549_I NDX_Da l e . qxd 2/ 7/ 11 10: 29 AM Pa ge 793

794 | Index

defined, 93
Song class, 445

code for, 421–422
Song Lists application, 451–458
Song object

instance variables for, 445
retrieving, 446–447
saving, 446

Songs App. j a va , code for, 422–424
Sor t Ci r c l e class, code for, 714
Sor t Ci r c l e objects, 715
Sorted arrays, two, strategy for merging, 692,

693, 694–695
Sorted linked lists

adding an element to, 442
adding element to beginning of, 443

Sorted List ADT, 458, 497
Binary Search Tree ADT vs., 543

Sorted lists, 31–32, 722
defined, 389
elements added to, 405
improving linear search in, 426
searching, 722

Sorting, 672–675
arrays with references, 712
efficiency of, 672, 710–712

eliminating calls to methods, 711
programmer time, 711–712
space considerations, 712
when N is small, 710–711

with heap, 707–708
objects, 712
test harness, 673–675
testing and, 710

Sorting algorithms, 46
comparison of, 738t

Sorts, stable, 719–720Sor t s class, r e he a pDown as static method of, 705
Sor t s . j a va , code for test harness, 673–675
Sor t s 2. j a va program

code for, 715–718

output from execution of, 718

Sor t s program, testing and small revision to, 710
Space considerations, sorting and, 712
Space efficiency, in heap implementation, 622
Specialized List ADT, 497–504

implementation for, 499–504
specification for, 498–499

Spe c i a l i z e dLi s t class, 523
adding at beginning and end of new list, 503
code for, 500–502, 504
underlying representation for, 505–506

Spe c i a l i z e dLi s t I nt e r f a c e . j a va , code for,
498–499

Spiral life-cycle model, software life cycle, 4, 5
s pl i t helper method, 699
s pl i t operation, 701
s pl i t Poi nt , 699, 700, 702
Splitting algorithm

for arrays in random order, 703
developing, 700

s pl i t Va l , 700, 701, 702
qui c kSor t algorithm and, 699

Squa r e class, 70
Stability, 719–720
Stable sorts, defined, 719
Stack ADT

array-based implementations of, 185–191
formal specification for, 175–183
link-based implementation for, 202–214

Stack ADT interfaces, UML diagram of, 182
St a c k class, 353

Collections Framework and, 184–185
Stacking, recursive calls and, 279–281
St a c kI nt e r f a c e

defining, 179
header for, 180

Stack operations, definitions of, for Stack ADT,
188–190

St a c kOve r f l owExc e pt i on, as unchecked
exception, 179

St a c kOve r f l owExc e pt i on class, code for, 178

13549_I NDX_Da l e . qxd 2/ 7/ 11 10: 29 AM Pa ge 794

Index | 795

Stacks, 31, 31, 160–163, 229, 286
bounded versions of, 180
call-return, 163
defined, 160
effects of pus h and pop operations on, 162
for evaluating postfix expression, 217
as last in, first out structures, 298
operand storage in, 217
operations on, 161
real-life, 160
syntactical correctness and, 194
unbounded, interface for, 181
using, 161–163

Stack underflow
performing pop operation on empty stack and,

189
performing t op operation on empty stack and,

190
St a c kUnde r f l owExc e pt i on, 211

as unchecked exception, 178
St a c kUnde r f l owExc e pt i on class, 176

code for, 177
s t a c k variable, 187
Stack with one element, popping from, 211
s t a r t I nde x, selection sort analysis and, 680, 681
s t a r t Ve r t e x, 658
Static allocation, array-based linked approach,

489
Static storage, linked lists in, 488
Static storage allocation, 286

recursion and, 274–276
Stepwise refinement, 85, 88–91, 120

bottom-up approach, 88
top-down approach, 88

Storage
“by copy” vs. “by reference,” 410
of objects and structures in files, 445–458

saving object data in text files, 445–447
serialization of objects, 447–450
serializing structures, 450–451
Song Lists application, 451–458

Storing information by reference, dangers of,
409, 656

Straight selection sort, 676, 676–682, 677
algorithm for, 677
example of, 678
snapshot of algorithm, 679
test harness code, 679–680

St r i ng class, 90, 205, 591
StringLog

after c l e a r operation, 118
name for, 78

StringLog ADT, 72–77, 102, 164, 165
constructors, 72–73
implementation, 113, 115–124

constructors, 115–116
instance variables, 115
observers, 119–124
transformers, 116, 118–119

levels for, 76
observers, 73
primary responsibility of, 72
StringLogInterface, 73–75

using, 75–76
transformers, 73

StringLog classes, UML diagram showing rela-
tionships among, 77St r i ngLogI nt e r f a c e interface, 76

St r i ngLogI nt e r f a c e . j a va , code for, 74
StringLog operations

results of, with array implementation, 81
results of, with linked list implementation, 117

Strings
comparing, 85
determining if it is palindrome, 316, 320
objects changed to, 17, 24

s t r Log object, 116
Structures, serializing, 450–451
Subclasses, 12

inheritance and, 20
Subdirectories, packages and, 27–28
Subprograms, 8

13549_I NDX_Da l e . qxd 2/ 7/ 11 10: 29 AM Pa ge 795

796 | Index

Subtraction, in large integers case study, 518
s ubt r a c t Li s t s operation, 511, 514–516

code for, 515–516
Subtrees, 532

nodes without, determining, 550
right and left, 534

Sum of consecutive integers algorithm, 46–48
Superclasses, 12

inheritance and, 20
Support constructs, for serialization of objects,

447–448
s wa p method, for Sor t s class, 673
Swapping

insertion sort and, 687
locations of two elements in list, 672
references to objects, 712
splitting algorithm and, 703
s pl i t Va l with value at s pl i t Poi nt , 699

switch statement, recursive solutions and, 251
Symbols, matching, 194, 197
Sync Ar r a yBndQue ue class, 353

code for, 350–352
Sync Count e r class, code for, 346–347
Synchronization, 346–347, 371
s ync hr oni z e d keyword, 346, 350
Synchronized queues, 348–352
Sync hr onous Que ue , 353
Syntax errors, incompatible type, 25
System stack, defined, 277
System stack race, 162

T
Tail recursion

defined, 279
heap sort algorithm and, 707

Teamwork, complex problems and, 50
Telephone book example, binary search algo-

rithm, 426–431, 427
Test cases

identifying, 92
tasks related to, 91

Test drivers
for

Ar r a ySt r i ngLog class, 95–99
defined, 94
interactive, pseudocode description, 95

Test harness
code for Sor t s . j a va , 673–675
defined, 673
sorting and, 710

Testing, 91
ADT implementations, 94–101

general approach to, 94–95
test driver for Ar r a ySt r i ngLog class, 95–99
using test driver, 99–101

binary search tree operations, 575–577
black-box, 92
exhaustive, 92
heaps, 630–631
postfix evaluator, 226–227
professional, 101–102
for well-formed expression algorithm, 196
Word Frequency Generator program, 596–597

Testing and verification, in software life cycle,
3, 4t e s t method

Ba l a nc e d class and, 194, 195
Pa l i ndr ome class and, 316
writing main algorithm for, 195–196

Test plans
for Ar r a ySt a c k implementation, 190–191
defined, 94
for La r ge I nt operations, 519
for queue implementations, 311–312

Text files, saving object data in, 445–447
t hi s keyword, 79
Thorough approach, lazy approach vs., 82
Thr e a d object, instantiating, 342
Threads

interference and, 345–346
Java, 342–344

Three-Question Approach
ma r kBl ob method investigated with, 264

13549_I NDX_Da l e . qxd 2/ 7/ 11 10: 29 AM Pa ge 796

Index | 797

recursive algorithms verified with, 251–253
recursive methods verified with, 254
r e vPr i nt verified with, 273

t hr ow statement, 168, 171
Time efficiency, in heap implementation, 622
Timeliness, quality software and, 7–8
Top-down stepwise refinement, 88
t opI nde x, incrementing and decrementing value

of, 186
t op method, 180, 720

code for, 212
I s Pa t h algorithm applied to, 648

t op operation, 175, 176, 190
implementing, 211

t oSt r i ng method, 24, 25, 84
Big-O efficiency of, 120
CRe f Uns or t e d class and, 477–478
Gr i d class and exporting of, 265
heap test and, 630–631
invoking, 17
Re f Uns or t e dLi s t class and, 435

t oSt r i ng operation, 73
lists and, 390

Towe r s class, 257
Towe r s . j a va program, code for, 257–260
Towers of Hanoi, 254–260

algorithm, 254, 254–256, 255
method, 256–257
program, 257–260

Trailer nodes, 487, 523
Transformers

in array-based StringLog ADT implementation,
80, 82

defined, 12
in linked list StringLog ADT implementation,

116, 118–119
in StringLog ADT specification, 73

Traveling salesman problem, exponential time
and, 46

Traversals
binary tree, 538–540

in linked lists, 107–110
Tree elements, for Binary Search Tree ADT,

540–541
Tree iteration, binary search tree client perform-

ing, 543–544
Tree operations, orders of magnitude for, 579t
Trees, 32, 32, 532–534, 534. See also Binary

search trees; Binary trees
defined, 532
degenerate, 577
hierarchical relationships modeled with, 533
purpose of, 532
unsorted array and, 705

Tree shape, insertion order and, 563, 563–564

Tr i vi a Cons ol e class
basic algorithm for, 141
code for, 142–143

Trivia game case study, 128–145
application for trivia game, 140–141
GUI approach, 144–145
identifying support classes, 131–133

brainstorming, 131
filtering, 131–132
scenario analysis, 132–133

implementing support classes, 133–140
Ge t Tr i vi a Ga me class, 138–140
Tr i vi a Ga me class, 135–138
Tr i vi a Que s t i on class, 133–135

source of trivia game, 129–131
summation, 145
task for, 128
Tr i vi a Cons ol e class, 141–143

Tr i vi a Ga me class, code for, 135–138
Tr i vi a GUI class, 145
Tr i vi a Que s t i on class

abstract views of, 133t
implementing, 133–135

t r y- c a t c h statement, 168
Turing Award, 8
Turnaround time, in average waiting time case

study, 354

13549_I NDX_Da l e . qxd 2/ 7/ 11 10: 29 AM Pa ge 797

798 | Index

Two-dimensional arrays, 39–41, 40
Two-dimensional array variables, declaring, 40
Type T, pushing element of, onto top of stack,

188–189

U
UML. See Unified Modeling Language
Unbounded lists, 389
Unbounde dQue ue I nt e r f a c e , code for, 302
UnBounde dSt a c kI nt e r f a c e . j a va , code for, 181
Unbounded stacks, interface for, 181
Unboxing feature, 197
Unchecked exceptions

defined, 173
St a c kOve r f l owExc e pt i on as, 179
St a c kUnde r f l owExc e pt i on as, 178

Understandability, 50
Undirected graphs, 634, 635, 636
Unified Method, elements of, 8–9
Unified Modeling Language, 9

class notation approach, 13–14
Unit testing, defined, 91
Unreachable vertices

determining, 660
new set of airline-flight legs, 659
in weighted graph, 659

Unsorted array, tree and, 705
Unsorted circular list, implementing, 475–476
Unsorted List ADTs, 458, 497
Unsorted lists

defined, 389
implementing priority queues and, 617

Use-case, defined, 9
Use-case analysis, 125Us e Da t e s class, code for, 172–173
Us e Da t e s program, code for, 171–172
Us e He a p. j a va , code for, 631
User interface, 68

for word frequency generator case study,
589–590

Us e St r i ngLog program, output from, 76

ut i l package, 18
Ar r a ys class in, 712

V
Validation

spiral life-cycle model, 4
verification and, 93–94

Variables
in class definition, 9
in Da t e class, 11
nul l assigned to, 34
primitive vs. nonprimitive, 37

Ve c t or class, 184, 353
Verbs, 125
Verification, 91

in software life cycle, 3
validation and, 93–94

Vertex (vertices), 637
adjacency lists and, 645
adjacent, 636
finding index of, 643
in graphs, 32, 634

representing, 640
unreachable, 659–660ve r t i c e s one-dimensional array, 640

vi s i t e d grid, creating, 263

W
Walkthrough

for binary search algorithm: telephone book
example, 429

defined, 93
described, 93–94

War card game application, 321–330
Wa r Ga me App class, 327–330
Wa r Ga me App program

code for, 328–329
testing, 329–330

Wa r Ga me class, 323–327
Wa r Ga me . j a va , code for, with parts involving

Queue ADT emphasized, 324–327

13549_I NDX_Da l e . qxd 2/ 7/ 11 10: 29 AM Pa ge 798

Index | 799

War game simulation program architecture, 330
“Waterfall” life cycle, 3, 4
We i ght e dGr a phI nt e r f a c e . j a va , code for,

638–640
We i ght e dGr a ph. j a va , code for, 641–642
Weighted graphs

class and interface for, 662
defined, 636, 637
for new set of airline-flight legs, 659

we i ght I s method, in Graph ADT, 638
we i ght method, 71
Weights, 32
Well-formed expression algorithm, test for, 196
Well-formed expressions, 194, 194

application for, 200–202
Ba l a nc e d class, 194–199

while loops, 162
moving from recursive version to iterative ver-

sion with, 278–279
Wor dFr e q class, 592

code for, 593–594
Wor dFr e q objects, 591, 592

Wor dFr e q operations, 591
Word frequency generator case study, 588–597

brainstorming for, 588–589
discussion, 588
error handling in, 590
filtering for, 589
problem statement, 588
scenario analysis for, 590–592
testing, 596–597
user interface for, 589–590
Wor dFr e q class, 592–594
Word Frequency Generator program, 594–596

Word Frequency Generator program
code for Fr e que nc yLi s t class, 594–596
testing, 596–597

Workability, of quality software, 6–7
Work measurement, Big-O analysis and, 41–50
Worst case complexity, 48, 49
wr i t e Obj e c t method, of Obj e c t Out put St r e a m

class, 447

13549_I NDX_Da l e . qxd 2/ 7/ 11 10: 29 AM Pa ge 799

	Cover
	Copyright
	Preface
	Contents
	Chapter 1: Getting Organized
	1.1 Software Engineering
	1.2 Object Orientation
	1.3 Classes, Objects, and Applications
	1.4 Organizing Classes
	1.5 Data Structures
	1.6 Basic Structuring Mechanisms
	1.7 Comparing Algorithms: Big-O Analysis
	Summary
	Exercises

	Chapter 2: Abstract Data Types
	2.1 Abstraction
	2.2 The StringLog ADT Specification
	2.3 Array-Based StringLog ADT Implementation
	2.4 Software Testing
	2.5 Introduction to Linked Lists
	2.6 Linked List StringLog ADT Implementation
	2.7 Software Design: Identification of Classes
	2.8 Case Study: A Trivia Game
	Summary
	Exercises

	Chapter 3: The Stack ADT
	3.1 Stacks
	3.2 Collection Elements
	3.3 Exceptional Situations
	3.4 Formal Specification
	3.5 Array-Based Implementations
	3.6 Application: Well-Formed Expressions
	3.7 Link-Based Implementation
	3.8 Case Study: Postfix Expression Evaluator
	Summary
	Exercises

	Chapter 4: Recursion
	4.1 Recursive Definitions, Algorithms, and Programs
	4.2 The Three Questions
	4.3 Towers of Hanoi
	4.4 Counting Blobs
	4.5 Recursive Linked-List Processing
	4.6 Removing Recursion
	4.7 Deciding Whether to Use a Recursive Solution
	Summary
	Exercises

	Chapter 5: The Queue ADT
	5.1 Queues
	5.2 Formal Specification
	5.3 Array-Based Implementations
	5.4 Application: Palindromes
	5.5 Application: The Card Game of War
	5.6 Link-Based Implementations
	5.7 Concurrency, Interference, and Synchronization
	5.8 Case Study: Average Waiting Time
	Summary
	Exercises

	Chapter 6: The List ADT
	6.1 Comparing Objects Revisited
	6.2 Lists
	6.3 Formal Specification
	6.4 Array-Based Implementations
	6.5 Applications: Poker, Golf, and Music
	6.6 The Binary Search Algorithm
	6.7 Reference-Based Implementations
	6.8 Storing Objects and Structures in Files
	Summary
	Exercises

	Chapter 7: More Lists
	7.1 Circular Linked Lists
	7.2 Doubly Linked Lists
	7.3 Linked Lists with Headers and Trailers
	7.4 A Linked List as an Array of Nodes
	7.5 A Specialized List ADT
	7.6 Case Study: Large Integers
	Summary
	Exercises

	Chapter 8: Binary Search Trees
	8.1 Trees
	8.2 The Logical Level
	8.3 The Application Level
	8.4 The Implementation Level: Basics
	8.5 Iterative Versus Recursive Method Implementations
	8.6 The Implementation Level: Remaining Operations
	8.7 Comparing Binary Search Trees and Linear Lists
	8.8 Balancing a Binary Search Tree
	8.9 A Nonlinked Representation of Binary Trees
	8.10 Case Study: Word Frequency Generator
	Summary
	Exercises

	Chapter 9: Priority Queues, Heaps, and Graphs
	9.1 Priority Queues
	9.2 Heaps
	9.3 Introduction to Graphs
	9.4 Formal Specification of a Graph ADT
	9.5 Implementations of Graphs
	9.6 Graph Applications
	Summary
	Exercises

	Chapter 10: Sorting and Searching Algorithms
	10.1 Sorting
	10.2 Simple Sorts
	10.3 O(N log2N) Sorts
	10.4 More Sorting Considerations
	10.5 Searching
	10.6 Hashing
	Summary
	Exercises

	Appendices
	Appendix A: Java Reserved Words
	Appendix B: Operator Precedence
	Appendix C: Primitive Data Types
	Appendix D: ASCII Subset of Unicode
	Appendix E: Application ProgrammerInterfaces for the Java Classesand Interfaces Used in This Book

	Index

