
Suad Alagić

Object-
Oriented
Technology

Object-Oriented Technology

Suad Alagić

Object-Oriented Technology

123

Suad Alagić
Computer Science Professor
Portland, Maine, USA
Publications: http://dblp.uni-trier.de/pers/hd/a/Alagic:Suad
Website: https://sites.google.com/site/suadalagicme/

ISBN 978-3-319-20441-3 ISBN 978-3-319-20442-0 (eBook)
DOI 10.1007/978-3-319-20442-0

Library of Congress Control Number: 2015944088

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.
springer.com)

http://dblp.uni-trier.de/pers/hd/a/Alagic:Suad
https://sites.google.com/site/suadalagicme/
www.springer.com
www.springer.com

For
Adrian, Evan, Lucas, and Dario

Preface

The core idea of this book is that object-oriented technology is a generic technology
whose various technical aspects could be presented in a unified and consistent
framework. This applies to both practical and formal aspects of object-oriented
technology.

The approach in the book is based on typed technologies. The core notions
fit mainstream object-oriented languages such as Java and C#. However, perhaps
the most distinctive feature of this book is that it is based on object-oriented con-
straints (assertions), their specification and verification. Object-oriented constraints
apply to specification and verification of object-oriented programs, specifica-
tion of the object-oriented virtual platform, more advanced concurrent models,
database integrity constraints, and object-oriented transactions, their specification
and verification.

In Chap. 1, we define the key notions of typed object-oriented technology: the
notions of types, objects, classes, messages, and methods. This is followed by the
notions of inheritance and subtyping and their formal and pragmatic properties.
Static and dynamic binding as it applies to messages and methods is then discussed.
Parametric types are essential for modern typed object-oriented technologies. They
are given due attention through a detailed analysis of various issues related to
parametric types.

A distinctive view in this book is that types are preferably equipped with
assertions. Assertions are the topic of Chap. 2. This chapter first specifies the basic
reasoning rules such as those that apply to assignments, conditional statements, and
loops. Loop invariants and a verification technique for proving termination are then
discussed. Object-oriented assertions: method preconditions and postconditions,
and class invariants are discussed in detail. Finally, we revisit the notion of
subtyping in the presence of assertions and explain the all important compatibility
requirements for classes called behavioral subtyping. This chapter also shows how
assertions are specified in a sample application that makes use of a practical
assertion specification and verification tool.

The formal basis in this book for types and constraints had an impact on the
notation used to present code samples that are based on Java, C#, assertion, and

vii

viii Preface

data languages. Although these code samples are close to the source languages,
they are more conceptual and based on notation that is closer to the standard
mathematical notation. This produces a consistent framework for both code samples
and their formal aspects expressed by constraints. The correspondence with the
source notation is immediate.

In Chap. 3, we describe a modern environment that supports typed object-
oriented technology. The components of this environment include reflection, the
actual object-oriented virtual machine, and support for persistent objects. Reflection
is presented following the initial Java specifications that are more suitable for
explanation of core concepts unlike the more recent revisions. Modern typed object-
oriented languages such as Java or C# run on an object-oriented virtual machine.
Our presentation is an abstraction of the existing very low-level specifications
of object-oriented virtual machines. A distinctive feature of the presentation is
the use of assertions to define the semantics of the basic operations. An object-
oriented platform should support persistent objects, i.e., objects with long lifetimes.
This chapter also presents persistent models and mechanisms such as orthogonal
persistence and serializability.

In Chap. 1, we present the basic rules of object-oriented type systems in a
mostly informal manner. However, type systems have an elaborate formal theory.
In Chap. 4, we show how some of the elements of type theory apply to an
object-oriented programming language. We first explain the basic typing rules for
statements such as assignment, conditionals, and loops, as well as for expressions.
Then we focus on the rules of object-oriented type systems that govern classes,
inheritance, subtyping, and messages. These static typing rules are followed by
dynamic type checking rules that mainstream object-oriented languages have, and
the formal rules for parametric types. In addition, we present static and dynamic
typing rules that apply to reflection. Finally, we show what kind of problems
violation of type safe rules can cause. We take a well-known paradigm of type
erasure that was the basis of the technique for extending Java with parametric types.
This paradigm is provably incorrect as demonstrated by a variety of cases of type
violation presented in this chapter.

Concurrent object-oriented models are discussed in Chap. 5. We first present the
model of concurrent threads of execution. Then, we explain the basic mechanisms
for synchronizing concurrent access of multiple threads to objects on the common
heap. We discuss the relationship between synchronization and inheritance, and
the relationship between serialization and synchronization. We demonstrate what
the implications are of synchronized versus unsynchronized executions. Then, we
introduce a more general concurrent and distributed model based on asynchronous
messages. The basis of this model is the fact that messages may be viewed as
objects. In this new framework, it is natural to define formally the rules of behavioral
subtyping. Finally, we introduce a very general model of concurrent active objects,
each equipped with its own virtual machine. Ambients of such objects are discussed
as well.

Object-oriented database technology (the topic of Chap. 6) addresses the lim-
itations of relational and extended relational technologies in managing complex

Preface ix

objects that exhibit complex behavior. Object-oriented database technology is
also addressing the problem of the mismatch between the dominating software
technology, which is object-oriented, and the dominating database technology that
is relational, or object-relational at best. This specifically applies to the so-called
“impedance mismatch” between data and programming languages. We first discuss
the basic features of object-oriented definition and query languages. We look at the
most important object-oriented database technologies. We explain the core features
of those technologies that include database collection classes, interfacing databases
from an object-oriented programming language, and object-oriented transactions.
We also revisit the typing issues for persistent collections. The core features of a
specific current technology and its application are presented as well. Finally, we
discuss a critical limitation of all object-oriented and other database technologies:
inability to specify and enforce very general database integrity constraints. We
present an object-oriented database paradigm based on such general constraints.

In Chap. 7, we show how two critical formal notions in this book: types
and constraints, apply to two significant practical problems. The first problem is
specification of database type systems in a formal manner. The second problem
is specification and verification of object-oriented transactions. Database systems
are typically not based on a formally specified type system. This leads to non-
trivial problems that we demonstrate in this chapter. We consider a type system
required by object-oriented database systems and establish a collection of the
required formal rules showing the typing problems in object-oriented database
languages. This chapter also addresses another key feature of database technologies:
transactions. Unlike other approaches, object-oriented schemas and transactions
are in our approach equipped with integrity constraints expressed in an object-
oriented assertion language. This is followed by object-oriented consistency issues.
The presentation is based on a sample object-oriented schema equipped with very
general integrity constraints and sample transactions. The relationship between the
integrity constraints and queries is discussed, as well as inheritance for object-
oriented schemas equipped with constraints. An essential issue of the role of
dynamic versus static checking of constraints is also addressed in this chapter.

Portland, Maine, USA Suad Alagić

Acknowledgements

The author is grateful to two software engineers, Russell Gillen and Thomas
Keschl, his former graduate students, for their numerous valuable comments that
significantly improved the manuscript.

Contents

1 Typed Objects . 1
1.1 Typed Objects . 1

1.1.1 Objects and Classes . 1
1.1.2 Inheritance . 3
1.1.3 Subtyping . 6
1.1.4 Static and Dynamic Binding . 9

1.2 Parametric Types . 12
1.2.1 Collection Types . 12
1.2.2 Parametric Types . 15
1.2.3 Implementing Parametric Classes . 17
1.2.4 Abstract Classes . 17
1.2.5 Parametric Types and Subtyping . 20

1.3 Bibliographic Remarks . 21
1.4 Exercises. 21
References . 23

2 Assertions . 25
2.1 Declarative Specifications . 25

2.1.1 Assertions . 25
2.1.2 Basic Reasoning Rules . 27

2.2 Object-Oriented Assertions . 31
2.2.1 Preconditions and Postconditions . 32
2.2.2 Loop Invariants . 33
2.2.3 Termination . 34
2.2.4 Object Invariants . 35
2.2.5 Assertions for Collections. 37
2.2.6 Behavioral Subtyping . 40

2.3 Sample Application . 42
2.4 Bibliographic Remarks . 46
2.5 Exercises. 47
References . 48

xi

xii Contents

3 Virtual Platform . 49
3.1 Reflection . 50

3.1.1 Reflective Classes . 50
3.1.2 Class Objects . 51
3.1.3 Field Objects. 53
3.1.4 Method Objects . 54
3.1.5 Constructor Objects . 54
3.1.6 Updating Fields . 55
3.1.7 Invoking Methods . 55
3.1.8 Creating Class Objects . 56
3.1.9 Class Files . 57

3.2 Virtual Machine . 58
3.2.1 The Structure of the Virtual Machine . 58
3.2.2 Creating Objects . 60
3.2.3 Invoking Methods . 61
3.2.4 Accessing Fields. 61
3.2.5 Operations . 63
3.2.6 Arrays . 64

3.3 Extending Virtual Platform . 67
3.4 Persistent Objects . 71

3.4.1 Orthogonal Persistence . 71
3.4.2 Persistence Architecture . 74
3.4.3 Object Serialization . 75

3.5 Bibliographic Remarks . 77
3.6 Exercises. 78
References . 79

4 Type Systems . 81
4.1 Formal Type Systems . 82

4.1.1 Typing Rules . 82
4.1.2 Object-Oriented Type System . 84
4.1.3 Dynamic Type Checking . 88
4.1.4 Parametric Types . 89

4.2 Reflection . 91
4.3 Type Erasure . 94

4.3.1 Type Erasure Idiom . 94
4.3.2 Static Type Checking. 95
4.3.3 Dynamic Type Checking . 99
4.3.4 Persistence by Serializability . 99
4.3.5 Reflection . 101

4.4 Bibliographic Remarks . 102
4.5 Exercises. 102
References . 103

Contents xiii

5 Concurrent Models . 105
5.1 Concurrent Threads . 105

5.1.1 Thread Objects . 105
5.1.2 Synchronized Objects . 107
5.1.3 Synchronization and Inheritance . 109
5.1.4 Concurrency and Serialization . 110
5.1.5 Synchronized Versus Unsynchronized Executions 111

5.2 Messages as Objects . 113
5.2.1 Types of Messages . 113
5.2.2 Typing Rules . 116
5.2.3 Behavioral Subtyping . 119

5.3 Concurrent Objects. 120
5.3.1 Ambients of Concurrent Objects . 120
5.3.2 Reflection . 124
5.3.3 Virtual Machine . 127

5.4 Bibliographic Remarks . 130
5.5 Exercises. 130
References . 131

6 Object Databases . 133
6.1 Query Languages. 134

6.1.1 Object Definition Language. 134
6.1.2 Object Query Language . 135
6.1.3 Java OQL . 137
6.1.4 Language Integrated Queries (LINQ) . 141

6.2 Object Databases . 144
6.2.1 ODMG Java Binding . 144
6.2.2 Parametric Persistent Collections . 149
6.2.3 Db4 Objects. 151
6.2.4 Database Application. 155

6.3 Database Constraints . 158
6.4 Bibliographic Remarks . 162
6.5 Exercises. 163
References . 164

7 Types and Constraints . 165
7.1 Database Type Systems . 166

7.1.1 ODL and OQL Examples . 166
7.1.2 Schemas. 167
7.1.3 Inheritance . 168
7.1.4 Structures . 169
7.1.5 Interfaces. 170
7.1.6 Classes . 172
7.1.7 Objects and Messages . 173
7.1.8 Type Checking OQL Queries . 174
7.1.9 OQL Queries and Parametric Types . 178

xiv Contents

7.1.10 Queries with Order by Clause . 179
7.1.11 Java OQL . 181
7.1.12 Typing Ordered Collections and Indices . 184

7.2 Transactions . 186
7.2.1 Transactions and Constraints . 186
7.2.2 Schemas and Transactions . 188
7.2.3 Levels of Consistency . 189
7.2.4 Constraints for Schemas . 191
7.2.5 Sample Transactions . 192
7.2.6 Constraints and Queries . 194
7.2.7 Specification Inheritance . 195
7.2.8 Abstraction. 198
7.2.9 Dynamic Checking of Constraints . 199

7.3 Bibliographic Remarks . 200
7.4 Exercises. 200
References . 201

Index . 203

Chapter 1
Typed Objects

In this chapter we define the key notions of typed object-oriented technology.
The very basic notions are introduced in Sect. 1.1. The notions of types, objects,

classes, messages and methods are introduced and illustrated in Sect. 1.1.1. The
notion of inheritance is the topic of Sect. 1.1.2. A related notion of subtyping and
its formal properties are discussed in Sect. 1.1.3. Static and dynamic binding as it
applies to messages and methods is the topic of Sect. 1.1.4.

Parametric types are essential for modern typed object-oriented technology.
This is the topic of Sect. 1.2. Collection types are of particular importance for
the topics presented in this book. Their non-parametric versions and their limi-
tations are discussed in Sect. 1.2.1. Parametric collection types, different types of
parametric polymorphism and their advantages are discussed in Sect. 1.2.2. A fully
implemented parametric collection class is given in Sect. 1.2.3. Abstract parametric
classes are discussed in Sect. 1.2.4. The impact of parametric types on subtyping is
discussed in Sect. 1.2.5.

1.1 Typed Objects

1.1.1 Objects and Classes

An abstract data type defines its instances entirely in terms of actions that can be
performed upon those instances. An example is an abstract data type TwoDPoint
specified below as an interface. The actions are reading and setting the values of the
coordinates of an instance of the TwoDPoint type.

interface TwoDPoint {
int getX();
int setX(int x);

© Springer International Publishing Switzerland 2015
S. Alagić, Object-Oriented Technology, DOI 10.1007/978-3-319-20442-0_1

1

2 1 Typed Objects

int getY();
int setY(int y);

}

The above definition is an abstraction offered to the users of the TwoDPoint type.
The users can only see the signatures of operations, i.e., their names, the types of
their arguments, and the type of their result. All details of representation of instances
of this type are hidden from the users. A representation of the TwoDPoint type is
given in the class TwoDPoints given below. The components of the object state are
declared as private and the methods that either read or update the object state as
public. This way the object state is encapsulated and accessible only by invoking
public methods.

class TwoDPoints implements TwoDPoint {
private int x;
private int y;
public int getX(){

return x;
}
public void setX(int x) {

this.xDx;
}
public int getY() {

return y;
}
public void setY(int y) {

this.yDy;
}

}

Instances of a class are objects. An object has three defining components:

– object identity
– object state
– methods applicable to the object

When an object is created a unique identity is assigned to the object. Details of
representation of the object identity are hidden from the users of the object.

In the example below expressions x.setX(5) and x.setY(10) are called messages.

TwoDPoint p;
p.setX(5); p.setY(10);

1.1 Typed Objects 3

In general, invoking a method m of a class C whose signature is B m(A1,
A2,. . ., An), where B, A1, A2, . . . ,An are types, is called a message and it has
the form

a.m(a1,a2,. . .,an)

where the type of a is C and the type of ai is Ai for iD1,2,. . .,n. The object a
in the above message is called the receiver of the message and a1, a2, . . .,an are
arguments. All an object x needs to know in order to invoke a message on an object
a is the interface of the type of a as in the example above.

Object-oriented languages have a special keyword (like self or this) to denote the
receiver of a message. In the above example of TwoDPoints class the methods setX
and setY refer to the coordinates of the receiver object using the keyword this. This
is also necessary in order to distinguish the value of the formal parameter and the
value of the corresponding coordinate of the receiver object. In the methods getX
and getY the values of the coordinates of the receiver object are referred to directly
by their names so that this is implicit.

Objects are created dynamically by invoking a class constructor as in the example
below:

TwoDPoint objDnew TwoDPoints();
obj.setX(5); obj.setY(10);

In the above example a no argument constructor is invoked initializing the
TwoDPoint object to the default values for the types of components of the object
state. Additional constructors are typically defined for a class that would specify a
particular initialization of the object state as in the following example.

TwoDPoints(int xVal, int yVal) {
xDxVal; yDyVal;

}

TwoDPoint objD new TwoDPoints(5,100);

1.1.2 Inheritance

A core feature of object-oriented languages allows specification of new types
by derivation from the already defined types. This is how software reuse is
accomplished in object-oriented technology. An example is a type MovingObject
defined as an extension of the type TwoDPoint:

interface MovingObject extends TwoDPoint {
float getSpeed();
void setSpeed(float newSpeed);

}

4 1 Typed Objects

Instances of the type MovingObject inherit all the components and methods
of the base type TwoDPoint. Additional components and methods of the type
MovingObject that are specific to those objects are defined in the specification of
the type MovingObject.

The class that implements the interface MovingObject specifies the additional
components of the moving object state along with the associated methods:

class MovingObjects extends TwoDPoints {
private float speed;
public float getSpeed() {

return speed;
}
public void setSpeed(float newSpeed) {

speedDnewSpeed;
}

}

The class MovingObjects inherits the implementation of TwoDPoint objects
and implements the methods whose signatures are specified in the interface
MovingObject.

The states and the associated methods of objects of types TwoDPoint and
MovingObject are represented in Fig. 1.1.

x

y

getX

setX

getY

setY

getX

setX

getY

setY

getSpeed

setSpeed

x

y

speed

Object state MethodsObject identity

TwoDPoint

MovingObject

Fig. 1.1 Object states and methods

1.1 Typed Objects 5

The basic features applicable to all object types are specified in the class Object.
The details of representation of this class are not exposed to the users. A simplified
specification of the class Object that omits signatures of other methods is given
below.

public class Object
public boolean equals(Object x);
public Class getClass();
// other methods

}

All classes implicitly inherit from the class Object. The two methods whose
signatures are specified above make it possible to test whether two objects are equal
and to access the class information available at run time.

The inheritance relationships in our example are represented in Fig. 1.2. This
diagram illustrates the type of multiple inheritance allowed in Java and C#.

Object

TwoDPoint

MovingObject

MovingObjects

TwoDPoints

extends

extends

extendsimplements

implements

Fig. 1.2 Inheritance for interfaces and classes

A class can have a single superclass, and the root class Object has none. Multiple
inheritance for classes is not allowed because it creates problems since a class
specifies an implementation. If a class extends two different and independently
developed classes, the question is which implementation is being inherited. A par-
ticularly problematic situation occurs in the case of diamond inheritance illustrated

6 1 Typed Objects

in Fig. 1.3. All the types in this diagram cannot be classes. A class can implement
multiple interfaces. An interface can extend multiple interfaces because interfaces
do not contain implementation. The only conflict that may occur is with names
and signatures of methods inherited from multiple superinterfaces. These issues
are easily resolved with simple rules that Java and C# have. In the above example
the class MovingObjects extends the class TwoDPoints and implements an interface
MovingObject.

Fig. 1.3 Multiple
inheritance

A

B C

D

The immutable class object contains run-time representation of signatures of the
class fields, constructors and methods. The method getSuperClass applied to a class
object produces a reference to the superclass object. This makes the complete type
hierarchy of classes available at run-time. However, this hierarchy of types can be
only introspected, and not changed at run time. This is why the class Class contains
only introspection methods and cannot be extended (it is final). Changing at run
time the type information produced in the process of compilation would completely
defeat the purpose of a type system.

public final class Class {
// methods for accessing field signatures
// methods for accessing constructor signatures
// methods for accessing method signatures
public Class getSuperClass();

}

The relationships between objects and their class objects is represented
in Fig. 1.4.

1.1.3 Subtyping

The basic form of inheritance presented so far amounts to extension of both
components of the object state, and the set of the associated methods. A subclass

1.1 Typed Objects 7

inherits all of them just the way they are defined in the superclass. This makes it
possible to have a particular flexibility in object-oriented languages. An instance of a
subclass could be safely substituted where an instance of the superclass is expected.
This is not a literal substitution of the object representation. Substitution applies to
object identities that are implemented as references to object states. A reference to
an object of the superclass is replaced by a reference to an object of the subclass.

TwoDPoint object

MovingObject object MovingObjects class object

TwoDPoints class object

getClass()

getClass()

getSuperClass()

Heap

Fig. 1.4 Objects and class objects

The general term polymorphism applies to situations like this where an instance
of one type is substituted where an instance of a different type is expected.
The form of polymorphism that is associated with inheritance is called subtype
polymorphism. Although these two notions are in general different, they are
identified in mainstream typed object-oriented languages. That is, the typing rules
for deriving a subclass from another class by inheritance guarantee that the subclass
defines a subtype of the superclass.

The subtleties of typing rules for inherited methods come from the rule for
type-safe substitution of functions. Consider a function:

f: Domain ! CoDomain

Let us see under what conditions we can substitute a function

f0: Domain0: ! CoDomain0:
in place of f.

8 1 Typed Objects

Given any x 2 Domain, we would like to substitute f0(x) in place of f(x). This
means that we must have x 2 Domain0 or else f0(x) will be undefined. In other
words,

Domain � Domain0

On the other hand, f(x) 2 Codomain for any x 2 Domain, so that we must also
have that f0 (x) 2 Codomain. In other words, we have:

CoDomain0 � CoDomain

This situation is illustrated in Fig. 1.5.

f

f’

Domain

Domain’
Codomain

Codomain’

Fig. 1.5 Function subtyping

In general, a function type

T10 ! T20

where T1 and T2 are types, is a subtype of the function type

T1 ! T2

if the following requirement is satisfied:

T1 <W T10 (contravariance) and T20 <W T2 (covariance)

where the symbol <W is a standard symbol for subtyping. The mathematical terms
covariance and contravariance simply mean the following. In the case of covariance
function subtyping has the same direction as subtyping of the corresponding result
types, and in the case of contravariance function subtyping and subtyping for the
corresponding argument types have reversed directions.

This rule for function types applies to inheritance of methods. The most
restrictive implementation of the rule for function subtyping is that an inherited
method has exactly the same signature in a subclass as it does in the superclass.
So the name, the types and the number of arguments and the result type will be
the same. A more flexible type safe discipline is that if the method signature in the
superclass is T2 f(T1), then its signature in the subclass will be T20 f(T1) where T20
<W T2. This is a special case of the rule for function subtyping. For example:

1.1 Typed Objects 9

public class Object {
public Object clone()

// other methods
}

public class TwoDPoints {
public TwoDPoints clone()

// other methods
}

A field f of type T is in fact a pair of methods with signatures:

T get()
void set(T)

Consider the following class:

class A {
Ta f;
Ta getf(){return f; }
void setf(Ta value){ f D value; }

}

Let us assume that the type of the field f in class A has been changed to Tb in a
class B derived from A by inheritance:

class B extends A {
Tb f;
Tb getf(){return f; }
void setf(Tb value){f D value; }

}

The rule for function types will require

Tb <W Ta and Ta <W Tb

This means that the type of the inherited field must remain the same in
the subclass because subtyping is a partial order (reflexive, antisymmetric and
transitive).

1.1.4 Static and Dynamic Binding

The flexibility introduced by subtype polymorphism makes the declared (static) type
of an object in general different from its run-time (dynamic) type. The run-time type
is in general a subtype of the static type. For example:

10 1 Typed Objects

TwoDPoint x D new TwoDPoints();
MovingObject y D new MovingObjects();
xDy;

The static type of x is TwoDPoint and after the assignment xDy its run-
time type is MovingObject. This has implications on selection of the most
appropriate method when executing a message. Consider the class Vehicle given
below. In the notation used in this book the symbol D is overloaded. It stands for
the standard mathematical notion of equality as in the code below, as well as for the
assignment as in Java and C#.

public class Vehicle {
private int VIN;
private String make;
public boolean equals(Object x) {

return (VIN D (Vehicle)x.VIN);
}
// other methods

}

The method equals in the root class Object is defined as the test on object identity.
This is the only meaningful way of defining the equality of objects in general.
That is, two objects are equal if they have the same identity. In a specific class a
more suitable meaning of equality may be more appropriate. In the above class two
vehicles are considered equal if their VINs (vehicle identification numbers) are
equal. So the method equals is redefined accordingly in the class Vehicle. This
redefinition of an inherited method is called overriding.

Note that the signatures of the inherited method arguments are required to remain
the same in the subclass according to the function subtyping rule. This creates an
awkward situation because in the class Vehicle we would like to refer to the VIN
field of the argument, and Object does not have such a field. This is why the type
cast (Vehicle)x specifies that the intent is to view x as a Vehicle. There is no way to
verify this cast statically, hence a dynamic check is generated by the compiler. This
is an instance of dynamic type checking.

In order for overriding to work correctly the method to be invoked is determined
by the dynamic type of the receiver object. This is called dynamic dispatch of
methods and it represents the most important case of dynamic binding in object-
oriented languages. For example,

Object x D new Object();
Object y D new Object();
Vehicle xV D new Vehicle();
Vehicle yV D new Vehicle();
xDxV; yDyV;
. . . x.equals(y). . .

1.1 Typed Objects 11

The method to be invoked in response to the message x.equals(y) will be the
method equals overridden in the class Vehicle because the run time type of x is
Vehicle.

There are situations in which overriding a method should not be allowed. An
example is the method getClass of the root class Object. This method has a particular
implementation in the underlying virtual platform, which guarantees that invocation
of this method will indeed return the class object of the receiver of the method.
Allowing overriding would have serious implications on the intended semantics of
this method creating nontrivial problems in dynamic type checking. This is why the
method getClass is declared as final.

public class Object {
public final Class getClass();
// other methods

}

The class Class is final, which means that it cannot be extended, and hence
none of its methods can be overridden. Since the class Class has only introspection
methods, this guarantees safety of the type system at run-time, i.e., the type
information cannot be mutated at run time.

Dynamic dispatch (selection) of methods based on the type of the receiver
object is the basic technique in object-oriented languages. It brings the type
of flexibility that makes the whole object-oriented paradigm work. Adding new
types by inheritance to an already compiled and running application requires only
compilation and linking of the newly introduced types without recompiling the
existing application. However, this flexibility comes with some penalty in efficiency
because the decision about method selection is postponed to runtime. Modern
languages have efficient techniques for dynamic dispatch of methods, but some
languages like CCC and C# try to avoid the associated cost by providing a static
binding (method selection) option. In C#, methods are statically bound unless they
are explicitly declared as virtual. For example, using our notation, the method equals
which is intended to be overridden would be declared as follows:

public class Object {
public virtual boolean equals(Object x);
// other methods

}

Overriding this method in C# will be indicated by an explicit keyword override.

public class Vehicle {
private int VIN;
private String make;
public override boolean equals(Object x) {

return (VIN D (Vehicle)x.VIN);

12 1 Typed Objects

}
// other methods

}

Methods whose receiver is the class object are always bound statically. The
reason is that there is only one class object for all objects of that class. Since the
receiver is known at compile time, there is no need to postpone method selection
to run time. These methods are thus declared as static to indicate that they belong
to the class itself. An example is the method numberOfVehicles of the class Vehicle
The number of vehicles is not the property of individual vehicle objects. It is the
property of all objects of the class Vehicle, hence it belongs to the class itself.

public class Vehicle {
// fields;
public static int numberOfVehicles();
// other methods

}

We summarize the above discussion as follows:

– The basic mechanism for selecting a method for executing a message (method
dispatch) in object-oriented languages is dynamic. It is based on the run-time
type of the receiver object.

– The receiver of a static (i.e. class) method is the class object. Since there is only
one class object of a given type, selection of a static method is static.

– Some languages (CCC and C#) allow a choice of static versus dynamic method
dispatch. Although this is done for the reasons of efficiency, it has been shown
that when both dispatch mechanisms are used in a program, that may obscure the
meaning of the program.

1.2 Parametric Types

1.2.1 Collection Types

Most object-oriented languages are equipped with the root class Object (CCC
is a notable exception). The class Object along with subtype polymorphism allows
specification of the Collection type whose elements are simply objects. In fact, this
was the only way of specifying a generic collection type in the initial versions of
Java and C#:

1.2 Parametric Types 13

public interface Collection{
public boolean isMember(Object x);
public void add(Object x);
public void remove(Object x);

}

An object of type Collection is equipped with methods for testing whether an
object belongs to the collection, inserting new objects into the collection, and
deleting objects from the collection. The main problem with this specification is
that objects of any type may be inserted into a collection defined this way. If we
would like to define a specific collection, like a collection of employees, we would
do it as follows:

Collection employees;

So the following type checks:

Emloyee emp D new Employee();
employees.add(emp);

However, so does the following

Department dept D new Department();
employees.add(dept);

The reason is that both Employee and Department are subtypes of Object, and so
is any other object type. The other problem occurs when getting objects from a
collection as in the for statement below. This statement introduces a control variable
emp of type Employee and iterates over the collection employees. In the process the
control variable assumes the values of the elements of the collection employees.

for (Employee emp: employees)
emp.displaySalary();

The above code will not compile in Java because the control variable emp
is declared to have the type Employee, and the elements of the collection employees
are of type Object. Let us modify the above loop to correct this type mismatch as
follows:

for (Object emp: employees)
emp.displaySalary();

The above will not type check either because the class Object is not equipped with
a method displaySalary(). This is why a type cast is necessary:

for (Object emp: employees)
(Employee)emp.displaySalary();

This type cast looks redundant, but it is necessary because an object retrieved
from a collection of employees may not be an employee at all. So not only is a

14 1 Typed Objects

dynamic check necessary, but it may fail at run-time as well. There is really no good
solution for this situation. In order to avoid program failure the original code must
be extended with exception handling as follows. This is hardly an attractive way to
specify an iteration over a collection of employee objects.

try {
for (Object emp: employees)
(Employee)emp.displaySalary();
}

catch (ClassCastException classEx)
{exception handling }

The notion of a set of objects may be defined using subtype polymorphism as
follows:

public interface Set extends Collection {
public Set union(Set s);
public Set intersection(Set s);

}

The difference between a collection in general and a set is that an element may
belong multiple times to a collection. The notion of a set does not allow this: an
element is either a member of a set or it is not. This is why an element cannot be
inserted into a set if it already belongs to the set. The behavior of delete is also
different for collections and sets. Deleting an object from a set means that the object
does not belong to the set. Because of possible multiple occurrences of an object in
a collection, that would happen only if the last occurrence is deleted. In addition,
sets are equipped with operations such as union and intersection that collections
in general do not have (Fig. 1.6).

Object

Collection

Set Bag

Fig. 1.6 Collection types

1.2 Parametric Types 15

A bag is a collection that keeps explicit count of the number of occurrences of
each element that belongs to the bag. In addition, a bag is equipped with operations
such as union and intersection. The semantics of these operations are defined in
such a way that they reduce to the semantics of union and intersection for sets in a
particular case of a bag that is in fact a set.

The rule for union of bags is the following. If an element x belongs m times to a
bag B1 and n times to a bag B2, then x will belong max(m,n) times to the union of
B1 and B2. Symmetrically, x will belong min(m,n) times to the intersection of B1
and B2.

1.2.2 Parametric Types

The problems in specifying collection types using subtype polymorphism are
avoided by a different form of polymorphism called parametric polymorphism.
Using this form of polymorphism the notion of a collection is specified as follows.

public interface Collection<T> {
public boolean isMember(T x);
public void add(T x);
public void remove(T x);

}

The interface Collection now has a type parameter T. T stands for any object type,
so that there is an implicit quantification over all object types. Collection<T> may
be viewed as a template for construction of new types by substitution. Substituting
Employee for the type parameter T produces a collection of employees type denoted
as:

Collection<Employee>

The previous code obtains the following form:

Collection<Employee> employees;
Employee emp D new Employee();
employees.add(emp)

However, the following will not type check, i.e., it will produce a compile-time error.

Collection<Employee> employees;
Department dept D new Department();
employees.add(dept)

Accessing elements of the collection of employees does not require a type cast.
So a previous for statement will now type check:

16 1 Typed Objects

for (Employee emp: employees)
emp.displaySalary();

The key property of parametric polymorphism is that it allows static (i.e.,
compile-time) type checking. The unfortunate consequences of dynamic type
checks are completely avoided.

The universal form of parametric polymorphism does not allow static typing of
a variety of other abstractions such as ordered collections, ordered sets etc. The
problem with the definition of the type of ordered collections as:

OrderedCollection<T>

is that it does not guarantee that the object types substituted for T will be equipped
with ordering. This is why the parametric type OrderedCollection is defined with a
type constraint for the type parameter:

OrderedCollection<T extends Comparable<T>>

where the interface Comparable is equipped with a comparison method and defined
as follows:

public interface Comparable<T> {
public int compareTo(T x);

// other comparison methods
}

Parametric interface OrderedCollection is now specified as follows:

public interface OrderedCollection<T extends Comparable<T>>

extends Collection<T> {
// . . .
}

The above specification means that only types that extend or implement
the interface Comparable will be acceptable as the actual type parameters of
OrderedCollection<T extends Comparable<T>>. So if we have

Employee implements Comparable<Employee>

OrderedCollection<Employee> will satisfy the static type check.
The form of parametric polymorphism in which there is a bound on the type

parameter is called bounded. When the bound itself is parametric, like in the above
cases, the form of parametric polymorphism is called F-bounded.

Array is a parametric type with special notation and special properties. T[] is an
array type for any specific type T. The form of parametric polymorphism is thus
universal.

1.2 Parametric Types 17

1.2.3 Implementing Parametric Classes

The methods of the class OrderedCollection are those specified in the interface
Collection which the class OrderedCollection implements. The representation of
a sorted collection in the class OrderedCollection is a linked list, where LinkedList
is an already defined parametric class. Methods of the class OrderedCollection are
implemented by invoking methods of the class LinkedList. The main difference is in
the method add which is overridden in such a way that insertion into the underlying
linked list maintains the ordering of the sorted collection of elements. The type
constraint T extends Comparable<T> guarantees that elements of the sorted
collection are equipped with the method compareTo. In the code below : denotes
negation.

public class OrderedCollection<T extends Comparable<T>>

implements Collection<T> {
private LinkedList<T> elements;
public OrderedCollection() {

elements D new LinkedList<T>();
}
public boolean isMember(Object e) {

return elements.contains(e);
}
public void add(T e) {
if (: elements.contains(e)) {
for (int i D 0; i < elements.size() - 1; iCC) {

if (elements.get(i).compareTo(e) � 0 ^
elements.get(i C 1).compareTo(e) > 0)
elements.add(e);

}
public void remove(Object e) {

if (elements.contains(e))
elements.remove(e);

}

1.2.4 Abstract Classes

The class AbstractBag is an example of an abstract class. An abstract class is a
partially implemented class. It is different from an effective class in that it has at least
one abstract method whose implementation is deferred to the classes that extend the
abstract class.

In the extreme case when an abstract class has only abstract methods, it looks just
like an interface. However, there are major differences between an abstract class and

18 1 Typed Objects

an interface. An interface has only public methods. An abstract class may have fields
and implemented methods. Standard access rights (private, protected, public) may
be specified for members of an abstract class whereas methods of an interface are
necessarily public. An abstract class is a class, so that in languages like Java and C#,
single inheritance applies to it as for classes in general, whereas multiple inheritance
applies to interfaces.

Creating an instance of an abstract class makes no sense and it is not possible.
Such an instance would in general have an incomplete specification of the object
state and unimplemented methods. The run-time consequences are obvious.

public abstract class AbstractBag<T> {
public abstract int size();
public abstract int occurrences(T x);
protected class Member<T> {. . . }
// code for union, intersection and copy

}

One subtlety in the partial implementation of AbstractBag is the internal
representation of bag elements. It differs from the type of the actual parameter of
AbstractBag. The internal representation is specified in the protected class Member
whose objects contain the actual data of type T along with the associated count of
the number of occurrences. The access right for this class is declared as protected to
make it available to subclasses derived from the abstract class AbstractBag.

protected class Member<T> {
T value;
int count;
@Override
public boolean equals(Object other) {

Member mem D (Member) other;
return this.value.equals(mem.value);

}
// other methods

}

Type signatures of the methods copy, union, and intersection are given below.
These are examples of parametric methods because they introduce their own type
parameter B.

public abstract < B extends AbstractBag<T> > B copy(); {
// code for this method
}
public < B extends AbstractBag<T>> B union(B otherBag) {
// code for this method

}
public <B extends AbstractBag<T>> B intersection(B otherBag){
//code for this method

}

1.2 Parametric Types 19

The result type of the methods copy, union, and intersection is specified using
F-bounded parametric polymorphism. To see why this is appropriate assume the
following:

OrderedBag< T extends Comparable<T> > extends AbstractBag<T>

Employee implements Comparable<Employee>

The results of the inherited methods union and intersection in the class
OrderedBag<Employee> will be exactly what we want:

OrderedBag<Employee>.

The reason for providing the intermediate level of abstraction in terms of abstract
classes is illustrated by the implementation of the methods union and intersection of
the class AbstractBag. In spite of the fact that the implementation is left to the classes
derived from AbstractBag, it is possible to specify the algorithms for computing the
union and the intersection. These algorithms make use of the method for copying a
bag and they follow the definitions of these two operations as defined in the algebra
of bags.

The algorithms for union and intersection make use of the following parametric
interface:

public interface Iterator<T> {
boolean hasNext();
T next();
void remove();

}

The algorithm for the union copies the larger bag to the result bag, and it then
iterates over the other bag to add new elements that belong to the other bag or set
correctly the number of occurrences for elements belonging to both. The algorithm
for intersection will look alike, except that it will copy the smaller bag to the result
first.

public < B extends AbstractBag<T>> B union(B otherBag) {
B result, other;

if (this.size() < otherBag.size()) {
result D otherBag.copy();
other D this;

}
else {

result D this.copy();
other D otherBag;
}

Iterator<Member> itr D other.iterator();
Member m, n;
while (itr.hasNext()) {
m D itr.next();

20 1 Typed Objects

n D other.getMember(m);
if (n ¤ null)
set count of n to max(m,n);
else result.addMember(m);
}

return result;
}

This discussion shows that abstract classes along with more sophisticated
forms of parametric polymorphism provide a powerful abstraction mechanism.
Combination of these two techniques allows specification of generic libraries that
can be tailored to particular applications contributing significantly to the core feature
of the object-oriented paradigm: software reuse.

1.2.5 Parametric Types and Subtyping

Assume that we have

class Employee extends Person {. . .} .

We know that this implies

Employee <W Person

following the rules for the signatures of inherited fields and methods. The
question is now whether this implies (Fig. 1.7)

Collection<Employee> <W Collection<Person> ? ? ?

Fig. 1.7 Parametric types
and subtyping Person

Employee

Collection<Person>

Collection<Employee>

???

The answer is no. It is easy to see why. The signature of the method add
in the class Collection<Person> is void add(Person x) and the signature of this
method in the class Collection<Employee> is void add(Employee x). Assuming
that Collection<Employee> <W Collection<Person> violates the typing rules for
inherited methods. The argument signatures of an inherited method must remain the
same as in the superclass.

1.4 Exercises 21

Following the same argument we would have for array types:

Employee[] 6<W Person[]

However, languages like Java and C# still allow substitution of objects of type
Employee[] in place of an object of type Person[]. This flexibility has pragmatic
reasons. For example, an algorithm that sorts an array of persons would not be
otherwise applicable to an array of employees. However, this relaxation of the static
typing rules requires dynamic checks in order to prevent violation of subtyping at
run-time, which both Java and C# have.

1.3 Bibliographic Remarks

The core object-oriented notions (objects, classes, inheritance, subtyping, dynamic
binding) are presented following the Java programming language [1, 6]. For a
formal view of subtyping see [3]. Problems caused by violation of type safe rules in
object-oriented languages are discussed in [5]. Parametric types for object-oriented
languages and their more sophisticated forms are formalized in [4]. The example of
an abstract parametric type is due to Ben Gruba. Parametric types for Java generated
a major controversy discussed in [8]. The reason is a wrong idiom for incorporating
parametric types in Java advocated in [2, 7] and officially accepted for Java with
nontrivial negative implications.

1.4 Exercises

1. Specify and implement a parametric class Queue using a parametric class List
to represented a queue.

2. Specify classes Set and OrderedSet using two different idioms:

– The type of elements is specified as Object
– Collection and OrderedCollection are parametric types where the proper form

of parametric polymorphism is used.

Demonstrate the problems of the first representation and the advantages of
the second in a simple application program on sets and ordered sets.

3. Specify a parametric class Dictionary with two type parameters. The first
parameter stands for the type of entries in the dictionary. The second type
parameter stands for the type of the key. Use proper form of parametric
polymorphism.

4. Specify a class SearchTree following the pattern for the class Dictionary. In
addition, a search tree is sorted and it has methods for sequential processing
and search based on the given key. A suggested implementation is a balanced
binary search tree.

22 1 Typed Objects

5. Consider a class Person and its subclass Employee. Assume that PersonalAp-
plication is a class with a method process whose signature is

void process(Collection<Person>).

– Is the method process applicable to the argument of type
Collection<Employee>?

– Specify process as a parametric method using F-bounded parametric polymor-
phism so that it will be applicable to Collection<Emplyee>.

6. Specify a parametric method max that returns the larger of its two arguments.
Use F-bounded parametric polymorphism.

7. Specify a class Airport whose components are a list of runways, a list of traffic
patters (queues of incoming aircraft), a set of ground structures, and a location.
Use the appropriate parametric types (list, queue, set).

8. Specify class Runway whose components are heading, length, width, elevation,
orientation and an aircraft queue.

9. Specify a hierarchy of aircraft types. The following two top levels might look
like in Fig. 1.8.

Aircraft

Rotorcraft Glider LighterThanAir Airplane

Fig. 1.8 Aircraft hierarchy

10. Specify the methods of the class Aircraft that reflect general behavior of an
aircraft. Override those methods so that they reflect behavior of airplanes, and
then subtypes of the type Airplane such as PassengerPlane.

11. Specify the hierarchy of military planes that has two subtypes, strategic
and tactical military planes. Further decomposition should include multiple
inheritance.

12. Specify classes and interfaces that implement the model with multiple inheri-
tance in Fig. 1.9.

References 23

Fig. 1.9 Multiple
inheritance Aircraft

Airplane Rotorcraft

Helicopter

Gyroplane

References

1. K. Arnold, J. Gosling, D. Holmes, The Java Programming Language, 4th edn. (Addison-Wesley,
Boston, 2005)

2. G. Bracha, M. Odersky, D. Stoutmire, P. Wadler, Making the future safe for the past: adding
genericity to the Java programming language, in Proceedings of OOPSLA 1998 (ACM,
New York, 1998)

3. K. Bruce, Foundations of Object-Oriented Languages (MIT Press, Massachusetts, 2002)
4. P. Canning, W. Cook, W. Hill, W. Olthoff, J. Mitchell, F-bounded polymorphism for object-

oriented programming languages, in Proceedings of Functional Programming Languages and
Computer Architecture (ACM, New York, 1989), pp. 273–280

5. W.R. Cook, A proposal for making Eiffel type safe. Comput. J. 32, 305–311 (1989)
6. J. Gosling, B. Joy, G. Steel, G. Bracha, The Java Language Specification, 3rd edn. (Prentice

Hall, New Jersey, 2005)
7. M. Odersky, P. Wadler, Pizza into Java: translating theory into practice, in Proceedings of POPL

1997 (ACM, New York, 1997), pp. 146–159
8. J. Solorzano, S. Alagić, Parametric polymorphism for JavaTM : a reflective solution, in Proceed-

ings of OOPSLA ‘98, (ACM, New York, 1998), pp. 216–225

Chapter 2
Assertions

A distinctive feature of this book is that types are preferably equipped with
assertions. Assertions are the topic of Sect. 2.1. The basic notions related to
assertions are introduced in Sect. 2.1.1. This section also specifies the basic
reasoning rules such as those that apply to assignments, conditional statements, and
loops. Methods equipped with preconditions and postconditions are discussed in
Sect. 2.2.1. Loop invariants are the topic of Sect. 2.2.2 and a verification technique
for proving loop termination in Sect. 2.2.3. Class assertions called object invariants
are the topic of Sect. 2.2.4. The implications of the developed apparatus of assertions
on parametric types are discussed in Sect. 2.2.5. Finally, in Sect. 2.2.6 we revisit
the notion of subtyping in the presence of assertions and explain the all important
compatibility requirement for classes called behavioral subtyping.

In Sect. 2.3 we show how assertions are specified in a sample application that
makes use of a practical tool called Code Contracts.

2.1 Declarative Specifications

2.1.1 Assertions

Assertions are declarative, logic-based specifications of programs. For a simple or
complex program statement S such a specification in the Hoare style has the form
P{S}Q. In this notation P is a precondition for S and Q is a postcondition for S.
A graphical representation is given in Fig. 2.1.

The meaning of the notation P{S}Q is that if the assertion P holds before the
statement S is executed, upon completion of execution of S the assertion Q will
hold. This statement does not say anything about whether the execution of S will
terminate if the precondition P holds before execution of S. This is why this style of
specification is called partial correctness.

© Springer International Publishing Switzerland 2015
S. Alagić, Object-Oriented Technology, DOI 10.1007/978-3-319-20442-0_2

25

26 2 Assertions

Fig. 2.1 Partial correctness P

Q

S

A sample specification given below is summation of elements of an integer array
a between given indices i and j. The precondition requires that the indices i and j
are within the range of indices of the array a. The postcondition specifies that the
variable s contains the sum of elements of the array a in the specified segment.

(0 � i) ^ (i � j) ^ (j < a.Length);
{int s D 0; int nDi;
while (n � j)
s CD a[n]; nCC;

}
s D sum{int k 2 (i..j)); a[k] };

In the above example (i..j) denotes an interval i � k � j. sum{int k 2 (i..j)); a[k]}
stands for the sum of all a[k] for k in the specified interval. This notation comes from
Spec#. s C D a[n] stands for sDsCa[n] and likewise nCC stands for nDnC1 where
D stands for the assignment. Recall that the equality symbol D is overloaded. It is
used with its standard mathematical meaning in assertions, as well as the symbol
for the assignment statement as in Java and C#.

In order to reason about programs, we have to establish the reasoning rules for
simple statements S, and then for the statement composition rules that may be
applied to construct complex (composite) S. The most basic such rule applies to
the assignment statement and it has the following form:

P[e/x]{xDe}P

where x is a variable, e is an expression, P is an assertion, and P[e/x] denotes P in
which all free occurrences of x are replaced by e. Free occurrences are those that
are not quantified. In order to evaluate a formula, free occurrences must be assigned
specific values.

2.1 Declarative Specifications 27

For example,

x � 0 {xDxC1} x > 0

Here P is x > 0, P[xC1/x] is xC1 > 0, i.e. x � 0.

2.1.2 Basic Reasoning Rules

Consider now a conditional statement represented in Fig. 2.2 in which B is a boolean
expression, S1 and S2 are statements, and P and Q are assertions. If P holds before
execution of this conditional statement and B evaluates to true, P ^ B will hold
before execution of S1. In order for Q to hold after execution of S1, we must have
P ^ B {S1}Q. Following the same logic we get the condition P ^ : B {S2}Q for
the other branch. This leads to the following reasoning rule in the form of a Horn
clause. The horizontal bar stands for implication. The premises are written above the
implication line separated by commas (denoting conjunction) and the conclusions
below the line. The notation for the standard logical connectives is ^ (conjunction),
_ (disjunction),) (implication) and : (negation).

P ^ B {S1} Q, P ^ : B {S2}Q

P {if (B) S1 else S2 } Q

Fig. 2.2 Conditional
statement

Q

S1 S2

P

B

P and B P and not B

For example,

(x ¤ 0){if (x > 0) yDx else yD -x } (y > 0)
In this case we have:

P: (x ¤ 0)
Q: (y > 0)

28 2 Assertions

P ^ B: (x ¤ 0) ^ (x > 0)
P ^ : B: (x ¤ 0) ^ (x � 0)
(x ¤ 0) ^ (x > 0)) (x > 0)
(x ¤ 0) ^ (x � 0)) (x < 0)

The two premises in the reasoning rule for the conditional statement are:

(x > 0){yDx} (y > 0)
(x < 0) {yD -x} (y > 0)

The above two statements are easily established by applying the rule for the
assignment statement. Applying the rule for the conditional statement we obtain
the desired result:

(x ¤ 0){if (x > 0) yDx else yD -x } (y > 0)

Reasoning rules for loops reveal that the essence of any loop is an assertion
called loop invariant. This was no small discovery when it was first observed. This
observation says that while values of variables are changing in a loop, it is the
relationships among those variables that remain the same that explains what the task
of the loop is. So a dynamic behavior of a loop is captured by static relationships
that hold in the loop regardless of changing values of program variables.

Consider the while loop in Fig. 2.3 in which B is a boolean expression, S is a
statement, and P is an assertion. Assume that P holds when the loop is entered and
that one execution of the loop body does not affect the truth value of P, i.e., P ^ B
{S} P. This implies that no matter how many times the loop body S executes, P will
hold (remains invariant) at the points to which it is attached in Fig. 2.3.

Fig. 2.3 While loop

B

S

P

P and not B

P and BP

When the loop terminates (if it does) we will have P ^ : B, hence the rule for
the while statement:

P ^ B {S} P

P {while (B) S } P ^ : B

2.1 Declarative Specifications 29

The following example illustrates this reasoning rule:

// precondition: x � 0;
{r=0;
while ((r+1)�(r+1) � x)
// invariant: r�r � x;
{ r=r+1; }

}
// postcondition: r*r � x ^ x < (r+1)�(r+1)

Note that the loop invariant r�r � x holds when the loop is entered since at that
point x � 0 and r=0. For one execution of the loop body we have

(r � r � x) ^ (x � (r+1) � (r+1))
{ r=r+1; }
(r � r) � x

The rule for the assignment statement requires to establish that ((r � r) � x)[r+1/r]
holds before execution of the assignment r=r+1. This amounts to (r+1) � (r+1) � x
which is exactly what we have.

The loop terminates when x < (r+1) � (r+1), hence upon termination we have:

(r � r) � x < (r+1) � (r+1)

Following a similar reasoning we obtain the reasoning rule for the Do loop
in Fig. 2.4:

P {S} Q, Q ^ B) P

P {do S while (B)} Q ^ :B

Assume that P holds upon entrance to the Do loop as the above rule requires.
Likewise, let P{S}Q holds. If B evaluates to true upon execution of S, Q ^ B will
hold and the loop will continue. In order for P to hold before S is again executed, we
must have Q ^ B) P. When the loop terminates (if it does) we will have Q ^ :B.

The following example illustrates the above reasoning rule. In this example a
stands for an integer array and n:a.Length stands for the interval 0 � n < a.Length
(range of indices of the array a).

// precondition: a.Length � 0
{int n D a.Length;
do
// invariant: (0 � n) ^ (n � a.Length);

30 2 Assertions

Fig. 2.4 Do loop P

S

B

Q and not B

Q and B

Q

// invariant: 8 { int i (n � i) ^ (i < a.Length); a[i] ¤ key};
{ nDn-1;

if (n < 0) {
break;

}
} while (a[n] ¤ key);

}
// postcondition .n � 0/) .aŒn�=key/

When the loop is first entered the invariant (0 � n) ^ (n � a.Length) clearly
holds because nDa.Length which is a nonnegative integer. This invariant also holds
during the loop execution because as soon as n < 0 the loop is exited.

The other invariant 8 { int i (n � i) ^ (i < a.Length); a[i] ¤ key} also holds
because the interval (n � i) ^ (i < a.Length) is initially empty since nDa.Length.
This invariant and a[n]¤ key implies that the invariant holds after the assignment
nDn-1. The loop continues while the interval satisfies the condition a[n] ¤ key. In
every execution of the loop body this interval is extended by decreasing n.

There are two possibilities for loop termination. Either n < 0 and hence there is
no element a[n] such that a[n]Dkey, or a[n]Dkey for some n in the range of indices
of the array a. In the latter case the desired element is located as indicated by the
postcondition.

2.2 Object-Oriented Assertions 31

2.2 Object-Oriented Assertions

The specification style P{S}}Q leads naturally to specification of methods in terms
of preconditions and postconditions. Method preconditions and postconditions are
illustrated below for a parametric interface Collection<T>. The requires clause
specifies the method precondition, and the ensures clause specifies the method
postcondition.

public interface Collection<T>

{ public boolean contains(T obj);
public void add(T obj)
ensures this.contains(obj);
public void remove(T obj)
requires this.contains(obj);

// . . .
}

Class invariants are constraints that must be satisfied by all object states outside
of method execution. If the proper information hiding discipline is exercised this
means that class invariants must hold for all object states visible to the clients. Class
invariants are illustrated below for a parametric interface Set<T>. The interface
Set<T> extends the previously given interface Collection<T> by two additional
methods union and intersection along with the associated constraints, that are in
fact class invariants.

public interface Set<T>

extends Collection<T>

{ public Set<T> union(Set<T> S);
public Set<T> intersection(Set<T> S);
// . . .

invariant
(8 Set<T> this, S; 8 T: obj)
(this.union(S).contains(obj) (this.contains(obj);
this.union(S).contains(obj) (S.contains(obj);
this.intersection(S).contains(obj) (this.contains(obj) ^ S.contains(obj));
// . . .
}

Note that the methods and the constraints of the interface Collection<T> are
inherited in Set<T>. The logic paradigm used in the above example is Horn
clause logic, which is the basis for logic programming languages. The symbol
(denotes implication and comma denotes conjunction. This logic was chosen
because of its well-known nice properties: well-defined formal semantics (in which
the monotonicity plays a critical role), and the existence of an execution model tied
to the formal semantics.

32 2 Assertions

However, Horn clause logic has its limitations. It cannot express negative
information. This is why it would not be possible to specify the precondition
assertion in the interface Set<T> which requires that the element to be inserted does
not already belong to the receiver set. Likewise, the postcondition assertion which
guarantees that the removed element does not belong to the receiver set, cannot be
expressed in Horn clause logic.

The availability of assertions allows specification of semantics (or at least a part
of it) in a declarative and formal manner. This way the behavioral properties of
objects of a class are communicated to the clients with no need to investigate pro-
cedurally decomposed methods. This also allows addressing the issue of behavioral
compatibility in the inheritance hierarchies.

The rules of the type system guarantee that when an object of type Set<T> is
substituted where an object of the type Collection<T> is expected, type safety will
be guaranteed. This holds for any particular type T. This means that an object will
never get a message for which it does not have a method with a correct signature.
But an object-oriented type system does not address the issue of method semantics.

In fact, in a typical, full-fledged object-oriented language (such as Java or C#), it
is possible to redefine the semantics of an inherited method in any way, as long as
its signature satisfies the rules of the type system. This leads to all kinds of semantic
incompatibilities. For example, suppose that in the interface Set<T> we specify
the precondition for the method add which requires that the element to be added
does not already belong to the receiver set. This creates an immediate behavioral
incompatibility with the super interface Collection<T>. Indeed, collections include
bags, and there is no such requirement for adding an element to a bag. The
formal rules for behavioral compatibility are expressed by the notion of behavioral
subtyping to be discussed further in the sections that follow.

2.2.1 Preconditions and Postconditions

Examples of assertions that follow are based on Spec#. The first three examples are
from [11]. Method preconditions and method postconditions are further illustrated
by the method exchangeElements that exchanges elements of an integer array at
two given indices. The precondition is a conjunction of two requires clauses that
specify that the given indices must be in the range of indices for the given array.
The postcondition is a conjunction of two ensures clauses that specify the outcome
of the method invocation. The ensures clauses refer to the state before method
execution using the operator old. This makes it possible to specify that in the state
after execution of the method exchangeElements, the values of the array at the given
indices were indeed swapped.

void exchangeElements(int[] a, int i, int j)
requires (0 � i) ^ (i < a.Length);

2.2 Object-Oriented Assertions 33

requires (0 � j) ^ (j < a.Length);
modifies a[i], a[j];
ensures a[i] D old(a[j]);
ensures a[j] D old(a[i]);
{int temp;
temp D a[i];
a[i] D a[j];
a[j] D temp;

}

The modifies clause that appears in this specification is called the frame
constraint. It specifies that only array elements a[i] and a[j] will be affected by
the method invocation. All other objects in the frame of this method remain the
same.

A distinctive feature of the Spec# technology and its spin-offs (such as Code
Contracts) is static verification of assertions. Code equipped with assertions is
compiled by a verifying compiler. In addition to parsing and type checking, the
compiler verifies that the code actually satisfies the assertions. This represents a
huge progress in comparison with the techniques that preceded Spec# such as
Eiffel and Java Modeling Language (JML) that are based on dynamic checking
of assertions. In those technologies violation of assertions will be detected only
at run-time, requiring run-time actions (exception handling) to deal with assertion
violation. This has nontrivial implications on run-time efficiency and reliability of
object-oriented programs.

2.2.2 Loop Invariants

In the specification of the method ArraySum that follows the postcondition refers to
the result of the method invocation using the keyword result. This example contains
specification of the loop invariant of the for statement in the body of the method
ArraySum. The first invariant requires that the control variable n is always in the
required range. Most importantly, the second invariant specifies that the variable s
contains the sum of values of the array a at indices up to n. In this invariant the
Spec# notation for the half open interval is used. i 2 (0: a.Length) stands for the
interval 0 � i < a.Length.

The invariant n � a.Length follows from the fact that the loop body will be
executed if n < a.Length. After the assignment nDnC1 this amounts to n � a.Length
before the next iteration of the loop body.

The invariant s D sum {int i 2 (0: n); a[i] } holds initially because the interval
(0:n) is empty. This invariant and n < a.Length before the assignments s D s C
a[n]; nDnC1 imply that the invariant will hold after these assignments. When the
loop terminates, n will be equal to the length of the array a, hence the summation is
completed and the result is returned.

34 2 Assertions

The method ArraySum makes use of non-null object types. If T is an object type,
then T! denotes a type that cannot contain a null reference. This is a distinctive
feature of the Spec# type system. So the argument of ArraySum is required to be a
non null reference to an array object. Violation of this requirement will be detected
statically by the Spec# verifying compiler.

public int ArraySum(int[]! a)
ensures result D sum {int i 2 (0: a.Length); a[i]};
{int s D 0;
for (int n D 0; n < a.Length; nCC)

invariant n � a.Length;
invariant s D sum {int i 2 (0: n); a[i] };

{s CD a[n];}
return s;

}

2.2.3 Termination

The core idea for proving termination is to come up with an integer expression
(variant function) that remains non-negative throughout the loop execution and its
value is strictly decreased with every execution of the loop body. That can happen
only a finite number of times, hence the loop must terminate. This is illustrated for
the while loop in Fig. 2.5 where vf stand for the variant function.

B

S

P

P and not B

P and B
P

vf=vfo >0
vf=vf1, vf1 > 0, vf1 < vfo

Fig. 2.5 Proving termination

Verifying termination is illustrated in the method ArrayRangeSum given below.
With the assertions specified in the method ArrayRangeSum the static verifier of

2.2 Object-Oriented Assertions 35

Spec# will actually be able to verify that the above two conditions are satisfied for
variant defined as variantDj-n.

Consider first the invariant (i � n) ^ (n � j). This invariant holds initially because
nDi so that the invariant amounts to (i � i) ^ (i � j) which is implied by the
precondition (i � j) of the method ArrayRangeSum. Before execution of the loop
body we have (i � n) ^ (n � j) ^ (n < j). This implies (i � nC1) ^ (nC1 � j). This
assertion before the assignment nDnC1 implies that (i � n) ^ (n � j) holds after
this assignment.

The invariant s D sum {int k 2 (i: n); a[k]} holds initially because the interval
(i: n) is empty since nDi and sD0. This invariant before the assignments sDsCa[n];
nDnC1 implies that it will hold after these assignments.

The third invariant that is verified statically ensures that the variant function is
nonnegative. j � n � 0 holds initially because nDi so that this invariant amounts to
j � i � 0, i.e., i � j which is a precondition of the method ArrayRangeSum. Before
the assignment nDnC1 we have j � n � 0 and j > n, i.e., j � n and j > n which
applies j � nC1, i.e., j � .n+1/ � 0. This assertion before the assignment nDnC1
implies j � n � 0 after this assignment.

The assert statement that is also statically verified (and dynamically enforced)
ensures that the variant function is strictly decreased by an execution of the loop
body. Since n is increased in every execution of the loop body, j � n is strictly
decreased as stated in the assert statement. This proves that the loop will terminate.

public int ArrayRangeSum(int[]! a, int i, int j)
requires (0 � i) ^ (i � j) ^ (j � a.Length);
ensures result D sum {int k 2 (i: j); a[k] };
{int s D 0; int nDi;
while (n < j)
invariant (i � n) ^ (n � j);
invariant s D sum {int k 2 (i: n); a[k]};
invariant 0 � j - n;
{ int variant D j - n;
s CD a[n]; nCC;
assert j - n < variant;
}

return s;
}

2.2.4 Object Invariants

In addition to method preconditions and postconditions, object-oriented assertion
languages specify consistent object states by object invariants. An object invariant
is an assertion that an object is required to satisfy in all visible object states.

36 2 Assertions

A visible object state is an object state outside of a method execution. During
method execution object invariants are typically violated. But an object invariant
must hold after a constructor, before method execution, and after method execution.
A simple example is given below in the class Accumulator.

class Accumulator {
int count;
invariant count � 0;
public Accumulator()
{ count D 0; }
public void Inc(int increase)
modifies count;
ensures count D old(count)Cincrease;
{ expose (this) {

count D count C increase;
}

}
}

The object invariant specifies that the accumulator value must be non-negative.
Note that the object invariant is first established by the constructor of this class.
The object invariant may be temporarily violated in the method body, but it must
be reestablished upon termination of the method. The expose block (as in Spec#)
indicates this situation so that the verifier will not enforce the object invariant in this
block. Upon exit of the expose block the loop invariant will be statically enforced.
This is why the accumulator class will not be verified because the actual parameter
increase of the method Inc may be negative. The verifier will indicate that there is
no guarantee that the invariant will hold upon completion of the expose block. This
problem is solved by specifying a precondition for the method Inc as follows:

public void Inc(int increase)
modifies count;
requires increase > 0;
ensures count D old(count)Cincrease;
{ expose (this) {

count D count C increase;
}

}

With the above precondition, the expose block in the above method is not
necessary any more. This example also shows the tension that exists between two
requirements: components of the object state should be private, but specifications
should be public. However, those specifications often refer to the object states,
such as the object invariant in the Accumulator class. A technique for resolving
this controversy in assertion languages is explained in the next section.

2.2 Object-Oriented Assertions 37

2.2.5 Assertions for Collections

A subtlety related to object invariants is that they should be public, i.e., visible to the
clients of a class. However, object invariants refer to the components of the object
state that should be private. This controversy is resolved by making components of
the object state public only for specification purposes as in the class CollectionSpec
given below. The notation is based on Spec#.

The state of a collection object is represented as a list. Methods such as contains,
add and remove are implemented invoking the appropriate methods of the class List.

The method contains is an example of a pure method. A pure method is a pure
function. As such it does not have any side effects on the object state. This is why
pure methods can be used in specifications. The corresponding method Contains of
the class List is also declared as pure. The postcondition of the method contains
specifies that the result of this method will be true if the underlying list contains the
argument object of this method.

public abstract class CollectionSpec<T>{

[SpecPublic] protected List<T!>!
elements D new List<T!>();

[SpecPublic] protected int size D 0;

invariant elements.Count D size;
invariant size � 0;

[Pure] public bool contains(T! x)
ensures result D elements.Contains(x);
{ code }

public virtual void add(T! x)
modifies elements;
ensures this.contains(x);
{ code }

public virtual void remove(T! x)
modifies elements;
requires this.contains(x);
{ code }

}

The postcondition of the method add is that the underlying list contains the
argument object of this method. The frame constraint in the modifies clause of the
method add specifies that this method modifies the underlying list of the collection
elements.

38 2 Assertions

The precondition of the method remove is that the argument object belongs
to the collection. The postcondition of the method remove does not specify that
the removed element does not belong to the collection. That would be true if the
collection is a set, but not necessarily true is the collection is a bag.

The list of collection elements is required to be non-null, and so are the elements.
The argument of the methods contains, add and remove are required to be non-null
as well.

In the specification of the class BagSpec a pure method occurrences specifies
the number of occurrences of an element of a bag. Its postcondition makes use of a
predefined combinator Count of Spec# that returns the number of elements that are
equal to the argument of the method occurrences.

The methods add and remove are overridden. The postcondition of the method
add ensures that the number of occurrences of the added element has been
increased by one. The precondition of the method remove is inherited from the class
CollectionSpec and it requires that the element to be removed belongs to the bag.
The postcondition of the method remove ensures that the number of occurrences of
the element removed from the bag is decreased by one.

The methods union and intersection are defined as pure methods that construct
new objects representing the results of these operations. The postconditions of these
methods follow the definitions of the union and intersection of bags as defined in
the algebra of bags. Note the C# notation for inheritance in which the symbol :
corresponds to the Java keyword extends.

The first ensures clause of the method union guarantees that the resulting bag
consists of elements that belong to one or to both of the bags whose union is
constructed. For elements that belong to both bags, the second ensures clause
specifies the number of occurrences of those elements in the resulting bag. Likewise,
the first ensures clause of the intersection method guarantees that the resulting bag
consists of elements that belong to both of the input bags. The second ensures clause
specifies the number of occurrences of those elements.

public class BagSpec<T> : CollectionSpec<T>

{
[Pure] public int occurrences(T! x)
ensures result D Count{int i 2 (0: elements.Count);

x.equals(elements[i])};
{ code }

public override void add(T! x)
modifies elements;
ensures occurrences(x) D old(occurrences(x)) C 1;
{ code }

public override void remove(T! x)
modifies elements;
ensures occurrences(x) D old(occurrences(x)) - 1;

2.2 Object-Oriented Assertions 39

{ code }

[Pure] public BagSpec<T!>! union(BagSpec<T!>! other)
ensures result.contains(x) ,

this. contains(x) _ other.contains(x);
// type of x inferred as T
ensures this.contains(x) ^ other.contains(x))
result.occurrences(x)D

Max{this.occurrences(x), other.occurrences(x)};
{code }

[Pure] public BagSpec<T!>! intersection(BagSpec<T!>! other)
ensures result.contains(x) ,

this.contains(x) ^ other.contains(x);
ensures result.occurrences(x)D

Min{this.occurrences(x), other.occurrences(x)};
{code }

In the above specifications of the methods union and intersection x is assumed to
be universally quantified and its type is inferred to be T. Spec# limits universal and
existential quantification to finite integer intervals in order to accomplish static and
automatic verification. That requirement can be satisfied as follows:

[Pure] public BagSpec<T!>! union(BagSpec<T!>! other)
ensures 8 { T x 2 result.elements;

this. contains(x) _ other.contains(x)};
ensures 8 { T x 2 result.elements;
this.contains(x) ^ other.contains(x))

result.occurrences(x)D
Max{this.occurrences(x), other.occurrences(x)}
};

{code }

Finally, a detailed specification that explicitly operates on sequences of elements
would look like this:

[Pure] public BagSpec<T!>! union(BagSpec<T!>! other)
ensures 8 {int i 2 (0: result.elements.Count);
result.elements[i] 2 elements _
result.elements[i] 2 other.elements; }

ensures 8 {int i 2 (0: result.elements.Count);
int j 2 (0: elements.Count);
int k 2 (0: other.elements.Count);
result.elements[i].equals(elements[j]) ^
result.elements[i].equals(other.elements[k]))
result.occurrences(elements[i])D

40 2 Assertions

Max{occurrences(elements[j]), other.occurrences(elements[k])}
};

{code }

[Pure] public BagSpec<T!>! intersection(BagSpec<T!>! other)
ensures 8 {int i 2 (0: result.elements.Count);
result.elements[i] 2 elements ^
result.elements[i] 2 other.elements};

ensures 8 {int i 2 (0: result.elements.Count);
int j 2 (0: elements.Count);
int k 2 (0: other.elements.Count);

result.elements[i].equals(elements[j]) ^
result.elements[i].equals(other.elements[k]))
result.occurrences(elements[i])D
Min{occurrences(elements[j]), other.occurrences(elements[k])}
};

{code }

The class OrderedBagSpec makes use of F-bounded polymorphism that guar-
antees that the actual type parameter substituted for T will be equipped with the
method CompareTo. F-bounded polymorphism is expressed in the C# notation. The
invariant guarantees that the bag is ordered.

public class OrderedBagSpec<T> : BagSpec<T>

where T : IComparable<T>

{
invariant 8 {int i 2 (0: elements.Count),

int j 2 (0: elements.Count);
(i � j)) elements[i].CompareTo(elements[j]) � 0 }

// . . .
};

2.2.6 Behavioral Subtyping

Object-oriented assertion languages support a particular form of behavioral sub-
typing that guarantees behavioral compatibility of objects of a subclass when
viewed as objects of the superclass. This discipline, illustrated by the example that
follows, does not allow changes of the inherited preconditions. At the same time the
postconditions and object invariants are allowed to be strengthened by addition of
new assertions.

An example is given below. The class Stock has a method setValue that has
no precondition. Its postcondition ensures that the stock value has been assigned
correctly.

2.2 Object-Oriented Assertions 41

public class Stock {
private String code;
public String getCode()
{ return code; }
invariant this.getCode() ¤ null;
[SpecPublic] protected int value;
public int getValue(){ return value; }
public virtual void setValue(int v)
ensures valueDv;
{ valueDv; }

}

The class BackupStock overrides the method setValue. The overridden method
setValue inherits the postcondition from the class Stock and strengthens it by
conjunction with an additional postcondition. The method precondition (trivially
true) remains the same. The invariant is inherited from the class Stock.

public class BackupStock: Stock {
[SpecPublic] protected int backup;
public override void setValue (int v)
ensures backup Dold(value);
{ backupDvalue; valueDv; }

}

If an instance of BackupStock is substituted where a Stock instance is expected,
a user of a Stock object will see no unexpected behavior of a Stock object. Invoking
the method setValue requires no precondition. The postcondition that holds after
execution of the overridden method setValue is

(valueDv) ^ (backup Dold(value))

which implies (valueDv). This means that a user of a Stock object will see nothing
unusual if the receiver object happens to be a BackupStock object.

Let us now attempt to override the method setValue as in the class GrowingStock
given below. The keyword base in C# corresponds to the keyword super in Java and
represents a reference to the superclass object. The precondition of the overridden
method is strengthen. This means that correct invocation of the overridden method
requires a precondition (value � v). If an instance of GrowingStock is substituted
in place of an object of type Stock, a user of a Stock object will invoke the
method setValue with no precondition. This will create an exception inexplicable
for a user of a Stock object. This is why preconditions of overridden methods must
remain the same.

public class GrowingStock: Stock {
public override void setValue(int v)
requires value � v; //not allowed
{ base.setValue(v);}

}

42 2 Assertions

2.3 Sample Application

Promoting assertion languages comes with several challenges. One of them is
that a full-fledged assertion language of the kind presented in the preceding
sections requires significant changes of the underlying object-oriented programming
language and a complex implementation technique if static verification of assertions
is supported. In this section we look at an application (tournament management)
in which Code Contracts is used to specify assertions with no changes to the
underlying C# language.

All assertions of Code Contracts appear as invocations of methods of the class
Contracts. The actual assertions are specified as boolean expressions, arguments of
these methods. This approach leads to dynamic checking of assertions as methods
of the class Contracts are executed. Code Contracts also has static checking
capabilities that are being extended as the system develops.

The tournament management application has several types of users, two of which
we specify. A tournament has a manager and a list of players. This is represented in
Fig. 2.6. The notation in this figure indicates that a tournament has a unique manager
and it is associated with multiple players.

Tournament

User

Player

Manager

1 *

1

1

Fig. 2.6 Tournament management application

The class Tournament given below specifies the features of tournament objects.
It contains self explanatory fields, properties and a constructor.

class Tournament {
String name;
Manager manager;
List<Player> players D new List<Player>();
// other fields
// constructor
public String Name
{ get { return name; }

2.3 Sample Application 43

set { name D value; }
}
// other poperties

}

Generic properties of a tournament user are specified below in a class User in the
C# style. A property in C# is a pair of methods. The method get returns the value
of a property and the method set assigns a value to a property. Note that private is
the default accessibility for members of a class in C#. So in the above example the
underlying (backing) fields are private and the properties are public.

This class shows how Code Contracts specifies object invariants. An object
invariant is specified in a distinguished method marked with a special attribute
[ContractInvariantMethod]. This method contains calls of the method Invariant of
the class Contracts. Code Contracts enforces object invariants after execution of
public methods. In the class User the invariants are that the user name cannot be
null and the user ID number cannot be null.

abstract class User {
String IDNum;
String name;
String role;
[ContractInvariantMethod]
void ObjectInvariant() {

Contract.Invariant(this.UserName 6D null);
Contract.Invariant(this.ID 6D null);

}
public String ID
{ get { return IDNum; }

set { IDNum D value; }
}
public String UserName
{ get { return name; }

set { user D value; }
}
// Role property

}

There are two subtypes of the type User that we define: players and tournament
managers. The type Player introduces an additional invariant requiring that the
number of wins of a player must be nonnegative. Other object invariants are
inherited from the class User.

44 2 Assertions

class Player : User {
int winCount;
public int WinCount
{ get { return winCount; }

set { winCount D value; }
}
//other properties
[ContractInvariantMethod]
void ObjectInvariant() {

Contract.Invariant(this.WinCount � 0);
}
// constructor and other methods

}

The class Manager strengthens the object invariant. In addition to the invariants
inherited from the class User, the class Manager requires that the role of a
tournament manager contains the word “MANAGER”.

class Manager : User {
// fields
[ContractInvariantMethod]
void ObjectInvariant() {

{ Contract.Invariant(Role.ToUpper().Contains(“MANAGER”));
}

// methods
}

Consider now a method for adding a new player to a tournament. This would
be a method of the overall application class TournamentManagement that we do
not show. The method addPlayer requires a pure method playerRegistered that
checks whether the player to be added is already in the list of players of the given
tournament. A pure method is marked with a special C# attribute [Pure].

[Pure]
public boolean playerRegistered(Player newPlayer, Tournament tournament) {
foreach (Player player in tournament.players)
{ if (newPlayer.UserName.ToUpper().Equals(player.UserName.ToUpper()))

return true;
}
return false;

}

The preconditions of the method addPlayer require that the given player and the
tournament must be non null.

Contract.Requires(newPlayer 6D null);
Contract.Requires(tournament 6D null);

2.3 Sample Application 45

In addition, the third precondition requires that the player does not already
participate in the tournament.

Contract.Requires(: playerRegistered(newPlayer, tournament));

The postconditions are that the player participates in the tournament (i.e., it has
been added to the list of players).

Contract.Ensures(playerRegistered(newPlayer, tournament));

In addition, the postconditions require that the number of players has been
increased by one.
Contract.Ensures((tournament.Players.Count) D

(Contract.OldValue(tournament.Players.Count) C 1));

A reference to the number of players before the method execution is specified
by invocation of the method OldValue of the class Contracts. Players is a property
whose underlying field is players.

public void addPlayer(Player newPlayer, Tournament tournament) {
Contract.Requires(newPlayer 6D null);
Contract.Requires(tournament 6D null);
Contract.Requires(: playerRegistered(newPlayer, tournament));
Contract.Ensures(playerRegistered(newPlayer, tournament));
Contract.Ensures((tournament.Players.Count) D
(Contract.OldValue(tournament.Players.Count) C 1));

tournament.Players.Add(newPlayer);
}

Specification of assertions that require universal and existential quantification is
accomplished by using methods ForAll and Exists of the class Contracts.

For example, universal quantification is used in order to specify an assertion that
the list of players contains no null entries.

Contract.Invariant(Contract.ForAll(Players, p) p 6D null));

Existential quantification is used to specify an assertion that the list of players
contains at least one player whose total number of wins is greater than zero.

Contract.Invariant(Contract.Exists(Players, p) p.WinCount > 0));
These examples contain C# lambda expressions that are in fact unnamed

functions. For example, p) p 6=null is a function that takes a player as its argument
and returns true if the player is not null. Likewise for function p) p:WinCount > 0.

Interfaces in Java and C# suffer from a major contradiction. The only way to
understand the specific meaning of the methods of an interface is to look into
the method code in the implementing class, contrary of the intent for introducing
interfaces. This is why specifying assertions in interfaces is so very important.
However, assertions such as object invariants often require the knowledge of the
object state which is not available in interfaces. Code Contracts resolves this

46 2 Assertions

situation by specifying assertions of an interface in a special class associated with
the interface. Methods of the special contract class are required only to satisfy the
compiler. This class is used only to specify the assertions and it is never executed
like other classes. But these assertions will be enforced in any class that implements
the interface.

The simplified view of the tournament management application can be general-
ized so that a tournament has a collection of matches. A match has a number of
players, and a player participates in a number of matches. This extended view is
presented in Fig. 2.7. The associated constraints are elaborated in the exercises.

Tournament

User

Player

Manager

*

1

1

Match

* *

*1

*

Fig. 2.7 Tournaments with matches

2.4 Bibliographic Remarks

The first widely know object-oriented language with assertions was Eiffel [9]. Eiffel
is entirely based on dynamic checking of assertions. The assertion language for
Java is JML (Java Modeling Language) [6]. JML is based on dynamic checking
of assertions. Our presentation of an object-oriented assertion language is based
on Spec# because of its generality and static verification of assertions [10]. Some
presented samples of Spec# code are from the tutorial [11] or [7]. Examples of
object-oriented assertions for collection types are from [1]. Spec# assertions for
collection types are based on the specifications due to Tom Keschl. The notion of
behavioral subtyping was introduced in a seminal paper [8]. A spinoff of Spec#
is Code Contracts [5] which, although much more limited, is an actual software
product. Examples in the section on Code Contracts are based on an application
developed by Christopher Hunter.

Object-oriented languages require more sophisticated logics such as temporal
or separation logic. Even the logic underlying major object-oriented languages is

2.5 Exercises 47

implicitly temporal because postconditions make use of the operator that refers
to the state before method execution. Foundations of an object-oriented paradigm
based on temporal logic are developed in [2] and specific verification techniques for
Java-like classes in [4]. Even more general formal theory of classes equipped with
constraints in a general logic is published in [3].

2.5 Exercises

1. Following the approach for the proof rules for while and do loops, specify the
formal reasoning rule for the for statement as defined in Java and C#. Likewise,
specify the formal rule for the C# foreach statement.

2. Specify a method that computes square by addition. Specify the precondition,
the postcondition, and the loop invariant.

3. Specify a method that operates on a non-null array and performs an operation of
your choice on each of its elements. Specify the precondition, the postcondition,
and the loop invariant.

4. Specify a method that produces the count of those elements of an array that
have a specific property expressed by a predicate. Specify the precondition, the
postcondition, and the loop invariant.

5. Specify a method that sorts an integer array using an algorithm of your choice.
Specify the precondition, the postcondition and the loop invariant.

6. Specify the method that computes the greatest common divisor of two integers.
This method requires the precondition, the postcondition, and the loop invariant.
Use a version of the Euclidean algorithm of your choice. Verify termination.

7. Specify the formal reasoning rule for method declaration and method invoca-
tion.

8. The rules of behavioral subtyping specify that a subclass may weaken the
precondition of a method of the superclass, strengthen its postcondition, and
strengthen the invariant of the superclass. Typically, in object-oriented assertion
languages the precondition remains the same. Specify formally these rules.

9. Specify a class Car and its subclass SportsCar. Specify all the required
assertions in accordance with the rules of behavioral subtyping.

10. Specify a method that takes an integer array and an integer as parameters.
The method performs a liner search of the array and returns true if the array
contains the given integer. Verify termination.

11. Specify a method that performs a binary search of an integer array for a given
integer value. Specify the precondition, the postcondition and the loop invariant.

12. Complete specification of the class Tournament by invariants such as those
that determine the maximum number of players, require that the name of
the tournament must be non-null, specify the start and end date and their
relationship, etc.

13. Specify the method removePlayer from a tournament with its precondition and
its postcondition.

48 2 Assertions

14. Modify the tournament management application in such a way that a tourna-
ment consists of a collection of matches. Specify the assertions required by this
extended model.

15. A player can naturally participate in multiple matches of a tournament. Specify
the required constraints such as that a player cannot participate in multiple
overlapping matches.

References

1. S. Alagić, A family of the ODMG object models, invited paper, in Proceedings of ADBIS ‘98.
Lecture Notes in Computer Science, vol. 1691 (1999)

2. S. Alagić, Semantics of temporal classes. Inf. Comput. 163, 60–102 (2000)
3. S. Alagić, S. Kouznetsova, Behavioral compatibility of self-typed theories, in Proceedings of

ECOOP 2002. Lecture Notes in Computer Science, vol. 2374 (Springer, New York, 2002),
pp. 585–608

4. S. Alagić, M. Royer, D. Crews, Temporal verification theories for Java-like classes, in
Proceedings of the ECOOP FTfJP06 Workshop: Formal Techniques for Java-Like Programs
(2006), http://www.disi.unige.it/person/AnconaD/FTfJP06/

5. Code Contracts, Microsoft Research, http://research.microsoft.com/en-us/projects/contracts/
6. Java Modeling Language, http://www.eecs.ucf.edu/leavens/JML/
7. K.R. Leino, P. Muller, Using Spec# language, methodology, and tools to write bug-free

programs, Microsoft Research (2010), http://research.microsoft.com/en-us/projects/specsharp/
8. B. Liskov, J.M. Wing, A behavioral notion of subtyping. ACM TOPLAS 16, 1811–1841 (1994)
9. B. Meyer, Object-Oriented Software Construction, 2nd edn. (Prentice Hall, New Jersey, 1997)

10. Microsoft Corp., Spec#, http://research.microsoft.com/specsharp/
11. R. Monahan, R. Leino, Program verification using the Spec# programming systems, ECOOP

2009 Tutorial, http://www.rosemarymonahan.com/specsharp/papers/ECOOPTutorial.pdf

http://www.disi.unige.it/person/AnconaD/FTfJP06/
http://research.microsoft.com/en-us/projects/contracts/
http://www.eecs.ucf.edu/leavens/JML/
http://research.microsoft.com/en-us/projects/specsharp/
http://research.microsoft.com/specsharp/
http://www.rosemarymonahan.com/specsharp/papers/ECOOPTutorial.pdf

Chapter 3
Virtual Platform

In this chapter we describe a modern environment that supports a typed object-
oriented technology. The components of this environment include reflection, the
actual object-oriented virtual machine, and support for persistent objects.

Reflection is the topic of Sect. 3.1. We first describe in Sect. 3.1.2 the core of
type—safe object-oriented reflection: the Java class Class (C# has the corresponding
type Type). Classes Field, Method, and Constructor are described in respective
Sects. 3.1.3, 3.1.4, and 3.1.5. In Sect. 3.1.6 we show how access and updating of
field values is carried out using reflection. In Sect. 3.1.7 we show how methods are
invoked using reflection. Creating class objects using an extensible class loader is
the topic of Sect. 3.1.8. Finally, in Sect. 3.1.9 we give a general specification of the
structure of the Java class files.

Modern typed object-oriented languages such as Java or C# run on an object-
oriented virtual machine. A virtual machine is an interpreter providing machine
independence and portability of the compiled source code. This is the topic of
Sect. 3.2. We first describe the structure of an object-oriented virtual machine
in Sect. 3.2.1. Our presentation is an abstraction of the existing very low-level
specification of the Java Virtual Machine (JVM). We use assertions to define
the semantics of the basic operations of the object-oriented virtual machine. The
operation of creating an object is specified in Sect. 3.2.2. The operation of invoking
a method is specified in Sect. 3.2.3. The operations of accessing and updating field
values are specified in Sect. 3.2.4. Operations that are used to evaluate expressions
are defined in Sect. 3.2.5. Operations on arrays (creating, accessing via an index,
and updating the element with a given index) are defined in Sect. 3.2.6.

The current generation of object-oriented virtual platforms has no ability to ade-
quately represent and access constraints that are specified for classes. In accordance
with a core idea in this book, we show in Sect. 3.3 how an object-oriented virtual
platform can be extended to represent and report information about constraints
associated with object-oriented types.

© Springer International Publishing Switzerland 2015
S. Alagić, Object-Oriented Technology, DOI 10.1007/978-3-319-20442-0_3

49

50 3 Virtual Platform

An object-oriented platform should support persistent objects, i.e., objects with
long lifetimes. Many, if not most, applications feature such objects. Persistent
models and mechanisms are discussed in Sect. 3.4. We first define a very general
and most attractive model of orthogonal persistence in Sect. 3.4.1 and show its
implications using an implemented system and its application. We then describe in
Sect. 3.4.2 what kind of a persistent architecture an object-oriented virtual machine
should preferably support. This is followed by a description of a much more limited
model of persistence based on object serialization like in Java or C#.

3.1 Reflection

3.1.1 Reflective Classes

Reflection allows run-time access to all type information that is the result of
compilation. The type information can be introspected through a collection of
methods, and run-time actions taken based on the type information discovered at
that time. This makes it possible to write very general programs that do not have
type information available at the time those programs are compiled.

A simplified Java type hierarchy that includes reflective classes such as Class,
Method, and Field, is represented in Fig. 3.1. For the reasons of simplicity and
clarity of concepts our presentation follows the original specification of Java Core
Reflection. More recent versions include unnecessary complexity that is in part a
consequence of a faulty solution for parametric types in Java.

Fig. 3.1 Object, Class,
Method, Field Object

Class

Field

Method

Person

Employee

3.1 Reflection 51

The core class of Java Core Reflection (JCR) is the class Class. Objects of the
class Class contain type information compiled from the classes in the source code.
The class Class is final, and so are its methods. These methods only introspect and
return type information. There are no mutator methods in the class Class, i.e., run-
time type information cannot be changed. If that was possible, the purpose of the
static type system would be completely defeated. The state of class objects is very
complex and it is not exposed to the users. Furthermore, class objects are not created
by the users. They are created by the class loader based on the compiled information
contained in the class files produced by the compiler from the source code. Given
an object, its class object is accessed by invoking the method getClass of the root
class Object. From the class object, fields, methods, and constructor objects of that
class are accessed using the methods of the class Class.

3.1.2 Class Objects

The basic methods of the class Class are given in the code below.

public final class Class extends Object {
public Object newInstance()

throws InstantiationException, IllegalAccessException;
public boolean isInstance(Object obj);
public Class getSuperclass();
public Class[] getClasses();
public Field[] getFields();
public Method[] getMethods();
public Constructor[] getConstructors();

// other methods
}

The method newInstance creates an object of the given class represented by its
class object. The method isInstance tests whether the argument object of this method
is an instance of the class represented by the receiver class object.

The method getSuperClass returns the class object of the superclass. This way
the whole hierarchy of superclasses can be traversed all the way to the root class
Object.

Methods getFields, getMethods, and getContructors return arrays of the field,
method, and constructor objects of the class. Specific class members are discovered
given specific criteria. The method getField returns the field object of a class given
the field name. The method getMethod returns the method object of a class given its
type signature. This means the name of the method and the types of arguments must
be supplied. The types of arguments are supplied as an array of the corresponding
class objects. The method getConstructor requires the same information except for
the name which is always the class name.

52 3 Virtual Platform

public Field getField(String name)
throws NoSuchFieldException

public Method getMethod(String name, Class[] parameterTypes)
throws NoSuchMethodException

public Constructor getConstructor(Class[] parameterTypes)
throws NoSuchMethodException.

Interfaces are also represented by class objects. The method isInterface tests
whether a class object represents an interface. The interfaces that a class implements
are returned as an array of their class objects using the method getInterfaces.

public boolean isInterface()
public Class[] getInterfaces()

Arrays are objects, hence their type information is also represented by class
objects. The method isArray tests whether a class object represents an array. The
method getComponentType returns the class object of the components of the array.

public boolean isArray()
public Class getComponentType()

Subtype relationships are tested at run-time using the method isAssignableFrom.
This method tests whether the class represented by the argument class object is
derived directly or indirectly from the class represented by the receiver class object
of this method.

public boolean isAssignableFrom(Class fromClass)

There are methods that produce a string representation of a class, return the name
of a class, and return the access and other modifiers of a class encoded as an integer.

public String toString()
public String getName()
public int getModifiers()

Class objects are constructed by the class loader. One way of doing this is by
invoking the method forName. This method takes the full name of the class, locates
the class file, and constructs the class object based on the information in the class
file. The method getClassLoader returns the loader object of a class.

public static Class forName(String className)
throws ClassNotFoundException

public ClassLoader getClassLoader()

Simple types, in Java, are also represented by special class objects. The method
isPrimitive tests whether a class object represents a simple type.

public boolean isPrimitive()

3.1 Reflection 53

JCR has specific methods that handle simple types that we will not specify.
We will use only object types in our presentation, in part because Java has a wrapper
class for each simple type. JCR has automatic conversions from objects of these
wrapper classes to the corresponding values of simple types, and the other way
around.

Recent editions of Java have obscure reflective capabilities for parametric classes
which we do not present. We just point out that a minimal support for parametric
classes should include a method isParametric that tests whether the class object
represents an instantiated parametric class. In addition, a method getTypeParameters
is needed to discover the actual type parameters of an instantiated parametric class.

public boolean isParametric()
public Class[] getTypeParameters()

Additional apparatus is needed in order to reflect on the actual parametric class
definition. But parametric class definitions should not have class objects, only
their instantiations should. This is why we do not discuss this apparatus although
both Java and C# have it. The Java view of parametric classes using reflection is
particularly confusing.

3.1.3 Field Objects

Given a field object, the class object of that field is accessed by invoking the method
getDeclaringClass. The name of the field is discovered by the method getName. The
type of a field is represented by the class object of that type returned by the method
getType.

Methods of the class Field allow getting the value of a field and even updating
the value of a field. The method get applies to a receiver field object and takes as the
argument the object whose field value will be returned by the method get. The field
of the argument object is accessed based on the information in the field object and
its value is returned as an object.

Assigning to a field is performed by the method set. Its receiver is the field object,
and the argument is an object whose field will be updated. The new field value
is supplied as an object (the second argument of the method set). All of this is
done with dynamic type checking enforced. In other words, type violations such as
assigning the value to a field of a wrong type will create a run-time exception.

public final class Field extends Object {
public Class getDeclaringClass();
public String getName();
public Class getType();
public Object get(Object obj);

throws NullPointerException, IllegalArgumentException,
IllegalAccessException;

54 3 Virtual Platform

public void set(Object obj, Object value)
throws NullPointerException, IllegalArgumentException,
IllegalAccessException;

}

3.1.4 Method Objects

The class Method has the basic methods getDeclaringClass, getName, and
getModifiers like the class Field.

Type introspection methods are getParameterTypes and getReturnType. The
parameter types are returned as an array of their class objects. The return type is
represented by its class object. The same applies to the exception types that the
method can throw.

A method of particular importance is invoke. This method allows invoking a
method discovered by reflection. The receiver of this method is a method object.
The first argument is the object that is the actual receiver of the method to be
invoked. The actual parameters are supplied in the second argument as an array
of objects. The result is returned as an object. Any type violation such as passing
actual parameters of wrong types will be detected by the run-time type system and
exceptions will be raised.

public final class Method extends Object {
public Class getDeclaringClass();
public String getName();
public int getModifiers();
public Class getReturnType();
public Class[] getParameterTypes();
public Class[] getExceptionTypes();
public Object invoke(Object obj, Object[] args)

throws NullPointerException, IllegalArgumentException,
IllegalAccessException, InvocationTargetException;

}

3.1.5 Constructor Objects

Constructors are class methods. As such, they are represented at run-time as objects
just like other methods. The most important method of the class Constructor is
newInstance. This method allows creation of an object using the underlying receiver
constructor object. The arguments are supplied as an array of objects. Any mismatch
of the formal type parameters as produced by the method getParameterTypes and

3.1 Reflection 55

the actual parameters supplied to the method newInstance will be detected by the
run-time type system and exceptions raised.

public final class Constructor extends Object {
public String getName();
public int getModifiers();
public Class[] getParameterTypes();
public Class[] getExceptionTypes();
public Object newInstance(Object initargs[])

throws InstantiationException, IllegalArgumentException,
IllegalAccessException, InvocationTargetException;

}

3.1.6 Updating Fields

Updating a field value is illustrated by the method updateField. This method takes as
arguments the object whose field should be updated and the name of the field. Then
the class of the object given as the first parameter of the method updateField is
accessed using the method getClass. The field object is accessed using the given
field name. The type of this field is discovered using the method getType. The
method getObjectOfType is invoked to construct an object of the discovered type
from the user provided input. Then the method set is invoked on the field object to
update the value of the field.

void updateField(Object o, String fieldName) {
Object v;
try {

Field f D o.getClass().getField(fieldName);
do {
v D getObjectOfType(f.getType());
} while (v D null);
if (v ¤ null)
f.set(o, v);
} catch (Exception e)
{ exception handling }

}

3.1.7 Invoking Methods

Invoking methods using reflection requires a receiver object and a method object
as illustrated by the method invokeMethod given below. The first step for correct
invocation is discovering the parameter types. The method getParameterTypes

56 3 Virtual Platform

returns an array of class objects of the parameter types. The argument objects of
the discovered types are then constructed from the user input invoking the method
getObjectOfType. Finally, the method invoke of the class Method is called on the
given method object with the receiver object (the first parameter of invokeMethod)
and the constructed array of argument objects. The result of invocation of the
method invoke is returned as the result of the method invokeMethod.

Object invokeMethod(Object o, Method m) {
Class[] params D m.getParameterTypes();
Object[] args D new Object[params.length];
Object newObject D null;
for(int i D 0; i < params.length; iCC) {
Class cls D params[i];
args[i] D getObjectOfType(cls);
try {

newObject D m.invoke(o, args);
} catch (Exception e) { exception handling }
return newObject;

}

The above code, as well as other code samples that we present in this chapter,
follow Java except for some complexities related to parametric types that obscure
the core ideas and are thus omitted.

3.1.8 Creating Class Objects

Class objects are constructed by the class loader. Java has a class ClassLoader that
can be extended. Its simplified code is presented below. An extensible class loader is
a distinctive feature introduced by the Java technology. The method loadClass takes
the full class name as a parameter, it constructs the class object from the class file,
and returns it as the result. The method defineClass takes a sequence of bytes as its
input. If this sequence satisfies the class format requirements, it constructs a class
object out of those bytes. The method resolveClass links the loaded class.

public abstract class ClassLoader {
protected ClassLoader();
protected Class loadClass(String Name)

throws ClassNotFoundException;
protected Class defineClass(byte[] bytes)

throws ClassFormatError;
protected void resolveClass(Class c);
// other methods

}

3.1 Reflection 57

An example of extending the class ClassLoader to produce a specialized loader
is given below. The method loadClass is overridden. It attempts to find a file with
a given name that is meant to contain the bytes required to construct a class object.
This is done using an auxiliary method getClassBytes that reads these bytes into
a buffer. Then the method defineClass of the class ClassLoader is invoked to
construct a class object on the heap.

class SpecialLoader extends ClassLoader {

public Class loadClass(String name)
throws ClassNotFoundException

{
try {
byte[]buffer D getClassBytes(fileName);
return defineClass(buffer);
}
catch (IOException e)
{exception handling}

// other methods: getClassBytes etc.
}

3.1.9 Class Files

Java classes are compiled into Java class files. The class loader locates the class
file, reads the bytes in the class file, and constructs a class object on the heap. The
structure of Java class files is described below in the Java notation.

The information collected in the process of compilation of a Java class is stored
in a table of the generated class file. This table is called the constant pool. The
fields thisClass and superclass of a class file refer to the constant pool information
about the class itself and about its superclass. A class file also contains an array of
references to the constant pool items that contain information about the interfaces
implemented by this class.

public class ClassFile {
// file type and version data
CPInfo constantPool[];
short accessFlags;
CPInfo thisClass;
CPInfo superClass;
CPInfo interfaces[];
FieldInfo fields[];
MethodInfo methods[];
AttributeInfo attributes[];

// other info
}

58 3 Virtual Platform

The information about fields and methods of a class is collected into the arrays
fields and methods of the class file. The structure of the corresponding array
elements for methods is given below in the Java notation. The structure for fields
follows the same pattern.

public class MethodInfo {
short accessFlags;
CPInfo name;
CPInfo signature;
AttributeInfo attributes[];

// other info
}

The name of a method is given as a reference to a constant pool item which
contains the actual string. The signature of a method consists of its parameter types
and the result type. This type descriptor is represented as a specially formatted
string.

In the Java class file structure an array of attributes is associated with each class,
each field, and each method. These attributes represent a flexibility of the Java class
file structure that has been used for features that were not in the original language
design, like parametric types.

3.2 Virtual Machine

3.2.1 The Structure of the Virtual Machine

Modern object-oriented languages such as Java and C# run on virtual machines:
JVM (Java Virtual Machine) and CLR (Common Language Runtime). A virtual
machine is an efficient interpreter that provides an abstraction over the underlying
machine architecture. Object-oriented languages are compiled into the code exe-
cutable by the underlying virtual machine. This makes compiled code portable
as there are multiple implementations of virtual machines on different machine
architectures.

In this section we present the basic structure and the functionalities of an object-
oriented virtual machine. This is an abstract view that follows Java Virtual Machine.
The main memory components of an object-oriented virtual machine are presented
in Fig. 3.2. The three main components are the run-time stack, the heap, and the file
system.

The stack component implements the run-time model for procedural languages.
The stack consists of frames, one for each invocation of a method. A stack frame
contains space for values of local variables and parameters of the corresponding
method, in addition to the control information. We will view the run time stack as
an array whose elements are of the most general type Object. There is a pointer to

3.2 Virtual Machine 59

File System

Class file

Stack Heap

Top

Object

Class object

Loader

Fig. 3.2 Structure of the virtual machine

the element of the array Stack denoting the top of the stack. In this simplified view
simple types could be viewed as objects of their corresponding wrapper classes that
Java has.

Stack W ObjectŒ�

Top W int

Objects are allocated on the heap. Since this happens ad hoc, there is no particular
ordering of elements on the heap. This is why we view the heap as a set of objects.

Heap W Set < Object >

Compiling a class produces a class file in the file system. A class file is a sequence
of bytes of a particular format. The class loader reads a class file, and produces a
class object on the heap.

classFile W Sequence < byte >

loader W classFile ! Class

The code is also allocated in a special area of the heap. Each instruction of the
Java Virtual Machine is a sequence of bytes where the first byte is the operation
code and the remaining bytes specify the arguments that are not available on the top
of the stack.

VMop W Sequence < byte >

code W Sequence < VMop >

60 3 Virtual Platform

3.2.2 Creating Objects

The virtual platform operation that creates a new object will be viewed as a function
that takes a class object as its argument and returns an object of that class that is
allocated on the heap.

newInstance W Class ! Object

The precondition for execution of the operation newInstance(c) is that a class
object is loaded on the heap:

.9 c W Class/ ^ .c 2 Heap/

Upon execution of the operation newInstance(c), a new object of the type
specified by the class object is allocated on the heap, the top of the stack is increased
by one, and a reference to the created object is placed on the top of the run-time
stack.

(9 obj W Object/.obj 2 Heap/ ^
.newInstance.c/=obj/ ^ .obj:getClass./=c/ ^
.Top=old.Top/+1/ ^
.StackŒTop�=obj/

The effect of the virtual platform operation newInstance is illustrated in Fig. 3.3.

File System

Stack Heap

Top

Object

Class object

.

Fig. 3.3 Creating objects

There are two simplifications in our specifications. The first one is that we do not
make explicit use of reference types. In Chap. 5 we specify a more general virtual
machine that has explicit reference types. The second simplification is that we

3.2 Virtual Machine 61

omit frame constraints from the specifications in this section. In this case there are
obvious frame constraints: except for the top of the stack, other elements of the stack
are unaffected, and other objects on the heap are not affected either. The frame
constraints are elaborated in the exercises.

3.2.3 Invoking Methods

The virtual platform operation invokeMethod invokes a method specified by its
Method object. Arguments are supplied as an array of objects. The result of the
method invocation is an object.

invokeMethod W Object; Method; ObjectŒ� ! Object

The precondition of the operation invokeMethod(r,m,a) is that the method object
is available on the heap, that the receiver object r is on the top of the stack followed
by a sequence of argument objects.

.9 m W Method/.m 2 Heap/^

.9 r W Object/.StackŒTop�=r/ ^ .r 2 Heap/ ^

.9 a W ObjectŒ�/.a 2 Heap/ ^

.8i W int/.i � 0/ ^ .i < length.a//.StackŒTop � 1 � i�=aŒi�/

The postcondition of the operation invokeMethod(r,m,a) is that a reference to the
result of the method invocation is placed on the top the stack after the receiver and
the arguments are removed from the top of the stack.

.9 obj W Object/.obj 2 Heap/ ^ .invokeMethod.r; m; a/=obj/ ^

.Top=old.Top/ � length.a// ^ .StackŒTop�=obj/

The effects of the operation invokeMethod are illustrated in Fig. 3.4.
There are frame constrains not given in the above specification that are left for

the exercises.

3.2.4 Accessing Fields

The virtual platform operation getField performs access to a field of an object. We
will view it as a function that takes a reference to a field object and an object whose
field is to be accessed and returns the value of that field.

getField W Field; Object ! Object

The precondition of the operation getField(f,obj) is that the field object and the
object whose field will be accessed are both allocated on the heap.

.9 f W Field/.f 2 Heap/ ^

.9 obj W Object/.obj 2 Heap/

62 3 Virtual Platform

Fig. 3.4 Invoking methods Stack
Heap

Top

.

 Method

Receiver

Result

Top

Stack after invoke

Upon execution of the operation getField(f,obj), the value of the field (in fact its
reference) which is the result of the operation getField is pushed on the top of the
stack.

.9 val W Object/.val 2 Heap/ ^

.getField.f ; obj/=val/ ^ .StackŒTop�=val/ ^
(Top D old(Top) C1)

Updating the value of a field is performed by the virtual platform operation putField.
This operation is viewed as a function that takes a field object, an object whose field
will be updated, and the new value of the field. putField returns an updated field.

putField W Field; Object; Object ! Field

The precondition of the operation putField(f,obj,val) is that the field object and the
object itself are available on the heap. A reference to the object and a reference to
the new value are placed on the top of the stack.

.9 f W Field/.f 2 Heap/ ^

.9 obj W Object/.obj 2 Heap/ ^

.9 val W Object/ ^

.StackŒTop�=val/ ^

.StackŒTop � 1�=obj/

3.2 Virtual Machine 63

The postcondition is that performing the operation getField with the same field
of the same object will produce exactly the updated value of the object as produced
by the operation putField.

.Top=old.Top/ � 1/ ^
getField.putField.f ; obj; val/; obj/=val ^
StackŒTop�=f

The effect of the operation putField is presented in Fig. 3.5.

Fig. 3.5 Updating a field of
an object Heap

Top

.

Top

Stack before putField

Stack after putField

Object

Field object

obj
val

3.2.5 Operations

A binary operation will be viewed as a function:

binaryOp W Object; Object ! Object

Arguments and results of simple types may be viewed as instances of their
corresponding wrapper classes. The precondition of the binary operation bina-
ryOp(obj1,obj2) is that the two argument objects are available on the heap and that
their references are placed on the top of the stack.

64 3 Virtual Platform

.9 obj1 W Object/.obj1 2 Heap/^

.9 obj2 W Object/.obj2 2 Heap/^

.StackŒTop�=obj1/ ^ .StackŒTop � 1�=obj2/

The postcondition of the operation binaryOp(obj1,obj2) is that the top of the
stack contains a reference to the result of the operation after the top of the stack has
been adjusted to remove the arguments of binaryOp.

Top=old.Top/ � 1

StackŒTop�=binaryOp.obj1; obj2/

The effect of invoking a binary operation on the run-time stack is presented in
Fig. 3.6.

Fig. 3.6 Binary operations Stack before binOp Stack after binOP

Top Top
obj2

obj1

Result

3.2.6 Arrays

Object-oriented platforms contain special operations on arrays. Creating an array
object is performed by the virtual platform operation newArray. This operation
may be viewed as a function that takes a class object representing the type of array
elements, and the size of the array to be created, and returns an array object.

newArray W Class; Int ! ObjectŒ�

The precondition for the operation newArray(c,n) is that the class object for
elements of the array is available on the heap and that the top of the stack contains
the size of the array to be created.

.9 c W Class/.c 2 Heap/^

.9 n W Int/.StackŒTop�=n/

3.2 Virtual Machine 65

Upon execution of the operation newArray(c,n) the array object that is the result
of this operation is created on the heap. Its component type obtained by the function
getComponentType is precisely the first argument of the operation newArray. The
size of the created array object is equal to the second argument of this operation.
A reference to the newly created array object is placed on the top of the stack.

.9 obj W ObjectŒ�/.obj 2 Heap/^

.newArray.c; n/=obj/ ^ .isArray.getClass.obj// ^

.getComponentType.getClass.obj/=c//^

.StackŒTop�=obj/ ^ .length.obj/=n//

The effect of the operation newArray is presented in Fig. 3.7.

Heap

Top

.

Top

Stack after newArray

n

Stack before NewArray

Array object

Array class
object

Component class object

Fig. 3.7 Creating array objects

The virtual platform operation arrayLoad loads the element of an array at a given
index on the top of the stack. It may be viewed as a function that takes an array object
and the index value, and returns an element of the array at that index.

arrayLoad W ObjectŒ�; Int ! Object

66 3 Virtual Platform

The precondition of the operation arrayLoad(a,n) is that the array object is
available on the heap and that the index value and a reference to the array object
are on the top of the stack.

.9 a W ObjectŒ�/.a 2 Heap/ ^

.9 n W Int/.StackŒTop�=a/ ^ .StackŒTop � 1�=n/

The postcondition of the operation arrayLoad(a,n) is that a reference to the
element at the given index of the given array is placed on the top of the stack. This
is precisely the result of the function arrayLoad.

.Top=old.Top/ � 1/ ^

.9 obj W Object/.arrayLoad.a; n/=obj/ ^

.StackŒTop�=obj/

The effect of the operation arrayLoad is presented in Fig. 3.8.

Heap

Top

.

Top

n

Array object

Array class
object

Stack before loadArray

Stack after loadArray

a

a[n]

Fig. 3.8 Loading an array element

The virtual platform operation arrayStore stores a new element value at a given
index of an array. This operation may be viewed as function that takes an array
object, the index of the element to be updated, and the new value for the element at
that index, and returns the updated array.

3.3 Extending Virtual Platform 67

arrayStore W ObjectŒ�; Int; Object ! ObjectŒ�

The precondition of the operation arrayStore(a,n,val) is that the array object is
available on the heap. In addition, a reference to the array object, the index value
and the new element value are on the top of the stack.

.9 a W ObjectŒ�/.a 2 Heap/ ^

.9 n W Int/ ^ .9 val W Object/ ^

.StackŒTop � 2�=a/ ^ .StackŒTop � 1�=n/ ^ .StackŒTop�=val/

The postcondition of the operation arrayStore(a,n,val) is that the top of the stack
has been adjusted to remove the objects needed by this operation. In addition,
invoking the operation arrayLoad on the given array with a given index will produce
the updated element given as the third argument of the operation arrayStore.

.Top=old.Top/ � 3/ ^

.arrayLoad.arrayStore.a; n; val/; n/=val/ ^

.8i W Int/.i ¤ n/.aŒi�=old.aŒi�//

Specification of the frame constraints will indicate that the other elements on the
stack are not affected by this operation. The frame constraints are elaborated in the
exercises.

3.3 Extending Virtual Platform

In the current object oriented technology, accessing classes that were not available at
compile time via reflection produces type signatures for classes, methods, and fields.
But the programmer is in the dark as to what exactly those methods are doing, or
what the properties of objects of the discovered classes are. Currently, if the source
code is not available, the semantic information cannot be introspected by reflection,
hence correctly using classes discovered by reflection is a very problematic matter.
Availability of constraints by reflection provides the basic semantics of classes and
methods. This is a prerequisite for their correct use.

To overcome the problems outlined above, a system called XVP (Extended
Virtual Platform) manages constraints in their declarative form which is associated
with the type information available both statically and dynamically. The typing
environment is extended at compile-time and at run-time with semantic information
expressed by logic-based constraints.

The general architecture of the XVP extended virtual platform is represented in
Fig. 3.9. The main components of this architecture are:

– Class files that allow representation of logic-based constraints.
– Class objects that contain type signatures along with constraints.
– A loader that assembles class objects from class files and properly manages type

signatures and constraints.
– Reflective capabilities that allow introspection of types and constraints.

68 3 Virtual Platform

File System

Class file

with assertions

Extended

Class Object

Read Class

Create
Class Object

XVP Loader

Extended Virtual Platform

Fig. 3.9 Platform architecture

The Java Core Reflection (JCR) classes that have been extended are Class, Con-
structor, and Method. These extensions are based on new types such as Invariant,
PreCondition, and PostCondition. With these new types it becomes possible to
add method preconditions and postconditions to the class Method, and the class
invariant to the class Class. These assertions require further types that make it
possible to create objects that represent logical formulas for constraints. In order
to achieve independence of a particular constraint language and its logic basis, the
types representing logical formulas are specified as abstract classes. These classes
must be extended for a particular assertion language.

The structure of constraints is determined by their underlying logic basis. This
is why the class Sentence, given below, is abstract, and its methods only report
universally and existentially quantified variables. A sentence is a logical formula
with no free variables, i.e., all its variables are quantified. An example of a sentence
is an invariant.

public abstract class Sentence {
public Variable[] getVariables();
public Variable[] getExistentialVariables();
public Variable[] getUniversalVariables();
public abstract boolean evaluate(Object[] variables);

}

Methods of the class Variable report names and types of variables. A logical
formula in general contains free variables. An example of a formula is this.count(o)
� 0. This is reflected in the definition of the abstract class Formula. If the values
of free variables are bound to values invoking the method bindVariables, a formula
may be evaluated. But a specific logic still must be chosen in order to perform the
evaluation of a formula.

3.3 Extending Virtual Platform 69

public abstract class Formula extends Sentence {
public Variable[] getFreeVariables();
public void bindFreeVariables(Object[] vars);

}

The basic building blocks for constructing expressions are terms. An example
of a term is this.count(o). The class Term, specified below, is abstract to allow
for a variety of possible forms of terms. A term has a type and a collection of
free variables. Given values of these variables a term may be evaluated. However,
the method evaluate in the class Term is abstract since the specific evaluation rule
depends upon the form of a term.

public abstract class Term {
public Class getType();
public Variable[] getVariables();
public abstract Object evaluate(Object[] variables);

}

A message term consists of the receiver term, a method, and an array of
arguments which are also terms. The specific evaluation rule amounts to substitution
of arguments and invocation of the underlying method.

public abstract class MessageTerm extends Term {
public Term getReceiverTerm();
public Method getMethod();
public Term[] getArguments();
public Object evaluate(Object[] variables);

}

Formulas are constructed recursively starting with atoms and applying the rules
of a particular logic.

Additions of the recompiled class Class allow access to the declared and the
inherited invariant.

public final class Class { . . .
public Invariant getInvariant();

}

The extensions of the class Method allow access to (declared and inherited)
preconditions and postconditions. The class Constructor is similarly extended.

public final class Method { . . .
public PostCondition getPostCondition();
public PreCondition getPreCondition();

}

An application illustrating the advantages offered by the XVP extended virtual
platform is from the database area where constraints are absolutely critical. In spite

70 3 Virtual Platform

of that, practically all object-oriented database technologies are lacking general,
logic-based constraint capabilities. Extended reflection is critical because database
users expect to see declarative constraints when introspecting classes in a database
schema. Procedural representation of constraints as in Eiffel or JML is completely
unacceptable for introspection.

In this experiment, Versant’s FastObjects, a legacy ODMG object-oriented
database management system was used. The XVP extended platform was used
with FastObjects rather than the standard JVM. Just like ODMG, FastObjects
does not know anything about constraints. Since FastObjects does not have such
a capability, a transaction example below shows how a particular transaction can
access assertions using extended reflection, evaluate them, and proceed depending
upon the result, i.e., abort or commit.

First, the program initializes access to the database. The employee object “John
Doe” is looked up in the database and returned. At this point components of the XVP
are utilized. The invariant and the precondition are accessed from the employee class
and evaluated. If the invariant and the precondition evaluate to true, then the program
binds variables in postconditions, employs an evaluation strategy that takes into
account the semantics of the old operator, and continues to execute the update on
the employee. After the update has taken place, the postcondition and the invariant
are evaluated. If each assertion evaluates to true, the transaction is completed and
committed to the database.

public void update() {

Transaction txn D new Transaction();
txn.begin();
Employee employee D null;
try { employee D (Employee)database.lookup(“John Doe”);

} catch (ODMGException e) { txn.abort(); /* other actions */ }

Invariant inv D employee.getClass().getInvariant();

Method m D null;
try { m D employee.getClass().getMethod(“updateSalary”, Float.class);

} catch (Exception e) { txn.abort(); /* other actions */ }

PreCondition pre D m.getPreCondition();
Object[] params D new Object[]{1000f};
if (: (pre.evaluate(employee, params) ^ inv.evaluate(employee)))

txn.abort();

PostCondition post D m.getPostCondition();
post.bindPreMethodVars(employee, params);
employee.updateSalary(1000f);
if (: (post.evaluate(employee, params) ^ inv.evaluate(employee)))

3.4 Persistent Objects 71

txn.abort();
txn.commit();

}

3.4 Persistent Objects

3.4.1 Orthogonal Persistence

A persistent object is an object whose lifetime extends beyond execution of the
program that created that object. Persistent objects are thus objects with possibly
very long lifetimes. This concept is implemented by providing some form of a
persistent store containing objects that are promoted to persistence.

Among a variety of models of persistence the model of orthogonal persistence
deserves special attention. This model has the following properties:

– Orthogonality
Persistence is independent of types, i.e., an object (or a value) of any type may
be persistent.

– Transitivity (reachability)
If an object is promoted to persistence, so are all of its components, direct or
indirect.

– Transparency
The details of the persistent supporting architecture are completely hidden from
the users.

Widely used technologies typically support only some of the above properties.
For example, in relational systems only objects of type relation are persistent. Even
tuples can persist only as long as they appear in relations, not by themselves.
In Java, only objects of classes that implement a special interface Serializable can
persist. In relational systems transparency is supported. In Java, a user must deal
with opening and closing files, writing objects to files and reading objects from
files. Basic relational systems do not have complex objects per se. Java supports
transitivity, with some issues to be explained in this section.

A very small number of systems implemented orthogonal persistence, such
as PJama and Gemstone. PJama is in fact a persistent Java system. This system
provides one interface PJStore and its implementing class to support orthogonal
persistence without introducing any changes to the Java language. The interface
PJStore is given below:

public interface PJstore {
public static PJstore getStore();
public void newProot(String name, Object obj);
public void setProot(String name, Object obj);
public Object getProot(String name);

}

72 3 Virtual Platform

The method getStore gets a reference to the underlying persistent store.
The method newProot promotes the object supplied as the second argument
to persistence and binds the name supplied as the first argument to the newly
established persistent object. Subsequently, this object may be accessed using its
name. This is why this object is called a root of persistence. By transitivity, all
components of a persistent root (direct or indirect) are also promoted to persistence.
Since the second argument of the method is of type Object, that implies that objects
of any type may be promoted to persistence (orthogonality).

The PJama model of persistence will be illustrated using the following classes.

public class Aircraft
{ private String model;
private Pilot pilot;
public Aircraft(String aModel)
{ model D aModel; pilot D null; }
public assignPilot(Pilot p)
{ pilotDp;}
// other methods

}

public class Pilot
{ private String name;
private int points;
public Pilot(String pName, int pPoints)
{ name D pName; points D pPoints; }
// other methods

}

Promoting a complex object to persistence is illustrated below in the class
StoreAircraft. The aircraft pilot object, as a component of the aircraft object, is also
promoted to persistence when the method newProot is invoked.

public class StoreAircraft {
Aircraft airObj D new Aircraft(“Boeing777”);
Pilot pilot D new Pilot(“Mark Sellinger”);
airObj.assignPilot(pilot);
try {

PJstore pjs D PJstore.getStore();
pjs.newProot(“MarksPlane”, airObj);

}
catch (PJexception e) { exception handling }

}

The method getProot looks up a persistent object by its name and returns it
as the result of invocation of this method. The result type is necessarily of type

3.4 Persistent Objects 73

Object because getProot must be applicable to objects of any type. This means that
performing specific methods on the retrieved object requires a type cast. This is
illustrated by the class ChangePilot in which the pilot of an aircraft object is
changed. When the program terminates, this change is promoted to the persistent
store automatically (transitivity and transparency). This means that the program acts
like a limited form of a transaction.

public class ChangePilot {
public static void main(String[] args) {
try {

PJstore pjs D PJstore.getStore();
Pilot pD new Pilot(“Mark Royer”);
Aircraft airObj D (Aircraft)pjs.getProot(“MarksPlane”);
airObj.assignPilot(p);
}
catch (PJexception) { exception handling }

}
}

The class DisplayAircraft shows how access to a persistent root is performed.
The persistent root is accessed by the name that it is bound to, and then the method
display is invoked on that object. This requires a type cast of the returned object to
the type Aircraft, as explained above.

public class DisplayAircraft {
public static main(String[] args) {
try {

PJstore pjs D PJstore.getStore();
Aircraft airObj D (Aircraft) pjs.getProot(“MarksPlane”);
airObj.display();
}
catch (PJexception e) { exception handling }

}
}

The list of various PJama methods that apply to persistent objects is given below.
They allow checking whether a persistent object with a given name exists in the
persistent store, getting an enumeration of all names of persistent objects, getting an
enumeration of all persistent objects, and discarding a persistent object with a given
name.

public boolean existProot(String name)
public Enumeration getAllProotNames()
public Enumeration getAllProots()

74 3 Virtual Platform

public Object getProot(String name)
public void newProot(String name, Object obj)
public void discardProot(String name)

In the above method signatures Enumeration is the Java legacy interface given
below because Java did not have parametric types when PJama was designed and
implemented.

public interface Enumeration {
boolean hasMoreElements();
Object nextElement();

}

3.4.2 Persistence Architecture

The transparency property hides non-trivial complexity of the underlying persis-
tence architecture. This is illustrated in Fig. 3.10.

Aircraft

Pllot

Aircraft

Pllot

Heap
Persistent store

Fig. 3.10 Persistent complex objects

The structure of the aircraft object is represented on the heap using pointers that
are in fact heap addresses. So an aircraft object will contain a pointer to a pilot
object on the heap. When a complex object is promoted to persistence, its structure
must be maintained. However, the pointers in the persistent store (typically disc

3.4 Persistent Objects 75

addresses) are different from the heap pointers. This means that the whole complex
object structure of an object must be preserved in the persistent store, and pointers to
component objects must be implemented as disc addresses. This procedure is called
swizzelling out. The reverse operation is swizzelling in. It restores the complete
persistent object structure on the heap. In a transparent model of persistence these
procedures are automatic and completely hidden from the users.

One implication of transitivity is that if an object is promoted to persistence, its
class object should also be promoted to persistence. The reason is that an object
contains a reference to its class object. In addition, in order to perform actions on
complex objects, one needs to know what types of objects are in the persistent store.
PJama has the following methods that operate on persistent class objects:

public Enumeration getAllPclassNames()
public Enumeration getAllPclasses()
public boolean existsPclass(String name)
public Class getPclass(String name)

The class objects related methods allows getting an enumeration of the names
of all persistent class objects, getting an enumeration of all class objects, checking
whether a class object with a given name exists in the persistent store, and getting a
class object with a given name.

Transitivity also implies that the superclass of an object should also persist as a
class object contains a reference to the superclass object. This implies that the whole
relevant part of the inheritance hierarchy all the way to the root class object will be
promoted to persistence.

3.4.3 Object Serialization

The Java model of persistence offers transitivity, but not transparency nor orthog-
onality. Only objects of types that implement a special interface Serializable
could be made persistent. This leads to a paradox: it is not possible to define a
persistent collection whose elements are of the type Object, because Object does
not implement Serializable. That would have to be the case in order for the Java
model of persistence to be orthogonal.

The Java model does not satisfy the transparency requirement because it is based
on the file system, so users have to open and close files, read and write objects from
and to files, etc. However, transitivity is supported to the extent that it is possible to
write a complete complex object to a file with a single statement, and read a complex
object from a file in a single statement. This is accomplished through interfaces
ObjectInput and ObjectOutput and their implementing classes. These interfaces also
have methods for reading and writing values of simple types that are specified in the
Java interfaces DataInput and DataOutput.

76 3 Virtual Platform

The method writeObject takes an object of any type and writes it to the output
file stream. The underlying algorithm represents the structure of a complex object
as a sequence of bytes, hence the term serialization. This is illustrated in Fig. 3.11.

Aircraft

Pllot

Heap

Aircraft bytes Pilot bytes

Serialized aircraft object

File system

Fig. 3.11 Serialized complex object

public interface ObjectOutput extends DataOutput
{
void writeObject(Object obj);

throws IOexception;
// other methods

}

The method readObject reads an object from a file input stream. The complex
object structure is restored on the heap based on its serialized representation.

public interface ObjectInput extends DataInput
{
Object readObject()

throws ClassNotFoundException, IOexception;
// other methods
}

3.5 Bibliographic Remarks 77

The argument of the method writeObject is necessarily of type Object and the
result of the method readObject is necessarily of type Object as well. This reflects
the requirement that objects of any type may be read or written. This means that a
type cast is necessary when reading an object in order to perform specific actions on
the object read. This dynamic check is unavoidable. In general, an object is written
by one program and read by a different program. The type cast verifies that the type
assumption made by the second program is in fact correct. This is illustrated in the
following code:

public class Aircraft extends Serializable {
// . . .
}

FileOutputStream fileOut D new FileOutputStream(“AircraftFile”);
ObjectOutput out D new ObjectOutputStream(fileOut);
aircraftObj D new Aircraft(“Boeing777”); out.writeObject(aircraftObj);
out.flush();
out.close();

FileInputStream fileIn D new FileInputStream(“AircraftFile”);
ObjectInput in D new ObjectInputStream(fileIn);
Aircraft aircraftObjD (Aircraft) in.readObject();
in.close();

In the Java model of persistence, class objects are not written to the file streams.
Strictly speaking, this means that the model does not fully support transitivity. Java
uses a shortcut to store the class type information using a hashed value that is
subsequently used in a type cast to verify its type correctness.

3.5 Bibliographic Remarks

The presentation of reflection follows the early specification of Java Core Reflec-
tion (JCR) [9]. The reason is that this provides a conceptually clean view of
object-oriented reflection unlike the recent versions of JCR that are unnecessarily
complicated because of parametric types in Java. This early JCR view is also much
more elegant than the C# reflective capabilities [1]. Two examples of using JCR are
due to Daniel Lawrence. Presentation of the loader follows [5].

The presentation of an object-oriented virtual machine is an abstraction of
otherwise very low level specification [11]. A distinctive feature of this abstraction
is assertions that specify formally the semantics of various operations of the virtual
machine.

78 3 Virtual Platform

An extension of the Java Virtual Machine (JVM) that provides a correct
implementation of parametric types in Java is presented in [3]. An extension of the
JVM that allows representation and management of assertions is presented in [12].
A technique of using reflection to implement a database language Java OQL in a
type safe manner is presented in [4]. A very general form of reflection that handles
ad hoc polymorphism in a type safe manner is linguistic reflection [10].

A basic exposition of the features of PJama, an orthogonal model for persistence
for Java, is [7]. The implementation of this model requires an extension of the JVM.
The architectures of persistent object systems are elaborated in [6]. See also [2].

The Java model of persistence based on serializability is explained in [5].

3.6 Exercises

1. Write a Java class whose main method takes the full name of a class as its
input. It then attempts to load the class object with that name using the method
forName of the class Class. The type signatures of fields and methods are then
printed as the output.

2. Write a Java class whose main method walks the type hierarchy of a class whose
name is given in the input. The program first attempts to load the class using
the method forName. It then recursively displays all the type information for the
interfaces that the given class implements, the class that the given class extends,
all the way to the root class Object.

3. Specify the frame constraints for the virtual machine operation newInstance.
Keep in mind that a frame constraint in general refers to both the runtime stack
and the heap.

4. The virtual machine operation invokeMethod does not just produce the result
but it also affects the state of the receiver object and other objects on the heap.
Extend the specification of the operation invokeMethod to capture these side
effects.

5. Specify the frame constraints for the operation invokeMethod.
6. Specify the frame constraints for the operations getField and putField.
7. Specify the frame constraints for the operation binaryOp. Keep in mind that this

operation affects only the stack and has no impact on the heap.
8. Specify the frame constraint for the operations:

– newArray
– arrayLoad
– arrayStore

9. Specify other subtypes of the type Term as defined in Java or C#.
10. Given types Sentence and Formula, specify types Invariant, Precondition and

PostCondition.

References 79

11. Write a Java program that does the following:

– Writes a complex object Collection<Aircraft> to a file.
– Reads this object and performs a type cast to Collection<Aircraft> and a type

cast to Collection<Pilot>.
– Analyze the outcome of these type casts.
– Iterate over the retrieved collection when viewed in accordance with the above

two type casts.
– Analyze the outcome.

12. Java has the following methods for customized serialization:

void writeObject(objectOutputStream out)
throws IOException

void readObject(objectInputStream in)
throws IOException, ClassNotFoundException

– Specify the class Collection with your choice of the representation for the
collection of elements.

– Specify private methods writeObject and readObject of the class Collection
that perform customized serialization and deserialization.

References

1. J. Alabahari, B. Albahari, C# 5.0 in a Nutshell (O’Reilly, Beijing, 2012)
2. S. Alagić, T. Ngyen, Parametric polymorphism and orthogonal persistence, in Proceedings of

the ECOOP 2000 Symposium on Objects and Databases. Lecture Notes in Computer Science,
vol. 1813 (Springer, Heidelberg, 2001), pp. 32–46

3. S. Alagić, M. Royer, Genericity in Java: persistent and database systems implications. VLDB
J. 17(4), 847–878 (2007)

4. S. Alagić, J. Solorzano, Java and OQL: a reflective solution for the impedance mismatch.
L’objet 6, 3 (2000)

5. K. Arnold, J. Gosling, D. Holmes, The Java Programming Language, 4th edn. (Addison-
Wesley, Boston, 2005)

6. M. Atkinson, R. Morrison, Orthogonally persistent object systems. VLDB J. 4, 319–401 (1995)
7. M. Atkinson, L. Daynes, M.J. Jordan, T. Printezis, S. Spence, An orthogonally persistent

JavaTM . ACM SIGMOD Rec. 25, 68–75 (1996)
8. J. Gosling, B. Joy, G. Steel, G. Bracha, The Java Language Specification, 3rd edn. (Addison

Wesley, Boston, 2005)
9. Java Core Reflection, JDK 1.1. Sun Microsystems (1997)

10. G. Kirby, R. Morrison, D. Stemple, Linguistic reflection in Java. Softw. Pract. Exp. 28(10),
1045–1077 (1998)

11. T. Lindholm, F. Yellin, The JavaTM Virtual Machine Specification (Addison-Wesley, Boston,
1996)

12. M. Royer, S. Alagić, D. Dillon, Reflective constraint management for languages on virtual
platforms. J. Object Tech. 6(10), 59–79 (2007). http://www.jot.fm/issues/issue_2007_11/
article1/index.html

http://www.jot.fm/issues/issue_2007_11/article1/index.html
http://www.jot.fm/issues/issue_2007_11/article1/index.html

Chapter 4
Type Systems

In Chap. 1 we presented the basic rules of object-oriented type systems in a mostly
informal manner. However, type systems have an elaborate formal theory. In this
section we show how some of the elements of type theory apply to an object-oriented
programming language.

Section 4.1 is devoted to the formal specification of the basic rules of
object-oriented type systems. In Sect. 4.1.1 we explain the basic typing rules for
statements such as assignments, conditionals, and loops, as well as for expressions.
In Sect. 4.1.2 we focus on the rules of an object-oriented type system that govern
classes, inheritance, subtyping, and messages. These static typing rules are in
Sect. 4.1.3 followed by dynamic type checking rules that mainstream object-
oriented languages have. Formal rules for parametric types are given in Sect. 4.1.4.

Section 4.2 presents static and dynamic typing rules that apply to reflection.
This section includes static and dynamic rules for field access using reflection, field
update, and method introspection and invocation.

In Sect. 4.3 we show what kind of problems violation of type safe rules can cause.
We take a well-known paradigm of type erasure that was the basis of the technique
for extending Java with parametric types. This paradigm is provably incorrect as
demonstrated by a variety of cases of type violation presented in this section. In
Sect. 4.3.1 we consider legacy collection classes and their parametric versions and
show how type erasure violates type safe rules of inheritance and subtyping. This
is followed in Sect. 4.3.2 by a demonstration of the problems that type erasure
causes in static type checking of assignments and messages. Even more serious
typing problems are caused in dynamic type checking as shown in Sect. 4.3.3.
In Sect. 4.3.4 we show what kind of typing problems type erasure causes in the
model of persistence based on serializability. Finally, in Sect. 4.3.5 we show severe
problems caused by type erasure when using reflection.

© Springer International Publishing Switzerland 2015
S. Alagić, Object-Oriented Technology, DOI 10.1007/978-3-319-20442-0_4

81

82 4 Type Systems

4.1 Formal Type Systems

4.1.1 Typing Rules

A typing environment, just like a symbol table built by a compiler, contains infor-
mation about types of identifiers declared in a program. Based on that information,
a typing environment also makes it possible to deduce the types of expressions
that appear in a program. In doing so, the type checker (a compiler component)
follows a collection of formal rules that specify the type system of the underlying
programming language.

The typing environment will be denoted as T . The fact that an identifier x in the
typing environment T is associated with a type T will be denoted as T ` x W T .
For simplicity, we will also assume that subtype ordering deduced when processing
subclasses is also recorded in the typing environment T rather than in a separate
type constraint system as in some other approaches.

The standard typing rule for the assignment statement is given below. This rule
says that if the type checker can conclude from the typing environment T that x is
a variable of type A, and e is an expression of type A, then x D e is a type correct
assignment statement. The typing rules have the form of Horn clauses.

Rule 1 (Assignment Statement).

T ` x W A var, T ` e W A

T ` x D e W Statement

For example:

T ` x W int var, T ` x C 1 W int

T ` x D x C 1 W Statement

In T ` x W A var we indicate that the typing environment contains an indication
that x is a variable as in any compiler symbol table.

In order to deduce that if (e) S1 else S2 is a correctly typed conditional statement,
the type checker must verify that e is a boolean expression and that S1 and S2
are correctly typed statements. This is specified in the rule for type checking of a
conditional statement:

Rule 2 (Conditional Statement).

T ` e W boolean, T ` S1 W Statement; T ` S2 W Statement

T ` if .e/ S1 else S2 W Statement

4.1 Formal Type Systems 83

For example:

T ` x > 0 W boolean, T ` y D x W Statement; T ` y D �x W Statement

T ` if .x > 0/ y D x else y D �x W Statement

The loop while (e) S is type correct if e is a boolean expression and S is a
correctly typed statement, as in the rule below:

Rule 3 (While Loop).

T ` e W boolean, T ` S W Statement

T ` while .e/ S W Statement

For example:

T ` x < highValue W boolean, T ` x D x C 1 W Statement

T ` while .x < highValue/ x D x C 1 W Statement

Likewise, the loop do S while (e) is correctly typed if from the typing environ-
ment the type checker can deduce that e is a boolean expression and S is a correctly
typed statement.

Rule 4 (Do Loop).

T ` e W boolean, T ` S W Statement

T ` do S while .e/ W Statement

Types of variables are recorded in the symbol table when the compiler is process-
ing declarations. The types of constants can be inferred from their denotation. The
types of the basic operators are predefined in the language definition and the typing
environment is initialized accordingly. The types of expressions are not declared
and must be inferred by the type checker from the types of constants, variables and
operations that appear in expressions. Two sample rules are given below. In order to
infer that e1 op e2 is an expression of type integer, the type checker must infer that
e1 and e2 are expressions of type integer, and that op is a binary operator whose
arguments and the result are of type integer.

Rule 5 (Expressions).

T ` e1 W int, T ` e2 W int;
T ` op 2 fC; �; �; =; %g

T ` e1 op e2 W int

For example:

T ` x W int, T ` y W int

T ` x C y W int

84 4 Type Systems

Following the same logic, the typing rule for Boolean expressions will have the
following form:

Rule 6 (Expressions).

T ` e1 W boolean, T ` e2 W boolean;

T ` op 2 f&; j; &&; jjg

T ` e1 op e2 W boolean

The above two rules contain operators available in Java.

4.1.2 Object-Oriented Type System

Consider the following class:

class Collection {
private int size;
private Object[] elements;
public Collection() {. . . }
public boolean belongs(Object x){. . . }
public int cardinality(){. . . }
public void add(Object x){. . . }
public void remove(Object x) {. . . }

}

The type signature of a class C denoted Sig(C) consists of the type
signatures for fields Sig(fields(C)), methods Sig(methods(C)) and constructors
Sig(constructors(C)). For the above class we have:

fields.C/ D< int sizeI ObjectŒ� elements >

constructors.C/ D< Collection./ >

methods.C/ D< boolean belongs.Object/I int cardinality./I
void add.Object/I void remove.Object/ >

In general, type information for a class A with kA fields and mA methods will be
represented using the following type signature expressions:

– Type signatures:
Sig.A/ D ffields.A/I constructors.A/I methods.A/g where

– Field signatures:
fields.A/ D< Fi fi >kA

iD1 (a sequence of fields) with Fi the type of field fi, and
fi ¤ fj for i ¤ j, where j D 1; 2; : : : ; kA.

– Constructor signatures:
constructors.A/ D fA.Cci1

; Cci2
; : : : ; Ccin

/gcA

iD1

4.1 Formal Type Systems 85

(a collection of constructors) where Cmij
are types for j D 1; 2; : : : ; n.

– Method signatures:
methods.A/ D fCmi mi.Cmi1

; Cmi2
; : : : ; Cmin

/gmA

iD1

(a collection of methods) where mi is the method name, and Cmi , Cmij
are types

where j D 1; 2; : : : ; n.

We will denote extending a typing environment T with a binding for a class C as
T [fclass C extends Bg. Producing the resulting environment T 0 will be denoted by
the symbol). Using this notation we obtain the following rule for the relationship
between inheritance and subtyping in Java:

Rule 7 (Inheritance and Subtyping).

T [fclass D extends Bg) T 0

T 0 ` D <W B

The above rule says that if a typing environment T 0 contains the definition of a
class D which extends a class B, then from T 0 we can deduce that D is a subtype
of B. The standard symbol for subtyping <W is used in the rule above. This rule
says that the inheritance rules satisfy the subtyping rules as discussed in Chap. 1.
Subtyping is a partial order (reflexive, antisymmetric and transitive). Here is the rule
for transitivity:

Rule 8 (Subtyping).

T ` T1 <W T2; T ` T2 <W T3

T ` T1 <W T3

The object-oriented rule for the assignment statement can now be specified in a
more flexible manner:

Rule 9 (Assignment Statement).

T ` x W A var, T ` e W B;

T ` B <W A

T ` x D e W Statement

For example:

T ` x W Person var, T ` y W Employee;

T ` Employee <W Person

T ` x D y W Statement

86 4 Type Systems

The above rule says that if the type of a variable x in the environment T is A, the
type of the expression e is B, and B is a subtype of A, then the assignment statement
x D e is type correct. This rule can be simplified by requiring that the types of x and
e are in fact the same as long as the type system contains the following subsumption
rule:

Rule 10 (Subsumption).

T ` e W B,
T ` B <W A,

T ` e W A

The following rule for inheritance of fields shows that all the fields from the
superclass are inherited in the subclass in such a way that their types are invariant.

Rule 11 (Inheritance).

T ` D <W B;

T ` fields.B/ D< FB
i f B

i >kB

iD1,

T ` fields.D/ D< FD
i f D

i >kD

iD1,
kB � kD,

j 2 f1; 2; : : : ; kBg

T `< FB
j f B

j >D< FD
j f D

j >

The premises in the above rule are that from a given typing environment T we
can deduce that D is a subtype of B, that B has a sequence of fields f B

i where i D
1; 2; : : : ; kB with respective types FB

i , and that D has a sequence of fields f D
i with

respective types FD
i for i D 1; 2; : : : ; kD. With the above assumptions we can deduce

that in the typing environment T the fields f D
j for j D 1; 2; : : : ; kB have the same

names and types as the corresponding fields f B
j of B. In the above rule < FB

j f B
j >D<

FD
j f D

j > means FB
j D FD

j and f B
j D f D

j .
For example:

T ` OrderedCollection <W Collection;

T ` fields.Collection// D< int sizeI ObjectŒ� elements >,
T ` fields.OrderedCollection// D< int sizeI ObjectŒ� elementsI other fields >

Inheritance of methods is governed by the following rule, which shows that even
if an inherited method is overridden, the number and the types of arguments remain
invariant:

Rule 12 (Overriding).

T ` D <W B;

T ` Cm m.Cm1 ; Cm2 ; : : : ; Cmn/ 2 methods.B/

T ` Cm m.Cm1 ; Cm2 ; : : : ; Cmn/ 2 methods.D/

4.1 Formal Type Systems 87

For example:

T ` Collection <W Object;
T ` boolean equals.Object/ 2 methods.Object/

T ` boolean equals.Object/ 2 methods.Collection/

In recent editions of Java the above rule is relaxed allowing the result type of the
method m in the class D to be a subtype of Cm. This is a type safe rule because it
follows the rule for function subtyping.

For example:

T ` Collection <W Object;
T ` Object clone./ 2 methods.Object/

The following is fine:

T ` Collection clone./ 2 methods.Collection/

The Java overloading rules prior to Java 5.0 imposed the following restriction on
method signatures.

Rule 13 (Overloading).

T ` Cm m.Cm1 ; Cm2 ; : : : ; Cmn/ 2 methods.A/;

T ` C0
m m.C0

m1
; C0

m2
; : : : ; C0mn/ 2 methods.A/

T ` .9i/..i 2 f1; 2; : : : ; ng/; .Cmi ¤ C0
mi

//

In other words, if a class has two methods with the same name, their argument
type signatures must be different, i.e., if they have the same number of arguments, at
least one pair of the corresponding arguments must have different types. The same
rule applies to overloaded constructors.

For example, the following type checks:

T ` boolean equals.Object/ 2 methods.Collection/

T ` boolean equals.Collection/ 2 methods.Collection/

Consider the rule that specifies when a message x:m.a1; a2; : : : ; an/ is type
correct in an environment T .

Rule 14 (Type Checking Messages).

T ` x W A;

T ` Cm m.Cm1 ; Cm2 ; : : : ; Cmn/ 2 methods.A/;

T ` ai W Ai; i 2 f1; 2; : : : ; ng;
T ` .8i/.i 2 f1; 2; : : : ; ng) Ai <W Cmi/

T ` x:m.a1; a2; : : : ; an/ W Cm

The requirements are that the type of the receiver x must be equipped with a
method m with n arguments. If the type of a formal parameter of m is Cmi , and the

88 4 Type Systems

type of the corresponding actual type parameter is Ai, then Ai must be a subtype of
Cmi for i D 1; 2; : : : ; n. This rule is based on the subtyping rule for functions.

For example:

T ` employees W Collection var;
T ` boolean add.Object/ 2 methods.Collection/;

T ` x W Employee;

T ` Employee <W Object

T ` employees:add.x/ W boolean

4.1.3 Dynamic Type Checking

Dynamic type checking in Java is required by type casts and instance of tests. The
following static rules govern type casts:

Rule 15 (Static Rule for Down Casts).

T ` e W A; T ` D <W A

T ` .D/e W D

This rule says that if the type of an expression e in the typing environment T is
A and we can deduce from T that D is a subtype of A, then the expression .D/e is
well-typed and its type is D. But since there is no way for the type checker to verify
statically that the dynamic type of e is indeed D, a dynamic check is generated.

For example:

T ` e W Person; T ` Employee <W Person

T ` .Employee/e W Employee

Rule 16 (Static Rule for Up Casts).

T ` e W A; T ` A <W D

T ` .D/e W D

This rule says that if the type of an expression e in the typing environment T is
A and we can deduce from T that A is a subtype of D, then the expression .D/e is
well-typed and its type is D. This follows from the subsumption rule which says that
if an expression has type A then it also has type D for any supertype D of A.

Note that the expression .D/e in which the type of e is A will fail type checking
unless D <W A or A <W D.

The run time value of an expression e is denoted as eval.e/. Because of the
flexibility of the assignment statement, the run time type of e is in general a subtype

4.1 Formal Type Systems 89

of its static type. This fact is expressed in the following rule. Recall that forName
is a method of the class Class which is in fact a class loader that produces a class
object given the class name.

Rule 17 (Static and Dynamic Type).

T ` e W A

T ` eval.e:getClass.// <W eval.Class:forName.00A00//

A dynamic check that applies to an expression .D/e where e has a statically
determined type A is specified in the rule given below. The check is required to
verify that the run-time type of the expression e is indeed a subtype of D. If that is
not the case, the result of evaluation of the expression .D/e is ClassCastException.

Rule 18 (Dynamic Rule for Down Casts).

T ` e W A; T ` D <W A;

T ` eval.e:getClass.// 6<W eval.Class:forName.00D00//

T ` eval..D/e/ W ClassCastException

4.1.4 Parametric Types

The following rule specifies instantiation of a parametric class in which eŒD=T�

stands for substitution of all free occurrences of T by D in the expression e. This
rule says: if from the assumption that in the typing environment T T stands for a
valid class we can conclude that the parametric class C < T > is a valid class,
and D is a valid class in T , then C < D > is a valid, type correct class the typing
environment T . For simplicity, we omit constructors.

Rule 19 (Parametric Types).

T ` T <W Object)
T ` class C < T > ffields.C/I methods.C/g W Class,

T ` D <W Object

T ` C < D > <W Object

The rule that follows specifies the type signature of the class C < D > obtained
from the type signature for C < T > by substituting D for T.

Rule 20 (Universal Instantiation).

T ` T <W Object)
T ` class C < T > ffields.C/I methods.C/g W Class,

T ` D <W Object

T ` Sig.C < D >/ D
ffields.C/ŒD=T�I methods.C/ŒD=T�g

90 4 Type Systems

For example, assume that we have

Sig(Collection<T>) = < T[] elements; boolean belongs(T);
void add(T); void remove(T) >.

Then

Sig(Collection<Employee>) D < Employee[] elements;
boolean belongs (Employee);
void add(Employee); void remove(Employee) >.
A more general case is instantiation of a bounded parametric class class C < T

extends B >.

Rule 21 (Bounded Parametric Types).

T ` B <W Object,
T ` T <W B)

T ` class C < T extends B > ffields.C/I methods.C/g W Class,
T ` D <W BŒD=T�

T ` C < D > <W Object

The first premise in the above rule specifies that the bound B is a valid class in the
typing environment T . The second premise is that assuming that T stands for a class
derived from B, C < T extends B > is a valid class in the typing environment T .
The last premise says that from the typing environment T we can deduce that D is a
subtype of B, hence it qualifies as an actual type parameter for C. Under the above
assumptions we can deduce from the typing environment T that C < D > is a valid
class in the typing environment T . In the above rule B may be parametric, so that
the type constraint may in fact be F-bounded, which is reflected in the condition
D <W BŒD=T�.

The type signatures of fields and methods of the instantiated parametric class
C < D > are determined by the same rule as for universal parametric polymor-
phism. They are obtained from the type signatures of C by substituting the actual
type parameter D for the formal type parameter T in C. For example, assume that
we have

Sig(OrderedCollection<T extends Comparable< T >>) = < T[] elements;
boolean belongs(T); void add(T); void remove(T) >.

Then if

Employee <W Comparable<Employee>

we will have

Sig(OrderedCollection<Employee>) = < Employee[] elements;
boolean belongs(Employee); void add(Employee); void remove(Employee) >.

4.2 Reflection 91

4.2 Reflection

Formal type systems as presented so far deal primarily with the rules for static
type checking. However, languages such as Java and C# have sophisticated dynamic
type checking capabilities, as we showed in the rules for type casts. Furthermore,
reflection necessarily requires dynamic type checks because full type information is
available only at run time. In this section we present some of the formal rules for
largely dynamic type checking required by reflection.

The static type checking rules when reflection is used are necessarily very limited
because the specific type information is not available at compile time.

Consider first the field access. The static rule is:

Rule 22 (Static Rule for Field Access).

T ` f W Field; T ` obj W Object

T ` f :get.obj/ W Object

So if from a static typing environment T we can deduce that an expression f is of
type Field, and the expression obj is of type Object, then in the same environment
T the message f :get.obj/ is well typed and its type is Object.

The dynamic rules are much more specific. A dynamic type checking rule given
below specifies one of the dynamic checks related to accessing the value of a field.
This check ensures that an object obj is indeed equipped with a field f . This check
amounts to accessing the fields of the class of the object obj by evaluating the
expression obj:getClass./:getFields./ and checking whether the result of evaluation
of f belongs to this array of fields.

Rule 23 (Dynamic Rule for Field Access).

T ` f W Field; T ` obj W Object;
T ` eval.f / 62 eval.obj:getClass./:getFields.//

T ` eval.f :get.obj// W IllegalArgumentException

Java reflective capabilities allow even a type safe update of the value of a
field whose type was not known at compile time. But the static checks are then
necessarily limited as illustrated by the rule for field update given below:

Rule 24 (Static Rule for Field Update).

T ` f W Field; T ` obj W Object, T ` val W Object;

T ` f :set.obj; val/ W void

The premises in the above rule are that the type of an expression f in the typing
environment T is Field, the type of the expression obj is Object, and the type of
the expression val is also Object. If so, then the message f :set.obj; val/ setting the
value of the receiver field f of an object obj to the value val will be well typed, and
its type will be void, i.e., f :set.obj; val/ is a correctly typed statement.

92 4 Type Systems

More specific type checking is possible only at run time. The dynamic type
checking rule given below specifies a dynamic check similar to the check in the
rule for field access. This rule verifies that an object referred to by obj indeed has a
field referred to by f .

Rule 25 (Dynamic Rule for Field Update).

T ` f W Field; T ` obj W Object, T ` val W Object;
T ` eval.f / 62 eval.obj:getClass./:getFields.//

T ` eval.f :set.obj; val// W IllegalArgumentException

The rule that follows specifies a dynamic check which ensures that assigning
the value referred to by val to the field referred to by f of an object referred
to by obj does not violate the typing rule for assignment. This test amounts to
checking that the run time type of val obtained by evaluating the expression
val:getClass./ is a subtype of the run time type of the field f , where the latter is
obtained by evaluating the expression f :getType./. If this condition is not satisfied,
IllegalArgumentException will be thrown.

Rule 26 (Dynamic Rule for Field Update).

T ` f W Field; T ` obj W Object, T ` val W Object;
T ` eval.f / 2 eval.obj:getClass./:getFields.//;
T ` eval.val:getClass.// 6<W eval.f :getType.//

T ` eval.f :set.obj; val// W IllegalArgumentException

Given a class object c, the name of one of its methods name, and the array of
types of its parameters parameterTypes, the expression

c:getMethod.name; parameterTypes/ evaluates to a reference to a method and
hence has type Method. However, static type checking of the expression

c:getMethod.name; parameterTypes/ is very limited. The type checker can verify
that c is a class. The name of the method is passed at rune-time as a string.
This may be a complex string expression. The type checker can infer that the
type of this expression is String, but it is still in general not possible to verify
at compile time whether this string is a valid name of a method of class c. As
for parameterTypes, all that the type checker can verify is that it is an array of
classes. If these checks are successful, the checker will conclude that the type of the
expression c:getMethod.name; parameterTypes/ is Method.

Rule 27 (Static Rule for Method Introspection).

T ` c W Class; T ` name W String;

T ` parameterTypes W ClassŒ �

T ` c:getMethod.name; parameterTypes/ W Method

4.2 Reflection 93

Because the specific type information is not available at compile time,
several dynamic checks are required. Two dynamic rules for method intro-
spection are given below. They show what kind of type violations are
detected and the exceptions thrown. The first rule verifies that the specified
method with the name specified in c:getMethod.name; parameterTypes/ does
indeed exist. If not, NoSuchMethodException will be thrown when the expression
c:getMethod.name; parameterTypes/ is evaluated.

Rule 28 (Dynamic Rule for Method Introspection).

T ` c W Class; T ` name W String; T ` parameterTypes W ClassŒ �;

T ` .8i/.i 2 fi D 0; 1; 2; : : : ; c:getMethods./:length � 1g)
eval.name/ ¤ eval.c:getMethods./Œi�:getName.//

T ` eval.c:getMethod.name; parameterTypes// W NoSuchMethodException

The second rule given below specifies a dynamic check that the corresponding
type parameters in c:getMethod.name; parameterTypes/ match the types of
parameters of the method with the name name of the class c. Otherwise,
NoSuchMethodException will be thrown.

Rule 29 (Dynamic Rule for Method Introspection).

T ` c W Class; T ` name W String; T ` parameterTypes W ClassŒ �;

T ` .9i/..i 2 f0; 1; 2; : : : ; c:getMethods./:length � 1g/
.eval.name/ D eval.c:getMethods./Œi�:getName.///;

.9j/..j 2 f0; 1; 2; : : : ; c:getMethods./Œi�:getParameterTypes./:length � 1g/
.eval.parametersŒj�:getClass.// 6<W

eval.c:getMethods./Œi�:getParameterTypes./Œj�////

T ` eval.c:getMethod.name; parameterTypes// W NoSuchMethodException

Java reflective capabilities allow type safe invocation of a method discovered at
run time. The static rule checks that given a typing environment T , in the expression
m:invoke.obj; args/, m is of type Method, obj is of type Object, and args is an array
of objects representing the actual arguments.

The static rule for method invocation using Java Core Reflection is:

Rule 30 (Static Rule for Method Invocation).

T ` m W Method, T ` obj W Object, T ` args W ObjectŒ �

T ` m:invoke.obj; args/ W Object

Dynamic rules include the rules given below. The first rule specifies a dynamic
check which verifies that obj refers to an object whose class is equipped with a
method referred to by m. If not, the result of evaluation of m:invoke.obj; args/ will
be IllegalArgumentException.

94 4 Type Systems

Rule 31 (Dynamic Rule for Method Invocation).

T ` m W Method, T ` obj W Object, T ` args W ObjectŒ �;

T ` eval.m/ 62 eval.obj:getClass./:getMethods.//

T ` eval.m:invoke.obj; args// W IllegalArgumentException

The second rule given below specifies a dynamic check which ensures that the
run time types of the actual arguments args are subtypes of the corresponding formal
parameters types of the method referred by m. If not, the result of evaluation of
m:invoke.obj; args/ is IllegalArgumentException.

Rule 32 (Dynamic Rule for Method Invocation).

T ` m W Method, T ` obj W Object, T ` args W ObjectŒ �;

T ` eval.m/ 2 eval.obj:getClass./:getMethods.//;
T ` .9i/.i 2 f0; 1; : : : ; args:length � 1g)

.eval.args.i/:getClass.// 6<W
eval.m:getParameterTypes./Œi�//

T ` eval.m:invoke.obj; args// W IllegalArgumentException

4.3 Type Erasure

4.3.1 Type Erasure Idiom

We consider primarily collection types that naturally require parametric polymor-
phism. Consider the legacy Collection class specified as follows:

class Collection {
private Object[] elements;
public boolean belongs(Object x){. . . }
public int size(){. . . }
public void add(Object x){. . . }
public void remove(Object x) {. . . }

}

The class Collection given below is an example of universal parametric polymor-
phism. The type parameter T is assumed to be preceded with quantification over all
types.

class Collection<T> {
private T[] elements;
public boolean belongs(T x){. . . }

4.3 Type Erasure 95

public int size(){. . . }
public void add(T x){. . . }
public void remove(T x) {. . . }

}

Looking at the type signature for Collection and Collection<Employee> it is
easy to see the following:

– Collection<Employee> is not a subtype of Collection.
– Collection is not a subtype of Collection<Employee>.

The type signatures of the methods belongs, add, and remove in the class
Collection are

boolean belongs(Object x)
void add(Object x)
void remove(Object x)

The type signatures of these methods in the class Collection<Employee> are

boolean belongs(Employee x)
void add(Employee x)
void remove(Employee x)

According to the typing rules that we introduced in this chapter and Chap. 1,
Collection –: Collection<Employee> and Collection<Employee> –: Collec-

tion. Assuming otherwise will lead to programs that compile and create run-time
type errors. That is exactly the unfortunate consequence of the Java type erasure. In
that type system assignments of an object of type Collection<Employee> in place
of an object of type Collection is allowed. Likewise, assignment of an object of
type Collection to an object of type Collection<Employee> is also allowed with a
compiler warning.

The above example shows the implications of violation of static type checking
rules. Dynamic violations due to type erasure are caused by the fact that the types
Collection<Employee> and Collection<Department> are identified at run-time
and their run-time type signature is in fact the signature of the class Collection.
This makes it possible to assign an object of type Collection<Employee> to an
object of type Collection<Department> and the other way around and the run-time
type checking will not detect the type violation.

4.3.2 Static Type Checking

Here is an example showing how the type system is broken because of type erasure
in a situation where a legacy class and a newly developed generic class interact.
In the example below LegacyClass was compiled with a legacy compiler. When
TestLegacy is compiled with the compiler based on type erasure, no warnings are
issued. So a collection of departments is added to a collection of employees.

96 4 Type Systems

public class LegacyClass {
public void addEmployees(Collection c) {
for (int i=0; i < 5; iCC)

c.add(new Employee());
}

}
public class TestLegacy {
public static void main(String[] args) {
Collection<Department> c D

new LinkedList<Department>();
new LegacyClass().addEmployees(c);

}
}

In the example below the substitution of actual parameters of types
LinkedList<Employee> and LinkedList<Department> for the formal param-

eters of type LinkedList is successfully performed following the type erasure
rules. A compiler warning will be issued when the collectionA.addAll(collectionB)
statement is compiled. But if legacy classes are involved, or even if a class is
precompiled, those warnings will not be visible, and in either case the program will
compile and fail at run-time at an unexpected place.

public class MessagePassing {
public static void main(String[] args) {
LinkedList<Employee> employees D

new LinkedList<Employee>();
LinkedList<Department> departments D

new LinkedList<Department>();
updateCollection(employees,departments);
}
public static void updateCollection

(LinkedList collectionA, LinkedList collectionB) {
collectionA.addAll(collectionB);
}

}

Type erasure causes problems with well established overloading rules. This is
illustrated by the following example of a class that cannot be compiled:

public class UpdateTransaction {
public void update(Collection<Employee> employees) {. . . }
public void update(Collection<Department> departments) {. . . }

}

4.3 Type Erasure 97

The reason is that Collection<Employee> and Collection<Department> have
the same type erasure which is in fact equivalent to Collection. Because of this, the
standard overloading rules have been modified making them more complicated to
take care of special cases caused by type erasure. But consider now two views
specified as interfaces.

public interface EmployeeView {
public Collection<Employee>

select(Collection<Employee> x);
}
public interface DepartmentView

extends EmployeeView {
public Collection<Department>

select(Collection<Department> x);
}
public class Company

implements DepartmentView {
public Collection<Employee>

select(Collection<Employee> x) {. . . }
// public Collection<Department>

// select(Collection<Department> x) {. . . }
}

The class Company will not compile for a good reason: one of the abstract
methods is not implemented. So the compiler requests implementation of both
methods and the programmer responds by removing the comment signs. But now
the class Company will not compile because of type erasure. Hence there is no way
to implement DepartmentView although it type checks and compiles.

In a Java program updates are expressed by an assignment statement. But we
show that type erasure allows objects of completely unrelated types to be assigned
to each other in a major violation of the Java type system. The compiler issues a
warning, but it will not reject the assignment statement. The consequence is that at
run time, assignments that violate the type system will be executed. In addition, a
Java program will fail at a completely unexpected place, so that a confusing run-
time exception will not be caught in the program code. These assignments will
generate compiler warnings but will be allowed. This is illustrated by the following
example:

public class EmployeesAreDepartments {
public static void main(String[] args) {
LinkedList<Department> departments D

new LinkedList<Department>();
LinkedList<Employee> employees D

new LinkedList<Employee>();

98 4 Type Systems

LinkedList objects D employees;
departments D objects;
}

}

The assignment objects = employees does not create a compiler warning, and the
assignment departments = objects does.

The problem is that the definition of subtyping <W in the recent versions of
the Java type system is very different from the standard notion and hence the
above rule has the implications illustrated by the following example. In this
example, the method updateCollection whose formal parameter type is LinkedList
is invoked with the argument whose type is LinkedList<Employee>. Likewise, the
method updateDepartment whose formal type parameter is of type

LinkedList<Department> is invoked with the argument of type LinkedList. But
LinkedList<Department> is not a subtype of LinkedList nor the other way around
in any other type safe system.

public class UpdateTransaction {
public static void main(String[] args) {
LinkedList<Employee> employees D

new LinkedList<Employee>();
employees.add(new Employee(“Joe”));
LinkedList objects D new LinkedList();
objects.add(new Object());
updateCollection(employees);
updateDepartment(objects);
}
public static void updateCollection(

LinkedList collection) {
collection.add(new Department());
}
public static void updateDepartment(

LinkedList<Department> collection) {
Department d D collection.getFirst();
}

}

The compiler does not issue a warning in the method invocation
updateCollection(employees). The method updateCollection is type correct, but

the compiler issues a warning in collection.add(new Department()). The compiler
also issues a warning in the method invocation updateDepartment(objects), but the
whole program compiles in spite of type violations. The program executes up to
collection.getFirst() where there should be nothing wrong and hence no exception
handling is provided. The program thus fails due to a ClassCastEception error.

4.3 Type Erasure 99

4.3.3 Dynamic Type Checking

The Java Virtual Machine includes a variety of dynamic type checks. These
checks would in particular disallow assignments and passing arguments in method
invocations that violate typing rules. Dynamic type checks are built into the virtual
platform because Java includes a variety of features that cannot be type checked
statically. But type erasure has the most negative impact in dynamic type checking.

The implications of type violations that are caused by type erasure are illustrated
in the example below. The method updateCollection adds a Department object to a
collection of objects of type Employee.

public class UpdateTransaction {
public static void main(String[] args) {
LinkedList<Employee> employees D

new LinkedList<Employee>();
updateCollection(employees);
Employee emp D employees.remove();
// runtime exception here
}
public static void updateCollection(Object collection) {
((LinkedList<Department>)collection).add(new Department());
}

}

The compiler issues a warning regardless of whether the type cast is correct or
not. So even if the type cast was the correct one (LinkedList<Employee>)collection
the compiler would still issue a warning. If later on we attempt a perfectly correct
statement Employee emp = employees.remove() it will create a run-time exception
for inexplicable reasons.

It is important to point out the difference between the problems that are described
above and the Java unsafe rule for arrays. Of course, the array type is naturally
parametric. Java and C# have the rule that if B<WA then []B <W []A. Although this
covariant subtyping rule for arrays does not guarantee type safety by static type
checking, the run-time type information for arrays is correct, and dynamic checks
that are in place work correctly.

4.3.4 Persistence by Serializability

Incorrect run-time type information has major implications when Java is used in
persistent and database systems. When an object is promoted to persistence its
type information also becomes persistent and will be incorrect because of type
erasure. For example, an ordered collection of employees will be recorded in

100 4 Type Systems

the persistent store with the type Collection<Comparable>. Since type casts are
not working correctly, major violations of the type system are possible when
referencing persistent objects. The reason for this is that interpretation of their
types may be completely wrong. These problems will be illustrated by the Java
persistent mechanism. Recall that the type signatures for methods writeObject and
readObject are:

void writeObject(Object obj)
Object readObject()

A simple program below promotes a collection of employees to persistence.

public class StoreCollectionObject {
public static void main(String[] args)

throws Exception {
FileOutputStream fileout D

new FileOutputStream(“employees”);
ObjectOutputStream out D

new ObjectOutputStream(fileout);
Collection<Employee> employees D

new LinkedList<Employee>();
employees.add(new Employee());
out.writeObject(employees);
}

}

In a separate program given below an attempt to access this persistent collection
is made in such a way that its type is misinterpreted on purpose. The compiler issues
a warning in this type cast no matter what the type in the type cast is, even if it is the
correct one (Collection<Employee>)in.readObject(). This is wrong because any
type should pass a static check in the type cast because any type is a subtype of
Object, which is the result type of readObject. Since the dynamic type information
is incorrect, the incorrect type cast will succeed and the class cast exception will not
be thrown.

public class ReadCollectionObject {
public static void main(String[] args)

throws Exception {
FileInputStream filein D

new FileInputStream(“employees”);
ObjectInputStream in D

new ObjectInputStream(filein);
Collection<Department> departments D null;
try { departments D

4.3 Type Erasure 101

(Collection<Department>) in.readObject();
} catch (ClassCastException e) {exception handling }

}

A perfectly correct statement
Iterator<Department> it = departments.iterator();
Department d = it.next();
will fail later on where no exception handling is provided and hence the program
will fail for inexplicable reasons. In this situation static type checking rules do not
help much.

4.3.5 Reflection

Java reflective capabilities allow dynamic type introspection so that a program can
perform actions based on types discovered at run-time. But we show that the most
severe implications of type erasure are precisely in the Java reflective capabilities.

The following example is a transaction that interrogates the types dynamically
and obtains wrong type information. Based on this incorrect information a program
performs a wrong action. Java Core Reflection is not capable of detecting the type
violation and hence it does not throw the illegal argument exception. The program
thus fails at a completely unexpected place where no exception handling is provided.
The compiler issues no warnings in this case as no static rules are violated.

public class ReflectiveTransaction {
public void updateEmployees(

LinkedList<Employee> collection) {
Employee e D collection.remove();

// unexpected ClassCastException!?
}
public static void main(String[] args) {
ReflectiveTransaction trans D

new ReflectiveTransaction();
Collection<Department> departments D

new LinkedList<Department>();
departments.add(new Department());
try {

Method method D
trans.getClass().getMethod
(“updateEmployees”, departments.getClass());
method.invoke(trans, departments);
} catch (Exception e) {exception handling }

}
}

102 4 Type Systems

4.4 Bibliographic Remarks

A good general reference on the formal rules for object-oriented type systems is [5].
A clear evidence on the implications of violating these rules is [8]. The formal rules
presented here were published in [2]. A distinctive feature of these rules is that they
apply to dynamic type checking and reflection. A foundational paper on parametric
polymorphism in object-oriented language is [6].

The thorny problem of introducing parametric types in Java had several proposed
solutions [1, 4, 7, 11–13]. Regrettably, the officially accepted solution that follows
[4, 12] is based on the type erasure idiom which is provably wrong as shown here.
The implications on static, and more so on dynamic type checking and reflection are
nontrivial. The presentation of these problems given here was published in [2].

Contrary to the above problems of parametric types in Java, a correct solution
was accepted for C# [10, 14].

4.5 Exercises

1. Specify the typing rule for the for statement as defined in Java. Specify the
typing rules for the foreach statement as defined in C#.

2. Specify the typing rule for the switch statement.
3. Specify the typing rule for structures as defined in C#.
4. A record type RB is a subtype of a record type RA if RB extends RA in the

following sense:

– RB has all the fields of RA along with some additional fields.
– The types of the common fields in RB are subtypes of the types of the

corresponding fields in RA.

Specify formally this subtyping rule.
5. Specify formally the subtyping rule for function types with n arguments. Recall

that this rule is covariant in the result type and contravariant in the argument
types. How does this rule apply to Java and C#?

6. Specify the subtyping rule for Java and C# interfaces viewing an interface type
as a record of function types.

7. Specify the subtyping rule for immutable and mutable arrays. How does this
rule apply to Java and C# arrays?

8. The body of a method is a block, i.e., it consists of a sequence of declarations
and a sequence of statements. Specify the formal typing rule for blocks. Assume
that a block contains return statements.

9. Specify the typing rule for methods with n arguments. This rule requires usage
of the typing rule for blocks. In addition, it must take into account the typing
information for the formal parameters of methods.

References 103

10. Specify the formal typing rule for a message, i.e., an invocation of a method
with n arguments.

11. A class may be viewed as a record of fields and a record of functions
representing methods. Specify the formal rule for a class B to be a subtype
of the class A. Recall that the types of the inherited fields remain invariant and
that the overridden methods must satisfy the subtyping rules for function types.
How does this rule apply to Java and C# classes?

12. Specify the type erasure of a parametric class so that it would apply to the
interface OrderedCollection given below. Consult Java Language Specification.

public interface OrderedCollection<T extends Comparable<T>>

extends Collection<T> {
// . . .
}

Compare the type signature of the interface OrderedCollection<Employee>

obtained by standard notion of substitution of the actual type parameter
Employee for the formal type parameter T with the type signature of the
interface OrderedCollection<Employee> obtained by type erasure.

13. Standard requirements for overloading require that two methods of the same
class must have different type signatures of their arguments, i.e. either the types
or the number of arguments must be different. Java overloading rules have been
changed because of type erasure so that the following class will not compile.
Specify the current Java overloading rules. Consult [3, 9].

public class UpdateTransaction {
public void update(Collection<Employee> employees) {. . . }
public void update(Collection<Department> departments) {. . . }

}

References

1. O. Agesen, S.N. Freund, J.C. Mitchell, Adding type parameterization to the Java language, in
Proceedings of OOPSLA ‘97 (ACM, New York, 1997), pp. 49–65

2. S. Alagić, M. Royer, Genericity in Java: persistent and database systems implications. VLDB
J. 17(4), 847–878 (2007)

3. K. Arnold, J. Gosling, D. Holmes, The Java Programming Language, 4th edn. (Addison-
Wesley, Boston, 2005)

4. G. Bracha, M. Odersky, D Stoutmire, P. Wadler, Making the future safe for the past: adding
genericity to the Java programming language, in Proceedings of OOPSLA 1998 (ACM,
New York, 1998), pp. 183–200

5. K. Bruce, Foundations of Object-Oriented Languages (MIT Press, Cambridge, 2002)
6. P. Canning, W. Cook, W. Hill, W. Olthoff, J. Mitchell, F-bounded polymorphism for object-

oriented programming languages, in Proceedings of Functional Programming Languages and
Computer Architecture (ACM, New York, 1989), pp. 273–280

104 4 Type Systems

7. R. Cartwright, G.L. Steele, Compatible genericity with run-time types for the Java program-
ming language, in Proceedings of OOPSLA ‘98 (1998), pp. 201–218

8. W.R. Cook, A proposal for making Eiffel type safe. Comput. J. 32, 305–311 (1989)
9. J. Gosling, B. Joy, G. Steel, G. Bracha, The Java Language Specification, 3rd edn. (Prentice

Hall, New Jersey, 2005)
10. A. Kennedy, D. Syme, Design and implementation of generics for the .NET Common

Language Runtime, in Proceedings of PLDI (ACM, New York, 2001), pp. 1–12
11. A. Myers, J. Bank, B. Liskov, Parameterized types for Java, in Proceedings of POPL (ACM,

New York, 1997), pp. 132–145
12. M. Odersky, P. Wadler, Pizza into Java: translating theory into practice, in Proceedings of

POPL (ACM, New York, 1997), pp. 146–159
13. J. Solorzano, S. Alagić, Parametric polymorphism for JavaTM : a reflective solution, in

Proceedings of OOPSLA ‘98 (ACM, New York, 1998), pp. 216–225
14. D. Yu, A. Kennedy, D. Syme, Formalization of generics for .NET Common Language Runtime,

in Proceedings of POPL (ACM, New York, 2004), pp. 39–63

Chapter 5
Concurrent Models

In this chapter we consider concurrent object-oriented models. In section we present
the Java model of concurrent threads of execution. In Sect. 5.1.1 we introduce thread
objects. Section 5.1.2 explains the basic mechanism of synchronizing concurrent
access of multiple threads to objects on the common heap. In Sect. 5.1.3 we discuss
the relationship between synchronization and inheritance and in Sect. 5.1.4 the rela-
tionship between serialization and synchronization. In Sect. 5.1.5 we demonstrate
what the implications are of synchronized versus unsynchronized executions.

Section 5.2 leads to a more general concurrent and distributed model based
on asynchronous messages. The basis of this model is the fact that messages
may be viewed as objects, which leads to a hierarchy of message types presented
in Sect. 5.2.1. In Sect. 5.2.2 we extend the previously specified typing rules by
introducing typing rules for messages of different types. In this new framework it is
natural to define formally the rules of behavioral subtyping in Sect. 5.2.3.

In Sect. 5.3 we introduce a very general model of concurrent active objects, each
equipped with its own virtual machine. Ambients of such objects are discussed in
Sect. 5.3.1. Reflective capabilities for support of concurrent objects are specified in
Sect. 5.3.2. A distinctive feature of the reflection as presented here is the presence
of assertions. Finally, in Sect. 5.3.3 we specify the virtual machine for concurrent
objects able to execute various types of asynchronous messages.

5.1 Concurrent Threads

5.1.1 Thread Objects

Java introduced the notion that a thread of execution is an object. As such, it is
created dynamically as all objects are. A thread object has a state (of execution) and
it is equipped with methods that introspect and change the thread object state. This

© Springer International Publishing Switzerland 2015
S. Alagić, Object-Oriented Technology, DOI 10.1007/978-3-319-20442-0_5

105

106 5 Concurrent Models

way a Java program can have multiple threads of execution that exist concurrently
and contribute to the overall outcome of the program execution.

The core of the Java model of concurrent threads is based on the interface
Runnable and the class Thread. The interface Runnable contains only one method
run. Its implementation in a specific class specifies the actual thread execution
process.

public interface Runnable {
void run();

}

The class Thread has a constructor that takes a Runnable object as the argument
and creates a thread of execution. The method run in the class Thread has an empty
implementation so that it must be overridden in a specific class. Thread execution is
started by invoking the method start. A thread execution can be interrupted, but the
basic idea of the Java model is that all threads created by a program should run to
their completion.

public class Thread
extends Object, implements Runnable {

public Thread(Runnable target);
public void start();
public void run();
public void interrupt();
// other methods

}

An example of using the interface Runnable and the class Thread is the class
TestRun given below.

class TestRun implements Runnable {
private long firstNumber;
public TestRun(long firstNumber) {
this.firstNumber D firstNumber;
}
public void run() {
// compute suitable numbers larger than firstNumber
...
}

}

In the code given below, an object of the class TestRun is created, as well as a new
Thread object. The Thread constructor takes an object of TestRun as its argument.
The newly created thread is then started.

TestRun p D new TestRun(147);
new Thread(p).start();

5.1 Concurrent Threads 107

5.1.2 Synchronized Objects

Existence of multiple concurrent threads that access objects on the common heap
creates some well-known problems. Actions of two threads performed concurrently
on the same object may produce incorrect results such as incorrect updates or
incorrect results of introspection of the object state. This is why concurrent access
to objects must be controlled to avoid these problems.

A well known approach is illustrated below by the class SynchronizedObject.
The methods that access and modify the hidden object state are declared as
synchronized. This means that a thread executing one of these methods gets
exclusive access to the underlying object state. The object state is made available to
other threads when the method completes it execution. This basic model is extended
with a more sophisticated synchronization protocol for concurrent threads accessing
the same object.

public class SynchronizedObject {
private Object state;
public SynchronizedObject(Object initialState) {

stateDinitialState;
}
public synchronized Object get() {

return state; }
public synchronized void set(Object obj) {

stateDobj ;}
// methods inherited from Object:
// public wait()
// public void notifyAll()
// other methods

}

The undesirable effect of unsynchronized access of two threads to the same
object is illustrated in Fig. 5.1. The update of Thread 1 will be lost.

The effects of synchronized access that avoids the above problem is illustrated
in Fig. 5.2.

A more sophisticated scheduling strategy for concurrent access is based on the
methods wait and notifyAll inherited from the root class Object. This model is
illustrated by the parametric class SynchronizedContainer. Adding new elements
to the container by a synchronized method add works in accordance with the
synchronization access model described above. The container is assumed to be
unbounded. However, removing an element from the container is possible only if
a container is not empty. This is why a thread that attempts to remove an element
from an empty container is put in a wait state. The method add will send a message
notifyAll to all waiting threads when it successfully adds an element to the container.
One of those threads waiting for this message will be selected nondeterministically
and its remove action will be performed.

108 5 Concurrent Models

Time
Object x

x.get()

x.set(obj)

x.get()

x.set(obj)

Object obj

Thread 1 Thread 2

Fig. 5.1 Unsynchronized object access

Time

x.get()

x.set(obj)

x.get()

x.set(obj)

Object obj

SynchronizedObject x

Thread 1 Thread 2

Fig. 5.2 Synchronized object access

5.1 Concurrent Threads 109

class SynchronizedContainer<T> {
private Container<T> container D new Container<T>;
public synchronized void add(T x) {

container.add(x);
notifyAll();

}
public synchronized void remove(T x) {

throws InterruptedException;
{ while (container.size() D 0)

wait();
container.remove(x);

}
}

5.1.3 Synchronization and Inheritance

Many classes are developed with no considerations for possible concurrent access
to their objects. Producing a class that allows concurrent access from a class
that does not is accomplished by inheritance. A class that enforces synchronized
access is derived from the base class by overriding the inherited methods and
declaring them as synchronized. The bodies of these synchronized methods can
now just invoke the corresponding methods in the base class. This is illustrated by
the classes OrderedCollection and OrderedCollectionSync. Note the general rule
that the synchronized property of a method is not inherited. In this example, the
methods in OrderedCollection are not synchronized, and their overridden versions
in OrderedCollectionSync are synchronized. The class OrderedCollectionSync is
derived by inheritance from the class OrderedCollection by overriding all the
inherited methods, declaring them as synchronized, and invoking the methods in
the superclass.

public class OrderedCollectionSync< T extends Comparable<T>>

extends OrderedCollection<T> {
public OrderedCollectionSync() { super(); }

@Override
public synchronized boolean contains(Object e) {
if (e ¤ null) {return super.contains(e); }
else return false;

}
@Override
public synchronized void add(T e) {
super.add(e); }

110 5 Concurrent Models

@Override
public synchronized void remove(Object e) {
super.remove(e); }

}

5.1.4 Concurrency and Serialization

In this section we show how a complex object is serialized and deserialized using
synchronized methods. The appropriate exception handling is also specified. This
makes serialization and deserialization safe in a concurrent environment. The class
RunwayQueue extends the class Queue and introduces synchronized methods for
serialization and deserialization of the RunwayQueue objects.

The Java type constraint T extends Aircraft & Serializable guarantees two things.
The first is that the objects in the runway queue are aircraft objects (i.e. objects of
subtypes of the type Aircraft). The second constraint guarantees that these objects
are serializable. This is an instance of multiple inheritance as available in Java. The
actual parameter corresponding to the formal type parameter T must be a class that
extends the aircraft class and implements the interface Serializable. In Java and C#
single inheritance applies to classes and multiple inheritance to interfaces. In this
case, a class extends a single class and implements an interface. This is illustrated in
Fig. 5.3. This way serializing the runway queue will include serializing the objects
in the queue as well.

public class RunwayQueue<T extends Aircraft & Serializable >

extends Queue<T> implements Serializable {
// fields, constructors and methods

public synchronized void serialize()
{ try {

FileOutputStream fileStream D new FileOutputStream(“RunwayData”);
ObjectOutputStream objectStream D new ObjectOutputStream(fileStream);
objectStream.writeObject(this);
objectStream.close();

}

Fig. 5.3 Multiple
inheritance Aircraft Serializable

T

5.1 Concurrent Threads 111

catch (FileNotFoundException fileEx)
{exception handling }

catch (IOException ioEx)
{ exception handling }

}
public synchronized RunwayQueue<T> deserialize()

{// symmetric code
}

}

5.1.5 Synchronized Versus Unsynchronized Executions

The impact of synchronized versus unsynchronized access to collection objects
is illustrated by a class Testrun. Its run method performs insertion of integers in
the given range but then immediately deletes the odd ones. Synchronized access
to the collection object is accomplished by the Java synchronized statement. The
synchronized statement guarantees exclusive access to the synchronized object by
a single thread. This will guarantee that the resulting collection object will contain
only even integers. In the absence of the synchronize statement multiple threads will
produce wrong results, i.e., a mix of odd and even integers in the collection object.

public class TestRun implements Runnable {
private OrderedCollection<Integer> collection;
public TestRun(OrderedCollection<Integer> collection) {

this.collection D collection;
}

@Override
public void run() {
//insertions to the list (0–100) and deletion of odd insertions
synchronized(collection) {

Integer toAdd;
for (int i D 0; i < 100; iCC) {
toAdd D new Integer(i);
collection.add(toAdd);
if (i div 2 D 0)
{collection.remove(new Integer(i -1));}

}
}

}
}

In this example we need methods that are defined in a somewhat more complete
class Thread given below. A thread can be interrupted, for example when a thread

112 5 Concurrent Models

execution is suspended by invoking the method sleep or the method wait. These
methods will throw InterruptedException. Invocation of the method join on a thread
object will make the current execution wait until the thread completes its execution.

public class Thread
extends Object, implements Runnable {

public Thread(Runnable target);
public void interrupt();
public boolean isInterrupted();
public void join()

throws InterruptedException;
public void run();
public static void sleep()

throws InterruptedException;
public void start();
public static void yield();
// other methods

}

In the main method given below two threads are created and started. The Java join
statement is used to wait until these two threads complete. The underlying collection
is not equipped with synchronized methods, but the synchronized statement will
guarantee correct results. Otherwise, the resulting collection will contain both odd
and even numbers.

public static void main(String[] args) {
private OrderedCollection<Integer> intCollection D

new OrderedCollection<Integer>();
Thread thread1 D new Thread(new TestRun(intCollection));
Thread thread2 D new Thread(new TestRun(intCollection));
thread1.start();
thread2.start();
try {//wait for threads to finish before checking the collection

thread1.join();
thread2.join();

} catch (InterruptedException e) { exception handling }
for (Integer i: intCollection)

System.out.print(i);
}

An alternative solution to guarantee a correct outcome is to use the previously
defined synchronized collection as in the code below.

5.2 Messages as Objects 113

OrderedCollectionSync<Integer> syncIntCollection D
new OrderedCollectionSync<Integer>();

Thread thread1 D new Thread(new TestRun(syncIntCollection));
Thread thread2 D new Thread(new TestRun(syncIntCollection));

5.2 Messages as Objects

5.2.1 Types of Messages

A message in mainstream object-oriented languages such as Java or C# is specified
in a functional notation as an application of a method to its arguments where
one of them is distinguished as the receiver. This follows the traditional notation
of procedural and functional languages. But in fact, dynamic binding makes the
semantics of message sends quite different. The functional view for message send
does not reflect correctly the fact that there are different types of messages.

The functional view fits the observer and the constructor messages. An observer
message just reports the properties of the hidden object state and a constructor
message constructs an object of the specified result type. In both cases a message
has arguments and a result and hence represents an expression of the result type.

Other categories of messages do not fit the functional notation. A mutator
message is a message that changes the state of the receiver and possibly other objects
as well. A mutator message does not have a result and its semantics does not fit the
functional notation. An object creation message is sent to a class object and its
semantics does not include dynamic binding of a message to a method. This is why
this type of a message is expressed in a different notation.

An asynchronous message in general does not have a result and hence the
functional notation is not appropriate. In addition, an asynchronous message has
a lifetime and specific types of asynchronous messages have other attributes.
A particular type of an asynchronous message has a result but this result is not
necessarily immediately available at the point of the message send. In fact, a two
way message has an attribute called future which makes it possible to access the
result of a two way message but only when it is actually available.

A transient message has a discovery life time. If a transient message is not
scheduled for execution within its discovery life time, it will expire and it will
never be executed. A sustained message is a message that does not have this
limitation. A message may be one-to-one with a single receiver or a message may
be a broadcast message sent to a set of receiver objects. Many messages naturally
combine the features of the above mentioned message types. For example, a two-
way transient message, a one-to-one sustained message, a one-to-many mutator
message, etc.

114 5 Concurrent Models

The above informal analysis shows that messages have different types. Different
types of messages can be naturally structured into a hierarchy of types including
multiple inheritance. A message send is interpreted as a creation of an object of the
appropriate message type. Beyond that point a message object behaves according to
the specification of its type. Specifying the behavior of objects of a message type is
naturally done using an object-oriented assertion language. The assertion language
should be based on a logic that fits this object-oriented paradigm in which messages
are viewed as typed objects.

Non-functional messages in this paradigm are objects. A message is created
dynamically and it has a unique identifier like any other object. In the concurrent
architecture described in Sect. 5.3.1 object identifiers must be global. The attributes
of a message are the receiver object and the array of arguments along with a
reference to a method. Messages of specific subtypes will have other attributes. This
produces a hierarchy of message types that are subtypes of the type Message:

interface Message {
Method m();
Object receiver();
Object[] arguments();
int timeStamp();

}

When a message object is created its time stamp is recorded. The implementing
class would have a constructor:

class MessageObject implements Message {
MessageObject(Method m, Object receiver,

Object[] arguments);
int timeStamp();
Method m();
Object receiver();
Object[] arguments();

}

Creating a message could be done just like for all other objects:

Message msg D new MessageObject(Method m, Object receiver,
Object[] arguments)

This implies message send in the underlying implementation. However, Message
and MessageObject belong to the reflective core of this language along with Class,
Method, and Constructor. These types should be final in order to guarantee type
safety at run-time. So an alternative is to have a special notation to create an

5.2 Messages as Objects 115

asynchronous message. A functional (and hence synchronous) message is denoted
using the usual dot notation:

x.m(a1,a2,. . .,an)

A non-functional (asynchronous etc.) message would be created as follows:

Message msg D x (m(a1,a2,. . .,an)

In general, an asynchronous message does not have a result. The basic type of
a message is point-to-point, one-way, and immediately executed. This type of a
message could be expressed in a traditional notation

receiver.m(arguments)

In the new paradigm the result of an asynchronous message send is a reference
to the created message object.

A mutator message is a message that mutates the state of the receiver object and
possibly other objects as well. A mutator message does not have a result, hence we
have:

interface MutatorMessage extends Message {. . .}

A special notation for a mutator message is

X <WD m(a1,a2,. . .,an)

The type of this expression is MutatorMessage.
A two way message requires a response which communicates the result of

a message. The result is produced by invoking the method future on a two way
message. This method has a precondition which is that the future is resolved, i.e.,
that it contains the response to the message.

interface TwoWayMessage extends Message {
boolean futureResolved();
boolean setFuture(Object result);
Object future() requires this.futureResolved();

}

The implementing class would contain a constructor which takes the reply
interval as one of its parameters.

class TwoWayMessageObject implements TwoWayMessage {
TwoWayMessageObject(Method m, Object receiver, Object[] arguments,

int replyInterval);
boolean futureResolved();
boolean setFuture(Object result);
Object future() requires this.futureResolved();

}

A one-to-many message is of the type BroadcastMessage and it is sent to multiple
objects. A suggestive notation for a one to many message is <=>>.

116 5 Concurrent Models

A transient message has a discovery life time specified as a finite time interval.
If a message is not discovered and scheduled for execution before its discovery time
has expired, the message will be regarded as expired and will never be scheduled
for execution. The discovery life time will be specified in the constructor of the
implementing class:

class TransientMessageObject implements TransientMessage {
TransientMessageObject(Method m, Object receiver, Object[] arguments,

int discoveryLifeTime);
int discoveryLifeTime();

}

A suggestive notation for a transient message is <=j. A sustained message (i.e.
a message whose discovery time is not limited) denoted as <=� is specified by a
special message type:

interface SustainedMessage extends Message {. . .}

Object creation is expressed by creating a message object of the type
CreateMessage:

interface CreateMessage extends Message {
Object newObject();

}

So if C is a class the expression

C (Šnew(a1,a2,. . . ,an)

is of type CreateMessage.
A variety of non-functional message types can now be expressed via interfaces

as illustrated in Fig. 5.4.

5.2.2 Typing Rules

In this section we present some of the typing rules for a language that supports
the notion of a message as a typed object, described so far. This set of rules is by
no means complete. We focus on the rules that apply to the distinctive features
of this paradigm: messages, reflection and assertions. Many other standard rules
are omitted. The rules for typing classes follow the typing notation introduced in
Chap. 4 and they are based on the availability of reflection. The basic reflective
classes are Class, Method, Constructor, Message and its subtypes, Assertion and
Expression with their subtypes.

An important point is that the static and the run-time type systems con-
tain equivalent type info, hence both typing environments are denoted as T .

5.2 Messages as Objects 117

Message

CreateMessage TwoWayMessage BroadcastMessage

TransientMessage SustainedMessage

UpdateMessage

PersistMessage

QueryMessage

SustainedUpdateBroadcastMessage TwoWayTransientQueryMessage

Fig. 5.4 Message type hierarchy

The first rulebelow specifies a well-typed class. An expression that is a well-
typed specification of a class is of the type Class. The main difference in comparison
with the rule given in Chap. 4 is the presence of an invariant.

T ` C W Class,
T ` constructor.D/ W Constructor;

T ` methods.D/ W MethodŒ �;

T ` methods.D/ compatibleWith methods.C/;

T ` invariant.D/ W Assertion

T ` class D extends C
fconstructor.D/I methods.D/I invariant.D/g W Class

A special case in the above rule is DDObject. The relation compatibleWith
(which we do not elaborate fully) in the above rule captures the standard require-
ments for type signatures of inherited methods that we already discussed in Chap. 4.
compatibleWith specifies that method signatures are inherited as specified in the
superclass. The only redefinition of the inherited method signatures is covariant
change of the result type. With compatibleWith defined like that we have the
following implication as in Chap. 4:

T ` C W Class,
T ` A m.A1; A2; : : : ; An/f: : :g 2 methods.C/;

T ` class D extends C W Class;
T ` B m.A1; A2; : : : ; An/f: : :g 2 methods.D/

T ` B <W A

A class expression which specifies a well-typed parametric class with the type
parameter T and the bound type B is of the type Class < T <W B > where the
bound B could also be parametric. We do not give the full typing rules for parametric
classes as they have been already discussed in Chap. 4. We just give the rule below
that governs instantiation of parametric classes. Recall that e < D=T > denotes

118 5 Concurrent Models

an expression e in which all free occurrences of T are replaced by D. The main
difference in comparison with the previous rules is that substitution applies to the
invariant.

T ` class C < T extends B >

fconstructor.C/I methods.C/I invariant.C/g W Class < T <W B >,
T ` D <W B < D=T >

T ` class C < D >

fconstructor.C/ < D=T >I methods.C/ < D=T >I invariant.C/ < D=T >g W
Class

The rule for typing method bodies is given below. This is a rule that we did
not present in Chap. 4. In addition, in the rule below we have the precondition, the
postcondition and the modifies list. These assertions and the expression representing
the method body are type checked in an environment that is obtained from the
environment of the method extending it by bindings for formal parameters. The
symbol for union [is used to denote extending the typing environment with new
bindings.

T ` B W Class, T ` Ai W Class for i D 1; 2; : : : ; n,
T [fx1 W A1; x2 W A2; : : : ; xn W Ang ` preCondition.m/ W Assertion;

T [fx1 W A1; x2 W A2; : : : ; xn W Ang ` postCondition.m/ W Assertion;

T [fx1 W A1; x2 W A2; : : : ; xn W Ang ` modifyList.m/ W List < modifyPair >,
T [fx1 W A1; x2 W A2; : : : ; xn W Ang ` expression.m/ W B

T ` B m.A1 x1; A2 x2; : : : ; An xn/

fpreCondition.m/I postCondition.m/I modifyList.m/I return expression.m/g W
Method

The typing rule for functional messages is the usual one:

T ` x W A;

T ` C m.D1; D2; : : : ; Dn/f: : :g 2 methods.A/;

T ` ei W Ei for i D 1; 2; : : : ; n;

T ` Ei <W Di for i D 1; 2; : : : ; n

T ` x:m.e1; e2; : : : ; en/ W C

The typing rule for asynchronous messages is somewhat different. In general,
an asynchronous message does not have a result. It creates a new message object
and hence the type of an asynchronous message expression x <D m(e1,e2,. . . ,en) is
Message.

T ` x W A;

T ` C m.D1; D2; : : : ; Dn/f: : :g 2 methods.A/;

T ` ei W Ei for i D 1; 2; : : : ; n;

T ` Ei <W Di for i D 1; 2; : : : ; n

T ` x <D m.e1; e2; : : : ; en/ W Message

5.2 Messages as Objects 119

The rules for other types of messages would follow the above pattern. For
example, the rule for a one to many asynchronous message has the following form:

T ` x W A;

T ` C m.D1; D2; : : : ; Dn/f: : :g 2 methods.A/;

T ` ei W Ei for i D 1; 2; : : : ; n;

T ` Ei <W Di for i D 1; 2; : : : ; n

T ` x <=>> m.e1; e2; : : : ; en/ W BroadcastMessage

The typing rule for a message representing creation of a new object of a class C
has the following form:

T ` C W Class,
T ` constructor.C/ W C.D1; D2; : : : ; Dn/;

T ` ei W Ei for i=1; 2; : : : ; n;

T ` Ei <W Di for i=1; 2; : : : ; n

T ` C <=Šnew.e1; e2; : : : ; en/ W CreateMessage

The typing rules for assertions that are first-order predicates have the following
form:

T [fx W Cg ` e W Assertion

T ` .8 C x/.e/ W Assertion

5.2.3 Behavioral Subtyping

The inheritance rules for assertions follow the discipline of behavioral subtyping.
These rules were discussed previously, and now we can put them in a formal
notation.

A subclass can only strengthen the inherited invariant from the superclass (usu-
ally by conjunction). An invariant applies to all object states, hence all variables in
an invariant are implicitly universally quantified. An invariant in a subclass typically
introduces additional bound variable in comparison with the bound variables of the
superclass. For any type correct substitution of bound variables, the invariant in the
subclass implies the invariant of the superclass.

T ` class D extends C W Class,
T ` boundVariables.invariant.D// D fx1; x2; : : : ; xng,

T ` boundVariables.invariant.C// � boundVariables.invariant.D//,
T ` xi W Ai for i D 1; 2; : : : ; n,
T ` ai W Ai for i D 1; 2; : : : ; n

invariant.D/Œai=xi�) invariant.C/Œai=xi�

120 5 Concurrent Models

The rules of behavioral subtyping require that the precondition of an inherited
method is weaker in the subclass in comparison with the precondition of that
method in the superclass (contravariance). A typical implementation of this rule
is that the preconditions of the inherited methods remain invariant in a subclass.
A precondition contains free variables, such as those that represent arguments of
a method call. The rule below specifies only the requirement for those variables.
A precondition may also contain bound variables, but we omit them from the rule
below as they are treated as in invariants.

T ` class D extends C W Class;
T ` A m.A1; A2; : : : ; An/f: : :g 2 methods.C/;

T ` freeVariables.preconditionD.m// D fx1; x2; : : : ; xng,
T ` freeVariables.preconditionC.m// � freeVariables.preconditionD.m//,

T ` xi W Ai for i D 1; 2; : : : ; n,
T ` ai W Ai for i D 1; 2; : : : ; n

preConditionD.m/Œai=xi� , preConditionC.m/Œai=xi�

The post condition of an inherited method may be strengthened in a subclass
(usually by conjunction):

T ` class D extends C W Class;
T ` A m.A1; A2; : : : ; An/f: : :g 2 methods.C/;

T ` freeVariables.postconditionD.m// D fx1; x2; : : : ; xng,
T ` freeVariables.postconditionC.m// � freeVariables.postconditionD.m//,

T ` xi W Ai for i D 1; 2; : : : ; n,
T ` ai W Ai for i D 1; 2; : : : n

postConditionD.m/Œai=xi�) postConditionC.m/Œai=xi�

5.3 Concurrent Objects

5.3.1 Ambients of Concurrent Objects

In this section we describe the environments based on the view of messages as typed
objects. An ambient is a dynamic collection of service objects. When a message is
sent to an ambient object, one or more service objects is selected depending upon
the type of the message, and the message is sent to those service objects. The types
of service objects are assumed to be derived from the type ServiceObject. Thus the
class Ambient is parametric and its type parameter has ServiceObject as its bound
type as follows:

abstract class Ambient<T extends ServiceObject>
{. . . }

5.3 Concurrent Objects 121

Messages sent to an ambient are in general asynchronous, hence they are of the
type Message. When such a message object is created, it has its identity, a lifetime,
and behaves according to one of the specific subtypes of the type Message. For
example, a transient message has a limited lifetime and a sustained message does
not. Moreover, messages can be sent to message objects. For example, if a message
is a two-way message, a message that refers to the future method may be sent to the
two-way message object to obtain the result when it becomes available.

An ambient has a filter which is a predicate defined as:

abstract boolean filter(T x)

This method filters the relevant service objects that belong to the ambient. It is
defined for a specific Ambient class, i.e, a class that is obtained from the class Ambi-
ent by instantiating it with a specific type of service objects. An ambient has a
communication range which determines a collection of service objects that are in
the ambient’s range:

Set<T> communicationRange()

The reach of an ambient object is then the collection of all service objects of the
given type that satisfy the filter predicate and are within the communication range
of the ambient object:

Set<T> reach()

where for an ambient a and a service object x we have

(x 2 a.reach()) , (a.filter(x) ^ (x 2 a.communicationRange()).

The class Ambient is equipped with a scheduler that selects the next message for
execution according to some strategy. So the Ambient class looks like this:

abstract class Ambient<T extends ServiceObject> {
abstract boolean filter(T x);
Set<Message> messages();
Set<T> communicationRange();
Set<T> reach();
invariant (8 T x)
((x 2 this.reach()) , (this.filter(x) ^ (x 2 this.communicationRange()))

}

An example of a specific ambient class is

class StockBroker extends ServiceObject {
int quote(String stock);
int responseTime();
. . .

}

class StockBrokerAmbient extends Ambient<StockBroker> {

122 5 Concurrent Models

String[] displayStocks(){. . .};
requestQuote(String stock){. . .};
boolean filter(StockBroker x)
{return x.responseTime() � 10; }

}

StockBrokerAmbient stockbrokers D new StockBrokerAmbient();

An example of an asynchronous message is:

Method requestQuote D getClass(“StockBrokerAmbient”).getMethod(
“requestQuote”, getClass(“String”));

Message requestQuoteMsg D new MessageObject(requestQuote,
stockBrokers,stock)

An alternative notation looks like this:

Message requestQuoteMsg D stockbrokers (requestQuote(stock)

An example of a two way message is:

TwoWayMessage requestQuoteMsg D ! new
TwoWayMessageObject(requestQuote, stockBrokers,stock,20)

A suggestive notation for a two way message is:

TwoWayMessage requestQuoteMsg D
stockbrokers <=> requestQuote(stock,20)

In order to access the result of a two way message, its future must be resolved,
which requires testing the precondition of the future of the message.

Using a suggestive notation for a one-to-many message, we would have the
following example:

Message requestQuoteMsg D stockbrokers <=>> requestQuote(stock)

In a more general concurrent setting a concurrent object is equipped with its own
virtual machine:

class ConcurrentObject {
private VirtualMachine VM();

}

5.3 Concurrent Objects 123

Fig. 5.5 A concurrent object

Stack Heap
messages
Queue of

PC

In the extreme case, all objects are concurrent objects, i.e., the class Concur-
rentObject is identified with the class Object. A virtual machine is equipped with
a stack, a heap, and a queue of messages as shown in Fig. 5.5. Further details
are elaborated in Sect. 5.3.3. A concurrent object executes messages. If it is busy
executing a message, a message is placed in the queue for subsequent execution.
A service object is now defined as a concurrent object:

class ServiceObject extends ConcurrentObject {. . . }

We can now redefine an ambient in this new setting as a concurrent object which
represents a dynamic collection of concurrent service objects:

class Ambient <T extends ServiceObject>
extends ConcurrentObject {

. . . }

Since an ambient is a concurrent object, it has its own virtual machine with a
queue of messages sent to the ambient object and not serviced yet.

A mobile object is a concurrent object that is equipped with a location:

class MobileObject extends ConcurrentObject {
Location loc ();

}

A region is an ambient that captures the notion of locality. It consists of all
concurrent objects within the region as well as the service objects in that region,
as illustrated in Fig. 5.6.

class Region <T> extends Ambient<T> {
Set<ConcurrentObject> objects();
boolean withinRegion(MobileObject x);
invariant
(8 MobileObject x)(this.withinRegion(x))

(x 2 this.objects()))
}

124 5 Concurrent Models

VM VM

VM

VM

CO

CO

CO

SO

Concurrent object

Concurrent object

Concurrent object

Service object
VM

Region

Fig. 5.6 Regions of concurrent and service objects

For example, if

class Server extends ServiceObject {. . .}

then Region<Server> would be an example of a region type. Since a region is
a concurrent object, it is equipped with its own virtual machine. Also, since a
region is an ambient, it receives messages that are queued in the message queue
of the region’s virtual machine to be serviced. Servicing a message sent to a region
amounts to selecting a server object and sending the message to that server.

5.3.2 Reflection

Reflection in a language that supports messages as typed objects includes classes
Class, Field, Method, and Constructor. In addition:

– Reflection includes the interface Message with it various subtypes.
– Reflection includes the interfaces Assertion and Expression with their various

subtypes.

Reflection also includes the interface State whose implementation details are
hidden. The hidden components of State include the states of the stack, the heap,
the queue of messages, and the state of the program counter which determines the
currently executed message.

A class in the source language has the following format:

class C extends D {
constructor(C);

5.3 Concurrent Objects 125

methods(C);
invariant(C);

}

Following the notation introduced in Chap. 4, the signatures of constructors and
methods of a class C are specified below:

– constructor(C): C(E1,E2,. . .,En) where Ei is a type
– method(C): B m(A1,A2,. . .,An) where B, Ai are types.

An invariant is an expression of type Assertion. The core reflective class Class has
the following abbreviated signature. A distinctive feature is an assertion representing
a class invariant.

final class Class {
String name();
Method[] methods();
Method getMethod(String name, Class[] arguments);
. . .
Assertion invariant();

}

Specification of a method in the surface language follows the following general
format:

B m(A1 x1, A2 x2, . . ., An xn){
preCondition(m);
postCondition(m);
modifyList(m);
return expression(m);

}

where B, A1, A2, . . ., An are types. Preconditions and postconditions are assertions.
The modify list specifies the objects that are mutated by the method. If this list is
empty the method is a pure function with no effects on the receiver or side effects on
other objects. A mutator message refers to a method whose modify list is not empty.
The form of a modify list is:

modifyList(m): C1 x1, C2 x2, .. . , Cn xn

where Ci is a type and xi is an object name for i=1; 2; : : : ; n.

The effect of a mutator message is specified by assertions. The body of a method
is an expression. Expressions include constants, variables, as well as the following
expressions:

– !new C(e)—object creation where C is a class and e is an expression
– x.m(e)—synchronous message

126 5 Concurrent Models

– x <D m.a1; a2; : : : ; an/, x <D> m.a1; a2; : : : ; an/, x <D>> m.a1; a2; : : : ;

an/, etc.—asynchronous messages

The reflective class Method is defined as follows. Its distinctive features are a
precondition and a postcondition expressed as assertions. Their type is Assertion.

final class Method {
String name();
Class declaringClass();
Assertion preCondition();
Assertion postCondition();
Class[] arguments();
Class result();
Expression body();
Object eval(Object receiver, Object[] args);

}

The body of a method is an expression evaluated by the function eval. Just
like Assertion, the type Expression belongs to the reflective core. The method eval
evaluates the method body after binding of variables occurring in the expression
representing the method body. The variables to be supplied to eval are the receiver
and the arguments.

Availability of assertions in the classes Method and Class is a major distinction
with respect to the current virtual machines such as JVM or CLR. This is at the
same time a major difference with respect to the assertion languages such as JML
or Spec#.

Assertions are built from logical constants and boolean synchronous messages
representing terms of the assertion language. More complex assertions are built
using standard logical connectives. The assertion language includes formulas of the
typed first order predicate calculus. So the following expressions are in the assertion
language, where C is a type, x is a variable, and e is an assertion:

– (8 C x)(e)
– (9 C x)(e)

The assertion language is enriched with features of more sophisticated logics. The
interface Assertion is specified as follows:

interface Assertion {
Set<Variable> boundVariables();
Set<Variable> freeVariables();
Formula formula();
boolean bindVariables(Object[] vars);
boolean eval();

}

Run-time representation of a variable as visible by reflection would look like this:

5.3 Concurrent Objects 127

interface Variable<T> {
String name();
Method declaringMethod();
StackValue<T> value();

}

So in general, an assertion will contain both bound variables and free variables.
An invariant has only bound variables, hence it is an instance of the type Sentence
specified below. A sentence is a closed formula, i.e., all its variables are bound
(quantified).

interface Sentence extends Assertion {
QuantifierType quantifier();
Formula body();
boolean eval();
invariant (8 Sentence s)(s.freeVariables().isEmpty())

}

Preconditions and postconditions may contain both free and bound variables.
These assertions are instances of the type Formula:

interface Formula extends Assertion {. . .}

5.3.3 Virtual Machine

In this paradigm a virtual machine is equipped with a run-time stack, a heap, and a
queue of messages waiting for execution, as specified in the class below:

final class VirtualMachine {
int currentTime();

private Stack<StackValue< T >> VMstack();
private Heap<Object> VMheap();
private Queue<Message> messages();

enum Exception D (noException, preCondition, postCondition,
invariant, expiredMessage);

private boolean executeMessage(Message msg);
private boolean setException(Exception e);
Exception getException();
. . .

}

128 5 Concurrent Models

The method executeMessage has the general decomposition given below. eval
denotes a standard stack-oriented evaluation of an expression which we do not
elaborate further. The classes Expression and Assertion are equipped with this
function. The class Assertion is also equipped with a method bindVariables which
is invoked before and after method execution. For a postcondition this method
is invoked twice as binding of variables must be done before and after method
execution. Invoking a method amounts to evaluation of its body which is an
expression to which the function eval applies.

if msg.instanceOf(TransientMessage) ^
(msg.discoveryTime() - msg.timeStamp()) < currentTime()

then
{setException(expiredMessage); return false};

if msg.instanceOf(TwoWayMessage) ^
(msg.replyInterval() - msg.timeStamp() < currentTime())

then
{setException(expiredMessage); return false};

if msg.m.preCondition().bindVariables(msg.receiver(),msg.arguments()) ^
msg.m.postCondition().bindVariables(msg.receiver(),msg.arguments()) ^
msg.m.preCondition.eval()

then
{Object result D msg.m.eval(msg.receiver(), msg.arguments());
if msg.instanceOf(TwoWayMessage) then {msg.setFuture(result)};

else {setException(preCondition); return false};
if msg.m.postCondition().bindVariables() ^
msg.m.postCondition().eval()

then return true
else { setException(postCondition); return false}

Of course, the invariant must also hold before and after message execution which
we do not show above.

In a concurrent paradigm described in Sect. 5.3.1, a concurrent object is equipped
with its own virtual machine. A concurrent object executes messages that it receives
by invoking the corresponding methods. In order to be able to do that, the heap of
the object’s virtual machine must contain reflective classes such as Class, Method,
Message etc. These classes are stored on the heap of the object’s virtual machine.
The heap also holds the object state. Execution of a method is based on the object’s
stack according to the standard stack-oriented evaluation model.

A concurrent object gets activated by receiving a message. If a concurrent object
is busy executing a method, the incoming message is queued in the message queue
of the object’s virtual machine. Messages in the queue will be subsequently picked
for execution when an object is not busy executing a method. So at any point in time
an object is either executing a single message or else it is inactive (i.e., its queue of
messages is empty).

5.3 Concurrent Objects 129

Note that in the above described concurrent object architecture, object identities
must be global. Such a global object identifier would naturally be tied to a reference
to the object state on the object’s heap. Reflective class objects must be repeated on
each individual object heap. This is a consequence of a typed reflective paradigm.

The computational values are either of simple types or else typed references to
objects. The computational values conform to the following interface:

interface StackValue <T> {. . .}

Values of simple type occur on the run-time stack:

interface SimpleStackValue <T extends SimpleType>

extends StackValue<T>

{T value(); . . .
}

Typed object references also occur on the run-time stack:

interface RefStackValue <T extends Object>
extends StackValue<T>

{Ref<T> value(); . . .
}

At the level of the virtual machine typed references are explicit and conform to
the following specification expressed in the object-oriented notation:

class Ref<T extends Object > {
static Ref<T> new();
boolean allocated();
boolean null();
T heap();
boolean mutate(T state);

}

Execution of a message amounts to a sequence of steps of the virtual machine
each corresponding to a particular operation. In the standard functional notation we
have:

heap W Ref < T >! T
allocated W Ref < T >! boolean
top W Stack < StackValue < T >>! StackValue < T >

As explained previously, eval denotes the standard stack-based evaluation of an
expression e which we do not elaborate further. In accordance with the standard
stack model (and the current virtual machines) we will assume that the result of
evaluation of an expression e is placed on top of the virtual machine stack.

130 5 Concurrent Models

5.4 Bibliographic Remarks

The presented model and the associated notation for concurrent threads is based on
Java [3, 4]. A general reference for concurrent programming in Java is [5]. Samples
of concurrent programming in Java are based on examples due to Russell Gillen and
David Ericson.

The presented view of concurrent, distributed and mobile objects appeared in [1]
and [2]. The motivation comes from languages ABCL [9, 10] and AmbientTalk [8].
The core difference is that both of these two languages are untyped, whereas our
approach here is based on a type system. A further distinction is that ABCL and
AmbientTalk are object-based and our approach is class based. A related work is [7].
Unlike ABCL reflective capabilities, reflection in this paper is type-safe. A major
distinction is the assertion language as a core feature of the approach presented in
this chapter.

The rules of behavioral subtyping are a special case of the rules specified in [6].

5.5 Exercises

1. Specify a class JointAccount with synchronized methods withdraw and deposit
so that the state of the account will not be incorrectly managed in a concurrent
environment. Does a constructor require synchronization?

2. Specify a class PrintQueue that contains a field representing a queue of objects
of type PrintJob and synchronized methods for adding a job to the print queue
and removing a job from the print queue. Make use of methods notifyAll and
wait assuming that many threads may be adding and removing jobs to the print
queue.

3. Specify a class PrintServer that implements the interface Runnable. This class
has a field of type PrintQueue representing a queue of print requests. The run
method of the class PrintServer is a loop with no termination condition. In this
loop a print job is removed from the queue and the method printout that does
the actual printing is invoked.

4. Consider a method initializeArray that takes an array of objects as its argument
and initializes all objects to null. Specify the postcondition of this method.
Specify the body of this method using the Java synchronize statement in such
a way that the postcondition will hold even if this method is executed in a
concurrent environment.

5. Specify a class Company. Objects of this class contain two collections: a col-
lection of employees and a collection of departments. Methods operating on
the collection of employees may be invoked concurrently with the methods
on the collection of departments with no synchronization required. However,
methods operating on either collection separately must be synchronized. Specify
this situation using the Java synchronize statement.

References 131

6. Assume that a method X has a synchronized method that invokes a synchronized
method on object Y. At the same time assume that the object Y has synchronized
method that invokes a synchronized method on the object X. Specify a class
whose main method creates two threads in such a way that this creates a
deadlock, i.e., a situation in which each thread is waiting for the other to
complete and neither thread can run.

7. A virtual machine that supports multiple threads like JVM or CLR has one run-
time stack per thread. Specify a class whose main method creates two threads
that invoke the same method of that class that has at least one local variable.
Show the outcome of a test execution.

8. Specify a class with static fields that creates multiple threads of execution. Are
these static fields shared data of these multiple threads? Run an experiment that
verifies your conclusion.

9. Specify a post office application where the class PostOffice is viewed as
an ambient of concurrent objects. Specify representative assertions of this
application.

10. Elaborate further the interface Formula based on the Java expressions. Consult
Java Language Specification for different forms of expressions.

11. Specify classes Bag and Sequence choosing an appropriate representation of
these collections. Specify class invariants, preconditions and postconditions that
make Sequence a behavioral subtype of Bag.

12. Extend the rules of behavioral subtyping specified in Sect. 5.2.3 to capture the
requirements that apply to modify statements.

13. Extend the rules of behavioral subtyping specified in Sect. 5.2.3 to capture the
requirements that apply to exceptions thrown by methods.

References

1. S. Alagić, A. Yonezawa, Ambients of persistent concurrent objects, in Proceedings of DBKDA
2011 (Advances in Databases, Knowledge, and Data Applications), IARIA 2011 (2011),
pp. 155–161

2. S. Alagić, A. Anumula, A. Yonezawa, Verifiable constraints for ambients of persistent objects.
Adv. Softw. 4, 461–470 (2011)

3. K. Arnold, J. Gosling, D. Holmes, The Java Programming Language, 4th edn. (Addison-
Wesley, Boston, 2005)

4. J. Gosling, B. Joy, G. Steel, G. Bracha, The Java Language Specification, 3rd edn. (Prentice
Hall, New Jersey, 2005)

5. D. Lea, Concurrent Programming in Java: Design Principles and Patterns, 2nd edn. (Addison-
Wesley, Boston, 1991)

6. B. Liskov, J.M. Wing, A behavioral notion of subtyping. ACM TOPLAS 16, 1811–1841 (1994)
7. J. Schafer, A. Poetzsch-Heffter, JCoBox: generalizing active objects to concurrent components,

in Proceedings of ECOOP 2010. Lecture Notes in Computer Science, vol. 6183 (Springer,
New York, 2010), pp. 275–299

132 5 Concurrent Models

8. T. Van Cutsem, Ambient references: object designation in mobile ad hoc networks, Ph.D.
dissertation, Vrije University Brussels, 2008

9. T. Watanabe, A. Yonezawa, Reflection in an object-oriented concurrent language, in Proceed-
ings of OOPSLA (ACM Press, New York, 1988), pp. 306–315

10. A. Yonezawa, J.-P. Briot, E. Shibayama, Object-oriented concurrent programming in ABCL/1,
in Proceedings of OOPSLA (ACM Press, New York, 1986), pp. 258–268

Chapter 6
Object Databases

Object-oriented database technology addresses the limitations of relational and
extended relational technologies in managing complex objects that exhibit complex
behavior. The relational technology has no good way of representing or managing
such persistent objects. Object-oriented database technology is also addressing the
problem of the mismatch between the dominating software technology, which is
object-oriented, and the dominating database technology that is relational or object-
relational at best. This specifically applies to the so called impedance mismatch
between data and programming languages.

Queries are a key feature of any database technology. In Sect. 6.1 we discuss
the basic features of object-oriented query languages. We start with the ODMG
schema definition language ODL in Sect. 6.1.1. We then discuss in Sect. 6.1.2 the
main features of OQL, the ODMG query language. Embedding of OQL in the Java
binding of ODMG is then discussed in Sect. 6.1.3. This discussion of the problems
of Java OQL is followed by a presentation of LINQ in Sect. 6.1.4 which resolves
many problems of the Java binding of ODMG.

Section 6.2 is devoted to the most important object-oriented database technolo-
gies. In Sect. 6.2.1 we explain the core features of the ODMG technology which
include database collection classes, interfacing databases from an object-oriented
programming language, and the ODMG notion of a transaction. In Sect. 6.2.2 we
revisit the typing issues for persistent collections. The core features of a specific
recent technology Db4 Objects are presented in Sect. 6.2.3. Section 6.2.4 contains a
sample application implemented using Db4 Objects.

© Springer International Publishing Switzerland 2015
S. Alagić, Object-Oriented Technology, DOI 10.1007/978-3-319-20442-0_6

133

134 6 Object Databases

6.1 Query Languages

6.1.1 Object Definition Language

In the ODMG (Object Data Management Group) approach there exists a declarative,
object-oriented language ODL for specifying database schemas. ODL allows
specification of types of database objects and collections of objects of those
types. A class specification includes signatures (names and types) of attributes
(fields), signatures of applicable methods, and relationships among database objects
(inheritance and associations). ODL was meant to be independent of particular
object-oriented programming languages. Queries are specified in a stand-alone
object query language OQL, and transactions are written in languages such as Java,
CCC and Smalltalk. The core idea is that there should be a unified type system
across all of these languages, which is provably impossible. The reason is that the
type systems of the language bindings are very different. Smalltalk does not have a
type system to speak of, and even the Java and the CCC type systems are different,
particularly so at the time the ODMG document was developed. At that time CCC
had parametric types and Java did not. The CCC does not have the root object type
like Java does, etc.

The core features of ODL and OQL will be described using the following
sample of an ODMG schema. This schema contains types (classes) Publication and
Author, and two classes derived from Publication by inheritance, Book and Article
(Fig. 6.1).

Publication

Book

Author

Article

* *

Fig. 6.1 Sample ODMG schema

The relationship between the types Author and Publication is M:N. That is, an
author is associated with some finite number of publications, and a publication has a
finite number of authors. These relationships requite parametric collection types as
indicated in the specification of the relationship publicationOf in the class Author
and the relationship authoredBy in the class Publication. But in fact, parametric
types do not exist in the ODMG Object Model, contrary to the ODL notation in this
schema.

6.1 Query Languages 135

Every relationship comes with specification of its inverse: authoredBy in the class
Publication and publicationOf in the class Author. Classes in this schema come
with specification of attributes and signatures of methods. Methods are meant to
be implemented using ODMG interfaces (bindings) for mainstream object-oriented
languages. Classes Article and Book inherit attributes and methods from the class
Publication.

Each one of the classes in this schema contains specification of their extents.
The extent of a class is the collection of all objects of that class. This notion is in
the database tradition, relational in particular, where there is a single collection of
all entities of a given type in a relational database. Queries are operating on class
extents.

class Author (extent Authors) {
attribute string name;
relationship set<Publication> publicationOf

inverse Publication::authoredBy;
string getName();

}

class Publication (extent Publications) {
attribute string title;
attribute integer year;
relationship list<Author> authoredBy

inverse Author::publicationOf;
}

class Article extends Publication (extent Articles) {
attribute string journal;

}

class Book extends Publication (extent Books) {
attribute double price;

}

6.1.2 Object Query Language

OQL (ODMG Object Query Language) is a stand-alone, SQL-like object query
language. Unlike SQL, OQL allows only specification of queries. Database actions
such as insertion, update and deletion are meant to be specified in the ODMG
interfaces (bindings) for object-oriented programming languages. OQL is based on
select-from-where block from SQL as illustrated in the queries below.

136 6 Object Databases

The first query selects the titles of all publications authored after 1995 by more
than one author. Note a reference to the relationship authoredBy.

select p.title
from Publications p
where p.year > 1995
and count(p.authoredBy) > 1

The next query selects titles of publications of a specific author and refers to the
relationship publicationOf.

select p.title
from Authors a, a.publicationOf p
where a.name D “Tony Hoare”

As in SQL, the results of the above queries are in general bags, i.e., collections
in which multiple copies of an element may occur. Eliminating duplicates and
producing a set is performed by an explicit specification that the result must contain
distinct elements.

select distinct a.name
from Authors a

As in SQL, it is possible to specify that the result of a query is an ordered
collection. The query below will produce a result of the type List (of titles of
publications) in the descending order of the year of publication.

select p.title
from Publications p
order by p.year desc

The two queries that follow illustrate how operations similar to relational joins
are expressed using relationships. Relationships are meant to be implemented
efficiently by appropriate access paths. Since the relationships come in pairs (direct
and inverse), they are meant to be maintained automatically.

The query below produces a set of (distinct) names of authors. This is an example
of a nested query. The outer query selects distinct names of authors of a particular
publication selected in the inner query. The inner query selects publications of
a particular author by relating authors and publications using the relationship
publicationOf in the class Author.

select distinct a.name
from (select p

from Authors a, a.publicationOf p

6.1 Query Languages 137

where a.name D “Tony Hoare”) p
where p.authoredBy a

Yet another example of a nested query selects titles of articles that appear in the
year selected by the inner query.

select p.title
from Articles p,

(select b.year
from Books b
where b.titleD “Inferno”) y

where p.year in y

OQL queries may be specified using quantifiers. The following query illustrates
the usage of the existential quantifier. The predicate in the where clause of this query
will be true if there exists a book of a particular author that satisfies the constraint
on the price of the book. The query produces a collection of names of authors of
those books.

select a.name
from Authors a
where exists b in Books:

b.price < 200 and b in a.publicationOf

The following query selects names of authors such that all publications of those
authors appear before or in the year 2000.

select a.name
from Authors a
where forAll p in a.publicationOf:

p.year � 2000

6.1.3 Java OQL

The ODMG Standard contains specification of the Java binding which is a collection
of Java interfaces and classes to be used for interfacing with object-oriented
databases from the Java programming language. Query capabilities are integrated
into the Java binding using two different and related techniques. The first technique
amounts to providing query methods for database collection types specified in the
ODMG Standard.

138 6 Object Databases

ODMG collection types extend standard Java collection types by query methods.
Database collections are meant to be equipped with special implementation suitable
for large scale persistent collections. The implementation architecture of database
collections is expected to have access paths such as indices allowing query
optimization that produces efficient query execution algorithms.

The query method selectElement selects an element of a database collection that
satisfies the predicate specified as the argument of this method. The method select
produces an iterator over the collection that represents the result of this method.
The method query produces the actual collection selected by the argument predicate.
The query method existsElement tests whether a database collection contains an
object that satisfies a given predicate.

public interface DCollection extends java.util.Collection {
public Object selectElement(String predicate)

throws QueryInvalidException;
public java.util.Iterator select(String predicate)

throws QueryInvalidException;
public DCollection query(String predicate)

throws QueryInvalidException;
public DCollection existsElement(String predicate)

throws QueryInvalidException;
}

The interface DCollection illustrates the problem of the so called impedance
mismatch between data languages and programming languages. Java has no way of
expressing predicates of the sort that query languages have. In order for this interface
to compile by a Java compiler, predicates in the query methods are specified as
strings. That prevents compile time syntactic and type checking of queries so that
those errors will be detected only at run-time. This explains the exceptions thrown
by these query methods. The unfortunate implication is that database transactions
using the query methods may fail at run-time if the queries are not well formed
syntactically or if they do not type check.

An example of using query methods that illustrates the above problem is given
below. The schema relationships are shown in Fig. 6.2.

DCollection specialStudents;
specialStudents D Students.query(

“exists s in this.takes: s.isTaughtBy.nameD“Turing”);

In the above example, a string representing an OQL query expression is passed
at run time to the method query. Because of this, syntactic and type errors will be
detected only at run time and the query will fail if those errors occur.

Consider a simple schema which consists of a class Employee and a collection of
objects of this class.

6.1 Query Languages 139

Course Professor

Student Section
takes

isTakenBy

hasSections

isSectionOf teaches
isTaughtBy

1

*

1

*

**

Fig. 6.2 Relationships in an ODMG sample schema

class Employee {
public Employee(String name, short id, Date hiringDate, float salary){. . . }
public String getName(){. . . }
public short getId(){. . . }
public Date getHiringDate(){. . . }
public void setSalary(float s){. . . }
public float getSalary(){. . . }
private String name;
private short id;
private float salary;
private Date hiringDate;

}

DCollection employees;

The state of an employee object is hidden in the above specification, as one would
naturally expect to be the case in the object-oriented paradigm. The private fields
name, id, salary and hiringDate can be accessed only by invoking accessor methods
getName, getId, getHiringDate, getSalary. The object state can be modified only via
methods, as illustrated by the method setSalary.

Consider now an example of usage of the method query.

DCollection employees, wellPaidEmployees;
. . .
wellPaidEmployees D employees.query(“this.getSalary() � 50000”);

According to the Standard, this refers to the element of the queried collection,
rather than to the receiver collection itself. This convention is actually different
from the Java convention for using this. So the program generator must interpret
the appropriate usage of the keyword this. However, the above remarks, although
important, do not address the core problem: the Java type system cannot check

140 6 Object Databases

the embedded queries at compile-time. Query optimization cannot be performed
at compile time either.

The other technique of incorporating OQL queries into the Java binding is by
providing an interface OQLQuery and its implementing class. This is in fact a
particular form of reflection. Queries are generally specifications in the source
language, but now queries become objects, hence they are created dynamically. This
approach has the same problems as query methods of DCollection class.

Query objects are created by supplying an OQL query as a string passed to the
method create at run-time. This again prevents any static checking of the syntax
and correct typing of the query string. The query is completed using the method
bind that supplies specific arguments for the query. Errors in the above actions
could be detected only when the method execute is invoked causing failure of Java
transactions that create and execute queries if queries are not well-formed.

public interface OQLQuery {
public void create(String query)

throws QueryInvalidException;
public void bind(Object parameter)

throws QueryParameterCountInvalidException,
QueryParameterTypeInvalidException;

public Object execute()
throws QueryException;

}

An ODMG example below illustrates how the OQLQuery class is used. Impl is
a special ODMG class which allows construction of special ODMG objects such
as query, database, transaction etc. A query object is first constructed by invoking
the method newOQLQuery of the class Impl. Then the method create of the class
OQLQuery is invoked to assign a query to the object query.

DCollection specialProfessors;
Double x;
OQLQuery query;
queryDImpl.newOQLQuery();
query.create(

“select p
from p in Professors
where p.salary > $1 and p in $2”);

xDnew Double(50000.00);
query.bind(x); query.bind(specialProfessors);
DBag selectedProfs D (DBag)query.execute();

A query is created by passing an OQL query as a string to the method create.
The formal parameters are denoted by $1 and $2. Contrary to the appearance, no

6.1 Query Languages 141

syntactic or type checking can be done at compile time because the Java compiler
sees the argument query just as a string. The method bind is invoked to supply the
actual arguments of the query. There is no way of checking at compile time that
the actual arguments are of the correct type. All of this creates obvious run time
problems.

6.1.4 Language Integrated Queries (LINQ)

LINQ attempts to resolve the impedance mismatch between data and programming
languages by incorporating object-oriented view of SQL queries into C#. LINQ
is thus an integrated query and object-oriented language that overcomes many
problems that the ODMG Java interface has.

LINQ operates on linearly ordered collections or sequences of elements.
The interfaces Enumerator and Enumerable specify the required features that
classes specifying enumerable collections must implement. An enumerator object
is a cursor over an enumerable collection. It is equipped with a method moveNext
that moves the cursor to the next element in the underlying sequence. The method
current returns the current element determined by the cursor.

The two enumerator interfaces are:

System.Collections.IEnumerator
System.Collections.Generic.IEnumerator<T>

An enumerator class will typically have the following specification:

class EnumeratorClass
// implements IEnumerator or IEnumerator<T>

{
public IteratorVariableType Current { get {. . . } }
public bool moveNext() {. . . }

}

The two enumerable interfaces are:

System.Collections.IEnumerable
System.Collections.Generic.IEnumerable<T>

An enumerable collection will typically have the following specification:

class EnumerableClass
// implements IEnumerable or IEnumerable<T>

142 6 Object Databases

{
public Enumerator getEnumerator() {. . . }

}

A query operates on an enumerable collection transforming it into another
sequence representing the result of the query. LINQ queries have the form that is
very similar to the SQL select-from-where block as illustrated below.

IEnumerable<String> query D
from e in employees
where e.salary() � 100,000
orderby e.salary()
select e.name();

The above is just a specification of a query. A query is executed by a foreach
statement over a query as follows:

foreach (String name in query) Console.WriteLine (name);

The above SQL-like queries are called comprehension queries. LINQ also has
static methods of the class Enumerable that perform operations specified in the
select, where and order by clauses in comprehension queries. These queries are
called lambda queries because arguments are lambda expressions. Specifically, the
where operator has a predicate specified as a function with the boolean result. The
operator select projects elements of the input sequence into elements of the output
sequence where this projection is specified as a function in lambda notation. Lambda
expressions are here simply unnamed (anonymous) functions. The argument is
bound to an element of the input sequence, and the result of the function is specified
by an expression that shows how the argument is used to compute the result. The
previous query has the following lambda query form.

IEnumerable<String> query D employees
.Where (e) e.salary() � 100,000)
.OrderBy (e) e.salary())
.Select (e) e.name());

As in OQL, queries can generate enumerable collections of objects rather than
just enumerations of values. In the example below the type of objects in the sequence
generated by a query is defined first, and then objects of that sequence are generated
in the query.

class EmpSalary {
String name;
float salary;
// . . .

}

6.1 Query Languages 143

IEnumerable<EmpSalary> D
from e in employees
select new EmpSalary

{ name D e.name();
salaryD e.salary() }

where e.salary() � 100,000;

As in OQL, queries can be nested. The query that follows produces a sequence
of names of those employees whose salary is larger than the salary of their manager.

IEnumerable<String> D
from e in employees
where e.salary() �

Max(from m in employees
where e.manager()Dm
select m.salary())

select e.name();

Interfacing with a relational database works as follows. Consider a simple
specification of an SQL table Employee:

create table Employee
(
ID int not null primary key,
Name varchar(30)

)

LINQ makes use of optional predefined attributes that C# has to indicate that a
class in fact corresponds to a database relation (table). Likewise, using predefined
attributes, fields of a class can be specified as columns of a table.

ŒTable� public class Employee
{
ŒColumn(IsPrimaryKeyDtrue)�
public int ID;
ŒColumn�

public String Name;
}

Access to a relational database is defined by providing a connection string that
identifies the database. The class DataContext is equipped with a method getTable
that delivers a table of the database with elements of a given type. There is only one

144 6 Object Databases

such table in a relational database. So Table is a parametric class that implements
the interface Queryable. This interface extends the interface Enumerable, hence
queries that operate on sequences can be specified on objects of type Queryable
as in the example below. While objects of type Enumerable are internal sequences,
objects of type Queryable are meant to be database sequences that allow queries to
be optimized.

DataContext dataContext D new DataContext (“connection string”);
Table<Employee> employees D dataContext.getTable <Employee>();
IQueryable<String> query D
from c in employees
where c.Name.FirstD“A”
orderby c.Name.Length
select c.Name;

foreach (String name in query) Console.WriteLine (name);

6.2 Object Databases

6.2.1 ODMG Java Binding

Databases typically consist of large scale persistent collections. These collections
have special implementation. A database collection is typically equipped with
efficient access paths, such as indices. This makes it possible to optimize queries
for efficient execution while at the same time allowing efficient insertions, updates
and deletions of persistent objects. This is why database collections have a special
place in the ODMG approach. The ODMG database collection types are specified
by the following interfaces.

public interface DCollection extends java.util.Collection {. . .}
public interface DSet extends DCollection, java.util.Set{. . .}
public interface DBag extends DCollection {. . .}

The above hierarchy of the ODMG collections is shown in Fig. 6.3.
The above interfaces are equipped with the usual methods for collections, sets

and bags. A distinctive feature of database collections is that they have query
methods. These methods are specified in the interfaces DCollection and inherited
in the interfaces Set and Bag.

Accessing a database is performed through an interface Database whose simpli-
fied specification is given below.

6.2 Object Databases 145

Fig. 6.3 Collections in the
ODMG Java binding SetCollection

Dcollection

DSetDBag

public interface Database {
// access modes
public void open(String name, int accessMode)

throws ODMGException;
public void close()

throws ODMGException;
public void bind(Object object, String name)

throws ObjectNameNotUniqueException;
public Object lookup(String name)

throws ObjectNameNotFoundException;
// other methods
}

An object is promoted to persistence by invoking the method bind that makes the
object supplied as the first argument persistent. This method also binds the name
supplied as the second argument to the newly established root of persistence. This is
the same idea that we discussed in the section on orthogonal persistence. The type
signature of the method bind seems to suggest that the ODMG model of persistence
is orthogonal because of the argument of type Object. But in fact, the ODMG model
is based on persistence capable classes, like database collection types, hence the
model is not orthogonal. On the other hand, the model supports transitivity, i.e.,
a complex object of any type will be correctly stored with all of its direct and
indirect components. The model also satisfies the transparency requirement, i.e.,
the underlying persistence supporting architecture is completely hidden from the
users.

The method bind establishes a root of persistence. An object is thus persistent if
it is a root of persistence, or a direct or indirect component of a root of persistence.

146 6 Object Databases

The method lookup retrieves the root of persistence with the given name. The result
is necessarily of type Object, hence a type cast (a dynamic type check) is required
in order to perform specific actions on the retrieved object. This is a situation
where the typing notions such as subtype and parametric polymorphism do not help.
A dynamic check is necessary to assure that the type of the object retrieved from the
database is indeed the type that the user program specifies (expects).

In the illustration given below the type of the resulting objects of a query is
first specified by providing a suitable constructor and hiding the object state. A bag
object is then created to hold the result of the query method. An OQLQuery object
is then created. In the string object passed to the constructor of the query object the
formal parameters of a query are denoted as $i, where $i is an integer. A specific
query is formed at run-time by passing specific argument objects for these formal
parameters using the method bind. A query is then executed, and its result is type
cast to DBag in order to make the assignment of the resulting collection possible.
The class Employee was specified in Sect. 6.1.2.

public class WellPaid {
public WellPaid(String name, float salary){. . . }
public String getName(){. . . }
public float getSalary(){. . . }
private String name;
private float salary;

};
DBag selectedEmployees D new DBag();
// open the employee database
OQLQuery aQuery D Impl.newOQLQuery(

“select wellPaid(e.getName(), e.getSalary())
from e in employees
where e.getSalary() � $1
and e.getHiringDate().after($2)”);

aQuery.bind(new Float(50000));
aQuery.bind(NewYears);
selectedEmployees D (DBag)query.execute();

The above query expression would not type check in the type system of the
ODMG Java binding because the type of elements of the collection employees is
Object. This means that a type cast (Employee)e should be used in OQL queries in
order for them to type check in the type system of the Java binding. This has two
implications: the queries have a form which is not natural for the users, and dynamic
type checks are required.

When the employee database is opened in the above example, its name space is
opened. Of course, the identifiers Employee and employees should be defined in this
scope. In spite of that checking this simple scoping rule is impossible at compile

6.2 Object Databases 147

time. All the compiler can check is that the argument passed to query constructor is
a valid Java string.

An obvious implementation technique of the query class amounts to storing a
query object as a string in the file system. Executing the bind method for the actual
query arguments is then implemented as updating (in fact, reconstructing) the string
representing the query. The execute method is implemented as a query interpreter,
where a query is provided as a string.

In this interpretive technique parsing a query is then carried out every time
a query is executed. All the errors in the string representation of the query are
rediscovered every time the query is executed. This in particular includes scoping
and typing errors. Furthermore, expensive query optimization techniques are also
carried out every time a query is executed.

Consider now an example in which a database object is created and a database
with a given name is opened. A query object is created; this object is then made
persistent by invoking the bind method, and finally the database is closed.

Database d D Database.open(“employeeDatabase”, openReadWrite);
OQLQuery aQuery D Impl.newOQLQuery(“

select wellPaid(e.getName(),e.getSalary())
from e in employees
where e.getSalary() � $1
and e.getHiringDate().after($2)”);

d.bind(aQuery,“sampleQuery”);
d.close();

In the next example the same database is opened, the query object is looked
up, and supplied with specific arguments using the method bind, the query is then
executed, and the result made persistent.

Database d D Database.open(“employeeDatabase”, openReadWrite);
OQLQuery aQuery;
aQuery D (OQLQuery) d.lookup(“sampleQuery”);
aQuery.bind(new Float(50000));
aQuery.bind(NewYears);
DBag selectedEmployees D (DBag)query.execute();
d.bind(selectedEmployees, “wellPaidEmployees”);
d.close();

Complex database actions are specified as transactions. A transaction is an
object-oriented program that has the properties specified in the interface Transac-
tion. In the ODMG object model a transaction is an object.

public interface Transaction {
public void begin();

148 6 Object Databases

public void commit();
public void abort();
public void checkpoint();

// other methods
}

ODMG transactions are meant to satisfy the ACID properties. A stands for
atomicity. This means that a transaction is executed in its entirety and then it has
a persistent effect on the database. Otherwise, a partial execution will not have any
impact on the database, as if it never happened.

C stands for consistency. A transaction is assumed to start in a consistent database
state, and when it terminates, the database must also be in a consistent state. The
problem with this requirement is that a consistent database state is a state that
satisfies the integrity constraints specified explicitly in the database schema. ODMG
has no such general capabilities. Even the basic constraints such as keys, foreign
keys and relationships cannot be specified in Java classes because Java itself would
have no such capabilities.

I stands for isolation. This property guarantees that in a concurrent execution
of multiple transactions, each transaction is isolated from the impact of other
concurrent transactions.

D stands for durability. This means that once a transaction performs a successful
commit action, its effects on the database will persist.

The method abort executed in a transaction will roll back all the changes the
transaction performed on persistent objects and will bring the underlying database
to the state prior to the transaction start.

Samples of ODMG style transactions given below follow those of O2, a legacy
ODMG compliant database management system. In the first example, a binding for
a database collection named “People” is introduced in the database with a given
name. When the transaction Tx commits, this collection will persist.

Database db D new Database(“server parameters”);
db.connect();
db.open(“database name”);
Transaction Tx D new Transaction();
Tx.begin();

DCollection people D new DCollection();
Database.bind(people, “People”);

Tx.commit();
db.close();
db.disconnect();

In the next example the database collection named “People” will be looked up
first. A new person object named “John” is created and added to the collection

6.2 Object Databases 149

“People”. When the transaction Tx commits, the object named “John” will persist
in the collection “People”.

Transaction Tx D new Transaction();
Tx.begin();
DCollection people D

(DCollection) Database.lookup(“People”);
Person pD new Person(“John”, 35);
people.add(p);

Tx.commit();

In the transaction that follows two person objects named “John” and “Mary” are
created and assigned to each other as spouses. Then the database collection named
“People” is established and the objects named “John” and “Mary” are added to this
collection. When the transaction Tx commits, these two person objects will persist
in the collection “People”, and their relationship will be correctly maintained.

Transaction Tx D new Transaction();
Tx.begin();
Person john D new Person(“John”, 30);
Person mary D new Person(“Mary”, 28);
john.assignSpouse(mary);
mary.assignSpouse(john);

DCollection people D new DCollection();
try {Database.bind(people, “People”);}
catch (DbException e) { handle exception };
people.add(john);
people.add(mary);

Tx.commit();

6.2.2 Parametric Persistent Collections

In this section we revisit the problems of parametric types in Java in the database
context. The problems are illustrated by an experiment in which the Java compiler
is used with Versant’s FastObjects, a legacy object-oriented database management
system that conforms to the ODMG Java binding.

In the Java program BindTransaction given below, a collection of employees is
made persistent by associating it with the name “employees” in the database. This
is naturally performed in a transaction to guarantee a correct outcome. The hidden
problem is that FastObjects does not know that the run-time type of employees is
wrong and as such it will be recorded in the database.

150 6 Object Databases

public class BindTransaction {
private Database database;
public static void main(String[] args) {

String databaseName D args[0];
BindTransaction transaction D

new BindTransaction();
transaction.initialize(databaseName);
transaction.bind();

}
public void bind() {

Bag<Employee> employees D new Bag<Employee>();
Transaction txn D new Transaction();
txn.begin();
try {
database.bind(employees, “employees”);
} catch (Exception e) {
// ObjectNameNotUniqueException
txn.abort();
e.printStackTrace();
}
for(int iD0; i < 5; iCC)
employees.add(new Employee());
txn.commit();
}

// initialize, etc.
}

Consider the class ViewDepartments that has been previously compiled. There
is nothing wrong in this class. No exception is expected and hence no exception
handling is provided.

public class ViewDepartments {
public static void displayDepartments(
Bag<Department> departments) {
for (int i D 1; departments.hasElements(); iCC)
System.out.println(“Department ” C i C “: ” C departments.remove().name());
// Unexpected ClassCastException?
}

}

In the LookupTransaction given below, the database collection employees is
looked up and type cast wrongly to a bag of departments. The compiler issues a
warning here, although there is no static type error because the result type of lookup

6.2 Object Databases 151

is Object. The real problem is that this wrong type cast succeeds at run time with no
class cast exception. The program fails unexpectedly in a class ViewDepartments

public class LookupTransaction {
private Database database;
public static void main(String[] args) {
String databaseName D args[0];
LookupTransaction transaction D

new LookupTransaction();
transaction.initialize(databaseName);
transaction.lookup();
}
public void lookup() {
Transaction txn D new Transaction();
txn.begin();
Bag<Department> departments D null;
try {

departments D
(Bag<Department>) database.lookup(“employees”);
// Cast should fail but does not
} catch (ClassCastException e) {
// No ClassCastException
e.printStackTrace();
} catch (ODMGException e) {
txn.abort();
e.printStackTrace();
}

ViewDepartments.displayDepartments(departments)
txn.commit();
}
// initialize, etc.

}

Of course, discovering the specifics of types would be performed by reflection.
But reflection is particularly impaired by type erasure, as we already showed in the
chapter on type systems.

6.2.3 Db4 Objects

Db4 Objects is an object-oriented database management system representing the
current state of the commercial products used in a variety of applications. Unlike
ODMG, Db4 does not have an explicit notion of a database schema or a transaction

152 6 Object Databases

class. An object-oriented database is viewed through the methods of the interface
IObjectContainer. This interface is equipped with the methods open, close, commit
and abort, as in the ODMG interface Database. Associating an object of the type
IObjectContainer with a database and performing actions on the database has the
following form. The code samples in this section follow the C# interface of Db4
Objects.

IObjectContainer db D Db4oFactory.OpenFile(FileName);
try {
access db4o
}

finally
{ db.close(); }

Database actions expressible by the methods of the interface IObjectContainer
will be illustrated by the following sample class. Fields name and points are private
according to the C# rules. Name and Points are public properties, i.e., pairs of
methods get and set, with the corresponding fields specified as private components
of the object state.

public class Pilot
{String name;
int points;

public Pilot(String pName, int pPoints)
{ name D pName; points D pPoints; }

public String Name {
{ get {return name; }
{ void set {name D value;}
}
public int Points {
{ get {return points; }
{void set{points D value;}
}

public void addPoints(int Ppoints)
{ points C= Ppoints; }

}

An object is created and then stored in the database by invoking the method store
of the interface IObjectContainer.

Pilot pilot D new Pilot(“Mark Sellinger”, 100);
db.store(pilot);

6.2 Object Databases 153

Db4 has several query languages that allow retrieval of persistent objects. The
simplest one is Query by Example. Its usage is illustrated below. A prototype
object is created and passed as the argument of the method get of the interface
IObjectContainer. The method get returns a collection of objects that match the
prototype object specification. Default values (zero for numeric types) are used to
indicate that any value qualifies. The query given below will return all pilot objects
with the given name.

Pilot protoObj D new Pilot(“Mark Sellinger”, 0);
IObjectSet result D db.get(protoObj);

The next query returns all pilot objects that have the specified number of points.

Pilot protoObj D new Pilot(null, 100);
IObjectSet result D db.get(protoObj);

In the query below the prototype object contains default values of the relevant
fields, hence all pilot objects will qualify.

Pilot protoObj D new Pilot(null, 0);
IObjectSet result D db.get(protoObj);

Updating an object is performed by the method set of the interface IObjectCon-
tainer. In order to establish the identity of a persistent object, the object must be first
retrieved by the method get. In the example below a collection of pilots is selected.
The first such object in the returned collection is updated and then the database
update method set is invoked. The actual database update will be committed when
the transaction that contains the code below performs that action.

IObjectSet result D db.get(new Pilot(“Mark Sellinger”, 0));
Pilot found D (Pilot) result.next();
found.addPoints(50);
db.set(found);

Deleting an object follows the same pattern. An object is first located by
executing a query and then the method delete of the interface IObjectContainer
is invoked.

IObjectSet result D db.get(new Pilot(“Mark Sellinger”, 0));
Pilot found D (Pilot)result.next();
db.delete(found);

Db4 has a more sophisticated query language that allows more complex selection
(filtering) predicates. Db4 has a parametric type Predicate<T> whose method

154 6 Object Databases

match is overridden in order to specify a particular predicate bound to the actual
type parameter substituted for the formal type parameter T. This is illustrated by
the query below in which Predicate<T> is instantiated to Predicate<Pilot>. The
type signature of the actual predicate match becomes boolean match(Pilot x).
The body of the method match now specifies the filtering condition. The result of
the IObjectContainer method query is now a list of persistent pilot objects.

List <Pilot> result D db.query(new Predicate<Pilot>() {
public boolean match(Pilot pilot) {
return (pilot.Points � 99

^ pilot.Points � 199)
_ pilot.Name.equals(“Mark Sellinger”);

}
});

Db4 supports transitive persistence. An example of a complex object type is
Aircraft that has a pilot object as its component.

public class Aircraft
{String model;
Pilot pilot;

public Aircraft(String aModel)
{ model D aModel; pilot D null; }

public Pilot Pilot {
get { return pilot;}
set { pilot D value;}

}
public String Model
{get { return model; }
}

}

Now we can create an aircraft object and a pilot object and update the aircraft
object by assigning to it the pilot object. Database set action of the interface
IObjectContainer is then executed and the update is committed to the database.

Pilot pilot D new Pilot(“Mark Sellinger”, 99);
Aircraft plane D new Aircraft(“Boeing 777”);
plane.Pilot D pilot;
db.set(plane);
db.commit();

6.2 Object Databases 155

Although Db4 does not have an interface Transaction, transaction support is
an important component of Db4. The methods commit and rollBack perform
committing actions on persistent objects and rolling back the changes performed
by a transaction. commit is illustrated by the code above and rolling back by the
example that follows.

Pilot pilot D new Pilot(“Mark Sellinger”, 100);
Aircraft plane D new Aircraft(“Boeing 777”);
plane.Pilot D pilot;
db.set(plane);
db.rollBack();

Db4 transactions are meant to satisfy the ACID properties. However, like other
object database technologies, Db4 has no way of specifying general integrity
constraints and hence cannot truly support the C component of ACID transactions.

6.2.4 Database Application

In this section we present a more elaborate database application and show database
actions specified in Db4 Objects. This application contains a hierarchy of aircraft
types. The two immediate subtypes of the Aircraft type are Airplane and Helicopter.
The Airplane type has two subtypes: CargoPlane and PassengerJet (Fig. 6.4). The
notation in this section is from the Java interface of Db4.

Aircraft

AirplaneHelicopter

PassengerJetCargoPlane

Fig. 6.4 Aircraft hierarchy

In the code below we show only some sample fields of these classes that will
appear in queries.

public abstract class Aircraft {
protected String aircraftId;

156 6 Object Databases

// constructor and methods
}

public class Airplane extends Aircraft {
protected List<AirplaneEngine> engines;
// constructor and methods

}

public class CargoPlane extends Airplane {
private int storageCapacity;
// constructor and methods

}

public class PassengerJet extends Airplane {
private int maxPassengers;
// constructor and methods

}

The method saveObject given below encapsulates actions of storing the argument
object in the database, committing the changes, and handling the relevant excep-
tions. db is of the type IObjectContainer as in the previous examples.

private void saveObject(Object object) {
try {db.store(object);

db.commit();
}

catch (Db4oIOException j DatabaseClosedException j
DatabaseReadOnlyException e)
{exception handling }

}

A specific query type given below makes use of the method queryByExample to
return Airplane objects with a given identifier (probably just one).

public ObjectSet<Object> findAirplaneById(String id)
{
Airplane plane D new Airplane(id, null);
try { return db.queryByExample(plane);

} catch (Db4oIOException j DatabaseClosedException e)
{ exception handling;}

return null;
}

6.2 Object Databases 157

A complex native query given below produces a list of aircraft objects. The
matching predicate of the query specifies that only airplane objects are selected and
only those with the specified size of engines.

public List<Aircraft> selectAirplanes() {
List<Aircraft> matches D
db.query(new Predicate<Aircraft>() {
public boolean match(Aircraft aircraft) {

if (aircraft instanceof Airplane) {
Airplane airplane D (Airplane) aircraft;}
if (airplane.getEngines().size() � 500)
return true;
else return false;

});
return matches;

}

The generality of native Db4 queries is appealing but it comes with a nontrivial
drawback. The predicate match could be specified using arbitrary C# code which
makes query optimization practically intractable.

Storing an object with specific properties such as a user key is performed by first
querying to find out whether such an object already exists in the database. If not, the
object is stored using the method saveObject.

In order to update a database object, the database is first queried to locate the
object. If a database object is located, it is updated. The updated object is stored in
the database invoking the method saveObject.

In order to delete a database object, the database is first queried to locate the
object to be deleted. The located object is deleted by invoking the method delete of
the interface IObjectContainer. Deleting an object may be performed in such a way
that all components of the object are also deleted. This is accomplished by enabling
cascading on deletion.

Examples in this and the previous section reveal one more aspect of the mismatch
between data languages and object-oriented programming languages. In object-
oriented programming languages the object state should be preferably declared
as private so that it can be accessed only by public methods, like in properties of
C#. In database systems the components of the object state could be still accessed
directly for query purposes. There is a practical reason for this and it has to do with
query optimization. If queries make use of methods, such as the C# method get in a
property, query optimization becomes practically impossible. The method get could
contain complex code, and so can the method match of Db4. There is no technology
for optimizing a query which contains arbitrarily complex code. Query optimization
techniques are based on the relational model which is so much simpler.

158 6 Object Databases

6.3 Database Constraints

Complete lack of declarative, logic-based constraint capabilities in mainstream
object-oriented languages has major implications on incorporating queries and
transactions into those languages. If an object-oriented language had a suitably
defined constraint language, such a language would naturally include (or be easily
extended with) full-fledged query capabilities.

In traditional database technologies queries are functions expressed in a high-
level declarative specification language. In the ODMG paradigm queries are
naturally objects. Correct functioning of this reflective feature depends upon the
availability of constraints. As in ODMG, a query in the paradigm presented in
this section is an instance of a query class given below. A major distinction is in
constraints that are not available in the ODMG Object Model.

The invariant of the class Query (a constraint that applies to all visible object
states outside of method execution) specifies the properties of the query result, and
it thus plays the role of a qualification (filtering) expression in traditional queries.
The constraints are expressed in Horn clause logic. All variables are assumed
to be universally quantified and the only logical connectives are implication and
conjunction.

The predefined class Query is both abstract and parametric. The method quali-
fication is abstract. It is thus required to be implemented in a specific, user query
class, by providing the actual qualification expression. An actual query method
is selectFrom. It is applied to the argument collection of this method and the
qualification expression is used for selecting the relevant elements. This condition
is expressed by the invariant of this class.

Bounded parametric polymorphism allows specification of queries that involve
projection and/or ordering. The query class given below has two type parameters.
T stands for the element type of the queried collection, and P for the element type
of the collection that represents the result of the query. P is a subset of features of
T (projection), hence the type constraint T extends P. The other type constraint P
extends Comparable guarantees that the selected elements are equipped with the
ordering methods.

public abstract class Query< P extends Comparable,
T extends P>;

{ public Query<P,T>();
public abstract boolean qualification(T x);
public final Collection<T>

selectFrom(Collection<T> S);
public final Collection<P>

selectAndProject(Collection<T> S);
public final OrderedCollection<P>

selectProjectAndOrder(Collection<T> S);
invariant

6.3 Database Constraints 159

(8 Query<P,T> this) (8 Collection<T> S) (8 T x)
(this.selectFrom(S).contains(x) (

S.contains(x) ^ this.qualification(x))
// other clauses

}

The fact that all user-defined query classes must extend the abstract Query class is
an explicit indication to the compiler that the assertions of these classes are subject
to optimization. This is why the query methods selectFrom, selectAndProject and
selectProjectAndOrder are final. Their implementation is entirely system-oriented
and contains query optimization in particular.

The above described model for object-oriented queries comes with some major
advantages in comparison with other competitive approaches. The approach is truly
object-oriented, and it allows static parsing, type checking and query optimization.
By way of comparison, the ODMG model, although object-oriented, does not have
any of the remaining advantages of the query model presented in this section.

The database class given below offers features similar to the ODMG class
Database and the PJama interface PJStore with a fundamental difference: con-
straints. The method bind of this class binds a name (the second argument) to an
object of any type (the first argument of type Object). As Class extends Object,
a database contains bindings for both classes and objects. The method lookUp
returns an object (a root of persistence) of a database bound to a name. Note that
the precondition and the postcondition of the method bind specify the semantic
relationship with the method lookUp. A database naturally contains additional
constraints.

public class Database
{ public Database(String name);
public final boolean isOpen();
public final void open()

ensures this.isOpen();
public final void close()

requires this.isOpen();
public final Object lookUp(String name)

requires this.isOpen();
public final boolean bind(Object x, String name)

requires this.isOpen(),
requires this.lookUp(name)D null,
ensures this.lookUp(name).equals(x);

// invariant etc.
}

In traditional database technologies transactions are programs. An object-
oriented model of transactions is naturally reflective: transactions are objects,
instances of a class Transaction. This view is extended in the paradigm presented

160 6 Object Databases

in this section by an interplay of bounded parametric polymorphism for binding
a transaction to a database schema and the enforcement of database integrity
constraints.

A transaction is required to maintain the integrity constraints of its schema.
The precondition of the method start requires that the integrity constraints of the
transaction’s schema are satisfied before the transaction begins. The postconditions
of the methods commit and abort require that the integrity constraints of the
transaction’s schema are satisfied.

public abstract class Transaction <T extends Database>

{ protected T schema;
public Transaction<T>(T schema);
public final void start()

requires schema.invariant;
public final void commit()

ensures schema.invariant;
public final void abort()

ensures schema.invariant;
public abstract void execute()

requires schema.invariant,
ensures schema.invariant;

}

The class Transaction is abstract because its method execute is. Specification
of the actual transaction code which the execute method contains is thus deferred to
subclasses of the Transaction class. However, the precondition and the postcondition
of the execute method are specified. They require that execute acts as a unit of
integrity with respect to the database constraints.

An example of a corporate database is given below. The example illustrates the
primary features of the model. Usage of parametric polymorphism is shown in
the collections of departments and employees, as well as in a sample transaction.
A variety of constraints are given, including key and referential integrity constraints,
in the form of invariants of the Corporation class, as well as preconditions and
postconditions of several methods.

The class Corporation includes inner interfaces Employee and Department
defined as follows.

public interface Employee {
String name();
String ssn();
Float salary();
Department department();
void assignDepartment(Department d)

6.3 Database Constraints 161

ensures this.department().equals(d);
invariant
(8 Employee X,Y)
(X.equals(Y) (X.ssn().equals(Y.ssn());

}

public interface Department {
Integer deptNum();
Collection<Employee> employees();
Float allocatedPayroll();
void addEmployee (Employee e)

ensures this.employees().contains(e);
void removeEmployee (Employee e)

requires this.employees().contains(e);
invariant
(8 Department X,Y)
(X.equals(Y) (X.deptNum().equals(Y.deptNum());

}

The class Corporation given below contains two database collections dbEmploy-
ees and dbDepartments and a sample transaction HireTrans.

public class Corporation extends Database {
public interface Employee

{ . . .}
public interface Department

{. . . }
public class EmployeeCollection

implements Collection<Employee> {
public void add (Employee e);
}
public class DepartmentCollection

implements Collection<Department> {
public void add (Department d);
}
EmployeeCollection dbEmployees;
DepartmentCollection dbDepartments;

invariant
(8 Employee W) (8 Department Y)
(dbEmployees.contains(W) (

dbDepartments.contains(Y) ^
Y.employees().contains(W),

dbDepartments.contains(Y) (

162 6 Object Databases

dbEmployees.contains(W) ^
W.department().equals(Y));

}
public class HireTrans extends

Transaction<Corporation>

{. . . }
}

A sample transaction HireTrans that satisfies the above database integrity
constraints is specified as follows:

public class HireTrans extends Transaction<Corporation> {
public HireTrans (Corporation corp, Employee emp, Department dept)
{. . . .}

public void execute()
requires corp.dbDepartments.contains (dept)
{ emp.assignDepartment (dept);
dept.addEmployee (emp);
corp.dbEmployees.add (emp);
}

}

6.4 Bibliographic Remarks

The first defining document on object-oriented databases was Object-Oriented
Database Systems Manifesto [7]. Subsequently, the Object Oriented Database
Management Group (ODMG) took the task of developing the industrial standard for
object-oriented databases. The final version of this document is [9]. A critical view
of the ODMG Standard was presented in [2]. Perhaps the most developed system
that accepted this standard was O2 [8].

Object Definition Language (ODL) and Object Query Language (OQL devel-
oped for O2) are specified in the ODMG Standard [9]. Some examples of Java OQL
queries are from [6]. The problems in type checking these languages are formally
elaborated in [3]. Presentation of the main features of these two languages is based
on the examples from the lecture notes on object databases [11]. Java OQL is defined
in the ODMG Standard [9]. Language Integrated Query (LINQ) is specified at [12].
Presentation of its basic features follows [1].

Database and transaction interfaces are specified in the ODMG Standard. and so
are the ODMG collection interfaces [9]. Examples of ODMG style transactions are
based on O2 [8]. The example that illustrates problems with persistent parametric
collections in Java is from [5]. The two most important recent industrial database
systems are Db4 Objects [10] and Objectivity [13]. The presentation of the basic

6.5 Exercises 163

Db4 features is based on the Db4 tutorial [10]. Examples of Db4 actions in the
sample database application are due to Russell Gillen. The presented model of
database constraints appeared in [4].

6.5 Exercises

1. Specify the sample ODMG Publication schema in Fig. 6.1 using C# and LINQ.
2. LINQ is not just a query language. It allows insertion, updating and deletion

with respect to a data context. Load sample data for the Publication schema and
explore updates and deletions as defined in LINQ.

3. Specify LINQ queries that correspond to the OQL queries given in Sect. 6.1.2
as:

– Comprehension queries
– Lambda queries.

4. LINQ has the ability to specify associations. Specify the ODMG schema in
Fig. 6.1 by making use of LINQ associations.

5. Load sample data for the above schema, specify representative comprehension
and lambda queries, as well as representative updates and deletions.

6. Implement BindTransaction given in Sect. 6.2.2 in Java using Java serialization
mechanism as follows:

– A class LoadData will represent a transaction that specifies types Employee
and Department. This class loads Employee and Department data into
different files using Java serialization.

– A class ViewDepartment representing a second transaction will read the data
from the departments file and display the data read performing the correct
type cast.

– A class Lookup will represent a third transaction that reads data from the
employees files and performs a wrong type cast of a collection of Employee
objects read into a collection of Department objects.

Show that the same problems occur as in the database implementation given
in Sect. 6.2.2.

7. Specify an airport schema in LINQ. An airport has a list of runways, a list
of traffic patterns (incoming and departing aircraft), a set of ground structures
including the control tower, and a list of runways. Make use of the LINQ
association capabilities.

8. Load data for the above schema, specify a collection of sample queries in
the comprehension and lambda format, and typical transactions performing
updates and deletions. LINQ has a limited transaction-like capabilities that
allow committing changes with respect to a data context.

9. Implement the airport schema in Db4.
10. Implement the ODMG class Database using the support provided by Db4.

164 6 Object Databases

11. Produce a representative collection of complex native queries on the airport
database.

12. Implement the ODMG class Query using support provided by Db4 and its native
queries.

13. Write Db4 transactions that perform insertion, update and deletion of objects of
the airport database. Use cascading when appropriate in these operations.

14. Implement the ODMG class Transaction using the transaction support provided
by Db4.

References

1. J. Alabahari, B. Albahari, C# 5.0 in a Nutshell (O’Reilly, Beijing, 2012)
2. S. Alagić, The ODMG object model: does it make sense?, in Proceedings of Object-Oriented

Programming, Systems, Languages, and Applications (OOPSLA) (ACM, New York, 1997),
pp. 253–270

3. S. Alagić, Type checking OQL queries in the ODMG type systems. ACM Trans. Database
Syst. 24, 3 (1999)

4. S. Alagić, J. Logan, Consistency of Java transactions, in Proceedings of DBPL 2003 (Database
Programming Languages). Lecture Notes in Computer Science, vol. 2921 (Springer, Berlin,
Heidelberg, 2003), pp. 71–89

5. S. Alagić, M. Royer, Genericity in Java: persistent and database systems implications. VLDB
J. 17(4), 847–878 (2007)

6. S. Alagić, J. Solorzano, Java and OQL: a reflective solution for the impedance mismatch.
L’objet 6, 275–296 (2000)

7. M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, S. Zdonik, The object-oriented database
systems manifesto, in Proceedings of the First Conference on Object-Oriented and Deductive
Databases, Kyoto, 1989, pp. 223–240

8. F. Bancilhon, C. Delobel, P. Kanellakis, Building an Object Oriented Database System: The
Story of O2 (Morgan Kauffman, San Mateo, 1989)

9. R.G.G. Cattell, D. Barry, M. Berler, J. Eastman, D. Jordan, C. Russell, O. Schadow,
T. Stanienda, F. Velez, The Object Data Standard: ODMG 3.0 (Morgan Kaufmann, San
Francisco, 2000)

10. Db4 objects, http://www.db4o.com (2010)
11. M. Grossnicklaus, Object Oriented Databases. Lecture Notes (ETH Zurich, Zurich, 2009)
12. Language Integrated Query, Microsoft Corporation, http://msdn.microsoft.com/en-us/vbasic/

aa904594.aspx
13. Objectivity, http://www.objectivity.com/

http://www.db4o.com
http://msdn.microsoft.com/en-us/vbasic/aa904594.aspx
http://msdn.microsoft.com/en-us/vbasic/aa904594.aspx
http://www.objectivity.com/

Chapter 7
Types and Constraints

In this chapter we show how two critical formal notions in this book: types
and constraints, apply to two significant practical problems. The first problem is
specification of database type systems in a formal manner. The second problem is
specification and verification of object-oriented transactions.

Database systems are typically not based on a formally specified type system.
This leads to nontrivial problems which we demonstrate in Sect. 7.1. We consider
the type system required by the ODMG Standard and establish a collection of the
required formal rules showing the typing problems in the ODMG languages. We
first give running examples of an ODL schema and OQL queries in Sect. 7.1.1.
The notion of a schema is defined in Sect. 7.1.2. Examples of inheritance and the
associated formal rules are given in Sect. 7.1.3. In Sect. 7.1.4 we specify the formal
rules for structures. Interfaces and their associated formal rules are discussed in
Sect. 7.1.5. Classes with extents are the topic of Sect. 7.1.6. Rules for messages
are given in Sect. 7.1.7. With this formal apparatus we consider the problems of
type checking OQL queries in Sect. 7.1.8. OQL queries and parametric types are
discussed in Sect. 7.1.9. Type checking queries with order by clause is the topic of
Sect. 7.1.10. Typing problems of checking Java OQL are discussed in Sect. 7.1.11.
Type checking of ordered collections and indices is the topic of Sect. 7.1.12.

Section 7.2 is devoted to another key feature of database technologies: trans-
actions. Unlike other approaches, object-oriented schemas and transactions are in
our approach equipped with constraints expressed in an object-oriented assertion
language (Sect. 7.2.1 and 7.2.2). This is followed by object-oriented consistency
issues presented in Sect. 7.2.3. A sample object-oriented schema equipped with
very general integrity constraints is specified in Sect. 7.2.4, and sample transactions
in Sect. 7.2.5. The relationship between the integrity constraints and queries is
discussed in Sect. 7.2.6. Inheritance for object-oriented schemas equipped with
constraints is discussed in Sect. 7.2.7. Abstraction techniques for object-oriented
schemas are the topic of Sect. 7.2.8. The role of dynamic versus static checking of
constraints is explained in Sect. 7.2.9.

© Springer International Publishing Switzerland 2015
S. Alagić, Object-Oriented Technology, DOI 10.1007/978-3-319-20442-0_7

165

166 7 Types and Constraints

7.1 Database Type Systems

7.1.1 ODL and OQL Examples

Let us start with a familiar example specified in ODL: a class Employee with
attributes name, id and dept and methods salary, hire and fire. The fact that the
type of the attribute dept is Department makes an employee object complex. The
Employee class has an extent employees. This is the set of all objects of the class
Employee maintained by the object-oriented database system.

class Employee
(extent employees)
{ attribute string name;

attribute short id;
attribute Department dept;
float salary();
void hire(in Department d);
void fire();

}

The class Employee above refers to the class Department. Specification of the
class Department is given below. A department object has attributes name and
id, and a method numOfEmployees. The class Department has an extent called
departments.

class Department
(extent departments)
{ attribute string name;

attribute short id;
short numOfEmployees();

}

Note that the above definitions differ from similar definitions in an object-
oriented programming language in one essential feature: class extents are not
available in a typical object-oriented programming language. In addition, method
code is specified in specific language bindings.

We consider OQL queries that have the form of a select expression. This is,
indeed, the most important class of OQL queries. A simple and self-explanatory
OQL query of this form is given below.

select well_paid(emp: x.name, sal: x.salary())
from employees as x
where x.salary() > 50,000

7.1 Database Type Systems 167

The result of the above query is a bag of objects representing well paid
employees. well_paid is the name of an already defined type. The expression
well_paid.emp W x:name; sal W x:salary.// constructs an object of the well_paid
type. Objects of the well_paid type have two attributes named emp and sal. In order
to get a set of objects, i.e., to eliminate duplicates from the result, select distinct
option must be used.

The above query does not involve traversal of the complex structure of an
employee object. Because of that it looks just like an SQL query. Let us now
consider a complex query that produces objects representing well-paid employees
from large departments:

select well_paid(emp: x.name, sal: x.salary())
from employees as x,

x.dept as y
where x.salary() > 50,000
and y.numOfEmployees() > 100

Note how the range variable y is bound in the above query to the employee’s
department. There are of course many other options for OQL queries that we do not
consider at all. But it turns out that from the viewpoint of type checking, queries
with order by clause involve further subtleties. An example of such a query follows:

select well_paid(emp: x.name, sal: x.salary())
from employees as x,

x.dept as y
where x.salary() > 50,000
and y.numOfEmployees() > 100
order by emp

Note that the result of the above query is a list of objects, i.e., an ordered
collection.

7.1.2 Schemas

A schema is a collection of bindings. As such, a schema is a name space. In the
ODMG Object Model identifiers in a schema may be bound to interfaces, classes,
class extents, and objects.

In the formal system to be developed in the subsequent sections, a statement of
the form S schema asserts that a schema S is well-formed or valid. The formal rules
specify how valid schemas may be formed. A simple and obvious requirement is
that a schema S may not contain duplicate bindings for the same name in S .

168 7 Types and Constraints

If a well-formed schema contains a binding of a name to an interface or to a class,
then the specification of such an object type must satisfy the formal rules regarding
method signatures and attributes’ specification. All other object types referred to
in these specifications must obviously be available in the schema in order for the
schema to be valid. If a schema S contains a binding of a name to an object, the
type of that object must already be available in S in order for S to be valid.

When an interface or a class is added to a schema S , the formal rules specify what
conditions must be satisfied in order for S to be valid. If an object type B is added
to a schema S in such a way that it is derived by inheritance from an object type A,
then A must already be in S . In addition, B can introduce signatures of additional
methods (those not in A), and, for classes, additional attributes as well. If a class
with an extent is added to a schema S , the name of the extent becomes available
in S . The name of an extent is implicitly bound to a collection type.

Every schema necessarily contains a collection of predefined bindings. These
bindings include the root object type Object, other predefined simple types (string,
int, boolean, etc.), collection types (Collection, Bag, Set, List, and Array), the
Database class, and the Transaction class. If S is a schema, then dom.S/ denotes
the set of all names whose bindings are defined in S .

7.1.3 Inheritance

The inheritance ordering of object types in the ODMG Object Model is identified
with the subtyping ordering. In the ODMG Object Model the top interface is Object.
All other interfaces are necessarily derived from Object. The subtyping ordering
(identified with inheritance) has the familiar properties. The rules given below assert
reflexivity and transitivity.

S schema; S ` C <W Object

S ` C <W C

S schema; S ` C3 <W Object; S ` C2 <W C3; S ` C1 <W C2

S ` C1 <W C3

The inheritance ordering governs substitutability. An object of type C2 may be
substituted where an object of type C1 is expected, as long as C2 <W C1. This is
expressed formally as follows:

S schema; S ` e W C; S ` y W C2; S ` x W C1; S ` C2 <W C1

S ` e < y=x >W C

Suppose that the class Employee has been derived by inheritance from the class
Person. Assume that the class Person is equipped with an extent persons and the
class Employee with the extent employees.

7.1 Database Type Systems 169

class Person {
(extent persons)
. . .
}
class Employee: Person {
(extent employees)
. . .
}

According to the ODMG Object Model this implies that the extent employees is
a subset of the extent persons. The following query illustrates type casting feature
of OQL:

select well_paid(emp: x.name, sal: ((Employee)x).salary())
from persons as x
where ((Employee)x).salary() > 50,000

The formal rule for type casts is:

S schema; S ` e W C1; S ` C2 <W C1

S ` .C2/e W C2

7.1.4 Structures

Specification of interfaces and classes in the ODMG Object Model requires
structures containing signatures of methods and attributes as their components. In
order for R to be a valid structure, the names of all its fields (attributes or methods)
must be distinct. A structure is in fact a static name space or a scope. The types of
fields of a structure must already be defined.

If a component of a structure is a method signature C m.C1 x1; C2 x2; : : : ; Cn xn/,
then the types of the arguments Ci, 1 � i � n, and the result type C must be available
in the schema. This requirement is expressed by the conditions Ci <W Object, 1 �
i � n, and C <W Object. Of course, the names of the arguments must also be distinct
(xi ¤ xj for i ¤ j), as in the rule given below:

S schema; S ` Ci <W Object; 1 � i � n;

xi ¤ xj; 1 � i < j � n;

S ` C <W Object

S ` fC m.C1 x1; C2 x2; : : : ; Cn xn/I g structure

The above rule specifies structures containing method signatures. Rules that
specify valid structures containing signatures for attributes are just simple modi-
fications of the above rules, and are thus omitted. Indeed, signatures for attributes

170 7 Types and Constraints

are just a special case of signatures for methods. Note that an extension of the rules
specified here is required in order to capture overloading of method names.

Selection of a component of a structure (and thus of an object type as well) is
governed by the following familiar rule:

S schema; S ` e W fC1 m1I : : : I Ck mkI g
S ` e:mi W Ci

When an object type B is defined using inheritance as an extension of an object
type A, the method suit of B must be an extension of the method suit of A. This
relationship is defined as RB <W RA. RB contains signatures of additional methods
(and attributes if B is a class), i.e., signatures of those methods that are not methods
of A. In addition, B may redefine the methods inherited from A. Method redefinition
is indicated by an occurrence of the same method name both in RA and RB. The type
systems underlying the ODMG Standard require that the signature of a redefined
method in RB is the same as the signature of that method in RA. This means that the
types of all arguments, their names, and the type of the method result must be the
same.

These requirements are reflected in the definition of the <W relationship for
structures. The rules given below are, in fact, an inductive definition of the <W
relation. The first step is the obvious reflexive assertion RObject <W RObject, which
must hold in any valid schema S .

S schema

S ` RObject <W RObject

The inductive step specifies the conditions which a structure RB must satisfy in
order to be a valid extension of a structure RA, where RA is assumed to be a valid
extension, i.e., RA <W RObject.

S schema; S ` RA <W RObject; S ` RB structure
CB m.CB1 x1; : : : ; CBp xp/ 2 RB; CA m.CA1 x1; : : : ; CAk xk/ 2 RA)

CB D CA; p D k; CBj D CAj ; for 1 � j � p

S ` RB <W RA

The above rule which requires invariance of the return type of an inherited
method comes from earlier versions of Java available at the time the ODMG
Standard was developed.

7.1.5 Interfaces

All object types extend the method suit of Object with additional method signatures.
The first rule given below simply states that if a schema S is valid, it must contain a
binding for Object. Note that in the ODMG Object Model Object is an interface.

7.1 Database Type Systems 171

S schema

interface Object RObject 2 S

Similar rules would apply to other predefined bindings for simple types, collec-
tion types, etc.

The method suit of any other object type is an extension of RObject. If interface
C RC is in a schema S , then the method suit RC <W RObject.

In order to add an interface C to a valid schema S , S may not already contain
a binding for C (C 62 dom.S//. In addition, the method suit R of C must be well
formed. This condition is expressed as R <W RObject.

The rules that govern this ordering are naturally an essential component of this
formal system. References to C will typically occur in R. For example, RObject

contains occurrences of Object. Because of this, the rule given below is recursive.
This explains why the condition S; C <W Object ` R <W RObject for validity of
R already contains the assumption that C is a valid interface (C <W Object). The
expression S [f interface C Rg denotes a schema obtained by extending S with a
binding for the interface C.

S schema; C 62 dom.S/;

S; C <W Object ` R <W RObject

S [finterface C Rg schema

In order to derive an interface C2 in a schema S from an interface C1 that already
exists in S , S may not contain a binding for C2. In addition, the method suit R2 must
be well formed. This condition is expressed as R2 <W R1. The rule that follows is
recursive for the same reason as the previous one.

S schema; interface C1 R1 2 S; C2 62 dom.S/;

S; C2 <W Object ` R2 <W R1

S [finterface C2 W C1 R2g schema

Note that interface C1 R1 2 S implies R1 <W RObject. Because of this, R2 <W
R1 implies R2 <W RObject by transitivity of <W.

If an interface C is in the schema S , then we can naturally deduce C <W Object
from S .

S schema; interface C R 2 S
S ` C <W Object

If we derive an interface C2 in a schema S from an interface C1, then we can
deduce C2 <W C1 from S , as in the rule that follows.

S schema; interface C2 extends C1 R2 2 S
S ` C2 <W C1

172 7 Types and Constraints

The formal rule for adding a binding of an object a of a class C to a schema S is
now immediate:

S schema; S ` C <W Object; a 62 dom.S/

S [fC ag schema

7.1.6 Classes

In addition to methods, classes in the ODMG Standard have attributes as well. Since
the signatures for attributes are just a special case of the signatures for methods, the
rules for interfaces given in the previous section are easily reformulated so that they
apply to classes. However, a class in ODL may also be equipped with an extent.
When a class with an extent is added to a schema, it introduces two bindings. One
of them is a binding for the class itself, and the other binding is for its extent.

Adding a class C with an extent E and a method suit R to a schema S must
satisfy the same requirements as adding a class C with a method suit R to S . This
requirement is expressed by the condition S [fclass C Rg schema. In addition,
S may not contain a binding for the name E of the extent of the class C. Under
these conditions a class C with an extent E and a method suit R may be added to a
schema S to produce a valid schema (S [fclass C .extent E/ Rg schema). These
considerations are reflected in the formal rule given below.

S [fclass C Rg schema; E 62 dom.S/

S [fclass C .extent E/ Rg schema

The type of a class extent is Collection.

S schema; class C .extent E/ R 2 S
S ` E W Collection

A range variable x in an OQL query is bound to a collection e by a construct of
the form e as x. An alternative notation is x in e or simply e x. The type of x is thus
inferred to be the same as the type of elements of the collection e. In type checking
a query, the collection of bindings of the relevant schema S is extended with the
bindings of the form e as x.

In the type system of the Java binding of the ODMG Standard, elements of
Collection are of type Object.

S schema; S ` e W Collection

S [fe as xg ` x W Object

In a type system that supports parametric polymorphism (such as the type system
of the C++ binding of the ODMG Standard) one can be a lot more precise about the

7.1 Database Type Systems 173

type of a class extent. If a class C has an extent E, in this type system we can specify
that the type of elements of E is C. This is expressed formally as follows:

S schema; class C .extent E/ R 2 S
S ` E W Collection < C >

Likewise, a binding of a range variable to a collection now produces a precise
specification of the type of this variable.

S schema; S ` e W Collection < C >

S [fe as xg ` x W C

As one may suspect, the above differences in the typing rules for class extents
and collections will play a major role in the ability to type check OQL queries in
these different type systems.

7.1.7 Objects and Messages

The type of OQL queries that we consider in this paper have object construction
expressions in the select clause. In this section we consider type checking of such
expressions, and then turn our attention to the most critical type checking issue of
all: type checking of messages.

Let C be a class with attributes f1; f2; : : : ; fn of respective types C1; C2; : : : ; Cn.
An OQL expression C.f1 W e1; f2 W e2; : : : ; fn W en/ denotes a construction of an object
of class C. This expression is correctly typed if the expression ei is of type Ci for
i D 1; 2; : : : ; n. In the rule given below the condition R <W fCi fiI g guarantees that
C is equipped with a field Ci fi.

S schema; class CR 2 S;

S ` R <W fCi fiI g; S ` ei W Ci; 1 � i � n

S ` C.f1 W e1; f2 W e2; : : : ; fn W en/ W C

Consider now a truly critical formal rule for type checking messages. Type check-
ing messages makes object-oriented type systems different from other type systems.
In type checking a message the goal is to avoid run-time errors of the type “message
not understood”. In other words, static type checking should guarantee that the
receiver object is indeed equipped with an appropriate method for handling the
message.

An additional subtlety in the ODMG Object Model is that specification of method
bodies is not part of ODL. Rather, method bodies must be specified in particular
languages (CCC, Smalltalk and Java). This obviously makes this most critical type
checking rule dependent upon the properties of these three different type systems.

Consider a message o:m.a1; a2; : : : ; an/. Let the type of object o be Co.
The first requirement is that Co is equipped with an appropriate method signature.

174 7 Types and Constraints

This requirement will be satisfied if either Co is equipped with such a method
signature, or else it is derived by inheritance from a class C with that property. This
explains the conditions Co <W C and RC <W fCm m.C1 x1; C2 x2; : : : ; Cn xn/I g,
where RC denotes the method suit of C.

A suitable method signature Cm m.C1 x1; C2 x2; : : : ; Cn xn/ must also satisfy the
condition that the type Cai of the argument ai may be derived by inheritance from
Ci for i D 1; 2; : : : ; n. Hence the condition Cai <W Ci. Note that we applied the
substitution rule both to the receiver and to the arguments of a message.

The condition for type checking the method body is
S ` bodym < ai=xi >W Cm.
In this condition, bodym < ai=xi > denotes the result of substitution of the formal

parameter xi in the body of the method m with the actual parameter ai. The type of
the result is, of course, Cm.

All of this is summarized in the following rule.

S schema; interface C RC 2 S;

S ` RC <W fCm m.C1 x1; C2 x2; : : : ; Cn xn/I g
S ` o W Co; S ` Co <W C;

S ` ai W Cai ; S ` Cai <W Ci; 1 � i � n
S ` bodym < ai=xi > W Cm

S ` o:m.a1; a2; : : : ; an/ W Cm

7.1.8 Type Checking OQL Queries

As stated earlier, OQL queries considered in this paper have the form of select
expressions. Among those, we will first consider type checking of OQL queries
of the following general form:

select projection
from e1 as x1, e2 as x2, . . . , en as xn

where e

In the above query, the qualification expression e is, of course, required to be of
type boolean. We consider the most general case in which each ei for i D 1; 2; : : : ; n
is an expression of a collection type. This is in fact explicitly stated in the ODMG
Standard for the type of expressions ei. The type of a range (bound) variable xi

is obviously intended to be the same as the element type of the collection ei for
i D 1; 2; : : : ; n. The result of this query is a bag. The type of projection determines
the type of elements of this resulting bag. If select distinct option is used, the result
is a set.

In type checking a query expression of the above form, the types of range
variables xi must be inferred first. This is done by inspecting the from clause
from left to right. The expression ei is checked to be of a collection type for

7.1 Database Type Systems 175

i D 1; 2; : : : ; n. The type of the range variable xi is then inferred to be the same
as the type of elements of the collection type of ei.

When the type of the expression ei is being inferred in this process, the types
of the (collection) expressions ej, for 1 � j < i, is already determined, and so is
the type of the range variables xj, for 1 � j < i. With the type information for the
range variables xi inferred from the from clause, type checking must determine that
the type of the qualification expression e is boolean. In addition, the type of the
expression projection must be inferred.

The overall type of a query expression of the above form is a suitable collection
type. If the type of projection is C, then C should obviously be the type of elements
of the collection representing the query result. In determining the type of this
collection the limitations of the type systems of the ODMG Object Model and the
ODMG Java binding again come into play. In both type systems the type of elements
of the resulting collection is not specific. Thus in the absence of select distinct
option, the type of the above query expression is Bag, otherwise it is Set. Neither
type specifies the element type.

Consider the previous example of an OQL query.

select well_paid(emp: x.name, sal: x.salary())
from employees as x
where x.salary() > 50,000

The best that we can accomplish in the Java binding type system is to assert
that the type of a range variable x is Object. An attempt to formulate a rule for
type checking of OQL queries in the type system of the Java binding of the ODMG
Standard leads to the following:

S schema; S ` e1 W Collection;

S [Sk
iD1fObject xig ` ekC1 W Collection; 1 � k < n;

S [Sn
iD1fObject xig ` e W boolean;

S [Sn
iD1fObject xig ` projection W C

S ` select projection from e1 as x1, . . . , en as xn

where e: Bag

Consider now a message xi:m.ai1 ; ai2 ; : : : ; ain/ either in the projection or in the
qualification of an OQL query where m is not a method of the type Object. Then the
type check fails since the type system only allows to conclude that the type of xi is
Object. In other words, all queries referring to classes other than Object fail a static
type check, irrespectively of whether they are type correct or not.

Consider the following Java collections:

class Professor {
. . .
public float salary(){. . . }

176 7 Types and Constraints

public Collection courses(){. . . }
. . .
}
class Course {
. . .
public int enrollment(){. . . }
. . .
}
Collection professors;
Collection courses;

Note that it does not help if we derive classes EmployeeCollection and
PersonCollection from the generic class Colection. The signatures of the methods
inherited from Collection would have to be the same in EmployeeCollection and in
PersonCollection. This is a property of the Java type system, but also of the ODMG
Object Model and C++. This property guarantees type safety if dynamic binding
of message to methods is applied. Formally, this property is captured by the rules
for <W.

An example of a valid OQL query on the above Java collections which fails type
checking follows.

select x
from professors as x,

x.courses() as y
where x.salary() > 70,000
and y.enrollment() > 50

The messages x:salary./ fails the type check because in the ODMG Java binding
x is of type Object. The message x:courses./ also fails the type check. Even if the
type of x:courses./ could be determined at this point, type checking of the message
y:enrollment./ would still not succeed, because the type of x:courses./ would be
Collection, and the type of y would be Object.

Let us consider possible fix-ups. And indeed, there is one. OQL could be changed
to require explicit type casts of range variables down the inheritance relationships.
The general form of such a query is now:

select projection
from e1 as .C1/x1, e2 as .C2/x2, . . . , en as .Cn/xn

where e

There are two problems with the above fix-up. The first one is that the user is
required to specify an apparently redundant type information for range variables.
The second negative of the above solution is that type casts require dynamic type

7.1 Database Type Systems 177

checking. This was surely not the intent of the authors of the ODMG Standard. In
order to see how awkward this situation is, one has to keep in mind that optimization
is intended to be carried out at compile time. And still a query fails at run time due
to a type error!

If explicit type casts are used for range variables, type checking of OQL queries
in the type system of the Java binding of the ODMG Standard becomes possible, but
only at the expense of dynamic checks. Although the type of ei is still Collection,
explicit type casts in the bindings ei as .Ci/xi of a query select projection from e1 as
.C1/x1, e2 as .C2/x2, . . . , en as .Cn/xn where e, now allow the type system to assign
a specific type Ci to the range variable xi. This step is expressed by the following
deduction:

S schema; S ` e W Collection; S ` C <W Object

S [fe as .C/xg ` x W C

The types of range variables are now specific, rather than being just Object. This
fact is expressed in the following proof rule.

S schema; S ` e1 W Collection;

S [Sk
iD1fCi xig ` ekC1 W Collection; 1 � k < n;

S ` Ci <W Object; 1 � i � n;

S [Sn
iD1fCi xig ` e W boolean;

S [Sn
iD1fCi xig ` projection W C;

S ` select projection from e1 as .C1/x1, . . . , en as .Cn/xn

where e: Bag

The type casts of the above form, and the associated dynamic type checks, are
very typical for the Java programming language prior to Java 5.0. Suppose that we
are given the following two Java collections:

Collection professors;
Collection courses;

Type checking of the query given below succeeds because of the usage of explicit
type casts.

select x
from professors as (Professor)x,

x.courses() as (Course)y
where x.salary() > 70,000
and y.enrollment() > 50

But the run-time checks must be generated.

178 7 Types and Constraints

7.1.9 OQL Queries and Parametric Types

We now show how critical parametric polymorphism is for database type systems
and for type checking of OQL in particular. A rule for adding a parametric interface
to a schema is given below:

S schema; C 62 dom.S/;

S; T <W Object; C < T ><W Object ` R <W RObject

S [finterface C < T > Rg schema

There are two subtleties in checking whether the method suit R of a parametric
class C < T > is well formed (R <W RObject). The first one of them is that R
contains occurrences of the type parameter T . This is illustrated by the parametric
Collection < T > class. The methods add and remove of this class refer to the type
parameter T as the type of their argument. Because of this we must assume that T
stands for a valid class (T <W Object).

Likewise, occurrences of C < T > may appear in R, as in the Bag < T > class.
The methods union and intersection refer to the type Bag < T > as the type of their
argument and the result type is also Bag < T >. This is why we must assume that
C < T > stands for a valid class, i.e., C < T > <W Object. The rule is thus recursive,
just as the rule for type checking interfaces that do not have type parameters.

Adding a parametric interface C2 to a schema S by deriving C2 from another
parametric interface C1 already available in S is:

S schema; interface C1 < T > R1 2 S;

C2 62 dom.S/; S ` C2 < T ><W Object ` R2 <W R1

S [finterface C2 < T >W C1 < T > R2g schema

Instantiating a parametric interface C < T > with a specific object type A is
governed by the following rule:

S schema; S ` A <W Object; interface C < T > R 2 S
interface C < A > R < A=T > 2 S

The above rule states that if we have an interface C < T > in the schema, then
effectively we also have an interface C < A > in the schema, for each existing
interface A in the schema. There are some obvious additional requirements for
avoiding name clashes that may be caused by this substitution.

We are now equipped to state the following: A type system that supports
parametric polymorphism restricted to the universal type quantification allows static
type checking of OQL queries. This a consequence of the fact that this type system
allows compile-time specification of the type of elements of a collection type. This
then allows deduction of the specific types of range variables in an OQL query
from the bindings of the form ei as xi. The type of the collection expression ei is
now Collection < Ci >. The type of elements of this collection type is now a
specific type Ci, where Ci <W Object. Because of this the type of the range variable
xi is a specific type Ci. A message xi:m.a1; a2; : : : ; an/ will now type check if Ci is
equipped with a method m with the appropriate signature, otherwise it will fail.

7.1 Database Type Systems 179

This is summarized in the following rule:

S schema; S ` e1 W Collection < C1 >;

S [Sk
iD1fCi xig ` ekC1 W Collection < CkC1 >; 1 � k < n;

S [Sn
iD1fCi xig ` e W boolean;

S [Sn
iD1fCi xig ` projection W C

S ` select projection from e1 as x1, . . . , en as xn

where e: Bag< C >

Note that the type of the result of a query is now also precisely determined. If
select distinct is used, the type of the result is Set < C >. With proper usage of
parametric polymorphism, the collections from a previous example now have the
following form:

Collection<Professor> professors;
Collection<Course> courses;

The following query now type checks.

select x
from professors as x,

x.courses() as y
where x.salary() > 70,000
and y.enrollment() > 50

The type of x is now inferred to be Professor, and the type of y is inferred to
be Course. Type checking succeeds. It is performed entirely at compile time. This
specifically means that the type system of the C++ binding of the ODMG Standard
allows static type checking of OQL queries because C++ is equipped with universal
parametric polymorphism.

7.1.10 Queries with Order by Clause

We will consider type checking of OQL queries with order by clause of the
following general form:

select projection
from e1 as x1, e2 as x2, . . . , en as xn

where e
order by e01; e02; : : : ; e0m

Additional subtleties in type checking queries with order by clause come from
the requirement that “message not understood” run-time error messages must be

180 7 Types and Constraints

avoided. This requirement means that we must make sure that the result of a query
is equipped with an ordering method.

Consider now type checking of OQL queries with order by clause in the Java
binding of the ODMG Standard. Define an interface Ordered as follows:

interface Ordered: Object {
boolean leq(Object e);

}

In the above interface leq stands for less-than-or-equal method. The Java inter-
face Comparable could serve the purpose of the interface Ordered with somewhat
different notation.

If the type of e0j in an OQL query is C0
j , then the condition that C0

j must be
equipped with leq method may be expressed as C0

j <W Ordered. This is really the
only difference.

S schema; S ` e1 W Collection;

S [Sk
iD1fCi xig ` ekC1 W Collection; 1 � k < n;

S ` Ci <W Object; 1 � i � n;

S [Sn
iD1fCi xig ` e W boolean;

S [Sn
iD1fCi xig ` projection W C;

S [Sn
iD1fCi xig ` e0j W C0

j ;

S ` C0
j <W Ordered; 1 � j � m

S ` select projection from e1 as .C1/x1, . . . , en as .Cn/xn

where e order by e01; : : : ; e0m: List

The above solution is not applicable to the C++ binding of the ODMG Standard.
The reason is that this type system does not have the top of the inheritance ordering.
Because of this we cannot define the class Ordered the way we did. But a different
solution is possible that allows even static type checking of OQL queries with order
by clause.

Let us define an interface Ord_element in this type system as follows:

interface Ord_element< T > {
boolean leq(T e);
}

If the type of projection is C, then, in order to guarantee that C is equipped with
a method leq, we have to have T <W Ord_element < T >. This condition obviously
guarantees that an interface T is equipped with a method leq. The formal rule has
the following form:

S schema; S ` e1 W Collection < C1 >;

S [Sk
iD1fCi xig ` ekC1 W Collection < CkC1 >; 1 � k < n;

S [Sn
iD1fCi xig ` e W boolean;

S [Sn
iD1fCi xig ` projection W C;

S [Sm
iD1fCi xig ` e0j W C0

j ;

S ` C0
j <W Ord_element < C0

j >; 1 � j � m

S ` select projection from e1 as x1, . . . , en as xn

where e order by e01; e02; : : : ; e0m: List < C >

7.1 Database Type Systems 181

Note that T <W Ord_element < T > is in fact a type constraint that appears
in F-bounded polymorphism. Hence the conclusion that the type system of the
C++ binding of the ODMG Standard allows static type checking of OQL queries
with order by clause. In Java extended with parametric polymorphism as in recent
editions, static type checking of queries with order by clause becomes possible.

7.1.11 Java OQL

Java OQL refers to the sublanguage of the Java binding of the ODMG Standard
which offers OQL facilities in Java. As discussed in Chap. 6, OQL facilities are
available in the Java binding of the ODMG Standard in two forms: as methods and
as objects. The same applies to the C++ binding of the ODMG Standard.

In this section we prove that the ODMG approach introduces non-trivial sub-
tleties in type checking. We prove that unexpected results may happen when one
tries to combine a strongly and mostly statically typed query language with a
strongly and mostly statically typed programming language. These problems led
to the design of LINQ that integrates SQL like queries into a major object-oriented
language.

Consider first queries as methods. The interface DCollection of the Java binding
of the ODMG Standard extends the Java Collection interface with a variety of self
explanatory query methods. A distinctive feature of these methods is that they take
a string argument representing an OQL predicate. We repeat below the interface
DCollection specified in Chap. 6:

interface DCollection extends java.util.Collection {
Object selectElement(String predicate);
java.util.Iterator select(String predicate);
DCollection query(String predicate);
boolean existsElement(String predicate);

}

ODMG interfaces DSet, DBag, DList and DArray are derived from the above
DCollection interface. An example of using these collection query methods is given
below:

DCollection bestPaid;
bestPaid = employees.query(
“forall x in employees: this.salary() >D x.salary()”);
}

The above query constructs the collection of the best paid employees. The type
system of the Java binding cannot handle type checking of OQL query facilities of
the DCollection class. In a truly integrated type system for Java and OQL we would
have the following:

182 7 Types and Constraints

S schema; S ` e W DCollection;

S [fObject thisg ` unquote.s/ W boolean

S ` e:query.s/ W DCollection

In the above rule unquote.s/ stands for the string argument s with the surrounding
quotes removed. If the predicate s contains references of the form this:m where m is
not a method of Object, type checking always fails contrary to the intent.

In the type system of the ODMG Java binding we have:

S schema; S ` e W DCollection; S ` s W String

S ` e:query.s/ W DCollection

In this type system, type checking succeeds for any string s regardless of whether
s represents a valid OQL predicate. The reason for this is that the Java type system
cannot recognize OQL predicates as valid boolean expressions.

The argument string s is passed to the query method at run-time. The rule thus
must be applied at run-time. The string must be compiled at run-time in order to
make use of the type checker. This is very different and much more complicated
from dynamic type checking associated with type casts.

In the C++ binding of the ODMG Standard the class that corresponds to
DCollection is called d_Collection. The type system of the C++ binding of
the ODMG Standard cannot handle either type checking of query methods of
d_Collection class.

The only difference is now that the type of this is made specific in the formal
rule given below. But this makes little difference in the overall conclusion. In an
integrated type system for OQL and C++ we would have:

S schema; S ` e W d_Collection < C >;

S [fC thisg ` unquote.s/ W boolean

S ` e:query.s/ W d_Collection < C >

In this type system this has a specific type. However, in the C++ type system
type checking succeeds for any string argument s regardless of whether s represents
a valid OQL predicate. The situation is the same as in the Java type system.

The other OQL query feature of the Java and the C++ bindings of the ODMG
Standard discussed in Chap. 6 is the query class. Instances of this class are queries.
Note that this is a truly reflective feature. In more traditional database technologies,
a query is a declarative specification of a function, which is either interpreted, or
(preferably) compiled into code. In the ODMG approach, queries may be viewed as
objects. As such, they are dynamically created, and can even be updated at run-time,
just as other objects can. However, this attractive reflective object-oriented feature
has non-trivial implications.

7.1 Database Type Systems 183

class OQLQuery{
// Java constructors
OQLQuery create(String query); //construct query object
void bind(Object parameter);
Object execute();

}

Type checking problems of the methods of the above class start with the fact that
all that we can assert about the type of the bound variables and the formal parameters
of the query is that their type is Object. Thus extensive dynamic type checking is
the only option. But this is not the only problem. An illustrative example follows.

DBag selectedEmployees;
OQLQuery query = new OQLQuery();
query = create(“select well_paid(emp: x.name, sal: x.salary())

from employees as x, x.dept as y
where x.salary() > $1 and y.numOfEmployees() > $2”);

query.bind(50,000); query.bind(100);
selectedEmployees = (DBag) query.execute()

The OQL query in the above example constructs a collection of objects repre-
senting well-paid employees from the large departments. The salary limit (lower
bound for high salaries) and the departmental size (the number of employees) are
the formal parameters of this query. Note that these parameters are denoted by $i,
where i is an integer. In the actual typing rule all we can assert about the type of
$i is that it is Object. When a query is constructed, its actual parameters are passed
at run-time using the bind method. The query is subsequently executed by invoking
the execute method. This method has Object as the type of its result. A type cast is
thus required into a bag of objects representing the selected employees.

Neither the type system of the Java binding nor the type system of the C++
binding can handle static type checking of messages sent to the object of the class
OQLQuery. Parametric polymorphism does not solve this problem. Consider the
Java OQLQuery class extended with usage of parametric polymorphism:

class OQLQuery< T >{
//Java constructors
OQLQuery< T > create(String query); //construct query object
void bind(Object parameter);
DCollection< T > execute();

}

In a type system with parametric polymorphism, required for the integrated Java
and OQL, we would have the following:

S schema; S ` e W Query;

S [f$i W Objectg ` unquote.s/ W DCollection < C >

S ` e:create.s/ W Query

184 7 Types and Constraints

For any query s that refers to classes other than Object, type checking fails. In
the Java type system extended with parametric polymorphism we have:

S schema; S ` e W Query; S ` s W String

S ` e:create.s/ W Query < C >

In this type system type checking succeeds for all strings s regardless of whether
s represents a valid OQL query. Note that an OQL query is passed at run-time as the
string argument to the create method. This requires either an interpretative model or
dynamic compilation.

The implications of the above situation are non-trivial. While one would like
to have query optimization carried out at compile time if at all possible, this
observation shows that it must be performed at run-time.

7.1.12 Typing Ordered Collections and Indices

The ODMG Standard recognizes the importance of ordered collections by providing
an explicit interface List. In fact, the result of a query is often required to be an
ordered collection. Query evaluation algorithms also often depend upon the notion
of ordered collections. We now show that correct typing of ordered collections
causes non-trivial problems for any of the type systems of the ODMG Standard.

A type system that is equipped with the top object type and supports
bounded type quantification (constrained genericity) handles properly typing
of ordered collections. With constrained genericity we can define the interface
Ordered_Collection as follows:

interface Ordered_Collection<T extends Ordered>

extends Collection<T> {
: : :

};

But the type system of C++ does not have the root object type and cannot handle
this situation, even if it is extended with bounded quantification. The top of the
inheritance ordering is still required in order to make the above solution possible.

A more general technique solves this problem, but it requires a nontrivial exten-
sion of the C++ type system. The technique is F-bounded polymorphism. Recall that
the difference between bounded and F-bounded parametric polymorphism is that in
F-bounded polymorphism the bound itself is parametric. So if a parametric object
type C has a type parameter T whose bound is a parametric class F < T >, then
this form of bounded type quantification is F-bounded polymorphism.

If the type system of the C++ binding of the ODMG Standard is extended to
support F-bounded polymorphism, it can handle static type checking of ordered
collections. With proper usage of F-bounded polymorphism, Ordered_Collection
may now be specified as follows:

7.1 Database Type Systems 185

interface Ordered_Collection< T extends Ord_element< T >>

extends Collection < T > {
: : :

};

Consider now an illustrative example:

interface Employee {
String name();
short id();
//boolean leq(Employee e);
};

The object type Employee does not satisfy the F-bounded constraint of the
interface Ordered_Collection. Indeed, it is easy to see that the condition

Employee <W Ord_element < Employee > does not hold. But if we extend
the interface Employee with the method leq, as indicated by the comment in this
interface, we get the following:

interface Ord_element<Employee> {
boolean leq(Employee e);
};

The F-bounded type constraint Employee <W Ord_element < Employee > is
satisfied. The F-bounded constraint thus guarantees that the actual type parameter
has the methods of the F-bound, as well as that those methods have correct
signatures.

In order to add a parametric class C < T > to a schema S with an F-bound F <

T > for its type parameter, a parametric class F < T > must already be in S . The
method suit R of C must be well-formed, i.e., we must have R <W RObject. In order
to verify this property we must assume that the type parameter T that appears in R
stands for a class in the schema (T <W Object). In addition, a recursive assumption
that we must make is that occurrences of C < T > in R also stand for a valid class.
If under these assumptions we can prove that R <W RObject, then the interface C<T
extends F< T >> R is well-formed and may be added to the schema S .

These considerations are summarized in the rule for adding a parametric interface
with an F-bound to a schema:

S schema; C 62 dom.S/; F < T > 2 S;

S; T <W Object; C < T ><W Object ` R <W RObject

S [finterface C < T extends F < T >> Rg schema

In order to instantiate a parametric interface C < T extends F < T >>

with an F-bound to a specific class C < A >, A must be available in the schema
(A <W Object). In addition, A must satisfy the bound (A <W F < A >). Under these
conditions adding an interface interface C < A > R < A=T > to a valid schema S
produces a valid schema. The formal rule follows:

186 7 Types and Constraints

S schema; interface C < T extends F < T >> R 2 S ,
S ` A <W Object; S ` A <W F < A=T >

interface C < A > R < A=T > 2 S
Most viable database systems require indices on top of collections in order

to handle queries efficiently. The interface Index is given below. It has two type
parameters. T is the type of elements of the underlying collection. An index is built
on top of a collection using the method create_index. To is the type of the indexing
(search) attributes. To consists of a subset of features of T , hence the condition
T <W To. To must be equipped with the ordering method, hence the F-bounded
condition To <W Ord_element < To >.

interface Index< To extends Ord_element < To >; T extends To > {
void create_index(Collection< T > collection);
Collection< T > select(To key);
Iterator< T > create_iterator();

};

The method select returns a collection of elements with a given value of the
indexing (search) attributes. The ordering of the underlying collection is reflected
in the iterator object. Retrieving elements using the iterator delivers them in the
ordering determined by the values of the indexed attributes (of type To).

7.2 Transactions

7.2.1 Transactions and Constraints

A transaction is a complex action that acts like a unit with respect to integrity. This
means that if a transaction is started in a consistent database state, upon completion
of the transaction execution the database will also be in a consistent state. A
consistent database state is a state that satisfies the integrity constraints specified
in the database schema. In addition, an object-oriented transaction will naturally
be specified with a precondition and a postcondition. Transaction execution is
illustrated in Fig. 7.1. Note that if a transaction is aborted, the assumption guaranteed
by the underlying technology is that a consistent database state will be restored.

The current object technology has nontrivial problems in specifying even classi-
cal database integrity constraints, such as keys and referential integrity. No industrial
database technology allows object-oriented schemas equipped with general integrity
constraints. In addition to keys and referential integrity, such constraints include
ranges of values or number of occurrences, ordering, constraints that apply to
inheritance, and the integrity requirements for complex objects obtained by aggrega-
tion. More general constraints that are not necessarily classical database constraints
come from complex application environments and they are often critical for correct
functioning of those applications.

7.2 Transactions 187

Object-oriented schemas are generally missing database integrity constraints
because those are not expressible in type systems of mainstream object-oriented
programming languages. Since the integrity constraints cannot be specified in a
declarative fashion, the only option is to enforce them procedurally with nontrivial
implications on efficiency and reliability. In a typed constraint-based database tech-
nology, the constraints would fit into the type systems of object-oriented languages
and they should be integrated with reflective capabilities of those languages so that
they can be introspected at run-time.

Most importantly, all of that is not sufficient if there is no technology to enforce
the constraints, preferably statically, so that expensive recovery procedures will not
be required when a transaction violates the constraints at run-time. The ability to
verify statically that a transaction implemented in a mainstream object-oriented
language satisfies the database integrity constraints has been out of reach for a
long time. A pragmatic goal has been static automatic verification which hides
completely the prover technology from the users.

A key observation is that if it is not possible to verify that transactions satisfy
the schema integrity constraints, then it is not possible to truly guarantee the
ACID properties of the transaction model. Recall that ACID stands for atomicity,
isolation, consistency and durability. The classical transaction theory is based on
serializable executions. A concurrent execution is serializable if it has an equivalent
serial execution. The equivalence is defined with respect to the impact on database
integrity. A serializable concurrent execution of a set of transactions has the property
that it will maintain the schema integrity constraints only as long as the individual

PreCondition & SchemaInvariant

PostCondition & SchemaInvariant

PostCondition & SchemaInvariant SchemaInvariant

start

commit abort

Database

ExceptionThrown

ExceptionThrown

ExceptionThrown

update

Fig. 7.1 Transaction execution

188 7 Types and Constraints

transactions by themselves (i.e., in isolation) satisfy those constraints. This and other
related classical results on the locking protocols that guarantee serializability are
actually independent of the particular form of the integrity constraints. But whatever
those constraints are, the individual transactions must satisfy them in order for the
serializability results to apply.

7.2.2 Schemas and Transactions

In addition to inheritance, the key abstraction technique for modeling complex
applications is aggregation. This abstraction is well understood in semantic data
models, but in the object-oriented model it has specific implications. A complex
object defined by aggregation is represented by its root object called the owner
along with references to the immediate components of the owner specified as its
representation fields. References to other objects do not represent components of
that object. This way a complex object is defined as a logical unit that includes all
of its components. Constraints that apply to objects defined by aggregation may
now be specified in such a way that they refer both to the owner object and to the
components defined by its representation fields. In a flight scheduling application
developed in this section, a flight scheduling object is defined as an aggregation of
flights, planes and airports, as illustrated in Fig. 7.2.

AirportsFlights Planes

Transaction1

TransactionN

Peer

Peer

Owner
OwnerOwner

Peers

Scheduling

Fig. 7.2 Owners and peers in flight scheduling

The notion of ownership comes with a related semantic modeling notion. Objects
that have the same owner are called peers. The relationship among objects Flights,
Planes and Airports is clearly not the ownership relationship. These objects are
peers as they have the same owner, the scheduling object.

The peer relationship has a role that may be even independent from the notion
of ownership. Consider the relationship of a transaction object and its associated
schema object. The relationship between a transaction object and a schema object is
also modeled as a peer relationship. A transaction is not a component of a schema,

7.2 Transactions 189

and a schema is not a component of a transaction. There are multiple transactions
accessing the same schema object and all of them cannot own the schema object.
An object can have at most one owner.

In the model of transactions presented in this section, the class Transaction is
bounded parametric, where the bound type is the type of schema to which a specific
transaction type is bound. This makes it possible for a particular transaction class to
be compiled with respect to a specific schema type. The notation in the code given
below follows Spec#. For presentation purposes, the notation in this section is more
mathematical than the Spec# notation. However, there is a direct correspondence
between this notation and the Spec# notation.

TŠ denotes a non-null object type, i.e., an object type that does not allow null
references. The attribute [Peer] indicates that the relationship between a transaction
object and its associated schema object is specified as the peer relationship. The
attribute [SpecPublic] denotes private components that can be used as public only
in specifications.

public interface Schema {: : :}

public class Transaction <T> where T: Schema {
[SpecPublic][Peer] protected T! schema;

public Transaction(T! schema){ this.schema = schema;}
}

In addition to the above abstractions, inheritance is naturally an essential
modeling abstraction which we do not show in the above diagram. The model of this
application includes inheritance hierarchies of different aircraft types and different
airport types, as well as an inheritance hierarchy of different transaction types. The
interplay of inheritance and constraints is discussed in Sect. 7.2.7.

7.2.3 Levels of Consistency

The schema integrity constraints are typically violated during transaction execution
and then the constraints are reinstated when the transaction is completed, so that the
constraints should hold at commit time. The mechanism for handling correctly these
situations is illustrated below by the structure of a transaction that closes an airport:

expose(flight scheduling){
close airport;
cancel all flights to or from the closed airport;
}

After the first action the referential integrity constraints are temporarily violated
to be reinstated after the second action of cancelling all flights to or from the
closed airport. The purpose of the expose block is to indicate that the schema
object invariants may be violated in this block. Otherwise, the verifier will indicate
violation of the schema invariants. In the expose block the object is assumed to be

190 7 Types and Constraints

in a mutable state and hence violation of the object invariants is allowed. Outside
of the expose block, assignments that possibly violate the invariants will be static
errors. Different situations that may occur with respect to the object state and its
satisfaction of the object invariants are summarized below:

– Valid object state—object invariants hold, updates must satisfy the invariants.
– Mutable object state—object invariants are not required to hold, updates are

allowed to violate them
– Consistent object state—the object is in a valid state and

	 the object does not have an owner or
	 the owner is in a mutable state

– Committed object state—the object is in a valid state and

	 the object has an owner
	 the owner is also in a valid state.

SchedulingScheduling

Flights Planes Airports Flights Planes Airports

Runways
Runways

Expose
Valid owner

Valid and committed component objects

Valid and committed component objectValid and committed component object

Mutable owner object

Valid and consistent component objects

Fig. 7.3 Flight scheduling consistency states

When a transaction operates on an object, the implicit assumption is that the
object is in a consistent state. This means that either the object does not have an
owner to put restrictions on the object, or that the object has an owner, and the owner
is in a mutable state, hence it allows update actions on the object. Since the object
is in a consistent state, its state is valid and its components are thus in a committed
state. In order to update the receiver and the states of its components, the receiver
state must be changed to a mutable state using the expose block. This will also
change the state of the components of the object from committed to consistent, so
that methods can be invoked on them. The notions of valid, mutable, consistent and
committed objects, and the effect of the expose statement, are illustrated in Fig. 7.3.

There is an obvious alternative to viewing a transaction and its associated schema
as peers: just omit any ownership or peer attributes. But in fact, using the peer
relationship has important implications for transaction verification. A transaction
is verified under the assumption that the schema integrity constraints hold when the

7.2 Transactions 191

transaction is started. If this condition is not satisfied, transaction verification makes
no sense. So we really have to guarantee this condition.

Spec# adds an implicit precondition for peer consistency so that a transaction can
assume this condition in its verification. This applies to in-bound parameters and the
receiver of any method. The implicit postcondition for peer consistency also applies
to all out-bound parameters and return values. The caller of a method is required
to satisfy the peer consistency requirement. This means that an object and its peers
must be valid, and their owner must be exposed first before an update is performed.

7.2.4 Constraints for Schemas

We now consider a specific schema in which the core object type is defined using the
aggregation abstraction and the ownership model along with the associated integrity
constraints. The FlightScheduling schema contains specification of three database
collections: a list of airplanes, a list of airports, and a list of flights.

The schema FlightScheduling exhibits two cases of the aggregation abstraction
as supported by the Spec# ownership model. The attribute [Rep] indicates that the
lists of flights, airports and airplanes are components of the flight scheduling object
which becomes their owner. The attribute [ElementsRep] indicates that list elements
are also components of the flight scheduling object. These elements are then
peers according to the Spec# ownership model. This has implications on invariants
that can now be defined to apply to entire complex objects, i.e., including their
components determined by the [Rep] and [ElementsRep] fields. These constraints
are called ownership-based invariants.

public class FlightScheduling: Schema {

[SpecPublic][Rep] [ElementsRep] private List<Airplane!>! airplanes;

[SpecPublic][Rep] [ElementsRep] private List<Airport!>! airports;

[SpecPublic][Rep] [ElementsRep] private List<Flight!>! flights;
// constraints
}

In the collection of airplanes the key is Id, in the collection of airports the key
is Code, and in the collection of flights the key is FlightId. The first referential
integrity constraint specifies that each flight in the collection of flights refers to a
unique airplane in the collection of airplanes. The remaining (omitted) referential
integrity constraints specify that each flight in the collection of flights refers to a
unique airport as its origin and a unique airport as its destination.

invariant 8{int i 2 (0: flights.Count), int j 2 (0: flights.Count);
flights[i].FlightId = flights[j].FlightId) flights[i].equals(flights[j])};

invariant 8{int i 2 (0: flights.Count);
9 unique {int j 2 (0: airplanes.Count); airplanes[j].equals(flights[i].Airplane)}};

192 7 Types and Constraints

A class is in general equipped with an invariant which specifies valid object
states. The schema integrity constraints are specified above as class invariants.
These assertions allow usage of universal and existential quantifiers as in the first-
order predicate calculus, as well as combinators typical for database languages
such as min, max, sum, count, avg etc. These constraints in the above schema
refer to private components of the schema object. As explained earlier, the attribute
[SpecPublic] means that these private components can be used as public only in
specifications. Typically, such components will also be defined as public properties
with appropriately defined get and set methods so that access to them can be
controlled.

Spec# constraints limit universal and existential quantification to variables
ranging over finite intervals. The above constraints contain specifications of half
open intervals. The limitation that quantifiers are restricted to integer variables
ranging over finite intervals was a design decision to sacrifice expressiveness in
order to allow automatic static verification. This limitation is no problem in the
application considered in this section as the above schema shows.

The above schema contains non-null object types (indicated by the symbol
!) that capture a very specific object-oriented integrity constraint. A frequent
problem in object-oriented programs is an attempt to dereference a null reference.
If this happens in a database transaction, the transaction may fail at run-time with
nontrivial consequences. The Spec# type system allows specification of non-null
object types. Static checking will indicate situations in which an attempt is made to
access an object via a possibly null reference.

7.2.5 Sample Transactions

Each class that a schema refers to is also equipped with its constraints as illustrated
below for the class Flight. The relationship between a flight object and the
associated airplane object is defined as a peer relationship for the reasons explained
in Sect. 7.2.2. The invariants include the obvious ones: the origin and the destination
of a flight must be different and the departure time must precede the arrival time.
If the current time is greater than the arrival time or the current time is less than
the departure time, the status of the flight must be idle. If the current time is greater
than the departure time and less than the arrival time the flight status must be either
flying, landing or takeoff.

invariant to ¤ from;

invariant departureTime < arrivalTime;

invariant DateTime.Now > arrivalTime) this.flightStatus = FlightStatus.Idle;

invariant DateTime.Now < departureTime)
this.flightStatus = FlightStatus.Idle;

invariant DateTime.Now � departureTime ^ DateTime.Now � arrivalTime)

7.2 Transactions 193

this.flightStatus = FlightStatus.TakeOff _
this.flightStatus = FlightStatus.Flying _
this.flightStatus = FlightStatus.Landing;

The constraints specified in this section include some classical database integrity
constraints such as keys and referential integrity, and in addition constraints that are
not typical for the existing database technologies, object-oriented in particular. In
fact, we are not aware of a database technology that allows constraints of the above
variety.

To make the job of the verifier possible, specification of methods that change
the object state, such as database updates, requires specification of the frame
conditions. This is done by the modifies clause, which specifies those objects and
their components that are subject to change. The frame assumption is that these are
the only objects that will be affected by the change, and the other objects remain the
same. An attempt to assign to the latter objects will be a static error.

A sample instantiation of the class Transaction by the flight scheduling schema
are given below.

public class ScheduleFlightTransaction:
Transaction<FlightScheduling> {

public Flight? scheduleFlight (String! flightId,
String! toAirportCode, String! fromAirportCode,
DateTime departure, DateTime arrival, Airplane! plane)

// constraints
{// transaction body }

}

Flight? in the above code is an explicit notation for a type that may contain a
null value. The preconditions of the transaction scheduleFlight are that the flight
id does not exist in the list of flights, that its origin (denoted fromAirportCode)
and its destination (denoted toAirportCode) must refer to existing (valid) airport
codes, and that the departure time precedes the arrival time. Valid airport codes are
kept in a table ValidCodes. The transaction scheduleFlight modifies only the list
of flights as specified in its modifies clause. The postcondition guarantees that the
newly scheduled flight exists in the list of flights.

requires toAirportCode ¤ fromAirportCode;
requires 8 {int i 2 (0: schema.Flights.Count);

schema.Flights[i].FlightId ¤ flightId };
requires 9 unique {int i 2 (0: schema.Airplanes.Count);

schema.Airplanes[i].equals(plane)};
requires 9 unique {String code 2 ValidCodes.airportsCodes;

code = toAirportCode};
requires 9 unique {String code 2 ValidCodes.airportsCodes;

code = fromAirportCode };

194 7 Types and Constraints

requires departure < arrival;

modifies schema.flights;

ensures 9 unique {int i 2 (0: schema.Flights.Count);
schema.Flights[i].FlightId = flightId };

The first precondition of the transaction cancelFlight specifies that there exists a
unique flight in the collection of flights with the given id of the flight to be deleted,
denoted flightId. The second precondition specifies a requirement that the flight
departure time is greater than the current time. The modifies clause specifies that
this method modifies the collection of flights. The postcondition specifies that the
cancelled flight does not appear in the list of flights.

requires 9 unique {Flight! flight 2 schema.Flights;
flight.FlightId = flightId};

requires 8 {Flight! flight 2 schema.Flights;
flight.FlightId = flightId)
flight.departureTime > DateTime.Now };

modifies schema.flights;
ensures 8 {Flight! flight 2 schema.Flights;

flight.FlightId ¤ flightId };

The preconditions for the transaction redirectFlight are that the id of the flight
to be redirected, denoted flightId, must exist in the list of flights, and that its status
must not be landing. In addition, the new destination is required to be different from
the flight origin. This transaction modifies just the list of flights. The postcondition
ensures that the destination of the redirected flight has indeed been changed in the
list of flights to newDest.

requires 9 unique {Flight flight 2 schema.flights;
flight.FlightId = flightId ^ (flight.FlightStatus ¤ FlightStatus.Landing)};

requires 8 {Flight flight 2 schema.flights;
flight.FlightId = flightId) flight.from ¤ newDest };

modifies schema.flights;

ensures 8 {Flight! flight 2 schema.Flights;
flight.FlightId = flightId) flight.to = newDest };

7.2.6 Constraints and Queries

Queries are pure methods. Pure methods are functions that have no impact on the
state of objects, database objects in particular. Interplay of constraints and queries
is illustrated below. The attribute [Pure] indicates a pure method and result refers to
its result.

7.2 Transactions 195

An example of a query (hence pure) method is flightsDepartureBetween which
returns a list of flights whose departure time is within a given interval. The
preconditions require that the time interval is not empty (i.e. the initial time is
less than the end time) and that the initial time is greater than the current time.
The postcondition ensures that the flights that are returned by this method have the
departure times within the specified bounds.

[Pure] public List<Flight!>? flightsDepartureBetween
(DateTime beginDateTime, DateTime endDateTime)

requires beginDateTime < endDateTime;
requires beginDateTime > DateTime.Now;
ensures 8 {Flight! f 2 result;

f.departureTime � beginDateTime ^
f.departureTime < endDateTime };

{// method body }

The body of this method is specified as a LINQ query given below:

// open db
IEnumerable<Flight> flights =
from Flight flight 2 db
where flight.departureTime � beginDateTime ^

flight.departureTime < endDateTime
select flight;

// close db;

A native query in Db4 Objects (details omitted) has the following form:

// open db
IList<Flight!>? flights =
db.Query<Flight!>(delegate(Flight! f) {
return (f.departureTime � beginDateTime ^

f.departureTime < endDateTime); };
// close db;

7.2.7 Specification Inheritance

Specifications of constraints in a class are inherited in its subclasses. In addition,
method postconditions and class invariants may be strengthened by additional
constraints. Method preconditions remain invariant. This discipline with respect to
inheritance of constraints is a particular case of behavioral subtyping. It guarantees
that an instance of a subtype may be substituted where an instance of the supertype
is expected with no behavioral discrepancies.

196 7 Types and Constraints

Consider the class Airport given below in which an airport object is the owner of
its list of runways, as well as of the specific runways in that list.

public class Airport {

[SpecPublic] private String code;
[Additive] protected int numRunways;
[SpecPublic] [Rep] [ElementsRep] protected List<Runway!>! runways;
// methods and constraints
}

The invariants of this class specify that the number of runways must be within
the specified bounds. In addition, there are ownership based invariants on flights
in the take-off and landing queues in the runways. These are invariants that relate
properties of the owner and its components and hence apply to the entire complex
object of an airport. These constraints include a constraint that one and the same
flight cannot be in two different queues belonging to different runways. In order
to make it possible for subclass invariants to refer to the field numRunways, Spec#
requires the attribute [Additive] in the specification of this field.

invariant numRunways � 1 ^ numRunways � 30;
invariant runways.Count = numRunways;
invariant /* No multiple occurrences of the same flight in runways*/

Methods addRunway and closeRunway along with the associated constraints are
specified as follows:

public virtual void addRunway(Runway! runway)

modifies runways, numRunways;
ensures 9 {Runway! r 2 runways; r.equals(runway)};
{//code }
public virtual void closeRunway (Runway! runway)
modifies runways, numRunways;

ensures numRunways > 0;
ensures numRunways = old(numRunways) - 1;
ensures 8 { Runway! r 2 runways; : r.equals(runway)};
{// code }

Consider now a class InternationalAirport derived by inheritance from the class
Airport. The class InternationalAirport inherits all the invariants from the class
Airport. In addition, it adds new invariants that are conjoined with the inherited
ones. These additional invariants require that the number of runways is higher
than the minimum required by an airport in general. Furthermore, an additional
requirement is that there exists at least one runway of the width and length suitable

7.2 Transactions 197

for international flights. This is expressed using a model field IntRunway. The notion
of a model field is explained in Sect. 7.2.8 that follows.

public class InternationalAirport: Airport {

invariant numRunways � 10;
invariant 9 {Runway! r 2 Runways; r.IntRunway };
// IntRunway is a boolean model field in Runway
// constructor, methods

public override void closeRunway (Runway! runway)
ensures numRunways � 10;
ensures 9 {Runway! r 2 runways; r.IntRunway };
{// code}
}

Overriding of the method closeRunway demonstrates the rules of behavioral
subtyping. One would want to strengthen the precondition of this method by
requiring that there is more than one international runway at an international airport
or else the invariant for the international airport will be violated. But that is not
possible by the rules of behavioral subtyping. Otherwise, users of the class Airport
would see behavior of the method closeAirport that does not fit its specifications in
the class Airport. This would happen if the airport object is in fact of the run-time
type InternationalAirport. The modifies clause cannot be changed either for similar
reasons. But the postcondition can be strengthened as in the above specifications.
The postcondition now ensures that the number of runways is greater than or equal to
ten and that there exists at least one international runway after the method execution.
These are specific requirements for international airports.

Specification inheritance has implications on behavioral subtyping of parametric
types that follow well-known typing rules for such types. For example, if we
derive a schema InternationalFlightScheduling by inheritance from the schema
FlightScheduling, Transaction< InternationalFlightScheduling> will not be a sub-
type of the type Transaction<FlightSchedling>, and hence not a behavioral subtype
either.

A class frame is the segment of the object state which is defined in that class
alone. A class frame does not include the inherited components of the object state.
An invariant of a class will include constraints that apply to its frame, but it may
also further constrain the inherited components of the object state. For example,
an object of type International Airport has three class frames. These class frames
correspond to classes Object, Airport and InternationalAirport.

The notions valid and mutable apply to each individual class frame. The notions
consistent and committed apply to the object as a whole. So an object is consistent
or committed when all its frames are valid. The expose statement changes one class
frame from valid to mutable. The class frame to be changed is specified by the static
type of the segment of the object state to be changed. For example, the body of the
method closeAirport of the class InternationalAirport has the following form:

198 7 Types and Constraints

assert runways ¤ null;
additive expose((Airport)this){

runways.remove(runway);
numRunways–; }

7.2.8 Abstraction

Typical classes in this application have private fields that are made public only for
specification purposes. Examples are fields code and runways in the class Airport.
Users of this class would clearly have the need to read the code of an airport, and
some users would have the need to inspect the runways of an airport. On the other
hand, these fields are naturally made private as users are not allowed to access them
directly in order to change them.

The basic mechanism for exposing a view of the hidden object state is to use
public pure methods. A related technique is to use public properties. A public
property is defined as a pair of get and set methods. The constraints in the set method
control correctness of an update to a backing private field. A property Runways of
the class Airport is specified below.

public List<Runway!>! Runways {

get { return runways;}
[Additive] set {
requires value ¤ null;
ensures runways = value;
ensures /*no multiple occurrences of the same flight in runways*/
//code

}
}

Property getters are pure methods by default. Properties represent a general
abstraction mechanism as the value of a property returned by the method get need
not just be the value of a backing field, but it may be computed in a more complex
way from the hidden (private) components of the object state.

Another abstraction mechanism is based on model fields. A model field is not
an actual field and hence it cannot be updated. The model fields of an object get
updated automatically at specific points in a transaction. An example of a model
field is IntRunway of the class Runway specified below.

model bool IntRunway {
satisfies IntRunway = (length � 80 ^ width � 10);}

Unlike pure methods, model fields do not have parameters. But they often
simplify reasoning. The verifier checks that the satisfies clause can indeed be

7.2 Transactions 199

satisfied, i.e., that there exists an object state that satisfies this clause. The satisfies
clause may depend only on the fields of this and the objects owned by this. The
satisfies clauses may be weaker in superclasses, and strengthened in subclasses.

7.2.9 Dynamic Checking of Constraints

Static verification of a transaction ensures that if the transaction is started in a
consistent database state (the schema invariants hold) and the transaction precon-
dition is satisfied, the schema invariants and the postcondition of the transaction
will hold at the point of the commit action. The application program that invokes
the transaction must satisfy the above requirements at the start of the transaction,
and will be guaranteed that the postcondition and the schema invariants will hold at
the end of the transaction execution.

Static verification does not say anything about what happens if the schema
integrity constraints or the transaction precondition are not satisfied. What it says
is that the code of a successfully verified transaction is correct with respect to the
integrity constraints. Violation of constraints may still happen at run-time given
the actual data. For example, a transaction may be invoked with arguments that
do not satisfy the precondition and hence the verification results do not apply.
This is why the dynamic checks that Spec# generates are essential. JML does the
same, but it does not offer automatic static verification of code. Run-time tests will
generate exceptions indicating violation of constraints. The transaction must handle
these exceptions properly. Static verification guarantees that in the absence of such
exceptions the results of transaction execution will be correct with respect to the
integrity constraints. This extends to concurrent serializable executions of a set of
transactions that have been statically verified.

Explicit dynamic checks may be used to verify that the constraints hold at run-
time. This is illustrated below with a dynamic check of the precondition of the
transactions addAirport in which a denotes the airport that should be added. The
precondition of addAirport is that an airport with the code of the new airport does
not exist in the database. This can be checked only dynamically by querying the
database and asserting that this condition is satisfied.

IList<Airport!>? airports =
db.Query<Airport!>(delegate(Airport! arp){
return (arp.Code = a.Code);};
assert airports = null;

Ensuring that a new airport has been added to the database is accomplished by
querying the database and asserting that the list of airports in the database with the
new code is not empty and that the newly inserted airport is indeed in the database.

200 7 Types and Constraints

IObjectSet? airportsSet =
db.Query(typeof(Airport!));
assert 9 unique {Airport! arp 2 airportsSet; arp.equals(a)};

7.3 Bibliographic Remarks

The type system developed in this chapter is a formal specification of the notions of
the Object Oriented Database Management Group (ODMG), the industrial standard
for object-oriented databases [7]. This type system comes from Alagić [1]. See
also [3].

The classical paper on consistency of database transactions is [8]. The first
attempt of formal transaction verification based on computational logic was
published in [11]. Some subsequent results are [6, 12]. More recent results are
[4, 5]. The presentation of the transaction specification and verification material is
from [2]. The constraints are based on the Spec# notation [9, 10].

7.4 Exercises

1. Specify the typing rule for LINQ comprehension queries.
2. Specify the typing rule for LINQ lambda queries.
3. Specify the precondition and the postcondition of the transaction RedirectFlight

of the FlightScheduling application.
4. Specify the invariants for the following schema:

class Stock {
String stockId();
float price();
}
class Broker {
String brokerId();
String name();
Set<Stock> stocks();
}
class StockMarket: Schema {
[SpecPublic][Rep] private Set<Stock> stocks;
[SpecPublic][Rep] private Set<Broker> brokers;

// invariants
// public methods for insertions, updates, and deletions of stocks and brokers
}

5. Specify the preconditions and the postconditions of the public methods for
insertion, deletion and update of objects specified in the stock market schema.

References 201

6. Specify a transaction MergeStocks for the stock market schema.
7. Extend the previously specified ODMG Publication schema in C# by the

schema constraints specified as invariants.
8. Specify a collection of representative transactions for the Publication schemas

in terms of their preconditions and postconditions. Specify the expose blocks
in the code of the above transactions.

9. Extend the previously specified airport schema in C# with schema constraints
expressed as invariants.

10. Extend the collection of previously implemented transactions for the airport
schema with their preconditions and postconditions.

11. Specify the expose blocks in the code of the above transactions.
12. Specify the precondition and the postcondition of the transaction action commit.

This specification should include the schema invariant.
13. Specify the precondition and the postcondition of the transaction action abort.

This specification should include the schema invariant and the transaction
postcondition.

14. Specify formally the following transaction property: If a verified transaction is
invoked, it will eventually either commit or abort. Assume that a transaction is
equipped with pure boolean methods atStart, atCommit and atAbort. Make use
of the operator eventually so that eventually(p) evaluates to true if the predicate
p holds some time in the future.

15. Specify formally the following transaction integrity property: If a verified
transaction is invoked in a consistent database state and its precondition is
satisfied, upon commit of the transaction the database will be in a consistent
state.

16. Specify formally the following transaction correctness property: If a verified
transaction is invoked in a consistent database state and its precondition is
satisfied, upon commit of the transaction the transaction postcondition will
hold.

17. Specify formally the following transaction property: A verified transaction is
allowed to violate database integrity constrains only in expose blocks. Outside
of the expose blocks the integrity constraints will hold.

18. Specify formally the following transaction aggregation property: A verified
transaction cannot permanently violate the integrity constraints associated with
complex objects defined by aggregation by updating components of such
complex objects.

References

1. S. Alagić, Type checking OQL queries in the ODMG type systems. ACM Trans. Database
Syst. 24(3), 319–360 (1999)

2. S. Alagić, A. Fazeli, Verifiable object-oriented transactions, in Proceedings of COB 2012
(Concurrent Objects and Beyond), ed. by G. Agha, A. Igarashi, N. Kobayashi, H. Masuhara, S.
Matsuoka, E. Shibayama, K. Taura. Lecture Notes in Computer Science, vol. 8665 (Springer,
Berlin, 2014), pp. 251–275

202 References

3. S. Alagić, M. Royer, Genericity in Java: persistent and database systems implications. VLDB
J. 17(4), 847–878 (2007)

4. S. Alagić, P. Bernstein, R. Jairath, Object-oriented constraints for XML schema, in Proceedings
of International Conference on Objects and Databases (ICOODB 2010), ed. by A. Dearle, R.V.
Zicari. Lecture Notes in Computer Science, vol. 6348 (Springer, Berlin, 2010), pp. 101–118

5. I.G. Baltopoulos, J. Borgstrom, A.G. Gordon, Maintaining database integrity with refinement
types, in Proceedings of Object-Oriented Programming (ECOOP) 2011, ed. by M. Mezini.
Lecture Notes in Computer Science, vol. 6813 (Springer, Berlin, 2011), pp. 484–509

6. V. Benzanken, X. Schaefer, Static integrity constraint management in object-oriented database
programming languages via predicate transformers, in ECOOP’97 — Object-Oriented Pro-
gramming, ed. by M. Akşit, S. Matsuoka. Lecture Notes in Computer Science, vol. 1241
(Springer, Berlin, 1997), pp. 60–84

7. R.G.G. Cattell, D. Barry, M. Berler, J. Eastman, D. Jordan, C. Russell, O. Schadow,
T. Stanienda, F. Velez, The Object Data Standard: ODMG 3.0 (Morgan Kaufmann, San
Francisco, 2000)

8. K.P. Eswaran, J.N. Grey, R.A. Lorie, I.L. Traiger, The notions of consistency and predicate
locks in a database system. Commun. ACM 19, 624–633 (1976)

9. K.R. Leino, P. Muller, Using Spec# language, methodology, and tools to write bug-free
programs, Microsoft Research (2010), http://research.microsoft.com/en-us/projects/specsharp/

10. Microsoft Corp., Spec#. http://research.microsoft.com/specsharp/
11. T. Sheard, D. Stemple, Automatic verification of database transaction safety. ACM Trans.

Database Syst. 14, 322–368 (1989)
12. D. Spelt. S. Even, A theorem prover-based analysis tool for object-oriented databases, in Tools

and Algorithms for the Construction and Analysis of Systems, ed. by W.R. Cleaveland. Lecture
Notes in Computer Science, vol. 1579 (Springer, Berlin, 1999), pp. 375–389

http://research.microsoft.com/en-us/projects/specsharp/
http://research.microsoft.com/specsharp/

Index

A
Abort method, 148, 152, 160, 201
Abstract

class, 17–20, 37, 43, 56, 68, 69, 120, 121,
155, 158, 160

data type, 1
ACID properties, 148, 155, 187
Active object, 105
Aggregation, 188, 191, 201
Ambient, 105, 120–124, 131
Argument, 2, 3, 8, 10, 20–22, 34, 37, 38, 42,

45, 51–56, 59–61, 63–65, 67, 72, 77,
83, 86, 87, 93, 94, 98, 99, 101–103,
106, 113–116, 120, 125, 126, 128,
130, 138, 140–142, 145–147, 153,
156, 158, 159, 169, 170, 174, 178,
181, 182, 184, 199

Array, 16, 21, 26, 29, 30, 32–34, 47, 49, 51, 52,
54, 56–59, 61, 64–67, 69, 91–93,
99, 102, 114, 130, 168

ArrayLoad, 65–67, 78
operation specification, 65–67

ArrayStore, 67, 78
operation specification, 66, 67

Assertion
class invariant, 31, 125, 192
loop invariant, 25, 28, 29, 33–34, 36, 47
object-invariant, 25, 35–37, 40, 43–45
postcondition, 25, 26, 29–33, 35, 37, 38,

40, 41, 45, 47, 125–127
precondition, 25, 26, 31–33, 35, 36, 38, 40,

41, 44, 45, 47, 125–127
Assignment

reasoning rule, 25
typing rules, 81, 82, 92

Association, 134, 163
Asynchronous message, 105, 113, 115, 118,

119, 121, 122, 126
Atomicity, 148, 187
Attribute, 43, 44, 57, 58, 113, 114, 134,

135, 143, 166–170, 172, 173, 186,
189–192, 194, 196

Automatic static verification, 192, 199

B
Bag ordered, 19
Begin method, 70, 147–151, 160
Behavioral subtyping, 25, 40–41, 46, 47, 105,

119–120, 130, 131, 195, 197
Binding

dynamic, 1, 9–12, 113, 176
static, 1, 9–12

Bind method, 140, 141, 145–147, 159, 183
Bounded parametric polymorphism, 158, 160

C
C#, 5, 6, 10–12, 18, 21, 26, 32, 38, 40–45, 47,

49, 50, 53, 58, 77, 78, 91, 99, 102,
103, 110, 113, 141, 143, 152, 157,
163, 201

C++, 172, 176, 179–184
Catch clause, 14, 55–57, 70, 72, 73, 101, 111,

112, 149–151, 156
Class

Class, 6, 11, 49, 51, 68, 69, 78, 89, 90, 125
ClassLoader, 52, 56, 57
constructor, 3, 6, 54, 55, 69
extent, 49, 56, 166, 167, 172, 173

© Springer International Publishing Switzerland 2015
S. Alagić, Object-Oriented Technology, DOI 10.1007/978-3-319-20442-0

203

204 Index

Class (cont.)
field, 6, 53, 54
file, 49, 51, 52, 56–59, 67
inner, 160
invariant, 31, 125, 131, 192, 195
loader method, 49, 51, 52, 56, 57, 59, 89

Collection
Bag, 38, 168
OrderedBag, 19
OrderedCollection, 16, 17, 21, 86, 90, 99,

103, 109, 111–113, 136, 141, 158,
165, 167, 184–186

OrderedSet, 16
Set, 144, 168
specification, 13, 15, 17
types, 13, 32, 95, 100

Commit method, 155, 160
Committed object state, 190
Common Language Runtime (CLR), 58, 126,

131
Complex object, 71, 72, 74–76, 79, 110, 133,

145, 154, 186, 188, 191, 201
Component, 2–4, 6, 22, 36, 37, 49, 52, 58, 65,

67, 70–72, 75, 82, 124, 145, 152,
154, 155, 157, 169–171, 188–193,
196–198, 201

Concurrent, 148, 187, 199
models, 105–131
object, 105, 120–129, 131
threads, 105–113, 130

ConcurrentObject class, 122, 123
Conditional

reasoning rule, 25
statement, 25, 27, 28, 82
typing rules, 81

Conjunction, 27, 31, 32, 41, 119, 120, 158
Consistency, 148, 165, 187, 189–191, 200
Consistent

database state, 148, 186, 199, 201
object state, 35, 190

Constrained genericity. See Bounded
parametric polymorphism

Constraints. See Assertion
Constructor, 3, 36, 42, 44, 49, 51, 54–55, 84,

85, 87, 89, 106, 110, 113–116,
124, 125, 130, 146, 147, 156,
183, 197

Contract, 25, 33, 42–46
[ContractInvariantMethod], 43, 44
Contracts class, 42, 43, 45, 46
Contravariance, 8, 120
Covariance, 8
Create method, 131, 140, 186

D
Database

constraints, 158–163, 186
object-oriented, 70, 133, 149, 151, 152,

162, 166, 200
relational, 135, 143, 144
schema, 134, 148, 151, 160, 186
type system, 165–186

Database class, 159, 168
DataContext class, 143
DBag class, 140, 144, 146, 147, 181, 183
Db4 Objects, 133, 151–155, 162, 195
DCollection class, 140, 181
DefineClass method, 56, 57
Delete method, 153, 157
Dictionary, 21
Disjunction, 27
Dispatch, 10–12
Distinct clause, 136, 167, 169, 174, 175, 179
Do loop, 29, 30, 47, 83
DSet class, 181
Durability, 148, 187
Dynamic

binding, 1, 9–12, 113, 176
checking, 10, 14, 21, 33, 42, 46, 77, 88, 89,

91–94, 99, 146, 177, 199–200

E
[ElementsRep], 191, 196
Ensures clause, 31, 32, 38
Enumerable interface, 141
Equality, 10, 26
Equals method, 180
Exception, 12, 14, 33, 41, 53–57, 72, 73, 93,

97–101, 110, 112, 127, 131, 138,
149–151, 156, 199

Execute method, 147, 160, 183
Existential quantification, 39, 45, 192
Exists, 36, 73, 75, 93, 106, 134, 137, 138, 157,

171, 193, 194, 196, 197, 199
Exists method, 45
Expose block, 36, 189, 190, 201
Expression, 2, 26–28, 34, 42, 45, 49, 69,

81–84, 86, 88, 89, 91–93, 113,
115–118, 124–126, 128, 129, 131,
138, 142, 146, 158, 166, 167, 171,
173–175, 178, 182

Extended virtual machine, 67, 69
Extends, 3–6, 9, 14, 16–20, 31, 38, 51, 53–55,

57, 69, 71, 76–78, 85, 90, 97,
102, 103, 105–107, 109, 110, 112,
115–121, 123, 124, 127, 129, 131,

Index 205

135, 138, 144, 156, 158–162, 170,
171, 181, 184–186, 199, 201

Extent, 5, 135, 165–169, 172, 173

F
File system, 59, 75, 147
Final, 6, 11, 51, 53–55, 69, 114, 125–127,

158–160, 162
ForAll method, 45
Foreach statement, 47, 102
Formula, 26, 68, 69, 78, 127, 131
ForName, 52, 78, 89
For statement, 13, 15, 33, 47, 102
Frame constraint, 37, 61, 67, 78

G
Genericity. See Parametric polymorphism
GetConstructor, 51, 52
GetDeclaringClass, 53, 54
GetExceptionTypes, 54, 55
GetInterfaces, 52
GetMethod, 51, 52, 69, 70, 92–94, 101, 122,

125, 192, 198
GetModifiers, 52, 54, 55
GetName, 52–55, 93, 135, 139, 146, 147
GetParameterTypes, 54–56, 93, 94
GetReturnType, 54
GetSuperClass, 6, 51
GetType, 53, 55, 69, 92

H
Heap, 57–67, 74–76, 78, 105, 107, 123, 124,

127–129
Hierarchy, 6, 22, 50, 51, 75, 78, 105, 114, 117,

144, 155, 189
Horn clause, 32, 82, 158

I
IEnumerable interface, 141, 144
IEnumerator interface, 141
Implements, 2, 4, 6, 16, 17, 19, 21, 22, 46, 52,

58, 71, 75, 78, 97, 106, 110–112,
114–116, 130, 141, 144, 161, 163,
164

Implication, 10, 11, 21, 25, 27, 31, 33, 50, 75,
95, 98, 99, 101, 102, 105, 117, 138,
146, 158, 182, 184, 187, 188, 190,
191, 197

Inheritance
diamond, 5
multiple, 5, 18, 23, 110, 111, 114
single, 18, 110

Integrity constraint
general, 155, 165, 186
key, 160, 186, 187, 191, 193
referential, 160, 186, 189, 193

Interface, 1–6, 13–19, 22, 31, 32, 45, 46,
52, 57, 71, 74–76, 78, 97, 102,
103, 106, 110, 114–116, 124, 126,
127, 129–131, 135, 137, 138, 140,
141, 144, 145, 147, 152–155, 157,
159–162, 165, 167–172, 174, 178,
180, 181, 184–186, 189

Interpreter, 49, 58, 147
Interpretive technique, 147
Interrupt method, 111
Intersection, 14, 15, 18, 19, 31, 38–40, 178
Invariant

class, 31, 125, 131, 192, 195, 196
loop, 25, 28, 33–34, 36, 47
object, 25, 35–37, 40, 43–45, 189, 190

Invoke
method, 17, 41, 49, 51, 54–56, 61, 62, 78,

101, 109, 112, 115
operation specification, 61, 78
typing rules, 93–94

IObjectContainer class, 152
IsInterrupted method, 112
Isolation, 148, 187, 188
Iterator, 19, 101, 138, 181, 186

variable, 141

J
Java, 5, 6, 10, 12, 13, 18, 21, 26, 32, 38, 41,

45–47, 49–53, 56–59, 71, 74, 75,
77–79, 81, 84, 85, 87, 88, 91, 93, 95,
97–103, 105, 106, 110–113, 130,
131, 133, 134, 137–141, 144–149,
155, 162, 163, 170, 172, 173,
175–177, 180–184

Java binding (ODMG), 133, 137, 140,
144–149, 172, 175–177,
181–183

Java Core Reflection (JCR), 51, 53, 68, 77, 93,
101

Java OQL, 78, 133, 137–141, 162, 165,
181–184

Java Virtual Machine (JVM), 49, 58, 59, 70,
78, 99, 126, 131

206 Index

K
Key, 1, 16, 21, 30, 133, 143, 148, 157, 160,

165, 186–188, 191, 193

L
Lambda expression, 45, 142
Language Integrated Query (LINQ), 133,

141–144, 162, 163, 181, 195, 200
List, 37, 42, 118, 136, 154, 157, 168, 180, 184,

191, 194–196, 198
LoadClass method, 56, 57
Loader, 49, 51, 52, 56, 57, 59, 67, 77, 89
Locking, 188
Lookup method, 146, 159
Loop

Do, 29, 30, 47, 83
invariant, 25, 28, 29, 33–34, 36, 47
reasoning rule, 28
typing rule

For, 30
While, 28, 34, 83

M
Match method, 154, 157
Message

arguments, 174
asynchronous, 105, 113, 115, 118, 119,

122, 126
broadcast, 113, 119
create, 115, 116, 118, 119, 121
mutator, 113, 115, 125
receiver, 3
signature, 178
sustained, 113, 116, 121
term, 69
transient, 113, 116, 121
twoway, 115, 122, 128
type, 105, 113, 114, 116, 117

Method
arguments, 10
get, 43, 51, 53, 153, 157, 198
introspection, 6, 11, 54, 81, 92, 93
invocation, 32, 33, 61, 93, 94, 98
mutator, 51
parametric, 18, 22
pure, 37, 38, 44, 194, 195, 198
receiver, 11, 54, 191
result, 170
set, 43, 53, 55, 153, 192, 198
static, 12, 142

Mobile object, 123, 130
Model field, 197, 198

Modifies clause, 33, 37, 193, 194, 197
Multiple inheritance, 5, 18, 22, 23, 110, 114
Mutable object state, 190

N
Native query, 157, 164, 195
Negation, 17, 27
NewArray, 64, 78

operation specification, 64, 65, 78
NewInstance

method, 51, 54, 55
operation specification, 60, 78

Nonnull type, 34, 189, 192
NotifyAll method, 107, 109, 130

O
Object

committed, 190
concurrent, 105, 120–129
consistent, 35, 190, 197
database, 133–164, 194
identity, 2, 7, 10, 129
invariant, 25, 35–37, 40, 43–45, 189,

190
message, 114–116, 118, 121
mobile, 123, 130
mutable, 190
persistent, 49, 50, 71–78, 100, 133, 144,

145, 148, 153, 155
serialization, 50, 75–77
service, 120, 121, 123, 124
state, 2–4, 6, 7, 31, 35–37, 45, 105, 107,

113, 119, 128, 129, 139, 146, 152,
157, 190, 193, 197, 198

valid, 190, 192
Object class, 50
Object Definition Language (ODL), 133–135,

162, 165–167, 172, 173
ObjectInput class, 75
Object Oriented Database Management

Group (ODMG), 70, 133–135,
137–141, 144–149, 151, 152, 158,
159, 162–165, 167–170, 172–177,
179–182, 184, 200, 201

ObjectOutput class, 75
Object Query Language (OQL), 133–135,

137, 138, 140, 142, 143, 146, 163,
165–167, 169, 172–184

Open method, 152
Operation, binary, 63, 64, 83
Operator, 32, 47, 70, 83, 84, 142, 201
OQLQuery class, 140, 183

Index 207

Order by clause, 142, 165, 167, 179–181
Orthogonal persistence, 50, 71–75, 145
Overload, 10, 26
Overloading, 87, 96, 97, 103, 170
Override, 11, 18, 22, 38, 41, 109–111, 197
Overriding, 10, 11, 86, 109, 197
Owner, 188–191, 196
Ownership model, 191

P
Parameter

actual, 18, 36, 54, 55, 96, 110, 174, 183
formal, 3, 87, 96, 98, 102, 118, 140, 146,

183
Parametric polymorphism, 1, 15, 16, 20, 21,

146, 160, 172, 178, 179, 181, 183,
184

bounded, 158, 160
class, F-bounded, 16, 19, 22, 184
interface, 16, 31, 178, 185
method, 18, 22
subtype, 7, 9, 12, 14, 15, 146
universal, 16, 90, 94

Peer, 188–192
[Peer], 189
Persistence

architecture, 50, 71, 74–75, 78, 145
orthogonal, 50, 71–75, 145
by serialization, 99–101

Persistent
collection, 75, 100, 133, 138, 144, 149–151
object, 49, 50, 71–78, 100, 133, 144, 145,

148, 153, 155
PJama interface, 159
PJStore interface, 71, 159
Portability, 49
Postcondition, 25, 26, 29–33, 35, 37, 38,

40, 41, 45, 47, 61, 63, 64, 66–70,
78, 118, 120, 125–128, 130, 131,
159, 160, 186, 191, 193–195, 197,
199–201

Precondition, 25, 26, 29–33, 35, 36, 38, 40,
41, 44, 45, 47, 60–64, 66–70, 78,
115, 118, 120, 122, 125–128, 131,
159, 160, 186, 191, 193–195, 197,
199–201

Predicate, 47, 119, 121, 126, 137, 138, 142,
153, 154, 157, 181, 182, 192, 201

Predicate type, 153
Private, 2, 4, 10, 11, 17, 18, 36, 37, 41, 43, 72,

79, 84, 94, 106, 107, 109, 111, 112,
122, 127, 139, 146, 150–152, 156,
157, 189, 191, 192, 196, 198, 200

Property, 12, 16, 43, 45, 47, 74, 109, 148, 157,
174, 176, 185, 187, 198, 201

Protected, 18, 37, 41, 56, 155, 156, 160, 189,
196

Prototype object, 153
Public, 2, 4–6, 9–19, 31, 34–45, 51–58, 68, 69,

71–77, 84, 94–101, 103, 106–112,
138–148, 150–152, 154–162, 175,
176, 189, 191–198, 200

[Pure], 37–40, 44, 195
Pure method, 37, 38, 44, 194, 195, 198
PutField

method, 62
operation specification, 62, 63, 78

Q
Query

comprehension, 142, 163, 200
by Example, 153, 156
inner, 136, 137
lambda, 142, 163, 200
languages, 133–144, 153, 163, 181
methods, 138, 139, 154
native, 157, 164, 195
nested, 136, 137
object-oriented, 133, 159

Queryable type, 144
Queue, 21, 22, 110, 123, 124, 127, 128, 130,

196

R
Reachability, 71
ReadObject method, 76, 77, 79, 100
Reasoning rule, 25–30
Receiver object, 3, 10–12, 41, 55, 56, 61, 78,

113–116, 126, 173
Recovery, 187
Redefine

class invariant, 10, 32, 123, 170
method, 10, 32, 170
postcondition, 38
precondition, 32
reference, 10, 32, 123, 170
type, 32, 170

Referential integrity, 160, 186, 189, 191,
193

Reflection, 49–58, 67, 68, 70, 77, 78, 81,
91–102, 105, 116, 124–127, 130,
140, 151

Region, 123, 124
Relation, 71, 117, 143, 170
Relational database, 135, 143, 144

208 Index

Relationship, 5, 6, 28, 52, 85, 105, 134–136,
138, 139, 148, 149, 159, 165, 170,
176, 188–190, 192

[Rep], 191, 196, 200
Requires clause, 31, 32
Result, 2, 8, 19, 20, 28, 33–35, 37–40, 50, 54,

56, 58, 61–66, 70, 72, 77, 83, 87, 89,
91, 93, 94, 100, 102, 107, 111–113,
115, 117, 118, 121, 122, 126, 128,
129, 136, 138, 142, 146, 147, 150,
153, 154, 158, 167, 169, 170, 174,
175, 178–181, 183, 184, 188, 194,
195, 199

Rollback method, 155
Root

of persistence, 72, 145, 146, 159
of type hierarchy, 78

Run method, 111
Runnable interface, 106, 130
Runtime

checking, 99
stack, 58, 64, 78, 127, 129

S
Schema (database), 134, 148, 151, 160, 186
Search tree, 21
Select

clause, 173
method, 11, 12, 138, 186
operator, 142

SelectElement method, 138
Self, 3, 42, 181
Semantics, 1, 15, 31, 32, 49, 67, 70, 77, 113,

159, 188
Sentence, 68, 69, 78, 127
Serial execution, 187
Serializable execution, 187, 199
Serializable interface, 71, 75, 110
Serializable object, 71–77, 110
Service object, 120, 121, 123, 124
Set

method, 192, 197
ordered, 16, 21

Signature
constructor, 6, 84
field, 6, 84
method, 6, 8, 74, 85, 87, 117, 168–170,

173, 174
Sleep method, 112
Spec#, 26, 32–39, 46, 126, 189, 191, 192, 196,

199
Specification, 3–5, 12, 13, 16, 18, 20, 25–33,

36–39, 45–47, 49, 50, 60, 61, 67,

77, 78, 81, 103, 114, 117, 125, 129,
131, 134–137, 139–144, 153, 158,
160, 165, 166, 168, 169, 173, 178,
182, 189, 191–193, 195–198, 200

inheritance, 195–198
[SpecPublic], 37, 41, 189, 191, 192, 196, 200
SQL, 135, 136, 141–143, 167, 181
Start method, 106, 160
Statement

assignment, 26, 28, 29, 82, 85–86, 88, 97
conditional, 25, 27, 28, 82–83
loop, 3–35, 47, 81, 83

Static
method, 12, 142
structure, 169–170
typing rules, 81

Subclass, 6–10, 18, 22, 40, 47, 82, 86, 119,
120, 160, 195, 196, 199

Substitution, 7, 15, 21, 69, 89, 96, 103, 118,
119, 174, 178

Subtyping
behavioral, 25, 40–41, 46, 47, 105,

119–120, 130, 131, 195, 197
function, 8, 10, 87
typing rules, 10, 85, 88, 99, 102, 103

Superclass, 5–8, 20, 40, 41, 47, 51, 57, 75, 86,
109, 117, 119, 120, 199

Swizzelling, 75
Synchronization, 105, 107–110, 130
Synchronized

method, 108–110, 112, 130, 131
object, 107–109, 111

Synchronize statement, 111, 130

T
Table, 57, 82, 83, 143, 144, 193
Term, 1, 7, 8, 19, 31, 69, 76, 78, 126, 201
Termination

of a loop, 25, 30
verification, 34, 47

This, 2, 3, 19, 31, 36, 37, 39, 41, 57, 68, 69,
106, 111, 115, 121, 123, 139, 159,
161, 181, 182, 189, 192, 193, 199

Thread class, 106, 112
Thread object, 106
Transaction

abort, 70, 71, 148, 150–152, 160, 186, 201
commit, 155
execution, 186, 187, 189, 199
specification, 200
start, 148
verification, 190, 191, 200

Transaction class, 160, 168, 189

Index 209

Transitive, 9, 85, 154
persistence, 154

Transparency, 71, 73–75, 145
Type cast, 13, 15, 73, 77, 79, 88, 91, 99, 100,

146, 150, 151, 163, 169, 176, 177,
182, 183

Type checking. See also Typing rules
dynamic, 1, 10, 16, 53, 81, 88–89, 91, 92,

99, 102, 146, 176, 177, 182, 183
static, 16, 81, 91, 92, 95–100, 173,

179–181, 183, 184
Type erasure

dynamic violations, 95
reflection, 81, 101, 102, 151
serializability, 81
static violations, 81

Type signature
class, 51, 67, 78, 84, 89, 90, 95, 103
constructor, 51, 84
field, 51, 67, 78, 84, 90
message, 87
method, 18, 51, 67, 78, 84, 87, 90, 95, 100,

117, 154
Type systems, 6, 11, 32, 34, 51, 54, 55,

81–103, 116, 130, 134, 139, 146,
151, 165–187, 192, 200

object-oriented, 32, 81, 84–88, 102, 173
Type violation, 53, 54, 81, 93, 95, 98, 99
Typing environment, 82, 83, 85, 86, 88–91, 93,

116, 118
Typing rules

arrays, 99
assertions, 116, 118, 119
assignment, 92
behavioral subtyping, 105, 130, 131, 197
blocks, 102
bounded, 90
class, 173
class extent, 173
conditional, 81
constructor, 84, 116–119
Do loop, 83
dynamic, 21, 81, 92, 99
expression, 81–84, 92, 116–118
extent, 173
field access, 81
field update, 92
inheritance, 7, 81, 197
interface, 103
JavaOQL, 181–184
messages, 81, 103, 105, 116–119
method introspection, 81
method invocation, 81, 103
methods, 7, 20, 81, 99, 102, 103, 116–119,

183

OQL queries, 173, 183
with order by clause, 165

overloading, 87, 96, 97
overriding, 86
parametric types, 81
records, 82, 83
reflection, 81, 91–94, 116
static, 81
structures, 102
subsumption, 86, 88
subtyping, 10, 85, 88, 99, 102, 103
universal, 90
While loop, 83

U
Union, 14, 15, 18, 19, 31, 38, 39, 118,

178
Unique, 2, 42, 114, 191, 193, 194, 200
Universal quantification, 45, 178
Update

field, 55
transaction, 96, 98, 99, 103

V
Valid object state, 190, 192
Variable

bound, 119, 120, 126, 127, 174, 183
control, 13, 33
free, 68, 69, 120, 126, 127

Variant function, 34, 35
Verification

dynamic, 33, 46, 199
static, 33, 42, 46, 192, 199

Virtual
machine, 49, 50, 58–67, 77, 78, 99, 105,

122–124, 126–129, 131
method, 11, 49–58, 61, 62, 67–70, 72–79,

99, 126, 128, 131
platform, 1, 49–79

W
Wait method, 107, 112, 130, 131
Where

clause, 137
operator, 142

While loop, 28–29, 83
WriteObject method, 76, 77, 79, 100

Y
Yield method, 112

	Preface
	Acknowledgements

	Contents
	1 Typed Objects
	1.1 Typed Objects
	1.1.1 Objects and Classes
	1.1.2 Inheritance
	1.1.3 Subtyping
	1.1.4 Static and Dynamic Binding

	1.2 Parametric Types
	1.2.1 Collection Types
	1.2.2 Parametric Types
	1.2.3 Implementing Parametric Classes
	1.2.4 Abstract Classes
	1.2.5 Parametric Types and Subtyping

	1.3 Bibliographic Remarks
	1.4 Exercises
	References

	2 Assertions
	2.1 Declarative Specifications
	2.1.1 Assertions
	2.1.2 Basic Reasoning Rules

	2.2 Object-Oriented Assertions
	2.2.1 Preconditions and Postconditions
	2.2.2 Loop Invariants
	2.2.3 Termination
	2.2.4 Object Invariants
	2.2.5 Assertions for Collections
	2.2.6 Behavioral Subtyping

	2.3 Sample Application
	2.4 Bibliographic Remarks
	2.5 Exercises
	References

	3 Virtual Platform
	3.1 Reflection
	3.1.1 Reflective Classes
	3.1.2 Class Objects
	3.1.3 Field Objects
	3.1.4 Method Objects
	3.1.5 Constructor Objects
	3.1.6 Updating Fields
	3.1.7 Invoking Methods
	3.1.8 Creating Class Objects
	3.1.9 Class Files

	3.2 Virtual Machine
	3.2.1 The Structure of the Virtual Machine
	3.2.2 Creating Objects
	3.2.3 Invoking Methods
	3.2.4 Accessing Fields
	3.2.5 Operations
	3.2.6 Arrays

	3.3 Extending Virtual Platform
	3.4 Persistent Objects
	3.4.1 Orthogonal Persistence
	3.4.2 Persistence Architecture
	3.4.3 Object Serialization

	3.5 Bibliographic Remarks
	3.6 Exercises
	References

	4 Type Systems
	4.1 Formal Type Systems
	4.1.1 Typing Rules
	4.1.2 Object-Oriented Type System
	4.1.3 Dynamic Type Checking
	4.1.4 Parametric Types

	4.2 Reflection
	4.3 Type Erasure
	4.3.1 Type Erasure Idiom
	4.3.2 Static Type Checking
	4.3.3 Dynamic Type Checking
	4.3.4 Persistence by Serializability
	4.3.5 Reflection

	4.4 Bibliographic Remarks
	4.5 Exercises
	References

	5 Concurrent Models
	5.1 Concurrent Threads
	5.1.1 Thread Objects
	5.1.2 Synchronized Objects
	5.1.3 Synchronization and Inheritance
	5.1.4 Concurrency and Serialization
	5.1.5 Synchronized Versus Unsynchronized Executions

	5.2 Messages as Objects
	5.2.1 Types of Messages
	5.2.2 Typing Rules
	5.2.3 Behavioral Subtyping

	5.3 Concurrent Objects
	5.3.1 Ambients of Concurrent Objects
	5.3.2 Reflection
	5.3.3 Virtual Machine

	5.4 Bibliographic Remarks
	5.5 Exercises
	References

	6 Object Databases
	6.1 Query Languages
	6.1.1 Object Definition Language
	6.1.2 Object Query Language
	6.1.3 Java OQL
	6.1.4 Language Integrated Queries (LINQ)

	6.2 Object Databases
	6.2.1 ODMG Java Binding
	6.2.2 Parametric Persistent Collections
	6.2.3 Db4 Objects
	6.2.4 Database Application

	6.3 Database Constraints
	6.4 Bibliographic Remarks
	6.5 Exercises
	References

	7 Types and Constraints
	7.1 Database Type Systems
	7.1.1 ODL and OQL Examples
	7.1.2 Schemas
	7.1.3 Inheritance
	7.1.4 Structures
	7.1.5 Interfaces
	7.1.6 Classes
	7.1.7 Objects and Messages
	7.1.8 Type Checking OQL Queries
	7.1.9 OQL Queries and Parametric Types
	7.1.10 Queries with Order by Clause
	7.1.11 Java OQL
	7.1.12 Typing Ordered Collections and Indices

	7.2 Transactions
	7.2.1 Transactions and Constraints
	7.2.2 Schemas and Transactions
	7.2.3 Levels of Consistency
	7.2.4 Constraints for Schemas
	7.2.5 Sample Transactions
	7.2.6 Constraints and Queries
	7.2.7 Specification Inheritance
	7.2.8 Abstraction
	7.2.9 Dynamic Checking of Constraints

	7.3 Bibliographic Remarks
	7.4 Exercises
	References

	Index

