

PYTHON	MADE	SIMPLE

©	Copyright	2015	-	All	rights	reserved.
This	document	is	geared	towards	providing	exact	and	reliable	information	in	regards	to	the
topic	and	issue	covered.	The	publication	is	sold	with	the	idea	that	the	publisher	is	not
required	to	render	accounting,	officially	permitted,	or	otherwise,	qualified	services.	If
advice	is	necessary,	legal	or	professional,	a	practiced	individual	in	the	profession	should
be	ordered.

From	a	Declaration	of	Principles	which	was	accepted	and	approved	equally	by	a
Committee	of	the	American	Bar	Association	and	a	Committee	of	Publishers	and
Associations.

In	no	way	is	it	legal	to	reproduce,	duplicate,	or	transmit	any	part	of	this	document	in	either
electronic	means	or	in	printed	format.	Recording	of	this	publication	is	strictly	prohibited
and	any	storage	of	this	document	is	not	allowed	unless	with	written	permission	from	the
publisher.	All	rights	reserved.

The	information	provided	herein	is	stated	to	be	truthful	and	consistent,	in	that	any	liability,
in	terms	of	inattention	or	otherwise,	by	any	usage	or	abuse	of	any	policies,	processes,	or
directions	contained	within	is	the	solitary	and	utter	responsibility	of	the	recipient	reader.
Under	no	circumstances	will	any	legal	responsibility	or	blame	be	held	against	the
publisher	for	any	reparation,	damages,	or	monetary	loss	due	to	the	information	herein,
either	directly	or	indirectly.

Respective	authors	own	all	copyrights	not	held	by	the	publisher.

The	information	herein	is	offered	for	informational	purposes	solely,	and	is	universal	as	so.
The	presentation	of	the	information	is	without	contract	or	any	type	of	guarantee	assurance.

The	trademarks	that	are	used	are	without	any	consent,	and	the	publication	of	the	trademark
is	without	permission	or	backing	by	the	trademark	owner.	All	trademarks	and	brands
within	this	book	are	for	clarifying	purposes	only	and	are	the	owned	by	the	owners
themselves,	not	affiliated	with	this	document.

Bonus	Free	Python	Programming	Videos
When	you	subscribe	via	email,	you	will	get	free	access	to	a	toolbox	of	exclusive
subscriber-only	resources.		All	you	have	to	do	is	enter	your	email	address	to	the	right	to
get	instant	access.

To	get	instant	access	to	these	incredible	tools	and	resources,	click	the	link	below:

=>	Click	here	for	the	bonus	content	<=

https://aflexsystem.clickfunnels.com/optin5428051

Table	of	Contents
Introduction

Chapter	1:	Setting	Up	Python	on	Your	computer

Chapter	2:	Interacting	with	Python

Chapter	3:	Boolean’s	in	Python

Chapter	4:	Boolean’s	and	Conditional	expressions

Chapter	5:	Use	of	if	–	elif	statements	in	making	Multiple	Tests	in	Python

Chapter	6:	Use	of	Nested	Control	flow	statements	in	Python

Chapter	7:	Compound	Boolean	Expressions	in	Python

Chapter	8:	Python	Data	Variables	(Numbers,	Lists,	Tuples,	Strings	and	Dictionaries)

Chapter	9:	Basic	Operators	in	Python	for	Calculations

Chapter	10:	Opening	and	Closing	Files

Chapter	11:	Reading	and	Writing	Files	in	Python

Chapter	12:	Managing	Databases

Conclusion

Bonus	Free	Python	Programming	Videos

Introduction

I	want	to	thank	you	and	congratulate	you	for	downloading	the	book, “PYTHON	MADE
SIMPLE” .

This	book	contains	has	simple	lessons	on	one	can	use	numbers	and	texts	in	python	as	a
way	of	interacting	with	Python.

Every	chapter	in	this	book	has	well	organized	and	numbered	steps	which	you	will	need	to
follow	so	as	to	grow	you	expertise	in	the	use	of	Python	as	scripting	language.	In	addition,
this	book	also	provides	you	with	codes	which	you	will	need	to	practice	with	in	your
Python	to	learn	how	to	run	Python	codes.

It	is	my	hope	that	typing	the	codes	will	increase	your	knowledge	and	understanding	of	the
various	capabilities	that	can	be	achieved	in	Python.

It	is	my	delight	that	after	reading	this	book,	you	should	expect	to	have	a	much	better
understanding	of	how	you	can	code	and	write	algorithms	that	will	simply	work	for	you	in
using	Numbers	and	Texts.	This	will	make	your	life	easier	and	increase	potential	as	a
Python	Expert.

I	believe	that	the	instant	you	made	a	decision	to	read	this	book;	you	were	headed	in	the
right	direction.	It	is	indeed	a	fantastic	idea	to	read	this	book.	It	is	my	anticipation	that	after
reading	this	book,	you	will	have	significantly	gained	much	knowledge	and	skills	in	using
Python	not	only	for	using	numbers	and	texts;	But	also	your	general	problem	solving	skills
in	Python!

Isn’t	learning	Python	this	way	a	fantastic	idea?	Well,	I’m	happy	that	you	chose	this	book
as	your	guide	to	learning	Python	and	get	to	the	next	level	in	Python	programming.	I’m	in
deed	very	excited	for	the	great	potential.

I	thank	you	in	advance	for	downloading	this	book,	I	hope	that	you	will	benefit	from	this
rich	resource	and	hope	that	you	practice	this	on	a	daily	basis.

Chapter	1:	Setting	Up	Python	on	Your	computer

To	be	able	to	use	python,	you	need	to	ensure	that	your	computer	has	all	the	requirements
needs	to	run	python.	This	chapter	offers	you	all	the	instructions	you	need	to	follow	to	get
started.	There	are	different	settings	for	python	depending	with	the	computer	you	want	to
use.

If	you	are	using	Mac	OS	X	computers:	You	will	not	need	to	install	Python	program	since
you	already	have	a	Python	2.	Neither	will	you	need	a	any	other	version	such	as	Python	3.

Warning

You	many	need	other	programs	such	as	PowerShell	if	you	are	going	to	use	windows,
Terminal	when	using	OS	X	and	bash	if	you	prefer	using	Linux.	But	if	this	is	your	first
time	using	this	program,	then	you	will	need	to	learn	how	they	can	be	used	first.

However,	the	most	basic	requirements	include	having	Python	program	and	everything
starts	here:

How	do	I	install	python?

This	is	a	very	simple	process

First,	download	the	latest	version	of	python	and	for	compatibility	with	other
programs	that	you	may	need,	use	the	product	version	2.7.1	of	python.	Find	it	in	the
following	link:	Python	Download.
Do	you	know	how	to	install	a	program	on	a	computer?	Yes,	just	double	click	the
icon	downloaded	from	your	download	folder	and	wait	for	further	instructions.
But,	ensure	that	you	accept	all	the	default	settings	of	the	program	till	you	are	asked
to	press	the	finish	button.
The	program	will	then	inform	you	if	the	installation	is	completed.

Getting	ready	to	use	Python

Check	to	see	that	all	programs	are	in	the	right	locations:	start	from	My	Computer,
locate	the	directory	C:	\	python	27.	You	should	be	able	to	locate	all	the	python
program	files	here.
Next,	copy	all	the	details	of	the	directory	beginning	from	C:	to	27	and	exit	from	the
window.
Then,	go	for	the	start	button,	and	right	click	on	My	Computer.
Select	properties.
Select;	Advanced	System	Settings.
Click	on	Environment	Variables.
In	that	folder,	search	for	the	folder	variable	path.
Go	for	the	file	called	Path	and	right	click	on	it,	select	edit.
Search	for	the	field	called	Variable	Value	using	the	right	arrow.

http://www.python.org

Introduce	a	semi	colon	at	the	end	of	the	word	and	past	the	directory	path	of	the
python	folder	you	had	copied	previously.
Then	press	on	the	okay	button.

How	to	create	a	first	Python	Program

Go	to	start,	and	then	my	computer
Select	drive	C	and	click	on	it.
Click	on	the	Python	27	folder.
Next,	right	click	on	the	space	and	create	a	new	folder.
Name	the	new	folder	Python	Programs
Save	all	the	new	programs	you	create	in	this	folder.
Then	go	to	Start	and	type	Run	in	the	Search	box	at	the	bottom	and	press	ENTER.
Next,	type	notepad	in	the	new	window	field	referred	to	as	Open.
Type	the	following	words	in	Notepad	just	as	it	is	written	here:

#	File:	Hello.py

print	“Hello	World!”

Go	for	the	file	in	the	control	panel	and	select	Save	As.
In	the	section	Save	in	browse	for	the	C:	drive	and	then	select	the	folder
PythonPrograms.
For	the	field	File	name	remove	everything	that	is	there	and	type	in	Hello.py.
In	the	field	Save	as	type	select	All	Files
Click	on	Save.	You	have	just	created	your	first	Python	program.

Run	the	program	you	have	just	created

Click	on	the	Start	button	and	click	on	Run.
Input	cmd	in	typing	field	followed	by	OK.
A	new	dark	small	window	will	pop	up.
In	the	new	window,	type	cd	C:\	and	then	press	the	key	Enter.
However,	in	case	you	type	dir.	You	will	get	a	list	of	all	the	directory	folders	in	the
drive	C:.
Search	for	the	folder	labeled	PythonPrograms	created	by	you	in	the	previous	step.
Next,	type	cd	PythonPrograms	and	press	the	Enter	button.	This	is	a	direct	way	of
accessing	the	python	programs	folder.
Just	by	typing	dir	and	you	are	supposed	to	see	the	file	named	Hello.py.
Try	running	the	program	by	typing	python	Hello.py	followed	by	Enter.
The	output	should	be	a	single	line	reading	Hello	World!
This	is	your	first	program,	Bravo!!	You	have	just	been	able	to	create	and	run	your

first	Python	program.

Python	for	Mac	Users

When	using	Mac,	Python	comes	already	installed	with	your	Mac	OS	X.	The	versions
however	may	vary.	You	can	download	a	new	version	of	python	when	the	version	you	have
is	a	very	old.	This	can	be	accessed	by	following	the	hyperlink	here	Download.	This	is	one
of	the	latest	binary	versions	of	Python.	It	is	able	to	runs	on	both	Power	PC	and	Intel
systems.	After	the	download	is	complete,	install	it	on	your	computer.

You	are	now	ready	to	create	your	first	program!

How	to	start	IDLE	on	Mac

1.	 While	in	windows	we	talk	of	the	start	button
2.	 In	Mac,	it	is	initiated	from	the	Terminal	window,	and	then	typing	python.	This	will

start	the	python	shell	automatically.
3.	 Use	the	>>>	to	prompt	for	Python	shell.
4.	 Then,	you	can	type	in	the	python	shell	prompt		import	idlelib.idle
5.	 This	will	activate	the	IDLE	IDE

Python	IDLE	on	Windows	and	Mac

Go	to	my	programs
Locate	python	on	the	list	of	programs
Select	IDLE	to	start	IDLE
Then	go	to	File,	and	select		New	Window
Type	your	program	in	“Hello	World”
Next,	locate	the	File	menu	and	click	on	Save.	Type	in	Helloworld.py
This	allows	it	to	be	saved	as	a	plain	text	file.	The	extension	of	the	file	name
(.py)helps	to	enable	the	python	text	reader	to	be	able	to	open	it	and	read	it.	It	also
enables	other	programs	which	are	text	editors	such	as	Notepad,	Notepad+++	or
TextEdit	to	read	the	program.
After	saving	the	program,	go	to	Run	and	select	Run	Module	or	use	the	F5	key	on
your	computer	to	run	your	program.
The	output	should	read:		Hello	world!

If	using	Mac	OS	X

The	following	will	need	to	be	done:

1.	 Using	your	browser,	download	the	TextWrangler	to	be	used	as	a	text	editor	and
install	it	on	your	computer.	This	can	be	acceded	on	
http://www.barebones.com/products/textwrangler/

2.	 The	editor	(TextWrangler)	to	be	placed	in	the	docks	where	it	can	be	accessed	very
easily.

http://www.python.org/download/mac/
http://www.barebones.com/products/textwrangler/

3.	 Go	to	the	terminal	program;	search	for	the	TextWrangler	and	you	should	be	able	to
find	it	with	ease.

4.	 Next,	place	you	terminal	in	your	docks	too.
5.	 Then,	try	to	run	your	Terminal	program.
6.	 In	the	terminal	program,	run	python.	This	is	performed	by	typing	the	things	you

need	done	and	hitting	return.	So,	type	Python	and	hit	RETURN.
7.	 Next,	try	to	exit	Python	by	Typing	quit(),	Enter.	This	will	exit	you	from	Python.
8.	 This	will	Return	you	to	a	similar	prompt	that	was	there	in	the	program	even	before

you	entered	Python.	If	not	there,	seek	to	find	out	why	this	is	not	there.
9.	 You	may	also	need	to	learn	how	one	can	make	a	directory	in	the	Terminal.

10.																						Moreover,	find	out	how	the	directory	can	be	changed	from	the
Terminal.
11.																						A	file	can	also	be	created	using	your	editor	in	the	directory.	Follow	the
file,	then,	Save	or	use	Save	As	and	then	locate	the	directory	you	have	created	for
saving	your	Programs.
12.																						Try	also,	getting	back	to	the	terminal	using	your	keyboard	by	switching
windows.
13.																						Get	back	to	the	Terminal	and	try	to	locate	your	newly	created	file.

In	windows:

1.	 You	many	also	need	to	have	notepad++.	This	can	be	accessed	from	http://notepad-
plus-plus.org/	on	your	browser.	This	is	an	alternative	text	Editor.	Install	it	on	your
computer.	This	does	not	require	you	to	be	the	administrator.

2.	 Place	it	on	the	desktop	or	start	button	where	it	can	be	easily	accessed	or	in	Quick
Launch.	Select	the	most	preferable	options	during	installation.

3.	 Similarly,	run	PowerShell	from	the	Start	menu.	Search	for	it	and	you	can	just	press
Enter	to	run	it.

4.	 It	is	easier	to	access	the	program	by	using	a	short	cut	on	the	desktop	and	using	a
quick	launch	for	convenience.

5.	 In	addition,	use	the	PowerShell	program	which	is	also	the	Terminal	program.
6.	 In	the	PowerShell	program,	initiate	python.	Just	like	in	the	other	terminal	programs,

you	run	programs	by	typing	the	name	and	then	press	Enter.

1)				In	case	the	python	installed	is	not	responsive,	download	it	again	and	install
it	afresh	from	the	following	link	http://python.org/download.

2)				The	best	version	is	Python	2.7.5.	The	latest	Version	many	not	be	compatible
with	some	of	the	programs	you	will	need	to	use	here,	therefore,	don’t	go	for
Python	3	and	any	other.

3)				In	case	you	do	not	have	Administrative	rights,	you	will	be	better	off	using
the	ActiveState	Python.

http://notepad-plus-plus.org/
http://python.org/download

4)				Check	to	ensure	that	the	Python	program	just	installed	is	in	good	working
condition.	If	not,	use	PowerShell	to	try	if	it	can	be	activated	by	typing	the
following:

5)				Then	close	PowerShell	and	restart	the	Program	to	confirm	whether	the
Python	now	runs.	In	case	it	is	not	working,	you	will	need	to	Restart	your
computer	to	integrate	all	the	programs.

7.	 Next,	exit	PowerShell	by	typing	quit()	followed	by	Enter	to	move	out	of	python.
8.	 Check	if	the	initial	prompt	has	been	retained	even	before	you	typed	python	in	the

program.	In	case	it	is	not	there,	seek	to	solve	the	bug	in	the	program.
9.	 In	the	same	way	like	TextWrangler	which	is	also	a	text	Editor	like	PowerShell,	find

out	how	you	can	make	a	directory	directly	in	the	PowerShell	(Terminal).
10.																						Similarly,	try	to	change	into	a	directory	in	the	PowerShell	(Terminal).
11.																						Moreover,	find	out	if	you	can	be	able	to	create	a	file	in	this	directory
using	file,	Save	or	Save	As	and	locate	the	directory	to	which	it	will	be	stored.
12.																						Also,	while	in	the	PowerShell	(Terminal),	try	switching	windows	using
your	keyboard.	Search	it	up	if	you	find	a	problem	figuring	it	out.
13.																						In	the	PowerShell	(Terminal),	try	to	list	the	directory	just	to	check	if	the
newly	created	file	is	in	the	directory.

The	word	terminal	as	used	in	this	content	refers	to	either	the	“Shell”	or	“PowerShell”	in
this	book.

Warning

Most	of	the	time,	installing	Python	in	Windows	may	face	a	few	challenges.	It	may	fail	to
get	configured	to	the	right	path.	This	can	be	solved	by	typing	the	following	text	in	the
python	PowerShell

Then,	either	Restart	the	PowerShell	or	the	whole	computer	so	as	it	gets	fixed.

Windows:	What	You	Should	See

Just	by	opening	Python

This	is	what	you	should	see

To	find	help,	Type	help	()followed	by	enter.	This	is	what	you	will	see!

For	the	previous	versions	of	Python;	this	is	what	you	will	see	as	the	output:

It	is	still	correct	if	you	see	different	information	than	mine,	but	yours	should	be	similar.

Python	on	Linux

Linux	is	a	unique	operating	system	that	comes	with	a	very	different	ways	of	installing
programs	on	it.	But,	installing	any	software	on	any	computer	requires	your	ability	to
follow	instructions	as	directed	by	the	software	during	installation.	Default	settings	are
always	recommended	and	vary	with	the	OS	to	be	used.

My	assumption	is	that	if	have	Linux,	then,	you	probably	understand	how	to	install	a
package.	This	is	how	this	can	be	done:

1.	 The	best	text	editor	in	Linux	is	the	Gedit	text	editor.
2.	 It	is	installed	using	the	Linus	package	manager
3.	 Place	the	program	gedit	on	the	desktop	as	a	short	cut	to	the	program	or	pin	it	on	the

start	button	for	easy	access.

1)				Run	gedit	to	see	whether	the	program	is	fully	configured	or	it	will	need
some	quick	fixes.	Ensure	the	program	has	been	set	to	the	default	mode.

2)				Next,	get	to	Preferences	and	select	the	Editor	tab.

3)				Then,	edit	the	tab	width	to	4.

4)				Check	on	the	box	representing	the	part	Insert	spaces	instead	of	tabs.

5)				Ensure	that	Automatic	Indentation	is	turned	on.

6)				Similarly,	go	to	open	in	the	file	control	menu,	select	View	tab,	then,
check	“Display	line	numbers”	to	turn	it	on.

4.	 Locate	your	terminal	program.
5.	 It	may	be	referred	to	as	GNOME	Terminal,	Konsole,	or	xterm.
6.	 Transfer	the	Terminal	to	your	docks.
7.	 Try	a	run	of	your	Terminal	program.
8.	 Run	python	in	the	terminal	program	by	typing	required	command	and	pressing

Enter.

1)				If	your	python	is	not	responsive	or	missing	in	your	Terminal.		Download
it	address	and	install	it.	It	is	recommended	that	you	try	getting	python
version	2	and	not	3.

9.	 Then,	exit	python	by	typing	quit()	and	press	Enter	to	exit	from	python.
10.																						This	should	return	you	to	the	python	prompt	before	you	typed	Python.
Incase	this	does	not	take	place,	try	to	fix	the	bug.
11.																						Try	making	a	directory	from	the	Terminal.
12.																						In	addition,	try	changing	into	a	directory	in	Terminal.
13.																						Create	a	file	using	your	editor	and	save	it	in	the	directory	created.	This
can	be	done	by	using	the	file	and	then	Save	or	Save	As.	to	the	directory	required.
14.																						Try	shifting	between	windows	to	get	to	the	directory.
15.																						Confirm	in	the	directory	whether	the	program	created	is	listed.

How	to	find	solutions	in	the	internet

The	internet	search	engine	is	the	best	place	for	you	to	find	solutions	on	Python
programming.	Most	of	the	challenges	may	have	already	been	done	and	solved	by	people
and	posted	online.	Hence,	in	some	parts	in	this	book;	I	will	from	time	to	time	provide
direction	on	how	best	to	find	solutions	on	the	search	engines.

This	is	the	best	way	by	which	you	can	become	an	independent	learner	in	programming.
The	ability	to	trouble	shoot	and	find	solutions	shows	the	potential	of	being	a	good
programmer	in	the	near	future.	This	is	the	main	goal	of	this	book.	Allowing	you	to	exploit
your	potential	and	become	the	best	in	Python	programming.

Google	is	the	market	place	for	all	this	information.	Thanks	to	the	World	Wide	Web
developers.	You	can	find	a	response	to	everything	you	need.

For	instance,	if	you	want	to	download	Python	software:

1.	 Go	to	http://google.com/
2.	 Type:	python	download
3.	 Read	the	websites	listed	to	find	the	best	answer.

A	sample	screenshot	of	this	search	on	Google	is	attached	below:

http://google.com/

Chapter	2:	Interacting	with	Python

To	be	able	to	interact	with	python:	It	is	important	that	you	know	how,	when,	why	and	what
can	be	done.	In	chapter	one,	I	introduced	to	you	how	to	invoke	python.

To	prompt	the	python	program,	type	the	text	print	“Hello,	python!”;	and	press	enter.

The	output	will	be	shown	as:

Hello,	Python!	(Indicated	in	blue	in	the	screen	shots)

This	will	be	seen	below:

This	is	the	first	program	suggesting	that	the	program	is	active	and	working.

Python	Identifiers

An	identifier	is	a	name	that	can	be	used	in	the	identification	of	a	variable,	class,	function,
class,	module	or	object.	In	most	cases,	in

Naming	rules	in	Python

1.	 When	using	a	class	name,	always	start	with	an	upper	case	letter.
2.	 All	other	identifiers	must	always	use	a	lower	case	letters
3.	 When	an	identifier	starts	with	a	leading	underscore,	it	is	a	suggestion	that	the

identifier	is	private
4.	 Two	leading	identifiers	suggests	that	the	identifier	is	strongly	private
5.	 Ending	an	identifier	with	two	underscores	suggests	that	the	identifier	is	language

defined	with	a	special	name.

Reserved	words	in	Python

This	are	words	which	cannot	be	used	as	constants,	variable	or	key	words	as	an	identifier	in
Python.	The	words	are	always	in	lower	case	letters	only.	They	include:

yield global

with from

while for

try finally

return exec

raise except

print else

pass elif

or def

not continue

lambda class

is break

in assert

import and

if 	

	

Lines	and	indentation	in	Python

Python	as	a	program	does	not	know	how	to	identify	blocks	of	algorithms	as	a	block	of
codes	for	class	and	sometimes	functions.	Hence,	the	only	way	Python	is	able	to	read	and
understand	your	program	is	by	the	use	of	blocks	of	codes	created	by	indentations.

The	number	of	spaces	in	the	indents	is	not	fixed.	Moreover,	all	statements	within	the
codes	need	to	be	indented	in	the	same	length.

For	instance,	see	the	following	code	created	in	Python	2.7

Mixing	the	indentations	in	most	cases	bring	an	error	in	the	python	shell	when	the	program
is	run	by	pressing	on	F5	key	or	by	selecting	run	followed	by	run	module,	either	way,	it	is
the	same.

Multiple	lines	in	python	can	also	be	used

Most	of	the	statements	in	python	end	up	with	a	new	line.	However,	line	continuation	can
be	used	by	the	use	of	characters	(\).	This	shows	that	the	line	is	a	continuation	from	the
previous	statement.

For	example

However,	when	the	statements	are	contained	within	[],	(),	or	{}	types	of	brackets.	They	do
not	need	the	use	of	the	line	continuation	characters.

For	examples

Using	Quotation	in	python

One	can	use	single	quotes	(‘’),	or	double	quotes	(“”)	and	sometimes	triple	quotes	(‘‘‘	or
”””)	as	a	way	of	representing	string	literals.	The	rule	with	the	use	of	quotes	is	that	they
should	be	the	same	when	being	used	at	the	start	and	at	the	end	of	the	string.

The	triple	quotes	are	often	used	when	spanning	a	string	over	several	lines.

Check	out	the	use	of	the	quotes	below:

Using	comments	in	Python

To	be	able	to	understand	your	program,	one	may	need	to	make	comments	in	between	the
codes	or	even	after	the	codes.	The	comments	can	be	protected	from	being	recognized	as
codes	in	the	program	in	a	variety	of	ways.

A	hash	sign	(#)	is	used	at	the	start	of	a	comment.	The	program	would	automatically
assume	everything	starting	with	a	hash	sign.		However,	when	it	is	used.	The	rule	is	that	the
all	the	comments	must	not	be	used	as	string	literals,	i.e.	they	should	not	be	placed	inside
quotes.

Also,	all	the	characters	that	are	preceded	by	the	hash	sign	to	the	physical	end	of	the	line
are	recognized	as	part	of	the	comment.	The	interpreter	ignores	them	automatically.

Note	also,	that	a	comment	can	be	placed	in	the	following	ways:

1.	 It	may	come	after	a	line	of	code
2.	 You	can	also	comment	after	as	in	the	shown	below.
3.	 Comments	can	also	be	in	multiple	lines,	but	every	line	needs	to	start	with	a	hash	(#)

sign.

Blank	Lines

Blank	lines	in	python	are	ignored	automatically.	They	could	be	a	blank	line	with	only
white	space.	They	can	also	be	blank	line	with	a	comment	using	a	hash	(#)	sign.	They	are
all	ignored	by	python.

However,	when	developing	an	interactive	interpreter.	A	blank	line	can	be	used	to	terminate
a	multiline	statement.

Using	multiple	statements	on	a	single	line

To	create	multiple	statements	on	a	single	line,	a	semicolon	is	used.	However,	this	is	on
condition	that	the	new	statement	does	not	represent	a	new	block	of	code	that	can	initiate	a

different	process.

The	semi	colons	can	be	used	as	follows:

Multiple	Statement	Groups	as	Suites:

When	there	are	groups	of	a	single	code	expressed	as	single	statements	in	Python,	they	are
referred	to	as	suites.

Compound	statements	involving	the	use	of	words	such	as	if,	def,	while,	class;	require	a
header	line	and	a	suite.

Moreover,	also	important	are	the	header	lines.	They	start	a	statement	with	a	key	word	and
they	terminate	with	a	colon	(:).	They	require	a	few	other	lines	so	as	they	can	make	up	a
suite.

Here	is	an	example	of	the	use	of	if,	elif	and	else	to	make	a	suite.

Note:	the	indentation	as	used	is	important.

In	summary

Interacting	with	python	requires	that	you	should	be	able	to	comprehend	the	basic	rules	for
using	Python.	A	full	functional	code	will	require	that	the	right	indentations,	blank	lines,
colons,	comments	and	other	interacting	approaches	are	correctly	applied.

Chapter	3:	Boolean’s	in	Python

Simple	Conditions

Boolean	is	a	test	or	conditional	system	first	developed	by	a	mathematician	called	George
Boole.	This	has	been	derived	and	used	in	Python.	It	is	set	as	a	condition	or	a	test.	In	this
chapter,	simple	tests	will	be	done	to	show	comparison	of	values.	This	will	also	be
translated	to	ensure	that	you	comprehend	every	aspect	of	the	comparison	in	the	handling
of	the	arithmetic	in	Python.	Using	the	following	examples,	try	them	out	in	python	and	get
to	know	what	happens	with	each	one	of	them	in	Python	Shell.

The	conditions	as	used	in	this	case	can	either	be	expressed	as	true	or	false.	They	are	also
not	expressed	in	quotes	because	that	will	change	their	meaning	and	operations	completely.
There	is	a	perfect	example	for	the	use	of	Boolean	values	developed	in	the	19th	century.

The	application	of	Booleans	in	python	is	the	short	form	of	the	name	to	bool.	This	is
applied	in	tests	results	for	the	use	of	expressions:	True	or	False	conditions	or	tests.

This	is	the	simple	history,	how	the	Boolean’s	started	and	what	they	represent	in	Python.

Simple	if,	else,	elif	Statements	use	and	application	in	Python

If	statement

There	are	various	statements	that	can	be	use	in	Python.	They	are	a	perfect	set	of
conditional	expressions	which		can	be	used	to	express	logic	and	provide	a	response	in	the
form	of	an	output	in	Python.

For	example,	try	out	this	short	code	and	save	it	as	luggage.py.	Run	it	twice	or	thrice	but
changing	the	values	of	the	input	30,	40	and	then	56.

Note	that	the	input	determines	the	nature	of	the	result.

I	am	providing	you	with	screen	shots	so	that	in	the	process	of	writing	the	codes	on	your
program,	you	also	learn	and	see	how	the	programs	is	supposed	to	be	indented	and	many
other	applications	covered	previously.

The	second	line	of	the	code	is	an	if	statement.	It	can	be	interpreted	to	be	like	a	story	being
read	in	an	English	book.	When	it	is	true	that	the	weight	of	the	luggage	is	greater	than	50,
then	a	statement	of	the	extra	charge	is	made.	But,	when	it	is	not	true	and	the	value	is	lower
than	50,	then	don’t	do	the	indented	part	of	the	code:	skip	the	indented	parts	of	printing	the
charge	value	for	the	extra	luggage.

In	every	of	the	events,	whenever	the	if	code	has	been	executed.	It	makes	a	decision	on
whether	to	proceed	with	the	indented	parts	or	not.

Hence,	the	next	line	will	be	printing	the	statement,	“thank	you	for	doing	business”

Overally,	the	if	statement	general	Python	syntax	is	expressed	as	follows

if	condition	:

Statement	(s)	block

What	this	represents	is	that:	If	the	condition	will	be	in	deed	true	as	stated,	then	proceed	to
the	indented	statements.	But,	if	the	condition	set	is	not	applicable	in	this	case	and	not	true,
then	skip	the	indented	statements.

For	more	practice,	let	us	consider	a	teller	machine	in	a	supermarket	which	executes	the
following	code	in	every	transaction	is	conducts:

This	is	an	if	expression	with	a	block	of	indented	statements.	The	block	may	have	a	single
or	several	lines	of	statements.	The	main	meaning	of	the	code	is	that	whenever	the	balance
of	the	account	goes	to	negative.	It	is	returned	to	0	through	a	series	of	other	steps	which
will	be	able	to	transfer	some	some	from	the	back	up	account	to	ensure	the	account	is
always	at	0	(zero).

This	means	that	when	the	condition	is	true,	then	it	has	a	choice	of	doing	something.	But,
when	the	condition	is	false,	then	it	has	nothing	to	do	and	only	say	“Thank	you	and	Good
Bye”

if-else	Statements

The	general	syntax	for	this	statement	is	expressed	as	follows:

If	expression:

Statement	(s)

else:

Statement	(s)

The	statement	blocks	can	have	as	many	numbers	of	statements	as	they	can	be	included	in
the	program.

Let’s	try	to	understand	the	if	–else	statements	by	looking	at	the	following	example:

Create	a	program	below	in	your	python	and	name	it	environmental_cloths.py.	Then	run
the	program	and	see	the	results.	You	can	also	play	around	with	the	input	values	as	60	and
85	respectively	to	see	what	the	results	will	look	like.

You	are	expected	to	find	different	results	with	different	inputs.	Here	is	the	code	for	you
application.

Just	like	I	have	expressed	in	the	previous	example,	this	codes	can	be	read	like	an	English
story.	Other	words	such	as	otherwise	can	be	used	instead	of	the	word	else,	however,	we
use	shorter	words	in	Python	to	reduce	the	bulk	of	wording	in	programming.

Note	also,	that	the	code	has	two	indented	blocks	of	code.	The	after	the	if	and	after	the	else.
The	first	block	is	the	if	statement.	The	indentation	is	executed	only	of	the	if	is	true
otherwise,	nothing	happens.	Next,	when	it	is	false,	the	else	is	executed	as	well.	Hence,
when	using	the	if..	else	statement,	only	one	of	the	headings	can	be	executed	at	any	one,
when	if	is	true,	else	indented	block	is	not	executed,	but	when	if	is	false,	then	the	else
indented	block	is	executed.

Chapter	4:	Boolean’s	and	Conditional	expressions

Most	of	the	mathematical	comparisons	can	be	made	in	python.	However,	they	lack	the
symbolism	due	to	the	absence	of	the	standard	keys		on	almost	all	the	keyboards	in
existence

Below	is	a	representative	coding	for	arithmetic	symbols	used	in	mathematics	and	python.

Meaning Math	Symbol Python	Symbols

Less	than < <

Greater	than > >

Less	than	or	equal ≤ <=

Greater	than	or	equal ≥ >=

Equals = ==

Not	equal ≠ !=

	

Note:	There	need	not	be	space	between	the	symbols	when	used	in	python.

Also	note	that	a	single	equals	sign	is	used	for	assigning	values	in	Python	as	previously
covered.	Hence,	when	used	in	tests,	a	second	equals	sign	needs	to	be	used	in	Python.	It	is
annoying,	is	it?

Therefore,	when	using	a	single	equal	sign	for	testing	for	equality	in	python	and	when	not
intending	to	use	it	for	assigning	values	to	a	variable;	this	will	automatically	generate	an
error.

Testing	for	equality	never	assign	values	and	hence	never	need	you	to	place	a	variable	on
the	left	of	the	double	equal	symbols.	Most	of	the	expressions	may	be	tested	for	equality	or
inequality	(!=).	Hence,	no	numbers	may	be	required,.

Using	the	following	values,	try	to	make	prediction	of	the	results.	Each	line	can	be	tested
on	its	own	in	python	shell.

x	=	6

x

x	==	6

x	==	8

x

x	!=	8

x	=	9

4	==	x

4	!=	x

‘hi’	==	‘h’	+	‘i’

‘HI’	!=	‘hi’

[1,	2]	!=	[2,	1]

Note:	Assignment	cannot	be	made	using	an	equality	check.	Strings	are	always	case
sensitive.	Moreover,	order	is	very	important	in	all	lists.

Using	this	example,	try	it	out	in	Python	Shell.

‘b’	>	6

Often,	when	the	comparison	is	not	what	is	expected	or	makes	sense,	an	exception	is	made
for	the	code.

The	inexactness	in	Python	is	not	acceptable	especially	when	using	float	values	and	strings.
The	following	examples	can	also	be	used:	0.3	+	0.4	to	be	equal	to	0.7.	Try	creating	a	code
that	will	be	able	to	express	the	following	expression	in	the	Python	Shell.

A	perfect	practical	example	can	be	expressed	using	the	following	pay	code	for	normal	and
overtime.	Using	an	individual’s	work	schedule	for	working	hours	for	the	week	and	regular
wage	for	every	hour	worked	for	the	week	and	with	consideration	of	the	hourly	overtime.

When	the	hours	worked	are	over	40,	then	they	are	considered	as	overtime.	They	are	then
paid	double	the	normal	rate.	This	can	allow	us	to	make	a	python	code	that	will	be	able	to
do	the	calculation	for	the	money	that	is	payable	per	employee.

The	set	up	for	the	function	can	be	expressed	as	follows:

Try	to	read	the	set	up	for	the	function	as	expressed	below:

This	code	will	be	able	to	handle	two	cases,	when	less	than	40	hours	of	total	time	is	worked
and	when	more	than	40	hours	of	total	hours	worked	is	covered.

When	more	than	40	hours	of	total	work	time	is	covered,	then,	a	new	variable	will	have	to
be	introduced	called	overtimeHours.	This	will	be	able	to	manage	the	amount	of	time
worked	in	excess	of	the	40	hours	total	work	time	and	included	in	the	total	wage	for	the
month.

Since	we	are	training	you	as	a	programmer.	Try	to	see	how	this	solution	can	be	read	in
English.

Then,	try	to	run	this	program	out	and	see	the	results:

Use	this	programs	named	wages.py	as	an	example	of	a	program	for	this	exercise.

This	program	has	adopted	the	use	of	floating	stings	point	format.	(String	Formats	for
Float	Precision)	so	as	to	allow	the	use	of	the	cents	in	the	answer	to	two	decimal	places:

In	most	cases,	this	will	be	able	to	manage	the	numeric	values	but	this	can	accommodate
the	decimal	conversions	from	strings	via	floats	and	not	integers.

Alternatively,	a	different	version	of	the	expression	code	for	the	body	of	calculating	weekly
wages	can	be	used	in	the	code	used	above.

This	is	just	a	general	formula	which	will	be	able	to	manage	the	expression	in	the	formula
and	allow	the	parameters	to	accommodate	the	if	statement.	The	same	problem	can	be
solved	using	many	other	ways	in	way	that	will	still	provide	you	with	the	same	output.

	

http://anh.cs.luc.edu/python/hands-on/3.1/handsonHtml/float.html#precision-formats

Practical	Exercise

Assignment	One:	Graduationlist.py

Develop	a	program	name	graduation.py.	This	program	should	be	able	to	classify	students
on	the	basis	of	how	many	credits	they	have.	The	program	should	be	able	to	print	a
statement	on	whether	they	have	enough	credits	to	be	able	to	graduate.	At	Kenyatta
University,	it	is	a	requirement	that	one	needs	about	120	credits	so	that	they	can	be	able	to
graduate.

Assignment	2:	Head	or	Tails	Exercise

Develop	a	program	and	name	it	ht.py.	Ht	refers	to	heads	and	tails.	The	code	needs	to
introduce	a	function	flip () ,	this	will	represent	a	single	flip	of	a	coin	which	will	be	able	to
represent	either	the	head	or	a		tail.	You	try	come	up	with	a	range	of	numbers	by	the	use		0
or	1	with	a	random.randrange	(2),	Also,	use	the	if	–	else	statement	that	will	allow	the
printing	of	heads	when		the	result	is	zero	(0)	and	tails	when	the	results	is	(1).

Create	a	simple	repeat	loop	which	will	call	flip	()	12	times	so	as	to	try	your	code	if	can
generate	a	random	sequence	of	10	heads	and	tails.

Chapter	5:	Use	of	if	–	elif	statements	in	making	Multiple	Tests	in	Python

When	one	would	like	to	create	more	than	two	distinct	cases	and	the	conditions	have	only
two	possible	conditions	which	can	either	be	true	or	false.	The	only	direct	choice	may	be
between	the	other	two	options.	For	instance,	when	one	has	about	20	questions,	you	can	be
able	to	make	more	cases	by	use	of	more	questions.	When	there	are	more	than	two	choices,
a	single	test	can	be	used	to	reduce	the	possibilities	and	other	tests	added	will	be	able	to
lower	the	possible	further.	Statements	will	be	required	to	be	placed	in	a	indented	statement
block	and	another	added	choice	will	be	an	extra	if	statement	to	the	block.

For	instance,	a	teacher	would	like	to	make	a	conversion	table	for	numerical	marks	to
grades	(A,	B,	C,	D,	E	or	F).	The	marks	limits	are	90,	80,	70,	60	respectively.	Hence,	this
can	be	resolved	very	easily	by	stating	all	the	possible	options	in	the	else	clause:

It	is	not	mandatory	that	the	indentation	be	used	for	every	case	when	using	the	if		—	else
expression.		It	is	indeed	unique	and	must	be	strictly	followed	in	this	case.

However,	the	indentation	can	be	cleared	using	an	alternative	if	…	elif	clause.	The	elif
combines	both	the	if	and	else	clause	to	become	an	elif	block	in	the	python	code:

See	this	code	below	and	note	the	indentation	applied	in	this	case.

The	syntax	applied	in	this	use	of	if,	elif	–else	clause	is	illustrated	below.	This	helps	you

Note	that	all	use	of	if,	elif,	and	the	final	else	are	all	aligned	on	one	line.	The	number	of	elif
to	be	used	is	not	limited	with	every	of	the	line	followed	by	an	indented	block.

What	happens	is	that	one	of	the	indented	block	will	be	the	one	to	be	executed,	when	it	is
the	one	that	corresponds	to	the	first	true	conditions	set	using	the	if	statement.	Otherwise,
when	all	the	condition	are	false,	the	final	else	will	be	executed.

The	use	of	if	and	elif	is	an	important	forms	of	python	Contraction.	Care	need	be	observed
when	using	the	contracted	form	of	python	codes.	It	is	supposed	to	written	as	elif	and	not
elseif.		The	gradingmarks.py	is	a	good	example	of	the	use	of	this	code	illustrated	above.

Alternative	syntax

The	other	way	in	which	the	if	statement	can	be	applied	is	by	the	use	of	the		if-elif-and
removing	the	else	statement	in	the	code.	This	suggests	that	the	syntax	if-	elif-	else	is
modified	so	that	the	final	block	of	code	with	else	is	removed	or	omitted.	This	is	the	same
as	the	normal	if	statement	that	does	not	include	an	else	in	its	code.	This	allows	for	the	no
block	of	code	to	be	executed	and	only	occurs	when	none	of	the	conditions	in	the	tests	is
true.	However,	when	an	else	code	is	included,	one	of	the	indented	code	has	to	be	executed.
In	the	absence	of	the	else	code;	at	most	one	of	the	code	as	to	be	executed.

This	code	will	only	be	able	to	print	a	line	whenever	there	will	be	a	problem	with	the
suitcase.

Here	is	an	example	of	the	code:

PRACTICE	EXERCISE

Sign	Exercise

Develop	a	program	and	save	it	as	identity.py	to	be	used	to	collect	numbers	from	clients.
Print	out	the	number	and	categorize	it	as	positive,	negative	or	zero

Grade	Exercise

Write	the	program	gradingmarks.py	and	save	it	now	as	gradingmarks2.py.

Make	modification	of	the	python	code	so	as	to	have	a	letter	grade	function	that	makes	the
opposite	of	the	grades	starting	from	F,	E,D,	…	A.

Try	to	run	your	code	and	make	different	inputs	to	ensure	that	your	code	is	working	and
providing	you	with	the	right	output	in	Idle.

Wages	Exercise

Similarly,	make	modification	of	the	wages.py	and	save	it	as	wages1.py.	However,	ensure
that	you	create	a	problem	that	indicates	that	people	are	paid	double	the	money	for	any
hours	worked	above	50	hours	per	week.	This	will	show	that	they	get	to	be	paid	normal
rate	within	normal	hours	for	40	hours	a	week,	and	$1.5	for	hours	worked	extra	of	40	but
less	50	hours	and	double	any	hours	worked	above	50	hours.

This	can	be	expressed	as	below	for	a	total	of:

10*40	+	1.5*10*20	+	2*10*5	=	$800.

Run	your	program	several	time	and	make	modifications	to	ensure	that	it	provides	you	with
the	right	calculations.	Use	comments	where	appropriate	to	help	people	understand	your
code.

Chapter	6:	Use	of	Nested	Control	flow	statements	in	Python

By	now	I	believe	you	are	becoming	conversant	with	the	abilities	and	potential	of	Python
language.	It	can	be	applied	in	a	variety	of	ways	as	simple	statements	and	as	well	as
complex	or	combined	statements.	One	such	example	is	well	demonstrated	in	the	use	of
for-if	and	else	statements.

In	this	case	now,	note	that	for	and	if	statements	can	be	nested	inside	each	other	in	an
indented	block	of	code.	For	instance,	from	a	series	of	values,	one	can	be	able	to	only
select	positive	values	from	a	mix	of	numerical	in	an	arbitrary	list	of	numbers.

For	example.	Using	the	following	code,	it	is	easier	to	select	only	positive	values	from	a
mix	of	numbers:

Just	for	a	moment,	try	to	read	the	program	by	following	the	comments	provided	in	the
code.	Using	a	human	eye,	you	will	be	able	to	select	the	numbers	carefully,	but	using	a
computer,	this	will	be	made	systematically	checking	every	number	consistently.	Using	the
if	statement,	every	number	can	be	checked	determine	whether	it	can	be	printed.

This	can	be	observed	below:

Nesting	of	the	statements	as	in	the	use	of	If	expands	the	possibilities	of	applications	of
Loops.	This	will	allow	you	to	be	able	to	use	different	things	in	loops	and	allowing
consistency	and	decision	making	between	alternatives.

Besides	the	if	loops,	there	are	also	the	while	loops	which	also	work	with	the	if	statements.
Nesting	if	statements	and	the	while	loop	allows	you	to	be	able	to	make	far	better	nested
programs.

Pythons	can	be	used	to	express	graphical	interpretation	of	results.

For	instance,	when	a	balloon	is	released	and	allowed	to	bounce	within	a	room,	this	can	be
expressed	in	Python	to	expresses	the	randomness	of	times	it	will	bounce	off	to	the	edges
of	the	room.

This	can	be	allowed	to	operate	from	random	locations	which	can	be	applied	in	Python.

The	program	can	be	run	in	python	shell.

Find	a	sample	program	that	can	be	used	to	express	a	bouncing	balloon.

bounceBall	(-3,	1)

This	parameter	provides	the	amount	and	shape	of	movement	of	the	balloon	when
bouncing	in	every	of	the	animation.	Other	values	can	also	be	expressed	in	shell	and
magnitude	of	less	than	10	values	can	be	used.

Animations	before	the	use	and	applications	were	purely	scripts,	one	was	required	to	define
the	direction	and	how	many	moves	to	be	considered.	However,	the	direction	of	every
motion	may	change	with	every	bounce.	Hence,	in	python,	the	graphics	objects	shapes
combined	with	a	central	animation	step.

This	can	be	expressed	in	the	following	example	code:

shape.move(dx,	dy)

The	use	of	the	values,	dx	and	dy	allows	the	values	to	change	as	the	ball	gets	to	the
boundary.	Using	an	example,	a	bouncing	balloon	may	get	to	the	left	side	as	it	is	moving	to
the	left	and	up.	The	bouncing	effect	will	have	impact	on	the	nature	of	the	horizontal
movement	but	the	ball	will	keep	with	its	upward	motion.	A	reverse	effect	in	the	motion	of
the	horizontal	movement	can	also	be	captured	in	Python.	This	allows	the	bouncing	balloon
to	change	horizontal	shift	and	hence	the	negative	sign	to	be	used	in	coding	will	be	the
reverse.	This	can	be	expressed	as	below:

dx	=	-dx

In	this	case,	the	value	of	dy	will	not	change.	However,	this	may	not	be	the	case	in	every	of
the	animation	step	since	it	does	not	happen	every	other	time.	This	therefore	provides	for
the	use	of	if	statement.	The	center	of	the	balloon	can	be	estimated	using	the	coordinates
which	is	expressed	in	the	form	of	x	and	y	(x,y).	The	lowest	point	the	bouncing	balloon	can
reach	can	be	expressed	as	xLow.

The	value	of	xLow	should	always	be	greater	than	0	while	the	value	of	edge	of	the	window
is	also	at	a	coordinate	0.	Otherwise,	at	this	position,	the	values	of	the	ball	would	be	half
way	of	the	screen.	The	x	coordinate	of	the	center	of	the	balloon	also	needs	to	be	the	length
of	the	radius.

The	process	of	animation	takes	place	in	small	steps	and	this	is	possible	by	allowing	the
ball	to	take	one	first	small	and	quick	step	of	where	it	needs	to	go	(xLow),	the	ball	can	then
also	be	reversed	to	the	original	position	where	it	belongs.

There	are	associated	bounding	variables	that	can	be	used	to	express	the	bouncing	variables
xHigh,	yLow	and	yHigh,	which	represents	the	radius	away	from	the	edge	in	the	form	of
coordinates	and	same	conditions	to	assess	the	possible	bouncing	off	each	of	the	possible
edge.	One	coordinate	will	automatically	reverse	in	whichever	way	as	long	as	one	of	the
edge	is	hit.	This	code	can	be	expressed	as	follows:

This	can	also	be	expressed	using	the	elif	sentence	structure.	This	will	allow	for	the	extra
testing.	This	will	imply	that	if	is	indeed	true	that	x	<	xLow,	then,	it	may	be	impossible	for
it	to	be	true	in	the	case	when	x	>	xHigh.	Therefore,	both	tests	are	not	needed	together.	The
use	of	the	elif	clause	will	also	provide	for	elimination	of	the	unnecessary	tests	when	both	x
and	y	is	to	be	used.

The	middle	if	should	not	be	changed	to	make	it	an	elif	as	used	in	many	other	cases.	This	is
because	there	is	a	possibility	that	a	ball	can	reach	a	corner	and	therefore,	it	may	require
that	both	dx	and	dy	should	be	changed.

A	variety	of	access	methods	for	graphics	are	present	that	can	be	used	using	different
shapes	such	as	circles	which	can	be	defined	by	describing	the	centre	point.

They	can	be	accessed	by	using	getCenter()	method.	This	will	be	able	to	generate	a	clone
of	the	points	which	can	be	returned.	Every	coordinate	can	be	retrieved	by	using	getX()	and
getY()	criteria.

This	may	be	a	new	feature	that	can	be	applied	in	the	definition	of	the	central	function	of	a
bouncing	balloon	in	a	box	bounceInBox.

This	animation	will	be	able	to	develop	a	repeat	loop	which	can	be	accomplished	through	a
series	of	600	steps.

This	can	be	captured	in	this	experiment.

This	will	move	a	balloon	while	bouncing	from	any	point	within	a	rectangle.	This	is	what	is
expressed	in	the	function	of	the	code:	getRandomPoint.	This	function	allows	the	use	of
randrange	function	derived	from	the	main	module	random.

Parameters	with	functions	range	and	randrange	expresses	the	end	which	has	been	defined
in	the	past	and	which	is	the	last	value	that	is	actually	desired.

The	full	program	that	will	allow	one	to	animate	a	complete	program	that	will	be	able	to
show	a	repeating	bouncing	balloon/ball		is	as	expressed	below.	Note	that	there	is	the	use	of
the	function,	bounceInBox	and	getRandomPoint	to	as	the	program	to	be	complete.

These	are	also	not	the	only	functions	that	can	be	done.	Not	everything	has	been	described
as	demonstrated	in	the	code	below:	many	other	things	will	need	more	research	to
understand	how	they	function.	But,	they	can	be	used	together	so	that	a	program	will	be
able	to	function	appropriately.	This	program	will	be	able	to	show	a	ball	bouncing	off	the
sides	of	the	window.

Practical	Exercise

Write	a	program	excellent.py	that	will	have	a	function	printShort	in	the	heading:	The
program	should	be	able	to	read	a	list	of	strings	and	then	it	should	be	able	to	print	the	one
with	at	most	three	characters.

Test	the	program	developed	using	a	variety	if	hints	to	determine	the	len	of	functions.

This	should	be	tested	in	the	python	shell	interaction.

This	will;	have	to	start	with	the	line	>>>

Even	Print	Exercise

Develop	a	program	and	name	it	good.py	with	a	function	printEven	and	heading:

Use	different	numbers	and	ensure	that	it	will	be	able	to	print	even	numbers.	The	program
will	be	similar	to	this	one:

Even	List	Exercise

Just	like	above,	create	another	program	and	name	it	good2.py.	This	should	be	able	to
select	only	even	numbers	using	the	function	chooseEven	(nums)

Write	a	program	even2.py	with	a	function	chooseEven	with	heading:

Test	the	function	and	confirm	whether	only	the	even	numbers	are	chosen	from	the	list
required.

Unique	List	Exercise

Create	a	new	program	named	crazylib.py	which	can	be	used	in	getting	the	keys	using	the
getKeys	function.	The	program	will	be	able	to	create	a	list	of	every	occurrence	of	keys
from	a	cue	developed	in	a	story	format.		The	keys	will	be	developed	in	the	order	in	which
they	appear	in	the	list.	However,	they	will	have	repetitions.	The	original	version	used	to
gets	keys	and	deleting	every	duplicate	in	the	data	allowing	the	formation	of	sets	from	the
keys.	The	only	challenge	in	that	the	sets	may	not	be	ordered.	Consequently,	when	the
program	iterate	through	the	codes,	the	order	of	the	cues	will	bear	no	resemblance	to	the
order	in	which	they	occur.

Copy madlib2.py to madlib2a.py ,	and	add	a	function	with	this	heading:

One	can	use	the	Boolean	operators	in	for	checking	of	membership	in	a	sequence:

It	can	also	be	used	with not ,	as not	in ,	to	mean	the	opposite:

Hence,	what	you	can	note	here	is	that	the	work	is	in	two	forms:

1.	 This	determines	an	item	that	is	in	the	sequence
2.	 This	is	an	item	that	is	not	in	the	sequence

To	be	able	to	make	this	a	success.	One	needs	to	make	sure	that	the	list	is	in	order.	A	syntax
can	also	be	used	to	append	elements	to	a	new	lists	which	may	or	may	not	be	in	the	new
list.

After	using	the	uniqueList	function,	one	can	also	replace	the	last	line	of	the	getKeys	so
that	it	can	also	use	the	uniqueList	so	as	to	remove	the	duplicates	in	the	keyList.

Try	to	create	this	and	run	it	to	ensure	that	cues	values	are	in	order.

Chapter	7:	Compound	Boolean	Expressions	in	Python

Perhaps,	this	can	be	best	expressed	using	valid	examples.	Let	us	consider	this	case	below:

For	one	to	be	eligible	for	graduation	from	a	university	in	US,	it	was	set	that	students
needed	120	credits	and	a	total	GPA	of	minimum	2.0.

Using	Python,	create	a	program	that	can	be	used	to	select	students	that	would	be
graduand’s	for	the	year.

This	suggests	that	this	can	only	be	true	when	credits	will	be	equal	to	or	greater	than	120.

While	GPA	was	also	greater	or	equals	to	2.0.

A	good	program	will	look	like	this:

Application	of	compound	expressions

This	will	show	that	a	compound	condition	will	be	true	if	both	of	the	conditions	are	true.
However,	it	will	be	seen	as	false	when	at	least	one	of	the	conditions	is	false.

Exercise

Previously,	we	had	discussed	the	use	of	if	and	elif	statements	in	cases	where	both	tests
where	they	will	appear	in	the	same	block	when	the	condition	to	be	applied	was	true.

However,	this	can	be	stated	in	a	much	easier	way	as	shown	below:	For	instance,	if	x	<
xLow	or	x	>	xHigh,	switch	the	sign	of	dx.	This	can	be	translated	directly	into	Python:

The	use	of	the	word	or	creates	a	compound	condition:

It	is	recommended	that	most	of	the	complicated	tests	can	be	enshrined	inside	a	function.

It	is	often	convenient	to	encapsulate	complicated	tests	inside	a	function.	Think	how	to
complete	the	function	starting:

A	rectangle	is	defined	by	two	diagonally	opposite	points.	This	is	how	a	rectangle	can	be
prepared.	The	two	corner	points	are	defined	by	the	function	getP1	and	getP2.	Python	calls
the	points	obtained	as	pt1	and	pt2.	The	values	of	the	points	can	be	expressed	in	the
coordinate	of	x	and	y	of	pt1,	pt2.	Similarly,	the	point	can	also	be	expressed	in	the	point
form	of	getX()	and	getY().

Just	in	case	we	introduce	variables	for	the	x	coordinate	points	of	pt1,	point,	p2.	The	same
coordinates	can	also	be	expressed	as	end1,	va1	and	end	2.	The	relationship	between	the
two	coordinates	can	be	expressed	using	mathematical	concepts.

For	instance,	this	can	be	expressed	as:

end1	<=	val	<=	end2

However,	this	may	not	be	sufficient	to	express	the	position	of	the	corners.	It	is	expected
that	the	corners	points	are	supposed	to	be	diagonally	opposite,	and	the	second	coordinates
also	need	to	be	high	compared	to	the	first	points.	For	instance,	end1	may	be	300;	end	2
may	be	150,	while	va1	may	be	180.	Note	that	the	va1	is	between	the	two	coordinates	of
end1	and	end2.	These	values	can	be	substituted	into	the	expression.

300	<=	180	<=	150

This	expression	is	false	and	the	values	of	150	and	300	will	need	to	be	reversed.	This	can
only	be	a	complicated	situation.	Also	this	is	an	issue	which	must	be	revisited	for	both	the
x	and	y	coordinates.	The	solution	this	can	be	solved	using	a	new	function	isBetween	to
handle	one	coordinate	at	a	time.	Introduce	an	auxiliary	function	isBetween	to	deal	with
one	coordinate	at	a	time.

This	expression	may	only	be	true	when	the	original	expression,	end1	is	less	of	equal	to
va1	and	is	also	less	or	equals	to	end2.	This	will	be	true.	There	is	also	a	likelihood	that	the
case	may	be	reversed.	This	two	options	can	be	combined	as	two	unique	possibilities	using
Boolean	connectors	and	and	or.	This	will	make	the	relationship	true	in	one	of	the
relationship	and	using	or,	this	will	be	the	right	connective.

Therefore,	the	complete	code	in	python	that	will	be	able	to	function	here	would	be
expressed	in	the	following	ways:

A	correct	but	redundant	function	body	would	be:

As	a	technique	of	understanding	your	code:	try	to	extract	the	meaning	of	the	code	by
interpreting	the	code	to	English.

This	means	that	if	the	statement	is	True,	return	True.	Similarly,	if	the	condition	is	False,
return	False.	In	both	condition,	as	described,	the	same	values	will	be	returned	as	set	out	in
the	test	conditions.

Summary

It	is	not	a	requirement	that	you	need	an	if-else	statement	so	that	you	can	be	able	to	choose
between	True	or	False	values.	This	can	be	used	directly	using	the	Boolean	expressions	as
described	before.

Similarly,	other	expressions	when	using	the	compound	expressions	as	in	this	case:

end1	<=	val	<=	end2

The	main	characters	are	end1	and	end2.	This	is	simply	a	standard	mathematical	syntax
which	can	be	used	in	chaining	comparisons.	The	numbers	of	comparisons	can	be	chained
using	these	expressions	using	approximate	notations.	Note	also	that	this	can	only	be
successfully	coded	in	Python	unlike	other	programs	like	Java,	and	C++.

They	can	also	be	translated	in	ways	that	can	be	read	in	many	other	common	languages	as
shown	by	the	expression	below:

end1	<=	val

val	<=	end2

On	the	other	hand,	an	auxiliary	function	isBetween	can	also	be	used.	This	is	an	isInside
function.	The	isBetween	function	can	be	used	to	find	the	values	of	the	x	coordinates;	and
also	to	check	for	the	values	of	the	why	coordinates	as	well.

The	two	questions	can	be	combined	and	the	two	point	may	be	required	to	be	between	the
sides	and	between	the	top	and	bottom,	similarly,	the	right	connectors	to	be	applied	is	and.

But,	how	do	you	complete	the	isInside	method?	Probably,	you	will	need	to	find	this	out.
Find	out	more	information	from	the	link	below:

http://anh.cs.luc.edu/python/hands-on/3.1/handsonHtml/ifstatements.html#id16

Also	note	that	when	you	want	to	solve	for	an	opposite	condition.	In	many	cases	borrowing
from	English,	a	word	not	is	introduced	in	the	expression.

If	a	point	is	not	inside	the	required	position	such	as	not	in	a	rectangle,	you	will	be
prompted	to	state	that	the	point	is	not	inside	a	rectangle	(rect).This	condition	can	also	be
applied	in	this	case.

Therefore,	this	a	not	condition.

It	is	only	True	when	condition	set	is	False.	It	is	also	False	when	condition	is	True.

A	program	below	is	an	example	of	creating	values	inside	a	rectangle	and	is	referred	to	as
selectbutton.py.

This	is	a	complete	program	that	applies	the	use	of	isInside	expression	as	a	simple
application	for	selecting	colors.	Do	not	care	so	much	about	the	lengths	of	the	rectangles.

A	number	of	efforts	can	be	done	to	ensure	that	the	code	can	be	shortened	to	ensure	that
small	rectangles	can	be	used	in	this	case	and	make	it	a	more	powerful	code:

This	program	applies	the	use	of	isBetween	and	isInside	which	are	discussed	below:	This
programs	makes	make	colored	rectangles	which	can	be	used	as	buttons	and	which	can	also
be	used	as	picture	component.	The	code	that	has	been	used	in	creating	the	rectangle	is
similar	and	is	inside	a	function	makeColoredRect.	This	is	a	good	example	for	use	of
graphical	tools	in	Python.

The	code	that	has	been	developed	is	quite	long	and	is	enshrined	with	the	graphical	codes
for	drawing	pictures	and	buttons	and	has	sections	with	queries	for	asking	the	use	to	select
the	colors	for	a	picture.	You	will	also	observe	the	codes	have	an	if-elif-else	test	to	check
on	which	buttons	have	been	pressed	and	set	the	colour	of	the	picture	element	as
commanded	by	the	program.

http://anh.cs.luc.edu/python/hands-on/3.1/handsonHtml/ifstatements.html#id16

The	only	new	aspect	with	this	program	will	be	the	use	of	the	long	statements	isInside	as
shown	below:

Python	is	an	interactive	program	that	will	be	able	to	read	the	statements	as	they	continue
to	the	next	line	even	when	there	is	an	unmatched	pair	of	brackets	and	parenthesis.	It	is
recommended	that	when	you	have	a	long	line	that	will	be	able	to	run	over	the	screen	or
paper.	This	should	be	continued	to	the	next	line.

To	make	a	final	character	on	a	line	with	a	backslash	(\)	will	be	useful	since	it	suggests	that
the	line	continues	to	the	next	line.	This	is	the	best	way	of	making	your	work	neat	so	that
almost	all	the	statements	will	be	able	to	fit	into	the	same	line.

In	addition,	this	will	also	be	the	best	way	of	making	your	codes	simple.	Unlike	Python,
many	other	programs	will	require	a	special	way	of	terminating	a	line	such	as	‘;’	which
serves	as	command	for	the	program	not	to	pay	attention	to	the	new	lines	created.	In	some
cases	in	Python,	an	extra	parenthesis	can	also	be	used	and	it	will	do	no	harm	to	the
program	as	shown	in	the	above	example	using	the	isBetween.

Practical	Exercise

You	are	eligible	to	vie	for	a	US	senator	and	US	Representative	position	when	you	are	at
least	30	and	25	years	old	respectively.	In	addition,	you	must	have	been	a	US	Citizen	for	at
least	9	and	7	years	respectively	for	these	positions.

Write	a	program	and	call	it	congress.py	to	obtain	the	age	and	length	of	citizenship	from
the	user	to	contest	for	the	two	positions.

Enhance	your	program	so	that	you	can	be	able	to	obtain	the	age,	length	of	citizenship	and
print	one	of	the	statements	listed	below

1.	 You	are	eligible	for	both	senate	and	representative	and	Senate.
2.	 You	eligible	only	senate
3.	 You	are	ineligible	representative.

Chapter	8:	Python	Data	Variables	(Numbers,	Lists,	Tuples,	Strings	and
Dictionaries)

Variables	are	reserved	memory	locations	in	python	where	values	can	be	stored.	In	Python,
you	are	allowed	to	create	a	variable	which	you	can	reserve	in	the	memory.

In	the	basis	of	the	type	of	data	input	on	python,	the	interpreter	will	be	able	to	provide
memory	and	make	a	decision	on	whether	it	can	be	stored	on	the	memory	reserved	for	the
operation.	Hence,	when	you	assign	a	different	data	type	to	specific	variables	as	you
decide,	you	will	be	able	to	keep	the	integers,	decimals	and	or	characters	in	this	variable.

How	do	you	assign	a	value	to	a	variable?

An	equal	sign	is	used	as	an	operand	for	assigning	variable	to	a	name.	The	operant	to	the
left	of	the	equal	sign	is	referred	to	as	the	name	of	the	variable	while	the	operand	to	the
right	hand	side	is	the	value	of	the	variable	to	be	stored	in	Python.

Name	of	variable	=	Value	of	the	variable

This	can	be	shown	in	the	figure	below:

When	this	code	is	saved	and	run.	The	following	results	are	shown	in	the	output.

It	is	a	simple	process.	Just	type	in	your	python	program	the	text	as	provided	and	it	should
offer	you	the	same	output	as	shown	in	the	example	above.

There	are	various	data	types	that	can	be	used	in	python:

They	include:

1.	 Numbers
2.	 Strings
3.	 Lists
4.	 Tuple

5.	 Dictionaries

Numbers	in	Python

You	can	create	a	number	as	an	object	when	you	assign		a	value	to	them.	Just	like	the	name
and	value	of	the	variable	operands	are	stated,	they	can	be	used	also	for	assigning	numbers.
For	instance:

Var1	=	2

Var2	=	4

Types	of	numerical	supported	by	Python

Python	best	works	with	the	following	numericals

1.	 int	(recognized	as	integers)
2.	 long	(long	integers	[are	represented	as	hexa	or	octadecimals])
3.	 float	(floating	point	real	values)
4.	 complex	numbers

Examples

Int	=	10,	100,	-792,	-0x250,	0x75

Long	numbers	=	51924576L,	0122L,	0xDEFABCGDRT,	53267687675L,	-05238675443L

Float	=	0.0,	14.90,	-21.9,	32.3	+e20,	-90

Complex	numbers	=	3.14j,	45.j,	9.322e-36j,	0.876j

Python	strings

A	string	is	a	contiguous	set	of	characters	that	are	placed	in	between	the	quotation	marks

For	example:

What	does	this	program	do?

See	the	comments	in	the	program:

The	output	with	respect	to	the	comments	in	the	same	order	is	as	shown	below:

For	more	help	on	strings	on	python	for	using	classes,	functions	and	data,	just	type	[help
(“string”)	or	help	(‘string’)	and	then	press	enter]	in	the	python	shell.

A	full	list	on	how	the	classes	can	be	implemented	will	be	provided	for	you	to	follow	and
how	they	can	be	applied.

Python	Lists:

Python	lists	are	very	variable	and	use	in	compound	data	types.	A	list	is	simply	a	a	number
of	items	that	are	separated	by	commas	and	enclosed	within	square	brackets	([])

For	example:

Running	this	program	will	produce	the	following	output	in	the	order	of	the	command	print

Python	has	an	interactive	command	for	help	on	lists.	Just	type	[help	(‘list’)	or	help	(“list”)
followed	by	enter]	in	python	shell.	This	will	provide	a	list	of	all	forms	of	classes	that	can
be	applied	on	lists

Python	Tuples

This	is	another	form	of	a	sequence	data	type.	It	is	very	similar	to	the	lists	in	python.		It
also	consists	of	values	that	are	separated	by	commas.	They	are	however	enclosed	by
parentheses	().

They	are	often	considered	as	read	only	lists.

Outputs	of	the	above	code	in	the	order	of	the	print	command	are	as	follows:

For	help	on	tuples,	just	type	[help	(‘tuple’)	or	help	(“tuple”)	followed	by	enter]	in	python
shell.	This	will	provide	a	list	of	all	forms	of	classes	that	can	be	applied	on	lists

Python	Dictionary

These	are	hash	table	types	values.	They	are	associative	arrays		or	a	hash	which	are
similarly	found	in	Perl	and	consists	of	key	value	pairs.

Examples	of	pairs	include	the	following	values:

The	output	is	expected	to	look	like	this	when	this	program	is	run:

Data	variables	apply	in	all	data	codes	development	and	understanding	how	they	work	and
operate	is	very	essential	in	learning	program.

Connection	between	Lists	and	Dictionaries

It	is	possible	to	work	with	both	lists	and	dictionaries	and	changing	between	lists	and
dictionaries	and	vice	versa.	This	is	a	common	application	for	most	of	the	programmer	and
sometimes	they	have	to	interchange	the	data	types	especially	when	working	with
databases	which	will	be	learned	later	in	this	book	(Chapter	12).		This	is	a	strength	in
Python	that	can	never	be	found	in	any	other	language	since	it	has	this	functionality,	that	is
why	Python	is	referred	to	as	an	interactive	language.

Let	us	consider	the	following	example	of	a	dictionary:	D	is	the	Dictionary	and	L	is	the	list.

we	could	turn	this	into	a	list	with	two-tuples:

Note	that	both	the	D	and	L	have	the	same	information.	It	can	also	be	described	that	their
entropy	(organization	and	arrangement	of	each	word)	is	also	the	same.	But,	it	should	be
noted	that	sometimes	the	information	may	be	harder	to	be	retrieved	when	as	a	list
compared	to	a	dictionary.

When	we	want	to	find	values	in	Key’s,	we	will	have	to	first	go	through	the	tuples	of	the
lists	compare	the	components	of	the	list	with	the	keys.	This	can	be	well	performed	when
used	as	a	dictionary.

Lists	from	Dictionaries

It	is	very	easy	to	develop	a	list	from	a	dictionary.	This	is	achieved	by	using	the	function
(items	(),	keys	(),	and	values	().

Just	the	method	keys	()	will	be	able	to	create	a	list.	This	will	plainly	consist	of	keys	of	the
dictionary.	In	addition,	values	()	will	be	able	to	make	a	list	of	values.	Moreover,	items	()
can	also	be	used	to	create	of	list	of	items	made	of	2	tuples	with	keys	and	values	(keys,
values)-pairs:

However,	when	a	method	items	()	is	used	in	a	dictionary,	we	may	not	be	able	to	get	a	list
back.	But,	we	can	be	able	to	use	the	item	views,	the	item	views	will	be	converted	to	a	list
when	used	with	a	list	function.	No	information	will	be	lost	by	converting	a	dictionary	into
a	list.

It	is	also	possible	to	return	to	the	original	dictionary	from	the	items	(),	even	when	formed
as	a	list	of	tuples,	they	have	the	same	entropy.	However,	the	effectiveness	of	the	same
approaches	is	similar.

Therefore,	dictionary	also	serves	as	an	efficient	method	to	access,	replace,	change	and
vary	elements	of	the	dictionary.	However,	in	lists,	these	have	to	be	coded	by	a
programmer.

Turn	Lists	into	Dictionaries

The	lists	can	also	be	turned	into	Python;	if	these	lists	satisfy	certain	conditions.	Let	us
consider	two	lists	containing	dishes	and	other	countries:

A	dictionary	can	be	created	that	will	be	able	to	assign	a	dish	to	a	country.	This	can	be	done
using	a	function	zip	().	This	will	be	able	to	join	the	lists	like	a	zip.	This	will	be	able	to
iterate	over	a	list.	This	suggests	that	we	have	to	wrap	a	list	()	function	on	the	zip	so	as	to
call	to	get	a	list:

The	country	specific	lists	of	dishes	are	now	completely	converted	to	a	list.	This	is	a	list	of
two	tuples	which	has	keys	and	values	which	can	also	be	automatically	be	convertible	to	a
dictionary	by	using	the	function	dict().

The	only	mystery	will	be	to	understand	the	use	of	the	function	zip()	when	one	list	is	long
that	the	other.

This	is	not	complicated	either.	The	program	will	be	able	to	ignore	any	extra	lists	that	may
not	be	paired	in	any	way.

Here,	Switzerland	will	not	be	paired	in	this	case	and	will	be	ignored	in	the	output	as
presented.

All	in	one

Normally,	we	recommend	not	implementing	too	many	steps	in	one	programming
expression,	though	it	looks	more	impressive	and	the	code	is	more	compact.	Using
“talking”	variable	names	in	intermediate	steps	can	enhance	legibility.	Though	it	might	be
alluring	to	create	our	previous	dictionary	just	in	one	go:

This	can	also	be	written	in	this	other	way:

Summary

The	data	variables	come	in	the	five	ways:	They	can	be	in	form	of	numbers,	lists,	tuples,
strings	and	finally	dictionaries.	Each	of	them	is	very	unique	and	working	with	python	at
every	single	process	requires	a	basic	understanding	of	their	functions	and	classes.

In	python,	to	better	understand	how	this	can	be	applied.	You	can	seek	help	from	the
python	by	typing	help	(‘object’)	or	help	(“object”)	followed	by	enter.	This	will	provide
you	with	a	solution	on	how	any	of	the	variables	can	be	applied.

Chapter	9:	Basic	Operators	in	Python	for	Calculations

Operators	are	the	functions	which	can	be	used	in	the	manipulation	of	the	values	of	the
operands.	For	instance,	let	us	consider	the	expression	5	+	15	=	20.	In	this	example:	5	and
15	are	referred	to	as	operands,	while	the	plus	sign	(+)	is	referred	to	as	the	operator.

Operators

Python	language	supports	the	following	types	of	operators.

Arithmetic	operators
Comparison	operators	for	establishing	relations	between	values
Assigning	operators	for	equating	values	to	a	name
Logic	operator	for	determining	the	logic	between	values	on	either	side	of	the
operators.
Membership	operators
Operators	for	influencing	the	identity	of	objects/values

Here	is	a	list	of	the	various	forms	of	operators	and	examples	on	how	they	can	be	applied
in	a	real	python	algorithmic	development	scenario	in	programming.	They	have	been
looked	at	one	by	one.

Python	Arithmetic	Operators

Let	is	assume	that	a	variable	named	(a)	has	a	value	of	5	and	variable	(b)	holds	a	value	of
15,	therefore:

Operator Description Example

+ Sums	up	the	values	of	the
values	on	either	side	of	the
operator.

a	+	b	=	20

- Gives	the	difference	of	the	two
values	on	either	side	of	the
operator

a	–	b	=	-10

* Gives	you	a	product	of	values
on	either	sides	of	the	operator

a	*	b	=	75

/ Provides	a	division	of	the	two
values

b	/	a	=	3

% Divides	left	by	right	hand
values	of	the	operand	and	gives
the	value	of	the	remainder

b	%	a	=	0

** Makes	the	second	value	the
exponential	power	of	the	first
value

a**b	=5	to	the
power	15

// This	is	also	referred	to	as	the
Floor	Division	In	this	division,
the	digits	after	the	decimal
point	are	removed	from	the
result	of	the	quotient.

	

	

Operators	for	comparison	of	values

Comparison	operators	make	a	comparison	of	the	values	to	the	left	and	right	of	the	operand
and	helps	define	relationship	between	the	values	as	set	by	the	operand.	They	are	also
referred	to	as	the	relational	operators.	Use	the	values	for	(a)	and	(b)	as	illustrated	above.

Operator Description Example

== It	sets	as	a	condition	for	the
values	to	the	left	and	right	if	the
operand	to	be	true	only	when
they	are	equal.

It	is	not	true	when	(a
==	b)

!= It	sets	as	a	condition	for	the	two
values	to	be	true	only	when	the
values	are	not	equal

Same	as	above

<> It	sets	the	condition	to	be	true
when	the	values	of	the	operands
are	not	equal.

It	is	true	only	when
(a	<>	b).

The	application	is
similar	to	the	sign	!=

> This	emphasizes	on	the	value	of
the	left	operand.	When	it	has	a
higher	value	than	the	right	value,
It	accepts	the	condition	as	true.

It	is	not	true		if	(a	>
b)

< It	also	emphasizes	on	the	value
to	the	left	of	the	operand.	When
the	value	is	less	than	the	right
value,	it	accepts	the	set	condition
as	true.

It	is	true	when	(a	<
b).

>= This	is	applied	only	when	the It	is	not	true	when	(a

value	of	the	left	operant	is	higher
or	same	as	the	value	to	the	right
operand.	This	recognizes	the
condition	as	true.

>=	b).

<= If	the	value	to	the	left	is	lower
than	or	equals	to	right.		This
enables	the	condition	as	set	to	be
true.

It	is	true	when	(a	<=
b).

	

Python	for	Assigning	Operators

Operator Description Example

= It	assigns	the	value	of	the	right
hand	side	of	the	operand	to	the	left
hand	side.

	

c	=	a	+	b

+=	Add
AND

This	operant	adds	values	on	the
right	to	left	operand	and	equates
sum	to	the	left	operand

c	+=	a	is	equal	to
c	=	c	+	a

-=
Subtract
AND

It	gets	the	difference	between	the
right		from	left	operand	and	gives
the	division	to	left	operand

c	-=	a	is	also	c	=	c
-	a

*=
Multiply
AND

Its	action	is	same	as	above	but	then
as	a	product	of	the	right	and	left
operand	and	makes	the	result	equal
to	the	left	operand.

c	*=	a	is	same	as
c	=	c	*	a

/=	Divide
AND

Same	as	above	but	makes	a
division

c	/=	a	is	same	as	c
=	c	/	ac	/=	a	and
also	c	=	c	/	a

%=
Modulus
AND

Same	as	above	but	makes	floor
division	and	gives	a	quotients	and
equates	the	quotient	to	the	left
operand

c	%=	a	is
equivalent	to	c	=	c
%	a

**=
Exponent
AND

Assigns	an	exponential	(power)	on
operators	and	equates	to	the	value
of	the	left	operand

c	**=	a	is	same	as
c	=	c	**	a

//=	Floor
Division

It	creates	a	division	of	operators
and	equates	the	value	calculated	as
equal	to	the	left	value	of	the
operand

c	//=	a	is
expressed	as	c	=	c
//	a

	

Python	Membership	Operators

These	operators	evaluate	membership	of	values	in	a	sequence	in	various	python	data
forms	such	as	strings,	lists,	or	tuples.	There	are	only	two	forms	of	python	membership
operators:

Operator Description Example

is It	evaluates	to	be	true	when	the
variables	on	either	side	of	the
operators	are	similar	or	equates	to	the
same	object.	But	it	is	false	otherwise.

x	is	y.

not	in It	becomes	true	when	a	variable	in	the
sequence	is	not	found	and	otherwise,
becomes	false.

x	not	in	y

	

Python	Identity	Operators

This	only	serves	to	make	a	comparison	of	two	memory	locations	for	two	different	objects.
Similarly,	just	like	membership	operators,	there	are	only	two	membership	operators	as
explained	below:

Operator Description Example

is Evaluates	to	true	if	the	variables	on
either	side	of	the	operator	point	to	the
same	object	and	false	otherwise.

x	is	y

is	not Evaluates	to	false	if	the	variables	on
either	side	of	the	operator	point	to	the
same	object	and	true	otherwise.

x	is	not	y

	

Python	Operators	ordered	list

The	table	below	ranks	the	operators	in	terms	of	their	precedence	in	descending	order.

Operator Description

** Exponential	(raises	one
value	to	the	power	of	the
other)

~ Complement,

+ plus

- unary	minus

*		 Multiply

/ divide

% modulo

// floor	division

+ Addition

- Subtractions

>> Right	shift	bitwise

<< left	bitwise

& Bitwise	‘AND’

^	| exclusive	`OR’	and
regular	`OR’	bitwise

<=	> Comparison	operators

<	> comparison

= comparison

<>	==	!= Equality	operators

=	%=	/=	//=
-=	+=	*=
**=

Assigning	values
operators

Is,	is	not Identity	operators

in	not	in Creating	membership
operators

not	or	and Creating	logical	operators

Chapter	10:	Opening	and	Closing	Files

Since	the	start	of	this	chapter,	we	have	been	dealing	with	basics	of	trying	to	read	and	write
inputs	in	python.	This	time,	I	would	like	us	to	explore	the	use	of	writing	and	reading	real
files	outside	python.	Yes,	python	is	a	very	practical	program	and	one	can	basically	be	able
to	do	anything	as	long	as	he	knows	what	exactly	needs	to	be	done	in	Python.

Python	has	simple	functions	and	methods	that	enable	one	to	be	able	to	manipulate	files.
This	is	achieved	by	the	use	of	the	file	objects	in	python.

But	before,	we	get	to	it:

It	is	first	important	to	first	describe	some	few	other	functions	such	as	import.	How	do	you
bring	in	the	file	from	a	different	directory	to	Python?	This	is	how	it	is	achieved	in	Python
by	using	the	import	statement:

Import	statement.

Any	python	source	file	can	be	used	a	module	through	the	execution	of	the	import
statement	from	some	other	source	file	in	python.

The	import	function	contains	the	following	module.

The	function	import	has	to	be	placed	at	the	top	of	the	script.

The	module	would	them	be	loaded	only	once	however,	despite	the	number	of	times	the
import	functions	is	used	in	the	script.	This	allows	the	program	to	prevent	multiple	imports
of	the	file	to	be	executed	in	the	program

You	will	note	that	when	importing	a	file,	for	instance,	a	XML	file	converted	as	a	CSV	file,
first,	it	has	to	be	imported	before	any	execution	code	can	be	defined.	This	will	define	what
the	program	will	be	able	to	do	on	the	file	imported	into	python.

Python	has	in	built	basic	functions	and	methods	necessary	to	manipulate	files	by	default.
The	file	object	can	be	used	to	do	the	execution	and	manipulation	of	the	files	you	need.

The	open	Function

A	file	has	to	first	be	imported	before	it	can	be	read	and	write	in	Python.	Even	before	you
are	able	to	read	and	write	a	file	in	Python,	you	will	need	to	first	open	it	up	to	be	read.	This
is	achieved	using	the	inbuilt	open	()	function	in	Python.	This	function	allows	the	creation
of	an	object	as	a	file	which	will	then	enable	the	execution	of	other	support	functions
associated	with	the	file.

The	open	function	comes	as	below:

Here	are	parameter	details:

file_name:	is	used	as	string	that	contains	the	file	name	of	the	file	that	is	to	be
opened	in	python.
access_mode:	Determines	the	mode	by	which	the	file	is	required	to	be	opened.	It
allows	for	reading,	writing	and	appending	among	other	modes	available	in	Python
as	will	be	demonstrated	in	the	table	below.	However,	it	always	recommended
applying	the	default	access	mode	as	read	(r).
Buffering:	This	a	value	which	can	either	be	zero	or	any	other	number,	often	1	is
used.		When	the	buffer	value	is	fixed	as	zero	(0).	No	buffering	is	applied	for	the
files	being	read.	However,	when	the	buffer	value	is	used	as	(1),	buffering	is	applied
at	the	time	the	file	is	being	accessed.	Always,	as	long	as	the	buffer	value	is	an
integer	and	a	value	more	than	one,	the	buffering	process	is	initiated	in	accordance
with	the	suggested	buffer	size.	But	if	the	buffer	value	is	negative,	the	buffer	size
adopts	a	default	characteristic.

Modes	of	opening	file	is	as	described	in	the	table	below:

Modes Description

r A	file	is	opened	but	it	can	only	be	read.	The	reading	starts
from	the	start	of	the	file.	This	is	used	as	a	default	mode
setting.

rb This	allows	the	opening	of	the	file	but	for	reading	only	in
the	binary	mode.	The	reading	starts	from	the	start	of	the
file.	This	is	used	as	a	default	mode	setting.

r+ This	mode	allows	the	opening	of	a	file	for	reading	and
writing	at	the	same	time.	The	reading	starts	from	the	start
of	the	file.	This	is	used	as	a	default	mode	setting.

rb+ This	mode	allows	the	opening	of	a	file	for	reading	and
writing	at	the	same	time	but	in	the	binary	mode.	The
reading	starts	from	the	start	of	the	file.	This	is	used	as	a
default	mode	setting.

w Allows	a	file	to	be	opened	but	can	only	be	written.	It
allows	the	existing	file	to	be	overwritten.	However,	a	new
file	will	be	created	when	none	of	the	file	described	exists.

wb Allows	a	file	to	be	opened	but	can	only	be	written	in	the
binary	format.	It	allows	the	existing	file	to	be	overwritten.
However,	a	new	file	will	be	created	when	none	of	the	file
described	exists

w+ Allows	a	file	to	be	opened	and	cab	be	read	and	written	at
the	same	time.	It	allows	the	existing	file	to	be	overwritten.
However,	a	new	file	will	be	created	when	none	of	the	file
described	exists

wb+ Allows	a	file	to	be	opened	and	cab	be	read	and	written	in
the	binary	format.	It	allows	the	existing	file	to	be
overwritten.	However,	a	new	file	will	be	created	when
none	of	the	file	described	exists

a This	allows	a	file	to	be	opened	and	can	only	allow
appending	of	new	information.	Hence,	the	file	pointer	will
be	at	the	end	of	the	file	if	it	exists	and	it	is	present	in	the
append	mode.	A	new	file	will	also	be	created	if	the	file
mentioned	does	not	exist.

ab This	allows	a	file	to	be	opened	and	can	only	allow
appending	of	new	information	only	in	the	binary	format.
Hence,	the	file	pointer	will	be	at	the	end	of	the	file	if	it
exists	and	it	is	present	in	the	append	mode.	A	new	file	will
also	be	created	if	the	file	mentioned	does	not	exist.

a+ It	executes	the	opening	of	a	file	and	allows	appending	and
reading	of	the	file.	The	file	pointer	is	at	the	end	of	the	file
if	the	file	exists.	Hence,	the	file	pointer	will	be	at	the	end
of	the	file	if	it	exists	and	it	is	present	in	append	and	read
mode.	A	new	file	will	also	be	created	if	the	file	mentioned
does	not	exist.

ab+ It	executes	the	opening	of	a	file	and	allows	appending	and
reading	of	the	file	in	the	binary	format.	The	file	pointer	is
at	the	end	of	the	file	if	the	file	exists.	Hence,	the	file
pointer	will	be	at	the	end	of	the	file	if	it	exists	and	it	is
present	in	append	and	read	mode	in	binary	format.	A	new
file	will	also	be	created	if	the	file	mentioned	does	not
exist.

	

How	to	use	the	file	Object	Attributes

Immediately	a	file	has	been	opened,	then,	it	becomes	a	file	object	for	which	much	other

information	can	be	derived	in	python	relating	to	the	information	in	the	file.

The	following	attributes	can	be	executed	to	the	file	object:

Attribute Description

file.closed This	allows	Python	to	returns	true	when	the	file
is	closed,	otherwise,	it	is	considered	as	false.

file.mode This	returns	the	mode	of	access	for	which	the
file	was	opened.

file.name It	returns	the	file	name	opened	in	Python.

file.softspace This	will	returns	false	when	space	is	required,
otherwise,	it	will	be	true.

	

An	example	of	the	program	to	be	executed	includes

Example

The	output	will	be	as	seen	in	this	screenshot:

In	most	cases,	when	working	with	a	real/actual	file	such	as	an	excel	file.	Then,	the	import
function	can	be	used	in	this	case.	Assuming	you	have	a	file	saved	as	a	CSV	file	name
“goodmen.csv”.	You	can	open	it	and	use	it	in	many	other	ways.	Moreover,	you	can	also
check	out	the	name,	confirmed	if	the	file	is	closed	or	not,	confirm	the	mode	and	softspace
flag	as	illustrated	above.	The	following	program	can	be	used	to	access	it:

Use	any	other	file	with	a	diff	name	and	see	what	happens	with	the	file.	Just	change	the
name	goodmen.csv	with	your	new	file	name	in	the	csv	format.

Closing	of	a	file	using	the	close()	attribute	in	Python

This	allows	Python	to	close	a	file	object	and	assumes	any	information	that	had	not	been
written	and	closes	the	file	object.	This	ensures	that	the	program	does	not	execute	any	other
function	after	that	had	been	done.

However,	python	is	also	able	to	close	a	file	automatically	when	a	different	object	is
assigned	to	the	file.	But,	it	is	a	good	practice	to	always	close	the	file	using	the	close	()
function.

This	is	implemented	using	the	following	syntax:

fileObject.close();

For	example:

The	previous	file	opened	was	f2.

The	file	can	therefore	be	closed	using	the	attribute:

The	output	after	running	this	file	will	be	as	shown	in	the	screen	shot	below:

Summary

It	is	important	to	know	that	before	you	are	able	to	read	a	file	in	Python.	It	must	be	opened
first,	using	the	open	function	as	described	in	this	chapter.

Next,	you	will	be	able	to	execute	and	find	out	the	attributes	of	the	file	using	the	various
attributes	as	mode,	filename,	space	and	many	more	attributes.

Finally,	always	ensure	that	the	program	is	closed	using	the	file_name	object.close()
function	in	Python.	It	allows	you	to	run	another	program	and	makes	the	python	process
quick	in	its	execution	of	programs	even	in	limited	memory	capacity.

Chapter	11:	Reading	and	Writing	Files	in	Python

In	the	last	chapter,	we	learned	how	to	be	able	to	open	and	close	a	file.

A	file	that	is	open	can	allow	reading	and	writing	depending	with	the	mode	selected	for
execution	in	Python.	Using	the	file	objects	allows	one	to	access	methods	that	will	enable
one	to	manipulate	data	in	various	ways.	This	makes	life	for	people	easier.	In	this	chapter
therefore,	we	would	like	to	know	how	we	can	be	able	to	read	file	using	the	read()	and
write()	methods	for	reading	and	writing	files.

Using	write()	Method

This	attribute	allows	one	to	add	anything	in	the	form	a	string	to	an	open	file.	Note	that
Python	strings	need	to	have	binary	data	and	may	not	just	accept	any	form	of	text	to	be
used	in	this	case.

In	addition,	using	the	write()	technique	many	not	introduce	a	newline	character	(‘\n’)	at
the	end	of	the	string.

The	syntax	for	the	write()	can	be	expressed	as	below

Here,	is	an	example	of	how	this	can	be	applied	in	the	real	Python	code:

Since,	this	file	does	not	exist	in	python,	it	will	create	a	new	file	called	“goodmen.text”	and
then	it	will	close	after	execution	of	the	filename	object.close	().

When	the	file	is	opened,	it	will	contain	the	following	text	in	it.	Open	it	in	Notepad.

How	to	use	the	read()	attribute	in	Python

This	method	allows	strings	to	be	read	from	an	open	file.	The	python	strings	may	contain
binary	data	besides	the	use	of	the	data	in	text.

The	syntax	for	reading	files	is	expressed	as	follows	in	Python:

In	python,	the	file	object	is	the	assigned	name	in	python	at	the	time	the	file	is	being
opened.	For	instance,	goodmen	files	above	were	assigned	an	object	value	f2.

In	this	case,	this	allows	the	file	opened	to	be	read	from	the	start	of	the	file	and	when	the
count	is	absent,	then,	it	will	read	the	entire	document	to	the	end	of	the	file.	Hence,	it	is
important	to	specify	how	much	information	may	be	needed	when	trying	to	get	specific
information	in	Python.

Note:	You	direct	Python	to	do	everything	that	you	would	like	it	to	do.

For	example:

Using	the	previous	file	in	this	chapter	“goodmen.txt”

We	can	read	the	above	file	in	python	and	see	what	results	it	generates	in	Python.

The	output	will	be	expressed	as	follows:

Getting	the	positions	of	files

This	is	the	method	that	can	be	used	in	finding	the	position	of	a	text	within	a	file.	This	uses
the	tell()	attribute	in	python.	This	allows	Python	to	do	the	next	read	or	write	from	the
position	indicated	from	the	beginning	of	the	file	created.

However,	we	can	also	be	able	to	change	the	current	file	position	of	a	file	using	the
seek(offset[,	from])	method.	The	argument	offset;	suggests	the	number	of	bytes	to	be
moved	while	the	other	argument,	from	shows	the	specific	position	where	the	bytes	will	be
moved	from	the	current	position.

When	the	value	from	is	set	as	zero	(0),	This	suggests	that	the	file	has	to	be	read	from	the
beginning	of	the	file	as	the	main	reference	point	while	a	value	of	one	(1)	is	used	to	refer	t
the	current	position.	A	value	of	2	is	applied	to	indicate	the	end	of	the	file	as	the	main
reference	point.

Using	an	example	below:

Let	us	take	a	file	foo.txt,	which	we	created	above.

The	output	will	be	as	represented	in	the	screen	shot	below:

How	to	Rename	and	Delete	Files

Python	also	allows	one	to	be	able	to	process	files	in	the	python	os.	This	includes	processes
such	as	being	able	to	rename	file	or	delete	files	without	the	need	to	manually	delete	the
files.	This	can	best	be	applied	first	by	the	use	of	the	import	statement	and	then	you	will	be
able	to	call	any	functions	that	can	be	performed.

Using	the	rename()	syntax

The	rename()	attribute	allows	one	to	use	two	arguments.	First,	you	will	be	required	to	use
the	current	filename	and	then	followed	by	the	new	filename.

A	good	example	of	the	application	is	as	shown	below:

Following	is	the	example	to	rename	an	existing	file	test1.txt:

Deleting	files	using	the	remove()	Method

This	is	applied	when	one	has	to	delete	a	file.	This	requires	that	you	will	have	to	provide	a
name	of	the	file	that	has	to	be	deleted	in	the	argument.

The	main	syntax	for	the	process	is:

The	following	is	an	example	on	how	to	delete	an	existing	file	created	as	goodmen2.text.

Working	with	Directories	in	Python

All	files	are	contained	within	various	directories,	and	Python	has	no	problem	handling
these	too.	The	OS	module	has	several	methods	that	help	you	create,	remove,	and	change
directories.

The	mkdir()	Method

You	can	make	a	directory	using	the	attribute	mkdir()	method	inbuilt	with	the	OS	in
Python.	This	will	be	able	to	create	a	new	directory	in	the	current	directory.	This	is	done	by
introducing	an	argument	that	will	contain	an	argument	which	will	have	the	name	of	the
directory	that	needs	to	be	created.	The	syntax	to	be	used	is:

os.mkdir(“newdir”)

The	following	example	can	be	used	for	creating	a	new	directory	(new_programs)	in	the
current	directory.

Changing	directory	Method

To	change	the	directory,	use	the	attribute	chdir()	to	change	the	details	of	the	current
directory.	This	is	an	argument	that	makes	the	new	current	directory.

It	has	the	syntax	as	follows:

os.chdir(“newdir”)

As	a	good	example	for	this	syntax,	let’s	change	to	the	current	new	directory
“/home/working_programs”.

How	to	get	the	current	working	directory

This	is	achieved	by	the	use	of	the	getcwd()	attribute	in	python.	It	can	be	able	to	display	the
current	directory	that	is	working.		The	syntax	used	is	expressed	as:

os.getcwd()

A	perfect	working	code	for	getting	the	working	directory	is	as	shown	in	this	screen	shot

How	to	delete	a	directory

This	is	the	technique	which	one	can	apply	when	they	want	to	remove	a	directory.	The
attribute	in	function	for	this	process	is	the	rmdir()

This	method	enables	one	to	delete	completely	the	directory.	This	is	initiated	as	an
argument	in	Python.	However,	note	that	all	the	contents	that	had	been	previously	saved	in
the	directory	will	need	to	be	removed	first	before	it	can	be	deleted.	The	syntax	for	the
argument	is	set	as:

os.rmdir(‘dirname’)

To	remove	“tmp/new_programs”	as	a	directory.	The	full	name	as	it	appears	in	the
directory	is	provided.	Hence,	it	will	search	for	the	name	in	the	current	directory.

Manipulation	of	files	and	directories

There	are	two	special	methods	which	allow	one	to	be	able	to	handle	and	manipulate
different	files	and	directories.	These	are	applicable	in	both	windows,	Unix	OS.

They	include	the	following	methods:

File	Object	techniques:	The	file	object	allows	a	function	to	change	files.
OS	Object	techniques:	enables	the	processing	of	both	files	and	directories.

Summary

In	this	chapter,	we	have	just	learned	that	we	can	be	able	to	delete	a	directory,	create	a	new
directory,	change	a	directory,	get	a	directory	name	and	many	other	functions.	This	is	an
important	process	in	Python.	It	makes	life	easier.	You	will	be	able	to	create	a	file	in
Python,	create	a	new	directory,	save	it	there	and	even	confirm	if	the	file	has	been	saved,
and	close	the	file	as	usual.

Practice	Exercise

1.	 A	new	file	named	“1000_keywords.csv”	has	to	be	opened,	read	as	a	binary	file.
Write	a	Python	code	that	will	execute	this	process.

2.	 The	file	name	also	has	to	be	changed	to	“Smart_words.csv”	write	a	program	that
will	execute	the	process	and	stored	in	the	same	directory.	

3.	 John	is	working	and	is	not	sure	in	which	directory	he	has	been	saving	his	work.
Write	him	a	two	line	program	that	will	be	able	to	identify	the	directory	he	has	been
saving	his	work.

4.	 John	has	two	long	lists	of	students	that	he	needs	to	merge	them	together.	How	can
he	be	able	to	create	a	single	list	of	names	in	Python?	How	can	he	also	be	able	to
save	the	list	in	his	current	directory	named	“students”?	To	avoid	confusion,	he	will
be	required	to	delete	the	other	original	files	in	the	current	directory	and	save	the
same	files	in	a	different	directory	named	“Old	records”.	Develop	a	single	python
that	will	be	able	to	accomplish	this	process.

5.	 Mike	is	a	tutor	for	a	school.	The	final	exams	were	done	and	he	has	finished
marking.	However,	he	has	to	calculate	the	overall	marks	by	adding	the	mean	of	the
cat	marks	for	cat	1	and	cat	2	which	account	for	30%	and	add	the	marks	to	the	final
exams	mark	which	is	out	of	70%.	He	has	only	a	day	to	go	before	the	deadline.	How
can	he	be	able	to	do	this	automatically	without	much	hustle	in	Python	and
accomplish	the	task	in	less	than	10	minutes	for	60	students?

Chapter	12:	Managing	Databases

The	use	of	databases	back	to	before	the	1970’s.	SQL	is	one	of	the	few	databases	that	have
a	wide	area	of	application	and	more	especially	with	respect	to	python	programming.	SQL
has	a	well-structured	language	with	query	which	is	based	on	creating	relationships	as	a
model	for	sharing	in	large	data	banks.

In	fact,	SQL	is	often	pronounced	as	sequel	when	read	directly	in	English.	Currently,	it	is
now	one	of	the	best	standards	in	the	American	national	standards	Institutes	(ANSI)	after
1987.	This	is	because	most	of	the	people	prefer	using	mSQL,	postgress	SQL,	MySQL	and
other	forms	of	SQL.

What	is	a	database?

A	database	is	defined	as	a	collection	of	organized	data.	The	organization	of	the	data	allows
processing	of	the	data	either	by	way	of	deleting	files,	rearranging,	adding	new
information,	replacing	content	and	many	other	functions.

A	database	is	also	the	data	itself	that	has	been	stored	for	databank	for	special	reasons.	It
can	also	be	associated	with	the	database	management	system.	The	database	management
system	is	the	software	that	can	be	used	in	the	processing	of	the	data	by	the	user.

The	user	of	the	database	may	not	be	required	to	be	human	but	programs	and	applications
too.

Python	as	introduced	at	the	beginning	of	this	book	was	expressed	as	an	interactive
language.	Python	has	the	ability	to	interact	with	a	database	such	as	SQL.	It	therefore	has
the	potential	of	interacting	as	a	user	for	the	database.

It	is	possible	to	use	SQLite	and	other	SQL	forms	from	Python	as	a	program.	It	is	a
standard	that	the	database	interface	for	Python	is	DB-API.		This	is	used	by	Python
interfaces	when	interacting	with	Python.	While	it	is	a	common	interface,	it	can	also	be
used	in	relational	databases	using	codes	developed	in	Python	for	communication	with
databases.	The	language	used	is	the	same	and	regardless	of	the	type	of	the	database	that
will	be	used	and	the	module	that	has	to	be	applied.

Already,	I	have	addressed	a	few	examples	of	databases;	SQL	and	MySQL.	Here,	we	shall
look	at	each	one	of	them	individually.

SQLite

This	operates	a	simple	relational	database	system.	It	has	the	ability	to	save	the	data	in	the
simple	database	systems	in	the	simple	regular	data	files	in	simple	locations	of	a	computer
such	as	the	computer	memory	in	the	RAM.	It	is	very	compartible	with	simple	applications
such	as	Mozillar-Firefox,	Symbian	OS,	android	and	many	other	OS	programs.

It	is	also	very	fast	since	it	uses	simple	files	and	has	the	capability	to	operate	for	large
databases.

The	operation	of	the	SQLite	relies	on	importing	of	the	module	sqLite3.	Then,	a	connection
is	required	with	the	object.	The	connection	object	will	represent	the	database.	The

argument	of	the	connection	is	the	name	of	the	database	such	as	“companys.db”.	It
functions	both	as	a	name	of	the	file,	where	the	data	will	be	stored	and	as	the	name	of	the
database	itself.	Presence	of	the	file	name	will	have	to	be	established	and	if	the	name
exists,	it	will	be	opened.

Note:	the	database	has	to	be	an	SQLite,	if	the	name	exists,	then	it	has	to	be	opened.

Let	us	create	a	database	using	the	following	code.	This	will	be	able	to	open	a	database
company.	The	file	in	this	case	may	not	need	to	exist	in	this	case.

Using	this	code,	you	will	be	able	to	create	a	database	that	will	have	the	name	‘Company”.
This	is	a	command	that	initiate	and	creates	a	database	company	in	an	SQL	server.

When	you	try	to	use	the	command:

“sqlite3.connect	(‘company.db’)” 	again

This	will	open	a	previous	database	with	a	similar	name	that	had	been	created.

What	you	developed	is	an	empty	database	and	what	has	to	be	done	next	is	to	create	tables
in	the	format	needed	so	as	to	be	able	to	insert	and	retrieve	information	in	the	way	that	is
needed.

An	SQL	code	for	developing	table	“staff”	in	the	database	“company”	looks	like	this:

This	is	how	it	can	be	done	in	an	SQL	in	the	command	shell.	This	can	be	done	in	Python
directly.	A	command	can	also	be	sent	to	an	SQL	or	SQLite.	This	is	only	possible	with	the
use	of	the	SQL	cursor.	The	relevance	of	a	cursor	is	to	enable	one	to	access,	read,	write	and
use	information	in	a	database.	It	can	also	be	used	I	fetching	for	information	from	a
database	with	a	precise	output.

In	most	of	the	Python	programs,	it	is	used	for	performing	most	of	the	commands.

This	can	be	done	by	calling	the	cursor	method	as	a	way	of	establishing	the	connections.
Any	number	of	cursors	can	be	created.	They	can	also	be	used	to	go	over	the	records	and
information	which	are	the	results	from	a	database.

Therefore,	a	complete	Python	code	for	developing	a	power	company	would	look	like	this:
Remember	the	staff	table	will	also	be	created	in	this	database:

In	the	syntax	above,	it	is	clear	that	the	AUTOINCREMENT	part	has	been	removed.	Note
that	in	SQL,	The	“INTEGER	PRIMARY	KEY”	also	automatically	auto	increase	the
values	in	the	field	required	in	the	table	in	SQLite3.

This	can	also	be	expressed	in	the	sense	that	when	a	column	of	a	table	is	declared	to	be	an
INTEGER	PRIMARY	KEY.	Every	time	whenever	a	NULL	is	used	as	an	input	for	the
column,	The	NULL	value	will	be	automatically	get	converted	to	an	integer	with	a	value
larger/higher	than	the	previous	value	by	one	in	the	column.	When	the	table	is	empty,	it
will	automatically	give	a	value	one	for	the	existing	number.	For	instance,	when	a	largest
existing	value	for	a	column	is	9234576898344,	any	new	value	that	will	be	added	will	be
one	value	higher	than	it,	hence	the	value	in	SQLite	will	be	an	unused	value	selected
randomly.

To	this	far,	we	have	been	able	to	create	a	database	and	a	table	inside	it	with	several
columns.	But	currently,	no	data	has	been	created	on	it.

To	create	the	data	on	the	table,	we	will	have	to	be	able	to	populate	the	table	using	a	simple
Python	command	“INSERT”	command	to	SQLite.	Similarly,	we	will	need	to	execute	the
code	as	a	method	of	populating	the	table.

Use	the	below	working	example	to	know	how	making	a	database	can	be	easy	and
interesting	using	SQLite	and	Python	as	the	best	interactive	language.

Try	the	program	below:

To	run	the	program	you	will	either	have	to	remove	the	file	company.db	or	uncomment	the
“DROP	TABLE”	line	in	the	SQL	command:

To	be	able	to	insert	the	data	on	a	database	in	python,	you	will	not	be	able	to	literary	insert
the	data	into	a	table.	But	will	be	required	to	have	a	many	data	in	the	forms	of	data	types
discussed	in	the	beginning	of	this	book.	It	can	be	in	the	form	of	dictionaries	or	a	list	which
can	be	used	as	the	input	of	the	insert	statement.

For	Example,	using	a	list	of	persons,	it	is	possible	to	insert	the	names	in	an	existing
database	company.db	and	a	table	staff.	This	can	be	achieved	using	the	INSERT	statement
in	Python.

It	is	possible	query	the	staff	table	in	Python.	Follow	the	following	code	to	know	how	this
can	be	achieved	very	easily	in	Python.	This	enables	you	to	be	able	to	retrieve	any

information	from	the	database	and	as	well	confirm	and	verify	the	information	stored	in	the
database.

First,	save	this	program	as	“query_SQL-company.py”	and	then	run	this	program.		This
will	give	you	the	following	products	we	get	the	following	result,	depending	on	the	actual
data:

MySQL

In	order	to	use	MySQLdb,	it	the	module	has	to	be	installed	on		a	computer	on	which	you
will	be	working	on.	However,	on	other	programs	such	as	Ubuntu	and	Debian,	it	is	very
easy.

Just	type	the	following	code	in	Python	and	wait	for	it	to	be	installed:

Note	that	besides	the	import	and	the	connects	functions	method	and	everything	else	as
applied	in	SQLite.	The	working	of	MySQLdb	operates	like	this:

First,	you	have	to	import	MySQLdb	modul	in	Python
To	create	a	connection,	open	a	connection	to	the	SQL	server

Use	both	the	sending	and	receiving	commands
Always	close	the	connection	in	SQL

The	import	and	connection	functions	in	MySQLdb	will	look	like	the	codes	shown:

Practice	Exercise

Create	a	database	using	SQLite3	and	name	it	“students.db”.	In	the	database,	create	a	table
in	the	database	called	std8_students	and	provide	the	insert	and	commit	functions.	Write	a
code	that	will	be	able	to	retrieve	information	from	the	same	database	and	provide	a	list	of
the	names	of	students,	gender,	age	and	code	for	the	students.

Conclusion

I	most	sincerely	thank	you	for	downloading	this	book!	

It	is	my	belief	that	this	book	was	able	to	help	you	learn	how	to	interact	with	python	and
teach	you	how	to	use	numbers	and	texts	in	various	ways	in	Python.

The	next	step	is	for	you	to	ensure	that	you	practice	how	to	use	this	book	and	information
given	to	you	on	a	daily	basis	to	perfect	on	how	to	use	numbers	and	texts	in	python.	Note
that	python	itself	is	very	interactive	will	require	very	close	attention.

Finally,	if	you	believe	that	this	book	has	helped	you	learn	a	Python.	Please	take	time	to
share	your	thoughts	on	how	this	can	be	improved	to	make	the	book	even	better	for	others

Also,	I	encourage	you	to	share	your	reviews	through	Amazon.	This	will	be	greatly
appreciated!

Thank	you	again	for	reading	this	book.

I	hope	that	you	enjoy	interacting	with	Python.

Bonus	Free	Python	Programming	Videos

When	you	subscribe	via	email,	you	will	get	free	access	to	a	toolbox	of	exclusive
subscriber-only	resources.		All	you	have	to	do	is	enter	your	email	address	to	the	right	to
get	instant	access.

To	get	instant	access	to	these	incredible	tools	and	resources,	click	the	link	below:

=>	Click	here	for	the	bonus	content	<=

https://aflexsystem.clickfunnels.com/optin5428051

	Introduction
	Chapter 1: Setting Up Python on Your computer
	Chapter 2: Interacting with Python
	Chapter 3: Boolean’s in Python
	Chapter 4: Boolean’s and Conditional expressions
	Chapter 5: Use of if – elif statements in making Multiple Tests in Python
	Chapter 6: Use of Nested Control flow statements in Python
	Chapter 7: Compound Boolean Expressions in Python
	Chapter 8: Python Data Variables (Numbers, Lists, Tuples, Strings and Dictionaries)
	Chapter 9: Basic Operators in Python for Calculations
	Chapter 10: Opening and Closing Files
	Chapter 11: Reading and Writing Files in Python
	Chapter 12: Managing Databases
	Conclusion
	Bonus Free Python Programming Videos

