
US $39.99

Shelve in
Mobile Computing

User level:
Intermediate–Advancedwww.apress.com

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

T. Michael Rogers

Rogers
Swift Recipes

RE
LA

TE
D

TI
TL

ES

Swift Recipes
A Problem-Solution Approach

Swift Recipes provides a problem solution approach for deal-
ing with key aspects of the Swift programming language

(covering version 1.2), ensuring you have the indispensable ref-
erence you need to successfully execute common programming
tasks. You’ll learn how to use the unique features of the Swift
programming language as well as its use with Cocoa and Cocoa
touch frameworks and libraries.

Solutions are available for a range of problems, including appli-
cation development with Xcode; working with strings, numbers,
and object collections; dealing with threads, multi-core process-
ing, and asynchronous processing; and building applications that
take advantage of dates and timers and memory management.

This book is an essential core reference for every Swift program-
mer and offers solutions in a concise and easy-to-follow manner.
T. Michael Rogers has developed iOS applications for Fortune
100 brands and startups, and has trained new and experienced
iOS developers via the iOS Boot Camp in New York City, online
courses, and in private settings. He brings his expertise to offer
you the ability to use and exploit Swift to get the most out of all
your projects for your app creations, whether you use iOS or Mac
OS X. In this book, you’ll learn

• What strings and arrays are, and how to use them How
to manage your data effectively

• How to build and work with dictionaries, dates and
times, timers, and localization

• How to deal with threads, multi-core processing, and
asynchronous processing

• How to utilize Cocoa touch and Cocoa and core frame-
works for user interfaces and experience design and
development

• How to access and work with iOS SDK for iPhone and
iPad apps design and development

This book is for experienced Apple iOS, Mac OS X, and even
Objective-C programmers who may be new to the Swift pro-
gramming language. Some Swift exposure is recommended.

SOURCE CODE ONLINE
9 781484 204191

53999
ISBN 978-1-4842-0419-1

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

About the Author ���xxvii

About the Technical Reviewer ��xxix

Acknowledgments ��xxxi

Introduction ��xxxiii

Chapter 1: Swift Programming ■ ��� 1

Chapter 2: Complex Types ■ ��� 27

Chapter 3: Collections ■ ��� 51

Chapter 4: Advanced Swift Programming ■ ��� 79

Chapter 5: iOS Applications ■ �� 107

Chapter 6: OS X Applications ■ ��� 143

Chapter 7: Files and Directories ■ �� 179

Chapter 8: Concurrency ■ ��� 199

Chapter 9: Web Services ■ �� 225

Chapter 10: Core Data ■ ��� 251

Chapter 11: Advanced iOS 8 Features ■ ��� 277

Index ��� 303

xxxiii

Introduction

Swift is the newest and hottest language in the mobile-development world today. At the
2015 Worldwide Developers Conference (WWDC), Apple announced that it is open sourcing
Swift and making it available on other platforms. For developers, this is a huge opportunity
to share code inside and outside the Apple ecosystem.

Swift represents an exciting step forward in application development. It brings the power of
the latest modern languages, such as functional programming, closures, and extensibility.
At the same time, it incorporates tried-and-true concepts, such as type safety and object-
oriented structures. This book, Swift Recipes, is a reference book on Swift 1.2 for developers
who need quick answers to common problems on the iOS and OS X platforms as well as
any platform that will support pure Swift in the future.

The book starts out covering core language concepts and provides common problems along
with their solutions. Once all the language-specific topics are covered, the book proceeds
to offer solutions to common application-development needs and challenges. Each chapter
presents recipes in a problem/solution format that can be used individually or in combination
with each other. Some recipes build upon each other to form more complex solutions.

In addition to Swift language basics, this book also covers topics such as iOS and OS X
application development, multithreading and concurrency, connecting with Web Services
and APIs, Core Data, and some advanced iOS 8 topics using Swift.

This book is designed as a reference to help developers get work done. Each chapter
includes step-by-step instructions, diagrams, and sample code that explains the concepts
behind the solutions, as well as offering the code and patterns required to implement the
solutions in your applications.

If you are a developer who develops applications on the iOS or OS X platforms, you will
benefit from these solutions. In addition, if you are transitioning from Objective-C to Swift,
these recipes will leverage your existing knowledge into creating Swift solutions.

1

Chapter 1
Swift Programming

Welcome to Swift Recipes. Swift, announced by Apple at WWDC 2014 and released in
September of 2014 is a modern alternative to Objective-C for iOS and OS X developers. In
each chapter of this book are recipes or solutions to common situations and challenges you
will encounter when developering iOS and OS X applications.

Each chapter follows the same format. A problem is presented, followed by the solution.
The solution is discussed in detail in a section named “How It Works.” This section
explains the implementation of the solution using Swift. Code examples and details about
how to apply the code are used to walk you through the solution. Finally, in “The Code and
Usage” section, the full listing of the code is provided along with instructions on how to
use the full listing.

This chapter will focus on essential recipes you will encounter in Swift. It will provide
solutions to common situations you will encounter, such as

Getting Started with Swift	

Installing Xcode 6	

Working with Playgrounds	

Designing User Interface Elements in a Storyboard	

Dealing with Strings	

Formatting Numbers as Strings	

Getting the Length of a Swift String	

Manipulating Swift Strings	

Manipulating Strings with Native Swift Methods	

Storing Strings on the iOS File System	

Reading a Text File into a String	

2 CHAPTER 1: Swift Programming

Reading and Writing Text Files in Cocoa	

Dealing with Numbers	

Dealing with Dates	

Swift is still a young language. In many of the following recipes, you must use Foundation
objects such as NSString and NSDate. Many swift classes are “bridged” to Foundation
objects and can work together seamlessly. Recipes in this chapter leverage those bridged
functions.

1-1. Getting Started with Swift
Problem
You have heard and read good things about Swift since it was released, but you are still
wondering about the benefits of working with this new language.

Solution
Swift was created by Apple to provide the development community with a new modern
programming language. Swift can be used independently or alongside Objective-C to create
Mac OS and iOS applications. Swift does have a large number of modern features that
Objective-C does not. Some key features of Swift that are missing in Objective-C are

	Type Safety. Type safety helps developers avoid the problems inherent
with Objective-C and its use of pointers. All types must have a default
value. Variables cannot be nil, unless specified by the developer. An
optional type variable may be nil or have a value. The keyword optional
is used to define an optional variable.

	Type Inference. Swift seeks to make coding more efficient, eliminating
some of the artifacts that are present in many languages. The complier
can determine the type of most variables using the initial value of the
variable. This saves programming time and effort by eliminating the
need to explicitly type variables in your code.

	Enumerations and Structures. Both can have methods and properties,
making them more powerful than ever.

	Playgrounds. Playgrounds allow developers to write code in real time
and see the results. Developers can code without creating a project,
workspace or other typical project requirements. Common playground
recipes are found later in this chapter.

3CHAPTER 1: Swift Programming

1-2. Installing Xcode 6
Problem
You have not yet installed Xcode 6.

Solution
Use the Mac AppStore to install Xcode 6.

How It Works
In order to install Xcode 6, you must have a Mac running OS X Mavericks (10.9) or Yosemite.
Launch the Mac App Store, and search for Xcode. Xcode can be downloaded for free from
the Mac App Store (Figure 1-1). Once there, click “Get.”

Figure 1-1. Click “Install.” Xcode will download and install

4 CHAPTER 1: Swift Programming

1-3. Working with Playgrounds
Problem
You want to quickly write some code to explore an idea.

Solution
Xcode 6 and Swift have a new feature called playgrounds. Playgrounds let you write code
and the playground immediately compiles and executes it. This lets you test an idea without
having to create a new project or work within your existing project.

How It Works
Your first step is to launch Xcode. To create a new playground, select File ➤ New ➤
Playground. Provide a name for your playground and for this recipe, choose “iOS” as the
platform. Next click continue, and then select a location for your saved playground file
(Figure 1-2).

Figure 1-2. Select “New” from the file menu and then select “Playground” in the submenu

5CHAPTER 1: Swift Programming

Xcode will open a playground window containing sample code. A playground window
consists of these areas: the code area on the left, the results sidebar on the right, and the
Assistant Editor, which is hidden by default. To see the Assistant Editor, select View ➤
Show Toolbar. Then click the assistant editor icon that looks like a tuxedo. This will open the
Assistant Editor to the right of the results sidebar (Figure 1-3).

Figure 1-3. The Playground window

The Code and Usage
Working with a playground is designed to be easy. Start writing code in the code editor.
Begin with the sample code that Apple has provided:

// Playground - noun: a place where people can play

import UIKit

var str = "Hello, playground"

The first line is a comment, the second line imports the UIKit framework so that you can
access those APIs if you wish, and finally the third line creates a new string variable. If you
look, on the same line as the string declaration, in the results sidebar, you will see “Hello,
playground”. This is the evaluation of the statement var str = "Hello, playground".
The result of that expression is the string “Hello, playground”.

Add a new variable called “welcome” and assign it a value such as this one:

var welcome = "Welcome, playground"

The playground will quickly evaluate that statement and display the results on the right
column of the window. You will see additional uses for playgrounds in coming recipes.

6 CHAPTER 1: Swift Programming

1-4. Designing User Interface Elements in a Storyboard
Problem
You need to design a user interface element, but you don’t want to compile and run an
application to do so.

Solution
Playgrounds provide visualization tools that will display UI objects as they would appear in a
real application.

How It Works
Create a new playground to write your code. See Recipe 1-3 if you need help creating a
Playground in Xcode. Once you have created it, you can cut all of the sample code, except

"import UIKit"

You will be creating a user interface object, so we will require the UIKit framework. Start by
defining a UILabel, including setting the font, size and color:

var label = UILabel(frame: CGRect(x: 0,y: 0,width: 300,height: 100))

You don’t need a class or function. Like the previous recipe, the playground does the work
for you. In the results sidebar, mouse over the result and two icons will appear. They are the
“Quick Look” and the “Values History” icons (Figure 1-4).

Figure 1-4. From left to right, the “Quick Look” and “Values History” icons

Figure 1-5. The pop-up view displaying a visualization of the statement

Clicking the “Quick Look” icon will display a pop-up that shows the visual results of the
statement (Figure 1-5).

7CHAPTER 1: Swift Programming

The “Values History” icon looks like a circle. To view the values of a statement at a particular
point in time, click in the circle. The Assistant Editor will appear. Values will appear within
boxes for each icon you click on. This allows you to see the incremental effects of your code
changes (Figure 1-6).

Figure 1-6. The “Value History” visualization

The Code and Usage
Enter Listing 1-1 into a new playground. If you need help creating a new playground,
see Recipe 1-3.

Listing 1-1. Create a UILabel

import UIKit

var label = UILabel(frame: CGRect(x:0, y:0, width: 300, height: 100))

label.text = "Hello Playground"

label.font = UIFont(name: "Arial-Black", size: 20)

label.textColor = UIColor.greenColor()

Mouse over the statements in the results sidebar, and click the ‘Quick Look” and “Values
History” icons to see the values. Click each “Values History” button on each line of code.
Your values history should look like Figure 1-7.

8 CHAPTER 1: Swift Programming

1-5. Dealing with Strings
Problem
Frequently you need to convert a string to a number. That number could be an integer,
decimal or floating-point number.

Solution
Create a class extension to the String class, and use NSString to provide the required
functions.

How It Works
If you need to convert a String to an integer, then you can use String.toInt.

To convert a String to a decimal or float, you will need to use a different approach.
Fortunately, Swift and Objective-C were designed to work well together. You can use classes
from the Foundation framework to create a String class extension that can provide the

Figure 1-7. Value history of the sample code

9CHAPTER 1: Swift Programming

conversion methods. The NSNumberFormatter class has the functionality required to convert
those strings. The method numberFromString returns an optional NSNumber. If the result is nil,
then the string was not a valid int, float or double.

var formatter = NSNumberFormatter()

var doubleResult = formatter.numberFromString("40.25")?.doubleValue

If it is not nil, you can return the doubleValue or floatValue property to convert the number
to the respective type.

The Code and Usage
Copy Listing 1-2 to a new playground. See Recipe 1-3 for details about creating a new
playground. Listing 1-2 contains an extension to the String class that will convert the string
to an optional number. If the string cannot be parsed, nil will be returned.

Listing 1-2. A String class extension to parse strings to numbers

import Foundation

extension String
{
 func toDouble() -> Double?
 {
 var formatter = NSNumberFormatter()

 return formatter.numberFromString(self)?.doubleValue
 }

 func toFloat() -> Float?
 {
 var formatter = NSNumberFormatter()
 return formatter.numberFromString(self)?.floatValue
 }
}

Once implemented, these class extensions can be used on any String-type variable.
To test the functionality in a playground, copy Listing 1-2 into a new playground file. Use the
extension methods to convert a string literal to a number using the toDouble and toFloat
methods.

"100.50394".toDouble()

"0.289".toFloat()

Examine the results sidebar in the storyboard window.

10 CHAPTER 1: Swift Programming

1-6. Formatting Numbers as Strings
Problem
You need to convert a number to a string and properly format it.

Solution
Swift Strings and NSStrings are bridged to allow you access to NSString functions,
including the string format specifiers. Using format specifiers gives you more control over
formatting numbers.

How It Works
In Objective-C, you can format a string such as this:

NSLog("The time is %02d:%02d", 10, 4)

Swift automatically bridges a String to the NSString class as well. That means you can
access the functions available to you in either class.

The string formatters are exactly the same when using them in Objective-C or in Swift
through the String class. See Table 1-1.

Table 1-1. Common Number Format Specifiers

Specifier Description

%d A signed 32-bit integer

%u An unsigned 32-bit integer

%f A 64 -bit double

%e A 64-bit double, printed in scientific notation with
a lowercase e before the exponent

The Code and Usage
Enter this code into an empty playground file:

import Foundation
var time = String(format: "The time is %02d:%02d", 8, 18)

Import the Foundation framework. Then you can use the Swift string format initializer.
The results sidebar should display the string “The time is 08:18”.

11CHAPTER 1: Swift Programming

1-7. Getting the Length of a Swift String
Problem
You need to find the length of a string, but you can’t find a method on the String class.
The String class in Swift is bridged with the NSString class. You can call the functions of
NSString when using a Swift string. However, there are some exceptions.

Solution
In order to better handle Unicode multibyte characters, Swift has a global method called
countElements, which can be used to return the number of characters in a string.

How It Works
The String class handles strings differently than the NSString class. String uses Extended
Grapheme Clusters to store Unicode characters as combinations of individual Unicode
scalars. Storing strings in this fashion allows for a greater range of characters to be used by
developers. For example, you can represent the copyright symbol as a single Unicode scalar

let copyrightMark : Character = "\u{00A9}"

or decompose it into separate elements

let decomposedMark : Character = "c\u{20DD}"

This allows two or more characters to be composited together to make a single character.
Swift combines these characters in order to display them. However, if you counted the
actual characters in the string, for the variable decomposedMark, the value would be 2.
Instead, Swift provides the countElements() global that is aware of Extended Grapheme
Clusters. Even though the decomposed variable has two physical characters, countElements
will return a count of one, representing the single resulting character.

The Code and Usage
Listing 1-3 displays the different behavior between NSString.length and the countElements
global. Add this to a new playground. (See Recipe 1-3, “Working with Playgrounds.”)
NSString.length will return 2, because it counts the Unicode character as two individual
characters. The countElements method is able to determine that the Unicode character is an
Extended Grapheme and counts it as a single character.

Listing 1-3. Comparing NSString.length with countElements

import Foundation

let decomposedMark : String = "c\u{20DD}"

NSString(format:decomposedMark,NSLocale.currentLocale()).length // returns 2

countElements(decomposedMark) // returns 1

12 CHAPTER 1: Swift Programming

When you are dealing with strings in Swift, always use countElements to determine the
number of composed characters in a string. Using NSString.length on a composed string
will give you an incorrect count if the string contains composed characters.

1-8. Manipulating Swift Strings
Problem
Every application at one time or another requires you to perform a manipulation of strings.
Swift strings are structured differently than NSString objects. Strings are value types in Swift
and behave differently than NSString objects. The method calls are similar between String
and NSString, but there are some key differences in names and parameters.

Solution
Swift strings have many built-in features. When a feature is not yet native to Swift, it makes
NSString methods available through bridging. Bridging allows you to pass Swift String
objects to Foundation classes in place of NSString. In addition, methods available to NSString
are made available to Swift String instances, which call the bridged NSString class method.

How It Works
In Swift, mutable strings are created using the var keyword. This allows the string to be
updated. If you use the let keyword, the string is immutable and cannot be modified. There
is some lack of clarity in the use of the labels “immutable” and “mutable.” Swift strings are
value types. As a result, when they are passed or assigned, a copy is made. At this time,
no NSMutableString functions are available through the String class in Swift. Therefore,
most functions return a string rather than operating on the original. The important thing to
remember is that if you want to change the contents of a variable, define it with var. If you
are not going to change the value, use let. The compiler can optimize those let statements.

To replace a string within a string, you will need to use the NSString function
stringByReplacingOccurrencesOfString:withString:

"The sky is red.".stringByReplacingOccurrencesOfString("red", withString: "blue")

In this function call, the string “red” will be replaced with “blue”. Sometimes, you may need
to replace a string, but you will want to restrict it to only part of the string.

"One, 2, 3.".stringByReplacingOccurrencesOfString("one", withString: "1",
 options: NSStringCompareOptions.CaseInsensitiveSearch,
 range: Range<String.Index>(start: str.startIndex,
 end: advance(str.startIndex, 27)))

The range parameter type is a Swift class called Range, and it is a range composed of
String.Index objects, a start and an end. A String.Index object is different from a typical
index. Because Swift strings can contain characters that are composed of multiple Unicode

13CHAPTER 1: Swift Programming

characters in an Extended Grapheme Cluster, a String.Index must refer to the position of
the composed character rather than the physical index. This means that string indexes for
different Swift strings cannot be used interchangeably.

To retrieve the starting index of a string, use String.startIndex. In order to get the String.
Index indicating the character five positions in, you use the global function advance(start:
String.Index, n: Int). Advance moves the String.Index n spots to the right. Don’t forget
to check for index violations. If “n” will advance past the end of the string, your program
will crash.

The statement advance("abc".startIndex,2) will return a String.Index two characters into
the string. In this case, it’s the position of the letter “b” because there are no decomposed
characters.

If you would like to get a substring of a string, there are a number of options, such as
substringFromIndex, substringToIndex and substringWithRange. Each requires
String.Index parameters or a Range of String.Index objects.

You can append strings using the + operator:

var phrase = "So long" + " and thanks for all the fish."

You can also use the += operator to append and reassign the string to itself:

var phrase = "So long"
phrase += " and thanks for all the fish."

Strings can be inserted into other strings using stringByReplacingCharactersInRange, but
they use the same index for the Range parameter.

var r = Range<String.Index>(start: advance(str.startIndex,6),
 end: advance(str.startIndex,6))
"I like pizza.".stringByReplacingCharactersInRange(r, withString: " hot")

To delete a range of characters from a string, use stringByReplacingCharactersInRange with
an empty string.

var str = "I like hot pizza."
var r = Range<String.Index>(start: advance(str.startIndex,6), end:
advance(str.startIndex,10))

println(str.stringByReplacingCharactersInRange(r, withString: ""))

The Code and Usage
To run the following recipe code, enter it into an empty playground. If you need help creating
a playground, see Recipe 1-3. The Swift class String is bridged with NSString in the
Foundation library. This means you can call those methods on any Swift string. Listing 1-4 is
an example of some of those methods.

14 CHAPTER 1: Swift Programming

Listing 1-4. Manipulating Swift strings with NSString methods

import Foundation

var str = "I would like to replace one with one"

str.stringByReplacingOccurrencesOfString("one", withString: "1")

str.stringByReplacingOccurrencesOfString("one", withString: "1",
 options: NSStringCompareOptions.CaseInsensitiveSearch)

str.stringByReplacingOccurrencesOfString("one", withString: "1",
 options: NSStringCompareOptions.CaseInsensitiveSearch,
 range: Range<String.Index>(start: str.startIndex,
 end: advance(str.startIndex, 27)))

Your results sidebar should look like this:

"I would like to replace one with one"
"I would like to replace 1 with 1"
"I would like to replace 1 with 1"
"I would like to replace 1 with one"

1-9. Manipulating Strings with Native Swift Methods
Problem
You want to perform string manipulation in pure Swift. You do not want to use the
Foundation classes to assist your string processing.

Solution
Strings in Swift can be treated similarly to arrays. This allows you to use powerful functions
available in Swift to process both arrays and strings.

How It Works
According to “The Swift Programming Language” published by Apple, strings are a
collection of characters in a specific order. Does that sound like an array? It can be treated
like one. You can loop through the characters in a string with a for-in loop:

for c in "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
{
 println(c)
}

15CHAPTER 1: Swift Programming

Ranges can be used to return a substring from a String value. For example:

var str = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

str[str.startIndex...advance(str.startIndex, 13)]

This can be dangerous, however, because if you exceed the maximum index of the string,
you will get a runtime error. You need to check the end index of the string to be sure you do
not exceed the bounds. Always check against the range of the string.

You should test the amount you want to index into a string against countElements - 1. This
will return the maximum index that can be used. See the substring extension in the following
code. Be careful you don’t create an off-by-one error.

To test if a string is empty, you can call the global function isEmpty, which returns a Boolean:

isEmpty("123")

If you need to retrieve a number of characters from the beginning or end of a string, you can
use the prefix and suffix functions, respectively. The prefix function will retrieve the first N
characters from the String parameter, and N is the second parameter.

prefix("ABCDEFGHIJKLMNOPQRSTUVWXYZ",9) // returns "ABCDEFGHI"

The suffix method works the same way, except it returns the N characters, starting with the
last character and working backwards through the string.

suffix("ABCDEFGHIJKLMNOPQRSTUVWXYZ",9) // returns "RSTUVWXYZ"

The Code and Usage
Enter the code in Listing 1-5 into a playground window to see the examples in action.
This listing shows a number of examples of how you may use global Swift array functions
on strings. It also contains a class extension to the String class. This method will use global
array functions to return a substring of the original string. Remember strings are value types
in Swift, so this method will return a copy of the string.

Listing 1-5. Using array functions with strings

var str = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
// Prints each character of the alphabet in a line by itself
for c in str
{
 print(c)
}

// Get a substring using a range of String.Index
str[str.startIndex...advance(str.startIndex, 13)]

// Return the first 9 characters of a string
prefix(str,9)

16 CHAPTER 1: Swift Programming

// Return the last 5 characters of a string
suffix(str,3)

// Check to see if a string is empty
isEmpty(str)

// Get the number of characters in a string
countElements(str)

// String extension to add a Swift native substring function
extension String {

 func substring(startix : Int, length : Int) -> String?
 {
 var endPos = 25
 let max = countElements(self) - 1
 if startix + length > max
 {
 return nil
 }

 let start = advance(self.startIndex,startix)
 let end = advance(self.startIndex,startix + length)

 return self[start...end]
 }
}

str.substring(5, length: 5)

If you would like to use the string extension substring function in your own code, create a
new Swift file named “String-extension.swift” and copy the entire extension into the file.
To use the function, add this file to your project.

1-10. Storing Strings on the iOS File System
Problem
Your application needs to store strings in a file on the iOS file system.

Solution
You can write to files located in your application’s Documents folder. The Documents
folder is part of the application sandbox. Your application can write only to files in your
application’s sandbox, and other applications have no access to your application’s sandbox.

17CHAPTER 1: Swift Programming

How It Works
In order to write text files in your iOS application, you need to first get a path to the file.
To do this in iOS, you use the NSSearchPathForDirectoriesInDomains function:

let directories = NSSearchPathForDirectoriesInDomains(
 NSSearchPathDirectory.DocumentDirectory,
 NSSearchPathDomainMask.AllDomainsMask, true) as? [String]

This will return an optional array of strings. If the array is not null, the first item in the array
is your documents directory. iOS applications have permission to write to the documents
folder located within their sandbox. Once you have the directory path, you can append a file
name to it:

let filename = "SwiftText.txt"
var directory = directories[0];
let path = directory.stringByAppendingPathComponent(filename);

Note You can read from the iOS bundle, but you cannot write back to it. If you want to update a
file that you have included in the bundle, copy it to the documents directory and then modify it.

This is the name of the file that contains the content you want to read. Define a variable to
store the text, and you can use the function writeToFile to save the contents.

let alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

alphabet.writeToFile(fullPath, atomically: false,
 encoding: NSUTF8StringEncoding, error: nil)

If writeToFile returns true, the file was successfully written. While this is a bridged function
of NSString, there are indications that additional functionality will be coming in Swift. An
undocumented method writeTo on the string object indicates that a string will be able to
be written to objects that implement the Streamable protocol. The current documentation,
at the time of publishing, does not have any specifics about the method or Streamable
protocol.

The Code and Usage
The code in Listing 1-6 can be executed in a playground or incorporated into an application.
To run it now, enter it into a new playground.

18 CHAPTER 1: Swift Programming

Listing 1-6. Writing to a file on iOS

import Foundation

let filename = "SwiftText.txt"
// iOS File Path Code
let directories : [String]? = NSSearchPathForDirectoriesInDomains(NSSearchPathDirectory.
DocumentDirectory, NSSearchPathDomainMask.AllDomainsMask, true) as? [String]

var directory : String
var fullPath : String = ""

// Write to file
if let directories = directories {
 directory = directories[0]; //documents directory
 fullPath = directory.stringByAppendingPathComponent(filename)
}
else
{
 println("Error: Could not determine the documents directory path.")
 abort() // Handle this properly in your production code
}

let alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

var error : NSError?

alphabet.writeToFile(fullPath, atomically: false,
 encoding: NSUTF8StringEncoding, error: &error)

if let err = error
{
 println("Error reading file: \(err.description)")
}

When using an iOS playground, your code is running in a sandbox, just like it would on an
iOS device. The file Swifttext.txt will be in a folder for this sandbox on your disk. To view
the file the code created, use the “Quick Look” icon in the playground to get the path of the
sandbox directory. Click the “Quick Look” icon on this row of code:

directory = directories[0]; //documents directory

The value of the directory variable will look similar to this:

/var/folders/5m/8_xm31b51v91cffgml0s8mkc0000gp/T/com.apple.dt.Xcode.pg/containers/
com.apple.dt.playground.stub.iOS_Simulator.test2-716E9DA4-BBA8-45B9-9AA3-
35C625F6FF8E/Documents

19CHAPTER 1: Swift Programming

Copy the path from the “Quick Look” box by selecting the text with your mouse and using
Edit ➤ Copy.

Switch to the finder. Choose Go ➤ Go to Folder. Then paste the path into the text box and
click the Go button. A finder window will appear with the location of the file.

1-11. Reading a Text File into a String
Problem
In an iOS application, you would like to read the contents of a file into a string.

Solution
Swift can read from a file using the stringWithContentsOfFile. This includes the files from
your bundle as well as other files written to the documents directory of the application.

How It Works
You can use the NSString class to read text from a file. Swift still relies on Foundation
classes in order to read and write text from files. To begin, you need to get a path to the file
you wish to read. In order to retrieve the path to the directory in your applications sandbox
or bundle, you can use the NSSearchPathForDirectoriesInDomains function:

NSSearchPathForDirectoriesInDomains(
 NSSearchPathDirectory.DocumentDirectory,
 NSSearchPathDomainMask.AllDomainsMask, true) as? [String]

This returns an optional string array. Under normal circumstances, this should always result
in the first element of the string array being the path to the sandbox documents directory.
Checking for a nil is a good best practice. The function call should not return nil in practice;
if it does, it indicates a problem such as a memory issue. The documentation does not
specify any potential reasons for this situation. Retrieve the directory path by accessing the
first element in the array and append the filename to get the fullPath to the file.

directory = directories[0] //documents directory
fullPath = directory.stringByAppendingPathComponent(filename)

Before we can read a file, it must first exist. Use the code from Recipe 1-10 to create a file.
Write the contents of a string to a file. Pass an NSError pointer to the writeToFile call; it will
be populated with an NSError object containing information about the problem:

var error : NSError?

let alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
alphabet.writeToFile(fullPath, atomically: false,
 encoding: NSUTF8StringEncoding, error: &error)

20 CHAPTER 1: Swift Programming

Now that the file exists on disk, we can read the file into a string variable. The method
String.contentsOfFile:encoding:error: will read a file and return the contents of that file
as a string.

let text = String(contentsOfFile: fullPath, encoding: NSUTF8StringEncoding, error: &error)

if let err = error
{
 println("Error reading file \(fullPath): \(err.description)")
}

If an error occurs, it is most likely that the path does not exist. Make sure the file you are
attempting to read exists.

The Code and Usage
The code in Listing 1-7 will create a file named “SwiftText.txt” on your disk. Then it will read
the contents of that file back into a variable named text. Create a new playground in Xcode
and pass the contents of Listing 1-7. In the console area, you will see the output indicating the
file was written successfully. Otherwise, if an error occurred, you will see an error message.

Listing 1-7. Reading strings from a file on iOS

import Foundation

let filename = "SwiftText.txt"
// iOS File Path Code
let directories : [String]? = NSSearchPathForDirectoriesInDomains(
 NSSearchPathDirectory.DocumentDirectory,
 NSSearchPathDomainMask.AllDomainsMask, true) as? [String]

var directory : String
var fullPath : String = ""

if let directories = directories {
 directory = directories[0] //documents directory
 fullPath = directory.stringByAppendingPathComponent(filename);
}
else
{
 println("Err: Could not determine the documents directory path.")
 abort() // Handle this properly in your production code
}

var error : NSError?

// First we need to write to the file
// NOTE: each playground has its own temporary file system
// Files created in one playground will not have the same path
// as those created in another

21CHAPTER 1: Swift Programming

let alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
alphabet.writeToFile(fullPath, atomically: false,
 encoding: NSUTF8StringEncoding, error: &error)

if let err = error
{
 println("Error writing file \(fullPath): \(err.description)")
}
else
{
 println("Created file at \(fullPath)")
}

let text = String(contentsOfFile: fullPath,
 encoding: NSUTF8StringEncoding, error: &error)

if let err = error
{
 println("Error reading file \(fullPath): \(err.description)")
}
else
{
 println("Successfully read the contents of the file at \(fullPath)")
}

In order to access the documents directory, get the path to the file by copying the value of
the directory variable. The path will look something like this:

"/var/folders/5m/8_xm31b51v91cffgml0s8mkc0000gp/T/com.apple.dt.Xcode.pg/containers/com.
apple.dt.playground.stub.iOS_Simulator.iOS-write-string-to-file-E33A0CB5-906E-4C54-9CE1-
BAC6BCA1AB63/Documents"

Switch to the finder. Choose Go ➤ Go to Folder. Then paste the path into the text box and
click the Go button. A finder window will appear with the location of the file.

1-12. Reading and Writing Text Files in Cocoa
Problem
You want to read and write text files in your OS X Cocoa-based application.

Solution
OS X applications can read and write files similar to iOS applications.

How It Works
When you build and run your own applications, or download an application from the Internet,
not the Mac App Store, a sandbox does not restrict the application.

22 CHAPTER 1: Swift Programming

These applications can access files anywhere on disk. This recipe will read a file in the /tmp
path on the hard drive:

let filename = "/tmp/SwiftText.txt"

In this scenario, you simply need a valid path to the file. Then call the following initializer on
String:

var text = String(contentsOfFile: fullPath,
 encoding: NSUTF8StringEncoding, error: &error)

If there is an error, the variable passed to the error parameter will be populated with the
description of the error. You will want to create robust error handling in your code to handle
any potential errors, such as being out of disk space, attempting to save to a path without
permission, or unknown errors.

The variable “text” is optional in this case, because if there is an error, the string will be nil.
So you will want to test the variable before attempting to read it.

To write a file to the Mac OS file system, use the String.writeToFile method:

text?.writeToFile(fullPath, atomically: false,
 encoding: NSUTF8StringEncoding, error: &error)

Always check the error parameter to see if the write was successful.

The Code and Usage
For the code in Listing 1-8 create a New Project in Xcode. Select “Application” under the OS
X section in the left list. Then choose “Command Line Tool.” Click next. Give your product a
name, such as “ReadWriteText,” and select Swift as the language. Choose the location on
disk to save the project and click “Create.”

The project will have a single .swift file named “main.swift.” Open this file, and enter the
code. The code will read from a text file you create. Then it will write back to the file to
illustrate reading and writing files. The NSString methods are the same as reading from and
writing to iOS, but the location of the file is not restricted to the application’s sandbox.

Listing 1-8. Reading string from and writing strings to a file on Mac OS

import Foundation

let fullPath = "/tmp/SwiftText.txt"

var error : NSError?
var text = String(contentsOfFile: fullPath,
 encoding: NSUTF8StringEncoding, error: &error)

if let err = error
{
 println("Error reading file \(fullPath): \(err.description)")
}

23CHAPTER 1: Swift Programming

else
if let contents = text
{
 println("Success: \(contents)")
}

text = "0987654321"

error = nil

text?.writeToFile(fullPath, atomically: false,
 encoding: NSUTF8StringEncoding, error: &error)

if let err = error
{
 println("Error writing file \(fullPath): \(err.description)")
}

Next, you need to create a text file to read. You will create a file using the Terminal
application.

Switch to the finder. Choose Go ➤ Applications. In the Applications folder is a folder named
“Utilities.” Double-click that folder to open it. The Terminal application is located in this
folder. Double-click the Terminal icon to launch the application.

At the prompt, type cd /tmp. This will change the current directory to the /tmp directory.
Now you may create the file.

At the terminal prompt, type cat >SwiftText.txt and press Enter. Type a few lines of text
followed by a carriage return. Then press Control+D. This will end the file.

Run the application. In the output window at the bottom of the Xcode window, you should
see “Success:” followed by the contents of the temporary file you created.

Then go back to your terminal window and type cat SwiftText.txt. This will display the
contents of the file that has been overwritten by the program. You should see the contents of
the file as “0987654321.”

1-13. Dealing with Numbers
Problem
Typically, before you can display a number on screen or write it to the console, you need to
convert it to a string.

Solution
The Swift String class provides you with functionality to convert many different types of
numbers to strings.

24 CHAPTER 1: Swift Programming

How It Works
Any type of number can be quickly converted to a string using string interpolation. Swift will
substitute the value of the number—whether it is a float, double or integer—into a string.
String interpolation is performed by wrapping a variable in parentheses, preceded by the
backslash escape character. For example:

var n = 110
var s = "This is an integer = \(n)"
This code results in the string "This is an integer = 110".

The Code and Usage
When you need to convert a number to a string, create a string literal and use interpolation
to display its value.

var y = 1701.01

let s = "\(y)"

Note When converting a Float to a string, you may see unpredictable results due to the binary
representation of values. If this occurs, use NSString(format: "%.02f", str) to control the
precision.

1-14. Dealing with Dates
Problem
Swift does not yet have a Date type, and most of your applications need to deal with dates.

Solution
You have full access to the NSDate class. Using these classes in Swift works similarly to how
they are accessed in Objective-C.

How It Works
The NSDate function and other date-related objects in the Foundation framework are
available when using Swift. The APIs differ slightly to agree with Swift’s simplified syntax.
This recipe will provide some helper code to quickly create NSDate objects in a more
simplified way.

25CHAPTER 1: Swift Programming

This function will create a new NSDate using month, day and year parameters:

func from(#year:Int, month:Int, day:Int) -> NSDate {
 var c = NSDateComponents()
 c.year = year
 c.month = month
 c.day = day

 var gregorian = NSCalendar(identifier:NSGregorianCalendar)
 var date = gregorian?.dateFromComponents(c)
 return date!
 }

As you can see in the preceding code, NSDateComponents encapsulates the different parts of
a date. NSDateComponents is used in conjunction with NSCalendar to create and manipulate
dates. Be sure to use these classes because they will use important date features such as
leap years and daylight savings time when manipulating dates.

Dates can be created from strings as well. The following function will create a date from a
formatted date string:

func from(string:String, format:String="MM-dd-yyyy") -> NSDate {
 var dateFmt = NSDateFormatter()
 dateFmt.timeZone = NSTimeZone.defaultTimeZone()
 dateFmt.dateFormat = format
 return dateFmt.dateFromString(string)!
 }

In this function, NSDateFormatter is used to change the formatted string into a date. The format
string you provide to this function can be any valid format that NSDateFormatter can read.

var date = Date.from("12/1/2013",format: "MM/dd/yyyy")

The Code and Usage
Add Listing 1-9 to a playground or an application. The class extension provides two class
methods that facilitate the creation of NSDate instances. The method from(#year:Int,
month:Int, day:Int) -> NSDate takes a cardinal year, month and day and returns a
corresponding NSDate instance. The method from(string:String, format:String="MM-
dd-yyyy") -> NSDate takes a string and an optional format string to create an instance of
NSDate. The date format string is an NSDateFormatter format.

Listing 1-9. Date class extension for creating NSDate instances

import Foundation

class Date {

 class func from(#year:Int, month:Int, day:Int) -> NSDate {
 var c = NSDateComponents()
 c.year = year
 c.month = month
 c.day = day

26 CHAPTER 1: Swift Programming

 var gregorian = NSCalendar(identifier:NSGregorianCalendar)
 var date = gregorian?.dateFromComponents(c)
 return date!
 }

 class func from(string:String, format:String="MM-dd-yyyy") -> NSDate {
 var dateFmt = NSDateFormatter()
 dateFmt.timeZone = NSTimeZone.defaultTimeZone()
 dateFmt.dateFormat = format
 return dateFmt.dateFromString(string)!
 }
}

var date = Date.from("12/1/2013",format: "MM/dd/yyyy")
var countdown = Date.from(year: 2015, month: 10, day:21)

27

Chapter 2
Complex Types

Simple types in programming languages are used to store single values. Examples of simple
types include Int, Char, and String. These types can have some methods associated with
them, which is similar to a complex type. Think of simple types as the building blocks of
complex types.

Complex types are made up of other types and have methods and functions that can
operate on data. A custom class you create is an example of a complex type. Swift is an
object-oriented language, and creating complex types is the heart of the language.
In addition to having classes, Swift offers other data structures to create complex types.

This chapter contains recipes to create new complex types, including classes, enumerations,
and structures. Swift adds new features and capabilities to these constructs that make it
unique from other languages. Topics in this chapter include

Writing Functions	

Creating Classes	

Adding Class Properties	

Initializing Class Properties	

Adding Class Methods	

Inheriting from Classes	

Implementing Protocols	

Setting Property Observers	

Defining Enumerations	

Creating Structures	

Using Tuples	

28 CHAPTER 2: Complex Types

2-1. Writing Functions
Problem
You need to create a function in order to perform an action on some information, such as a
calculation, an update to a user interface, or a manipulation of a block of text.

Solution
In Swift, functions are first class types. They can be passed as parameters, created
at runtime, and returned from functions. You can also create functions that are not
encapsulated in another class, structure, or enumeration.

How It Works
Functions are defined using the keyword func. Functions can take zero or any number of
parameters, and they can return a value to the caller. Function names must start with a
non-numeric character. The letters a through z, both uppercase and lowercase can be used
as the initial character. Unicode characters can be used as well. After that, you can use the
numbers 0 through 9, as well as “_” in addition to the valid characters for the first character.
Class names in Swift are upper camel case by convention. Upper camel case is where the
first word is capitalized and the rest of the string is camel case, using uppercase letters to
define the beginning of a new word. “DessertRecipe” is an example of upper camel case.
An example of lower camel case is “getDateAndTime.”

By convention, method names are lower camel cased in Swift. Next comes a set of
parentheses containing an optional list of parameters, and finally you define the function’s
body inside curly braces:

func foo(a : Int, b: Int)
{ ... }

Within the parentheses, you define the parameters for your function. This function takes
two parameters, both integers. Parameters are defined by a name and then the type of
the parameter. Multiple parameters are added in a comma-separated list. To add more
parameters, add a comma and then define the next parameter:

func foo (a : Int, b : Int, c : String)
{ ... }

The function foo takes three parameters: two integers and a string. The function then
performs some desired actions and completes execution. If you want to return a value, the
function is defined similarly. Immediately after the function definition, add -> [Type] to the
end of the definition before the opening brace for the body of the function. Put the name of
the type your function will return after the “->”.

func foo (a : Int, b : Int, c : String) -> String

29CHAPTER 2: Complex Types

The Code and Usage
The following function definition takes the two int parameters and a string. Then it returns
a string containing the string and the two numbers. To run the code, create an empty
playground and add this code:

func foo (a : Int, b : Int) -> String

{
 return "\(a) + \(b) = \(a+b)"
}

In the results sidebar, you should see the results coordinates [1,2]. This is the string that
the foo function returned.

2-2. Creating Classes
Problem
You want to have your code model real-world objects. For example, an Order class could
encapsulate data such as the date of the order, the shipping address, and a function to
calculate the total cost. This will organize your code for ease of use and maintenance.

Solution
Create classes to organize your code. Classes are an object-oriented structure that allows
programmers to encapsulate data and functionality within an object. They allow developers to
logically organize parts of a system. This facilitates maintainability and scalability of the code.

How It Works
Swift classes are created using the keyword class. Typically classes are written one to a file
and the file is named after the class. For example, if you create an Order class, save it in a
file named Order.swift.

Swift classes start with the keyword class. Similar to functions, class names must start with
a non-numeric character. The uppercase and lowercase letters a through z can be used as
the initial character of a class. However, it is convention to always start a class name with a
capital letter. Unicode characters can be used as well. After that, you can use the numbers
0 through 9, as well as “_” in addition to the valid characters for the first character. Class
names in Swift are upper camel case by convention. For more information on camel case,
see Recipe 2-1. For reference, Table 2-1 contains a chart of acceptable characters for a
class name.

30 CHAPTER 2: Complex Types

Pumpkin, Apple2, and cherryPie are all valid class names. 3Bears, Apple-Pie, and Banana$
are all invalid names. To instantiate an instance of a class, you first declare a variable or
a constant with the var or let keyword. Then you instantiate the class by using the class
name followed by parentheses:

var pancakes = Recipe()

The Code and Usage
Enter this code into a new playground:

class Recipe
{
}

By itself, this code does not perform any actual work. You will learn about adding properties
and methods in coming recipes.

2-3. Adding Class Properties
Problem
You need to store and retrieve data within a class. This will keep all information related to a
single object in a single location.

Solution
Add class properties to your class to store and retrieve information.

How It Works
Swift allows developers to create two types of properties: constants and variables. Constants
are defined and cannot be changed after that. They are defined using the let keyword:

let recipeName = "Apple Pie"

Table 2-1. Characters Allowed in Class Names

Part Class Name Valid Characters

Valid for the first character of a class name A–Z uppercase and lowercase, Unicode characters

Valid for the remainder of a class name 0–9 and “_”, or any character that is valid for the
first character

31CHAPTER 2: Complex Types

This statement creates a constant or “immutable” string. In Swift, you do not have to provide
a type when defining a variable or constant as long as you supply an initial value. The
compiler can determine the type for you based on that initial value.

By default, properties defined on a class this way are publicly accessible. You can use
the private keyword to make a property accessible only internally. This means that any
classes that reference this class will not have access to this property. You should use private
variables in these situations to prevent consumers of the class from using variables that
could accidentally change the state of the class and cause bugs.

private let internalSum = 5

Properties are accessed using dot notation. Imagine you have a variable myRecipe that is
an instance of a class named Recipe and that class has a string property name. You would
access it using the variable name, dot (.), and the property name:

println(myRecipe.name)

Private properties can be accessed inside a class just by using the name of the property.
They can also be accessed using the self keyword, which is a reference to the current
instance of the class:

println(internalSum)
println(self.internalSum)

The result is exactly the same regardless of whether or not you use the self keyword.

The Code and Usage
Enter the following code in a new playground file. This code defines two properties: the
name, which is of type String, and minutesToPrepare, which is of type Int.

class Recipe
{
 var name = "Apple Pie"
 var minutesToPrepare = 30
}

var dessert = Recipe()
println("Recipe name: \(dessert.name)")
println("Preparation Time: \(dessert. minutesToPrepare)")

Try adding a few additional properties, and make sure you give them an initial value. You can
then print them to the console.

32 CHAPTER 2: Complex Types

2-4. Initializing Class Properties
Problem
Swift is a type-safe language and does not allow variables to be uninitialized unless they
are declared as optional types. If you define properties and do not initialize them, your code
will not compile. Rather than initializing default values in the property definition, you should
initialize the properties to values supplied by the code instantiating the instance.

Solution
Swift allows for non-optional properties to be defined as long as they are initialized with
an initializer.

How It Works
Initializers are like class constructors in other languages or the init function in Objective-C.
If your class uses non-optional properties, the compiler will force you to implement an
initializer and initialize those properties. The basic initializer is just init(). It is defined by
itself with no return type.

Using our example from the previous recipe, our Recipe class has two properties, but they
are initialized as part of their definition:

class Recipe
{
 var name = "Apple Pie"
 var minutesToPrepare = 30
}

Initializing class properties inline with their definition is not very extensible, and it can be
error prone if some initialization is done inline and additionally in a different method. It is
best practice to keep all your initialization code in the same location. In Swift, create
initializer methods to handle setting initial values. All initializer methods are declared within
the class definition.

The same code using a plain init() function would look like this:

class Recipe
{
 var name : String
 var minutesToPrepare : Int

 init()
 {
 self.name = "Apple Pie"
 self.minutesToPrepare = 30
 }
}

33CHAPTER 2: Complex Types

This is a little cleaner, but there are still hardcoded defaults. When you might not know an
appropriate value before runtime, it is best to create an initializer that takes the initial values
as parameters:

init(name : String, minutesToPrepare : Int)
{
 self.name = name
 self.minutesToPrepare = minutesToPrepare
}

Use parameter names that match up exactly with the property names. This makes it very
clear for each property which parameter is used to initialize its value. Use the self modifier
to refer to the instance’s variable, and don’t use it when accessing the parameters. An
initializer defined this way is called a designated initializer. It initializes all the properties of
the class. If all non-optional properties do not have an initial value at the end of the initializer,
the code will not compile.

The Code and Usage
Enter the code in Listing 2-1 into an empty playground. The code defines a class Recipe that
has a single initializer for the name and minutesToPrepare properties. This code instantiates
a new recipe and assigns it to the dessert variable. Then the properties are printed to the
console to illustrate how the properties are accessed.

Listing 2-1. The Recipe class definition, including two properties and a designated initializer

class Recipe
{
 var name : String
 var minutesToPrepare : Int

 init(name : String, minutesToPrepare : Int)
 {
 self.name = name
 self.minutesToPrepare = minutesToPrepare
 }
}

var dessert = Recipe("Apple Pie",30)
println("Recipe name: \(dessert.name)")
println("Preparation Time: \(dessert. minutesToPrepare)")

You should see the output:

Recipe Name: Apple Pie
Preparation Time: 30

34 CHAPTER 2: Complex Types

When appropriate, use this initializer pattern for all the classes you create. It keeps your
code understandable and makes it clear how different initializers construct the instance.
Note how the properties are initialized in the init method. The properties are referred
to using the self object. This helps the compiler differentiate between properties and
parameters with the same name.

2-5. Adding Class Methods
Problem
Your application needs classes that can perform actions to create the desired functionality.

Solution
Swift classes can define methods to accomplish these actions.

How It Works
There are two types of methods that you can add to a class: instance methods and type
methods. Instance methods are available only on instances of a class. Type methods can
be used without an instance. Methods are formatted like functions, except they are defined
within the body of a class. This is an example of an instance method:

func add(amount : Double, cupsOf : String)

By default, methods defined on a class are public. If you have a reason to keep a function
private to the class, use the private keyword before the function definition:

private func foo()

Swift treats parameter names in a way that is compatible with Objective-C. When a method
is called, all parameters except the first are given automatic external parameter names.
When a method is called, any external parameter names must be used to identify the
parameter. This is done to allow Swift to easily handle the parameter structure of the existing
frameworks and their parameter patterns. It also makes function calls more expressive of the
method’s intent.

For example, calling a function that adds a number of cups of a particular ingredient would
look like this:

recipe.add(2, cupsOf: "Apples")

The intent behind external parameter names is to make the code read almost like a
sentence: “With this recipe, add 2 cups of Apples.”

35CHAPTER 2: Complex Types

If you would like to add a function that is related to your class but does not directly operate
on instance data, you should consider creating a type method. Type methods are defined by
preceding the function definition with the keyword class. Imagine a conversion function that
converts ounces to cups:

class func convertOuncesToCups(ounces : Double) -> Double
{
 return ounces / 8
}

This type method can be called using the class’s name, dot (.), and the function name.
For example, if the convertOuncesToCups method was part of the Recipe class, it could be
called like this:

var cups = Recipe.convertOuncesToCups(16)

The Code and Usage
Enter the code in Listing 2-2 into an empty playground. This code defines a class named
Recipe. It has three properties: name, minutesToPrepare, and ingredients. It has a
designated initializer, a method that will add the name of an ingredient to the ingredients
property, and a class method that converts ounces to cups.

Listing 2-2. Class definition for Recipe and example code using the Recipe class

class Recipe
{
 var name : String
 var minutesToPrepare : Int
 var ingredients = [String]()

 init(name : String, minutesToPrepare : Int) {
 self.name = name
 self.minutesToPrepare = minutesToPrepare
 }

 func add(amount : Double, cupsOf : String) {
 ingredients.append(cupsOf)
 }

 class func convertOuncesToCups(ounces : Double) -> Double {
 return ounces / 8
 }
}

var applePie = Recipe(name:"Apple Pie", minutesToPrepare: 30)
applePie.add(2, cupsOf: "Apples")
Recipe.convertOuncesToCups(16)

36 CHAPTER 2: Complex Types

In the results sidebar, you should see the return value of add and convertOuncesToCups.
Next is the value of the newly initialized applePie instance. Then you see the new values
of applePie after calling the add method. Finally, you see the results of the Type method
convertOuncesToCups:

["Apples"]
2.0
{{name "Apple Pie" minutesToPrepare 30 0 elements}}
{{name "Apple Pie" minutesToPrepare 30 ["Apples"]}}
2.0

2-6. Inheriting from Classes
Problem
You would like to reuse and extend the features of an existing class. This allows you to
organize your code, supports refactoring, and provides a separation of concerns.

Solution
You can inherit from a superclass and create subclasses of your classes, Swift language
classes, and classes from the other frameworks.

How It Works
To extend an existing class, add a colon and the name of the class you would like to inherit.
The subclass will inherit the properties and methods of the parent class.

Note Swift classes do not inherit from a base class as they do in Objective-C. A new class that
does not inherit from a superclass becomes a base class you can extend.

If you want to extend a class, immediately after the name of the class, add a space and a
colon (:), followed by another space. Then add the name of the class to extend:

class DessertRecipe : Recipe

Consider this Recipe class:

class Recipe
{
 var name = ""
 var minutesToPrepare = 0
 var ingredients = [String]()

37CHAPTER 2: Complex Types

 var recipeType : String {
 return "Basic"
 }

 func add(amount : Double, cupsOf : String)
 {
 ingredients.append(cupsOf)
 }

 class func convertOuncesToCups(ounces : Double) -> Double
 {
 return ounces / 8
 }
}

Although your subclass can reuse methods and properties that are inherited, you might
want your subclass to behave differently in certain circumstances. It is possible to override
inherited properties and methods. For example, in the Recipe class, there is a recipeType
property that currently has the value of “Basic.”

When you override properties or methods, the definitions are still placed within the body of
the class definition. In the DessertClass, you can override the property to make it specific
to the DessertClass. To override a property, use the keyword override. Here’s one thing to
remember: the type of the overridden property must remain the same.

override var recipeType : String {
 return "Dessert"
}

If you would like to override a function, you can use the override keyword as well:

override func add(amount: Double, cupsOf: String)

You then write your own implementation of the method. As is the case with properties,
you cannot change the parameters or the return type of the method, but you can redefine
the entire method. However, if you need to call the superclass’s original implementation in
addition to your code, you can use the super property on your instance. This will call the
method on the superclass:

super.add(amount, cupsOf: cupsOf)

Note Swift classes can inherit only from a single base class.

38 CHAPTER 2: Complex Types

The Code and Usage
To run the code in Listing 2-3, enter it into a playground. This code defines the class Recipe.
Then it defines the subclass DessertRecipe that inherits from the Recipe class. A short code
example follows. This creates an instance of Recipe and an instance of DessertRecipe. It
then prints out the recipeType property for each. In this example, dinner.recipeType returns
“Basic” and dessert.recipeType returns “Dessert.”

Listing 2-3. The Recipe class and its subclass DessertRecipe

class Recipe
{
 var name : String
 var minutesToPrepare : Int
 var ingredients = [String]()
 var recipeType : String {
 return "Basic"
 }

 init(name : String, minutesToPrepare : Int) {
 self.name = name
 self.minutesToPrepare = minutesToPrepare
 }

 func add(amount : Double, cupsOf : String) {
 ingredients.append(cupsOf)
 }

 class func convertOuncesToCups(ounces : Double) -> Double {
 return ounces / 8
 }
}

class DessertRecipe : Recipe
{
 override var recipeType : String {
 return "Dessert"
 }

 override func add(amount: Double, cupsOf: String) {
 super.add(amount, cupsOf: cupsOf)
 }
}

var dinner = Recipe(name: "Fish", minutesToPrepare: 15)
var dessert = DessertRecipe(name: "Pie", minutesToPrepare: 30)

println(dinner.recipeType)
println(dessert.recipeType)

39CHAPTER 2: Complex Types

2-7. Implementing Protocols
Problem
You need to loosely couple functionality between two classes in order to implement a
delegate or make your code more maintainable.

Solution
Create a protocol that defines a set of functions that a class must implement.

How It Works
Protocols in Swift define a set of methods and properties related to a particular function. A
class that implements those methods and properties has “adopted” the protocol. A protocol
is similar to an interface in other languages. A protocol allows developers to implement a
layer of abstraction between classes. This abstraction allows a class that implements a
protocol to be modified or replaced without requiring updates to classes that use an object
conforming to a particular protocol.

Protocols can be used to implement the delegate pattern, isolate a set of functions, or allow
for dependency injection. Protocols are types in Swift; therefore, you should use upper camel
case notation. Protocols can be used the same way any type can. They can be passed as
parameters and used to define properties and return types of methods. Protocols are defined
with the protocol keyword. This is how the definition of the Sharing protocol starts:

protocol Sharing

Note Swift protocols do not support optional methods or properties like Objective-C protocols.

Properties are declared on the protocol in a similar way to declaring properties on a class.
However, you must indicate if the property needs to support get and/or set. Here are two
property definitions, one that supports get and set, and the second that supports get:

var username : String { get set }
var error : String { get }

In a scenario like this, a username may be used to perform some sort of action and any
error message as a result of the action can be retrieved from the error property. A method
is declared just like it is in a class, except you do not provide any implementation code, just
the function name, parameters, and return type:

func shareMessage(message : String) -> Bool

40 CHAPTER 2: Complex Types

This example protocol is designed to abstract sharing a message, via different methods such as
email, instant message, or social media. A class using a parameter/property of the protocol
type can use an instance of any class implementing this protocol. A class that adopts the
protocol indicates so by including it after the class name and a colon, the same way you inherit a
superclass. If the class also inherits a superclass, add the protocol to the list after the superclass.

The Code and Usage
In Listing 2-4, the EmailSharing class adopts the Sharing protocol and the Message class is
instantiated with an instance of the EmailSharing class. To try the code, add this code to a
new playground.

Listing 2-4. Implementing a protocol

import Foundation

protocol Sharing
{
 var username : String { get set }
 var error : String? { get }

 func shareMessage(message : String) -> Bool
}

class EmailSharing : Sharing
{
 private var _error : String?

 var username : String

 var error : String?
 {
 return _error
 }

 init(username : String)
 {
 self.username = username
 }

 func shareMessage(message: String) -> Bool {
 // some code to compose an email
 println("Message from \(username):\n\(message)")
 return true
 } }

class Message
{
 var sharingMethod : Sharing
 var message = "Hello World"

41CHAPTER 2: Complex Types

 init (sharingMethod : Sharing)
 {
 self.sharingMethod = sharingMethod
 }

 func share()
 {
 sharingMethod.shareMessage(self.message)
 }
}

var message = Message(sharingMethod: EmailSharing(username: "Mike"))
message.share()

Under the Assistant Editor, the following output should be seen in the Console Output:

Message from Mike:
Hello World

2-8. Setting Property Observers
Problem
You need to know when a property’s value has changed, but you do not want to implement
custom getters and setters. You might need to perform an action or update a user interface
based on the updated values.

Solution
Swift Property observers are triggered when a property’s value will change or has changed.
Using the willSet: and didSet methods, you can add code to perform the necessary
actions when the property has been updated.

How It Works
The willSet: method is called just before the new value is assigned to the property. The
willSet method has a single parameter that is passed to it of the same type as the property.
It contains the new value. The didSet method is called just after the value has been updated.
Both willSet: and didSet are not called during the initialization of the property.

42 CHAPTER 2: Complex Types

Imagine as part of a class called Recipe that you have a property serves that indicates the
number of individuals that a recipe serves:

class Recipe
{
 var serves : Int
 {
 willSet(newServes) {
 println("Will set to value \(newServes)")
 }
 didSet {
 println("Did set")
 }
 }

 init ()
 {
 serves = 0
 }
}

In the willSet: method, you can update some status messaging or start an animation in
your application. For example, you can have an indicator that data is updating. Property
observers can be used to update user-interface elements after some background process
has updated a property.

Property observers can be added to existing classes by inheriting the class and overriding
the property. This allows you to watch for updates in existing classes and perform your own
actions when those values are updated.

The Code and Usage
Paste Listing 2-5 into a new playground. It defines the Recipe class with a single property.
Using the willSet: and didSet property observers, the class will print a message to the
console when you assign a value to the property.

Listing 2-5. A class with property observers and an example

class Recipe
{
 var serves : Int {
 willSet(newServes) {
 println("Will set to \(newServes)")
 }
 didSet {
 println("Did set")
 }
 }

43CHAPTER 2: Complex Types

 init () {
 serves = 0
 }
}

var g = Recipe()
g.serves = 3

If you cannot see the Console Output in the playground editor, click the Values History
button on the line g.serves = 3.

2-9. Defining Enumerations
Problem
You need to represent a range of values in a way that is human readable and maintainable.
For example, in cooking, there are different types of measuring units. There are cups,
teaspoons, and tablespoons. These do not have a character or value that can be
represented in code.

Solution
Enumerations are a structure that addresses this issue. Enumerations allow you to define
your own sets of values that can be used in code. Swift provides enumerations similar to
other languages, but it adds expanded capabilities.

How It Works
Enumerations are structures that define custom values. For example, a recipe takes
ingredients of specific amounts to complete. In code, you would like to see values like Cups,
Tablespoons, and Ounces. However, it would be inefficient and error prone to contain these
values in String type variables or another type that could be hard to update. You could use
constants, but constants hold only a single value rather than a range of possible values.

Enumerations are defined with the enum keyword. Values are defined following the case
keyword. The following is an example of different measures represented as an enum:

enum Measure
{
 case Cup, Tablespoon, Ounce
}

44 CHAPTER 2: Complex Types

Values can be defined on a single comma-separated list after the case keyword, or they can
be defined one per line with multiple case statements. The previous and next definitions of
the enumeration Measure are functionally the same.

enum Measure
{
 case Cup
 case Tablespoon
 case Ounce
}

Enumeration values in Swift are different than in other languages. They are types in
themselves. In most other languages, enumerations are backed by integers at compile time.
They can also be defined by another type, such as a string. Swift enumerations can be of
a specific type, but it is not required. To define an enumeration backed by a specific type,
define it like you would a variable. Use a colon and then the type. Here is how you define the
type of the Measure enum to be Int:

enum Measure: Int
{
 case Cup = 1
 case Tablespoon = 2
 case Ounce = 5
}

Unique to Swift, enumerations can contain data in what are called associated values.
Imagine that you have a class that defines the ingredients of a recipe. Each ingredient
requires a certain amount to be added to the recipe. Using associated values, you can store
that information along with the measurement size. Define the associated values by a list of
types contained within parentheses:

case Cup (Double)
case Tablespoon (Double)
case Ounce (Double)

If you wanted to save two and half cups, you could do so like this:

var amount = Cup(2.5)

Use the member of an enumeration with an associated value similarly to an initializer. Each
variable with the enumerations type can store different associated values. For example, in a
recipe, you might need to use a number of items but not a specific measurement, such as 2
eggs. In this case, you would like to store a whole integer. Add a Quantity item to the enum,
and set its associated value to Int.

case Quantity (Int)

You might want to store more than one piece of data with an enumeration value. In order to
do this, you can define multiple associated values. For example, the amount of an ingredient
can depend on how it is prepared. You might want to combine that information in another

45CHAPTER 2: Complex Types

enumeration called PreparationStyle. In the definition, you can add multiple types to be
captured as associated values:

enum PreparationStyle
{
 case Whipped(String, Measure)
 case Boiled(String, Measure)
}

Using enumerations in this way can make your code very expressive:

var whippedEggs = PreparationStyle.Whipped("Eggs", Measure.Quantity(2))

In addition, it allows you to code using the enum values, rather than comparing strings or
magic numbers to communicate intent.

Another unique feature of Swift is that enumerations can have methods. Adding a method to
an enumeration is the same as adding it to a class. This offers a better way to encapsulate
functionality and data because any operations related to the enum can be implemented as
part of the definition. In other languages, you would have to create a related class that used
the Measure enum.

enum Measure
{
 case Cup(Double)
 case Tablespoon (Double)
 case Ounce (Double)
 case Quantity (Int)

 func convertToOunces() -> Measure {
 switch (self) {
 case .Cup(let val):
 return Ounce(val * 8)
 case .Tablespoon(let val):
 return Ounce(val * 0.5)
 default:
 return self
 }
 }
}

When you need to read values from an enumeration’s associated value, use a switch
statement to extract the values. For each possible enumeration value, add a case block.
You can use the shortcut dot notation because the compiler can infer the data type of the
measure variable. In the statement, use the Measure value and, in parentheses, define a
variable to hold the extracted value. For example, use this statement: case .Cup(let val):
If the value of the measure variable is .Cup, the associated value is extracted and assigned
to the variable val.

In this case, Cup and Tablespoon have just one Double value. If the measure variable is a Cup,
it will extract the value from the Cup enumeration and return the measure in ounces.

46 CHAPTER 2: Complex Types

If an enumeration has multiple associated values, provide a variable for each in your
case statement. For example, to access the PreparationStyle enumeration, use a case
statement, but define two variables for the enumeration values Whipped and Boiled. Both
variables are populated with the corresponding associated value.

enum PreparationStyle {
 case Whip(String, Measure)
 case Boil(String, Measure)

 func instructions() -> String {
 switch (self) {
 case .Whip(let name, let measure):
 return "Whip \(name)"
 case .Boil(let name, let measure):
 return "Boil \(name)"
 }
 }
}

The Code and Usage
Add Listing 2-6 to an empty playground. The Measure enumeration represents the values
used to measure the amount of an ingredient. It uses associated values to store the quantity
of those measurements. The method convertToOunces in Listing 2-6 shows you how to
extract associated values using a switch statement.

The PreparationStyle enumeration shows an example of how to use multiple assigned
values using a switch statement. The method instructions returns a string suitable for
displaying the instructions for the example ingredient.

Listing 2-6. Enumeration examples

enum Measure
{
 case Cup(Double)
 case Tablespoon (Double)
 case Ounce (Double)
 case Quantity (Int)

 func convertToOunces() -> Measure {
 switch (self) {
 case .Cup(let val):
 return Ounce(val * 8)
 case .Tablespoon(let val):
 return Ounce(val * 0.5)
 default:
 return self
 }
 }
}

47CHAPTER 2: Complex Types

var twoCups = Measure.Cup(2)

enum PreparationStyle {
 case Whip(String, Measure)
 case Boil(String, Measure)

 func instructions() -> String {
 switch (self) {
 case .Whip(let name, let measure):
 return "Whip \(name)"
 case .Boil(let name, let measure):
 return "Boil \(name)"
 }
 }
}

var eggs = PreparationStyle.Whip("Eggs", Measure.Quantity(2))
eggs.instructions()

2-10. Creating Structures
Problem
You want to create an object that can contain data, but you would prefer that it be treated as
a value type rather than a reference type.

Solution
In Swift, structures are value types, and when a structure is passed to functions or
properties, a copy is made of the structure.

How It Works
Swift structures, like enumerations, have added features that make them more useful than
a traditional structure. Structures in Swift can have properties, methods, initializers, and
subscripts, and they can conform to protocols. In Swift, classes and structures are very
similar. The key differences are that classes have additional capabilities that structures do
not. Structures lack these capabilities:

Structures cannot inherit other structures.	

Structures cannot be type cast at runtime.	

Structures are value types and do not have references. Any structure 	
that is assigned to a variable will be copied.

48 CHAPTER 2: Complex Types

Structures are defined in the exact same format as classes, but that is done by using the
keyword struct.

struct Ingredient
{
 var name : String
 var amount : Measure
 var preparationInstructions : String
}

In this example, you have a struct that defines an ingredient. It is indistinguishable from a
class at this point.

One feature that structures have and classes do not is implicit initializers. In classes,
you must define your initializers. Every structure automatically has an initializer with
one parameter per property. For a structure with three properties—name, amount, and
preparationInstructions—the implicit initializer will have three parameters of the same
name and type as the properties:

var eggs = Ingredient(name: "Eggs", amount: Measure.Quantity(2), preparationInstructions:
"Beat eggs in a bowl and set aside")

Properties and methods of a struct are accessed using dot notation just like you would use
for a class. To access the property name, you would use the following:

println(eggs.name)

Note Structures can be extended with extensions, have methods, and adopt protocols just
like classes.

The Code and Usage
Add Listing 2-7 to a blank playground. This code defines a structure to contain information
about an ingredient to be used in a recipe. It creates an instance of Ingredient using the
implicit initializer for the structure.

49CHAPTER 2: Complex Types

Listing 2-7. Creating and using a struct

enum Measure
{
 case Cup(Double)
 case Tablespoon (Double)
 case Ounce (Double)
 case Quantity (Int)
}

struct Ingredient
{
 var name : String
 var amount : Measure
 var preparationInstructions : String
}

var eggs = Ingredient(name: "Eggs", amount: Measure.Quantity(2), preparationInstructions:
"Beat eggs in a bowl and set aside")

2-11. Using Tuples
Problem
You need to return multiple values from a function. In other languages, you would typically
need to create a class or a struct to hold data.

Solution
Use tuples to return an arbitrary number of types from a function or as a parameter.

How It Works
Tuples allow you to pass and return groups of values without creating a new type, using
references, or using input parameters. Developers I know hotly debate tuples. No matter
what your opinion is on the usage of tuples, if used properly they can add value to your
solutions. As with many software design practices in software development, there are
passionate opinions on both sides of the argument. There are times when creating a new
type would only complicate matters.

A tuple is created by a set of parentheses, with a list of comma-separated values:

(10,4,"String")

When a tuple is defined as a parameter, or for a return value, you can provide names to each
element in the tuple. These names are used to access the values:

var x = (average: 1, min: 33, max: 8)

50 CHAPTER 2: Complex Types

The property x.average, in the preceding example, would then access the first integer
in that tuple.

The Code and Usage
In the example code in Listing 2-8, first we define a tuple by itself. Then getAverageMinMax
is a function that does multiple operations and returns three results. Enter this code into a
blank playground.

Listing 2-8. Tuples

func getAverageMinMax(numbers : [Int32]) ->
 (average: Int32, min: Int32, max: Int32)
{
 var average : Int32 = 0
 var min = Int32.max
 var max = Int32.min

 for i in numbers
 {
 average += i
 if i < min { min = i }
 if i > max { max = i }
 }
 average = average / Int32(numbers.count)

 return (average, min, max)
}

var results = getAverageMinMax([1,2,3,10,110,42])

println(results.average)
println(results.min)
println(results.max)

51

Chapter 3
Collections

Collections are used in almost every application for data storage, retrieval, searching, and
sorting. Recipes in this chapter will focus on the most common collection types, Array
and Dictionary. Both arrays and dictionaries are generic collections in Swift; however,
not all collections are arrays or dictionaries. Swift does provide lower level collection
and sequence functions and protocols that perform individual features of the Array and
Dictionary generic types.

This chapter focuses on the Array and Dictionary generic types. In Swift, arrays and
dictionaries are strongly typed, unless otherwise specified. The recipes presented in this
chapter are

Creating an Array	

Counting the Number of Items in an Array	

Managing Items in an Array	

Searching for Items in an Array	

Sorting an Array	

Replacing a Range of Values in an Array	

Iterating Over an Array	

Saving an Array to the File System	

Populating an Array with the Contents of a plist File	

Using Subscripts	

Creating a Dictionary	

Managing Items in a Dictionary	

Implementing the 	 Hashable Protocol

52 CHAPTER 3: Collections

Iterating Through Items in a Dictionary	

Saving a Dictionary to the File System	

Populating a Dictionary with the Contents of a Property List File	

3-1. Creating an Array
Problem
Your application needs to store and access data in an ordered list.

Solution
Swift offers arrays to hold collections of objects.

How It Works
Swift is a strongly typed language. Arrays are strongly typed using generic collections.
This means that an array can hold only objects of a single type. Generic collections allow
reusable classes, such as arrays and dictionaries, to apply to any type, but at compile time,
the result is a strongly typed collection. To create an empty array, you use the following
syntax. First the Array type is used, and then the specific type for the array is written in
between angle brackets “<>”.

var array = Array<String>()

This creates an empty array of strings. Only strings can be stored in this array.

Arrays can also be initialized inline with an array literal, like this:

var vehicles = ["Car","Bus","Truck","Plane"]

In Swift, arrays are value types. Each time arrays are assigned or passed as parameters, a
copy is made. You can use this ability to quickly create a new array:

var vehiclesCopy = vehicles

The variable vehiclesCopy will contain a copy of the entire array. You can add elements to
and remove elements from vehiclesCopy without changing the vehicles array. This does
not hold true for the elements of the array. If you create an array containing reference types,
the array itself will be copied, but the element will refer to the same reference object in both
arrays.

Arrays can be defined as mutable or immutable. Use the proper definition based on your
needs. If you need to store a static list of items and do not need to modify that list, use an
immutable array. Arrays defined with the let keyword are immutable. If you will be adding,
removing, sorting, or otherwise modifying the elements of an array, create a mutable array.
Arrays defined with the var keyword are mutable. Attempting to add elements to or remove
elements from an immutable array will result in a compile error.

53CHAPTER 3: Collections

The Code and Usage
Enter Listing 3-1 into an empty playground. This code creates four array variables: array,
vehicles, vehicles2, and vehicles3. Each array has different attributes, as indicated by the
code comments.

Listing 3-1. Creating arrays

// Create a blank array
var array = Array<String>()

//Create an array with an array literal
var vehicles = ["Car","Bus","Truck","Plane"]

//Copy an array to another variable
var vehicles2 = vehicles

//Immutable array
let vehicles3 = vehicles

Use these array creation recipes when creating arrays in your applications. In the upcoming
recipes, I will discuss how to add, access, and manipulate items in arrays.

3-2. Counting the Number of Items in an Array
Problem
You need to find out how many items are in an array. You might need to know the total size
of the array to update a user interface or to create a loop for iteration.

Solution
Arrays have a property named count. It will tell you how many items are in the array.

How It Works
The count property can be used on any array variable:

var vehicles = ["Car","Bus","Truck","Plane"]

Accessing the property vehicles.count will return 4. In addition, you can access the count
property on an array literal:

["Motorcycle","Bike","Scooter"].count

54 CHAPTER 3: Collections

The Code and Usage
Add Listing 3-2 to an empty playground. This code creates an array and then uses the count
property to get the number of items in the array. Then it illustrates how you can get the count
of an array literal.

Listing 3-2. Counting the number of items in an array

var vehicles = ["Car","Bus","Truck","Plane"]
vehicles.count

["Motorcycle","Bike","Scooter"].count

In the results side bar, you should see the following:

["Car","Bus","Truck","Plane"]
4
3

3-3. Managing Items in an Array
Problem
You need to add new items or store new information, or you need to access existing items in
your array to retrieve data to process.

Solution
Arrays can be directly indexed by an integer value.

How It Works
Arrays have zero-based indexes in Swift. You can access a particular object in an index
using a subscript to indicate the index after the variable name:

var vehicles = ["Car","Bus","Truck","Plane"]
var vehicle = vehicles[2]

In the preceding code, the variable vehicle will contain the string “Truck”. You must keep in
mind the total number of items in the array when using the subscript. If the index is out of
the bounds of the array, a runtime error will occur.

To add a new object to the array, use the append method:

vehicles.append("RV")

This appends the string “RV” to the array as a new element at the end of the array. If you
wish to add the new item somewhere else in the array, you can use the insert method:

vehicles.insert("RV",atIndex: 1)

55CHAPTER 3: Collections

This method will insert the object at the index provided, and all items in that position through
to the end will move 1 index up.

An array can be inserted into another array using the splice method. The splice method is
similar to the insert method, but instead it inserts an array rather than just a single item:

vehicles.splice(["Quad","Tractor"], atIndex: 3)

Two arrays can be concatenated with the + or += operator:

vehicles += moreVehicles

Note You can append items only to a mutable array. If you defined the array as a constant with
let, you will receive a compiler error.

The Code and Usage
Add Listing 3-3 to a new playground. This code creates an array literal and assigns it to a
variable vehicles. Then it shows an example of indexing into the array, assigning it to the
variable vehicle. It then goes on to show a few more examples of inserting, splicing, and
concatenating.

Listing 3-3. Managing items in an array

var vehicles = ["Car","Bus","Truck","Plane"]
var vehicle = vehicles[2]

// Insert an item at an index
vehicles.insert("RV",atIndex: 1)
// Insert an array at an index
vehicles.splice(["Quad","Tractor"], atIndex: 3)

// Concatenate 2 arrays
var moreVehicles = ["Boat","Train","Helicopter"]
vehicles += moreVehicles

Try adding items to the vehicles array on your own. Arrays are used frequently for data
storage in both iOS and Mac OS applications. These functions will be instrumental to
managing data within your applications.

3-4. Searching for Items in an Array
Problem
You need to search for items that match certain criteria, and your application uses arrays for
data storage.

56 CHAPTER 3: Collections

Solution
Use the filter method of the array. It will return an array of items matching conditions
specified by a closure.

How It Works
The filter method takes a closure as a parameter. A closure is a function that can be
declared inline with your code. For more details on closures, see Chapter 4. In a filter, the
closure is a function that returns a Boolean result indicating if the item matched. The filter
method passes a single parameter to the closure. This parameter is the item to be evaluated
by your function. If the value matches the comparison made within the closure, it is added
to the return array. If you wanted to find a specific string in an array of strings, you could use
the filter method. For example, to search an array of strings, the closure you could use
would look like this:

{ c in c=="Car" }

It looks very different, but it is just an alternate way of declaring a function. The whole
closure is wrapped in a block of braces. The identifiers before the keyword in are the
parameters of the function. The compiler can infer the type of c from the context. Everything
after is in the function body. The filter method expects a Boolean result. This function is
a single statement that evaluates to a Boolean. In this case, the keyword return may be
excluded. This is how the closure is used with the filter method:

var vehicles = ["Car","Bus","Truck","Plane"]
var matches = vehicles.filter({ c in c == "Car" })

In the first statement in the preceding code, an array called vehicles is created. In the
second, the filter method is called. For each and every item in the array, the closure will be
executed. The filter method will pass a single parameter c to the closure. The closure must
return a Boolean value indicating if the parameter should be included in the result set. In the
example, the closure will look for strings that match the string "Car". The statement c == "Car"
is evaluated and if it returns true, the item is added to the matches array. Remember, if your
closure has more than one statement, you must use the return statement with a Boolean
value to indicate if the item matches the criteria in your closure.

Using filter with an array of Strings is straightforward. In many circumstances, you might
need to filter an array of complex types such as classes or structures. The approach is the
same. Here is an array of Vehicle structures:

var complexArray = [
 Vehicle(name: "Sedan", year: 2008, numberOfWheels: 4),
 Vehicle(name: "Motorcycle", year: 2008, numberOfWheels: 2),
 Vehicle(name: "Tractor", year: 2010, numberOfWheels: 4),
 Vehicle(name: "Trike", year: 2000, numberOfWheels: 3)
]

http://dx.doi.org/10.1007/9781484204191_4

57CHAPTER 3: Collections

To filter the array for Vehicle instances where year property equals 2008, start by creating a
closure that takes a single parameter. The array contains the type Vehicle, so the parameter
will be of the type Vehicle. Create a Boolean expression that compares the value of the year
property:

var results = complexArray.filter({ v in v.year == 2008 })

You can make the closure as complex or as simple as you need. However, it is executed
once per item in the array. Keep performance and memory usage in mind when filtering large
array sets or using complex filtering logic. After the filter method completes its work, the
array is returned from the filter method. Additionally, when the array contains a value type
such as a string or structure, remember that the results of the filter method will be copies
of those objects.

The Code and Usage
Open a new playground, and enter Listing 3-4. This code is the complete listing of the
examples in this recipe. First, is an example using filter to search an array of String. Then
there are examples that demonstrate how to filter complex objects like a structure.

The first example searches for a string in an array. Click the Value History circle on line 5,
matches. You should see the single item “Car” in the array.

The second example searches an array of Vehicle objects using a single property. Then a
second example is presented using two different properties. In the Playground editor, click
the Value History circle on the lines with matches and moreResults. View the members of the
arrays.

Listing 3-4. Using Array.filter

// Create an array of vehicle names
var vehicles = ["Car","Bus","Truck","Plane"]
// Filter for items that match the string "Car"
var matches = vehicles.filter({ c in c == "Car" })

struct Vehicle
{
 var name : String
 var year : Int
 var numberOfWheels : Int
}

var complexArray = [
 Vehicle(name: "Sedan", year: 2008, numberOfWheels: 4),
 Vehicle(name: "Motorcycle", year: 2008, numberOfWheels: 2),
 Vehicle(name: "Tractor", year: 2010, numberOfWheels: 4),
 Vehicle(name: "Trike", year: 2000, numberOfWheels: 3)
]

58 CHAPTER 3: Collections

// filter on one property
var results = complexArray.filter({ v in v.year >= 2008 })
// filter on multiple properties
var moreResults = complexArray.filter(
{ v in v.year >= 2008
 && v.numberOfWheels == 4 })

3-5. Sorting an Array
Problem
You need to sort an array of objects before processing them or displaying them onscreen.

Solution
Use the .sort method on an array. It will reorder your array using a closure to perform
comparisons.

How It Works
The sort method takes a closure (for details on closures see Recipe 3-4 and Chapter 4), which
is used to sort the items in an array. The sort method expects a closure with two parameters.
The function must return a Boolean based on the criteria you specify for ordering. Typically,
this is accomplished by comparing the two values. The order in which you compare the
parameters matters. When comparing, it is best practice to keep the first parameter on the left
and the second on the right. This will minimize confusion when using greater than or less than.
If you follow this convention, less than will always be ascending order and greater than will
always be descending order. The sort method reorders the items in the array in place.

Using the list of vehicles from Recipe 3-4, sort the items in the array:

var complexArray = [
 Vehicle(name: "Sedan", year: 2008, numberOfWheels: 4),
 Vehicle(name: "Motorcycle", year: 2008, numberOfWheels: 2),
 Vehicle(name: "Tractor", year: 2010, numberOfWheels: 4),
 Vehicle(name: "Trike", year: 2000, numberOfWheels: 3)
]

The array contains 4 instances of the Vehicle structure. The Vehicle class has a number of
properties that can be compared to sort the items:

complexArray.sort({ p1, p2 in p1.year < p2.year })

In the preceding code, the sort method is passed a closure that compares the year
properties of the two objects. In this case, if the first parameter’s year is less than the second
parameter’s year value, the objects will be ordered in ascending order. If you compared to
see if the first parameter is greater than the second, the order would be descending:

complexArray.sort({ p1, p2 in p1.year > p2.year })

http://dx.doi.org/10.1007/9781484204191_4

59CHAPTER 3: Collections

You can use this approach to sort by other properties of the Vehicle structure. However,
you might not always want to pass a closure. In this case, you can create functions for each
potential sorting method and then provide the function in place of the closure. You can keep
your code more organized this way. If you have more than two or three sorting functions, it
will be more efficient to create functions and pass a reference to the sorting method rather
than repeating the closure.

Implement a sort operation as a function, and pass it to the sort method of the array:

func sortYearAscending(v1 : Vehicle, v2 : Vehicle)-> Bool
{
 return v1.year < v2.year
}

complexArray.sort(sortYearAsecending)

The Code and Usage
Add the code in Listing 3-5 to a new playground. This is the complete listing of code from
this recipe. This listing includes two methods for sorting an array. First it uses an inline
closure, and then it uses a method passed as a reference to the sort method. Use the Value
History button to see the changes to the array after each sort.

Listing 3-5. Sorting an array

struct Vehicle
{
 var name : String
 var year : Int
 var numberOfWheels : Int
}

var complexArray = [
 Vehicle(name: "Sedan", year: 2008, numberOfWheels: 4),
 Vehicle(name: "Motorcycle", year: 2008, numberOfWheels: 2),
 Vehicle(name: "Tractor", year: 2010, numberOfWheels: 4),
 Vehicle(name: "Trike", year: 2000, numberOfWheels: 3)
]

// sort with closure
complexArray.sort({ p1, p2 in p1.year < p2.year }) // Ascending
complexArray.sort({ p1, p2 in p1.year > p2.year }) // Descending

// sort with function
func sortYearAscending(v1 : Vehicle, v2 : Vehicle)-> Bool
{
 return v1.year < v2.year
}

60 CHAPTER 3: Collections

func sortNameAscending(v1 : Vehicle, v2 : Vehicle)-> Bool
{
 return v1.name < v2.name
}

complexArray.sort(sortYearAscending)
complexArray.sort(sortNameAscending)

3-6. Replacing a Range of Values in an Array
Problem
You need to replace a range of values contained in an array in a single function call rather
than replacing them item by item.

Solution
Arrays in Swift allow you to get and set ranges of values. This allows you to get or set
multiple elements in the array at the same time.

How It Works
You can access a subset of an array using a closed range such as [1...5]:

var ingredients = ["Apples","Brown Sugar","Eggs", "Butter"]

ingredients[2...3] = ["Egg Substitute", "Butter Substitute"]

In this example, the last two items in the array have been substituted for two new values.

The Code and Usage
Enter Listing 3-6 in a new playground. This code demonstrates how a range of values in an
array can be replaced or accessed at once. First an array is defined. Then some elements in
the array are replaced. In the final line, only a short range of values is returned. You can see
the results of each statement in the results sidebar.

Listing 3-6. Replacing a range of values in an array

var ingredients = ["Apples","Brown Sugar","Eggs", "Butter"]

ingredients[2...3] = ["Egg Substitute", "Butter Substitute"]

ingredients[1...2]

61CHAPTER 3: Collections

3-7. Iterating Over an Array
Problem
You need to iterate over the elements in an array to perform an operation with each element.

Solution
There are a number of loop-based solutions to iterate over an array in Swift.

How It Works
The most reliable way to iterate over an array is using a for-in loop. This avoids using
numeric indexes and potential “off by one” errors:

var ingredients = ["Apples","Brown Sugar","Eggs", "Butter"]

for ingredient in ingredients
{
 println(ingredient)

}

In this example, the for loop will loop once for each item contained in that array. The
variable ingredient will be set to the next item in the array for each pass through the loop.

The second way to iterate over an array is to use a for loop or a while loop with an index.
On each pass through the loop, the index is incremented and the index is used to access an
element in the array:

for var i=0; i < ingredients.count; i++
{
 println(ingredients[i])
}

var j=0;
while j < ingredients.count
{
 println(ingredients[j])
 j++
}

In both of the preceding examples, an integer index is used to access the elements of the
array. The first example is a for loop, and the second example uses a while loop. You
should use an integer index only if you need to keep track and use the cardinal index of the
item in the array. Loops with integer indexes are prime sources for off-by-one errors. With
the for-in loop solution, you do not need to worry about numeric indexes.

62 CHAPTER 3: Collections

The Code and Usage
Enter Listing 3-7 into a new playground. It is the complete listing of the code in this recipe.
It demonstrates how to use a for-in loop, an index based loop, and a while loop.

Each loop prints each item of the ingredients array. In the Playground editor, click on the
Value History button of each println statement to see the output.

Listing 3-7. Iterating over an array

var ingredients = ["Apples","Brown Sugar","Eggs", "Butter"]

for ingredient in ingredients
{
 println(ingredient)
}

for var i=0; i < ingredients.count; i++
{
 println(ingredients[i])
}

var j=0;
while j < ingredients.count
{
 println(ingredients[j])
 j++
}

3-8. Saving an Array to the File System
Problem
You need to persist the contents of an array to the file system for access at a later time.

Solution
Swift arrays can be saved to disk using the NSArray class from the Foundation library.

How It Works
Arrays in Swift are bridged to the NSArray class. However, Swift arrays are strongly typed
and can contain only one type of element, while NSArray can store multiple types of objects.
However, it is easy to convert a Swift array to an NSArray by assigning it to a variable of the
NSArray type. This will convert the array into an NSArray. When converting from an NSArray
to a Swift array, casting can create nil results if the NSArray contains different object types:

var nsarray : NSArray = ingredients

63CHAPTER 3: Collections

The NSArray type has a method writeToFile that will save the array data to disk. The
writeToFile function takes a string parameter as the path to the file to be written. To get
your filepath, you should follow the approach for reading and writing text files depending on
your platform: OS X or iOS. See Recipes 1-10, 1-11, and 1-12 for information on the MacOS
file system and iOS sandbox. In this example, you will be using a MacOS command-line
application so that you can use a fullPath to the file on the hard drive. The /tmp folder is
for storing temporary files. Files older than a week are automatically deleted, and all files
are removed on a reboot. Use this folder because it is a short path and exists on all OS X
machines and allows files to be written.

let fullPath = "/tmp/ingredients-array.plist"
nsarray.writeToFile(fullPath, atomically: true)

The method writeToFile creates a plist file. The first parameter is the full path to the file to
be written.

Note An existing file with the same file path will be overwritten. In your code, you might need to
check to see if the file exists before writing to the file. See Chapter 7 for recipes dealing with the
file system.

The second parameter for writeToFile is a Boolean. If this parameter is set to true, the
contents of your file are written to a temporary file until the process is complete. Then
it is renamed and will replace the existing file (if there is one). This ensures that a partial
file is not written or an existing file is not corrupted if the application crashes or fails to
complete writing.

writeToFile returns true or false, indicating if the file has been successfully written.

The Code and Usage
In Xcode, create a new project and select OS X Application. Then select “Command Line
Tool.” Give your project a name, and select “Swift” as the Language. Add Listing 3-8 to the
“main.swift” file. Run the program.

http://dx.doi.org/10.1007/9781484204191_7

64 CHAPTER 3: Collections

Listing 3-8. Saving an array to the file system

import Foundation

var ingredients = ["Apples","Brown Sugar","Eggs", "Butter"]

var nsarray : NSArray = ingredients

let fullPath = "/tmp/ingredients-array.plist"

if !nsarray.writeToFile(fullPath, atomically: true)
{
 println("Error writing array file \(fullPath)")
}
else
{
 println("Successfully wrote to file")
}

When you run the program, view the output console in Xcode. You should see the text
“Successfully wrote to file.” To view the plist file, open a Terminal window and then type
cat /tmp/ingredients-array.plist. This will display the contents of the file in the Terminal
window.

Note This code will work only if the array contains simple types. I discuss archiving data with
complex types in Chapter 7, Recipes 7-7 and 7-8.

3-9. Populating an Array with the Contents of a plist File
Problem
You need to load the values of a plist file into an array.

Solution
Use the NSArray class to load an array from a plist file.

How It Works
The method NSArray.initWithContentsOfFile creates and populates an array with the
contents of a plist file and returns the new array. Before calling the function, you need to
have a full path to the plist you wish to read:

let fullPath = "/tmp/ingredients-array.plist"

http://dx.doi.org/10.1007/9781484204191_7

65CHAPTER 3: Collections

In Swift, the syntax of the initializer for NSArray works as shown in the following code line.
The parameter contentsOfFile is the file path to be read to create the array. Use the as
keyword to cast the NSArray to a Swift array. If the conversion fails or the file cannot be
loaded, the ingredients variable will be “nil”:

var ingredients = NSArray(contentsOfFile: fullPath) as [String]?

If the array is returned, it was successfully loaded and cast to a Swift String array. If you do
not cast the array, you will have an instance of an NSArray.

If the ingredients array is not nil, it was successfully loaded.

The Code and Usage
Listing 3-9 is the code of a command-line application that loads a plist file and prints the
contents to the console. Listing 3-2 is the contents of a sample plist file you can use to run
the code. First, create the plist file. Select File ➤ New ➤ File and choose Resources under
iOS. Select Property List, and click Next. In the file dialog, place your cursor in the Save
As text box. Type /tmp. The Go To Folder dialog will open. Click Go. Now save the file as
ingredients-array.plist.

The file will open in the Property List editor. Change the Root item’s type to Array. Then add
four string items. Update the Values of each to be Apples, Brown Sugar, Eggs, and Butter.
Save the file. The editor should look like Figure 3-1.

Next, create a new project in Xcode. Select “OS X”, “Applications,” and then “Command
Line Tool.” Give your project a name such as “ArrayFromFile.” Add the code from Listing 3-9
to the main.swift file. Then run the application.

Figure 3-1. Content of ingredients-array.plist

66 CHAPTER 3: Collections

Listing 3-9. Load an array from the plist file

import Foundation

let fullPath = "/tmp/ingredients-array.plist"

var ingredients = NSArray(contentsOfFile: fullPath) as [String]?

if let ingredientsArray = ingredients
{
 for ingredient in ingredientsArray
 {
 println(ingredient)
 }
}
else
{
 println("Could not load plist")
}

In the output window, you should see the names of the ingredients in the file. It should look
like this:

Apples
Brown Sugar
Eggs
Butter
Program ended with exit code: 0

3-10. Using Subscripts
Problem
You are writing a custom class and want to make it easier for users of that class to get and
set items contained within an internal array.

Solution
You can define a subscript on any class, structure, or enumeration in Swift. The subscript
allows a consumer of an instance to use square brackets “[...]” and a value to be used by the
class to return a value.

How It Works
A subscript looks like a combination of a function and a property. It is defined with the
keyword subscript. You provide parameters and a return type for the subscript. The
following code shows a subscript that takes an Int as the subscript and returns a String:

subscript(index : Int) -> String

67CHAPTER 3: Collections

Subscripts can even have multiple parameters. In the following example, the subscript has
two parameters:

subscript (var i : Int, var b: Bool) -> String

You would use the subscript in the following manner:

foo[2,true]

In your code, use the values passed as parameters to determine the response and return a
specific value.

The Code and Usage
Listing 3-10 defines a Recipe class. That class has a property, ingredients, which is an array
of Strings. You can access the individual ingredients using the subscript.

Note Implement your subscripts defensively. This is a simple example to illustrate the usage of
subscripts. Always validate the input to the subscript. For example, check for out-of-bounds indexes.

Enter Listing 3-10 into a new playground. In this example, the value of recipe[2] is "Flour".

Listing 3-10. Using subscripts in a class

class Recipe
{
 var name : String
 var ingredients : [String]
 var prepTimeInMinutes : Int

 init(name :String, ingredients : [String], prepTimeInMinutes : Int) {
 self.name = name
 self.ingredients = ingredients
 self.prepTimeInMinutes = prepTimeInMinutes
 }

 subscript (var i : Int) -> String {
 return ingredients[i]
 }
}

var recipe = Recipe(name: "Recipe x",
 ingredients:["Sugar","Apples","Flour"],
 prepTimeInMinutes: 3)

recipe[2]

68 CHAPTER 3: Collections

3-11. Creating a Dictionary
Problem
You need to store a collection of key/value pairs and retrieve values by a unique key.

Solution
The Dictionary type can store and retrieve key/value pairs.

How It Works
The Dictionary type is a generic class and strongly typed. It can contain only values of a
single type, and the key is only of a single type. This is different than the NSDictionary and
NSMutableDictionary in Objective-C.

Any type can be used as a key value as long as it conforms to the Hashable protocol.
To define a dictionary, use the type “Dictionary” followed by two comma-separated types
contained in angle brackets “<>”. Dictionaries can be mutable or immutable. If you use the
keyword let, the Dictionary will be immutable, and items cannot be added or removed.
Immutable dictionaries are useful if you have a frequently accessed dataset and want to
keep it in memory. To create a mutable dictionary, use the keyword var:

var d = Dictionary<Int, String>()

This will create a dictionary with an integer key and string values. A dictionary can be
initialized with a comma-separated list of key/value pairs. As its name indicates, a key/value
pair is made up of the key used to retrieve the value from the dictionary. The type of the
key can be any Swift type that implements the Hashable protocol. The Hashable protocol is
discussed in Recipe 3-13. This recipe uses an Int for the key. The value can be any
Swift type.

var e = [1:"One", 2:"Two", 3:"Three"]

The variable e is a Dictionary<Int, String>(). As with other variable definitions, the
compiler automatically types the dictionary for you.

The Code and Usage
Create a new playground, and add Listing 3-11. It creates a dictionary with an Int as the key
and String as the contents of the dictionary.

69CHAPTER 3: Collections

Listing 3-11. Creating a Dictionary

var d = Dictionary<Int, String>()

d[1]="First"
d[2]="Second"
d[3]="Third"

var e = [1:"One", 2:"Two", 3:"Three"]

Inspect the contents of the dictionary variable d. Click the “Value History” icon on line 7 to
see the values contained in the variable e.

3-12. Managing Items in a Dictionary
Problem
In order to support your application’s required functionality, you need to be able to add,
remove, and update items in the dictionary.

Solution
The Dictionary class provides the methods required to manage the contents of a dictionary.

How It Works
First, you must create a new dictionary. Create a mutable Dictionary using the var keyword:

var d = Dictionary<Int, String>()

To add a value to the dictionary, use subscript notation to assign a new value to an existing
key:

d[1]="First"

The type of the key used must match the type provided to define the dictionary. The
same is true for the value. For example, if you initialized the dictionary with var d =
Dictionary<Int,String>(), you must provide an Int as the key and String as the value.

Note If you provide a key that does not exist in the dictionary, nil is returned. All values returned
from the dictionary are optional. For example, in our example dictionary, the return type is an
optional String.

70 CHAPTER 3: Collections

Items added to the dictionary can be referenced by their key. To remove an item from a
dictionary, use the removeValueForKey method. The item with the matching key will be
removed from the dictionary:

d.removeValueForKey(2)

The Code and Usage
Enter Listing 3-12 into a new playground. This code creates a new Dictionary and then
removes the item for key value 2.

Listing 3-12. Managing items in a Dictionary

var d = Dictionary<Int, String>()

d[1]="First"

d[2]="Second"

d[3]="Third"

d.removeValueForKey(2)

Click the Values History button to examine the contents of the variable d after the item has
been removed. You should see that the dictionary now contains two values: "First" and
"Third".

3-13. Implementing the Hashable Protocol
Problem
You have a custom object that you want to use as a key in a Dictionary.

Solution
A Dictionary key can be any object that implements the Hashable protocol.

How It Works
The Hashable protocol requires the hashValue property to be implemented. There are
many hashing algorithms that you can implement. The purpose of the hash is to create
a unique value based on the content of the key. For this recipe, create a simple hash by
concatenating all properties into a String and use String.hashValue:

"\(self.name) \(self.year) \(self.numberOfWheels)".hashValue

71CHAPTER 3: Collections

The Hashable protocol is an extension of the Equatable protocol. Any object implementing
the Hashable protocol must also implement the Equatable protocol. The only requirement
for the Equatable protocol is to implement the “==” operator for that type.

The “==” operator is defined in the global scope, not within your object. It takes two
parameters, named left and right. To implement the operator, compare the hashValue
properties of the two parameters:

func == (left: Vehicle, right: Vehicle) -> Bool
{
 return left.hashValue == right.hashValue
}

Note Hash values are not required to be consistent across different invocations of your
application. It is advisable to store the value for future comparisons.

The Code and Usage
Add Listing 3-13 to a new playground. The code implements a struct Vehicle that conforms
to the Hashable and Equitable protocols. The example at the end of the listing creates an
instance of Vehicle. Examine v.hashValue to see the result of the hashing function.

Listing 3-13. Implementing the Hashable protocol

struct Vehicle : Hashable
{
 var name : String
 var year : Int
 var numberOfWheels : Int

 var hashValue : Int
 {
 get
 {
 return "\(self.name) \(self.year) \(self.numberOfWheels)".hashValue
 }
 }
}

func == (left: Vehicle, right: Vehicle) -> Bool
{
 return left.hashValue == right.hashValue
}

var v = Vehicle(name: "Sedan", year: 2008, numberOfWheels: 4)
v.hashValue

72 CHAPTER 3: Collections

3-14. Iterating Through Items in a Dictionary
Problem
You need to iterate through the values in a Dictionary.

Solution
The Dictionary class provides two properties: keys and values. These return a collection of
the keys stored in a dictionary and the values stored in the dictionary.

How It Works
When you have a dictionary, it is possible to get a list of all keys and values:

var d = [1:"One",2:"Two",3:"Three"]

In the preceding example, the variable d is initialized to a Dictionary<Int,String> with three
initial values. The properties d.keys and d.values return a collection of items. The type of the
keys or values collection is not an Array but a lower level collection. Therefore, if you need to
access methods and properties related to an array, you must convert it to the type Array.

var keyArray = Array(d.keys)

The most efficient way to access the items in the keys or values collection is to use a
for-in loop:

for k in d.keys
{
 println("The value for key \(k) is \(d[k]!)")
}

The dictionary literal in the preceding code defines a dictionary as a comma-separated list of
key/value pairs separated by a colon.

Note The order in which items are returned from the dictionary is not guaranteed. If you require
an ordered list, use an Array.

To retrieve the values in the dictionary, you can use the key to retrieve the value:

var value = d[k]!

73CHAPTER 3: Collections

If you need only the collection of values and do not require the keys, you can loop through
the collection:

for v in d.values
{
 println(v)
}

The variable v will be populated with the values contained in the array. If you need to get the
number of items in the dictionary, use the count property:

d.count

The Code and Usage
Create a new playground, and copy Listing 3-14. This code creates an array and then
illustrates how to loop through the collection of keys and values. It will loop through the keys
and print out the value for each key. Then it will loop through the values and print the values.

Listing 3-14. Iterate through items in a dictionary

var d = [1:"One",2:"Two",3:"Three"]

var keyArray = Array(d.keys)

println("Loop and print keys")
for k in d.keys {
 println("The value for key \(k) is \(d[k]!)")
 var value = d[k]!
}

println("Loop and print values")
for v in d.values {
 println("The value is \(v)")
}

Click on the value history icons for both println statements. You should see the following in
the “Console Output”:

Loop and print keys
The value for key 2 is Two
The value for key 3 is Three
The value for key 1 is One
Loop and print values
The value is Two
The value is Three
The value is One.

74 CHAPTER 3: Collections

3-15. Saving a Dictionary to the File System
Problem
You need to persist the contents of a dictionary to the file system for access at a later time.

Solution
Save a Swift dictionary to disk using the NSDictionary class from the Foundation library.

How It Works
The Swift Dictionary type does not have the ability to save its contents to a file. However, it
is easy to convert a Swift dictionary to an NSDictionary. Assign the dictionary to a variable
that is defined as an NSDictionary:

var nsarray : NSArray = ingredients

The NSDictionary type has a method writeToFile that will allow you to save your data
to disk.

The writeToFile function takes a string with the path to the file to be written. Create the file
path by following the approach for reading and writing text files for your platform: OS X or
iOS. See Chapter 7, Recipe 7-7 and 7-8. In this recipe, you will be using an OS X command-
line application.

let fullPath = "/tmp/ingredients-dictionary.plist"

The NSDictionary method writeToFile creates a plist file. The first parameter is a string
containing the full path to the file to be written.

Note If a file exists at the path passed to writeToFile, that file will be overwritten. You will need
to check to see if the file exists if you want to handle this situation. Recipes for the file system are
available in Chapter 7.

The second parameter of writeToFile is a Boolean. If set to true, the contents of your file
are written to a temporary file until the process is complete. When it has finished writing, it
is renamed and will replace the existing file (if there is one). This prevents a partial file from
being written or corrupting an existing file, if the application crashes and fails to complete
writing.

nsarray.writeToFile(fullPath, atomically: true)

The method writeToFile returns true or false to indicate whether the file has been
successfully written.

http://dx.doi.org/10.1007/9781484204191_7
http://dx.doi.org/10.1007/9781484204191_7

75CHAPTER 3: Collections

The Code and Usage
Listing 3-15 contains a command-line application that will save a dictionary to the file path
/tmp/numbers-strings.plist. In Xcode, create a new project and select OS X Application.
Then select “Command Line Tool.” Name your project DictionaryToFile, and select “Swift”
as the Language. Add the contents of Listing 3-15 to the main.swift file. Run the program
and view the output console in Xcode. If the file was written successfully, you should see the
following text:

Successfully wrote to file

Listing 3-15. Saving a Dictionary to the file system

import Foundation

var dictionary = ["1":"One", "2":"Two", "3":"Three"]

var nsDictionary : NSDictionary = dictionary

let fullPath = "/tmp/numbers-strings.plist"

if !nsDictionary.writeToFile(fullPath, atomically: true)
{
 println("Error writing dictionary file \(fullPath)")
}
else
{
 println("Successfully wrote to file")
}

To view the plist file, open a Terminal window, and then type cat /tmp/numbers-strings.
plist. This will display the contents of the file in the Terminal window. The contents should
look like Listing 3-16.

Listing 3-16. Contents of numbers-strings.plist

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/
PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>1</key>
 <string>One</string>
 <key>2</key>

Note If an NSDictionary contains objects other than valid property-list objects (instances of
NSData, NSDate, NSNumber, NSString, NSArray, or NSDictionary), it will return false and
fail to write the file to disk. Saving custom classes is covered in Chapter 7.

http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://dx.doi.org/10.1007/9781484204191_7

76 CHAPTER 3: Collections

 <string>Two</string>
 <key>3</key>
 <string>Three</string>
</dict>
</plist>

3-16. Populating a Dictionary with the Contents of a
Property List File
Problem
Your application needs to load and access values from a property-list file into a Dictionary.

Solution
Use the NSDictionary class to load the contents of a plist file and then cast it to a
dictionary.

How It Works
This recipe builds on Recipe 3-15. This recipe creates a file that you can read in this recipe.
Complete Recipe 3-15 before proceeding.

NSDictionary’s method initWithContentsOfFile will instantiate a new dictionary and load the
contents of a property-list file. First, you need to have a full path to the plist you wish to read.
For recipes related to getting the proper paths to files based on platform, see Chapter 7,
Recipes 7-7 and 7-8.

let fullPath = "/tmp/numbers-strings.plist"

The dictionary is created using the NSDictionary initializer. NSDictionary does not know
the types of the keys and values it is loading. In order to get a Swift Dictionary, the
NSDictionary can be typecast using the as keyword:

var dictionary =
 NSDictionary(contentsOfFile: fullPath) as Dictionary<String,String>?

An optional Dictionary<String,String> is returned. If dictionary is nil, the file could not
be loaded. Even if the plist file can be loaded, the cast might still fail if your types do not
match. If the types stored in the plist do not match, the invalid cast will throw an exception.

http://dx.doi.org/10.1007/9781484204191_7

77CHAPTER 3: Collections

The Code and Usage
Before continuing, complete Recipe 3-15 and run that application. It will create a file
>/tmp/numbers-strings.plist. Listing 3-17 is a command-line application that will load the
contents of a property-list file.

Create a new OS X Command Line Application, selecting Swift as the language, and copy
the contents of Listing 3-17 to main.swift. Run the application.

Listing 3-17. Main.swift

import Foundation

let fullPath = "/tmp/numbers-strings.plist"

var dictionary = NSDictionary(contentsOfFile: fullPath) as Dictionary<String,String>?

if let numbersDictionary = dictionary
{
 for k in numbersDictionary.keys
 {
 println("The value for key \(k) is \(numbersDictionary[k]!).")
 }
}
else
{
 println("Could not load dictionary from plist: \(fullPath)")
}

It will load the file that the application in Recipe 3-15 created and print the information to the
console. It should look like this:

The value for key 2 is Two.
The value for key 1 is One.
The value for key 3 is Three.
Program ended with exit code: 0

79

Chapter 4
Advanced Swift Programming

This chapter will cover more advanced recipes that you can use when creating applications
using Swift. Recipes in this chapter will cover the following topics:

Writing Closures	

Writing Trailing Closures	

Overloading the Equality Operator	

Checking for Reference Equality	

Implementing Generic Functions	

Implementing Generic Classes	

Working with Local Dates and Times	

Creating a Unit Test Project	

Writing a Unit Test	

Performance Testing with XCTest	

Creating Mock Objects for Testing	

Testing Asynchronous Code	

4-1. Writing Closures
Problem
Your application needs to pass a function as a parameter to another function. For example, a
method requires a callback function that is executed upon completion.

80 CHAPTER 4: Advanced Swift Programming

Solution
In Swift, you can define a closure and supply it as the parameter for one-time use code.
This can make the code more readable by keeping function calls and callback methods in
proximity to each other.

How It Works
Closures are self-contained functions that capture the variables of the surrounding scope.
Closures are defined using the following syntax:

{ (optional parameter list) -> optional return type in
 statements
}

Define the parameter list following the same rules as a traditional function. Providing the
return type is optional. Following the parameter list and return type, indicate the start of the
closure’s code using the in keyword. A closure can even be assigned to a variable because
functions are a first-class type in Swift. An example of a function that returns an Int follows.
It takes no parameters:

var foo = { ()-> Int in
 var a = 1

 var b = 3

 return a + b
}

If you are writing a function and want the consumer to provide a closure, declare the closure
as a parameter of the function being called:

doSomething("ABCDE", { () in println("Finished") })

The Code and Usage
Put Listing 4-1 into a new Playground. The doSomething method takes a String parameter
and a closure. When you add the code to a Playground, click the Values History button on
line 17, which reads println("I did it!"). You will see the text “I did it” followed by the
text “Finished” in the console output.

Listing 4-1. Writing closures

// Closure with no parameters

var foo = { ()-> Int in

 var a = 1

 var b = 3

 return a + b

}

81CHAPTER 4: Advanced Swift Programming

// Closure with parameters

var add = { (a: Int,b: Int) -> Int in return a + b }

add(2,2)

// The second parameter is a closure without a return value

func doSomething(str: String, finished: ()->Void) {

 println("I did it!")

 finished()

}

doSomething("ABCDE", { () in println("Finished") })

4-2. Writing Trailing Closures
Problem
You want your closure code to be readable. Writing larger closures with multiple lines of
code can begin to get confusing if they are contained within a function call’s parameter list.

Solution
Use trailing closures to place your code after the parameter list.

How It Works
A trailing closure is a great code-organization tool; however, it can be used only in certain
circumstances. If a method call’s final parameter type is a function, you can use a trailing
closure. To create a trailing closure, complete all the parameters except the final one and
close the parenthesis. Take the following method call for instance:

doSomething("ABCDE", { () in println("Finished") })

It takes two parameters: a string and a function. This works when the closure provided is a
single line of code, but it can get confusing if there are multiple lines of code in the closure:

doSomething("ABCDE", { () in
 println("Finished")
 for i in 1...10
 {
 println(i)
 }
})

82 CHAPTER 4: Advanced Swift Programming

Instead, complete the function call:

doSomething("ABCDE")

Then define the closure immediately after the call:

// Trailing Closure
doSomething("ABCDE")
{
 () in
 println("Finished")
 for i in 1...10
 {
 println(i)
 }
}

The Code and Usage
Create a new Playground, and enter Listing 4-2. Closures are frequently used for
asynchronous callbacks and event handlers. Trailing closures allow you to better format and
organize your code by removing it from the tangle of the parameter list. The code in Listing 4-2
defines a function.

Listing 4-2. Trailing closure examples

// The second parameter is a closure without a return value

func doSomething(str: String, finished: ()->Void) {

 println("I did it!")

 finished()

}

// Trailing Closure

doSomething("ABCDE") { () in

 println("Finished")

 for i in 1...10 {

 println(i)

 }

}

4-3. Overloading the Equality Operator
Problem
You created a custom class and frequently need to test two instances for equality.

Solution
Overload the “==” operator to create a custom method that will compare two instances of
your custom type.

83CHAPTER 4: Advanced Swift Programming

How It Works
Usually operator overloads are defined in the body of a class. The equality operator is an
exception. It is defined as a global function. The global function definition is specific to your
class, so you might want to keep the definition in the same file as the class.

To override the operator, define a method using the operator as the name:

func == (left: Contact, right: Contact) -> Bool

The first parameter passed to the function is the object on the left side of the operator, and
the second is the object on the right side of the operator. The equality operator returns a
Boolean. Write the logic of function to check for the equality of all necessary properties:

return left.name == right.name
 && left.phoneNumber == right.phoneNumber
 && left.email == right.email

In this example, there are three properties, and each is a string. Return the results of a
Boolean expression that tests the value of each property.

The Code and Usage
Enter Listing 4-3 into a new Playground file. This listing creates a Contact class, which is
the class that will be tested for equality. It creates a few sample Contact instances. Then it
defines the global function that overrides the == operator. In the example comparisons, c1
and c3 are different instances of the Contact class. The expression c1==c3 is true since the
values of the properties match.

Listing 4-3. Overloading the equality operator

class Contact

{

 var name : String

 var phoneNumber : String

 var email : String

 init(name: String, phoneNumber: String, email: String)

 {

 self.name = name

 self.phoneNumber = phoneNumber

 self.email = email

 }

}

var c1 = Contact(name: "Ben Franklin", phoneNumber: "555-1212",

 email: "benfranklin@continentalcongress.gov")

84 CHAPTER 4: Advanced Swift Programming

var c2 = Contact(name: "John Adams", phoneNumber: "555-2498",

 email: "jadams@xpresidents.com")

var c3 = Contact(name: "Ben Franklin", phoneNumber: "555-1212",

 email: "benfranklin@continentalcongress.gov")

func == (left: Contact, right: Contact) -> Bool

{

 return left.name == right.name

 && left.phoneNumber == right.phoneNumber

 && left.email == right.email

}

c1 == c2

c1 == c3

4-4. Checking for Reference Equality
Problem
You need to determine if two variables reference the same object in memory.

Solution
Use the triple equals operator (===) to test for reference equality.

How It Works
If you have two references and you attempt to test for equality with the double equals
operator (==), you will receive an error. This is because the compiler searches for an
overload of the (==) operator for the custom type you are comparing. In order to test object
references, use the === operator:

left === right

The Code and Usage
Create an empty Playground, and add the contents of Listing 4-4. The code creates three
sample instances of the Contact class. Note the results of the comparisons in the results
sidebar. Note that the result of c1 === c2 is false. The result of c1 === c3 is true because it
references the same object.

85CHAPTER 4: Advanced Swift Programming

Listing 4-4. Checking for reference equality

class Contact

{

 var name : String

 var phoneNumber : String

 var email : String

 init(name: String, phoneNumber: String, email: String)

 {

 self.name = name

 self.phoneNumber = phoneNumber

 self.email = email

 }

}

var c1 = Contact(name: "Ben Franklin", phoneNumber: "555-1212",

 email: "benfranklin@ continentalcongress.gov")

var c2 = Contact(name: "Ben Franklin", phoneNumber: "555-1212",

 email: "benfranklin@continentalcongress.gov")

var c3 = c1

c1 === c2

c1 === c3

4-5. Implementing Generic Functions
Problem
You want to refactor a function that performs a common function, does not need to know
the type of object being processed, and maintains type checking at compile time.

Solution
In Swift, you can optimize your code for re-use by creating generic functions.

86 CHAPTER 4: Advanced Swift Programming

How It Works
Generic functions allow you to reuse code that could apply to many different types of input.
Generic functions allow you to create a placeholder for a type in a function’s definition.
Frequently, this is illustrated by the capital letter “T.” However, you can name the placeholder
however you prefer. In the following function, areEqual, the function takes two parameters
of the same type as indicated by the use of the placeholder T. The method returns true or
false based on their equality:

func areEqual<T : Equatable> (a : T, b : T) -> Bool

The first step in defining a genericized function is to use angle brackets “<>” and define your
placeholder. In the example, the placeholder is T: Equatable. The placeholder is “T” and
then following the placeholder is an optional list of types or protocols. If the optional types
are provided, only types that conform to or inherit from the list of types can be used. In this
example, the type must conform to the Equatable protocol.

Since the parameters are a type that conforms to the Equatable protocol, use the ==
operator to make the comparison and return the result:

return a == b

To call the function, pass two parameters of the same type to the function and the Swift
compiler will infer the type for you.

The Code and Usage
Create a blank Playground, and enter Listing 4-5. The listing contains a definition for a
generic function that tests for equality. In this case, the function will work with any type that
implements the Equatable protocol. In order for your code to compile, any operations you
apply to the generic parameters must conform to a protocol, inherit from a superclass, or
use operations that can be applied to any type that can potentially be passed to the generic
function.

The two example function calls will return false and true, respectively.

Listing 4-5. Implementing generic functions

func areEqual<T : Equatable> (a : T, b : T) -> Bool

{

 return a == b

}

areEqual(22, 99)

areEqual("Apple", "Apple")

87CHAPTER 4: Advanced Swift Programming

4-6. Implementing Generic Classes
Problem
You have code that is used in multiple places in your application, but you might not be able
to refactor it into a superclass or a class extension. You still want to create a reusable class
that can be used with multiple types.

Solution
Create a generic class to encapsulate the functionality that is type agnostic. This will allow
for code reuse and maintain type safety.

How It Works
Generic classes allow developers to create class “templates” that are applied at compile
time. You may have common functions that can be used with any number of types in your
code. The most common examples of generic classes are arrays and dictionaries. Since
collection classes can hold any number of items and need to be flexible, they use generic
classes to provide that functionality, but they maintain strict typing.

When defining a generic class, supply a list of type placeholders within angle brackets “<>”
after the definition of the class name.

This list of placeholders will be used throughout the class to represent the types that are
provided when a concrete instance of the class is created. In the following example, the
class LIFOStack requires one placeholder. This placeholder is the type of object that can be
stored within your stack. LIFOStack implements a Last In, First Out stack:

class LIFOStack<T>

A generic class is implemented the same as any other class. However, when defining
variables and parameters, use the placeholder to indicate the generic type. At compile
time, the compiler will merge the generic class and your type to create a concrete type. For
example, the following line initializes an internal variable to be used for storage:

items = [T]()

This works because the Array class is a generic class. The placeholder T holds the place of
the generic type. When the code is compiled, the T is replaced with the type you specify.

Next, create two functions push and pop, to add and remove items on the stack. Both have
a parameter of type T. T is the type placeholder declared in the class definition. In the push
definition, T is used to denote the type of the parameter. In the pop definition, the placeholder
is used to indicate the return type:

func push(item : T)
func pop() -> T?

88 CHAPTER 4: Advanced Swift Programming

The Code and Usage
Create a new Playground, and add Listing 4-6. Listing 4-6 implements a generic class for
managing LIFOStack. The code creates a stack with the type String. As strings are pushed
onto the stack, you can see the strings are added to the items array. As the strings are
popped from the stack, they are printed to the console. If you attempt to pop more items
that have been pushed onto the stack, pop will return nil.

Listing 4-6. Implementing a generic class

class LIFOStack<T>

{

 var items : [T]

 init()

 {

 items = [T]()

 }

 func push(item : T)

 {

 items.insert(item, atIndex: 0)

 }

 func pop() -> T?

 {

 if items.count == 0

 {

 return nil

 }

 var item = items[0]

 items.removeAtIndex(0)

 return item

 }

}

var lifo = LIFOStack<String>()

lifo.push("Apple")

lifo.push("Pear")

lifo.push("Peach")

println(lifo.pop())

println(lifo.pop())

println(lifo.pop())

println(lifo.pop())

89CHAPTER 4: Advanced Swift Programming

The results sidebar should look something like this:

{["Apple"]}
{["Pear","Apple"]}
{["Peach","Pear","Apple"]}

Optional("Peach")
Optional("Pear")
Optional("Apple")
nil

4-7. Working with Local Dates and Times
Problem
You need to handle the display and input of dates to cover all possible geographies around
the world.

Solution
Use the NSDate localization functions in Swift to properly localize date usage in your
applications.

How It Works
As of the publishing of this book, Swift does not have native classes for dates and date
localization. You can use the Foundation class NSDate to perform date functions and
NSDateFormatting to manipulate dates.

The best way to store dates and transmit them between devices is by using UTC
(Coordinated Universal Time). UTC is not a time zone, and no country officially uses UTC as
a local time. UTC is a standard that supports time and time zones around the world. GMT
(Greenwich Mean Time) is a time zone and is used by some European and African countries.
The value of UTC and GMT is always the same. These facts are important because NSDate
will never return a date value in UTC time. It will always return it as GMT.

Fortunately, NSDate stores the date and time as UTC. However, when you inspect the
variable in Xcode or display it in any way (such as printing it to the console or debugger), the
string representation is not displayed in UTC time. NSDate displays the date in the current
local time zone of the device.

Use NSDateFormatter to display the date, and you need to specify a time zone other than
the default of the local device. NSDateFormatter requires three pieces of information:
the date format, time format, and time zone. Dates and times are formatted using the
NSDateFormatterStyle enumeration. See Table 4-1 for the enumeration options and example
strings for both the date and time formats.

90 CHAPTER 4: Advanced Swift Programming

The examples in the table are shown as en_US format dates and times. What NSDate is
running on a device in a different region or the time zone is set to a different region. Set the
date style using the dateStyle property of NSDateFormatter:

formatter.dateStyle = NSDateFormatterStyle.FullStyle

The format used to display the time is set using the timeStyle property of NSDateFormatter:

formatter.timeStyle = NSDateFormatterStyle.FullStyle

If you want to hide the date or the time from the string output, use NoStyle for the date style
or the time style.

To specify the time zone to be used, set the timeZone property of NSDateFormatter with
an instance of NSTimeZone. To create an NSTimeZone, use the time zone ID for the time
zone. A complete list of time zone IDs can be found using the method NSTimeZone.
knownTimeZoneNames. For example, this is how you set the time zone to New York:

formatter.timeZone = NSTimeZone(name:"America/New_York")

If you do not set the time zone explicitly, the application uses the current time zone of the
device. For special time zones like UTC and GMT, use NSTimeZone(abbreviation:"UTC")
or NSTimeZone(abbreviation:"GMT"). Apple does not recommend using abbreviations to
initialize NSTimeZone because the abbreviations are not standardized or unique.

The Code and Usage
Listing 4-7 contains example statements that cover the date and time localization
approaches discussed previously. Comments in the code indicate the usage of the
statements.

Table 4-1. NSDateFormatterStyle Definitions

Enum Value Date Example (en_US) Time Example (en_US)

FullStyle Wednesday, November 26, 2014 5:54:49 PM GMT

LongStyle November 26, 2014 5:58:41 PM GMT

MediumStyle Nov 26, 2014 5:59:06 PM

ShortStyle 11/26/14 5:59 PM

NoStyle [Blank] [Blank]

91CHAPTER 4: Advanced Swift Programming

Listing 4-7. Working with local dates and times

import Foundation

// Create date with current date and time

var d = NSDate()

// Create NSDateFormatter instance used to set

// the style of date and time and provides methods to format NSDate objects

var formatter = NSDateFormatter()

formatter.dateStyle = NSDateFormatterStyle.LongStyle

formatter.timeStyle = NSDateFormatterStyle.LongStyle

// No timezone specified

formatter.stringFromDate(d)

// New York time zone

formatter.timeZone = NSTimeZone(name:"America/New_York")

formatter.stringFromDate(d)

// Los Angeles time zone

formatter.timeZone = NSTimeZone(name:"America/Los_Angeles")

formatter.stringFromDate(d)

// UTC, NOTE: UTC is not a time zone, but value is the same as GMT

formatter.timeZone = NSTimeZone(abbreviation:"UTC")

formatter.stringFromDate(d)

// GMT time

formatter.timeZone = NSTimeZone(abbreviation:"GMT")

formatter.stringFromDate(d)

// Get a list of time zone abbreviations and full strings

var timeZoneStrings = NSTimeZone.abbreviationDictionary()

var locales = NSLocale.availableLocaleIdentifiers()

// Format for Istanbul Time

formatter.timeZone = NSTimeZone(name:"Europe/Istanbul")

// Set the locale to get the proper format date

formatter.locale = NSLocale(localeIdentifier: "tr_TR")

formatter.stringFromDate(d)

92 CHAPTER 4: Advanced Swift Programming

4-8. Creating a Unit Test Project
Problem
You need to add a unit-testing project to your application in order to create unit tests.

Solution
Xcode 6 comes with XCTest, a unit-testing framework. It can be used to create unit tests for
both iOS and Mac OS applications, and it works with Swift or Objective-C.

How It Works
Test-driven development, unit testing, and test automation are best practices that many
developers are embracing. Unit tests are added to the project as a new target for the build.
You create a “Cocoa Touch Testing Bundle” for iOS applications and a “Cocoa Testing
Bundle” for Mac OS applications. To add a new target, open the project in Xcode. Next,
select File ➤ New ➤ Target. Both the iOS and OS X sections in the list on the left have a
choice for “Other.” Depending on your application type (iOS or OS X), select “Other” in the
list on the left. For iOS applications, you will see a choice for “Cocoa Touch Testing Bundle.”
For OS X, you will see a choice for “Cocoa Testing Bundle.” Select the bundle you want, and
click “Next.” Fill in the project information, and click “Finish.” Don’t forget to choose “Swift”
as the language.

The Code and Usage
A new target is added to your solution as well as a template Swift file. The project will
contain a templated test-case file similar to Listing 4-8.

Open an existing project for an application, or create a new console application. Then follow
the previous instructions to add a new target for the test bundle. In order to run the tests,
you must make sure the Tests target is selected. As shown in Figure 4-1, select the Tests
target and then choose a device where the tests will be run.

Figure 4-1. Select the Tests target

93CHAPTER 4: Advanced Swift Programming

Run the tests by selecting Product ➤ Test in the menu or pressing Command-U. You will see
a success message indicating the tests passed. In the output panel, you will see the status
as the test runner executes each test. It will report which tests pass and which fail. After all
tests are run, you will see a status update like the following example:

Executed 4 tests, with 0 failures (0 unexpected) in 0.722 (0.727) seconds

Listing 4-8. XCTestCase Swift template

import UIKit

import XCTest

class Sample: XCTestCase {

 override func setUp() {

 super.setUp()

 // Put setup code here. This method is called before

 // the invocation of each test method in the class.

 }

 override func tearDown() {

 // Put teardown code here. This method is called after

 // the invocation of each test method in the class.

 super.tearDown()

 }

 func testExample() {

 // This is an example of a functional test case.

 XCTAssert(true, "Pass")

 }

 func testPerformanceExample() {

 // This is an example of a performance test case.

 self.measureBlock() {

 // Put the code you want to measure the time of here.

 }

 }

}

94 CHAPTER 4: Advanced Swift Programming

4-9. Writing a Unit Test
Problem
You need to add a unit test that validates the execution of a component’s code.

Solution
Unit tests are written in a class that extends the XCTestCase class. Xcode will run these tests
using the XCTest framework.

How It Works
Unit tests are written by first extending the XCTestCase class. This class provides the basic
tools and resources required for automated unit testing. One of the first rules of unit testing
is, “Keep your tests mutually exclusive.” Tests should not depend upon data created by
another, nor should they require tests to be run in a certain order. XCTestCase has two
methods to aid developers in following this rule: setupUp and tearDown.

You override setupUp to create objects that need to be initialized, create data, and set up
preconditions. This method is called before each and every test case is run. The method
tearDown is used to remove and reset any data or preconditions that tests might have
created. You do not want data or state information to remain between test runs. For
example, if your class under test is a sorting algorithm, the setUp method would contain
code to create the data to be sorted. The tearDown method would remove all the data.

The setUp and tearDown methods should be used to create and reset data and state that
apply to all tests because they run before every test. For individual tests or small subsets
of tests that share common needs, create other helper functions to create data. XCTest can
identify methods that are test methods and will ignore any other methods you create.

For this recipe, follow the three As of unit testing (Arrange, Act, Assert). First, arrange the
preconditions for the test, then perform the action you are testing, and then assert that the
results are correct to verify the post-conditions. Here is an example of a test for a method
that will add two numbers and store the results in a property:

func testAdd() {
// Arrange
 var calc = Calculator()
 // Act
 calc.add(4, b: 2)
 // Assert
 XCTAssertEqual(6, calc.sum, "Sum does return a + b")
 }

In the preceding example, the preconditions are set up by creating an instance of
Calculator. Next, it calls the method add, which is the method under test. Finally, you assert
that the instance’s property sum has the correct sum for the two parameters passed to the
add method.

95CHAPTER 4: Advanced Swift Programming

XCTAssertEqual is an assertion function provided by XCTest. The first parameter is the
expected value. The second is the actual value. In this test, if the “sum” property does not
contain the correct sum of 6, the assertion will fail and the test runner will display a failure.
If the sum does match the expected outcome, the assertion passes and the test runner will
indicate the test passed.

Many assertions are available in XCTest. Table 4-2 contains some of the most common
assertions to be used in your tests.

Table 4-2. XCTest Assertions

Assertion Description

XCTAssertEqualObjects Assertion passes when the two objects
are the same object.

XCTAssertNotEqualObjects Assertion passes when the two objects
are not the same object.

XCTAssertEqual Assertion passes when the value of the
parameters passed are equal.

XCTAssertNotEqual Assertion passes when the value of the
parameters passed are not equal.

XCTAssertGreaterThan Assertion passes when the first parameter
is greater than the second.

XCTAssertGreaterThanOrEqual Assertion passes when the first parameter
is greater than or equal to the second.

XCTAssertLessThan Assertion passes when the first parameter
is less than the second.

XCTAssertLessThanOrEqual Assertion passes when the first parameter
is less than or equal to the second.

XCTAssertNil Assertion passes when the parameter
passed is equal to nil.

XCTAssertNotNil Assertion passes when the parameter is
not equal to nil.

XCTAssertTrue Assertion passes when the parameter is
equal to true.

XCTAssertThrows Assertion passes when the expression
passed throws an exception.

XCTAssertThrowsSpecific Assertion passes when the expression
passed throws a specific expression
passed as the second parameter.

XCTAssertNoThrow Assertion passes when the expression
passed does not throw an exception.

96 CHAPTER 4: Advanced Swift Programming

The Code and Usage
Create a new Command Line Tool project called “UnitTesting.” Add a new target for “Cocoa
Testing Bundle” or “Cocoa Touch Testing Bundle.” See Recipe 4-8 for help adding the new
target. Name the target “Tests.” Add two new Swift files to the project: Calculator.swift
and CalculatorTests.swift. Add the contents of Listing 4-9 to the file Calculator.swift,
and add Listing 4-10 to the file CalculatorTests.swift.

Listing 4-9. Calculator.swift listing

class Calculator {

 var sum : Int = 0

 func add(a : Int, b : Int) {

 sum = a + b

 }

}

Listing 4-10. CalculatorTests.swift

import XCTest

class CalculatorTests : XCTestCase {

 func testAdd() {

 // Arrange

 var calc = Calculator()

 // Act

 calc.add(4, b: 2)

 // Assert

 XCTAssertEqual(6, calc.sum, "Sum does return a + b")

 }

}

The testing bundle is a separate target from the main application. In order to test a class,
you must add it to the testing target so that it will be compiled along with the test. To
add a Swift file to an additional target, select the file in the Project Navigator on the left.
Refer to Figure 4-2. In the File Inspector on the right, you will see a section labeled “Target
Membership.” Check the box next to the Tests target located in the “Target Membership”
section of the far right column.

97CHAPTER 4: Advanced Swift Programming

Now compile and run the tests by pressing the key combination Command-U. First, make
sure your project builds. Next, in the Xcode toolbar, you will need to make sure that your
unit test target is selected. It should be already, but it may not always be the active target.
Choose “Tests” from the “Product Menu.” See Figure 4-3.

After running the tests, you should see similar output to the following in the Xcode console:

Test Suite 'All tests' started at 2014-11-30 19:26:11 +0000
Test Suite 'Tests.xctest' started at 2014-11-30 19:26:11 +0000
Test Suite 'CalculatorTests' started at 2014-11-30 19:26:11 +0000
Test Case '-[Tests.CalculatorTests testAdd]' started.
Test Case '-[Tests.CalculatorTests testAdd]' passed (0.001 seconds).
Test Suite 'CalculatorTests' passed at 2014-11-30 19:26:11 +0000.
 Executed 1 test, with 0 failures (0 unexpected) in 0.001 (0.001) seconds
Test Suite 'Tests.xctest' passed at 2014-11-30 19:26:11 +0000.
 Executed 1 test, with 0 failures (0 unexpected) in 0.001 (0.002) seconds
Test Suite 'All tests' passed at 2014-11-30 19:26:11 +0000.
 Executed 1 test, with 0 failures (0 unexpected) in 0.001 (0.003) seconds

Figure 4-2. Select Target Membership

Figure 4-3. Select the unit test target

98 CHAPTER 4: Advanced Swift Programming

4-10. Performance Testing with XCTest
Problem
You want to performance test critical code in your application and be notified if performance
falls outside acceptable ranges.

Solution
Use XCTest to create performance testings. XCTest provides functionality to create a
baseline of performance data, and then generates a failure if a test run exceeds the baseline
performance parameters.

How It Works
Measuring performance in XCTest uses closures to test particular parts of your code.
XCTest.measureBlock is the method you call and then provide a closure:

self.measureBlock() {
 performance.countPrimes()
}

Any code within that closure will be profiled. XCTest runs the code 10 times to establish
a baseline. The first time you run your performance test, it will fail because it has not yet
established a baseline. On subsequent runs, the code will be run 10 times again and
compared to the baseline. If there is a large divergence, the test fails. Baseline information is
stored on per device/simulator basis. If you switch machines or devices, XCTest will establish
a new baseline the next time you run the tests.

The Code and Usage
Listing 4-11 has a loop that will calculate prime numbers, which will take some processing
time. The method will test each number between 1 and 15,000 using a loop. It is not a
practical solution, but it is used to illustrate how you can run performance tests.

To use the code, see Recipes 4-8 and 4-9 to create a new project with unit tests. Create a
new class that will hold your performance tests. Add a new Swift file Performance.swift.
Press Command-N. The new file dialog will appear. Choose Source under iOS, and then
select the Swift file template. Save the file as Performance.swift. Copy the contents of
Listing 4-11 into the new Performance.swift. Create a second Swift file, Tests.swift, which
will contain the unit tests. Add the contents of Listing 4-12, to the Tests.swift file. Press
Command-R to run the tests.

99CHAPTER 4: Advanced Swift Programming

Listing 4-11. Performance.swift

class Performance

{

 func countPrimes()

 {

 for num in 1...15000 {

 var i = 2

 while i <= num {

 if num % i == 0 {

 break

 }

 i++

 }

 }

 }

}

Listing 4-12. Tests.swift

import XCTest

class Tests : XCTestCase {

 func testPerformanceExample() {

 var performance = Performance()

 self.measureBlock() {

 performance.countPrimes()

 }

 }

}

In the output section of Xcode, you will see the output from the tests. Remember, the first
time you run the tests they will fail. Run it again and the tests will pass.

4-11. Creating Mock Objects for Testing
Problem
You are writing unit tests for a class, and the functionality of the class under test depends
on values from another class. You need to return a known value from this class to validate
your class.

100 CHAPTER 4: Advanced Swift Programming

Solution
Define a local class, and override the methods you need to return a consistent result. This
local class will be used only for testing.

How It Works
Swift is a statically typed language, and this creates some difficulties when implementing the
traditional “mock object” pattern in unit testing. In order to mock something like a database
connection, inherit the class and override the function you need to modify. In Swift, you
can declare a class within a class. This subclass will be available only within that test class,
isolating it to prevent accidental usage in production code. In this example, the Mock DB
class extends Database as a Mock to simulate a database connection:

class MockTesting: XCTestCase {
 class MockDb : Database {
 override func getRecords() -> [Record] {

The class Database has a method getRecords that returns all the records in the database.
Normally, this function would query the database and return an array of Record instances.
Instead, it is overriden and returns an array of known data. This removes the dependency of
a database.

The Code and Usage
Create a new Command Line Application in Xcode, and add a Unit Testing target. See
Recipes 4-8 and 4-9 for details. In this new project, create a file name MockTesting.swift.
Press Command-N, select Source under iOS, and choose the Swift file. Save the file and
then copy the contents of Listing 4-13 into it. Then create a file named Database.swift
using the contents of Listing 4-14. Finally, create a TestMe.swift file with the contents of
Listing 4-15.

Select each file, and use the identity inspector for each file to make sure the testing target
is selected in the “Target Membership” section. Run the tests by pressing Command-U, or
select Product ➤ Test from the menu

Listing 4-13. MockTesting.swift, the MockTesting class

import Cocoa

import XCTest

class MockTesting: XCTestCase {

 class MockDb : Database {

 override func getRecords() -> [Record] {

 var records = [Record]()

 records.append(Record(id: 2,data: "Test2"))

 records.append(Record(id: 3,data: "Test3"))

 records.append(Record(id: 1,data: "Test1"))

101CHAPTER 4: Advanced Swift Programming

 return records

 }

 }

 func testExample() {

 // Arrange

 var mockDb = MockDb()

 var testTarget = TestMe(db : mockDb)

 // Act

 var results = testTarget.getSortedRecords()

 // Assert

 XCTAssertEqual(3, results.count)

 // Check that items are in ascending order

 XCTAssertEqual(1, results[0].id)

 XCTAssertEqual(2, results[1].id)

 XCTAssertEqual(3, results[2].id)

 }

}

Listing 4-14. Database.Swift with the Database and Record classes

class Record {

 let id : Int

 var data : String

 init(id : Int, data : String)

 {

 self.id = id

 self.data = data

 }

}

class Database {

 func getRecords() -> [Record] {

 // Pretend this connects to a database and returns records

 return [Record]()

 }

}

102 CHAPTER 4: Advanced Swift Programming

Listing 4-15. TestMe.swift, the class to be tested

// This is the class to be tested

public class TestMe {

 let db : Database

 init(db : Database) {

 self.db = db

 }

 func getSortedRecords() -> [Record] {

 var results = db.getRecords()

 results.sort({ r1, r2 in r1.data < r2.data })

 return results

 }

}

The tests should succeed. In the output console, you should see output similar to the
following:

Test Suite 'All tests' started at 2014-12-15 18:35:11 +0000
Test Suite 'MockTesting.xctest' started at 2014-12-15 18:35:11 +0000
Test Suite 'MockTesting' started at 2014-12-15 18:35:11 +0000
Test Case '-[MockTesting.MockTesting testExample]' started.
Test Case '-[MockTesting.MockTesting testExample]' passed (0.011 seconds).
Test Suite 'MockTesting' passed at 2014-12-15 18:35:11 +0000.
 Executed 1 test, with 0 failures (0 unexpected) in 0.011 (0.012) seconds
Test Suite 'MockTesting.xctest' passed at 2014-12-15 18:35:11 +0000.
 Executed 1 test, with 0 failures (0 unexpected) in 0.011 (0.012) seconds
Test Suite 'All tests' passed at 2014-12-15 18:35:11 +0000.
 Executed 1 test, with 0 failures (0 unexpected) in 0.011 (0.013) seconds

4-12. Testing Asynchronous Code
Problem
You need to test code that executes asynchronously.

Solution
Use the class XCTestExpectation from XCTest framework. This is used to test asynchronous
code by allowing the test execution to pause and wait for the asynchronous code to run.

103CHAPTER 4: Advanced Swift Programming

How It Works
Swift makes use of functions for asynchronous calls. Asynchronous system functions
rely on a callback function to notify its caller of completion. You cannot use the traditional
means of testing because the callback function might not have executed by the time the
test runner reaches your assertions. In order to deal with asynchronous methods, the class
XCTestExpectation is used to wait for the desired expectation.

The method XCTestCase.waitForExpectationsWithTimeout will wait for a specified timeout.
If the expectations are fulfilled before it times out, the test passes. If the timeout is reached,
the test will fail.

An instance of XCTestExpectation is created using the expectationWithDescription method
of XCTestCase:

let expectation = expectationWithDescription("NSURLSession.dataTaskWithURL")

Imagine you wanted to test NSURLSession.dataTaskWithURL. Normally, you wouldn’t test a
function from an existing framework, but this is an example for the purposes of this recipe.
The dataTaskWithURL method takes two parameters: an NSURL and a closure. The task can
be used to download a URL from the Internet.

Make a call to expectation.fulfill() inside the callback closure. This will complete the
expectation, and it verifies that the asynchronous task has completed. If fulfill is not
called within the timeout parameter passed to waitForExpectationsWithTimeout:, the test
will fail. Additionally, you will need to add additional assertions to validate the state of the
class under test after the asynchronous task has completed. In this example, you could test
to see if the parameter data in the callback is not null and that the error parameter is null.
This should be the state if a URL was successfully downloaded. In the following code, a call
to NSURLSession.dataTaskWithURL will retrieve the data from a URL and then execute the
callback. In the callback, expectation.fulfill is called:

let dataTask = session.dataTaskWithURL(url!) {
 (data: NSData!, response:NSURLResponse!,
 error: NSError!) -> Void in
 expectation.fulfill()
 XCTAssertNotNil(data, "data should not be null")
 XCTAssertNil(error, "error should be null")
 }

Use waitForExpectationsWithTimeout:handler: to wait the number of seconds indicated
and, optionally, trigger a callback. The second parameter is an optional callback. A callback
is used if the timeout period has expired before the expectation was fulfilled. In this example,
nil is passed since the callback is unused. You would use it to perform tasks such as
cleaning up objects that have been created or maybe temporary files that have been written
to the file system.

waitForExpectationsWithTimeout(30, handler: nil)

104 CHAPTER 4: Advanced Swift Programming

The Code and Usage
Create a new OS X Command Line application named “AsyncTesting.” Add a Cocoa Test
target. See Recipes 4-8 and 4-9 for help adding the target. Next, add a new Swift file called
AsyncTests.swift and add the contents of Listing 4-16 to the new file.

Make sure that your unit test target is selected. It should be already, but it might not always
be the active target. Choose “Tests” from the “Product Menu.” Run the tests by pressing
Command-U, or select Product ➤ Test from the menu.

Note The NSUrlSession calls will attempt to download the Google home page. You must be
connected to the Internet or the test will fail.

Listing 4-16. Testing asynchronous code

import Cocoa

import XCTest

class AsyncTests: XCTestCase {

 func testFoo() {

 let expectation =

 expectationWithDescription("NSURLSession.dataTaskWithURL")

 let url = NSURL(string: "http://www.google.com")

 let session = NSURLSession.sharedSession()

 let dataTask = session.dataTaskWithURL(url!) {

 (data: NSData!, response:NSURLResponse!,

 error: NSError!) -> Void in

 expectation.fulfill()

 }

 dataTask.resume()

 waitForExpectationsWithTimeout(100, handler: nil)

 }

}

http://www.google.com/

105CHAPTER 4: Advanced Swift Programming

If the test is successful, the output console should contain details similar to the following:

Test Suite 'All tests' started at 2014-12-15 22:04:29 +0000
Test Suite 'AsyncTests.xctest' started at 2014-12-15 22:04:29 +0000
Test Suite 'AsyncTests' started at 2014-12-15 22:04:29 +0000
Test Case '-[AsyncTests.AsyncTests testFoo]' started.
Test Case '-[AsyncTests.AsyncTests testFoo]' passed (0.234 seconds).
Test Suite 'AsyncTests' passed at 2014-12-15 22:04:29 +0000.
 Executed 1 test, with 0 failures (0 unexpected) in 0.234 (0.235) seconds
Test Suite 'AsyncTests.xctest' passed at 2014-12-15 22:04:29 +0000.
 Executed 1 test, with 0 failures (0 unexpected) in 0.234 (0.236) seconds
Test Suite 'All tests' passed at 2014-12-15 22:04:29 +0000.
 Executed 1 test, with 0 failures (0 unexpected) in 0.234 (0.237) seconds

To see what an expectation failure would look like, remove the line dataTask.resume from the
test code, the expectation will fail because the callback will not be executed and, as a result,
expectation.fulfill() is not called. In this case, the output will look similar to the following:

Test Suite 'All tests' started at 2014-12-15 22:17:00 +0000
Test Suite 'AsyncTests.xctest' started at 2014-12-15 22:17:00 +0000
Test Suite 'AsyncTests' started at 2014-12-15 22:17:00 +0000
Test Case '-[AsyncTests.AsyncTests testFoo]' started.
/Users/mrogers/Documents/Egnyte/Private/mrogers/Apress/Chapter 4/AsyncTesting/AsyncTests/
AsyncTests.swift:28: error: -[AsyncTests.AsyncTests testFoo] : Asynchronous wait failed:
Exceeded timeout of 30 seconds, with unfulfilled expectations:
"NSURLSession.dataTaskWithURL".
Test Case '-[AsyncTests.AsyncTests testFoo]' failed (30.053 seconds).
Test Suite 'AsyncTests' failed at 2014-12-15 22:17:30 +0000.
 Executed 1 test, with 1 failure (0 unexpected) in 30.053 (30.054) seconds
Test Suite 'AsyncTests.xctest' failed at 2014-12-15 22:17:30 +0000.
 Executed 1 test, with 1 failure (0 unexpected) in 30.053 (30.054) seconds
Test Suite 'All tests' failed at 2014-12-15 22:17:30 +0000.
 Executed 1 test, with 1 failure (0 unexpected) in 30.053 (30.056) seconds

http://dx.doi.org/10.1007/9781484204191_4

107

Chapter 5
iOS Applications

This chapter contains recipes for the creation of iOS applications, adding user-interface
controls, and working with a UITableView. Many of the user-interface topics in this chapter
can be accomplished using storyboards. The recipes in this chapter focus on using Swift to
add, position, and interact with user-interface controls. The full list of topics includes

Creating a New iOS Application	

Adding a 	 UILabel to a View

Adding a 	 UIButton to a View

Adding a 	 UITextField to a View

Positioning 	 UIViews in Auto Layout Using NSConstraints

Repositioning a View to Accommodate the Keyboard	

Displaying an Alert with 	 UIAlertController

Using 	 UIAlertController to Collect User Input

Creating a 	 UITableView

Swiping to Delete an Item from a 	 UITableView

5-1. Creating a New iOS Application
Problem
You want to create a new iOS application.

Solution
Xcode offers a number of application templates to get you started. Choose Single View
Application to start your application.

108 CHAPTER 5: iOS Applications

How It Works
Launch Xcode and then select File ➤ New ➤ Project from the menu. (See Figure 5-1.)

Figure 5-1. Creating a new project

Figure 5-2. Select “Single View Application”

Xcode displays a list of templates. (See Figure 5-2.) Select “Single View Application.”
The Single View Application template contains the least amount of bells and whistles.
That makes it a good starting point for small projects. Click the “Next” button.

Give the application a name, such as “NewApplication.” Select “Swift” as the language and
“Universal” for the “Devices” option. (See Figure 5-3.)

109CHAPTER 5: iOS Applications

Then click “Next.” Choose a location for the project on your disk, and click “Create.” Your
new application has been created and is opened in Xcode.

5-2. Adding a UILabel to a View
Problem
You would like to add static text to a UIView. You would also like to set the font and color of
the text.

Solution
Use the UILabel class to display static text.

How It Works
You can see the UILabel in most applications. UILabel is useful for displaying static text that
a user cannot interact with. Text can be updated by your application, but the user cannot
select the text or edit it in any way. UILabel has a property named text that is used to get
and set the text displayed by the label.

To use a label, create an instance of UILabel, set the desired properties, and add it to a view.
The UILabel initializer requires a CGRect to define its frame. The frame dictates the label’s
position and size. Use the text property to get and set the displayed text.

In Swift, the CGRect initializer looks like the following:

CGRect(x: 10, y: 50, width: 200, height: 20)

Figure 5-3. Choose options for your new project

110 CHAPTER 5: iOS Applications

For each parameter, use the external variable name corresponding to the x, y, width, and
height parameters. The UILabel initializer takes the CGRect instance, and the external
parameter name frame is required:

var label = UILabel(frame: CGRect(x: 10, y: 50, width: 200, height: 20))

Assign a string to the text property to set the text displayed in the UILabel:

label.text = "Swift Recipes"

Finally, add the UILabel instance to a view:

view.addSubview(label)

The Code and Usage
Create a new single-view application as described in Recipe 5-1. Open the file
ViewController.swift, and add Listing 5-1 to the contents of the viewDidLoad: method.
The viewDidLoad: method was added by the project template when the project was created.
Run the application.

Listing 5-1. ViewController with a UILabel added

import UIKit

class ViewController: UIViewController {

 override func viewDidLoad() {
 super.viewDidLoad()

 var label = UILabel(frame: CGRect(x: 10, y: 50, width: 200, height: 20))
 label.text = "Swift Recipes"
 view.addSubview(label)
 }
}

In the simulator, the application will display the label as shown in Figure 5-4.

111CHAPTER 5: iOS Applications

5-3. Adding a UIButton to a View
Problem
You want to add a button to your application and handle users’ touch events.

Solution
Add a UIButton to the view.

How It Works
Buttons are everywhere in iOS. They are one of the most used elements in applications.
Create buttons with a CGRect to determine a button’s position and height. UIButton has a
class method named buttonWithType that returns a new instance of UIButton. The return
value is of type AnyObject. Cast it to UIButton:

var button = UIButton.buttonWithType(UIButtonType.System) as? UIButton

Figure 5-4. UILabel in the running application

112 CHAPTER 5: iOS Applications

Set the frame of the button with a CGRect to indicate its position and size:

button.frame = CGRect(x: 10, y: 50, width: 200, height: 20)

Use the setTitle:forState: method to set the text on the button. Two parameters are
required: the text of the button and the button state associated with the text. The forState
parameter is a combination of UIControlState bit masks. The button states are

	Normal – The default state of the button.

	Highlighted – A button is highlighted when it is touched. It changes on
touch up or the touch tracks outside of the button’s frame.

	Disabled – The control has been disabled using the enabled property.

	Selected – For buttons, this state has no effect on behavior.

Call the setTitle method:

button.setTitle("Tap Me!", forState: UIControlState.Normal)

The method setTitleColor:forState: sets the color of the button’s text:

button.setTitleColor(UIColor.blueColor(), forState: UIControlState.Normal)

Different methods can be assigned to handle touch events such as TouchDown and
TouchUpInside. With UIButton, the target/action pattern is used. You give the control a target
delegate, usually the view controller adding the button. Then you specify a Selector so that
the button can call the Selector on the target object. In Swift, when a parameter requires a
Selector, use the name of the function in Objective-C format. For example, for a function
with a single parameter, use the string functionName:. Make sure you add the colon to
indicate that it takes a parameter. Use the addTarget method to create a new target/action
combination:

button.addTarget(self, action: Selector("tapped:"), forControlEvents:
UIControlEvents.TouchUpInside)

A list of common touch events is provided in Table 5-1 for your reference. One of the
most commonly used touch events is TouchUpInside. This event is used to indicate a user
tapping on a button. When the UIButton is tapped, the target/action associated with the
button will attempt to call the Selector indicated in the action parameter. In the preceding
code example, when button is tapped, iOS will call a function named tapped:. on the
ViewController.

113CHAPTER 5: iOS Applications

Finally, add the button to the view:

view.addSubview(button)

The Code and Usage
Create a new iOS single-view project as described in Recipe 5-1. Open the file
ViewController.swift. Replace the contents with the code from Listing 5-2. The function
tapped: is called when a button is tapped. Run the application, and tap the button. In the
Xcode output console, you will see the text “tapped.”

Listing 5-2. ViewController with a UIButton added

import UIKit

class ViewController: UIViewController {

 override func viewDidLoad() {
 super.viewDidLoad()

 var button = UIButton.buttonWithType(UIButtonType.System) as! UIButton
 button.frame = CGRect(x: 10, y: 50, width: 200, height: 20)
 button.setTitle("Tap Me!", forState: UIControlState.Normal)
 button.setTitleColor(UIColor.blueColor(), forState: UIControlState.Normal)

 button.addTarget(self, action: Selector("tapped:"), forControlEvents:

UIControlEvents.TouchUpInside)
 view.addSubview(button)
 }

 func tapped(sender : UIButton!) {
 NSLog("tapped")
 }
}

Table 5-1. Common Touch Events from UIControlEvents

TouchEvent Description

TouchDown The user has touched the button on screen.

TouchDownRepeat Occurs when multiple touches are made within the same control.

TouchUpInside When a user touches down on a control, does not move their finger
outside of the control, and releases their finger without leaving the
bounds of the control, this event is triggered.

114 CHAPTER 5: iOS Applications

5-4. Adding a UITextField to a View
Problem
You want a user to enter a short amount of text.

Solution
UITextField is a simple text-entry field for iOS.

How It Works
UITextField is a UIControl subclass that accepts text input from a user. Optionally, when the
user clicks the return button, it will send an action to a target object. UITextField should be
used when you want to collect small amounts of text. It is designed for a single line of text.

The UITextField is initialized with a CGRect defining its frame:

var textField = UITextField(frame: CGRect(x: 10, y: 50, width: 300, height: 30))

The placeholder property is a string displayed in the field to communicate information to a
user. It is not required to provide placeholder text, but using one sometimes helps you avoid
needing to use a label to indicate the field’s use. The placeholder text is hidden when the
field is focused (i.e., becomes the first responder). The placeholder has a lighter color text to
indicate that it is not a value entered in the text field, but placeholder copy:

textField.placeholder = "Enter your name"

The typeface and size of the field’s font is controlled by the font property. You can change
the font using the UIFont class. There are a number of default fonts available on iOS that
you can use. You will need to know the postscript name of the font to supply to the UIFont
initializer. The font size in points is provided as well. For this recipe, you will use a specific
font. By default, all user-interface components use the “system” font. System is not a font
itself, but it tells iOS to use the default system font for the version of iOS. The system also
defines the font size based on the version of operating-system device. If possible, use the
system font to maintain a consistent look and feel between your application and the iOS
design. The default font size for body text is 17. For legibility, Apple recommends that you
do not use text smaller than 11 points.

Tip The web site iOS Fonts (http://iosfonts.com) is a great resource to determine the list of
included fonts for every version of iOS since 4.0.

textField.font = UIFont(name: "Arial-BoldMT", size: 22)

http://iosfonts.com/

115CHAPTER 5: iOS Applications

Send the border of textField to UITextBorderStyle.RoundedRect:

textField.borderStyle = UITextBorderStyle.Line

Finally, add the text field to the view:

view.addSubview(textField)

The Code and Usage
Follow Recipe 5-1 to create a new single-view iOS application. Open the file
ViewController.swift. Copy the code from Listing 5-3, and replace the contents of
ViewController.swift. Run the application.

Listing 5-3. Adding a UITextField within a view controller

import UIKit

class ViewController: UIViewController {

 override func viewDidLoad() {
 super.viewDidLoad()

 var textField = UITextField(frame: CGRect(x: 10, y: 50, width: 300, height: 30))

 textField.placeholder = "Enter your name"
 textField.font = UIFont(name: "Arial-BoldMT", size: 22)
 textField.borderStyle = UITextBorderStyle.Line

 view.addSubview(textField)
 }
}

Table 5-2. UITextBorderStyle Options and Examples

Border Style Example from iOS 8.0.1

UITextBorderStyle.None (Default)

UITextBorderStyle.Line

UITextBorderStyle.Bezel

UITextBorderStyle.RoundedRect

The style of a text field’s border is set using the borderStyle property. Table 5-2 describes
the possible styles you can specify for the borderStyle property.

116 CHAPTER 5: iOS Applications

In the simulator, you should a screen like the one in Figure 5-5.

5-5. Positioning UIViews in Auto Layout Using
NSConstraints
Problem
You want your application’s user interface to automatically adjust to different screen sizes
and orientations.

Solution
Use Auto Layout to manage the position, size, and alignment.

Figure 5-5. UITextField application running in simulator

117CHAPTER 5: iOS Applications

How It Works
Auto Layout is a system used to define the positions and size of user-interface elements
in relation to each other. Apple created this model to provide developers with a method for
writing adaptive interfaces that can conform to multiple screen sizes and resolutions.

Constraints are applied to user-interface controls on your view. The constraints give Auto
Layout a set of rules to follow when views are drawn on screen. For example, you can set
a constraint to keep the height of a control set to 30, and constrain the top, right and left
sides of the control to be 10 points in distance from the top, right and left of the superview’s
frame. These rules allow the control to grow in width. The control will grow in width if the
superview grows in width but the other values remain set.

When using constraints, take care to avoid conflicting rules. For example, if you set the
height of a view to 30 but then create another constraint that may need the height to change,
you will get a runtime error. Depending on the severity of the error, your view may not appear.
Xcode tries to fix inconsistent constraints by choosing one to break. This can affect the look
and operation of your interface. The following is the output of a constraints conflict:

2015-02-05 11:17:30.336 AutoLayout[96434:2259116] Unable to simultaneously satisfy
constraints.

[REMOVED FOR BREVITY]

(
 "<_UILayoutSupportConstraint:0x7f8b18483410 V:[_UILayoutGuide:0x7f8b18481c20(20)]>",
 "<_UILayoutSupportConstraint:0x7f8b18482ce0 V:|-(0)-[_UILayoutGuide:0x7f8b18481c20]
 (Names: '|':UIView:0x7f8b18481910)>",
 "<NSLayoutConstraint:0x7f8b18493a30 V:[UITextField:0x7f8b18480f70(30)]>",
 "<NSLayoutConstraint:0x7f8b184941b0
 V:[_UILayoutGuide:0x7f8b18481c20]-(10)-[UITextField:0x7f8b18480f70]>",
 "<NSLayoutConstraint:0x7f8b18494200
V:[UITextField:0x7f8b18480f70]-(NSSpace(8))-[UIButton:0x7f8b1848e540'Tap Me!']>",

[REMOVED FOR BREVITY]

Will attempt to recover by breaking constraint
<NSLayoutConstraint:0x7f8b184941b0 V:[_UILayoutGuide:0x7f8b18481c20]-(10)-
[UITextField:0x7f8b18480f70]>

Make a symbolic breakpoint for UIViewAlertForUnsatisfiableConstraints to catch this in
the debugger.

The methods in the UIConstraintBasedLayoutDebugging category on UIView listed in
<UIKit/UIView.h> may also be helpful.

Note the output towards the end, “Will attempt to recover by breaking constraint.” This
is Auto Layout attempting to fix the issue on its own. When you see errors like this, it is
important to resolve them; otherwise, your user-interface layout may be unpredictable.

118 CHAPTER 5: iOS Applications

Let’s look at an example of positioning a UITextField using constraints. First you define the
UITextField variable, but you do not use a CGRect to initialize:

var textField = UITextField()
textField.placeholder = "Enter your name"

To set the top position of the UITextField, you need to add a constraint that will
move the UITextField to the desired point on the y-axis. In most applications, you
will need to account for the status bar at the top of the screen. There is a property
named topLayoutGuide on the ViewController class. This property takes user-interface
elements, such as the status bar and navigation bars. You should use topLayoutGuide
for any positioning based on the top of the screen. Create a variable that references the
topLayoutGuide. This will be used later:

var topGuide = self.topLayoutGuide

The method NSLayoutConstraint.constraintsWithVisualFormat: will create a constraint
and return it. In order to use it, you need some prerequisites. First, you need a dictionary
containing the controls to be constrained. Each control has a string key associated with it.
The key may be anything, but it is recommended that you name it the same as the variable:

let views = ["textField":textField]

Each control is given a key. This key is used again later. Now the constraint is created using
constraintsWithVisualFormat. The method takes a number of parameters: a visual format
string, options, metrics, and a dictionary of views.

let verticalPositions:NSArray =
 NSLayoutConstraint.constraintsWithVisualFormat("V:|-10-[textField]-[button(34)]",
 options: NSLayoutFormatOptions(0), metrics: nil, views: views)

In this example, the options parameter is set to NSLayoutFormatOptions(0). This is the
equivalent of nil for the options parameter. The metrics parameter is unused as well. The
views parameter is assigned the dictionary of views involved in creating the constraints.

The first parameter to the method is a visual format string. This is how you can describe
constraints within Swift code. Let’s break down the format string.

The first character is V. This means you are creating vertical constraints. When dealing with
horizontal constraints use H instead. A colon follows the orientation:

V:|-10-[textField]-[button(34)]

Next, a list of views is provided, indicating the spacing between the views, as well as other
constraints, such as height. In the example “[topGuide]-10-[textField]-[button(34)]”, the
topGuide represents the bottom of the status bar and navigation bar if they exist.

Next, the -10- means ten points of separation between the views. textField is put in
brackets, indicating it is the key associated with a view that was added to the views
dictionary. Any view or control referenced in the visual format string must be included in the

119CHAPTER 5: iOS Applications

dictionary. The value between the [] indicates the key of the view in the dictionary. Next is a
just one dash “-”. This indicates the default spacing of 8 points. Then a UIButton is added
to the dictionary under the key button. The parentheses after button indicate additional
constraints. Since you are creating vertical constraints, this sets the height to 34. If the string
indicated horizontal constraints, the number would be the width. See Figure 5-6 to see how
the visual format relates to the user interface.

The Code and Usage
The following code illustrates how to use Auto Layout to position user-interface elements in
a view. To use this code, create a single-view iOS application. Then replace the contents of
ViewController.swift with the contents of Listing 5-4. Run the application.

Listing 5-4. Positioning views with constraints and Auto Layout

import UIKit

class ViewController: UIViewController {

 override func viewDidLoad() {
 super.viewDidLoad()

 var textField = UITextField()

 textField.placeholder = "Enter your name"
 textField.borderStyle = UITextBorderStyle.Line
 textField.setTranslatesAutoresizingMaskIntoConstraints(false)
 view.addSubview(textField)

 var button = UIButton.buttonWithType(UIButtonType.System) as! UIButton
 button.setTranslatesAutoresizingMaskIntoConstraints(false)
 button.setTitle("Tap Me!", forState: UIControlState.Normal)

 button.addTarget(self, action: "tapped:", forControlEvents:

UIControlEvents.TouchUpInside)
 view.addSubview(button)

Figure 5-6. How a visual format string relates to the resulting user interface

120 CHAPTER 5: iOS Applications

 var topGuide = self.topLayoutGuide

 let views = ["textField":textField,"button":button,"topGuide":topGuide] as [NSObject

: AnyObject]

 // height constraint
 let textFieldHeight:Array = NSLayoutConstraint.constraintsWithVisualFormat(
 "V:[textField(30)]",
 options: NSLayoutFormatOptions(0),
 metrics: nil,
 views: views)

 // vertical position
 let verticalPositions:Array = NSLayoutConstraint.constraintsWithVisualFormat(
 "V:[topGuide]-10-[textField]-[button(34)]-|", options: NSLayoutFormatOptions(0),
 metrics: nil,
 views: views)

 // right and left side constraints
 let textFieldHorizontal:Array = NSLayoutConstraint.constraintsWithVisualFormat(
 "H:|-10-[textField]-10-|",
 options: NSLayoutFormatOptions(0),
 metrics: nil,
 views: views)

 // right and left side constraints
 let buttonHorizontal:Array = NSLayoutConstraint.constraintsWithVisualFormat(
 "H:|-[button(75)]",
 options: NSLayoutFormatOptions(0),
 metrics: nil,
 views: views)

 view.addConstraints(textFieldHeight
 + verticalPositions
 + textFieldHorizontal
 + buttonHorizontal) }

 func tapped(sender : UIButton)
 {
 NSLog("Tapped")
 }
}

The application will appear with a UITextField and a button positioned at the top of the
screen.

121CHAPTER 5: iOS Applications

5-6. Repositioning a View to Accommodate the
Keyboard
Problem
You need to reposition the screen when the keyboard covers user-interface elements.

Solution
Use a UIScrollView to reposition the screen elements so that they can be seen above the
keyboard.

How It Works
The onscreen keyboard can use quite a bit of screen real estate, even on newer devices.
Developers need to be aware when a keyboard could appear and adjust the user interface
to accommodate it. You can use a UIScrollView to reposition elements of a view when the
keyboard appears.

To begin, assume you are working on iOS 8 and running the application in the simulator for
the iPhone 6. This recipe can be used on any device running iOS 7 or iOS 8, but for this
recipe you will use this exact configuration.

In order to use the UIScroll view to reposition controls, you need a property to reference
the UIScrollView. In addition, you need a property for a UITextField, UIButton, and Bool.
All UIView properties should be implicitly unwrapped optionals, since they are initialized later
in viewDidLoad:. The Boolean can be initialized inline:

var scrollView : UIScrollView!
var button : UIButton!
var textField : UITextField!
var isKeyboardUp : Bool = false

In the viewDidLoad: method, initialize the scrollView variable and add the new UIScrollView
to the view controller. Make the UIScrollView the same size as the existing view:

scrollView = UIScrollView(frame: self.view.frame)
self.view.addSubview(scrollView!)

In this recipe, the size of the UIScrollView, UITextArea, and UIButton will be set to an exact
frame. This is done to keep the code focused on handling keyboard events. In reality, you
should leverage Auto Layout to position and size UIViews and subviews on the screen.
This will make your code flexible, and it prepares your app to run on multiple devices and
resolutions.

122 CHAPTER 5: iOS Applications

Next, initialize the textField property and the button. The UIButton will call a method named
tapped:. Initialize the button, and add it to scrollView:

textField = UITextField(frame: CGRect(x: 10, y: 400, width: 200, height: 30))
textField.placeholder = "Enter your name"
textField.borderStyle = UITextBorderStyle.Line

button = UIButton.buttonWithType(UIButtonType.System) as UIButton
button.frame = CGRect(x: 10, y: 440, width: 200, height: 30)
button.setTitle("Tap Me!", forState: UIControlState.Normal)
button.addTarget(self, action: "tapped:", forControlEvents:
UIControlEvents.TouchUpInside)
scrollView.addSubview(button)

Create a stub method named tapped: with a UIButton for its only parameter. This method
will be implemented later:

func tapped(sender : UIButton) {
}

Next you need to listen for a notification that the keyboard will be shown on screen
or will be hidden. The keyboard sends notifications using NSNotificationCenter.
Add an observer for each of the two notifications the application needs to know about:
UIKeyboardWillShowNotification and UIKeyboardWillHideNotification. You will want
to be a good citizen and add observers only when required and remove them when
they are no longer needed, even if the view controller is not currently active. Use the
viewWillAppear: delegate method to add your observers. Later you will remove them in the
viewWillDisappear: method. This sets up the view controller so that when it is active and
on screen, the observers are present and when the application transitions away or the view
controller is superseded by another controller, the observers are removed.

The addObserver method takes a reference to the target to be notified; in this case, it is self.
It also requires a Selector for the method that will be called by NSNotificationCenter. In
Swift, a selector is created using the object Selector and passing it the method signature as
a string. For example, Selector("keyboardWillShow:") will create a selector for a method
named keyboardWillShow with a single parameter. Note that the colon must be used to
indicate that the method takes a parameter. The third parameter to addObserver is the name
of the notification you will be listening for. Finally, the fourth parameter, object, can be nil:

override func viewWillAppear(animated: Bool) {
 NSNotificationCenter.defaultCenter().addObserver(self,
 selector: Selector("keyboardWillShow:"),
 name: UIKeyboardWillShowNotification, object: nil)

 NSNotificationCenter.defaultCenter().addObserver(self,
 selector: Selector("keyboardWillHide:"),
 name: UIKeyboardWillHideNotification, object: nil)
}

123CHAPTER 5: iOS Applications

When keyboard posts a notification, the Notification Center will call the Selector on the target
object. The Selector is not verified at compile time. If you make a typo in the name of the
method, you will receive a runtime error:

AdjustViewForKeyboard[96718:2265471] *** Terminating app due to uncaught exception
'NSInvalidArgumentException', reason:
'-[AdjustViewForKeyboard.ViewController tapped:]:
unrecognized selector sent to instance 0x7fca151082b0'

Create two methods, keyboardWillShow: and keyboardWillHide:. The functions called within
these methods do not exist yet, but you will add them soon. The Notification Center passes
an NSNotification instance to these methods. The information about the keyboard’s size
is contained within this notification. Both methods work similarly. When the keyboard is
going to appear, you want to get the height of the keyboard and then reposition scrollView
to ensure your text field and button are visible. When the keyboard is hidden, you need to
restore everything back to its original position:

func keyboardWillShow(notification : NSNotification) {
 if !isKeyboardUp {
 scrollView(getKeyboardHeight(notification) , scrollingUp: true)
 }
}

func keyboardWillHide(notification : NSNotification) {
 if isKeyboardUp {
 scrollView(getKeyboardHeight(notification) , scrollingUp: false)
 }
}

To get the height of the keyboard, you need to retrieve that information from the notification.
Create a new function getKeyboardHeight:. It will have one parameter, notification. The
keyboard height is stored in the property notification.userInfo. The userInfo property is
an optional dictionary of values. The position and size of the keyboard are accessed with the
key UIKeybordFrameBeginUserInfoKey. Cast the result to an NSValue, and then convert the
result to a CGRect. Return the height property of the converted value. This is the height of the
keyboard:

func getKeyboardHeight(notification : NSNotification) -> CGFloat {
 return (notification.userInfo?[UIKeyboardFrameBeginUserInfoKey] as NSValue).
CGRectValue().height
}

Now you have a function to return the height of the keyboard. This will help calculate how far
you need to scroll to move the text field and button to be visible above the keyboard. Create
a method named scrollView:scrollingUp:. The first parameter, points, is the number of
points the UIScrollView needs to be scrolled. The value for this will be calculated by the
getKeyboardHeight method. The parameter scrollingUp indicates if you are moving position
of scrollView up (true) or down (false). For example, if the keyboard is 216 points high, you
will need to move elements that could be hidden behind the keyboard up at least 216 points
toward the top of the screen.

124 CHAPTER 5: iOS Applications

When scrolling up, the method to move the contents of the scrollView consists of two
steps. First, you expand the height of scrollView by the height of the on-screen keyboard.
This is done to add vertical space to the scroll view. This will allow the scroll view to scroll.
Before you extend the height, the scroll view is the same size as the superview and will not
scroll. Then set the contentOffset property of scrollView to bring the elements into view
above the keyboard. You are adding the equivalent blank space to scrollView and then
scrolling the view up. The keyboard hides the blank space, and textField and button are
moved above the keyboard.

Use the y coordinate of the button’s origin to calculate how far you must scroll. This will
ensure that the field you desire to be visible will be positioned closely to the keyboard. In this
example, you want the textField and button to be visible. Then set isKeyboardUp=true to
prevent the view from being moved up more than once.

To reset the view when the keyboard disappears, you perform the opposite actions: remove
the excess height from scrollView, and reposition the scrollView back to its original
position. In this case, you are using 0. However, if you have a longer scrollView with many
controls, you will need to keep track of the original offset so that you can restore it when the
keyboard disappears:

func scrollView (points : CGFloat, scrollingUp: Bool) {
 var newRect = scrollView!.frame

 if scrollingUp && !isKeyboardUp {
 newRect.size.height += points
 scrollView.frame = newRect
 scrollView.setContentOffset(CGPoint(x: 0.0,y: button!.frame.origin.y - points),

animated: true)
 isKeyboardUp = true
 } else
 if !scrollingUp && isKeyboardUp {
 newRect.size.height -= points
 scrollView.frame = newRect

 scrollView.setContentOffset(CGPoint(x: 0.0,y: 0), animated: true)
 isKeyboardUp = false
 }
}

Caution Never use a fixed value for the size of the keyboard. It is constantly changing based
on rotation, the operating system, and the type of keyboard. Always use the notification events to
determine the current size.

125CHAPTER 5: iOS Applications

In order to dismiss the keyboard, resign firstResponder from textField. This will cause the
keyboard to dismiss itself. Add this code to the tapped method:

func tapped(sender : UIButton) {
 textField.resignFirstResponder()
}

Observers were created to listen for the notification in the viewWillAppear: method. They
should be removed when they are no longer needed. In the viewWillDisappear: method, call
removeObserver:. This will remove all observers associated with the object provided as the
parameter:

override func viewWillDisappear(animated: Bool) {
 NSNotificationCenter.defaultCenter().removeObserver(self)
}

The Code and Usage
Create an iOS single-view application in Xcode, and name it “AdjustViewForKeyboard.”
See Recipe 5-1 for details on creating a new project. Open the ViewController.swift file.
Copy the code from Listing 5-5, and replace the contents of ViewController.swift. Run the
application.

Listing 5-5. Adjusting a screen with UIScrollView to accommodate the keyboard

import UIKit

class ViewController: UIViewController {

 var isKeyboardUp : Bool = false
 var scrollView : UIScrollView!
 var button : UIButton!
 var textField : UITextField!

 override func viewDidLoad() {
 super.viewDidLoad()

 // Setup user interface elements.

 scrollView = UIScrollView(frame: self.view.frame)

 self.view.addSubview(scrollView!)

 textField = UITextField(frame: CGRect(x: 10, y: 400, width: 200, height: 30))
 textField.placeholder = "Enter your name"
 textField.borderStyle = UITextBorderStyle.Line
 scrollView.addSubview(textField)

 button = UIButton.buttonWithType(UIButtonType.System) as! UIButton
 button.frame = CGRect(x: 10, y: 440, width: 200, height: 30)
 button.setTitle("Tap Me!", forState: UIControlState.Normal)

126 CHAPTER 5: iOS Applications

 button.addTarget(self, action: "tapped:", forControlEvents: UIControlEvents.
TouchUpInside)

 scrollView.addSubview(button)
 }

 override func viewWillAppear(animated: Bool) {
 NSNotificationCenter.defaultCenter().addObserver(self,
 selector: Selector("keyboardWillShow:"),
 name: UIKeyboardWillShowNotification, object: nil)
 // Keyboard Down
 NSNotificationCenter.defaultCenter().addObserver(self,
 selector: Selector("keyboardWillHide:"),
 name: UIKeyboardWillHideNotification, object: nil)
 }

 func getKeyboardHeight(notification : NSNotification) -> CGFloat {
 return (notification.userInfo?[UIKeyboardFrameBeginUserInfoKey] as!

NSValue).CGRectValue().height
 }

 func keyboardWillShow(notification : NSNotification) {
 if !isKeyboardUp {
 scrollView(getKeyboardHeight(notification) , scrollingUp: true)
 }
 }

 func keyboardWillHide(notification : NSNotification) {
 if isKeyboardUp {
 scrollView(getKeyboardHeight(notification) , scrollingUp: false)
 }
 }

 func scrollView (points : CGFloat, scrollingUp: Bool) {
 var newRect = scrollView!.frame

 if scrollingUp && !isKeyboardUp {
 newRect.size.height += points
 scrollView.frame = newRect
 scrollView.setContentOffset(CGPoint(x: 0.0,y: button!.frame.origin.y - points),

animated: true)
 isKeyboardUp = true
 } else
 if !scrollingUp && isKeyboardUp {
 newRect.size.height -= points
 scrollView.frame = newRect

 scrollView.setContentOffset(CGPoint(x: 0.0,y: 0), animated: true)
 isKeyboardUp = false
 }
 }

127CHAPTER 5: iOS Applications

 override func viewWillDisappear(animated: Bool) {
 NSNotificationCenter.defaultCenter().removeObserver(self)
 }

 func tapped(sender : UIButton) {
 textField.resignFirstResponder()
 }
}

When you tap and put the focus in the text field, the keyboard will appear. The UIScrollView
will be scrolled to move the view upward. Then tap the button “Tap Me.” The keyboard will
be dismissed, and the scroll view will be reset.

5-7. Displaying an Alert with UIAlertController
Problem
You need to display an alert dialog in iOS 8 and later.

Solution
Use UIAlertController to display an alert. UIAlertController replaces UIAlertView, which
is deprecated in iOS 8.

How It Works
In iOS 8, UIAlertView and UIActionSheet have been deprecated and, in its place,
developers are advised to use UIAlertController instead. UIAlertController provides a
more generalized and rich interface. It replaces both UIAlertView and UIActionSheet. To
instantiate a UIAlertController, specify the title, message, and alert style. The alert style
can be either Alert or ActionSheet. The Alert style is a dialog that appears in the center of
the screen. The ActionSheet style is a control that slides up from the bottom with a series of
buttons. The following code is a simple alert:

let baconAlert = UIAlertController(title: "More Bacon?",
 message: "Would you like some more bacon?", preferredStyle: .Alert)

This alert looks like Figure 5-7.

128 CHAPTER 5: iOS Applications

An Alert and an Action Sheet have very common elements, which is why Apple refactored
them into UIAlertController. UIAlertController has a collection of actions that you add
to the controller to respond to different actions. To add a “Cancel” action and “OK” action to
the baconAlert controller, use UIAlertAction and UIAlertController.addAction:. For each
UIAlertAction the controller adds a button with a title, a style, and a callback. There are
three styles to choose from:

	Default – Use this style to confirm an action, gather input, or answer a
question.

	Cancel – Use this style to indicate that an action will cancel the
operation and no data will be updated.

	Destructive – Use this style to indicate that the action may change or
delete data.

Figure 5-7. Example Alert style dialog created with UIAlertController

129CHAPTER 5: iOS Applications

To ask the question “Do you want more bacon?” add two actions: one cancel style and one
default style. Supply a trailing closure as the second parameter. The closure is called when
the user taps the corresponding button:

let cancelAction = UIAlertAction(title: "No", style: .Cancel) { (action) in
 self.dismissViewControllerAnimated(true, completion: nil)
}
baconAlert.addAction(cancelAction)

let OKAction = UIAlertAction(title: "Yes", style: .Default) { (action) in
 self.dismissViewControllerAnimated(true, completion: nil)
}
baconAlert.addAction(OKAction)

A destructive action only changes the style of the button. Your callback method must handle
all actual changes that should happen.

let NoMoreBacon = UIAlertAction(title: "Don't ask again", style: .Destructive) { (action) in
 self.dismissViewControllerAnimated(true, completion: nil)
}
baconAlert.addAction(NoMoreBacon)

The Code and Usage
To use the code from Listing 5-6, create a new single-view iOS application. See Recipe 5-1
for guidance on creating a project. Open the file ViewController.swift, and replace the
contents with Listing 5-6. Run the application.

Listing 5-6. UIAlertController in action

import UIKit

class ViewController: UIViewController {

 override func viewDidAppear(animated: Bool) {
 let baconAlert = UIAlertController(title: "More Bacon?",
 message: "Would you like some more bacon?", preferredStyle: .Alert)

 let cancelAction = UIAlertAction(title: "No", style: .Cancel) { (action) in
 self.dismissViewControllerAnimated(true, completion: nil)
 }
 baconAlert.addAction(cancelAction)

 let OKAction = UIAlertAction(title: "Yes", style: .Default) { (action) in
 self.dismissViewControllerAnimated(true, completion: nil)
 }
 baconAlert.addAction(OKAction)

130 CHAPTER 5: iOS Applications

 let NoMoreBacon = UIAlertAction(title: "Don't ask again", style: .Destructive) {
(action) in

 self.dismissViewControllerAnimated(true, completion: nil)
 }
 baconAlert.addAction(NoMoreBacon)

 self.presentViewController(baconAlert, animated: true, completion: nil)
 }
}

When the application launches, the alert will be displayed immediately. Tapping one of
the action buttons will trigger the closure associated with that action and the alert will be
dismissed.

5-8. Using UIAlertController to Collect User Input
Problem
You need to prompt the user for short text-based input.

Solution
Use UIAlertController with text fields.

How It Works
UIAlertController has the ability to add a list of text fields to be displayed for user input.
The result is something similar to the login alert dialogs you see in many iOS System
applications. In this recipe, you will make an alert that asks for a use name and password.
First, create the controller with the Alert style:

loginField : UITextField!
var passwordField : UITextField!

let loginAlert = UIAlertController(title: "Login",
 message: "Please enter your credentials", preferredStyle: .Alert)

Now you can add UITextFields to the alert. It is important to note that text fields can be
used only with the Alert style. The text fields are added to the alert using the method
addTextFieldWithConfigurationHandler:.

The method takes a closure with a single parameter. This closure is called when a
UITextField is instantiated for the alert. Use the closure to control the behavior of the text
field. Set any desired UITextField properties, such as the placeholder text and font styles.

https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIAlertController_class/#//apple_ref/occ/instm/UIAlertController/addTextFieldWithConfigurationHandler:%23Adds%20a%20text%20field%20to%20an%20alert.

131CHAPTER 5: iOS Applications

This is also the time to set a reference to the field. Use this reference to read the values from
the text field. Having to update the text-field attributes in a closure like this may seem a bit
odd, but it eliminates the need to subclass UIAlertController in order to make cosmetic
changes to the text fields and access the values in the text areas at a later point in the
code using a reference. In the following code, a text field is added to the alert. The closure
receives that new UITextField as a parameter. It sets the placeholder text and then saves
a reference to the text field to be used later. It does the same for both the user name and
password fields:

loginAlert.addTextFieldWithConfigurationHandler() { (textField) -> Void in
 textField.placeholder = "Username"
 self.loginField = textField
}

loginAlert.addTextFieldWithConfigurationHandler() { (textField) -> Void in
 textField.placeholder = "Password"
 textField.secureTextEntry = true
 self.passwordField = textField
}

Next add a cancel style button. For more information about adding buttons and configuring
UIAlertController, see Recipe 5-7. The code for this cancel button will dismiss the alert:

let cancelAction = UIAlertAction(title: "Cancel", style: .Cancel) {
 (action) in
 self.dismissViewControllerAnimated(true, completion: nil)
}
loginAlert.addAction(cancelAction)

Use the properties loginField and passwordField to access the values of the text fields. You
do this in the UIAlertAction callback:

let OKAction = UIAlertAction(title: "Login", style: .Default) { (action) in
 let username = self.loginField.text
 let password = self.passwordField.text
 NSLog("Username: \(username)\nPassword: \(password)")
 self.dismissViewControllerAnimated(true, completion: nil)
}
loginAlert.addAction(OKAction)
self.presentViewController(loginAlert, animated: true, completion: nil)

132 CHAPTER 5: iOS Applications

The Code and Usage
Create a single-view iOS Application in Xcode. (See Recipe 5-1.) Open the file
ViewController.swift, and replace the contents with the code in Listing 5-7. Run the
application.

Listing 5-7. Capturing user input with UIAlertController

import UIKit

class ViewController: UIViewController {

 var loginField : UITextField!
 var passwordField : UITextField!

 override func viewDidAppear(animated: Bool) {
 let loginAlert = UIAlertController(title: "Login",
 message: "Please enter your credentials", preferredStyle: .Alert)

 loginAlert.addTextFieldWithConfigurationHandler() { (textField) -> Void in
 textField.placeholder = "Username"
 self.loginField = textField
 }
 loginAlert.addTextFieldWithConfigurationHandler() { (textField) -> Void in
 textField.placeholder = "Password"
 textField.secureTextEntry = true
 self.passwordField = textField
 }

 let cancelAction = UIAlertAction(title: "Cancel", style: .Cancel) { (action) in
 self.dismissViewControllerAnimated(true, completion: nil)
 }
 loginAlert.addAction(cancelAction)

 let OKAction = UIAlertAction(title: "Login", style: .Default) { (action) in
 let username = self.loginField.text
 let password = self.passwordField.text
 NSLog("Username: \(username)\nPassword: \(password)")
 self.dismissViewControllerAnimated(true, completion: nil)
 }
 loginAlert.addAction(OKAction)
 self.presentViewController(loginAlert, animated: true, completion: nil)
 }
}

133CHAPTER 5: iOS Applications

An alert will open immediately, asking for a user name and a password. When the “Login”
button is tapped, the closure for OKAction will be called and the values are read into local
variables. The alert then disappears from the screen in the simulator or device. In the
console, you should see output similar to this:

Username: myUser Password: myPassword

5-9. Creating a UITableView
Problem
You need to display a table of values and let the user scroll and read the list.

Solution
Use UITableView to display a list of data.

How It Works
The UITableView is a cornerstone of the iOS user interface. It is used everywhere from
iTunes, Contacts and Calendar to third-party apps. It can deal with small or large amounts
of data. A UITableView is typically managed by a subclass of UITableViewController. It can
be managed by any class as long as it conforms to the UITableViewDelegate protocol and
UITableViewDataSource. The UITableViewDelegate protocol deals with the user-interaction
events that occur within the UITableView. The UITableViewDataSource protocol allows the
UITableView to retrieve data that will be displayed in the table.

There are three primary methods that must be implemented as part of the
UITableViewDataSource protocol. The UITableView calls these methods when it requires
information about the data to be displayed. Table 5-3 lists those methods and their use.

Table 5-3. Methods Used to Populate a UITableView

Method Usage

tableView:numberOfSectionsInTableView Returns an integer indicating the number of sections
to be displayed in a UITableView. A section subdivides
the table view into groups. For example, in the Apple
Contacts app, the table view of contacts has a section
for each letter of the alphabet. See Figure 5-9.

tableView:numberOfRowsInSection Returns the total number of items in the dataset.

tableView:cellForRowAtIndexPath: Returns an instance of a UITableViewCell to be used
to display a row in the table view.

134 CHAPTER 5: iOS Applications

First, implement the tableView:numberOfSectionsInTableView:. In this recipe, it will be 1.
A table view always has at least one section. If there is only a single section, no section
header will be displayed. Create the method as follows:

override func numberOfSectionsInTableView(tableView: UITableView) -> Int {
 return 1
}

Figure 5-8 shows the Apple address book. This is an example of multiple sections.
Each letter in the gray bar indicates the header of the section. The section’s rows follow
immediately under the header.

Figure 5-8. The Contacts application has sections to divide the contact list alphabetically

135CHAPTER 5: iOS Applications

Next, you need a data source. Use a string array of the names of the 50 states. Then you
can implement tableView:numberOfRowsInSection: and return the count of elements in
the array:

var states = ["Alabama","Alaska","Arizona","Arkansas","California","Colorado","Connecticut",
 "Delaware","District Of Columbia","Florida","Georgia","Hawaii","Idaho",
 "Illinois","Indiana","Iowa","Kansas","Kentucky","Louisiana","Maine",
 "Maryland","Massachusetts","Michigan","Minnesota","Mississippi","Missouri",
 "Montana","Nebraska","Nevada","New Hampshire","New Jersey","New Mexico",
 "New York","North Carolina","North Dakota","Ohio","Oklahoma","Oregon",
 "Pennsylvania","Rhode Island","South Carolina","South Dakota","Tennessee","Texas",

"Utah",
 "Vermont","Virginia","Washington","West Virginia","Wisconsin","Wyoming"]

 override func tableView(tableView: UITableView, numberOfRowsInSection section:
Int) -> Int {
 return states.count
}

The last method required is the tableView:cellForRowAtIndexPath: method. This method
returns a UITableViewCell with the proper information populated.

First, you will need to have an instance of UITableViewCell. For efficiency, UITableView
performs animations that make it appear like a user is scrolling through a large number
of table cells. However, it limits the number of UITableViewCell instances that need to be
created. The UITableView requires only enough cells to display on screen and to create the
scrolling animation. After that number of cells is created, it will then reuse those cells over
and over as the user scrolls through data.

Check for a reusable cell using dequeueReusableCellWithIdentifier:. The identifier is a
string used to search for a cell to reuse:

var cell = tableView.dequeueReusableCellWithIdentifier("Cell") as UITableViewCell?

If a reusable cell is not available, nil is returned. In this case, instantiate a new cell,
providing a UITableViewStyle value and an identifier string. There are four built-in types of
UITableViewCells. Table 5-4 lists the styles and an example of how the style appears.
The example also indicates the position of text within the cell, which is dictated by the style.
For this recipe, use UITableViewCellStyle.Default to create the UITableViewCell:

if cell == nil {
 cell = UITableViewCell(style: UITableViewCellStyle.Default,
 reuseIdentifier: "Cell")
}

136 CHAPTER 5: iOS Applications

You now have an instance of UITableViewCell and can populate the table cell with your
data. In this recipe, you have only one field of data. There are two UILabel properties
available on a UITableViewCell instance: textLabel and detailTextLabel. The placement
depends on the style of the cell. Refer to table Table 5-4 to reference the locations of
the labels.

The label with the text “Title” is set using the textLabel property, and the label with the text
“Subtitle” is set using the detailTextLabel property. Set the text of the textLabel with the
name of the state for the row indicated by the indexPath parameter. The IndexPath type has
two properties, section and row. The section is the index of the section the UITableView
that is being drawn. The row is the index of the row in the table view that is being drawn.
In this recipe, you need only the row because there is one section. Use the row as an index
of the states array:

cell?.textLabel?.text = states[indexPath.row]
cell?.detailTextLabel?.text = "Subtitle"
return cell!

Finally, return cell from the method.

The Code and Usage
For this recipe, launch Xcode and create a new iOS project, but this time, select the “Master-
Detail Application” template. On the next screen, set your “Product Name” to “UITableView”
and make sure “Swift” is selected as the language. Next, change the “Devices” selection
to “iPhone.” This template creates a working UITableView project, and restricting it to the
iPhone keeps the amount of templated files to a minimum. Save your project.

The project should open automatically. In the project, there is a file named
MasterViewController.swift. This contains boilerplate code for using a UITableView.
To use the code in this recipe, copy all of Listing 5-8 and replace the contents of
MasterViewController.swift. No other modifications are required. Run the application.

Table 5-4. The UITableViewCellStyle Enumeration

Style Example

Default

Value1

Value2

Subtitle

137CHAPTER 5: iOS Applications

Listing 5-8. Displaying data in a UITableView

import UIKit

class MasterViewController: UITableViewController {

 override func viewDidLoad() {
 super.viewDidLoad()

 }

 override func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {

 var cell = tableView.dequeueReusableCellWithIdentifier("Cell") as! UITableViewCell?

 if cell == nil {
 cell = UITableViewCell(style: UITableViewCellStyle.Default, reuseIdentifier: "Cell")
 }

 cell?.textLabel?.text = states[indexPath.row]
 cell?.detailTextLabel?.text = "Subtitle"

 return cell!
 }

 var states = ["Alabama","Alaska","Arizona","Arkansas","California","Colorado","Connecticut",
 "Delaware","District Of Columbia","Florida","Georgia","Hawaii","Idaho",
 "Illinois","Indiana","Iowa","Kansas","Kentucky","Louisiana","Maine",
 "Maryland","Massachusetts","Michigan","Minnesota","Mississippi","Missouri",
 "Montana","Nebraska","Nevada","New Hampshire","New Jersey","New Mexico",
 "New York","North Carolina","North Dakota","Ohio","Oklahoma","Oregon",
 "Pennsylvania","Rhode Island","South Carolina","South Dakota","Tennessee","Texas","Utah",
 "Vermont","Virginia","Washington","West Virginia","Wisconsin","Wyoming"]

 override func tableView(tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
 return states.count
 }

 override func numberOfSectionsInTableView(tableView: UITableView) -> Int {
 return 1
 }
}

138 CHAPTER 5: iOS Applications

The application will present a list of the states as they are in the states array. You can scroll the
list to view all the values. On screen, the application should look something like Figure 5-9.

5-10. Swiping to Delete an Item from a UITableView
Problem
You would like users to be able to swipe to the left and have the option to delete a row.

Solution
Enable editing on the UITableView, and add code to remove the row from your data source.

Figure 5-9. UITableView of state names

139CHAPTER 5: iOS Applications

How It Works
For this recipe, you will build upon the code from Recipe 5-9, “Creating a UITableView.”
The UITableView control already has the “swipe to delete” functionality built in. Activate it by
implementing two methods: tableView:editingStyleForRowAtIndexPath: and tableView:
commitEditingStyle:forRowAtIndexPath:. The first method indicates to the UITableView
what editing options are available for each row.

Add the method tableView:editingStyleForRowAtIndexPath:. The method returns a value
of UITableViewCellEditingStyle.Delete. This indicates to the table view that the row may
be deleted. Without performing any checks, the table view will allow you to delete any row.
If you want to protect the row from deletion, return UITableViewCellEditingStyle.None.

Note You must implement both methods; otherwise, swiping left on a row will have no effect.

override func tableView(tableView: UITableView,
 editingStyleForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCellEditingStyle {
 return UITableViewCellEditingStyle.Delete
}

Next, implement tableView:commitEditingStyle:forRowAtIndexPath:. This method will do
the work of removing the data and updating the table view to remove the row. It takes three
parameters:

	tableView – The tableView that originated the method call.

	editingStyle – The UITableViewCellEditingStyle value of the action
that is taking place.

	indexPath – The IndexPath corresponding to the section and row that
the user acted upon.

Create the method:

override func tableView(tableView: UITableView,
 commitEditingStyle editingStyle: UITableViewCellEditingStyle,
 forRowAtIndexPath indexPath: NSIndexPath) {

When the user taps the delete button, the method is called with the proper values. The
parameter editingStyle is the value UITableViewCellEditingStyle.Delete. This method
is called for other editing actions, so you must check the editing style to determine what
actions to take:

switch editingStyle
 {
 case .Delete:

140 CHAPTER 5: iOS Applications

To remove a row, first remove the value from the states array using indexPath.row. In this
case, you do not need to check indexPath.section because there is only a single section:

states.removeAtIndex(indexPath.row)

After the row in the tableView has been removed, the table view and the states array are
out of sync. The table view still contains the UITableViewCell for that row. To remove it, call
tableView.deleteRowsAtIndexPaths:. The parameters are an array of NSIndexPath objects
and an animation to use when any rows are removed. Use UITableViewRowAnimation.Fade
and the row will fade out, and then the rows below it will close up the space:

 tableView.deleteRowsAtIndexPaths([indexPath], withRowAnimation:
 UITableViewRowAnimation.Fade)

Complete the remainder of
 default:
 return
 }
}

The Code and Usage
To work with Listing 5-9, first use Recipe 5-9 to create a project containing a UITableView
with a list of the 50 United States and the District of Columbia. Replace the contents of
MasterViewController.swift with the code from Listing 5-9. The UITableView does all the
work of handling a left swipe and displaying the delete button.

The code in tableView:commitEditingStyle:forRowAtIndexPath: handles the removal of
data and updates the interface. Run the application.

Listing 5-9. Implement swipe and delete with a UITableView

import UIKit

class MasterViewController: UITableViewController {
 override func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {

 var cell = tableView.dequeueReusableCellWithIdentifier("Cell") as! UITableViewCell?

 if cell == nil {
 cell = UITableViewCell(style: UITableViewCellStyle.Default, reuseIdentifier:

"Cell")
 }

 cell?.textLabel?.text = states[indexPath.row]
 cell?.detailTextLabel?.text = "Subtitle"

 return cell!
 }

141CHAPTER 5: iOS Applications

 var states = ["Alabama","Alaska","Arizona","Arkansas","California","Colorado",
"Connecticut",

 "Delaware","District Of Columbia","Florida","Georgia","Hawaii","Idaho",
 "Illinois","Indiana","Iowa","Kansas","Kentucky","Louisiana","Maine",
 "Maryland","Massachusetts","Michigan","Minnesota","Mississippi","Missouri",
 "Montana","Nebraska","Nevada","New Hampshire","New Jersey","New Mexico",
 "New York","North Carolina","North Dakota","Ohio","Oklahoma","Oregon",
 "Pennsylvania","Rhode Island","South Carolina","South Dakota","Tennessee",

"Texas","Utah",
 "Vermont","Virginia","Washington","West Virginia","Wisconsin","Wyoming"]

 override func tableView(tableView: UITableView, numberOfRowsInSection section:

Int) -> Int {
 return states.count
 }

 override func numberOfSectionsInTableView(tableView: UITableView) -> Int {
 return 1
 }

 override func tableView(tableView: UITableView,
 editingStyleForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCellEditingStyle {
 return UITableViewCellEditingStyle.Delete
 }

 override func tableView(tableView: UITableView,
 commitEditingStyle editingStyle: UITableViewCellEditingStyle,
 forRowAtIndexPath indexPath: NSIndexPath) {
 switch editingStyle
 {
 case .Delete:
 states.removeAtIndex(indexPath.row)
 tableView.deleteRowsAtIndexPaths([indexPath],
 withRowAnimation:UITableViewRowAnimation.Fade)
 default:
 return
 }
 }
}

142 CHAPTER 5: iOS Applications

Figure 5-10. The Delete button after the user has swiped the row to the left

Then swipe left on a row. A Delete button will appear as in Figure 5-10. Tap the Delete button
and tableView:commitEditingStyle:forRowAtIndexPath: will be called to handle the delete.

The row will disappear, and the surrounding rows will compress to close the space.

143

Chapter 6
OS X Applications

Apple has worked hard to integrate the same technologies used in iOS development into
OS X applications. This allows developers to create applications that operate on the entire
Apple ecosystem, including Mac, iPhone, iPad, and iPod. The OS X App Store is another
potential revenue opportunity for developers. The recipes in this chapter will help you build
OS X applications. The more platforms your application is available on, the more useful your
application is to users. Much of OS X programming is similar to iOS; however, the primary
framework—AppKit—is a different set of user-interface components and APIs. In addition,
OS X applications frequently use multiple windows, toolbars, menus, and other desktop
paradigms.

The recipes in this chapter cover these topics:

Creating an OS X Application	

Adding a View to a Window	

Adding a Menu and Menu Items	

Adding a Button to a Window	

Using an NSTextField	

Displaying an Image in a Window	

Adjusting Contents When a Window Is Resized	

Implementing an NSTableView	

Sorting an NSTableView	

Handling the Selection of an NSTableView Row	

144 CHAPTER 6: OS X Applications

6-1. Creating an OS X Application
Problem
You want to create a new OS X application.

Solution
Use the Cocoa Application template in Xcode.

How It Works
Xcode provides a number of project templates for OS X applications just like the iOS
templates. Launch Xcode, and select File ➤ New ➤ Project from the menu. A dialog of
project templates is displayed. A list of application categories is on the left side of the
dialog. Under the “OS X” section choose “Application.” Then select “Cocoa Application.”
See Figure 6-1.

Figure 6-1. Select the Cocoa Application template

145CHAPTER 6: OS X Applications

As shown in Figure 6-2, in the next dialog you give your application a name, select Swift as
the language, clear the “Use Storyboards” option, and clear the “Create Document-Based
Application” option.

Figure 6-2. Project options dialog

The template includes some default files. The file AppDelegate.swift is the root of the
application. It is the delegate’s job to create the initial screens and view controllers of the
application. The file named MainMenu.xib is an Interface Builder file in XML format. This
xib file contains information about the windows of the application, as well as menus and
additional resources. OS X applications, unlike iOS applications, are typically made up
of multiple windows that can be active at once. These windows are resizable and can be
positioned anywhere on the screen. iOS applications are single-window applications with
multiple views displayed one at a time.

The Code and Usage
The default application template includes a single window. Listing 6-1 contains the
AppDelegate class for the application. Run the application.

146 CHAPTER 6: OS X Applications

Listing 6-1. AppDelegate.swift

import Cocoa

@NSApplicationMain
class AppDelegate: NSObject, NSApplicationDelegate {

 @IBOutlet weak var window: NSWindow!

 func applicationDidFinishLaunching(aNotification: NSNotification) {
 // Insert code here to initialize your application
 }

 func applicationWillTerminate(aNotification: NSNotification) {
 // Insert code here to tear down your application
 }
}

The application loads, and the menu and default window are displayed.

6-2. Adding a View to a Window
Problem
You need to add a view to your OS X application’s main window.

Solution
Create and add an NSView to the window’s contentView property.

How It Works
The OS X user interface, like its iOS counterpart, is made up of objects derived from a view.
In OS X, NSView is the equivalent of UIView in iOS. Use a CGRect to establish the x,y position
and the height and width of the view. In OS X, a Cartesian coordinate system is used. The
origin of the system is at the bottom left of the window or view. If you are coming from iOS,
which places its origin at the top left, you can get mixed up. Apple advises that you use
Cartesian coordinates, but it is possible to “flip” the coordinate system and work with a
similar system as iOS. For this recipe, we will use Cartesian coordinates.

Create a new NSView with a CGRect. This view will appear in the bottom left corner of the
application’s window and be a 300x300 square:

var view = NSView(frame: CGRect(x: 10, y: 10, width: 300, height: 300))

147CHAPTER 6: OS X Applications

If you want to make the view a blue square, you need to set the backgroundColor property.
However, the NSView class does not have a property to set the background color. Instead,
you can change the color of the view’s layer. By default, NSView does not have layers. To
set the backgroundColor, you first need a layer. To create a layer-backed NSView, set the
wantsLayer property. The NSView creates a layer and manages it for you. Set the background
color of the label to the blue color:

view.wantsLayer = true
view.layer?.backgroundColor = NSColor.blueColor().CGColor

Now your view is configured. An OS X window has a property named contentView. This view
holds the view hierarchy displayed within the window. Add your new view as a subview:

self.window.contentView.addSubview(view)

The Code and Usage
Listing 6-2 adds an NSView to the window of a basic Cocoa application. Follow Recipe 6-1 to
create a new OS X Cocoa application. Then replace the contents of AppDelegate.swift with
Listing 6-2. Run the application.

Listing 6-2. AppDelegate.swift

import Cocoa

@NSApplicationMain
class AppDelegate: NSObject, NSApplicationDelegate {

 @IBOutlet weak var window: NSWindow!

 func applicationDidFinishLaunching(aNotification: NSNotification) {
 var view = NSView(frame: CGRect(x: 10, y: 10, width: 300, height: 300))

 view.wantsLayer = true
 view.layer?.backgroundColor = NSColor.blueColor().CGColor

 self.window.contentView.addSubview(view)
 }
}

You will see the application’s window with a blue square in the bottom-left corner.

148 CHAPTER 6: OS X Applications

6-3. Adding a Menu and Menu Items
Problem
You need to add a custom menu to your application.

Solution
Create an NSMenu and then add NSMenuItems classes to create a menu.

How It Works
The items Menu, File, Edit, Format View, Window, and Help, shown in Figure 6-3, are
instances of NSMenuItem. Each menu item contains an NSMenu instance. NSMenu has a
collection of NSMenuItems that are displayed in the menu. In Figure 6-2, the “Menu” item is
opened. The items “About Menu,” “Preferences,” “Services,” “Hide Menu,” “Hide Others,”
“Show All,” and “Quit Menu” are menu items.

Figure 6-3. The menu bar and a menu containing NSMenuItems

First, create an NSMenuItem. The NSMenuItem initializer takes three properties:

	title – The title of the menu item to be displayed.

	action – A Selector that should be called when the menu item is
selected by a user.

	keyEquivalent – A character to be used as the key of a Command-Key
combination bound to this menu item.

The title parameter is the text that will appear in the menu bar. A menu item that is added to
the menu bar does not need to provide an action. It will automatically display its associated
menu when the user clicks on the menu. Use nil to indicate there is no related Selector.

149CHAPTER 6: OS X Applications

Menu items in the main bar do not have key commands associated with them, so pass an
empty string for keyEquivalent:

var myMenuBarItem =
 NSMenuItem(title: "My Menu", action: nil, keyEquivalent: "")

Then create the menu and set it as the submenu for myMenuBarItem:

var myMenu = NSMenu(title: "My Menu")
myMenuBarItem.submenu = myMenu

Next add an NSMenuItem for each option in the menu. When the menu item is selected or the
user presses the Command-Key combination, it will call the Selector you provided.

Create three menu items. On the first item, use a keyEquivalent of “k.” This will bind that
item to Command-k. Use a selector for a function menuItemSelect: for both the first and
second menu item. For the third item, use a selector for a function dontPickMe:. This
menu item will be used to demonstrate how menu items can be automatically enabled
and disabled based on updates in your application. This saves you the time and effort of
manually managing individual menu items:

var mi = NSMenuItem(title: "Pick me!",
 action: Selector("menuItemSelected:"), keyEquivalent: "k")
var mi2 = NSMenuItem(title: "Them Pick Me!",
 action: Selector("menuItemSelected:"), keyEquivalent: "")
var mi3 = NSMenuItem(title: "You can't pick me",
 action: Selector("dontPickMe:"), keyEquivalent: "")

Add each menu item to myMenu. The order in which they are added is the order they will
appear in the menu. Finally, add myMenuBarItem to the main menu. You can access the menu
bar through the NSApp class variable mainMenu:

myMenu.addItem(mi)
myMenu.addItem(mi2)
myMenu.addItem(mi3)

NSApp.mainMenu??.addItem(myMenuBarItem)

Now you need to add the functions to respond when a menu item is selected. Create the
functions menuItemSelected: and dontPickMe:. Each takes a single parameter of the type
NSMenuItem. This is the menu item that is the source of the event. Since menuItemSelected:
can be called by two different menus, print out the title of the menu item:

func menuItemSelected(sender : NSMenuItem) {
 println("Menu item selected: \(sender.title)")
}

func dontPickMe(sender : NSMenuItem) {
 println("This should not be called")
}

150 CHAPTER 6: OS X Applications

When developing applications on OS X, menu options should be enabled and disabled
based on the state of the application. If an action is unavailable or does not apply to the
current state, it should be disabled. By default, OS X menus are set to check with their target
to determine if they should be enabled or disabled. In this recipe, the target is the same
object that created the items. Your target must implement the NSUserInterfaceValidations
protocol. The method validateUserInterfaceItem: has a single parameter, which is a
user-interface item that conforms to the NSValidatedUserInterfaceItem protocol. NSMenuItem
instances will call this method on the delegate to determine its state. Your implementation
determines if the menu item being validated returns true (enabled) or false (disabled).

Since your delegate will most likely be handling multiple items, the validateMenuItem:
method will need to handle each of them. In order to do so, you will need to know which
user-interface element called the method. There are a number of ways to detect the source
menu item. In this recipe, you will use the Selector assigned to the item. You can also
use the tag property of the item. Both approaches can be used with code or the Interface
Builder. Now, implement the protocol method validateMenuItem:

override func validateMenuItem(menuItem: NSMenuItem) -> Bool {
 if menuItem.action == Selector("dontPickMe:")
 {
 return false
 }
 return true
}

In our current scenario, only one menu item should ever be disabled. When a user clicks on
“My Menu” in the menu bar, each menu item is validated by calling validateMenuItem:.
In this recipe, the menu item titled “You can’t pick me” will be disabled and the user cannot
select it.

The Code and Usage
To run this code, create a new OS X Cocoa application. Then replace the contents of
AppDelegate.swift with Listing 6-3. This code follows the steps provided in the recipe. It
creates the menu items, adds them to the menu bar, and implements the delegate method.
Run the application.

Listing 6-3. Adding a custom menu

import Cocoa

@NSApplicationMain
class AppDelegate: NSObject, NSApplicationDelegate {

 @IBOutlet weak var window: NSWindow!

 func applicationDidFinishLaunching(
 aNotification: NSNotification) {

 var myMenuBarItem = NSMenuItem(title: "My Menu",
 action: nil, keyEquivalent: "")
 var myMenu = NSMenu(title: "My Menu")

151CHAPTER 6: OS X Applications

 myMenuBarItem.submenu = myMenu

 var mi = NSMenuItem(title: "Pick me!",
 action: Selector("menuItemSelected:"), keyEquivalent: "k")
 var mi2 = NSMenuItem(title: "Then Pick Me!",
 action: Selector("menuItemSelected:"), keyEquivalent: "")
 var mi3 = NSMenuItem(title: "You can't pick me",
 action: Selector("dontPickMe:"), keyEquivalent: "")
 myMenu.addItem(mi)
 myMenu.addItem(mi2)
 myMenu.addItem(mi3)

 NSApp.mainMenu??.addItem(myMenuBarItem)
 }

 func menuItemSelected(sender : NSMenuItem) {
 println("Menu item selected: \(sender.title)")
 }

 func dontPickMe(sender : NSMenuItem) {
 println("This should not be called")
 }

 override func validateMenuItem(menuItem: NSMenuItem) -> Bool {
 if menuItem.action == Selector("dontPickMe:")
 {
 return false
 }
 return true
 }
}

The custom menu will be visible. Open the menu labeled “My Menu.” The menu item
“Pick Me” item is disabled.

6-4. Adding a Button to a Window
Problem
You need to add a button to your application.

Solution
Create an NSButton, and add it as a subview.

152 CHAPTER 6: OS X Applications

How It Works
On OS X, NSButton comes with a number of options to customize its appearance. It can be a
toggle, switch, radio, or normal button. Use the method NSButton.setButtonType: to set the
button’s type. It takes a single parameter, an NSButtonType. The NSButtonType enumeration
defines values for different styles and for the interaction of a button. Table 6-1 describes the
different button types and their uses. The MomentaryLightButton and MomentaryPushInButton
are most commonly used to trigger user actions.

Table 6-1. NSButtonType Enumeration

Value Description

MomentaryLightButton This button becomes illuminated when the button is pressed. If the
button has a border, it will push in.

PushOnPushOffButton This button will be highlighted and appear pushed in on the first click.
The second click returns the button to its original state.

ToggleButton A toggle button changes to an alternate image or title when pressed.
It maintains this state until it is clicked a second time.

SwitchButton This button has no border. It is used like a check box and looks like the
switch control in iOS.

RadioButton The radio button works like a switch button, but is grouped with other
radio buttons. When buttons are in the same group, only one can be
selected at a time.

MomentaryChangeButton When this button is pressed, an alternate image and title are displayed.
When the button is released, they return to the original state.

OnOffButton The first click of this button highlights it. The second click returns it to
normal. The button does not push in.

MomentaryPushInButton When this button is pressed it highlights. Its image or text remains
the same.

Create an NSButton using a CGRect to define its frame:

var button = NSButton(frame: CGRect(x: 100, y: 100, width: 80, height: 30))

Call setbuttonType: using a value from the NSButtonType enumeration. The default style is
MomentaryPushInButton:

button.setButtonType(NSButtonType.MomentaryLightButton)

Set the title property to change the text displayed on the button:

button.title = "Click Me!"

153CHAPTER 6: OS X Applications

The NSButton class uses the target/action pattern to indicate when the button has been
clicked. Set the target to the object that is going to handle the click event. Then use a
Selector to set the action property:

button.target = self
button.action = Selector("buttonClicked:")

Next, add the button to the window’s contentView property:

self.window.contentView.addSubview(button)

Finally, implement the action method to handle the button click:

func buttonClicked(sender : NSButton) {
 println("Button clicked")
}

The Code and Usage
Listing 6-4 shows the recipe code in its entirety. To use the code, follow Recipe 6-1 to
create a new OS X Cocoa application. Then replace the contents of AppDelegate.swift with
Listing 6-4. Run the application.

Listing 6-4. Adding an NSButton to a window

import Cocoa

@NSApplicationMain
class AppDelegate: NSObject, NSApplicationDelegate {

 @IBOutlet weak var window: NSWindow!

 func applicationDidFinishLaunching(aNotification: NSNotification) {
 var button =
 NSButton(frame: CGRect(x: 100, y: 100, width: 80, height: 30))

 button.setButtonType(NSButtonType.MomentaryLightButton)
 button.title = "Click Me!"
 button.target = self
 button.action = Selector("buttonClicked:")

 self.window.contentView.addSubview(button)
 }

 func buttonClicked(sender : NSButton) {
 println("Button clicked")
 }
}

If you click the button, you will see the text “Button clicked” in the output window in Xcode.
Try using different values for the button type to see how each looks and behaves.

154 CHAPTER 6: OS X Applications

6-5. Using an NSTextField
Problem
Your application needs the user to input text data.

Solution
Use an NSTextField to capture text input.

How It Works
When you need to collect user input, add an NSTextField to a window or view. The
NSTextField is a single-line input control that can deal with strings as well as numeric types
such as Float, Double, and Int.

In this recipe, the most common features of the NSTextField are presented, including
delegate events. Changes to an NSTextField can be detected by implementing the
NSTextFieldDelegate protocol. Add the protocol to the class that will implement the
delegate methods:

class AppDelegate: NSObject, NSApplicationDelegate, NSTextFieldDelegate

Add an IBOutlet for the NSTextField:

@IBOutlet var textField : NSTextField!

Create a CGRect to define the position and size of the textfield. Then use it to initialize an
NSTextField control:

var rect = CGRect(x: 10, y: window.frame.height – 20,
 width: 300.0, height: 20.0)
textField = NSTextField(frame: rect)

Set the delegate to self so that you can receive events when the field is updated. Finally,
add the control to the window’s contentView property:

textField.delegate = self
self.window.contentView.addSubview(textField)

Interacting with the NSTextField is a bit different than its iOS counterpart. NSTextField
derives from NSControl. Instead of a single property to get and set the contents of the field,
NSControl provides multiple properties for different types. There are properties for using
String, Double, Float, and Int. The names of these methods follow the same convention.
The convention for the property name is <type name>Value. For example, to set a string
value in a text field, use the property stringValue:

textField.stringValue = "Default value"

155CHAPTER 6: OS X Applications

You can read the value of the field at any time, but sometimes it is useful to be notified
when the user has modified the field. Earlier, you indicated that your class implements the
NSTextFieldDelegate protocol. The protocol method controlTextDidChange: is triggered
whenever the value of the field changes. The method receives an NSNotification as its
only parameter. It is used to determine the source control that raised the notification. This is
very useful if you have a user interface with multiple fields. For this recipe, print the value of
textField.stringValue to the console:

override func controlTextDidChange(obj: NSNotification) {
println("Text changed: \(textField.stringValue)")
}

When a user types in the field, this method will print out the value of the text field. The change
event is raised for each keypress, so you will see a line for each character that you type.

The Code and Usage
To use the code, follow Recipe 6-1 to create a new OS X Cocoa application. Then replace
the contents of AppDelegate.swift with Listing 6-5. Run the application.

Listing 6-5. Add an NSTextField to a window

import Cocoa

@NSApplicationMain
class AppDelegate: NSObject, NSApplicationDelegate, NSTextFieldDelegate {

 @IBOutlet weak var window: NSWindow!
 @IBOutlet var textField : NSTextField!

 func applicationDidFinishLaunching(aNotification: NSNotification) {

 var rect = CGRect(x: 10, y: window.frame.height - 50,
 width: 300.0, height: 20.0)
 textField = NSTextField(frame: rect)
 textField.delegate = self
 self.window.contentView.addSubview(textField)
}

 override func controlTextDidChange(obj: NSNotification) {
 println("Text changed: \(textField.stringValue)")
 }
}

156 CHAPTER 6: OS X Applications

An NSTextField is added to the window. Click on it to focus the text field and type a word
like “recipe.” You will see a line for each keypress in the console. It should look something
like this:

Text changed: r
Text changed: re
Text changed: rec
Text changed: reci
Text changed: recip
Text changed: recipe

6-6. Displaying an Image in a Window
Problem
You want to display an image in your OS X application.

Solution
Use the NSImage and NSImageView classes.

How It Works
The NSImageView class is used to display images in OS X. It is similar to UIImageView on iOS.
NSImage can load an image that is contained in your application bundle or accessible on the
hard drive. For this recipe, you will use an image in the bundle and assume the file is in the
root of the bundle. Add an image to your Xcode project. This recipe uses a photo of a ship.
The image can be found in the sample code for this recipe. Add the image to the project by
selecting File ➤ Add Files to [ProjectName]. You will need to tell Xcode to copy the image
into the project and select the project target. If you do not, the image will not be added to
the application bundle and will fail to appear. Figure 6-4 shows a screenshot of the dialog
that appears when an image is added to the application.

157CHAPTER 6: OS X Applications

Initialize the image using NSImage(name:). Give the name of the image using a relative path.
Since the image file is in the root of the bundle, use the name of the file without any path
ship.jpg. If the image was in the subfolder named “images,” the path would be
images/ship.jpg.

let image = NSImage(named: "ship.jpg")

Now create an NSImageView sized 300x200:

let rect = CGRect(x: 0, y: 0,
 width: 300, height: 200)
imageView = NSImageView(frame: rect)

Set the image property to the image you loaded from the bundle:

imageView.image = image

Finally add it to the window’s contentView property:

window.contentView.addSubview(imageView)

The image is displayed within the NSImageView.

Figure 6-4. When adding images, select “Copy items if needed” and select the target

158 CHAPTER 6: OS X Applications

The Code and Usage
Listing 6-6 loads an image, adds it to an NSImageView, and adds the view to the window. To run
the code, create a new OS X Cocoa application. Replace the contents of AppDelegate.swift
with Listing 6-6. Choose an image from your desktop, and add it to your project. Replace
ship.jpg with the name of your image. You can also find ship.jpg in the sample code for this
recipe. When you run the application, the image will be displayed in the window.

Listing 6-6. Adding an NSImageView to an NSWindow

import Cocoa

@NSApplicationMain
class AppDelegate: NSObject, NSApplicationDelegate {

 @IBOutlet weak var window: NSWindow!
 var imageView : NSImageView!
 var windowBarHeight : CGFloat = 0.0

 func applicationDidFinishLaunching(aNotification: NSNotification) {
 let image = NSImage(named: "ship.jpg")
 let rect = CGRect(x: 10, y: 10,
 width: 300, height: 200)

 imageView = NSImageView(frame: rect)
 imageView.image = image

 window.contentView.addSubview(imageView)
 }
}

6-7. Adjusting Contents When a Window Is Resized
Problem
OS X applications have windows that can be resized. You need to adjust the contents of
windows when they are resized.

Solution
Implement the NSWindowDelegate.windowWillResize:toSize: protocol method.

How It Works
The NSWindowDelegate.windowWillResize:toSize: method is called when a window is
resized. As the user drags the border of the window, this method is called multiple times as it
resizes. When you are implementing your resizing logic, take performance into consideration.
If you have complex drawing code, the resulting animation could become choppy as the
window resizes.

159CHAPTER 6: OS X Applications

In this recipe, you will create an OS X application that loads an image and resizes it as
the application window is resized. Start by adding the protocol NSWindowDelegate to your
AppDelegate:

class AppDelegate: NSObject, NSApplicationDelegate, NSWindowDelegate {

It is important to understand the relationship between the window and the window bar
positioned at the top. The total height of the window includes the window bar. In order
to properly position the image, you need to calculate the height of the window bar. If you
do not take this into account, the image could extend under the window bar. Figure 6-5
illustrates the height of this window.elements.

Figure 6-5. Illustration of the window, window bar, and visible area with their respective heights

Add ship.jpg to the project. See Recipe 6-6 for instructions on properly adding the image
file to the project. Then define a variable for an NSImageView to display the image and a Float
to hold the calculated size of the window’s bar:

var imageView : NSImageView!
var windowBarHeight : CGFloat = 0.0

Calculate the height of the window bar using window.contentRectForFrameRect: The method
takes a CGRect parameter. Create the CGRect with a 0,0 origin and the window’s width and
height. The method returns the height of the visible area in the window. See Figure 6-3 for

160 CHAPTER 6: OS X Applications

reference. The difference between the window’s height and the visible area is the height of
the window bar. Make the calculation, and assign it to the windowBarHeight property:

let rect = CGRect(x: 0, y: 0,
 width: window.frame.width, height: window.frame.height)

let contentRect = window.contentRectForFrameRect(rect)
windowBarHeight = window.frame.height - contentRect.height

Now you can add the image to the window. Create an NSImageView with the contentRect
variable:

imageView = NSImageView(frame: contentRect)

When the window resizes and you resize the NSImageView, the image should maintain its
aspect ratio so that it does not appear stretched or deformed. NSImageView can take care
of this for you. The class NSImageView has a property imageScaling of type NSImageScaling.
The NSImageScaling enumeration defines the following options:

	ImageScaleProportionallyDown – The image will maintain its aspect ratio
and will only be scaled down. This is useful for images that may be too
small to scale up without sacrificing quality.

	ImageScaleAxesIndependently – The image will not scale proportionally.
The image could be deformed using this scaling, but it fills the entire
area of the NSImageView.

	ImageScaleNone – The image will not be scaled when the size of the
image view changes.

	ImageScaleProportionallyUpOrDown – The image will scale up or down
while maintaining its aspect ratio.

For this recipe, scale proportionally up and down:

imageView.imageScaling = .ImageScaleProportionallyUpOrDown

Create an instance of NSImage using the name of the image file:

imageView.image = NSImage(named: "ship.jpg")

Note If the image does not appear when you run the application, chances are the image was not
found within the bundle. In addition, the file name is case sensitive, so Ship.jpg will not work
if the name of the file is ship.jpg with a lowercase “s.” Also, check to make sure the image is
properly assigned to the target so that it will be copied to the application bundle.

161CHAPTER 6: OS X Applications

Add the image view to the window:

window.contentView.addSubview(imageView)

Then assign self to window.delegate. You can also implement the NSWindowDelegate in a
separate class, but in this recipe, the same class is used for simplicity:

window.delegate = self

Using this code, the image will appear in the window. Now you need to add
code to adjust the size when the window is resized. Create the delegate method
windowWillResize:toSize:. This method returns an NSSize. Use the toSize parameter to
change the size of the NSImage to match the new window size. Keep the origin of the image
at 0,0. The width should be the same width as the window. The height must be adjusted to
account for the window bar by taking that value from the window’s height:

func windowWillResize(sender: NSWindow, toSize frameSize: NSSize) -> NSSize {
 imageView.frame = NSRect(
 x: imageView.frame.origin.x,
 y: imageView.frame.origin.y,
 width: frameSize.width,
 height: frameSize.height - windowBarHeight)

 return frameSize
}

The method must return an NSSize value. In this situation, return the frameSize parameter. The
value of this parameter is the height and width of the window after it was resized by the user.

In other situations, you can use this method to limit the way a window is resized. For
example, if the window should not exceed 300 points high, you can return an NSSize with
a maximum height of 300. If you want to prevent a window from resizing entirely, return
sender.frame.size, which is the current size of the window.

The Code and Usage
Listing 6-7 calculates the proper size of the visible area of a window. Then it loads an
image and will resize that image as the window is resized. To use the code, create a new
OS X Cocoa application. Replace the contents of AppDelegate.swift with the contents of
Listing 6-7. Find an image you want to use. Add that image to the project. Then change the
following line to the proper file name to match this image:

imageView.image = NSImage(named: "ship.jpg")

Run the application.

162 CHAPTER 6: OS X Applications

Listing 6-7. Resizing an NSImageView when a window is resized

import Cocoa

@NSApplicationMain
class AppDelegate: NSObject, NSApplicationDelegate, NSWindowDelegate {

 @IBOutlet weak var window: NSWindow!
 var imageView : NSImageView!
 var windowBarHeight : CGFloat = 0.0

 func applicationDidFinishLaunching(aNotification: NSNotification) {
 let rect = CGRect(x: 0, y: 0,
 width: window.frame.width, height: window.frame.height)

 let contentRect = window.contentRectForFrameRect(rect)
 windowBarHeight = window.frame.height - contentRect.height

 imageView = NSImageView(frame: contentRect)
 imageView.imageScaling = .ImageScaleProportionallyUpOrDown
 imageView.image = NSImage(named: "ship.jpg")

 window.contentView.addSubview(imageView)
 window.delegate = self
 }

 func windowWillResize(sender: NSWindow, toSize frameSize: NSSize) -> NSSize {
 imageView.frame = NSRect(
 x: imageView.frame.origin.x,
 y: imageView.frame.origin.y,
 width: frameSize.width,
 height: frameSize.height - windowBarHeight)

 return frameSize
 }
}

A window should open and the image is displayed. Resize the window, and the image will be
proportionally resized to fit the window’s new size.

6-8. Implementing an NSTableView
Problem
You want to display data in a multicolumn table.

Solution
Use NSTableView to create a table of data with multiple rows and columns and the ability to
sort and reorder columns.

163CHAPTER 6: OS X Applications

How It Works
In this recipe, you will be using the Interface Builder to get started. The remainder of the
recipe focuses on writing Swift code to implement an NSTableView delegate and data source.

Start with a new OS X Cocoa application. Follow Recipe 6-1 to create the new project.
The file MainMenu.xib is part of the default template and contains a default window for the
application. Open MainMenu.xib and select the window. Then drag an NSTableView from the
object library onto the window. The NSTableView should be selected. Set its height and
width to the dimensions of the window by clicking and dragging the resizing handles to the
outer edge of the window. See Figure 6-6 for reference.

Figure 6-6. Resizing the NSTableView to fit the window

Next, select the table view from the Document Outline. Make sure you actually choose the
table view. OS X items are usually embedded in scroll views and other containers. In the
Interface Builder, use the left tree navigation to find and expand the NSTableView item
(as shown in Figure 6-7).

164 CHAPTER 6: OS X Applications

The table view will have two columns by default. In the tree view, select the first column.
Change its identifier to “RecipeName” in the Identity inspector. Then, in the Attributes
Inspector, update the Title of the column to read “Recipe Name.” Next, select the second
column in the table view. Set its identifier to “PreparationTime,” and change the Title to
“Preparation Time.”

The dataSource and delegate outlets need to be connected to the AppDelegate class in
order to operate properly. In the Interface Builder, use the tree view and locate the Table
View. Control-Drag from the table view to the AppDelegate. (See Figure 6-8.) When you
release, a pop-up menu appears. Select dataSource. Then repeat the action, but select
delegate instead. This connects the table view to the AppDelegate class. NSTableView uses
the dataSource outlet to retrieve information and obtain cells to be displayed within the grid.

Figure 6-7. Expand the NSTableView

165CHAPTER 6: OS X Applications

The data source tells the table view how many rows it contains and provides cells to be
displayed inside the table view. This recipe will display a list of recipes in an NSTableView.
First, you will need an array containing the recipe data. Implement a class to hold the recipe
information. Create a new Swift file named Recipe.swift, and implement a Recipe class.

Figure 6-8. Connect the dataSource and delegate outlets to the AppDelegate

166 CHAPTER 6: OS X Applications

Add two properties, a String and an Int, one for each column. Add an init method to set
the values of the properties:

class Recipe {
 var recipeName : String
 var preparationTime : Int
 init(recipeName : String, preparationTime: Int) {
 self.recipeName = recipeName
 self.preparationTime = preparationTime
 }
}

In addition to the data source, NSTableView also requires a delegate to handle selections
and other user actions related to the table view. For this recipe, use the AppDelegate
class as the delegate and data source. Add the protocols NSTableViewDataSource and
NSTableViewDelegate to the AppDelgate declaration. Recipes 6-9 and 6-10 discuss using the
NSTableViewDelegate protocol to handle user interaction:

@NSApplicationMain
class AppDelegate: NSObject, NSApplicationDelegate,
 NSTableViewDataSource, NSTableViewDelegate {
@IBOutlet weak var window: NSWindow!

Add an array property to the AppDelegate class, and initialize the array with data:

var recipes = [
 Recipe(title: "Apple Pie", preparationTimeInMinutes: 30),
 Recipe(title: "Cherry Pie", preparationTimeInMinutes: 30),
 Recipe(title: "Turkey", preparationTimeInMinutes: 180),
 Recipe(title: "Stuffing", preparationTimeInMinutes: 15)
]

Implement tableView:numberOfRowsInTableView: to return array.count:

func numberOfRowsInTableView(tableView: NSTableView) -> Int {
 return recipes.count
}

NSTableViewDataSource protocol includes a method named tableView:viewForTableColumn:

func tableView(tableView: NSTableView,
 viewForTableColumn tableColumn: NSTableColumn?, row: Int) -> NSView? {

This returns a view that is displayed within a single cell of the table view. This recipe
uses what is referred to as an NSView-based table view as opposed to an NSCell-based
tableView. NSCell is the older style of creating cells for a table view. NSView-based table
views are now preferred. iOS has had the benefit of starting almost 10 years after OS X and
its APIs, and interfaces are a bit more polished. Apple is improving and modernizing OS X to
operate similarly to iOS, but be aware that sometimes the OS X AppKit API operates quite
differently from its UIKit counterpart.

167CHAPTER 6: OS X Applications

NSTableView is very efficient in the way it draws itself. Like UITableView, it creates
only enough views to draw the visible part of the screen. It then recycles those
views and gives the impression during scrolling that movement is happening. Use
makeViewWithIdentifier:owner: to retrieve a reusable view:

var textField = tableView.makeViewWithIdentifier("TextCell",
 owner: self) as! NSTextField?

If a view is not available, the method returns nil. If there is not a view to reuse, create a
new NSTextField. This recipe will display two columns, a String and an Int, both using
NSTextField. You can use any view-based class as long as it derives from NSView. Set the
width of the NSTextField to one half the width of the window. This will make both columns
the same width. Alternatively, the widths can be set in the Interface Builder. You must set
the width of the cell, but the height of the cell is determined by the height of the row. As a
best practice, use a proper height value anyway. NSTableView calculates the actual height.
After the new NSTextField is instantiated, you might also want to change the NSTextField’s
appearance.

Table 6-2 lists some NSTextField properties that affect the appearance and function of
the field.

Table 6-2. NSTextField Properties

Property Usage

editable : Bool Used to determine if a user can edit the contents of the
field. Defaults to true.

bordered : Bool If false, no border will be drawn around the field. Defaults
to true.

bezeled : Bool If false, no bezel will be drawn around the field. Defaults to
true. The bezel style is set using the bezelStyle property.

bezelStyle : NSTextFieldBezelStyle SquareBezel is a rectangular bezel around the field.
RoundedBezel displays a rounded rectangle.

drawsBackground : Bool Indicates if the cell should draw its own background color.
Defaults to true.

Create the NSTextField, and set any properties to change its appearance:

if textField == nil {
 textField = NSTextField(frame: CGRect(x: 0,y: 0,
 width: window.frame.width/2, height: 20))
 textField?.identifier = "TextCell"
 textField?.editable = false
 textField?.bordered = false
 textField?.bezeled = false
 textField?.drawsBackground = false
}

168 CHAPTER 6: OS X Applications

After the field is created or retrieved, it is time to set the contents of the field. The parameter
tableColumn is used to determine what information you need to display in the cell. Earlier,
you added an identifier to each NSTableViewColumn. Compare this identifier to determine the
value you need to display in the view. Then assign the respective value to the NSTextField:

if let column = tableColumn {

 switch column.identifier {
 case "RecipeName":
 textField?.stringValue = recipes[row].recipeName
 case "PreparationTime":
 textField?.stringValue = "\(recipes[row].preparationTime)"
 default:
 break
 }
}
return textField
}

This is the bare minimum you need to implement an NSTableView. It doesn’t do much right
now except display information. Recipe 6-9 shows you how you can sort columns in the
table, and Recipe 6-10 focuses on handling row-selection events.

The Code and Usage
This recipe implements an NSTableView using the NSTableViewDataSource protocol. Create
a new OS X Cocoa application. Replace the contents of AppDelegate.swift with the code
in Listing 6-8. Follow the instructions in this recipe to use Interface Builder to create the
NSTableView and connect the outlets. Then run the application.

Listing 6-8. Implementing the NSTableViewDataSource protocol

import Cocoa

@NSApplicationMain
class AppDelegate: NSObject, NSApplicationDelegate, NSTableViewDataSource {
 @IBOutlet weak var window: NSWindow!

 var recipes = [
 Recipe(recipeName: "Apple Pie", preparationTime: 30),
 Recipe(recipeName: "Cherry Pie", preparationTime: 30),
 Recipe(recipeName: "Turkey", preparationTime: 180),
 Recipe(recipeName: "Stuffing", preparationTime: 15)
]

 func numberOfRowsInTableView(tableView: NSTableView) -> Int {
 return recipes.count
 }

169CHAPTER 6: OS X Applications

 func tableView(tableView: NSTableView,
 viewForTableColumn tableColumn: NSTableColumn?, row: Int) -> NSView? {

 var textField = tableView.makeViewWithIdentifier("TextCell",
 owner: self) as! NSTextField?

 if textField == nil {
 textField = NSTextField(frame: CGRect(x: 0,y: 0,
 width: window.frame.width/2, height: 20))
 textField?.identifier = "TextCell"
 textField?.editable = false
 textField?.bordered = false
 textField?.bezeled = false
 textField?.drawsBackground = false
 }

 if let column = tableColumn {

 switch column.identifier {
 case "RecipeName":
 textField?.stringValue = recipes[row].recipeName
 case "PreparationTime":
 textField?.stringValue = "\(recipes[row].preparationTime)"
 default:
 break
 }
 }
 return textField
 }
}

You should see the data in the NSTableView as shown in Figure 6-9.

170 CHAPTER 6: OS X Applications

6-9. Sorting an NSTableView
Problem
When a user clicks the header of a table view, you want the data to be sorted.

Solution
Create an NSSortDescriptor for each column, and implement the method tableView:sortDe
scriptorsDidChange: method.

How It Works
When a user clicks on a column, you want the data to sort. If a user clicks again, you want
the sort to reverse. To sort an NSTableView, create an NSSortDescriptor for each column and
assign it to the NSTableColumn.sortDescriptorPrototype property. This recipe builds upon
Recipe 6-8, which covers creating an NSTableView. Follow Recipe 6-8. Then you will need to
make a few adjustments to the code.

Figure 6-9. The running application

171CHAPTER 6: OS X Applications

NSSortDescriptor relies upon key-value-coding (KVC) to work. In the previous recipe, a class
named Recipe is defined. Before implementing sorting, you must modify this class to make
it KVC compliant. When Swift is used with Cocoa, there are a lot of bridges that have to
be made between the Swift language and the Objective-C runtime. Swift does not support
KVC by itself. In order to enable KVC, first change the Recipe class definition to inherit from
NSObject:

class Recipe : NSObject {

The class now inherits the properties and methods associated with NSObject. The class is no
longer a pure Swift class. Next, apply the dynamic keyword to the properties that you want
to be KVC compliant:

dynamic var recipeName : String
dynamic var preparationTime : Int

In the Objective-C runtime, methods and properties are called using dynamic dispatch. In
Swift, methods and properties are statically generated at compile time. A static definition
and dynamic dispatch cannot be used together, which is a problem because KVC depends
on dynamic dispatch. Inheriting from NSObject allows the class to run in the Objective-C
runtime. Marking the properties with dynamic indicates to the compiler that these properties
or methods should be called using dynamic dispatch, thus enabling KVC for the Swift class.

The next step is to create an IBOutlet in AppDelegate. This outlet is linked to the
NSTableView and is used to set the sort descriptors on the table’s columns.

Add the outlet to AppDelegate:

@IBOutlet weak var tableView : NSTableView!

Open MainMenu.xib, and expand the tree view until the Table View element is visible. Then
Control-click on the App Delegate item, drag to the Table View, and release (as shown in
Figure 6-10).

172 CHAPTER 6: OS X Applications

In the pop-up menu, select the tableView outlet. The table view is now attached to the
IBOutlet in AppDelegate.

The code to set up the sort descriptors will be placed in the method
applicationDidFinishLaunching: of the AppDelegate class in the AppDelegate.swift file.
Create this method if it does not exist:

func applicationDidFinishLaunching(aNotification: NSNotification) {

You must retrieve a reference to the NSTableViewColumns in the table view. Use NSTableView.
tableColumnWithIdentifier to do so. The identifier is the identifier you added to the column
in Interface Builder:

var recipeNameColumn = tableView.tableColumnWithIdentifier("RecipeName")
var preparationTimeColumn =
 tableView.tableColumnWithIdentifier("PreparationTime")

Figure 6-10. Connect the Table View outlet

173CHAPTER 6: OS X Applications

The Recipe.recipeName property is a String, so you can sort using a standard comparison.
Create a new NSSortDescriptor, and assign it to recipeNameColumn.sortDescriptorPrototype.
The NSSortDescriptor initializer you will use has three parameters:

	key – The name of the property on the data source to be accessed via
Key Value Coding.

	ascending – A Boolean indicating if the sort should default to ascending
(true) or descending (false).

	selector – A selector to use for comparison. This selector must indicate
a method on the target property. Use the String.compare: method for
this recipe.

recipeNameColumn?.sortDescriptorPrototype =
 NSSortDescriptor(key: "recipeName",
 ascending: true, selector: Selector("compare:"))

The preparationTime property of Recipe is an Int. The Int type does not have methods
like the String class. Instead of using the same method as before, you can supply a
custom NSComparator. This method can be used for String types as well. Create an
NSSortDescriptor with init(key:ascending:comparator:). The first two parameters are the
same as before. The third is a closure that returns an NSComparator. The closure takes two
parameters to compare, and both are type AnyObject. Since you know the two parameters
will be integers, use the integerValue property in the comparison. The closure returns the
proper NSComparisonResult value based on the comparison:

preparationTimeColumn?.sortDescriptorPrototype =
NSSortDescriptor(key: "preparationTime", ascending: true) {
 (a,b) -> NSComparisonResult in
 if a.integerValue > b.integerValue {
 return NSComparisonResult.OrderedDescending
 }
 if a.integerValue < b.integerValue {
 return NSComparisonResult.OrderedAscending
 }
 return NSComparisonResult.OrderedSame
}

When a user clicks on the header of a column, the method tableView:sortDescriptorsDidC
hange: is called on the delegate. Using this method, implement your sorting logic using the
NSTableView.sortDescriptors. That property will contain the updated descriptors.

In this recipe, the data source is a Swift array. You could use the sort method, however,
NSMutableArray has a more convenient function for this situation: NSMutableArray.
sortUsingDescriptors. As the name suggests, this method will sort the array using the sort
descriptors from the table view.

174 CHAPTER 6: OS X Applications

Create an NSMutableArray using the recipes array, sort the array with the descriptors, and
then convert the array back to a Swift array of Recipe objects. Call tableView.reloadData()
to refresh the table view. The rows will be sorted, and the column header will update itself to
indicate the direction of the sort.

func tableView(tableView: NSTableView, sortDescriptorsDidChange oldDescriptors:
[AnyObject]) {
 var array = NSMutableArray(array: recipes)

 array.sortUsingDescriptors(tableView.sortDescriptors)

 recipes = array as AnyObject as! [Recipe]
 tableView.reloadData()
}

The Code and Usage
Listing 6-9 contains the complete code for this recipe. To run the application, first follow
the instructions in Recipe 6-8. Then follow the instructions in this recipe to connect the
tableView outlet and add the remaining code. Your AppDelegate.swift file should match
Listing 6-8. Run the application.

Listing 6-9. Sorting an NSTableView by column

import Cocoa

@NSApplicationMain
class AppDelegate: NSObject, NSApplicationDelegate,
 NSTableViewDataSource, NSTableViewDelegate {
 @IBOutlet weak var window: NSWindow!
 @IBOutlet weak var tableView : NSTableView!

 var recipes = [
 Recipe(recipeName: "Apple Pie", preparationTime: 30),
 Recipe(recipeName: "Cherry Pie", preparationTime: 30),
 Recipe(recipeName: "Turkey", preparationTime: 180),
 Recipe(recipeName: "Stuffing", preparationTime: 15)
]

 func applicationDidFinishLaunching(aNotification: NSNotification) {
 var recipeNameColumn =
 tableView.tableColumnWithIdentifier("RecipeName")
 var preparationTimeColumn =
 tableView.tableColumnWithIdentifier("PreparationTime")

 recipeNameColumn?.sortDescriptorPrototype =
 NSSortDescriptor(key: "recipeName",
 ascending: true, selector: Selector("compare:"))

175CHAPTER 6: OS X Applications

 preparationTimeColumn?.sortDescriptorPrototype =
 NSSortDescriptor(key: "preparationTime", ascending: true) {
 (a,b) -> NSComparisonResult in

 if a.integerValue > b.integerValue {
 return NSComparisonResult.OrderedDescending
 }
 if a.integerValue < b.integerValue {
 return NSComparisonResult.OrderedAscending
 }
 return NSComparisonResult.OrderedSame
 }
 }

 func numberOfRowsInTableView(tableView: NSTableView) -> Int {
 return recipes.count
 }

 func tableView(tableView: NSTableView,
 viewForTableColumn tableColumn: NSTableColumn?, row: Int) -> NSView? {

 var textField =
 tableView.makeViewWithIdentifier("TextCell", owner: self) as! NSTextField?

 if textField == nil {
 textField = NSTextField(frame: CGRect(x: 0,y: 0,
 width: window.frame.width/2, height: 20))
 textField?.identifier = "TextCell"
 textField?.editable = false
 textField?.bordered = false
 textField?.bezeled = false
 textField?.drawsBackground = false
 }

 if let column = tableColumn {

 switch column.identifier {
 case "RecipeName":
 textField?.stringValue = recipes[row].recipeName
 case "PreparationTime":
 textField?.stringValue = "\(recipes[row].preparationTime)"
 default:
 break
 }
 }
 return textField
 }

176 CHAPTER 6: OS X Applications

 func tableView(tableView: NSTableView,
 sortDescriptorsDidChange oldDescriptors: [AnyObject]) {
 var array = NSMutableArray(array: recipes)

 array.sortUsingDescriptors(tableView.sortDescriptors)

 recipes = array as AnyObject as! [Recipe]
 tableView.reloadData()
 }
}

Click on the “Recipe Name” header or the “Preparation Time” header. The rows will sort, and
the column header will indicate the direction of the sort. The application should look like the
screen depicted in Figure 6-11.

Figure 6-11. The Recipe Name column sorted in ascending order

6-10. Handling the Selection of an NSTableView Row
Problem
You want to know when a row is selected in an NSTableView.

Solution
Implement the delegate method tableViewSelectionDidChange:.

How It Works
The tableViewSelectionDidChange: delegate method is called when the selected row
changes. The method has one parameter, an NSNotification. The NSNotification.object
property contains the object that initiated the notification, typically the NSTableView. This
recipe builds on both Recipes 6-7 and 6-8. Please follow the instructions in those recipes
first. Then return to this recipe to add the ability to handle selections.

177CHAPTER 6: OS X Applications

Open the AppDelegate.swift file and, at the bottom, add the delegate method
tableViewSelectionDidChange:.

func tableViewSelectionDidChange(notification: NSNotification) {

NSTableView has a property selectedRow that returns the index of the selected row. Note that
this method is called when the selection is cleared as well. When no rows are selected, the
selectedRow property is set to -1. Check to see if a row is selected by checking if the index
is zero or greater. If it is, a row is selected. Get the recipe corresponding to the selected row.
Then output its name to the console.

 if tableView.selectedRow >= 0 {
 var recipe = recipes[tableView.selectedRow]

 println("Recipe: \(recipe.recipeName)")
 }
 }
}

The Code and Usage
This recipe is incremental to Recipes 6-8 and 6-9. Implement those recipes first. Then open
the AppDelegate.swift file and add the function in Listing 6-10 to AppDelegate. Run the
application.

Listing 6-10. Handling a row selection for an NSTableView

func tableViewSelectionDidChange(notification: NSNotification) {

 if tableView.selectedRow >= 0 {

 var recipe = recipes[tableView.selectedRow]

 println("Recipe: \(recipe.recipeName)")

 }
}

Select a row in the table. The name of the recipe in the selected row will be printed to the
console. You should see a string such as:

Recipe: Cherry Pie

179

Chapter 7
Files and Directories

The recipes in this chapter focus on management of files and directories. The recipes can be
used on both iOS and OS X. The main difference you will find between the two is that the file
system on iOS is limited to the “sandbox.”

The sandbox is a security and stability structure that governs and limits the access your
application has to the file system and other iOS resources. The sandbox restricts file access
of the application to its bundle and a set of specific directories. Applications running in iOS
cannot reach outside of the sandbox, which prevents them from damaging the system and
other applications. Applications can access data from other applications such as Photos,
but only by using purpose-built APIs that manage access to these resources.

The following recipes are covered in this chapter:

Locating Specialized Directories	

Checking for the Existence of a File or Directory	

Copying Files	

Creating Directories	

Deleting Files and Directories	

Getting a List of Files from a Path	

Archiving Objects to Files	

Archiving Custom Classes to Files	

180 CHAPTER 7: Files and Directories

7-1. Locating Specialized Directories
Problem
Your application needs a place to store data created by users and your application.

Solution
Use the NSFileManager.URLsForDirectory:inDomains: method.

How It Works
On both iOS and OS X, there are directories intended to store particular types of data.
Examples from OS X are the Photos, Music, Documents, Library, and Desktop folders.
Neither OS X nor iOS place any restrictions on the type of data that can be saved in a
folder. Photos and Music are for media. The Documents and Desktop folders are intended
for users’ personally created files. On iOS, all interaction with the file system is governed
by your application, so you should take care to follow the conventions. The Documents
and Library folders and the application bundle folders are the only items your application
can access. The most commonly used folder applications, along with a description of the
intended usage, are listed here:

	Library: The library directory is used by your application to store
local data it might create, such as locally cached resources and user
preferences. All files except those in the Caches folder are backed up.

	Documents: Your application should store all user-generated content in
this directory. This storage is permanent and is backed up.

	Caches: A folder within the Library directory where your application
should store cached files and other data that can be re-created or
redownloaded later. This is transient storage. The files in this folder
are not guaranteed to be persistent. The contents are not backed up,
and the system might even empty the Caches folder to reclaim disk
space. As a result, never assume that a file exists in this folder. Code
defensively, and check for the file’s existence first. The system will
attempt to reclaim space or remove files only when your application is
either not loaded or in a suspended state.

	Application Support: Store persistent data that your application creates
or downloads in this folder. It is permanent storage, is backed up, and
will not be removed for disk space by the system. A situation where you
might store data here is an application that downloads video files or
data required by the application to function. You want to store them until
a user asks for them to be deleted. And you do not want to download
them again if they are erased.

181CHAPTER 7: Files and Directories

It is best practice to check for the existence of these folders before first attempting to
access them. They are not guaranteed to exist. You can learn how to test for a folder’s
existence in Recipe 7-2. If a directory does not exist, create the directory yourself. Creating
directories is covered in Recipe 7-4.

Before accessing any files, you will need to look up the path of one of these folders. To
retrieve the path of these directories, use the NSFileManager class. Create a new instance
of NSFileManager. There is a singleton file manager (NSFileManager.defaultManager()), but
it is better to create a new instance for your own use. Call URLsForDirectory:inDomains:
to retrieve the path to the desired folder. The method takes two parameters. The first is
an NSSearchParthDirectory value. Table 7-1 lists the corresponding values for the folders
discussed earlier and a few other common directories.

Table 7-1. Common NSSearchPathDirectory Values

Folder NSSearchPathDirectory

Application Bundle ApplicationDirectory

Library LibraryDirectory

Documents DocumentDirectory

Caches CachesDirectory

Application Support ApplicationSupportDirectory

Desktop (OS X) DesktopDirectory

User Directory (OS X) UserDirectory

The second parameter indicates where the system searches for the selected type of
directories. NSSearchPathDomainMask has five options:

	UserDomainMask: The user’s home directory

	LocalDomainMask: The local machine

	NetworkDomainMask: A network location

	SystemDomainMask: An Apple-specific mask

	AllDomainsMask: Includes all of the above, and it will include
all future values

Most of the time, you will be using UserDomainMask. On OS X, it indicates to the system
to locate the folders within a user’s home directory. On iOS, it will return the path to the
Documents directory. This directory will be inside the application’s sandbox. The function
returns an array of URLs. The path to the folder is the first element of the array. There
are remote possibilities where the system could return multiple items, but when using
UserDomainMask, you can take it for granted that the array will contain only one item:

let directories =
 NSSearchPathForDirectoriesInDomains(NSSearchPathDirectory.DocumentDirectory,
 NSSearchPathDomainMask.AllDomainsMask, true) as? [String]

182 CHAPTER 7: Files and Directories

The Code and Usage
Listing 7-1 can be run within an OS X application or a Playground. To run it as an OS X
application, create a new Command Line Application in Xcode. Do this by selecting File ➤
New Project from the menu. In the next dialog, select Applications under OS X and then
select Command Line Tool. Click Next, and save your project. Replace the contents of the
file main.swift with Listing 7-1. Run the application.

Listing 7-1. Get the path to a user’s Documents directory

import Foundation

let directories =
 NSSearchPathForDirectoriesInDomains(NSSearchPathDirectory.DocumentDirectory,
 NSSearchPathDomainMask.AllDomainsMask, true) as? [String]

println(directories?[0])

In the console, you will see a string with the file path. It should look similar to this:

Optional("/Users/mrogers/Documents")

The code can also run in a Playground, which will yield a different file path. Create a new iOS
Playground, and replace the contents with Listing 7-1. In the console output and the results
sidebar, you will see the path of the Documents directory. This directory is contained within a
sandbox. The path will look something like this:

/var/folders/5m/8_xm31b51v91cffgml0s8mkc0000gp/T/com.apple.dt.Xcode.pg/containers/com.apple.
dt.playground.stub.iOS_Simulator.Listing7-1-1D78B85B-685B-44A8-A55A-343BE43FF97D/Documents

7-2. Checking for the Existence of a File or Directory
Problem
You need to find out if a file or directory exists on disk.

Solution
Use the NSFileManager.fileExistsAtPath: to check for a file and NSFileManager.
fileExistsAtPath:isDirectory: to check for directories.

How It Works
NSFilemanager.fileExistsAtPath: takes a string value of the path to examine. The method
returns true if the file exists or false if it does not:

NSFileManager().fileExistsAtPath("/tmp/FindMe.txt")

183CHAPTER 7: Files and Directories

On OS X, you can use the shortcut “~” to refer to the current user’s home folder. If you do,
you must expand the path using stringByExpandingTildeInPath:

let filepath = "~/FindMe.txt".stringByExpandingTildeInPath
NSFileManager().fileExistsAtPath(filepath)

To check if a directory exists, use NSFileManager().fileExistsAtPath:isDirectory:. The
first parameter is the same. The second parameter is a Boolean pointer that is set by the
method. The result indicates not only if the path exists, but also whether it is a directory.
However, the parameter is not a Swift Boolean, it is a pointer to an Objective-C Boolean.

Define the directory path to be a directory named “recipes” in your home directory:

let directoryPath = "~/recipes".stringByDeletingPathExtension

Define the variable as an ObjCBool, and initialize it to true:

var isDir : ObjCBool = true

Now make the call to fileExistsAtPath:isDirectory:, and for the isDirectory parameter,
use the & to pass the pointer:

if NSFileManager().fileExistsAtPath(filepath, isDirectory: &isDir){
 println("Directory exists at path \(filepath)")
} else {
 println("Directory does not exist")
}

The Code and Usage
Listing 7-2 checks for a file at a path and prints the results. Then it checks for a directory
and prints the results. To run the code, create a new OS X Command Line Application and
replace the contents of main.swift with Listing 7-2. Run the application.

Listing 7-2. Checking to see if a file exists at a file path

import Foundation

let filepath = "~/FindMe.txt".stringByExpandingTildeInPath

// Check for a file
if NSFileManager().fileExistsAtPath(filepath) {
 println("File exists at path \(filepath)")
} else {
 println("File does not exist")
}

184 CHAPTER 7: Files and Directories

// Check for a directory
let directoryPath = "~/recipes".stringByExpandingTildeInPath
var isDir : ObjCBool = true

if NSFileManager().fileExistsAtPath(directoryPath, isDirectory: &isDir){
 println("Directory exists at path \(directoryPath)")
} else {
 println("Directory does not exist")
}

As long as your home directory does not contain a file named FindMe.txt, you should see
the following message:

File does not exist

If your home directory does not contain a directory named recipes, you will see this message:

Directory does not exist

Create a file in your home directory, and name it FindMe.txt. Run the application a second
time. In the console output, you should see a message like this:

File exists at path /Users/mrogers/FindMe.txt
Directory does not exist

Create a directory named recipes in your home directory and run the application again.
You will see the following output:

File exists at path /Users/mrogers/FindMe.txt
Directory exists at path /Users/mrogers/recipes

7-3. Copying Files
Problem
You need to copy a file in your application.

Solution
Use NSFileManager.copyItemAtURL:toURL:error: or copyItemAtPath:copyItemAtPath:error:.

185CHAPTER 7: Files and Directories

How It Works
NSFileManager provides all the functionality you need to manipulate and retrieve information
about the file system. Both copyItemAtUR:srcPath:dstPath:error: and copyItemAtPath:src
Path:dstPath:error: have equivalent functionality but use different file references. Both take
three parameters:

	srcPath : String or srcURL : NSURL: The path or URL of the file to be
copied.

	dstPath : String or dstURL : NSURL: The path or URL of the
destination. This should contain the entire path or a URL including the
file name.

	error : NSErrorPointer: A pointer to an error object. If an error occurs,
the pointer will be set to an actual error object containing the error
information.

The method returns true if the file was successfully copied. It returns false if an error
occurred. A common error is attempting to copy to a file path that already exists. If a file with
the same name exists in the path or URL, the method will return an error.

The Code and Usage
Create a new OS X command-line application in Xcode. Replace the contents of main.swift
with Listing 7-3. This code will get the path to your Documents directory and Desktop
directory. It will print those paths to the console. Then it will attempt to copy a file (CopyMe.txt)
from your Documents directory to your Desktop. If you do not have a file named CopyMe.txt
in your Documents folder, the copy operation will fail and an error will be displayed. First,
make sure you do not have a file named CopyMe.txt in your Documents directory. Then run
the application.

Listing 7-3. Copying a file from the Documents directory to the Desktop

import Foundation

let documentDirs = NSSearchPathForDirectoriesInDomains(NSSearchPathDirectory.
DocumentDirectory,
 NSSearchPathDomainMask.AllDomainsMask, true) as? [String]

let desktopDirs = NSSearchPathForDirectoriesInDomains(NSSearchPathDirectory.
DesktopDirectory,
 NSSearchPathDomainMask.AllDomainsMask, true) as? [String]

if documentDirs?.count > 0 && desktopDirs?.count > 0
{
 println("Documents directory is \(documentDirs![0])")
 println("Desktop directory is \(desktopDirs![0])")

 let sourceFile = documentDirs![0].stringByAppendingPathComponent("CopyMe.txt")
 let destinationFile = desktopDirs![0].stringByAppendingPathComponent("CopyMe.txt")

186 CHAPTER 7: Files and Directories

 let fileManager = NSFileManager()

 var error: NSError?

 if fileManager.copyItemAtPath(sourceFile, toPath: destinationFile, error: &error) {
 println("Successfully copied \(sourceFile) to \(destinationFile).")
 }else {
 println("ERROR: \(error?.localizedDescription)")
 }
}
else
{
 println("System failed to return a valid path for the Documents or Desktop folders.")
}

In the console, you should see similar output to this:

Documents directory is /Users/mrogers/Documents
Desktop directory is /Users/mrogers/Desktop
ERROR: Optional("The file "CopyMe.txt" couldn't be opened because there is no such file.")
Program ended with exit code: 0

The file copy failed, and the details were returned in the NSError pointer, error. Now create
a file named CopyMe.txt in your Documents folder. Then run the application again. It should
successfully copy the file to your desktop. In the console output, you should see similar
output to this:

Documents directory is /Users/mrogers/Documents
Desktop directory is /Users/mrogers/Desktop
Successfully copied /Users/mrogers/Documents/CopyMe.txt to /Users/mrogers/Desktop/CopyMe.txt.
Program ended with exit code: 0

Run the application a third time. This time, you will see another error because the destination
file CopyMe.txt now exists on your Desktop.

7-4. Creating Directories
Problem
You need to create folders on disk to organize files.

Solution
Use NSFileManager.createDirectoryAtPath:withIntermediateDirectories:attributes:error:
to create directories.

187CHAPTER 7: Files and Directories

How It Works
To start, create an NSFileManager instance. Then get the path to a directory, such as the
Documents directory. Call createDirectoryAtPath:withIntermediateDirectories:attributes:
error: to create the directory. The method has four parameters:

	path: The full path to the directory to be created, including the new
directory’s name.

	withIntermediateDirectories: If true, this will create any directories
specified in the path that do not yet exist. For example, if you used the
path /tmp/data/downloads/pdfs and the /tmp directory was empty, the
file manager will create each folder that does not exist until it gets to
the end of the path. In this example, three directories will be created:
data, downloads, and pdfs.

	attributes: You can specify file attributes that the system will set on the
directory to be created. Attributes that can be changed include the date
and time a folder was created or modified. To keep this recipe focused
on creating directories, we will not use attributes.

	error: A pointer to an NSError object. If an error occurs, this pointer will
point to an object containing the information about the error.

Note When using withIntermediateDirectories: true and attempting to create folders
that already exist, no errors will be returned. If the parameter is set to false and you attempt to
create an existing folder, an error will be returned.

The Code and Usage
Create a new OS X Command Line Application. Replace the contents of main.swift with the
code from Listing 7-4. Run the application.

Listing 7-4. Creating a directory

import Foundation

let documentDirs = NSSearchPathForDirectoriesInDomains(NSSearchPathDirectory.
DocumentDirectory,
 NSSearchPathDomainMask.AllDomainsMask, true) as? [String]

if documentDirs?.count > 0
{
 println("Documents directory is \(documentDirs![0])")

 let newDirectoryPath = documentDirs![0].stringByAppendingPathComponent("Swift/Recipes")

188 CHAPTER 7: Files and Directories

 let fileManager = NSFileManager()

 var error: NSError?

 if fileManager.createDirectoryAtPath(newDirectoryPath,
 withIntermediateDirectories: true, attributes: nil, error: &error) {
 println("Successfully created \(newDirectoryPath).")
 }else {
 println("ERROR: \(error?.localizedDescription)")
 }
}
else
{
 println("System failed to return a valid path for the Documents or Desktop folders.")
}

The folder creation should succeed, and you should see output in the console similar to this:

Documents directory is /Users/mrogers/Documents
Successfully created /Users/mrogers/Documents/Swift/Recipes.
Program ended with exit code: 0

Change the parameter withIntermediateDirectories to false. Then run the application
again. An error will be returned, and your console should look similar to this:

Documents directory is /Users/mrogers/Documents
ERROR: Optional("The file "Recipes" couldn’t be saved in the folder "Swift" because a file
with the same name already exists.")

7-5. Deleting Files and Directories
Problem
You need to remove a file or directory from disk.

Solution
Use NSFileManager.removeItemAtPath:error: or NSFileManager.removeItemAtURL:error:.

How It Works
NSFileManager.removeItemAtPath:error: has two parameters:

	path: This is the full path to the file or directory to be removed.

	error: A pointer to an error object. If an error occurs, an error object will
be assigned to the pointer.

189CHAPTER 7: Files and Directories

The method returns true if the file was successfully removed. If an error occurred, the error
object will be populated with an NSError instance with details on the error. The process is
the same for removeItemAtURL:error: except the first parameter is an NSURL:

let documentDirs = NSSearchPathForDirectoriesInDomains(NSSearchPathDirectory.
DocumentDirectory,
 NSSearchPathDomainMask.AllDomainsMask, true) as? [String]
let fileToDelete = documentDirs![0].stringByAppendingPathComponent("DeleteMe.txt")
let fileManager = NSFileManager()
var error: NSError?

fileManager.removeItemAtPath(fileToDelete, error: &error)

Caution The removeItemAtPath:error: and removeItemAtURL:error: methods both
permanently remove the file. These methods can be used on both iOS and OS X. On OS X, these
methods do not move the file to the trash; the file will be removed immediately.

If your application is running on OS X, you have the option of sending the file to the trash.
If the file being removed is a user-created file, this is a safer option and allows the user to
retrieve the file even after deletion. The parameters of method trashItemAtURL:resulting
ItemURL:error: are as follows:

	url: An NSURL of the file to be moved to the trash.

	resultingItemURL: An optional NSURL pointer. The destination file name
will be returned in this variable. If required to avoid file-name collisions,
the file might be renamed when it is moved to the trash. The path to the
renamed file is returned in this parameter. Pass nil if you would like to
ignore the output.

	error: An optional pointer to an NSError object.

To convert a file path string to an NSURL, use NSURL.fileURLWithPath:

let urlPath = NSURL(fileURLWithPath: fileToDelete)

if fileManager.trashItemAtURL(urlPath!, resultingItemURL: &resultingURL, error: &error){
 println("Successfully moved \(fileToDelete) to the trash: \(resultingURL)")
}else {
 println("ERROR: \(error?.localizedDescription)")
}

The Code and Usage
Listing 7-5 creates a file path to a file to be deleted. Then it attempts to delete that file. The
file is located in the user’s Documents folder. Create a text file named DeleteMe.txt in your
Documents directory. Then create a new OS X Command Line Application. Replace the
contents of the file main.swift with Listing 7-5. Run the application.

190 CHAPTER 7: Files and Directories

Listing 7-5. Deleting a file or directory

import Foundation

let documentDirs = NSSearchPathForDirectoriesInDomains(NSSearchPathDirectory.DocumentDirectory,

 NSSearchPathDomainMask.AllDomainsMask, true) as? [String]

let fileToDelete = documentDirs![0].stringByAppendingPathComponent("DeleteMe.txt")

let fileManager = NSFileManager()

var error: NSError?

if fileManager.removeItemAtPath(fileToDelete, error: &error) {

 println("Successfully removed \(fileToDelete).")

}else {

 println("ERROR: \(error?.localizedDescription)")
}

You should see a success message indicating the file was removed:

Successfully removed /Users/mrogers/Documents/DeleteMe.txt.

Listing 7-6 is a similar program to Recipe 7-4, but instead of deleting the file, it will move
the file to the trash. It will attempt to move a file named DeleteMe.txt in the current user’s
Documents folder to the trash. To run the following code, create a new OS X Command Line
Application and copy Listing 7-6 into the main.swift file. Create a file named DeleteMe.txt
in the Documents directory. Run the application.

Listing 7-6. Moving a file or directory to the trash

var resultingURL : NSURL?

let fileToTrash = documentDirs![0].stringByAppendingPathComponent("TrashMe.txt")

let urlPath = NSURL(fileURLWithPath: fileToTrash)

if fileManager.trashItemAtURL(urlPath!, resultingItemURL: &resultingURL, error: &error){

 println("Successfully moved \(fileToTrash) to the trash: \(resultingURL)")

} else {

 println("ERROR: \(error?.localizedDescription)")
}

In the output, you should see a success message similar to this:

Successfully moved /Users/mrogers/Documents/DeleteMe.txt to the trash: Optional(file:
///Users/mrogers/.Trash/TrashMe%2015-07-13-700.txt)

If you run the application a second time, without replacing a file named TrashMe.txt in the
Documents folder, you will get an error indicating the file could not be removed or moved to
the trash:

ERROR: Optional("The file "TrashMe.txt" doesn't exist.")

191CHAPTER 7: Files and Directories

7-6. Getting a List of Files from a Path
Problem
You need to get a list of files in a directory.

Solution
Use NSFileManager.contentsOfDirectoryAtPath:error: to get an array of paths for each file
and directory in the path. NSFileManager.subPathsOfDirectoryAtPath:error: will return files
and paths from the specified path as well as any files contained in subdirectories.

How It Works
Let’s get a list of the files in your home directory. First, create an instance of NSFileManager.
Then call contentsOfDirectoryAtPath:error: with the shortcut to your home directory. If
no files are found, it returns an empty array. If an error occurs, the method returns nil and
the error variable will be filled with an NSError object describing the issue. If the call is
successful and retrieves a list of files, an array of type [AnyObject]? is returned. If the path
provided is not a directory, an error will be returned:

let fileManager = NSFileManager()
let path = "~/Documents/Fonts".stringByExpandingTildeInPath
var error : NSError?
let contents = fileManager.contentsOfDirectoryAtPath(path, error: &error)

What if you want to get more than a listing of a single directory and want to recursively
traverse subdirectories? You use NSFileManager().subpathsOfDirectoryAtPath:error:.
This method works similarly to contentsOfDirectoryAtPath: but will recursively traverse the
file system and subdirectories, including symbolic links.

Note Traversing a deep directory is resource intensive, and the call will block the thread until it
completes its traversal. You should use this typically on directory structures you know are limited
in depth.

I picked a folder in my Documents folder that had only two subfolders. I suggest you do the
same when you try to use subpathsOfDirectoryAtPath:error:.

192 CHAPTER 7: Files and Directories

The Code and Usage
Listing 7-7 outputs the list of files that are in your home directory. Don’t forget that if you use the
tilde (~) to start your path, you must expand the path before attempting to use it. Create a new
OS X Command Line Application, and name it ListFiles. Copy the contents of Listing 7-7 into
the main.swift file, replacing its contents. Run the application.

Listing 7-7. List the files and directories in a directory path

import Foundation

let fileManager = NSFileManager()

let path = "~".stringByExpandingTildeInPath

var error : NSError?

let contents = fileManager.contentsOfDirectoryAtPath(path, error: &error)

if let files = contents {

 for f in files as! [String] {

 println("File: \(f)")

 }

} else {

 println("Error: \(error?.localizedDescription)")
}

You should see a listing of the files in your home directory. Here is an excerpt of the output
from a user’s home directory:

File: .android
File: .bash_history
File: .bash_profile
File: .CFUserTextEncoding
File: .config
File: .cups
...
File: Zapp Attack-back.jpg
File: Zapp Attack.jpg

Listing 7-8 traverses a directory recursively until it reaches the deepest points. This should
be used on folders with a known depth, because recursion can be resource intensive. To
test the code, assume you have a folder with only two subdirectories and a dozen files.
You should change the path string "~/Documents/Fonts" to reference a similar directory on
your computer. To run the code, create a new OS X Command Line Application and name it
DeepListFiles. Replace the contents of main.swift with Listing 7-8. Don’t forget to change
"~/Documents/Fonts" to a directory on your computer that isn’t too large or deep.

193CHAPTER 7: Files and Directories

Listing 7-8. Recursively list the files and directories in a directory path and all subdirectories

import Foundation

let fileManager = NSFileManager()

let path = "~/Documents/Fonts".stringByExpandingTildeInPath

var error : NSError?

let deepContents = fileManager.subpathsOfDirectoryAtPath(path, error: &error)

if let files = deepContents {

 for f in files as! [String] {

 println("File: \(f)")

 }

} else {

 println("Error: \(error?.localizedDescription)")
}

Compare your output with the following output. Your output will be a different list of files that
should correspond to the directory path you indicated in the path variable:

File: Proxima nova
File: Proxima nova/ProximaNova Bold.otf
File: Proxima nova/ProximaNova BoldIt.otf
...
File: Reklame
File: Reklame/ReklameScript-Regular_DEMO.otf

7-7. Archiving Objects to Files
Problem
You have an object that you would like to persist to disk.

Solution
Use NSKeyedArchiver to serialize the object to a file. Use NSKeyedUnarchiver to load the
object into memory from a file.

How It Works
Archiving takes a code object in memory and saves it to disk. Archiving serializes primitive
types as well as types such as arrays, dictionaries, and strings. For other types, such as your
own classes, you can implement the protocol NSCoder on your own classes. This is discussed
in Recipe 7-8. NSKeyedArchiver takes an object, serializes it to an NSData object and then saves
it to disk. Archiving is a quick and easy way to persist data. However, it is slower than other
methods, especially as the amount of data grows. It is very useful for storing preferences,
application state, and other smaller bits of information required by your application.

194 CHAPTER 7: Files and Directories

For this recipe, you use an array of objects, save them to disk using NSKeyedArchiver, and
then load those objects back into memory using NSKeyedUnarchiver.

Create an array, and initialize it with a list of strings:

var ingredients = ["Flour","Milk","Eggs","Sugar"]

Then use NSKeyedArchiver.archiveRootObject:toFile:. This class method will serialize
the object you pass to the file indicated. The method will return true if the object was
successfully archived or false it if was not. If an object fails to be archived, most frequently
it is due to using an invalid path. In the following example, NSKeyedArchiver is used to save
the ingredients array to a file named ingredients.bin:.

NSKeyedArchiver.archiveRootObject(ingredients, toFile: "ingredients.bin")

To load the object from disk, use NSKeyedUnarchiver.unarchiveObjectWithFile:. If the
object is successfully unarchived, the return value is the object. NSKeyedUnarchiver is a
member of the Foundation library and is not bridged to Swift. Therefore, the type of object
it returns is AnyObject?. Cast the return value into a strongly typed object. When loading
an object from disk, you must know the type of the object in order to cast it. In this recipe,
the archive contains an array of strings. The array is cast to the proper type using the as?
keyword:

var newIngredientList = NSKeyedUnarchiver.unarchiveObjectWithFile("ingredients.bin") as? [String]

You can check the newIngredientList variable to determine if information was loaded, and
then proceed accordingly:

if let loadedIngredients = newIngredientList
{
 println("\(loadedIngredients.count)")
}
else
{
 println("Failed to load object")
}

The Code and Usage
The code in Listing 7-9 will write an array of strings to disk. Then it loads the archived object
back into a different variable. To run the code, create an OS X Command Line Application in
Xcode. When the project opens, replace the contents of the file main.swift with Listing 7-9.
Run the application.

Listing 7-9. Using NSKeyedArchiver and NSKeyedUnarchiver

import Foundation

var ingredients = ["Flour","Milk","Eggs","Sugar"]

NSKeyedArchiver.archiveRootObject(ingredients, toFile: "/tmp/ingredients.bin")

195CHAPTER 7: Files and Directories

var newIngredientList = NSKeyedUnarchiver.unarchiveObjectWithFile("/tmp/ingredients.bin")

as? [String]

if let loadedIngredients = newIngredientList

{

 println("\(loadedIngredients.count)")

}

else

{

 println("Failed to load object")
}

The array will be archived and then unarchived. If the array is successfully unarchived, the
code will print the number of elements in the array (4) to the console. If it fails, the message
“Failed to load object” appears. Most commonly, if an object fails to be unarchived, it is
because the class has been changed and the archive data no longer matches up.

7-8. Archiving Custom Classes to Files
Problem
You want to use NSKeyedArchiver to archive a class of your own.

Solution
Implement the NSCoder protocol on your custom classes.

How It Works
The NSCoder protocol is implemented to serialize your custom classes. The NSCoder protocol
defines two methods: encodeWithCoder: and initWithCoder:.

The first, encodeWithCoder:, is called when NSKeyedArchiver is serializing an object. The
implementation of encodeWithCoder: saves the properties of the object to an instance of
NSCoder. You do not have to archive all properties, just the ones you need persisted. The
archiver then saves the data contained in the NSCoder object. The NSCoder class has a series
of encoding methods.

For primitive types, the methods follow the pattern of encode[type name]:forKey:.
For example, encodeFloat:forKey: encodes float values. For objects like NSDate, use
encodeObject:forKey:. The first parameter is the value to archive. The second parameter is
a string identifying the name of the property being archived. This is used to unarchive the
object as well. The following code shows the implementation of encodeWithCoder:. Using an
instance of NSCoder is similar to using an NSDictionary. You add the data and provide a key
name for it.

196 CHAPTER 7: Files and Directories

In this example, the names of the fields are contained in an enumeration. It is suggested
to use a strategy like this or constants so that you are not repeating the strings for the key
names in code:

func encodeWithCoder(aCoder: NSCoder) {
 aCoder.encodeObject(date,forKey: OrderFields.Date.rawValue)
 aCoder.encodeFloat(pricePerItem, forKey: OrderFields.PricePerItem.rawValue)
 aCoder.encodeInteger(quantity, forKey: OrderFields.Quantity.rawValue)
 aCoder.encodeObject(notes,forKey: OrderFields.Notes.rawValue)
}

The initWithCoder: method is used to load data from an archive into your custom object.
In Swift, this method is implemented as an initializer with a single parameter, NSCoder. For
any complex type, use NSCoder.decodeObjectForKey:. For primitive types, the decoding
methods follow the same convention as the encode methods. When decoding the value, you
must cast it in order to assign it to your strongly typed properties.

The following code decodes the data from the archive back into an instance of your class.
You must cast each value, because like NSDictionary, the type of value returned from
decodeObjectForKey: is AnyObject:

required init(coder aDecoder: NSCoder) {
 date = aDecoder.decodeObjectForKey(OrderFields.Date.rawValue) as! NSDate
 pricePerItem = aDecoder.decodeFloatForKey(OrderFields.PricePerItem.rawValue)
 quantity = aDecoder.decodeIntegerForKey(OrderFields.Quantity.rawValue)
 notes = aDecoder.decodeObjectForKey(OrderFields.Notes.rawValue) as! String
}

After you implement the NSCoding protocol, the custom object can be persisted using
NSKeyedArchiver and loaded using NSKeyedUnarchiver, which is discussed in Recipe 7-7.
Instances can also be contained within objects, such as NSArray or NSDictionary, before
being archived.

The Code and Usage
The code in Listing 7-10 is a command-line application that will archive an array of Order
objects. The Order class is a custom class defined to illustrate archiving in this recipe.

Listing 7-11 is the implementation of the Order class that implements the NSCoding protocol.
Take note of the init: and encodeWithEncoder: methods. Before the class definition
in Listing 7-11, the enumeration OrderFields is defined. This enum is used to facilitate
encoding and decoding. The key values used to encode and decode a property are strings.
A simple misspelling between the encoding and decoding can create bugs. The enum is
used for the key values in calls to the NSCoder instance. This avoids using string literals in
the encoding and decoding methods. This is my preferred method. You can also use string
constants or any other type of data structure to avoid using the string literals.

To use this code, create a new OS X Command Line Application in Xcode. Replace the
contents of main.swift with Listing 7-10. Next create a new Swift file named Order.swift.
Enter the contents of Listing 7-11 into Order.swift. Run the application.

197CHAPTER 7: Files and Directories

Listing 7-10. main.swift

import Foundation

var orders : [Order] = []

orders.append(Order(date: NSDate(), pricePerItem: 2.50, quantity: 99, notes: "Trinkets"))

orders.append(Order(date: NSDate(), pricePerItem: 100.00, quantity: 2, notes: "Expensive Items"))

orders.append(Order(date: NSDate(), pricePerItem: 20000.00, quantity: 1, notes: "Car"))

NSKeyedArchiver.archiveRootObject(orders, toFile: "/tmp/orders.bin")

var loadedOrders = NSKeyedUnarchiver.unarchiveObjectWithFile("/tmp/orders.bin") as? [Order]

if let theOrders = loadedOrders

{

 for order in theOrders

 {

 println("(\(order.quantity)) \(order.notes)")

 }

}

else

{

 println("Failed to load object")
}

Listing 7-11. Order.swift

import Foundation

enum OrderFields : String

{

 case Date = "date",

 PricePerItem = "pricePerItem",

 Quantity = "quantity",

 Notes = "notes"

}

class Order : NSObject, NSCoding

{

 var date : NSDate

 var pricePerItem: Float

 var quantity : Int

 var notes : String

198 CHAPTER 7: Files and Directories

 init(date : NSDate, pricePerItem : Float, quantity : Int, notes: String)

 {

 self.date = date

 self.pricePerItem = pricePerItem

 self.quantity = quantity

 self.notes = notes

 }

 required init(coder aDecoder: NSCoder) {

 date = aDecoder.decodeObjectForKey(OrderFields.Date.rawValue) as! NSDate

 pricePerItem =

 aDecoder.decodeFloatForKey(OrderFields.PricePerItem.rawValue)

 quantity = aDecoder.decodeIntegerForKey(OrderFields.Quantity.rawValue)

 notes = aDecoder.decodeObjectForKey(OrderFields.Notes.rawValue) as! String

 }

 func encodeWithCoder(aCoder: NSCoder) {

 aCoder.encodeObject(date,forKey: OrderFields.Date.rawValue)

 aCoder.encodeFloat(pricePerItem, forKey: OrderFields.PricePerItem.rawValue)

 aCoder.encodeInteger(quantity, forKey: OrderFields.Quantity.rawValue)

 aCoder.encodeObject(notes,forKey: OrderFields.Notes.rawValue)

 }

}

Three order objects are instantiated, they are added to an array, and the array is archived.
The array and the three Order instances are unarchived. The code loops through the list
of Orders and outputs the quantity and the notes property to the console. In the output
window, you should see the following:

(99) Trinkets
(2) Expensive Items
(1) Car
Program ended with exit code: 0

199

Chapter 8
Concurrency

User experience is extremely dependent on responsive applications. In order to create a fluid
and smooth experience for your users, asynchronous operations are required. Users expect
an application to be responsive, even during long-running operations such as network
access or processing-intensive operations. This chapter covers recipes about threading
and concurrency using Swift. There are three approaches to threading in iOS and OS X:
NSThread, Grand Central Dispatch, and NSOperationQueue. This chapter covers the following,
including those approaches:

Threading with 	 NSThread

Synchronizing Threads	

Using Grand Central Dispatch for Threading	

Using 	 NSOperations and NSOperationsQueue

Completing Tasks in the Background in iOS	

Downloading Content in the Background	

Creating Long-Running Background Tasks	

8-1. Threading with NSThread
Problem
You need to perform an asynchronous operation in a new thread.

Solution
Use NSThread.detachNewThreadSelector:toTarget:withObject: to spawn a new thread.

200 CHAPTER 8: Concurrency

How It Works
This method works on iOS and all versions of OS X. Calling detachNewThreadSelector:
toTarget:withObject: immediately starts the thread. Threading is a means of improving
performance, but it does add overhead.

Each thread consumes resources such as memory and CPU time. In addition, threading
requires very structured coding to avoid race conditions, data inconsistency, and locking
issues. The approximate costs of thread creation are listed in Table 8-1.

Table 8-1. Costs of Thread Creation

Item Cost Discussion

Kernel Data About 1 KB This contains information about the thread itself and its
attributes. This data cannot be paged to disk.

Stack Main Thread iOS (1 MB)
Main Thread OS X (8 MB)
Secondary Threads (512 KB)

The stack is set aside within your process space when
the thread is created. A minimum of 16 KB can be
allocated, and the stack size must be a multiple of 4 KB.

Thread Creation About 90 microseconds This is the time between the thread creation call and
the time the entry method is called.

Let’s look at an example of NSThread.detachNewThreadSelector:toTarget:withObject:.
Create a class with a method call threadMethod:. This method is provided to NSThread to
create a new thread. The method can take a single parameter if needed. NSThread will pass
the value of the object parameter to threadMethod:. Since a Swift function is not equivalent
to an Objective-C method, use the @objc attribute on the Swift class. If this is not done, at
runtime you will receive an error that the selector does not exist on the class.

@objc class MyThreadClass {
 func threadMethod(object : AnyObject?)
 {
 for i in 1...1000
 {
 println("Thread Loop Iteration #\(i)")
 }
 }
}

class ViewController: UIViewController {

 override func viewDidLoad() {
 super.viewDidLoad()

 var myInstance = MyThreadClass()

 NSThread.detachNewThreadSelector("threadMethod:", toTarget: myInstance, withObject: nil)
 }
}

In this example, the thread will begin immediately. When the method specified by the
selector exits, the thread is removed.

201CHAPTER 8: Concurrency

Another similar method is NSThread.initWithTarget:selector:object:. This method takes the
same information; however, it does not immediately start the thread. When you want the thread
to start, call start. Using this second method, you can set thread properties before the thread
begins. The former method will immediately start the thread. If you need to modify thread
properties such as stack size or priority, use init(target:selector:object:).

var thread = NSThread(target: myInstance,
 selector: "threadMethod:", object: nil)

Set the stackSize property in bytes:

thread.stackSize = 16000

The threadPriority property value is a number between 0.0 and 1.0. The highest priority
is 1.0. Ultimately, the kernel determines priority and does not guarantee the priority will be
changed:

thread.threadPriority = 0.75

To start the thread, call the start method:

thread.start()

The Code and Usage
The code in this recipe can be used in iOS or OS X. Listing 8-1 is from an iOS application.
The same process can be used in an OS X application. Create a new iOS Single View
Application. Replace the contents of viewController.swift with Listing 8-1. The code
creates two threads. The first creates a thread with detatchNewThreadSelector:toTarget:wi
thObject:. The second uses init(target:selector:object:). Run the application.

Listing 8-1. Creating a new thread

Import UIKit
import Foundation

@objc class MyThreadClass {
 func threadMethod(object : AnyObject?)
 {
 for i in 1...1000
 {
 println("Thread Loop Iteration #\(i)")
 }
 }
}

https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSThread_Class/index.html#//apple_ref/occ/instm/NSThread/initWithTarget:selector:object:%23_self

202 CHAPTER 8: Concurrency

class ViewController: UIViewController {

 override func viewDidLoad() {
 super.viewDidLoad()

 var myInstance = MyThreadClass()

 // Create thread using detachNewThreadSelector:toTarget:withObject:
 NSThread.detachNewThreadSelector("threadMethod:",
 toTarget: myInstance, withObject: nil)

 // Create thread using init(target:selector:object)
 var thread = NSThread(target: myInstance,
 selector: "threadMethod:", object: nil)
 thread.stackSize = 16000
 thread.threadPriority = 0.75
 thread.start()
 }
}

The two threads will execute at the same time. In the output, you will see a jumble of text
as each thread calls MyThreadClass.threadMethod:. Both threads are writing to the output
buffer at the same time. Therefore, the results are mixed together:

TThhrread Loeoapd ILteraotion #1
op Iteration #1
Thread Loop IteraTthiroena d# 2L
oop Iteration #2
Thread LooTph rIetaedr aLtoioopn #3
Iteration #3
Thread Loop ItTehrraetaido nL o#o4p
 IteratiTohnr e#a4d

In the next recipe, Recipe 8-2, you will add a solution to this common threading problem.

8-2. Synchronizing Threads
Problem
You have a threaded application that requires synchronous access to a shared resource.

Solution
Use objc_sync_enter and objc_sync_exit to lock the resource so that only one thread at a
time can access the resource.

203CHAPTER 8: Concurrency

How It Works
In the previous recipe, I discussed creating two threads that access the same resource. This
approach resulted in confusing and unreadable output to the console because both threads
use println to output text to the console. To solve this issue, use objc_sync_enter to create
a lock before using println and release it using objc_sync_exit. This will allow the call to
println in each thread to complete before the next call happens:

objc_sync_enter(object)
println("Loop Iteration #\(i)")
objc_sync_exit(object)

The object provided to objc_sync_enter and objc_sync_exit is used as the target of the
lock. The same instance must be used by all threads. If the lock object is different, the two
threads cannot be synchronized.

The result is output that is readable and makes sense:

Loop Iteration #1
Loop Iteration #1
Loop Iteration #2
Loop Iteration #2
Loop Iteration #3
Loop Iteration #3
Loop Iteration #4
Loop Iteration #4
Loop Iteration #5
Loop Iteration #5

The Code and Usage
To use the code in this recipe, create a new Single View Application for iOS. Replace the
contents of ViewController.swift with Listing 8-2. When you are creating the threads, the
instance of MyThreadClass is passed as a parameter. This object is locked to synchronize the
threads. Run the application.

Listing 8-2. Synchronized threads using objc_sync_enter and objc_sync_exit

import UIKit

@objc class MyThreadClass {
 func threadMethod(object : AnyObject?)
 {

 for i in 1...1000
 {
 objc_sync_enter(object)
 println("Loop Iteration #\(i)")
 objc_sync_exit(object)
 }

 }
}

204 CHAPTER 8: Concurrency

class ViewController: UIViewController {

 override func viewDidLoad() {
 super.viewDidLoad()

 var myInstance = MyThreadClass()

 // Create thread using detachNewThreadSelector:toTarget:withObject:
 NSThread.detachNewThreadSelector("threadMethod:",
 toTarget: myInstance, withObject: myInstance)

 // Create thread using init(target:selector:object)
 var thread = NSThread(target: myInstance,
 selector: "threadMethod:", object: myInstance)
 thread.stackSize = 16000
 thread.threadPriority = 0.75
 thread.start()
 }
}

You will see synchronized output from each thread:

Loop Iteration #1
Loop Iteration #1
Loop Iteration #2
Loop Iteration #2
Loop Iteration #3
Loop Iteration #3

8-3. Using Grand Central Dispatch for Threading
Problem
You want to use background threads and avoid creating and managing the threads yourself.

Solution
Use Grand Central Dispatch (GCD) to manage concurrent operations and execute tasks in
the background.

205CHAPTER 8: Concurrency

How It Works
GCD is a collection of libraries and functions that support multithreaded execution. It also
handles optimization of those threads using the multicore processors that are prevalent
today. GCD manages a set of First In, First Out (FIFO) queues. Your application submits
tasks to a queue using a closure. Then the system handles executing those tasks using a
thread pool managed by the system. GCD has three types of queues:

	Main: Tasks run sequentially in FIFO order on the main thread of the
application.

	Concurrent: Tasks execute in FIFO order, but run in parallel and can
finish in any order.

	Serial: Tasks execute sequentially in FIFO order.

If you have a large number of tasks to complete, concurrent queues are the best option. If
the tasks must be executed in a designated order, a serial queue is the best option. The main
thread should be used for any user-interface updates. Attempting to update the user interface
on a background thread will cause inconsistent behavior. GCD creates four global concurrent
queues for use in your applications. Each queue is managed with a different level of priority.
Use the GCD API to add tasks to individual queues. The GCD API consists of global functions.

Typically, GCD is used when you want the main thread to continue while other tasks run in
parallel. Use dispatch_async to add tasks to a specified queue. It takes two parameters:

	Queue: The queue to push the code block

	Block: The code block or closure to be executed

Dispatch_async appends the closure to a queue and then returns to the calling function. The
calling thread remains unblocked. You must provide a reference to a queue to dispatch a
task. A reference to the main queue is retrieved using dispatch_get_main_queue(). The value
reference returned from this function is passed as the first parameter to dispatch_async.

For this recipe, I will address a common situation in applications. With any network-connected
application, you might need to download data and images from the Internet, local network, or
mobile data network. Depending on the connection speed, the task could take a number of
seconds or longer. You do not want the application to become unresponsive while this happens.
The solution is to dispatch a task to a queue for asynchronous processing. A view can be loaded
and displayed while the process loading the information continues in another thread. When the
task completes, it can update the user interface by dispatching a task back to the main queue.

The code to add the task to the high-priority queue looks like this:

class ViewController: UIViewController {

 var label : UILabel!

 override func viewDidLoad() {
 super.viewDidLoad()

 label = UILabel(frame: CGRect(x: 0.0, y: 0.0, width: 200.0, height: 20.0))
 /**** CODE TO ADD AND POSITION LABEL
 HAS BEEN REMOVED FOR BREVITY ****/

206 CHAPTER 8: Concurrency

 dispatch_async(dispatch_get_global_queue(
 DISPATCH_QUEUE_PRIORITY_HIGH, 0)) {
 self.longRunningTask()
 }
 }

GCD makes four global concurrent queues available. Specify the queue using the following
constants in descending order of priority:

DISPATCH_QUEUE_PRIORITY_HIGH	

DISPATCH_QUEUE_PRIORITY_DEFAULT	

DISPATCH_QUEUE_PRIORITY_LOW	

DISPATCH_QUEUE_PRIORITY_BACKGROUND	

The long-running task method performs its actions, and then dispatches a task to the main
queue in order to update the user interface. In this recipe, you will update the UILabel with a
message indicating the process is complete. The following method simulates a long-running
task by sleeping for three seconds. It is important to note that even though this thread is
currently blocked, the main thread has not been blocked and other user interaction and
tasks can continue. When the processing in the task is complete, use dispatch_async to add
a task to the main queue. The closure added to the queue sets the value of the UILabel to
indicate the process is complete:

func longRunningTask() {
 sleep(3)
 dispatch_async(dispatch_get_main_queue()) {
 self.label.text = "Complete."
 }
}

The Code and Usage
Listing 8-3 contains the complete listing of the example outlined in this recipe. In order to
use it, create a new iOS Single View Application. Replace the contents of ViewController.
swift with Listing 8-3. Note that the same GCD code will run in OS X applications as well.
Run the application.

Listing 8-3. Using dispatch_async to handle long-running tasks

import UIKit

class ViewController: UIViewController {

 var label : UILabel!

 override func viewDidLoad() {
 super.viewDidLoad()

207CHAPTER 8: Concurrency

 label = UILabel(frame: CGRect(x: 0.0, y: 0.0,
 width: 200.0, height: 20.0))
 label.center = self.view.center
 label.text = "Loading..."
 self.view.addSubview(label)

 // queue a long running task
 dispatch_async(
 dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_HIGH, 0)) {
 self.longRunningTask()
 }

 }

 func longRunningTask() {
 sleep(3)
 dispatch_async(dispatch_get_main_queue()) {
 self.label.text = "Complete."
 }
 }
}

The view will load and, after three seconds, the text of the UILabel will change from
“Loading...” to “Complete.”:

8-4. Using NSOperations and NSOperationsQueue
Problem
You have a collection of tasks to execute asynchronously, and those tasks have
dependencies that must be resolved before they can execute. You might also need to
cancel, suspend, or re-use a task.

Solution
Use NSOperation with an NSOperationsQueue.

How It Works
Grand Central Dispatch, discussed in Recipe 8-3, is a lightweight approach to executing
asynchronous tasks. However, managing GCD after a unit of work has been submitted to
a queue requires a good deal of extra development. NSOperationsQueue provides a higher-
level solution for executing tasks, managing the order in which they execute, and controlling
operations after they have been added to a queue.

208 CHAPTER 8: Concurrency

NSOperation and NSOperationsQueue are built on top of GCD. Apple recommends starting
with this highest-level abstraction and then choosing lower levels of thread management if
necessary. The reasons for this include better performance and more control over memory
utilization. You will find that, for most purposes, this approach suits your needs.

In this recipe, I will illustrate a common use of NSOperation and NSOperationsQueue. In
an Internet-connected application, latency is to be expected. Many applications today
download media such as audio, video, and photos. Downloading data from the Internet
is not something you want to do on the main thread. Doing so will interrupt the user
experience. Instead, you can queue those requests and allow them to download in the
background. Start by creating a new iOS Single View application. Open ViewController.
swift. Add two class properties for the queues:

class ViewController: UIViewController {

 var serialQueue: NSOperationQueue?
 var mainQueue: NSOperationQueue?

The mainQueue will be used for user-interface updates. The serialQueue will be used for the
units of work to be performed. In the viewDidLoad: method, initialize the two queues. Access
the queue for your main thread with NSOperationQueue.mainQueue(). The serialQueue can
be initialized normally:

mainQueue = NSOperationQueue.mainQueue()
serialQueue = NSOperationQueue()

Next, set the property maxConcurrentOperationCount. This property determines how many
concurrent operations the queue will handle. The more concurrent operations there are,
the more quickly work will be processed. However, additional overhead is required for each
additional operation, so it is not infinitely scalable. Depending on your needs, limit yourself to
a low number. For this recipe, we will use a max of 1:

serialQueue?.maxConcurrentOperationCount = 1

Next add a UIProgressView. This will display progress during the asynchronous operation:

var progress = UIProgressView(frame: CGRect(x:0,y:0,width: 200, height: 30))
progress.center = self.view.center
self.view.addSubview(progress)

Our asynchronous task will count up to 1,000,000, incrementing the progress view every
1,000. The entire task can be submitted as a closure. Counting to one million isn’t very
intensive, so the progress will move quickly:

serialQueue?.addOperationWithBlock() {

 self.mainQueue?.addOperationWithBlock() {
 progress.setProgress(0.0, animated: false)
 }

 for i in 1...1000000 {
 if i % 1000 == 0
 {

209CHAPTER 8: Concurrency

Note To make user-interface updates, you always want to use NSOperationQueue.
mainQueue(). User-interface updates cannot be made successfully on any other thread.

The Code and Usage
Listing 8-4 contains the complete listing for this recipe. To run the code, create a new iOS
Single View application and replace the contents of ViewController.swift with Listing 8-4.
Run the application.

Listing 8-4. Using NSOperation and NSOperationsQueue

import UIKit

class ViewController: UIViewController {

 var serialQueue: NSOperationQueue?
 var mainQueue: NSOperationQueue?

 override func viewDidLoad() {
 super.viewDidLoad()

 mainQueue = NSOperationQueue.mainQueue()
 serialQueue = NSOperationQueue()
 serialQueue?.maxConcurrentOperationCount = 1

 var progress = UIProgressView(frame: CGRect(x:0,y:0,
 width: 200, height: 30))
 progress.center = self.view.center
 self.view.addSubview(progress)

 serialQueue?.addOperationWithBlock() {

 self.mainQueue?.addOperationWithBlock() {
 progress.setProgress(0.0, animated: false)
 }

 self.mainQueue?.addOperationWithBlock() {
 var percentDone = Float(i/100000)
 progress.setProgress(percentDone, animated: true)
 }
 }
 }
}

210 CHAPTER 8: Concurrency

 for i in 1...1000000 {
 if i % 1000 == 0
 {
 self.mainQueue?.addOperationWithBlock() {
 var percentDone = Float(i/100000)
 progress.setProgress(percentDone, animated: true)
 }
 }
 }
 }
 }
}

You will see the progress bar increment up to 100% quickly.

8-5. Completing Tasks in the Background in iOS
Problem
The user or the system has moved your application to the background, but it needs to
complete one or more tasks before the system suspends the application.

Solution
Use UIApplication.beginBackgroundTaskWithName:expirationHandler: or UIApplication.
beginBackgroundTaskWithExpirationHandler: to ask for more time to complete the
operation.

How It Works
When your application is not in use, the system moves it to the background and soon moves
it to a suspended state. This is done to optimize memory, CPU, and battery life. Much of the
time, an app can be moved into this state. However, it may be necessary to complete certain
operations first.

iOS provides a mechanism to ask the operating system to provide extended time
to process tasks in the background before it is suspended. The class method
UIApplication.beginBackgroundTaskWithName:expirationHandler: or UIApplication.
beginBackgroundTaskWithExpirationHandler: is used to submit background tasks
that will delay the suspension of your application. When you call these methods, a
unique token is generated. This token is used to notify the system when your task has
completed. You can use these methods only to trigger tasks that will eventually end.
If you need to continue processing or performing actions in the background, such as
updating GPS or playing audio, you must use a different method. See Recipes 8-6
and 8-7 for additional options.

211CHAPTER 8: Concurrency

If your task runs too long, the system will terminate the application. You can find out
how much time your task has remaining by reading the property UIApplication.
backgroundTimeRemaining. When processing of the task is complete, call UIApplication.
endBackgroundTask: with the token created when the job was submitted.

Start by adding code to AppDelegate.swift. To start a long-running task when your
application enters the background, implement the method applicationDidEnterBackground:.
Create a token to manage the long-running task. It is best practice to create an expiration
handler using beginBackgroundTaskWithExpirationHandler. This handler is called if the task
runs too long and the system wants to terminate the application. This is your last chance to
end the task and prevent the application from being terminated.

Perform minimal work here to clean up after your task and end the task by calling
endBackgroundTask: with the process token. If you want to check how long your task has
before it expires, check the property UIApplication.backgroundTimeRemaining. If your
application does run out of time, handling the exception and ending the task is a better
solution than allowing your application to be abnormally terminated.

Create your background task token:

var taskToken : UIBackgroundTaskIdentifier = UIBackgroundTaskInvalid

 taskToken = application.beginBackgroundTaskWithExpirationHandler
 { () -> Void in
 application.endBackgroundTask(taskToken)
 taskToken = UIBackgroundTaskInvalid
 }

Now dispatch a task for asynchronous processing. In this example, the task to be performed
only prints a message to the output. Normally, the tasks performed here would be something
like saving data to a database, web service, or another critical task that affects the user’s
experience. Queue the task with Grand Central Dispatch (GCD). For more information on
how to use GCD, see Recipe 8-3.

When the task has performed its work, end the task using endBackgroundTask:

 dispatch_async(
 dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0)) {
 println("Perform a long running task such as saving data")
 application.endBackgroundTask(taskToken)
 taskToken = UIBackgroundTaskInvalid
 }
}

The Code and Usage
To use this code, create a new iOS Single View Application. Open AppDelegate.swift
and replace the default applicationDidEnterBackground: method with Listing 8-5. Run the
application.

212 CHAPTER 8: Concurrency

Listing 8-5. Starting a long-running task when entering background

func applicationDidEnterBackground(application: UIApplication) {
 var taskToken : UIBackgroundTaskIdentifier = UIBackgroundTaskInvalid

 taskToken = application.beginBackgroundTaskWithExpirationHandler
 { () -> Void in
 application.endBackgroundTask(taskToken)
 taskToken = UIBackgroundTaskInvalid
 }

 dispatch_async(
 dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0)) {
 println("Perform a long running task such as saving data")
 application.endBackgroundTask(taskToken)
 taskToken = UIBackgroundTaskInvalid
 }
}

Then tap the home button, or if you are using the simulator, use the menu option Hardware
➤ Home. The applicationDidEnterBackground: handler is called and executes the
background task. You should see the following output in the debugging console:

Perform a long running task such as saving data.

8-6. Downloading Content in the Background
Problem
Your application needs to download large content files, and you would like it to do so in
the background so that users can still use their phone during the download, even if the
application is suspended or terminated.

Solution
Use NSURLSession to start downloads that can continue in the background.

How It Works
When you need to download files, use the class NSURLSession to start the download. It can
be configured so that the system will take control of the download. If your application is
suspended or terminated, the system will continue the download and notify your application
when it is complete.

In this recipe, a ViewController class is used as the delegate to NSURLSession. For
background downloads, you need to implement the NSURLSessionDownloadDelegate protocol.

213CHAPTER 8: Concurrency

To configure NSURLSession, create an NSURLSessionConfiguration object and set the
appropriate properties. This configuration object is then used to create an
NSURLSession object. First, create the configuration object using the method
backgroundSessionConfigurationWithIdentifier:. The identifier used should be unique to
the session. You can manage multiple download tasks using the same session.

var configuration =
NSURLSessionConfiguration.backgroundSessionConfigurationWithIdentifier("FileDownload")

Next, set the configuration with two additional settings. Set the property discretionary
to true. This gives the system control over how the transfers are scheduled for optimal
performance. Set the property sessionSendsLaunchEvents to true. When your application
is in the background, there is always the chance that it may be suspended or terminated by
the system. If your application is terminated, sessionSendsLaunchEvents tells the system to
launch your application to resume the download. This is covered later on in this recipe:

configuration.sessionSendsLaunchEvents = true
configuration.discretionary = true

Create the NSURLSession. It takes three parameters: the configuration, the delegate, and
the delegateQueue. Pass the configuration object with the configuration parameter. The
ViewController is used for the delegate parameter. If you want NSURLSession to create its
own queue, pass nil to the delegateQueue parameter. If you want to use your own queue,
pass it with the delegateQueue parameter:

var session = NSURLSession(configuration: configuration,
 delegate: self, delegateQueue: nil)

Use the session to create a download task. Start the transfer by calling resume:

var task = session.downloadTaskWithURL(
 NSURL(string:"http://www.brainloaf.com/introduction-to-ios.mp4")!)
task.resume()

Note When downloading large files, you should disable the ability to download over a mobile
connection or give the user a choice to use their data connection, which could incur additional costs.

Now that you can start a download task, you need to implement the protocol methods to
handle the download progress, errors, and completion of the download. The methods you
need to implement are these:

	URLSession:downloadTask:didFinishDownloadingToURL: When a file has
completed downloading, this method is called. The file is located in a
temporary location. You must move it to a permanent destination.

	URLSession:downloadTask:didWriteData: This method can be used to
update the user interface to indicate progress. It is called multiple times
during a download and provides updates on the amount of data that has
been downloaded and how much remains to be downloaded.

http://www.brainloaf.com/introduction-to-ios.mp4

214 CHAPTER 8: Concurrency

	URLSession:didBecomeInvalidWithError: This method is called if
an error caused the invalidation or if you call one of the methods
finishTasksAndInvalidate or invalidateAndCancel:.

When the download completes successfully, move the file from its temporary location to a
valid location in your application sandbox. Don’t forget to check to ensure the destination file
doesn’t exist before moving your new download:

func URLSession(session: NSURLSession,
 downloadTask: NSURLSessionDownloadTask, didFinishDownloadingToURL location: NSURL) {

 println("Temporary file path: \(location)")
 var fileManager = NSFileManager()
 var err : NSError?
 var destination = NSSearchPathForDirectoriesInDomains(.DocumentDirectory,
 .UserDomainMask, true).first?.stringByAppendingString("/introduction-to-ios.mp4")

as String!

 if fileManager.moveItemAtURL(location,
 toURL: NSURL(fileURLWithPath: destination)!, error: &err) {
 println("File downloaded to \(destination)")
 } else {
 println("Failed to save \(err?.description)")
 }
}

The method URLSession:downloadTask:didWriteData: has three parameters: bytesWritten,
totalBytesWritten, and totalBytesExpectedToWrite. You can use these values to update
your interface. For example, you can update a progress bar to indicate status:

func URLSession(session: NSURLSession,
 downloadTask: NSURLSessionDownloadTask, didWriteData bytesWritten: Int64,

totalBytesWritten: Int64, totalBytesExpectedToWrite: Int64) {
 println("Wrote an additional \(bytesWritten) bytes")
 println ("total \(totalBytesWritten) bytes) out \(totalBytesExpectedToWrite)

total bytes.")
}

URLSession:didCompleteWithError: tells the delegate that the download for that task is
complete. If an error occurred, the error parameter is populated with an NSError object:

func URLSession(session: NSURLSession,
 task: NSURLSessionTask, didCompleteWithError error: NSError?) {
 if error == nil {
 println("Download completed")
 } else {
 println("Download failed with error \(error?.description)")
 }
}

215CHAPTER 8: Concurrency

This code is sufficient to handle downloads that happen while your application is running.
If the system suspends or terminates your application, the downloads will continue.

When the download completes, the system will launch your application and notify it of the
task’s completion. The application delegate method application:handleEventsForBackg
roundURLSession:completionHandler: is called. Complete handling the download in your
implementation of this method. Two things are required to resume the session you created
before the application was suspended or terminated.

First, create a new NSURLSession instance using the same identifier and configuration
settings. The system will reconnect the session to this new session. Second, after you have
completed handling the task, call the completionHandler. This tells the system your work is
done and the interface can be updated.

In this recipe, when the application is reactivated by the system, the root ViewController
reconnects the NSURLSession. If your application starts the session at a different point of
time, you will need to reinstantiate the session and delegate to handle the events in the
appropriate spot. For example, if your download is started in a view controller that is not
visible when the application resumes or is relaunched, you need to decide if you handle
the download in your AppDelegate or return the application to the proper state so that the
session can be reconnected.

To complete this recipe, add a public property to the AppDelegate class called
completionHandler. This property is used to hold a reference to the completionHandler
parameter:

var completionHandler: (() -> Void)?

Then add the implementation of application:handleEventsForBackgroundURLSession:compl
etionHandler:. This method is always called before the delegate methods for NSURLSession.
This ensures that the completionHandler can be accessed from anywhere within your
application:

func application(application: UIApplication,
 handleEventsForBackgroundURLSession identifier: String, completionHandler: () -> Void) {
 self.completionHandler = completionHandler
}

In ViewController.swift, add code to the URLSession:task:didCompleteWithError:
method. If the application has been launched by the system to handle a background
download task, this calls the completion handler. If the appDelegate.completionHandler is
not nil, it has been set during the launch of the application:

var appDelegate = UIApplication.sharedApplication().delegate as! AppDelegate

if let complete = appDelegate.completionHandler {
 complete()
 appDelegate.completionHandler = nil
}

216 CHAPTER 8: Concurrency

The Code and Usage
To use this code, create a new iOS Single View Application. Replace the contents of
AppDelegate.swift with Listing 8-6. Then replace the contents of ViewController.swift
with Listing 8-7. The application will start a download of a large video file on a web server.
Run the application.

Listing 8-6. AppDelegate.swift

import UIKit

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {

 var window: UIWindow?
 var completionHandler: (() -> Void)?

 func application(application: UIApplication,
 didFinishLaunchingWithOptions launchOptions: [NSObject: AnyObject]?) -> Bool {
 // Override point for customization after application launch.
 return true
 }

 func application(application: UIApplication,
 handleEventsForBackgroundURLSession identifier: String, completionHandler: () ->

Void) {
 self.completionHandler = completionHandler

 }
}

Listing 8-7. ViewController.swift

import UIKit

class ViewController: UIViewController, NSURLSessionDownloadDelegate {

 override func viewDidLoad() {
 super.viewDidLoad()

 var configuration =
NSURLSessionConfiguration.backgroundSessionConfigurationWithIdentifier("FileDownload")

 configuration.sessionSendsLaunchEvents = true
 configuration.discretionary = true

 var session =
 NSURLSession(configuration: configuration, delegate: self, delegateQueue: nil)

 var task =
 session.downloadTaskWithURL(NSURL(string:"http://www.brainloaf.com/introduction-

to-ios.mp4")!)
 task.resume()
 }

http://www.brainloaf.com/introduction-to-ios.mp4
http://www.brainloaf.com/introduction-to-ios.mp4

217CHAPTER 8: Concurrency

 func URLSession(session: NSURLSession,
 didBecomeInvalidWithError error: NSError?) {
 println("Session is invalid: \(error?.description)")
 }

 func URLSession(session: NSURLSession,
 downloadTask: NSURLSessionDownloadTask, didFinishDownloadingToURL location: NSURL) {

 println("Temporary file path: \(location)")
 var fileManager = NSFileManager()
 var err : NSError?
 var destination =
 NSSearchPathForDirectoriesInDomains(.DocumentDirectory, .UserDomainMask,
 true).first?.stringByAppendingString("/introduction-to-ios.mp4") as String!

 if fileManager.moveItemAtURL(location,
 toURL: NSURL(fileURLWithPath: destination)!, error: &err) {
 println("File downloaded to \(destination)")
 } else {
 println("Failed to save \(err?.description)")
 }
 }

 func URLSession(session: NSURLSession,
 downloadTask: NSURLSessionDownloadTask, didWriteData bytesWritten: Int64,
 totalBytesWritten: Int64, totalBytesExpectedToWrite: Int64) {
 println("Wrote an additional \(bytesWritten) bytes”)
 println(“total \(totalBytesWritten) bytes) out \(totalBytesExpectedToWrite)

total bytes.")
 }

 func URLSession(session: NSURLSession, task: NSURLSessionTask,
 didCompleteWithError error: NSError?) {
 if error == nil {
 println("Download completed")
 } else {
 println("Download failed with error \(error?.description)")
 }
 var appDelegate =
 UIApplication.sharedApplication().delegate as! AppDelegate

 if let complete = appDelegate.completionHandler {
 complete()
 appDelegate.completionHandler = nil
 }
 }
}

In the console, you will see the status of the download as parts of the file are written to disk.
Click the home button; the application will move to the background. In the console output,
you will see the progress as the download continues.

218 CHAPTER 8: Concurrency

Table 8-2. UIBackgroundModes Values

UIBackgroundModes Value Description

Audio Indicates your application plays audio while in the background.
The user will be prompted for permission for apps that need the
microphone prior to use.

location The app updates the user’s GPS location and provides updates based
on the location.

voip The application is used to make Internet phone calls.

newsstand-content Your app downloads content such as periodicals.

external-accessory You application interacts with a hardware accessory that provides
updates via the External Accessory Framework.

bluetooth-central Your application works with a Bluetooth accessory that provides
updates via the Core Bluetooth framework.

bluetooth-peripheral Your application acts as a Bluetooth LE accessory. User permission is
required to use this mode.

fetch Your app regularly checks for small amounts of content and downloads
it, such as email.

remote-notification Your app will download content when a push notification arrives.

Note Background downloading will continue only if the system terminates your application. If the
user force quits an application, all download tasks will be canceled.

8-7. Creating Long-Running Background Tasks
Problem
Your application is designed to play audio, perform navigation, download content, or
perform tasks that provide utility to your users. You need these tasks to continue running if
your application is moved to the background.

Solution
In iOS, you can take advantage of long-running background tasks by declaring specific
capabilities for your application.

How It Works
Your application must declare the background modes it requires. The available background
modes are listed in Table 8-2 along with descriptions of the usage.

219CHAPTER 8: Concurrency

This recipe outlines an application that uses location updates in the background.

After you set the background mode for Location Updates, the CLLocationManager class
is allowed to run in the background and the system will not suspend or terminate your
application. Please note, this example uses a very accurate GPS reading and continually
gets updates. As a result, it is not power friendly and will drain the battery quickly.

The first step to use the Core Location services is to add the framework to your project.
Follow these instructions and reference Figure 8-2 for clarification. Select your project under
the project navigator. (In Figure 8-2, the project is BackgroundModes.) Then select the target
of your application (in Figure 8-2, the target is BackgroundModes) and click on the Build
Phases tab. Expand the Link Binary With Libraries section.

Figure 8-1. Selecting BackgroundModes in Xcode

On the Capabilities tab in Xcode, select the modes your application requires. Select your
application’s target, and then choose “Capabilities” from the tab bar. Switch Background
Modes to “On,” and select each capability your application requires. Figure 8-1 shows where
the BackgroundModes section is located.

220 CHAPTER 8: Concurrency

Figure 8-2. Location of Link Binary With Libraries build phase settings

Add the Core Location framework by clicking the plus button under the Link Binary section.
The dialog in Figure 8-3 will open. Select CoreLocation.framework, and click the Add button.
You will see the framework has been added in the Link Binary section.

Figure 8-3. Add the Core Location framework

221CHAPTER 8: Concurrency

Then add a custom property with the key in the target properties of your target application.
This string value is included in the dialog shown to the user when the system asks to allow
use of the geolocation services. For example, your custom text could read: “This app
requires access to your location to provide updates.” See Figure 8-4 as an example of this
text in the permission dialog.

Figure 8-4. Example of custom text in a geolocation permission dialog

Figure 8-5. The Info tab

Add the key by selecting the project in the project navigator, selecting the application target,
and then selecting the Info tab as shown in Figure 8-5.

Expand the Custom iOS Target Properties. A list of keys, types, and values is shown. Roll
over any of the lines and two buttons will appear, a plus sign and a minus sign. Click the
plus sign. Enter the name of the key as “NSLocationWhenInUseUsageDescription”. Give it a
string to be displayed.

Note If this key is not added, the location services will not work and the user will never be
prompted to give permission for the location services.

222 CHAPTER 8: Concurrency

Next, indicate that your ViewController implements the CLLocationManager protocol and
create a property to store a reference to the location manager:

class ViewController: UIViewController, CLLocationManagerDelegate {
var locationManager : CLLocationManager!

In the viewDidLoad method, create a CLLocationManager instance and then request user
authorization to use the location services:

locationManager.requestWhenInUseAuthorization()

If the user does not provide permission, Core Location cannot be used. Check to see if you
received permission using CLLocationManager.locationServicesEnabled():

If you received permission, set the view controller as the delegate, set the desired accuracy
to kCLLocationAccuracyBest, and then start updating the location. This tells the location
manager to use fine-grained GPS positioning. It will call its delegate method more frequently
to report position updates. The delegate method locationManager:didUpdateLocations: is
called to provide position updates. If permission is not obtained, indicate this to the user and
direct them to the settings app to change their settings:

if CLLocationManager.locationServicesEnabled() {
 locationManager.delegate = self
 locationManager.desiredAccuracy = kCLLocationAccuracyBest
 locationManager.startUpdatingLocation()
} else {
 println("Please allow access to your location in your settings.")
}

Implement the delegate method locationManager:didUpdateLocations:. The locations
parameter will contain a list of at least one CLLocation object. If multiple locations have arrived
before the delegate method could be called, there could be multiple values in the array. The
most recent update is at the end of the array. When the location is obtained, process the data:

func locationManager(manager: CLLocationManager!,
 didUpdateLocations locations: [AnyObject]!) {
 var lastLocation = locations.last as? CLLocation

 if let location = lastLocation {
 println("Location Updated to: \(location.coordinate.latitude) Lat.,”)
 println(“\(location.coordinate.longitude) Long.")
 }
}

223CHAPTER 8: Concurrency

The Code and Usage
To use this code, create a new iOS Single View Application. Add the CoreLocation
framework. Enable the Location Updates Background mode for your application’s target.
See Figure 8-1 for the location of the Background Modes in Xcode. Then under the “Info”
tab, add a custom property with the key “NSLocationWhenInUseUsageDescription” and set
the value to a string that will be displayed to the user when iOS asks the user for permission
to access the location services.

Replace the contents of ViewController.swift with the contents of Listing 8-8. Run the
application.

Listing 8-8. Geolocation updates background task

import UIKit
import CoreLocation

class ViewController: UIViewController, CLLocationManagerDelegate {

 var locationManager : CLLocationManager!

 override func viewDidLoad() {
 super.viewDidLoad()

 locationManager = CLLocationManager()
 locationManager.requestWhenInUseAuthorization()

 if CLLocationManager.locationServicesEnabled() {
 locationManager.delegate = self
 locationManager.desiredAccuracy = kCLLocationAccuracyBest
 locationManager.startUpdatingLocation()
 } else {
 println("Please allow access to your location in your settings.")
 }
 }

 func locationManager(manager: CLLocationManager!,
 didUpdateLocations locations: [AnyObject]!) {
 var lastLocation = locations.last as? CLLocation

 if let location = lastLocation {
 println("Location Updated to: \(location.coordinate.latitude) Lat.,”)
 println(“\(location.coordinate.longitude) Long.")
 }
 }
}

224 CHAPTER 8: Concurrency

Figure 8-6. Blue status bar indicates your application is using the location services

Authorize the use of location services. If you are running on the simulator, you can have
the simulator generate location updates. In the simulator’s Debug menu, select
Debug ➤ Location ➤ Freeway Drive. This will simulate a car driving on a freeway and will
provide location updates often. You should see output similar to this:

Location Updated to: 37.5015348 Lat.,-122.32888352 Long.
Location Updated to: 37.50165151 Lat.,-122.32922148 Long.
Location Updated to: 37.50177946 Lat.,-122.32955407 Long.

Then tap the home button. The application will continue providing updates. As of
iOS 8, there will also be a blue bar (as shown in Figure 8-6) displayed in the status bar area
indicating that an application is using the location services in the background.

225

Chapter 9
Web Services

It is difficult to build an application today without connecting to at least one web server or
API. This chapter covers recipes that can be used to connect to those services, parse the
information that is returned, and deal with things like checking network connectivity.

The topics covered in this chapter are

Parsing JSON	

Parsing XML	

Making HTTP Calls	

Checking for Network Connectivity	

Calling a REST API	

Posting Data to a REST API	

9-1. Parsing JSON
Problem
You need to parse JSON data to use it in your application.

Solution
Use the class NSJSONSerialization to parse JSON.

226 CHAPTER 9: Web Services

How It Works
JSON is a common format used in web services and APIs today. JSON stands for
“JavaScript Object Notation.” JSON is a common data interchange format that consists of
name/value pairs of data. The following is an example of JSON that defines a recipe. The
object has three name/value pairs, which represent the properties of a recipe: its name, how
many people it serves, and how long it takes to prepare. It is simple, compact, and human
readable:

{
 "name" : "Pot Pie",
 "serves" : 1,
 "preparation-time" : 60
 }

JSON could represent any type of object, and Swift is a strongly typed language. How
can you safely handle parsing an unknown format into a strongly typed instance?
NSJSONSerialization returns a parsed JSON document as arrays and dictionaries of data.
The preceeding JSON example would be returned as an NSDictionary populated with the
name/value pairs. The name value, or the value to the left of the colon, is used as the key for
the dictionary. The value to the right of the colon is stored in the dictionary using that key.

The JSON format also allows arrays of objects. Assume you have a String variable named
data that contains the JSON string shown previously and contains an array of objects.
NSJSONSerialization parses the string into an NSArray of NSDictionary. Each element in
the array becomes an instance of NSDictionary. All the elements are returned in an NSArray.
This is how you use NSJSONSerialization to parse the JSON contained in the data variable:

var parsedObject : AnyObject? = NSJSONSerialization.JSONObjectWithData(data, options: nil,
error: &error)

Once the JSON is parsed, you need to know the structure of data in order to work with it. You
can access the values using the NSArray or NSDictionary instances returned. However, this
can be code heavy, as each call to index an array or retrieve a value from a dictionary could be
nil. As a result, you can end up with dozens of nested nil checks. If you wanted to retrieve the
name of a recipe from the paredObject variable, you would have to do the following:

if let recipes = parsedObject as? NSArray {
 if let firstRecipe = recipes[0] as? NSDictionary {
 if let name = firstRecipe["name"] as? String {
 println("Name: \(name)")
 }

 }
}

It would be easier if you could accomplish the same thing with a single line like this:

println(recipes[0]?["name"]?.stringValue)

You will be shown the code needed to accomplish this in the following section.

227CHAPTER 9: Web Services

The Code and Usage
The code in this recipe includes an example of a JSON parsing class that uses
NSJSONSerialization and adds features to eliminate the need for the nested nil checks.
The parser requires an NSData to contain JSON text, such as a response from a web service
or local file. For this recipe, we will be using a file located in the application bundle.

First, get the file path from the bundle and create an NSData instance using the file path:

var fileError, jsonError : NSError?

var jsonData =
 NSData(contentsOfFile:NSBundle.mainBundle().pathForResource("Recipes",ofType:"json")!,
 options: nil, error: &fileError)
if let err = fileError {
 println("Error: Could not load JSON file: \(fileError?.localizedDescription)")
 return
}

Listing 9-1 is a class, JSONParser, used in this recipe. JSONParser has a single class method.
Pass the jsonData variable to JSONParser.parseJsonData:error:. If the JSON data provided
cannot be parsed, the error parameter will be populated with an NSError object containing
the error details. Otherwise, this method returns an optional JSON instance. JSON is a class
that contains the parsed data and provides methods for accessing the data without all of
those nested if statements. The listing for JSON.swift can be found in Listing 9-2.

Listing 9-1. JSONParser.swift

import Foundation

class JSONParser {

 class func parse(data : NSData, inout error: NSError?) -> JSON? {

 var parsedObject : AnyObject? =
 NSJSONSerialization.JSONObjectWithData(data, options: nil, error: &error)

 if let obj: AnyObject = parsedObject {
 return JSON(parsedObject: obj)
 }

 return nil // error state
 }

}

228 CHAPTER 9: Web Services

Listing 9-2. JSON.swift

import Foundation

public class JSON
{
 public var error : NSError?

 private var parsedObject : AnyObject

 init (parsedObject : AnyObject) {
 self.parsedObject = parsedObject
 }

 subscript(index : Int) -> JSON? {
 if let item = parsedObject as? NSArray {
 return JSON(parsedObject: item[index])
 }
 else { return nil }
 }

 subscript(key : String) -> JSON? {
 if let item = parsedObject as? NSDictionary {
 if item[key] != nil {
 return JSON(parsedObject: item[key]!)
 }
 }
 return nil
 }

 var stringValue : String { get { return parsedObject as! String } }

 var intValue : Int { get { return parsedObject as! Int } }
}

The JSONParser class is used as follows:

var jsonError : NSError?
var json = JSONParser.parse(jsonData!, error: &jsonError)

if let j = json {
 println(j[0]?["name"]?.stringValue)
 println(j[0]?["serves"]?.intValue)
} else {
 println("Error: Could not parse JSON. \(jsonError?.localizedDescription)")
}

The previous code parses a JSON string and returns a JSON class instance. If the return
value is nil, the error parameter should contain an NSError object with details.

If the JSON string is successfully parsed, a new JSON class instance is created with the
parsed data.

229CHAPTER 9: Web Services

The JSON class holds the original data in a private variable named parsedObject. There are
two subscript properties defined: one for String values and one for Int values. For additional
data types, you can extend this class. The following code is the subscript that handles
string values. When it is used, the method will treat the private variable parsedObject as
an NSDictionary. If this downcast fails, nil will be returned. If it is successful, a new JSON
instance is returned. By doing this, you can chain together a sequence of subscript calls,
making the code more readable:

subscript(key : String) -> JSON?
{
 if let item = parsedObject as? NSDictionary {
 if item[key] != nil {
 return JSON(parsedObject: item[key]!)
 }
 }
 return nil
}

Accessing the subscript will recursively move down the tree of JSON data stored in the
parsedObject variable. In each subsequent recursive call, the code moves one more level
down.

Consider this JSON. It is an array of two objects that each represents information about a
recipe:

[{ "name" : "Pot Pie", "serves" : 1, "preparation-time" : 60 },
 { "name" : "Pizza", "serves" : 6, "preparation-time" : 20 }]

If you wanted to retrieve the name of the first recipe, you could use the instance of a JSON
class returned from JSONParser.parseData:error:

println(recipes[0]?["name"]?.stringValue)

This chained call creates a series of calls to the subscript method. The first call, recipes[0],
attempts to get the first object from the array. If it is unsuccessful because the type of the
data contained in the private variable parsedObject is not an NSArray, nil is returned. If it is
an NSArray, the subscript will return the value of the array at the index via a new instance
of JSON.

In the preceding line of code, recipes[0] returns a new JSON object representing the first
object in the array. The private variable parsedObject of this new instance now contains an
NSDictionary. The second subscript uses the string to retrieve a value from this dictionary.
The returned value is contained in a JSON object. Calling the property stringValue casts
string and returns the parsedObject variable as a String:

var stringValue : String? { get { return parsedObject as? String } }

Use the JSONParser and JSON classes when you need to parse JSON files and the structure
of the data is known. You can then access the data by chaining calls to subscripts to retrieve
your data. To run the example code, create a new iOS Single View Application using Xcode.
Create three new files: two Swift files, named JSONParser.swift and JSON.swift, and one

230 CHAPTER 9: Web Services

plain text file named Recipes.json. Copy Listing 9-1 to JSONParser.swift, Listing 9-2 to
JSON.swift, and Listing 9-3 to Recipes.json. Then replace the contents of the existing
ViewController.swift file with the contents of Listing 9-4. Run the application.

Listing 9-3. Recipes.json

[{ "name" : "Pot Pie", "serves" : 1, "preparation-time" : 60 },
 { "name" : "Pizza", "serves" : 6, "preparation-time" : 20 }]

Listing 9-4. ViewController.swift

import UIKit

class ViewController: UIViewController {

 override func viewDidLoad() {
 super.viewDidLoad()

 var fileError, jsonError : NSError?

 var jsonData =
 NSData(contentsOfFile:NSBundle.mainBundle().pathForResource("Recipes",

ofType:"json")!,
 options: nil, error: &fileError)
 if let err = fileError {
 println("Error: Could not load JSON file: \(fileError?.localizedDescription)")
 return
 }

 var json = JSONParser.parse(jsonData!, error: &jsonError)

 if let j = json {
 println(j[0]?["name"]?.stringValue)
 println(j[0]?["serves"]?.intValue)
 } else {
 println("Error: Could not parse JSON. \(jsonError?.localizedDescription)")
 }
 }
}

You will see the following output in the console:

Optional("Pot Pie")
Optional(1)

Try changing the subscript values used in the code to output a different property value,
object in the array, or nonexisting value. If you choose a nonexisting value, you will see the
value returned is nil.

231CHAPTER 9: Web Services

9-2. Parsing XML
Problem
You need to parse XML in an application.

Solution
Use a library like SMXMLDocument to parse the XML.

How It Works
There are two ways to parse XML. One is using a SAX (Simple API for XML) parser.
The second is using a DOM (Document Object Model) parser. While a SAX parser can be
useful for large amounts of data, a DOM parser is easier to use. A SAX parser requires
the developer to manage state and store information as the parser moves through the
document. A DOM parser, on the other hand, parses the entire document into memory. While
this may not be optimal in some cases, a DOM parser will work for most circumstances and
provides a friendlier API for accessing the document.

In this recipe, you will use an open source parser that can be found on GitHub at
https://github.com/nfarina/xmldocument. The library is maintained by Nick Farina, an iOS
developer. The library is distributed under the MIT license. In order to abide by the license,
make sure to include the copyright comments listed in the source code when you add the
code to your project.

To get started, use git to clone the repository, or just download a .zip file of the code.
The use of git is outside the scope of this recipe; however, you can quickly download the
code in a .zip file by clicking the Download Zip button as shown in Figure 9-1.

https://github.com/nfarina/xmldocument

232 CHAPTER 9: Web Services

This recipe assumes you have downloaded the code. There are two files you need:
SMXMLDocument.h and SMXMLDocument.m. Add them to your project. After you add them,
Xcode will recognize that you have added Objective-C code and will prompt you to
optionally add an Objective-C bridging header. Click Yes. See Figure 9-2.

Figure 9-2. Xcode prompt to add a bridging header

Figure 9-1. Downloading as a .zip from GitHub

This bridging header file is used to enable Objective-C classes to be accessed in both
languages. One additional thing to note, in your target’s build settings, under “Swift Compiler
– Code Generation” (shown in Figure 9-3), the path to the bridging header is added by
Xcode. You should not need to modify this unless you are removing the header.

233CHAPTER 9: Web Services

In order to use the SMXMLDocument class, open the bridging header file and add the following:

#import "SMXMLDocument.h"

This line will make the SMXMLDocument class available in your Swift code. The first step is to
get your XML-formatted data into an NSData variable. The quickest way to do so is to use
NSData.withContentsOfFile:. Get the path to your file using the bundle. In this recipe, we
will use a file named recipes.xml containing a list of recipe data in XML format:

var xml = NSData(contentsOfFile: NSBundle.mainBundle().pathForResource("recipes",
ofType: "xml")!)

Instantiate an SMXMLDocument and assign it to a variable named doc. Pass the xml variable
and a pointer to an NSError object. If a parsing error occurs, the error pointer will point to a
valid NSError object with details about the error:

var error : NSError?
var doc = SMXMLDocument(data: xml, error: &error)

If parsing is successful, the variable doc will contain the parsed contents of the XML file. It is
important to know the structure of the file, as you will need to ask for nodes and attributes
using a string that matches the markup. For example, loop through the list of recipes and
output the three fields that are contained in each recipe:

if error == nil {
 for recipe in doc.childrenNamed("recipe") {
 var name = recipe.valueWithPath("name")
 var serves = recipe.valueWithPath("serves")
 var preparationTime = recipe.valueWithPath("preparation-time")

 println("Recipe name: \(name)")
 println("Serves: \(serves)")
 println("Preparation Time: \(preparationTime)")
 }

} else {
 println("Error parsing xml: \(error?.localizedDescription)")
}

Figure 9-3. Swift Compiler – Code Generation section of target Build Settings

234 CHAPTER 9: Web Services

The Code and Usage
Listing 9-5 contains the complete code of this recipe. It will load an XML file of recipe data.
Listing 9-6 contains a short XML file to be used for testing. To use the code, create a new
Single View iOS application. Download and add the SMXMLDocument.h and SMXMLDocument.m
files to the project according to the previous instructions. Create a new file recipes.xml.
Copy the contents of Listing 9-6 into this file. Create all files at the root of the project.

This code will open the recipes.xml file and parse it using SMXMLDocument. If there are no
errors, it will loop through the results and print the recipe name, serving, and preparation
time information.

Listing 9-5. ViewController.swift

import UIKit

class ViewController: UIViewController {

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically from a nib.
 var xml = NSData(contentsOfFile: NSBundle.mainBundle().pathForResource("recipes",

ofType: "xml")!)

 var error : NSError?

 var doc = SMXMLDocument(data: xml, error: &error)

 if error == nil {

 for recipe in doc.childrenNamed("recipe") {
 var name = recipe.valueWithPath("name")
 var serves = recipe.valueWithPath("serves")
 var preparationTime = recipe.valueWithPath("preparation-time")

 println("Recipe name: \(name)")
 println("Serves: \(serves)")
 println("Preparation Time: \(preparationTime)")
 }

 } else {
 println("Error parsing xml: \(error?.localizedDescription)")
 }
 }
}

235CHAPTER 9: Web Services

Listing 9-6. recipes.xml

<?xml version="1.0"?>
<recipes>
 <recipe>
 <name>Pot Pie</name>
 <serves>1</serves>
 <preparation-time>60</preparation-time>
 </recipe>
 <recipe>
 <name>Pizza</name>
 <serves>6</serves>
 <preparation-time>20</preparation-time>
 </recipe>
</recipes>

9-3. Making HTTP Calls
Problem
You need to download data from a resource using a URL.

Solution
Use NSURLSession to get a resource using a URL.

How It Works
Chapter 8 discussed using NSURLSession in Recipe 8-6. In this recipe, we will focus on
retrieving the contents of a web page. All web services or APIs are built using HTTP, the
HyperText Transfer Protocol. The NSURLSession class will make an HTTP request to a web
server, providing information via the URL or some data that is posted. It then expects a
response back. Typically, web services use either JSON or XML formats to communicate.

In Recipes 9-1 and 9-2, you can find solutions for parsing JSON and XML data. In order
to make a request to a web service, you can make a GET or POST request. The difference
between a GET and a POST is how data in the form of a request is sent to the server. GET
requests encode data on the URL itself. POST requests encode the data and deliver it to
the web server after the connection has been made using the URL. For this recipe, we will
perform a GET and retrieve the Google home page.

Start by creating an NSURL:

let url = NSURL(string: "http://www.google.com")

http://dx.doi.org/10.1007/9781484204191_8
http://www.google.com/

236 CHAPTER 9: Web Services

Next, you will create the NSURLSession. Use the dataTaskWithURL: method. It takes an NSURL
as the first parameter. The second parameter is a closure for the completion handler. The
completion handler takes the following parameters:

	data – The data received from the specified URL.

	response – An NSURLResponse containing the metadata related to the
HTTP response.

	error – An optional NSError object. If an error occurred, the object will
be populated with details of the error.

dataTaskWithURL: returns an NSDataTask object. The connection will not be initiated until you
call task.resume():

let task = NSURLSession.sharedSession().dataTaskWithURL(url!)
{
 (data, response, error) in
 println(NSString(data: data, encoding: NSUTF8StringEncoding))
}

task.resume()

The Code and Usage
Create a new iOS Single View Application in Xcode. Replace the contents of
ViewController.swift with Listing 9-7. Run the application.

Listing 9-7. Retrieving a web page using NSURLSession

import UIKit

class ViewController: UIViewController {

 override func viewDidLoad() {
 super.viewDidLoad()

 let url = NSURL(string: "http://www.google.com")

 let task = NSURLSession.sharedSession().dataTaskWithURL(url!) {
 (data, response, error) in
 println(NSString(data: data, encoding: NSUTF8StringEncoding))
 }
 task.resume()
 }
}

When you run the application, it will connect to Google’s web server and get the contents of
the home page. This will be printed to the console. What you should see is the HTML of the
Google home page.

http://www.google.com/

237CHAPTER 9: Web Services

9-4. Checking for Network Connectivity
Problem
You need to know if your application is connected to the Internet and whether it is using a
WiFi connection or a mobile data connection.

Solution
Use the Reachability class provided by Apple.

How It Works
Most iOS applications today use the Internet for backup, downloading data, or sharing
information. You want to make sure that you know if the application has a network
connection. In order to create user-friendly applications, you should provide notification
if your network-connected app is offline. If your application downloads large files, it is
important to warn the user and ask them for permission when downloading via a mobile
data connection.

Apple provides a class called Reachability to be used for this purpose. Interestingly, it
is not part of the SDK. It is a class and headerfile that you must download and include in
your project. The files can be downloaded from https://developer.apple.com/library/
ios/samplecode/Reachability/Introduction/Intro.html. Add Reachability.h and
Reachability.m to your project. You may be prompted to create a bridging header. You must
do so. If you have trouble, read Recipe 9-2, which includes information on using Objective-C
code in your Swift applications.

Assume that you are adding this check for Internet access in the first view controller
that is displayed. In the viewDidLoad: method, create an instance of Reachability using
Reachability.reachabilityForInternetConnection:

let reach = Reachability.reachabilityForInternetConnection()

Apple created an enum NetworkStatus to define the three network states:

	NotReachable – The Internet cannot be reached.

	ReachableViaWiFi – The device is connected to a WiFi network.

	ReachableViaWWAN – The device is connected to a wireless data network.

To get the current connection status, call Reachability.currentReachabilityStatus. This
will return a NetworkStatus value. Use this information to make the appropriate updates in
your application.

https://developer.apple.com/library/ios/samplecode/Reachability/Introduction/Intro.html
https://developer.apple.com/library/ios/samplecode/Reachability/Introduction/Intro.html

238 CHAPTER 9: Web Services

Since users are constantly on the go, it is not sufficient to check the network just once.
The Reachability class can publish a notification each time the status of the network
connection changes. It does so through the NSNotificationCenter. The constant
kReachabilityChangeNotification is used to subscribe to those notifications. In your
viewDidLoad: method, add an observer to the NSNotificationCenter:

NSNotificationCenter.defaultCenter()
.addObserver(self, selector:"checkForReachability:",
name: kReachabilityChangedNotification, object: nil)

Then activate the Reachability notifications with the method startNotifier(). In most
cases, you will want to do this early in your application startup so that it is available as soon
as the app launches:

reach.startNotifier()

The checkForReachability: function will handle the notifications sent by the Reachability
class. The function needs to handle the three possibilities: no connection, a WiFi connection,
or a wireless connection. If the change in the network affects the user’s experience, you
should modify any application features or screens to indicate that the connection has
changed. Add this function to your view controller:

func checkForReachability(notification : NSNotification)
{
 switch reach.currentReachabilityStatus().value
 {
 case ReachableViaWiFi.value:
 println("Connected to WiFi")
 case ReachableViaWWAN.value:
 println("Connected via Wireless Data")
 case NotReachable.value:
 println("No Connection")
 default:
 println("No Connection")
 }
}

The Code and Usage
To see this code in action, start by adding the Reachability.h and Reachability.m files
to a new iOS Single View Application project. Remember, since the Reachability class is
implemented in Objective-C, you will need to add a bridging header as discussed in
Recipe 9-2. Then replace the contents of ViewController.swift with Listing 9-8. This
code will create an instance of the Reachability class, subscribe to the notifications, and
handle those notifications when network conditions change. Messages will be printed to the
console. Run the application.

239CHAPTER 9: Web Services

Listing 9-8. Responding to network connectivity changes

import UIKit

class ViewController: UIViewController {

 private var reach : Reachability!

 override func viewDidLoad() {
 super.viewDidLoad()
 reach = Reachability.reachabilityForInternetConnection()

 NSNotificationCenter.defaultCenter()
 .addObserver(self, selector:"checkForReachability:",
 name: kReachabilityChangedNotification, object: nil)

 reach.startNotifier()
 }

 func checkForReachability(notification : NSNotification)
 {
 switch reach.currentReachabilityStatus().value
 {
 case ReachableViaWiFi.value:
 println("Connected to WiFi")
 case ReachableViaWWAN.value:
 println("Connected via Wireless Data")
 case NotReachable.value:
 println("No Connection")
 default:
 println("No Connection")
 }
 }
}

You may notice, right after the class is instantiated; there is a call to checkForReachability.
The first time you run the application, it is unlikely that a network change has happened.
When your application first starts, it is a good idea to call the checkForReachability method
to get the current network status. Then rely on the notifications. Once you are running, if you
are on WiFi, turn the WiFi connection off. You will see the network update results printed to
the console. If you are not connected to WiFi, connect and watch the results. This recipe
should be used in any Internet-connected application you may create.

240 CHAPTER 9: Web Services

9-5. Calling a REST API
Problem
You need to make calls to a REST API.

Solution
Use a combination of NSURLSession and NSJSONSerialization to perform an HTTP GET and
parse the results.

How It Works
In this recipe, we will build upon Recipe 9-1 and Recipe 9-3. Recipe 9-1 deals with parsing
JSON into a data structure that allows for easy access of the data. Recipe 9-3 deals with
making HTTP calls. You will combine these classes to create a client for calling REST APIs.
Start by following Recipes 9-1 and 9-3, and familiarize yourself with the elements and how
they work. You will use the classes JSONParser and JSON from Recipe 9-1 for this recipe.
Start by following Recipe 9-1.

You need the RestClient class to fetch a URL and download its content. Then it will
attempt to parse the contents to a JSON object and return the results via a callback. Start
by defining the RestClient class. Our first method will be named Get. To keep the code
simple, make the Get method a class method. The following is the complete listing of the
RestClient class. Add this class to RestClient.swift, and add it to the root of the project.
This method performs an HTTP call using a GET. The first method parameter is a string for
the URL. The second parameter is a required completion callback.

import Foundation

public class RestClient {

 public class func Get(url : String, callback : (JSON?, NSError?)->()) {
 let url = NSURL(string: url)

 let task = NSURLSession.sharedSession().dataTaskWithURL(url!) {
 (data, response, error) in

 if let err = error {
 callback(nil, err)
 }

 // attempt to parse
 var parseError : NSError?

 var parsedData = JSONParser.parse(data, error: &parseError)
 if let err = parseError {
 callback(nil, err)
 }

241CHAPTER 9: Web Services

 callback (parsedData, nil)
 }
 task.resume()
 }
}

The following discusses the implementation of the Get method. The first thing in this method
is to instantiate a new NSURL object:

let url = NSURL(string: url)

Using NSURLSession, create a new task and start it:

let task = NSURLSession.sharedSession().dataTaskWithURL(url!) {
 // COMPLETION HANDLER CODE WILL GO HERE
}
task.resume()

If the task is successful, the NSURLSession calls the completion handler you supply.
The completion handler has three parameters:

	data – The information returned from the dataTaskWithURL: method.

	response – The NSURLResponse object associated with this data task.

	error – An NSError object pointer that will point to a valid object if there
were errors with the data task.

In the completion handler, first check for errors. If the error parameter is not nil, an error
occurred. The Get method’s second parameter is a callback with two parameters. The first is
an optional JSON instance. The second is an optional NSError pointer.

In the case of an error with the connection, return nil and the error object returned by
NSURLSession:

(data, response, error) in

 if let err = error {
 callback(nil, err)
 }

Next, attempt to parse the results from the HTTP call. Then check for parsing errors. If there
were errors, return nil for the data and the error object from the parser:

var parseError : NSError?

var parsedData = JSONParser.parse(data, error: &parseError)
if let err = parseError {
 callback(nil, err)
}

242 CHAPTER 9: Web Services

Finally, if no errors have occurred, the JSON was successfully parsed. Return the JSON
object and nil for the error:

callback (parsedData, nil)

Thanks to the RestClient class, REST API calls can now be made with a single line of code
and a completion handler. OpenLibrary.org is an open library catalog with a REST API that
returns JSON. The URL https://openlibrary.org/works/OL11315329W.json is the record for
Julia Child’s “Mastering the Art of French cooking.” To use the RestClient, add the URL into
a call to the Get method:

RestClient.Get("https://openlibrary.org/works/OL11315329W.json")

Then create a completion handler to handle either an error state or the success state where
the JSON has been successfully parsed:

{
 (json, error) -> Void in

 if let err = error {
 println("Error: \(error?.localizedDescription)")
 return
 }

 if let j = json {

 var title = j["title"]?.stringValue
 var revision = j["revision"]?.intValue

 println("Title: \(title!)")
 println("Revision: \(revision!)")
 }
}

The Code and Usage
This recipe combines two other recipes: Recipe 9-1 and Recipe 9-2. Listing 9-9 is the full
code for the RestClient class. To use this code, you can include the classes RestClient,
JSONParser (Listing 9-1), and JSON (Listing 9-2) in your own applications. To test the code
here, create a new iOS Single View Application. Add these three classes to the project. Then
replace the contents of ViewController.swift with Listing 9-10. This sample application will
use the RestClient class to fetch the JSON data and parse it into a usable object. Run the
application.

https://openlibrary.org/works/OL11315329W.json
https://openlibrary.org/works/OL11315329W.json

243CHAPTER 9: Web Services

Listing 9-9. Rest API client

import Foundation

public class RestClient {

 public class func Get(url : String, callback : (JSON?, NSError?)->()) {
 let url = NSURL(string: url)

 let task = NSURLSession.sharedSession().dataTaskWithURL(url!) {
 (data, response, error) in

 if let err = error {
 callback(nil, err)
 }

 // attempt to parse
 var parseError : NSError?

 var parsedData = JSONParser.parse(data, error: &parseError)
 if let err = parseError {
 callback(nil, err)
 }

 callback (parsedData, nil)
 }
 task.resume()
 }
}

Listing 9-10. Using the RestClient class

import UIKit

class ViewController: UIViewController {

 override func viewDidLoad() {
 super.viewDidLoad()

 RestClient.Get("https://openlibrary.org/works/OL11315329W.json")
 { (json, error) -> Void in

 if let err = error {
 println("Error: \(error?.localizedDescription)")
 return
 }

https://openlibrary.org/works/OL11315329W.json

244 CHAPTER 9: Web Services

 if let j = json {

 var title = j["title"]?.stringValue
 var revision = j["revision"]?.intValue

 println("Title: \(title!)")
 println("Revision: \(revision!)")
 }
 }
 }
}

You should see output similar to the following in the console:

Title: Mastering the Art of French Cooking
Revision: 6

9-6. Posting Data to a REST API
Problem
You need to make a POST call to a REST API.

Solution
Use a combination of NSURLSession and NSJSONSerialization to make an HTTP POST call
and parse the response.

How It Works
This recipe builds upon Recipe 9-5. Start with Recipe 9-5, which builds the foundation
for making a GET call to a REST API and parses the response. Recipe 9-5 defines a class
RestClient. In this recipe, you will add a method that uses the POST method to send data to
an API. In order to test the code, you will need a server that can accept the posted data. The
web site http://www.jsontest.com/ is a tool for testing API code. It will accept a POST and
return a preset response that you define via URL parameters. Try it yourself. Enter this URL
in your browser:

http://echo.jsontest.com/status/OK

You should see the following JSON as a result:

{"status": "OK"}

http://www.jsontest.com/
http://echo.jsontest.com/status/OK

245CHAPTER 9: Web Services

When posting data to the API, you need to encode that data as JSON. The method
NSJSONSerialization. dataWithJSONObject:options:error: will encode your data properly.
Put the data into a [String,AnyObject] dictionary containing your name/value pairs. For
example, a list of recipe data could be defined this way:

var data: [String: AnyObject] = ["name" : "Pea Soup",
 "Ingredients" : "Split Peas, Water, Chicken Broth, Milk, Salt, Onions"]

Create a call to the RestClient object for a Post. It will work similarly to the Get method
from Recipe 9-5 except it will need one more parameter for the data. Note the URL we are
posting to is a test URL on JSONTest.com. This URL will return a JSON response with a single
name/value pair “Status”/”OK”.

RestClient.Post("http://echo.jsontest.com/status/OK", data: data)
 { (json, error) -> Void in

 if let err = error {
 println("Error: \(error?.localizedDescription)")
 return
 }

 if let j = json {
 var status = j["status"]?.stringValue

 println("Status: \(status!)")
 }
 }

Start implementing the Post method by starting with the same definition as the Get method,
and then add another parameter for the data dictionary. The callback method will be the
same:

public class func Post(url : String, data : [String: AnyObject], callback :
(JSON?, NSError?)->()) {
 let url = NSURL(string: url)

In order to handle the POST request, we will use an NSMutableURLRequest instance to define
the URL, method, headers, and data. Instantiate the request with the url parameter:

var request = NSMutableURLRequest(URL: url!)

In order to inform the server that the information being posted is formatted as JSON, and set
the HTTP headers for the Content-type and Accept. The server will also want to know the
length of the data you are posting. The NSURLSession class handles this for you:

request.HTTPMethod = "POST"
request.addValue("application/json", forHTTPHeaderField: "Content-type")
request.addValue("application/json", forHTTPHeaderField: "Accept")

http://echo.jsontest.com/status/OK

246 CHAPTER 9: Web Services

Now encode the dictionary to an NSData object, and assign it to the HTTPBody property of the
request. If you decode it and then print the results, you will see the JSON that will be posted
to the server:

var paramError : NSError?
 var paramData = NSJSONSerialization.dataWithJSONObject(data,
 options: NSJSONWritingOptions.allZeros, error: ¶mError)

 request.HTTPBody = paramData

 println("POST DATA")
 println(NSJSONSerialization.JSONObjectWithData(paramData!, options: nil, error: nil)!)

This time, use dataTaskWithRequest to create the task that will post the data. The approach
from there is basically the same as using the Get method. Check for errors in the callback,
parse the JSON, and call the completion handler with the results:

let task = NSURLSession.sharedSession().dataTaskWithRequest(request) {
 (data, response, error) in

 if let err = error {
 callback(nil, err)
 }

 // attempt to parse
 var parseError : NSError?

 var parsedData = JSONParser.parse(data, error: &parseError)
 if let err = parseError {
 callback(nil, err)
 }

 callback (parsedData, nil)
}
task.resume()

The Code and Usage
This recipe depends on Recipe 9-5. Start by following Recipe 9-5, and then continue
adding the following code. Copy the contents of Listing 9-11, and replace the contents of
RecipeClient.swift. Listing 9-11 is the full code of the class RecipeClient, including the Get
and Post methods that you can use to call REST APIs. Then replace the ViewController.swift
contents with Listing 9-12. Run the application.

247CHAPTER 9: Web Services

Listing 9-11. RestClient with Post method

import Foundation

public class RestClient {

 public class func Get(url : String, callback : (JSON?, NSError?)->()) {
 let url = NSURL(string: url)

 let task = NSURLSession.sharedSession().dataTaskWithURL(url!) {
 (data, response, error) in

 if let err = error {
 callback(nil, err)
 }

 // attempt to parse
 var parseError : NSError?

 var parsedData = JSONParser.parse(data, error: &parseError)
 if let err = parseError {
 callback(nil, err)
 }

 callback (parsedData, nil)
 }
 task.resume()
 }

 public class func Post(url : String, data : [String: AnyObject], callback :

(JSON?, NSError?)->()) {
 let url = NSURL(string: url)

 var request = NSMutableURLRequest(URL: url!)
 request.HTTPMethod = "POST"
 request.addValue("application/json", forHTTPHeaderField: "Content-type")
 request.addValue("application/json", forHTTPHeaderField: "Accept")

 var paramError : NSError?
 var paramData = NSJSONSerialization.dataWithJSONObject(data,
 options: NSJSONWritingOptions.allZeros, error: ¶mError)

 request.HTTPBody = paramData

 println("POST DATA")
 println(NSJSONSerialization.JSONObjectWithData(paramData!, options: nil,

error: nil)!)

248 CHAPTER 9: Web Services

 let task = NSURLSession.sharedSession().dataTaskWithRequest(request) {
 (data, response, error) in

 if let err = error {
 callback(nil, err)
 }

 // attempt to parse
 var parseError : NSError?

 var parsedData = JSONParser.parse(data, error: &parseError)
 if let err = parseError {
 callback(nil, err)
 }

 callback (parsedData, nil)
 }
 task.resume()
 }
}

Listing 9-12. ViewController.swift

import UIKit

class ViewController: UIViewController {

 override func viewDidLoad() {
 super.viewDidLoad()

 var data: [String: AnyObject] = ["name" : "Pea Soup",
 "Ingredients" : "Split Peas, Water, Chicken Broth, Milk, Salt, Onions"]

 RestClient.Post("http://echo.jsontest.com/status/OK", data: data)
 { (json, error) -> Void in

 if let err = error {
 println("Error: \(error?.localizedDescription)")
 return
 }

 if let j = json {
 var status = j["status"]?.stringValue

 println("Status: \(status!)")
 }
 }
 }
}

http://echo.jsontest.com/status/OK

249CHAPTER 9: Web Services

When you run the application, a call will be made to JSONTest.com, so make sure you
are connected to the Internet when trying this recipe. Just before it posts your data, the
JSON version of your data is printed to the console so that you can see what it looks like.
JSONTest.com will return a JSON string with a single name/value pair. RestClient.Post
prints the JSON data that is posted to the URL. The test API server will return a JSON string
like this:

{"status": "OK"}

The completion handler will print out the status value. You should see output like this in the
console:

POST DATA
{
 Ingredients = "Split Peas, Water, Chicken Broth, Milk, Salt, Onions";
 name = "Pea Soup";
}
Status: OK

251

Chapter 10
Core Data

Core Data is at the heart of many data-driven iOS and OS X applications. It can be used for
storage, syncing information across the web and devices, as well as providing fast access
to large data sets. It is optimized to work with iOS and OS X, works directly with iCloud, and
provides Object Relation Mapping between data storage and your class objects.

Each recipe in this chapter builds upon the previous recipe. Core Data involves a number of
different components, and those parts are presented in recipe format. The first time through
this chapter, you should follow it chronologically to understand the overview of Core Data
and Swift. After that, this chapter serves as a great reference.

In this chapter, you will build a helper class, CoreDataHelper, that can be reused in other
Core Data projects you create. The approaches in this class should be applicable to many
applications. Use CoreDataHelper to jumpstart your own applications.

The topics covered in this chapter are

Creating a Data Model	

Creating Model Classes	

Creating a Data Store	

Creating a Managed Object Context	

Adding a New Entity	

Creating an 	 NSFetchRequest

Populating a 	 UITableView with a Fetched Results Controller

Deleting an Item	

Searching for Entities	

252 CHAPTER 10: Core Data

10-1. Creating a Data Model
Problem
You want to design the entities you will persist using Core Data.

Solution
Create a data model.

How It Works
Core Data uses a Data Model to determine how to map an entity class to the underlying
data storage. An entity is a class that is mapped to data storage. In a relational database for
example, an entity class is mapped to a table and each property in the entity is mapped to a
column in the table. The model includes information detailing the name of the entity classes,
the data types of the entity properties, and relationships. The recipes in this chapter focus on
an SQLite based solution, which is the most common storage provider that developers use.

The first step is to add the Core Data framework to a project. Create a new iOS Master-Detail
Application, and save it. After the project opens in Xcode, add the Core Data Framework.
As shown in Figure 10-1, select the application target “Core Data” and the “Build Phases”
tab. Then, under “Link Binary With Libraries,” click the plus button. A dialog with a list of
frameworks will open. Select “CoreData.framework” from the list, and click Add.

Figure 10-1. Add the CoreData framework

253CHAPTER 10: Core Data

Next, add a new file to your project. Under the “Core Data” section in the new file dialog,
choose “Data Model.” Save the new file as RecipeBook.

The data model will appear in the project navigator. Click to open the data model. You will
see the Data Model editor in Xcode. Add a new entity by clicking “Add Entity” near the
bottom of the window as indicated in Figure 10-2.

Figure 10-2. The Data Model editor

Rename the entity by double-clicking on the name. Call it Recipe. This will define an
entity named Recipe that will be mapped to the database. When you select Recipe under
the “Entities” section, the entity properties will appear. There is a section for Attributes,
Relationships, and Fetched Properties. The Attributes will map the property names to
the storage type. The Relationships are used to design the Object-Oriented relations to
other objects. These mappings do not have knowledge of the actual underlying storage
mechanism. Core Data uses SQLite by default, and that is what this recipe uses. The idea to
keep in mind is that you do not need to create a relational model like a database; you should
focus on a proper Object-Oriented design. Core Data will take care of the rest.

Now imagine the properties of a recipe. The recipe may have a name, the number of people
it serves, a list of ingredients, and a description. Create a new attribute by clicking the plus
sign under the “Attributes” section. You may need to expand the section by clicking the
small gray triangle to the left. Create three attributes.

Add the name attribute, and select the corresponding type, String. Create the serves attribute
with the type of Integer 32. Then add recipeDescription and set the type to String.

254 CHAPTER 10: Core Data

Under the “Relationships” section, click the plus button and you will add a relationship named
ingredients. The Recipe entity will need a list of ingredients. Right now, you are defining only
the relationship. This name is also the name of the collection in the Recipe entity.

Create a new entity, and name it Ingredient. Create two attributes: measurement, which is an
Int16, and ingredient, which is a String. Add them to the entity. Then in the “Relationship”
section, add a relationship and name it parentRecipe. Select the Destination as the Recipe
class, and select the inverse as ingredients. Core Data manages referential integrity for
you, and creating bi-directional relationships will help it maintain consistency. Now select the
Recipe entity again. You must now complete the ingredients relation. For the Destination,
select the Ingredient class, and select the parentRecipe property for the inverse.

The following recipe discusses creating the Swift classes for your entities.

10-2. Creating Model Classes
Problem
You have a data aodel and want to create the entity classes.

Solution
Use Xcode to generate the classes for you.

How It Works
This recipe builds upon Recipe 10-1. If you do not have a data model, use Recipe 10-1
to create one. If you have an existing data model, you can continue. Xcode has a feature
that will generate the entity code using a Core Data model. Open the data model, and
you will be looking at the editor. In the Menu bar, select the menu option Editor ➤ Create
NSManagedObject Subclass.

As you can see in Figure 10-3, a dialog will open and ask you to select the data model to
use. Make sure RecipeBook is selected, and then click Next.

255CHAPTER 10: Core Data

Then a list of the entities in your model is displayed. (See Figure 10-4.) Select Recipe and
Ingredient, and click Next.

Figure 10-3. Select the Data Model RecipeBook

Figure 10-4. Select the Recipe and Ingredient entities

Check to make sure that Swift is selected as the language. Finally, select the location for
your classes to be saved.

You will end up with two Swift files, one for each entity. Open Recipe.swift.

256 CHAPTER 10: Core Data

When working with Core Data, you will need to import the CoreData namespace. Also, any class
that is managed by Core Data must derive from NSManagedObject. NSManagedObject will keep
track of which fields have changed since the entity was last saved and contains information to
map the entity to the record that is ultimately saved in SQLite. One great feature of Core Data is
that you do not have to worry about database IDs. Core Data keeps them hidden from you:

import CoreData

class Recipe: NSManagedObject

Look at each property that was added to the file. These correspond to the model attributes
you created in Recipe 10-1. Each field must be tagged with @NSManaged to indicate to
Core Data which properties it should attempt to map to the model. You can add additional
parameters and functions to this class and Core Data will ignore them:

{

 @NSManaged var name: String
 @NSManaged var recipeDescription: String
 @NSManaged var serves: NSNumber
 @NSManaged var ingredients: NSOrderedSet

}

The Code and Usage
Listing 10-1 and Listing 10-2 show the code for the entities Recipe and Ingredient. They
are both subclasses of the NSManagedObject class. This will allow Core Data to access and
persist the data contained in the class properties.

Listing 10-1. The Recipe entity

import Foundation
import CoreData

class Recipe: NSManagedObject {
 @NSManaged var name: String
 @NSManaged var recipeDescription: String
 @NSManaged var serves: NSNumber
 @NSManaged var ingredients: NSOrderedSet
}

Listing 10-2. The Ingredient entity

import Foundation
import CoreData

class Ingredient: NSManagedObject {
 @NSManaged var ingredient: String
 @NSManaged var measurement: NSNumber
 @NSManaged var parentRecipe: Recipe
}

257CHAPTER 10: Core Data

10-3. Creating a Data Store
Problem
You need to create or open an existing data store.

Solution
Instantiate an NSManagedObjectModel and an NSPersistentStoreCoordinator.

How It Works
This recipe builds upon Recipe 10-2. Start with that recipe and then proceed. In this recipe,
you will create a reusable helper class that will initialize the Core Data storage and handle
creating or updating the data store file.

Create a new file named CoreDataHelper.swift. This will contain the helper class. Define the
class and initializer. You will need two string properties, one for the model name and one for
the name of the data file. Set up the initializer to set the value of these properties:

import Foundation
import CoreData

public class CoreDataHelper {

 var modelName : String
 var datastoreFileName : String

 init(modelName : String, datastoreFileName : String)
 {
 self.modelName = modelName
 self.datastoreFileName = datastoreFileName
 }

Next you will add code to create instances of the NSManagedObjectModel and the
NSPersistentStoreCoordinator. The NSManagedObjectModel class reads a data-model file and
loads it into memory. This class is then used in conjunction with NSPersistentStoreCoordinator
to create a new data store or open an existing one. The NSPersistentStoreCoordinator
class is middleware that sits between your application and the data-storage mechanism.
First create a property for the NSManagedObjectModel. This property will use the contents of
RecipeBook.xcdatamodeld.

In Swift, instead of declaring variables and then instantiating them within another method,
you can use a lazy-loaded property with an inline initializer. Since loading the object model is
a one-time thing, it lends itself to this pattern. Define the property with the lazy keyword, and
specify its type. Then add an immediately invoked closure to initialize it. Since the property is

258 CHAPTER 10: Core Data

marked as lazy, the actual initialization is deferred until the first time it is accessed. As soon
as you access the property, it will invoke the closure and return a new NSManagedObjectModel.
Creating the instance requires only the path to the data-model file in your bundle:

lazy var managedObjectModel: NSManagedObjectModel = {
 let modelURL = NSBundle.mainBundle().URLForResource("RecipeBook", withExtension: "momd")!
 return NSManagedObjectModel(contentsOfURL: modelURL)!
}()

The managed object model is required to create the persistent store coordinator. Start
creating that lazy property like this:

lazy var persistentStoreCoordinator: NSPersistentStoreCoordinator? = {

The coordinator is an optional type since there are a number of reasons why a coordinator
could fail to initialize. A couple of common reasons for this include a problem with the
existing store file and it cannot be read, or your device is out of memory and the new file
cannot be written.

Instantiate the persistent store coordinator:

var coordinator: NSPersistentStoreCoordinator? =
 NSPersistentStoreCoordinator(managedObjectModel: self.managedObjectModel)

Then build a URL path to the persistent store data file. Name the file RecipeBook.sqlite:

let documentsDirectory : NSURL =
 NSFileManager.defaultManager().URLsForDirectory(.DocumentDirectory,
 inDomains: .UserDomainMask).last as! NSURL

let url = documentsDirectory.URLByAppendingPathComponent(self.datastoreFileName)

The next step is to create the data store using the method addPersistentStoreWithType:
configuration:url:options:error:. The parameters to this method indicate options,
such as which type of data store to use, and configuration information, which can include
database migrations or other versioning code to be used when upgrading the application:

	type – The type of data store to be used. There are a number of items
available. The most commonly used option is NSSQLiteStoreType.
This recipe uses this store type. For other options, reference the
online iOS Developer Library, “Store Types,” located under the
NSPersistentStoreCoordinator class reference.

	configuration – The name of a configuration contained in the managed
object model. If the configuration is nil, no other configurations are
allowed.

	url – The URL path to the data file.

259CHAPTER 10: Core Data

	options – A dictionary of key value pairs defining options for the
particular type of data store. Options for the data store as well as
migration options can be passed this way. See “Store Options” in the
NSPersistentStoreCoordinator class reference for details about the
store options. In order to manage migrations, you should use the key
NSInferMappingModelAutomaticallyOption and a value of true. The
persistent store coordinator will automatically attempt to update the
data store using model version information.

	error – A pointer to an NSError variable. If there is an error, this variable
will be populated with an NSError instance describing the issue.
Handle this error and then provide the user with direction. If the data
store cannot open, at this point, the file may be corrupt, or there was a
problem migrating it.

Define the NSError variable as well as the options dictionary. Add the NSMigratePersistent
StoresAutomaticallyOption and NSInferMappingModelAutomaticallyOption keys to the
dictionary, both with a value of true. NSMigratePersistentStoresAutomaticallyOption will
attempt to upgrade the store by using any migrations you define as part of the data model.
NSInferMappingModelAutomaticallyOption can still attempt to update the data store if only
simple changes are made, such as adding a new attribute or entity. Changes to existing
entities and attributes require the use of a data-model migration:

var error: NSError? = nil
let options = [NSMigratePersistentStoresAutomaticallyOption: true,
 NSInferMappingModelAutomaticallyOption: true]

Call addPersistentStoreWithType:configuration:url:options:error: and check the
result. If it returns nil, an error has occurred. Errors at this point are fatal. Handle the error
by providing some sort of action for the user to take to recover from the error. Most likely,
the user will need a new data-storage file. Do not remove the existing file, because it will
still contain data. If a migration failed to execute, you can still repair the existing file, but
that would need to be done outside of the application. As the developer, you would need
to manually edit the SQLite database and fix the information. An open source tool named
“SQLite Database Browser for OS X” can open and edit SQLite files. The end user will be
required to get you the .sqlite file. Enabling support for iTunes file sharing allows the user
to retrieve the file via iTunes. The user can then email it to you for repair. The file is replaced
using iTunes file sharing. See “UIFileSharingEnabled” in Apple’s developer documentation
for the “Information Property List Reference.”

If an error occurred, wrap the error in an NSError instance with a custom domain specific to
your application. If there was no error, return coordinator:

if coordinator!.addPersistentStoreWithType(NSSQLiteStoreType,
 configuration: nil, URL: url,
 options: options, error: &error) == nil {

 coordinator = nil
 // Report any error we got.
 var dict = [String: AnyObject]()

260 CHAPTER 10: Core Data

 dict[NSLocalizedDescriptionKey]
 = "Failed to initialize the application's saved data"
 dict[NSLocalizedFailureReasonErrorKey]
 = "There was an error creating or loading the application's saved data."
 dict[NSUnderlyingErrorKey] = error
 error = NSError(domain: "com.apress.recipebook", code: 9999, userInfo: dict)
 // Replace this with code to handle the error appropriately.
 NSLog("Unresolved error \(error), \(error!.userInfo)")
 abort()
 }

return coordinator
}()

The helper class is complete for this recipe. In order to use it, you instantiate the helper with
the model name (but with no file extension) and the name of the data file to use. Just use
the file name, not the entire path. Add this code to the end of the viewDidLoad: method in
MasterViewController.swift:

var helper = CoreDataHelper(modelName: "RecipeBook", datastoreFileName: "RecipeBook.sqlite")
let coordinator = helper.persistentStoreCoordinator

The Code and Usage
Listing 10-3 contains the entire CoreDataHelper class. In order to test it out, create a new
iOS Single View Application. Do NOT select the Core Data box. You can do this in future
cases, but for now, you do not want all the extra template code. Add the CoreData library to
the project.

Then create a new Swift file and name it CoreDataHelp.swift. Copy the contents of
Listing 10-3 into the file. Add the following to the end of the viewDidLoad: method
in ViewController.swift. This code will instantiate the helper and then access the
persistentStoreCoordinator property. This will trigger the lazy-loading code and create the
new RecipeBook.sqlite file:

var helper = CoreDataHelper(modelName: "RecipeBook", datastoreFileName: "RecipeBook.sqlite")
let coordinator = helper.persistentStoreCoordinator

Listing 10-3. CoreDataHelper.swift

import Foundation
import CoreData

public class CoreDataHelper {

 var modelName : String
 var datastoreFileName : String

261CHAPTER 10: Core Data

 init(modelName : String, datastoreFileName : String)
 {
 self.modelName = modelName
 self.datastoreFileName = datastoreFileName
 }

 // MARK: Core Data
 lazy var managedObjectModel: NSManagedObjectModel = {
 let modelURL =
 NSBundle.mainBundle().URLForResource(self.modelName, withExtension: "momd")!
 return NSManagedObjectModel(contentsOfURL: modelURL)!
 }()

 lazy var persistentStoreCoordinator: NSPersistentStoreCoordinator? = {
 // Create the coordinator and store
 var coordinator: NSPersistentStoreCoordinator? =
 NSPersistentStoreCoordinator(managedObjectModel: self.managedObjectModel)
 let documentsDirectory : NSURL =
 NSFileManager.defaultManager().URLsForDirectory(.DocumentDirectory,
 inDomains: .UserDomainMask).last as! NSURL

 let url = documentsDirectory.URLByAppendingPathComponent(self.datastoreFileName)
 println("DEBUG: path to data file \(url)")
 var error: NSError? = nil
 let options = [NSMigratePersistentStoresAutomaticallyOption: true,
 NSInferMappingModelAutomaticallyOption: true]
 if coordinator!.addPersistentStoreWithType(NSSQLiteStoreType, configuration: nil,
 URL: url, options: options, error: &error) == nil {

 coordinator = nil
 // Report any error we got.
 var dict = [String: AnyObject]()
 dict[NSLocalizedDescriptionKey]
 = "Failed to initialize the application's saved data"
 dict[NSLocalizedFailureReasonErrorKey]
 = "There was an error creating or loading the application's saved data."
 dict[NSUnderlyingErrorKey] = error
 error = NSError(domain: "com.apress.recipebook", code: 9999, userInfo: dict)
 // Replace this with code to handle the error appropriately.
 NSLog("Unresolved error \(error), \(error!.userInfo)")
 abort()
 }

 return coordinator
 }()

 lazy var managedObjectContext: NSManagedObjectContext? = {
 let coordinator = self.persistentStoreCoordinator
 if coordinator == nil {
 return nil
 }

262 CHAPTER 10: Core Data

 var managedObjectContext =
 NSManagedObjectContext(concurrencyType: .MainQueueConcurrencyType)

 managedObjectContext.persistentStoreCoordinator = coordinator
 return managedObjectContext
 }()

If you do not receive an exception and the application doesn’t quit, it was successful. In the
console, you will see a path to the file. It will be long and look like this:

file:///Users/mrogers/Library/Developer/CoreSimulator/Devices/CBD5DF93-6E34-47EA-905E-
3E76BFB58E42/data/Containers/Data/Application/0BF9D411-57DB-4B71-9030-BCE612188237/
Documents/RecipeBook.sqlite

Copy everything from /Users up to /Documents to the clipboard. Switch to the finder, and
select Go ➤ Go to Folder. Paste the path, and click Go. A finder window will open, and you
should see the data files that were created.

10-4. Creating a Managed Object Context
Problem
You need to work with a collection of managed objects.

Solution
Create an instance of NSManagedObjectContext.

How It Works
The NSManagedObjectContext manages an object’s life cycle. It is responsible for
communicating between the managed objects and the data store. This recipe builds upon
Recipe 10-3 and adds the NSManagedContext to the CoreDataHelper class.

Create a lazy-load property named managedObjectContext:

lazy var managedObjectContext: NSManagedObjectContext? = {

Access the persistentStoreCoordinator property. If it has not been loaded yet, it will be.
If it is nil, something has failed to initialize. Creating the managed object context depends
on the persistentStoreCoordinator:

let coordinator = self.persistentStoreCoordinator
if coordinator == nil {
 return nil
}

http:////pchns-f01/Users/mrogers/Library/Developer/CoreSimulator/Devices/CBD5DF93-6E34-47EA-905E-3E76BFB58E42/data/Containers/Data/Application/0BF9D411-57DB-4B71-9030-BCE612188237/Documents/RecipeBook.sqllite
http:////pchns-f01/Users/mrogers/Library/Developer/CoreSimulator/Devices/CBD5DF93-6E34-47EA-905E-3E76BFB58E42/data/Containers/Data/Application/0BF9D411-57DB-4B71-9030-BCE612188237/Documents/RecipeBook.sqllite
http:////pchns-f01/Users/mrogers/Library/Developer/CoreSimulator/Devices/CBD5DF93-6E34-47EA-905E-3E76BFB58E42/data/Containers/Data/Application/0BF9D411-57DB-4B71-9030-BCE612188237/Documents/RecipeBook.sqllite

263CHAPTER 10: Core Data

Instantiate an NSManagedObjectContext. The initializer has a parameter named concurrencyType.
If you are using the context to populate the user interface, the concurrency type to use is
NSManagedObjectContextConcurrencyType.MainQueueConcurrencyType. There are two other
values that can be used:

	NSConfinementConcurrencyType – This is the default context. It exists for
backward compatibility. Apple recommends that an NSManagedObject
always be instantiated with one of the other explicit types.

	NSPrivateQueueConcurrencyType – This creates and uses a private
queue. If this type of concurrency is used, you must dispatch requests
to the queue using performBlock: or performBlockAndWait:.

Dispatching messages is not required with MainQueueConcurrencyType as long as those
messages originate within the main queue, such as controllers or UI elements:

 var managedObjectContext = NSManagedObjectContext(concurrencyType: .MainQueueConcurrencyType)
 managedObjectContext.persistentStoreCoordinator = coordinator
 return managedObjectContext
}()

In this chapter, you are creating an application that will display a list of recipes, so the
managed object context is tied to the main queue because it will be used by the user
interface. When you continue to Recipe 10-5, you’ll see that it uses the context to add an
object to the database.

The Code and Usage
Listing 10-4 is the code that should be added to CoreDataHelper.swift. Add this code to the
project you created in Recipe 10-3, and then continue to Recipe 10-5.

Listing 10-4. A lazy property used to create a managed object context

lazy var managedObjectContext: NSManagedObjectContext? = {
 let coordinator = self.persistentStoreCoordinator
 if coordinator == nil {
 return nil
 }
 var managedObjectContext = NSManagedObjectContext(
 concurrencyType: NSManagedObjectContextConcurrencyType.MainQueueConcurrencyType)
 managedObjectContext.persistentStoreCoordinator = coordinator
 return managedObjectContext
}()

https://developer.apple.com/library/ios/documentation/Cocoa/Reference/CoreDataFramework/Classes/NSManagedObjectContext_Class/index.html#//apple_ref/c/econst/NSConfinementConcurrencyType
https://developer.apple.com/library/ios/documentation/Cocoa/Reference/CoreDataFramework/Classes/NSManagedObjectContext_Class/index.html#//apple_ref/c/econst/NSPrivateQueueConcurrencyType

264 CHAPTER 10: Core Data

10-5. Adding a New Entity
Problem
You need to create a new entity and save it.

Solution
Use NSEntityDescription.insertNewObjectForEntityForName:inManagedObjectContext: to
create a new managed object. Use NSManagedObjectContext.saveContext to save the data
to the database.

How It Works
NSEntityDescription.insertNewObjectForEntityForName:inManagedObjectContext: creates
a new instance of a managed object. It takes two parameters:

	entityName – A String that matches the name of an entity in the model.

	inManagedObjectContext – The managed object context instance that
will manage this entity.

Create a function named newEntity in the CoreDataHelper class. It takes one parameter, a
String named name. It returns an optional NSManagedObject:

func newEntity(named : String) -> NSManagedObject? {

If the managedObjectContext is nil, return nil. You cannot create an object without it:

if managedObjectContext == nil {
 return nil
}

Attempt to create the new object using
NSEntityDescription.insertNewObjectForEntityForName:inManagedObjectContext:

 var newManagedObject =
 NSEntityDescription.insertNewObjectForEntityForName(named,
 inManagedObjectContext: managedObjectContext!) as? NSManagedObject

 return newManagedObject
}

Once the object has been created, it will need to be saved to persist the data to the data
store. Create a saveContext method:

func saveContext() {

265CHAPTER 10: Core Data

The NSManagedObjectContext.save: method takes a pointer to an NSError variable. The
method returns true or false if the object was saved. If the method returns false, the error
variable will contain an NSError object with the information:

 var error: NSError? = nil
 if managedObjectContext?.save(&error) != nil {
 // You must handle the error properly in a graceful way.
 // abort() may be used for development, but should not be used in a
 // production quality appliction
 println("Unresolved error \(error), \(error?.userInfo)")
 abort()
 }
}

Now, open MasterViewController.swift. The line of code let coordinator = helper.
persistentStoreCoordinator was added in a previous recipe. Remove this line, and replace
it with a call to CoreDataHelper.newEntity:

var recipe = helper.newEntity("Recipe") as? Recipe

Then, if the creation was successful, set some properties. Then call helper.saveContext()
to write the recipe to the database:

if let r = recipe {
 r.name = "Apple Pie"
 r.serves = 8
 r.recipeDescription = "A summer tradition."

 helper.saveContext()
}

The Code and Usage
Listing 10-5 contains two methods to be added to CoreDataHelper.swift based on this
recipe. Listing 10-6 is code that should be added to the end of the viewDidLoad: method.
After you add this code, run the application.

Listing 10-5. Methods to add and save Core Data entities

func newEntity(named : String) -> NSManagedObject? {
 if managedObjectContext == nil {
 return nil
 }
 var newManagedObject =
 NSEntityDescription.insertNewObjectForEntityForName(named,
 inManagedObjectContext: managedObjectContext!) as? NSManagedObject

 return newManagedObject
}

266 CHAPTER 10: Core Data

func saveContext() {
 let context = self.managedObjectContext!
 var error: NSError? = nil
 if !context.save(&error) {
 // You must handle the error properly in a graceful way.
 // abort() may be used for development, but should not be used in a
 // production quality appliction
 println("Unresolved error \(error), \(error?.userInfo)")
 abort()
 }
}

Listing 10-6. Code to be added to the end of the viewDidLoad function

var recipe = helper.newEntity("Recipe") as? Recipe

if let r = recipe {
 r.name = "Apple Pie"
 r.serves = 8
 r.recipeDescription = "A summer tradition."

 helper.saveContext()
}

If no errors occur, the entity was created and saved successfully. In the next recipe, you will
look at retrieving those results. The code will print out the path to the file RecipeBook.sqlite:

DEBUG: path to data file file:///Users/mrogers/Library/Developer/CoreSimulator/
Devices/3F8DD1EC-E1DA-4CF6-A343-401A435DB191/data/Containers/Data/Application/A22A4514-A9D5-
4F34-9395-0F68D08C250C/Documents/RecipeBook.sqlite

10-6. Creating an NSFetchRequest
Problem
You need to retrieve entities from a Core Data persistent store.

Solution
Create an NSFetchRequest and execute it.

How It Works
The NSFetchRequest object is used by a managed object context to retrieve objects from a
Core Data data source. It can also handle tasks like sorting and searching. In this recipe, you
will retrieve all of the results in the database and output them. Later recipes deal with sorting
and searching. This recipe builds on Recipe 10-5. Follow that recipe before continuing.

267CHAPTER 10: Core Data

Start by opening MasterViewController.swift. Instantiate a new NSFetchRequest object at
the end of the viewDidLoad: method. Leave all existing code:

let fetchRequest = NSFetchRequest()

Set the NSFetchRequest.entity property to indicate the type of entity to retrieve:

let entity =
 NSEntityDescription.entityForName("Recipe",
 inManagedObjectContext: helper.managedObjectContext!)
fetchRequest.entity = entity

Call NSManagedObjectContext.executeFetchRequest: to attempt to retrieve the results. Cast
the results to an optional array of Recipe objects:

var error : NSError?
var results = helper.managedObjectContext?.executeFetchRequest(fetchRequest, error: &error)
 as? [Recipe]

If the results variable contains values, loop through the results and print the name of the
recipe to the console:

if let recipes = results {
 for r in recipes {
 println("Name: \(r.name)")
}

If the query failed, the error variable will contain details about the error.

The Code and Usage
Listing 10-7 contains additional code to add to the end of the viewDidLoad: function in
MasterViewController.swift. Add this code and then run the application.

Listing 10-7. NSFetchRequest code

let fetchRequest = NSFetchRequest()

let entity =
 NSEntityDescription.entityForName("Recipe",
 inManagedObjectContext: helper.managedObjectContext!)
fetchRequest.entity = entity

var error : NSError?
var results = helper.managedObjectContext?.executeFetchRequest(fetchRequest, error: &error)
as? [Recipe]

if let recipes = results {
 for r in recipes {
 println("Name: \(r.name)")
 }
}

268 CHAPTER 10: Core Data

The NSFetchRequest is used to get the objects from the database and will then loop through
them. Since there is only one recipe, you should see a single item output in the console:

Name: Apple Pie

If you run the application multiple times, it will continue to create the same object each time
and save it, creating duplicates that will then be listed out:

Name: Apple Pie
Name: Apple Pie
Name: Apple Pie

10-7. Populating a UITableView with a Fetched Results
Controller
Problem
You want to display the contents of a Core Data database in a UITableView.

Solution
Implement an NSFetchedResultsController.

How It Works
The NSFetchedResults controller is designed for use in conjunction with the
UITableViewController. The two are tightly integrated and, as a result, provide an extremely
efficient and performant solution. This recipe builds upon Recipe 10-6. Complete Recipe 10-6
and then continue with this recipe.

NSFetchedResultsController utilizes a delegate to indicate to the table view when
certain data events happen. Add the NSFetchedResultsControllerDelegate to the
MasterViewController class:

class MasterViewController: UITableViewController, NSFetchedResultsControllerDelegate

Start by adding a private variable and a property to MasterViewController.swift. Make
both an NSFetchedResultsController. The variable should be an optional type. When the
computed property is accessed, if the controller has already been created and stored in the
private variable, return the existing controller:

var _fetchedResultsController: NSFetchedResultsController? = nil

var fetchedResultsController: NSFetchedResultsController {
 if _fetchedResultsController != nil {
 return _fetchedResultsController!
 }

269CHAPTER 10: Core Data

A fetched results controller needs an NSFetchRequest object to get the list of objects
to display. Create the request as specified in Recipe 10-6. In addition, you will set the
fetchBatchSize property. This property will fetch up to the number of objects specified in
fetchBatchSize. This is done to improve efficiency. The UITableView is optimized to draw
only as many cells as needed for it to display and animate on screen. Setting the batch size
creates a similar effect. As you scroll the UITableView, the NSFetchedResultsController is
being used to populate the table. If it decides it needs more records to display, it will load
them in batches. This way, a very large database does not need to be kept in memory to
scroll. Only small pieces are loaded to keep the memory footprint small:

let fetchRequest = NSFetchRequest()

let entity = NSEntityDescription.entityForName("Recipe",
 inManagedObjectContext: self.managedObjectContext!)
fetchRequest.entity = entity
fetchRequest.fetchBatchSize = 20

A fetched results controller requires at least one NSSortDescriptor to order the results. The
property NSFetchedResultsController.sortDescriptors is an array of sort descriptors.
Sorting is straightforward. The NSSortDescriptor takes two parameters. The first is a string
that must match the name of a property on the entity. The second attribute is a Boolean that
indicates if the sort order is ascending. If you want to sort by multiple fields, multiple sort
descriptors are added to the array:

let sortDescriptor = NSSortDescriptor(key: "name", ascending: true)
let sortDescriptors = [sortDescriptor]
fetchRequest.sortDescriptors = [sortDescriptor]

Create the controller. The controller takes four parameters:

	fetchRequest – An NSFetchRequest object that is used to get the results.

	managedObjectContext – The context used to access the data.

	sectionNameKeyPath – The name of a property on the retrieved object to
be used for grouping records into table-view sections.

	cacheName – The cache is used to store precomputed section
information on disk. Use nil to prevent caching. Using the cache avoids
the overhead of computing the section and index information.

 let aFetchedResultsController = NSFetchedResultsController(fetchRequest:
fetchRequest,

 managedObjectContext: self.managedObjectContext!,
 sectionNameKeyPath: nil, cacheName: nil)

Set the delegate property to self, and then set the private variable:

aFetchedResultsController.delegate = self
_fetchedResultsController = aFetchedResultsController

270 CHAPTER 10: Core Data

Perform the fetch using the controller method performFetch. If the fetch fails, something
seriously wrong happened. At this point, it could be a memory error or some bad data.
Determine the cause of the error, and handle it properly based on your application’s needs:

var error: NSError? = nil
if !_fetchedResultsController!.performFetch(&error) {
 println("Unresolved error \(error), \(error?.userInfo)")
 abort()
}

If the fetch succeeds, return the controller and end the function:

 return _fetchedResultsController!
}

To display the data in the UITableView, you need to implement three UITableViewDelegate
methods: numberOfSectionsInTableView:, tableView:numberOfRowsInSection:, and tabl
eView:cellForRowAtindexPath:. The fetched results controller supplies all the necessary
information. Use the sections property to get the number of sections. The sections property
is an optional type. Use a ternary operator to guard against the case where sections is nil:

override func numberOfSectionsInTableView(tableView: UITableView) -> Int {
 return self.fetchedResultsController.sections?.count ?? 0
}

The number of rows in a section requires getting an NSFetchedResultsSectionInfo object
containing that information:

override func tableView(tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
 let sectionInfo = self.fetchedResultsController.sections![section] as!

NSFetchedResultsSectionInfo
 return sectionInfo.numberOfObjects
}

The last required method is the tableView:cellForRowAtIndexPath:. The fetched results
controller makes it very easy to get an object based on the indexPath. The method
objectAtIndexPath will return the object. Create the method to get a reusable cell, retrieve
the object from the fetched results controller, and set up the table cell:

override func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {

 let cell = tableView.dequeueReusableCellWithIdentifier("Cell",
 forIndexPath: indexPath) as! UITableViewCell

 let recipe = self.fetchedResultsController.objectAtIndexPath(indexPath) as! Recipe
 cell.textLabel!.text = recipe.name

 return cell
}

271CHAPTER 10: Core Data

The Code and Usage
The code added in this recipe will display records contained in the Core Data database.
The application adds a record for an Apple Pie recipe each time you run the application.
If you run the application three times, there will be three records displayed. Listing 10-8
contains the complete MasterViewController.swift. Replace the contents of
MasterViewController.swift with the contents of Listing 10-8. Run the application.

Listing 10-8. MasterViewController.swift

import UIKit
import CoreData

class MasterViewController: UITableViewController, NSFetchedResultsControllerDelegate {

 var helper : CoreDataHelper!

 override func awakeFromNib() {
 super.awakeFromNib()
 }

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically from a nib.
 self.navigationItem.leftBarButtonItem = self.editButtonItem()

 let addButton = UIBarButtonItem(barButtonSystemItem: .Add, target: self,

action: "insertNewObject:")
 self.navigationItem.rightBarButtonItem = addButton

 helper = CoreDataHelper(modelName: "RecipeBook", datastoreFileName:

"RecipeBook.sqlite")
 var recipe = helper.newEntity("Recipe") as? Recipe

 if let r = recipe {
 r.name = "Apple Pie"
 r.serves = 8
 r.recipeDescription = "A summer tradition."

 helper.saveContext()
 }

 let fetchRequest = NSFetchRequest()

 let entity = NSEntityDescription.entityForName("Recipe",
 inManagedObjectContext: helper.managedObjectContext!)
 fetchRequest.entity = entity

 var error : NSError?
 var results =
 helper.managedObjectContext?.executeFetchRequest(fetchRequest, error: &error)

as? [Recipe]

272 CHAPTER 10: Core Data

 if let recipes = results {
 for r in recipes {
 println("Name: \(r.name)")
 }
 }
 }

 // MARK: - Fetched results controller
 var _fetchedResultsController: NSFetchedResultsController? = nil

 var fetchedResultsController: NSFetchedResultsController {
 if _fetchedResultsController != nil {
 return _fetchedResultsController!
 }

 let fetchRequest = NSFetchRequest()

 let entity =
 NSEntityDescription.entityForName("Recipe",
 inManagedObjectContext: helper.managedObjectContext!)
 fetchRequest.entity = entity
 fetchRequest.fetchBatchSize = 20

 let sortDescriptor = NSSortDescriptor(key: "name", ascending: true)
 let sortDescriptors = [sortDescriptor]
 fetchRequest.sortDescriptors = [sortDescriptor]

 let aFetchedResultsController = NSFetchedResultsController(fetchRequest: fetchRequest,
 managedObjectContext: helper.managedObjectContext!,
 sectionNameKeyPath: nil, cacheName: nil)
 aFetchedResultsController.delegate = self
 _fetchedResultsController = aFetchedResultsController

 var error: NSError? = nil
 if !_fetchedResultsController!.performFetch(&error) {
 println("Unresolved error \(error), \(error?.userInfo)")
 abort()
 }

 return _fetchedResultsController!
 }

 override func numberOfSectionsInTableView(tableView: UITableView) -> Int {
 return self.fetchedResultsController.sections?.count ?? 0
 }

 override func tableView(tableView: UITableView, numberOfRowsInSection section: Int) ->

Int {
 let sectionInfo =
 self.fetchedResultsController.sections![section] as! NSFetchedResultsSectionInfo
 return sectionInfo.numberOfObjects
 }

273CHAPTER 10: Core Data

 override func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCellWithIdentifier("Cell",
 forIndexPath: indexPath) as! UITableViewCell

 let recipe = self.fetchedResultsController.objectAtIndexPath(indexPath) as! Recipe
 cell.textLabel!.text = recipe.name

 return cell
 }
}

All the objects currently in the database will be listed in the UITableView.

10-8. Deleting an Item
Problem
You need to delete an entity.

Solution
Use NSManagedObjectContext.deleteObject to remove an object from Core Data.

How It Works
This recipe builds upon Recipe 10-7. Complete everything up to that recipe before continuing
with this recipe. The managed object contents will deal with deleting an object for you. In this
recipe, you will leverage the UITableView’s editing capabilities to call the delete functionality.
Open MasterViewController.swift. First, add the delegate method to enable editing:

override func tableView(tableView: UITableView, canEditRowAtIndexPath indexPath:
NSIndexPath) -> Bool {
 return true
}

This will display the edit button in the navigation bar, and it will display the delete button
when you swipe to the left on a table row. When the user taps the delete button, the
delegate method tableView:commitEditingStyle:forRowAtIndexPath: is called. If the editing
style is Delete, you want to remove the object corresponding to that row. Get the context,
and call deleteObject. The parameter is the object at the current indexPath. Commit the
changes to the database by calling the CoreDataHelper.saveContext method:

override func tableView(tableView: UITableView,
 commitEditingStyle editingStyle: UITableViewCellEditingStyle,
 forRowAtIndexPath indexPath: NSIndexPath) {

274 CHAPTER 10: Core Data

 if editingStyle == .Delete {
 let context = self.fetchedResultsController.managedObjectContext
context.deleteObject(self.fetchedResultsController.objectAtIndexPath(indexPath) as!
NSManagedObject)

 helper.saveContext()
 }
}

After the object is removed from the database, the table view needs to be updated.
Implement the NSFetchedResultsController method controllerDidChangeContent: method.
In this method, reload the tableView:

func controllerDidChangeContent(controller: NSFetchedResultsController) {
 // In the simplest, most efficient, case, reload the table view.
 self.tableView.reloadData()
}

If you run the application, you can now delete any of the rows in the UITableView.

The Code and Usage
The code in Listing 10-9 should be added to MasterViewController.swift. Run the
application, and swipe to the left on a row; then click delete. The row should be removed
from the table view.

Listing 10-9. Additions to MasterViewController.swift

// MARK: Enable Editing
override func tableView(tableView: UITableView, canEditRowAtIndexPath indexPath:
NSIndexPath) -> Bool {
 return true
}

override func tableView(tableView: UITableView,
 commitEditingStyle editingStyle: UITableViewCellEditingStyle,
 forRowAtIndexPath indexPath: NSIndexPath) {
 if editingStyle == .Delete {
 let context = self.fetchedResultsController.managedObjectContext
 context.deleteObject(self.fetchedResultsController.objectAtIndexPath(indexPath) as!

NSManagedObject)

 helper.saveContext()
 }
}

func controllerDidChangeContent(controller: NSFetchedResultsController) {
 // In the simplest, most efficient, case, reload the table view.
 self.tableView.reloadData()
}

275CHAPTER 10: Core Data

10-9. Searching for Entities
Problem
You want to search a collection of objects in a Core Data database.

Solution
Use an NSPredicate to define the search criteria. Then set the NSFetchedResults.predicate
property.

How It Works
This recipe builds on Recipe 10-8. Complete that recipe first, and then continue
with this recipe. To illustrate using a predicate, you will search for all Recipe entities
that serve more than two people. Open MasterViewController.swift, and go to the
fetchedResultsController property. Right after the line fetchRequest.sortDescriptors
= [sortDescriptor], add the following code to create a predicate. In this example, the
predicate is created using a string format and the values will be substituted. Here the
string is the property name, operand, and value formatter. In this example, the predicate is
serves > 2. Predicates can be used with most types of dates, strings, and relations, and
they provide many types of comparisons. The best reference for all the possibilities is the
“Predicate Programming Guide” from Apple.

let statusPredicate = NSPredicate(format: "serves > %d", 2)
fetchRequest.predicate = statusPredicate

After you have added the code, run the application. The results will appear in the table view.
No records have been filtered out because the Apple Pie recipe serves 8. Now change the
comparison to be less than 2 and run the application again. The table view will be empty
since no results are found in the Core Data database where the serves field has a property
less than 2.

let statusPredicate = NSPredicate(format: "serves < %d", 2)

NSPredicate is a very powerful class and provides simple or complex search capabilities for
your apps.

The Code and Usage
Listing 10-10 contains the updated property fetchedResultsController. The code
includes the addition of the NSPredicate. Replace the existing property code in
MasterViewController.swift. Run the application.

276 CHAPTER 10: Core Data

Listing 10-10. The fetchedResultsController property

var fetchedResultsController: NSFetchedResultsController {
 if _fetchedResultsController != nil {
 return _fetchedResultsController!
 }

 let fetchRequest = NSFetchRequest()

 let entity = NSEntityDescription.entityForName("Recipe",
 inManagedObjectContext: helper.managedObjectContext!)
 fetchRequest.entity = entity
 fetchRequest.fetchBatchSize = 20

 let sortDescriptor = NSSortDescriptor(key: "name", ascending: true)
 let sortDescriptors = [sortDescriptor]
 fetchRequest.sortDescriptors = [sortDescriptor]

 let statusPredicate = NSPredicate(format: "serves < %d", 2)
 fetchRequest.predicate = statusPredicate

 let aFetchedResultsController = NSFetchedResultsController(fetchRequest:

fetchRequest,
 managedObjectContext: helper.managedObjectContext!, sectionNameKeyPath: nil,

cacheName: nil)
 aFetchedResultsController.delegate = self
 _fetchedResultsController = aFetchedResultsController

 var error: NSError? = nil
 if !_fetchedResultsController!.performFetch(&error) {
 println("Unresolved error \(error), \(error?.userInfo)")
 abort()
 }

 return _fetchedResultsController!
}

No records will be displayed in the table view. The code in Listing 10-10 will search the
database for Recipes where the serves property has a value of less than 2. Try using
different comparisons and properties to create additional searches.

277

Chapter 11
Advanced iOS 8 Features

iOS 8 added many advanced features to the ecosystem. This chapter will cover some of
those and present Swift-based recipes you can integrate into your own applications.

The topics covered in this chapter are

Creating a Today Extension	

Creating a Custom Keyboard Extension	

Creating a Sharing Extension	

Creating an Action Extension	

Creating a WatchKit Application	

11-1. Creating a Today Extension
Problem
You would like to make information available to users to display in the Today screen.

Solution
Create a Today extension.

How It Works
The Today extension is added to your application and allows a user to choose to display
information from your application on the Today screen. Currently, Today extensions can
be distributed only as part of an application. In this recipe, you will create a boilerplate
application, add the extension, and present a solution for obtaining data and then presenting
it in your widget.

278 CHAPTER 11: Advanced iOS 8 Features

Start with a Single View iOS application. Name it RecipeWidget. You actually won’t need
to do anything with this application. Once that project is open in Xcode, select the menu
item File ➤ New ➤ Target. Select “Application Extension” under iOS. Then select “Today
Extension” from the list of options that appears to the right. (See Figure 11-1 for an example
of what this selection should look like.) Then click Next and give your target a name such
as “RandomRecipe.” This recipe presents an extension that selects a random recipe to be
displayed on your Today view.

Figure 11-1. New Today Extension target

Xcode will ask if you would like to activate the scheme. Confirm you would like to activate
it. Run the application. The dialog in Figure 11-2 is displayed. Select Today, and click Run to
view your widget.

279CHAPTER 11: Advanced iOS 8 Features

The iOS Simulator application opens, and the Today view appears. Click the “Edit” button
(shown in Figure 11-3).

Figure 11-2. Select an application

Figure 11-3. Edit widgets button

Then, click the plus (see Figure 11-4) button to add the RandomRecipe widget.

Figure 11-4. Add the RandomRecipe widget

280 CHAPTER 11: Advanced iOS 8 Features

A section titled “RandomRecipe” is now visible in the Today view.

Now that the widget is visible on the Today view, take a look at the structure of the project.
A new group named “RandomRecipe” was added to the project. A view controller and
storyboard were added to the group. This view controller controls the extension, otherwise
known as a “widget.” The storyboard contains the user interface for the widget. Open
the storyboard and examine it. It contains a single view with a single label. You will use
the label to display the name of the random recipe. You may have noticed the text “Hello
World” is positioned slightly to the right. You will fix this next. All widgets in the Today
screen have a default left margin. That is why the “Hello World” label appears to be oddly
positioned. Fix this by adding a protocol method from NCWidgetProvidingProtocol in the
TodayViewController.swift file under the RandomRecipe group:

func widgetMarginInsetsForProposedMarginInsets
 (defaultMarginInsets: UIEdgeInsets) -> (UIEdgeInsets) {
 return UIEdgeInsetsZero
}

Resetting the margin insets to zero removes the default and positions the label where you
would expect it to be. In the storyboard, set the label’s text alignment to left. In order to do
this, select the MainInterface.storyboard file under the RandomRecipe group. Then select
the label with the text “Hello World” in the storyboard. In the Attributes inspector, change the
text alignment to left aligned. Then set the offset of the label’s leading space constraint to 40.
This will align the text with the title of the widget on the Today view. Run the application
again. It should look something like Figure 11-5.

Figure 11-5. The Today screen with the RandomRecipe widget

Now you want to display the name of a random recipe in the widget. Since the widget will be
sharing code with your application, you have a number of options. If the same information
will be used in both your application and the widget, create a new Swift file named
RecipeService.swift. This method will deliver the information to be displayed in the widget
or the application. Open the file, and create the RecipeService class. Add a string array
property to the class with a list of recipe names:

import Foundation

class RecipeService {

 var recipes = [
 "Grilled Fish",
 "Fajitas",
 "Chicken Stir Fry",
 "Hamburger",
 "Fried Chicken",
 "Miso Soup",

281CHAPTER 11: Advanced iOS 8 Features

 "Lo Mein",
 "Tofu and Rice",
 "Spaghetti and Meatballs",
]

Complete the class with a function to return one of the recipe names at random:

 func randomRecipe() -> String {
 return recipes[Int(arc4random_uniform(UInt32(recipes.count)))]
 }
}

Now add an outlet from the label on the storyboard to the TodayViewController class. Name
the outlet recipeName. Then in the viewDidLoad: method of TodayViewController.swift, add
the following code to set the widget to display a random recipe name:

var service = RecipeService()
recipeName.text = service.randomRecipe()

Run the application. When the widget displays, it will display a random recipe name.

The Code and Usage
Listing 11-1 contains the complete code of the widget’s view controller. Listing 11-2 is an
example RecipeService class that will return a random name of a recipe. To use the code,
create a Single View iOS application. Once that project is open in Xcode, select the menu
item File ➤ New ➤ Target. Select Application Extension under iOS. Then select “Today
Extension” from the list of options that appears to the right. (See Figure 11-1 for an example
of what this selection should look like.) Then click Next and give your target a name such as
RandomRecipe. Replace the contents of TodayViewController.swift with Listing 11-1. Create
a new swift file named RecipeService.swift. Under the “File Inspector” tab, make sure the
file is selected for both “RecipeWidget” and “RandomRecipe” under “Target Membership.”
Run the application.

Listing 11-1. TodayViewController.swift

import UIKit
import NotificationCenter

class TodayViewController: UIViewController, NCWidgetProviding {

 @IBOutlet weak var recipeName: UILabel!
 override func viewDidLoad() {
 super.viewDidLoad()
 var service = RecipeService()
 recipeName.text = service.randomRecipe()
 }

282 CHAPTER 11: Advanced iOS 8 Features

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }

 func widgetPerformUpdateWithCompletionHandler(completionHandler: ((NCUpdateResult) ->

Void)!) {
 // Perform any setup necessary in order to update the view.

 // If an error is encountered, use NCUpdateResult.Failed
 // If there's no update required, use NCUpdateResult.NoData
 // If there's an update, use NCUpdateResult.NewData

 completionHandler(NCUpdateResult.NewData)
 }

 func widgetMarginInsetsForProposedMarginInsets
 (defaultMarginInsets: UIEdgeInsets) -> (UIEdgeInsets) {
 return UIEdgeInsetsZero
 }
}

Listing 11-2. RecipeService.swift

import Foundation

class RecipeService {

 var recipes = [
 "Grilled Fish",
 "Fajitas",
 "Chicken Stir Fry",
 "Hamburger",
 "Fried Chicken",
 "Miso Soup",
 "Lo Mein",
 "Tofu and Rice",
 "Spaghetti and Meatballs",
]

 func randomRecipe() -> String {
 return recipes[Int(arc4random_uniform(UInt32(recipes.count)))]
 }
}

You should see the RandomRecipe widget as it appears in Figure 11-5. Don’t forget to add
the extension as detailed in the previous “How It Works” section.

283CHAPTER 11: Advanced iOS 8 Features

11-2. Creating a Custom Keyboard Extension
Problem
You want to create a custom keyboard.

Solution
Create a keyboard extension.

How It Works
As of iOS 8, Apple has finally introduced a way to create custom keyboards. A custom
keyboard can be used within any application as long as the user has it installed and
activated. In this recipe, you will create a keyboard that has some features that would be of
value to coders. The standard keyboard on iOS hides a lot of the necessary punctuation and
characters that are frequently used when programming. Custom keyboards open up a lot of
new possibilities for developers. However, you should be aware of the limitations:

The keyboard does not have access to the text in a text control. 	
For example, you cannot select text. In addition, the keyboard does not
have access to the Copy, Cut, or Paste functions.

A custom keyboard cannot provide input to a secure text input or a 	
phone pad input.

Elements of the keyboard cannot extend past the borders of the view, 	
like Apple Keyboards do on the top row of keys.

A custom keyboard is an Application Extension in iOS 8. Open an existing application, or
create a new Single View iOS Application. Then add a “Custom Keyboard” extension using
File ➤ New ➤ Target and then select “Custom Keyboard” from the “Application Extensions”
list that appears. Open the file Info.plist. The Info.plist file includes a couple of useful
settings:

	PrefersRightToLeft – Used for languages that require an alternate
direction.

	RequestsOpenAccess – Indicates that the keyboard requires network
access to operate.

Keyboards need to be installed in iOS 8 before they can be used. Compile your project, and
run it on the simulator. At this point, the keyboard has been deployed to the simulator, but it
is not yet accessible. On the simulator, open Settings ➤ General ➤ Keyboard ➤ Keyboards
➤ Add New Keyboard. Select the name of your keyboard under the “Third Party Keyboards”
section. Then back in your application, tap in a text box. Click the world button that
switches to the next keyboard. All keyboards must have a Next button for users to change
keyboards.

284 CHAPTER 11: Advanced iOS 8 Features

In this recipe, you will create a custom keyboard using an XIB file. Using an XIB file makes
the layout and design of keyboards very easy, especially since you should be using Auto
Layout to make your layout adaptable. Add a new View (XIB) to your keyboard project group.
Select File ➤ New ➤ File. From the iOS User Interface Group, choose View and click Next.
Save the XIB as CodeKeyboard.xib.

Open KeyboardViewController.swift. Note that the KeyboardViewController inherits from
UIInputViewController. You will use some of the properties and methods later on in the
recipe. The XIB is loaded in the viewDidLoad method. Add this code to the method to load
the XIB:

override func viewDidLoad() {
 super.viewDidLoad()

 var xib = NSBundle.mainBundle().loadNibNamed("CodeKeyboard", owner: self, options: nil)

 var keyboardView = xib[0] as! UIView
 keyboardView.setTranslatesAutoresizingMaskIntoConstraints(false)
 view.addSubview(keyboardView)

 nextKeyboardButton.addTarget(self, action: "advanceToNextInputMode",

forControlEvents: .TouchUpInside)
}

It is important to set the View.translatesAutoresizingMaskIntoConstraints to false to
allow for Auto Layout of the buttons. Open the XIB file. You can now add the buttons to the
layout. This recipe focuses on a single keyboard size using Auto Layout. Other size classes
can be added after the fact.

Select the view, and open the Attributes Inspector. Set the size to Freeform and the Status
Bar to None. Change to the Size Inspector, and set the size to 320 wide by 160 high.

Drag a button onto the view. Set the size to 30 wide by 34 high. The keyboard will have
an even spacing of 4 points around the outer edge of the keyboard. It will have four rows
separated by 5 points. The first three rows will have 10 buttons. The bottom row will have
three. The bottom border will be 5 points. Create your XIB file so that it looks like Figure 11-6.

Figure 11-6. Custom keyboard layout

285CHAPTER 11: Advanced iOS 8 Features

Create 10 copies of the button in the first row. Add a “Leading Space” constraint to the
superview of 4 points. Separate each button from the other with “Leading Space” of a single
point. Set the “Trailing Space” constraint to 4. Set the width of the first nine buttons to the
width of the tenth. Select all the buttons in the first row, add a “Top Constraint” of 4 to the
top of the superview, and set the height of the buttons to 34.

Repeat the process for rows two and three. However, set the “Top Constraint” to 5 points.

The fourth row has three buttons. Create the first and last buttons like you did for the first
three rows. Set the width of the first to the width of the button above it. Do the same for the
last button. Add the space button, and set a “Leading Constraint” and “Trailing Constraint”
of 1 point to the Space button.

For the new line button and the backspace, I used Unicode characters. While in Xcode,
put your cursor in the title of a button and press Control+Command+Space. The character
viewer will open. You can then find the characters for those keys.

Now create outlets and actions to handle the keyboard buttons. Open the Assistant Editor.
Control+Drag the “Next Keyboard” button to the KeyboardViewController, and create an
outlet named nextKeyboardButton. Control+Drag the new line key to the class, and create an
action named newline. Do the same for the backspace key, and name the action backspace.
Select all the remaining buttons at the same time. Then Control+Drag them and create an
action named keyUp.

In the file KeyboardViewController.swift, in the newline action method, add the following code
to insert a new line character. The textDocumentProxy property of the UIInputViewController is
the object to use to insert characters and send editing commands:

(textDocumentProxy as! UITextDocumentProxy).insertText("\n")

Add the next line to the backspace action:

(textDocumentProxy as! UITextDocumentProxy).deleteBackward()

In the file KeyboardViewController.swift, the keyUp method will handle all the character
keys, as well as the space bar. The code inserts the title of the button into the text input. This
way, when you change the character on the button, no code updates are required. However,
for the space bar, that will not work. If the title of the button is “Space,” a space is inserted
instead:

var proxy = textDocumentProxy as! UITextDocumentProxy

var button = sender as? UIButton

if let input = button?.titleLabel?.text as String? {
 if input == "Space"
 {
 proxy.insertText(" ")
 return
 }
 proxy.insertText(input)
}

286 CHAPTER 11: Advanced iOS 8 Features

The Code and Usage
Listing 11-3 contains the complete code for the keyboard controller. To use this code, add
a Keyboard Extension target to a project. Then create a CodeKeyboard.xib file with the
keyboard’s design. Connect the IBOutlets and IBActions, and run the application. You will
need to install the keyboard the first time it runs before you can use it.

Listing 11-3. KeyboardViewController

import UIKit

class KeyboardViewController: UIInputViewController {

 @IBOutlet var nextKeyboardButton: UIButton!

 @IBAction func newLine (sender: AnyObject) {
 (textDocumentProxy as! UITextDocumentProxy).insertText("\n")
 }

 @IBAction func backspace(sender: AnyObject) {
 (textDocumentProxy as! UITextDocumentProxy).deleteBackward()
 }
 @IBAction func keyUp(sender: AnyObject) {
 var proxy = textDocumentProxy as! UITextDocumentProxy

 var button = sender as? UIButton

 if let input = button?.titleLabel?.text as String? {
 if input == "Space"
 {
 proxy.insertText(" ")
 return
 }
 proxy.insertText(input)
 }
 }

 override func viewDidLoad() {
 super.viewDidLoad()

 var xib = NSBundle.mainBundle().loadNibNamed("CodeKeyboard", owner: self,

options: nil)

 var keyboardView = xib[0] as! UIView
 keyboardView.setTranslatesAutoresizingMaskIntoConstraints(false)
 view.addSubview(keyboardView)

 nextKeyboardButton.addTarget(self, action: "advanceToNextInputMode",
 forControlEvents: .TouchUpInside)
 }
}

287CHAPTER 11: Advanced iOS 8 Features

11-3. Creating a Sharing Extension
Problem
You want to give users another option to use the global Sharing Sheet in iOS 8.

Solution
Create a share extension.

How It Works
Share extensions are part of the new extensibility framework in iOS 8. Previously, developers
had to wait for Apple to add new social networks or external applications to the build
in Share tools. Now the systemwide Share Sheets can be customized and developers
can package their custom sharing functions within a Sharing Extension for use in any
application. The results are up to the developer. You could make a sharing extension that
posts to multiple social networks, or share a photo on your custom web application. There
isn’t any restriction on where content can be posted.

In this recipe, you will create a share extension that displays a dialog, allows the user to
add some additional information, and then outputs that content to the console. For actual
use in your applications, you will need to add the code to handle the content. Typically,
applications will use web APIs or some other method of sharing the content. The details of
executing the share are not the focus of this recipe. This recipe will focus on how to create a
Share Extension, add it to an application, and get data about the content to be shared from
the host application.

Share extensions are embedded within an application. First create a Single View iOS
application. Then, to add a Share Extension to an application, choose File ➤ New Target
and then select “Share Extension.” For this recipe, name the extension ShareRecipe. This
adds a new target to your project. Two files are added to the project under a new group.
ShareViewController.swift is used to implement the Share Extension. It is a subclass of
SLComposeServiceViewController. Refer to Figure 11-7 to see the default share extension
interface. This view contains a UITextView that can be used to capture user input. In this
recipe, you will use this default view. You can alternatively use your own view designed as an
XIB or a Storyboard. The SLComposeServiceViewController does have features that allow for
customization. Where possible, use this mechanism to save time and maintain a consistent
user experience.

288 CHAPTER 11: Advanced iOS 8 Features

There are three methods included in the default code template for the
SLComposeServiceViewController. They are isContentValid, didSelectPost, and
configurationItems:

	isContentValid – This method is called each time changes are made in
the compose view. If you return false, the “Post” button is disabled. In
addition, you can update the characters remaining within this function.
The number of characters remaining is displayed below the text area.

	didSelectPost – When the user taps the “Post” button, this method is
called. In this method, perform the actions required for the actual share.
You can connect to a server, post to a web service, or do something
locally. The didSelectPost: method executes on the main thread, so
create an alternate thread in order to avoid locking the main thread.

	configurationItems – The configurationItems collection is used to
add additional items to the bottom of the compose view. The items
are added in a table view. Typically, these items are used for activities
such as selecting a social network account, collecting additional data
to be shared, or other options related to sharing the content. These are
optional.

In this recipe, you will implement all of these methods. You will create a configurationItem
that will display a new view allowing a user to provide a star rating. To test the Share
Extension, select the ShareRecipe scheme from the list of Schemes in the toolbar. Then
click Run. Xcode will ask you to select an application to run. Select Safari. Safari will launch.
Browse to a URL, and then click the share icon in the toolbar at the bottom of the screen.
The Share Extension will not be available to select yet. The first row of icons contains share
extensions, and the second row contains Action extensions. Click the “More” button in the
first row. A list of extensions is displayed and should include ShareRecipe. Tap the toggle
switch to on, and click done.

Figure 11-7. The SLComposeServiceViewController default view

289CHAPTER 11: Advanced iOS 8 Features

Click the icon for your ShareRecipe extension. The default compose view is displayed.
The next step is to add validation code. Open ShareViewController.swift. In the
isContentValid method, add the following code. This code will check the length of the
message and update the character count. If true is returned, the “Post” button will be
enabled. If false is returned, the “Post” button is disabled:

override func isContentValid() -> Bool {
 var messageLength =
 count(self.contentText)

 var charactersRemaining = 100 - messageLength;
 self.charactersRemaining = charactersRemaining;

 if charactersRemaining >= 0 {
 return true;
 }

 return false;
}

Finally, to complete the extension, update the method didSelectPost to contain the
following code. In this method, you will print the user’s message to the console and then
notify the host application that sharing is complete. In your own applications, this is where
you will post the information to a website or to an API, or to send it via a messaging
mechanism. You can handle it any way you prefer. However, these methods do run on the
main thread, so keep any blocking activities you run in a separate thread. Then notify the
host application that the sharing activity is complete:

override func didSelectPost() {
 println("Message: \(self.contentText)")
 self.extensionContext!.completeRequestReturningItems([],
 completionHandler: nil)
}

The method configurationItems is used to add additional items such as social account
selection or custom input. To complete this recipe, you will add a view and display a list of
five buttons for the user to rate the content being shared. You can create a custom view
using an XIB or Storyboard. In this recipe, you will create a simple view programmatically.
If you use code or an XIB/Storyboard, it is advisable to use Auto Layout so that the view is
adaptable to different devices.

Note In some versions of Xcode, when you run the extension again for testing, it will not appear
in the list of Sharing icons. However, when you click more, the list of Activities shows the extension
as on. This must be a bug of some sort. Toggle the extension off and then on again, and then click
Done. The extension will appear.

290 CHAPTER 11: Advanced iOS 8 Features

Add two properties to the ShareViewController class. One is the
SLComposeSheetConfigurationItem you will create and add to the default view. The second is
a constant for the Unicode glyph :

var userRating : SLComposeSheetConfigurationItem!
let star : Character = "\u{2605}"

Fill in the body of the configurationItems method. This method will create a new view
controller, add five buttons with stars to it, and set constraints to display them properly in
AutoLayout. This method creates a single SLComposeSheetConfigurationItem stored in the
property userRating. You will use that property later to update the view, indicating how many
stars the user selected. Return the userRating property wrapped in an array. If you want to
add multiple configuration items, add them to the array before it is returned.

The constraints added to the buttons will evenly distribute them horizontally
across the screen. Once the view controller is set up, display it using
pushConfigurationViewController. The share view adds your view controller using a
navigation controller and then transitions to your view:

override func configurationItems() -> [AnyObject]! {
 // To add configuration options via table cells at the bottom of the sheet, return an

array of SLComposeSheetConfigurationItem here.
 userRating = SLComposeSheetConfigurationItem()

 userRating.title = "Rating"
 userRating.value = ""

 userRating.tapHandler = {
 SLComposeSheetConfigurationItemTapHandler in

 var starsSelection = UIViewController()
 //starsSelection.view.setTranslatesAutoresizingMaskIntoConstraints(false)
 var s1 = self.createStarButton(1)
 var s2 = self.createStarButton(2)
 var s3 = self.createStarButton(3)
 var s4 = self.createStarButton(4)
 var s5 = self.createStarButton(5)
 var views = ["s1":s1,"s2":s2,"s3":s3,"s4":s4,"s5":s5]

 starsSelection.view.addSubview(s1)
 starsSelection.view.addSubview(s2)
 starsSelection.view.addSubview(s3)
 starsSelection.view.addSubview(s4)
 starsSelection.view.addSubview(s5)

 starsSelection.view.addConstraints(
 NSLayoutConstraint.constraintsWithVisualFormat(
 "H:|-[s1(s2)]-[s2(s3)]-[s3(s4)]-[s4(s5)]-[s5]-|",
 options: NSLayoutFormatOptions(0), metrics: nil, views: views))
 starsSelection.view.addConstraints(
 NSLayoutConstraint.constraintsWithVisualFormat("V:|-[s1(30)]",
 options: NSLayoutFormatOptions(0), metrics: nil, views: views))

291CHAPTER 11: Advanced iOS 8 Features

 starsSelection.view.addConstraints(
 NSLayoutConstraint.constraintsWithVisualFormat("V:|-[s2(30)]",
 options: NSLayoutFormatOptions(0), metrics: nil, views: views))
 starsSelection.view.addConstraints(
 NSLayoutConstraint.constraintsWithVisualFormat("V:|-[s3(30)]",
 options: NSLayoutFormatOptions(0), metrics: nil, views: views))
 starsSelection.view.addConstraints(
 NSLayoutConstraint.constraintsWithVisualFormat("V:|-[s4(30)]",
 options: NSLayoutFormatOptions(0), metrics: nil, views: views))
 starsSelection.view.addConstraints(
 NSLayoutConstraint.constraintsWithVisualFormat("V:|-[s5(30)]",
 options: NSLayoutFormatOptions(0), metrics: nil, views: views))
 self.pushConfigurationViewController(starsSelection)

 }

 return [userRating]
}

Also add the createStarButton method that sets up a button’s
properties. Since the constraints are added in the code, you must disable
translatesAutoresizingMaskIntoConstraints:

func createStarButton(value : Int) -> UIButton {
 var button = UIButton()
 button.setTitle("\(star)", forState: UIControlState.Normal)
 button.addTarget(self, action: "buttonTapped:", forControlEvents:

UIControlEvents.TouchUpInside)
 button.setTranslatesAutoresizingMaskIntoConstraints(false)
 button.tag = value
 return button
}

In the createStarButton: method, the target is set to the ShareViewController and
the target is buttonTapped:. This method will handle all button clicks. Using the
value set in the tag property of the button, it will set the rating and use the method
popConfigurationViewController to return to the share view:

func buttonTapped(sender : AnyObject?) {
 println("#\(sender!.tag) tapped")
 var rating : Int = sender!.tag as Int

 var stars = ""
 for i in 1...rating {
 stars += "\(star)"
 }
 userRating.value=stars
 self.popConfigurationViewController()
}

292 CHAPTER 11: Advanced iOS 8 Features

Finally, add the following line to the didSelectPost method. It will output the number of stars
the user selected:

println("Rating: \(count(userRating.value)) Stars")

The Code and Usage
Listing 11-4 contains the complete listing of the ShareViewController. Use this code to
quickly create a Share Extension for your applications. To use the code, add a new Share
Extension Target to any iOS application. Replace the contents of the ShareViewController
with this code. Select the “Share Extensions Scheme” from the menu, and run the extension
with Safari. Try sharing the web page using your extension. When you click the “Post” button,
the console should output the text you entered and the rating if you selected a rating.

Listing 11-4. ShareViewController

import UIKit
import Social

class ShareViewController: SLComposeServiceViewController {

 var userRating : SLComposeSheetConfigurationItem!
 let star : Character = "\u{2605}"

 override func isContentValid() -> Bool {
 var messageLength =
 count(self.contentText)

 var charactersRemaining = 100 - messageLength;
 self.charactersRemaining = charactersRemaining;

 if charactersRemaining >= 0 {
 return true;
 }

 return false;
 }

 override func didSelectPost() {
 println("Message: \(self.contentText)")
 println("Rating: \(count(userRating.value)) Stars")
 self.extensionContext!.completeRequestReturningItems([], completionHandler: nil)
 }

 override func configurationItems() -> [AnyObject]! {
 // To add configuration options via table cells at the bottom of the sheet
 // return an array of SLComposeSheetConfigurationItem here.
 userRating = SLComposeSheetConfigurationItem()

 userRating.title = "Rating"
 userRating.value = ""

293CHAPTER 11: Advanced iOS 8 Features

 userRating.tapHandler = {
 SLComposeSheetConfigurationItemTapHandler in

 var starsSelection = UIViewController()
 //starsSelection.view.setTranslatesAutoresizingMaskIntoConstraints(false)
 var s1 = self.createStarButton(1)
 var s2 = self.createStarButton(2)
 var s3 = self.createStarButton(3)
 var s4 = self.createStarButton(4)
 var s5 = self.createStarButton(5)
 var views = ["s1":s1,"s2":s2,"s3":s3,"s4":s4,"s5":s5]

 starsSelection.view.addSubview(s1)
 starsSelection.view.addSubview(s2)
 starsSelection.view.addSubview(s3)
 starsSelection.view.addSubview(s4)
 starsSelection.view.addSubview(s5)

 starsSelection.view.addConstraints(
 NSLayoutConstraint.constraintsWithVisualFormat(
 "H:|-[s1(s2)]-[s2(s3)]-[s3(s4)]-[s4(s5)]-[s5]-|",
 options: NSLayoutFormatOptions(0), metrics: nil, views: views))
 starsSelection.view.addConstraints(
 NSLayoutConstraint.constraintsWithVisualFormat("V:|-[s1(30)]",
 options: NSLayoutFormatOptions(0), metrics: nil, views: views))
 starsSelection.view.addConstraints(
 NSLayoutConstraint.constraintsWithVisualFormat("V:|-[s2(30)]",
 options: NSLayoutFormatOptions(0), metrics: nil, views: views))
 starsSelection.view.addConstraints(
 NSLayoutConstraint.constraintsWithVisualFormat("V:|-[s3(30)]",
 options: NSLayoutFormatOptions(0), metrics: nil, views: views))
 starsSelection.view.addConstraints(
 NSLayoutConstraint.constraintsWithVisualFormat("V:|-[s4(30)]",
 options: NSLayoutFormatOptions(0), metrics: nil, views: views))
 starsSelection.view.addConstraints(
 NSLayoutConstraint.constraintsWithVisualFormat("V:|-[s5(30)]",
 options: NSLayoutFormatOptions(0), metrics: nil, views: views))
 self.pushConfigurationViewController(starsSelection)

 }

 return [userRating]
 }

 func createStarButton(value : Int) -> UIButton {
 var button = UIButton()
 button.setTitle("\(star)", forState: UIControlState.Normal)
 button.addTarget(self, action: "buttonTapped:", forControlEvents:

UIControlEvents.TouchUpInside)
 button.setTranslatesAutoresizingMaskIntoConstraints(false)
 button.tag = value
 return button
 }

294 CHAPTER 11: Advanced iOS 8 Features

 func buttonTapped(sender : AnyObject?) {
 println("#\(sender!.tag) tapped")
 var rating : Int = sender!.tag as Int

 var stars = ""
 for i in 1...rating {
 stars += "\(star)"
 }
 userRating.value=stars
 self.popConfigurationViewController()
 }
}

11-4. Creating an Action Extension
Problem
You want to make a feature from your application available to other applications.

Solution
Create an Action extension.

How It Works
Action extensions are part of iOS 8’s extensibility functions. Actions are displayed along
with sharing options. However, they are meant for a different purpose. Sharing extensions
are about distributing content to others. Actions are about acting on the content. You could
create an Action extension that puts a mustache on a picture or turns a photo into black and
white. When the action is complete, the information can be returned to the application using
the extension.

In this recipe, you will create an Action extension that captures a URL from a browser. An
action like this could be used to create a bookmarking application that bookmarks your
favorite recipes. What happens to the information once it is stored is up to your imagination.
This recipe will focus on the mechanics of creating the Action extension, receiving data from
the application using the extension, and returning a confirmation message about the status
of the action. If you were building a bookmarking application, you could add the URL to a
Core Data database for access at a later time.

Create a Single View iOS Application. Then add an Action extension target to the project
by selecting File ➤ New ➤ Target. Then choose “Action Extension.” Name the extension
Bookmarker. This recipe will create an Action extension that will capture the URL from a web
page as if you were building an app that bookmarks favorite recipes. It will then notify the
host application to display a confirmation message.

The Action extension template adds a new group to your project along with the new target.
This extension will work only with URLs. You can specify this in the Info.plist file contained
in the Bookmarker group under “Supporting Files.”

295CHAPTER 11: Advanced iOS 8 Features

Note Make sure you pick the Info.plist file for the extension and not the Application.

Click on Info.plist. Under NSExtension ➤ NSExtensionAttributes ➤
NSExtensionActivationRule, there could be a number of options. These all indicate to the
operating system what types of content your extension can work with. Delete everything
except the entry NSExtensionActivationSupportsWebURLWithMaxCount. Set its value to 1.
This simple action will handle one URL at a time. Descriptions of the other options can be
found in Apple’s “App Extension Programming Guide” in the section “Declaring Supported
Data Types for a Share or Action extension.” As the title implies, you can configure a Sharing
Extension like Recipe 11-3 the same way.

In the project under the Bookmarker group, there is a file named Action.js. This contains the
JavaScript code that will be running in the host app browser. This JavaScript file is required
to export a variable ExtensionPreprocessingJS that contains the functions that make up
both sides of the integration. The run method is triggered when a user clicks on the Action
extension button in the Share Screen. The finalize function is used to receive information
back from the extension. This function will be discussed shortly:

var Action = function() {}

Action.prototype = {

 run: function(arguments) {
 arguments.completionFunction({ "currentUrl" : document.URL })
 }
}

var ExtensionPreprocessingJS = new Action

The run function takes the URL and adds it to a JSON object. This JSON object is sent to
the Action extension to be processed.

The ActionRequestHandler class is what handles the action. The class implements the
NSExtensionRequestHandling protocol. The method beginRequestWithExtensionContext gets
the data sent by the host application and preprocesses the information. The information is
sent in JSON format, so it must be decoded. The NSExtensionContext parameter context
contains the extension item as well as an array of attachments. Since this recipe handles
only one URL, you will have to deal with only the first item in the list of attachments.

The code checks to see if the item conforms to the type of kUTTypePropertyList. This
checks to see if the data contains dictionaries that contain JSON information. This is
necessary because you are dealing with URL data and will be using JavaScript to
communicate between the extension and the browser. If the data is of the proper type, an

296 CHAPTER 11: Advanced iOS 8 Features

NSOperation is queued. This operation will extract the dictionary of information and call
itemLoadCompletedWithPreprocessingResults to handle processing the data:

func beginRequestWithExtensionContext(context: NSExtensionContext) {
 // Do not call super in an Action extension with no user interface
 self.extensionContext = context

 var found = false

 let extensionItem = extensionContext?.inputItems.first as! NSExtensionItem
 let itemProvider = extensionItem.attachments?.first as! NSItemProvider

 let propertyList = String(kUTTypePropertyList)
 if itemProvider.hasItemConformingToTypeIdentifier(propertyList) {
 itemProvider.loadItemForTypeIdentifier(propertyList, options: nil,
 completionHandler: { (item, error) -> Void in
 let dictionary = item as! NSDictionary
 NSOperationQueue.mainQueue().addOperationWithBlock {
 let results = dictionary[NSExtensionJavaScriptPreprocessingResultsKey] as!

NSDictionary
 let urlString = results["currentUrl"] as? String
 println("URL selected: \(urlString)")
 self.itemLoadCompletedWithPreprocessingResults(results as [NSObject :

AnyObject])
 }
 })
 } else {
 println("error")
 }
}

The itemLoadCompletedWithPreprocessingResults method takes the dictionary of JSON
data and attempts to extract the URL to be bookmarked.

In this method, you would deal with the data by transforming it or saving it, depending
on your extension’s function. If this was a real bookmarking application, you could
save it to a local Core Data database. Actions can perform any action and, in addition,
return information to the host application. In a Share Extension, you can communicate
with the host app via JSON and JavaScript. The doneWithResults method takes a
dictionary of name/value pairs and converts it into JSON using the NSItemProvider class.
doneWithResults does the opposite of beginRequestWithExtensionContext. The data to be
returned is converted to an NSItemProvider and wrapped in an NSExtensionItem. This will be
passed to the host application and handled via JavaScript.

Even if the Action extension does not need to return data, you must notify the host
application by calling NSExtensionContext.completeRequestReturningItems. Then you can
release the extensionContext by setting it to nil:

func doneWithResults(resultsForJavaScriptFinalizeArg: [NSObject: AnyObject]?) {
 if let resultsForJavaScriptFinalize = resultsForJavaScriptFinalizeArg {
 var resultsDictionary = [NSExtensionJavaScriptFinalizeArgumentKey:

resultsForJavaScriptFinalize]

297CHAPTER 11: Advanced iOS 8 Features

 var resultsProvider = NSItemProvider(item: resultsDictionary,
 typeIdentifier: String(kUTTypePropertyList))

 var resultsItem = NSExtensionItem()
 resultsItem.attachments = [resultsProvider]

 self.extensionContext!.completeRequestReturningItems([resultsItem],

completionHandler: nil)
 } else {
 self.extensionContext!.completeRequestReturningItems([], completionHandler: nil)
 }

 self.extensionContext = nil
}

This JavaScript handles the call to completeRequestReturningItems. The method finalize
receives the dictionary of data that we returned from the extension. The JavaScript can
manipulate the DOM of the current page or, as in this recipe, it displays the message the
extension returned:

finalize: function(arguments) {
 var message = arguments["statusMessage"]

 if (message) {
 alert(message);
 }
 }

The Code and Usage
The code of this recipe can be used to add an Action extension to an application. To use
the code, start by adding an Action extension target to your application. Then replace the
contents of the ActionRequestHandler.swift file with the contents of Listing 11-5. Update
the contents of Action.js with the contents of Listing 11-6. Don’t forget to set the types of
content your extension will apply to in the extension’s Info.plist file.

When you run the application, choose to run it within Safari. Then click the Share icon in the
toolbar. If the Bookmarker action button is not visible, you may need to swipe to the right in
the action buttons and click the “More” button. When you tap the Bookmarker button, you
will see the URL printed out to the console, and then a dialog is displayed in the browser
confirming the action has taken place.

Listing 11-5. ActionRequestHandler.swift

import UIKit
import MobileCoreServices

class ActionRequestHandler: NSObject, NSExtensionRequestHandling {

 var extensionContext: NSExtensionContext?

298 CHAPTER 11: Advanced iOS 8 Features

 func beginRequestWithExtensionContext(context: NSExtensionContext) {
 // Do not call super in an Action extension with no user interface
 self.extensionContext = context

 var found = false

 let extensionItem = extensionContext?.inputItems.first as! NSExtensionItem
 let itemProvider = extensionItem.attachments?.first as! NSItemProvider

 let propertyList = String(kUTTypePropertyList)
 if itemProvider.hasItemConformingToTypeIdentifier(propertyList) {
 itemProvider.loadItemForTypeIdentifier(propertyList, options: nil,
 completionHandler: { (item, error) -> Void in
 let dictionary = item as! NSDictionary
 NSOperationQueue.mainQueue().addOperationWithBlock {
 let results = dictionary[NSExtensionJavaScriptPreprocessingResultsKey]

as! NSDictionary
 let urlString = results["currentUrl"] as? String
 println("URL selected: \(urlString)")
 self.itemLoadCompletedWithPreprocessingResults(results as

[NSObject : AnyObject])
 }
 })
 } else {
 println("error")
 }
 }

 func itemLoadCompletedWithPreprocessingResults(javaScriptPreprocessingResults:

[NSObject: AnyObject])
 {
 let url: AnyObject? = javaScriptPreprocessingResults["currentUrl"]
 if url == nil || url! as! String == "" {
 self.doneWithResults(["statusMessage": "Recipe Bookmark Failed"])
 } else {
 self.doneWithResults(["statusMessage": "Recipe Bookmarked"])
 }
 }

 func doneWithResults(resultsForJavaScriptFinalizeArg: [NSObject: AnyObject]?) {
 if let resultsForJavaScriptFinalize = resultsForJavaScriptFinalizeArg {
 var resultsDictionary = [NSExtensionJavaScriptFinalizeArgumentKey:

resultsForJavaScriptFinalize]

 var resultsProvider = NSItemProvider(item: resultsDictionary,
 typeIdentifier: String(kUTTypePropertyList))

 var resultsItem = NSExtensionItem()
 resultsItem.attachments = [resultsProvider]

 self.extensionContext!.completeRequestReturningItems([resultsItem],

completionHandler: nil)

299CHAPTER 11: Advanced iOS 8 Features

 } else {
 self.extensionContext!.completeRequestReturningItems([], completionHandler: nil)
 }

 self.extensionContext = nil
 }

}

Listing 11-6. Action.js

var Action = function() {}

Action.prototype = {

 run: function(arguments) {
 arguments.completionFunction({ "currentUrl" : document.URL })
 },

 finalize: function(arguments) {
 var message = arguments["statusMessage"]

 if (message) {
 alert(message);
 }
 }
}

var ExtensionPreprocessingJS = new Action

11-5. Creating a WatchKit Application
Problem
You want to display alerts and content on the Apple Watch.

Solution
Create a WatchKit Application.

How It Works
The Apple Watch launched recently, and developers can now create watch applications that
allow a user to interact with iOS applications from their watch. A watch application is similar
to an extension, except that the “view” of the app lives on the watch. The remainder of the
processing and functionality is still handled by the phone.

300 CHAPTER 11: Advanced iOS 8 Features

Create a new iOS Single View Application, and name it Counter. Then add a new target.
(Select File ➤ New ➤ Target from the menu.) In the dialog, select “WatchKit App” from
the “Apple Watch” section under iOS. On the next dialog deselect “Include Notification
Scene” and “Include Glance Scene.” Two new targets and groups are added to your project:
Counter WatchKit Extension and Counter WatchKit App. The extension runs on the iPhone.
It contains the Model and the Controller portion of the code. The WatchKit App contains
the User Interface. Apple has done this, so processing happens on the phone rather than
on the watch. This will be updated in the future, but as of publication this is the current
environment.

Even though the app interface runs on the watch, the code executes on the iPhone, and
the two communicate over Bluetooth, developers do not need to worry about any of that.
Connecting the user interface to the controller is as simple as it is for an iPhone app. Open the
Interface.storyboard file in the “Counter WatchKit App” group. It looks similar to an iPhone
storyboard, just smaller. Such a small screen does not have many layout options. When
elements are placed on the screen, they are pinned to the top or bottom and the sides.

Drag a label onto the scene, and move it to the top. Select the label, and open the Attributes
Inspector. The Attributes Inspector is used in the same way in a watch interface. Change the
font to System Bold, and change the size to 40 points.

In the position section (shown in Figure 11-8) are options for pinning. There are three options
for each. Horizontal options include Left, Right, and Center. Depending on the side you pin,
you can resize the element.

Figure 11-8. WatchKit user interface positioning attributes

If you select “Center,” resizing the element will continue to keep it in the center of the watch
face. When you add other elements, they will continue to stack one on top of the other. If
you want to place two elements side by side, you can use a Group to position them. Vertical
positioning options are Top, Middle, and Bottom. Similar to horizontal, the height of an
element can be adjusted based on where it is pinned. Add a button and pin it to the bottom.
Allow it to take the full width of the screen.

Adding an IBOutlet and IBAction are exactly the same in WatchKit. Click the Assistant
Editor. Click+Drag the label, and create an IBOutlet named counter. Then Click+Drag the
button and create an action named increment. You do not need to worry about how these
outlets are connected; iOS takes care of it for you.

Now open the InterfaceController.swift file in the “Counter WatchKit Extension” group.
This view controller runs on the phone and does all of the work for the Watch application.
The default template comes with stubs for the most common events in the life cycle.
awakeWithContext is the first method to trigger. The method willAppear comes next, like
viewWillAppear does in a UIViewController. A third method, didDisappear, is executed after
the view is hidden from screen.

301CHAPTER 11: Advanced iOS 8 Features

When awakeWithContext executes, the interface is loaded and IBOutlets and IBActions
are connected. This is where you can initialize your interface elements. The UI elements of
WatchKit are different from UIKit and have slightly different APIs. In awakeWithContext, add
this line to set the text of the label:

counter.setText("\(count)")

Then add the following code to the increment method. This will increment the counter and
update the label’s content:

counter.setText("\(++count)")

The Code and Usage
Listing 11-7 contains the complete code of InterfaceController.swift for this recipe.
To use this code, add a WatchKit App target to a new iOS Single View Application. Update
InterfaceController.swift with the contents of Listing 11-7. Create the Storyboard scene
as indicated in the recipe and connect the outlets. Before you run the application, launch
iOS Simulator. The Watch App needs to run in an external display. In the menu, select
Hardware ➤ External Displays ➤ Apple Watch. You can choose 38mm or 42mm based on
your preference. A second window will appear. Now return to Xcode, check that the Scheme
is set to Counter WatchKit App, and run your application. The WatchApp will appear in the
new window. Tap the button and the count will go up on screen.

Listing 11-7. InterfaceController.swift

import WatchKit
import Foundation

class InterfaceController: WKInterfaceController {
 var count = 0

 override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)
 counter.setText("\(count)")
 }

 @IBOutlet weak var counter: WKInterfaceLabel!
 @IBAction func increment() {
 counter.setText("\(++count)")
 }
}

303

A, B ■
Advanced Swift programming

asynchronous code testing, 102
AsyncTests.swift, 104
expectation.fulfill, 103
output, 105
XCTestExpectation, 103

equality operator, overloading, 82–84
generic classes, 87–88
generic functions, 85–86
local dates and times, 89–91
MockTesting class, 100–101

Database and Record classes, 101
database connection, 100
output, 102
TestMe.swift, 102

performance testing with XCTest, 98–99
reference equality, 84–85
unit-testing project

Calculator.swift listing, 96
execution, 97
Mac OS applications, 92
setUp and tearDown methods, 94
Target Membership, 96–97
Tests target, 92
XCTest assertions, 95
XCTestCase class, 93

writing closures, 79–81
writing trailing closures, 81–82

Array creation
angle brackets “<>”, 52
code and usage, 53
count property, 53–54
definition, 52
file system, saving, 62–64
iteration, 61–62
managing items, 54–55

plist file, 64–66
replacing, 60
searching, 55–57
sorting, 58–60
strings, 52
subscripts, 66–67
vehiclesCopy, 52

C ■
Cartesian coordinate system, 146
Complex types

classes
adding instance methods, 34
adding type methods, 35
characters, 29
constants properties, 30
creation, 29
inheriting, 36
initialize properties, 32
protocols implementation, 39
variables properties, 31

enumerations, 43
functions creation, 28
property observers, 41
structures creation, 47
tuples, 49

Concurrency
downloading content files

AppDelegate.swift, 216
bytesWritten, 214
completionHandler, 215
configuration parameter, 213
delegate parameter, 213
delegateQueue parameter, 213
identifier and configuration

settings, 215
implement the protocol methods, 213

Index

304 Index

NSURLSession, 212
totalBytesExpectedToWrite, 214
totalBytesWritten, 214
ViewController.swift, 216

GCD, 204–207
iOS, 210–212
long-running background tasks

CLLocationManager class, 219
CLLocationManager.

locationServicesEnabled(), 222
code implementation, 223
Core Location framework, 220
Core Location services, 219–220
delegate method locationManager:di

dUpdateLocations:, 222
geolocation services, 221
Info tab, 221
location services, 224
UIBackgroundModes values, 218
viewDidLoad method, 222
in Xcode, 219

NSOperations and NSOperationsQueue,
207–210

NSThread
code implementation, 201
cost of, 200
detachNewThreadSelector:toTarget:

withObject:, 200
NSThread.initWithTarget:selector:obj

ect:, 201
@objc attribute, 200
object parameter, 200
threadPriority property value, 201

synchronizing threads, 202–204
configurationItems method, 288–289
Core Data

data model
editor, 253
framework, 252
recipe, 253

data store
code and usage, 260
NSError, 259
NSManagedObjectModel class, 257
parameters, 258
persistent store coordinator, 258

entity addition, 264
model classes, 254
NSFetchRequest object, 266
NSManagedObjectContext object, 262
NSPredicate property, 275
object deletion, 273
UITableViewController

MasterViewController.swift, 271
NSFetchedResultsController,

268–269
NSSortDescriptor, 269
parameters, 269

createStarButton method, 291

D ■
dequeueReusableCellWithIdentifier:, 135
Dictionary creation

creation, 68
file system, saving, 74–75
Hashable protocol, 70–71
iteration, 72–73
key/value pairs, 68
managing items, 69–70
NSDictionary and NSMutable

Dictionary, 68
property list file, 76–77

didSelectPost method, 288–289, 292
Document Object Model (DOM) parser, 231
doneWithResults method, 296

E ■
Enumerations, 43

F ■
Files and directories

application support, 180
archiving objects, 193–195
Caches, 180
copy operation, 184
creation, 186
deleting operation, 188
directory exists, 183
documents, 180
exists file path, 183
getting path list, 191

Concurrency (cont.)

305Index

getting user’s documents
directory, 182

library, 180
NSCoder protocol

encodeWithCoder, 195
initWithCoder, 196
OrderFields, 196

NSFileManager class, 181
NSSearchPathDirectory values, 181
NSSearchPathDomainMask, 181

G, H ■
Grand central dispatch (GCD), 204–207

I, J ■
indexPath parameter, 136
iOS 8 advanced features

Action extension
Action.js, 295, 299
ActionRequestHandler class, 295
ActionRequestHandler.swift, 297
bookmarking application, 294
completeRequestReturningItems, 297
doneWithResults method, 296
finalize function, 295
Info.plist file, 294
itemLoadCompletedWith

PreprocessingResults method, 296
run method, 295

custom keyboard extension
Info.plist file settings, 283
KeyboardViewController code, 286
KeyboardViewController.swift, 284
keyUp method, 285
layout, 284
“Leading Space” constraint, 285
limitations, 283
newline action method, 285
size selection, 284
textDocumentProxy property, 285
“Top Constraint”, 285
“Trailing Space” constraint, 285
XIB file, 284

sharing extension
configurationItems method, 289
createStarButton method, 291
didSelectPost method, 289, 292

global Sharing Sheet, 287
isContentValid method, 289
ShareRecipe, 287
ShareViewController code, 292
ShareViewController.swift, 287
SLComposeServiceViewController,

287–288
Today extension

boilerplate application, 277
displaying Today screen, 277
Edit widgets button, 279
MainInterface.storyboard file, 280
NCWidgetProvidingProtocol, 280
new target, 278
RandomRecipe widget, 279–280
RecipeService class, 280
RecipeService.swift, 282
selecting application, 279
TodayViewController class, 281
TodayViewController.swift, 281

WatchKit Application, 299
iOS applications

editing and deletion, 138
new project options, 109
problems, 107
single view application, 108
solutions, 107
UIAlertController, 127, 130
UIbutton, 111
UITableView creation, 133
UITextField, 114
UIViews, 109, 116
user-interface elements, 121

isContentValid method, 288–289

K ■
keyboardWillShow, 123
Key-value-coding (KVC), 171
kUTTypePropertyList, 295

L, M ■
Lower camel case, 28

N ■
NSDateFormatter, 90
NSDate function, 24

306 Index

NSExtensionRequestHandling protocol, 295
NSFetchRequest object, 266
NSManagedObjectContext object, 262
NSNotificationCenter., 122
NSString class, 11

O ■
OS X application

AppDelegate.swift, 145
Cocoa application, 144
NSButton, 151
NSImageView

adding images, 156
NSImageScaling

enumeration, 160
NSWindowDelegate.

windowWillResize, 158
window.contentRectForFrameRect

method, 159
window resize, 161
windowWillResize, 161

NSMenuItem
delegate method, 150
menu bar, 148
NSUserInterfaceValidations

protocol, 150
properties, 148

NSTableView
adding array property, 166
adding Int method, 166
AppDelegate class, 164
handling row selection, 176
MainMenu.xib, 163
NSComparator, 173
NSMutableArray, 174
NSSortDescriptor, 171
NSTableViewDataSource

protocol, 168
NSTextField properties, 167
object library, 163
sorting column, 174
tableColumn, 168

NSTextField, 154
NSView class

establishing CGRect, 146
run application, 147
set backgroundColor property, 147

P, Q ■
popConfigurationViewController

method, 291
PrefersRightToLeft, 283
pushConfigurationViewController, 290

R ■
Reachability, 237
RecipeService.swift, 282
RequestsOpenAccess, 283

S ■
Simple API for XML (SAX) parser, 231
SLComposeSheetConfigurationItem, 290
String manipulation

code and usage, 13–14
native Swift methods

array functions, 15–16
for-in loop, 14
isEmpty function, 15
prefix and suffix functions, 15

NSString objects, 12
+ operator, 13
Range parameter, 13
String.Index object, 12
var keyword, 12

Swift programming
advance (see Advanced Swift

programming)
enumerations and structures, 2
playground

assistant editor, 5
code and usage, 5
creation, 4
definition, 2

strings
dealing with dates, 24–26
dealing with numbers, 23–24
formatting numbers, 10
iOS file system, 16
length, 11
manipulation (see string

manipulation)
reading and writing text files (see

Text files)
with dealing, 8–9

307Index

type inference, 2
type safety, 2
user interface elements

code and usage, 7–8
Quick Look icon, 6
UILabel, 6
Values History icons, 7

Xcode 3, 6

T ■
Text file

Cocoa-based application
Mac OS, 22
String.writeToFile method, 22
terminal prompt, 23

directory variable, 21
iOS, 20–21
NSError object, 19
NSSearchPathForDirectoriesIn

Domains function, 19
string variable, 20

textLabel property, 136
TodayViewController class, 281
TodayViewController.swift, 281
Tuples, 49

U ■
UIAlertController, 127
Upper camel case, 28

V ■
ViewController.swift, 129
viewDidLoad: method, 110
viewWillAppear: method, 125

W ■
WatchKit application, 299
Web services

HTTP calls, 235
network connectivity, 237
parse JSON data, 225
parse XML, 231
REST API

calling, 240
posting data, 244

X, Y, Z ■
XCTAssertEqual, 95
XCTestCase class, 94

Swift Recipes

A Problem-Solution Approach

T. Michael Rogers

Swift Recipes: A Problem-Solution Approach

Copyright © 2015 by T. Michael Rogers

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the
respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0419-1

ISBN-13 (electronic): 978-1-4842-0418-4

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Michelle Lowman
Technical Reviewer: Charles Cruz
Development Editor: Anne Marie Walker
Editorial Board: Steve Anglin, Mark Beckner, Gary Cornell, Louise Corrigan, James DeWolf,

Jonathan Gennick, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie,
Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Kevin Walter
Copy Editor: Roger LeBlanc
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Photo: Martijn Vroom

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM
Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special Bulk
Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers
at www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

This book is dedicated to my wife, Liz, who single-handedly keeps our family together and
functioning, and to my children Catherine, Keira, and Anna. I love you all. I thank them and
my other friends and family for their patience and support during all the late nights and long

weekends of writing.

vii

Contents

About the Author ���xxvii

About the Technical Reviewer ��xxix

Acknowledgments ��xxxi

Introduction ��xxxiii

Chapter 1: Swift Programming ■ ��� 1

1-1. Getting Started with Swift .. 2

Problem .. 2

Solution... 2

1-2. Installing Xcode 6 ... 3

Problem .. 3

Solution... 3

How It Works ... 3

1-3. Working with Playgrounds .. 4

Problem .. 4

Solution... 4

How It Works ... 4

The Code and Usage ... 5

viii Contents

1-4. Designing User Interface Elements in a Storyboard ... 6

Problem .. 6

Solution... 6

How It Works ... 6

The Code and Usage ... 7

1-5. Dealing with Strings ... 8

Problem .. 8

Solution... 8

How It Works ... 8

The Code and Usage ... 9

1-6. Formatting Numbers as Strings .. 10

Problem .. 10

Solution... 10

How It Works ... 10

The Code and Usage ... 10

1-7. Getting the Length of a Swift String ... 11

Problem .. 11

Solution... 11

How It Works ... 11

The Code and Usage ... 11

1-8. Manipulating Swift Strings ... 12

Problem .. 12

Solution... 12

How It Works ... 12

The Code and Usage ... 13

1-9. Manipulating Strings with Native Swift Methods ... 14

Problem .. 14

Solution... 14

How It Works ... 14

The Code and Usage ... 15

ixContents

1-10. Storing Strings on the iOS File System ... 16

Problem .. 16

Solution .. 16

How It Works ... 17

The Code and Usage ... 17

1-11. Reading a Text File into a String ... 19

Problem .. 19

Solution... 19

How It Works ... 19

The Code and Usage ... 20

1-12. Reading and Writing Text Files in Cocoa ... 21

Problem .. 21

Solution... 21

How It Works ... 21

The Code and Usage ... 22

1-13. Dealing with Numbers .. 23

Problem ... 23

Solution .. 23

How It Works ... 24

The Code and Usage ... 24

1-14. Dealing with Dates .. 24

Problem .. 24

Solution... 24

How It Works ... 24

The Code and Usage ... 25

Chapter 2: Complex Types ■ ��� 27

2-1. Writing Functions .. 28

Problem .. 28

Solution... 28

How It Works ... 28

The Code and Usage ... 29

x Contents

2-2. Creating Classes ... 29

Problem .. 29

Solution... 29

How It Works ... 29

The Code and Usage ... 30

2-3. Adding Class Properties .. 30

Problem .. 30

Solution... 30

How It Works ... 30

The Code and Usage ... 31

2-4. Initializing Class Properties .. 32

Problem .. 32

Solution... 32

How It Works ... 32

The Code and Usage ... 33

2-5. Adding Class Methods .. 34

Problem .. 34

Solution... 34

How It Works ... 34

The Code and Usage ... 35

2-6. Inheriting from Classes ... 36

Problem .. 36

Solution... 36

How It Works ... 36

The Code and Usage ... 38

2-7. Implementing Protocols .. 39

Problem .. 39

Solution... 39

How It Works ... 39

The Code and Usage ... 40

xiContents

2-8. Setting Property Observers ... 41

Problem .. 41

Solution... 41

How It Works ... 41

The Code and Usage ... 42

2-9. Defining Enumerations ... 43

Problem .. 43

Solution... 43

How It Works ... 43

The Code and Usage ... 46

2-10. Creating Structures ... 47

Problem .. 47

Solution... 47

How It Works ... 47

The Code and Usage ... 48

2-11. Using Tuples .. 49

Problem .. 49

Solution... 49

How It Works ... 49

The Code and Usage ... 50

Chapter 3: Collections ■ ��� 51

3-1. Creating an Array .. 52

Problem .. 52

Solution... 52

How It Works ... 52

The Code and Usage ... 53

3-2. Counting the Number of Items in an Array .. 53

Problem .. 53

Solution... 53

How It Works ... 53

The Code and Usage ... 54

xii Contents

3-3. Managing Items in an Array .. 54

Problem .. 54

Solution... 54

How It Works ... 54

The Code and Usage ... 55

3-4. Searching for Items in an Array .. 55

Problem .. 55

Solution... 56

How It Works ... 56

The Code and Usage ... 57

3-5. Sorting an Array .. 58

Problem .. 58

Solution... 58

How It Works ... 58

The Code and Usage ... 59

3-6. Replacing a Range of Values in an Array .. 60

Problem .. 60

Solution... 60

How It Works ... 60

The Code and Usage ... 60

3-7. Iterating Over an Array .. 61

Problem .. 61

Solution... 61

How It Works ... 61

The Code and Usage ... 62

3-8. Saving an Array to the File System ... 62

Problem .. 62

Solution... 62

How It Works ... 62

The Code and Usage ... 63

xiiiContents

3-9. Populating an Array with the Contents of a plist File .. 64

Problem .. 64

Solution... 64

How It Works ... 64

The Code and Usage ... 65

3-10. Using Subscripts ... 66

Problem .. 66

Solution... 66

How It Works ... 66

The Code and Usage ... 67

3-11. Creating a Dictionary .. 68

Problem .. 68

Solution... 68

How It Works ... 68

The Code and Usage ... 68

3-12. Managing Items in a Dictionary .. 69

Problem .. 69

Solution... 69

How It Works ... 69

The Code and Usage ... 70

3-13. Implementing the Hashable Protocol .. 70

Problem .. 70

Solution... 70

How It Works ... 70

The Code and Usage ... 71

3-14. Iterating Through Items in a Dictionary .. 72

Problem .. 72

Solution... 72

How It Works ... 72

The Code and Usage ... 73

xiv Contents

3-15. Saving a Dictionary to the File System ... 74

Problem .. 74

Solution... 74

How It Works ... 74

The Code and Usage ... 75

3-16. Populating a Dictionary with the Contents of a Property List File 76

Problem .. 76

Solution... 76

How It Works ... 76

The Code and Usage ... 77

Chapter 4: Advanced Swift Programming ■ ��� 79

4-1. Writing Closures .. 79

Problem .. 80

Solution... 80

How It Works ... 80

The Code and Usage ... 80

4-2. Writing Trailing Closures ... 81

Problem .. 81

Solution... 81

How It Works ... 81

The Code and Usage ... 82

4-3. Overloading the Equality Operator .. 82

Problem .. 82

Solution... 82

How It Works ... 83

The Code and Usage ... 83

4-4. Checking for Reference Equality ... 84

Problem .. 84

Solution... 84

How It Works ... 84

The Code and Usage ... 84

xvContents

4-5. Implementing Generic Functions .. 85

Problem .. 85

Solution... 85

How It Works ... 86

The Code and Usage ... 86

4-6. Implementing Generic Classes ... 87

Problem .. 87

Solution... 87

How It Works ... 87

The Code and Usage ... 88

4-7. Working with Local Dates and Times .. 89

Problem .. 89

Solution... 89

How It Works ... 89

The Code and Usage ... 90

4-8. Creating a Unit Test Project ... 92

Problem .. 92

Solution... 92

How It Works ... 92

The Code and Usage ... 92

4-9. Writing a Unit Test ... 94

Problem .. 94

Solution... 94

How It Works ... 94

The Code and Usage ... 96

4-10. Performance Testing with XCTest ... 98

Problem .. 98

Solution... 98

How It Works ... 98

The Code and Usage ... 98

xvi Contents

4-11. Creating Mock Objects for Testing .. 99

Problem .. 100

Solution... 100

How It Works ... 100

The Code and Usage ... 100

4-12. Testing Asynchronous Code .. 102

Problem .. 102

Solution... 102

How It Works ... 103

The Code and Usage ... 104

Chapter 5: iOS Applications ■ �� 107

5-1. Creating a New iOS Application .. 107

Problem .. 107

Solution... 107

How It Works ... 108

5-2. Adding a UILabel to a View.. 109

Problem .. 109

Solution... 109

How It Works ... 109

The Code and Usage ... 110

5-3. Adding a UIButton to a View .. 111

Problem .. 111

Solution... 111

How It Works ... 111

The Code and Usage ... 113

5-4. Adding a UITextField to a View .. 114

Problem .. 114

Solution... 114

How It Works ... 114

The Code and Usage ... 115

xviiContents

5-5. Positioning UIViews in Auto Layout Using NSConstraints 116

Problem .. 116

Solution... 116

How It Works ... 117

The Code and Usage ... 119

5-6. Repositioning a View to Accommodate the Keyboard ... 121

Problem .. 121

Solution... 121

How It Works ... 121

The Code and Usage ... 125

5-7. Displaying an Alert with UIAlertController ... 127

Problem .. 127

Solution... 127

How It Works ... 127

The Code and Usage ... 129

5-8. Using UIAlertController to Collect User Input .. 130

Problem .. 130

Solution... 130

How It Works ... 130

The Code and Usage ... 132

5-9. Creating a UITableView ... 133

Problem .. 133

Solution... 133

How It Works ... 133

The Code and Usage ... 136

5-10. Swiping to Delete an Item from a UITableView ... 138

Problem .. 138

Solution... 138

How It Works ... 139

The Code and Usage ... 140

xviii Contents

Chapter 6: OS X Applications ■ ��� 143

6-1. Creating an OS X Application .. 144

Problem .. 144

Solution... 144

How It Works ... 144

The Code and Usage ... 145

6-2. Adding a View to a Window ... 146

Problem .. 146

Solution... 146

How It Works ... 146

The Code and Usage ... 147

6-3. Adding a Menu and Menu Items ... 148

Problem .. 148

Solution... 148

How It Works ... 148

The Code and Usage ... 150

6-4. Adding a Button to a Window .. 151

Problem .. 151

Solution... 151

How It Works ... 152

The Code and Usage ... 153

6-5. Using an NSTextField .. 154

Problem .. 154

Solution... 154

How It Works ... 154

The Code and Usage ... 155

6-6. Displaying an Image in a Window ... 156

Problem .. 156

Solution... 156

How It Works ... 156

The Code and Usage ... 158

xixContents

6-7. Adjusting Contents When a Window Is Resized .. 158

Problem .. 158

Solution... 158

How It Works ... 158

The Code and Usage ... 161

6-8. Implementing an NSTableView ... 162

Problem .. 162

Solution... 162

How It Works ... 163

The Code and Usage ... 168

6-9. Sorting an NSTableView .. 170

Problem .. 170

Solution... 170

How It Works ... 170

The Code and Usage ... 174

6-10. Handling the Selection of an NSTableView Row ... 176

Problem .. 176

Solution... 176

How It Works ... 176

The Code and Usage ... 177

Chapter 7: Files and Directories ■ �� 179

7-1. Locating Specialized Directories... 180

Problem .. 180

Solution... 180

How It Works ... 180

The Code and Usage ... 182

7-2. Checking for the Existence of a File or Directory .. 182

Problem .. 182

Solution... 182

How It Works ... 182

The Code and Usage ... 183

xx Contents

7-3. Copying Files... 184

Problem .. 184

Solution... 184

How It Works ... 185

The Code and Usage ... 185

7-4. Creating Directories .. 186

Problem .. 186

Solution... 186

How It Works ... 187

The Code and Usage ... 187

7-5. Deleting Files and Directories ... 188

Problem .. 188

Solution... 188

How It Works ... 188

The Code and Usage ... 189

7-6. Getting a List of Files from a Path ... 191

Problem .. 191

Solution... 191

How It Works ... 191

The Code and Usage ... 192

7-7. Archiving Objects to Files ... 193

Problem .. 193

Solution... 193

How It Works ... 193

The Code and Usage ... 194

7-8. Archiving Custom Classes to Files .. 195

Problem .. 195

Solution... 195

How It Works ... 195

The Code and Usage ... 196

xxiContents

Chapter 8: Concurrency ■ ��� 199

8-1. Threading with NSThread ... 199

Problem .. 199

Solution... 199

How It Works ... 200

The Code and Usage ... 201

8-2. Synchronizing Threads ... 202

Problem .. 202

Solution... 202

How It Works ... 203

The Code and Usage ... 203

8-3. Using Grand Central Dispatch for Threading ... 204

Problem .. 204

Solution... 204

How It Works ... 205

The Code and Usage ... 206

8-4. Using NSOperations and NSOperationsQueue .. 207

Problem .. 207

Solution... 207

How It Works ... 207

The Code and Usage ... 209

8-5. Completing Tasks in the Background in iOS ... 210

Problem .. 210

Solution... 210

How It Works ... 210

The Code and Usage ... 211

8-6. Downloading Content in the Background ... 212

Problem .. 212

Solution... 212

How It Works ... 212

The Code and Usage ... 216

xxii Contents

8-7. Creating Long-Running Background Tasks ... 218

Problem .. 218

Solution... 218

How It Works ... 218

The Code and Usage ... 223

Chapter 9: Web Services ■ �� 225

9-1. Parsing JSON .. 225

Problem .. 225

Solution... 225

How It Works ... 226

The Code and Usage ... 227

9-2. Parsing XML .. 231

Problem .. 231

Solution... 231

How It Works ... 231

The Code and Usage ... 234

9-3. Making HTTP Calls .. 235

Problem .. 235

Solution... 235

How It Works ... 235

The Code and Usage ... 236

9-4. Checking for Network Connectivity... 237

Problem .. 237

Solution... 237

How It Works ... 237

The Code and Usage ... 238

9-5. Calling a REST API ... 240

Problem .. 240

Solution... 240

How It Works ... 240

The Code and Usage ... 242

xxiiiContents

9-6. Posting Data to a REST API ... 244

Problem .. 244

Solution... 244

How It Works ... 244

The Code and Usage ... 246

Chapter 10: Core Data ■ ��� 251

10-1. Creating a Data Model .. 252

Problem .. 252

Solution... 252

How It Works ... 252

10-2. Creating Model Classes .. 254

Problem .. 254

Solution... 254

How It Works ... 254

The Code and Usage ... 256

10-3. Creating a Data Store .. 257

Problem .. 257

Solution... 257

How It Works ... 257

The Code and Usage ... 260

10-4. Creating a Managed Object Context ... 262

Problem .. 262

Solution... 262

How It Works ... 262

The Code and Usage ... 263

10-5. Adding a New Entity .. 264

Problem .. 264

Solution... 264

How It Works ... 264

The Code and Usage ... 265

xxiv Contents

10-6. Creating an NSFetchRequest .. 266

Problem .. 266

Solution... 266

How It Works ... 266

The Code and Usage ... 267

10-7. Populating a UITableView with a Fetched Results Controller 268

Problem .. 268

Solution... 268

How It Works ... 268

The Code and Usage ... 271

10-8. Deleting an Item .. 273

Problem .. 273

Solution... 273

How It Works ... 273

The Code and Usage ... 274

10-9. Searching for Entities ... 275

Problem .. 275

Solution... 275

How It Works ... 275

The Code and Usage ... 275

Chapter 11: Advanced iOS 8 Features ■ ��� 277

11-1. Creating a Today Extension ... 277

Problem .. 277

Solution... 277

How It Works ... 277

The Code and Usage ... 281

11-2. Creating a Custom Keyboard Extension .. 283

Problem .. 283

Solution... 283

How It Works ... 283

The Code and Usage ... 286

xxvContents

11-3. Creating a Sharing Extension .. 287

Problem .. 287

Solution... 287

How It Works ... 287

The Code and Usage ... 292

11-4. Creating an Action Extension .. 294

Problem .. 294

Solution... 294

How It Works ... 294

The Code and Usage ... 297

11-5. Creating a WatchKit Application .. 299

Problem .. 299

Solution... 299

How It Works ... 299

The Code and Usage ... 301

Index ��� 303

xxvii

About the Author

T. Michael Rogers fell in love with computers and code
when he was 9. Mike has been building software and leading
software-development teams for over 18 years. He shares his
knowledge and experience by providing training and coaching
for software teams and organizations, as an instructor of iOS
Boot Camp in NYC and as an author of online courses for
developers and managers. Mike can be reached on Twitter
@tmichaelrogers and on his blog http://www.brainloaf.com.

http://www.brainloaf.com

xxix

About the Technical
Reviewer

Charles Cruz is a mobile-application developer for the iOS,
Windows Phone, and Android platforms. He graduated from
Stanford University with a Bachelor’s degree and Master’s
degree in engineering. He lives in Southern California and runs a
photography business with his wife (www.bellalentestudios.com).
When not doing technical things, he plays lead guitar in an original
metal band (www.taintedsociety.com). Charles can be reached at
codingandpicking@gmail.com and @CodingNPicking on Twitter.

www.bellalentestudios.com
www.taintedsociety.com
mailto:codingandpicking@gmail.com

xxxi

Acknowledgments

I would like to thank everyone at Apress who provided support, inspiration, hard work,
and long hours in the making of this book. This book is the go-to reference for developers
creating Swift-based applications and would not have been possible without the editors and
staff who produced it.

Kevin Walter, for his work as the lead editor, who guided me, kept me moving, and
coordinated with the entire team to complete this book.

Charles Cruz, for his work as the technical reviewer of the book and for his meticulous
verification of every line of code throughout the entire book.

Anne Marie Walker, for her work as Development Editor and ensuring that the organization,
flow, and format of the book show the great effort and work that has gone into the book.

Roger LeBlanc, for his work as copy editor on the book and his thoughtful attention to detail,
smoothing out the rough edges of my writing.

Michelle Lowman, for her leadership and vision in getting this book to market.

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Swift Programming
	1-1. Getting Started with Swift
	Problem
	Solution

	1-2. Installing Xcode 6
	Problem
	Solution
	How It Works

	1-3. Working with Playgrounds
	Problem
	Solution
	How It Works
	The Code and Usage

	1-4. Designing User Interface Elements in a Storyboard
	Problem
	Solution
	How It Works
	The Code and Usage

	1-5. Dealing with Strings
	Problem
	Solution
	How It Works
	The Code and Usage

	1-6. Formatting Numbers as Strings
	Problem
	Solution
	How It Works
	The Code and Usage

	1-7. Getting the Length of a Swift String
	Problem
	Solution
	How It Works
	The Code and Usage

	1-8. Manipulating Swift Strings
	Problem
	Solution
	How It Works
	The Code and Usage

	1-9. Manipulating Strings with Native Swift Methods
	Problem
	Solution
	How It Works
	The Code and Usage

	1-10. Storing Strings on the iOS File System
	Problem
	Solution
	How It Works
	The Code and Usage

	1-11. Reading a Text File into a String
	Problem
	Solution
	How It Works
	The Code and Usage

	1-12. Reading and Writing Text Files in Cocoa
	Problem
	Solution
	How It Works
	The Code and Usage

	1-13. Dealing with Numbers
	Problem
	Solution
	How It Works
	The Code and Usage

	1-14. Dealing with Dates
	Problem
	Solution
	How It Works
	The Code and Usage

	Chapter 2: Complex Types
	2-1. Writing Functions
	Problem
	Solution
	How It Works
	The Code and Usage

	2-2. Creating Classes
	Problem
	Solution
	How It Works
	The Code and Usage

	2-3. Adding Class Properties
	Problem
	Solution
	How It Works
	The Code and Usage

	2-4. Initializing Class Properties
	Problem
	Solution
	How It Works
	The Code and Usage

	2-5. Adding Class Methods
	Problem
	Solution
	How It Works
	The Code and Usage

	2-6. Inheriting from Classes
	Problem
	Solution
	How It Works
	The Code and Usage

	2 -7. Implementing Protocols
	Problem
	Solution
	How It Works
	The Code and Usage

	2-8. Settin g Property Observers
	Problem
	Solution
	How It Works
	The Code and Usage

	2-9. Defining Enumerations
	Problem
	Solution
	How It Works
	The Code and Usage

	2-10. Creating Str uctures
	Problem
	Solution
	How It Works
	The Code and Usage

	2-11. Using Tuples
	Problem
	Solution
	How It Works
	The Code and Usage

	Chapter 3: Collections
	3-1. Creating an Array
	Problem
	Solution
	How It Works
	The Code and Usage

	3-2. Counting the Number of Items in an Array
	Problem
	Solution
	How It Works
	The Code and Usage

	3-3. Managing Items in an Array
	Problem
	Solution
	How It Works
	The Code and Usage

	3-4. Searching for Items in an Array
	Problem
	Solution
	How It Works
	The Code and Usage

	3-5. Sorting an Array
	Problem
	Solution
	How It Works
	The Code and Usage

	3-6. Replacing a Range of Values in an Array
	Problem
	Solution
	How It Works
	The Code and Usage

	3-7. Iterating Over an Array
	Problem
	Solution
	How It Works
	The Code and Usage

	3-8. Saving an Array to the File System
	Problem
	Solution
	How It Works
	The Code and Usage

	3-9. Populating an Array with the Contents of a plist File
	Problem
	Solution
	How It Works
	The Code and Usage

	3-10. Using Subscripts
	Problem
	Solution
	How It Works
	The Code and Usage

	3-11. Creating a Dictionary
	Problem
	Solution
	How It Works
	The Code and Usage

	3-12. Managing Items in a Dictionary
	Problem
	Solution
	How It Works
	The Code and Usage

	3-13. Implementing the Hashable Protocol
	Problem
	Solution
	How It Works
	The Code and Usage

	3-14. Iterating Through Items in a Dictionary
	Problem
	Solution
	How It Works
	The Code and Usage

	3-15. Saving a Dictionary to the File System
	Problem
	Solution
	How It Works
	The Code and Usage

	3-16. Populating a Dictionary with the Contents of a Property List File
	Problem
	Solution
	How It Works
	The Code and Usage

	Chapter 4: Advanced Swift Programming
	4-1. Writing Closures
	Problem
	Solution
	How It Works
	The Code and Usage

	4-2. Writing Trailing Closures
	Problem
	Solution
	How It Works
	The Code and Usage

	4-3. Overloading the Equality Operator
	Problem
	Solution
	How It Works
	The Code and Usage

	4-4. Checking for Reference Equality
	Problem
	Solution
	How It Works
	The Code and Usage

	4-5. Implementing Generic Functions
	Problem
	Solution
	How It Works
	The Code and Usage

	4-6. Implementing Generic Classes
	Problem
	Solution
	How It Works
	The Code and Usage

	4-7. Working with Local Dates and Times
	Problem
	Solution
	How It Works
	The Code and Usage

	4-8. Creating a Unit Test Project
	Problem
	Solution
	How It Works
	The Code and Usage

	4-9. Writing a Unit Test
	Problem
	Solution
	How It Works
	The Code and Usage

	4-10. Performance Testing with XCTest
	Problem
	Solution
	How It Works
	The Code and Usage

	4-11. Creating Mock Objects for Testing
	Problem
	Solution
	How It Works
	The Code and Usage

	4-12. Testing Asynchronous Code
	Problem
	Solution
	How It Works
	The Code and Usage

	Chapter 5: iOS Applications
	5-1. Creating a New iOS Application
	Problem
	Solution
	How It Works

	5-2. Adding a UILabel to a View
	Problem
	Solution
	How It Works
	The Code and Usage

	5-3. Adding a UIButton to a View
	Problem
	Solution
	How It Works
	The Code and Usage

	5-4. Adding a UITextField to a View
	Problem
	Solution
	How It Works
	The Code and Usage

	5-5. Positioning UIViews in Auto Layout Using NSConstraints
	Problem
	Solution
	How It Works
	The Code and Usage

	5-6. Repositioning a View to Accommodate the Keyboard
	Problem
	Solution
	How It Works
	The Code and Usage

	5-7. Displaying an Alert with UIAlertController
	Problem
	Solution
	How It Works
	The Code and Usage

	5-8. Using UIAlertController to Collect User Input
	Problem
	Solution
	How It Works
	The Code and Usage

	5-9. Creating a UITableView
	Problem
	Solution
	How It Works
	The Code and Usage

	5-10. Swiping to Delete an Item from a UITableView
	Problem
	Solution
	How It Works
	The Code and Usage

	Chapter 6: OS X Applications
	6-1. Creating an OS X Application
	Problem
	Solution
	How It Works
	The Code and Usage

	6-2. Adding a View to a Window
	Problem
	Solution
	How It Works
	The Code and Usage

	6-3. Adding a Menu and Menu Items
	Problem
	Solution
	How It Works
	The Code and Usage

	6-4. Adding a Button to a Window
	Problem
	Solution
	How It Works
	The Code and Usage

	6-5. Using a n NSTextField
	Problem
	Solution
	How It Works
	The Code and Usage

	6-6. Displaying an Image in a Window
	Problem
	Solution
	How It Works
	The Code and Usage

	6-7. Adjusting Contents When a Window Is Resized
	Problem
	Solution
	How It Works
	The Code and Usage

	6-8. Implementing an NSTableView
	Problem
	Solution
	How It Works
	The Code and Usage

	6-9. Sorting an NSTableView
	Problem
	Solution
	How It Works
	The Code and Usage

	6-10. Handling the Selection of an NSTableView Row
	Problem
	Solution
	How It Works
	The Code and Usage

	Chapter 7: Files and Directories
	7-1. Locating Specialized Directories
	Problem
	Solution
	How It Works
	The Code and Usage

	7-2. Checking for the Existence of a File or Directory
	Problem
	Solution
	How It Works
	The Code and Usage

	7-3. Copying Files
	Problem
	Solution
	How It Works
	The Code and Usage

	7-4. Creating Directories
	Problem
	Solution
	How It Works
	The Code and Usage

	7-5. Deleting Files and Directories
	Problem
	Solution
	How It Works
	The Code and Usage

	7-6. Getting a List of Files from a Path
	Problem
	Solution
	How It Works
	The Code and Usage

	7-7. Archiving Objects to Files
	Problem
	Solution
	How It Works
	The Code and Usage

	7-8. Archiving Custom Classes to Files
	Problem
	Solution
	How It Works
	The Code and Usage

	Chapter 8: Concurrency
	8-1. Threading with NSThread
	Problem
	Solution
	How It Works
	The Code and Usage

	8-2. Synchronizing Threads
	Problem
	Solution
	How It Works
	The Code and Usage

	8-3. Using Grand Central Dispatch for Threading
	Problem
	Solution
	How It Works
	The Code and Usage

	8-4. Using NSOperations and NSOperationsQueue
	Problem
	Solution
	How It Works
	The Code and Usage

	8-5. Completing Tasks in the Background in iOS
	Problem
	Solution
	How It Works
	The Code and Usage

	8-6. Downloading Content in the Background
	Problem
	Solution
	How It Works
	The Code and Usage

	8-7. Creating Long-Running Background Tasks
	Problem
	Solution
	How It Works
	The Code and Usage

	Chapter 9: Web Services
	9-1. Parsing JSON
	Problem
	Solution
	How It Works
	The Code and Usage

	9-2 . Parsing XML
	Problem
	Solution
	How It Works
	The Code and Usage

	9-3. Making HTTP Calls
	Problem
	Solution
	How It Works
	The Code and Usage

	9-4 . Checking for Network Connectivity
	Problem
	Solution
	How It Works
	The Code and Usage

	9-5. Calling a REST API
	Problem
	Solution
	How It Works
	The Code and Usage

	9-6. Posting Data to a REST API
	Problem
	Solution
	How It Works
	The Code and Usage

	Chapter 10: Core Data
	10-1. Creating a Data Model
	Problem
	Solution
	How It Works

	10-2. Creating Model Classes
	Problem
	Solution
	How It Works
	The Code and Usage

	10-3. Creating a Data Store
	Problem
	Solution
	How It Works
	The Code and Usage

	10-4. Creating a Managed Object Context
	Problem
	Solution
	How It Works
	The Code and Usage

	10-5. Adding a New Entity
	Problem
	Solution
	How It Works
	The Code and Usage

	10-6. Creating an NSFetchRequest
	Problem
	Solution
	How It Works
	The Code and Usage

	10-7. Populating a UITableView with a Fetched Results Controller
	Problem
	Solution
	How It Works
	The Code and Usage

	10-8. Deleting an Item
	Problem
	Solution
	How It Works
	The Code and Usage

	10-9. Searching for Entities
	Problem
	Solution
	How It Works
	The Code and Usage

	Chapter 11: Advanced iOS 8 Features
	11-1. Creating a Today Extension
	Problem
	Solution
	How It Works
	The Code and Usage

	11-2. Creating a Custom Keyboard Extension
	Problem
	Solution
	How It Works
	The Code and Usage

	11-3. Creating a Sharing Extension
	Problem
	Solution
	How It Works
	The Code and Usage

	11-4. Creating an Action Extension
	Problem
	Solution
	How It Works
	The Code and Usage

	11-5. Creating a WatchKit Application
	Problem
	Solution
	How It Works
	The Code and Usage

	Index

