

Table	of	Contents
Introduction

Introduction

What	is	PHP?

Introducing	PHP

Example

A	little	history

Installing	and	Configuring	PHP

Introduction

Windows	Users

Using	Wampserver

Mac	Users

How	Do	I	Know	it	is	Working?

Oracle	VM	Virtual	Box

Installing	for	a	Web	Site

Exercise

Introduction	to	HTML

Introduction

Basic	HTML

Basic	Elements	of	HTML

Tags

Nested	Tags

Required	tags

DocType

Head

Optional	Tags

Meta	Tags

Useful	Tags

Headers

DIV

Images/Picture

Links

Lists

Exercise

HTML	Tables

HTML	Table	Headers

HTML	Forms

The	Input	tag

HTML	Form	Actions	&	Methods

Introduction	-	Basic	PHP	Syntax

Your	first	PHP-enabled	page	–	Hello	World!

Some	Fun	Right	Away

A	Countdown	Counter

Exercise

Editors	and	Staying	Organized

Editors

Microsoft	Expression	Web

PhpDesigner

EditRocket

Free	Editors

Includes

Basic	example

HTML	example

Code	example

Best	Practices

Variables,	Numbers,	Dates,	and	Strings

Variables

Variable	Naming	Conventions	and	Best	Practices

Numbers

Basic	Arithmetic

Common	Arithmetic	Shortcuts

Useful	Numeric	Functions

Strings

Useful	String	Functions

Sources	of	Documentation

Exercise

How	to	Interpret	PHP.NET	documentation

Return	Value

Function	Name

Parameters

Dates

Example:	Calculating	Age	in	Years

Variable	Scope

Control	Structures

Introduction

if

if…	else

Exercise:	Open	Hours

PHP	Switch

PHP	Looping

PHP	while

PHP	for

How	to	use	a	database,	such	as	mySQL

Introduction

What	are	Databases?

Getting	Started	with	phpMyAdmin

What	is	phpMyAdmin?

Using	phpMyAdmin	to	create	a	database

Introduction	to	SQL

Using	phpMyAdmin	to	create	a	Table	in	a	database

Defining	our	first	table

What	defines	an	automobile?

Datatypes

Numbers

Characters

Dates

Exercise:	Create	a	Table

Working	with	SQL	Statements

INSERT	Statements

SELECT	Statements

WHERE	Statements

Comparison	Operators

ORDER	BY

UPDATE	Statements

DELETE	Statements

Using	mySQL	and	PHP	Together

Introduction

Code!

Code	Listing:	createdb.php

Code	Explained:	createdb.php

Hey,	where’s	the	HTML?

Creating	forms	to	Display,	Add,	Edit,	and	Delete	data

Introduction

Forms	that	Add	Data	to	a	Database

A	Basic	Form

HTML	Code

Form	Action

PHP	Code

A	Brief	Time	Out…include	files	and	SQL	Injection

Include	Files

SQL	Injection

Forms	that	Display	Summary	Data

Code

Code	Explained

Exercise:	Tweaking	the	SELECT

Improving	the	look	of	the	table	with	CSS

CSS	Explained

Modifying	the	form	to	link	to	the	detail	page

Forms	that	Display	Detail	Data

Code

Code	Explained

Forms	that	Edit	Data

Forms	that	Delete	Data

Code	to	delete	data

Code	Explained

Exercise

Session	Variables

Introduction

Sessions

Starting	a	PHP	Session

Using	Session	Variables

Store	a	variable

Retrieve	a	variable

Checking	for	a	variable

Destroying	a	Session

Working	with	Images

Introduction

Exercise:	Viewing	Images

Pulling	an	unknown	number	of	images	from	a	database

Exercise:	Create	a	Database	Table	to	store	images

Exercise:	Modify	the	viewcar.php	page	to	show	multiple	images

Code	explained

PHP	File	Uploads

Introduction

Create	an	Upload	File	form

Create	a	Script	to	Process	the	Uploaded	File

Code:	ViewCarsAddImage.php

Code	Explained

PHP	Quirks	and	Tips

Introduction

Single	Quotes	vs	Double	Quotes

The	Equal	Sign

Comparison	Operators

Security	Considerations

Introduction

Balancing	Security	and	Usability

SQL	Injection

Additional	Resources

Appendix	A:	Installing	PHP	on	a	Website

How	to	install	on	a	Windows	Server

How	to	install	on	a	Linux	Server

Author’s	Note

A	Note	from	one	of	my	Kickstarter	Backers….

-	Pasha	Kagan,	soon-to-be	PHP	Developer

Introduction
Introduction
This	book	is	for	the	developer	who	has	just	come	across	PHP	and	is	wondering	what	the
big	deal	is,	and	also	for	the	non-programmer	who	is	just	starting	out—	and	doesn’t
know	where	to	begin.

As	Confucius	once	wisely	said,	“I	hear	and	I	forget.	I	see	and	I	remember.	I	do	and	I
understand.”	This	book	will	get	you	doing.	The	book	is	presented	as	a	case	study	of
“Sam’s	Used	Cars,”	and	you’ll	be	building	a	web	site	for	Sam’s	business	as	we	go
along.	Take	the	time	and	do	the	exercises.	Struggle	a	little	before	you	look	up	the
answers.

Speaking	of	the	answers,	the	companion	web	site	to	this	book	is
http://www.joyofphp.com	where	you	can	find	all	the	code	snippets	(and	answers	to	the
exercises)	from	this	book—plus	some	extra	goodies.	If	you	like	the	book,	please	locate
it	on	Amazon.com	and	give	it	a	favorable	review.	If	you	don’t	like	it,	or	find	something
that	you	think	needs	to	be	fixed,	or	you	have	an	idea	for	“More	Joy	of	PHP”,	please
email	me	at	AlanForbes@Outlook.com

What	is	PHP?	introduces	PHP	in	its	many	and	varied	contexts.	It	explains	the	difference
between	a	PHP	server,	a	PHP	file,	and	PHP	the	language.	It	also	describes	the	point	of
PHP,	which	is	to	create	dynamic	web	pages.

Installing	and	Configuring	PHP	describes	how	to	install	and	configure	PHP	on	your
own	computer.	Of	course,	you	can’t	do	much	PHP	programming	if	you	don’t	have	PHP,
so	this	is	an	important	prerequisite	to	the	rest	of	the	book.

Introduction	to	HTML	lays	the	groundwork	by	discussing	HTML.	PHP	is	a	language
that	modifies	and	generates	HTML,	so	you	have	to	know	HTML	as	the	foundation	for
using	PHP	to	modify	HTML.	We	cover	required	and	optional	tags,	plus	enough	extras
to	get	you	going.

Basic	PHP	Syntax	Introduces	the	language	of	PHP.	Here	we	show	how	to	intersperse
PHP	and	HTML	in	the	same	file,	and	what	to	expect	when	you	do	so.

Some	Fun	Right	Away	gives	you	a	chance	to	try	out	some	PHP	before	we	go	much
further,	to	give	you	an	early	sense	of	the	joy	you	are	going	to	experience	when	you
master	it.

Editors	and	Staying	Organized	talks	about	how	to	actually	edit	a	PHP	file,	and	guides
readers	toward	some	of	the	tools	available	to	make	editing	easy.	Also,	staying	organized

http://www.joyofphp.com
mailto:AlanForbes@Outlook.com

is	a	good	habit	to	start	off	with.

Next	we	discuss	Variables,	Numbers,	Dates,	and	Strings.	This	chapter	covers	how	to
create	and	use	a	variable	in	PHP,	as	well	as	how	to	perform	arithmetic	and	useful
numeric	functions.	It	covers	strings	and	useful	string	functions,	and	also	covers	dates
and	date	functions.	It	also	describes	how	to	read	the	PHP	documentation	when	you	need
more.

The	chapter	on	Control	Structures	covers	how	to	add	conditional	logic	to	your
application,	and	how	to	perform	repeatable	tasks	in	an	automated	fashion.

The	Chapter	How	to	use	a	database,	such	as	mySQL	is	content	heavy.	Here	you	learn
what	a	database	is,	how	tables	work,	and	how	to	work	with	SQL	statements.	I	also
introduce	the	tool	PHPMyAdmin,	which	is	a	great	tool	to	help	you	get	started	with
mySQL.	We	introduce	Sam,	the	used	car	salesman,	who	wants	a	web	site	that	allows
visitors	to	see	what	cars	he	has	for	sale,	without	having	to	constantly	tweak	the	HTML
of	his	site.	Sam’s	Used	Cars	will	be	a	database-driven	web	site.

In	the	chapter	Using	mySQL	and	PHP	Together	we	begin	to	tie	the	two	topics	together
and	use	PHP	and	mySQL	simultaneously	to	create	truly	dynamic	web	sites.

As	we	progress	through	our	case	study,	we’ll	shift	from	theory	to	practice.	The	chapter
Creating	forms	to	Display,	Add,	Edit,	and	Delete	data	starts	to	put	some	of	our	theory
into	practice	by	creating	specific	examples	of	web	pages	that	perform	actions	on	our
database.

Session	Variables	allow	you	to	create	a	variable	to	store	a	value	that	you	can	use
anywhere	in	your	web	site.	For	instance,	when	you	log	into	Amazon.com,	you’ll	notice
that	every	page	says	‘Welcome,	Alan‘	or	something	similar—except,	of	course,	with
your	name	rather	than	mine.	Session	variables	offer	one	way	to	achieve	this	effect	in
PHP.

A	used	car	web	site	wouldn’t	be	of	much	value	if	you	couldn’t	see	pictures	of	the	cars,
so	in	the	chapter	Working	with	Images	we	cover	powerful	techniques	for	using	your
database	to	associate	specific	cars	with	specific	images.

PHP	File	Uploads.	Building	on	the	previous	chapter	on	images,	we	extend	our	web
site’s	functionality	to	allow	users	to	upload	images	of	the	cars	directly	from	a	browser,
rather	than	having	to	copy	the	images	to	the	hard	drive.

All	languages	have	their	quirks,	and	PHP	Quirks	and	Tips	introduces	some	of	the
features	of	PHP	that	might	seem	odd	to	some.

Finally,	we	discuss	Security	Considerations.	Security	shouldn’t	be	an	afterthought	when
building	a	web	application,	but	it	did	come	last	in	the	book	only	because	you	can’t
secure	something	unless	you	first	understand	how	it	works.	Don’t	skip	this	chapter!

What	is	PHP?
PHP	is	a	programming	language	you	can	use	to	create	web	applications.	It’s	free,
powerful,	relatively	easy	to	set	up	and	learn,	and	it	has	extensions	and	frameworks
available	to	do	almost	anything	you	could	imagine.	You	can	get	started	quickly,	and	you
won’t	outgrow	it	later	when	you	get	really	good	at	it.	In	my	humble	opinion,	PHP	is	a
great	language	that	will	be	well	worth	it	the	time	and	effort	you	put	into	learning	it.

Frankly,	it’s	justplain	fun	too.

Let’s	get	started.	The	most	basic	concept	you	need	to	grasp	is	that	a	web	page	is	just	a
bunch	of	text,	organized	in	a	certain	way,	which	is	displayed	by	a	browser.	Only	a	few
companies	make	browsers,	but	millions	of	people	make	web	pages—and	so	can	you.

Most	computer	programs	need	some	way	to	know	if	a	file	is	intended	for	them	or	not.	In
the	PC	world,	this	is	accomplished	by	file	extensions.	(Bear	with	me,	this	next	bit	is
relevant).	For	example,	a	file	named	“my	book.docx”	is	associated	with	Microsoft	Word
because	its	extension	(the	text	following	the	dot)	is	“docx”.	Similarly,	a	PowerPoint	file
might	end	with	.ppt	or	.pptx.	Other	programs	also	have	their	own	unique	extensions.

A	web	page	typically,	but	not	exclusively,	has	an	extension	such	as	.htm	or	.html	to
indicate	that	it	is	an	HTML	file.	An	HTML	file	can	be	on	your	own	computer,	or	on	a
different	computer	somewhere	out	on	the	Internet.	The	browser	doesn’t	care.	Here’s	a
simple	example	of	an	html	file	out	on	the	Internet:
http://www.tsowell.com/columns.htm

	

This	was	about	the	simplest	web	page	I	could	find…	just	two	links	to	other	pages.
Notice	that	the	last	four	characters	are	.htm,	which	indicates	that	it	is	an	HTML	file
intended	for	display	in	a	browser.	If	that	file	were	on	your	local	computer,	for	instance
in	your	“My	Documents”	folder,	all	you	would	have	to	do	to	see	it	in	a	browser	would
be	to	double-click	on	it.

Your	browser	would	know	how	to	do	the	rest	and	you	would	see	something	like	this:

This	particular	file	is	not	on	your	local	computer,	however.	It	is	on	a	server	out	on	the
Internet.	So	how	does	the	file	get	into	your	browser	when	you	click	on	it?	At	the	risk	of

http://www.tsowell.com/columns.htm

oversimplifying	it,	you	don’t	have	to	worry	about	that	part	so	much.	The	other
computer,	known	as	the	“web	server”,	has	the	file	and	it	knows	how	to	get	it	to	you.

In	the	case	of	an	HTML	file	such	as	this	one,	the	server	sends	the	file	as	is	without
doing	anything	to	it.	In	other	words,	the	file	that	the	browser	gets	is	exactly	the	same	as
the	file	on	the	file	system,	regardless	of	whether	it	was	originally	on	your	computer	or
on	the	server.

We	would	call	this	a	static	web	page.

Introducing	PHP
Now	let’s	add	PHP	to	the	picture.	PHP	has	several	meanings	depending	on	the	context
in	which	it	is	used,	so	I’m	going	to	try	to	explain	them	all.	There	is	a	“PHP	server”,
which	is	a	web	server	that	is	running	PHP	software	on	it.	Let’s	contrast	a	PHP	server
with	a	“plain”	server,	one	that	is	not	running	PHP.	A	“plain”	web	server	just	takes	a
request	from	a	browser,	locates	the	appropriate	file,	and	sends	it	to	the	browser	as	is,
with	no	manipulation.	In	other	words,	it	only	serves	static	web	pages.

Once	you	add	PHP	to	a	web	server,	you	get	additional	functionality—without	taking
any	existing	functionality	away.	The	server	can	still	continue	to	send	static	HTML	files
to	the	browser,	but	it	can	also	manipulate	the	files	prior	to	sending	them	to	the	browser.

A	file	that	has	been	manipulated	prior	to	being	sent	to	the	browser	is	referred	to	as	a
dynamic	web	page.

Example
Here’s	an	example.	Let’s	say	you	have	a	web	page	on	which	you	wanted	the	current
date	to	appear.	With	a	static	web	page,	you	would	have	to	go	in	and	edit	the	page	every
single	day	to	update	the	date.	That	would	get	tiresome	pretty	quick!

The	HTML	code	would	look	something	like	this:

	

With	PHP	you	can	let	the	server	make	the	changes	for	you.	In	other	words,	PHP	can

dynamically	add	the	correct	date	to	the	page	every	time	the	page	is	served	if	you	insert	a
little	bit	of	PHP	code	like	this:

	

Notice	that	the	static	text	7th	of	October	2012	has	been	replaced	with	<?php	echo
date(‘jS	\o\f	F	Y’);	?>.	What	we	did	was	substitute	the	static	text	with	code	that	will	be
converted	into	static	text	by	the	server.	(Sneak	preview—	PHP	code	appears	in	line	with
normal	HTML	code	and	is	identified	by	appearing	within	<?php	and	?>	tags).

If	you	happened	to	open	those	two	files	using	your	browser	on	the	7th	of	October	2012,
the	two	pages	would	be	exactly	the	same.

But	on	the	8th	of	October,	the	server	takes	the	code	above	and	turn	it	into	this:

	

And	the	cool	thing	is	that	it	works	every	day,	without	any	further	manipulation.	Are
you	starting	to	see	the	joy?

How	does	a	server	know	whether	a	page	should	be	dynamic	or	static?	An	ordinary
server	only	knows	static	pages.	A	PHP	server	knows	that	a	file	should	be	manipulated
(it	is	dynamic)	if	it	is	“PHP	file”	and	that	it	should	not	be	manipulated	(it	is	static)	if	it
is	an	HTML	file.

What’s	the	difference	between	an	HTML	file	and	a	PHP	file?	A	PHP	file	is	basically
just	an	HTML	file	with	some	code	inside	it	that	tells	the	server	to	swap	out	the	code	part
and	insert	text	(or	HTML)	in	its	place.	A	PHP	file	is	“just”	an	HTML	file	that	has	been
saved	with	a	different	extension	—	“.php”.	Here’s	an	example:
http://php.net/manual/en/tutorial.firstpage.php

	

	

What	is	the	“extra	code”	that	goes	inside	a	PHP	file	instructing	the	page	to	be

http://php.net/manual/en/tutorial.firstpage.php

manipulated?	That’s	PHP	the	language,	which	tells	the	server	how	and	where	the	page
should	be	manipulated	prior	to	sending	it	to	the	browser.	In	other	words,	PHP	is	a
programming	language	that	is	used	to	create	dynamic	web	pages.

	

How	does	the	server	know	which	parts	of	the	page	should	be	static	and	which	parts
should	be	dynamic?	In	general,	the	server	leaves	the	page	alone.	However,	if	it	sees	the
text	<?php	then	all	the	text	that	follows	will	be	treated	like	code,	until	it	comes	to	a	?>
which	signals	the	server	to	go	back	to	sending	the	page	as	is.

A	little	history
PHP	was	originally	created	by	Rasmus	Lerdorf	in	1995.	The	main	implementation	of
PHP	is	now	produced	by	The	PHP	Group	and	serves	as	the	formal	reference	to	the	PHP
language.	PHP	is	free	software	released	under	the	PHP	License,	which	is	incompatible
with	the	GNU	General	Public	License	(GPL)	due	to	restrictions	on	the	usage	of	the	term
PHP.

While	PHP	originally	stood	for	Personal	Home	Page,	it	is	now	said	to	stand	for	PHP:
Hypertext	Preprocessor,	a	recursive	acronym.

Installing	and	Configuring	PHP
Introduction
Before	you	can	begin	using	PHP,	you	need	to	have	a	copy	of	it.	For	the	purposes	of	this
book,	we’re	going	to	install	PHP	on	your	local	computer	so	you	can	play	around	with	it
without	too	much	fuss.

Note	that	applications	you	write	on	your	local	computer	can	only	be	used	on	your	local
computer,	or	by	other	computers	on	your	local	network.

For	the	rest	of	this	book,	we	are	going	to	need	Apache,	MySQL,	and	PHP.	Together,	this
collection	is	referred	to	as	AMP.	When	you	run	this	on	Linux,	it’s	called	LAMP,	and
when	you	run	it	on	Windows,	it’s	called	WAMP.	Some	people	call	this	combination	a
“stack”,	and	may	refer	to	the	combination	as	the	“LAMP	Stack”.

Fortunately,	this	is	a	very	popular	combination	and	you	don’t	have	to	figure	it	all	out	on
your	own.

Windows	Users
As	a	Windows	user	myself,	I	can	personally	vouch	for	the	ease	of	installation	and	use
and	of	the	WampServer,	which	can	be	found	at	http://www.wampserver.com/en/

“WampServer	is	a	Windows	web	development	environment.	It	allows	you	to	create
web	applications	with	Apache2,	PHP	and	a	MySQL	database.	WampServer	also
includes	a	program	called	PhpMyAdmin	which	allows	you	to	easily	manage	your
databases.”

As	part	of	the	installation,	the	“www”	directory	will	be	automatically	created	(usually	at
c:\wamp\www)

Create	a	subdirectory	in	“www”	and	put	your	PHP	files	inside	that	folder.

Using	Wampserver
Once	Wampserver	is	installed,	you	start	it	by	selecting	start	WampServer	from	the
Windows	Start	menu,	as	shown	below:

If	it	is	not	on	your	Start	menu,	search	for	programs	that	start	with	WAM,	as	shown

http://www.wampserver.com/en/

below:

This	adds	a	desktop	icon	on	the	right	side	of	the	Task	bar,	circled	here	in	red:

The	icon	will	be	red	if	WampServer	is	not	running,	and	green	if	it	is	running.	Clicking
on	the	icon	will	bring	up	a	pop-up	menu,	similar	to	the	Windows	start	menu.

Click	on	the	“localhost”	link	in	the	WampSever	menu	or	open	your	Internet	browser
and	go	to	the	URL:	http://localhost

	

Mac	Users
XAMPP	for	Mac	OS	X	is	the	simplest,	most	practical	and	most	complete	webserver
solution	for	Mac	OS	X.	The	distribution	includes	an	Apache	2	web	server,	integrated
with	the	latest	builds	of	MySQL,	PHP	and	Perl.	It	comes	as	a	Mac	OS	X	Installer
package	that	contains	all	the	necessary	files	and	requires	no	dependencies.

If	you	are	an	experienced	web	developer	or	a	Mac	enthusiast	who	needs	to	run	a	web
server,	create	dynamic	webpages	or	use	databases,	this	is	your	lucky	day!

This	version	is	for	Mac	OS	X	10.4	(Intel&PPC)	and	higher.

XAMPP	can	be	found	at	http://www.apachefriends.org/en/xampp-macosx.html

http://www.apachefriends.org/en/xampp-macosx.html

How	Do	I	Know	it	is	Working?
OK,	that	was	easy,	but	how	can	you	check	that	everything	really	works?	Just	type	in	the
following	URL	at	your	favorite	web	browser:

http://localhost

Windows	users	will	see	something	like	this:

	

	

Mac	users	will	see	something	like	this:

http://localhost/

Oracle	VM	Virtual	Box
If	you	are	proficient	with	computers,	you	might	like	to	try	out	a	pre-configured	virtual
machine.	Oracle	VirtualBox	is	free	for	you	to	use,	and	folders	can	be	shared	between
the	host	and	guest	machine	allowing	you	to	simply	save	the	file	you	are	working	on	and
refresh	your	browser,	there’s	no	need	to	upload	via	FTP/SFTP	to	test	your	changes.	If
this	sounds	like	a	good	option	for	you,	here’s	a	link	to	a	tutorial	on	setting	it	up.	Using
Oracle	Virtual	Box	is	outside	the	scope	of	this	book.

Installing	for	a	Web	Site
If	you	wanted	to	make	your	application	available	to	everybody	on	the	Internet,	you’ll
need	to	install	PHP	and	your	application	onto	a	publicly	accessible	server.	This	topic	is
covered	in	Appendix	A:	Installing	PHP	on	a	Website.

Exercise
Use	your	editor	(for	instance,	Programmers’	Notepad)	to	create	a	file	containing	the
following	line:

	

Save	the	file	as	phpinfo.php	in	the	correct	place	on	your	hard	drive	(for	instance,
C:\wamp\www).

Finally,	open	the	file	with	a	browser	by	typing	http://localhost/phpinfo.php

http://munkyonline.co.uk/articles/lamp-ubuntu-server-on-virtualbox

Introduction	to	HTML
Introduction
As	we	have	described	it,	PHP	is	a	language	used	for	creating	dynamic	web	pages.	Web
pages	are	written	in	HTML,	and	PHP	is	used	so	that	the	HTML	in	a	given	page	changes
depending	on	certain	situations	that	you	define.

Since	PHP	is	used	to	generate	the	HTML	on	a	page,	it	only	makes	sense	that	you	need
to	understand	basic	HTML	before	you	can	go	any	further.

Cascading	Style	Sheets	(CSS)	is	a	related	technology	used	to	define	the	look	and	feel	of
an	HTML	page.	Sometimes	CSS	is	referred	more	simply	as	a	style	sheet.

If	you	already	understand	HTML	and	CSS,	you	can	skip	ahead	to	the	next	chapter.

Basic	HTML
HTML	is	the	primary	building	block	of	the	web,	so	it	is	crucial	to	have	a	basic
understanding	of	what	HTML	is	and	how	it	works.	HTML	is	a	markup	language	that	is
used	by	browsers	so	that	they	know	how	to	render	a	document	as	a	web	page.
Regardless	of	whether	a	document	starts	off	as	HTML	written	by	hand	or	is	generated
using	ASP,	JSP,	or	PHP,	eventually	the	document	is	turned	into	HTML	and	sent	to	the
browser	to	be	rendered	for	display	to	a	person.

HTML	is	a	markup	language	that	defines	the	structure	and	outline	of	a	document	and
offers	a	structured	content.	Markup	is	not	intended	to	define	the	look	and	feel	of	the
content	on	the	page	beyond	rudimentary	concepts	such	as	headers,	paragraphs,	and	lists.

The	presentation	attributes	of	HTML	have	all	been	deprecated,	which	is	a	fancy	word
for	‘please	don’t	use	these	anymore,	even	though	they	still	work’.	The	current	best
practices	in	HTML	page	design	stipulate	that	most	style	should	be	contained	in	style
sheets,	which	are	a	set	of	rules	that	describe	how	a	page	should	look.	Style	sheets	are	a
topic	in	themselves,	and	not	very	important	at	this	stage	in	your	learning.	However,
you’ll	want	to	put	style	sheets	on	your	future	reading	list.

Writing	and	viewing	HTML	is	incredibly	easy	(and	fun),	which	of	course	is	a	big	factor
in	what	made	it	so	popular.	If	you	are	reading	this	document	on	a	computer,	then	you
already	have	everything	you	need	to	try	it	out	right	now.	All	you	need	to	build	a	web
page	(an	HTML	page)	is	a	computer,	a	text	editor	(something	as	simple	as	Notepad	will
suffice)	and	a	browser.	To	work	with	HTML,	you	don’t	need	a	server	or	any	special
software	at	all.	You	simply	create	the	file,	save	it	with	an	.htm	or	.html	extension,	and
open	it	directly	in	your	browser.

Basic	Elements	of	HTML
All	HTML	based	documents	have	the	same	basic	elements.	They	are	composed	of	tags
that	define	the	various	parts	of	the	document—from	where	it	starts	and	ends,	and
everything	in	between.	HTML	uses	elements	(“tags”)	to	mark	up	sections	of	text.	These
can	include	headings,	subtitles,	lists,	bold	or	underlined	text	and,	of	course,	links.
HTML	documents	read	from	left	to	right	and	top	to	bottom.

Tags

To	distinguish	tags	from	ordinary	text,	tags	appear	inside	brackets:	<	and	>.	Most	tags
have	an	open	and	close	tag,	also	known	as	a	start	and	end	tag.	The	open	tag	starts	with	<
and	end	tag	starts	with	</.	For	example		indicates	to	start	bold	and		indicates	to
stop	(end)	bold.

For	example	here	is	a	paragraph	element:

	

In	this	example	the	<p>	and	</p>	are	the	tags:	they	are	used	to	delineate	the	text
contained	within	as	a	paragraph.	Something	worth	pointing	out	here	is	that	you	don’t
have	to	put	everything	on	a	single	line.	The	code	above	works	just	as	well	as	this	below:

	

In	fact,	the	indentation	isn’t	needed	either,	although	it	certainly	improves	the	readability.
Keep	in	mind	that	someone	(maybe	you)	may	have	to	edit	your	HTML	in	the	future,	so
making	it	readable	is	a	good	idea.

All	tag	formats	are	the	same.	They	begin	with	a	less-than	sign:	<	and	end	with	a	greater-
than	sign:	>.	Always.	What	goes	inside	the	<	and	>	is	the	tag	name.	A	big	part	of
learning	HTML	is	learning	the	specific	tags	and	what	they	do.

Nested	Tags

In	general,	most	tags	can	be	nested	inside	other	tags,	but	of	course	there	may	be
exceptions	to	this	rule.

Here	you	see	the	bold	tag	nested	inside	of	a	paragraph	tag:

Not	all	elements	have	both	an	opening	and	closing	piece.	For	example,	
	doesn’t

http://www.pnotepad.org/

have	a	corresponding	</br>,	and	neither	does	<hr>.

Required	tags
An	HTML	page	starts	with	the	<html>	tag	and	ends	with	</html>.	The	body	of	the	page
goes	inside	body	tags.

	

DocType

If	a	webpage	is	missing	a	<DOCTYPE>	tag	or	has	some	sort	of	“transitional”	doctype
tag,	the	page	will	be	rendered	in	what	is	called	‘quirks’	mode.	Quirks	mode	is	somewhat
unpredictable,	and	you	don’t	always	get	what	you	expect.

So,	it	is	important	to	have	a	doctype	tag	if	you	want	your	webpage	to	display	in
Standards	mode,	as	expected.

Head

The	head	of	the	document	is	where	the	Title	and	Meta	information	will	go.	Generally,
you	would	also	put	any	CSS	styles,	script	tags,	and	link	tags	to	external	files	in	the
Head	also,	if	you	have	any.

	

Optional	Tags
Meta	Tags

The	Meta	tag,	along	with	the	link	tag,	are	unique	in	that	they	are	the	only	HTML	tags
that	require	neither	a	closing	tag	nor	a	closing	/	at	the	end	of	the	tag,	and	are	still
considered	syntactically	correct.

The	other	thing	about	meta	tags	is	that	they	are	the	only	tag	that,	generally	speaking,	has
no	effect	on	the	layout	or	processing	of	the	page;	they	are	used	to	give	information
about	the	page	and/or	site	being	viewed.	The	meta	tag	is	essentially	a	key/value	pair,
and	each	tag	can	only	contain	one	pair	of	values.	Meta	tags	are	used	primarily	by	search
engines.

Useful	Tags
Headers

Headers	are	used	to	organize	information	into	hierarchical	groupings.

<h1>Heading1</h1>

<h2>Heading2</h2>

<h3>Heading3</h3>

<h4>Heading4</h4>

<h5>Heading5</h5>

<h6>Heading6</h6>

Header	tags	are	block-level	elements,	meaning	they	take	up	an	entire	line	by
themselves,	and	no	other	markup	is	allowed	inside	heading	tags.

DIV

The	DIV	tag	is	one	you	can	use	to	create	a	logical	division	within	your	document.	DIVs
work	with	CSS,	and	allow	you	to	write	CSS	rules	that	specify	how	the	text	within	the
DIV	should	be	formatted.

Images/Picture

To	add	an	image	to	your	document,	you	use	the	“image”	tag.	To	insert	an	image	into
your	html	document	use	the	following	syntax:

	

The	value	that	you	put	in	the	‘src=’	attribute	can	either	specify	a	graphic	that	is	on	the
local	file	system,	or	you	can	specify	a	full	URL,	which	retrieves	the	image	from
somewhere	else	on	the	Internet.

Links

A	link	takes	a	user	to	another	place	when	they	click	on	it.	The	link	can	be	to	a	specific
part	of	the	open	document	or	to	a	new	page	entirely.

Takes	the	user	to	a	new	page.

Takes	the	user	to	a	different	place	(as	indicated	by	the	tag)	in	the	current
page:

	

Lists

There	are	two	kinds	of	lists—	ordered	and	unordered.	An	ordered	list	is	numbered,
such	as	1,	2,	3,	while	an	unordered	list	is	a	list	of	bullet	items.	There	are	tags	to	start
and	stop	the	list,	and	tags	for	each	item	in	the	list.

An	ordered	list	starts	with	the		tag.	An	unordered	list	starts	with	the		tag.	Each
list	item,	regardless	of	list	type,	starts	with	the		tag	and	ends	with	.

	

Exercise
Make	a	couple	of	basic	HTML	files	and	place	them	in	the	correct	location	on	your
computer	so	that	you	can	open	them	in	a	browser.	Include	lists,	paragraphs,	and	both
bold	and	italic	text.	I	haven’t	told	you	how	to	make	task	italic.	Given	that	the	tag	for
bold	is	,	what	do	you	suppose	is	the	tag	for	italic?

HTML	Tables
Tables	are	awesome.	They	solve	a	lot	of	problems,	but	should	not	be	used	for	overall
page	layout.	HTML	tables	should	only	be	used	for	rendering	data	that	belongs	in	a	grid
or	in	other	words	where	the	data	describe	a	number	of	objects	that	have	the	same
properties.	For	example,	if	it	makes	sense	to	display	the	data	in	Microsoft	Excel,	use	a
table.

Tables	are	defined	with	the	<table>	tag.	A	table	is	divided	into	rows	(with	the	<tr>	tag),
and	each	row	is	divided	into	data	cells	(with	the	<td>	tag).	td	stands	for	“table	data,”
and	holds	the	content	of	a	data	cell.	A	<td>	tag	can	contain	text,	links,	images,	lists,
forms,	other	tables,	etc.

Table	Example

	

This	is	how	the	HTML	code	above	will	look	once	translated	by	a	browser.	The	browser
will	draw	lines	around	the	cells	because	I	included	border=‘1’	in	the	opening	<table>
tag.

	

HTML	Tables	and	the	Border	Attribute

If	you	do	not	specify	a	border	attribute,	the	table	will	be	displayed	without	borders.
Sometimes	this	can	be	useful,	but	most	of	the	time,	we	want	the	borders	to	show.

To	display	a	table	without	borders,	just	drop	the	border	attribute:

	

HTML	Table	Headers

Headers	in	a	table	(the	top	row	which	describes	the	data	rather	than	being	the	data)	are
defined	with	the	<th>	tag.

All	major	browsers	display	the	text	in	the	<th>	element	as	bold	and	centered.

	

How	the	HTML	code	above	looks	in	your	browser:

Tables	can	create	accessibility	problems.	Because	tables	are	inherently	meant	to	be	read
left	to	right,	one	row	at	a	time,	using	them	for	layout	can	cause	screen	readers	to	read
content	out	of	order	and	cause	confusion	for	the	users	who	rely	on	screen	readers.

HTML	Forms
HTML	forms	are	a	special	kind	of	HTML	page	that	can	be	used	to	pass	data	to	a	server.
Once	the	server	gets	the	data,	it	may	manipulate	the	data	and	send	some	of	it	back,	or	it
may	store	it	into	a	database	for	later	use.

An	HTML	form	will	contain	input	elements	like	labels,	text	fields,	check	boxes,	radio-
select	buttons,	submit	buttons,	and	more.	A	form	can	also	present	lists,	from	which	the
user	can	make	a	selection,	or	a	text	area	where	multi-line	typing	is	allowed.

The	basic	structure	of	a	form	is	as	follows:

	

The	form	tags	go	inside	the	<body>	tag.	The	data	in	the	form	is	sent	to	the	page
specified	in	the	form’s	action	attribute.	The	file	defined	in	the	action	attribute	usually

does	something	with	the	received	input:

	

We’ll	cover	the	form	actions	later.

The	Input	tag

The	most	common	form	element	is	the	<input>	element,	which	is	used	to	collect
information	from	the	user.	An	<input>	element	has	several	variations,	which	depend	on
the	type	attribute.	An	<input>	element	also	has	a	name	element,	so	you	can	refer	to	it
later.	In	general,	the	syntax	is:

	

An	<input>	element	can	be	of	type	text,	checkbox,	password,	radio	button,	submit
button,	and	more.	The	common	input	types	are	described.

Text	Fields:	<input	type=“text”>	defines	a	one-line	input	field	that	a	user	can	enter	text
into:

	

This	is	how	the	above	HTML	code	would	look	in	a	browser:

Password	Field:	<input	type=“password”>	defines	a	password	field.	The	password
field	is	just	like	the	text	field,	except	the	text	that	is	typed	in	is	not	displayed	on	the
screen.

	

A	password	field	doesn’t	secure	the	data,	it	only	hides	it	from	humans.

Radio	Buttons:	<input	type=“radio”>	defines	a	radio	button.	Radio	buttons	let	a	user
select	one	(and	only	one)	of	a	limited	number	of	presented	choices:

	

This	is	how	the	HTML	code	above	looks	in	a	browser:

Checkboxes:	<input	type=“checkbox”>	defines	a	checkbox.	Checkboxes	let	a	user
select	ZERO	or	MORE	options	of	a	limited	number	of	choices.

	

Submit	Button:	<input	type=“submit”>	defines	a	submit	button.

A	submit	button	is	used	when	the	user	has	filled	in	the	form,	and	is	ready	to	send
(“submit”)	the	data	they	have	entered	to	the	server.	The	data	is	sent	to	the	page	specified
in	the	form’s	action	attribute,	which	will	be	covered	in	the	next	section.

HTML	Form	Actions	&	Methods

When	you	define	a	form,	there	are	two	required	attributes:	action	and	method.	The
action	attribute	(action=)	indicates	the	name	of	the	file	that	the	form	will	be	submitted
to.	The	method	attribute	(method=)	specifies	how	the	form	will	be	submitted.

The	file	defined	in	the	action	attribute	usually	does	something	with	the	received	input,
like	put	it	into	a	database	or	send	back	some	of	the	values	to	the	user.	Here’s	an	example
of	a	simple	form	with	action	and	method	attributes.

	

For	the	purposes	of	this	book,	we	will	assume	that	the	action	attribute	specifies	the
name	of	a	PHP	file.	As	you	will	see,	the	PHP	file	specified	in	the	action	attribute	will

have	access	to	all	the	values	in	the	form	that	was	submitted.

We	will	cover	form	actions	in	greater	detail	in	the	section	Creating	forms	to	Display,
Add,	Edit,	and	Delete	data.

Basic	PHP	Syntax
Introduction	-	Basic	PHP	Syntax
A	PHP	script	always	starts	with	<?php	and	ends	with	?>.	A	PHP	script	can	be	placed
anywhere	in	the	document.

	

	

A	PHP	file	must	have	a	.php	extension.	A	PHP	file	normally	contains	HTML	tags,	and
some	PHP	scripting	code.	Before	we	go	much	further,	it	is	important	to	note	that	PHP	is
case	sensitive.	Be	sure	to	follow	the	same	casing	you	see	in	the	examples.

Your	first	PHP-enabled	page	–	Hello	World!
Create	a	file	named	hello.php	and	put	it	in	your	web	server’s	root	directory
(C:\wamp\www?)	with	the	following	content:

	

Use	your	browser	to	access	the	file	with	your	web	server’s	URL,	ending	with	the
/hello.php	file	reference.	When	developing	locally	this	URL	will	be	something	like
http://localhost/hello.php	or	http://127.0.0.1/hello.php	but	this	depends	on	your
computer’s	configuration.

If	everything	is	configured	correctly,	this	file	will	be	parsed	by	PHP	and	magically

http://localhost/hello.php
http://127.0.0.1/hello.php

transformed	into	HTML.	If	all	goes	well,	the	following	HTML	will	be	sent	to	your
browser:

	

This	program	is	extremely	simple,	and	you	really	did	not	need	to	use	PHP	to	create	a
page	like	this.	All	it	does	is	display	“Hello	World”	using	the	PHP	echo	statement.
However,	this	is	considered	the	classic	way	to	introduce	a	programming	language	–
showing	users	how	to	say	“hello	world”.

	

Note	that	there	is	nothing	particularly	special	about	this	file.	The	server	knows	that	this
file	needs	to	be	interpreted	by	PHP	because	you	used	the	“.php”	extension,	which	the
server	is	configured	to	pass	on	to	PHP.	Think	of	this	as	a	normal	HTML	file	that
happens	to	have	a	set	of	special	tags	available	to	you	that	do	a	lot	of	interesting	things.

The	point	of	the	example	is	to	show	the	special	PHP	tag	format.	In	this	example	we
used	<?php	to	indicate	the	start	of	a	PHP	tag.	Then	we	put	the	PHP	statement	and	left
PHP	mode	by	adding	the	closing	tag,	?>.	You	may	jump	in	and	out	of	PHP	mode	in	an
HTML	file	like	this	anywhere	you	want.

Some	Fun	Right	Away
A	Countdown	Counter
Since	most	of	you	who	purchased	this	book	did	it	by	sponsoring	the	project	on
Kickstarter,	you	are	familiar	with	the	idea	of	a	countdown	to	a	specific	date	and	time.
The	idea	is	to	create	excitement	and	a	sense	of	urgency.

How	would	you	create	such	a	thing	in	PHP?	First	we	need	to	set	our	target	date—the
time	we	are	counting	down	to.	In	the	case	of	the	Kickstarter	project	that	launched	this
book,	the	target	time	was	30-September-2012.	You	can	create	a	variable	in	PHP	to	hold
the	target	time	by	using	the	mktime	(make	time)	function	as	follows:

	

	

http://www.php.net/manual/en/function.mktime.php

	

	

Next,	we	need	to	get	the	current	date.	We	can	do	that	with	this	line:

	

	

I	think	you	can	figure	out	what	the	time()	function	does	on	your	own.	:)

Next,	we	now	have	to	find	the	difference	between	the	current	time	and	the	target	time.
To	do	that	we	simply	need	to	subtract:

	

	

Since	the	timestamp	is	measured	in	seconds,	we	need	to	convert	this	into	whatever	units
we	want.	If	we	want	hours	we	can	divide	by	3,600,	however	in	our	example	we	will	be
using	days	so	we	need	to	divide	by	86,400	(the	number	of	seconds	in	a	day.)	We	also
want	to	make	sure	our	number	is	an	integer,	so	we	will	use	the	int	function.

	

When	we	put	it	all	together,	we	get	our	final	code:

	

Exercise
Build	a	countdown	timer	to	an	event	that	is	significant	in	your	life.

Editors	and	Staying	Organized
Editors
An	editor	is	the	software	you	use	to	write	your	HTML	and	code	with.	For	instance,
Microsoft	Word	is	the	editor	that	you	use	to	write	documents.	If	you’re	going	to	get
serious	about	learning	PHP	and	writing	a	lot	of	code,	an	editor	that	is	specifically
designed	for	PHP	will	be	very	helpful.

I	use	two	different	editors,	depending	on	what	I	am	focused	on.	When	I	am	writing
HTML,	I	mostly	use	Microsoft	Expression	Web	4.	When	I	am	writing	PHP	code,	I	use
software	called	phpDesigner.

Microsoft	Expression	Web

What’s	nice	about	Expression	Web	is	that	it	offers	a	split	screen—	HTML	code	on	the
top	and	the	code	as	it	would	be	rendered	in	a	browser	on	the	bottom.	And	you	can	make
edits	in	either	pane,	and	it	automatically	updates	the	other	one.

PhpDesigner

When	I	am	working	with	PHP	code,	I	use	an	editor	called	phpDesigner,	which	is	shown
below.	What’s	nice	about	it	is	that	it	color-codes	PHP	text	and	HTML,	and	this	makes	it
much	easier	to	see	what	you	are	working	on.

http://www.microsoft.com/expression/products/Web_Overview.aspx
http://www.mpsoftware.dk/phpdesigner.php
http://www.mpsoftware.dk/phpdesigner.php

EditRocket

Those	of	you	working	on	Macs	will	probably	like	EditRocket

Free	Editors
When	you	are	just	starting	out,	it	makes	sense	to	start	with	free	editors.	Then,	if	you	like
working	with	PHP,	it	is	a	lot	easier	to	justify	spending	money	on	an	editor	because	you
know	that	you’ll	use	it,	and	you	will	have	a	better	sense	of	what	you	are	looking	for.

Programmer’s	Notepad	is	a	good	all	purpose	editor.	Notepad++	is	another	one.

Dev-PHP	is	a	PHP-specific	editor.

TextWrangler	is	a	good	editor	for	the	Mac.

Includes

http://www.editrocket.com/features/php_editor.html
http://www.pnotepad.org/
http://notepad-plus-plus.org/
http://devphp.sourceforge.net/
http://www.barebones.com/products/textwrangler/

One	of	the	greatest	features	of	PHP	is	the	include	statement	(and	the	related	“require”
statement).

What	this	feature	enables	is	that	you	can	take	the	parts	of	a	page	that	would	otherwise
be	repeated	over	and	over	in	multiple	pages	and	put	those	parts	into	a	separate	file,
which	you	can	insert	anywhere	you	would	like	it	just	by	using	the	include	statement.

Using	include	files	can	save	a	lot	of	work.	For	instance,	if	your	web	site	has	a	standard
header	or	footer,	or	if	it	has	a	menu	for	navigation,	those	elements	would	likely	appear
on	virtually	every	page.	With	ordinary	HTML,	that	means	a	lot	of	duplicated	code.
Duplicated	code	is	fine,	until	you	need	to	change	it—then	it	becomes	a	major	pain.

With	PHP	and	an	include	file,	you	only	have	to	change	the	file	itself,	and	every	page
that	refers	to	it	will	be	updated	automatically.

	

Basic	example

Assume	you	have	a	file	called	‘top.php’	which	contains	the	html	that	you’d	like	to
appear	on	the	top	of	several	pages.	You	could	easily	include	it	on	a	page	like	this:

	

	

HTML	example

Let’s	say	you	have	a	standard	menu	that	should	appear	on	several	pages.	Here’s	the
code	that	makes	up	the	menu:

	

For	every	page	on	which	you	want	the	menu,	just	include	the	red	highlighted	text:

	

	

Code	example

Assume	we	have	an	include	file	with	some	PHP	variables	defined,	and	that	this	file	is
called	(“variables.php”):

	

Then	the	variables	can	be	used	in	the	calling	file:

	

Best	Practices

Using	include	files	is	a	best	practice.	The	less	code	you	have	to	repeat,	the	better.	You’ll
see	the	sample	code	that	goes	along	with	this	book	makes	extensive	use	of	include
statements.

Variables,	Numbers,	Dates,	and	Strings
Variables
A	variable	is	a	place	where	you	can	store	things,	such	as	a	number,	a	date,	or	some	text.
You	put	text	or	numbers	into	variables	so	you	can	retrieve	them	later,	or	so	you	can
manipulate	them.	Variables	are	called	variables	because	the	value	that	they	hold	can
vary.	Hence,	variables	are	variable.	:)	For	example,	to	store	the	value	3.89	in	a	variable
to	track	the	price	of	gasoline,	the	following	syntax	would	apply:

	

Storing	the	price	of	gas	is	a	good	use	of	a	variable	because	we	know	the	price	of
gasoline	is	anything	but	static!	On	a	different	day	your	variable	might	contain	a
different	value:

	

Although	in	theory	you	can	name	your	variable	just	about	anything	you	want,	it	is	a	best
practice	to	give	your	variables	a	name	that	makes	their	purpose	easy	for	humans	to
understand.

For	instance,	in	PHP	it	would	be	perfectly	OK	to	name	your	variables	$a,	$b,	and	$c	to
store	information	about	the	color,	model,	and	year	of	an	automobile,	doing	so	would	not
result	in	very	readable	code.	See	http://www.joyofphp.com/variables-bad-form/

	

http://www.joyofphp.com/variables-bad-form/

	

While	the	code	above	may	be	syntactically	correct,	it	is	far	better	to	take	a	moment	or
two	and	think	about	the	purpose	of	your	variables	and	name	them	for	their	purpose.
Compare	the	above	with	the	following	code,	which	has	the	identical	output	as	the
previous	code:

	

See	http://www.joyofphp.com/variables-good-form/

Wouldn’t	you	agree	that	the	second	style	of	coding	is	far	easier	to	read	and	follow?	In	a
small	example	like	this	it	doesn’t	really	matter	that	much,	but	as	you	start	writing	longer
and	more	complex	code,	naming	conventions	will	make	a	big	difference.

You	don’t	have	to	declare	a	variable	in	PHP	prior	to	using	it.	The	variable	will	exist	as
soon	as	you	assign	a	value	to	it.

http://www.joyofphp.com/variables-good-form/

	

Note	that	when	you	assign	text	to	a	variable,	you	put	the	text	in	quotes.

Variable	Naming	Conventions	and	Best	Practices
Variables	in	PHP	are	represented	by	a	dollar	sign	followed	by	the	name	of	the	variable.
The	variable	name	is	case-sensitive,	meaning	that	PHP	would	treat	$price	and	$Price	as
two	different	variables.	I	can’t	overemphasize	this	as	a	possible	source	of	confusion—
variable	names	are	case	sensitive,	so	pay	attention.

Variable	names	follow	the	same	rules	as	other	labels	in	PHP.	A	valid	variable	name
starts	with	a	letter	or	underscore,	followed	by	any	number	of	letters,	numbers,	or
underscores.

	

When	it	comes	to	best	practices	for	naming	your	variables,	there	are	several	ways	to	do
it.	One	school	of	thought	suggests	that	every	variable	and	the	first	word	in	every
variable	start	with	a	capital	letter,	such	as	$GasPrice.	Others	would	prefer	$gas_price.	It
doesn’t	really	matter	which	method	you	select,	but	what	does	matter	is	that	you	are
consistent.

Numbers
I	think	we	all	know	what	numbers	are.	In	PHP,	you	don’t	have	to	declare	in	advance
whether	a	variable	will	hold	a	number,	string,	or	date.	When	you	declare	a	variable	and
assign	a	number	to	it,	PHP	knows	it	is	a	number.	There	are	many	functions	you	can	use
to	manipulate	numbers.

Basic	Arithmetic

+	The	addition	operator

-	The	subtraction	operator;	can	also	be	used	for	negation	like	this	-9

*	The	multiplication	operator

/	The	division	operator

%,	the	modulus	operator,	returns	the	remainder	after	division.	For	example,	25	%	3
would	give	us	1.

You	can	assign	the	result	of	an	expression	to	a	variable,	and	you	can	use	variables	in
expressions.	If	you	wanted	to	figure	out	how	much	it	would	cost	to	fill	a	tank	of
gasoline,	you	might	write	PHP	code	like	this:

	

	

Common	Arithmetic	Shortcuts

+=	adds	a	value	to	the	current	variable.	For	instance,	$a	+=	1	adds	one	to	the	variable
$a.

-=	subtracts	a	value	from	the	current	variable.	For	instance,	$a	-=1	subtracts	one	from
the	variable	$a.

	

Useful	Numeric	Functions

There	are	many	functions	related	to	numbers.	Here	are	a	few	of	the	most	common	and
useful:

abs()	returns	the	absolute	value	of	a	number
pi()	returns	the	value	of	pi
round()	rounds	a	number	to	the	nearest	integer
sqrt()	returns	the	square	root	of	a	number

I	think	you	get	the	idea.	If	you	need	a	numeric	function,	the	odds	are	very	high	that	PHP
has	that.

Strings
A	string	is	a	sequence	of	characters	that	are	not	numbers.	In	a	simpler	explanation,	it	is
text.	Any	combination	of	letters	and	spaces	can	be	considered	a	string.	This	sentence	is
a	string.

In	PHP,	it	matters	if	you	create	a	string	surrounded	by	single	quotes	or	double	quotes.	If
you	enclose	a	string	within	single	quotes,	PHP	will	return	that	exact	string.	When	you
enclose	a	string	in	double	quotes,	any	variables	within	the	string	will	be	substituted	for
their	values.

	

Useful	String	Functions

There	is	a	vast	array	of	functions	in	PHP	that	can	be	used	to	manipulate	string	variables.
Here	are	a	few:

htmlentities()	Converts	a	string	to	its	HTML	equivalent

html_entity_decode()	Converts	HTML	code	back	to	a	string
str_pad()	Pads	a	string	to	a	new	length
str_repeat()	Repeats	a	string	a	specified	number	of	times
str_replace()	Replaces	some	characters	in	a	string	(case-sensitive)
strtoupper()	converts	a	string	to	all	upper	case

Once	again,	I	think	you	get	the	idea.	If	you	need	string	function,	odds	are	very	high	that
PHP	has	that.

Sources	of	Documentation
Two	great	sources	to	find	specific	functions	are	here:

http://www.w3schools.com

http://www.PHP.net

When	you	visit	PHP.net,	at	the	upper	right	corner	of	every	page	is	a	search	box.	Just
type	the	name	of	a	function	here,	or	anything	you’re	looking	for,	and	PHP.net	will	return
a	list	of	pages	that	are	relevant.

Exercise

Try	searching	both	PHP.Net	and	w3schools.com	for	‘substr’.

How	to	Interpret	PHP.NET	documentation

When	viewing	a	functional	reference	page	you	need	to	understand	how	the	syntax	is
represented	in	the	description,	which,	in	the	case	of	the	substr	function,	will	look	like
this:

This	may	look	like	gibberish	at	first—it	certainly	did	to	me.	But	once	you	learn	to
decode	it,	you’ll	see	that	it	is	all	that	you	should	need	to	understand	how	to	use	this
function.	Here’s	an	annotated	version:

http://php.net/manual/en/ref.strings.php
http://www.w3schools.com/
http://www.php.net/

The	description	of	what	a	function	does	is	not	always	very	clear	at	first,	but	as	you	read
through	the	examples	that	follow,	it	becomes	easier	to	understand.

The	substr	function	can	be	best	thought	of	as	“sub	string”	or	“subset	of	a	string”.	In
general,	function	names	are	shortened	versions	of	what	they	actually	do.	Substr	lets	you
extract	part	of	a	string.

Let’s	walk	through	how	to	interpret	the	function	syntax,	shown	below	again	in	blue.

From	left	to	right:

Return	Value

To	the	left	of	the	function	name	(substr)	is	the	return	value	(string).

A	return	value	is	what	you	get	back	when	you	run	the	function.	In	this	case,	this
function	will	return	a	string	value.	Other	functions	may	return	integers,	arrays,	objects,
etc.	In	some	cases,	you	will	see	a	function	return	something	called	bool,	which	is	short
for	boolean,	and	this	means	the	function	will	return	either	True	or	False.

If	you	see	a	function	that	returns	void,	then	this	means	that	nothing	is	returned.	“Void”
Mixed	means	that	the	function	can	return	a	mixture	of	return	types	like	Integer,	String,
Array,	etc.

Function	Name

The	next	part	is	the	name	of	the	function	itself.	In	the	blue	box	above,	and	on	the
php.net	web	site,	the	name	of	the	function	is	in	bold	text.

Parameters

The	next	part	is	the	parameters	passed	to	the	function	separated	by	commas.	In	each
case,	there	is	an	example	of	what	type	of	value	that	should	be	passed.	In	the	case	of	the
Substr	function,	the	first	two	parameters	are	string	$string,	and	int	$start.	This	means
you	pass	the	substr	function	a	string	and	an	integer.	$string	is	the	string	you	want	a
subset	of,	and	$start	is	the	position	where	you	want	to	start	looking.

Sometimes	you	will	see	a	value	set	within	the	syntax.	This	means	that	this	is	the	default
value.	In	other	cases,	the	parameters	are	within	square	brackets.	This	indicates	that	the

parameter	is	optional,	and	does	not	need	to	be	set,	but	you	can	use	it	if	you	want	to.

As	you	scroll	down	in	the	documentation,	you	will	see	increasingly	obscure	uses	for	a
given	function.	For	instance,	in	the	case	of	substr,	you	can	pass	negative	numbers	to
either	of	the	number	parameters,	and	it	will	count	from	the	end	of	the	string,	rather	than
the	beginning.	Useful?	Sure.	Common?	Not	so	much.

Here	is	a	simple	example	use	of	the	substr	function.

	

This	would	print	out	‘Hello’	because	the	first	five	characters	of	‘Hello	World’	are
‘Hello’.

Dates
There	is	a	wide	variety	of	date	functions	in	PHP,	with	the	most	obvious	one	being
simply	date().

	

The	date	function	allows	you	to	format	a	date	in	virtually	any	way	you	could	possibly
imagine.	The	first	parameter	is	the	formatting	string,	which	you	can	build	using	any
combination	of	the	following	characters:

To	Format	Days

d	–	returns	the	day	of	the	month	as	2	digits	with	leading	zeros,	such	as	01	to	31.

D	–	returns	a	textual	representation	of	a	day	as	three	letters,	such	as	Mon	through	Sun.

j	–	returns	the	day	of	the	month	without	leading	zeros,	such	as	1	to	31.

l	(lowercase	‘L’)	–	returns	a	full	textual	representation	of	the	day	of	the	week,	such	as
Sunday	or	Saturday.

N	–	returns	an	ISO-8601	numeric	representation	of	the	day	of	the	week	(added	in	PHP
5.1.0)	such	as	1	(for	Monday)	through	7	(for	Sunday).

S	–	returns	an	English	ordinal	suffix	for	the	day	of	the	month	as	2	characters	such	as	st,
nd,	rd	or	th.	You	would	use	this	in	conjunction	with	with	j	(above)	if	you	wanted	to
create	something	like	the	1st	of	January.

w	–	returns	a	numeric	representation	of	the	day	of	the	week,	such	as	0	(for	Sunday)

through	6	(for	Saturday).

z	–	returns	the	day	of	the	year	(starting	from	0)	such	as	0	through	365.

To	Format	Weeks

W	–	returns	an	ISO-8601	week	number	of	year,	weeks	starting	on	Monday	(added	in
PHP	4.1.0)	such	as	32	(for	the	32nd	week	in	the	year).

To	Format	Months

F	–	returns	a	full	textual	representation	of	a	month,	such	as	January	or	March.

m	–	returns	a	numeric	representation	of	a	month,	with	leading	zeros,	as	01	or	12.

M	–	returns	a	short	textual	representation	of	a	month	as	three	letters,	as	Jan	or	Dec.

n	–	returns	a	numeric	representation	of	a	month,	without	leading	zeros,	such	as	1,2	or
12.

t	–	returns	the	number	of	days	in	the	given	month,	such	as	28,	29,	30,	or	31.

To	Format	Years

L	–	returns	whether	it’s	a	leap	year	as	1	if	it	is	a	leap	year,	0	otherwise.

o	–	returns	an	ISO-8601	year	number	with	4	digits.	This	has	the	same	value	as	Y,	except
that	if	the	ISO	week	number	(W)	belongs	to	the	previous	or	next	year,	that	year	is	used
instead.	This	option	was	added	in	PHP	5.1.0.

Y	–	returns	a	full	numeric	representation	of	a	year,	again	using	4	digits.

y	–	returns	a	two	digit	representation	of	a	year.

To	Format	Time

a	–	returns	lowercase	am	or	pm.

A	–	returns	uppercase	AM	or	PM.

g	–	returns	12-hour	format	of	an	hour	without	leading	zeros.

G	–	returns	24-hour	format	of	an	hour	without	leading	zeros,	as	0	through	23.

h	–	returns	12-hour	format	of	an	hour	with	leading	zeros,	as	01	through	12.

H	–	returns	24-hour	format	of	an	hour	with	leading	zeros,	as	00	through	23.

i	–	returns	minutes	with	leading	zeros,	as	00	to	59.

s	–	returns	seconds,	with	leading	zeros,	as	00	through	59.

To	Format	Time	Zones

e	–	returns	time	zone	identifier	(added	in	PHP	5.1.0),	such	as	UTC,	GMT,
Atlantic/Azores.

I	(capital	i)	–	returns	whether	or	not	the	date	is	in	daylight	saving	time	as	1	if	it	is
Daylight	Saving	Time,	and	0	otherwise.

O	–	returns	the	difference	to	Greenwich	time	(GMT)	in	hours,	such	as	+0200.

P	–	returns	the	difference	to	Greenwich	time	(GMT)	with	colon	between	hours	and
minutes	(added	in	PHP	5.1.3),	such	as	+02:00.

T	–	returns	the	time	zone	abbreviation,	such	as	EST,	MDT,	CET,	etc.

To	Format	Full	Date/Time

c	–	returns	an	ISO	8601	date	(added	in	PHP	5)	such	as	2013-02-12T15:19:21+00:00.

r	–	returns	an	RFC	2822	formatted	date,	such	as	Thu,	21	Dec	2000	16:01:07	+0200.

U	–	returns	the	number	of	seconds	that	have	passed	since	the	Unix	Epoch	time,	which	is
January	1	1970	00:00:00	GMT.

Unrecognized	characters	in	the	format	string	will	be	printed	as-is.	The	Z	format	will
always	return	0	when	using	gmdate().

Example:	Calculating	Age	in	Years

Assuming	that	as	part	of	a	registration	procedure	you	asked	for	a	birthday,	this	function
will	return	their	age	in	years.

	

See	the	example	script	AgeInYears.php

Variable	Scope
The	scope	of	a	variable	defines	where	the	value	can	be	accessed.	If	a	variable	is
declared	on	its	own	line	on	a	page,	it	is	available	anywhere	on	that	page.	If	a	variable	is
declared	within	a	function,	it	will	only	be	available	within	that	function.

If	you	want	a	particular	variable	to	be	available	everywhere,	declare	it	using	the	global
keyword,	such	as

global	$a	=	‘Hello’;

There	is	a	special	kind	of	variable	that	can	be	accessed	on	every	page	that	makes	up
your	web	application.	This	topic	is	covered	in	Session	Variables.

http://php.net/manual/en/function.gmdate.php

Control	Structures
Introduction
The	whole	point	of	PHP	is	to	make	a	web	page	dynamic.	Dynamic	means	that	you	don’t
necessarily	get	the	same	result	when	you	view	the	same	page	from	time	to	time.
Sometimes	the	web	page	will	display	one	group	of	text,	and	other	times	it	will	display
another	group.	Control	structures	allow	you	to	control	the	conditions	that	specify	the
rules	that	define	when	and	how	this	happens.

if
The	if	statement	is	one	of	the	most	important	features	of	many	languages,	PHP
included.	It	allows	for	conditional	execution	of	code	fragments.	In	PHP,	the	simple	form
of	the	if	statement	is	as	follows

	

The	expression	is	evaluated	to	its	boolean	value.	If	expression	evaluates	to	TRUE,	PHP
will	execute	statement,	and	if	it	evaluates	to	FALSE	–	PHP	will	ignore	it.

	

If	you	would	like	to	execute	multiple	statements	if	the	condition	is	true,	then	group	the
statements	within	a	code	block	using	the	curly	braces,	as	shown

	

	

The	following	example	would	display	‘a	is	bigger	than	b’	if	$a	is	bigger	than	$b:

	

if…	else
Often	you	will	want	to	execute	a	statement	if	a	certain	condition	is	met,	and	a	different
statement	if	the	condition	is	not	met.	This	is	what	the	else	statement	is	for—for	defining
the	action	if	the	condition	is	not	met.

More	formally,	else	extends	an	if	statement	to	execute	a	statement	in	case	the	expression
in	the	if	statement	evaluates	to	FALSE.

For	example,	if	today	is	Monday	the	store	is	closed.	Otherwise	it	is	open	from	10	AM	to
9	PM.	The	function	date_default_timezone_set	defines	which	time	zone	to	use.

	

Exercise:	Open	Hours
Let’s	assume	that	you	run	a	store	of	some	kind	(a	gym,	a	donut	shop,	a	farm	stand,	used
car	lot,	whatever),	and	the	hours	it	is	open	vary	each	day.	Saturdays	and	Sundays	are	the
busiest	days,	so	it	is	open	from	9	AM	–	9	PM.	Monday	is	your	day	off,	and	the	rest	of
the	week,	the	hours	are	10	AM	–	6	PM,	except	in	the	summer	(July	and	August)	when
you	stay	open	until	7	PM.

You	would	like	the	home	page	of	your	web	site	to	prominently	display	Today’s	Hours,
similar	to	the	screen	shot	below:

http://php.net/manual/en/function.date-default-timezone-set.php

PHP	Switch
The	switch	statement	is	similar	to	a	series	of	IF	statements	on	the	same	expression.	On
many	occasions,	you	may	want	to	compare	the	same	variable	(or	expression)	with	many
different	values,	and	execute	a	different	piece	of	code	depending	on	which	value	it
equals	to.	This	is	what	the	switch	statement	is	for.

	

PHP	Looping
PHP	while

The	while	loop	is	one	of	the	simplest	types	of	loops	in	PHP.	Basically,	it	continues	to	do
something	as	long	as	a	condition	is	true.

The	basic	syntax	of	a	while	loop	is	as	follows:

	

Here’s	an	example:

	

This	code	would	print	out	the	numbers	1	to	10.	A	common	use	of	a	while	loop	is	to
continue	to	print	something	as	long	as	you	had	database	records	to	process.

PHP	for

For	loops	are	a	bit	more	complex.	The	syntax	for	a	for	loop	is	as	follows:

	

The	first	expression	(expression1)	is	executed	once,	no	matter	what,	at	the	beginning	of
the	loop.

At	the	beginning	of	each	iteration	through	the	loop,	expression2	is	evaluated.	If
expression2	evaluates	to	TRUE,	the	loop	continues	and	the	nested	statement(s)	are
executed.	If	it	evaluates	to	FALSE,	the	execution	of	the	loop	ends.

At	the	end	of	each	iteration,	which	is	to	say	after	all	the	statements	have	been	executed,
expression3	is	executed.

Consider	the	following	example,	which	also	displays	the	numbers	1	through	10:

	

Here’s	how	it	works.	Expression1	assigns	$i	the	value	of	1.	This	happens	no	matter
what.	Expression2	tests	to	see	if	$i	is	less	than	10.	Since	1	is	less	than	10,	PHP	executes
the	statements	that	follow.	If	$i	was	not	less	than	10,	none	of	the	statements	would	have
executed.

In	this	case	there	is	only	one	statement,	which	is	echo	$i.’
’.	After	the	statement(s)
have	executed,	it	executes	expression3,	which	increments	$i	by	one.	Now	$i	is	2,	which
is	less	than	10,	so	it	echoes	2,	and	so	on.

How	to	use	a	database,	such	as	mySQL
Introduction
Sure	the	idea	of	dynamic	web	pages	is	cool,	but	you	can	only	go	far	with	what’s	built
into	PHP,	like	changing	the	page	based	on	the	day	of	the	week.	What	you’d	really	like
to	do	is	make	a	web	page	unique	for	each	visitor,	and	that’s	where	databases	come	in.

We	will	begin	this	chapter	assuming	that	the	reader	has	absolutely	no	knowledge	of
MySQL	or	databases.	First,	we’ll	explain	databases,	then	we’ll	create	one	the	easy	way
—	using	phpMyAdmin.	Then	we’ll	cover	how	to	create	databases	and	tables	using
SQL,	and	in	the	next	chapter	we’ll	show	how	all	this	can	be	done	using	PHP.

What	are	Databases?
Let’s	begin	our	tutorial	with	an	introduction	to	our	test	subject,	Sam,	who	runs	a	used
car	dealership.	When	he	first	started	his	business,	he	only	had	a	few	cars—	so	keeping
track	of	them	was	pretty	easy.	But	after	a	while,	his	dealership	began	to	grow.	Soon	he
had	10	cars	on	his	lot,	and	a	year	later	he	had	25	cars.

Every	car	has	a	number	of	unique	attributes	to	track,	such	make,	model,	color,	year,
VIN,	number	of	passengers,	body	style,	MPG,	acquisition	cost,	asking	price,	etc.	As
you	can	imagine,	at	some	point	a	human	just	can’t	keep	track	of	all	that	information,
and	even	if	Sam	could	keep	it	all	straight,	he	also	needs	to	convey	that	information	to
his	salespeople,	who	don’t	always	have	the	same	passion	for	Sam’s	business	that	Sam
has.	So	Sam	needs	the	ability	to	quickly	print	out	a	“Cheat	Sheet”	for	each	car	that	a
sales	person	can	refer	to	when	a	prospect	wanders	onto	the	car	lot.

And	of	course,	Sam	would	really	like	to	have	a	web	site	that	allows	people	to	search	for
the	type	of	car	they	want	to	see	if	he	has	any	candidates,	and	to	browse	all	the	available
cars	that	he	has—which,	of	course,	is	always	changing.

Because	the	inventory	of	cars	is	always	changing,	a	static	web	site	isn’t	going	to	be	the
solution.	A	database-based	web	site	is	the	solution.

Databases	help	to	organize	and	track	things.	Databases	allow	you	to	use	creativity	to
group	things	together	in	meaningful	ways,	and	to	present	the	same	set	of	information	in
different	ways	to	different	audiences.

	

Databases	are	composed	of	one	or	more	“tables”.	Tables	are	composed	of	parts	called
“rows”	and	“columns”	similar	to	what	you	would	see	in	a	spreadsheet.	The	columns
section	of	each	table	declares	the	characteristics	of	each	table	while	each	row	contains
unique	data	for	each	element	in	the	table.

It	may	sound	complicated	but	actually	it	is	quite	simple.	Take	the	example	below,	which
is	one	way	that	Sam	could	begin	to	organize	his	car	collection.	(Note	that	for	brevity,
not	all	possible	car	attributes	are	shown.)

Table:	Cars

We	can	clearly	see	that	the	elements	in	this	table	has	seven	columns	defined	as	ID,
VIN,	Make,	Model,	Style,	Year,	and	Price.	The	table	has	four	rows	that	describe	four
different	cars—a	Ford	Explorer,	Dodge	RAM,	Mazda	6,	and	a	Subaru	Outback.

Here	is	a	quick	review	of	what	we	have	learned.

Tables	are	just	a	collection	of	things	that	you	want	to	keep	track	of.
Tables	consist	of	rows	and	columns.
Columns	hold	the	different	attributes	of	each	element	in	that	table.	Rows	in	a	table
hold	different	instances	uniquely	defined	by	the	table’s	columns.
Databases	are	a	collection	of	tables.

Getting	Started	with	phpMyAdmin
Recall	from	the	section	How	Do	I	Know	it	is	Working	on	page	23	that	if	you	navigate	to
http://localhost	you	will	see	a	page	that	was	created	by	your	local	server.	In	my	case	it	is
WAMPSERVER.

At	the	bottom	of	the	page	you	should	see	a	link	for	Your	Aliases

I	am	not	sure	if	Macs	see	this,	but	if	you	don’t	see	the	link,	just	enter	this	address	into
your	browser	or	click	on	this	link:	http://localhost/phpmyadmin/

Clicking	that	link	should	take	you	to	a	page	that	is	similar	to	this:

http://localhosty/
http://localhost/phpmyadmin/

What	is	phpMyAdmin?

phpMyAdmin	is	a	free	software	tool—that	just	happens	to	be	written	in	PHP	itself—
that	is	intended	to	handle	many	common	administration	tasks	of	MySQL	using	a
browser.	phpMyAdmin	supports	a	wide	range	of	operations	with	MySQL.	The	most
frequently	used	operations	are	supported	by	the	user	interface	(managing	databases,
tables,	fields,	relations,	indexes,	users,	permissions,	etc),	and	you	still	have	the	ability	to
directly	execute	a	SQL	statement	if	you	prefer.

phpMyAdmin	comes	with	a	good	supply	of	documentation,	and	users	are	welcome	to
update	the	wiki	pages	to	share	ideas	and	feedback.	The	phpMyAdmin	team	will	try	to
help	you	if	you	face	any	problem,	but	I	haven’t	personally	had	any	problems	with	it.
What	it	does,	it	does	well.

Using	phpMyAdmin	to	create	a	database

First	navigate	such	that	you	have	phpMyAdmin	on	the	screen.	Click	on	the	link	that
says	Databases:

In	the	box	that	says	Create	new	database,	type	the	word	‘Cars’,	then	click	on	the	Create
button.	If	it	worked	properly,	you	should	see	a	yellow	confirmation	box	appear	on	the
screen	briefly,	as	below:

	

Introduction	to	SQL

This	is	equivalent	to	issuing	the	SQL	command

	

and,	in	fact,	phpMyAdmin	actually	executed	that	exact	SQL	command	in	the
background	for	you	when	you	clicked	on	the	button.	In	other	words,	you	can	think	of
phpMyAdmin	as	a	tool	that	builds	SQL	commands	for	you.

	

Using	phpMyAdmin	to	create	a	Table	in	a	database

Now	that	the	database	is	created,	we	would	like	to	use	it.	Find	the	cars	database	in	the
list	of	databases,	then	click	on	the	database	name.

	

phpMyAdmin	will	provide	a	page	similar	to:

	

This	is	the	equivalent	to	the	SQL	command:

	

This	tells	the	MySQL	database	that	you	are	going	to	work	in	the	database	*cars*	until
you	say	otherwise.

You	have	just	created	the	database	for	our	fictional	used	car	lot.	We	will	develop	this
database	more	as	we	go	along.

Defining	our	first	table
So	far,	you	have	created	your	database,	and	figured	out	the	general	structure	of
PHPMyAdmin.	Now	you	will	need	to	put	a	table	inside	of	the	database	you	have
created.	In	the	case	of	our	cars	database,	we	will	need	to	define	the	table	to	describe	the
cars	and	trucks	that	Sam	has	for	sale	on	his	used	car	lot.

Here’s	a	screen	shot	that	I	took	from	www.cars.com	that	describes	a	car.

	

Before	creating	your	table,	think	about	what	you	are	going	to	put	into	the	table	and	what
are	the	various	attributes	that	might	distinguish	one	row	(car)	from	another.

What	defines	an	automobile?

I	can	think	of	a	number	of	properties	or	attributes	that	distinguish	one	car	from	another
on	a	used	car	lot.

Vehicle	ID	Number	(VIN)
Year
Make
Model
Trim
Exterior	color
Interior	color
Asking	Price
Purchase	Price
Mileage
Transmission
Purchase	Date
Sale	Date
Sale	Price

	

That	should	be	enough	to	at	least	let	us	get	started.	Now	we	have	to	figure	out	what
kind	of	data	we	are	going	to	put	in	these	categories.

Datatypes
For	learning	purposes,	there	are	really	only	three	types	of	data	you	will	need	to	use.
They	are:

1.	Numbers

2.	Characters

3.	Dates

Numbers

Numbers,	as	the	name	probably	gives	away,	are	any	kind	of	numeric	information.	Will

http://www.cars.com/

you	need	to	use	any	kind	of	decimals	for	the	data	that	you	are	going	to	store?	In	that
case,	you	will	need	to	use	the	datatype	decimal	or	float.	If	not,	you	can	use	the	datatype
int	(short	for	integer)	or	bigint	(a	big	integer—which	takes	up	more	space,	but	can
handle	bigger	numbers).

Characters

The	character	type	in	MySQL	is	the	data	type	you	use	to	store	Strings.	Characters	are
used	to	store	the	representation	of	a	letter,	word,	or	series	of	words.	For	example	the
letter	A	and	the	phrase	‘Hello	World’	would	both	be	of	a	character	type.	MySQL	calls
this	a	VARCHAR,	short	for	variable	characters.	It	is	variable	because	you	only	set	the
maximum	number	of	characters	that	the	field	can	hold,	and	if	you	put	in	a	value	with
fewer	characters,	the	shorter	value	will	be	stored.	Other	databases,	such	as	Microsoft
SQL	Server,	offer	the	CHAR	datatype,	which	will	fill	in	any	unused	characters	with
spaces.	Why	anyone	would	want	that	I	can’t	imagine,	so	for	simplicity	we’ll	stick	to
VARCHAR	for	now.

Use	the	datatype	varchar(n)	to	define	a	column	that	you	would	like	to	represent	with	a
character.	Substitute	the	n	in	varchar(n)	with	the	maximum	amount	of	letters	a	column
in	your	table	can	have	(up	to	255).	Spaces,	tabs,	and	newlines	in	a	paragraph	all	count
as	characters.

Dates

Dates	are	a	way	to	store	dates	in	the	database.	Do	you	just	want	to	store	the	date	and	not
the	time?	Use	the	datatype	date.	Do	you	want	to	store	the	time	and	not	the	date?	Use	the
datatype	time.	Want	to	store	the	date	and	the	time?	Use	the	datatype	datetime.

	

Let’s	look	back	at	our	characteristics	of	cars	to	decide	what	kind	of	datatype	they	should
be.

Vehicle	ID	Number	(VIN)	–	All	over-the-road-vehicles	have	a	17-character	VIN,
which	does	not	include	the	letters	I	(i),	O	(o),	or	Q	(q)	(to	avoid	confusion	with
numerals	1	and	0).	Varchar(17)
Year	-	Consists	of	numbers	without	a	decimal	point.	Int
Make	–	Consists	of	text.	Varchar(25)
Model	–	Consists	of	text	and	the	occasional	number.	Varchar(25)
Trim	–	Consists	of	text.	Varchar(25)
Exterior	color	–	Consists	of	text.	Varchar(25)
Interior	color	–	Consists	of	text.	Varchar(25)
Asking	Price	-	Consists	of	numbers	with	decimal	point.	Decimal
Purchase	Price	-	Consists	of	numbers	with	a	decimal	point.	Decimal
Mileage	-	Consists	of	numbers	without	a	decimal	point.	Int
Transmission	–	Consists	of	text.	Varchar(25)
Purchase	(Acquisition)	Date	-	Date
Sale	Date	-	Date

Sale	Price	-	Consists	of	numbers	without	a	decimal	point.	Int

	

That	about	sums	up	the	table	that	we	need	to	create	to	track	our	cars.	Since	the	VIN	is
the	only	truly	unique	element	in	the	list,	we	will	make	this	the	“Primary	Key”.

Defining	a	column	as	a	primary	key	means	that	the	column	will	only	be	able	to	have
unique	values	(i.e.	nothing	can	repeat	itself).	In	the	case	of	this	specific	table,	it	means
that	you	can’t	enter	two	cars	with	the	same	VIN	into	the	database,	because	we	have	just
told	mySQL	that	this	isn’t	allowed.	Some	examples	of	this	in	everyday	life	are	license
plate	numbers,	credit	card	numbers,	and	social	security	numbers.	All	of	these	numbers
are	supposed	to	unique	for	each	person.	The	same	concept	applies	to	tables	in	databases.
Whenever	possible,	it	is	good	practice	to	make	sure	that	the	table	you	are	creating
contains	some	form	of	primary	key	to	give	something	to	uniquely	identify	a	row.

How	do	I	make	a	table	with	this	information?	Great	question.	Although	we	created	the
database	using	the	phpMyAdmin	wizard,	from	now	on	we’re	just	going	to	use	SQL.

	

In	your	window	with	phpMyAdmin,	make	sure	that	the	cars	table	is	selected	(see	it
circled	in	red	below),	then	click	on	the	SQL	tab	to	bring	up	the	command	box.	Make
sure	that	you	see	localhost	->	cars	above	the	box.	If	you	do	not,	just	click	on	the	cars
link	on	the	right	side	and	then	the	SQL	tab	to	get	yourself	there.

Type	the	following	command	into	the	box	and	click	go.

	

	

Congratulations!	You	have	created	the	INVENTORY	table.

Here’s	an	incredibly	useful	tip:	Click	the	link	“Create	PHP	Code”	located	on	the	right
side	of	the	screen	and	what	you’ll	get	back	is:

	

The	reason	there	is	such	a	link	is	because	anything	you	can	do	in	mySQL	using	a	SQL
command,	you	can	tell	PHP	to	do	for	you	in	code.	This	represents	a	valid	line	of	PHP
code	in	which	the	variable	$sql	is	assigned	a	string	value	to	hold	the	SQL	statement.	Of
course,	there	is	more	that	would	need	to	be	done	beyond	this	single	line	of	code,	but
don’t	worry—we	will	cover	this	shortly.

	

Exercise:	Create	a	Table

Create	a	table	using	a	SQL	statement,	then	delete	the	table	and	create	it	again	using
phpmyAdmin.	Which	is	easier?

	

Working	with	SQL	Statements
INSERT	Statements

Now	that	you	have	a	table	created,	the	next	logical	step	is	to	put	some	data	into	our
table.	In	the	world	of	SQL,	this	is	accomplished	with	the	INSERT	command.

	

Click	on	the	SQL	tab	again,	type	the	following	command	(if	you	can),	and	press	enter.

	

Obviously,	writing	SQL	isn’t	conceptually	difficult…	but	it	is	tedious	and	prone	to
error,	especially	as	the	statement	gets	longer.	This	statement:

	

is	pretty	easy	to	follow,	but	this	next	one	is	a	bit	tougher:

	

The	only	difference	is	the	number	of	fields.	The	syntax	is	the	same,	but	the	challenge
becomes	making	sure	that	there	is	a	one-to-one	relationship	for	each	column	name	and
value,	and	that	they	are	in	the	right	order—the	column	names	and	their	respective
values,	that	is.

As	you	can	see,	writing	an	INSERT	statement	is	easy	to	goof	up.	We	all	do	it.	Luckily,
phpMyAdmin	makes	it	easy	to	generate	perfect	SQL	statements.	Simply	click	on	the
table,	then	click	the	Insert	button	and	enter	values	into	the	boxes,	as	shown:

	

Once	you	click	the	Go	button,	phpMyAdmin	will	create	a	SQL	statement	for	you	and
insert	the	record,	and	even	offer	to	convert	it	into	a	line	of	PHP	code	for	you.

Here’s	a	trick	used	by	the	professionals:	once	you	have	one	line	of	SQL	that	works,	it’s
pretty	easy	to	copy	and	paste	it	and	tweak	the	values	for	the	next	car.	Go	ahead	and
enter	some	more	values	until	you	get	5	or	6	cars	entered	into	your	table.	Here’s	another
one:

	

Don’t	worry	if	you	mess	up.	MySQL	will	warn	you,	and	prevent	you	from	running
incorrect	commands.	You	don’t	need	to	enter	10	or	20	cars;	the	sample	code	includes	a

script	that	does	that	for	you.	Just	do	it	enough	times	that	you	get	it.

SELECT	Statements

The	syntax	of	SQL	is	pretty	straight	forward,	at	least	syntactically.	We	have	used	it	thus
far	to	create	a	database,	create	a	table	within	that	database,	and	insert	data	into	the	table.

There	are	just	a	few	basic	transactions	left	for	us	to	master:	reading	data,	updating	data,
and	deleting	data.	Some	people	refer	to	this	with	the	cheery	acronym	CRUD,	for	Create,
Read,	Update,	and	Delete.

Reading	data	is	accomplished	using	the	SELECT	statement.	The	SELECT	statement
selects	a	value	or	group	of	values	from	a	table	and	returns	those	value(s)	to	the	user.
Here’s	an	easy	way	to	remember	it:	The	SELECT	statement	allows	you	to	be	selective.
Clever,	eh?

	

Let’s	start	out	with	a	simple	SELECT	statement.	In	phpMyAdmin,	click	on	the	cars	icon
on	the	left	side	and	then	click	on	the	SQL	tab	at	the	top	of	the	page.	Type	in	the
following	command	and	press	Go.

SELECT	*	FROM	inventory;

In	general,	the	asterisk	character	(*)	in	computer	lingo	is	called	a	wildcard	and	basically
means	“everything”,	so	the	result	of	the	command	above	should	return	all	rows	and
columns	of	the	inventory	table,	and	look	similar	to:

	

If	you	typed	out	this	statement	correctly,	you	should	see	the	entire	contents	of	your	table
‘inventory’.	To	select	only	certain	columns	of	a	table,	type	out	all	of	the	columns	you
want	to	see	in	that	table	separated	by	a	comma.	Type	in	the	following	command	and
press	Go.

	

You	should	see	something	like	this:

	

Note	that	I	added	the	red	circle	and	line	to	show	you	where	to	look.	The	mySQL
database	only	returned	the	columns	you	specified	using	the	SELECT	statement.

	

WHERE	Statements

So	far,	you	have	learned	how	to	get	all	the	rows	and	columns	from	a	table,	and	how	to
get	selected	columns	from	a	table,	but	what	about	selected	rows?

This	is	where	the	WHERE	statement	comes	into	play.	The	WHERE	statement	gives	a
specific	set	of	criteria	to	the	MySQL	database	so	that	the	results	are	much	more
controlled	and	relevant	to	what	you	want.	For	example,	say	that	you	want	to	select	all
the	Ford	Explorers	that	are	in	the	inventory,	or	all	the	Toyotas	under	$15,000.	The
WHERE	clause	makes	this	possible.

	

The	results	should	be	every	automobile	made	by	Ford	in	the	database.	If	you	wanted
just	Ford	Explorers,	you	would	need	to	have	WHERE	Make=‘Ford’	AND	Model	=
‘Explorer.

Of	course,	if	you	were	looking	to	buy	a	car,	you	would	only	be	interested	in	those	cars
that	haven’t	already	been	sold,	so	the	following	query	might	be	better	suited:

	

NULL	is	a	special	word	meaning	that	the	field	does	not	contain	a	value,	and	for	some
reason	you	can’t	say	=	NULL,	you	have	to	say	IS	NULL.	I’m	sure	there	is	a	reason	for
this,	but	it	doesn’t	really	matter.	It	is	what	it	is.

Comparison	Operators

There	are	many	different	comparison	operators	in	addition	to	=	and	IS.

	

Remember	to	surround	a	string	with	quotations	or	parentheses	every	time	you	wish	to
use	them	in	SQL	statements.	They	will	not	work	otherwise.	Also,	the	WHERE
command	always	goes	after	the	SELECT	statement	in	MySQL.

To	find	all	of	the	automobiles	with	a	year	that	is	a	2010	or	newer,	it	is	fairly	obvious
that	we	need	to	use	the	Greater	Than	Or	Equal	To	operator	defined	above.	Type	the
following	command	into	your	compiler	and	press	Go.

	

	

ORDER	BY

The	ORDER	BY	statement	is	probably	one	of	the	easiest	and	handiest	commands	in
SQL.	You	can	attach	it	at	the	end	of	any	SELECT	statement	to	put	the	results	in	the
order	of	the	column	that	you	specify.

	

The	above	statement	should	display	the	automobiles	in	order	of	the	column	‘Year’	with
the	newest	cars	at	the	top.	This	is	because	the	modifier	DESC,	or	descending,	is	placed
at	the	end	of	the	command.

	

The	above	statement	should	display	the	automobiles	in	order	of	the	column	‘Year’	with
the	oldest	cars	at	the	top.	This	is	because	the	modifier	ASC,	or	ascending,	is	placed	at
the	end	of	the	command.

The	ORDER	BY	modifier	can	also	be	used	with	a	WHERE	statement	such	as:

	

Just	remember	that	the	WHERE	command	always	goes	before	the	ORDER	BY
command.	If	you	mix	them	up,	you	will	get	an	error.

To	limit	how	many	results	you	receive	in	an	ORDER	BY	statement,	use	the	limit	clause
after	you	write	‘asc’	or	‘desc’,	such	as

SELECT	*	FROM	inventory	ORDER	BY	YEAR	DESC	limit	10;

The	number	after	limit	determines	how	many	results	are	returned.

UPDATE	Statements

To	update	existing	records	in	a	database,	you	use	the	UPDATE	statement.	This	would
be	useful,	for	example,	when	a	car	in	the	inventory	goes	on	sale	with	a	lower	asking
price.

The	syntax	for	an	update	statement	is

	

To	change	the	asking	price	for	a	car	in	our	database,	you	can	use	a	statement	such	as:

	

DELETE	Statements

To	delete	records	from	a	database	you	use	the	DELETE	statement,	specifying	the	table
name	and	a	WHERE	clause	that	specifies	which	records	to	delete.

	

For	example,	to	delete	the	Caravan	cars	from	the	inventory	you	could	use	a	command
similar	to

	

If	you	wanted	to	delete	everything	from	a	database	table,	you	could	skip	the	WHERE
clause	and	use	our	friend	the	wildcard	with	a	statement	like

Using	mySQL	and	PHP	Together
Introduction
In	the	previous	chapter,	we	learned	all	the	basics	of	using	a	database,	in	our	case
mySQL.	All	the	SQL	statements	that	we	learned	so	far	would	likely	work	with	other
database	systems,	such	as	Microsoft	SQL	Server.	In	general,	common	SQL	commands
work	across	all	databases.	Occasionally	you’ll	find	minor	differences,	but	other
database	systems	are	beyond	the	scope	of	this	book.

Thus	far	we	created	our	SQL	statements	either	by	hand,	mostly,	or	with	the	aid	of
phpmyAdmin.	In	this	chapter,	we’re	going	to	use	PHP	and	mySQL	together.	This	is
where	it	really	starts	to	get	good.

Code!
The	PHP	code	listing	that	follows	will	automate	all	the	steps	we	covered	in	the	prior
chapter	to	create	a	database,	create	a	table,	and	insert	records	into	the	table.

If	it	all	works	as	intended,	you	should	see	a	screen	like	this:

	

The	code	that	follows	is	numbered	for	the	convenience	of	explaining	it,	but	remember	that
you	can	get	the	sample	code	from	the	website,	http://www.joyofphp.com.	This	particular
script	is	called	‘createdb.php’.

You	don’t	need	to	study	every	line	as	it	is	presented	here.	Just	give	it	a	quick	look	over.	In
the	next	section,	I	will	go	over	the	entire	script	line	by	line	and	explain	each	one.

http://www.joyofphp.com/

Code	Listing:	createdb.php
1.	<?php

2.	/**

3.	*	Joy	of	PHP	sample	code

4.	*	Demonstrates	how	to	create	a	database,	create	a	table,	and	insert	records.

5.	*/

6.

7.	$mysqli	=	new	mysqli(‘localhost’,	‘root’,	‘mypassword’);

8.

9.	if	(!$mysqli)	{

10.	die(‘Could	not	connect:	‘	.	mysqli_error($mysqli));

11.	}

12.	echo	‘Connected	successfully	to	mySQL.	
’;

13.

14.

15.	/*	Create	table	doesn’t	return	a	resultset	*/

16.	if	($mysqli->query(“CREATE	DATABASE	Cars”)	===	TRUE)	{

17.	echo	“<p>Database	Cars	created</P>”;

18.	}

19.	else

20.	{

21.	echo	“Error	creating	Cars	database:	”	.	mysqli_error($mysqli).”
”;

22.	}

23.	//select	a	database	to	work	with

24.	$mysqli->select_db(“Cars”);

25.	Echo	(“Selected	the	Cars	database”);

26.

27.	$query	=	”	CREATE	TABLE	INVENTORY

28.	(VIN	varchar(17)	PRIMARY	KEY,	YEAR	INT,	Make	varchar(50),	Model	varchar(100),

29.	TRIM	varchar(50),	EXT_COLOR	varchar	(50),	INT_COLOR	varchar	(50),	ASKING_PRICE	DECIMAL
(10,2),

30.	SALE_PRICE	DECIMAL	(10,2),	PURCHASE_PRICE	DECIMAL	(10,2),	MILEAGE	int,
TRANSMISSION	varchar	(50),	PURCHASE_DATE	DATE,	SALE_DATE	DATE)”;

31.	//echo	“<p>***********</p>”;

32.	//echo	$query	;

33.	//echo	“<p>***********</p>”;

34.	if	($mysqli->query($query)	===	TRUE)

35.	{

36.	echo	“Database	table	‘INVENTORY’	created</P>”;

37.	}

38.	else

39.	{

40.	echo	“<p>Error:	</p>”	.	mysql_error();

41.	}

42.	//	Dates	are	stored	in	MySQL	as	‘YYYY-MM-DD’	format

43.	$query	=	“INSERT	INTO	`cars`.`inventory`

44.	(`VIN`,	`YEAR`,	`Make`,	`Model`,	`TRIM`,	`EXT_COLOR`,	`INT_COLOR`,	`ASKING_PRICE`,
`SALE_PRICE`,	`PURCHASE_PRICE`,	`MILEAGE`,	`TRANSMISSION`,	`PURCHASE_DATE`,
`SALE_DATE`)

45.	VALUES

46.	(‘5FNYF4H91CB054036’,	‘2012’,	‘Honda’,	‘Pilot’,	‘Touring’,	‘White	Diamond	Pearl’,	‘Leather’,	‘37807’,
NULL,	‘34250’,	‘7076’,	‘Automatic’,	‘2012-11-08’,	NULL);”;

47.

48.

49.	if	($mysqli->query($query)	===	TRUE)	{

50.	echo	“<p>Honda	Pilot	inserted	into	inventory	table.	</p>”;

51.	}

52.	else

53.	{

54.	echo	“<p>Error	inserting	Honda	Pilot:	</p>”	.	mysqli_error($mysqli);

55.	echo	“<p>***********</p>”;

56.	echo	$query	;

57.	echo	“<p>***********</p>”;

58.	}

59.

60.	//	Insert	a	Dodge	Durango

61.

62.	$query	=	“INSERT	INTO	`cars`.`inventory`	(`VIN`,	`YEAR`,	`Make`,	`Model`,	`TRIM`,	`EXT_COLOR`,
`INT_COLOR`,	`ASKING_PRICE`,	`SALE_PRICE`,	`PURCHASE_PRICE`,	`MILEAGE`,
`TRANSMISSION`,	`PURCHASE_DATE`,	`SALE_DATE`)

63.	VALUES

64.	(‘LAKSDFJ234LASKRF2’,	‘2009’,	‘Dodge’,	‘Durango’,	‘SLT’,	‘Silver’,	‘Black’,	‘2700’,	NULL,	‘2000’,
‘144000’,	‘4WD	Automatic’,	‘2012-12-05’,	NULL);”;

65.

66.	If	($mysqli->query($query)	===	TRUE)	{

67.	echo	“<p>Dodge	Durango	inserted	into	inventory	table.</p>”;

68.	}

69.	else

70.	{

71.	echo	“<p>Error	Inserting	Dodge:	</p>”	.	mysqli_error($mysqli);

72.	echo	“<p>***********</p>”;

73.	echo	$query	;

74.	echo	“<p>***********</p>”;

75.	}

76.

77.

78.	$mysqli->close();

79.	?>

	

	

Code	Explained:	createdb.php
Next	I’ll	walk	you	through	the	code,	line	by	line.	Please	take	the	time	to	follow	along
with	me,	as	this	is	the	only	way	to	really	get	it.	Yes,	every	line	does	matter.
1.	<?php

	

line	1	is	the	start	tag	for	PHP,	and	it	tells	the	PHP	interpreter	that	what	follows	is	code,
not	HTML.
	

2.	/**

3.	*	Joy	of	PHP	sample	code

4.	*	Demonstrates	how	to	create	a	database,	create	a	table,	and	insert	records.

5.	*/

6.

lines	2	-	5	are	comments.	Comments	are	good,	so	put	lots	of	comments	in	your	code.
7.	$mysqli	=	new	mysqli(‘localhost’,	‘root’,	‘mypassword’);

	

line	7	creates	a	variable	called	$con	(for	connection)	and	sets	it	equal	to	a	built-in
function	for	connecting	to	mySQL.	You	need	to	supply	the	hostname,	username,	and
password	for	your	mySQL	server.	If	you	do	not	have	the	correct	username	and
password,	you	will	see	this:

	

	

9.	if	(!$mysqli)	{

	

line	9	is	the	start	of	an	if	statement,	saying	basically	“if	you	are	not	connected”.	The
exclamation	point	is	the	not	operator.	The	point	of	this	line	is	to	test	to	see	if	line	7
succeeded.
10.	die(‘Could	not	connect:	‘	.	mysqli_error($mysqli));

	

line	10	is	what	to	do	if	the	connection	failed.	‘die‘	is	a	command	that	stops	further	code
execution	and	prints	out	the	text	that	follows.	If	I	had	been	the	one	who	invented	PHP,	I
might	have	named	that	command	‘stop’	rather	than	‘die’,	but	it	does	make	the	point.
11.	}

12.	echo	‘Connected	successfully	to	mySQL.	
’;

line	12	prints	out	“Connected	successfully	to	mySQL”.	This	is	the	first	line	you	see	in
the	browser.
	

15.	/*	Create	table	doesn’t	return	a	resultset	*/

16.	if	($mysqli->query(“CREATE	DATABASE	Cars”)	===	TRUE)	{

17.	echo	“<p>Database	Cars	created</P>”;

18.	}

19.	else

20.	{

21.	echo	“Error	creating	Cars	database:	“.	mysqli_error($mysqli)).”
”;

22.	}

	

Line	15	is	a	comment	that	explains	the	function	of	the	next	line.

Line	17	prints	to	the	browser	if	the	SQL	statement	in	line	15	ran	without	error.

Line	21	prints	error	information	to	the	browser	if	the	SQL	statement	in	line	15	did	not
run	successfully.
23.	//select	a	database	to	work	with

line	23	is	a	comment.	Comments	are	good.
24.	$mysqli->select_db(“Cars”);

line	24	creates	a	variable	called	$selected	which	uses	a	built-in	function	for	selecting	a
mySQL	database,	using	the	connection	created	in	line	7.
	

25.	Echo	(“Selected	the	Cars	database”);

line	25	prints	“Selected	the	Cars	database”	to	the	browser.
27.	$query	=	”	CREATE	TABLE	INVENTORY

28.	(VIN	varchar(17)	PRIMARY	KEY,	YEAR	INT,	Make	varchar(50),	Model	varchar(100),

29.	TRIM	varchar(50),	EXT_COLOR	varchar	(50),	INT_COLOR	varchar	(50),	ASKING_PRICE	DECIMAL
(10,2),

30.	SALE_PRICE	DECIMAL	(10,2),	PURCHASE_PRICE	DECIMAL	(10,2),	MILEAGE	int,
TRANSMISSION	varchar	(50),	PURCHASE_DATE	DATE,	SALE_DATE	DATE)”;

lines	27	-	30	creates	a	variable	called	$query	which	holds	an	SQL	statement.	Recall	that
phpMyAdmin	created	this	line	of	code	for	us.	Good	thing	too,	as	it	is	an	easy	one	to
goof	up.
	

31.	//echo	“<p>***********</p>”;

32.	//echo	$query	;

33.	//echo	“<p>***********</p>”;

lines	31	-	33	are	comments	now,	but	previously	they	were	part	of	the	script	that	printed
out	the	value	of	the	variable	$query.	I	had	this	in	there	to	help	me	figure	out	why	it
didn’t	work	at	first,	and	I	leave	it	in	there	as	an	example	of	what	to	do	when	as	script
doesn’t	do	quite	what	you	thought	it	would.	I	then	copied	the	output	of	line	32	to	the
clipboard	and	pasted	it	into	phpMyAdmin	for	syntax	advice.
	

34.	if	($mysqli->query($query)	===	TRUE)

line	34	executes	a	SQL	statement	“query($query)”	then	tests	for	the	result	of	the	SQL
statement	held	in	the	variable	$mysqli.
35.	{

36.	echo	“Database	table	‘INVENTORY’	created</P>”;

37.	}

line	36	prints	the	message	“Database	table	‘INVENTORY’	created”	if	line	34	is	a
success.
	

38.	else

39.	{

40.	echo	“<p>Error:	</p>”.	mysqli_error($mysqli));

41.	}

	

	

line	40	prints	the	message	“Error:”	and	the	mySQL	error	if	line	34	fails.	Hopefully	the
value	returned	by	mysql_error()	will	tell	you	something	helpful	about	why	it	failed.
Sometimes	it	actually	does.
42.	//	Dates	are	stored	in	MySQL	as	‘YYYY-MM-DD’	format

	

line	42	is	a	comment	to	remind	me	(and	you)	to	format	dates	the	way	mySQL	expects
them
43.	$query	=	“INSERT	INTO	`cars`.`inventory`

44.	(`VIN`,	`YEAR`,	`Make`,	`Model`,	`TRIM`,	`EXT_COLOR`,	`INT_COLOR`,	`ASKING_PRICE`,
`SALE_PRICE`,	`PURCHASE_PRICE`,	`MILEAGE`,	`TRANSMISSION`,	`PURCHASE_DATE`,
`SALE_DATE`)

45.	VALUES

46.	(‘5FNYF4H91CB054036’,	‘2012’,	‘Honda’,	‘Pilot’,	‘Touring’,	‘White	Diamond	Pearl’,	‘Leather’,	‘37807’,
NULL,	‘34250’,	‘7076’,	‘Automatic’,	‘2012-11-08’,	NULL);”;

	

lines	43	-	46	changes	the	value	of	$query	to	a	new	SQL	statement,	this	time	an	INSERT.
49.	if	($mysqli->query($query)	===	TRUE)	{

line	49	tests	for	the	execution	of	the	SQL	statement	held	in	the	variable	$query

50.	echo	“<p>Honda	Pilot	inserted	into	inventory	table.	</p>”;

line	50	prints	the	message	“<p>Honda	Pilot	inserted	into	inventory	table</p>”	if	line	49
is	a	success.	The	<p>	tags	put	the	message	on	its	own	line.
	

51.	}

52.	else

53.	{

54.	echo	“<p>Error	inserting	Honda	Pilot:	</p>”	.	mysql_error();

55.	echo	“<p>***********</p>”;

56.	echo	$query	;

57.	echo	“<p>***********</p>”;

58.	}

lines	54	-	57	print	a	message	if	line	49	fails.

	

60.	//	Insert	a	Dodge	Durango

61.

62.	$query	=	“INSERT	INTO	`cars`.`inventory`	(`VIN`,	`YEAR`,	`Make`,	`Model`,	`TRIM`,	`EXT_COLOR`,
`INT_COLOR`,	`ASKING_PRICE`,	`SALE_PRICE`,	`PURCHASE_PRICE`,	`MILEAGE`,
`TRANSMISSION`,	`PURCHASE_DATE`,	`SALE_DATE`)

63.	VALUES

64.	(‘LAKSDFJ234LASKRF2’,	‘2009’,	‘Dodge’,	‘Durango’,	‘SLT’,	‘Silver’,	‘Black’,	‘2700’,	NULL,	‘2000’,
‘144000’,	‘4WD	Automatic’,	‘2012-12-05’,	NULL);”;

65.

66.	If	($mysqli->query($query)	===	TRUE)	{

67.	echo	“<p>Dodge	Durango	inserted	into	inventory	table.</p>”;

68.	}

69.	else

70.	{

71.	echo	“<p>Error	Inserting	Dodge:	</p>”	.	mysql_error();

72.	echo	“<p>***********</p>”;

73.	echo	$query	;

74.	echo	“<p>***********</p>”;

75.	}

76.

lines	60	-76	does	the	same	thing	as	43	-	58,	except	for	a	different	car.
78.	$mysqli->close();

79.	?>

	

line	78	closes	the	connection	to	mySQL.

line	79	is	the	end	tag	for	PHP,	and	any	text	that	followed	would	be	treated	as	HTML,
rather	than	code.

Hey,	where’s	the	HTML?

The	astute	reader	might	have	noticed	that	this	script	didn’t	appear	inside	the	usual
pattern	of	<HTML><Body>	<html	code	here>	<php	code	here>	</Body></HTML>.

Yet	it	worked.	How	come?	I	discovered	this	quite	by	accident,	actually.	It’s	not	a
function	of	PHP	but	apparently	some	browsers	will	fill	in	the	HTML	framework	for	you
if	you	“forget”	to	do	so,	which	I	did	one	time.	Try	it	yourself.	It	works.	Is	this	a	best
practice?	No,	I	can’t	imagine	that	it	is.	But	while	you	are	learning	it	does	let	you	focus
on	the	PHP	code.

Creating	forms	to	Display,	Add,	Edit,	and	Delete	data
Introduction
So	far	we’ve	learned	how	to	use	SQL	to	create	databases,	add	records,	edit	records,
delete	records,	and	select	records.	Then	we	learned	how	to	use	PHP	to	perform	those
same	operations.

Next	we’ll	get	even	more	awesome.	We’ll	learn	how	to	use	HTML	forms	along	with
PHP	to	create	the	SQL	statements	that	perform	the	operation.

Forms	that	Add	Data	to	a	Database
A	Basic	Form

Let’s	start	with	a	simple	example	that	is	easy	to	follow.	Here’s	a	simple,	four-field	form:

Obviously,	it	doesn’t	have	all	the	attributes	of	a	car	that	we	have	previously	identified,
and	it’s	not	very	pretty	to	look	at,	but	it	is	simple,	and	it	will	illustrate	the	point	without
any	extra	junk	to	get	in	the	way	of	your	understanding	of	the	concept.

HTML	Code

The	code	to	produce	such	a	form	follows
<HTML>

	

<head>

<title>Joy	of	PHP</title>

</head>

	

<body>

<h1>Sam’s	Used	Cars

</h1>

<form>

VIN:	<input	name=“VIN”	type=“text”	/>

Make:	<input	name=“Make”	type=“text”	/>

Model:	<input	name=“Model”	type=“text”	/>

Price:	<input	name=“Asking_Price”	type=“text”	/>

<input	name=“Submit1”	type=“submit”	value=“submit”	/>

 </form>

</body>

	

</html>

So	far	what	we	have	is	just	HTML,	and	in	fact	the	form	won’t	actually	do	anything	if
you	press	the	submit	button…yet.

Form	Action

To	make	the	form	actually	do	something,	we	need	to	modify	the	<form>	tag.	Change
the	line	of	code	above	so	that	instead	of	saying	<form>	it	says	<form
action=“SubmitCar.php”	method=”post”>

This	tells	the	browser	that	when	the	form	is	submitted	by	pressing	the	submit	button,	it
should	pass	this	form	to	the	PHP	script	entitled	‘SubmitCar.php’	and	use	the	‘Post’
method	to	do	so.

Forms	can	be	submitted	either	using	method=‘post’	or	method=‘get’.	There’s	really	no
good	reason	to	use	‘get’	when	submitting	a	form	so	to	keep	things	simple,	we’ll	just	use
‘post’	whenever	we	submit	a	form.

We’ll	use	get	later	in	the	book	for	a	different	purpose,	though.

PHP	Code

Here’s	what	we	are	going	to	accomplish.	We	want	the	script	referenced	by	the	form	to
get	the	values	from	the	form,	produce	a	SQL	INSERT	statement	using	those	values,
write	the	SQL	statement	to	the	browser	so	we	can	see	it,	execute	the	SQL	statement	that
we	just	created,	and	finally,	let	us	know	if	it	worked.

If	all	goes	well,	the	script	should	output	something	similar	to	this:
INSERT	INTO	Inventory	(VIN,	Make,	Model,	ASKING_PRICE)

VALUES	(‘9T4BF3EKXBR153775’,	‘Ford’,	‘Fiesta’,	800)

	

Connected	successfully	to	mySQL

Selected	the	Cars	database.

You	have	successfully	entered	Ford	Fiesta	into	the	database.

Here’s	the	code	for	the	SubmitCar.php	file,	which	is	also	available	in	the	sample	code.
Again,	you	don’t	have	to	study	it	here	because	I	will	walk	you	through	it	next.	For	now,
just	give	it	a	quick	look	over.

	

Line	1	is	the	opening	<html>	(which	is	closed	on	line	53).

Lines	2	–	4	constitute	the	Head	tag,	while	line	3	sets	the	page	title.

Line	5	opens	the	body	tag	(which	is	closed	on	line	52).	Note	that	we	used	the	optional
parameter	to	set	the	background	and	text	colors.

	

Line	7	is	the	opening	<php>	tag,	to	signify	that	the	text	that	follows	is	code	rather	than
HTML.

	

Line	8	is	a	comment.	You	can	never	have	too	many	comments	in	your	code.	Get	in	the
habit	early	of	over-commenting	your	code.	I	have	never	heard	anyone	complain	that	the
code	they	were	trying	to	figure	out	had	“too	many”	comments	distracting	from	the
elegance	of	the	logic.

	

Lines	10	–	13	get	the	values	that	were	on	the	form	and	assign	them	to	variables	in	PHP.
$_REQUEST	is	a	special	variable	that	is	used	to	collect	data	after	submitting	HTML
forms.	You	follow	it	with	the	name	of	the	field	on	the	HTML	form	that	you	want	to
retrieve.

A	number	of	readers	of	the	first	edition	of	this	book	have	commented	that	you	should
never	trust	the	information	that	users	give	you,	even	in	a	corporate	application	like	this
one,where	the	users	are	generally	trusted.	So	a	safer	way	to	acheive	what	we	did	above
would	be	to	use	the	PHP	function	called	mysql_real_escape_string	to	strip	out
anything	dangerous	that	users	might	try	to	enter.	For	instance,	$Make	=
mysql_real_escape_string($_POST[‘Make’]);

	

Line	15	is	a	comment.	Comments	are	good.

	

Lines	17	–	24	build	a	SQL	INSERT	command.	It	could	have	been	all	on	one	line,	but	it
is	easier	to	read	this	way.	Notice	that	the	variables	$VIN,	$Make,	$Model,	and	$Price
are	put	into	the	formula	as	they	are.	Later,	when	the	code	is	actually	executed,	PHP	will
substitute	the	variable	names	with	their	actual	values.

	

Line	26	is	a	comment.	Comments	are	good.

	

Line	27	writes	the	SQL	statement	out	to	the	browser,	on	its	own	line.	The	.”
”	after
the	$query	adds	a	
	to	the	end	of	the	line.	That’s	what	puts	it	on	its	own	line.	Line	27
was	not	required	for	the	function	to	work.	It	is	there	so	you	can	see	how	PHP	translated
the	variables	into	their	values	when	producing	the	SQL	statement,	which	in	turn	is
stored	in	the	variable	$query.

	

Line	29	makes	a	connection	to	the	mySQL	database	by	passing	the	name	of	the	server
(‘localhost’),	username	(‘root’),	password	(‘password’),	and	initial	database	(‘cars’).
Note	your	password	will	likely	be	different.

	

Line	30	is	a	comment,	using	the	alternate	syntax	for	denoting	a	comment.

Lines	31	–	34	test	to	see	if	the	connection	made	with	line	29	worked	or	not.	If	not,	it
prints	an	error	message	then	stops	further	code	execution	(line	33	–	exit).	exit()	is	an
alternative	to	the	command	die.

	

Line	36	prints	to	the	browser	the	message	‘Connected	successfully	to	mySQL’.	This
line	would	not	execute	if	line	33	was	called.	Since	we	made	it	this	far,	we	can	conclude
that	we	did	in	fact	connect.

	

Line	38	is	a	comment	that	explains	the	purpose	of	the	next	line.

	

Line	39	selects	the	‘cars’	database,	and	line	40	prints	this	fact.

	

Line	42	is	a	comment.	You	see	a	theme	here,	right?	The	more	comments	you	add,	the
easier	it	will	be	to	figure	out	your	code	when	you	come	back	later	to	look	at	it.

Line	43	is	the	grand	finale.	Here	we	actually	execute	the	SQL	statement	against	the
cars	database.	Line	43	is	the	start	of	an	if	statement	and	line	44	prints	a	success
message	while	line	48	prints	a	failure	message.

Note:	Line	48	really	should	read	use	‘mysqli_error($mysql)’	not	mysql_error().	This	is
corrected	in	the	sample	code.	As	an	astute	reader	of	the	first	edition	pointed	out,	you
can’t	mix	mysql	and	myslqi	in	the	same	script–	they	are	not	the	same.	In	any	case,	the

http://php.net/manual/en/function.exit.php

mysql	extension	has	been	deprecated	in	favor	of	the	mysqli	extension.

	

Line	50	closes	the	connection	to	the	mySQL	database.	This	is	not	strictly	required,	as
the	page	will	still	work	if	you	don’t	do	it,	but	apparently	it’s	a	good	idea	because	if	you
don’t	do	it,	eventually	the	server	will	develop	problems	and	ultimately	require	a	reboot.

	

Line	51	closes	the	PHP	tag	that	was	opened	on	line	7,	signaling	that	the	lines	that
follow	are	html	not	PHP	code.

	

Lines	52	and	53	close	the	body	tag	and	the	HTML	tags,	respectively.

Wow,	we	made	it	through	the	whole	script.	If	you	are	still	with	me,	you	have	a	good
future	in	PHP	development!	Stay	with	it!

A	Brief	Time	Out…include	files	and	SQL	Injection
Include	Files

You	may	recall	from	the	earlier	section	on	Includes	the	notion	of	reusing	code	by
including	the	contents	of	one	file	in	another.	This	is	a	good	time	to	revisit	this	important
topic.

So	far	we’ve	made	two	different	PHP	files—the	first	one	to	create	a	database	and	table,
and	the	second	one	in	the	section	above	to	insert	data	into	the	database	using	a	web
form.	As	you	can	guess	from	the	section	headings	coming	up	later	in	this	chapter,	we’re
about	to	make	even	more	scripts	that	will	allow	us	to	edit	and	delete	data	as	well.

Each	of	these	scripts	will	have	a	something	in	common—code	that	connects	to	the
mySQL	database,	and	in	each	case	that	code	will	be	exactly	the	same.	So	far,	we’ve
been	developing	on	our	own	computer,	so	the	host	name	has	been	‘LocalHost’.	Imagine
yourself,	sometime	in	the	near	future,	having	written	a	dozen	or	more	scripts	into	the
future,	and	suddenly	you	decide	to	move	your	application	to	another	computer—one
accessible	from	the	Internet.	The	host	name	will	not	be	the	same.	Nor,	most	likely,	will
the	username	and	password	be	the	same.	What	if	your	password	got	out	and	you	needed
to	change	it?

Without	my	helpful	intervention	right	here,	you	would	be	facing	the	prospect	of
changing	dozens	of	.php	files—searching	for	the	line	that	reads	something	like…

	

…and	changing	it	to	reflect	the	new	host	name,	username,	or	password.	Uck—	there
would	be	no	joy	in	that	task	at	all.

From	now	on,	we’re	going	move	the	part	of	the	code	that	connects	to	the	database	to	a
separate	file,	and	all	our	new	scripts	from	this	point	forward	will	simply	refer	to	that
code	using	an	include	statement.	If	any	of	the	values	change,	we	will	only	have	to
change	it	in	one	place…	the	file	that	all	the	others	point	to.

Just	imagine	the	joy	of	changing	one	line	of	code	and	seeing	that	change	propagate
across	dozens	of	pages.	That’s	what	I’m	talking	about.	The	include	feature	is	one	of	the
most	helpful	and	important	features	of	PHP,	in	my	humble	opinion.

We’ll	use	the	line	…

	

…	to	tell	PHP	to	insert	the	contents	of	the	db.php	file	into	the	current	script.	Be	sure	to
use	include	files	whenever	you	can,	as	the	extra	few	minutes	it	takes	to	move	some	code
out	to	a	separate	file	is	more	than	paid	back	when	that	code	has	to	change.

SQL	Injection

In	general,	it	is	not	a	good	idea	to	take	whatever	the	user	enters	into	a	form	and	pass
that	directly	to	a	SQL	script	as	we	did	in	the	above	example.	If	the	user	were	malicious
(and	skilled)	they	might	enter	SQL	code	into	one	of	your	forms	and	this	could	have	a
big	impact	on	what	the	script	actually	does.	For	example,	imagine	a	basic
username/password	form	and	the	user	entering	‘or	1=1–	into	the	Password	field,	as
shown:

Now	the	statement	that	is	executed	in	the	database	is	the	following:

	
SELECT	*	FROM	Users	WHERE	Username=	‘Brian’	and	Password=	”or	1	=	1—’

	

Because	1=1	is	always	true,	this	query	will	return	all	users.	(Note	that	the	last	quotation
is	commented	out.)	So,	in	the	script	above,	sqlsrv_has_rows	is	true,	and	all	the
username	password	rows	will	be	returned.

SQL	injection	is	possible	here	because	user	input	is	concatenated	with	the	executed
SQL	code.	One	way	to	prevent	against	this	is	to	strip	out	any	slashes	or	quote	marks
from	the	the	user’	input.	The	following	code	snippet	demostrates	this:
//	To	protect	against	SQL	injection

$make	=	stripslashes($myusername);

$model	=	stripslashes($mypassword);

$make	=	mysql_real_escape_string($myusername);

$model	=	mysql_real_escape_string($mypassword);

	

At	the	risk	of	stating	the	obvious,	the	stripslashes	command	removes	any	slashes	the
users	and	mysql_real_escape	command	removes	the	quote	characters.

An	even	better	way	to	reduce	the	chance	for	SQL	injection	is	to	use	prepared
statements,	but	this	is	a	topic	that	is	beyond	the	scope	of	this	beginner’s	book.	If	you
want	to	learn	more,	here’s	a	good	place	to	start	—>
http://www.dreamincode.net/forums/topic/54239-introduction-to-mysqli-and-prepared-
statements/

Forms	that	Display	Summary	Data
One	of	the	first	things	we’ll	want	to	do	for	Sam’s	Used	Cars	is	to	display	a	list	of	all	the
cars	that	meet	the	selected	criteria.	At	first,	our	criteria	will	be	to	select	all	the	cars,	but
later	on	you	can	modify	the	query	to	return	only	certain	cars	simply	by	modifying	the
SELECT	statement	in	the	code.

The	way	this	will	work	is	that	we	will	execute	a	SQL	Select	statement	to	retrieve	the
cars	that	match	the	criteria,	then	loop	through	all	the	rows.	We’ll	put	each	row	of	data
into	a	nicely	formatted	table.

The	source	code	can	be	found	as	viewcars.php.	If	all	goes	well	the	page	should	look	like
this:

Of	course,	the	output	of	a	simple	script	is	not	particularly	attractive	to	look	at,	but	with
the	addition	of	a	bit	of	CSS	we	can	make	it	look	like	this:

http://www.dreamincode.net/forums/topic/54239-introduction-to-mysqli-and-prepared-statements/

But	let’s	not	get	too	far	ahead	of	ourselves.	First,	here	is	the	code	that	produces	the
basic	version	of	the	table.	The	output	of	this	script	is	more	interesting	if	you	have	a	lot
of	cars	in	your	database,	so	if	you	haven’t	done	so	already,	use	the	script
“createdb.php”	included	with	the	sample	code	to	populate	your	inventory	table	with	a
lot	of	cars.

Code

	

Code	Explained

I	won’t	walk	you	through	every	line	anymore,	as	I	no	longer	think	you	need	it.	From
now	on,	I’ll	just	explain	the	important	ones.

Line	11	is	our	first	use	of	the	include	option	which	refers	to	an	external	file	named
db.php	which	will	be	included	in	this	script	just	as	if	it	were	part	of	the	same	file.	I
highlighted	line	11	above	in	blue	and	the	code	below	in	blue,	in	hopes	that	you	would
better	understand	how	it	works.	The	content	of	the	blue	box	below	is	substituted	into	the
code	for	the	blue	line	(11)	above,	so	that	both	files	are	combined	into	a	single	script.

The	contents	of	the	‘db.php’	file	are	shown	below:

	

The	code	in	the	db.php	file	is	identical	to	the	code	explained	as	line	29	in	the	previous
section,	so	I	won’t	explain	it	again	here.	That’s	another	key	benefit	of	include	files.
Once	the	code	inside	it	works,	you	don’t	really	have	to	think	about	it	much	anymore.

	

Line	12	is	the	query	that	produces	the	list	of	cars	to	be	displayed.	In	this	simple	case,
we	are	selecting	all	the	cars.

	

Lines	14	–	20	runs	the	query	and	displays	an	error	message	if	the	query	fails.

	

Line	23	is	an	opening	tag	to	create	a	table	with	the	ID	of	‘grid’.	The	ID	is	optional	but
makes	it	easy	to	apply	styles	to	the	table	later.	style=width:80%	prevents	the	column
from	extending	to	fill	the	entire	screen;	instead	it	takes	80%	of	the	width.	<tr>	starts	the
Table	Row	with	the	opening	<tr>	tag.

	

Lines	24–	27	create	the	first	row	of	the	table,	the	row	that	contains	the	column	titles	of
make,	model,	and	price.	Line	27	is	a	closing	Table	Row	tag,	followed	by	a	new	line.

	

Line	29	sets	the	value	of	a	variable	called	$class	to	‘odd’	because	the	first	data	row	in
our	table	will	be	odd.	As	we	loop	through	each	row	of	data,	we’ll	alternately	set	the
$class	to	the	value	of	either	‘odd’	or	‘even’.	We	do	this	so	we	can	style	the	table	later	to
have	alternate	rows	show	different	coloring	to	make	it	easier	on	the	eyes.

	

Lines	31	to	37	create	a	row	in	the	HTML	table	to	correspond	with	each	row	in	the

database	table	that	we	extracted	using	the	query.	Each	table	cell	contains	data	from	the
mySQL	table.	For	instance,	line	34	(echo	“<td>”	.	$result_ar[‘Make’]	.	“</td>”;)
should	produce	something	like
<td>Ford</td>

because	$result_ar[‘Make’]	says	get	the	value	of	Make	(one	of	the	columns	in	the
table,	and	in	this	case	‘Ford’)	and	put	it	here	between	the	<td>	tags.	Take	the	time	to
really	understand	what	that	line	is	doing,	because	if	you	can	understand	this,	you	can	do
virtually	anything!	Remember	the	.	character	means	join	these	two	strings.

	

Lines	39	–	46	just	alternate	the	value	of	$class	from	even	to	odd.

	

Line	47	closes	the	While	loop.

	

Line	48	closes	the	table	with	the	</table>	tag.

	

Line	49	closes	the	mySQL	database.

	

Line	50	indicates	the	end	of	the	PHP	code.

Line	51	is	the	end	of	the	body	in	the	HTML	page.

Finally,	line	53	indicates	the	end	of	the	HTML.

Exercise:	Tweaking	the	SELECT

Go	back	and	modify	this	code	so	that	it	doesn’t	select	all	the	cars	but	rather	a	subset	that

pleases	you.

Improving	the	look	of	the	table	with	CSS

Here’s	the	CSS	that	improves	the	look	of	the	form.	This	style	information	is	added	to
the	<head>	section	of	the	page,	but	often	people	put	styles	into	a	separate	style	sheet
too.	See	the	file	viewcarswithstyle.php	to	see	the	form	in	action.

Explaining	how	CSS	works	is	beyond	the	scope	of	this	book,	and	a	topic	in	itself.	But
the	important	thing	is	to	see	how	easily	we	were	able	to	change	the	look	of	the	HTML
table	using	a	little	style	information.	Take	a	look	at	the	complete	style	sheet	here,	and
I’ll	explain	it	next.

	

CSS	Explained

Line	1	opens	the	<style>	tag,	telling	the	browser	that	what	follows	is	a	style	sheet.	Line
2	is	a	comment.

	

Line	3	says	to	select	an	item	on	the	page	with	the	id	of	Grid.	The	#	symbol	is	the
selector	to	select	something	defined	using	an	id,	and	what	follows	is	the	name	of	the
specific	thing	you	want	to	select.	See	line	23	of	the	previous	PHP	script,	which	set	the
id	of	our	table	to	‘grid’	with	the	line	echo	“<table	id=‘Grid’	style=‘width:	80%’>;
Since	we	have	a	table	with	an	id=‘Grid’,	this	style	will	apply.

Everything	that	follows	between	the	{	and	the	}	symbols	define	the	style	for	that	item.
We	pick	font,	border,	margin,	etc.

Line	11	specifies	that	the	following	lines	only	apply	to	<td>	and	<th>	tags,	if	they
appear	within	an	item	with	an	ID	of	‘Grid’.

Each	line	that	follows	gets	more	specific	about	how	an	item	should	be	formatted.	A
specific	selector	overwrites	a	general	one.	So	we	started	off	specifying	default
formatting	for	Grid,	but	later	we	modified	specific	elements	of	the	grid	item.	The	next
bit	is	how	we	color	alternate	rows	differently:

Line	27	says	to	selects	a	<td>	tag,	within	a	table	row	<tr>	if	it	is	a	member	of	the	class
odd.	Look	at	the	HTML	that	is	output	by	the	script.	You’ll	see	a	table	row	for	the	table
defined	like	this:	<tr	class=‘odd’>	or	<tr	class=‘even’>.

There	is	another	selector	for	the	table	headers.	It	does	make	sense	if	you	look	at	it	long
enough.	The	#	symbol	in	CSS	is	a	selector.	OK,	that’s	it	for	now.	Maybe	someday	I’ll
do	a	“Joy	of	CSS”	book.	Let	me	know…

	

Modifying	the	form	to	link	to	the	detail	page

The	last	thing	this	form	needs	is	way	to	link	to	a	specific	car.	When	the	site	visitor
clicks	on	a	specific	car	in	a	row,	it	should	take	them	to	more	detail	about	that	specific
car.	In	other	words,	it	should	take	them	to	the	‘car	detail’	page.	We’re	going	to	have	to
make	that	page,	of	course.

	

Note	that	for	this	to	work	we	will	need	to	build	the	detail	page	because	otherwise	the
link	will	naturally	fail.	Nothing	happens	automatically.	Assuming	that	the	detail	page
exists,	we	can	modify	the	code	on	line	34	that	reads	as:

	

to	instead	read	as:

	

What	this	does	is	create	an	‘anchor’	or	a	link	which	makes	the	first	column	of	each	row
a	clickable	link.	It	should	output	HTML	similar	to:

	

You	can	see	that	the	URL	created	will	be	similar	to	/viewcar.php?VIN=123234FE221
as	shown	above.	This	tells	the	browser	to	open	the	viewcar.php	file	and	pass	it	the
query	string	of	VIN=	followed	by	a	VIN.	It	is	called	a	query	string	because	the
primary	purpose	of	passing	data	to	a	form	this	way	is	so	it	can	use	the	data	in	a	SQL
query—and	that’s	exactly	what	we	are	going	to	do.

Remember	back	when	I	said	to	use	‘Post’	rather	then	‘Get’	when	submitting	a	form?	If
you	had	used	get,	clicking	the	submit	button	would	send	to	the	browser	a	really	long
URL	with	all	the	field	names	and	values	appended	to	the	end	of	it	as	a	query	string	in	a
format	similar	to	?Make=Ford&Model=Explorer,	etc.	We	are	going	to	take	advantage
of	that	technique	to	create	our	own	query	string	and	pass	it	to	a	script.

For	now,	clicking	on	the	link	will	only	trigger	an	error,	because	the	viewcar.php	file
does	not	yet	exist,	but	that’s	what	we’re	going	to	build	next.

Forms	that	Display	Detail	Data

Once	a	site	visitor	has	identified	a	car	that	they	want	more	information	about,	the	car
shopper	will	want	to	click	on	a	particular	car	to	learn	more	about	it.	So	we’ll	make	a
PHP	page	to	handle	this.	We’ll	call	this	the	Car	Detail	page,	and	its	file	name	will	be
viewcar.php.

Again,	we’ll	keep	the	example	relatively	simple	for	the	purpose	of	following	the	logic.
If	all	goes	well,	clicking	on	a	car	from	the	previous	screen	will	bring	up	a	form	similar
to:

Code

	

Code	Explained

	

Line	1	opens	the	HTML	tag	and	starts	the	document.

	

Lines	2	–	4	are	the	head	tags,	and	in	between	specifies	the	document	title,	‘Sam’s	Used
Cars’.

Line	8	is	ordinary	HTML;	it	prints	Sam’s	Used	Cars	at	the	top	of	the	page	in	a	headline
style	type.

Line	9	specifies	that	the	current	script	include	the	db.php	file,	which	logs	into	the
mySQL	database.

Line	10	creates	a	variable	called	$vin	and	assigns	it	the	value	that	follows	VIN=	in	the
URL	string.	Remember,	for	this	form	to	work,	you	have	to	pass	it	the	VIN	like	this:
/viewcar.php?VIN=123234FE221.	We	use	the	command	$_GET	because	when	you
submit	a	form	using	get	the	values	are	appended	to	the	URL	in	a	similar	fashion.

Line	11	builds	a	query	using	the	value	passed	to	the	form	in	the	Query	String,	and
assigns	it	to	the	cleverly	named	variable	$query.	See	why	we	call	it	a	‘query	string’?

Lines	12	–	19	run	the	query	against	the	mySQL	database	and	create	something	called	a
‘result	set’.	A	result	set	is	the	set	of	data	that	results	from	the	running	of	a	query.	This
result	set	is	assigned	to	the	variable	$result.

Lines	20	–	31	loop	through	‘all’	the	rows	returned	as	a	result	of	the	query.	In	our	case,
since	VINs	are	unique	we	would	only	expect	to	get	one	row	of	data	back,	but	we	are
using	basically	the	same	technique	we	learned	in	the	prior	section	–	Forms	that	Display
Summary	Data.

Lines	22	to	30	assign	a	series	of	variables	with	the	values	of	the	specified	data	columns,
which	match	the	names	of	the	columns	in	the	database	table	‘inventory’.

Line	31	closes	the	while	loop.

Forms	that	Edit	Data
If	you	understand	how	to	make	Forms	that	Add	Data	to	a	Database,	and	you
understand	Forms	that	Display	Detail	Data,	it	isn’t	much	of	a	stretch	(conceptually
anyway)	to	make	a	form	that	Edits	data.	Simply	create	a	form	just	like	the	one	you
made	to	add	data,	but	before	displaying	it	retrieve	data	from	the	database	and	pre-
populate	it	with	values.

Instead	of	executing	a	SQL	Insert	command	when	the	user	clicks	submit,	instead
execute	an	Update.

Forms	that	Delete	Data
To	delete	a	specific	record	from	a	database,	you	need	a	way	for	the	user	to	select	the
data	they	want	to	delete.	You	already	learned	how	to	do	this	in	the	section	Forms	that
Display	Summary	Data.	In	the	section	Modifying	the	form	to	link	to	the	detail	page	we
created	an	<HREF>	link	that	takes	the	user	to	a	detail	page,	and	you	can	use	that	same
technique	to	take	them	to	a	delete	page,	such	as	the	one	shown	below:

Code	to	delete	data

Code	Explained

Lines	1	–	6	set	up	the	basics	of	the	page.	We	open	an	<html>,	open	and	close	the
<head>	tags,	and	start	the	body	with	a	headline	proclaiming	“Sam’s	Used	Cars”.

Lines	6	–	7	are	also	familiar	to	us	by	now.	We	open	the	php	tag	and	add	the	insert	line
to	connect	us	to	our	mySQL	database.

Line	9	gets	the	VIN	from	the	query	string.	Remember,	this	page	will	be	called	with	?
VIN=‘23ABC..’	appended	to	the	end.	Line	10	builds	a	SQL	delete	statement	using	the
VIN,	so	we	know	which	vehicle	to	delete.	Line	11	simply	writes	the	query	to	screen	so
we	can	see	the	query	we	built.	It	is	not	strictly	required	for	the	function	to	work.

Lines	14	through	20	do	the	actual	work.	Line	14	performs	the	query,	and	returns	True
if	the	query	succeeds.	If	so,	line	15	prints	a	success	message	to	the	screen,	and	if	not,
line	19	prints	a	failure	message	to	the	screen.

The	rest	of	the	page	close	the	database	connection,	closes	the	php	tag,	closes	the	body
tag,	and	finally	closes	the	html	tag.

Exercise
To	add	edit	and	delete	functionality,	simply	add	two	new	columns	to	the	table	with	the
links	for	edit	and	delete,	and	call	the	appropriate	php	page.	deletecar.php	has	been
provided,	while	editcar.php	you	will	have	to	make	yourself.	If	you	absolutely	can’t	get
editcar.php	to	work,	I	did	include	it	in	the	sample	code.	Just	do	yourself	a	favor	and
TRY	to	make	it.

For	the	answer	to	this	challenge,	look	at	the	sample	page	viewcarswithstyle2.php,
which	is	included	in	the	sample	code.

Session	Variables
Introduction
Variables	in	PHP	typically	have	a	specific	and	limited	scope—generally,	a	variable	is
only	available	on	the	page	on	which	it	was	declared.	The	prime	exception	to	this	rule	is
when	you	declare	a	variable	inside	a	function,	it	only	works	in	that	function.

But	what	if	you	want	access	to	the	same	variable	across	multiple	pages	in	your
application?	For	instance,	I’m	a	regular	shopper	on	Amazon.com.	If	you	are	too,	you
may	have	noticed	that	once	you’re	logged	in,	every	page	has	your	name	on	the	top	of	it.

Presumably,	there	is	a	variable	in	a	script	somewhere	called	something	like	$FirstName
containing	the	value	‘Alan’.	By	now,	you	could	probably	easily	write	such	a	script.
Here’s	a	hint:

But	how	does	that	value	$FirstName	pass	from	page	to	page	as	I	wander	about	the	site?
And	how	does	the	site	keep	track	of	hundreds	of	unique	$FirstName	variables	for	all	the
unique	customers	who	happen	to	be	on	the	site	at	the	same	time?	The	answer	is	session
variables.

Sessions
A	session	variable	is	a	special	kind	of	variable	that,	once	set,	is	available	to	all	the	pages
in	an	application	for	as	long	as	the	user	has	their	browser	open,	or	until	the	session	is
explicitly	terminated	by	the	developer	(you).

The	great	thing	about	session	variables	is	that	PHP	will	magically	keep	track	of	which
particular	session	variable	goes	with	each	particular	user.	So	while	my	Amazon.com
experience	will	always	say	“Alan’s	Amazon”,	yours	will	say	something	different	(unless
your	name	also	happens	to	be	Alan,	of	course.)	Sessions	work	by	creating	a	unique	id
(UID)	for	each	visitor	and	storing	variables	based	on	this	UID.	The	UID	is	typically
stored	in	a	cookie.

It	doesn’t	really	matter	how	they	work,	the	important	thing	is	that	they	do	work.	And,
they	are	very	cool.	They	open	up	a	whole	realm	of	possibilities	for	customizing	your
web	application	for	a	specific	customer.	For	example,	in	the	case	of	Sam’s	Used	Cars,
you	could	ask	a	customer	their	preferred	car	color,	make/model,	features,	etc.	From	that
point	on,	you	can	customize	the	pages	to	reflect	the	customers’	preferences.	For
example,	Hey	look,	this	car	has	a	sunroof!	(And	it’s	red	too!)	It’s	just	a	sample	app,	so
it’s	OK	to	code	annoying	features	to	learn	something	valuable.

Once	a	user	closes	their	browser,	the	cookie	will	be	erased	and	the	session	will	end.	So
sessions	are	not	a	good	place	to	store	data	you	intend	to	keep	for	long.	The	right	place
to	store	long-term	data	is	in	a	database.	Of	course,	sessions	and	databases	can	work
together.	For	instance,	you	can	store	a	user’s	preferences	in	a	database,	and	retrieve
them	from	the	database	when	the	user	“logs	in”	or	types	in	their	email	address	or	does
whatever	it	is	that	you	coded	for	them	to	identify	themselves.	Once	the	data	is	retrieved,
assign	the	preferences	to	the	session	variables	and	they	will	be	available	from	then	on.

	

Starting	a	PHP	Session
Before	you	can	store	user	information	in	your	PHP	session,	you	must	first	start	up	the
session	using	the	session_start()	function.	The	session_start()	function	must	appear
BEFORE	the	<html>	tag,	or	it	won’t	work.

The	code	above	will	start	the	user’s	session	with	the	server	and	allow	you	to	start	saving
user	information	into	session	variables.

Using	Session	Variables
The	correct	way	to	store	and	retrieve	session	variables	is	to	use	the	PHP	$_SESSION
variable:

Store	a	variable

	

Retrieve	a	variable

Output:	Alan’s	Amazon

Checking	for	a	variable

You	can	check	to	see	if	a	session	variable	is	available	or	not	by	using	the	isset()
function.

Here’s	an	example:

	

Destroying	a	Session

If	you	wish	to	delete	some	session	data,	you	can	use	the	unset()	function.	If	you	want	to
delete	it	all,	use	the	session_destroy()	function.	The	unset()	function	is	used	to	delete	a
specific	session	variable:

	

You	can	also	completely	destroy	all	the	session	by	calling	the	session_destroy()
function:

	

Note:	session_destroy()	will	reset	your	session	and	you	will	lose	all	your	stored	session
data.	This	is	an	easy	way	to	implement	a	logout	function.

If	you	would	like	to	learn	more	about	Session	Variables,	I	have	a	whole	book	on	this
topic	titled	“The	Joy	of	PHP:	Deep	Dive	into	Sessions”.

Working	with	Images
Introduction
A	used	car	web	site	would	not	be	of	much	use	to	the	typical	car	shopper	without
providing	images	of	the	cars,	so	in	this	chapter	we	will	cover	how	to	add	images	to	our
site.	It	would	be	rather	simple	if	each	car	had	a	single	image	associated	with	it—in	that
case,	we	could	simply	add	an	additional	column	to	our	inventory	table	called	‘image’
(or	something	equally	descriptive,	such	as	‘primary_image’)	which	would	store	the	file
name	of	the	image	associated	with	the	particular	car.

Then	we	would	build	PHP	to	retrieve	the	image	name	and	insert	it	into	an	HTML	image
tag	on	the	car	details	page.

	

Of	course,	PHP	would	be	well	suited	for	this.	We	would	read	the	file	name	from	the
database	and	use	PHP	to	create	the	image	tag	dynamically.

For	instance,	we	could	modify	our	earlier	example,	which	shows	the	detail	for	a	specific
car	by	adding	the	lines	highlighted	in	red	as	follows:

http://www.w3schools.com/tags/tag_img.a

	

This	example	assumes	that	we	have	a	column	in	our	database	called	Primary_Image,
which	contains	the	file	name	of	an	image	file	that	is	stored	on	our	server.	The	sample
files	home	page	contains	a	script	that	makes	this	modification,	if	you	are	so	inclined.

If	the	images	were	in	a	folder	called	‘images’,	the	line	would	read:

	

Exercise:	Viewing	Images

Get	the	above	example	to	work.	Create	an	images	folder	underneath	the	folder	that	is
running	the	car	lot	application	and	put	some	images	into	it.	Modify	your	inventory	table
to	add	a	Primary_Image	field	and	enter	some	values	in	that	field	to	associate	specific
cars	with	specific	images.

Make	a	copy	of	the	viewcar.php	script	(call	it	viewcar-backup.php	in	case	you	need	it
later),	then	modify	the	viewcar.php	as	shown	in	red	above	so	that	it	reads	the	image
location	out	of	the	database	and	inserts	the	image	into	the	page	using	the		tag.

Pulling	an	unknown	number	of	images	from	a	database
Assuming	you	got	the	above	exercise	to	work,	you	must	admit	that	it	is	pretty	slick.
Congratulations,	you	are	officially	awesome.	But,	we	can	do	much	more.	Just	having
one	image	of	a	car	doesn’t	really	reflect	the	reality	of	a	visitor’s	expectation	of	a	car
site.	More	likely	a	visitor	to	Sam’s	Used	Cars	web	site	would	want	to	see	many	images
of	a	car	he	or	she	is	interested	in,	and	our	site	will	have	to	accommodate	this.	Some	cars
might	have	only	one	image,	but	some	might	have	10	or	more.	It	will	be	different	for
each	car.	So	how	would	we	accomplish	this?	Having	a	single	column	called
Primary_Image	is	obviously	not	the	permanent	solution.	As	soon	as	you	show	it	to
Sam,	he’ll	surely	say	‘But	what	if	I	have	two	pictures	of	the	car	to	show?’	That’s	the
nature	of	web	development	sometimes.	One	good	idea	sparks	another.	Don’t	get

frustrated	when	this	happens,	but	rather	think	to	yourself,	‘Wow,	I	inspired	an	even
better	idea!’
The	easiest	way	to	handle	a	variable	number	of	images	would	be	to	create	a	database
table	to	store	them	in.

Let’s	add	a	table	called	‘images’	to	our	cars	database.	It	should	have	the	columns	ID,
VIN,	and	ImageFile.

Exercise:	Create	a	Database	Table	to	store	images

Use	phpMyAdmin	to	create	this	table,	like	so.

Now	you	need	to	populate	the	table	with	some	sample	data.	Here’s	what	I	did.	Go	to
http://www.cars.com	and	search	for	some	cars.	Copy	the	VIN	to	the	clipboard,	and	save
some	the	pictures	of	the	car	to	your	hard	drive.	Enter	a	row	in	the	images	table	for	each
of	the	images	you	save,	and	enter	the	VIN	of	the	car	for	each	one.	There	should	also	be
a	corresponding	entry	in	the	inventory	table	for	that	car,	with	the	exact	same	VIN.	It’s
easy	to	do	in	phpMyAdmin.	Don’t	worry	about	trying	to	automate	that	part	of	it	yet.

Exercise:	Modify	the	viewcar.php	page	to	show	multiple	images

Once	you	have	some	sample	data	that	matches	up	specific	VINs	with	specific	images,
it’s	actually	pretty	easy	to	display	those	images	on	the	page	along	with	the	description
of	the	car.	Here’s	a	code	snippet	you	can	append	to	the	viewcars.php	form	to	extract	the
names	of	the	images	for	the	selected	car.

The	assumption	of	this	script	is	you	have	the	VIN	of	the	car	in	the	variable	$vin,	and
that	you	have	included	‘db.php’	to	establish	the	database	connection.

http://www.cars.com/

Code	explained

Line	2	sets	up	the	query	whereby	we	select	all	the	fields	in	the	images	table	for	the
specific	car	(WHERE	VIN=).

Line	4	runs	the	query	and	checks	to	see	if	any	results	were	returned	from	the	database.

Lines	7	–	10	loops	through	the	result	set	as	many	times	as	there	are	rows.	In	other
words,	if	there	were	five	images	for	a	specific	car,	there	would	be	five	rows	of	data
returned	and	the	while	loop	would	go	around	five	times.

Line	11	closes	the	if	statement	and	the	line	12	closes	the	connection	to	the	mySQL
database.

PHP	File	Uploads
Introduction
In	the	previous	section,	we	captured	images	for	our	cars	and	then	saved	them	manually
onto	the	hard	drive.	That’s	cool,	but	tedious.	What	would	be	really	cool	would	be	to
simply	select	a	car	in	our	inventory	and	click	a	button	called	“Add	Image”,	and	let	the
script	handle	the	rest	–	putting	the	file	in	the	right	place	and	creating	the	correct	row	in
the	images	table	using	the	VIN	of	the	selected	vehicle.

That’s	what	we’ll	do	next.

Create	an	Upload	File	form
In	its	most	basic	incarnation,	here	is	an	HTML	form	you	can	use	to	upload	a	file.

There	are	a	couple	of	things	worth	pointing	out.

First,	notice	the	form	attributes:	action=‘upload_file.php’	means	that	when	you	click	the
submit	button,	the	result	of	the	form	post	will	be	passed	to	the	upload_file.php	script
for	further	processing.	Next,	the	enctype=“multipart/form-data”	is	a	new	one	for	us.
Here	we	are	specifying	the	encoding	type	to	be	used	by	the	form.	You	have	to	specify
that	it	is	multipart/form-data	if	you	are	including	a	file	upload	control	on	a	form,	so
the	browser	knows	to	pass	the	file	as	a	file,	and	not	as	just	another	big	block	of	text.

We	also	have	a	new	type	of	input	box.	In	the	past,	we’ve	been	using	the	input	boxes
mostly	to	allow	users	to	type	in	text.	When	you	specify	that	an	input	type=“file”,	the
browser	handles	it	differently.	It	will	put	a	browse	button	next	to	the	input	field,

allowing	the	user	to	select	a	file	from	his	or	her	computer.

Create	a	Script	to	Process	the	Uploaded	File
The	form	above	specified	that	the	post	be	processed	by	‘upload_file.php’.	This	script	is
used	to	do	something	with	the	file	once	it’s	been	uploaded.	The	script	that	follows
simply	echoes	back	to	the	browser	some	of	the	attributes	of	the	file	that	has	just	been
uploaded.	There	are,	of	course,	other	file	attributes	that	we	won’t	cover,	because	you
probably	won’t	ever	need	to	use	them.

I	highlighted	in	yellow	the	parts	that	need	to	match.	In	other	words,	if	the	name	of	the
input	control	on	the	upload	form	refers	to	the	file	as	‘foo’,	like	<input	type=“file”
name=“foo”>	you	would	also	have	refer	to	it	as	foo	on	the	script	that	follows,	such	as
$_FILES[“foo”][“name”].	The	actual	name	doesn’t	matter,	but	what	does	matter	is
consistency.

When	you	upload	a	file	using	PHP,	the	file	is	stored	in	a	temporary	folder.	Unless	you
specifically	do	something	with	the	file,	it	will	soon	disappear.

For	Sam’s	Used	Cars,	the	ideal	thing	to	do	would	be	to	upload	the	file,	copy	the	file	into
a	specific	folder,	and	then	create	a	record	in	the	images	table	that	inserts	the	proper
vehicle	VIN	and	the	file	name	of	the	image	we	just	uploaded.	In	the	sample	data,	see
the	script	ViewCarsAddImage.php	to	see	this	exact	concept	in	action.

Code:	ViewCarsAddImage.php

Code	Explained

Line	1	opens	the	php	tag,	and	line	2	adds	the	necessary	include	file	to	connect	to	our
database.

Line	3	creates	a	variable	called	$vin	and	assigns	it	the	value	that	was	passed	to	it	using
when	a	form	was	posted.	Again,	see	this	in	action	with	the	sample	scripts	included	with
this	book.	This	is	not	the	only	way	we	could	have	done	this.	We	could	also	have	passed
the	VIN	in	a	query	string,	the	technique	we	used	in	viewcar.php

Lines	4	–	7	test	to	see	if	a	file	was,	in	fact,	uploaded.	If	not,	an	error	is	printed	using
line	6.

Beginning	with	Line	9,	the	script	begins	to	process	the	uploaded	file.

Lines	10	–	12	print	information	about	the	file,	and	line	13	prints	the	VIN,	just	to	make
sure	we	got	it	without	any	problems.

Line	14	tells	us	the	name	that	PHP	used	to	temporarily	store	the	uploaded	file.

TIP:	Notice	that	on	the	end	of	the	line	I	also	have	it	write	“\n”,	which	means	to	add	a
new	line	at	the	end	of	this.	This	doesn’t	affect	the	script	at	all,	but	it	does	put	a	new	line
on	the	HTML	that	is	created	by	the	script.	Putting	\n	at	the	end	of	the	line	on	scripts
makes	the	HTML	code	easier	to	read	when	you	look	at	a	page	and	select	View	Source—
something	that	every	PHP	developer	has	to	do	from	time	to	time.

Line	15	uses	the	command	getcwd()	to	figure	out	the	name	of	the	folder	in	which	the
current	script	is	running.	Why	did	I	want	that?	Because	I	want	to	put	the	uploaded	file
into	a	folder	that	is	under	the	current	folder,	and	to	do	that	you	need	to	know	where	you
are.	Line	16	outputs	what	it	just	learned.

	

In	line	17,	we	create	a	variable	called	$target_path	and	assign	it	a	value	by	adding	two
strings	together	using	the	.	character.	The	two	strings	we	added	are	the	current	directory
and	/uploads/.	We	are	creating	the	target	path	to	specify	where	we	want	the	uploaded
file	to	be	put—	in	the	uploads	folder.

Line	18	outputs	the	result	of	the	calculation	to	set	the	target	path.

In	line	20	we	tweak	the	target	path	yet	again,	this	time	appending	the	original	file	name
of	the	uploaded	file	to	it.

Line	21	calculates	the	name	of	just	the	image	file	without	the	entire	file	path.	This	is
because	when	you	are	working	with	HTML		tags,	you	don’t	have	to	specify	the
entire	path	of	the	image;	you	only	need	to	specify	where	it	is	relative	to	where	you	are.

Lines	22	and	24	output	the	values	of	these	calculations	so	you	can	see	what	was	the
result.	Of	course,	if	this	was	a	“real”	web	site	for	a	used	car	lot,	you	wouldn’t	want	all
this	extra	information	going	to	the	browser.

	

Lines	26	moves	the	uploaded	file	from	the	temporary	location	assigned	by	PHP	into	the
target	path	that	you	calculated	in	line	20.	Line	27	informs	you	of	this	fact.

Next,	we	want	to	create	a	record	in	the	images	table	that	points	to	this	new	image	file.
Lines	29	to	35	set	the	stage	for	this	to	happen.

In	line	36	we	get	just	the	name	of	the	uploaded	file,	without	any	path	information	at	all.
This	is	because	we	just	want	to	insert	the	name	of	the	file	into	the	database.	When
referring	to	the	file	later	with	an		tag,	we	can	always	specify	a	path	if	needed.

Line	37	builds	the	query	to	insert	the	record	into	the	database,	and	line	38	writes	out
what	the	query	is.	Line	38	was	very	helpful	while	I	was	originally	writing	this	script,
because	of	course	it	didn’t	work	the	first	time	I	tried	it.	Seeing	the	actual	query	is	the
first	step	to	figuring	out	why	a	particular	query	did	not	work.

Lines	39	to	41	create	a	link	that	allows	us	to	easily	add	another	image	for	this	car	if	we
have	one.

Lines	42	to	51	execute	the	query	and	prints	out	either	a	success	or	failure	message.	Line
52	closes	the	connection	to	mySQL.

Line	52	creates	an	image	tag	for	the	file	we	just	uploaded	so	you	can	see	what	it	looks
like.	When	I	first	created	this	the	images	were	so	big	they	took	over	the	whole	screen,
so	I	added	the	attribute	width=‘150’	to	keep	the	images	to	a	reasonable	size.	This	tells
the	browser	to	resize	the	image.

PHP	Quirks	and	Tips
Introduction
Every	language	has	its	quirks.	As	I	encounter	those	aspects	of	PHP	that	are	not
immediately	intuitive,	or	if	I	find	a	great	tip	that	could	make	your	life	easier,	it	will	go
into	this	section.

Single	Quotes	vs	Double	Quotes
When	working	with	strings,	it	is	important	to	understand	the	difference	in	how	PHP
treats	single	quotes	(echo	‘Hello	$name’;)	as	compared	with	double	quotes	(echo	“Hello
$name”;)

Single	quoted	strings	will	display	things	exactly	“as	is.”	Variables	will	not	be
substituted	for	their	values.	The	first	example	above	(echo	‘Hello	$name’;)	will	print
out	Hello	$name.

Double	quote	strings	will	display	a	host	of	escaped	characters	and	variables	in	the
strings	will	be	substituted	for	their	values.	The	second	example	above	(echo	“Hello
$name”)	will	print	out	Hello	Alan	if	the	$name	variable	contains	‘Alan’.

This	is	an	easy	thing	to	mix	up,	so	read	it	again.	:)

	

The	Equal	Sign
The	equal	sign	can	often	be	a	source	of	confusion.	A	single	equal	sign	is	used	to	assign
a	value	to	a	variable,	for	instance	$FirstName	=	‘Alan’;

The	equal	sign	can	also	be	used	to	compare	to	values,	if	you	put	two	of	them	together
and	include	it	in	an	if	statement.	For	instance,	$FirstName	==	‘Alan’	will	return	true	for
me,	as	the	following	code	demonstrates

See	the	sample	code	comparisons.php

The	quirky	thing	about	the	double	equal	test	is	that	PHP	will	attempt	to	convert	the	two
variables	being	compared	into	different	types	to	see	if	it	gets	a	match.	For	instance,	if	$a
=	1	and	$b	=	“1”	you	might	think	that	they	are	not	equal	because	they	are	different
types.	(One	is	a	number	and	the	other	is	a	string.)

However,	comparing	$a	and	$b	using	the	==	comparison	will	return	true,	because	if
you	convert	$b	from	the	type	string	to	the	type	number	the	two	variables	are	equal.

	

If	you	want	to	test	if	two	values	are	the	same	value	and	the	same	type,	you	compare
them	using	three	equal	signs.	This	way,	$a	===	$b	would	return	false.

http://www.joyofphp.com/sample-code-to-illustrate-comparison-operators

	

	

Comparison	Operators

	

If	you	compare	a	number	with	a	string	or	if	the	comparison	involves	numerical	strings,
then	each	string	is	converted	to	a	number	and	the	comparison	performed	numerically.
These	rules	also	apply	to	the	switch	statement.	The	type	conversion	does	not	take	place
when	the	comparison	is	===	or	!==	as	this	involves	comparing	the	type	as	well	as	the
value.

Security	Considerations
Introduction
As	we	have	seen,	PHP	is	a	very	easy	language	to	learn,	and	many	people	without	any
sort	of	formal	background	in	programming	will	learn	it	as	a	way	to	add	inter-activity	to
their	web	sites.

Unfortunately,	that	often	means	PHP	programmers,	especially	those	newer	to	web
development,	are	unaware	of	the	potential	security	risks	their	web	applications	can
contain.

Security	is	something	that	is	often	overlooked	when	designing	a	web	project,	because
there	isn’t	really	any	“joy”	in	thinking	about	someone	hacking	into	your	shiny	new
application.

Security	is	a	difficult	thing	to	measure,	and	it	is	impossible	to	say	whether	an
application	is	truly	secure	or	not—there	are	only	degrees	of	security.	Naturally,	the	more
effort	you	put	into	making	an	application	secure,	the	more	secure	it	will	be.	The	trick,	of
course,	is	finding	the	right	balance	in	time	and	effort—and	expense.

It	is	fairly	easy	and	relatively	inexpensive	to	provide	a	sufficient	level	of	security	for
most	applications.	However,	if	your	security	needs	are	very	demanding—because	the
information	stored	in	your	application	is	very	valuable	(or	very	sensitive,	like	nuclear
launch	codes)—then	you	must	ensure	a	higher	level	of	security	despite	the	increased
costs	that	will	be	associated	with	it.	Remember,	a	security	breach	can	also	be	very
expensive.

Balancing	Security	and	Usability
Sadly,	many	of	the	steps	taken	to	increase	the	security	of	a	web	application	also
decrease	its	usability.	Passwords,	session	time-outs,	and	access	control	levels	and	roles
all	create	obstacles	for	legitimate	users.	While	these	steps	will	increase	the	security	of
the	application,	you	can’t	have	it	so	secure	that	nobody	can	use	it.

I	did	a	year-plus	contract	as	a	developer	at	an	unnamed	government	agency	that	claimed
to	be	very	security	conscious.	They	required	a	thorough	background	check	prior	to
employment,	and	everyone	had	to	wear	high-tech	badges	to	move	about	the	building.
We	even	had	guards	at	the	entrance	to	the	building.	It	was	“so	secure”	that	we	had	to
change	our	passwords	every	30	days	to	a	password	we	hadn’t	used	before,	and	that
password	had	to	be	at	least	10	characters	long	and	contain	numbers,	letters,	mixed	case,
and	punctuation	marks—and	it	couldn’t	be	found	in	the	dictionary.

In	short,	they	required	passwords	that	no	human	could	actually	remember,	and	the
system	was	not	very	usable.	If	your	computer	was	idle	for	15	minutes	or	more,	you’d	be
prompted	to	type	in	the	password	in	again.	Everyone	I	worked	with	on	that	project	had
their	password	written	down	on	a	piece	of	paper	right	next	to	their	computer.	Clearly
the	“powers	that	be”	in	the	security	department	had	picked	security	over	usability	to
such	an	extreme	that	the	very	security	they	were	seeking	was	utterly	compromised.

SQL	Injection
One	of	PHP’s	greatest	strengths	is	the	ease	with	which	it	can	communicate	with
databases,	such	as	MySQL.	The	Sam’s	Used	Car	Lot	example	from	this	book	and
thousands	of	other	high	profile	web	sites,	such	as	http://Facebook.com,	rely	on
databases	to	function.

With	that	strength	also	comes	risks.	The	most	common	security	hazard	faced	when
interacting	with	a	database	is	something	called	SQL	Injection	-	when	a	user	deliberately
uses	part	of	your	application	to	run	unauthorized	and	unintended	SQL	queries	on	your
database.

Let’s	use	a	common	example.	Although	we	didn’t	cover	it	in	this	book,	many	systems
that	ask	a	user	to	login	feature	a	line	of	PHP	code	that	looks	a	lot	like	this	one:

The	script	takes	the	username	and	password	that	was	entered	on	the	form	and	builds	a
query	using	the	text	entered	by	the	user.

Does	it	look	familiar?	You’ll	see	many	variations	of	this	as	your	journey	into	the	Joy	of
PHP	continues.	So	what’s	the	problem?	It	does	not	look	like	such	code	could	do	much
damage.	But	let’s	say	for	a	moment	that	I	enter	the	following	into	the	“username”	input
box	in	the	form	and	submit	it:

‘	OR	1=1	#

The	hash	symbol	(#)	tells	MySQL	that	everything	following	it	is	a	comment	and	to
ignore	it.	The	query	that	is	going	to	be	executed	by	mySQL	will	now	look	like	this:

The	#	symbol	tells	mySQL	to	ignore	any	text	that	follows,	leaving	a	WHERE	statement
of	‘WHERE	Username	=	”	OR	1=1’.	Since	1	always	equals	1,	the	WHERE	clause	of
the	SQL	will	match	for	every	row—and	here’s	the	bad	part.	The	query	will	return	all	of
the	usernames	and	passwords	from	the	database.	What	may	happen	next	is	that	if	the
first	username	and	password	combination	is	the	admin	user,	then	the	person	who	simply
entered	a	few	symbols	into	a	username	box	is	now	logged	in	as	your	website
administrator,	as	if	they	actually	knew	the	admin’s	username	and	password,	which	they

http://facebook.com/

probably	don’t,	and	shouldn’t	know.

With	a	little	creativity	which	is	beyond	the	scope	of	this	book,	SQL	Injection	can	be
used	to	accomplish	some	nasty	tricks	you	probably	never	thought	of	when	designing
your	application.

Fortunately,	it	is	pretty	easy	to	put	up	roadblocks	that	help	prevent	this	type	of
vulnerability.	By	checking	for	apostrophes	in	the	items	we	enter	into	the	database,	and
removing	or	substituting	them,	we	can	prevent	anyone	from	running	their	own	SQL
code	on	our	database.

The	function	below	would	do	the	trick:

Next	we	would	need	to	modify	our	query.	Instead	of	directly	using	the	_POST
variables,	we	would	pass	all	user-provided	data	through	the	make_safe	function,	such
as:

Now,	if	a	user	entered	the	malicious	data	above,	the	query	will	look	like	the	following,
which	is	perfectly	harmless.	The	following	query	will	select	from	a	database	where	the
username	is	equal	to	“'	OR	1=1	#”.

Now,	unless	you	happen	to	have	a	user	with	a	very	unusual	username	and	a	blank
password,	your	attacker	will	not	be	able	to	do	any	damage.

It	is	important	to	check	all	the	data	passed	to	your	database	like	this,	however	secure
you	may	think	it	is.

Additional	Resources
See	also	http://www.addedbytes.com/articles/writing-secure-php/writing-secure-php-1/

http://phpsec.org/projects/guide/

http://www.addedbytes.com/articles/writing-secure-php/writing-secure-php-1/
http://phpsec.org/projects/guide/

	

Appendix	A:	Installing	PHP	on	a	Website
How	to	install	on	a	Windows	Server
Microsoft	has	conveniently	automated	the	entire	process	for	Microsoft	servers.	All	you
need	to	do	is	visit	http://www.microsoft.com/web/gallery/install.aspx?appid=PHP53	.

Supported	Operating	Systems	are	Windows	8,	Windows	7,	Windows	Vista	SP2,
Windows	XP	SP3+,	Windows	Server	2003	SP2+,	Windows	Server	2008,	Windows
Server	2008	R2,	and	Windows	Server	2012.

You	must	have	administrator	privileges	on	your	computer	to	run	the	Web	Platform
Installer.

Here’s	a	document	describing	how	to	install	PHP	on	Windows	Server	2008
http://www.howtogeek.com/50432/how-to-install-php-on-iis-7-for-windows-server-
2008/

How	to	install	on	a	Linux	Server
All	Linux	distributions	come	with	PHP.	However,	it	is	recommended	that	you	download
the	latest	PHP	source	code,	compile,	and	install	on	Linux.	This	will	make	it	easier	to
upgrade	PHP	on	an	ongoing	basis	immediately	after	a	new	patch	or	release	is	available
for	download	from	PHP.

The	Geek	Stuff	provides	a	great	walk	through	of	the	process.

http://www.thegeekstuff.com/2008/07/instruction-guide-to-install-php5-from-source-
on-linux/

http://www.microsoft.com/web/gallery/install.aspx?appid=PHP53
http://www.howtogeek.com/50432/how-to-install-php-on-iis-7-for-windows-server-2008/
http://www.thegeekstuff.com/2008/07/instruction-guide-to-install-php5-from-source-on-linux/

Author’s	Note
Hello,	and	thank	you	for	reading	my	book.	As	a	new	author,	I’m	especially	interested	in
getting	your	feedback,	learning	what	you	liked	and	didn’t,	and	growing	professionally.
As	I	said	in	the	beginning	of	the	book,	please	feel	free	to	email	me	at
AlanForbes@outlook.com.

If	you	didn’t	like	the	book,	please	email	me	and	let	me	know	how	I	could	improve	it.	I
answer	everyone	who	takes	the	time	to	help	me	out,	and	the	book	is	already	much	better
than	the	first	edition	thanks	to	readers	like	you.

If	you	liked	the	book,	I	would	sure	appreciate	if	you	would	take	a	moment	and	leave	me
a	review	on	Amazon	by	clicking	this	link	—>	https://www.amazon.com/review/create-
review?ie=UTF8&asin=B00BALXN70

Also,	if	you	liked	my	writing	style	and	would	like	to	learn	about	client	side	scripting,
please	check	out	my	other	best-seller,	The	Joy	of	jQuery:	A	Beginner’s	Guide	to	the
World’s	Most	Popular	Javascript	Library

Thanks	again,	and	happy	coding!

https://www.amazon.com/review/create-review?ie=UTF8&asin=B00BALXN70
http://www.amazon.com/The-Joy-jQuery-Beginners-Javascript-ebook/dp/B00H1G7B08

A	Note	from	one	of	my	Kickstarter	Backers….
Personally,	I’ve	been	struggling	with	the	project	of	learning	PHP	for	quite	some	time.
There	are	many	tutorials	online;	some	are	better,	whilst	most	are	plain	terrible.	I’ll
elaborate…

We	are	becoming	increasingly	impatient,	as	the	Internet	is	making	us	used	to	the
concept	of	‘here	and	now’.	We	all	must	admit	that	our	attention	span	is	rather	limited.
Therefore,	I	think	that	we	all	could	admit	that	the	most	difficult	part	of	learning	a	new
skill	nowadays	is	not	the	understanding	of	the	field,	but	sitting	yourself	down	and
having	the	discipline	to	see	it	through.	Learning	isn’t	entertaining,	especially	in	the
mostly-technical	field	of	programming.

That’s	why	the	title	‘The	Joy	of	PHP	Programming’	caught	my	eye	while	shuffling
through	Kickstarter.	‘Joy’	and	‘programming’	in	the	same	sentence	within	the	concept
of	‘learning’	seemed	so	utterly	uncommon	that	I	have	decided	to	take	a	leap	of	faith
and	invest	in	the	project.	“What’s	the	worst	that	could	happen,”	I	asked	myself,
“another	bland	PHP	tutorial?”	But	I	secretly	hoped	that	something	special	might
actually	arise	from	the	great	faith	invested	by	the	583	other	supporters.

The	decision	of	showcasing	the	book	in	an	early	stage	had	calmed	me.	Even	at	this
early	stage,	the	entire	approach	seemed	very	different	from	what	I’ve	seen	elsewhere.
The	texts	are	very	approachable	and	easy	to	grasp	-	which	is	perfect	for	people	like	me.
I	must	say	that	it	takes	a	great	deal	of	strength	to	withhold	myself	from	starting	the
course	at	the	current	state	of	the	book,	and	wait	for	the	finished	and	refined	project.
The	only	excuse	I	give	myself	is	that	I	am	sure	that	Alan	will	manage	to	make	it	even
better	than	the	“beta”.	While	writing	the	above,	I	have	realized	that	I	actually	look
forward	to	getting	the	book	and	taking	on	the	course…!

I	would	like	to	thank	Alan	for	taking	on	this	massive	project,	showing	good
sportsmanship	throughout	the	entire	ordeal,	maintaining	a	great	level	of	communication
with	his	target	audience	via	the	comments	and	feedback,	and	taking	into	account	many
of	the	suggestions	presented	to	him.	I	am	really	glad	to	see	a	technical	author	who
prioritizes	his	audience	first,	while	still	managing	to	deliver	his	vision	and	method.	I
also	thank	each	of	the	other	supporters	for	helping	Alan	and	supporting	his	idea.	I	am
most	certain	that	we	all	would	benefit	far	beyond	our	mere	donation.

Enjoy	the	reading!

-	Pasha	Kagan,	soon-to-be	PHP	Developer
	

	Table of Contents
	Introduction
	Introduction

	What is PHP?
	Introducing PHP
	Example
	A little history

	Installing and Configuring PHP
	Introduction
	Windows Users
	Using Wampserver
	Mac Users
	How Do I Know it is Working?
	Oracle VM Virtual Box
	Installing for a Web Site
	Exercise

	Introduction to HTML
	Introduction
	Basic HTML
	Basic Elements of HTML
	Tags
	Nested Tags

	Required tags
	DocType
	Head

	Optional Tags
	Meta Tags

	Useful Tags
	Headers
	DIV
	Images/Picture
	Links
	Lists

	Exercise
	HTML Tables
	HTML Table Headers

	HTML Forms
	The Input tag
	HTML Form Actions & Methods

	Introduction - Basic PHP Syntax
	Your first PHP-enabled page – Hello World!

	Some Fun Right Away
	A Countdown Counter
	Exercise

	Editors and Staying Organized
	Editors
	Microsoft Expression Web
	PhpDesigner
	EditRocket

	Free Editors
	Includes
	Basic example
	HTML example
	Code example
	Best Practices

	Variables, Numbers, Dates, and Strings
	Variables
	Variable Naming Conventions and Best Practices
	Numbers
	Basic Arithmetic
	Common Arithmetic Shortcuts
	Useful Numeric Functions

	Strings
	Useful String Functions

	Sources of Documentation
	Exercise
	How to Interpret PHP.NET documentation
	Return Value
	Function Name
	Parameters

	Dates
	Example: Calculating Age in Years

	Variable Scope

	Control Structures
	Introduction
	if
	if... else
	Exercise: Open Hours
	PHP Switch
	PHP Looping
	PHP while
	PHP for

	How to use a database, such as mySQL
	Introduction
	What are Databases?
	Getting Started with phpMyAdmin
	What is phpMyAdmin?
	Using phpMyAdmin to create a database
	Introduction to SQL
	Using phpMyAdmin to create a Table in a database

	Defining our first table
	What defines an automobile?

	Datatypes
	Numbers
	Characters
	Dates
	Exercise: Create a Table

	Working with SQL Statements
	INSERT Statements
	SELECT Statements
	WHERE Statements
	Comparison Operators
	ORDER BY
	UPDATE Statements
	DELETE Statements

	Using mySQL and PHP Together
	Introduction
	Code!
	Code Listing: createdb.php

	Code Explained: createdb.php
	Hey, where's the HTML?

	Creating forms to Display, Add, Edit, and Delete data
	Introduction
	Forms that Add Data to a Database
	A Basic Form
	HTML Code
	Form Action
	PHP Code

	A Brief Time Out...include files and SQL Injection
	Include Files
	SQL Injection

	Forms that Display Summary Data
	Code
	Code Explained
	Exercise: Tweaking the SELECT
	Improving the look of the table with CSS
	CSS Explained
	Modifying the form to link to the detail page

	Forms that Display Detail Data
	Code
	Code Explained

	Forms that Edit Data
	Forms that Delete Data
	Code to delete data

	Code Explained
	Exercise

	Session Variables
	Introduction
	Sessions
	Starting a PHP Session
	Using Session Variables
	Store a variable
	Retrieve a variable
	Checking for a variable
	Destroying a Session

	Working with Images
	Introduction
	Exercise: Viewing Images

	Pulling an unknown number of images from a database
	Exercise: Create a Database Table to store images
	Exercise: Modify the viewcar.php page to show multiple images

	Code explained

	PHP File Uploads
	Introduction
	Create an Upload File form
	Create a Script to Process the Uploaded File
	Code: ViewCarsAddImage.php
	Code Explained

	PHP Quirks and Tips
	Introduction
	Single Quotes vs Double Quotes
	The Equal Sign
	Comparison Operators

	Security Considerations
	Introduction
	Balancing Security and Usability
	SQL Injection
	Additional Resources

	Appendix A: Installing PHP on a Website
	How to install on a Windows Server
	How to install on a Linux Server

	Author's Note
	A Note from one of my Kickstarter Backers....
	- Pasha Kagan, soon-to-be PHP Developer

