
Web Programming
with PHP
and MySQL

Max Bramer

A Practical Guide

 Web Programming with PHP and MySQL

 Max Bramer

 Web Programming with PHP
and MySQL
 A Practical Guide

 ISBN 978-3-319-22658-3 ISBN 978-3-319-22659-0 (eBook)
 DOI 10.1007/978-3-319-22659-0

 Library of Congress Control Number: 2015954953

 Springer Cham Heidelberg New York Dordrecht London
 © Springer International Publishing Switzerland 2015
 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
 The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
 The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors
or omissions that may have been made.

 Printed on acid-free paper

 Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

 Max Bramer
 School of Computing
University of Portsmouth
 Portsmouth , UK

www.springer.com

v

 Contents

 1 Introduction ... 1
 1.1 How a Web Browser Processes an HTML File 4
 1.2 Notation .. 5
 1.3 Creating an HTML File .. 5
 1.4 How PHP Files Are Processed ... 5
 1.5 Exercise: The Erewhon Society’s Home Page 7
 1.6 About This Book .. 9

 2 PHP Fundamentals ... 11
 2.1 Structure of a PHP Script ... 11

 2.1.1 Blank Lines and Layout ... 12
 2.1.2 Comments .. 12

 2.2 How a ‘Mixed’ PHP File Is Processed ... 14
 2.3 PHP: Basic Components .. 14
 2.4 Variables ... 15

 2.4.1 Uninitialized Variables ... 16
 2.4.2 Variable Names: A Warning ... 16
 2.4.3 Types of Variable .. 17
 2.4.4 Arrays ... 17
 2.4.5 Variable Variables ... 19

 2.5 Constants .. 19
 2.5.1 Numbers ... 19
 2.5.2 Strings .. 20
 2.5.3 Logical Constants ... 22

 2.6 Functions .. 22
 2.7 A Note on Brackets .. 24
 2.8 Some Combinations of Quote Characters 24
 Practical Exercise 2 ... 25

vi

 3 The PHP Language: Types of Statement .. 27
 3.1 Overview of Statements ... 27

 3.1.1 PHP Keywords ... 28
 3.2 Assignment Statements .. 28

 3.2.1 Arithmetic Expressions .. 28
 3.2.2 Evaluating an Arithmetic Expression 30
 3.2.3 Arithmetic Functions .. 31
 3.2.4 Simplifi ed Notation for Assignment............................. 31
 3.2.5 String Expressions .. 32
 3.2.6 String Functions ... 32
 3.2.7 Simplifi ed Notation for Joining Strings 32
 3.2.8 Logical Expressions ... 33
 3.2.9 Evaluating Logical Expressions 34
 3.2.10 Logical Function .. 34

 3.3 PRINT Statements .. 35
 3.3.1 Printing Logical Values .. 39

 3.4 IF Statements .. 39
 3.4.1 Statement Groups ... 40
 3.4.2 Augmenting an ‘if’ Statement with ‘elseif’

and ‘else’ Clauses ... 41
 3.4.3 Dealing with Variable Values in Conditional

Expressions .. 42
 3.5 The Switch Statement .. 43
 3.6 Loops in PHP 1: For Loops .. 44
 3.7 Loops in PHP 2: WHILE Loops .. 45
 3.8 Loops in PHP 3: Do…While Loops... 47
 3.9 The Include and Require Statements.. 48
 Practical Exercise 3 ... 51

 4 More About Arrays ... 53
 4.1 The Array Function .. 53
 4.2 The Count Function.. 54
 4.3 The PHP Foreach Statement .. 55
 4.4 Sort Functions .. 57
 4.5 Associative Arrays .. 59

 4.5.1 Using Associative Arrays with Dates 62
 4.6 Two Dimensional Arrays .. 62
 4.7 The Explode and Implode Functions ... 64
 Practical Exercise 4 ... 65

 5 Some Important Functions ... 67
 5.1 System Functions Applied to Numbers .. 67

 5.1.1 Mathematical Constant... 68
 5.2 Trigonometric Functions .. 68
 5.3 System Functions Applied to Strings ... 69

 5.3.1 Trimming a String .. 69

Contents

vii

 5.3.2 Changing Case ... 70
 5.3.3 Converting Initial Letters to Uppercase 71
 5.3.4 Replacing One Substring by Another 71
 5.3.5 Reversing a String .. 72
 5.3.6 Manipulating a Substring ... 72
 5.3.7 Converting a String to an Array and Vice Versa 73
 5.3.8 Wrapping Text .. 74

 5.4 The rand Function .. 75
 5.5 The max and min Functions ... 76
 5.6 The date Function .. 77

 5.6.1 List of Special One-character Arguments
for the date Function .. 78

 5.7 The header Function .. 79
 5.8 The die Function .. 80
 5.9 The echo Function .. 80
 5.10 The phpinfo Function ... 81
 Practical Exercise 5 ... 81

 6 Formatted Print Functions ... 83
 6.1 Standalone Functions ... 83
 6.2 The printf Function .. 84

 6.2.1 Type Specifi ers ... 85
 6.2.2 The Sign Specifi er .. 86
 6.2.3 Precision Specifi ers .. 86
 6.2.4 Padding Specifi ers .. 87
 6.2.5 Padding Strings .. 89
 6.2.6 Outputting a Percent Sign .. 89
 6.2.7 Specifying Variables Explicitly 89
 6.2.8 Combining Options .. 90
 6.2.9 List of Type Specifi ers .. 90

 6.3 The sprintf Function ... 91
 Practical Exercise 6 ... 92

 7 Using Files .. 93
 7.1 Directories and Sub-directories .. 93
 7.2 Relative Addressing Using Paths ... 95

 7.2.1 Relative and Absolute Addresses 96
 7.3 Storing Data in Text Files ... 96

 7.3.1 Opening a File .. 97
 7.3.2 Closing a File ... 98
 7.3.3 Writing to an Open File.. 98
 7.3.4 Formatted Writing to an Open File 99
 7.3.5 Reading an Open File ... 100
 7.3.6 The File Function ... 100
 7.3.7 Examples .. 101
 7.3.8 Using the Explode and Implode Functions 102

Contents

viii

 7.4 File and Directory Protections ... 103
 7.5 Checking Existence and Protection Status of Files

and Directories ... 104
 7.6 Other Functions Applied to Files or Directories 104

 7.6.1 Changing File or Directory Protections 105
 7.6.2 Creating and Deleting Directories 105
 7.6.3 Renaming Files and Directories 105
 7.6.4 Getting and Changing the Current Directory 106

 7.7 Decomposing a Relative File or Directory Name
into its Components.. 106
 7.7.1 Example.. 108

 7.8 Finding the Contents of a Directory ... 108
 7.9 Summary of Functions ... 109
 Practical Exercise 7 ... 111

 8 User-Defined Functions .. 113
 8.1 Introduction .. 113
 8.2 Global and Local Variables .. 117
 8.3 Returning More than One Value ... 118
 8.4 Creating a Function Library ... 119
 8.5 Using a GLOBAL Statement in a Function Defi nition 121
 8.6 Passing an Array as a Function Argument 121
 8.7 Arguments Passed by Value and Arguments Passed

by Reference... 122
 8.8 Default Values for Arguments .. 124
 Practical Exercise 8 ... 125

 9 Passing Variables to a PHP Script I .. 127
 9.1 Introduction .. 127
 9.2 Webforms ... 128

 9.2.1 The <form> Tag ... 130
 9.3 Form Objects .. 131

 9.3.1 Text Field.. 131
 9.3.2 Textarea Field ... 132
 9.3.3 Radio Buttons in a Radio Group 133
 9.3.4 Select Box .. 135
 9.3.5 Checkbox.. 140
 9.3.6 Submit and Reset Buttons .. 141

 9.4 Other Form Objects .. 142
 9.4.1 Password Field ... 143
 9.4.2 Hidden Field ... 144
 9.4.3 File Field .. 145
 9.4.4 Readonly and Disabled Fields 146

 9.5 Using Popup Windows ... 148
 Practical Exercise 9 ... 151

Contents

ix

 10 Passing Variables to a PHP Script II ... 153
 10.1 Introduction .. 153
 10.2 Destination Pages ... 153

 10.2.1 Checking for Compulsory Values................................. 159
 10.2.2 Checking for Numeric Values and Integers 159
 10.2.3 Multiple Selections... 160
 10.2.4 File Fields ... 162
 10.2.5 Quotes in Text Fields and Textareas 164

 10.3 Passing Variables to a PHP Script as Part of a URL 166
 10.4 Passing Values to PHP Scripts Using Session Variables 169
 Practical Exercise 10 ... 173

 11 PHP in Action: Managing a Members’ Area .. 175
 11.1 Entering Passwords .. 176
 11.2 Turning PHP On and Off .. 179
 11.3 A Note on Security ... 180
 11.4 Writing a Log File .. 181
 11.5 Storing Data in Text Files ... 183
 11.6 Multiple Passwords .. 184
 11.7 Reading a Log File ... 186

 11.7.1 Generating the Access Table .. 187
 11.7.2 Displaying the Results in Tabular Form 190
 11.7.3 Adding HTML Tags Using Include 193

 Practical Exercise 11 ... 195

 12 Using a MySQL Database I .. 197
 12.1 MySQL Databases ... 197
 12.2 Creating a Database.. 199

 12.2.1 Specifying the Current Database 199
 12.3 Creating a Table ... 199
 12.4 Issuing MySQL Commands ... 200
 12.5 Naming Databases, Tables and Fields .. 201

 12.5.1 Case Sensitivity of Database, Table
and Field Names ... 201

 12.6 Setting a Primary Key .. 202
 12.7 Adding a Record to the mytable1 Table 202

 12.7.1 The INSERT INTO Command 204
 12.7.2 The REPLACE INTO Command 206

 12.8 Deleting a Record ... 206
 12.9 Changing a Table .. 207
 12.10 Updating a Table .. 209
 12.11 Summary of MySQL Commands... 214
 Practical Exercise 12 ... 215

Contents

x

 13 Using a MySQL Database II .. 217
 13.1 The Select Command ... 218

 13.1.1 Order by Clauses .. 219
 13.1.2 Where Clauses .. 222
 13.1.3 Displaying Values that are not Fields 224
 13.1.4 Limit Clauses ... 224
 13.1.5 Applying Functions to the Values of a Field 226
 13.1.6 Finding the Number of Records in a Table 227
 13.1.7 Finding All the Distinct Values of a Field 227

 13.2 Complex Select/Update Commands .. 228
 13.3 Combining Tables: Inner and Outer Joins 228
 13.4 Auto_Increment Fields ... 232
 13.5 The Show Command .. 234

 13.5.1 Show Databases.. 234
 13.5.2 Show Tables ... 235
 13.5.3 Show Fields/ Show Columns/ Describe 235
 13.5.4 Show Variables ... 236

 13.6 Some Further Commands and Adding Comments 236
 13.6.1 Renaming a Table ... 237
 13.6.2 Deleting a Table ... 237
 13.6.3 Deleting a Database.. 237
 13.6.4 Including a Comment in a MySQL Command 237

 13.7 Summary of MySQL Commands... 237
 Practical Exercise 13 ... 241

 14 Creating and Updating MySQL Tables .. 243
 14.1 Creating a Table ... 243
 14.2 Data Types .. 244

 14.2.1 Integer Types .. 244
 14.2.2 Fixed Point Types ... 245
 14.2.3 Floating Point Types ... 246
 14.2.4 Character Types .. 246
 14.2.5 Enumeration Types ... 247
 14.2.6 Date and Time Types .. 247

 14.3 NOT NULL and DEFAULT Clauses ... 247
 14.3.1 Implied Default Values ... 248

 14.4 AUTO_INCREMENT Clause .. 249
 14.5 Key Clauses .. 249
 14.6 Copying a Table.. 249
 14.7 Changing the Structure, the Name and the Field

Specifi cations of a Table .. 250
 14.7.1 Primary Keys .. 250
 14.7.2 Set the Starting Value

for an AUTO_INCREMENT Field 250
 14.7.3 Change the Name of a Table .. 250

Contents

xi

 14.7.4 Add a New Field .. 250
 14.7.5 Change the Name and/or Structure of a Field 251
 14.7.6 Changing a Default Value ... 251

 14.8 Using the SHOW Command to Find the Structure of a Table 252
 14.9 Summary of MySQL Commands... 252
 Practical Exercise 14 ... 253

 15 Using a PHP Script to Manage a MySQL Database 255
 15.1 Connecting to a Database ... 256
 15.2 A PHP Function to Display the Result of a Selection 266

 15.2.1 Finding the Version of MySQL 268
 15.3 Using Simpler MySQL Commands ... 269
 15.4 Combining Tables .. 270
 15.5 A Visual MySQL Command Processing Tool 274
 15.6 The PHP mysql_affected_rows Function 279
 15.7 The PHP mysql_insert_id Function ... 280
 15.8 Converting mysql_ Functions to mysqli_ Functions 280
 Practical Exercise 15 ... 282

 16 PHP in Action: Converting Data between Text Files
and Database Tables ... 283
 16.1 A Plays Dataset .. 284
 16.2 Data Cleaning for the Plays Dataset... 284
 16.3 Extracting Information from a Table: Finding

the Next Production .. 292
 16.4 Backing up and Restoring a Table .. 295

 16.4.1 Restoring a Table .. 297
 16.5 Using the explode Function When There Are Multiple

Occurrences of the Separator ... 298
 Practical Exercise 16 ... 299

 17 Using PHP to View and Edit Database Tables 301
 17.1 Analyzing the Current Database .. 301
 17.2 Building a Visual Table Editor ... 307

 17.2.1 Developing an Editing Page ... 307
 17.2.2 Developing the Destination Page 308
 17.2.3 Changing and Adding to a Table 316

 Practical Exercise 17 ... 320

 18 PHP in Action: Maintaining a Membership List 321
 18.1 Registration .. 321
 18.2 Logging in .. 328
 18.3 Sending Email from a PHP Script .. 334
 18.4 Generating Passwords .. 336
 18.5 Managing the Members Table .. 339
 Practical Exercise 18 ... 344

Contents

xii

 19 Appendices ... 345
 19.1 PHP System Functions ... 345

 19.1.1 Abbreviations Used in Specifi cations
of Function Arguments ... 345

 19.1.2 Terms Used in Specifi cations
of Function Arguments ... 345

 19.1.3 System Functions Applied to Numbers 346
 19.1.4 Trigonometric Functions .. 347
 19.1.5 System Functions Applied to Arrays 348
 19.1.6 System Functions Applied to Strings 348
 19.1.7 System Functions Applied to Variables 349
 19.1.8 System Functions for Use with Arrays......................... 349
 19.1.9 Formatted Print Functions .. 351
 19.1.10 System Functions for Use with Text Files 351
 19.1.11 Logical Functions ... 353
 19.1.12 Functions Used with Sessions

(see Chap. 10 for more details) 353
 19.1.13 Functions Used with Uploaded Files

(see Chap. 10 for more details) 353
 19.1.14 Other System Functions ... 354
 19.1.15 System Functions Used for Manipulating

a MySQL Database .. 354
 19.1.16 ‘Improved’ System Functions Used

for Manipulating a MySQL Database
(See Sect. 15.8.) ... 356

 19.2 PHP System Operators ... 356
 19.2.1 Binary Arithmetic Operators Applied

to Numerical Expressions .. 356
 19.2.2 Unary Arithmetic Operators Applied to Numbers 357
 19.2.3 System Operators Applied to Strings 357
 19.2.4 Relational Operators... 357
 19.2.5 Logical Operators ... 357
 19.2.6 Operators Giving a Simplifi ed Notation

for Assignment ... 358
 19.2.7 Operators Giving a Simplifi ed Notation

for Joining Strings .. 358
 19.3 Summary of MySQL Commands... 358
 19.4 MySQL Operators and Functions .. 362

 19.4.1 Simple Conditions in WHERE Clauses 362
 19.4.2 Complex Conditions in WHERE Clauses 363
 19.4.3 Other Functions in SELECT Commands 363
 19.4.4 UPDATE Commands ... 363

Contents

xiii

 19.5 Summary of Case-Sensitivity Rules: PHP and MySQL 364
 19.5.1 PHP .. 364
 19.5.2 MySQL ... 364
 19.5.3 Other ... 364

 19.6 Principal HTML Tags ... 365
 19.7 Specimen Solutions to Practical Exercises 366

 19.7.1 Practical Exercise 2 .. 366
 19.7.2 Practical Exercise 3 .. 366
 19.7.3 Practical Exercise 4 .. 367
 19.7.4 Practical Exercise 5 .. 369
 19.7.5 Practical Exercise 6 .. 370
 19.7.6 Practical Exercise 7 .. 370
 19.7.7 Practical Exercise 8 .. 371
 19.7.8 Practical Exercise 9 .. 372
 19.7.9 Practical Exercise 10 .. 373
 19.7.10 Practical Exercise 11 .. 373
 19.7.11 Practical Exercise 12 .. 374
 19.7.12 Practical Exercise 13 .. 374
 19.7.13 Practical Exercise 14 .. 375
 19.7.14 Practical Exercise 15 .. 376
 19.7.15 Practical Exercise 16 .. 377
 19.7.16 Practical Exercise 17 .. 378
 19.7.17 Practical Exercise 18 .. 378

 19.8 Glossary.. 379

 Index ... 385

Contents

1© Springer International Publishing Switzerland 2015
M. Bramer, Web Programming with PHP and MySQL,
DOI 10.1007/978-3-319-22659-0_1

 Chapter 1
 Introduction

 Chapter Aims
 After reading this chapter you should be able to:

• understand the value of using the PHP language to enable non-static infor-
mation to be included on webpages, especially information retrieved from
a relational database using the popular database query language MySQL

• understand how a web browser processes an HTML fi le and how PHP fi les
are processed

• check that your web server is able to run PHP scripts
• understand how a valuable improvement to a webpage can sometimes be

made using only a single line of PHP.

 PHP is a programming language designed for the age of the World Wide Web.
Originally all web pages were written using HTML (HyperText Markup Language).
HTML was (and is) a language that enables information to be displayed over the
Internet by a standard piece of software, known as a web browser, in a very fl exible
way. It was developed by the British scientist Tim Berners-Lee in the early 1990s
and the rest is very well-known history.

 Freely available web browsers and web page authoring tools combined with
broadband telephone connections in most offi ces and many homes, the availability
of WiFi wireless internet connections, high-powered search engines, etc. has made
the WWW one of the most infl uential (although almost entirely unpredicted) devel-
opments of the late twentieth and early twenty-fi rst centuries, providing information
at zero or minimal cost worldwide to businesses, individuals in the home and travel-
lers using mobile devices. Increasingly the web is used as the medium of choice for
buying (or often just downloading free of charge) music, books and fi lms as well as
for booking holidays and buying goods.

2

 The range of applications is too wide and too well-known to need labouring here
and will in any case expand yet further as time goes by. However for many applica-
tions basic HTML is not enough.

 Figure 1.1 illustrates the problem. It is a very short and simple text-based page,
but typical of many millions of others. It shows the (very simple) home page for an
imaginary organisation, the Erewhon Society. 1

 The problem with such a webpage is that it is the same every time it is seen and
for all possible users. The millionth time it is viewed it will look just the same as the
fi rst time (we will ignore possible slight incompatibilities between different web
browsers). Every detail of its content and layout is as specifi ed by the writer of the
HTML fi le. We will call this a static webpage .

 We have to admit that for a very large number of webpages none of this is a
problem at all. However, there are at least three reasons why for some purposes it
may not be satisfactory.

 (1) We may wish to include information that varies from one viewing of a web page
to another, e.g. the current date and time.

 (2) The user may wish to provide information for a web page to use, e.g. he or she
may wish to specify a location and a range of prices for which a list of holidays
should be displayed or the name of an author for which a list of available books
should be displayed.

 (3) We may wish to include information that varies from one user to another, e.g.
details of holidays or aeroplane fl ights booked or a household account with an
energy provider, or that changes frequently, such as the prices of shares owned
by an investor in a stock market.

 Requirements (1) and (2) cannot be met by HTML alone. Requirement (3) could
be met provided the writer of the HTML fi le could be persuaded to update it with
new share prices, perhaps several hundred or even several thousand times a day. It
would obviously be far more convenient if the fi le could be left unaltered but infor-
mation such as current prices could somehow be extracted automatically from a
database and inserted in the right place when the corresponding webpage was
displayed.

1 To be more accurate, it is meant to be an imaginary organisation. If it turns out to be a real one,
not yet known to our search engine, we apologise in advance for any misrepresentation.

The Erewhon Society

Welcome to our home page

Today is Tuesday

Our next meeting is on December 12th at the usual venue

 Fig. 1.1 A simple webpage

1 Introduction

3

 This can certainly be done and is done every day by the well-known e-commerce
websites and many others, but it cannot be done using HTML alone. It needs aug-
menting with facilities to create, maintain and search databases and to customise the
pages displayed to the needs of individual users. PHP is one of a number of pro-
gramming languages that have been developed to work with HTML to give this
considerably enhanced functionality. Compared with many other computer pro-
gramming languages it is easy to use and makes building even quite elaborate appli-
cations straightforward to do.

 Using PHP extends the facilities available in HTML considerably, especially
when used in conjunction with a database query language such as MySQL. Web
pages are still written in HTML but parts of the HTML are created automatically
from PHP 'insertions' in the HTML code by a special program known as the PHP
'interpreter'. This is located on the web server, which is why PHP is called a server-
side programming language. The PHP programmer needs no special software on his
or her PC. The user of a page written with PHP needs just a standard web browser
and will generally be entirely unaware that a page was not originally written in
HTML – except that it will often be possible to do more with it.

 As an example, a travel company may wish to advertise 500 different holiday
locations. It could do this by writing 500 different web pages, one per location, but
this would be very tedious to do and the pages would inevitably all have common
features, such as the name of the company, a hyperlink to a booking form, etc.
Alternatively the company could write one 'generic' web page, giving its name,
address, etc., which displays the information about one of 500 locations taken from
a database depending on options selected by the user. This latter option is clearly far
more attractive to the company and storing the information in a database will prob-
ably make it far easier to provide the user with good search facilities.

 This book is about using PHP to enhance the functionality of webpages, espe-
cially but not exclusively by providing facilities to create, maintain and interrogate
databases. PHP is not the only programming language that can be used with HTML
and MySQL is not the only database query language, but this combination is one of
the most popular and widely available. PHP can also be used very effectively with-
out MySQL to give a similar effect to having a database available using merely a
plain text fi le on the server as will be illustrated in Chap. 7 . PHP is easy to use and
has many powerful features. The language was invented by Rasmus Lerdorf in 1994
as an aid to maintaining his personal webpage. It has since expanded into a very
powerful general-purpose programming language. The name PHP originally stood
for Personal Home Page, but we are now told that PHP stands for 'PHP: Hypertext
Preprocessor'.

 A note on terminology: Programs written in PHP or similar languages are gener-
ally called scripts rather than programs and the languages are generally called
 scripting languages rather than programming languages . Those familiar with other
languages will soon realise that PHP is not just a programming language in the
standard usage of the term but a very well-designed and powerful one, which has
several unusual features. In this book we will use the terms 'program' and 'script'
interchangeably. For the benefi t of those readers who know the difference, PHP is
an interpreted language not a compiled one.

1 Introduction

http://dx.doi.org/10.1007/978-3-319-22659-0_7

4

 This book is about PHP and its use with the MySQL 2 language for manipulating
relational databases. The latter can be used in a fl exible way via a PHP script. It is
not a book about creating static web pages in HTML. Readers are expected already
to be reasonably familiar with the latter. Section 19.6 gives basic information about
the most important HTML tags.

1.1 How a Web Browser Processes an HTML File

 An HTML fi le corresponding to the webpage shown as Fig. 1.1 is given in Fig. 1.2
below.

 When a user points his or her web browser to an HTML fi le stored on a web
server, a sequence of events occurs that is approximately as follows. The web server
passes the contents of the fi le as a stream of characters to the web browser. As long
as a sequence of consecutive characters received does not form an HTML tag such
as , or <p>, the browser replaces any consecutive combination of newline
characters, tabs and spaces by a single space and outputs the resulting text to the
user's screen. If a number of consecutive characters received forms a tag, the action
taken by the browser depends on which tag it is. If a <p> tag is received the browser
outputs two newline characters to take the screen output to a new paragraph. If a

 tag is received a single newline character is output. If a (i.e. a 'start bold')
tag is received the browser outputs all further characters in bold type until the next
 ('end bold') tag is reached, etc.

 In the case of the HTML fi le given in Fig. 1.2 , the browser outputs the webpage
shown in Fig. 1.1 to the user's screen.

2 MySQL is pronounced my-ess-cue-ell.

 Fig. 1.2 HTML fi le corresponding to webpage shown as Fig. 1.1

1 Introduction

http://dx.doi.org/10.1007/978-3-319-22659-0_19

5

1.2 Notation

 It is important to be able to distinguish between an HTML fi le, which generally will
have one or more HTML markup tags such as <html> or , and a webpage, which
has no tags but will often have effects such as bold and italic text, tables and hyper-
links. The convention that will be used throughout this book is that lines of HTML
or PHP will be enclosed in a regular text box with a standard single-thickness bor-
der. The words, images, etc. that would appear in the web browser are displayed in
a box with a triple-thickness border.

1.3 Creating an HTML File

 It is assumed that as well as knowing at least the basics of HTML you are able to
create an HTML fi le as a plain text fi le. There are two main ways of doing this. The
fi rst and most obvious is just to type the HTML code line-by-line into a text editor
such as WordPad and then save it as a text fi le. The second is to use a visual author-
ing tool such as Dreamweaver, which enables you to indicate passages of bold,
italic, etc. using a mouse in the same way as with a word processor and then save
your work in the form of an HTML text fi le with the correct HTML mark up tags,
 for 'start bold', for 'end bold', etc., inserted for you.

 For HTML fi les that are more than trivial, for example anything involving tables
(writing the code for which is tedious and error-prone in HTML), the latter approach
is strongly recommended. If you are familiar with that approach and would prefer
not to have to learn much about the minutiae of HTML, the good news is that a little
knowledge will go a long way. You can create a very complex HTML fi le using a
visual authoring tool, perhaps one involving multiple fonts, colours, tables, images,
etc. and then add special – but crucial – effects such as reading client information
from a database, just by making a small PHP insertion into your HTML code at the
right place. You just need to know enough HTML to locate that place; there is no
need to know what all the rest of the HTML means in detail. The examples in this
book will make it clear how this is done.

1.4 How PHP Files Are Processed

 It is conventional for an HTML fi le to be given a name with the fi le extension htm
or html, e.g. mypage1.htm. However most (if not all) browsers will accept any (rea-
sonable) extension, e.g. mypage1.xyz. If the fi le extension chosen is php we will
call the fi le a PHP fi le instead of an HTML fi le. Having a fi le name with extension
php enables a fi le to be processed by the PHP interpreter (on the server) as well as
the user's web browser. A PHP fi le can contain any of the following:

1.4 How PHP Files Are Processed

6

• Nothing but HTML (i.e. it is just an HTML fi le with a php fi le extension). This
is unusual but possible.

• A single PHP script with no HTML.
• One or more (generally short) PHP scripts, which can be placed anywhere in the

fi le, including at the beginning and/or at the end, the remainder of the fi le being
HTML. Such short scripts are often called scripting blocks .

 Each PHP scripting block begins with the fi ve-character combination
 <?php
 and ends with the two-character combination
 ?>
 These are called the opening PHP tag and the closing PHP tag , respectively.
 The effect of pointing a web browser at an HTML fi le has been explained previ-

ously. When a web browser points to a PHP fi le, the fi le contents are assumed to be
HTML and the same sequence of actions is performed as before. However if the
web server fi nds an opening PHP tag then rather than sending the character stream
to the web browser as usual it sends everything from the opening PHP tag to the
next closing PHP tag to the PHP interpreter (which is located on the server). The
PHP interpreter treats everything between the tags as a sequence of PHP statements
(also called instructions) and processes them one by one. (This is called 'executing
the script' or 'executing the statements'.)

 The point of doing this is to achieve either or both of the following.

 (1) Usually (but not invariably) a PHP script will include one or more instructions
to send a string of characters to the web browser. If there are two such state-
ments in a scripting block and executing them causes the two strings of
characters

 Hello world!<p>
 and
 My name is John Smith

 to be output, the effect is exactly the same as far as the web browser is con-
cerned as if the PHP scripting block were replaced by the HTML characters

 Hello world!<p>My name is John Smith

 (2) For most (but not all) scripts, executing the PHP statements will cause a number
of other actions to take place, for example values may be calculated and com-
pared, with the output produced depending on the values calculated or the
results of the comparisons. As well as or instead of this, executing a script may
cause (amongst other possibilities) information to be read from or written to a
database, text fi les to be created, read or deleted on the server, emails to be sent
or fi le protections on the server to be changed from 'read only' to 'read/write' or
vice versa. Such actions are often referred to by the slightly dismissive term
'side effects', but in some cases may be much more important than the output (if

1 Introduction

7

any) that is sent to the web browser. They are clearly all impossible with a static
webpage.

 When the PHP interpreter has completed its task of executing the PHP state-
ments in the script, the web server resumes processing what is once again assumed
to be HTML, sending characters to the web browser in the usual way until any fur-
ther opening PHP tag is encountered.

 The effect of all this is to insert pieces of HTML (frequently whole lines, but
sometimes just a few characters) into a webpage displayed on the user's screen that
were not present in the HTML part of the PHP fi le stored on the server. This is not
apparent to the user of the web browser who has no way of knowing that the output
was not all produced by a static webpage written solely in HTML, except that such
a fi le would be very unlikely to include today's date or details of say the user's holi-
day preferences or favourite author. The user will also be entirely unaware that PHP
has been used and needs no special software on his or her computer to make it hap-
pen. Everything that is needed is installed on the web server.

1.5 Exercise: The Erewhon Society's Home Page

 This exercise will enable you to check that your web server is able to run PHP
scripts and will illustrate how a valuable improvement to a web page can be made
using only a single line of PHP.

 As an experiment we would like you to type the contents of Fig. 1.2 above into
your favourite text editor, save it with the name erewhon.htm and upload it to your
web server. When doing this be careful to use a text editor, such as WordPad, not a
Word Processor, such as Microsoft Word.

 Now point your web browser to the erewhon.htm fi le on your server. You should
see a display identical to Fig. 1.1 above.

 Assuming that pointing your browser to the fi le erewhon.htm that you uploaded
has produced the expected result, now rename your fi le erewhon.php on the server
and point your web browser at the fi le named erewhon.php. The output to the web
browser should be exactly the same as before.

 We use the term PHP fi le for any fi le with extension 'php', even when (as here) it
contains only HTML. So far we have not used any PHP of course, but we have
established that a web page can be displayed from a fi le with extension 'php' as well
as from fi les with the usual 'htm' and 'html' extensions. Most web browsers will
accept almost anything as a fi le extension for an HTML fi le, but choosing to use the
extension 'php' has the considerable advantage that we can now use the PHP lan-
guage to enhance the fl exibility of our web pages.

 The usefulness of the Erewhon Society home page is rather lessened by the pres-
ence of the line

1.5 Exercise: The Erewhon Society's Home Page

8

 Although undeniably true one day out of seven, this statement is very misleading
on the other six. It would be far more useful for it to say whichever day of the week
it really is.

 Before showing how to do this we will change the code of erewhon.php to give
exactly the same effect as before but now using a little PHP. Having done that the
stage is set for us to change the page to insert something more useful.

 We start by changing the PHP fi le erewhon.php to have slightly different (but
functionally equivalent) contents.

 We replace the HTML line

 by the one-statement PHP scripting block

 The Print statement will be explained in Chap. 3 . At this point all you need to
know is that it will send the characters enclosed in double quote symbols to the web
browser.

 If you now point your web browser to the fi le erewhon.php you should now see
exactly the same output as before. However it is possible that you will instead see
something like this.

 This would indicate that your web server does not have PHP installed.
 Assuming that you do indeed have PHP installed, select the View Source (or

equivalent) option from your browser's menu to see the HTML code. It should be
identical to Fig. 1.2 .

 We are now fi nally ready to use PHP to do something a little more useful. We can
improve the value of the information output to the user's screen by replacing the
scripting block by

1 Introduction

http://dx.doi.org/10.1007/978-3-319-22659-0_3

9

 Here the Print statement has been split into three parts joined by dots (called
 concatenation operators). Change your fi le erewhon.php accordingly and upload it
to your web server.

 Assuming that you are doing this on the penultimate day of the tenth month of
the year and that this day is a Friday, pointing your browser at erewhon.php should
now display the text

 The mysterious-looking item date("l F jS") is a call to a very useful system func-
tion named 'date' which uses the system clock to extract information about the date
and/or time and returns it in a variety of possible formats. How to use it to produce
output such as 'Friday October 30th' will be explained in Chap. 5 .

1.6 About This Book

 In this book a description of the main features of PHP and MySQL will be aug-
mented by a series of examples chosen to clarify any diffi cult areas.

 The fi rst half of the book will cover the principal features of PHP. The second
half will concentrate on the facilities available in MySQL and will illustrate how
manipulating a relational database can be accomplished using a PHP script. A num-
ber of appendices will pull the technical information together for reference.

 The longer examples in this book are all based on PHP scripts created by the
author and used on live websites, but of course all the details have been changed.
The main constraint is that of a published book with book-size pages and black and
white printing. This has meant that most of the examples given are text based for
reasons of space and readability, but there is no reason at all why PHP cannot be
used with the most elaborate web pages imaginable to extend their functionality.

 As well as knowing the basics of HTML and being able to create an HTML fi le
in either of the ways given above, it will be assumed that you know how to upload
pages to your web server, generally by using FTP or one of the variants that are
available, in many cases free of charge.

 If your organisation or the commercial web hosting company you use does not
allow you to use PHP scripts on your web server together with at least one MySQL
database our advice is to fi nd a service provider that does. There are many compa-
nies that will provide you with both at very little (if any) extra cost.

1.6 About This Book

http://dx.doi.org/10.1007/978-3-319-22659-0_5

10

 Inevitably, there are different versions of PHP available, with new features being
added with each new release. You are very likely to be using PHP 5 or possibly the
older PHP 4. The examples in this book are designed to work in both versions and
should still work in later versions of the language when they come out. They have
all been checked using PHP version 5.6.12 with MySQL version 5.5.42.

 Chapter Summary
 This chapter introduces the PHP scripting language as a way of enhancing the
functionality of webpages, especially by providing facilities to create, main-
tain and interrogate databases. It describes the way that a web browser pro-
cesses an HTML fi le and how PHP fi les are processed. Finally an example is
given to illustrate how an improvement to a webpage can sometimes be made
using only a single line of PHP.

1 Introduction

11© Springer International Publishing Switzerland 2015
M. Bramer, Web Programming with PHP and MySQL,
DOI 10.1007/978-3-319-22659-0_2

 Chapter 2
 PHP Fundamentals

 Chapter Aims
 After reading this chapter you should be able to:

• describe the basic structure of a PHP script or scripting block
• understand how a PHP fi le containing a mixture of HTML and PHP is

processed
• discriminate between valid and invalid names for variables and functions
• explain the similarities and differences between a scalar variable and an

array
• explain the differences between strings enclosed in single and double

quotes and the use of escape sequences in strings
• explain the importance of system functions to programming in PHP

2.1 Structure of a PHP Script

 As stated in the introduction, a PHP scripting block comprises a sequence of PHP
statements (sometimes also called 'instructions') starting with an opening PHP tag
<?php and ending with a closing PHP tag ?>. The letters php in the opening tag can
be written in any combination of upper and lower case. This is a simple example of
a PHP script comprising only a single statement.

12

 We will call any fi le stored on a web server that has a name with the extension
'php' a PHP fi le . However – and probably surprisingly – this name does not imply
that the fi le comprises only a single PHP scripting block. It may do so, but it is also
perfectly possible that only part of the fi le may be lines of PHP or there may be no
PHP at all. This is considerably different from the normal situation with program-
ming languages. If we refer to a program written in the language Java, say, we
expect that the whole program will be written in that language. PHP is different.

 It is certainly possible to develop a whole website as one or more large PHP fi les,
generating web pages that link to one another. It is also possible that an entire web-
site is written in HTML (or using some package that automatically generates
HTML) with the exception of just one single line of PHP.

 At one extreme, a PHP fi le can comprise just a single PHP scripting block (to be
defi ned below) or at the opposite extreme solely lines of HTML. 1 More generally a
PHP fi le can comprise a number of PHP statement blocks alternating with groups of
lines of HTML. (The fi le can begin and end with either lines of HTML or a PHP
statement block.) The only restriction on where a PHP scripting block can be placed
in a PHP fi le is that it must not be inside another scripting block.

 The term PHP script is often used as well as PHP scripting block. There is no
difference as far as their working is concerned. The term 'script' seems more appro-
priate when a PHP fi le consists solely of lines of PHP and the term 'scripting block'
seems more suitable when it contains only a few lines of PHP. We will use the two
terms fairly interchangeably in this book.

2.1.1 Blank Lines and Layout

 Blank lines in a PHP script are ignored altogether. PHP is also very liberal about the
use of tabs and spaces within statements to improve the readability of a script. They
can be placed anywhere that most people would be likely to consider reasonable,
but not inside the names of variables, arrays or functions (all to be defi ned later) or
inside system keywords such as 'Print'. It is probably easiest to experiment to fi nd
out what is permitted rather than memorise a precise specifi cation. The examples in
this book will help to illustrate what is considered reasonable usage.

2.1.2 Comments

 Two types of comment are permitted in PHP scripts:

 Single-line comments : Two consecutive slash characters (//) on a line indicate that
those characters and everything that follows on the same line is to be treated as a

1 In this extreme case there is no benefi t in using the fi le extension php rather than htm or html.

2 PHP Fundamentals

13

comment and ignored. A single-line comment can alternatively begin with a hash
(#) character.

 Multi-line comments : Comments that go over more than one line are permitted. The
character combinations /* and */ are used to signify the start and end, respec-
tively, of a multi-line comment.

 Thus the following is a valid scripting block.

 In this book we will normally place the opening and closing PHP tags on sepa-
rate lines and we recommend this as standard practice in the interests of clarity.
However PHP is very fl exible and we can choose whether to write even a small
scripting block as a single line such as

 or as two lines

 or in many other possible ways. As blank lines are ignored, another alternative
would be

 There must always be at least one space or new line after the opening PHP tag.
 When showing just a few lines of PHP rather than an entire scripting block in this

book we will often omit the opening and closing tags altogether to save space on the
printed page.

2.1 Structure of a PHP Script

14

 Everything between the opening and closing PHP tags (apart from comments) is
taken to be a sequence of PHP statements. Statements are often written one per line
to aid legibility, but this is not essential.

 Statements are generally terminated by semicolons. However some of the more
complex statements may optionally also end in a 'statement group' enclosed in brace
characters {}, as will be explained in Chap. 3 .

2.2 How a 'Mixed' PHP File Is Processed

 The effect of pointing the web browser to a PHP fi le with a mixture of HTML and
PHP is to make the following sequence of events occur:

 (a) If the fi le begins with HTML text, everything up to but not including the next
<?php tag is passed to the browser unchanged and displayed on the user's screen
in the usual way.

 (b) Once a <?php tag is encountered everything between it and the next ?> tag is
treated as a sequence of PHP statements. These are performed or executed one
by one. This can have many possible effects, such as giving values to variables
(this will be explained soon) and updating a database, but the only ones that
directly affect the web browser are when a print statement 2 is executed. The
resulting string of characters is passed to the web browser as if it had been
entered as HTML.

 (c) After the closing PHP tag is encountered any following lines are treated as
HTML once again and are passed to the browser unaltered until any further
opening PHP tag is found and so on.

 Once this process is completed the web browser displays the HTML it has been
given (including HTML generated by PHP) in the form of a webpage in the usual
way.

2.3 PHP: Basic Components

 In this chapter we will set out some of the fundamental language features of
PHP. Most of it will come as no surprise at all to those who are experienced in other
languages. As with all programming/scripting languages the basic building blocks
are constants of a number of kinds and variables of different kinds which are used
to store those constant values. An invaluable part of the language is pre-written

2 Print statements in PHP have no connection with printing on paper. In early programming lan-
guages the word 'print' did have that meaning, but in more modern languages it has come to mean
outputting to the user's screen. For PHP it simply means send a string of characters to the user's
web browser, which will display it on the screen or otherwise depending on the contents.

2 PHP Fundamentals

http://dx.doi.org/10.1007/978-3-319-22659-0_3

15

 system functions which make it easy to perform complex operations, such as calcu-
lating the square root of a number or updating a database.

 This and the next few chapters will cover the main building blocks of PHP but in
the interests of avoiding 'information overload' some important parts of the lan-
guage will be deferred until later in the book when we can more easily illustrate why
they are needed. Material from different parts of the book will be pulled together in
Chap. 19 (Appendices).

 This may be a good place to point out that this book is not envisaged as an ency-
clopaedic collection of every minute detail of this very elaborate language and some
of the more obscure features are deliberately left out, especially one or two that
anyone but an expert would be ill-advised to use, but we do aim to include enough
information for you to construct a wide range of PHP scripts of your own and in
later chapters to give you practical examples of how to do it.

2.4 Variables

 A basic feature of all but the simplest scripts is the manipulation of one or more
 variables . A variable is a part of the computer's memory that can be used to store a
value. A set of variables can be thought of as a set of boxes or pigeonholes, each
labelled with the name of one of the variables.

 In PHP the name of a variable must start with a dollar sign, which is followed by
a sequence of one or more upper case letters, lower case letters, digits and/or
underscores. The character immediately after the $ sign must not be a digit.

 It is a matter of personal taste whether to use long and meaningful variable names
such as $the_occupation_of_my_father (which are prone to typing errors), short but
meaningless names such as $x, or something in between. In this book we will fre-
quently use short names in the interest of saving space.

 $yourname $year $forename $age $surname $alpha
 "John" 2099 "Mary" 27 "Smith" true

 This example represents six variables held in the computer's memory. The vari-
able named $yourname has the value "John" and so on. Two of the variables have
values that are numbers, three have values that are strings, such as "John", and one
has a logical value true . These three types of constant value will be discussed in
Sect. 2.5 .

 When a variable is given a value (or 'assigned a value') for the fi rst time, a pigeon-
hole with its name is created and the value is entered. Subsequently the value in the
pigeonhole may be replaced by a different value by another assignment (the previ-
ous value being destroyed). This can happen an unlimited number of times.

 A variable such as $x can be given a value by an assignment statement 3 such as

3 Assignment statements and the other statements described briefl y in this section will be discussed
in more detail in later sections.

2.4 Variables

http://dx.doi.org/10.1007/978-3-319-22659-0_19

16

 or

 or

 The = sign in an assignment statement should be read as 'is set to', so variable $x
is set to the value 27.4, etc. Note that a variable can appear on both sides of an
assignment, so the fi nal example should be read as 'variable $x is set to the existing
value of $x plus 100'.

 Other ways of using a variable include the following:
 The value of the variable can be sent to the web browser using a print statement ,

such as

 An If statement (often called a 'conditional') can be used to test the value of the
variable with the action taken next depending on what value it has. For example 4 :

2.4.1 Uninitialized Variables

 If a script refers to a variable which has never been given a value, called an uninitial-
ized variable , this does not cause an error to occur. If the context expects a numeri-
cal value it will be assumed that an uninitialized variable has the value zero. If a
string value is needed it will be assumed to be "", i.e. a pair of double quotes with
nothing inside them, which is called a null string or an empty string .

2.4.2 Variable Names: A Warning

 Variable names are 'case-sensitive', so that $Surname is a different variable from
$surname. It is very unwise to have two variables with names that are identical
except for a change of case, which almost invites confusion. However you may

4 The operator == (two 'equals' signs) is used here to test whether the value of variable $x is the
constant 1. It is not to be confused with the = operator used in an assignment.

2 PHP Fundamentals

17

accidentally create two such variables by mistyping a lower case letter in upper case
or vice versa. Unlike some other languages a PHP script does not include a list of all
the variables that will be used in it, and there is no error created by trying to use the
value of an uninitialized variable, so if a variable name is mistyped PHP will not
recognise this as a mistake, with problems likely to result at a later stage. Errors
caused by mistyping of this kind can be very diffi cult to spot.

2.4.3 Types of Variable

 A variable that has a number as its value is called a numeric variable . A variable that
has a string value is called a string variable , etc. Unlike many other languages the
writer of a PHP script does not have to specify the type of each variable used. PHP
recognises which type of variable it is using automatically. It is also permitted for a
variable that has (say) a numeric value at one point to be assigned a value of another
type, say string, subsequently.

 This may all seem very reasonable or even obvious but many other languages
place strong restrictions on the types of the variables used with the aim of making it
harder to make errors. In practice the laudable aim of saving software writers from
themselves often seems to be achievable only at the expense of making a language
very cumbersome to use. There is an unavoidable trade-off between fl exibility and
the risk of making mistakes, which the present author would generally prefer to
make on the side of fl exibility.

2.4.4 Arrays

 The variables described above are basic ones that hold a single value, sometimes
called scalar variables . This is entirely satisfactory for most applications but PHP
also has a 'structured' kind of variable called an array , which can store many values,
using a single variable name.

 Previously we suggested that variables are similar to pigeonholes, each of which
can hold a value such as a number or a string. They might also be thought of as simi-
lar to the houses in a street, for example:

 $yourname $year $forename $age $surname $alpha
 "John" 2099 "Mary" 27 "Smith" true

 It is fi ne to give variables individual names such as $yourname, $year, etc. if
there are only a few, but what if there are dozens, hundreds or even thousands of
them, especially ones we wish to relate together? We can draw inspiration from the
way that houses in the same street are generally named. Although for a short street
it may be preferable to give each house its own name, the most convenient approach
beyond a certain size is generally to give the street as a whole a name (e.g. 'High

2.4 Variables

18

Street') and then number the houses within it 1 High Street, 2 High Street, 3 High
Street, etc.

 PHP and many other languages allow related variables to be grouped together in
a similar way to the houses in a street, but in PHP it is usual for the numbering to
begin at zero (don't ask why!). For example here is an array $info which can hold
six separate values.

 $info[0] $info[1] $info[2] $info[3] $info[4] $info[5]
 −8.3 "dog" 27 "cat" true 647.142

 The individual components of an array are known as array elements . Array ele-
ments are written in a special notation using square brackets, e.g. $info[2]. The fi rst
(left-most) element is called $info[0], the next is $info[1], etc. and so on.

 Here there are six array elements named from $info[0] to $info[5], stored in a
single array named $info. The names of arrays follow the same rules as the names
of variables (as arrays are a type of variable). Like the names of other variables, the
names of arrays are case-sensitive.

 We can use an array element in an assignment statement (and most other PHP
statements) in just the same way as a variable. If we want to give an array element
a value, we write, e.g.

 or

 depending on whether the value is a string or a number.
 If we want to use the value of an array element, we write, say

 or

 A PHP script can use a mixture of any number of arrays and any number of (sca-
lar) variables. However they must have different names. A sequence of statements
such as

2 PHP Fundamentals

19

 will produce an error message.
 Although arrays are a kind of variable, from now on we will normally use the

term 'variable' to refer to a scalar variable, which can be used to store only a single
value at any time. This is because arrays are different in many respects from (scalar)
variables. The individual elements of an array are far more similar to (scalar) vari-
ables. As a general principle an array element, but not an entire array, can be used
anywhere in a script that a scalar variable can.

2.4.5 Variable Variables

 A very unusual feature of PHP is the 'variable variable', which takes the value of a
variable and treats it as the name of a variable. To explain what this means, suppose
that variable $myvar has the value "val" and $val has the value 27.3. What is the
value of $$myvar?

 In most languages this question would be meaningless. Writing $$myvar would
simply generate an error message. However in PHP the double $ sign has a special
meaning. $myvar has value "val" so $$myvar has the value of variable $val, i.e.
27.3.

 This facility is probably not used very often but it can be useful occasionally.
 In reading a PHP script it is easy to overlook the double dollar sign. To make a

script easier to read $$myvar can also be written using a pair of braces as ${$myvar}.
 The $$ notation can also be used when there is an array element involved.

However there is a possible ambiguity. Should $$abc[6] mean the value of the vari-
able the name of which is held in $abc[6] or should it mean element 6 of the array
$$abc?

 We can distinguish between the two cases by using braces.

• If $abc[6] is "xyz" and $xyz is "alpha" the value of ${$abc[6]} is alpha. (The
notation $$abc[6] would also be interpreted as meaning alpha.)

• If $pqr is "myarray" and $myarray[6] is 123.97 the value of ${$pqr}[6] is 123.97.

2.5 Constants

 The principal types of constant available in PHP are numbers, string constants
(often simply called strings) and logical values.

2.5.1 Numbers

 Examples of numbers in PHP are: 27, −8 and 57.36 and 7.6E−4

2.5 Constants

20

 The last of these uses exponent notation . It stands for 7.6*10 −4 . The letter E can
be written in lower case if preferred, so −8e5 is also a valid number standing for
−8*10 5 .

 It is also possible to use numbers written in binary, octal or hexadecimal nota-
tion, but these will not be discussed in this book.

2.5.2 Strings

 An example of a string constant is "this is a piece of text".
 In PHP, strings can be enclosed in either single quotes, e.g. 'Hello World' or

double quotes, e.g. "Hello World". (Note that the " character in the latter – called a
 double quote – is a single character on the keyboard.) For most strings it makes no
difference which of the two types of enclosing quote is used, as long as the opening
and closing quotes are the same. However in other cases there can be a considerable
difference.

 (i) Single Quotes
 When a string is enclosed in single quotes its contents are exactly what they

appear to be, with just two exceptions. If the string includes a single quote it
must be 'escaped' by being preceded by a backslash character \. So the combina-
tion \' represents a single quote character. If the string includes a backslash
character that is not followed by a single quote character it should be 'escaped'
by being entered twice, i.e. \\. Both three and four consecutive backslashes
inside a string enclosed in single quotes represent the two characters \\.

 So the string written as 'abc\'def\\ghi' represents the 11 characters abc'def\
ghi. Note that any other use of the \ character is treated as meaning the backs-
lash character itself. So \t means the two characters \ and t.

 (ii) Double quotes
 When a string is enclosed in double quotes it is 'evaluated' before it is used.

There are two aspects to this. First, certain combinations of characters begin-
ning with a backslash, called escape sequences , are treated as having special
meanings.

 The following table shows how various escape combinations are interpreted.

 \" " (double quote)
 \\ \ (i.e. a single backslash)
 \n new line
 \r 'carriage return', often used in combination with \n
 \t tab
 \$ $ (dollar sign)

 Any use of the \ character followed by a character that does not have special
signifi cance is treated as meaning the backslash character itself. So \xyz just means
the four characters \xyz.

2 PHP Fundamentals

21

 Note that a single quote character ' enclosed in double quotes should not be
'escaped'. The combination \' simply means the two characters \'.

 The instruction

 will send to the web browser the three characters abc, followed by a newline char-
acter, followed by two tab characters, 5 followed by def\xyz. By contrast the
instruction

 will output the sixteen characters

 The instruction

 will output

 The second difference when double quotes are used is that any variable name
appearing in the quotes (without a preceding backslash character) is replaced by its
value. So if $xyz has the value 123.4 the string "abc$xyz" stands for "abc123.4".

 When using this facility it is important (and usually easy) to avoid the variable
name being followed by a letter, digit or underscore, as these characters could be
part of a longer variable name. For example, if we write "abc$xyzdef" we may
intend the part after abc to be variable $xyz followed by the characters def, but the
PHP system will interpret it as the (probably non-existent) variable $xyzdef. If we
really want the value of $xyz to be followed by the characters def we can achieve
this in several ways, e.g. by placing a space character between them. If the variable
name is followed by the end of the string or a space or punctuation symbol, as is
usually the case, there is no problem.

 To illustrate this further, if $xyz has the value 123.4 the sequence

5 The web browser will convert the newline character, followed by two tab characters to a single
space on the user's screen.

2.5 Constants

22

 will output the three lines

 The unwelcome second line is caused by the system printing the value of non-
existent (and therefore uninitialized) variable $xyzdef which is taken to be an empty
string. The embedded space before def in the third print statement solves the
problem.

 Finally, If we want $xyz to be treated as the four characters $xyz, rather than
being replaced by the value of variable $xyz, we can escape the $ sign by prefi xing
it by \. This causes it to be interpreted as the character $ itself rather than the fi rst
character of a variable name. For example

 will output the characters

 Despite these possible small complications, for most of the examples in this
book we will enclose the strings in double quotes not single quotes, as this generally
gives us more fl exibility.

2.5.3 Logical Constants

 There are two logical constants: TRUE and FALSE, which can be written in any
combination of upper and lower case letters.

2.6 Functions

 Functions are an important part of virtually any language. They enable an operation
to be carried out by a single statement that would otherwise require several separate
statements, or in some cases a very large number of separate PHP statements. In the
case of some functions (e.g. to fi nd the current day of the week) the operation would
not be possible at all if the function were not available.

2 PHP Fundamentals

23

 A function name follows the same rules as a variable name but does not have the
initial $ sign. However, unlike variable names, function names are not case- sensitive.
When used, the function name is followed by zero, one or more variables, constants
or expressions in parentheses. These are known as the arguments of the function. If
there is more than one argument they are separated by commas.

 As an example, the sqrt function is used to calculate square roots. The
statement

 assigns to variable $x the value of the square root of its argument, which is the value
of the expression $y+2.4.

 A function can be thought of as a 'black box' with its arguments as 'inputs'. The
function takes in these values, processes them and 'returns' a value, generally either
a number or a string, which effectively replaces the function and its arguments in the
statement in which they appear. For example, the statement

 is effectively replaced by

 The function min takes two numerical values as arguments and returns the value
of the smaller. The statements

 are effectively the same as

 A function followed by its arguments is often called a function call . It may appear
anywhere in a statement that a constant of the same type could appear, for
example

 It was stated above that a value returned by a function call effectively replaces it
in the statement in which it appears. However a function call may also cause one or
more actions to take place, such as writing to a text fi le or reading from a database.

2.6 Functions

24

 The functions used so far are technically called system functions . (The terms
 internal function and built-in function are also used.) Many of them are used in this
book. They are collected together for reference and summarised in Chap. 19 . There
are many other system functions that are used more rarely, which can be found in
the extensive PHP documentation available on the Internet.

 As well as using system functions the PHP programmer can defi ne his or her own
functions. This can save a great deal of time when writing complex programs. This
will be discussed further in Chap. 8 .

2.7 A Note on Brackets

 So far we have seen two types of bracket used: conventional round ones, which are
used with functions such as sqrt (and in many other places) and square ones, which
are used with arrays. There are in fact three types of bracket used in PHP. To avoid
confusion we will call them by different names.

 We will call () parentheses
 We will call [] square brackets
 We will call {} braces

2.8 Some Combinations of Quote Characters

 In PHP strings can be enclosed either in single quote characters ' or by double quote
characters ", the latter being a single character on the keyboard. Some combinations
of single and double quotes, with or without other characters can be diffi cult to read
on the printed page as well as on a screen. For example, is "'" fi ve characters, three
characters or something else? There is very little visual difference between a double
quote character and two single quote characters but the difference in meaning can
be considerable.

 In this book some potentially confusing combinations are used. They should be
interpreted like this.

 Combination Usual interpretation

 "" An opening and closing pair of double quotes with nothing between them, i.e.
a null string

 "'" An opening and closing pair of double quotes enclosing a single quote
 "\"" An opening and closing pair of double quotes enclosing a backslash + double

quote combination - a way of getting a double quote into a string enclosed in
double quotes

 '' An opening and closing pair of single quotes with nothing between them, i.e. a
null string

 '\'' An opening and closing pair of single quotes enclosing a backslash + single
quote combination - a way of getting a single quote into a string enclosed in
single quotes

2 PHP Fundamentals

http://dx.doi.org/10.1007/978-3-319-22659-0_19
http://dx.doi.org/10.1007/978-3-319-22659-0_8

25

 Practical Exercise 2
 Specimen Solutions to all the Practical Exercises are given in Sect. 19.7 .

 (1) Which of these are not valid variable names? Explain why.

 $DoG
 $_abCDE_1234_
 $happy-BIRTHDAY
 $27_Today
 john
 $this_is_a_long_name_
 $abc!_*xyz

 (2) What sequence of characters will be displayed on the user's screen as a result of
printing each of these strings? Assume that variable $xyz has the value 296.4.

 (a) 'I live at 26 Queen\'s Road'
 (b) 'My name is John O'Brien'
 (c) 'This is a backslash\\'
 (d) "I live at 26 Queen\'s Road"
 (e) "My name is John O'Brien"
 (f) "This is a backslash\\"
 (g) "He said \"Hello\" to me"
 (h) "the value of the variable is $xyz"
 (i) "the value of the variable is $xyzpounds"
 (j) "a strange string\n\n\t\t\n\t\tabc\$xyz $xyz here is a backslash\\"

 (3) Give at least four other ways in which the number −487.316 can be written.
 (4) Which of these are not valid function names? Explain why.

 $DoG
 $_abCDE_1234_
 $happy-BIRTHDAY
 $27_Today
 john

 Chapter Summary
 This chapter describes the basic structure of a PHP script, the use of blank
lines, spaces, etc. to improve readability and the forms that comments can
take in a script. It explains how a PHP fi le containing a mixture of HTML and
PHP statements is processed and goes on to describe two of the fundamental
components of any language: variables (including arrays) and constants. The
important distinction is made between strings enclosed in double quotes and
those enclosed in single quotes and the use of 'escape sequences' in strings is
explained. The chapter ends by introducing system functions.

2.8 Some Combinations of Quote Characters

http://dx.doi.org/10.1007/978-3-319-22659-0_19

26

 $this_is_a_long_name_
 $abc!_*xyz
 Sqrt
 SQRT
 sqrt2
 happy-BIRTHDAY
 _abCDE_123456_

2 PHP Fundamentals

27© Springer International Publishing Switzerland 2015
M. Bramer, Web Programming with PHP and MySQL,
DOI 10.1007/978-3-319-22659-0_3

 Chapter 3
 The PHP Language: Types of Statement

 Chapter Aims
 After reading this chapter you should be able to:

• understand seven of the most important statements in the PHP language
• use those statements to construct simple PHP scripts
• evaluate a complex arithmetic, string or logical expression
• understand how PHP Print statements differ from those in conventional

programming languages
• understand how PHP handles and prints logical values
• understand different types of conditional statement
• understand the three types of looping statement available in PHP and the

difference between them
• understand the use of the 'include' statement to 'include and evaluate' the

contents of a PHP fi le while a PHP script is executing.

3.1 Overview of Statements

 PHP has eight principal types of statement (some with slight variants):

• Assignment statements: to give a value to a variable
• Print statements: to send a string of characters to the user's web browser
• If statements: to test the value of a condition and take action that depends on its

value
• Switch statements: an alternative to using an If statement when the value of a

variable is repeatedly tested
• For statements: to perform one or more instructions until a variable reaches a

given value

28

• While and Do…While statements: to perform one or more instructions while or
until a condition is satisfi ed

• Include, Require, Include_once and Require_once statements: to 'include and
evaluate' the contents of a PHP fi le while a PHP script is executing

• Foreach statements: to perform one or more instructions for each of the elements
in an array in turn

 The fi rst seven will be described in this chapter; the fi nal one will be described in
Chap. 4 which is about arrays.

 PHP also includes a number of functions to perform operations that in other
languages would probably be carried out by language statements. We will describe
the main ones of these in Chap. 5 .

3.1.1 PHP Keywords

 The PHP 'syntax words' such as PRINT, IF, ELSE, SWITCH, FOR and WHILE
used in the statements introduced in this chapter and elsewhere in this book are
called 'PHP keywords'. They are not case-sensitive. So for example PRINT can be
written as print or even as PrInT.

3.2 Assignment Statements

 An assignment statement comprises a variable name or array element followed by
an equals sign (=) followed by an arithmetic expression, a string expression or a
logical expression. The value of the expression is calculated and then assigned to
the variable or array element on the left-hand side of the = sign. We will go through
each type of expression in turn. 1

3.2.1 Arithmetic Expressions

 An arithmetic expression can take several forms, each of which can optionally be
enclosed in parentheses.

 (a) A number which may be unsigned or prefi xed by a + or − sign, for example 6,
−85.4, 0, +12.97

1 Assignment statements with a function call on the right-hand side of the = sign can be used to
create variables that are not of the types described in Chap. 2 . These include arrays, fi le pointers
(used to access text fi les) and 'resources' (which hold references to system software used for pur-
poses such as accessing an external database). These will be described in later chapters.

3 The PHP Language: Types of Statement

http://dx.doi.org/10.1007/978-3-319-22659-0_4
http://dx.doi.org/10.1007/978-3-319-22659-0_5
http://dx.doi.org/10.1007/978-3-319-22659-0_2

29

 (b) A variable or an array element that has a number as its value, and which may be
prefi xed by a + or − sign, for example $x, +$var or −$arr[7].

 (c) A function call that has a number as its value, and which may be prefi xed by a
+ or − sign, for example sqrt($x), +sqrt(5.36) or −sqrt(3).

 The + or − sign as used above is called a unary operator . It is applied to the
value of the number, variable or array element immediately to its right.
The + operator has no effect; the − operator negates the value.

 (d) Any two arithmetic expressions joined by an arithmetic operator . A table of
these is given below.

 Operator Example Meaning

 + expr1 + expr2 expr1 plus expr2
 – expr1 – expr2 expr1 minus expr2
 * expr1 * expr2 expr1 times expr2
 / expr1/expr2 expr1 divided by expr2
 % expr1 % expr2 The remainder when expr1 is divided by expr2. (% is called

the 'modulus operator'.)

 The modulus operator % is likely to be the least familiar of these. If the values on
both sides of the % operator are positive integers the value is the remainder when
the fi rst is divided by the second, for example 17 % 3 returns 2.

 If either value is not an integer it is fi rst converted into one by dropping the deci-
mal part, e.g. 17.9 % 3.1 is treated as 17 % 3, i.e. 2. If either value is negative the
result takes the same sign as the value to the left of the operator. So −17.9 % −3.1 is
−2, −17.9 % 3.1 is −2 and 17.9 % −3.1 is 2.

 An example of an expression using an arithmetic operator is −85.4 * $z. Spaces
are allowed to either side of an arithmetic operator to aid readability.

 The arithmetic operators are known as binary operators . This term implies that
they are placed between the two arithmetic expressions.

 The above defi nition is recursive at step (d), i.e. an arithmetic expression can be
a combination of arithmetic expressions using an arithmetic operator. This can lead
to some very complex expressions. The following are all valid arithmetic
expressions:

 −23*$a
 $b/$arr[6]
 (−23*$a) + ($b/$arr[6])
 (−23*$a) + ($b/$arr[6])
 ((−23*$a) + ($b/$arr[6]))
 (−23*$a) + ($b/$arr[6]) + $z
 $q/$var[99]
 ($q/$var[99]) * sqrt(297)
 ((−$x*$a) + $b/$arr[6]-$z) − ($q/$var[99]*sqrt(88.36))

3.2 Assignment Statements

30

3.2.2 Evaluating an Arithmetic Expression

 To evaluate a complex arithmetic expression, the PHP system works systematically
through a number of steps, replacing variables, array elements and function calls by
their values as it comes to them. To illustrate these we will go back to this
expression:

 We will assume that the variables and array elements have the following values
 $x: 23 $a: 5.5 $b: 6 $arr[6]: 7.5 $z: 10 $q:170 $var[99]: 8.5

 PHP eliminates all the expressions in parentheses in turn, replacing each one by
its value. If there is a parenthesised expression inside another parenthesised expres-
sion, the innermost one is evaluated fi rst, working outwards. At each stage of this
process the system will be evaluating a parenthesis-free expression and the end
result will inevitably be a parenthesis-free expression.

 In our expression (repeated below)

 the innermost parenthesised expression (without the parentheses) is shown in bold.
This has two operators: unary minus − and multiplication *. (We know that the
minus sign is unary as there is nothing to its left-hand side.)

When evaluating a parenthesis-free expression we deal with operators in the
following order:

• Apply any unary + or – operator to the value on its right-hand side.
• Apply any * / or % operator to the values immediately to either side of it.

If there is more than one, work from left to right.
• Apply any binary + or – operator to the values immediately to either side

of it. If there is more than one, work from left to right.

 The value of −$x*$a is therefore −23 multiplied by 5.5, i.e. −126.5.
 Our expression has now become:

 The expression in the left-most set of parentheses is now −126.5 + $b / $arr[6] − $z.

3 The PHP Language: Types of Statement

31

 Using the rules given above, we start by dividing $b by $arr[6], giving 0.8. This
reduces the expression to −126.5 + 0.8 − 10. We next apply the + and − operators
from left to right. We take −126.5, add 0.8 and then subtract 10, giving −135.7.

 Our expression has now been transformed to

 We next need to evaluate the part shown in bold. We apply the / and * operators
from left to right. Dividing $q by $var[99] gives 20. Multiplying this by sqrt(88.36),
i.e. 9.4, gives 188.

 The expression has now become

 This is parenthesis-free. We subtract 188 from −135.7, giving −323.7.
 It is not necessary for arithmetic expressions to be fully parenthesised, e.g.

$a + $b/$c is a valid expression. If you are uncertain whether this means ($a + $b)/$c
or $a + ($b/$c), you are strongly advised to include parentheses to make your
intended meaning clear. If there are no parentheses, the standard rule applies: divi-
sion is performed before addition.

3.2.3 Arithmetic Functions

 The sqrt function is an example of a function that returns a numerical value. PHP
has many other functions for manipulating numbers including some such as trigo-
nometric functions that are likely to be of interest mainly to mathematicians. The
most important ones are listed in Chap. 5 .

3.2.4 Simplifi ed Notation for Assignment

 An optional simplifi ed notation is available for some of the most common types of
assignment statement involving arithmetic operators, where the same variable
would otherwise appear on both sides of the equals sign.

 Is an abbreviation for this assignment statement

 $x++; $x=$x+1;
 $x– –; $x=$x–1;
 $x += $y; $x=$x+$y;
 $x –= $y; $x=$x–$y;
 $x *= $y; $x=$x*$y;
 $x /= $y; $x=$x/$y;
 $x %= $y; $x=$x%$y;

3.2 Assignment Statements

http://dx.doi.org/10.1007/978-3-319-22659-0_5

32

 Here $y can be replaced by any arithmetic expression.

3.2.5 String Expressions

 A string expression can take several forms:

 (a) A string constant (often called simply a string), for example "dog".
 (b) A variable or an array element that has a string constant as its value.
 (c) A function call that returns a string constant as its value, for example

date("ymd").
 (d) Two or more of the above joined by the string concatenation operator (a dot),

for example
 "Hello ".$yourname." – my name is ".$myname

 If $yourname and $myname have the values "John" and "Louise" respectively,
the above expression is equivalent to "Hello John – my name is Louise".

 An unusual but sometimes very helpful feature of PHP is that in a chain of items
separated by dots as in (d) above, any or all of the values can instead be a number, 2
variable or array element with a numerical value. These are automatically converted
to strings before the concatenation takes place, e.g. −128.3 is converted to "−128.3".

 If $x is 87.4 and $y[7] is −128.3, the string "hello ".56.$x. " world ".$y[7] is
equivalent to "hello 5687.4 world −128.3" and $x.$y[7] is equivalent to
"87.4-128.3".

 It is even possible to include an arbitrarily complex arithmetic expression in a
string expression of type (d) provided it is enclosed in parentheses, e.g.

 "hello ".(13.5 + 4 − sqrt(9))." world" is equivalent to "hello 14.5 world"

3.2.6 String Functions

 So far the only function we have seen which returns a string as its value is date , e.g.
date("ymd") returns "191225" (if today is Christmas Day, 2019). PHP has many
other functions that return a string value. The most important ones are listed in
Chap. 5 .

3.2.7 Simplifi ed Notation for Joining Strings

 There is an optional simplifi ed notation for joining strings, using the . = operator.
For example,

2 A number that begins with a minus sign or that includes a decimal point needs to be enclosed in
parentheses.

3 The PHP Language: Types of Statement

http://dx.doi.org/10.1007/978-3-319-22659-0_5

33

 is equivalent to

3.2.8 Logical Expressions

 A logical expression can take several forms, each of which can optionally be
enclosed in parentheses:

 (a) One of the logical constants TRUE and FALSE. These can be written in any
combination of upper and lower case letters and are not enclosed in quotes.

 (b) A variable or an array element that has a logical constant as its value.
 (c) A function call that returns a logical constant as its value.

 If any variable or array element used in (b) or (c) has a value that is not a
logical constant, it is treated as having the value TRUE, with the important
exception that the null string "" is treated as having the value FALSE. (Rather
surprisingly, the value "0", i.e. a string containing only a single zero digit, is
also treated as FALSE and so is the number zero.)

 (d) A logical expression prefi xed by the unary operator ! (read as NOT), which
negates its value (TRUE becomes FALSE and vice versa).

 (e) Two logical expressions joined by one of the logical operators &&, || and XOR.

 value1 && value2 is TRUE if value1 and value2 are both TRUE. Otherwise it
is FALSE. (&& is the 'logical and' operator.)

 value1 || value2 is TRUE if either value1 or value2 is TRUE (or both).
Otherwise it is FALSE. (|| is the 'logical or' operator.)

 value1 XOR value2 is TRUE if either value1 or value2 is TRUE, but not both.
Otherwise it is FALSE.

 (XOR is the 'exclusive OR' operator. It can be written in any combination of
upper and lower case letters.)

 The above defi nition is recursive at steps (d) and (e), i.e. a logical expression can
be a combination of logical expressions using a logical operator. This can lead to
some very complex expressions. The following are all valid logical expressions:

 TRUE && $x
 (TRUE && $x) || $arr[16]

3.2 Assignment Statements

34

 ((TRUE && $x) || $arr[16]) && ! ($p XOR $q)

 The operators && (two ampersands) and || (two vertical bars) can also be written
as AND and OR, respectively, but we do not recommend this. AND and OR can be
written in any combination of upper and lower case characters. For reasons which
we will not go into here any logical expression that includes an AND, OR or XOR
operator should be enclosed in an outer set of parentheses, for example:

 or sometimes unexpected results may occur.
 The conditional expressions described in Sect. 3.4 below can also be placed in

parentheses and treated as logical expressions. For example if $x and $y are 6.3 and
8.2 respectively, the statement

 will assign the value FALSE to $z.

3.2.9 Evaluating Logical Expressions

 Evaluating logical expressions is carried out using the same principles as evaluating
arithmetic expressions, described in Sect. 3.2.2 .

 We apply any && operators before any || operators and any || operators before
any XOR operators. If there is more than one of the same kind of operator we work
from left to right.

 Thus FALSE && TRUE XOR TRUE is interpreted as (FALSE && TRUE) XOR
TRUE, i.e. FALSE XOR TRUE, which is TRUE.

3.2.10 Logical Function

 One very useful function that returns a logical value is isset. This takes the name of
a variable as its argument and returns FALSE if the variable is uninitialized.
Otherwise it returns TRUE. So if $x has the value 8.3, isset($x) is TRUE.

 The isset function can also be used in conjunction with the ! operator. If $y is
uninitialized, !isset($y) will be TRUE.

3 The PHP Language: Types of Statement

35

3.3 PRINT Statements

 The general form of a PRINT statement is
 print expression ;
 where expression can be any of the types of expression described under 'The

Assignment Statement' in Sect. 3.2 .
 The expression can also be enclosed in parentheses, e.g.

 but we will not do so in this book.
 As in all languages the print statement is of fundamental importance as the only

means of communicating the result of possibly extensive calculation to the user.
However PHP differs from conventional languages in that the characters output are
not sent directly to the user's screen. Rather they are handed to the web browser
which interprets them as HTML. So if variable $name has the value "Martin
Williams" and the variable $day has the value "Tuesday" the print statement

 will send the fragment of HTML
 Welcome Martin Williams.Today is Tuesday <p>
 to the web browser. This will cause

 to be displayed by the browser, followed by a paragraph break.
 There are other print statements that will not cause anything to be displayed by

the browser immediately, for example

 which is just the fi rst part of a construct that will cause a table to be displayed.
Nothing will be displayed until the remainder of the information necessary to con-
struct a table, ending in a </table> tag, is received by the browser.

 It is important to appreciate that the HTML sent to the web browser when a PHP
fi le such as fi le1.php is invoked may be a combination of 'plain' HTML and HTML
generated by a PHP script. For example a table such as this one

3.3 PRINT Statements

36

 may be produced by plain HTML in fi le fi le1.php such as

 or by a mixture of HTML and PHP such as

 It is even possible to use PHP only to print the values of the four variables.

3 The PHP Language: Types of Statement

37

<?php
$forename="Marianne";
$surname="Jones";
$memtype="Full Member";
$dob="January 6th 1992";
?>
<table border=1>
<tr>
<td>Forename</td><td>Surname</td><td>Membership Type</td>
<td>Date of Birth</td>
</tr>
<tr>
<td><?php print $forename?></td>
<td><?php print $surname?></td>
<td><?php print $memtype?></td>
<td><?php print $dob?></td>
</tr>
</table>

 At the other extreme we can output the entire table using PHP print statements
like this.

 The fi nal version seems fi ne, but there is a hidden problem. Web browsers nor-
mally have a facility for viewing the 'source code' of a web page, i.e. the HTML,
complete with tags, that was used to generate it. Most users never look at this and

3.3 PRINT Statements

38

you may have no interest in it too, but it can often be useful for debugging incorrect
scripts.

 In this case the source code looks like this:

 It is all run together into a single line, wrapped around (and printed in this book)
on to more than one line. It would be far easier to read if there were new lines after
some of the tags, especially the </td> tags.

 To get round this problem (if we consider it a problem) we can add \n at the end
of some or all of the print statements to send a newline character to the web browser,
like this:

 When the browser interprets the HTML it ignores newlines 3 so this has no effect
at all on what is displayed on the user's screen. However the newline characters have
a signifi cant effect on the source code which now looks like this.

3 To be accurate, the browser treats any number of newlines and space characters as equivalent to a
single space. Placing a space between one tag and another in a table has no effect.

3 The PHP Language: Types of Statement

39

 How far it is worthwhile adding newline characters like this is a matter of taste.
In this book we will occasionally use it. The main point to bear in mind is that out-
putting newline characters like this only affects the source code and not what is
displayed on the user's screen. If we want the text displayed on the screen to go to a
new line or a new paragraph we need to print the HTML tags
 or <p>.

3.3.1 Printing Logical Values

 One unusual feature of PHP is the way that it prints logical values. If variable $x has
the value TRUE you might expect that printing $x would output the word
TRUE. However this is not the case, as this example shows.

 Produces the output

 A logical value of TRUE is printed as the number 1 and a logical value of FALSE
is printed as an empty string.

3.4 IF Statements

 The basic form of an 'if' statement comprises the word 'if' followed by a conditional
expression in parentheses, followed by a statement that should be executed if the
conditional expression is true, for example:

 The simplest form of conditional expression is a comparison between two
expressions of the same type (string, numerical etc), which may be either true or
false. It comprises two expressions separated by a relational operator . The main six
of these are:

 Operator Example Meaning

 == exp1==exp2 The two expressions are equal
 != exp1!=exp2 The two expressions are not equal

3.4 IF Statements

40

 Operator Example Meaning

 > exp1>exp2 exp1 is greater than exp2
 >= exp1>=exp2 exp1 is greater than or equal to exp2
 < exp1<exp2 exp1 is less than exp2
 <= exp1<=exp2 exp1 is less than or equal to exp2

 The == (two 'equals' signs) in 'if ($name=="Henry")' etc. should not be confused
with the = sign used in assignment statements. The double = indicates a test of
whether two values are equal.

 In the case of string expressions, the operators >, >=, < and <= refer to the alpha-
betical ordering of the characters in the strings. For example "abd" is greater than
"abc".

 A conditional expression can also comprise:

• a conditional expression prefi xed by a logical 'not' operator (written as !), option-
ally enclosed in parentheses

• two conditional expressions joined by a 'logical and' or a 'logical or' operator
(written as && or || respectively), optionally enclosed in parentheses.

 This can give some quite complex conditions such as:

 if (($x==1.5 && $name == "Jane") || ($y > 27.3 && $surname! = "Wilson" &&
!($j < 44 || $abc==0)))

3.4.1 Statement Groups

 The statement after the conditional expression may instead be a statement group ,
i.e. a sequence of statements enclosed in a pair of brace characters, i.e. {}. For
example:

 Any type of statement can be included in a statement group, including another 'if'
statement.

3 The PHP Language: Types of Statement

41

3.4.2 Augmenting an 'if' Statement with 'elseif' and 'else'
Clauses

 The basic form of 'if statement' can optionally be augmented by one or more 'elseif
clauses' followed optionally by an 'else clause'. These indicate what should happen
if the condition specifi ed by the 'if clause' is false. The structure is essentially:

 if (condition is satisfi ed) do something ;
 elseif (another condition is satisfi ed) do something different ;
 else do something else ;

 Each of the conditions tested is enclosed in parentheses.
 This example shows a compound if statement comprising an if clause followed

by two elseif clauses and a fi nal else clause.

 If the condition specifi ed by the if statement is false, the condition specifi ed in
the fi rst elseif clause is tested. If $s=="yesterday" is true, the specifi ed assignment
is performed. If it is false, the condition specifi ed in the second elseif clause is
tested. If $x<$y is true the specifi ed assignment to $m is performed. If all three of
the specifi ed tests prove false the 'else' clause is invoked as a 'catchall' and the string
'end of example' is output. Note that a 'compound if statement' of this kind can have
elseif clauses but no else clause, or vice versa. The keyword 'elseif' can alternatively
be written as the two words 'else if'.

 There must be a statement, terminated by a semicolon, after each part of an 'if …
elseif … else' construct. However this may be just an 'empty statement', i.e. a semi-
colon on its own. More importantly each one can also be a statement group, i.e. a
sequence of statements enclosed in 'brace' characters {}. For example:

3.4 IF Statements

42

 Each statement within the brace characters must be terminated by a semicolon,
unless it is itself one that ends in a statement group enclosed in brace characters.
The indentation of the lines between the braces is solely for readability.

 Braces can also be placed around a single statement if you choose. As usual PHP
is very tolerant about the use of newlines and spaces, so this is one of many alterna-
tive layouts of the fi rst four lines that are also valid.

3.4.3 Dealing with Variable Values in Conditional Expressions

 Variables are most commonly used in conditional expressions on one or both sides
of a relational operator such as >. However they can also be used in a 'standalone'
fashion, e.g.

 or simply

 If $x has previously been assigned a logical value it is clear that this value will
be used in evaluating the conditional expression, but what if it has a numerical value
or a string value instead? We can answer this question using this test script

 which outputs the following:

3 The PHP Language: Types of Statement

43

 From this we can see that

• The logical constants TRUE and FALSE behave as expected
• The number zero is treated as false
• Any number except zero is treated as true
• The strings "0" and "" are treated as false
• Any string except "0" and "" is treated as true

3.5 The Switch Statement

 The SWITCH statement is an alternative to an IF … ELSEIF … ELSE statement
when repeated tests on the value of the same variable are required. The following
example illustrates its structure.

 The PHP system fi nds the case that matches the value of the specifi ed variable. If
it cannot fi nd one it goes to the default case. It then goes through the statements one
by one until it reaches the next break statement or the closing brace. (Note that it
does not stop when it reaches the next case, hence the break statements are required.)
There can be any number of statements for each case. They are not enclosed in
braces.

 The above statement is equivalent to the if … elseif … else statement

3.5 The Switch Statement

44

3.6 Loops in PHP 1: For Loops

 Sometimes we need to repeat the same sequence of statements repeatedly, for exam-
ple to print out a number of elements of an array. There are several facilities for
implementing 'loops' such as this in PHP. The most fundamental one of these is the
FOR loop, which involves repeating one or more instructions, with a variable used
for counting being increased or decreased at each stage until a fi nal 'terminating
value' is reached.

 The following is a typical example of the use of a 'for' loop with an array.

 The value of variable $i increases from a starting value of zero, increasing in
steps of 1, continuing as long as the value of $i is less than or equal to 9.

 The effect is to give $i the values 0, 1, 2 … up to 9 in turn. For each one, the value
of $arr[$i] is printed, followed by a
 tag, signifying 'go to a new line'.

 This gives the same effect as the ten lines

 After the keyword for there are three components enclosed in parentheses and
separated by semicolons.

3 The PHP Language: Types of Statement

45

• The fi rst is a variable, which we will call the looping variable , which is assigned
its initial value, e.g. $i = 0. This will frequently be zero or 1 but can be any value.
There can be any arithmetic expression after the equals sign.

• The second component is a test which examines the value of the looping vari-
able. This may be a simple test such as $i < =9 but can be any conditional expres-
sion, as described in Sect. 3.4 , provided it includes the looping variable. Before
each pass through the loop the condition is evaluated. If it is true the instruction
or instructions after the parentheses is/are executed. If not, the loop terminates.

• The third component is an assignment statement to vary the value of the looping
variable. If the variable is $i this will often be $i++ but it may be, say, $i = $i + 2
or $i−−.

 After the 'for (xxxxxx)' component there can be either a single statement or a
statement group, i.e. a set of statements enclosed in braces. These statements can
include additional for statements.

 If we want to print out the squares of all the odd integers less than 10 we could
use the instruction

 which produces the output

 A common use of for loops is to work through the elements of an array one at a
time. This is such a common requirement that there is a special alternative statement
(the foreach statement) available for it. This will be discussed further in Chap. 4 .

3.7 Loops in PHP 2: WHILE Loops

 A WHILE loop is similar to a FOR loop, but this time a sequence of instructions is
repeated indefi nitely provided a condition remains satisfi ed.

 We can use a WHILE loop as an alternative (but more cumbersome) way of
doing anything that could be done with a FOR loop. For example to print out the
fi rst ten elements of an array we can say

3.7 Loops in PHP 2: WHILE Loops

http://dx.doi.org/10.1007/978-3-319-22659-0_4

46

 If we want to print out the squares of all the odd integers less than 10 we could
use the instruction

 These examples illustrate the structure of a WHILE statement. There are usually
one or more assignment statements that set the initial conditions. Then there is the
keyword WHILE followed by a condition in parentheses. After that there is a state-
ment or more often a statement group, i.e. a set of statements enclosed in braces.
The statement or statements following while (xxxxxx) is executed indefi nitely as
long as the condition remains satisfi ed. It follows from this that those statements
need to include some way in which the while condition can become satisfi ed. In the
above example $i increases from 1 in steps of 2 until it becomes 10 after which the
condition $i < 10 is no longer satisfi ed.

 There are many other situations when a while loop can be used where a for loop
would not be possible. For example to output all the perfect squares less than 90 we
can write:

 A more valuable use of a while loop is to fi nd a value in an array. For example a
club may have a list of members stored in array $members and a related list of mem-
bership numbers in the same order stored in array $memnums. We are given a name
held in variable $mem and wish to fi nd out whether or not he or she is a member and
if so what the corresponding membership number is.

 Realistically, the data in the arrays may come from a membership list held in a
text fi le. As this topic has not yet been covered we will simulate it in a small way by
defi ning two arrays listing the names of members and their corresponding member-
ship numbers. (The array function will be explained in detail in Chap. 4 .)

3 The PHP Language: Types of Statement

http://dx.doi.org/10.1007/978-3-319-22659-0_4

47

 We can now look for a member $mem using a while loop as follows

 If $mem has the value "Henry Peters" executing this script will give the output:

 If instead $mem has the value "Simone Gilligan" the output will be:

3.8 Loops in PHP 3: Do…While Loops

 Do … While loops are similar to While loops with one signifi cant difference: the
truth of the condition is tested at the end rather than the beginning of the loop, with
the result that the statements in the loop are always executed at least once.

 In many cases this makes no difference. For example to output the fi rst ten ele-
ments of an array, we can say:

 The fi nal example in the previous section would also take a very similar form if
written using a do … while loop:

3.8 Loops in PHP 3: Do…While Loops

48

 In some other languages a do…while loop is called an 'until' loop. In most cases
it makes little difference whether a while or a do … while loop is used, but it may
sometimes be signifi cant whether or not the loop should be executed at least once.

3.9 The Include and Require Statements

 These two statements are very similar and can often be used to very valuable effect.
The PHP statement

 tells the PHP system to 'include and evaluate' the contents of an external fi le "fi le1.
php".

 To illustrate what this means we will start with an example where fi le1.php con-
tains only PHP statements. Suppose that fi le1.php contains

 The following script

 is equivalent to a script containing

3 The PHP Language: Types of Statement

49

 The statements in an included 'PHP only' fi le will often be defi nitions of one or
more 'user-defi ned functions', which will be discussed in a later Chapter. Another
possibility is that the fi le may contain frequently used statements, e.g. to produce
standard headings and/or a standard menu at the top of all of a company's web
pages. Another example relating to accessing a MySQL database is given in
Chap. 15 .

 The situation is more complicated when an included fi le contains HTML (out-
side PHP tags of course) as well as (possibly) one or more PHP scripting blocks. In
this case any HTML will be passed directly to the web browser to interpret. To
illustrate this, suppose that fi le2.php contains

 The following script

 will produce the output

 The sequence of events when fi le fi le2.php is 'included' is as follows:

• The two statements in the fi rst PHP scripting block are executed. Variable
$forename is given the value "John" and the string abcde < br > is sent to the web
browser and displayed as abcde followed by a newline character.

• Next the two lines of HTML after the closing PHP tag are 'evaluated', i.e. they
are passed to the web browser and displayed as the two lines

3.9 The Include and Require Statements

http://dx.doi.org/10.1007/978-3-319-22659-0_15

50

 with each line of text followed by a paragraph break.

• Next the two statements in the second PHP scripting block are executed. Variable
$surname is set to "Smith" and the string fghij < br > is sent to the web browser
and displayed as fghij followed by a newline character.

• As fi le fi le2.php has now been fully 'included and evaluated' the original PHP
script continues execution. The words 'My name is John Smith' are sent to the
web browser and displayed.

 Although an included PHP fi le generally contains only PHP or a mixture of PHP
and HTML, it is also possible for it to contain no PHP at all, just HTML. This can
be used to valuable effect.

 The HTML source text of every webpage begins in a standardised way, similar to:

 and ends in a standardised way, i.e.

 To save the bother of typing this every time we can put the former into a fi le start.
php and the latter into a fi le end.php (both without PHP tags).

 Then if we wish to use a PHP script to create a complete webpage we can include
the two fi les in our PHP like this.

 The sixth line of start.php refers to a style sheet fi le mystyle.css. If the approach
shown above is used to generate a large number of webpages and later it is decided
to use a different style sheet, all that has to be altered is one line in fi le start.php, not
one line in each of many fi les.

3 The PHP Language: Types of Statement

51

 The require statement is identical to the include statement with one difference. If
the specifi ed fi le cannot be loaded or does not exist an include statement will gener-
ate a warning message but the script will continue. The require statement will termi-
nate execution. Although the latter seems generally preferable, in practice we are
most unlikely to try to include a non-existent fi le and for all practical purposes we
can use include and require interchangeably.

 There are two other variants: the include_once and require_once statements. If
these statements are used and for any reason the contents of the fi le specifi ed have
already been 'included and evaluated' it will not be loaded again. These forms of the
statement are unlikely to be of more than very marginal benefi t in practical
applications.

 Chapter Summary
 This chapter describes seven of the eight principal types of statement in PHP
and their variants: assignment, Print, If, Switch, For, While/Do…While and
Include/Require/Include_once/Require_once. (The eighth statement, Foreach,
will be described in Chap. 4 .) Rules for evaluating complex arithmetic, string
and logical expressions are described in detail and a simplifi ed notation for
some of the most common types of assignment is described. The signifi cant
role of the Print statement and alternative ways in which it may be used in
generating the output displayed in the user's web browser are explained. The
chapter goes on to explain the If statement and the closely related Switch
statement. Three types of looping statement: For, While and Do…While are
then described. The chapter concludes with a description of the Include state-
ment and its variants.

 Practical Exercise 3
 (1) What is the value of this arithmetic expression?

 (−$x*$y + $val[23]*$x−2.5)/($x + $y−$x*$y + 38.5)
 Assume that $x, $y and $val[23] are 4.5, −2 and 3.0 respectively.

 (2) Why is this assignment statement invalid?
 $res = "the value is ".$x + $y." pounds";

 (3) What is the value of this logical expression?
 $x && $y XOR ($x||$y)
 Assume that $x is TRUE and $y is FALSE

 (4) Write a For loop to output the squares of the fi rst 20 even numbers.
 (5) Given an array of numbers $numbers and a variable $val write PHP statements

to output the position of $val in array $numbers or a statement that it is not in
the array. Do this (a) using a While loop and (b) using a Do…While loop.

 (6) Write an If statement that takes a variable $month containing the name of a
month, e.g. "October", and outputs the number of days it contains.

3.9 The Include and Require Statements

http://dx.doi.org/10.1007/978-3-319-22659-0_4

53© Springer International Publishing Switzerland 2015
M. Bramer, Web Programming with PHP and MySQL,
DOI 10.1007/978-3-319-22659-0_4

 Chapter 4
 More About Arrays

 Chapter Aims
 After reading this chapter you should be able to:

• use arrays when writing PHP scripts, especially in conjunction with the
Foreach statement

• use the various sort functions available in PHP and understand the differ-
ences between them

• distinguish between indexed arrays and associative arrays
• use the explode and implode functions to convert strings with internal sep-

arator characters, such as commas, into arrays and vice versa.

 Arrays were introduced in Chap. 2 as a form of variable in which many values,
known as array elements, can be referred to using the same name, distinguished by
a numerical index contained in square brackets. There is much more to arrays than
this, as we will illustrate in this chapter.

4.1 The Array Function

 In Chap. 2 we saw the example of array $info with the following contents

 $info[0] $info[1] $info[2] $info[3] $info[4] $info[5]
 –8.3 "dog" 27 "cat" true 647.142

http://dx.doi.org/10.1007/978-3-319-22659-0_2
http://dx.doi.org/10.1007/978-3-319-22659-0_2

54

 These values could have been assigned by a series of six assignment statements:

 However, if the number of elements in an array is fairly small there is a much
neater way of creating it. This uses the function array , which takes a number of
values as its arguments and returns an array with those values as the values of the
array elements. For example the above array of six elements could have been con-
structed by the single statement:

 Warning – if you have previously given values to any elements of an array with
the same name (using assignment statements or otherwise) using the array function
will automatically delete them. Incidentally, it is possible to use a non-integer index
value, if only by mistake. $info[3.1] and $info[4.9] will be treated as $info[3] and
$info[4] respectively.

4.2 The Count Function

 The function count is used to count the number of elements in an array, so for array
$info the value of count($info) is 6.

 Assuming that all the values in our array are numbered consecutively starting
from zero, as is often the case, we can work through them one at a time using the
FOR statement defi ned in Chap. 3 in conjunction with the count function. For
example

 gives the output

4 More About Arrays

http://dx.doi.org/10.1007/978-3-319-22659-0_3

55

 However the situation is not always so straightforward. It is possible for array
elements to be non-consecutive or to have a negative index value. For example we
may have this sequence of assignments:

 The value of count($alpha) is now nine, and the instruction

 will produce

 which is most unlikely to be what is wanted.

4.3 The PHP Foreach Statement

 The PHP foreach statement is invaluable for situations such as that illustrated above.
It enables us to work through all the elements of an array without knowing in
advance what their index values are.

 There are two forms of the statement. The fi rst is
 foreach (arrayname as variable1 = > variable2) statement ;
 The second is just
 foreach (arrayname as variable2) statement ;

4.3 The PHP Foreach Statement

56

 The space between the keyword foreach and the opening parenthesis is optional.
 For each array element, the two variables variable1 and variable2 are called the

 key and the value respectively. For an array element such as $alpha[1] the key is 1
and the value is 200.

 As for the FOR statement, the statement after foreach (xxxxx) can be either a
single statement or a statement block enclosed in braces.

 If we enter the instruction

 the output is

 This gives all the array values in the order in which they were assigned.
 If instead we enter the instruction

 the output is simply

 which is considerably less informative.

4 More About Arrays

57

4.4 Sort Functions

 Another useful facility that applies to arrays is the function sort , which will sort an
array into ascending order of its values. If we sort array $alpha and then again print
out its constituent values by

 we obtain

 Note that not only have the values been placed in ascending numerical order but
the original keys have all been replaced by the consecutive range of integers from 0
to 8.

 If instead we had sorted using the asort function the sorting would still have been
in ascending order of the values but the key values would have been retained. If we
had used the ksort function the sorting would have been in the order of the key
values.

 So this sequence of instructions

4.4 Sort Functions

58

 would produce the output

4 More About Arrays

59

 There are three other functions: rsort , arsort and krsort which work in the same
way as sort , asort and ksort , respectively, except that the sorting is carried out in
descending order rather than ascending order.

 All six variants of the sort function are examples of what in this book we will call
 standalone functions , i.e. functions that do not need to appear on the right-hand side
of an assignment statement.

 Instead of

 we can write

 if we wish, but the variable $res will just hold the value TRUE or FALSE,
depending on whether the sort was successful or not. Unless we are sorting a par-
ticularly large array we can safely assume that the process will succeed, so setting
and testing $res is of little if any value.

4.5 Associative Arrays

 The arrays discussed so far are technically known as indexed arrays . Their keys are
numeric and generally start with zero. A more general type of array is known as an
 associative array . Here the keys can have non-numerical values. For example we
might have an array where the keys were French words and the values were the cor-
responding words in English. We can create a simple version of this by

 Note that the keys are separated from the values by => symbols (two characters
which together resemble an arrow).

 Entering the further instruction

 will produce the output

4.5 Associative Arrays

60

 If we want to see the complete set of French words in our array, in alphabetical
order, each with its English translation we can use the ksort function and enter

 This will produce the output

 Here is a slightly more complicated example.
 Suppose that we have a set of names, say the forenames of all the pupils in a

school, and that we want a list of all the different names and how many times they
each occur.

 We might obtain the names from a text fi le or a database but as these topics will
not be covered until later in the book, we will instead assume that they are held in
an array $names defi ned as follows:

 The fi rst step is to go through the names in $names one by one and count how
many times each one occurs. We can do this with just a single foreach statement
using an associative array $namecount.

 The default value of $namecount for any element, e.g. $namecount["frances"] is
zero. Each time a name appears in $names the corresponding value in $namecount
is increased by one.

 We can now use a foreach statement to list the contents of $namecount. We will
do this fi rst without any change. The key values come out in the order in which they
appeared in the argument list of the array function, but only once each. Next we will
show the effect of sorting the names by frequency of occurrence using asort. Finally
we will list the names in ascending alphabetical order using ksort. Entering the
instructions

4 More About Arrays

61

 produces the output

4.5 Associative Arrays

62

4.5.1 Using Associative Arrays with Dates

 There are several examples in this book which represent dates in numerical form,
with January represented by the string "01", February by "02", etc. This works well
until we come to printing out the name of the month which we would generally
prefer to print in its full textual form rather than as a number. We can do this easily
using an associative array $monthnames defi ned like this.

 Now if we have a month stored as a string in variable $month we can print out its
equivalent month name by just

4.6 Two Dimensional Arrays

 So far all the arrays described have been one-dimensional, similar to a row of boxes
or pigeonholes. Sometimes it is helpful to be able to store a two-dimensional table
of values such as the one below, which we can think of as the results obtained by
fi ve students on three examinations.

 10 15 20
 100 115 120
 200 215 220
 300 315 320
 400 415 420

 For this we can use a two-dimensional array.
 If the number of elements is small we can use the array function to defi ne the

contents of a two-dimensional array in terms of a number of one-dimensional
arrays.

4 More About Arrays

63

 For the table above we can defi ne the fi ve one-dimensional arrays

 and then defi ne a two-dimensional array $marks by

 Essentially $marks is an array comprising fi ve one-dimensional arrays, each cor-
responding to a row of the table. Each row (such as $arr1) comprises three elements.
This gives us a 5 X 3 table. The rows are numbered from zero downwards and the
columns are numbered from left to right starting at zero. The array element in row
4 column 1 is referred to as $marks[4][1]. It has the value 415.

 The count function can be applied either to the array as a whole or to an indi-
vidual row. The value of count($marks) is 5, the number of rows, and the value of
count($marks[1]) is 3, i.e. the number of columns in row 1.

 We can use a foreach statement with a two-dimensional array but only with a
single row at any time. For example the statement

 will produce the output

 If we wish to fi nd the average mark scored on the examination listed in the mid-
dle column (i.e. column 1) we can do it using a FOR loop by

 which gives

4.6 Two Dimensional Arrays

64

4.7 The Explode and Implode Functions

 PHP has two useful functions which enable a string to be converted to an array
(explode) or an array to be converted to a string (implode).

 The fi rst can be used for any string which has a structured form, with items sepa-
rated by, say, commas, spaces or tab characters (\t). Lines read from text fi les (which
will be covered in Chap. 7) are often of this form.

 Suppose the value of variable $s is a string with values separated by commas,
e.g.

 "malcolm,johnson,male,1997,associate,2012,married,2,melbourne"
 The statement

 will create an array with nine values, with $newarray[0], $newarray[1] etc. being
"malcolm", "johnson" etc.

 If we want to display the nine values as a table of an array we can do so with this
script

 which produces the output

 Note the use of HTML interspersed with PHP. As previously pointed out there is
no need for a PHP script to comprise only PHP statements.

 To take the elements of an array and convert them into a string we can use the
 implode function. For example

4 More About Arrays

http://dx.doi.org/10.1007/978-3-319-22659-0_7

65

 will output

 The fi rst argument of explode and implode does not have to be a single character.
It can be any string. Escape sequences can be included, e.g. \r, \n or \t.

 A very important use of associative arrays automatically provided by the PHP
system will be described in Chap. 10 .

 Chapter Summary
 This chapter extends the description of arrays started in Chap. 2 . It introduces
the array function, which can be used to create an array with a (usually small)
number of elements and the count function which returns the number of ele-
ments in an array, and goes on to describe the Foreach statement for working
through the elements of an array. It goes on to describe functions available for
sorting elements of an array into either ascending or descending order. Next
two types of array are distinguished: indexed arrays and associative arrays ,
followed by arrays with two dimensions. The chapter concludes with a
description of the explode and implode functions which enable a string with
internal separator characters, such as commas, to be converted to an array or
vice versa.

 Practical Exercise 4
 (1) Using the results table in Sect. 4.6 write a script to calculate the total score of

each of the fi ve students.
 (2) What would be the effect of applying (a) the sort or (b) the asort function to

array $monthnames given in Sect. 4.5.1 ?
 (3) Write a script to convert a string such as $s in Sect. 4.7 to an equivalent string

with each comma replaced by two asterisks and with the fi rst element (malcolm
in our example) removed.

4.7 The Explode and Implode Functions

http://dx.doi.org/10.1007/978-3-319-22659-0_10
http://dx.doi.org/10.1007/978-3-319-22659-0_2

67© Springer International Publishing Switzerland 2015
M. Bramer, Web Programming with PHP and MySQL,
DOI 10.1007/978-3-319-22659-0_5

 Chapter 5
 Some Important Functions

5.1 System Functions Applied to Numbers

 PHP has many functions for manipulating numbers. The most important ones are
listed below.

 Value
returned Function Meaning

 number abs(num) Absolute value of argument
 abs(−4.3) = abs(4.3) = 4.3

 integer ceil(num) Ceiling function
 The smallest integer ≥ the argument

 number exp(num) Exponent function
 e to the power of the argument

 integer fl oor(num) Floor function
 The largest integer ≤ the argument

(continued)

 Chapter Aims
 After reading this chapter you should be able to:

• understand and use the most important functions available in PHP for
manipulating both numbers and strings

• use the date function to generate the date and/or time in any of a wide
variety of formats

• understand the system functions header , die and echo
• obtain detailed information about the confi guration of the version of PHP

you are using, including the version number.

68

 Value
returned Function Meaning

 number log(num) Logarithm to base e (natural logarithm)
 number log10(num) Logarithm to base 10
 number pow(num,num) The fi rst argument raised to the power of the second argument
 number pi() Return value of pi to 13 decimal places, i.e. 3.1415926535898

 (Argument list must be empty)
 number round(num) The argument rounded to an integer (if it is half-way between

two integers it is rounded up)
 number round(num,posint) The argument rounded to the number of decimal places

specifi ed by second argument (zero means round to integer). If
the argument is half-way between two values, it is rounded up

 number sqrt(num) Square root of the argument (must be non-negative)

 num: a fl oating point number
 posint: a positive or zero integer

5.1.1 Mathematical Constant

 Although strictly outside the scope of this chapter, this is a convenient place to men-
tion that another way of obtaining the value of pi is to use the PHP 'mathematical'
constant M_PI. This has the value 3.14159265358979323846 (i.e. pi to 20 places of
decimals). The name is case-sensitive.

5.2 Trigonometric Functions

 PHP has a range of trigonometric functions, which will be of value to those with a
mathematical background but will probably be largely meaningless to everyone
else. They are listed in table form below.

 An important point to note is that functions such as sin, cos and tan assume that
their argument is in radians. If you have an argument in degrees you should fi rst
convert it to radians using the deg2rad function. Similarly the inverse sin, cos, tan,
etc. functions (called asin, acos, atan, etc.) all return angles measured in radians. To
convert them to degrees you can use the rad2deg function.

 Value
returned Function Meaning

 number sin(angleRad) Sine of the argument
 number cos(angleRad) Cosine of the argument
 number tan(angleRad) Tangent of the argument
 angleRad asin(num) Inverse sine (arc sine) of the argument
 angleRad acos(num) Inverse cosine (arc cosine) of the argument
 angleRad atan(num) Inverse tangent (arc tangent) of the argument

(continued)

5 Some Important Functions

69

 Value
returned Function Meaning

 number sinh(angleRad) Hyperbolic sine of the argument
 number cosh(angleRad) Hyperbolic cosine of the argument
 number tanh(angleRad) Hyperbolic tangent of the argument
 angleRad asinh(num) Inverse hyperbolic sine of the argument
 angleRad acosh(num) Inverse hyperbolic cosine of the argument
 angleRad atanh(num) Inverse hyperbolic tangent of the argument
 angleRad deg2rad(angleDeg) Convert a number of degrees to the equivalent in radians
 angleDeg rad2deg(angleRad) Convert a number of radians to the equivalent in degrees

 num: a fl oating point number
 angleRad: an angle measured in radians
 angleDeg: an angle measured in degrees

5.3 System Functions Applied to Strings

 Many applications involve the manipulation of strings of characters: to compare
one string with another, to make systematic changes to a string or to extract some
of the characters from a string, amongst other purposes. For example a customer
may enter their name into a form on a webpage and we may then wish to com-
pare it with a succession of strings corresponding to the names of previous cus-
tomers obtained from a database or a text fi le used for data collection. (We will
show how to use databases, text fi les and web forms in later chapters.) PHP
provides a large number of system functions for manipulating strings and new
ones are likely to be added in later releases of the language. Many of the func-
tions are for esoteric purposes that will never concern most users. Rather than
trying to be encyclopaedic we will describe the functions that you are most likely
to need to use.

5.3.1 Trimming a String

 A common requirement, especially with data entered by a user into a web form is to
trim a string to remove leading or trailing spaces. For example we may have a fi le of
usernames and wish to check whether a user name entered on a web form is included
in that fi le. This is quite easy if the (new) username is entered as say "johnson617"
but what if it is entered as " johnson617 " with spaces at the beginning and/or the
end? It is usually best to 'trim' user input to remove leading and trailing spaces
before it is entered into a database or stored in a text fi le. We can do this using a
statement such as

5.3 System Functions Applied to Strings

70

 The trim function removes not only spaces, but also tabs and 'newline' and 'car-
riage return' characters. If for some reason we want to remove characters only at the
start of a string or only at the end of a string we can do so using the ltrim and rtrim
('left trim' and 'right trim') functions. So the scripting block

 gives $x and $y as "abcde " and " abcde", respectively.

5.3.2 Changing Case

 Another issue when comparing strings is that we may have a stored value $str1 such
as the username "johnson617" and wish to compare it with an input value $str2
which (possibly after trimming) is "Johnson617" or perhaps "JOhnson617". Are
these the same? In most cases we will want to treat different capitalisations of the
same characters as equivalent. To do this we can convert both strings to lowercase
letters before comparing them. We recommend storing names, passwords, etc. in
lower case form in databases and text fi les, so we will assume that the stored value
$str1 is already in lowercase form and will change the input value $str2 before com-
paring it with $str1. To do this we can use the strtolower function, e.g.

 or just

 If for any reason we want to convert a string to upper case we can use the strtoup-
per function, for example

 will return $news as

5 Some Important Functions

71

5.3.3 Converting Initial Letters to Uppercase

 An obvious drawback to storing a surname in lowercase such as "robinson" is that
we may wish to output a message beginning Dear Mr. Robinson with an initial capi-
tal letter for the surname. We can do this using the ucfi rst function. If variable $name
has the value "robinson" then

 will output

 In some applications we may wish to convert the fi rst letter of every word in a
string to uppercase. We can do this using the ucwords function. This takes a string
as its argument and returns the same string with the fi rst character of each word
capitalized, if that character is alphabetic. The defi nition of a word (after the fi rst)
is any string of characters that comes immediately after a space, tab, newline or
carriage return. For example:

 produces the following output

5.3.4 Replacing One Substring by Another

 It is sometimes useful to be able to replace every occurrence of a substring of one or
more characters in a string by another substring (which may be just an empty string).
The str_replace function takes three arguments (all of them strings). Every occur-
rence of the value of the fi rst argument is replaced by the value of the second argu-
ment in the string given as the third argument. For example

 will return $newstr with the value "Tuesday**June**3rd**john**smith", where
each comma in the original string has been replaced by two asterisks.

5.3 System Functions Applied to Strings

72

5.3.5 Reversing a String

 The strrev function returns a string with the characters in the original string in
reverse order. For example

 will return $s as "edcba";
 The ideal use for this function is to check whether a string of characters is a pal-

indrome, i.e. it reads the same both forwards and backwards. If $s is the string
"redivider", the test

 will produce the output

5.3.6 Manipulating a Substring

 We often have a string of characters with a known internal structure. For example
we may have a date stored as "181225" where the fi rst two characters correspond to
the year (18, representing 2018), the next two to the month (12) and the last two to
the day (25 th).

 We can regard the characters in a string as numbered from left to right, starting
at zero. (The enclosing double quotes are not part of the string itself.) For example

 Position 0 1 2 3 4 5
 Character 1 8 1 2 2 5

 If we want to extract a substring comprising the fi nal two characters, here repre-
senting the day, we can do this using the substr function:

 returns $day with the value "25". The second argument of substr is the position
(numbering from zero) of the fi rst character of the substring required. The third
argument is the number of characters in the substring.

5 Some Important Functions

73

 As an alternative we may have a string with a number of fi elds of variable length,
such as "Tuesday**March**23rd". If we wish to extract the day of the week
(Tuesday) we can do so by fi nding the position of the (fi rst character of the) fi rst
double asterisk combination, which is position 7 counting from zero, and then
extracting the substring that starts at position zero and is seven characters long. To
do this we use the strpos function. The function call strpos(str1,str2) returns a
numerical value, the position of the (fi rst character of the) fi rst occurrence of sub-
string $str2 in string $str1.

 returns $weekday with value "Tuesday".
 If we want to extract the day (23rd) we can do this using the strrpos and strlen

functions.
 The strrpos function works in the same way as the strpos function but instead of

returning the position of the (fi rst character of the) fi rst occurrence of the second
argument substring in the fi rst argument string it returns the position of the last
occurrence. For our example strrpos($date,"**") will be the number 14. We would
like to extract the day as substr($date,16,4). The second argument is just
strrpos($date,"**") + 2, but how can we tell that the third argument (i.e. the number
of characters in the substring) should be 4?

 This is where the strlen function is helpful. The function takes a string as its
argument and returns the number of characters it contains. The value of strlen($date)
is 20 which means that the third argument of substr should be 20 − 16 = 4. We can
now write

 To obtain variable $day with value "23rd".

5.3.7 Converting a String to an Array and Vice Versa

 Although using strpos and strrpos can be very helpful in extracting substrings they
are not always suffi cient. Suppose we have a string such as "john**smith**male**
plumber**london**46" how can we extract the fourth element, representing the
person's occupation?

 The explode function takes two arguments, both strings. It treats the fi rst string
as a separator and returns an array containing the component parts of the second
string that are separated by the fi rst string. As usual the array elements are numbered
beginning with zero. For example:

5.3 System Functions Applied to Strings

74

 returns an array $parts with six strings as elements

 $parts[0] $parts[1] $parts[2] $parts[3] $parts[4] $parts[5]
 "john" "smith" "male" "plumber" "london" "46"

 Now the fourth component of the original string is just the value of $parts[3].
 It is also possible to go in the opposite direction. So if we have an array $parts

with six elements as shown above we can convert it to a string with the six compo-
nents separated by (say) a comma using the implode function.

 would return string $str2 with value "john,smith,male,plumber,london,46".

5.3.8 Wrapping Text

 Sometimes it is helpful to be able to display a line of text in the user's web browser
so that it fi ts neatly into a column of width no more than a specifi ed number of
characters.

 The wordwrap function takes three arguments: a string, a number and another
string. If variable $str has the value "The time has come, the Walrus said, to talk of
many things" the function call wordwrap($str,15,"
") will return a string broken
up every 15 characters at most by the replacement of a space character by the sepa-
rator "
". For this example the string returned will be "The time has
 come,
the
 Walrus said, to
 talk of many
 things". The reason why "
"
was chosen as the separator was that when output in a web browser this string is
displayed in 'word wrapped' form as

 Note that the lines are not all 15 characters long – that is the maximum length.
The wrapping takes place before a word is displayed that would take the width past
the specifi ed maximum.

 This function is particularly useful when a long string is output in a cell of a
table.

5 Some Important Functions

75

 gives a tabular display of the same string wrapped to four different column
widths.

5.4 The rand Function

 It is sometimes useful to be able to generate a random number. PHP provides the
 rand function for doing this. It takes two positive or zero integers as its arguments,
the second being larger than the fi rst. If the arguments are say 1 and 7, then the value
of rand(1,7) is an integer in the range from 1 to 7 inclusive, with each value having
an approximately equal probability of being generated.

 Example 1
 We can use the rand function to generate a random password, for example compris-
ing four random letters followed by four random digits.

 If we have a string $alpha with the value "abcdefghijklmnopqrstuvwxyz" then
the characters are automatically numbered from 0 to 25, working from left to right.
We can fi nd a random letter using the function call substr($alpha,rand(0,25),1),
denoting a string of one character at a random position from 0 to 25 in string $alpha.
The PHP instructions needed to generate a random password are then

5.4 The rand Function

76

 We use rand(1001,9999) rather than rand(0,9999) for the fi nal part of the string
to ensure that there are always four digits.

 Example 2
 We can use the rand function to generate a randomly selected picture, for example
to display on the home page of an organisation's website. The HTML to display a
picture is similar to

 If we have six pictures of fl owers and wish to display one of them chosen at ran-
dom each time our webpage is visited we can do this by

 Note the use of \" to include a double quote character inside a string enclosed in
double quotes.

5.5 The max and min Functions

 It is often useful to be able to fi nd the largest or the smallest of a set of numbers.
PHP has functions max and min, which return the largest and smallest values of its
arguments, respectively. Unlike most functions these can both take any number of
arguments, provided there are at least two. For example

 outputs

 As an alternative the two functions may instead take a single argument, the name
of an array. In this case they return the largest and smallest array elements,
respectively.

 outputs

5 Some Important Functions

77

5.6 The date Function

 PHP has a very powerful function named date which enables information about the
current date and time to be obtained and displayed in a very fl exible way. The date
function takes one argument, which can be a string of any length. It reads the system
clock to fi nd out the date and time and then returns a string constant with part or all
of that information presented in a suitable form, which depends on the string that
was given to it as its argument.

 We will start by illustrating the effect of calling the function with a one-character
string as its argument. If we assume that today is Christmas Day 2018, the function
call date("d") will return the string "25", date("F") will return "December" and
date("Y") will return "2018".

 If the argument is more than one character the string returned is the combination
of all the strings returned by the individual characters joined together. So date("dFY")
returns the string "25December2018".

 A list of the main characters that can be used in the argument of a date function
and the outputs they produce is given at the end of this section. Any other characters
can also be used. Those that do not have a special meaning return themselves. These
include characters such as space, colon, dot and minus (or hyphen), which can be
used as separators. Thus executing the instruction

 will output

 The argument "l F jS" looks (and is) obscure, but consulting the table below will
reveal its meaning, character-by-character:

 l (lower case 'L') means display the day of the week in the form Sunday, Monday,
etc.

 F means display the month in the form January, February, March, etc.
 j means display the day of the month in the form 1, 2, 3, etc.
 S means display the suffi x st, nd, rd or th depending on the value given by j
 The two spaces each just mean display a space.

 So executing the instruction

 will output

5.6 The date Function

78

 The effect is just the same as if instead of print date("l F jS"); we had written
print "Friday December 25th"; in the original script, except that the current date is
used of course.

 The PHP statement

 would give an output such as

 A common way of storing dates is in six digit form such as 181225 for December
25 th 2018. This can easily be achieved using the instruction

 The value of date("L") is the number 1 if the current year is a leap year and zero
otherwise. We can test which it is by using the script

 To test the day of the week we can use a script such as this

5.6.1 List of Special One-character Arguments for the date
Function

 The following table is based on the online PHP manual available on the web at
http://uk.php.net/.

 Character Description Values returned

 d Day of the month, two digits with leading zeros 01 to 31
 D A textual representation of a day, three letters Mon through Sun
 j Day of the month without leading zeros 1 to 31
 l (lowercase
'L')

 A full textual representation of the day of the
week

 Monday through Sunday

(continued)

5 Some Important Functions

79

 Character Description Values returned

 N Numeric representation of the day of the week 1 (for Monday) through
7 (for Sunday)

 S English ordinal suffi x for the day of the month,
two characters (normally used immediately after
j)

 st, nd, rd or th

 w Numeric representation of the day of the week 0 (Sunday) through 6
(Saturday)

 z The day of the year (starting from 0) 0 through 365

 W Week number of year (weeks starting on
Mondays)

 e.g. 42 (the 42 nd week of
the year)

 F A full textual representation of a month, such as
January or March

 January through
December

 m Numeric representation of a month, with leading
zeros

 01 through 12

 M A short textual representation of a month, three
letters

 Jan through Dec

 n Numeric representation of a month without
leading zeros

 1 through 12

 t Number of days in the given month 28 through 31

 L Whether it is a leap year 1 if it is a leap year, 0
otherwise.

 Y A full numeric representation of a year, four digits Examples: 1999 or 2003
 y A two digit representation of a year Examples: 99 or 03

 a Lowercase am or pm am or pm
 A Uppercase AM or PM AM or PM
 g 12-hour format of an hour without leading zeros 1 through 12
 G 24-hour format of an hour without leading zeros 0 through 23
 h 12-hour format of an hour with leading zeros 01 through 12
 H 24-hour format of an hour with leading zeros 00 through 23
 i Minutes with leading zeros 00 through 59
 s Seconds with leading zeros 00 through 59

5.7 The header Function

 The header function is used to send a HTTP header to the web browser, for example
an error message such as

5.7 The header Function

80

 It is quite possible that you have no intention of ever doing this. However there
is one very valuable use of a header that is certainly worth using and that is to redi-
rect the web browser to a new page. For example

 will execute many lines of PHP, possibly to update a database or write a text fi le,
and then will effectively 'jump' to a new page http://www.newsite.com, without the
user having to click on a link to make it happen.

 An important condition is that the header must be the fi rst output sent to the web
browser. It must be sent before any blank lines, HTML tags, text generated by PHP
and anything else, or an error message will result.

5.8 The die Function

 Using the die function, for example

 will output a message and immediately terminate execution of the script (and any
further HTML or PHP scripts in the same fi le).

 We will see how this is used in conjunction with a function to connect to a data-
base in Chap. 15 . Doing so enables us to terminate a script immediately if for any
reason the database connection cannot be made, the alternative in many cases being
to carry on attempting to process non-existent data.

5.9 The echo Function

 As an alternative to the print statement, PHP has an echo function, e.g.

 The difference between using the echo function and the print statement is slight,

in fact so slight that we will consider them as effectively equivalent and will not use
echo in this book.

5 Some Important Functions

http://dx.doi.org/10.1007/978-3-319-22659-0_15

81

5.10 The phpinfo Function

 Executing this small script

 will produce a large amount of detailed information about the confi guration of
PHP that you are using. At or near the top will be a statement indicating the version
of PHP that you are using.

 The phpinfo function takes no arguments and returns a logical value: either true
if it succeeds or false if it fails. However it is normally used in standalone mode.

 Practical Exercise 5
 (1) Write a PHP statement that will replace every occurrence of the letter 'a' in a

string by two asterisks.
 (2) Write a PHP statement that will take a string representing a name, remove any

leading spaces and convert it to lower case letters, except for the fi rst character
which should be in upper case.

 (3) Given a string of the kind shown in Sect. 5.3.6 , say $date with value
"Tuesday**March**23rd", write PHP statements that will create a new string
with the name of the month replaced by December.

 (4) Write a PHP statement that will display the date in the form dd/mm/yyyy.

 Chapter Summary
 This chapter describes some of the most important functions available in PHP
for manipulating numbers and strings. It goes on to describe the very powerful
function date which enables information about the current date and/or time to
be displayed in a very fl exible way. The chapter ends by describing four other
functions: header , which can be used to redirect a web browser to a new page,
 die , which terminates the execution of a script, the echo function, which can
be used as an alternative to the Print statement and the phpinfo function which
outputs detailed information about the confi guration of PHP, including the
version number.

5.10 The phpinfo Function

83© Springer International Publishing Switzerland 2015
M. Bramer, Web Programming with PHP and MySQL,
DOI 10.1007/978-3-319-22659-0_6

 Chapter 6
 Formatted Print Functions

 Chapter Aims
 After reading this chapter you should be able to:

• use the printf function to output numbers in a structured form
• understand the meaning of a format string and the various kinds of

specifi er
• use the sprintf function to assign a formatted string to a variable

6.1 Standalone Functions

 In the next section the printf function

 will be introduced as a more fl exible alternative to the Print statement. Printf is
another example of what was described in Chap. 4 as a 'standalone' function. The
function value is generally not assigned to a variable (although it can be) and it
would be easy to assume that the statement shown above was a language statement
not a function call. The distinguishing feature is that functions are always followed
by a list of arguments in parentheses, or occasionally by (), signifying an empty list
of arguments.

 This is quite an unusual feature of the PHP language. Normally we would expect
to see the value of a function assigned to a variable, for example

http://dx.doi.org/10.1007/978-3-319-22659-0_4

84

 Leaving out the assignment to variable $z would produce just

 which would be a meaningless statement.
 However for certain functions either there is no value returned or we have little

(if any) interest in that value and simply omit the ' variablename =' part. Whereas
this would not make sense for most functions, it is appropriate in some contexts,
such as when outputting a string using function printf, or when performing certain
operations on either a text fi le or a database. In such cases the importance of the
function is that it performs an action such as outputting a string or closing a text fi le.
These actions are often referred to by the rather dismissive name 'side effects', but
they are the main reason for using several functions, rather than the values they
return.

 In this book we will coin the name standalone functions for those such as printf
that can sensibly be used (and often are) without any assignment of a value to a
variable.

6.2 The printf Function

 The printf function is used when we want a number to be printed in a way that is
different from the way the PHP system would normally output it by default when
executing a print statement. The function returns an integer value (of little interest):
the number of characters output. It is generally used as a 'standalone' function, as
defi ned above.

 As an example, suppose we want to calculate the average mark (out of 10) scored
by 13 students on a test. We fi rst calculate that the total mark is 97 and this value is
stored in variable $a. We can now calculate the average mark by

 but are probably not going to be satisfi ed with the output

 This has no fewer than 11 decimal places and is most unlikely to be the number
we wanted printed. Rounding to two decimal places, i.e. 7.46 is almost certainly
entirely suffi cient.

 Using the printf function rather than a print statement allows us to specify the
way that numbers are printed. The printf function takes at least two arguments: a
 format string followed by one or more variables, all separated by commas and
enclosed in parentheses. We can write this as:

6 Formatted Print Functions

85

 printf (format string , variable 1 , variable2 ,)
 The format string is an adjusted form of the string we would use if we were not

concerned about the format of the numbers. For example we might start with a stan-
dard print statement such as

 and adjust it to:

 Here each variable has been replaced by a format specifi er , such as %.2f, in the
format string. Each format specifi er begins with % and continues up to and includ-
ing the next letter. There are two format specifi ers in this example: %.2f and %d.
These tell PHP how to output the values of the fi rst two variables listed as the argu-
ments of printf, i.e. $b and $c respectively. The two specifi ers mean 'print the num-
ber rounded to two decimal places' and 'print the number as an integer' respectively.
So if $b is 7.46153846154 and $c is 123.456 the output from the printf function is

 There are four types of format specifi er, relating to type, sign, precision and pad-
ding. We will go through them all in turn. (Note that the following is not an exhaus-
tive list.)

6.2.1 Type Specifi ers

 In this book we are concerned with three ways of representing numbers 1 :

• integers such as −3, 0, 27 and +429
• fl oating point numbers, i.e. non-integers written with decimal places such as

123.456
• numbers in 'scientifi c notation', also known as 'e-notation', such as 1.23456e+3,

which means 1.23456*10 3 (i.e. 1234.56), or 1.23456e−3 which means
1.23456*10 −3 (i.e. 0.00123456).

 Any numbers of the above three kinds can be either positive or negative. If they
are positive they can be written with or without an initial + sign. We can use the type
specifi ers d, e and f to display numbers in any of these three forms. They represent

1 We will ignore other possibilities available in PHP such as outputting numbers in binary, octal and
hexadecimal notation.

6.2 The printf Function

86

integer, fl oating point and scientifi c notation, respectively. The following table
shows the effect of each one on the three different types of number.

 If $x has this
value

 This format
specifi er

 Will output this
string Comments

 123 %d 123 Non-integer numbers are truncated
 123.456 %d 123
 1.23456e+2 %d 123

 123 %e 1.230000e+2 Numbers are displayed to six decimal
places (rounded if necessary) 123.456 %e 1.234560e+2

 1.23456e+2 %e 1.234560e+2

 123 %f 123.000000 Numbers are displayed to six decimal
places (rounded if necessary) 123.456 %f 123.456000

 1.23456e+2 %f 123.456000

6.2.2 The Sign Specifi er

 Any negative numbers displayed in the above way will be prefi xed by a minus sign.
However positive numbers will not be prefi xed by a plus sign. If it is important that
they are we can place a plus sign, called the sign specifi er , between the % symbol
and the following letter, e.g. %+e.

 If $x has this
value

 This format
specifi er Will output this string Comments

 123.456 %+e +1.234560e+2 The same applies to type specifi ers
%d and %f. −123.456 %+e −1.234560e+2

6.2.3 Precision Specifi ers

 When outputting numbers in %f format, i.e. fl oating-point form, PHP displays six
decimal places as a default. If we want this to be some other number of places we
can insert a dot followed by the number of places required between the % and the f
characters. The combination .0 means no decimal places, i.e. output as an integer.

 The same precision specifi ers also apply with the %e type specifi er, but the
results may not always be as expected. The table below summarises the possible
cases.

6 Formatted Print Functions

87

 If $x has
this value

 This
format
specifi er Will output this string Comments

 123.456 %.2f 123.46 Numbers are rounded as necessary
 123.456 %.12f 123.456000000000
 123.456 %.0f 123

 123.456 %.2e 1.23e+2 The number is truncated to an integer
and then converted to e notation

 123.456 %.12e 1.234560000000e+2 The number is converted to e notation
with 12 decimal places

 123.456 %.0e 1e+2 This may be surprising. There are no
decimal places before the letter e, i.e.
the number has effectively been
converted from 123 to 100

6.2.4 Padding Specifi ers

 Sometimes we may wish to pad out a number, either before or after the value, so it
always occupies the same number of characters. For example we may want the
number 234 to be output as "00000234" or as "234 " or as "*****234". We can
do this by inserting a padding specifi er between the % character and the type speci-
fi er. A padding specifi er comprises two parts: fi rst a value indicating which charac-
ter is used. This can be

• a space character
• nothing (equivalent to a space)
• a zero
• a quote symbol followed by the character to use (e.g. '*).

 After this we put the number of characters to which the number is to be padded.
This can be a positive integer signifying that the padding should be added to the left
or a negative integer signifying that the padding should be added to the right.

 Here are some examples

 If $x
has this
value

 This format
specifi er

 Will output this string (without the
enclosing quotes) Comments

 123 % 6d " 123"
 123 % −6d "123 "
 123 %6d " 123"
 123 %−6d "123 "
 123 %06d "000123"

6.2 The printf Function

88

 If $x
has this
value

 This format
specifi er

 Will output this string (without the
enclosing quotes) Comments

 123 %0–6d "123 " Spaces have been used for
padding rather than zeroes,
which would otherwise
make the number 123000

 123 %'*6d "***123"
 123 %'*−6d "123***"
 1234 %03d "1234" Padding a number cannot

reduce it to a smaller
number of characters than is
needed to display the integer
part correctly

 1234 %0–3d "1234"

 123.4 % 14f " 123.400000"
 123.4 % −14f "123.400000 "
 123.4 %14f " 123.400000"
 123.4 %−14f "123.400000 "
 123.4 %014f "0000123.400000"
 123.4 %0–14f "123.4000000000"
 123.4 %'*14f "****123.400000"
 123.4 %'*−14f "123.400000****"

 123.4 % 16e " 1.234000e+2" Note that the 16 characters
includes the e+2 (for all
examples using e)

 123.4 % −16e "1.234000e+2 "
 123.4 %16e " 1.234000e+2"
 123.4 %−16e "1.234000e+2 "
 123.4 %016e "000001.234000e+2"
 123.4 %0–16e "1.234000e+200000" NB – this is not likely to be

the effect required!
 123.4 %'*16e "*****1.234000e+2"
 123.4 %'*−16e "1.234000e+200000*****"

 If a number is negative or if the sign signifi er is used to ensure that a sign (either
+ or −) is always output, the sign occupies one of the characters of the specifi ed fi eld
width. It is placed to the right of any padding to the left of the number unless the
padding character is a zero, in which case it is placed to the left of the leftmost zero.

6 Formatted Print Functions

89

6.2.5 Padding Strings

 The same method for padding numbers can be used for padding strings. In this case
the insertions are made into specifi er %s. The following table gives examples of the
output obtained.

 If $x has this
value

 This format
specifi er

 Will output this string (without the
enclosing quotes) Comments

 Tuesday % 10s " Tuesday"
 Tuesday %10s " Tuesday"
 Tuesday %'*10s "***Tuesday"

 Tuesday % −10s "Tuesday "
 Tuesday %−10s "Tuesday "
 Tuesday %'*−10s "Tuesday***"

6.2.6 Outputting a Percent Sign

 If it is required to include a 'real' % sign in a format string it should be written as two
characters, i.e. %%.

 Example

 gives the output

6.2.7 Specifying Variables Explicitly

 We can choose to associate a format specifi er explicitly with a variable in the argu-
ment list by referring to its position in the list (not counting the format string).

 To refer to the fi rst variable, i.e. $a, we insert the characters 1$ immediately after
the % sign. To refer to $b we use 2$, etc. So the statements

6.2 The printf Function

90

 and

 are equivalent.
 Alternatively we could output the second variable before the fi rst, e.g.

 We can also refer to the same variable twice. For example

 refers to the fi rst variable twice and then the second variable. It produces the
output

6.2.8 Combining Options

 The options described above can be used in combination provided they are placed
in the format specifi er string in the right order, as listed below.

 % compulsory
 variable number plus $ sign optional
 sign specifi er optional
 padding specifi er optional
 precision specifi er optional
 type specifi er (d, e, f, s, etc.) compulsory

6.2.9 List of Type Specifi ers

 There are several other type specifi ers available. Here is a complete list.

6 Formatted Print Functions

91

 b An integer presented as a binary number
 c An integer presented as the character with that ASCII value
 d An integer presented as a (signed) decimal number
 u An integer presented as an unsigned decimal number
 o An integer presented as an octal number
 x An integer presented as a hexadecimal number (with lowercase

letters)
 X An integer presented as a hexadecimal number (with uppercase

letters)
 e A number presented in scientifi c notation (e.g. 6.34e+4)
 E Like e but uses a capital letter (e.g. 6.34E+4)
 f A number presented in fl oating point form
 g The shorter of %e and %f
 G The shorter of %E and %f
 s The argument is treated and presented as a string

 The only ones used in this chapter are d, e, f and s.

6.3 The sprintf Function

 The sprintf function is very similar to the printf function but instead of a formatted
string being output it is assigned to a variable. For example

 is equivalent to

 If we have a string $num containing the number of a month from "1", "2" up to
"12" and would prefer to have the variables in two character form, from "01", "02"
up to "12", we can achieve this by the statement:

6.3 The sprintf Function

92

 Practical Exercise 6
 Given a variable $x with the value 62.917, write a statement that uses the printf
function to output the value of $x in at least three different formats.

 Chapter Summary
 This chapter describes the printf function, which can be used to display num-
bers in a more structured fashion than is possible with the Print statement.
 Format specifi ers used to specify a required layout in a format string are intro-
duced and described in detail. The chapter ends with a description of the
 sprintf function, which is similar to printf but instead of outputting a format-
ted string assigns it to a variable.

6 Formatted Print Functions

93© Springer International Publishing Switzerland 2015
M. Bramer, Web Programming with PHP and MySQL,
DOI 10.1007/978-3-319-22659-0_7

 Chapter 7
 Using Files

 Chapter Aims
 After reading this chapter you should be able to:

• understand the organisation of the fi les making up a website in a hierarchy
of directories and sub-directories

• understand the concepts associated with the creation and use of text fi les
• understand the principles of fi le protection
• use the many functions provided in PHP to manipulate fi les and

directories.

7.1 Directories and Sub-directories

 When we refer to a website we actually mean a (usually large) collection of fi les in
a fi lestore on an external server. These can include fi les containing lines of HTML,
PHP fi les, plain text fi les or documents in formats such as Word or Acrobat. These
are most unlikely all to be together in a single directory. 1 All servers use the same
approach, which is to place fi les and subdirectories in a hierarchical structure. The
user of a website is likely to have little or no knowledge of or interest in the fi le and
directory structure, but for system developers it is most important.

 Here is a typical example of part of a website for our imaginary organisation The
Erewhon Society, which we will call erewhonsoc.org .

 The uppermost directory is traditionally known as the 'root'.

1 Directories are often referred to by the alternative name 'folders'.

94

(root)
etc logs tmp file3.txt public_html

dir1 file1.txt file2.txt file4.txt

 This fi gure shows the root directory containing four sub-directories and a fi le
named fi le3.txt. (In this and the next fi gure the names of fi les are given in bold.)
Sub-directory logs contains the fi le fi le4.txt. Sub-directory etc contains three mem-
bers: directory dir1 and fi les fi le1.txt and fi le2.txt. The contents of sub-directories
dir1, tmp and public_html are not shown. (A full expansion of the fi gure to show the
entire hierarchy and all the individual fi les located in sub-directories of sub-
directories of sub-directories etc. might be very large indeed.) Sub-directories are a
form of directory in their own right and will often be referred to in that way.

 From the point of view of the system programmer (as opposed to a member of
the public using a web browser) the address of the root directory is / (a forward slash
character). The addresses of directories etc and dir1 are /etc and /etc/dir1, respec-
tively. The address of the fi le named fi le1.txt is /etc/fi le1.txt. These are called abso-
lute addresses .

 It is also possible to use relative addresses to refer to one fi le relative to another.

• The address of fi le2.txt relative to fi le fi le1.txt in the same directory is just fi le2.
txt.

• Its address relative to fi le fi le3.txt in the root directory is etc/fi le2.txt.
• Its address relative to any fi le in the dir1 directory would be ../fi le2.txt
• Its address relative to fi le fi le4.txt in the logs directory would be ../etc/fi le2.txt

 The notation .. (two dot characters) refers to the parent directory. So to refer to
fi le2.txt in the etc directory starting at fi le fi le4.txt in the logs directory, we fi rst go
up to the parent directory, i.e. root, then down to directory etc, then to fi le fi le2.txt.

 The server on which a website is stored will have a special directory which it
treats as the home directory for the website. This is often called public_html, but
sometimes has other names such as www or web. We will assume that it is called
public_html.

 To represent the structure of the website in a diagram we redraw the hierarchical
structure to place directory public_html at the top and work downwards, ignoring all
the other fi les and directories shown in the previous diagram.

public_html
members index.php adm.htm buildings

student.php full main.php annex.htm dir4
fellow.txt standard

slist mlist.txt

 All fi les are shown in bold. In this small example we have fi les with three differ-
ent extensions (htm, php and txt) and also with no extension at all. We have four
levels of directory and also a directory (dir4) with no contents. The latter is indi-
cated by underlining the directory name.

7 Using Files

95

 Directory public_html contains four items: fi les index.php and adm.htm and sub-
directories members and buildings . Directory 'members' contains two items: fi le
student.php and sub-directory full . The latter contains fi le fellow.txt and subdirec-
tory standard . Directory 'standard' contains two fi les: slist and mlist.txt. Directory
'buildings' contains fi les main.php and annex.htm, plus an empty directory dir4.

 When the user's web browser is pointed to http://www.erewhonsoc.org it exam-
ines the website's home directory and searches for a fi le called index.php, index.htm
or index.html (there are a few other possibilities). If it fi nds index.htm or index.html
it displays the contents in the usual way. If it fi nds index.php it executes it as a PHP
script. So for our example website the address http://erewhonsoc.org (with or with-
out a fi nal slash character) is equivalent to http://erewhonsoc.org/index.php.

 An address such as http://erewhonsoc.org/members/student.php is treated as a
reference to the PHP fi le located at the position members/student.php relative to the
home directory.

 Note that any attempt to enter the address of a fi le at the same level as or a higher
level than public_html (the home directory) in a web browser, e.g. http://erewhon-
soc.org/../logs/fi le4.txt, will generate an error.

7.2 Relative Addressing Using Paths

 Let us assume that our web browser is currently pointing to the webpage named
index.php on the Erewhon Society website. We will call the directory in which the
corresponding fi le is located, i.e. public_html, the current directory . (In this case
this is also the home directory for the site.)

 We will also assume that the page displayed has a link to another page on the
same site, such as main.php in directory buildings. In the HTML for the displayed
page the link from index.php to the fi le main.php will either take the form of an
 absolute link such as

 Click here
 or a relative link which simplifi es the address to just
 Click here
 Having clicked on the link to main.php the current directory will now be build-

ings. If we want to place a link from there to annex.htm we can refer to it by the
 relative address "annex.htm". Any fi le name written like this is assumed to be in the
current directory.

 If instead we wished to link to fi le index.php back in directory public_html, we
would refer to it as "../index.php". To link to the fi le student.php instead we would
write the relative address as "../members/student.php".

 Relative addresses are not only used for links to HTML and PHP fi les. They can
also be used when referring to fi les or directories on the same server from a PHP
script, as we shall see later in this chapter.

 If the current directory were 'standard' the relative address of the fi le student.php
would be ../../student.php and the relative address of directory dir4 would be "../../../

7.2 Relative Addressing Using Paths

96

buildings/dir4". The three sets of double dots in the latter case signify go up three
levels to reach public_html and then down one into directory buildings, where dir4
is located.

 We use the term path of a fi le or directory to mean its address (in the case of a
directory) or the address of the directory in which it is located (in the case of a fi le),
in both cases relative to the current directory.

 So if the current directory were 'standard':

• The path of the fi le student.php would be ../../
• And the path of directory dir4 would be ../../../buildings/dir4/.

 (Paths can be written either with or without the fi nal slash character.)
 For a fi le such as mlist.txt in the current directory (which we will again assume

is 'standard'), the relative name can be written either as just mlist.txt or as ./mlist.txt.
Here the dot denotes 'the current directory'. The path of the fi le is taken to be a dot
character with or without a following slash (. or ./).

7.2.1 Relative and Absolute Addresses

 In the remainder of this chapter we will describe a number of functions that take
relative addresses of fi les and/or directories as arguments. For completeness we
should mention that absolute addresses are also permitted. For example we can refer
to the fi le main.php in directory 'buildings' as /public_html/buildings/main.php, giv-
ing the full address starting at the root directory. However we do not recommend
doing this. Using relative addresses such as ../buildings/main.php makes your
scripts (and your entire website) far more portable. Should you ever move your
website to a new server which uses slightly different standards or should your sys-
tem administrator decide to restructure the directory structure of the site the abso-
lute address of your home directory might change to say /web or /system/
public_html. This ought to be a minor change but if you have used absolute addresses
you will need to search through every one of your PHP scripts and change every
absolute address. By contrast if you have relative addresses you should not need to
make any changes at all.

7.3 Storing Data in Text Files

 Although the topic of storing information in and retrieving it from a database will
be covered in detail in later chapters of this book, the use of plain text fi les on the
server to store data of a fairly basic kind is well worth knowing about and for new-
comers to PHP has the advantage of avoiding the need to learn another language
(mySQL or something similar) at the same time as learning PHP.

7 Using Files

97

 Organising data in plain text fi les is a very basic but often very useful way of
storing it. In some cases we will use a PHP script to read a fi le that already exists.
At other times we will use a script to write a new fi le or to add to a fi le that already
exists. We will assume that a text fi le is broken up into a number of lines separated
by newline characters.

 Note that although it is not possible to use a web browser to access fi les such as
fi le1.txt and directories such as tmp (both shown in the fi rst fi gure in Sect. 7.1) that
are not part of the hierarchy starting at directory public_html, it is entirely possible
for a PHP script to do so. If the current directory is 'members' we can legitimately
refer to fi le "../../etc/fi le1.txt" or directory "../../tmp".

7.3.1 Opening a File

 Before we can write to or create a fi le, we fi rst have to open it, i.e. establish a link to
the fi le from a PHP script. We do this using the system function fopen , which takes
two arguments. The fi rst is the (relative) name of the fi le, the second is a string con-
stant called the mode , which indicates how we intend to use the fi le. By the name of
the fi le we mean its address relative to the current directory, including the path.

 For example fopen("mydir/myfi le.txt","a") indicates that we wish to open (i.e.
use) a fi le with name myfi le.txt in directory mydir relative to the current directory
and if the fi le already exists we intend to append to it, i.e. write additional records
(lines of text) to it, which are to be placed after those already there. If no fi le of the
given name exists, an empty fi le with the specifi ed name but no contents will fi rst be
created.

 Another possible value for the second parameter is "w" (write), meaning if the
fi le exists start by deleting all its contents before anything is written. If not, create
an empty fi le.

 A third possibility for the second argument is "r", meaning that the fi le should be
opened for reading only. The use of the system function 'fi le' described later in this
chapter is easier than opening the fi le using the "r" option and we will adopt that
approach in this book.

 We can also combine the "r" and "w" options to give "w+" or combine "r" and
"a" to give "a+". There are other possible modes but these are the most important
ones.

 The fopen function returns a value of a special kind known as a resource , which
must be assigned to a variable, which is then known as the fi le pointer for the speci-
fi ed fi le. The name of a fi le pointer variable can be any valid PHP variable name, but
in this book we will generally call it $fp. Thus we can write the statement

7.3 Storing Data in Text Files

98

 to open fi le mydir/myfi le.txt for 'appending' with fi le pointer $fp (assuming that
directory mydir already exists).

7.3.2 Closing a File

 Having opened a fi le for appending or writing, we can then write lines of text to it
using the fwrite system function, as will be described below. Once we have fi nished
doing this we should 'close' the fi le again, i.e. make it unavailable for use (until and
unless it is opened again). We can do this using the fclose function, which takes the
fi le pointer as its only argument.

 Function fclose returns TRUE for success or FALSE for failure, but is normally
used as a 'standalone' function, i.e. its value is not assigned to a variable.

 Warning - fi les should always be closed promptly as soon as reading and/or writ-
ing operations are concluded. If the PHP script should contain an error leading the
PHP interpreter to 'crash' while a fi le is open it is possible that its contents can be
corrupted.

7.3.3 Writing to an Open File

 Assuming that a fi le with fi le pointer $fp has been opened for appending (or writing)
we can write a line of text to it by using the fwrite system function. This takes two
arguments: the fi rst is the fi le pointer; the second is the string of characters we wish
to write to the fi le, e.g.

 We usually want the output string to end with an end of line character or charac-
ters. Unfortunately there are two 'standards' for this. For a Windows server we place
the two characters 2 denoted by \r\n at the end of the line, e.g.

 For all other kinds of server we output the single character denoted by \n.

2 It is important to appreciate that the combination \r\n represents two characters that will be stored
in the text fi le and not four. We cannot type these characters directly into a PHP script (or a page of
this book) so instead type the characters \r\n which requires four keystrokes.

7 Using Files

99

 The combinations \r and \n are both 'escape sequences'. They cause special char-
acters (not the actual letters r and n) to be written to the fi le, corresponding roughly
to 'carriage return' and 'newline'. In practice it does little if any harm to standardise
on using just one of the newline sequences irrespective of the server. The only
(fairly minor) problem that arises is if a fi le written on a server using one operating
system is downloaded to a computer that uses the other. If the fi le is displayed on the
'wrong' system it is likely not to look entirely as expected.

 As a way round the problem of different end of line sequences, from PHP version
5.0.2 onwards it has been possible to use the PHP constant PHP_EOL which cor-
responds to the correct end of line sequence for the server on which the script is run.
So we can write

 Note that PHP_EOL is a name and so is not enclosed in quotes and that PHP_
EOL is case-sensitive.

 Function fwrite returns the number of bytes written, or FALSE if an error occurs,
but is normally used as a standalone function.

7.3.4 Formatted Writing to an Open File

 The printf function was introduced in Chap. 6 as a formatted print function. A typi-
cal example is the function call

 The parts of the fi rst argument (string) beginning with % and ending in a letter
are format specifi ers. The specifi er %.2f stands for 'the value of $b rounded to two
decimal places'. Specifi er %d stands for 'the value of $c printed as an integer'.

 Function printf displays output in the user's web browser. The function fprintf is
the equivalent when writing to a text fi le. It has an additional fi rst argument which
is the name of a fi le pointer for an open fi le. For example

7.3 Storing Data in Text Files

http://dx.doi.org/10.1007/978-3-319-22659-0_6

100

7.3.5 Reading an Open File

 The fread function reads a specifi ed number of characters from an open fi le. It takes
a fi le pointer and an integer as its arguments and returns a string. For example

 reads 30 characters (starting at the beginning of the fi le) or up to the end of the fi le
whichever is reached sooner. The 30 characters include the end of line character(s)
at the end of each line. A subsequent fread will begin where the last one ended.

 The fi lesize function takes a relative fi lename as its argument and returns the size
of the corresponding fi le in bytes (i.e. characters) of storage. Thus to read all the
characters in a text fi le (including end of line characters) we can use an instruction
such as

 For reading text fi les it is frequently much more convenient to use the fi le func-
tion described below rather than using fopen, fread and fclose.

7.3.6 The File Function

 PHP has a very powerful function named fi le which takes the (relative) name of a
text fi le as its argument and returns an indexed array with one element for each line
of the fi le. Let us assume that fi le1.txt is a text fi le in the same directory as the cur-
rent PHP script and has the following contents

 (Each line is assumed to end with the appropriate end of line character(s).)
 Executing the PHP statement

 will copy the contents of the fi le into the fi rst six elements of array $arr1.

7 Using Files

101

• $arr[0] is now "The time has come, the Walrus said,"
• $arr[1] is now "To talk of many things:"

 and so on.
 Note that there is no need to use fopen and fclose with the fi le function. The fi le

is automatically opened and closed.
 It is important to remember that there is an 'invisible' end of line character or

characters at the end of each line. Because of this, if we have a comparison such as

 the test will fail. To avoid this problem it is good practice to trim each line before
using it to remove the end of line character(s) at the end of the string. Strictly only
rtrim ('right trim') is necessary.

 It is also important to realise that the web browser does not display characters
such as 'carriage return' and 'newline' on the user's screen. It treats any number of
them, together with any number of spaces as equivalent to a single space. So

 will print the fi rst and second lines of text as one long line, with a space separating
the two parts. To separate them by a line break we must output the HTML tag
.

7.3.7 Examples

 Given fi le fi le1.txt as before we wish to output its contents line by line. We can do
this by this two-line script.

 If for some reason we wish to output all the contents of fi le1.txt except the fi rst
line to a new fi le fi le2.txt (e.g. to remove a header line) we can do so using the fol-
lowing script. In this case we retain the end of line character(s) at the end of each
line.

7.3 Storing Data in Text Files

102

7.3.8 Using the Explode and Implode Functions

 Text fi les often have a fi xed structure for each line, for example 12 values separated
by commas or tab characters. If we want to change them all in a systematic way we
can often do so easily using the explode and implode functions.

 Suppose we have a club membership fi le named memfi le.txt, with the fi rst three
records as follows:

 We wish to put the members' full names as the fi rst component of each record,
i.e.

 We start by converting the text fi le into an array using the fi le statement and then
create a loop to process each of the records one by one, create a new record named
$newRecord and write it to a new text fi le memfi le2.txt.

 To create $newRecord from $next we fi rst use the explode function to convert
string $next into the elements of an array $nextArray. We set the fi rst element of a
new array, $secondArray[0], to the full name and then copy elements $nextAr-
ray[0], $nextArray[0] etc. into $secondArray[1], $secondArray[2] etc.

 All that remains is to 'implode' $secondArray into a string with values separated
by commas:

7 Using Files

103

 If we wanted to use a tab character rather than a comma as a separator we would
replace "," by "\t".

 Putting the fragments together gives the following complete script:

7.4 File and Directory Protections

 Each fi le or directory has three 'permissions', which determine how it can be used.
These correspond to the powers given to the owner who uploaded it to the server,
the members of a group set by the server administrator and the rest of the world (or
in short, the owner, the group and the world). In the case of a PHP script reading or
writing a fi le the important part of this is the permission given to 'world'.

 The owner, the group and the world all have permission to do some or all (or
none) of the following to a fi le or directory: read it, write to it and execute it as a
program (if it is a fi le). The execute option relates to programs and is not applicable
to PHP scripts.

 The three permissions are usually written as three integers from 0 to 7 inclusive,
corresponding to the permissions given to the owner, the group and the world in that
order. The permissions use a numerical coding based on 4 meaning read, 2 meaning
write and 1 meaning execute.

 By adding the numbers together we can get all possible combinations from zero
to seven:

 0: nothing at all
 1: execute
 2: write
 3: 2 + 1, i.e. write and execute
 4: read
 5: 4 + 1, i.e. read and execute
 6: 4 + 2, i.e. read and write
 7: 4 + 2 + 1, i.e. read, write and execute (everything)

 If we write the three protection numbers in the order owner, group and world and
place a zero in front of them (required for rather obscure historical reasons) we have

7.4 File and Directory Protections

104

the protection mode of the fi le or directory, expressed as a number such as 0777 or
0776.

 The owner and the group typically have permissions to do anything or almost
anything. When using a PHP script the most important digit is the fi nal one. If the
mode of a fi le or directory is say 0774 a PHP script will be able to read it. If it is
0776 the script will be able to both read and write it. If the mode is 0772 the script
will be able to write to it but not read it and so on. For some of the functions
described in this chapter it is necessary for a fi le or a directory to be readable and/or
writeable.

7.5 Checking Existence and Protection Status of Files
and Directories

 PHP has a number of functions for checking whether a fi le or directory exists and if
so its status. The main ones are:

• fi le_exists. This takes a relative fi le or directory name as its argument and returns
true if either a fi le or a directory with that name and path exists. Otherwise it
returns false.

• is_fi le. This takes a relative fi le name as its argument and returns true if a fi le
with that name and path exists. Otherwise it returns false.

• is_dir. This takes a relative directory name as its argument and returns true if a
directory with that name and path exists. Otherwise it returns false.

• is_readable. This takes a relative fi le or directory name as its argument and
returns true if a fi le or directory with that name and path exists and is readable.
Otherwise it returns false.

• is_writable. This takes a relative fi le or directory name as its argument and
returns true if a fi le or directory with that name and path exists and is writeable.
Otherwise it returns false.

• is_writeable. This is an alias for function is_writable.

 Whether or not a fi le or directory is readable or writeable depends on its protec-
tions, as described in Sect. 7.4 . The name of a directory can be written with or
without a fi nal / character.

7.6 Other Functions Applied to Files or Directories

 All the functions listed in this section return TRUE for success or FALSE for fail-
ure, but they are normally used as 'standalone' functions, i.e. the value is not assigned
to a variable.

7 Using Files

105

7.6.1 Changing File or Directory Protections

 Function chmod takes a relative fi le or directory name as its fi rst argument. Its direc-
tory permissions are changed to the values specifi ed by the second argument which
is the protection mode. An example is

7.6.2 Creating and Deleting Directories

 To create a new directory we can use the mkdir function. This takes two arguments.
The fi rst is the relative name of the new directory, which has to be a subdirectory of
one that already exists and has writeable status. The second argument is the 'protec-
tion mode' of the new directory. If in the example structure given in Sect. 7.1 the
current directory is 'members' then the instruction

 will create an empty directory dir2 in directory 'buildings' with protection 0666.
 The second argument is optional. If omitted a default value of 0777 is assumed.
 To delete a directory that is empty and has writeable status we use the rmdir

function. For example, to delete the directory just created we can say

 The value of the function can also be assigned to a variable and returns true if the
deletion succeeds and false otherwise.

7.6.3 Renaming Files and Directories

 We can rename a fi le or directory using the rename instruction. This takes two argu-
ments: the relative names of the old and new fi les or directories, in that order. The
paths do not have to be the same, which means that either a fi le or a directory
(together with its contents) can be moved from one directory to another, provided
that both parent directories are writable. So with the directory structure given in
Sect. 7.1 , if the current directory is 'members' and the following instructions are
executed:

7.6 Other Functions Applied to Files or Directories

106

 the following sequence of actions occurs. First fi le student.php is renamed student2.
php (in the current directory), then the fi le is moved to the 'standard' directory and
renamed student3.txt. Finally the 'standard' directory and its contents are moved
into the 'buildings' directory.

7.6.4 Getting and Changing the Current Directory

 To fi nd the name of the current directory from a PHP script we can use the getcwd
function.

 sets $thisdir to the address of the current directory ('cwd' stands for 'current working
directory', which is another name for the current directory). The function takes no
arguments, but the opening and closing parentheses must still be present. The string
returned is the absolute address of the directory. Thus for working directory 'full' the
value returned is "/public_html/members/full".

 If we wish to change to a new current directory this can be done using the chdir
function which takes the relative name of the new current directory as its argument.
For example

 The new directory name can also end with a slash character, e.g. "../buildings/".

7.7 Decomposing a Relative File or Directory Name into its
Components

 Occasionally it is useful to be able to decompose the name of a fi le or directory into
its component parts.

 Function dirname takes a relative fi le or directory name as its argument and
returns the path as a string. For example if the current directory is 'members' then

7 Using Files

107

 returns the string "../buildings". The value of dirname("../buildings") is also "../
buildings". The value of dirname("student.php") is the string ".", which contains
only a dot. Note that directory names are returned without a fi nal / character.

 The function pathinfo takes a relative fi le or directory name as an argument and
returns an associative array giving its component parts. For example (taking 'mem-
bers' as the current directory):

 outputs

 Here the value of dirname (the path) is the dot character, signifying the current
directory.

 The next example shows a fi le in a different directory, referred to by its relative
name.

 outputs

 If we apply pathinfo to a fi le without an extension, such as

 the output is

 Finally we apply pathinfo to a directory

7.7 Decomposing a Relative File or Directory Name into its Components

108

 outputs

 Note that PHP refers to 'dir4' as 'fi lename' even though it is actually the name of
a directory. In the fi nal two examples no value is associated with the key
'extension'.

7.7.1 Example

 Suppose we have a variable $fname holding a relative fi le name such as "../../docs/
abc.pdf" and we wish to create a new relative fi lename with the fi le 'stem' (i.e. the
part before the extension) replaced by the value of variable $newStem. So if $new-
Stem were "mem2647" the new relative fi le name should be "../../docs/mem2647.
pdf". If $fname does not have an extension, e.g. "../../docs/xyz" the value of the new
name should just be "../../docs/mem2647".

 We can achieve this using the PHP statements

 Note the need to write a / character after the directory name and a dot character
before the extension, if there is one.

7.8 Finding the Contents of a Directory

 If we want to know all the contents of a directory we can fi nd them using the scandir
function, which takes a relative directory name as its only argument and returns an
indexed array containing all its contents in ascending order. For example (with cur-
rent directory 'members'):

 outputs

7 Using Files

109

 The fi rst two elements of the array will always be . and .. signifying this directory
and the parent directory, respectively. The remaining elements are the names of the
fi les and directories in the specifi ed directory in ascending alphabetical order. Note
that fi les and directories are not distinguished. Also note that only the 'top-level' of
directories are shown. The sub-directories of 'members' and 'buildings' are not listed.

7.9 Summary of Functions

 This is a reference list of the functions described in this chapter. There are other less
important functions which can be found in PHP reference material if they are
needed.

 Type
returned Function name and arguments Description

 logical* chdir(dir) Change to new current directory (returns
TRUE for success or FALSE for failure)

 logical* chmod(fi le/dir,mode) Change protection mode of specifi ed fi le or
directory (returns TRUE for success or FALSE
for failure)

 string dirname(fi le/dir) Return path of fi le or directory
 array explode(string1,string2) Divides up string2 into parts separated by

substring string1 and converts them into the
elements of an array

 logical is_dir(fi le/dir) Exists and is a directory
 logical is_fi le(fi le/dir) Exists and is a fi le
 logical is_readable(fi le/dir) File or directory exists and is readable
 logical is_writable(fi le/dir) File or directory exists and is writeable
 logical is_writeable(fi le/dir) File or directory exists and is writeable
 logical* fclose(fi lepointer) Closes fi le (returns TRUE for success or

FALSE for failure)
 array fi le(fi le) Convert text fi le to array
 logical fi le_exists(fi le/dir) File or directory exists
 integer fi lesize(fi le) Returns size of fi le in bytes (i.e. characters) of

storage
 resource
(fi le
pointer)

 fopen(fi le,mode) Opens a text fi le in a specifi ed mode

(continued)

7.9 Summary of Functions

110

 Type
returned Function name and arguments Description

 integer* fprintf(fi lepointer,format
specifi er, var1, var2, …)

 Prints a string in formatted form. (Returns the
number of bytes written.)

 string fread(fi lepointer,integer) Read specifi ed number of characters from a
text fi le or up to the end of fi le, whichever is
less

 integer* fwrite(fi lepointer,string) Write to specifi ed text fi le
 (Returns number of bytes written or FALSE on
error)

 string getcwd() Returns the absolute address of the working
directory

 string implode(string,array) Combines the elements of the array into a
string separated by substring string1

 logical* mkdir(dir,mode) Create directory with specifi ed name and path
with specifi ed protection mode (returns TRUE
for success or FALSE for failure)

 array pathinfo(fi le/dir) Return associative array of components
 logical* rename(fi le/dir,fi le/dir) Rename fi le or a directory (including its

contents). This can involve moving the fi le or
directory to a different parent directory (returns
TRUE for success or FALSE for failure)

 logical* rmdir(dir) Delete directory with specifi ed name and path
(returns TRUE for success or FALSE for
failure)

 array scandir(dir) Return indexed array of directory contents
(top-level only)

 * Function generally used in 'standalone' mode
 fi le: address of a fi le, relative to the current directory
 dir: address of a directory, relative to the current directory
 fi le/dir: address of either a fi le or a directory, relative to the current directory

 Note: absolute addresses such as /public_html/buildings/main.php are also
 permitted, but using these is not recommended.

 Chapter Summary
 This chapter introduces the idea of a website as a collection of fi les organised
in a hierarchical structure of directories and sub-directories. The use of rela-
tive and absolute addresses is explained and the path to a fi le or directory is
defi ned. Functions for writing data to text fi les and reading data stored in that
form are described. The use of the explode and implode functions to change a
string such as a record in a text fi le to the elements of an array or vice versa is
illustrated. The topic of fi le and directory protections is introduced and func-
tions for testing the existence and protection status of fi les are described. The
chapter ends with descriptions of other functions that can be applied to fi les
and directories and functions for decomposing a relative fi le or directory
name into its component parts and for fi nding all the contents of a directory.

7 Using Files

111

 Practical Exercise 7
 Using the scandir function write a PHP script which takes a variable $path contain-
ing the path to a directory from the current directory and displays the names of all
the fi les and (top-level) sub-directories in that directory in alphabetical order. The
entries . and .. should be omitted. To distinguish between fi les and directories dis-
play the name of the latter in bold. For both types of entry display after the name the
letter R and/or W indicating that it is readable and/or writeable.

7.9 Summary of Functions

113© Springer International Publishing Switzerland 2015
M. Bramer, Web Programming with PHP and MySQL,
DOI 10.1007/978-3-319-22659-0_8

 Chapter 8
 User-Defi ned Functions

1 To avoid any possible confusion, the term 'user' here refers to the PHP programmer, i.e. the person
who writes the PHP script. Elsewhere in this book we use the term 'user' to refer to the 'end user'
of a script, i.e. the person looking at a web page in a browser.

 Chapter Aims
 After reading this chapter you should be able to:

• create and use your own user-defi ned functions
 1

• create and use a personal function library
• understand the difference between passing arguments by value and by

reference
• understand how to give an argument of a function a default value.

8.1 Introduction

 As will no doubt be clear from previous chapters, much of the power of PHP comes
from the use of system functions to perform a wide variety of operations. It is also
possible for PHP programmers to defi ne their own functions as part of a script, and
then to use them (possibly several times) in that script.

 As an example the PHP statements shown in Chap. 7 to copy the contents of a
text fi le to a new text fi le with the fi rst line removed can be made into a function
 removeHeader , defi ned as follows.

http://dx.doi.org/10.1007/978-3-319-22659-0_7

114

 Then to copy a fi le fi le1.txt to a new fi le fi le2.txt with its fi rst line removed, all
we need to write is:

 The fi rst line of a function defi nition comprises four elements:

• The word function
• The name of the function
 Function names follow the same rules as variable names. They comprise the

characters a to z, A to Z, 0 to 9 and underscore, but may not begin with a digit.
Unlike variable names a function name may not begin with a $ sign. Also unlike
variable names, function names are not case-sensitive, so the function names
removeHeader and reMOVEheader are effectively the same.

• An argument list enclosed in parentheses. This will generally consist of one or
more variable names separated by commas. However some functions may have
no parameters in which case an empty pair of parentheses () is required.

• An opening brace character, signifying the start of the defi nition of the
function.

 The fi nal line of a function defi nition is always a closing brace character. In the
above example we have added a comment giving the name of the function, but that
is solely in the interest of readability.

 Between the opening and closing braces we can place any number of PHP state-
ments with the exception of another function defi nition. User-defi ned functions can
call other user-defi ned functions but their defi nitions may not be nested.

 Function defi nitions can be placed almost anywhere in a PHP script. It is proba-
bly good practice to place all of them together either at the beginning or at the end
of the script but they can also be placed between 'normal' PHP statements if you
wish. (The system will not be confused if you do this, although you may fi nd it
harder to understand your own scripts if you do.) Although the PHP system gener-
ally works through a script from top to bottom, function defi nitions are not executed
when they are encountered. A function is only executed when it is 'called', in the
same way as a system function might be. Except in very early versions of PHP it is
not necessary for a function to be defi ned in a script before it is used there.

 The following example shows the removeHeader function being used from two
parts of the same script.

8 User-Defi ned Functions

115

 Note that the presence of two lines of HTML between the two blocks of PHP
does not prevent the second use of removeHeader. Wherever it is placed in one of
the PHP parts of the fi le, the function defi nition is available for use throughout that
and all the other PHP parts of the fi le.

 Function removeHeader is an example of a type of function that is permitted in
PHP but would not be allowed in many other languages. It does not return any value
and is executed purely for what it does. To call it we simply use a function call such
as

 Functions of this kind can include a RETURN statement which indicates that
execution of the function should immediately stop. To illustrate this here is a revised
version of function removeHeader.

8.1 Introduction

116

 Here we start by checking whether the fi le passed as the fi rst argument of remove-
Header2 is readable. If it is not we print out an error message and then execute the
return statement which immediately terminates the execution of the statements in
the function defi nition. Otherwise we copy the contents (less the fi rst line) to $fi leB
as before. In both cases, when function execution ends the line saying 'This line will
always be reached' will be the next to be executed.

 There can be return statements at several different places in a function defi nition
if required. On the other hand, for functions that do not return values it is often pos-
sible to avoid using a return statement altogether. Thus the previous defi nition of
function removeHeader2 can be simplifi ed to

 The next example shows a function which returns a value. In practice this is
likely to be the more common kind of function defi ned (and the only kind permitted
by many other languages).

 The function printout defi ned below starts by testing whether a fi le passed to it
as its only argument is readable. If it is not readable, a value of zero is returned, but
no error message is output. If it is readable, its contents are printed out line by line
and the value returned is the number of lines of text in the fi le.

 As before, executing a return statement causes the function to cease execution
immediately. The value of the function (in the form of a variable name, a constant
or an expression) follows the word return, separated from it by at least one space.

 To call the function we need to use a statement such as

8 User-Defi ned Functions

117

 which assigns the function value to a variable.
 As for system functions, when a user-defi ned function is called the arguments of

the calling function can be variables, constants or expressions that evaluate to con-
stants. They are matched against the variables listed in the argument list of the func-
tion defi nition, so in the above example variable $thisfi le in function printout is
given the value "docs/fi le99.txt".

8.2 Global and Local Variables

 So far there has been no clash between the variable names used in the function defi -
nitions and those used in the remainder of the scripts. To understand what happens
if there is, it is necessary to introduce the concept of global and local variables. The
next example (which does not make use of functions) illustrates the concept of
global variables.

 Let us assume that fi le udf1.php contains the following lines:

 The fi le comprises two PHP scripts separated by two lines of HTML. Despite
this fragmentation the values given to $a and $b in the fi rst script are still in force in
the second script. It is in this sense that variables $a and $b are called global vari-
ables: once values have been assigned to them they apply to any further PHP scripts
in the same fi le. When the fi le ceases execution the variable values cease to exist,
unless they are passed to a new PHP fi le via its URL (as described in Chap. 10) or
using a web form (as will be described in Chap. 9).

 The position with variables used in functions is entirely different. This example
is an amended version of one given previously.

8.2 Global and Local Variables

http://dx.doi.org/10.1007/978-3-319-22659-0_10
http://dx.doi.org/10.1007/978-3-319-22659-0_9

118

 As the comments at the end of the script indicate, variables $arr and $i, which
were used when the function printout was executed have no existence once the func-
tion has ceased execution.

 Variable $aa was given a value (100) before function printout was executed and
still had this value after the function ceased execution, even though variable $aa was
assigned the value 200 during the execution of the function. The value −8.4 was
passed to printout as the value of parameter $bb and this was increased to 150
within the function. Despite this variable $bb still had the value 50 after the function
had fi nished executing.

 This is because variables $aa and $bb used in function printout are entirely dif-
ferent variables from the variables $aa and $bb used outside the function. Variables
$aa, $bb, $arr and $i used in function printout are called local variables . Global
variable $bb used outside the function defi nition has the same name as a local vari-
able used within the function, but they are entirely separate variables.

 We can think of a function defi nition as being enclosed in a sealed box with its
own local variables that are entirely separate from any variables of the same name
used outside the box. Values are passed into the box via the argument list and a
value may be passed out using a RETURN statement.

 This separation between local and global variables is generally of great value to
the programmer. It means that functions can be defi ned without any need to consider
the variables that will be used elsewhere in the script from which they are called.

8.3 Returning More than One Value

 Sometimes it may be desirable for a function to return more than one value. We can
handle this by creating an array with the required values as its elements and then
returning the array as the function's (one) return value.

 In this example, two numbers and a string are returned as the elements of an
array which is then assigned to variable $myarray.

8 User-Defi ned Functions

119

 produces the output

8.4 Creating a Function Library

 If you write any signifi cant number of PHP scripts you are likely to fi nd that there
are some sequences of statements that you use frequently in the same or nearly the
same form. Such sequences are natural candidates for making into functions.

 For example, if you often store numbers in the yymmdd form used in this book
(e.g. 180624 for 24 th June 2018) you are likely to fi nd that the associative array defi -
nition given in Sect. 4.5.1 to illustrate how to convert a month number such as "02"
into a month name such as "February" will prove useful in several different scripts.
This makes it a good candidate for conversion to a function genMonthName, as
shown below.

8.4 Creating a Function Library

http://dx.doi.org/10.1007/978-3-319-22659-0_4

120

 Functions that are likely to be needed frequently in different scripts can also be
placed in special PHP fi les to form a personal function library . For example we may
decide to place function genMonthName together with the original version of func-
tion printout into a function library. To do this is straightforward. We simply create
a fi le with a name such as utils.php ('utils' standing for 'utilities') with the following
contents.

 We will never execute this PHP fi le in the usual sense of pointing our web
browser to it, but if we did there would be nothing for the browser to display.
Functions do nothing until they are called. Instead we will insert the functions into
one or potentially many scripts using an INCLUDE or a REQUIRE statement. Thus
the last example would become:

 It might be objected that the defi nitions of both function genMonthName and
function printout are inserted into the script although only the former is used.
However this is a small price to pay for the convenience of using commonly needed
functions this way.

8 User-Defi ned Functions

121

8.5 Using a GLOBAL Statement in a Function Defi nition

 Although the value of the separation between global and local variables was stressed
earlier, on some occasions it may be desirable (or at least convenient) for the execu-
tion of a function to be able to use and/or change the values of some of the variables
outside the sealed box. It is possible to use a GLOBAL statement in a function defi -
nition to specify that some variable names are to be treated as global.

 To illustrate this we will amend an example given previously to add a GLOBAL
statement to the function printout.

 In this case the variables $aa and $bb used in function printout are specifi ed as
being the same as the global variables used outside the function. When their values
are changed inside the function they change outside the function too.

 Although this approach has been included here for completeness, it is probably
best avoided. The separation between local variables inside a function defi nition and
global variables outside it is a valuable one which makes it much easier to write
functions that are reusable, especially if they are to be placed in function libraries
for use by means of INCLUDE or REQUIRE. We will not use it again in this book.

8.6 Passing an Array as a Function Argument

 As well as 'regular' variables it is possible for an entire array to be passed as an argu-
ment to a function. This example illustrates what happens.

8.6 Passing an Array as a Function Argument

122

 The output produced is

 The values of the elements of $testarray are unchanged. This may be surprising
to readers who are familiar with passing arrays as arguments in other languages but
it is entirely consistent with passing other (non-array) variables.

8.7 Arguments Passed by Value and Arguments Passed by
Reference

 Up to now all variables passed into a function through its argument list are passed
 by value . Nothing the function does can change the values of variables (even those
of the same name) that are outside the function.

 This is generally all that is needed but there are some occasions when it is desir-
able to allow a function to change the value of a variable that is passed to it through
its argument list. We say that such variables are passed or called by reference .
Passing by reference is achieved by making a small change to the function's argu-
ment list. Preceding the name of a variable by an ampersand character indicates that
it is to be passed by reference.

 In this example, the function's argument list has two variables: $aa and $bb. The
latter is preceded by & indicating that it is to be passed by reference.

 This script produces the output:

8 User-Defi ned Functions

123

 The fi rst argument passed to function test, i.e. $x, has been treated as passed by
value and so its value of 100 was not changed by the function call. On the other
hand, the second argument passed to the function, i.e. $y, was passed by reference
and so the assignment $bb = 150 inside the function caused the value of $y to be
changed to 150.

 Passing some arrays by reference is likely to prove of more value in practice.
This example shows two arrays passed to function test. Array $array1 is passed by
value. The ampersand in the argument list shows that array $array2 is passed by
reference.

 The output from this script is given below:

 All the elements of array $x are unchanged by the function call, whereas all the
elements of $y have been increased by 100.

 The fi nal example in this section is a function to set all the elements of an indexed
array to zero.

8.7 Arguments Passed by Value and Arguments Passed by Reference

124

 The output from the script confi rms that all the elements of $x have been set to zero.

8.8 Default Values for Arguments

 Another unusual feature of functions in PHP is the facility to omit some of the argu-
ments when calling a function, in which case specifi ed default values are used.

 The example below shows a function with four arguments, all passed by value.
The third and fourth arguments both have specifi ed default values.

 The output from the three function calls is shown below. It can be seen that if the
third and fourth arguments are omitted they are treated as having default values,
namely 120 in the case of $c and the string "dog" in the case of $d.

 When a variable is passed by value the default value must be a constant, not a
variable or a function call, etc. As the next example shows, the variable can also be
an array of constants.

8 User-Defi ned Functions

125

 The output from this script is

 Note that when using default arguments in a function defi nition, any such argu-
ments should be specifi ed to the right of any non-default arguments. When the func-
tion is called any omitted values must be the right-most ones in the argument list. So
in the case of test2 above, the function call test2(60,90,array(12,24,−6)) would be
valid but test2(60,90,,"cat") would not be.

 From PHP version 5 onwards it has been possible for variables passed by refer-
ence to have default values too, but that possibility will not be discussed here.

 Practical Exercise 8
 (1) Defi ne a function hypo that takes the length of the two shorter sides of a right-

angled triangle as arguments and returns the length of the hypotenuse.
 (2) Defi ne a function that prints out the contents of a two-dimensional array

row-by-row.
 (3) Convert your answer to (2) to print out the contents in the form of a table.
 (4) Defi ne a function that displays a specifi ed image, with a specifi ed width and

height. The default values of width and height should be 150 and 200
respectively.

 (5) Defi ne a function that sets all the elements of a two-dimensional array to a given
value (default zero).

 Chapter Summary
 This chapter demonstrates how users can defi ne their own functions as part of
a PHP script. The concept of global and local variables is introduced and the
value of creating a function library is discussed. The chapter goes on to con-
sider related issues such as passing an array as an argument of a function and
the difference between passing arguments by value and by reference. Finally
it is shown how to give arguments default values

8.8 Default Values for Arguments

127© Springer International Publishing Switzerland 2015
M. Bramer, Web Programming with PHP and MySQL,
DOI 10.1007/978-3-319-22659-0_9

 Chapter 9
 Passing Variables to a PHP Script I

 Chapter Aims
 After reading this chapter you should be able to:

• understand in detail the components of a web form
• write a webform of your own using a combination of HTML and PHP

function calls

9.1 Introduction

 In this chapter we look at the most common way of passing the values of variables
into a PHP script: the use of a webform, normally written in HTML, to send values
to a PHP script which we will call a destination page .

 Although this book is not about HTML, the topic of webforms is a major excep-
tion. Unless you have previously used PHP (or some similar language) to write
destination pages it is most unlikely that you have used HTML to write webforms
and we will assume that you have not. We will see that even for quite basic web-
forms it can save a great deal of effort and avoid a lot of errors to use PHP to gener-
ate some or all of the lines of HTML.

 In the next chapter we will discuss how to write the PHP statements for a destina-
tion page to make use of the values passed from a webform and will discuss two
other ways in which values can be passed into a PHP script.

128

9.2 Webforms

 Many organisations now invite their users, customers etc. to provide information by
fi lling in a form on the screen and pressing a 'submit' button. This is a typical (but
simple) example of a webform .

 Filling in the form and pressing Submit will send the information to another
webpage, which we will call the destination page , and the user's web browser will
automatically move to that page. The destination page must be written in PHP or
some similar language (not plain HTML). On receiving the values passed from the
'sending' page the destination page will take some action, create or update a data-
base record or some combination of such actions. We will come on to destination
pages in Chap. 10 .

 This simple example illustrates seven different types of box, button etc., known
collectively as form objects .

• The one-line horizontal boxes for Forename and Surname are known as text
boxes or text fi elds . These are each 20 characters wide but up to 50 characters
may be typed in each. (When there are more than 20 characters entered, the left-
most ones scroll off to the left and become unreadable.) We will see how to
specify the 20 and 50 values when we look at the HTML used to generate the
form.

• A common convention is to place an asterisk after a form object if it is compul-
sory for the user to complete it. Here we are insisting that Forename, Surname
and Address are provided. There will need to be a test that these boxes are not
empty in the destination page.

9 Passing Variables to a PHP Script I

http://dx.doi.org/10.1007/978-3-319-22659-0_10

129

• The box next to Address is called a textarea . This one is two rows high and 24
columns wide. The user can type any amount of text into the textarea and it will
automatically wrap around as the right-hand edge of the box is reached. If more
than two lines are typed the uppermost ones will scroll up and become
unreadable.

• The line beginning Age Group is an example of the use of radio buttons . The
user can select at most one of the options. Selecting an option makes the small
circle (the 'button') turn black. Clicking on another option makes the fi rst button
clear again and turns the second one black. The complete set of radio buttons is
known as a radio group .

• The line beginning Nationality illustrates a 'Select Box'. Clicking on the arrow
(or other marker) to the right of the word British will produce a drop-down menu
with a (short) list of alternative nationalities.

• The small square to the right of the words 'I agree to the terms and conditions' is
a checkbox. Clicking on it once puts a small tick (or similar symbol) into the box
indicating that the option is selected. Clicking on the box again removes the
contents making the option unselected.

• There needs to be a Submit button at the end of every web form. Pressing it sends
all the values entered in the form to the destination page and moves the user's
web browser automatically to that page.

• The Reset button can sometimes be useful, especially if the user makes mistakes
in entering some of the values. Pressing it returns the web form to its original
state.

 Although writing a web form can be done entirely in HTML it is a tedious and
error-prone task if the form is anything but trivial, and can be made considerably
faster by using a PHP script, or perhaps a number of small fragments of PHP to
generate the lines of HTML automatically and then output them using PHP print
statements.

 Apart from the buttons, most form elements can be given default values that are
used if the user does not change them. In the above example the only fi eld with a
default value is the Select Box labelled Nationality, which has a default of British.
Default values that are always the same for every user can be specifi ed entirely in
HTML, as will be explained below. However this is not possible when the default
values may vary from one user to another, e.g. name and address values that have
been taken from a database. In this case the default value needs to be entered into
the form using a PHP script.

 The HTML needed to generate the form given above is shown below with the
lines numbered for ease of reference.

9.2 Webforms

130

 Every web form begins with a <form> tag and ends with a </form> tag (see lines
2 and 24 above). The <form> tag and form elements have a number of attribute=value
combinations such as method="post". Some of these are compulsory, others are
optional. The value given after the = sign should normally be enclosed in double
quotes, unless it is purely numerical and defi nitely must be if it contains any embed-
ded spaces. Apart from the right-hand side of an attribute=value pair and any default
values, upper and lower case letters can be used interchangeably in a web form.

 Some of the less-commonly used attributes are accepted by one web browser, but
ignored by another. Naturally you will have no control over the browser a user
chooses to use to access your pages, so non-standard attributes are best avoided. We
will not attempt to include comprehensive details of every possible attribute here;
just the ones that you are most likely to need to use and that are accepted by most or
all common web browsers.

9.2.1 The <form> Tag

• The value of the name attribute is normally unimportant. However, if there is
more than one form on the same page they should be given different names.

• The method attribute should normally be set to "post", which indicates that the
values are to be sent to the destination page 'invisibly' and retrieved by that page
as we shall illustrate in Chap. 10 . Other possibilities will not be considered in
this book.

9 Passing Variables to a PHP Script I

http://dx.doi.org/10.1007/978-3-319-22659-0_10

131

• The value of the action attribute is the address of the destination page. This can
either be an absolute address beginning with http:// or https:// or an address rela-
tive to the sending page. In the case of action="mydir/destin1.php" the destina-
tion page is fi le destin1.php in the folder 'mydir', which is a subfolder of the one
in which the sending page is located. To indicate the current directory or its par-
ent directory we can use the notation . and .. respectively. Thus to indicate that
the destination page is the same as the sending page we can put action="."

9.3 Form Objects

 The above example illustrates the most commonly used form objects. We will go on
to describe how to write each of those used in the above example in HTML and also
give a PHP function that will generate the necessary HTML using a small number
of parameters. We will assume that all the functions will be gathered together into a
single PHP fi le named wfutils.php (wf standing for 'web form'). This fi le can then
be included in the page that generates a web form by a PHP 'include' statement or a
short PHP script, such as

9.3.1 Text Field

 The HTML statement

 Will produce a text box representing a variable with the name forename. In this
case, the box is wide enough to accept up to 20 characters of text, the value of the
size attribute. However as many as 50 characters, the value of the maxlength param-
eter, may be entered. (If, say, 30 characters are entered, the fi rst ten will scroll off to
the left.) If the value of maxlength is omitted, the same value as size will be assumed
by default.
 If the 'value' attribute has a value, as in this example:

 that value will appear in the box as a default value.

9.3 Form Objects

132

 Here and elsewhere in this chapter it is possible that the default value you wish
to set is not a string constant but the value of a variable, say $defval. (This may have
been obtained from a database, a text fi le etc.)

 Specifying a variable as the default requires some use of PHP. The easiest way is
to print the entire <input> tag, for example:

 Note that all the " symbols except the outermost pair have been 'escaped', i.e.
preceded by a backslash character.

 Writing a succession of form objects is a tedious and error-prone task, even when
there are no non-constant default values involved. The effort involved can often be
reduced considerably by using PHP to generate form objects automatically.

 This short PHP user-defi ned function will automatically generate a text box with
a specifi ed default value (which may be an empty string).

 It can be used by passing it just four parameters, e.g.

9.3.2 Textarea Field

 Unlike a text box, a textarea box allows more than one line of text to be entered.
 The HTML statement

 will place a box with 2 rows and 24 columns on the screen. The user can type any
amount of text into the textarea and, as mentioned previously, it will automatically
wrap around as the right-hand edge of the box is reached. If more than two lines are
typed the uppermost ones will scroll up and become unreadable.

 If for any reason you want to limit the number of characters entered in a textarea
box an additional attribute/value pair can be used to do this, e.g.

9 Passing Variables to a PHP Script I

133

 (The 'maxlength' attribute is only available with HTML 5 onwards.)
 Any text that is placed between the <textarea> tag and the closing </textarea> tag

is treated as a default value, for example:

 will produce a text area box containing the words 'This is a default value. It is
quite long and goes over more than one line.'

 To include a line break in a default value, either press the 'return' key or use the
combination 
 which inserts two special characters, essentially 'car-
riage return' and 'linefeed'. Other possibilities such as using the combination \r\n or
the HTML tags
 and <p> will not work. Those characters will simply be dis-
played unchanged.

 This short PHP user-defi ned function will generate a text box automatically

 It can be used by passing it just four parameters, e.g.

9.3.3 Radio Buttons in a Radio Group

 The HTML statements

 will produce a row of four radio buttons in a radio group. The buttons all have the
same value of the name attribute and it is that which links them together. It is the
HTML text outside the <input> tag that tells the user what meaning to give to each
possible selection. The button/text combinations are generally separated by a space
character or a line break
 tag or a paragraph break <p> tag. (In the above
example there is an 'invisible' space at the end of each line.)

9.3 Form Objects

134

 The text following the button will necessarily need to be unique, but the values
do not all have to be different. For example we may have a quiz with a number of
marks awarded for each answer, such as

 A default value may be specifi ed by adding the attribute 'checked' to one of the
buttons.

 The corresponding button will contain a black circle to indicate that it is the
default value.

 Writing a PHP function to generate a group of radio buttons is more diffi cult than
for the text box and textarea. One approach is to create an associative array, e.g. by

 and then use the wfbuttons function defi ned below

 by a function call such as

 This will produce a row of four buttons with the one labelled 'b' checked by
default and with a space used as a separator between them.

9 Passing Variables to a PHP Script I

135

9.3.4 Select Box

 The Select Box is one that can benefi t more than probably any other from PHP
assistance, as we shall soon see.

 The HTML used to produce the Select Box next to the word Nationality in the
fi gure at the start of the chapter is given below.

 The value displayed, in this case British, is the default value. Clicking on the
small box next to it (or other symbol such as an arrow, depending on the browser
used) produces a short drop-down menu. There is a choice of four nationalities, each
of which will cause a value to be sent to the destination page. Thus choosing
'Chinese' will result in the value CN being sent.

 A default value can be specifi ed by using the 'selected' attribute of the <option>
tag. For example

 If none of the <option> tags has a 'selected' attribute, the fi rst of them is assumed
to be the default.

 The main diffi culty with using a Select box is that there will often be a large
number of alternative options. Suppose we want a user to enter a date of birth in the
order day, month and year. We need a Select box for day with values from 1 to 31,
another one for month from 1 to 12 and one for year of birth from (perhaps) 100
years ago up to the current year.

 The PHP function wfselectNumrange will generate a select box for a specifi ed
range of numbers.

9.3 Form Objects

136

 Calling the function by

 will generate 33 lines of HTML

 (The lines for values 4–28 have been replaced by a row of dots to save space.)
 Here value 2 is the default. Passing a fi nal parameter which is outside the speci-

fi ed range, e.g. zero will ensure that the 'selected' attribute is never included, with
the result that the fi rst value listed is taken as the default.

 It is not essential for the value and the text shown to the user to be the same but
in case of a day of the month there seems no reason for it not to be.

 A select box for 'month' with no default can be generated by the function call

 We can then use the two lines of PHP

 to generate a select box for 'year' with 103 lines of HTML, with no default.
 We may wish to improve on this in the case of the select box for month, by dis-

playing the words January, February etc. to the user whilst retaining the values 1, 2
etc.

 To do this we will create a separate function to generate a select box as follows.

9 Passing Variables to a PHP Script I

137

 Calling the function by

 will produce 14 lines of HTML with February as the default month.

 Now we have the wfselectNumrange and wfselectMonth functions we can easily
write the PHP script needed to generate select boxes that can be used for inputting
the date of an event we are organising, assuming it is sometime this year or in the
two following years. We will make the default date displayed today's date. We can
do this by:

 If today were July 4th 2018, the result would be a row of three select boxes like
this.

9.3 Form Objects

138

 Two further attributes that can be used with the <select> tag are size and
multiple.

 The size attribute might be better called 'height'. The combination size=2 speci-
fi es that the select box should be two values high rather than the usual one. The
HTML below

 gives a form object that looks like this.

 This is unlikely to be of much value and has the possible disadvantage that if no
option is specifi ed as checked, there will be nothing sent to the destination page,
rather than the fi rst item in the normal situation where size is not specifi ed (or has
the value 1).

 The real value of the size attribute is when it is used in conjuction with the mul-
tiple attribute. To illustrate this we will change to a new example. The HTML below
generates a select box which enables the user to specify any from zero to all seven
choices in a list of possible interests.

 There are three points to note about the <select> tag

9 Passing Variables to a PHP Script I

139

 The fi rst is the use of the attribute 'multiple'. The second is the use of the 'size'
attribute. This gives a larger (taller) selection box, which makes it easier to make
multiple selections. The third and most important point is that instead of a name
such as interests the name is given as interests[], with the opening and closing
square brackets indicating that an array of options will be transferred to the destina-
tion page, rather than a single value.

 The form element looks like this.

 To make multiple selections click on the fi rst selected item. This should cause it
to become highlighted. Now hold down the 'Ctrl' key on the keyboard and click on
the second and subsequent choices, which should all become highlighted too.
Clicking on the same choice twice will cancel the selection. (For some keyboards,
it may be that some other key needs to be used rather than 'Ctrl', possibly 'Alt'.)

 We end this section by showing how to create a select box when there are a large
number of options, which do not form some simple sequence such as numbers from
1 to 31. We will illustrate this by showing how to construct a select box for country
of residence.

 The International Standards Organisation (ISO) has a list 1 of around 240 coun-
tries, each with a corresponding unique two character code: FR for France, GB for
United Kingdom etc. To enclose these country names and codes in HTML <option>
tags would be an extremely tedious and error-prone task. It is much easier by means
of a little cutting and pasting to create a text fi le, which we will call countries.txt
containing 240 or so lines such as

 and ending with

1 Currently located at http://en.wikipedia.org/wiki/ISO_3166-1

9.3 Form Objects

http://en.wikipedia.org/wiki/ISO_3166-1

140

 Here each country name has been separated from its two-character code by an
asterisk. The United Kingdom has been moved to the top of the list as the author's
preferred default country. The list may also have been cut down to a more manage-
able one of say 100 'major' countries plus a line such as

 Other*ZZ
 as the fi nal entry.
 Now all we need to generate a Select box for countries is the following PHP

function.

 which we can call by

 The 'for' loop (lines 4–8) and the assignment statement in line 5 isolate each
separate line of the text fi le. Then the use of the explode function (line 6) divides the
line into the parts before and after the asterisk.

 Now the wfselectlist function is available it can be used to generate other lengthy
lists in a simple fashion from a text fi le, in the same way.

9.3.5 Checkbox

 The checkbox next to the words 'I agree to the terms and conditions' in the fi gure at
the start of the chapter can be generated by the HTML

 If the box is checked by the user the value 'terms' for variable 'tsandcs' will be
passed to the destination page.

9 Passing Variables to a PHP Script I

141

 To make the default value that the box is checked we use the 'checked' attribute.

 In this case a tick (or similar symbol) will appear in the box in the web form.
 The following PHP function will generate this form object.

 To generate a checkbox where the box is checked by default we can use a PHP
function call such as:

 To generate a checkbox where the box is unchecked by default we can use a PHP
function call such as:

9.3.6 Submit and Reset Buttons

 Submit and Reset buttons can be created by using these two lines of HTML,
respectively.

 In each case the value of the value attribute gives the text that is to be placed on
the button. For example instead of Submit we might prefer the submit button to say
'Click here to continue', in which case we simply change the fi rst line to

 To give the two buttons side-by-side, separated by a space, we can call the PHP
function

9.3 Form Objects

142

 by the call

 Incidentally the names given to the Submit and Reset buttons are generally of no
importance, except that they must not clash with any other names used in the form.
However, it is possible for a form to have more than one submit button, in which
case they must all have unique names.

9.4 Other Form Objects

 There are other form objects which we have not yet seen. We can illustrate the main
ones by this new web form.

 The HTML used to generate this form is given below.

9 Passing Variables to a PHP Script I

143

 Note the mysterious-looking additional attribute/value pair that has appeared in
the <form> tag: enctype="multipart/form-data". This is essential when there is a fi le
to be uploaded (see Sect. 9.4.3).

9.4.1 Password Field

 The box next to the words 'Student Number' is a regular text box. The box next to
Password looks the same but is a variant of a text box called a password box .

 The form of the HTML statement is the same as for a text box except that
"type=text" is replaced by "type=password". For example:

 Characters typed into the box are not displayed on the user's screen. Instead they
appear as large black dots, thus making the text typed unreadable by any onlookers.
So if the name Mary Jones is entered, it will appear as 10 dots:

 As for a text fi eld, a default value may be specifi ed:

 The default value will appear in the box as a default value, with each of the char-
acters replaced by a large black dot.

 A default value is most likely to be used when a stored password has been read
from a database and the user is given the option to change it. We will come on to
databases in Chap. 12 .

 This PHP function can be used to generate a password box automatically.

9.4 Other Form Objects

http://dx.doi.org/10.1007/978-3-319-22659-0_12

144

 It can be used by a function call such as

9.4.2 Hidden Field

 The above example also illustrates the use of a hidden fi eld.
 HTML such as this

 does not place anything on the screen, but when the Submit button is pressed, the
value "my secret value" will be sent to the destination page as the value of variable
"name3". In the example this is used to pass the reference number for the student
project to the destination page.

 The main use of hidden fi elds is to pass values to a destination page that are
important for an application but of little or no interest to the user. Note that a hidden
fi eld cannot be used to keep a value secret from the user of a web form as simply
viewing the HTML source of the web page will show the value.

 The following PHP function will generate a hidden fi eld automatically.

 It can be called by e.g.

9 Passing Variables to a PHP Script I

145

9.4.3 File Field

 The fi nal box shown in the above example is called a fi le box . It is next to the text
'Upload your project report'. This provides a facility for the user to upload a fi le
(here a fi le of text, but possibly an image or some other sort of fi le). This creates a
potential security risk for the server and perhaps because of this there are restric-
tions on how the fi le box can be used. In fact, this is probably the most diffi cult and
error-prone type of form object to use.

 The HTML to generate a basic fi le box is very simple, for example

 To use the facility is also straightforward. As its name suggests, pressing the
Browse button (which is automatically provided as part of the form object) allows
the user to browse through fi les on his/her hard disk and select one for uploading.
Pressing the Submit button then uploads the fi le to the server and sends its name and
other information as part of the information sent to the destination page. No default
value is possible.

 A major problem with this approach is that many web service providers limit the
size of a fi le that can be uploaded this way. The limit is typically 2 MB or 5 MB. If
this restriction is potentially crucial for your application, you will probably need to
contact your service provider to fi nd out the limit and (if possible) arrange for it to
be increased.

 It is also possible for a lower maximum limit to be specifi ed in the HTML. This
explains the second hidden fi eld in the above example.

 This specifi es that no fi le larger than the specifi ed size (measured in bytes) can
be uploaded. In this case the limit is 1048576 bytes, i.e. 1 MB. It is recommended
that this statement be placed before the corresponding <input type="fi le"> tag. Note
that there is no warning message given to users about fi le size limits unless the
designer of the web form places one on the form.

 There is a serious potential confusion about what happens if the user attempts to
upload a larger fi le. Although it is possible that not all systems work in the same
way, the fi le will generally still be uploaded and held as a temporary fi le on the
server while the destination page, a PHP script, is executed. When we come to look
at issues related to a destination page (Chap. 10) we will see that there needs to be
a PHP instruction to copy that temporary fi le into the website's fi le store as a perma-
nent fi le. At that stage the PHP system will recognise that the fi le is too large and
will fail to save it (which will later cause it to be deleted automatically). Depending
on how the destination page is written the user may then be sent a message saying
that the fi le could not be uploaded, when in fact it exceeded the maximum fi le size
restriction.

9.4 Other Form Objects

http://dx.doi.org/10.1007/978-3-319-22659-0_10

146

 A further issue with uploading fi les is whether it is possible to restrict the upload-
ing only to fi les of a certain kind. This can be done in the case of a PDF fi le by an
extension to the basic <input> statement.

 To be precise the restriction is not to fi les in PDF format, simply to those with the
extension pdf, which may not invariably be the same. The user can browse through
directories but only fi les with the extension pdf (or PDF) will be made available for
selection.

 Restrictions to other kinds of fi le type can also be made, e.g. to restrict uploads
to image fi les with the extension gif or jpeg we can use:

 (Here jpeg represents fi les with extension either jpeg or jpg.)
 How to deal with an uploaded fi le in the destination page will be explained in

detail in Chap. 10 .

9.4.4 Readonly and Disabled Fields

 That completes the set of form objects we will describe in this book. However we
have not yet mentioned two attributes that can be used with most of them (except for
the buttons). They are readonly and disabled. These two attributes are alternatives,
so at most one of them should be used with any form object. 2 The HTML

 indicates that the user will not be able to change the contents of the forename
fi eld. Note that there will be nothing on the form to tell the user this unless the web
form designer supplies some text such as '(this value may not be changed)'.

 When the Submit button is pressed the value of forename is sent to the destina-
tion page in the usual way.

 The disabled attribute is signifi cantly different from readonly. The HTML

 causes the forename box to be 'greyed out', i.e. its contents will appear faint as
well as being unchangeable. Most importantly, when Submit is pressed no value for
forename will be sent to the destination page.

2 If both are specifi ed, disabled takes priority.

9 Passing Variables to a PHP Script I

http://dx.doi.org/10.1007/978-3-319-22659-0_10

147

 In cases where it is important for the value of a disabled attribute to be sent to the
destination page this can be achieved by adding a hidden fi eld such as

 Text boxes, password boxes, textareas, radio groups, checkboxes, fi le boxes and
select boxes can all be disabled, but only the fi rst three can be made readonly.

 Here are examples of the HTML needed to disable each of the various types of
box.

 Note that each radio button can be disabled separately. In this example only the
third and fourth of a 'radio group' of four buttons are disabled.

 In case you are wondering why anyone would want to place a fi le box (which has
no default value) on a web form and then disable it, it might be that the form object
was generated automatically using a PHP script and that there are some circum-
stances when the box should be disabled and others when it should not be.

 In the case of the text, password and textarea form objects the attribute disabled
may be replaced by readonly . Incidentally if a fi le box is given a readonly attribute
it is treated in the same way as disabled.

9.4 Other Form Objects

148

9.5 Using Popup Windows

 This is a convenient place to introduce the topic of popup windows . Although they
can potentially be used in conjunction with any web page, they can be particularly
helpful when used to clarify the meaning of one or more of the questions in a web
form.

 Here is a typical example. The user is asked to agree to terms and conditions, but
what are they? A link is provided so that he or she can fi nd out.

 The system implementer needs to create a webpage containing the terms and
conditions. We will assume that its relative address is "whatarethey.htm". Then a
link has to be added to the HTML forming the web form next to the checkbox form
object. This is likely to be

 The target=_blank part of this indicates that clicking on the link will open a new
webpage of the same size as the original window. Having read the information the
user then needs to close the new page and continue completing the web form. This
is potentially confusing and a distraction (generally of little practical value) from
the user's main focus – completing the form.

 An alternative is to arrange for a small window known as a popup window or just
as a popup to appear, superimposed on the webpage with the necessary information.
The effect looks like this:

9 Passing Variables to a PHP Script I

149

 Having read (or perhaps just glanced at) the terms and conditions, it is natural for
the user to close the popup window, to clear it out of the way, and continue fi lling in
the form.

 There is no facility in HTML to create a popup window but we can do it using
JavaScript. 3

 Where the What are they? line
would otherwise appear we place this complicated expression:

 This is a JavaScript statement written as part of a HTML <a href> tag. Making
this replacement has no effect on what the user sees on the web form, but clicking
on the link now produces the new page as a popup.

 Unfortunately the JavaScript used to generate the popup is far from intuitively
obvious to write and is likely to prove hard to remember. This is where using a PHP
function is helpful. We can place the JavaScript inside a PHP function with two
arguments, the fi rst being the address of the new page and the second being the text
of the link. A suitable PHP function would be the following:

3 JavaScript is a scripting language with some similarities to PHP. However it is generally used very
differently, for example to check that a value entered in a web form is numeric, before it is sent to
the destination page, or to change the colour of a link when the user's mouse moves over it. There
are many books devoted to JavaScript (not to be confused with the programming language Java,
which is entirely different). Our only use of JavaScript in this book will be in connection with
popups.

9.5 Using Popup Windows

150

 We recommend placing standard functions such as popup together in one or
more utility fi les, which are then included into your PHP scripts as they are needed.
If function popup is part of fi le utils.php, say, then to use it you should place the
PHP instruction

 in the fi le you use to generate the web form.
 To create the popup from within the web form you need to put the PHP function

call

 at the appropriate place.
 The extension of the page used to generate the web form will now need to be php,

not htm or html, even if the rest of the lines in the fi les are HTML.
 If there is no other PHP in the fi le the above two lines will need to be enclosed in

PHP tags, e.g.

 and

 Now we have the popup function we can embellish it. For example we might
make the width and height values into parameters which default to 500 and 250
respectively. A suitable revised version of the popup function would be like this:

9 Passing Variables to a PHP Script I

151

 Chapter Summary
 This chapter gives a detailed explanation of webforms as a means by which
the user of a web browser can send information to a PHP script known as a
 destination page . It is shown how to specify form objects on a webform in
HTML and how this process can often be simplifi ed using functions written
in PHP.

 Practical Exercise 9
 (1) Convert the HTML used to create the webforms shown in Sects. 9.2 and 9.4 so

that all the form objects are generated using PHP functions stored in 'utility' fi le
wfutils.php.

 (2) What effect does making the above change have on the names of the fi les needed
to store the webforms?

9.5 Using Popup Windows

153© Springer International Publishing Switzerland 2015
M. Bramer, Web Programming with PHP and MySQL,
DOI 10.1007/978-3-319-22659-0_10

 Chapter 10
 Passing Variables to a PHP Script II

 Chapter Aims
 After reading this chapter you should be able to:

• write the PHP statements that enable values sent by any of the form objects
described in Chap. 9 to be used in a destination page

• send variable values to a destination page using an extended URL and
write PHP statements to use the values sent in the destination page

• use session variables to pass values around the PHP scripts in a large
website.

10.1 Introduction

 In the last chapter we looked at the most common way of passing the values of
variables into a PHP script: the use of a webform to send values from a sending page
to a destination page written in PHP.

 In this chapter we discuss the PHP statements needed in a destination page to
make use of the values passed from a webform. We also discuss two other ways in
which values can be passed into a PHP script.

10.2 Destination Pages

 When the user completes a form and presses the submit button, the values entered
in the various fi elds are sent to the web page (PHP script) specifi ed in the action
fi eld of the <form> tag. This will generally cause some action to be taken and may

http://dx.doi.org/10.1007/978-3-319-22659-0_9

154

involve the creation or updating of an entry in a database or a text fi le. To start our
explanation of how to construct a PHP script for the destination page we will not
attempt to do anything useful with the values received and will instead concentrate
on establishing what exactly has been sent to the destination page and in what form.

 For convenience we will repeat the web form shown at the start of Chap. 9 .

 In all our examples the destination page has been named destin1.php. However it
can potentially be any PHP fi le on the server where the sending page is located,
referred to by a relative address such as ../mydir/update.php.

 Pressing the Submit button causes the values entered by the user to be sent to the
destination fi le, as 'key and value' pairs in the associative array $_POST (or in some
cases a different associative array, as will be seen later).

 Please note that the name $_POST is case sensitive. So are the names of the
other system associative arrays introduced later in this chapter.

 We give below a very short PHP script that will enable us to discover what the
values sent to $_POST are.

 The script extracts each of the key/value pairs from the array $_POST and out-
puts them in the form key=>value.

 Suppose that now we complete the form with the following values and press
Submit.

10 Passing Variables to a PHP Script II

http://dx.doi.org/10.1007/978-3-319-22659-0_9

155

 The outputs from the script destin1.php will be as follows.

 There are several points to note:

• The key part of each key/value pair is the name of the fi eld on the web form. The
'value' part is the value entered by the user in the case of the fi rst three fi elds and
a value corresponding to the user's input (including values set by default) for the
next three.

• The fi rst two lines show the values entered by the user in the forename and sur-
name text boxes. In a real destination page script we could refer to these values
as $_POST['forename'] and $_POST['surname']. They are (just) the values of
two elements in the associative array $_POST. In practice it would probably be
more convenient to assign each value to a variable for use later in the script. The
natural choice of variable names for this would be $forename and $surname,
although this is not obligatory. So in practice the fi rst few lines of the script of a
destination page are likely to be assignments such as

10.2 Destination Pages

156

• The value displayed for address is the text entered by the user, but run together
with a space between the two lines. The web form would in fact have transmitted
the values 'carriage return' and 'linefeed' to indicate the line break. These are the
characters that would be represented in a PHP string as \r and \n. However web
browsers replace any sequence of such characters, as well as tabs, spaces etc. by
just a single space and it is this that has caused the effect seen here. If we particu-
larly want to display the value passed with the original line breaks intact we can
do this by replacing the 'carrriage return and linefeed' combination by HTML
break characters, i.e.
. To do that we can use the PHP str_replace function,
e.g.

• The values of agegroup and nationality are the values specifi ed in the HTML of
the web page corresponding to the choices made by the user. The same applies to
the checkbox, where the name value is tsandcs.

• Perhaps surprisingly the Submit button has sent the name/value pair Submit/
Submit. This can be avoided if the name fi eld for the Submit button in the web-
form is set to "", i.e. an empty string, but there is no benefi t to be achieved from
doing this. Having the name/value pair sent is also a useful reminder that there
can be more than one submit button on a form.

 We will now change the form so that the Select box for nationality has size=2 and
also the attribute 'multiple' specifi ed, thus ensuring that it no longer has a default
value. We will avoid fi lling in any values or making any selections and simply press
the Submit button. The output is shown below:

 We can see that null values (i.e. empty strings "") have been sent from the web
form to the destination page, whereas the array elements corresponding to age-
group, nationality and tsandcs (i.e. the checkbox) have vanished altogether. It makes
little difference whether nothing is sent to the destination form or an empty string is
sent. If we try to print the non-existent value of $_POST['nationality'] we will get an
empty string. If we test the value of $_POST['nationality'] by say if ($_
POST['nationality']=="") the system will act as if the corresponding value exists
and is an empty string. This is a consequence of the way PHP deals with variables
that have not previously been assigned any values, i.e. it assumes that they have an
empty string as their value.

 One difference that may be signifi cant is if we use the isset function to test
whether a value has been sent. The four lines of PHP

10 Passing Variables to a PHP Script II

157

 will produce the output

 even though both have null values (i.e. they are empty strings). When it is applied to
values sent to a destination page the value returned by the isset function is always
TRUE for text boxes, password boxes and textareas whether the fi eld has been left
empty or not. The conclusion to draw from this is that isset should not be used for
those kinds of fi eld. However it is useful for testing whether a selection has been
made for other fi elds in a web form such as radio boxes and selection boxes.

 We will now go back to the second example of a web form given in Chap. 9 . The
HTML is repeated below for convenience.

 The corresponding web form looks like this.

10.2 Destination Pages

http://dx.doi.org/10.1007/978-3-319-22659-0_9

158

 Entering Student Number stud99, password mysecret, choosing fi le myreport.
pdf, then pressing Submit will produce the following output from destin1.php.

 The value in the password box is refl ected as plain text, rather than black dots.
The value of the hidden fi eld (COMP102-3) is also displayed.

 No information about the uploaded fi le is displayed, although strangely if we had
omitted the enctype="multipart/form-data" attribute in the <form> tag the addi-
tional line

 would be displayed.
 The correct way of fi nding out about the name and other properties of an uploaded

fi le is to use the system associative array $_FILES. There needs to be additional
PHP coding in the destination page to use this information to save the uploaded fi le,
as we will illustrate later in this chapter.

 If we leave the form blank and then press Submit the output will be like this.

 We can see that a key/value pair is sent to the destination page for a password
fi eld even when the fi eld is empty, as is the case for text fi elds and textareas.

10 Passing Variables to a PHP Script II

159

10.2.1 Checking for Compulsory Values

 Although it a common practice to include an asterisk on a web form to indicate that
entering a value is compulsory there is nothing in the form objects themselves to
enforce this and it is necessary for it to be tested in the destination page. So a typical
script might be like this:

10.2.2 Checking for Numeric Values and Integers

 There are sometimes other requirements, e.g. that a value entered must be numeric.
Although there are several PHP functions that can be used for this, it is more com-
plicated than it may appear and it is important to bear in mind that all values are
received by the destination page as strings not numbers.

 We recommend using the function is_numeric. For example, if a form has a fi eld
named 'price' which is meant to contain the price of a purchase, the destination page
script might include

 The defi nition PHP uses of a numeric fi eld is one that contains an optional sign,
any number of digits, an optional decimal part and an optional exponential part. So
a value such as −84.37E-2 is considered numeric. Leading spaces are accepted but
trailing spaces will make any value be treated as non-numeric. For this and other
reasons it is generally a good idea to trim all values entered by the user. Changing
the fi rst line of the script to

 will solve the problem of trailing spaces.

10.2 Destination Pages

160

 It may also be a requirement that an integer value is entered. There is a function
is_int that will test for an integer value but if it is applied to a value that was sent to
the destination page from a web form the test will invariably fail. This is because the
value sent is always held as a string not a number.

 Entering a value such as 89 will then produce the output

 Fortunately PHP is very fl exible in converting between strings and numbers.
Performing an arithmetic operation on $price, even just multiplying it by 1 will
convert the value into an integer.

 If we add some additional lines to the script to make it

 and then send the value 89, the output will be

10.2.3 Multiple Selections

 We will now return to the case of a selection box from which multiple selections can
be made. Suitable HTML for this is shown below.

10 Passing Variables to a PHP Script II

161

 This will generate a web form of the following kind.

 If we now select, say, Local Events followed by Education and press Submit, the
foreach statement in the original version of destin1.php will produce the output line

 which is not very helpful. To go further we need to examine the array of values sent
with the name interests . We can do this with the following lines of HTML. Note that
we start by testing whether the value is an empty string. This is because if nothing
is selected the form will not be sent anything at all as the value of interests , rather
than an array, and in that case the foreach statement will cause a serious error to
occur. In the case where $select has a non-null value the foreach statement will
produce each of the values selected in turn.

 In our example the output from these extra lines of PHP will be

10.2 Destination Pages

162

 Note that although we said earlier that the two choices were made in the order
Education then Local Events, they are extracted by foreach in the order in which
they appear in the list of <option> tags in the HTML that generated the selection
box.

10.2.4 File Fields

 We now come to probably the most awkward part of writing a destination page: how
to deal with an uploaded fi le. There are two parts to this: the fi rst (which is optional)
is to ensure that the fi le meets the requirements the writer of the HTML page meant
to impose on it; the second is to save the fi le in the fi le store of the website on which
the destination page is located. Both of these make use of the associative array
$_FILES.

 If we go back to the example of uploading a project report, we can see what other
information is sent to the destination page by adding these lines of PHP to destin1.
php

 If we upload a PDF fi eld named myreport.pdf the output produced by the foreach
statement will be something like this:

 These can be referred to in a PHP script by the names $_FILES['report']['tmp_
name'] etc.

 You may want to verify that the fi le size is less than your required maximum. You
can also check that the fi le type is what you were expecting. In this case it is shown
as application/pdf. However it is important to realise that this simply indicates that
the fi le extension was pdf, not that the contents are in PDF format. Allowing a user
to upload a fi le to your website inherently poses a potential security risk. How much
you need to worry about this (or take steps to avoid it) probably depends mainly on
your application.

 Some common fi le extensions and the corresponding values returned as the 'type'
value are given below:

10 Passing Variables to a PHP Script II

163

 doc application/msword
 docx application/vnd.openxmlformats-offi cedocument.

wordprocessingml.document
 xls application/vnd.ms-excel
 xlsx application/vnd.openxmlformats-offi cedocument.

spreadsheetml.sheet
 ppt application/vnd.ms-powerpoint
 pptx application/vnd.openxmlformats-offi cedocument.

presentationml.presentation
 pdf application/pdf
 txt text/plain
 php text/plain
 gif image/gif
 jpg image/jpeg
 jpeg image/jpeg

 To determine whether an uploaded fi le is genuinely of the type indicated by its
fi le extension is a diffi cult task. One PHP function that attempts to do so is the PHP
function mime_content_type. For example if fi les abc.gif and def.php are what their
extensions suggest the two lines

 will produce the output

 A determined hacker who knew how mime_content_type uses various indicators
of a fi le's content to determine its type could no doubt work out a way to fool it.
Computer security is a big topic, far outside the scope of this book. As with all
security, keeping out even the most determined and skilled hacker is an endless
struggle, but it is easy to take some basic precautions such as using mime_con-
tent_type to verify that an uploaded fi le is (probably) of the type you expect.
Regrettably the function is not available with all versions of PHP.

 Once a copy of a fi le has been uploaded it is held as a temporary fi le, possibly in
a directory named /tmp with an obscure name such as phpJY2iNm. The next step is
to move it into a permanent location on your website's fi le store with its permanent
name, which we will assume will normally be the name of the original fi le on your
hard disc. We will also assume that you wish the fi le to be stored in a folder with the
name 'uploads'. Then we can use the function move_uploaded_fi le, which as its
name suggests moves the uploaded fi le to its new permanent location. It is desirable
to check that this has been done successfully. We can do so by:

10.2 Destination Pages

164

 There are a number of reasons why a fi le upload may fail. If this happens you
should check that the <form> tag includes the attribute settings method="post" and
enctype="multipart/form-data". Another possibility is that a system-wide fi le size
restriction may have been violated. These often seem to apply to fi les larger than
either 2MB or 5MB. Finally it may be that the fi le system has protections set that
prevent the uploaded fi le being written to the target directory. The last of these pos-
sibilities can be checked using the is_writable function. In the above example the
test would be

10.2.5 Quotes in Text Fields and Textareas

 We will return once again to our original web form

 This time we will try entering values in the text fi elds and textarea that include
double and/or single quotes. For example:

10 Passing Variables to a PHP Script II

165

 The output generated by destin1.php will then include

 Each double and single quote has been 'escaped', i.e. preceded by a backslash
character, when the values are printed.

 The use of quotes in text fi elds (i.e. text boxes and password boxes) and textareas
is generally a nuisance, but as we can see there are often legitimate reasons why
they may be needed. If the script goes on to store the values in a database (as will be
illustrated in the MySQL chapters of this book), there is also a potential security risk
where a hacker may be able to follow a quote sign in a text fi eld or textarea by some
malicious text in order to send unwanted commands to your database. Rather than
explain this potential problem (known as code injection) in detail we will give a
possible solution to it which also avoids the irritation of having every quote symbol
escaped by a backslash character. We suggest that the destination script should
replace all double and single quotes by the innocuous 'slanting quote' character, cor-
rectly known as a backtick . We can do this for each fi eld, say forename, by the lines

10.2 Destination Pages

166

 The fi rst argument in the second line may be diffi cult to read. It is a double quote,
then a single quote, then a double quote. (Single quotes enclosed in double quotes
do not need to be escaped with a backslash character.)

 After the replacements to the forename, surname and address values given above,
printing the three values separated by commas will produce

 This approach avoids a number of problems and the difference between a slanted
quote and the original double and single quotes is unlikely to be of any concern to
users.

10.3 Passing Variables to a PHP Script as Part of a URL

 Although the most common way to pass variables and their values to a PHP script
is using a web form, another possibility is to pass variable/value pairs to a web
address, e.g.

 http://www.xxxx.com/admin/update.php?x=2&y=James Williamson&mode=edit
 Such an extended URL may be

• given in a link the user clicks on
• the value of the action parameter in a web form
• the target of an automatic jump using the header function (see Chap. 5)

 or simply typed into the address bar of a web browser.
 In the fi rst three cases an address relative to that of the current page may be speci-

fi ed, e.g.

 This example illustrates the key points about this extended form of URL:

• The name of the destination PHP fi le is followed by a? symbol, followed by one
or more variable=value pairs, separated by & characters.

• Variable names should generally be chosen to follow the same rules as PHP vari-
able names without an initial $ sign (as they are not PHP variables). However
they may contain certain special characters but not = signs.

• Values may contain embedded spaces and special characters such as − */% ! and
_ (underscore), but must not contain any ampersands. They should not be
enclosed in quotes. If any double or single quotes are used they are regarded as
signifi cant characters. The same comments apply as for quotes in web forms.

10 Passing Variables to a PHP Script II

http://www.xxxx.com/admin/update.php?x=2&y=James
http://dx.doi.org/10.1007/978-3-319-22659-0_5

167

 In all cases the destination page must be a PHP script, as for a web form. However,
unlike for a web form, the variable=value pairs are passed as values of the system
associative array $_GET. So the three values passed to http://www.xxxx.com/
admin/update.php by the URL http://www.xxxx.com/admin/update.php?x=2&y=Ja
mesWilliamson&mode=edit can be referred to as $_GET['x'], $_GET['y'] and
$_GET['mode'].

 It frequently makes scripts easier to write (and read) if we start by assigning the
value of each of the elements of $_GET to a variable, e.g.

 It is not essential for the names of the PHP variables to match the variable names
used in the URL as they do in this example.

 The following simple PHP script, named destin2.php, can be used to check what
is passed to a PHP script from an extended URL.

 Now a jump to

 will give the output

 (Note that null values are permitted, as for variable type above.)
 Sometimes it is helpful for a page to link to itself, probably with some new vari-

able/value settings. To do this the address to jump to can be specifi ed as just, e.g.

 with the absence of a fi le name before the ? symbol indicating the current web page.
 In some complex websites it may happen that on some occasions a particular

variable may be passed to a destination page by being set in a web form, whereas on
other occasions it is passed to the same page as part of an extended URL. In such
cases it may be worthwhile to use the associative system array $_REQUEST. This

10.3 Passing Variables to a PHP Script as Part of a URL

http://www.xxxx.com/admin/update.php
http://www.xxxx.com/admin/update.php
http://www.xxxx.com/admin/update.php?x=2&y=JamesWilliamson&mode=edit
http://www.xxxx.com/admin/update.php?x=2&y=JamesWilliamson&mode=edit

168

contains the combination of all the variable/value pairs currently set in either $_
POST or $_GET, as the following example illustrates.

 This is the HTML corresponding to the above web form.

 In this case the value of the action parameter of the <form> tag is the extended
URL

 destin3.php?x=1&z=25&lect=Henry Carter
 This script displays the values in the three arrays $_POST, $_GET and $_

REQUEST. Using the web form with typical input will produce the following
output.

10 Passing Variables to a PHP Script II

169

 If we now change the value of the action attribute to
 "destin3.php?snumber=100&spassword=abcdefg&lect=Henry Carter"
 the output changes to

 We can see that if there are confl icting values for a variable set in $_POST and
$_GET the value stored in $_REQUEST is the one in $_POST.

10.4 Passing Values to PHP Scripts Using Session Variables

 Although textbooks on PHP necessarily illustrate the language's facilities using
small-scale examples it is important to bear in mind that many large commercial
sites will have many pages and as the user proceeds to (say) make a purchase he or
she may move from one to another, to a third, back to the second, then to a fi fth and
so on.

10.4 Passing Values to PHP Scripts Using Session Variables

170

 Sometimes one PHP generated web page will include a link to another or a web
form that will jump to another page when Submit is pressed. Sometimes a page will
jump to itself with different values or even invisibly jump to another page using the
header function described in Chap. 5 . In order for the site to 'keep track' of what is
going on a great deal of information may need to be transmitted from one page to
the other, most of it meaningless to the user. This can be done using hidden values
in a web form or by values passed in URLs but when the number of variables is at
all large these methods can become very cumbersome to use.

 Many sites get round this by storing data values, known as cookies on the user's
PC. PHP does it by using session variables held on the server. This involves storing
just one meaningless value on the user's PC, which many may fi nd a more accept-
able approach than using cookies. The fi rst PHP script creates a session and then
generally writes some values to a PHP system associative array named $_
SESSION. The next page can then use the values in $_SESSION even though it did
not create it. It can also change values, delete them or add new ones. The fi nal page
destroys the session. It is all a little more complex than this but not much.

 To illustrate the process in detail we have created some small test scripts named
sess1.php, sess2.php etc. They are listed below. We will go through a possible
sequence of events step by step.

 Script sess1.php

 The user points his/her web browser to sess1.php. As the script is executed PHP
comes to the instruction session_start(). This has to be placed before any HTML and
before any output is generated using PHP print statements. This is most important.
The PHP system now checks if there is a session value stored on the user's PC. At
this point there is not so it writes one with an obscure value such as

 b7cdfg12ab7802dfg. Next the assignment statements in the script place values in
the $_SESSION array, just as if it were any other associative array. This and all our
later scripts go on to use a foreach statement to display the contents of $_SESSION
so we can see exactly what has been stored. (Incidentally, the reason for the test 'if
($_SESSION!="")' is that if nothing is stored PHP treats $_SESSION as an unini-
tialised variable not an array, so the foreach instruction will lead to a fatal error.) For
sess1.php the output produced is as follows:

10 Passing Variables to a PHP Script II

http://dx.doi.org/10.1007/978-3-319-22659-0_5

171

 In practice the script will no doubt perform many other (more valuable) opera-
tions, but these are of no concern to us for this example. Eventually it gives the user
a link which they press to move to sess2.php. Or perhaps the script simply comes to
an end and the user opens a second web browser and points it to sess2.php, it makes
no difference which. Script sess2.php now comes into operation.

 Script sess2.php

 The script comes to the session_start() instruction (which, as always, must be
before any HTML or PHP print instructions have been sent to the browser). This
time the browser checks and fi nds that there is already a session value such as b7cd-
fg12ab7802dfg stored on the user's hard disc. It therefore gives the PHP script
access to the values in the $_SESSION array. It now uses two of the values already
set: staffage and stafftitle, and sets a new one: compref. The foreach instruction
shows the values that are now stored and of course accessible to the script.

 Next the user clicks on a link which opens a replacement browser window, point-
ing at sess3.php.

 Script sess3.php

10.4 Passing Values to PHP Scripts Using Session Variables

172

 The script now sets a further variable staffcode to "Sci387" and unsets stafftitle.
The foreach instruction now gives this output.

 After more processing the script displays a web form. The user completes it and
presses the Submit button. A new script sess4.php opens in the same browser
window.

 Script sess4.php
 This script shuts the session down. We do this in two steps: fi rst unset all the

variables and then destroy the session. (The fi rst of these is not needed in this case,
but is included to illustrate how to do it.) The session_destroy() instruction causes
the stored value b7cdfg12ab7802dfg to be removed from the user's hard disc.

 Finally the foreach statement produces no output, showing that the session has
ended.

10 Passing Variables to a PHP Script II

173

 Practical Exercise 10
 Write a PHP script to serve as a destination page for the webform shown towards the
end of Sect. 10.2 . If all the compulsory fi elds have been completed and the uploaded
fi le is in PDF format the script should save the fi le to folder 'projects' with a name
that includes the project reference and the student number. (For the purpose of this
exercise it is not necessary to check that the password entered matches the student
number or that the maximum fi le size restriction has been met.)

 Chapter Summary
 This chapter describes how to implement a destination page which receives
values sent to it by a webform, as described in Chap. 9 . The use of system
associative array $_POST is explained. The values sent by a webform if a
form element is given no value (and has no default value) are also considered.
It is next shown how to check for compulsory values and to test whether val-
ues entered are numbers or integers.

 Complications which arise in connection with multiple selections from a
webform selection box are described, followed by the potentially diffi cult
issue of dealing with an uploaded fi le. This leads to a description of system
associative fi le $_FILES, the 'type' values associated with common fi le exten-
sions such as doc, docx and xls, and how to establish the fi le type of an
uploaded fi le.

 Quote symbols in text fi elds and textareas can present security problems
and it is shown how these can be handled. The chapter goes on to illustrate
another way of sending the values of variables to a destination script, using an
extended URL, and the use of the system associative arrays $_GET and $_
REQUEST in the destination page.

 The chapter ends with a description of a method of passing variables
around PHP scripts that is often used with larger websites: using session
variables.

10.4 Passing Values to PHP Scripts Using Session Variables

http://dx.doi.org/10.1007/978-3-319-22659-0_9

175© Springer International Publishing Switzerland 2015
M. Bramer, Web Programming with PHP and MySQL,
DOI 10.1007/978-3-319-22659-0_11

 Chapter 11
 PHP in Action: Managing a Members' Area

 Chapter Aims
 After reading this chapter you should be able to:

• use the material introduced earlier in the book to write useful PHP scripts,
especially to deal with information sent from a webform and to create, read
and analyse the content of text fi les.

 This chapter is designed to reinforce the material in Chaps. 7 and 9 about text fi les
and webforms as well as illustrating a number of programming techniques and the
use of several of the functions described earlier.

 Like many other organisations the Erewhon Society has a members' area on its
website. This is a password-protected area containing information about Society
events, plus possibly pictures and video clips for downloading, technical or profes-
sional advice particularly relevant to Society members etc. Having access to this
area is seen as a major benefi t of Society membership. So it needs to be protected
from prying eyes.

 A members' area is a feature of many organisations' websites but it is desirable
not to keep the whole of your website secret (unless you are representing an inter-
national criminal organisation or a secret government agency perhaps) as the pub-
licly accessible pages are your organisation's 'shop window', a place to attract new
members to join, so the members' area should not normally be the whole of the site.

http://dx.doi.org/10.1007/978-3-319-22659-0_7
http://dx.doi.org/10.1007/978-3-319-22659-0_9

176

11.1 Entering Passwords

 To gain access to the members' area the member has to enter a secret password on
the Erewhon Society home page and press a button labelled 'Submit'. We will tem-
porarily assume that the home page is named erewhon.htm. We will also assume
that the home page begins like this, with information for the general public lower
down.

 Most readers will probably have seen webforms like this (frequently several
boxes not just one) on websites they have used for purchasing goods, booking holi-
days etc.

 The HTML needed to create the simple form above (everything below the line
"Members' Area") is as follows

• The <FORM> tag signifi es the start of the webform and specifi es that the desti-
nation page for the form is memarea1.php. This does not begin with http:// or
https:// which indicates that the destination page is a fi le with the name memarea1.
php relative to the calling page (the one on which the webform is located).

• The fi rst <INPUT> tag specifi es that a text fi eld named verifi er, 20 characters
wide, should be displayed.

• This should be followed by three spaces and then the text 'Enter your password
and click on Submit' (without the quotes). 1

• The second <INPUT> tag signifi es that a Submit button should be displayed.
• The </FORM> tag signifi es the end of the form.

1 The combination (six characters) indicates a space. If we had simply entered three spaces
by using the space bar three times the web browser would display all three of them as just a single
space.

11 PHP in Action: Managing a Members' Area

177

 When the user enters a value, say mypass, in the password box and presses
Submit the variable/value pair 'verifi er=mypass' is sent to the destination page
memarea1.php.

 In the destination page we generally start by telling the PHP interpreter that we
wish to use the values sent to it from the webform. In this case there is only one
value, i.e. the password entered in the text box named 'verifi er'. We can access this
value by using the PHP statement

 Having done this the destination page script can refer to a variable $verifi er
which has the value entered by the user in the webform. (Note that the PHP variable
does not have to be named $verifi er. Any valid PHP variable name can be used.)

 If we simply wanted to print the value entered by the user, the complete contents
of fi le memarea1.php might be as follows.

 This would output to the user's web browser the one line

 We can make a small improvement to the webform before going further. When
the user types the password into the text box on the webform the characters typed
are visible to anyone going past, coming into the room etc. This is not a big prob-
lem, but it is customary to arrange for the entry of passwords to be a little more
secure. If the line

 in the HTML of the webform is replaced by

 when the user enters a password each character typed is displayed as a black dot,
thus making the password unreadable by any unwanted observer.

 So far all our PHP script does is to output the password entered by the user from
a webform. Of course we do not really want to output the value entered by the user.
We want to compare the value he or she entered with the true value of the password
and take action accordingly.

11.1 Entering Passwords

178

 Let us assume that the correct password is butler (all lower case letters), in hom-
age to the English author Samuel Butler who wrote the novel Erewhon . This is a
poor choice of password (it is short, completely alphabetic and not too hard to
guess), but it will suffi ce for the present purpose.

 The PHP script below shows a simple 'if' statement used to check whether or not
the password entered is correct.

 Of course, this is of very little use. If the user enters the correct password we
want to display the contents of the members' area in his or her browser, not just
confi rm that the password is correct. Before going on to this we will fi rst consider
the possibility that the user enters a password similar to the correct one, such as
Butler or BUTLER. We may decide that any use of upper and lower case letters in
the spelling of butler will be accepted. If so, we can achieve this by taking the user's
input and replacing all upper case letters by the corresponding lower case ones, a
process known as forcing the user's input into lower case . To do this we use the
strtolower function, introduced in Chap. 5 .

 Another possibility is that the member inadvertently types one or more spaces
before the password butler, or possibly after it, or even both. We may wish to treat
this as just demonstrating a lack of familiarity with using webforms and accept it as
valid. We can achieve this by 'trimming' the user's input to remove any leading or
trailing spaces using the trim function described in Chap. 5 . The trim function takes
a string as its argument and returns the same string with any initial or fi nal spaces,
tabs, 'newline' and 'carriage return' characters removed. We add the following as the
fourth line of the fi le.

 We now need to replace the statement

11 PHP in Action: Managing a Members' Area

http://dx.doi.org/10.1007/978-3-319-22659-0_5
http://dx.doi.org/10.1007/978-3-319-22659-0_5

179

 by a statement group that gives the information for members which is the reason for
the page existing.

 The revised form of the PHP fi le would be something like this.

11.2 Turning PHP On and Off

 The part between the opening and closing braces for the statement group may be
very substantial and is likely to involve the outputting of many lines of HTML. We
can do this using a succession of PHP print statements such as this:

 Although possible, this method of outputting lines of HTML would be very
tedious to write. Instead we can use one of the most helpful (and time-saving) fea-
tures of PHP.

 Instead of enclosing each line of HTML in a print statement, we simply 'turn off'
PHP (with a closing PHP tag) after the opening brace of the statement group follow-
ing the 'if' condition, then write the lines of HTML, then 'turn on' PHP (with an

11.2 Turning PHP On and Off

180

opening PHP tag) just before the closing brace of the statement group. The result
looks like this.

 The webpage displayed in the user's browser will look like this.

11.3 A Note on Security

 It is important to keep website security in perspective. There is a large difference
between information aimed at club members only and classifi ed military secrets and
the measures taken to protect the information should refl ect this. (Our advice is to
make sure that the latter type of information is nowhere near your website, as 100 %
reliable protection is virtually impossible.)

 However there is one common 'security hole' which defi nitely is worth plugging
and easily can be. Supposing the Erewhon Society's web domain is www.erewhon-
soc.org and to access the home page we point our web browser to http://www.ere-
whonsoc.org/erewhon.htm . What happens if someone enters the address http://
www.erewhonsoc.org/ (ending with a slash character) instead?

 We might prefer it if this gave an error message but unfortunately many browsers
will instead give a listing of all the fi les in the home directory. This may be helpful
to a malevolent person wishing to fi nd weaknesses/errors in the scripts that can be
used to damage the website, perhaps by deleting or corrupting important records.
There are still many people who would regard this as a good afternoon's 'sport'

11 PHP in Action: Managing a Members' Area

http://www.erewhonsoc.org/
http://www.erewhonsoc.org/
http://www.erewhonsoc.org/erewhon.htm
http://www.erewhonsoc.org/erewhon.htm
http://www.erewhonsoc.org/
http://www.erewhonsoc.org/

181

rather than malicious damage and it is important to take this risk seriously.
Fortunately it is easy to plug this particular security hole. If no fi le name is explicitly
given, as in the example above, the web browser searches for any fi le in the specifi ed
directory that is named index.php, index.htm or index.html (there are also a few
other possibilities). If one of them is present the corresponding webpage is dis-
played. If more than one is present the browser displays one of them in order of
preference index.html, then index.htm, then index.php.

 It is important to make sure that in every directory or sub-directory you use there
is a fi le with one of these three names. In the case of the Erewhon Society, the home
page erewhon.htm (the one with the members' area form) is pure HTML. It would
be much better if it were renamed index.htm or index.html. Either would allow the
Society to quote its web address in the short form http://www.erewhonsoc.org/ or
just www.erewhonsoc.org .

11.4 Writing a Log File

 We will next assume that the Secretary of the Erewhon Society wishes to keep
records of all accesses of the members' area, including failed attempts. To do this,
additional lines need to be added to the fi le memarea1.php to write information
about each attempted access to a text fi le named (say) "login.txt", stored in the home
directory of the website.

 We fi rst need to decide what format this text fi le should take. It seems sensible to
store information about one access of the members' area per line, giving details of
the date, the password entered and whether or not it was successful. For example a
small version of the login.txt fi le might look like this.

 However it is usually better to store dates not in text form but as a six-digit num-
ber, with two digits for each of the year, month and day (we will assume that there
are no dates before 2000 recorded).

 We do this by storing, say, Christmas Day 2016 as 161225. This is a six-fi gure
number: the fi rst pair of digits represents the year (counting from 2000), the next
pair represents the month and the third pair represents the day. Numbers less than 10
are 'padded out' to two digits with an initial zero, so September 3rd 2001 would be
010903.

 The benefi t of this approach is that if one date A is after another date B, the six
digit number corresponding to A will be larger than the six digit number corre-
sponding to B. If we write a line of text to the login.txt fi le every time the members'
area is accessed the dates (in six digit form) will be in ascending numerical order.

11.4 Writing a Log File

http://www.erewhonsoc.org/
http://www.erewhonsoc.org/

182

We can obtain a date in this format using the PHP function call date("ymd")
described in Chap. 5 .

 We can gain a similar effect for times by forming a four-digit number with the
fi rst pair of digits representing the hour (using the 24-hour clock) and the second
pair representing the minutes, both pairs being padded out with a leading zero if less
than 10. This can be achieved using the function call date("Hi"). If the time were
3.15 a.m., it would be stored as 0315 and 6.07 p.m. would be stored as 1807. This
again has the merit that if a time X is after a time Y the four-digit number corre-
sponding to X will be greater than the four-digit number corresponding to Y.

 The four lines of content previously shown for the login.txt fi le would be better
stored as

 Note that there are now four values per line. They are separated by commas and
all spaces have been removed. The four values to be output to each line of the login.
txt fi le are date("ymd"), date("Hi"), $verifi er and the string "succeeded" or "failed",
depending on whether or not the password was accepted.

 If we wanted to output this information to the web browser rather than writing it
to a text fi le (which is most unlikely), we could change memarea1.php to the
following:

 The lines that have been added are printed in bold .

11 PHP in Action: Managing a Members' Area

http://dx.doi.org/10.1007/978-3-319-22659-0_5

183

11.5 Storing Data in Text Files

 Although the topic of storing information in and retrieving it from a mySQL data-
base will be covered in detail later in this book, the use of plain text fi les (i.e. fi les
organised as lines of text, each line representing a 'unit of information') on the server
to store data of a fairly basic kind is also well worth knowing about. It is described
in Chap. 7 . For newcomers to PHP using text fi les has the advantage of avoiding the
need to learn another language (mySQL or something similar) at the same time as
learning PHP.

 Before we can write to a fi le, we fi rst have to 'open' it, i.e. establish a 'link' to the
fi le from a PHP script. We do this using the system function fopen , which takes two
arguments. The fi rst argument is the name of the fi le, login.txt, the second is a string
constant indicating how we intend to use the fi le, in this case "a" indicating that we
intend to append to it, i.e. write additional records (lines of text) to it, which are to
be placed after those already there, assuming the fi le already exists. If no fi le of the
given name exists, an empty fi le with the specifi ed name but no contents will fi rst be
created.

 We can write the statement

 to open fi le login.txt for 'appending' with fi le pointer $fp.
 Having opened the login.txt fi le for appending, we can then write lines of text to

it using the fwrite system function, for example:

 The two 'escape sequences' \r and \n signify that we want the output string to end
with the characters 'carriage return' and 'newline'. (This is important if we want the
fi le to be human-readable or if we intend to read it using the fi le function described
in Chap. 7 .)

 Once we have fi nished writing to an open fi le we should close it again, i.e. make
it unavailable for use (until and unless it is opened again). We can do this using the
 fclose function, which takes the fi le pointer as its only argument and does not return
a value.

 Returning to the Erewhon Society example, all that is needed to write a new
record to the login.txt fi le every time the web browser points to the memarea1.php
page is to change the script given previously, replacing each of the print statements
highlighted in bold by a fwrite statement, and then to add fopen and fclose state-
ments. This gives the following new version of memarea1.php.

11.5 Storing Data in Text Files

http://dx.doi.org/10.1007/978-3-319-22659-0_7
http://dx.doi.org/10.1007/978-3-319-22659-0_7

184

 (The lines that have been inserted or changed are printed in bold .)

11.6 Multiple Passwords

 The committee members of the Erewhon Society all use a special password, samuel,
which gives them access to more information in the members' area than ordinary
members of the Society. To deal with this we fi rst need to adjust the test on the value
of $verifi er:

 to test whether the value is either butler or samuel. We can do this using the logical
operator || which represents 'or'. The fi rst of the lines given above needs to be
replaced by

 The || operator links two conditional expressions, in this case $verifi er=="butler"
and $verifi er=="samuel". The compound conditional expression is true if either of

11 PHP in Action: Managing a Members' Area

185

the two constituent conditional expressions is true, i.e. if the password entered is
either butler or samuel. Note that it would not be correct to write

 This would not be linking two conditional expressions ("samuel" on its own is
not a conditional expression). This is a common source of errors.

 Making this change to memarea1.php enables both committee members and
ordinary Society members to access the members' area. The next stage is to adjust
the lines of HTML in memarea1.php that cause information to be displayed for
those that log into the members' area. The current version of this is as follows.

 We can give more information to committee members by adding two small PHP
scripting blocks, as shown below.

 (The lines that have been inserted or changed are printed in bold .)

11.6 Multiple Passwords

186

11.7 Reading a Log File

 We will now develop a script named readlog.php which can be used to read the
members' area access log and summarise the number of accesses for a chosen year.
We will assume that there is a simple webform for doing this with a Select Box that
allows a choice of four possible years: 2016–2019.

 If we select 2017 and press Submit the output will be a table such as this

 The number of accesses, both successes and failures plus the total number are
displayed for each month of the chosen year.

 We start by giving the HTML for the webform shown above which uses a Select
Box.

11 PHP in Action: Managing a Members' Area

187

 For ease of reference we will call the lines of HTML above by the name 'HTML1'.
 Note that if a year such as 2017 is selected, the value given to webform variable

selyear is the string "17" not "2017". This will be useful later.
 The action parameter of the <form> tag is given as action="" rather than some-

thing like action="destpage.php" as might be expected. This is because we are going
to use readlog.php as its own destination page, rather than having separate calling
and destination pages as we did for the Members' Area login page at the beginning
of the chapter.

 The fi gure below shows the overall structure of readlog.php. It starts by checking
whether a value of the webform variable selyear has been passed from the webform
to the same page. If the value is an empty string we display the webform with the
'Select a year' box. If not we generate the table of accesses for the chosen year.

11.7.1 Generating the Access Table

 In order to generate the access table we will work through the lines of text in fi le
login.txt in turn. For each one we will extract the year and the month and then incre-
ment a suitable counter. We will use array elements such as $succeed[10] and
$fail[10] to hold the number of successful and unsuccessful accesses in month 10 of

11.7 Reading a Log File

188

the chosen year. This gives an initial version of 'statements to generate table for
chosen year'.

 Note that the value of $arr[$i] is trimmed. This is necessary to remove the end of
line characters from each line of login.txt.

 A typical line of the login fi le looks like this
 160829,1912,Butler,succeeded
 Dividing this into its separate components using the explode function gives array

$parts with four elements like this:

 $parts[0] $parts[1] $parts[2] $parts[3]

 160829 1912 Butler Succeeded

 $parts[0] holds the date, in this case August 29th 2016, in coded form. $parts[3]
holds either the word 'succeeded' or the word 'failed'. $parts[1] and $parts[2] hold
the time and the password entered, respectively. These are irrelevant as far as this
script is concerned.

 We need to decompose the date to fi nd the values of the year and the month. We
can store the value of the date in a variable $date which will always hold a string of
six characters. The characters in each string are automatically numbered starting at
zero, for example:

 Character

 0 1 2 3 4 5
 1 6 0 8 2 9

 Year Month Day

 We can extract the two digit values for year and month using the substr (sub-
string) function by the PHP statements

11 PHP in Action: Managing a Members' Area

189

 The second argument of the function is the index number of the fi rst character on
the substring. The third argument is the number of characters in the substring (two
in each case here).

 We need to test whether the value of $selyear is the same as the value of $year
for the current line of login.txt. If it is we increase the value in either array $succeed
or array $fail for the month by one, as appropriate, and also increase the value of
array $total (which records the total number of attempted accesses) for that month
by one. We also increase the value of either variable $successful or variable $failure
by one. These variables record the total number of successful and unsuccessful
accesses for the chosen year.

 We can now replace the comments 'extract year, month and result from $parts'
and 'if the year is the same as $selyear increase the value of array $succeed or $fail
by one, as appropriate' by the following. Note that there is a subtle error in this,
which will be explained later.

 Before going on to generate the table of access values we can make an improve-
ment to the script as developed so far. The fi le login.txt records the date and time
when each person attempted to log in to the Members' Area, so it is inherently stored
in date and time order. This means that once we fi nd a value of $year that is greater
than the selected year $selyear, all the other dates in the fi le must be greater than
$selyear too, so we do not need to consider those records.

 We can reduce the amount of processing required by changing the while
condition

 to the compound condition

11.7 Reading a Log File

190

 We then set $more to "yes" outside the while loop and change its value to "no"
as soon as we encounter a value of $year greater than $selyear. The (partial) PHP
script for generating the access table becomes the following (which still contains the
error mentioned earlier):

 Lines that have been added or changed are shown in bold.

11.7.2 Displaying the Results in Tabular Form

 We now need to display the values in the arrays $succeed, $fail and $total for each
of the months from 1 to 12.

 If we were displaying constant values rather than the contents of array elements
the HTML would be like this

11 PHP in Action: Managing a Members' Area

191

 We need to write a loop for values of $i from 1 to 12 (one per month) to print out
the corresponding values of arrays $succeed, $fail and $total for each value of $i,
with the correct use of HTML <tr>, </tr>, <td> and </td> tags.

 This leads to the following partial script to replace the comment 'display results
in tabular form' given earlier:

 Now if we put all the pieces of PHP script together, point our web browser to
readlog.php and select the year 2017 we get the following:

11.7 Reading a Log File

192

 This is defi nitely not what we were expecting! The values for months 1–9 have
vanished, even though the overall totals are correct. This brings us to the rather
subtle error in Sect. 11.7.1 mentioned earlier. The problem is with the line

 followed by the lines

 The value of a month earlier than October, say March, extracted by the fi rst state-
ment is the two-character string "03", with a leading 0 character, not the number 3.
So the other three statements increment the value of $succeed["03"] etc.

11 PHP in Action: Managing a Members' Area

193

 The loop to print out the value of $succeed[$i] when $i has the value 3 prints the
value of $succeed[3]. This is an uninitialized value and therefore an empty string.
To get the value we require we needed to print $succeed["03"] and similarly for the
other two arrays. (In view of this explanation it may seem remarkable that the cor-
rect values are output for months 10, 11 and 12. It seems that PHP treats the string
"12" as if it were the number 12 but "01" as different from the number 1.

 The easiest way to deal with this problem is to convert the value of $month from
a string to a number before the assignment statements

 etc. are reached.
 There are several ways this can be done. A simple one is to replace

 by the two lines

 Multiplying $month by one in this way makes PHP convert a string such as "03"
to a number 3 and this solves the problem.

11.7.3 Adding HTML Tags Using Include

 HTML experts will no doubt have noticed that the script so far developed only pro-
duces the content of the <BODY> section of an HTML page. There are no <HTML>,
<HEAD>, </HEAD>, <BODY>, </BODY> or </HTML> tags. To save space in
this book we often leave all that part of the HTML for our pages out. It is also a
(possibly regrettable) fact that most web browsers seem to display web pages cor-
rectly even without such apparently vital elements. However for this example we
will put them in.

 We will assume that we have the two fi les start.php and end.php defi ned in Chap.
 3 (when the INCLUDE statement was introduced) and that these are in the same
directory as readlog.php.

 We then need to place

 near the beginning of the script and

11.7 Reading a Log File

http://dx.doi.org/10.1007/978-3-319-22659-0_3

194

 near the end.
 Putting all these pieces together we obtain the following fi nal version of the

script.

11 PHP in Action: Managing a Members' Area

195

 Practical Exercise 11
 Write a PHP script to read fi le login.txt (assumed to be in the format shown at the
end of Sect. 11.4) and tabulate the number of times each incorrect attempt at a pass-
word has been made. (Treat upper and lower case letters as equivalent.)

 Chapter Summary
 This chapter reinforces the material in Chaps. 7 and 9 about text fi les and
webforms as well as illustrating a number of programming techniques and the
use of several functions introduced earlier in the book.

11.7 Reading a Log File

http://dx.doi.org/10.1007/978-3-319-22659-0_7
http://dx.doi.org/10.1007/978-3-319-22659-0_9

197© Springer International Publishing Switzerland 2015
M. Bramer, Web Programming with PHP and MySQL,
DOI 10.1007/978-3-319-22659-0_12

 Chapter 12
 Using a MySQL Database I

 Chapter Aims
 After reading this chapter you should be able to:

• understand the principal features of a MySQL database and database man-
agement system

• use the MySQL commands needed to create a MySQL database, insert a
record into a table, delete and update records and change the structure of a
table.

 A very valuable feature of PHP is that it provides straightforward facilities for man-
aging databases of a certain very widely-used kind known as MySQL databases .
These facilities are fully integrated with the other standard features of the language,
which means that full advantage can be taken of the availability of loops, variables
etc. to provide very powerful facilities from inside an executing PHP script.

 In this and the next two chapters we will describe the principal facilities available
in the MySQL language, independently of PHP. In Chap. 15 we will show how to
execute MySQL commands to manage a database from within an executing PHP
script. The following chapters will illustrate the power of the combination of PHP
and MySQL in a number of applications.

12.1 MySQL Databases

 The kinds of database that can be accessed using PHP are known as relational data-
bases . In a relational database information is stored in a number of two-dimensional
structures called tables . These can be represented in pictorial form in a natural way

http://dx.doi.org/10.1007/978-3-319-22659-0_15

198

as tables on a fl at surface such as a sheet of paper or a screen. Each table contains
information about a related set of entities , such as the people in a company, the cities
in Paris, the trains that leave from Vienna station, mammals that live in Australia etc.
There is just one value (or sometimes none) in each cell of the table. The tables in a
database will often be related, e.g., information about different departments in a
business, but they may also be entirely independent.

 Each relational database table can be represented by a two-dimensional display
such as this:

 241 John Smith 45 male
 151 Mary Jones 23 female
 299 Jane Smith 19 female
 45 Henry Pearson 56 male

 Here we have a table with four rows and fi ve columns. Each row gives a refer-
ence number followed by the forename, surname, age and sex for one employee of
a small business. We call each row a record or sometimes a tuple .

 Each column is called a fi eld . It corresponds to one of the attributes of each entity
represented in the table (e.g., the forename of each employee). This tabular form is
clearly a very natural way of storing data in many cases. As well as the data itself
the relational database will hold information about each table, such as the names of
all the fi elds and also their types (integer, text etc.).

 A type of relational database that is widely used in conjunction with PHP scripts
is called a MySQL database . This is an open-source version of a relational database
management system called SQL (standing for S tructured Q uery L anguage) which
was originally developed for large commercial mainframe computers back in the
1970s. 1 MySQL is very popular for web programming applications and most PHP
systems now come with an associated MySQL database management system.

 As well as denoting the overall system that manages a set of relational databases,
the term MySQL is (perhaps confusingly) used to describe a relational database
managed by such a system and also the 'query language' used to maintain such a
database. So we can say that the MySQL language is used to maintain one or more
MySQL databases in a MySQL relational database management system. The aim of
this and the remaining chapters of this book is to show you how to use the MySQL
language to maintain a MySQL database. MySQL is called a query language , indi-
cating that it comprises a set of queries that are sent to a relational database to ask it
questions or to give it instructions such as to add a record or to change the contents
of an existing record. In this book we will generally use the term 'commands' rather
than 'queries'. 2

1 A note on pronunciation: SQL is pronounced (for historical reasons) as 'sequel'. However MySQL
is not usually pronounced as 'my sequel', but in the obvious way as 'my-ess-queue-ell'.
2 Another term used is MySQL statements. We prefer to use the word 'commands', which correctly
describes the cycle: we tell the computer what to do, it responds, we tell it what to do next and so
on.

12 Using a MySQL Database I

199

 A relational database can contain many tables and, depending on the specifi c
system used, it may be possible for a user to have several databases. For example a
company may have an employee database with tables for, say, the marketing depart-
ment, the fi nance department, the manufacturing department etc. It may also have
databases on many other matters, for example cities in the United States, airline
schedules, car parts and so on, including ones that were originally collected for
entirely separate purposes. Database specialists often link together information
stored in several databases and/or tables.

 The aim of this book is not to teach database design. For basic applications
driven from web pages a great deal can be achieved with a single database with just
one table.

12.2 Creating a Database

 To create a new database is straightforward. To create an empty database named
 mydb1 containing no tables we use the command:

 CREATE DATABASE mydb1
 Depending on the PHP system you use there may be restrictions on the number

of databases you can create, possibly only one.

12.2.1 Specifying the Current Database

 We next need to tell the system that our MySQL commands will always refer to
database mydb1 , unless we explicitly say otherwise. A database can be specifi ed as
being the current database by the command:

 USE mydb1
 When MySQL commands are issued via a PHP script there is a different way of

specifying a current database. We will explain how this is done in Chap. 15 .

12.3 Creating a Table

 Creating a table in a database is considerably more complicated than creating the
database itself and we will defer a discussion of how to do it until Chap. 14 . At pres-
ent we will assume that we already have a database, named (not very imaginatively)
 mydb1 with a single table named (even less imaginatively) mytable1 . The case of
multiple tables (possibly in different databases) will be considered in Chap. 13 .

 The original state of database table mytable1 is, of course, empty. We will show
this as a (paper) table as follows:

12.3 Creating a Table

http://dx.doi.org/10.1007/978-3-319-22659-0_15
http://dx.doi.org/10.1007/978-3-319-22659-0_14
http://dx.doi.org/10.1007/978-3-319-22659-0_13

200

 The table has zero rows, each comprising eight fi elds: refnum, Forename etc., the
meaning of which should be self-explanatory.

 Note that the heading row shown above is not part of the content of the table. It
is included in most of the fi gures in this chapter, printed in bold, for the convenience
of the reader (and the author). The above is a table with zero rows.

 As well as a name, each fi eld has a type: integer, text etc. which was specifi ed
when the table was created. More details of this will be given in Chap. 14 . At pres-
ent we will just assume that there are different types of fi eld, each with a 'MySQL
type' as shown in the table below.

 Field Name MySQL type Notes

 refnum integer Integer fi eld
 Forename varchar(30) Variable length text fi eld – up to 30 characters
 Surname varchar(30) Variable length text fi eld – up to 30 characters
 sex enum('M', 'F') 'Enumeration fi eld' – possible values M and F
 occupation varchar(30) Variable length text fi eld – up to 30 characters
 cityBorn varchar(30) Variable length text fi eld – up to 30 characters
 yearBorn year A four digit integer from 1901 to 2155
 number_of_children integer Integer fi eld

12.4 Issuing MySQL Commands

 The intention is to issue MySQL commands from within an executing PHP script
and we will show how to do that in Chap. 15 . However it is much easier to illustrate
the features of the language if we (temporarily) separate it out from PHP and assume
that we have a system which enables us to type in MySQL commands one-by-one
at our keyboard, with the system responding by displaying the current contents of
the table on our screen after executing each one.

 Many MySQL systems come with a software package called phpMyAdmin
which is designed to facilitate the management of a MySQL database using a web
browser. 3 Some versions of phpMyAdmin provide a visual way of entering com-
mands that avoids the user needing to learn the MySQL language. As we wish to
learn the MySQL language we will ignore any such facility that may be available to
you and concentrate on the simple (but imaginary) keyboard input and visual dis-
play output system described above.

 However, it is important always to bear in mind that whereas a PHP script can
send a string of characters (i.e., a MySQL command) to a MySQL server it cannot

3 The name is misleading, as the PHP language is in no way involved.

12 Using a MySQL Database I

http://dx.doi.org/10.1007/978-3-319-22659-0_14
http://dx.doi.org/10.1007/978-3-319-22659-0_15

201

receive a two-dimensional image back, merely a series of characters. How to pro-
cess that output to give a visual form of display for a webpage or to use it in some
other way will be considered in Chap. 15 .

12.5 Naming Databases, Tables and Fields

 The names of databases, tables and fi elds all follow the same convention. Names
that are any combination of upper and lower case letters, digits, underscores and
dollar signs can be written as they are without any surrounding quotes but may also
be written enclosed in quotes. Other names, including those with embedded spaces
or hyphens, must be enclosed in quotes. Note that the quote symbols that are used
are not the customary straight quote character ' but the slanted quote character `
which is also known as a backtick. With the slanted quotes in a larger than normal
font size a quoted name looks like this:

 ̀ this is a name that includes a space `
 In this book we will generally avoid using names that need to be enclosed in

slanted quotes and strongly recommend that you do the same. We will therefore
avoid using the slanted quotes except in a few of the early examples.

 The eight fi eld names used for mytable1 show a number of different naming
conventions: an initial lower case letter, an initial upper case letter, an embedded
capital letter in cityBorn and yearBorn showing where a new word starts (known as
'camel case') and an embedded underscore in the name number_of_children. All of
these are valid and there is no need for them to be enclosed in slanted quotes.

12.5.1 Case Sensitivity of Database, Table and Field Names

 Whether or not database and table names are case sensitive depends on the operat-
ing system (Windows, Linux etc.) used by the server that holds the database. Hence
MySQL commands which work correctly with one server may fail with another. In
this book we will make the conservative assumption that database and table names
are always case sensitive and act accordingly.

 Field names are never case sensitive, so the fi eld Forename can also be written as
foreNAME etc.

12.5 Naming Databases, Tables and Fields

http://dx.doi.org/10.1007/978-3-319-22659-0_15

202

12.6 Setting a Primary Key

 There is one more step to take before we fi nally get to the stage of entering some
data in our table. It does not have to be done immediately and in some systems it is
not compulsory to do it, but we strongly recommend that you always do. This is to
set what is called a primary key for your table.

 The primary key of a table is a fi eld or combination of fi elds that uniquely identi-
fi es each record in the table. We might choose Surname as the primary key, but of
course it is possible for more than one person in our table to have the same
surname.

 Instead we will choose to make the combination of Forename and Surname our
primary key. We do this by entering the MySQL command:

 ALTER TABLE mytable1 ADD PRIMARY KEY(Forename, Surname)
 On refl ection, this is also an unwise choice. It is not likely that two or more

people with the same forename and surname will ever need to be entered in the
database, but if they are the system will not be able to handle it properly. A primary
key needs to be unique and a much safer choice is to use fi eld refnum, a four-digit
reference number.

 We will remove the previous primary key using the command
 ALTER TABLE mytable1 DROP PRIMARY KEY
 and then set a replacement by the command
 ALTER TABLE mytable1 ADD PRIMARY KEY (refnum)

12.7 Adding a Record to the mytable1 Table

 Finally we come to the question of adding some data to our empty table.
 We can do this using an INSERT command, such as the following:
 INSERT INTO `mydb1`.`mytable1` (`refnum`, `Forename`, `Surname`,

`sex`,`occupation`, `cityBorn`,`yearBorn`,`number_of_children`) VALUES
('2461', 'Ann', 'Williams', 'F', 'doctor','Paris','1997', '2')

 Executing this command will produce the updated table with one record:

 Before we say more about the INSERT INTO command there are some general
points to make that also apply to other MySQL commands.

 1. The keyword INSERT INTO, like other MySQL keywords, is not case sensitive,
so it might also be written as insert INTO, insert into etc. However in this book
we will generally write keywords in upper case.

12 Using a MySQL Database I

203

 2. Field values (as opposed to fi eld names) are case sensitive, so Williams is not the
same as williams.

 3. The database, table and fi eld names do not require the use of slanted quotes, so
the command could be written as just

 INSERT INTO mydb1.mytable1 (refnum, Forename, Surname, sex,
 occupation, cityBorn,yearBorn,number_of_children) VALUES ('2461', 'Ann',
'Williams', 'F', 'doctor','Paris','1997', '2')

 4. We will assume that we have previously told the system that mydb1 is the current
database. So we can drop the database name and the following dot, giving just

 INSERT INTO mytable1 (refnum, Forename, Surname, sex, occupation,
cityBorn,yearBorn,number_of_children) VALUES ('2461', 'Ann', 'Williams',
'F', 'doctor','Paris','1997', '2')

 5. The quote symbols to use around fi eld values are straight quotes, e.g. 'Williams'.
This is most important and potentially a considerable source of errors. If the
quotes are omitted the fi eld value is taken to be the name of a fi eld not a constant.
For example

 INSERT INTO mytable1 (refnum, Forename, Surname, sex, occupation,
cityBorn,yearBorn,number_of_children) VALUES ('2461', 'Ann', Williams,
'F', 'doctor','Paris','1997', '2')

 With no quotes around the surname Williams the system interprets the command
as an instruction to set the value of the Surname fi eld to the value in a fi eld called
Williams. There is no such fi eld of course, so the command will fail.

 However the command
 INSERT INTO mytable1 (refnum, Forename, Surname, sex, occupation,

cityBorn,yearBorn,number_of_children) VALUES ('2461', 'Ann', Forename,
'F', 'doctor','Paris','1997', '2')

 would be valid (although pointless). It tells the system to set the value of the
Surname fi eld to the value in the Forename fi eld, giving a record with the distinctly
unusual full name Ann Ann. It is hard to think of any practical use for this facility
when using the INSERT INTO command but it can be useful in other situations,
such as when copying a value from one fi eld to another (see Sect. 12.10).

 6. Field values that are purely numerical need not be enclosed in quotes. It is best
to omit the quotes if the fi eld is of a numerical type, but for effi ciency reasons we
recommend that the quotes are retained in the case of a text fi eld even when the
value itself is purely numerical.

 By removing the unnecessary quotes the INSERT command can be further sim-
plifi ed to:

 INSERT INTO mytable1 (refnum, Forename, Surname, sex, occupation,
 cityBorn, yearBorn, number_of_children) VALUES (2461, 'Ann', 'Williams', 'F',
'doctor','Paris',1997, 2)

12.7 Adding a Record to the mytable1 Table

204

 7. If the list of fi eld names before the VALUES keyword includes all the fi elds in
the correct 'left-to-right' order we can omit it and it will be assumed by the
MySQL system as a default. Thus the command can be further reduced to:

 INSERT INTO mytable1 VALUES (2461, 'Ann', 'Williams', 'F',
'doctor','Paris',1997, 2)

 8. If you read other books on MySQL you will probably see that when entering
MySQL commands at a keyboard it is possible to enter more than one command
at a time if they are separated by semicolons. However this is not applicable
when executing MySQL commands using PHP, so we will ignore this possibility
in this book and assume that commands are always entered one by one.

 9. Some MySQL systems require a semicolon at the end of each command but this
too is not applicable when executing MySQL commands using PHP and so we
will not adopt this convention in this book.

12.7.1 The INSERT INTO Command

 Returning to the INSERT INTO command, not all the fi eld values need to be entered,
and the fi eld names can be placed in any order so for example just

 INSERT INTO mytable1 (Forename, Surname, occupation, refnum,
cityBorn) VALUES ('Martin', 'Johnson', 'plumber',1851,'London')

 would be valid with the table now looking like this.

 Note that the records do not have to be entered into the table in ascending order
of the primary key.

 We now enter fi ve more commands to add additional rows into the table
 INSERT INTO mytable1 VALUES (2547, 'Mary', 'Johnson', 'F',

'technician','Paris',1989, 3)
 INSERT INTO mytable1 VALUES (634, 'James', 'Robinson', 'M',

'none','Geneva',2007, 0)
 INSERT INTO mytable1 VALUES (1927, 'Bryan', 'Brown', 'M',

'engineer','Toronto',1987, 2)
 INSERT INTO mytable1 VALUES (4821, 'Sarah', 'Green', 'F',

'engineer','Paris',1981, 1)
 INSERT INTO mytable1 VALUES (3842, 'Frances', 'Bryce', 'F',

'translator','Northampton',1980, 2)
 giving a table with seven records.

12 Using a MySQL Database I

205

 Before going on we will change the name of the fi eld number_of_children to the
simpler form numchild . We will also take the opportunity to change the fi eld type
from INTEGER to TINYINT, which is sometimes used when the numbers stored
are certain to be small. (The difference between different types of integer fi eld will
be explained in Chap. 14 .) We can make both changes by a single command:

 ALTER TABLE mytable1 CHANGE number_of_children numchild tinyint
 Note that this command can be used to change either the name of the fi eld, its

fi eld type or (as here) both.
 Now the command
 INSERT INTO mytable1 VALUES (2947, 'Jane', 'Wilson', 'F',

'unemployed','Dresden',1972, 10)
 gives a revised table:

 One of the values that can be inserted into a fi eld in NULL. This is not to be
confused with zero for a numerical fi eld or '' (an empty string) for a character fi eld.
These are both specifi c values, whereas NULL indicates a non-existent value, i.e.,
that there is no value. It is possible to test whether a fi eld has (or does not have) a
NULL value using a WHERE clause, which will be introduced in Sect. 12.8.

12.7 Adding a Record to the mytable1 Table

http://dx.doi.org/10.1007/978-3-319-22659-0_14

206

12.7.2 The REPLACE INTO Command

 The REPLACE INTO or REPLACE command (the word INTO is optional) is the
same as INSERT INTO except that if an existing row has the same primary key
value as a new row to be inserted, the existing row is deleted. In that situation an
INSERT INTO command would fail.

12.8 Deleting a Record

 We next decide to delete the record for Bryan Brown. We can do this with the
command

 DELETE FROM mytable1 WHERE refnum=1927
 giving the table

 The part of this command from WHERE onwards is called a 'WHERE clause'. If
it were not present the effect would be to delete all records in the table. An alterna-
tive in this case would have been the command

 DELETE FROM mytable1 WHERE occupation='engineer' AND
yearBorn=1987

 but this would have deleted all the engineers born in 1987, if there had been more
than one, not just Bryan Brown. This illustrates the value of having a primary key
(the refnum fi eld). We can write the clause 'WHERE refnum=1927' and be certain
that only one record will be affected.

 A useful additional clause, which can be placed at the end of a DELETE com-
mand, is a LIMIT clause . This takes the form LIMIT integer , most commonly
LIMIT 1 and restricts the number of records that can be deleted by the command.
For example

 DELETE FROM mytable1 WHERE refnum=1927 LIMIT 1
 ensures that the system does not waste time trying to delete more than one person

with refnum value 1927 (which in any case is not possible as it is a primary key). As
soon as that record is deleted the system does not attempt to fi nd more.

12 Using a MySQL Database I

207

12.9 Changing a Table

 We will now make some more (entirely unnecessary) changes to table mytable1
simply to illustrate some other facilities.

 First we decide that we would like to add a fi eld passportRef, a varchar(12) fi eld
between occupation and cityBorn. We can do this by the command

 ALTER TABLE mytable1 ADD passportRef VARCHAR(12) AFTER
occupation

 If we had instead entered
 ALTER TABLE mytable1 ADD passportRef VARCHAR(12)
 the new column would have been placed at the end, i.e., as the right-most col-

umn. Entering
 ALTER TABLE mytable1 ADD passportRef VARCHAR(12) FIRST
 instead would have caused passportRef to be placed as the fi rst (i.e., the left-

most) column.
 Having inserted passportRef immediately after occupation, we change our mind

and decide to remove the passportRef fi eld. We do this by:
 ALTER TABLE mytable1 DROP passportRef
 thus restoring the table to its previous state.
 The word COLUMN is optional in a command to delete a column, so the last

command could have been written as
 ALTER TABLE mytable1 DROP COLUMN passportRef
 If we had wanted to delete more than one column we could have done this with

a command such as
 ALTER TABLE mytable1 DROP COLUMN passportRef, DROP occupa-

tion, DROP Forename
 (The word COLUMN after DROP is optional each time.)
 We will now empty the table of all its records and start again, entering the same

eight records in a more effi cient way than the fi rst time.
 The most effi cient way to delete all the records in the table is to use the

command
 TRUNCATE mytable1

12.9 Changing a Table

208

 This removes all the records but most importantly it preserves the structure of the
table, i.e., the fi eld names, fi eld types etc., which is what we want to do. If instead
we had entered the command

 DROP TABLE mytable1
 It would have deleted the table altogether, rather than just the contents.
 We are now back to having an empty table and can restore the eight records pres-

ent at the end of Sect. 12.7 in the same order as before, either by eight separate
INSERT INTO commands or more effi ciently like this.

 As before we start with two INSERT INTO commands:
 INSERT INTO mytable1 VALUES (2461, 'Ann', 'Williams', 'F',

'doctor','Paris',1997, 2)
 INSERT INTO mytable1 (Forename, Surname, occupation, refnum,cityBorn)

VALUES ('Martin', 'Johnson', 'plumber',1851,'London')
 (The fi eld names in the second command are deliberately presented in a different

order from the other commands as a reminder that this is possible. This command
also shows that not all fi elds need to be included.)

 The remaining six insertions all use the same eight fi elds so we can combine
them into a much more compact form as a single INSERT INTO command as
follows:

 INSERT INTO mytable1
 VALUES (2547, 'Mary', 'Johnson', 'F', 'technician','Paris',1989, 3),
 (634, 'James', 'Robinson', 'M', 'none','Geneva',2007, 0),
 (1927, 'Bryan', 'Brown', 'M', 'engineer','Toronto',1987, 2),
 (4821, 'Sarah', 'Green', 'F', 'engineer','Paris',1981, 1),
 (3842, 'Frances', 'Bryce', 'F', 'translator','Northampton',1980, 2),
 (2947, 'Jane', 'Wilson', 'F', 'unemployed','Dresden',1972, 10)
 We are now back to the previous form of the table with eight records:

12 Using a MySQL Database I

209

12.10 Updating a Table

 The next job is to fi ll in the missing values in the entry for Martin Johnson. While
we are doing it we will correct his occupation, which we know recently changed to
butcher. To do this we use the UPDATE command, as follows:

 UPDATE mytable1 SET sex='M', occupation='butcher',yearBorn=1970,
numchild= 99 WHERE refnum= 1851 LIMIT 1

 (We are using the code 99 in the numchild fi eld to indicate 'unknown'.) This gives
an updated table:

 The SET keyword in the UPDATE command can be followed by any number of
 fi eldname=value pairs separated by commas. As before, numbers are not enclosed
in quotes.

 A very important part of the UPDATE command is the WHERE clause at the
end. If it had been omitted all the table entries would have been changed not just
one.

 Although this example shows a simple test on the value of the primary key,
WHERE clauses can be considerably more complex. To illustrate this we will fi rst
add an additional fi eld at the end of the table, with name extra and type
varchar(10).

 We do this using the command
 ALTER TABLE mytable1 ADD extra varchar(10)
 This gives an augmented table

12.10 Updating a Table

210

 We can set all the values in the extra column to the value 'no' by the simple
command

 UPDATE mytable1 SET extra='no'
 giving a revised table

 We will now set the value in the extra fi eld to 'yes' for all women with more than
two children using the command

 UPDATE mytable1 SET extra='yes' WHERE sex='F' AND (numchild>2
AND numchild!=99)

 giving the updated table

12 Using a MySQL Database I

211

 Note that the condition numchild!=99 was added to guard against the possibility
of a woman with an unknown number of children (coded as 99) being given a value
of 'yes'. There were no such people in this particular case.

 We will now change the value of fi eld extra for Martin Johnson to the value
'5734', which as the fi eld is of type varchar(10) is a string of four digits not a num-
ber. The reason for doing so will soon become apparent. We enter the command

 UPDATE mytable1 SET extra='5734' WHERE refnum=1851
 and the table becomes:

 To illustrate some further points about the use of the UPDATE statement we will
fi rst change the extra fi eld to be of type int(6). We enter the command

 ALTER TABLE mytable1 CHANGE extra extra int(6)
 The table now looks like this.

 Note that as the previous contents were all text values (yes and no) rather than
numbers, they were automatically destroyed by the type conversion and replaced by
a default integer value of zero. The one exception is the entry for Martin Johnson
which was a text string comprising solely digits, i.e., '5734'. This has been replaced
by the integer value 5734.

12.10 Updating a Table

212

 We can now show some possible uses for a value in a fi eld=value pair that is not
a constant. We will set the value of the extra fi eld to the year after each person was
born. The command to do this is

 UPDATE mytable1 SET extra=yearBorn+1

 If we want to calculate the age of each person in the year 2020 (assuming they
are still alive, of course) and store the values in fi eld extra , we enter the command:

 UPDATE mytable1 SET extra = 2020-yearBorn
 Table mytable1 is now:

 For the next example we fi rst have to change the type of fi eld extra again to var-
char(50). We can do this by the command

 ALTER TABLE mytable1 CHANGE extra extra varchar(50)
 The table appears to be unaltered but extra values that display as, say, 23 are now

the character strings '23' etc. not the numbers 23 etc.
 We can now update the table so that the extra fi eld contains the full name of each

person by
 UPDATE mytable1 SET extra=concat(Forename,' ',Surname)
 This gives a revised table:

12 Using a MySQL Database I

213

 This illustrates the use of the MySQL function concat , which takes any number
of character strings and joins them together (i.e., concatenates them). To avoid pos-
sible confusion we will point out here that if the value in the Forename or Surname
fi eld subsequently changes, the value of extra will not change. This is a database
table, not a spreadsheet!

 Before leaving the UPDATE command, we will also point out that (as for the
DELETE command) a LIMIT clause, generally LIMIT 1, can be placed at the end
of an UPDATE command to restrict the number of records changed by the com-
mand. This is particularly useful when a table is updated using its primary key. For
example

 UPDATE mytable1 SET extra='yes' WHERE refnum=4821 LIMIT 1
 will ensure that once the system has updated the (one and only) record with ref-

num 4821 it does not spend time searching for another one, a search which is inevi-
tably doomed to fail.

 As with the INSERT INTO command, one of the values that can be given to one
or more fi elds is NULL, denoting that there is no value. For example

 UPDATE mytable1 SET extra=NULL WHERE yearBorn<1980
 We can test whether a fi eld is or is not null by a WHERE clause, e.g.,
 WHERE yearBorn IS NULL
 or
 WHERE yearBorn IS NOT NULL
 Field extra has now outlived its usefulness so we will delete it using
 ALTER TABLE mytable1 DROP extra
 The table is restored to:

12.10 Updating a Table

214

12.11 Summary of MySQL Commands

 Here is a summary of all the MySQL commands used in this chapter. In all cases
 tablename can optionally be preceded by the name of a database followed by a dot.
A complete list of the MySQL commands used in this book is given in Sect. 19.3 .

 ALTER TABLE
 tablename

 ADD fi eldname fi eld-
specifi cation AFTER
 fi eldname

 Add a fi eld to a table after a specifi ed
column

 ALTER TABLE
 tablename

 ADD fi eldname fi eld-
specifi cation FIRST

 Add a fi eld to a table as the fi rst column

 ALTER TABLE
 tablename

 ADD fi eldname
fi eld-specifi cation

 Add a fi eld to a table as the last column

 ALTER TABLE
 tablename

 ADD PRIMARY KEY
(fi eldname)

 To set a primary key for a table, when
none already set. May also be a
sequence of fi eld names separated by
commas

 ALTER TABLE
 tablename

 CHANGE oldfi eldname
newfi eldname
fi eld-specifi cation

 Change a fi eld name and/or
specifi cation in a table

 ALTER TABLE
 tablename

 DROP fi eldname1
 ,DROP fi eldname2
 ,DROP fi eldname3 etc.
 [DROP may optionally be
followed by COLUMN
each time]

 Delete one or more fi elds from a table

 ALTER TABLE
 tablename

 DROP PRIMARY KEY To remove an existing primary key from
a table

 CREATE DATABASE
 databasename

 Create an empty database with the given
name

(continued)

12 Using a MySQL Database I

http://dx.doi.org/10.1007/978-3-319-22659-0_19

215

 DELETE FROM
 tablename

 WHERE condition
[optionally followed by
LIMIT number]

 Delete one or more records from a table.
See Sect. 12.8 for more information
about conditions

 DROP TABLE
 tablename

 Delete a table

 INSERT INTO
 tablename

 (fi eldnames separated by
commas) VALUES (fi eld
values, separated by
commas)

 Create a new record. The fi eld values
must be in the same order as the fi eld
names

 REPLACE INTO
 tablename

 (same as for INSERT
INTO)

 Same as INSERT INTO except that if
an existing row has the same primary
key value as a new row to be inserted,
the existing row is deleted

 TRUNCATE
 tablename

 Empty a table, but retain structure (fi eld
names, fi eld types etc.)

 UPDATE tablename SET fi eld=value WHERE
 condition [optionally
followed by LIMIT
 number]
 Can also be a succession of
 fi eld=value pairs, separated
by commas

 Change the value of one or more fi elds
in one or more records in the specifi ed
table. If the WHERE clause and the
LIMIT clause are omitted all the records
in the table are changed

 USE databasename Make databasename the current
database

 Chapter Summary
 This chapter introduces the MySQL language for managing relational data-
bases, which will form the topic of the remainder of the book. It is shown how
to create a database, insert a record into a table, delete and update records and
also how to change the structure of a table. (The topic of creating a table is
deferred until a later chapter.)

 Practical Exercise 12
 (1) Which of the following are not valid MySQL fi eld names? Explain why.

 2700xyz
 abc-def
 _xyz68ABC
 ̀abc`
 ̀abc-def`
 ̀your title`
 father's_name
 $26ABxy$_

12.11 Summary of MySQL Commands

216

 (2) Write a MySQL command to replace record 1927 in the table shown at the end
of Sect. 12.10 by a new record for Bryony McTavish who is a doctor born in
1988 in New York.

 (3) Given a table such as mytable1 shown at the end of Sect. 12.10 write MySQL
commands to do the following:

 (a) Delete anyone with the surname Johnson
 (b) Create a new integer fi eld immediately after yearBorn that contains the

number of years each person was born after the year 1960.

12 Using a MySQL Database I

217© Springer International Publishing Switzerland 2015
M. Bramer, Web Programming with PHP and MySQL,
DOI 10.1007/978-3-319-22659-0_13

 Chapter 13
 Using a MySQL Database II

 Chapter Aims
 After reading this chapter you should be able to:

• use the MySQL commands needed to extract information from a database
table, combine information from different tables, rename a table and delete
either a table or a database

• understand the different types of 'join' operation available in MySQL
• fi nd the version of MySQL that you are using.

 In this chapter we continue the description of the principal features available in the
MySQL language which was begun in Chap. 12 . In Chap. 15 we will show how to
execute MySQL commands to manage a database from within an executing PHP
script.

 As in Chap. 12 we will assume that we have a database named mydb1 with a
single table named mytable1 . We will further assume that the contents are as they
were at the end of Sect. 12.10 . A copy of the table is reproduced below.

http://dx.doi.org/10.1007/978-3-319-22659-0_12
http://dx.doi.org/10.1007/978-3-319-22659-0_15
http://dx.doi.org/10.1007/978-3-319-22659-0_12
http://dx.doi.org/10.1007/978-3-319-22659-0_12

218

13.1 The Select Command

 We now come to one of the most widely used of all the MySQL commands. The
whole point of storing information in a database is to be able to retrieve it again and
then use it. The SELECT command produces a table showing the values of some or
all of the fi elds in a table for some or all of the records. To display the complete
contents of table mytable1 we can simply enter

 SELECT * FROM mytable1
 The * character here represents all fi elds.
 Frequently we do not want to see all the fi elds in our table, but just a few of them.

The command
 SELECT Forename,Surname,sex,numchild FROM mytable1
 will display

13 Using a MySQL Database II

219

 Warning – although in these examples the MySQL SELECT command pro-
duces a two-dimensional tabular display on the user's screen it is important to appre-
ciate that when we issue MySQL commands via PHP all that is returned for most
commands apart from SELECT is a logical value that is either 1 indicating 'com-
mand succeeded' or an empty string indicating 'command failed'.

 In the case of a (valid) SELECT command an object is returned from which the
row and column values can be extracted and (if we wish) displayed in a two-
dimensional table. Although this sounds cumbersome it has one important advan-
tage: we do not necessarily have to display the values in a table, we can use them in
any way we wish. For example if we imagine a similar table to mytable1 but includ-
ing email addresses, we might send an email to all the people selected which
included their name and occupation.

13.1.1 Order by Clauses

 An important factor to consider when using a SELECT command is that it may
produce a table in an arbitrary order determined by the system. So far in this book
all tables have shown the records in the order in which they were entered into the
table but this may or may not be the order in which they would actually be displayed
and in any case such an order is not likely to be very helpful. A better choice will
often be ascending order of the primary key. To achieve that for the mytable1 table
we use an ORDER BY clause, giving the command

 SELECT * FROM mytable1 ORDER BY refnum
 Applying this to our example table gives this output.

 The rows are the same as before but now they are arranged in ascending order of
refnum.

 The command
 SELECT * FROM mytable1 ORDER BY refnum ASC
 would give the same effect (ASC stands for 'ascending'), whereas

13.1 The Select Command

220

 SELECT * FROM mytable1 ORDER BY refnum DESC
 produces a table in descending order of refnum (DESC standing for ' descending').

Many other orders are also possible. For example if we want a table in ascending
order of surname with any 'ties' arranged in descending order of forename, we can
use the command

 SELECT * FROM mytable1 ORDER BY surname, forename DESC
 This gives the following output.

 The command
 SELECT Forename,Surname,sex,numchild FROM mytable1 ORDER BY

Surname,Forename
 will give

 Sometimes we may want to use an ORDER BY clause with a fi eld for which
alphabetical (or numerical) order would not be appropriate. For example we may
have a fi eld named size with values 'very small', 'small', 'average', 'large' or 'very

13 Using a MySQL Database II

221

large'. Generating rows in alphabetical order of this fi eld would hardly be very help-
ful. Instead we can use an ORDER BY FIELD clause, for example

 ORDER BY FIELD(size, 'very small', 'small', 'average', 'large', 'very large')
 Other possible examples, which should be self-explanatory, include
 ORDER BY FIELD(season,'Spring', 'Summer', 'Autumn', 'Winter')
 ORDER BY FIELD(degreeClass,'First', 'Second', 'Third', 'Unclassifi ed', 'Fail')
 A (slightly artifi cial) example using the mytable1 table would be if we wished to

order the output by the numchild fi eld, i.e. the number of children, but with the
numbers 0 and 99 (indicating 'unknown') in the last two places.

 We can do this by the command
 SELECT * FROM mytable1 ORDER BY FIELD(numchild,1,2,3,4,5,6,7,8,9,

10,0,99),refnum ASC
 which generates the output

 We can also sort in the reverse order, e.g. the command
 SELECT * FROM mytable1 ORDER BY FIELD
(numchild,1,2,3,4,5,6,7,8,9,10,0,99) DESC,Surname

 produces the output

13.1 The Select Command

222

13.1.2 Where Clauses

 We will often wish to see only those records that satisfy a WHERE condition such
as those previously used with the DELETE and UPDATE commands. For
example:

 SELECT Surname,Forename,yearBorn FROM mytable1 WHERE sex='M'
and numchild>0 AND numchild!=99 ORDER BY Surname,Forename

 gives a table showing the name and year of birth of all the men with children
(there is only one).

 In general, the WHERE clause comprises a test on the values of one or more
fi elds. This can be a simple condition such as

 sex='F'
 or a more complex one constructed from simple conditions using the logical

operators AND, OR and NOT. Parentheses can also be used to avoid ambiguity and
to construct more complex conditions. For example:

 sex='F' AND (yearBorn>1980 OR numchild!=99) AND NOT
(occupation='doctor' OR occupation='engineer')

 Each simple condition is of the form fi eld operato r value . These operators are
called comparison operators . They return a result that is either true or false. There
are several comparison operators available in MYSQL. The main ones are given in
this table.

13 Using a MySQL Database II

223

 = is equal to
 != does not equal
 <> does not equal
 < is less than
 <= is less than or equal to
 > is greater than
 >= is greater than or equal to

 Conditions can also make use of the arithmetic operators including + − * and /. It
is also possible to include functions such as GREATEST and LEAST . These can
appear on either side of the comparison operator. For example if i1, i2, i3, i4 and i5
are all integer fi elds, possible conditions include

 WHERE i1+i2 < i3-i4*i5
 WHERE GREATEST(i1,i2,i3)>99
 WHERE LEAST(i2,i5) > LEAST(i1,i3,i4).
 The GREATEST and LEAST functions take the values of two or more numerical

fi elds and return the largest and the smallest values, respectively.
 Other functions available include the CONCAT function, illustrated in Sect.

 12.10 , which takes two or more character fi elds or string constants such as '…' and
' ' (space) and joins them together.

 So CONCAT(Forename,'…',Surname) would give the values of the Forename
and Surname fi elds for a particular record joined together by three dots. This func-
tion can be particularly useful as part of a SELECT command.

 A further operator that can be used with either numerical or character fi elds is
BETWEEN. Unlike the other operators this one takes two values after the operator,
joined by AND. For example:

 SELECT * FROM mytable1 WHERE yearBorn BETWEEN 1982 AND
2000 ORDER BY yearBorn

 gives the output

 and the command
 SELECT * FROM mytable1 WHERE Surname BETWEEN 'Bryce' AND

'Johnson' ORDER BY Surname
 gives the output

13.1 The Select Command

http://dx.doi.org/10.1007/978-3-319-22659-0_12

224

 Note that if there is a WHERE clause it must come before any ORDER BY
clause.

13.1.3 Displaying Values that are not Fields

 Using a SELECT command we can display values that are not explicitly given as
fi elds in the table. For example, using the CONCAT function, entering

 SELECT CONCAT(Forename,' ',Surname), sex FROM mytable1 WHERE
numchild>1 AND numchild!=99 ORDER BY Surname,Forename

 will give

13.1.4 Limit Clauses

 A further facility available with the SELECT command is to limit the number of
rows output. We can do this by placing a LIMIT clause at the end of the SELECT
command, e.g.

 SELECT * FROM mytable1 ORDER BY yearBorn DESC LIMIT 4
 will give

13 Using a MySQL Database II

225

 i.e. the four youngest people in the table. There is little value in doing this for our
small example, but if we imagine a selection from a table with hundreds of thou-
sands of employee records arranged in descending order of salary the potential
value for identifying (e.g.) the highest 20 earners is clear.

 There is another reason for using a LIMIT clause. Say we have a command such
as

 SELECT Forename,Surname,yearBorn FROM mytable1 WHERE
refnum=2461

 and we have a table with 100,000 records they will all have to be checked even
though there is only one possible record satisfying the condition (or conceivably
none if there is no record with such a value of refnum). If there is no such record all
100,000 records will unavoidably have to be searched to ascertain that. On the other
hand once you have found the one record that matches the WHERE condition, there
is no point at all in checking the remainder of the 100,000 records. We can prevent
that happening by adding a LIMIT 1 clause, making the command:

 SELECT Forename,Surname,yearBorn FROM mytable1 WHERE ref-
num=2461 LIMIT 1

 An extended form of the LIMIT clause is also available with two numbers after
the keyword LIMIT separated by a comma. To illustrate this we will fi rst consider
the command

 SELECT * FROM mytable1 ORDER BY yearBorn DESC
 which produces this output:

13.1 The Select Command

226

 Supposing (rather unrealistically) that instead we want to ignore the two young-
est people and display only the third, four, fi fth and sixth youngest people in the
table (i.e. those with refnum values 2547, 1927, 4821 and 3842). We can do that by
starting the display at what would otherwise be the third row of the table, which
(confusingly) we refer to as row number 2. (Row zero has refnum 634, so row 2 has
refnum 2547.) Starting from that point we want to restrict the display to four rows
only. Hence we enter the command:

 SELECT * FROM mytable1 ORDER BY yearBorn DESC LIMIT 2,4
 which produces the output

 In this form of the LIMIT clause, the fi rst number is referred to as the offset .
 Another use of an offset occurs when, for example, we have previously found the

20 highest-earning employees using a LIMIT 20 clause and we now want to list the
21st to 50th highest. We can do this with the same command, replacing LIMIT 20
by LIMIT 20,30.

13.1.5 Applying Functions to the Values of a Field

 As well as a list of fi elds in a SELECT command, we can use one or more functions
that apply to the values of the fi eld. The main ones of these are max , min and avg ,
giving respectively the largest, smallest and average values of a fi eld. Thus the
command:

 SELECT min(yearBorn),max(yearBorn),min(Surname),max(Surname),
min(numchild), max(numchild), avg(numchild) FROM mytable1

 gives the single-row table

 Note that min and max not only give the smallest and largest numbers for numeri-
cal fi elds but also the lowest and highest values in alphabetical order for text fi elds.
The suspiciously high average number of children is explained by the fact that we

13 Using a MySQL Database II

227

are using a value of 99 to mean 'unknown'. To take such records out of the calcula-
tions we can use a WHERE clause:

 SELECT min(yearBorn),max(yearBorn),min(Surname),max(Surname),
min(numchild), max(numchild), avg(numchild) FROM mytable1 WHERE
numchild!=99

 giving the output

13.1.6 Finding the Number of Records in a Table

 We can do this with the command
 SELECT COUNT(*) FROM mytable1
 which returns an object from which the number of records can be extracted.
 We can also fi nd the number of records where a specifi ed fi eld has a non-null

value by, e.g.
 SELECT COUNT(cityBorn) FROM mytable1
 We can also fi nd how many records satisfy a specifi ed property. For example
 SELECT COUNT(if(yearBorn>1985 AND sex='F',1,NULL)) FROM

mytable1
 The if(yearBorn > 1985 AND sex = 'F',1,NULL) part signifi es that if the condi-

tion yearBorn > 1985 AND sex = 'F' is satisfi ed the value will be treated as 1 (meaning
true) and the record will thus be counted; if not the value will be treated as NULL
and so will not be counted.

13.1.7 Finding All the Distinct Values of a Field

 It is sometimes useful to be able to fi nd only the distinct values that are taken by a
fi eld. For our example table the command

 SELECT sex FROM mytable1
 will return eight values (one for each record in the table), fi ve of them being F

and the other three being M. By contrast
 SELECT DISTINCT sex FROM mytable1
 will return just the two values M and F.
 This can be very helpful when exploring the contents of a large table. For exam-

ple we might have a table of say 10,000 customer records in which the titles the
customers use have not been standardised. For example it may be that one title has
been entered in three ways: Mrs, Mrs. and in one case even MRs. Another may have

13.1 The Select Command

228

been entered as Dr, Dr., Doctor or even Doc. Once we know which values have been
used it is straightforward using UPDATE commands to standardise the values and
then using an ALTER TABLE command to change the title fi eld to an enumeration
fi eld so that entries remain standardised.

 It is also possible to fi nd all the distinct combinations of the values of two or
more fi elds, e.g. by

 SELECT DISTINCT sex,numChild FROM mytable1

13.2 Complex Select/Update Commands

 It is possible to construct very elaborate commands in MySQL often combining the
SELECT command with the UPDATE command or the INSERT INTO command.
For example if we had a second table called mytable2 with a varchar(50) fi eld
named Fullname, then the command

 UPDATE mytable2 SET Fullname = (SELECT CONCAT(Forename,
' ',Surname) FROM mytable1 WHERE cityBorn = 'paris' ORDER BY refnum
LIMIT 1)

 would set the Fullname fi eld for all records in table mytable2 to the value 'Ann
Williams'. It would be equivalent to entering

 UPDATE mytable2 SET Fullname = 'Ann Williams'
 With the fl exibility of PHP at our disposal we can often perform such operations

with much simpler MySQL commands.
 MySQL has no way of storing the output from a SELECT command in a variable

such as $X and then using $X in a later UPDATE command, but when MySQL
commands are executed from within PHP this is straightforward to do. We will
illustrate how to perform the above combined UPDATE/SELECT command in a
simpler way using PHP in Chap. 15 .

13.3 Combining Tables: Inner and Outer Joins

 MySQL has many very powerful facilities beyond those shown in this book. One
important facility that has not yet been illustrated is the use of a join clause to com-
bine records from two or more tables.

 Combining tables is called making a join . If we have two tables with a column in
common, say a name fi eld or a customer reference number, we can link the two
tables together in a number of ways. To illustrate this, imagine that we have two new
tables: mytable4 and mytable5 .

 We will assume that table mytable4 contains information we have assembled
about a number of animals, large and small, that we have studied: the number of legs
and wings they have and whether or not they can fl y. Note that some animals appear
more than once.

13 Using a MySQL Database II

http://dx.doi.org/10.1007/978-3-319-22659-0_15

229

 Table mytable5 gives information about the classifi cation of a number of types of
animal: mammal, bird, insect, reptile or fi sh.

13.3 Combining Tables: Inner and Outer Joins

230

 Some of the animal names appearing in the Name column in mytable4 are not in
the Name2 column in table mytable5 and vice versa . However fi ve of the values
occur in both columns, namely dog , dove , human , salmon and wasp .

 By combining the tables we can produce a new table that has the fi ve columns
from mytable4 followed (to their right) by the two columns from mytable5 . This can
be done in a number of ways.

 There are three types of join command available in MySQL. The most important
is probably the inner join command. We need to specify that we are joining mytable4
and mytable5 and that we are doing so on the basis of identical values in column
 Name (in mytable4) and column Name2 (in mytable5). The command to do this is:

 SELECT * FROM mytable4 INNER JOIN mytable5 ON
mytable4.Name=mytable5.Name2 ORDER BY Name

 (The ORDER BY clause is optional.)
 Entering this command will give a combined table for the fi ve animal names that

appear in both Name and Name2 :

 Note that the values in mytable5 are repeated for each occurrence of dove and
 human in column Name . We can now see the type of each animal, e.g. that a salmon
is a fi sh.

 The table names in the clause ON mytable4.Name = mytable5.Name2 and the
dots that follow them can be omitted as the two fi eld names each occur in only one
table. Otherwise, giving the table names explicitly would be essential.

 The other two types of join available are called outer joins . The left outer join
returns a row for each of the rows in the fi rst table (mytable4), whether or not there
is a corresponding row in the second table. The command:

 SELECT * FROM mytable4 LEFT OUTER JOIN mytable5 ON
mytable4.Name = mytable5.Name2 ORDER BY Name

 returns the table:

13 Using a MySQL Database II

231

 Null values are used when a value in the Name fi eld in the fi rst table does not
correspond to anything in the second table.

 The right outer join returns a row for each of the rows in the second table
(mytable5), whether or not there is a corresponding row in the fi rst table. The
command:

 SELECT * FROM mytable4 RIGHT OUTER JOIN mytable5 ON
mytable4.Name = mytable5.Name2 ORDER BY Name2

 returns the table:

13.3 Combining Tables: Inner and Outer Joins

232

 Null values are used when a value in the Name2 fi eld in the second table does not
correspond to anything in the fi rst table.

 Although none of the Name2 values in mytable5 is duplicated, the entries in that
table are duplicated in the table above where Name2 is either dove or human . These
are the values in common between the original fi elds Name and Name2 for which
there is more than one entry in mytable4 . For those values there is a row in the com-
bined table for each entry in mytable4 .

13.4 Auto_Increment Fields

 Although in the case of table mytable1 we have a fi eld, refnum , that can reasonably
be used as a primary key this will not always be the case. Frequently there is no fi eld
that we can be sure will never be given the same value twice for different records.

 The solution to this problem is to use an auto_increment fi eld. This is a fi eld
(generally an integer type) which is automatically given a sequential number (gen-
erally starting at one and going up in steps of one) by MySQL whenever a new
record is inserted into a table. This guarantees that each value will be different and
means that the fi eld can safely be used as a primary key. (It is not compulsory for an
auto_increment fi eld to be a primary key, but that is usually the reason for creating
it.) It is not possible to have more than one auto_increment fi eld in any table.

 It would be best to set up an auto_increment fi eld and make it the primary key
when a table is created and we will illustrate how to do this in Chap. 14 . However

13 Using a MySQL Database II

http://dx.doi.org/10.1007/978-3-319-22659-0_14

233

we can introduce an auto_increment fi eld into our table mytable1 as follows. First
we remove the existing primary key (fi eld refnum) by the command

 ALTER TABLE mytable1 DROP PRIMARY KEY
 Now we will create a new fi eld called auto1 of type int and specify that it is both

a primary key and an auto_increment fi eld. We can do this with the command:
 ALTER TABLE mytable1 ADD auto1 int auto_increment PRIMARY KEY
 This creates an integer fi eld auto1 as the right-most fi eld and makes it both the

primary key and an auto_increment fi eld.
 We can now display our revised table in primary key order by
 SELECT * FROM mytable1 ORDER BY auto1
 with this result:

 The values of auto1, from 1 to 8 inclusive, have been added automatically to the
records in the table (in the order of the previous primary key).

 If we now add a ninth record by
 INSERT INTO mytable1 (refnum,Forename, Surname,sex) VALUES (3001,

'John', 'Sanders', 'M')
 the revised output becomes:

13.4 Auto_Increment Fields

234

 Note that the user does not specify a value for auto1. It is supplied automatically
by the MySQL system. If the auto_increment fi eld is not in the right-most position
the user should provide the dummy value '', i.e. an empty string.

 By default, the starting value for auto_increment is 1, and it will increment by 1
for each new record. To change the starting value (or the next value to be used if
some records have already been created) we can use a command such as:

 ALTER TABLE mytable1 AUTO_INCREMENT=100
 Having illustrated the use of an auto_increment fi eld we will now restore our

table to its previous state. We can do that with three commands, fi rst to delete the
fi eld auto1, second to make refnum the primary key again and fi nally to delete the
new record which we added with refnum value 3001.

 ALTER TABLE mytable1 DROP auto1
 ALTER TABLE mytable1 ADD PRIMARY KEY(refnum)
 DELETE FROM mytable1 WHERE refnum=3001 LIMIT 1

13.5 The Show Command

 The SHOW command is used to display in tabular form information about the
names of the user's databases and tables and their structure, as opposed to the data
values they hold. The same comment applies as for SELECT: when a MySQL com-
mand is executed via PHP, the response is not a table but an object from which the
information can be extracted and used to generate a table as part of a webpage or for
any other purpose we chose. We will show how we can make use of this in Chap. 15 .

13.5.1 Show Databases

 So far we have assumed that we have only one database mydb1 and that it has just
one table mytable1 . If instead we had two databases the output from the command

 SHOW DATABASES
 would be a table such as

13 Using a MySQL Database II

http://dx.doi.org/10.1007/978-3-319-22659-0_15

235

13.5.2 Show Tables

 We will continue to assume that the currently selected database is mydb1, i.e. all
MySQL commands relate to that database unless specifi ed otherwise. If we tempo-
rarily assume that mydb1 has four tables not one, the output from the command

 SHOW TABLES IN mydb1
 which we can abbreviate to just
 SHOW TABLES
 will be similar to this

13.5.3 Show Fields/ Show Columns/ Describe

 We can fi nd the names of the fi elds in a table tablename in database databasename
and their properties by the command

 SHOW FIELDS FROM databasename . tablename
 (Note the dot between databasename and tablename .)
 As mydb1 is the currently selected database we can examine table mytable1 by

the simplifi ed command
 SHOW FIELDS FROM mytable1
 Two alternative ways of writing this command are
 SHOW COLUMNS FROM mytable1
 and
 DESCRIBE mytable1
 These all give the same output:

13.5 The Show Command

236

 For each of the eight fi elds in mytable1, the table shows the following

• Field – the name of the fi eld (or column)
• Type – the data type for the fi eld (those introduced in Chap. 12 were varchar,

integer, enum and year).
• Null – whether the column can contain NULL values
• Key – whether the column is indexed (PRI indicates a primary key)
• Default – the fi eld's default value
• Extra – additional information. In particular auto_ increment indicates that the

fi eld has been given the AUTO_INCREMENT option.

 We will explain additional data types and the meanings of the other fi elds in
Chap. 14 when we look at how tables can be created.

13.5.4 Show Variables

 The command
 SHOW VARIABLES
 produces a display of the values of a large number of system variables, which are

unlikely to be of much interest to most users. A more useful version of the com-
mand is

 SHOW VARIABLES LIKE "version"
 which will display the version of MySQL that you are using.

13.6 Some Further Commands and Adding Comments

 To complete this chapter we will give a brief mention of three more MySQL com-
mands which do not need detailed discussion and show how to include a comment
in a MySQL Command.

13 Using a MySQL Database II

http://dx.doi.org/10.1007/978-3-319-22659-0_12
http://dx.doi.org/10.1007/978-3-319-22659-0_14

237

13.6.1 Renaming a Table

 To change the name of mytable1 to mytable99 there are two alternative commands
available

 ALTER TABLE mytable1 RENAME TO mytable99
 RENAME TABLE mytable1 TO mytable99

13.6.2 Deleting a Table

 To delete a table we use a command such as:
 DROP TABLE mytable2
 The tablename may be preceded by a database name followed by a dot if the

table is not in the currently selected database.

13.6.3 Deleting a Database

 The command
 DROP DATABASE mydb2
 deletes all the tables in the database and the database itself.

13.6.4 Including a Comment in a MySQL Command

 Although we have not done so in this book it is possible to include a comment in a
MySQL command. Any # sign or combination of two minus signs followed by a
space and everything to the right of it is taken as a comment and ignored. Anything
between /* and */ is also ignored. So the following commands are all equivalent:

 DROP DATABASE mydb2
 DROP DATABASE mydb2 # delete database
 DROP DATABASE mydb2 -- delete database
 DROP DATABASE /* delete database */ mydb2

13.7 Summary of MySQL Commands

 Here is a summary of all the MySQL commands used in this chapter. In all cases
 tablename can optionally be preceded by the name of a database followed by a dot.
A complete list of the MySQL commands used in this book is given in Sect. 19.3 .

13.7 Summary of MySQL Commands

http://dx.doi.org/10.1007/978-3-319-22659-0_19

238

 ALTER TABLE tablename ADD fi eldname fi eld-specifi cation
 May optionally be followed by
PRIMARY KEY

 Add a fi eld to a
table as the last
column

 ALTER TABLE tablename ADD PRIMARY KEY (fi eldname) To set a
primary key for
a table, when
none already
set. May also
be a sequence
of fi eld names
separated by
commas.

 ALTER TABLE tablename AUTO_INCREMENT= unsigned
integer

 Changes the
starting value
of an auto_
increment fi eld
(or the next
value to be
used if some
records have
already been
created)

 ALTER TABLE tablename DROP fi eldname1
 ,DROP fi eldname2
 ,DROP fi eldname3
 etc.
 [DROP may optionally be followed
by COLUMN each time]

 Delete one or
more fi elds
from a table

 ALTER TABLE tablename DROP PRIMARY KEY To remove an
existing
primary key
from a table

 ALTER TABLE tablename RENAME TO newtablename Change the
name of a table

 DELETE FROM tablename WHERE condition
 [optionally followed by LIMIT
 number]

 Delete one or
more records
from a table.
See Sect. 12.8
for more
information
about
conditions

 DESCRIBE tablename Equivalent to
SHOW
FIELDS
FROM
 tablename

 DROP DATABASE databasename Delete a
database

 DROP TABLE tablename Delete a table
 RENAME TABLE tablename TO newtablename Rename a table

(continued)

13 Using a MySQL Database II

http://dx.doi.org/10.1007/978-3-319-22659-0_12

239

 SELECT * FROM table1 INNER JOIN table2 ON table1.
fi eld1 = table2.fi eld2
 Can be followed by an optional
ORDER BY clause. INNER JOIN
can be replaced by LEFT OUTER
JOIN or RIGHT OUTER JOIN

 Combine tables
(see Sect. 13.3)

 SELECT * FROM tablename WHERE condition ORDER BY
 fi eldnames separated by commas
[optional ASC or DESC after each
one] LIMIT number
 Instead of a fi eldname in the ORDER
BY clause there can be the word
FIELD followed by a fi eldname and a
list of values for the fi eld, all
separated by commas and enclosed in
parentheses. See Sect. 13.1.1.
 Instead of any fi eldname in the
WHERE clause there can be a
function (such as concat, greatest,
least, min, max and avg) applied to
one or more fi eldnames.
 The WHERE, ORDER BY and
LIMIT clauses are all optional. The
LIMIT clause can also be LIMIT
 offset , number

 Returns the
values of all
fi elds in some
or all of the
records in the
table, possibly
in a specifi ed
order and with
a limit to the
number
returned

 SELECT fi elds separated by commas
FROM tablename

 (As for SELECT * FROM
 tablename)

 (As for
SELECT *
FROM
 tablename)

 SELECT COUNT(*) FROM
 tablename

 Returns the
number of
records in the
table

 SELECT COUNT (fi eldname)
FROM tablename

 Returns the
number of
records in the
table where the
fi eld has a
non-null value

 SELECT COUNT (IF (condition , true
value , falsevalue)) FROM tablename

 Returns the
number of
records in the
table where a
specifi ed
condition is
met (see
Sect. 13.1.6)

 SELECT DISTINCT fi eldname
FROM tablename

 May also be a sequence of fi eld
names, separated by commas.

 Finds only the
distinct values
taken by a fi eld
or a
combination of
fi elds

(continued)

13.7 Summary of MySQL Commands

http://dx.doi.org/10.1007/978-3-319-22659-0_13
http://dx.doi.org/10.1007/978-3-319-22659-0_13

240

 SHOW COLUMNS FROM
 tablename

 Equivalent to
SHOW
FIELDS
FROM
 tablename

 SHOW DATABASES Display a list
of all the
databases
available to the
user

 SHOW FIELDS FROM
 databasename.tablename

 Display
information
about the fi elds
in the specifi ed
table in the
specifi ed
database

 SHOW FIELDS FROM tablename Display
information
about the fi elds
in the specifi ed
table in the
current
database

 SHOW TABLES Display a list
of the tables in
the currently
selected
database

 SHOW TABLES IN database Display a list
of the tables in
the specifi ed
database

 SHOW VARIABLES Display the
values of a
large number
of system
variables

 SHOW VARIABLES LIKE "version" Display the
version of
MySQL that
you are using

(continued)

13 Using a MySQL Database II

241

 UPDATE tablename SET fi eld=value WHERE condition
 [optionally followed by LIMIT
 number]
 Can also be a succession of
 fi eld=value pairs, separated by
commas.
 value can also be a SELECT
command enclosed in parentheses
(see Sect. 13.2)

 Change the
value of one or
more fi elds in
one or more
records in the
specifi ed table.
If the WHERE
clause is
omitted all the
records in the
table are
changed.

 Practical Exercise 13
 (1) Given a table such as the one shown in Sect. 13.1.4

 (a) write a MySQL command to display all the details for the oldest person in
the table (ignore the possibility of a tie).

 (b) write a MySQL command to list all the cities in which the women in the
table were born.

 (c) write MySQL commands to change the primary key to a combination of
cityBorn and yearBorn.

 (2) Why would doing (1) (c) be unwise?
 (3) Given tables mytable4 and mytable5 shown in Sect. 13.3 write a MySQL com-

mand that will display all types of animal that can fl y.

 Chapter Summary
 This chapter continues to introduce the MySQL language for managing rela-
tional databases. It is shown how to extract information from a database table,
how to combine information from different tables using join operations, how
to create an 'auto increment' fi eld as a primary key, how to rename a table,
delete either a table or a database and how to fi nd the version of MySQL that
you are using

13.7 Summary of MySQL Commands

243© Springer International Publishing Switzerland 2015
M. Bramer, Web Programming with PHP and MySQL,
DOI 10.1007/978-3-319-22659-0_14

 Chapter 14
 Creating and Updating MySQL Tables

 Chapter Aims
 After reading this chapter you should be able to:

• use a MySQL command to create a database table
• understand the various data types available in MySQL
• construct an appropriate column defi nition for each fi eld in a table
• copy the structure and/or the contents of one table to another
• fi nd the structure of a table
• change the structure, name and fi eld specifi cation of a table.

 In this chapter we complete the description of the MySQL language which was
begun in Chaps. 12 and 13 . We come to the topic of creating a table with a given
structure which was deferred from Chap. 12 . We also show how to modify the struc-
ture of a table and how to copy a table.

14.1 Creating a Table

 To create a table in a database that already exists we use the CREATE TABLE com-
mand. The command used to create table mytable1 might have been the following.

http://dx.doi.org/10.1007/978-3-319-22659-0_12
http://dx.doi.org/10.1007/978-3-319-22659-0_13
http://dx.doi.org/10.1007/978-3-319-22659-0_12

244

 The fi nal component before the closing parenthesis specifi es which fi eld is the
table's primary key. It is not essential to have such a fi eld (or combination of fi elds)
but it is highly recommended to do so.

 The preceding lines comprise a specifi cation of each of the table's eight fi elds,
followed by commas. The entry for each fi eld is the name of the fi eld, followed by
the column defi nition , which comprises the data type, followed (depending on the
type selected) by some optional clauses such as NOT NULL or DEFAULT 0.

14.2 Data Types

 The data type begins with a keyword such an INTEGER or VARCHAR and may be
followed (depending on the type) by some additional keywords such as UNSIGNED.

 MySQL has six main categories of data type, most of which comprise several
individual types that are variations on a common theme. They are summarised
below.

14.2.1 Integer Types

 The principal member of this category is INTEGER, which can be abbreviated to
INT. However there are four other members, which are mainly of interest to those
who administer large databases where minimizing the amount of storage required
for integer values is important or those who wish to use exceptionally large integer
values.

 Each of the integer types may optionally be followed by an unsigned integer in
parentheses, e.g. INT(2). This number indicates a display width for integer types,
which is entirely separate from the range of values that can be stored. For example
an INT fi eld may be specifi ed as INT(4) signifying that integers with fewer than
four signifi cant digits will be displayed padded out to four characters by spaces to
the left. However this does not prevent integers with more than four digits being

14 Creating and Updating MySQL Tables

245

both stored and displayed in full. If no display width is specifi ed, a default value of
11 characters is assumed unless the UNSIGNED option is chosen (see below), in
which case the default is 10 characters.

 The main reason for specifying a display width is to use it in conjunction with the
ZEROFILL clause described below.

 All the members of this category can be followed by optional keywords:

 – UNSIGNED which indicates that the values to be stored are restricted to positive
and zero integers.

 If UNSIGNED is not specifi ed negative integers may also be stored.
 – ZEROFILL which indicates that when a value is displayed it is padded (if neces-

sary) with zeroes up to the display width specifi ed in the column defi nition.
(Values that are longer than the display width are displayed in full.) If no display
width is specifi ed, the unsigned integer default value of 10 characters is assumed.
If ZEROFILL is specifi ed, MySQL automatically adds the UNSIGNED attribute
to the column.

 The six integer types available are given in the following table, which shows how
many bits of storage each such value will occupy and the range of integer values that
may be stored for a fi eld of that type. The latter depends on whether the fi eld is
'signed' or 'unsigned'.

 Type
 Number
of bits Range of values (signed) Range of values (unsigned)

 TINYINT 8 −128 to 127 0 to 255
 SMALLINT 16 −32768 to 32767 0 to 65535
 MEDIUMINT 24 −8388608 to 8388607 0 to 16777215
 INT or INTEGER 32 −2147483648 to 2147483647 0 to 4294967295
 BIGINT 64 −9223372036854775808 to

9223372036854775807
 0 to 18446744073709551615

 Clearly specifying type INT or INTEGER will be perfectly adequate for most
purposes, unless storage space is a particular issue.

 Some possible column defi nitions of integer type are:

 SMALLINT
 INTEGER UNSIGNED
 SMALLINT(2) ZEROFILL
 BIGINT(50) UNSIGNED ZEROFILL

14.2.2 Fixed Point Types

 These are non-integer numerical values that are stored exactly. They are used when
exact precision is important, which is particularly likely to be the case for monetary
values. There are two fi xed-point data types: DECIMAL and NUMERIC, which are

14.2 Data Types

246

equivalent. For these types two numbers are normally specifi ed after the keyword.
They are enclosed in parentheses and separated by a comma.

 The fi rst number, called the precision , indicates how many signifi cant digits can
be stored. The second number, called the scale , indicates the number of digits that
can be stored after the decimal point. Thus for a fi eld specifi ed as DECIMAL(5,2)
numbers from −999.99 to 999.99 can be stored.

 As for integer types, members of this category can be followed by the optional
keywords UNSIGNED and ZEROFILL. If ZEROFILL is specifi ed, MySQL auto-
matically adds the UNSIGNED attribute to the column.

14.2.3 Floating Point Types

 These are numerical values that are stored in binary form, using either 32 bits
(single- precision) or 64 bits (double-precision) and converted to approximate deci-
mal values before they are displayed. There are two kinds:

 – FLOAT and REAL are equivalent. They specify that single precision will be used
(32 bits of storage)

 – DOUBLE PRECISION and DOUBLE are equivalent. They specify that double
precision will be used (64 bits of storage).

 All of them can optionally be followed by precision and scale values in parenthe-
ses. For example, a fi eld defi ned as FLOAT(7,4) will look like −999.9999 when
displayed.

 Precision values up to 23 are appropriate for single-precision (32 bits) storage. If
a larger precision value is specifi ed, double-precision (64 bits) storage is required.

 As for integer and fi xed point types, members of this category can be followed
by the optional keywords UNSIGNED and ZEROFILL. If ZEROFILL is specifi ed,
MySQL automatically adds the UNSIGNED attribute to the column.

14.2.4 Character Types

 There are ten types of fi eld that can be used to hold strings of characters.

 CHAR (length) A fi xed length string of from 1 to 255 characters. Strings of fewer
characters are stored right-padded with spaces. The (length) part is
optional. If omitted a value of one is assumed

 VARCHAR (length) A variable length string. The value of length must be specifi ed as
an integer from 1 to 255

 BLOB or TEXT A fi eld with a maximum length of 65535 characters. (BLOB
stands for 'Binary Large Object'.) Sorting or comparison of stored
data is case sensitive for BLOB and case insensitive with TEXT

(continued)

14 Creating and Updating MySQL Tables

247

 TINYBLOB or
TINYTEXT

 As for BLOB and TEXT but with a maximum of 255 characters

 MEDIUMBLOB or
MEDIUMTEXT

 As for BLOB and TEXT but with a maximum of 16777215
characters

 LONGBLOB or
LONGTEXT

 As for BLOB and TEXT but with a maximum of 4294967295
characters

14.2.5 Enumeration Types

 Here the fi eld must take one of a specifi ed set of values, which are separated by
commas. For example

 ENUM ('M','F')
 or
 ENUM('Excellent','Good','Average','Poor','Very Poor')

14.2.6 Date and Time Types

 There are fi ve of these, each comprising a single word. The table below shows how
data of each type is stored.

 Type Format Example

 DATE 'YYYY-MM-DD' '2020-02-28'
 YEAR 'YYYY' '2010'
 TIME 'HH:MM:SS' '17:08:57'
 DATETIME 'YYYY-MM-DD HH:MM:SS' '2001-11-30 22:08:06'
 TIMESTAMP 'YYYY-MM-DD HH:MM:SS' '2001-11-30 22:08:06'

 TIMESTAMP is the same as DATETIME with the current date and time auto-
matically converted to UTC (Co-ordinated Universal Time, also known as
Greenwich Mean Time). It is automatically set when a record is inserted into a table
and automatically updated when the record is updated. (It should not be included
explicitly in the INSERT INTO and UPDATE commands.)

14.3 NOT NULL and DEFAULT Clauses

 Each of the above data types can be followed by either or both of the keywords NOT
NULL and DEFAULT

14.3 NOT NULL and DEFAULT Clauses

248

 NOT NULL specifi es that it is not permitted to give the fi eld a value of NULL. If
a fi eld is specifi ed as NOT NULL, any attempt to assign it a value of NULL by an
INSERT INTO or an UPLOAD command will cause the DEFAULT value to be
used (as explained below). A primary key fi eld should always be specifi ed as NOT
NULL.

 DEFAULT value specifi es a value to be given to a fi eld if no value (except
NULL) is assigned by an INSERT INTO command or an UPDATE command.

 [a] If the fi eld is numeric, the default value must be a number, e.g.
 INT (2) DEFAULT 0
 or
 FLOAT (7,4) DEFAULT 6.5
 [b] If the fi eld is a string the default must be a string value or NULL, e.g.
 VARCHAR(10) DEFAULT 'yes'
 or
 CHAR(6) DEFAULT ''
 or
 VARCHAR (20) DEFAULT NULL
 [c] In the case of an enumeration fi eld the default value must be one of the speci-

fi ed values, e.g.
 ENUM('Excellent','Good','Average','Poor','Very Poor') DEFAULT 'Average'
 If it is not appropriate to make one of the specifi ed values the default, the NOT

NULL and DEFAULT clauses should not be used.
 [d] BLOB and TEXT fi elds cannot be given a default value.
 If no explicit default value is given for a fi eld, it is possible for it to take a NULL

value and it is not specifi ed as NOT NULL, MySQL adds an explicit DEFAULT
NULL clause to the fi eld defi nition.

14.3.1 Implied Default Values

 If a fi eld is specifi ed as NOT NULL, with no default value given, when any attempt
is made to assign a NULL value to it, MySQL will assign an appropriate value
where that is possible. (In other cases an error will occur.)

 – For an auto_increment fi eld, the next value in the sequence is used
 – For a numeric fi eld (that is not an auto_increment fi eld) the value zero is used
 – For a string fi eld (that is not an auto_increment fi eld) an empty string is used
 – For an enumeration fi eld the default will be taken to be the fi rst of the specifi ed

values
 – For a DATE fi eld the default will be '0000-00-00'
 – For a YEAR fi eld the default will be '0000'
 – For a TIME fi eld the default will be '00:00:00'
 – For a DATETIME fi eld the default will be '0000-00-00 00:00:00'

14 Creating and Updating MySQL Tables

249

 – For a TIMESTAMP fi eld the default will be taken to be the function CURRENT_
TIMESTAMP, which will enter the current year, month, day and time into the
fi eld in the correct format (using Co-ordinated Universal Time).

 Note that a DATETIME fi eld can be given the function CURRENT_TIMESTAMP
as its default, but this has to be done explicitly. (This and the TIMESTAMP fi eld are
the only exceptions to the principle that a default value must always be a
constant.)

14.4 AUTO_INCREMENT Clause

 If an auto_increment fi eld is required it is specifi ed here immediately after the
DEFAULT clause (if there is one). There may be at most one auto_increment fi eld
for any table. It is normally desirable for an auto_increment fi eld also to be specifi ed
as PRIMARY KEY.

14.5 Key Clauses

 The most important of these is
 PRIMARY KEY
 It follows immediately after the AUTO_INCREMENT clause (if there is one).
 Although it is not essential, it is recommended for effi ciency reasons that a pri-

mary key fi eld is always explicitly given a NOT NULL specifi cation.

14.6 Copying a Table

 If we want to create a new table mytable2 with the same structure and fi eld defi ni-
tions, etc. as mytable1 we can do it with a single command:

 CREATE TABLE mytable2 LIKE mytable1
 The two tables can be in different databases that are accessible to the user, in

which case each table name should be preceded by the name of a database followed
by a dot.

 If we want the contents of mytable1 to be copied to mytable2, thus giving an
identical copy of the original table, we can use the further command:

 INSERT INTO mytable2 SELECT * FROM mytable1
 Using the two commands together clearly provides a very simple way of making

a backup copy of a table.

14.6 Copying a Table

250

14.7 Changing the Structure, the Name and the Field
Specifi cations of a Table

 The structure of a table, its name and/or the specifi cations of its fi elds can be
changed using the ALTER TABLE command. We have already seen several ver-
sions of this. This section brings together and extends what has already been dis-
cussed about this very powerful command.

14.7.1 Primary Keys

• To remove an existing primary key
 ALTER TABLE tablename DROP fi eldname
• To create a new primary key from one fi eld
 ALTER TABLE tablename ADD PRIMARY KEY(fi eldname)
• To create a primary key from more than one fi eld
 ALTER TABLE tablename ADD PRIMARY KEY(fi eld1,fi eld2,…)

14.7.2 Set the Starting Value
for an AUTO_INCREMENT Field

 ALTER TABLE tablename AUTO_INCREMENT= unsigned integer

14.7.3 Change the Name of a Table

 ALTER TABLE oldname RENAME TO newname

14.7.4 Add a New Field

 ALTER TABLE tablename ADD fi eldname fi eld-specifi cation
 The fi eld-specifi cation can include all the clauses illustrated earlier in this chap-

ter, e.g.
 ALTER TABLE mytable1 ADD surname VARCHAR(30) NOT NULL

DEFAULT ''
 ALTER TABLE mytable1 ADD numchild INT(4) UNSIGNED ZEROFILL

NOT NULL DEFAULT 99
 ALTER TABLE mytable1 ADD refnum INTEGER NOT NULL PRIMARY KEY

14 Creating and Updating MySQL Tables

251

 ALTER TABLE mytable1 ADD indexfi eld INTEGER NOT NULL AUTO_
INCREMENT PRIMARY KEY

 If there is nothing following the fi eld-specifi cation the new fi eld is placed in the
right-most position

 Instead we can use a clause AFTER fi eldN to place it after fi eldN or FIRST to
place it in the left-most position.

14.7.5 Change the Name and/or Structure of a Field

 We can change the name of a fi eld and its specifi cation with a single command
 ALTER TABLE tablename CHANGE old fi eldname newfi eldname

fi eld-specifi cation
 If the old fi eldname is the same as the new fi eld name it is simpler to use another

form of the command:
 ALTER TABLE tablename MODIFY fi eldname fi eld-specifi cation
 In both cases the fi eld-specifi cation can include all the clauses illustrated earlier

in this chapter (and should include all those that are to remain in force). For
example

 ALTER TABLE mytable1 CHANGE numchild numchildren INTEGER(4)
UNSIGNED ZEROFILL

 ALTER TABLE mytable1 MODIFY numchildren INTEGER NOT NULL
AFTER occupation

 ALTER TABLE mytable1 CHANGE numchildren numchild INTEGER AFTER
yearBorn

 If we are altering the specifi cation of the PRIMARY KEY fi eld there is no need
to include the PRIMARY KEY clause. Once this is set it remains in force until it is
removed using an ALTER TABLE … DROP PRIMARY KEY command.

14.7.6 Changing a Default Value

 We can change or set a default value of a fi eld by including DEFAULT default-value
in the fi eld specifi cation, e.g.

 ALTER TABLE mytable1 MODIFY numchild INTEGER NOT NULL
DEFAULT 99

 However if the only change is to the default value we can change it using a sim-
pler form of the ALTER TABLE command:

 ALTER TABLE mytable1 ALTER numchild SET DEFAULT 99
 To remove the default value we can use
 ALTER TABLE mytable1 ALTER numchild DROP DEFAULT

14.7 Changing the Structure, the Name and the Field Specifi cations of a Table

252

14.8 Using the SHOW Command to Find the Structure
of a Table

 A further use of the SHOW command is to fi nd the structure of a table. The output
from the command

 SHOW CREATE TABLE mytable1
 is a listing of a CREATE TABLE command that could have been used to create

the table, which may include elements added automatically by the MySQL
system.

14.9 Summary of MySQL Commands

 Here is a summary of all the MySQL commands used in this chapter. In all cases
 tablename can optionally be preceded by the name of a database followed by a dot.
A complete list of the MySQL commands used in this book is given in Appendix 3.

 ALTER TABLE
 tablename

 ADD fi eldname fi eld-specifi cation
AFTER fi eldname
 May optionally be followed by
PRIMARY KEY

 Add a fi eld to a table after a
specifi ed column

 ALTER TABLE
 tablename

 ADD fi eldname fi eld-specifi cation
FIRST
 May optionally be followed by
PRIMARY KEY

 Add a fi eld to a table as the fi rst
column

 ALTER TABLE
 tablename

 ADD fi eldname fi eld-specifi cation
 May optionally be followed by
PRIMARY KEY

 Add a fi eld to a table as the last
column

 ALTER TABLE
 tablename

 ADD PRIMARY KEY
(fi eldname)

 To set a primary key for a table,
when none already set. May also
be a sequence of fi eld names
separated by commas.

 ALTER TABLE
 tablename

 ALTER fi eldname DROP
DEFAULT

 Cancel the default value of a fi eld

 ALTER TABLE
 tablename

 ALTER fi eldname SET DEFAULT
 value

 Set the default value of a fi eld

 ALTER TABLE
 tablename

 AUTO_INCREMENT = unsigned
 integer

 Changes the starting value of an
auto_increment fi eld (or the next
value to be used if some records
have already been created)

 ALTER TABLE
 tablename

 CHANGE oldfi eldname
newfi eldname fi eld-specifi cation

 Change a fi eld name and/or
specifi cation in a table

(continued)

14 Creating and Updating MySQL Tables

253

 ALTER TABLE
 tablename

 DROP fi eldname1
 ,DROP fi eldname2
 ,DROP fi eldname3
 etc.
 [DROP may optionally be
followed by COLUMN each time]

 Delete one or more fi elds from a
table

 ALTER TABLE
 tablename

 DROP PRIMARY KEY To remove an existing primary key
from a table

 ALTER TABLE
 tablename

 MODIFY fi eldname
fi eld-specifi cation

 Change a fi eld specifi cation in a
table

 ALTER TABLE
 tablename

 RENAME TO newtablename Change the name of a table

 CREATE TABLE
 tablename
(specifi cation)

 This is discussed in detail in
Chapter 14

 CREATE TABLE
 tablename

 LIKE oldtablename Create new table with same
structure and fi eld specifi cations as
an existing one

 INSERT INTO
 table2

 SELECT * FROM table1 Copy contents of table1 into table2

 SHOW CREATE
TABLE tablename

 Gives a listing of a CREATE
TABLE command that could have
been used to create the table

 Practical Exercise 14
 Give possible CREATE TABLE commands for tables mytable1 (shown in Sect.
 12.10) and mytable4 and mytable5 (both shown in Sect. 13.3).

 Chapter Summary
 This chapter concludes the description of the MySQL language begun in
Chaps. 12 and 13 . It shows how to use a MySQL command to create a data-
base table, explaining the various data types available and shows how to con-
struct an appropriate column defi nition for each fi eld in a table. It is then
shown how to copy the structure and/or the contents of one table to another,
how to fi nd the structure of a table and how to change the structure, name and
fi eld specifi cation of a table.

14.9 Summary of MySQL Commands

http://dx.doi.org/10.1007/978-3-319-22659-0_12
http://dx.doi.org/10.1007/978-3-319-22659-0_13
http://dx.doi.org/10.1007/978-3-319-22659-0_12
http://dx.doi.org/10.1007/978-3-319-22659-0_13

255© Springer International Publishing Switzerland 2015
M. Bramer, Web Programming with PHP and MySQL,
DOI 10.1007/978-3-319-22659-0_15

 Chapter 15
 Using a PHP Script to Manage a MySQL
Database

 Chapter Aims
 After reading this chapter you should be able to:

• use PHP to manage a MySQL database
• use PHP to send MySQL commands to a MySQL server
• use PHP to display the results of a MySQL SELECT, SHOW or DESCRIBE

command in tabular form
• use PHP to determine the number of rows of a table affected by a MySQL

INSERT, UPDATE, REPLACE or DELETE command
• understand the difference between PHP functions with names prefi xed

with mysql_ and those prefi xed with mysqli_
• display the version of MySQL you are using.

 In Chaps. 12 , 13 and 14 we have given a detailed description of the MySQL lan-
guage. In this chapter we come on to the topic of using a PHP script to issue MySQL
commands to manage a database.

 We will start by assuming that we already have a database mydb1 containing a
table mytable1 . We will illustrate how to execute the command:

 SELECT * FROM mytable1 ORDER BY refnum
 from a PHP script and how to process the output sent back from the MySQL

server and display the output in the form of a table in a webpage. We will call the
PHP script that does this sqltest.php

http://dx.doi.org/10.1007/978-3-319-22659-0_12
http://dx.doi.org/10.1007/978-3-319-22659-0_13
http://dx.doi.org/10.1007/978-3-319-22659-0_14

256

15.1 Connecting to a Database

 A PHP script to manage a MySQL database will fi rst need to establish a connection to
the database server. To do this we need to specify our username and password and the
name of our 'host', i.e. the server where MySQL is installed. The host name is normally
 localhost , assuming that the database is located on the same server as the website. If
not it will probably be a string of characters, such as mydbhost.mycompany.com.

 The username and password determine the database permissions the user has,
e.g. whether or not he or she can create and delete a database. Unless you have your
own server you will probably fi nd that you are able to create and modify tables
within one or more databases already provided for you by your service provider. A
fourth piece of information that needs to be provided is the name of the database
that we would like to be treated as the current database. For our examples these four
values will be myusername , mypassword , myhost and mydb1 , respectively.

 We can write these in our script, as string constants "mypassword", etc. However
if we intend to use MySQL commands at many different places in a script it will
save typing and be less error-prone if we start by assigning the four values to vari-
ables and then use those variables every time we connect to the MySQL server. It
will also make our scripts more portable – if we move the script to run on a different
server or change the password only those four assignment lines will need to be
changed.

 We recommend using memorable names for the four variables that are unlikely
to be used for anything else by mistake. In this book we will use $sys_dbusername ,
 $sys_dbpassword , $sys_dblocalhost and $DBName . So at some early part of our
script we could place the assignment statements:

 A problem with this approach, as so far described, is that if we eventually build
up to having a large number of PHP fi les with these values assigned as constants in
each one and then decide to change the password or move the database to a different
web server we will need to change the same four lines in each of the separate PHP
fi les. There is also a security risk involved in having confi dential information in so
many places. If anyone sees a listing of one of the scripts that uses the database
values they may be able to access the database and potentially overwrite or delete
all the contents. A better way of proceeding is to use the PHP include facility. First
create a small PHP fi le, which we will call sql.php , with the following contents:

15 Using a PHP Script to Manage a MySQL Database

257

 and then place an include statement

 near the start of every script that accesses the database.
 Having done this, the next step is to enter the PHP statement that makes a con-

nection to the MySQL server. Using the fi rst three of our variables the command is

 We assign the result of making the connection to variable $Link (any variable
name can be used but in this book we will always use $Link for consistency).

 Assuming the connection is made successfully $Link becomes what is called a
 link identifi er . This is needed for the next step in our process.

 Using the link identifi er we can now issue a sequence of MySQL commands to
manage our database. As soon as the connection to the database is no longer needed
we use the PHP statement

 to close the connection. This is not essential but it is good practice to close the
connection when it is no longer needed. So far our embryonic PHP script looks like
this.

 Function mysql_close is a logical function which returns the value true if the
action succeeds and false otherwise. However it is generally used in 'standalone'
mode.

 Before going on to explain how to issue MySQL commands to manage the data-
base, we will go back to the mysql_connect line. What happens if the connection to
the MySQL server fails? This could happen for a variety of reasons, not least that an
incorrect username, password or hostname has been entered. We are very unlikely
to want the script to continue executing, possibly for many thousands of instruc-
tions, despite the server connection having failed.

 To avoid this we can change the mysql_connect statement to

15.1 Connecting to a Database

258

 This is an instruction of a kind not previously used in this book. The effect of it
is that if the connection fails the die function is executed. This causes the execution
of the PHP script to terminate immediately. Instead of a string for the system to
display such as 'connection to server failed' an alternative is to use the PHP mysql_
error function:

 This gives the actual error message generated by the PHP system.
 Our PHP script is now:

 The next step is to issue a MySQL command. Although our aim is for this to be
a SELECT command, we will start with something a little simpler, namely:

 RENAME TABLE mytable1 TO mytable99
 First we assign this value to a variable, which in this book will always be $query,

by the PHP statement

 Then to send the command to the MySQL server we use the PHP statement:

 The mysql_db_query function takes three arguments: the name of the database,
the query (i.e. the MySQL command) and the link identifi er. It returns a result which
in this book we will always assign to variable $result. The value of $result is always
an empty string "" (corresponding to false) if the MySQL command fails, for exam-
ple because of a typing error, or because it refers to a non-existent database or table.
If the command succeeds there are two cases:

 1. For commands such as ALTER TABLE or INSERT INTO, UPDATE, DELETE
or RENAME which tell the MySQL system to do something, $result will have a
value of 1 (indicating true).

 2. If the command is one such as SELECT and SHOW which asks the system to
return a table of values, the value given to $result will be a more complex
'resource object' from which the values can be extracted. We will come back to
this shortly.

15 Using a PHP Script to Manage a MySQL Database

259

 Returning to the RENAME example, we could replace the comments in our par-
tial PHP script sqltest.php by just the two lines:

 The weakness of doing this is that we have no way of knowing whether the com-
mand has succeeded or failed. We may be confi dent enough in our programming
skills not to worry about checking this, but all experience suggests that even the
most 'obviously correct' program code can have hidden problems, for example, in
this case, if we had misspelt the name of the table or if we had forgotten that we had
previously renamed it as something else. A more cautious approach is to test the
value of $result and display the query if it failed.

 We will now imagine that the renaming has been reversed (so the table is again
called mytable1) and will go on to show how to deal with the MySQL command

 SELECT * FROM mytable1 ORDER BY refnum
 Assuming the SELECT command succeeds there are two special integer-valued

functions we can use to fi nd out the number of rows and columns in the resulting
table. They are mysql_num_rows() and mysql_num_fi elds() respectively. They can
both also be applied to the results of a SHOW command. 1 The following updated
script shows how to use them.

1 But not the commands INSERT INTO, UPDATE, REPLACE or DELETE, for which the function
 mysql_affected_rows is used (See Sect. 15.6).

15.1 Connecting to a Database

260

 Giving the output:

 Note that we have placed the statement

 to close the connection immediately after the mysql_db_query statement, as vari-
able $result can be used even after the connection is broken. If we were intending to
go on to issue other MySQL commands using mysql_db_query we would probably
not have broken the connection at that point, to avoid having to reconnect later.

 Assuming that the MySQL SELECT command succeeded, $result will have
been assigned a value that makes it into a special kind of variable known as a
 resource . Attempting to print out its value using the PHP statement

 will produce unhelpful output such as:

 In the case of a SELECT command it is probably best to think of the resource
$result as a two-dimensional table containing all the records produced by the com-
mand, but with the important restriction that they can only be accessed one row
(record) at a time. We can do this by placing a call to the mysql_fetch_array() func-
tion inside a while statement such as this:

 (Any variable can be used instead of $row, but we will use that name throughout
this book for consistency.)

 Looping terminates when the system runs out of rows, which causes mysql_
fetch_array() to return the value false (i.e. "").

 If we know that there is only one row (e.g. because the SELECT command had
a LIMIT 1 clause) we do not need the while loop and can just write:

 Each value of $row is an array that contains the values of all the selected fi elds in
mytable1 for one record. This array can be used with either a numerical index such
as $row[3] (with the names of the fi elds numbered 0, 1, etc. in the order in which
they were returned), or an 'associative' index such as $row[Surname].

15 Using a PHP Script to Manage a MySQL Database

261

 If we prefer to have only one of these methods of indexing (which will save some
processing time) we can replace the function mysql_fetch_array by either mysql_
fetch_row (for an indexed array only) or mysql_fetch_assoc (for an associative
array only).

 This was the fi nal state of table mytable1, when we left it at the end of Sect.
 12.10 .

 The rows are arranged in ascending order of the primary key, refnum. As before,
the column headings do not form part of the table but are provided for the reader's
convenience.

 As we go through the rows one-by-one, imagine that we have come to the third
row (with refnum = 1927). The values in the row are numbered starting from zero,
so for the third row $row[0] is 1927. If we now print $row[4] and $row[6] we will
get the values engineer and 1987. We can also refer to $row[occupation] and
$row[yearBorn] which give the same values.

 We will next print out the entries in each row, row-by-row, using associative
indexes such as $row[refnum] and with values separated by spaces.

 The expanded version of sqltest.php looks like this.

15.1 Connecting to a Database

http://dx.doi.org/10.1007/978-3-319-22659-0_12

262

 which gives the output

 Although being able to refer to a value as $row[yearBorn], say, can be very help-
ful and can greatly aid the readability of PHP scripts, if we are dealing with a whole
row it is often simpler to refer to the values as $row[0], $row[1] up to $row[7] and
use a for loop.

 We can replace the lengthy print statement in the above script by the much sim-
pler pair of statements:

 In this case we could have used the constant eight instead of $numcols as we
know how many fi elds there are, but we are eventually aiming at a script we can use
even when we do not know the number of fi elds.

 We are now approaching the point where we can achieve our aim of displaying
the result of the SELECT command in tabular form. The HTML code for a table
with a border round it is similar to this

 To put the output from a SELECT command into a table we place

 before the while loop in our script and

 outside the loop, and then replace the two statements

15 Using a PHP Script to Manage a MySQL Database

263

 in the while loop, which deals with only one row at a time, by

 The extended version of script sqltest.php is now:

 This gives the output

 This is good but it would be better if we could add the column headings. We start
by observing that if we replace the MySQL SELECT command in sqltest.php by

15.1 Connecting to a Database

264

SHOW COLUMNS FROM mytable1 the output will be the same table we saw in
Sect. 13.5 (but without any column headings):

 If we want to produce a one-row table showing only the fi eld names (currently in
column zero) we can do that by changing the while loop to:

 This produces the one row table

 Now we can combine the PHP instructions that produce the mytable1 table with
the instructions that produce a row of headings to give an augmented table with the
values in mytable1 preceded by a row of headings.

15 Using a PHP Script to Manage a MySQL Database

http://dx.doi.org/10.1007/978-3-319-22659-0_13

265

 Here we have two versions of $query and $result, the second versions being
named $query2 and $result2 respectively. Once $result2 had been created we closed
the connection to the server. The table was then constructed by using both $result
and $result2. Rows 'extracted' from $result are given the name $row as usual. For
$result2 we use the name $row2.

 The outcome from the above script is the familiar table:

15.1 Connecting to a Database

266

15.2 A PHP Function to Display the Result of a Selection

 Displaying the output of a SELECT command, for either all fi elds or a selection, in
tabular form is likely to be such a common requirement that we recommend creat-
ing a function to do it which takes $result as its argument. Adding the column head-
ings is more diffi cult if only a partial selection of fi elds is made, so we will dispense
with that and convert our earlier set of instructions, which generate the table without
any headings, into a call to a function displaySelections .

 Running this script produces the output:

15 Using a PHP Script to Manage a MySQL Database

267

 We recommend placing the function in a PHP fi le such as sqlutils.php which can
be included in a script whenever it is needed.

 The displaySelections function also works when used with a SHOW or a
DESCRIBE command.

 We can modify the function a little and pass it two arguments: $query and $result
instead of just $result and change its name to processResult to give a function which,
as its name suggests, can be used to process the $result variable produced by any
MySQL command. Commands not beginning with SELECT, SHOW, DESCRIBE
or their variants produce the output COMMAND SUCCEEDED or COMMAND
FAILED. Valid commands beginning with SELECT, SHOW or DESCRIBE are
treated separately.

 In this example the function is applied to a SELECT command which specifi es
four fi elds.

15.2 A PHP Function to Display the Result of a Selection

268

 which produces the output:

15.2.1 Finding the Version of MySQL

 The MySQL command
 SHOW VARIABLES LIKE "version"

15 Using a PHP Script to Manage a MySQL Database

269

 was described in Sect. 13.5.4 . It returns a single row of which the second value
(i.e. $row[1]) is the number of the version of MySQL you are using. The following
script will extract that value and output it to the user's screen.

15.3 Using Simpler MySQL Commands

 In Sect. 13.2 we illustrated the relatively complex MySQL command needed to
extract a forename and surname from one table, join them together with a space
between them and then set all values of the 'Fullname' fi eld in a different table to
that value. The MYSQL command was

 UPDATE mytable2 SET Fullname = (SELECT CONCAT(Forename,
' ',Surname) FROM mytable1 WHERE cityBorn = 'paris' ORDER BY refnum
LIMIT 1)

 This is quite a complex MySQL command but a glance at a MySQL manual will
soon convince you that there are many far more complex commands than that.

 We promised that "we will illustrate how to perform the above combined
UPDATE/SELECT command in a simpler way using PHP in Chap. 15 " and now we
will redeem that promise.

 First it is worth stressing that for those who have no trouble writing MySQL
commands such as the above (and remembering the many MySQL functions of
which CONCAT is only one), that is the best way of doing it. Those for whom maxi-
mum processing speed is not an overwhelming issue compared with ease of use
(which is likely to be most of the readers of this book) will probably fi nd it easier
and less error prone to use two or even three 'basic' MySQL commands rather than
a complex long one, taking advantage of PHP's ability to store information in vari-
ables between one MySQL command and another and using the PHP language's
standard functions, operators and other facilities.

 In this case we will fi rst extract the (single) values of Forename and Surname
from mytable1 using

 SELECT Forename,Surname FROM mytable1 WHERE cityBorn = 'paris'
ORDER BY refnum LIMIT 1

 Then we will join them together separated by a space using a PHP assignment
statement. Finally, we will set the value in the Fullname fi eld to that value for all

15.3 Using Simpler MySQL Commands

http://dx.doi.org/10.1007/978-3-319-22659-0_13
http://dx.doi.org/10.1007/978-3-319-22659-0_13
http://dx.doi.org/10.1007/978-3-319-22659-0_15

270

records in table mytable2 using a simple UPDATE command. The PHP script to do
this is given below.

 (The fi rst '$query=' statement is spread over two lines in this book because of the
width limitations of the printed page. It is just one fairly long statement in PHP.)

 The two most important statements are

 The former statement joins the two parts of the name together with a space
between them, using the standard PHP dot operator to join the strings.

 The second statement creates a new query by combining a fi xed part "UPDATE
mytable2 SET Fullname=" with a variable part, $full, the value of which was not
known when the PHP script began executing. This use of variables in constructing
queries dynamically is standard practice and shows the value of using a general-
purpose language such as PHP with the large range of facilities it offers as a way of
managing a database.

 It should be noted that a single quote character has been placed on either side of
$full. Field values must always be quoted in this way, so the combination of charac-
ters after the = symbol is a single quote followed by a double quote. After $full there
is a dot then a single quote enclosed in double quotes.

15.4 Combining Tables

 This next example shows how to combine three tables.

15 Using a PHP Script to Manage a MySQL Database

271

 We will assume that we have taken over the role of administrator for a database
with three tables, mytableA, mytableB and mytableC , all containing information
about the same eight members of a club.

 The fi gures below show the content of the three tables.

 mytableC
 On inspection we see that

• mytableA gives the reference number plus Forename, Surname and sex for each
club member

• mytableB gives the reference number, occupation and number of children for
each one

• mytableC gives the reference number, city and year of birth for each one.

 In each case the reference number is the primary key fi eld, but it has a different
fi eld name for each table.

 Having examined the three tables and observed that exactly the same members
occur in each one, we decide to combine the three tables into a single table with
eight fi elds.

 We fi rst create an empty new table mytableNEW with suitable fi eld defi nitions.
(They are of course those of table mytable1, which we have seen many times
before.)

15.4 Combining Tables

272

 We can now either study the MySQL documentation to fi nd a suitable (but prob-
ably quite complex) command to combine the three tables or we can write a short
PHP script to do the job.

 The idea is to issue three MySQL commands, each one performing a SELECT *
command for one of the tables. We create a separate 'resource' for each one (called
$result1, $result2 and $result3) and then extract a row from all three resources for
each pass through a WHILE loop and store these in arrays $row1, $row2 and $row3.

 We then have all the data for each record in the new table available to us at the
same time, e.g. for the fi rst record in each table $row1[Forename], $row2[occupation]
and $row3[cityBorn] are James, none and Geneva, respectively.

 The most diffi cult part is to work out how to write the data to the new table. We
could do it by issuing a separate INSERT INTO command at each pass through the
WHILE loop, but there is a better approach. We will build up a single command that
inserts all the new records into mytableNEW when the WHILE loop ends. This
command takes the form

 INSERT INTO mytableNEW VALUES (xxx),(xxx),(xxx),
 Here each of the bracketed values (xxx) is created by one pass through the

WHILE loop and contains all the values for one record separated by commas, e.g.
 (634,'James','Robinson','sex','occupation','Geneva',2007,0)
 We omit the surrounding quote characters for those fi elds that we know are

always numeric. Each bracketed set of values needs to be preceded by a comma,
except the fi rst.

 This leads to the script shown below. 2

2 The combination "'" is a single quote enclosed in double quotes. The combination "'," is a single
quote followed by a comma, both enclosed in double quotes.

15 Using a PHP Script to Manage a MySQL Database

273

 Running this script gives table mytableNEW the (by now not unfamiliar)
content:

15.4 Combining Tables

274

15.5 A Visual MySQL Command Processing Tool

 In this section we describe a software tool, stored in fi le commands.php, written in
PHP which enables any user of a web browser to enter a (single) MySQL command
and receive either a message that it succeeded or failed or, in the case of a successful
SELECT, SHOW or DESCRIBE command, the values returned by the MySQL
system in tabular form.

 Pointing a web browser to commands.php produces the following initial screen.

 The user can now enter a single MySQL command, possibly extending over
more than one line, into a textarea in a webform and also enter into a text box the
name of a table to display.

 As always in this book, the current database is specifi ed as the value of variable
$DBName in 'include' fi le sql.php. We will assume it is our usual database, named
 mydb1 .

 Entering the command
 UPDATE mytable1 SET Forename='Henrietta' WHERE refnum=3842 LIMIT 1
 and the table name mytable1 and pressing the Submit produces the following

output:

15 Using a PHP Script to Manage a MySQL Database

275

 The command has succeeded, as the display of table mytable1 confi rms.
 Note that the values previously entered in the webform, which is now in the bot-

tom part of the display, are left there as default values for the next use of the
webform.

 If we now enter the command
 SELECT sex,yearBorn FROM mytable1 WHERE refnum>2500
 in the textarea, leave the contents of the table name box, i.e. mytable1, unchanged

and press Submit, the following is displayed:

15.5 A Visual MySQL Command Processing Tool

276

 A listing of PHP script commands.php is shown below. It is complete except for
two user-defi ned functions: processResult2 and showtable which are not (yet) listed.
Line numbers have been added for ease of reference only but do not form part of the
script itself.

15 Using a PHP Script to Manage a MySQL Database

277

• The HTML for the webform displayed on the initial screen (which will also
appear as the bottom part of all subsequent screen displays) is given in lines
27–34. The <FORM> specifi es action = "?" indicating that the destination page is
the same page. Lines 28 and 30 take advantage of this to set the values passed to
the script by the web form, now stored in variables $query and $table, as default
values. (Both are empty strings for the initial screen.)

• Lines 2 and 3 include fi le sql.php as in the other examples and make the connec-
tion to the database. Line 25 closes the connection.

• In line 4 the value of the query variable sent by the webform (i.e. the MySQL
command in the textarea) is trimmed and assigned to variable $query. In line 5
any \ characters are removed from $query. This is important to deal with compli-
cations arising if a command includes a single quote symbol, as it often will.

15.5 A Visual MySQL Command Processing Tool

278

• If the resulting value of $query is not null, the query is then sent to the MySQL
server (line 8) giving a 'resource' named $result. This is then processed by a user-
defi ned function named processResult2 which generates the upper part of the
display.

• Next the value of the table variable sent by the webform (i.e. the name of the
table to be displayed) is trimmed and assigned to variable $table (line 14). If it is
not null, the table name is sent to the MySQL server in two queries:

• SHOW COLUMNS FROM tablename
• and
• SELECT * FROM tablename
• These generate two resources $result1 and $result2 and these are passed to func-

tion showtable.

 This just leaves functions processResult2 and showtable to be defi ned.
 The defi nition of function processResult2 is given below. It is almost the same as

function processResult defi ned in Sect. 15.2 . The non-trivial changes (all additions)
are shown in bold in the listing below.

 The only change that needs explaining is the IF statement beginning

 This checks whether the command begins with SHOW or DESCRIBE, as
opposed to SELECT, taking into account the fact that the keyword may be written
in any combination of upper and lower case letters, e.g. DEscrIBe. If it is, an initial
header row with six entries such as Field and Type is displayed using the method

15 Using a PHP Script to Manage a MySQL Database

279

described in Sect. 15.1 in connection with the command SHOW COLUMNS FROM
mytable1.

 Finally we come to function showtable . This takes the resource created by the
SHOW COLUMNS FROM tablename command and uses it to generate a row of
column headings, then takes the resource generated by the SELECT * FROM table-
name command and uses it to generate the contents of table mytable1 itself. The
function is very similar to the script listed near the end of Sect. 15.1 .

15.6 The PHP mysql_affected_rows Function

 Executing any of the MySQL commands INSERT, UPDATE, REPLACE and
DELETE returns only the value 1 (indicating success) or "" (indicating failure). In
some situations this is not suffi cient. For example

 DELETE FROM mytable1 WHERE refnum>7000
 will succeed even though no records are deleted (there are none with ref-

num > 7000 in our example).
 If we wish to know whether any records were deleted, and if so how many, we

can use the PHP function mysql_affected_rows. This takes a link identifi er, such as
$Link, as its only argument and returns the number of rows of the table changed by
the DELETE command, e.g.

 If the DELETE command is invalid the value returned will be −1.
 In general the mysql_affected_rows function returns the number of rows affected

by the last MySQL INSERT, UPDATE, REPLACE or DELETE command.

15.6 The PHP mysql_affected_rows Function

280

15.7 The PHP mysql_insert_id Function

 AUTO_INCREMENT fi elds were introduced in Sect. 13.4 . This is a fi eld which is
automatically given a sequential number (generally starting at one and going up in
steps of one) by MySQL whenever a new record is inserted into a table. This guar-
antees that each value will be different and means that the fi eld can safely be used
as a primary key.

 A potential diffi culty that can arise is that it may sometimes be desirable for PHP
to know the value generated. For example it may be a customer reference number
that has been generated and we wish to display a message telling the customer what
his or her reference number is.

 To deal with this we can use the PHP function mysql_insert_id. This function
takes no arguments, so it is called by a statement such as

 It returns the value of the auto_increment fi eld that was generated by the last
query. If the previous query did not generate an AUTO_INCREMENT value the
function returns the value 0. If no MySQL connection was established it returns the
value FALSE.

15.8 Converting mysql_ Functions to mysqli_ Functions

 The functions with names beginning mysql_ described in this chapter are currently
in the process of being replaced by functions with names beginning with mysqli_.
(The i supposedly stands for 'improved'.)

 Depending on when you are using this book and which version of PHP is avail-
able to you, you may fi nd that:

• the mysql_ functions are available but the mysqli_ ones are not
• both the mysql_ and the mysqli_ functions are available (in which case we rec-

ommend that you use the latter)
• the mysqli_ functions are available but the mysql_ ones no longer exist.

 A little experiment may be needed to establish the position.
 If you need or choose to switch to the mysqli_ functions the conversion is

straightforward.

• All the function names beginning with mysql_ in this chapter can be replaced by
the equivalent names beginning with mysqli_ with the three exceptions given
below.

15 Using a PHP Script to Manage a MySQL Database

http://dx.doi.org/10.1007/978-3-319-22659-0_13

281

• Instead of mysql_connect with three arguments, you should use mysqli_connect
with four arguments, the fourth being the name of the database to which you
wish to connect, e.g.

• Instead of mysql_db_query you should use mysqli_query which takes two argu-
ments: a link and a database query. This function performs a query on the data-
base specifi ed by the corresponding mysqli_connect statement. An example is:

• Calls to function mysql_num_fi elds should be replaced by calls to mysqli_fi eld_
count, which takes a link as its only argument. The function returns the number
of columns retrieved by the most recent query on the connection represented by
the link parameter. An example is:

 Chapter Summary
 This chapter describes how to use PHP to manage a MySQL database. It
begins with a description of how to connect to a database from a PHP script
and how to use PHP instructions to issue MySQL commands. For MySQL
commands that return values other than simply true, indicating success, and
false, indicating failure, it is shown how to process a special kind of variable
known as a resource to extract the necessary information. A user-defi ned
function is developed that can be used to display the results of any SELECT,
SHOW or DESCRIBE command in tabular form. This is then used as the
basis for a further function that will handle the output from any MySQL
command.

 The chapter goes on to show how by making use of PHP facilities such as
variables it is often possible to avoid the use of complex MySQL commands.
It then gives a detailed example of a PHP script to combine three MySQL
tables and another example of a visual tool for processing MySQL com-
mands. It is also shown how to fi nd the version of MySQL you are using.

 The chapter ends with a description of the PHP mysql_affected_rows and
mysql_insert_id functions and an explanation of the difference between PHP
functions with names prefi xed with mysql_ and those prefi xed with mysqli_.

15.8 Converting mysql_ Functions to mysqli_ Functions

282

 Practical Exercise 15
 (1) Using the table given in Sect. 15.1 (which was originally taken from Sect.

 12.10) write a PHP script that will output the name, occupation and year of birth
of each of the women in the table who have at least two children, arranged in
ascending order of age

 (2) Using the same table write a PHP script that will delete everyone born before
1982 and output the number of both men and women that have been removed.

15 Using a PHP Script to Manage a MySQL Database

http://dx.doi.org/10.1007/978-3-319-22659-0_12

283© Springer International Publishing Switzerland 2015
M. Bramer, Web Programming with PHP and MySQL,
DOI 10.1007/978-3-319-22659-0_16

 Chapter 16
 PHP in Action: Converting Data between Text
Files and Database Tables

 Chapter Aims
 After reading this chapter you should be able to:

• understand issues relating to data cleaning
• use PHP to take data stored in a text fi le, clean it and convert it to a data-

base table
• export data from a database table to a text fi le for archive purposes
• restore a database table from a backup held as a text fi le.

 In this chapter we will illustrate how to take data stored on our website in a text fi le
and convert it to form a table in our database. We will also show how to export data
from a table to a text fi le on the website, e.g. for archive purposes. As well as provid-
ing further examples of PHP being used to issue MySQL commands, it will illus-
trate the use of the facilities of PHP, especially the string handling functions, to
manipulate and 'clean' the data. Data cleaning is a troublesome necessity when
working with real-world data, especially data that was not originally collected by an
automatic process.

 We will assume that you already know how to upload/download a text fi le to/
from your website and also that you know how to specify that a text fi le is writeable.
(This fi nal part may need advice from your system administrator.)

284

16.1 A Plays Dataset

 In this fi rst example a theatre company is planning a program of plays for the com-
ing year. It creates a text fi le, each line of which gives the name of a play, the name
of its writer, and the start and end dates of the production. We will assume this data
is now on the website as text fi le plays.txt .

 Even in this small dataset, there are a surprising number of problems and/or
errors. This is entirely typical of 'real world' data.

• The fi rst six titles are enclosed in double quotes; the others are not. They all need
to be removed.

• There is a comma missing which should separate the name Henrik Ibsen from
the date Apr 6.

• There are unnecessary extra spaces inside the date Aug 24.
• There are unnecessary spaces after some of the commas.
• The starting date of 'She Stoops to Conquer', which should be May 4th, has been

omitted.
• The date format, Jan 12, etc., is not very suitable for future processing, e.g. to

check which is the next production after today's date.
• The name of the fi nal play includes a quote character. This will cause a problem,

as we will see.

 With such a small dataset it is probably best for the company to correct all the
problems on its hard disc and then upload a corrected version. However, even with
quite small real-world datasets, even 50 or so records, this can be very hard to do 'by
eye'. We will illustrate how a PHP script can be used to do at least most of the data
cleaning automatically.

16.2 Data Cleaning for the Plays Dataset

 We start by creating a new table mytable2 , with fi ve fi elds, the fi rst of which is an
auto_increment fi eld named ind.

16 PHP in Action: Converting Data between Text Files and Database Tables

285

 We now read the fi le plays.txt and process it line by line. This is easy to do using
the fi le function.

 We would like to issue a series of MySQL commands, each one adding a new
record to table mytable2, for example 1 :

 INSERT INTO mytable2 VALUES('','Hamlet','William Shakespeare','Jan 12','Jan
23')

 We need to create a string variable $outstring with the contents
 '','Hamlet','William Shakespeare','Jan 12','Jan 23'
 To do this we need to separate out the four fi elds in each of our records, enclose

them in single quotes and join them by commas.
 First we will assign $inArray[$i] to a variable $instring and then start the clean-

ing process by removing the double quote characters.

 We will now eliminate the unnecessary spaces. First separate $instring2 into four
parts using the explode function and then trim each one, to remove any spaces at the
beginning and/or end of the string.

1 Note that the fi rst item after the opening bracket following VALUES is an empty string. This is a
placeholder for the value of the auto_increment fi eld ind. When the INSERT operation takes place
the value inserted will not be an empty string but the next integer in sequence.

16.2 Data Cleaning for the Plays Dataset

286

 We now have the four parts separately. For the fi rst line of the dataset $parts[0]
to $parts[3] are now

 Hamlet
 William Shakespeare
 Jan 12
 Jan 23
 We now want to combine these to form the string
 '','Hamlet','William Shakespeare','Jan 12','Jan 23'
 We can do this using the implode function, with values separated by a single

quote, followed by a comma, followed by another single quote:

 This makes $outstring
 Hamlet','William Shakespeare','Jan 12','Jan 23
 We need to add the combination '',' at the beginning and a single quote at the end.

 This makes $outstring
 '','Hamlet','William Shakespeare','Jan 12','Jan 23'
 We can now go on to construct a MySQL command by

 Combining these fragments of PHP with statements to update the current data-
base we get the following:

16 PHP in Action: Converting Data between Text Files and Database Tables

287

 The trim function is used in line 7 to remove not only any leading or trailing
spaces but also – and most importantly – the two end of line characters represented
by \r\n which are (invisibly) at the end of each line of a text fi le. The trimming in
line 13 is to remove any spaces before or after the commas in the original line of
text. The script does not deal with the problem of the unhelpful date format (Jan 12,
etc.). We will come back to that.

 We will upload the script as a fi le named plays.php and execute it.
 This produces INSERT SUCCEEDED messages for the fi rst 11 INSERT INTO

lines, but the 12th insertion fails with the message:

 The problem is the quote symbol in the title of the fi nal play, embedded in the
name 'Journey's End'. This additional quote causes a syntax error in the MySQL
command which therefore fails.

 Using PHP to examine the contents of mytable2 (as illustrated in Chap. 13) pro-
duces the following output.

16.2 Data Cleaning for the Plays Dataset

http://dx.doi.org/10.1007/978-3-319-22659-0_13

288

 Although plays 4 and 5 were both accepted without a MySQL error being caused,
the playEnd fi eld for both is blank. We can see that the start time for Hedda Gabler
has been merged with the author's name and one of the dates for 'She Stoops to
Conquer' is missing. 2

 We could now accept this as the initial state of the mytable2 table and rely on
using standard editing facilities (such as those which will be illustrated later in this
chapter) to make the corrections. However we would like to have a script that auto-
matically rejected invalid entries and corrected as many errors as possible automati-
cally, especially as we may wish to use it again for similar data in the future. So we
will delete the records already uploaded, revise our script and process everything
again.

 To delete all the records already on the table we insert after the '$Link = mysql_
connect', etc. line the statement (Line 4 in the revised script below):

 Next we add a test to check whether the value of playEnd will be null. If so there
must be an error in the data. (Lines 14, 15 and 24.)

 We also need to deal with the problem of the quote symbol in the name of the
fi nal play. The best way to do this is probably to replace it by the two-character
combination \' (i.e. backslash followed by quote). To do this we have added a second
use of the str_replace function as line 9:

2 One further point to note, which is not an error but a potential cause of confusion, is that there
were six embedded spaces in the date Aug 24 but only one appears in the displayed table. All six
spaces are present in the database table mytable2 itself, but displaying them in a webpage makes
them subject to the general HTML principle that any number of spaces and newline characters are
displayed as a single space.

16 PHP in Action: Converting Data between Text Files and Database Tables

289

 This time ten of the insertions succeed, but two of them fail, with error
messages:

 Using PHP to inspect the contents of mytable2 we now get:

16.2 Data Cleaning for the Plays Dataset

290

 This is defi nitely progress. The two invalid records have been rejected and the
quote in the name Journey's End has been accepted. We now need to work on the
issue of the dates playStart and playEnd.

 A date such as 'Jan 12' is fi ne for human beings but is very unsuitable for auto-
matic processing. A better way of storing the date would be as a six-character fi eld
in the format yymmdd. The dates in the table do not include the year, although the
table was previously said to be for the forthcoming year. We cannot tell when you
will be reading this text, dear Reader, but let us assume that the forthcoming year
will be 2020. We would like to store the date Jan 12 as 200112 and Feb 9 as 200209.
Note that both the month and the day number must be padded out to two digits with
an initial space if necessary.

 Both the playStart value and the playEnd value need to be dealt with in the same
way, which suggests writing a function called, say, convertDate which can be used
for both. The function will take one argument, a string such as 'Jan 12' and will
return a string value such as '200112'.

 We will insert the two statements

 before Line 16 of the above script.
 We now need to defi ne function convertDate, which we will place at the end of

the script just before the closing ? > line.
 We will call the argument passed into the convertDate function by the variable

name $oldDate. We use the explode function 3 to split $oldDate into two parts:
everything before and everything after the fi rst space. We then set $month to the fi rst
part and $day to the second, trimming both as we do so. This approach gets round
the problem of multiple embedded spaces in values such as 'Aug 24'.

 We now need to convert a value such as 'Jan' for $month to the string '01'. This is
straightforward using an array $monthnum with an associative index. We place the
statements:

3 This is an extended version of the explode function discussed previously. It has a third argument,
in this case the number 2. The reason for this will be explained in Sect. 16.5 at the end of this
chapter.

16 PHP in Action: Converting Data between Text Files and Database Tables

291

 at an early position in our function.
 To complete the conversion we need to add just two more lines to those given

previously. To construct the new form of the date we take three strings and join them
together, using the dot operator for string concatenation, and then return the result-
ing string as the value of the function. The three component values are:

 (a) The string "20", signifying year 2020
 (b) A string corresponding to the numerical form of the month, e.g. '01', which is

obtained from the character form of the month, such as 'Jan', using array
$monthnum

 (c) The value of $day, which is prefi xed by a '0' character if $day is less than 10. 4

 The fi nal form of function convertData is shown below.

 Making this and the other insertions into plays.php gives a new script plays2.
php . Executing this uploads a revised version of table mytable2 with the same error
messages for Hedda Gabler and She Stoops to Conquer being output as before.

 Table mytable2 now looks like this.

4 The handling of $day shows PHP's fl exibility when using numerical and string data together.
Variable $day has a string value, say '8' and yet it can be compared with the number 10 as if it were
the number 8. As 8 is smaller than 10 we prefi x a zero to $day, making the string '08'. (If instead
we were to compare a $day value of '8' with the string '10', $day would be considered larger, which
is defi nitely not what we want.)

16.2 Data Cleaning for the Plays Dataset

292

 It is easy to see that the playStart date 2021 is invalid. This is because the invalid
month name Sept was converted by array $monthnum to an empty string.

 We can leave development of the conversion script here. We have uploaded most
of the required table and dealt with several problems, but there are two remaining
jobs to do to complete the task of creating a satisfactory table of the forthcoming
year's productions.

• We need to upload the data for Hedda Gabler and She Stoops to Conquer as two
new records.

• We need to correct the invalid starting date for Rosencrantz and Guildenstern are
Dead.

 Constructing a script to enable us to make these changes will be the subject of
Chap. 17 .

16.3 Extracting Information from a Table: Finding the Next
Production

 Now we have a table (albeit a partial one) of the next year's (i.e. 2020s) play produc-
tions we will use it to fi nd automatically the next production available from any
given date.

 For simplicity we will represent a date of interest in the form yymmdd (i.e. as a
six-character string) and will make use of a function nextProduction that takes a
date in "yymmdd" string form as its one argument, returns no value but displays
details of the next production. We will test the function by applying it to four dates:
December 18th 2019 (191218), June 6th 2020 (200606), November 27th 2020
(201127) and December 25th 2020 (201225).

 The basic script is shown below. The defi nitions of functions nextProduction and
another useful function decodeDate will replace the comment in line 11.

16 PHP in Action: Converting Data between Text Files and Database Tables

http://dx.doi.org/10.1007/978-3-319-22659-0_17

293

 We now need to defi ne function nextProduction. We will fi nd the earliest value
in fi eld playEnd that is greater than or equal to the date provided. If one is found, we
need to output the name of the play and its author, plus the starting and fi nishing
dates. If there is no such value we will output a message saying that there are no
further productions available.

 If the value passed to nextProduction is 191218, as it is in one of our examples,
we need to construct a MySQL command

 SELECT * FROM mytable2 WHERE playEnd>=191218 ORDER BY playEnd
LIMIT 1

 and then execute it.
 The only part of this command that changes from one of our specifi ed dates to

another is the date. We need to make that the value of variable $nextdate.
 We now construct the MySQL command in variable $query using the PHP

statement

 Ordering the records by the value of fi eld playEnd and specifying LIMIT 1 will
ensure that we always get the play that is ending soonest after or on the day speci-
fi ed. However there is a complication: how can we tell if our MySQL command did
not fi nd any records, i.e. if there are no further productions available? This latter
situation must not be confused with the query failing. If no records are found, the
value of $result will be a resource rather than an empty string indicating failure.

 To deal with this we use the MySQL function mysql_num_rows which can be
applied to the resource variable $result to fi nd out how many rows were returned by
the command. If the value is zero we know that no record was found, so there are no
more productions available. (In all other cases precisely one value will be returned
so the value of the function must be one. We do not need to test for this.)

 This leads to the following defi nition of function nextProduction.

16.3 Extracting Information from a Table: Finding the Next Production

294

 The above script uses a function that has not yet been defi ned named decode-
Date. As the name suggests we are going to convert all three of the dates output (the
date of interest and the start and end dates of the production) into human-friendly
form, for example '191218' will be converted to '18 December 2019'.

 The defi nition of function decodeDate is given below. First we extract the year,
month and day components of the date using the string function substr . We use the
month component, such as '04', with an array $monthname which has an associative
index, to convert it into a string, in this case 'April'. Then we combine the various
components, not forgetting to include the century (the string '20') and return that
string as the value of the function.

 If we insert these two function defi nitions into the original incomplete script and
execute it we get the output given below.

16 PHP in Action: Converting Data between Text Files and Database Tables

295

16.4 Backing up and Restoring a Table

 In this section we will illustrate how to make a backup copy of the current state of
table mytable2 as a text fi le on our website and how to restore the table from the
backup should the need arise.

 The idea is to convert each record in the table into a string such as
 '','Hamlet','William Shakespeare','200112','200123'
 with each fi eld delimited by single quotes and with these fi elds separated by

commas. (The fi rst fi eld is shown as just '' i.e. an empty string. It is a placeholder for
the value in the auto_increment fi eld ind.)

 Each string is then written as a line of text to a fi le mytable2_backup.txt on our
website. We will assume that you have suffi cient privileges on your system to write
text fi les as well as read them. (If you do not, ask your system administrator for
advice.)

 We will start with an incomplete script that reads the records from mytable2 and
returns a resource variable $result from which records can be retrieved one-by-one
in the form of an array, using a while loop.

16.4 Backing up and Restoring a Table

296

 This leaves the core task of converting the fi eld values to the form shown above,
with fi elds delimited by quotes and separated by commas.

 Before joining the various values together we fi rst need to deal with any quote
characters that there may be in the name of either the play or its author. As before
we replace a quote by a backslash followed by a quote.

 It is not necessary to place this in the script to backup the table but it will avoid
complications later, when we come to writing a script to restore the contents of the
table.

 We can now join the fi elds together into a long string.

 Finally we append the end of line characters \r\n to the string and write it to the
fi le.

 This makes the fi nal script:

16 PHP in Action: Converting Data between Text Files and Database Tables

297

16.4.1 Restoring a Table

 Once we have our backup text fi le the next question is how to restore it, i.e. replace
the contents of mytable2 by it if for any reason the database table becomes
corrupt.

 For this we can use a simplifi ed version of the script that we used to load the data
from plays.txt into the table. We start by deleting the current contents of mytable2
using a TRUNCATE command. Then as we extract each line from the backup text
fi le, we trim it and then place it into a MySQL INSERT INTO command. The rea-
son for trimming each line is to remove the end of line characters represented by \r\n
at the end of it. Omitting this step will mean that those characters are stored as the
fi nal part of all the values in the playEnd fi eld in the database table, which is sure to
lead to trouble at some stage when the data in the table is used.

 Here is the complete script for the restore task.

16.4 Backing up and Restoring a Table

298

16.5 Using the explode Function When There Are Multiple
Occurrences of the Separator

 In Sect. 16.2 we promised an explanation of the use of an extended form of the
explode function not seen before in this book to separate the month from the day in
a string named $oldDate with a value such as 'Jan 12'.

 We would expect the statement that would do this to be, e.g.

 This would be fi ne for the case of separating the values out from 'Jan 12', with
$thisdate[0] and $thisdate[1] set to 'Jan' and '12' respectively.

 Unfortunately when the value of $oldDate has multiple spaces (or in general
multiple occurrences of the character(s) specifi ed as the separator), the function
does not work as might be expected and gives the probably unexpected result that
$thisdate[1] is a null string.

 It may be easier to understand what is going on if we use exclamation marks
instead of spaces.

 If we execute the PHP statement

16 PHP in Action: Converting Data between Text Files and Database Tables

299

 the explode function effectively considers the string "Jan!!!!!!12" to be made up of
eight parts like this:

 So array $thisdate has seven components

 These are the part of "Jan!!!!!!12" before the fi rst !, followed by the characters
between the six ! characters, i.e. fi ve null strings, followed by the characters after
the last !, i.e. '12'.

 Going back to the example of 'Jan 12', if we were certain that our values of
$oldDate would always have six embedded spaces as this one has we could use
$thisdate[6] to refer to the 'day part' of the string. However this is not the case.

 The solution to our diffi culty is to use an extended version of explode with an
extra argument. The PHP statement

 means create an array $thisdate with just two elements. Everything before the fi rst
space will be assigned to $thisdate[0] and everything else will be assigned to $this-
date[1]. So $thisdate[1] will become ' 12', i.e. fi ve spaces followed by 12', from
which the string '12' can be obtained by trimming.

 Practical Exercise 16
 (1) Change the fi nal script given in Sect. 16.4 so that it can be used to backup table

mytable1 given in Sect. 12.10 (and elsewhere). Your script should be written so
that it will not need changing if additional fi elds are later added to the table.

 (2) Using only the functions described in this chapter and in Chap. 5 , defi ne a func-
tion that will take a string representing a name, such as "John Henry Smith",
"Michael R. J. W. Jones", "J. M. W. Turner", "R, C. Sherriff" or "Boz" and
return the surname (assumed to be the fi nal element).

 Chapter Summary
 This chapter describes how to use PHP to take data stored in a text fi le on a
website, 'clean' it and convert it to a database table. It also shows how to
export data from a database table to a text fi le on a website for archive pur-
poses, and how to restore a database table from a backup held as a text fi le.
This example also serves to illustrate the use of PHP facilities, especially the
string handling functions to manipulate data.

16.5 Using the explode Function When There Are Multiple Occurrences…

http://dx.doi.org/10.1007/978-3-319-22659-0_12
http://dx.doi.org/10.1007/978-3-319-22659-0_5

301© Springer International Publishing Switzerland 2015
M. Bramer, Web Programming with PHP and MySQL,
DOI 10.1007/978-3-319-22659-0_17

 Chapter 17
 Using PHP to View and Edit Database Tables

 In this chapter we will look at methods of using PHP to view and edit database
tables.

 We start by developing a script to list the tables in the current database and to
show the contents and/or the structure of each one. We then go on to develop a
simple but effective visual editing facility for the table developed at the end of
Sect. 16.2 . With straightforward changes this script can be adapted for other
tables with a primary key, although it is probably only worthwhile for quite
small tables.

17.1 Analyzing the Current Database

 We will develop a script to analyse the current database, which as always we will
assume is named mydb1. We can obtain a list of tables using the MySQL
command

 SHOW TABLES

 Chapter Aims
 After reading this chapter you should be able to:

• use PHP to fi nd the tables in the current database and display the contents
and/or structure of each one

• use PHP to create a visual table editing facility.

http://dx.doi.org/10.1007/978-3-319-22659-0_16

302

 The script below is a first attempt at this. As usual the file sql.php is
included (line 2), as explained in Chap. 15 . Next a link is made to the MySQL
server (lines 3 and 3a). The link is closed in line 17. The necessary MySQL
command is set up and executed in lines 5 and 6. The While loop between
lines 8 and 15 generates the name of the tables in mydb1 one at a time. Each
is listed followed by two links: Show Contents and Show Structure. The two
links (lines 11 and 12) point to the same script with parameter mode set to
either showtable or showstructure and parameter table set to the name of the
table.

 Running this script produces the following output.

 We now need to adapt the script to receive the two parameter values and to use
the value of mode to determine what action to take next. This gives us an outline
script like this:

17 Using PHP to View and Edit Database Tables

http://dx.doi.org/10.1007/978-3-319-22659-0_15

303

 In lines 5 and 6 variables $mode and $table are set to the parameter values sent
by the script (for the initial screen display these are both empty strings).

 Next the value of $mode is tested in an IF … ELSE IF … ELSE structure (lines
8, 10, 11, 13, 14 and 28), with the main part of the previous script now made into
the ELSE part of the script (lines 15–27).

 All that remains is to replace the comments in lines 9 ('script lines for showtable')
and 12 ('script lines for showstructure') by PHP statements.

 There was a detailed description of how to display a table complete with column
headings in Sect. 15.5 . We will not repeat it here. It amounts to replacing the com-
ment in line 9 by the lines

 and adding the defi nition of function showtable reproduced below before the clos-
ing PHP tag.

17.1 Analyzing the Current Database

http://dx.doi.org/10.1007/978-3-319-22659-0_15

304

 With these changes clicking on the Show Contents link next to the name mytable2
produces the following output:

 The last step is to replace the comment 'script lines for showstructure'. For this
we use the MySQL command

 SHOW CREATE tablename
 which produces a listing of a CREATE TABLE command that could have been

used to create the table in question. This can be done using the statements

17 Using PHP to View and Edit Database Tables

305

 The value needed is the second element of array $row, i.e. $row[1]. The value of
$row[0] is the table name itself. The statement

 is used to convert whatever is the appropriate character or combination of characters
to denote 'newline' to an HTML
 tag.

 Clicking on the Show Structure link next to the name mytable2 now produces the
following output:

 Note that the SHOW CREATE TABLE command adds backtick characters
around the table name and the fi eld names that are not strictly necessary. It also
outputs values for ENGINE and other parameters that were probably added by the
MySQL system by default.

 A complete listing of the script is given below for reference.

17.1 Analyzing the Current Database

306

17 Using PHP to View and Edit Database Tables

307

17.2 Building a Visual Table Editor

17.2.1 Developing an Editing Page

 We start by reusing, with slight adjustments, the script developed in Chap. 15 for
displaying the contents of a database table as a table in a web browser. We will start
with this initial version of the script, which we will assume is stored in the fi le edi-
tor.php.

 Running this script will display the contents of mytable2 (without column head-
ings) as follows:

 We will next extend the script by adding two extra columns, which will contain
an 'edit' link and a 'delete' link for each record.

17.2 Building a Visual Table Editor

http://dx.doi.org/10.1007/978-3-319-22659-0_15

308

 We place these two lines after line 15 of the script. They both link to PHP page
changetable.php with values specifi ed in the URL for parameters mode (either 'edit'
or 'delete') and ref (the value of the primary key).

 We will also place an 'Add new record' link (with mode 'add') below the table,
immediately before the closing PHP tag. This takes the form:

 Running the script now gives the augmented table:

 There are three types of link shown here. For row 5

• clicking on Edit takes the web browser to changetable.php?mode = edit&ref = 5
• clicking on Delete takes the web browser to changetable.php?mode = delete&ref = 5
• Clicking on 'Add new record' takes the web browser to: changetable.

php?mode = add

17.2.2 Developing the Destination Page

 We now go on to develop changetable.php. As specifi ed so far it needs to have three
'modes': edit, add and delete and we will soon discover that we need three more.

 After taking the necessary action for each mode the script should provide a link
to take the user back to editor.php in case more changes are needed.

 In constructing our script there are some components that are sure to be needed.

17 Using PHP to View and Edit Database Tables

309

• We will need to use MySQL to update the table, so we will include fi le sql.php
as usual.

• We will need statements to assign the values of mode and ref passed in the URL
to variables, which we will call by the obvious names $mode and $ref.

• We will need to print out a heading for the editing page and a further heading for
each mode.

• We will need a series of if … else if statements to separate out the statements for
each mode.

 We have included all these in the outline script below.

 Now if we point our web browser to editor.php and then click on the Delete link
for row 5 we get the following:

 Similarly for the 'Edit ' and 'Add' links.
 The hyperlink from 'here' takes us back to editor.php.
 We will start with 'delete' mode as this is probably the easiest one to handle.
 Although we could simply delete the record with primary key $ref, it is probably

better to give the user the opportunity to change their mind and confi rm the deletion,
or otherwise, before it takes place.

 We will change the display to this:

17.2 Building a Visual Table Editor

310

 Clicking on 'no' should return to the editor page editor.php. Clicking on 'yes'
should take us back to the same page but with mode = delete2 this time and with ref
as before. This is a fourth mode to add to our script. When the script detects this
mode it should fi rst carry out the deletion and then display

 We fi rst change the script so that when mode 'delete' is detected we give the user
the choice between choosing 'no', which leaves the database unchanged and takes us
back to editor.php, and 'yes', which takes us to the same page (i.e. changetable.php)
with mode having the value delete2 and ref having the same value as before, so the
link points to "?mode = delete2&ref = 5". This gives us the following for mode
'delete'.

 We now need to add a further section to our script to handle mode 'delete2'.
Deleting a record is straightforward: we connect to the MySQL server and issue a
DELETE command. Finally we test the value of variable $result in case for some
reason the database cannot be updated. (Although the error message says 'It is not
possible to make deletions at the present time' by far the most likely reason for such
error messages to be displayed is a programming error that creates an invalid
MySQL command.)

17 Using PHP to View and Edit Database Tables

311

 Let us assume that we decide not to delete record 5 but to edit it instead. With our
script in its current form, clicking on the link to changetable.php?mode = edit&ref = 5
gives us the skeleton output

 This needs to be augmented by a form which allows us to change the value of the
various fi elds, such as this.

 We will defi ne our HTML form in such a way that after we make the desired
changes and press Submit we jump to the same script again but this time with
mode = edit2 and ref = 5. The play title, author, etc. will also be passed to the script,
but as form variables, not as part of the URL.

 This gives us a fi fth mode, edit2, for our script and we can safely expect that a
sixth mode, add2, will be needed when we come on to adding a new record.

17.2 Building a Visual Table Editor

312

 We can add to the previous outline script to deal with all six modes and to add in
the code shown above for mode 'delete2' and changes made above for mode 'delete'
to give the following.

 We now need to fi ll in the missing instructions for modes edit, edit2, add and
add2. We will start with edit.

 The PHP needed to generate the Edit form for play number 5 shown above is in
two parts:

• First, issue a MySQL command to retrieve the values currently in the table for
that record.

17 Using PHP to View and Edit Database Tables

313

• Second, display an edit form with those values as the default values for each
fi eld.

 For the fi rst part we issue a MySQL 'SELECT FROM' command.

 This gives us all the values for the record with ind = 5, as the elements of array
$row. The array elements

 are now

 We will place this code in our script to replace the comment at line 25.
 The form specifi cation needs to include a text box for each of the last four fi elds,

with its current value, such as $row[playTitle], used as the default value in the
form's <input type = text> tag.

 The PHP script to generate the edit form is complicated so we will build up to it
piece by piece.

 In the case of record 5 the edit form that needs to be generated is the following.

 There are three points to note about this.

• The primary key fi eld is treated differently from all the others. We defi nitely do
not want the user to be able to change its value. On the other hand we do want the
'target page' that receives our form to know its value. We deal with this by leaving
it out of the edit form and instead passing its current value to the target page in
the <FORM> tag using the ref parameter.

17.2 Building a Visual Table Editor

314

• The four default fi eld values are surrounded by double quote symbols, e.g. "The
Caretaker". This is an HTML requirement when a default value includes an
embedded space and it is probably wise always to include the quotes for text
fi elds whatever the default value may turn out to be in a particular case. (Some
other values such as Submit are also enclosed in double quote characters.)

• The 'action' parameter in the <form> tag specifi es the URL of the target page, i.e.
the page to which it jumps when the Submit button is pressed. A fi le name rela-
tive to the current page can be used, so to make the target page changetable.
php?mode = edit2&ref = 5 all we need to specify is ?mode = edit2&ref = 5. The
system deduces that we are referring to the current page, in this case changetable.
php.

 The fi ve values shown in italic (5, The Caretaker, etc.) are those for this particu-
lar record and will need to be replaced by variables to make the form generally
applicable for all records. However fi rst each line needs to be made into a PHP print
statement with the text enclosed in a Print statement. We will add the character
combination \n (i.e. a newline) at the end of the string for each form object in the
interests of making the 'source' of the web page readable.

 If we take the line beginning Title of Play and make it into a print statement in
the obvious – but wrong – way that will give us:

 The problem with this is the pair of double quote characters around The Caretaker.
These are not permitted (in their current form) in a string enclosed in double quotes.
They have to be 'escaped' by preceding each one by a backslash character. Doing
that gives:

 We next need to replace the constant The Caretaker by the value retrieved from
the database table, which in general we can refer to by $row[playTitle]. This gives
us the fi nal version:

 Converting all the lines of the edit form into Print statements in this way gives us
the following:

17 Using PHP to View and Edit Database Tables

315

 Normally we would just insert this latest piece of PHP script into the edit section
of our evolving fi le changetable.php, just above the closing brace character } that
was previously at line 26.

 However in this case we will do something more complicated that may appear
unnecessary. The point of it will become clear a little later on. We will take the PHP
statements that defi ne the 'edit' form and make them into a function genform which
takes arguments $ref and $row and does not return a value.

 We will also change the value edit2 in the <form> tag into a variable $nextmode
and pass it into function genform as its third argument. (The point of this will also
become apparent soon.) This makes the fi nal defi nition of function genform the fol-
lowing. We will place it in our script immediately before the closing PHP tag, i.e.
?>.

 To use this function in the 'edit' section we only need to put a function call

 into our script immediately before the closing brace that used to be at line 26.

17.2 Building a Visual Table Editor

316

 The reason for going to this trouble with function genform is that we can use it
again with mode 'add'. In this case all we need to do is to replace the comment that
used to be at line 33 by the single line

 In this case it may be objected that for the 'add' section variable $row is just an
undefi ned array. However this does no harm. Each of the default values
$row[playTitle], etc. will be taken as an empty string, which is perfectly acceptable
as a default value when adding a new record.

 Our evolving script changetable.php has now grown to this:

17.2.3 Changing and Adding to a Table

 That just leaves us with two modes to deal with: edit2 and add2, to replace the com-
ments that are currently at lines 34 and 42. They must both handle form values
passed to the 'target page'. The difference between them is that to edit a record in a
table we use the MYSQL command UPDATE, whereas to add a new record we use
INSERT INTO.

 For both modes we need to start by retrieving the four form variables passed to
changetable.php. To do this we add these four lines to the code for modes 'edit2' and
'add2'.

 For both modes we will also need to connect to the MySQL server, issue a
MySQL command and then close the connection.

17 Using PHP to View and Edit Database Tables

317

 The difference between the two is the MySQL command used. For mode edit2
we need

17.2 Building a Visual Table Editor

318

 For mode add2 we need

 This completes the description of how to build an editor for table mytable2. It is
appreciably more complex than most other examples in this book, but we hope you
have found it instructive. You should be able to use it for editing your own tables
with only quite minor changes, depending on which fi elds you use in your tables.

 The fi nal version of changetable.php is given below for completeness.

17 Using PHP to View and Edit Database Tables

319

17.2 Building a Visual Table Editor

320

 Practical Exercise 17
 Augment the fi rst script given in Sect. 17.1 so that the list of tables for database
mydb1 that follows it also gives the number of fi elds and records for each table.

 Chapter Summary
 This chapter shows how to use PHP to view and edit database tables. It starts
by developing a script to list the tables in the current database and to show the
contents and/or the structure of each one and goes on to develop a simple but
effective visual table editing facility. This is illustrated using the table devel-
oped at the end of Sect. 16.2 .

17 Using PHP to View and Edit Database Tables

http://dx.doi.org/10.1007/978-3-319-22659-0_16

321© Springer International Publishing Switzerland 2015
M. Bramer, Web Programming with PHP and MySQL,
DOI 10.1007/978-3-319-22659-0_18

 Chapter 18
 PHP in Action: Maintaining
a Membership List

 Chapter Aims
 After reading this chapter you should be able to:

• use PHP in conjunction with MySQL to maintain an organisation's mem-
bership records

• write a PHP script to register a user, log into a password protected website,
create a password, issue a password reminder and manage a table of
members

• write PHP statements to send an email from a PHP script.

 In this chapter we will illustrate how to construct a simplifi ed version of an applica-
tion that is becoming increasingly common.

 To set the scene we will imagine that the Erewhon Society, introduced in Chap.
 1 , has a trading subsidiary named Erewhon Trading Services (ETS) run by the
Society's Vice-President Dr. Noone. ETS sells 'unconventional' products which are
available to registered customers only. For legal reasons customers are referred to as
belonging to the 'ETS Members' Club'.

18.1 Registration

 A new customer (member) opens a web page with a form that they can use to regis-
ter with ETS to receive discounts on its excellent products. This is designed to be
simple to do. They just have to complete their forename, surname and email address
and then choose a password. The system checks that the fi elds are not blank, that the
email address has not already been used and that the password is at least six

http://dx.doi.org/10.1007/978-3-319-22659-0_1

322

characters long. If everything is valid the system enters the details into a database
table named members1 . In future when the member logs in to the ETS site they will
be greeted by name and given a list of items they can buy.

 There is also a facility for the company's representative to log in and inspect the
contents of the table.

 We start by creating a table members1 with a suitable set of fi elds. We use PHP
to issue the MySQL command

• The ind fi eld is an index number which starts at 1 and is automatically incre-
mented by 1 for each new member.

• The fi elds forename, surname, email, password and dateJoined are all
self-explanatory.

• The dateLast and numLogs fi elds are used to hold the date of the last login and
the total number of logins respectively.

 When a new member registers they will enter the values of the fi elds forename,
surname, email and password. If the registration is valid the system will automati-
cally add the value of dateJoined and issue a MySQL INSERT INTO command for
table members1. The insertion process will automatically add the value of the pri-
mary key fi eld ind, which is an auto_increment fi eld. The fi nal two fi elds will be left
blank, but will be updated automatically each time the member logs in subsequently.
For convenience we will store all dates in the six-character form YYMMDD, e.g.
191225 for Christmas Day 2019.

 A basic registration form might look like this.

18 PHP in Action: Maintaining a Membership List

323

 We will assume there is an HTML fi le start.htm which will display this. The
HTML to do so looks like this.

 There are two points to note about this form.

• The four fi elds in the form have been given the names of the corresponding fi elds
in table members1, i.e. forename, surname, email and password. This is just for
convenience.

• The action fi eld in the <form> tag refers to a PHP page registration.php , which
has not yet been written. This is the page to which the values of the four fi elds
will be sent when the user presses Submit.

 After the fi rst few members have joined, the members1 table might look like this
(it is possible that a few of the members have used false names).

18.1 Registration

324

 The structure of the PHP script registration.php needs to be similar to this:

 1. Include fi le sql.php, as we intend to issue MySQL commands.
 2. Assign values sent from start.htm to suitable variables.
 3. Trim all the fi eld values to remove any leading and trailing spaces. Also convert

any letters in the email fi eld to lower case (to make it easier to compare email
values later).

 4. Test whether any of the values are blank. Also check whether the password is at
least six characters long. Finally check whether the email address is already in
the table.

 5. If all the entries are valid {
• generate value for dateJoined in YYMMDD form
• enter new member into table members1
• print a welcome message
• display a link to return to start.htm to log in 1

 }
 else {

• print one or more error messages
• display a link to return to start.htm to try again

 }

 A miniature script dealing with points 1 and 2 plus printing out a title and provid-
ing a link back to start.htm would be:

1 This facility will be added to start.htm in the next section.

18 PHP in Action: Maintaining a Membership List

325

 As usual, it is not compulsory to assign the value sent by the form for fi eld fore-
name, say, to variable $forename rather than a variable with some other name, but
it is often convenient to do so.

 Point 3 can easily be dealt with using the string functions trim, to remove any
leading and trailing spaces, and strtolower to convert any upper case letters in the
password to lower case. We place the following statements before the fi nal Print
statement in the above box.

 To deal with point 4 we start by setting variable $OK to the value yes. Then we
go through the four fi elds from start.htm one-by-one checking whether any of them
is blank. If it is we print an error message and set the value of $OK to no.

 If the value of $password is not blank we make a further test to check that its
length is at least six characters, using the strlen function.

 If $email is not blank we need to test whether the value chosen has already been
used (i.e. the person entering their details has previously registered or has used
someone else's email address by mistake). We will leave this part as a comment in
the following PHP script fragment, which again is placed before the fi nal Print state-
ment in the fi rst PHP box above.

 We now need to replace the comment

18.1 Registration

326

 // test whether email has already been used
 We can test this by issuing a suitable PHP command. If the email address were

abc@xyz.com the command would be

 In the general form of this command given below the constant email address
needs to be replaced by the variable $email.

 Issuing a valid command of this form from a PHP script will return a variable
$result with the value 1, whether or not any match with the contents of the table has
been found. To fi nd out how many matching rows of the table were found we can
use the MySQL function mysql_num_rows($result). This will be zero if no match
was found. Otherwise it implies that the email address is already in the table, i.e.
there is a user input error. The PHP code for this test is as follows.

 If after all the tests on the four input values the value of $OK is still yes we go on
to step 5.

 The most important parts of this are:

• generate value for dateJoined in YYMMDD form
• enter new member into table members1

 Generating the value of dateJoined in YYMMDD format is simple using the date
function.

 We can enter the new member into table members1 by generating an INSERT
INTO command with a single quote character before and after each fi eld value. We
will then test the value of $result to check whether the INSERT command suc-
ceeded. This gives the following fragment of script.

18 PHP in Action: Maintaining a Membership List

327

 Putting all the fragments of code above into a complete PHP script registration.
php, this is what we get.

18.1 Registration

328

18.2 Logging in

 Having successfully developed a registration system we will now go back and
embellish the start.htm page shown earlier to include a login facility and a ' forgotten
your password?' facility. The new version is in three parts separated by horizontal
rules.

18 PHP in Action: Maintaining a Membership List

329

 The third part is the Member Registration Form as before. The new fi rst part is
the login form. The member simply enters their email address and password and
presses 'Login'. The new second part is a 'Forgotten your Password?' facility. This
time the member enters their email address and presses 'Send me my Password'.

 The HTML for this is:

18.2 Logging in

330

 There are three forms. The third (the Member Registration Form) is as before.
The fi rst and second forms both have an action fi eld of "login.php". These are dis-
tinguished by the fi rst form having a hidden fi eld with name "mode" and value
"log". The second form also has a hidden fi eld with name "mode", this time having
value "pwd".

 The outline structure of the login.php script is as follows.

18 PHP in Action: Maintaining a Membership List

331

 The PHP script needed to replace the comment 'process login' is given below.

 A script of this length may seem inscrutable but when it is broken down it should
soon become apparent that writing PHP code to access MySQL database tables is
very formulaic, with just a small number of basic ideas that are repeated each time.

 It comprises the following steps.

 1. Lines 1–2. Assign the email and password values sent from the form to vari-
ables. Before doing so we trim the value of email and convert it to lower case
letters for purposes of matching against the stored value later. We also trim the
value of password.

18.2 Logging in

332

 2. Lines 3 and 23–27. Check the email and password values are not null. If either
of them is null, print an error message (lines 24–27). If both are non-null go on
to lines 4 to 22.

 3. Lines 4a, 4b and 22. Connect to the MySQL server and (later) close the
connection.

 4. Lines 5–6. Set up string $query to contain a MySQL SELECT command.
 5. Line 7. Issue the command stored in $query.
 6. Line 8 and 17–21. Test whether the SELECT command found any matching

records. If it did, go on to lines 9–16. If not print an error message.
 7. Line 9. Retrieve the values in the fi rst row that was matched by the SELECT

command and store them as array $row. (There can only be one row, so there is
no need for a WHILE statement.)

 8. Line 10. Print a message of welcome to the member.
 9. Lines 11–12. Print a message that depends on whether or not the member has

previously logged in.
 10. Line 13. Print a message saying that the company's products will be listed

below (we have omitted the listing to save space).
 11. Lines 14–16. Issue a MySQL UPDATE command to enter today's date in the

table and to increase the number of logins by one.

 The function value date("ymd") in line 14 gives the current date in YYMMDD
format.

 It is worth noting how the number of logins is increased by one (lines 14–15).
The UPDATE command issued takes the form

 UPDATE members1 SET dateLast='YYMMDD',numLogs=numLogs+1
WHERE ind=index

 The value to the right of numLogs= does not need any surrounding quotes as it
is the value of the numLogs fi eld (not the string constant 'numLogs') that is to be
used and increased by one.

 We next need to replace the comment 'process send password request' in the
outline structure of the login.php script.

 The PHP code for this is very similar to that for the login part of the script. The
most interesting new part is the sending of the password by email, but at present we
will just put a comment in line 16 instead of the code for that.

18 PHP in Action: Maintaining a Membership List

333

 This script comprises the following steps.

 1. Line 1. Assign the email value sent from the form to a variable. Before doing so
we trim its value and convert it to lower case letters for purposes of matching
against the stored value.

 2. Lines 2–6 and 22. Check the email value is not null. If it is, print an error mes-
sage (lines 3–4). If it is non-blank go on to lines 7 to 21.

 3. Lines 7–8. Set up string $query to contain a MySQL SELECT command.
 4. Lines 9–11. Connect to the MySQL server, issue the command stored in $query

and close the connection.
 5. Line 12 and 17–21. Test whether the SELECT command found any matching

records. If it did, go on to lines 13–16. If not print an error message.
 6. Line 13. Retrieve the values in the fi rst row that was matched by the SELECT

command and store them as array $row. (There can only be one row, so there is
no need for a WHILE statement.)

 7. Line 14–15. Print a message of welcome to the member and a message saying
the password has been sent to the member by email.

 8. Line 16. The code to generate an email goes here.

 This just leaves the question of how to replace the comment 'insert sending of
email here' in line 16. Sending email from a PHP script deserves a section of its
own.

18.2 Logging in

334

18.3 Sending Email from a PHP Script

 PHP has a very useful facility for sending an email from inside a script. This simply
involves calling the function mail with four strings as parameters, representing,
from left to right:

• The Recipient (the To fi eld)
• The Subject
• The Message
• Headers such as the From fi eld and any copy (CC) or blind copy (BCC) fi elds.

 The parameters can be string constants, e.g. "john.smith@smithcorp.com".
However it is likely to happen quite often that the fi elds are extracted from a data-
base and/or constructed by joining string constants and variables together and it is
probably less error-prone to assign the values to four variables, say, $mailTo, $sub-
ject, $body and $headers and then to call the mail function by:

 A typical (very simple) email might be:

 If there is more than one recipient they can be separated by commas, e.g.

 The $body value is likely to comprise more than one line. To get a line break
character use the combination \r\n. To get a new paragraph with a blank line between
it and the previous paragraph use \r\n\r\n. For example

 (The string has been split into two parts joined by a dot to make it more readable
on the printed page.)

 Sending this message by

 will then cause the following message to arrive in John Smith's inbox.

18 PHP in Action: Maintaining a Membership List

335

 The headers fi eld can include other information, including (open) copies and
blind copies. For example:

 The Cc and Bcc fi elds are for (open) copies and blind copies, respectively. If
there is more than one email address in either fi eld they are separated by commas.
Both Cc and Bcc can be spelt in any mixture of upper and lower case letters (CC,
cc, BCC etc.). The fi elds must be separated by \r\n.

 The mail function can be used on its own, e.g.

 However it not only sends an email but returns a logical value true or false
depending on whether or not the instruction succeeds. If we want to test whether or
not the instruction succeeded we can do this in several ways, including these:

 We can now go back to give the code needed to replace the comment 'insert send-
ing of email here' in line 16 of the script developed at the end of Sect. 18.2 .

 We can do it by:

 (This does not include any test for whether or not the sending of the mail suc-
ceeded, but for simplicity we will ignore that complication here.)

 Now if member Charles Dickens enters his email address in the 'Forgotten your
Password?' form and presses the 'Send me my Password' button an email message is
sent to him, apparently from admin@erewhon.org, and saying:

18.3 Sending Email from a PHP Script

336

18.4 Generating Passwords

 After Erewhon Trading Services new website had been live for a few months, its
Sales Manager, Dr. Nemo, became very suspicious. Many of the members' names
looked like works of fi ction. Perhaps the email addresses were fi ctitious too? The
names are not particularly important but the email addresses are, as in the future the
company will want to use them for advertising mailshots. So Dr. Nemo decided on
a change of policy: from now on members would not choose their own passwords -
the registration system would generate them automatically and email them to mem-
bers. Then there would be a very strong incentive for new members to enter valid
addresses.

 Modifying the registration web page to remove the password box is easy. We will
concentrate on the registration.php fi le discussed earlier in this chapter.

 If we start from that and remove all the lines referring to a password except the
'$query=' statement (lines 40–41) we get the following. We have added comments
at lines 37 and 45 to indicate where we need to add new code to generate the mem-
ber's password and then to send it by email. We have also added print statements at
lines 46–48 to welcome the new member and tell them that their password will be
sent to them by email.

 This gives the following as the fi rst draft of a revised version of registration.php.
The newly added parts are in bold .

18 PHP in Action: Maintaining a Membership List

337

 To replace the comment in line 37 we can make use of the PHP function 'rand'
and a very useful user-defi ned function 'genRandomString'.

 The function call

18.4 Generating Passwords

338

 will generate an eight character password, starting with four lower case letters
and ending with four digits. Using the rand function with a range of values from
1001 to 9999 ensures that the value returned must always have four digits.

 All that remains is to replace the comment at line 45 by the above statement fol-
lowed by statements to send the password to the new member by email.

 We can do this using the PHP mail function introduced in Sect. 18.3.

 The PHP statement

 generates a sequence of four lower case letters and assigns it to variable $x. It is
defi ned below. This function defi nition needs to be added to the PHP script and the
most convenient place for that is probably just before the closing PHP tag. The user-
defi ned function genRandomString uses the PHP system function rand which gen-
erates an integer in a specifi ed range.

 It would be better to make the fi nal line

 and then test the value of $res to determine whether or not the sending of an email
succeeded. If $res has the value 1 the email was successfully sent. Otherwise it was
not sent and we would need to consider what to do next. However we will not pur-
sue this further here.

 If the email was successfully sent the new member will receive an email similar
to this:

18 PHP in Action: Maintaining a Membership List

339

18.5 Managing the Members Table

 We will now illustrate how ETS can access information about its members. We will
create a web page control.php which initially displays

 Entering an invalid password and pressing Submit gives an error message.

 Entering the correct password, which we will assume is erewhon1857, gives the
welcome page

 This last page will of course need to be embellished further.
 A mixture of HTML and PHP to produce this effect would be as follows.

18.5 Managing the Members Table

340

 Here there are two PHP scripts (lines 5–8 and 14–23) with lines of HTML around
them. It would instead be possible to put everything inside PHP tags <?php and ?>
and then to place all the HTML inside PHP print statements, but there would be no
benefi t gained by doing that.

 The action parameter in the <form> tag says action="?mode=login". This means
that pressing Submit will send the value of pwd to the same page, with the param-
eter 'mode' set to login. It is as if the user clicks on a link to control.php?mode=login,
with the important difference that the value of pwd is also transmitted.

 When no 'mode' parameter has been included in the URL (i.e. the user just went
to the page control.php) the login form is displayed. When mode=login is specifi ed,
the password is checked.

 We will now concentrate on the code needed to replace line 19 which at present
just prints the words '(More here)'.

 Clearly there are many possibilities for the information that could be given to the
system administrator, for example a listing of the complete contents of table mem-
bers1. However we have seen this several times before. Instead we will concentrate
on printing out some basic statistics:

• How many members are there?
• How many have not yet logged in?
• How many have joined in the last year?
• How many have joined in the last three months?

 To do this we will use the MySQL function COUNT.
 In a SELECT command COUNT(*) gives us the number of rows in a specifi ed

table. We can fi nd the number of members using the command

18 PHP in Action: Maintaining a Membership List

341

 SELECT COUNT(*) FROM members1
 The COUNT(*) function can also be used with a WHERE clause, e.g.
 SELECT COUNT(*) FROM members1 WHERE numLogs=0

 However we will not use that approach here, as we wish to illustrate another way
of using COUNT, which was discussed in Sect. 13.1.6 . This is in conjunction with
the MySQL IF function. To fi nd the number of table entries for which numLogs is
zero (i.e the number of members who have not yet logged in) we can use the
command

 SELECT COUNT(IF(numLogs=0,1, NULL)) FROM members1

 This needs some explanation. If the condition 'numLogs=0' is satisfi ed the IF
function returns the value 1. If it is not satisfi ed, a NULL value is returned. The
COUNT function counts the number of 1 values and not the nulls, so the effect is to
count the number of times that numLogs is zero.

 We can combine the two SELECT COUNT commands as

 SELECT COUNT(*), COUNT(IF(numLogs=0,1, NULL)) FROM members1

 Before illustrating how to fi nd the number of members that have joined in the last
year or the last three months, it will help if we decide on today's date. Let us tempo-
rarily agree that it is April 30 th 2020.

 In our six digit YYMMDD format that is 200430. We can assign the date in that
format to variable $today with the PHP function call

 $today=date("ymd");

 One year ago it was 190430. So in order to test whether a member joined in the
last year we need to test whether the value of dateJoined is greater than '190430'. We
can do this by the MySQL command

 COUNT(IF(dateJoined>190430,1, NULL))

 To test for those who joined in the last three months we need to test whether
dateJoined is greater than '200130'. We can combine a test for this with the other
three tests to give a SELECT command with the four tests separated by commas.

 SELECT COUNT(*),
 COUNT(IF(numLogs=0,1, NULL)),
 COUNT(IF(dateJoined>190430,1, NULL)),
 COUNT(IF(dateJoined>200130,1, NULL))

 FROM members1

 Note this command is laid out on fi ve lines simply in the interests of clarity. It
can all be run together as a single line if preferred. In general if a string value
appears on the right-hand side of a test it should be included in string quotes.
However there is no need for quotes around the two dates above, as they are both
numerical values. This argument still applies even though the dateJoined fi eld was
specifi ed as CHAR(6). However it would also be valid to use string quotes, e.g.
dateJoined > '190430'.

18.5 Managing the Members Table

http://dx.doi.org/10.1007/978-3-319-22659-0_13

342

 Executing the above SELECT command from a PHP script will produce a single
row of output with four values, such as

 267 59 46 22

 The four values can be extracted from this and output in the usual way.
 The problem with incorporating the SELECT command into a PHP script is of

course that we cannot rely on it only being used on April 30 th 2020! It has to be
usable on any date and this introduces some complications. We will start by con-
verting everything into PHP form except for the value 200130 which we will leave
untouched (at present).

 If the current date is held in our six-digit form in variable $today then the same
month and day one year ago will be $today-10000. So a fi rst (but incomplete)
attempt at converting the SELECT command would be:

 The SELECT command held in $query is then issued as a MySQL command.
 The diffi cult part is to fi nd the value in six-digit date format that is three months

less than $today. If the month is from April to December the answer is simply
$today-300, e.g. 200430-300 is 200130. But what if the month is from January to
March? It will help to examine some specifi c cases to derive a general rule.

• Three months before March (month 3) is December (month 12) the previous
year.

• Three months before February (month 2) is November (month 11) the previous
year.

• Three months before January (month 1) is October (month 10) the previous year.

 From this we can see that the rule is

• If current month>3, to get three months earlier subtract 3 from month
• Otherwise, to get three months earlier add 9 to month and subtract 1 from the

year.

 So we need to start by extracting the month part from the six-digit date using the
PHP substr function and then test the value of month. We then create a new variable
$threeMonthsAgo with the value of $today reduced by (the numerical equivalent
of) three months. We can do this by

18 PHP in Action: Maintaining a Membership List

343

 We can now complete the conversion of the SELECT command:

 Adding the lines necessary to issue the MySQL command and then extract the
four values from the single row returned, gives the following as the complete
replacement for the previous print "(More here)" statement.

 With this much improved script the output given to the system administrator

changes to this.

18.5 Managing the Members Table

344

 There are clearly many additional facilities that could be provided for the system
administrator to use, but we will leave the affairs of Erewhon Trading Services here
and bring this fi nal chapter to a close.

 Practical Exercise 18
 Write a PHP script that the ETS system administrator can use to send a promotional
email to all members who joined in the last year but have not yet logged in.

 Chapter Summary
 This chapter gives a detailed example of the PHP and MySQL programming
needed to maintain an organisation's membership list. Topics covered include
user registration, logging into a password protected website, creating pass-
words, issuing password reminders, sending email from a PHP script and
managing a table of members.

18 PHP in Action: Maintaining a Membership List

345© Springer International Publishing Switzerland 2015
M. Bramer, Web Programming with PHP and MySQL,
DOI 10.1007/978-3-319-22659-0_19

 Chapter 19
 Appendices

19.1 PHP System Functions

19.1.1 Abbreviations Used in Specifi cations of Function
Arguments

 angleDeg: an angle measured in degrees
 angleRad: an angle measured in radians
 array: an array
 int: an integer
 num: a fl oating point number
 posint: a positive or zero integer
 str: a string
 value: some value (used with function array only)
 var: a variable

 fi le: address of a fi le, relative to the current directory
 dir: address of a directory, relative to the current directory
 fi le/dir: address of either a fi le or a directory, relative to the current directory

 (Note: absolute addresses such as /public_html/buildings/main.php are also
 permitted, but using these is not recommended.)

19.1.2 Terms Used in Specifi cations of Function Arguments

 database name – see Chap. 15
 fi lepointer (resource) – see Chap. 7
 format specifi er – see Chap. 6
 link identifi er (resource) – see Chap. 15
 mode (for fopen) – see Chap. 7

http://dx.doi.org/10.1007/978-3-319-22659-0_15
http://dx.doi.org/10.1007/978-3-319-22659-0_7
http://dx.doi.org/10.1007/978-3-319-22659-0_6
http://dx.doi.org/10.1007/978-3-319-22659-0_15
http://dx.doi.org/10.1007/978-3-319-22659-0_7

346

 MySQL query – see Chap. 15
 password – see Chap. 15
 protection mode – see Chap. 7
 result (resource) – see Chap. 15
 servername – see Chap. 15
 session variable – see Chap. 10
 username – see Chap. 15

19.1.3 System Functions Applied to Numbers

 Value
Returned Function Meaning Example

 number abs(num) 'Absolute value' of a number abs(−8.4) and abs(8.4)
are both 8.4

 integer ceil(num) 'Ceiling' of a number: the
smallest integer greater than or
equal to its value.

 ceil(−6.4) is −6
 ceil(9) is 9
 ceil(8.2) is 9

 number exp(num) Exponent function e to the
power of the argument

 exp(1) is
2.71828182846
exp(2.3) is
9.97418245481

 integer fl oor(num) 'Floor' of a number: the largest
integer less than or equal to its
value.

 fl oor(−6.4) is −7
 fl oor(9) is 9
 fl oor(8.2) is 8

 number log(num) Logarithm to base e (natural
logarithm)

 log(3.5) is
1.2527629685 log(1) is
0

 number log10(num) Logarithm to base10 log10(10) is 1
 log10(5.1) is
0.707570176098

 number max(num1,num2,…) Returns the largest of the
arguments.
 (Must be two or more
arguments)

 max(−6,8.3,27.4) is
27.4

 number min(num1,num2,…) Returns the smallest of the
arguments.
 (Must be two or more
arguments)

 min(−4.3,12.7,−8.9,0)
is −8.9

 number pi() Return value of pi to13
decimal places, i.e.
3.1415926535898
 (Argument list must be empty)

 number pow(num,num) The fi rst argument raised to the
power of the second argument

 pow(6,2) is 36
 pow(8.3,2.4) is
160.615488049

(continued)

19 Appendices

http://dx.doi.org/10.1007/978-3-319-22659-0_15
http://dx.doi.org/10.1007/978-3-319-22659-0_15
http://dx.doi.org/10.1007/978-3-319-22659-0_7
http://dx.doi.org/10.1007/978-3-319-22659-0_15
http://dx.doi.org/10.1007/978-3-319-22659-0_15
http://dx.doi.org/10.1007/978-3-319-22659-0_10
http://dx.doi.org/10.1007/978-3-319-22659-0_15

347

 integer rand(int,int) Generates a pseudo-random
integer between the fi rst and
the second arguments
inclusive.
 (The second argument must be
greater than the fi rst)

 rand(1,12) generates
an integer from 1 to 12
inclusive

 number round(num) The number is rounded to the
nearest integer (if it is half-way
between two integers, e.g. 8.5,
it is rounded up)

 round(4.4) is 4
 round(4.5) is 5
 round(4.6) is 5
 round(−4.4) is −4
 round(−4.5) is −4
 round(−4.6) is −5

 number round(num, posint) The number is rounded to the
specifi ed number of decimal
places (if it is half-way
between two values, it is
rounded up). If the second
argument is zero it means
round to integer.

 round(4.123456,3) is
4.123
 round(4.12345,4) is
4.1235
 round(−4.12345,4) is
−4.1234

 number sqrt(num) Square root of a non-negative
number

 sqrt(0.64) is 0.8

19.1.4 Trigonometric Functions

 Value Returned Function Meaning

 number sin(angleRad) Sine of the argument
 number cos(angleRad) Cosine of the argument
 number tan(angleRad) Tangent of the argument
 angleRad asin(num) Inverse sine (arc sine) of the argument
 angleRad acos(num) Inverse cosine (arc cosine) of the argument
 angleRad atan(num) Inverse tangent (arc tangent) of the

argument
 number sinh(angleRad) Hyperbolic sine of the argument
 number cosh(angleRad) Hyperbolic cosine of the argument
 number tanh(angleRad) Hyperbolic tangent of the argument
 angleRad asinh(num) Inverse hyperbolic sine of the argument
 angleRad acosh(num) Inverse hyperbolic cosine of the argument
 angleRad atanh(num) Inverse hyperbolic tangent of the argument
 angleRad deg2rad(angleDeg) Convert a number of degrees to the

equivalent in radians
 angleDeg rad2deg(angleRad) Convert a number of radians to the

equivalent in degrees

19.1 PHP System Functions

348

19.1.5 System Functions Applied to Arrays

 Value
Returned Function Meaning Example

 number max(array) Returns the largest of
the array elements

 If $arr contains the values 34.2, −8.2,
27.3, 0, 55.91 in that order, max($arr) is
55.91

 number min(array) Returns the smallest of
the array elements

 If $arr contains the values 34.2, −8.2,
27.3, 0, 55.91 in that order, min($arr) is
−8.2

19.1.6 System Functions Applied to Strings

 Value
Returned Function Meaning Example

 string date(str) Return a string giving some
date and time information.

 date("Y") returns the
current year as a four-
character string.
 See Chap. 5 for details.

 string ltrim(str) 'Left trim' a string, i.e. remove
any spaces, tab characters,
line feeds and carriage returns
from the beginning

 ltrim(" XYZ ") returns
"XYZ "

 string rtrim(str) 'Right trim' a string, i.e.
remove any spaces, tab
characters, line feeds and
carriage returns from the end

 rtrim(" XYZ ") returns
" XYZ"

 string str_
replace(str1,str2,
str3)

 'String replace'. Replace every
occurrence of str1 in str3 by
str2.

 str_replace("man","woman",
"man, woman and child")
returns "woman, wowoman
and child"

 integer strlen(str) Returns the number of
characters in str (or zero for
an empty string)

 strlen("abc") returns 3

 integer strpos(str1,str2) Returns the position of the fi rst
occurrence of str2 in str1*

 strpos("xabcabdabe","ab")
returns 1

 string strrev(str) Returns a string with the
characters from str in reverse
order

 strrev("hello") returns
"olleh"

 integer strrpos(str1,str2) Returns the position of the last
occurrence of str2 in str1*

 strrpos("xabcabdabe","ab")
returns 7

 string strtolower(str) Convert any upper case letters
in str to lower case

 strtolower("ABC99")
returns "abc99"

(continued)

19 Appendices

http://dx.doi.org/10.1007/978-3-319-22659-0_5

349

 string strtoupper(str) Convert any lower case letters
in str to upper case

 strtoupper("abc99") returns
"ABC99"

 string substr(str,
int1,int2)

 Substring. Returns the part of
str that begins at the character
numbered int1 and continues
for a total of int2 characters

 substr("elephant", 3, 4)
returns "phan"

 string trim(str) Trim a string, i.e. remove any
spaces, tab characters, line
feeds and carriage returns
from the beginning and end

 trim(" abc ") returns
"abc"

 string ucfi rst(str) Returns a string identical to
str except that if the fi rst
character is a lower case letter
it is converted to upper case

 ucfi rst("john") returns
"John"

 string ucwords(str) Returns a string identical to
str with the fi rst character of
each word capitalized. (A
word is any string of
characters that comes
immediately after a space, tab,
newline or carriage return.)

 ucwords("john smith, 37")
returns "John Smith, 37"

 string wordwrap(str1,int,
 str2)

 Wraps string str to a column
of int characters wide with
lines separated by the break
characters str2

 wordwrap("The time has
come the walrus said",
 12,"
") returns "The
time has
 come the

 walrus said"

 * Note: The characters in a string are numbered from left to right starting with zero, not one.

19.1.7 System Functions Applied to Variables

 Value
Returned Function Meaning Example

 logical isset(var) FALSE if the variable is uninitialized,
otherwise TRUE

 If $x has the value
8.3
 $res=isset($x)
returns TRUE

19.1.8 System Functions for Use with Arrays

 Value
Returned Function Meaning Example

 array array(val1,val2,....) Returns an array
with the values of
the arguments as
the values of the
array elements

 $xyz=array(26,"dog",TRUE);
creates an array $xyz with elements
0, 1 and 2 having the values 26,
"dog" and TRUE, respectively

(continued)

19.1 PHP System Functions

350

 logical* arsort(array) The same as asort.
but values are
sorted into
descending order

 arsort($myarray);

 logical* asort(array) Similar to sort, but
retains the key
values.

 asort($myarray);
 See Chap. 4

 integer count(array) Number of elements
in the array

 $n=count($myarray);

 array explode(str1,str2) Divides up str2 into
parts separated by
substring str1 and
converts them into
the elements of an
array

 explode("**","john**smith**37")
returns an array with three
elements: "john", "smith" and "37"

 array explode(str1,str2,int) Divides up str2 into
parts separated by
substring str1 and
converts them into
the elements of an
array.
 If int is positive,
the returned array
will contain a
maximum of int
elements with the
last element
containing the rest
of str2.
 If int is negative, all
components except
the last -int are
returned. If int is
 zero, it is treated as 1

 explode("**","john**sm
ith**37",2) returns an array with
two elements: "john" and
"smith**37"

 string implode(str,array) Combines the
elements of the
array into a string
separated by
substring str

 If the array $parts has three
elements: "john", "smith" and "37"
the function call
implode(",",$parts) returns the
string "john,smith,37"

 logical* krsort(array) The same as ksort.
but values are
sorted into
descending order

 logical* ksort(array) Similar to sort, but
the sorting is in the
order of the key
values.

 See Chap. 4

 logical* rsort(array) The same as sort.
but values are
sorted into
descending order

(continued)

19 Appendices

http://dx.doi.org/10.1007/978-3-319-22659-0_4
http://dx.doi.org/10.1007/978-3-319-22659-0_4

351

 logical* sort(array) Sorts an array into
ascending order of
its values.

 If array $alpha contains element
26, −4 and 7, the function will sort
the elements of $alpha into the
order −4,7,26.

 *Returns the value TRUE if the sort succeeds or FALSE otherwise - but generally used as a 'stand-
alone' function.

19.1.9 Formatted Print Functions

 Value
Returned Function Meaning Example

 integer* printf(format specifi er,
var1, var2, …)

 Prints a string in formatted form. See Chap. 6

 string sprintf(format specifi er,
var1, var2, …)

 As printf, but returns a string in
formatted form.

 See Chap. 6

 * Returns an integer - the number of values output - but generally used 'standalone'.

19.1.10 System Functions for Use with Text Files

 Value
returned Function Meaning Example

 logical* chdir(dir) Change to new current
directory (returns TRUE for
success or FALSE for failure)

 logical* chmod(fi le/dir,protection
mode)

 Change protection mode of
specifi ed fi le or directory
(returns TRUE for success
or FALSE for failure)

 chmod($myfi le,0666);
 (For protection modes
see Chap. 7 .)

 string dirname(fi le/dir) Return path of fi le or
directory

 logical is_dir(fi le/dir) Exists and is a directory
 logical is_fi le(fi le/dir) Exists and is a fi le
 logical is_readable(fi le/dir) File or directory exists and

is readable
 logical is_writable(fi le/dir) File or directory exists and

is writeable
 logical is_writeable(fi le/dir) File or directory exists and

is writeable
 logical* fclose(fi lepointer) Closes fi le (returns TRUE

for success or FALSE for
failure)

 fclose($fp1);

(continued)

19.1 PHP System Functions

http://dx.doi.org/10.1007/978-3-319-22659-0_6
http://dx.doi.org/10.1007/978-3-319-22659-0_6
http://dx.doi.org/10.1007/978-3-319-22659-0_7

352

 array fi le(fi le) Convert text fi le to array $arr1 = fi le("../fi le1.
txt");

 logical fi le_exists(fi le/dir) File or directory exists
 integer fi lesize(fi le) Returns size of fi le in bytes

(i.e. characters) of storage
 $num = fi lesize("fi le1.
txt");

 resource
 (fi le
pointer)

 fopen(fi le,mode) Opens a text fi le in a
specifi ed mode

 $fp1 = fopen("myfi le.
txt", "w");
 (For modes see Chap. 7 .)

 integer* fprintf(fi lepointer,format
specifi er, var1, var2, …)

 Prints a string in formatted
form. (Returns the number
of bytes written.)

 string fread(fi lepointer,int) Read specifi ed number of
characters from a text fi le
or up to the end of fi le,
whichever is less

 integer* fwrite(fi lepointer,str) Write to specifi ed text fi le
 (Returns number of bytes
written or FALSE on error)

 string getcwd() Returns the absolute
address of the working
directory

 logical* mkdir(dir,protection
mode)

 Create directory with
specifi ed name and path
with specifi ed protection
mode (returns TRUE for
success or FALSE for
failure)

 mkdir("mydir",0666);

 array pathinfo(fi le/dir) Return associative array of
components

 logical* rename(fi le/dir, fi le/dir) Rename fi le or a directory
(including its contents).
This can involve moving
the fi le or directory to a
different parent directory
(returns TRUE for success
or FALSE for failure)

 logical* rmdir(dir) Delete directory with
specifi ed name and path
(returns TRUE for success
or FALSE for failure)

 array scandir(dir) Return indexed array of
directory contents
(top-level only)

 * Function generally used in 'standalone' mode
 fi le: address of a fi le, relative to the current directory
 dir: address of a directory, relative to the current directory
 fi le/dir: address of either a fi le or a directory, relative to the current directory
 Note: absolute addresses such as /public_html/buildings/main.php are also permitted, but using
these is not recommended.

19 Appendices

http://dx.doi.org/10.1007/978-3-319-22659-0_7

353

19.1.11 Logical Functions

 Value
returned Function Meaning Example

 logical is_numeric(str) Value of str is
numeric

 $x=is_numeric("26.78");

 logical is_int(num) Value of num is
an integer

 $z=is_num(34.2);
 Be careful when using this to test values
entered in web forms - see Chap. 9

19.1.12 Functions Used with Sessions
(see Chap. 10 for more details)

 Value
returned Function Meaning Example

 logical* session_start() Start a session. Returns true if it
succeeds, else false.

 session_start();

 logical* unset(session
variable)

 Unset a session variable.
Returns true if it succeeds, else
false.

 unset($_
SESSION['var1']);

 logical* session_destroy() Destroy a session. Returns true
if it succeeds, else false.

 session_destroy();

 * Returns true for success or false for failure, but function is generally used in 'standalone' mode

19.1.13 Functions Used with Uploaded Files
(see Chap. 10 for more details)

 Value
returned Function Meaning Example

 string mime_content_type(fi le) Returns the
'content type' of
a fi le.

 $s=mime_content_type
 ("xyz.pdf");
 See Chap. 10 for details

 logical* move_uploaded_fi le(str1,
str2)

 Moves an
uploaded fi le str1
to a new location
str2. Returns true
if it succeeds,
else false.

 move_uploaded_fi le("xyz.pdf",
"docs/abc.pdf");

 * Returns true for success or false for failure, but function is generally used in 'standalone' mode

19.1 PHP System Functions

http://dx.doi.org/10.1007/978-3-319-22659-0_9
http://dx.doi.org/10.1007/978-3-319-22659-0_10
http://dx.doi.org/10.1007/978-3-319-22659-0_10
http://dx.doi.org/10.1007/978-3-319-22659-0_10

354

19.1.14 Other System Functions

 void** die(str) Terminate script
immediately and
display str as an
error message

 die('connection to server failed');
 (Often used in conjunction with
the mysql_connect function. See
Chap. 15 .)

 logical* mail(str1,str2,str3,str4) Sends an email.
 (For the meanings
of the four
parameters see
Sect. 18.3)

 mail($mailTo,$subject,$body,
$headers);

 logical* phpinfo() Outputs detailed
information about
the confi guration
of PHP, including
the version
number

 phpinfo();

 * Returns true for success or false for failure, but function is generally used in 'standalone' mode
 ** Can only be used in 'standalone' mode

19.1.15 System Functions Used for Manipulating
a MySQL Database

 Value
returned Function Meaning Example

 integer mysql_affected_
rows(link identifi er)

 Returns the number of
rows affected by the last
MySQL INSERT,
UPDATE, REPLACE or
DELETE command

 $num=mysql_affected_rows
 ($Link);

 logical* mysql_close(link
identifi er)

 Closes a previously
opened database
connection

 mysql_close($Link);

 resource
(link
identifi er),
if it
succeeds,
or false, if
it fails

 mysql_
connect(servername,
username,password)

 Opens a connection to
the MySQL Server
 (See Chap. 15 .)

 $Link=mysql_connect
 ($sys_dblocalhost,
 $sys_dbusername,
 $sys_dbpassword)

(continued)

19 Appendices

http://dx.doi.org/10.1007/978-3-319-22659-0_15
http://dx.doi.org/10.1007/978-3-319-22659-0_18
http://dx.doi.org/10.1007/978-3-319-22659-0_15

355

 Returns
FALSE on
error,
otherwise
TRUE for
INSERT,
UPDATE,
DELETE
queries and
a 'result
resource'
for others

 mysql_db_query
 (database name,
 MySQL query,
 link identifi er)

 Executes a query on a
specifi ed database.

 $result = mysql_db_query
 ($DBName,$query,$Link);

 string mysql_error() Returns the text of the
error message from the
last MySQL function
executed

 die(mysql_error());

 array or
FALSE (if
no more
rows)

 mysql_fetch_array
(result resource)

 Returns an array of
strings that corresponds
to the fetched row, with
both associative and
numerical indices

 $row=mysql_fetch_array
 ($result);

 array or
FALSE (if
no more
rows)

 mysql_fetch_assoc
(result resource)

 Returns an associative
array of strings that
corresponds to the
fetched row

 $row=mysql_fetch_assoc
 ($result);

 array
 or FALSE
(if no more
rows)

 mysql_fetch_row
(result resource)

 Returns an indexed
array of strings that
corresponds to the
fetched row

 $row=mysql_fetch_row
 ($result);

 integer or
FALSE

 mysql_insert_id() Returns value of the
auto_increment fi eld
that was generated by
the last query. If the
previous query did not
generate an AUTO_
INCREMENT value it
returns the value 0. If no
MySQL connection was
established it returns the
value FALSE.

 $n = mysql_insert_id();

 int mysql_num_fi elds
(result resource)

 Retrieves the number of
fi elds returned in a
result resource from a
MySQL query

 $num=mysql_num_fi elds
 ($result);

 int mysql_num_rows
(result resource)

 Retrieves the number of
rows from a result set.
(Only valid for
statements like SELECT
or SHOW that return an
actual result set.)

 $num=mysql_num_rows
 ($result);

 * Returns true for success or false for failure, but function is generally used in 'standalone' mode

19.1 PHP System Functions

356

19.1.16 'Improved' System Functions Used for Manipulating
a MySQL Database (See Sect. 15.8 .)

 resource (link
identifi er), if it
succeeds, or
false, if it fails

 mysqli_
connect(servername,
username, password,
database name)

 Opens a connection to
the MySQL Server
(See Sect. 15.8 .)

 $Link = mysqli_connect
 ($sys_dblocalhost,
 $sys_dbusername,
 $sys_dbpassword,
 $DBName);

 Returns
FALSE on
error,
 otherwise
TRUE for
INSERT,
UPDATE,
DELETE
queries
 and a 'result
resource' for
others

 mysqli_query(link
identifi er, MySQL query)

 Executes a query on
the database specifi ed
in the associated
mysqli_connect
command
 (See Sect. 15.8 .)

 $result = mysqli_query
 ($Link, $query);

 int mysqli_fi eld_count (link
identifi er)

 Returns the number of
columns for the most
recent query on the
connection
represented by the
'link' parameter (See
Sect. 15.8 .)

 $num = mysqli_fi eld_
count
 ($Link);

19.2 PHP System Operators

19.2.1 Binary Arithmetic Operators Applied to Numerical
Expressions

 Operator Example Meaning

 + expr1+expr2 expr1 plus expr2
 − expr1 − expr2 expr1 minus expr2
 * expr1 * expr2 expr1 times expr2
 / expr1 / expr2 expr1 divided by expr2
 % expr1 % expr2 The remainder when expr1 is divided by expr2. (% is called

the 'modulus operator'.)

19 Appendices

http://dx.doi.org/10.1007/978-3-319-22659-0_15
http://dx.doi.org/10.1007/978-3-319-22659-0_15
http://dx.doi.org/10.1007/978-3-319-22659-0_15
http://dx.doi.org/10.1007/978-3-319-22659-0_15

357

19.2.2 Unary Arithmetic Operators Applied to Numbers

 Operator Example Meaning

 + +$x
 +96.3

 The value of the argument

 − −$y
 −8.4

 The negative of the value of the argument

19.2.3 System Operators Applied to Strings

 Operator Example Meaning

 . [dot] $x."dog" The string formed by joining the string $x and the string "dog". This
is called string concatenation.

19.2.4 Relational Operators

 Operator Example Meaning

 == exp1==exp2 The two expressions are equal
 != exp1!=exp2 The two expressions are not equal
 > exp1>exp2 exp1 is greater than exp2
 >= exp1>=exp2 exp1 is greater than or equal to exp2
 < exp1<exp2 exp1 is less than exp2
 <= exp1<=exp2 exp1 is less than or equal to exp2

19.2.5 Logical Operators

 Operator Name Example Meaning

 && Logical And val1 && val2 TRUE if val1 and val2 are both TRUE,
otherwise FALSE

 || Logical Or val1 || val2 TRUE if either val1 or val2 is TRUE (or
both), otherwise FALSE

 XOR Logical XOR
(exclusive OR)

 val1 XOR
val2

 TRUE if either val1 or val2 is TRUE, but
not both, otherwise it is FALSE

 ! Logical Not !val1 TRUE if val1 is FALSE, otherwise FALSE

19.2 PHP System Operators

358

19.2.6 Operators Giving a Simplifi ed Notation for Assignment

 Is an abbreviation for this assignment statement

 $x++; $x=$x+1;
 $x−−; $x=$x−1;
 $x+= $y; $x=$x+$y;
 $x−= $y; $x=$x−$y;
 $x*= $y; $x=$x*$y;
 $x/= $y; $x=$x/$y;
 $x%= $y; $x=$x%$y;

 Here $y can be replaced by any arithmetic expression.

19.2.7 Operators Giving a Simplifi ed Notation for Joining
Strings

 Is an abbreviation for this
assignment statement

 $x.=$y; $x=$x.$y;

19.3 Summary of MySQL Commands

 Here is a summary of all the MySQL commands used in this book. In all cases
 tablename can optionally be preceded by the name of a database followed by a dot.

 ALTER TABLE tablename ADD fi eldname fi eld- specifi cation
AFTER fi eldname
 May optionally be followed by
PRIMARY KEY

 Add a fi eld to a table
after a specifi ed
column

 ALTER TABLE tablename ADD fi eldname fi eld- specifi cation
FIRST
 May optionally be followed by
PRIMARY KEY

 Add a fi eld to a table
as the fi rst column

 ALTER TABLE tablename ADD fi eldname fi eld-specifi cation
 May optionally be followed by
PRIMARY KEY

 Add a fi eld to a table
as the last column

(continued)

19 Appendices

359

 ALTER TABLE tablename ADD PRIMARY KEY (fi eldname) To set a primary key
for a table, when
none already set.
May also be a
sequence of fi eld
names separated by
commas.

 ALTER TABLE tablename ALTER fi eldname DROP
DEFAULT

 Cancel the default
value of a fi eld

 ALTER TABLE tablename ALTER fi eldname SET DEFAULT
 value

 Set the default value
of a fi eld

 ALTER TABLE tablename AUTO_INCREMENT = unsigned
integer

 Changes the starting
value of an auto_
increment fi eld (or the
next value to be used
if some records have
already been created)

 ALTER TABLE tablename CHANGE oldfi eldname
newfi eldname fi eld-specifi cation

 Change a fi eld name
and/or specifi cation
in a table

 ALTER TABLE tablename DROP fi eldname1
 ,DROP fi eldname2
 ,DROP fi eldname3
 etc.
 [DROP may optionally be followed
by COLUMN each time]

 Delete one or more
fi elds from a table

 ALTER TABLE tablename DROP PRIMARY KEY To remove an
existing primary key
from a table

 ALTER TABLE tablename MODIFY fi eldname
fi eld-specifi cation

 Change a fi eld
specifi cation in a
table

 ALTER TABLE tablename RENAME TO newtablename Change the name of
a table

 CREATE DATABASE
 databasename

 Create an empty
database with the
given name

 CREATE TABLE tablename
(specifi cation)

 This is discussed in
detail in Chap. 14

 CREATE TABLE tablename LIKE oldtablename Create new table
with same structure
and fi eld
specifi cations as an
existing one

 DELETE FROM tablename WHERE condition
 [optionally followed by LIMIT
 number]

 Delete one or more
records from a table.
See Sect. 12.8 for
more information
about conditions

(continued)

19.3 Summary of MySQL Commands

http://dx.doi.org/10.1007/978-3-319-22659-0_14
http://dx.doi.org/10.1007/978-3-319-22659-0_12

360

 DESCRIBE tablename Equivalent to SHOW
FIELDS FROM
 tablename

 DROP DATABASE
 databasename

 Delete a database

 DROP TABLE tablename Delete a table
 INSERT INTO tablename (fi eldnames separated by commas)

VALUES (fi eld values, separated by
commas)

 Create a new record.
The fi eld values must
be in the same order
as the fi eld names.

 INSERT INTO table2 SELECT * FROM table1 Copy contents of
table1 into table2

 RENAME TABLE tablename TO newtablename Rename a table
 REPLACE INTO tablename (same as for INSERT INTO) Same as INSERT

INTO except that if
an existing row has
the same primary key
value as a new row to
be inserted, the
existing row is
deleted

 SELECT * FROM table1 INNER JOIN table2 ON table1.
fi eld1 = table2.fi eld2
 Can be followed by an optional
ORDER BY clause. INNER JOIN
can be replaced by LEFT OUTER
JOIN or RIGHT OUTER JOIN

 Combine tables (see
Sect. 13.3)

 SELECT * FROM tablename WHERE condition ORDER BY
fi eldnames separated by commas
[optional ASC or DESC after each
one] LIMIT number
 Instead of a fi eldname in the
ORDER BY clause there can be the
word FIELD followed by a
fi eldname and a list of values for the
fi eld, all separated by commas and
enclosed in parentheses. See Sect.
 13.1.1 .
 Instead of any fi eldname in the
WHERE clause there can be a
function (such as concat, greatest,
least, min, max and avg) applied to
one or more fi eldnames.
 The WHERE, ORDER BY and
LIMIT clauses are all optional. The
LIMIT clause can also be LIMIT
offset,number

 Returns the values of
all fi elds in some or
all of the records in
the table, possibly in
a specifi ed order and
with a limit to the
number returned

 SELECT fi elds separated by
commas FROM tablename

 (As for SELECT * FROM
 tablename)

 (As for SELECT *
FROM tablename)

(continued)

19 Appendices

http://dx.doi.org/10.1007/978-3-319-22659-0_13
http://dx.doi.org/10.1007/978-3-319-22659-0_13

361

 SELECT COUNT(*) FROM
 tablename

 Returns the number
of records in the
table

 SELECT COUNT (fi eldname)
FROM tablename

 Returns the number
of records in the
table where the fi eld
has a non-null value

 SELECT COUNT (IF (condition
, truevalue , falsevalue)) FROM
 tablename

 Returns the number
of records in the
table where a
specifi ed condition is
met (see Sect. 13.1.6)

 SELECT DISTINCT fi eldname
FROM tablename

 May also be a sequence of fi eld
names, separated by commas.

 Finds only the
distinct values taken
by a fi eld or a
combination of fi elds

 SHOW COLUMNS FROM
 tablename

 Equivalent to SHOW
FIELDS FROM
 tablename

 SHOW CREATE TABLE
 tablename

 Gives a listing of a
CREATE TABLE
command that could
have been used to
create the table

 SHOW DATABASES Display a list of all
the databases
available to the user

 SHOW FIELDS FROM
 databasename.tablename

 Display information
about the fi elds in the
specifi ed table in the
specifi ed database

 SHOW FIELDS FROM
 tablename

 Display information
about the fi elds in the
specifi ed table in the
current database

 SHOW TABLES Display a list of the
tables in the currently
selected database

 SHOW TABLES IN database Display a list of the
tables in the specifi ed
database

 SHOW VARIABLES Display the values of
a large number of
system variables

 SHOW VARIABLES LIKE "version" Display the version
of MySQL that you
are using

(continued)

19.3 Summary of MySQL Commands

http://dx.doi.org/10.1007/978-3-319-22659-0_13

362

 TRUNCATE tablename Empty a table, but
retain structure (fi eld
names, fi eld types
etc.)

 UPDATE tablename SET fi eld=value WHERE condition
 [optionally followed by LIMIT
 number]
 Can also be a succession of
 fi eld=value pairs, separated by
commas.
 value can also be a SELECT
command enclosed in parentheses
(see Sect. 13.2)

 Change the value of
one or more fi elds in
one or more records
in the specifi ed table.
If the WHERE clause
and the LIMIT clause
are omitted all the
records in the table
are changed.

 USE databasename Make databasename
the current database

19.4 MySQL Operators and Functions

 Expressions can be used at a number of places in MySQL statements, such as in
the ORDER BY clause of SELECT commands, in the WHERE clause of a
SELECT, DELETE or UPDATE command, or in the SET clause of an UPDATE
command. There are many functions and operators available in MySQL and they
can be used in all these kinds of expression. Here are examples of some of the
most valuable uses.

19.4.1 Simple Conditions in WHERE Clauses

 Each simple condition is of the form fi eld operato r value . These operators are called
 comparison operators . They return a result that is either true or false. The main ones
are given in this table.

 = is equal to
 != does not equal
 <> does not equal
 < is less than
 <= is less than or equal to
 > is greater than
 >= is greater than or equal to

 Conditions can also make use of arithmetic operators including + − * and /.
 Functions can also be used in conditions, including GREATEST and

LEAST. These take the values of two or more numerical fi elds and return the largest
and the smallest values, respectively.

19 Appendices

http://dx.doi.org/10.1007/978-3-319-22659-0_13

363

 Arithmetic operators and functions can appear on either side of the comparison
operator. For example if i1, i2, i3, i4 and i5 are all integer fi elds, possible conditions
include

 WHERE i1 + i2 < i3−i4*i5
 WHERE GREATEST(i1,i2,i3) > 99
 WHERE LEAST(i2,i5) > LEAST(i1,i3,i4).

 A further operator that can be used with either numerical or character fi elds is
BETWEEN. Unlike the other operators this one takes two values after the operator,
joined by AND. For example:

 SELECT * FROM mytable1 WHERE yearBorn BETWEEN 1982 AND 2000

19.4.2 Complex Conditions in WHERE Clauses

 Complex conditions can be constructed from simple conditions using the logical
operators AND, OR and NOT. Parentheses can also be used to avoid ambiguity and
to construct more complex conditions. For example:

 SELECT * FROM mytable1 WHERE sex = 'F' AND (yearBorn > 1980
OR numchild! = 99) AND NOT (occupation = 'doctor' OR occupation = 'engineer')

19.4.3 Other Functions in SELECT Commands

 Other functions available include the CONCAT function, which takes two or more
character fi elds or string constants such as '…' and ' ' (space) and joins them together.
For example

 SELECT CONCAT(Forename,' ',Surname), sex FROM mytable1 WHERE
numchild > 1

 A fi eld used in a SELECT command can be replaced by a function applied to the
values of the fi eld. Functions MAX, MIN and ARG give the largest, smallest and
average values of a fi eld, respectively. For example:

 SELECT MIN(yearBorn),MAX(yearBorn),MIN(Surname),MAX(Surname),
MIN(numchild), MAX(numchild), AVG(numchild) FROM mytable1

19.4.4 UPDATE Commands

 Functions can also be used with the SET clause in an UPDATE command, for example:

 UPDATE mytable1 SET extra = CONCAT(Forename,' ',Surname)

19.4 MySQL Operators and Functions

364

19.5 Summary of Case-Sensitivity Rules: PHP and MySQL

19.5.1 PHP

 Case-Sensitive?

 PHP Keywords IF, PRINT, ELSE etc. No
 Relational and logical operators (XOR etc.) No
 E-notation for numbers 12.3E7 etc. No
 Variable and array names* Yes
 String constants Yes
 System Function Names** No
 User-defi ned Function Names** No
 Logical constants (TRUE, FALSE) No
 System arrays: $_GET, $_POST, $_REQUEST, $_SESSION and $_FILES Yes
 System constants M_PI, PHP_EOL Yes

 *Starts with $ then a sequence of letters, underscores and digits. The character after $ must not be
a digit.
 ** The same as variable names but with no initial $ sign

19.5.2 MySQL

 Database and table names

 Depends on the operating system used by the server that holds
the database. We recommend you to assume that both are case
sensitive and act accordingly.

 Field Names No
 Field Values Yes
 MySQL keywords (such as
INSERT INTO and UPDATE)

 No

19.5.3 Other

 Variables in an extended URL (e.g. register.php?x = yes) Yes

19 Appendices

365

19.6 Principal HTML Tags

 This list gives a brief description of the principal HTML tags used in this book. It is
not intended as a comprehensive list.

 <!DOCTYPE> The 'doctype declaration'. Should be the fi rst line of an HTML page, above
the <html> tag.

 <html> </html> Tags to mark start and end of an HTML page (after the doctype
declaration). Between them there should be a head followed by a body.

 <head> </head> Start and end of the head of an HTML page.
 <body> </body> Start and end of the body of an HTML page.
 Tags used inside the head of an HTML page
 <title> </title> Start and end of a title (an optional part of the head of an HTML page).
 <meta> May be used in the head of an HTML page to provide metadata about the

page.
 <link> May be used in the head of an HTML page to link to a style sheet.
 Tags used inside the body of an HTML page
 <h1> </h1> Start and end a level 1 heading.
 <h2> </h2> Start and end a level 2 heading.
 <h3> </h3> Start and end a level 3 heading.
 Start and end bold font.
 Start and end italic.
 Start and end underlining.
 Start and end font specifi cation.
 <p> </p> Start and end a paragraph.

 Line break.
 <hr> Horizontal rule.
 Used to place an image in an HTML page.
 Start and end an ordered list (i.e. one with numbered items)
 Start and end an unordered list (i.e. one with items prefi xed by 'bullets')
 Start and end an item in an ordered or unordered list
 <a href> Placed before and after the desination of a link in an HTML page. (Strictly

an <a> tag with an href attribute.)
 <form> </form> Start and end of a form (forms are the topic of Chap. 9)
 <table> </table> Start and end of a table defi nition
 <tr> </tr> Start and end of a row defi nition within a table
 <td> </td> Start and end of a cell (column) defi nition within a row of a table

19.6 Principal HTML Tags

http://dx.doi.org/10.1007/978-3-319-22659-0_9

366

19.7 Specimen Solutions to Practical Exercises

19.7.1 Practical Exercise 2

 (1) $happy-BIRTHDAY is invalid. Variable names must not include hyphens.
$27_Today is invalid. Variable names must not have a digit immediately after the
$ sign.

 john is invalid. Variable names must begin with a $ sign.
 $abc!_*xyz is invalid. Variable names must not include special characters such as

! and *.

 (2) (a) I live at 26 Queen\'s Road
 (b) Nothing. The 'unescaped' single quote in O'Brien will cause the script to

terminate with an error message.
 (c) This is a backslash\
 (d) I live at 26 Queen\'s Road
 (e) My name is John O'Brien
 (f) This is a backslash\
 (g) He said "Hello" to me
 (h) the value of the variable is 296.4
 (i) the value of the variable is

[$xyzpounds is an uninitialised variable]
 (j) a strange string abc$xyz 296.4 here is a backslash\

 (3) Some possibilities are −4.87316E2, −4.87316e2, −4873.16E−1 and
−4873.16e−1.

 (4) None of the names beginning with a $sign are valid. Of the remainder, only
happy-BIRTHDAY is invalid as function names (like variable names) must not
include hyphens.

19.7.2 Practical Exercise 3

 (1) 0.4
 (2) The arithmetic expression $x+$y needs to be enclosed in parentheses.
 (3) TRUE

 Note: the logical expression includes an XOR operator, so when it is evaluated
it needs to be enclosed by an outer pair of parentheses (see Sect. 3.2.8). This
applies whether the value is found using an assignment such as this

or a Print statement such as this:

19 Appendices

http://dx.doi.org/10.1007/978-3-319-22659-0_3

367

 (4)

 (5) (a)

 (b)

 (6)

19.7.3 Practical Exercise 4

 (1)

 (2) We can test the effect of using sort by the script

19.7 Specimen Solutions to Practical Exercises

368

 which gives the output

 The month names have been sorted into alphabetical order, which is not likely to
be helpful.

 If instead we use the script

19 Appendices

369

 The output is

 The array has been sorted in order of the 'keys', which are the index values 01, 02
etc., and thus retains its original ordering.

 (3) The script below

 produces the output

19.7.4 Practical Exercise 5

 (1)

 (2)

19.7 Specimen Solutions to Practical Exercises

370

 (3)

 (4)

19.7.5 Practical Exercise 6

 A possible solution is:

 Assuming that $x has value 62.917, the output will be:

19.7.6 Practical Exercise 7

19 Appendices

371

19.7.7 Practical Exercise 8

 (1)

 (2)

 (3)

 (4) The HTML tag is described in Sect.5.4 .

 (5)

19.7 Specimen Solutions to Practical Exercises

http://dx.doi.org/10.1007/978-3-319-22659-0_5

372

19.7.8 Practical Exercise 9

 (1) Webform in Sect. 9.2 .

 Webform in Sect. 9.4 .

19 Appendices

http://dx.doi.org/10.1007/978-3-319-22659-0_9
http://dx.doi.org/10.1007/978-3-319-22659-0_9

373

 The fi le countries.txt contains

 (2) The extensions need to be changed to php.

19.7.9 Practical Exercise 10

19.7.10 Practical Exercise 11

 A suitable script is given below.
 The number of occurrences of each incorrect password are accumulated in associative

array $errors. (All passwords are forced into lower case fi rst.) The array is sorted using the
ksort function before the invalid passwords and the frequency of each one are output.

19.7 Specimen Solutions to Practical Exercises

374

 Running this script gives a tabulation such as the following.

19.7.11 Practical Exercise 12

 (1) The invalid ones are acd-def (hyphens are not permitted in unquoted names)
father's_name (apostrophes are not permitted in unquoted names)

 (2) REPLACE INTO mytable1 (refnum,Forename,Surname,sex,occupation,
cityBorn,yearBorn)VALUES (1927,'Bryony','McTavish','F','doctor','New York',
1988)

 (3) (a) DELETE FROM mytable1 WHERE Surname='Johnson'
 (b) ALTER TABLE mytable1 ADD variance INTEGER AFTER yearBorn

followed by
UPDATE mytable1 SET variance=yearBorn-1960

19.7.12 Practical Exercise 13

 (1) (a) SELECT * FROM mytable1 ORDER BY yearBorn LIMIT 1
 (b) SELECT DISTINCT cityBorn FROM mytable1 WHERE sex = 'F'

19 Appendices

375

 (c) ALTER TABLE mytable1 DROP PRIMARY KEY followed by
 ALTER TABLE mytable1 ADD PRIMARY KEY (cityBorn,yearBorn)

 (2) There is no guarantee that the combination of cityBorn and yearBorn will be
unique.

 (3) SELECT DISTINCT AnimalType FROM mytable4 INNER JOIN mytable5 ON
mytable4.Name=mytable5.Name2 WHERE Canfl y='yes' ORDER BY Name
(The results are of course bird and insect, in that order.)

19.7.13 Practical Exercise 14

 Possible solutions are as follows

19.7 Specimen Solutions to Practical Exercises

376

19.7.14 Practical Exercise 15

 (1) A suitable script is given below.

The output from running this script is as follows.

 (2) This is a suitable script.

19 Appendices

377

 The output from running it is given below.

19.7.15 Practical Exercise 16

 (1) A possible solution is given below.

 Variable $nextline is (partly) generated by a 'for' loop in lines 12-14 for the elements
of array $row. (If additional fi elds are added to the table later this will not need to be
changed.) Each element of array $row is enclosed in quotes (line 13) and all but the
fi rst is preceded by a comma (line 12).

 Note that line 9 is
 while ($row=mysql_fetch_row($result)){
 not
 while ($row=mysql_fetch_array($result)){

 This is important for line 11
 for ($i=0;$i<count($row);$i++){
 to work correctly. Function mysql_fetch_array generates both an associative and a
numerical index and for this reason the value of count($row) will be 16 not the
expected 8.
 With this script the content of fi le mytable1_backup.txt will be the following.

19.7 Specimen Solutions to Practical Exercises

378

 Numbers such as 634 have all been enclosed in quotes but that does no harm.

 (2) One way of doing this is to reverse the name string using the strrev function
described in Sect. 5.3.5 , then use the explode function to extract the component
before the fi rst space and fi nally use strrev again to return the reverse of it as the
value of the function. This gives the following function defi nition.

19.7.16 Practical Exercise 17

 One solution is to add the following lines before line 14.

19.7.17 Practical Exercise 18

 A possible script is given below.

19 Appendices

http://dx.doi.org/10.1007/978-3-319-22659-0_5

379

19.8 Glossary

 Words in bold are cross-references to other entries in the glossary.

 Absolute Address Of A
File

 The full address of a fi le on a server, beginning with / signifying
the root directory.

 Appending To A File Writing a new record to the end of an existing fi le
 Argument List A list of all the arguments of a function separated by commas and

enclosed in parentheses
 Argument Of A
Function

 One of the values passed to a function in an argument list
(enclosed in parentheses) which determines the value it returns
and/or how it behaves

 Arithmetic Expression An expression that evaluates to a number (see Sect. 3.2.1)
 Arithmetic Operator An arithmetic operator is similar to a function, but generally takes

the form of a symbol such as + or *. They are either written
between two numerical constants or arithmetic expressions (a
binary operator) or written in front of a numerical constant or
arithmetic expression (a unary operator).

 Array A collection of data values that share a common name
 Array Element A member of an array
 Array Index An integer value that indicates the position of an array element in

an array (counting from left to right, starting at zero)
 Assignment Statement A PHP statement that gives a value to a variable

(continued)

19.8 Glossary

http://dx.doi.org/10.1007/978-3-319-22659-0_3

380

 Associative Array An array comprising a collection of (key, value) pairs
 Auto_Increment Field A fi eld that is automatically given a sequential number by MySQL

whenever a new record is inserted into a database table
 Backtick A 'slanting quote' character (`). Used in MySQL to surround names

that include embedded spaces, hyphens etc.
 Binary Operator See arithmetic operator
 Built-In Function Another name for system function
 Checkbox An object on a webform
 Closing PHP Tag The combination? > used to end a set of PHP statements
 Column Defi nition In MySQL , a defi nition of the data type and some other

information about each fi eld
 Concatenate Strings Join two or more strings together
 Concatenation Operator The operator . [dot] used to join two or more strings or string

constants
 Conditional Expression An expression used in a number of types of PHP statement that

evaluates to a logical value, either TRUE or FALSE
 Constant A fi xed data value such as 45.3, TRUE or "dog"
 Current Database In MySQL the database to which MySQL commands refer by

default
 Current Directory The directory on a web server in which a fi le currently pointed to

by a web browser is stored
 Current Working
Directory

 Another term for current directory

 Data Cleaning The process of amending or removing data in a database that is
incorrect, incomplete, wrongly formatted, or duplicated.

 Data Type In MySQL , one of the kinds of data available to the system (e.g.
INTEGER, VARCHAR)

 Database Table A principal component of a relational database . Each table
contains information about a related set of entities .

 Destination Page The page to which the web browser should point when the Submit
button of a webform is pressed

 Directory A basic component of the hierarchical fi le storage on a web server.
A directory can hold one or more fi les or other directories.

 Disabled Field A fi eld on a webform which is 'greyed out' and cannot be changed
by the user. When the Submit button is pressed no value is sent to
the destination page .

 Do…While Statement A type of PHP statement, described in Chap. 3
 Empty Statement A PHP statement with no content, i.e. a semicolon (;) on its own.
 E-Notation See exponent notation
 Entity One of a set of objects of the same kind that are 'described' by the

values in a record of a database table
 Escape Sequence A combination of characters used in a string constant that enables a

value to be entered that otherwise could not be. In PHP escape
sequences always begin with a backslash character \

 Exponent Notation A notation used to indicate that a number should be multiplied by a
power of 10, e.g. 34.5E3 means 34.5 * 10 3 , i.e. 34500

(continued)

19 Appendices

http://dx.doi.org/10.1007/978-3-319-22659-0_3

381

 Extended URL A web address extended by one or more variable = value pairs,
separated by & symbols and preceded by? (See Sect. 10.3)

 Field A column of a database table , containing information about a
property of all the records in the table

 Field Name The name of a fi eld in a database table
 Field Type The type of a fi eld in a database table (e.g. INTEGER or DATE)
 File Box An object on a webform
 File Field An object on a webform
 File Pointer An object that 'points to' an open text fi le. It is created when the fi le

is opened.
 File Protection The status of a fi le as being available for reading, writing or

execution by different types of people (the third category is not
applicable for PHP fi les)

 Folder Another term for directory
 For Loop Another name for a For statement
 For Statement A type of PHP statement, described in Chap. 3
 Forcing Input Into
Lower/Upper Case

 Changing a string of characters so that all upper case letters are
replaced by the equivalent lower case ones, or vice versa

 Foreach Statement A type of PHP statement, described in Chap. 4
 Form Object A general name for any kind of object on a webform
 Format Specifi er A component of a format string , e.g. %.2f signifying 'output the

number rounded to two decimal places'. (See Chap. 6 .)
 Format String A string used as an argument to a printf, sprintf or fprintf function

that specifi es the format in which the variables forming the rest of
the argument list will be output.

 Function Call As part of a PHP statement, a reference to the name of a function
followed by its arguments in parentheses. This causes the function
to be evaluated with those values as arguments.

 Function Library In PHP a personal collection of user-defi ned functions that are
stored together in one or more PHP fi les and can be inserted into
 scripts using the include or require functions as required

 Function Name The name of a function. In PHP these are the same as variable
names except that they must not begin with a $ sign.

 Global Variable A variable used in a PHP script outside a function defi nition. (See
Chap. 8 .)

 Hidden Field An object on a webform
 Home Directory The directory on a web server in which the home page of the

website is stored.
 Host Name The name of the server on which MySQL is installed
 HTML An abbreviation for HyperText Markup Language. The language in

which web pages are written for display in a web browser
 HTML File A fi le comprising lines of HTML
 If Statement A PHP statement that specifi es what action to take if a specifi ed

condition is (and, in some cases, is not) met. See Chap. 3
 Include Statement A type of PHP statement, described in Chap. 3

(continued)

19.8 Glossary

http://dx.doi.org/10.1007/978-3-319-22659-0_10
http://dx.doi.org/10.1007/978-3-319-22659-0_3
http://dx.doi.org/10.1007/978-3-319-22659-0_4
http://dx.doi.org/10.1007/978-3-319-22659-0_6
http://dx.doi.org/10.1007/978-3-319-22659-0_8
http://dx.doi.org/10.1007/978-3-319-22659-0_3
http://dx.doi.org/10.1007/978-3-319-22659-0_3

382

 Include_Once Statement A type of PHP statement, described in Chap. 3
 Index Value An integer value used to refer to the position of an element of an

 indexed array
 Indexed Array An array with a numerical index value or key
 Inner Join A type of Join clause available in MySQL
 Internal Function Another name for system function
 Join Clause A component of a MySQL command used to combine records

from two or more tables
 Key See associative array
 Left Outer Join A type of Join clause available in MySQL
 LIMIT Clause A component of a MySQL command
 Link Identifi er A resource that holds information about a connection from a PHP

script to a MySQL server
 Local Variable A variable used in a function defi nition. It is completely separate

from any variable of the same name used outside the defi nition.
(See Chap. 8 .)

 Log File A fi le used to record information about the usage of one or more
webpages

 Logical Constant One of the constants TRUE and FALSE
 Logical Expression An expression that evaluates to a logical constant TRUE or FALSE

(see Sect. 3.2.8)
 Looping Variable A variable used in a for statement , a while statement or a do…

while statement
 Making A Join Combining database tables using a Join clause
 Mathematical Constant
M_PI

 In PHP the constant M_PI which has the value
3.14159265358979323846 (i.e. pi to 20 places of decimals).

 Mode (When Opening A
File)

 A specifi cation of the uses to which the fi le may be put. In PHP
possible modes include read, write and append.

 MySQL A database query language . A variant of the language SQL
 MySQL Database A popular type of relational database
 MySQL Database
Management System

 A collection of programs that enable information to be stored in,
modifi ed in and extracted from a MySQL database.

 Open A File Make a fi le available for use
 Opening PHP Tag The combination <?php used to begin a set of PHP statements
 ORDER BY Clause A component of a MySQL command
 Password Field An object on a webform
 Path of a File or
Directory

 The route to a fi le or directory either from the current directory
(relative path) or from the root directory (absolute path). See also
 absolute address of a fi le and relative address of a fi le

 PHP A programming language used for generating webpages. The main
topic of this book.

 PHP File A fi le with the extension php. It will generally comprise statements
written in PHP, but may also comprise a mixture of PHP and
HTML or even solely lines of HTML.

 PHP Script A set of PHP statements starting with an opening PHP tag and
ending with a closing PHP tag

(continued)

19 Appendices

http://dx.doi.org/10.1007/978-3-319-22659-0_3
http://dx.doi.org/10.1007/978-3-319-22659-0_8
http://dx.doi.org/10.1007/978-3-319-22659-0_3

383

 PHP Scripting Block A term often used to denote a short PHP script
 phpMyAdmin A software package designed to facilitate the management of a

 MySQL database using a web browser
 Popup Another term for popup window
 Popup Window A small webpage which appears on top of the currently displayed

webpage
 Primary Key A fi eld or combination of fi elds that uniquely identifi es each

 record in a database table
 Print Statement A type of statement used in a PHP script. It passes a number of

characters to the user's web browser, as opposed to directly
displaying them on the user's screen

 Protection Mode Of A
File

 A number such as 0776 from which may be extracted the status
(readable, writeable, executable or some combination of the three)
of a fi le for the owner who uploaded it to the server, the members
of a group set up by the server administrator and the rest of the
world

 Query Language A language in which commands that enable information to be
stored in, modifi ed in and extracted from a database can be written.

 Radio Button An object on a webform
 Radio Group A collection of radio buttons
 Readonly Field A fi eld on a webform which cannot be changed by the user but

will be sent to the destination page when the Submit button is
pressed

 Record A row of a database table , containing information about one
 entity .

 Recursive Defi nition A type of defi nition in which an entity is defi ned in terms of a
simpler version of itself (such as the defi nition of arithmetic
expression in Sect. 3.2.1)

 Relational Database A type of database in which information is stored in a number of
two-dimensional structures called tables .

 Relative Address Of A
File

 The address of a fi le on a server, relative to the current directory

 Require Statement A type of PHP statement, described in Chap. 3
 Require_Once
Statement

 A type of PHP statement, described in Chap. 3

 Reset Button An object on a webform
 Resource A special variable holding a reference to an external 'resource'

such as a handler for an opened fi le or a database connection
 Right Outer Join A type of Join clause available in MySQL
 Scalar Variable Sometimes used to mean a variable that is not an array
 Script See PHP script
 Scripting Block See PHP scripting block
 Select Box An object on a webform
 Sending Page The page on which information sent in a webform to a destination

page is located
 Session Variable Variables that are passed from one webpage to another in

sequence
 Standalone Function A function that can be used on its own, rather than on the

right-hand side of an assignment statement

(continued)

19.8 Glossary

http://dx.doi.org/10.1007/978-3-319-22659-0_3
http://dx.doi.org/10.1007/978-3-319-22659-0_3
http://dx.doi.org/10.1007/978-3-319-22659-0_3

384

 Statement Group A sequence of PHP statements enclosed in brace characters. Used
in IF statements , While statements , Do…While Statements , For
statements and Foreach statements

 Static Webpage A webpage with a fi xed content regardless of who is viewing it or
when

 String Often used to mean a string constant
 String Concatenation
Operator

 An operator written as a dot character. It is placed between two or
more strings or string variables to indicate that they should be
joined together.

 String Constant A fi xed string of characters such as "hello world"
 String Expression An expression that evaluates to a string constant (see Sect. 3.2.5)
 String Variable A variable used to hold an ordered sequence of characters such as

"hello world"
 Sub-Directory A directory contained inside another directory
 Submit Button An object on a webform
 Switch Statement A type of PHP statement, described in Chap. 3
 System Associative
Array

 An associative array provided automatically by the PHP system,
for example $_POST

 System Function A function provided by the implementers of PHP to perform
commonly required tasks or tasks that it would not be possible for
the PHP programmer to write using the statements in the language.

 Text Box An object on a webform
 Text Field An object on a webform
 Textarea Box An object on a webform
 Textarea Field An object on a webform
 Tuple Another term for record
 Two-Dimensional Array An array of arrays (effectively a two-dimensional table).
 Unary Operator See arithmetic operator
 User-Defi ned Function The same as a system function but defi ned by the user (i.e. the

PHP programmer)
 Variable Part of the computer's memory that can be used to store a value.
 Variable Name The name of a variable . In PHP these begin with a $ sign.
 Variables Passed By
Reference

 Variables can be passed into a user-defi ned function either by
reference or by value. The distinction is discussed in Sect. 8.7

 Variables Passed By
Value

 Variables can be passed into a user-defi ned function either by
reference or by value. The distinction is discussed in Sect. 8.7

 Webform A form displayed on a web page into which the user can enter
information

 WHERE Clause A component of a MySQL command
 While Loop Another name for a While statement
 While Statement A type of PHP statement, described in Chap. 3

19 Appendices

http://dx.doi.org/10.1007/978-3-319-22659-0_3
http://dx.doi.org/10.1007/978-3-319-22659-0_3
http://dx.doi.org/10.1007/978-3-319-22659-0_8
http://dx.doi.org/10.1007/978-3-319-22659-0_8
http://dx.doi.org/10.1007/978-3-319-22659-0_3

385© Springer International Publishing Switzerland 2015
M. Bramer, Web Programming with PHP and MySQL,
DOI 10.1007/978-3-319-22659-0

 A
 Absolute address of a fi le , 96, 106, 110,

379, 382
 Appending to a fi le , 97, 98, 183, 379
 Argument list , 60, 68, 89, 114, 117, 118, 122,

123, 125, 346, 379, 381
 Argument of a function , 125, 189, 379
 Arithmetic expression , 28–34, 45, 51, 358,

366, 379, 383
 Arithmetic operator , 29, 31, 223, 356–357,

362, 363, 379, 380, 384
 Array , 12, 17–19, 24, 25, 28, 44–47, 51,

53–65, 73–74, 76, 102, 107, 109, 110,
118, 119, 121–125, 134, 139, 154, 155,
158, 161, 162, 167, 168, 170, 171, 173,
188–191, 193, 260, 261, 272, 285,
290–292, 294, 295, 299, 316, 332, 333,
345, 348–352, 355, 364, 369, 373, 379,
380, 384

 element , 18, 19, 28–30, 32, 33, 44, 45, 47,
53–56, 63–65, 73, 76, 100, 102, 109,
110, 118, 123, 156, 187, 190, 193,
272, 305, 313, 348–350,
377, 379

 index , 59, 65, 100, 108, 110, 123, 261,
352, 379, 382

 Assignment statement , 15, 16, 18, 27–35, 40,
45, 46, 51, 54, 59, 140, 170, 193, 256,
269, 358, 379

 Associative array , 59–62, 65, 107, 110, 119,
134, 154, 155, 158, 162, 167, 170, 173,
261, 352, 373, 380, 382 , 384

 Auto_Increment fi eld , 232–234, 250, 380

 B
 Backtick , 165, 305, 380
 Binary operator , 29, 379, 380
 Brace characters , 14, 40–42, 114, 315, 384
 Braces , 19, 24, 42, 43, 45, 46, 56, 114, 179,

180, 315
 Built-in function , 24, 380

 C
 Camel case , 201
 Case-sensitive , 16, 18, 23, 28, 68, 99, 114,

154, 201, 203, 246, 364
 Checkbox , 129, 140–141, 147, 148,

156, 380
 Closing PHP tag , 6, 11, 13, 14, 49, 179, 303,

308, 315, 338, 380, 382
 Column defi nition , 244, 245, 253, 380
 Concatenate strings , 213, 380
 Concatenation operator , 9, 32, 380, 384
 Conditional expression , 34, 39, 40, 42, 45,

184, 185, 380
 Constant , 14–16, 19–23, 25, 32, 33, 43, 68, 77,

97, 99, 116, 117, 124, 132, 183, 190,
203, 212, 223, 249, 256, 262, 314, 326,
332, 334, 363, 364, 379, 380,
382, 384

 Current database , 199, 203, 215, 240, 256,
274, 286, 301–306, 320, 361,
362, 380

 Current directory , 95–97, 105–110, 131, 351,
352, 380, 382, 383

 Current working directory , 106

 Index

386

 D
 Database table , 198, 199, 201, 203, 213, 241,

253, 283–299, 301–320, 322, 331,
380–383

 Data cleaning , 283–292, 380
 Data type , 236, 244–247, 253, 380
 Destination page , 127–131, 135, 138–140,

144–147, 149, 151, 153–167, 173,
176, 177, 187, 277, 308–316,
380, 383

 Directory , 93–98, 100, 103–110, 131, 146,
163, 164, 180, 181, 193, 351, 352,
379–384

 Disabled fi eld , 146–147, 380
 Do…While statement , 28, 380, 382, 384

 E
 Empty statement , 41, 380
 Empty string , 16, 22, 39, 71, 132, 156, 157,

161, 187. 193, 205, 219, 234, 248, 258,
277, 285, 292, 293, 295, 303, 316, 348

 E-notation. See Exponent notation
 Entity , 198, 380, 383
 Escape sequence , 20, 25, 65, 99, 183, 380
 Exponent notation , 20, 85, 87, 364, 380
 Extended URL , 166–168, 173, 364, 381

 F
 Field

 name , 159, 162, 176, 200, 201, 203, 204,
208, 214, 215, 220, 228, 230, 238, 239,
251, 252, 264, 271, 284, 305, 359, 360,
362, 364, 381

 type , 205, 208, 212, 215, 362, 381
 File box , 145, 147, 381
 File fi eld , 145–146, 162–164, 381
 File pointer , 381
 File protection , 381
 Folder , 93, 131, 163, 173, 381
 Forcing input into lower/upper case , 178, 381
 Foreach statement , 28, 45, 53, 55–56, 60, 63,

65, 161, 162, 170, 172, 381, 384
 For loop , 44–46, 51, 63, 140, 262, 377, 381
 Format specifi er , 85–89, 92, 99, 110, 345,

351, 381
 Format string , 83–85, 89, 92, 381
 Form object , 128, 131–148, 151, 153, 159,

314, 381
 For statement , 27, 45, 54, 56, 355, 381, 382, 384
 Function

 call , 23, 28–30, 32, 33, 73–75, 77, 83, 99,
115, 123, 124, 127, 134, 136, 141, 144,
150, 182, 290, 315, 337, 341, 350, 381

 library , 113, 119–120, 125, 381
 name , 23, 25, 77, 100, 109, 110, 114, 278,

280, 364, 366, 381

 G
 Global variable , 117, 118, 121, 381

 H
 Hidden fi eld , 144, 381
 Home directory , 94–96, 180, 181, 381
 Host name , 256, 381
 HTML , 1, 3–7, 12, 14, 35, 64, 76, 93, 115,

127, 128, 156, 176, 177, 262, 277, 305,
323, 329, 339, 365, 381

 HTML fi le , 4, 5, 381

 I
 If statement , 16, 27, 39–43, 51, 178, 278,

381, 384
 Include_Once statement , 382
 Include statement , 27, 51, 131, 193, 257, 381
 Indexed array , 53, 59, 65, 100, 108, 110, 123,

261, 352, 382
 Index value , 54, 55, 369, 382
 Inner join , 230, 239, 360, 375, 382
 Internal function , 24, 382

 J
 Join clause , 228, 382, 383

 K
 Key , 56, 57, 60, 108, 133, 139, 154, 155, 158,

166, 202, 204, 206, 209, 213–215, 219,
232–234, 236, 249, 380, 382

 Keywords , 12, 28, 202, 244–247, 364

 L
 Left outer join , 230, 239, 360, 382
 LIMIT clause , 206, 213, 224–226, 239,

360, 382
 Link identifi er , 257, 258, 279, 345,

354–356, 382
 Local variable , 117–118, 121, 125, 382

Index

387

 Log fi le , 181–182, 186–195, 382
 Logical constant , 22, 33, 43, 364, 382
 Logical expression , 27, 28, 33–34, 51,

366, 382
 Looping variable , 45, 382

 M
 Making A Join , 228, 382
 Mathematical Constant M_PI , 68
 Mode (When Opening A File) , 97, 382
 MySQL , 3, 9, 49, 165, 183, 197–215,

217–241, 243–253, 255–281, 283, 302,
304, 312, 313, 317, 321, 322, 354–356,
358–364

 MySQL database management system , 9, 49,
183, 197–215, 217–241, 281, 331,
354–356, 382, 383

 N
 Null string , 16, 24, 33, 34, 298, 299
 Null value , 57, 156, 161, 167, 205, 227, 231,

232, 236, 239, 248, 341, 361

 O
 Open A File , 97, 98, 382
 Opening PHP tag , 6, 7, 11, 13, 14, 180, 382
 ORDER BY clause , 219–222, 224, 230, 239,

360, 362, 382

 P
 Parentheses , 23, 24, 28, 30–35, 39–41, 44–46,

83, 84, 106, 114, 222, 239, 241, 244,
246, 360, 362, 363, 366, 379, 381

 Password fi eld , 143–144, 382
 Path of a fi le/directory , 105–109, 351, 352
 PHP , 1, 3, 5–7, 11–24, 27–50, 55–56, 64, 68,

69, 75, 78, 83, 93, 95, 113–115, 117,
127–151, 153–172, 175–195, 197, 218,
255–281, 283–299, 301–344

 fi le , 5–7, 14, 382
 script , 1, 4, 6–15, 17–19, 25, 27, 28, 35,

49, 50, 53, 64, 80, 95–98, 100, 103,
104, 106, 111

 scripting block , 6, 8, 11, 12, 49, 50,
185, 382

 phpMyAdmin , 200, 383
 Popup , 148–151, 383
 Popup window , 148–151, 383

 Primary key , 202, 204, 206, 209, 213–215,
219, 232–234, 236, 238, 241, 244,
248–253, 261, 271, 280, 301, 308, 309,
313, 322, 358–360, 375, 383

 Print statement , 8, 9, 14, 16, 22, 27, 35–39, 51,
80, 81, 83–85, 92, 129, 170, 179, 183,
262, 314, 325, 336, 340, 366, 383

 Protection mode of a fi le or directory , 104, 109

 Q
 Query language , 1, 3, 198, 382, 383

 R
 Radio button , 129, 133–134, 147, 383
 Radio group , 129, 133–134, 147, 383
 Readonly fi eld , 146–147, 383
 Record , 97, 102, 110, 128, 180, 181, 183, 189,

197, 198, 202–208, 213, 215, 216, 218,
219, 222, 223, 225, 227, 228, 232, 234,
238, 239, 241, 247, 252, 260, 270, 272,
279, 280, 284, 285, 288, 290, 292, 293,
307–314, 316, 320, 321, 332, 333,
359–362, 379–384

 Recursive defi nition , 29, 33, 383
 Relational database , 1, 4, 9, 197–199, 215,

241, 380, 382, 383
 Relative address of a fi le , 94, 95, 96, 148, 154,

382, 383
 Require_once statement , 28, 51
 Require statement , 48–51, 120, 383
 Reset button , 129, 141–142, 383
 Resource , 28, 97, 109, 258, 260, 272, 278,

279, 281, 293, 295, 345, 346, 352,
354–356, 382, 383

 Right outer join , 231, 239, 360, 383

 S
 Scalar variable , 11, 17–19, 383
 Script , 3, 4, 6, 7, 11–19, 28, 35, 38, 64, 65, 78,

80, 81, 95, 113, 117, 127–151,
153–172, 177, 197, 217, 255–281, 284,
287, 288, 301, 324, 354

 Scripting block , 6, 8, 11–13, 49, 50, 70,
185, 383

 Select box , 129, 135–140, 147, 156, 186, 383
 Sending page , 128, 131, 153, 154, 383
 Session variable , 153, 169–173, 346, 353, 383
 Side effect , 6, 84
 Slanted quote , 166, 201, 203

Index

388

 Square brackets , 18, 24, 53, 139
 Standalone function , 59, 83–84, 98, 99, 104,

351, 383
 Statement group , 14, 40–42, 45, 46, 179,

180 384
 Static webpage , 2, 7, 384
 String

 concatenation operator , 32, 384
 constant , 19, 20, 32, 77, 97, 132, 183, 223,

256, 332, 334, 363, 364, 380, 384
 expression , 28, 32, 40, 384
 variable , 17, 285, 384

 Style sheet , 50, 365
 Sub-directory , 93–95, 109–111, 181, 384
 Submit button , 128, 129, 141, 142, 144–146,

153, 154, 156, 172, 176, 314, 380,
383, 384

 Switch statement , 27, 43–44, 51, 384
 System associative array , 154, 158, 167, 173
 System function , 9, 11, 15, 24, 25, 67–75, 97,

98, 113, 114, 117, 183, 338, 345–356,
364, 380, 382, 384

 T
 Textarea box , 132, 384
 Textarea fi eld , 132–133, 384
 Text box , 5, 128, 131–134, 143, 147, 155, 157,

165, 177, 274, 313, 384
 Text fi eld , 131–132, 164–166, 384

 Tuple , 198, 384
 Two-dimensional array , 62, 63, 125, 384

 U
 Unary operator , 29, 33, 379, 384
 Uninitialized variable , 16, 17, 22
 User-defi ned function , 113–125

 V
 Variables

 name , 15–17, 21–23, 25, 28, 97, 114, 116,
117, 121, 155, 166, 167, 257, 290, 364,
366, 381, 384

 passed by reference , 125
 passed by value , 122, 125, 316, 384

 W
 Webform , 127–131, 151, 153, 156, 173,

175–178, 186, 187, 195, 274, 275, 277,
278, 372, 380–384

 WHERE clause , 205, 206, 209, 213, 215,
222–224, 227, 239, 241, 341, 360,
362–363, 384

 While loop , 45–48, 51, 190, 260, 262–264,
272, 295, 302, 384

 While statement , 28, 46, 260, 332, 333, 380,
382, 384

Index

	Contents
	Chapter 1: Introduction
	1.1 How a Web Browser Processes an HTML File
	1.2 Notation
	1.3 Creating an HTML File
	1.4 How PHP Files Are Processed
	1.5 Exercise: The Erewhon Society's Home Page
	1.6 About This Book

	Chapter 2: PHP Fundamentals
	2.1 Structure of a PHP Script
	2.1.1 Blank Lines and Layout
	2.1.2 Comments

	2.2 How a 'Mixed' PHP File Is Processed
	2.3 PHP: Basic Components
	2.4 Variables
	2.4.1 Uninitialized Variables
	2.4.2 Variable Names: A Warning
	2.4.3 Types of Variable
	2.4.4 Arrays
	2.4.5 Variable Variables

	2.5 Constants
	2.5.1 Numbers
	2.5.2 Strings
	2.5.3 Logical Constants

	2.6 Functions
	2.7 A Note on Brackets
	2.8 Some Combinations of Quote Characters

	Chapter 3: The PHP Language: Types of Statement
	3.1 Overview of Statements
	3.1.1 PHP Keywords

	3.2 Assignment Statements
	3.2.1 Arithmetic Expressions
	3.2.2 Evaluating an Arithmetic Expression
	3.2.3 Arithmetic Functions
	3.2.4 Simplified Notation for Assignment
	3.2.5 String Expressions
	3.2.6 String Functions
	3.2.7 Simplified Notation for Joining Strings
	3.2.8 Logical Expressions
	3.2.9 Evaluating Logical Expressions
	3.2.10 Logical Function

	3.3 PRINT Statements
	3.3.1 Printing Logical Values

	3.4 IF Statements
	3.4.1 Statement Groups
	3.4.2 Augmenting an 'if' Statement with 'elseif' and 'else' Clauses
	3.4.3 Dealing with Variable Values in Conditional Expressions

	3.5 The Switch Statement
	3.6 Loops in PHP 1: For Loops
	3.7 Loops in PHP 2: WHILE Loops
	3.8 Loops in PHP 3: Do…While Loops
	3.9 The Include and Require Statements

	Chapter 4: More About Arrays
	4.1 The Array Function
	4.2 The Count Function
	4.3 The PHP Foreach Statement
	4.4 Sort Functions
	4.5 Associative Arrays
	4.5.1 Using Associative Arrays with Dates

	4.6 Two Dimensional Arrays
	4.7 The Explode and Implode Functions

	Chapter 5: Some Important Functions
	5.1 System Functions Applied to Numbers
	5.1.1 Mathematical Constant

	5.2 Trigonometric Functions
	5.3 System Functions Applied to Strings
	5.3.1 Trimming a String
	5.3.2 Changing Case
	5.3.3 Converting Initial Letters to Uppercase
	5.3.4 Replacing One Substring by Another
	5.3.5 Reversing a String
	5.3.6 Manipulating a Substring
	5.3.7 Converting a String to an Array and Vice Versa
	5.3.8 Wrapping Text

	5.4 The rand Function
	5.5 The max and min Functions
	5.6 The date Function
	5.6.1 List of Special One-character Arguments for the date Function

	5.7 The header Function
	5.8 The die Function
	5.9 The echo Function
	5.10 The phpinfo Function

	Chapter 6: Formatted Print Functions
	6.1 Standalone Functions
	6.2 The printf Function
	6.2.1 Type Specifiers
	6.2.2 The Sign Specifier
	6.2.3 Precision Specifiers
	6.2.4 Padding Specifiers
	6.2.5 Padding Strings
	6.2.6 Outputting a Percent Sign
	6.2.7 Specifying Variables Explicitly
	6.2.8 Combining Options
	6.2.9 List of Type Specifiers

	6.3 The sprintf Function

	Chapter 7: Using Files
	7.1 Directories and Sub-directories
	7.2 Relative Addressing Using Paths
	7.2.1 Relative and Absolute Addresses

	7.3 Storing Data in Text Files
	7.3.1 Opening a File
	7.3.2 Closing a File
	7.3.3 Writing to an Open File
	7.3.4 Formatted Writing to an Open File
	7.3.5 Reading an Open File
	7.3.6 The File Function
	7.3.7 Examples
	7.3.8 Using the Explode and Implode Functions

	7.4 File and Directory Protections
	7.5 Checking Existence and Protection Status of Files and Directories
	7.6 Other Functions Applied to Files or Directories
	7.6.1 Changing File or Directory Protections
	7.6.2 Creating and Deleting Directories
	7.6.3 Renaming Files and Directories
	7.6.4 Getting and Changing the Current Directory

	7.7 Decomposing a Relative File or Directory Name into its Components
	7.7.1 Example

	7.8 Finding the Contents of a Directory
	7.9 Summary of Functions

	Chapter 8: User-Defined Functions
	8.1 Introduction
	8.2 Global and Local Variables
	8.3 Returning More than One Value
	8.4 Creating a Function Library
	8.5 Using a GLOBAL Statement in a Function Definition
	8.6 Passing an Array as a Function Argument
	8.7 Arguments Passed by Value and Arguments Passed by Reference
	8.8 Default Values for Arguments

	Chapter 9: Passing Variables to a PHP Script I
	9.1 Introduction
	9.2 Webforms
	9.2.1 The <form> Tag

	9.3 Form Objects
	9.3.1 Text Field
	9.3.2 Textarea Field
	9.3.3 Radio Buttons in a Radio Group
	9.3.4 Select Box
	9.3.5 Checkbox
	9.3.6 Submit and Reset Buttons

	9.4 Other Form Objects
	9.4.1 Password Field
	9.4.2 Hidden Field
	9.4.3 File Field
	9.4.4 Readonly and Disabled Fields

	9.5 Using Popup Windows

	Chapter 10: Passing Variables to a PHP Script II
	10.1 Introduction
	10.2 Destination Pages
	10.2.1 Checking for Compulsory Values
	10.2.2 Checking for Numeric Values and Integers
	10.2.3 Multiple Selections
	10.2.4 File Fields
	10.2.5 Quotes in Text Fields and Textareas

	10.3 Passing Variables to a PHP Script as Part of a URL
	10.4 Passing Values to PHP Scripts Using Session Variables

	Chapter 11: PHP in Action: Managing a Members' Area
	11.1 Entering Passwords
	11.2 Turning PHP On and Off
	11.3 A Note on Security
	11.4 Writing a Log File
	11.5 Storing Data in Text Files
	11.6 Multiple Passwords
	11.7 Reading a Log File
	11.7.1 Generating the Access Table
	11.7.2 Displaying the Results in Tabular Form
	11.7.3 Adding HTML Tags Using Include

	Chapter 12: Using a MySQL Database I
	12.1 MySQL Databases
	12.2 Creating a Database
	12.2.1 Specifying the Current Database

	12.3 Creating a Table
	12.4 Issuing MySQL Commands
	12.5 Naming Databases, Tables and Fields
	12.5.1 Case Sensitivity of Database, Table and Field Names

	12.6 Setting a Primary Key
	12.7 Adding a Record to the mytable1 Table
	12.7.1 The INSERT INTO Command
	12.7.2 The REPLACE INTO Command

	12.8 Deleting a Record
	12.9 Changing a Table
	12.10 Updating a Table
	12.11 Summary of MySQL Commands

	Chapter 13: Using a MySQL Database II
	13.1 The Select Command
	13.1.1 Order by Clauses
	13.1.2 Where Clauses
	13.1.3 Displaying Values that are not Fields
	13.1.4 Limit Clauses
	13.1.5 Applying Functions to the Values of a Field
	13.1.6 Finding the Number of Records in a Table
	13.1.7 Finding All the Distinct Values of a Field

	13.2 Complex Select/Update Commands
	13.3 Combining Tables: Inner and Outer Joins
	13.4 Auto_Increment Fields
	13.5 The Show Command
	13.5.1 Show Databases
	13.5.2 Show Tables
	13.5.3 Show Fields/ Show Columns/ Describe
	13.5.4 Show Variables

	13.6 Some Further Commands and Adding Comments
	13.6.1 Renaming a Table
	13.6.2 Deleting a Table
	13.6.3 Deleting a Database
	13.6.4 Including a Comment in a MySQL Command

	13.7 Summary of MySQL Commands

	Chapter 14: Creating and Updating MySQL Tables
	14.1 Creating a Table
	14.2 Data Types
	14.2.1 Integer Types
	14.2.2 Fixed Point Types
	14.2.3 Floating Point Types
	14.2.4 Character Types
	14.2.5 Enumeration Types
	14.2.6 Date and Time Types

	14.3 NOT NULL and DEFAULT Clauses
	14.3.1 Implied Default Values

	14.4 AUTO_INCREMENT Clause
	14.5 Key Clauses
	14.6 Copying a Table
	14.7 Changing the Structure, the Name and the Field Specifications of a Table
	14.7.1 Primary Keys
	14.7.2 Set the Starting Value for an AUTO_INCREMENT Field
	14.7.3 Change the Name of a Table
	14.7.4 Add a New Field
	14.7.5 Change the Name and/or Structure of a Field
	14.7.6 Changing a Default Value

	14.8 Using the SHOW Command to Find the Structure of a Table
	14.9 Summary of MySQL Commands

	Chapter 15: Using a PHP Script to Manage a MySQL Database
	15.1 Connecting to a Database
	15.2 A PHP Function to Display the Result of a Selection
	15.2.1 Finding the Version of MySQL

	15.3 Using Simpler MySQL Commands
	15.4 Combining Tables
	15.5 A Visual MySQL Command Processing Tool
	15.6 The PHP mysql_affected_rows Function
	15.7 The PHP mysql_insert_id Function
	15.8 Converting mysql_ Functions to mysqli_ Functions

	Chapter 16: PHP in Action: Converting Data between Text Files and Database Tables
	16.1 A Plays Dataset
	16.2 Data Cleaning for the Plays Dataset
	16.3 Extracting Information from a Table: Finding the Next Production
	16.4 Backing up and Restoring a Table
	16.4.1 Restoring a Table

	16.5 Using the explode Function When There Are Multiple Occurrences of the Separator

	Chapter 17: Using PHP to View and Edit Database Tables
	17.1 Analyzing the Current Database
	17.2 Building a Visual Table Editor
	17.2.1 Developing an Editing Page
	17.2.2 Developing the Destination Page
	17.2.3 Changing and Adding to a Table

	Chapter 18: PHP in Action: Maintaining a Membership List
	18.1 Registration
	18.2 Logging in
	18.3 Sending Email from a PHP Script
	18.4 Generating Passwords
	18.5 Managing the Members Table

	Chapter 19: Appendices
	19.1 PHP System Functions
	19.1.1 Abbreviations Used in Specifications of Function Arguments
	19.1.2 Terms Used in Specifications of Function Arguments
	19.1.3 System Functions Applied to Numbers
	19.1.4 Trigonometric Functions
	19.1.5 System Functions Applied to Arrays
	19.1.6 System Functions Applied to Strings
	19.1.7 System Functions Applied to Variables
	19.1.8 System Functions for Use with Arrays
	19.1.9 Formatted Print Functions
	19.1.10 System Functions for Use with Text Files
	19.1.11 Logical Functions
	19.1.12 Functions Used with Sessions (see Chap. 10 for more details)
	19.1.13 Functions Used with Uploaded Files (see Chap. 10 for more details)
	19.1.14 Other System Functions
	19.1.15 System Functions Used for Manipulating a MySQL Database
	19.1.16'Improved' System Functions Used for Manipulating a MySQL Database (See Sect. 15.8.)

	19.2 PHP System Operators
	19.2.1 Binary Arithmetic Operators Applied to Numerical Expressions
	19.2.2 Unary Arithmetic Operators Applied to Numbers
	19.2.3 System Operators Applied to Strings
	19.2.4 Relational Operators
	19.2.5 Logical Operators
	19.2.6 Operators Giving a Simplified Notation for Assignment
	19.2.7 Operators Giving a Simplified Notation for Joining Strings

	19.3 Summary of MySQL Commands
	19.4 MySQL Operators and Functions
	19.4.1 Simple Conditions in WHERE Clauses
	19.4.2 Complex Conditions in WHERE Clauses
	19.4.3 Other Functions in SELECT Commands
	19.4.4 UPDATE Commands

	19.5 Summary of Case-Sensitivity Rules: PHP and MySQL
	19.5.1 PHP
	19.5.2 MySQL
	19.5.3 Other

	19.6 Principal HTML Tags
	19.7 Specimen Solutions to Practical Exercises
	19.7.1 Practical Exercise 2
	19.7.2 Practical Exercise 3
	19.7.3 Practical Exercise 4
	19.7.4 Practical Exercise 5
	19.7.5 Practical Exercise 6
	19.7.6 Practical Exercise 7
	19.7.7 Practical Exercise 8
	19.7.8 Practical Exercise 9
	19.7.9 Practical Exercise 10
	19.7.10 Practical Exercise 11
	19.7.11 Practical Exercise 12
	19.7.12 Practical Exercise 13
	19.7.13 Practical Exercise 14
	19.7.14 Practical Exercise 15
	19.7.15 Practical Exercise 16
	19.7.16 Practical Exercise 17
	19.7.17 Practical Exercise 18

	19.8 Glossary

	Index

